PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Dey, S; Bose, J; Joshi, A Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh Adaptation to larval crowding in Drosophila ananassae leads to the evolution of population stability ECOLOGY AND EVOLUTION English Article alpha-Selection; competitive ability; constancy; density-dependent selection; K-selection; life-history evolution; persistence; population dynamics DEPENDENT NATURAL-SELECTION; LIFE-HISTORY EVOLUTION; SINGLE-SPECIES POPULATIONS; DENSITY-DEPENDENCE; FASTER DEVELOPMENT; K-SELECTION; GROWTH-RATE; MELANOGASTER; DYNAMICS; CHAOS Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations. [Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh] Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Bangalore 560064, Karnataka, India Joshi, A (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Jakkur PO, Bangalore 560064, Karnataka, India. ajoshi@jncasr.ac.in Department of Science and Technology, Government of India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Supported by funds from the Department of Science and Technology, Government of India.; We thank Sutirth Dey and two anonymous reviewers for helpful comments on the manuscript and M. Rajanna for assistance in the laboratory. S. Dey thanks Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, for a doctoral fellowship. This work was supported in part by funds from the Department of Science and Technology, Government of India (to A. J.). Archana N., 2010, THESIS J NEHRU CTR A; ASMUSSEN MA, 1983, GENETICS, V103, P335; BERRYMAN AA, 1989, TRENDS ECOL EVOL, V4, P26, DOI 10.1016/0169-5347(89)90014-1; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARKE B, 1972, AM NAT, V106, P1, DOI 10.1086/282747; Dey S, 2006, SCIENCE, V312, P434, DOI 10.1126/science.1125317; Dey S, 2008, J ANIM ECOL, V77, P670, DOI 10.1111/j.1365-2656.2008.01401.x; Ebenman B, 1996, P ROY SOC B-BIOL SCI, V263, P1145, DOI 10.1098/rspb.1996.0167; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Getz WM, 1996, ECOLOGY, V77, P2014, DOI 10.2307/2265697; Grimm V, 1997, OECOLOGIA, V109, P323, DOI 10.1007/s004420050090; HANSEN TF, 1992, THEOR POPUL BIOL, V42, P199, DOI 10.1016/0040-5809(92)90012-I; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Joshi A, 2003, J GENET, V82, P147, DOI 10.1007/BF02715815; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; MAY RM, 1976, AM NAT, V110, P573, DOI 10.1086/283092; Mueller L. D., 2000, STABILITY MODEL POPU; Mueller LD, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P197; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1981, ECOLOGY, V62, P1148, DOI 10.2307/1937278; MUELLER LD, 1994, ECOLOGY, V75, P430, DOI 10.2307/1939546; Mueller LD, 2000, ECOLOGY, V81, P1273, DOI 10.1890/0012-9658(2000)081[1273:DPSE]2.0.CO;2; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; NICHOLSON AJ, 1957, COLD SPRING HARB SYM, V22, P153, DOI 10.1101/SQB.1957.022.01.017; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2003, P ROY SOC B-BIOL SCI, V270, pS84, DOI 10.1098/rsbl.2003.0020; Prasad NG, 2000, GENET RES, V76, P249, DOI 10.1017/S0016672300004754; Prasad NG, 2001, EVOLUTION, V55, P1363; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Shakarad M, 2005, BIOL LETTERS, V1, P91, DOI 10.1098/2004.0261; Sharmila Bharathi N., 2007, THESIS J NEHRU CTR A; Sheeba V, 1998, CURR SCI INDIA, V75, P1406; Shiotsugu J., 1996, EVOLUTION, V51, P163; StatSoft, 1995, STAT, V1; STOKES TK, 1988, THEOR POPUL BIOL, V34, P248, DOI 10.1016/0040-5809(88)90023-8; THOMAS WR, 1980, ECOLOGY, V61, P1312, DOI 10.2307/1939039; TURELLI M, 1980, P NATL ACAD SCI-BIOL, V77, P7501, DOI 10.1073/pnas.77.12.7501 46 5 5 0 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2012 2 5 941 951 10.1002/ece3.227 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055WE WOS:000312447700007 22837839 DOAJ Gold, Green Published 2019-02-21 J Fujiwara, M Fujiwara, Masami Demographic Diversity and Sustainable Fisheries PLOS ONE English Article POPULATION REGULATION; MARINE FISHES; MANAGEMENT; RESILIENCE; ABUNDANCE; MODELS; VARIABILITY; RECRUITMENT; STABILITY; DYNAMICS Fish species are diverse. For example, some exhibit early maturation while others delay maturation, some adopt semelparous reproductive strategies while others are iteroparous, and some are long-lived and others short-lived. The diversity is likely to have profound effects on fish population dynamics, which in turn has implications for fisheries management. In this study, a simple density-dependent stage-structured population model was used to investigate the effect of life history traits on sustainable yield, population resilience, and the coefficient of variation (CV) of the adult abundance. The study showed that semelparous fish can produce very high sustainable yields, near or above 50% of the carrying capacity, whereas long-lived iteroparous fish can produce very low sustainable yields, which are often much less than 10% of the carrying capacity. The difference is not because of different levels of sustainable fishing mortality rate, but because of difference in the sensitivity of the equilibrium abundance to fishing mortality. On the other hand, the resilience of fish stocks increases from delayed maturation to early maturation strategies but remains almost unchanged from semelparous to long-lived iteroparous. The CV of the adult abundance increases with increased fishing mortality, not because more individuals are recruited into the adult stage (as previous speculated), but because the mean abundance is more sensitive to fishing mortality than its standard deviation. The magnitudes of these effects vary depending on the life history strategies of the fish species involved. It is evident that any past high yield of long-lived iteroparous fish is a transient yield level, and future commercial fisheries should focus more on fish that are short-lived (including semelparous species) with high compensatory capacity. Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 United States National Oceanic and Atmospheric Administration (DOC) [NFFR7500-10-18114] This work was funded in part by the United States National Oceanic and Atmospheric Administration (DOC Contract-NFFR7500-10-18114). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study. ADAMS PB, 1980, FISH B-NOAA, V78, P1; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BEDDINGTON JR, 1976, J ANIM ECOL, V45, P791, DOI 10.2307/3581; Beverton R.J.H., 1957, DYNAMICS EXPLOITED F; Brooks EN, 2010, ICES J MAR SCI, V67, P165, DOI 10.1093/icesjms/fsp225; Cadrin SX, 2008, FISH RES, V94, P367, DOI 10.1016/j.fishres.2008.06.004; Caswell H., 2001, MATRIX POPULATION MO; COSTANTINO RF, 1995, NATURE, V375, P227, DOI 10.1038/375227a0; Costantino RF, 1997, SCIENCE, V275, P389, DOI 10.1126/science.275.5298.389; DEANGELIS DL, 1980, ECOLOGY, V61, P764, DOI 10.2307/1936746; Fromentin JM, 2001, FISH RES, V53, P133, DOI 10.1016/S0165-7836(00)00299-X; Fujiwara M, 2011, SCI REP-UK, V1, DOI 10.1038/srep00107; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Haddon M, 2001, MODELLING QUANTITATI; Hannesson R, 1994, 04299337 FAO DN; HARRISON GW, 1979, AM NAT, V113, P659, DOI 10.1086/283424; Hastings A, 2004, TRENDS ECOL EVOL, V19, P39, DOI 10.1016/j.tree.2003.09.007; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Jennings S, 2001, MARINE FISHERIES ECO; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; Myers RA, 1996, FISH B-NOAA, V94, P707; Pinsky ML, 2011, P NATL ACAD SCI USA, V208, P8317; Quinn T. J., 1999, QUANTITATIVE FISH DY; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Rose KA, 2003, ANNU REV ECOL EVOL S, V34, P127, DOI 10.1146/annurev.ecolsys.34.011802.132423; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P725, DOI 10.1139/F05-067; Stearns S, 1992, EVOLUTION LIFE HIST; USDOC, 2007, 94265 USDOC; Verhulst P. F., 1838, CORRES MATH PHYSIQUE, V10, P113; Walters C. J, 1992, QUANTITATIVE FISHERI; Wiedenmann J, 2009, BIOL CONSERV, V142, P2990, DOI 10.1016/j.biocon.2009.07.031; Williams EH, 2003, CAN J FISH AQUAT SCI, V60, P1037, DOI 10.1139/F03-099; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Worden L, 2010, THEOR POPUL BIOL, V78, P239, DOI 10.1016/j.tpb.2010.07.004 38 3 3 0 30 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 1 2012 7 5 e34556 10.1371/journal.pone.0034556 14 Multidisciplinary Sciences Science & Technology - Other Topics 959UN WOS:000305340700004 22563455 DOAJ Gold, Green Published 2019-02-21 J Kosztolanyi, A; Kupper, C; Chastel, O; Parenteau, C; Yilmaz, KT; Miklosi, A; Szekely, T; Lendvai, AZ Kosztolanyi, Andras; Kuepper, Clemens; Chastel, Olivier; Parenteau, Charline; Yilmaz, K. Tuluhan; Miklosi, Adam; Szekely, Tarnas; Lendvai, Adam Z. Prolactin stress response does not predict brood desertion in a polyandrous shorebird HORMONES AND BEHAVIOR English Article Social behavior; Neuroendocrine system; Parental care; Brood desertion; Corticosterone; Prolactin; Capture and restraint; Shorebird; Kentish plover LONG-LIVED BIRD; PLOVERS CHARADRIUS-ALEXANDRINUS; PARENTAL CARE; KENTISH PLOVERS; REPRODUCTIVE SUCCESS; LUTEINIZING-HORMONE; SEXUAL CONFLICT; HOUSE SPARROWS; OLDER PARENTS; CORTICOSTERONE RESPONSES One of the fundamental principles of the life-history theory is that parents need to balance their resources between current and future offspring. Deserting the dependent young is a radical life-history decision that saves resources for future reproduction but that may cause the current brood to fail. Despite the importance of desertion for reproductive success, and thus fitness, the neuroendocrine mechanisms of brood desertion are largely unknown. We investigated two candidate hormones that may influence brood desertion in the Kentish plover Charadrius alexandrinus: prolactin ('parental hormone') and corticosterone ('stress hormone'). Kentish plovers exhibit an unusually diverse mating and parental care system: brood desertion occurs naturally since either parent (the male or the female) may desert the brood after the chicks hatch and mate with a new partner shortly after. We measured the hormone levels of parents at hatching using the standard capture and restraint protocol. We subsequently followed the broods to determine whether a parent deserted the chicks. We found no evidence that either baseline or stress-induced prolactin levels of male or female parents predicted brood desertion. Although stress-induced corticosterone levels were generally higher in females compared with males, individual corticosterone levels did not explain the probability of brood desertion. We suggest that, in this species, low prolactin levels do not trigger brood desertion. In general, we propose that the prolactin stress response does not reflect overall parental investment in a species where different parts of the breeding cycle are characterized by contrasting individual investment strategies. (C) 2012 Elsevier Inc. All rights reserved. [Kosztolanyi, Andras; Miklosi, Adam] Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary; [Kuepper, Clemens] Harvard Univ, Dept Organism & Evolutionary Biol, Museum Comparat Zool, Cambridge, MA 02138 USA; [Chastel, Olivier; Parenteau, Charline] Ctr Natl Rech Sci, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France; [Yilmaz, K. Tuluhan] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey; [Szekely, Tarnas] Univ Bath, Dept Biol & Biochem, Bath 8A2 7AY, Avon, England; [Lendvai, Adam Z.] Coll Nyiregyhaza, Dept Biol, H-4400 Nyiregyhaza, Hungary Kosztolanyi, A (reprint author), Eotvos Lorand Univ, Dept Ethol, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary. andras.kosztolanyi@gmail.com Kupper, Clemens/D-8116-2011; Lendvai, Adam/B-8546-2008; Yilmaz, Kemal Tuluhan/K-5194-2018; Kosztolanyi, Andras/B-8008-2016 Kupper, Clemens/0000-0002-1507-8033; Lendvai, Adam/0000-0002-8953-920X; Kosztolanyi, Andras/0000-0002-9109-5871 Hungarian Scientific Research Fund (OTKA) [K81953, PD76862]; Hungarian-French Intergovernmental S&T Cooperation Programme [OMFB-00365/2010, Egide 22895WE]; Hungarian-Turkish Intergovernmental S&T Cooperation Programme [OMFB-00581/2009, TUBITAK-108Y329]; DAAD The study was supported by the Hungarian Scientific Research Fund (OTKA, K81953, PD76862) and the Hungarian-French Intergovernmental S&T Cooperation Programme (OMFB-00365/2010, Egide 22895WE). Fieldwork was supported by a grant from the Hungarian-Turkish Intergovernmental S&T Cooperation Programme (OMFB-00581/2009, TUBITAK-108Y329). CK was supported by a DAAD fellowship. At the CEBC, we thank Colette Trouve for her technical assistance in performing the prolactin and corticosterone assays. We are grateful to Peter Sharp and Alexander Badyaev for discussion and useful advice on the methods. We are grateful for two anonymous referees for their excellent comments that improved the manuscript. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Adkins-Regan Elizabeth, 2010, P59; Amat JA, 1999, IBIS, V141, P596, DOI 10.1111/j.1474-919X.1999.tb07367.x; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P590, DOI 10.1086/603634; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Arnqvist G, 2005, SEXUAL CONFLICT; Ball G.F., 1991, ACT 20 C INT ORN, V199, P984; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boos M, 2007, BEHAV PROCESS, V76, P206, DOI 10.1016/j.beproc.2007.05.003; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; DITTAMI JP, 1981, Z TIERPSYCHOL, V55, P289; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; GOLDSMITH AR, 1982, GEN COMP ENDOCR, V46, P458, DOI 10.1016/0016-6480(82)90100-9; GOLDSMITH AR, 1980, J ENDOCRINOL, V86, P371, DOI 10.1677/joe.0.0860371; GRATTOTREVOR CL, 1990, AUK, V107, P718, DOI 10.2307/4088002; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; HALL MR, 1983, GEN COMP ENDOCR, V49, P270, DOI 10.1016/0016-6480(83)90144-2; HALL MR, 1987, J WILDLIFE MANAGE, V51, P530, DOI 10.2307/3801263; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Heidinger BJ, 2010, FUNCT ECOL, V24, P1037, DOI 10.1111/j.1365-2435.2010.01733.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Kosztolanyi A, 2006, J ANIM ECOL, V75, P257, DOI 10.1111/j.1365-2656.2006.01049.x; Kosztolanyi A, 2002, J FIELD ORNITHOL, V73, P199, DOI 10.1648/0273-8570-73.2.199; Kosztolanyi A, 2009, BEHAV ECOL, V20, P446, DOI 10.1093/beheco/arn140; Lendvai AZ, 2011, J EXP BIOL, V214, P821, DOI 10.1242/jeb.047712; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lendvai AZ, 2004, ANIM BEHAV, V67, P703, DOI 10.1016/j.anbehav.2003.08.010; Lessells CM, 1999, MG BEH ECOL, P75; LESSELLS CM, 1984, IBIS, V126, P474, DOI 10.1111/j.1474-919X.1984.tb02074.x; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; McGraw Lisa, 2010, P271; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; ORING LW, 1986, AUK, V103, P820; ORING LW, 1988, GEN COMP ENDOCR, V72, P247, DOI 10.1016/0016-6480(88)90207-9; ORING LW, 1986, GEN COMP ENDOCR, V62, P394, DOI 10.1016/0016-6480(86)90049-3; Perkins D.E., 2004, THESIS U MAINE; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2011, R LANG ENV STAT COMP; Rall MK, 2004, BEHAVIOUR, V141, P1511, DOI 10.1163/1568539042948088; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riou S, 2010, GEN COMP ENDOCR, V168, P8, DOI 10.1016/j.ygcen.2010.03.011; Schuett W, 2011, ANIM BEHAV, V81, P609, DOI 10.1016/j.anbehav.2010.12.006; Sharp PJ, 1998, COMP BIOCHEM PHYS C, V119, P275, DOI 10.1016/S0742-8413(98)00016-4; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Szekely T, 1999, BEHAV ECOL, V10, P191, DOI 10.1093/beheco/10.2.191; SZEKELY T, 1995, BEHAV ECOL SOCIOBIOL, V37, P155, DOI 10.1007/BF00176712; SZEKELY T, 1993, ORNIS SCAND, V24, P317, DOI 10.2307/3676794; Szekely T, 1999, BEHAV ECOL, V10, P185, DOI 10.1093/beheco/10.2.185; Szekely Tamas, 1996, Current Ornithology, V13, P271; Szekely T, 2006, BIOSCIENCE, V56, P801, DOI 10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2; Szentirmai I., 2001, Ornis Hungarica, V11, P27; Van Dijk R, 2007, IBIS, V149, P530, DOI 10.1111/j.1474-919X.2007.00679.x; Venables WN, 2002, MODERN APPL STAT S; VISSER GH, 1993, PHYSIOL ZOOL, V66, P771, DOI 10.1086/physzool.66.5.30163823; WARRINER JS, 1986, WILSON BULL, V98, P15; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; WENTWORTH BC, 1983, BIOL REPROD, V29, P87, DOI 10.1095/biolreprod29.1.87; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; WINGFIELD JC, 1995, AM ZOOL, V35, P285; WINGFIELD JC, 1990, HORM BEHAV, V24, P89, DOI 10.1016/0018-506X(90)90029-W; Ziegler TE, 2009, HORM BEHAV, V56, P436, DOI 10.1016/j.yhbeh.2009.07.012 78 5 5 1 30 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. MAY 2012 61 5 734 740 10.1016/j.yhbeh.2012.03.011 7 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 946GP WOS:000304339800010 22504343 2019-02-21 J Fitzer, SC; Caldwell, GS; Close, AJ; Clare, AS; Upstill-Goddard, RC; Bentley, MG Fitzer, Susan C.; Caldwell, Gary S.; Close, Andrew J.; Clare, Anthony S.; Upstill-Goddard, Robert C.; Bentley, Matthew G. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Ecological significance; Model; Multi-generation; Ocean acidification; Reproduction ACID-BASE-BALANCE; SEA-URCHIN; SEAWATER ACIDIFICATION; EMBRYONIC-DEVELOPMENT; TISBE-HOLOTHURIAE; CO2 LEVELS; GROWTH; SURVIVAL; SUCCESS; WATER Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics. (C) 2012 Elsevier B.V. All rights reserved. [Fitzer, Susan C.] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland; [Fitzer, Susan C.; Caldwell, Gary S.; Clare, Anthony S.; Upstill-Goddard, Robert C.; Bentley, Matthew G.] Newcastle Univ, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Close, Andrew J.] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England Fitzer, SC (reprint author), Univ Glasgow, Sch Geog & Earth Sci, Gregory Bldg, Glasgow G12 8QQ, Lanark, Scotland. Susan.Fitzer@glasgow.ac.uk Fitzer, Susan/I-2418-2014; CALDWELL, GARY/A-4364-2008 Fitzer, Susan/0000-0003-3556-7624; CALDWELL, GARY/0000-0001-5687-6894; Bentley, Matt/0000-0002-6494-2545; Upstill-Goddard, Robert/0000-0003-3396-284X; Clare, Anthony/0000-0002-7692-9583 Natural Environment Research Council CASE; Marine Biological Association of the UK We are grateful to Pauline Carrick for ESEM analysis and Stephen Rushton for comments on the manuscript. Financial support was provided through a Natural Environment Research Council CASE (with the Marine Biological Association of the UK) Ph.D. award to SCF. [SS] Adiyodi R.G., 1985, INTEGUMENT PIGMENTS, V9, P147; Anthony KRN, 2008, P NATL ACAD SCI USA, V105, P17442, DOI 10.1073/pnas.0804478105; Berge JA, 2006, CHEMOSPHERE, V62, P681, DOI 10.1016/j.chemosphere.2005.04.111; Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI 10.1897/07-541; Clark D, 2009, MAR BIOL, V156, P1125, DOI 10.1007/s00227-009-1155-8; Crawley M. J., 2007, R BOOK; Cutts CJ, 2003, ADV MAR BIOL, V44, P295, DOI 10.1016/S0065-2881(03)44005-4; Dupont S, 2008, MAR ECOL PROG SER, V373, P285, DOI 10.3354/meps07800; Dykstra MJ, 2002, TOXICOL PATHOL, V30, P735, DOI 10.1080/01926230290166823; Egilsdottir H, 2009, MAR POLLUT BULL, V58, P1187, DOI 10.1016/j.marpolbul.2009.03.017; Ellis RP, 2009, AQUAT BIOL, V5, P41, DOI 10.3354/ab00118; Faraway J.J., 2006, TEXTS STAT SCI; Findlay HS, 2009, MAR ECOL PROG SER, V389, P193, DOI 10.3354/meps08141; GAUDY R, 1982, NETH J SEA RES, V16, P208, DOI 10.1016/0077-7579(82)90031-X; Gelman A., 2007, DATA ANAL USING REGR, P625; Havenhand JN, 2008, CURR BIOL, V18, pR651, DOI 10.1016/j.cub.2008.06.015; Hofmann GE, 2008, MAR ECOL PROG SER, V373, P219, DOI 10.3354/meps07775; Ishimatsu A, 2008, MAR ECOL PROG SER, V373, P295, DOI 10.3354/meps07823; Jackson JBC, 2010, PHILOS T R SOC B, V365, P3765, DOI 10.1098/rstb.2010.0278; Kameda T, 2004, MACROMOL BIOSCI, V5, P103, DOI 10.1002/mabi.200400142; Kurihara H, 2004, MAR POLLUT BULL, V49, P721, DOI 10.1016/j.marpolbul.2004.05.005; Kurihara H, 2004, MAR ECOL PROG SER, V274, P161, DOI 10.3354/meps274161; Kurihara H, 2004, J OCEANOGR, V60, P743, DOI 10.1007/s10872-004-5766-x; Kurihara H, 2008, MAR ECOL PROG SER, V373, P275, DOI 10.3354/meps07802; Kurihara H, 2008, MAR POLLUT BULL, V56, P1086, DOI 10.1016/j.marpolbul.2008.03.023; Kurihara H, 2008, J EXP MAR BIOL ECOL, V367, P41, DOI 10.1016/j.jembe.2008.08.016; Langenbuch M, 2004, AQUAT TOXICOL, V70, P55, DOI 10.1016/j.aquatox.2004.07.006; Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0; Lombard F, 2009, J MARINE SYST, V78, P606, DOI 10.1016/j.jmarsys.2009.01.004; Mayor DJ, 2007, MAR ECOL PROG SER, V350, P91, DOI 10.3354/meps07142; Mayor DJ, 2012, J PLANKTON RES, V34, P258, DOI 10.1093/plankt/fbr107; Michaelidis B, 2005, MAR ECOL PROG SER, V293, P109, DOI 10.3354/meps293109; Miles H, 2007, MAR POLLUT BULL, V54, P89, DOI 10.1016/j.marpolbul.2006.09.021; Millar RB, 2004, FISH RES, V70, P397, DOI 10.1016/j.fishres.2004.08.016; Morita M, 2010, ZYGOTE, V18, P103, DOI 10.1017/S0967199409990177; Pane EF, 2007, MAR ECOL PROG SER, V334, P1, DOI 10.3354/meps334001; Parker LM, 2009, GLOBAL CHANGE BIOL, V15, P2123, DOI 10.1111/j.1365-2486.2009.01895.x; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Portner H.O., 1998, J EXP BIOL, V373, P199; Portner H.O., 2008, MAR ECOL-PROG SER, V373, P199; Portner HO, 2004, J OCEANOGR, V60, P705, DOI 10.1007/s10872-004-5763-0; R Development Core Team, 2011, R LANG ENV STAT COMP; Raven J., 2005, 1205 ROYAL SOC; Reipschlager A, 1996, J EXP BIOL, V199, P1801; Riebesell U, 2008, BIOGEOSCIENCES, V5, P1157, DOI 10.5194/bg-5-1157-2008; Riebesell U., 2010, GUIDE BEST PRACTICES, P1; Rose JM, 2009, MAR ECOL PROG SER, V388, P27, DOI 10.3354/meps08134; Sarmiento JL, 2002, PHYS TODAY, V55, P30, DOI 10.1063/1.1510279; Schreck CB, 2010, GEN COMP ENDOCR, V165, P549, DOI 10.1016/j.ygcen.2009.07.004; Spicer JI, 2007, MAR BIOL, V151, P1117, DOI 10.1007/s00227-006-0551-6; Suffrian K, 2008, BIOGEOSCIENCES, V5, P1145, DOI 10.5194/bg-5-1145-2008; Talmage SC, 2009, LIMNOL OCEANOGR, V54, P2072, DOI 10.4319/lo.2009.54.6.2072; Taylor RL, 2007, J EXP MAR BIOL ECOL, V341, P60, DOI 10.1016/j.jembe.2006.10.028; Vezina A.F., 2008, MAR ECOL-PROG SER, V373, P257; Vincent JFV, 2002, COMPOS PART A-APPL S, V33, P1311, DOI 10.1016/S1359-835X(02)00167-7; Wood HL, 2008, P ROY SOC B-BIOL SCI, V275, P1767, DOI 10.1098/rspb.2008.0343 56 68 69 0 68 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. MAY 1 2012 418 30 36 10.1016/j.jembe.2012.03.009 7 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 952MN WOS:000304796700004 2019-02-21 J Irwing, P; Booth, T; Nyborg, H; Rushton, JP Irwing, Paul; Booth, Tom; Nyborg, Helmuth; Rushton, J. Philippe Are g and the General Factor of Personality (GFP) correlated? INTELLIGENCE English Article Life History theory; Confirmatory factor analysis; GFP; g; Personality HIGHER-ORDER FACTORS; STRUCTURAL EQUATION MODELS; 5-FACTOR MODEL; DIMENSIONAL ASSESSMENT; ABNORMAL-PERSONALITY; SOCIAL DESIRABILITY; SEXUAL-DIMORPHISM; PARALLEL ANALYSIS; FIT INDEXES; BIG 5 We examined whether the General Factor of Personality (GFP) is related to the g factor of cognitive ability using data from the Vietnam Experience Study which randomly sampled 4462 Vietnam War veterans from a total sample of about five million Vietnam era army veterans. Exclusionary criteria included passing a fitness test, achieving a final rank of no higher than sergeant, and scoring above the 10th percentile on a pre-induction general aptitude test, but otherwise the sample is broadly representative of the U.S. male population for the period 1965-1971. A hierarchical confirmatory factor analysis of the Minnesota Multiphasic Personality Inventory (MMPI) and 15 cognitive ability tests yielded three first-order factors from the MMPI (Somatization, Internalization, and Externalization), and four first-order factors from the cognitive ability tests (Memory, Dexterity, Crystallized, and Fluid intelligence). At the apex of both measures was a general factor and we were able to fit a model which integrated both structures. This model provided a close fit to the data (chi(2) = 3114.1, df = 235, RMSEA = .051 SRMR = .047, NNFI = .97), and provided an estimate of -.23 for the correlation between g and the GFP(Abnormal), that is, the higher the g score the higher the score on the GFP. One possible reason for the low correlation is restriction of range in the sample. Another is that intelligence and personality are to a degree mutually exclusive strategies, the first aimed at generating resources and the second at maximizing one's share of resources. (C) 2012 Elsevier Inc. All rights reserved. [Irwing, Paul; Booth, Tom] Manchester Business Sch, Manchester M15 6PB, Lancs, England; [Nyborg, Helmuth] Univ Aarhus, Aarhus, Denmark; [Rushton, J. Philippe] Univ Western Ontario, London, ON, Canada Irwing, P (reprint author), Univ Manchester, Manchester Business Sch E, Psychometr Work Res Grp, Booth St W, Manchester M15 6PB, Lancs, England. paul.irwing@mbs.ac.uk Nyborg, Helmuth/0000-0002-6795-594X AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bandura A., 1997, SELF EFFICACY EXERCI; Biesanz JC, 2004, J PERS, V72, P845, DOI 10.1111/j.0022-3506.2004.00282.x; BROWNE MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; BUDESCU DV, 1981, MULTIVAR BEHAV RES, V16, P483, DOI 10.1207/s15327906mbr1604_4; Buss D. M., 2004, EVOLUTIONARY PSYCHOL; Chen FN, 2008, SOCIOL METHOD RES, V36, P462, DOI 10.1177/0049124108314720; Darwin C., 1871, DESCENT MAN; de Vries RE, 2011, PERS INDIV DIFFER, V50, P512, DOI 10.1016/j.paid.2010.11.020; DESTEFANO F, 1988, JAMA-J AM MED ASSOC, V259, P2701; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Eid M, 2003, PSYCHOL METHODS, V8, P38, DOI 10.1037/1082-989X.8.1.38; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erdle S, 2010, PERS INDIV DIFFER, V48, P343, DOI 10.1016/j.paid.2009.09.004; Ferguson E., 2011, WILEY BLACKWELL HDB; Figueredo AJ, 2004, SOC BIOL, V51, P121; FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312; GLORFELD LW, 1995, EDUC PSYCHOL MEAS, V55, P377, DOI 10.1177/0013164495055003002; Goldstein JM, 2001, CEREB CORTEX, V11, P490, DOI 10.1093/cercor/11.6.490; Graham J.R., 1987, MMPI PRACTICAL GUIDE; HELMES E, 1993, PSYCHOL BULL, V113, P453, DOI 10.1037/0033-2909.113.3.453; Hopwood CJ, 2010, PERS SOC PSYCHOL REV, V14, P332, DOI 10.1177/1088868310361240; HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424; Kaplan HS, 2003, OFFSPRING, P170; Kuha J, 2004, SOCIOL METHOD RES, V33, P188, DOI 10.1177/0049124103262065; Larsen CS, 2003, P NATL ACAD SCI USA, V100, P9103, DOI 10.1073/pnas.1633678100; Lindenfors P, 2005, BIOL LETT-UK, V1, P407, DOI 10.1098/rsbl.2005.0362; Lindenfors P., 2007, BMC BIOL, P5; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Malloy TE, 1997, J PERS SOC PSYCHOL, V72, P390, DOI 10.1037/0022-3514.72.2.390; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; McGrew KS, 2009, INTELLIGENCE, V37, P1, DOI 10.1016/j.intell.2008.08.004; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; NICHOLLS PT, 1988, INFORM PROCESS MANAG, V24, P469, DOI 10.1016/0306-4573(88)90049-0; Nyborg H, 2000, PERS INDIV DIFFER, V28, P593, DOI 10.1016/S0191-8869(99)00122-1; O'Connor BP, 2000, BEHAV RES METH INS C, V32, P396, DOI 10.3758/BF03200807; O'Connor BP, 2002, J PERS SOC PSYCHOL, V83, P962, DOI 10.1037//0022-3514.83.4.962; Paunonen SV, 2010, EUR J PERSONALITY, V24, P189, DOI 10.1002/per.751; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Revelle W., 2009, IMPORTANT GEN FACTOR; Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2010, TWIN RES HUM GENET, V13, P301, DOI 10.1375/twin.13.4.301; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Samuel DB, 2010, PERSONAL DISORD, V1, P5, DOI 10.1037/a0018136; Saucier G., 2001, J PERS, V69, P843; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Schmidt FL, 1998, PSYCHOL BULL, V124, P262, DOI 10.1037/0033-2909.124.2.262; Spence SH, 1997, J ABNORM PSYCHOL, V106, P280, DOI 10.1037/0021-843X.106.2.280; Vassend O, 2011, PERS INDIV DIFFER, V50, P1300, DOI 10.1016/j.paid.2011.03.002; VELICER WF, 1976, PSYCHOMETRIKA, V41, P321, DOI 10.1007/BF02293557; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; von Stumm S., 2011, WILEY BLACKWELL HDB; Yamasue H, 2008, CEREB CORTEX, V18, P2331, DOI 10.1093/cercor/bhm254; Zagorsky JL, 2007, INTELLIGENCE, V35, P489, DOI 10.1016/j.intell.2007.02.003; Zawadzki B, 2010, PERS INDIV DIFFER, V49, P77, DOI 10.1016/j.paid.2010.03.025; Zimprich D, 2009, J RES PERS, V43, P444, DOI 10.1016/j.jrp.2009.01.018; Zinbarg RE, 2005, PSYCHOMETRIKA, V70, P123, DOI 10.1007/s11336-003-0974-7 77 14 15 0 16 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 INTELLIGENCE Intelligence MAY-JUN 2012 40 3 296 305 10.1016/j.intell.2012.03.001 10 Psychology, Multidisciplinary Psychology 944UR WOS:000304229800007 2019-02-21 J Heylen, DJA; White, J; Elst, J; Jacobs, I; Van de Sande, C; Matthysen, E Heylen, D. J. A.; White, J.; Elst, J.; Jacobs, I.; Van de Sande, C.; Matthysen, E. Nestling development and the timing of tick attachments PARASITOLOGY English Article Ixodes; host preference; phenology; songbird; development FLEA CERATOPHYLLUS-GALLINAE; LIFE-HISTORY; HOST CHOICE; GREAT TITS; IXODIDAE; ACARI; ECTOPARASITES; PARASITES; IMMUNITY; FITNESS Parasites exposed to fast-developing hosts experience a variety of conditions over a short time period. Only few studies in vertebrate-ectoparasite systems have integrated the timing of ectoparasite infestations in the host's development into the search for factors explaining ectoparasite burden. In this study we examined the temporal pattern of attachment in a nidicolous tick (Ixodes arboricola) throughout the development of a songbird (Parus major). In the first experiment, we exposed bird clutches at hatching to a mix of the 3 tick instars (larvae, nymphs and adults), and monitored the ticks that attached in relation to the average broods' age. In a complementary experiment we focused on the attachment in adult female ticks - the largest and most significant instar for the species' reproduction - after releasing them at different moments in the nestlings' development. Our observations revealed a positive association between the size of the attached instar and the broods' age. Particularly, adult females were less likely to be found attached to recently hatched nestlings, which contrasts with the smaller-sized larvae and nymphs. These differences suggest either an infestation strategy that is adapted to host physiology and development, or a result of selection by the hosts' anti-tick resistance mechanisms. We discuss the implications of our results in terms of tick life-history strategies. [Heylen, D. J. A.; White, J.; Elst, J.; Jacobs, I.; Van de Sande, C.; Matthysen, E.] Univ Antwerp, Dept Biol, Evolutionary Ecol Grp, B-2020 Antwerp, Belgium Heylen, DJA (reprint author), Univ Antwerp, Dept Biol, Evolutionary Ecol Grp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dieter.Heylen@ua.ac.be White, Joel/D-8482-2011 Matthysen, Erik/0000-0002-7521-9248; White, Joel/0000-0002-1427-4411 FWO-Flanders; FWO [G.0049.10] We appreciate the thoughtful comments of Frank Adriaensen and two anonymous referees on a previous version of the manuscript. Experiments were carried out under license of the Flemish Ministry (Agentschap Natuur en Bos) and the experimental protocol was approved by the Ethical Committee of the University of Antwerp. D. H. and J. W. are supported by the FWO-Flanders. This study was funded by FWO-project G.0049.10 awarded to E. M. Apanius V, 1998, AVIAN GROWTH DEV EVO, P203; Arthur DR, 1963, BRIT TICKS; Balashov Y. S. A, 1972, MISCELLANEOUS PUBLIC, V8, P159; Bize P, 2008, AM NAT, V171, P107, DOI 10.1086/523943; Burtt E. H., 1991, BIRD PARASITE INTERA, P104; Christe P, 2003, J ANIM ECOL, V72, P866, DOI 10.1046/j.1365-2656.2003.00759.x; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Clayton Dale H., 2010, Open Ornithology Journal, V3, P41; Clayton DH, 1997, HOST PARASITE EVOLUT; Cox D.R., 1984, ANAL SURVIVAL DATA; Davison F, 2008, AVIAN IMMUNOLOGY, P1; Donze G, 2004, J EXP BIOL, V207, P4283, DOI 10.1242/jeb.01241; DUFFY DC, 1986, CONDOR, V88, P242, DOI 10.2307/1368921; EDMAN JD, 1987, INSECT SCI APPL, V8, P617, DOI 10.1017/S1742758400022694; Elliot SL, 2002, P ROY SOC B-BIOL SCI, V269, P1599, DOI 10.1098/rspb.2002.2067; FIELDEN LJ, 1992, MED VET ENTOMOL, V6, P251, DOI 10.1111/j.1365-2915.1992.tb00614.x; Fitze PS, 2004, J ANIM ECOL, V73, P216, DOI 10.1111/j.0021-8790.2004.00799.x; Gosler A. G., 1993, GREAT TIT; HARPER GH, 1992, J ANIM ECOL, V61, P317, DOI 10.2307/5324; Harrison G. J., 1986, CLIN AVIAN MED; Hawlena H, 2005, OECOLOGIA, V146, P200, DOI 10.1007/s00442-005-0187-0; Heylen DJA, 2010, PARASITOLOGY, V137, P661, DOI 10.1017/S0031182009991582; Heylen D. J. A., 2011, THESIS U ANTWERPEN A; Heylen DJA, 2011, PARASITOLOGY, V138, P1011, DOI 10.1017/S0031182011000618; Heylen DJA, 2011, OIKOS, V120, P1209, DOI 10.1111/j.1600-0706.2010.19358.x; Heylen DJA, 2010, INT J PARASITOL, V40, P183, DOI 10.1016/j.ijpara.2009.07.011; Hillyard PD, 1996, TICKS N W EUROPE; HINDE RA, 1952, BEHAVIOUR S, V2, P1; HUDDE H, 1988, Vogelwarte, V34, P201; Husby A, 2009, P R SOC B, V276, P1845, DOI 10.1098/rspb.2008.1937; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Liebisch G., 1996, ACAROLOGY IX, V1, P453; Literak I, 2007, PARASITOL RES, V101, P1709, DOI 10.1007/s00436-007-0702-9; LOYE JE, 1991, BIRD PARASITE INTERA; Matthysen E, 2001, ECOGRAPHY, V24, P33, DOI 10.1034/j.1600-0587.2001.240105.x; Moller AP, 2002, J EVOLUTION BIOL, V15, P495, DOI 10.1046/j.1420-9101.2002.00386.x; Moore J, 2002, PARASITES BEHAV ANIM; NAEF DAENZER B., 2001, J ANIM ECOL, V70, P730; OLSEN OW, 1974, ANIMAL PARASITES THE; Osterkamp J, 1999, J COMP PHYSIOL A, V185, P59, DOI 10.1007/s003590050366; Perrins CM, 1979, BRIT TITS; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Price P. W., 1980, EVOLUTIONARY BIOL PA; RANDOLPH SE, 1979, PARASITOLOGY, V79, P141, DOI 10.1017/S0031182000052033; Rechav Y, 1997, J MED ENTOMOL, V34, P234, DOI 10.1093/jmedent/34.2.234; Reckardt K, 2009, OIKOS, V118, P183, DOI 10.1111/j.1600-0706.2008.16950.x; RIBEIRO JMC, 1989, EXP APPL ACAROL, V7, P15, DOI 10.1007/BF01200449; Roulin A, 2003, J ANIM ECOL, V72, P75, DOI 10.1046/j.1365-2656.2003.00677.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sonenshine DE, 2004, PARASITOLOGY, V129, pS405, DOI 10.1017/S003118200400486X; Sonenshine DE, 1991, BIOL TICKS; Staszewski V, 2007, J ANIM ECOL, V76, P1215, DOI 10.1111/j.1365-2656.2007.01293.x; STEULLET P, 1992, J COMP PHYSIOL A, V170, P665, DOI 10.1007/BF00198976; Szabo K, 2008, J PARASITOL, V94, P1038, DOI 10.1645/GE-1150.1; Tripet F, 1999, J INSECT BEHAV, V12, P159, DOI 10.1023/A:1020958615191; ULMANEN I, 1977, OIKOS, V28, P20, DOI 10.2307/3543318; Vaclav R, 2008, BIOL J LINN SOC, V94, P463, DOI 10.1111/j.1095-8312.2008.00985.x; Valera F, 2004, PARASITOLOGY, V129, P59, DOI 10.1017/S0031182004005232; WAKELIN D, 1996, IMMUNITY PARASITES; Walter G., 1979, ANGEW ORNITHOL, V5, P65; White J, 2012, PARASITOLOGY, V139, P264, DOI 10.1017/S0031182011001806; WINKEL W, 1970, Vogelwelt, V91, P52; YUNKER CE, 1992, EXP APPL ACAROL, V13, P295, DOI 10.1007/BF01195086 63 11 11 1 30 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology MAY 2012 139 6 766 773 10.1017/S0031182011002277 8 Parasitology Parasitology 941ZI WOS:000304008100010 22216982 2019-02-21 J Muhlfeld, CC; Thorrold, SR; McMahon, TE; Marotz, B Muhlfeld, Clint C.; Thorrold, Simon R.; McMahon, Thomas E.; Marotz, Brian Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article INTRODUCED RAINBOW-TROUT; GEOCHEMICAL SIGNATURES; OTOLITH MICROCHEMISTRY; AMERICAN SHAD; NATAL ORIGINS; SR ISOTOPES; FISH; RESIDENT; MARKERS; SALMON We used natural variation in the strontium concentration (Sr:Ca) and isotope composition (Sr-87:Sr-86) of stream waters and corresponding values recorded in otoliths of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to examine movements during their life history in a large river network. We found significant spatial differences in Sr:Ca and Sr-87:Sr-86 values (strontium isoscapes) within and among numerous spawning and rearing streams that remained relatively constant seasonally. Both Sr:Ca and Sr-87:Sr-86 values in the otoliths of juveniles collected from nine natal streams were highly correlated with those values in the ambient water. Strontium isoscapes measured along the axis of otolith growth revealed that almost half of the juveniles had moved at least some distance from their natal streams. Finally, otolith Sr profiles from three spawning adults confirmed homing to natal streams and use of nonoverlapping habitats over their migratory lifetimes. Our study demonstrates that otolith geochemistry records movements of cutthroat trout through Sr isoscapes and therefore provides a method that complements and extends the utility of conventional tagging techniques in understanding life history strategies and conservation needs of freshwater fishes in river networks. [Muhlfeld, Clint C.] US Geol Survey, No Rocky Mt Sci Ctr, W Glacier, MT 59936 USA; [Thorrold, Simon R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA; [McMahon, Thomas E.] Montana State Univ, Dept Ecol, Fish & Wildlife Program, Bozeman, MT 59717 USA; [Marotz, Brian] Montana Fish Wildlife & Parks, Kalispell, MT 59901 USA Muhlfeld, CC (reprint author), US Geol Survey, No Rocky Mt Sci Ctr, Glacier Natl Pk, W Glacier, MT 59936 USA. cmuhlfeld@usgs.gov Thorrold, Simon/B-7565-2012 Thorrold, Simon/0000-0002-1533-7517 Bonneville Power Administration; Montana Fish, Wildlife Parks; US Geological Survey; NSF [OCE-0134998, OCE-0215905] Bonneville Power Administration, Montana Fish, Wildlife & Parks, and the US Geological Survey funded this work. Partial support was provided by NSF grants OCE-0134998 and OCE-0215905 to SRT. We thank S. Glutting, R. Hunt, D. Daniels, M. Boyer, and J. Wachsmuth for their assistance in the field collecting the samples and J. Giersch and D. Kotter for assistance with the figures. We thank B. Kennedy, J. Kershner, and B. Gillanders for their helpful reviews of previous drafts. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This research was conducted in accordance with the Animal Welfare Act and its subsequent amendments. Bacon CR, 2004, CAN J FISH AQUAT SCI, V61, P2425, DOI 10.1139/f04-167; Barnett-Johnson R, 2005, CAN J FISH AQUAT SCI, V62, P2425, DOI 10.1139/F05-194; Barnett-Johnson R, 2008, LIMNOL OCEANOGR, V53, P1633, DOI 10.4319/lo.2008.53.4.1633; Behnke R. J., 1992, AM FISHERIES SOC MON, V6; Boyer MC, 2008, CAN J FISH AQUAT SCI, V65, P658, DOI 10.1139/F08-001; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/cjfas-58-1-30; Dorval E, 2007, CAN J FISH AQUAT SCI, V64, P411, DOI 10.1139/F07-015; FISHER RS, 1976, WATER RESOUR RES, V12, P1061, DOI 10.1029/WR012i005p01061; FitzGerald JL, 2004, FISH B-NOAA, V102, P604; Gillanders BM, 1996, MAR ECOL PROG SER, V141, P13, DOI 10.3354/meps141013; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; Graham P. J., 1988, AM FISHERIES SOC S, V4, P53; GRAUSTEIN WC, 1983, SCIENCE, V219, P289, DOI 10.1126/science.219.4582.289; Horowitz A. J., 1994, 94539 US GEOL SURV; Jackson MG, 2006, EARTH PLANET SC LETT, V245, P260, DOI 10.1016/j.epsl.2006.02.040; Kennedy BP, 2002, CAN J FISH AQUAT SCI, V59, P925, DOI 10.1139/F02-070; Kennedy BP, 1997, NATURE, V387, P766, DOI 10.1038/42835; Kennedy BP, 2000, CAN J FISH AQUAT SCI, V57, P2280, DOI 10.1139/cjfas-57-11-2280; Lucas M, 2001, MIGRATION FRESHWATER; Milton DA, 2003, CAN J FISH AQUAT SCI, V60, P1376, DOI 10.1139/F03-133; Muhlfeld CC, 2005, T AM FISH SOC, V134, P945, DOI 10.1577/T04-029.1; Muhlfeld CC, 2009, T AM FISH SOC, V138, P1036, DOI 10.1577/T08-235.1; Muhlfeld CC, 2009, CAN J FISH AQUAT SCI, V66, P1153, DOI 10.1139/F09-073; Munro AR, 2005, CAN J FISH AQUAT SCI, V62, P79, DOI 10.1139/F04-174; Northcote T. G., 1997, North American Journal of Fisheries Management, V17, P1029, DOI 10.1577/1548-8675(1997)017<1029:PISAMI>2.3.CO;2; Ohji M, 2006, ESTUAR COAST SHELF S, V69, P270, DOI 10.1016/j.ecss.2006.04.015; RIEMAN BE, 1994, CAN J FISH AQUAT SCI, V51, P68, DOI 10.1139/f94-009; Schmetterling DA, 2001, N AM J FISH MANAGE, V21, P507, DOI 10.1577/1548-8675(2001)021<0507:SMOFWC>2.0.CO;2; Shepard B.B., 1984, LIFE HIST WESTSLOPE; Sturgeon RE, 2005, J ANAL ATOM SPECTROM, V20, P1067, DOI 10.1039/b503655k; Thorrold SR, 2001, SCIENCE, V291, P297, DOI 10.1126/science.291.5502.297; Walther BD, 2008, T AM FISH SOC, V137, P57, DOI 10.1577/T07-029.1; Walther BD, 2008, CAN J FISH AQUAT SCI, V65, P2623, DOI 10.1139/F08-164; Wells BK, 2003, T AM FISH SOC, V132, P409, DOI 10.1577/1548-8659(2003)132<0409:RBWOAS>2.0.CO;2; Whipple J.W., 1992, GEOLOGIC MAP GLACIER; Zimmerman CE, 2002, T AM FISH SOC, V131, P986, DOI 10.1577/1548-8659(2002)131<0986:IOSARR>2.0.CO;2 36 28 28 0 32 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. MAY 2012 69 5 906 915 10.1139/F2012-033 10 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 934MG WOS:000303447800010 2019-02-21 J Rucas, SL; Gurven, M; Winking, J; Kaplan, H Rucas, Stacey L.; Gurven, Michael; Winking, Jeffrey; Kaplan, Hillard Social Aggression and Resource Conflict Across the Female Life-Course in the Bolivian Amazon AGGRESSIVE BEHAVIOR English Article female-female competition; social networks; resource competition; reproductive success; social aggression TOLERATED THEFT; EVOLUTION; ACHE; MARRIAGE; ECOLOGY; TSIMANE; MEN This work explores sources of conflict among forager-horticulturalist women in Amazonian Bolivia, and applies life history theory as a tool for understanding competitive and cooperative social networking behaviors among women. In this study, 121 Tsimane women and girls were interviewed regarding current and past disagreements with others in their community to identify categories of contested resources that instigate interpersonal conflicts, often resulting in incidences of social aggression. Analysis of frequency data on quarrels (N = 334) reveals that women target several diverse categories of resources, with social types appearing as frequently as food and mates. It was also found that the focus of women's competition changes throughout the life-course, consistent with the notion that current vs. future reproduction and quantity-quality trade-offs might have different influences on competition and social conflict over resources within women's social networks across different age groups. Aggr. Behav. 38:194207, 2012. (C) 2012 Wiley Periodicals, Inc. [Rucas, Stacey L.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA; [Gurven, Michael] Univ Calif Santa Barbara, Dept Anthropol, Integrat Anthropol Sci Program, Santa Barbara, CA 93106 USA; [Winking, Jeffrey] Texas A&M Univ, Dept Anthropol, College Stn, TX 77843 USA; [Kaplan, Hillard] Univ New Mexico, Albuquerque, NM 87131 USA Rucas, SL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA. srucas@calpoly.edu Gurven, Michael/0000-0002-5661-527X; Kaplan, Hillard/0000-0002-7398-7358 LAII Field Research Grants; Tinker Foundation; NSF [BCS-0136274] Contract grant sponsor: LAII Field Research Grants; Contract grant sponsor: Tinker Foundation; Contract grant sponsor: NSF Grant; Contract grant number: BCS-0136274 BARTON RA, 1997, MACHIAVELLIAN INTELL, V2, P240, DOI DOI 10.1017/CB09780511525636.010; Bird RLB, 1997, CURR ANTHROPOL, V38, P49, DOI 10.1086/204581; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Clutton-Brock TH, 1994, DEV INTEGRATION BEHA, P229; Daly M, 1985, SEX EVOLUTION BEHAV; Dunbar RIM, 1997, HUM NATURE-INT BIOS, V8, P231, DOI 10.1007/BF02912493; DUNBAR RIM, 1993, BEHAV BRAIN SCI, V16, P681, DOI 10.1017/S0140525X00032325; DUNBAR RIM, 1992, J HUM EVOL, V20, P469, DOI DOI 10.1016/0047-2484(92)90081-J); Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Godoy RA, 2004, HUM ECOL, V32, P339, DOI 10.1023/B:HUEC.0000028085.47707.08; Gurven M, 2006, CURR ANTHROPOL, V47, P185, DOI 10.1086/499552; Gurven M, 2000, EVOL HUM BEHAV, V21, P263, DOI 10.1016/S1090-5138(00)00032-5; Gurven M, 2004, BEHAV ECOL SOCIOBIOL, V56, P366, DOI 10.1007/s00265-004-0793-6; Gurven M, 2002, J ANTHROPOL RES, V58, P93, DOI 10.1086/jar.58.1.3631070; Gurven M, 2009, HUM NATURE-INT BIOS, V20, P151, DOI 10.1007/s12110-009-9062-8; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hess NC, 2006, INFORM WARFARE EVOLU; Hill K., 1996, ACHE LIFE HIST ECOLO; HOOKS BL, 1993, HUM NATURE-INT BIOS, V4, P81, DOI 10.1007/BF02734090; Hrdy S. B., 1999, MOTHER NATURE MATERN; HRDY SB, 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; JONES NGB, 1987, SOC SCI INFORM, V26, P31; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; Lancaster J, 1978, HUMAN NATURE, V1, P83; LUNDBERG S, 1993, J POLIT ECON, V101, P988, DOI 10.1086/261912; MANSER M, 1980, INT ECON REV, V21, P31, DOI 10.2307/2526238; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rucas SL, 2006, EVOL HUM BEHAV, V27, P40, DOI 10.1016/j.evolhumbehav.2005.07.001; Rucas SL, 2010, HUM NATURE-INT BIOS, V21, P1, DOI 10.1007/s12110-010-9079-z; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; Stieglitz J, EVOL HUM BE IN PRESS; Stieglitz J, 2011, AM J HUM BIOL, V23, P445, DOI 10.1002/ajhb.21149; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; Winking Jeffrey, 2006, Soc Biol, V53, P100 39 4 4 0 9 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0096-140X AGGRESSIVE BEHAV Aggressive Behav. MAY-JUN 2012 38 3 194 207 10.1002/ab.21420 14 Behavioral Sciences; Psychology, Multidisciplinary Behavioral Sciences; Psychology 930QZ WOS:000303155500002 22531995 2019-02-21 J Price-Rees, SJ; Congdon, BC; Krockenberger, AK Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K. Size delays female senescence in a medium sized marsupial: The effects of maternal traits on annual fecundity in the northern brown bandicoot (Isoodon macrourus) AUSTRAL ECOLOGY English Article fecundity; maternal effect; reproductive investment; resource allocation; terminal investment REPRODUCTIVE EFFORT; LITTER SIZE; BODY-SIZE; EARLY-LIFE; RED DEER; TERMINAL INVESTMENT; ENERGY ALLOCATION; GROUND-SQUIRRELS; SMALL MAMMALS; CLUTCH SIZE The degree to which females allocate resources between current reproduction, future fecundity and survival is a central theme in life history theory. We investigated two hypotheses proposed to explain patterns of reproductive investment, terminal investment and senescence, by examining the effects of maternal traits (age and maternal mass) on annual fecundity in female northern brown bandicoots, Isoodon macrourus (Marsupialia: Peramelidae). We found that annual fecundity in females declined in their final year of reproduction, indicating reproductive senescence. Maternal mass significantly influenced the rate of senescence and, in turn, a female's lifetime reproductive output. Mass had little effect on fecundity in 1st and 2nd year females, but a positive relationship with fecundity in 3rd year females. This meant that heavy, 3rd year females did not suffer the decline in fecundity shown in light 3rd year females. For 1st year females, mass and leg length increased between their first and second reproductive seasons, indicating a temporary shift, from the allocation of resources to reproduction, to increasing condition or structural size post their first breeding event. There were no net changes to body mass in subsequent years. We suggest that this year of post-reproductive growth has important consequences for senescent effects on reproduction. Overall, results provided support for the effects of senescence on annual fecundity. Our findings were not consistent with the terminal investment hypothesis; reproductive output did not increase in females' final reproductive season despite a rapid decline in survival. However, this notion cannot be entirely dismissed; other measures of reproductive performance not examined here (e.g. offspring mass) may have provided an indication that females did increase their effort at the end of their lifespan. This study highlights the difficulty of measuring reproductive costs and the importance of understanding the combined effects of specific characteristics of an individual when interpreting reproductive strategies in iteroparous organisms. [Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K.] James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia Krockenberger, AK (reprint author), James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia. andrew.krockenberger@jcu.edu.au James Cook University, TESS/B-8171-2012; Krockenberger, Andrew/C-1323-2010; Congdon, Bradley/J-9181-2012; Research ID, CTBCC/O-3564-2014 Congdon, Bradley/0000-0002-8751-0892; Krockenberger, Andrew/0000-0003-2872-9939 Smithfield Palm Nursery; School of Marine and Tropical Biology, James Cook University, Cairns We thank Smithfield Palm Nursery for allowing access to the study site and for their general support for the project. Thanks to all field assistants that helped with data collection. We thank Jamie Seymour, Will Edwards and Greg Brown for statistical advice. Melanie Elphick for assistance with graphics. Research was conducted with approval from JCU Animal Ethics (A465) and Qld EPA permit numberWISP01821404. Financial support for this project was provided by the School of Marine and Tropical Biology, James Cook University, Cairns. Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Arnold Stean J., 1994, P17; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; BARNES A, 1984, AUST J ZOOL, V32, P219, DOI 10.1071/ZO9840219; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Beckman J, 2007, MOL ECOL, V16, P1069, DOI 10.1111/j.1365-294X.2006.03209.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bernardo J, 1996, AM ZOOL, V36, P83; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BOWEN WD, 1994, CAN J ZOOL, V72, P8, DOI 10.1139/z94-002; Boyce M.S., 1988, EVOLUTION LIFE HIST; Bridges TS, 1996, AM ZOOL, V36, P132; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Clutton-Brock T., 1991, P234; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cockburn A., 1990, P285; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; COCKBURN A, 1989, TRENDS ECOL EVOL, V4, P126, DOI 10.1016/0169-5347(89)90210-3; Cockburn Andrew, 1997, P163; Comfort A., 1979, BIOL SENESCENCE; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Daan Serge, 1997, P311; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; Dudycha JL, 2003, OECOLOGIA, V135, P555, DOI 10.1007/s00442-003-1230-7; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; Finch C.E, 1990, LONGEVITY SENESCENCE; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; FORD NB, 1989, HERPETOLOGICA, V45, P75; Friend G.R., 1990, P357; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEMMELL R T, 1989, Australian Mammalogy, V12, P73; Gemmell R.T., 1990, P213; Gemmell R. T., 1982, AUST MAMMAL, V5, P187; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; GORDON G, 1995, MAMMALS AUSTR, P174; Griffiths AD, 2005, J ZOOL, V267, P211, DOI 10.1017/S0952836905007429; Hall L.S., 1990, P123; Hamilton MJ, 2011, P ROY SOC B-BIOL SCI, V278, P560, DOI 10.1098/rspb.2010.1056; Havelka MA, 2004, J MAMMAL, V85, P940, DOI 10.1644/013; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Hsu MJ, 1999, J COMP PHYSIOL B, V169, P67, DOI 10.1007/s003600050195; Ikonomopoulou MP, 2005, AUST J ZOOL, V53, P59, DOI 10.1071/ZO04044; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Krockenberger A, 2003, J COMP PHYSIOL B, V173, P531, DOI 10.1007/s00360-003-0361-9; Lee A. K., 1985, EVOLUTIONARY ECOLOGY; Litzgus JD, 2008, COPEIA, P86, DOI 10.1643/CH-07-093; Lobert B., 1990, REPROD LIFE HIST ISO, P357; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; LYNE A G, 1981, Australian Mammalogy, V4, P107; Lyne A.G, 1990, BANDICOOTS BILBIES, pxxiii; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Merchant J.C., 1990, P219; Milner JM, 1999, J ANIM ECOL, V68, P1235, DOI 10.1046/j.1365-2656.1999.00366.x; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Morbey YE, 2005, AM NAT, V166, P556, DOI 10.1086/491720; Mysterud A, 2002, OIKOS, V97, P177, DOI 10.1034/j.1600-0706.2002.970203.x; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Peters R.H., 1983, P1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Roff Derek A., 1992; Rogowitz GL, 1996, AM ZOOL, V36, P197; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SCHNEBEL EM, 1988, EVOLUTION, V42, P306, DOI 10.1111/j.1558-5646.1988.tb04134.x; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Sikes RS, 1998, J MAMMAL, V79, P1143, DOI 10.2307/1383005; Skow CD, 2003, J ARACHNOL, V31, P305, DOI 10.1636/01-85; Sokal RR, 1995, BIOMETRY; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S, 1992, EVOLUTION LIFE HIST; Tardif SD, 2004, AM J PRIMATOL, V62, P83, DOI 10.1002/ajp.20009; THOMPSON SD, 1987, OECOLOGIA, V71, P201, DOI 10.1007/BF00377285; TyndaleBiscoe H, 2005, LIFE OF MARSUPIALS, P1; WEINER J, 1987, S ZOOL SOC LOND, V57, P167; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZULLINGER EM, 1984, J MAMMAL, V65, P607, DOI 10.2307/1380844 100 2 2 0 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. MAY 2012 37 3 313 322 10.1111/j.1442-9993.2011.02279.x 10 Ecology Environmental Sciences & Ecology 930EA WOS:000303118800009 2019-02-21 J Ellis, BJ; Bjorklund, DF Ellis, Bruce J.; Bjorklund, David F. Beyond Mental Health: An Evolutionary Analysis of Development Under Risky and Supportive Environmental Conditions: An Introduction to the Special Section DEVELOPMENTAL PSYCHOLOGY English Editorial Material evolutionary-developmental psychology; adaptive phenotypic plasticity; life history theory; differential susceptibility; developmental programming DIFFERENTIAL SUSCEPTIBILITY; BIOLOGICAL SENSITIVITY; STRESS REACTIVITY; TRADE-OFFS; CONTEXT; PERSPECTIVE; PSYCHOLOGY Evolutionary approaches to behavior have increasingly captured the attention and imagination of academics and laypeople alike. One part of this trend has been the increasing influence of evolutionary theory in developmental science. The articles in this special section of Developmental Psychology attempt to demonstrate why an evolutionary analysis is needed to more fully understand the contexts and contingencies of development. The 3 theoretical articles articulate the core evolutionary logic underlying conditional adaptation (and maladaptation) to both stressful and supportive environmental conditions over development. These theoretical articles are then followed by 9 empirical articles that test these evolutionary-developmental theories and hypotheses. Finally, 6 commentaries evaluate the prospects, pitfalls, and implications of this body of work. [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu BALDWIN JM, 2002, DEV EVOLUTION; Belsky J, 1997, CHILD DEV, V68, P598, DOI 10.1111/j.1467-8624.1997.tb04221.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE, DOI [10.1037/10425-000, DOI 10.1037/10425-000]; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Blair C, 2012, DEV PSYCHOL, V48, P647, DOI 10.1037/a0026472; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bugental DB, 2012, DEV PSYCHOL, V48, P806, DOI 10.1037/a0027477; BURGESS RL, 2005, EVOLUTIONARY PERSPEC; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Dawkins R., 1976, SELFISH GENE; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Eisenberg N, 2012, DEV PSYCHOL, V48, P755, DOI 10.1037/a0026518; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P1, DOI 10.1017/S095457941000060X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Gluckman PD, 2012, DEV PSYCHOL, V48, P643, DOI 10.1037/a0027508; Gottlieb G, 2002, PSYCHOL REV, V109, P211, DOI 10.1037//0033-295X.109.2.211; Gottlieb G., 1992, INDIVIDUAL DEV EVOLU; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Lickliter R, 2012, DEV PSYCHOL, V48, P658, DOI 10.1037/a0027495; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Ploeger A, 2008, PSYCHOL INQ, V19, P1, DOI 10.1080/10478400701774006; Raff R. A, 1996, SHAPE LIFE GENES DEV; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith JM, 1982, EVOLUTION THEORY GAM; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Sulik MJ, 2012, DEV PSYCHOL, V48, P740, DOI 10.1037/a0025938; Van IJzendoorn M. H., 2012, DEV PSYCHOL, V48, P769, DOI [10.1037/a0027536, DOI 10.1037/A0027536]; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105 50 24 24 0 29 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 591 597 10.1037/a0027651 7 Psychology, Developmental Psychology 932JK WOS:000303287200001 22545847 2019-02-21 J Ellis, BJ; Del Giudice, M; Dishion, TJ; Figueredo, AJ; Gray, P; Griskevicius, V; Hawley, PH; Jacobs, WJ; James, J; Volk, AA; Wilson, DS Ellis, Bruce J.; Del Giudice, Marco; Dishion, Thomas J.; Figueredo, Aurelio Jose; Gray, Peter; Griskevicius, Vladas; Hawley, Patricia H.; Jacobs, W. Jake; James, Jenee; Volk, Anthony A.; Wilson, David Sloan The Evolutionary Basis of Risky Adolescent Behavior: Implications for Science, Policy, and Practice DEVELOPMENTAL PSYCHOLOGY English Article evolution and development; evolutionary psychology; environmental mismatch; bullying; intervention LIFE-HISTORY STRATEGIES; SUBSTANCE USE DISORDERS; PARENT-CHILD CONFLICT; TREATMENT FOSTER-CARE; FAMILY CHECK-UP; SOCIAL-DOMINANCE; SEX-DIFFERENCES; JUVENILE JUSTICE; REPRODUCTIVE STRATEGY; PUBERTAL MATURATION This article proposes an evolutionary model of risky behavior in adolescence and contrasts it with the prevailing developmental psychopathology model. The evolutionary model contends that understanding the evolutionary functions of adolescence is critical to explaining why adolescents engage in risky behavior and that successful intervention depends on working with, instead of against, adolescent goals and motivations. The current article articulates 5 key evolutionary insights into risky adolescent behavior: (a) The adolescent transition is an inflection point in development of social status and reproductive trajectories; (b) interventions need to address the adaptive functions of risky and aggressive behaviors like bullying; (c) risky adolescent behavior adaptively calibrates over development to match both harsh and unpredictable environmental conditions; (d) understanding evolved sex differences is critical for understanding the psychology of risky behavior; and (e) mismatches between current and past environments can dysregulate adolescent behavior, as demonstrated by age-segregated social groupings. The evolutionary model has broad implications for designing interventions for high-risk youth and suggests new directions for research that have not been forthcoming from other perspectives. [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ Turin, Dept Psychol, Turin, Italy; [Dishion, Thomas J.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Figueredo, Aurelio Jose; Jacobs, W. Jake] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Gray, Peter] Boston Coll, Dept Psychol, Chestnut Hill, MA 02167 USA; [Griskevicius, Vladas] Univ Minnesota, Sch Management, Minneapolis, MN 55455 USA; [Hawley, Patricia H.] Univ Kansas, Dept Psychol, Lawrence, KS 66045 USA; [James, Jenee] Univ Arizona, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Volk, Anthony A.] Brock Univ, Dept Child & Youth Studies, St Catharines, ON L2S 3A1, Canada; [Wilson, David Sloan] SUNY Binghamton, Dept Biol, Binghamton, NY 13902 USA; [Wilson, David Sloan] SUNY Binghamton, Dept Anthropol, Binghamton, NY 13902 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allsworth JE, 2005, ANN EPIDEMIOL, V15, P438, DOI 10.1016/j.annepidem.2004.12.010; Anda D. D., 2001, CHILD ADOLESCENT SOC, V18, P97, DOI [10.1023/A:1007646711937, DOI 10.1023/A:1007646711937]; Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; Angold A, 1999, PSYCHOL MED, V29, P1043, DOI 10.1017/S0033291799008946; Angold A, 1998, PSYCHOL MED, V28, P51, DOI 10.1017/S003329179700593X; [Anonymous], 2007, JOINT EFF AG VICT C; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Atkins MS, 2002, J ABNORM CHILD PSYCH, V30, P361, DOI 10.1023/A:1015765924135; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Baker MD, 2008, EVOL HUM BEHAV, V29, P391, DOI 10.1016/j.evolhumbehav.2008.06.001; Barber N, 2001, J CROSS CULT PSYCHOL, V32, P259, DOI 10.1177/0022022101032003001; Barber N, 2011, AGGRESS VIOLENT BEH, V16, P420, DOI 10.1016/j.avb.2011.01.001; BARRISH HH, 1969, J APPL BEHAV ANAL, V2, P119, DOI 10.1901/jaba.1969.2-119; Bayer P., 2003, BUILDING CRIMI UNPUB; Belles S, 2010, PERS SOC PSYCHOL B, V36, P703, DOI 10.1177/0146167210366305; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2009, EV I WORKSH AD RISK; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Berger KS, 2007, DEV REV, V27, P90, DOI 10.1016/j.dr.2006.08.002; Bierman K. L, 2004, PEER REJECTION DEV P; Blakemore SJ, 2006, J CHILD PSYCHOL PSYC, V47, P296, DOI 10.1111/j.1469-7610.2006.01611.x; Bowlby J., 1969, ATTACHMENT LOSS ATTA; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; BRONFENBRENNER U, 1979, AM PSYCHOL, V34, P844, DOI 10.1037//0003-066X.34.10.844; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037/0033-2909.125.3.367; Campbell A, 2004, J SEX RES, V41, P16, DOI 10.1080/00224490409552210; CARSKADON MA, 1980, SLEEP, V2, P453; Cashdan E, 1998, BRIT J SOC PSYCHOL, V37, P213, DOI 10.1111/j.2044-8309.1998.tb01166.x; Chamberlain P, 1990, Child Today, V19, P24; Chamberlain P, 2007, J CONSULT CLIN PSYCH, V75, P187, DOI 10.1037/0022-006X.75.1.187; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Chang L, 2011, PERS SOC PSYCHOL B, V37, P976, DOI 10.1177/0146167211402216; Chassin L., 2009, HDB ADOLESCENT PSYCH, V1, P723, DOI DOI 10.1002/9780470479193.ADLPSY001022; Chein J, 2011, DEVELOPMENTAL SCI, V14, pF1, DOI 10.1111/j.1467-7687.2010.01035.x; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; COHEN PA, 1982, AM EDUC RES J, V19, P237, DOI 10.2307/1162567; COIE JD, 1983, CHILD DEV, V54, P1400, DOI 10.2307/1129803; Colarelli SM, 2006, J ORGAN BEHAV, V27, P163, DOI 10.1002/job.350; Connolly J, 2000, Child Maltreat, V5, P299, DOI 10.1177/1077559500005004002; Costello EJ, 2003, JAMA-J AM MED ASSOC, V290, P2023, DOI 10.1001/jama.290.15.2023; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Crowley SJ, 2007, SLEEP MED, V8, P602, DOI 10.1016/j.sleep.2006.12.002; Daly M, 2001, Nebr Symp Motiv, V47, P1; Daly M, 2001, CAN J CRIMINOL, V43, P219; Daly M., 1988, HOMICIDE; Dane A., CREATING WO IN PRESS; Dearden J., 1998, ED PSYCHOL PRACTICE, V13, P250, DOI DOI 10.1080/0266736980130406; Dijkstra JK, 2010, CRIMINOLOGY, V48, P187, DOI 10.1111/j.1745-9125.2010.00183.x; Dishion T. J, 2008, UNDERSTANDING PEER I, P72; Dishion TJ, 2008, CHILD DEV, V79, P1395, DOI 10.1111/j.1467-8624.2008.01195.x; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dishion TJ, 2003, BEHAV THER, V34, P553, DOI 10.1016/S0005-7894(03)80035-7; Dishion TJ, 1996, BEHAV THER, V27, P373, DOI 10.1016/S0005-7894(96)80023-2; Dishion TJ, 2004, J ADOLESCENCE, V27, P515, DOI 10.1016/j.adolescence.2004.06.005; Dishion TJ, 1999, J CLIN CHILD PSYCHOL, V28, P502, DOI 10.1207/S15374424JCCP2804_10; Dishion TJ, 1999, AM PSYCHOL, V54, P755, DOI 10.1037/0003-066X.54.9.755; Dobrova-Krol NA, 2010, CHILD DEV, V81, P237, DOI 10.1111/j.1467-8624.2009.01392.x; Dodge K. A., 2006, SOCIAL POLICY REPORT, V20, P1; DODGE KA, 1983, CHILD DEV, V54, P1386, DOI 10.1111/j.1467-8624.1983.tb00055.x; DuBois DL, 2002, AM J COMMUN PSYCHOL, V30, P157, DOI 10.1023/A:1014628810714; Duncan GJ, 2005, J ABNORM CHILD PSYCH, V33, P375, DOI 10.1007/s10802-005-3576-2; Dutra L, 2008, AM J PSYCHIAT, V165, P179, DOI 10.1176/appi.ajp.2007.06111851; Eaton SB, 2003, COMP BIOCHEM PHYS A, V136, P153, DOI 10.1016/S1095-6433(03)00208-3; Eddy JM, 2003, BEHAV THER, V34, P535, DOI 10.1016/S0005-7894(03)80034-5; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Emaus A, 2008, HUM REPROD, V23, P919, DOI 10.1093/humrep/dem432; Ember Carol R., 1973, ETHOS, V1, P424, DOI DOI 10.1525/ETH.1973.1.4.02A00050; Ermer E, 2008, EVOL HUM BEHAV, V29, P106, DOI 10.1016/j.evolhumbehav.2007.11.002; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Faris R, 2011, AM SOCIOL REV, V76, P48, DOI 10.1177/0003122410396196; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Forgatch M. S., 2010, EVIDENCE BASED PSYCH, V2, P159, DOI DOI 10.1017/S0954579409000340; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Galbraith J, 2011, EDUC STUD-UK, V37, P321, DOI 10.1080/03055698.2010.506330; Gallup AC, 2011, AGGRESSIVE BEHAV, V37, P258, DOI 10.1002/ab.20384; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gatti U, 2009, J CHILD PSYCHOL PSYC, V50, P991, DOI 10.1111/j.1469-7610.2008.02057.x; Ge XJ, 2003, DEV PSYCHOL, V39, P430, DOI 10.1037/0012-1649.39.3.430; Ge XJ, 2002, DEV PSYCHOL, V38, P42, DOI 10.1037//0012-1649.38.1.42; Goodall J., 1986, CHIMPANZEES GOMBE; Gordon J, 2008, PREV SCI, V9, P73, DOI 10.1007/s11121-008-0089-6; Gordon M, 2005, ROOTS EMPATHY CHANGI; Graber JA, 2006, J YOUTH ADOLESCENCE, V35, P413, DOI 10.1007/s10964-006-9049-2; Gray P, 2004, AM J EDUC, V110, P108, DOI 10.1086/380572; Gray P, 1997, MERRILL PALMER QUART, V43, P67; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray P, 2011, AM J PLAY, V3, P443; Gray P, 2011, AM J PLAY, V3, P500; Gray P, 2009, AM J PLAY, V1, P476; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Grossman JB, 1998, EVALUATION REV, V22, P403, DOI 10.1177/0193841X9802200304; Gutman LM, 2002, AM J COMMUN PSYCHOL, V30, P367, DOI 10.1023/A:1015389103911; Hammer MF, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000202; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Hawley PH, 2002, INT J BEHAV DEV, V26, P167, DOI 10.1080/01650250042000726; HAYWARD C, 1992, AM J PSYCHIAT, V149, P1239; Henggeler S. W, 2010, EVIDENCE BASED PSYCH, P259; Herrera C, 2011, CHILD DEV, V82, P346, DOI 10.1111/j.1467-8624.2010.01559.x; Hesketh T, 2006, P NATL ACAD SCI USA, V103, P13271, DOI 10.1073/pnas.0602203103; Hewlett BS, 2005, HUNTER GATHERER CHIL; Hill JO, 2006, ENDOCR REV, V27, P750, DOI 10.1210/er.2006-0032; Holm SM, 2009, J ADOLESCENT HEALTH, V45, P326, DOI 10.1016/j.jadohealth.2009.04.001; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Hudson V, 2004, BARE BRANCHES; Huerta R, 2002, J REPROD MED, V47, P217; Ilardi S. S., 2009, DEPRESSION CURE 6 ST; Institute of Medicine & National Research Council, 2011, SCI ADOL RISK TAK WO; Iredale W, 2008, EVOL PSYCHOL-US, V6, P386, DOI 10.1177/147470490800600302; Ireland JL, 2005, J ADOLESCENT HEALTH, V36, P236, DOI 10.1016/j.jadohealth.2004.02.026; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; JESSOR R, 1987, BRIT J ADDICT, V82, P331; Johns S. E., 2011, J EVOLUTIONARY PSYCH, V9, P3, DOI DOI 10.1556/JEP.9.2011.37.1; JONES MC, 1957, CHILD DEV, V28, P113, DOI 10.1111/j.1467-8624.1957.tb04837.x; Juvonen J, 2003, PEDIATRICS, V112, P1231, DOI 10.1542/peds.112.6.1231; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Karna A, 2011, CHILD DEV, V82, P311, DOI 10.1111/j.1467-8624.2010.01557.x; Keel L., 1986, ELEMENTARY SCH GUIDA, V20, P268; Kellam SG, 2008, DRUG ALCOHOL DEPEN, V95, pS5, DOI 10.1016/j.drugalcdep.2008.01.004; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kerr DCR, 2009, J CONSULT CLIN PSYCH, V77, P588, DOI 10.1037/a0015289; Kirby KN, 1996, PSYCHON B REV, V3, P100, DOI 10.3758/BF03210748; Kling JR, 2007, ECONOMETRICA, V75, P83, DOI 10.1111/j.1468-0262.2007.00733.x; Kling JR, 2005, Q J ECON, V120, P87, DOI 10.1162/qjec.2005.120.1.87; Kolbert J. B., 2003, J SCH VIOLENCE, V2, P73, DOI [DOI 10.1300/J202V02N03_05, 10.1300/J202v02n03_05]; Konner M, 2005, HUNTER GATHERER CHIL, P19; Konner M., 1975, ORIGINS BEHAV, V4, P99; Konner M, 2010, NUTR CLIN PRACT, V25, P594, DOI 10.1177/0884533610385702; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Kramer MS, 2008, ARCH GEN PSYCHIAT, V65, P578, DOI 10.1001/archpsyc.65.5.578; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger D. J., 2009, J SOCIAL EVOLUTIONAR, V3, P93; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Lansford J. E., 2006, DEVIANT PEER INFLUEN, P215; Laursen B, 1998, CHILD DEV, V69, P817, DOI 10.2307/1132206; Leenaars LS, 2008, AGGRESSIVE BEHAV, V34, P404, DOI 10.1002/ab.20252; Leve LD, 2005, J CONSULT CLIN PSYCH, V73, P1181, DOI 10.1037/0055-006X.73.6.1181; Liddle H. A., 2010, EVIDENCE BASED PSYCH, P416; Light JM, 2007, NEW DIR CHILD ADOLES, V118, P77, DOI 10.1002/cd.202; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Martin CA, 2002, J AM ACAD CHILD PSY, V41, P1495, DOI 10.1097/01.CHI.0000024864.60748.9D; Mason W Alex, 2003, Prev Sci, V4, P203, DOI 10.1023/A:1024653923780; MASURE RALPH H., 1934, AUK, V51, P306; MCCABE MP, 1984, ADOLESCENCE, V19, P159; McMaster LE, 2002, DEV PSYCHOPATHOL, V14, P91, DOI 10.1017/S0954579402001050; Mech DL, 1970, WOLF ECOLOGY BEHAV E; Merrell KW, 2008, SCHOOL PSYCHOL QUART, V23, P26, DOI 10.1037/1045-3830.23.1.26; MESSNER SF, 1991, SOC FORCES, V69, P693, DOI 10.2307/2579470; Moberg DP, 1998, AIDS EDUC PREV, V10, P128; Morris A. S., 2004, HDB ADOLESCENT PSYCH, P155; Mulvihill D, 2005, COMPR CHILD ADOLES N, V28, P115, DOI 10.1080/01460860590950890; Mussweiler T, 2000, J PERS SOC PSYCHOL, V79, P507, DOI 10.1037//0022-3514.79.4.507; Najman JM, 2009, AUST NZ J CRIMINOL, V42, P369, DOI 10.1375/acri.42.3.369; National Cancer Institute, 2008, ROLE MED PROM RED TO; Nelson CA, 2007, SCIENCE, V318, P1937, DOI 10.1126/science.1143921; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; Olthof T, 2008, SOC DEV, V17, P24, DOI 10.1111/j.1467-9507.2007.00413.x; OLWEUS D, 1993, BULLYING SCH WHAT KN; Ostovich JM, 2005, ARCH SEX BEHAV, V34, P197, DOI 10.1007/s10508-005-1797-7; Oyserman D, 2006, J PERS SOC PSYCHOL, V91, P188, DOI 10.1037/0022-3541.91.1.188; PAIKOFF RL, 1991, PSYCHOL BULL, V110, P47, DOI 10.1037/0033-2909.110.1.47; PALMER CT, 1995, J SEX RES, V32, P213, DOI 10.1080/00224499509551792; Panksepp J, 2003, BRAIN COGNITION, V52, P97, DOI 10.1016/S0278-2626(03)00013-7; Panksepp J, 2007, J CAN ACAD CHILD ADO, V16, P57; Patton GC, 1996, J EPIDEMIOL COMMUN H, V50, P661, DOI 10.1136/jech.50.6.661; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Pellegrini AD, 2003, J EXP CHILD PSYCHOL, V85, P257, DOI 10.1016/S0022-0965(03)00060-2; Persico N, 2004, J POLIT ECON, V112, P1019, DOI 10.1086/422566; Petras H, 2008, DRUG ALCOHOL DEPEN, V95, pS45, DOI 10.1016/j.drugalcdep.2007.10.015; Poduska JM, 2008, DRUG ALCOHOL DEPEN, V95, pS29, DOI 10.1016/j.drugalcdep.2007.10.009; Pollak SD, 2008, CURR DIR PSYCHOL SCI, V17, P370, DOI 10.1111/j.1467-8721.2008.00608.x; Pollet TV, 2008, BIOL LETTERS, V4, P31, DOI 10.1098/rsbl.2007.0543; Quevedo KM, 2009, DEV PSYCHOPATHOL, V21, P27, DOI 10.1017/S0954579409000030; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reinke W. M., 2006, DEVIANT PEER INFLUEN, P122; Reynolds CR, 2008, AM PSYCHOL, V63, P852, DOI 10.1037/0003-066X.63.9.852; Reynolds MD, 2007, BIOL PSYCHIAT, V61, P1223, DOI 10.1016/j.biopsych.2006.07.008; Richards MH, 1998, CHILD DEV, V69, P154, DOI 10.1111/j.1467-8624.1998.tb06140.x; RICHARDS MH, 1993, J RES ADOLESCENCE, V3, P145, DOI DOI 10.1207/S15327795JRA0302_3; RICHERSON PJ, 2005, GENES ALONE CULTURE; Rigby K, 2010, BULLYING INTERVENTIO; Rigby K, 2011, SOC PSYCHOL EDUC, V14, P441, DOI 10.1007/s11218-011-9158-y; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROFF DA, 2002, LIFE HIST EVOLUTION; Rowe R, 2004, BIOL PSYCHIAT, V55, P546, DOI 10.1016/j.biopsych.2003.10.010; Rusby JC, 2005, J EARLY ADOLESCENCE, V25, P453, DOI 10.1177/0272431605279837; Sadeh A, 2009, SLEEP, V32, P1602, DOI 10.1093/sleep/32.12.1602; Sagrestano LM, 1999, J RES ADOLESCENCE, V9, P85, DOI 10.1207/s15327795jra0901_5; Salmivalli C., 2010, HDB BULLYING SCH INT, P441; Sanbonmatsu L, 2006, J HUM RESOUR, V41, P649; Sato SA, 2008, HORM BEHAV, V53, P647, DOI 10.1016/j.yhbeh.2008.01.010; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schaal B, 1996, J AM ACAD CHILD PSY, V35, P1322, DOI 10.1097/00004583-199610000-00019; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schonert-Reichl K.A., 2009, ROOTS EMPATHY CHANGI, P239; Schonert-Reichl KA, 2012, SCH MENT HEALTH, V4, P1, DOI 10.1007/s12310-011-9064-7; Shomaker LB, 2010, AM J CLIN NUTR, V92, P123, DOI 10.3945/ajcn.2010.29383; Shonkoff JP, 2009, JAMA-J AM MED ASSOC, V301, P2252, DOI 10.1001/jama.2009.754; Sijtsema JJ, 2009, AGGRESSIVE BEHAV, V35, P57, DOI 10.1002/ab.20282; Silk JS, 2009, DEV PSYCHOPATHOL, V21, P7, DOI 10.1017/S0954579409000029; Simons-Morton B, 2005, ACCIDENT ANAL PREV, V37, P973, DOI 10.1016/j.aap.2005.04.014; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SMOLAK L, 1993, J YOUTH ADOLESCENCE, V22, P355, DOI 10.1007/BF01537718; Snyder J, 2005, DEV PSYCHOPATHOL, V17, P397, DOI 10.1017/S0954579405050194; Spencer VG, 2006, BEHAV DISORDERS, V31, P204; Spoth RL, 2001, J CONSULT CLIN PSYCH, V69, P627, DOI 10.1037//0022-006X.69.4.627; Stearns S, 1992, EVOLUTION LIFE HIST; STEINBERG L, 1987, DEV PSYCHOL, V23, P451, DOI 10.1037//0012-1649.23.3.451; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Sutton J, 1999, BRIT J DEV PSYCHOL, V17, P435, DOI 10.1348/026151099165384; Sylwester K, 2011, SEX ROLES, V64, P695, DOI 10.1007/s11199-010-9790-6; Thomas E. M., 2006, OLD WAY STORY 1 PEOP; Tremblay RE, 1998, INT J BEHAV DEV, V22, P753, DOI 10.1080/016502598384153; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Ttofi M. M., 2011, J EXPT CRIMINOLOGY, V7, P27, DOI [10.1007/s11292-010-9109-1, DOI 10.1007/S11292-010-9109-1]; Turnbull C. M., 1972, MOUNTAIN PEOPLE; Udry J. R., 1990, ADOLESCENCE PUBERTY, P70; vanLenthe FJ, 1996, AM J CLIN NUTR, V64, P18; Veenstra R, 2010, CHILD DEV, V81, P480, DOI 10.1111/j.1467-8624.2009.01411.x; Volk A., OXFORD HDB EVOLUTION; Volk Anthony, 2006, Int J Adolesc Med Health, V18, P575; Waldron H. B., 2010, EVIDENCE BASED PSYCH, P401; WARREN MP, 1989, J CLIN ENDOCR METAB, V69, P77, DOI 10.1210/jcem-69-1-77; Wei S-j, 2011, 16800 NAT BUR EC RES; Weichold K., 2003, GENDER DIFFERENCES P, P241, DOI DOI 10.1017/CB09780511489716.013; Weisfeld G, 1999, EVOLUTIONARY PRINCIP; WEISFELD GE, 2005, EVOLUTIONARY PERSPEC, P331; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiting B. B., 1975, CHILDREN 6 CULTURES; Whiting Beatrice B., 1983, NATURE PROSOCIAL DEV, P221; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Wolfson AR, 1998, CHILD DEV, V69, P875, DOI 10.2307/1132351; Wolke D, 2001, ARCH DIS CHILD, V85, P197, DOI 10.1136/adc.85.3.197; YOGEV A, 1982, J EDUC RES, V75, P261, DOI 10.1080/00220671.1982.10885392; YourDictionary.com, 2010, RISK; Zahavi A, 1997, HANDICAP PRINCIPLE M; Zimring F. E., 1998, AM YOUTH VIOLENC; Zuckerman M, 1994, BEHAV EXPRESSIONS BI 267 235 236 9 221 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 598 623 10.1037/a0026220 26 Psychology, Developmental Psychology 932JK WOS:000303287200002 22122473 2019-02-21 J Belsky, J; Schlomer, GL; Ellis, BJ Belsky, Jay; Schlomer, Gabriel L.; Ellis, Bruce J. Beyond Cumulative Risk: Distinguishing Harshness and Unpredictability as Determinants of Parenting and Early Life History Strategy DEVELOPMENTAL PSYCHOLOGY English Article harsh parenting; unpredictable environment; sexual risk taking; life history; maternal depression REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; ECONOMIC HARDSHIP; EARLY ADOLESCENCE; STRESS; HEALTH; CHILDREN; TRAJECTORIES; PERSPECTIVE; ATTACHMENT Drawing on life history theory, Ellis and associates' (2009) recent across- and within-species analysis of ecological effects on reproductive development highlighted two fundamental dimensions of environmental variation and influence: harshness and unpredictability. To evaluate the unique contributions of these factors, the authors of present article examined data from a national sample 1364 mothers and their children participating in the NICHD Study of Early Child Care and Youth Development. Harshness was operationalized as income-to-needs ratio in the first 5 years of life; unpredictability was indexed by residential changes, paternal transitions, and parental job changes during this same period. Here the proposition was tested that these factors not only uniquely predict accelerated life-history strategy, operationalized in terms of sexual behavior at age 15, but that such effects are mediated by change over the early-childhood years in maternal depression and, thereby, observed maternal sensitivity in the early-elementary-school years. Structural equation modeling provided empirical support for Ellis et al.'s (2009) theorizing, calling attention once again to the contribution of evolutionary analysis to understanding contemporary human parenting and development. Implications of the findings for intervention are discussed. [Belsky, Jay] Univ Calif Davis, Davis, CA 95616 USA; [Belsky, Jay] Birkbeck Univ London, Dept Psychol Sci, London, England; [Schlomer, Gabriel L.] Univ Arizona, Arizona Ctr Res & Outreach, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Belsky, J (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. jbelsky@ucdavis.edu Belsky, Jay/0000-0003-2191-2503 ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allhusen V, 2001, J APPL DEV PSYCHOL, V22, P457; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baumer EP, 2001, J MARRIAGE FAM, V63, P540, DOI 10.1111/j.1741-3737.2001.00540.x; Belsky J, 2006, DEV PSYCHOL, V42, P38, DOI 10.1037/0012-1649.42.1.38; Belsky J, 2002, DEV PSYCHOPATHOL, V14, P293; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.1111/j.1467-8624.1984.tb00275.x; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV; Brown T., 2006, CONFIRMATORY FACTOR; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX; Cohen J., 2003, APPL MULTIPLE REGRES; Collins LM, 2001, PSYCHOL METHODS, V6, P330, DOI 10.1037//1082-989X.6.4.330; CONGER RD, 1990, J MARRIAGE FAM, V52, P643, DOI 10.2307/352931; Conger RD, 2002, DEV PSYCHOL, V38, P179, DOI 10.1037//0012-1649.38.2.179; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.2307/1131401; Crowder K, 2004, J MARRIAGE FAM, V66, P721, DOI 10.1111/j.0022-2445.2004.00049.x; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis B. J., DEV PSYCHOP IN PRESS; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Frankenhuis W. E., 2010, ANN M HUM BEH EV SOC; Gazelle H, 2007, J APPL DEV PSYCHOL, V28, P515, DOI 10.1016/j.appdev.2007.06.006; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Gutman LM, 2003, DEV PSYCHOL, V39, P777, DOI 10.1037/0012-1649.39.4.777; Gutman LM, 2002, AM J COMMUN PSYCHOL, V30, P367, DOI 10.1023/A:1015389103911; Harden A, 2009, BRIT MED J, V339, DOI 10.1136/bmj.b4254; HINDE RA, 1990, HUM DEV, V33, P62, DOI 10.1159/000276503; HINDE RA, 1986, DEV ANTISOCIAL PROSO, P13; Holden GW, 2010, CHILD DEV PERSPECT, V4, P197, DOI 10.1111/j.1750-8606.2010.00148.x; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kline R., 2005, PRINCIPALS PRACTICE; Maccoby E. E., 1980, SOCIAL DEV PSYCHOL G; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; McLoyd VC, 1998, AM PSYCHOL, V53, P185, DOI 10.1037/0003-066X.53.2.185; Muthen L. K., 2005, RE MULTIPLE GROUP FA; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; [National Institute of Child Health and Human Development (NICHD) Early Child Care Research Network (ECCRN)], 2005, CHILD CAR CHILD DEV; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; *NICHD EARL CHILD, 2003, INFANT BEHAV DEV, V0026; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; RADLOFF L S, 1977, Applied Psychological Measurement, V1, P385, DOI 10.1177/014662167700100306; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.2307/1129854; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; SAMEROFF AJ, 1987, PEDIATRICS, V79, P343; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schlomer GL, 2010, J COUNS PSYCHOL, V57, P1, DOI 10.1037/a0018082; Seifer R, 1996, J CLIN CHILD PSYCHOL, V25, P423, DOI 10.1207/s15374424jccp2504_7; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Sobel M. E., 1986, SOCIOL METHODOL, V16, p159 , DOI DOI 10.2307/270922; Stearns S, 1992, EVOLUTION LIFE HIST 70 119 125 2 85 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 662 673 10.1037/a0024454 12 Psychology, Developmental Psychology 932JK WOS:000303287200008 21744948 2019-02-21 J Simpson, JA; Griskevicius, V; Kuo, SIC; Sung, S; Collins, WA Simpson, Jeffry A.; Griskevicius, Vladas; Kuo, Sally I-Chun; Sung, Sooyeon; Collins, W. Andrew Evolution, Stress, and Sensitive Periods: The Influence of Unpredictability in Early Versus Late Childhood on Sex and Risky Behavior DEVELOPMENTAL PSYCHOLOGY English Article life stress; social development; sexual behavior; evolution; life history theory LIFE-HISTORY STRATEGIES; REPRODUCTIVE STRATEGY; FATHER ABSENCE; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; NEIGHBORHOODS; HEALTH According to a recent evolutionary life history model of development proposed by Ellis, Figueredo, Brumbach, and Schlomer (2009), growing up in harsh versus unpredictable environments should have unique effects on life history strategies in adulthood. Using data from the Minnesota Longitudinal Study of Risk and Adaptation, we tested how harshness and unpredictability experienced in early childhood (age 0-5) versus in later childhood (age 6-16) uniquely predicted sexual and risky behavior at age 23. Findings showed that the strongest predictor of both sexual and risky behavior was an unpredictable environment between ages 0 and 5. Individuals exposed to more unpredictable, rapidly changing environments during the first 5 years of life displayed a faster life history strategy at age 23 by having more sexual partners, engaging in more aggressive and delinquent behaviors, and being more likely to be associated with criminal activities. In contrast, exposure to either harsh environments or experiencing unpredictability in later childhood (age 6-16) was, for the most part, not significantly related to these outcomes at age 23. Viewed together, these findings show that unpredictable rather than merely harsh childhood environments exert unique effects on risky behavior later in life consistent with a faster life history strategy. The findings also suggest that there is a developmentally sensitive period for assessing environmental unpredictability during the first 5 years of life. [Simpson, Jeffry A.; Sung, Sooyeon] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Kuo, Sally I-Chun; Collins, W. Andrew] Univ Minnesota, Inst Child Dev, Minneapolis, MN 55455 USA Simpson, JA (reprint author), Univ Minnesota, Dept Psychol, Twin Cities Campus, Minneapolis, MN 55455 USA. simps108@umn.edu Simpson, Jeff/0000-0003-1899-2493 Achenbach T M, 2000, Pediatr Rev, V21, P265, DOI 10.1542/pir.21-8-265; Achenbach T. M, 1997, MANUAL YOUNG ADULT S; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; *AM PSYCH ASS, 1994, DIAG STAT MAN MENT D; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1999, HDB ATTACHMENT THEOR, P141; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Blum R., 1989, STATE ADOLESCENT HLT; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; COCHRANE R, 1973, J PSYCHOSOM RES, V17, P135, DOI 10.1016/0022-3999(73)90014-7; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duncan Otis D, 1961, OCCUPATIONS SOCIAL S, P109; EGELAND B, 1980, J CONSULT CLIN PSYCH, V48, P195, DOI 10.1037/0022-006X.48.2.195; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Griskevicius V., 2011, EC RECESSIONS UNPUB; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.2307/1129854; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Sroufe L. A., 2005, DEV PERSON MINNESOTA; Stearns S, 1992, EVOLUTION LIFE HIST; STEVENS G, 1981, SOC SCI RES, V10, P364, DOI 10.1016/0049-089X(81)90011-9; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 49 116 122 3 50 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 674 686 10.1037/a0027293 13 Psychology, Developmental Psychology 932JK WOS:000303287200009 22329381 2019-02-21 J Nettle, D; Frankenhuis, WE; Rickard, IJ Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J. The Adaptive Basis of Psychosocial Acceleration: Comment on Beyond Mental Health, Life History Strategies Articles DEVELOPMENTAL PSYCHOLOGY English Editorial Material psychosocial acceleration theory; developmental plasticity; evolutionary developmental psychology; father absence ENVIRONMENTAL RISK; FATHER ABSENCE; DYING YOUNG; LIVING FAST; EXPERIENCE; DAUGHTERS; PREGNANCY; CHILDHOOD; MENARCHE; INFANTS Four of the articles published in this special section of Developmental Psychology build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of caregivers being a reliable cue of broader ecological conditions and on those ecological conditions being somewhat stable over the individual's lifetime. There is a scope for empirical and theoretical work investigating the range of environments over which these assumptions hold, to understand more deeply why it is that early life family environment exerts such reliable effects on later life-history strategy. [Nettle, Daniel] Newcastle Univ, Ctr Behav & Evolut, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England; [Nettle, Daniel] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England; [Frankenhuis, Willem E.] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA; [Rickard, Ian J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Nettle, D (reprint author), Newcastle Univ, Ctr Behav & Evolut, Henry Wellcome Bldg,Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. daniel.nettle@ncl.ac.uk Nettle, Daniel/0000-0001-9089-2599 Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Cameron NM, 2008, HORM BEHAV, V54, P178, DOI 10.1016/j.yhbeh.2008.02.013; CHENEY DL, 1977, BEHAV ECOL SOCIOBIOL, V2, P303, DOI 10.1007/BF00299742; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Maestripieri D, 2005, P ROY SOC B-BIOL SCI, V272, P1243, DOI 10.1098/rspb.2005.3059; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Nettle D., 2009, EVOLUTION GENETICS P; Nettle D, 2012, J ETHOL, V30, P109, DOI 10.1007/s10164-011-0303-z; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Richerson PJ, 2001, AM ANTIQUITY, V66, P387, DOI 10.2307/2694241; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S, 1992, EVOLUTION LIFE HIST; Thomsen L, 2011, SCIENCE, V331, P477, DOI 10.1126/science.1199198; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065 29 6 6 0 12 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 718 721 10.1037/a0027507 4 Psychology, Developmental Psychology 932JK WOS:000303287200012 22545851 2019-02-21 J Gibbons, FX; Roberts, ME; Gerrard, M; Li, ZG; Beach, SRH; Simons, RL; Weng, CY; Philibert, RA Gibbons, Frederick X.; Roberts, Megan E.; Gerrard, Meg; Li, Zhigang; Beach, Steven R. H.; Simons, Ronald L.; Weng, Chili-Yuan; Philibert, Robert A. The Impact of Stress on the Life History Strategies of African American Adolescents: Cognitions, Genetic Moderation, and the Role of Discrimination DEVELOPMENTAL PSYCHOLOGY English Article life history strategy; discrimination; stress; cognition; African American SUBSTANCE USE; DIFFERENTIAL SUSCEPTIBILITY; RACIAL-DISCRIMINATION; RACIAL/ETHNIC DISCRIMINATION; PERCEIVED DISCRIMINATION; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; ENVIRONMENTAL RISK; HEALTH-RISK; CHILDREN The impact of 3 different sources of stress-environmental, familial (e.g., low parental investment), and interpersonal (i.e., racial discrimination)-on the life history strategies (LHS) and associated cognitions of African American adolescents were examined over an 11-year period (5 waves, from age 10.5 to 21.5). Analyses indicated that each one of the sources of stress was associated with faster LHS cognitions (e.g., tolerance of deviance, willingness to engage in risky sex), which, in turn, predicted faster LHS behaviors (e.g., frequent sexual behavior). LHS, then, negatively predicted outcome (resilience) at age 21.5 (i.e., faster LHS -> less resilience). In addition, presence of the risk ("sensitivity") alleles of 2 monoamine-regulating genes, the serotonin transporter gene (5HTTLPR) and the dopamine D4 receptor gene (DRD4), moderated the impact of perceived racial discrimination on LHS cognitions: Participants with more risk alleles (higher "sensitivity") reported faster LHS cognitions at age 18 and less resilience at age 21 if they had experienced higher amounts of discrimination and slower LHS and more resilience if they had experienced smaller amounts of discrimination. Implications for LHS theories are discussed. [Gibbons, Frederick X.; Roberts, Megan E.] Dartmouth Coll, Dept Psychol, Hanover, NH 03755 USA; [Gerrard, Meg; Li, Zhigang] Dartmouth Med Sch, Dept Psychol, Hanover, NH USA; [Beach, Steven R. H.; Simons, Ronald L.] Univ Georgia, Dept Psychol, Athens, GA 30602 USA; [Philibert, Robert A.] Univ Iowa, Dept Psychol, Iowa City, IA 52242 USA Gibbons, FX (reprint author), Dartmouth Coll, Dept Psychol Psychol & Brain Sci, Moore Hall,Hinman Box 6207, Hanover, NH 03755 USA. Frederick.x.gibbons@dartmouth.edu Philibert, Robert/0000-0001-7822-4977 NIMH NIH HHS [R01 MH062668, MH062668]; NIDA NIH HHS [DA021898, DA018871, P30 DA027827, R01 DA021898, T32 DA016184, R01 DA018871]; NCI NIH HHS [P30 CA023108] American Heart Association, 2010, HEART DIS STROK STAT; Anderson E., 1997, VIOLENCE CHILDHOOD I, P1, DOI [10.1017/CB09780511571015.002, DOI 10.1017/CBO9780511571015.002]; Aud S., 2010, 201028 NCES; Beach SRH, 2010, J FAM PSYCHOL, V24, P513, DOI 10.1037/a0020835; Beach SRH, 2010, AM J MED GENET B, V153B, P710, DOI 10.1002/ajmg.b.31028; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bennett GG, 2005, AM J PUBLIC HEALTH, V95, P238, DOI 10.2105/AJPH.2004.037812; Bjorklund D. F., 2005, HDB EVOLUTIONARY PSY, P828; Bjorklund D. F., 2002, LEARN INDIVID DIFFER, V12, P347, DOI [10.1016/SI041-6080(02)00047-X, DOI 10.1016/S1041-6080)02)00047-X]; Bjorklund DF, 1996, PSYCHOL BULL, V120, P163, DOI 10.1037/0033-2909.120.2.163; Bjorklund DF, 2000, CHILD DEV, V71, P1687, DOI 10.1111/1467-8624.00258; Brennan PA, 2003, J AM ACAD CHILD PSY, V42, P1469, DOI 10.1097/01.CHI.0000091509.46853.7c; Brody G. H., DEV PSYCHOL IN PRESS; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Centers for Disease Control and Prevention National Center for Chronic Disease Prevention and Health Promotion, 2009, HLTH DISP RAC ETH MI; Chapman C., 2010, TRENDS HIGH SCH DROP; Charnov Eric L., 1993, P1; CICCHETTI D, 1993, DEV PSYCHOPATHOL, V5, P497, DOI 10.1017/S0954579400006118; Coker TR, 2009, AM J PUBLIC HEALTH, V99, P878, DOI 10.2105/AJPH.2008.144329; Collins-Schramm HE, 2002, HUM GENET, V111, P566, DOI 10.1007/s00439-002-0818-z; Cosmides L., 1987, LATEST BEST ESSAYS E, P276; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M., 2005, HDB EVOLUTIONARY PSY, P443; Dreber A, 2009, EVOL HUM BEHAV, V30, P85, DOI 10.1016/j.evolhumbehav.2008.11.001; Ehrlich P, 2003, CURR ANTHROPOL, V44, P87, DOI 10.1086/344470; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Esau L, 2008, J NEURAL TRANSM, V115, P755, DOI 10.1007/s00702-007-0012-5; Farmer T. W., 2006, Journal of Research in Rural Education, V21, P1; Federal Interagency Forum on Child and Family Statistics, 2010, AM CHILD BRIEF KEY N; Fergus S, 2005, ANNU REV PUBL HEALTH, V26, P399, DOI 10.1146/annurev.publhealth.26.021304.144357; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARMEZY N, 1984, CHILD DEV, V55, P97, DOI 10.2307/1129837; Gerrard M, 2005, J PEDIATR PSYCHOL, V30, P305, DOI 10.1093/jpepsy/jsi026; Gerrard M, 2006, PSYCHOL ADDICT BEHAV, V20, P185, DOI 10.1037/0893-164X.20.2.185; Gibbons F. X., J PERSONALI IN PRESS; Gibbons F. X., 2010, HDB DRUG USE ETIOLOG, P341; Gibbons FX, 2007, DRUG ALCOHOL DEPEN, V88, pS27, DOI 10.1016/j.drugalcdep.2006.12.015; Gibbons FX, 2010, J PERS SOC PSYCHOL, V99, P785, DOI 10.1037/a0019880; Gibbons FX, 2004, PERS SOC PSYCHOL B, V30, P1048, DOI 10.1177/0146167204264788; Gibbons FX, 2004, J PERS SOC PSYCHOL, V86, P517, DOI 10.1037/0022-3514.86.4.517; Gibbons FX, 2003, BLACKW SER HLTH PSYC, P107; GIBBONS FX, 1995, PERS SOC PSYCHOL B, V21, P85, DOI 10.1177/0146167295211009; Gibbs JT, 1998, STUDYING MINORITY ADOLESCENTS, P55; Halder I, 2009, HUM MUTAT, V30, P1299, DOI 10.1002/humu.21045; Harpending H, 2002, P NATL ACAD SCI USA, V99, P10, DOI 10.1073/pnas.012612799; Harrell E., 2007, BLACK VICTIMS VIOLEN; Hayes AF, 2009, BEHAV RES METHODS, V41, P924, DOI 10.3758/BRM.41.3.924; HINDE RA, 1982, ETHOLOGY ITS NATURE; Johnson P, 1936, STAT RES MEMOIRS, V1, P57, DOI [DOI 10.1007/BF02310468, 10.2307/2278685?uid=2&uid=4&sid=21104143453707]; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick D. T., 2005, HDB EVOLUTIONARY PSY, P803; KEPPEL KG, 2002, TRENDS RACIAL ETHNIC; Kurzban R, 2001, P NATL ACAD SCI USA, V98, P15387, DOI 10.1073/pnas.251541498; Landrine H., 1996, J BLACK PSYCHOL, V22, P144, DOI DOI 10.1177/00957984960222002; Luthar SS, 2007, DEV PSYCHOPATHOL, V19, P931, DOI 10.1017/S0954579407000454; Luther S, 2003, RESILIENCE VULNERABI, DOI [10.1017/CBO9780511615788, DOI 10.1017/CBO9780511615788.023]; Martin JK, 2003, J HEALTH SOC BEHAV, V44, P408, DOI 10.2307/1519787; Massar K, 2009, EUR J SOC PSYCHOL, V39, P768, DOI 10.1002/ejsp.579; Masten AS, 1998, AM PSYCHOL, V53, P205, DOI 10.1037//0003-066X.53.2.205; Mattis JS, 2003, PERS INDIV DIFFER, V34, P1025, DOI 10.1016/S0191-8869(02)00087-9; McArdle N., 2007, DISPARITIES NEIGHBOR; Merikangas KR, 2010, J AM ACAD CHILD PSY, V49, P980, DOI 10.1016/j.jaac.2010.05.017; Muthen L. K., 2007, MPLUS USERS GUIDE; Navarrete CD, 2010, J PERS SOC PSYCHOL, V98, P933, DOI 10.1037/a0017931; Pascoe EA, 2009, PSYCHOL BULL, V135, P531, DOI 10.1037/a0016059; Philibert RA, 2008, PSYCHIAT GENET, V18, P275, DOI 10.1097/YPG.0b013e3283060f81; Pomery EA, 2005, J FAM PSYCHOL, V19, P560, DOI 10.1037/0893-3200.19.4.560; Reiner AP, 2005, AM J HUM GENET, V76, P463, DOI 10.1086/428654; Rink E, 2005, AM J HLTH STUDIES, V20, P39; Roberts ME, 2012, DEV PSYCHOL, V48, P89, DOI 10.1037/a0025430; SAMEROFF A, 2003, RESILIENCE VULNERABI, P364; SHAFFER D, 1993, J AM ACAD CHILD PSY, V32, P643, DOI 10.1097/00004583-199305000-00023; Shriver MD, 2003, HUM GENET, V112, P387, DOI 10.1007/s00439-002-0896-y; Simons R. L., AM SOCIOLOG IN PRESS; Simons RL, 2002, DEV PSYCHOPATHOL, V14, P371; Stock M. L., PERSONALITY IN PRESS; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; West HC, 2010, PRISONERS 2009; Williams DR, 2003, AM J PUBLIC HEALTH, V93, P200, DOI 10.2105/AJPH.93.2.200; Wills TA, 2000, HEALTH PSYCHOL, V19, P253, DOI 10.1037//0278-6133.19.3.253; Wittchen U. H., 1991, U MICHIGAN COMPOSITE; Zautra A. J., 2010, HDB ADULT RESILIENCE, P3 88 33 34 0 23 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 722 739 10.1037/a0026599 18 Psychology, Developmental Psychology 932JK WOS:000303287200013 22251000 Green Accepted 2019-02-21 J Bugental, DB Bugental, Daphne Blunt Adaptive Calibration of Children's Physiological Responses to Family Stress: The Utility of Evolutionary Developmental Theory: Comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012) DEVELOPMENTAL PSYCHOLOGY English Editorial Material life history theory; family; stress; physiological responses CORTISOL; HEALTH Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress. Sturge-Apple, Davies, Martin, Cicchetti, and Hentges (2012) focus on the ways that children respond to a novel laboratory manipulation as a combined function of their temperament patterns and the harshness of their parental environment. The theoretical perspective employed provides an overarching framework that not only accounts for the findings presented here but also has heuristic value for future research on responses to early environmental risk. Future work in this area will benefit by inclusion of additional sympathetic nervous system (SNS) markers and neurotransmitters, inclusion of the role of gene expression in adaptive calibration, broader consideration of protective factors in the child's environment, and longitudinal work demonstrating the effects of adaptive calibration on children's future life history strategies and outcomes. Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA Bugental, DB (reprint author), Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA. bugental@psych.ucsb.edu BJORKLUND DF, 2002, HDB PARENTING, V2, P3; Boyd R, 2011, P NATL ACAD SCI USA, V108, P10918, DOI 10.1073/pnas.1100290108; Bugental DB, 2012, DEV PSYCHOL, V48, P1443, DOI 10.1037/a0027303; Bugental DB, 2010, MIND BRAIN EDUC, V4, P159, DOI 10.1111/j.1751-228X.2010.01095.x; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fox NA, 2005, ANNU REV PSYCHOL, V56, P235, DOI 10.1146/annurev.psych.55.090902.141532; Hane AA, 2010, DEV PSYCHOBIOL, V52, P558, DOI 10.1002/dev.20461; Liu D, 2000, NAT NEUROSCI, V3, P799; Sameroff A., 2009, T MODEL DEV CHILDREN, P3, DOI DOI 10.1037/11877-000; Spinrad TL, 2009, HORM BEHAV, V56, P133, DOI 10.1016/j.yhbeh.2009.03.020; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; Taylor SE, 2011, DEV PSYCHOPATHOL, V23, P939, DOI 10.1017/S0954579411000411; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 19 1 1 0 9 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 806 809 10.1037/a0027477 4 Psychology, Developmental Psychology 932JK WOS:000303287200019 22545853 2019-02-21 J Ozgul, A; Coulson, T; Reynolds, A; Cameron, TC; Benton, TG Ozgul, Arpat; Coulson, Tim; Reynolds, Alan; Cameron, Tom C.; Benton, Tim G. Population Responses to Perturbations: The Importance of Trait-Based Analysis Illustrated through a Microcosm Experiment AMERICAN NATURALIST English Article integral projection model; matrix population model; Sancassania berlesei; soil mite; trait-based demography; transient perturbation analysis; transient population dynamics INDIVIDUAL SIZE VARIATION; LIFE-HISTORY EVOLUTION; RECENT CLIMATE-CHANGE; ENVIRONMENTAL VARIABILITY; STOCHASTIC ENVIRONMENTS; SENSITIVITY-ANALYSIS; ELASTICITY ANALYSIS; EXPERIMENTAL SYSTEM; TRANSIENT DYNAMICS; MODEL Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population's response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. [Ozgul, Arpat; Coulson, Tim] Imperial Coll London, Dept Life Sci, Ascot SL5 7PY, Berks, England; [Ozgul, Arpat] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; [Reynolds, Alan; Cameron, Tom C.; Benton, Tim G.] Univ Leeds, Sch Biol, Leeds LS2 9JT, W Yorkshire, England; [Cameron, Tom C.] Umea Univ, SE-90187 Umea, Sweden Ozgul, A (reprint author), Imperial Coll London, Dept Life Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. a.ozgul@imperial.ac.uk Cameron, Tom/H-9555-2012; Ozgul, Arpat/K-2032-2012 Cameron, Tom/0000-0002-5875-1494; Ozgul, Arpat/0000-0001-7477-2642; Benton, Tim/0000-0002-7448-1973; Coulson, Tim/0000-0001-9371-9003 Natural Environmental Research Council; European Research Council; Natural Environment Research Council [NE/E015964/1, NE/I021594/1] This work was funded by grants from the Natural Environmental Research Council (to A.O., T. C., and T. G. B.) and the European Research Council (to T. C.). We would like to thank V. Grimm and the two anonymous reviewers for providing insightful comments that improved the quality of our work. Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Beckerman AP, 2003, AM NAT, V162, P754, DOI 10.1086/381056; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Benton TG, 2005, ADV ECOL RES, V37, P143, DOI 10.1016/S0065-2504(04)37005-4; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Benton TG, 2002, J ANIM ECOL, V71, P320, DOI 10.1046/j.1365-2656.2002.00601.x; Bjornstad ON, 2001, SCIENCE, V293, P638, DOI 10.1126/science.1062226; Burnham KP, 2002, MODEL SELECTION INFE; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; COALE AI, 1972, GROWTH STRUCTURE HUM; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; De Roos AM, 2009, ECOLOGY, V90, P945, DOI 10.1890/07-1153.1; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; Filin I, 2007, AM NAT, V170, P719, DOI 10.1086/522091; Filin Ido, 2008, Journal of Orthoptera Research, V17, P283, DOI 10.1665/1082-6467-17.2.283; Fox GA, 2000, AM NAT, V156, P242, DOI 10.1086/303387; Genner MJ, 2010, GLOBAL CHANGE BIOL, V16, P517, DOI 10.1111/j.1365-2486.2009.02027.x; Gonzalez-Suarez M, 2011, AM NAT, V178, P525, DOI 10.1086/661906; Grant A, 2000, ECOLOGY, V81, P680, DOI 10.2307/177369; Grimm V, 2002, OECOLOGIA, V131, P196, DOI 10.1007/s00442-002-0875-y; Grimm V, 2005, INDIVIDUAL BASED MOD; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hastings A, 2004, TRENDS ECOL EVOL, V19, P39, DOI 10.1016/j.tree.2003.09.007; HASTINGS A, 1994, SCIENCE, V263, P1133, DOI 10.1126/science.263.5150.1133; Hastings A, 2001, ECOL LETT, V4, P215, DOI 10.1046/j.1461-0248.2001.00220.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Koons DN, 2006, J WILDLIFE MANAGE, V70, P19, DOI 10.2193/0022-541X(2006)70[19:PMIFWM]2.0.CO;2; Lindstrom J, 2002, ECOL LETT, V5, P338, DOI 10.1046/j.1461-0248.2002.00317.x; Lundberg P, 2000, TRENDS ECOL EVOL, V15, P460, DOI 10.1016/S0169-5347(00)01981-9; METZ JAJ, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P88; Ovadia O, 2002, P NATL ACAD SCI USA, V99, P12927, DOI 10.1073/pnas.192245499; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2; Plaistow SJ, 2009, PHILOS T R SOC B, V364, P1049, DOI 10.1098/rstb.2008.0251; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Tuljapurkar S., 1990, POPULATION DYNAMICS; Tuljapurkar S., 1997, STRUCTURED POPULATIO; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Uchmanski J, 2000, OIKOS, V90, P539, DOI 10.1034/j.1600-0706.2000.900312.x; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wood SN., 2006, GEN ADDITIVE MODELS; Yearsley JM, 2004, ECOL MODEL, V177, P245, DOI 10.1016/j.ecolmodel.2003.12.053 62 16 16 2 75 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAY 2012 179 5 582 594 10.1086/664999 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 926VI WOS:000302859600006 22504541 Green Published 2019-02-21 J Schroder, SL; Knudsen, CM; Pearsons, TN; Kassler, TW; Beall, EP; Young, SF; Fast, DE Schroder, Steve L.; Knudsen, Curtis M.; Pearsons, Todd N.; Kassler, Todd W.; Beall, Edward P.; Young, Sewall F.; Fast, David E. Breeding success of four male life history types of spring Chinook Salmon spawning in an artificial stream ENVIRONMENTAL BIOLOGY OF FISHES English Article Spring Chinook salmon; Jacks; Precocious males; Breeding success; Relative breeding success WILD ATLANTIC-SALMON; PRECOCIOUS MALE MATURATION; EFFECTIVE POPULATION-SIZE; ONCORHYNCHUS-TSHAWYTSCHA; 1ST-GENERATION HATCHERY; SPERM COMPETITION; SOCKEYE-SALMON; YAKIMA RIVER; MALE PARR; FERTILIZATION SUCCESS In 1997 the Cle Elum Supplementation Research Facility was established to enhance spring Chinook salmon returning to the upper Yakima River, Washington State. This effort increased spring Chinook abundance, yet conditions at the hatchery also significantly elevated the occurrence of jacks and yearling precocious males. The potential genetic effect that a large influx of early maturing males might have on the upper Yakima River spring Chinook population was examined in an artificial stream. Seven independent groups of fish were placed into the stream from 2001 through 2005. Males with four different life history strategies, large anadromous, jacks, yearling precocious, and sub-yearling precocious were used. Their breeding success or ability to produce offspring was estimated by performing DNA-based pedigree assessments. Large anadromous males spawned with the most females and produced the greatest number of offspring per mate. Jacks and yearling precocious males spawned with more females than sub-yearling precocious males. However, jacks, yearling and sub-yearling precocious males obtained similar numbers of fry per mate. In the test groups, large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry. These percentages remained stable even though the proportion of large anadromous males in the test groups ranged from 48% to 88% and tertiary sex ratios varied from 1.4 to 2.4 males per female. Our data suggest that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy. [Schroder, Steve L.; Kassler, Todd W.; Young, Sewall F.] Washington Dept Fish & Wildlife, Olympia, WA 98501 USA; [Knudsen, Curtis M.] Oncorh Consulting, Olympia, WA 98501 USA; [Pearsons, Todd N.] Grant Cty Publ Util Dist, Ephrata, WA 98823 USA; [Beall, Edward P.] INRA, F-64310 St Pee Sur Nivelle, France; [Fast, David E.] Yakama Nation, Toppenish, WA 98948 USA Schroder, SL (reprint author), Washington Dept Fish & Wildlife, 600 Capitol Way N, Olympia, WA 98501 USA. schrosls@dfw.wa.gov Bonneville Power Administration (BPA) [1995-063-25] We thank State of the Salmon and the organizers of the "Ecological Interactions between Wild and Hatchery Salmon" symposium for giving us an opportunity to present this information. Our field work would have been impossible without considerable assistance from Yakama Nation staff Charles Strom, Vernon Bogar, DJ Brownlee, Greg Strom, Simon Goudy, Quinn Jones, Annie Jo Parrish, Jason Rau, and Dan Barrett all located at the CESRF. Mark Johnston, Joe Hoptowit, Gerry Lewis, Ray Decoteau, and Antoine Marek collected and transported all the fish used in our experiments from the Roza Adult Monitoring Facility to the CESRF. Other Yakama Nation staff, Bill Bosch, David Lind, and Paul Huffman also supported us in numerous ways. Jen Scott, Mike Hamlin, Anthony Fritts, Gene Sanborn, Jordan Vandal, Kurt Fresh, Eric Volk, Gabriel Temple, Timothy Webster, Charity Davidson, Chris Johnson and Molly Kelly all from the Washington Department of Fish and Wildlife helped make observations, assisted us while we cleaned and repaired the artificial stream, or were involved in the capture and sampling of fry. Personnel in WDFW's Molecular Genetics Laboratory, Jim Shaklee, Alice Frye, Jennifer Von Bargen, Norm Switzler, Cherril Bowman, Mo Small, Janet Loxterman, and Denise Hawkins helped with pedigree analyses. Two anonymous reviewers and Barry Berejikian considerably improved the manuscript by their helpful comments and suggestions. We also extend our appreciation to the Bonneville Power Administration (BPA) for funding this work as part of the Yakima/Klickitat Fisheries Project (project 1995-063-25). David Byrnes and Patty Smith of BPA provided administrative support for the project. ALLAN IRH, 1977, J CONSEIL, V37, P293; Allen CS, 2007, J FISH BIOL, V70, P1302, DOI 10.1111/j.1095-8649.2007.01391.x; Andersson M., 1994, SEXUAL SELECTION; Araki H, 2010, AQUACULTURE, V308, pS2, DOI 10.1016/j.aquaculture.2010.05.036; Araki Hitoshi, 2008, P153; Beall E, 1999, CYBIUM, V23, P9; Beall E, 1997, B FR PECHE PISCIC, P271, DOI 10.1051/kmae:1997028; Beckman BR, 2005, T AM FISH SOC, V134, P1520, DOI 10.1577/T05-036.1; Bell GR, 1964, FISHERIES RES BOARD; Berejikian BA, 2008, CAN J FISH AQUAT SCI, V65, P754, DOI 10.1139/F08-014; Berejikian BA, 2010, CAN J FISH AQUAT SCI, V67, P1933, DOI 10.1139/F10-112; Bjornn T.C., 1991, American Fisheries Society Special Publication, P83; Blanchet S, 2008, BIOL CONSERV, V141, P1989, DOI 10.1016/j.biocon.2008.05.014; Blanchfield PJ, 1999, ANIM BEHAV, V57, P537, DOI 10.1006/anbe.1998.1014; Blanchfield PJ, 2003, MOL ECOL, V12, P2417, DOI 10.1046/j.1365-294X.2003.01917.x; CASWELL H, 1984, AQUACULTURE, V43, P123, DOI 10.1016/0044-8486(84)90016-4; Dittman AH, 2010, T AM FISH SOC, V139, P1014, DOI 10.1577/T09-159.1; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FLAIN M, 1971, New Zealand Journal of Marine and Freshwater Research, V5, P519; Gage MJG, 1995, PHILOS T ROY SOC B, V350, P391, DOI 10.1098/rstb.1995.0173; Garant D, 2003, ECOL LETT, V6, P541, DOI 10.1046/j.1461-0248.2003.00462.x; GEBHARDS STACY V., 1960, PROGR FISH CULTURIST, V22, P121, DOI 10.1577/1548-8659(1960)22[121:BNOPMC]2.0.CO;2; Grimardias D, 2010, J FISH BIOL, V77, P2460, DOI 10.1111/j.1095-8649.2010.02808.x; Grimardias D, 2010, ECOL FRESHW FISH, V2010, P1; Healey M. C, 1991, PACIFIC SALMON LIFE; Hoysak DJ, 2004, CAN J ZOOL, V82, P1017, DOI 10.1139/Z04-073; HUTCHINGS JA, 1985, CAN J ZOOL, V63, P2219, DOI 10.1139/z85-327; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; Knudsen CM, 2010, YAKIMA KLICKITAT FIS; Knudsen CM, 2006, T AM FISH SOC, V135, P1130, DOI 10.1577/T05-121.1; Koseki Y, 2002, CAN J FISH AQUAT SCI, V59, P1717, DOI 10.1139/F02-143; Larsen DA, 2004, T AM FISH SOC, V133, P98, DOI 10.1577/T03-031; Larsen DA, 2010, T AM FISH SOC, V139, P564, DOI 10.1577/T08-209.1; Lotspeich FB, 1981, 369 US FOR SERV PAC; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Martinez JL, 2001, FRESHWATER BIOL, V46, P835, DOI 10.1046/j.1365-2427.2001.00711.x; Mjolnerod IB, 1998, CAN J ZOOL, V76, P70, DOI 10.1139/cjz-76-1-70; Mobrand LE, 2005, FISHERIES, V30, P11, DOI 10.1577/1548-8446(2005)30[11:HRIWS]2.0.CO;2; MULLAN JW, 1992, PROG FISH CULT, V54, P25, DOI 10.1577/1548-8640(1992)054<0025:CLHAPO>2.3.CO;2; OCONNELL MF, 1993, J FISH BIOL, V42, P551; Pearsons TN, 2009, N AM J FISH MANAGE, V29, P778, DOI 10.1577/M08-069.1; Quinn TP, 1996, ETHOLOGY, V102, P304, DOI 10.1111/j.1439-0310.1996.tb01127.x; Rich W. H., 1920, US BUR FISH B, V37, P1; Roberge C, 2008, MOL ECOL, V17, P314, DOI 10.1111/j.1365-294X.2007.03438.x; RUTTER C, 1902, US FISH COMMISSION B, V22, P65; Sampson M, 2009, DOEBP000378221 BPA; Saura M, 2008, FRESHWATER BIOL, V53, P2375, DOI 10.1111/j.1365-2427.2008.02062.x; Schroder SL, 2008, T AM FISH SOC, V137, P1475, DOI 10.1577/T07-123.1; Schroder SL, 2010, T AM FISH SOC, V139, P989, DOI 10.1577/T08-143.1; Sharma R, 2006, CAN J FISH AQUAT SCI, V63, P423, DOI 10.1139/F05-228; Shearer KD, 2000, AQUACULTURE, V190, P343, DOI 10.1016/S0044-8486(00)00406-3; Small MP, 2009, CAN J FISH AQUAT SCI, V66, P1216, DOI 10.1139/F09-068; Sokal RR, 1995, BIOMETRY; *SYSTAT SOFTW INC, 2007, SYSTAT WIND VERS 12; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Taggart JB, 2001, MOL ECOL, V10, P1047, DOI 10.1046/j.1365-294X.2001.01254.x; Thorpe J. E., 1994, Aquaculture and Fisheries Management, V25, P77, DOI 10.1111/j.1365-2109.1994.tb00668.x; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Unwin MJ, 1997, CAN J FISH AQUAT SCI, V54, P1235, DOI 10.1139/cjfas-54-6-1235; Vladic TV, 2001, P ROY SOC B-BIOL SCI, V268, P2375, DOI 10.1098/rspb.2001.1768; Zimmerman CE, 2003, N AM J FISH MANAGE, V23, P1006, DOI 10.1577/M02-015 63 9 9 1 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes MAY 2012 94 1 SI 231 248 10.1007/s10641-011-9789-z 18 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 925EB WOS:000302742500017 Other Gold 2019-02-21 J Fierer, N; Lauber, CL; Ramirez, KS; Zaneveld, J; Bradford, MA; Knight, R Fierer, Noah; Lauber, Christian L.; Ramirez, Kelly S.; Zaneveld, Jesse; Bradford, Mark A.; Knight, Rob Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients ISME JOURNAL English Article shotgun metagenomics; pyrosequencing; soil bacteria; nitrogen fertilization; soil carbon dynamics BACTERIAL COMMUNITIES; FUNCTIONAL DIVERSITY; PLANT-COMMUNITIES; ENRICHMENT; ECOSYSTEM; FERTILIZATION; LIMITATION; DEPOSITION; DECOMPOSITION; METAANALYSIS Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N. The ISME Journal (2012) 6, 1007-1017; doi:10.1038/ismej.2011.159; published online 1 December 2011 [Fierer, Noah; Lauber, Christian L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; [Fierer, Noah; Ramirez, Kelly S.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA; [Zaneveld, Jesse] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA; [Bradford, Mark A.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA; [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA; [Knight, Rob] Howard Hughes Med Inst, Chevy Chase, MD USA Fierer, N (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Campus Box 216 UCB, Boulder, CO 80309 USA. Noah.Fierer@colorado.edu Knight, Rob/D-1299-2010; Bradford, Mark/G-3850-2012 Bradford, Mark/0000-0002-2022-8331; Ramirez, Kelly/0000-0001-9227-5754; Knight, Rob/0000-0002-0975-9019; FIERER, NOAH/0000-0002-6432-4261 Howard Hughes Medical Institute; National Institutes of Health; US Department of Agriculture; National Science Foundation; Andrew W Mellon Foundation; US Department of Energy We thank members of the Fierer lab and three anonymous reviewers for valuable comments on previous drafts of this manuscript and Joe Jones at Engencore for his help with the 454 sequencing. We thank the members of the CC LTER, including David Tilman and Linda Kinkel, and the members of KBS LTER, particularly Jay Lennon and Zach Aanderud, for assisting with sample collection. Funding for this work was provided by the Howard Hughes Medical Institute (RK) the National Institutes of Health (RK), the US Department of Agriculture (NF), the National Science Foundation (NF, RK), the Andrew W Mellon Foundation (NF, MAB) and the US Department of Energy (MAB). Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Bates ST, 2011, ISME J, V5, P908, DOI 10.1038/ismej.2010.171; Bergmann GT, 2011, SOIL BIOL BIOCHEM, V43, P1450, DOI 10.1016/j.soilbio.2011.03.012; Campbell BJ, 2010, ENVIRON MICROBIOL, V12, P1842, DOI 10.1111/j.1462-2920.2010.02189.x; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chaffron S, 2010, GENOME RES, V20, P947, DOI 10.1101/gr.104521.109; CHAPIN FS, 1986, AM NAT, V127, P48, DOI 10.1086/284466; Clark CM, 2007, ECOL LETT, V10, P596, DOI 10.1111/j.1461-0248.2007.01053.x; Clark CM, 2008, NATURE, V451, P712, DOI 10.1038/nature06503; Clarke KR, 2006, PRIMER; Cleland EE, 2010, ANN NY ACAD SCI, V1195, P46, DOI 10.1111/j.1749-6632.2010.05458.x; Craine JM, 2007, ECOLOGY, V88, P2105, DOI 10.1890/06-1847.1; Davis KER, 2011, ENVIRON MICROBIOL, V13, P798, DOI 10.1111/j.1462-2920.2010.02384.x; Degens BD, 1999, AUST J SOIL RES, V37, P593; Degens BP, 2000, SOIL BIOL BIOCHEM, V32, P189, DOI 10.1016/S0038-0717(99)00141-8; Dentener F, 2006, GLOBAL BIOGEOCHEM CY, V20, DOI 10.1029/2005GB002672; Dinsdale EA, 2008, NATURE, V452, P629, DOI 10.1038/nature06810; Egerton-Warburton LM, 2007, ECOL MONOGR, V77, P527, DOI 10.1890/06-1772.1; Eilers KG, 2010, SOIL BIOL BIOCHEM, V42, P896, DOI 10.1016/j.soilbio.2010.02.003; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; FOG K, 1988, BIOL REV, V63, P433, DOI 10.1111/j.1469-185X.1988.tb00725.x; Fontaine S, 2005, ECOL LETT, V8, P1075, DOI 10.1111/j.1461-0248.2005.00813.x; Fontaine S, 2004, ECOL LETT, V7, P314, DOI 10.1111/j.1461-0248.2004.00579.x; Frey SD, 2004, FOREST ECOL MANAG, V196, P159, DOI 10.1016/j.foreco.2004.03.018; Fukami T, 2010, ECOL LETT, V13, P675, DOI 10.1111/j.1461-0248.2010.01465.x; Galloway JN, 2004, BIOGEOCHEMISTRY, V70, P153, DOI 10.1007/s10533-004-0370-0; Janssens IA, 2010, NAT GEOSCI, V3, P315, DOI [10.1038/ngeo844, 10.1038/NGEO844]; Konstantinidis KT, 2005, P NATL ACAD SCI USA, V102, P2567, DOI 10.1073/pnas.0409727102; Lamarque JF, 2005, J GEOPHYS RES-ATMOS, V110, DOI 10.1029/2005JD005825; Lauber CL, 2009, APPL ENVIRON MICROB, V75, P5111, DOI 10.1128/AEM.00335-09; LeBauer DS, 2008, ECOLOGY, V89, P371, DOI 10.1890/06-2057.1; Liu LL, 2010, ECOL LETT, V13, P819, DOI 10.1111/j.1461-0248.2010.01482.x; Liu ZZ, 2007, NUCLEIC ACIDS RES, V35, DOI 10.1093/nar/gkm541; Lozupone C, 2011, ISME J, V5, P169, DOI 10.1038/ismej.2010.133; Lozupone C, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-371; Lu M, 2011, NEW PHYTOL, V189, P1040, DOI 10.1111/j.1469-8137.2010.03563.x; McSwiney CP, 2005, GLOBAL CHANGE BIOL, V11, P1712, DOI 10.1111/j.1365-2486.2005.01040.x; Meyer F, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-386; Miki T, 2010, P NATL ACAD SCI USA, V107, P14251, DOI 10.1073/pnas.0914281107; Mou XZ, 2008, NATURE, V451, P708, DOI 10.1038/nature06513; Muegge BD, 2011, SCIENCE, V332, P970, DOI 10.1126/science.1198719; Philippot L, 2010, NAT REV MICROBIOL, V8, P523, DOI 10.1038/nrmicro2367; Prosser JI, 2010, ENVIRON MICROBIOL, V12, P1806, DOI 10.1111/j.1462-2920.2010.02201.x; Ramirez KS, 2010, ECOLOGY, V91, P3463, DOI 10.1890/10-0426.1; Sinsabaugh RL, 2010, SOIL BIOL BIOCHEM, V42, P391, DOI 10.1016/j.soilbio.2009.10.014; Strickland MS, 2010, SOIL BIOL BIOCHEM, V42, P1385, DOI 10.1016/j.soilbio.2010.05.007; Strickland MS, 2009, ECOLOGY, V90, P441, DOI 10.1890/08-0296.1; Suding KN, 2005, P NATL ACAD SCI USA, V102, P4387, DOI 10.1073/pnas.0408648102; Treseder KK, 2008, ECOL LETT, V11, P1111, DOI 10.1111/j.1461-0248.2008.01230.x; Wessen E, 2010, SOIL BIOL BIOCHEM, V42, P1759, DOI 10.1016/j.soilbio.2010.06.013 51 401 427 29 482 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1751-7362 1751-7370 ISME J ISME J. MAY 2012 6 5 1007 1017 10.1038/ismej.2011.159 11 Ecology; Microbiology Environmental Sciences & Ecology; Microbiology 928AA WOS:000302950700010 22134642 Other Gold, Green Published 2019-02-21 J Highton, R; Hastings, AP; Palmer, C; Watts, R; Hass, CA; Culver, M; Arnold, SJ Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan J. Concurrent speciation in the eastern woodland salamanders (Genus Plethodon): DNA sequences of the complete albumin nuclear and partial mitochondrial 12s genes MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Albumin DNA sequences; Plethodon; Speciation; Taxonomy; 12s mtDNA sequences GEOGRAPHIC PROTEIN VARIATION; NORTH-AMERICAN SALAMANDERS; LIFE-HISTORY EVOLUTION; PHYLOGENETIC-RELATIONSHIPS; RAPID DIVERSIFICATION; CINEREUS GROUP; POPULATIONS; DIVERGENCE; RADIATION; DISTANCE Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time. (C) 2012 Published by Elsevier Inc. [Highton, Richard] Univ Maryland, Dept Biol, College Pk, MD 20742 USA; [Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Arnold, Stevan J.] Oregon State Univ, Dept Zool, Corvallis, OR 97333 USA; [Hass, Carla A.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Culver, Melanie] Univ Arizona, Dept Wildlife & Fisheries Sci, Tucson, AZ 85721 USA Highton, R (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. rhighto1@umd.edu NSF [IOS-0818554] We would like to thank Jill Slattery, Jan Martenson, Stephen J. O'Brien and Stan Cevario for expert technical assistance, advice, and resources, and Margaret Hurst, Monica Dorin, and Chun-ju Wang aided in the laboratory work for the 12s work. Allan Larson and Tom A. Titus sent us two of their unpublished sequences. J. Wiens kindly sent us the sequences of the four genes that his group reported. W. Savage sent us the two 12s sequences for Ambystoma maculatum and A. texanum. Colin Rose, Jong Park, and Sam Foo helped with the computer work. Michael Braun, Shawn Kuchta, Allan Larson, Stephen Tilley, and Addison Winn provided especially helpful comments on the manuscript. We also wish to thank all those who helped with the field work and all the federal and state agencies that issued collecting permits, as well as financial support of NSF Grant IOS-0818554 to Lynne D. Houck and SJA for the albumin sequencing. Adler K.K., 1962, OHIO HERP SOC SP PUB, P1; Arbogast BS, 2002, ANNU REV ECOL SYST, V33, P707, DOI 10.1146/annurev.ecolsys.33.010802.150500; Blair A.P., 1965, COPEIA, V1965, P331; BURTON TM, 1975, COPEIA, P541; Carr DE, 1996, HERPETOLOGICA, V52, P56; Chatfield MWH, 2010, MOL ECOL, V19, P4265, DOI 10.1111/j.1365-294X.2010.04796.x; Chippindale PT, 2004, EVOLUTION, V58, P2809; CUPP P V JR, 1983, Transactions of the Kentucky Academy of Science, V44, P157; DUNCAN R, 1979, COPEIA, P95, DOI 10.2307/1443734; DUNN ER, 1926, SALAMANDERS FAMILY P; ECK RV, 1966, ATLAS PROTEIN SEQUEN, P161; Edwards EJ, 2010, SCIENCE, V328, P587, DOI 10.1126/science.1177216; Felsenstein J, 1985, EVOLUTION, V39, P783, DOI DOI 10.2307/2408678; FITCH WM, 1977, AM NAT, V111, P223, DOI 10.1086/283157; GOOD DA, 1992, U CALIFORNIA PUBL ZO, V126, P1; Grobman Arnold B., 1944, ANN NEW YORK ACAD SCI, V45, P261, DOI 10.1111/j.1749-6632.1944.tb47954.x; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; GUTTMAN SI, 1978, J HERPETOL, V12, P445, DOI 10.2307/1563348; Hairston Sr N.G., 1993, BRIMLEYANA, V18, P65; Hass C.A., 1985, THESIS U MARYLAND CO; HASS CA, 1992, J HERPETOL, V26, P137, DOI 10.2307/1564853; HIGHTON R, 1976, EVOLUTION, V30, P33, DOI 10.1111/j.1558-5646.1976.tb00879.x; HIGHTON R, 1995, ANNU REV ECOL SYST, V26, P579, DOI 10.1146/annurev.es.26.110195.003051; HIGHTON R, 1993, MOL PHYLOGENET EVOL, V2, P337, DOI 10.1006/mpev.1993.1033; HIGHTON R, 1991, MOL BIOL EVOL, V8, P796; HIGHTON R, 1967, COPEIA, P617; HIGHTON R, 1983, HERPETOLOGICA, V39, P189; Highton R, 1999, HERPETOLOGICA, V55, P43; HIGHTON R, 1979, SYST ZOOL, V28, P579, DOI 10.2307/2412569; Highton R., 1989, Illinois Biological Monographs, V57, P1; Highton R, 1997, HERPETOLOGICA, V53, P345; Highton R, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P215; Highton R, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P31; Highton R, 1998, HERPETOLOGICA, V54, P254; Highton R., 2004, JEFFERSONIANA, P1; Highton R., 1987, CATALOGUE AM AMPHIBI, P1; HIGHTON R., 1972, DISTRIBUTIONAL HIS 3, V4, P139; HIGHTON R, 1984, BRIMLEYANA, V9, P1; Highton R., 1979, BRIMLEYANA, V1, P31; Highton R, 2005, AMPHIBIAN DECLINES: THE CONSERVATION STATUS OF UNITED STATES SPECIES, P34; Highton Richard, 2009, Virginia Museum of Natural History Special Publication, V16, P59; HIGHTON RICHARD, 1962, BULL FLORIDA STATE MUS, V6, P235; JUKES T H, 1969, P21; KOCHER TD, 1989, P NATL ACAD SCI USA, V86, P6196, DOI 10.1073/pnas.86.16.6196; Kozak KH, 2006, P ROY SOC B-BIOL SCI, V273, P539, DOI 10.1098/rspb.2005.3326; LARSON A, 1978, SYST ZOOL, V27, P431, DOI 10.2307/2412926; LARSON A, 1984, EVOL BIOL, V17, P119; Lazell J, 1998, COPEIA, P967, DOI 10.2307/1447343; Macey J.R., 2005, CLADISTICS, V21, P1994; Mahoney MJ, 2001, MOL PHYLOGENET EVOL, V18, P174, DOI 10.1006/mpev.2000.0880; MAXSON LR, 1979, COPEIA, P502, DOI 10.2307/1443230; MIZUNO S, 1974, CHROMOSOMA, V48, P239, DOI 10.1007/BF00326507; Mueller RL, 2005, MOL BIOL EVOL, V22, P2104, DOI 10.1093/molbev/msi204; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEWMAN WALTER B., 1954, HERPETOLOGICA, V10, P9; Palmer CA, 2005, MOL BIOL EVOL, V22, P2243, DOI 10.1093/molbev/msi219; Pope C.H., 1949, NATURAL HIST MISCELL, P1; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; REA DK, 1994, REV GEOPHYS, V32, P159, DOI 10.1029/93RG03257; RZHETSKY A, 1992, MOL BIOL EVOL, V9, P945; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Saitour N., 1989, MOL CLONING LAB MANU; Shepard DB, 2011, HERPETOLOGICA, V67, P355, DOI 10.1655/HERPETOLOGICA-D-11-00023.1; Shepard DB, 2011, MOL PHYLOGENET EVOL, V59, P399, DOI 10.1016/j.ympev.2011.03.007; Shepard DB, 2009, MOL ECOL, V18, P2243, DOI 10.1111/j.1365-294X.2009.04164.x; Shepard DB, 2008, MOL ECOL, V17, P5315, DOI 10.1111/j.1365-294X.2008.03998.x; Simmons K.P., 2004, MOL BIOL EVOL, V21, P188; Sites JW, 2004, J HERPETOL, V38, P96, DOI 10.1670/4-03A; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; Stanley S. M, 1989, EARTH LIFE TIME; Suzuki Y, 2002, P NATL ACAD SCI USA, V99, P16138, DOI 10.1073/pnas.212646199; TAJIMA F, 1984, MOL BIOL EVOL, V1, P269; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Van Valkenburgh Blaire, 1993, P330; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Weisrock DW, 2006, BIOL J LINN SOC, V89, P25, DOI 10.1111/j.1095-8312.2006.00655.x; Weisrock DW, 2005, MOL ECOL, V14, P1457, DOI 10.1111/j.1365-294X.2005.02524.x; Wiens JJ, 2006, EVOLUTION, V60, P2585 81 14 14 0 29 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. MAY 2012 63 2 278 290 10.1016/j.ympev.2011.12.018 13 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 917TR WOS:000302202000006 22230029 2019-02-21 J de Gouvenain, RC; Delgadillo, J de Gouvenain, Roland C.; Delgadillo, Jose Geographical variation in population demography and life history traits of Tecate cypress (Hesperocyparis forbesii) suggests a fire regime gradient across the USA-Mexico border PLANT ECOLOGY English Article California; Callitropsis forbesii; Closed-cone cypress; Cupressus forbesii; Life history evolution; Serotiny SOUTHERN CALIFORNIA SHRUBLANDS; NORTHERN BAJA-CALIFORNIA; PINUS-BANKSIANA; CONE SEROTINY; FOREST-FIRE; JACK PINE; ECOSYSTEMS; VEGETATION; INTERVAL; MODEL Plant adaptations to fire often display spatial heterogeneity associated with geographical variation in fire regime. We examined whether populations of the Tecate cypress (Hesperocyparis forbesii Adams) in southern California and northern Baja, Mexico, exhibited spatial heterogeneity in cone serotiny, in other life history traits associated with fire-adaptation, and in population demographic structure, to assess a putative difference in fire regime across the USA-Mexico border. Demographic data, tree life history data, and tree ring series were used to compare the demographic structure and life history traits of three populations in southern California with three populations in northern Baja California. In Baja populations, a greater number of tree size classes were present (chi (2) = 12,589; P < 0.05), cone serotiny was more facultative (Mann-Whitney U = 58, P < 0.05), and young adult trees had a higher reproductive output (Mann-Whitney U = 2.65, P < 0.05), suggesting that a difference in fire regime between southern California and northern Baja has existed long enough (ca 8000 years) to drive microevolutionary divergence between the two sets of populations, and is not solely the result of 20th century differences in fire management policies across the international border. The transitional area between the two different fire regimes does not appear to coincide with the border itself but may lie in a zone of ecological transition south of Ensenada. The range of phenotypic variation observed within the Tecate cypress metapopulation suggests this species has the capacity to adapt to future environmental changes. [de Gouvenain, Roland C.] Rhode Isl Coll, Providence, RI 02908 USA; [Delgadillo, Jose] Univ Autonoma Baja California, Fac Ciencias, Ensenada, BC, Mexico de Gouvenain, RC (reprint author), Rhode Isl Coll, 600 Mt Pleasant Ave, Providence, RI 02908 USA. rdegouvenain@ric.edu Chapman University, Rhode Island College; National Science Foundation-Rhode Island; Universidad Autonoma de Baja California, Ensenada, Mexico We thank Jim Bartel, Ibes Fabian Davila Flores, Jocelyne and Trevonte de Gouvenain, and Edelyn Ramirez Espinoza for their help in the field, and Kristin Chauvin and Katherine D'Ovidio for their help in preparing and analyzing field samples and tree cores. We thank the Bureau of Land Management and the Forest Service for allowing us to conduct research on federal lands and Saul Martin del Campo for allowing us to conduct research on his property. We are especially grateful to Joyce Schlachter for her logistical assistance. This manuscript benefited from discussions with Jim Bartel, Jon Keeley, Richard Minnich, and Sula Vanderplank, and from comments from three anonymous reviewers. This research was supported by grants from Chapman University, Rhode Island College, the National Science Foundation-Rhode Island Experimental Program to Stimulate Competitive Research (EPSCoR), and in-kind support from the Universidad Autonoma de Baja California, Ensenada, Mexico. Barbour MG, 2007, TERRESTRIAL VEGETATION OF CALIFORNIA, 3RD EDITION, P296; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Borchert M. I., 1995, BRUSHFIRES CALIFORNI; CHOU YH, 1993, FOREST SCI, V39, P835; COWLING RM, 1985, AUST J ECOL, V10, P345, DOI 10.1111/j.1442-9993.1985.tb00895.x; De Gouvenain RC, 2006, SOUTHWEST NAT, V51, P447, DOI 10.1894/0038-4909(2006)51[447:ABFRIA]2.0.CO;2; Dunn A.T, 1986, CONSERVATION MANAGEM, P367; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; Falk DA, 2011, FRONT ECOL ENVIRON, V9, P446, DOI 10.1890/100052; Fites-Kaufman J, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P94; FrancoVizcaino E, 1997, ACTA OECOL, V18, P503, DOI 10.1016/S1146-609X(97)80037-9; Fule PZ, 1999, CONSERV BIOL, V13, P640, DOI 10.1046/j.1523-1739.1999.97512.x; Gauthier S, 1996, J ECOL, V84, P539, DOI 10.2307/2261476; GAUTHIER S, 1993, CAN J FOREST RES, V23, P394, DOI 10.1139/x93-057; GAUTHIER S, 1993, J VEG SCI, V4, P783, DOI 10.2307/3235615; Gavin DG, 2007, FRONT ECOL ENVIRON, V5, P499, DOI 10.1890/060161; Gill AM, 1977, S ENV CONS FIR FUEL, P17; GIVNISH TJ, 1981, EVOLUTION, V35, P101, DOI 10.1111/j.1558-5646.1981.tb04862.x; Hanes TL, 1988, TERRESTRIAL VEGETATI, P417; Hogan D, 2004, EMERGENCY PETITION L; Keeley I. E., 1995, MEDITERRANEAN TYPE E, P121; KEELEY JE, 1992, ECOLOGY, V73, P1194, DOI 10.2307/1940669; Keeley JE, 2001, CONSERV BIOL, V15, P1561, DOI 10.1046/j.1523-1739.2001.t01-1-00186.x; Keeley JE, 2001, CONSERV BIOL, V15, P1536, DOI 10.1046/j.1523-1739.2001.00097.x; Keeley JE, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P350; Keeley JE, 2009, ECOL APPL, V19, P69, DOI 10.1890/08-0281.1; Lamont Byron B., 2000, Plant Species Biology, V15, P157, DOI 10.1046/j.1442-1984.2000.00036.x; Little Jr EL, 1975, RARE LOCAL CONIFERS; Minnich RA, 1997, INT J WILDLAND FIRE, V7, P221, DOI 10.1071/WF9970221; MINNICH RA, 1983, SCIENCE, V219, P1287, DOI 10.1126/science.219.4590.1287; Minnich RA, 2001, CONSERV BIOL, V15, P1549, DOI 10.1046/j.1523-1739.2001.01067.x; Minnich RA, 2005, BIODIVERSITY ECOSYST, P370; Minnich RA, 2002, BOTH SIDES BORDER TR, P387; Minnich RA, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P13; Minnich Richard A., 2001, Madrono, V48, P177; Montenegro G, 2004, REV CHIL HIST NAT, V77, P455, DOI 10.4067/S0716-078X2004000300005; MUIR PS, 1985, ECOLOGY, V66, P1658, DOI 10.2307/1938028; Munz PA, 1973, CALIFORNIA FLORA SUP; Ne'eman G, 2004, PLANT ECOL, V171, P69, DOI 10.1023/B:VEGE.0000029380.04821.99; ORNDUFF ROBERT, 2003, INTRO CALIFORNIA PLA; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; PEINADO M, 1995, VEGETATIO, V117, P165, DOI 10.1007/BF00045507; Peinado M, 2008, PLANT ECOL, V196, P27, DOI 10.1007/s11258-007-9334-5; Radeloff VC, 2004, FOREST ECOL MANAG, V189, P133, DOI 10.1016/j.foreco.2003.07.040; Reznick David, 2001, P44; Rodriguez-Buritica S, 2010, SANTA ANA MOUNTAINS; Escobar PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016133; Schoennagel T, 2003, ECOLOGY, V84, P2967, DOI 10.1890/02-0277; Schwilk DW, 2001, OIKOS, V94, P326, DOI 10.1034/j.1600-0706.2001.940213.x; Stokes M. A., 1996, INTRO TREE RING DATI; Sugihara NG, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P58; Tapias R, 2004, PLANT ECOL, V171, P53, DOI 10.1023/B:VEGE.0000029383.72609.f0; Truesdale HD, 1998, SOUTHWEST NAT, V43, P363; Tyler CM, 1995, J ECOL, V83, P1009, DOI 10.2307/2261182; Vogl R.J., 1988, TERRESTRIAL VEGETATI, P295; Wright HA, 1982, FIRE ECOLOGY US SO C; Zedler P.H, 1977, S ENV CONSEQUENCES F, P451; ZEDLER PH, 1995, TRENDS ECOL EVOL, V10, P393, DOI 10.1016/S0169-5347(00)89153-3; ZEDLER PH, 1983, ECOLOGY, V64, P809, DOI 10.2307/1937204 59 3 4 0 34 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1385-0237 PLANT ECOL Plant Ecol. MAY 2012 213 5 723 733 10.1007/s11258-012-0035-3 11 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry 926DW WOS:000302812500002 2019-02-21 J Pavan, SE; Rossi, RV; Schneider, H Pavan, Silvia Eliza; Rossi, Rogerio Vieira; Schneider, Horacio Species diversity in the Monodelphis brevicaudata complex (Didelphimorphia: Didelphidae) inferred from molecular and morphological data, with the description of a new species ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Amazon; Monodelphis arlindoi sp; nov; Monodelphis touan; phylogeny; short-tailed opossum; systematics LIFE-HISTORY EVOLUTION; SHORT-TAILED OPOSSUM; PLETHODONTID SALAMANDERS; PHYLOGEOGRAPHY; MARSUPIALIA; POPULATIONS; DOMESTICA; SEQUENCES; VENEZUELA; COLOMBIA The Monodelphis brevicaudata complex comprises the short-tailed opossum M. brevicaudata and allied forms that inhabit northern and middle South America. We studied the systematics of this complex through a combination of molecular (cytochrome b and 16S rDNA) and morphological (external and craniodental) characters. Our evidence shows that M. brevicaudata as currently recognized comprises three different species: M. brevicaudata; Monodelphis touan, resurrected from the synonymy of M. brevicaudata; and a new species described here. Other species formally recognized in the M. brevicaudata complex include Monodelphis palliolata, Monodelphis glirina, Monodelphis maraxina, Monodelphis domestica, and two additional forms for which formal descriptions are still missing. [Pavan, Silvia Eliza; Rossi, Rogerio Vieira] Museu Paraense Emilio Goeldi, Programa Posgrad Zool, BR-66077530 Belem, Para, Brazil; [Schneider, Horacio] Fed Univ Para, Nucleo Estudos Costeiros, BR-68600000 Braganca, Para, Brazil Pavan, SE (reprint author), CUNY, Grad Sch, New York, NY 10016 USA. sepavan@yahoo.com Rossi, Rogerio/I-2176-2015; Schneider, Horacio/J-7131-2012 Schneider, Horacio/0000-0002-5987-6395 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Smithsonian Institution; USNM The following curators and collection support staff loaned or permitted analysis of specimens under their care: S. Marques-Aguiar, C. Moraes, J. A. L. Queiroz (MPEG); J. A. de Oliveira, S. M. S. Franco (MN); M. de Vivo, J. G. de Barros (MZUSP); C. R. Silva, E. M. Cardoso (IEPA); M. Santos, M. Lima (UFPI); L. P. Costa, Y. L. R. Leite (UFES); R. W. Thorington Jr., A. L. Gardner, C. Ludwig, L. Gordon (USNM); R. Voss, T. Pacheco, E. Westwig, E. Pannen (AMNH); B. D. Patterson (FMNH); F. Catzeflis (Universidade Montpellier). P. Jenkins, L. Tomsett (BMNH), B. Lim (ROM), B. D. Patterson (FMNH), O. Linares (Universidad Simon Bolivar), C. Bantel, M. N. F. da Silva, and I. T. de Macedo (INPA) kindly sent photos of types, vouchers of molecular samples, and additional specimens. A. Lima, A. P. Carmignotto, A. C. M. Oliveira, A. Junior, B. M. A. Costa, C. Bantel, C. Miranda, D. M. Rossoni, E. G. da Silva, E. Portes, F. Catzeflis, G. S. Lustosa, J. L. Patton, L. G. Vieira, J. Gomes, L. Harada, M. A. Ribeiro-Junior, M. T. Rodrigues, R. C. Amaro, S. Moratto, and S. L. Freitas kindly allowed us to examine several recently collected and uncatalogued specimens, provided tissue samples, or helped with material loan. A. Aleixo, I. Sampaio, J. C. Silva Junior, M. S. Hoogmoed, P. L. Peloso, R. S. Voss, S. Solari, and Y. L. R. Leite provided suggestions on early versions and two anonymous reviewers made valuable suggestions concerning the manuscript. Wilsea Figueiredo provided primers for cytb sequences. A. O. Maciel helped with morphometric analysis. M. Oprea and P. L. Peloso helped with the production of some figures. R. Rodrigues assisted during molecular procedures, and A. C. Pavan and T. Burlamaqui assisted during phylogenetic analysis. M. Oprea, D. Brito, A. C. Pavan, D. Pavan, I. Sampaio, and S. M. Vaz kindly provided lodgings for the senior author during museum visits. S. E. P. received fellowships from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, and a grant from the Smithsonian Institution (Short Term Visit Award), which allowed visits to the USNM and AMNH collections. Richard Thorington (USNM) acted as the sponsor of S. E. P. and provided great support during the visit to USNM. Allen JA, 1904, B AM MUS NAT HIST, V20, P327; Angulo A, 2008, ZOOL J LINN SOC-LOND, V152, P59, DOI 10.1111/j.1096-3642.2007.00338.x; Astua D, 2010, J MAMMAL, V91, P1011, DOI 10.1644/09-MAMM-A-018.1; Avila-Pires T.C.S., 1995, Zoologische Verhandelingen (Leiden), V299, P1; Bechstein J. M., 1799, T PENNANTS ALLGEMEIN; Bradley RD, 2001, J MAMMAL, V82, P960, DOI 10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2; Buffon GL, 1789, HIST NATURELLE GEN P; Cabrera A., 1919, GENERA MAMMALIUM MON; Cabrera A, 1958, ZOOLOGIA, V4, P1; Caramaschi FP, 2011, BIOL J LINN SOC, V104, P251, DOI 10.1111/j.1095-8312.2011.01724.x; Carvalho BD, 2011, J MAMMAL, V92, P121, DOI 10.1644/10-MAMM-A-075.1; Carvalho CT, 1960, ARQUIVOS ZOOLOGIA ES, V11, P121; Chippindale PT, 2004, EVOLUTION, V58, P2809; Costa Leonora Pires, 2006, P321; Cracraft J., 1983, Current Ornithology, V1, P159; DOSREIS SF, 1990, REV BRAS GENET, V13, P509; EMMONS L. H., 1997, NEOTROPICAL RAINFORE; Emmons L. H., 1990, NEOTROPICAL RAINFORE; Erxleben ICP, 1777, SYSTEMA REGNI ANIMAL; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; FERNANDES MEB, 1995, MAMMALIA, V59, P213, DOI 10.1515/mamm.1995.59.2.213; Gardner A. L, 2008, MAMMALS S AM, V1; GARDNER A. L., 2005, MAMMAL SPECIES WORLD, V1, P3; Gardner Alfred L., 1993, P15; Geoffroy E, 1803, CATALOGUE MAMMIFERES; Gray J. E., 1827, ANIMAL KINGDOM ARRAN, P1; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Lacepede BGE, 1802, HIST NATURELLE BUFFO; Lim BK, 2010, MAMM BIOL, V75, P287, DOI 10.1016/j.mambio.2009.03.009; LINARES O, 1998, MAMIFEROS VENEZUELA; Maldonado JE, 2004, J MAMMAL, V85, P886, DOI 10.1644/1545-1542(2004)085<0886:DPOMVI>2.0.CO;2; Matschie P, 1916, BEMERKUNGEN GATTUNG; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Mulcahy DG, 2008, MOL PHYLOGENET EVOL, V46, P1095, DOI 10.1016/j.ympev.2007.12.012; NASCIMENTO F P, 1991, Boletim do Museu Paraense Emilio Goeldi Serie Zoologia, V7, P25; Osgood W. H., 1914, FIELD MUSEUM NATURAL, V10, P135; Palumbi S, 1991, SIMPLE FOOLS GUIDE P; Patton James L., 2003, P63; Perez-Hernandez R., 1989, P363; Perez-Hernandez R, 1988, MEMORIA SOCIEDAD CIE, V123, P47; PEREZHERNANDEZ R, 1994, MARSUPIALES VENEZUEL; PINE R H, 1985, Annals of Carnegie Museum, V54, P195; PINE RH, 1980, MAMMALIA, V43, P495; Pine RH, 2008, MAMMALS S AM, P82; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Rodriguez RM, 2004, J MAMMAL, V85, P842, DOI 10.1644/1545-1542(2004)085<0842:MDDDNR>2.0.CO;2; Ron SR, 2000, BIOL J LINN SOC, V71, P379, DOI 10.1006/bijl.2000.0446; Ronquist F, 2005, MRBAYES 3 1 BAYESIAN; Sambrook J., 1989, MOL CLONING LAB MANU; Schreber JCD, 1777, SAUGTHIERE ABBILDUNG; Seba A, 1734, LOCUPLETISSIMI RERUM; Shaw George, 1800, GEN ZOOLOGY SYSTEMAT; Solari S, 2007, J MAMMAL, V88, P319, DOI 10.1644/06-MAMM-A-075R1.1; Solari Sergio, 2010, Mastozool. neotrop., V17, P317; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Steiner C, 2004, J BIOGEOGR, V31, P959, DOI 10.1111/j.1365-2699.2004.01102.x; Stephen GT, 2008, ZOOLOGICAL J LINNEA, V152, P115; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Talbot SL, 1996, MOL PHYLOGENET EVOL, V5, P477, DOI 10.1006/mpev.1996.0044; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Thomas O., 1899, Annals of Natural History, V(7), P152; Thomas O., 1888, CATALOGUE MARSUPIALI; Thomas O., 1923, ANN MAGAZINE NATURAL, V9, P157; Torres-Perez F, 2009, BIOL J LINN SOC, V96, P635, DOI 10.1111/j.1095-8312.2008.01140.x; TRIBE CJ, 1990, J MAMMAL, V71, P566, DOI 10.2307/1381795; TYNDALEBISCOE CH, 1976, J MAMMAL, V57, P249, DOI 10.2307/1379686; Van Nievelt AFH, 2005, J MAMMAL, V86, P333, DOI 10.1644/BWG-224.1; VANZOLINI P. E., 1993, PAP AVULSOS ZOOL, V38, P17; Ventura J, 1998, J MAMMAL, V79, P104, DOI 10.2307/1382845; Ventura J, 2005, TROP ZOOL, V18, P227, DOI 10.1080/03946975.2005.10531222; VONPELZELN A, 1883, VERHANDLUNGEN ZOOLOG, V33, P1; Voss Robert S., 2001, Bulletin of the American Museum of Natural History, V263, P1; Voss RS, 2003, B AM MUS NAT HIST, P1; Wagner A., 1842, ARCH NATURGESCH, V8, P356; Waterhouse GR, 1841, MARSUPIALIA POUCHED; Wible JR, 2003, ANN CARNEGIE MUS, V72, P137; Wiens JJ, 2007, SYSTEMATIC BIOL, V56, P875, DOI 10.1080/10635150701748506; Xia X, 2001, J HERED, V92, P371, DOI 10.1093/jhered/92.4.371; Zimmermann E. A. W., 1780, GEOGRAPHISCHE GESCH 79 16 18 2 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4082 1096-3642 ZOOL J LINN SOC-LOND Zool. J. Linn. Soc. MAY 2012 165 1 190 223 10.1111/j.1096-3642.2011.00791.x 34 Zoology Zoology 928NX WOS:000302990900009 Bronze 2019-02-21 J Hunt, GR; Holzhaider, JC; Gray, RD Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D. Prolonged Parental Feeding in Tool-Using New Caledonian Crows ETHOLOGY English Article WHITE-WINGED CHOUGHS; CORVUS-MONEDULOIDES; LIFE-HISTORY; HOOK-TOOLS; MANUFACTURE; BIRDS; EVOLUTION; CARE; WILD; DISPERSAL According to life-history theory, the duration of extended parental feeding is determined by the costs and benefits of maximising reproductive success. Therefore, the length of regular parental provisioning should be correlated with the time required for juveniles to acquire the skills that they need to be independent. The relatively few cases of extremely prolonged parental feeding in both land and sea birds appear to be consistent with this prediction because they are associated with learning-intensive foraging techniques. New Caledonian crows have the most intricate tool manufacture techniques amongst non-human animals and juveniles take over 1 yr to reach adult-like proficiency in their tool skills. We investigated the prediction that this species also should have prolonged parental provisioning. We found that these crows have one of the longest known periods of regular extended parental provisioning in birds. Some parents regularly fed juveniles for up to 10 mo post-fledging. Humans also stand out amongst primates because of their learning-intensive foraging strategies and an extended period of juvenile dependence. The independently evolved association between a relatively high level of technological skill in foraging and prolonged juvenile provisioning in both humans and New Caledonian crows raises the possibility that these two characteristics might be causally related. [Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D.] Univ Auckland, Dept Psychol, Auckland, New Zealand Hunt, GR (reprint author), Univ Auckland, Dept Psychol, Private Bag 92019, Auckland, New Zealand. g.hunt@auckland.ac.nz Gray, Russell/H-2078-2015 Gray, Russell/0000-0002-9858-0191 New Zealand Marsden Fund We thank the Province des Iles Loyaute for permission to work on Mare and W. Wardrobert and his family for access to their land. Mick Sibley and Maren Wagener assisted us with field observations. We also thank the Editor and the two reviewers for their comments that much improved the manuscript. This work was supported by a grant from the New Zealand Marsden Fund (R.D.G. and G.R H.). ASHMOLE NP, 1968, AUK, V85, P90, DOI 10.2307/4083627; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Burger J., 1980, P367; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cnotka J, 2008, NEUROSCI LETT, V433, P241, DOI 10.1016/j.neulet.2008.01.026; dos Anjos L., 2009, P494; Ekman J, 2002, P ROY SOC B-BIOL SCI, V269, P1709, DOI 10.1098/rspb.2002.2082; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HEINSOHN RG, 1988, ETHOLOGY, V77, P177; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Holzhaider JC, 2011, ANIM BEHAV, V81, P83, DOI 10.1016/j.anbehav.2010.09.015; Holzhaider JC, 2010, BEHAVIOUR, V147, P553, DOI 10.1163/000579510X12629536366284; Hunt GR, 2007, NEW ZEAL J ZOOL, V34, P1; Hunt GR, 2007, BIOL LETTERS, V3, P173, DOI 10.1098/rsbl.2006.0603; Hunt GR, 2004, P ROY SOC B-BIOL SCI, V271, pS88, DOI 10.1098/rsbl.2003.0085; Hunt GR, 2004, ANIM COGN, V7, P114, DOI 10.1007/s10071-003-0200-0; Hunt GR, 1996, NATURE, V379, P249, DOI 10.1038/379249a0; Hunt GR, 2002, EMU, V102, P349, DOI 10.1071/MU01056; Hunt GR, 2003, P ROY SOC B-BIOL SCI, V270, P867, DOI 10.1098/rspb.2002.2302; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kenward B, 2005, NATURE, V433, P121, DOI 10.1038/433121a; Langen TA, 2000, BEHAV ECOL, V11, P367, DOI 10.1093/beheco/11.4.367; Mehlhorn J, 2010, BRAIN BEHAV EVOLUT, V75, P63, DOI 10.1159/000295151; Morton J. M., 1999, REPROD JUVENILE DISP; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Rutz C, 2010, SCIENCE, V329, P1523, DOI 10.1126/science.1192053; Shultz S, 2010, BIOL J LINN SOC, V100, P111, DOI 10.1111/j.1095-8312.2010.01427.x; Shumaker R. W., 2011, ANIMAL TOOL BEHAV US 30 9 9 1 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2012 118 5 423 430 10.1111/j.1439-0310.2012.02027.x 8 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 924OA WOS:000302700000001 2019-02-21 J Jonker, RM; Kurvers, RHJM; van de Bilt, A; Faber, M; Van Wieren, SE; Prins, HHT; Ydenberg, RC Jonker, Rudy M.; Kurvers, R. H. J. M.; van de Bilt, A.; Faber, M.; Van Wieren, S. E.; Prins, H. H. T.; Ydenberg, R. C. Rapid adaptive adjustment of parental care coincident with altered migratory behaviour EVOLUTIONARY ECOLOGY English Article Barnacle geese; Parent-offspring conflict; Migration; Life-history evolution; Branta leucopsis; Colonization LIFE-HISTORY EVOLUTION; BARNACLE GEESE; POPULATION; BIRD; PREDATION; SELECTION; MEERKATS The optimal duration of parental care is shaped by the trade-off between investment in current and expected future reproductive success. A change in migratory behaviour is expected to affect the optimal duration of parental care, because migration and non-migration differ in expectations of future reproductive success as a result of differential adult and/or offspring mortality. Here we studied how a recent emergence of non-migratory behaviour has affected the duration of parental care in the previously (until the 1980s) strictly migratory Russian breeding population of the barnacle geese Branta leucopsis. As a measure of parental care, we compared the vigilance behaviour of parents and non-parents in both migratory and non-migratory barnacle geese throughout the season. We estimated the duration of parental care at 233 days for migratory and 183 days for non-migratory barnacle geese. This constitutes a shortening of the duration of parental care of 21% in 25 years. Barnacle geese are thus able to rapidly adapt their parental care behaviour to ecological conditions associated with altered migratory behaviour. Our study demonstrates that a termination of migratory behaviour resulted in a drastic reduction in parental care and highlights the importance of studying the ecological and behavioural consequences of changes in migratory behaviour and the consequences of these changes for life-history evolution. [Jonker, Rudy M.; Kurvers, R. H. J. M.; van de Bilt, A.; Faber, M.; Van Wieren, S. E.; Prins, H. H. T.; Ydenberg, R. C.] Wageningen Univ, Resource Ecol Grp, NL-6708 PB Wageningen, Netherlands; [Ydenberg, R. C.] Simon Fraser Univ, Ctr Wildlife Ecol, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Jonker, RM (reprint author), Wageningen Univ, Resource Ecol Grp, Droevendaalsesteeg 3A, NL-6708 PB Wageningen, Netherlands. mrjonker@gmail.com Jonker, Rudy/I-3979-2012 Dutch Fauna-fund; Royal Netherlands Hunters Association (KNJV); Royal Netherlands Academy of Arts and Sciences (KNAW) We thank Lysanne Snijders and Marije Kuiper for collecting part of the data. We thank the Tamme family for providing a field station in Estonia and Veljo Volke for arranging permits for fieldwork and other logistic assistance in Estonia. We thank two John Endler, Marcel Klaassen and two anonymous reviewers for their comments on the manuscript. Funding was provided by the Dutch Fauna-fund; the Royal Netherlands Hunters Association (KNJV); and the Schure-Beijerinck-Popping Fund of the Royal Netherlands Academy of Arts and Sciences (KNAW). BLACK JM, 1989, ANIM BEHAV, V37, P187, DOI 10.1016/0003-3472(89)90109-7; Boos M, 2007, BEHAV PROCESS, V76, P206, DOI 10.1016/j.beproc.2007.05.003; Clayton N, 2005, CURR BIOL, V15, pR80, DOI 10.1016/j.cub.2005.01.020; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Desrochers A, 2010, ECOLOGY, V91, P1577, DOI 10.1890/09-2202.1; Ganter B., 1999, GOOSE POPULATIONS W, P270; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; Graw B, 2007, ANIM BEHAV, V74, P507, DOI 10.1016/j.anbehav.2006.11.021; HALDANE JBS, 1949, EVOLUTION, V3, P51, DOI 10.2307/2405451; Jiang RS, 2009, S AFR J ANIM SCI, V39, P83; Jonker RM, 2011, BEHAV ECOL, V22, P326, DOI 10.1093/beheco/arq208; Jonker RM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011369; Kear J, 1970, SOCIAL BEHAV BIRDS M; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Klug H, 2010, EVOLUTION, V64, P823, DOI 10.1111/j.1558-5646.2009.00854.x; LARSSON K, 1988, ORNIS SCAND, V19, P182, DOI 10.2307/3676556; Loonen MJJE, 1999, J ANIM ECOL, V68, P753, DOI 10.1046/j.1365-2656.1999.00325.x; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; Meininger Peter L., 1994, Limosa, V67, P1; Ouweneel Gerard L., 2001, Limosa, V74, P137; OWEN M, 1980, WILD GEESE WORLD THE; Prins H.H.T., 1996, ECOLOGY BEHAV AFRICA; Pulido F, 2010, P NATL ACAD SCI USA, V107, P7341, DOI 10.1073/pnas.0910361107; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SCOTT DK, 1980, ANIM BEHAV, V28, P938, DOI 10.1016/S0003-3472(80)80156-4; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Svensson L., 1999, COLLINS BIRD GUIDE; Thornton A, 2006, SCIENCE, V313, P227, DOI 10.1126/science.1128727; Trivers RL, 1972, SEXUAL SELECTION DES; Van Der Jeugd HP, 2009, GLOBAL CHANGE BIOL, V15, P1057, DOI 10.1111/j.1365-2486.2008.01804.x; van der Jeugd HP, 2003, POLAR BIOL, V26, P700, DOI 10.1007/s00300-003-0535-7; van der Jeugd HP, 2002, BEHAV ECOL, V13, P786, DOI 10.1093/beheco/13.6.786; Visser ME, 2009, GLOBAL CHANGE BIOL, V15, P1859, DOI 10.1111/j.1365-2486.2009.01865.x; Wilcove DS, 2008, PLOS BIOL, V6, P1361, DOI 10.1371/journal.pbio.0060188 37 3 3 1 32 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2012 26 3 657 667 10.1007/s10682-011-9514-6 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200015 2019-02-21 J Decker, KL; Conway, CJ; Fontaine, JJ Decker, Karie L.; Conway, Courtney J.; Fontaine, Joseph J. Nest predation, food, and female age explain seasonal declines in clutch size EVOLUTIONARY ECOLOGY English Article Clutch size; Seasonality; Food abundance; Nest predation; Female age LIFE-HISTORY EVOLUTION; TIT PARUS-PALUSTRIS; LESSER SNOW GEESE; REPRODUCTIVE SUCCESS; NATURAL-SELECTION; GREAT TITS; FALCO-TINNUNCULUS; PIED FLYCATCHER; SONG SPARROWS; BREEDING TIME The selection pressures responsible for intra- and interspecific variation in avian clutch size have been debated for over half a century. Seasonal declines in clutch size represent one of the most robust patterns in avian systems, yet despite extensive research on the subject, the mechanisms underlying this pattern remain largely unknown. We tested a combination of experimental and observational predictions to evaluate ten hypotheses, representing both evolutionary and proximate mechanisms proposed to explain seasonal declines in avian clutch size. In line with long held life-history theory, we found strong support for both an evolved and proximate response to food availability for young. We also found evidence consistent with predictions that proximate level experiential nest predation influences seasonal declines in clutch size. Finally, older females appear to invest more in reproduction (initiate nests earlier and lay larger clutches) and choose better territories than younger females. Our results highlight the importance of examining multiple hypotheses in a theoretical context to elucidate the ecological processes underlying commonly observed patterns in life history. [Decker, Karie L.; Conway, Courtney J.] Univ Arizona, Arizona Cooperat Fish & Wildlife Res Unit, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Fontaine, Joseph J.] Univ Nebraska, US Geol Survey, Nebraska Cooperat Fish & Wildlife Res Unit, Lincoln, NE 68583 USA Decker, KL (reprint author), Univ Nebraska, Nebraska Cooperat Fish & Wildlife Res Unit, Sch Nat Resources, 909 Hardin Hall, Lincoln, NE 68583 USA. kdecker4@unl.edu Fontaine, Joseph/F-6557-2010 Fontaine, Joseph/0000-0002-7639-9156 NSF [DGE-0638744]; TE Inc.; American Ornithologists' Union; Animal Behavior Society; Shikar Safari Club International Foundation; Arrington Memorial Scholarship; School of Natural Resources and the Environment at the University of Arizona T. Weinkam, E. Scobie, T. Isberg, and M. Ali provided many hours of assistance in the field. B. Steidl, K. Bonine, K. Borgmann, A. Macias-Duarte, S. Steckler, C. Kirkpatrick, and A. Chalfoun provided comments and support. Financial support was provided by NSF GK-12 Fellowship grant (DGE-0638744), T&E Inc., American Ornithologists' Union, Animal Behavior Society, Shikar Safari Club International Foundation, Arrington Memorial Scholarship, and the School of Natural Resources and the Environment at the University of Arizona. All methods were approved under permits from U. S. Fish and Wildlife Service (MB053041-2), U. S. Forest Service (Catalina National Forest, #2720), U.S. Geological Survey's Bird Banding Laboratory (22524), Arizona Game and Fish Department (SP650825), and The University of Arizona Institutional Animal Care and Use Committee (protocol 06-108). APARICIO JM, 1994, OIKOS, V71, P451, DOI 10.2307/3545833; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Blums P, 1997, AUK, V114, P737, DOI 10.2307/4089293; Borgmann KL, 2004, AUK, V121, P74, DOI 10.1642/0004-8038(2004)121[0074:WYWDCT]2.0.CO;2; Bourgault P, 2010, OECOLOGIA, V162, P885, DOI 10.1007/s00442-009-1545-0; Chalfoun AD, 2009, J ANIM ECOL, V78, P497, DOI 10.1111/j.1365-2656.2008.01506.x; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COOKE F, 1984, AUK, V101, P451; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; Decker KL, 2009, CONDOR, V111, P392, DOI 10.1525/cond.2009.080055; DRENT RH, 1980, ARDEA, V68, P225; ENS BJ, 1992, J ANIM ECOL, V61, P703, DOI 10.2307/5625; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAMANN J, 1989, OECOLOGIA, V79, P83, DOI 10.1007/BF00378243; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Hillstrom L, 1995, FUNCT ECOL, V9, P807, DOI 10.2307/2389978; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson MD, 2001, J ANIM ECOL, V70, P546, DOI 10.1046/j.1365-2656.2001.00522.x; Julliard R, 1997, ECOLOGY, V78, P394; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; Lepage D, 2000, J ANIM ECOL, V69, P414, DOI 10.1046/j.1365-2656.2000.00404.x; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Ligon J.D., 1988, P229; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MARRA PP, 1993, AUK, V110, P565, DOI 10.2307/4088420; MARTIN K, 1995, AM ZOOL, V35, P340; Martin T, 1995, BIRDS N AM ONLINE; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nilsson JA, 2006, J AVIAN BIOL, V37, P357, DOI 10.1111/j.2006.0908-8857.03604.x; NILSSON JA, 1991, ECOLOGY, V72, P1757, DOI 10.2307/1940974; Nilsson JA, 2000, OIKOS, V88, P351, DOI 10.1034/j.1600-0706.2000.880214.x; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; Pyle P, 1997, IDENTIFICATION GUIDE; Reynolds SJ, 2010, CURR ORNITHOL, V17, P31, DOI 10.1007/978-1-4419-6421-2_2; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Saether B.-E., 1990, Current Ornithology, V7, P251; Sheldon BC, 2003, EVOLUTION, V57, P406; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; SJOBERG G, 1994, J AVIAN BIOL, V25, P112, DOI 10.2307/3677028; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SMITH HG, 1993, AUK, V110, P889, DOI 10.2307/4088642; Stearns S, 1992, EVOLUTION LIFE HIST; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; von Haartman L., 1990, POPULATION BIOL PASS, P1; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512 68 17 20 2 55 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 2012 26 3 683 699 10.1007/s10682-011-9521-7 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200017 2019-02-21 J Winkler, JD; Stolting, KN; Wilson, AB Winkler, Jasmin D.; Stoelting, Kai N.; Wilson, Anthony B. Sex-specific responses to fecundity selection in the broad-nosed pipefish EVOLUTIONARY ECOLOGY English Article Allometric growth; Life history evolution; Pleomerism; Sexual selection; Sexual-size dimorphism ROLE REVERSED PIPEFISH; SYNGNATHUS-TYPHLE; FAMILY SYNGNATHIDAE; VERTEBRAL NUMBERS; SIZE DIMORPHISM; MALE PREGNANCY; EVOLUTION; GROWTH; TEMPERATURE; SEAHORSES Fecundity selection, acting on traits enhancing reproductive output, is an important determinant of organismal body size. Due to a unique mode of reproduction, mating success and fecundity are positively correlated with body size in both sexes of male-pregnant Syngnathus pipefish. As male pipefish brood eggs on their tail and egg production in females occurs in their ovaries (located in the trunk region), fecundity selection is expected to affect both sexes in this species, and is predicted to act differently on body proportions of males and females during their development. Based on this hypothesis, we investigated sexual size dimorphism in body size allometry and vertebral numbers across populations of the widespread European pipefish Syngnathus typhle. Despite the absence of sex-specific differences in overall and region-specific vertebral counts, male and female pipefish differ significantly in the relative lengths of their trunk and tail regions, consistent with region-specific selection pressures in the two sexes. Male pipefish show significant growth allometry, with disproportionate growth in the brooding tail region relative to the trunk, resulting in increasingly skewed region-specific sexual size dimorphism with increasing body size, a pattern consistent across five study populations. Sex-specific differences in patterns of growth in S. typhle support the hypothesis that fecundity selection can contribute to the evolution of sexual size dimorphism. [Winkler, Jasmin D.; Stoelting, Kai N.; Wilson, Anthony B.] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland Wilson, AB (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. tony.wilson@ieu.uzh.ch Wilson, Anthony/D-2907-2011 University of Zurich Forschungskredit; Swiss Academy of Sciences; Swiss National Science Foundation; EC [PL003739] We would like to thank to Ingrid Ahnesjo, Murat Bilecenoglu, Iris Eigenmann, Nathalie Feiner, Jorge Goncalves, Laurent Leveque, Federico Riccato, Valeria Rispoli, and Johan Wenngren for their help, efforts and time investments during field work. We are grateful to the Dipartimento di Scienze Ambientali (Universita Ca' Foscari), the Asko Laboratory, Klubban Biological Station, and the Roscoff Biological Station for the use of their facilities. Many thanks to Ingrid Ahnesjo, Christian Klingenberg, Marcelo Sanchez-Villagra, Lukas Ruber, and Lorenzo Tanadini for discussion and suggestions. Our special thanks go to Wolf Blanckenhorn for his statistical advice and to Jonathan Ready, INCOFISH project (EC project PL003739) for providing environmental data for sampling localities. The study was funded by the University of Zurich Forschungskredit, the Swiss Academy of Sciences and the Swiss National Science Foundation. AHNESJO I, 1992, J FISH BIOL, V41, P53, DOI 10.1111/j.1095-8649.1992.tb03868.x; AHNESJO I, 1992, FUNCT ECOL, V6, P274, DOI 10.2307/2389517; AHNESJO I, 1995, BEHAV ECOL, V6, P229, DOI 10.1093/beheco/6.2.229; Andersson M., 1994, SEXUAL SELECTION; ASANO H, 1977, Memoirs of the Faculty of Agriculture of Kinki University, V10, P29; Berglund A, 2003, ADV STUD BEHAV, V32, P131, DOI 10.1016/S0065-3454(03)01003-9; BERGLUND A, 1986, BEHAV ECOL SOCIOBIOL, V19, P301, DOI 10.1007/BF00300646; Berglund A, 2001, BEHAV ECOL, V12, P402, DOI 10.1093/beheco/12.4.402; BERGLUND A, 1991, EVOLUTION, V45, P770, DOI 10.1111/j.1558-5646.1991.tb04346.x; Bergmann PJ, 2006, ZOOLOGY, V109, P54, DOI 10.1016/j.zool.2005.09.009; Bernet P, 1998, BEHAVIOUR, V135, P535, DOI 10.1163/156853998792897923; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Breder CM, 1966, MODES REPROD FISHES; Darwin C, 1871, DESCENT MAN SELECTIO; Dawson C, 1986, FISHES N E ATLANTIC; Deane EE, 2009, REV FISH BIOL FISHER, V19, P97, DOI 10.1007/s11160-008-9091-0; Development Core Team R., 2010, R LANG ENV STAT COMP; Duncker Georg, 1908, Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, V25; Gould S.J, 2002, STRUCTURE EVOLUTIONA; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Grande L, 1998, J VERTEBR PALEONTOL, V18, P1, DOI 10.1080/02724634.1998.10011114; Hart J. L, 1973, FISH RES BOARD CAN B, V180; Head JJ, 2007, BIOLOGY LETT, V3, P296, DOI 10.1098/rsbl.2007.0069; HERALD EARL S., 1941, STANFORD ICHTHYOL BULL, V2, P49; Hoffman EA, 2006, EVOLUTION, V60, P404; Klingenberg Christian Peter, 2005, P219, DOI 10.1016/B978-012088777-4/50013-2; LANKFORD TE, 1994, MAR BIOL, V119, P611, DOI 10.1007/BF00354325; LINDSEY CC, 1975, J FISH RES BOARD CAN, V32, P2453, DOI 10.1139/f75-283; MADSEN T, 1994, EVOLUTION, V48, P1389, DOI 10.1111/j.1558-5646.1994.tb05323.x; Mayr E., 1972, P87; Muller J, 2010, P NATL ACAD SCI USA, V107, P2118, DOI 10.1073/pnas.0912622107; Parra-Olea G, 2001, P NATL ACAD SCI USA, V98, P7888, DOI 10.1073/pnas.131203598; Polly DP, 2001, HETEROCHRONY EVOLUTI, P305; Rispoli VF, 2008, J EVOLUTION BIOL, V21, P30, DOI 10.1111/j.1420-9101.2007.01470.x; ROMER AS, 1970, VERTEBRATE BODY; Shine R, 2000, J EVOLUTION BIOL, V13, P455; Springer V.G., 1971, Smithsonian Contributions to Zoology, VNo. 72, P1; Vincent ACJ, 1995, ENVIRON BIOL FISH, V44, P347, DOI 10.1007/BF00008250; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Ward AB, 2007, BIOL J LINN SOC, V90, P97, DOI 10.1111/j.1095-8312.2007.00714.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2005, SMATR V2 1; Wilson AB, 2001, J HERED, V92, P159, DOI 10.1093/jhered/92.2.159; Wilson AB, 2003, EVOLUTION, V57, P1374; Wilson AB, 2010, MOL ECOL, V19, P4535, DOI 10.1111/j.1365-294X.2010.04811.x 45 6 7 0 26 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2012 26 3 701 714 10.1007/s10682-011-9516-4 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200018 2019-02-21 J Pease, AA; Gonzalez-Diaz, AA; Rodiles-Hernandez, R; Winemiller, KO Pease, Allison A.; Gonzalez-Diaz, Alfonso A.; Rodiles-Hernandez, Rocio; Winemiller, Kirk O. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment FRESHWATER BIOLOGY English Article ecomorphology; fluvial gradient; functional diversity; habitat template; southern Mexico LIFE-HISTORY STRATEGIES; SPECIES TRAITS; RIVER-BASIN; POPULATION REGULATION; COMMUNITY ECOLOGY; AMERICAN FISHES; PATTERNS; HABITAT; GRADIENTS; FRAMEWORK 1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait-environment relationships and functional diversity of stream fish assemblages in the Rio Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape-scale (e. g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait-environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change. [Pease, Allison A.; Winemiller, Kirk O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Gonzalez-Diaz, Alfonso A.; Rodiles-Hernandez, Rocio] El Colegio Frontera Sur, San Cristobal de las Casa, Chiapas, Mexico Pease, AA (reprint author), Univ Missouri, Dept Fisheries & Wildlife Sci, Missouri Cooperat Fish & Wildlife Res Unit, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA. peasea@missouri.edu Winemiller, Kirk/0000-0003-0236-5129 National Science Foundation [DEB 0808523]; Texas A&M University Office of Graduate Studies; L.T. Jordan Institute; American Cichlid Association; Texas A&M Tom Slick Doctoral Research Fellowship We thank Michi Tobler, Christian Kaufman, Carlos Chavez-Gloria, Adan Gomez-Gonzalez, Rodrigo Acinorev, Krista Capps and Alex Flecker for their help with field collection. Gil Rosenthal, Mariana Mateos and Thom DeWitt provided feedback on the study design and earlier versions of the manuscript. Funding for this project was provided by the National Science Foundation (DEB 0808523 to AAP and KOW) and grants to AAP from the Texas A&M University Office of Graduate Studies, L.T. Jordan Institute and the American Cichlid Association Loiselle Conservation Fund. AAP was also supported by the Texas A&M Tom Slick Doctoral Research Fellowship. Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; ANGERMEIER PL, 1983, ENVIRON BIOL FISH, V9, P117, DOI 10.1007/BF00690857; Araujo FG, 2009, HYDROBIOLOGIA, V618, P89, DOI 10.1007/s10750-008-9551-5; Barber CB, 1996, ACM T MATH SOFTWARE, V22, P469, DOI 10.1145/235815.235821; Barbour M. T, 1999, 841B99002 US EPA; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Davies PM, 2008, AQUAT ECOL SER, P23, DOI 10.1016/B978-012088449-0.50004-2; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Dray S, 2007, J STAT SOFTW, V22, P1; EDDS DR, 1993, COPEIA, P48; Esselman PC, 2006, J N AM BENTHOL SOC, V25, P142, DOI 10.1899/0887-3593(2006)25[142:FVBGDR]2.0.CO;2; Fischer JR, 2008, ECOL FRESHW FISH, V17, P597, DOI 10.1111/j.1600-0633.2008.00312.x; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Hitt NP, 2006, AM FISH S S, V48, P75; Hoagstrom CW, 2008, HYDROBIOLOGIA, V596, P367, DOI 10.1007/s10750-007-9110-5; Hoeinghaus David J., 2004, Neotrop. ichthyol., V2, P85, DOI 10.1590/S1679-62252004000200005; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hudson P. F., 2005, RIVERS N AM, P1031, DOI DOI 10.1016/B978-012088253-3/50026-2; Hynes H. B. N., 1970, ECOLOGY RUNNING WATE; Ibanez C, 2007, ECOL FRESHW FISH, V16, P315, DOI 10.1111/j.1600-0633.2006.00222.x; Ibanez C, 2009, ECOGRAPHY, V32, P658, DOI 10.1111/j.1600-0587.2008.05591.x; IBARRA M, 1989, COPEIA, P364; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Mathworks Inc, 2009, MATLAB VERS 2009A; McCune B, 2002, ANAL ECOLOGICAL COMM; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Miller RR, 2005, FRESHWATER FISHES ME; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; OSBORNE LL, 1992, CAN J FISH AQUAT SCI, V49, P671, DOI 10.1139/f92-076; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Poole GC, 2002, FRESHWATER BIOL, V47, P641, DOI 10.1046/j.1365-2427.2002.00922.x; R Foundation for Statistical Computing, 2010, R VERS 2 11 1; RAHEL FJ, 1991, T AM FISH SOC, V120, P319, DOI 10.1577/1548-8659(1991)120<0319:FAAHGI>2.3.CO;2; Richards C., 1996, CANADIAN J FISHERIES, V53, P95; Rowe DC, 2009, N AM J FISH MANAGE, V29, P1314, DOI 10.1577/M08-192.1; Schlosser I.J., 1987, P17; Sibbing FA, 2001, REV FISH BIOL FISHER, V10, P393; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thorp JH, 2008, AQUAT ECOL SER, P1; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; WEBB PW, 1984, AM ZOOL, V24, P107; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 56 60 65 4 123 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. MAY 2012 57 5 1060 1075 10.1111/j.1365-2427.2012.02768.x 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 920IK WOS:000302397300015 2019-02-21 J Nicolaus, M; Michler, SPM; Ubels, R; van der Velde, M; Bouwman, KM; Both, C; Tinbergen, JM Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M. Local sex ratio affects the cost of reproduction JOURNAL OF ANIMAL ECOLOGY English Article density; disease risk; intraspecific competition; optimal clutch size; Parus major; predation risk; reproductive trade-offs; sex ratio; social environment TITS PARUS-MAJOR; BROOD SIZE MANIPULATION; AVIAN CLUTCH SIZE; GREAT TIT; BLUE TIT; DENSITY-DEPENDENCE; NATAL DISPERSAL; TRADE-OFF; CONSEQUENCES; DOMINANCE 1. Costs and benefits of reproduction are central to life-history theory, and the outcome of reproductive trade-offs may depend greatly on the ecological conditions in which they are estimated. In this study, we propose that costs and benefits of reproduction are modulated by social effects, and consequently that selection on reproductive rates depends on the social environment. 2. We tested this hypothesis in a great tit Parus major population. Over 3 years, we altered parental reproductive effort via brood size manipulations (small, intermediate, large) and manipulated the local social environment via changes in the local fledgling density (decreased, increased) and the local sex ratio (female-biased, control, male-biased). 3. We found that male-biased treatment consistently increased the subsequent local breeding densities over the 3-year study period. We also found that parents rearing small broods in these male-biased plots had increased survival rates compared with the other experimental groups. 4. We conclude that reproductive costs are the product of an interaction between parental phenotypic quality after reproduction and the social environment: raising a small brood had long-lasting effects on some phenotypic traits of the parents and that this increased their survival chances in male-biased environment where habitat quality may have deteriorated (via increased disease/predation risk or intraspecific competition). 5. Our results provide the first experimental evidence that local sex ratio can affect reproductive costs and thus optimal clutch size. [Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M.] Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands Nicolaus, M (reprint author), Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. mnicolaus@orn.mpg.de Both, Christiaan/E-6459-2011; Nicolaus, Marion/H-6124-2015 Nicolaus, Marion/0000-0003-1808-1526 Netherlands Organisation for Scientific Research (NWO-VICI) [86503003]; University of Groningen We are grateful to R. Radersma, N.J. Dingemanse, M. Keiser, T. Lok, J. Reimerink, K. M. Jalvingh, A. Haydn, J. Plantinga as well as to all the Animal Ecology course students between 2005 and 2008 for their help in collecting the data in the field. We also thank L. te Marvelde and K. Meijer for helping with the molecular sexing of the nestlings. This project was financially supported by the Netherlands Organisation for Scientific Research (NWO-VICI grant 86503003 to Jan Komdeur) and by the University of Groningen (to JMT). We thank Staatsbosbeheer and the Royal Dutch Army 'Koninklijke Landmacht' for their permission to work in the Lauwersmeer area and to stay on their army base. Finally, we thank C. M. Lessells and two anonymous referees for useful comments on the manuscript and N.P.C. Horrocks for improving English. Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Both C, 1998, J ANIM ECOL, V67, P667, DOI 10.1046/j.1365-2656.1998.00228.x; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.2307/177502; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; de Heij ME, 2006, P ROY SOC B-BIOL SCI, V273, P2353, DOI 10.1098/rspb.2006.3584; Doligez B, 2008, ECOLOGY, V89, P1436, DOI 10.1890/07-0113.1; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Drent P. J., 1983, THESIS U GRONINGEN G; DRENT PJ, 1984, ARDEA, V72, P127; Gosler A, 1999, J AVIAN BIOL, V30, P447, DOI 10.2307/3677017; GREENWOOD PJ, 1979, J ANIM ECOL, V48, P123, DOI 10.2307/4105; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HOGSTAD O, 1989, WILSON BULL, V101, P254; LACK D, 1947, IBIS, V89, P668; LACK D, 1966, POPULATION STUDIES B; Lessells C.M., 1991, P32; Lindstrom KM, 2005, HORM BEHAV, V48, P311, DOI 10.1016/j.yhbeh.2005.04.002; MARCSTROM V, 1988, J ANIM ECOL, V57, P859, DOI 10.2307/5097; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; Michler S. P. M., 2010, THESIS U GRONINGEN G; Newton I, 1998, POPULATION LIMITATIO; Nicolaus M, 2009, J ANIM ECOL, V78, P828, DOI 10.1111/j.1365-2656.2009.01535.x; Nicolaus M, 2009, J ANIM ECOL, V78, P414, DOI 10.1111/j.1365-2656.2008.01505.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Pap PL, 2003, J AVIAN BIOL, V34, P428, DOI 10.1111/j.0908-8857.2003.03002.x; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Rasbash J, 2004, USERS GUIDE MLWIN; Roff Derek A., 1992; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Siefferman L, 2008, IBIS, V150, P32; SMITH HG, 1987, AUK, V104, P700; Soler M, 1996, IBIS, V138, P377, DOI 10.1111/j.1474-919X.1996.tb08054.x; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; van Oort H, 2007, CONDOR, V109, P88, DOI 10.1650/0010-5422(2007)109[88:HDATPQ]2.0.CO;2; Verhulst S, 1997, FUNCT ECOL, V11, P714, DOI 10.1046/j.1365-2435.1997.00145.x; Verhulst S, 1996, ANIM BEHAV, V51, P957, DOI 10.1006/anbe.1996.0099; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON JD, 1992, BEHAVIOUR, V121, P168, DOI 10.1163/156853992X00363 46 15 16 2 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2012 81 3 564 572 10.1111/j.1365-2656.2011.01933.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 923IP WOS:000302613300007 22112192 2019-02-21 J McDonald, BI; Goebel, ME; Crocker, DE; Costa, DP McDonald, Birgitte I.; Goebel, Michael E.; Crocker, Daniel E.; Costa, Daniel P. Dynamic Influence of Maternal and Pup Traits on Maternal Care during Lactation in an Income Breeder, the Antarctic Fur Seal PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article ARCTOCEPHALUS-GAZELLA PUPS; NORTHERN ELEPHANT SEALS; REPRODUCTIVE SUCCESS; MILK INTAKE; CALLORHINUS-URSINUS; PARENTAL INVESTMENT; GROUND-SQUIRRELS; SOUTH GEORGIA; SOAY SHEEP; GRAY SEALS Life-history theory predicts that selection will favor optimal levels of parental effort that balance benefits of current reproduction with costs to survival and future reproduction. The optimal level of effort depends on parental traits, offspring traits, and provisioning strategy. Additionally, how these factors influence effort may differ depending on the stage of reproduction. The relative importance of maternal and offspring traits on energy allocation to offspring was investigated in known-age Antarctic fur seals Arctocephalus gazella across four stages of reproduction, using birth mass and milk-consumption measurements. Maternal traits were important during three of the four stages investigated, with larger females giving birth to larger pups and investing more in pups during perinatal and molt stages. Pup mass influenced maternal effort during the premolt stage, and provisioning strategy influenced postnatal maternal effort at all stages. Energy provided to the offspring during an attendance visit was positively related to the duration of the foraging-trip/visit cycle; however, when investment was controlled for trip/visit cycle duration, the overall rate of energy transfer was similar across trip durations. In addition to strong effects of maternal mass, pup traits affected energy allocation, suggesting that pup demand is important in determining maternal care. These findings emphasize the importance of considering state variables in life-history studies and suggest that timing of measurements of effort in species with long provisioning periods may influence conclusions and our ability to make comparisons of reproductive effort among species. [McDonald, Birgitte I.; Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Long Marine Lab, Santa Cruz, CA 95060 USA; [Goebel, Michael E.] Natl Marine Fisheries Serv, Antarct Ecosyst Res Div, Natl Ocean & Atmospher Adm, SW Fisheries Sci Ctr, La Jolla, CA 92038 USA; [Crocker, Daniel E.] Sonoma State Univ, Dept Biol, Rohnert Pk, CA 94928 USA McDonald, BI (reprint author), Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. gitte.mcdonald@gmail.com Costa, Daniel/0000-0002-0233-5782; McDonald, Birgitte/0000-0001-5028-066X U.S. AMLR; NSF Office of Polar Programs [0440687]; U.S. Environmental Protection Agency (EPA); NSF We thank all those who assisted with the collection of the data, in particular C. Champagne, R. Haner, and S. Seganti. Logistical support was provided by the U. S. Antarctic Marine Living Resources (AMLR) Program, the National Science Foundation (NSF) U.S. Antarctic Program, and Raytheon Polar Services. This article was improved by comments from two anonymous reviewers. Research was funded by the U.S. AMLR Program and NSF Office of Polar Programs grant 0440687 to D. P. C, D. E. C., and M. E. G. B. I. M. was supported by the U.S. Environmental Protection Agency (EPA) under the Science to Achieve Results Graduate Fellowship Program and an NSF graduate fellowship. The EPA has not officially endorsed this publication, and the views expressed herein may not reflect the views of the EPA. Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Arnould JPY, 1996, CAN J ZOOL, V74, P254, DOI 10.1139/z96-032; Arnould JPY, 2002, J ZOOL, V256, P351, DOI 10.1017/S0952836902000389; Arnould JPY, 2001, BEHAV ECOL SOCIOBIOL, V50, P461, DOI 10.1007/s002650100386; BAKER JD, 1992, J ZOOL, V227, P231, DOI 10.1111/j.1469-7998.1992.tb04819.x; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; Boltnev AI, 1998, CAN J ZOOL, V76, P843, DOI 10.1139/cjz-76-5-843; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Costa D.P., 1986, P79; Costa D. P., 1993, MARINE MAMMALS ADV B, P293; COSTA DP, 1988, CAN J ZOOL, V66, P45, DOI 10.1139/z88-006; COSTA DP, 1988, BEHAV ECOL SOCIOBIOL, V22, P361; Costa DP, 2008, AQUAT CONSERV, V17, pS44, DOI DOI 10.1002/AQC.917; Costa DP, 1987, APPROACHES MARINE MA, P43; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; DOIDGE DW, 1989, POLAR BIOL, V9, P155, DOI 10.1007/BF00297170; Donohue MJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P3, DOI 10.1086/338284; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gales NJ, 1998, MAR MAMMAL SCI, V14, P355, DOI 10.1111/j.1748-7692.1998.tb00727.x; Gentry R.L., 1986, P41; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.2307/177427; Gill P.F., 1990, ORNITHOLOGY; Gittleman J.L., 1987, REPROD ENERGETICS MA, P41; Goebel M.E., 2007, NOAATMNMFSSWFSC409 A, P122; Guinet C, 2000, CAN J ZOOL, V78, P476, DOI 10.1139/cjz-78-3-476; Houston AI, 1996, FUNCT ECOL, V10, P432, DOI 10.2307/2389935; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; Landete-Castillejos T, 2009, THERIOGENOLOGY, V71, P400, DOI 10.1016/j.theriogenology.2008.08.006; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lea MA, 2002, MAR ECOL PROG SER, V245, P281, DOI 10.3354/meps245281; Lea MA, 2002, COMP BIOCHEM PHYS A, V132, P321, DOI 10.1016/S1095-6433(02)00030-2; Lea MA, 2006, MAR ECOL PROG SER, V310, P77, DOI 10.3354/meps310077; Lunn NJ, 1997, BEHAV ECOL SOCIOBIOL, V40, P351, DOI 10.1007/s002650050351; LUNN NJ, 1993, J MAMMAL, V74, P908, DOI 10.2307/1382429; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; McDonald B.I., 2009, THESIS U CALIFORNIA; McDonald BI, 2006, PHYSIOL BIOCHEM ZOOL, V79, P484, DOI 10.1086/501056; McDonald BI, 2009, MAR ECOL PROG SER, V394, P277, DOI 10.3354/meps08308; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Nagy K.A., 1980, AM J PHYSIOL, V238, pR446; Oftedal O.T., 1987, Current Mammalogy, V1, P175; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; OFTEDAL OT, 1987, PHYSIOL ZOOL, V60, P560, DOI 10.1086/physzool.60.5.30156130; ORTIZ CL, 1978, PHYSIOL ZOOL, V51, P166, DOI 10.1086/physzool.51.2.30157864; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Schmidt-Nielsen K., 1979, ANIMAL PHYSL ADAPTAT; Speakman JR, 1997, DOUBLY LABELLED WATE; Stearns S, 1992, EVOLUTION LIFE HIST; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; TRITES AW, 1991, CAN J ZOOL, V69, P2608, DOI 10.1139/z91-367; Trivers R.L., 1974, AM ZOOL, V14, P219; Verrier D, 2009, AM J PHYSIOL-REG I, V297, pR1582, DOI 10.1152/ajpregu.90857.2008; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6; Zuur AF, 2007, STAT BIOL HEALTH, P1 68 3 3 0 42 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY-JUN 2012 85 3 243 254 10.1086/665407 12 Physiology; Zoology Physiology; Zoology 925UQ WOS:000302787600004 22494980 Green Published 2019-02-21 J Elinson, RP; del Pino, EM Elinson, Richard P.; del Pino, Eugenia M. Developmental diversity of amphibians WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY English Review DIRECT-DEVELOPING FROG; GASTROTHECA-RIOBAMBAE FOWLER; ELEUTHERODACTYLUS-COQUI LEPTODACTYLIDAE; SALAMANDER HYNOBIUS-RETARDATUS; SUPERNUMERARY CAUDAL VERTEBRAE; LIFE-HISTORY EVOLUTION; XENOPUS-LAEVIS; THYROID-HORMONE; MARSUPIAL FROG; GENE-EXPRESSION The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. (C) 2011 Wiley Periodicals, Inc. [Elinson, Richard P.] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA; [del Pino, Eugenia M.] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Quito, Ecuador Elinson, RP (reprint author), Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA. elinson@duq.edu DEL PINO, EUGENIA/0000-0002-4678-7852 NIH [1R15HD059070-01]; NSF [IOS-0841720]; Pontificia Universidad Catolica del Ecuador; Academy of Sciences for the Developing World (TWAS) [07-017 LDC/BIO/LA-UNESCO FR 3240144821] We thank former and current members of the del Pino and Elinson laboratories. In particular, we acknowledge I. Alarcon and I. Moya for their help with images of G. riobambae gastrulae and S. Hardesty for Figure 6. RPE was supported by grant 1R15HD059070-01 from NIH and grant IOS-0841720 from NSF. EMdP was supported by grants from the Pontificia Universidad Catolica del Ecuador, and a grant 07-017 LDC/BIO/LA-UNESCO FR 3240144821 from The Academy of Sciences for the Developing World (TWAS). Afonin B, 2006, DEV DYNAM, V235, P3268, DOI 10.1002/dvdy.20979; ALCOCER I, 1992, COMP BIOCHEM PHYS A, V101, P229, DOI 10.1016/0300-9629(92)90527-W; Altig R, 1999, TADPOLES BIOL ANURAN; Altig R., 1989, HERPETOL MONOGR, V3, P81, DOI DOI 10.2307/1466987; Anstis M, 2008, RECORDS W AUSTR MUSE, V24, P133; Anstis Marion, 2007, Records of the Western Australian Museum, V23, P259; Bachvarova RF, 2004, DEV DYNAM, V231, P871, DOI 10.1002/dvdy.20195; Bahir MM, 2005, RAFFLES B ZOOL, P339; Bastock R, 2008, CURR BIOL, V18, pR1082, DOI 10.1016/j.cub.2008.09.011; Beckham YM, 2003, EVOL DEV, V5, P562, DOI 10.1046/j.1525-142X.2003.03061.x; Beetschen JC, 1996, INT J DEV BIOL, V40, P629; Benitez MS, 2002, DEV DYNAM, V225, P592, DOI 10.1002/dvdy.10190; BERGER L, 1973, Journal of Herpetology, V7, P1, DOI 10.2307/1562822; BLACKLER AW, 1966, ADV REPROD PHYSIOL, V1, P9; Bossuyt Franky, 2009, P357; BROWN HA, 1989, J ZOOL, V217, P525, DOI 10.1111/j.1469-7998.1989.tb02509.x; Buchholz DR, 2007, DEV DYNAM, V236, P1259, DOI 10.1002/dvdy.21153; Callery EM, 2006, SEMIN CELL DEV BIOL, V17, P80, DOI 10.1016/j.semcdb.2005.11.001; Callery EM, 2000, DEV GENES EVOL, V210, P377, DOI 10.1007/s004270000070; Callery EM, 2001, BIOESSAYS, V23, P233, DOI 10.1002/1521-1878(200103)23:3<233::AID-BIES1033>3.0.CO;2-Q; Callery EM, 2000, P NATL ACAD SCI USA, V97, P2615, DOI 10.1073/pnas.050501097; Candioti MFV, 2005, J MORPHOL, V264, P161, DOI 10.1002/jmor.10320; Cannatella David C., 2009, P353; CARROLL EJ, 1991, DEV GROWTH DIFFER, V33, P499; Chipman AD, 1999, EVOL DEV, V1, P49; Chippindale PT, 2004, EVOLUTION, V58, P2809; COLLAZO A, 1994, J EXP ZOOL, V268, P239, DOI 10.1002/jez.1402680309; Collazo A, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-6; COLLINS JP, 1983, AM ZOOL, V23, P77; Coloma LA, 1995, ECUADORIAN FROGS GEN; Conlon FL, 1999, DEV BIOL, V213, P85, DOI 10.1006/dbio.1999.9330; COOLEY L, 1995, DEV GENET, V16, P1, DOI 10.1002/dvg.1020160103; CRUMP ML, 1989, OECOLOGIA, V78, P486, DOI 10.1007/BF00378738; Dalgetty L, 2010, BIOL LETTERS, V6, P293, DOI 10.1098/rsbl.2009.0934; DALY JW, 1995, P NATL ACAD SCI USA, V92, P9, DOI 10.1073/pnas.92.1.9; Daly JW, 1998, J NAT PROD, V61, P162, DOI 10.1021/np970460e; Daly JW, 2000, NAT PROD REP, V17, P131, DOI 10.1039/a900728h; DAVIDSON EH, 1969, J EXP ZOOL, V172, P25, DOI 10.1002/jez.1401720104; DAWID IB, 1988, SCIENCE, V240, P1443, DOI 10.1126/science.3287620; Dawid IB, 1998, TRENDS GENET, V14, P156, DOI 10.1016/S0168-9525(98)01424-3; De Robertis EM, 2006, NAT REV MOL CELL BIO, V7, P296, DOI 10.1038/nrm1855; del Pino E.M., 1975, Biological Bull Mar Biol Lab Woods Hole, V149, P480, DOI 10.2307/1540381; Del Pino EM, 2004, INT J DEV BIOL, V48, P663, DOI 10.1387/ijdb.041861ed; Del Pino EM, 1998, INT J DEV BIOL, V42, P723; del Pino EM, 2007, P NATL ACAD SCI USA, V104, P11882, DOI 10.1073/pnas.0705092104; DELPINO EM, 1983, J EXP ZOOL, V227, P159, DOI 10.1002/jez.1402270121; DELPINO EM, 1994, DEV GROWTH DIFFER, V36, P73; DELPINO EM, 1989, DEVELOPMENT, V107, P169; DELPINO EM, 1986, DIFFERENTIATION, V32, P24, DOI 10.1111/j.1432-0436.1986.tb00552.x; DELPINO EM, 1978, BIOL BULL, V154, P198, DOI 10.2307/1541122; DELPINO EM, 1992, GENE, V111, P235, DOI 10.1016/0378-1119(92)90692-I; DELPINO EM, 1981, J MORPHOL, V167, P277, DOI 10.1002/jmor.1051670303; delPino EM, 1996, DEV BIOL, V177, P64, DOI 10.1006/dbio.1996.0145; DELPINO EM, 1977, J MORPHOL, V153, P153, DOI 10.1002/jmor.1051530111; DELPINO EM, 1980, COPEIA, P10, DOI 10.2307/1444129; DELPINO EM, 1983, NATURE, V306, P589, DOI 10.1038/306589a0; DELPINO EM, 1990, DEVELOPMENT, V110, P781; Doyle JM, 2008, OECOLOGIA, V156, P87, DOI 10.1007/s00442-008-0977-2; Dressler GR, 2009, DEVELOPMENT, V136, P3863, DOI 10.1242/dev.034876; Duarte-Guterman P, 2010, GEN COMP ENDOCR, V166, P428, DOI 10.1016/j.ygcen.2009.12.008; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1980, J HERPETOL, V14, P213, DOI 10.2307/1563542; Dunker N, 2000, J MORPHOL, V243, P3; Ecleshymer AC, 1910, NORMAL PLATES DEV NE, V11; ELICEIRI BP, 1994, J BIOL CHEM, V269, P24459; Elinson R. P, 2003, VERTEBRATE ORG, P359; Elinson RP, 2008, J EXP ZOOL PART B, V310B, P588, DOI 10.1002/jez.b.21229; Elinson RP, 2009, J EXP ZOOL PART B, V312B, P526, DOI 10.1002/jez.b.21218; ELINSON RP, 1986, INT REV CYTOL, V101, P59, DOI 10.1016/S0074-7696(08)60246-6; Elinson RP, 1998, DEV GENES EVOL, V208, P457, DOI 10.1007/s004270050203; Elinson RP, 2003, DEV GENES EVOL, V213, P28, DOI 10.1007/s00427-002-0290-8; Elinson RP, 2002, ZOOLOGY, V105, P105, DOI 10.1078/0944-2006-00060; ELINSON RP, 1988, DEV BIOL, V128, P185, DOI 10.1016/0012-1606(88)90281-3; Elinson RP, 2001, GENESIS, V29, P91, DOI 10.1002/1526-968X(200102)29:2<91::AID-GENE1009>3.0.CO;2-6; ELINSON RP, 1990, BIOL BULL, V179, P163, DOI 10.2307/1541765; ELINSON RP, 1994, J EXP ZOOL, V270, P202, DOI 10.1002/jez.1402700209; ELINSON RP, 1985, J EMBRYOL EXP MORPH, V90, P223; ELINSON RP, 1987, J MORPHOL, V193, P217, DOI 10.1002/jmor.1051930208; Elinson RP, 1987, COMPLEX ORGANISMAL F, P251; Ewald AJ, 2004, DEVELOPMENT, V131, P6195, DOI 10.1242/dev.01542; Fang H, 1996, DEV BIOL, V179, P160, DOI 10.1006/dbio.1996.0248; Flamant F, 1998, DEV BIOL, V197, P1, DOI 10.1006/dbio.1998.8872; Gall JG, 2004, EXP CELL RES, V296, P28, DOI 10.1016/j.yexcr.2004.03.017; GATHERER D, 1992, INT J DEV BIOL, V36, P283; GERHART J, 1989, DEVELOPMENT, V107, P37; Grant T, 2006, B AM MUS NAT HIST, V299, P1, DOI DOI 10.1206/0003-0090(2006)299[; Greven H, 2009, J MORPHOL, V270, P1311, DOI 10.1002/jmor.10759; Gurdon JB, 2000, INT J DEV BIOL, V44, P43; Haas A, 2006, ZOOLOGY, V109, P26, DOI 10.1016/j.zool.2005.09.008; Handrigan GR, 2007, J ANAT, V211, P271, DOI 10.1111/j.1469-7580.2007.00757.x; Handrigan GR, 2007, EVOL DEV, V9, P190, DOI 10.1111/j.1525-142X.2007.00149.x; Handrigan GR, 2007, BIOL REV, V82, P1, DOI 10.1111/j.1469-185X.2006.00001.x; Handwerger KE, 2006, TRENDS CELL BIOL, V16, P19, DOI 10.1016/j.tcb.2005.11.005; Hanken J, 1997, P ROY SOC B-BIOL SCI, V264, P1349, DOI 10.1098/rspb.1997.0187; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Hanken J, 2001, J EXP ZOOL, V291, P375, DOI 10.1002/jez.1136; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; HARDIN J, 1988, DEVELOPMENT, V103, P211; HAUSEN P, 1991, EARLY DEV XENOPUS LA; Hedges SB, 2008, ZOOTAXA, P1; Heinicke MP, 2007, P NATL ACAD SCI USA, V104, P10092, DOI 10.1073/pnas.0611051104; Ho DH, 2011, J EXP BIOL, V214, P619, DOI 10.1242/jeb.046714; Hobert O, 2000, TRENDS GENET, V16, P75, DOI 10.1016/S0168-9525(99)01883-1; HOLTFRETER J, 1955, ANAL DEV, P230; HOUGH BR, 1973, J EXP ZOOL, V185, P357, DOI 10.1002/jez.1401850310; Huggins P, 2012, COMP BIOCHEM PHYS C, V155, P128, DOI 10.1016/j.cbpc.2011.03.006; Hukriede NA, 2003, DEV CELL, V4, P83, DOI 10.1016/S1534-5807(02)00398-2; Ishikawa C, 1908, MITT DT GES NAT U VO, V11, P259; Iwao Y, 2000, FERTILIZATION IN PROTOZOA AND METAZOAN ANIMALS, P147; Jennings DH, 1998, GEN COMP ENDOCR, V111, P225, DOI 10.1006/gcen.1998.7111; Johnson AD, 2003, EVOL DEV, V5, P414, DOI 10.1046/j.1525-142X.2003.03048.x; Johnson AD, 2001, DEV BIOL, V234, P402, DOI 10.1006/dbio.2001.0264; Johnson AD, 2003, PHILOS T ROY SOC B, V358, P1371, DOI 10.1098/rstb.2003.1331; Johnson AD, 2011, REPRODUCTION, V141, P291, DOI 10.1530/REP-10-0474; JONES RE, 1973, J EXP ZOOL, V184, P177, DOI 10.1002/jez.1401840205; KAO KR, 1985, DEV BIOL, V107, P239, DOI 10.1016/0012-1606(85)90392-6; Karavanov AA, 1996, INT J DEV BIOL, V40, P453; KAWAHARA A, 1991, DEVELOPMENT, V112, P933; Keller R., 2004, P171; KELLER R, 1988, DEVELOPMENT, V103, P193; KELLER RE, 1976, DEV BIOL, V51, P118, DOI 10.1016/0012-1606(76)90127-5; KELLER RE, 1975, DEV BIOL, V42, P222, DOI 10.1016/0012-1606(75)90331-0; KELLER RE, 1978, J MORPHOL, V157, P223, DOI 10.1002/jmor.1051570209; KELLER RE, 1985, J EMBRYOL EXP MORPH, V89, P185; KELLER RE, 1980, J EMBRYOL EXP MORPH, V60, P201; Keller RE, 1986, DEV BIOL, V2, P241; Kerney R, 2008, EVOL DEV, V10, P439, DOI 10.1111/j.1525-142X.2008.00255.x; Kerney R, 2007, J MORPHOL, V268, P715, DOI 10.1002/jmor.10545; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; King R.C., 1985, P37; Kleinteich T, 2010, ZOOLOGY, V113, P283, DOI 10.1016/j.zool.2010.05.002; KOBEL HR, 1979, DIFFERENTIATION, V14, P51, DOI 10.1111/j.1432-0436.1979.tb01011.x; Kohlsdorf T, 2008, J MOL EVOL, V67, P581, DOI 10.1007/s00239-008-9156-7; Kupfer A, 2006, NATURE, V440, P926, DOI 10.1038/nature04403; LAMOTTE M, 1977, TERRE VIE-REV ECOL A, V31, P225; LANNOO MJ, 1984, AM MIDL NAT, V112, P103, DOI 10.2307/2425463; Ledon-Rettig CC, 2008, EVOL DEV, V10, P316, DOI 10.1111/j.1525-142X.2008.00240.x; Ledon-Rettig CC, 2010, P ROY SOC B-BIOL SCI, V277, P3569, DOI 10.1098/rspb.2010.0877; Lee C, 2009, DEV GENES EVOL, V219, P319, DOI 10.1007/s00427-009-0292-x; Lee SY, 2008, APPL HERPETOL, V5, P33, DOI 10.1163/157075408783489202; Luxardi G, 2010, DEVELOPMENT, V137, P417, DOI 10.1242/dev.039735; MACGREGOR HC, 1982, CHROMOSOMA, V85, P475, DOI 10.1007/BF00327344; MACGREGOR HC, 1970, CHROMOSOMA, V29, P189, DOI 10.1007/BF00326078; Mackenzie CD, 2009, BIOPHYS J, V96, P4984, DOI 10.1016/j.bpj.2009.03.044; Maden M, 1996, DEV GENET, V19, P85; MALACINSKI GM, 1978, AM ZOOL, V18, P195; MALACINSKI GM, 1978, AM ZOOL, V18, P191; Mannaert A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-658; Marcellini S, 2003, DEV BIOL, V260, P352, DOI 10.1016/S0012-1606(03)00244-6; Matova N, 2001, DEV BIOL, V231, P291, DOI 10.1006/dbio.2000.0120; McComb DM, 2005, GEN COMP ENDOCR, V144, P167, DOI 10.1016/j.ygcen.2005.05.005; McNabb FMA, 1997, AM ZOOL, V37, P553; Meegaskumbura M, 2002, SCIENCE, V298, P379, DOI 10.1126/science.298.5592.379; Michimae H, 2005, BIOL LETTERS, V1, P75, DOI 10.1098/rsbl.2004.0242; Michimae H, 2002, EVOLUTION, V56, P2029; Michimae H, 2002, ZOOL SCI, V19, P703, DOI 10.2108/zsj.19.703; Michimae H, 2009, OECOLOGIA, V160, P601, DOI 10.1007/s00442-009-1319-8; MOHANTYHEJMADI P, 1992, NATURE, V355, P352, DOI 10.1038/355352a0; Morvan-Dubois G, 2008, MOL CELL ENDOCRINOL, V293, P71, DOI 10.1016/j.mce.2008.06.012; Moury JD, 1995, ACTA ANAT, V153, P243; Moya IM, 2007, DEV BIOL, V304, P467, DOI 10.1016/j.ydbio.2006.12.036; Nath K, 2005, J EXP ZOOL PART B, V304B, P28, DOI 10.1002/jez.b.21020; Nath K, 2007, GENE EXPR PATTERNS, V7, P197, DOI 10.1016/j.modgep.2006.07.003; Niehrs C, 2004, NAT REV GENET, V5, P425, DOI 10.1038/nrg1347; NIEUWKOOP P D, 1969, Wilhelm Roux' Archiv fuer Entwicklungsmechanik der Organismen, V162, P341, DOI 10.1007/BF00578701; Nieuwkoop P. D., 1994, NORMAL TABLE XENOPUS; Nieuwkoop P.D., 1979, PRIMORDIAL GERM CELL; Nieuwkoop PD, 1996, INT J DEV BIOL, V40, P617; Ninomiya H, 2001, DEV BIOL, V236, P109, DOI 10.1006/dbio.2001.0310; Nizami Z, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000653; Olsson L, 2002, ZOOLOGY, V105, P3, DOI 10.1078/0944-2006-00051; Page RB, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-199; Page RB, 2009, GEN COMP ENDOCR, V162, P219, DOI 10.1016/j.ygcen.2009.03.001; Pepling ME, 1999, TRENDS CELL BIOL, V9, P257, DOI 10.1016/S0962-8924(99)01594-9; PFENNIG D, 1990, OECOLOGIA, V85, P101, DOI 10.1007/BF00317349; PFENNIG DW, 1993, NATURE, V362, P836, DOI 10.1038/362836a0; Pfennig DW, 2000, EVOLUTION, V54, P1738; Pollister AW, 1937, ANAT REC, V68, P489, DOI 10.1002/ar.1090680410; Power DM, 2001, COMP BIOCHEM PHYS C, V130, P447, DOI 10.1016/S1532-0456(01)00271-X; PRATI M, 1992, ENDOCRINOLOGY, V130, P2651, DOI 10.1210/en.130.5.2651; RADICE G P, 1989, International Journal of Developmental Biology, V33, P325; Richardson MK, 1998, J ANAT, V192, P379, DOI 10.1046/j.1469-7580.1998.19230379.x; Romero-Carvajal A, 2009, DEV DYNAM, V238, P1444, DOI 10.1002/dvdy.21952; Ron SR, 2006, MOL PHYLOGENET EVOL, V39, P392, DOI 10.1016/j.ympev.2005.11.022; Rose Christopher S., 1999, P167, DOI 10.1016/B978-012730935-4/50007-9; Roszko I, 2009, SEMIN CELL DEV BIOL, V20, P986, DOI 10.1016/j.semcdb.2009.09.004; Rot-Nikcevic I, 2004, J EXP BIOL, V207, P2133, DOI 10.1242/jeb.01002; RUIBAL R, 1988, COPEIA, P591; Ryan M. J, 1985, TUNGARA FROG STUDY S; Ryan MJ, 2003, EVOLUTION, V57, P2608, DOI 10.1111/j.0014-3820.2003.tb01503.x; Sabo MC, 2009, DEV GENES EVOL, V219, P609, DOI 10.1007/s00427-009-0314-8; Safi R, 2006, EVOL DEV, V8, P284, DOI 10.1111/j.1525-142X.2006.00099.x; SAXEN L, 1989, International Journal of Developmental Biology, V33, P21; SCHARF SR, 1989, DEV BIOL, V134, P175, DOI 10.1016/0012-1606(89)90087-0; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P94, DOI 10.1159/000113325; Schlosser G, 1997, NEUROSCI LETT, V224, P153, DOI 10.1016/S0304-3940(97)00174-2; Schlosser G, 2008, FRONT ZOOL, V5, DOI 10.1186/1742-9994-5-9; Schmid M., 2010, Cytogenetic and Genome Research, V130-131, P1, DOI 10.1159/000301339; Schneider RA, 2003, SCIENCE, V299, P565, DOI 10.1126/science.1077827; Shook DR, 2008, J EXP ZOOL PART B, V310B, P85, DOI 10.1002/jez.b.21198; Signoret J, 1971, ANN EMBRYOL MORPHOG, V2, P451; Singamsetty S, 2010, EVOL DEV, V12, P437, DOI 10.1111/j.1525-142X.2010.00430.x; Smith BG, 1912, J MORPHOL, V23, P455, DOI 10.1002/jmor.1050230304; Smith BG, 1906, BIOL BULL-US, V11, P146, DOI 10.2307/1535534; SMITH JC, 1991, CELL, V67, P79, DOI 10.1016/0092-8674(91)90573-H; Smith JJ, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-19; Solnica-Krezel L, 2005, CURR BIOL, V15, pR213, DOI 10.1016/j.cub.2005.03.016; SPRADLING AC, 1993, CELL, V72, P649, DOI 10.1016/0092-8674(93)90393-5; SPRULES WG, 1974, CAN J ZOOL, V52, P1545, DOI 10.1139/z74-200; Srivastava M, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-4; Stocum DL, 2011, DEV DYNAM, V240, P943, DOI 10.1002/dvdy.22553; Storz BL, 2007, THESCIENTIFICWORLDJO, V7, P715, DOI 10.1100/tsw.2007.159; Storz BL, 2009, J MORPHOL, V270, P1262, DOI 10.1002/jmor.10756; SUTASURJ.LA, 1974, ROUX ARCH DEV BIOL, V175, P199, DOI 10.1007/BF00582092; Swiers G, 2010, DEV BIOL, V343, P138, DOI 10.1016/j.ydbio.2010.04.002; Tada M, 2000, DEVELOPMENT, V127, P2227; Tada M, 2009, ZEBRAFISH, V6, P29, DOI 10.1089/zeb.2008.0566; Taira M, 1997, P NATL ACAD SCI USA, V94, P895, DOI 10.1073/pnas.94.3.895; TAIRA M, 1994, DEVELOPMENT, V120, P1525; TAIRA M, 1992, GENE DEV, V6, P356, DOI 10.1101/gad.6.3.356; TAIRA M, 1994, NATURE, V372, P677, DOI 10.1038/372677a0; Technau U, 2001, BIOESSAYS, V23, P788, DOI 10.1002/bies.1114; Tlibaudeau G, 1999, TADPOLES, P170; TOWNSEND DS, 1985, COPEIA, P423, DOI 10.2307/1444854; Trueb L., 1974, Occasional Papers Mus Nat Hist Univ Kans, VNo. 29, P1; TUNNER HG, 1981, NATURWISSENSCHAFTEN, V68, P207, DOI 10.1007/BF01047207; UZZELL T, 1980, J EXP ZOOL, V214, P251, DOI 10.1002/jez.1402140303; UZZELL T, 1975, P ACAD NAT SCI PHILA, V127, P81; Venegas-Ferrin M, 2010, INT J DEV BIOL, V54, P195, DOI 10.1387/ijdb.092870mv; Vlaeminck-Guillem V, 2006, INT J DEV BIOL, V50, P553, DOI 10.1387/ijdb.052094vv; Voss SR, 1996, INT J DEV BIOL, V40, P885; Wacker S, 2000, DEV BIOL, V224, P428, DOI 10.1006/dbio.2000.9794; Wake DB, 1996, INT J DEV BIOL, V40, P859; Wake MH, 2006, REPROD BIOL PHYLOGEN, V5, P1; WAKE MH, 1989, LIFE SCI R, V45, P235; WALLACE RA, 1981, P NATL ACAD SCI-BIOL, V78, P3078, DOI 10.1073/pnas.78.5.3078; WALLACE RA, 1978, P NATL ACAD SCI USA, V75, P5534, DOI 10.1073/pnas.75.11.5534; WASSERSUG RJ, 1982, EVOL BIOL, V15, P223; WASSERSUG RJ, 1975, AM ZOOL, V15, P405; WASSERSUG RJ, 1984, J MORPHOL, V182, P1, DOI 10.1002/jmor.1051820102; WEBER GM, 1994, GEN COMP ENDOCR, V94, P62, DOI 10.1006/gcen.1994.1060; Wiens JJ, 2007, EVOLUTION, V61, P1886, DOI 10.1111/j.1558-5646.2007.00159.x; Wilkinson M, 2008, BIOL LETTERS, V4, P358, DOI 10.1098/rsbl.2008.0217; Winklbauer R, 1996, DEV BIOL, V177, P413, DOI 10.1006/dbio.1996.0174; Winklbauer R, 1999, DEVELOPMENT, V126, P3703; Winklbauer R, 2001, NATURE, V413, P856, DOI 10.1038/35101621; Woltering JM, 2009, DEV BIOL, V332, P82, DOI 10.1016/j.ydbio.2009.04.031; Yamamoto S, 2003, DEV BIOL, V257, P190, DOI 10.1016/S0012-1606(03)00034-4; YAOITA Y, 1990, GENE DEV, V4, P1917, DOI 10.1101/gad.4.11.1917; Yasuoka Y, 2009, DEVELOPMENT, V136, P2005, DOI 10.1242/dev.028530; YOUN BW, 1980, J EMBRYOL EXP MORPH, V59, P223 251 29 32 1 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1759-7684 1759-7692 WIRES DEV BIOL Wiley Interdiscip. Rev.-Dev. Biol. MAY-JUN 2012 1 3 345 369 10.1002/wdev.23 25 Developmental Biology Developmental Biology V31EP WOS:000208867200003 22662314 Green Accepted 2019-02-21 J MacCormick, HA; MacNulty, DR; Bosacker, AL; Lehman, C; Bailey, A; Collins, DA; Packer, C MacCormick, Holly A.; MacNulty, Daniel R.; Bosacker, Anna L.; Lehman, Clarence; Bailey, Andrea; Collins, D. Anthony; Packer, Craig Male and female aggression: lessons from sex, rank, age, and injury in olive baboons BEHAVIORAL ECOLOGY English Article competition; injury; life history; olive baboon; Papio anubis; rank LONG-TAILED MACAQUES; DEPENDENT REPRODUCTIVE EFFORT; LIFE-HISTORY PATTERNS; MALE SAVANNA BABOONS; INBREEDING AVOIDANCE; PAPIO-ANUBIS; INTRASEXUAL COMPETITION; SOCIAL RELATIONSHIPS; MACACA-FASCICULARIS; NONHUMAN-PRIMATES Aggression is ubiquitous, influencing reproduction through inter- and intraspecific effects in ways that reflect life-history strategies of species. In many social mammals, females remain in their natal group for life, whereas males emigrate and compete for rank in other social groups. Competition for rank is inherently risky. Therefore, it has long been hypothesized that risks of injury depend on an individual's sex, rank, and age in ways that maximize an individual's reproductive output. However, studies quantifying such risks have been lacking. We analyzed 20 years of long-term data on wounds among olive baboons (Papio anubis) in Gombe National Park, Tanzania. Males received significantly more wounds than female baboons, and both sexes received the most wounds at ages when they competed most intensely for rank. Immature females received more wounds than immature males in their natal groups, and immature females were more likely to be wounded by females than were immature males. Males in their natal group were wounded less often than immigrant males of the same age. The risk of wounding did not depend on rank in females but rose with rank in immigrant males. Lastly, females received significantly more wounds when cycling (not pregnant or lactating). This study is among the first to quantify the risk of injury for competitors of different sexes, ages, and ranks in social groups. Our results support the prediction that individuals target aggression toward present and future competitors and suggest that sexual coercion increases the risk of wounding in cycling females. [MacCormick, Holly A.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Ctr Ocean Hlth, Santa Cruz, CA 95060 USA; [MacCormick, Holly A.; MacNulty, Daniel R.; Bailey, Andrea; Packer, Craig] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [MacNulty, Daniel R.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Bosacker, Anna L.] Carleton Coll, Dept Biol, Northfield, MN 55057 USA; [Lehman, Clarence] Coll Biol Sci, St Paul, MN 55108 USA; [Collins, D. Anthony] Gombe Stream Res Ctr, Kigoma, Tanzania MacCormick, HA (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Ctr Ocean Hlth, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. maccormick@biology.ucsc.edu MacNulty, Dan/L-3965-2016 Jane Goodall Institute; NSF We thank Drs Anne Pusey, Aimee S. Dunlap, Donald Siniff, Dawn M. Kitchen, Ian Gilby, and Michael Wilson for their invaluable feedback and discussion on this manuscript. For insightful comments, we especially thank Anna E. MacCormick, Phillip L. Wharton Jr, Moe Khosravy, and Nicole Thometz. We are deeply indebted to 2 anonymous reviewers whose thoughtful comments elevated and transformed our manuscript. We thank Bernard Kissui, Deus Mjungu, and Thaddus Shio for assistance with translation of data from Kiswahili to English; Drs Lynn E. Eberly and Pete Raimondi for insights on statistical methods; the government of Tanzania, including the Commission for Science and Technology (COSTECH), Tanzania Wildlife Research Institute (TAWIRI), and Tanzanian National Parks (TANAPA) for permission to conduct this long-term research. Many people have contributed to the collection, organization, and maintenance of long-term demographic data on the Gombe baboons, most notably Applonaire Sindimwo and all of the baboon field assistants. Long-term data collection on baboons was supported by the Jane Goodall Institute and grants from the Physical Anthropology program at NSF, and we thank both for their support. Alberts SC, 2003, ANIM BEHAV, V65, P821, DOI 10.1006/anbe.2003.2106; Altmann J, 2003, AM J HUM BIOL, V15, P401, DOI 10.1002/ajhb.10157; Altmann J, 2010, ANN NY ACAD SCI, V1024, P127; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; ARCESE P, 1989, ANIM BEHAV, V38, P958, DOI 10.1016/S0003-3472(89)80137-X; BEKOFF M, 1984, ANNU REV ECOL SYST, V15, P191, DOI 10.1146/annurev.es.15.110184.001203; BERCOVITCH FB, 1988, ANIM BEHAV, V36, P1198, DOI 10.1016/S0003-3472(88)80079-4; BERCOVITCH FB, 1986, INT J PRIMATOL, V7, P533, DOI 10.1007/BF02736660; Bessaoud F, 2005, COMPUT METH PROG BIO, V77, P1, DOI 10.1016/j.cmpb.2004.05.009; BLANCHARD RJ, 1988, AGGRESSIVE BEHAV, V14, P195, DOI 10.1002/1098-2337(1988)14:3<195::AID-AB2480140305>3.0.CO;2-G; BOLHUIS JJ, 1988, ANIM BEHAV, V36, P1551, DOI 10.1016/S0003-3472(88)80230-6; Burnham K. P, 2002, MODEL SELECTION MULT; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; CHENEY DL, 1977, BEHAV ECOL SOCIOBIOL, V2, P303, DOI 10.1007/BF00299742; CHENEY DL, 1983, AM NAT, V122, P392, DOI 10.1086/284142; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Clutton-Brock TH, 2006, NATURE, V444, P1065, DOI 10.1038/nature05386; CLUTTONBROCK TH, 1979, ANIM BEHAV, V27, P211, DOI 10.1016/0003-3472(79)90141-6; CLUTTONBROCK TH, 1977, J ZOOL, V183, P1, DOI 10.1111/j.1469-7998.1977.tb04171.x; CLUTTONBROCK TH, 1995, NATURE, V373, P209, DOI 10.1038/373209a0; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Constable JL, 2001, MOL ECOL, V10, P1279, DOI 10.1046/j.1365-294X.2001.01262.x; DeVORE I., 1965, P266; DITTUS WPJ, 1979, BEHAVIOUR, V69, P265, DOI 10.1163/156853979X00511; DOBSON FS, 1982, ANIM BEHAV, V30, P1183; Drews C, 1996, BEHAVIOUR, V133, P443, DOI 10.1163/156853996X00530; Edelman AJ, 2011, BEHAV ECOL, V22, P776, DOI 10.1093/beheco/arr050; EUBANK RL, 1984, COMMUN STAT-THEOR M, V13, P433, DOI 10.1080/03610928408828695; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; HALEY MP, 1994, ANIM BEHAV, V48, P1249, DOI 10.1006/anbe.1994.1361; Hausfater G., 1975, Contributions Primatol, V7, P1; HENZI SP, 1980, FOLIA PRIMATOL, V33, P220, DOI 10.1159/000155936; HOLEKAMP KE, 1991, AM ZOOL, V31, P306; Kawamura S, 1958, PRIMATES, V1, P49; Kemp DJ, 2003, AM NAT, V162, P290, DOI 10.1086/376890; KOFORD CB, 1963, SCIENCE, V141, P356, DOI 10.1126/science.141.3578.356; Koyama N., 1967, Primates, V8, P189, DOI 10.1007/BF01731037; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LUCAS PW, 1982, ARCH ORAL BIOL, V27, P493, DOI 10.1016/0003-9969(82)90090-5; Mainguy J, 2008, BEHAV ECOL SOCIOBIOL, V62, P935, DOI 10.1007/s00265-007-0517-9; MANSON JH, 1993, AM J PHYS ANTHROPOL, V90, P335, DOI 10.1002/ajpa.1330900307; Marsh LC, 2002, SPLINE REGRESSION MO; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; MOORE NP, 1995, BEHAV ECOL SOCIOBIOL, V36, P91, DOI 10.1007/BF00170713; Muller M. N., 2009, SEXUAL COERCION PRIM; Natoli E, 2007, ETHOLOGY, V113, P283, DOI 10.1111/j.1439-0310.2006.01320.x; NOE R, 1990, BEHAVIOUR, V113, P117, DOI 10.1163/156853990X00455; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; PACKER C, 1979, ANIM BEHAV, V27, P1, DOI 10.1016/0003-3472(79)90126-X; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PACKER C, 1977, NATURE, V265, P441, DOI 10.1038/265441a0; Packer C, 2000, PHILOS T ROY SOC B, V355, P1627, DOI 10.1098/rstb.2000.0725; PACKER C, 1995, NATURE, V373, P60, DOI 10.1038/373060a0; PACKER C, 1979, FOLIA PRIMATOL, V31, P212, DOI 10.1159/000155884; PACKER C, 1979, ANIM BEHAV, V27, P37, DOI 10.1016/0003-3472(79)90127-1; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Perry S, 1996, AM J PRIMATOL, V40, P167, DOI 10.1002/(SICI)1098-2345(1996)40:2<167::AID-AJP4>3.0.CO;2-W; Plavcan JM, 2008, AM J PHYS ANTHROPOL, V136, P65, DOI 10.1002/ajpa.20779; PRUDHOMME J, 1993, PRIMATES, V34, P271, DOI 10.1007/BF02382621; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; Pusey A.E., 1987, P250; PUSEY AE, 1980, ANIM BEHAV, V28, P543, DOI 10.1016/S0003-3472(80)80063-7; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; SEYFARTH RM, 1976, ANIM BEHAV, V24, P917, DOI 10.1016/S0003-3472(76)80022-X; Silk JB, 2004, ANIM BEHAV, V67, P573, DOI 10.1016/j.anbehav.2003.07.001; Silk JB, 1981, BEHAVIOUR, V78, P112; SIMMONS LW, 1991, ANIM BEHAV, V41, P493, DOI 10.1016/S0003-3472(05)80852-8; SMUTS B, 1989, AM J PRIMATOL, V19, P229, DOI 10.1002/ajp.1350190405; Smuts B.B., 1987, P385; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; SMUTS BB, 1993, ADV STUD BEHAV, V22, P1, DOI 10.1016/S0065-3454(08)60404-0; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Sterck EHM, 2005, BEHAVIOUR, V142, P845, DOI 10.1163/1568539055010093; Ulbrich K, 1999, ECOL MODEL, V115, P243, DOI 10.1016/S0304-3800(98)00180-X; Van Lawick-Goodall J., 1968, Animal Behaviour Monographs, V1, P165; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; VANNOORDWIJK MA, 1985, ANIM BEHAV, V33, P849, DOI 10.1016/S0003-3472(85)80019-1; VANNOORDWIJK MA, 1988, BEHAVIOUR, V107, P24, DOI 10.1163/156853988X00179; VIRGADAMO P, 1972, J DENT RES, V51, P1338, DOI 10.1177/00220345720510051501; WASER PM, 1983, Q REV BIOL, V58, P355, DOI 10.1086/413385; WILEY RH, 1974, Q REV BIOL, V49, P201, DOI 10.1086/408083; Wilson ML, 2004, INT J PRIMATOL, V25, P523, DOI 10.1023/B:IJOP.0000023574.38219.92; WOLD S, 1974, TECHNOMETRICS, V16, P1, DOI 10.2307/1267485; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047; ZHAO QK, 1994, PRIMATES, V35, P57, DOI 10.1007/BF02381486 87 26 26 1 97 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAY-JUN 2012 23 3 684 691 10.1093/beheco/ars021 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 921NV WOS:000302485200030 Bronze 2019-02-21 J Dantzer, B; Swanson, EM Dantzer, Ben; Swanson, Eli M. Mediation of vertebrate life histories via insulin-like growth factor-1 BIOLOGICAL REVIEWS English Review constraint; modularity; glucocorticoids; hormones; life history; phenotypic integration; plasticity; somatotrophic axis; insulin-like growth factor-1; testosterone SNAKE THAMNOPHIS-ELEGANS; EVOLUTIONARILY CONSERVED MECHANISM; HORMONE NEGATIVE FEEDBACK; FACTOR BINDING PROTEIN-1; CONTROL MAMMALIAN GROWTH; FAST-SLOW CONTINUUM; IGF-I; DEVELOPMENTAL PLASTICITY; CAENORHABDITIS-ELEGANS; NUTRITIONAL REGULATION Life-history traits describe parameters associated with growth, size, survival, and reproduction. Life-history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life-history variation after controlling for body size involves trade-offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life-history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life-history trade-offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin-like growth factor-1 (IGF-1) in shaping the adaptive integration of multiple life-history traits. IGF-1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF-1 levels are susceptible to environmental variation and that IGF-1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF-1 concentrations and its associations with life-history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF-1 mediates adaptive divergence in suites of life-history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF-1 may facilitate adaptive plasticity in life-history strategies in response to early environmental conditions and also how selection on loci controlling IGF-1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF-1 we suggest that IGF-1 be considered a suitable candidate mechanism for mediating life-history traits. Finally, we discuss what we can learn about IGF-1 from studies in free-ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF-1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free-ranging animals. Examining how IGF-1 mediates life-history traits in free-ranging animals could lead to great insight into the mechanisms that influence life-history variation. [Dantzer, Ben; Swanson, Eli M.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Dantzer, B (reprint author), Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. bendantzer@gmail.com Dantzer, Ben/E-9779-2011; Swanson, Eli/A-1941-2009 Dantzer, Ben/0000-0002-3058-265X; National Science Foundation We thank Kay Holekamp, Andrew McAdam, Alex Shingleton and two anonymous reviewers for comments on a previous version of this manuscript. E. M. S. was supported by a predoctoral fellowship from the National Science Foundation. Adamczewski JZ, 1998, THERIOGENOLOGY, V50, P605, DOI 10.1016/S0093-691X(98)00165-4; ADASHI EY, 1985, ENDOCR REV, V6, P400, DOI 10.1210/edrv-6-3-400; Agrawal A. A., 2010, EVOLUTION DARWIN 1 1, P243; Arantes-Oliveira N, 2003, SCIENCE, V302, P611, DOI 10.1126/science.1089169; Baker J, 1996, MOL ENDOCRINOL, V10, P903, DOI 10.1210/me.10.7.903; BAKER J, 1993, CELL, V75, P73, DOI 10.1016/S0092-8674(05)80085-6; Barber-Meyer SM, 2008, WILDLIFE MONOGR, P1, DOI 10.2193/2008-004; Barbieri M, 2003, AM J PHYSIOL-ENDOC M, V285, pE1064, DOI 10.1152/ajpendo.00296.2003; Bartke A, 2005, ENDOCRINOLOGY, V146, P3718, DOI 10.1210/en.2005-0411; BASERGA R, 1999, IGF SYSTEM, P329; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baxter RC, 2009, TRENDS ENDOCRIN MET, V20, P499, DOI 10.1016/j.tem.2009.07.002; Beccavin C, 2001, J ENDOCRINOL, V168, P297, DOI 10.1677/joe.0.1680297; Beckman BR, 2011, GEN COMP ENDOCR, V170, P233, DOI 10.1016/j.ygcen.2010.08.009; Beldade P, 2002, NATURE, V416, P844, DOI 10.1038/416844a; BERELOWITZ M, 1981, SCIENCE, V212, P1279, DOI 10.1126/science.6262917; Berryman DE, 2008, GROWTH HORM IGF RES, V18, P455, DOI 10.1016/j.ghir.2008.05.005; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bonafe M, 2003, J CLIN ENDOCR METAB, V88, P3299, DOI 10.1210/jc.2002-021810; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; BRAZEAU P, 1973, SCIENCE, V179, P77, DOI 10.1126/science.179.4068.77; Brogiolo W, 2001, CURR BIOL, V11, P213, DOI 10.1016/S0960-9822(01)00068-9; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; BULGER JB, 1993, BEHAVIOUR, V127, P67, DOI 10.1163/156853993X00434; Butler AA, 1998, COMP BIOCHEM PHYS B, V121, P19, DOI 10.1016/S0305-0491(98)10106-2; Butler AA, 2001, ANNU REV PHYSIOL, V63, P141, DOI 10.1146/annurev.physiol.63.1.141; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carter CS, 2002, TRENDS GENET, V18, P295, DOI 10.1016/S0168-9525(02)02696-3; Chandrashekar V, 2004, BIOL REPROD, V71, P17, DOI 10.1095/biolreprod.103.027060; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; Charnov EL, 2004, EVOL ECOL RES, V6, P307; Charnov Eric L., 1993, P1; CLEMMONS DR, 1991, ANNU REV NUTR, V11, P393, DOI 10.1146/annurev.nu.11.070191.002141; COLAK M, 2011, REPROD DOME IN PRESS; Colon E, 2007, ENDOCRINOLOGY, V148, P128, DOI 10.1210/en.2006-0835; Conner JK, 2003, ECOLOGY, V84, P1650, DOI 10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Coyne J. A., 2004, SPECIATION; CRAIN DA, 1995, GEN COMP ENDOCR, V98, P219, DOI 10.1006/gcen.1995.1063; Crespi EJ, 2006, J PHYSIOL-LONDON, V572, P119, DOI 10.1113/jphysiol.2005.103929; D'ERCOLE A. J., 1999, IGF SYSTEM, P545; Daftary SS, 2005, EXP BIOL MED, V230, P292, DOI 10.1177/153537020523000503; Danilovich N, 1999, ENDOCRINOLOGY, V140, P2637, DOI 10.1210/en.140.6.2637; DAUGHADAY WH, 1972, NATURE, V235, P107, DOI 10.1038/235107a0; DECHIARA TM, 1990, NATURE, V345, P78, DOI 10.1038/345078a0; Demeestere I, 2004, BIOL REPROD, V70, P1664, DOI 10.1095/biolreprod.103.023317; DEVLIN RH, 1994, NATURE, V371, P209, DOI 10.1038/371209a0; Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240; Ditchkoff SS, 2001, COMP BIOCHEM PHYS A, V129, P887, DOI 10.1016/S1095-6433(01)00351-8; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Duan CM, 2010, GEN COMP ENDOCR, V167, P344, DOI 10.1016/j.ygcen.2010.04.009; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; EIGENMANN JE, 1984, ACTA ENDOCRINOL-COP, V106, P448, DOI 10.1530/acta.0.1060448; Falconer D. S., 1996, INTRO QUANTITATIVE G; Favier RP, 2001, J ENDOCRINOL, V170, P479, DOI 10.1677/joe.0.1700479; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flachsbart F, 2009, P NATL ACAD SCI USA, V106, P2700, DOI 10.1073/pnas.0809594106; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Frankino WA, 2005, SCIENCE, V307, P718, DOI 10.1126/science.1105409; FROESCH ER, 1985, ANNU REV PHYSIOL, V47, P443; Gasser M, 2000, EVOLUTION, V54, P1260; Gatford KL, 1998, J ENDOCRINOL, V157, P373, DOI 10.1677/joe.0.1570373; Gau RJ, 2002, URSUS, V13, P285; Gay E, 1997, ENDOCRINOLOGY, V138, P2937, DOI 10.1210/en.138.7.2937; Giannakou ME, 2007, TRENDS BIOCHEM SCI, V32, P180, DOI 10.1016/j.tibs.2007.02.007; Giannakou ME, 2004, SCIENCE, V305, P361, DOI 10.1126/science.1098219; GIUDICE L. C., 1999, IGF SYSTEM MOL BIOL, P379; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Godfrey KM, 2010, TRENDS ENDOCRIN MET, V21, P199, DOI 10.1016/j.tem.2009.12.008; GOMEZ E, 1993, FERTIL STERIL, V60, P40; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Greer KA, 2007, RES VET SCI, V82, P208, DOI 10.1016/j.rvsc.2006.06.005; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Gruaz NM, 1997, ENDOCRINE, V6, P11, DOI 10.1007/BF02738796; Guevara-Aguirre J, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3001845; Guillette LJ, 1996, GEN COMP ENDOCR, V104, P116; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hiney JK, 2009, ENDOCRINOLOGY, V150, P376, DOI 10.1210/en.2008-0954; Hiney JK, 1996, ENDOCRINOLOGY, V137, P3717, DOI 10.1210/en.137.9.3717; HOBBS CJ, 1993, J CLIN ENDOCR METAB, V77, P776, DOI 10.1210/jc.77.3.776; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Hui Y. H., 2001, MEAT SCI APPL; Hwa V, 1999, ENDOCR REV, V20, P761, DOI 10.1210/er.20.6.761; Hwangbo DS, 2004, NATURE, V429, P562, DOI 10.1038/nature02549; JONES JI, 1995, ENDOCR REV, V16, P3, DOI 10.1210/er.16.1.3; KADOWAKI T, 1987, J BIOL CHEM, V262, P7342; Kappeler L, 2009, ENDOCRINOLOGY, V150, P314, DOI 10.1210/en.2008-0981; Kappeler L, 2008, PLOS BIOL, V6, P2144, DOI 10.1371/journal.pbio.0060254; Kawai M, 2010, J CELL BIOCHEM, V111, P14, DOI 10.1002/jcb.22678; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Kenyon PR, 2007, NEW ZEAL J AGR RES, V50, P291, DOI 10.1080/00288230709510297; Kenyon PR, 2009, NEW ZEAL J AGR RES, V52, P307, DOI 10.1080/00288230909510515; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942; KIRKWOOD JK, 1985, J SMALL ANIM PRACT, V26, P97, DOI 10.1111/j.1748-5827.1985.tb02090.x; KLAPPER DG, 1983, ENDOCRINOLOGY, V112, P2215, DOI 10.1210/endo-112-6-2215; Kuningas M, 2007, EUR J HUM GENET, V15, P294, DOI 10.1038/sj.ejhg.5201766; Le Roith D, 2001, ENDOCR REV, V22, P53, DOI 10.1210/er.22.1.53; LEACH RM, 1994, POULTRY SCI, V73, P883, DOI 10.3382/ps.0730883; Leevers SJ, 2001, CURR BIOL, V11, pR209, DOI 10.1016/S0960-9822(01)00107-5; Lennox AR, 2008, COMP BIOCHEM PHYS A, V149, P203, DOI 10.1016/j.cbpa.2007.11.012; LEROITH D, 1995, ENDOCR REV, V16, P143, DOI 10.1210/er.16.2.143; Liang HY, 2003, EXP GERONTOL, V38, P1353, DOI 10.1016/j.exger.2003.10.019; Lin K, 1997, SCIENCE, V278, P1319, DOI 10.1126/science.278.5341.1319; LopezFernandez J, 1996, ENDOCRINOLOGY, V137, P4384, DOI 10.1210/en.137.10.4384; Lordi B, 1997, PHYSIOL BEHAV, V62, P1087, DOI 10.1016/S0031-9384(97)00261-8; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; LUO JM, 1990, ENDOCRINOLOGY, V127, P1456, DOI 10.1210/endo-127-3-1456; Manier MK, 2005, MOL ECOL, V14, P3965, DOI 10.1111/j.1365-294X.2005.02734.x; Manikkam M, 2004, ENDOCRINOLOGY, V145, P790, DOI 10.1210/en.2003-0478; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Maxwell A, 1998, J ENDOCRINOL, V158, P77, DOI 10.1677/joe.0.1580077; McCormick MI, 2006, ECOLOGY, V87, P1104, DOI 10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; MCGUIRE MA, 1992, J ANIM SCI, V70, P2901; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; McMurtry JP, 1998, J NUTR, V128, p302S, DOI 10.1093/jn/128.2.302S; McMurtry JP, 1997, DOMEST ANIM ENDOCRIN, V14, P199, DOI 10.1016/S0739-7240(97)00019-2; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; Meylan S, 2005, HORM BEHAV, V48, P44, DOI 10.1016/j.yhbeh.2004.11.022; MORGAN DO, 1987, NATURE, V329, P301, DOI 10.1038/329301a0; Moyes T. E., 2004, Animal Production in Australia. Proceedings of the Australian Society of Animal Production, V25, P288; Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789; Nakae J, 2001, ENDOCR REV, V22, P818, DOI 10.1210/edrv.22.6.0452; Narasimhan SD, 2009, CURR BIOL, V19, pR657, DOI 10.1016/j.cub.2009.06.013; Nelson SN, 2010, GEN COMP ENDOCR, V168, P103, DOI 10.1016/j.ygcen.2010.04.021; Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; ONAGBESAN OM, 1995, J REPROD FERTIL, V104, P259; Onagbesan OM, 1999, DOMEST ANIM ENDOCRIN, V17, P299, DOI 10.1016/S0739-7240(99)00046-6; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; Patronek GJ, 1997, J GERONTOL A-BIOL, V52, pB171, DOI 10.1093/gerona/52A.3.B171; Pertseva MN, 2002, J EVOL BIOCHEM PHYS+, V38, P547, DOI 10.1023/A:1022008932029; Pine MD, 2006, REPROD TOXICOL, V21, P104, DOI 10.1016/j.reprotox.2005.07.003; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rajaram S, 1997, ENDOCR REV, V18, P801, DOI 10.1210/er.18.6.801; Reynaud K, 2010, J ENDOCRINOL, V206, P85, DOI 10.1677/JOE-09-0450; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Richmond JP, 2010, GEN COMP ENDOCR, V165, P286, DOI 10.1016/j.ygcen.2009.07.007; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RINDERKNECHT E, 1978, J BIOL CHEM, V253, P2769; ROBINSON R, 1973, VET REC, V92, P221, DOI 10.1136/vr.92.9.221; ROBINSON R., 1982, GENETICS DOG BREEDER; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Roff Derek A., 1992; Romero CJ, 2010, MOL ENDOCRINOL, V24, P1077, DOI 10.1210/me.2009-0393; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; ROSS R, 1991, CLIN ENDOCRINOL, V35, P47, DOI 10.1111/j.1365-2265.1991.tb03495.x; SALMON WD, 1957, J LAB CLIN MED, V49, P825; Sapolsky RM, 1997, AM J PHYSIOL-REG I, V273, pR1346; Scanes CG, 2009, GEN COMP ENDOCR, V163, P24, DOI 10.1016/j.ygcen.2009.04.013; Schemske DW, 1999, P NATL ACAD SCI USA, V96, P11910, DOI 10.1073/pnas.96.21.11910; Schlessinger J, 2000, CELL, V103, P211, DOI 10.1016/S0092-8674(00)00114-8; SCHWARTZ SM, 1992, AM J PHYS ANTHROPOL, V89, P109, DOI 10.1002/ajpa.1330890110; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Sjogren K, 1999, P NATL ACAD SCI USA, V96, P7088, DOI 10.1073/pnas.96.12.7088; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; Sparkman AM, 2010, GEN COMP ENDOCR, V168, P408, DOI 10.1016/j.ygcen.2010.05.006; Sparkman AM, 2009, ECOLOGY, V90, P720, DOI 10.1890/08-0850.1; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1983, AM ZOOL, V23, P65; Stratikopoulos E, 2008, P NATL ACAD SCI USA, V105, P19378, DOI 10.1073/pnas.0809223105; STRAUS DS, 1994, FASEB J, V8, P6; Suh Y, 2008, P NATL ACAD SCI USA, V105, P3438, DOI 10.1073/pnas.0705467105; Sutter NB, 2007, SCIENCE, V316, P112, DOI 10.1126/science.1137045; Suzuki J, 2001, J MED PRIMATOL, V30, P174, DOI 10.1111/j.1600-0684.2001.tb00006.x; TANNENBAUM GS, 1983, SCIENCE, V220, P77, DOI 10.1126/science.6338593; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Todd BJ, 2010, ENDOCRINOLOGY, V151, P1356, DOI 10.1210/en.2009-1009; Tomas FM, 1998, GEN COMP ENDOCR, V110, P262, DOI 10.1006/gcen.1998.7072; Trangerud C, 2007, J ANIM SCI, V85, P76, DOI 10.2527/jas.2006-354; Tryfonidou MA, 2003, J ANIM SCI, V81, P1568; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; ULLRICH A, 1986, EMBO J, V5, P2503, DOI 10.1002/j.1460-2075.1986.tb04528.x; UNTERMAN TG, 1993, ENDOCRINOLOGY, V133, P2531, DOI 10.1210/en.133.6.2531; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VASI F, 1994, AM NAT, V144, P432, DOI 10.1086/285685; Velazquez MA, 2008, DOMEST ANIM ENDOCRIN, V35, P325, DOI 10.1016/j.domaniend.2008.07.002; Wang GM, 2004, BIOL REPROD, V70, P632, DOI 10.1095/biolreprod.103.022590; WAYNE RK, 1986, EVOLUTION, V40, P243, DOI 10.1111/j.1558-5646.1986.tb00467.x; WAYNE RK, 1986, J MORPHOL, V187, P301, DOI 10.1002/jmor.1051870304; WEINZIMER SA, 1999, IGF SYSTEM MOL BIOL, P407; Wilicox BJ, 2008, P NATL ACAD SCI USA, V105, P13987, DOI 10.1073/pnas.0801030105; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson ME, 1998, J ENDOCRINOL, V158, P247, DOI 10.1677/joe.0.1580247; Woodall SM, 1996, J ENDOCRINOL, V150, P231, DOI 10.1677/joe.0.1500231; Woods RJ, 2011, SCIENCE, V331, P1433, DOI 10.1126/science.1198914; Yakar S, 1999, P NATL ACAD SCI USA, V96, P7324, DOI 10.1073/pnas.96.13.7324; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zhou YH, 1997, P NATL ACAD SCI USA, V94, P13215, DOI 10.1073/pnas.94.24.13215 206 43 43 0 71 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2012 87 2 414 429 10.1111/j.1469-185X.2011.00204.x 16 Biology Life Sciences & Biomedicine - Other Topics 919TH WOS:000302351300009 21981025 2019-02-21 J Meiri, S; Brown, JH; Sibly, RM Meiri, Shai; Brown, James H.; Sibly, Richard M. The ecology of lizard reproductive output GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Body size; diet; insularity; mortality; oviparity; phylogenetic comparative methods; productivity; reproductive output; temperature; viviparity LIFE-HISTORY EVOLUTION; INVARIANT CLUTCH SIZE; BODY-SIZE; ENERGY-EXPENDITURE; SQUAMATE REPTILES; PHYLOGENY; MAMMALS; UNIVERSAL; ALLOMETRY; SHAPE Aim We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life-history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product - productivity is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass-specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg-laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet. [Meiri, Shai] Tel Aviv Univ, Dept Zool, IL-69978 Tel Aviv, Israel; [Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA; [Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England Meiri, S (reprint author), Tel Aviv Univ, Dept Zool, IL-69978 Tel Aviv, Israel. uncshai@post.tau.ac.il Meiri, Shai/D-2403-2010 Meiri, Shai/0000-0003-3839-6330; Sibly, Richard/0000-0001-6828-3543 Alon Fellowship We thank Gavin Thomas for invaluable assistance with the pglm analyses. Rich Grenyer, Ally Phillimore, David Orme and Gavin Thomas kindly helped with R code. We thank Rodolphe Bernard, Anat Feldman and Meirion Hopkins for help with obtaining the environmental and geographic data, Erez Maza and Maria Novosolov for help with the insularity data, and Raoul Van-Damme for contributing much of the body temperature data. We thank Barbara B. Sanger and Liz Butcher from the Michael Way Library, Imperial College, Silwood Park, for their invaluable help with data collection. Folmer Bokma, Pasquale Raia and two anonymous referees provided important comments on earlier versions of this manuscript. S.M. is supported by an Alon Fellowship. ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Albert EM, 2009, GENE, V441, P12, DOI 10.1016/j.gene.2008.05.014; Anderson KJ, 2005, ECOL LETT, V8, P310, DOI 10.1111/j.1461-0248.2005.00723.x; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; ATCHLEY WR, 1976, SYST ZOOL, V25, P137, DOI 10.2307/2412740; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Buckley LB, 2008, ECOLOGY, V89, P48, DOI 10.1890/07-0845.1; Calder III WA, 1984, SIZE FUNCTION LIFE H; Cardillo M, 2005, SCIENCE, V309, P1239, DOI 10.1126/science.1116030; Case T.J., 1982, P184; Clarke A, 2010, J ANIM ECOL, V79, P610, DOI 10.1111/j.1365-2656.2010.01672.x; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Crawley M. J., 2007, R BOOK; Davidson AD, 2009, PNAS, V26, P10702; Degenhardt W. G., 1996, AMPHIBIANS REPTILES; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Fitch H. S, 1970, U KANSAS MUS NAT HIS, V52, P1; FITCH HS, 1985, U KANSAS MUS NAT HIS, V76, P1; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Greer AE, 2003, J HERPETOL, V37, P554, DOI 10.1670/138-02N; Hamilton MJ, 2011, P ROY SOC B-BIOL SCI, V278, P560, DOI 10.1098/rspb.2010.1056; HASEGAWA M, 1994, COPEIA, P732; HEDGES SB, 1985, AM NAT, V126, P258, DOI 10.1086/284412; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Imhoff M.L., 2004, HANPP COLLECTION GLO; INGER RF, 1966, ECOLOGY, V47, P1007, DOI 10.2307/1935648; IUCN, 2009, RED LIST THREAT SPEC; JANZEN DH, 1973, ECOLOGY, V54, P687, DOI 10.2307/1935359; Johnson CN, 2002, P ROY SOC B-BIOL SCI, V269, P2221, DOI 10.1098/rspb.2002.2130; Kratochvil L, 2007, FUNCT ECOL, V21, P171, DOI 10.1111/j.1365-2435.2006.01202.x; Kratochvil L, 2006, BIOL J LINN SOC, V88, P527, DOI 10.1111/j.1095-8312.2006.00627.x; MCNAB BK, 1995, J MAMMAL, V76, P206, DOI 10.2307/1382329; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; Meiri S, 2004, CONDOR, V106, P540, DOI 10.1650/7506; Meiri S, 2010, J ZOOL, V281, P218, DOI 10.1111/j.1469-7998.2010.00696.x; Meiri S, 2008, GLOBAL ECOL BIOGEOGR, V17, P724, DOI 10.1111/j.1466-8238.2008.00414.x; Meiri S, 2007, GLOBAL ECOL BIOGEOGR, V16, P702, DOI 10.1111/j.1466-8238.2007.00327.x; Meiri S, 2011, J BIOGEOGR, V38, P89, DOI 10.1111/j.1365-2699.2010.02390.x; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Olesen JM, 2003, TRENDS ECOL EVOL, V18, P177, DOI 10.1016/S0169-5347(03)00004-1; Organ CL, 2008, INTEGR COMP BIOL, V48, P494, DOI 10.1093/icb/icn046; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; Powney GD, 2010, GLOBAL ECOL BIOGEOGR, V19, P386, DOI 10.1111/j.1466-8238.2009.00521.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Raia P, 2006, EVOLUTION, V60, P1731; RAMBAUT A, 2010, FIGTREE V1 3 1; SHINE R, 1991, EVOLUTION, V45, P1696, DOI 10.1111/j.1558-5646.1991.tb02675.x; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Siliceo I, 2010, BIOL CONSERV, V143, P2601, DOI 10.1016/j.biocon.2010.07.002; Smith RJ, 1999, J HUM EVOL, V36, P423, DOI 10.1006/jhev.1998.0281; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; Turvey Samuel T., 2009, P17; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; White CR, 2007, ECOLOGY, V88, P315, DOI 10.1890/05-1883; Wiens JJ, 2010, SYST BIOL, V59, P674, DOI 10.1093/sysbio/syq048 64 40 40 1 56 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1466-822X GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. MAY 2012 21 5 592 602 10.1111/j.1466-8238.2011.00700.x 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography 920IP WOS:000302397900008 2019-02-21 J Mennerat, A; Hamre, L; Ebert, D; Nilsen, F; Davidova, M; Skorping, A Mennerat, A.; Hamre, L.; Ebert, D.; Nilsen, F.; Davidova, M.; Skorping, A. Life history and virulence are linked in the ectoparasitic salmon louse Lepeophtheirus salmonis JOURNAL OF EVOLUTIONARY BIOLOGY English Article age at maturity; Atlantic salmon; ectoparasite; fecundity; Lepeophtheirus salmonis; life history evolution; Salmo salar L; salmon louse; transmission-virulence trade-off; virulence evolution ATLANTIC SALMON; SEA LICE; TRADE-OFFS; EVOLUTION; PATHOGENS; SALAR; POPULATION; PARASITES; NEMATODES; MAMMALS Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L.similar to salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulencetransmission trade-off. Our results are relevant in the context of increasing intensive farming, where frequent anti-parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence. [Mennerat, A.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [Mennerat, A.; Hamre, L.; Nilsen, F.; Skorping, A.] Univ Bergen, Dept Biol, Bergen, Norway; [Ebert, D.] Univ Basel, Inst Zool, CH-4051 Basel, Switzerland; [Davidova, M.] Masaryk Univ, Dept Bot & Zool, Brno, Czech Republic Mennerat, A (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. adele.mennerat@zoo.ox.ac.uk Davidova, Martina/G-1183-2014; Ebert, Dieter/B-5502-2009 Ebert, Dieter/0000-0003-2653-3772; Mennerat, Adele/0000-0003-0368-7197 Norwegian Research Council [186140] We are grateful to Knut Helge Jensen for useful comments on statistical analyses. Many thanks to Heidi Kongshaug for advice and help with DNA extraction and PCR-based testing for the presence of Paranucleospora theridion in adult female lice. Thanks to Enrique Gonzalez and Per Gunnar Espedal for help in the laboratory. This research was supported by a grant from the Norwegian Research Council to A. Skorping (grant no 186140). The authors declared no conflict of interest. Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Dawson LHJ, 1999, DIS AQUAT ORGAN, V35, P89, DOI 10.3354/dao035089; Dawson LHJ, 1998, DIS AQUAT ORGAN, V33, P179, DOI 10.3354/dao033179; de Roode JC, 2008, P NATL ACAD SCI USA, V105, P7489, DOI 10.1073/pnas.0710909105; Ebert D, 1996, PARASITOL TODAY, V12, P96, DOI 10.1016/0169-4758(96)80668-5; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; Friedland KD, 2005, ICES J MAR SCI, V62, P1338, DOI 10.1016/j.icejms.2005.04.013; Gandon S, 2003, TRENDS MICROBIOL, V11, P206, DOI 10.1016/S0966-842X(03)00074-X; Glover KA, 2001, J FISH BIOL, V59, P1512, DOI 10.1006/jfbi.2001.1787; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; Hudson P. J., 1995, P144, DOI 10.1017/CBO9780511629396.006; Jensen KH, 2006, PLOS BIOL, V4, P1265, DOI 10.1371/journal.pbio.0040197; Lipsitch M, 1997, TRENDS MICROBIOL, V5, P31, DOI 10.1016/S0966-842X(97)81772-6; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; Mennerat A, 2010, EVOL BIOL, V37, P59, DOI 10.1007/s11692-010-9089-0; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Nylund S, 2010, J EUKARYOT MICROBIOL, V57, P95, DOI 10.1111/j.1550-7408.2009.00451.x; Peyronnet A, 2007, J FISH BIOL, V71, P684, DOI 10.1111/j.1095-8649.2007.01538.x; PIKE AW, 1989, PARASITOL TODAY, V5, P291, DOI 10.1016/0169-4758(89)90020-3; Pike AW, 2000, ADV PARASIT, V44, P233; Pinheiro J., 2001, NLME LINEAR NONLINEA, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Development Core Team, 2011, R LANG ENV STAT COMP; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Roff A.D., 2002, LIFE HIST EVOLUTION; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Stearns S, 1992, EVOLUTION LIFE HIST 29 21 21 1 67 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2012 25 5 856 861 10.1111/j.1420-9101.2012.02474.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922MH WOS:000302551000006 22356541 Bronze 2019-02-21 J Attisano, A; Moore, AJ; Moore, PJ Attisano, A.; Moore, A. J.; Moore, P. J. Reproduction-longevity trade-offs reflect diet, not adaptation JOURNAL OF EVOLUTIONARY BIOLOGY English Article diet adaptation; life history traits; longevity; male's investment; reproduction; trade-offs MILKWEED BUGS ONCOPELTUS; LIFE-HISTORY; DROSOPHILA-MELANOGASTER; MATING-BEHAVIOR; FLIGHT ACTIVITY; FASCIATUS; SPAN; SEX; AGE; CONSEQUENCES A tenet of life history evolution is that allocation of limited resources results in trade-offs, such as that between reproduction and lifespan. Reproduction and lifespan are also influenced proximately by differences in the availability of specific nutrients. What is unknown is how the evolution of the ability to use a nutritionally novel diet is reflected in this fundamental trade-off. Does the evolution of the ability to use a nutritionally novel food maintain the trade-off in reproduction and longevity, or do the proximate effects of nutrition alter the adapted trade-off? We tested this by measuring trade-offs in male milkweed bugs, Oncopeltus fasciatus, fed either an adapted diet of sunflower or the ancestral diet of milkweed. Sunflower-fed males lived longer but invested less in reproduction, both in mating and fertility. Milkweed-fed males invested in both mating and fertility at the expense of survival. The evolution of an expanded diet was not constrained by the existing trade-off, but instead was accompanied by a different trade-off between reproduction and longevity. We suggest that this occurs because diets differ in promoting germ line development or longevity. [Attisano, A.; Moore, A. J.; Moore, P. J.] Univ Exeter, Ctr Ecol & Conservat, Coll Life & Environm Sci, Penryn, England Moore, PJ (reprint author), Univ Georgia, Dept Entomol, Athens, GA 30602 USA. pjmoore@uga.edu Attisano, Alfredo/P-2141-2015 Attisano, Alfredo/0000-0002-6675-4900 Leverhulme; European Social Fund We thank Corrina Lowry for technical help in rearing insects. Two anonymous reviewers provided helpful comments that clarified our presentation. This research is funded by a Leverhulme grant to T. J. M. and a European Social Fund Ph.D. studentship to A. A. All authors contributed extensively to the design, analysis and interpretation of the data and to the writing of the manuscript. A. A. performed the experiments. Adams TS, 2000, ANN ENTOMOL SOC AM, V93, P529, DOI 10.1603/0013-8746(2000)093[0529:EODAMS]2.0.CO;2; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; CHAPMAN T, 1994, J EVOLUTION BIOL, V7, P51, DOI 10.1046/j.1420-9101.1994.7010051.x; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; DINGLE H, 1966, J EXP BIOL, V44, P335; DINGLE H, 1965, J EXP BIOL, V42, P269; DINGLE H, 1972, SCIENCE, V175, P1327, DOI 10.1126/science.175.4028.1327; DINGLE H, 1968, AM NAT, V102, P149, DOI 10.1086/282532; FEIR D, 1974, ANNU REV ENTOMOL, V19, P81, DOI 10.1146/annurev.en.19.010174.000501; FEIR DOROTHY, 1963, ANN ENTOMOL SOC AMER, V56, P224; Flatt T, 2008, P NATL ACAD SCI USA, V105, P6368, DOI 10.1073/pnas.0709128105; Flatt T, 2009, NATURE, V462, P989, DOI 10.1038/462989a; Fricke C, 2008, EVOLUTION, V62, P3170, DOI 10.1111/j.1558-5646.2008.00515.x; Goudeau J, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000599; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Halliday R., 1989, BIOESSAYS, V10, P125; HAYES JL, 1983, PHYSIOL ENTOMOL, V8, P251, DOI 10.1111/j.1365-3032.1983.tb00357.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jacob HS, 2000, ENVIRON ENTOMOL, V29, P1088, DOI 10.1603/0046-225X-29.5.1088; JMP, 1989, JMP VERS 8 0 2; Kaczmarczyk AN, 2011, BIOESSAYS, V33, P5, DOI 10.1002/bies.201000085; King R.C., 2006, DICT GENETICS; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Magwere T., 2004, J GERONTOL A-BIOL, V95, pB3; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Moore PJ, 2011, ECOL EVOL, V1, P37, DOI 10.1002/ece3.4; Narasimhan SD, 2009, CURR BIOL, V19, pR657, DOI 10.1016/j.cub.2009.06.013; NATION JL, 1982, INSECT BIOCHEM, V12, P455, DOI 10.1016/0020-1790(82)90044-0; Rion S, 2007, J EVOLUTION BIOL, V20, P1655, DOI 10.1111/j.1420-9101.2007.01405.x; Rosnow R. L., 1985, CONTRAST ANAL FOCUSE; ROSS S, 1978, J INSECT PHYSIOL, V24, P305, DOI 10.1016/0022-1910(78)90027-6; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; Tatar M, 2011, EXP GERONTOL, V46, P363, DOI 10.1016/j.exger.2010.12.002; Tu MP, 2003, AGING CELL, V2, P327, DOI 10.1046/j.1474-9728.2003.00064.x; WALKER WF, 1979, PHYSIOL ENTOMOL, V4, P275, DOI 10.1111/j.1365-3032.1979.tb00204.x; WALKER WF, 1977, EXPERIENTIA, V33, P1539, DOI 10.1007/BF01918859; WALKER WF, 1978, PHYSIOL ENTOMOL, V3, P147, DOI 10.1111/j.1365-3032.1978.tb00144.x; Warbrick-Smith J, 2006, P NATL ACAD SCI USA, V103, P14045, DOI 10.1073/pnas.0605225103; Zajitschek F, 2009, AM NAT, V173, P792, DOI 10.1086/598486; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 43 13 14 1 59 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2012 25 5 873 880 10.1111/j.1420-9101.2012.02476.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922MH WOS:000302551000008 22356585 2019-02-21 J Sutherby, J; Giardini, JL; Nguyen, J; Wessel, G; Leguia, M; Heyland, A Sutherby, Josh; Giardini, Jamie-Lee; Julia Nguyen; Wessel, Gary; Leguia, Mariana; Heyland, Andreas Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea) BMC DEVELOPMENTAL BIOLOGY English Article Metamorphosis; Metamorphic competence; Settlement; Echinoderm life-history; Histamine; Histamine receptors; Settlement; Life history evolution; Modulation MARINE-INVERTEBRATE LARVAE; SEA-URCHIN EMBRYOS; DOLLAR DENDRASTER-EXCENTRICUS; SIBOGAE BERGH GASTROPODA; NERVOUS-SYSTEM; SAND DOLLAR; PHESTILLA-SIBOGAE; DROSOPHILA-MELANOGASTER; CREPIDULA-FORNICATA; THYROID-HORMONE Background: A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results: Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions: We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis. [Sutherby, Josh; Giardini, Jamie-Lee; Julia Nguyen; Heyland, Andreas] Univ Guelph, Guelph, ON N1G 2W1, Canada; [Wessel, Gary; Leguia, Mariana] Brown Univ, MCB, Providence, RI 02912 USA Heyland, A (reprint author), Univ Guelph, Guelph, ON N1G 2W1, Canada. aheyland@uoguelph.ca Leguia, Mariana/0000-0002-7297-0263; Heyland, Andreas/0000-0002-7592-4473 NSERC We would like to thank Dr Jason Hodin for very helpful comments on an earlier version of the manuscript. We would also like to thank the volunteers of the Heyland lab for their time and effort in maintaining the larval cultures. This work was supported by an NSERC discovery grant to AH. The authors declare that they have no competing interests. Amarante-Mendes GP, 1998, CELL DEATH DIFFER, V5, P298, DOI 10.1038/sj.cdd.4400354; Beer AJ, 2001, BIOL BULL, V200, P268, DOI 10.2307/1543509; BERKING S, 1988, ROUX ARCH DEV BIOL, V197, P321, DOI 10.1007/BF00375951; BISGROVE BW, 1986, DEV GROWTH DIFFER, V28, P569; BISGROVE BW, 1987, CELL TISSUE RES, V248, P335; Bishop CD, 2003, EVOL DEV, V5, P542, DOI 10.1046/j.1525-142X.2003.03059.x; Bishop CD, 2001, J EXP ZOOL, V289, P374, DOI 10.1002/jez.1019; Bishop CD, 2008, EVOL DEV, V10, P288, DOI 10.1111/j.1525-142X.2008.00238.x; Bishop CD, 2007, DEV DYNAM, V236, P1535, DOI 10.1002/dvdy.21161; Bishop CD, 2006, INTEGR COMP BIOL, V46, P662, DOI 10.1093/icb/icl043; Brandhorst BP, 2001, BIOL BULL, V201, P394; BUCHNER E, 1993, CELL TISSUE RES, V273, P119, DOI 10.1007/BF00304618; Burke RD, 2006, DEV BIOL, V300, P434, DOI 10.1016/j.ydbio.2006.08.007; Burke RD, 2006, J COMP NEUROL, V496, P244, DOI 10.1002/cne.20939; BURKE RD, 1983, CAN J ZOOL, V61, P1701, DOI 10.1139/z83-221; BURKE RD, 1983, BIOL BULL, V164, P176, DOI 10.2307/1541137; BURKE RD, 1979, AM ZOOL, V19, P958; CAMERON RA, 1978, J MORPHOL, V157, P21, DOI 10.1002/jmor.1051570103; Carpizo-Ituarte E, 2002, CIENC MAR, V28, P157, DOI 10.7773/cm.v28i2.217; DEY SK, 1981, BIOL REPROD, V24, P867, DOI 10.1095/biolreprod24.4.867; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Hadfield MG, 2004, BIOL BULL-US, V207, P28, DOI 10.2307/1543626; Hadfield MG, 2001, AM ZOOL, V41, P1123, DOI 10.1668/0003-1569(2001)041[1123:MCAMAC]2.0.CO;2; Hadfield MG, 2000, SEMIN CELL DEV BIOL, V11, P437, DOI 10.1006/scdb.2000.0197; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.2307/177509; Hentschel BT, 1999, AM NAT, V154, P549, DOI 10.1086/303263; Heyland A, 2005, BIOESSAYS, V27, P64, DOI 10.1002/bies.20136; Heyland A, 2004, EVOLUTION, V58, P524, DOI 10.1111/j.0014-3820.2004.tb01676.x; Heyland A, 2006, INTEGR COMP BIOL, V46, P743, DOI 10.1093/icb/icl023; Heyland A, 2006, EVOL DEV, V8, P568, DOI 10.1111/j.1525-142X.2006.00128.x; HIGHSMITH RC, 1982, ECOLOGY, V63, P329, DOI 10.2307/1938950; Hill SJ, 1997, PHARMACOL REV, V49, P253; Hyman L. H, 1955, INVERTEBRATES ECHINO; JACKSON FR, 1990, J MOL EVOL, V31, P325, DOI 10.1007/BF02101126; Jangi SM, 2006, CARCINOGENESIS; Katow H, 2004, MECH DEVELOP, V121, P325, DOI 10.1016/j.mod.2004.03.005; Katow H, 2010, J EXP BIOL, V213, P2808, DOI 10.1242/jeb.042150; KNIGHTJONES EW, 1953, J MAR BIOL ASSOC UK, V32, P337, DOI 10.1017/S0025315400014594; Leguia M, 2006, MOL REPROD DEV, V73, P1550, DOI 10.1002/mrd.20586; Lesser MP, 2011, P ROY SOC B-BIOL SCI, V278, P3371, DOI 10.1098/rspb.2011.0336; Manahan DT, 1999, BIOL BULL, V196, P177; MARKOVA LN, 1985, INT J DEV NEUROSCI, V3, P493, DOI 10.1016/0736-5748(85)90038-3; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; MAZUR J E, 1971, Ohio Journal of Science, V71, P30; McCoole MD, 2011, J EXP BIOL, V214, P1773, DOI 10.1242/jeb.054486; MILLER SE, 1986, J EXP MAR BIOL ECOL, V97, P95, DOI 10.1016/0022-0981(86)90070-5; Naidenko TK, 1996, MAR BIOL, V126, P685, DOI 10.1007/BF00351335; Nakajima Y, 2004, EVOL DEV, V6, P95, DOI 10.1111/j.1525-142X.2004.04011.x; Noguchi M, 1988, THESIS TOKYO METROPO; PEARCE CM, 1990, BIOL BULL-US, V179, P304, DOI 10.2307/1542322; PECHENIK JA, 1993, J EXP MAR BIOL ECOL, V167, P59, DOI 10.1016/0022-0981(93)90184-P; Pechenik JA, 2007, BIOL BULL-US, V213, P160, DOI 10.2307/25066632; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; Pires A, 2000, BIOL BULL, V198, P319, DOI 10.2307/1542688; POLLACK I, 1991, CELL TISSUE RES, V266, P391, DOI 10.1007/BF00318195; Rast JP, 2006, SCIENCE, V314, P952, DOI 10.1126/science.1134301; REITE OB, 1972, PHYSIOL REV, V52, P778; Roccheri MC, 2002, INT J DEV BIOL, V46, P801; Roeder T, 2003, EUR J PHARMACOL, V466, P85, DOI 10.1016/S0014-2999(03)01553-X; ROWLEY RJ, 1989, MAR BIOL, V100, P485, DOI 10.1007/BF00394825; Sato Y, 2006, CELL TISSUE RES, V326, P851, DOI 10.1007/s00441-006-0212-6; SCHELTEMA RS, 1983, B MAR SCI, V33, P545; Smith LC, 2006, ISJ-INVERT SURVIV J, V3, P25; SMITH SL, 1985, DEV COMP IMMUNOL, V9, P597, DOI 10.1016/0145-305X(85)90025-4; Sodergren E, 2006, SCIENCE, V314, P941, DOI 10.1126/science.1133609; Strathmann MF, 2007, BIOL BULL-US, V213, P152, DOI 10.2307/25066631; Strathmann MF, 1987, REPROD LARVAL DEV MA; Strathmann RR, 2008, EVOL DEV, V10, P731, DOI 10.1111/j.1525-142X.2008.00287.x; Swanson RL, 2007, J EXP BIOL, V210, P3228, DOI 10.1242/jeb.004192; Swanson RL, 2012, MAR BIOL, V159, P915, DOI 10.1007/s00227-011-1869-2; Swanson RL, 2004, BIOL BULL-US, V206, P161, DOI 10.2307/1543640; THORNDYKE MC, 1992, ACTA ZOOL-STOCKHOLM, V73, P207, DOI 10.1111/j.1463-6395.1992.tb01084.x; Thurber RV, 2007, DEV BIOL, V303, P336, DOI 10.1016/j.ydbio.2006.11.018; Toonen RJ, 2001, MAR ECOL PROG SER, V224, P103, DOI 10.3354/meps224103; WELBORN JR, 1995, J EXP BIOL, V198, P1791; WILSON DP, 1953, J MAR BIOL ASSOC UK, V32, P209, DOI 10.1017/S0025315400011528; WILSON DP, 1953, J MAR BIOL ASSOC UK, V31, P413, DOI 10.1017/S0025315400011589; Yaguchi S, 2003, J COMP NEUROL, V466, P219, DOI 10.1002/cne.10865; Yaguchi S, 2000, DEV GROWTH DIFFER, V42, P479; Yaguchi S, 2006, DEVELOPMENT, V133, P2337, DOI 10.1242/dev.02396; Zhou XJ, 2009, BIOFOULING, V25, P739, DOI 10.1080/08927010903154724; Zhu Y, 2001, MOL PHARMACOL, V59, P434 82 22 23 2 22 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-213X BMC DEV BIOL BMC Dev. Biol. APR 27 2012 12 14 10.1186/1471-213X-12-14 15 Developmental Biology Developmental Biology 014XB WOS:000309408000001 22541006 DOAJ Gold, Green Published 2019-02-21 J Patankar, V; D'Souza, E; Kumaraguru, AK; Arthur, R Patankar, Vardhan; D'Souza, Elrika; Kumaraguru, A. K.; Arthur, Rohan Distance-related thresholds and influence of the 2004 tsunami on damage and recovery patterns of coral reefs in the Nicobar Islands CURRENT SCIENCE English Article Catastrophic damage; coastal ecosystems; coral reefs; distance gradient; tsunami INDIAN-OCEAN; COMMUNITIES; BAY The earthquake and tsunami of 2004 resulted in the devastation of marine and coastal ecosystems across the Indian Ocean. However, without adequate baseline information it has been difficult to properly gauge its full impact. The reefs of the Nicobar Islands in the Bay of Bengal lie on a path that ranges from 190 to 500 km from Banda Aceh, the epicentre of the 2004 tsunami. In 2008, we recorded benthic damage as a result of the tsunami to reefs off 14 Nicobar Islands across a gradient of distance from the epicentre. A clear pattern was observed in the demographic structure of the most abundant coral genera, Acropora and Porites across the distance gradient. Significantly, for the largest coral individuals of both genera (>50 cm diameter), there were distinct threshold effects - their abundance declining dramatically in reefs closer than 350 km from the epicentre. Corals between 20 and 50 cm diameter also increased with distance from the epicentre, but in a more linear fashion. Smaller size classes either showed no apparent trend (Acropora) or decreased linearly (Porites) with distance. These genera represent very different life-history strategies: Acropora is fast-growing and highly susceptible to a range of disturbances, while Ponies typically grows slowly but is resistant to disturbance. The fact that both genera showed similar thresholds indicates that, close to the epicentre, the impact of the earthquake and tsunami was large enough to override any species-specific resistance. Also, algal cover was also much higher than at locations further north, linked to higher coral mortality at these locations. However, the fact that smaller size class coral individuals were relatively abundant and even increased close to the epicentre indicates possible paths of reef recovery after the catastrophe. [Patankar, Vardhan; D'Souza, Elrika; Arthur, Rohan] Nat Conservat Fdn, Mysore 570002, Karnataka, India; [Patankar, Vardhan; D'Souza, Elrika; Kumaraguru, A. K.] Madurai Kamaraj Univ, Sch Energy Sci, Ctr Marine & Coastal Studies, Madurai 625021, Tamil Nadu, India Patankar, V (reprint author), Nat Conservat Fdn, 3076-5,4 Cross,Gokulam Pk, Mysore 570002, Karnataka, India. vardhan@ncf-india.org HSBC, India; Wildlife Conservation Society This study was supported by HSBC, India. We are grateful to Rufford Small Grant for Nature Conservation and Research Fellowship Program of Wildlife Conservation Society for providing us continuation grant. We thank the Department of Environment and Forests, Port Blair, for permission to conduct the study and all at the Reef Watch Marine Conservation and Nature Conservation Foundation. We are grateful to the Nicobari villagers, village heads and our field assistants for support and help during the fieldwork. Arthur R, 2006, CORAL REEFS, V25, P427, DOI 10.1007/s00338-006-0127-4; Baird AH, 2005, CURR BIOL, V15, P1926, DOI 10.1016/j.cub.2005.09.036; Bakus G. J., 1994, CORAL REEF ECOSYSTEM; Bilham R, 2005, SCIENCE, V308, P1126, DOI 10.1126/science.1113363; Briggs JC, 1996, CONSERV BIOL, V10, P713, DOI 10.1046/j.1523-1739.1996.10030713.x; BRIGGS JC, 1992, GLOBAL ECOL BIOGEOGR, V2, P149, DOI 10.2307/2997803; Chatenoux B, 2007, NAT HAZARDS, V40, P289, DOI 10.1007/s11069-006-0015-9; Cummins PR, 2007, NATURE, V449, P75, DOI 10.1038/nature06088; DOLLAR SJ, 1993, CORAL REEFS, V12, P223, DOI 10.1007/BF00334481; DONE TJ, 1992, MAR BIOL, V114, P479, DOI 10.1007/BF00350040; Kesavan PC, 2007, CURR SCI INDIA, V92, P743; Krishnan P., 2011, CURR SCI, V10, P111; Kulkarni S., 2008, CORDIO STATUS REPORT, P173; Kumaraguru AK, 2003, CURR SCI INDIA, V85, P1787; Lirman D, 2003, ECOL MODEL, V161, P167; Magurran AE, 1988, ECOLOGICAL DIVERSITY, DOI [10.1007/978-94-015-7358-0, DOI 10.1007/978-94-015-7358-0]; McCullagh P., 1989, MONOGRAPHS STAT APPL, P1; Nayak S. A., 1974, CORAL REEF MAPPING A, P1; Pearson R. G., 1981, MAR ECOL-PROG SER, V4, P122; Phongsuwan Niphon, 2007, Atoll Research Bulletin, P79; Pillai C.S.G., 1987, Journal of the Marine Biological Association of India, V25, P78; R DEVELOPMENT CORE TEAM, R LANG ENV STAT COMP; Rajasuriya A., 2008, CORDIO STATUS REPORT, P11; Ramachandran S, 2005, CURR SCI INDIA, V89, P195; RAO M K V, 1986, Journal of Economic and Taxonomic Botany, V8, P107; Sankaran R., 2005, POSTTSUNAMI IMPACT A, P1; Scheer G., 1974, Zoologica Stuttg, V122, P1; Scheer G., 1971, P S ZOOL SOC LOND, P121; Schiermeier Q, 2005, NATURE, V433, P350, DOI 10.1038/433350a; Sewell R. B. S., 1922, J BOMBAY NATURAL HIS, V28, P970; Staddart D. R., 1978, CORAL REEF METHODS, P121; Tkachenko S. K., 2007, CORAL REEFS, V151, P185; Veron J., 2000, CORALS WORLD, V1-3, P1; VERON JEN, 1984, SCLERACTINIA E AUS 5, P1; Zar J. H., 1999, BIOSTAT ANAL, P1 35 1 1 0 21 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0011-3891 CURR SCI INDIA Curr. Sci. APR 25 2012 102 8 1199 1205 7 Multidisciplinary Sciences Science & Technology - Other Topics 944SO WOS:000304224300026 DOAJ Gold 2019-02-21 J Piou, C; Prevost, E Piou, Cyril; Prevost, Etienne A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity ECOLOGICAL MODELLING English Article Individual-based model; Pattern-oriented modelling; Diadromous fish; Life-history strategies; Salmo salar LIFE-HISTORY VARIATION; ALTERNATIVE REPRODUCTIVE TACTICS; DENSITY-DEPENDENT GROWTH; RAPID CLIMATE-CHANGE; MATURE MALE PARR; SALAR L; REACTION NORMS; OCEAN CLIMATE; SOCIAL-STATUS; BODY-SIZE Predicting the persistence and adaptability of natural populations to climate change is a challenging task. Mechanistic models that integrate biological and evolutionary processes are helpful toward this aim. Atlantic salmon, Salmo salar (L.), is a good candidate to assess the effect of environmental change on a species with a complex life history through an integrative modelling approach due to (i) a large amount of knowledge concerning its biology and (ii) extensive historical data sets that can be used for model validation. This paper presents an individual-based demo-genetic model developed to simulate S. salar population dynamics in southern European populations: IBASAM (Individual-Based Atlantic SAlmon Model). The model structure is described thoroughly. A parameterization exercise was conducted to adjust the model to an extensive set of demographic data collected over 15 years on the Scorff River, Brittany, France. A sensitivity analysis showed that two parameters determining mean and variability of juvenile growth rates were crucial in structuring the simulated populations. Additionally, realistic microevolutionary patterns of different aspects of life history were predicted by the model, reproducing general knowledge on S. salar population biology. The integration into IBASAM of a demo-genetic structure coupled with the explicit representation of individual variability and complex life histories makes it a cohesive and novel tool to assess the effect of potential stressors on evolutionary demography of Atlantic salmon in further studies. (C) 2012 Elsevier B.V. All rights reserved. [Piou, Cyril; Prevost, Etienne] INRA, UMR ECOBIOP, Stn Hydrobiol INRA, F-64310 Quartier Ibarron, St Pee Sur Nive, France; [Prevost, Etienne] UPPA, UMR ECONOP, UFR Sci & Tech Cote Basque, F-64600 Anglet, France Piou, C (reprint author), CIRAD, UPR Bioagresseurs Anal & Maitrise Risque, F-34398 Montpellier, France. cyril.piou@cirad.fr French Ministry of Ecology and Sustainable Development; ONEMA (French National Office of Water and the Aquatic Environments) under ONEMA-INRA The authors wish to thank E. Beall, C. Tentelier, J. Labonne, A. Bardonnet, J.L. Bagliniere, L. Beaulaton and N. Seon-Massin for fruitful discussions helping in designing and presenting the model and two anonymous reviewers for their constructive comments on earlier version of this manuscript. We are also thankful to Marc Taylor for the editing of our English. This work was financed under a grant from the French Ministry of Ecology and Sustainable Development "Programme GICC2: Gestion et Impact du Changement Climatique" and a funding from the ONEMA (French National Office of Water and the Aquatic Environments) under the ONEMA-INRA 2008-2010 conventions. Archer GEB, 1997, J STAT COMPUT SIM, V58, P99, DOI 10.1080/00949659708811825; BAGLINIERE JL, 1985, AQUACULTURE, V45, P249, DOI 10.1016/0044-8486(85)90274-1; Beall E., 2003, JORNADAS SALMON ATLA, P223; BEVERTON RJH, 1957, FISHERY INVEST LON 2, V19, P533; Bradshaw WE, 2008, MOL ECOL, V17, P157, DOI 10.1111/j.1365-294X.2007.03509.x; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; BRANNAS E, 1988, J FISH BIOL, V33, P589, DOI 10.1111/j.1095-8649.1988.tb05502.x; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; CAPRA H, 1995, REGUL RIVER, V10, P281, DOI 10.1002/rrr.3450100221; Caudal A.L., 2008, ETAT STOCK SAUMON AT; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Debowski P., 1999, ARCH POL FISH, V2, P237; Diekmann O, 1999, EVOL ECOL RES, V1, P261; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; ELLIOTT JM, 1995, FUNCT ECOL, V9, P625, DOI 10.2307/2390153; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Fleming IA, 1997, BEHAV ECOL, V8, P470, DOI 10.1093/beheco/8.5.470; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Fleming L., 1996, J APPL ECOL, V33, P893; Fontaine M., 1960, CELL MOL LIFE SCI, V16, p433L; Forseth T, 2001, FRESHWATER BIOL, V46, P173, DOI 10.1046/j.1365-2427.2001.00631.x; Friedland KD, 1998, CAN J FISH AQUAT SCI, V55, P119, DOI 10.1139/cjfas-55-S1-119; Friedland KD, 2000, ICES J MAR SCI, V57, P419, DOI 10.1006/jmsc.1999.0639; Garant D, 2005, NATURE, V433, P60, DOI 10.1038/nature03051; Garant D, 2000, MOL ECOL, V9, P615, DOI 10.1046/j.1365-294x.2000.00909.x; Gavrilets S, 2007, MOL ECOL, V16, P2893, DOI 10.1111/j.1365-294X.2007.03305.x; Gavrilets S, 2006, P NATL ACAD SCI USA, V103, P16823, DOI 10.1073/pnas.0601428103; GJERDE B, 1994, LIVEST PROD SCI, V38, P133, DOI 10.1016/0301-6226(94)90057-4; Gramacy RB, 2010, J STAT SOFTW, V33, P1; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; Grimardias D, 2010, J FISH BIOL, V77, P2460, DOI 10.1111/j.1095-8649.2010.02808.x; Grimardias D, 2010, ECOL FRESHW FISH, V19, P510, DOI 10.1111/j.1600-0633.2010.00421.x; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 1996, SCI TOTAL ENVIRON, V183, P151, DOI 10.1016/0048-9697(95)04966-5; GRIMM V, 2005, INDIVIDUAL BASED MOD, P480; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; GUNNES K, 1979, AQUACULTURE, V16, P211, DOI 10.1016/0044-8486(79)90109-1; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; Imre I, 2005, J ANIM ECOL, V74, P508, DOI 10.1111/j.1365-2656.2005.00949.x; Imre I, 2010, ECOL FRESHW FISH, V19, P1, DOI 10.1111/j.1600-0633.2009.00394.x; JONES JW, 1952, NATURE, V169, P882, DOI 10.1038/169882a0; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jonsson B, 2009, J FISH BIOL, V75, P2381, DOI 10.1111/j.1095-8649.2009.02380.x; Jonsson N, 1997, J ANIM ECOL, V66, P425, DOI 10.2307/5987; Jonsson N, 1996, FUNCT ECOL, V10, P89, DOI 10.2307/2390266; Kopp M, 2006, EVOLUTION, V60, P1321, DOI 10.1111/j.0014-3820.2006.tb01212.x; Kramer-Schadt S, 2004, J APPL ECOL, V41, P711, DOI 10.1111/j.0021-8901.2004.00933.x; Kramer-Schadt S, 2007, ECOL MODEL, V204, P553, DOI 10.1016/j.ecolmodel.2007.01.018; Lassalle G, 2009, FRESHWATER BIOL, V54, P587, DOI 10.1111/j.1365-2427.2008.02135.x; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; McCormick S., 1987, P INT S BOST MASS US, P211; McCormick Stephen D., 1998, Canadian Journal of Fisheries and Aquatic Sciences, V55, P77, DOI 10.1139/cjfas-55-S1-77; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; Myers R., 1983, CM14 INT COUNC EXPL; Myers R.A., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P53; MYERS RA, 1987, ECOLOGY, V68, P1839, DOI 10.2307/1939875; Niemela E, 2004, CAN J FISH AQUAT SCI, V61, P2384, DOI 10.1139/f04-208; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; PETERSON RH, 1977, J FISH RES BOARD CAN, V34, P31, DOI 10.1139/f77-004; Peyronnet A, 2008, J FISH BIOL, V73, P945, DOI 10.1111/j.1095-8649.2008.01984.x; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; Piou C, 2009, ECOL MODEL, V220, P1957, DOI 10.1016/j.ecolmodel.2009.05.003; Post JR, 1999, ECOL MONOGR, V69, P155, DOI 10.1890/0012-9615(1999)069[0155:DDPISF]2.0.CO;2; Prevost E., 2001, STOCK RECRUITMENT RE, P93; Prouzet P., 1981, B FR PISCIC, V282, P16; PROUZET P., 1982, B FR PISCIC, V285, P233; Pujol G, 2008, SENSITIVITY ANAL R P; R Development Core Team, 2010, R LANG ENV STAT COMP; RATKOWSKY DA, 1983, J BACTERIOL, V154, P1222; Reed TE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020380; Reed TE, 2010, P ROY SOC B-BIOL SCI, V277, P3391, DOI 10.1098/rspb.2010.0771; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; Salminen M, 1997, J APPL ICHTHYOL, V13, P121, DOI 10.1111/j.1439-0426.1997.tb00111.x; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; Sobol I. M., 1993, MATEMATICHESKOE MODE, V2, P112; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; Tomkins JL, 2007, TRENDS ECOL EVOL, V22, P522, DOI 10.1016/j.tree.2007.09.002; Vibert R., 1950, ANN STATION CENTRALE, P27; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Webb J., 2007, P17, DOI 10.1002/9780470995846.ch2; Wiegand T, 2003, OIKOS, V100, P209, DOI 10.1034/j.1600-0706.2003.12027.x; Wiegand T, 1998, ECOL MONOGR, V68, P539, DOI 10.1890/0012-9615(1998)068[0539:ATROEF]2.0.CO;2 93 32 32 0 62 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. APR 24 2012 231 37 52 10.1016/j.ecolmodel.2012.01.025 16 Ecology Environmental Sciences & Ecology 929QT WOS:000303081300005 2019-02-21 J Covas, R Covas, Rita Evolution of reproductive life histories in island birds worldwide PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article developmental periods; fecundity; insularity; life-history evolution; parental care NEST PREDATION; EMBRYONIC TEMPERATURE; GEOGRAPHIC-VARIATION; DEVELOPMENTAL RATES; BREEDING STRATEGIES; PASSERINE BIRDS; CLUTCH SIZES; FOOD; POPULATION; DENSITY Island environments typically share characteristics such as impoverished biotas and less-seasonal climates, which should be conducive to specific adaptations by organisms. However, with the exception of morphological studies, broad-scale tests of patterns of adaptation on islands are rare. Here, I examine reproductive patterns in island birds worldwide. Reproductive life histories are influenced by latitude, which could affect the response to insularity; therefore, I additionally test this hypothesis. Island colonizers showed mostly bi-parental care, but there was a significant increase in cooperative breeding on islands. Additionally, I found support for previous suggestions of reduced fecundity, longer developmental periods and increased investment in young on islands. However, clutch size increased with latitude at a rate nearly five times faster on the mainland than on the islands revealing a substantially stronger effect of insularity at higher latitudes. Latitude and insularity may also interact to determine egg volume and incubation periods, but these effects were less clear. Analyses of reproductive success did not support an effect of reduced nest predation as a driver of reproductive change, but this requires further study. The effect of latitude detected here suggests that the evolutionary changes associated with insularity relate to environmental stability and improved adult survival. [Covas, Rita] Res Ctr Biodivers & Genet Resources, CIBIO, P-4485661 Vairao, Portugal; [Covas, Rita] Univ Porto, Fac Sci, Dept Biol, P-4100 Oporto, Portugal; [Covas, Rita] CNRS, CEFE, F-34293 Montpellier, France; [Covas, Rita] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland Covas, R (reprint author), Res Ctr Biodivers & Genet Resources, CIBIO, Campus Agr Vairao,Rua Padre Armando Quintas, P-4485661 Vairao, Portugal. rita.covas@gmail.com Covas, Rita/G-2242-2018 Covas, Rita/0000-0001-7130-144X EU; Portuguese Science and Technology Foundation (FCT) I am most thankful to P. Jones for kindly giving me full access to his comprehensive ornithological library and for helpful advice. I also thank M. Koopman at the Niven Library (Percy FitzPatrick Institute, University of Cape Town) for assistance. O. Gimenez, C. Spottiswoode and P.-Y. Henry provided helpful statistical advice. M. Melo, S. Anderson, R. Bowie, R. Lopes, R. Heleno and P. Rodrigues gave me access to unpublished data. The manuscript was improved by comments from T. Arnold, C. Doutrelant, P. Jones, M. Melo and an anonymous reviewer. P. Tarroso helped in preparing figure 1. I was funded by a Marie Curie Fellowship (EU) and the Portuguese Science and Technology Foundation (FCT) during the preparation of this paper. Ashmole N. P., 1963, ECOLOGY, V103, P458; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Bates D. M., 2010, LME4 LINEAR MIXED EF; Bennet P. M., 2002, EVOLUTIONARY ECOLOGY; BLONDEL J, 1988, ECOLOGY, V69, P1899, DOI 10.2307/1941167; BLONDEL J, 1985, J ANIM ECOL, V54, P531, DOI 10.2307/4497; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; Blondel J, 2000, VIE MILIEU, V50, P205; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Buckley LB, 2007, ECOL LETT, V10, P481, DOI 10.1111/j.1461-0248.2007.01042.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clegg SM, 2002, P ROY SOC B-BIOL SCI, V269, P1359, DOI 10.1098/rspb.2002.2024; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cockburn A, 2003, P ROY SOC B-BIOL SCI, V270, P2207, DOI 10.1098/rspb.2003.2503; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Conway CJ, 2000, EVOLUTION, V54, P670; Covas R, 2007, P ROY SOC B-BIOL SCI, V274, P1349, DOI 10.1098/rspb.2007.0117; CROWELL KL, 1962, ECOLOGY, V43, P75, DOI 10.2307/1932042; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Ekman J, 2001, AUK, V118, P1, DOI 10.1642/0004-8038(2001)118[0001:DDLUTR]2.0.CO;2; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Grant Peter R., 1998, P1; Griffith SC, 2000, BEHAV ECOL, V11, P265, DOI 10.1093/beheco/11.3.265; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HIGUCHI H, 1981, ANIM BEHAV, V29, P523, DOI 10.1016/S0003-3472(81)80114-5; HOYT DF, 1979, AUK, V96, P73; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Lack D., 1948, SIGNIFICANCE CLUTCH, V90, P25, DOI [10.1111/j.1474-919X.1948.tb01399.x, DOI 10.1111/J.1474-919X.1948.TB01399.X]; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Losos JB, 2009, NATURE, V457, P830, DOI 10.1038/nature07893; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; Mappes T, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-296; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2011, BIOL LETTERS, V7, P425, DOI 10.1098/rsbl.2010.1031; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MCNAB BK, 1994, AM NAT, V144, P643, DOI 10.1086/285698; McNab BK, 2006, COMP BIOCHEM PHYS A, V145, P295, DOI 10.1016/j.cbpa.2006.02.025; MOLLER AP, 1992, AM NAT, V139, P644, DOI 10.1086/285348; Pinheiro J., 2011, NLME LINEAR NONLINEA, P1; R Development Core Team, 2010, R LANG ENV STAT COMP; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544; Roff Derek A., 1992; Styrsky JD, 2000, J ANIM ECOL, V69, P690, DOI 10.1046/j.1365-2656.2000.00427.x; Whittaker R. J, 2007, ISLAND BIOGEOGRAPHY 61 26 27 2 72 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 22 2012 279 1733 1531 1537 10.1098/rspb.2011.1785 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 906GM WOS:000301332900010 22072609 Green Published, Bronze 2019-02-21 J Regier, JC; Brown, JW; Mitter, C; Baixeras, J; Cho, S; Cummings, MP; Zwick, A Regier, Jerome C.; Brown, John W.; Mitter, Charles; Baixeras, Joaquin; Cho, Soowon; Cummings, Michael P.; Zwick, Andreas A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution PLOS ONE English Article CODING NUCLEAR GENES; SPECIES LEPIDOPTERA; BIOLOGICAL-CONTROL; FEMALE FRENULUM; NEW-CALEDONIA; MISSING DATA; GENUS; BUTTERFLIES; CHLIDANOTINAE; PHRICANTHINI Background: Tortricidae, one of the largest families of microlepidopterans, comprise about 10,000 described species worldwide, including important pests, biological control agents and experimental models. Understanding of tortricid phylogeny, the basis for a predictive classification, is currently provisional. We present the first detailed molecular estimate of relationships across the tribes and subfamilies of Tortricidae, assess its concordance with previous morphological evidence, and re-examine postulated evolutionary trends in host plant use and biogeography. Methodology/Principal Findings: We sequenced up to five nuclear genes (6,633 bp) in each of 52 tortricids spanning all three subfamilies and 19 of the 22 tribes, plus up to 14 additional genes, for a total of 14,826 bp, in 29 of those taxa plus all 14 outgroup taxa. Maximum likelihood analyses yield trees that, within Tortricidae, differ little among data sets and character treatments and are nearly always strongly supported at all levels of divergence. Support for several nodes was greatly increased by the additional 14 genes sequenced in just 29 of 52 tortricids, with no evidence of phylogenetic artifacts from deliberately incomplete gene sampling. There is strong support for the monophyly of Tortricinae and of Olethreutinae, and for grouping of these to the exclusion of Chlidanotinae. Relationships among tribes are robustly resolved in Tortricinae and mostly so in Olethreutinae. Feeding habit (internal versus external) is strongly conserved on the phylogeny. Within Tortricinae, a clade characterized by eggs being deposited in large clusters, in contrast to singly or in small batches, has markedly elevated incidence of polyphagous species. The five earliest-branching tortricid lineages are all species-poor tribes with mainly southern/tropical distributions, consistent with a hypothesized Gondwanan origin for the family. Conclusions/Significance: We present the first robustly supported phylogeny for Tortricidae, and a revised classification in which all of the sampled tribes are now monophyletic. [Regier, Jerome C.; Mitter, Charles] Univ Maryland, Dept Entomol, College Pk, MD 20742 USA; [Regier, Jerome C.] Inst Biosci & Biotechnol Res, College Pk, MD USA; [Brown, John W.] ARS, Systemat Entomol Lab, USDA, Beltsville, MD USA; [Baixeras, Joaquin] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, Valencia, Spain; [Cho, Soowon] Chungbuk Natl Univ, Dept Plant Med, Cheongju, South Korea; [Cummings, Michael P.] Univ Maryland, Lab Mol Evolut, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA; [Zwick, Andreas] State Museum Nat Hist, Dept Entomol, Stuttgart, Germany Regier, JC (reprint author), Univ Maryland, Dept Entomol, College Pk, MD 20742 USA. cmitter@umd.edu Baixeras, Joaquin/L-1734-2014; Zwick, Andreas/A-5735-2015 Baixeras, Joaquin/0000-0002-6092-0496; Zwick, Andreas/0000-0002-7532-1752 U.S. National Science Foundation [0531626, 0531769]; Spanish Government (Ministerio de Ciencia e Innovacion) [CGL2008-00605] Financial support was provided by the U.S. National Science Foundation's Assembling the Tree of Life program, award numbers 0531626 and 0531769, and grant CGL2008-00605 of the Spanish Government (Ministerio de Ciencia e Innovacion) to Dr. Brown. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aarvik Leif, 2004, Norwegian Journal of Entomology, V51, P71; Aarvik L, 2009, ZOOTAXA, P18; Alipanah H, 2011, ZOOTAXA, P33; BAIXERAS J, 2010, TARTS ONLINE WORLD C; BAZINET AL, 2009, DISTRIBUTED GRID COM, P2; Bremer B, 2009, BOT J LINN SOC, V161, P105; Brower AVZ, 1998, INSECT MOL BIOL, V7, P73, DOI 10.1046/j.1365-2583.1998.71052.x; BROWN J. W., 2005, WORLD CATALOGUE INSE, V5, P741; Brown JW, 2007, PAN-PAC ENTOMOL, V83, P352, DOI 10.3956/2007-22.1; BROWN JW, 1989, ENTOMOL SCAND, V20, P439; BROWN JW, 1990, J NEW YORK ENTOMOL S, V98, P369; Brown JW, 2004, P ENTOMOL SOC WASH, V106, P288; BROWN JW, 1990, ENTOMOL NEWS, V101, P109; Brown JW, 1998, PAN-PAC ENTOMOL, V74, P1; Brown JW, 1991, U CALIF PUBL ENTOMOL, V111; Brown JW, 2003, J LEPID SOC, V56, P113; Brown JW, 2010, FOOD PLANT DATABASE; Brown JW, 2000, U CALIF PUBL ENTOMOL, V120; Chapman PJ, 1971, TORTRICID FAUNA APPL; Cho S, 2011, SYST BIOL, V60, P782, DOI 10.1093/sysbio/syr079; COMMON I. F. B., 1965, AUSTRALIAN J ZOOL, V13, P613, DOI 10.1071/ZO9650613; COMMON I. F. B., 1963, AUSTRALIAN JOUR ZOOL, V11, P81, DOI 10.1071/ZO9630081; CUMMINGS MP, 2005, EDUCAUSE REV, V40, P116; DANG P T, 1990, Journal of the Lepidopterists' Society, V44, P77; DANILEVSKY AS, 1968, INSECTA LEPIDOPTERA, V5, P1; Dhileepan K, 2004, ENTOMOL EXP APPL, V113, P63, DOI 10.1111/j.0013-8703.2004.00209.x; Dhileepan K, 2003, B ENTOMOL RES, V93, P393, DOI 10.1079/BER2003255; DIAKONOFF A, 1981, P K NED AKAD C BIOL, V84, P155; DIAKONOFF A., 1950, BULL BRIT MUS [NAT HIST] ENT, V1, P173; Diakonoff A., 1977, Zoologische Verh. Leiden, VNo. 158, P1; DIAKONOFF A, 1957, ACTA PHYSIOL PHARM N, V6, P410; Diakonoff A, 1977, ENTOMOL BER, V37, P36; Diakonoff A, 1973, ZOOLOGISCHE MONOGRAP, V1; FALKOVITSH MI, 1962, ENTOMOL OBOZR, V41, P546; Fang QQ, 1997, SYST BIOL, V46, P269, DOI 10.2307/2413623; Farrell BD, 2001, EVOLUTION, V55, P2011; Hallwachs W., 2010, DYNAMIC DATABASE INV; HEINRICH C, 1923, B US NATL MUSEUM, V123, P1; HEPPNER JB, 1978, PAN-PAC ENTOMOL, V54, P48; HORAK M, 1984, ENTOMOL SCAND, V15, P423; Horak M, 1991, TORTRICID PESTS THEI, P23; Horak M, 1998, HDB ZOOLOGY 35, V1, P199; Horak M., 2006, MONOGRAPHS AUSTR LEP, V10; Horak Marianne, 1996, Monographs on Australian Lepidoptera, V4, P123; Jinbo Utsugi, 2000, Tokyo Metropolitan University Bulletin of Natural History, V4, P33; Kawahara AY, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005719; Kawahara AY, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-182; Komai F., 2006, MONOGRAPHS AUSTR LEP, V10, P396; Komai Furumi, 1999, Entomologica Scandinavica Supplement, V55, P1; Kuznetsov V. I., 1994, Entomologicheskoe Obozrenie, V73, P700; KUZNETSOV V I, 1970, ENTOMOL REV (ENGL TRANSL ENTOMOL OBOZR), V49, P260; Kuznetsov V. I, 1977, Trudy zool Inst Leningr, V70, P65; KUZNETSOV VI, 1984, 36 HOL MEM LECT 1 AP, P51; Kuznetzov V.I., 1973, Trudy vses ent Obshch, V56, P18; Lemmon AR, 2009, SYST BIOL, V58, P130, DOI 10.1093/sysbio/syp017; Meyrick E, 1895, HDB BRIT LEPIDOPTERA; Monsalve S, 2011, P ENTOMOL SOC WASH, V113, P335, DOI 10.4289/0013-8797.113.3.335; Moulton JK, 2004, MOL PHYLOGENET EVOL, V31, P363, DOI 10.1016/S1055-7903(03)00284-7; MULLER H, 1988, CAN ENTOMOL, V120, P109; Mutanen M, 2010, P ROY SOC B-BIOL SCI, V277, P2839, DOI 10.1098/rspb.2010.0392; Nyman T, 2006, EVOLUTION, V60, P1622, DOI 10.1554/05-674.1; Obraztsov N., 1949, Entomologische Zeitschrift Stuttgart, V59, P45; Obraztsov NS, 1964, TIJDSCHR ENTOMOL, V107, P1; Phillips MJ, 2004, MOL BIOL EVOL, V21, P1455, DOI 10.1093/molbev/msh137; Pogue M, 1986, THESIS U MINNESOTA; POINAR GO, 1993, ENTOMOL SCAND, V24, P25; Powell GW, 2000, CAN ENTOMOL, V132, P223, DOI 10.4039/Ent132223-2; POWELL JA, 1985, AUST J ZOOL, V33, P179, DOI 10.1071/ZO9850179; POWELL JA, 1976, PAN-PAC ENTOMOL, V52, P91; POWELL JA, 1986, PAN-PAC ENTOMOL, V62, P372; Powell JA, 2011, TORTRICIDAE TORTRICI; Powell JA, 1964, U CALIF PUBLIC ENTOM, V32; Powell JA, 1983, CHECK LIST LEPIDOPTE, P31; Powell Jerry A., 1999, Handbuch der Zoologie (Berlin), V4, P403; RAZOWSKI J, 1976, Acta Zoologica Cracoviensia, V21, P73; RAZOWSKI J, 1988, Acta Zoologica Cracoviensia, V31, P387; RAZOWSKI J, 1987, Acta Zoologica Cracoviensia, V30, P141; Razowski J, 1970, MICROLEPIDOPTERA PAL, V3; Razowski Jozef, 1993, Acta Zoologica Cracoviensia, V35, P665; Razowski J, 2010, FOLIA BIOL-KRAKOW, V58, P189, DOI 10.3409/fb58_3-4.189-194; Regier JC, 1998, MOL BIOL EVOL, V15, P1172, DOI 10.1093/oxfordjournals.molbev.a026024; Regier JC, 2008, SYST ENTOMOL, V33, P219, DOI 10.1111/j.1365-3113.2007.00416.x; Regier JC, 2008, SYST ENTOMOL, V33, P175, DOI 10.1111/j.1365-3113.2007.00409.x; Regier JC, 2010, NATURE, V463, P1079, DOI 10.1038/nature08742; Regier JC, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-280; Regier JC, 2008, SYST BIOL, V57, P920, DOI 10.1080/10635150802570791; Robinson GS, 2010, HOSTS DATABASE WORLD; ROE AD, 2009, GENETICS MOL BIOL LE, P1, DOI DOI 10.1201/9781420060201-C1; Safonkin A. F., 2007, ENTOMOL REV, V87, P1238; Smith L, 2003, BIOL CONTROL, V26, P270, DOI 10.1016/S1049-9644(02)00169-X; STADEN R, 1999, STADEN PACKAGE; TUCK KR, 1981, SYST ENTOMOL, V6, P337, DOI 10.1111/j.1365-3113.1981.tb00442.x; van der Geest L. P., 1991, TORTRICID PESTS THEI; von Kennel J, 1908, ZOOLOGICA, V21, P1; Wiens JJ, 2003, SYST BIOL, V52, P528, DOI 10.1080/10635150390218330; Wiens JJ, 1998, SYST BIOL, V47, P625, DOI 10.1080/106351598260635; Wiens JJ, 2011, SYST BIOL, V60, P719, DOI 10.1093/sysbio/syr025; Winkler IS, 2008, SPECIALIZATION, SPECIATION, AND RADIATION: THE EVOLUTIONARY BIOLOGY OF HERBIVOROUS INSECTS, P240; Yang A, 2009, P ENTOMOL SOC WASH, V111, P743, DOI 10.4289/0013-8797-111.3.743; Zhang B. C, 1994, INDEX EC IMPORTANT L; Zhang ZQ, 2011, ZOOTAXA, P7, DOI 10.11646/zootaxa.3703.1.1; Zwick A, 2011, SYST ENTOMOL, V36, P31, DOI 10.1111/j.1365-3113.2010.00543.x; Zwickl DJ., 2006, THESIS U TEXAS AUSTI 103 40 43 0 34 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 19 2012 7 4 e35574 10.1371/journal.pone.0035574 17 Multidisciplinary Sciences Science & Technology - Other Topics 959TL WOS:000305336200057 22536410 DOAJ Gold, Green Published 2019-02-21 J Liu, L; Feng, TY; Suo, T; Lee, K; Li, H Liu, Lei; Feng, Tingyong; Suo, Tao; Lee, Kang; Li, Hong Adapting to the Destitute Situations: Poverty Cues Lead to Short-Term Choice PLOS ONE English Article SOCIAL-CLASS; INEQUALITY; IMPATIENCE; DECISION; REWARDS; MONEY; DELAY Background: Why do some people live for the present, whereas others save for the future? The evolutionary framework of life history theory predicts that preference for delay of gratification should be influenced by social economic status (SES). However, here we propose that the decision to choose alternatives in immediate and delayed gratification in poverty environments may have a psychological dimension. Specifically, the perception of environmental poverty cues may induce people alike to favor choices with short-term, likely smaller benefit than choices with long-term, greater benefit. Methodology/Principal Findings: The present study was conducted to explore how poverty and affluence cues affected individuals' intertemporal choices. In our first two experiments, individuals exposed explicitly (Experiment 1) and implicitly (Experiment 2) to poverty pictures (the poverty cue) were induced to prefer immediate gratification compared with those exposed to affluence pictures (the affluence cue). Furthermore, by the manipulation of temporary perceptions of poverty and affluence status using a lucky draw game; individuals in the poverty state were more impulsive in a manner, which made them pursue immediate gratification in intertemporal choices (Experiment 3). Thus, poverty cues can lead to short-term choices. Conclusions/Significance: Decision makers chose more frequently the sooner-smaller reward over the later-larger reward as they were exposed to the poverty cue. This indicates that it is that just the feeling of poverty influences intertemporal choice - the actual reality of poverty (restricted resources, etc.) is not necessary to get the effect. Furthermore, our findings emphasize that it is a change of the poverty-affluence status, not a trait change, can influence individual preference in intertemporal choice. [Liu, Lei; Feng, Tingyong; Suo, Tao; Li, Hong] Southwest Univ, Sch Psychol, Chongqing, Peoples R China; [Feng, Tingyong; Li, Hong] Minist Educ, Key Lab Cognit & Personal, Chongqing, Peoples R China; [Lee, Kang] Univ Toronto, Inst Child Study, Toronto, ON, Canada; [Li, Hong] Liaoning Normal Univ, Sch Educ, Dalian, Peoples R China Liu, L (reprint author), Southwest Univ, Sch Psychol, Chongqing, Peoples R China. fengty0@163.com National Natural Science Foundation of China [30800292]; National Key Discipline of Basic Psychology in Southwest University of China [NSKD08007]; Fundamental Research Funds for the Central Universities [SWU1109009] This study was supported by the National Natural Science Foundation of China (30800292), the National Key Discipline of Basic Psychology in Southwest University of China (NSKD08007) and the Fundamental Research Funds for the Central Universities (SWU1109009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Berger J, 2008, P NATL ACAD SCI USA, V105, P8846, DOI 10.1073/pnas.0711988105; Cacioppo JT, 1999, ANNU REV PSYCHOL, V50, P191, DOI 10.1146/annurev.psych.50.1.191; Christie AM, 2010, J APPL PSYCHOL, V95, P920, DOI 10.1037/a0019856; De Martino B, 2006, SCIENCE, V313, P684, DOI 10.1126/science.1128356; Delplanque S, 2005, BIOL PSYCHOL, V68, P107, DOI 10.1016/j.biopsycho.2004.04.006; Fehr E, 2002, NATURE, V415, P269, DOI 10.1038/415269a; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hackman DA, 2009, TRENDS COGN SCI, V13, P65, DOI 10.1016/j.tics.2008.11.003; Haisley E, 2008, J BEHAV DECIS MAKING, V21, P283, DOI 10.1002/bdm.588; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Kraus MW, 2010, PSYCHOL SCI, V21, P1716, DOI 10.1177/0956797610387613; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Lipina S.J., 2005, INTERAM J PSYCHOL, V39, P49; Luhmann CC, 2008, J NEUROSCI, V28, P14459, DOI 10.1523/JNEUROSCI.5058-08.2008; MAZUR JE, 1989, J EXP ANAL BEHAV, V51, P87, DOI 10.1901/jeab.1989.51-87; McClure SM, 2004, SCIENCE, V306, P503, DOI 10.1126/science.1100907; Oakes JM, 2003, SOC SCI MED, V56, P796; Piff PK, 2010, J PERS SOC PSYCHOL, V99, P771, DOI 10.1037/a0020092; Singh-Manoux A, 2005, ANN EPIDEMIOL, V15, P572, DOI 10.1016/j.annepidem.2004.10.007; Snibbe AC, 2005, J PERS SOC PSYCHOL, V88, P703, DOI 10.1037/0022-3514.88.4.703; Sprengelmeyer R, 2006, NEUROPSYCHOLOGIA, V44, P2899, DOI 10.1016/j.neuropsychologia.2006.06.020; Stevens JR, 2010, ENCY ANIMAL BEHAV; Tricomi E, 2010, NATURE, V463, P1089, DOI 10.1038/nature08785; Vohs KD, 2006, SCIENCE, V314, P1154, DOI 10.1126/science.1132491; Wilkinson RG, 2000, MIND GAP HIERARCHIES; Wood M, 1998, J ECON PSYCHOL, V19, P295, DOI 10.1016/S0167-4870(98)00009-9; Yuan JJ, 2009, HUM BRAIN MAPP, V30, P3676, DOI 10.1002/hbm.20796; Zhong CB, 2010, PSYCHOL SCI, V21, P619, DOI 10.1177/0956797610366090; Zhou XY, 2009, PSYCHOL SCI, V20, P700, DOI 10.1111/j.1467-9280.2009.02353.x 31 13 17 1 32 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e33950 10.1371/journal.pone.0033950 6 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600009 22529902 DOAJ Gold, Green Published 2019-02-21 J Baos, R; Jovani, R; Serrano, D; Tella, JL; Hiraldo, F Baos, Raquel; Jovani, Roger; Serrano, David; Tella, Jose L.; Hiraldo, Fernando Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia) PLOS ONE English Article VALDEZ OIL-SPILL; KITES MILVUS-MIGRANS; SOUTHWESTERN SPAIN; OXIDATIVE STRESS; HEAVY-METAL; ENVIRONMENTAL-CONDITIONS; ADRENOCORTICAL-RESPONSE; GENOTOXIC DAMAGE; LIFE; NEUROENDOCRINE Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long-lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life-stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalcollar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999-2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.5 +/- 0.33SE fledglings/year at 3-yr old vs. 1.38 +/- 0.31SE at 6-7 yr old; developmentally exposed females: 1.5 +/- 0.30SE fledglings/year at 3-yr old vs. 0.86 +/- 0.25SE at 67 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios. [Baos, Raquel; Serrano, David; Tella, Jose L.; Hiraldo, Fernando] Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain; [Jovani, Roger] Estac Biol Donana CSIC, Dept Evolutionary Ecol, Seville, Spain Baos, R (reprint author), Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain. raquel@ebd.csic.es Baos, Raquel/L-9206-2015; Jovani, Roger/C-7080-2013; Serrano, David/B-5352-2013; Tella, Jose/I-3707-2015; CSIC, EBD Donana/C-4157-2011 Baos, Raquel/0000-0003-1283-6270; Jovani, Roger/0000-0002-8693-9742; Serrano, David/0000-0001-6205-386X; Tella, Jose/0000-0002-3038-7424; CSIC, EBD Donana/0000-0003-4318-6602 Junta de Andalucia; Ministry of Science and Technology [B0S2002-00857]; EGMASA; CSIC in an i3P grant; Ministry of Education and Culture in an FPU Pre-doctoral Fellowship; Ramon y Cajal from the Ministry of Science and Innovation [RYC-2009-03967] Partial funding for this work was provided by the Junta de Andalucia and the Ministry of Science and Technology (B0S2002-00857). RB was supported by EGMASA and CSIC in an i3P grant, and by the Ministry of Education and Culture in an FPU Pre-doctoral Fellowship. During writing, RJ has been supported by a Ramon y Cajal research contract (RYC-2009-03967) from the Ministry of Science and Innovation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alzaga R, 1999, SCI TOTAL ENVIRON, V242, P167, DOI 10.1016/S0048-9697(99)00382-4; Baos R, 2006, ENVIRON HEALTH PERSP, V114, P1497, DOI 10.1289/ehp.9099; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P2794, DOI 10.1897/05-570R.1; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P1153, DOI 10.1897/05-395R.1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bernanke J, 2009, REV ENVIRON CONTAM T, V198, P1, DOI 10.1007/978-0-387-09647-6_1; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Blas J, 2006, GEN COMP ENDOCR, V148, P172, DOI 10.1016/j.ygcen.2006.02.011; Bonilla-Valverde D, 2004, TOXICOLOGY, V197, P123, DOI 10.1016/j.tox.2003.12.010; Chernetsov N, 2006, AUK, V123, P1103, DOI 10.1642/0004-8038(2006)123[1103:SNDOWS]2.0.CO;2; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLBORN T, 1992, CHEM INDUCED ALTERAT; *CONS MED AMB, 2003, CIENC REST RIO GUAD; Damstra T., 2002, GLOBAL ASSESSMENT ST; Dickerson SM, 2007, REV ENDOCR METAB DIS, V8, P143, DOI 10.1007/s11154-007-9048-y; DIGIULIO RT, 1999, REPROD DEV EFFECTS C; Eeva T, 2005, OECOLOGIA, V145, P629, DOI 10.1007/s00442-005-0145-x; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Elliott John E., 2001, Reviews in Toxicology (Amsterdam), V4, P1; Esler D, 2010, ENVIRON TOXICOL CHEM, V29, P1138, DOI 10.1002/etc.129; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gil F, 2006, SCI TOTAL ENVIRON, V372, P49, DOI 10.1016/j.scitotenv.2006.08.004; Gore AC, 2008, FRONT NEUROENDOCRIN, V29, P358, DOI 10.1016/j.yfrne.2008.02.002; Grimalt JO, 1999, SCI TOT ENV, V242; Gump BB, 2008, ENVIRON HEALTH PERSP, V116, P249, DOI 10.1289/ehp.10391; Guterman L, 2009, SCIENCE, V323, P1558, DOI 10.1126/science.323.5921.1558; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P69, DOI 10.1007/s00265-010-1036-7; Henriksen EO, 2001, J ENVIRON MONITOR, V3, P493, DOI 10.1039/b102683f; Hotchkiss AK, 2008, TOXICOL SCI, V105, P235, DOI 10.1093/toxsci/kfn030; Iwaniuk AN, 2006, BEHAV BRAIN RES, V173, P1, DOI 10.1016/j.bbr.2006.05.026; Jovani R, 2004, ARDEOLA, V51, P357; Jovani R, 2004, ECOGRAPHY, V27, P611, DOI 10.1111/j.0906-7590.2004.03925.x; Jovani R, 2007, P ROY SOC B-BIOL SCI, V274, P2465, DOI 10.1098/rspb.2007.0527; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marchamalo J., 1996, Butlleti del Grup Catala d'Anellament, V13, P37; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moller AP, 2008, J COMP PHYSIOL B, V178, P735, DOI 10.1007/s00360-008-0262-z; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munoz-Arnanz J, 2008, ORGANOH COMP, V70, P1562; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P1164, DOI 10.1016/j.envint.2011.03.025; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P572, DOI 10.1016/j.envint.2010.11.013; Murtaugh PA, 2009, ECOL LETT, V12, P1061, DOI 10.1111/j.1461-0248.2009.01361.x; Newton I, 1998, POPULATION LIMITATIO; Norris D. O., 2006, ENDOCRINE DISRUPTION; Nowicki S, 1998, AM ZOOL, V38, P179; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Ottinger MA, 2008, BRAIN RES REV, V57, P376, DOI 10.1016/j.brainresrev.2007.08.011; Paine RT, 1996, ANNU REV ECOL SYST, V27, P197, DOI 10.1146/annurev.ecolsys.27.1.197; Pastor N, 2004, MUTAGENESIS, V19, P61, DOI 10.1093/mutage/geg035; Pastor N, 2001, MUTAGENESIS, V16, P219, DOI 10.1093/mutage/16.3.219; Peterson CH, 2003, SCIENCE, V302, P2082, DOI 10.1126/science.1084282; PIATT JF, 1990, AUK, V107, P387, DOI 10.2307/4087623; Quinn MJ, 2008, HORM BEHAV, V53, P249, DOI 10.1016/j.yhbeh.2007.10.004; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Romero-Ruiz A, 2003, ENVIRON TOXICOL CHEM, V22, P92, DOI 10.1897/1551-5028(2003)022<0092:OSBIBT>2.0.CO;2; Rowe CL, 2008, BIOSCIENCE, V58, P623, DOI 10.1641/B580709; Sabbioni G, 2002, BIOMARKERS, V7, P347, DOI 10.1080/13547500210147253; Segner H, 2007, NATO SCI PEACE SECUR, P39, DOI 10.1007/978-1-4020-6335-0_4; Sih A, 2004, TRENDS ECOL EVOL, V19, P274, DOI 10.1016/j.tree.2004.02.010; Smits JEG, 2005, TOXICOL PATHOL, V33, P441, DOI 10.1080/01926230590953097; Smits JE, 2007, ENVIRON POLLUT, V145, P538, DOI 10.1016/j.envpol.2006.04.032; Spencer KA, 2010, BEHAV ECOL, V21, P999, DOI 10.1093/beheco/arq090; Stearns S, 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Tablado Z, 2010, CONSERV BIOL, V24, P1230, DOI 10.1111/j.1523-1739.2010.01483.x; Velando A, 2005, J ORNITHOL, V146, P116, DOI 10.1007/s10336-004-0068-z; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; White LD, 2007, TOXICOL APPL PHARM, V225, P1, DOI 10.1016/j.taap.2007.08.001; Wiens JA, 2004, ECOL APPL, V14, P1806, DOI 10.1890/02-5340; WIENS JA, 1995, ECOL APPL, V5, P1069, DOI 10.2307/2269355; Wikelski M, 2002, NATURE, V417, P607, DOI 10.1038/417607a; Wingfield JC, 2009, GEN COMP ENDOCR, V163, P92, DOI 10.1016/j.ygcen.2009.04.030; Zuberogoitia I, 2006, MAR POLLUT BULL, V52, P1176, DOI 10.1016/j.marpolbul.2006.02.016 79 14 14 1 48 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e34716 10.1371/journal.pone.0034716 7 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600022 22529928 DOAJ Gold, Green Published 2019-02-21 J Hurst, JM; Stewart, GH; Perry, GLW; Wiser, SK; Norton, DA Hurst, Jennifer M.; Stewart, Glenn H.; Perry, George L. W.; Wiser, Susan K.; Norton, David A. Determinants of tree mortality in mixed old-growth Nothofagus forest FOREST ECOLOGY AND MANAGEMENT English Article Tree mortality; Spatial pattern; Nothofagus; Disturbance DENSITY-DEPENDENT MORTALITY; LIFE-HISTORY STRATEGIES; SPATIAL POINT PATTERNS; NEW-ZEALAND; SHADE TOLERANCE; DOUGLAS-FIR; CANOPY GAPS; INTERSPECIFIC VARIATION; NEIGHBORHOOD ANALYSIS; SPECIES COEXISTENCE Rates and spatial patterns of tree mortality were examined using long-term data from old-growth, mixed-species forests of the Maruia Valley, South Island, New Zealand. The aim of the study was to investigate patterns of tree mortality in two common, co-occurring species, Nothofagus fusca (Hook. f.) Oerst. and Nothofagus menziesii (Hook. f.) Oerst. The dynamics of three old-growth stands were followed over a 23-year period, using plots sized 0.8-1.0 ha. In total the fates of 1138 individual N. fusca and 1611 N. menziesii were recorded, which had annual mortality rates of 0.016 and 0.0089 per year, respectively. Differing spatial and size-related patterns of mortality were found between species. For both species, individual-based logistic models showed that slower growing trees were more likely to die than faster growing trees. N. fusca trees growing in previously disturbed stands were also more likely to die than those in undisturbed stands. Spatial point process analysis showed that dead N. fusca trees were spatially aggregated, and were segregated from living trees, a pattern that was consistent across both small and large trees. Dead N. menziesii were spatially aggregated, but were not segregated from living trees. Aggregated mortality of N. fusca trees should favor regeneration of this light-demanding species in large canopy gaps, perpetuating its aggregated distribution, whereas the lower mortality of shade-tolerant N. menziesii allows this species to persist. Our results demonstrate that performance differences in coexisting tree species can be manifested spatially. Between species, different mortality patterns may have implications for sustainable forest management. (C) 2012 Elsevier B.V. All rights reserved. [Hurst, Jennifer M.; Norton, David A.] Univ Canterbury, Sch Forestry, Christchurch 8140, New Zealand; [Stewart, Glenn H.] Lincoln Univ, Dept Environm Management, Fac Environm Soc & Design, Lincoln 7647, New Zealand; [Perry, George L. W.] Univ Auckland, Sch Environm, Auckland 1, New Zealand; [Hurst, Jennifer M.; Wiser, Susan K.] Landcare Res, Lincoln 7640, New Zealand; [Perry, George L. W.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand Hurst, JM (reprint author), Univ Canterbury, Sch Forestry, Private Bag 4800, Christchurch 8140, New Zealand. hurstj@landcareresearch.co.nz wiser, susan/G-1975-2011 wiser, susan/0000-0002-8938-8181; Perry, George/0000-0001-9672-9135 Canterbury Doctoral Scholarship; New Zealand Ministry of Science and Innovation [C09X0802] The authors thank Larry Burrows, Dianne Carter, Rowan Buxton, Alan Rose and numerous others who assisted with plot remeasurements over the years, and Rob Allen for useful discussions and thoughtful comments on an earlier draft. This study was supported by the Canterbury Doctoral Scholarship awarded to J.M.H., and the New Zealand Ministry of Science and Innovation (Contract C09X0802). Abe S, 1998, J VEG SCI, V9, P787, DOI 10.2307/3237044; Baddeley A, 2005, J STAT SOFTW, V12, P1; Baraloto C, 2005, ECOLOGY, V86, P2461, DOI 10.1890/04-1956; Batista WB, 2003, J ECOL, V91, P197, DOI 10.1046/j.1365-2745.2003.00754.x; Bengtsson J, 2000, FOREST ECOL MANAG, V132, P39, DOI 10.1016/S0378-1127(00)00378-9; Bigler C, 2003, CAN J FOREST RES, V33, P210, DOI [10.1139/x02-180, 10.1139/X02-180]; Bladon KD, 2008, FOREST CHRON, V84, P70, DOI 10.5558/tfc84070-1; Boyden SB, 2009, J ECOL, V97, P277, DOI 10.1111/j.1365-2745.2008.01477.x; Burnham K. P, 2002, MODEL SELECTION MULT; Busing RT, 2005, ECOLOGY, V86, P73, DOI 10.1890/04-0410; Canham CD, 2001, CAN J FOREST RES, V31, P1, DOI 10.1139/cjfr-31-1-1; Canham CD, 2004, CAN J FOREST RES, V34, P778, DOI 10.1139/X03-232; Cherubini P, 2002, J ECOL, V90, P839, DOI 10.1046/j.1365-2745.2002.00715.x; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; Coomes DA, 2003, ECOL LETT, V6, P980, DOI 10.1046/j.1461-0248.2003.00520.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Das A, 2008, ECOLOGY, V89, P1744, DOI 10.1890/07-0524.1; Das A, 2011, FOREST ECOL MANAG, V261, P1203, DOI 10.1016/j.foreco.2010.12.035; Das AJ, 2007, CAN J FOREST RES, V37, P580, DOI 10.1139/X06-262; Diggle P. J., 2003, STAT ANAL SPATIAL PO; DUNCAN RP, 1991, J ECOL, V79, P1073, DOI 10.2307/2261099; Franklin JF, 2002, FOREST ECOL MANAG, V155, P399, DOI 10.1016/S0378-1127(01)00575-8; Franklin JF, 2004, J FOREST, V102, P22; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; Goreaud F, 2003, J VEG SCI, V14, P681, DOI 10.1658/1100-9233(2003)014[0681:AMOBIW]2.0.CO;2; Gratzer G, 2004, FOREST ECOL MANAG, V192, P143, DOI 10.1016/j.foreco.2003.12.020; Gray L, 2009, FOREST ECOL MANAG, V259, P98, DOI 10.1016/j.foreco.2009.09.048; Greenwood DL, 2008, FOREST ECOL MANAG, V255, P2129, DOI 10.1016/j.foreco.2007.12.048; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HAMILTON DA, 1986, FOREST SCI, V32, P989; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; Hartmann H, 2011, FOREST ECOL MANAG, V261, P1936, DOI 10.1016/j.foreco.2011.02.018; Hawkins AE, 2011, CAN J FOREST RES, V41, P1256, DOI [10.1139/x11-053, 10.1139/X11-053]; He FL, 2000, J ECOL, V88, P676, DOI 10.1046/j.1365-2745.2000.00482.x; HOLLOWAY JOHN T., 1954, TRANS ROY SOC NEW ZEALAND, V82, P329; HOSKING GP, 1985, NEW ZEAL J BOT, V23, P201, DOI 10.1080/0028825X.1985.10425326; Hurst JM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026670; JANE GT, 1986, NEW ZEAL J BOT, V24, P513, DOI 10.1080/0028825X.1986.10409939; Jonsson MT, 2007, FOREST ECOL MANAG, V242, P306, DOI 10.1016/j.foreco.2007.01.048; KENKEL NC, 1988, ECOLOGY, V69, P1017, DOI 10.2307/1941257; Kneeshaw DD, 2006, J ECOL, V94, P471, DOI 10.1111/j.1365-2745.2005.01070.x; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Kobe RK, 1997, CAN J FOREST RES, V27, P227, DOI 10.1139/cjfr-27-2-227; Law R, 2009, J ECOL, V97, P616, DOI 10.1111/j.1365-2745.2009.01510.x; Lin J, 2002, OECOLOGIA, V132, P428, DOI 10.1007/s00442-002-0986-5; Lindenmayer D, 2002, FOREST ECOL MANAG, V155, P319, DOI 10.1016/S0378-1127(01)00569-2; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Litchwark H., 1978, NZ J FOR SCI, V8, P256; Loosmore NB, 2006, ECOLOGY, V87, P1925, DOI 10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2; Lusk CH, 1998, ECOLOGY, V79, P795, DOI 10.1890/0012-9658(1998)079[0795:LHDATS]2.0.CO;2; Mason E. G., 2000, New Zealand Journal of Forestry, V44, P26; McCracken I.J., 1994, PLATYPUS PINHO UNPUB; Ministry of Agriculture and Forestry, 2009, STAND GUID SUST MAN; MONSERUD RA, 1976, FOREST SCI, V22, P438; Monserud RA, 1999, FOREST ECOL MANAG, V113, P109, DOI 10.1016/S0378-1127(98)00419-8; Moravie MA, 2003, J VEG SCI, V14, P823, DOI 10.1658/1100-9233(2003)014[0823:AMTARB]2.0.CO;2; Nakashizuka T, 2001, TRENDS ECOL EVOL, V16, P205, DOI 10.1016/S0169-5347(01)02117-6; OGDEN J, 1988, GEOJOURNAL, V17, P225; Ogden John, 1996, P25; Oliver CD, 1990, FOREST STAND DYNAMIC; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; PACALA SW, 1994, CAN J FOREST RES, V24, P2172, DOI 10.1139/x94-280; PEET RK, 1987, BIOSCIENCE, V37, P586, DOI 10.2307/1310669; Perry GLW, 2006, PLANT ECOL, V187, P59, DOI 10.1007/s11258-006-9133-4; Raventos J, 2010, ECOLOGY, V91, P2110, DOI 10.1890/09-0385.1; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; RUNKLE JR, 1995, ECOLOGY, V76, P2107, DOI 10.2307/1941685; Runkle JR, 1998, ECOLOGY, V79, P1768, DOI 10.2307/176795; Runkle JR, 1997, J VEG SCI, V8, P437, DOI 10.2307/3237335; Schliemann SA, 2011, FOREST ECOL MANAG, V261, P1143, DOI 10.1016/j.foreco.2011.01.011; Spence LA, 2011, P ROY SOC B-BIOL SCI, V278, P1457, DOI 10.1098/rspb.2010.1738; Splechtna Bernhard E., 2005, Forest Snow and Landscape Research, V79, P57; Stewart G.H., 1992, STRUCTURE REGENERATI, P4; STEWART GH, 1991, J VEG SCI, V2, P679, DOI 10.2307/3236178; STEWART GH, 1990, VEGETATIO, V87, P101, DOI 10.1007/BF00042947; Stoyan D, 2000, STAT SCI, V15, P61; Stoyan D., 1994, FRACTALS RANDOM SHAP; Suarez ML, 2004, J ECOL, V92, P954, DOI 10.1111/j.1365-2745.2004.00941.x; Thorpe HC, 2008, ECOL APPL, V18, P1652, DOI 10.1890/07-1697.1; Thorpe HC, 2007, FOREST CHRON, V83, P319, DOI 10.5558/tfc83319-3; Uriarte M, 2004, ECOL MONOGR, V74, P591, DOI 10.1890/03-4031; Vasiliauskas R, 2001, FORESTRY, V74, P319, DOI 10.1093/forestry/74.4.319; Veblen Thomas T., 1992, V11, P152; VEBLEN TT, 1986, ECOLOGY, V67, P644, DOI 10.2307/1937688; Villalba R, 1998, ECOLOGY, V79, P2624; WARDLE JA, 1984, NZ BEECHES; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Wiser SK, 2005, CAN J FOREST RES, V35, P2323, DOI [10.1139/x05-158, 10.1139/X05-158]; Wiser SK, 2011, APPL VEG SCI, V14, P506, DOI 10.1111/j.1654-109X.2011.01146.x; Wiser Susan K., 2007, New Zealand Journal of Forestry, V52, P31; Worrall JJ, 2005, J ECOL, V93, P178, DOI 10.1111/j.1365-2745.2004.00937.x; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wunder J, 2007, J VEG SCI, V18, P525, DOI 10.1658/1100-9233(2007)18[525:PTDFFS]2.0.CO;2; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Yang YQ, 2003, ECOL MODEL, V163, P209, DOI 10.1016/S0304-3800(03)00008-5; Yao XH, 2001, CAN J FOREST RES, V31, P283, DOI 10.1139/cjfr-31-2-283; Yu H, 2009, FOREST ECOL MANAG, V257, P2098, DOI 10.1016/j.foreco.2009.02.019; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 99 12 12 2 41 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 FOREST ECOL MANAG For. Ecol. Manage. APR 15 2012 270 189 199 10.1016/j.foreco.2012.01.029 11 Forestry Forestry 928MM WOS:000302986900022 2019-02-21 J Vercken, E; Wellenreuther, M; Svensson, EI; Mauroy, B Vercken, Elodie; Wellenreuther, Maren; Svensson, Erik I.; Mauroy, Benjamin Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits PLOS ONE English Article LIFE-HISTORY EVOLUTION; COLUMBIAN GROUND-SQUIRRELS; LITTER-SIZE; CLUTCH-SIZE; STOCHASTIC ENVIRONMENTS; JENSENS INEQUALITY; BROOD SIZE; POPULATION DIVERGENCE; SEXUAL SELECTION; TRADE-OFFS The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized ("genotype fitness") instead of the classical fitness function ("phenotype fitness"). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature. [Vercken, Elodie] INRA, UMR ISA 1355, Inst Sophia Agrobiotech, Sophia Antipolis, France; [Wellenreuther, Maren; Svensson, Erik I.] Lund Univ, Dept Biol, Lund, Sweden; [Mauroy, Benjamin] Univ Nice Sophia Antipolis, CNRS, UMR 7351, Lab JA Dieudonne, Nice, France Vercken, E (reprint author), INRA, UMR ISA 1355, Inst Sophia Agrobiotech, Sophia Antipolis, France. elodie.vercken@sophia.inra.fr Svensson, Erik/E-8324-2010 Svensson, Erik/0000-0001-9006-016X; Wellenreuther, Maren/0000-0002-2764-8291 Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique This work was supported by the Institut National de la Recherche Agronomique and the Centre National de la Recherche Scientifique. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Burns JK, 2004, BEHAV BRAIN SCI, V27, P868; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; DeWitt TJ, 1997, TRENDS ECOL EVOL, V12, P443, DOI 10.1016/S0169-5347(97)85747-3; Drake JM, 2005, P ROY SOC B-BIOL SCI, V272, P1823, DOI 10.1098/rspb.2005.3148; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; Fairbairn Daphne J., 2001, P29; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher RA, 1930, GENETICAL THEORY NAT; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; Freedberg S, 2007, J EVOLUTION BIOL, V20, P213, DOI 10.1111/j.1420-9101.2006.01209.x; Hansen TF, 2006, AM NAT, V168, P168, DOI 10.1086/505768; HARE JF, 1992, J MAMMAL, V73, P449, DOI 10.2307/1382083; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lajus Dmitry L., 2003, P343; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Mauroy B, 2004, NATURE, V427, P633, DOI 10.1038/nature02287; Mazer Susan J., 2001, P16; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; Mock D W, 1998, EVOLUTION SIBLING RI; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; Nesse R. M., 1996, WHY WE GET SICK NEW; Nesse RM, 2004, BEHAV BRAIN SCI, V27, P862; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Pasztor L, 2000, TRENDS ECOL EVOL, V15, P117, DOI 10.1016/S0169-5347(99)01801-7; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; REAL LA, 1992, ECOLOGY, V73, P1227, DOI 10.2307/1940671; Risch TS, 2007, ECOLOGY, V88, P306, DOI 10.1890/06-0249; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; Roff Derek A., 1992; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; Ruppel G., 2005, PRACHTLIBELLEN EUROP; Ruusila V, 2000, J ZOOL, V252, P79, DOI 10.1111/j.1469-7998.2000.tb00822.x; Siva-Jothy MT, 1999, BEHAVIOUR, V136, P1365, DOI 10.1163/156853999500776; Smallwood PD, 1996, AM ZOOL, V36, P392; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, EVOLUTION HLTH DIS; Stearns SC, 2002, P NATL ACAD SCI USA, V99, P10229, DOI 10.1073/pnas.172388999; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svensson EI, 2004, HEREDITY, V93, P423, DOI 10.1038/sj.hdy.6800519; Svensson EI, 2007, AM NAT, V170, P101, DOI 10.1086/518181; Svensson EI, 2006, EVOLUTION, V60, P1242; Turnbull LA, 2008, ECOL LETT, V11, P1037, DOI 10.1111/j.1461-0248.2008.01214.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Weibel ER, 1963, MORPHOMETRY HUMAN LU; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; WHITLOCK MC, 1995, EVOLUTION, V49, P252, DOI 10.1111/j.1558-5646.1995.tb02237.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216; Wilson WG, 2003, AM NAT, V162, P220, DOI 10.1086/376584; Wright Sewall, 1932, P 6 INT C GEN, V1, P355; YOSHIMURA J, 1992, B MATH BIOL, V54, P445, DOI 10.1007/BF02464843; Yoshimura J, 1996, RES POPUL ECOL, V38, P165, DOI 10.1007/BF02515724 64 6 6 0 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 11 2012 7 4 e34889 10.1371/journal.pone.0034889 9 Multidisciplinary Sciences Science & Technology - Other Topics 959TP WOS:000305336600064 22509364 DOAJ Gold, Green Published 2019-02-21 J Vellau, H; Tammaru, T Vellau, Helen; Tammaru, Toomas Larval crowding leads to unusual reaction norms for size and time at maturity in a geometrid moth (Lepidoptera: Geometridae) EUROPEAN JOURNAL OF ENTOMOLOGY English Article Lepidoptera; Geometridae; reaction norm; larval crowding; size and time at maturity; Ematurga atomaria LIFE-HISTORY SHIFTS; EPIRRITA-AUTUMNATA; GROWTH-RATE; PHENOTYPIC PLASTICITY; FIELD EXPERIMENT; DENSITY; CONSTRAINTS; EVOLUTION; RESPONSES; AGE The theory of life history evolution generally predicts a negative across-environment correlation between development time and size at maturity in response to variations in environmental quality. Deviations from this pattern occur under specific circumstances. In particular, organisms may mature both early and at a small size when (1) some ultimate change (e.g. time constraint, resource exhaustion) in the environment precludes further growth, or (2) when there are predictable among-environment differences in mortality rates. The first scenario is frequently documented in insects but evidence for the second possibility is scarce. Here we report a crowding-induced plastic response resulting in a clear positive across-environment correlation between final weight and development time in a geometrid moth. The response was apparent during the entire larval period and in the last larval instar. Crowding also led to increased growth rates. As outbreaks have not been reported for this species it is unlikely that early pupation is a response to anticipated food shortage. Instead, we suggest that crowded larvae may perceive a higher risk of predation, perhaps because they are unable to distinguish conspecifics from potential predators. A possibility for a plastic increase in growth rate implies that the uncrowded larvae grow at submaximal rates, which indicates a cost of high growth rate. [Vellau, Helen; Tammaru, Toomas] Univ Tartu, Dept Zool, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia Vellau, H (reprint author), Univ Tartu, Dept Zool, Inst Ecol & Earth Sci, Vanemuise 46, EE-51014 Tartu, Estonia. helen.vellau@ut.ee; toomas.tammaru@ut.ee Estonian Science Foundation [7522]; targeted financing project [SF0180122s08]; European Union through the (Center of Excellence FIBIR) We thank D. Boukal, R. Davis, T. Esperk, J. Javois, A. Kaasik, T. Klemola, F. Molleman, T. Teder, A. Tiitsaar and two anonymous referees for constructive comments on earlier drafts of this manuscript. This study was supported by Estonian Science Foundation grant no. 7522, targeted financing project SF0180122s08 and the European Union through the European Regional Development Fund (Center of Excellence FIBIR). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Agnew P, 2002, ECOL ENTOMOL, V27, P396, DOI 10.1046/j.1365-2311.2002.00430.x; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; BARNARD DR, 1993, ENVIRON ENTOMOL, V22, P971, DOI 10.1093/ee/22.5.971; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Brodmann PA, 1997, J ANIM ECOL, V66, P65, DOI 10.2307/5965; COTE IM, 1995, BEHAV ECOL, V6, P159, DOI 10.1093/beheco/6.2.159; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Esperk T, 2010, PHYSIOL ENTOMOL, V35, P222, DOI 10.1111/j.1365-3032.2010.00739.x; Foster BA, 1996, AM MIDL NAT, V136, P300, DOI 10.2307/2426734; Friberg M, 2011, OECOLOGIA, V165, P301, DOI 10.1007/s00442-010-1804-0; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Greer AL, 2008, OIKOS, V117, P1667, DOI 10.1111/j.1600-0706.2008.16783.x; HAUKIOJA E, 1988, OECOLOGIA, V75, P549, DOI 10.1007/BF00776419; Hulden L., 2000, SUOMEN SUURPERHOSATL; ISHU M, 1994, T LEPIDOPTEROL SOC J, V45, P105; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; Leraut P, 2009, MOTHS EUROPE; Lester RL, 2005, J INSECT PHYSIOL, V51, P737, DOI 10.1016/j.jinsphys.2005.03.015; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marty L, 2011, AM NAT, V177, pE98, DOI 10.1086/658988; Porter J., 1997, COLOUR IDENTIFICATIO; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; Roff Derek A., 1992; Rothman LD, 1997, ECOLOGY, V78, P1481; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Ruohomaki K, 2003, OIKOS, V103, P489, DOI 10.1034/j.1600-0706.2003.12778.x; *SAS I INC, 1990, SAS STAT US GUID VER; Sillanpaa S, 2008, ENTOMOL EXP APPL, V129, P286, DOI 10.1111/j.1570-7458.2008.00776.x; Smits A, 2002, ENTOMOL EXP APPL, V104, P117, DOI 10.1023/A:1021226302986; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 1992, EVOLUTION LIFE HIST, P123; STILING P, 1988, J ANIM ECOL, V57, P581, DOI 10.2307/4926; Tammaru T, 2004, OIKOS, V107, P352, DOI 10.1111/j.0030-1299.2004.13363.x; Tammaru T, 2001, ECOL ENTOMOL, V26, P646, DOI 10.1046/j.1365-2311.2001.00363.x; Tammaru T, 1998, ECOL ENTOMOL, V23, P80, DOI 10.1046/j.1365-2311.1998.00106.x; Tammaru T, 2000, OIKOS, V90, P171, DOI 10.1034/j.1600-0706.2000.900117.x; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Wahlberg N, 2010, MOL PHYLOGENET EVOL, V55, P929, DOI 10.1016/j.ympev.2010.01.025; WALL R, 1987, OIKOS, V49, P15, DOI 10.2307/3565550 54 3 3 1 23 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1802-8829 EUR J ENTOMOL Eur. J. Entomol. APR 5 2012 109 2 181 186 10.14411/eje.2012.024 6 Entomology Entomology 922ZK WOS:000302587400007 Other Gold 2019-02-21 J Thomas, S; Boissot, N; Vanlerberghe-Masutti, F Thomas, Sophie; Boissot, Nathalie; Vanlerberghe-Masutti, Flavie What do spring migrants reveal about sex and host selection in the melon aphid? BMC EVOLUTIONARY BIOLOGY English Article BLACK-BEAN APHID; MYZUS-PERSICAE HEMIPTERA; LOW GENETIC-VARIABILITY; GOSSYPII GLOVER; SYMPATRIC SPECIATION; ECOLOGICAL SPECIALIZATION; PEA APHID; MORPHOLOGICAL DISCRIMINATION; INSECTICIDE RESISTANCE; PHYTOPHAGOUS INSECTS Background: Host plants exert considerable selective pressure on aphids because the plants constitute their feeding, mating and oviposition sites. Therefore, host specialisation in aphids evolves through selection of the behavioural and chemical mechanisms of host-plant location and recognition, and through metabolic adaptation to the phloem content of the host plant. How these adaptive traits evolve in an aphid species depends on the complexity of the annual life cycle of that species. The purpose of this field study was to determine how winged spring-migrant populations contribute to the evolution and maintenance of host specialisation in Aphis gossypii through host-plant choice and acceptance. We also assessed whether host-specialised genotypes corresponded exclusively to anholocyclic lineages regardless of the environmental conditions. Results: The spring populations of cotton-melon aphids visiting newly planted melon crops exhibited an unexpectedly high level of genetic diversity that contrasted with the very low diversity characterising the host-specialised populations of this aphid species. This study illustrated in natura host-plant-selection pressure by showing the great differences in genetic diversity between the spring-migrant populations (alate aphids) and the melon-infesting populations (the apterous offspring of the alate aphids). Moreover, an analysis of the genetic composition of these alate and apterous populations in four geographic regions suggested differences in life-history strategies, such as host choice and reproductive mode, and questioned the common assertion that A. gossypii is an anholocyclic species throughout its distribution area, including Europe. Conclusions: Our results clearly demonstrate that the melon plant acts as a selective filter against the reproduction of non-specialised individuals. We showed that olfactory cues are unlikely to be decisive in natura for host recognition by spring-migrant aphid populations that are not specialised on Cucurbitaceae. The agroecosystem structure and history of the four studied regions may have partially shaped the genetic structure of the spring-migrant populations of A. gossypii. Cucurbitaceae-specialised genotypes corresponded exclusively to anholocyclic lineages, regardless of the environmental conditions. However, some genotypes that were genetically close to the host-specialised genotypes and some genotypes that probably originated from wild plants had never been previously sampled; both were holocylic. [Vanlerberghe-Masutti, Flavie] INRA, CBGP UMR1062, F-34988 Montferrier Sur Lez, France; [Thomas, Sophie; Boissot, Nathalie] INRA, UR1052, F-84143 Montfavet, France Vanlerberghe-Masutti, F (reprint author), INRA, CBGP UMR1062, BP 94, F-34988 Montferrier Sur Lez, France. flavie.vanlerberghe@supagro.inra.fr Comite Technique Permanent de la Selection (CTPS, Ministry of Agriculture [C06/02]; Gautier company; Rijk Zwaan company; ASL company; Takii company; De Ruiter company; SPE Department [AAP 2009]; GAP of INRA Department; INRA; Region Provence-Alpes-Cote d'Azur, France We thank Pascale Mistral, Virginie Chareyron, the staff of the three experimental units of the INRA in Guadeloupe, Angers and Avignon and the Centre d'Experimentation des Fruits et Legumes for technical assistance. We thank Jerome Carletto for the genotyping of the 2004 and 2006 sample data. We thank Fabien Halkett (INRA Nancy) for valuable discussions of this work. We are grateful to the Comite Technique Permanent de la Selection (CTPS, Ministry of Agriculture, contract C06/02) and to the Gautier, Rijk Zwaan, ASL, Takii, and De Ruiter companies for financial support and technical participation in the program. This research was part of a project "Durabilite des resistances" supported by the Departments SPE and GAP of INRA (AAP 2009). Sophie Thomas received a PhD fellowship funded by the INRA and the Region Provence-Alpes-Cote d'Azur, France. Arnaud-Haond S, 2007, MOL ECOL, V16, P5115, DOI 10.1111/j.1365-294X.2007.03535.x; Berlocher SH, 2002, ANNU REV ENTOMOL, V47, P773, DOI 10.1146/annurev.ento.47.091201.145312; Blackman R.L, 1984, APHIDS WORLDS CROPS; Blackman R. L., 2000, APHIDS WORLDS CROPS; BLACKMAN RL, 1987, B ENTOMOL RES, V77, P713, DOI 10.1017/S0007485300012219; Blackman RL, 2007, APHIDS AS CROP PESTS, P1, DOI 10.1079/9780851998190.001; Brevault T, 2008, AGR FOREST ENTOMOL, V10, P215, DOI 10.1111/j.1461-9563.2008.00377.x; Brevault T, 2011, B ENTOMOL RES, V101, P407, DOI 10.1017/S0007485310000635; Caillaud MC, 2000, AM NAT, V156, P606, DOI 10.1086/316991; Carletto J, 2009, MOL ECOL, V18, P2198, DOI 10.1111/j.1365-294X.2009.04190.x; Carletto J, 2010, PEST MANAG SCI, V66, P301, DOI 10.1002/ps.1874; CASE TJ, 1986, EVOLUTION, V40, P366, DOI 10.1111/j.1558-5646.1986.tb00478.x; Charaabi K, 2008, B ENTOMOL RES, V98, P333, DOI 10.1017/S0007485307005585; Deguine JP, 1996, ANN SOC ENTOMOL FR, V32, P427; Delmotte F, 2001, P ROY SOC B-BIOL SCI, V268, P2291, DOI 10.1098/rspb.2001.1778; Dres M, 2002, PHILOS T R SOC B, V357, P471, DOI 10.1098/rstb.2002.1059; Eastop V. F., 1973, INSECT PLANT RELATIO, P157; EASTOP VF, 1986, COEVOLUTION SYSTEMAT, P35; Ebert TA, 1997, SOUTHWEST ENTOMOL, V22, P116; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Ferrari Roberto, 1994, IF (Informatore Fitopatologico), V44, P59; Frantz A, 2006, J EVOLUTION BIOL, V19, P392, DOI 10.1111/j.1420-9101.2005.01025.x; Fry JD, 2003, EVOLUTION, V57, P1735; Fuller SJ, 1999, MOL ECOL, V8, P1867, DOI 10.1046/j.1365-294x.1999.00782.x; Gilabert A, 2009, MOL ECOL, V18, P3050, DOI 10.1111/j.1365-294X.2009.04250.x; Hales DF, 1997, EUR J ENTOMOL, V94, P1; Halkett F, 2005, MOL ECOL, V14, P325, DOI 10.1111/j.1365-294X.2004.02358.x; HARDIE J, 1994, PHYSIOL ENTOMOL, V19, P278, DOI 10.1111/j.1365-3032.1994.tb01053.x; HARDIE J, 1989, J INSECT PHYSIOL, V35, P619, DOI 10.1016/0022-1910(89)90124-8; Hoffmann AA, 2008, P ROY SOC B-BIOL SCI, V275, P2473, DOI 10.1098/rspb.2008.0685; Inaizumi M, 1980, SPECIAL B COLL AGR; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; Lombaert E, 2009, ENTOMOL EXP APPL, V133, P46, DOI 10.1111/j.1570-7458.2009.00904.x; Lushai G, 2002, B ENTOMOL RES, V92, P159, DOI 10.1079/BER2001138; Margaritopoulos JT, 2007, BIOL J LINN SOC, V91, P687, DOI 10.1111/j.1095-8312.2007.00828.x; Margaritopoulos JT, 2000, B ENTOMOL RES, V90, P233; Margaritopoulos JT, 2006, B ENTOMOL RES, V96, P153, DOI 10.1079/BER2005410; MORAN NA, 1992, ANNU REV ENTOMOL, V37, P321; Normark BB, 2003, ANNU REV ENTOMOL, V48, P397, DOI 10.1146/annurev.ento.48.091801.112703; Nosil P, 2007, GENETICA, V129, P309, DOI 10.1007/s10709-006-0013-6; NOTTINGHAM SF, 1993, PHYSIOL ENTOMOL, V18, P389; Palm R, 2002, BIOTECHNOL AGRON SOC, V6, P143; Peccoud J, 2010, CR BIOL, V333, P474, DOI 10.1016/j.crvi.2010.03.004; Pettersson J, 2007, APHIDS AS CROP PESTS, P87, DOI 10.1079/9780851998190.004; Powell G, 2006, ANNU REV ENTOMOL, V51, P309, DOI 10.1146/annurev.ento.51.110104.151107; Pritchard JK, 2000, GENETICS, V155, P945; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Simon JC, 2003, P ROY SOC B-BIOL SCI, V270, P1703, DOI 10.1098/rspb.2003.2430; Simon JC, 1999, MOL ECOL, V8, P531, DOI 10.1046/j.1365-294x.1999.00583.x; Simon JC, 2010, CR BIOL, V333, P488, DOI 10.1016/j.crvi.2010.03.003; SMITH JM, 1993, P NATL ACAD SCI USA, V90, P4384, DOI 10.1073/pnas.90.10.4384; TAKADA H, 1988, J APPL ENTOMOL, V106, P188, DOI 10.1111/j.1439-0418.1988.tb00582.x; Vanlerberghe-Masutti F, 1999, MOL ECOL, V8, P685; Via S, 2001, TRENDS ECOL EVOL, V16, P381, DOI 10.1016/S0169-5347(01)02188-7; VIA S, 1991, ECOLOGY, V72, P1420, DOI 10.2307/1941114; Vialatte A, 2005, P ROY SOC B-BIOL SCI, V272, P1075, DOI 10.1098/rspb.2004.3033; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Williams G., 1975, SEX EVOLUTION; Zamoum T, 2005, HEREDITY, V94, P630, DOI 10.1038/sj.hdy.6800673; Zepeda-Paulo FA, 2010, MOL ECOL, V19, P4738, DOI 10.1111/j.1365-294X.2010.04857.x 60 13 13 2 45 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. APR 3 2012 12 47 10.1186/1471-2148-12-47 16 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 954AM WOS:000304916000001 22471629 DOAJ Gold, Green Published 2019-02-21 J Ferguson, HM; Maire, N; Takken, W; Lyimo, IN; Briet, O; Lindsay, SW; Smith, TA Ferguson, Heather M.; Maire, Nicolas; Takken, Willem; Lyimo, Issa N.; Briet, Olivier; Lindsay, Steve W.; Smith, Thomas A. Selection of mosquito life-histories: a hidden weapon against malaria? MALARIA JOURNAL English Article Anopheles vectors; Life history evolution; Malaria; Insecticide-treated bed nets; Extrinsic mortality; Natural selection ANOPHELES-GAMBIAE GILES; PLASMODIUM-FALCIPARUM; RESISTANCE STATUS; ENDEMIC AREA; EVOLUTION; POPULATIONS; ARABIENSIS; CULICIDAE; VECTORS; DIPTERA Background: There has recently been a substantial decline in malaria incidence in much of Africa. While the decline can clearly be linked to increasing coverage of mosquito vector control interventions and effective drug treatment in most settings, the ubiquity of reduction raises the possibility that additional ecological and associated evolutionary changes may be reinforcing the effectiveness of current vector control strategies in previously unanticipated ways. Presentation of hypothesis: Here it is hypothesized that the increasing coverage of insecticide-treated bed nets and other vector control methods may be driving selection for a shift in mosquito life history that reduces their ability to transmit malaria parasites. Specifically it is hypothesized that by substantially increasing the extrinsic rate of mortality experienced in vector populations, these interventions are creating a fitness incentive for mosquitoes to re-allocate their resources towards greater short-term reproduction at the expense of longer-term survival. As malaria transmission is fundamentally dependent on mosquito survival, a life history shift in this direction would greatly benefit control. Testing the hypothesis: At present, direct evaluation of this hypothesis within natural vector populations presents several logistical and methodological challenges. In the meantime, many insights can be gained from research previously conducted on wild Drosophila populations. Long-term selection experiments on these organisms suggest that increasing extrinsic mortality by a magnitude similar to that anticipated from the up-scaling of vector control measures generated an increase in their intrinsic mortality rate. Although this increase was small, a change of similar magnitude in Anopheles vector populations would be predicted to reduce malaria transmission by 80%. Implications of hypothesis: The hypothesis presented here provides a reminder that evolutionary processes induced by interventions against disease vectors may not always act to neutralize intervention effectiveness. In the search for new intervention strategies, consideration should be given to both the potential disadvantages and advantages of evolutionary processes resulting from their implementation, and attempts made to exploit those with greatest potential to enhance control. [Ferguson, Heather M.] Univ Glasgow, Boyd Orr Ctr Populat & Ecosyst Hlth, Glasgow G12 8Q, Lanark, Scotland; [Maire, Nicolas; Briet, Olivier; Smith, Thomas A.] Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland; [Maire, Nicolas; Briet, Olivier; Smith, Thomas A.] Univ Basel, CH-4003 Basel, Switzerland; [Takken, Willem] Wageningen Univ, Entomol Lab, NL-6700 EH Wageningen, Netherlands; [Lyimo, Issa N.] Ifakara Hlth Inst, Biomed & Environm Themat Grp, Ifakara, Tanzania; [Lindsay, Steve W.] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England Ferguson, HM (reprint author), Univ Glasgow, Boyd Orr Ctr Populat & Ecosyst Hlth, Glasgow G12 8Q, Lanark, Scotland. Heather.Ferguson@glasgow.ac.uk Smith, Thomas/B-5569-2015 Smith, Thomas/0000-0002-3650-9381; Briet, Olivier/0000-0003-1186-2688 BBSRC; Mshinda Fellowship; Department of Homeland Security; Fogarty International Center, National Institutes of Health; Bill and Melinda Gates Foundation; Biotechnology and Biological Sciences Research Council [BB/D020042/1] HMF is funded by a BBSRC David Phillips Fellowship. INL was supported by a Mshinda Fellowship, WT by travel support by the Uyttenboogaart-Eliasen Foundation, The Netherlands, and SWL by the Research and Policy for Infectious Disease Dynamics (RAPIDD) Program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. TS, OJTB, and NM are partly supported by the Bill and Melinda Gates Foundation. Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; Beier JC, 1998, ANNU REV ENTOMOL, V43, P519, DOI 10.1146/annurev.ento.43.1.519; Bogh C, 1998, MED VET ENTOMOL, V12, P52, DOI 10.1046/j.1365-2915.1998.00091.x; Flaxman AD, 2010, PLOS MED, V7; Garrett-Jones C., 1964, Bulletin of the World Health Organization, V30, P241; GARRETTJONES C, 1980, B ENTOMOL RES, V70, P165, DOI 10.1017/S0007485300007422; Gasser M, 2000, EVOLUTION, V54, P1260; GILLIES MT, 1965, B ENTOMOL RES, V56, P237, DOI 10.1017/S0007485300056339; Glunt KD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024968; Hii JLK, 2001, T ROY SOC TROP MED H, V95, P7, DOI 10.1016/S0035-9203(01)90315-3; Koella JC, 2009, EVOL APPL, V2, P469, DOI 10.1111/j.1752-4571.2009.00072.x; Lehmann T, 2006, INFECT GENET EVOL, V6, P410, DOI 10.1016/j.meegid.2006.01.007; Lindsay SW, 2002, TRENDS PARASITOL, V18, P510, DOI 10.1016/S1471-4922(02)02382-6; Lorenz LM, 2011, EVOL APPL, V4, P783, DOI 10.1111/j.1752-4571.2011.00199.x; Lyimo IN, 2012, J EVOLUTION BIOL, V25, P452, DOI 10.1111/j.1420-9101.2011.02442.x; MacDONALD G., 1956, BULL WORLD HEALTH ORGAN, V15, P613; Mackinnon MJ, 2010, SCIENCE, V328, P866, DOI 10.1126/science.1185410; McCarroll L, 2002, INSECT BIOCHEM MOLEC, V32, P1345, DOI 10.1016/S0965-1748(02)00097-8; Medawar P, 1952, UNSOLVED PROBLEM BIO; Meyrowitsch DW, 2011, MALAR J, V10; Ng'habi KRN, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-356; O'Brien C, 2011, CURR OPIN INFECT DIS, V24, P570, DOI 10.1097/QCO.0b013e32834cd3ed; O'Meara WP, 2010, LANCET INFECT DIS, V10, P545, DOI 10.1016/S1473-3099(10)70096-7; Okiro EA, 2011, BMC MED, V9; OMER SM, 1970, B WORLD HEALTH ORGAN, V42, P319; Ranson H., 2011, Trends in Parasitology, V27, P91, DOI 10.1016/j.pt.2010.08.004; Reddy MR, 2011, MALAR J, V10; Russell TL, 2011, P ROY SOC B-BIOL SCI, V278, P3142, DOI 10.1098/rspb.2011.0153; Sampath TRR, 1998, J AM MOSQUITO CONTR, V14, P437; SHARP BL, 1991, B ENTOMOL RES, V81, P107, DOI 10.1017/S000748530005330X; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Stearns SC, 1995, EVOLUTION LIFE HIST; Wangai L. N., 2011, Journal of Protozoology Research, V21, P20; White MT, 2011, PARASIT VECT, V4; WHO, 2010, WORLD MALARIA REPORT 2010, P1; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 37 9 9 1 16 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1475-2875 MALARIA J Malar. J. APR 3 2012 11 106 10.1186/1475-2875-11-106 5 Infectious Diseases; Parasitology; Tropical Medicine Infectious Diseases; Parasitology; Tropical Medicine 952AC WOS:000304761100001 22471997 DOAJ Gold, Green Published 2019-02-21 J Baulier, L; Heino, M; Gjosaeter, H Baulier, Loic; Heino, Mikko; Gjosaeter, Harald Temporal stability of the maturation schedule of capelin Mallotus villosus in the Barents Sea AQUATIC LIVING RESOURCES English Article Probabilistic maturation reaction norms; Fisheries-induced evolution; Semelparous life-history; Forage fish; Osmeridae; Sub-Arctic fish FISHERIES-INDUCED EVOLUTION; HERRING CLUPEA-HARENGUS; PROBABILISTIC REACTION NORMS; LIFE-HISTORY EVOLUTION; SALMON SALMO-SALAR; FISH STOCKS; GROWTH; MATURITY; SIZE; OSMERIDAE Capelin in the Barents Sea are primarily harvested in a terminal fishery that targets maturing individuals. Theory predicts that, in a semelparous population (i.e., one in which reproduction is seasonal, synchronous, and followed by parental mortality), an unselective, terminal fishery (i.e., one in which most of the fish that are not caught will not have a new spawning opportunity) does not generate strong selection for changed age and size at maturation. The probabilistic maturation reaction norm (PMRN) method was applied to test this prediction and to detect possible temporal changes in length at maturation of Barents Sea capelin between 1978 and 2008. Maturation reaction norms suggest that maturation is age-independent in capelin, but that males require a larger size to attain the same maturation probability as females. No temporal trends in length at maturation could be detected, thus confirming the theoretical prediction. Furthermore, none of the candidate environmental variables tested to explain the temporal variability in length at maturation (water temperature and capelin biomass) consistently showed a significant correlation with the PMRN midpoints. [Baulier, Loic; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Baulier, Loic; Heino, Mikko; Gjosaeter, Harald] Inst Marine Res, N-5817 Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria Baulier, L (reprint author), Fisheries & Aquat Sci Ctr, Agrocampus Ouest,65 Rue St Brieuc,CS 84215, Rennes, France. loic.baulier@ifremer.fr Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940; Gjosaeter, Harald/0000-0001-7694-6503 European Commission, as part of the Specific Targeted Research Project FinE under the European Community [SSP-2006-044276]; Bergen Research Foundation We thank Sigurd Tjelmeland for help and discussions, as well as the journal editor and two anonymous reviewers for helpful advice. This study was carried out with financial support from the European Commission, as part of the Specific Targeted Research Project FinE (SSP-2006-044276) under the European Community's Sixth Framework Program. The article does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. MH also thanks the Bergen Research Foundation for funding. ALM G, 1959, CONNECTION MATURITY, V40, P5; [Anonymous], 2009, 2009ACOM02 ICES CM; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bogstad B, 2001, FISH RES, V53, P197, DOI 10.1016/S0165-7836(00)00288-5; Bromage N, 2001, AQUACULTURE, V197, P63, DOI 10.1016/S0044-8486(01)00583-X; Carscadden J, 1997, CAN J FISH AQUAT SCI, V54, P781, DOI 10.1139/cjfas-54-4-781; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dodson JJ, 2007, MOL ECOL, V16, P5030, DOI 10.1111/j.1365-294X.2007.03559.x; Dolgov AV, 2010, ICES J MAR SCI, V67, P483, DOI 10.1093/icesjms/fsp254; Dolgov AV, 2002, ICES J MAR SCI, V59, P1034, DOI 10.1006/jmsc.2002.1237; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Duston J, 1999, CAN J FISH AQUAT SCI, V56, P201, DOI 10.1139/cjfas-56-2-201; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Eriksen E, 2011, POLAR BIOL, V34, P1399, DOI 10.1007/s00300-011-0995-0; Forberg K., 1985, BARENTS SEA CAPELIN, P213; FORBERG KG, 1982, J FISH BIOL, V20, P143, DOI 10.1111/j.1095-8649.1982.tb03915.x; FORBERG KG, 1983, J FISH BIOL, V22, P485, DOI 10.1111/j.1095-8649.1983.tb04769.x; Gjosaeter H, 1998, FISH RES, V38, P57, DOI 10.1016/S0165-7836(98)00114-3; Gjosaeter H, 1998, SARSIA, V83, P453, DOI 10.1080/00364827.1998.10420445; Gjosaeter H, 1998, SARSIA, V83, P497, DOI 10.1080/00364827.1998.10420446; Gjosaeter H, 2002, ICES J MAR SCI, V59, P1086, DOI 10.1006/jmsc.2002.1238; Gjosaeter H, 2002, ICES J MAR SCI, V59, P959, DOI 10.1006/jmsc.2002.1240; GJOSAETER H, 1999, THESIS U BERGEN; Gjosaeter H., 1990, 1990D28 ICES CM; Gjosaeter H, 2009, MAR BIOL RES, V5, P40, DOI 10.1080/17451000802454866; Hallfredsson EH, 2009, CAN J FISH AQUAT SCI, V66, P1693, DOI 10.1139/F09-105; Hamre J, 1982, 1982H45 ICES CM; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Hjermann DO, 2010, CAN J FISH AQUAT SCI, V67, P1363, DOI 10.1139/F10-064; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Huse G, 1996, SARSIA, V81, P143, DOI 10.1080/00364827.1996.10413618; Huse G, 1998, CAN J FISH AQUAT SCI, V55, P631, DOI 10.1139/cjfas-55-3-631; Huse G, 1997, MAR BIOL, V130, P309, DOI 10.1007/s002270050250; ICES, 2010, 2010ACOM05 ICES CM; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; MOLLER DAG, 1962, FISKEN OG HAVET, V1, P1; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; MORK J, 1983, MAR ECOL PROG SER, V12, P199, DOI 10.3354/meps012199; Olsen E, 2010, ICES J MAR SCI, V67, P87, DOI 10.1093/icesjms/fsp229; Panasenko L., 1981, 1981H6 ICES CM; Panasenko L., 1984, 1984H26 ICES CM; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; Saetre R., 1975, FISKERIDIREKTORATE H, V16, P203; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shearer K, 2006, AQUACULTURE, V252, P545, DOI 10.1016/j.aquaculture.2005.06.027; Silverstein JT, 1997, CAN J FISH AQUAT SCI, V54, P444, DOI 10.1139/cjfas-54-2-444; STERGIOU KI, 1989, MAR ECOL PROG SER, V56, P211, DOI 10.3354/meps056211; Tereshchenko ES, 2002, ICES J MAR SCI, V59, P976, DOI 10.1006/jmsc.2002.1257; Tjelmeland Sigurd, 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P127; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Ushakov NG, 2002, ICES J MAR SCI, V59, P1046, DOI 10.1006/jmsc.2002.1230; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vilhjalmsson H., 1994, RIT FISKIDEILDAR, V13; Wassmann P, 2006, PROG OCEANOGR, V71, P232, DOI 10.1016/j.pocean.2006.10.003; Westgaard J. I., 2008, MAR ECOL PROG SER, V360, P189, DOI DOI 10.3354/MEPS07363; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 66 4 4 0 18 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. APR 2012 25 2 151 161 10.1051/alr/2012014 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 974JU WOS:000306431800006 2019-02-21 J Caudell, MA; Quinlan, RJ Caudell, Mark A.; Quinlan, Robert J. Resource Availability, Mortality, and Fertility: A Path Analytic Approach to Global Life-History Variation HUMAN BIOLOGY English Article LIFE-HISTORY THEORY; TOTAL FERTILITY RATE; TEENAGE PREGNANCY; MORTALITY; PATH ANALYSIS REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; EXPECTANCY; NEIGHBORHOODS; EVOLUTION; BURDEN; RATES Humans exhibit considerable diversity in timing and rate of reproduction. Life-history theory (LHT) suggests that ecological cues of resource richness and survival probabilities shape human phenotypes across populations. Populations experiencing high extrinsic mortality due to uncertainty in resources should exhibit faster life histories. Here we use a path analytic (PA) approach informed by LHT to model the multiple pathways between resources, mortality rates, and reproductive behavior in 191 countries. Resources that account for the most variance in population mortality rates are predicted to explain the most variance in total fertility rates. Results indicate that resources (e. g., calories, sanitation, education, and health-care expenditures) influence fertility rates in paths through communicable and noncommunicable diseases. Paths acting through communicable disease are more strongly associated with fertility than are paths through noncommunicable diseases. These results suggest that a PA approach may help disaggregate extrinsic and intrinsic mortality factors in cross-cultural analyses. Such knowledge may be useful in developing targeted policies to decrease teenage pregnancy, total fertility rates, and thus issues associated with overpopulation. [Caudell, Mark A.; Quinlan, Robert J.] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA Caudell, MA (reprint author), Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA. mcaudell@wsu.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Brown T., 2006, CONFIRMATORY FACTOR; Bulled NL, 2010, HUM NATURE-INT BIOS, V21, P269, DOI 10.1007/s12110-010-9092-2; Byrne BM, 2012, STRUCTURAL EQUATION; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kline R. B., 2010, PRINCIPLES PRACTICE; Leowski J, 1986, World Health Stat Q, V39, P138; Lopez AD, 2006, LANCET, V367, P1747, DOI 10.1016/S0140-6736(06)68770-9; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MacCallum RC, 1996, PSYCHOL METHODS, V1, P130, DOI 10.1037//1082-989X.1.2.130; Muthen B., 2010, MPLUS USERS GUIDE VE; Narayan KMV, 2010, NEW ENGL J MED, V363, P1196, DOI 10.1056/NEJMp1002024; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Placek C, 2011, ENV RISK ADOLESCENT; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; ROFF DA, 2002, LIFE HIST EVOLUTION; Sachs J, 2002, NATURE, V415, P680, DOI 10.1038/415680a; StataCorp, 2009, STAT STAT SOFTW REL; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Watson JT, 2007, EMERG INFECT DIS, V13, P1, DOI 10.3201/eid1301.060779; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; World Health Organization (WHO), 2009, WORLD HLTH STAT 37 9 10 0 27 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 1534-6617 HUM BIOL Hum. Biol. APR 2012 84 2 101 125 10.3378/027.084.0201 25 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 952FS WOS:000304777300001 22708816 Green Published 2019-02-21 J Connallon, T; Clark, AG Connallon, Tim; Clark, Andrew G. A General Population Genetic Framework for Antagonistic Selection That Accounts for Demography and Recurrent Mutation GENETICS English Article INTRALOCUS SEXUAL CONFLICT; HETEROGENEOUS ENVIRONMENT; DIFFERENTIAL SELECTION; FINITE POPULATIONS; NATURAL-SELECTION; LINKED LOCUS; DROSOPHILA-MELANOGASTER; TEMPORAL HETEROGENEITY; LINKAGE DISEQUILIBRIUM; ONTOGENIC CONFLICT Antagonistic selection-where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")-might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range-a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s >> 1, where N-e is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. [Connallon, Tim; Clark, Andrew G.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA Connallon, T (reprint author), Cornell Univ, Dept Mol Biol & Genet, Biotechnol Bldg,Rm 227, Ithaca, NY 14853 USA. tmc233@cornell.edu Connallon, Tim/B-6726-2016 National Institutes of Health [R01 GM064590] This work benefitted from discussions with J. R. Arguello, G. Arnqvist, M. Cardoso-Moreira, R. P. Meisel, E. H. Morrow, A. Uesugi, and R. L. Unckless and from comments by two anonymous reviewers. This work was supported by National Institutes of Health grant R01 GM064590 to A. G. Clark and A. B. Carvalho. Albert AYK, 2005, SCIENCE, V310, P119, DOI 10.1126/science.1115328; Andres AM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001157; Andres AM, 2009, MOL BIOL EVOL, V26, P2755, DOI 10.1093/molbev/msp190; Arnqvist G, 2011, EVOLUTION, V65, P2111, DOI 10.1111/j.1558-5646.2011.01270.x; Asthana S, 2005, TRENDS GENET, V21, P30, DOI 10.1016/j.tig.2004.11.001; AVERY PJ, 1978, THEOR POPUL BIOL, V13, P24, DOI 10.1016/0040-5809(78)90034-5; Babcock CS, 1996, GENETICS, V144, P839; BENNETT JH, 1957, NATURE, V180, P1363, DOI 10.1038/1801363b0; Betancourt AJ, 2004, GENETICS, V168, P2261, DOI 10.1534/genetics.104.030999; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brommer JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000744; Calsbeek R, 2004, J EVOLUTION BIOL, V17, P464, DOI 10.1046/j.1420-9101.2003.00665.x; Calsbeek R, 2008, EVOLUTION, V62, P1137, DOI 10.1111/j.1558-5646.2008.00356.x; Charlesworth B., 1987, Life Sciences Research Report, V39, P21; Charlesworth B, 2001, GENET RES, V77, P153, DOI 10.1017/S0016672301004979; Charlesworth B., 2010, ELEMENTS EVOLUTIONAR; Charlesworth B., 1999, EVOL GENET, V1, P369; Charlesworth B, 2009, NAT REV GENET, V10, P195, DOI 10.1038/nrg2526; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Connallon T, 2011, GENETICS, V187, P919, DOI 10.1534/genetics.110.123729; Connallon T, 2010, EVOLUTION, V64, P3417, DOI 10.1111/j.1558-5646.2010.01136.x; Connallon T, 2010, AM NAT, V175, P564, DOI 10.1086/651590; Connallon T, 2009, EVOLUTION, V63, P2179, DOI 10.1111/j.1558-5646.2009.00692.x; Cox RM, 2010, SCIENCE, V328, P92, DOI 10.1126/science.1185550; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Coyne JA, 2008, EVOLUTION, V62, P214, DOI 10.1111/j.1558-5646.2007.00254.x; CURTSINGER JW, 1980, GENETICS, V96, P995; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Darwin C, 1871, DESCENT MAN SELECTIO; Day T, 2004, GENETICS, V167, P1537, DOI 10.1534/genetics.103.026211; Delcourt M, 2009, P ROY SOC B-BIOL SCI, V276, P2009, DOI 10.1098/rspb.2008.1459; DELPH LF, 2007, SEX SIZE GENDER ROLE, P115; Ellegren H, 2007, NAT REV GENET, V8, P689, DOI 10.1038/nrg2167; Ellegren H, 2007, P ROY SOC B-BIOL SCI, V274, P1, DOI 10.1098/rspb.2006.3720; Ellegren H, 2009, TRENDS GENET, V25, P278, DOI 10.1016/j.tig.2009.04.005; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Eyre-Walker A, 2006, TRENDS ECOL EVOL, V21, P569, DOI 10.1016/j.tree.2006.06.015; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fedorka KM, 2004, NATURE, V429, P65, DOI 10.1038/nature02492; Fisher R. A., 1958, GENETICAL THEORY NAT; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Fry JD, 2010, EVOLUTION, V64, P1510, DOI 10.1111/j.1558-5646.2009.00898.x; Gavrilets S, 2006, P ROY SOC B-BIOL SCI, V273, P3031, DOI 10.1098/rspb.2006.3684; Gibson JR, 2002, P ROY SOC B-BIOL SCI, V269, P499, DOI 10.1098/rspb.2001.1863; GILLESPIE JH, 1978, THEOR POPUL BIOL, V14, P1, DOI 10.1016/0040-5809(78)90002-3; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; HALDANE JBS, 1964, J GENET, V59, P29, DOI 10.1007/BF02984134; HALDANE JBS, 1962, NATURE, V193, P1108, DOI 10.1038/1931108a0; Hedrick PW, 2007, EVOLUTION, V61, P2750, DOI 10.1111/j.1558-5646.2007.00250.x; HEDRICK PW, 1978, GENETICS, V89, P389; Hedrick PW, 1999, HEREDITY, V82, P126, DOI 10.1038/sj.hdy.6884400; HEDRICK PW, 1976, GENETICS, V84, P145; Hedrick PW, 2002, EVOLUTION, V56, P654; HEDRICK PW, 1974, GENETICS, V78, P757; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HUDSON RR, 1988, GENETICS, V120, P831; Innan H, 2010, NAT REV GENET, V11, P97, DOI 10.1038/nrg2689; Innocenti P, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000335; Jordan CY, 2012, EVOLUTION, V66, P505, DOI 10.1111/j.1558-5646.2011.01448.x; KAPLAN NL, 1988, GENETICS, V120, P819; KIDWELL JF, 1977, GENETICS, V85, P171; Kirkpatrick M, 2010, GENETICS, V184, P1141, DOI 10.1534/genetics.109.113555; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; LI CC, 1967, BIOMETRICS, V23, P397, DOI 10.2307/2528009; LIVINGSTONE FB, 1992, HUM BIOL, V64, P649; Loewe L, 2006, GENETICS, V172, P1079, DOI 10.1534/genetics.105.047217; Loewe L, 2006, BIOL LETT-UK, V2, P426, DOI 10.1098/rsbl.2006.0481; Long TAF, 2007, P ROY SOC B-BIOL SCI, V274, P3105, DOI 10.1098/rspb.2007.1140; Lynch M, 1998, GENETICS ANAL QUANTI; MANDEL SPH, 1971, HEREDITY, V26, P49, DOI 10.1038/hdy.1971.5; Mank JE, 2009, AM NAT, V173, P141, DOI 10.1086/595754; Alvarez Ricart C, 1969, Asclepio, V21, P49, DOI 10.1186/1297-9686-1-1-49; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Mokkonen M, 2011, SCIENCE, V334, P972, DOI 10.1126/science.1208708; MUKAI T, 1974, GENETICS, V78, P1195; NEI M, 1969, GENETICS, V63, P669; NEI M, 1968, P NATL ACAD SCI USA, V60, P517, DOI 10.1073/pnas.60.2.517; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Orr HA, 2008, AM NAT, V172, P160, DOI 10.1086/589460; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; Otto SP, 2004, P ROY SOC B-BIOL SCI, V271, P705, DOI 10.1098/rspb.2003.2635; OWEN ARG, 1953, HEREDITY, V7, P97, DOI 10.1038/hdy.1953.9; PAMILO P, 1979, HEREDITAS, V91, P129; PARSONS PA, 1961, HEREDITY, V16, P103, DOI 10.1038/hdy.1961.8; Patten MM, 2010, EVOLUTION, V64, P3638, DOI 10.1111/j.1558-5646.2010.01100.x; Patten MM, 2009, EVOLUTION, V63, P2888, DOI 10.1111/j.1558-5646.2009.00764.x; Patten MM, 2009, BIOL LETTERS, V5, P667, DOI 10.1098/rsbl.2009.0230; Pischedda A, 2006, PLOS BIOL, V4, P2099, DOI 10.1371/journal.pbio.0040356; Poissant J, 2009, J EVOLUTION BIOL, V22, P2558, DOI 10.1111/j.1420-9101.2009.01862.x; Poissant J, 2010, EVOLUTION, V64, P97, DOI 10.1111/j.1558-5646.2009.00793.x; Pool JE, 2008, MOL BIOL EVOL, V25, P1728, DOI 10.1093/molbev/msn124; Proulx SR, 2006, EVOLUTION, V60, P881; Prout Timothy, 2000, P157; R-Development-Core-Team, 2005, R LANG ENV STAT COMP; Radwan J, 2008, GENETICA, V134, P113, DOI 10.1007/s10709-007-9203-0; Rhen T, 2000, EVOLUTION, V54, P37, DOI 10.1111/j.0014-3820.2000.tb00005.x; Rice S. H., 2004, EVOLUTIONARY THEORY; RICE WR, 1984, EVOLUTION, V38, P735, DOI 10.1111/j.1558-5646.1984.tb00346.x; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; ROBERTSON A, 1962, GENETICS, V47, P1291; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SEGER J, 1986, NATURE, V319, P771, DOI 10.1038/319771a0; Stewart AD, 2010, J HERED, V101, pS94, DOI 10.1093/jhered/esq011; Ubeda F, 2011, P ROY SOC B-BIOL SCI, V278, P855, DOI 10.1098/rspb.2010.1201; Unckless RL, 2009, J THEOR BIOL, V260, P132, DOI 10.1016/j.jtbi.2009.06.004; van Doorn GS, 2009, ANN NY ACAD SCI, V1168, P52, DOI 10.1111/j.1749-6632.2009.04573.x; Wright S, 1937, P NATL ACAD SCI USA, V23, P307, DOI 10.1073/pnas.23.6.307; Wright S., 1949, P365; WRIGHT S, 1945, P NATL ACAD SCI USA, V31, P382, DOI 10.1073/pnas.31.12.382; Wright SI, 2008, ANNU REV ECOL EVOL S, V39, P193, DOI 10.1146/annurev.ecolsys.39.110707.173342 112 53 53 1 46 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 0016-6731 1943-2631 GENETICS Genetics APR 2012 190 4 1477 + 10.1534/genetics.111.137117 27 Genetics & Heredity Genetics & Heredity 925QJ WOS:000302775700023 22298707 Green Published, Bronze 2019-02-21 J Kendall, NW; Quinn, TP Kendall, Neala W.; Quinn, Thomas P. Quantifying and comparing size selectivity among Alaskan sockeye salmon fisheries ECOLOGICAL APPLICATIONS English Article age and length at maturation; Alaskan sockeye salmon; fisheries-induced evolution; fishery selection; harvest-induced selection; harvest selection; life-history evolution; linear mixed-effects models; Oncorhynchus nerka; selection differentials EVOLUTIONARY TIME SCALES; LIFE-HISTORY EVOLUTION; ONCORHYNCHUS-NERKA; GILLNET SELECTIVITY; CHINOOK SALMON; ARTIFICIAL SELECTION; BRITISH-COLUMBIA; FISH POPULATION; RIVER SYSTEM; BRISTOL BAY Quantifying long-term size-selective harvest patterns is necessary for understanding the potential evolutionary effects on exploited species. The comparison of fishery selection patterns on the same species subject to different gear types, in different areas, and over multi-decadal periods can reveal the factors influencing selection. In this study we quantified and compared size-selective harvest by nine Alaskan sockeye salmon (Oncorhynchus nerka) fisheries to understand overall patterns. We calculated length-specific linear selection differentials (the difference in average length of fish before vs. after fishing), which are produced by different combinations of exploitation rates and length-selectivity values, and nonlinear standardized differentials, describing disruptive selection, across all years for each fishery. Selection differentials varied among years, but larger fish were caught in 73% of years for males and 84% of years for females, leaving smaller fish to spawn. Disruptive selection was observed on female and male fish in 84% and 92% of years, respectively. Linear selection was stronger on females than males in 77% of years examined, and disruptive selection was stronger on males in 71% of years. Selection pressure was influenced by a combination of factors under and beyond management control; analyses using mixed-effects models indicated that fisheries were less size selective in years when fish were larger than average and had lower exploitation rates. The observed harvest of larger than average sockeye salmon is consistent with the hypothesis that size-selective fishing contributes to decreasing age and length at maturation trends over time, but temporal variability in selection and strong disruptive selection suggests that the overall directional pressure is weaker than is often assumed in evolutionary models. [Kendall, Neala W.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Kendall, NW (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. kendalln@uw.edu Alaska Sustainable Salmon Fund; School of Aquatic and Fishery Sciences at the University of Washington We gratefully acknowledge the Alaska Sustainable Salmon Fund and the School of Aquatic and Fishery Sciences at the University of Washington for funding this research, and the Alaska Department of Fish and Game (ADFG) for access to the long-term data. Matt Foster, Mary Beth Loewen, Terri Tobias, Fred West, and Mark Willette of ADFG were instrumental in organizing the data and providing them to us. Discussions with Curry Cunningham were insightful. Harry Rich, Jr. assisted with Fig. 1. Jeff Hard, Andre Punt, and Ray Hilborn provided very helpful comments on this manuscript. Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; BLAIR GR, 1993, T AM FISH SOC, V122, P550, DOI 10.1577/1548-8659(1993)122<0550:VILHCA>2.3.CO;2; Boatright C, 2004, T AM FISH SOC, V133, P911, DOI 10.1577/T03-142.1; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; BUE BG, 1986, THESIS U ALASKA FAIR; Burnham K. P, 2002, MODEL SELECTION MULT; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Chasco B, 2007, CAN J FISH AQUAT SCI, V64, P1479, DOI 10.1139/F07-105; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Cohen J, 1988, STAT POWER ANAL BEHA; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Eldridge WH, 2010, ECOL APPL, V20, P1936, DOI 10.1890/09-1186.1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fujimori Y, 2001, FISHERIES SCI, V67, P644, DOI 10.1046/j.1444-2906.2001.00301.x; HAMLEY JM, 1975, J FISH RES BOARD CAN, V32, P1943, DOI 10.1139/f75-233; Hamon TR, 2000, T AM FISH SOC, V129, P1300, DOI 10.1577/1548-8659(2000)129<1300:SOMOSW>2.0.CO;2; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hard J., 2009, AM FISHERIES SOC S, V70, P759; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; HARD JJ, 2004, EVOLUTION ILLUMINATE, P316; Heino M, 2002, B MAR SCI, V70, P639; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hutchings JA, 2004, NATURE, V428, P899, DOI 10.1038/428899a; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kendall N. W., 2011, THESIS U WASHINGTON; Kendall NW, 2011, T AM FISH SOC, V140, P611, DOI 10.1080/00028487.2011.585575; Kendall NW, 2009, EVOL APPL, V2, P523, DOI 10.1111/j.1752-4571.2009.00086.x; Kendall NW, 2009, CAN J FISH AQUAT SCI, V66, P896, DOI 10.1139/F09-047; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R., 1993, EXPLOITATION EVOLVIN, P155; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; Mooney EH, 2007, CONSERV GENET, V8, P57, DOI 10.1007/s10592-006-9148-3; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2009, ECOL LETT, V12, P622, DOI 10.1111/j.1461-0248.2009.01311.x; Pinheiro J. C., 2000, MIXED EFFECT MODELS; POLICANSKY D, 1993, EXPLOITATION EVOLVIN, P2; Pyper BJ, 1999, CAN J FISH AQUAT SCI, V56, P1716, DOI 10.1139/cjfas-56-10-1716; Quinn TP, 2007, ECOL APPL, V17, P731, DOI 10.1890/06-0771; Quinn TP, 2009, AM FISH S S, V69, P23; Quinn TP, 2006, J FISH BIOL, V68, P1713, DOI 10.1111/j.1095-8649.2006.01017.x; R Development Core Team, 2009, R LANG ENV STAT COMP; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Rogers D.E., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P78; ROGERS DE, 1993, FISH RES, V18, P89, DOI 10.1016/0165-7836(93)90042-6; RUTTER C, 1904, B US FISH COMM, V22, P65; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Smith NG, 2008, J FISH BIOL, V73, P597, DOI 10.1111/j.1095-8649.2008.01954.x; SMITH VE, 1920, TAKING IMMATURE SALM; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; TODD ISP, 1971, J FISH RES BOARD CAN, V28, P821, DOI 10.1139/f71-123; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; Wolak ME, 2010, CONSERV BIOL, V24, P1268, DOI 10.1111/j.1523-1739.2010.01469.x; Yule Daniel L., 2000, North American Journal of Fisheries Management, V20, P759, DOI 10.1577/1548-8675(2000)020<0759:COHAAP>2.3.CO;2; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 83 14 15 0 37 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2012 22 3 804 816 10.1890/11-1189.1 13 Ecology; Environmental Sciences Environmental Sciences & Ecology 932SY WOS:000303312000006 22645812 2019-02-21 J Correa, C; Hendry, AP Correa, Cristian; Hendry, Andrew P. Invasive salmonids and lake order interact in the decline of puye grande Galaxias platei in western Patagonia lakes ECOLOGICAL APPLICATIONS English Article AIC(c); Aplochiton; Chile; constraint to salmonid invasiveness; deforestation; Galaxiidae; information-theoretic approach; invasive trout; path analysis; Yulton Lake LIFE-HISTORY EVOLUTION; SOUTHERN CHILE; RAINBOW-TROUT; NATIVE FISHES; NEW-ZEALAND; NORTHERN WISCONSIN; INTRODUCED TROUT; BROWN TROUT; PREDATOR; HABITAT Salmonid fishes, native to the northern hemisphere, have become naturalized in many austral countries and appear linked to the decline of native fishes, particularly galaxiids. However, a lack of baseline information and the potential for confounding anthropogenic stressors have led to uncertainty regarding the association between salmonid invasions and galaxiid declines, especially in lakes, as these have been much less studied than streams. We surveyed 25 lakes in the Aysen region of Chilean Patagonia, including both uninvaded and salmonid-invaded lakes. Abundance indices (AI) of Galaxias platei and salmonids (Salmo trutta and Oncorhynchus mykiss) were calculated using capture-per-unit-effort data from gillnets, minnow traps, and electrofishing. We also measured additional environmental variables, including deforestation, lake morphometrics, altitude, and hydrological position (i.e., lake order). An information-theoretic approach to explaining the AI of G. platei revealed that by far the strongest effect was a negative association with the AI of salmonids. Lake order was also important, and using structural equation modeling, we show that this is an indirect effect naturally constraining the salmonid invasion success in Patagonia. Supporting this conclusion, an analysis of an independent data set from 106 mountain lakes in western Canada showed that introduced salmonids are indeed less successful in low-order lakes. Reproductive failure due to insufficient spawning habitat and harsh environmental conditions could be the cause of these limits to salmonid success. The existence of this effect in Chilean Patagonia suggests that low-order lakes are likely to provide natural ecological refugia for G. platei. Finally, pristine, high-order lakes should be actively protected as these have become rare and irreplaceable unspoiled references of the most diverse, natural lake ecosystems in Patagonia. [Correa, Cristian; Hendry, Andrew P.] McGill Univ, Redpath Museum, Dept Biol, Montreal, PQ H3A 2K6, Canada Correa, C (reprint author), McGill Univ, Redpath Museum, Dept Biol, 859 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. cristiancorrea@gmail.com Correa, Cristian/0000-0002-8608-6858 Centro de Investigacion en Ecosistemas de la Patagonia; National Geographic Society (CRE); Canadian Association of Universities (LACREG); McGill School of Environment We dedicate this work to Robert ("Bob'') M. McDowall (September 1939-February 2011), prolific and inspiring pioneer in the study of galaxioids worldwide. We are especially thankful to A. Bravo for her continuous support. We also thank our outstanding field assistants: A. Bravo, C. Cortez, G. Orellana, and S. Vasquez. We are also grateful to D. Cayun, F. Durot, M. Hendry, J. Hudson, P. Ortiz, J. J. Ortiz, V. Peralta, B. Reid, and C. Serrano for their assistance in the field. Kyle Young and three anonymous reviewers provided constructive criticism to earlier drafts. We appreciate the support of the scientists B. Dyer, G. Gajardo, C. Garcia de Leaniz, C. Meier, and staff members of the Centro de Investigacion en Ecosistemas de la Patagonia, especially B. Reid. We thank the people scattered across the landscape in Aysen for their unconditional cooperation in the field. Thanks to M. Kinnison, and Freshwater Illustrated for lending their gear. This research was funded by the National Geographic Society (CRE grant), the Canadian Association of Universities (LACREG grant), and the McGill School of Environment. C. Correa held a scholarship from Comision Nacional de Investigacion Cientifica y Tecnologica, Gobierno de Chile (CONYCIT). Aigo J, 2008, REV FISH BIOL FISHER, V18, P387, DOI 10.1007/s11160-007-9080-8; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Anderson DR., 2008, MODEL BASED INFERENC; Arbuckle J. L., 1995, AMOS 18 USERS GUIDE; Arismendi I, 2007, REV FISH SCI, V15, P311, DOI 10.1080/10641260701484655; Arismendi I, 2011, LAKE RESERV MANAGE, V27, P61, DOI 10.1080/07438141.2010.536617; Arismendi I, 2009, FRESHWATER BIOL, V54, P1135, DOI 10.1111/j.1365-2427.2008.02157.x; Bain M. B., 1999, AQUATIC HABITAT ASSE; Barriga JP, 2002, NEW ZEAL J MAR FRESH, V36, P345, DOI 10.1080/00288330.2002.9517092; Basulto S, 2003, LARGO VIAJE SALMONES; Blumberg-Munoz C., 1996, IMPACTOS INTROD ESPE; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Cambray J. A., 2003, African Journal of Aquatic Science, V28, P61, DOI 10.2989/16085914.2003.9626601; Casal C. M. V., 2006, BIOL INVASIONS, V18, P3; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Correa C, 2008, BIOL INVASIONS, V10, P615, DOI 10.1007/s10530-007-9157-2; Crowl T.A., 1992, Reviews in Fish Biology and Fisheries, V2, P217, DOI 10.1007/BF00045038; Cussac V, 2004, J BIOGEOGR, V31, P103, DOI 10.1046/j.0305-0270.2003.01000.x; DEVITO KJ, 1993, CAN J FISH AQUAT SCI, V50, P2222, DOI 10.1139/f93-248; Diaz M, 2007, LIMNOLOGICA, V37, P17, DOI 10.1016/j.limno.2006.08.006; Didham RK, 2005, TRENDS ECOL EVOL, V20, P470, DOI 10.1016/j.tree.2005.07.006; Dodson SI, 2009, J PLANKTON RES, V31, P93, DOI 10.1093/plankt/fbn095; Donald D.B., 1987, North American Journal of Fisheries Management, V7, P545, DOI 10.1577/1548-8659(1987)7<545:AOTOOE>2.0.CO;2; DOWNING JA, 1993, CAN J FISH AQUAT SCI, V50, P110, DOI 10.1139/f93-013; Energia Austral, 2009, EST IMP AMB PROYECT; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Grace JB, 2003, STRUCTURAL EQUATION MODELING, P171, DOI 10.1017/CBO9780511542138.008; GREENBANK J, 1945, ECOL MONOGR, V15, P343, DOI 10.2307/1948427; Habit E, 2010, GLOBAL ECOL BIOGEOGR, V19, P697, DOI 10.1111/j.1466-8238.2010.00541.x; Hermoso V, 2011, ECOL APPL, V21, P175, DOI 10.1890/09-2011.1; Hubert WA, 1996, T AM FISH SOC, V125, P925, DOI 10.1577/1548-8659(1996)125<0925:EGARTP>2.3.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kratz TK, 1997, FRESHWATER BIOL, V37, P209, DOI 10.1046/j.1365-2427.1997.00149.x; Langeland A., 1996, Ecology of Freshwater Fish, V5, P49, DOI 10.1111/j.1600-0633.1996.tb00036.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lattuca ME, 2008, ECOL FRESHW FISH, V17, P394, DOI 10.1111/j.1600-0633.2008.00292.x; Lattuca ME, 2008, J FISH BIOL, V72, P1306, DOI 10.1111/j.1095-8649.2008.01796.x; Light T, 2007, CONSERV BIOL, V21, P434, DOI 10.1111/j.1523-1739.2006.00643.x; Lintermans M, 2000, MAR FRESHWATER RES, V51, P799, DOI 10.1071/MF00019; McDowall RM, 2006, REV FISH BIOL FISHER, V16, P233, DOI 10.1007/s11160-006-9017-7; McIntosh AR, 2000, CAN J FISH AQUAT SCI, V57, P2140, DOI 10.1139/cjfas-57-10-2140; MCINTOSH AR, 1992, J FISH BIOL, V41, P63, DOI 10.1111/j.1095-8649.1992.tb03170.x; Milano D, 2006, BIOL J LINN SOC, V87, P69, DOI 10.1111/j.1095-8312.2006.00556.x; Milano D, 2002, J FISH BIOL, V61, P138, DOI 10.1006/jfbi.2002.2027; Milano Daniela, 1997, Neotropica (La Plata), V43, P109; Moyle PB, 1996, BIOL CONSERV, V78, P149, DOI 10.1016/0006-3207(96)00024-9; Mundry R, 2009, AM NAT, V173, P119, DOI 10.1086/593303; Pascual Miguel, 2002, Biological Invasions, V4, P101, DOI 10.1023/A:1020513525528; Pascual MA, 2009, FRONT ECOL ENVIRON, V7, P533, DOI 10.1890/070127; Penaluna BE, 2009, T AM FISH SOC, V138, P839, DOI 10.1577/T08-134.1; Pugesek B. H., 2003, STRUCTURAL EQUATION; R Development Core Team, 2010, R LANG ENV STAT COMP; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rowe DK, 1999, NEW ZEAL J MAR FRESH, V33, P141, DOI 10.1080/00288330.1999.9516864; Ruzzante DE, 2008, MOL ECOL, V17, P2234, DOI 10.1111/j.1365-294X.2008.03738.x; Sakai M., 1989, FINAL REPORT AQUACUL; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Soto D, 2006, REV CHIL HIST NAT, V79, P97, DOI 10.4067/S0716-078X2006000100009; Soto D, 2002, REV CHIL HIST NAT, V75, P377, DOI 10.4067/S0716-078X2002000200009; Soto D, 2001, ECOL APPL, V11, P1750, DOI 10.1890/1051-0761(2001)011[1750:ESITIS]2.0.CO;2; Soto D, 2006, BIOLOGIA, V61, P541, DOI 10.2478/s11756-006-0088-7; Stuart-Smith RD, 2008, ENVIRON BIOL FISH, V82, P93, DOI 10.1007/s10641-007-9256-z; Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472; Vigliano P., 2007, REV M T FIS, P315; Vigliano PH, 2009, T AM FISH SOC, V138, P1405, DOI 10.1577/T08-067.1; Woelfl S, 2003, REV CHIL HIST NAT, V76, P459, DOI 10.4067/S0716-078X2003000300010; Woodford DJ, 2010, ECOL APPL, V20, P967, DOI 10.1890/08-1909.1; Yarrow M., 2009, PERSPECTIVES INTEGRA, P341; Young K., 2008, BIOL INVASIONS, V11, P1955; Young KA, 2010, ANIM CONSERV, V13, P399, DOI 10.1111/j.1469-1795.2010.00354.x; Zemlak TS, 2008, MOL ECOL, V17, P5049, DOI 10.1111/j.1365-294X.2008.03987.x 72 30 30 1 45 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2012 22 3 828 842 10.1890/11-1174.1 15 Ecology; Environmental Sciences Environmental Sciences & Ecology 932SY WOS:000303312000008 22645814 2019-02-21 J Boyle, MJ; Rice, ME Boyle, M. J.; Rice, M. E. Life History Evolution: Insights from Comparative Development and Gene Expression in Sipuncula INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2012 Charleston, SC Soc Integrat & Comparat Biol (SICB) [Boyle, M. J.; Rice, M. E.] Smithsonian Marine Stn, Ft Pierce, FL USA boylem@si.edu 0 0 0 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. APR 2012 52 1 E18 E18 1 Zoology Zoology 930TV WOS:000303165000073 2019-02-21 J Boucher, FC; Thuiller, W; Roquet, C; Douzet, R; Aubert, S; Alvarez, N; Lavergne, S Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Douzet, Rolland; Aubert, Serge; Alvarez, Nadir; Lavergne, Sebastien RECONSTRUCTING THE ORIGINS OF HIGH-ALPINE NICHES AND CUSHION LIFE FORM IN THE GENUS ANDROSACE SL (PRIMULACEAE) EVOLUTION English Article Alpine plants; climatic niche; key innovation; niche conservatism; phylogenetic signal; phylogenetic uncertainty MULTIPLE SEQUENCE ALIGNMENT; INTERNAL TRANSCRIBED SPACER; CLIMATE-CHANGE; ADAPTIVE RADIATION; PHYLOGENETIC ANALYSES; DIVERGENCE TIME; PLANT TRAITS; EASTERN ALPS; GLOBAL-SCALE; SAMPLE-SIZE Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats. [Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Aubert, Serge; Lavergne, Sebastien] Univ Grenoble 1, CNRS, UMR 5553, Lab Ecol Alpine, F-38041 Grenoble 9, France; [Douzet, Rolland; Aubert, Serge] Univ Grenoble 1, CNRS, UMS 2925, Stn Alpine Joseph Fourier, F-38041 Grenoble 9, France; [Alvarez, Nadir] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Boucher, FC (reprint author), Univ Grenoble 1, CNRS, UMR 5553, Lab Ecol Alpine, BP 53, F-38041 Grenoble 9, France. flofloboucher@gmail.com Alvarez, Nadir/B-4318-2010; THUILLER, Wilfried/G-3283-2010 Alvarez, Nadir/0000-0002-0729-166X; THUILLER, Wilfried/0000-0002-5388-5274; Boucher, Florian C./0000-0002-1151-0028 French "Agence Nationale de la Recherche"; EVORANGE [ANR-09-PEXT-011]; European Commission [066866]; Ecole Polytechnique, Saclay [AMX 2010-2013]; Swiss National Science Foundation [PZ00P3_126624]; Fundacion Ramon Areces We are grateful to all the people who contributed to GBIF, and to the botanists from the CBNA, the CBNMED, and the CRSF. We also thank M. Alfaro, L. Sack, and two anonymous reviewers for constructive criticism and advice on this work, and R. Fitzjohn for help with functions of the "diversitree" package. L. Gallien provided useful feedback on the focus of the study. Thanks also to Version Originale for checking and correcting the English in this article. This work was funded by the French "Agence Nationale de la Recherche" with the EVORANGE (ANR-09-PEXT-011) project, and by the European Commission's FP6 ECOCHANGE project (Contract No. 066866 GOCE). The grant to FB was provided by the Ecole Polytechnique, Saclay (AMX 2010-2013). NA was funded by the Swiss National Science Foundation (Ambizione fellowship PZ00P3_126624). CR was supported by a grant from the Fundacion Ramon Areces. Ackerly DD, 2003, INT J PLANT SCI, V164, pS165, DOI 10.1086/368401; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Alvarez N, 2009, ECOL LETT, V12, P632, DOI 10.1111/j.1461-0248.2009.01312.x; Arroyo MTK, 1999, OECOLOGIA, V119, P126, DOI 10.1007/s004420050768; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Blomberg SP, 2002, J EVOLUTION BIOL, V15, P899, DOI 10.1046/j.1420-9101.2002.00472.x; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Capella-Gutierrez S, 2009, BIOINFORMATICS, V25, P1972, DOI 10.1093/bioinformatics/btp348; Cholewa A. F, 2009, PRIMULACEAE; Cooper N, 2010, J EVOLUTION BIOL, V23, P2529, DOI 10.1111/j.1420-9101.2010.02144.x; Crisp MD, 2009, NATURE, V458, P754, DOI 10.1038/nature07764; Darwin C., 1859, ORIGIN SPECIES MEANS; Dixon CJ, 2009, MOL PHYLOGENET EVOL, V50, P74, DOI 10.1016/j.ympev.2008.10.009; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Donoghue MJ, 2008, P NATL ACAD SCI USA, V105, P11549, DOI 10.1073/pnas.0801962105; Dray S, 2007, J STAT SOFTW, V22, P1; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Edwards EJ, 2010, P NATL ACAD SCI USA, V107, P2532, DOI 10.1073/pnas.0909672107; Evans MEK, 2009, AM NAT, V173, P225, DOI 10.1086/595757; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Felsenstein J, 2008, AM NAT, V171, P713, DOI 10.1086/587525; Fine PVA, 2006, AM NAT, V168, P796, DOI 10.1086/508635; FitzJohn RG, 2009, SYST BIOL, V58, P595, DOI 10.1093/sysbio/syp067; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Glor RE, 2010, ANNU REV ECOL EVOL S, V41, P251, DOI 10.1146/annurev.ecolsys.39.110707.173447; GRINNELL J, 1917, AUK, V34, P131; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Harmon LJ, 2005, EVOLUTION, V59, P2705; Harmon LJ, 2003, SCIENCE, V301, P961, DOI 10.1126/science.1084786; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hergarten S, 2010, EARTH PLANET SC LETT, V297, P453, DOI 10.1016/j.epsl.2010.06.048; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hu Q, 2007, PRIMULACEAE; Hughes C, 2006, P NATL ACAD SCI USA, V103, P10334, DOI 10.1073/pnas.0601928103; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P145; Katoh K, 2005, NUCLEIC ACIDS RES, V33, P511, DOI 10.1093/nar/gki198; Kembel S. W, 2009, BIOINFORMATICS, V26, P1463; Kembel SW, 2009, ECOL LETT, V12, P949, DOI 10.1111/j.1461-0248.2009.01354.x; Kishino H, 2001, MOL BIOL EVOL, V18, P352, DOI 10.1093/oxfordjournals.molbev.a003811; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Korner C, 1999, ALPINE PLANT LIFE; Kozak KH, 2010, ECOL LETT, V13, P1378, DOI 10.1111/j.1461-0248.2010.01530.x; Kuck P, 2010, MOL PHYLOGENET EVOL, V56, P1115, DOI 10.1016/j.ympev.2010.04.024; Kuhlemann J, 2007, GLOBAL PLANET CHANGE, V58, P224, DOI 10.1016/j.gloplacha.2007.03.007; Larcher W, 2010, FLORA, V205, P3, DOI 10.1016/j.flora.2008.12.005; Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404; Lassmann T, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-298; Lassmann T, 2006, NUCLEIC ACIDS RES, V34, pW596, DOI 10.1093/nar/gkl191; Lauber K., 2007, FLORA HELVETICA FLOR; Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628; Lavergne S, 2010, ANN BOT-LONDON, V105, P109, DOI 10.1093/aob/mcp271; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; Losos JB, 1999, ANIM BEHAV, V58, P1319, DOI 10.1006/anbe.1999.1261; LOSOS JB, 2010, EVOLUTION DARWIN 1 1, P381; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Losos JB, 2008, ECOL LETT, V11, P1005, DOI 10.1111/j.1461-0248.2008.01232.x; Luxbacher AM, 2009, J EVOLUTION BIOL, V22, P1669, DOI 10.1111/j.1420-9101.2009.01779.x; Mace GM, 2003, SCIENCE, V300, P1707, DOI 10.1126/science.1085510; Martins L, 2003, PLANT SYST EVOL, V237, P75, DOI 10.1007/s00606-002-0258-1; Mast AR, 2006, NEW PHYTOL, V171, P605, DOI 10.1111/j.1469-8137.2006.01700.x; Miller A. H., 1949, ORNITHOLOGIE ALS BIO, P84; MONASTERIO M, 1991, TRENDS ECOL EVOL, V6, P387, DOI 10.1016/0169-5347(91)90159-U; Nikonov A. A, 1988, TECTONOPHYSICS, V163, P267; Nylander J. A. A., 2004, MRMODELTEST; Nylander JAA, 2008, BIOINFORMATICS, V24, P581, DOI 10.1093/bioinformatics/btm388; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pinto G, 2008, P ROY SOC B-BIOL SCI, V275, P2749, DOI 10.1098/rspb.2008.0686; R Development Core Team, 2011, R LANG ENV STAT COMP; Randin CF, 2009, GLOBAL CHANGE BIOL, V15, P1557, DOI 10.1111/j.1365-2486.2008.01766.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; RUFFIERLANCHE R, 1964, B SOC AMATEURS JARDI, V49, P3; Schneeweiss GM, 2004, SYST BIOL, V53, P856, DOI 10.1080/10635150490522566; Schonswetter P, 2009, TAXON, V58, P544, DOI 10.1002/tax.582018; Schonswetter P, 2003, PLANT BIOLOGY, V5, P623, DOI 10.1055/s-2003-44686; Stockwell DRB, 2002, ECOL MODEL, V148, P1, DOI 10.1016/S0304-3800(01)00388-X; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; Thuiller W, 2005, GLOBAL CHANGE BIOL, V11, P2234, DOI 10.1111/j.1365-2486.2005.01018.x; Thuiller W, 2004, ECOLOGY, V85, P1688, DOI 10.1890/03-0148; Thuiller W, 2011, NATURE, V470, P531, DOI 10.1038/nature09705; Tutin T. G., 1964, FLORA EUROPAEA; Verdu M, 2006, J EVOLUTION BIOL, V19, P625, DOI 10.1111/j.1420-9101.2005.00998.x; Wang YJ, 2004, ACTA PHYTOTAXON SIN, V42, P481; Wiens JJ, 2006, EVOLUTION, V60, P123, DOI 10.1111/j.0014-3820.2006.tb01088.x; Wiens JJ, 2008, ECOL LETT, V11, P1004, DOI 10.1111/j.1461-0248.2008.01238.x; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; WITTER MS, 1988, EVOLUTION, V42, P1278, DOI 10.1111/j.1558-5646.1988.tb04187.x; WOODWARD FI, 1990, PHILOS T ROY SOC B, V326, P585, DOI 10.1098/rstb.1990.0033; WOODWARD FI, 1992, NEW PHYTOL, V122, P239, DOI 10.1111/j.1469-8137.1992.tb04228.x; Yang ZH, 1997, COMPUT APPL BIOSCI, V13, P555; Yesson C, 2006, SYST BIOL, V55, P785, DOI 10.1080/1063515060081570; Yesson C, 2009, J BIOGEOGR, V36, P1234, DOI 10.1111/j.1365-2699.2008.01971.x; Yesson C, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-72; Zachos JC, 2008, NATURE, V451, P279, DOI 10.1038/nature06588 100 35 36 5 69 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 EVOLUTION Evolution APR 2012 66 4 1255 1268 10.1111/j.1558-5646.2011.01483.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922KV WOS:000302546700022 22486702 Green Accepted, Green Published, Bronze 2019-02-21 J Kuparinen, A; Hardie, DC; Hutchings, JA Kuparinen, Anna; Hardie, David C.; Hutchings, Jeffrey A. Evolutionary and ecological feedbacks of the survival cost of reproduction EVOLUTIONARY APPLICATIONS English Article Atlantic cod; life-history evolution; natural mortality; recruitment; spawning stock; survival cost of reproduction FISHERIES-INDUCED EVOLUTION; COD GADUS-MORHUA; LIFE-HISTORY EVOLUTION; ATLANTIC SALMON; MARINE FISH; NATURAL MORTALITY; POPULATION RECOVERY; NORTHERN COD; GROWTH; AGE Arguably the most fundamental of trade-offs in life-history evolution is the increase in natural mortality resulting from sexual maturity and reproduction. Despite its central importance, this increase in mortality, a survival cost, garners surprisingly little attention in fish and fisheries modeling studies. We undertook an exploratory analysis to evaluate the consequences of this omission for life-history projections. To this end, we developed a simulation approach that integrates quantitative genetics into the ecological dynamics of a fish population and parameterized the model for Atlantic cod (Gadus morhua, L.). When compared to simulations in which the mortality of immature and mature individuals is equal, the inclusion of a survival cost results in larger asymptotic body size, older age at maturity, and larger size at maturity. We also find that measures of population productivity (spawning stock biomass, recruits-per-spawner) are overestimated if the survival cost is excluded. This sensitivity of key metrics of population growth rate and reproductive capacity to the magnitude of the survival cost of reproduction underscores the need to explicitly account for this trade-off in projections of fish population responses to natural and anthropogenic environmental change, including fisheries. [Kuparinen, Anna] Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, FIN-00014 Helsinki, Finland; [Hardie, David C.] Fisheries & Oceans Canada, Dartmouth, NS, Canada; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada Kuparinen, A (reprint author), Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, POB 65, FIN-00014 Helsinki, Finland. anna.kuparinen@helsinki.fi Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Polar Continental Shelf Programme; European Union [244706/ECOK-NOWS] The research leading to these results has received funding from the Academy of Finland (AK), the Natural Sciences and Engineering Research Council of Canada and Polar Continental Shelf Programme (DH, JH) and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 244706/ECOK-NOWS project (AK). However, the paper does not necessarily reflect European Commission's views and in no way anticipates the Commission's future policy in the area. We thank Sakari Kuikka, the associate editor, and two anonymous referees for their helpful comments on an earlier version of this article. Adams CE, 1997, J FISH BIOL, V51, P750, DOI 10.1006/jfbi.1997.0476; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; BEVERTON RJH, 1994, ICES MAR SC, V198, P482; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Box G. E., 1979, ROBUSTNESS STAT, V1, P201; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COSEWIC, 2010, COSEWIC ASS STAT REP; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; DiBattista JD, 2011, EVOL APPL, V4, P1, DOI 10.1111/j.1752-4571.2010.00125.x; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; FAO, 2010, STAT WORLD FISH AQ; Fisher RA, 1930, GENETICAL THEORY NAT; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Hardie DC, 2011, ARCTIC, V64, P137; Haugen TO, 2000, OIKOS, V90, P107, DOI 10.1034/j.1600-0706.2000.900111.x; Heino M, 2002, B MAR SCI, V70, P639; Hendry AP, 2004, ECOL FRESHW FISH, V13, P185, DOI 10.1111/j.1600-0633.2004.00045.x; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; HUTCHINGS JA, 2002, HDB FISH BIOL FISHER, V1, P149; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Jensen AL, 1997, CAN J FISH AQUAT SCI, V54, P987, DOI 10.1139/cjfas-54-5-987; Johnson DW, 2011, EVOL APPL, V4, P621, DOI 10.1111/j.1752-4571.2011.00185.x; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Metcalfe NB, 1999, J ANIM ECOL, V68, P371, DOI 10.1046/j.1365-2656.1999.00289.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Myers RA, 1997, FISH B-NOAA, V95, P762; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Poos JJ, 2011, J THEOR BIOL, V279, P102, DOI 10.1016/j.jtbi.2011.03.001; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Development Core Team, 2009, R LANG ENV STAT COMP; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 2002, LIFE HIST EVOLUTION; Scarnecchia DL, 2007, REV FISH SCI, V15, P211, DOI 10.1080/10641260701486981; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SILVERTOWN J, 1999, AM NAT, V29, P321; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stige LC, 2010, P ROY SOC B-BIOL SCI, V277, P3411, DOI 10.1098/rspb.2010.0602; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vinyard G. L., 2002, WEST N AM NATURALIST, V60, P333; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C, 1996, REV FISH BIOL FISHER, V6, P125; Walters C. J, 1992, QUANTITATIVE FISHERI; Wang H.-Y., 2010, EVOLUTIONARY APPL, V2, P438 73 21 21 1 42 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. APR 2012 5 3 245 255 10.1111/j.1752-4571.2011.00215.x 11 Evolutionary Biology Evolutionary Biology 920IE WOS:000302396700003 25568045 DOAJ Gold, Green Published 2019-02-21 J Miehls, ALJ; Peacor, SD; McAdam, AG Miehls, Andrea L. J.; Peacor, Scott D.; McAdam, Andrew G. Genetic and maternal effects on tail spine and body length in the invasive spiny water flea (Bythotrephes longimanus) EVOLUTIONARY APPLICATIONS English Article clonal analysis; heritability; invasive species; Lake Michigan; maternal effects; quantitative genetics; variation; zooplankton LIFE-HISTORY EVOLUTION; LAKE-MICHIGAN; PHENOTYPIC PLASTICITY; QUANTITATIVE GENETICS; PREDATORY CLADOCERANS; POPULATION-DYNAMICS; ADAPTIVE EVOLUTION; SPECIES INVASIONS; SEXUAL SELECTION; RANGE EXPANSION Interest in the evolution of invasive species has grown in recent years, yet few studies have investigated sources of variation in invasive species traits experiencing natural selection. The spiny water flea, Bythotrephes longimanus, is an invasive zooplankton in the Great Lakes that exhibits seasonal changes in tail spine and body length consistent with natural selection. Evolution of Bythotrephes traits, however, depends on the presence and magnitude of quantitative genetic variation, which could change within or across years. Clonal analysis of wild-captured Bythotrephes indicated that variance components for distal spine length were variable among but not within years. Spine length was always heritable but was not always influenced by maternal effects. In contrast, variance components for body length varied both within and among years, but likewise body length was always heritable and not always influenced by maternal effects. Results indicate that important Bythotrephes traits have heritable variation comparable to native species and other invasive species that would enable an evolutionary response to natural selection. This evolutionary capacity could contribute to the widespread success and dramatic effects of Bythotrephes invasion in systems with diverse biotic and abiotic conditions. [Miehls, Andrea L. J.; Peacor, Scott D.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA; [Miehls, Andrea L. J.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48105 USA; [McAdam, Andrew G.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada Miehls, ALJ (reprint author), Michigan State Univ, Dept Fisheries & Wildlife, 13 Nat Resources Bldg, E Lansing, MI 48824 USA. jaegeran@msu.edu McAdam, Andrew/G-1802-2010 McAdam, Andrew/0000-0001-7323-2572 Great Lakes Fishery Commission; National Science Foundation [DEB-0089809]; U.S. Environmental Protection Agency [FP91698801-0]; Michigan State University AgBioResearch We thank the McAdam Lab, Doug Schemske and three anonymous reviewers for helpful comments. Doran Mason, Dennis Donahue, Steven Pothoven, and the NOAA Great Lakes Environmental Research Laboratory and NOAA Lake Michigan Field Station offered research vessels and field support staff. Keali Chambers, Brittany Damschroder, Jason Fischer, Brittany Gunther, Nicole Hedquist, Lydia Kramer, Ian McCririe, Scott Miehls, Jennifer Pellegrini, Veronica Quesnell, Andria Salas, Ben Staton, Marie Stevenson and Brandon Vieder helped to collect data. Natalie Kim, Kevin Pangle, Kim Schulz and Peder Yurista provided valuable help with Bythotrephes culturing protocols. This work was supported by the Great Lakes Fishery Commission, the National Science Foundation (DEB-0089809), and an EPA Science to Achieve Results (STAR) fellowship (STAR Research Assistance Agreement No. FP91698801-0 awarded by the U.S. Environmental Protection Agency). This work has not been formally reviewed by the EPA, and the views expressed in this document are solely those of the authors. SDP acknowledges support from Michigan State University AgBioResearch. This is contribution number 1603 of the NOAA Great Lakes Environmental Research Laboratory. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Barbiero RP, 2004, CAN J FISH AQUAT SCI, V61, P2111, DOI 10.1139/f04-149; BARNHISEL DR, 1991, J PLANKTON RES, V13, P529, DOI 10.1093/plankt/13.3.529; BARNHISEL DR, 1991, OECOLOGIA, V88, P444, DOI 10.1007/BF00317591; BARNHISEL DR, 1995, CAN J FISH AQUAT SCI, V52, P768, DOI 10.1139/f95-076; Beletsky D, 2007, J GREAT LAKES RES, V33, P842, DOI 10.3394/0380-1330(2007)33[842:BMOLYP]2.0.CO;2; Bilkovic DM, 1997, J GREAT LAKES RES, V23, P149; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; Boman S, 2008, BIOL INVASIONS, V10, P1135, DOI 10.1007/s10530-007-9191-0; Bossdorf O., 2005, OECOLOGIA, V114, P1; Branstrator DK, 2005, J PLANKTON RES, V27, P569, DOI 10.1093/plankt/fbi033; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 2001, EVOLUTION, V55, P1644; Bunnell DB, 2011, FRESHWATER BIOL, V56, P1281, DOI 10.1111/j.1365-2427.2010.02568.x; BURKHARDT S, 1994, FRESHWATER BIOL, V31, P97, DOI 10.1111/j.1365-2427.1994.tb00842.x; Calisi RM, 2009, HORM BEHAV, V56, P1, DOI 10.1016/j.yhbeh.2009.02.010; Colautti RI, 2005, MOL ECOL, V14, P1869, DOI 10.1111/j.1365-294X.2005.02565.x; Colautti RI, 2010, P ROY SOC B-BIOL SCI, V277, P1799, DOI 10.1098/rspb.2009.2231; Conner JK, 2003, EVOLUTION, V57, P487; Conner JK, 2004, PRIMER ECOLOGICAL GE; Cox GW, 2004, ALIEN SPECIES EVOLUT; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dybdahl MF, 2005, ECOLOGY, V86, P1592, DOI 10.1890/04-0898; Eales J, 2010, MOL ECOL, V19, P2858, DOI 10.1111/j.1365-294X.2010.04710.x; Ehrenfeld JG, 2010, ANNU REV ECOL EVOL S, V41, P59, DOI 10.1146/annurev-ecolsys-102209-144650; Elton C. S, 1958, ECOLOGY INVASIONS AN; Falconer D. S., 1996, INTRO QUANTITATIVE G; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Hoffman JC, 2001, FRESHWATER BIOL, V46, P759, DOI 10.1046/j.1365-2427.2001.00716.x; HOULE D, 1992, GENETICS, V130, P195; Kim N, 2010, LIMNOL OCEANOGR-METH, V8, P552, DOI 10.4319/lom.2010.8.552; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lambrinos JG, 2004, ECOLOGY, V85, P2061, DOI 10.1890/03-8013; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2007, GENETICA, V129, P179, DOI 10.1007/s10709-006-9013-9; Lee CE, 2008, EVOL APPL, V1, P427, DOI 10.1111/j.1752-4571.2008.00039.x; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lee CE, 2003, INTEGR COMP BIOL, V43, P439, DOI 10.1093/icb/43.3.439; LEHMAN JT, 1991, J GREAT LAKES RES, V17, P437, DOI 10.1016/S0380-1330(91)71379-8; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; Lynch M, 1998, GENETICS ANAL QUANTI, P980; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; MILLS EL, 1993, J GREAT LAKES RES, V19, P1, DOI 10.1016/S0380-1330(93)71197-1; MILLS EL, 1992, CAN J FISH AQUAT SCI, V49, P2009, DOI 10.1139/f92-224; Moku M, 2004, COPEIA, P647, DOI 10.1643/CI-03-113R; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Pfrender ME, 2000, EVOLUTION, V54, P1502; Pigliucci Massimo, 2001, P58; Piiroinen S, 2011, FUNCT ECOL, V25, P527, DOI 10.1111/j.1365-2435.2010.01804.x; Pimentel D, 2000, BIOSCIENCE, V50, P53, DOI 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2; PINHEIRO J, 2009, NLME LINEAR NONLINEA, P1; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Pothoven SA, 2003, J GREAT LAKES RES, V29, P145, DOI 10.1016/S0380-1330(03)70423-7; Pothoven SA, 2001, FRESHWATER BIOL, V46, P1491, DOI 10.1046/j.1365-2427.2001.00772.x; Pothoven SA, 2007, FRESHWATER BIOL, V52, P561, DOI 10.1111/j.1365-2427.2007.01728.x; POTVIN C, 1993, ECOLOGY, V74, P1617, DOI 10.2307/1939920; R Development Core Team, 2010, R LANG ENV STAT COMP; Ross CA, 2009, BIOL INVASIONS, V11, P441, DOI 10.1007/s10530-008-9261-y; Sakwinska O, 2004, OECOLOGIA, V138, P379, DOI 10.1007/s00442-003-1434-x; Sasaki A, 1997, EVOLUTION, V51, P682, DOI 10.1111/j.1558-5646.1997.tb03652.x; SCHNEEBERGER PJ, 1991, J GREAT LAKES RES, V17, P281, DOI 10.1016/S0380-1330(91)71364-6; Schwaegerle KE, 2000, EVOLUTION, V54, P452; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Straile D, 2000, ECOLOGY, V81, P150, DOI 10.1890/0012-9658(2000)081[0150:LHAMAD]2.0.CO;2; Strayer DL, 2006, TRENDS ECOL EVOL, V21, P645, DOI 10.1016/j.tree.2006.07.007; Strecker AL, 2008, ECOSYSTEMS, V11, P490, DOI 10.1007/s10021-008-9137-0; Sullivan CA, 1998, ARCH HYDROBIOL, V142, P35; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; Urban MC, 2008, OIKOS, V117, P1037, DOI [10.1111/j.0030-1299.2008.16334.x, 10.1111/j.2008.0030-1299.16334.x]; Weigensberg I, 1996, EVOLUTION, V50, P2149, DOI 10.1111/j.1558-5646.1996.tb03605.x; Wolff JO, 2003, BIOSCIENCE, V53, P421, DOI 10.1641/0006-3568(2003)053[0421:LSWRFO]2.0.CO;2; Yan ND, 2002, ECOL LETT, V5, P481, DOI 10.1046/j.1461-0248.2002.00348.x; Young JD, 2008, FRESHWATER BIOL, V53, P981, DOI 10.1111/j.1365-2427.2008.01954.x; YURISTA PM, 1992, CAN J FISH AQUAT SCI, V49, P1118, DOI 10.1139/f92-124 75 6 6 2 34 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1752-4571 EVOL APPL Evol. Appl. APR 2012 5 3 306 316 10.1111/j.1752-4571.2011.00221.x 11 Evolutionary Biology Evolutionary Biology 920IE WOS:000302396700008 25568050 DOAJ Gold, Green Published 2019-02-21 J Ziomkiewicz, A; Wichary, S; Bochenek, D; Pawlowski, B; Jasienska, G Ziomkiewicz, Anna; Wichary, Szymon; Bochenek, Dorota; Pawlowski, Boguslaw; Jasienska, Grazyna Temperament and ovarian reproductive hormones in women: Evidence from a study during the entire menstrual cycle HORMONES AND BEHAVIOR English Article Temperament; Personality; Fertility; Menstrual cycle; Estrogen; Progesterone PERSONALITY-TRAITS; ESTRADIOL LEVELS; PREMENOPAUSAL WOMEN; POLYMORPHISM; ASSOCIATION; POPULATION; FERTILITY; PROFILES; ESTROGEN; BEHAVIOR Personality and temperament were hypothesized to function as important factors affecting life history strategies. Recent research has demonstrated the association between temperamental traits and reproduction in humans, however, the underlying mechanisms are still poorly understood. This study presents evidence for an association between temperamental traits and woman's fecundity, as indicated by levels of ovarian steroid hormones during the menstrual cycle. On a large sample of urban, reproductive age women (n = 108) we demonstrated that activity, endurance and emotional reactivity are associated with levels of estrogen and with a pattern of change of progesterone levels. Women high in activity, high in endurance and low in emotional reactivity had up to twice as high estradiol levels and more favorable progesterone profiles as women low in activity, low in endurance and high in emotional reactivity. The temperamental traits we measured highly overlap with extraversion, neuroticisci and negative emotionality that were reported to correlate with reproductive success. Our findings thus suggest a possible explanation for these relationships, linking personality and women's reproductive success through a hormonal pathway. (C) 2012 Elsevier. Inc. All rights reserved. [Ziomkiewicz, Anna] Polish Acad Sci, Inst Anthropol, PL-50951 Wroclaw, Poland; [Wichary, Szymon] Warsaw Sch Social Sci & Humanities, PL-03815 Warsaw, Poland; [Wichary, Szymon] Univ Basel, Dept Psychol, CH-4055 Basel, Switzerland; [Bochenek, Dorota; Pawlowski, Boguslaw] Univ Wroclaw, Dept Anthropol, PL-50138 Wroclaw, Poland; [Jasienska, Grazyna] Jagiellonian Univ, Coll Med, Dept Epidemiol & Populat Studies, PL-31531 Krakow, Poland Ziomkiewicz, A (reprint author), Polish Acad Sci, Inst Anthropol, Kuznicza 35, PL-50951 Wroclaw, Poland. annaz@antro.pan.wroc.pl; swichary@swps.edu.pl; bochenek.dorota@gmail.com; bogus@antropo.uni.wroc.pl; jasienska@post.harvard.edu Pawlowski, Boguslaw/C-1088-2013; Ziomkiewicz, Anna/H-8546-2012 Ziomkiewicz, Anna/0000-0002-1842-3314; Pawlowski, Boguslaw/0000-0002-7418-475X; Jasienska, Grazyna/0000-0001-8716-6342 Polish Ministry of Science and Higher Education [NN303 2403 33] The study was supported by the Polish Ministry of Science and Higher Education (grant no. NN303 2403 33). We thank Jan Strelau and Bettina von Helversen for helpful comments and discussions, Anita Todd for editing the manuscript, and Aleksandra Gomula for assistance in data collection. Abu-Saad K, 2010, EPIDEMIOL REV, V32, P5, DOI 10.1093/epirev/mxq001; Alvergne A, 2010, PERS INDIV DIFFER, V49, P840, DOI 10.1016/j.paid.2010.07.006; Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; BAIRD DD, 1991, STAT MED, V10, P255, DOI 10.1002/sim.4780100209; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blache D, 2011, REPROD BIOL, V11, P61; Brumback BA, 1998, J AM STAT ASSOC, V93, P961, DOI 10.2307/2669837; Buss A., 1984, TEMPERAMENT EARLY DE, P1; BUSS DM, 1990, J CROSS CULT PSYCHOL, V21, P5, DOI 10.1177/0022022190211001; Costa P. T., 1992, REVISED NEO PERSONAL, P1; Dragan WL, 2006, NEUROPSYCHOBIOLOGY, V54, P45, DOI 10.1159/000095741; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Figueredo AJ, 2006, PERS INDIV DIFFER, V41, P431, DOI 10.1016/j.paid.2006.02.004; Frokjaer VG, 2008, BIOL PSYCHIAT, V63, P569, DOI 10.1016/j.biopsych.2007.07.009; Geary DC, 2005, PSYCHOL BULL, V131, P654, DOI 10.1037/0033-2909.131.5.654; Giotakos O, 2004, PSYCHIAT RES, V127, P185, DOI 10.1016/j.psychres.2003.06.003; Haiman CA, 2007, CANCER RES, V67, P1893, DOI 10.1158/0008-5472.CAN-06-4123; Ishii G, 2007, NEUROSCI LETT, V411, P77, DOI 10.1016/j.neulet.2006.10.012; Jasienska G, 2004, P ROY SOC B-BIOL SCI, V271, P1213, DOI 10.1098/rspb.2004.2712; Jasienska G, 2006, EVOL HUM BEHAV, V27, P390, DOI 10.1016/j.evolhumbehav.2006.01.001; Jasienska G, 2006, CANCER EPIDEM BIOMAR, V15, P2131, DOI 10.1158/1055-9965.EPI-06-0450; Jasienska G, 2006, EUR J CANCER PREV, V15, P439, DOI 10.1097/00008469-200610000-00009; Joffe M, 2009, HUM REPROD, V24, P1999, DOI 10.1093/humrep/dep087; Jokela M, 2011, EUR J PERSONALITY, V25, P487, DOI 10.1002/per.822; Jokela M, 2010, EUR J PERSONALITY, V24, P151, DOI 10.1002/per.749; Jokela M, 2009, J PERS SOC PSYCHOL, V96, P218, DOI 10.1037/a0014058; Kassam A, 1996, ENVIRON HEALTH PERSP, V104, P408, DOI 10.2307/3432685; Lasiuk GC, 2007, BIOL RES NURS, V9, P147, DOI 10.1077/1099800407305600; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Miller A, 2010, J PSYCHIATR RES, V44, P788, DOI 10.1016/j.jpsychires.2010.01.013; Miro F, 2004, CLIN CHEM LAB MED, V42, P1043, DOI 10.1515/CCLM.2004.210; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Netter P, 1998, EUR J PERSONALITY, V12, P287, DOI 10.1002/(SICI)1099-0984(199807/08)12:4<287::AID-PER311>3.0.CO;2-Y; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Osterlund MK, 2010, BBA-GEN SUBJECTS, V1800, P1136, DOI 10.1016/j.bbagen.2009.11.001; Sen S, 2004, AM J MED GENET B, V127B, P85, DOI 10.1002/ajmg.b.20158; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; Small CM, 2005, HUM REPROD, V20, P2162, DOI 10.1093/humrep/dei054; Sowers MR, 2006, AM J MED, V119, P16, DOI 10.1016/j.amjmed.2006.07.002; Strelau J, 1996, PERS INDIV DIFFER, V20, P131, DOI 10.1016/0191-8869(95)00159-X; STRELAU J, 1995, EUR J PERSONALITY, V9, P207, DOI 10.1002/per.2410090304; Strelau J, 2008, TEMPERAMENT REGULATO, P144; von Borell E, 2007, HORM BEHAV, V52, P130, DOI 10.1016/j.yhbeh.2007.03.014; Waller K, 1998, AM J EPIDEMIOL, V147, P1071; Weeden J, 2005, PSYCHOL BULL, V131, P635, DOI 10.1037/0033-2909.131.5.635; Wilcox AJ, 1999, NEW ENGL J MED, V340, P1796, DOI 10.1056/NEJM199906103402304; Zawadzki B., 1995, STUD PSYCHOL, V33, P49; Ziomkiewicz A, 2008, HUM REPROD, V23, P2555, DOI 10.1093/humrep/den213 48 9 12 0 27 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X HORM BEHAV Horm. Behav. APR 2012 61 4 535 540 10.1016/j.yhbeh.2012.01.017 6 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 925LW WOS:000302763700010 22342576 2019-02-21 J Ferguson, JM; Taper, ML; Guy, CS; Syslo, JM Ferguson, Jake M.; Taper, Mark L.; Guy, Christopher S.; Syslo, John M. Mechanisms of coexistence between native bull trout (Salvelinus confluentus) and non-native lake trout (Salvelinus namaycush): inferences from pattern-oriented modeling CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article Determining the ecological mechanisms that control population abundances is an important issue for the conservation of endangered and threatened species. We examined whether a threatened bull trout (Salvelinus confluentus) population could coexist at observed levels with the ecologically similar introduced species, lake trout (Salvelinus namaycush), using a pattern-oriented analysis of population dynamics models. We used a large suite of stage-and age-structured models to examine how both competitive and predatory interactions, combined with differing life-history strategies and species vital rates, drove salmonid coexistence patterns. In our models, an ontogenetic shift in juvenile bull trout resource use was the most important factor contributing to the two species coexistence; however, this coexistence occurred with reduced abundances in bull trout that increase the chances of extirpation for the native species. Observed levels of competition were found to have stronger effects than predation on population abundances. We used a pattern-oriented modeling approach to inference; this approach assumes process models that can generate patterns similar to the observed patterns are better supported than those that cannot. This methodology may find wide use on a number of data-limited fishery management and conservation problems. [Ferguson, Jake M.; Taper, Mark L.; Syslo, John M.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Guy, Christopher S.] Montana State Univ, US Geol Survey, Montana Cooperat Fishery Res Unit, Bozeman, MT 59717 USA Ferguson, JM (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. troutinthemilk@ufl.edu Ferguson, Jake/A-7093-2013 Ferguson, Jake/0000-0002-5034-9089 NSF [DEB 0717456] We thank Lora Tenant, Michael Meeuwig, and Garrett Dickman for reviewing earlier drafts of the manuscript, as well as Michael Meeuwig and Felipe Carvalho for their assistance with Fig. 1. We also thank three anonymous reviewers and Associate Editor William Tonn for their suggestions that have greatly improved the quality and scope of this manuscript. Any use of trade, product, or firm names is for description purposes only and does not imply endorsement by the US Government. MLT was partly supported by NSF grant DEB 0717456. Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Sitar Shawn P., 1999, North American Journal of Fisheries Management, V19, P881, DOI 10.1577/1548-8675(1999)019<0881:LTMAAI>2.0.CO;2; Staples DF., 2006, THESIS MONTANA STATE; Syslo J. M., 2010, THESIS MONTANA STATE 4 5 5 0 25 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2012 69 4 755 769 10.1139/F2011-177 15 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 918AW WOS:000302222200011 2019-02-21 J Miller, TJ; Quintana-Ascencio, PF; Maliakal-Witt, S; Menges, ES Miller, Timothy J.; Quintana-Ascencio, Pedro F.; Maliakal-Witt, Satya; Menges, Eric S. Metacommunity Dynamics Over 16 Years in a Pyrogenic Shrubland CONSERVATION BIOLOGY English Article Florida rosemary scrub; nestedness; patch connectivity; patch-incidence model; patch quality; shrubland FLORIDA SCRUB PLANTS; METAPOPULATION DYNAMICS; POPULATION VIABILITY; COMMUNITY ECOLOGY; FIRE; LANDSCAPE; PATTERNS; HABITAT; CONNECTIVITY; NESTEDNESS Metacommunity theory allows predictions about the dynamics of potentially interacting species assemblages that are linked by dispersal, but strong empirical tests of the theory are rare. We analyzed the metacommunity dynamics of Florida rosemary scrub, a patchily distributed pyrogenic community, to test predictions about turnover rates, community nestedness, and responses to patch size, arrangement, and quality. We collected occurrence data for 45 plant species from 88 rosemary scrub patches in 1989 and 2005 and used growth form, mechanism of regeneration after fire, and degree of habitat specialization to categorize species by life history. We tested whether patch size, fire history, and structural connectivity (a measure of proximity and size of surrounding patches) could be used to predict apparent extinctions and colonizations. In addition, we tested the accuracy of incidence-function models built with the patch survey data from 1989. After fire local extinction rates were higher for herbs than woody plants, higher for species that regenerated only from seed than species able to resprout, and higher for generalist than specialist species. Fewer rosemary specialists and a higher proportion of habitat generalists were extirpated on recently burned patches than on patches not burned between 1989 and 2005. Nestedness was highest for specialists among all life-history groups. Estimated model parameters from 1989 predicted the observed (19892005) extinction rates and the number of patches with persistent populations of individual species. These results indicate that species with different life-history strategies within the same metacommunity can have substantially different responses to patch configuration and quality. Real metacommunities may not conform to certain assumptions of simple models, but incidence-function models that consider only patch size, configuration, and quality can have significant predictive accuracy. [Miller, Timothy J.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Quintana-Ascencio, Pedro F.] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA; [Maliakal-Witt, Satya] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Menges, Eric S.] Archbold Biol Stn, Lake Placid, FL 33862 USA Miller, TJ (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 1156 High St, Santa Cruz, CA 95064 USA. tijmille@ucsc.edu National Science Foundation [DEB9815370, DEB0233899, DEB0812717]; Archbold Biological Station This study was supported by the National Science Foundation (DEB9815370, DEB0233899, DEB0812717) and by Archbold Biological Station. We acknowledge A. Maguire, D. Horton, and E. Boughton for helpful discussions and K. Kay, J. Yost, K. Medley, R. Noss, R. Holt, and two anonymous reviewers for comments on an earlier draft. ABRAHAMSON W G, 1984, Florida Scientist, V47, P209; Alexander HM, 2009, J ECOL, V97, P1390, DOI 10.1111/j.1365-2745.2009.01581.x; Almeida-Neto M., 2010, ENVIRON MODELL SOFTW, V26, P173, DOI DOI 10.1016/J.ENVS0FT.2010.08.003; Almeida-Neto M, 2008, OIKOS, V117, P1227, DOI 10.1111/j.0030-1299.2008.16644.x; Amarasekare P, 2001, AM NAT, V158, P572, DOI 10.1086/323586; ATMAR W, 1993, OECOLOGIA, V96, P373, DOI 10.1007/BF00317508; Boughton EA, 2006, J VEG SCI, V17, P361, DOI 10.1658/1100-9233(2006)017[0361:AOEWRE]2.0.CO;2; Chase J. M., 2003, ECOLOGICAL NICHES LI; Chave J, 2004, ECOL LETT, V7, P241, DOI 10.1111/j.1461-0248.2003.00566.x; Collins CD, 2009, ECOLOGY, V90, P2577, DOI 10.1890/08-1405.1; Cook RR, 1998, OECOLOGIA, V113, P584, DOI 10.1007/s004420050412; Cottenie K, 2005, ECOL LETT, V8, P1175, DOI 10.1111/j.1461-0248.2005.00820.x; Driscoll DA, 2009, ECOL MONOGR, V79, P485, DOI 10.1890/08-1114.1; Dupre C, 2002, J ECOL, V90, P796, DOI 10.1046/j.1365-2745.2002.00717.x; Freckleton RP, 2002, J ECOL, V90, P419, DOI 10.1046/j.1365-2745.2002.00692.x; HANSKI I, 1994, J ANIM ECOL, V63, P151, DOI 10.2307/5591; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; HARRISON S, 1989, OIKOS, V56, P293, DOI 10.2307/3565613; Hecnar SJ, 1997, OIKOS, V80, P371, DOI 10.2307/3546605; Hodgson JA, 2009, ECOLOGY, V90, P1608, DOI 10.1890/08-1227.1; Holt RD, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P465; Holyoak M, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P1; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Maliakal-Witt S, 2005, AM J BOT, V92, P411, DOI 10.3732/ajb.92.3.411; Matter SF, 2010, P R SOC B, V277, P729, DOI 10.1098/rspb.2009.1520; Menges ES, 2008, J VEG SCI, V19, P503, DOI 10.3170/2008-8-18399; Menges Eric S., 1999, P7; Menges ES, 1998, ECOL APPL, V8, P935, DOI 10.1890/1051-0761(1998)008[0935:IEOFAM]2.0.CO;2; Menges ES, 2004, ECOL MONOGR, V74, P79, DOI 10.1890/03-4029; Menges ES, 1995, B TORREY BOT CLUB, V122, P282, DOI 10.2307/2996320; Minor ES, 2009, ECOLOGY, V90, P1802, DOI 10.1890/08-1015.1; Mouquet N, 2003, AM NAT, V162, P544, DOI 10.1086/378857; Murphy HT, 2004, OIKOS, V105, P3, DOI 10.1111/j.0030-1299.2004.12754.x; Navarra JJ, 2011, FIRE ECOL, V7, P17, DOI 10.4996/fireecology.0702017; Quintana-Ascencio PF, 2003, CONSERV BIOL, V17, P433, DOI 10.1046/j.1523-1739.2003.01431.x; QuintanaAscencio RF, 1996, CONSERV BIOL, V10, P1210; Roy M, 2005, AM NAT, V166, P246, DOI 10.1086/431286; Sizling AL, 2009, AM NAT, V174, P82, DOI 10.1086/599305; Slapcinsky JL, 2010, NAT AREA J, V30, P4, DOI 10.3375/043.030.0102; Van De Meutter F, 2007, ECOLOGY, V88, P1687; Wang YP, 2010, DIVERS DISTRIB, V16, P862, DOI 10.1111/j.1472-4642.2010.00682.x; Weekley CW, 2007, ECOSCIENCE, V14, P377, DOI 10.2980/1195-6860(2007)14[377:VISMIR]2.0.CO;2; Wright DH, 1998, OECOLOGIA, V113, P1, DOI 10.1007/s004420050348; WUNDERLIN RP, 1998, GUIDE VASCULAR PLANT; Yu DW, 2001, AM NAT, V158, P49, DOI 10.1086/320865 45 10 10 1 29 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0888-8892 CONSERV BIOL Conserv. Biol. APR 2012 26 2 357 366 10.1111/j.1523-1739.2011.01807.x 10 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 914VO WOS:000301981100019 22260356 2019-02-21 J Lindborg, R; Helm, A; Bommarco, R; Heikkinen, RK; Kuhn, I; Pykala, J; Partel, M Lindborg, Regina; Helm, Aveliina; Bommarco, Riccardo; Heikkinen, Risto K.; Kuehn, Ingolf; Pykala, Juha; Paertel, Meelis Effect of habitat area and isolation on plant trait distribution in European forests and grasslands ECOGRAPHY English Article EXPERIMENTALLY FRAGMENTED LANDSCAPE; LIFE-HISTORY TRAITS; SPECIES RICHNESS; SEED SIZE; DISPERSAL LIMITATION; AGRICULTURAL LANDSCAPES; CALCAREOUS GRASSLANDS; RELATIVE IMPORTANCE; EXTINCTION DEBT; SPATIAL SCALES A number of studies show contrasting results in how plant species with specific life-history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north-central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life-span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence-related traits, life-span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non-clonal plant species, and long-lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long-lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi-natural patches, where many non-clonal and short-lived species have already disappeared. Our study based on a large-scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes. [Lindborg, Regina] Stockholm Univ, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden; [Helm, Aveliina; Paertel, Meelis] Univ Tartu, Inst Ecol & Earth Sci, EE-51005 Tartu, Estonia; [Bommarco, Riccardo] Swedish Univ Agr Sci, Dept Ecol, SE-75007 Uppsala, Sweden; [Heikkinen, Risto K.; Pykala, Juha] Nat Environm Ctr, Finnish Environm Inst, FI-00251 Helsinki, Finland; [Kuehn, Ingolf] Helmoholtz Ctr Environm Res UFZ, Dept Community Ecol, DE-06120 Halle, Germany Lindborg, R (reprint author), Stockholm Univ, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden. regina.lindborg@natgeo.su.se Helm, Aveliina/H-3127-2015; Kuhn, Ingolf/B-9756-2009; Partel, Meelis/D-5493-2012; Bommarco, Riccardo/E-7109-2016 Helm, Aveliina/0000-0003-2338-4564; Kuhn, Ingolf/0000-0003-1691-8249; Partel, Meelis/0000-0002-5874-0138; Bommarco, Riccardo/0000-0001-8888-0476 EU [SSPI-CT-2006-044346, 226852]; Centre of Excellence FIBIR; Estonian Science Foundation [6619, 7610, 8323]; Swedish Research Council for Environment, Agricultural Sciences and Spatial planning (FORMAS) We thank Lyubomir Penev for organizing the workshop within the COCONUT-project that formed the basis of this work. This research was funded by the EU in the 6th framework project 'COCONUT - Understanding effects of land use changes on ecosystems to halt loss of biodiversity' (SSPI-CT-2006-044346), the EU FP7 project 'SCALES - Securing the Conservation of biodiversity across Administrative Levels and spatial, temporal and Ecological Scales' (grant 226852), Centre of Excellence FIBIR, the Estonian Science Foundation (grants, 6619, 7610 and 8323), and the Swedish Research Council for Environment, Agricultural Sciences and Spatial planning (FORMAS). Ackerman JD, 1996, OECOLOGIA, V106, P192, DOI 10.1007/BF00328598; Adriaens D, 2006, BIOL CONSERV, V133, P212, DOI 10.1016/j.biocon.2006.06.006; Baeten L, 2009, J VEG SCI, V20, P209, DOI 10.1111/j.1654-1103.2009.05595.x; Bakker JP, 1999, TRENDS ECOL EVOL, V14, P63, DOI 10.1016/S0169-5347(98)01544-4; Bekker RM, 1998, FUNCT ECOL, V12, P834, DOI 10.1046/j.1365-2435.1998.00252.x; Bommarco R, 2010, P ROY SOC B-BIOL SCI, V277, P2075, DOI 10.1098/rspb.2009.2221; Bruun HH, 2000, ECOGRAPHY, V23, P641, DOI 10.1034/j.1600-0587.2000.230601.x; Buckley HL, 2010, J ECOL, V98, P645, DOI 10.1111/j.1365-2745.2010.01650.x; Cody ML, 2006, PLANTS ON ISLANDS: DIVERSITY AND DYNAMICS ON A CONTINENTAL ARCHIPELAGO, P1, DOI 10.1525/california/9780520247291.001.0001; Collins CD, 2009, ECOLOGY, V90, P2577, DOI 10.1890/08-1405.1; Cousins SAO, 2008, BIOL CONSERV, V141, P233, DOI 10.1016/j.biocon.2007.09.016; Cousins SAO, 2007, LANDSCAPE ECOL, V22, P723, DOI 10.1007/s10980-006-9067-1; Cousins SAO, 2009, BIOL CONSERV, V142, P2752, DOI 10.1016/j.biocon.2009.07.001; de Blois S, 2002, ECOGRAPHY, V25, P244, DOI 10.1034/j.1600-0587.2002.250212.x; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Dorrough J, 2007, AGR ECOSYST ENVIRON, V121, P222, DOI 10.1016/j.agee.2006.12.012; Dupre C, 2002, J ECOL, V90, P796, DOI 10.1046/j.1365-2745.2002.00717.x; Ehrlen J, 2000, ECOLOGY, V81, P1667, DOI 10.2307/177315; Ehrlen J, 1998, APPL VEG SCI, V1, P29, DOI 10.2307/1479083; Eriksson O, 1996, OIKOS, V77, P248, DOI 10.2307/3546063; ERIKSSON O, 2001, INTEGRATING ECOLOGY, P157; Fahrig L, 2002, ECOL APPL, V12, P346, DOI 10.2307/3060946; FARRIS JS, 1989, CLADISTICS, V5, P417, DOI 10.1111/j.1096-0031.1989.tb00573.x; Fischer M, 1997, CONSERV BIOL, V11, P727, DOI 10.1046/j.1523-1739.1997.96082.x; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Gerhold P, 2008, J ECOL, V96, P709, DOI 10.1111/j.1365-2745.2008.01386.x; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; GrashofBokdam C, 1997, J VEG SCI, V8, P21, DOI 10.2307/3237238; Grime JP, 2007, COMP PLANT ECOLOGY; Hanski I., 1999, METAPOPULATION ECOLO; Helm A, 2006, ECOL LETT, V9, P72, DOI 10.1111/j.1461-0248.2005.00841.x; Herault B, 2005, J BIOGEOGR, V32, P2069, DOI 10.1111/j.1365-2699.2005.01351.x; HOLT RD, 1995, ECOLOGY, V76, P1610, DOI 10.2307/1938162; HOLT RD, 1992, THEOR POPUL BIOL, V41, P354, DOI 10.1016/0040-5809(92)90034-Q; Honnay O, 2005, OIKOS, V108, P427, DOI 10.1111/j.0030-1299.2005.13569.x; Jackson ST, 2010, TRENDS ECOL EVOL, V25, P621, DOI 10.1016/j.tree.2010.08.009; Jacquemyn H, 2001, J BIOGEOGR, V28, P801, DOI 10.1046/j.1365-2699.2001.00590.x; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; Johst K, 2002, OIKOS, V98, P263, DOI 10.1034/j.1600-0706.2002.980208.x; Kiviniemi K, 1999, OIKOS, V86, P241, DOI 10.2307/3546442; Kleijn D, 2005, CONSERV BIOL, V19, P963, DOI 10.1111/j.1523-1739.2005.00603.x; Klimesova J, 2009, J VEG SCI, V20, P511, DOI 10.1111/j.1654-1103.2009.01050.x; Knapp S, 2008, ECOL LETT, V11, P1054, DOI 10.1111/j.1461-0248.2008.01217.x; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kolb A, 2005, J ECOL, V93, P1226, DOI 10.1111/j.1365-2745.2005.01049.x; Kolb A, 2004, J VEG SCI, V15, P199, DOI 10.1658/1100-9233(2004)015[0199:EOEHCA]2.0.CO;2; Kotiaho JS, 2002, OIKOS, V96, P551, DOI 10.1034/j.1600-0706.2002.960316.x; Krauss J, 2010, ECOL LETT, V13, P597, DOI 10.1111/j.1461-0248.2010.01457.x; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; Kuussaari M, 2009, TRENDS ECOL EVOL, V24, P564, DOI 10.1016/j.tree.2009.04.011; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Liira J, 2008, J VEG SCI, V19, P3, DOI 10.3170/2007-8-18308; Lindborg R, 2004, ECOLOGY, V85, P1840, DOI 10.1890/04-0367; Lindborg R, 2007, J ECOL, V95, P555, DOI 10.1111/j.1365-2745.2007.01232.x; Lososova Z, 2008, J BIOGEOGR, V35, P177, DOI 10.1111/j.1365-2699.2007.01778.x; MAC ARTHUR ROBERT H., 1967; Marini L, 2008, BASIC APPL ECOL, V9, P365, DOI 10.1016/j.baae.2007.06.011; McIntyre S, 1999, CONSERV BIOL, V13, P1282, DOI 10.1046/j.1523-1739.1999.97509.x; Moilanen A, 2006, CONNECTIVITY CONSERV, P44; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; Ozinga WA, 2004, J ECOL, V92, P767, DOI 10.1111/j.0022-0477.2004.00916.x; Ozinga WA, 2009, ECOL LETT, V12, P66, DOI 10.1111/j.1461-0248.2008.01261.x; Paradis E., 2006, ANAL PHYLOGENETICS E; Petit S, 2004, LANDSCAPE ECOL, V19, P463, DOI 10.1023/B:LAND.0000036141.30359.53; Prinzing A, 2008, ECOL LETT, V11, P809, DOI 10.1111/j.1461-0248.2008.01189.x; Purves DW, 2007, ECOL MONOGR, V77, P77, DOI 10.1890/05-1923; Pykala J, 2000, CONSERV BIOL, V14, P705, DOI 10.1046/j.1523-1739.2000.99119.x; ROBINSON GR, 1992, SCIENCE, V257, P524, DOI 10.1126/science.257.5069.524; Romermann C, 2008, BIODIVERS CONSERV, V17, P591, DOI 10.1007/s10531-007-9283-2; Roland J, 1997, NATURE, V386, P710, DOI 10.1038/386710a0; Roschewitz I, 2005, AGR ECOSYST ENVIRON, V105, P87, DOI 10.1016/j.agee.2004.05.010; ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638; Soons MB, 2005, J ECOL, V93, P1214, DOI 10.1111/j.1365-2745.2005.01064.x; Sutton FM, 2009, J ECOL, V97, P718, DOI 10.1111/j.1365-2745.2009.01517.x; Tackenberg O, 2003, ECOL MONOGR, V73, P191, DOI 10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; Tremlova K, 2007, ECOLOGY, V88, P965, DOI 10.1890/06-0924; Tscharntke T, 2005, ECOL LETT, V8, P857, DOI 10.1111/j.1461-0248.2005.00782.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Verheyen K, 2003, J ECOL, V91, P563, DOI 10.1046/j.1365-2745.2003.00789.x; Verheyen K, 2001, J ECOL, V89, P829, DOI 10.1046/j.0022-0477.2001.00596.x; WESTOBY M, 1995, J ECOL, V83, P727, DOI 10.2307/2261640; Westoby M, 1996, PHILOS T R SOC B, V351, P1309, DOI 10.1098/rstb.1996.0114; WESTOBY M, 1995, J ECOL, V83, P892; Zobel M, 2010, OIKOS, V119, P802, DOI 10.1111/j.1600-0706.2010.18296.x 87 51 55 1 100 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography APR 2012 35 4 356 363 10.1111/j.1600-0587.2011.07286.x 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 919CA WOS:000302297100009 2019-02-21 J Jervis, MA; Moe, A; Heimpel, GE Jervis, Mark A.; Moe, Annika; Heimpel, George E. The evolution of parasitoid fecundity: a paradigm under scrutiny ECOLOGY LETTERS English Article Balanced mortality; comparative analysis; Diptera; fecundity; Hymenoptera; life-history; parasitism; survivorship LIFE-HISTORY TRAITS; BODY-SIZE; EGG-PRODUCTION; CLUTCH SIZE; HYMENOPTERA; WASPS; STRATEGIES; LIMITATION; ALLOCATION; ARGUMENT An important assumption in insect parasitoid life-history theory is that, within parasitoid complexes (species assemblages associated with particular hosts), members attacking young host stages are more fecund than members targeting older ones. This hypothesis reflects the general trajectory of host survivorship curves: as a host cohort ages, availability to female parasitoids declines, as can the risk that the host and the parasitoid offspring it carries succumbs to extrinsic mortality. However, the analyses that provided empirical support for the hypothesis did not control for phylogeny. Using the original datasets, we use phylogenetically corrected analyses to test whether the results of the seminal study are upheld. Although we show those findings to be robust, the decline in fecundity could be a sampling artefact. We conclude that it would be unwise to assume the paradigm to be generally representative of natural parasitoid complexes. [Jervis, Mark A.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales; [Moe, Annika] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Heimpel, George E.] Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA Jervis, MA (reprint author), Cardiff Univ, Cardiff Sch Biosci, Biomed Sci Bldg,Museum Ave, Cardiff CF10 3AX, S Glam, Wales. jervis@cf.ac.uk BELSHAW R. M., 1993, HDB IDENT BR INSECTS, V10, P1; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boletzky S. v., 2003, Berliner Palaeobiologische Abhandlungen, V3, P19; Carvalho AR, 2007, REV BRAS PARASITOL V, V16, P181, DOI 10.1590/S1984-29612007000400001; Cole M.L., 1954, Q REV BIOL, V29, P103; COOK WJ, 1989, OECOLOGIA, V79, P184, DOI 10.1007/BF00388476; DIAL BE, 1981, OECOLOGIA, V51, P310, DOI 10.1007/BF00540899; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Furuya H, 2003, MAR BIOL, V142, P693, DOI 10.1007/s00227-002-0991-6; Gauld I., 1988, HYMENOPTERA; Ghara M, 2010, ECOL ENTOMOL, V35, P139, DOI 10.1111/j.1365-2311.2010.01176.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HASSELL MP, 1969, J ANIM ECOL, V38, P329, DOI 10.2307/2774; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoffmeister T., 2005, AM NAT, V166, P62; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; LYONS L. A., 1962, CANADIAN ENTOMOL, V94, P49; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Midford P. E., 2005, PDAP PACKAGE MESQUIT; MILLS NJ, 1992, ENVIRON ENTOMOL, V21, P230, DOI 10.1093/ee/21.2.230; Murdoch W. W., 2003, CONSUMER RESOURCE DY; O'Hara J.E., 2003, TACHINIDAE RESOURCES; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Poulin R, 2001, CAN J ZOOL, V79, P741, DOI 10.1139/cjz-79-5-741; Price P.W., 1975, P87; PRICE P W, 1973, Environmental Entomology, V2, P623; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1973, AM NAT, V107, P685; PRICE PW, 2003, MACROEVOLUTIONARY TH; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Quicke D.L., 1997, PARASITIC WASPS; Quicke DLJ, 2009, J NAT HIST, V43, P1305, DOI 10.1080/00222930902807783; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Shaw S. R., 2004, P RUSSIAN ENTOMOLOGI, V75, P82; Sivinski J, 2001, ANN ENTOMOL SOC AM, V94, P886, DOI 10.1603/0013-8746(2001)094[0886:OLIAGO]2.0.CO;2; Tachi T, 2010, SYST ENTOMOL, V35, P148, DOI 10.1111/j.1365-3113.2009.00497.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Traynor RE, 2005, OIKOS, V109, P305, DOI 10.1111/j.0030-1299.2005.13666.x; Wajnberg E., 2008, BEHAV ECOLOGY PARASI; Waloff N., 1987, Advances in Ecological Research, V17, P281, DOI 10.1016/S0065-2504(08)60248-2; YU DS, 2005, WORLD ICHNEUMONOIDEA; ZAMMUTO RM, 1986, CAN J ZOOL, V64, P2739, DOI 10.1139/z86-398 51 11 12 4 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. APR 2012 15 4 357 364 10.1111/j.1461-0248.2012.01745.x 8 Ecology Environmental Sciences & Ecology 906MP WOS:000301349600008 22313604 2019-02-21 J Moreau, DTR; Fleming, IA Moreau, Darek T. R.; Fleming, Ian A. Enhanced growth reduces precocial male maturation in Atlantic salmon FUNCTIONAL ECOLOGY English Article alternative reproductive phenotypes; Atlantic salmon; genetically modified organisms; growth hormone; mature parr; proximate mechanisms; Salmo salar; transgenesis LIFE-HISTORY VARIATION; TRANSGENIC COHO SALMON; ALTERNATIVE REPRODUCTIVE TACTICS; EFFECTIVE POPULATION-SIZE; BODY-SIZE; FERTILIZATION SUCCESS; HORMONE TRANSGENE; SEXUAL SELECTION; MALE PARR; SALAR L 1. Understanding the proximate and ultimate mechanisms shaping the expression of alternative reproductive phenotypes is a fundamental question in life-history evolution. Precocial maturation in fishes, one such alternative phenotype, has been thought to reflect rapid growth and/or energy accumulation; however, mechanistically linking these specific traits to discrete life-history patterns is complex and poorly understood. 2. Here, we use growth hormone (GH) transgenic Atlantic salmon to elucidate the effects of intrinsically fast growth on precocial male maturation as parr (freshwater life stage). Despite facilitating growth to sizes typical of mature wild-type parr, transgenesis did not influence maturation in the first year of life. In the second year, the number of maturing transgenic parr was only half that of non-transgenic individuals. 3. By manipulating intrinsic growth and controlling for both environment and genetic background, this study provides direct empirical evidence suggesting that the physiological mechanisms promoting growth do not play a causative role in precocial male maturation in fishes. 4. In addition, this study provides the first empirical data on the relative incidence of precocial male maturation in GH transgenic and non-transgenic Atlantic salmon and, therefore, provides valuable information for the ecological risk assessment process. [Moreau, Darek T. R.; Fleming, Ian A.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada Moreau, DTR (reprint author), Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada. dmoreau@mun.ca Fleming, Ian/I-7217-2012 USDA; National Sciences and Engineering Research Council of Canada The authors would like to thank Corinne Conway and Danny Ings for assistance with data collection and Aqua Bounty Farms Inc. for providing transgenic gametes. The authors would also like to thank our reviewers for their valued input into earlier versions of this manuscript. All animals were treated in accordance with the guidelines provided by the Canadian Council on Animal Care and the approval of Memorial University's Institutional Animal Care Committee (AUP 07-03-IF). Support was kindly provided by a collaborative grant led by Dr E. M. Hallerman and funded by the USDA Biotechnology Risk Assessment Research Grants Program. Further financial assistance was provided by a National Sciences and Engineering Research Council of Canada Discovery Grant awarded to I.A.F. Aubin-Horth N, 2004, EVOLUTION, V58, P136; Bjornsson BT, 2002, FISH PHYSIOL BIOCHEM, V27, P227, DOI 10.1023/B:FISH.0000032728.91152.10; BJORNSSON BT, 1994, GEN COMP ENDOCR, V93, P70, DOI 10.1006/gcen.1994.1009; Bjornsson BT, 1997, FISH PHYSIOL BIOCHEM, V17, P9, DOI 10.1023/A:1007712413908; Calsbeek R, 2002, P ROY SOC B-BIOL SCI, V269, P157, DOI 10.1098/rspb.2001.1856; Cook JT, 2000, AQUACULTURE, V188, P15, DOI 10.1016/S0044-8486(00)00331-8; Cook JT, 2000, AQUACULTURE, V188, P33, DOI 10.1016/S0044-8486(00)00332-X; Cook JT, 2000, AQUACULTURE, V188, P47, DOI 10.1016/S0044-8486(00)00333-1; Deitch EJ, 2006, J EXP BIOL, V209, P1310, DOI 10.1242/jeb.02105; Devlin RH, 2000, AQUACULTURE, V191, P367, DOI 10.1016/S0044-8486(00)00484-1; Devlin RH, 2006, TRENDS BIOTECHNOL, V24, P89, DOI 10.1016/j.tibtech.2005.12.008; Devlin RH, 2004, P NATL ACAD SCI USA, V101, P9303, DOI 10.1073/pnas.0400023101; Devlin RH, 2004, AQUACULTURE, V236, P607, DOI 10.1016/j.aquaculture.2004.02.026; DEVLIN RH, 1994, NATURE, V371, P209, DOI 10.1038/371209a0; DU SJ, 1992, BIO-TECHNOL, V10, P176, DOI 10.1038/nbt0292-176; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Fleming Ian A., 2004, P264; Garant D, 2003, ECOL LETT, V6, P541, DOI 10.1046/j.1461-0248.2003.00462.x; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; Kadri S, 1996, AQUACULTURE, V142, P245, DOI 10.1016/0044-8486(96)01258-6; Koseki Y, 2000, BEHAV ECOL SOCIOBIOL, V48, P211, DOI 10.1007/s002650000231; Letcher BH, 2003, J FISH BIOL, V62, P97, DOI 10.1046/j.1095-8649.2003.00009.x; Letcher BH, 1998, J FISH BIOL, V53, P1243, DOI 10.1111/j.1095-8649.1998.tb00245.x; Mangel M, 2008, B MAR SCI, V83, P107; McCormick SD, 1996, GEN COMP ENDOCR, V101, P3, DOI 10.1006/gcen.1996.0002; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; Moreau DTR, 2011, J FISH BIOL, V78, P726, DOI 10.1111/j.1095-8649.2010.02888.x; Moreau DTR, 2011, EVOL APPL, V4, P736, DOI 10.1111/j.1752-4571.2011.00196.x; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Muir WM, 2002, TRANSGENIC RES, V11, P101, DOI 10.1023/A:1015203812200; Neregard L, 2008, J FISH BIOL, V73, P2341, DOI 10.1111/j.1095-8649.2008.02082.x; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Paez DJ, 2011, J EVOLUTION BIOL, V24, P245, DOI 10.1111/j.1420-9101.2010.02159.x; Paez DJ, 2011, P ROY SOC B-BIOL SCI, V278, P2150, DOI 10.1098/rspb.2010.2045; Pelis RM, 2001, GEN COMP ENDOCR, V124, P134, DOI 10.1006/gcen.2001.7703; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; Saunders RL, 1998, AQUACULTURE, V168, P177, DOI 10.1016/S0044-8486(98)00348-2; Shears MA, 1992, TRANSGENIC FISH, P44; Shuster SM, 2003, MATING SYSTEMS STRAT; Stevens ED, 1998, CAN J FISH AQUAT SCI, V55, P2028, DOI 10.1139/cjfas-55-9-2028; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, AQUACULTURE, V168, P95, DOI 10.1016/S0044-8486(98)00342-1; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Valosaari KR, 2008, EVOL APPL, V1, P608, DOI 10.1111/j.1752-4571.2008.00046.x; Weir LK, 2005, CAN J FISH AQUAT SCI, V62, P1153, DOI 10.1139/F05-032; Yaskowiak ES, 2006, TRANSGENIC RES, V15, P465, DOI 10.1007/s11248-006-0020-5 55 9 9 0 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. APR 2012 26 2 399 405 10.1111/j.1365-2435.2011.01941.x 7 Ecology Environmental Sciences & Ecology 915GF WOS:000302011400011 2019-02-21 J Niemela, PT; Vainikka, A; Hedrick, AV; Kortet, R Niemela, Petri T.; Vainikka, Anssi; Hedrick, Ann V.; Kortet, Raine Integrating behaviour with life history: boldness of the field cricket, Gryllus integer, during ontogeny FUNCTIONAL ECOLOGY English Article personality; encapsulation; boldness; life-history; immune defence; behavioural syndrome ADAPTIVE PERSONALITY-DIFFERENCES; TRADE-OFFS; ANTIPREDATOR BEHAVIOR; ANIMAL PERSONALITIES; EVOLUTIONARY ECOLOGY; BATEMANS PRINCIPLE; INSECT IMMUNITY; GROWTH; POPULATIONS; PREDATION 1. According to a recent hypothesis, personality traits should form integrative pace-of-life syndromes with life-history traits. Potential life-history traits that explain personality variation are immune defence and growth rate. 2. We studied whether boldness, measured as hiding behaviour, is repeatable during ontogeny in the field cricket, Gryllus integer, and if it relates to the efficiency of immune function (i. e. the capacity to encapsulate a nylon implant), growth rate, developmental time and size as an adult. 3. Hiding behaviour was rank-order repeatable, and in general, juveniles were bolder than adults. Individuals that were cautious at early juvenile stages had higher encapsulation responses late in life compared with bold individuals. Most clearly, fast-growing individuals matured early and invested little in immune defence compared with their slower-growing conspecifics, i. e. showed patterns of a ` grow fast, die young' life-history strategy. 4. Our results may arise from a trade-off between immunity-dependent survival and bold behaviour. Trade-offs between investment in survival and behaviour could account for the maintenance of variation in personality traits by favouring certain combinations of behavioural and life-history strategies (i. e. pace-of-life-syndromes). [Niemela, Petri T.; Vainikka, Anssi] Univ Oulu, Dept Biol, FI-90014 Oulu, Finland; [Niemela, Petri T.; Vainikka, Anssi; Kortet, Raine] Univ Eastern Finland, Dept Biol, FI-8101 Joensuu, Finland; [Hedrick, Ann V.] Univ Calif Davis, Dept Neurobiol Physiol & Behav & Anim Behav, Davis, CA 95616 USA Niemela, PT (reprint author), Univ Oulu, Dept Biol, POB 3000, FI-90014 Oulu, Finland. petri.niemela@oulu.fi Kortet, Raine/J-5027-2012 Kortet, Raine/0000-0003-3749-1096; Niemela, Petri/0000-0002-7518-4057; Vainikka, Anssi/0000-0002-0172-5615 Academy of Finland [127398]; National Science Foundation [IOS-0716332] This research has been supported by the Academy of Finland (project 127398) and the National Science Foundation (IOS-0716332). We thank Nick DiRienzo, Arja Kaitala, Eija Hurme, Sami Kivela Jukka Forsman, Indrikis Krams and two anonymous referees for very helpful comments. We thank also Anne Leonard and Markus Rantala, who helped us to establish the laboratory population used in this study. We would also like to thank the University of Oulu Zoo and its very helpful staff (P. M, J.M and S. I) for assistance in our work. Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Ahtiainen JJ, 2004, BEHAV ECOL, V15, P602, DOI 10.1093/beheco/arh062; Barber I, 2010, PHILOS T R SOC B, V365, P4077, DOI 10.1098/rstb.2010.0182; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; BOOTS M, 1993, FUNCT ECOL, V7, P528, DOI 10.2307/2390128; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Briscoe AD, 2001, ANNU REV ENTOMOL, V46, P471, DOI 10.1146/annurev.ento.46.1.471; Chelini MC, 2009, BEHAV PROCESS, V82, P153, DOI 10.1016/j.beproc.2009.06.001; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Cressler CE, 2010, AM NAT, V176, P276, DOI 10.1086/655425; Dangles O, 2007, J EXP BIOL, V210, P3165, DOI 10.1242/jeb.004648; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Freitak D, 2003, P ROY SOC B-BIOL SCI, V270, pS220, DOI 10.1098/rsbl.2003.0069; Gillespie JP, 1997, ANNU REV ENTOMOL, V42, P611, DOI 10.1146/annurev.ento.42.1.611; Gyuris E., 2010, P ROY SOC LOND B BIO, V278, P628; Hedrick AV, 2006, ANIM BEHAV, V72, P1111, DOI 10.1016/j.anbehav.2006.03.018; Hedrick AV, 2000, P ROY SOC B-BIOL SCI, V267, P671, DOI 10.1098/rspb.2000.1054; Heg D., 2011, BEHAV ECOLOGY, DOI [Doi: 10.1093/beheco/arr118, DOI 10.1093/HEHECO/ARR118]; Hodin J, 2006, INTEGR COMP BIOL, V46, P719, DOI 10.1093/icb/icl038; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Jolliffe I., 2002, PRINCIPAL COMPONENT; Koolhaas JM, 2008, BRAIN BEHAV IMMUN, V22, P662, DOI 10.1016/j.bbi.2007.11.006; Kortet R, 2004, BEHAVIOUR, V141, P1189, DOI 10.1163/1568539042664597; Kortet R, 2007, BIOL J LINN SOC, V91, P475, DOI 10.1111/j.1095-8312.2007.00812.x; Kortet R, 2007, EVOL ECOL RES, V9, P185; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; Kraaijeveld AR, 1997, NATURE, V389, P278; Kurtz J, 2001, J INVERTEBR PATHOL, V78, P53, DOI 10.1006/jipa.2001.5040; Laakkonen MVM, 2007, CAN J FISH AQUAT SCI, V64, P665, DOI 10.1139/F07-041; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; McElreath R, 2007, NATURE, V450, pE5, DOI 10.1038/nature06326; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Rantala MJ, 2004, BEHAV ECOL, V15, P187, DOI 10.1093/beheco/arg103; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; ROFF DA, 2002, LIFE HIST EVOLUTION; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Sih A, 2003, ANIM BEHAV, V65, P29, DOI 10.1006/anbe.2002.2025; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tabachnick B. G, 2001, USING MULTIVARIATE S; Telang A, 2007, J EXP BIOL, V210, P854, DOI 10.1242/jeb.02715; Vainikka A, 2011, ACTA ETHOL, V14, P17, DOI 10.1007/s10211-010-0086-1; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Wilson ADM, 2010, BEHAV ECOL SOCIOBIOL, V64, P703, DOI 10.1007/s00265-009-0888-1; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 66 67 67 3 124 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2012 26 2 450 456 10.1111/j.1365-2435.2011.01939.x 7 Ecology Environmental Sciences & Ecology 915GF WOS:000302011400017 2019-02-21 J Tettamanti, F; Witvliet, W; Bize, P Tettamanti, Federico; Witvliet, Willem; Bize, Pierre Selection on age at first and at last reproduction in the long-lived Alpine Swift Apus melba IBIS English Article Apus melba; directional selection; life-history theory; lifetime reproductive success; stabilising selection PHENOTYPIC PLASTICITY; INDIVIDUAL FITNESS; SEXUAL SELECTION; POPULATIONS; SENESCENCE; EVOLUTION; PATERNITY; CHOICE; BIRD The way an organism spreads its reproduction over time is defined as a life-history trait, and selection is expected to favour life-history traits associated with the highest fitness return. We use a long-term dataset of 277 life histories to investigate the shape and strength of selection acting on the age at first reproduction and at last reproduction in the long-lived Alpine Swift. Both traits were under strong directional selection, but in opposite directions, with selection favouring birds starting their reproductive career early and being able to reproduce for longer. There was also evidence for stabilising selection acting on both traits, suggesting that individuals should nonetheless refrain from reproducing in their first 2 years of life (i.e. when inexperienced), and that reproducing after 7 years of age had little effect on lifetime fitness, probably due to senescence. [Tettamanti, Federico; Bize, Pierre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Bize, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. pierre.bize@unil.ch Swiss National Science Foundation [31003A_124988] We are grateful to Dominik Pfluger and the late Theo Marbot for their outstanding ringing work in the Alpine Swift colonies in Solothurn and Bienne, respectively, Anne Charmantier for her help with the statistical models, and Rauri Bowie, Andrew McColl and Oliver Kruger for comments on the manuscript. This research was funded by the Swiss National Science Foundation (grant no. 31003A_124988 to P.B.). Arn H, 1960, BIOL STUDIEN ALPENSE; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2006, EVOLUTION, V60, P2370; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; BROWN D, 1988, REPROD SUCCESS, P439; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Dolan AC, 2007, BEHAV ECOL, V18, P985, DOI 10.1093/beheco/arm068; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Martins TLF, 2002, J AVIAN BIOL, V33, P441, DOI 10.1034/j.1600-048X.2002.02686.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Newton I, 1989, LIFETIME REPROD BIRD; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oli MK, 2002, EVOL ECOL RES, V4, P563; R Development Core Team, 2010, R LANG ENV STAT COMP; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; WADE MJ, 1980, ANIM BEHAV, V28, P446, DOI 10.1016/S0003-3472(80)80052-2 26 4 4 0 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis APR 2012 154 2 338 344 10.1111/j.1474-919X.2012.01215.x 7 Ornithology Zoology 905OW WOS:000301283100010 2019-02-21 J Fietz, J; Weis-Dootz, T Fietz, Joanna; Weis-Dootz, Tanja Stranded on an island: consequences of forest fragmentation for body size variations in an arboreal mammal, the edible dormouse (Glis glis) POPULATION ECOLOGY English Article Body mass; Body size; Fragmentation; Island rule; Small mammal HABITAT FRAGMENTATION; MYOXUS-GLIS; EVOLUTION; RULE; REPRODUCTION; LANDSCAPE; SQUIRREL; SURVIVAL; LENGTH; MASS The island rule states that small mammals isolated on islands have the evolutionary tendency to become larger, while large mammals tend to become smaller. However, the underlying mechanisms and life history consequences of these insular shifts in body size still remain speculative. The aim of this study was to investigate whether an arboreal mammal, the edible dormouse (Glis glis), showed shifts in body size when inhabiting isolated forest fragments. We analysed a data set of 541 individuals captured between 2005 and 2010 in four different forest fragments and one continuous forest, which served as a reference area. Sex, age, body mass, and size of all individuals were known. We used linear mixed-effect models to investigate whether individuals differed in their body size and mass between forest fragments and continuous forest. Our study revealed that edible dormice inhabiting forest fragments were significantly larger and heavier than individuals in the continuous forest, in accordance with patterns described by the island rule for small mammals. Because edible dormice frequently use nest boxes to rest during the day and to rear offspring, the life history strategies of this rodent can be easily investigated under evolutionary relevant conditions in the field. Thus the edible dormouse represents an excellent model organism for studying the mechanisms underlying shifts in body size as a response to habitat fragmentation and to investigate the consequences of these shifts on their life history strategies. [Fietz, Joanna] Univ Hohenheim, D-70599 Stuttgart, Germany; [Fietz, Joanna; Weis-Dootz, Tanja] Univ Ulm, Inst Expt Ecol, D-89069 Ulm, Germany Fietz, J (reprint author), Univ Hohenheim, Garbenstr 17, D-70599 Stuttgart, Germany. Joanna.Fietz@uni-hohenheim.de Margarete von Wrangell Programme; German Research Foundation (DFG) [FI 831/3-1, 831/3-2, FI 831/6-1]; German Wildlife Foundation; Deutsche Bundesstiftung Umwelt (DBU) T. Kager, S. Schauer, J. Schmid, M. Sailer, F. Langer and S. Schwarz helped in many ways with this field project. Financial support provided by the Margarete von Wrangell Programme, the German Research Foundation (DFG: FI 831/3-1; 831/3-2; FI 831/6-1), and the German Wildlife Foundation to JF, and Deutsche Bundesstiftung Umwelt (DBU) to T W-D made this study possible. K.H. Dausmann, S. Meiri, and an anonymous reviewer substantially improved the manuscript with their comments. Our experiments were conducted under licence from the Nature Conservancy and the Animal Experiment Department of the Regierungsprasidium Tubingen. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ALLAINE D, 1987, OECOLOGIA, V73, P478, DOI 10.1007/BF00385268; Bergmann K, 1847, GOTTINGER STUDIEN, V3, P595; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bryant AA, 2005, CAN J ZOOL, V83, P674, DOI 10.1139/Z05-055; Capizzi D, 2003, ACTA THERIOL, V48, P359, DOI 10.1007/BF03194175; DOBSON FS, 1989, J MAMMAL, V70, P142, DOI 10.2307/1381677; Dooley JL, 1998, ECOLOGY, V79, P969, DOI 10.2307/176593; Fietz J, 2005, J COMP PHYSIOL B, V175, P45, DOI 10.1007/s00360-004-0461-1; Fietz J, 2009, J COMP PHYSIOL B, V179, P829, DOI 10.1007/s00360-009-0364-2; Fokidis HB, 2007, ANIM BEHAV, V73, P479, DOI 10.1016/j.anbehav.2006.08.010; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Heldmaier G, 2004, VERGLEICHENDE TIERPH, V2, P93; Ims RA, 2000, NATURE, V408, P194, DOI 10.1038/35041562; KAUFMAN DW, 1987, J MAMMAL, V68, P275, DOI 10.2307/1381466; Langlois JP, 2001, LANDSCAPE ECOL, V16, P255, DOI 10.1023/A:1011148316537; Lebl K, 2011, ECOGRAPHY, V34, P683, DOI 10.1111/j.1600-0587.2010.06691.x; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MAC ARTHUR ROBERT H., 1967; Markov G, 2011, 8 INT DORM C 2001 SE, P27; McCleery RA, 2008, J WILDLIFE MANAGE, V72, P133, DOI 10.2193/2007-138; MCNAB BK, 1983, J ZOOL, V199, P1; McNab BK, 2002, ECOL LETT, V5, P693, DOI 10.1046/j.1461-0248.2002.00365.x; McNab BK, 2010, OECOLOGIA, V164, P13, DOI 10.1007/s00442-010-1621-5; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Meiri S, 2011, J BIOGEOGR, V38, P89, DOI 10.1111/j.1365-2699.2010.02390.x; Murie JO, 1987, OECOLOGIA, V733, P1; NORRDAHL K, 1995, OECOLOGIA, V103, P241, DOI 10.1007/BF00329086; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pertoldi C, 2006, BIOL J LINN SOC, V88, P541, DOI 10.1111/j.1095-8312.2006.00639.x; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; SAUER JR, 1987, ECOLOGY, V68, P642, DOI 10.2307/1938469; Schlumpberger O, 2010, THESIS U ULM ULM; Schlund W, 1997, Z SAUGETIERKD, V62, P158; Schlund W, 1997, Z SAUGETIERKD, V62, P187; Schlund W., 2005, SAUGETIERE BADEN WUR, P199; Schmidt NM, 2005, ECOL SOC, V10; Schmidt NM, 2003, CONSERV ECOL, V7; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; *SPSS INC, 2004, SPSS BAS 13 0 WIND U; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; VANVALEN L, 1973, EVOLUTION, V27, P27, DOI 10.1111/j.1558-5646.1973.tb05914.x; Vietinghoff-Riesch A., 1960, SIEBENSCHLAFER GLIS; WAUTERS L, 1993, J ANIM ECOL, V62, P280, DOI 10.2307/5359; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; Worschech K, 2011, 8 INT DORM C 2001 SE, P51; YAHNER RH, 1992, AM MIDL NAT, V127, P381, DOI 10.2307/2426545; Yom-Tov Y, 2003, EVOL ECOL RES, V5, P1037 51 9 9 1 44 SPRINGER TOKYO TOKYO 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN 1438-3896 POPUL ECOL Popul. Ecol. APR 2012 54 2 313 320 10.1007/s10144-012-0310-0 8 Ecology Environmental Sciences & Ecology 918XH WOS:000302284300008 2019-02-21 J Santangeli, A; Hakkarainen, H; Laaksonen, T; Korpimaki, E Santangeli, Andrea; Hakkarainen, Harri; Laaksonen, Toni; Korpimaki, Erkki Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls ANIMAL BEHAVIOUR English Article Aegolius funereus; haematocrit; parental care; provisioning rate; reproductive cost; telemetry; Tengmalm's owl TITS PARUS-CAERULEUS; REPRODUCTIVE SUCCESS; AEGOLIUS-FUNEREUS; BREEDING PERFORMANCE; FORAGING PATTERNS; AMERICAN KESTRELS; FOREST; LANDSCAPE; BIRDS; AREA Animal populations are often limited by food and rearing offspring is energetically demanding. Life history theory predicts that parents of altricial bird species will often reduce their current reproductive effort when given supplementary food. Previous food supplementation studies have mainly focused on effects on female parents, while the importance of paternal behaviour has largely been neglected. We addressed the effects of natural and experimentally increased food abundance on male ranging behaviour and provisioning rate, female and fledgling condition, and final reproductive success, in the Tengmalm's owl, Aegolius funereus, a species with obligatory biparental care. We found that males adjusted their parental effort by reducing provisioning rate at food-supplemented nests. Food supplementation induced an increase in body mass of females, and in body mass and haematocrit levels of fledglings. This suggests that the amount of extra food provided was enough for females to increase body condition sufficiently to start allocating extra resources to enhance the quality of current offspring. While the home range size of radiomarked males was not affected by food supplementation, it decreased with cover of spruce forest, which is a habitat that is denser in structure and richer in prey than pine forest and especially clear-cut areas. This suggests that habitat-specific prey abundance and/or cover may be strong determinants of home range size for males. Overall, the results provide novel insights into how habitat quality and food supply affect male hunting behaviour and biparental care, and how this in turn is reflected in fledgling condition. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Santangeli, Andrea; Laaksonen, Toni] Univ Helsinki, Finnish Museum Nat Hist, FI-00014 Helsinki, Finland; [Santangeli, Andrea; Hakkarainen, Harri; Korpimaki, Erkki] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Santangeli, A (reprint author), Univ Helsinki, Finnish Museum Nat Hist, POB 17, FI-00014 Helsinki, Finland. andrea.santangeli@helsinki.fi Laaksonen, Toni/B-4241-2014 Laaksonen, Toni/0000-0001-9035-7131; Santangeli, Andrea/0000-0003-0273-1977 Centre of International Mobility, Ministry of Education, Finland; Finnish School in Wildlife Biology, Conservation and Management (LUOVA) We thank Mari Laine, Jorma Nurmi, Rauno Varjonen and Michael Griesser for help in conducting fieldwork and L. Laurila for GIS assistance. We also thank three referees for providing valuable comments. The study was supported by a grant of the Centre of International Mobility, Ministry of Education, Finland (to E.K. and A.S.). A.S. was also supported by the Finnish School in Wildlife Biology, Conservation and Management (LUOVA). ANDERSEN DE, 1989, J WILDLIFE MANAGE, V53, P802, DOI 10.2307/3809215; Bernard E, 2003, BIOTROPICA, V35, P262, DOI 10.1646/02156; Bruun M, 2003, BIOL CONSERV, V114, P179, DOI 10.1016/S0006-3207(03)00021-1; Burnham K. P, 2002, MODEL SELECTION MULT; Byholm P, 2008, ECOLOGY, V89, P1696, DOI 10.1890/07-0675.1; Christensen P, 2003, J MAMMAL, V84, P1292, DOI 10.1644/BBa-014; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dawson RD, 1997, J WILDLIFE MANAGE, V61, P1297, DOI 10.2307/3802129; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; DRENT RH, 1980, ARDEA, V68, P225; Eldegard K, 2010, BEHAV ECOL SOCIOBIOL, V64, P815, DOI 10.1007/s00265-009-0898-z; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; FREYROOS F, 1995, BEHAV ECOL, V6, P287, DOI 10.1093/beheco/6.3.287; Glutz von Blotzheim U. N., 1980, HDB VOGEL MITTELEURO; HAKKARAINEN H, 1994, OECOLOGIA, V97, P209, DOI 10.1007/BF00323151; Hakkarainen H, 2003, OIKOS, V100, P162, DOI 10.1034/j.1600-0706.2003.11906.x; Hakkarainen H, 1996, ECOLOGY, V77, P1134, DOI 10.2307/2265582; Hakkarainen H, 2008, OECOLOGIA, V155, P479, DOI 10.1007/s00442-007-0929-2; Hinam HL, 2008, BIOL CONSERV, V141, P524, DOI 10.1016/j.biocon.2007.11.011; Hinsley SA, 1999, J AVIAN BIOL, V30, P271, DOI 10.2307/3677353; HIRALDO F, 1994, J FIELD ORNITHOL, V65, P466; Huitu O, 2009, FOREST ECOL MANAG, V258, P1219, DOI 10.1016/j.foreco.2009.06.013; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; IMS RA, 1987, J ANIM ECOL, V56, P585, DOI 10.2307/5070; Karell P, 2009, CAN J ZOOL, V87, P8, DOI 10.1139/Z08-133; Kenward R., 2001, MANUAL WILDLIFE RADI; Kenward R. E., 2002, RANGES 6 SOFTWARE; KERNOHAN BJ, 2001, RADIO TRACKING ANIMA, P126; Korpimaki E, 2002, P ROY SOC B-BIOL SCI, V269, P991, DOI 10.1098/rspb.2002.1972; KORPIMAKI E, 1991, OECOLOGIA, V85, P543, DOI 10.1007/BF00323767; KORPIMAKI E, 1988, ORNIS FENNICA, V65, P21; KORPIMAKI E, 1987, J ANIM ECOL, V56, P185, DOI 10.2307/4808; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; Korpimaki E, 1981, ACTA U OUL A, V118, P1, DOI DOI 10.1897/IEAM_2009-053.1; Korpimaki Erkki, 2008, Scottish Birds, V28, P19; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; Laaksonen T, 2004, P ROY SOC B-BIOL SCI, V271, pS461, DOI 10.1098/rsbl.2004.0221; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lopez-Bao JV, 2010, ANIM CONSERV, V13, P35, DOI 10.1111/j.1469-1795.2009.00300.x; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Marzluff JM, 1997, CONDOR, V99, P567, DOI 10.2307/1370470; Mikkola H, 1983, OWLS EUROPE; Newton I, 1998, POPULATION LIMITATIO; O'Donnell CFJ, 2000, ANIM CONSERV, V3, P287, DOI 10.1111/j.1469-1795.2000.tb00114.x; REDPATH SM, 1995, J ANIM ECOL, V64, P652, DOI 10.2307/5807; REYNOLDS TD, 1990, J WILDLIFE MANAGE, V54, P316, DOI 10.2307/3809049; Seaman DE, 1999, J WILDLIFE MANAGE, V63, P739, DOI 10.2307/3802664; Seaman DE, 1996, ECOLOGY, V77, P2075, DOI 10.2307/2265701; Stearns S, 1992, EVOLUTION LIFE HIST; Sutherland WJ, 2004, BIRD ECOLOGY CONSERV; SWIHART RK, 1985, ECOLOGY, V66, P1176, DOI 10.2307/1939170; Tremblay I, 2005, IBIS, V147, P17, DOI 10.1111/j.1474-919x.2004.00312.x; Turcotte Y, 2003, OIKOS, V100, P614, DOI 10.1034/j.1600-0706.2003.12031.x; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.2307/2265943; Zanette L, 2000, ECOLOGY, V81, P1654, DOI 10.2307/177314 57 26 26 0 82 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. APR 2012 83 4 1115 1123 10.1016/j.anbehav.2012.02.002 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 914TN WOS:000301975500035 2019-02-21 J Heard, GW; Scroggie, MP; Malone, BS Heard, Geoffrey W.; Scroggie, Michael P.; Malone, Brian S. The life history and decline of the threatened Australian frog, Litoria raniformis AUSTRAL ECOLOGY English Article collapse; decline; life history; Litoria raniformis; metapopulation LONG-LIVED ORGANISMS; SOUTHERN VICTORIA; EASTERN AUSTRALIA; EXTINCTION RISK; ANURA-HYLIDAE; GROWTH CURVE; TREE FROG; AMPHIBIANS; CONSERVATION; DYNAMICS A popular idea amongst ecologists last century was that animals which exploit dynamic environments often display fast life history strategies (high fecundity, rapid growth and maturation, and low or variable adult survival rates) relative to those which occupy more stable environments. Whilst the underlying theory has been discredited, the categorization remains of interest, because species with fast life history traits are thought to be more robust to human-induced environmental change than those with slow life history traits. We examined the life history traits of the endangered Australian frog Litoria raniformis, to determine whether it displays fast life history traits (like its sister species L. aurea and L. castanea), and to assess the role of these traits in the decline of this species. Mark-recapture data confirmed that L. raniformis displays rapid growth and maturation. The data also suggest that L. raniformis displays relatively low adult survival rates. We propose that the fast life history traits of this species are adaptive to metapopulation dynamics. In turn, we suggest that the rapid decline of L. raniformis may have resulted from metapopulation collapse, driven ultimately by habitat loss, degradation and fragmentation, and proximately by severe stochastic perturbations. [Heard, Geoffrey W.; Malone, Brian S.] La Trobe Univ, Dept Zool, Bundoora, Vic 3083, Australia; [Scroggie, Michael P.] Arthur Rylah Inst Environm Res, Dept Sustainabil & Environm, Heidelberg, Vic, Australia Heard, GW (reprint author), Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia. heardg@unimelb.edu.au Scroggie, Michael/B-7507-2011 David Myer Postgraduate Scholarship; LaTrobe University; Growling Grass Frog Trust Fund; Victorian Department of Sustainability and Environment; Commonwealth Department of Environment, Heritage and the Arts Arthur Buchan, Nick Clemann, Graeme Gillespie, Andrew Hamer, David Hunter and Peter Robertson provided valuable advice during the design of this study. We are grateful to Nick Clemann and Peter Robertson for loaning field equipment, to Michael McCarthy for assistance with the data analyses, and to Nick Clemann and David Duncan for constructive comments on an earlier draft of this manuscript. GH was supported by a David Myer Postgraduate Scholarship and Dean's Top-Up Award (LaTrobe University). The project was funded by grants from the Growling Grass Frog Trust Fund, the Victorian Department of Sustainability and Environment, Commonwealth Department of Environment, Heritage and the Arts, and LaTrobe University. It was undertaken under research permit 10003005 issued by the Victorian Department of Sustainability and Environment. The study was approved by the LaTrobe University Animal Ethics Committee (approval number AEC04/24(L)/V4). Alford R. A., 1994, MEASURING MONITORING, P277; Amstrup S, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P88; Anstis M., 2002, TADPOLES S E AUSTR G; Arntzen JW, 2000, J HERPETOL, V34, P227, DOI 10.2307/1565419; ASHWORTH JM, 1998, THESIS U TASMANIA HO; BANKS B, 1988, J ANIM ECOL, V57, P475, DOI 10.2307/4919; Barbaro L, 2009, ECOGRAPHY, V32, P321, DOI 10.1111/j.1600-0587.2008.05546.x; Begon M., 1986, ECOLOGY INDIVIDUALS; Bennett PM, 1997, P ROY SOC B-BIOL SCI, V264, P401, DOI 10.1098/rspb.1997.0057; Berger L, 2004, AUST VET J, V82, P434, DOI 10.1111/j.1751-0813.2004.tb11137.x; BERGER L, 1999, DECLINES DISAPPEARAN, P23; Bielby J, 2008, CONSERV LETT, V1, P82, DOI 10.1111/j.1755-263X.2008.00015.x; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Bureau of Meteorology, 2004, DROUGHT DUST DEL CEN; Burns EL, 2006, MOL PHYLOGENET EVOL, V39, P573, DOI 10.1016/j.ympev.2005.11.017; Byrne PG, 2002, J EVOLUTION BIOL, V15, P347, DOI 10.1046/j.1420-9101.2002.00409.x; Carlson A, 2000, P ROY SOC B-BIOL SCI, V267, P1311, DOI 10.1098/rspb.2000.1143; Christy M. T., 2000, THESIS U SYDNEY SYDN; Christy Michelle T., 1996, Australian Zoologist, V30, P139; CONGDON JD, 1993, CONSERV