PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Dey, S; Bose, J; Joshi, A Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh Adaptation to larval crowding in Drosophila ananassae leads to the evolution of population stability ECOLOGY AND EVOLUTION English Article alpha-Selection; competitive ability; constancy; density-dependent selection; K-selection; life-history evolution; persistence; population dynamics DEPENDENT NATURAL-SELECTION; LIFE-HISTORY EVOLUTION; SINGLE-SPECIES POPULATIONS; DENSITY-DEPENDENCE; FASTER DEVELOPMENT; K-SELECTION; GROWTH-RATE; MELANOGASTER; DYNAMICS; CHAOS Density-dependent selection is expected to lead to population stability, especially if r and K tradeoff. Yet, there is no empirical evidence of adaptation to crowding leading to the evolution of stability. We show that populations of Drosophila ananassae selected for adaptation to larval crowding have higher K and lower r, and evolve greater stability than controls. We also show that increased population growth rates at high density can enhance stability, even in the absence of a decrease in r, by ensuring that the crowding adapted populations do not fall to very low sizes. We discuss our results in the context of traits known to have diverged between the selected and control populations, and compare our results with previous work on the evolution of stability in D. melanogaster. Overall, our results suggest that density-dependent selection may be an important factor promoting the evolution of relatively stable dynamics in natural populations. [Dey, Snigdhadip; Bose, Joy; Joshi, Amitabh] Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Bangalore 560064, Karnataka, India Joshi, A (reprint author), Jawaharlal Nehru Ctr Adv Sci Res, Evolutionary & Organismal Biol Unit, Evolutionary Biol Lab, Jakkur PO, Bangalore 560064, Karnataka, India. ajoshi@jncasr.ac.in Department of Science and Technology, Government of India; Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India Supported by funds from the Department of Science and Technology, Government of India.; We thank Sutirth Dey and two anonymous reviewers for helpful comments on the manuscript and M. Rajanna for assistance in the laboratory. S. Dey thanks Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, for a doctoral fellowship. This work was supported in part by funds from the Department of Science and Technology, Government of India (to A. J.). Archana N., 2010, THESIS J NEHRU CTR A; ASMUSSEN MA, 1983, GENETICS, V103, P335; BERRYMAN AA, 1989, TRENDS ECOL EVOL, V4, P26, DOI 10.1016/0169-5347(89)90014-1; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; CLARKE B, 1972, AM NAT, V106, P1, DOI 10.1086/282747; Dey S, 2006, SCIENCE, V312, P434, DOI 10.1126/science.1125317; Dey S, 2008, J ANIM ECOL, V77, P670, DOI 10.1111/j.1365-2656.2008.01401.x; Ebenman B, 1996, P ROY SOC B-BIOL SCI, V263, P1145, DOI 10.1098/rspb.1996.0167; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Getz WM, 1996, ECOLOGY, V77, P2014, DOI 10.2307/2265697; Grimm V, 1997, OECOLOGIA, V109, P323, DOI 10.1007/s004420050090; HANSEN TF, 1992, THEOR POPUL BIOL, V42, P199, DOI 10.1016/0040-5809(92)90012-I; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Joshi A, 2003, J GENET, V82, P147, DOI 10.1007/BF02715815; Joshi A, 1996, EVOL ECOL, V10, P463, DOI 10.1007/BF01237879; JOSHI A, 1988, EVOLUTION, V42, P1090, DOI 10.1111/j.1558-5646.1988.tb02527.x; Joshi A, 2001, J GENET, V80, P63, DOI 10.1007/BF02728332; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MAY RM, 1974, SCIENCE, V186, P645, DOI 10.1126/science.186.4164.645; MAY RM, 1976, AM NAT, V110, P573, DOI 10.1086/283092; Mueller L. D., 2000, STABILITY MODEL POPU; Mueller LD, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P197; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; MUELLER LD, 1981, ECOLOGY, V62, P1148, DOI 10.2307/1937278; MUELLER LD, 1994, ECOLOGY, V75, P430, DOI 10.2307/1939546; Mueller LD, 2000, ECOLOGY, V81, P1273, DOI 10.1890/0012-9658(2000)081[1273:DPSE]2.0.CO;2; MUELLER LD, 1990, EVOL ECOL, V4, P290, DOI 10.1007/BF02270928; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; NICHOLSON AJ, 1957, COLD SPRING HARB SYM, V22, P153, DOI 10.1101/SQB.1957.022.01.017; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2003, P ROY SOC B-BIOL SCI, V270, pS84, DOI 10.1098/rsbl.2003.0020; Prasad NG, 2000, GENET RES, V76, P249, DOI 10.1017/S0016672300004754; Prasad NG, 2001, EVOLUTION, V55, P1363; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Shakarad M, 2005, BIOL LETTERS, V1, P91, DOI 10.1098/2004.0261; Sharmila Bharathi N., 2007, THESIS J NEHRU CTR A; Sheeba V, 1998, CURR SCI INDIA, V75, P1406; Shiotsugu J., 1996, EVOLUTION, V51, P163; StatSoft, 1995, STAT, V1; STOKES TK, 1988, THEOR POPUL BIOL, V34, P248, DOI 10.1016/0040-5809(88)90023-8; THOMAS WR, 1980, ECOLOGY, V61, P1312, DOI 10.2307/1939039; TURELLI M, 1980, P NATL ACAD SCI-BIOL, V77, P7501, DOI 10.1073/pnas.77.12.7501 46 5 5 0 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2012 2 5 941 951 10.1002/ece3.227 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055WE WOS:000312447700007 22837839 DOAJ Gold, Green Published 2019-02-21 J Fujiwara, M Fujiwara, Masami Demographic Diversity and Sustainable Fisheries PLOS ONE English Article POPULATION REGULATION; MARINE FISHES; MANAGEMENT; RESILIENCE; ABUNDANCE; MODELS; VARIABILITY; RECRUITMENT; STABILITY; DYNAMICS Fish species are diverse. For example, some exhibit early maturation while others delay maturation, some adopt semelparous reproductive strategies while others are iteroparous, and some are long-lived and others short-lived. The diversity is likely to have profound effects on fish population dynamics, which in turn has implications for fisheries management. In this study, a simple density-dependent stage-structured population model was used to investigate the effect of life history traits on sustainable yield, population resilience, and the coefficient of variation (CV) of the adult abundance. The study showed that semelparous fish can produce very high sustainable yields, near or above 50% of the carrying capacity, whereas long-lived iteroparous fish can produce very low sustainable yields, which are often much less than 10% of the carrying capacity. The difference is not because of different levels of sustainable fishing mortality rate, but because of difference in the sensitivity of the equilibrium abundance to fishing mortality. On the other hand, the resilience of fish stocks increases from delayed maturation to early maturation strategies but remains almost unchanged from semelparous to long-lived iteroparous. The CV of the adult abundance increases with increased fishing mortality, not because more individuals are recruited into the adult stage (as previous speculated), but because the mean abundance is more sensitive to fishing mortality than its standard deviation. The magnitudes of these effects vary depending on the life history strategies of the fish species involved. It is evident that any past high yield of long-lived iteroparous fish is a transient yield level, and future commercial fisheries should focus more on fish that are short-lived (including semelparous species) with high compensatory capacity. Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 United States National Oceanic and Atmospheric Administration (DOC) [NFFR7500-10-18114] This work was funded in part by the United States National Oceanic and Atmospheric Administration (DOC Contract-NFFR7500-10-18114). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study. ADAMS PB, 1980, FISH B-NOAA, V78, P1; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BEDDINGTON JR, 1976, J ANIM ECOL, V45, P791, DOI 10.2307/3581; Beverton R.J.H., 1957, DYNAMICS EXPLOITED F; Brooks EN, 2010, ICES J MAR SCI, V67, P165, DOI 10.1093/icesjms/fsp225; Cadrin SX, 2008, FISH RES, V94, P367, DOI 10.1016/j.fishres.2008.06.004; Caswell H., 2001, MATRIX POPULATION MO; COSTANTINO RF, 1995, NATURE, V375, P227, DOI 10.1038/375227a0; Costantino RF, 1997, SCIENCE, V275, P389, DOI 10.1126/science.275.5298.389; DEANGELIS DL, 1980, ECOLOGY, V61, P764, DOI 10.2307/1936746; Fromentin JM, 2001, FISH RES, V53, P133, DOI 10.1016/S0165-7836(00)00299-X; Fujiwara M, 2011, SCI REP-UK, V1, DOI 10.1038/srep00107; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Haddon M, 2001, MODELLING QUANTITATI; Hannesson R, 1994, 04299337 FAO DN; HARRISON GW, 1979, AM NAT, V113, P659, DOI 10.1086/283424; Hastings A, 2004, TRENDS ECOL EVOL, V19, P39, DOI 10.1016/j.tree.2003.09.007; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Jennings S, 2001, MARINE FISHERIES ECO; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; Myers RA, 1996, FISH B-NOAA, V94, P707; Pinsky ML, 2011, P NATL ACAD SCI USA, V208, P8317; Quinn T. J., 1999, QUANTITATIVE FISH DY; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Rose KA, 2003, ANNU REV ECOL EVOL S, V34, P127, DOI 10.1146/annurev.ecolsys.34.011802.132423; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P725, DOI 10.1139/F05-067; Stearns S, 1992, EVOLUTION LIFE HIST; USDOC, 2007, 94265 USDOC; Verhulst P. F., 1838, CORRES MATH PHYSIQUE, V10, P113; Walters C. J, 1992, QUANTITATIVE FISHERI; Wiedenmann J, 2009, BIOL CONSERV, V142, P2990, DOI 10.1016/j.biocon.2009.07.031; Williams EH, 2003, CAN J FISH AQUAT SCI, V60, P1037, DOI 10.1139/F03-099; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Worden L, 2010, THEOR POPUL BIOL, V78, P239, DOI 10.1016/j.tpb.2010.07.004 38 3 3 0 30 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 1 2012 7 5 e34556 10.1371/journal.pone.0034556 14 Multidisciplinary Sciences Science & Technology - Other Topics 959UN WOS:000305340700004 22563455 DOAJ Gold, Green Published 2019-02-21 J Kosztolanyi, A; Kupper, C; Chastel, O; Parenteau, C; Yilmaz, KT; Miklosi, A; Szekely, T; Lendvai, AZ Kosztolanyi, Andras; Kuepper, Clemens; Chastel, Olivier; Parenteau, Charline; Yilmaz, K. Tuluhan; Miklosi, Adam; Szekely, Tarnas; Lendvai, Adam Z. Prolactin stress response does not predict brood desertion in a polyandrous shorebird HORMONES AND BEHAVIOR English Article Social behavior; Neuroendocrine system; Parental care; Brood desertion; Corticosterone; Prolactin; Capture and restraint; Shorebird; Kentish plover LONG-LIVED BIRD; PLOVERS CHARADRIUS-ALEXANDRINUS; PARENTAL CARE; KENTISH PLOVERS; REPRODUCTIVE SUCCESS; LUTEINIZING-HORMONE; SEXUAL CONFLICT; HOUSE SPARROWS; OLDER PARENTS; CORTICOSTERONE RESPONSES One of the fundamental principles of the life-history theory is that parents need to balance their resources between current and future offspring. Deserting the dependent young is a radical life-history decision that saves resources for future reproduction but that may cause the current brood to fail. Despite the importance of desertion for reproductive success, and thus fitness, the neuroendocrine mechanisms of brood desertion are largely unknown. We investigated two candidate hormones that may influence brood desertion in the Kentish plover Charadrius alexandrinus: prolactin ('parental hormone') and corticosterone ('stress hormone'). Kentish plovers exhibit an unusually diverse mating and parental care system: brood desertion occurs naturally since either parent (the male or the female) may desert the brood after the chicks hatch and mate with a new partner shortly after. We measured the hormone levels of parents at hatching using the standard capture and restraint protocol. We subsequently followed the broods to determine whether a parent deserted the chicks. We found no evidence that either baseline or stress-induced prolactin levels of male or female parents predicted brood desertion. Although stress-induced corticosterone levels were generally higher in females compared with males, individual corticosterone levels did not explain the probability of brood desertion. We suggest that, in this species, low prolactin levels do not trigger brood desertion. In general, we propose that the prolactin stress response does not reflect overall parental investment in a species where different parts of the breeding cycle are characterized by contrasting individual investment strategies. (C) 2012 Elsevier Inc. All rights reserved. [Kosztolanyi, Andras; Miklosi, Adam] Eotvos Lorand Univ, Dept Ethol, H-1117 Budapest, Hungary; [Kuepper, Clemens] Harvard Univ, Dept Organism & Evolutionary Biol, Museum Comparat Zool, Cambridge, MA 02138 USA; [Chastel, Olivier; Parenteau, Charline] Ctr Natl Rech Sci, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France; [Yilmaz, K. Tuluhan] Cukurova Univ, Dept Landscape Architecture, TR-01330 Adana, Turkey; [Szekely, Tarnas] Univ Bath, Dept Biol & Biochem, Bath 8A2 7AY, Avon, England; [Lendvai, Adam Z.] Coll Nyiregyhaza, Dept Biol, H-4400 Nyiregyhaza, Hungary Kosztolanyi, A (reprint author), Eotvos Lorand Univ, Dept Ethol, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary. andras.kosztolanyi@gmail.com Kupper, Clemens/D-8116-2011; Lendvai, Adam/B-8546-2008; Yilmaz, Kemal Tuluhan/K-5194-2018; Kosztolanyi, Andras/B-8008-2016 Kupper, Clemens/0000-0002-1507-8033; Lendvai, Adam/0000-0002-8953-920X; Kosztolanyi, Andras/0000-0002-9109-5871 Hungarian Scientific Research Fund (OTKA) [K81953, PD76862]; Hungarian-French Intergovernmental S&T Cooperation Programme [OMFB-00365/2010, Egide 22895WE]; Hungarian-Turkish Intergovernmental S&T Cooperation Programme [OMFB-00581/2009, TUBITAK-108Y329]; DAAD The study was supported by the Hungarian Scientific Research Fund (OTKA, K81953, PD76862) and the Hungarian-French Intergovernmental S&T Cooperation Programme (OMFB-00365/2010, Egide 22895WE). Fieldwork was supported by a grant from the Hungarian-Turkish Intergovernmental S&T Cooperation Programme (OMFB-00581/2009, TUBITAK-108Y329). CK was supported by a DAAD fellowship. At the CEBC, we thank Colette Trouve for her technical assistance in performing the prolactin and corticosterone assays. We are grateful to Peter Sharp and Alexander Badyaev for discussion and useful advice on the methods. We are grateful for two anonymous referees for their excellent comments that improved the manuscript. Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Adkins-Regan Elizabeth, 2010, P59; Amat JA, 1999, IBIS, V141, P596, DOI 10.1111/j.1474-919X.1999.tb07367.x; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; Angelier F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P590, DOI 10.1086/603634; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Arnqvist G, 2005, SEXUAL CONFLICT; Ball G.F., 1991, ACT 20 C INT ORN, V199, P984; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boos M, 2007, BEHAV PROCESS, V76, P206, DOI 10.1016/j.beproc.2007.05.003; Buntin John D., 1996, Advances in the Study of Behavior, V25, P161; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Chastel O, 2002, CONDOR, V104, P873, DOI 10.1650/0010-5422(2002)104[0873:POPSIR]2.0.CO;2; CHEREL Y, 1994, PHYSIOL ZOOL, V67, P1154, DOI 10.1086/physzool.67.5.30163887; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; DITTAMI JP, 1981, Z TIERPSYCHOL, V55, P289; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; GOLDSMITH AR, 1982, GEN COMP ENDOCR, V46, P458, DOI 10.1016/0016-6480(82)90100-9; GOLDSMITH AR, 1980, J ENDOCRINOL, V86, P371, DOI 10.1677/joe.0.0860371; GRATTOTREVOR CL, 1990, AUK, V107, P718, DOI 10.2307/4088002; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; HALL MR, 1983, GEN COMP ENDOCR, V49, P270, DOI 10.1016/0016-6480(83)90144-2; HALL MR, 1987, J WILDLIFE MANAGE, V51, P530, DOI 10.2307/3801263; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Heidinger BJ, 2006, P ROY SOC B-BIOL SCI, V273, P2227, DOI 10.1098/rspb.2006.3557; Heidinger BJ, 2010, FUNCT ECOL, V24, P1037, DOI 10.1111/j.1365-2435.2010.01733.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Kosztolanyi A, 2006, J ANIM ECOL, V75, P257, DOI 10.1111/j.1365-2656.2006.01049.x; Kosztolanyi A, 2002, J FIELD ORNITHOL, V73, P199, DOI 10.1648/0273-8570-73.2.199; Kosztolanyi A, 2009, BEHAV ECOL, V20, P446, DOI 10.1093/beheco/arn140; Lendvai AZ, 2011, J EXP BIOL, V214, P821, DOI 10.1242/jeb.047712; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; Lendvai AZ, 2008, HORM BEHAV, V53, P395, DOI 10.1016/j.yhbeh.2007.11.011; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lendvai AZ, 2004, ANIM BEHAV, V67, P703, DOI 10.1016/j.anbehav.2003.08.010; Lessells CM, 1999, MG BEH ECOL, P75; LESSELLS CM, 1984, IBIS, V126, P474, DOI 10.1111/j.1474-919X.1984.tb02074.x; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; McGraw Lisa, 2010, P271; Miller DA, 2009, HORM BEHAV, V56, P457, DOI 10.1016/j.yhbeh.2009.08.001; ORING LW, 1986, AUK, V103, P820; ORING LW, 1988, GEN COMP ENDOCR, V72, P247, DOI 10.1016/0016-6480(88)90207-9; ORING LW, 1986, GEN COMP ENDOCR, V62, P394, DOI 10.1016/0016-6480(86)90049-3; Perkins D.E., 2004, THESIS U MAINE; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2011, R LANG ENV STAT COMP; Rall MK, 2004, BEHAVIOUR, V141, P1511, DOI 10.1163/1568539042948088; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riou S, 2010, GEN COMP ENDOCR, V168, P8, DOI 10.1016/j.ygcen.2010.03.011; Schuett W, 2011, ANIM BEHAV, V81, P609, DOI 10.1016/j.anbehav.2010.12.006; Sharp PJ, 1998, COMP BIOCHEM PHYS C, V119, P275, DOI 10.1016/S0742-8413(98)00016-4; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Spee M, 2010, HORM BEHAV, V58, P762, DOI 10.1016/j.yhbeh.2010.07.011; Szekely T, 1999, BEHAV ECOL, V10, P191, DOI 10.1093/beheco/10.2.191; SZEKELY T, 1995, BEHAV ECOL SOCIOBIOL, V37, P155, DOI 10.1007/BF00176712; SZEKELY T, 1993, ORNIS SCAND, V24, P317, DOI 10.2307/3676794; Szekely T, 1999, BEHAV ECOL, V10, P185, DOI 10.1093/beheco/10.2.185; Szekely Tamas, 1996, Current Ornithology, V13, P271; Szekely T, 2006, BIOSCIENCE, V56, P801, DOI 10.1641/0006-3568(2006)56[801:SCEABS]2.0.CO;2; Szentirmai I., 2001, Ornis Hungarica, V11, P27; Van Dijk R, 2007, IBIS, V149, P530, DOI 10.1111/j.1474-919X.2007.00679.x; Venables WN, 2002, MODERN APPL STAT S; VISSER GH, 1993, PHYSIOL ZOOL, V66, P771, DOI 10.1086/physzool.66.5.30163823; WARRINER JS, 1986, WILSON BULL, V98, P15; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; WENTWORTH BC, 1983, BIOL REPROD, V29, P87, DOI 10.1095/biolreprod29.1.87; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; WINGFIELD JC, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P520; WINGFIELD JC, 1995, AM ZOOL, V35, P285; WINGFIELD JC, 1990, HORM BEHAV, V24, P89, DOI 10.1016/0018-506X(90)90029-W; Ziegler TE, 2009, HORM BEHAV, V56, P436, DOI 10.1016/j.yhbeh.2009.07.012 78 5 5 1 30 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. MAY 2012 61 5 734 740 10.1016/j.yhbeh.2012.03.011 7 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 946GP WOS:000304339800010 22504343 2019-02-21 J Fitzer, SC; Caldwell, GS; Close, AJ; Clare, AS; Upstill-Goddard, RC; Bentley, MG Fitzer, Susan C.; Caldwell, Gary S.; Close, Andrew J.; Clare, Anthony S.; Upstill-Goddard, Robert C.; Bentley, Matthew G. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Ecological significance; Model; Multi-generation; Ocean acidification; Reproduction ACID-BASE-BALANCE; SEA-URCHIN; SEAWATER ACIDIFICATION; EMBRYONIC-DEVELOPMENT; TISBE-HOLOTHURIAE; CO2 LEVELS; GROWTH; SURVIVAL; SUCCESS; WATER Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics. (C) 2012 Elsevier B.V. All rights reserved. [Fitzer, Susan C.] Univ Glasgow, Sch Geog & Earth Sci, Glasgow G12 8QQ, Lanark, Scotland; [Fitzer, Susan C.; Caldwell, Gary S.; Clare, Anthony S.; Upstill-Goddard, Robert C.; Bentley, Matthew G.] Newcastle Univ, Sch Marine Sci & Technol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Close, Andrew J.] Newcastle Univ, Sch Biol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England Fitzer, SC (reprint author), Univ Glasgow, Sch Geog & Earth Sci, Gregory Bldg, Glasgow G12 8QQ, Lanark, Scotland. Susan.Fitzer@glasgow.ac.uk Fitzer, Susan/I-2418-2014; CALDWELL, GARY/A-4364-2008 Fitzer, Susan/0000-0003-3556-7624; CALDWELL, GARY/0000-0001-5687-6894; Bentley, Matt/0000-0002-6494-2545; Upstill-Goddard, Robert/0000-0003-3396-284X; Clare, Anthony/0000-0002-7692-9583 Natural Environment Research Council CASE; Marine Biological Association of the UK We are grateful to Pauline Carrick for ESEM analysis and Stephen Rushton for comments on the manuscript. Financial support was provided through a Natural Environment Research Council CASE (with the Marine Biological Association of the UK) Ph.D. award to SCF. [SS] Adiyodi R.G., 1985, INTEGUMENT PIGMENTS, V9, P147; Anthony KRN, 2008, P NATL ACAD SCI USA, V105, P17442, DOI 10.1073/pnas.0804478105; Berge JA, 2006, CHEMOSPHERE, V62, P681, DOI 10.1016/j.chemosphere.2005.04.111; Calabrese EJ, 2008, ENVIRON TOXICOL CHEM, V27, P1451, DOI 10.1897/07-541; Clark D, 2009, MAR BIOL, V156, P1125, DOI 10.1007/s00227-009-1155-8; Crawley M. J., 2007, R BOOK; Cutts CJ, 2003, ADV MAR BIOL, V44, P295, DOI 10.1016/S0065-2881(03)44005-4; Dupont S, 2008, MAR ECOL PROG SER, V373, P285, DOI 10.3354/meps07800; Dykstra MJ, 2002, TOXICOL PATHOL, V30, P735, DOI 10.1080/01926230290166823; Egilsdottir H, 2009, MAR POLLUT BULL, V58, P1187, DOI 10.1016/j.marpolbul.2009.03.017; Ellis RP, 2009, AQUAT BIOL, V5, P41, DOI 10.3354/ab00118; Faraway J.J., 2006, TEXTS STAT SCI; Findlay HS, 2009, MAR ECOL PROG SER, V389, P193, DOI 10.3354/meps08141; GAUDY R, 1982, NETH J SEA RES, V16, P208, DOI 10.1016/0077-7579(82)90031-X; Gelman A., 2007, DATA ANAL USING REGR, P625; Havenhand JN, 2008, CURR BIOL, V18, pR651, DOI 10.1016/j.cub.2008.06.015; Hofmann GE, 2008, MAR ECOL PROG SER, V373, P219, DOI 10.3354/meps07775; Ishimatsu A, 2008, MAR ECOL PROG SER, V373, P295, DOI 10.3354/meps07823; Jackson JBC, 2010, PHILOS T R SOC B, V365, P3765, DOI 10.1098/rstb.2010.0278; Kameda T, 2004, MACROMOL BIOSCI, V5, P103, DOI 10.1002/mabi.200400142; Kurihara H, 2004, MAR POLLUT BULL, V49, P721, DOI 10.1016/j.marpolbul.2004.05.005; Kurihara H, 2004, MAR ECOL PROG SER, V274, P161, DOI 10.3354/meps274161; Kurihara H, 2004, J OCEANOGR, V60, P743, DOI 10.1007/s10872-004-5766-x; Kurihara H, 2008, MAR ECOL PROG SER, V373, P275, DOI 10.3354/meps07802; Kurihara H, 2008, MAR POLLUT BULL, V56, P1086, DOI 10.1016/j.marpolbul.2008.03.023; Kurihara H, 2008, J EXP MAR BIOL ECOL, V367, P41, DOI 10.1016/j.jembe.2008.08.016; Langenbuch M, 2004, AQUAT TOXICOL, V70, P55, DOI 10.1016/j.aquatox.2004.07.006; Lefcort H, 2008, ECOHEALTH, V5, P10, DOI 10.1007/s10393-008-0158-0; Lombard F, 2009, J MARINE SYST, V78, P606, DOI 10.1016/j.jmarsys.2009.01.004; Mayor DJ, 2007, MAR ECOL PROG SER, V350, P91, DOI 10.3354/meps07142; Mayor DJ, 2012, J PLANKTON RES, V34, P258, DOI 10.1093/plankt/fbr107; Michaelidis B, 2005, MAR ECOL PROG SER, V293, P109, DOI 10.3354/meps293109; Miles H, 2007, MAR POLLUT BULL, V54, P89, DOI 10.1016/j.marpolbul.2006.09.021; Millar RB, 2004, FISH RES, V70, P397, DOI 10.1016/j.fishres.2004.08.016; Morita M, 2010, ZYGOTE, V18, P103, DOI 10.1017/S0967199409990177; Pane EF, 2007, MAR ECOL PROG SER, V334, P1, DOI 10.3354/meps334001; Parker LM, 2009, GLOBAL CHANGE BIOL, V15, P2123, DOI 10.1111/j.1365-2486.2009.01895.x; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Portner H.O., 1998, J EXP BIOL, V373, P199; Portner H.O., 2008, MAR ECOL-PROG SER, V373, P199; Portner HO, 2004, J OCEANOGR, V60, P705, DOI 10.1007/s10872-004-5763-0; R Development Core Team, 2011, R LANG ENV STAT COMP; Raven J., 2005, 1205 ROYAL SOC; Reipschlager A, 1996, J EXP BIOL, V199, P1801; Riebesell U, 2008, BIOGEOSCIENCES, V5, P1157, DOI 10.5194/bg-5-1157-2008; Riebesell U., 2010, GUIDE BEST PRACTICES, P1; Rose JM, 2009, MAR ECOL PROG SER, V388, P27, DOI 10.3354/meps08134; Sarmiento JL, 2002, PHYS TODAY, V55, P30, DOI 10.1063/1.1510279; Schreck CB, 2010, GEN COMP ENDOCR, V165, P549, DOI 10.1016/j.ygcen.2009.07.004; Spicer JI, 2007, MAR BIOL, V151, P1117, DOI 10.1007/s00227-006-0551-6; Suffrian K, 2008, BIOGEOSCIENCES, V5, P1145, DOI 10.5194/bg-5-1145-2008; Talmage SC, 2009, LIMNOL OCEANOGR, V54, P2072, DOI 10.4319/lo.2009.54.6.2072; Taylor RL, 2007, J EXP MAR BIOL ECOL, V341, P60, DOI 10.1016/j.jembe.2006.10.028; Vezina A.F., 2008, MAR ECOL-PROG SER, V373, P257; Vincent JFV, 2002, COMPOS PART A-APPL S, V33, P1311, DOI 10.1016/S1359-835X(02)00167-7; Wood HL, 2008, P ROY SOC B-BIOL SCI, V275, P1767, DOI 10.1098/rspb.2008.0343 56 68 69 0 68 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. MAY 1 2012 418 30 36 10.1016/j.jembe.2012.03.009 7 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 952MN WOS:000304796700004 2019-02-21 J Irwing, P; Booth, T; Nyborg, H; Rushton, JP Irwing, Paul; Booth, Tom; Nyborg, Helmuth; Rushton, J. Philippe Are g and the General Factor of Personality (GFP) correlated? INTELLIGENCE English Article Life History theory; Confirmatory factor analysis; GFP; g; Personality HIGHER-ORDER FACTORS; STRUCTURAL EQUATION MODELS; 5-FACTOR MODEL; DIMENSIONAL ASSESSMENT; ABNORMAL-PERSONALITY; SOCIAL DESIRABILITY; SEXUAL-DIMORPHISM; PARALLEL ANALYSIS; FIT INDEXES; BIG 5 We examined whether the General Factor of Personality (GFP) is related to the g factor of cognitive ability using data from the Vietnam Experience Study which randomly sampled 4462 Vietnam War veterans from a total sample of about five million Vietnam era army veterans. Exclusionary criteria included passing a fitness test, achieving a final rank of no higher than sergeant, and scoring above the 10th percentile on a pre-induction general aptitude test, but otherwise the sample is broadly representative of the U.S. male population for the period 1965-1971. A hierarchical confirmatory factor analysis of the Minnesota Multiphasic Personality Inventory (MMPI) and 15 cognitive ability tests yielded three first-order factors from the MMPI (Somatization, Internalization, and Externalization), and four first-order factors from the cognitive ability tests (Memory, Dexterity, Crystallized, and Fluid intelligence). At the apex of both measures was a general factor and we were able to fit a model which integrated both structures. This model provided a close fit to the data (chi(2) = 3114.1, df = 235, RMSEA = .051 SRMR = .047, NNFI = .97), and provided an estimate of -.23 for the correlation between g and the GFP(Abnormal), that is, the higher the g score the higher the score on the GFP. One possible reason for the low correlation is restriction of range in the sample. Another is that intelligence and personality are to a degree mutually exclusive strategies, the first aimed at generating resources and the second at maximizing one's share of resources. (C) 2012 Elsevier Inc. All rights reserved. [Irwing, Paul; Booth, Tom] Manchester Business Sch, Manchester M15 6PB, Lancs, England; [Nyborg, Helmuth] Univ Aarhus, Aarhus, Denmark; [Rushton, J. Philippe] Univ Western Ontario, London, ON, Canada Irwing, P (reprint author), Univ Manchester, Manchester Business Sch E, Psychometr Work Res Grp, Booth St W, Manchester M15 6PB, Lancs, England. paul.irwing@mbs.ac.uk Nyborg, Helmuth/0000-0002-6795-594X AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bandura A., 1997, SELF EFFICACY EXERCI; Biesanz JC, 2004, J PERS, V72, P845, DOI 10.1111/j.0022-3506.2004.00282.x; BROWNE MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; BUDESCU DV, 1981, MULTIVAR BEHAV RES, V16, P483, DOI 10.1207/s15327906mbr1604_4; Buss D. M., 2004, EVOLUTIONARY PSYCHOL; Chen FN, 2008, SOCIOL METHOD RES, V36, P462, DOI 10.1177/0049124108314720; Darwin C., 1871, DESCENT MAN; de Vries RE, 2011, PERS INDIV DIFFER, V50, P512, DOI 10.1016/j.paid.2010.11.020; DESTEFANO F, 1988, JAMA-J AM MED ASSOC, V259, P2701; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Eid M, 2003, PSYCHOL METHODS, V8, P38, DOI 10.1037/1082-989X.8.1.38; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erdle S, 2010, PERS INDIV DIFFER, V48, P343, DOI 10.1016/j.paid.2009.09.004; Ferguson E., 2011, WILEY BLACKWELL HDB; Figueredo AJ, 2004, SOC BIOL, V51, P121; FORNELL C, 1981, J MARKETING RES, V18, P39, DOI 10.2307/3151312; GLORFELD LW, 1995, EDUC PSYCHOL MEAS, V55, P377, DOI 10.1177/0013164495055003002; Goldstein JM, 2001, CEREB CORTEX, V11, P490, DOI 10.1093/cercor/11.6.490; Graham J.R., 1987, MMPI PRACTICAL GUIDE; HELMES E, 1993, PSYCHOL BULL, V113, P453, DOI 10.1037/0033-2909.113.3.453; Hopwood CJ, 2010, PERS SOC PSYCHOL REV, V14, P332, DOI 10.1177/1088868310361240; HORN JL, 1965, PSYCHOMETRIKA, V30, P179, DOI 10.1007/BF02289447; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Hu LT, 1998, PSYCHOL METHODS, V3, P424, DOI 10.1037/1082-989X.3.4.424; Kaplan HS, 2003, OFFSPRING, P170; Kuha J, 2004, SOCIOL METHOD RES, V33, P188, DOI 10.1177/0049124103262065; Larsen CS, 2003, P NATL ACAD SCI USA, V100, P9103, DOI 10.1073/pnas.1633678100; Lindenfors P, 2005, BIOL LETT-UK, V1, P407, DOI 10.1098/rsbl.2005.0362; Lindenfors P., 2007, BMC BIOL, P5; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; Malloy TE, 1997, J PERS SOC PSYCHOL, V72, P390, DOI 10.1037/0022-3514.72.2.390; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; McGrew KS, 2009, INTELLIGENCE, V37, P1, DOI 10.1016/j.intell.2008.08.004; MISCHEL W, 1995, PSYCHOL REV, V102, P246, DOI 10.1037/0033-295X.102.2.246; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; NICHOLLS PT, 1988, INFORM PROCESS MANAG, V24, P469, DOI 10.1016/0306-4573(88)90049-0; Nyborg H, 2000, PERS INDIV DIFFER, V28, P593, DOI 10.1016/S0191-8869(99)00122-1; O'Connor BP, 2000, BEHAV RES METH INS C, V32, P396, DOI 10.3758/BF03200807; O'Connor BP, 2002, J PERS SOC PSYCHOL, V83, P962, DOI 10.1037//0022-3514.83.4.962; Paunonen SV, 2010, EUR J PERSONALITY, V24, P189, DOI 10.1002/per.751; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Revelle W., 2009, IMPORTANT GEN FACTOR; Revelle W, 2009, PSYCHOMETRIKA, V74, P145, DOI 10.1007/s11336-008-9102-z; Riemann R, 2010, EUR J PERSONALITY, V24, P258, DOI 10.1002/per.760; Rushton J. P., 2011, WILEY BLACKWELL HDB, P132; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2010, TWIN RES HUM GENET, V13, P301, DOI 10.1375/twin.13.4.301; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Samuel DB, 2010, PERSONAL DISORD, V1, P5, DOI 10.1037/a0018136; Saucier G., 2001, J PERS, V69, P843; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Schmidt FL, 1998, PSYCHOL BULL, V124, P262, DOI 10.1037/0033-2909.124.2.262; Spence SH, 1997, J ABNORM PSYCHOL, V106, P280, DOI 10.1037/0021-843X.106.2.280; Vassend O, 2011, PERS INDIV DIFFER, V50, P1300, DOI 10.1016/j.paid.2011.03.002; VELICER WF, 1976, PSYCHOMETRIKA, V41, P321, DOI 10.1007/BF02293557; Veselka L, 2009, TWIN RES HUM GENET, V12, P420, DOI 10.1375/twin.12.5.420; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; von Stumm S., 2011, WILEY BLACKWELL HDB; Yamasue H, 2008, CEREB CORTEX, V18, P2331, DOI 10.1093/cercor/bhm254; Zagorsky JL, 2007, INTELLIGENCE, V35, P489, DOI 10.1016/j.intell.2007.02.003; Zawadzki B, 2010, PERS INDIV DIFFER, V49, P77, DOI 10.1016/j.paid.2010.03.025; Zimprich D, 2009, J RES PERS, V43, P444, DOI 10.1016/j.jrp.2009.01.018; Zinbarg RE, 2005, PSYCHOMETRIKA, V70, P123, DOI 10.1007/s11336-003-0974-7 77 14 15 0 16 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 INTELLIGENCE Intelligence MAY-JUN 2012 40 3 296 305 10.1016/j.intell.2012.03.001 10 Psychology, Multidisciplinary Psychology 944UR WOS:000304229800007 2019-02-21 J Heylen, DJA; White, J; Elst, J; Jacobs, I; Van de Sande, C; Matthysen, E Heylen, D. J. A.; White, J.; Elst, J.; Jacobs, I.; Van de Sande, C.; Matthysen, E. Nestling development and the timing of tick attachments PARASITOLOGY English Article Ixodes; host preference; phenology; songbird; development FLEA CERATOPHYLLUS-GALLINAE; LIFE-HISTORY; HOST CHOICE; GREAT TITS; IXODIDAE; ACARI; ECTOPARASITES; PARASITES; IMMUNITY; FITNESS Parasites exposed to fast-developing hosts experience a variety of conditions over a short time period. Only few studies in vertebrate-ectoparasite systems have integrated the timing of ectoparasite infestations in the host's development into the search for factors explaining ectoparasite burden. In this study we examined the temporal pattern of attachment in a nidicolous tick (Ixodes arboricola) throughout the development of a songbird (Parus major). In the first experiment, we exposed bird clutches at hatching to a mix of the 3 tick instars (larvae, nymphs and adults), and monitored the ticks that attached in relation to the average broods' age. In a complementary experiment we focused on the attachment in adult female ticks - the largest and most significant instar for the species' reproduction - after releasing them at different moments in the nestlings' development. Our observations revealed a positive association between the size of the attached instar and the broods' age. Particularly, adult females were less likely to be found attached to recently hatched nestlings, which contrasts with the smaller-sized larvae and nymphs. These differences suggest either an infestation strategy that is adapted to host physiology and development, or a result of selection by the hosts' anti-tick resistance mechanisms. We discuss the implications of our results in terms of tick life-history strategies. [Heylen, D. J. A.; White, J.; Elst, J.; Jacobs, I.; Van de Sande, C.; Matthysen, E.] Univ Antwerp, Dept Biol, Evolutionary Ecol Grp, B-2020 Antwerp, Belgium Heylen, DJA (reprint author), Univ Antwerp, Dept Biol, Evolutionary Ecol Grp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dieter.Heylen@ua.ac.be White, Joel/D-8482-2011 Matthysen, Erik/0000-0002-7521-9248; White, Joel/0000-0002-1427-4411 FWO-Flanders; FWO [G.0049.10] We appreciate the thoughtful comments of Frank Adriaensen and two anonymous referees on a previous version of the manuscript. Experiments were carried out under license of the Flemish Ministry (Agentschap Natuur en Bos) and the experimental protocol was approved by the Ethical Committee of the University of Antwerp. D. H. and J. W. are supported by the FWO-Flanders. This study was funded by FWO-project G.0049.10 awarded to E. M. Apanius V, 1998, AVIAN GROWTH DEV EVO, P203; Arthur DR, 1963, BRIT TICKS; Balashov Y. S. A, 1972, MISCELLANEOUS PUBLIC, V8, P159; Bize P, 2008, AM NAT, V171, P107, DOI 10.1086/523943; Burtt E. H., 1991, BIRD PARASITE INTERA, P104; Christe P, 2003, J ANIM ECOL, V72, P866, DOI 10.1046/j.1365-2656.2003.00759.x; Christe P, 1996, ANIM BEHAV, V52, P1087, DOI 10.1006/anbe.1996.0256; Clayton Dale H., 2010, Open Ornithology Journal, V3, P41; Clayton DH, 1997, HOST PARASITE EVOLUT; Cox D.R., 1984, ANAL SURVIVAL DATA; Davison F, 2008, AVIAN IMMUNOLOGY, P1; Donze G, 2004, J EXP BIOL, V207, P4283, DOI 10.1242/jeb.01241; DUFFY DC, 1986, CONDOR, V88, P242, DOI 10.2307/1368921; EDMAN JD, 1987, INSECT SCI APPL, V8, P617, DOI 10.1017/S1742758400022694; Elliot SL, 2002, P ROY SOC B-BIOL SCI, V269, P1599, DOI 10.1098/rspb.2002.2067; FIELDEN LJ, 1992, MED VET ENTOMOL, V6, P251, DOI 10.1111/j.1365-2915.1992.tb00614.x; Fitze PS, 2004, J ANIM ECOL, V73, P216, DOI 10.1111/j.0021-8790.2004.00799.x; Gosler A. G., 1993, GREAT TIT; HARPER GH, 1992, J ANIM ECOL, V61, P317, DOI 10.2307/5324; Harrison G. J., 1986, CLIN AVIAN MED; Hawlena H, 2005, OECOLOGIA, V146, P200, DOI 10.1007/s00442-005-0187-0; Heylen DJA, 2010, PARASITOLOGY, V137, P661, DOI 10.1017/S0031182009991582; Heylen D. J. A., 2011, THESIS U ANTWERPEN A; Heylen DJA, 2011, PARASITOLOGY, V138, P1011, DOI 10.1017/S0031182011000618; Heylen DJA, 2011, OIKOS, V120, P1209, DOI 10.1111/j.1600-0706.2010.19358.x; Heylen DJA, 2010, INT J PARASITOL, V40, P183, DOI 10.1016/j.ijpara.2009.07.011; Hillyard PD, 1996, TICKS N W EUROPE; HINDE RA, 1952, BEHAVIOUR S, V2, P1; HUDDE H, 1988, Vogelwarte, V34, P201; Husby A, 2009, P R SOC B, V276, P1845, DOI 10.1098/rspb.2008.1937; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Liebisch G., 1996, ACAROLOGY IX, V1, P453; Literak I, 2007, PARASITOL RES, V101, P1709, DOI 10.1007/s00436-007-0702-9; LOYE JE, 1991, BIRD PARASITE INTERA; Matthysen E, 2001, ECOGRAPHY, V24, P33, DOI 10.1034/j.1600-0587.2001.240105.x; Moller AP, 2002, J EVOLUTION BIOL, V15, P495, DOI 10.1046/j.1420-9101.2002.00386.x; Moore J, 2002, PARASITES BEHAV ANIM; NAEF DAENZER B., 2001, J ANIM ECOL, V70, P730; OLSEN OW, 1974, ANIMAL PARASITES THE; Osterkamp J, 1999, J COMP PHYSIOL A, V185, P59, DOI 10.1007/s003590050366; Perrins CM, 1979, BRIT TITS; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Price P. W., 1980, EVOLUTIONARY BIOL PA; RANDOLPH SE, 1979, PARASITOLOGY, V79, P141, DOI 10.1017/S0031182000052033; Rechav Y, 1997, J MED ENTOMOL, V34, P234, DOI 10.1093/jmedent/34.2.234; Reckardt K, 2009, OIKOS, V118, P183, DOI 10.1111/j.1600-0706.2008.16950.x; RIBEIRO JMC, 1989, EXP APPL ACAROL, V7, P15, DOI 10.1007/BF01200449; Roulin A, 2003, J ANIM ECOL, V72, P75, DOI 10.1046/j.1365-2656.2003.00677.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sonenshine DE, 2004, PARASITOLOGY, V129, pS405, DOI 10.1017/S003118200400486X; Sonenshine DE, 1991, BIOL TICKS; Staszewski V, 2007, J ANIM ECOL, V76, P1215, DOI 10.1111/j.1365-2656.2007.01293.x; STEULLET P, 1992, J COMP PHYSIOL A, V170, P665, DOI 10.1007/BF00198976; Szabo K, 2008, J PARASITOL, V94, P1038, DOI 10.1645/GE-1150.1; Tripet F, 1999, J INSECT BEHAV, V12, P159, DOI 10.1023/A:1020958615191; ULMANEN I, 1977, OIKOS, V28, P20, DOI 10.2307/3543318; Vaclav R, 2008, BIOL J LINN SOC, V94, P463, DOI 10.1111/j.1095-8312.2008.00985.x; Valera F, 2004, PARASITOLOGY, V129, P59, DOI 10.1017/S0031182004005232; WAKELIN D, 1996, IMMUNITY PARASITES; Walter G., 1979, ANGEW ORNITHOL, V5, P65; White J, 2012, PARASITOLOGY, V139, P264, DOI 10.1017/S0031182011001806; WINKEL W, 1970, Vogelwelt, V91, P52; YUNKER CE, 1992, EXP APPL ACAROL, V13, P295, DOI 10.1007/BF01195086 63 11 11 1 30 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology MAY 2012 139 6 766 773 10.1017/S0031182011002277 8 Parasitology Parasitology 941ZI WOS:000304008100010 22216982 2019-02-21 J Muhlfeld, CC; Thorrold, SR; McMahon, TE; Marotz, B Muhlfeld, Clint C.; Thorrold, Simon R.; McMahon, Thomas E.; Marotz, Brian Estimating westslope cutthroat trout (Oncorhynchus clarkii lewisi) movements in a river network using strontium isoscapes CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article INTRODUCED RAINBOW-TROUT; GEOCHEMICAL SIGNATURES; OTOLITH MICROCHEMISTRY; AMERICAN SHAD; NATAL ORIGINS; SR ISOTOPES; FISH; RESIDENT; MARKERS; SALMON We used natural variation in the strontium concentration (Sr:Ca) and isotope composition (Sr-87:Sr-86) of stream waters and corresponding values recorded in otoliths of westslope cutthroat trout (Oncorhynchus clarkii lewisi) to examine movements during their life history in a large river network. We found significant spatial differences in Sr:Ca and Sr-87:Sr-86 values (strontium isoscapes) within and among numerous spawning and rearing streams that remained relatively constant seasonally. Both Sr:Ca and Sr-87:Sr-86 values in the otoliths of juveniles collected from nine natal streams were highly correlated with those values in the ambient water. Strontium isoscapes measured along the axis of otolith growth revealed that almost half of the juveniles had moved at least some distance from their natal streams. Finally, otolith Sr profiles from three spawning adults confirmed homing to natal streams and use of nonoverlapping habitats over their migratory lifetimes. Our study demonstrates that otolith geochemistry records movements of cutthroat trout through Sr isoscapes and therefore provides a method that complements and extends the utility of conventional tagging techniques in understanding life history strategies and conservation needs of freshwater fishes in river networks. [Muhlfeld, Clint C.] US Geol Survey, No Rocky Mt Sci Ctr, W Glacier, MT 59936 USA; [Thorrold, Simon R.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA; [McMahon, Thomas E.] Montana State Univ, Dept Ecol, Fish & Wildlife Program, Bozeman, MT 59717 USA; [Marotz, Brian] Montana Fish Wildlife & Parks, Kalispell, MT 59901 USA Muhlfeld, CC (reprint author), US Geol Survey, No Rocky Mt Sci Ctr, Glacier Natl Pk, W Glacier, MT 59936 USA. cmuhlfeld@usgs.gov Thorrold, Simon/B-7565-2012 Thorrold, Simon/0000-0002-1533-7517 Bonneville Power Administration; Montana Fish, Wildlife Parks; US Geological Survey; NSF [OCE-0134998, OCE-0215905] Bonneville Power Administration, Montana Fish, Wildlife & Parks, and the US Geological Survey funded this work. Partial support was provided by NSF grants OCE-0134998 and OCE-0215905 to SRT. We thank S. Glutting, R. Hunt, D. Daniels, M. Boyer, and J. Wachsmuth for their assistance in the field collecting the samples and J. Giersch and D. Kotter for assistance with the figures. We thank B. Kennedy, J. Kershner, and B. Gillanders for their helpful reviews of previous drafts. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This research was conducted in accordance with the Animal Welfare Act and its subsequent amendments. Bacon CR, 2004, CAN J FISH AQUAT SCI, V61, P2425, DOI 10.1139/f04-167; Barnett-Johnson R, 2005, CAN J FISH AQUAT SCI, V62, P2425, DOI 10.1139/F05-194; Barnett-Johnson R, 2008, LIMNOL OCEANOGR, V53, P1633, DOI 10.4319/lo.2008.53.4.1633; Behnke R. J., 1992, AM FISHERIES SOC MON, V6; Boyer MC, 2008, CAN J FISH AQUAT SCI, V65, P658, DOI 10.1139/F08-001; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/cjfas-58-1-30; Dorval E, 2007, CAN J FISH AQUAT SCI, V64, P411, DOI 10.1139/F07-015; FISHER RS, 1976, WATER RESOUR RES, V12, P1061, DOI 10.1029/WR012i005p01061; FitzGerald JL, 2004, FISH B-NOAA, V102, P604; Gillanders BM, 1996, MAR ECOL PROG SER, V141, P13, DOI 10.3354/meps141013; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; Graham P. J., 1988, AM FISHERIES SOC S, V4, P53; GRAUSTEIN WC, 1983, SCIENCE, V219, P289, DOI 10.1126/science.219.4582.289; Horowitz A. J., 1994, 94539 US GEOL SURV; Jackson MG, 2006, EARTH PLANET SC LETT, V245, P260, DOI 10.1016/j.epsl.2006.02.040; Kennedy BP, 2002, CAN J FISH AQUAT SCI, V59, P925, DOI 10.1139/F02-070; Kennedy BP, 1997, NATURE, V387, P766, DOI 10.1038/42835; Kennedy BP, 2000, CAN J FISH AQUAT SCI, V57, P2280, DOI 10.1139/cjfas-57-11-2280; Lucas M, 2001, MIGRATION FRESHWATER; Milton DA, 2003, CAN J FISH AQUAT SCI, V60, P1376, DOI 10.1139/F03-133; Muhlfeld CC, 2005, T AM FISH SOC, V134, P945, DOI 10.1577/T04-029.1; Muhlfeld CC, 2009, T AM FISH SOC, V138, P1036, DOI 10.1577/T08-235.1; Muhlfeld CC, 2009, CAN J FISH AQUAT SCI, V66, P1153, DOI 10.1139/F09-073; Munro AR, 2005, CAN J FISH AQUAT SCI, V62, P79, DOI 10.1139/F04-174; Northcote T. G., 1997, North American Journal of Fisheries Management, V17, P1029, DOI 10.1577/1548-8675(1997)017<1029:PISAMI>2.3.CO;2; Ohji M, 2006, ESTUAR COAST SHELF S, V69, P270, DOI 10.1016/j.ecss.2006.04.015; RIEMAN BE, 1994, CAN J FISH AQUAT SCI, V51, P68, DOI 10.1139/f94-009; Schmetterling DA, 2001, N AM J FISH MANAGE, V21, P507, DOI 10.1577/1548-8675(2001)021<0507:SMOFWC>2.0.CO;2; Shepard B.B., 1984, LIFE HIST WESTSLOPE; Sturgeon RE, 2005, J ANAL ATOM SPECTROM, V20, P1067, DOI 10.1039/b503655k; Thorrold SR, 2001, SCIENCE, V291, P297, DOI 10.1126/science.291.5502.297; Walther BD, 2008, T AM FISH SOC, V137, P57, DOI 10.1577/T07-029.1; Walther BD, 2008, CAN J FISH AQUAT SCI, V65, P2623, DOI 10.1139/F08-164; Wells BK, 2003, T AM FISH SOC, V132, P409, DOI 10.1577/1548-8659(2003)132<0409:RBWOAS>2.0.CO;2; Whipple J.W., 1992, GEOLOGIC MAP GLACIER; Zimmerman CE, 2002, T AM FISH SOC, V131, P986, DOI 10.1577/1548-8659(2002)131<0986:IOSARR>2.0.CO;2 36 28 28 0 32 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. MAY 2012 69 5 906 915 10.1139/F2012-033 10 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 934MG WOS:000303447800010 2019-02-21 J Rucas, SL; Gurven, M; Winking, J; Kaplan, H Rucas, Stacey L.; Gurven, Michael; Winking, Jeffrey; Kaplan, Hillard Social Aggression and Resource Conflict Across the Female Life-Course in the Bolivian Amazon AGGRESSIVE BEHAVIOR English Article female-female competition; social networks; resource competition; reproductive success; social aggression TOLERATED THEFT; EVOLUTION; ACHE; MARRIAGE; ECOLOGY; TSIMANE; MEN This work explores sources of conflict among forager-horticulturalist women in Amazonian Bolivia, and applies life history theory as a tool for understanding competitive and cooperative social networking behaviors among women. In this study, 121 Tsimane women and girls were interviewed regarding current and past disagreements with others in their community to identify categories of contested resources that instigate interpersonal conflicts, often resulting in incidences of social aggression. Analysis of frequency data on quarrels (N = 334) reveals that women target several diverse categories of resources, with social types appearing as frequently as food and mates. It was also found that the focus of women's competition changes throughout the life-course, consistent with the notion that current vs. future reproduction and quantity-quality trade-offs might have different influences on competition and social conflict over resources within women's social networks across different age groups. Aggr. Behav. 38:194207, 2012. (C) 2012 Wiley Periodicals, Inc. [Rucas, Stacey L.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA; [Gurven, Michael] Univ Calif Santa Barbara, Dept Anthropol, Integrat Anthropol Sci Program, Santa Barbara, CA 93106 USA; [Winking, Jeffrey] Texas A&M Univ, Dept Anthropol, College Stn, TX 77843 USA; [Kaplan, Hillard] Univ New Mexico, Albuquerque, NM 87131 USA Rucas, SL (reprint author), Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA. srucas@calpoly.edu Gurven, Michael/0000-0002-5661-527X; Kaplan, Hillard/0000-0002-7398-7358 LAII Field Research Grants; Tinker Foundation; NSF [BCS-0136274] Contract grant sponsor: LAII Field Research Grants; Contract grant sponsor: Tinker Foundation; Contract grant sponsor: NSF Grant; Contract grant number: BCS-0136274 BARTON RA, 1997, MACHIAVELLIAN INTELL, V2, P240, DOI DOI 10.1017/CB09780511525636.010; Bird RLB, 1997, CURR ANTHROPOL, V38, P49, DOI 10.1086/204581; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Clutton-Brock TH, 1994, DEV INTEGRATION BEHA, P229; Daly M, 1985, SEX EVOLUTION BEHAV; Dunbar RIM, 1997, HUM NATURE-INT BIOS, V8, P231, DOI 10.1007/BF02912493; DUNBAR RIM, 1993, BEHAV BRAIN SCI, V16, P681, DOI 10.1017/S0140525X00032325; DUNBAR RIM, 1992, J HUM EVOL, V20, P469, DOI DOI 10.1016/0047-2484(92)90081-J); Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Godoy RA, 2004, HUM ECOL, V32, P339, DOI 10.1023/B:HUEC.0000028085.47707.08; Gurven M, 2006, CURR ANTHROPOL, V47, P185, DOI 10.1086/499552; Gurven M, 2000, EVOL HUM BEHAV, V21, P263, DOI 10.1016/S1090-5138(00)00032-5; Gurven M, 2004, BEHAV ECOL SOCIOBIOL, V56, P366, DOI 10.1007/s00265-004-0793-6; Gurven M, 2002, J ANTHROPOL RES, V58, P93, DOI 10.1086/jar.58.1.3631070; Gurven M, 2009, HUM NATURE-INT BIOS, V20, P151, DOI 10.1007/s12110-009-9062-8; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Hess NC, 2006, INFORM WARFARE EVOLU; Hill K., 1996, ACHE LIFE HIST ECOLO; HOOKS BL, 1993, HUM NATURE-INT BIOS, V4, P81, DOI 10.1007/BF02734090; Hrdy S. B., 1999, MOTHER NATURE MATERN; HRDY SB, 2005, HUNTER GATHERER CHIL, P65, DOI DOI 10.1177/1754073911430141; Hurtado A M, 1992, Hum Nat, V3, P185, DOI 10.1007/BF02692239; JONES NGB, 1987, SOC SCI INFORM, V26, P31; KAPLAN H, 1985, CURR ANTHROPOL, V26, P223, DOI 10.1086/203251; Lancaster J, 1978, HUMAN NATURE, V1, P83; LUNDBERG S, 1993, J POLIT ECON, V101, P988, DOI 10.1086/261912; MANSER M, 1980, INT ECON REV, V21, P31, DOI 10.2307/2526238; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rucas SL, 2006, EVOL HUM BEHAV, V27, P40, DOI 10.1016/j.evolhumbehav.2005.07.001; Rucas SL, 2010, HUM NATURE-INT BIOS, V21, P1, DOI 10.1007/s12110-010-9079-z; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; Stieglitz J, EVOL HUM BE IN PRESS; Stieglitz J, 2011, AM J HUM BIOL, V23, P445, DOI 10.1002/ajhb.21149; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; Winking Jeffrey, 2006, Soc Biol, V53, P100 39 4 4 0 9 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0096-140X AGGRESSIVE BEHAV Aggressive Behav. MAY-JUN 2012 38 3 194 207 10.1002/ab.21420 14 Behavioral Sciences; Psychology, Multidisciplinary Behavioral Sciences; Psychology 930QZ WOS:000303155500002 22531995 2019-02-21 J Price-Rees, SJ; Congdon, BC; Krockenberger, AK Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K. Size delays female senescence in a medium sized marsupial: The effects of maternal traits on annual fecundity in the northern brown bandicoot (Isoodon macrourus) AUSTRAL ECOLOGY English Article fecundity; maternal effect; reproductive investment; resource allocation; terminal investment REPRODUCTIVE EFFORT; LITTER SIZE; BODY-SIZE; EARLY-LIFE; RED DEER; TERMINAL INVESTMENT; ENERGY ALLOCATION; GROUND-SQUIRRELS; SMALL MAMMALS; CLUTCH SIZE The degree to which females allocate resources between current reproduction, future fecundity and survival is a central theme in life history theory. We investigated two hypotheses proposed to explain patterns of reproductive investment, terminal investment and senescence, by examining the effects of maternal traits (age and maternal mass) on annual fecundity in female northern brown bandicoots, Isoodon macrourus (Marsupialia: Peramelidae). We found that annual fecundity in females declined in their final year of reproduction, indicating reproductive senescence. Maternal mass significantly influenced the rate of senescence and, in turn, a female's lifetime reproductive output. Mass had little effect on fecundity in 1st and 2nd year females, but a positive relationship with fecundity in 3rd year females. This meant that heavy, 3rd year females did not suffer the decline in fecundity shown in light 3rd year females. For 1st year females, mass and leg length increased between their first and second reproductive seasons, indicating a temporary shift, from the allocation of resources to reproduction, to increasing condition or structural size post their first breeding event. There were no net changes to body mass in subsequent years. We suggest that this year of post-reproductive growth has important consequences for senescent effects on reproduction. Overall, results provided support for the effects of senescence on annual fecundity. Our findings were not consistent with the terminal investment hypothesis; reproductive output did not increase in females' final reproductive season despite a rapid decline in survival. However, this notion cannot be entirely dismissed; other measures of reproductive performance not examined here (e.g. offspring mass) may have provided an indication that females did increase their effort at the end of their lifespan. This study highlights the difficulty of measuring reproductive costs and the importance of understanding the combined effects of specific characteristics of an individual when interpreting reproductive strategies in iteroparous organisms. [Price-Rees, Samantha J.; Congdon, Bradley C.; Krockenberger, Andrew K.] James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia Krockenberger, AK (reprint author), James Cook Univ, Sch Marine & Trop Biol, Cairns, Qld, Australia. andrew.krockenberger@jcu.edu.au James Cook University, TESS/B-8171-2012; Krockenberger, Andrew/C-1323-2010; Congdon, Bradley/J-9181-2012; Research ID, CTBCC/O-3564-2014 Congdon, Bradley/0000-0002-8751-0892; Krockenberger, Andrew/0000-0003-2872-9939 Smithfield Palm Nursery; School of Marine and Tropical Biology, James Cook University, Cairns We thank Smithfield Palm Nursery for allowing access to the study site and for their general support for the project. Thanks to all field assistants that helped with data collection. We thank Jamie Seymour, Will Edwards and Greg Brown for statistical advice. Melanie Elphick for assistance with graphics. Research was conducted with approval from JCU Animal Ethics (A465) and Qld EPA permit numberWISP01821404. Financial support for this project was provided by the School of Marine and Tropical Biology, James Cook University, Cairns. Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; Arnold Stean J., 1994, P17; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; BARNES A, 1984, AUST J ZOOL, V32, P219, DOI 10.1071/ZO9840219; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Beckman J, 2007, MOL ECOL, V16, P1069, DOI 10.1111/j.1365-294X.2006.03209.x; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bernardo J, 1996, AM ZOOL, V36, P83; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BOWEN WD, 1994, CAN J ZOOL, V72, P8, DOI 10.1139/z94-002; Boyce M.S., 1988, EVOLUTION LIFE HIST; Bridges TS, 1996, AM ZOOL, V36, P132; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; Clutton-Brock T., 1991, P234; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cockburn A., 1990, P285; COCKBURN A, 1983, EVOLUTION, V37, P86, DOI 10.1111/j.1558-5646.1983.tb05517.x; COCKBURN A, 1989, TRENDS ECOL EVOL, V4, P126, DOI 10.1016/0169-5347(89)90210-3; Cockburn Andrew, 1997, P163; Comfort A., 1979, BIOL SENESCENCE; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Daan Serge, 1997, P311; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; Dudycha JL, 2003, OECOLOGIA, V135, P555, DOI 10.1007/s00442-003-1230-7; FESTABIANCHET M, 1991, J ANIM ECOL, V60, P1077, DOI 10.2307/5432; Finch C.E, 1990, LONGEVITY SENESCENCE; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; FORD NB, 1989, HERPETOLOGICA, V45, P75; Friend G.R., 1990, P357; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEMMELL R T, 1989, Australian Mammalogy, V12, P73; Gemmell R.T., 1990, P213; Gemmell R. T., 1982, AUST MAMMAL, V5, P187; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; GORDON G, 1995, MAMMALS AUSTR, P174; Griffiths AD, 2005, J ZOOL, V267, P211, DOI 10.1017/S0952836905007429; Hall L.S., 1990, P123; Hamilton MJ, 2011, P ROY SOC B-BIOL SCI, V278, P560, DOI 10.1098/rspb.2010.1056; Havelka MA, 2004, J MAMMAL, V85, P940, DOI 10.1644/013; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Hsu MJ, 1999, J COMP PHYSIOL B, V169, P67, DOI 10.1007/s003600050195; Ikonomopoulou MP, 2005, AUST J ZOOL, V53, P59, DOI 10.1071/ZO04044; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Krockenberger A, 2003, J COMP PHYSIOL B, V173, P531, DOI 10.1007/s00360-003-0361-9; Lee A. K., 1985, EVOLUTIONARY ECOLOGY; Litzgus JD, 2008, COPEIA, P86, DOI 10.1643/CH-07-093; Lobert B., 1990, REPROD LIFE HIST ISO, P357; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; LUNN NJ, 1993, J ZOOL, V229, P55, DOI 10.1111/j.1469-7998.1993.tb02620.x; LYNE A G, 1981, Australian Mammalogy, V4, P107; Lyne A.G, 1990, BANDICOOTS BILBIES, pxxiii; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Merchant J.C., 1990, P219; Milner JM, 1999, J ANIM ECOL, V68, P1235, DOI 10.1046/j.1365-2656.1999.00366.x; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Morbey YE, 2005, AM NAT, V166, P556, DOI 10.1086/491720; Mysterud A, 2002, OIKOS, V97, P177, DOI 10.1034/j.1600-0706.2002.970203.x; Mysterud A, 2001, P ROY SOC B-BIOL SCI, V268, P911, DOI 10.1098/rspb.2001.1585; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Newton I, 1997, ECOLOGY, V78, P1000, DOI 10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Olsson M, 1996, OECOLOGIA, V105, P175, DOI 10.1007/BF00328543; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Peters R.H., 1983, P1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Roff Derek A., 1992; Rogowitz GL, 1996, AM ZOOL, V36, P197; Rose M. R, 1991, EVOLUTIONARY BIOL AG; SCHNEBEL EM, 1988, EVOLUTION, V42, P306, DOI 10.1111/j.1558-5646.1988.tb04134.x; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Sikes RS, 1998, J MAMMAL, V79, P1143, DOI 10.2307/1383005; Skow CD, 2003, J ARACHNOL, V31, P305, DOI 10.1636/01-85; Sokal RR, 1995, BIOMETRY; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S, 1992, EVOLUTION LIFE HIST; Tardif SD, 2004, AM J PRIMATOL, V62, P83, DOI 10.1002/ajp.20009; THOMPSON SD, 1987, OECOLOGIA, V71, P201, DOI 10.1007/BF00377285; TyndaleBiscoe H, 2005, LIFE OF MARSUPIALS, P1; WEINER J, 1987, S ZOOL SOC LOND, V57, P167; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZULLINGER EM, 1984, J MAMMAL, V65, P607, DOI 10.2307/1380844 100 2 2 0 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. MAY 2012 37 3 313 322 10.1111/j.1442-9993.2011.02279.x 10 Ecology Environmental Sciences & Ecology 930EA WOS:000303118800009 2019-02-21 J Ellis, BJ; Bjorklund, DF Ellis, Bruce J.; Bjorklund, David F. Beyond Mental Health: An Evolutionary Analysis of Development Under Risky and Supportive Environmental Conditions: An Introduction to the Special Section DEVELOPMENTAL PSYCHOLOGY English Editorial Material evolutionary-developmental psychology; adaptive phenotypic plasticity; life history theory; differential susceptibility; developmental programming DIFFERENTIAL SUSCEPTIBILITY; BIOLOGICAL SENSITIVITY; STRESS REACTIVITY; TRADE-OFFS; CONTEXT; PERSPECTIVE; PSYCHOLOGY Evolutionary approaches to behavior have increasingly captured the attention and imagination of academics and laypeople alike. One part of this trend has been the increasing influence of evolutionary theory in developmental science. The articles in this special section of Developmental Psychology attempt to demonstrate why an evolutionary analysis is needed to more fully understand the contexts and contingencies of development. The 3 theoretical articles articulate the core evolutionary logic underlying conditional adaptation (and maladaptation) to both stressful and supportive environmental conditions over development. These theoretical articles are then followed by 9 empirical articles that test these evolutionary-developmental theories and hypotheses. Finally, 6 commentaries evaluate the prospects, pitfalls, and implications of this body of work. [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu BALDWIN JM, 2002, DEV EVOLUTION; Belsky J, 1997, CHILD DEV, V68, P598, DOI 10.1111/j.1467-8624.1997.tb04221.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J, 2008, INT J BEHAV DEV, V32, P260, DOI 10.1177/0165025408090969; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bjorklund D. F., 2002, ORIGINS HUMAN NATURE, DOI [10.1037/10425-000, DOI 10.1037/10425-000]; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Blair C, 2012, DEV PSYCHOL, V48, P647, DOI 10.1037/a0026472; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bugental DB, 2012, DEV PSYCHOL, V48, P806, DOI 10.1037/a0027477; BURGESS RL, 2005, EVOLUTIONARY PERSPEC; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Dawkins R., 1976, SELFISH GENE; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Eisenberg N, 2012, DEV PSYCHOL, V48, P755, DOI 10.1037/a0026518; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P1, DOI 10.1017/S095457941000060X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gibbons FX, 2012, DEV PSYCHOL, V48, P722, DOI 10.1037/a0026599; Gluckman PD, 2012, DEV PSYCHOL, V48, P643, DOI 10.1037/a0027508; Gottlieb G, 2002, PSYCHOL REV, V109, P211, DOI 10.1037//0033-295X.109.2.211; Gottlieb G., 1992, INDIVIDUAL DEV EVOLU; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Lickliter R, 2012, DEV PSYCHOL, V48, P658, DOI 10.1037/a0027495; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Ploeger A, 2008, PSYCHOL INQ, V19, P1, DOI 10.1080/10478400701774006; Raff R. A, 1996, SHAPE LIFE GENES DEV; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smith JM, 1982, EVOLUTION THEORY GAM; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Sulik MJ, 2012, DEV PSYCHOL, V48, P740, DOI 10.1037/a0025938; Van IJzendoorn M. H., 2012, DEV PSYCHOL, V48, P769, DOI [10.1037/a0027536, DOI 10.1037/A0027536]; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wolf M, 2008, P NATL ACAD SCI USA, V105, P15825, DOI 10.1073/pnas.0805473105 50 24 24 0 29 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 591 597 10.1037/a0027651 7 Psychology, Developmental Psychology 932JK WOS:000303287200001 22545847 2019-02-21 J Ellis, BJ; Del Giudice, M; Dishion, TJ; Figueredo, AJ; Gray, P; Griskevicius, V; Hawley, PH; Jacobs, WJ; James, J; Volk, AA; Wilson, DS Ellis, Bruce J.; Del Giudice, Marco; Dishion, Thomas J.; Figueredo, Aurelio Jose; Gray, Peter; Griskevicius, Vladas; Hawley, Patricia H.; Jacobs, W. Jake; James, Jenee; Volk, Anthony A.; Wilson, David Sloan The Evolutionary Basis of Risky Adolescent Behavior: Implications for Science, Policy, and Practice DEVELOPMENTAL PSYCHOLOGY English Article evolution and development; evolutionary psychology; environmental mismatch; bullying; intervention LIFE-HISTORY STRATEGIES; SUBSTANCE USE DISORDERS; PARENT-CHILD CONFLICT; TREATMENT FOSTER-CARE; FAMILY CHECK-UP; SOCIAL-DOMINANCE; SEX-DIFFERENCES; JUVENILE JUSTICE; REPRODUCTIVE STRATEGY; PUBERTAL MATURATION This article proposes an evolutionary model of risky behavior in adolescence and contrasts it with the prevailing developmental psychopathology model. The evolutionary model contends that understanding the evolutionary functions of adolescence is critical to explaining why adolescents engage in risky behavior and that successful intervention depends on working with, instead of against, adolescent goals and motivations. The current article articulates 5 key evolutionary insights into risky adolescent behavior: (a) The adolescent transition is an inflection point in development of social status and reproductive trajectories; (b) interventions need to address the adaptive functions of risky and aggressive behaviors like bullying; (c) risky adolescent behavior adaptively calibrates over development to match both harsh and unpredictable environmental conditions; (d) understanding evolved sex differences is critical for understanding the psychology of risky behavior; and (e) mismatches between current and past environments can dysregulate adolescent behavior, as demonstrated by age-segregated social groupings. The evolutionary model has broad implications for designing interventions for high-risk youth and suggests new directions for research that have not been forthcoming from other perspectives. [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ Turin, Dept Psychol, Turin, Italy; [Dishion, Thomas J.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Figueredo, Aurelio Jose; Jacobs, W. Jake] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Gray, Peter] Boston Coll, Dept Psychol, Chestnut Hill, MA 02167 USA; [Griskevicius, Vladas] Univ Minnesota, Sch Management, Minneapolis, MN 55455 USA; [Hawley, Patricia H.] Univ Kansas, Dept Psychol, Lawrence, KS 66045 USA; [James, Jenee] Univ Arizona, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Volk, Anthony A.] Brock Univ, Dept Child & Youth Studies, St Catharines, ON L2S 3A1, Canada; [Wilson, David Sloan] SUNY Binghamton, Dept Biol, Binghamton, NY 13902 USA; [Wilson, David Sloan] SUNY Binghamton, Dept Anthropol, Binghamton, NY 13902 USA Ellis, BJ (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allsworth JE, 2005, ANN EPIDEMIOL, V15, P438, DOI 10.1016/j.annepidem.2004.12.010; Anda D. D., 2001, CHILD ADOLESCENT SOC, V18, P97, DOI [10.1023/A:1007646711937, DOI 10.1023/A:1007646711937]; Andrews PW, 2009, PSYCHOL REV, V116, P620, DOI 10.1037/a0016242; Angold A, 1999, PSYCHOL MED, V29, P1043, DOI 10.1017/S0033291799008946; Angold A, 1998, PSYCHOL MED, V28, P51, DOI 10.1017/S003329179700593X; [Anonymous], 2007, JOINT EFF AG VICT C; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Atkins MS, 2002, J ABNORM CHILD PSYCH, V30, P361, DOI 10.1023/A:1015765924135; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Baker MD, 2008, EVOL HUM BEHAV, V29, P391, DOI 10.1016/j.evolhumbehav.2008.06.001; Barber N, 2001, J CROSS CULT PSYCHOL, V32, P259, DOI 10.1177/0022022101032003001; Barber N, 2011, AGGRESS VIOLENT BEH, V16, P420, DOI 10.1016/j.avb.2011.01.001; BARRISH HH, 1969, J APPL BEHAV ANAL, V2, P119, DOI 10.1901/jaba.1969.2-119; Bayer P., 2003, BUILDING CRIMI UNPUB; Belles S, 2010, PERS SOC PSYCHOL B, V36, P703, DOI 10.1177/0146167210366305; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2009, EV I WORKSH AD RISK; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Berger KS, 2007, DEV REV, V27, P90, DOI 10.1016/j.dr.2006.08.002; Bierman K. L, 2004, PEER REJECTION DEV P; Blakemore SJ, 2006, J CHILD PSYCHOL PSYC, V47, P296, DOI 10.1111/j.1469-7610.2006.01611.x; Bowlby J., 1969, ATTACHMENT LOSS ATTA; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; BRONFENBRENNER U, 1979, AM PSYCHOL, V34, P844, DOI 10.1037//0003-066X.34.10.844; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037/0033-2909.125.3.367; Campbell A, 2004, J SEX RES, V41, P16, DOI 10.1080/00224490409552210; CARSKADON MA, 1980, SLEEP, V2, P453; Cashdan E, 1998, BRIT J SOC PSYCHOL, V37, P213, DOI 10.1111/j.2044-8309.1998.tb01166.x; Chamberlain P, 1990, Child Today, V19, P24; Chamberlain P, 2007, J CONSULT CLIN PSYCH, V75, P187, DOI 10.1037/0022-006X.75.1.187; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Chang L, 2011, PERS SOC PSYCHOL B, V37, P976, DOI 10.1177/0146167211402216; Chassin L., 2009, HDB ADOLESCENT PSYCH, V1, P723, DOI DOI 10.1002/9780470479193.ADLPSY001022; Chein J, 2011, DEVELOPMENTAL SCI, V14, pF1, DOI 10.1111/j.1467-7687.2010.01035.x; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; COHEN PA, 1982, AM EDUC RES J, V19, P237, DOI 10.2307/1162567; COIE JD, 1983, CHILD DEV, V54, P1400, DOI 10.2307/1129803; Colarelli SM, 2006, J ORGAN BEHAV, V27, P163, DOI 10.1002/job.350; Connolly J, 2000, Child Maltreat, V5, P299, DOI 10.1177/1077559500005004002; Costello EJ, 2003, JAMA-J AM MED ASSOC, V290, P2023, DOI 10.1001/jama.290.15.2023; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Crowley SJ, 2007, SLEEP MED, V8, P602, DOI 10.1016/j.sleep.2006.12.002; Daly M, 2001, Nebr Symp Motiv, V47, P1; Daly M, 2001, CAN J CRIMINOL, V43, P219; Daly M., 1988, HOMICIDE; Dane A., CREATING WO IN PRESS; Dearden J., 1998, ED PSYCHOL PRACTICE, V13, P250, DOI DOI 10.1080/0266736980130406; Dijkstra JK, 2010, CRIMINOLOGY, V48, P187, DOI 10.1111/j.1745-9125.2010.00183.x; Dishion T. J, 2008, UNDERSTANDING PEER I, P72; Dishion TJ, 2008, CHILD DEV, V79, P1395, DOI 10.1111/j.1467-8624.2008.01195.x; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dishion TJ, 2003, BEHAV THER, V34, P553, DOI 10.1016/S0005-7894(03)80035-7; Dishion TJ, 1996, BEHAV THER, V27, P373, DOI 10.1016/S0005-7894(96)80023-2; Dishion TJ, 2004, J ADOLESCENCE, V27, P515, DOI 10.1016/j.adolescence.2004.06.005; Dishion TJ, 1999, J CLIN CHILD PSYCHOL, V28, P502, DOI 10.1207/S15374424JCCP2804_10; Dishion TJ, 1999, AM PSYCHOL, V54, P755, DOI 10.1037/0003-066X.54.9.755; Dobrova-Krol NA, 2010, CHILD DEV, V81, P237, DOI 10.1111/j.1467-8624.2009.01392.x; Dodge K. A., 2006, SOCIAL POLICY REPORT, V20, P1; DODGE KA, 1983, CHILD DEV, V54, P1386, DOI 10.1111/j.1467-8624.1983.tb00055.x; DuBois DL, 2002, AM J COMMUN PSYCHOL, V30, P157, DOI 10.1023/A:1014628810714; Duncan GJ, 2005, J ABNORM CHILD PSYCH, V33, P375, DOI 10.1007/s10802-005-3576-2; Dutra L, 2008, AM J PSYCHIAT, V165, P179, DOI 10.1176/appi.ajp.2007.06111851; Eaton SB, 2003, COMP BIOCHEM PHYS A, V136, P153, DOI 10.1016/S1095-6433(03)00208-3; Eddy JM, 2003, BEHAV THER, V34, P535, DOI 10.1016/S0005-7894(03)80034-5; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Emaus A, 2008, HUM REPROD, V23, P919, DOI 10.1093/humrep/dem432; Ember Carol R., 1973, ETHOS, V1, P424, DOI DOI 10.1525/ETH.1973.1.4.02A00050; Ermer E, 2008, EVOL HUM BEHAV, V29, P106, DOI 10.1016/j.evolhumbehav.2007.11.002; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Faris R, 2011, AM SOCIOL REV, V76, P48, DOI 10.1177/0003122410396196; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Forgatch M. S., 2010, EVIDENCE BASED PSYCH, V2, P159, DOI DOI 10.1017/S0954579409000340; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Galbraith J, 2011, EDUC STUD-UK, V37, P321, DOI 10.1080/03055698.2010.506330; Gallup AC, 2011, AGGRESSIVE BEHAV, V37, P258, DOI 10.1002/ab.20384; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gatti U, 2009, J CHILD PSYCHOL PSYC, V50, P991, DOI 10.1111/j.1469-7610.2008.02057.x; Ge XJ, 2003, DEV PSYCHOL, V39, P430, DOI 10.1037/0012-1649.39.3.430; Ge XJ, 2002, DEV PSYCHOL, V38, P42, DOI 10.1037//0012-1649.38.1.42; Goodall J., 1986, CHIMPANZEES GOMBE; Gordon J, 2008, PREV SCI, V9, P73, DOI 10.1007/s11121-008-0089-6; Gordon M, 2005, ROOTS EMPATHY CHANGI; Graber JA, 2006, J YOUTH ADOLESCENCE, V35, P413, DOI 10.1007/s10964-006-9049-2; Gray P, 2004, AM J EDUC, V110, P108, DOI 10.1086/380572; Gray P, 1997, MERRILL PALMER QUART, V43, P67; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray P, 2011, AM J PLAY, V3, P443; Gray P, 2011, AM J PLAY, V3, P500; Gray P, 2009, AM J PLAY, V1, P476; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Grossman JB, 1998, EVALUATION REV, V22, P403, DOI 10.1177/0193841X9802200304; Gutman LM, 2002, AM J COMMUN PSYCHOL, V30, P367, DOI 10.1023/A:1015389103911; Hammer MF, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000202; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Hawley PH, 2002, INT J BEHAV DEV, V26, P167, DOI 10.1080/01650250042000726; HAYWARD C, 1992, AM J PSYCHIAT, V149, P1239; Henggeler S. W, 2010, EVIDENCE BASED PSYCH, P259; Herrera C, 2011, CHILD DEV, V82, P346, DOI 10.1111/j.1467-8624.2010.01559.x; Hesketh T, 2006, P NATL ACAD SCI USA, V103, P13271, DOI 10.1073/pnas.0602203103; Hewlett BS, 2005, HUNTER GATHERER CHIL; Hill JO, 2006, ENDOCR REV, V27, P750, DOI 10.1210/er.2006-0032; Holm SM, 2009, J ADOLESCENT HEALTH, V45, P326, DOI 10.1016/j.jadohealth.2009.04.001; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Hudson V, 2004, BARE BRANCHES; Huerta R, 2002, J REPROD MED, V47, P217; Ilardi S. S., 2009, DEPRESSION CURE 6 ST; Institute of Medicine & National Research Council, 2011, SCI ADOL RISK TAK WO; Iredale W, 2008, EVOL PSYCHOL-US, V6, P386, DOI 10.1177/147470490800600302; Ireland JL, 2005, J ADOLESCENT HEALTH, V36, P236, DOI 10.1016/j.jadohealth.2004.02.026; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; JESSOR R, 1987, BRIT J ADDICT, V82, P331; Johns S. E., 2011, J EVOLUTIONARY PSYCH, V9, P3, DOI DOI 10.1556/JEP.9.2011.37.1; JONES MC, 1957, CHILD DEV, V28, P113, DOI 10.1111/j.1467-8624.1957.tb04837.x; Juvonen J, 2003, PEDIATRICS, V112, P1231, DOI 10.1542/peds.112.6.1231; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Karna A, 2011, CHILD DEV, V82, P311, DOI 10.1111/j.1467-8624.2010.01557.x; Keel L., 1986, ELEMENTARY SCH GUIDA, V20, P268; Kellam SG, 2008, DRUG ALCOHOL DEPEN, V95, pS5, DOI 10.1016/j.drugalcdep.2008.01.004; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kerr DCR, 2009, J CONSULT CLIN PSYCH, V77, P588, DOI 10.1037/a0015289; Kirby KN, 1996, PSYCHON B REV, V3, P100, DOI 10.3758/BF03210748; Kling JR, 2007, ECONOMETRICA, V75, P83, DOI 10.1111/j.1468-0262.2007.00733.x; Kling JR, 2005, Q J ECON, V120, P87, DOI 10.1162/qjec.2005.120.1.87; Kolbert J. B., 2003, J SCH VIOLENCE, V2, P73, DOI [DOI 10.1300/J202V02N03_05, 10.1300/J202v02n03_05]; Konner M, 2005, HUNTER GATHERER CHIL, P19; Konner M., 1975, ORIGINS BEHAV, V4, P99; Konner M, 2010, NUTR CLIN PRACT, V25, P594, DOI 10.1177/0884533610385702; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Kramer MS, 2008, ARCH GEN PSYCHIAT, V65, P578, DOI 10.1001/archpsyc.65.5.578; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger D. J., 2009, J SOCIAL EVOLUTIONAR, V3, P93; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Lansford J. E., 2006, DEVIANT PEER INFLUEN, P215; Laursen B, 1998, CHILD DEV, V69, P817, DOI 10.2307/1132206; Leenaars LS, 2008, AGGRESSIVE BEHAV, V34, P404, DOI 10.1002/ab.20252; Leve LD, 2005, J CONSULT CLIN PSYCH, V73, P1181, DOI 10.1037/0055-006X.73.6.1181; Liddle H. A., 2010, EVIDENCE BASED PSYCH, P416; Light JM, 2007, NEW DIR CHILD ADOLES, V118, P77, DOI 10.1002/cd.202; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Martin CA, 2002, J AM ACAD CHILD PSY, V41, P1495, DOI 10.1097/01.CHI.0000024864.60748.9D; Mason W Alex, 2003, Prev Sci, V4, P203, DOI 10.1023/A:1024653923780; MASURE RALPH H., 1934, AUK, V51, P306; MCCABE MP, 1984, ADOLESCENCE, V19, P159; McMaster LE, 2002, DEV PSYCHOPATHOL, V14, P91, DOI 10.1017/S0954579402001050; Mech DL, 1970, WOLF ECOLOGY BEHAV E; Merrell KW, 2008, SCHOOL PSYCHOL QUART, V23, P26, DOI 10.1037/1045-3830.23.1.26; MESSNER SF, 1991, SOC FORCES, V69, P693, DOI 10.2307/2579470; Moberg DP, 1998, AIDS EDUC PREV, V10, P128; Morris A. S., 2004, HDB ADOLESCENT PSYCH, P155; Mulvihill D, 2005, COMPR CHILD ADOLES N, V28, P115, DOI 10.1080/01460860590950890; Mussweiler T, 2000, J PERS SOC PSYCHOL, V79, P507, DOI 10.1037//0022-3514.79.4.507; Najman JM, 2009, AUST NZ J CRIMINOL, V42, P369, DOI 10.1375/acri.42.3.369; National Cancer Institute, 2008, ROLE MED PROM RED TO; Nelson CA, 2007, SCIENCE, V318, P1937, DOI 10.1126/science.1143921; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; Olthof T, 2008, SOC DEV, V17, P24, DOI 10.1111/j.1467-9507.2007.00413.x; OLWEUS D, 1993, BULLYING SCH WHAT KN; Ostovich JM, 2005, ARCH SEX BEHAV, V34, P197, DOI 10.1007/s10508-005-1797-7; Oyserman D, 2006, J PERS SOC PSYCHOL, V91, P188, DOI 10.1037/0022-3541.91.1.188; PAIKOFF RL, 1991, PSYCHOL BULL, V110, P47, DOI 10.1037/0033-2909.110.1.47; PALMER CT, 1995, J SEX RES, V32, P213, DOI 10.1080/00224499509551792; Panksepp J, 2003, BRAIN COGNITION, V52, P97, DOI 10.1016/S0278-2626(03)00013-7; Panksepp J, 2007, J CAN ACAD CHILD ADO, V16, P57; Patton GC, 1996, J EPIDEMIOL COMMUN H, V50, P661, DOI 10.1136/jech.50.6.661; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Pellegrini AD, 2003, J EXP CHILD PSYCHOL, V85, P257, DOI 10.1016/S0022-0965(03)00060-2; Persico N, 2004, J POLIT ECON, V112, P1019, DOI 10.1086/422566; Petras H, 2008, DRUG ALCOHOL DEPEN, V95, pS45, DOI 10.1016/j.drugalcdep.2007.10.015; Poduska JM, 2008, DRUG ALCOHOL DEPEN, V95, pS29, DOI 10.1016/j.drugalcdep.2007.10.009; Pollak SD, 2008, CURR DIR PSYCHOL SCI, V17, P370, DOI 10.1111/j.1467-8721.2008.00608.x; Pollet TV, 2008, BIOL LETTERS, V4, P31, DOI 10.1098/rsbl.2007.0543; Quevedo KM, 2009, DEV PSYCHOPATHOL, V21, P27, DOI 10.1017/S0954579409000030; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reinke W. M., 2006, DEVIANT PEER INFLUEN, P122; Reynolds CR, 2008, AM PSYCHOL, V63, P852, DOI 10.1037/0003-066X.63.9.852; Reynolds MD, 2007, BIOL PSYCHIAT, V61, P1223, DOI 10.1016/j.biopsych.2006.07.008; Richards MH, 1998, CHILD DEV, V69, P154, DOI 10.1111/j.1467-8624.1998.tb06140.x; RICHARDS MH, 1993, J RES ADOLESCENCE, V3, P145, DOI DOI 10.1207/S15327795JRA0302_3; RICHERSON PJ, 2005, GENES ALONE CULTURE; Rigby K, 2010, BULLYING INTERVENTIO; Rigby K, 2011, SOC PSYCHOL EDUC, V14, P441, DOI 10.1007/s11218-011-9158-y; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROFF DA, 2002, LIFE HIST EVOLUTION; Rowe R, 2004, BIOL PSYCHIAT, V55, P546, DOI 10.1016/j.biopsych.2003.10.010; Rusby JC, 2005, J EARLY ADOLESCENCE, V25, P453, DOI 10.1177/0272431605279837; Sadeh A, 2009, SLEEP, V32, P1602, DOI 10.1093/sleep/32.12.1602; Sagrestano LM, 1999, J RES ADOLESCENCE, V9, P85, DOI 10.1207/s15327795jra0901_5; Salmivalli C., 2010, HDB BULLYING SCH INT, P441; Sanbonmatsu L, 2006, J HUM RESOUR, V41, P649; Sato SA, 2008, HORM BEHAV, V53, P647, DOI 10.1016/j.yhbeh.2008.01.010; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schaal B, 1996, J AM ACAD CHILD PSY, V35, P1322, DOI 10.1097/00004583-199610000-00019; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schonert-Reichl K.A., 2009, ROOTS EMPATHY CHANGI, P239; Schonert-Reichl KA, 2012, SCH MENT HEALTH, V4, P1, DOI 10.1007/s12310-011-9064-7; Shomaker LB, 2010, AM J CLIN NUTR, V92, P123, DOI 10.3945/ajcn.2010.29383; Shonkoff JP, 2009, JAMA-J AM MED ASSOC, V301, P2252, DOI 10.1001/jama.2009.754; Sijtsema JJ, 2009, AGGRESSIVE BEHAV, V35, P57, DOI 10.1002/ab.20282; Silk JS, 2009, DEV PSYCHOPATHOL, V21, P7, DOI 10.1017/S0954579409000029; Simons-Morton B, 2005, ACCIDENT ANAL PREV, V37, P973, DOI 10.1016/j.aap.2005.04.014; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SMOLAK L, 1993, J YOUTH ADOLESCENCE, V22, P355, DOI 10.1007/BF01537718; Snyder J, 2005, DEV PSYCHOPATHOL, V17, P397, DOI 10.1017/S0954579405050194; Spencer VG, 2006, BEHAV DISORDERS, V31, P204; Spoth RL, 2001, J CONSULT CLIN PSYCH, V69, P627, DOI 10.1037//0022-006X.69.4.627; Stearns S, 1992, EVOLUTION LIFE HIST; STEINBERG L, 1987, DEV PSYCHOL, V23, P451, DOI 10.1037//0012-1649.23.3.451; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; Steinberg L, 2008, DEV REV, V28, P78, DOI 10.1016/j.dr.2007.08.002; Sutton J, 1999, BRIT J DEV PSYCHOL, V17, P435, DOI 10.1348/026151099165384; Sylwester K, 2011, SEX ROLES, V64, P695, DOI 10.1007/s11199-010-9790-6; Thomas E. M., 2006, OLD WAY STORY 1 PEOP; Tremblay RE, 1998, INT J BEHAV DEV, V22, P753, DOI 10.1080/016502598384153; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; Ttofi M. M., 2011, J EXPT CRIMINOLOGY, V7, P27, DOI [10.1007/s11292-010-9109-1, DOI 10.1007/S11292-010-9109-1]; Turnbull C. M., 1972, MOUNTAIN PEOPLE; Udry J. R., 1990, ADOLESCENCE PUBERTY, P70; vanLenthe FJ, 1996, AM J CLIN NUTR, V64, P18; Veenstra R, 2010, CHILD DEV, V81, P480, DOI 10.1111/j.1467-8624.2009.01411.x; Volk A., OXFORD HDB EVOLUTION; Volk Anthony, 2006, Int J Adolesc Med Health, V18, P575; Waldron H. B., 2010, EVIDENCE BASED PSYCH, P401; WARREN MP, 1989, J CLIN ENDOCR METAB, V69, P77, DOI 10.1210/jcem-69-1-77; Wei S-j, 2011, 16800 NAT BUR EC RES; Weichold K., 2003, GENDER DIFFERENCES P, P241, DOI DOI 10.1017/CB09780511489716.013; Weisfeld G, 1999, EVOLUTIONARY PRINCIP; WEISFELD GE, 2005, EVOLUTIONARY PERSPEC, P331; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiting B. B., 1975, CHILDREN 6 CULTURES; Whiting Beatrice B., 1983, NATURE PROSOCIAL DEV, P221; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Wolfson AR, 1998, CHILD DEV, V69, P875, DOI 10.2307/1132351; Wolke D, 2001, ARCH DIS CHILD, V85, P197, DOI 10.1136/adc.85.3.197; YOGEV A, 1982, J EDUC RES, V75, P261, DOI 10.1080/00220671.1982.10885392; YourDictionary.com, 2010, RISK; Zahavi A, 1997, HANDICAP PRINCIPLE M; Zimring F. E., 1998, AM YOUTH VIOLENC; Zuckerman M, 1994, BEHAV EXPRESSIONS BI 267 235 236 9 221 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 598 623 10.1037/a0026220 26 Psychology, Developmental Psychology 932JK WOS:000303287200002 22122473 2019-02-21 J Belsky, J; Schlomer, GL; Ellis, BJ Belsky, Jay; Schlomer, Gabriel L.; Ellis, Bruce J. Beyond Cumulative Risk: Distinguishing Harshness and Unpredictability as Determinants of Parenting and Early Life History Strategy DEVELOPMENTAL PSYCHOLOGY English Article harsh parenting; unpredictable environment; sexual risk taking; life history; maternal depression REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; ECONOMIC HARDSHIP; EARLY ADOLESCENCE; STRESS; HEALTH; CHILDREN; TRAJECTORIES; PERSPECTIVE; ATTACHMENT Drawing on life history theory, Ellis and associates' (2009) recent across- and within-species analysis of ecological effects on reproductive development highlighted two fundamental dimensions of environmental variation and influence: harshness and unpredictability. To evaluate the unique contributions of these factors, the authors of present article examined data from a national sample 1364 mothers and their children participating in the NICHD Study of Early Child Care and Youth Development. Harshness was operationalized as income-to-needs ratio in the first 5 years of life; unpredictability was indexed by residential changes, paternal transitions, and parental job changes during this same period. Here the proposition was tested that these factors not only uniquely predict accelerated life-history strategy, operationalized in terms of sexual behavior at age 15, but that such effects are mediated by change over the early-childhood years in maternal depression and, thereby, observed maternal sensitivity in the early-elementary-school years. Structural equation modeling provided empirical support for Ellis et al.'s (2009) theorizing, calling attention once again to the contribution of evolutionary analysis to understanding contemporary human parenting and development. Implications of the findings for intervention are discussed. [Belsky, Jay] Univ Calif Davis, Davis, CA 95616 USA; [Belsky, Jay] Birkbeck Univ London, Dept Psychol Sci, London, England; [Schlomer, Gabriel L.] Univ Arizona, Arizona Ctr Res & Outreach, Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Belsky, J (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. jbelsky@ucdavis.edu Belsky, Jay/0000-0003-2191-2503 ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; Allhusen V, 2001, J APPL DEV PSYCHOL, V22, P457; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baumer EP, 2001, J MARRIAGE FAM, V63, P540, DOI 10.1111/j.1741-3737.2001.00540.x; Belsky J, 2006, DEV PSYCHOL, V42, P38, DOI 10.1037/0012-1649.42.1.38; Belsky J, 2002, DEV PSYCHOPATHOL, V14, P293; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.1111/j.1467-8624.1984.tb00275.x; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV; Brown T., 2006, CONFIRMATORY FACTOR; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Capaldi DM, 1996, CHILD DEV, V67, P344, DOI 10.2307/1131818; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX; Cohen J., 2003, APPL MULTIPLE REGRES; Collins LM, 2001, PSYCHOL METHODS, V6, P330, DOI 10.1037//1082-989X.6.4.330; CONGER RD, 1990, J MARRIAGE FAM, V52, P643, DOI 10.2307/352931; Conger RD, 2002, DEV PSYCHOL, V38, P179, DOI 10.1037//0012-1649.38.2.179; CONGER RD, 1994, CHILD DEV, V65, P541, DOI 10.2307/1131401; Crowder K, 2004, J MARRIAGE FAM, V66, P721, DOI 10.1111/j.0022-2445.2004.00049.x; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis B. J., DEV PSYCHOP IN PRESS; Ellis B. J., 2005, ORIGINS SOCIAL MIND; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Fergusson DM, 2000, J CHILD PSYCHOL PSYC, V41, P779, DOI 10.1111/1469-7610.00665; Frankenhuis W. E., 2010, ANN M HUM BEH EV SOC; Gazelle H, 2007, J APPL DEV PSYCHOL, V28, P515, DOI 10.1016/j.appdev.2007.06.006; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Gutman LM, 2003, DEV PSYCHOL, V39, P777, DOI 10.1037/0012-1649.39.4.777; Gutman LM, 2002, AM J COMMUN PSYCHOL, V30, P367, DOI 10.1023/A:1015389103911; Harden A, 2009, BRIT MED J, V339, DOI 10.1136/bmj.b4254; HINDE RA, 1990, HUM DEV, V33, P62, DOI 10.1159/000276503; HINDE RA, 1986, DEV ANTISOCIAL PROSO, P13; Holden GW, 2010, CHILD DEV PERSPECT, V4, P197, DOI 10.1111/j.1750-8606.2010.00148.x; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kline R., 2005, PRINCIPALS PRACTICE; Maccoby E. E., 1980, SOCIAL DEV PSYCHOL G; MCLOYD VC, 1990, CHILD DEV, V61, P311, DOI 10.1111/j.1467-8624.1990.tb02781.x; McLoyd VC, 1998, AM PSYCHOL, V53, P185, DOI 10.1037/0003-066X.53.2.185; Muthen L. K., 2005, RE MULTIPLE GROUP FA; Muthen L. K. & Muthen B. O., 1998, MPLUS USERS GUIDE; [National Institute of Child Health and Human Development (NICHD) Early Child Care Research Network (ECCRN)], 2005, CHILD CAR CHILD DEV; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; *NICHD EARL CHILD, 2003, INFANT BEHAV DEV, V0026; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; RADLOFF L S, 1977, Applied Psychological Measurement, V1, P385, DOI 10.1177/014662167700100306; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.2307/1129854; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; SAMEROFF AJ, 1987, PEDIATRICS, V79, P343; Scaramella LV, 1998, DEV PSYCHOL, V34, P1233, DOI 10.1037/0012-1649.34.6.1233; Schlomer GL, 2010, J COUNS PSYCHOL, V57, P1, DOI 10.1037/a0018082; Seifer R, 1996, J CLIN CHILD PSYCHOL, V25, P423, DOI 10.1207/s15374424jccp2504_7; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Sobel M. E., 1986, SOCIOL METHODOL, V16, p159 , DOI DOI 10.2307/270922; Stearns S, 1992, EVOLUTION LIFE HIST 70 119 125 2 85 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 662 673 10.1037/a0024454 12 Psychology, Developmental Psychology 932JK WOS:000303287200008 21744948 2019-02-21 J Simpson, JA; Griskevicius, V; Kuo, SIC; Sung, S; Collins, WA Simpson, Jeffry A.; Griskevicius, Vladas; Kuo, Sally I-Chun; Sung, Sooyeon; Collins, W. Andrew Evolution, Stress, and Sensitive Periods: The Influence of Unpredictability in Early Versus Late Childhood on Sex and Risky Behavior DEVELOPMENTAL PSYCHOLOGY English Article life stress; social development; sexual behavior; evolution; life history theory LIFE-HISTORY STRATEGIES; REPRODUCTIVE STRATEGY; FATHER ABSENCE; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; NEIGHBORHOODS; HEALTH According to a recent evolutionary life history model of development proposed by Ellis, Figueredo, Brumbach, and Schlomer (2009), growing up in harsh versus unpredictable environments should have unique effects on life history strategies in adulthood. Using data from the Minnesota Longitudinal Study of Risk and Adaptation, we tested how harshness and unpredictability experienced in early childhood (age 0-5) versus in later childhood (age 6-16) uniquely predicted sexual and risky behavior at age 23. Findings showed that the strongest predictor of both sexual and risky behavior was an unpredictable environment between ages 0 and 5. Individuals exposed to more unpredictable, rapidly changing environments during the first 5 years of life displayed a faster life history strategy at age 23 by having more sexual partners, engaging in more aggressive and delinquent behaviors, and being more likely to be associated with criminal activities. In contrast, exposure to either harsh environments or experiencing unpredictability in later childhood (age 6-16) was, for the most part, not significantly related to these outcomes at age 23. Viewed together, these findings show that unpredictable rather than merely harsh childhood environments exert unique effects on risky behavior later in life consistent with a faster life history strategy. The findings also suggest that there is a developmentally sensitive period for assessing environmental unpredictability during the first 5 years of life. [Simpson, Jeffry A.; Sung, Sooyeon] Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA; [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Minneapolis, MN 55455 USA; [Kuo, Sally I-Chun; Collins, W. Andrew] Univ Minnesota, Inst Child Dev, Minneapolis, MN 55455 USA Simpson, JA (reprint author), Univ Minnesota, Dept Psychol, Twin Cities Campus, Minneapolis, MN 55455 USA. simps108@umn.edu Simpson, Jeff/0000-0003-1899-2493 Achenbach T M, 2000, Pediatr Rev, V21, P265, DOI 10.1542/pir.21-8-265; Achenbach T. M, 1997, MANUAL YOUNG ADULT S; ADLER NE, 1993, JAMA-J AM MED ASSOC, V269, P3140, DOI 10.1001/jama.269.24.3140; *AM PSYCH ASS, 1994, DIAG STAT MAN MENT D; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1999, HDB ATTACHMENT THEOR, P141; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bereczkei T, 1996, HUM NATURE-INT BIOS, V7, P257, DOI 10.1007/BF02733397; Blum R., 1989, STATE ADOLESCENT HLT; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Chen E, 2002, PSYCHOL BULL, V128, P295, DOI 10.1037/0033-2909.128.2.295; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; COCHRANE R, 1973, J PSYCHOSOM RES, V17, P135, DOI 10.1016/0022-3999(73)90014-7; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Duncan Otis D, 1961, OCCUPATIONS SOCIAL S, P109; EGELAND B, 1980, J CONSULT CLIN PSYCH, V48, P195, DOI 10.1037/0022-006X.48.2.195; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Griskevicius V., 2011, EC RECESSIONS UNPUB; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSENBLUM LA, 1984, CHILD DEV, V55, P305, DOI 10.2307/1129854; ROSENBLUM LA, 1994, ACTA PAEDIATR, V83, P57, DOI 10.1111/j.1651-2227.1994.tb13266.x; Rowe DC, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P147; Simpson J. A., 2011, HDB INTERPERSONAL PS, P75; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Sroufe L. A., 2005, DEV PERSON MINNESOTA; Stearns S, 1992, EVOLUTION LIFE HIST; STEVENS G, 1981, SOC SCI RES, V10, P364, DOI 10.1016/0049-089X(81)90011-9; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 49 116 122 3 50 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 1939-0599 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 674 686 10.1037/a0027293 13 Psychology, Developmental Psychology 932JK WOS:000303287200009 22329381 2019-02-21 J Nettle, D; Frankenhuis, WE; Rickard, IJ Nettle, Daniel; Frankenhuis, Willem E.; Rickard, Ian J. The Adaptive Basis of Psychosocial Acceleration: Comment on Beyond Mental Health, Life History Strategies Articles DEVELOPMENTAL PSYCHOLOGY English Editorial Material psychosocial acceleration theory; developmental plasticity; evolutionary developmental psychology; father absence ENVIRONMENTAL RISK; FATHER ABSENCE; DYING YOUNG; LIVING FAST; EXPERIENCE; DAUGHTERS; PREGNANCY; CHILDHOOD; MENARCHE; INFANTS Four of the articles published in this special section of Developmental Psychology build on and refine psychosocial acceleration theory. In this short commentary, we discuss some of the adaptive assumptions of psychosocial acceleration theory that have not received much attention. Psychosocial acceleration theory relies on the behavior of caregivers being a reliable cue of broader ecological conditions and on those ecological conditions being somewhat stable over the individual's lifetime. There is a scope for empirical and theoretical work investigating the range of environments over which these assumptions hold, to understand more deeply why it is that early life family environment exerts such reliable effects on later life-history strategy. [Nettle, Daniel] Newcastle Univ, Ctr Behav & Evolut, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England; [Nettle, Daniel] Newcastle Univ, Inst Neurosci, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England; [Frankenhuis, Willem E.] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90024 USA; [Rickard, Ian J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Nettle, D (reprint author), Newcastle Univ, Ctr Behav & Evolut, Henry Wellcome Bldg,Framlington Pl, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. daniel.nettle@ncl.ac.uk Nettle, Daniel/0000-0001-9089-2599 Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Cameron NM, 2008, HORM BEHAV, V54, P178, DOI 10.1016/j.yhbeh.2008.02.013; CHENEY DL, 1977, BEHAV ECOL SOCIOBIOL, V2, P303, DOI 10.1007/BF00299742; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Maestripieri D, 2005, P ROY SOC B-BIOL SCI, V272, P1243, DOI 10.1098/rspb.2005.3059; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Nettle D., 2009, EVOLUTION GENETICS P; Nettle D, 2012, J ETHOL, V30, P109, DOI 10.1007/s10164-011-0303-z; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Richerson PJ, 2001, AM ANTIQUITY, V66, P387, DOI 10.2307/2694241; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S, 1992, EVOLUTION LIFE HIST; Thomsen L, 2011, SCIENCE, V331, P477, DOI 10.1126/science.1199198; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065 29 6 6 0 12 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 718 721 10.1037/a0027507 4 Psychology, Developmental Psychology 932JK WOS:000303287200012 22545851 2019-02-21 J Gibbons, FX; Roberts, ME; Gerrard, M; Li, ZG; Beach, SRH; Simons, RL; Weng, CY; Philibert, RA Gibbons, Frederick X.; Roberts, Megan E.; Gerrard, Meg; Li, Zhigang; Beach, Steven R. H.; Simons, Ronald L.; Weng, Chili-Yuan; Philibert, Robert A. The Impact of Stress on the Life History Strategies of African American Adolescents: Cognitions, Genetic Moderation, and the Role of Discrimination DEVELOPMENTAL PSYCHOLOGY English Article life history strategy; discrimination; stress; cognition; African American SUBSTANCE USE; DIFFERENTIAL SUSCEPTIBILITY; RACIAL-DISCRIMINATION; RACIAL/ETHNIC DISCRIMINATION; PERCEIVED DISCRIMINATION; INDIVIDUAL-DIFFERENCES; REPRODUCTIVE STRATEGY; ENVIRONMENTAL RISK; HEALTH-RISK; CHILDREN The impact of 3 different sources of stress-environmental, familial (e.g., low parental investment), and interpersonal (i.e., racial discrimination)-on the life history strategies (LHS) and associated cognitions of African American adolescents were examined over an 11-year period (5 waves, from age 10.5 to 21.5). Analyses indicated that each one of the sources of stress was associated with faster LHS cognitions (e.g., tolerance of deviance, willingness to engage in risky sex), which, in turn, predicted faster LHS behaviors (e.g., frequent sexual behavior). LHS, then, negatively predicted outcome (resilience) at age 21.5 (i.e., faster LHS -> less resilience). In addition, presence of the risk ("sensitivity") alleles of 2 monoamine-regulating genes, the serotonin transporter gene (5HTTLPR) and the dopamine D4 receptor gene (DRD4), moderated the impact of perceived racial discrimination on LHS cognitions: Participants with more risk alleles (higher "sensitivity") reported faster LHS cognitions at age 18 and less resilience at age 21 if they had experienced higher amounts of discrimination and slower LHS and more resilience if they had experienced smaller amounts of discrimination. Implications for LHS theories are discussed. [Gibbons, Frederick X.; Roberts, Megan E.] Dartmouth Coll, Dept Psychol, Hanover, NH 03755 USA; [Gerrard, Meg; Li, Zhigang] Dartmouth Med Sch, Dept Psychol, Hanover, NH USA; [Beach, Steven R. H.; Simons, Ronald L.] Univ Georgia, Dept Psychol, Athens, GA 30602 USA; [Philibert, Robert A.] Univ Iowa, Dept Psychol, Iowa City, IA 52242 USA Gibbons, FX (reprint author), Dartmouth Coll, Dept Psychol Psychol & Brain Sci, Moore Hall,Hinman Box 6207, Hanover, NH 03755 USA. Frederick.x.gibbons@dartmouth.edu Philibert, Robert/0000-0001-7822-4977 NIMH NIH HHS [R01 MH062668, MH062668]; NIDA NIH HHS [DA021898, DA018871, P30 DA027827, R01 DA021898, T32 DA016184, R01 DA018871]; NCI NIH HHS [P30 CA023108] American Heart Association, 2010, HEART DIS STROK STAT; Anderson E., 1997, VIOLENCE CHILDHOOD I, P1, DOI [10.1017/CB09780511571015.002, DOI 10.1017/CBO9780511571015.002]; Aud S., 2010, 201028 NCES; Beach SRH, 2010, J FAM PSYCHOL, V24, P513, DOI 10.1037/a0020835; Beach SRH, 2010, AM J MED GENET B, V153B, P710, DOI 10.1002/ajmg.b.31028; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bennett GG, 2005, AM J PUBLIC HEALTH, V95, P238, DOI 10.2105/AJPH.2004.037812; Bjorklund D. F., 2005, HDB EVOLUTIONARY PSY, P828; Bjorklund D. F., 2002, LEARN INDIVID DIFFER, V12, P347, DOI [10.1016/SI041-6080(02)00047-X, DOI 10.1016/S1041-6080)02)00047-X]; Bjorklund DF, 1996, PSYCHOL BULL, V120, P163, DOI 10.1037/0033-2909.120.2.163; Bjorklund DF, 2000, CHILD DEV, V71, P1687, DOI 10.1111/1467-8624.00258; Brennan PA, 2003, J AM ACAD CHILD PSY, V42, P1469, DOI 10.1097/01.CHI.0000091509.46853.7c; Brody G. H., DEV PSYCHOL IN PRESS; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Centers for Disease Control and Prevention National Center for Chronic Disease Prevention and Health Promotion, 2009, HLTH DISP RAC ETH MI; Chapman C., 2010, TRENDS HIGH SCH DROP; Charnov Eric L., 1993, P1; CICCHETTI D, 1993, DEV PSYCHOPATHOL, V5, P497, DOI 10.1017/S0954579400006118; Coker TR, 2009, AM J PUBLIC HEALTH, V99, P878, DOI 10.2105/AJPH.2008.144329; Collins-Schramm HE, 2002, HUM GENET, V111, P566, DOI 10.1007/s00439-002-0818-z; Cosmides L., 1987, LATEST BEST ESSAYS E, P276; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M., 2005, HDB EVOLUTIONARY PSY, P443; Dreber A, 2009, EVOL HUM BEHAV, V30, P85, DOI 10.1016/j.evolhumbehav.2008.11.001; Ehrlich P, 2003, CURR ANTHROPOL, V44, P87, DOI 10.1086/344470; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Esau L, 2008, J NEURAL TRANSM, V115, P755, DOI 10.1007/s00702-007-0012-5; Farmer T. W., 2006, Journal of Research in Rural Education, V21, P1; Federal Interagency Forum on Child and Family Statistics, 2010, AM CHILD BRIEF KEY N; Fergus S, 2005, ANNU REV PUBL HEALTH, V26, P399, DOI 10.1146/annurev.publhealth.26.021304.144357; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARMEZY N, 1984, CHILD DEV, V55, P97, DOI 10.2307/1129837; Gerrard M, 2005, J PEDIATR PSYCHOL, V30, P305, DOI 10.1093/jpepsy/jsi026; Gerrard M, 2006, PSYCHOL ADDICT BEHAV, V20, P185, DOI 10.1037/0893-164X.20.2.185; Gibbons F. X., J PERSONALI IN PRESS; Gibbons F. X., 2010, HDB DRUG USE ETIOLOG, P341; Gibbons FX, 2007, DRUG ALCOHOL DEPEN, V88, pS27, DOI 10.1016/j.drugalcdep.2006.12.015; Gibbons FX, 2010, J PERS SOC PSYCHOL, V99, P785, DOI 10.1037/a0019880; Gibbons FX, 2004, PERS SOC PSYCHOL B, V30, P1048, DOI 10.1177/0146167204264788; Gibbons FX, 2004, J PERS SOC PSYCHOL, V86, P517, DOI 10.1037/0022-3514.86.4.517; Gibbons FX, 2003, BLACKW SER HLTH PSYC, P107; GIBBONS FX, 1995, PERS SOC PSYCHOL B, V21, P85, DOI 10.1177/0146167295211009; Gibbs JT, 1998, STUDYING MINORITY ADOLESCENTS, P55; Halder I, 2009, HUM MUTAT, V30, P1299, DOI 10.1002/humu.21045; Harpending H, 2002, P NATL ACAD SCI USA, V99, P10, DOI 10.1073/pnas.012612799; Harrell E., 2007, BLACK VICTIMS VIOLEN; Hayes AF, 2009, BEHAV RES METHODS, V41, P924, DOI 10.3758/BRM.41.3.924; HINDE RA, 1982, ETHOLOGY ITS NATURE; Johnson P, 1936, STAT RES MEMOIRS, V1, P57, DOI [DOI 10.1007/BF02310468, 10.2307/2278685?uid=2&uid=4&sid=21104143453707]; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick D. T., 2005, HDB EVOLUTIONARY PSY, P803; KEPPEL KG, 2002, TRENDS RACIAL ETHNIC; Kurzban R, 2001, P NATL ACAD SCI USA, V98, P15387, DOI 10.1073/pnas.251541498; Landrine H., 1996, J BLACK PSYCHOL, V22, P144, DOI DOI 10.1177/00957984960222002; Luthar SS, 2007, DEV PSYCHOPATHOL, V19, P931, DOI 10.1017/S0954579407000454; Luther S, 2003, RESILIENCE VULNERABI, DOI [10.1017/CBO9780511615788, DOI 10.1017/CBO9780511615788.023]; Martin JK, 2003, J HEALTH SOC BEHAV, V44, P408, DOI 10.2307/1519787; Massar K, 2009, EUR J SOC PSYCHOL, V39, P768, DOI 10.1002/ejsp.579; Masten AS, 1998, AM PSYCHOL, V53, P205, DOI 10.1037//0003-066X.53.2.205; Mattis JS, 2003, PERS INDIV DIFFER, V34, P1025, DOI 10.1016/S0191-8869(02)00087-9; McArdle N., 2007, DISPARITIES NEIGHBOR; Merikangas KR, 2010, J AM ACAD CHILD PSY, V49, P980, DOI 10.1016/j.jaac.2010.05.017; Muthen L. K., 2007, MPLUS USERS GUIDE; Navarrete CD, 2010, J PERS SOC PSYCHOL, V98, P933, DOI 10.1037/a0017931; Pascoe EA, 2009, PSYCHOL BULL, V135, P531, DOI 10.1037/a0016059; Philibert RA, 2008, PSYCHIAT GENET, V18, P275, DOI 10.1097/YPG.0b013e3283060f81; Pomery EA, 2005, J FAM PSYCHOL, V19, P560, DOI 10.1037/0893-3200.19.4.560; Reiner AP, 2005, AM J HUM GENET, V76, P463, DOI 10.1086/428654; Rink E, 2005, AM J HLTH STUDIES, V20, P39; Roberts ME, 2012, DEV PSYCHOL, V48, P89, DOI 10.1037/a0025430; SAMEROFF A, 2003, RESILIENCE VULNERABI, P364; SHAFFER D, 1993, J AM ACAD CHILD PSY, V32, P643, DOI 10.1097/00004583-199305000-00023; Shriver MD, 2003, HUM GENET, V112, P387, DOI 10.1007/s00439-002-0896-y; Simons R. L., AM SOCIOLOG IN PRESS; Simons RL, 2002, DEV PSYCHOPATHOL, V14, P371; Stock M. L., PERSONALITY IN PRESS; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; West HC, 2010, PRISONERS 2009; Williams DR, 2003, AM J PUBLIC HEALTH, V93, P200, DOI 10.2105/AJPH.93.2.200; Wills TA, 2000, HEALTH PSYCHOL, V19, P253, DOI 10.1037//0278-6133.19.3.253; Wittchen U. H., 1991, U MICHIGAN COMPOSITE; Zautra A. J., 2010, HDB ADULT RESILIENCE, P3 88 33 34 0 23 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 722 739 10.1037/a0026599 18 Psychology, Developmental Psychology 932JK WOS:000303287200013 22251000 Green Accepted 2019-02-21 J Bugental, DB Bugental, Daphne Blunt Adaptive Calibration of Children's Physiological Responses to Family Stress: The Utility of Evolutionary Developmental Theory: Comment on Del Giudice et al. (2012) and Sturge-Apple et al. (2012) DEVELOPMENTAL PSYCHOLOGY English Editorial Material life history theory; family; stress; physiological responses CORTISOL; HEALTH Children's physiological reactions to stress are presented from the broader theoretical perspective of adaptive calibration to the environment, as rooted in life history theory. Del Giudice, Hinnant, Ellis, and El-Sheikh (2012) focus on children's physiological responses to a stressful task as a consequence of their history of family stress. Sturge-Apple, Davies, Martin, Cicchetti, and Hentges (2012) focus on the ways that children respond to a novel laboratory manipulation as a combined function of their temperament patterns and the harshness of their parental environment. The theoretical perspective employed provides an overarching framework that not only accounts for the findings presented here but also has heuristic value for future research on responses to early environmental risk. Future work in this area will benefit by inclusion of additional sympathetic nervous system (SNS) markers and neurotransmitters, inclusion of the role of gene expression in adaptive calibration, broader consideration of protective factors in the child's environment, and longitudinal work demonstrating the effects of adaptive calibration on children's future life history strategies and outcomes. Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA Bugental, DB (reprint author), Univ Calif Santa Barbara, Dept Psychol & Brain Sci, Santa Barbara, CA 93106 USA. bugental@psych.ucsb.edu BJORKLUND DF, 2002, HDB PARENTING, V2, P3; Boyd R, 2011, P NATL ACAD SCI USA, V108, P10918, DOI 10.1073/pnas.1100290108; Bugental DB, 2012, DEV PSYCHOL, V48, P1443, DOI 10.1037/a0027303; Bugental DB, 2010, MIND BRAIN EDUC, V4, P159, DOI 10.1111/j.1751-228X.2010.01095.x; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fox NA, 2005, ANNU REV PSYCHOL, V56, P235, DOI 10.1146/annurev.psych.55.090902.141532; Hane AA, 2010, DEV PSYCHOBIOL, V52, P558, DOI 10.1002/dev.20461; Liu D, 2000, NAT NEUROSCI, V3, P799; Sameroff A., 2009, T MODEL DEV CHILDREN, P3, DOI DOI 10.1037/11877-000; Spinrad TL, 2009, HORM BEHAV, V56, P133, DOI 10.1016/j.yhbeh.2009.03.020; Sturge-Apple ML, 2012, DEV PSYCHOL, V48, P791, DOI 10.1037/a0026908; Taylor SE, 2004, J PERS, V72, P1365, DOI 10.1111/j.1467-6494.2004.00300.x; Taylor SE, 2011, DEV PSYCHOPATHOL, V23, P939, DOI 10.1017/S0954579411000411; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU 19 1 1 0 9 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0012-1649 DEV PSYCHOL Dev. Psychol. MAY 2012 48 3 806 809 10.1037/a0027477 4 Psychology, Developmental Psychology 932JK WOS:000303287200019 22545853 2019-02-21 J Ozgul, A; Coulson, T; Reynolds, A; Cameron, TC; Benton, TG Ozgul, Arpat; Coulson, Tim; Reynolds, Alan; Cameron, Tom C.; Benton, Tim G. Population Responses to Perturbations: The Importance of Trait-Based Analysis Illustrated through a Microcosm Experiment AMERICAN NATURALIST English Article integral projection model; matrix population model; Sancassania berlesei; soil mite; trait-based demography; transient perturbation analysis; transient population dynamics INDIVIDUAL SIZE VARIATION; LIFE-HISTORY EVOLUTION; RECENT CLIMATE-CHANGE; ENVIRONMENTAL VARIABILITY; STOCHASTIC ENVIRONMENTS; SENSITIVITY-ANALYSIS; ELASTICITY ANALYSIS; EXPERIMENTAL SYSTEM; TRANSIENT DYNAMICS; MODEL Environmental change continually perturbs populations from a stable state, leading to transient dynamics that can last multiple generations. Several long-term studies have reported changes in trait distributions along with demographic response to environmental change. Here we conducted an experimental study on soil mites and investigated the interaction between demography and an individual trait over a period of nonstationary dynamics. By following individual fates and body sizes at each life-history stage, we investigated how body size and population density influenced demographic rates. By comparing the ability of two alternative approaches, a matrix projection model and an integral projection model, we investigated whether consideration of trait-based demography enhances our ability to predict transient dynamics. By utilizing a prospective perturbation analysis, we addressed which stage-specific demographic or trait-transition rate had the greatest influence on population dynamics. Both body size and population density had important effects on most rates; however, these effects differed substantially among life-history stages. Considering the observed trait-demography relationships resulted in better predictions of a population's response to perturbations, which highlights the role of phenotypic plasticity in transient dynamics. Although the perturbation analyses provided comparable predictions of stage-specific elasticities between the matrix and integral projection models, the order of importance of the life-history stages differed between the two analyses. In conclusion, we demonstrate how a trait-based demographic approach provides further insight into transient population dynamics. [Ozgul, Arpat; Coulson, Tim] Imperial Coll London, Dept Life Sci, Ascot SL5 7PY, Berks, England; [Ozgul, Arpat] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; [Reynolds, Alan; Cameron, Tom C.; Benton, Tim G.] Univ Leeds, Sch Biol, Leeds LS2 9JT, W Yorkshire, England; [Cameron, Tom C.] Umea Univ, SE-90187 Umea, Sweden Ozgul, A (reprint author), Imperial Coll London, Dept Life Sci, Silwood Pk, Ascot SL5 7PY, Berks, England. a.ozgul@imperial.ac.uk Cameron, Tom/H-9555-2012; Ozgul, Arpat/K-2032-2012 Cameron, Tom/0000-0002-5875-1494; Ozgul, Arpat/0000-0001-7477-2642; Benton, Tim/0000-0002-7448-1973; Coulson, Tim/0000-0001-9371-9003 Natural Environmental Research Council; European Research Council; Natural Environment Research Council [NE/E015964/1, NE/I021594/1] This work was funded by grants from the Natural Environmental Research Council (to A.O., T. C., and T. G. B.) and the European Research Council (to T. C.). We would like to thank V. Grimm and the two anonymous reviewers for providing insightful comments that improved the quality of our work. Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Beckerman AP, 2003, AM NAT, V162, P754, DOI 10.1086/381056; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Benton TG, 2005, ADV ECOL RES, V37, P143, DOI 10.1016/S0065-2504(04)37005-4; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Benton TG, 2002, J ANIM ECOL, V71, P320, DOI 10.1046/j.1365-2656.2002.00601.x; Bjornstad ON, 2001, SCIENCE, V293, P638, DOI 10.1126/science.1062226; Burnham KP, 2002, MODEL SELECTION INFE; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, ECOL LETT, V10, P1, DOI 10.1111/j.1461-0248.2006.01001.x; COALE AI, 1972, GROWTH STRUCTURE HUM; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; De Roos AM, 2009, ECOLOGY, V90, P945, DOI 10.1890/07-1153.1; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; Filin I, 2007, AM NAT, V170, P719, DOI 10.1086/522091; Filin Ido, 2008, Journal of Orthoptera Research, V17, P283, DOI 10.1665/1082-6467-17.2.283; Fox GA, 2000, AM NAT, V156, P242, DOI 10.1086/303387; Genner MJ, 2010, GLOBAL CHANGE BIOL, V16, P517, DOI 10.1111/j.1365-2486.2009.02027.x; Gonzalez-Suarez M, 2011, AM NAT, V178, P525, DOI 10.1086/661906; Grant A, 2000, ECOLOGY, V81, P680, DOI 10.2307/177369; Grimm V, 2002, OECOLOGIA, V131, P196, DOI 10.1007/s00442-002-0875-y; Grimm V, 2005, INDIVIDUAL BASED MOD; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hastings A, 2004, TRENDS ECOL EVOL, V19, P39, DOI 10.1016/j.tree.2003.09.007; HASTINGS A, 1994, SCIENCE, V263, P1133, DOI 10.1126/science.263.5150.1133; Hastings A, 2001, ECOL LETT, V4, P215, DOI 10.1046/j.1461-0248.2001.00220.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Koons DN, 2006, J WILDLIFE MANAGE, V70, P19, DOI 10.2193/0022-541X(2006)70[19:PMIFWM]2.0.CO;2; Lindstrom J, 2002, ECOL LETT, V5, P338, DOI 10.1046/j.1461-0248.2002.00317.x; Lundberg P, 2000, TRENDS ECOL EVOL, V15, P460, DOI 10.1016/S0169-5347(00)01981-9; METZ JAJ, 1992, INDIVIDUAL-BASED MODELS AND APPROACHES IN ECOLOGY, P88; Ovadia O, 2002, P NATL ACAD SCI USA, V99, P12927, DOI 10.1073/pnas.192245499; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2; Plaistow SJ, 2009, PHILOS T R SOC B, V364, P1049, DOI 10.1098/rstb.2008.0251; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; Reale D, 2003, P ROY SOC B-BIOL SCI, V270, P591, DOI 10.1098/rspb.2002.2224; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Tuljapurkar S., 1990, POPULATION DYNAMICS; Tuljapurkar S., 1997, STRUCTURED POPULATIO; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Uchmanski J, 2000, OIKOS, V90, P539, DOI 10.1034/j.1600-0706.2000.900312.x; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Wood SN., 2006, GEN ADDITIVE MODELS; Yearsley JM, 2004, ECOL MODEL, V177, P245, DOI 10.1016/j.ecolmodel.2003.12.053 62 16 16 2 75 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAY 2012 179 5 582 594 10.1086/664999 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 926VI WOS:000302859600006 22504541 Green Published 2019-02-21 J Schroder, SL; Knudsen, CM; Pearsons, TN; Kassler, TW; Beall, EP; Young, SF; Fast, DE Schroder, Steve L.; Knudsen, Curtis M.; Pearsons, Todd N.; Kassler, Todd W.; Beall, Edward P.; Young, Sewall F.; Fast, David E. Breeding success of four male life history types of spring Chinook Salmon spawning in an artificial stream ENVIRONMENTAL BIOLOGY OF FISHES English Article Spring Chinook salmon; Jacks; Precocious males; Breeding success; Relative breeding success WILD ATLANTIC-SALMON; PRECOCIOUS MALE MATURATION; EFFECTIVE POPULATION-SIZE; ONCORHYNCHUS-TSHAWYTSCHA; 1ST-GENERATION HATCHERY; SPERM COMPETITION; SOCKEYE-SALMON; YAKIMA RIVER; MALE PARR; FERTILIZATION SUCCESS In 1997 the Cle Elum Supplementation Research Facility was established to enhance spring Chinook salmon returning to the upper Yakima River, Washington State. This effort increased spring Chinook abundance, yet conditions at the hatchery also significantly elevated the occurrence of jacks and yearling precocious males. The potential genetic effect that a large influx of early maturing males might have on the upper Yakima River spring Chinook population was examined in an artificial stream. Seven independent groups of fish were placed into the stream from 2001 through 2005. Males with four different life history strategies, large anadromous, jacks, yearling precocious, and sub-yearling precocious were used. Their breeding success or ability to produce offspring was estimated by performing DNA-based pedigree assessments. Large anadromous males spawned with the most females and produced the greatest number of offspring per mate. Jacks and yearling precocious males spawned with more females than sub-yearling precocious males. However, jacks, yearling and sub-yearling precocious males obtained similar numbers of fry per mate. In the test groups, large anadromous males produced 89%, jacks 3%, yearling precocious 7%, and sub-yearling precocious 1% of the fry. These percentages remained stable even though the proportion of large anadromous males in the test groups ranged from 48% to 88% and tertiary sex ratios varied from 1.4 to 2.4 males per female. Our data suggest that large anadromous males generate most of the fry in natural settings when half or more of the males present on a spawning ground use this life history strategy. [Schroder, Steve L.; Kassler, Todd W.; Young, Sewall F.] Washington Dept Fish & Wildlife, Olympia, WA 98501 USA; [Knudsen, Curtis M.] Oncorh Consulting, Olympia, WA 98501 USA; [Pearsons, Todd N.] Grant Cty Publ Util Dist, Ephrata, WA 98823 USA; [Beall, Edward P.] INRA, F-64310 St Pee Sur Nivelle, France; [Fast, David E.] Yakama Nation, Toppenish, WA 98948 USA Schroder, SL (reprint author), Washington Dept Fish & Wildlife, 600 Capitol Way N, Olympia, WA 98501 USA. schrosls@dfw.wa.gov Bonneville Power Administration (BPA) [1995-063-25] We thank State of the Salmon and the organizers of the "Ecological Interactions between Wild and Hatchery Salmon" symposium for giving us an opportunity to present this information. Our field work would have been impossible without considerable assistance from Yakama Nation staff Charles Strom, Vernon Bogar, DJ Brownlee, Greg Strom, Simon Goudy, Quinn Jones, Annie Jo Parrish, Jason Rau, and Dan Barrett all located at the CESRF. Mark Johnston, Joe Hoptowit, Gerry Lewis, Ray Decoteau, and Antoine Marek collected and transported all the fish used in our experiments from the Roza Adult Monitoring Facility to the CESRF. Other Yakama Nation staff, Bill Bosch, David Lind, and Paul Huffman also supported us in numerous ways. Jen Scott, Mike Hamlin, Anthony Fritts, Gene Sanborn, Jordan Vandal, Kurt Fresh, Eric Volk, Gabriel Temple, Timothy Webster, Charity Davidson, Chris Johnson and Molly Kelly all from the Washington Department of Fish and Wildlife helped make observations, assisted us while we cleaned and repaired the artificial stream, or were involved in the capture and sampling of fry. Personnel in WDFW's Molecular Genetics Laboratory, Jim Shaklee, Alice Frye, Jennifer Von Bargen, Norm Switzler, Cherril Bowman, Mo Small, Janet Loxterman, and Denise Hawkins helped with pedigree analyses. Two anonymous reviewers and Barry Berejikian considerably improved the manuscript by their helpful comments and suggestions. We also extend our appreciation to the Bonneville Power Administration (BPA) for funding this work as part of the Yakima/Klickitat Fisheries Project (project 1995-063-25). David Byrnes and Patty Smith of BPA provided administrative support for the project. ALLAN IRH, 1977, J CONSEIL, V37, P293; Allen CS, 2007, J FISH BIOL, V70, P1302, DOI 10.1111/j.1095-8649.2007.01391.x; Andersson M., 1994, SEXUAL SELECTION; Araki H, 2010, AQUACULTURE, V308, pS2, DOI 10.1016/j.aquaculture.2010.05.036; Araki Hitoshi, 2008, P153; Beall E, 1999, CYBIUM, V23, P9; Beall E, 1997, B FR PECHE PISCIC, P271, DOI 10.1051/kmae:1997028; Beckman BR, 2005, T AM FISH SOC, V134, P1520, DOI 10.1577/T05-036.1; Bell GR, 1964, FISHERIES RES BOARD; Berejikian BA, 2008, CAN J FISH AQUAT SCI, V65, P754, DOI 10.1139/F08-014; Berejikian BA, 2010, CAN J FISH AQUAT SCI, V67, P1933, DOI 10.1139/F10-112; Bjornn T.C., 1991, American Fisheries Society Special Publication, P83; Blanchet S, 2008, BIOL CONSERV, V141, P1989, DOI 10.1016/j.biocon.2008.05.014; Blanchfield PJ, 1999, ANIM BEHAV, V57, P537, DOI 10.1006/anbe.1998.1014; Blanchfield PJ, 2003, MOL ECOL, V12, P2417, DOI 10.1046/j.1365-294X.2003.01917.x; CASWELL H, 1984, AQUACULTURE, V43, P123, DOI 10.1016/0044-8486(84)90016-4; Dittman AH, 2010, T AM FISH SOC, V139, P1014, DOI 10.1577/T09-159.1; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; FLAIN M, 1971, New Zealand Journal of Marine and Freshwater Research, V5, P519; Gage MJG, 1995, PHILOS T ROY SOC B, V350, P391, DOI 10.1098/rstb.1995.0173; Garant D, 2003, ECOL LETT, V6, P541, DOI 10.1046/j.1461-0248.2003.00462.x; GEBHARDS STACY V., 1960, PROGR FISH CULTURIST, V22, P121, DOI 10.1577/1548-8659(1960)22[121:BNOPMC]2.0.CO;2; Grimardias D, 2010, J FISH BIOL, V77, P2460, DOI 10.1111/j.1095-8649.2010.02808.x; Grimardias D, 2010, ECOL FRESHW FISH, V2010, P1; Healey M. C, 1991, PACIFIC SALMON LIFE; Hoysak DJ, 2004, CAN J ZOOL, V82, P1017, DOI 10.1139/Z04-073; HUTCHINGS JA, 1985, CAN J ZOOL, V63, P2219, DOI 10.1139/z85-327; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; Knudsen CM, 2010, YAKIMA KLICKITAT FIS; Knudsen CM, 2006, T AM FISH SOC, V135, P1130, DOI 10.1577/T05-121.1; Koseki Y, 2002, CAN J FISH AQUAT SCI, V59, P1717, DOI 10.1139/F02-143; Larsen DA, 2004, T AM FISH SOC, V133, P98, DOI 10.1577/T03-031; Larsen DA, 2010, T AM FISH SOC, V139, P564, DOI 10.1577/T08-209.1; Lotspeich FB, 1981, 369 US FOR SERV PAC; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Martinez JL, 2001, FRESHWATER BIOL, V46, P835, DOI 10.1046/j.1365-2427.2001.00711.x; Mjolnerod IB, 1998, CAN J ZOOL, V76, P70, DOI 10.1139/cjz-76-1-70; Mobrand LE, 2005, FISHERIES, V30, P11, DOI 10.1577/1548-8446(2005)30[11:HRIWS]2.0.CO;2; MULLAN JW, 1992, PROG FISH CULT, V54, P25, DOI 10.1577/1548-8640(1992)054<0025:CLHAPO>2.3.CO;2; OCONNELL MF, 1993, J FISH BIOL, V42, P551; Pearsons TN, 2009, N AM J FISH MANAGE, V29, P778, DOI 10.1577/M08-069.1; Quinn TP, 1996, ETHOLOGY, V102, P304, DOI 10.1111/j.1439-0310.1996.tb01127.x; Rich W. H., 1920, US BUR FISH B, V37, P1; Roberge C, 2008, MOL ECOL, V17, P314, DOI 10.1111/j.1365-294X.2007.03438.x; RUTTER C, 1902, US FISH COMMISSION B, V22, P65; Sampson M, 2009, DOEBP000378221 BPA; Saura M, 2008, FRESHWATER BIOL, V53, P2375, DOI 10.1111/j.1365-2427.2008.02062.x; Schroder SL, 2008, T AM FISH SOC, V137, P1475, DOI 10.1577/T07-123.1; Schroder SL, 2010, T AM FISH SOC, V139, P989, DOI 10.1577/T08-143.1; Sharma R, 2006, CAN J FISH AQUAT SCI, V63, P423, DOI 10.1139/F05-228; Shearer KD, 2000, AQUACULTURE, V190, P343, DOI 10.1016/S0044-8486(00)00406-3; Small MP, 2009, CAN J FISH AQUAT SCI, V66, P1216, DOI 10.1139/F09-068; Sokal RR, 1995, BIOMETRY; *SYSTAT SOFTW INC, 2007, SYSTAT WIND VERS 12; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Taggart JB, 2001, MOL ECOL, V10, P1047, DOI 10.1046/j.1365-294X.2001.01254.x; Thorpe J. E., 1994, Aquaculture and Fisheries Management, V25, P77, DOI 10.1111/j.1365-2109.1994.tb00668.x; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Unwin MJ, 1997, CAN J FISH AQUAT SCI, V54, P1235, DOI 10.1139/cjfas-54-6-1235; Vladic TV, 2001, P ROY SOC B-BIOL SCI, V268, P2375, DOI 10.1098/rspb.2001.1768; Zimmerman CE, 2003, N AM J FISH MANAGE, V23, P1006, DOI 10.1577/M02-015 63 9 9 1 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes MAY 2012 94 1 SI 231 248 10.1007/s10641-011-9789-z 18 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 925EB WOS:000302742500017 Other Gold 2019-02-21 J Fierer, N; Lauber, CL; Ramirez, KS; Zaneveld, J; Bradford, MA; Knight, R Fierer, Noah; Lauber, Christian L.; Ramirez, Kelly S.; Zaneveld, Jesse; Bradford, Mark A.; Knight, Rob Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients ISME JOURNAL English Article shotgun metagenomics; pyrosequencing; soil bacteria; nitrogen fertilization; soil carbon dynamics BACTERIAL COMMUNITIES; FUNCTIONAL DIVERSITY; PLANT-COMMUNITIES; ENRICHMENT; ECOSYSTEM; FERTILIZATION; LIMITATION; DEPOSITION; DECOMPOSITION; METAANALYSIS Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N. The ISME Journal (2012) 6, 1007-1017; doi:10.1038/ismej.2011.159; published online 1 December 2011 [Fierer, Noah; Lauber, Christian L.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; [Fierer, Noah; Ramirez, Kelly S.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA; [Zaneveld, Jesse] Univ Colorado, Dept Mol Cellular & Dev Biol, Boulder, CO 80309 USA; [Bradford, Mark A.] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT USA; [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA; [Knight, Rob] Howard Hughes Med Inst, Chevy Chase, MD USA Fierer, N (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Campus Box 216 UCB, Boulder, CO 80309 USA. Noah.Fierer@colorado.edu Knight, Rob/D-1299-2010; Bradford, Mark/G-3850-2012 Bradford, Mark/0000-0002-2022-8331; Ramirez, Kelly/0000-0001-9227-5754; Knight, Rob/0000-0002-0975-9019; FIERER, NOAH/0000-0002-6432-4261 Howard Hughes Medical Institute; National Institutes of Health; US Department of Agriculture; National Science Foundation; Andrew W Mellon Foundation; US Department of Energy We thank members of the Fierer lab and three anonymous reviewers for valuable comments on previous drafts of this manuscript and Joe Jones at Engencore for his help with the 454 sequencing. We thank the members of the CC LTER, including David Tilman and Linda Kinkel, and the members of KBS LTER, particularly Jay Lennon and Zach Aanderud, for assisting with sample collection. Funding for this work was provided by the Howard Hughes Medical Institute (RK) the National Institutes of Health (RK), the US Department of Agriculture (NF), the National Science Foundation (NF, RK), the Andrew W Mellon Foundation (NF, MAB) and the US Department of Energy (MAB). Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Bates ST, 2011, ISME J, V5, P908, DOI 10.1038/ismej.2010.171; Bergmann GT, 2011, SOIL BIOL BIOCHEM, V43, P1450, DOI 10.1016/j.soilbio.2011.03.012; Campbell BJ, 2010, ENVIRON MICROBIOL, V12, P1842, DOI 10.1111/j.1462-2920.2010.02189.x; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chaffron S, 2010, GENOME RES, V20, P947, DOI 10.1101/gr.104521.109; CHAPIN FS, 1986, AM NAT, V127, P48, DOI 10.1086/284466; Clark CM, 2007, ECOL LETT, V10, P596, DOI 10.1111/j.1461-0248.2007.01053.x; Clark CM, 2008, NATURE, V451, P712, DOI 10.1038/nature06503; Clarke KR, 2006, PRIMER; Cleland EE, 2010, ANN NY ACAD SCI, V1195, P46, DOI 10.1111/j.1749-6632.2010.05458.x; Craine JM, 2007, ECOLOGY, V88, P2105, DOI 10.1890/06-1847.1; Davis KER, 2011, ENVIRON MICROBIOL, V13, P798, DOI 10.1111/j.1462-2920.2010.02384.x; Degens BD, 1999, AUST J SOIL RES, V37, P593; Degens BP, 2000, SOIL BIOL BIOCHEM, V32, P189, DOI 10.1016/S0038-0717(99)00141-8; Dentener F, 2006, GLOBAL BIOGEOCHEM CY, V20, DOI 10.1029/2005GB002672; Dinsdale EA, 2008, NATURE, V452, P629, DOI 10.1038/nature06810; Egerton-Warburton LM, 2007, ECOL MONOGR, V77, P527, DOI 10.1890/06-1772.1; Eilers KG, 2010, SOIL BIOL BIOCHEM, V42, P896, DOI 10.1016/j.soilbio.2010.02.003; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; FOG K, 1988, BIOL REV, V63, P433, DOI 10.1111/j.1469-185X.1988.tb00725.x; Fontaine S, 2005, ECOL LETT, V8, P1075, DOI 10.1111/j.1461-0248.2005.00813.x; Fontaine S, 2004, ECOL LETT, V7, P314, DOI 10.1111/j.1461-0248.2004.00579.x; Frey SD, 2004, FOREST ECOL MANAG, V196, P159, DOI 10.1016/j.foreco.2004.03.018; Fukami T, 2010, ECOL LETT, V13, P675, DOI 10.1111/j.1461-0248.2010.01465.x; Galloway JN, 2004, BIOGEOCHEMISTRY, V70, P153, DOI 10.1007/s10533-004-0370-0; Janssens IA, 2010, NAT GEOSCI, V3, P315, DOI [10.1038/ngeo844, 10.1038/NGEO844]; Konstantinidis KT, 2005, P NATL ACAD SCI USA, V102, P2567, DOI 10.1073/pnas.0409727102; Lamarque JF, 2005, J GEOPHYS RES-ATMOS, V110, DOI 10.1029/2005JD005825; Lauber CL, 2009, APPL ENVIRON MICROB, V75, P5111, DOI 10.1128/AEM.00335-09; LeBauer DS, 2008, ECOLOGY, V89, P371, DOI 10.1890/06-2057.1; Liu LL, 2010, ECOL LETT, V13, P819, DOI 10.1111/j.1461-0248.2010.01482.x; Liu ZZ, 2007, NUCLEIC ACIDS RES, V35, DOI 10.1093/nar/gkm541; Lozupone C, 2011, ISME J, V5, P169, DOI 10.1038/ismej.2010.133; Lozupone C, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-371; Lu M, 2011, NEW PHYTOL, V189, P1040, DOI 10.1111/j.1469-8137.2010.03563.x; McSwiney CP, 2005, GLOBAL CHANGE BIOL, V11, P1712, DOI 10.1111/j.1365-2486.2005.01040.x; Meyer F, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-386; Miki T, 2010, P NATL ACAD SCI USA, V107, P14251, DOI 10.1073/pnas.0914281107; Mou XZ, 2008, NATURE, V451, P708, DOI 10.1038/nature06513; Muegge BD, 2011, SCIENCE, V332, P970, DOI 10.1126/science.1198719; Philippot L, 2010, NAT REV MICROBIOL, V8, P523, DOI 10.1038/nrmicro2367; Prosser JI, 2010, ENVIRON MICROBIOL, V12, P1806, DOI 10.1111/j.1462-2920.2010.02201.x; Ramirez KS, 2010, ECOLOGY, V91, P3463, DOI 10.1890/10-0426.1; Sinsabaugh RL, 2010, SOIL BIOL BIOCHEM, V42, P391, DOI 10.1016/j.soilbio.2009.10.014; Strickland MS, 2010, SOIL BIOL BIOCHEM, V42, P1385, DOI 10.1016/j.soilbio.2010.05.007; Strickland MS, 2009, ECOLOGY, V90, P441, DOI 10.1890/08-0296.1; Suding KN, 2005, P NATL ACAD SCI USA, V102, P4387, DOI 10.1073/pnas.0408648102; Treseder KK, 2008, ECOL LETT, V11, P1111, DOI 10.1111/j.1461-0248.2008.01230.x; Wessen E, 2010, SOIL BIOL BIOCHEM, V42, P1759, DOI 10.1016/j.soilbio.2010.06.013 51 401 427 29 482 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1751-7362 1751-7370 ISME J ISME J. MAY 2012 6 5 1007 1017 10.1038/ismej.2011.159 11 Ecology; Microbiology Environmental Sciences & Ecology; Microbiology 928AA WOS:000302950700010 22134642 Other Gold, Green Published 2019-02-21 J Highton, R; Hastings, AP; Palmer, C; Watts, R; Hass, CA; Culver, M; Arnold, SJ Highton, Richard; Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Hass, Carla A.; Culver, Melanie; Arnold, Stevan J. Concurrent speciation in the eastern woodland salamanders (Genus Plethodon): DNA sequences of the complete albumin nuclear and partial mitochondrial 12s genes MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Albumin DNA sequences; Plethodon; Speciation; Taxonomy; 12s mtDNA sequences GEOGRAPHIC PROTEIN VARIATION; NORTH-AMERICAN SALAMANDERS; LIFE-HISTORY EVOLUTION; PHYLOGENETIC-RELATIONSHIPS; RAPID DIVERSIFICATION; CINEREUS GROUP; POPULATIONS; DIVERGENCE; RADIATION; DISTANCE Salamanders of the North American plethodontid genus Plethodon are important model organisms in a variety of studies that depend on a phylogenetic framework (e.g., chemical communication, ecological competition, life histories, hybridization, and speciation), and consequently their systematics has been intensively investigated over several decades. Nevertheless, we lack a synthesis of relationships among the species. In the analyses reported here we use new DNA sequence data from the complete nuclear albumin gene (1818 bp) and the 12s mitochondrial gene (355 bp), as well as published data for four other genes (Wiens et al., 2006), up to a total of 6989 bp, to infer relationships. We relate these results to past systematic work based on morphology, allozymes, and DNA sequences. Although basal relationships show a strong consensus across studies, many terminal relationships remain in flux despite substantial sequencing and other molecular and morphological studies. This systematic instability appears to be a consequence of contemporaneous bursts of speciation in the late Miocene and Pliocene, yielding many closely related extant species in each of the four eastern species groups. Therefore we conclude that many relationships are likely to remain poorly resolved in the face of additional sequencing efforts. On the other hand, the current classification of the 45 eastern species into four species groups is supported. The Plethodon cinereus group (10 species) is the sister group to the clade comprising the other three groups, but these latter groups (Plethodon glutinosus [28 species], Plethodon welleri [5 species], and Plethodon wehrlei [2 species]) probably diverged from each other at approximately the same time. (C) 2012 Published by Elsevier Inc. [Highton, Richard] Univ Maryland, Dept Biol, College Pk, MD 20742 USA; [Hastings, Amy Picard; Palmer, Catherine; Watts, Richard; Arnold, Stevan J.] Oregon State Univ, Dept Zool, Corvallis, OR 97333 USA; [Hass, Carla A.] Penn State Univ, Dept Biol, University Pk, PA 16802 USA; [Culver, Melanie] Univ Arizona, Dept Wildlife & Fisheries Sci, Tucson, AZ 85721 USA Highton, R (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. rhighto1@umd.edu NSF [IOS-0818554] We would like to thank Jill Slattery, Jan Martenson, Stephen J. O'Brien and Stan Cevario for expert technical assistance, advice, and resources, and Margaret Hurst, Monica Dorin, and Chun-ju Wang aided in the laboratory work for the 12s work. Allan Larson and Tom A. Titus sent us two of their unpublished sequences. J. Wiens kindly sent us the sequences of the four genes that his group reported. W. Savage sent us the two 12s sequences for Ambystoma maculatum and A. texanum. Colin Rose, Jong Park, and Sam Foo helped with the computer work. Michael Braun, Shawn Kuchta, Allan Larson, Stephen Tilley, and Addison Winn provided especially helpful comments on the manuscript. We also wish to thank all those who helped with the field work and all the federal and state agencies that issued collecting permits, as well as financial support of NSF Grant IOS-0818554 to Lynne D. Houck and SJA for the albumin sequencing. Adler K.K., 1962, OHIO HERP SOC SP PUB, P1; Arbogast BS, 2002, ANNU REV ECOL SYST, V33, P707, DOI 10.1146/annurev.ecolsys.33.010802.150500; Blair A.P., 1965, COPEIA, V1965, P331; BURTON TM, 1975, COPEIA, P541; Carr DE, 1996, HERPETOLOGICA, V52, P56; Chatfield MWH, 2010, MOL ECOL, V19, P4265, DOI 10.1111/j.1365-294X.2010.04796.x; Chippindale PT, 2004, EVOLUTION, V58, P2809; CUPP P V JR, 1983, Transactions of the Kentucky Academy of Science, V44, P157; DUNCAN R, 1979, COPEIA, P95, DOI 10.2307/1443734; DUNN ER, 1926, SALAMANDERS FAMILY P; ECK RV, 1966, ATLAS PROTEIN SEQUEN, P161; Edwards EJ, 2010, SCIENCE, V328, P587, DOI 10.1126/science.1177216; Felsenstein J, 1985, EVOLUTION, V39, P783, DOI DOI 10.2307/2408678; FITCH WM, 1977, AM NAT, V111, P223, DOI 10.1086/283157; GOOD DA, 1992, U CALIFORNIA PUBL ZO, V126, P1; Grobman Arnold B., 1944, ANN NEW YORK ACAD SCI, V45, P261, DOI 10.1111/j.1749-6632.1944.tb47954.x; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; GUTTMAN SI, 1978, J HERPETOL, V12, P445, DOI 10.2307/1563348; Hairston Sr N.G., 1993, BRIMLEYANA, V18, P65; Hass C.A., 1985, THESIS U MARYLAND CO; HASS CA, 1992, J HERPETOL, V26, P137, DOI 10.2307/1564853; HIGHTON R, 1976, EVOLUTION, V30, P33, DOI 10.1111/j.1558-5646.1976.tb00879.x; HIGHTON R, 1995, ANNU REV ECOL SYST, V26, P579, DOI 10.1146/annurev.es.26.110195.003051; HIGHTON R, 1993, MOL PHYLOGENET EVOL, V2, P337, DOI 10.1006/mpev.1993.1033; HIGHTON R, 1991, MOL BIOL EVOL, V8, P796; HIGHTON R, 1967, COPEIA, P617; HIGHTON R, 1983, HERPETOLOGICA, V39, P189; Highton R, 1999, HERPETOLOGICA, V55, P43; HIGHTON R, 1979, SYST ZOOL, V28, P579, DOI 10.2307/2412569; Highton R., 1989, Illinois Biological Monographs, V57, P1; Highton R, 1997, HERPETOLOGICA, V53, P345; Highton R, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P215; Highton R, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P31; Highton R, 1998, HERPETOLOGICA, V54, P254; Highton R., 2004, JEFFERSONIANA, P1; Highton R., 1987, CATALOGUE AM AMPHIBI, P1; HIGHTON R., 1972, DISTRIBUTIONAL HIS 3, V4, P139; HIGHTON R, 1984, BRIMLEYANA, V9, P1; Highton R., 1979, BRIMLEYANA, V1, P31; Highton R, 2005, AMPHIBIAN DECLINES: THE CONSERVATION STATUS OF UNITED STATES SPECIES, P34; Highton Richard, 2009, Virginia Museum of Natural History Special Publication, V16, P59; HIGHTON RICHARD, 1962, BULL FLORIDA STATE MUS, V6, P235; JUKES T H, 1969, P21; KOCHER TD, 1989, P NATL ACAD SCI USA, V86, P6196, DOI 10.1073/pnas.86.16.6196; Kozak KH, 2006, P ROY SOC B-BIOL SCI, V273, P539, DOI 10.1098/rspb.2005.3326; LARSON A, 1978, SYST ZOOL, V27, P431, DOI 10.2307/2412926; LARSON A, 1984, EVOL BIOL, V17, P119; Lazell J, 1998, COPEIA, P967, DOI 10.2307/1447343; Macey J.R., 2005, CLADISTICS, V21, P1994; Mahoney MJ, 2001, MOL PHYLOGENET EVOL, V18, P174, DOI 10.1006/mpev.2000.0880; MAXSON LR, 1979, COPEIA, P502, DOI 10.2307/1443230; MIZUNO S, 1974, CHROMOSOMA, V48, P239, DOI 10.1007/BF00326507; Mueller RL, 2005, MOL BIOL EVOL, V22, P2104, DOI 10.1093/molbev/msi204; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; NEWMAN WALTER B., 1954, HERPETOLOGICA, V10, P9; Palmer CA, 2005, MOL BIOL EVOL, V22, P2243, DOI 10.1093/molbev/msi219; Pope C.H., 1949, NATURAL HIST MISCELL, P1; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; REA DK, 1994, REV GEOPHYS, V32, P159, DOI 10.1029/93RG03257; RZHETSKY A, 1992, MOL BIOL EVOL, V9, P945; SAITOU N, 1987, MOL BIOL EVOL, V4, P406; Saitour N., 1989, MOL CLONING LAB MANU; Shepard DB, 2011, HERPETOLOGICA, V67, P355, DOI 10.1655/HERPETOLOGICA-D-11-00023.1; Shepard DB, 2011, MOL PHYLOGENET EVOL, V59, P399, DOI 10.1016/j.ympev.2011.03.007; Shepard DB, 2009, MOL ECOL, V18, P2243, DOI 10.1111/j.1365-294X.2009.04164.x; Shepard DB, 2008, MOL ECOL, V17, P5315, DOI 10.1111/j.1365-294X.2008.03998.x; Simmons K.P., 2004, MOL BIOL EVOL, V21, P188; Sites JW, 2004, J HERPETOL, V38, P96, DOI 10.1670/4-03A; SOKAL ROBERT R., 1958, UNIV KANSAS SCI BULL, V38, P1409; Stanley S. M, 1989, EARTH LIFE TIME; Suzuki Y, 2002, P NATL ACAD SCI USA, V99, P16138, DOI 10.1073/pnas.212646199; TAJIMA F, 1984, MOL BIOL EVOL, V1, P269; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Van Valkenburgh Blaire, 1993, P330; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Weisrock DW, 2006, BIOL J LINN SOC, V89, P25, DOI 10.1111/j.1095-8312.2006.00655.x; Weisrock DW, 2005, MOL ECOL, V14, P1457, DOI 10.1111/j.1365-294X.2005.02524.x; Wiens JJ, 2006, EVOLUTION, V60, P2585 81 14 14 0 29 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. MAY 2012 63 2 278 290 10.1016/j.ympev.2011.12.018 13 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 917TR WOS:000302202000006 22230029 2019-02-21 J de Gouvenain, RC; Delgadillo, J de Gouvenain, Roland C.; Delgadillo, Jose Geographical variation in population demography and life history traits of Tecate cypress (Hesperocyparis forbesii) suggests a fire regime gradient across the USA-Mexico border PLANT ECOLOGY English Article California; Callitropsis forbesii; Closed-cone cypress; Cupressus forbesii; Life history evolution; Serotiny SOUTHERN CALIFORNIA SHRUBLANDS; NORTHERN BAJA-CALIFORNIA; PINUS-BANKSIANA; CONE SEROTINY; FOREST-FIRE; JACK PINE; ECOSYSTEMS; VEGETATION; INTERVAL; MODEL Plant adaptations to fire often display spatial heterogeneity associated with geographical variation in fire regime. We examined whether populations of the Tecate cypress (Hesperocyparis forbesii Adams) in southern California and northern Baja, Mexico, exhibited spatial heterogeneity in cone serotiny, in other life history traits associated with fire-adaptation, and in population demographic structure, to assess a putative difference in fire regime across the USA-Mexico border. Demographic data, tree life history data, and tree ring series were used to compare the demographic structure and life history traits of three populations in southern California with three populations in northern Baja California. In Baja populations, a greater number of tree size classes were present (chi (2) = 12,589; P < 0.05), cone serotiny was more facultative (Mann-Whitney U = 58, P < 0.05), and young adult trees had a higher reproductive output (Mann-Whitney U = 2.65, P < 0.05), suggesting that a difference in fire regime between southern California and northern Baja has existed long enough (ca 8000 years) to drive microevolutionary divergence between the two sets of populations, and is not solely the result of 20th century differences in fire management policies across the international border. The transitional area between the two different fire regimes does not appear to coincide with the border itself but may lie in a zone of ecological transition south of Ensenada. The range of phenotypic variation observed within the Tecate cypress metapopulation suggests this species has the capacity to adapt to future environmental changes. [de Gouvenain, Roland C.] Rhode Isl Coll, Providence, RI 02908 USA; [Delgadillo, Jose] Univ Autonoma Baja California, Fac Ciencias, Ensenada, BC, Mexico de Gouvenain, RC (reprint author), Rhode Isl Coll, 600 Mt Pleasant Ave, Providence, RI 02908 USA. rdegouvenain@ric.edu Chapman University, Rhode Island College; National Science Foundation-Rhode Island; Universidad Autonoma de Baja California, Ensenada, Mexico We thank Jim Bartel, Ibes Fabian Davila Flores, Jocelyne and Trevonte de Gouvenain, and Edelyn Ramirez Espinoza for their help in the field, and Kristin Chauvin and Katherine D'Ovidio for their help in preparing and analyzing field samples and tree cores. We thank the Bureau of Land Management and the Forest Service for allowing us to conduct research on federal lands and Saul Martin del Campo for allowing us to conduct research on his property. We are especially grateful to Joyce Schlachter for her logistical assistance. This manuscript benefited from discussions with Jim Bartel, Jon Keeley, Richard Minnich, and Sula Vanderplank, and from comments from three anonymous reviewers. This research was supported by grants from Chapman University, Rhode Island College, the National Science Foundation-Rhode Island Experimental Program to Stimulate Competitive Research (EPSCoR), and in-kind support from the Universidad Autonoma de Baja California, Ensenada, Mexico. Barbour MG, 2007, TERRESTRIAL VEGETATION OF CALIFORNIA, 3RD EDITION, P296; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Borchert M. I., 1995, BRUSHFIRES CALIFORNI; CHOU YH, 1993, FOREST SCI, V39, P835; COWLING RM, 1985, AUST J ECOL, V10, P345, DOI 10.1111/j.1442-9993.1985.tb00895.x; De Gouvenain RC, 2006, SOUTHWEST NAT, V51, P447, DOI 10.1894/0038-4909(2006)51[447:ABFRIA]2.0.CO;2; Dunn A.T, 1986, CONSERVATION MANAGEM, P367; Enright NJ, 1998, J ECOL, V86, P946, DOI 10.1046/j.1365-2745.1998.00312.x; Falk DA, 2011, FRONT ECOL ENVIRON, V9, P446, DOI 10.1890/100052; Fites-Kaufman J, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P94; FrancoVizcaino E, 1997, ACTA OECOL, V18, P503, DOI 10.1016/S1146-609X(97)80037-9; Fule PZ, 1999, CONSERV BIOL, V13, P640, DOI 10.1046/j.1523-1739.1999.97512.x; Gauthier S, 1996, J ECOL, V84, P539, DOI 10.2307/2261476; GAUTHIER S, 1993, CAN J FOREST RES, V23, P394, DOI 10.1139/x93-057; GAUTHIER S, 1993, J VEG SCI, V4, P783, DOI 10.2307/3235615; Gavin DG, 2007, FRONT ECOL ENVIRON, V5, P499, DOI 10.1890/060161; Gill AM, 1977, S ENV CONS FIR FUEL, P17; GIVNISH TJ, 1981, EVOLUTION, V35, P101, DOI 10.1111/j.1558-5646.1981.tb04862.x; Hanes TL, 1988, TERRESTRIAL VEGETATI, P417; Hogan D, 2004, EMERGENCY PETITION L; Keeley I. E., 1995, MEDITERRANEAN TYPE E, P121; KEELEY JE, 1992, ECOLOGY, V73, P1194, DOI 10.2307/1940669; Keeley JE, 2001, CONSERV BIOL, V15, P1561, DOI 10.1046/j.1523-1739.2001.t01-1-00186.x; Keeley JE, 2001, CONSERV BIOL, V15, P1536, DOI 10.1046/j.1523-1739.2001.00097.x; Keeley JE, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P350; Keeley JE, 2009, ECOL APPL, V19, P69, DOI 10.1890/08-0281.1; Lamont Byron B., 2000, Plant Species Biology, V15, P157, DOI 10.1046/j.1442-1984.2000.00036.x; Little Jr EL, 1975, RARE LOCAL CONIFERS; Minnich RA, 1997, INT J WILDLAND FIRE, V7, P221, DOI 10.1071/WF9970221; MINNICH RA, 1983, SCIENCE, V219, P1287, DOI 10.1126/science.219.4590.1287; Minnich RA, 2001, CONSERV BIOL, V15, P1549, DOI 10.1046/j.1523-1739.2001.01067.x; Minnich RA, 2005, BIODIVERSITY ECOSYST, P370; Minnich RA, 2002, BOTH SIDES BORDER TR, P387; Minnich RA, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P13; Minnich Richard A., 2001, Madrono, V48, P177; Montenegro G, 2004, REV CHIL HIST NAT, V77, P455, DOI 10.4067/S0716-078X2004000300005; MUIR PS, 1985, ECOLOGY, V66, P1658, DOI 10.2307/1938028; Munz PA, 1973, CALIFORNIA FLORA SUP; Ne'eman G, 2004, PLANT ECOL, V171, P69, DOI 10.1023/B:VEGE.0000029380.04821.99; ORNDUFF ROBERT, 2003, INTRO CALIFORNIA PLA; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; PEINADO M, 1995, VEGETATIO, V117, P165, DOI 10.1007/BF00045507; Peinado M, 2008, PLANT ECOL, V196, P27, DOI 10.1007/s11258-007-9334-5; Radeloff VC, 2004, FOREST ECOL MANAG, V189, P133, DOI 10.1016/j.foreco.2003.07.040; Reznick David, 2001, P44; Rodriguez-Buritica S, 2010, SANTA ANA MOUNTAINS; Escobar PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016133; Schoennagel T, 2003, ECOLOGY, V84, P2967, DOI 10.1890/02-0277; Schwilk DW, 2001, OIKOS, V94, P326, DOI 10.1034/j.1600-0706.2001.940213.x; Stokes M. A., 1996, INTRO TREE RING DATI; Sugihara NG, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P58; Tapias R, 2004, PLANT ECOL, V171, P53, DOI 10.1023/B:VEGE.0000029383.72609.f0; Truesdale HD, 1998, SOUTHWEST NAT, V43, P363; Tyler CM, 1995, J ECOL, V83, P1009, DOI 10.2307/2261182; Vogl R.J., 1988, TERRESTRIAL VEGETATI, P295; Wright HA, 1982, FIRE ECOLOGY US SO C; Zedler P.H, 1977, S ENV CONSEQUENCES F, P451; ZEDLER PH, 1995, TRENDS ECOL EVOL, V10, P393, DOI 10.1016/S0169-5347(00)89153-3; ZEDLER PH, 1983, ECOLOGY, V64, P809, DOI 10.2307/1937204 59 3 4 0 34 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1385-0237 PLANT ECOL Plant Ecol. MAY 2012 213 5 723 733 10.1007/s11258-012-0035-3 11 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry 926DW WOS:000302812500002 2019-02-21 J Pavan, SE; Rossi, RV; Schneider, H Pavan, Silvia Eliza; Rossi, Rogerio Vieira; Schneider, Horacio Species diversity in the Monodelphis brevicaudata complex (Didelphimorphia: Didelphidae) inferred from molecular and morphological data, with the description of a new species ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Amazon; Monodelphis arlindoi sp; nov; Monodelphis touan; phylogeny; short-tailed opossum; systematics LIFE-HISTORY EVOLUTION; SHORT-TAILED OPOSSUM; PLETHODONTID SALAMANDERS; PHYLOGEOGRAPHY; MARSUPIALIA; POPULATIONS; DOMESTICA; SEQUENCES; VENEZUELA; COLOMBIA The Monodelphis brevicaudata complex comprises the short-tailed opossum M. brevicaudata and allied forms that inhabit northern and middle South America. We studied the systematics of this complex through a combination of molecular (cytochrome b and 16S rDNA) and morphological (external and craniodental) characters. Our evidence shows that M. brevicaudata as currently recognized comprises three different species: M. brevicaudata; Monodelphis touan, resurrected from the synonymy of M. brevicaudata; and a new species described here. Other species formally recognized in the M. brevicaudata complex include Monodelphis palliolata, Monodelphis glirina, Monodelphis maraxina, Monodelphis domestica, and two additional forms for which formal descriptions are still missing. [Pavan, Silvia Eliza; Rossi, Rogerio Vieira] Museu Paraense Emilio Goeldi, Programa Posgrad Zool, BR-66077530 Belem, Para, Brazil; [Schneider, Horacio] Fed Univ Para, Nucleo Estudos Costeiros, BR-68600000 Braganca, Para, Brazil Pavan, SE (reprint author), CUNY, Grad Sch, New York, NY 10016 USA. sepavan@yahoo.com Rossi, Rogerio/I-2176-2015; Schneider, Horacio/J-7131-2012 Schneider, Horacio/0000-0002-5987-6395 Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Smithsonian Institution; USNM The following curators and collection support staff loaned or permitted analysis of specimens under their care: S. Marques-Aguiar, C. Moraes, J. A. L. Queiroz (MPEG); J. A. de Oliveira, S. M. S. Franco (MN); M. de Vivo, J. G. de Barros (MZUSP); C. R. Silva, E. M. Cardoso (IEPA); M. Santos, M. Lima (UFPI); L. P. Costa, Y. L. R. Leite (UFES); R. W. Thorington Jr., A. L. Gardner, C. Ludwig, L. Gordon (USNM); R. Voss, T. Pacheco, E. Westwig, E. Pannen (AMNH); B. D. Patterson (FMNH); F. Catzeflis (Universidade Montpellier). P. Jenkins, L. Tomsett (BMNH), B. Lim (ROM), B. D. Patterson (FMNH), O. Linares (Universidad Simon Bolivar), C. Bantel, M. N. F. da Silva, and I. T. de Macedo (INPA) kindly sent photos of types, vouchers of molecular samples, and additional specimens. A. Lima, A. P. Carmignotto, A. C. M. Oliveira, A. Junior, B. M. A. Costa, C. Bantel, C. Miranda, D. M. Rossoni, E. G. da Silva, E. Portes, F. Catzeflis, G. S. Lustosa, J. L. Patton, L. G. Vieira, J. Gomes, L. Harada, M. A. Ribeiro-Junior, M. T. Rodrigues, R. C. Amaro, S. Moratto, and S. L. Freitas kindly allowed us to examine several recently collected and uncatalogued specimens, provided tissue samples, or helped with material loan. A. Aleixo, I. Sampaio, J. C. Silva Junior, M. S. Hoogmoed, P. L. Peloso, R. S. Voss, S. Solari, and Y. L. R. Leite provided suggestions on early versions and two anonymous reviewers made valuable suggestions concerning the manuscript. Wilsea Figueiredo provided primers for cytb sequences. A. O. Maciel helped with morphometric analysis. M. Oprea and P. L. Peloso helped with the production of some figures. R. Rodrigues assisted during molecular procedures, and A. C. Pavan and T. Burlamaqui assisted during phylogenetic analysis. M. Oprea, D. Brito, A. C. Pavan, D. Pavan, I. Sampaio, and S. M. Vaz kindly provided lodgings for the senior author during museum visits. S. E. P. received fellowships from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, and a grant from the Smithsonian Institution (Short Term Visit Award), which allowed visits to the USNM and AMNH collections. Richard Thorington (USNM) acted as the sponsor of S. E. P. and provided great support during the visit to USNM. Allen JA, 1904, B AM MUS NAT HIST, V20, P327; Angulo A, 2008, ZOOL J LINN SOC-LOND, V152, P59, DOI 10.1111/j.1096-3642.2007.00338.x; Astua D, 2010, J MAMMAL, V91, P1011, DOI 10.1644/09-MAMM-A-018.1; Avila-Pires T.C.S., 1995, Zoologische Verhandelingen (Leiden), V299, P1; Bechstein J. M., 1799, T PENNANTS ALLGEMEIN; Bradley RD, 2001, J MAMMAL, V82, P960, DOI 10.1644/1545-1542(2001)082<0960:ATOTGS>2.0.CO;2; Buffon GL, 1789, HIST NATURELLE GEN P; Cabrera A., 1919, GENERA MAMMALIUM MON; Cabrera A, 1958, ZOOLOGIA, V4, P1; Caramaschi FP, 2011, BIOL J LINN SOC, V104, P251, DOI 10.1111/j.1095-8312.2011.01724.x; Carvalho BD, 2011, J MAMMAL, V92, P121, DOI 10.1644/10-MAMM-A-075.1; Carvalho CT, 1960, ARQUIVOS ZOOLOGIA ES, V11, P121; Chippindale PT, 2004, EVOLUTION, V58, P2809; Costa Leonora Pires, 2006, P321; Cracraft J., 1983, Current Ornithology, V1, P159; DOSREIS SF, 1990, REV BRAS GENET, V13, P509; EMMONS L. H., 1997, NEOTROPICAL RAINFORE; Emmons L. H., 1990, NEOTROPICAL RAINFORE; Erxleben ICP, 1777, SYSTEMA REGNI ANIMAL; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; FERNANDES MEB, 1995, MAMMALIA, V59, P213, DOI 10.1515/mamm.1995.59.2.213; Gardner A. L, 2008, MAMMALS S AM, V1; GARDNER A. L., 2005, MAMMAL SPECIES WORLD, V1, P3; Gardner Alfred L., 1993, P15; Geoffroy E, 1803, CATALOGUE MAMMIFERES; Gray J. E., 1827, ANIMAL KINGDOM ARRAN, P1; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Lacepede BGE, 1802, HIST NATURELLE BUFFO; Lim BK, 2010, MAMM BIOL, V75, P287, DOI 10.1016/j.mambio.2009.03.009; LINARES O, 1998, MAMIFEROS VENEZUELA; Maldonado JE, 2004, J MAMMAL, V85, P886, DOI 10.1644/1545-1542(2004)085<0886:DPOMVI>2.0.CO;2; Matschie P, 1916, BEMERKUNGEN GATTUNG; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Mulcahy DG, 2008, MOL PHYLOGENET EVOL, V46, P1095, DOI 10.1016/j.ympev.2007.12.012; NASCIMENTO F P, 1991, Boletim do Museu Paraense Emilio Goeldi Serie Zoologia, V7, P25; Osgood W. H., 1914, FIELD MUSEUM NATURAL, V10, P135; Palumbi S, 1991, SIMPLE FOOLS GUIDE P; Patton James L., 2003, P63; Perez-Hernandez R., 1989, P363; Perez-Hernandez R, 1988, MEMORIA SOCIEDAD CIE, V123, P47; PEREZHERNANDEZ R, 1994, MARSUPIALES VENEZUEL; PINE R H, 1985, Annals of Carnegie Museum, V54, P195; PINE RH, 1980, MAMMALIA, V43, P495; Pine RH, 2008, MAMMALS S AM, P82; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Rodriguez RM, 2004, J MAMMAL, V85, P842, DOI 10.1644/1545-1542(2004)085<0842:MDDDNR>2.0.CO;2; Ron SR, 2000, BIOL J LINN SOC, V71, P379, DOI 10.1006/bijl.2000.0446; Ronquist F, 2005, MRBAYES 3 1 BAYESIAN; Sambrook J., 1989, MOL CLONING LAB MANU; Schreber JCD, 1777, SAUGTHIERE ABBILDUNG; Seba A, 1734, LOCUPLETISSIMI RERUM; Shaw George, 1800, GEN ZOOLOGY SYSTEMAT; Solari S, 2007, J MAMMAL, V88, P319, DOI 10.1644/06-MAMM-A-075R1.1; Solari Sergio, 2010, Mastozool. neotrop., V17, P317; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Steiner C, 2004, J BIOGEOGR, V31, P959, DOI 10.1111/j.1365-2699.2004.01102.x; Stephen GT, 2008, ZOOLOGICAL J LINNEA, V152, P115; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Talbot SL, 1996, MOL PHYLOGENET EVOL, V5, P477, DOI 10.1006/mpev.1996.0044; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Thomas O., 1899, Annals of Natural History, V(7), P152; Thomas O., 1888, CATALOGUE MARSUPIALI; Thomas O., 1923, ANN MAGAZINE NATURAL, V9, P157; Torres-Perez F, 2009, BIOL J LINN SOC, V96, P635, DOI 10.1111/j.1095-8312.2008.01140.x; TRIBE CJ, 1990, J MAMMAL, V71, P566, DOI 10.2307/1381795; TYNDALEBISCOE CH, 1976, J MAMMAL, V57, P249, DOI 10.2307/1379686; Van Nievelt AFH, 2005, J MAMMAL, V86, P333, DOI 10.1644/BWG-224.1; VANZOLINI P. E., 1993, PAP AVULSOS ZOOL, V38, P17; Ventura J, 1998, J MAMMAL, V79, P104, DOI 10.2307/1382845; Ventura J, 2005, TROP ZOOL, V18, P227, DOI 10.1080/03946975.2005.10531222; VONPELZELN A, 1883, VERHANDLUNGEN ZOOLOG, V33, P1; Voss Robert S., 2001, Bulletin of the American Museum of Natural History, V263, P1; Voss RS, 2003, B AM MUS NAT HIST, P1; Wagner A., 1842, ARCH NATURGESCH, V8, P356; Waterhouse GR, 1841, MARSUPIALIA POUCHED; Wible JR, 2003, ANN CARNEGIE MUS, V72, P137; Wiens JJ, 2007, SYSTEMATIC BIOL, V56, P875, DOI 10.1080/10635150701748506; Xia X, 2001, J HERED, V92, P371, DOI 10.1093/jhered/92.4.371; Zimmermann E. A. W., 1780, GEOGRAPHISCHE GESCH 79 16 18 2 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4082 1096-3642 ZOOL J LINN SOC-LOND Zool. J. Linn. Soc. MAY 2012 165 1 190 223 10.1111/j.1096-3642.2011.00791.x 34 Zoology Zoology 928NX WOS:000302990900009 Bronze 2019-02-21 J Hunt, GR; Holzhaider, JC; Gray, RD Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D. Prolonged Parental Feeding in Tool-Using New Caledonian Crows ETHOLOGY English Article WHITE-WINGED CHOUGHS; CORVUS-MONEDULOIDES; LIFE-HISTORY; HOOK-TOOLS; MANUFACTURE; BIRDS; EVOLUTION; CARE; WILD; DISPERSAL According to life-history theory, the duration of extended parental feeding is determined by the costs and benefits of maximising reproductive success. Therefore, the length of regular parental provisioning should be correlated with the time required for juveniles to acquire the skills that they need to be independent. The relatively few cases of extremely prolonged parental feeding in both land and sea birds appear to be consistent with this prediction because they are associated with learning-intensive foraging techniques. New Caledonian crows have the most intricate tool manufacture techniques amongst non-human animals and juveniles take over 1 yr to reach adult-like proficiency in their tool skills. We investigated the prediction that this species also should have prolonged parental provisioning. We found that these crows have one of the longest known periods of regular extended parental provisioning in birds. Some parents regularly fed juveniles for up to 10 mo post-fledging. Humans also stand out amongst primates because of their learning-intensive foraging strategies and an extended period of juvenile dependence. The independently evolved association between a relatively high level of technological skill in foraging and prolonged juvenile provisioning in both humans and New Caledonian crows raises the possibility that these two characteristics might be causally related. [Hunt, Gavin R.; Holzhaider, Jennifer C.; Gray, Russell D.] Univ Auckland, Dept Psychol, Auckland, New Zealand Hunt, GR (reprint author), Univ Auckland, Dept Psychol, Private Bag 92019, Auckland, New Zealand. g.hunt@auckland.ac.nz Gray, Russell/H-2078-2015 Gray, Russell/0000-0002-9858-0191 New Zealand Marsden Fund We thank the Province des Iles Loyaute for permission to work on Mare and W. Wardrobert and his family for access to their land. Mick Sibley and Maren Wagener assisted us with field observations. We also thank the Editor and the two reviewers for their comments that much improved the manuscript. This work was supported by a grant from the New Zealand Marsden Fund (R.D.G. and G.R H.). ASHMOLE NP, 1968, AUK, V85, P90, DOI 10.2307/4083627; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Burger J., 1980, P367; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cnotka J, 2008, NEUROSCI LETT, V433, P241, DOI 10.1016/j.neulet.2008.01.026; dos Anjos L., 2009, P494; Ekman J, 2002, P ROY SOC B-BIOL SCI, V269, P1709, DOI 10.1098/rspb.2002.2082; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HEINSOHN RG, 1988, ETHOLOGY, V77, P177; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Holzhaider JC, 2011, ANIM BEHAV, V81, P83, DOI 10.1016/j.anbehav.2010.09.015; Holzhaider JC, 2010, BEHAVIOUR, V147, P553, DOI 10.1163/000579510X12629536366284; Hunt GR, 2007, NEW ZEAL J ZOOL, V34, P1; Hunt GR, 2007, BIOL LETTERS, V3, P173, DOI 10.1098/rsbl.2006.0603; Hunt GR, 2004, P ROY SOC B-BIOL SCI, V271, pS88, DOI 10.1098/rsbl.2003.0085; Hunt GR, 2004, ANIM COGN, V7, P114, DOI 10.1007/s10071-003-0200-0; Hunt GR, 1996, NATURE, V379, P249, DOI 10.1038/379249a0; Hunt GR, 2002, EMU, V102, P349, DOI 10.1071/MU01056; Hunt GR, 2003, P ROY SOC B-BIOL SCI, V270, P867, DOI 10.1098/rspb.2002.2302; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kenward B, 2005, NATURE, V433, P121, DOI 10.1038/433121a; Langen TA, 2000, BEHAV ECOL, V11, P367, DOI 10.1093/beheco/11.4.367; Mehlhorn J, 2010, BRAIN BEHAV EVOLUT, V75, P63, DOI 10.1159/000295151; Morton J. M., 1999, REPROD JUVENILE DISP; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Rutz C, 2010, SCIENCE, V329, P1523, DOI 10.1126/science.1192053; Shultz S, 2010, BIOL J LINN SOC, V100, P111, DOI 10.1111/j.1095-8312.2010.01427.x; Shumaker R. W., 2011, ANIMAL TOOL BEHAV US 30 9 9 1 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2012 118 5 423 430 10.1111/j.1439-0310.2012.02027.x 8 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 924OA WOS:000302700000001 2019-02-21 J Jonker, RM; Kurvers, RHJM; van de Bilt, A; Faber, M; Van Wieren, SE; Prins, HHT; Ydenberg, RC Jonker, Rudy M.; Kurvers, R. H. J. M.; van de Bilt, A.; Faber, M.; Van Wieren, S. E.; Prins, H. H. T.; Ydenberg, R. C. Rapid adaptive adjustment of parental care coincident with altered migratory behaviour EVOLUTIONARY ECOLOGY English Article Barnacle geese; Parent-offspring conflict; Migration; Life-history evolution; Branta leucopsis; Colonization LIFE-HISTORY EVOLUTION; BARNACLE GEESE; POPULATION; BIRD; PREDATION; SELECTION; MEERKATS The optimal duration of parental care is shaped by the trade-off between investment in current and expected future reproductive success. A change in migratory behaviour is expected to affect the optimal duration of parental care, because migration and non-migration differ in expectations of future reproductive success as a result of differential adult and/or offspring mortality. Here we studied how a recent emergence of non-migratory behaviour has affected the duration of parental care in the previously (until the 1980s) strictly migratory Russian breeding population of the barnacle geese Branta leucopsis. As a measure of parental care, we compared the vigilance behaviour of parents and non-parents in both migratory and non-migratory barnacle geese throughout the season. We estimated the duration of parental care at 233 days for migratory and 183 days for non-migratory barnacle geese. This constitutes a shortening of the duration of parental care of 21% in 25 years. Barnacle geese are thus able to rapidly adapt their parental care behaviour to ecological conditions associated with altered migratory behaviour. Our study demonstrates that a termination of migratory behaviour resulted in a drastic reduction in parental care and highlights the importance of studying the ecological and behavioural consequences of changes in migratory behaviour and the consequences of these changes for life-history evolution. [Jonker, Rudy M.; Kurvers, R. H. J. M.; van de Bilt, A.; Faber, M.; Van Wieren, S. E.; Prins, H. H. T.; Ydenberg, R. C.] Wageningen Univ, Resource Ecol Grp, NL-6708 PB Wageningen, Netherlands; [Ydenberg, R. C.] Simon Fraser Univ, Ctr Wildlife Ecol, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Jonker, RM (reprint author), Wageningen Univ, Resource Ecol Grp, Droevendaalsesteeg 3A, NL-6708 PB Wageningen, Netherlands. mrjonker@gmail.com Jonker, Rudy/I-3979-2012 Dutch Fauna-fund; Royal Netherlands Hunters Association (KNJV); Royal Netherlands Academy of Arts and Sciences (KNAW) We thank Lysanne Snijders and Marije Kuiper for collecting part of the data. We thank the Tamme family for providing a field station in Estonia and Veljo Volke for arranging permits for fieldwork and other logistic assistance in Estonia. We thank two John Endler, Marcel Klaassen and two anonymous reviewers for their comments on the manuscript. Funding was provided by the Dutch Fauna-fund; the Royal Netherlands Hunters Association (KNJV); and the Schure-Beijerinck-Popping Fund of the Royal Netherlands Academy of Arts and Sciences (KNAW). BLACK JM, 1989, ANIM BEHAV, V37, P187, DOI 10.1016/0003-3472(89)90109-7; Boos M, 2007, BEHAV PROCESS, V76, P206, DOI 10.1016/j.beproc.2007.05.003; Clayton N, 2005, CURR BIOL, V15, pR80, DOI 10.1016/j.cub.2005.01.020; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Desrochers A, 2010, ECOLOGY, V91, P1577, DOI 10.1890/09-2202.1; Ganter B., 1999, GOOSE POPULATIONS W, P270; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; Graw B, 2007, ANIM BEHAV, V74, P507, DOI 10.1016/j.anbehav.2006.11.021; HALDANE JBS, 1949, EVOLUTION, V3, P51, DOI 10.2307/2405451; Jiang RS, 2009, S AFR J ANIM SCI, V39, P83; Jonker RM, 2011, BEHAV ECOL, V22, P326, DOI 10.1093/beheco/arq208; Jonker RM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011369; Kear J, 1970, SOCIAL BEHAV BIRDS M; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Klug H, 2010, EVOLUTION, V64, P823, DOI 10.1111/j.1558-5646.2009.00854.x; LARSSON K, 1988, ORNIS SCAND, V19, P182, DOI 10.2307/3676556; Loonen MJJE, 1999, J ANIM ECOL, V68, P753, DOI 10.1046/j.1365-2656.1999.00325.x; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; Meininger Peter L., 1994, Limosa, V67, P1; Ouweneel Gerard L., 2001, Limosa, V74, P137; OWEN M, 1980, WILD GEESE WORLD THE; Prins H.H.T., 1996, ECOLOGY BEHAV AFRICA; Pulido F, 2010, P NATL ACAD SCI USA, V107, P7341, DOI 10.1073/pnas.0910361107; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SCOTT DK, 1980, ANIM BEHAV, V28, P938, DOI 10.1016/S0003-3472(80)80156-4; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Svensson L., 1999, COLLINS BIRD GUIDE; Thornton A, 2006, SCIENCE, V313, P227, DOI 10.1126/science.1128727; Trivers RL, 1972, SEXUAL SELECTION DES; Van Der Jeugd HP, 2009, GLOBAL CHANGE BIOL, V15, P1057, DOI 10.1111/j.1365-2486.2008.01804.x; van der Jeugd HP, 2003, POLAR BIOL, V26, P700, DOI 10.1007/s00300-003-0535-7; van der Jeugd HP, 2002, BEHAV ECOL, V13, P786, DOI 10.1093/beheco/13.6.786; Visser ME, 2009, GLOBAL CHANGE BIOL, V15, P1859, DOI 10.1111/j.1365-2486.2009.01865.x; Wilcove DS, 2008, PLOS BIOL, V6, P1361, DOI 10.1371/journal.pbio.0060188 37 3 3 1 32 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2012 26 3 657 667 10.1007/s10682-011-9514-6 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200015 2019-02-21 J Decker, KL; Conway, CJ; Fontaine, JJ Decker, Karie L.; Conway, Courtney J.; Fontaine, Joseph J. Nest predation, food, and female age explain seasonal declines in clutch size EVOLUTIONARY ECOLOGY English Article Clutch size; Seasonality; Food abundance; Nest predation; Female age LIFE-HISTORY EVOLUTION; TIT PARUS-PALUSTRIS; LESSER SNOW GEESE; REPRODUCTIVE SUCCESS; NATURAL-SELECTION; GREAT TITS; FALCO-TINNUNCULUS; PIED FLYCATCHER; SONG SPARROWS; BREEDING TIME The selection pressures responsible for intra- and interspecific variation in avian clutch size have been debated for over half a century. Seasonal declines in clutch size represent one of the most robust patterns in avian systems, yet despite extensive research on the subject, the mechanisms underlying this pattern remain largely unknown. We tested a combination of experimental and observational predictions to evaluate ten hypotheses, representing both evolutionary and proximate mechanisms proposed to explain seasonal declines in avian clutch size. In line with long held life-history theory, we found strong support for both an evolved and proximate response to food availability for young. We also found evidence consistent with predictions that proximate level experiential nest predation influences seasonal declines in clutch size. Finally, older females appear to invest more in reproduction (initiate nests earlier and lay larger clutches) and choose better territories than younger females. Our results highlight the importance of examining multiple hypotheses in a theoretical context to elucidate the ecological processes underlying commonly observed patterns in life history. [Decker, Karie L.; Conway, Courtney J.] Univ Arizona, Arizona Cooperat Fish & Wildlife Res Unit, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Fontaine, Joseph J.] Univ Nebraska, US Geol Survey, Nebraska Cooperat Fish & Wildlife Res Unit, Lincoln, NE 68583 USA Decker, KL (reprint author), Univ Nebraska, Nebraska Cooperat Fish & Wildlife Res Unit, Sch Nat Resources, 909 Hardin Hall, Lincoln, NE 68583 USA. kdecker4@unl.edu Fontaine, Joseph/F-6557-2010 Fontaine, Joseph/0000-0002-7639-9156 NSF [DGE-0638744]; TE Inc.; American Ornithologists' Union; Animal Behavior Society; Shikar Safari Club International Foundation; Arrington Memorial Scholarship; School of Natural Resources and the Environment at the University of Arizona T. Weinkam, E. Scobie, T. Isberg, and M. Ali provided many hours of assistance in the field. B. Steidl, K. Bonine, K. Borgmann, A. Macias-Duarte, S. Steckler, C. Kirkpatrick, and A. Chalfoun provided comments and support. Financial support was provided by NSF GK-12 Fellowship grant (DGE-0638744), T&E Inc., American Ornithologists' Union, Animal Behavior Society, Shikar Safari Club International Foundation, Arrington Memorial Scholarship, and the School of Natural Resources and the Environment at the University of Arizona. All methods were approved under permits from U. S. Fish and Wildlife Service (MB053041-2), U. S. Forest Service (Catalina National Forest, #2720), U.S. Geological Survey's Bird Banding Laboratory (22524), Arizona Game and Fish Department (SP650825), and The University of Arizona Institutional Animal Care and Use Committee (protocol 06-108). APARICIO JM, 1994, OIKOS, V71, P451, DOI 10.2307/3545833; ARCESE P, 1988, J ANIM ECOL, V57, P119, DOI 10.2307/4768; Blums P, 1997, AUK, V114, P737, DOI 10.2307/4089293; Borgmann KL, 2004, AUK, V121, P74, DOI 10.1642/0004-8038(2004)121[0074:WYWDCT]2.0.CO;2; Bourgault P, 2010, OECOLOGIA, V162, P885, DOI 10.1007/s00442-009-1545-0; Chalfoun AD, 2009, J ANIM ECOL, V78, P497, DOI 10.1111/j.1365-2656.2008.01506.x; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; COOKE F, 1984, AUK, V101, P451; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; Decker KL, 2009, CONDOR, V111, P392, DOI 10.1525/cond.2009.080055; DRENT RH, 1980, ARDEA, V68, P225; ENS BJ, 1992, J ANIM ECOL, V61, P703, DOI 10.2307/5625; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAMANN J, 1989, OECOLOGIA, V79, P83, DOI 10.1007/BF00378243; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Hillstrom L, 1995, FUNCT ECOL, V9, P807, DOI 10.2307/2389978; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson MD, 2001, J ANIM ECOL, V70, P546, DOI 10.1046/j.1365-2656.2001.00522.x; Julliard R, 1997, ECOLOGY, V78, P394; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D., 1954, NATURAL REGULATION A; Lepage D, 2000, J ANIM ECOL, V69, P414, DOI 10.1046/j.1365-2656.2000.00404.x; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Ligon J.D., 1988, P229; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MARRA PP, 1993, AUK, V110, P565, DOI 10.2307/4088420; MARTIN K, 1995, AM ZOOL, V35, P340; Martin T, 1995, BIRDS N AM ONLINE; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MEIJER T, 1990, BEHAVIOUR, V114, P117, DOI 10.1163/156853990X00077; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nilsson JA, 2006, J AVIAN BIOL, V37, P357, DOI 10.1111/j.2006.0908-8857.03604.x; NILSSON JA, 1991, ECOLOGY, V72, P1757, DOI 10.2307/1940974; Nilsson JA, 2000, OIKOS, V88, P351, DOI 10.1034/j.1600-0706.2000.880214.x; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PLATT JR, 1964, SCIENCE, V146, P347, DOI 10.1126/science.146.3642.347; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; Pyle P, 1997, IDENTIFICATION GUIDE; Reynolds SJ, 2010, CURR ORNITHOL, V17, P31, DOI 10.1007/978-1-4419-6421-2_2; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Saether B.-E., 1990, Current Ornithology, V7, P251; Sheldon BC, 2003, EVOLUTION, V57, P406; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; SJOBERG G, 1994, J AVIAN BIOL, V25, P112, DOI 10.2307/3677028; SLAGSVOLD T, 1988, ECOLOGY, V69, P1918, DOI 10.2307/1941168; SMITH HG, 1993, AUK, V110, P889, DOI 10.2307/4088642; Stearns S, 1992, EVOLUTION LIFE HIST; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; von Haartman L., 1990, POPULATION BIOL PASS, P1; WHEELWRIGHT NT, 1994, J ANIM ECOL, V63, P686, DOI 10.2307/5234; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512 68 17 20 2 55 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAY 2012 26 3 683 699 10.1007/s10682-011-9521-7 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200017 2019-02-21 J Winkler, JD; Stolting, KN; Wilson, AB Winkler, Jasmin D.; Stoelting, Kai N.; Wilson, Anthony B. Sex-specific responses to fecundity selection in the broad-nosed pipefish EVOLUTIONARY ECOLOGY English Article Allometric growth; Life history evolution; Pleomerism; Sexual selection; Sexual-size dimorphism ROLE REVERSED PIPEFISH; SYNGNATHUS-TYPHLE; FAMILY SYNGNATHIDAE; VERTEBRAL NUMBERS; SIZE DIMORPHISM; MALE PREGNANCY; EVOLUTION; GROWTH; TEMPERATURE; SEAHORSES Fecundity selection, acting on traits enhancing reproductive output, is an important determinant of organismal body size. Due to a unique mode of reproduction, mating success and fecundity are positively correlated with body size in both sexes of male-pregnant Syngnathus pipefish. As male pipefish brood eggs on their tail and egg production in females occurs in their ovaries (located in the trunk region), fecundity selection is expected to affect both sexes in this species, and is predicted to act differently on body proportions of males and females during their development. Based on this hypothesis, we investigated sexual size dimorphism in body size allometry and vertebral numbers across populations of the widespread European pipefish Syngnathus typhle. Despite the absence of sex-specific differences in overall and region-specific vertebral counts, male and female pipefish differ significantly in the relative lengths of their trunk and tail regions, consistent with region-specific selection pressures in the two sexes. Male pipefish show significant growth allometry, with disproportionate growth in the brooding tail region relative to the trunk, resulting in increasingly skewed region-specific sexual size dimorphism with increasing body size, a pattern consistent across five study populations. Sex-specific differences in patterns of growth in S. typhle support the hypothesis that fecundity selection can contribute to the evolution of sexual size dimorphism. [Winkler, Jasmin D.; Stoelting, Kai N.; Wilson, Anthony B.] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland Wilson, AB (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. tony.wilson@ieu.uzh.ch Wilson, Anthony/D-2907-2011 University of Zurich Forschungskredit; Swiss Academy of Sciences; Swiss National Science Foundation; EC [PL003739] We would like to thank to Ingrid Ahnesjo, Murat Bilecenoglu, Iris Eigenmann, Nathalie Feiner, Jorge Goncalves, Laurent Leveque, Federico Riccato, Valeria Rispoli, and Johan Wenngren for their help, efforts and time investments during field work. We are grateful to the Dipartimento di Scienze Ambientali (Universita Ca' Foscari), the Asko Laboratory, Klubban Biological Station, and the Roscoff Biological Station for the use of their facilities. Many thanks to Ingrid Ahnesjo, Christian Klingenberg, Marcelo Sanchez-Villagra, Lukas Ruber, and Lorenzo Tanadini for discussion and suggestions. Our special thanks go to Wolf Blanckenhorn for his statistical advice and to Jonathan Ready, INCOFISH project (EC project PL003739) for providing environmental data for sampling localities. The study was funded by the University of Zurich Forschungskredit, the Swiss Academy of Sciences and the Swiss National Science Foundation. AHNESJO I, 1992, J FISH BIOL, V41, P53, DOI 10.1111/j.1095-8649.1992.tb03868.x; AHNESJO I, 1992, FUNCT ECOL, V6, P274, DOI 10.2307/2389517; AHNESJO I, 1995, BEHAV ECOL, V6, P229, DOI 10.1093/beheco/6.2.229; Andersson M., 1994, SEXUAL SELECTION; ASANO H, 1977, Memoirs of the Faculty of Agriculture of Kinki University, V10, P29; Berglund A, 2003, ADV STUD BEHAV, V32, P131, DOI 10.1016/S0065-3454(03)01003-9; BERGLUND A, 1986, BEHAV ECOL SOCIOBIOL, V19, P301, DOI 10.1007/BF00300646; Berglund A, 2001, BEHAV ECOL, V12, P402, DOI 10.1093/beheco/12.4.402; BERGLUND A, 1991, EVOLUTION, V45, P770, DOI 10.1111/j.1558-5646.1991.tb04346.x; Bergmann PJ, 2006, ZOOLOGY, V109, P54, DOI 10.1016/j.zool.2005.09.009; Bernet P, 1998, BEHAVIOUR, V135, P535, DOI 10.1163/156853998792897923; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Breder CM, 1966, MODES REPROD FISHES; Darwin C, 1871, DESCENT MAN SELECTIO; Dawson C, 1986, FISHES N E ATLANTIC; Deane EE, 2009, REV FISH BIOL FISHER, V19, P97, DOI 10.1007/s11160-008-9091-0; Development Core Team R., 2010, R LANG ENV STAT COMP; Duncker Georg, 1908, Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, V25; Gould S.J, 2002, STRUCTURE EVOLUTIONA; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Grande L, 1998, J VERTEBR PALEONTOL, V18, P1, DOI 10.1080/02724634.1998.10011114; Hart J. L, 1973, FISH RES BOARD CAN B, V180; Head JJ, 2007, BIOLOGY LETT, V3, P296, DOI 10.1098/rsbl.2007.0069; HERALD EARL S., 1941, STANFORD ICHTHYOL BULL, V2, P49; Hoffman EA, 2006, EVOLUTION, V60, P404; Klingenberg Christian Peter, 2005, P219, DOI 10.1016/B978-012088777-4/50013-2; LANKFORD TE, 1994, MAR BIOL, V119, P611, DOI 10.1007/BF00354325; LINDSEY CC, 1975, J FISH RES BOARD CAN, V32, P2453, DOI 10.1139/f75-283; MADSEN T, 1994, EVOLUTION, V48, P1389, DOI 10.1111/j.1558-5646.1994.tb05323.x; Mayr E., 1972, P87; Muller J, 2010, P NATL ACAD SCI USA, V107, P2118, DOI 10.1073/pnas.0912622107; Parra-Olea G, 2001, P NATL ACAD SCI USA, V98, P7888, DOI 10.1073/pnas.131203598; Polly DP, 2001, HETEROCHRONY EVOLUTI, P305; Rispoli VF, 2008, J EVOLUTION BIOL, V21, P30, DOI 10.1111/j.1420-9101.2007.01470.x; ROMER AS, 1970, VERTEBRATE BODY; Shine R, 2000, J EVOLUTION BIOL, V13, P455; Springer V.G., 1971, Smithsonian Contributions to Zoology, VNo. 72, P1; Vincent ACJ, 1995, ENVIRON BIOL FISH, V44, P347, DOI 10.1007/BF00008250; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Ward AB, 2007, BIOL J LINN SOC, V90, P97, DOI 10.1111/j.1095-8312.2007.00714.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Warton DI, 2005, SMATR V2 1; Wilson AB, 2001, J HERED, V92, P159, DOI 10.1093/jhered/92.2.159; Wilson AB, 2003, EVOLUTION, V57, P1374; Wilson AB, 2010, MOL ECOL, V19, P4535, DOI 10.1111/j.1365-294X.2010.04811.x 45 6 7 0 26 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2012 26 3 701 714 10.1007/s10682-011-9516-4 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 923XX WOS:000302655200018 2019-02-21 J Pease, AA; Gonzalez-Diaz, AA; Rodiles-Hernandez, R; Winemiller, KO Pease, Allison A.; Gonzalez-Diaz, Alfonso A.; Rodiles-Hernandez, Rocio; Winemiller, Kirk O. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment FRESHWATER BIOLOGY English Article ecomorphology; fluvial gradient; functional diversity; habitat template; southern Mexico LIFE-HISTORY STRATEGIES; SPECIES TRAITS; RIVER-BASIN; POPULATION REGULATION; COMMUNITY ECOLOGY; AMERICAN FISHES; PATTERNS; HABITAT; GRADIENTS; FRAMEWORK 1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait-environment relationships and functional diversity of stream fish assemblages in the Rio Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape-scale (e. g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait-environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change. [Pease, Allison A.; Winemiller, Kirk O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Gonzalez-Diaz, Alfonso A.; Rodiles-Hernandez, Rocio] El Colegio Frontera Sur, San Cristobal de las Casa, Chiapas, Mexico Pease, AA (reprint author), Univ Missouri, Dept Fisheries & Wildlife Sci, Missouri Cooperat Fish & Wildlife Res Unit, 302 Anheuser Busch Nat Resources Bldg, Columbia, MO 65211 USA. peasea@missouri.edu Winemiller, Kirk/0000-0003-0236-5129 National Science Foundation [DEB 0808523]; Texas A&M University Office of Graduate Studies; L.T. Jordan Institute; American Cichlid Association; Texas A&M Tom Slick Doctoral Research Fellowship We thank Michi Tobler, Christian Kaufman, Carlos Chavez-Gloria, Adan Gomez-Gonzalez, Rodrigo Acinorev, Krista Capps and Alex Flecker for their help with field collection. Gil Rosenthal, Mariana Mateos and Thom DeWitt provided feedback on the study design and earlier versions of the manuscript. Funding for this project was provided by the National Science Foundation (DEB 0808523 to AAP and KOW) and grants to AAP from the Texas A&M University Office of Graduate Studies, L.T. Jordan Institute and the American Cichlid Association Loiselle Conservation Fund. AAP was also supported by the Texas A&M Tom Slick Doctoral Research Fellowship. Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; ANGERMEIER PL, 1983, ENVIRON BIOL FISH, V9, P117, DOI 10.1007/BF00690857; Araujo FG, 2009, HYDROBIOLOGIA, V618, P89, DOI 10.1007/s10750-008-9551-5; Barber CB, 1996, ACM T MATH SOFTWARE, V22, P469, DOI 10.1145/235815.235821; Barbour M. T, 1999, 841B99002 US EPA; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Davies PM, 2008, AQUAT ECOL SER, P23, DOI 10.1016/B978-012088449-0.50004-2; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Dray S, 2007, J STAT SOFTW, V22, P1; EDDS DR, 1993, COPEIA, P48; Esselman PC, 2006, J N AM BENTHOL SOC, V25, P142, DOI 10.1899/0887-3593(2006)25[142:FVBGDR]2.0.CO;2; Fischer JR, 2008, ECOL FRESHW FISH, V17, P597, DOI 10.1111/j.1600-0633.2008.00312.x; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Hitt NP, 2006, AM FISH S S, V48, P75; Hoagstrom CW, 2008, HYDROBIOLOGIA, V596, P367, DOI 10.1007/s10750-007-9110-5; Hoeinghaus David J., 2004, Neotrop. ichthyol., V2, P85, DOI 10.1590/S1679-62252004000200005; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hudson P. F., 2005, RIVERS N AM, P1031, DOI DOI 10.1016/B978-012088253-3/50026-2; Hynes H. B. N., 1970, ECOLOGY RUNNING WATE; Ibanez C, 2007, ECOL FRESHW FISH, V16, P315, DOI 10.1111/j.1600-0633.2006.00222.x; Ibanez C, 2009, ECOGRAPHY, V32, P658, DOI 10.1111/j.1600-0587.2008.05591.x; IBARRA M, 1989, COPEIA, P364; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Laliberte E, 2010, ECOLOGY, V91, P299, DOI 10.1890/08-2244.1; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Mathworks Inc, 2009, MATLAB VERS 2009A; McCune B, 2002, ANAL ECOLOGICAL COMM; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Miller RR, 2005, FRESHWATER FISHES ME; OBERDORFF T, 1993, HYDROBIOLOGIA, V259, P157, DOI 10.1007/BF00006595; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; OSBORNE LL, 1992, CAN J FISH AQUAT SCI, V49, P671, DOI 10.1139/f92-076; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Poole GC, 2002, FRESHWATER BIOL, V47, P641, DOI 10.1046/j.1365-2427.2002.00922.x; R Foundation for Statistical Computing, 2010, R VERS 2 11 1; RAHEL FJ, 1991, T AM FISH SOC, V120, P319, DOI 10.1577/1548-8659(1991)120<0319:FAAHGI>2.3.CO;2; Richards C., 1996, CANADIAN J FISHERIES, V53, P95; Rowe DC, 2009, N AM J FISH MANAGE, V29, P1314, DOI 10.1577/M08-192.1; Schlosser I.J., 1987, P17; Sibbing FA, 2001, REV FISH BIOL FISHER, V10, P393; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thorp JH, 2008, AQUAT ECOL SER, P1; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Villeger S, 2008, ECOLOGY, V89, P2290, DOI 10.1890/07-1206.1; WEBB PW, 1984, AM ZOOL, V24, P107; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1991, ECOL MONOGR, V61, P343, DOI 10.2307/2937046; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 56 60 65 4 123 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. MAY 2012 57 5 1060 1075 10.1111/j.1365-2427.2012.02768.x 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 920IK WOS:000302397300015 2019-02-21 J Nicolaus, M; Michler, SPM; Ubels, R; van der Velde, M; Bouwman, KM; Both, C; Tinbergen, JM Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M. Local sex ratio affects the cost of reproduction JOURNAL OF ANIMAL ECOLOGY English Article density; disease risk; intraspecific competition; optimal clutch size; Parus major; predation risk; reproductive trade-offs; sex ratio; social environment TITS PARUS-MAJOR; BROOD SIZE MANIPULATION; AVIAN CLUTCH SIZE; GREAT TIT; BLUE TIT; DENSITY-DEPENDENCE; NATAL DISPERSAL; TRADE-OFF; CONSEQUENCES; DOMINANCE 1. Costs and benefits of reproduction are central to life-history theory, and the outcome of reproductive trade-offs may depend greatly on the ecological conditions in which they are estimated. In this study, we propose that costs and benefits of reproduction are modulated by social effects, and consequently that selection on reproductive rates depends on the social environment. 2. We tested this hypothesis in a great tit Parus major population. Over 3 years, we altered parental reproductive effort via brood size manipulations (small, intermediate, large) and manipulated the local social environment via changes in the local fledgling density (decreased, increased) and the local sex ratio (female-biased, control, male-biased). 3. We found that male-biased treatment consistently increased the subsequent local breeding densities over the 3-year study period. We also found that parents rearing small broods in these male-biased plots had increased survival rates compared with the other experimental groups. 4. We conclude that reproductive costs are the product of an interaction between parental phenotypic quality after reproduction and the social environment: raising a small brood had long-lasting effects on some phenotypic traits of the parents and that this increased their survival chances in male-biased environment where habitat quality may have deteriorated (via increased disease/predation risk or intraspecific competition). 5. Our results provide the first experimental evidence that local sex ratio can affect reproductive costs and thus optimal clutch size. [Nicolaus, Marion; Michler, Stephanie P. M.; Ubels, Richard; van der Velde, Marco; Bouwman, Karen M.; Both, Christiaan; Tinbergen, Joost M.] Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands Nicolaus, M (reprint author), Univ Groningen, Ctr Ecol & Evolutionary Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. mnicolaus@orn.mpg.de Both, Christiaan/E-6459-2011; Nicolaus, Marion/H-6124-2015 Nicolaus, Marion/0000-0003-1808-1526 Netherlands Organisation for Scientific Research (NWO-VICI) [86503003]; University of Groningen We are grateful to R. Radersma, N.J. Dingemanse, M. Keiser, T. Lok, J. Reimerink, K. M. Jalvingh, A. Haydn, J. Plantinga as well as to all the Animal Ecology course students between 2005 and 2008 for their help in collecting the data in the field. We also thank L. te Marvelde and K. Meijer for helping with the molecular sexing of the nestlings. This project was financially supported by the Netherlands Organisation for Scientific Research (NWO-VICI grant 86503003 to Jan Komdeur) and by the University of Groningen (to JMT). We thank Staatsbosbeheer and the Royal Dutch Army 'Koninklijke Landmacht' for their permission to work in the Lauwersmeer area and to stay on their army base. Finally, we thank C. M. Lessells and two anonymous referees for useful comments on the manuscript and N.P.C. Horrocks for improving English. Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Both C, 1998, J ANIM ECOL, V67, P667, DOI 10.1046/j.1365-2656.1998.00228.x; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; Both C, 2000, ECOLOGY, V81, P3391, DOI 10.2307/177502; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; de Heij ME, 2006, P ROY SOC B-BIOL SCI, V273, P2353, DOI 10.1098/rspb.2006.3584; Doligez B, 2008, ECOLOGY, V89, P1436, DOI 10.1890/07-0113.1; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Drent P. J., 1983, THESIS U GRONINGEN G; DRENT PJ, 1984, ARDEA, V72, P127; Gosler A, 1999, J AVIAN BIOL, V30, P447, DOI 10.2307/3677017; GREENWOOD PJ, 1979, J ANIM ECOL, V48, P123, DOI 10.2307/4105; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HOGSTAD O, 1989, WILSON BULL, V101, P254; LACK D, 1947, IBIS, V89, P668; LACK D, 1966, POPULATION STUDIES B; Lessells C.M., 1991, P32; Lindstrom KM, 2005, HORM BEHAV, V48, P311, DOI 10.1016/j.yhbeh.2005.04.002; MARCSTROM V, 1988, J ANIM ECOL, V57, P859, DOI 10.2307/5097; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; Michler S. P. M., 2010, THESIS U GRONINGEN G; Newton I, 1998, POPULATION LIMITATIO; Nicolaus M, 2009, J ANIM ECOL, V78, P828, DOI 10.1111/j.1365-2656.2009.01535.x; Nicolaus M, 2009, J ANIM ECOL, V78, P414, DOI 10.1111/j.1365-2656.2008.01505.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; NUR N, 1984, J ANIM ECOL, V53, P479, DOI 10.2307/4529; Pap PL, 2003, J AVIAN BIOL, V34, P428, DOI 10.1111/j.0908-8857.2003.03002.x; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; Rasbash J, 2004, USERS GUIDE MLWIN; Roff Derek A., 1992; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Sanz JJ, 1999, BEHAV ECOL, V10, P598, DOI 10.1093/beheco/10.5.598; Siefferman L, 2008, IBIS, V150, P32; SMITH HG, 1987, AUK, V104, P700; Soler M, 1996, IBIS, V138, P377, DOI 10.1111/j.1474-919X.1996.tb08054.x; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; Tinbergen JM, 2004, BEHAV ECOL, V15, P525, DOI 10.1093/beheco/arh045; Tinbergen JM, 2005, J ANIM ECOL, V74, P1112, DOI 10.1111/j.1365-2656.2005.01010.x; van Oort H, 2007, CONDOR, V109, P88, DOI 10.1650/0010-5422(2007)109[88:HDATPQ]2.0.CO;2; Verhulst S, 1997, FUNCT ECOL, V11, P714, DOI 10.1046/j.1365-2435.1997.00145.x; Verhulst S, 1996, ANIM BEHAV, V51, P957, DOI 10.1006/anbe.1996.0099; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON JD, 1992, BEHAVIOUR, V121, P168, DOI 10.1163/156853992X00363 46 15 16 2 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2012 81 3 564 572 10.1111/j.1365-2656.2011.01933.x 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 923IP WOS:000302613300007 22112192 2019-02-21 J McDonald, BI; Goebel, ME; Crocker, DE; Costa, DP McDonald, Birgitte I.; Goebel, Michael E.; Crocker, Daniel E.; Costa, Daniel P. Dynamic Influence of Maternal and Pup Traits on Maternal Care during Lactation in an Income Breeder, the Antarctic Fur Seal PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article ARCTOCEPHALUS-GAZELLA PUPS; NORTHERN ELEPHANT SEALS; REPRODUCTIVE SUCCESS; MILK INTAKE; CALLORHINUS-URSINUS; PARENTAL INVESTMENT; GROUND-SQUIRRELS; SOUTH GEORGIA; SOAY SHEEP; GRAY SEALS Life-history theory predicts that selection will favor optimal levels of parental effort that balance benefits of current reproduction with costs to survival and future reproduction. The optimal level of effort depends on parental traits, offspring traits, and provisioning strategy. Additionally, how these factors influence effort may differ depending on the stage of reproduction. The relative importance of maternal and offspring traits on energy allocation to offspring was investigated in known-age Antarctic fur seals Arctocephalus gazella across four stages of reproduction, using birth mass and milk-consumption measurements. Maternal traits were important during three of the four stages investigated, with larger females giving birth to larger pups and investing more in pups during perinatal and molt stages. Pup mass influenced maternal effort during the premolt stage, and provisioning strategy influenced postnatal maternal effort at all stages. Energy provided to the offspring during an attendance visit was positively related to the duration of the foraging-trip/visit cycle; however, when investment was controlled for trip/visit cycle duration, the overall rate of energy transfer was similar across trip durations. In addition to strong effects of maternal mass, pup traits affected energy allocation, suggesting that pup demand is important in determining maternal care. These findings emphasize the importance of considering state variables in life-history studies and suggest that timing of measurements of effort in species with long provisioning periods may influence conclusions and our ability to make comparisons of reproductive effort among species. [McDonald, Birgitte I.; Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Long Marine Lab, Santa Cruz, CA 95060 USA; [Goebel, Michael E.] Natl Marine Fisheries Serv, Antarct Ecosyst Res Div, Natl Ocean & Atmospher Adm, SW Fisheries Sci Ctr, La Jolla, CA 92038 USA; [Crocker, Daniel E.] Sonoma State Univ, Dept Biol, Rohnert Pk, CA 94928 USA McDonald, BI (reprint author), Scripps Inst Oceanog, Ctr Marine Biotechnol & Biomed, La Jolla, CA 92093 USA. gitte.mcdonald@gmail.com Costa, Daniel/0000-0002-0233-5782; McDonald, Birgitte/0000-0001-5028-066X U.S. AMLR; NSF Office of Polar Programs [0440687]; U.S. Environmental Protection Agency (EPA); NSF We thank all those who assisted with the collection of the data, in particular C. Champagne, R. Haner, and S. Seganti. Logistical support was provided by the U. S. Antarctic Marine Living Resources (AMLR) Program, the National Science Foundation (NSF) U.S. Antarctic Program, and Raytheon Polar Services. This article was improved by comments from two anonymous reviewers. Research was funded by the U.S. AMLR Program and NSF Office of Polar Programs grant 0440687 to D. P. C, D. E. C., and M. E. G. B. I. M. was supported by the U.S. Environmental Protection Agency (EPA) under the Science to Achieve Results Graduate Fellowship Program and an NSF graduate fellowship. The EPA has not officially endorsed this publication, and the views expressed herein may not reflect the views of the EPA. Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Arnould JPY, 1996, CAN J ZOOL, V74, P254, DOI 10.1139/z96-032; Arnould JPY, 2002, J ZOOL, V256, P351, DOI 10.1017/S0952836902000389; Arnould JPY, 2001, BEHAV ECOL SOCIOBIOL, V50, P461, DOI 10.1007/s002650100386; BAKER JD, 1992, J ZOOL, V227, P231, DOI 10.1111/j.1469-7998.1992.tb04819.x; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; Boltnev AI, 1998, CAN J ZOOL, V76, P843, DOI 10.1139/cjz-76-5-843; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; Broussard DR, 2005, CAN J ZOOL, V83, P546, DOI 10.1139/Z05-044; Chastel O, 1995, AUK, V112, P964, DOI 10.2307/4089027; CluttonBrock TH, 1996, J ANIM ECOL, V65, P675, DOI 10.2307/5667; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Costa D.P., 1986, P79; Costa D. P., 1993, MARINE MAMMALS ADV B, P293; COSTA DP, 1988, CAN J ZOOL, V66, P45, DOI 10.1139/z88-006; COSTA DP, 1988, BEHAV ECOL SOCIOBIOL, V22, P361; Costa DP, 2008, AQUAT CONSERV, V17, pS44, DOI DOI 10.1002/AQC.917; Costa DP, 1987, APPROACHES MARINE MA, P43; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Crocker DE, 2001, ECOLOGY, V82, P3541, DOI 10.2307/2680171; Descamps S, 2007, J ANIM ECOL, V76, P1192, DOI 10.1111/j.1365-2656.2007.01301.x; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; DOIDGE DW, 1989, POLAR BIOL, V9, P155, DOI 10.1007/BF00297170; Donohue MJ, 2002, PHYSIOL BIOCHEM ZOOL, V75, P3, DOI 10.1086/338284; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gales NJ, 1998, MAR MAMMAL SCI, V14, P355, DOI 10.1111/j.1748-7692.1998.tb00727.x; Gentry R.L., 1986, P41; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.2307/177427; Gill P.F., 1990, ORNITHOLOGY; Gittleman J.L., 1987, REPROD ENERGETICS MA, P41; Goebel M.E., 2007, NOAATMNMFSSWFSC409 A, P122; Guinet C, 2000, CAN J ZOOL, V78, P476, DOI 10.1139/cjz-78-3-476; Houston AI, 1996, FUNCT ECOL, V10, P432, DOI 10.2307/2389935; IVERSON SJ, 1993, PHYSIOL ZOOL, V66, P61, DOI 10.1086/physzool.66.1.30158287; KOVACS KM, 1986, J ANIM ECOL, V55, P1035, DOI 10.2307/4432; Landete-Castillejos T, 2009, THERIOGENOLOGY, V71, P400, DOI 10.1016/j.theriogenology.2008.08.006; Lang SLC, 2009, ECOLOGY, V90, P2513, DOI 10.1890/08-1386.1; Lea MA, 2002, MAR ECOL PROG SER, V245, P281, DOI 10.3354/meps245281; Lea MA, 2002, COMP BIOCHEM PHYS A, V132, P321, DOI 10.1016/S1095-6433(02)00030-2; Lea MA, 2006, MAR ECOL PROG SER, V310, P77, DOI 10.3354/meps310077; Lunn NJ, 1997, BEHAV ECOL SOCIOBIOL, V40, P351, DOI 10.1007/s002650050351; LUNN NJ, 1993, J MAMMAL, V74, P908, DOI 10.2307/1382429; Marrow P, 1996, PHILOS T R SOC B, V351, P17, DOI 10.1098/rstb.1996.0002; McDonald B.I., 2009, THESIS U CALIFORNIA; McDonald BI, 2006, PHYSIOL BIOCHEM ZOOL, V79, P484, DOI 10.1086/501056; McDonald BI, 2009, MAR ECOL PROG SER, V394, P277, DOI 10.3354/meps08308; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Nagy K.A., 1980, AM J PHYSIOL, V238, pR446; Oftedal O.T., 1987, Current Mammalogy, V1, P175; Oftedal O. T., 1984, S ZOOL SOC LOND, V51, P33; OFTEDAL OT, 1987, PHYSIOL ZOOL, V60, P560, DOI 10.1086/physzool.60.5.30156130; ORTIZ CL, 1978, PHYSIOL ZOOL, V51, P166, DOI 10.1086/physzool.51.2.30157864; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Pomeroy PP, 1999, J ANIM ECOL, V68, P235, DOI 10.1046/j.1365-2656.1999.00281.x; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Schmidt-Nielsen K., 1979, ANIMAL PHYSL ADAPTAT; Speakman JR, 1997, DOUBLY LABELLED WATE; Stearns S, 1992, EVOLUTION LIFE HIST; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; TRITES AW, 1991, CAN J ZOOL, V69, P2608, DOI 10.1139/z91-367; Trivers R.L., 1974, AM ZOOL, V14, P219; Verrier D, 2009, AM J PHYSIOL-REG I, V297, pR1582, DOI 10.1152/ajpregu.90857.2008; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6; Zuur AF, 2007, STAT BIOL HEALTH, P1 68 3 3 0 42 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY-JUN 2012 85 3 243 254 10.1086/665407 12 Physiology; Zoology Physiology; Zoology 925UQ WOS:000302787600004 22494980 Green Published 2019-02-21 J Elinson, RP; del Pino, EM Elinson, Richard P.; del Pino, Eugenia M. Developmental diversity of amphibians WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY English Review DIRECT-DEVELOPING FROG; GASTROTHECA-RIOBAMBAE FOWLER; ELEUTHERODACTYLUS-COQUI LEPTODACTYLIDAE; SALAMANDER HYNOBIUS-RETARDATUS; SUPERNUMERARY CAUDAL VERTEBRAE; LIFE-HISTORY EVOLUTION; XENOPUS-LAEVIS; THYROID-HORMONE; MARSUPIAL FROG; GENE-EXPRESSION The current model amphibian, Xenopus laevis, develops rapidly in water to a tadpole which metamorphoses into a frog. Many amphibians deviate from the X. laevis developmental pattern. Among other adaptations, their embryos develop in foam nests on land or in pouches on their mother's back or on a leaf guarded by a parent. The diversity of developmental patterns includes multinucleated oogenesis, lack of RNA localization, huge non-pigmented eggs, and asynchronous, irregular early cleavages. Variations in patterns of gastrulation highlight the modularity of this critical developmental period. Many species have eliminated the larva or tadpole and directly develop to the adult. The wealth of developmental diversity among amphibians coupled with the wealth of mechanistic information from X. laevis permit comparisons that provide deeper insights into developmental processes. (C) 2011 Wiley Periodicals, Inc. [Elinson, Richard P.] Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA; [del Pino, Eugenia M.] Pontificia Univ Catolica Ecuador, Escuela Ciencias Biol, Quito, Ecuador Elinson, RP (reprint author), Duquesne Univ, Dept Biol Sci, Pittsburgh, PA 15219 USA. elinson@duq.edu DEL PINO, EUGENIA/0000-0002-4678-7852 NIH [1R15HD059070-01]; NSF [IOS-0841720]; Pontificia Universidad Catolica del Ecuador; Academy of Sciences for the Developing World (TWAS) [07-017 LDC/BIO/LA-UNESCO FR 3240144821] We thank former and current members of the del Pino and Elinson laboratories. In particular, we acknowledge I. Alarcon and I. Moya for their help with images of G. riobambae gastrulae and S. Hardesty for Figure 6. RPE was supported by grant 1R15HD059070-01 from NIH and grant IOS-0841720 from NSF. EMdP was supported by grants from the Pontificia Universidad Catolica del Ecuador, and a grant 07-017 LDC/BIO/LA-UNESCO FR 3240144821 from The Academy of Sciences for the Developing World (TWAS). Afonin B, 2006, DEV DYNAM, V235, P3268, DOI 10.1002/dvdy.20979; ALCOCER I, 1992, COMP BIOCHEM PHYS A, V101, P229, DOI 10.1016/0300-9629(92)90527-W; Altig R, 1999, TADPOLES BIOL ANURAN; Altig R., 1989, HERPETOL MONOGR, V3, P81, DOI DOI 10.2307/1466987; Anstis M, 2008, RECORDS W AUSTR MUSE, V24, P133; Anstis Marion, 2007, Records of the Western Australian Museum, V23, P259; Bachvarova RF, 2004, DEV DYNAM, V231, P871, DOI 10.1002/dvdy.20195; Bahir MM, 2005, RAFFLES B ZOOL, P339; Bastock R, 2008, CURR BIOL, V18, pR1082, DOI 10.1016/j.cub.2008.09.011; Beckham YM, 2003, EVOL DEV, V5, P562, DOI 10.1046/j.1525-142X.2003.03061.x; Beetschen JC, 1996, INT J DEV BIOL, V40, P629; Benitez MS, 2002, DEV DYNAM, V225, P592, DOI 10.1002/dvdy.10190; BERGER L, 1973, Journal of Herpetology, V7, P1, DOI 10.2307/1562822; BLACKLER AW, 1966, ADV REPROD PHYSIOL, V1, P9; Bossuyt Franky, 2009, P357; BROWN HA, 1989, J ZOOL, V217, P525, DOI 10.1111/j.1469-7998.1989.tb02509.x; Buchholz DR, 2007, DEV DYNAM, V236, P1259, DOI 10.1002/dvdy.21153; Callery EM, 2006, SEMIN CELL DEV BIOL, V17, P80, DOI 10.1016/j.semcdb.2005.11.001; Callery EM, 2000, DEV GENES EVOL, V210, P377, DOI 10.1007/s004270000070; Callery EM, 2001, BIOESSAYS, V23, P233, DOI 10.1002/1521-1878(200103)23:3<233::AID-BIES1033>3.0.CO;2-Q; Callery EM, 2000, P NATL ACAD SCI USA, V97, P2615, DOI 10.1073/pnas.050501097; Candioti MFV, 2005, J MORPHOL, V264, P161, DOI 10.1002/jmor.10320; Cannatella David C., 2009, P353; CARROLL EJ, 1991, DEV GROWTH DIFFER, V33, P499; Chipman AD, 1999, EVOL DEV, V1, P49; Chippindale PT, 2004, EVOLUTION, V58, P2809; COLLAZO A, 1994, J EXP ZOOL, V268, P239, DOI 10.1002/jez.1402680309; Collazo A, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-6; COLLINS JP, 1983, AM ZOOL, V23, P77; Coloma LA, 1995, ECUADORIAN FROGS GEN; Conlon FL, 1999, DEV BIOL, V213, P85, DOI 10.1006/dbio.1999.9330; COOLEY L, 1995, DEV GENET, V16, P1, DOI 10.1002/dvg.1020160103; CRUMP ML, 1989, OECOLOGIA, V78, P486, DOI 10.1007/BF00378738; Dalgetty L, 2010, BIOL LETTERS, V6, P293, DOI 10.1098/rsbl.2009.0934; DALY JW, 1995, P NATL ACAD SCI USA, V92, P9, DOI 10.1073/pnas.92.1.9; Daly JW, 1998, J NAT PROD, V61, P162, DOI 10.1021/np970460e; Daly JW, 2000, NAT PROD REP, V17, P131, DOI 10.1039/a900728h; DAVIDSON EH, 1969, J EXP ZOOL, V172, P25, DOI 10.1002/jez.1401720104; DAWID IB, 1988, SCIENCE, V240, P1443, DOI 10.1126/science.3287620; Dawid IB, 1998, TRENDS GENET, V14, P156, DOI 10.1016/S0168-9525(98)01424-3; De Robertis EM, 2006, NAT REV MOL CELL BIO, V7, P296, DOI 10.1038/nrm1855; del Pino E.M., 1975, Biological Bull Mar Biol Lab Woods Hole, V149, P480, DOI 10.2307/1540381; Del Pino EM, 2004, INT J DEV BIOL, V48, P663, DOI 10.1387/ijdb.041861ed; Del Pino EM, 1998, INT J DEV BIOL, V42, P723; del Pino EM, 2007, P NATL ACAD SCI USA, V104, P11882, DOI 10.1073/pnas.0705092104; DELPINO EM, 1983, J EXP ZOOL, V227, P159, DOI 10.1002/jez.1402270121; DELPINO EM, 1994, DEV GROWTH DIFFER, V36, P73; DELPINO EM, 1989, DEVELOPMENT, V107, P169; DELPINO EM, 1986, DIFFERENTIATION, V32, P24, DOI 10.1111/j.1432-0436.1986.tb00552.x; DELPINO EM, 1978, BIOL BULL, V154, P198, DOI 10.2307/1541122; DELPINO EM, 1992, GENE, V111, P235, DOI 10.1016/0378-1119(92)90692-I; DELPINO EM, 1981, J MORPHOL, V167, P277, DOI 10.1002/jmor.1051670303; delPino EM, 1996, DEV BIOL, V177, P64, DOI 10.1006/dbio.1996.0145; DELPINO EM, 1977, J MORPHOL, V153, P153, DOI 10.1002/jmor.1051530111; DELPINO EM, 1980, COPEIA, P10, DOI 10.2307/1444129; DELPINO EM, 1983, NATURE, V306, P589, DOI 10.1038/306589a0; DELPINO EM, 1990, DEVELOPMENT, V110, P781; Doyle JM, 2008, OECOLOGIA, V156, P87, DOI 10.1007/s00442-008-0977-2; Dressler GR, 2009, DEVELOPMENT, V136, P3863, DOI 10.1242/dev.034876; Duarte-Guterman P, 2010, GEN COMP ENDOCR, V166, P428, DOI 10.1016/j.ygcen.2009.12.008; Duellman W. E., 1986, BIOL AMPHIBIANS; DUELLMAN WE, 1980, J HERPETOL, V14, P213, DOI 10.2307/1563542; Dunker N, 2000, J MORPHOL, V243, P3; Ecleshymer AC, 1910, NORMAL PLATES DEV NE, V11; ELICEIRI BP, 1994, J BIOL CHEM, V269, P24459; Elinson R. P, 2003, VERTEBRATE ORG, P359; Elinson RP, 2008, J EXP ZOOL PART B, V310B, P588, DOI 10.1002/jez.b.21229; Elinson RP, 2009, J EXP ZOOL PART B, V312B, P526, DOI 10.1002/jez.b.21218; ELINSON RP, 1986, INT REV CYTOL, V101, P59, DOI 10.1016/S0074-7696(08)60246-6; Elinson RP, 1998, DEV GENES EVOL, V208, P457, DOI 10.1007/s004270050203; Elinson RP, 2003, DEV GENES EVOL, V213, P28, DOI 10.1007/s00427-002-0290-8; Elinson RP, 2002, ZOOLOGY, V105, P105, DOI 10.1078/0944-2006-00060; ELINSON RP, 1988, DEV BIOL, V128, P185, DOI 10.1016/0012-1606(88)90281-3; Elinson RP, 2001, GENESIS, V29, P91, DOI 10.1002/1526-968X(200102)29:2<91::AID-GENE1009>3.0.CO;2-6; ELINSON RP, 1990, BIOL BULL, V179, P163, DOI 10.2307/1541765; ELINSON RP, 1994, J EXP ZOOL, V270, P202, DOI 10.1002/jez.1402700209; ELINSON RP, 1985, J EMBRYOL EXP MORPH, V90, P223; ELINSON RP, 1987, J MORPHOL, V193, P217, DOI 10.1002/jmor.1051930208; Elinson RP, 1987, COMPLEX ORGANISMAL F, P251; Ewald AJ, 2004, DEVELOPMENT, V131, P6195, DOI 10.1242/dev.01542; Fang H, 1996, DEV BIOL, V179, P160, DOI 10.1006/dbio.1996.0248; Flamant F, 1998, DEV BIOL, V197, P1, DOI 10.1006/dbio.1998.8872; Gall JG, 2004, EXP CELL RES, V296, P28, DOI 10.1016/j.yexcr.2004.03.017; GATHERER D, 1992, INT J DEV BIOL, V36, P283; GERHART J, 1989, DEVELOPMENT, V107, P37; Grant T, 2006, B AM MUS NAT HIST, V299, P1, DOI DOI 10.1206/0003-0090(2006)299[; Greven H, 2009, J MORPHOL, V270, P1311, DOI 10.1002/jmor.10759; Gurdon JB, 2000, INT J DEV BIOL, V44, P43; Haas A, 2006, ZOOLOGY, V109, P26, DOI 10.1016/j.zool.2005.09.008; Handrigan GR, 2007, J ANAT, V211, P271, DOI 10.1111/j.1469-7580.2007.00757.x; Handrigan GR, 2007, EVOL DEV, V9, P190, DOI 10.1111/j.1525-142X.2007.00149.x; Handrigan GR, 2007, BIOL REV, V82, P1, DOI 10.1111/j.1469-185X.2006.00001.x; Handwerger KE, 2006, TRENDS CELL BIOL, V16, P19, DOI 10.1016/j.tcb.2005.11.005; Hanken J, 1997, P ROY SOC B-BIOL SCI, V264, P1349, DOI 10.1098/rspb.1997.0187; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Hanken J, 2001, J EXP ZOOL, V291, P375, DOI 10.1002/jez.1136; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; HARDIN J, 1988, DEVELOPMENT, V103, P211; HAUSEN P, 1991, EARLY DEV XENOPUS LA; Hedges SB, 2008, ZOOTAXA, P1; Heinicke MP, 2007, P NATL ACAD SCI USA, V104, P10092, DOI 10.1073/pnas.0611051104; Ho DH, 2011, J EXP BIOL, V214, P619, DOI 10.1242/jeb.046714; Hobert O, 2000, TRENDS GENET, V16, P75, DOI 10.1016/S0168-9525(99)01883-1; HOLTFRETER J, 1955, ANAL DEV, P230; HOUGH BR, 1973, J EXP ZOOL, V185, P357, DOI 10.1002/jez.1401850310; Huggins P, 2012, COMP BIOCHEM PHYS C, V155, P128, DOI 10.1016/j.cbpc.2011.03.006; Hukriede NA, 2003, DEV CELL, V4, P83, DOI 10.1016/S1534-5807(02)00398-2; Ishikawa C, 1908, MITT DT GES NAT U VO, V11, P259; Iwao Y, 2000, FERTILIZATION IN PROTOZOA AND METAZOAN ANIMALS, P147; Jennings DH, 1998, GEN COMP ENDOCR, V111, P225, DOI 10.1006/gcen.1998.7111; Johnson AD, 2003, EVOL DEV, V5, P414, DOI 10.1046/j.1525-142X.2003.03048.x; Johnson AD, 2001, DEV BIOL, V234, P402, DOI 10.1006/dbio.2001.0264; Johnson AD, 2003, PHILOS T ROY SOC B, V358, P1371, DOI 10.1098/rstb.2003.1331; Johnson AD, 2011, REPRODUCTION, V141, P291, DOI 10.1530/REP-10-0474; JONES RE, 1973, J EXP ZOOL, V184, P177, DOI 10.1002/jez.1401840205; KAO KR, 1985, DEV BIOL, V107, P239, DOI 10.1016/0012-1606(85)90392-6; Karavanov AA, 1996, INT J DEV BIOL, V40, P453; KAWAHARA A, 1991, DEVELOPMENT, V112, P933; Keller R., 2004, P171; KELLER R, 1988, DEVELOPMENT, V103, P193; KELLER RE, 1976, DEV BIOL, V51, P118, DOI 10.1016/0012-1606(76)90127-5; KELLER RE, 1975, DEV BIOL, V42, P222, DOI 10.1016/0012-1606(75)90331-0; KELLER RE, 1978, J MORPHOL, V157, P223, DOI 10.1002/jmor.1051570209; KELLER RE, 1985, J EMBRYOL EXP MORPH, V89, P185; KELLER RE, 1980, J EMBRYOL EXP MORPH, V60, P201; Keller RE, 1986, DEV BIOL, V2, P241; Kerney R, 2008, EVOL DEV, V10, P439, DOI 10.1111/j.1525-142X.2008.00255.x; Kerney R, 2007, J MORPHOL, V268, P715, DOI 10.1002/jmor.10545; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; King R.C., 1985, P37; Kleinteich T, 2010, ZOOLOGY, V113, P283, DOI 10.1016/j.zool.2010.05.002; KOBEL HR, 1979, DIFFERENTIATION, V14, P51, DOI 10.1111/j.1432-0436.1979.tb01011.x; Kohlsdorf T, 2008, J MOL EVOL, V67, P581, DOI 10.1007/s00239-008-9156-7; Kupfer A, 2006, NATURE, V440, P926, DOI 10.1038/nature04403; LAMOTTE M, 1977, TERRE VIE-REV ECOL A, V31, P225; LANNOO MJ, 1984, AM MIDL NAT, V112, P103, DOI 10.2307/2425463; Ledon-Rettig CC, 2008, EVOL DEV, V10, P316, DOI 10.1111/j.1525-142X.2008.00240.x; Ledon-Rettig CC, 2010, P ROY SOC B-BIOL SCI, V277, P3569, DOI 10.1098/rspb.2010.0877; Lee C, 2009, DEV GENES EVOL, V219, P319, DOI 10.1007/s00427-009-0292-x; Lee SY, 2008, APPL HERPETOL, V5, P33, DOI 10.1163/157075408783489202; Luxardi G, 2010, DEVELOPMENT, V137, P417, DOI 10.1242/dev.039735; MACGREGOR HC, 1982, CHROMOSOMA, V85, P475, DOI 10.1007/BF00327344; MACGREGOR HC, 1970, CHROMOSOMA, V29, P189, DOI 10.1007/BF00326078; Mackenzie CD, 2009, BIOPHYS J, V96, P4984, DOI 10.1016/j.bpj.2009.03.044; Maden M, 1996, DEV GENET, V19, P85; MALACINSKI GM, 1978, AM ZOOL, V18, P195; MALACINSKI GM, 1978, AM ZOOL, V18, P191; Mannaert A, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-658; Marcellini S, 2003, DEV BIOL, V260, P352, DOI 10.1016/S0012-1606(03)00244-6; Matova N, 2001, DEV BIOL, V231, P291, DOI 10.1006/dbio.2000.0120; McComb DM, 2005, GEN COMP ENDOCR, V144, P167, DOI 10.1016/j.ygcen.2005.05.005; McNabb FMA, 1997, AM ZOOL, V37, P553; Meegaskumbura M, 2002, SCIENCE, V298, P379, DOI 10.1126/science.298.5592.379; Michimae H, 2005, BIOL LETTERS, V1, P75, DOI 10.1098/rsbl.2004.0242; Michimae H, 2002, EVOLUTION, V56, P2029; Michimae H, 2002, ZOOL SCI, V19, P703, DOI 10.2108/zsj.19.703; Michimae H, 2009, OECOLOGIA, V160, P601, DOI 10.1007/s00442-009-1319-8; MOHANTYHEJMADI P, 1992, NATURE, V355, P352, DOI 10.1038/355352a0; Morvan-Dubois G, 2008, MOL CELL ENDOCRINOL, V293, P71, DOI 10.1016/j.mce.2008.06.012; Moury JD, 1995, ACTA ANAT, V153, P243; Moya IM, 2007, DEV BIOL, V304, P467, DOI 10.1016/j.ydbio.2006.12.036; Nath K, 2005, J EXP ZOOL PART B, V304B, P28, DOI 10.1002/jez.b.21020; Nath K, 2007, GENE EXPR PATTERNS, V7, P197, DOI 10.1016/j.modgep.2006.07.003; Niehrs C, 2004, NAT REV GENET, V5, P425, DOI 10.1038/nrg1347; NIEUWKOOP P D, 1969, Wilhelm Roux' Archiv fuer Entwicklungsmechanik der Organismen, V162, P341, DOI 10.1007/BF00578701; Nieuwkoop P. D., 1994, NORMAL TABLE XENOPUS; Nieuwkoop P.D., 1979, PRIMORDIAL GERM CELL; Nieuwkoop PD, 1996, INT J DEV BIOL, V40, P617; Ninomiya H, 2001, DEV BIOL, V236, P109, DOI 10.1006/dbio.2001.0310; Nizami Z, 2010, CSH PERSPECT BIOL, V2, DOI 10.1101/cshperspect.a000653; Olsson L, 2002, ZOOLOGY, V105, P3, DOI 10.1078/0944-2006-00051; Page RB, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-199; Page RB, 2009, GEN COMP ENDOCR, V162, P219, DOI 10.1016/j.ygcen.2009.03.001; Pepling ME, 1999, TRENDS CELL BIOL, V9, P257, DOI 10.1016/S0962-8924(99)01594-9; PFENNIG D, 1990, OECOLOGIA, V85, P101, DOI 10.1007/BF00317349; PFENNIG DW, 1993, NATURE, V362, P836, DOI 10.1038/362836a0; Pfennig DW, 2000, EVOLUTION, V54, P1738; Pollister AW, 1937, ANAT REC, V68, P489, DOI 10.1002/ar.1090680410; Power DM, 2001, COMP BIOCHEM PHYS C, V130, P447, DOI 10.1016/S1532-0456(01)00271-X; PRATI M, 1992, ENDOCRINOLOGY, V130, P2651, DOI 10.1210/en.130.5.2651; RADICE G P, 1989, International Journal of Developmental Biology, V33, P325; Richardson MK, 1998, J ANAT, V192, P379, DOI 10.1046/j.1469-7580.1998.19230379.x; Romero-Carvajal A, 2009, DEV DYNAM, V238, P1444, DOI 10.1002/dvdy.21952; Ron SR, 2006, MOL PHYLOGENET EVOL, V39, P392, DOI 10.1016/j.ympev.2005.11.022; Rose Christopher S., 1999, P167, DOI 10.1016/B978-012730935-4/50007-9; Roszko I, 2009, SEMIN CELL DEV BIOL, V20, P986, DOI 10.1016/j.semcdb.2009.09.004; Rot-Nikcevic I, 2004, J EXP BIOL, V207, P2133, DOI 10.1242/jeb.01002; RUIBAL R, 1988, COPEIA, P591; Ryan M. J, 1985, TUNGARA FROG STUDY S; Ryan MJ, 2003, EVOLUTION, V57, P2608, DOI 10.1111/j.0014-3820.2003.tb01503.x; Sabo MC, 2009, DEV GENES EVOL, V219, P609, DOI 10.1007/s00427-009-0314-8; Safi R, 2006, EVOL DEV, V8, P284, DOI 10.1111/j.1525-142X.2006.00099.x; SAXEN L, 1989, International Journal of Developmental Biology, V33, P21; SCHARF SR, 1989, DEV BIOL, V134, P175, DOI 10.1016/0012-1606(89)90087-0; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P94, DOI 10.1159/000113325; Schlosser G, 1997, NEUROSCI LETT, V224, P153, DOI 10.1016/S0304-3940(97)00174-2; Schlosser G, 2008, FRONT ZOOL, V5, DOI 10.1186/1742-9994-5-9; Schmid M., 2010, Cytogenetic and Genome Research, V130-131, P1, DOI 10.1159/000301339; Schneider RA, 2003, SCIENCE, V299, P565, DOI 10.1126/science.1077827; Shook DR, 2008, J EXP ZOOL PART B, V310B, P85, DOI 10.1002/jez.b.21198; Signoret J, 1971, ANN EMBRYOL MORPHOG, V2, P451; Singamsetty S, 2010, EVOL DEV, V12, P437, DOI 10.1111/j.1525-142X.2010.00430.x; Smith BG, 1912, J MORPHOL, V23, P455, DOI 10.1002/jmor.1050230304; Smith BG, 1906, BIOL BULL-US, V11, P146, DOI 10.2307/1535534; SMITH JC, 1991, CELL, V67, P79, DOI 10.1016/0092-8674(91)90573-H; Smith JJ, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-19; Solnica-Krezel L, 2005, CURR BIOL, V15, pR213, DOI 10.1016/j.cub.2005.03.016; SPRADLING AC, 1993, CELL, V72, P649, DOI 10.1016/0092-8674(93)90393-5; SPRULES WG, 1974, CAN J ZOOL, V52, P1545, DOI 10.1139/z74-200; Srivastava M, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-4; Stocum DL, 2011, DEV DYNAM, V240, P943, DOI 10.1002/dvdy.22553; Storz BL, 2007, THESCIENTIFICWORLDJO, V7, P715, DOI 10.1100/tsw.2007.159; Storz BL, 2009, J MORPHOL, V270, P1262, DOI 10.1002/jmor.10756; SUTASURJ.LA, 1974, ROUX ARCH DEV BIOL, V175, P199, DOI 10.1007/BF00582092; Swiers G, 2010, DEV BIOL, V343, P138, DOI 10.1016/j.ydbio.2010.04.002; Tada M, 2000, DEVELOPMENT, V127, P2227; Tada M, 2009, ZEBRAFISH, V6, P29, DOI 10.1089/zeb.2008.0566; Taira M, 1997, P NATL ACAD SCI USA, V94, P895, DOI 10.1073/pnas.94.3.895; TAIRA M, 1994, DEVELOPMENT, V120, P1525; TAIRA M, 1992, GENE DEV, V6, P356, DOI 10.1101/gad.6.3.356; TAIRA M, 1994, NATURE, V372, P677, DOI 10.1038/372677a0; Technau U, 2001, BIOESSAYS, V23, P788, DOI 10.1002/bies.1114; Tlibaudeau G, 1999, TADPOLES, P170; TOWNSEND DS, 1985, COPEIA, P423, DOI 10.2307/1444854; Trueb L., 1974, Occasional Papers Mus Nat Hist Univ Kans, VNo. 29, P1; TUNNER HG, 1981, NATURWISSENSCHAFTEN, V68, P207, DOI 10.1007/BF01047207; UZZELL T, 1980, J EXP ZOOL, V214, P251, DOI 10.1002/jez.1402140303; UZZELL T, 1975, P ACAD NAT SCI PHILA, V127, P81; Venegas-Ferrin M, 2010, INT J DEV BIOL, V54, P195, DOI 10.1387/ijdb.092870mv; Vlaeminck-Guillem V, 2006, INT J DEV BIOL, V50, P553, DOI 10.1387/ijdb.052094vv; Voss SR, 1996, INT J DEV BIOL, V40, P885; Wacker S, 2000, DEV BIOL, V224, P428, DOI 10.1006/dbio.2000.9794; Wake DB, 1996, INT J DEV BIOL, V40, P859; Wake MH, 2006, REPROD BIOL PHYLOGEN, V5, P1; WAKE MH, 1989, LIFE SCI R, V45, P235; WALLACE RA, 1981, P NATL ACAD SCI-BIOL, V78, P3078, DOI 10.1073/pnas.78.5.3078; WALLACE RA, 1978, P NATL ACAD SCI USA, V75, P5534, DOI 10.1073/pnas.75.11.5534; WASSERSUG RJ, 1982, EVOL BIOL, V15, P223; WASSERSUG RJ, 1975, AM ZOOL, V15, P405; WASSERSUG RJ, 1984, J MORPHOL, V182, P1, DOI 10.1002/jmor.1051820102; WEBER GM, 1994, GEN COMP ENDOCR, V94, P62, DOI 10.1006/gcen.1994.1060; Wiens JJ, 2007, EVOLUTION, V61, P1886, DOI 10.1111/j.1558-5646.2007.00159.x; Wilkinson M, 2008, BIOL LETTERS, V4, P358, DOI 10.1098/rsbl.2008.0217; Winklbauer R, 1996, DEV BIOL, V177, P413, DOI 10.1006/dbio.1996.0174; Winklbauer R, 1999, DEVELOPMENT, V126, P3703; Winklbauer R, 2001, NATURE, V413, P856, DOI 10.1038/35101621; Woltering JM, 2009, DEV BIOL, V332, P82, DOI 10.1016/j.ydbio.2009.04.031; Yamamoto S, 2003, DEV BIOL, V257, P190, DOI 10.1016/S0012-1606(03)00034-4; YAOITA Y, 1990, GENE DEV, V4, P1917, DOI 10.1101/gad.4.11.1917; Yasuoka Y, 2009, DEVELOPMENT, V136, P2005, DOI 10.1242/dev.028530; YOUN BW, 1980, J EMBRYOL EXP MORPH, V59, P223 251 29 32 1 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1759-7684 1759-7692 WIRES DEV BIOL Wiley Interdiscip. Rev.-Dev. Biol. MAY-JUN 2012 1 3 345 369 10.1002/wdev.23 25 Developmental Biology Developmental Biology V31EP WOS:000208867200003 22662314 Green Accepted 2019-02-21 J MacCormick, HA; MacNulty, DR; Bosacker, AL; Lehman, C; Bailey, A; Collins, DA; Packer, C MacCormick, Holly A.; MacNulty, Daniel R.; Bosacker, Anna L.; Lehman, Clarence; Bailey, Andrea; Collins, D. Anthony; Packer, Craig Male and female aggression: lessons from sex, rank, age, and injury in olive baboons BEHAVIORAL ECOLOGY English Article competition; injury; life history; olive baboon; Papio anubis; rank LONG-TAILED MACAQUES; DEPENDENT REPRODUCTIVE EFFORT; LIFE-HISTORY PATTERNS; MALE SAVANNA BABOONS; INBREEDING AVOIDANCE; PAPIO-ANUBIS; INTRASEXUAL COMPETITION; SOCIAL RELATIONSHIPS; MACACA-FASCICULARIS; NONHUMAN-PRIMATES Aggression is ubiquitous, influencing reproduction through inter- and intraspecific effects in ways that reflect life-history strategies of species. In many social mammals, females remain in their natal group for life, whereas males emigrate and compete for rank in other social groups. Competition for rank is inherently risky. Therefore, it has long been hypothesized that risks of injury depend on an individual's sex, rank, and age in ways that maximize an individual's reproductive output. However, studies quantifying such risks have been lacking. We analyzed 20 years of long-term data on wounds among olive baboons (Papio anubis) in Gombe National Park, Tanzania. Males received significantly more wounds than female baboons, and both sexes received the most wounds at ages when they competed most intensely for rank. Immature females received more wounds than immature males in their natal groups, and immature females were more likely to be wounded by females than were immature males. Males in their natal group were wounded less often than immigrant males of the same age. The risk of wounding did not depend on rank in females but rose with rank in immigrant males. Lastly, females received significantly more wounds when cycling (not pregnant or lactating). This study is among the first to quantify the risk of injury for competitors of different sexes, ages, and ranks in social groups. Our results support the prediction that individuals target aggression toward present and future competitors and suggest that sexual coercion increases the risk of wounding in cycling females. [MacCormick, Holly A.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Ctr Ocean Hlth, Santa Cruz, CA 95060 USA; [MacCormick, Holly A.; MacNulty, Daniel R.; Bailey, Andrea; Packer, Craig] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [MacNulty, Daniel R.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Bosacker, Anna L.] Carleton Coll, Dept Biol, Northfield, MN 55057 USA; [Lehman, Clarence] Coll Biol Sci, St Paul, MN 55108 USA; [Collins, D. Anthony] Gombe Stream Res Ctr, Kigoma, Tanzania MacCormick, HA (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Ctr Ocean Hlth, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. maccormick@biology.ucsc.edu MacNulty, Dan/L-3965-2016 Jane Goodall Institute; NSF We thank Drs Anne Pusey, Aimee S. Dunlap, Donald Siniff, Dawn M. Kitchen, Ian Gilby, and Michael Wilson for their invaluable feedback and discussion on this manuscript. For insightful comments, we especially thank Anna E. MacCormick, Phillip L. Wharton Jr, Moe Khosravy, and Nicole Thometz. We are deeply indebted to 2 anonymous reviewers whose thoughtful comments elevated and transformed our manuscript. We thank Bernard Kissui, Deus Mjungu, and Thaddus Shio for assistance with translation of data from Kiswahili to English; Drs Lynn E. Eberly and Pete Raimondi for insights on statistical methods; the government of Tanzania, including the Commission for Science and Technology (COSTECH), Tanzania Wildlife Research Institute (TAWIRI), and Tanzanian National Parks (TANAPA) for permission to conduct this long-term research. Many people have contributed to the collection, organization, and maintenance of long-term demographic data on the Gombe baboons, most notably Applonaire Sindimwo and all of the baboon field assistants. Long-term data collection on baboons was supported by the Jane Goodall Institute and grants from the Physical Anthropology program at NSF, and we thank both for their support. Alberts SC, 2003, ANIM BEHAV, V65, P821, DOI 10.1006/anbe.2003.2106; Altmann J, 2003, AM J HUM BIOL, V15, P401, DOI 10.1002/ajhb.10157; Altmann J, 2010, ANN NY ACAD SCI, V1024, P127; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; ARCESE P, 1989, ANIM BEHAV, V38, P958, DOI 10.1016/S0003-3472(89)80137-X; BEKOFF M, 1984, ANNU REV ECOL SYST, V15, P191, DOI 10.1146/annurev.es.15.110184.001203; BERCOVITCH FB, 1988, ANIM BEHAV, V36, P1198, DOI 10.1016/S0003-3472(88)80079-4; BERCOVITCH FB, 1986, INT J PRIMATOL, V7, P533, DOI 10.1007/BF02736660; Bessaoud F, 2005, COMPUT METH PROG BIO, V77, P1, DOI 10.1016/j.cmpb.2004.05.009; BLANCHARD RJ, 1988, AGGRESSIVE BEHAV, V14, P195, DOI 10.1002/1098-2337(1988)14:3<195::AID-AB2480140305>3.0.CO;2-G; BOLHUIS JJ, 1988, ANIM BEHAV, V36, P1551, DOI 10.1016/S0003-3472(88)80230-6; Burnham K. P, 2002, MODEL SELECTION MULT; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; CHENEY DL, 1977, BEHAV ECOL SOCIOBIOL, V2, P303, DOI 10.1007/BF00299742; CHENEY DL, 1983, AM NAT, V122, P392, DOI 10.1086/284142; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Clutton-Brock TH, 2006, NATURE, V444, P1065, DOI 10.1038/nature05386; CLUTTONBROCK TH, 1979, ANIM BEHAV, V27, P211, DOI 10.1016/0003-3472(79)90141-6; CLUTTONBROCK TH, 1977, J ZOOL, V183, P1, DOI 10.1111/j.1469-7998.1977.tb04171.x; CLUTTONBROCK TH, 1995, NATURE, V373, P209, DOI 10.1038/373209a0; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Constable JL, 2001, MOL ECOL, V10, P1279, DOI 10.1046/j.1365-294X.2001.01262.x; DeVORE I., 1965, P266; DITTUS WPJ, 1979, BEHAVIOUR, V69, P265, DOI 10.1163/156853979X00511; DOBSON FS, 1982, ANIM BEHAV, V30, P1183; Drews C, 1996, BEHAVIOUR, V133, P443, DOI 10.1163/156853996X00530; Edelman AJ, 2011, BEHAV ECOL, V22, P776, DOI 10.1093/beheco/arr050; EUBANK RL, 1984, COMMUN STAT-THEOR M, V13, P433, DOI 10.1080/03610928408828695; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; HALEY MP, 1994, ANIM BEHAV, V48, P1249, DOI 10.1006/anbe.1994.1361; Hausfater G., 1975, Contributions Primatol, V7, P1; HENZI SP, 1980, FOLIA PRIMATOL, V33, P220, DOI 10.1159/000155936; HOLEKAMP KE, 1991, AM ZOOL, V31, P306; Kawamura S, 1958, PRIMATES, V1, P49; Kemp DJ, 2003, AM NAT, V162, P290, DOI 10.1086/376890; KOFORD CB, 1963, SCIENCE, V141, P356, DOI 10.1126/science.141.3578.356; Koyama N., 1967, Primates, V8, P189, DOI 10.1007/BF01731037; LEBOEUF BJ, 1974, AM ZOOL, V14, P163; LUCAS PW, 1982, ARCH ORAL BIOL, V27, P493, DOI 10.1016/0003-9969(82)90090-5; Mainguy J, 2008, BEHAV ECOL SOCIOBIOL, V62, P935, DOI 10.1007/s00265-007-0517-9; MANSON JH, 1993, AM J PHYS ANTHROPOL, V90, P335, DOI 10.1002/ajpa.1330900307; Marsh LC, 2002, SPLINE REGRESSION MO; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; MOORE NP, 1995, BEHAV ECOL SOCIOBIOL, V36, P91, DOI 10.1007/BF00170713; Muller M. N., 2009, SEXUAL COERCION PRIM; Natoli E, 2007, ETHOLOGY, V113, P283, DOI 10.1111/j.1439-0310.2006.01320.x; NOE R, 1990, BEHAVIOUR, V113, P117, DOI 10.1163/156853990X00455; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; PACKER C, 1979, ANIM BEHAV, V27, P1, DOI 10.1016/0003-3472(79)90126-X; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PACKER C, 1977, NATURE, V265, P441, DOI 10.1038/265441a0; Packer C, 2000, PHILOS T ROY SOC B, V355, P1627, DOI 10.1098/rstb.2000.0725; PACKER C, 1995, NATURE, V373, P60, DOI 10.1038/373060a0; PACKER C, 1979, FOLIA PRIMATOL, V31, P212, DOI 10.1159/000155884; PACKER C, 1979, ANIM BEHAV, V27, P37, DOI 10.1016/0003-3472(79)90127-1; Palombit RA, 1999, EVOL ANTHROPOL, V7, P117, DOI 10.1002/(SICI)1520-6505(1999)7:4<117::AID-EVAN2>3.0.CO;2-O; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; Perry S, 1996, AM J PRIMATOL, V40, P167, DOI 10.1002/(SICI)1098-2345(1996)40:2<167::AID-AJP4>3.0.CO;2-W; Plavcan JM, 2008, AM J PHYS ANTHROPOL, V136, P65, DOI 10.1002/ajpa.20779; PRUDHOMME J, 1993, PRIMATES, V34, P271, DOI 10.1007/BF02382621; Pusey A, 1997, SCIENCE, V277, P828, DOI 10.1126/science.277.5327.828; Pusey A.E., 1987, P250; PUSEY AE, 1980, ANIM BEHAV, V28, P543, DOI 10.1016/S0003-3472(80)80063-7; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; SEYFARTH RM, 1976, ANIM BEHAV, V24, P917, DOI 10.1016/S0003-3472(76)80022-X; Silk JB, 2004, ANIM BEHAV, V67, P573, DOI 10.1016/j.anbehav.2003.07.001; Silk JB, 1981, BEHAVIOUR, V78, P112; SIMMONS LW, 1991, ANIM BEHAV, V41, P493, DOI 10.1016/S0003-3472(05)80852-8; SMUTS B, 1989, AM J PRIMATOL, V19, P229, DOI 10.1002/ajp.1350190405; Smuts B.B., 1987, P385; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; SMUTS BB, 1993, ADV STUD BEHAV, V22, P1, DOI 10.1016/S0065-3454(08)60404-0; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Sterck EHM, 2005, BEHAVIOUR, V142, P845, DOI 10.1163/1568539055010093; Ulbrich K, 1999, ECOL MODEL, V115, P243, DOI 10.1016/S0304-3800(98)00180-X; Van Lawick-Goodall J., 1968, Animal Behaviour Monographs, V1, P165; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; VANNOORDWIJK MA, 1985, ANIM BEHAV, V33, P849, DOI 10.1016/S0003-3472(85)80019-1; VANNOORDWIJK MA, 1988, BEHAVIOUR, V107, P24, DOI 10.1163/156853988X00179; VIRGADAMO P, 1972, J DENT RES, V51, P1338, DOI 10.1177/00220345720510051501; WASER PM, 1983, Q REV BIOL, V58, P355, DOI 10.1086/413385; WILEY RH, 1974, Q REV BIOL, V49, P201, DOI 10.1086/408083; Wilson ML, 2004, INT J PRIMATOL, V25, P523, DOI 10.1023/B:IJOP.0000023574.38219.92; WOLD S, 1974, TECHNOMETRICS, V16, P1, DOI 10.2307/1267485; Yoccoz NG, 2002, P ROY SOC B-BIOL SCI, V269, P1523, DOI 10.1098/rspb.2002.2047; ZHAO QK, 1994, PRIMATES, V35, P57, DOI 10.1007/BF02381486 87 26 26 1 97 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAY-JUN 2012 23 3 684 691 10.1093/beheco/ars021 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 921NV WOS:000302485200030 Bronze 2019-02-21 J Dantzer, B; Swanson, EM Dantzer, Ben; Swanson, Eli M. Mediation of vertebrate life histories via insulin-like growth factor-1 BIOLOGICAL REVIEWS English Review constraint; modularity; glucocorticoids; hormones; life history; phenotypic integration; plasticity; somatotrophic axis; insulin-like growth factor-1; testosterone SNAKE THAMNOPHIS-ELEGANS; EVOLUTIONARILY CONSERVED MECHANISM; HORMONE NEGATIVE FEEDBACK; FACTOR BINDING PROTEIN-1; CONTROL MAMMALIAN GROWTH; FAST-SLOW CONTINUUM; IGF-I; DEVELOPMENTAL PLASTICITY; CAENORHABDITIS-ELEGANS; NUTRITIONAL REGULATION Life-history traits describe parameters associated with growth, size, survival, and reproduction. Life-history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life-history variation after controlling for body size involves trade-offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life-history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life-history trade-offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin-like growth factor-1 (IGF-1) in shaping the adaptive integration of multiple life-history traits. IGF-1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF-1 levels are susceptible to environmental variation and that IGF-1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF-1 concentrations and its associations with life-history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF-1 mediates adaptive divergence in suites of life-history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF-1 may facilitate adaptive plasticity in life-history strategies in response to early environmental conditions and also how selection on loci controlling IGF-1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF-1 we suggest that IGF-1 be considered a suitable candidate mechanism for mediating life-history traits. Finally, we discuss what we can learn about IGF-1 from studies in free-ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF-1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free-ranging animals. Examining how IGF-1 mediates life-history traits in free-ranging animals could lead to great insight into the mechanisms that influence life-history variation. [Dantzer, Ben; Swanson, Eli M.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Dantzer, B (reprint author), Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. bendantzer@gmail.com Dantzer, Ben/E-9779-2011; Swanson, Eli/A-1941-2009 Dantzer, Ben/0000-0002-3058-265X; National Science Foundation We thank Kay Holekamp, Andrew McAdam, Alex Shingleton and two anonymous reviewers for comments on a previous version of this manuscript. E. M. S. was supported by a predoctoral fellowship from the National Science Foundation. Adamczewski JZ, 1998, THERIOGENOLOGY, V50, P605, DOI 10.1016/S0093-691X(98)00165-4; ADASHI EY, 1985, ENDOCR REV, V6, P400, DOI 10.1210/edrv-6-3-400; Agrawal A. A., 2010, EVOLUTION DARWIN 1 1, P243; Arantes-Oliveira N, 2003, SCIENCE, V302, P611, DOI 10.1126/science.1089169; Baker J, 1996, MOL ENDOCRINOL, V10, P903, DOI 10.1210/me.10.7.903; BAKER J, 1993, CELL, V75, P73, DOI 10.1016/S0092-8674(05)80085-6; Barber-Meyer SM, 2008, WILDLIFE MONOGR, P1, DOI 10.2193/2008-004; Barbieri M, 2003, AM J PHYSIOL-ENDOC M, V285, pE1064, DOI 10.1152/ajpendo.00296.2003; Bartke A, 2005, ENDOCRINOLOGY, V146, P3718, DOI 10.1210/en.2005-0411; BASERGA R, 1999, IGF SYSTEM, P329; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baxter RC, 2009, TRENDS ENDOCRIN MET, V20, P499, DOI 10.1016/j.tem.2009.07.002; Beccavin C, 2001, J ENDOCRINOL, V168, P297, DOI 10.1677/joe.0.1680297; Beckman BR, 2011, GEN COMP ENDOCR, V170, P233, DOI 10.1016/j.ygcen.2010.08.009; Beldade P, 2002, NATURE, V416, P844, DOI 10.1038/416844a; BERELOWITZ M, 1981, SCIENCE, V212, P1279, DOI 10.1126/science.6262917; Berryman DE, 2008, GROWTH HORM IGF RES, V18, P455, DOI 10.1016/j.ghir.2008.05.005; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bonafe M, 2003, J CLIN ENDOCR METAB, V88, P3299, DOI 10.1210/jc.2002-021810; Boonstra R, 2005, J MAMMAL, V86, P236, DOI 10.1644/BHE-001.1; BRAZEAU P, 1973, SCIENCE, V179, P77, DOI 10.1126/science.179.4068.77; Brogiolo W, 2001, CURR BIOL, V11, P213, DOI 10.1016/S0960-9822(01)00068-9; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; BULGER JB, 1993, BEHAVIOUR, V127, P67, DOI 10.1163/156853993X00434; Butler AA, 1998, COMP BIOCHEM PHYS B, V121, P19, DOI 10.1016/S0305-0491(98)10106-2; Butler AA, 2001, ANNU REV PHYSIOL, V63, P141, DOI 10.1146/annurev.physiol.63.1.141; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carter CS, 2002, TRENDS GENET, V18, P295, DOI 10.1016/S0168-9525(02)02696-3; Chandrashekar V, 2004, BIOL REPROD, V71, P17, DOI 10.1095/biolreprod.103.027060; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; Charnov EL, 2004, EVOL ECOL RES, V6, P307; Charnov Eric L., 1993, P1; CLEMMONS DR, 1991, ANNU REV NUTR, V11, P393, DOI 10.1146/annurev.nu.11.070191.002141; COLAK M, 2011, REPROD DOME IN PRESS; Colon E, 2007, ENDOCRINOLOGY, V148, P128, DOI 10.1210/en.2006-0835; Conner JK, 2003, ECOLOGY, V84, P1650, DOI 10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Coyne J. A., 2004, SPECIATION; CRAIN DA, 1995, GEN COMP ENDOCR, V98, P219, DOI 10.1006/gcen.1995.1063; Crespi EJ, 2006, J PHYSIOL-LONDON, V572, P119, DOI 10.1113/jphysiol.2005.103929; D'ERCOLE A. J., 1999, IGF SYSTEM, P545; Daftary SS, 2005, EXP BIOL MED, V230, P292, DOI 10.1177/153537020523000503; Danilovich N, 1999, ENDOCRINOLOGY, V140, P2637, DOI 10.1210/en.140.6.2637; DAUGHADAY WH, 1972, NATURE, V235, P107, DOI 10.1038/235107a0; DECHIARA TM, 1990, NATURE, V345, P78, DOI 10.1038/345078a0; Demeestere I, 2004, BIOL REPROD, V70, P1664, DOI 10.1095/biolreprod.103.023317; DEVLIN RH, 1994, NATURE, V371, P209, DOI 10.1038/371209a0; Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240; Ditchkoff SS, 2001, COMP BIOCHEM PHYS A, V129, P887, DOI 10.1016/S1095-6433(01)00351-8; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Duan CM, 2010, GEN COMP ENDOCR, V167, P344, DOI 10.1016/j.ygcen.2010.04.009; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; EIGENMANN JE, 1984, ACTA ENDOCRINOL-COP, V106, P448, DOI 10.1530/acta.0.1060448; Falconer D. S., 1996, INTRO QUANTITATIVE G; Favier RP, 2001, J ENDOCRINOL, V170, P479, DOI 10.1677/joe.0.1700479; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flachsbart F, 2009, P NATL ACAD SCI USA, V106, P2700, DOI 10.1073/pnas.0809594106; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Frankino WA, 2005, SCIENCE, V307, P718, DOI 10.1126/science.1105409; FROESCH ER, 1985, ANNU REV PHYSIOL, V47, P443; Gasser M, 2000, EVOLUTION, V54, P1260; Gatford KL, 1998, J ENDOCRINOL, V157, P373, DOI 10.1677/joe.0.1570373; Gau RJ, 2002, URSUS, V13, P285; Gay E, 1997, ENDOCRINOLOGY, V138, P2937, DOI 10.1210/en.138.7.2937; Giannakou ME, 2007, TRENDS BIOCHEM SCI, V32, P180, DOI 10.1016/j.tibs.2007.02.007; Giannakou ME, 2004, SCIENCE, V305, P361, DOI 10.1126/science.1098219; GIUDICE L. C., 1999, IGF SYSTEM MOL BIOL, P379; Gluckman PD, 2004, SCIENCE, V305, P1733, DOI 10.1126/science.1095292; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Godfrey KM, 2010, TRENDS ENDOCRIN MET, V21, P199, DOI 10.1016/j.tem.2009.12.008; GOMEZ E, 1993, FERTIL STERIL, V60, P40; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Greer KA, 2007, RES VET SCI, V82, P208, DOI 10.1016/j.rvsc.2006.06.005; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Gruaz NM, 1997, ENDOCRINE, V6, P11, DOI 10.1007/BF02738796; Guevara-Aguirre J, 2011, SCI TRANSL MED, V3, DOI 10.1126/scitranslmed.3001845; Guillette LJ, 1996, GEN COMP ENDOCR, V104, P116; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hiney JK, 2009, ENDOCRINOLOGY, V150, P376, DOI 10.1210/en.2008-0954; Hiney JK, 1996, ENDOCRINOLOGY, V137, P3717, DOI 10.1210/en.137.9.3717; HOBBS CJ, 1993, J CLIN ENDOCR METAB, V77, P776, DOI 10.1210/jc.77.3.776; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Hui Y. H., 2001, MEAT SCI APPL; Hwa V, 1999, ENDOCR REV, V20, P761, DOI 10.1210/er.20.6.761; Hwangbo DS, 2004, NATURE, V429, P562, DOI 10.1038/nature02549; JONES JI, 1995, ENDOCR REV, V16, P3, DOI 10.1210/er.16.1.3; KADOWAKI T, 1987, J BIOL CHEM, V262, P7342; Kappeler L, 2009, ENDOCRINOLOGY, V150, P314, DOI 10.1210/en.2008-0981; Kappeler L, 2008, PLOS BIOL, V6, P2144, DOI 10.1371/journal.pbio.0060254; Kawai M, 2010, J CELL BIOCHEM, V111, P14, DOI 10.1002/jcb.22678; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Kenyon PR, 2007, NEW ZEAL J AGR RES, V50, P291, DOI 10.1080/00288230709510297; Kenyon PR, 2009, NEW ZEAL J AGR RES, V52, P307, DOI 10.1080/00288230909510515; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942; KIRKWOOD JK, 1985, J SMALL ANIM PRACT, V26, P97, DOI 10.1111/j.1748-5827.1985.tb02090.x; KLAPPER DG, 1983, ENDOCRINOLOGY, V112, P2215, DOI 10.1210/endo-112-6-2215; Kuningas M, 2007, EUR J HUM GENET, V15, P294, DOI 10.1038/sj.ejhg.5201766; Le Roith D, 2001, ENDOCR REV, V22, P53, DOI 10.1210/er.22.1.53; LEACH RM, 1994, POULTRY SCI, V73, P883, DOI 10.3382/ps.0730883; Leevers SJ, 2001, CURR BIOL, V11, pR209, DOI 10.1016/S0960-9822(01)00107-5; Lennox AR, 2008, COMP BIOCHEM PHYS A, V149, P203, DOI 10.1016/j.cbpa.2007.11.012; LEROITH D, 1995, ENDOCR REV, V16, P143, DOI 10.1210/er.16.2.143; Liang HY, 2003, EXP GERONTOL, V38, P1353, DOI 10.1016/j.exger.2003.10.019; Lin K, 1997, SCIENCE, V278, P1319, DOI 10.1126/science.278.5341.1319; LopezFernandez J, 1996, ENDOCRINOLOGY, V137, P4384, DOI 10.1210/en.137.10.4384; Lordi B, 1997, PHYSIOL BEHAV, V62, P1087, DOI 10.1016/S0031-9384(97)00261-8; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; LUO JM, 1990, ENDOCRINOLOGY, V127, P1456, DOI 10.1210/endo-127-3-1456; Manier MK, 2005, MOL ECOL, V14, P3965, DOI 10.1111/j.1365-294X.2005.02734.x; Manikkam M, 2004, ENDOCRINOLOGY, V145, P790, DOI 10.1210/en.2003-0478; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Maxwell A, 1998, J ENDOCRINOL, V158, P77, DOI 10.1677/joe.0.1580077; McCormick MI, 2006, ECOLOGY, V87, P1104, DOI 10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; MCGUIRE MA, 1992, J ANIM SCI, V70, P2901; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; McMurtry JP, 1998, J NUTR, V128, p302S, DOI 10.1093/jn/128.2.302S; McMurtry JP, 1997, DOMEST ANIM ENDOCRIN, V14, P199, DOI 10.1016/S0739-7240(97)00019-2; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; Meylan S, 2005, HORM BEHAV, V48, P44, DOI 10.1016/j.yhbeh.2004.11.022; MORGAN DO, 1987, NATURE, V329, P301, DOI 10.1038/329301a0; Moyes T. E., 2004, Animal Production in Australia. Proceedings of the Australian Society of Animal Production, V25, P288; Murphy CT, 2003, NATURE, V424, P277, DOI 10.1038/nature01789; Nakae J, 2001, ENDOCR REV, V22, P818, DOI 10.1210/edrv.22.6.0452; Narasimhan SD, 2009, CURR BIOL, V19, pR657, DOI 10.1016/j.cub.2009.06.013; Nelson SN, 2010, GEN COMP ENDOCR, V168, P103, DOI 10.1016/j.ygcen.2010.04.021; Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; ONAGBESAN OM, 1995, J REPROD FERTIL, V104, P259; Onagbesan OM, 1999, DOMEST ANIM ENDOCRIN, V17, P299, DOI 10.1016/S0739-7240(99)00046-6; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; Patronek GJ, 1997, J GERONTOL A-BIOL, V52, pB171, DOI 10.1093/gerona/52A.3.B171; Pertseva MN, 2002, J EVOL BIOCHEM PHYS+, V38, P547, DOI 10.1023/A:1022008932029; Pine MD, 2006, REPROD TOXICOL, V21, P104, DOI 10.1016/j.reprotox.2005.07.003; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Rajaram S, 1997, ENDOCR REV, V18, P801, DOI 10.1210/er.18.6.801; Reynaud K, 2010, J ENDOCRINOL, V206, P85, DOI 10.1677/JOE-09-0450; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Richmond JP, 2010, GEN COMP ENDOCR, V165, P286, DOI 10.1016/j.ygcen.2009.07.007; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RINDERKNECHT E, 1978, J BIOL CHEM, V253, P2769; ROBINSON R, 1973, VET REC, V92, P221, DOI 10.1136/vr.92.9.221; ROBINSON R., 1982, GENETICS DOG BREEDER; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Roff Derek A., 1992; Romero CJ, 2010, MOL ENDOCRINOL, V24, P1077, DOI 10.1210/me.2009-0393; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; ROSS R, 1991, CLIN ENDOCRINOL, V35, P47, DOI 10.1111/j.1365-2265.1991.tb03495.x; SALMON WD, 1957, J LAB CLIN MED, V49, P825; Sapolsky RM, 1997, AM J PHYSIOL-REG I, V273, pR1346; Scanes CG, 2009, GEN COMP ENDOCR, V163, P24, DOI 10.1016/j.ygcen.2009.04.013; Schemske DW, 1999, P NATL ACAD SCI USA, V96, P11910, DOI 10.1073/pnas.96.21.11910; Schlessinger J, 2000, CELL, V103, P211, DOI 10.1016/S0092-8674(00)00114-8; SCHWARTZ SM, 1992, AM J PHYS ANTHROPOL, V89, P109, DOI 10.1002/ajpa.1330890110; SHINE R, 1992, AM NAT, V139, P1257, DOI 10.1086/285385; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Sjogren K, 1999, P NATL ACAD SCI USA, V96, P7088, DOI 10.1073/pnas.96.12.7088; SNELL TW, 1977, EVOLUTION, V31, P882, DOI 10.1111/j.1558-5646.1977.tb01082.x; Sparkman AM, 2010, GEN COMP ENDOCR, V168, P408, DOI 10.1016/j.ygcen.2010.05.006; Sparkman AM, 2009, ECOLOGY, V90, P720, DOI 10.1890/08-0850.1; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1983, AM ZOOL, V23, P65; Stratikopoulos E, 2008, P NATL ACAD SCI USA, V105, P19378, DOI 10.1073/pnas.0809223105; STRAUS DS, 1994, FASEB J, V8, P6; Suh Y, 2008, P NATL ACAD SCI USA, V105, P3438, DOI 10.1073/pnas.0705467105; Sutter NB, 2007, SCIENCE, V316, P112, DOI 10.1126/science.1137045; Suzuki J, 2001, J MED PRIMATOL, V30, P174, DOI 10.1111/j.1600-0684.2001.tb00006.x; TANNENBAUM GS, 1983, SCIENCE, V220, P77, DOI 10.1126/science.6338593; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Todd BJ, 2010, ENDOCRINOLOGY, V151, P1356, DOI 10.1210/en.2009-1009; Tomas FM, 1998, GEN COMP ENDOCR, V110, P262, DOI 10.1006/gcen.1998.7072; Trangerud C, 2007, J ANIM SCI, V85, P76, DOI 10.2527/jas.2006-354; Tryfonidou MA, 2003, J ANIM SCI, V81, P1568; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; ULLRICH A, 1986, EMBO J, V5, P2503, DOI 10.1002/j.1460-2075.1986.tb04528.x; UNTERMAN TG, 1993, ENDOCRINOLOGY, V133, P2531, DOI 10.1210/en.133.6.2531; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VASI F, 1994, AM NAT, V144, P432, DOI 10.1086/285685; Velazquez MA, 2008, DOMEST ANIM ENDOCRIN, V35, P325, DOI 10.1016/j.domaniend.2008.07.002; Wang GM, 2004, BIOL REPROD, V70, P632, DOI 10.1095/biolreprod.103.022590; WAYNE RK, 1986, EVOLUTION, V40, P243, DOI 10.1111/j.1558-5646.1986.tb00467.x; WAYNE RK, 1986, J MORPHOL, V187, P301, DOI 10.1002/jmor.1051870304; WEINZIMER SA, 1999, IGF SYSTEM MOL BIOL, P407; Wilicox BJ, 2008, P NATL ACAD SCI USA, V105, P13987, DOI 10.1073/pnas.0801030105; Wilkin TA, 2009, CURR BIOL, V19, P1998, DOI 10.1016/j.cub.2009.09.065; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson ME, 1998, J ENDOCRINOL, V158, P247, DOI 10.1677/joe.0.1580247; Woodall SM, 1996, J ENDOCRINOL, V150, P231, DOI 10.1677/joe.0.1500231; Woods RJ, 2011, SCIENCE, V331, P1433, DOI 10.1126/science.1198914; Yakar S, 1999, P NATL ACAD SCI USA, V96, P7324, DOI 10.1073/pnas.96.13.7324; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615; Zhou YH, 1997, P NATL ACAD SCI USA, V94, P13215, DOI 10.1073/pnas.94.24.13215 206 43 43 0 71 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. MAY 2012 87 2 414 429 10.1111/j.1469-185X.2011.00204.x 16 Biology Life Sciences & Biomedicine - Other Topics 919TH WOS:000302351300009 21981025 2019-02-21 J Meiri, S; Brown, JH; Sibly, RM Meiri, Shai; Brown, James H.; Sibly, Richard M. The ecology of lizard reproductive output GLOBAL ECOLOGY AND BIOGEOGRAPHY English Article Body size; diet; insularity; mortality; oviparity; phylogenetic comparative methods; productivity; reproductive output; temperature; viviparity LIFE-HISTORY EVOLUTION; INVARIANT CLUTCH SIZE; BODY-SIZE; ENERGY-EXPENDITURE; SQUAMATE REPTILES; PHYLOGENY; MAMMALS; UNIVERSAL; ALLOMETRY; SHAPE Aim We provide a new quantitative analysis of lizard reproductive ecology. Comparative studies of lizard reproduction to date have usually considered life-history components separately. Instead, we examine the rate of production (productivity hereafter) calculated as the total mass of offspring produced in a year. We test whether productivity is influenced by proxies of adult mortality rates such as insularity and fossorial habits, by measures of temperature such as environmental and body temperatures, mode of reproduction and activity times, and by environmental productivity and diet. We further examine whether low productivity is linked to high extinction risk. Location World-wide. Methods We assembled a database containing 551 lizard species, their phylogenetic relationships and multiple life history and ecological variables from the literature. We use phylogenetically informed statistical models to estimate the factors related to lizard productivity. Results Some, but not all, predictions of metabolic and life-history theories are supported. When analysed separately, clutch size, relative clutch mass and brood frequency are poorly correlated with body mass, but their product - productivity is well correlated with mass. The allometry of productivity scales similarly to metabolic rate, suggesting that a constant fraction of assimilated energy is allocated to production irrespective of body size. Island species were less productive than continental species. Mass-specific productivity was positively correlated with environmental temperature, but not with body temperature. Viviparous lizards were less productive than egg-laying species. Diet and primary productivity were not associated with productivity in any model. Other effects, including lower productivity of fossorial, nocturnal and active foraging species were confounded with phylogeny. Productivity was not lower in species at risk of extinction. Main conclusions Our analyses show the value of focusing on the rate of annual biomass production (productivity), and generally supported associations between productivity and environmental temperature, factors that affect mortality and the number of broods a lizard can produce in a year, but not with measures of body temperature, environmental productivity or diet. [Meiri, Shai] Tel Aviv Univ, Dept Zool, IL-69978 Tel Aviv, Israel; [Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA; [Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England Meiri, S (reprint author), Tel Aviv Univ, Dept Zool, IL-69978 Tel Aviv, Israel. uncshai@post.tau.ac.il Meiri, Shai/D-2403-2010 Meiri, Shai/0000-0003-3839-6330; Sibly, Richard/0000-0001-6828-3543 Alon Fellowship We thank Gavin Thomas for invaluable assistance with the pglm analyses. Rich Grenyer, Ally Phillimore, David Orme and Gavin Thomas kindly helped with R code. We thank Rodolphe Bernard, Anat Feldman and Meirion Hopkins for help with obtaining the environmental and geographic data, Erez Maza and Maria Novosolov for help with the insularity data, and Raoul Van-Damme for contributing much of the body temperature data. We thank Barbara B. Sanger and Liz Butcher from the Michael Way Library, Imperial College, Silwood Park, for their invaluable help with data collection. Folmer Bokma, Pasquale Raia and two anonymous referees provided important comments on earlier versions of this manuscript. S.M. is supported by an Alon Fellowship. ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Albert EM, 2009, GENE, V441, P12, DOI 10.1016/j.gene.2008.05.014; Anderson KJ, 2005, ECOL LETT, V8, P310, DOI 10.1111/j.1461-0248.2005.00723.x; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; ATCHLEY WR, 1976, SYST ZOOL, V25, P137, DOI 10.2307/2412740; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Buckley LB, 2008, ECOLOGY, V89, P48, DOI 10.1890/07-0845.1; Calder III WA, 1984, SIZE FUNCTION LIFE H; Cardillo M, 2005, SCIENCE, V309, P1239, DOI 10.1126/science.1116030; Case T.J., 1982, P184; Clarke A, 2010, J ANIM ECOL, V79, P610, DOI 10.1111/j.1365-2656.2010.01672.x; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Crawley M. J., 2007, R BOOK; Davidson AD, 2009, PNAS, V26, P10702; Degenhardt W. G., 1996, AMPHIBIANS REPTILES; Dunham A.E., 1988, Biology of Reptilia, V16, P441; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Fitch H. S, 1970, U KANSAS MUS NAT HIS, V52, P1; FITCH HS, 1985, U KANSAS MUS NAT HIS, V76, P1; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Greer AE, 2003, J HERPETOL, V37, P554, DOI 10.1670/138-02N; Hamilton MJ, 2011, P ROY SOC B-BIOL SCI, V278, P560, DOI 10.1098/rspb.2010.1056; HASEGAWA M, 1994, COPEIA, P732; HEDGES SB, 1985, AM NAT, V126, P258, DOI 10.1086/284412; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Imhoff M.L., 2004, HANPP COLLECTION GLO; INGER RF, 1966, ECOLOGY, V47, P1007, DOI 10.2307/1935648; IUCN, 2009, RED LIST THREAT SPEC; JANZEN DH, 1973, ECOLOGY, V54, P687, DOI 10.2307/1935359; Johnson CN, 2002, P ROY SOC B-BIOL SCI, V269, P2221, DOI 10.1098/rspb.2002.2130; Kratochvil L, 2007, FUNCT ECOL, V21, P171, DOI 10.1111/j.1365-2435.2006.01202.x; Kratochvil L, 2006, BIOL J LINN SOC, V88, P527, DOI 10.1111/j.1095-8312.2006.00627.x; MCNAB BK, 1995, J MAMMAL, V76, P206, DOI 10.2307/1382329; MCNAB BK, 1986, ECOL MONOGR, V56, P1, DOI 10.2307/2937268; Meiri S, 2004, CONDOR, V106, P540, DOI 10.1650/7506; Meiri S, 2010, J ZOOL, V281, P218, DOI 10.1111/j.1469-7998.2010.00696.x; Meiri S, 2008, GLOBAL ECOL BIOGEOGR, V17, P724, DOI 10.1111/j.1466-8238.2008.00414.x; Meiri S, 2007, GLOBAL ECOL BIOGEOGR, V16, P702, DOI 10.1111/j.1466-8238.2007.00327.x; Meiri S, 2011, J BIOGEOGR, V38, P89, DOI 10.1111/j.1365-2699.2010.02390.x; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Olesen JM, 2003, TRENDS ECOL EVOL, V18, P177, DOI 10.1016/S0169-5347(03)00004-1; Organ CL, 2008, INTEGR COMP BIOL, V48, P494, DOI 10.1093/icb/icn046; POUGH FH, 1980, AM NAT, V115, P92, DOI 10.1086/283547; Powney GD, 2010, GLOBAL ECOL BIOGEOGR, V19, P386, DOI 10.1111/j.1466-8238.2009.00521.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Raia P, 2006, EVOLUTION, V60, P1731; RAMBAUT A, 2010, FIGTREE V1 3 1; SHINE R, 1991, EVOLUTION, V45, P1696, DOI 10.1111/j.1558-5646.1991.tb02675.x; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Siliceo I, 2010, BIOL CONSERV, V143, P2601, DOI 10.1016/j.biocon.2010.07.002; Smith RJ, 1999, J HUM EVOL, V36, P423, DOI 10.1006/jhev.1998.0281; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; Turvey Samuel T., 2009, P17; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; WESTOBY M, 1995, J ECOL, V83, P531, DOI 10.2307/2261605; White CR, 2007, ECOLOGY, V88, P315, DOI 10.1890/05-1883; Wiens JJ, 2010, SYST BIOL, V59, P674, DOI 10.1093/sysbio/syq048 64 40 40 1 56 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1466-822X GLOBAL ECOL BIOGEOGR Glob. Ecol. Biogeogr. MAY 2012 21 5 592 602 10.1111/j.1466-8238.2011.00700.x 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography 920IP WOS:000302397900008 2019-02-21 J Mennerat, A; Hamre, L; Ebert, D; Nilsen, F; Davidova, M; Skorping, A Mennerat, A.; Hamre, L.; Ebert, D.; Nilsen, F.; Davidova, M.; Skorping, A. Life history and virulence are linked in the ectoparasitic salmon louse Lepeophtheirus salmonis JOURNAL OF EVOLUTIONARY BIOLOGY English Article age at maturity; Atlantic salmon; ectoparasite; fecundity; Lepeophtheirus salmonis; life history evolution; Salmo salar L; salmon louse; transmission-virulence trade-off; virulence evolution ATLANTIC SALMON; SEA LICE; TRADE-OFFS; EVOLUTION; PATHOGENS; SALAR; POPULATION; PARASITES; NEMATODES; MAMMALS Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L.similar to salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulencetransmission trade-off. Our results are relevant in the context of increasing intensive farming, where frequent anti-parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence. [Mennerat, A.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [Mennerat, A.; Hamre, L.; Nilsen, F.; Skorping, A.] Univ Bergen, Dept Biol, Bergen, Norway; [Ebert, D.] Univ Basel, Inst Zool, CH-4051 Basel, Switzerland; [Davidova, M.] Masaryk Univ, Dept Bot & Zool, Brno, Czech Republic Mennerat, A (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. adele.mennerat@zoo.ox.ac.uk Davidova, Martina/G-1183-2014; Ebert, Dieter/B-5502-2009 Ebert, Dieter/0000-0003-2653-3772; Mennerat, Adele/0000-0003-0368-7197 Norwegian Research Council [186140] We are grateful to Knut Helge Jensen for useful comments on statistical analyses. Many thanks to Heidi Kongshaug for advice and help with DNA extraction and PCR-based testing for the presence of Paranucleospora theridion in adult female lice. Thanks to Enrique Gonzalez and Per Gunnar Espedal for help in the laboratory. This research was supported by a grant from the Norwegian Research Council to A. Skorping (grant no 186140). The authors declared no conflict of interest. Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Dawson LHJ, 1999, DIS AQUAT ORGAN, V35, P89, DOI 10.3354/dao035089; Dawson LHJ, 1998, DIS AQUAT ORGAN, V33, P179, DOI 10.3354/dao033179; de Roode JC, 2008, P NATL ACAD SCI USA, V105, P7489, DOI 10.1073/pnas.0710909105; Ebert D, 1996, PARASITOL TODAY, V12, P96, DOI 10.1016/0169-4758(96)80668-5; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; Friedland KD, 2005, ICES J MAR SCI, V62, P1338, DOI 10.1016/j.icejms.2005.04.013; Gandon S, 2003, TRENDS MICROBIOL, V11, P206, DOI 10.1016/S0966-842X(03)00074-X; Glover KA, 2001, J FISH BIOL, V59, P1512, DOI 10.1006/jfbi.2001.1787; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; Hudson P. J., 1995, P144, DOI 10.1017/CBO9780511629396.006; Jensen KH, 2006, PLOS BIOL, V4, P1265, DOI 10.1371/journal.pbio.0040197; Lipsitch M, 1997, TRENDS MICROBIOL, V5, P31, DOI 10.1016/S0966-842X(97)81772-6; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; Mennerat A, 2010, EVOL BIOL, V37, P59, DOI 10.1007/s11692-010-9089-0; Morand S, 1996, FUNCT ECOL, V10, P210, DOI 10.2307/2389845; Nylund S, 2010, J EUKARYOT MICROBIOL, V57, P95, DOI 10.1111/j.1550-7408.2009.00451.x; Peyronnet A, 2007, J FISH BIOL, V71, P684, DOI 10.1111/j.1095-8649.2007.01538.x; PIKE AW, 1989, PARASITOL TODAY, V5, P291, DOI 10.1016/0169-4758(89)90020-3; Pike AW, 2000, ADV PARASIT, V44, P233; Pinheiro J., 2001, NLME LINEAR NONLINEA, P1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Development Core Team, 2011, R LANG ENV STAT COMP; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Roff A.D., 2002, LIFE HIST EVOLUTION; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Stearns S, 1992, EVOLUTION LIFE HIST 29 21 21 1 67 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2012 25 5 856 861 10.1111/j.1420-9101.2012.02474.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922MH WOS:000302551000006 22356541 Bronze 2019-02-21 J Attisano, A; Moore, AJ; Moore, PJ Attisano, A.; Moore, A. J.; Moore, P. J. Reproduction-longevity trade-offs reflect diet, not adaptation JOURNAL OF EVOLUTIONARY BIOLOGY English Article diet adaptation; life history traits; longevity; male's investment; reproduction; trade-offs MILKWEED BUGS ONCOPELTUS; LIFE-HISTORY; DROSOPHILA-MELANOGASTER; MATING-BEHAVIOR; FLIGHT ACTIVITY; FASCIATUS; SPAN; SEX; AGE; CONSEQUENCES A tenet of life history evolution is that allocation of limited resources results in trade-offs, such as that between reproduction and lifespan. Reproduction and lifespan are also influenced proximately by differences in the availability of specific nutrients. What is unknown is how the evolution of the ability to use a nutritionally novel diet is reflected in this fundamental trade-off. Does the evolution of the ability to use a nutritionally novel food maintain the trade-off in reproduction and longevity, or do the proximate effects of nutrition alter the adapted trade-off? We tested this by measuring trade-offs in male milkweed bugs, Oncopeltus fasciatus, fed either an adapted diet of sunflower or the ancestral diet of milkweed. Sunflower-fed males lived longer but invested less in reproduction, both in mating and fertility. Milkweed-fed males invested in both mating and fertility at the expense of survival. The evolution of an expanded diet was not constrained by the existing trade-off, but instead was accompanied by a different trade-off between reproduction and longevity. We suggest that this occurs because diets differ in promoting germ line development or longevity. [Attisano, A.; Moore, A. J.; Moore, P. J.] Univ Exeter, Ctr Ecol & Conservat, Coll Life & Environm Sci, Penryn, England Moore, PJ (reprint author), Univ Georgia, Dept Entomol, Athens, GA 30602 USA. pjmoore@uga.edu Attisano, Alfredo/P-2141-2015 Attisano, Alfredo/0000-0002-6675-4900 Leverhulme; European Social Fund We thank Corrina Lowry for technical help in rearing insects. Two anonymous reviewers provided helpful comments that clarified our presentation. This research is funded by a Leverhulme grant to T. J. M. and a European Social Fund Ph.D. studentship to A. A. All authors contributed extensively to the design, analysis and interpretation of the data and to the writing of the manuscript. A. A. performed the experiments. Adams TS, 2000, ANN ENTOMOL SOC AM, V93, P529, DOI 10.1603/0013-8746(2000)093[0529:EODAMS]2.0.CO;2; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; CHAPMAN T, 1994, J EVOLUTION BIOL, V7, P51, DOI 10.1046/j.1420-9101.1994.7010051.x; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; DINGLE H, 1966, J EXP BIOL, V44, P335; DINGLE H, 1965, J EXP BIOL, V42, P269; DINGLE H, 1972, SCIENCE, V175, P1327, DOI 10.1126/science.175.4028.1327; DINGLE H, 1968, AM NAT, V102, P149, DOI 10.1086/282532; FEIR D, 1974, ANNU REV ENTOMOL, V19, P81, DOI 10.1146/annurev.en.19.010174.000501; FEIR DOROTHY, 1963, ANN ENTOMOL SOC AMER, V56, P224; Flatt T, 2008, P NATL ACAD SCI USA, V105, P6368, DOI 10.1073/pnas.0709128105; Flatt T, 2009, NATURE, V462, P989, DOI 10.1038/462989a; Fricke C, 2008, EVOLUTION, V62, P3170, DOI 10.1111/j.1558-5646.2008.00515.x; Goudeau J, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000599; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Halliday R., 1989, BIOESSAYS, V10, P125; HAYES JL, 1983, PHYSIOL ENTOMOL, V8, P251, DOI 10.1111/j.1365-3032.1983.tb00357.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Jacob HS, 2000, ENVIRON ENTOMOL, V29, P1088, DOI 10.1603/0046-225X-29.5.1088; JMP, 1989, JMP VERS 8 0 2; Kaczmarczyk AN, 2011, BIOESSAYS, V33, P5, DOI 10.1002/bies.201000085; King R.C., 2006, DICT GENETICS; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; Magwere T., 2004, J GERONTOL A-BIOL, V95, pB3; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Moore PJ, 2011, ECOL EVOL, V1, P37, DOI 10.1002/ece3.4; Narasimhan SD, 2009, CURR BIOL, V19, pR657, DOI 10.1016/j.cub.2009.06.013; NATION JL, 1982, INSECT BIOCHEM, V12, P455, DOI 10.1016/0020-1790(82)90044-0; Rion S, 2007, J EVOLUTION BIOL, V20, P1655, DOI 10.1111/j.1420-9101.2007.01405.x; Rosnow R. L., 1985, CONTRAST ANAL FOCUSE; ROSS S, 1978, J INSECT PHYSIOL, V24, P305, DOI 10.1016/0022-1910(78)90027-6; South SH, 2011, EVOLUTION, V65, P1594, DOI 10.1111/j.1558-5646.2011.01233.x; Tatar M, 2011, EXP GERONTOL, V46, P363, DOI 10.1016/j.exger.2010.12.002; Tu MP, 2003, AGING CELL, V2, P327, DOI 10.1046/j.1474-9728.2003.00064.x; WALKER WF, 1979, PHYSIOL ENTOMOL, V4, P275, DOI 10.1111/j.1365-3032.1979.tb00204.x; WALKER WF, 1977, EXPERIENTIA, V33, P1539, DOI 10.1007/BF01918859; WALKER WF, 1978, PHYSIOL ENTOMOL, V3, P147, DOI 10.1111/j.1365-3032.1978.tb00144.x; Warbrick-Smith J, 2006, P NATL ACAD SCI USA, V103, P14045, DOI 10.1073/pnas.0605225103; Zajitschek F, 2009, AM NAT, V173, P792, DOI 10.1086/598486; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 43 13 14 1 59 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2012 25 5 873 880 10.1111/j.1420-9101.2012.02476.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922MH WOS:000302551000008 22356585 2019-02-21 J Sutherby, J; Giardini, JL; Nguyen, J; Wessel, G; Leguia, M; Heyland, A Sutherby, Josh; Giardini, Jamie-Lee; Julia Nguyen; Wessel, Gary; Leguia, Mariana; Heyland, Andreas Histamine is a modulator of metamorphic competence in Strongylocentrotus purpuratus (Echinodermata: Echinoidea) BMC DEVELOPMENTAL BIOLOGY English Article Metamorphosis; Metamorphic competence; Settlement; Echinoderm life-history; Histamine; Histamine receptors; Settlement; Life history evolution; Modulation MARINE-INVERTEBRATE LARVAE; SEA-URCHIN EMBRYOS; DOLLAR DENDRASTER-EXCENTRICUS; SIBOGAE BERGH GASTROPODA; NERVOUS-SYSTEM; SAND DOLLAR; PHESTILLA-SIBOGAE; DROSOPHILA-MELANOGASTER; CREPIDULA-FORNICATA; THYROID-HORMONE Background: A metamorphic life-history is present in the majority of animal phyla. This developmental mode is particularly prominent among marine invertebrates with a bentho-planktonic life cycle, where a pelagic larval form transforms into a benthic adult. Metamorphic competence (the stage at which a larva is capable to undergo the metamorphic transformation and settlement) is an important adaptation both ecologically and physiologically. The competence period maintains the larval state until suitable settlement sites are encountered, at which point the larvae settle in response to settlement cues. The mechanistic basis for metamorphosis (the morphogenetic transition from a larva to a juvenile including settlement), i.e. the molecular and cellular processes underlying metamorphosis in marine invertebrate species, is poorly understood. Histamine (HA), a neurotransmitter used for various physiological and developmental functions among animals, has a critical role in sea urchin fertilization and in the induction of metamorphosis. Here we test the premise that HA functions as a developmental modulator of metamorphic competence in the sea urchin Strongylocentrotus purpuratus. Results: Our results provide strong evidence that HA leads to the acquisition of metamorphic competence in S. purpuratus larvae. Pharmacological analysis of several HA receptor antagonists and an inhibitor of HA synthesis indicates a function of HA in metamorphic competence as well as programmed cell death (PCD) during arm retraction. Furthermore we identified an extensive network of histaminergic neurons in pre-metamorphic and metamorphically competent larvae. Analysis of this network throughout larval development indicates that the maturation of specific neuronal clusters correlates with the acquisition of metamorphic competence. Moreover, histamine receptor antagonist treatment leads to the induction of caspase mediated apoptosis in competent larvae. Conclusions: We conclude that HA is a modulator of metamorphic competence in S. purpuratus development and hypothesize that HA may have played an important role in the evolution of settlement strategies in echinoids. Our findings provide novel insights into the evolution of HA signalling and its function in one of the most important and widespread life history transitions in the animal kingdom - metamorphosis. [Sutherby, Josh; Giardini, Jamie-Lee; Julia Nguyen; Heyland, Andreas] Univ Guelph, Guelph, ON N1G 2W1, Canada; [Wessel, Gary; Leguia, Mariana] Brown Univ, MCB, Providence, RI 02912 USA Heyland, A (reprint author), Univ Guelph, Guelph, ON N1G 2W1, Canada. aheyland@uoguelph.ca Leguia, Mariana/0000-0002-7297-0263; Heyland, Andreas/0000-0002-7592-4473 NSERC We would like to thank Dr Jason Hodin for very helpful comments on an earlier version of the manuscript. We would also like to thank the volunteers of the Heyland lab for their time and effort in maintaining the larval cultures. This work was supported by an NSERC discovery grant to AH. The authors declare that they have no competing interests. Amarante-Mendes GP, 1998, CELL DEATH DIFFER, V5, P298, DOI 10.1038/sj.cdd.4400354; Beer AJ, 2001, BIOL BULL, V200, P268, DOI 10.2307/1543509; BERKING S, 1988, ROUX ARCH DEV BIOL, V197, P321, DOI 10.1007/BF00375951; BISGROVE BW, 1986, DEV GROWTH DIFFER, V28, P569; BISGROVE BW, 1987, CELL TISSUE RES, V248, P335; Bishop CD, 2003, EVOL DEV, V5, P542, DOI 10.1046/j.1525-142X.2003.03059.x; Bishop CD, 2001, J EXP ZOOL, V289, P374, DOI 10.1002/jez.1019; Bishop CD, 2008, EVOL DEV, V10, P288, DOI 10.1111/j.1525-142X.2008.00238.x; Bishop CD, 2007, DEV DYNAM, V236, P1535, DOI 10.1002/dvdy.21161; Bishop CD, 2006, INTEGR COMP BIOL, V46, P662, DOI 10.1093/icb/icl043; Brandhorst BP, 2001, BIOL BULL, V201, P394; BUCHNER E, 1993, CELL TISSUE RES, V273, P119, DOI 10.1007/BF00304618; Burke RD, 2006, DEV BIOL, V300, P434, DOI 10.1016/j.ydbio.2006.08.007; Burke RD, 2006, J COMP NEUROL, V496, P244, DOI 10.1002/cne.20939; BURKE RD, 1983, CAN J ZOOL, V61, P1701, DOI 10.1139/z83-221; BURKE RD, 1983, BIOL BULL, V164, P176, DOI 10.2307/1541137; BURKE RD, 1979, AM ZOOL, V19, P958; CAMERON RA, 1978, J MORPHOL, V157, P21, DOI 10.1002/jmor.1051570103; Carpizo-Ituarte E, 2002, CIENC MAR, V28, P157, DOI 10.7773/cm.v28i2.217; DEY SK, 1981, BIOL REPROD, V24, P867, DOI 10.1095/biolreprod24.4.867; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Hadfield MG, 2004, BIOL BULL-US, V207, P28, DOI 10.2307/1543626; Hadfield MG, 2001, AM ZOOL, V41, P1123, DOI 10.1668/0003-1569(2001)041[1123:MCAMAC]2.0.CO;2; Hadfield MG, 2000, SEMIN CELL DEV BIOL, V11, P437, DOI 10.1006/scdb.2000.0197; Hentschel BT, 2000, ECOLOGY, V81, P3495, DOI 10.2307/177509; Hentschel BT, 1999, AM NAT, V154, P549, DOI 10.1086/303263; Heyland A, 2005, BIOESSAYS, V27, P64, DOI 10.1002/bies.20136; Heyland A, 2004, EVOLUTION, V58, P524, DOI 10.1111/j.0014-3820.2004.tb01676.x; Heyland A, 2006, INTEGR COMP BIOL, V46, P743, DOI 10.1093/icb/icl023; Heyland A, 2006, EVOL DEV, V8, P568, DOI 10.1111/j.1525-142X.2006.00128.x; HIGHSMITH RC, 1982, ECOLOGY, V63, P329, DOI 10.2307/1938950; Hill SJ, 1997, PHARMACOL REV, V49, P253; Hyman L. H, 1955, INVERTEBRATES ECHINO; JACKSON FR, 1990, J MOL EVOL, V31, P325, DOI 10.1007/BF02101126; Jangi SM, 2006, CARCINOGENESIS; Katow H, 2004, MECH DEVELOP, V121, P325, DOI 10.1016/j.mod.2004.03.005; Katow H, 2010, J EXP BIOL, V213, P2808, DOI 10.1242/jeb.042150; KNIGHTJONES EW, 1953, J MAR BIOL ASSOC UK, V32, P337, DOI 10.1017/S0025315400014594; Leguia M, 2006, MOL REPROD DEV, V73, P1550, DOI 10.1002/mrd.20586; Lesser MP, 2011, P ROY SOC B-BIOL SCI, V278, P3371, DOI 10.1098/rspb.2011.0336; Manahan DT, 1999, BIOL BULL, V196, P177; MARKOVA LN, 1985, INT J DEV NEUROSCI, V3, P493, DOI 10.1016/0736-5748(85)90038-3; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; MAZUR J E, 1971, Ohio Journal of Science, V71, P30; McCoole MD, 2011, J EXP BIOL, V214, P1773, DOI 10.1242/jeb.054486; MILLER SE, 1986, J EXP MAR BIOL ECOL, V97, P95, DOI 10.1016/0022-0981(86)90070-5; Naidenko TK, 1996, MAR BIOL, V126, P685, DOI 10.1007/BF00351335; Nakajima Y, 2004, EVOL DEV, V6, P95, DOI 10.1111/j.1525-142X.2004.04011.x; Noguchi M, 1988, THESIS TOKYO METROPO; PEARCE CM, 1990, BIOL BULL-US, V179, P304, DOI 10.2307/1542322; PECHENIK JA, 1993, J EXP MAR BIOL ECOL, V167, P59, DOI 10.1016/0022-0981(93)90184-P; Pechenik JA, 2007, BIOL BULL-US, V213, P160, DOI 10.2307/25066632; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; Pires A, 2000, BIOL BULL, V198, P319, DOI 10.2307/1542688; POLLACK I, 1991, CELL TISSUE RES, V266, P391, DOI 10.1007/BF00318195; Rast JP, 2006, SCIENCE, V314, P952, DOI 10.1126/science.1134301; REITE OB, 1972, PHYSIOL REV, V52, P778; Roccheri MC, 2002, INT J DEV BIOL, V46, P801; Roeder T, 2003, EUR J PHARMACOL, V466, P85, DOI 10.1016/S0014-2999(03)01553-X; ROWLEY RJ, 1989, MAR BIOL, V100, P485, DOI 10.1007/BF00394825; Sato Y, 2006, CELL TISSUE RES, V326, P851, DOI 10.1007/s00441-006-0212-6; SCHELTEMA RS, 1983, B MAR SCI, V33, P545; Smith LC, 2006, ISJ-INVERT SURVIV J, V3, P25; SMITH SL, 1985, DEV COMP IMMUNOL, V9, P597, DOI 10.1016/0145-305X(85)90025-4; Sodergren E, 2006, SCIENCE, V314, P941, DOI 10.1126/science.1133609; Strathmann MF, 2007, BIOL BULL-US, V213, P152, DOI 10.2307/25066631; Strathmann MF, 1987, REPROD LARVAL DEV MA; Strathmann RR, 2008, EVOL DEV, V10, P731, DOI 10.1111/j.1525-142X.2008.00287.x; Swanson RL, 2007, J EXP BIOL, V210, P3228, DOI 10.1242/jeb.004192; Swanson RL, 2012, MAR BIOL, V159, P915, DOI 10.1007/s00227-011-1869-2; Swanson RL, 2004, BIOL BULL-US, V206, P161, DOI 10.2307/1543640; THORNDYKE MC, 1992, ACTA ZOOL-STOCKHOLM, V73, P207, DOI 10.1111/j.1463-6395.1992.tb01084.x; Thurber RV, 2007, DEV BIOL, V303, P336, DOI 10.1016/j.ydbio.2006.11.018; Toonen RJ, 2001, MAR ECOL PROG SER, V224, P103, DOI 10.3354/meps224103; WELBORN JR, 1995, J EXP BIOL, V198, P1791; WILSON DP, 1953, J MAR BIOL ASSOC UK, V32, P209, DOI 10.1017/S0025315400011528; WILSON DP, 1953, J MAR BIOL ASSOC UK, V31, P413, DOI 10.1017/S0025315400011589; Yaguchi S, 2003, J COMP NEUROL, V466, P219, DOI 10.1002/cne.10865; Yaguchi S, 2000, DEV GROWTH DIFFER, V42, P479; Yaguchi S, 2006, DEVELOPMENT, V133, P2337, DOI 10.1242/dev.02396; Zhou XJ, 2009, BIOFOULING, V25, P739, DOI 10.1080/08927010903154724; Zhu Y, 2001, MOL PHARMACOL, V59, P434 82 22 23 2 22 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-213X BMC DEV BIOL BMC Dev. Biol. APR 27 2012 12 14 10.1186/1471-213X-12-14 15 Developmental Biology Developmental Biology 014XB WOS:000309408000001 22541006 DOAJ Gold, Green Published 2019-02-21 J Patankar, V; D'Souza, E; Kumaraguru, AK; Arthur, R Patankar, Vardhan; D'Souza, Elrika; Kumaraguru, A. K.; Arthur, Rohan Distance-related thresholds and influence of the 2004 tsunami on damage and recovery patterns of coral reefs in the Nicobar Islands CURRENT SCIENCE English Article Catastrophic damage; coastal ecosystems; coral reefs; distance gradient; tsunami INDIAN-OCEAN; COMMUNITIES; BAY The earthquake and tsunami of 2004 resulted in the devastation of marine and coastal ecosystems across the Indian Ocean. However, without adequate baseline information it has been difficult to properly gauge its full impact. The reefs of the Nicobar Islands in the Bay of Bengal lie on a path that ranges from 190 to 500 km from Banda Aceh, the epicentre of the 2004 tsunami. In 2008, we recorded benthic damage as a result of the tsunami to reefs off 14 Nicobar Islands across a gradient of distance from the epicentre. A clear pattern was observed in the demographic structure of the most abundant coral genera, Acropora and Porites across the distance gradient. Significantly, for the largest coral individuals of both genera (>50 cm diameter), there were distinct threshold effects - their abundance declining dramatically in reefs closer than 350 km from the epicentre. Corals between 20 and 50 cm diameter also increased with distance from the epicentre, but in a more linear fashion. Smaller size classes either showed no apparent trend (Acropora) or decreased linearly (Porites) with distance. These genera represent very different life-history strategies: Acropora is fast-growing and highly susceptible to a range of disturbances, while Ponies typically grows slowly but is resistant to disturbance. The fact that both genera showed similar thresholds indicates that, close to the epicentre, the impact of the earthquake and tsunami was large enough to override any species-specific resistance. Also, algal cover was also much higher than at locations further north, linked to higher coral mortality at these locations. However, the fact that smaller size class coral individuals were relatively abundant and even increased close to the epicentre indicates possible paths of reef recovery after the catastrophe. [Patankar, Vardhan; D'Souza, Elrika; Arthur, Rohan] Nat Conservat Fdn, Mysore 570002, Karnataka, India; [Patankar, Vardhan; D'Souza, Elrika; Kumaraguru, A. K.] Madurai Kamaraj Univ, Sch Energy Sci, Ctr Marine & Coastal Studies, Madurai 625021, Tamil Nadu, India Patankar, V (reprint author), Nat Conservat Fdn, 3076-5,4 Cross,Gokulam Pk, Mysore 570002, Karnataka, India. vardhan@ncf-india.org HSBC, India; Wildlife Conservation Society This study was supported by HSBC, India. We are grateful to Rufford Small Grant for Nature Conservation and Research Fellowship Program of Wildlife Conservation Society for providing us continuation grant. We thank the Department of Environment and Forests, Port Blair, for permission to conduct the study and all at the Reef Watch Marine Conservation and Nature Conservation Foundation. We are grateful to the Nicobari villagers, village heads and our field assistants for support and help during the fieldwork. Arthur R, 2006, CORAL REEFS, V25, P427, DOI 10.1007/s00338-006-0127-4; Baird AH, 2005, CURR BIOL, V15, P1926, DOI 10.1016/j.cub.2005.09.036; Bakus G. J., 1994, CORAL REEF ECOSYSTEM; Bilham R, 2005, SCIENCE, V308, P1126, DOI 10.1126/science.1113363; Briggs JC, 1996, CONSERV BIOL, V10, P713, DOI 10.1046/j.1523-1739.1996.10030713.x; BRIGGS JC, 1992, GLOBAL ECOL BIOGEOGR, V2, P149, DOI 10.2307/2997803; Chatenoux B, 2007, NAT HAZARDS, V40, P289, DOI 10.1007/s11069-006-0015-9; Cummins PR, 2007, NATURE, V449, P75, DOI 10.1038/nature06088; DOLLAR SJ, 1993, CORAL REEFS, V12, P223, DOI 10.1007/BF00334481; DONE TJ, 1992, MAR BIOL, V114, P479, DOI 10.1007/BF00350040; Kesavan PC, 2007, CURR SCI INDIA, V92, P743; Krishnan P., 2011, CURR SCI, V10, P111; Kulkarni S., 2008, CORDIO STATUS REPORT, P173; Kumaraguru AK, 2003, CURR SCI INDIA, V85, P1787; Lirman D, 2003, ECOL MODEL, V161, P167; Magurran AE, 1988, ECOLOGICAL DIVERSITY, DOI [10.1007/978-94-015-7358-0, DOI 10.1007/978-94-015-7358-0]; McCullagh P., 1989, MONOGRAPHS STAT APPL, P1; Nayak S. A., 1974, CORAL REEF MAPPING A, P1; Pearson R. G., 1981, MAR ECOL-PROG SER, V4, P122; Phongsuwan Niphon, 2007, Atoll Research Bulletin, P79; Pillai C.S.G., 1987, Journal of the Marine Biological Association of India, V25, P78; R DEVELOPMENT CORE TEAM, R LANG ENV STAT COMP; Rajasuriya A., 2008, CORDIO STATUS REPORT, P11; Ramachandran S, 2005, CURR SCI INDIA, V89, P195; RAO M K V, 1986, Journal of Economic and Taxonomic Botany, V8, P107; Sankaran R., 2005, POSTTSUNAMI IMPACT A, P1; Scheer G., 1974, Zoologica Stuttg, V122, P1; Scheer G., 1971, P S ZOOL SOC LOND, P121; Schiermeier Q, 2005, NATURE, V433, P350, DOI 10.1038/433350a; Sewell R. B. S., 1922, J BOMBAY NATURAL HIS, V28, P970; Staddart D. R., 1978, CORAL REEF METHODS, P121; Tkachenko S. K., 2007, CORAL REEFS, V151, P185; Veron J., 2000, CORALS WORLD, V1-3, P1; VERON JEN, 1984, SCLERACTINIA E AUS 5, P1; Zar J. H., 1999, BIOSTAT ANAL, P1 35 1 1 0 21 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0011-3891 CURR SCI INDIA Curr. Sci. APR 25 2012 102 8 1199 1205 7 Multidisciplinary Sciences Science & Technology - Other Topics 944SO WOS:000304224300026 DOAJ Gold 2019-02-21 J Piou, C; Prevost, E Piou, Cyril; Prevost, Etienne A demo-genetic individual-based model for Atlantic salmon populations: Model structure, parameterization and sensitivity ECOLOGICAL MODELLING English Article Individual-based model; Pattern-oriented modelling; Diadromous fish; Life-history strategies; Salmo salar LIFE-HISTORY VARIATION; ALTERNATIVE REPRODUCTIVE TACTICS; DENSITY-DEPENDENT GROWTH; RAPID CLIMATE-CHANGE; MATURE MALE PARR; SALAR L; REACTION NORMS; OCEAN CLIMATE; SOCIAL-STATUS; BODY-SIZE Predicting the persistence and adaptability of natural populations to climate change is a challenging task. Mechanistic models that integrate biological and evolutionary processes are helpful toward this aim. Atlantic salmon, Salmo salar (L.), is a good candidate to assess the effect of environmental change on a species with a complex life history through an integrative modelling approach due to (i) a large amount of knowledge concerning its biology and (ii) extensive historical data sets that can be used for model validation. This paper presents an individual-based demo-genetic model developed to simulate S. salar population dynamics in southern European populations: IBASAM (Individual-Based Atlantic SAlmon Model). The model structure is described thoroughly. A parameterization exercise was conducted to adjust the model to an extensive set of demographic data collected over 15 years on the Scorff River, Brittany, France. A sensitivity analysis showed that two parameters determining mean and variability of juvenile growth rates were crucial in structuring the simulated populations. Additionally, realistic microevolutionary patterns of different aspects of life history were predicted by the model, reproducing general knowledge on S. salar population biology. The integration into IBASAM of a demo-genetic structure coupled with the explicit representation of individual variability and complex life histories makes it a cohesive and novel tool to assess the effect of potential stressors on evolutionary demography of Atlantic salmon in further studies. (C) 2012 Elsevier B.V. All rights reserved. [Piou, Cyril; Prevost, Etienne] INRA, UMR ECOBIOP, Stn Hydrobiol INRA, F-64310 Quartier Ibarron, St Pee Sur Nive, France; [Prevost, Etienne] UPPA, UMR ECONOP, UFR Sci & Tech Cote Basque, F-64600 Anglet, France Piou, C (reprint author), CIRAD, UPR Bioagresseurs Anal & Maitrise Risque, F-34398 Montpellier, France. cyril.piou@cirad.fr French Ministry of Ecology and Sustainable Development; ONEMA (French National Office of Water and the Aquatic Environments) under ONEMA-INRA The authors wish to thank E. Beall, C. Tentelier, J. Labonne, A. Bardonnet, J.L. Bagliniere, L. Beaulaton and N. Seon-Massin for fruitful discussions helping in designing and presenting the model and two anonymous reviewers for their constructive comments on earlier version of this manuscript. We are also thankful to Marc Taylor for the editing of our English. This work was financed under a grant from the French Ministry of Ecology and Sustainable Development "Programme GICC2: Gestion et Impact du Changement Climatique" and a funding from the ONEMA (French National Office of Water and the Aquatic Environments) under the ONEMA-INRA 2008-2010 conventions. Archer GEB, 1997, J STAT COMPUT SIM, V58, P99, DOI 10.1080/00949659708811825; BAGLINIERE JL, 1985, AQUACULTURE, V45, P249, DOI 10.1016/0044-8486(85)90274-1; Beall E., 2003, JORNADAS SALMON ATLA, P223; BEVERTON RJH, 1957, FISHERY INVEST LON 2, V19, P533; Bradshaw WE, 2008, MOL ECOL, V17, P157, DOI 10.1111/j.1365-294X.2007.03509.x; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; BRANNAS E, 1988, J FISH BIOL, V33, P589, DOI 10.1111/j.1095-8649.1988.tb05502.x; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; CAPRA H, 1995, REGUL RIVER, V10, P281, DOI 10.1002/rrr.3450100221; Caudal A.L., 2008, ETAT STOCK SAUMON AT; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Debowski P., 1999, ARCH POL FISH, V2, P237; Diekmann O, 1999, EVOL ECOL RES, V1, P261; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; ELLIOTT JM, 1995, FUNCT ECOL, V9, P625, DOI 10.2307/2390153; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Fleming IA, 1997, BEHAV ECOL, V8, P470, DOI 10.1093/beheco/8.5.470; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Fleming L., 1996, J APPL ECOL, V33, P893; Fontaine M., 1960, CELL MOL LIFE SCI, V16, p433L; Forseth T, 2001, FRESHWATER BIOL, V46, P173, DOI 10.1046/j.1365-2427.2001.00631.x; Friedland KD, 1998, CAN J FISH AQUAT SCI, V55, P119, DOI 10.1139/cjfas-55-S1-119; Friedland KD, 2000, ICES J MAR SCI, V57, P419, DOI 10.1006/jmsc.1999.0639; Garant D, 2005, NATURE, V433, P60, DOI 10.1038/nature03051; Garant D, 2000, MOL ECOL, V9, P615, DOI 10.1046/j.1365-294x.2000.00909.x; Gavrilets S, 2007, MOL ECOL, V16, P2893, DOI 10.1111/j.1365-294X.2007.03305.x; Gavrilets S, 2006, P NATL ACAD SCI USA, V103, P16823, DOI 10.1073/pnas.0601428103; GJERDE B, 1994, LIVEST PROD SCI, V38, P133, DOI 10.1016/0301-6226(94)90057-4; Gramacy RB, 2010, J STAT SOFTW, V33, P1; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; Grimardias D, 2010, J FISH BIOL, V77, P2460, DOI 10.1111/j.1095-8649.2010.02808.x; Grimardias D, 2010, ECOL FRESHW FISH, V19, P510, DOI 10.1111/j.1600-0633.2010.00421.x; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 1996, SCI TOTAL ENVIRON, V183, P151, DOI 10.1016/0048-9697(95)04966-5; GRIMM V, 2005, INDIVIDUAL BASED MOD, P480; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; GUNNES K, 1979, AQUACULTURE, V16, P211, DOI 10.1016/0044-8486(79)90109-1; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; Imre I, 2005, J ANIM ECOL, V74, P508, DOI 10.1111/j.1365-2656.2005.00949.x; Imre I, 2010, ECOL FRESHW FISH, V19, P1, DOI 10.1111/j.1600-0633.2009.00394.x; JONES JW, 1952, NATURE, V169, P882, DOI 10.1038/169882a0; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jonsson B, 2009, J FISH BIOL, V75, P2381, DOI 10.1111/j.1095-8649.2009.02380.x; Jonsson N, 1997, J ANIM ECOL, V66, P425, DOI 10.2307/5987; Jonsson N, 1996, FUNCT ECOL, V10, P89, DOI 10.2307/2390266; Kopp M, 2006, EVOLUTION, V60, P1321, DOI 10.1111/j.0014-3820.2006.tb01212.x; Kramer-Schadt S, 2004, J APPL ECOL, V41, P711, DOI 10.1111/j.0021-8901.2004.00933.x; Kramer-Schadt S, 2007, ECOL MODEL, V204, P553, DOI 10.1016/j.ecolmodel.2007.01.018; Lassalle G, 2009, FRESHWATER BIOL, V54, P587, DOI 10.1111/j.1365-2427.2008.02135.x; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; McCormick S., 1987, P INT S BOST MASS US, P211; McCormick Stephen D., 1998, Canadian Journal of Fisheries and Aquatic Sciences, V55, P77, DOI 10.1139/cjfas-55-S1-77; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; Myers R., 1983, CM14 INT COUNC EXPL; Myers R.A., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P53; MYERS RA, 1987, ECOLOGY, V68, P1839, DOI 10.2307/1939875; Niemela E, 2004, CAN J FISH AQUAT SCI, V61, P2384, DOI 10.1139/f04-208; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; PETERSON RH, 1977, J FISH RES BOARD CAN, V34, P31, DOI 10.1139/f77-004; Peyronnet A, 2008, J FISH BIOL, V73, P945, DOI 10.1111/j.1095-8649.2008.01984.x; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; Piou C, 2009, ECOL MODEL, V220, P1957, DOI 10.1016/j.ecolmodel.2009.05.003; Post JR, 1999, ECOL MONOGR, V69, P155, DOI 10.1890/0012-9615(1999)069[0155:DDPISF]2.0.CO;2; Prevost E., 2001, STOCK RECRUITMENT RE, P93; Prouzet P., 1981, B FR PISCIC, V282, P16; PROUZET P., 1982, B FR PISCIC, V285, P233; Pujol G, 2008, SENSITIVITY ANAL R P; R Development Core Team, 2010, R LANG ENV STAT COMP; RATKOWSKY DA, 1983, J BACTERIOL, V154, P1222; Reed TE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020380; Reed TE, 2010, P ROY SOC B-BIOL SCI, V277, P3391, DOI 10.1098/rspb.2010.0771; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; Salminen M, 1997, J APPL ICHTHYOL, V13, P121, DOI 10.1111/j.1439-0426.1997.tb00111.x; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; Sobol I. M., 1993, MATEMATICHESKOE MODE, V2, P112; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; Tomkins JL, 2007, TRENDS ECOL EVOL, V22, P522, DOI 10.1016/j.tree.2007.09.002; Vibert R., 1950, ANN STATION CENTRALE, P27; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Webb J., 2007, P17, DOI 10.1002/9780470995846.ch2; Wiegand T, 2003, OIKOS, V100, P209, DOI 10.1034/j.1600-0706.2003.12027.x; Wiegand T, 1998, ECOL MONOGR, V68, P539, DOI 10.1890/0012-9615(1998)068[0539:ATROEF]2.0.CO;2 93 32 32 0 62 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. APR 24 2012 231 37 52 10.1016/j.ecolmodel.2012.01.025 16 Ecology Environmental Sciences & Ecology 929QT WOS:000303081300005 2019-02-21 J Covas, R Covas, Rita Evolution of reproductive life histories in island birds worldwide PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article developmental periods; fecundity; insularity; life-history evolution; parental care NEST PREDATION; EMBRYONIC TEMPERATURE; GEOGRAPHIC-VARIATION; DEVELOPMENTAL RATES; BREEDING STRATEGIES; PASSERINE BIRDS; CLUTCH SIZES; FOOD; POPULATION; DENSITY Island environments typically share characteristics such as impoverished biotas and less-seasonal climates, which should be conducive to specific adaptations by organisms. However, with the exception of morphological studies, broad-scale tests of patterns of adaptation on islands are rare. Here, I examine reproductive patterns in island birds worldwide. Reproductive life histories are influenced by latitude, which could affect the response to insularity; therefore, I additionally test this hypothesis. Island colonizers showed mostly bi-parental care, but there was a significant increase in cooperative breeding on islands. Additionally, I found support for previous suggestions of reduced fecundity, longer developmental periods and increased investment in young on islands. However, clutch size increased with latitude at a rate nearly five times faster on the mainland than on the islands revealing a substantially stronger effect of insularity at higher latitudes. Latitude and insularity may also interact to determine egg volume and incubation periods, but these effects were less clear. Analyses of reproductive success did not support an effect of reduced nest predation as a driver of reproductive change, but this requires further study. The effect of latitude detected here suggests that the evolutionary changes associated with insularity relate to environmental stability and improved adult survival. [Covas, Rita] Res Ctr Biodivers & Genet Resources, CIBIO, P-4485661 Vairao, Portugal; [Covas, Rita] Univ Porto, Fac Sci, Dept Biol, P-4100 Oporto, Portugal; [Covas, Rita] CNRS, CEFE, F-34293 Montpellier, France; [Covas, Rita] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh, Midlothian, Scotland Covas, R (reprint author), Res Ctr Biodivers & Genet Resources, CIBIO, Campus Agr Vairao,Rua Padre Armando Quintas, P-4485661 Vairao, Portugal. rita.covas@gmail.com Covas, Rita/G-2242-2018 Covas, Rita/0000-0001-7130-144X EU; Portuguese Science and Technology Foundation (FCT) I am most thankful to P. Jones for kindly giving me full access to his comprehensive ornithological library and for helpful advice. I also thank M. Koopman at the Niven Library (Percy FitzPatrick Institute, University of Cape Town) for assistance. O. Gimenez, C. Spottiswoode and P.-Y. Henry provided helpful statistical advice. M. Melo, S. Anderson, R. Bowie, R. Lopes, R. Heleno and P. Rodrigues gave me access to unpublished data. The manuscript was improved by comments from T. Arnold, C. Doutrelant, P. Jones, M. Melo and an anonymous reviewer. P. Tarroso helped in preparing figure 1. I was funded by a Marie Curie Fellowship (EU) and the Portuguese Science and Technology Foundation (FCT) during the preparation of this paper. Ashmole N. P., 1963, ECOLOGY, V103, P458; Barbraud C, 2001, NATURE, V411, P183, DOI 10.1038/35075554; Bates D. M., 2010, LME4 LINEAR MIXED EF; Bennet P. M., 2002, EVOLUTIONARY ECOLOGY; BLONDEL J, 1988, ECOLOGY, V69, P1899, DOI 10.2307/1941167; BLONDEL J, 1985, J ANIM ECOL, V54, P531, DOI 10.2307/4497; BLONDEL J, 1992, J ANIM ECOL, V61, P205, DOI 10.2307/5523; Blondel J, 2000, VIE MILIEU, V50, P205; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; Buckley LB, 2007, ECOL LETT, V10, P481, DOI 10.1111/j.1461-0248.2007.01042.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clegg SM, 2002, P ROY SOC B-BIOL SCI, V269, P1359, DOI 10.1098/rspb.2002.2024; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cockburn A, 2003, P ROY SOC B-BIOL SCI, V270, P2207, DOI 10.1098/rspb.2003.2503; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Conway CJ, 2000, EVOLUTION, V54, P670; Covas R, 2007, P ROY SOC B-BIOL SCI, V274, P1349, DOI 10.1098/rspb.2007.0117; CROWELL KL, 1962, ECOLOGY, V43, P75, DOI 10.2307/1932042; CROWELL KL, 1981, IBIS, V123, P42, DOI 10.1111/j.1474-919X.1981.tb00171.x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Ekman J, 2001, AUK, V118, P1, DOI 10.1642/0004-8038(2001)118[0001:DDLUTR]2.0.CO;2; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Grant Peter R., 1998, P1; Griffith SC, 2000, BEHAV ECOL, V11, P265, DOI 10.1093/beheco/11.3.265; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HIGUCHI H, 1981, ANIM BEHAV, V29, P523, DOI 10.1016/S0003-3472(81)80114-5; HOYT DF, 1979, AUK, V96, P73; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Lack D., 1948, SIGNIFICANCE CLUTCH, V90, P25, DOI [10.1111/j.1474-919X.1948.tb01399.x, DOI 10.1111/J.1474-919X.1948.TB01399.X]; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Losos JB, 2009, NATURE, V457, P830, DOI 10.1038/nature07893; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; Mappes T, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-296; Martin TE, 2006, EVOLUTION, V60, P390; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2011, BIOL LETTERS, V7, P425, DOI 10.1098/rsbl.2010.1031; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MCNAB BK, 1994, AM NAT, V144, P643, DOI 10.1086/285698; McNab BK, 2006, COMP BIOCHEM PHYS A, V145, P295, DOI 10.1016/j.cbpa.2006.02.025; MOLLER AP, 1992, AM NAT, V139, P644, DOI 10.1086/285348; Pinheiro J., 2011, NLME LINEAR NONLINEA, P1; R Development Core Team, 2010, R LANG ENV STAT COMP; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2006, P ROY SOC B-BIOL SCI, V273, P2077, DOI 10.1098/rspb.2006.3544; Roff Derek A., 1992; Styrsky JD, 2000, J ANIM ECOL, V69, P690, DOI 10.1046/j.1365-2656.2000.00427.x; Whittaker R. J, 2007, ISLAND BIOGEOGRAPHY 61 26 27 2 72 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. APR 22 2012 279 1733 1531 1537 10.1098/rspb.2011.1785 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 906GM WOS:000301332900010 22072609 Green Published, Bronze 2019-02-21 J Regier, JC; Brown, JW; Mitter, C; Baixeras, J; Cho, S; Cummings, MP; Zwick, A Regier, Jerome C.; Brown, John W.; Mitter, Charles; Baixeras, Joaquin; Cho, Soowon; Cummings, Michael P.; Zwick, Andreas A Molecular Phylogeny for the Leaf-Roller Moths (Lepidoptera: Tortricidae) and Its Implications for Classification and Life History Evolution PLOS ONE English Article CODING NUCLEAR GENES; SPECIES LEPIDOPTERA; BIOLOGICAL-CONTROL; FEMALE FRENULUM; NEW-CALEDONIA; MISSING DATA; GENUS; BUTTERFLIES; CHLIDANOTINAE; PHRICANTHINI Background: Tortricidae, one of the largest families of microlepidopterans, comprise about 10,000 described species worldwide, including important pests, biological control agents and experimental models. Understanding of tortricid phylogeny, the basis for a predictive classification, is currently provisional. We present the first detailed molecular estimate of relationships across the tribes and subfamilies of Tortricidae, assess its concordance with previous morphological evidence, and re-examine postulated evolutionary trends in host plant use and biogeography. Methodology/Principal Findings: We sequenced up to five nuclear genes (6,633 bp) in each of 52 tortricids spanning all three subfamilies and 19 of the 22 tribes, plus up to 14 additional genes, for a total of 14,826 bp, in 29 of those taxa plus all 14 outgroup taxa. Maximum likelihood analyses yield trees that, within Tortricidae, differ little among data sets and character treatments and are nearly always strongly supported at all levels of divergence. Support for several nodes was greatly increased by the additional 14 genes sequenced in just 29 of 52 tortricids, with no evidence of phylogenetic artifacts from deliberately incomplete gene sampling. There is strong support for the monophyly of Tortricinae and of Olethreutinae, and for grouping of these to the exclusion of Chlidanotinae. Relationships among tribes are robustly resolved in Tortricinae and mostly so in Olethreutinae. Feeding habit (internal versus external) is strongly conserved on the phylogeny. Within Tortricinae, a clade characterized by eggs being deposited in large clusters, in contrast to singly or in small batches, has markedly elevated incidence of polyphagous species. The five earliest-branching tortricid lineages are all species-poor tribes with mainly southern/tropical distributions, consistent with a hypothesized Gondwanan origin for the family. Conclusions/Significance: We present the first robustly supported phylogeny for Tortricidae, and a revised classification in which all of the sampled tribes are now monophyletic. [Regier, Jerome C.; Mitter, Charles] Univ Maryland, Dept Entomol, College Pk, MD 20742 USA; [Regier, Jerome C.] Inst Biosci & Biotechnol Res, College Pk, MD USA; [Brown, John W.] ARS, Systemat Entomol Lab, USDA, Beltsville, MD USA; [Baixeras, Joaquin] Univ Valencia, Cavanilles Inst Biodivers & Evolutionary Biol, Valencia, Spain; [Cho, Soowon] Chungbuk Natl Univ, Dept Plant Med, Cheongju, South Korea; [Cummings, Michael P.] Univ Maryland, Lab Mol Evolut, Ctr Bioinformat & Computat Biol, College Pk, MD 20742 USA; [Zwick, Andreas] State Museum Nat Hist, Dept Entomol, Stuttgart, Germany Regier, JC (reprint author), Univ Maryland, Dept Entomol, College Pk, MD 20742 USA. cmitter@umd.edu Baixeras, Joaquin/L-1734-2014; Zwick, Andreas/A-5735-2015 Baixeras, Joaquin/0000-0002-6092-0496; Zwick, Andreas/0000-0002-7532-1752 U.S. National Science Foundation [0531626, 0531769]; Spanish Government (Ministerio de Ciencia e Innovacion) [CGL2008-00605] Financial support was provided by the U.S. National Science Foundation's Assembling the Tree of Life program, award numbers 0531626 and 0531769, and grant CGL2008-00605 of the Spanish Government (Ministerio de Ciencia e Innovacion) to Dr. Brown. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Aarvik Leif, 2004, Norwegian Journal of Entomology, V51, P71; Aarvik L, 2009, ZOOTAXA, P18; Alipanah H, 2011, ZOOTAXA, P33; BAIXERAS J, 2010, TARTS ONLINE WORLD C; BAZINET AL, 2009, DISTRIBUTED GRID COM, P2; Bremer B, 2009, BOT J LINN SOC, V161, P105; Brower AVZ, 1998, INSECT MOL BIOL, V7, P73, DOI 10.1046/j.1365-2583.1998.71052.x; BROWN J. W., 2005, WORLD CATALOGUE INSE, V5, P741; Brown JW, 2007, PAN-PAC ENTOMOL, V83, P352, DOI 10.3956/2007-22.1; BROWN JW, 1989, ENTOMOL SCAND, V20, P439; BROWN JW, 1990, J NEW YORK ENTOMOL S, V98, P369; Brown JW, 2004, P ENTOMOL SOC WASH, V106, P288; BROWN JW, 1990, ENTOMOL NEWS, V101, P109; Brown JW, 1998, PAN-PAC ENTOMOL, V74, P1; Brown JW, 1991, U CALIF PUBL ENTOMOL, V111; Brown JW, 2003, J LEPID SOC, V56, P113; Brown JW, 2010, FOOD PLANT DATABASE; Brown JW, 2000, U CALIF PUBL ENTOMOL, V120; Chapman PJ, 1971, TORTRICID FAUNA APPL; Cho S, 2011, SYST BIOL, V60, P782, DOI 10.1093/sysbio/syr079; COMMON I. F. B., 1965, AUSTRALIAN J ZOOL, V13, P613, DOI 10.1071/ZO9650613; COMMON I. F. B., 1963, AUSTRALIAN JOUR ZOOL, V11, P81, DOI 10.1071/ZO9630081; CUMMINGS MP, 2005, EDUCAUSE REV, V40, P116; DANG P T, 1990, Journal of the Lepidopterists' Society, V44, P77; DANILEVSKY AS, 1968, INSECTA LEPIDOPTERA, V5, P1; Dhileepan K, 2004, ENTOMOL EXP APPL, V113, P63, DOI 10.1111/j.0013-8703.2004.00209.x; Dhileepan K, 2003, B ENTOMOL RES, V93, P393, DOI 10.1079/BER2003255; DIAKONOFF A, 1981, P K NED AKAD C BIOL, V84, P155; DIAKONOFF A., 1950, BULL BRIT MUS [NAT HIST] ENT, V1, P173; Diakonoff A., 1977, Zoologische Verh. Leiden, VNo. 158, P1; DIAKONOFF A, 1957, ACTA PHYSIOL PHARM N, V6, P410; Diakonoff A, 1977, ENTOMOL BER, V37, P36; Diakonoff A, 1973, ZOOLOGISCHE MONOGRAP, V1; FALKOVITSH MI, 1962, ENTOMOL OBOZR, V41, P546; Fang QQ, 1997, SYST BIOL, V46, P269, DOI 10.2307/2413623; Farrell BD, 2001, EVOLUTION, V55, P2011; Hallwachs W., 2010, DYNAMIC DATABASE INV; HEINRICH C, 1923, B US NATL MUSEUM, V123, P1; HEPPNER JB, 1978, PAN-PAC ENTOMOL, V54, P48; HORAK M, 1984, ENTOMOL SCAND, V15, P423; Horak M, 1991, TORTRICID PESTS THEI, P23; Horak M, 1998, HDB ZOOLOGY 35, V1, P199; Horak M., 2006, MONOGRAPHS AUSTR LEP, V10; Horak Marianne, 1996, Monographs on Australian Lepidoptera, V4, P123; Jinbo Utsugi, 2000, Tokyo Metropolitan University Bulletin of Natural History, V4, P33; Kawahara AY, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005719; Kawahara AY, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-182; Komai F., 2006, MONOGRAPHS AUSTR LEP, V10, P396; Komai Furumi, 1999, Entomologica Scandinavica Supplement, V55, P1; Kuznetsov V. I., 1994, Entomologicheskoe Obozrenie, V73, P700; KUZNETSOV V I, 1970, ENTOMOL REV (ENGL TRANSL ENTOMOL OBOZR), V49, P260; Kuznetsov V. I, 1977, Trudy zool Inst Leningr, V70, P65; KUZNETSOV VI, 1984, 36 HOL MEM LECT 1 AP, P51; Kuznetzov V.I., 1973, Trudy vses ent Obshch, V56, P18; Lemmon AR, 2009, SYST BIOL, V58, P130, DOI 10.1093/sysbio/syp017; Meyrick E, 1895, HDB BRIT LEPIDOPTERA; Monsalve S, 2011, P ENTOMOL SOC WASH, V113, P335, DOI 10.4289/0013-8797.113.3.335; Moulton JK, 2004, MOL PHYLOGENET EVOL, V31, P363, DOI 10.1016/S1055-7903(03)00284-7; MULLER H, 1988, CAN ENTOMOL, V120, P109; Mutanen M, 2010, P ROY SOC B-BIOL SCI, V277, P2839, DOI 10.1098/rspb.2010.0392; Nyman T, 2006, EVOLUTION, V60, P1622, DOI 10.1554/05-674.1; Obraztsov N., 1949, Entomologische Zeitschrift Stuttgart, V59, P45; Obraztsov NS, 1964, TIJDSCHR ENTOMOL, V107, P1; Phillips MJ, 2004, MOL BIOL EVOL, V21, P1455, DOI 10.1093/molbev/msh137; Pogue M, 1986, THESIS U MINNESOTA; POINAR GO, 1993, ENTOMOL SCAND, V24, P25; Powell GW, 2000, CAN ENTOMOL, V132, P223, DOI 10.4039/Ent132223-2; POWELL JA, 1985, AUST J ZOOL, V33, P179, DOI 10.1071/ZO9850179; POWELL JA, 1976, PAN-PAC ENTOMOL, V52, P91; POWELL JA, 1986, PAN-PAC ENTOMOL, V62, P372; Powell JA, 2011, TORTRICIDAE TORTRICI; Powell JA, 1964, U CALIF PUBLIC ENTOM, V32; Powell JA, 1983, CHECK LIST LEPIDOPTE, P31; Powell Jerry A., 1999, Handbuch der Zoologie (Berlin), V4, P403; RAZOWSKI J, 1976, Acta Zoologica Cracoviensia, V21, P73; RAZOWSKI J, 1988, Acta Zoologica Cracoviensia, V31, P387; RAZOWSKI J, 1987, Acta Zoologica Cracoviensia, V30, P141; Razowski J, 1970, MICROLEPIDOPTERA PAL, V3; Razowski Jozef, 1993, Acta Zoologica Cracoviensia, V35, P665; Razowski J, 2010, FOLIA BIOL-KRAKOW, V58, P189, DOI 10.3409/fb58_3-4.189-194; Regier JC, 1998, MOL BIOL EVOL, V15, P1172, DOI 10.1093/oxfordjournals.molbev.a026024; Regier JC, 2008, SYST ENTOMOL, V33, P219, DOI 10.1111/j.1365-3113.2007.00416.x; Regier JC, 2008, SYST ENTOMOL, V33, P175, DOI 10.1111/j.1365-3113.2007.00409.x; Regier JC, 2010, NATURE, V463, P1079, DOI 10.1038/nature08742; Regier JC, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-280; Regier JC, 2008, SYST BIOL, V57, P920, DOI 10.1080/10635150802570791; Robinson GS, 2010, HOSTS DATABASE WORLD; ROE AD, 2009, GENETICS MOL BIOL LE, P1, DOI DOI 10.1201/9781420060201-C1; Safonkin A. F., 2007, ENTOMOL REV, V87, P1238; Smith L, 2003, BIOL CONTROL, V26, P270, DOI 10.1016/S1049-9644(02)00169-X; STADEN R, 1999, STADEN PACKAGE; TUCK KR, 1981, SYST ENTOMOL, V6, P337, DOI 10.1111/j.1365-3113.1981.tb00442.x; van der Geest L. P., 1991, TORTRICID PESTS THEI; von Kennel J, 1908, ZOOLOGICA, V21, P1; Wiens JJ, 2003, SYST BIOL, V52, P528, DOI 10.1080/10635150390218330; Wiens JJ, 1998, SYST BIOL, V47, P625, DOI 10.1080/106351598260635; Wiens JJ, 2011, SYST BIOL, V60, P719, DOI 10.1093/sysbio/syr025; Winkler IS, 2008, SPECIALIZATION, SPECIATION, AND RADIATION: THE EVOLUTIONARY BIOLOGY OF HERBIVOROUS INSECTS, P240; Yang A, 2009, P ENTOMOL SOC WASH, V111, P743, DOI 10.4289/0013-8797-111.3.743; Zhang B. C, 1994, INDEX EC IMPORTANT L; Zhang ZQ, 2011, ZOOTAXA, P7, DOI 10.11646/zootaxa.3703.1.1; Zwick A, 2011, SYST ENTOMOL, V36, P31, DOI 10.1111/j.1365-3113.2010.00543.x; Zwickl DJ., 2006, THESIS U TEXAS AUSTI 103 40 43 0 34 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 19 2012 7 4 e35574 10.1371/journal.pone.0035574 17 Multidisciplinary Sciences Science & Technology - Other Topics 959TL WOS:000305336200057 22536410 DOAJ Gold, Green Published 2019-02-21 J Liu, L; Feng, TY; Suo, T; Lee, K; Li, H Liu, Lei; Feng, Tingyong; Suo, Tao; Lee, Kang; Li, Hong Adapting to the Destitute Situations: Poverty Cues Lead to Short-Term Choice PLOS ONE English Article SOCIAL-CLASS; INEQUALITY; IMPATIENCE; DECISION; REWARDS; MONEY; DELAY Background: Why do some people live for the present, whereas others save for the future? The evolutionary framework of life history theory predicts that preference for delay of gratification should be influenced by social economic status (SES). However, here we propose that the decision to choose alternatives in immediate and delayed gratification in poverty environments may have a psychological dimension. Specifically, the perception of environmental poverty cues may induce people alike to favor choices with short-term, likely smaller benefit than choices with long-term, greater benefit. Methodology/Principal Findings: The present study was conducted to explore how poverty and affluence cues affected individuals' intertemporal choices. In our first two experiments, individuals exposed explicitly (Experiment 1) and implicitly (Experiment 2) to poverty pictures (the poverty cue) were induced to prefer immediate gratification compared with those exposed to affluence pictures (the affluence cue). Furthermore, by the manipulation of temporary perceptions of poverty and affluence status using a lucky draw game; individuals in the poverty state were more impulsive in a manner, which made them pursue immediate gratification in intertemporal choices (Experiment 3). Thus, poverty cues can lead to short-term choices. Conclusions/Significance: Decision makers chose more frequently the sooner-smaller reward over the later-larger reward as they were exposed to the poverty cue. This indicates that it is that just the feeling of poverty influences intertemporal choice - the actual reality of poverty (restricted resources, etc.) is not necessary to get the effect. Furthermore, our findings emphasize that it is a change of the poverty-affluence status, not a trait change, can influence individual preference in intertemporal choice. [Liu, Lei; Feng, Tingyong; Suo, Tao; Li, Hong] Southwest Univ, Sch Psychol, Chongqing, Peoples R China; [Feng, Tingyong; Li, Hong] Minist Educ, Key Lab Cognit & Personal, Chongqing, Peoples R China; [Lee, Kang] Univ Toronto, Inst Child Study, Toronto, ON, Canada; [Li, Hong] Liaoning Normal Univ, Sch Educ, Dalian, Peoples R China Liu, L (reprint author), Southwest Univ, Sch Psychol, Chongqing, Peoples R China. fengty0@163.com National Natural Science Foundation of China [30800292]; National Key Discipline of Basic Psychology in Southwest University of China [NSKD08007]; Fundamental Research Funds for the Central Universities [SWU1109009] This study was supported by the National Natural Science Foundation of China (30800292), the National Key Discipline of Basic Psychology in Southwest University of China (NSKD08007) and the Fundamental Research Funds for the Central Universities (SWU1109009). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Berger J, 2008, P NATL ACAD SCI USA, V105, P8846, DOI 10.1073/pnas.0711988105; Cacioppo JT, 1999, ANNU REV PSYCHOL, V50, P191, DOI 10.1146/annurev.psych.50.1.191; Christie AM, 2010, J APPL PSYCHOL, V95, P920, DOI 10.1037/a0019856; De Martino B, 2006, SCIENCE, V313, P684, DOI 10.1126/science.1128356; Delplanque S, 2005, BIOL PSYCHOL, V68, P107, DOI 10.1016/j.biopsycho.2004.04.006; Fehr E, 2002, NATURE, V415, P269, DOI 10.1038/415269a; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hackman DA, 2009, TRENDS COGN SCI, V13, P65, DOI 10.1016/j.tics.2008.11.003; Haisley E, 2008, J BEHAV DECIS MAKING, V21, P283, DOI 10.1002/bdm.588; KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185; Kraus MW, 2010, PSYCHOL SCI, V21, P1716, DOI 10.1177/0956797610387613; Kraus MW, 2009, J PERS SOC PSYCHOL, V97, P992, DOI 10.1037/a0016357; Lipina S.J., 2005, INTERAM J PSYCHOL, V39, P49; Luhmann CC, 2008, J NEUROSCI, V28, P14459, DOI 10.1523/JNEUROSCI.5058-08.2008; MAZUR JE, 1989, J EXP ANAL BEHAV, V51, P87, DOI 10.1901/jeab.1989.51-87; McClure SM, 2004, SCIENCE, V306, P503, DOI 10.1126/science.1100907; Oakes JM, 2003, SOC SCI MED, V56, P796; Piff PK, 2010, J PERS SOC PSYCHOL, V99, P771, DOI 10.1037/a0020092; Singh-Manoux A, 2005, ANN EPIDEMIOL, V15, P572, DOI 10.1016/j.annepidem.2004.10.007; Snibbe AC, 2005, J PERS SOC PSYCHOL, V88, P703, DOI 10.1037/0022-3514.88.4.703; Sprengelmeyer R, 2006, NEUROPSYCHOLOGIA, V44, P2899, DOI 10.1016/j.neuropsychologia.2006.06.020; Stevens JR, 2010, ENCY ANIMAL BEHAV; Tricomi E, 2010, NATURE, V463, P1089, DOI 10.1038/nature08785; Vohs KD, 2006, SCIENCE, V314, P1154, DOI 10.1126/science.1132491; Wilkinson RG, 2000, MIND GAP HIERARCHIES; Wood M, 1998, J ECON PSYCHOL, V19, P295, DOI 10.1016/S0167-4870(98)00009-9; Yuan JJ, 2009, HUM BRAIN MAPP, V30, P3676, DOI 10.1002/hbm.20796; Zhong CB, 2010, PSYCHOL SCI, V21, P619, DOI 10.1177/0956797610366090; Zhou XY, 2009, PSYCHOL SCI, V20, P700, DOI 10.1111/j.1467-9280.2009.02353.x 31 13 17 1 32 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e33950 10.1371/journal.pone.0033950 6 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600009 22529902 DOAJ Gold, Green Published 2019-02-21 J Baos, R; Jovani, R; Serrano, D; Tella, JL; Hiraldo, F Baos, Raquel; Jovani, Roger; Serrano, David; Tella, Jose L.; Hiraldo, Fernando Developmental Exposure to a Toxic Spill Compromises Long-Term Reproductive Performance in a Wild, Long-Lived Bird: The White Stork (Ciconia ciconia) PLOS ONE English Article VALDEZ OIL-SPILL; KITES MILVUS-MIGRANS; SOUTHWESTERN SPAIN; OXIDATIVE STRESS; HEAVY-METAL; ENVIRONMENTAL-CONDITIONS; ADRENOCORTICAL-RESPONSE; GENOTOXIC DAMAGE; LIFE; NEUROENDOCRINE Background/Objective: Exposure to environmental contaminants may result in reduced reproductive success and long-lasting population declines in vertebrates. Emerging data from laboratory studies on model species suggest that certain life-stages, such as development, should be of special concern. However, detailed investigations of long-term consequences of developmental exposure to environmental chemicals on breeding performance are currently lacking in wild populations of long-lived vertebrates. Here, we studied how the developmental exposure to a mine spill (Aznalcollar, SW Spain, April 1998) may affect fitness under natural conditions in a long-lived bird, the White Stork (Ciconia ciconia). Methodology: The reproductive performance of individually-banded storks that were or not developmentally exposed to the spill (i.e. hatched before or after the spill) was compared when these individuals were simultaneously breeding during the seven years after the spill occurred (1999-2005). Principal Findings: Female storks developmentally exposed to the spill experienced a premature breeding senescence compared with their non-developmentally exposed counterparts, doing so after departing from an unusually higher productivity in their early reproductive life (non-developmentally exposed females: 0.5 +/- 0.33SE fledglings/year at 3-yr old vs. 1.38 +/- 0.31SE at 6-7 yr old; developmentally exposed females: 1.5 +/- 0.30SE fledglings/year at 3-yr old vs. 0.86 +/- 0.25SE at 67 yr old). Conclusions/Significance: Following life-history theory, we propose that costly sub-lethal effects reported in stork nestlings after low-level exposure to the spill-derived contaminants might play an important role in shaping this pattern of reproduction, with a clear potential impact on population dynamics. Overall, our study provides evidence that environmental disasters can have long-term, multigenerational consequences on wildlife, particularly when affecting developing individuals, and warns about the risk of widespread low-level contamination in realistic scenarios. [Baos, Raquel; Serrano, David; Tella, Jose L.; Hiraldo, Fernando] Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain; [Jovani, Roger] Estac Biol Donana CSIC, Dept Evolutionary Ecol, Seville, Spain Baos, R (reprint author), Estac Biol Donana CSIC, Dept Conservat Biol, Seville, Spain. raquel@ebd.csic.es Baos, Raquel/L-9206-2015; Jovani, Roger/C-7080-2013; Serrano, David/B-5352-2013; Tella, Jose/I-3707-2015; CSIC, EBD Donana/C-4157-2011 Baos, Raquel/0000-0003-1283-6270; Jovani, Roger/0000-0002-8693-9742; Serrano, David/0000-0001-6205-386X; Tella, Jose/0000-0002-3038-7424; CSIC, EBD Donana/0000-0003-4318-6602 Junta de Andalucia; Ministry of Science and Technology [B0S2002-00857]; EGMASA; CSIC in an i3P grant; Ministry of Education and Culture in an FPU Pre-doctoral Fellowship; Ramon y Cajal from the Ministry of Science and Innovation [RYC-2009-03967] Partial funding for this work was provided by the Junta de Andalucia and the Ministry of Science and Technology (B0S2002-00857). RB was supported by EGMASA and CSIC in an i3P grant, and by the Ministry of Education and Culture in an FPU Pre-doctoral Fellowship. During writing, RJ has been supported by a Ramon y Cajal research contract (RYC-2009-03967) from the Ministry of Science and Innovation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alzaga R, 1999, SCI TOTAL ENVIRON, V242, P167, DOI 10.1016/S0048-9697(99)00382-4; Baos R, 2006, ENVIRON HEALTH PERSP, V114, P1497, DOI 10.1289/ehp.9099; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P2794, DOI 10.1897/05-570R.1; Baos R, 2006, ENVIRON TOXICOL CHEM, V25, P1153, DOI 10.1897/05-395R.1; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Bernanke J, 2009, REV ENVIRON CONTAM T, V198, P1, DOI 10.1007/978-0-387-09647-6_1; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Blas J, 2006, GEN COMP ENDOCR, V148, P172, DOI 10.1016/j.ygcen.2006.02.011; Bonilla-Valverde D, 2004, TOXICOLOGY, V197, P123, DOI 10.1016/j.tox.2003.12.010; Chernetsov N, 2006, AUK, V123, P1103, DOI 10.1642/0004-8038(2006)123[1103:SNDOWS]2.0.CO;2; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLBORN T, 1992, CHEM INDUCED ALTERAT; *CONS MED AMB, 2003, CIENC REST RIO GUAD; Damstra T., 2002, GLOBAL ASSESSMENT ST; Dickerson SM, 2007, REV ENDOCR METAB DIS, V8, P143, DOI 10.1007/s11154-007-9048-y; DIGIULIO RT, 1999, REPROD DEV EFFECTS C; Eeva T, 2005, OECOLOGIA, V145, P629, DOI 10.1007/s00442-005-0145-x; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Elliott John E., 2001, Reviews in Toxicology (Amsterdam), V4, P1; Esler D, 2010, ENVIRON TOXICOL CHEM, V29, P1138, DOI 10.1002/etc.129; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gil F, 2006, SCI TOTAL ENVIRON, V372, P49, DOI 10.1016/j.scitotenv.2006.08.004; Gore AC, 2008, FRONT NEUROENDOCRIN, V29, P358, DOI 10.1016/j.yfrne.2008.02.002; Grimalt JO, 1999, SCI TOT ENV, V242; Gump BB, 2008, ENVIRON HEALTH PERSP, V116, P249, DOI 10.1289/ehp.10391; Guterman L, 2009, SCIENCE, V323, P1558, DOI 10.1126/science.323.5921.1558; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hegyi G, 2011, BEHAV ECOL SOCIOBIOL, V65, P69, DOI 10.1007/s00265-010-1036-7; Henriksen EO, 2001, J ENVIRON MONITOR, V3, P493, DOI 10.1039/b102683f; Hotchkiss AK, 2008, TOXICOL SCI, V105, P235, DOI 10.1093/toxsci/kfn030; Iwaniuk AN, 2006, BEHAV BRAIN RES, V173, P1, DOI 10.1016/j.bbr.2006.05.026; Jovani R, 2004, ARDEOLA, V51, P357; Jovani R, 2004, ECOGRAPHY, V27, P611, DOI 10.1111/j.0906-7590.2004.03925.x; Jovani R, 2007, P ROY SOC B-BIOL SCI, V274, P2465, DOI 10.1098/rspb.2007.0527; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marchamalo J., 1996, Butlleti del Grup Catala d'Anellament, V13, P37; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moller AP, 2008, J COMP PHYSIOL B, V178, P735, DOI 10.1007/s00360-008-0262-z; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munoz-Arnanz J, 2008, ORGANOH COMP, V70, P1562; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P1164, DOI 10.1016/j.envint.2011.03.025; Munoz-Arnanz J, 2011, ENVIRON INT, V37, P572, DOI 10.1016/j.envint.2010.11.013; Murtaugh PA, 2009, ECOL LETT, V12, P1061, DOI 10.1111/j.1461-0248.2009.01361.x; Newton I, 1998, POPULATION LIMITATIO; Norris D. O., 2006, ENDOCRINE DISRUPTION; Nowicki S, 1998, AM ZOOL, V38, P179; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Ottinger MA, 2008, BRAIN RES REV, V57, P376, DOI 10.1016/j.brainresrev.2007.08.011; Paine RT, 1996, ANNU REV ECOL SYST, V27, P197, DOI 10.1146/annurev.ecolsys.27.1.197; Pastor N, 2004, MUTAGENESIS, V19, P61, DOI 10.1093/mutage/geg035; Pastor N, 2001, MUTAGENESIS, V16, P219, DOI 10.1093/mutage/16.3.219; Peterson CH, 2003, SCIENCE, V302, P2082, DOI 10.1126/science.1084282; PIATT JF, 1990, AUK, V107, P387, DOI 10.2307/4087623; Quinn MJ, 2008, HORM BEHAV, V53, P249, DOI 10.1016/j.yhbeh.2007.10.004; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Romero-Ruiz A, 2003, ENVIRON TOXICOL CHEM, V22, P92, DOI 10.1897/1551-5028(2003)022<0092:OSBIBT>2.0.CO;2; Rowe CL, 2008, BIOSCIENCE, V58, P623, DOI 10.1641/B580709; Sabbioni G, 2002, BIOMARKERS, V7, P347, DOI 10.1080/13547500210147253; Segner H, 2007, NATO SCI PEACE SECUR, P39, DOI 10.1007/978-1-4020-6335-0_4; Sih A, 2004, TRENDS ECOL EVOL, V19, P274, DOI 10.1016/j.tree.2004.02.010; Smits JEG, 2005, TOXICOL PATHOL, V33, P441, DOI 10.1080/01926230590953097; Smits JE, 2007, ENVIRON POLLUT, V145, P538, DOI 10.1016/j.envpol.2006.04.032; Spencer KA, 2010, BEHAV ECOL, V21, P999, DOI 10.1093/beheco/arq090; Stearns S, 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Tablado Z, 2010, CONSERV BIOL, V24, P1230, DOI 10.1111/j.1523-1739.2010.01483.x; Velando A, 2005, J ORNITHOL, V146, P116, DOI 10.1007/s10336-004-0068-z; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; White LD, 2007, TOXICOL APPL PHARM, V225, P1, DOI 10.1016/j.taap.2007.08.001; Wiens JA, 2004, ECOL APPL, V14, P1806, DOI 10.1890/02-5340; WIENS JA, 1995, ECOL APPL, V5, P1069, DOI 10.2307/2269355; Wikelski M, 2002, NATURE, V417, P607, DOI 10.1038/417607a; Wingfield JC, 2009, GEN COMP ENDOCR, V163, P92, DOI 10.1016/j.ygcen.2009.04.030; Zuberogoitia I, 2006, MAR POLLUT BULL, V52, P1176, DOI 10.1016/j.marpolbul.2006.02.016 79 14 14 1 48 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 18 2012 7 4 e34716 10.1371/journal.pone.0034716 7 Multidisciplinary Sciences Science & Technology - Other Topics 959XD WOS:000305350600022 22529928 DOAJ Gold, Green Published 2019-02-21 J Hurst, JM; Stewart, GH; Perry, GLW; Wiser, SK; Norton, DA Hurst, Jennifer M.; Stewart, Glenn H.; Perry, George L. W.; Wiser, Susan K.; Norton, David A. Determinants of tree mortality in mixed old-growth Nothofagus forest FOREST ECOLOGY AND MANAGEMENT English Article Tree mortality; Spatial pattern; Nothofagus; Disturbance DENSITY-DEPENDENT MORTALITY; LIFE-HISTORY STRATEGIES; SPATIAL POINT PATTERNS; NEW-ZEALAND; SHADE TOLERANCE; DOUGLAS-FIR; CANOPY GAPS; INTERSPECIFIC VARIATION; NEIGHBORHOOD ANALYSIS; SPECIES COEXISTENCE Rates and spatial patterns of tree mortality were examined using long-term data from old-growth, mixed-species forests of the Maruia Valley, South Island, New Zealand. The aim of the study was to investigate patterns of tree mortality in two common, co-occurring species, Nothofagus fusca (Hook. f.) Oerst. and Nothofagus menziesii (Hook. f.) Oerst. The dynamics of three old-growth stands were followed over a 23-year period, using plots sized 0.8-1.0 ha. In total the fates of 1138 individual N. fusca and 1611 N. menziesii were recorded, which had annual mortality rates of 0.016 and 0.0089 per year, respectively. Differing spatial and size-related patterns of mortality were found between species. For both species, individual-based logistic models showed that slower growing trees were more likely to die than faster growing trees. N. fusca trees growing in previously disturbed stands were also more likely to die than those in undisturbed stands. Spatial point process analysis showed that dead N. fusca trees were spatially aggregated, and were segregated from living trees, a pattern that was consistent across both small and large trees. Dead N. menziesii were spatially aggregated, but were not segregated from living trees. Aggregated mortality of N. fusca trees should favor regeneration of this light-demanding species in large canopy gaps, perpetuating its aggregated distribution, whereas the lower mortality of shade-tolerant N. menziesii allows this species to persist. Our results demonstrate that performance differences in coexisting tree species can be manifested spatially. Between species, different mortality patterns may have implications for sustainable forest management. (C) 2012 Elsevier B.V. All rights reserved. [Hurst, Jennifer M.; Norton, David A.] Univ Canterbury, Sch Forestry, Christchurch 8140, New Zealand; [Stewart, Glenn H.] Lincoln Univ, Dept Environm Management, Fac Environm Soc & Design, Lincoln 7647, New Zealand; [Perry, George L. W.] Univ Auckland, Sch Environm, Auckland 1, New Zealand; [Hurst, Jennifer M.; Wiser, Susan K.] Landcare Res, Lincoln 7640, New Zealand; [Perry, George L. W.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand Hurst, JM (reprint author), Univ Canterbury, Sch Forestry, Private Bag 4800, Christchurch 8140, New Zealand. hurstj@landcareresearch.co.nz wiser, susan/G-1975-2011 wiser, susan/0000-0002-8938-8181; Perry, George/0000-0001-9672-9135 Canterbury Doctoral Scholarship; New Zealand Ministry of Science and Innovation [C09X0802] The authors thank Larry Burrows, Dianne Carter, Rowan Buxton, Alan Rose and numerous others who assisted with plot remeasurements over the years, and Rob Allen for useful discussions and thoughtful comments on an earlier draft. This study was supported by the Canterbury Doctoral Scholarship awarded to J.M.H., and the New Zealand Ministry of Science and Innovation (Contract C09X0802). Abe S, 1998, J VEG SCI, V9, P787, DOI 10.2307/3237044; Baddeley A, 2005, J STAT SOFTW, V12, P1; Baraloto C, 2005, ECOLOGY, V86, P2461, DOI 10.1890/04-1956; Batista WB, 2003, J ECOL, V91, P197, DOI 10.1046/j.1365-2745.2003.00754.x; Bengtsson J, 2000, FOREST ECOL MANAG, V132, P39, DOI 10.1016/S0378-1127(00)00378-9; Bigler C, 2003, CAN J FOREST RES, V33, P210, DOI [10.1139/x02-180, 10.1139/X02-180]; Bladon KD, 2008, FOREST CHRON, V84, P70, DOI 10.5558/tfc84070-1; Boyden SB, 2009, J ECOL, V97, P277, DOI 10.1111/j.1365-2745.2008.01477.x; Burnham K. P, 2002, MODEL SELECTION MULT; Busing RT, 2005, ECOLOGY, V86, P73, DOI 10.1890/04-0410; Canham CD, 2001, CAN J FOREST RES, V31, P1, DOI 10.1139/cjfr-31-1-1; Canham CD, 2004, CAN J FOREST RES, V34, P778, DOI 10.1139/X03-232; Cherubini P, 2002, J ECOL, V90, P839, DOI 10.1046/j.1365-2745.2002.00715.x; Condit R, 2006, SCIENCE, V313, P98, DOI 10.1126/science.1124712; Coomes DA, 2003, ECOL LETT, V6, P980, DOI 10.1046/j.1461-0248.2003.00520.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Das A, 2008, ECOLOGY, V89, P1744, DOI 10.1890/07-0524.1; Das A, 2011, FOREST ECOL MANAG, V261, P1203, DOI 10.1016/j.foreco.2010.12.035; Das AJ, 2007, CAN J FOREST RES, V37, P580, DOI 10.1139/X06-262; Diggle P. J., 2003, STAT ANAL SPATIAL PO; DUNCAN RP, 1991, J ECOL, V79, P1073, DOI 10.2307/2261099; Franklin JF, 2002, FOREST ECOL MANAG, V155, P399, DOI 10.1016/S0378-1127(01)00575-8; Franklin JF, 2004, J FOREST, V102, P22; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Gelman A, 2008, STAT MED, V27, P2865, DOI 10.1002/sim.3107; Goreaud F, 2003, J VEG SCI, V14, P681, DOI 10.1658/1100-9233(2003)014[0681:AMOBIW]2.0.CO;2; Gratzer G, 2004, FOREST ECOL MANAG, V192, P143, DOI 10.1016/j.foreco.2003.12.020; Gray L, 2009, FOREST ECOL MANAG, V259, P98, DOI 10.1016/j.foreco.2009.09.048; Greenwood DL, 2008, FOREST ECOL MANAG, V255, P2129, DOI 10.1016/j.foreco.2007.12.048; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HAMILTON DA, 1986, FOREST SCI, V32, P989; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; Hartmann H, 2011, FOREST ECOL MANAG, V261, P1936, DOI 10.1016/j.foreco.2011.02.018; Hawkins AE, 2011, CAN J FOREST RES, V41, P1256, DOI [10.1139/x11-053, 10.1139/X11-053]; He FL, 2000, J ECOL, V88, P676, DOI 10.1046/j.1365-2745.2000.00482.x; HOLLOWAY JOHN T., 1954, TRANS ROY SOC NEW ZEALAND, V82, P329; HOSKING GP, 1985, NEW ZEAL J BOT, V23, P201, DOI 10.1080/0028825X.1985.10425326; Hurst JM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026670; JANE GT, 1986, NEW ZEAL J BOT, V24, P513, DOI 10.1080/0028825X.1986.10409939; Jonsson MT, 2007, FOREST ECOL MANAG, V242, P306, DOI 10.1016/j.foreco.2007.01.048; KENKEL NC, 1988, ECOLOGY, V69, P1017, DOI 10.2307/1941257; Kneeshaw DD, 2006, J ECOL, V94, P471, DOI 10.1111/j.1365-2745.2005.01070.x; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Kobe RK, 1997, CAN J FOREST RES, V27, P227, DOI 10.1139/cjfr-27-2-227; Law R, 2009, J ECOL, V97, P616, DOI 10.1111/j.1365-2745.2009.01510.x; Lin J, 2002, OECOLOGIA, V132, P428, DOI 10.1007/s00442-002-0986-5; Lindenmayer D, 2002, FOREST ECOL MANAG, V155, P319, DOI 10.1016/S0378-1127(01)00569-2; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Litchwark H., 1978, NZ J FOR SCI, V8, P256; Loosmore NB, 2006, ECOLOGY, V87, P1925, DOI 10.1890/0012-9658(2006)87[1925:SIUTGO]2.0.CO;2; Lusk CH, 1998, ECOLOGY, V79, P795, DOI 10.1890/0012-9658(1998)079[0795:LHDATS]2.0.CO;2; Mason E. G., 2000, New Zealand Journal of Forestry, V44, P26; McCracken I.J., 1994, PLATYPUS PINHO UNPUB; Ministry of Agriculture and Forestry, 2009, STAND GUID SUST MAN; MONSERUD RA, 1976, FOREST SCI, V22, P438; Monserud RA, 1999, FOREST ECOL MANAG, V113, P109, DOI 10.1016/S0378-1127(98)00419-8; Moravie MA, 2003, J VEG SCI, V14, P823, DOI 10.1658/1100-9233(2003)014[0823:AMTARB]2.0.CO;2; Nakashizuka T, 2001, TRENDS ECOL EVOL, V16, P205, DOI 10.1016/S0169-5347(01)02117-6; OGDEN J, 1988, GEOJOURNAL, V17, P225; Ogden John, 1996, P25; Oliver CD, 1990, FOREST STAND DYNAMIC; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; PACALA SW, 1994, CAN J FOREST RES, V24, P2172, DOI 10.1139/x94-280; PEET RK, 1987, BIOSCIENCE, V37, P586, DOI 10.2307/1310669; Perry GLW, 2006, PLANT ECOL, V187, P59, DOI 10.1007/s11258-006-9133-4; Raventos J, 2010, ECOLOGY, V91, P2110, DOI 10.1890/09-0385.1; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; RUNKLE JR, 1995, ECOLOGY, V76, P2107, DOI 10.2307/1941685; Runkle JR, 1998, ECOLOGY, V79, P1768, DOI 10.2307/176795; Runkle JR, 1997, J VEG SCI, V8, P437, DOI 10.2307/3237335; Schliemann SA, 2011, FOREST ECOL MANAG, V261, P1143, DOI 10.1016/j.foreco.2011.01.011; Spence LA, 2011, P ROY SOC B-BIOL SCI, V278, P1457, DOI 10.1098/rspb.2010.1738; Splechtna Bernhard E., 2005, Forest Snow and Landscape Research, V79, P57; Stewart G.H., 1992, STRUCTURE REGENERATI, P4; STEWART GH, 1991, J VEG SCI, V2, P679, DOI 10.2307/3236178; STEWART GH, 1990, VEGETATIO, V87, P101, DOI 10.1007/BF00042947; Stoyan D, 2000, STAT SCI, V15, P61; Stoyan D., 1994, FRACTALS RANDOM SHAP; Suarez ML, 2004, J ECOL, V92, P954, DOI 10.1111/j.1365-2745.2004.00941.x; Thorpe HC, 2008, ECOL APPL, V18, P1652, DOI 10.1890/07-1697.1; Thorpe HC, 2007, FOREST CHRON, V83, P319, DOI 10.5558/tfc83319-3; Uriarte M, 2004, ECOL MONOGR, V74, P591, DOI 10.1890/03-4031; Vasiliauskas R, 2001, FORESTRY, V74, P319, DOI 10.1093/forestry/74.4.319; Veblen Thomas T., 1992, V11, P152; VEBLEN TT, 1986, ECOLOGY, V67, P644, DOI 10.2307/1937688; Villalba R, 1998, ECOLOGY, V79, P2624; WARDLE JA, 1984, NZ BEECHES; White P. S., 1985, ECOLOGY NATURAL DIST, P3; Wiser SK, 2005, CAN J FOREST RES, V35, P2323, DOI [10.1139/x05-158, 10.1139/X05-158]; Wiser SK, 2011, APPL VEG SCI, V14, P506, DOI 10.1111/j.1654-109X.2011.01146.x; Wiser Susan K., 2007, New Zealand Journal of Forestry, V52, P31; Worrall JJ, 2005, J ECOL, V93, P178, DOI 10.1111/j.1365-2745.2004.00937.x; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wunder J, 2007, J VEG SCI, V18, P525, DOI 10.1658/1100-9233(2007)18[525:PTDFFS]2.0.CO;2; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Yang YQ, 2003, ECOL MODEL, V163, P209, DOI 10.1016/S0304-3800(03)00008-5; Yao XH, 2001, CAN J FOREST RES, V31, P283, DOI 10.1139/cjfr-31-2-283; Yu H, 2009, FOREST ECOL MANAG, V257, P2098, DOI 10.1016/j.foreco.2009.02.019; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 99 12 12 2 41 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 FOREST ECOL MANAG For. Ecol. Manage. APR 15 2012 270 189 199 10.1016/j.foreco.2012.01.029 11 Forestry Forestry 928MM WOS:000302986900022 2019-02-21 J Vercken, E; Wellenreuther, M; Svensson, EI; Mauroy, B Vercken, Elodie; Wellenreuther, Maren; Svensson, Erik I.; Mauroy, Benjamin Don't Fall Off the Adaptation Cliff: When Asymmetrical Fitness Selects for Suboptimal Traits PLOS ONE English Article LIFE-HISTORY EVOLUTION; COLUMBIAN GROUND-SQUIRRELS; LITTER-SIZE; CLUTCH-SIZE; STOCHASTIC ENVIRONMENTS; JENSENS INEQUALITY; BROOD SIZE; POPULATION DIVERGENCE; SEXUAL SELECTION; TRADE-OFFS The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized ("genotype fitness") instead of the classical fitness function ("phenotype fitness"). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature. [Vercken, Elodie] INRA, UMR ISA 1355, Inst Sophia Agrobiotech, Sophia Antipolis, France; [Wellenreuther, Maren; Svensson, Erik I.] Lund Univ, Dept Biol, Lund, Sweden; [Mauroy, Benjamin] Univ Nice Sophia Antipolis, CNRS, UMR 7351, Lab JA Dieudonne, Nice, France Vercken, E (reprint author), INRA, UMR ISA 1355, Inst Sophia Agrobiotech, Sophia Antipolis, France. elodie.vercken@sophia.inra.fr Svensson, Erik/E-8324-2010 Svensson, Erik/0000-0001-9006-016X; Wellenreuther, Maren/0000-0002-2764-8291 Institut National de la Recherche Agronomique; Centre National de la Recherche Scientifique This work was supported by the Institut National de la Recherche Agronomique and the Centre National de la Recherche Scientifique. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. BOUTIN S, 1988, J ANIM ECOL, V57, P455, DOI 10.2307/4917; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Burns JK, 2004, BEHAV BRAIN SCI, V27, P868; CHARNOV EL, 1984, FLA ENTOMOL, V67, P5, DOI 10.2307/3494101; DeWitt TJ, 1997, TRENDS ECOL EVOL, V12, P443, DOI 10.1016/S0169-5347(97)85747-3; Drake JM, 2005, P ROY SOC B-BIOL SCI, V272, P1823, DOI 10.1098/rspb.2005.3148; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; Fairbairn Daphne J., 2001, P29; Falconer D.S., 1981, INTRO QUANTITATIVE G; Fisher RA, 1930, GENETICAL THEORY NAT; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; FOX GA, 1993, EVOL ECOL, V7, P1, DOI 10.1007/BF01237731; Freedberg S, 2007, J EVOLUTION BIOL, V20, P213, DOI 10.1111/j.1420-9101.2006.01209.x; Hansen TF, 2006, AM NAT, V168, P168, DOI 10.1086/505768; HARE JF, 1992, J MAMMAL, V73, P449, DOI 10.2307/1382083; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lajus Dmitry L., 2003, P343; LESSELLS CM, 1986, J ANIM ECOL, V55, P669, DOI 10.2307/4747; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Mauroy B, 2004, NATURE, V427, P633, DOI 10.1038/nature02287; Mazer Susan J., 2001, P16; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; Mock D W, 1998, EVOLUTION SIBLING RI; MOLLER AP, 1991, FUNCT ECOL, V5, P351, DOI 10.2307/2389806; Morris DW, 1996, J ANIM ECOL, V65, P43, DOI 10.2307/5698; MORRIS DW, 1992, EVOLUTION, V46, P1848, DOI 10.1111/j.1558-5646.1992.tb01173.x; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; Nesse R. M., 1996, WHY WE GET SICK NEW; Nesse RM, 2004, BEHAV BRAIN SCI, V27, P862; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; Pasztor L, 2000, TRENDS ECOL EVOL, V15, P117, DOI 10.1016/S0169-5347(99)01801-7; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; REAL LA, 1992, ECOLOGY, V73, P1227, DOI 10.2307/1940671; Risch TS, 2007, ECOLOGY, V88, P306, DOI 10.1890/06-0249; RISCH TS, 1995, ECOLOGY, V76, P1643, DOI 10.2307/1938165; Roff Derek A., 1992; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; Ruppel G., 2005, PRACHTLIBELLEN EUROP; Ruusila V, 2000, J ZOOL, V252, P79, DOI 10.1111/j.1469-7998.2000.tb00822.x; Siva-Jothy MT, 1999, BEHAVIOUR, V136, P1365, DOI 10.1163/156853999500776; Smallwood PD, 1996, AM ZOOL, V36, P392; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, EVOLUTION HLTH DIS; Stearns SC, 2002, P NATL ACAD SCI USA, V99, P10229, DOI 10.1073/pnas.172388999; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svensson EI, 2004, HEREDITY, V93, P423, DOI 10.1038/sj.hdy.6800519; Svensson EI, 2007, AM NAT, V170, P101, DOI 10.1086/518181; Svensson EI, 2006, EVOLUTION, V60, P1242; Turnbull LA, 2008, ECOL LETT, V11, P1037, DOI 10.1111/j.1461-0248.2008.01214.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Weibel ER, 1963, MORPHOMETRY HUMAN LU; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; WHITLOCK MC, 1995, EVOLUTION, V49, P252, DOI 10.1111/j.1558-5646.1995.tb02237.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216; Wilson WG, 2003, AM NAT, V162, P220, DOI 10.1086/376584; Wright Sewall, 1932, P 6 INT C GEN, V1, P355; YOSHIMURA J, 1992, B MATH BIOL, V54, P445, DOI 10.1007/BF02464843; Yoshimura J, 1996, RES POPUL ECOL, V38, P165, DOI 10.1007/BF02515724 64 6 6 0 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 11 2012 7 4 e34889 10.1371/journal.pone.0034889 9 Multidisciplinary Sciences Science & Technology - Other Topics 959TP WOS:000305336600064 22509364 DOAJ Gold, Green Published 2019-02-21 J Vellau, H; Tammaru, T Vellau, Helen; Tammaru, Toomas Larval crowding leads to unusual reaction norms for size and time at maturity in a geometrid moth (Lepidoptera: Geometridae) EUROPEAN JOURNAL OF ENTOMOLOGY English Article Lepidoptera; Geometridae; reaction norm; larval crowding; size and time at maturity; Ematurga atomaria LIFE-HISTORY SHIFTS; EPIRRITA-AUTUMNATA; GROWTH-RATE; PHENOTYPIC PLASTICITY; FIELD EXPERIMENT; DENSITY; CONSTRAINTS; EVOLUTION; RESPONSES; AGE The theory of life history evolution generally predicts a negative across-environment correlation between development time and size at maturity in response to variations in environmental quality. Deviations from this pattern occur under specific circumstances. In particular, organisms may mature both early and at a small size when (1) some ultimate change (e.g. time constraint, resource exhaustion) in the environment precludes further growth, or (2) when there are predictable among-environment differences in mortality rates. The first scenario is frequently documented in insects but evidence for the second possibility is scarce. Here we report a crowding-induced plastic response resulting in a clear positive across-environment correlation between final weight and development time in a geometrid moth. The response was apparent during the entire larval period and in the last larval instar. Crowding also led to increased growth rates. As outbreaks have not been reported for this species it is unlikely that early pupation is a response to anticipated food shortage. Instead, we suggest that crowded larvae may perceive a higher risk of predation, perhaps because they are unable to distinguish conspecifics from potential predators. A possibility for a plastic increase in growth rate implies that the uncrowded larvae grow at submaximal rates, which indicates a cost of high growth rate. [Vellau, Helen; Tammaru, Toomas] Univ Tartu, Dept Zool, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia Vellau, H (reprint author), Univ Tartu, Dept Zool, Inst Ecol & Earth Sci, Vanemuise 46, EE-51014 Tartu, Estonia. helen.vellau@ut.ee; toomas.tammaru@ut.ee Estonian Science Foundation [7522]; targeted financing project [SF0180122s08]; European Union through the (Center of Excellence FIBIR) We thank D. Boukal, R. Davis, T. Esperk, J. Javois, A. Kaasik, T. Klemola, F. Molleman, T. Teder, A. Tiitsaar and two anonymous referees for constructive comments on earlier drafts of this manuscript. This study was supported by Estonian Science Foundation grant no. 7522, targeted financing project SF0180122s08 and the European Union through the European Regional Development Fund (Center of Excellence FIBIR). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Agnew P, 2002, ECOL ENTOMOL, V27, P396, DOI 10.1046/j.1365-2311.2002.00430.x; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; BARNARD DR, 1993, ENVIRON ENTOMOL, V22, P971, DOI 10.1093/ee/22.5.971; Bauerfeind SS, 2005, OIKOS, V111, P514, DOI 10.1111/j.0030-1299.2005.13888.x; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Brodmann PA, 1997, J ANIM ECOL, V66, P65, DOI 10.2307/5965; COTE IM, 1995, BEHAV ECOL, V6, P159, DOI 10.1093/beheco/6.2.159; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Esperk T, 2010, PHYSIOL ENTOMOL, V35, P222, DOI 10.1111/j.1365-3032.2010.00739.x; Foster BA, 1996, AM MIDL NAT, V136, P300, DOI 10.2307/2426734; Friberg M, 2011, OECOLOGIA, V165, P301, DOI 10.1007/s00442-010-1804-0; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Greer AL, 2008, OIKOS, V117, P1667, DOI 10.1111/j.1600-0706.2008.16783.x; HAUKIOJA E, 1988, OECOLOGIA, V75, P549, DOI 10.1007/BF00776419; Hulden L., 2000, SUOMEN SUURPERHOSATL; ISHU M, 1994, T LEPIDOPTEROL SOC J, V45, P105; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kenward MG, 1997, BIOMETRICS, V53, P983, DOI 10.2307/2533558; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; Leraut P, 2009, MOTHS EUROPE; Lester RL, 2005, J INSECT PHYSIOL, V51, P737, DOI 10.1016/j.jinsphys.2005.03.015; Littell RC, 1996, SAS SYSTEM MIXED MOD; Marty L, 2011, AM NAT, V177, pE98, DOI 10.1086/658988; Porter J., 1997, COLOUR IDENTIFICATIO; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Remmel T, 2011, BIOL J LINN SOC, V104, P1, DOI 10.1111/j.1095-8312.2011.01721.x; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; Roff Derek A., 1992; Rothman LD, 1997, ECOLOGY, V78, P1481; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Ruohomaki K, 2003, OIKOS, V103, P489, DOI 10.1034/j.1600-0706.2003.12778.x; *SAS I INC, 1990, SAS STAT US GUID VER; Sillanpaa S, 2008, ENTOMOL EXP APPL, V129, P286, DOI 10.1111/j.1570-7458.2008.00776.x; Smits A, 2002, ENTOMOL EXP APPL, V104, P117, DOI 10.1023/A:1021226302986; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 1992, EVOLUTION LIFE HIST, P123; STILING P, 1988, J ANIM ECOL, V57, P581, DOI 10.2307/4926; Tammaru T, 2004, OIKOS, V107, P352, DOI 10.1111/j.0030-1299.2004.13363.x; Tammaru T, 2001, ECOL ENTOMOL, V26, P646, DOI 10.1046/j.1365-2311.2001.00363.x; Tammaru T, 1998, ECOL ENTOMOL, V23, P80, DOI 10.1046/j.1365-2311.1998.00106.x; Tammaru T, 2000, OIKOS, V90, P171, DOI 10.1034/j.1600-0706.2000.900117.x; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Wahlberg N, 2010, MOL PHYLOGENET EVOL, V55, P929, DOI 10.1016/j.ympev.2010.01.025; WALL R, 1987, OIKOS, V49, P15, DOI 10.2307/3565550 54 3 3 1 23 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1802-8829 EUR J ENTOMOL Eur. J. Entomol. APR 5 2012 109 2 181 186 10.14411/eje.2012.024 6 Entomology Entomology 922ZK WOS:000302587400007 Other Gold 2019-02-21 J Thomas, S; Boissot, N; Vanlerberghe-Masutti, F Thomas, Sophie; Boissot, Nathalie; Vanlerberghe-Masutti, Flavie What do spring migrants reveal about sex and host selection in the melon aphid? BMC EVOLUTIONARY BIOLOGY English Article BLACK-BEAN APHID; MYZUS-PERSICAE HEMIPTERA; LOW GENETIC-VARIABILITY; GOSSYPII GLOVER; SYMPATRIC SPECIATION; ECOLOGICAL SPECIALIZATION; PEA APHID; MORPHOLOGICAL DISCRIMINATION; INSECTICIDE RESISTANCE; PHYTOPHAGOUS INSECTS Background: Host plants exert considerable selective pressure on aphids because the plants constitute their feeding, mating and oviposition sites. Therefore, host specialisation in aphids evolves through selection of the behavioural and chemical mechanisms of host-plant location and recognition, and through metabolic adaptation to the phloem content of the host plant. How these adaptive traits evolve in an aphid species depends on the complexity of the annual life cycle of that species. The purpose of this field study was to determine how winged spring-migrant populations contribute to the evolution and maintenance of host specialisation in Aphis gossypii through host-plant choice and acceptance. We also assessed whether host-specialised genotypes corresponded exclusively to anholocyclic lineages regardless of the environmental conditions. Results: The spring populations of cotton-melon aphids visiting newly planted melon crops exhibited an unexpectedly high level of genetic diversity that contrasted with the very low diversity characterising the host-specialised populations of this aphid species. This study illustrated in natura host-plant-selection pressure by showing the great differences in genetic diversity between the spring-migrant populations (alate aphids) and the melon-infesting populations (the apterous offspring of the alate aphids). Moreover, an analysis of the genetic composition of these alate and apterous populations in four geographic regions suggested differences in life-history strategies, such as host choice and reproductive mode, and questioned the common assertion that A. gossypii is an anholocyclic species throughout its distribution area, including Europe. Conclusions: Our results clearly demonstrate that the melon plant acts as a selective filter against the reproduction of non-specialised individuals. We showed that olfactory cues are unlikely to be decisive in natura for host recognition by spring-migrant aphid populations that are not specialised on Cucurbitaceae. The agroecosystem structure and history of the four studied regions may have partially shaped the genetic structure of the spring-migrant populations of A. gossypii. Cucurbitaceae-specialised genotypes corresponded exclusively to anholocyclic lineages, regardless of the environmental conditions. However, some genotypes that were genetically close to the host-specialised genotypes and some genotypes that probably originated from wild plants had never been previously sampled; both were holocylic. [Vanlerberghe-Masutti, Flavie] INRA, CBGP UMR1062, F-34988 Montferrier Sur Lez, France; [Thomas, Sophie; Boissot, Nathalie] INRA, UR1052, F-84143 Montfavet, France Vanlerberghe-Masutti, F (reprint author), INRA, CBGP UMR1062, BP 94, F-34988 Montferrier Sur Lez, France. flavie.vanlerberghe@supagro.inra.fr Comite Technique Permanent de la Selection (CTPS, Ministry of Agriculture [C06/02]; Gautier company; Rijk Zwaan company; ASL company; Takii company; De Ruiter company; SPE Department [AAP 2009]; GAP of INRA Department; INRA; Region Provence-Alpes-Cote d'Azur, France We thank Pascale Mistral, Virginie Chareyron, the staff of the three experimental units of the INRA in Guadeloupe, Angers and Avignon and the Centre d'Experimentation des Fruits et Legumes for technical assistance. We thank Jerome Carletto for the genotyping of the 2004 and 2006 sample data. We thank Fabien Halkett (INRA Nancy) for valuable discussions of this work. We are grateful to the Comite Technique Permanent de la Selection (CTPS, Ministry of Agriculture, contract C06/02) and to the Gautier, Rijk Zwaan, ASL, Takii, and De Ruiter companies for financial support and technical participation in the program. This research was part of a project "Durabilite des resistances" supported by the Departments SPE and GAP of INRA (AAP 2009). Sophie Thomas received a PhD fellowship funded by the INRA and the Region Provence-Alpes-Cote d'Azur, France. Arnaud-Haond S, 2007, MOL ECOL, V16, P5115, DOI 10.1111/j.1365-294X.2007.03535.x; Berlocher SH, 2002, ANNU REV ENTOMOL, V47, P773, DOI 10.1146/annurev.ento.47.091201.145312; Blackman R.L, 1984, APHIDS WORLDS CROPS; Blackman R. L., 2000, APHIDS WORLDS CROPS; BLACKMAN RL, 1987, B ENTOMOL RES, V77, P713, DOI 10.1017/S0007485300012219; Blackman RL, 2007, APHIDS AS CROP PESTS, P1, DOI 10.1079/9780851998190.001; Brevault T, 2008, AGR FOREST ENTOMOL, V10, P215, DOI 10.1111/j.1461-9563.2008.00377.x; Brevault T, 2011, B ENTOMOL RES, V101, P407, DOI 10.1017/S0007485310000635; Caillaud MC, 2000, AM NAT, V156, P606, DOI 10.1086/316991; Carletto J, 2009, MOL ECOL, V18, P2198, DOI 10.1111/j.1365-294X.2009.04190.x; Carletto J, 2010, PEST MANAG SCI, V66, P301, DOI 10.1002/ps.1874; CASE TJ, 1986, EVOLUTION, V40, P366, DOI 10.1111/j.1558-5646.1986.tb00478.x; Charaabi K, 2008, B ENTOMOL RES, V98, P333, DOI 10.1017/S0007485307005585; Deguine JP, 1996, ANN SOC ENTOMOL FR, V32, P427; Delmotte F, 2001, P ROY SOC B-BIOL SCI, V268, P2291, DOI 10.1098/rspb.2001.1778; Dres M, 2002, PHILOS T R SOC B, V357, P471, DOI 10.1098/rstb.2002.1059; Eastop V. F., 1973, INSECT PLANT RELATIO, P157; EASTOP VF, 1986, COEVOLUTION SYSTEMAT, P35; Ebert TA, 1997, SOUTHWEST ENTOMOL, V22, P116; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Ferrari Roberto, 1994, IF (Informatore Fitopatologico), V44, P59; Frantz A, 2006, J EVOLUTION BIOL, V19, P392, DOI 10.1111/j.1420-9101.2005.01025.x; Fry JD, 2003, EVOLUTION, V57, P1735; Fuller SJ, 1999, MOL ECOL, V8, P1867, DOI 10.1046/j.1365-294x.1999.00782.x; Gilabert A, 2009, MOL ECOL, V18, P3050, DOI 10.1111/j.1365-294X.2009.04250.x; Hales DF, 1997, EUR J ENTOMOL, V94, P1; Halkett F, 2005, MOL ECOL, V14, P325, DOI 10.1111/j.1365-294X.2004.02358.x; HARDIE J, 1994, PHYSIOL ENTOMOL, V19, P278, DOI 10.1111/j.1365-3032.1994.tb01053.x; HARDIE J, 1989, J INSECT PHYSIOL, V35, P619, DOI 10.1016/0022-1910(89)90124-8; Hoffmann AA, 2008, P ROY SOC B-BIOL SCI, V275, P2473, DOI 10.1098/rspb.2008.0685; Inaizumi M, 1980, SPECIAL B COLL AGR; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; Lombaert E, 2009, ENTOMOL EXP APPL, V133, P46, DOI 10.1111/j.1570-7458.2009.00904.x; Lushai G, 2002, B ENTOMOL RES, V92, P159, DOI 10.1079/BER2001138; Margaritopoulos JT, 2007, BIOL J LINN SOC, V91, P687, DOI 10.1111/j.1095-8312.2007.00828.x; Margaritopoulos JT, 2000, B ENTOMOL RES, V90, P233; Margaritopoulos JT, 2006, B ENTOMOL RES, V96, P153, DOI 10.1079/BER2005410; MORAN NA, 1992, ANNU REV ENTOMOL, V37, P321; Normark BB, 2003, ANNU REV ENTOMOL, V48, P397, DOI 10.1146/annurev.ento.48.091801.112703; Nosil P, 2007, GENETICA, V129, P309, DOI 10.1007/s10709-006-0013-6; NOTTINGHAM SF, 1993, PHYSIOL ENTOMOL, V18, P389; Palm R, 2002, BIOTECHNOL AGRON SOC, V6, P143; Peccoud J, 2010, CR BIOL, V333, P474, DOI 10.1016/j.crvi.2010.03.004; Pettersson J, 2007, APHIDS AS CROP PESTS, P87, DOI 10.1079/9780851998190.004; Powell G, 2006, ANNU REV ENTOMOL, V51, P309, DOI 10.1146/annurev.ento.51.110104.151107; Pritchard JK, 2000, GENETICS, V155, P945; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Simon JC, 2003, P ROY SOC B-BIOL SCI, V270, P1703, DOI 10.1098/rspb.2003.2430; Simon JC, 1999, MOL ECOL, V8, P531, DOI 10.1046/j.1365-294x.1999.00583.x; Simon JC, 2010, CR BIOL, V333, P488, DOI 10.1016/j.crvi.2010.03.003; SMITH JM, 1993, P NATL ACAD SCI USA, V90, P4384, DOI 10.1073/pnas.90.10.4384; TAKADA H, 1988, J APPL ENTOMOL, V106, P188, DOI 10.1111/j.1439-0418.1988.tb00582.x; Vanlerberghe-Masutti F, 1999, MOL ECOL, V8, P685; Via S, 2001, TRENDS ECOL EVOL, V16, P381, DOI 10.1016/S0169-5347(01)02188-7; VIA S, 1991, ECOLOGY, V72, P1420, DOI 10.2307/1941114; Vialatte A, 2005, P ROY SOC B-BIOL SCI, V272, P1075, DOI 10.1098/rspb.2004.3033; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Williams G., 1975, SEX EVOLUTION; Zamoum T, 2005, HEREDITY, V94, P630, DOI 10.1038/sj.hdy.6800673; Zepeda-Paulo FA, 2010, MOL ECOL, V19, P4738, DOI 10.1111/j.1365-294X.2010.04857.x 60 13 13 2 45 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. APR 3 2012 12 47 10.1186/1471-2148-12-47 16 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 954AM WOS:000304916000001 22471629 DOAJ Gold, Green Published 2019-02-21 J Ferguson, HM; Maire, N; Takken, W; Lyimo, IN; Briet, O; Lindsay, SW; Smith, TA Ferguson, Heather M.; Maire, Nicolas; Takken, Willem; Lyimo, Issa N.; Briet, Olivier; Lindsay, Steve W.; Smith, Thomas A. Selection of mosquito life-histories: a hidden weapon against malaria? MALARIA JOURNAL English Article Anopheles vectors; Life history evolution; Malaria; Insecticide-treated bed nets; Extrinsic mortality; Natural selection ANOPHELES-GAMBIAE GILES; PLASMODIUM-FALCIPARUM; RESISTANCE STATUS; ENDEMIC AREA; EVOLUTION; POPULATIONS; ARABIENSIS; CULICIDAE; VECTORS; DIPTERA Background: There has recently been a substantial decline in malaria incidence in much of Africa. While the decline can clearly be linked to increasing coverage of mosquito vector control interventions and effective drug treatment in most settings, the ubiquity of reduction raises the possibility that additional ecological and associated evolutionary changes may be reinforcing the effectiveness of current vector control strategies in previously unanticipated ways. Presentation of hypothesis: Here it is hypothesized that the increasing coverage of insecticide-treated bed nets and other vector control methods may be driving selection for a shift in mosquito life history that reduces their ability to transmit malaria parasites. Specifically it is hypothesized that by substantially increasing the extrinsic rate of mortality experienced in vector populations, these interventions are creating a fitness incentive for mosquitoes to re-allocate their resources towards greater short-term reproduction at the expense of longer-term survival. As malaria transmission is fundamentally dependent on mosquito survival, a life history shift in this direction would greatly benefit control. Testing the hypothesis: At present, direct evaluation of this hypothesis within natural vector populations presents several logistical and methodological challenges. In the meantime, many insights can be gained from research previously conducted on wild Drosophila populations. Long-term selection experiments on these organisms suggest that increasing extrinsic mortality by a magnitude similar to that anticipated from the up-scaling of vector control measures generated an increase in their intrinsic mortality rate. Although this increase was small, a change of similar magnitude in Anopheles vector populations would be predicted to reduce malaria transmission by 80%. Implications of hypothesis: The hypothesis presented here provides a reminder that evolutionary processes induced by interventions against disease vectors may not always act to neutralize intervention effectiveness. In the search for new intervention strategies, consideration should be given to both the potential disadvantages and advantages of evolutionary processes resulting from their implementation, and attempts made to exploit those with greatest potential to enhance control. [Ferguson, Heather M.] Univ Glasgow, Boyd Orr Ctr Populat & Ecosyst Hlth, Glasgow G12 8Q, Lanark, Scotland; [Maire, Nicolas; Briet, Olivier; Smith, Thomas A.] Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland; [Maire, Nicolas; Briet, Olivier; Smith, Thomas A.] Univ Basel, CH-4003 Basel, Switzerland; [Takken, Willem] Wageningen Univ, Entomol Lab, NL-6700 EH Wageningen, Netherlands; [Lyimo, Issa N.] Ifakara Hlth Inst, Biomed & Environm Themat Grp, Ifakara, Tanzania; [Lindsay, Steve W.] Univ Durham, Sch Biol & Biomed Sci, Durham DH1 3LE, England Ferguson, HM (reprint author), Univ Glasgow, Boyd Orr Ctr Populat & Ecosyst Hlth, Glasgow G12 8Q, Lanark, Scotland. Heather.Ferguson@glasgow.ac.uk Smith, Thomas/B-5569-2015 Smith, Thomas/0000-0002-3650-9381; Briet, Olivier/0000-0003-1186-2688 BBSRC; Mshinda Fellowship; Department of Homeland Security; Fogarty International Center, National Institutes of Health; Bill and Melinda Gates Foundation; Biotechnology and Biological Sciences Research Council [BB/D020042/1] HMF is funded by a BBSRC David Phillips Fellowship. INL was supported by a Mshinda Fellowship, WT by travel support by the Uyttenboogaart-Eliasen Foundation, The Netherlands, and SWL by the Research and Policy for Infectious Disease Dynamics (RAPIDD) Program of the Science and Technology Directory, Department of Homeland Security, and Fogarty International Center, National Institutes of Health. TS, OJTB, and NM are partly supported by the Bill and Melinda Gates Foundation. Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; Beier JC, 1998, ANNU REV ENTOMOL, V43, P519, DOI 10.1146/annurev.ento.43.1.519; Bogh C, 1998, MED VET ENTOMOL, V12, P52, DOI 10.1046/j.1365-2915.1998.00091.x; Flaxman AD, 2010, PLOS MED, V7; Garrett-Jones C., 1964, Bulletin of the World Health Organization, V30, P241; GARRETTJONES C, 1980, B ENTOMOL RES, V70, P165, DOI 10.1017/S0007485300007422; Gasser M, 2000, EVOLUTION, V54, P1260; GILLIES MT, 1965, B ENTOMOL RES, V56, P237, DOI 10.1017/S0007485300056339; Glunt KD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024968; Hii JLK, 2001, T ROY SOC TROP MED H, V95, P7, DOI 10.1016/S0035-9203(01)90315-3; Koella JC, 2009, EVOL APPL, V2, P469, DOI 10.1111/j.1752-4571.2009.00072.x; Lehmann T, 2006, INFECT GENET EVOL, V6, P410, DOI 10.1016/j.meegid.2006.01.007; Lindsay SW, 2002, TRENDS PARASITOL, V18, P510, DOI 10.1016/S1471-4922(02)02382-6; Lorenz LM, 2011, EVOL APPL, V4, P783, DOI 10.1111/j.1752-4571.2011.00199.x; Lyimo IN, 2012, J EVOLUTION BIOL, V25, P452, DOI 10.1111/j.1420-9101.2011.02442.x; MacDONALD G., 1956, BULL WORLD HEALTH ORGAN, V15, P613; Mackinnon MJ, 2010, SCIENCE, V328, P866, DOI 10.1126/science.1185410; McCarroll L, 2002, INSECT BIOCHEM MOLEC, V32, P1345, DOI 10.1016/S0965-1748(02)00097-8; Medawar P, 1952, UNSOLVED PROBLEM BIO; Meyrowitsch DW, 2011, MALAR J, V10; Ng'habi KRN, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-356; O'Brien C, 2011, CURR OPIN INFECT DIS, V24, P570, DOI 10.1097/QCO.0b013e32834cd3ed; O'Meara WP, 2010, LANCET INFECT DIS, V10, P545, DOI 10.1016/S1473-3099(10)70096-7; Okiro EA, 2011, BMC MED, V9; OMER SM, 1970, B WORLD HEALTH ORGAN, V42, P319; Ranson H., 2011, Trends in Parasitology, V27, P91, DOI 10.1016/j.pt.2010.08.004; Reddy MR, 2011, MALAR J, V10; Russell TL, 2011, P ROY SOC B-BIOL SCI, V278, P3142, DOI 10.1098/rspb.2011.0153; Sampath TRR, 1998, J AM MOSQUITO CONTR, V14, P437; SHARP BL, 1991, B ENTOMOL RES, V81, P107, DOI 10.1017/S000748530005330X; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Stearns SC, 1995, EVOLUTION LIFE HIST; Wangai L. N., 2011, Journal of Protozoology Research, V21, P20; White MT, 2011, PARASIT VECT, V4; WHO, 2010, WORLD MALARIA REPORT 2010, P1; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 37 9 9 1 16 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1475-2875 MALARIA J Malar. J. APR 3 2012 11 106 10.1186/1475-2875-11-106 5 Infectious Diseases; Parasitology; Tropical Medicine Infectious Diseases; Parasitology; Tropical Medicine 952AC WOS:000304761100001 22471997 DOAJ Gold, Green Published 2019-02-21 J Baulier, L; Heino, M; Gjosaeter, H Baulier, Loic; Heino, Mikko; Gjosaeter, Harald Temporal stability of the maturation schedule of capelin Mallotus villosus in the Barents Sea AQUATIC LIVING RESOURCES English Article Probabilistic maturation reaction norms; Fisheries-induced evolution; Semelparous life-history; Forage fish; Osmeridae; Sub-Arctic fish FISHERIES-INDUCED EVOLUTION; HERRING CLUPEA-HARENGUS; PROBABILISTIC REACTION NORMS; LIFE-HISTORY EVOLUTION; SALMON SALMO-SALAR; FISH STOCKS; GROWTH; MATURITY; SIZE; OSMERIDAE Capelin in the Barents Sea are primarily harvested in a terminal fishery that targets maturing individuals. Theory predicts that, in a semelparous population (i.e., one in which reproduction is seasonal, synchronous, and followed by parental mortality), an unselective, terminal fishery (i.e., one in which most of the fish that are not caught will not have a new spawning opportunity) does not generate strong selection for changed age and size at maturation. The probabilistic maturation reaction norm (PMRN) method was applied to test this prediction and to detect possible temporal changes in length at maturation of Barents Sea capelin between 1978 and 2008. Maturation reaction norms suggest that maturation is age-independent in capelin, but that males require a larger size to attain the same maturation probability as females. No temporal trends in length at maturation could be detected, thus confirming the theoretical prediction. Furthermore, none of the candidate environmental variables tested to explain the temporal variability in length at maturation (water temperature and capelin biomass) consistently showed a significant correlation with the PMRN midpoints. [Baulier, Loic; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Baulier, Loic; Heino, Mikko; Gjosaeter, Harald] Inst Marine Res, N-5817 Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria Baulier, L (reprint author), Fisheries & Aquat Sci Ctr, Agrocampus Ouest,65 Rue St Brieuc,CS 84215, Rennes, France. loic.baulier@ifremer.fr Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940; Gjosaeter, Harald/0000-0001-7694-6503 European Commission, as part of the Specific Targeted Research Project FinE under the European Community [SSP-2006-044276]; Bergen Research Foundation We thank Sigurd Tjelmeland for help and discussions, as well as the journal editor and two anonymous reviewers for helpful advice. This study was carried out with financial support from the European Commission, as part of the Specific Targeted Research Project FinE (SSP-2006-044276) under the European Community's Sixth Framework Program. The article does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. MH also thanks the Bergen Research Foundation for funding. ALM G, 1959, CONNECTION MATURITY, V40, P5; [Anonymous], 2009, 2009ACOM02 ICES CM; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bogstad B, 2001, FISH RES, V53, P197, DOI 10.1016/S0165-7836(00)00288-5; Bromage N, 2001, AQUACULTURE, V197, P63, DOI 10.1016/S0044-8486(01)00583-X; Carscadden J, 1997, CAN J FISH AQUAT SCI, V54, P781, DOI 10.1139/cjfas-54-4-781; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dodson JJ, 2007, MOL ECOL, V16, P5030, DOI 10.1111/j.1365-294X.2007.03559.x; Dolgov AV, 2010, ICES J MAR SCI, V67, P483, DOI 10.1093/icesjms/fsp254; Dolgov AV, 2002, ICES J MAR SCI, V59, P1034, DOI 10.1006/jmsc.2002.1237; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Duston J, 1999, CAN J FISH AQUAT SCI, V56, P201, DOI 10.1139/cjfas-56-2-201; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Eriksen E, 2011, POLAR BIOL, V34, P1399, DOI 10.1007/s00300-011-0995-0; Forberg K., 1985, BARENTS SEA CAPELIN, P213; FORBERG KG, 1982, J FISH BIOL, V20, P143, DOI 10.1111/j.1095-8649.1982.tb03915.x; FORBERG KG, 1983, J FISH BIOL, V22, P485, DOI 10.1111/j.1095-8649.1983.tb04769.x; Gjosaeter H, 1998, FISH RES, V38, P57, DOI 10.1016/S0165-7836(98)00114-3; Gjosaeter H, 1998, SARSIA, V83, P453, DOI 10.1080/00364827.1998.10420445; Gjosaeter H, 1998, SARSIA, V83, P497, DOI 10.1080/00364827.1998.10420446; Gjosaeter H, 2002, ICES J MAR SCI, V59, P1086, DOI 10.1006/jmsc.2002.1238; Gjosaeter H, 2002, ICES J MAR SCI, V59, P959, DOI 10.1006/jmsc.2002.1240; GJOSAETER H, 1999, THESIS U BERGEN; Gjosaeter H., 1990, 1990D28 ICES CM; Gjosaeter H, 2009, MAR BIOL RES, V5, P40, DOI 10.1080/17451000802454866; Hallfredsson EH, 2009, CAN J FISH AQUAT SCI, V66, P1693, DOI 10.1139/F09-105; Hamre J, 1982, 1982H45 ICES CM; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Hjermann DO, 2010, CAN J FISH AQUAT SCI, V67, P1363, DOI 10.1139/F10-064; Hjermann DO, 2004, MAR ECOL PROG SER, V273, P229, DOI 10.3354/meps273229; Huse G, 1996, SARSIA, V81, P143, DOI 10.1080/00364827.1996.10413618; Huse G, 1998, CAN J FISH AQUAT SCI, V55, P631, DOI 10.1139/cjfas-55-3-631; Huse G, 1997, MAR BIOL, V130, P309, DOI 10.1007/s002270050250; ICES, 2010, 2010ACOM05 ICES CM; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; MOLLER DAG, 1962, FISKEN OG HAVET, V1, P1; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; MORK J, 1983, MAR ECOL PROG SER, V12, P199, DOI 10.3354/meps012199; Olsen E, 2010, ICES J MAR SCI, V67, P87, DOI 10.1093/icesjms/fsp229; Panasenko L., 1981, 1981H6 ICES CM; Panasenko L., 1984, 1984H26 ICES CM; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; Saetre R., 1975, FISKERIDIREKTORATE H, V16, P203; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Shearer K, 2006, AQUACULTURE, V252, P545, DOI 10.1016/j.aquaculture.2005.06.027; Silverstein JT, 1997, CAN J FISH AQUAT SCI, V54, P444, DOI 10.1139/cjfas-54-2-444; STERGIOU KI, 1989, MAR ECOL PROG SER, V56, P211, DOI 10.3354/meps056211; Tereshchenko ES, 2002, ICES J MAR SCI, V59, P976, DOI 10.1006/jmsc.2002.1257; Tjelmeland Sigurd, 1993, Canadian Special Publication of Fisheries and Aquatic Sciences, V120, P127; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Ushakov NG, 2002, ICES J MAR SCI, V59, P1046, DOI 10.1006/jmsc.2002.1230; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vilhjalmsson H., 1994, RIT FISKIDEILDAR, V13; Wassmann P, 2006, PROG OCEANOGR, V71, P232, DOI 10.1016/j.pocean.2006.10.003; Westgaard J. I., 2008, MAR ECOL PROG SER, V360, P189, DOI DOI 10.3354/MEPS07363; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 66 4 4 0 18 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. APR 2012 25 2 151 161 10.1051/alr/2012014 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 974JU WOS:000306431800006 2019-02-21 J Caudell, MA; Quinlan, RJ Caudell, Mark A.; Quinlan, Robert J. Resource Availability, Mortality, and Fertility: A Path Analytic Approach to Global Life-History Variation HUMAN BIOLOGY English Article LIFE-HISTORY THEORY; TOTAL FERTILITY RATE; TEENAGE PREGNANCY; MORTALITY; PATH ANALYSIS REPRODUCTIVE STRATEGIES; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; EXPECTANCY; NEIGHBORHOODS; EVOLUTION; BURDEN; RATES Humans exhibit considerable diversity in timing and rate of reproduction. Life-history theory (LHT) suggests that ecological cues of resource richness and survival probabilities shape human phenotypes across populations. Populations experiencing high extrinsic mortality due to uncertainty in resources should exhibit faster life histories. Here we use a path analytic (PA) approach informed by LHT to model the multiple pathways between resources, mortality rates, and reproductive behavior in 191 countries. Resources that account for the most variance in population mortality rates are predicted to explain the most variance in total fertility rates. Results indicate that resources (e. g., calories, sanitation, education, and health-care expenditures) influence fertility rates in paths through communicable and noncommunicable diseases. Paths acting through communicable disease are more strongly associated with fertility than are paths through noncommunicable diseases. These results suggest that a PA approach may help disaggregate extrinsic and intrinsic mortality factors in cross-cultural analyses. Such knowledge may be useful in developing targeted policies to decrease teenage pregnancy, total fertility rates, and thus issues associated with overpopulation. [Caudell, Mark A.; Quinlan, Robert J.] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA Caudell, MA (reprint author), Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA. mcaudell@wsu.edu Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Borgerhoff Mulder M., 1992, EVOLUTIONARY ECOLOGY, P339; Brown T., 2006, CONFIRMATORY FACTOR; Bulled NL, 2010, HUM NATURE-INT BIOS, V21, P269, DOI 10.1007/s12110-010-9092-2; Byrne BM, 2012, STRUCTURAL EQUATION; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Gant L, 2009, SOC WORK PUBLIC HLTH, V24, P39, DOI 10.1080/19371910802569435; Harpending HC, 1990, DIS POPULATIONS TRAN, P251; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kline R. B., 2010, PRINCIPLES PRACTICE; Leowski J, 1986, World Health Stat Q, V39, P138; Lopez AD, 2006, LANCET, V367, P1747, DOI 10.1016/S0140-6736(06)68770-9; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; MacCallum RC, 1996, PSYCHOL METHODS, V1, P130, DOI 10.1037//1082-989X.1.2.130; Muthen B., 2010, MPLUS USERS GUIDE VE; Narayan KMV, 2010, NEW ENGL J MED, V363, P1196, DOI 10.1056/NEJMp1002024; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Placek C, 2011, ENV RISK ADOLESCENT; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; ROFF DA, 2002, LIFE HIST EVOLUTION; Sachs J, 2002, NATURE, V415, P680, DOI 10.1038/415680a; StataCorp, 2009, STAT STAT SOFTW REL; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Watson JT, 2007, EMERG INFECT DIS, V13, P1, DOI 10.3201/eid1301.060779; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; World Health Organization (WHO), 2009, WORLD HLTH STAT 37 9 10 0 27 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 1534-6617 HUM BIOL Hum. Biol. APR 2012 84 2 101 125 10.3378/027.084.0201 25 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 952FS WOS:000304777300001 22708816 Green Published 2019-02-21 J Connallon, T; Clark, AG Connallon, Tim; Clark, Andrew G. A General Population Genetic Framework for Antagonistic Selection That Accounts for Demography and Recurrent Mutation GENETICS English Article INTRALOCUS SEXUAL CONFLICT; HETEROGENEOUS ENVIRONMENT; DIFFERENTIAL SELECTION; FINITE POPULATIONS; NATURAL-SELECTION; LINKED LOCUS; DROSOPHILA-MELANOGASTER; TEMPORAL HETEROGENEITY; LINKAGE DISEQUILIBRIUM; ONTOGENIC CONFLICT Antagonistic selection-where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")-might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range-a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s >> 1, where N-e is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection. [Connallon, Tim; Clark, Andrew G.] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA Connallon, T (reprint author), Cornell Univ, Dept Mol Biol & Genet, Biotechnol Bldg,Rm 227, Ithaca, NY 14853 USA. tmc233@cornell.edu Connallon, Tim/B-6726-2016 National Institutes of Health [R01 GM064590] This work benefitted from discussions with J. R. Arguello, G. Arnqvist, M. Cardoso-Moreira, R. P. Meisel, E. H. Morrow, A. Uesugi, and R. L. Unckless and from comments by two anonymous reviewers. This work was supported by National Institutes of Health grant R01 GM064590 to A. G. Clark and A. B. Carvalho. Albert AYK, 2005, SCIENCE, V310, P119, DOI 10.1126/science.1115328; Andres AM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001157; Andres AM, 2009, MOL BIOL EVOL, V26, P2755, DOI 10.1093/molbev/msp190; Arnqvist G, 2011, EVOLUTION, V65, P2111, DOI 10.1111/j.1558-5646.2011.01270.x; Asthana S, 2005, TRENDS GENET, V21, P30, DOI 10.1016/j.tig.2004.11.001; AVERY PJ, 1978, THEOR POPUL BIOL, V13, P24, DOI 10.1016/0040-5809(78)90034-5; Babcock CS, 1996, GENETICS, V144, P839; BENNETT JH, 1957, NATURE, V180, P1363, DOI 10.1038/1801363b0; Betancourt AJ, 2004, GENETICS, V168, P2261, DOI 10.1534/genetics.104.030999; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brommer JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000744; Calsbeek R, 2004, J EVOLUTION BIOL, V17, P464, DOI 10.1046/j.1420-9101.2003.00665.x; Calsbeek R, 2008, EVOLUTION, V62, P1137, DOI 10.1111/j.1558-5646.2008.00356.x; Charlesworth B., 1987, Life Sciences Research Report, V39, P21; Charlesworth B, 2001, GENET RES, V77, P153, DOI 10.1017/S0016672301004979; Charlesworth B., 2010, ELEMENTS EVOLUTIONAR; Charlesworth B., 1999, EVOL GENET, V1, P369; Charlesworth B, 2009, NAT REV GENET, V10, P195, DOI 10.1038/nrg2526; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Connallon T, 2011, GENETICS, V187, P919, DOI 10.1534/genetics.110.123729; Connallon T, 2010, EVOLUTION, V64, P3417, DOI 10.1111/j.1558-5646.2010.01136.x; Connallon T, 2010, AM NAT, V175, P564, DOI 10.1086/651590; Connallon T, 2009, EVOLUTION, V63, P2179, DOI 10.1111/j.1558-5646.2009.00692.x; Cox RM, 2010, SCIENCE, V328, P92, DOI 10.1126/science.1185550; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Coyne JA, 2008, EVOLUTION, V62, P214, DOI 10.1111/j.1558-5646.2007.00254.x; CURTSINGER JW, 1980, GENETICS, V96, P995; CURTSINGER JW, 1994, AM NAT, V144, P210, DOI 10.1086/285671; Darwin C, 1871, DESCENT MAN SELECTIO; Day T, 2004, GENETICS, V167, P1537, DOI 10.1534/genetics.103.026211; Delcourt M, 2009, P ROY SOC B-BIOL SCI, V276, P2009, DOI 10.1098/rspb.2008.1459; DELPH LF, 2007, SEX SIZE GENDER ROLE, P115; Ellegren H, 2007, NAT REV GENET, V8, P689, DOI 10.1038/nrg2167; Ellegren H, 2007, P ROY SOC B-BIOL SCI, V274, P1, DOI 10.1098/rspb.2006.3720; Ellegren H, 2009, TRENDS GENET, V25, P278, DOI 10.1016/j.tig.2009.04.005; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Eyre-Walker A, 2006, TRENDS ECOL EVOL, V21, P569, DOI 10.1016/j.tree.2006.06.015; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fedorka KM, 2004, NATURE, V429, P65, DOI 10.1038/nature02492; Fisher R. A., 1958, GENETICAL THEORY NAT; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Fry JD, 2010, EVOLUTION, V64, P1510, DOI 10.1111/j.1558-5646.2009.00898.x; Gavrilets S, 2006, P ROY SOC B-BIOL SCI, V273, P3031, DOI 10.1098/rspb.2006.3684; Gibson JR, 2002, P ROY SOC B-BIOL SCI, V269, P499, DOI 10.1098/rspb.2001.1863; GILLESPIE JH, 1978, THEOR POPUL BIOL, V14, P1, DOI 10.1016/0040-5809(78)90002-3; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; HALDANE JBS, 1964, J GENET, V59, P29, DOI 10.1007/BF02984134; HALDANE JBS, 1962, NATURE, V193, P1108, DOI 10.1038/1931108a0; Hedrick PW, 2007, EVOLUTION, V61, P2750, DOI 10.1111/j.1558-5646.2007.00250.x; HEDRICK PW, 1978, GENETICS, V89, P389; Hedrick PW, 1999, HEREDITY, V82, P126, DOI 10.1038/sj.hdy.6884400; HEDRICK PW, 1976, GENETICS, V84, P145; Hedrick PW, 2002, EVOLUTION, V56, P654; HEDRICK PW, 1974, GENETICS, V78, P757; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; HUDSON RR, 1988, GENETICS, V120, P831; Innan H, 2010, NAT REV GENET, V11, P97, DOI 10.1038/nrg2689; Innocenti P, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000335; Jordan CY, 2012, EVOLUTION, V66, P505, DOI 10.1111/j.1558-5646.2011.01448.x; KAPLAN NL, 1988, GENETICS, V120, P819; KIDWELL JF, 1977, GENETICS, V85, P171; Kirkpatrick M, 2010, GENETICS, V184, P1141, DOI 10.1534/genetics.109.113555; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; LI CC, 1967, BIOMETRICS, V23, P397, DOI 10.2307/2528009; LIVINGSTONE FB, 1992, HUM BIOL, V64, P649; Loewe L, 2006, GENETICS, V172, P1079, DOI 10.1534/genetics.105.047217; Loewe L, 2006, BIOL LETT-UK, V2, P426, DOI 10.1098/rsbl.2006.0481; Long TAF, 2007, P ROY SOC B-BIOL SCI, V274, P3105, DOI 10.1098/rspb.2007.1140; Lynch M, 1998, GENETICS ANAL QUANTI; MANDEL SPH, 1971, HEREDITY, V26, P49, DOI 10.1038/hdy.1971.5; Mank JE, 2009, AM NAT, V173, P141, DOI 10.1086/595754; Alvarez Ricart C, 1969, Asclepio, V21, P49, DOI 10.1186/1297-9686-1-1-49; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Mokkonen M, 2011, SCIENCE, V334, P972, DOI 10.1126/science.1208708; MUKAI T, 1974, GENETICS, V78, P1195; NEI M, 1969, GENETICS, V63, P669; NEI M, 1968, P NATL ACAD SCI USA, V60, P517, DOI 10.1073/pnas.60.2.517; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Orr HA, 2008, AM NAT, V172, P160, DOI 10.1086/589460; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; Otto SP, 2004, P ROY SOC B-BIOL SCI, V271, P705, DOI 10.1098/rspb.2003.2635; OWEN ARG, 1953, HEREDITY, V7, P97, DOI 10.1038/hdy.1953.9; PAMILO P, 1979, HEREDITAS, V91, P129; PARSONS PA, 1961, HEREDITY, V16, P103, DOI 10.1038/hdy.1961.8; Patten MM, 2010, EVOLUTION, V64, P3638, DOI 10.1111/j.1558-5646.2010.01100.x; Patten MM, 2009, EVOLUTION, V63, P2888, DOI 10.1111/j.1558-5646.2009.00764.x; Patten MM, 2009, BIOL LETTERS, V5, P667, DOI 10.1098/rsbl.2009.0230; Pischedda A, 2006, PLOS BIOL, V4, P2099, DOI 10.1371/journal.pbio.0040356; Poissant J, 2009, J EVOLUTION BIOL, V22, P2558, DOI 10.1111/j.1420-9101.2009.01862.x; Poissant J, 2010, EVOLUTION, V64, P97, DOI 10.1111/j.1558-5646.2009.00793.x; Pool JE, 2008, MOL BIOL EVOL, V25, P1728, DOI 10.1093/molbev/msn124; Proulx SR, 2006, EVOLUTION, V60, P881; Prout Timothy, 2000, P157; R-Development-Core-Team, 2005, R LANG ENV STAT COMP; Radwan J, 2008, GENETICA, V134, P113, DOI 10.1007/s10709-007-9203-0; Rhen T, 2000, EVOLUTION, V54, P37, DOI 10.1111/j.0014-3820.2000.tb00005.x; Rice S. H., 2004, EVOLUTIONARY THEORY; RICE WR, 1984, EVOLUTION, V38, P735, DOI 10.1111/j.1558-5646.1984.tb00346.x; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; ROBERTSON A, 1962, GENETICS, V47, P1291; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; ROSE MR, 1985, THEOR POPUL BIOL, V28, P342, DOI 10.1016/0040-5809(85)90034-6; SEGER J, 1986, NATURE, V319, P771, DOI 10.1038/319771a0; Stewart AD, 2010, J HERED, V101, pS94, DOI 10.1093/jhered/esq011; Ubeda F, 2011, P ROY SOC B-BIOL SCI, V278, P855, DOI 10.1098/rspb.2010.1201; Unckless RL, 2009, J THEOR BIOL, V260, P132, DOI 10.1016/j.jtbi.2009.06.004; van Doorn GS, 2009, ANN NY ACAD SCI, V1168, P52, DOI 10.1111/j.1749-6632.2009.04573.x; Wright S, 1937, P NATL ACAD SCI USA, V23, P307, DOI 10.1073/pnas.23.6.307; Wright S., 1949, P365; WRIGHT S, 1945, P NATL ACAD SCI USA, V31, P382, DOI 10.1073/pnas.31.12.382; Wright SI, 2008, ANNU REV ECOL EVOL S, V39, P193, DOI 10.1146/annurev.ecolsys.39.110707.173342 112 53 53 1 46 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 0016-6731 1943-2631 GENETICS Genetics APR 2012 190 4 1477 + 10.1534/genetics.111.137117 27 Genetics & Heredity Genetics & Heredity 925QJ WOS:000302775700023 22298707 Green Published, Bronze 2019-02-21 J Kendall, NW; Quinn, TP Kendall, Neala W.; Quinn, Thomas P. Quantifying and comparing size selectivity among Alaskan sockeye salmon fisheries ECOLOGICAL APPLICATIONS English Article age and length at maturation; Alaskan sockeye salmon; fisheries-induced evolution; fishery selection; harvest-induced selection; harvest selection; life-history evolution; linear mixed-effects models; Oncorhynchus nerka; selection differentials EVOLUTIONARY TIME SCALES; LIFE-HISTORY EVOLUTION; ONCORHYNCHUS-NERKA; GILLNET SELECTIVITY; CHINOOK SALMON; ARTIFICIAL SELECTION; BRITISH-COLUMBIA; FISH POPULATION; RIVER SYSTEM; BRISTOL BAY Quantifying long-term size-selective harvest patterns is necessary for understanding the potential evolutionary effects on exploited species. The comparison of fishery selection patterns on the same species subject to different gear types, in different areas, and over multi-decadal periods can reveal the factors influencing selection. In this study we quantified and compared size-selective harvest by nine Alaskan sockeye salmon (Oncorhynchus nerka) fisheries to understand overall patterns. We calculated length-specific linear selection differentials (the difference in average length of fish before vs. after fishing), which are produced by different combinations of exploitation rates and length-selectivity values, and nonlinear standardized differentials, describing disruptive selection, across all years for each fishery. Selection differentials varied among years, but larger fish were caught in 73% of years for males and 84% of years for females, leaving smaller fish to spawn. Disruptive selection was observed on female and male fish in 84% and 92% of years, respectively. Linear selection was stronger on females than males in 77% of years examined, and disruptive selection was stronger on males in 71% of years. Selection pressure was influenced by a combination of factors under and beyond management control; analyses using mixed-effects models indicated that fisheries were less size selective in years when fish were larger than average and had lower exploitation rates. The observed harvest of larger than average sockeye salmon is consistent with the hypothesis that size-selective fishing contributes to decreasing age and length at maturation trends over time, but temporal variability in selection and strong disruptive selection suggests that the overall directional pressure is weaker than is often assumed in evolutionary models. [Kendall, Neala W.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Kendall, NW (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. kendalln@uw.edu Alaska Sustainable Salmon Fund; School of Aquatic and Fishery Sciences at the University of Washington We gratefully acknowledge the Alaska Sustainable Salmon Fund and the School of Aquatic and Fishery Sciences at the University of Washington for funding this research, and the Alaska Department of Fish and Game (ADFG) for access to the long-term data. Matt Foster, Mary Beth Loewen, Terri Tobias, Fred West, and Mark Willette of ADFG were instrumental in organizing the data and providing them to us. Discussions with Curry Cunningham were insightful. Harry Rich, Jr. assisted with Fig. 1. Jeff Hard, Andre Punt, and Ray Hilborn provided very helpful comments on this manuscript. Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; BLAIR GR, 1993, T AM FISH SOC, V122, P550, DOI 10.1577/1548-8659(1993)122<0550:VILHCA>2.3.CO;2; Boatright C, 2004, T AM FISH SOC, V133, P911, DOI 10.1577/T03-142.1; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Bromaghin JF, 2011, NAT RESOUR MODEL, V24, P1, DOI 10.1111/j.1939-7445.2010.00077.x; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; BUE BG, 1986, THESIS U ALASKA FAIR; Burnham K. P, 2002, MODEL SELECTION MULT; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Chasco B, 2007, CAN J FISH AQUAT SCI, V64, P1479, DOI 10.1139/F07-105; COHEN J, 1992, PSYCHOL BULL, V112, P155, DOI 10.1037//0033-2909.112.1.155; Cohen J, 1988, STAT POWER ANAL BEHA; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Eldridge WH, 2010, ECOL APPL, V20, P1936, DOI 10.1890/09-1186.1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fujimori Y, 2001, FISHERIES SCI, V67, P644, DOI 10.1046/j.1444-2906.2001.00301.x; HAMLEY JM, 1975, J FISH RES BOARD CAN, V32, P1943, DOI 10.1139/f75-233; Hamon TR, 2000, T AM FISH SOC, V129, P1300, DOI 10.1577/1548-8659(2000)129<1300:SOMOSW>2.0.CO;2; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hard J., 2009, AM FISHERIES SOC S, V70, P759; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; HARD JJ, 2004, EVOLUTION ILLUMINATE, P316; Heino M, 2002, B MAR SCI, V70, P639; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hutchings JA, 2004, NATURE, V428, P899, DOI 10.1038/428899a; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kendall N. W., 2011, THESIS U WASHINGTON; Kendall NW, 2011, T AM FISH SOC, V140, P611, DOI 10.1080/00028487.2011.585575; Kendall NW, 2009, EVOL APPL, V2, P523, DOI 10.1111/j.1752-4571.2009.00086.x; Kendall NW, 2009, CAN J FISH AQUAT SCI, V66, P896, DOI 10.1139/F09-047; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R., 1993, EXPLOITATION EVOLVIN, P155; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; Mooney EH, 2007, CONSERV GENET, V8, P57, DOI 10.1007/s10592-006-9148-3; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2009, ECOL LETT, V12, P622, DOI 10.1111/j.1461-0248.2009.01311.x; Pinheiro J. C., 2000, MIXED EFFECT MODELS; POLICANSKY D, 1993, EXPLOITATION EVOLVIN, P2; Pyper BJ, 1999, CAN J FISH AQUAT SCI, V56, P1716, DOI 10.1139/cjfas-56-10-1716; Quinn TP, 2007, ECOL APPL, V17, P731, DOI 10.1890/06-0771; Quinn TP, 2009, AM FISH S S, V69, P23; Quinn TP, 2006, J FISH BIOL, V68, P1713, DOI 10.1111/j.1095-8649.2006.01017.x; R Development Core Team, 2009, R LANG ENV STAT COMP; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Rogers D.E., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P78; ROGERS DE, 1993, FISH RES, V18, P89, DOI 10.1016/0165-7836(93)90042-6; RUTTER C, 1904, B US FISH COMM, V22, P65; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Smith NG, 2008, J FISH BIOL, V73, P597, DOI 10.1111/j.1095-8649.2008.01954.x; SMITH VE, 1920, TAKING IMMATURE SALM; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; TODD ISP, 1971, J FISH RES BOARD CAN, V28, P821, DOI 10.1139/f71-123; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Weisberg S, 2010, CAN J FISH AQUAT SCI, V67, P269, DOI 10.1139/F09-181; Wolak ME, 2010, CONSERV BIOL, V24, P1268, DOI 10.1111/j.1523-1739.2010.01469.x; Yule Daniel L., 2000, North American Journal of Fisheries Management, V20, P759, DOI 10.1577/1548-8675(2000)020<0759:COHAAP>2.3.CO;2; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 83 14 15 0 37 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2012 22 3 804 816 10.1890/11-1189.1 13 Ecology; Environmental Sciences Environmental Sciences & Ecology 932SY WOS:000303312000006 22645812 2019-02-21 J Correa, C; Hendry, AP Correa, Cristian; Hendry, Andrew P. Invasive salmonids and lake order interact in the decline of puye grande Galaxias platei in western Patagonia lakes ECOLOGICAL APPLICATIONS English Article AIC(c); Aplochiton; Chile; constraint to salmonid invasiveness; deforestation; Galaxiidae; information-theoretic approach; invasive trout; path analysis; Yulton Lake LIFE-HISTORY EVOLUTION; SOUTHERN CHILE; RAINBOW-TROUT; NATIVE FISHES; NEW-ZEALAND; NORTHERN WISCONSIN; INTRODUCED TROUT; BROWN TROUT; PREDATOR; HABITAT Salmonid fishes, native to the northern hemisphere, have become naturalized in many austral countries and appear linked to the decline of native fishes, particularly galaxiids. However, a lack of baseline information and the potential for confounding anthropogenic stressors have led to uncertainty regarding the association between salmonid invasions and galaxiid declines, especially in lakes, as these have been much less studied than streams. We surveyed 25 lakes in the Aysen region of Chilean Patagonia, including both uninvaded and salmonid-invaded lakes. Abundance indices (AI) of Galaxias platei and salmonids (Salmo trutta and Oncorhynchus mykiss) were calculated using capture-per-unit-effort data from gillnets, minnow traps, and electrofishing. We also measured additional environmental variables, including deforestation, lake morphometrics, altitude, and hydrological position (i.e., lake order). An information-theoretic approach to explaining the AI of G. platei revealed that by far the strongest effect was a negative association with the AI of salmonids. Lake order was also important, and using structural equation modeling, we show that this is an indirect effect naturally constraining the salmonid invasion success in Patagonia. Supporting this conclusion, an analysis of an independent data set from 106 mountain lakes in western Canada showed that introduced salmonids are indeed less successful in low-order lakes. Reproductive failure due to insufficient spawning habitat and harsh environmental conditions could be the cause of these limits to salmonid success. The existence of this effect in Chilean Patagonia suggests that low-order lakes are likely to provide natural ecological refugia for G. platei. Finally, pristine, high-order lakes should be actively protected as these have become rare and irreplaceable unspoiled references of the most diverse, natural lake ecosystems in Patagonia. [Correa, Cristian; Hendry, Andrew P.] McGill Univ, Redpath Museum, Dept Biol, Montreal, PQ H3A 2K6, Canada Correa, C (reprint author), McGill Univ, Redpath Museum, Dept Biol, 859 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. cristiancorrea@gmail.com Correa, Cristian/0000-0002-8608-6858 Centro de Investigacion en Ecosistemas de la Patagonia; National Geographic Society (CRE); Canadian Association of Universities (LACREG); McGill School of Environment We dedicate this work to Robert ("Bob'') M. McDowall (September 1939-February 2011), prolific and inspiring pioneer in the study of galaxioids worldwide. We are especially thankful to A. Bravo for her continuous support. We also thank our outstanding field assistants: A. Bravo, C. Cortez, G. Orellana, and S. Vasquez. We are also grateful to D. Cayun, F. Durot, M. Hendry, J. Hudson, P. Ortiz, J. J. Ortiz, V. Peralta, B. Reid, and C. Serrano for their assistance in the field. Kyle Young and three anonymous reviewers provided constructive criticism to earlier drafts. We appreciate the support of the scientists B. Dyer, G. Gajardo, C. Garcia de Leaniz, C. Meier, and staff members of the Centro de Investigacion en Ecosistemas de la Patagonia, especially B. Reid. We thank the people scattered across the landscape in Aysen for their unconditional cooperation in the field. Thanks to M. Kinnison, and Freshwater Illustrated for lending their gear. This research was funded by the National Geographic Society (CRE grant), the Canadian Association of Universities (LACREG grant), and the McGill School of Environment. C. Correa held a scholarship from Comision Nacional de Investigacion Cientifica y Tecnologica, Gobierno de Chile (CONYCIT). Aigo J, 2008, REV FISH BIOL FISHER, V18, P387, DOI 10.1007/s11160-007-9080-8; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Anderson DR., 2008, MODEL BASED INFERENC; Arbuckle J. L., 1995, AMOS 18 USERS GUIDE; Arismendi I, 2007, REV FISH SCI, V15, P311, DOI 10.1080/10641260701484655; Arismendi I, 2011, LAKE RESERV MANAGE, V27, P61, DOI 10.1080/07438141.2010.536617; Arismendi I, 2009, FRESHWATER BIOL, V54, P1135, DOI 10.1111/j.1365-2427.2008.02157.x; Bain M. B., 1999, AQUATIC HABITAT ASSE; Barriga JP, 2002, NEW ZEAL J MAR FRESH, V36, P345, DOI 10.1080/00288330.2002.9517092; Basulto S, 2003, LARGO VIAJE SALMONES; Blumberg-Munoz C., 1996, IMPACTOS INTROD ESPE; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Cambray J. A., 2003, African Journal of Aquatic Science, V28, P61, DOI 10.2989/16085914.2003.9626601; Casal C. M. V., 2006, BIOL INVASIONS, V18, P3; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Correa C, 2008, BIOL INVASIONS, V10, P615, DOI 10.1007/s10530-007-9157-2; Crowl T.A., 1992, Reviews in Fish Biology and Fisheries, V2, P217, DOI 10.1007/BF00045038; Cussac V, 2004, J BIOGEOGR, V31, P103, DOI 10.1046/j.0305-0270.2003.01000.x; DEVITO KJ, 1993, CAN J FISH AQUAT SCI, V50, P2222, DOI 10.1139/f93-248; Diaz M, 2007, LIMNOLOGICA, V37, P17, DOI 10.1016/j.limno.2006.08.006; Didham RK, 2005, TRENDS ECOL EVOL, V20, P470, DOI 10.1016/j.tree.2005.07.006; Dodson SI, 2009, J PLANKTON RES, V31, P93, DOI 10.1093/plankt/fbn095; Donald D.B., 1987, North American Journal of Fisheries Management, V7, P545, DOI 10.1577/1548-8659(1987)7<545:AOTOOE>2.0.CO;2; DOWNING JA, 1993, CAN J FISH AQUAT SCI, V50, P110, DOI 10.1139/f93-013; Energia Austral, 2009, EST IMP AMB PROYECT; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Grace JB, 2003, STRUCTURAL EQUATION MODELING, P171, DOI 10.1017/CBO9780511542138.008; GREENBANK J, 1945, ECOL MONOGR, V15, P343, DOI 10.2307/1948427; Habit E, 2010, GLOBAL ECOL BIOGEOGR, V19, P697, DOI 10.1111/j.1466-8238.2010.00541.x; Hermoso V, 2011, ECOL APPL, V21, P175, DOI 10.1890/09-2011.1; Hubert WA, 1996, T AM FISH SOC, V125, P925, DOI 10.1577/1548-8659(1996)125<0925:EGARTP>2.3.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kratz TK, 1997, FRESHWATER BIOL, V37, P209, DOI 10.1046/j.1365-2427.1997.00149.x; Langeland A., 1996, Ecology of Freshwater Fish, V5, P49, DOI 10.1111/j.1600-0633.1996.tb00036.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lattuca ME, 2008, ECOL FRESHW FISH, V17, P394, DOI 10.1111/j.1600-0633.2008.00292.x; Lattuca ME, 2008, J FISH BIOL, V72, P1306, DOI 10.1111/j.1095-8649.2008.01796.x; Light T, 2007, CONSERV BIOL, V21, P434, DOI 10.1111/j.1523-1739.2006.00643.x; Lintermans M, 2000, MAR FRESHWATER RES, V51, P799, DOI 10.1071/MF00019; McDowall RM, 2006, REV FISH BIOL FISHER, V16, P233, DOI 10.1007/s11160-006-9017-7; McIntosh AR, 2000, CAN J FISH AQUAT SCI, V57, P2140, DOI 10.1139/cjfas-57-10-2140; MCINTOSH AR, 1992, J FISH BIOL, V41, P63, DOI 10.1111/j.1095-8649.1992.tb03170.x; Milano D, 2006, BIOL J LINN SOC, V87, P69, DOI 10.1111/j.1095-8312.2006.00556.x; Milano D, 2002, J FISH BIOL, V61, P138, DOI 10.1006/jfbi.2002.2027; Milano Daniela, 1997, Neotropica (La Plata), V43, P109; Moyle PB, 1996, BIOL CONSERV, V78, P149, DOI 10.1016/0006-3207(96)00024-9; Mundry R, 2009, AM NAT, V173, P119, DOI 10.1086/593303; Pascual Miguel, 2002, Biological Invasions, V4, P101, DOI 10.1023/A:1020513525528; Pascual MA, 2009, FRONT ECOL ENVIRON, V7, P533, DOI 10.1890/070127; Penaluna BE, 2009, T AM FISH SOC, V138, P839, DOI 10.1577/T08-134.1; Pugesek B. H., 2003, STRUCTURAL EQUATION; R Development Core Team, 2010, R LANG ENV STAT COMP; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rowe DK, 1999, NEW ZEAL J MAR FRESH, V33, P141, DOI 10.1080/00288330.1999.9516864; Ruzzante DE, 2008, MOL ECOL, V17, P2234, DOI 10.1111/j.1365-294X.2008.03738.x; Sakai M., 1989, FINAL REPORT AQUACUL; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Soto D, 2006, REV CHIL HIST NAT, V79, P97, DOI 10.4067/S0716-078X2006000100009; Soto D, 2002, REV CHIL HIST NAT, V75, P377, DOI 10.4067/S0716-078X2002000200009; Soto D, 2001, ECOL APPL, V11, P1750, DOI 10.1890/1051-0761(2001)011[1750:ESITIS]2.0.CO;2; Soto D, 2006, BIOLOGIA, V61, P541, DOI 10.2478/s11756-006-0088-7; Stuart-Smith RD, 2008, ENVIRON BIOL FISH, V82, P93, DOI 10.1007/s10641-007-9256-z; Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472; Vigliano P., 2007, REV M T FIS, P315; Vigliano PH, 2009, T AM FISH SOC, V138, P1405, DOI 10.1577/T08-067.1; Woelfl S, 2003, REV CHIL HIST NAT, V76, P459, DOI 10.4067/S0716-078X2003000300010; Woodford DJ, 2010, ECOL APPL, V20, P967, DOI 10.1890/08-1909.1; Yarrow M., 2009, PERSPECTIVES INTEGRA, P341; Young K., 2008, BIOL INVASIONS, V11, P1955; Young KA, 2010, ANIM CONSERV, V13, P399, DOI 10.1111/j.1469-1795.2010.00354.x; Zemlak TS, 2008, MOL ECOL, V17, P5049, DOI 10.1111/j.1365-294X.2008.03987.x 72 30 30 1 45 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 ECOL APPL Ecol. Appl. APR 2012 22 3 828 842 10.1890/11-1174.1 15 Ecology; Environmental Sciences Environmental Sciences & Ecology 932SY WOS:000303312000008 22645814 2019-02-21 J Boyle, MJ; Rice, ME Boyle, M. J.; Rice, M. E. Life History Evolution: Insights from Comparative Development and Gene Expression in Sipuncula INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB) JAN 03-07, 2012 Charleston, SC Soc Integrat & Comparat Biol (SICB) [Boyle, M. J.; Rice, M. E.] Smithsonian Marine Stn, Ft Pierce, FL USA boylem@si.edu 0 0 0 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. APR 2012 52 1 E18 E18 1 Zoology Zoology 930TV WOS:000303165000073 2019-02-21 J Boucher, FC; Thuiller, W; Roquet, C; Douzet, R; Aubert, S; Alvarez, N; Lavergne, S Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Douzet, Rolland; Aubert, Serge; Alvarez, Nadir; Lavergne, Sebastien RECONSTRUCTING THE ORIGINS OF HIGH-ALPINE NICHES AND CUSHION LIFE FORM IN THE GENUS ANDROSACE SL (PRIMULACEAE) EVOLUTION English Article Alpine plants; climatic niche; key innovation; niche conservatism; phylogenetic signal; phylogenetic uncertainty MULTIPLE SEQUENCE ALIGNMENT; INTERNAL TRANSCRIBED SPACER; CLIMATE-CHANGE; ADAPTIVE RADIATION; PHYLOGENETIC ANALYSES; DIVERGENCE TIME; PLANT TRAITS; EASTERN ALPS; GLOBAL-SCALE; SAMPLE-SIZE Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats. [Boucher, Florian C.; Thuiller, Wilfried; Roquet, Cristina; Aubert, Serge; Lavergne, Sebastien] Univ Grenoble 1, CNRS, UMR 5553, Lab Ecol Alpine, F-38041 Grenoble 9, France; [Douzet, Rolland; Aubert, Serge] Univ Grenoble 1, CNRS, UMS 2925, Stn Alpine Joseph Fourier, F-38041 Grenoble 9, France; [Alvarez, Nadir] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Boucher, FC (reprint author), Univ Grenoble 1, CNRS, UMR 5553, Lab Ecol Alpine, BP 53, F-38041 Grenoble 9, France. flofloboucher@gmail.com Alvarez, Nadir/B-4318-2010; THUILLER, Wilfried/G-3283-2010 Alvarez, Nadir/0000-0002-0729-166X; THUILLER, Wilfried/0000-0002-5388-5274; Boucher, Florian C./0000-0002-1151-0028 French "Agence Nationale de la Recherche"; EVORANGE [ANR-09-PEXT-011]; European Commission [066866]; Ecole Polytechnique, Saclay [AMX 2010-2013]; Swiss National Science Foundation [PZ00P3_126624]; Fundacion Ramon Areces We are grateful to all the people who contributed to GBIF, and to the botanists from the CBNA, the CBNMED, and the CRSF. We also thank M. Alfaro, L. Sack, and two anonymous reviewers for constructive criticism and advice on this work, and R. Fitzjohn for help with functions of the "diversitree" package. L. Gallien provided useful feedback on the focus of the study. Thanks also to Version Originale for checking and correcting the English in this article. This work was funded by the French "Agence Nationale de la Recherche" with the EVORANGE (ANR-09-PEXT-011) project, and by the European Commission's FP6 ECOCHANGE project (Contract No. 066866 GOCE). The grant to FB was provided by the Ecole Polytechnique, Saclay (AMX 2010-2013). NA was funded by the Swiss National Science Foundation (Ambizione fellowship PZ00P3_126624). CR was supported by a grant from the Fundacion Ramon Areces. Ackerly DD, 2003, INT J PLANT SCI, V164, pS165, DOI 10.1086/368401; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Alvarez N, 2009, ECOL LETT, V12, P632, DOI 10.1111/j.1461-0248.2009.01312.x; Arroyo MTK, 1999, OECOLOGIA, V119, P126, DOI 10.1007/s004420050768; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Blomberg SP, 2002, J EVOLUTION BIOL, V15, P899, DOI 10.1046/j.1420-9101.2002.00472.x; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Capella-Gutierrez S, 2009, BIOINFORMATICS, V25, P1972, DOI 10.1093/bioinformatics/btp348; Cholewa A. F, 2009, PRIMULACEAE; Cooper N, 2010, J EVOLUTION BIOL, V23, P2529, DOI 10.1111/j.1420-9101.2010.02144.x; Crisp MD, 2009, NATURE, V458, P754, DOI 10.1038/nature07764; Darwin C., 1859, ORIGIN SPECIES MEANS; Dixon CJ, 2009, MOL PHYLOGENET EVOL, V50, P74, DOI 10.1016/j.ympev.2008.10.009; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Donoghue MJ, 2008, P NATL ACAD SCI USA, V105, P11549, DOI 10.1073/pnas.0801962105; Dray S, 2007, J STAT SOFTW, V22, P1; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Edwards EJ, 2010, P NATL ACAD SCI USA, V107, P2532, DOI 10.1073/pnas.0909672107; Evans MEK, 2009, AM NAT, V173, P225, DOI 10.1086/595757; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Felsenstein J, 2008, AM NAT, V171, P713, DOI 10.1086/587525; Fine PVA, 2006, AM NAT, V168, P796, DOI 10.1086/508635; FitzJohn RG, 2009, SYST BIOL, V58, P595, DOI 10.1093/sysbio/syp067; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Glor RE, 2010, ANNU REV ECOL EVOL S, V41, P251, DOI 10.1146/annurev.ecolsys.39.110707.173447; GRINNELL J, 1917, AUK, V34, P131; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Harmon LJ, 2005, EVOLUTION, V59, P2705; Harmon LJ, 2003, SCIENCE, V301, P961, DOI 10.1126/science.1084786; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hergarten S, 2010, EARTH PLANET SC LETT, V297, P453, DOI 10.1016/j.epsl.2010.06.048; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hu Q, 2007, PRIMULACEAE; Hughes C, 2006, P NATL ACAD SCI USA, V103, P10334, DOI 10.1073/pnas.0601928103; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P145; Katoh K, 2005, NUCLEIC ACIDS RES, V33, P511, DOI 10.1093/nar/gki198; Kembel S. W, 2009, BIOINFORMATICS, V26, P1463; Kembel SW, 2009, ECOL LETT, V12, P949, DOI 10.1111/j.1461-0248.2009.01354.x; Kishino H, 2001, MOL BIOL EVOL, V18, P352, DOI 10.1093/oxfordjournals.molbev.a003811; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Korner C, 1999, ALPINE PLANT LIFE; Kozak KH, 2010, ECOL LETT, V13, P1378, DOI 10.1111/j.1461-0248.2010.01530.x; Kuck P, 2010, MOL PHYLOGENET EVOL, V56, P1115, DOI 10.1016/j.ympev.2010.04.024; Kuhlemann J, 2007, GLOBAL PLANET CHANGE, V58, P224, DOI 10.1016/j.gloplacha.2007.03.007; Larcher W, 2010, FLORA, V205, P3, DOI 10.1016/j.flora.2008.12.005; Larkin MA, 2007, BIOINFORMATICS, V23, P2947, DOI 10.1093/bioinformatics/btm404; Lassmann T, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-298; Lassmann T, 2006, NUCLEIC ACIDS RES, V34, pW596, DOI 10.1093/nar/gkl191; Lauber K., 2007, FLORA HELVETICA FLOR; Lavergne S, 2010, ANNU REV ECOL EVOL S, V41, P321, DOI 10.1146/annurev-ecolsys-102209-144628; Lavergne S, 2010, ANN BOT-LONDON, V105, P109, DOI 10.1093/aob/mcp271; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; Losos JB, 1999, ANIM BEHAV, V58, P1319, DOI 10.1006/anbe.1999.1261; LOSOS JB, 2010, EVOLUTION DARWIN 1 1, P381; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Losos JB, 2008, ECOL LETT, V11, P1005, DOI 10.1111/j.1461-0248.2008.01232.x; Luxbacher AM, 2009, J EVOLUTION BIOL, V22, P1669, DOI 10.1111/j.1420-9101.2009.01779.x; Mace GM, 2003, SCIENCE, V300, P1707, DOI 10.1126/science.1085510; Martins L, 2003, PLANT SYST EVOL, V237, P75, DOI 10.1007/s00606-002-0258-1; Mast AR, 2006, NEW PHYTOL, V171, P605, DOI 10.1111/j.1469-8137.2006.01700.x; Miller A. H., 1949, ORNITHOLOGIE ALS BIO, P84; MONASTERIO M, 1991, TRENDS ECOL EVOL, V6, P387, DOI 10.1016/0169-5347(91)90159-U; Nikonov A. A, 1988, TECTONOPHYSICS, V163, P267; Nylander J. A. A., 2004, MRMODELTEST; Nylander JAA, 2008, BIOINFORMATICS, V24, P581, DOI 10.1093/bioinformatics/btm388; Pagel M, 1997, ZOOL SCR, V26, P331, DOI 10.1111/j.1463-6409.1997.tb00423.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pinto G, 2008, P ROY SOC B-BIOL SCI, V275, P2749, DOI 10.1098/rspb.2008.0686; R Development Core Team, 2011, R LANG ENV STAT COMP; Randin CF, 2009, GLOBAL CHANGE BIOL, V15, P1557, DOI 10.1111/j.1365-2486.2008.01766.x; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; RUFFIERLANCHE R, 1964, B SOC AMATEURS JARDI, V49, P3; Schneeweiss GM, 2004, SYST BIOL, V53, P856, DOI 10.1080/10635150490522566; Schonswetter P, 2009, TAXON, V58, P544, DOI 10.1002/tax.582018; Schonswetter P, 2003, PLANT BIOLOGY, V5, P623, DOI 10.1055/s-2003-44686; Stockwell DRB, 2002, ECOL MODEL, V148, P1, DOI 10.1016/S0304-3800(01)00388-X; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; Thuiller W, 2005, GLOBAL CHANGE BIOL, V11, P2234, DOI 10.1111/j.1365-2486.2005.01018.x; Thuiller W, 2004, ECOLOGY, V85, P1688, DOI 10.1890/03-0148; Thuiller W, 2011, NATURE, V470, P531, DOI 10.1038/nature09705; Tutin T. G., 1964, FLORA EUROPAEA; Verdu M, 2006, J EVOLUTION BIOL, V19, P625, DOI 10.1111/j.1420-9101.2005.00998.x; Wang YJ, 2004, ACTA PHYTOTAXON SIN, V42, P481; Wiens JJ, 2006, EVOLUTION, V60, P123, DOI 10.1111/j.0014-3820.2006.tb01088.x; Wiens JJ, 2008, ECOL LETT, V11, P1004, DOI 10.1111/j.1461-0248.2008.01238.x; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; WITTER MS, 1988, EVOLUTION, V42, P1278, DOI 10.1111/j.1558-5646.1988.tb04187.x; WOODWARD FI, 1990, PHILOS T ROY SOC B, V326, P585, DOI 10.1098/rstb.1990.0033; WOODWARD FI, 1992, NEW PHYTOL, V122, P239, DOI 10.1111/j.1469-8137.1992.tb04228.x; Yang ZH, 1997, COMPUT APPL BIOSCI, V13, P555; Yesson C, 2006, SYST BIOL, V55, P785, DOI 10.1080/1063515060081570; Yesson C, 2009, J BIOGEOGR, V36, P1234, DOI 10.1111/j.1365-2699.2008.01971.x; Yesson C, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-72; Zachos JC, 2008, NATURE, V451, P279, DOI 10.1038/nature06588 100 35 36 5 69 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 EVOLUTION Evolution APR 2012 66 4 1255 1268 10.1111/j.1558-5646.2011.01483.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 922KV WOS:000302546700022 22486702 Green Accepted, Green Published, Bronze 2019-02-21 J Kuparinen, A; Hardie, DC; Hutchings, JA Kuparinen, Anna; Hardie, David C.; Hutchings, Jeffrey A. Evolutionary and ecological feedbacks of the survival cost of reproduction EVOLUTIONARY APPLICATIONS English Article Atlantic cod; life-history evolution; natural mortality; recruitment; spawning stock; survival cost of reproduction FISHERIES-INDUCED EVOLUTION; COD GADUS-MORHUA; LIFE-HISTORY EVOLUTION; ATLANTIC SALMON; MARINE FISH; NATURAL MORTALITY; POPULATION RECOVERY; NORTHERN COD; GROWTH; AGE Arguably the most fundamental of trade-offs in life-history evolution is the increase in natural mortality resulting from sexual maturity and reproduction. Despite its central importance, this increase in mortality, a survival cost, garners surprisingly little attention in fish and fisheries modeling studies. We undertook an exploratory analysis to evaluate the consequences of this omission for life-history projections. To this end, we developed a simulation approach that integrates quantitative genetics into the ecological dynamics of a fish population and parameterized the model for Atlantic cod (Gadus morhua, L.). When compared to simulations in which the mortality of immature and mature individuals is equal, the inclusion of a survival cost results in larger asymptotic body size, older age at maturity, and larger size at maturity. We also find that measures of population productivity (spawning stock biomass, recruits-per-spawner) are overestimated if the survival cost is excluded. This sensitivity of key metrics of population growth rate and reproductive capacity to the magnitude of the survival cost of reproduction underscores the need to explicitly account for this trade-off in projections of fish population responses to natural and anthropogenic environmental change, including fisheries. [Kuparinen, Anna] Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, FIN-00014 Helsinki, Finland; [Hardie, David C.] Fisheries & Oceans Canada, Dartmouth, NS, Canada; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada Kuparinen, A (reprint author), Univ Helsinki, Dept Biosci, Ecol Genet Res Unit, POB 65, FIN-00014 Helsinki, Finland. anna.kuparinen@helsinki.fi Academy of Finland; Natural Sciences and Engineering Research Council of Canada; Polar Continental Shelf Programme; European Union [244706/ECOK-NOWS] The research leading to these results has received funding from the Academy of Finland (AK), the Natural Sciences and Engineering Research Council of Canada and Polar Continental Shelf Programme (DH, JH) and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 244706/ECOK-NOWS project (AK). However, the paper does not necessarily reflect European Commission's views and in no way anticipates the Commission's future policy in the area. We thank Sakari Kuikka, the associate editor, and two anonymous referees for their helpful comments on an earlier version of this article. Adams CE, 1997, J FISH BIOL, V51, P750, DOI 10.1006/jfbi.1997.0476; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berg OK, 2001, FUNCT ECOL, V15, P13, DOI 10.1046/j.1365-2435.2001.00473.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; BEVERTON RJH, 1994, ICES MAR SC, V198, P482; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Box G. E., 1979, ROBUSTNESS STAT, V1, P201; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; COSEWIC, 2010, COSEWIC ASS STAT REP; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; DiBattista JD, 2011, EVOL APPL, V4, P1, DOI 10.1111/j.1752-4571.2010.00125.x; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; FAO, 2010, STAT WORLD FISH AQ; Fisher RA, 1930, GENETICAL THEORY NAT; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Hardie DC, 2011, ARCTIC, V64, P137; Haugen TO, 2000, OIKOS, V90, P107, DOI 10.1034/j.1600-0706.2000.900111.x; Heino M, 2002, B MAR SCI, V70, P639; Hendry AP, 2004, ECOL FRESHW FISH, V13, P185, DOI 10.1111/j.1600-0633.2004.00045.x; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; HUTCHINGS JA, 2002, HDB FISH BIOL FISHER, V1, P149; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Jensen AL, 1997, CAN J FISH AQUAT SCI, V54, P987, DOI 10.1139/cjfas-54-5-987; Johnson DW, 2011, EVOL APPL, V4, P621, DOI 10.1111/j.1752-4571.2011.00185.x; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Metcalfe NB, 1999, J ANIM ECOL, V68, P371, DOI 10.1046/j.1365-2656.1999.00289.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Myers RA, 1997, FISH B-NOAA, V95, P762; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Poos JJ, 2011, J THEOR BIOL, V279, P102, DOI 10.1016/j.jtbi.2011.03.001; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Development Core Team, 2009, R LANG ENV STAT COMP; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 2002, LIFE HIST EVOLUTION; Scarnecchia DL, 2007, REV FISH SCI, V15, P211, DOI 10.1080/10641260701486981; SCHAFFER WM, 1975, ECOLOGY, V56, P577, DOI 10.2307/1935492; SILVERTOWN J, 1999, AM NAT, V29, P321; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stige LC, 2010, P ROY SOC B-BIOL SCI, V277, P3411, DOI 10.1098/rspb.2010.0602; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vinyard G. L., 2002, WEST N AM NATURALIST, V60, P333; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C, 1996, REV FISH BIOL FISHER, V6, P125; Walters C. J, 1992, QUANTITATIVE FISHERI; Wang H.-Y., 2010, EVOLUTIONARY APPL, V2, P438 73 21 21 1 42 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. APR 2012 5 3 245 255 10.1111/j.1752-4571.2011.00215.x 11 Evolutionary Biology Evolutionary Biology 920IE WOS:000302396700003 25568045 DOAJ Gold, Green Published 2019-02-21 J Miehls, ALJ; Peacor, SD; McAdam, AG Miehls, Andrea L. J.; Peacor, Scott D.; McAdam, Andrew G. Genetic and maternal effects on tail spine and body length in the invasive spiny water flea (Bythotrephes longimanus) EVOLUTIONARY APPLICATIONS English Article clonal analysis; heritability; invasive species; Lake Michigan; maternal effects; quantitative genetics; variation; zooplankton LIFE-HISTORY EVOLUTION; LAKE-MICHIGAN; PHENOTYPIC PLASTICITY; QUANTITATIVE GENETICS; PREDATORY CLADOCERANS; POPULATION-DYNAMICS; ADAPTIVE EVOLUTION; SPECIES INVASIONS; SEXUAL SELECTION; RANGE EXPANSION Interest in the evolution of invasive species has grown in recent years, yet few studies have investigated sources of variation in invasive species traits experiencing natural selection. The spiny water flea, Bythotrephes longimanus, is an invasive zooplankton in the Great Lakes that exhibits seasonal changes in tail spine and body length consistent with natural selection. Evolution of Bythotrephes traits, however, depends on the presence and magnitude of quantitative genetic variation, which could change within or across years. Clonal analysis of wild-captured Bythotrephes indicated that variance components for distal spine length were variable among but not within years. Spine length was always heritable but was not always influenced by maternal effects. In contrast, variance components for body length varied both within and among years, but likewise body length was always heritable and not always influenced by maternal effects. Results indicate that important Bythotrephes traits have heritable variation comparable to native species and other invasive species that would enable an evolutionary response to natural selection. This evolutionary capacity could contribute to the widespread success and dramatic effects of Bythotrephes invasion in systems with diverse biotic and abiotic conditions. [Miehls, Andrea L. J.; Peacor, Scott D.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA; [Miehls, Andrea L. J.] NOAA, Great Lakes Environm Res Lab, Ann Arbor, MI 48105 USA; [McAdam, Andrew G.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada Miehls, ALJ (reprint author), Michigan State Univ, Dept Fisheries & Wildlife, 13 Nat Resources Bldg, E Lansing, MI 48824 USA. jaegeran@msu.edu McAdam, Andrew/G-1802-2010 McAdam, Andrew/0000-0001-7323-2572 Great Lakes Fishery Commission; National Science Foundation [DEB-0089809]; U.S. Environmental Protection Agency [FP91698801-0]; Michigan State University AgBioResearch We thank the McAdam Lab, Doug Schemske and three anonymous reviewers for helpful comments. Doran Mason, Dennis Donahue, Steven Pothoven, and the NOAA Great Lakes Environmental Research Laboratory and NOAA Lake Michigan Field Station offered research vessels and field support staff. Keali Chambers, Brittany Damschroder, Jason Fischer, Brittany Gunther, Nicole Hedquist, Lydia Kramer, Ian McCririe, Scott Miehls, Jennifer Pellegrini, Veronica Quesnell, Andria Salas, Ben Staton, Marie Stevenson and Brandon Vieder helped to collect data. Natalie Kim, Kevin Pangle, Kim Schulz and Peder Yurista provided valuable help with Bythotrephes culturing protocols. This work was supported by the Great Lakes Fishery Commission, the National Science Foundation (DEB-0089809), and an EPA Science to Achieve Results (STAR) fellowship (STAR Research Assistance Agreement No. FP91698801-0 awarded by the U.S. Environmental Protection Agency). This work has not been formally reviewed by the EPA, and the views expressed in this document are solely those of the authors. SDP acknowledges support from Michigan State University AgBioResearch. This is contribution number 1603 of the NOAA Great Lakes Environmental Research Laboratory. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Barbiero RP, 2004, CAN J FISH AQUAT SCI, V61, P2111, DOI 10.1139/f04-149; BARNHISEL DR, 1991, J PLANKTON RES, V13, P529, DOI 10.1093/plankt/13.3.529; BARNHISEL DR, 1991, OECOLOGIA, V88, P444, DOI 10.1007/BF00317591; BARNHISEL DR, 1995, CAN J FISH AQUAT SCI, V52, P768, DOI 10.1139/f95-076; Beletsky D, 2007, J GREAT LAKES RES, V33, P842, DOI 10.3394/0380-1330(2007)33[842:BMOLYP]2.0.CO;2; Bilkovic DM, 1997, J GREAT LAKES RES, V23, P149; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; Boman S, 2008, BIOL INVASIONS, V10, P1135, DOI 10.1007/s10530-007-9191-0; Bossdorf O., 2005, OECOLOGIA, V114, P1; Branstrator DK, 2005, J PLANKTON RES, V27, P569, DOI 10.1093/plankt/fbi033; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 2001, EVOLUTION, V55, P1644; Bunnell DB, 2011, FRESHWATER BIOL, V56, P1281, DOI 10.1111/j.1365-2427.2010.02568.x; BURKHARDT S, 1994, FRESHWATER BIOL, V31, P97, DOI 10.1111/j.1365-2427.1994.tb00842.x; Calisi RM, 2009, HORM BEHAV, V56, P1, DOI 10.1016/j.yhbeh.2009.02.010; Colautti RI, 2005, MOL ECOL, V14, P1869, DOI 10.1111/j.1365-294X.2005.02565.x; Colautti RI, 2010, P ROY SOC B-BIOL SCI, V277, P1799, DOI 10.1098/rspb.2009.2231; Conner JK, 2003, EVOLUTION, V57, P487; Conner JK, 2004, PRIMER ECOLOGICAL GE; Cox GW, 2004, ALIEN SPECIES EVOLUT; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dybdahl MF, 2005, ECOLOGY, V86, P1592, DOI 10.1890/04-0898; Eales J, 2010, MOL ECOL, V19, P2858, DOI 10.1111/j.1365-294X.2010.04710.x; Ehrenfeld JG, 2010, ANNU REV ECOL EVOL S, V41, P59, DOI 10.1146/annurev-ecolsys-102209-144650; Elton C. S, 1958, ECOLOGY INVASIONS AN; Falconer D. S., 1996, INTRO QUANTITATIVE G; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Hoffman JC, 2001, FRESHWATER BIOL, V46, P759, DOI 10.1046/j.1365-2427.2001.00716.x; HOULE D, 1992, GENETICS, V130, P195; Kim N, 2010, LIMNOL OCEANOGR-METH, V8, P552, DOI 10.4319/lom.2010.8.552; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lambrinos JG, 2004, ECOLOGY, V85, P2061, DOI 10.1890/03-8013; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2007, GENETICA, V129, P179, DOI 10.1007/s10709-006-9013-9; Lee CE, 2008, EVOL APPL, V1, P427, DOI 10.1111/j.1752-4571.2008.00039.x; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lee CE, 2003, INTEGR COMP BIOL, V43, P439, DOI 10.1093/icb/43.3.439; LEHMAN JT, 1991, J GREAT LAKES RES, V17, P437, DOI 10.1016/S0380-1330(91)71379-8; LYNCH M, 1985, EVOLUTION, V39, P804, DOI 10.1111/j.1558-5646.1985.tb00422.x; LYNCH M, 1984, EVOLUTION, V38, P465, DOI 10.1111/j.1558-5646.1984.tb00312.x; Lynch M, 1998, GENETICS ANAL QUANTI, P980; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; MILLS EL, 1993, J GREAT LAKES RES, V19, P1, DOI 10.1016/S0380-1330(93)71197-1; MILLS EL, 1992, CAN J FISH AQUAT SCI, V49, P2009, DOI 10.1139/f92-224; Moku M, 2004, COPEIA, P647, DOI 10.1643/CI-03-113R; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Pfrender ME, 2000, EVOLUTION, V54, P1502; Pigliucci Massimo, 2001, P58; Piiroinen S, 2011, FUNCT ECOL, V25, P527, DOI 10.1111/j.1365-2435.2010.01804.x; Pimentel D, 2000, BIOSCIENCE, V50, P53, DOI 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2; PINHEIRO J, 2009, NLME LINEAR NONLINEA, P1; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Pothoven SA, 2003, J GREAT LAKES RES, V29, P145, DOI 10.1016/S0380-1330(03)70423-7; Pothoven SA, 2001, FRESHWATER BIOL, V46, P1491, DOI 10.1046/j.1365-2427.2001.00772.x; Pothoven SA, 2007, FRESHWATER BIOL, V52, P561, DOI 10.1111/j.1365-2427.2007.01728.x; POTVIN C, 1993, ECOLOGY, V74, P1617, DOI 10.2307/1939920; R Development Core Team, 2010, R LANG ENV STAT COMP; Ross CA, 2009, BIOL INVASIONS, V11, P441, DOI 10.1007/s10530-008-9261-y; Sakwinska O, 2004, OECOLOGIA, V138, P379, DOI 10.1007/s00442-003-1434-x; Sasaki A, 1997, EVOLUTION, V51, P682, DOI 10.1111/j.1558-5646.1997.tb03652.x; SCHNEEBERGER PJ, 1991, J GREAT LAKES RES, V17, P281, DOI 10.1016/S0380-1330(91)71364-6; Schwaegerle KE, 2000, EVOLUTION, V54, P452; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Straile D, 2000, ECOLOGY, V81, P150, DOI 10.1890/0012-9658(2000)081[0150:LHAMAD]2.0.CO;2; Strayer DL, 2006, TRENDS ECOL EVOL, V21, P645, DOI 10.1016/j.tree.2006.07.007; Strecker AL, 2008, ECOSYSTEMS, V11, P490, DOI 10.1007/s10021-008-9137-0; Sullivan CA, 1998, ARCH HYDROBIOL, V142, P35; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; Urban MC, 2008, OIKOS, V117, P1037, DOI [10.1111/j.0030-1299.2008.16334.x, 10.1111/j.2008.0030-1299.16334.x]; Weigensberg I, 1996, EVOLUTION, V50, P2149, DOI 10.1111/j.1558-5646.1996.tb03605.x; Wolff JO, 2003, BIOSCIENCE, V53, P421, DOI 10.1641/0006-3568(2003)053[0421:LSWRFO]2.0.CO;2; Yan ND, 2002, ECOL LETT, V5, P481, DOI 10.1046/j.1461-0248.2002.00348.x; Young JD, 2008, FRESHWATER BIOL, V53, P981, DOI 10.1111/j.1365-2427.2008.01954.x; YURISTA PM, 1992, CAN J FISH AQUAT SCI, V49, P1118, DOI 10.1139/f92-124 75 6 6 2 34 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1752-4571 EVOL APPL Evol. Appl. APR 2012 5 3 306 316 10.1111/j.1752-4571.2011.00221.x 11 Evolutionary Biology Evolutionary Biology 920IE WOS:000302396700008 25568050 DOAJ Gold, Green Published 2019-02-21 J Ziomkiewicz, A; Wichary, S; Bochenek, D; Pawlowski, B; Jasienska, G Ziomkiewicz, Anna; Wichary, Szymon; Bochenek, Dorota; Pawlowski, Boguslaw; Jasienska, Grazyna Temperament and ovarian reproductive hormones in women: Evidence from a study during the entire menstrual cycle HORMONES AND BEHAVIOR English Article Temperament; Personality; Fertility; Menstrual cycle; Estrogen; Progesterone PERSONALITY-TRAITS; ESTRADIOL LEVELS; PREMENOPAUSAL WOMEN; POLYMORPHISM; ASSOCIATION; POPULATION; FERTILITY; PROFILES; ESTROGEN; BEHAVIOR Personality and temperament were hypothesized to function as important factors affecting life history strategies. Recent research has demonstrated the association between temperamental traits and reproduction in humans, however, the underlying mechanisms are still poorly understood. This study presents evidence for an association between temperamental traits and woman's fecundity, as indicated by levels of ovarian steroid hormones during the menstrual cycle. On a large sample of urban, reproductive age women (n = 108) we demonstrated that activity, endurance and emotional reactivity are associated with levels of estrogen and with a pattern of change of progesterone levels. Women high in activity, high in endurance and low in emotional reactivity had up to twice as high estradiol levels and more favorable progesterone profiles as women low in activity, low in endurance and high in emotional reactivity. The temperamental traits we measured highly overlap with extraversion, neuroticisci and negative emotionality that were reported to correlate with reproductive success. Our findings thus suggest a possible explanation for these relationships, linking personality and women's reproductive success through a hormonal pathway. (C) 2012 Elsevier. Inc. All rights reserved. [Ziomkiewicz, Anna] Polish Acad Sci, Inst Anthropol, PL-50951 Wroclaw, Poland; [Wichary, Szymon] Warsaw Sch Social Sci & Humanities, PL-03815 Warsaw, Poland; [Wichary, Szymon] Univ Basel, Dept Psychol, CH-4055 Basel, Switzerland; [Bochenek, Dorota; Pawlowski, Boguslaw] Univ Wroclaw, Dept Anthropol, PL-50138 Wroclaw, Poland; [Jasienska, Grazyna] Jagiellonian Univ, Coll Med, Dept Epidemiol & Populat Studies, PL-31531 Krakow, Poland Ziomkiewicz, A (reprint author), Polish Acad Sci, Inst Anthropol, Kuznicza 35, PL-50951 Wroclaw, Poland. annaz@antro.pan.wroc.pl; swichary@swps.edu.pl; bochenek.dorota@gmail.com; bogus@antropo.uni.wroc.pl; jasienska@post.harvard.edu Pawlowski, Boguslaw/C-1088-2013; Ziomkiewicz, Anna/H-8546-2012 Ziomkiewicz, Anna/0000-0002-1842-3314; Pawlowski, Boguslaw/0000-0002-7418-475X; Jasienska, Grazyna/0000-0001-8716-6342 Polish Ministry of Science and Higher Education [NN303 2403 33] The study was supported by the Polish Ministry of Science and Higher Education (grant no. NN303 2403 33). We thank Jan Strelau and Bettina von Helversen for helpful comments and discussions, Anita Todd for editing the manuscript, and Aleksandra Gomula for assistance in data collection. Abu-Saad K, 2010, EPIDEMIOL REV, V32, P5, DOI 10.1093/epirev/mxq001; Alvergne A, 2010, PERS INDIV DIFFER, V49, P840, DOI 10.1016/j.paid.2010.07.006; Alvergne A, 2010, P NATL ACAD SCI USA, V107, P11745, DOI 10.1073/pnas.1001752107; BAIRD DD, 1991, STAT MED, V10, P255, DOI 10.1002/sim.4780100209; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blache D, 2011, REPROD BIOL, V11, P61; Brumback BA, 1998, J AM STAT ASSOC, V93, P961, DOI 10.2307/2669837; Buss A., 1984, TEMPERAMENT EARLY DE, P1; BUSS DM, 1990, J CROSS CULT PSYCHOL, V21, P5, DOI 10.1177/0022022190211001; Costa P. T., 1992, REVISED NEO PERSONAL, P1; Dragan WL, 2006, NEUROPSYCHOBIOLOGY, V54, P45, DOI 10.1159/000095741; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Figueredo AJ, 2006, PERS INDIV DIFFER, V41, P431, DOI 10.1016/j.paid.2006.02.004; Frokjaer VG, 2008, BIOL PSYCHIAT, V63, P569, DOI 10.1016/j.biopsych.2007.07.009; Geary DC, 2005, PSYCHOL BULL, V131, P654, DOI 10.1037/0033-2909.131.5.654; Giotakos O, 2004, PSYCHIAT RES, V127, P185, DOI 10.1016/j.psychres.2003.06.003; Haiman CA, 2007, CANCER RES, V67, P1893, DOI 10.1158/0008-5472.CAN-06-4123; Ishii G, 2007, NEUROSCI LETT, V411, P77, DOI 10.1016/j.neulet.2006.10.012; Jasienska G, 2004, P ROY SOC B-BIOL SCI, V271, P1213, DOI 10.1098/rspb.2004.2712; Jasienska G, 2006, EVOL HUM BEHAV, V27, P390, DOI 10.1016/j.evolhumbehav.2006.01.001; Jasienska G, 2006, CANCER EPIDEM BIOMAR, V15, P2131, DOI 10.1158/1055-9965.EPI-06-0450; Jasienska G, 2006, EUR J CANCER PREV, V15, P439, DOI 10.1097/00008469-200610000-00009; Joffe M, 2009, HUM REPROD, V24, P1999, DOI 10.1093/humrep/dep087; Jokela M, 2011, EUR J PERSONALITY, V25, P487, DOI 10.1002/per.822; Jokela M, 2010, EUR J PERSONALITY, V24, P151, DOI 10.1002/per.749; Jokela M, 2009, J PERS SOC PSYCHOL, V96, P218, DOI 10.1037/a0014058; Kassam A, 1996, ENVIRON HEALTH PERSP, V104, P408, DOI 10.2307/3432685; Lasiuk GC, 2007, BIOL RES NURS, V9, P147, DOI 10.1077/1099800407305600; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Miller A, 2010, J PSYCHIATR RES, V44, P788, DOI 10.1016/j.jpsychires.2010.01.013; Miro F, 2004, CLIN CHEM LAB MED, V42, P1043, DOI 10.1515/CCLM.2004.210; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Netter P, 1998, EUR J PERSONALITY, V12, P287, DOI 10.1002/(SICI)1099-0984(199807/08)12:4<287::AID-PER311>3.0.CO;2-Y; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Osterlund MK, 2010, BBA-GEN SUBJECTS, V1800, P1136, DOI 10.1016/j.bbagen.2009.11.001; Sen S, 2004, AM J MED GENET B, V127B, P85, DOI 10.1002/ajmg.b.20158; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; Small CM, 2005, HUM REPROD, V20, P2162, DOI 10.1093/humrep/dei054; Sowers MR, 2006, AM J MED, V119, P16, DOI 10.1016/j.amjmed.2006.07.002; Strelau J, 1996, PERS INDIV DIFFER, V20, P131, DOI 10.1016/0191-8869(95)00159-X; STRELAU J, 1995, EUR J PERSONALITY, V9, P207, DOI 10.1002/per.2410090304; Strelau J, 2008, TEMPERAMENT REGULATO, P144; von Borell E, 2007, HORM BEHAV, V52, P130, DOI 10.1016/j.yhbeh.2007.03.014; Waller K, 1998, AM J EPIDEMIOL, V147, P1071; Weeden J, 2005, PSYCHOL BULL, V131, P635, DOI 10.1037/0033-2909.131.5.635; Wilcox AJ, 1999, NEW ENGL J MED, V340, P1796, DOI 10.1056/NEJM199906103402304; Zawadzki B., 1995, STUD PSYCHOL, V33, P49; Ziomkiewicz A, 2008, HUM REPROD, V23, P2555, DOI 10.1093/humrep/den213 48 9 12 0 27 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X HORM BEHAV Horm. Behav. APR 2012 61 4 535 540 10.1016/j.yhbeh.2012.01.017 6 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism 925LW WOS:000302763700010 22342576 2019-02-21 J Ferguson, JM; Taper, ML; Guy, CS; Syslo, JM Ferguson, Jake M.; Taper, Mark L.; Guy, Christopher S.; Syslo, John M. Mechanisms of coexistence between native bull trout (Salvelinus confluentus) and non-native lake trout (Salvelinus namaycush): inferences from pattern-oriented modeling CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article Determining the ecological mechanisms that control population abundances is an important issue for the conservation of endangered and threatened species. We examined whether a threatened bull trout (Salvelinus confluentus) population could coexist at observed levels with the ecologically similar introduced species, lake trout (Salvelinus namaycush), using a pattern-oriented analysis of population dynamics models. We used a large suite of stage-and age-structured models to examine how both competitive and predatory interactions, combined with differing life-history strategies and species vital rates, drove salmonid coexistence patterns. In our models, an ontogenetic shift in juvenile bull trout resource use was the most important factor contributing to the two species coexistence; however, this coexistence occurred with reduced abundances in bull trout that increase the chances of extirpation for the native species. Observed levels of competition were found to have stronger effects than predation on population abundances. We used a pattern-oriented modeling approach to inference; this approach assumes process models that can generate patterns similar to the observed patterns are better supported than those that cannot. This methodology may find wide use on a number of data-limited fishery management and conservation problems. [Ferguson, Jake M.; Taper, Mark L.; Syslo, John M.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Guy, Christopher S.] Montana State Univ, US Geol Survey, Montana Cooperat Fishery Res Unit, Bozeman, MT 59717 USA Ferguson, JM (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. troutinthemilk@ufl.edu Ferguson, Jake/A-7093-2013 Ferguson, Jake/0000-0002-5034-9089 NSF [DEB 0717456] We thank Lora Tenant, Michael Meeuwig, and Garrett Dickman for reviewing earlier drafts of the manuscript, as well as Michael Meeuwig and Felipe Carvalho for their assistance with Fig. 1. We also thank three anonymous reviewers and Associate Editor William Tonn for their suggestions that have greatly improved the quality and scope of this manuscript. Any use of trade, product, or firm names is for description purposes only and does not imply endorsement by the US Government. MLT was partly supported by NSF grant DEB 0717456. Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Sitar Shawn P., 1999, North American Journal of Fisheries Management, V19, P881, DOI 10.1577/1548-8675(1999)019<0881:LTMAAI>2.0.CO;2; Staples DF., 2006, THESIS MONTANA STATE; Syslo J. M., 2010, THESIS MONTANA STATE 4 5 5 0 25 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. APR 2012 69 4 755 769 10.1139/F2011-177 15 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 918AW WOS:000302222200011 2019-02-21 J Miller, TJ; Quintana-Ascencio, PF; Maliakal-Witt, S; Menges, ES Miller, Timothy J.; Quintana-Ascencio, Pedro F.; Maliakal-Witt, Satya; Menges, Eric S. Metacommunity Dynamics Over 16 Years in a Pyrogenic Shrubland CONSERVATION BIOLOGY English Article Florida rosemary scrub; nestedness; patch connectivity; patch-incidence model; patch quality; shrubland FLORIDA SCRUB PLANTS; METAPOPULATION DYNAMICS; POPULATION VIABILITY; COMMUNITY ECOLOGY; FIRE; LANDSCAPE; PATTERNS; HABITAT; CONNECTIVITY; NESTEDNESS Metacommunity theory allows predictions about the dynamics of potentially interacting species assemblages that are linked by dispersal, but strong empirical tests of the theory are rare. We analyzed the metacommunity dynamics of Florida rosemary scrub, a patchily distributed pyrogenic community, to test predictions about turnover rates, community nestedness, and responses to patch size, arrangement, and quality. We collected occurrence data for 45 plant species from 88 rosemary scrub patches in 1989 and 2005 and used growth form, mechanism of regeneration after fire, and degree of habitat specialization to categorize species by life history. We tested whether patch size, fire history, and structural connectivity (a measure of proximity and size of surrounding patches) could be used to predict apparent extinctions and colonizations. In addition, we tested the accuracy of incidence-function models built with the patch survey data from 1989. After fire local extinction rates were higher for herbs than woody plants, higher for species that regenerated only from seed than species able to resprout, and higher for generalist than specialist species. Fewer rosemary specialists and a higher proportion of habitat generalists were extirpated on recently burned patches than on patches not burned between 1989 and 2005. Nestedness was highest for specialists among all life-history groups. Estimated model parameters from 1989 predicted the observed (19892005) extinction rates and the number of patches with persistent populations of individual species. These results indicate that species with different life-history strategies within the same metacommunity can have substantially different responses to patch configuration and quality. Real metacommunities may not conform to certain assumptions of simple models, but incidence-function models that consider only patch size, configuration, and quality can have significant predictive accuracy. [Miller, Timothy J.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Quintana-Ascencio, Pedro F.] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA; [Maliakal-Witt, Satya] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Menges, Eric S.] Archbold Biol Stn, Lake Placid, FL 33862 USA Miller, TJ (reprint author), Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, 1156 High St, Santa Cruz, CA 95064 USA. tijmille@ucsc.edu National Science Foundation [DEB9815370, DEB0233899, DEB0812717]; Archbold Biological Station This study was supported by the National Science Foundation (DEB9815370, DEB0233899, DEB0812717) and by Archbold Biological Station. We acknowledge A. Maguire, D. Horton, and E. Boughton for helpful discussions and K. Kay, J. Yost, K. Medley, R. Noss, R. Holt, and two anonymous reviewers for comments on an earlier draft. ABRAHAMSON W G, 1984, Florida Scientist, V47, P209; Alexander HM, 2009, J ECOL, V97, P1390, DOI 10.1111/j.1365-2745.2009.01581.x; Almeida-Neto M., 2010, ENVIRON MODELL SOFTW, V26, P173, DOI DOI 10.1016/J.ENVS0FT.2010.08.003; Almeida-Neto M, 2008, OIKOS, V117, P1227, DOI 10.1111/j.0030-1299.2008.16644.x; Amarasekare P, 2001, AM NAT, V158, P572, DOI 10.1086/323586; ATMAR W, 1993, OECOLOGIA, V96, P373, DOI 10.1007/BF00317508; Boughton EA, 2006, J VEG SCI, V17, P361, DOI 10.1658/1100-9233(2006)017[0361:AOEWRE]2.0.CO;2; Chase J. M., 2003, ECOLOGICAL NICHES LI; Chave J, 2004, ECOL LETT, V7, P241, DOI 10.1111/j.1461-0248.2003.00566.x; Collins CD, 2009, ECOLOGY, V90, P2577, DOI 10.1890/08-1405.1; Cook RR, 1998, OECOLOGIA, V113, P584, DOI 10.1007/s004420050412; Cottenie K, 2005, ECOL LETT, V8, P1175, DOI 10.1111/j.1461-0248.2005.00820.x; Driscoll DA, 2009, ECOL MONOGR, V79, P485, DOI 10.1890/08-1114.1; Dupre C, 2002, J ECOL, V90, P796, DOI 10.1046/j.1365-2745.2002.00717.x; Freckleton RP, 2002, J ECOL, V90, P419, DOI 10.1046/j.1365-2745.2002.00692.x; HANSKI I, 1994, J ANIM ECOL, V63, P151, DOI 10.2307/5591; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; HARRISON S, 1989, OIKOS, V56, P293, DOI 10.2307/3565613; Hecnar SJ, 1997, OIKOS, V80, P371, DOI 10.2307/3546605; Hodgson JA, 2009, ECOLOGY, V90, P1608, DOI 10.1890/08-1227.1; Holt RD, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P465; Holyoak M, 2005, METACOMMUNITIES: SPATIAL DYNAMICS AND ECOLOGICAL COMMUNITIES, P1; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Maliakal-Witt S, 2005, AM J BOT, V92, P411, DOI 10.3732/ajb.92.3.411; Matter SF, 2010, P R SOC B, V277, P729, DOI 10.1098/rspb.2009.1520; Menges ES, 2008, J VEG SCI, V19, P503, DOI 10.3170/2008-8-18399; Menges Eric S., 1999, P7; Menges ES, 1998, ECOL APPL, V8, P935, DOI 10.1890/1051-0761(1998)008[0935:IEOFAM]2.0.CO;2; Menges ES, 2004, ECOL MONOGR, V74, P79, DOI 10.1890/03-4029; Menges ES, 1995, B TORREY BOT CLUB, V122, P282, DOI 10.2307/2996320; Minor ES, 2009, ECOLOGY, V90, P1802, DOI 10.1890/08-1015.1; Mouquet N, 2003, AM NAT, V162, P544, DOI 10.1086/378857; Murphy HT, 2004, OIKOS, V105, P3, DOI 10.1111/j.0030-1299.2004.12754.x; Navarra JJ, 2011, FIRE ECOL, V7, P17, DOI 10.4996/fireecology.0702017; Quintana-Ascencio PF, 2003, CONSERV BIOL, V17, P433, DOI 10.1046/j.1523-1739.2003.01431.x; QuintanaAscencio RF, 1996, CONSERV BIOL, V10, P1210; Roy M, 2005, AM NAT, V166, P246, DOI 10.1086/431286; Sizling AL, 2009, AM NAT, V174, P82, DOI 10.1086/599305; Slapcinsky JL, 2010, NAT AREA J, V30, P4, DOI 10.3375/043.030.0102; Van De Meutter F, 2007, ECOLOGY, V88, P1687; Wang YP, 2010, DIVERS DISTRIB, V16, P862, DOI 10.1111/j.1472-4642.2010.00682.x; Weekley CW, 2007, ECOSCIENCE, V14, P377, DOI 10.2980/1195-6860(2007)14[377:VISMIR]2.0.CO;2; Wright DH, 1998, OECOLOGIA, V113, P1, DOI 10.1007/s004420050348; WUNDERLIN RP, 1998, GUIDE VASCULAR PLANT; Yu DW, 2001, AM NAT, V158, P49, DOI 10.1086/320865 45 10 10 1 29 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0888-8892 CONSERV BIOL Conserv. Biol. APR 2012 26 2 357 366 10.1111/j.1523-1739.2011.01807.x 10 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 914VO WOS:000301981100019 22260356 2019-02-21 J Lindborg, R; Helm, A; Bommarco, R; Heikkinen, RK; Kuhn, I; Pykala, J; Partel, M Lindborg, Regina; Helm, Aveliina; Bommarco, Riccardo; Heikkinen, Risto K.; Kuehn, Ingolf; Pykala, Juha; Paertel, Meelis Effect of habitat area and isolation on plant trait distribution in European forests and grasslands ECOGRAPHY English Article EXPERIMENTALLY FRAGMENTED LANDSCAPE; LIFE-HISTORY TRAITS; SPECIES RICHNESS; SEED SIZE; DISPERSAL LIMITATION; AGRICULTURAL LANDSCAPES; CALCAREOUS GRASSLANDS; RELATIVE IMPORTANCE; EXTINCTION DEBT; SPATIAL SCALES A number of studies show contrasting results in how plant species with specific life-history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north-central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life-span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence-related traits, life-span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non-clonal plant species, and long-lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long-lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi-natural patches, where many non-clonal and short-lived species have already disappeared. Our study based on a large-scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes. [Lindborg, Regina] Stockholm Univ, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden; [Helm, Aveliina; Paertel, Meelis] Univ Tartu, Inst Ecol & Earth Sci, EE-51005 Tartu, Estonia; [Bommarco, Riccardo] Swedish Univ Agr Sci, Dept Ecol, SE-75007 Uppsala, Sweden; [Heikkinen, Risto K.; Pykala, Juha] Nat Environm Ctr, Finnish Environm Inst, FI-00251 Helsinki, Finland; [Kuehn, Ingolf] Helmoholtz Ctr Environm Res UFZ, Dept Community Ecol, DE-06120 Halle, Germany Lindborg, R (reprint author), Stockholm Univ, Dept Phys Geog & Quaternary Geol, SE-10691 Stockholm, Sweden. regina.lindborg@natgeo.su.se Helm, Aveliina/H-3127-2015; Kuhn, Ingolf/B-9756-2009; Partel, Meelis/D-5493-2012; Bommarco, Riccardo/E-7109-2016 Helm, Aveliina/0000-0003-2338-4564; Kuhn, Ingolf/0000-0003-1691-8249; Partel, Meelis/0000-0002-5874-0138; Bommarco, Riccardo/0000-0001-8888-0476 EU [SSPI-CT-2006-044346, 226852]; Centre of Excellence FIBIR; Estonian Science Foundation [6619, 7610, 8323]; Swedish Research Council for Environment, Agricultural Sciences and Spatial planning (FORMAS) We thank Lyubomir Penev for organizing the workshop within the COCONUT-project that formed the basis of this work. This research was funded by the EU in the 6th framework project 'COCONUT - Understanding effects of land use changes on ecosystems to halt loss of biodiversity' (SSPI-CT-2006-044346), the EU FP7 project 'SCALES - Securing the Conservation of biodiversity across Administrative Levels and spatial, temporal and Ecological Scales' (grant 226852), Centre of Excellence FIBIR, the Estonian Science Foundation (grants, 6619, 7610 and 8323), and the Swedish Research Council for Environment, Agricultural Sciences and Spatial planning (FORMAS). Ackerman JD, 1996, OECOLOGIA, V106, P192, DOI 10.1007/BF00328598; Adriaens D, 2006, BIOL CONSERV, V133, P212, DOI 10.1016/j.biocon.2006.06.006; Baeten L, 2009, J VEG SCI, V20, P209, DOI 10.1111/j.1654-1103.2009.05595.x; Bakker JP, 1999, TRENDS ECOL EVOL, V14, P63, DOI 10.1016/S0169-5347(98)01544-4; Bekker RM, 1998, FUNCT ECOL, V12, P834, DOI 10.1046/j.1365-2435.1998.00252.x; Bommarco R, 2010, P ROY SOC B-BIOL SCI, V277, P2075, DOI 10.1098/rspb.2009.2221; Bruun HH, 2000, ECOGRAPHY, V23, P641, DOI 10.1034/j.1600-0587.2000.230601.x; Buckley HL, 2010, J ECOL, V98, P645, DOI 10.1111/j.1365-2745.2010.01650.x; Cody ML, 2006, PLANTS ON ISLANDS: DIVERSITY AND DYNAMICS ON A CONTINENTAL ARCHIPELAGO, P1, DOI 10.1525/california/9780520247291.001.0001; Collins CD, 2009, ECOLOGY, V90, P2577, DOI 10.1890/08-1405.1; Cousins SAO, 2008, BIOL CONSERV, V141, P233, DOI 10.1016/j.biocon.2007.09.016; Cousins SAO, 2007, LANDSCAPE ECOL, V22, P723, DOI 10.1007/s10980-006-9067-1; Cousins SAO, 2009, BIOL CONSERV, V142, P2752, DOI 10.1016/j.biocon.2009.07.001; de Blois S, 2002, ECOGRAPHY, V25, P244, DOI 10.1034/j.1600-0587.2002.250212.x; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Dorrough J, 2007, AGR ECOSYST ENVIRON, V121, P222, DOI 10.1016/j.agee.2006.12.012; Dupre C, 2002, J ECOL, V90, P796, DOI 10.1046/j.1365-2745.2002.00717.x; Ehrlen J, 2000, ECOLOGY, V81, P1667, DOI 10.2307/177315; Ehrlen J, 1998, APPL VEG SCI, V1, P29, DOI 10.2307/1479083; Eriksson O, 1996, OIKOS, V77, P248, DOI 10.2307/3546063; ERIKSSON O, 2001, INTEGRATING ECOLOGY, P157; Fahrig L, 2002, ECOL APPL, V12, P346, DOI 10.2307/3060946; FARRIS JS, 1989, CLADISTICS, V5, P417, DOI 10.1111/j.1096-0031.1989.tb00573.x; Fischer M, 1997, CONSERV BIOL, V11, P727, DOI 10.1046/j.1523-1739.1997.96082.x; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Gerhold P, 2008, J ECOL, V96, P709, DOI 10.1111/j.1365-2745.2008.01386.x; GERITZ SAH, 1995, AM NAT, V146, P685, DOI 10.1086/285820; GrashofBokdam C, 1997, J VEG SCI, V8, P21, DOI 10.2307/3237238; Grime JP, 2007, COMP PLANT ECOLOGY; Hanski I., 1999, METAPOPULATION ECOLO; Helm A, 2006, ECOL LETT, V9, P72, DOI 10.1111/j.1461-0248.2005.00841.x; Herault B, 2005, J BIOGEOGR, V32, P2069, DOI 10.1111/j.1365-2699.2005.01351.x; HOLT RD, 1995, ECOLOGY, V76, P1610, DOI 10.2307/1938162; HOLT RD, 1992, THEOR POPUL BIOL, V41, P354, DOI 10.1016/0040-5809(92)90034-Q; Honnay O, 2005, OIKOS, V108, P427, DOI 10.1111/j.0030-1299.2005.13569.x; Jackson ST, 2010, TRENDS ECOL EVOL, V25, P621, DOI 10.1016/j.tree.2010.08.009; Jacquemyn H, 2001, J BIOGEOGR, V28, P801, DOI 10.1046/j.1365-2699.2001.00590.x; Jakobsson A, 2000, OIKOS, V88, P494, DOI 10.1034/j.1600-0706.2000.880304.x; Johst K, 2002, OIKOS, V98, P263, DOI 10.1034/j.1600-0706.2002.980208.x; Kiviniemi K, 1999, OIKOS, V86, P241, DOI 10.2307/3546442; Kleijn D, 2005, CONSERV BIOL, V19, P963, DOI 10.1111/j.1523-1739.2005.00603.x; Klimesova J, 2009, J VEG SCI, V20, P511, DOI 10.1111/j.1654-1103.2009.01050.x; Knapp S, 2008, ECOL LETT, V11, P1054, DOI 10.1111/j.1461-0248.2008.01217.x; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kolb A, 2005, J ECOL, V93, P1226, DOI 10.1111/j.1365-2745.2005.01049.x; Kolb A, 2004, J VEG SCI, V15, P199, DOI 10.1658/1100-9233(2004)015[0199:EOEHCA]2.0.CO;2; Kotiaho JS, 2002, OIKOS, V96, P551, DOI 10.1034/j.1600-0706.2002.960316.x; Krauss J, 2010, ECOL LETT, V13, P597, DOI 10.1111/j.1461-0248.2010.01457.x; Kuhn I, 2004, DIVERS DISTRIB, V10, P363, DOI 10.1111/j.1366-9516.2004.00106.x; Kuussaari M, 2009, TRENDS ECOL EVOL, V24, P564, DOI 10.1016/j.tree.2009.04.011; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Liira J, 2008, J VEG SCI, V19, P3, DOI 10.3170/2007-8-18308; Lindborg R, 2004, ECOLOGY, V85, P1840, DOI 10.1890/04-0367; Lindborg R, 2007, J ECOL, V95, P555, DOI 10.1111/j.1365-2745.2007.01232.x; Lososova Z, 2008, J BIOGEOGR, V35, P177, DOI 10.1111/j.1365-2699.2007.01778.x; MAC ARTHUR ROBERT H., 1967; Marini L, 2008, BASIC APPL ECOL, V9, P365, DOI 10.1016/j.baae.2007.06.011; McIntyre S, 1999, CONSERV BIOL, V13, P1282, DOI 10.1046/j.1523-1739.1999.97509.x; Moilanen A, 2006, CONNECTIVITY CONSERV, P44; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; Ozinga WA, 2004, J ECOL, V92, P767, DOI 10.1111/j.0022-0477.2004.00916.x; Ozinga WA, 2009, ECOL LETT, V12, P66, DOI 10.1111/j.1461-0248.2008.01261.x; Paradis E., 2006, ANAL PHYLOGENETICS E; Petit S, 2004, LANDSCAPE ECOL, V19, P463, DOI 10.1023/B:LAND.0000036141.30359.53; Prinzing A, 2008, ECOL LETT, V11, P809, DOI 10.1111/j.1461-0248.2008.01189.x; Purves DW, 2007, ECOL MONOGR, V77, P77, DOI 10.1890/05-1923; Pykala J, 2000, CONSERV BIOL, V14, P705, DOI 10.1046/j.1523-1739.2000.99119.x; ROBINSON GR, 1992, SCIENCE, V257, P524, DOI 10.1126/science.257.5069.524; Romermann C, 2008, BIODIVERS CONSERV, V17, P591, DOI 10.1007/s10531-007-9283-2; Roland J, 1997, NATURE, V386, P710, DOI 10.1038/386710a0; Roschewitz I, 2005, AGR ECOSYST ENVIRON, V105, P87, DOI 10.1016/j.agee.2004.05.010; ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638; Soons MB, 2005, J ECOL, V93, P1214, DOI 10.1111/j.1365-2745.2005.01064.x; Sutton FM, 2009, J ECOL, V97, P718, DOI 10.1111/j.1365-2745.2009.01517.x; Tackenberg O, 2003, ECOL MONOGR, V73, P191, DOI 10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; Tremlova K, 2007, ECOLOGY, V88, P965, DOI 10.1890/06-0924; Tscharntke T, 2005, ECOL LETT, V8, P857, DOI 10.1111/j.1461-0248.2005.00782.x; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Verheyen K, 2003, J ECOL, V91, P563, DOI 10.1046/j.1365-2745.2003.00789.x; Verheyen K, 2001, J ECOL, V89, P829, DOI 10.1046/j.0022-0477.2001.00596.x; WESTOBY M, 1995, J ECOL, V83, P727, DOI 10.2307/2261640; Westoby M, 1996, PHILOS T R SOC B, V351, P1309, DOI 10.1098/rstb.1996.0114; WESTOBY M, 1995, J ECOL, V83, P892; Zobel M, 2010, OIKOS, V119, P802, DOI 10.1111/j.1600-0706.2010.18296.x 87 51 55 1 100 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography APR 2012 35 4 356 363 10.1111/j.1600-0587.2011.07286.x 8 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 919CA WOS:000302297100009 2019-02-21 J Jervis, MA; Moe, A; Heimpel, GE Jervis, Mark A.; Moe, Annika; Heimpel, George E. The evolution of parasitoid fecundity: a paradigm under scrutiny ECOLOGY LETTERS English Article Balanced mortality; comparative analysis; Diptera; fecundity; Hymenoptera; life-history; parasitism; survivorship LIFE-HISTORY TRAITS; BODY-SIZE; EGG-PRODUCTION; CLUTCH SIZE; HYMENOPTERA; WASPS; STRATEGIES; LIMITATION; ALLOCATION; ARGUMENT An important assumption in insect parasitoid life-history theory is that, within parasitoid complexes (species assemblages associated with particular hosts), members attacking young host stages are more fecund than members targeting older ones. This hypothesis reflects the general trajectory of host survivorship curves: as a host cohort ages, availability to female parasitoids declines, as can the risk that the host and the parasitoid offspring it carries succumbs to extrinsic mortality. However, the analyses that provided empirical support for the hypothesis did not control for phylogeny. Using the original datasets, we use phylogenetically corrected analyses to test whether the results of the seminal study are upheld. Although we show those findings to be robust, the decline in fecundity could be a sampling artefact. We conclude that it would be unwise to assume the paradigm to be generally representative of natural parasitoid complexes. [Jervis, Mark A.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales; [Moe, Annika] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Heimpel, George E.] Univ Minnesota, Dept Entomol, St Paul, MN 55108 USA Jervis, MA (reprint author), Cardiff Univ, Cardiff Sch Biosci, Biomed Sci Bldg,Museum Ave, Cardiff CF10 3AX, S Glam, Wales. jervis@cf.ac.uk BELSHAW R. M., 1993, HDB IDENT BR INSECTS, V10, P1; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; Boletzky S. v., 2003, Berliner Palaeobiologische Abhandlungen, V3, P19; Carvalho AR, 2007, REV BRAS PARASITOL V, V16, P181, DOI 10.1590/S1984-29612007000400001; Cole M.L., 1954, Q REV BIOL, V29, P103; COOK WJ, 1989, OECOLOGIA, V79, P184, DOI 10.1007/BF00388476; DIAL BE, 1981, OECOLOGIA, V51, P310, DOI 10.1007/BF00540899; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Furuya H, 2003, MAR BIOL, V142, P693, DOI 10.1007/s00227-002-0991-6; Gauld I., 1988, HYMENOPTERA; Ghara M, 2010, ECOL ENTOMOL, V35, P139, DOI 10.1111/j.1365-2311.2010.01176.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Harvey P.H., 1991, COMP METHOD EVOLUTIO; HASSELL MP, 1969, J ANIM ECOL, V38, P329, DOI 10.2307/2774; HITCHCOCK HB, 1984, J MAMMAL, V65, P126, DOI 10.2307/1381210; Hoffmeister T., 2005, AM NAT, V166, P62; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; LYONS L. A., 1962, CANADIAN ENTOMOL, V94, P49; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Midford P. E., 2005, PDAP PACKAGE MESQUIT; MILLS NJ, 1992, ENVIRON ENTOMOL, V21, P230, DOI 10.1093/ee/21.2.230; Murdoch W. W., 2003, CONSUMER RESOURCE DY; O'Hara J.E., 2003, TACHINIDAE RESOURCES; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Poulin R, 2001, CAN J ZOOL, V79, P741, DOI 10.1139/cjz-79-5-741; Price P.W., 1975, P87; PRICE P W, 1973, Environmental Entomology, V2, P623; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1973, AM NAT, V107, P685; PRICE PW, 2003, MACROEVOLUTIONARY TH; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Quicke D.L., 1997, PARASITIC WASPS; Quicke DLJ, 2009, J NAT HIST, V43, P1305, DOI 10.1080/00222930902807783; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Shaw S. R., 2004, P RUSSIAN ENTOMOLOGI, V75, P82; Sivinski J, 2001, ANN ENTOMOL SOC AM, V94, P886, DOI 10.1603/0013-8746(2001)094[0886:OLIAGO]2.0.CO;2; Tachi T, 2010, SYST ENTOMOL, V35, P148, DOI 10.1111/j.1365-3113.2009.00497.x; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; Traynor RE, 2005, OIKOS, V109, P305, DOI 10.1111/j.0030-1299.2005.13666.x; Wajnberg E., 2008, BEHAV ECOLOGY PARASI; Waloff N., 1987, Advances in Ecological Research, V17, P281, DOI 10.1016/S0065-2504(08)60248-2; YU DS, 2005, WORLD ICHNEUMONOIDEA; ZAMMUTO RM, 1986, CAN J ZOOL, V64, P2739, DOI 10.1139/z86-398 51 11 12 4 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. APR 2012 15 4 357 364 10.1111/j.1461-0248.2012.01745.x 8 Ecology Environmental Sciences & Ecology 906MP WOS:000301349600008 22313604 2019-02-21 J Moreau, DTR; Fleming, IA Moreau, Darek T. R.; Fleming, Ian A. Enhanced growth reduces precocial male maturation in Atlantic salmon FUNCTIONAL ECOLOGY English Article alternative reproductive phenotypes; Atlantic salmon; genetically modified organisms; growth hormone; mature parr; proximate mechanisms; Salmo salar; transgenesis LIFE-HISTORY VARIATION; TRANSGENIC COHO SALMON; ALTERNATIVE REPRODUCTIVE TACTICS; EFFECTIVE POPULATION-SIZE; BODY-SIZE; FERTILIZATION SUCCESS; HORMONE TRANSGENE; SEXUAL SELECTION; MALE PARR; SALAR L 1. Understanding the proximate and ultimate mechanisms shaping the expression of alternative reproductive phenotypes is a fundamental question in life-history evolution. Precocial maturation in fishes, one such alternative phenotype, has been thought to reflect rapid growth and/or energy accumulation; however, mechanistically linking these specific traits to discrete life-history patterns is complex and poorly understood. 2. Here, we use growth hormone (GH) transgenic Atlantic salmon to elucidate the effects of intrinsically fast growth on precocial male maturation as parr (freshwater life stage). Despite facilitating growth to sizes typical of mature wild-type parr, transgenesis did not influence maturation in the first year of life. In the second year, the number of maturing transgenic parr was only half that of non-transgenic individuals. 3. By manipulating intrinsic growth and controlling for both environment and genetic background, this study provides direct empirical evidence suggesting that the physiological mechanisms promoting growth do not play a causative role in precocial male maturation in fishes. 4. In addition, this study provides the first empirical data on the relative incidence of precocial male maturation in GH transgenic and non-transgenic Atlantic salmon and, therefore, provides valuable information for the ecological risk assessment process. [Moreau, Darek T. R.; Fleming, Ian A.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada Moreau, DTR (reprint author), Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada. dmoreau@mun.ca Fleming, Ian/I-7217-2012 USDA; National Sciences and Engineering Research Council of Canada The authors would like to thank Corinne Conway and Danny Ings for assistance with data collection and Aqua Bounty Farms Inc. for providing transgenic gametes. The authors would also like to thank our reviewers for their valued input into earlier versions of this manuscript. All animals were treated in accordance with the guidelines provided by the Canadian Council on Animal Care and the approval of Memorial University's Institutional Animal Care Committee (AUP 07-03-IF). Support was kindly provided by a collaborative grant led by Dr E. M. Hallerman and funded by the USDA Biotechnology Risk Assessment Research Grants Program. Further financial assistance was provided by a National Sciences and Engineering Research Council of Canada Discovery Grant awarded to I.A.F. Aubin-Horth N, 2004, EVOLUTION, V58, P136; Bjornsson BT, 2002, FISH PHYSIOL BIOCHEM, V27, P227, DOI 10.1023/B:FISH.0000032728.91152.10; BJORNSSON BT, 1994, GEN COMP ENDOCR, V93, P70, DOI 10.1006/gcen.1994.1009; Bjornsson BT, 1997, FISH PHYSIOL BIOCHEM, V17, P9, DOI 10.1023/A:1007712413908; Calsbeek R, 2002, P ROY SOC B-BIOL SCI, V269, P157, DOI 10.1098/rspb.2001.1856; Cook JT, 2000, AQUACULTURE, V188, P15, DOI 10.1016/S0044-8486(00)00331-8; Cook JT, 2000, AQUACULTURE, V188, P33, DOI 10.1016/S0044-8486(00)00332-X; Cook JT, 2000, AQUACULTURE, V188, P47, DOI 10.1016/S0044-8486(00)00333-1; Deitch EJ, 2006, J EXP BIOL, V209, P1310, DOI 10.1242/jeb.02105; Devlin RH, 2000, AQUACULTURE, V191, P367, DOI 10.1016/S0044-8486(00)00484-1; Devlin RH, 2006, TRENDS BIOTECHNOL, V24, P89, DOI 10.1016/j.tibtech.2005.12.008; Devlin RH, 2004, P NATL ACAD SCI USA, V101, P9303, DOI 10.1073/pnas.0400023101; Devlin RH, 2004, AQUACULTURE, V236, P607, DOI 10.1016/j.aquaculture.2004.02.026; DEVLIN RH, 1994, NATURE, V371, P209, DOI 10.1038/371209a0; DU SJ, 1992, BIO-TECHNOL, V10, P176, DOI 10.1038/nbt0292-176; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Fleming Ian A., 2004, P264; Garant D, 2003, ECOL LETT, V6, P541, DOI 10.1046/j.1461-0248.2003.00462.x; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; Jones MW, 2002, ECOL APPL, V12, P184, DOI 10.1890/1051-0761(2002)012[0184:IVIASF]2.0.CO;2; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; Kadri S, 1996, AQUACULTURE, V142, P245, DOI 10.1016/0044-8486(96)01258-6; Koseki Y, 2000, BEHAV ECOL SOCIOBIOL, V48, P211, DOI 10.1007/s002650000231; Letcher BH, 2003, J FISH BIOL, V62, P97, DOI 10.1046/j.1095-8649.2003.00009.x; Letcher BH, 1998, J FISH BIOL, V53, P1243, DOI 10.1111/j.1095-8649.1998.tb00245.x; Mangel M, 2008, B MAR SCI, V83, P107; McCormick SD, 1996, GEN COMP ENDOCR, V101, P3, DOI 10.1006/gcen.1996.0002; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; Moreau DTR, 2011, J FISH BIOL, V78, P726, DOI 10.1111/j.1095-8649.2010.02888.x; Moreau DTR, 2011, EVOL APPL, V4, P736, DOI 10.1111/j.1752-4571.2011.00196.x; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Muir WM, 2002, TRANSGENIC RES, V11, P101, DOI 10.1023/A:1015203812200; Neregard L, 2008, J FISH BIOL, V73, P2341, DOI 10.1111/j.1095-8649.2008.02082.x; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Paez DJ, 2011, J EVOLUTION BIOL, V24, P245, DOI 10.1111/j.1420-9101.2010.02159.x; Paez DJ, 2011, P ROY SOC B-BIOL SCI, V278, P2150, DOI 10.1098/rspb.2010.2045; Pelis RM, 2001, GEN COMP ENDOCR, V124, P134, DOI 10.1006/gcen.2001.7703; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; Saunders RL, 1998, AQUACULTURE, V168, P177, DOI 10.1016/S0044-8486(98)00348-2; Shears MA, 1992, TRANSGENIC FISH, P44; Shuster SM, 2003, MATING SYSTEMS STRAT; Stevens ED, 1998, CAN J FISH AQUAT SCI, V55, P2028, DOI 10.1139/cjfas-55-9-2028; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, AQUACULTURE, V168, P95, DOI 10.1016/S0044-8486(98)00342-1; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Valosaari KR, 2008, EVOL APPL, V1, P608, DOI 10.1111/j.1752-4571.2008.00046.x; Weir LK, 2005, CAN J FISH AQUAT SCI, V62, P1153, DOI 10.1139/F05-032; Yaskowiak ES, 2006, TRANSGENIC RES, V15, P465, DOI 10.1007/s11248-006-0020-5 55 9 9 0 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. APR 2012 26 2 399 405 10.1111/j.1365-2435.2011.01941.x 7 Ecology Environmental Sciences & Ecology 915GF WOS:000302011400011 2019-02-21 J Niemela, PT; Vainikka, A; Hedrick, AV; Kortet, R Niemela, Petri T.; Vainikka, Anssi; Hedrick, Ann V.; Kortet, Raine Integrating behaviour with life history: boldness of the field cricket, Gryllus integer, during ontogeny FUNCTIONAL ECOLOGY English Article personality; encapsulation; boldness; life-history; immune defence; behavioural syndrome ADAPTIVE PERSONALITY-DIFFERENCES; TRADE-OFFS; ANTIPREDATOR BEHAVIOR; ANIMAL PERSONALITIES; EVOLUTIONARY ECOLOGY; BATEMANS PRINCIPLE; INSECT IMMUNITY; GROWTH; POPULATIONS; PREDATION 1. According to a recent hypothesis, personality traits should form integrative pace-of-life syndromes with life-history traits. Potential life-history traits that explain personality variation are immune defence and growth rate. 2. We studied whether boldness, measured as hiding behaviour, is repeatable during ontogeny in the field cricket, Gryllus integer, and if it relates to the efficiency of immune function (i. e. the capacity to encapsulate a nylon implant), growth rate, developmental time and size as an adult. 3. Hiding behaviour was rank-order repeatable, and in general, juveniles were bolder than adults. Individuals that were cautious at early juvenile stages had higher encapsulation responses late in life compared with bold individuals. Most clearly, fast-growing individuals matured early and invested little in immune defence compared with their slower-growing conspecifics, i. e. showed patterns of a ` grow fast, die young' life-history strategy. 4. Our results may arise from a trade-off between immunity-dependent survival and bold behaviour. Trade-offs between investment in survival and behaviour could account for the maintenance of variation in personality traits by favouring certain combinations of behavioural and life-history strategies (i. e. pace-of-life-syndromes). [Niemela, Petri T.; Vainikka, Anssi] Univ Oulu, Dept Biol, FI-90014 Oulu, Finland; [Niemela, Petri T.; Vainikka, Anssi; Kortet, Raine] Univ Eastern Finland, Dept Biol, FI-8101 Joensuu, Finland; [Hedrick, Ann V.] Univ Calif Davis, Dept Neurobiol Physiol & Behav & Anim Behav, Davis, CA 95616 USA Niemela, PT (reprint author), Univ Oulu, Dept Biol, POB 3000, FI-90014 Oulu, Finland. petri.niemela@oulu.fi Kortet, Raine/J-5027-2012 Kortet, Raine/0000-0003-3749-1096; Niemela, Petri/0000-0002-7518-4057; Vainikka, Anssi/0000-0002-0172-5615 Academy of Finland [127398]; National Science Foundation [IOS-0716332] This research has been supported by the Academy of Finland (project 127398) and the National Science Foundation (IOS-0716332). We thank Nick DiRienzo, Arja Kaitala, Eija Hurme, Sami Kivela Jukka Forsman, Indrikis Krams and two anonymous referees for very helpful comments. We thank also Anne Leonard and Markus Rantala, who helped us to establish the laboratory population used in this study. We would also like to thank the University of Oulu Zoo and its very helpful staff (P. M, J.M and S. I) for assistance in our work. Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Ahtiainen JJ, 2004, BEHAV ECOL, V15, P602, DOI 10.1093/beheco/arh062; Barber I, 2010, PHILOS T R SOC B, V365, P4077, DOI 10.1098/rstb.2010.0182; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; BOOTS M, 1993, FUNCT ECOL, V7, P528, DOI 10.2307/2390128; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Briscoe AD, 2001, ANNU REV ENTOMOL, V46, P471, DOI 10.1146/annurev.ento.46.1.471; Chelini MC, 2009, BEHAV PROCESS, V82, P153, DOI 10.1016/j.beproc.2009.06.001; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Cressler CE, 2010, AM NAT, V176, P276, DOI 10.1086/655425; Dangles O, 2007, J EXP BIOL, V210, P3165, DOI 10.1242/jeb.004648; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Freitak D, 2003, P ROY SOC B-BIOL SCI, V270, pS220, DOI 10.1098/rsbl.2003.0069; Gillespie JP, 1997, ANNU REV ENTOMOL, V42, P611, DOI 10.1146/annurev.ento.42.1.611; Gyuris E., 2010, P ROY SOC LOND B BIO, V278, P628; Hedrick AV, 2006, ANIM BEHAV, V72, P1111, DOI 10.1016/j.anbehav.2006.03.018; Hedrick AV, 2000, P ROY SOC B-BIOL SCI, V267, P671, DOI 10.1098/rspb.2000.1054; Heg D., 2011, BEHAV ECOLOGY, DOI [Doi: 10.1093/beheco/arr118, DOI 10.1093/HEHECO/ARR118]; Hodin J, 2006, INTEGR COMP BIOL, V46, P719, DOI 10.1093/icb/icl038; Houston AI, 2007, P ROY SOC B-BIOL SCI, V274, P2835, DOI 10.1098/rspb.2007.0934; Jolliffe I., 2002, PRINCIPAL COMPONENT; Koolhaas JM, 2008, BRAIN BEHAV IMMUN, V22, P662, DOI 10.1016/j.bbi.2007.11.006; Kortet R, 2004, BEHAVIOUR, V141, P1189, DOI 10.1163/1568539042664597; Kortet R, 2007, BIOL J LINN SOC, V91, P475, DOI 10.1111/j.1095-8312.2007.00812.x; Kortet R, 2007, EVOL ECOL RES, V9, P185; Kortet R, 2010, ECOL LETT, V13, P1449, DOI 10.1111/j.1461-0248.2010.01536.x; Kraaijeveld AR, 1997, NATURE, V389, P278; Kurtz J, 2001, J INVERTEBR PATHOL, V78, P53, DOI 10.1006/jipa.2001.5040; Laakkonen MVM, 2007, CAN J FISH AQUAT SCI, V64, P665, DOI 10.1139/F07-041; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; McElreath R, 2007, NATURE, V450, pE5, DOI 10.1038/nature06326; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Rantala MJ, 2004, BEHAV ECOL, V15, P187, DOI 10.1093/beheco/arg103; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; ROFF DA, 2002, LIFE HIST EVOLUTION; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Sih A, 2003, ANIM BEHAV, V65, P29, DOI 10.1006/anbe.2002.2025; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tabachnick B. G, 2001, USING MULTIVARIATE S; Telang A, 2007, J EXP BIOL, V210, P854, DOI 10.1242/jeb.02715; Vainikka A, 2011, ACTA ETHOL, V14, P17, DOI 10.1007/s10211-010-0086-1; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Wilson ADM, 2010, BEHAV ECOL SOCIOBIOL, V64, P703, DOI 10.1007/s00265-009-0888-1; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 66 67 67 3 124 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2012 26 2 450 456 10.1111/j.1365-2435.2011.01939.x 7 Ecology Environmental Sciences & Ecology 915GF WOS:000302011400017 2019-02-21 J Tettamanti, F; Witvliet, W; Bize, P Tettamanti, Federico; Witvliet, Willem; Bize, Pierre Selection on age at first and at last reproduction in the long-lived Alpine Swift Apus melba IBIS English Article Apus melba; directional selection; life-history theory; lifetime reproductive success; stabilising selection PHENOTYPIC PLASTICITY; INDIVIDUAL FITNESS; SEXUAL SELECTION; POPULATIONS; SENESCENCE; EVOLUTION; PATERNITY; CHOICE; BIRD The way an organism spreads its reproduction over time is defined as a life-history trait, and selection is expected to favour life-history traits associated with the highest fitness return. We use a long-term dataset of 277 life histories to investigate the shape and strength of selection acting on the age at first reproduction and at last reproduction in the long-lived Alpine Swift. Both traits were under strong directional selection, but in opposite directions, with selection favouring birds starting their reproductive career early and being able to reproduce for longer. There was also evidence for stabilising selection acting on both traits, suggesting that individuals should nonetheless refrain from reproducing in their first 2 years of life (i.e. when inexperienced), and that reproducing after 7 years of age had little effect on lifetime fitness, probably due to senescence. [Tettamanti, Federico; Bize, Pierre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Bize, P (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. pierre.bize@unil.ch Swiss National Science Foundation [31003A_124988] We are grateful to Dominik Pfluger and the late Theo Marbot for their outstanding ringing work in the Alpine Swift colonies in Solothurn and Bienne, respectively, Anne Charmantier for her help with the statistical models, and Rauri Bowie, Andrew McColl and Oliver Kruger for comments on the manuscript. This research was funded by the Swiss National Science Foundation (grant no. 31003A_124988 to P.B.). Arn H, 1960, BIOL STUDIEN ALPENSE; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2006, EVOLUTION, V60, P2370; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; BROWN D, 1988, REPROD SUCCESS, P439; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; Dolan AC, 2007, BEHAV ECOL, V18, P985, DOI 10.1093/beheco/arm068; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Kruger O, 2005, J ANIM ECOL, V74, P266, DOI 10.1111/j.1365-2656.2004.00920.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Martins TLF, 2002, J AVIAN BIOL, V33, P441, DOI 10.1034/j.1600-048X.2002.02686.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Newton I, 1989, LIFETIME REPROD BIRD; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Oli MK, 2002, EVOL ECOL RES, V4, P563; R Development Core Team, 2010, R LANG ENV STAT COMP; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; WADE MJ, 1980, ANIM BEHAV, V28, P446, DOI 10.1016/S0003-3472(80)80052-2 26 4 4 0 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0019-1019 IBIS Ibis APR 2012 154 2 338 344 10.1111/j.1474-919X.2012.01215.x 7 Ornithology Zoology 905OW WOS:000301283100010 2019-02-21 J Fietz, J; Weis-Dootz, T Fietz, Joanna; Weis-Dootz, Tanja Stranded on an island: consequences of forest fragmentation for body size variations in an arboreal mammal, the edible dormouse (Glis glis) POPULATION ECOLOGY English Article Body mass; Body size; Fragmentation; Island rule; Small mammal HABITAT FRAGMENTATION; MYOXUS-GLIS; EVOLUTION; RULE; REPRODUCTION; LANDSCAPE; SQUIRREL; SURVIVAL; LENGTH; MASS The island rule states that small mammals isolated on islands have the evolutionary tendency to become larger, while large mammals tend to become smaller. However, the underlying mechanisms and life history consequences of these insular shifts in body size still remain speculative. The aim of this study was to investigate whether an arboreal mammal, the edible dormouse (Glis glis), showed shifts in body size when inhabiting isolated forest fragments. We analysed a data set of 541 individuals captured between 2005 and 2010 in four different forest fragments and one continuous forest, which served as a reference area. Sex, age, body mass, and size of all individuals were known. We used linear mixed-effect models to investigate whether individuals differed in their body size and mass between forest fragments and continuous forest. Our study revealed that edible dormice inhabiting forest fragments were significantly larger and heavier than individuals in the continuous forest, in accordance with patterns described by the island rule for small mammals. Because edible dormice frequently use nest boxes to rest during the day and to rear offspring, the life history strategies of this rodent can be easily investigated under evolutionary relevant conditions in the field. Thus the edible dormouse represents an excellent model organism for studying the mechanisms underlying shifts in body size as a response to habitat fragmentation and to investigate the consequences of these shifts on their life history strategies. [Fietz, Joanna] Univ Hohenheim, D-70599 Stuttgart, Germany; [Fietz, Joanna; Weis-Dootz, Tanja] Univ Ulm, Inst Expt Ecol, D-89069 Ulm, Germany Fietz, J (reprint author), Univ Hohenheim, Garbenstr 17, D-70599 Stuttgart, Germany. Joanna.Fietz@uni-hohenheim.de Margarete von Wrangell Programme; German Research Foundation (DFG) [FI 831/3-1, 831/3-2, FI 831/6-1]; German Wildlife Foundation; Deutsche Bundesstiftung Umwelt (DBU) T. Kager, S. Schauer, J. Schmid, M. Sailer, F. Langer and S. Schwarz helped in many ways with this field project. Financial support provided by the Margarete von Wrangell Programme, the German Research Foundation (DFG: FI 831/3-1; 831/3-2; FI 831/6-1), and the German Wildlife Foundation to JF, and Deutsche Bundesstiftung Umwelt (DBU) to T W-D made this study possible. K.H. Dausmann, S. Meiri, and an anonymous reviewer substantially improved the manuscript with their comments. Our experiments were conducted under licence from the Nature Conservancy and the Animal Experiment Department of the Regierungsprasidium Tubingen. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ALLAINE D, 1987, OECOLOGIA, V73, P478, DOI 10.1007/BF00385268; Bergmann K, 1847, GOTTINGER STUDIEN, V3, P595; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bryant AA, 2005, CAN J ZOOL, V83, P674, DOI 10.1139/Z05-055; Capizzi D, 2003, ACTA THERIOL, V48, P359, DOI 10.1007/BF03194175; DOBSON FS, 1989, J MAMMAL, V70, P142, DOI 10.2307/1381677; Dooley JL, 1998, ECOLOGY, V79, P969, DOI 10.2307/176593; Fietz J, 2005, J COMP PHYSIOL B, V175, P45, DOI 10.1007/s00360-004-0461-1; Fietz J, 2009, J COMP PHYSIOL B, V179, P829, DOI 10.1007/s00360-009-0364-2; Fokidis HB, 2007, ANIM BEHAV, V73, P479, DOI 10.1016/j.anbehav.2006.08.010; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Heldmaier G, 2004, VERGLEICHENDE TIERPH, V2, P93; Ims RA, 2000, NATURE, V408, P194, DOI 10.1038/35041562; KAUFMAN DW, 1987, J MAMMAL, V68, P275, DOI 10.2307/1381466; Langlois JP, 2001, LANDSCAPE ECOL, V16, P255, DOI 10.1023/A:1011148316537; Lebl K, 2011, ECOGRAPHY, V34, P683, DOI 10.1111/j.1600-0587.2010.06691.x; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MAC ARTHUR ROBERT H., 1967; Markov G, 2011, 8 INT DORM C 2001 SE, P27; McCleery RA, 2008, J WILDLIFE MANAGE, V72, P133, DOI 10.2193/2007-138; MCNAB BK, 1983, J ZOOL, V199, P1; McNab BK, 2002, ECOL LETT, V5, P693, DOI 10.1046/j.1461-0248.2002.00365.x; McNab BK, 2010, OECOLOGIA, V164, P13, DOI 10.1007/s00442-010-1621-5; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Meiri S, 2011, J BIOGEOGR, V38, P89, DOI 10.1111/j.1365-2699.2010.02390.x; Murie JO, 1987, OECOLOGIA, V733, P1; NORRDAHL K, 1995, OECOLOGIA, V103, P241, DOI 10.1007/BF00329086; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Pertoldi C, 2006, BIOL J LINN SOC, V88, P541, DOI 10.1111/j.1095-8312.2006.00639.x; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; SAUER JR, 1987, ECOLOGY, V68, P642, DOI 10.2307/1938469; Schlumpberger O, 2010, THESIS U ULM ULM; Schlund W, 1997, Z SAUGETIERKD, V62, P158; Schlund W, 1997, Z SAUGETIERKD, V62, P187; Schlund W., 2005, SAUGETIERE BADEN WUR, P199; Schmidt NM, 2005, ECOL SOC, V10; Schmidt NM, 2003, CONSERV ECOL, V7; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; *SPSS INC, 2004, SPSS BAS 13 0 WIND U; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; VANVALEN L, 1973, EVOLUTION, V27, P27, DOI 10.1111/j.1558-5646.1973.tb05914.x; Vietinghoff-Riesch A., 1960, SIEBENSCHLAFER GLIS; WAUTERS L, 1993, J ANIM ECOL, V62, P280, DOI 10.2307/5359; WAUTERS LA, 1995, OIKOS, V72, P402, DOI 10.2307/3546126; Worschech K, 2011, 8 INT DORM C 2001 SE, P51; YAHNER RH, 1992, AM MIDL NAT, V127, P381, DOI 10.2307/2426545; Yom-Tov Y, 2003, EVOL ECOL RES, V5, P1037 51 9 9 1 44 SPRINGER TOKYO TOKYO 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN 1438-3896 POPUL ECOL Popul. Ecol. APR 2012 54 2 313 320 10.1007/s10144-012-0310-0 8 Ecology Environmental Sciences & Ecology 918XH WOS:000302284300008 2019-02-21 J Santangeli, A; Hakkarainen, H; Laaksonen, T; Korpimaki, E Santangeli, Andrea; Hakkarainen, Harri; Laaksonen, Toni; Korpimaki, Erkki Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm's owls ANIMAL BEHAVIOUR English Article Aegolius funereus; haematocrit; parental care; provisioning rate; reproductive cost; telemetry; Tengmalm's owl TITS PARUS-CAERULEUS; REPRODUCTIVE SUCCESS; AEGOLIUS-FUNEREUS; BREEDING PERFORMANCE; FORAGING PATTERNS; AMERICAN KESTRELS; FOREST; LANDSCAPE; BIRDS; AREA Animal populations are often limited by food and rearing offspring is energetically demanding. Life history theory predicts that parents of altricial bird species will often reduce their current reproductive effort when given supplementary food. Previous food supplementation studies have mainly focused on effects on female parents, while the importance of paternal behaviour has largely been neglected. We addressed the effects of natural and experimentally increased food abundance on male ranging behaviour and provisioning rate, female and fledgling condition, and final reproductive success, in the Tengmalm's owl, Aegolius funereus, a species with obligatory biparental care. We found that males adjusted their parental effort by reducing provisioning rate at food-supplemented nests. Food supplementation induced an increase in body mass of females, and in body mass and haematocrit levels of fledglings. This suggests that the amount of extra food provided was enough for females to increase body condition sufficiently to start allocating extra resources to enhance the quality of current offspring. While the home range size of radiomarked males was not affected by food supplementation, it decreased with cover of spruce forest, which is a habitat that is denser in structure and richer in prey than pine forest and especially clear-cut areas. This suggests that habitat-specific prey abundance and/or cover may be strong determinants of home range size for males. Overall, the results provide novel insights into how habitat quality and food supply affect male hunting behaviour and biparental care, and how this in turn is reflected in fledgling condition. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Santangeli, Andrea; Laaksonen, Toni] Univ Helsinki, Finnish Museum Nat Hist, FI-00014 Helsinki, Finland; [Santangeli, Andrea; Hakkarainen, Harri; Korpimaki, Erkki] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Santangeli, A (reprint author), Univ Helsinki, Finnish Museum Nat Hist, POB 17, FI-00014 Helsinki, Finland. andrea.santangeli@helsinki.fi Laaksonen, Toni/B-4241-2014 Laaksonen, Toni/0000-0001-9035-7131; Santangeli, Andrea/0000-0003-0273-1977 Centre of International Mobility, Ministry of Education, Finland; Finnish School in Wildlife Biology, Conservation and Management (LUOVA) We thank Mari Laine, Jorma Nurmi, Rauno Varjonen and Michael Griesser for help in conducting fieldwork and L. Laurila for GIS assistance. We also thank three referees for providing valuable comments. The study was supported by a grant of the Centre of International Mobility, Ministry of Education, Finland (to E.K. and A.S.). A.S. was also supported by the Finnish School in Wildlife Biology, Conservation and Management (LUOVA). ANDERSEN DE, 1989, J WILDLIFE MANAGE, V53, P802, DOI 10.2307/3809215; Bernard E, 2003, BIOTROPICA, V35, P262, DOI 10.1646/02156; Bruun M, 2003, BIOL CONSERV, V114, P179, DOI 10.1016/S0006-3207(03)00021-1; Burnham K. P, 2002, MODEL SELECTION MULT; Byholm P, 2008, ECOLOGY, V89, P1696, DOI 10.1890/07-0675.1; Christensen P, 2003, J MAMMAL, V84, P1292, DOI 10.1644/BBa-014; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Dawson RD, 1997, J WILDLIFE MANAGE, V61, P1297, DOI 10.2307/3802129; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; DRENT RH, 1980, ARDEA, V68, P225; Eldegard K, 2010, BEHAV ECOL SOCIOBIOL, V64, P815, DOI 10.1007/s00265-009-0898-z; Freckleton RP, 2002, J ANIM ECOL, V71, P542, DOI 10.1046/j.1365-2656.2002.00618.x; FREYROOS F, 1995, BEHAV ECOL, V6, P287, DOI 10.1093/beheco/6.3.287; Glutz von Blotzheim U. N., 1980, HDB VOGEL MITTELEURO; HAKKARAINEN H, 1994, OECOLOGIA, V97, P209, DOI 10.1007/BF00323151; Hakkarainen H, 2003, OIKOS, V100, P162, DOI 10.1034/j.1600-0706.2003.11906.x; Hakkarainen H, 1996, ECOLOGY, V77, P1134, DOI 10.2307/2265582; Hakkarainen H, 2008, OECOLOGIA, V155, P479, DOI 10.1007/s00442-007-0929-2; Hinam HL, 2008, BIOL CONSERV, V141, P524, DOI 10.1016/j.biocon.2007.11.011; Hinsley SA, 1999, J AVIAN BIOL, V30, P271, DOI 10.2307/3677353; HIRALDO F, 1994, J FIELD ORNITHOL, V65, P466; Huitu O, 2009, FOREST ECOL MANAG, V258, P1219, DOI 10.1016/j.foreco.2009.06.013; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; IMS RA, 1987, J ANIM ECOL, V56, P585, DOI 10.2307/5070; Karell P, 2009, CAN J ZOOL, V87, P8, DOI 10.1139/Z08-133; Kenward R., 2001, MANUAL WILDLIFE RADI; Kenward R. E., 2002, RANGES 6 SOFTWARE; KERNOHAN BJ, 2001, RADIO TRACKING ANIMA, P126; Korpimaki E, 2002, P ROY SOC B-BIOL SCI, V269, P991, DOI 10.1098/rspb.2002.1972; KORPIMAKI E, 1991, OECOLOGIA, V85, P543, DOI 10.1007/BF00323767; KORPIMAKI E, 1988, ORNIS FENNICA, V65, P21; KORPIMAKI E, 1987, J ANIM ECOL, V56, P185, DOI 10.2307/4808; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; Korpimaki E, 1981, ACTA U OUL A, V118, P1, DOI DOI 10.1897/IEAM_2009-053.1; Korpimaki Erkki, 2008, Scottish Birds, V28, P19; Laaksonen T, 2004, J ANIM ECOL, V73, P342, DOI 10.1111/j.0021-8790.2004.00811.x; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; Laaksonen T, 2004, P ROY SOC B-BIOL SCI, V271, pS461, DOI 10.1098/rsbl.2004.0221; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lopez-Bao JV, 2010, ANIM CONSERV, V13, P35, DOI 10.1111/j.1469-1795.2009.00300.x; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Marzluff JM, 1997, CONDOR, V99, P567, DOI 10.2307/1370470; Mikkola H, 1983, OWLS EUROPE; Newton I, 1998, POPULATION LIMITATIO; O'Donnell CFJ, 2000, ANIM CONSERV, V3, P287, DOI 10.1111/j.1469-1795.2000.tb00114.x; REDPATH SM, 1995, J ANIM ECOL, V64, P652, DOI 10.2307/5807; REYNOLDS TD, 1990, J WILDLIFE MANAGE, V54, P316, DOI 10.2307/3809049; Seaman DE, 1999, J WILDLIFE MANAGE, V63, P739, DOI 10.2307/3802664; Seaman DE, 1996, ECOLOGY, V77, P2075, DOI 10.2307/2265701; Stearns S, 1992, EVOLUTION LIFE HIST; Sutherland WJ, 2004, BIRD ECOLOGY CONSERV; SWIHART RK, 1985, ECOLOGY, V66, P1176, DOI 10.2307/1939170; Tremblay I, 2005, IBIS, V147, P17, DOI 10.1111/j.1474-919x.2004.00312.x; Turcotte Y, 2003, OIKOS, V100, P614, DOI 10.1034/j.1600-0706.2003.12031.x; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.2307/2265943; Zanette L, 2000, ECOLOGY, V81, P1654, DOI 10.2307/177314 57 26 26 0 82 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. APR 2012 83 4 1115 1123 10.1016/j.anbehav.2012.02.002 9 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 914TN WOS:000301975500035 2019-02-21 J Heard, GW; Scroggie, MP; Malone, BS Heard, Geoffrey W.; Scroggie, Michael P.; Malone, Brian S. The life history and decline of the threatened Australian frog, Litoria raniformis AUSTRAL ECOLOGY English Article collapse; decline; life history; Litoria raniformis; metapopulation LONG-LIVED ORGANISMS; SOUTHERN VICTORIA; EASTERN AUSTRALIA; EXTINCTION RISK; ANURA-HYLIDAE; GROWTH CURVE; TREE FROG; AMPHIBIANS; CONSERVATION; DYNAMICS A popular idea amongst ecologists last century was that animals which exploit dynamic environments often display fast life history strategies (high fecundity, rapid growth and maturation, and low or variable adult survival rates) relative to those which occupy more stable environments. Whilst the underlying theory has been discredited, the categorization remains of interest, because species with fast life history traits are thought to be more robust to human-induced environmental change than those with slow life history traits. We examined the life history traits of the endangered Australian frog Litoria raniformis, to determine whether it displays fast life history traits (like its sister species L. aurea and L. castanea), and to assess the role of these traits in the decline of this species. Mark-recapture data confirmed that L. raniformis displays rapid growth and maturation. The data also suggest that L. raniformis displays relatively low adult survival rates. We propose that the fast life history traits of this species are adaptive to metapopulation dynamics. In turn, we suggest that the rapid decline of L. raniformis may have resulted from metapopulation collapse, driven ultimately by habitat loss, degradation and fragmentation, and proximately by severe stochastic perturbations. [Heard, Geoffrey W.; Malone, Brian S.] La Trobe Univ, Dept Zool, Bundoora, Vic 3083, Australia; [Scroggie, Michael P.] Arthur Rylah Inst Environm Res, Dept Sustainabil & Environm, Heidelberg, Vic, Australia Heard, GW (reprint author), Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia. heardg@unimelb.edu.au Scroggie, Michael/B-7507-2011 David Myer Postgraduate Scholarship; LaTrobe University; Growling Grass Frog Trust Fund; Victorian Department of Sustainability and Environment; Commonwealth Department of Environment, Heritage and the Arts Arthur Buchan, Nick Clemann, Graeme Gillespie, Andrew Hamer, David Hunter and Peter Robertson provided valuable advice during the design of this study. We are grateful to Nick Clemann and Peter Robertson for loaning field equipment, to Michael McCarthy for assistance with the data analyses, and to Nick Clemann and David Duncan for constructive comments on an earlier draft of this manuscript. GH was supported by a David Myer Postgraduate Scholarship and Dean's Top-Up Award (LaTrobe University). The project was funded by grants from the Growling Grass Frog Trust Fund, the Victorian Department of Sustainability and Environment, Commonwealth Department of Environment, Heritage and the Arts, and LaTrobe University. It was undertaken under research permit 10003005 issued by the Victorian Department of Sustainability and Environment. The study was approved by the LaTrobe University Animal Ethics Committee (approval number AEC04/24(L)/V4). Alford R. A., 1994, MEASURING MONITORING, P277; Amstrup S, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P88; Anstis M., 2002, TADPOLES S E AUSTR G; Arntzen JW, 2000, J HERPETOL, V34, P227, DOI 10.2307/1565419; ASHWORTH JM, 1998, THESIS U TASMANIA HO; BANKS B, 1988, J ANIM ECOL, V57, P475, DOI 10.2307/4919; Barbaro L, 2009, ECOGRAPHY, V32, P321, DOI 10.1111/j.1600-0587.2008.05546.x; Begon M., 1986, ECOLOGY INDIVIDUALS; Bennett PM, 1997, P ROY SOC B-BIOL SCI, V264, P401, DOI 10.1098/rspb.1997.0057; Berger L, 2004, AUST VET J, V82, P434, DOI 10.1111/j.1751-0813.2004.tb11137.x; BERGER L, 1999, DECLINES DISAPPEARAN, P23; Bielby J, 2008, CONSERV LETT, V1, P82, DOI 10.1111/j.1755-263X.2008.00015.x; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Bureau of Meteorology, 2004, DROUGHT DUST DEL CEN; Burns EL, 2006, MOL PHYLOGENET EVOL, V39, P573, DOI 10.1016/j.ympev.2005.11.017; Byrne PG, 2002, J EVOLUTION BIOL, V15, P347, DOI 10.1046/j.1420-9101.2002.00409.x; Carlson A, 2000, P ROY SOC B-BIOL SCI, V267, P1311, DOI 10.1098/rspb.2000.1143; Christy M. T., 2000, THESIS U SYDNEY SYDN; Christy Michelle T., 1996, Australian Zoologist, V30, P139; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; CONGDON JD, 1994, AM ZOOL, V34, P397; Cushman SA, 2006, BIOL CONSERV, V128, P231, DOI 10.1016/j.biocon.2005.09.031; Dobzhansky T., 1950, American Scientist, V38, P209; FABENS AJ, 1965, GROWTH, V29, P265; Germano Jennifer M., 2008, Herpetological Review, V39, P461; GIBBONS MM, 1984, HOLARCTIC ECOL, V7, P419; Gillespie GR, 2011, HERPETOLOGICA, V67, P10, DOI 10.1655/HERPETOLOGICA-D-10-0011.1; Gosner K. L., 1960, Herpetologica, V16, P183; Green DM, 2003, BIOL CONSERV, V111, P331, DOI 10.1016/S0006-3207(02)00302-6; Groom M. J, 2006, PRINCIPLES CONSERVAT; Hamer AJ, 2010, ANIM CONSERV, V13, P275, DOI 10.1111/j.1469-1795.2009.00335.x; Hamer AJ, 2007, AUST J ZOOL, V55, P79, DOI 10.1071/ZO06093; Hamer Andrew J., 2008, Australian Zoologist, V34, P393; Hanski I, 1998, NATURE, V396, P41, DOI 10.1038/23876; Hanski I., 1999, METAPOPULATION ECOLO; Hazell D, 2003, WILDLIFE RES, V30, P193, DOI 10.1071/WR02075; Heard G.W, 2010, THESIS TROBE U MELBO; Heard GW, 2006, WILDLIFE RES, V33, P557, DOI 10.1071/WR04080; Heard Geoffrey W., 2008, Australian Zoologist, V34, P414; Heard GW, 2008, WILDLIFE RES, V35, P747, DOI 10.1071/WR08060; HEMELAAR A, 1988, J HERPETOL, V22, P369, DOI 10.2307/1564332; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; Hennessy K., 2008, ASSESSMENT IMPACT CL; Hero JM, 2005, J ZOOL, V267, P221, DOI 10.1017/S095236905007296; Humphries R.B., 1979, THESIS AUSTR NATL U; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; MAC ARTHUR ROBERT H., 1967; Mahony M, 1999, DECLINES DISAPPEARAN, P81; Mann RM, 2010, WILDLIFE RES, V37, P447, DOI 10.1071/WR10061; McCarthy MA, 2007, BAYESIAN METHODS FOR ECOLOGY, P1, DOI 10.1017/CBO9780511802454; McFadden Michael, 2008, Australian Zoologist, V34, P291; McKinney ML, 1997, ANNU REV ECOL SYST, V28, P495, DOI 10.1146/annurev.ecolsys.28.1.495; Miaud C, 2001, J ZOOL, V254, P251, DOI 10.1017/S0952836901000760; Murray BR, 2005, AUSTRAL ECOL, V30, P564, DOI 10.1111/j.1442-9993.2005.01471.x; NICHOLSON E, 2009, SPATIAL CONSERVATION, P110; Osborne W. S., 1996, Australian Zoologist, V30, P190; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pimm S. L, 1991, BALANCE NATURE ECOLO; PIMM SL, 1988, AM NAT, V132, P757, DOI 10.1086/284889; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; Pyke Graham H., 2005, Herpetological Review, V36, P281; Pyke Graham H., 2002, Australian Zoologist, V32, P32; Pyke Graham H., 2001, Australian Zoologist, V31, P563; Rachowicz LJ, 2006, ECOLOGY, V87, P1671, DOI 10.1890/0012-9658(2006)87[1671:EIDAAP]2.0.CO;2; Sjogren Gulve Per, 1994, Ecology (Washington D C), V75, P1357; SJOGREN P, 1991, EVOL ECOL, V5, P248, DOI 10.1007/BF02214231; Skelly DK, 1999, ECOLOGY, V80, P2326, DOI 10.1890/0012-9658(1999)080[2326:LTDDOA]2.0.CO;2; Skelly DK, 1996, COPEIA, P599; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Taylor BE, 2006, CONSERV BIOL, V20, P792, DOI 10.1111/j.1523-1739.2005.00321.x; Thomas A., 2006, R NEWS, V6, P12; Trenham PC, 2003, ECOL APPL, V13, P1522, DOI 10.1890/02-5206; Waldman B, 2001, SURVEILLANCE, V28, P9; Wassens S, 2010, AUSTRAL ECOL, V35, P944, DOI 10.1111/j.1442-9993.2010.02106.x; Wassens Skye, 2008, Australian Zoologist, V34, P446; Webb JK, 2002, ECOL RES, V17, P59, DOI 10.1046/j.1440-1703.2002.00463.x; Webb JK, 1998, ANIM CONSERV, V1, P185, DOI 10.1111/j.1469-1795.1998.tb00028.x; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; White A.W., 2002, Herpetofauna (Sydney), V32, P102; Williams SE, 1998, P ROY SOC B-BIOL SCI, V265, P597, DOI 10.1098/rspb.1998.0336; Wood KV, 1998, J HERPETOL, V32, P527, DOI 10.2307/1565206 82 15 16 0 47 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. APR 2012 37 2 276 284 10.1111/j.1442-9993.2011.02275.x 9 Ecology Environmental Sciences & Ecology 913ZR WOS:000301916800023 2019-02-21 J Carnes, BA; Riesch, R; Schlupp, I Carnes, Bruce A.; Riesch, Ruediger; Schlupp, Ingo The Delayed Impact of Parental Age on Offspring Mortality in Mice JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES English Article Maternal age; Offspring quality; Reproductive senescence; Stochastic effects MATERNAL-AGE; DROSOPHILA-MELANOGASTER; HUMAN LONGEVITY; LIFE-HISTORY; PATERNAL AGE; IN-UTERO; EVOLUTION; SENESCENCE; POPULATION; FITNESS The certitude of death makes reproduction the foundation upon which all life-history strategies are based. Plasticity in the reproductive biology of organisms is an essential adaptive response to the capricious and hazardous environments of earth. In this article, we use data from a breeding colony for laboratory mice to examine the mortality risks of offspring born at the outer boundaries of their Dam's reproductive plasticity. Our results suggest that the mortality/survival characteristics of offspring are affected by both litter parity and offspring gender. Females born to young Dams have consistently longer life spans than females born to older Dams. Conversely, males are either not affected by parental age or have longer life spans when born to older Dams. [Carnes, Bruce A.] Univ Oklahoma, Hlth Sci Ctr, Reynolds Dept Geriatr Med, Oklahoma City, OK 73104 USA; [Carnes, Bruce A.; Riesch, Ruediger; Schlupp, Ingo] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA; [Riesch, Ruediger] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA; [Riesch, Ruediger] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA Carnes, BA (reprint author), Univ Oklahoma, Hlth Sci Ctr, Reynolds Dept Geriatr Med, 921 NE 13th St,VAMC 11G, Oklahoma City, OK 73104 USA. bruce-carnes@ouhsc.edu Riesch, Rudiger/A-5787-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667 Abel EL, 2002, AM J PERINAT, V19, P49, DOI 10.1055/s-2002-20173; Al-Lawati H, 2009, ANN ENTOMOL SOC AM, V102, P881, DOI 10.1603/008.102.0514; Andersen AMN, 2000, BRIT MED J, V320, P1708, DOI 10.1136/bmj.320.7251.1708; Brunet-Rossinni AK, 2004, BIOGERONTOLOGY, V5, P211, DOI 10.1023/B:BGEN.0000038022.65024.d8; Buck S, 2000, J GERONTOL A-BIOL, V55, pB292, DOI 10.1093/gerona/55.6.B292; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Carnes BA, 2003, RADIAT RES, V160, P159, DOI 10.1667/RR3029; Carnes BA, 2001, EXP GERONTOL, V36, P419, DOI 10.1016/S0531-5565(00)00254-0; Carnes BA, 1998, RADIAT RES, V149, P487, DOI 10.2307/3579789; Carnes BA, 1997, EXP GERONTOL, V32, P615, DOI 10.1016/S0531-5565(97)00056-9; Carnes BA, 1996, POPUL DEV REV, V22, P231, DOI 10.2307/2137434; Carnes BA, 2006, BIOGERONTOLOGY, V7, P183, DOI 10.1007/s10522-006-9020-3; Carnes BA, 2011, BIOGERONTOLOGY, V12, P367, DOI 10.1007/s10522-011-9338-3; Carnes BA, 2008, MECH AGEING DEV, V129, P693, DOI 10.1016/j.mad.2008.09.016; Casellas J, 2011, ANIMAL, V5, P1, DOI 10.1017/S1751731110001667; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Couzin J, 2002, SCIENCE, V296, P2167, DOI 10.1126/science.296.5576.2167; Durkin MS, 2008, AM J EPIDEMIOL, V168, P1268, DOI 10.1093/aje/kwn250; EDNEY EB, 1968, NATURE, V220, P281, DOI 10.1038/220281a0; Elandt-Johnson R. C., 1980, SURVIVAL MODELS DATA; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; FRASER AM, 1995, NEW ENGL J MED, V332, P1113, DOI 10.1056/NEJM199504273321701; Gavrilov L, 2001, SEX LONGEVITY SEXUAL; Gluckman PD, 2008, NEW ENGL J MED, V359, P61, DOI 10.1056/NEJMra0708473; Grahn D, 1994, ANL, V94; Gudmundsson H, 2000, EUR J HUM GENET, V8, P743, DOI 10.1038/sj.ejhg.5200527; Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256; JERVIS MA, 1994, J APPL ENTOMOL, V117, P72, DOI 10.1111/j.1439-0418.1994.tb00709.x; John JCS, 1997, NAT MED, V3, P124, DOI 10.1038/nm0297-124c; Kajantie E, 2008, HORM-INT J ENDOCRINO, V7, P101, DOI 10.1007/BF03401501; Keller LF, 2008, P R SOC B, V275, P597, DOI 10.1098/rspb.2007.0961; Kern S, 2001, EVOLUTION, V55, P1822; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kristensen T, 2006, ECOTOX ENVIRON SAFE, V63, P148, DOI 10.1016/j.ecoenv.2005.03.010; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lahdenpera M, 2011, EVOLUTION, V65, P476, DOI 10.1111/j.1558-5646.2010.01142.x; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; MAJERUS MEN, 2003, SEX WARS GENES BACTE; McIntyre GS, 2000, CAN J ZOOL, V78, P1544, DOI 10.1139/cjz-78-9-1544; Mentis AFA, 2010, BIOGERONTOLOGY, V11, P725, DOI 10.1007/s10522-010-9293-4; MERTZ DB, 1975, PHYSIOL ZOOL, V48, P1; Moore PJ, 2003, P ROY SOC B-BIOL SCI, V270, pS192, DOI 10.1098/rsbl.2003.0051; MUELLER LD, 1987, P NATL ACAD SCI USA, V84, P1974, DOI 10.1073/pnas.84.7.1974; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Partridge L, 1999, TRENDS ECOL EVOL, V14, P438, DOI 10.1016/S0169-5347(99)01646-8; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Pearl R, 1946, MAN ANIMAL; Pellestor F, 2003, HUM GENET, V112, P195, DOI 10.1007/s00439-002-0852-x; Priest NK, 2002, EVOLUTION, V56, P927; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2; Richter SH, 2009, NAT METHODS, V6, P257, DOI [10.1038/NMETH.1312, 10.1038/nmeth.1312]; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; Sayer AA, 1998, AGE AGEING, V27, P579, DOI 10.1093/ageing/27.5.579; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smits LJ, 1997, EPIDEMIOLOGY, V8, P524, DOI 10.1097/00001648-199709000-00009; SNOWDON DA, 1989, AM J PUBLIC HEALTH, V79, P709, DOI 10.2105/AJPH.79.6.709; SOKAL RR, 1970, SCIENCE, V167, P1733, DOI 10.1126/science.167.3926.1733; Tarin JJ, 2005, BIOL REPROD, V72, P1336, DOI 10.1095/biolreprod.104.038919; Tarin JJ, 2001, J ASSIST REPROD GEN, V72, P1336; Uematsu K, 2010, CURR BIOL, V20, P1182, DOI 10.1016/j.cub.2010.04.057; Wang MH, 2000, NATURE, V407, P469, DOI 10.1038/35035156; West S.A., 2009, SEX ALLOCATION; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; Willis-Owen SAG, 2009, J ALLERGY CLIN IMMUN, V123, P14, DOI 10.1016/j.jaci.2008.09.016; Wright S, 1934, ANN MATH STAT, V5, P161, DOI 10.1214/aoms/1177732676; Yang Q, 2007, HUM REPROD, V22, P696, DOI 10.1093/humrep/del453; Yin DZ, 2005, EXP GERONTOL, V40, P455, DOI 10.1016/j.exger.2005.03.012; Zimmer C, 2001, SCIENCE, V293, P1974, DOI 10.1126/science.293.5537.1974; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 75 13 14 0 19 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1079-5006 1758-535X J GERONTOL A-BIOL J. Gerontol. Ser. A-Biol. Sci. Med. Sci. APR 2012 67 4 351 357 10.1093/gerona/glr116 7 Geriatrics & Gerontology; Gerontology Geriatrics & Gerontology 914TE WOS:000301974500005 21835807 Bronze 2019-02-21 J Dunkel, CS Dunkel, Curtis S. Do self-report measures of life history strategy exhibit the hypothesized differences between blacks and whites predicted by Differential K theory? PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Differential K; Life history theory ADVANCED PROGRESSIVE MATRICES; ENGINEERING STUDENTS; CANADIAN UNIVERSITY; SOUTH-AFRICA; VALIDITY Rushton's Differential K theory posits that a large number of differences between racial groups can be explained by the groups' different life history strategies. Recently self-report measures of life history strategy have been developed. Data aggregated from a number of studies were used to examine the hypothesized difference in life history strategy between Blacks and Whites on these self-report measures. The results were mixed and effect sizes were small. Analyses with one measure supported the hypothesized difference between Blacks and Whites while analyses using a second measure found a difference between Blacks and Whites that was the opposite of that predicted by Differential K theory. In both cases less than two percent of the variance on the measures was explained by ethnicity. The results are discussed in relation to Differential K theory and the measurement of life history strategies. (C) 2012 Elsevier Ltd. All rights reserved. Western Illinois Univ, Dept Psychol, Macomb, IL 61529 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Wagonner Hall, Macomb, IL 61529 USA. c-dunkel@wiu.edu BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2004, INT J SELECT ASSESS, V12, P220, DOI 10.1111/j.0965-075X.2004.00276.x; Rushton JP, 2003, INTELLIGENCE, V31, P123, DOI 10.1016/S0160-2896(02)00140-X; RUSHTON JP, 1992, PERS INDIV DIFFER, V13, P439, DOI 10.1016/0191-8869(92)90072-W; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41 11 2 2 0 2 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 2012 52 6 759 761 10.1016/j.paid.2011.12.035 3 Psychology, Social Psychology 910FZ WOS:000301623900020 2019-02-21 J Krams, I; Vrublevska, J; Cirule, D; Kivleniece, I; Krama, T; Rantala, MJ; Sild, E; Horak, P Krams, Indrikis; Vrublevska, Jolanta; Cirule, Dina; Kivleniece, Inese; Krama, Tatjana; Rantala, Markus J.; Sild, Elin; Horak, Peeter Heterophil/lymphocyte ratios predict the magnitude of humoral immune response to a novel antigen in great tits (Parus major) COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Antibody response; Brucella abortus; Body mass loss; H/L ratio; Immune challenge; Immunosuppression; Parus major; Stress STRESS-INDUCED IMMUNOSUPPRESSION; GREENFINCHES CARDUELIS-CHLORIS; SPARROWS PASSER-DOMESTICUS; ECOLOGICAL IMMUNOLOGY; TRADE-OFFS; BRUCELLA-ABORTUS; BODY-MASS; INFECTIOUS-DISEASES; ANTIBODY-RESPONSE; CHICKENS Animals display remarkable individual variation in their capacity to mount immune responses against novel antigens. According to the life-history theory, this variation is caused by the costs of immune responses to the hosts. We studied one of such potential costs, depletion of somatic resources in wintering wild-caught captive passerines, the great tits (Parus major) by immune challenging the birds with a novel antigen, killed Brucella abortus (BA) suspension. We found that despite mild temperature conditions in captivity and ad libitum availability of food, immune challenge depleted somatic resources (as indicated by a body mass loss) and elevated relative proportion of heterophils to lymphocytes (H/L ratio) in the peripheral blood of birds. However, body mass loss did not covary with an increase in H/L ratios between two sampling events, which indicates that these two markers of health state describe different aspects of individual physiological condition. Antibody titres were not associated with the extent of body mass loss during the development of immune response, which shows that the somatic cost of immune response was not proportional to the amount of antibody produced. Birds with high pre-immunisation H/L ratios mounted weaker antibody response, which is indicative of stress-induced suppression of humoral immune response and is consistent with the concept of an antagonistic cross-regulation between different components of the immune system. The latter finding suggests a novel diagnostic value of H/L ratios, which reinforces the utility of this simple haematological index for prediction of the outcomes of complicated immune processes. (C) 2012 Elsevier Inc. All rights reserved. [Krams, Indrikis; Sild, Elin; Horak, Peeter] Univ Tartu, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia; [Krams, Indrikis; Vrublevska, Jolanta; Cirule, Dina; Kivleniece, Inese; Krama, Tatjana] Univ Daugavpils, Inst Systemat Biol, LV-5401 Daugavpils, Latvia; [Krams, Indrikis; Rantala, Markus J.] Univ Turku, Dept Biol, Sect Ecol, FIN-20024 Turku, Finland; [Cirule, Dina] Inst Food Safety Anim Hlth & Environm BIOR, LV-1076 Riga, Latvia Horak, P (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Ulikooli 18, EE-51014 Tartu, Estonia. horak@ut.ee Horak, Peeter/A-2351-2009 Horak, Peeter/0000-0002-1442-9903 Estonian Science Foundation [7737]; Estonian Ministry of Education and Science [0180004s09]; European Union through (Centre of Excellence FIBIR); Academy of Finland; Latvian Council of Science [09.1186]; Daugavpils University [2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015] P. Horak and E. Sild were financed by Estonian Science Foundation (grant # 7737 to PH), the Estonian Ministry of Education and Science (target-financing project # 0180004s09) and by the European Union through the European Regional Development Fund (Centre of Excellence FIBIR). M. J. Rantala and I. Krams were supported by the Academy of Finland, Latvian Council of Science (grant 09.1186) financed T. Krama, and the European Social Fund within the project 'Support for the implementation of doctoral studies at Daugavpils University' Nr.2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015 supported Jolanta Vrublevska. We thank Mihails Pupins, Sanita Kecko and Valerijs Vahrusevs for their help in the field and two anonymous reviewers for their constructive comments on the ms. Amat JA, 2007, ECOL RES, V22, P282, DOI 10.1007/s11284-006-0022-z; Barbosa A, 2004, ECOSCIENCE, V11, P305, DOI 10.1080/11956860.2004.11682837; Birkhead TR, 1998, BEHAV ECOL SOCIOBIOL, V44, P179, DOI 10.1007/s002650050530; Boughton RK, 2011, FUNCT ECOL, V25, P81, DOI 10.1111/j.1365-2435.2010.01817.x; Bourgeon S, 2010, J EXP BIOL, V213, P3810, DOI 10.1242/jeb.045484; Calcagni E, 2006, ANN NY ACAD SCI, V1069, P62, DOI 10.1196/annals.1351.006; Campbell TW, 2007, AVIAN EXOTIC ANIMAL; Cirule D, 2012, J ORNITHOL, V153, P161, DOI 10.1007/s10336-011-0719-9; Coon CAC, 2011, AM J PHYSIOL-REG I, V300, pR1418, DOI 10.1152/ajpregu.00187.2010; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Demas GE, 2011, FUNCT ECOL, V25, P29, DOI 10.1111/j.1365-2435.2010.01738.x; Dhabhar FS, 2009, NEUROIMMUNOMODULAT, V16, P300, DOI 10.1159/000216188; El-Lethey H, 2003, VET IMMUNOL IMMUNOP, V95, P91, DOI 10.1016/S0165-2427(02)00308-2; Eraud C, 2005, FUNCT ECOL, V19, P110, DOI 10.1111/j.0269-8463.2005.00934.x; Eraud C, 2009, EVOLUTION, V63, P1036, DOI 10.1111/j.1558-5646.2008.00540.x; Fair JM, 1999, P ROY SOC B-BIOL SCI, V266, P1735, DOI 10.1098/rspb.1999.0840; Gladbach A, 2010, COMP BIOCHEM PHYS A, V156, P269, DOI 10.1016/j.cbpa.2010.02.012; Golding B, 2001, MICROBES INFECT, V3, P43, DOI 10.1016/S1286-4579(00)01350-2; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hasselquist D, 2007, J EXP BIOL, V210, P1123, DOI 10.1242/jeb.02712; He HQ, 2008, VET IMMUNOL IMMUNOP, V123, P177, DOI 10.1016/j.vetimm.2008.01.033; Horak P, 2003, CAN J ZOOL, V81, P371, DOI 10.1139/Z03-020; Horak P, 2006, J EXP BIOL, V209, P4329, DOI 10.1242/jeb.02502; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KLASING KC, 1984, P SOC EXP BIOL MED, V176, P276; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Krams I, 2000, BEHAV ECOL SOCIOBIOL, V48, P147, DOI 10.1007/s002650000214; Krams I, 2011, J ORNITHOL, V152, P889, DOI 10.1007/s10336-011-0672-7; Krams I, 2010, FUNCT ECOL, V24, P172, DOI 10.1111/j.1365-2435.2009.01628.x; Leshchinsky TV, 2001, POULTRY SCI, V80, P1590, DOI 10.1093/ps/80.11.1590; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MAIER SF, 1994, AM PSYCHOL, V49, P1004, DOI 10.1037/0003-066X.49.12.1004; Martin LB, 2011, FUNCT ECOL, V25, P1, DOI 10.1111/j.1365-2435.2010.01820.x; Mendes L, 2006, J ORNITHOL, V147, P274, DOI 10.1007/s10336-006-0070-8; Moe RO, 2010, ANIMAL, V4, P1709, DOI 10.1017/S175173111000100X; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Moller AP, 1998, OIKOS, V83, P301, DOI 10.2307/3546841; Moreno-Rueda G, 2011, ECOL RES, V26, P943, DOI 10.1007/s11284-011-0848-x; Mueller C, 2011, FUNCT ECOL, V25, P566, DOI 10.1111/j.1365-2435.2010.01816.x; MUNNS PL, 1991, POULTRY SCI, V70, P2371, DOI 10.3382/ps.0702371; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Oliveira SC, 2008, MICROBES INFECT, V10, P1005, DOI 10.1016/j.micinf.2008.07.005; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; Ottenweller JE, 1998, PHYSIOL BEHAV, V63, P795, DOI 10.1016/S0031-9384(97)00539-8; Owen-Ashley NT, 2007, J ORNITHOL, V148, pS583, DOI 10.1007/s10336-007-0197-2; Owen-Ashley NT, 2006, J EXP BIOL, V209, P3062, DOI 10.1242/jeb.02371; Plischke A, 2010, J ORNITHOL, V151, P347, DOI 10.1007/s10336-009-0461-8; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Romano A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022805; Saks L, 2006, FUNCT ECOL, V20, P75, DOI 10.1111/j.1365-2435.2006.01068.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Sepp T, 2010, PHYSIOL BIOCHEM ZOOL, V83, P276, DOI 10.1086/648580; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shini S, 2009, Stress, V12, P388, DOI 10.1080/10253890802526894; Shini S, 2010, POULTRY SCI, V89, P841, DOI 10.3382/ps.2009-00483; Shini S, 2008, COMP BIOCHEM PHYS B, V149, P324, DOI 10.1016/j.cbpb.2007.10.003; Shini S, 2010, STRESS, V13, P185, DOI 10.3109/10253890903144639; Sild E, 2011, BRAIN BEHAV IMMUN, V25, P1349, DOI 10.1016/j.bbi.2011.03.020; Sild E, 2010, BEHAV ECOL SOCIOBIOL, V64, P2065, DOI 10.1007/s00265-010-1076-z; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Takahashi Kazuaki, 1992, Japanese Poultry Science, V29, P350; Totzke U, 1999, PHYSIOL BIOCHEM ZOOL, V72, P426, DOI 10.1086/316675; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Zhou H, 2001, POULTRY SCI, V80, P1679, DOI 10.1093/ps/80.12.1679 70 34 35 3 52 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. APR 2012 161 4 422 428 10.1016/j.cbpa.2011.12.018 7 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology 911DV WOS:000301698400010 22245489 2019-02-21 J Varpe, O Varpe, Oystein Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles JOURNAL OF PLANKTON RESEARCH English Article Calanus; dynamic state-variable models; evolutionary ecology; match-mismatch; optimality modelling; reproductive value; seasonality DIEL VERTICAL MIGRATION; SOUTHEASTERN HUDSON-BAY; LIFE-HISTORY THEORY; CALANUS-FINMARCHICUS; ANTARCTIC KRILL; EUPHAUSIA-SUPERBA; REPRODUCTIVE STRATEGIES; PELAGIC ECOSYSTEMS; MARINE COPEPOD; CLIMATE-CHANGE Behaviour and life-history strategies of zooplankton have evolved in response to seasonal cycles in food availability, predation risk and abiotic conditions. A key challenge is to understand how different activities over the year are linked. For instance, how does a change in spring activities, such as the timing or amount of egg production, influence autumn activities, for instance energy storage or migration? Trade-offs viewed in relation to individual lifetime fitness consequences couple these events. The framework of optimal annual routines provides theory and methodology for consistent analyses of these temporal trade-offs. Here I describe the key parts of optimal annual routine models and how the models can be used to: (i) study phenology, life-history strategies, and population dynamics; (ii) predict responses to environmental change; and (iii) guide future zooplankton studies. I mainly discuss the adaptations of zooplankton species inhabiting high latitude oceans where the seasonal cycle and its effects are particularly strong. Empirical challenges include issues of seasonal resolution, state-dependent processes and individual variability. Two ecological problems with avenues for future work are discussed in particular detail: the role of sea ice and ice algae in the life cycle of copepods and krill, and the adaptive value and ecological consequences of semelparous versus iteroparous reproductive strategies. Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway Varpe, O (reprint author), Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway. oystein.varpe@gmail.com Varpe, Oystein/B-9693-2008 Varpe, Oystein/0000-0002-5895-6983 Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute This work was supported by the Centre for Ice, Climate and Ecosystems (ICE) at the Norwegian Polar Institute. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Alonzo SH, 2003, ECOLOGY, V84, P1598, DOI 10.1890/0012-9658(2003)084[1598:EGISAT]2.0.CO;2; Alonzo SH, 2001, MAR ECOL PROG SER, V209, P203, DOI 10.3354/meps209203; Andrews K. J. H., 1966, Discovery Reports, V34, P117; Arrigo K. R, 2010, SEA ICE, P283, DOI DOI 10.1002/9781444317145.CH8; Atkinson A, 2004, NATURE, V432, P100, DOI 10.1038/nature02950; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; Berge J, 2009, BIOL LETTERS, V5, P69, DOI 10.1098/rsbl.2008.0484; Bollens SM, 2011, J PLANKTON RES, V33, P349, DOI 10.1093/plankt/fbq152; Brierley AS, 2002, SCIENCE, V295, P1890, DOI 10.1126/science.1068574; Brodersen J, 2008, ECOLOGY, V89, P1195, DOI 10.1890/07-1318.1; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; CHASTEL O, 1995, ECOLOGY, V76, P2240, DOI 10.2307/1941698; Clark C, 2000, DYNAMIC STATE VARIAB; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover R.J., 1991, Journal of Marine Systems, V2, P1, DOI 10.1016/0924-7963(91)90011-I; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; DAWSON JK, 1978, LIMNOL OCEANOGR, V23, P950, DOI 10.4319/lo.1978.23.5.0950; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Fero O, 2008, ECOL APPL, V18, P1563, DOI 10.1890/07-1012.1; Fiksen O, 1998, SARSIA, V83, P129; Fiksen O, 1997, ECOLOGY, V78, P1446; Fiksen O, 2000, ICES J MAR SCI, V57, P1825, DOI 10.1006/jmsc.2000.0976; GILBERT JJ, 1983, ANNU REV ECOL SYST, V14, P1, DOI 10.1146/annurev.es.14.110183.000245; Gosselin M, 1997, DEEP-SEA RES PT II, V44, P1623, DOI 10.1016/S0967-0645(97)00054-4; Hagen W, 1999, INVERTEBR REPROD DEV, V36, P25, DOI 10.1080/07924259.1999.9652674; Hagen W, 1996, DEEP-SEA RES PT I, V43, P139, DOI 10.1016/0967-0637(96)00001-5; Hairston NG, 1998, J MARINE SYST, V15, P23, DOI 10.1016/S0924-7963(97)00046-8; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAMNER WM, 1983, SCIENCE, V220, P433, DOI 10.1126/science.220.4595.433; Hassett RP, 2006, LIMNOL OCEANOGR, V51, P997, DOI 10.4319/lo.2006.51.2.0997; Hays GC, 2001, LIMNOL OCEANOGR, V46, P2050, DOI 10.4319/lo.2001.46.8.2050; Hilborn R., 1997, ECOLOGICAL DETECTIVE; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; Hirche HJ, 1996, OPHELIA, V44, P129, DOI 10.1080/00785326.1995.10429843; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Hunt GL, 2002, DEEP-SEA RES PT II, V49, P5821, DOI 10.1016/S0967-0645(02)00321-1; HUTCHINSON G. E., 1951, ECOLOGY, V32, P571, DOI 10.2307/1931745; IKEDA T, 1982, J EXP MAR BIOL ECOL, V62, P143, DOI 10.1016/0022-0981(82)90088-0; Ji RB, 2010, J PLANKTON RES, V32, P1355, DOI 10.1093/plankt/fbq062; Jin M., 2011, DEEP SEA RES 2, DOI [10.1016/j.dsr1012.2011.1006.1003, DOI 10.1016/J.DSR1012.2011.1006.1003]; Kaartvedt S, 2000, ICES J MAR SCI, V57, P1819, DOI 10.1006/jmsc.2000.0964; Kahru M, 2011, GLOBAL CHANGE BIOL, V17, P1733, DOI 10.1111/j.1365-2486.2010.02312.x; Kiorboe T, 2009, P NATL ACAD SCI USA, V106, P12394, DOI 10.1073/pnas.0903350106; Klevjer TA, 2011, LIMNOL OCEANOGR, V56, P765, DOI 10.4319/lo.2011.56.3.0765; Kosobokova KN, 1999, POLAR BIOL, V22, P254, DOI 10.1007/s003000050418; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Leu E, 2011, PROG OCEANOGR, V90, P18, DOI 10.1016/j.pocean.2011.02.004; Lischka S, 2005, POLAR BIOL, V28, P910, DOI 10.1007/s00300-005-0017-1; Madsen SD, 2001, MAR BIOL, V139, P75; Mangel M, 1988, DYNAMIC MODELING BEH; Marcus NH, 1996, HYDROBIOLOGIA, V320, P141, DOI 10.1007/BF00016815; MARSCHALL HP, 1988, POLAR BIOL, V9, P129, DOI 10.1007/BF00442041; MCLAREN IA, 1966, ECOLOGY, V47, P852, DOI 10.2307/1934273; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; MILLER CB, 1984, PROG OCEANOGR, V13, P201, DOI 10.1016/0079-6611(84)90009-0; Nygard H, 2010, MAR ECOL PROG SER, V417, P115, DOI 10.3354/meps08798; OBRIEN DP, 1987, J CRUSTACEAN BIOL, V7, P437, DOI 10.2307/1548293; OHMAN MD, 1994, LIMNOL OCEANOGR, V39, P21, DOI 10.4319/lo.1994.39.1.0021; Ohman MD, 1998, DEEP-SEA RES PT II, V45, P1709, DOI 10.1016/S0967-0645(98)80014-3; Olsson O, 1997, J AVIAN BIOL, V28, P264, DOI 10.2307/3676979; Rey-Rassat C, 2002, MAR ECOL PROG SER, V238, P301, DOI 10.3354/meps238301; RUNGE JA, 1988, LIMNOL OCEANOGR, V33, P280, DOI 10.4319/lo.1988.33.2.0280; SAMEOTO DD, 1984, POLAR BIOL, V2, P213, DOI 10.1007/BF00263627; Soreide JE, 2010, GLOBAL CHANGE BIOL, V16, P3154, DOI 10.1111/j.1365-2486.2010.02175.x; Stearns S, 1992, EVOLUTION LIFE HIST; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; TANDE KS, 1982, J EXP MAR BIOL ECOL, V62, P129, DOI 10.1016/0022-0981(82)90087-9; TOURANGEAU S, 1991, MAR BIOL, V108, P227, DOI 10.1007/BF01344337; Tsuda A, 1998, PHILOS T ROY SOC B, V353, P713, DOI 10.1098/rstb.1998.0237; Varpe O, 2005, OECOLOGIA, V146, P443, DOI 10.1007/s00442-005-0219-9; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2010, ECOLOGY, V91, P311, DOI 10.1890/08-1817.1; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Verity PG, 1996, MAR ECOL PROG SER, V130, P277, DOI 10.3354/meps130277; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; Vogedes D, 2010, J PLANKTON RES, V32, P1471, DOI 10.1093/plankt/fbq068; Wallace MI, 2010, LIMNOL OCEANOGR, V55, P831, DOI 10.4319/lo.2009.55.2.0831; Wassmann P, 2011, PROG OCEANOGR, V90, P1, DOI 10.1016/j.pocean.2011.02.002; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 82 55 55 3 74 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0142-7873 J PLANKTON RES J. Plankton Res. APR 2012 34 4 267 276 10.1093/plankt/fbr108 10 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 906QD WOS:000301360800001 Bronze 2019-02-21 J McDonald, MM; Donnellan, MB; Navarrete, CD McDonald, Melissa M.; Donnellan, M. Brent; Navarrete, Carlos David A life history approach to understanding the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Personality; Evolutionary psychology; Dark Triad; Psychopathy; Narcissism; Machiavellianism NARCISSISTIC PERSONALITY-INVENTORY; IMPULSIVE ANTISOCIALITY; FEARLESS DOMINANCE; CONSTRUCT-VALIDITY; PSYCHOPATHY; MACHIAVELLIANISM; STRATEGY; SOCIOPATHY; MODEL Researchers adopting an evolutionary perspective have conceptualized the Dark Triad as an exploitative interpersonal style reflective of a fast life history strategy. However, not all research has supported this claim. We posit that different elements of the constructs associated with the Dark Triad may reflect different life history strategies. Our results indicate that the measures of the Dark Triad and other indicators of life history strategies form two distinct factors: (1)a fast life strategy factor that includes the impulsive antisociality facet of psychopathy, the entitlement/exploitativeness facet of narcissism, Machiavellianism, unrestricted sociosexuality, and aggression, and (2) a slow life strategy factor that includes the fearless dominance facet of psychopathy and both the leadership/authority and grandiose exhibitionism facets of narcissism. These factors differentially correlate with established measures of life history strategy. These findings add to the literature by clarifying how the Dark Triad fits into a life history framework. (C) 2011 Elsevier Ltd. All rights reserved. [McDonald, Melissa M.; Donnellan, M. Brent; Navarrete, Carlos David] Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA McDonald, MM (reprint author), Michigan State Univ, Dept Psychol, E Lansing, MI 48824 USA. mcdon348@msu.edu; donnel59@msu.edu; cdn@msu.edu Navarrete, C. David/B-8290-2016 Navarrete, C. David/0000-0002-9642-5753 Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Benning SD, 2003, PSYCHOL ASSESSMENT, V15, P340, DOI 10.1037/1040-3590.15.3.340; Blonigen DM, 2010, PSYCHOL ASSESSMENT, V22, P96, DOI 10.1037/a0017240; BUSS AH, 1992, J PERS SOC PSYCHOL, V63, P452, DOI 10.1037/0022-3514.63.3.452; Christie R, 1970, STUDIES MACHIAVELLIA; Cleckley H., 1941, MASK SANITY; Cooke DJ, 2001, PSYCHOL ASSESSMENT, V13, P171, DOI 10.1037//1040-3590.13.2.171; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; EMMONS RA, 1984, J PERS ASSESS, V48, P291, DOI 10.1207/s15327752jpa4803_11; Figueredo A.J., 2007, ARIZONA LIFE H UNPUB; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; HARPENDING HC, 1987, ETHOL SOCIOBIOL, V8, pS63; Harpur T. J., 1989, PSYCHOL ASSESSMENT J, V1, P6, DOI DOI 10.1037/1040-3590.1.1.6; Hill P., 2011, SOCIAL PSYC IN PRESS; HUNTER JE, 1982, J PERS SOC PSYCHOL, V43, P1293, DOI 10.1037/0022-3514.43.6.1293; Johnson J. A., DEV SHORT FORM UNPUB; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Lee K, 2004, MULTIVAR BEHAV RES, V39, P329, DOI 10.1207/s15327906mbr3902_8; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037/0022-3514.74.1.192; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; RHODEWALT F, 2009, HDB INDIVIDUAL DIFFE, P547; Smith ST, 2011, J PERS ASSESS, V93, P244, DOI 10.1080/00223891.2011.558876; Witt EA, 2008, PERS INDIV DIFFER, V45, P219, DOI 10.1016/j.paid.2008.04.002; Witt EA, 2009, J RES PERS, V43, P1006, DOI 10.1016/j.jrp.2009.06.010; Witt EA, 2009, J PERS ASSESS, V91, P265, DOI 10.1080/00223890902794317 34 47 50 1 51 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR 2012 52 5 601 605 10.1016/j.paid.2011.12.003 5 Psychology, Social Psychology 905XZ WOS:000301310800008 2019-02-21 J Figueredo, AJ; Gladden, PR; Black, CJ Figueredo, Aurelio Jose; Gladden, Paul Robert; Black, Candace Jasmine Parasite stress, ethnocentrism, and life history strategy BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Fincher & Thornhill (F&T) present a compelling argument that parasite stress underlies certain cultural practices promoting assortative sociality. However, we suggest that the theoretical framework proposed is limited in several ways, and that life history theory provides a more explanatory and inclusive framework, making more specific predictions about the trade-offs faced by organisms in the allocation of bioenergetic and material resources. [Figueredo, Aurelio Jose; Black, Candace Jasmine] Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA; [Figueredo, Aurelio Jose; Black, Candace Jasmine] Univ Arizona, Coll Sci, Sch Mind Brain & Behav, Tucson, AZ 85721 USA; [Gladden, Paul Robert] Macon State Coll, Dept Psychol & Sociol, Macon, GA 31206 USA Figueredo, AJ (reprint author), Univ Arizona, Dept Psychol, Tucson, AZ 85721 USA. ajf@u.arizona.edu; paul.gladden@maconstate.edu; cjblack@email.arizona.edu Allport G. W, 1954, NATURE PREJUDICE; ANDRZEJCZAK DJ, 2007, ANN M HUM BEH EV SOC; Brewer Marilynn B., 1976, ETHNOCENTRISM INTERG; Brewer MB, 1999, J SOC ISSUES, V55, P429, DOI 10.1111/0022-4537.00126; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eppig C, 2010, P ROY SOC B-BIOL SCI, V277, P3801, DOI 10.1098/rspb.2010.0973; Figueredo A.J., 2011, APPL EVOLUTIONARY PS, P201; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; GLADDEN PR, 2010, ANN M HUM BEH EV SOC; Gottfredson M. R., 1990, GEN THEORY CRIME; JONES DJ, ETHNOCENTRISM UNPUB; MACDONALD KM, 2007, ANN M HUM BEH EV SOC; Sumner W.G., 1906, FOLKWAYS; THORNHILL R, 2010, ANN M HUM BEH EV SOC 17 3 4 1 9 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. APR 2012 35 2 87 88 10.1017/S0140525X11000999 2 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology 901TT WOS:000300990500010 22289411 2019-02-21 J Webber, MM; Glaudas, X; Rodriguez-Robles, JA Webber, Michael M.; Glaudas, Xavier; Rodriguez-Robles, Javier A. Do Sidewinder Rattlesnakes (Crotalus cerastes, Viperidae) Cease Feeding During the Breeding Season? COPEIA English Article THAMNOPHIS-SIRTALIS-PARIETALIS; REPRODUCTIVE-CYCLE; SNAKES COLUBRIDAE; MATING SEASON; FORAGING MODE; NORTH-AMERICA; GRAVID SNAKES; GARTER SNAKE; COST; MOVEMENT Seasonal aphagia (a lack of feeding) can occur if foraging and reproduction occasionally result in conflicting demands on an individual, such that one activity takes precedence over the other. We tested the hypothesis that female and male Crotalus cerastes (Sidewinders) exhibit seasonal aphagia during the reproductive season. We examined the stomach contents of preserved specimens to assess variation in the feeding rates of C. cerastes. Non-reproductive females fed during the early and late stages of the active season, but reproductive females only ate during the first half of the active season. Female Sidewinders fed throughout the early vitellogenic phases of the reproductive cycle, but exhibited a tendency to reduce or cease feeding during the later stages of the cycle (gestation). Prey consumption during early reproductive stages can provide valuable energetic resources for sustaining a female's subsequent breeding activities. However, the physical burden of offspring mass and the concomitant decrease in locomotor efficiency can reduce a female's foraging efficiency in the later phases of the reproductive cycle. Male C. cerastes displayed a trend to feed more frequently during the reproductive season, perhaps because enhancing their energy reserves allows males to travel longer distances and maximize encounter rates with females. The discovery of this intersexual variation in feeding patterns of C. cerastes underscores the importance of descriptive ecological studies to elucidate distinct patterns of life history evolution. [Webber, Michael M.; Glaudas, Xavier; Rodriguez-Robles, Javier A.] Univ Nevada, Sch Life Sci, Las Vegas, NV 89154 USA Webber, MM (reprint author), Univ Nevada, Sch Life Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA. webberm4@unlv.nevada.edu; glaudasx@unlv.nevada.edu; javier.rodriguez@unlv.edu Rodriguez-Robles, Javier/A-6806-2009 Rodriguez-Robles, Javier/0000-0003-4501-9875; Glaudas, Xavier/0000-0002-1333-7791 Graduate and Professional Student Association of the University of Nevada, Las Vegas; National Science Foundation [DBI-0001975, DEB-0327415] We thank J. Vindum and R. Drewes (CAS), J. Seigel (LACM), and C. Spencer and J. McGuire (MVZ) for allowing us to examine specimens, M. Irick and G. Webber, Jr. for assisting with data collection, and R. Bryson, Jr. for valuable comments on an earlier version of this manuscript. This work was partially funded by grants from the Graduate and Professional Student Association of the University of Nevada, Las Vegas to MMW, and by grants from the National Science Foundation (DBI-0001975, DEB-0327415) to JAR-R. ALDRIDGE RD, 1995, J HERPETOL, V29, P399, DOI 10.2307/1564990; Aldridge RD, 2002, J HERPETOL, V36, P295, DOI 10.1670/0022-1511(2002)036[0295:TLBMSA]2.0.CO;2; Aldrige Robert D., 2002, Herpetological Monographs, P1; ALEKSIUK M, 1971, ECOLOGY, V52, P485, DOI 10.2307/1937631; ANDERSON RA, 1981, OECOLOGIA, V49, P67, DOI 10.1007/BF00376899; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; BEUCHAT CA, 1987, ECOL MONOGR, V57, P45, DOI 10.2307/1942638; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bonnet X, 1996, HERPETOLOGICA, V52, P137; Brischoux F, 2011, AUSTRAL ECOL, V36, P46, DOI 10.1111/j.1442-9993.2010.02115.x; BRODIE ED, 1989, AM NAT, V134, P225, DOI 10.1086/284977; Brown GP, 1997, CAN J ZOOL, V75, P424, DOI 10.1139/z97-052; Brown Timothy W., 1992, P279; CHARLAND MB, 1995, J ZOOL, V236, P543, DOI 10.1111/j.1469-7998.1995.tb02731.x; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; COOPER WE, 1990, HERPETOLOGICA, V46, P259; Daltry JC, 1998, J HERPETOL, V32, P198, DOI 10.2307/1565297; DALY M, 1978, AM NAT, V112, P771, DOI 10.1086/283319; Duvall D, 1997, ANIM BEHAV, V54, P329, DOI 10.1006/anbe.1996.0418; Ernst E. M., 2003, SNAKES US CANADA; Gardner-Santana LC, 2009, COPEIA, P363, DOI 10.1643/CP-07-271; Glaudas X, 2009, J ARID ENVIRON, V73, P719, DOI 10.1016/j.jaridenv.2009.02.005; Glaudas X, 2011, BIOL J LINN SOC, V103, P681, DOI 10.1111/j.1095-8312.2011.01677.x; Goldberg SR, 2004, TEX J SCI, V56, P55; GREENE CH, 1986, AM NAT, V128, P824, DOI 10.1086/284608; Greene Harry W., 2002, P179; Gregory PT, 1999, J ZOOL, V248, P231, DOI 10.1111/j.1469-7998.1999.tb01199.x; HUEY RB, 1981, ECOLOGY, V62, P991, DOI 10.2307/1936998; Hunt J, 2002, J EVOLUTION BIOL, V15, P57, DOI 10.1046/j.1420-9101.2002.00374.x; Jellen BC, 2007, J HERPETOL, V41, P451, DOI 10.1670/0022-1511(2007)41[451:MMABSA]2.0.CO;2; KING MB, 1990, ANIM BEHAV, V39, P924, DOI 10.1016/S0003-3472(05)80957-1; Klauber LM, 1972, RATTLESNAKES THEIR H; Lillywhite Harvey B., 2002, P497; Lourdais O, 2004, J COMP PHYSIOL B, V174, P383, DOI 10.1007/s00360-004-0424-6; Lourdais O, 2004, OIKOS, V104, P551, DOI 10.1111/j.0030-1299.2004.12961.x; LOWE CH, 1942, COPEIA, P261; MADSEN T, 1988, HOLARCTIC ECOL, V11, P77; Madsen T, 2000, AUSTRAL ECOL, V25, P670, DOI 10.1046/j.1442-9993.2000.01067.x; MROSOVSKY N, 1980, SCIENCE, V207, P837, DOI 10.1126/science.6928327; O'Donnell RP, 2004, BEHAV ECOL SOCIOBIOL, V56, P413, DOI 10.1007/s00265-004-0801-x; PIANKA ER, 2000, EVOLUTIONARY ECOLOGY; Reilly S. M., 2007, LIZARD ECOLOGY EVOLU; Reiserer R. S., 2001, THESIS U CALIFORNIA; Rivas JA, 2005, J COMP PSYCHOL, V119, P447, DOI 10.1037/0735-7036.119.4.447; Schuett Gordon W., 1992, P169; Schuett Gordon W., 2004, Herpetological Review, V35, P328; Secor S. M., 1994, SW HERPETOLOGIST SOC, V5, P281; SECOR SM, 1994, ECOLOGY, V75, P1600, DOI 10.2307/1939621; SECOR SM, 1994, COPEIA, P631; Secor Stephen M., 1992, P389; SEIGEL RA, 1987, OECOLOGIA, V73, P481, DOI 10.1007/BF00379404; Shaffer LR, 1996, ANIM BEHAV, V51, P1017, DOI 10.1006/anbe.1996.0104; Sherry S. A., 1980, J COMP PHYSIOL PSYCH, V94, P89; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1986, COPEIA, P424, DOI 10.2307/1445000; Taylor EN, 2005, COPEIA, P152, DOI 10.1643/CH-04-107R1; Waldron JL, 2006, HERPETOLOGICA, V62, P389, DOI 10.1655/0018-0831(2006)62[389:UBSTIC]2.0.CO;2; Warner DA, 2008, J ANIM ECOL, V77, P1242, DOI 10.1111/j.1365-2656.2008.01442.x; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263 59 8 8 1 41 AMER SOC ICHTHYOLOGISTS HERPETOLOGISTS CHARLESTON UNIV CHARLESTON, GRICE MARINE LABORATORY, 205 FORT JOHNSON RD, CHARLESTON, SC 29412 USA 0045-8511 COPEIA Copeia MAR 30 2012 1 100 105 10.1643/CP-10-181 6 Zoology Zoology 920RF WOS:000302424100009 2019-02-21 J Dirks, W; Bromage, TG; Agenbroad, LD Dirks, Wendy; Bromage, Timothy G.; Agenbroad, Larry D. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology QUATERNARY INTERNATIONAL English Article; Proceedings Paper 5th International Conference on Mammoths and their Relatives AUG 30-SEP 04, 2010 Le Puy-en-Velay, FRANCE LIFE-HISTORY VARIATION; ENAMEL STRUCTURE; BODY-SIZE; EVOLUTION; PROBOSCIDEANS; PERIODICITY; ECOLOGY; MAMMALS; GROWTH; AGE Fossil elephantids are often assigned chronological ages based on tooth eruption and wear in extant elephants. Differences in body mass are likely to be accompanied by shifts in life history strategies, however, and hypotheses about these shifts cannot be tested using relative age. A better understanding of interspecific differences in the duration of tooth formation would help test hypotheses about life history variation. In this study, periodic incremental features visible in the enamel of histological thin sections of molar plates were used to estimate the rate and duration of plate formation in an insular dwarf, Palaeoloxodon cypriotes. which is smaller than extant elephants, and Mammuthus columbi, which is larger. Polarized light microscopy and image analysis software were used to determine the daily secretion rate of enamel and plate extension rate, the rate at which the plate increases in height each day, utilizing the daily incremental features, the cross striations, and accentuated lines representing the forming front of enamel at a particular time during plate formation. Estimates were made of total plate formation time from crown height and extension rate. Histological sections were prepared from molar fragments from each species. Five sections were prepared in the same plane from the large M. columbi plate. The daily secretion rate, 2-5 mu m, is similar in both elephants, but the extension rate is higher in the larger M. columbi. The initial extension rate is estimated to be 62.5 mu m per day, but drops to around 32.3 toward cervical portion of the plate. In P cypriotes, the initial extension rate is estimated to be 34.4 mu m per day, dropping to 12 mu m per day and then rising to 23.3 mu m per day in the cervical region. Estimated plate formation time is around 10.6 years for 180.9 mm of height in M. columbi and 5.9 years for 51.1 mm of height in P. cypriotes. M. columbi thus forms a taller plate by increasing both extension rate and the duration of formation. These differences could be allometric, with higher crowned teeth forming more rapidly than low crowned teeth, or they could be related to differences in life history strategies between taxa. (C) 2011 Elsevier Ltd and INQUA. All rights reserved. [Dirks, Wendy] Newcastle Univ, Ctr Oral Hlth Res, Sch Dent Sci, Newcastle Upon Tyne NE2 4B, Tyne & Wear, England; [Bromage, Timothy G.] NYU, Coll Dent, Dept Biomat & Biomimet, New York, NY 10010 USA; [Bromage, Timothy G.] NYU, Coll Dent, Dept Basic Sci & Craniofacial Biol, New York, NY 10010 USA; [Agenbroad, Larry D.] S Dakota, Hot Springs, SD 57757 USA Dirks, W (reprint author), Newcastle Univ, Ctr Oral Hlth Res, Sch Dent Sci, Framlington Pl, Newcastle Upon Tyne NE2 4B, Tyne & Wear, England. Wendy.Dirks@ncl.ac.uk; tim.bromage@nyu.edu; larry4mammoth@mammothsite.com bromage, timothy/0000-0002-9843-7993 Eugene Lang Faculty-Student Research Fellowship; Hunter College of the City University of New York; Faculty Enrichment Endowment, Oxford College of Emory University; Department of Antiquities of the Turkish Republic of Cyprus We thank Frederic Lacombat for organizing the Vth International Conference on Mammoths and their Relatives and inviting this contribution. Our work was funded by the Eugene Lang Faculty-Student Research Fellowship, Hunter College of the City University of New York and the Faculty Enrichment Endowment, Oxford College of Emory University. We thank the Department of Antiquities of the Turkish Republic of Cyprus for their support. Pam Walton and Olga Potapova provided technical assistance. We thank Adrian Lister, Victoria Herridge, and Don Reid for useful discussion and Reiko Matsuda-Goodwin for Japanese translation. The comments of two anonymous reviewers greatly improved the manuscript. Special thanks go to the late Dr Ian Carmichael. Perez-Crespo V, 2009, REV MEX CIENC GEOL, V26, P347; Agenbroad Larry D., 2003, Deinsea, V9, P1; Agenbroad Larry D., 1994, P158; Agenbroad LD, 2005, QUATERN INT, V126, P73, DOI 10.1016/j.quaint.2004.04.016; Anderson E., 1980, PLEISTOCENE MAMMALS; Antoine D, 2009, J ANAT, V214, P45, DOI 10.1111/j.1469-7580.2008.01010.x; Asher RJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-108; Bate DMA, 1904, P R SOC LONDON, V74, P120, DOI 10.1098/rspl.1904.0093; Boyce M. S., 1988, EVOLUTION LIFE HIST, P3; BROMAGE TG, 1991, AM J PHYS ANTHROPOL, V86, P205, DOI 10.1002/ajpa.1330860209; Bromage TG, 2002, WORLD ISLANDS PREHIS, P420; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Charnov Eric L., 1993, P1; Davies P., 2001, 1 INT C WORLD EL ROM, P479; Dean M.C., 2000, P119, DOI 10.1017/CBO9780511542626.009; Dean M.C., 2009, FRONTIERS ORAL BIOL, P68; Dean M. C., 1995, ASPECTS DENT BIOL PA, P239; Dean MC, 2010, PHILOS T R SOC B, V365, P3397, DOI 10.1098/rstb.2010.0052; Dirks W, 2002, AM J PHYS ANTHROPOL, V118, P239, DOI 10.1002/ajpa.10089; Dirks W., 2009, FRONT ORAL BIOL, P3; Dirks W, 2010, FOLIA PRIMATOL, V81, P207, DOI 10.1159/000321707; Ferretti Marco P., 2003, Deinsea, V9, P111; Ferretti MP, 2008, J MAMM EVOL, V15, P37, DOI 10.1007/s10914-007-9057-3; Ferretti MP, 2003, ACTA PALAEONTOL POL, V48, P383; FISHER D C, 1988, Bulletin of the Buffalo Society of Natural Sciences, V33, P115; Fisher D.C., 1990, MICHIGAN ARCHAEOLOGI, V36, P141; Fisher Daniel C., 2003, Deinsea, V9, P117; Fisher Daniel C., 1996, P296; FitzGerald CM, 1998, J HUM EVOL, V35, P371, DOI 10.1006/jhev.1998.0232; Fox DL, 2000, PALAEOGEOGR PALAEOCL, V156, P327, DOI 10.1016/S0031-0182(99)00148-0; FROEHLICH DJ, 1995, PALEOBIOLOGY, V21, P379; Germonpre Mietje, 2003, Deinsea, V9, P171; Haynes G., 2003, Deinsea, V9, P185; Hoppe KA, 2004, PALAEOGEOGR PALAEOCL, V206, P355, DOI 10.1016/j.palaeo.200.01.012; Hoppe KA, 2004, PALEOBIOLOGY, V30, P129, DOI 10.1666/0094-8373(2004)030<0129:LPMHSM>2.0.CO;2; Iinuma YM, 2004, J VET MED SCI, V66, P665, DOI 10.1292/jvms.66.665; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; Kelley J, 2003, J HUM EVOL, V44, P307, DOI 10.1016/S0047-2484(03)00005-8; KINGDON J, 1979, E AFRICAN MAMMALS B, V3; KOCH PL, 1989, GEOLOGY, V17, P515, DOI 10.1130/0091-7613(1989)017<0515:OIVITT>2.3.CO;2; Koenigswald W.v., 1993, P303; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Kozawa Y., 1995, P 10 INT S DENT MORP, P92; Kozawa Y., 1995, ASPECTS DENT BIOL PA, P27; Kozawa Y., 1978, J STOMATOL SOC JAP, V45, P585; Kozawa Y., 2001, P 1 INT C CONS NAZ R, P639; LAWS R. M., 1966, EAST AFR WILDLIFE J, V4, P1; Lister A.M., 1992, P185; MAGLIO VJ, 1973, T AM PHILOS SOC, V63, P5; Maschenko Evgeny, 2002, Cranium, V19, P4; McDaniel GE, 2006, QUATERN INT, V142, P166, DOI 10.1016/j.quaint.2005.03.014; Metcalfe JZ, 2010, PALAEOGEOGR PALAEOCL, V298, P257, DOI 10.1016/j.palaeo.2010.09.032; Mothe D., 2010, ANN BRAZILIAN ACAD S, V82, P1; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Rohland N, 2007, PLOS BIOL, V5, P1663, DOI 10.1371/journal.pbio.0050207; ROTH VL, 1988, J ZOOL, V214, P567, DOI 10.1111/j.1469-7998.1988.tb03760.x; Rountrey AN, 2007, QUATERN INT, V169, P166, DOI 10.1016/j.quaint.2006.08.002; Rountrey AN, 2012, QUATERN INT, V255, P196, DOI 10.1016/j.quaint.2011.06.006; Sahni A., 1982, MAN ENV, V6, P16; Saunders Jeffrey J., 1992, P123; Schwartz GT, 2005, J HUM EVOL, V49, P702, DOI 10.1016/j.jhevol.2005.08.006; SHELLIS RP, 1984, ARCH ORAL BIOL, V29, P697, DOI 10.1016/0003-9969(84)90175-4; Shipman Pat, 1992, P75; Shoshani J, 2005, QUATERN INT, V126, P5, DOI 10.1016/j.quaint.2004.04.011; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tabuce R, 2007, ZOOL J LINN SOC-LOND, V149, P611, DOI 10.1111/j.1096-3642.2007.00272.x; Tafforeau P, 2007, PALAEOGEOGR PALAEOCL, V246, P206, DOI 10.1016/j.palaeo.2006.10.001; van der Geer A, 2010, EVOLUTION ISLAND MAM; WESTERN D, 1979, AFR J ECOL, V17, P185, DOI 10.1111/j.1365-2028.1979.tb00256.x 74 13 14 0 4 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1040-6182 1873-4553 QUATERN INT Quat. Int. MAR 26 2012 255 79 85 10.1016/j.quaint.2011.11.002 7 Geography, Physical; Geosciences, Multidisciplinary Physical Geography; Geology 911YW WOS:000301761600009 2019-02-21 J Chantranupong, L; Heineman, RH Chantranupong, Lynne; Heineman, Richard H. A common, non-optimal phenotypic endpoint in experimental adaptations of bacteriophage lysis time BMC EVOLUTIONARY BIOLOGY English Article Experimental evolution; Phi X174; Optimality; Life history evolution; Genetic constraint; Bacteriophage; Lysis; Molecular evolution; Virulence; Phenotype prediction CIS-TRANS-ISOMERASES; HOST-CELL LYSIS; PHI-X174 LYSIS; LIFE-HISTORY; GENE-E; NATURAL-SELECTION; ESCHERICHIA-COLI; PROTEIN-E; EVOLUTION; OPTIMALITY Background: Optimality models of evolution, which ignore genetic details and focus on natural selection, are widely used but sometimes criticized as oversimplifications. Their utility for quantitatively predicting phenotypic evolution can be tested experimentally. One such model predicts optimal bacteriophage lysis interval, how long a virus should produce progeny before lysing its host bacterium to release them. The genetic basis of this life history trait is well studied in many easily propagated phages, making it possible to test the model across a variety of environments and taxa. Results: We adapted two related small single-stranded DNA phages, Phi X174 and ST-1, to various conditions. The model predicted the evolution of the lysis interval in response to host density and other environmental factors. In all cases the initial phages lysed later than predicted. The FX174 lysis interval did not evolve detectably when the phage was adapted to normal hosts, indicating complete failure of optimality predictions. Phi X174 grown on slyD defective hosts which initially entirely prevented lysis readily recovered to a lysis interval similar to that attained on normal hosts. Finally, the lysis interval still evolved to the same endpoint when the environment was altered to delay optimal lysis interval. ST-1 lysis interval evolved to be similar to 2 min shorter, qualitatively in accord with predictions. However, there were no changes in the single known lysis gene. Part of ST-1's total lysis time evolution consisted of an earlier start to progeny production, an unpredicted phenotypic response outside the boundaries of the optimality model. Conclusions: The consistent failure of the optimality model suggests that constraint and genetic details affect quantitative and even qualitative success of optimality predictions. Several features of ST-1 adaptation show that lysis time is best understood as an output of multiple traits, rather than in isolation. [Heineman, Richard H.] Univ Minnesota, Inst Mol Virol, Minneapolis, MN 55455 USA; [Chantranupong, Lynne] MIT, Dept Biol, Cambridge, MA 02139 USA; [Chantranupong, Lynne] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA; [Heineman, Richard H.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA Heineman, RH (reprint author), Univ Minnesota, Inst Mol Virol, 18-242 Moos Tower,515 Delaware St SE, Minneapolis, MN 55455 USA. rheinema@umn.edu NIH [57756]; HHMI [52005907]; National Institute of Dental and Craniofacial Research [T32DE007288] We thank J.J. Bull for vital assistance and H. A. Wichman for Phi X174 background. I.N. Wang provided us with early drafts of a relevant paper. T.E. Keller provided coding assistance. W.R. Harcombe, R. Springman, and M.L. Wayne gave edits across multiple drafts. I. Molineux provided us with ST-1 bacteriophage. The National BioResource Project (NIG, Japan): E. coli provided the Keio collection lines used for ST-1 adaptation. This work was funded by NIH Grant Number 57756 to J.J. Bull, HHMI Award # 52005907 (Undergraduate Science Education) to the Freshman Research Initiative, and Grant Number T32DE007288 from the National Institute of Dental and Craniofacial Research. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Dental & Craniofacial Research, the National Institutes of Health, or the Howard Hughes Medical Institute. Abedon ST, 2003, APPL ENVIRON MICROB, V69, P7499, DOI 10.1128/AEM.69.12.7499-7506.2003; Baba T, 2006, MOL SYST BIOL, V2, DOI 10.1038/msb4100050; Bernhardt TG, 2000, P NATL ACAD SCI USA, V97, P4297, DOI 10.1073/pnas.97.8.4297; Bernhardt TG, 2002, MOL MICROBIOL, V45, P99, DOI 10.1046/j.1365-2958.2002.02984.x; Bernhardt TG, 2001, J BIOL CHEM, V276, P6093, DOI 10.1074/jbc.M007638200; BOWES JM, 1974, J VIROL, V13, P53; Boyle DS, 1998, J BACTERIOL, V180, P6429; BRADLEY DE, 1970, CAN J MICROBIOL, V16, P965, DOI 10.1139/m70-165; Bull JJ, 2006, J THEOR BIOL, V241, P928, DOI 10.1016/j.jtbi.2006.01.027; Bull JJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027796; Bull JJ, 2000, MOL BIOL EVOL, V17, P942, DOI 10.1093/oxfordjournals.molbev.a026375; Bull JJ, 2004, EVOLUTION, V58, P692; Carvalho AB, 1998, GENETICS, V148, P719; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Dekel E, 2005, NATURE, V436, P588, DOI 10.1038/nature03842; Dennehy JJ, 2011, BMC MICROBIOL, V11, DOI 10.1186/1471-2180-11-174; Dokland T, 1997, NATURE, V389, P308, DOI 10.1038/38537; Duffy S, 2006, GENETICS, V172, P751, DOI 10.1534/genetics.105.051136; Ewald PW, 1996, EVOLUTION INFECT DIS; Fane B, 2006, BACTERIOPHAGES, P129; FANE BA, 1991, GENETICS, V128, P663; Fisher RA, 1930, GENETICAL THEORY NAT; Frankino WA, 2005, SCIENCE, V307, P718, DOI 10.1126/science.1105409; Gandon S, 2003, P ROY SOC B-BIOL SCI, V270, P1129, DOI 10.1098/rspb.2003.2370; Gandon S, 2001, NATURE, V414, P751, DOI 10.1038/414751a; GILLAM S, 1984, J VIROL, V52, P892; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Guyader S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001946; Hanifin CT, 2008, PLOS BIOL, V6, P471, DOI 10.1371/journal.pbio.0060060; Hayashi M, 1988, BACTERIOPHAGES, V2; Heineman RH, 2005, J MOL EVOL, V61, P181, DOI 10.1007/s00239-004-0304-4; Heineman RH, 2008, AM NAT, V171, pE149, DOI 10.1086/528962; Heineman RH, 2007, EVOLUTION, V61, P1695, DOI 10.1111/j.1558-5646.2007.00132.x; Heineman RH, 2009, MOL BIOL EVOL, V26, P1289, DOI 10.1093/molbev/msp037; HERRE EA, 1985, SCIENCE, V228, P896, DOI 10.1126/science.228.4701.896; HUTCHISON CA, 1966, J MOL BIOL, V18, P429, DOI 10.1016/S0022-2836(66)80035-9; Jensen KH, 2006, PLOS BIOL, V4, P1265, DOI 10.1371/journal.pbio.0040197; JOSSLIN R, 1970, VIROLOGY, V40, P719, DOI 10.1016/0042-6822(70)90216-3; LEWONTIN RC, 1989, NATURE, V339, P107, DOI 10.1038/339107a0; Mackinnon MJ, 2008, VACCINE, V26, pC42, DOI 10.1016/j.vaccine.2008.04.012; MARATEA D, 1985, GENE, V40, P39, DOI 10.1016/0378-1119(85)90022-8; Miller SP, 2006, SCIENCE, V314, P458, DOI 10.1126/science.1133479; MIYAZAKI JI, 1978, VIROLOGY, V89, P327, DOI 10.1016/0042-6822(78)90067-3; Noblin X, 2008, P NATL ACAD SCI USA, V105, P9140, DOI 10.1073/pnas.0709194105; Orr HA, 1999, GENET RES, V74, P207, DOI 10.1017/S0016672399004164; Poelwijk FJ, 2011, BMC SYST BIOL, V5, DOI 10.1186/1752-0509-5-128; Pribil S, 2001, P ROY SOC B-BIOL SCI, V268, P1643, DOI 10.1098/rspb.2001.1720; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Rokyta DR, 2006, J BACTERIOL, V188, P1134, DOI 10.1128/JB.188.3.1134-1142.2006; ROOF WD, 1995, FEMS MICROBIOL REV, V17, P213; ROOF WD, 1994, J BIOL CHEM, V269, P2902; SCOTT JF, 1977, P NATL ACAD SCI USA, V74, P193, DOI 10.1073/pnas.74.1.193; Shao YP, 2008, GENETICS, V180, P471, DOI 10.1534/genetics.108.090100; Uchiyama A, 2009, VIROLOGY, V386, P303, DOI 10.1016/j.virol.2009.01.030; Wang IN, 1996, EVOL ECOL, V10, P545, DOI 10.1007/BF01237884; Wang IN, 2006, GENETICS, V172, P17, DOI 10.1514/genetics.105.045922; Wang IN, 2000, ANNU REV MICROBIOL, V54, P799, DOI 10.1146/annurev.micro.54.1.799; West S.A., 2009, SEX ALLOCATION; YOUNG KD, 1982, J VIROL, V44, P993; Young R, 2000, TRENDS MICROBIOL, V8, P120, DOI 10.1016/S0966-842X(00)01705-4; Young R, 2005, BACTERIOPHAGE, P104; Zheng Y, 2008, MICROBIOL-SGM, V154, P1710, DOI 10.1099/mic.0.2008/016956-0; Zheng Y, 2009, BIOCHEMISTRY-US, V48, P4999, DOI 10.1021/bi900469g 63 10 10 1 15 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. MAR 19 2012 12 37 10.1186/1471-2148-12-37 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 924UD WOS:000302715900001 22429718 DOAJ Gold, Green Published 2019-02-21 J El-Sabaawi, RW; Kohler, TJ; Zandona, E; Travis, J; Marshall, MC; Thomas, SA; Reznick, DN; Walsh, M; Gilliam, JF; Pringle, C; Flecker, AS El-Sabaawi, Rana W.; Kohler, Tyler J.; Zandona, Eugenia; Travis, Joseph; Marshall, Michael C.; Thomas, Steven A.; Reznick, David N.; Walsh, Matthew; Gilliam, James F.; Pringle, Catherine; Flecker, Alexander S. Environmental and Organismal Predictors of Intraspecific Variation in the Stoichiometry of a Neotropical Freshwater Fish PLOS ONE English Article LIFE-HISTORY EVOLUTION; RESOURCE AVAILABILITY; PHOSPHORUS-CONTENT; TROPICAL STREAM; RIVULUS-HARTII; NITROGEN; GROWTH; CARBON; PREDATORS; COMMUNITY The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was similar to 3.2%(+/- 0.6), average %N similar to 10.7%(+/- 0.9), and average % C similar to 41.7%(+/- 3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with % P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with % C, % P, C: P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory. [El-Sabaawi, Rana W.; Flecker, Alexander S.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY USA; [Kohler, Tyler J.; Thomas, Steven A.] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA; [Zandona, Eugenia] Drexel Univ, Dept Biol, Philadelphia, PA 19104 USA; [Travis, Joseph; Pringle, Catherine] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Marshall, Michael C.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Walsh, Matthew] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA; [Gilliam, James F.] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA El-Sabaawi, RW (reprint author), Univ Victoria, Dept Biol, POB 1700, Victoria, BC V8W 2Y2, Canada. rana@uvic.ca Zandona, Eugenia/B-3449-2013; Pringle, Catherine/I-1841-2012; Gilliam, James/D-5605-2013; Kohler, Tyler/I-5472-2016 Zandona, Eugenia/0000-0003-4754-5326; Kohler, Tyler/0000-0001-5137-4844; reznick, david/0000-0002-1144-0568 National Science Foundation (NSF) [DEB-0623632] This work was supported by a National Science Foundation Frontiers in Integrative Biological Research Grant to DNR (NSF-FIBR, DEB-0623632). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Andersen T, 2004, ECOL LETT, V7, P884, DOI 10.1111/j.1461-0248.2004.00646.x; Bertram SM, 2008, J INSECT SCI, V8, DOI 10.1673/031.008.2601; Binderup AJ, 2011, ISOLATING TOP DOWN E; Cross WF, 2003, ECOL LETT, V6, P721, DOI 10.1046/j.1461-0248.2003.00481.x; Dantas MC, 2007, J FISH BIOL, V70, P100, DOI 10.1111/j.1095-8649.2006.01277.x; de Villemereuil PB, 2011, ECOL MODEL, V222, P419, DOI 10.1016/j.ecolmodel.2010.10.011; DeMott WR, 1998, LIMNOL OCEANOGR, V43, P1147, DOI 10.4319/lo.1998.43.6.1147; Dickman EM, 2008, P NATL ACAD SCI USA, V105, P18408, DOI 10.1073/pnas.0805566105; Dodds WK, 2004, OECOLOGIA, V140, P458, DOI 10.1007/s00442-004-1599-y; Evans-White MA, 2006, ECOL LETT, V9, P1186, DOI 10.1111/j.1461-0248.2006.00971.x; Furness AI, 2011, CONVERGENCE LIFE HIS; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gonzalez AL, 2011, OIKOS, V120, P1247, DOI 10.1111/j.1600-0706.2010.19151.x; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hall SR, 2009, ANNU REV ECOL EVOL S, V40, P503, DOI 10.1146/annurev.ecolsys.39.110707.173518; Hamback PA, 2009, OIKOS, V118, P615, DOI 10.1111/j.1600-0706.2009.17177.x; Hendrixson HA, 2007, J FISH BIOL, V70, P121, DOI 10.1111/j.1095-8649.2006.01280.x; Hood JM, 2010, AM NAT, V176, P651, DOI 10.1086/656489; KITCHELL JF, 1979, BIOSCIENCE, V29, P28, DOI 10.2307/1307570; Kohler T. J., 2010, INFLUENCE CANOPY COV; Magurran AE, 2005, EVOLUTIONARY ECOLOGY, Vxi; McIntyre PB, 2007, P NATL ACAD SCI USA, V104, P4461, DOI 10.1073/pnas.0608148104; McIntyre PB, 2010, AM FISH S S, V73, P539; Moe SJ, 2005, OIKOS, V109, P29, DOI 10.1111/j.0030-1299.2005.14056.x; Nakazawa T, 2011, ECOL RES, V26, P209, DOI 10.1007/s11284-010-0752-9; Owens DC, 2010, SEASONAL VARIATION T; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Parsons TR, 1984, MANUAL CHEM BIOL MET, Vxiv; Pilati A, 2007, OIKOS, V116, P1663, DOI 10.1111/j.2007.0030-1299.15970.x; Post DM, 2007, OECOLOGIA, V152, P179, DOI 10.1007/s00442-006-0630-x; Schade JD, 2003, ECOL LETT, V6, P96, DOI 10.1046/j.1461-0248.2003.00409.x; Schatz GS, 2007, OECOLOGIA, V153, P1021, DOI 10.1007/s00442-007-0793-0; Schindler DE, 1997, ECOLOGY, V78, P1816; SHEARER KD, 1984, CAN J FISH AQUAT SCI, V41, P1592, DOI 10.1139/f84-197; Small GE, 2010, OECOLOGIA, V162, P581, DOI 10.1007/s00442-009-1489-4; Sokal RR, 1995, BIOMETRY PRINCIPLES, Vxix; Sterner RW, 2000, ECOLOGY, V81, P127, DOI 10.2307/177139; Sterner RW, 2002, ECOLOGICAL STOICHIOM, Vxxi; Sweeting CJ, 2006, RAPID COMMUN MASS SP, V20, P595, DOI 10.1002/rcm.2347; Tanner DK, 2000, CAN J FISH AQUAT SCI, V57, P1243, DOI 10.1139/cjfas-57-6-1243; Van Ham EH, 2003, AQUACULTURE, V217, P547, DOI 10.1016/S0044-8486(02)00411-8; Vanni MJ, 2002, ECOL LETT, V5, P285, DOI 10.1046/j.1461-0248.2002.00314.x; Vrede T, 2004, ECOLOGY, V85, P1217, DOI 10.1890/02-0249; Vrede T, 2011, OIKOS, V120, P886, DOI 10.1111/j.1600-0706.2010.18939.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Walter RP, 2011, MOL ECOL, V20, P601, DOI 10.1111/j.1365-294X.2010.04968.x 49 24 24 0 50 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 6 2012 7 3 e32713 10.1371/journal.pone.0032713 12 Multidisciplinary Sciences Science & Technology - Other Topics 928XD WOS:000303021100024 22412911 DOAJ Gold, Green Published 2019-02-21 J Lively, CM Lively, Curtis M. Feedbacks between ecology and evolution: interactions between Delta N and Delta p in a life-history model EVOLUTIONARY ECOLOGY RESEARCH English Article eco-evolutionary feedback; fundamental theorem of natural selection; population ecology; theoretical ecology; theoretical population genetics FISHERS FUNDAMENTAL THEOREM; NATURAL-SELECTION; DYNAMICS; POPULATION; ENVIRONMENT Questions: In a growing population, is there generation-by-generation feedback between population density, the strength of natural selection, and the rate of evolutionary change? What are the overall effects of natural selection and increasing population size on the total change in mean fitness? Mathematical Methods: Numerical iterations of equations for Delta p and Delta N, coupled with Frank and Slatkin's method for dissecting Fisher's fundamental theorem of natural selection. Assumptions: Large density-regulated populations where genetic drift is minimal. Populations begin at the carrying capacity for homozygotes for one allele, but can increase to a higher carrying capacity as a beneficial life-history allele spreads. Results: (1) Carrying capacity (K) increases as a beneficial allele spreads to fixation. (2) The increase in density increases the strength of selection as well as the additive genetic variance for fitness, leading to a more rapid spread of the favoured allele, which further increases the rate of population growth. (3) The negative change in mean fitness due to increasing population size is a time-lagged mirror image of the positive change in mean fitness due to natural selection. Conclusion: During life-history evolution, generation-by-generation feedback can exist between population density (ecology) and allele-frequency change (evolution). Indiana Univ, Dept Biol, Bloomington, IN 47405 USA Lively, CM (reprint author), Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. clively@indiana.edu Lively, Curtis/A-8057-2011 National Science Foundation [DEB-0640639] This study was conducted as part of a three-month fellowship at the Institute for Advanced Study in Berlin, Germany, for which I am very grateful. I thank Devin Drown, Amy Dapper, Jukka Joke la, Maurine Neiman, Mike Lynch, Mike Boots, Mike Wade, Peter Abrams, Bob Holt, Lynda Delph, and Steve Frank for helpful comments. This study was supported by DEB-0640639 from the National Science Foundation. Bailey JK, 2009, NEW PHYTOL, V184, P746, DOI 10.1111/j.1469-8137.2009.03081.x; Case T. J., 2000, ILLUSTRATED GUIDE TH; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; CONNELL JH, 1961, ECOLOGY, V42, P710, DOI 10.2307/1933500; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fisher R. A., 1958, GENETICAL THEORY NAT; FRANK SA, 1992, TRENDS ECOL EVOL, V7, P92, DOI 10.1016/0169-5347(92)90248-A; Frank SA, 2012, ADAPTIVE LANDSCAPE IN EVOLUTIONARY BIOLOGY, P41; Gandon S, 2009, EVOLUTION, V63, P826, DOI 10.1111/j.1558-5646.2009.00609.x; Hartl D. L., 1989, PRINCIPLES POPULATIO; Lande R, 2009, PHILOS T R SOC B, V364, P1511, DOI 10.1098/rstb.2009.0017; LEON JA, 1978, ECOLOGY, V59, P457, DOI 10.2307/1936575; Lewontin R, 2000, TRIPLE HELIX GENE OR; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MAY RM, 1976, NATURE, V261, P459, DOI 10.1038/261459a0; MICHOD RE, 1981, BRIT J PHILOS SCI, V32, P1, DOI 10.1093/bjps/32.1.1; Michod RE., 2000, DARWINIAN DYNAMICS E; Orr HA, 2010, PHILOS T R SOC B, V365, P1195, DOI 10.1098/rstb.2009.0282; Otto S., 2007, BIOL GUIDE MATH MODE; Pearl R, 1920, P NATL ACAD SCI USA, V6, P275, DOI 10.1073/pnas.6.6.275; PIELOU E C, 1969, P286; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; PRICE GR, 1972, ANN HUM GENET, V36, P129, DOI 10.1111/j.1469-1809.1972.tb00764.x; Provine WB, 1971, ORIGINS THEORETICAL; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Turcotte M.M., AM NAT IN PRESS; Uecker H, 2011, GENETICS, V188, P915, DOI 10.1534/genetics.110.124297; Verhulst P. F., 1838, CORRES MATH PHYSIQUE, V10, P113 29 1 1 0 8 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2012 14 3 299 309 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 043YX WOS:000311587700004 2019-02-21 J DeLong, JP DeLong, John P. Experimental demonstration of a 'rate-size' trade-off governing body size optimization EVOLUTIONARY ECOLOGY RESEARCH English Article Actinosphaerium; body size evolution; life-history evolution; Paramecium bursaria; supply-demand model; temperature-size rule LIFE-HISTORY; TEMPERATURE; ECTOTHERMS; RULE; ALLOCATION; GROWTH; MODELS; PUZZLE Questions: Can the decline in ectotherm body size with increasing temperature be explained using a simple body size optimization model? Does the pattern conform to the rate size trade-off wherein organisms trade asymptotic size for mass-specific resource demand in order to maintain maximal resource uptake rates? Organism: The predatory protist, Actinosphaerium sp., feeding on Paramecium bursaria. Methods: I measured biovolume production rate (an index of mass-specific resource demand) and cell size across three environmental temperatures. I controlled prey supply by mixing and standardizing culture media across treatments and replicates. Results: Biovolume production rates increased and cell size decreased with increasing temperature. The slope between these two variables on logarithimic axes (-0.91) was almost exactly as predicted by the optimization model (-0.94), lending quantitative support for the existence of a rate-size trade-off that governs the plasticity of size in this species and leads to the temperature-size rule. [DeLong, John P.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA DeLong, JP (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. jpdelong@unl.edu Yale University I thank Frank LaSorte for statistical advice and David Vasseur for his support and input. David Atkinson, Frank LaSorte, Stephen Stearns, and Wenyun Zuo provided helpful comments on the manuscript. The author was supported by a Yale University Brown Fellowship. Angilletta MJ, 2003, AM NAT, V162, P332; Arendt JD, 2011, EVOLUTION, V65, P43, DOI 10.1111/j.1558-5646.2010.01112.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Atkinson D, 2006, EVOL DEV, V8, P202, DOI 10.1111/j.1525-142X.2006.00090.x; Atkinson D, 2003, P ROY SOC B-BIOL SCI, V270, P2605, DOI 10.1098/rspb.2003.2538; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Blackburn Tim M., 1999, Diversity and Distributions, V5, P165, DOI 10.1046/j.1472-4642.1999.00046.x; Bonner J. T., 2006, WHY SIZE MATTERS BAC; Brose U, 2010, FUNCT ECOL, V24, P28, DOI 10.1111/j.1365-2435.2009.01618.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder W. A., 1996, SIZE FUNCTION LIFE H; Charnov Eric L., 1993, P1; DeLong JP, 2012, J ANIM ECOL, V81, P1193, DOI 10.1111/j.1365-2656.2012.02013.x; DeLong JP, 2010, P NATL ACAD SCI USA, V107, P12941, DOI 10.1073/pnas.1007783107; Forster J., P NATL ACAD SCI US; Forster J, 2013, ISME J, V7, P28, DOI 10.1038/ismej.2012.76; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; Jablonski D, 1997, NATURE, V385, P250, DOI 10.1038/385250a0; Jiang L, 2005, AM NAT, V165, P350, DOI 10.1086/428300; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; PERRIN N, 1995, OIKOS, V73, P137, DOI 10.2307/3545737; Peters R.H., 1983, P1; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; Stearns S, 1992, EVOLUTION LIFE HIST; von Bertalanffy L, 1960, FUNDAMENTAL ASPECTS, P137; Zuo WY, 2012, P ROY SOC B-BIOL SCI, V279, P1840, DOI 10.1098/rspb.2011.2000 31 29 29 1 24 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2012 14 3 343 352 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 043YX WOS:000311587700007 2019-02-21 J Enberg, K; Jorgensen, C; Dunlop, ES; Varpe, O; Boukal, DS; Baulier, L; Eliassen, S; Heino, M Enberg, Katja; Jorgensen, Christian; Dunlop, Erin S.; Varpe, Oystein; Boukal, David S.; Baulier, Loic; Eliassen, Sigrunn; Heino, Mikko Fishing-induced evolution of growth: concepts, mechanisms and the empirical evidence MARINE ECOLOGY-AN EVOLUTIONARY PERSPECTIVE English Article Fisheries-induced evolution; fishing-induced evolution; growth; maturation; reproductive investment; resource acquisition; resource allocation; size-at-age; trade-offs FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; COD GADUS-MORHUA; SIZE-SELECTIVE MORTALITY; HADDOCK MELANOGRAMMUS-AEGLEFINUS; WHITEFISH COREGONUS-LAVARETUS; PLAICE PLEURONECTES-PLATESSA; SALMON ONCORHYNCHUS-NERKA; MATURATION REACTION NORMS; ENERGY ACQUISITION RATES The interest in fishing-induced life-history evolution has been growing in the last decade, in part because of the increasing number of studies suggesting evolutionary changes in life-history traits, and the potential ecological and economic consequences these changes may have. Among the traits that could evolve in response to fishing, growth has lately received attention. However, critical reading of the literature on growth evolution in fish reveals conceptual confusion about the nature of 'growth' itself as an evolving trait, and about the different ways fishing can affect growth and size-at-age of fish, both on ecological and on evolutionary time-scales. It is important to separate the advantages of being big and the costs of growing to a large size, particularly when studying life-history evolution. In this review, we explore the selection pressures on growth and the resultant evolution of growth from a mechanistic viewpoint. We define important concepts and outline the processes that must be accounted for before observed phenotypic changes can be ascribed to growth evolution. When listing traits that could be traded-off with growth rate, we group the mechanisms into those affecting resource acquisition and those governing resource allocation. We summarize potential effects of fishing on traits related to growth and discuss methods for detecting evolution of growth. We also challenge the prevailing expectation that fishing-induced evolution should always lead to slower growth. [Enberg, Katja; Dunlop, Erin S.; Boukal, David S.; Baulier, Loic; Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Enberg, Katja; Jorgensen, Christian; Dunlop, Erin S.; Varpe, Oystein; Boukal, David S.; Baulier, Loic; Eliassen, Sigrunn; Heino, Mikko] Univ Bergen, Dept Biol, Bergen, Norway; [Varpe, Oystein] Univ Ctr, Svalbard, Longyearbyen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria; [Jorgensen, Christian] Uni Res, Bergen, Norway Enberg, K (reprint author), Inst Marine Res, Box 1870 Nordnes, N-5817 Bergen, Norway. katja.enberg@imr.no Varpe, Oystein/B-9693-2008; Enberg, Katja/C-8630-2009; Heino, Mikko/C-7241-2009; Jorgensen, Christian/B-4453-2009; Boukal, David/H-4762-2014 Varpe, Oystein/0000-0002-5895-6983; Enberg, Katja/0000-0002-0045-7604; Heino, Mikko/0000-0003-2928-3940; Jorgensen, Christian/0000-0001-7087-4625; Boukal, David/0000-0001-8181-7458 Bergen Research Foundation; Research Council of Norway; EU Marie Curie Research Training Network FishACE; EU; Academy of Finland We thank J. Hard for help with the salmonid literature and Ray Hilborn and anonymous referees for constructive comments on the manuscript. Funding was provided by the Bergen Research Foundation, the Research Council of Norway, the EU Marie Curie Research Training Network FishACE, EU FP7 Integrated Project MEECE, and the Academy of Finland. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; [Anonymous], 2007, NATURE, V450, P1130; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnott SA, 2006, EVOLUTION, V60, P1269; BELL G, 1977, J FISH RES BOARD CAN, V34, P942, DOI 10.1139/f77-147; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2005, P ROY SOC B-BIOL SCI, V272, P1443, DOI 10.1098/rspb.2005.3096; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; Boily P, 2002, J EXP BIOL, V205, P1031; Boukal D. S., 2008, 2008F07 ICES CM; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Case RAJ, 2006, T AM FISH SOC, V135, P241, DOI 10.1577/T05-130.1; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chiba S, 2007, OECOLOGIA, V154, P237, DOI 10.1007/s00442-007-0825-9; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; Coltman DW, 2008, TRENDS ECOL EVOL, V23, P117, DOI 10.1016/j.tree.2007.12.002; Conover DO, 2007, NATURE, V450, P179, DOI 10.1038/450179a; Conover DO, 2007, FISHERIES, V32, P90; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cooke SJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P480, DOI 10.1086/520618; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; De Block M, 2008, OIKOS, V117, P245, DOI 10.1111/j.2007.0030-1299.16376.x; Dieckmann U., 2009, ICES INSIGHT, V46, P34; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; DILL LM, 1984, BEHAV ECOL SOCIOBIOL, V16, P65, DOI 10.1007/BF00293105; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Drake Melissa T., 1997, North American Journal of Fisheries Management, V17, P496, DOI 10.1577/1548-8675(1997)017<0496:ACOBRS>2.3.CO;2; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Dupont-Prinet A, 2010, J EXP BIOL, V213, P1143, DOI 10.1242/jeb.037812; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Edeline E, 2009, P R SOC B, V276, P4163, DOI 10.1098/rspb.2009.1106; EGGERS DM, 1976, J FISH RES BOARD CAN, V33, P1964, DOI 10.1139/f76-250; Eliassen S, 2007, OIKOS, V116, P513, DOI 10.1111/j.2006.0030-1299.15462.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; FAVRO LD, 1979, J FISH RES BOARD CAN, V36, P552, DOI 10.1139/f79-079; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Giraldeau L.-A., 2000, SOCIAL FORAGING THEO; GJEDREM T, 1983, AQUACULTURE, V33, P51, DOI 10.1016/0044-8486(83)90386-1; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Griffiths SW, 1998, ANIM BEHAV, V56, P689, DOI 10.1006/anbe.1998.0767; HAMLEY JM, 1975, J FISH RES BOARD CAN, V32, P1943, DOI 10.1139/f75-233; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; HAWKINS AJS, 1991, FUNCT ECOL, V5, P222, DOI 10.2307/2389260; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 1996, FUNCT ECOL, V10, P245, DOI 10.2307/2389849; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; Hiddink JG, 2008, CAN J FISH AQUAT SCI, V65, P1393, DOI 10.1139/F08-064; Hilborn R, 2008, B MAR SCI, V83, P95; Hilborn R, 2006, FISHERIES, V31, P554; Hurst TP, 2005, MAR ECOL PROG SER, V293, P233, DOI 10.3354/meps293233; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; Hutchings MR, 1999, J ANIM ECOL, V68, P310, DOI 10.1046/j.1365-2656.1999.00287.x; INMAN AJ, 1987, TRENDS ECOL EVOL, V2, P31, DOI 10.1016/0169-5347(87)90093-0; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kendall NW, 2009, CAN J FISH AQUAT SCI, V66, P896, DOI 10.1139/F09-047; Kolluru GR, 1996, J EVOLUTION BIOL, V9, P695, DOI 10.1046/j.1420-9101.1996.9060695.x; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Krause J., 2002, LIVING GROUPS; Kristiansen TS, 1998, J FISH BIOL, V52, P688; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; LAW R, 1991, NEW SCI, V129, P35; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LAW R, 1979, AM NAT, V114, P250, DOI 10.1086/283472; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Maan ME, 2006, BEHAV ECOL, V17, P691, DOI 10.1093/beheco/ark020; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Mangel M, 2001, EXP GERONTOL, V36, P765, DOI 10.1016/S0531-5565(00)00240-0; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Medawar P, 1952, UNSOLVED PROBLEM BIO; Mertz G, 1998, CAN J FISH AQUAT SCI, V55, P478, DOI 10.1139/cjfas-55-2-478; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Munch SB, 2003, EVOLUTION, V57, P2119, DOI 10.1554/02-711; Naish KA, 2008, FISH FISH, V9, P396, DOI 10.1111/j.1467-2979.2008.00302.x; Neuheimer AB, 2010, CAN J FISH AQUAT SCI, V67, P854, DOI 10.1139/F10-025; Nilsson GE, 1996, J EXP BIOL, V199, P603; Norris K, 1999, P ROY SOC B-BIOL SCI, V266, P1703, DOI 10.1098/rspb.1999.0835; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Ozbilgin H, 2004, ICES J MAR SCI, V61, P1190, DOI 10.1016/j,icesjms.2004.07.001; PALMER AR, 1981, NATURE, V292, P150, DOI 10.1038/292150a0; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; Persson L, 2007, SCIENCE, V316, P1743, DOI 10.1126/science.1141412; Peters R.H., 1983, P1; Petrell RJ, 2000, AQUACULT ENG, V22, P225, DOI 10.1016/S0144-8609(00)00052-2; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; PITCHER TJ, 1982, BEHAV ECOL SOCIOBIOL, V10, P149, DOI 10.1007/BF00300175; PULLIAM HR, 1975, AM NAT, V109, P765, DOI 10.1086/283041; Quinn TP, 2007, ECOL APPL, V17, P731, DOI 10.1890/06-0771; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Ricker William E., 1995, Canadian Special Publication of Fisheries and Aquatic Sciences, V121, P593; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1991, ICES J MAR SCI, V48, P253, DOI 10.1093/icesjms/48.3.253; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; Rutter C., 1902, B US FISH COMM, V5, P63; Sattar SA, 2008, B MAR SCI, V83, P235; SAUNDERS RL, 1992, CAN J FISH AQUAT SCI, V49, P878, DOI 10.1139/f92-098; Saura M, 2010, FRESHWATER BIOL, V55, P923, DOI 10.1111/j.1365-2427.2009.02346.x; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Stephens D. W., 2007, FORAGING BEHAV ECOLO; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Strand E, 2002, AM NAT, V159, P624, DOI 10.1086/339997; Sundstrom LF, 2007, P NATL ACAD SCI USA, V104, P3889, DOI 10.1073/pnas.0608767104; Sundstrom LF, 2010, ECOL APPL, V20, P1372, DOI 10.1890/09-0631.1; Suzuki Y, 2010, EVOL ECOL, V24, P749, DOI 10.1007/s10682-009-9331-3; Swain DP, 2008, P R SOC B, V275, P1113, DOI 10.1098/rspb.2007.1727; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; TANDLER A, 1979, J FISH BIOL, V14, P343, DOI 10.1111/j.1095-8649.1979.tb03529.x; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Thomas G, 2007, CAN J FISH AQUAT SCI, V64, P402, DOI 10.1139/F07-019; VALONE TJ, 1987, OECOLOGIA, V71, P286, DOI 10.1007/BF00377297; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; VONBERTALANFFY L, 1953, BIOL BULL, V105, P240, DOI 10.2307/1538640; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; WARE DM, 1975, J FISH RES BOARD CAN, V32, P33, DOI 10.1139/f75-005; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wright P.J., 2005, 2005Q07 ICES CM; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 150 102 104 6 90 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0173-9565 1439-0485 MAR ECOL-EVOL PERSP Mar. Ecol.-Evol. Persp. MAR 2012 33 1 1 25 10.1111/j.1439-0485.2011.00460.x 25 Marine & Freshwater Biology Marine & Freshwater Biology 928AB WOS:000302950800001 Bronze 2019-02-21 J Cothran, RD; Stiff, AR; Jeyasingh, PD; Relyea, RA Cothran, Rickey D.; Stiff, Andy R.; Jeyasingh, Punidan D.; Relyea, Rick A. EUTROPHICATION AND PREDATION RISK INTERACT TO AFFECT SEXUAL TRAIT EXPRESSION AND MATING SUCCESS EVOLUTION English Article Amphipoda; Hyalella; life-history evolution; phenotypic plasticity; sexual selection FRESH-WATER ECOSYSTEMS; CONDITION DEPENDENCE; POECILIA-RETICULATA; LIFE-HISTORY; STOICHIOMETRIC CONSTRAINTS; HERITABLE VARIATION; ECOLOGICAL CONTEXT; SOCIAL COMPETITION; GENETIC VARIANCE; SELECTION Sexual traits are especially sensitive to low food resources. Other environmental parameters (e.g., predation) should also affect sexual trait expression by favoring investment in viability traits rather than sexual traits. We know surprisingly little about how predators alter investment in sexual traits, or how predator and resource environments interact to affect sexual trait investment. We explored how increasing phosphorous (P) availability, at a level mimicking cultural eutrophication, affects the development of sexual, nonsexual, and viability traits of amphipods in the presence and absence of predators. Sexual traits and growth were hypersensitive to low P compared to nonsexual traits. However, a key sexual trait responded to low P only when predator cues were absent. Furthermore, investment trade-offs between sexual traits and growth only occurred when P was low. The phenotypic changes caused by predator cues and increased P availability resulted in higher male mating success. Thus, eutrophication not only affects sexual trait expression but also masks the trade-off between traits with similar P demand. Sensitivity of sexually selected traits to changes in P, combined with the important roles these traits play in determining fitness and driving speciation, suggests that human-induced environmental change can greatly alter the evolutionary trajectories of populations. [Cothran, Rickey D.; Stiff, Andy R.; Relyea, Rick A.] Univ Pittsburgh, Ecol Lab, Dept Biol Sci & Pymatuning, Pittsburgh, PA 15260 USA; [Jeyasingh, Punidan D.] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA Cothran, RD (reprint author), Univ Pittsburgh, Ecol Lab, Dept Biol Sci & Pymatuning, 4249 5th Ave, Pittsburgh, PA 15260 USA. rdc28@pitt.edu National Science Foundation (NSF) [0924401] We thank R. Bonduriansky and three anonymous reviewers for constructive comments on earlier versions of the manuscript. This work was supported by a National Science Foundation (NSF) grant awarded to RAR, including an REU supplement that supported ARS. We thank P. R. Chowdhury for assistance in performing elemental analyses, supported by NSF grant no. 0924401 to PDJ. Andersson M., 1994, SEXUAL SELECTION; Bertin A, 2003, J EVOLUTION BIOL, V16, P698, DOI 10.1046/j.1420-9101.2003.00565.x; Bertram SM, 2006, ANIM BEHAV, V72, P899, DOI 10.1016/j.anbehav.2006.02.012; Bertram SM, 2009, ANIM BEHAV, V77, P525, DOI 10.1016/j.anbehav.2008.11.012; Bonduriansky R, 2005, EVOLUTION, V59, P138, DOI 10.1111/j.0014-3820.2005.tb00901.x; Bonduriansky R, 2007, EVOLUTION, V61, P838, DOI 10.1111/j.1558-5646.2007.00081.x; Candolin U, 1997, BEHAV ECOL SOCIOBIOL, V41, P81, DOI 10.1007/s002650050367; CARPENTER SR, 1992, ANNU REV ECOL SYST, V23, P119, DOI 10.1146/annurev.es.23.110192.001003; Contreras-Garduno J, 2008, BEHAV ECOL, V19, P724, DOI 10.1093/beheco/arn026; Cornwallis CK, 2010, TRENDS ECOL EVOL, V25, P145, DOI 10.1016/j.tree.2009.09.008; Cothran RD, 2008, ETHOLOGY, V114, P1145, DOI 10.1111/j.1439-0310.2008.01571.x; Cothran RD, 2008, EVOLUTION, V62, P1666, DOI 10.1111/j.1558-5646.2008.00403.x; Cothran RD, 2008, BEHAV ECOL SOCIOBIOL, V62, P1409, DOI 10.1007/s00265-008-0570-z; Cothran RD, 2010, EVOLUTION, V64, P2535, DOI 10.1111/j.1558-5646.2010.00998.x; Cothran RD, 2010, ANIM BEHAV, V80, P543, DOI 10.1016/j.anbehav.2010.06.019; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; Cotton S, 2004, EVOLUTION, V58, P1038; Darwin C., 1871, J MURRAY LONDON; David P, 2000, NATURE, V406, P186; EDWARDS TD, 1992, J N AM BENTHOL SOC, V11, P69, DOI 10.2307/1467883; Elser JJ, 1996, BIOSCIENCE, V46, P674, DOI 10.2307/1312897; Elser JJ, 2003, ECOL LETT, V6, P936, DOI 10.1046/j.1461-0248.2003.00518.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Faerovig PJ, 2003, FRESHWATER BIOL, V48, P1782, DOI 10.1046/j.1365-2427.2003.01128.x; Fisher RA, 1930, GENETICAL THEORY NAT; GLANTZ SA, 1997, PRIMER BIOSTATISTICS; Grafen A., 1990, J THEOR BIOL, V144, P516; Harris WE, 2008, EVOLUTION, V62, P337, DOI 10.1111/j.1558-5646.2007.00302.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; JEFFRIES M, 1994, FRESHWATER BIOL, V32, P603, DOI 10.1111/j.1365-2427.1994.tb01151.x; Jeyasingh PD, 2005, ECOL LETT, V8, P1021, DOI 10.1111/j.1461-0248.2005.00803.x; Jeyasingh PD, 2007, ECOL LETT, V10, P282, DOI 10.1111/j.1461-0248.2007.01023.x; Jeyasingh PD, 2011, MOL ECOL, V20, P2341, DOI 10.1111/j.1365-294X.2011.05102.x; JOHNSTONE RA, 1995, BIOL REV, V70, P1, DOI 10.1111/j.1469-185X.1995.tb01439.x; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kay AD, 2005, OIKOS, V109, P6, DOI 10.1111/j.0030-1299.2005.14048.x; Kemp DJ, 2008, EVOLUTION, V62, P2346, DOI 10.1111/j.1558-5646.2008.00461.x; Kemp DJ, 2007, EVOLUTION, V61, P168, DOI 10.1111/j.1558-5646.2007.00014.x; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kodric-Brown A, 2006, P NATL ACAD SCI USA, V103, P8733, DOI 10.1073/pnas.0602994103; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Maynard Smith John, 2003, ANIMAL SIGNALS; Mccoy MW, 2006, OECOLOGIA, V148, P547, DOI 10.1007/s00442-006-0403-6; McGraw KJ, 2006, FUNCT ECOL, V20, P678, DOI 10.1111/j.1365-2435.2006.01121.x; Morehouse NI, 2010, OIKOS, V119, P766, DOI 10.1111/j.1600-0706.2009.18569.x; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Parker TH, 2007, BIOL J LINN SOC, V92, P651, DOI 10.1111/j.1095-8312.2007.00851.x; Plath K, 2001, ECOLOGY, V82, P1260, DOI 10.1890/0012-9658(2001)082[1260:MLOZSC]2.0.CO;2; Punzalan D, 2008, J EVOLUTION BIOL, V21, P1297, DOI 10.1111/j.1420-9101.2008.01571.x; Ridley M., 1983, EXPLANATION ORGANIC; Ritchie MG, 2007, ANNU REV ECOL EVOL S, V38, P79, DOI 10.1146/annurev.ecolsys.38.091206.095733; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Schindler DW, 2006, LIMNOL OCEANOGR, V51, P356, DOI 10.4319/lo.2006.51.1_part_2.0356; Schlesinger W, 1997, BIOGEOCHEMISTRY ANAL; Smil V, 2000, ANNU REV ENERG ENV, V25, P53, DOI 10.1146/annurev.energy.25.1.53; SPSS Inc, 2005, LIN MIX EFF MOD SPSS; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; Sterner RW, 2008, LIMNOL OCEANOGR, V53, P1169, DOI 10.4319/lo.2008.53.3.1169; STERNER RW, 1994, ANNU REV ECOL SYST, V25, P1, DOI 10.1146/annurev.es.25.110194.000245; STRONG DR, 1973, ECOLOGY, V54, P1383; Thornhill R., 1983, EVOLUTION INSECT MAT; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vanni MJ, 2002, ANNU REV ECOL SYST, V33, P341, DOI 10.1146/annurev.ecolsys.33.010802.150519; Venarsky MP, 2006, HYDROBIOLOGIA, V568, P425, DOI 10.1007/s10750-006-0225-x; Wellborn GA, 2005, OECOLOGIA, V143, P308, DOI 10.1007/s00442-004-1786-x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WELLBORN GA, 1995, ANIM BEHAV, V50, P353, DOI 10.1006/anbe.1995.0251; Wellborn GA, 2008, MOL ECOL, V17, P2927, DOI 10.1111/j.1365-294X.2008.03805.x; Wellborn Gary A., 2007, P147; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTHEIMER FH, 1987, SCIENCE, V235, P1173, DOI 10.1126/science.2434996; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; Wolf JB, 2008, GENETICA, V134, P89, DOI 10.1007/s10709-007-9214-x; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 78 17 17 1 30 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution MAR 2012 66 3 708 719 10.1111/j.1558-5646.2011.01475.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 900ZN WOS:000300931400008 22380434 Bronze 2019-02-21 J Tarof, SA; Kramer, PM; Tautin, J; Stutchbury, BJM Tarof, Scott A.; Kramer, Patrick M.; Tautin, John; Stutchbury, Bridget J. M. Effects of known age on male paternity in a migratory songbird BEHAVIORAL ECOLOGY English Article age-related; extrapair paternity; genetic reproductive success; known age; life history strategies; sexual selection EXTRA-PAIR PATERNITY; MALE HOODED WARBLERS; PURPLE MARTINS; GOOD GENES; FERTILIZATION SUCCESS; TREE SWALLOWS; GREAT TITS; OLD-AGE; SENESCENCE; BIRDS Many avian studies have shown that reproductive performance improves with age, but little is known about how key components of male fitness, extrapair and within pair paternity, vary across life spans. We tested for age effects on male paternity in purple martins (Progne subis) using cross-sectional analyses of known-aged males (1-9 years old) and longitudinal analyses of individuals sampled in 2 successive years. Microsatellite analyses found that 137 of 297 (46%) nests contained extrapair offspring and 273 of 1235 (22%) offspring were extrapair. Using a subsample of unique known-aged males (n = 160), we found significant linear and nonlinear effects of male age on the number of within pair offspring and, to a lesser extent, on the number of extrapair offspring sired. Male genetic reproductive success increased with age to 3 years and then leveled off. In longitudinal comparisons of known age males sampled in successive years (n = 41), within pair offspring increased with age, even for males >= 2 years old. Paired comparisons (n = 74) found that extrapair sires were older than the males they cuckolded, and that first-year males were significantly underrepresented as extrapair sires given the known age distribution in the population. Poor genetic reproductive performance in younger males is likely constrained through male-male competition during mate guarding and female choice for older males. [Tarof, Scott A.; Kramer, Patrick M.; Stutchbury, Bridget J. M.] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada; [Tautin, John] Purple Martin Conservat Assoc, Erie, PA 16505 USA Tarof, SA (reprint author), York Univ, Dept Biol, 4700 Keele St, Toronto, ON M3J 1P3, Canada. starof@yorku.ca Natural Sciences and Engineering Research Council of Canada [194681] This work was supported by the Natural Sciences and Engineering Research Council of Canada (194681 to B.J.S.) and proceeds from "Silence of the Songbirds" (Walker & Co., 2007). Anmarkrud JA, 2011, MUTAT RES-FUND MOL M, V708, P37, DOI 10.1016/j.mrfmmm.2011.01.006; Beck CW, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000939; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brommer JE, 2007, AM NAT, V170, P643, DOI 10.1086/521241; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Brown CR, 1997, BIRDS N AM ONLINE; Chiver I, 2008, BEHAV ECOL SOCIOBIOL, V62, P1981, DOI 10.1007/s00265-008-0629-x; DAVIDAR P, 1993, AUK, V110, P109; Dean R, 2010, CURR BIOL, V20, P1192, DOI 10.1016/j.cub.2010.04.059; Dunn PO, 2005, J FIELD ORNITHOL, V76, P259, DOI 10.1648/0273-8570-76.3.259; Everitt BS, 2010, MULTIVARIATE MODELIN; Fedy BC, 2002, J FIELD ORNITHOL, V73, P420, DOI 10.1648/0273-8570-73.4.420; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Freeman-Gallant CR, 2010, EVOLUTION, V64, P1007, DOI 10.1111/j.1558-5646.2009.00873.x; Gasparini C, 2010, J EVOLUTION BIOL, V23, P124, DOI 10.1111/j.1420-9101.2009.01889.x; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; HAMANN J, 1987, IBIS, V129, P527, DOI 10.1111/j.1474-919X.1987.tb08240.x; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Ibarguchi G, 2004, J HERED, V95, P209, DOI 10.1093/jhered/esh029; Johnsen A, 2003, ETHOLOGY, V109, P147, DOI 10.1046/j.1439-0310.2003.00861.x; Johnsen A, 2001, BEHAVIOUR, V138, P1371, DOI 10.1163/156853901317367645; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kempenaers B, 1997, BEHAV ECOL, V8, P481, DOI 10.1093/beheco/8.5.481; Kempenaers B, 2001, BEHAV ECOL SOCIOBIOL, V49, P251, DOI 10.1007/s002650000305; Kokko H, 1998, EVOL ECOL, V12, P739, DOI 10.1023/A:1006541701002; Lack D, 1968, ECOLOGICAL ADAPTATIO; LESSELLS CM, 1989, AUK, V106, P375; Mainguy J, 2009, P ROY SOC B-BIOL SCI, V276, P4067, DOI 10.1098/rspb.2009.1231; McCullagh P., 1989, GEN LINEAR MODELS; Mennill DJ, 2002, SCIENCE, V296, P873, DOI 10.1126/science.296.5569.873; Moreno J, 2010, ETHOLOGY, V116, P76, DOI 10.1111/j.1439-0310.2009.01716.x; MORTON ES, 1990, AUK, V107, P275, DOI 10.2307/4087610; MORTON ES, 1990, CONDOR, V92, P1040, DOI 10.2307/1368740; Perreault S, 1997, BEHAV ECOL, V8, P612, DOI 10.1093/beheco/8.6.612; PERRINS CM, 1974, IBIS, V116, P220, DOI 10.1111/j.1474-919X.1974.tb00242.x; Raveh S, 2010, BEHAV ECOL, V21, P537, DOI 10.1093/beheco/arq004; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Robertson RJ, 2001, J ANIM ECOL, V70, P1014, DOI 10.1046/j.0021-8790.2001.00555.x; Schmoll T, 2007, P ROY SOC LOND B BIO, V276, P337; Stanley AA, 2011, CONSERV GENET RESOUR, V3, P577, DOI 10.1007/s12686-011-9408-5; STUTCHBURY BJ, 1991, ANIM BEHAV, V42, P435, DOI 10.1016/S0003-3472(05)80042-9; Stutchbury BJM, 1998, ANIM BEHAV, V55, P553, DOI 10.1006/anbe.1997.0641; Stutchbury BJM, 1997, BEHAV ECOL SOCIOBIOL, V40, P119, DOI 10.1007/s002650050324; Stutchbury BJM, 2009, AUK, V126, P278, DOI 10.1525/auk.2009.08038; Tarof SA, 2011, AUK, V128, P716, DOI 10.1525/auk.2011.11087; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Wagner RH, 1996, BEHAV ECOL SOCIOBIOL, V38, P379, DOI 10.1007/s002650050255; WEATHERHEAD PJ, 1995, BEHAV ECOL SOCIOBIOL, V37, P81, DOI 10.1007/BF00164153; Westneat DF, 2003, ANNU REV ECOL EVOL S, V34, P365, DOI 10.1146/annurev.ecolsys.34.011802.132439; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917 51 8 8 4 51 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAR-APR 2012 23 2 313 321 10.1093/beheco/arr188 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 898HY WOS:000300733800013 Bronze 2019-02-21 J Baskett, ML Baskett, Marissa L. Integrating mechanistic organism-environment interactions into the basic theory of community and evolutionary ecology JOURNAL OF EXPERIMENTAL BIOLOGY English Review mechanistic models; species interactions; quantitative genetics; game theory; functional response; fitness function LIFE-HISTORY EVOLUTION; FUNCTION-VALUED TRAITS; CLIMATE-CHANGE; QUANTITATIVE GENETICS; ADAPTIVE DYNAMICS; NATURAL-SELECTION; CORAL-REEFS; DISPERSAL; MODELS; BIODIVERSITY This paper presents an overview of how mechanistic knowledge of organism-environment interactions, including biomechanical interactions of heat, mass and momentum transfer, can be integrated into basic theoretical population biology through mechanistic functional responses that quantitatively describe how organisms respond to their physical environment. Integrating such functional responses into simple community and microevolutionary models allows scaling up of the organism-level understanding from biomechanics both ecologically and temporally. For community models, Holling-type functional responses for predator-prey interactions provide a classic example of the functional response affecting qualitative model dynamics, and recent efforts are expanding analogous models to incorporate environmental influences such as temperature. For evolutionary models, mechanistic functional responses dependent on the environment can serve as fitness functions in both quantitative genetic and game theoretic frameworks, especially those concerning function-valued traits. I present a novel comparison of a mechanistic fitness function based on thermal performance curves to a commonly used generic fitness function, which quantitatively differ in their predictions for response to environmental change. A variety of examples illustrate how mechanistic functional responses enhance model connections to biologically relevant traits and processes as well as environmental conditions and therefore have the potential to link theoretical and empirical studies. Sensitivity analysis of such models can provide biologically relevant insight into which parameters and processes are important to community and evolutionary responses to environmental change such as climate change, which can inform conservation management aimed at protecting response capacity. Overall, the distillation of detailed knowledge or organism-environment interactions into mechanistic functional responses in simple population biology models provides a framework for integrating biomechanics and ecology that allows both tractability and generality. Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA Baskett, ML (reprint author), Univ Calif Davis, Dept Environm Sci & Policy, 1 Shields Ave, Davis, CA 95616 USA. mlbaskett@ucdavis.edu Baskett, Marissa/P-1762-2014 Baskett, Marissa/0000-0001-6102-1110 Abrams PA, 2001, ECOL LETT, V4, P166, DOI 10.1046/j.1461-0248.2001.00199.x; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; Apaloo J, 1997, THEOR POPUL BIOL, V52, P71; Arnold SJ, 2003, INTEGR COMP BIOL, V43, P367, DOI 10.1093/icb/43.3.367; ARNOLD SJ, 1983, AM ZOOL, V23, P347; Baskett ML, 2007, AM NAT, V170, P59, DOI 10.1086/518184; Baskett ML, 2010, GLOBAL CHANGE BIOL, V16, P1229, DOI 10.1111/j.1365-2486.2009.02062.x; Baskett ML, 2009, ECOL APPL, V19, P3, DOI 10.1890/08-0139.1; Benedetti-Cecchi L, 2012, J EXP BIOL, V215, P977, DOI 10.1242/jeb.058826; Berkley HA, 2010, ECOL LETT, V13, P360, DOI 10.1111/j.1461-0248.2009.01427.x; BERRYMAN AA, 1992, ECOLOGY, V73, P1530, DOI 10.2307/1940005; Bolker B, 2003, ECOLOGY, V84, P1101, DOI 10.1890/0012-9658(2003)084[1101:CTAESO]2.0.CO;2; Bonebrake TC, 2010, P NATL ACAD SCI USA, V107, P12581, DOI 10.1073/pnas.0911841107; CAVALLISFORZA LL, 1976, P NATL ACAD SCI USA, V73, P1689, DOI 10.1073/pnas.73.5.1689; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Chown SL, 1997, FUNCT ECOL, V11, P365, DOI 10.1046/j.1365-2435.1997.00096.x; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; CROW J F, 1970, P591; Dawson TP, 2011, SCIENCE, V332, P53, DOI 10.1126/science.1200303; DAY T., 2005, ECOLOGICAL PARADIGMS, V2, P273, DOI 10.1016/B978-012088459-9/50015-7; Denny M., SCALING ECO IN PRESS; Denny MW, 2012, J EXP BIOL, V215, P934, DOI 10.1242/jeb.058958; Denny M, 2009, INTEGR COMP BIOL, V49, P197, DOI 10.1093/icb/icp070; Dieckmann U, 2006, J THEOR BIOL, V241, P370, DOI 10.1016/j.jtbi.2005.12.002; Feder ME, 2000, ANNU REV ECOL SYST, V31, P315, DOI 10.1146/annurev.ecolsys.31.1.315; FELDMAN MW, 1981, THEOR POPUL BIOL, V19, P370, DOI 10.1016/0040-5809(81)90027-7; FELSENSTEIN J, 1981, THEOR POPUL BIOL, V19, P341, DOI 10.1016/0040-5809(81)90025-3; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; Garland Theodore Jr., 1994, P240; Gaylord B, 2006, ECOL MONOGR, V76, P481, DOI 10.1890/0012-9615(2006)076[0481:MSDICE]2.0.CO;2; Gaylord B, 2012, J EXP BIOL, V215, P997, DOI 10.1242/jeb.059824; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; GILCHRIST GW, 1995, AM NAT, V146, P252, DOI 10.1086/285797; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Hastings A, 1997, POPULATION BIOL CONC; Hastings A, 2007, ECOL LETT, V10, P153, DOI 10.1111/j.1461-0248.2006.00997.x; Heller NE, 2009, BIOL CONSERV, V142, P14, DOI 10.1016/j.biocon.2008.10.006; Helmuth B, 2005, ANNU REV PHYSIOL, V67, P177, DOI 10.1146/annurev.physiol.67.040403.105027; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; Hofmann GE, 2010, ANNU REV PHYSIOL, V72, P127, DOI 10.1146/annurev-physiol-021909-135900; HOLLING C. S., 1959, CANADIAN ENT, V91, P293; Holt RD, 1997, MULTITROPHIC INTERACTIONS IN TERRESTRIAL SYSTEMS, P333; Hovestadt T, 2001, P ROY SOC B-BIOL SCI, V268, P385, DOI 10.1098/rspb.2000.1379; HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521; JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449, DOI 10.1146/annurev.es.21.110190.002313; JONES CG, 1994, OIKOS, V69, P373, DOI 10.2307/3545850; Kearney MR, 2012, J EXP BIOL, V215, P922, DOI 10.1242/jeb.059634; Kingsolver JG, 2003, INTEGR COMP BIOL, V43, P470, DOI 10.1093/icb/43.3.470; Kingsolver JG, 2001, GENETICA, V112, P87, DOI 10.1023/A:1013323318612; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; Levin SA, 2003, ANNU REV ECOL EVOL S, V34, P575, DOI 10.1146/annurev.ecolsys.34.011802.132428; Levin SA, 2000, EVOL ECOL RES, V2, P409; Levin SA, 2008, BIOSCIENCE, V58, P27, DOI 10.1641/B580107; LEVINS R, 1966, AM SCI, V54, P421; Lockwood DR, 2002, THEOR POPUL BIOL, V61, P297, DOI 10.1006/tpbi.202.1572; LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635; LYNCH M, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P234; LYNCH M, 1991, LIMNOL OCEANOGR, V36, P1301, DOI 10.4319/lo.1991.36.7.1301; Madin JS, 2012, J EXP BIOL, V215, P968, DOI 10.1242/jeb.061002; May RM, 2004, SCIENCE, V303, P790, DOI 10.1126/science.1094442; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Naeem S, 2003, ECOL LETT, V6, P567, DOI 10.1046/j.1461-0248.2003.00471.x; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; Norberg J, 2004, LIMNOL OCEANOGR, V49, P1269, DOI 10.4319/lo.2004.49.4_part_2.1269; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Rall BC, 2010, GLOBAL CHANGE BIOL, V16, P2145, DOI 10.1111/j.1365-2486.2009.02124.x; Rietkerk M, 1997, OIKOS, V79, P69, DOI 10.2307/3546091; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Roughgarden J, 2009, BIOL PHILOS, V24, P521, DOI 10.1007/s10539-009-9164-z; Rousset F, 2002, J EVOLUTION BIOL, V15, P515, DOI 10.1046/j.1420-9101.2002.00430.x; Rowland EL, 2011, ENVIRON MANAGE, V47, P322, DOI 10.1007/s00267-010-9608-x; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Schmidt-Nielsen K, 1984, SCALING WHY IS ANIMA; SCHOENER TW, 1986, AM ZOOL, V26, P81; Sgro CM, 2011, EVOL APPL, V4, P326, DOI 10.1111/j.1752-4571.2010.00157.x; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Skalski GT, 2001, ECOLOGY, V82, P3083; SLATKIN M, 1970, P NATL ACAD SCI USA, V66, P87, DOI 10.1073/pnas.66.1.87; SLATKIN M, 1980, ECOLOGY, V61, P163, DOI 10.2307/1937166; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; SPALINGER DE, 1992, AM NAT, V140, P325, DOI 10.1086/285415; Stearns S, 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; TURELLI M, 1994, GENETICS, V138, P913; van de Koppel J, 2012, J EXP BIOL, V215, P962, DOI 10.1242/jeb.060467; Vasseur DA, 2005, AM NAT, V166, P184, DOI 10.1086/431285; Vellend M, 2010, Q REV BIOL, V85, P183, DOI 10.1086/652373; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; Whitehead A, 2012, J EXP BIOL, V215, P884, DOI 10.1242/jeb.058735 103 9 9 1 61 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. MAR 2012 215 6 948 961 10.1242/jeb.059022 14 Biology Life Sciences & Biomedicine - Other Topics 898EF WOS:000300718100009 22357588 Bronze, Green Published 2019-02-21 J Dudley, LS; Hove, AA; Mazer, SJ Dudley, Leah S.; Hove, Alisa A.; Mazer, Susan J. PHYSIOLOGICAL PERFORMANCE AND MATING SYSTEM IN CLARKIA (ONAGRACEAE): DOES PHENOTYPIC SELECTION PREDICT DIVERGENCE BETWEEN SISTER SPECIES? AMERICAN JOURNAL OF BOTANY English Article Clarkia exilis; Clarkia unguiculata; evolution of selfing; life history evolution; Onagraceae; photosynthesis; transpiration; water use efficiency WATER-USE EFFICIENCY; CARBON-ISOTOPE DISCRIMINATION; IMPATIENS-CAPENSIS BALSAMINACEAE; SELF-FERTILIZATION; CLIMATE-CHANGE; ECOPHYSIOLOGICAL TRAITS; NATURAL-SELECTION; INBREEDING DEPRESSION; FLOWERING PHENOLOGY; LOCAL ADAPTATION Premise of the study: The evolution of self-fertilization often occurs in association with other floral, life history, and fitness-related traits. A previous study found that field populations of Clarkia exilis (a predominantly autogamous selfer) and its sister species, Clarkia unguiculata (a facultative outcrosser) differ in mean photosynthetic rates and instantaneous water use efficiency (WUEi). Here, we investigate the strength and direction of selection on these traits in multiple populations of each taxon to determine whether natural selection may contribute to the phenotypic differences between them. Methods: In spring 2008, we measured instantaneous gas exchange rates in nine populations during vegetative growth (Early) and/or during flowering (Late). We conducted selection gradient analyses and estimated selection differentials within populations and across pooled conspecific populations to evaluate the strength, direction, and consistency of selection on each trait early and late in the season. Key results: The direction and relative strength of selection on photosynthetic rates in these taxa corresponds to the phenotypic difference between them; C. exilis has higher photosynthetic rates than C. unguiculata, as well as stronger, more consistent selection favoring rapid photosynthesis throughout the growing season. Patterns of selection on transpiration, WUEi, and the timing of flowering progression are less consistent with phenotypic differences (or lack thereof) between taxa. Conclusions: We detected several examples where selection was consistent with the phenotypic divergence between sister taxa, but there were also numerous instances that were equivocal or in which selection did not predict the realized phenotypic difference between taxa. [Dudley, Leah S.; Hove, Alisa A.; Mazer, Susan J.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Dudley, LS (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. dudley@lifesci.ucsb.edu National Science Foundation [OIS-718227]; Luce Foundation; Ralph M. Parsons Foundation; California Native Plant Society This work was supported by a National Science Foundation grant (OIS-718227) to L.S.D. and S.J.M. A.A.H. received funding from the Luce Foundation, the Ralph M. Parsons Foundation, and the California Native Plant Society. H. Guo assisted in the field. Special thanks to M. Whitfield, director of the Southern Sierra Research Station, for providing accommodations while we conducted fieldwork. UCSB undergraduate interns, including: K. Law, M. Echt, and S. Ricceri, quantified lifetime fruit production. Abu-Asab MS, 2001, BIODIVERS CONSERV, V10, P597, DOI 10.1023/A:1016667125469; Ackerly DD, 2000, BIOSCIENCE, V50, P979, DOI 10.1641/0006-3568(2000)050[0979:TEOPET]2.0.CO;2; Agrawal AA, 2008, J ECOL, V96, P536, DOI 10.1111/j.1365-2745.2008.01365.x; Arntz AM, 2001, OECOLOGIA, V127, P455, DOI 10.1007/s004420100650; ARROYO MTK, 1973, EVOLUTION, V27, P679, DOI 10.1111/j.1558-5646.1973.tb00715.x; Awadalla P, 1997, MOL BIOL EVOL, V14, P1023, DOI 10.1093/oxfordjournals.molbev.a025708; BAKER HG, 1955, EVOLUTION, V9, P347, DOI 10.1111/j.1558-5646.1955.tb01544.x; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Barrett SCH, 1990, BIOL APPROACHES EVOL, P229; Bijlsma R, 2000, J EVOLUTION BIOL, V13, P502, DOI 10.1046/j.1420-9101.2000.00177.x; Bradley NL, 1999, P NATL ACAD SCI USA, V96, P9701, DOI 10.1073/pnas.96.17.9701; Brys R, 2011, AM J BOT, V98, P1834, DOI 10.3732/ajb.1100154; Brys R, 2011, ANN BOT-LONDON, V107, P917, DOI 10.1093/aob/mcr032; Byers DL, 1999, ANNU REV ECOL SYST, V30, P479, DOI 10.1146/annurev.ecolsys.30.1.479; Calsbeek R, 2008, EVOLUTION, V62, P478, DOI 10.1111/j.1558-5646.2007.00282.x; Campbell DR, 1997, AM NAT, V149, P295, DOI 10.1086/285991; Caruso CM, 2006, EVOLUTION, V60, P980, DOI 10.1554/06-050.1; Caruso CM, 2005, EVOLUTION, V59, P826; Casper BB, 2005, OECOLOGIA, V145, P541, DOI 10.1007/s00442-005-0162-9; Cayan DR, 2008, CLIMATIC CHANGE, V87, pS21, DOI 10.1007/s10584-007-9377-6; Cayan DR, 2001, B AM METEOROL SOC, V82, P399, DOI 10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2; CHARLESWORTH B, 1993, GENETICS, V134, P1289; Cleland EE, 2007, TRENDS ECOL EVOL, V22, P357, DOI 10.1016/j.tree.2007.04.003; COHEN D, 1976, AM NAT, V110, P801, DOI 10.1086/283103; COMSTOCK JP, 1992, P NATL ACAD SCI USA, V89, P7747, DOI 10.1073/pnas.89.16.7747; Conner JK, 2004, PRIMER ECOLOGICAL GE; Darwin C, 1876, EFFECTS CROSS SELF F; Delesalle VA, 2008, J EVOLUTION BIOL, V21, P310, DOI 10.1111/j.1420-9101.2007.01444.x; Delph LF, 2005, AM NAT, V166, pS31, DOI 10.1086/444597; Donovan LA, 2009, NEW PHYTOL, V183, P868, DOI 10.1111/j.1469-8137.2009.02916.x; DONOVAN LA, 1994, AM J BOT, V81, P927, DOI 10.2307/2445774; Donovan LA, 2007, OECOLOGIA, V152, P13, DOI 10.1007/s00442-006-0627-5; Dudley LS, 2007, J EVOLUTION BIOL, V20, P2200, DOI 10.1111/j.1420-9101.2007.01421.x; Dudley SA, 1996, EVOLUTION, V50, P92, DOI 10.1111/j.1558-5646.1996.tb04475.x; Dudley SA, 1996, EVOLUTION, V50, P103, DOI 10.1111/j.1558-5646.1996.tb04476.x; Dunnell KL, 2011, AM J BOT, V98, P935, DOI 10.3732/ajb.1000363; DYER MI, 1991, ECOLOGY, V72, P1472, DOI 10.2307/1941120; Eckert C. G., 2006, ECOLOGY EVOLUTION FL, P183; Eckert CG, 2010, TRENDS ECOL EVOL, V25, P35, DOI 10.1016/j.tree.2009.06.013; Elle E, 2010, AM J BOT, V97, P1894, DOI 10.3732/ajb.1000223; Fisher RA, 1941, ANN EUGENIC, V11, P53, DOI 10.1111/j.1469-1809.1941.tb02272.x; Fishman L, 2007, NEW PHYTOL, V177, P802; Fitter AH, 2002, SCIENCE, V296, P1689, DOI 10.1126/science.1071617; Forrest J, 2010, PHILOS T R SOC B, V365, P3101, DOI 10.1098/rstb.2010.0145; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Gaira KS, 2011, BIODIVERS CONSERV, V20, P2201, DOI 10.1007/s10531-011-0082-4; Geber MA, 1997, OECOLOGIA, V109, P535, DOI 10.1007/s004420050114; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; GEBER MA, 1990, OECOLOGIA, V85, P153, DOI 10.1007/BF00319396; Geber MA, 2006, ECOLOGY EVOLUTION FL, P102; Goodwillie C, 2005, ANNU REV ECOL EVOL S, V36, P47, DOI 10.1146/annurev.ecolsys.36.091704.175539; Goodwillie C, 2005, INT J PLANT SCI, V166, P741, DOI 10.1086/431801; Goodwillie C, 2010, NEW PHYTOL, V185, P311, DOI 10.1111/j.1469-8137.2009.03043.x; GOTTLIEB LD, 1984, PLANT SYST EVOL, V147, P91, DOI 10.1007/BF00984582; Gottlieb LD, 1996, SYST BOT, V21, P45, DOI 10.2307/2419562; Griffith TM, 2005, J EVOLUTION BIOL, V18, P1601, DOI 10.1111/j.1420-9101.2005.01021.x; Guerrant EO, 1989, EVOLUTIONARY ECOLOGY, P61; Haggerty BP, 2011, J ECOL, V99, P242, DOI 10.1111/j.1365-2745.2010.01744.x; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Hayhoe K, 2004, P NATL ACAD SCI USA, V101, P12422, DOI 10.1073/pnas.0404500101; HEISLER IL, 1987, AM NAT, V130, P582, DOI 10.1086/284732; Herlihy CR, 2005, AM J BOT, V92, P744, DOI 10.3732/ajb.92.4.744; Heschel MS, 2005, AM J BOT, V92, P1322, DOI 10.3732/ajb.92.8.1322; Heschel MS, 2005, AM J BOT, V92, P37, DOI 10.3732/ajb.92.1.37; Heschel MS, 2002, INT J PLANT SCI, V163, P907, DOI 10.1086/342519; Igic B, 2008, INT J PLANT SCI, V169, P93, DOI 10.1086/523362; Inouye DW, 2008, ECOLOGY, V89, P353, DOI 10.1890/06-2128.1; Ivey CT, 2012, ANN BOT-LONDON, V109, P583, DOI 10.1093/aob/mcr160; Jepsen JU, 2011, GLOBAL CHANGE BIOL, V17, P2071, DOI 10.1111/j.1365-2486.2010.02370.x; Jonas CS, 1999, AM J BOT, V86, P333, DOI 10.2307/2656755; Kalisz S, 2004, NATURE, V430, P884, DOI 10.1038/nature02776; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Keller SR, 2011, AM J BOT, V98, P99, DOI 10.3732/ajb.1000317; Kelly JK, 2008, EVOL ECOL RES, V10, P147; Knies JL, 2004, INT J PLANT SCI, V165, P85, DOI 10.1086/380979; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lambert AM, 2010, AM J BOT, V97, P1431, DOI 10.3732/ajb.1000095; LANDE R, 1985, EVOLUTION, V39, P24, DOI 10.1111/j.1558-5646.1985.tb04077.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Latta RG, 2010, INT J PLANT SCI, V171, P930, DOI 10.1086/656220; Levin DA, 2010, J ECOL, V98, P1276, DOI 10.1111/j.1365-2745.2010.01715.x; LEWIS H, 1953, EVOLUTION, V7, P1, DOI 10.2307/2405568; LEWIS H, 1955, GENUS CLARKIA; Loarie SR, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002502; LOVELESS MD, 1984, ANNU REV ECOL SYST, V15, P65, DOI 10.1146/annurev.es.15.110184.000433; Maron JL, 2007, EVOLUTION, V61, P1912, DOI 10.1111/j.1558-5646.2007.00153.x; Mazer SJ, 2004, AM J BOT, V91, P2041, DOI 10.3732/ajb.91.12.2041; Mazer SJ, 2010, INT J PLANT SCI, V171, P1029, DOI 10.1086/656305; Mazer SJ, 2009, NEW PHYTOL, V183, P630, DOI 10.1111/j.1469-8137.2009.02886.x; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; Miller-Rushing AJ, 2008, ECOLOGY, V89, P332, DOI 10.1890/07-0068.1; Moeller DA, 2005, EVOLUTION, V59, P786, DOI 10.1554/04-656; MOORE DM, 1965, EVOLUTION, V19, P104, DOI 10.1111/j.1558-5646.1965.tb01695.x; Morgan MT, 2005, EVOLUTION, V59, P1143; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; NEVO E, 1991, THEOR APPL GENET, V81, P445, DOI 10.1007/BF00219434; Nicotra AB, 1997, AM J BOT, V84, P1542, DOI 10.2307/2446616; Nuismer SL, 2005, EVOLUTION, V59, P1928; ORNDUFF R, 1969, BRITTONIA, V21, P286, DOI 10.2307/2805581; Pannell JR, 1998, EVOLUTION, V52, P657, DOI 10.1111/j.1558-5646.1998.tb03691.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; RIESEBERG LH, 1991, AM J BOT, V78, P1218, DOI 10.2307/2444926; Roels SAB, 2011, EVOLUTION, V65, P2541, DOI 10.1111/j.1558-5646.2011.01326.x; Runions CJ, 2000, AM J BOT, V87, P1439, DOI 10.2307/2656870; Saldana A, 2007, EVOL ECOL, V21, P651, DOI 10.1007/s10682-006-9143-7; Sandquist DR, 1997, NEW PHYTOL, V135, P635, DOI 10.1046/j.1469-8137.1997.00697.x; Sato H, 1999, AM J BOT, V86, P1699, DOI 10.2307/2656668; Schemske DW, 1999, P NATL ACAD SCI USA, V96, P11910, DOI 10.1073/pnas.96.21.11910; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; Schwartz MD, 2000, INT J CLIMATOL, V20, P929, DOI 10.1002/1097-0088(20000630)20:8<929::AID-JOC557>3.0.CO;2-5; Sherrard ME, 2006, EVOLUTION, V60, P2478, DOI 10.1554/06-150.1; Snell Rebecca, 2005, BMC Ecology, V5, P2, DOI 10.1186/1472-6785-5-2; STEBBINS G. L., 1970, Annual review of ecology and systematics., V1, P307, DOI 10.1146/annurev.es.01.110170.001515; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; Steets JA, 2007, EVOLUTION, V61, P2043, DOI 10.1111/j.1558-5646.2007.00184.x; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; SULTAN SE, 1993, EVOLUTION, V47, P1032, DOI 10.1111/j.1558-5646.1993.tb02133.x; TANTAWY A. O., 1956, GENETICA, V28, P231; TANTAWY A. O., 1956, GENETICA, V28, P177; TEERI JA, 1978, OECOLOGIA, V37, P29, DOI 10.1007/BF00349989; TERAMURA AH, 1979, CAN J BOT, V57, P2559, DOI 10.1139/b79-304; Thomson JD, 2010, PHILOS T R SOC B, V365, P3187, DOI 10.1098/rstb.2010.0115; VASEK FC, 1958, AM J BOT, V45, P150, DOI 10.2307/2439364; VASEK FC, 1976, EVOLUTION, V30, P403, DOI 10.1111/j.1558-5646.1976.tb00920.x; VASEK FC, 1964, EVOLUTION, V18, P213, DOI 10.2307/2406393; VASEK FC, 1971, ECOLOGY, V52, P1038, DOI 10.2307/1933810; WINN AA, 1991, FUNCT ECOL, V5, P562, DOI 10.2307/2389639; Wright LI, 2008, CONSERV GENET, V9, P833, DOI 10.1007/s10592-007-9405-0; Wu CA, 2010, OECOLOGIA, V162, P23, DOI 10.1007/s00442-009-1448-0; ZANGERL AR, 1983, OECOLOGIA, V57, P270, DOI 10.1007/BF00379590; ZHANG JW, 1993, OECOLOGIA, V93, P80, DOI 10.1007/BF00321195 131 9 10 2 50 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 AM J BOT Am. J. Bot. MAR 2012 99 3 488 507 10.3732/ajb.1100387 20 Plant Sciences Plant Sciences 905EI WOS:000301254600020 22396332 Bronze 2019-02-21 J Meyer, KM; Leveau, JHJ Meyer, Katrin M.; Leveau, Johan H. J. Microbiology of the phyllosphere: a playground for testing ecological concepts OECOLOGIA English Review Ecological theories; Diversity; Biogeography; Niche; Leaf surface QUERCUS-MACROCARPA PHYLLOSPHERE; POPULATION-DYNAMICS; BIOLOGICAL-CONTROL; LEAF SURFACES; FUNGAL COMMUNITIES; BACTERIA; LEAVES; DIVERSITY; MODEL; PSEUDOMONAS Many concepts and theories in ecology are highly debated, because it is often difficult to design decisive tests with sufficient replicates. Examples include biodiversity theories, succession concepts, invasion theories, coexistence theories, and concepts of life history strategies. Microbiological tests of ecological concepts are rapidly accumulating, but have yet to tap into their full potential to complement traditional macroecological theories. Taking the example of microbial communities on leaf surfaces (i.e. the phyllosphere), we show that most explorations of ecological concepts in this field of microbiology focus on autecology and population ecology, while community ecology remains understudied. Notable exceptions are first tests of the island biogeography theory and of biodiversity theories. Here, the phyllosphere provides the unique opportunity to set up replicated experiments, potentially moving fields such as biogeography, macroecology, and landscape ecology beyond theoretical and observational evidence. Future approaches should take advantage of the great range of spatial scales offered by the leaf surface by iteratively linking laboratory experiments with spatial simulation models. [Meyer, Katrin M.] Univ Gottingen, Fac Forest Sci & Forest Ecol, D-37077 Gottingen, Germany; [Meyer, Katrin M.; Leveau, Johan H. J.] Netherlands Inst Ecol NIOO KNAW, Dept Microbial Ecol, NL-6708 PB Wageningen, Netherlands; [Leveau, Johan H. J.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA Meyer, KM (reprint author), Univ Gottingen, Fac Forest Sci & Forest Ecol, Busgenweg 4, D-37077 Gottingen, Germany. kmeyer5@uni-goettingen.de Leveau, Johan/C-1096-2012; Meyer, Katrin/E-6839-2013; Library, Library/A-4320-2012 Meyer, Katrin/0000-0002-9990-4047; Library, Library/0000-0002-3835-159X NWO VIDI [864.06.002]; State of Lower Saxony (Ministry of Science and Culture) We thank Martin Schadler, Mitja Remus-Emsermann, Hans van Veen, Tanja Scheublin, and an anonymous reviewer for helpful input or exchanges of ideas during the preparation of the manuscript. We acknowledge funding from NWO VIDI-grant 864.06.002 to JHJL. KMM was partly funded by the State of Lower Saxony (Ministry of Science and Culture; Cluster of Excellence "Functional Biodiversity Research"). This is NIOO publication number 5105. ANDREWS JH, 1990, CAN J PLANT PATHOL, V12, P300, DOI 10.1080/07060669009501004; Andrews JH, 2000, ANNU REV PHYTOPATHOL, V38, P145, DOI 10.1146/annurev.phyto.38.1.145; Arnold AE, 2007, ECOLOGY, V88, P541, DOI 10.1890/05-1459; Balint-Kurti P, 2010, MOL PLANT MICROBE IN, V23, P473, DOI 10.1094/MPMI-23-4-0473; BAMFORTH SS, 1980, J PROTOZOOL, V27, P33, DOI 10.1111/j.1550-7408.1980.tb04227.x; Beattie GA, 1999, PHYTOPATHOLOGY, V89, P353, DOI 10.1094/PHYTO.1999.89.5.353; BEATTIE GA, 1995, ANNU REV PHYTOPATHOL, V33, P145, DOI 10.1146/annurev.py.33.090195.001045; Bezemer TM, 2007, NATURE, V446, pE6, DOI 10.1038/nature05749; Brown SP, 2009, EVOL APPL, V2, P32, DOI 10.1111/j.1752-4571.2008.00059.x; Cameron T, 2002, TRENDS ECOL EVOL, V17, P495, DOI 10.1016/S0169-5347(02)02618-6; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; Delmotte N, 2009, P NATL ACAD SCI USA, V106, P16428, DOI 10.1073/pnas.0905240106; Diamond J.M., 1975, P342; Dreux N, 2007, J APPL MICROBIOL, V103, P1821, DOI 10.1111/j.1365-2672.2007.03419.x; DURRETT R, 1994, THEOR POPUL BIOL, V46, P363, DOI 10.1006/tpbi.1994.1032; Elad Y, 1996, EUR J PLANT PATHOL, V102, P719, DOI 10.1007/BF01877146; Ellis RJ, 1999, FEMS MICROBIOL ECOL, V28, P345, DOI 10.1016/S0168-6496(98)00120-2; Fernando WGD, 1996, EUR J PLANT PATHOL, V102, P1, DOI 10.1007/BF01877110; Giddens SR, 2003, ENVIRON MICROBIOL, V5, P1016, DOI 10.1046/j.1462-2920.2003.00506.x; Gotelli NJ, 2002, ECOLOGY, V83, P2091, DOI 10.2307/3072040; Grime J. P., 2001, PLANT STRATEGIES VEG; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 1997, OECOLOGIA, V109, P323, DOI 10.1007/s004420050090; Grimm V, 2005, INDIVIDUAL BASED MOD; Hirano SS, 2000, MICROBIOL MOL BIOL R, V64, P624, DOI 10.1128/MMBR.64.3.624-653.2000; Hubbell SP, 2003, OIKOS, V100, P193, DOI 10.1034/j.1600-0706.2003.12450.x; Hubbell Stephen P., 2001, V32, pi; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Iriarte FB, 2007, APPL ENVIRON MICROB, V73, P1704, DOI 10.1128/AEM.02118-06; Ives AR, 2004, AM NAT, V163, P375, DOI 10.1086/381942; Jumpponen A, 2010, NEW PHYTOL, V186, P496, DOI 10.1111/j.1469-8137.2010.03197.x; Jumpponen A, 2009, NEW PHYTOL, V184, P438, DOI 10.1111/j.1469-8137.2009.02990.x; Kinkel LL, 2002, PHYLLOSPHERE MICROBIOLOGY, P317; KINKEL LL, 1987, OECOLOGIA, V71, P405, DOI 10.1007/BF00378714; Kinkel LL, 1997, ANNU REV PHYTOPATHOL, V35, P327, DOI 10.1146/annurev.phyto.35.1.327; KNUDSEN GR, 1989, APPL ENVIRON MICROB, V55, P2641; KNUDSEN GR, 1988, APPL ENVIRON MICROB, V54, P343; KONOPKA A, 2006, MICROBE, V1, P175; Kreft JU, 1998, MICROBIOL-UK, V144, P3275, DOI 10.1099/00221287-144-12-3275; Kreft JU, 2001, MICROBIOL-SGM, V147, P2897, DOI 10.1099/00221287-147-11-2897; Leibler S, 2010, P NATL ACAD SCI USA, V107, P13183, DOI 10.1073/pnas.0912538107; Leveau JHJ, 2001, J BACTERIOL, V183, P6752, DOI 10.1128/JB.183.23.6752-6762.2001; LEVEAU JHJ, 2006, BIOL PLANT CUTICLE, P334; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; LEVINS R, 1969, Bulletin of the Entomological Society of America, V15, P237; Lindow SE, 2002, CURR OPIN BIOTECH, V13, P238, DOI 10.1016/S0958-1669(02)00313-0; Lindow SE, 2003, APPL ENVIRON MICROB, V69, P1875, DOI 10.1128/AEM.69.4.1875-1883.2003; MAC ARTHUR ROBERT H., 1967; MAROIS JJ, 1995, CAN J BOT, V73, pS76; Meyer KM, 2010, BASIC APPL ECOL, V11, P561, DOI 10.1016/j.baae.2010.08.003; MOHAMED S, 1995, J PHYTOPATHOL, V143, P111, DOI 10.1111/j.1439-0434.1995.tb00241.x; Monier JM, 2003, P NATL ACAD SCI USA, V100, P15977, DOI 10.1073/pnas.2436560100; Muller T, 2003, MICROBIOL RES, V158, P291, DOI 10.1078/0944-5013-00207; Nix SS, 2008, CAN J MICROBIOL, V54, P299, DOI [10.1139/W08-012, 10.1139/w08-012]; Nix-Stohr S, 2008, MICROB ECOL, V55, P38, DOI 10.1007/s00248-007-9248-8; PEREG LL, 1994, MAR BIOL, V119, P327, DOI 10.1007/BF00347529; Redford AJ, 2010, ENVIRON MICROBIOL, V12, P2885, DOI 10.1111/j.1462-2920.2010.02258.x; Redford AJ, 2009, MICROB ECOL, V58, P189, DOI 10.1007/s00248-009-9495-y; Remus-Emsermann MNP, 2010, ISME J, V4, P215, DOI 10.1038/ismej.2009.110; Rickfeld RE, 2003, OIKOS, V100, P185, DOI 10.1034/j.1600-0706.2003.12018.x; Ruinen J., 1961, Plant and Soil, V15, P81, DOI 10.1007/BF01347221; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Turchin P, 2001, ECOL LETT, V4, P267, DOI 10.1046/j.1461-0248.2001.00204.x; Unterseher M, 2011, MOL ECOL, V20, P275, DOI 10.1111/j.1365-294X.2010.04948.x; Vokou D, 2007, ALLELOPATHY J, V19, P119; Whipps JM, 2008, J APPL MICROBIOL, V105, P1744, DOI 10.1111/j.1365-2672.2008.03906.x; WILSON M, 1994, APPL ENVIRON MICROB, V60, P4468; Woody ST, 2007, ECOLOGY, V88, P1513, DOI 10.1890/05-2026; Zwielehner J, 2008, MOL NUTR FOOD RES, V52, P614, DOI 10.1002/mnfr.200700158 69 39 46 2 106 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 2012 168 3 621 629 10.1007/s00442-011-2138-2 9 Ecology Environmental Sciences & Ecology 911HB WOS:000301706800002 21983641 Green Published, Other Gold 2019-02-21 J Krebs, JM; Bell, SS Krebs, Justin M.; Bell, Susan S. Risk of predation reflects variation in the reproductive strategy of a dominant forage fish in mangrove tidal tributaries OECOLOGIA English Article Life history; Poeciliidae; Tampa Bay; Tidal creek; Trade-off LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; BRACHYRHAPHIS-RHABDOPHORA; RESOURCE AVAILABILITY; HETERANDRIA-FORMOSA; SAILFIN MOLLIES; OFFSPRING SIZE; FEMALE GUPPIES; POPULATIONS; PLASTICITY The role of predators in shaping prey life histories is a central theme in the ecological literature. However, the association between degree of predation risk and prey reproductive strategies has not been clearly established. We examined reproduction in the sailfin molly (Poecilia latipinna) from small tidal tributaries in a subtropical estuary. Our results revealed a gradient along which females produced many, small offspring at one extreme (mean = 42 offspring, 17 mg each) and fewer, larger offspring at the other (24 offspring, 29 mg each). Reproductive allotment ranged from 14.9-21.5% of maternal biomass. Based on our observation of divergent reproductive strategies, we experimentally tested the null hypothesis of no difference in predation risk among tributaries using a novel quantitative approach to estimate predation. We predicted greater risk in tributaries where mollies produced many, small offspring. Tethering confirmed increasing risk from 16.2 +/- 5.3% SE to 54.7 +/- 3.6% fish lost h(-1) across sites in agreement with observed variation in reproduction. Predation was unexpectedly higher than predicted at one of the four sites suggesting that additional factors (e.g., food) had influenced reproduction there. Our results provide insight into the well-studied concept of predator-mediated variation in prey reproduction by quantitatively demonstrating differential risk for mollies exhibiting divergent reproductive strategies. While the observed range of variation in reproductive traits was consistent with previous studies reporting strong predator effects, higher than expected predation in one case may suggest that the prey response does not follow a continuous trajectory of incremental change with increasing predation risk, but may be better defined as a threshold beyond which a significant shift in reproductive strategy occurs. [Krebs, Justin M.; Bell, Susan S.] Univ S Florida, Dept Integrat Biol, Tampa, FL 33620 USA Krebs, JM (reprint author), Univ S Florida, Dept Integrat Biol, 4202 E Fowler Ave, Tampa, FL 33620 USA. jkrebs@mail.usf.edu U.S. Geological Survey; Pinellas County Environmental Fund; Institutional Animal Care and Use Committee, Division of Comparative Medicine, University of South Florida [W3603] Thanks to M. Squitieri for his tremendous contribution to the success of this study. Thanks also to L. Bedinger, A. Brame, M. Brown, N. Hansen, A. Meyers, M. Neilson, J. Peterson, T. Richards, N. Silverman and L. Yeager for additional assistance with fieldwork. Thanks to C. McIvor, the U.S. Geological Survey, L. Vanderbloemen and Jacobs Technology for providing project support and A. Krebs for providing domestic support. This project was partially funded by a grant from the Pinellas County Environmental Fund. Suggestions by Keith Ludwig helped to improve the design of the tethers. Approval for this study was granted by the Institutional Animal Care and Use Committee (protocol #W3603) at the Division of Comparative Medicine, University of South Florida. The quality of the manuscript benefited from reviews by J. Trexler, J. Downhower and several anonymous reviewers. This manuscript represents partial fulfillment of the PhD requirements for J. Krebs. Able KW, 2006, J EXP MAR BIOL ECOL, V335, P177, DOI 10.1016/j.jembe.2006.03.004; Abney MA, 2004, ENVIRON BIOL FISH, V70, P67, DOI 10.1023/B:EBFI.0000022854.58506.8d; Arthur AD, 2004, J ANIM ECOL, V73, P867, DOI 10.1111/j.0021-8790.2004.00864.x; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Belk MC, 1998, OECOLOGIA, V113, P203, DOI 10.1007/s004420050369; Blewett David A., 2006, Gulf and Caribbean Research, V18, P1; Chick JH, 2008, WETLANDS, V28, P378, DOI 10.1672/07-121.1; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DAHLGREN BT, 1979, J FISH BIOL, V15, P71, DOI 10.1111/j.1095-8649.1979.tb03573.x; Downhower JF, 2009, EVOLUTION, V63, P557, DOI 10.1111/j.1558-5646.2008.00553.x; Downhower JF, 2000, ENVIRON BIOL FISH, V59, P415, DOI 10.1023/A:1026552527018; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; Ellis WL, 2004, ESTUARIES, V27, P966, DOI 10.1007/BF02803423; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Evans JP, 2007, BEHAV ECOL SOCIOBIOL, V61, P719, DOI 10.1007/s00265-006-0302-1; Fievet V, 2008, OIKOS, V117, P1380, DOI 10.1111/j.2008.0030-1299.16629.x; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; HAYNES JL, 1995, COPEIA, P147; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; KORPIMAKI E, 1994, EVOL ECOL, V8, P357, DOI 10.1007/BF01238188; Krebs JM, 2007, B MAR SCI, V80, P839; Langerhans RB, 2009, EVOLUTION, V63, P561, DOI 10.1111/j.1558-5646.2008.00556.x; Leips J, 2009, EVOLUTION, V63, P1341, DOI 10.1111/j.1558-5646.2009.00631.x; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; McCormick MI, 1998, ECOLOGY, V79, P1873, DOI 10.2307/176695; MILLER DE, 1990, COPEIA, P1099, DOI 10.2307/1446494; Moore RD, 1996, OIKOS, V77, P331, DOI 10.2307/3546073; PECKARSKY BL, 1993, ECOLOGY, V74, P1836, DOI 10.2307/1939941; PETERSON CH, 1994, MAR ECOL PROG SER, V111, P289, DOI 10.3354/meps111289; Preisser EL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002465; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick David, 1996, P243; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Roff Derek A., 1992; Scrimshaw NS, 1944, BIOL BULL-US, V87, P37, DOI 10.2307/1538127; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Timmerman CM, 2003, ENVIRON BIOL FISH, V68, P293, DOI 10.1023/A:1027300701599; TREXLER JC, 1994, OIKOS, V69, P250, DOI 10.2307/3546145; Trexler JC, 1997, ECOLOGY, V78, P1370; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; Woodley CM, 2003, OECOLOGIA, V136, P155, DOI 10.1007/s00442-003-1236-1 55 1 1 1 36 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 2012 168 3 737 748 10.1007/s00442-011-2117-7 12 Ecology Environmental Sciences & Ecology 911HB WOS:000301706800014 21928154 2019-02-21 J Oftedal, OT Oftedal, O. T. The evolution of milk secretion and its ancient origins ANIMAL English Article evolution; lactation; milk composition; casein; milk fat globule WHEY ACIDIC PROTEIN; LACTATING MAMMARY-GLAND; INNATE IMMUNE-SYSTEM; XANTHINE-OXIDOREDUCTASE; ALPHA-LACTALBUMIN; BETA-LACTOGLOBULIN; TRICHOSURUS-VULPECULA; SKIN SECRETIONS; CHEMICAL-CHARACTERIZATION; ARCTOCEPHALUS-GAZELLA Lactation represents an important element of the life history strategies of all mammals, whether monotreme, marsupial, or eutherian. Milk originated as a glandular skin secretion in synapsids (the lineage ancestral to mammals), perhaps as early as the Pennsylvanian period, that is, approximately 310 million years ago (mya). Early synapsids laid eggs with parchment-like shells intolerant of desiccation and apparently dependent on glandular skin secretions for moisture. Mammary glands probably evolved from apocrine-like glands that combined multiple modes of secretion and developed in association with hair follicles. Comparative analyses of the evolutionary origin of milk constituents support a scenario in which these secretions evolved into a nutrient-rich milk long before mammals arose. A variety of antimicrobial and secretory constituents were co-opted into novel roles related to nutrition of the young. Secretory calcium-binding phosphoproteins may originally have had a role in calcium delivery to eggs; however, by evolving into large, complex casein micelles, they took on an important role in transport of amino acids, calcium and phosphorus. Several proteins involved in immunity, including an ancestral butyrophilin and xanthine oxidoreductase, were incorporated into a novel membrane-bound lipid droplet (the milk fat globule) that became a primary mode of energy transfer. An ancestral c-lysozyme lost its lytic functions in favor of a role as alpha-lactalbumin, which modifies a galactosyltransferase to recognize glucose as an acceptor, leading to the synthesis of novel milk sugars, of which free oligosaccharides may have predated free lactose. An ancestral lipocalin and an ancestral whey acidic protein four-disulphide core protein apparently lost their original transport and antimicrobial functions when they became the whey proteins beta-lactoglobulin and whey acidic protein, which with alpha-lactalbumin provide limiting sulfur amino acids to the young. By the late Triassic period (ca 210 mya), mammaliaforms (mammalian ancestors) were endothermic (requiring fluid to replace incubatory water losses of eggs), very small in size (making large eggs impossible), and had rapid growth and limited tooth replacement (indicating delayed onset of feeding and reliance on milk). Thus, milk had already supplanted egg yolk as the primary nutrient source, and by the Jurassic period (ca 170 mya) vitellogenin genes were being lost. All primary milk constituents evolved before the appearance of mammals, and some constituents may have origins that predate the split of the synapsids from sauropsids (the lineage leading to 'reptiles' and birds). Thus, the modern dairy industry is built upon a very old foundation, the cornerstones of which were laid even before dinosaurs ruled the earth in the Jurassic and Cretaceous periods. Smithsonian Environm Res Ctr, Smithsonian Inst, Edgewater, MD 21037 USA Oftedal, OT (reprint author), Smithsonian Environm Res Ctr, Smithsonian Inst, POB 28, Edgewater, MD 21037 USA. oftedalo@si.edu Akerstrom B., 2006, LIPOCALINS LANDES BI; Ali MF, 2002, BBA-PROTEINS PROTEOM, V1601, P55, DOI 10.1016/S1570-9639(02)00432-6; Andrechek ER, 2008, DEVELOPMENT, V135, P2403, DOI 10.1242/dev.019018; Arnould JPY, 1996, CAN J ZOOL, V74, P254, DOI 10.1139/z96-032; ARNOULD JPY, 1995, J ZOOL, V237, P1, DOI 10.1111/j.1469-7998.1995.tb02741.x; Beck G, 1996, SCI AM, V275, P60, DOI 10.1038/scientificamerican1196-60; Beutler B, 2004, MOL IMMUNOL, V40, P845, DOI 10.1016/j.molimm.2003.10.005; Bingle CD, 2008, TRENDS IMMUNOL, V29, P444, DOI 10.1016/j.it.2008.07.001; Bingle L, 2006, RESP RES, V7, DOI 10.1186/1465-9921-7-61; Blackburn DG, 2006, HERPETOL MONOGR, V20, P131, DOI 10.1655/0733-1347(2007)20[131:SRAMOF]2.0.CO;2; Brawand D, 2008, PLOS BIOL, V6, P507, DOI 10.1371/journal.pbio.0060063; Bresslau E, 1912, JENAISCHE DENKSCHR, V7, P647; BRESSLAU E, 1920, MAMMARY APPARATUS MA; Brew K., 2003, ADV DAIRY CHEM, V1, P387; Buckley J, 2010, J EXP BIOL, V213, P3787, DOI 10.1242/jeb.042929; BURNS RA, 1981, J NUTR, V111, P2117; Callewaert L, 2010, J BIOSCIENCES, V35, P127, DOI 10.1007/s12038-010-0015-5; Capuco AV, 2009, DOKL ACAD SCI USSR, V8, P37, DOI [10.1186/jbiol139, DOI 10.1186/JBIOL139]; Chudinov P, 1968, DOKL AKAD NAUK SSSR, V179, P226; Clarke BT, 1997, BIOL REV, V72, P365, DOI 10.1017/S0006323197005045; CRISP EA, 1989, REPROD FERT DEVELOP, V1, P315, DOI 10.1071/RD9890315; Darwin C., 1872, ORIGIN SPECIES MEANS; Demmer J, 1998, J MOL ENDOCRINOL, V20, P37, DOI 10.1677/jme.0.0200037; Dhouailly D, 2009, J ANAT, V214, P587, DOI 10.1111/j.1469-7580.2008.01041.x; Enroth C, 2000, P NATL ACAD SCI USA, V97, P10723, DOI 10.1073/pnas.97.20.10723; Flower DR, 1996, BIOCHEM J, V318, P1; FOLDAGER J, 1977, J DAIRY SCI, V60, P1095, DOI 10.3168/jds.S0022-0302(77)83994-5; FOMON SJ, 1986, J NUTR, V116, P1405; Fox P.F., 2003, ADV DAIRY CHEM, V1, P1, DOI DOI 10.1007/978-1-4419-8602-3; Fry BG, 2008, MOL CELL PROTEOMICS, V7, P215, DOI 10.1074/mcp.M700094-MCP200; Fujita T, 2002, NAT REV IMMUNOL, V2, P346, DOI 10.1038/nri800; FULLER MF, 1989, BRIT J NUTR, V62, P255, DOI 10.1079/BJN19890028; Ganfornina MD, 2000, MOL BIOL EVOL, V17, P114, DOI 10.1093/oxfordjournals.molbev.a026224; GANFORNINA MD, 2006, LIPOCALINS, P17; Garattini E, 2003, BIOCHEM J, V372, P15, DOI 10.1042/BJ20030121; Gesase AP, 2003, HISTOL HISTOPATHOL, V18, P597, DOI 10.14670/HH-18.597; Gregory W. K., 1910, B AM MUS NAT HIST, V27, P1; Griffiths M., 1978, BIOL MONOTREMES; Gritli-Linde A, 2007, DEV CELL, V12, P99, DOI 10.1016/j.devcel.2006.12.006; Hagiwara K, 2003, J IMMUNOL, V170, P1973, DOI 10.4049/jimmunol.170.4.1973; Hajoubi S, 2006, GENE, V370, P104, DOI 10.1016/j.gene.2005.11.025; Hatsell SJ, 2006, DEVELOPMENT, V133, P3661, DOI 10.1242/dev.02542; HAYSSEN V, 1985, EVOLUTION, V39, P1147, DOI 10.1111/j.1558-5646.1985.tb00454.x; Hiemstra PS, 2002, BIOCHEM SOC T, V30, P116, DOI 10.1042/BST0300116; Hoffmann JA, 1999, SCIENCE, V284, P1313, DOI 10.1126/science.284.5418.1313; Hood WR, 2011, J COMP PHYSIOL B, V181, P423, DOI 10.1007/s00360-010-0521-7; HOPSON JA, 1973, AM NAT, V107, P446, DOI 10.1086/282846; HORSEMAN ND, 1995, ANNU REV NUTR, V15, P213; Jenssen H, 2006, CLIN MICROBIOL REV, V19, P491, DOI 10.1128/CMR.00056-05; Jeong J, 2009, J BIOL CHEM, V284, P22444, DOI 10.1074/jbc.M109.020446; Jia YP, 2008, AQUACULTURE, V284, P246, DOI 10.1016/j.aquaculture.2008.07.046; Kawasaki K, 2003, P NATL ACAD SCI USA, V100, P4060, DOI 10.1073/pnas.0638023100; Kawasaki K, 2011, MOL BIOL EVOL, V28, P2053, DOI 10.1093/molbev/msr020; Kawasaki K, 2009, DEV GENES EVOL, V219, P147, DOI 10.1007/s00427-009-0276-x; Kemp T.S., 2005, ORIGIN EVOLUTION MAM; Kontopidis G, 2004, J DAIRY SCI, V87, P785, DOI 10.3168/jds.S0022-0302(04)73222-1; Konuma T, 2007, J MOL BIOL, V368, P209, DOI 10.1016/j.jmb.2007.01.077; Kupfer A, 2006, NATURE, V440, P926, DOI 10.1038/nature04403; Lefevre CM, 2010, ANNU REV GENOM HUM G, V11, P219, DOI 10.1146/annurev-genom-082509-141806; Lefevre CM, 2009, REPROD FERT DEVELOP, V21, P1015, DOI 10.1071/RD09083; Lemay DG, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-4-r43; Lillywhite HB, 2006, J EXP BIOL, V209, P202, DOI 10.1242/jeb.02007; Lillywhite HB, 1997, J ZOOL, V243, P675, DOI 10.1111/j.1469-7998.1997.tb01969.x; Lourdais O, 2007, J COMP PHYSIOL B, V177, P569, DOI 10.1007/s00360-007-0155-6; Lowe JB, 1999, ESSENTIALS GLYCOBIOL, P253; Luo ZX, 2001, SCIENCE, V292, P1535, DOI 10.1126/science.1058476; Martin HM, 2004, INFECT IMMUN, V72, P4933, DOI 10.1128/IAI.72.9.4933-4939.2004; Mather I. H., 2011, ENCY DAIRY SCI, V3, P680; Mather IH, 1998, J MAMMARY GLAND BIOL, V3, P259, DOI 10.1023/A:1018711410270; Mayer JA, 2008, AM J PATHOL, V173, P1339, DOI 10.2353/ajpath.2008.070920; McClellan HL, 2008, NUTR RES REV, V21, P97, DOI 10.1017/S0954422408100749; McManaman JL, 2006, J MAMMARY GLAND BIOL, V11, P249, DOI 10.1007/s10911-006-9031-3; McManaman JL, 2002, J PHYSIOL-LONDON, V545, P567, DOI 10.1113/jphysiol.2002.027185; Messer M, 2002, TRENDS GLYCOSCI GLYC, V14, P153, DOI 10.4052/tigg.14.153; Nair DG, 2007, BIOCHEM J, V402, P93, DOI 10.1042/BJ20060318; National Research Council (US) Subcommittee on Laboratory Animal Nutrition, 1995, NUTR REQ LAB AN; Nelson CM, 2006, ANNU REV CELL DEV BI, V22, P287, DOI 10.1146/annurev.cellbio.22.010305.104315; Newburg DS, 1996, J MAMMARY GLAND BIOL, V1, P271, DOI 10.1007/BF02018080; NICHOLAS KR, 1987, BIOCHEM J, V241, P899, DOI 10.1042/bj2410899; Nishino T, 2008, FEBS J, V275, P3278, DOI 10.1111/j.1742-4658.2008.06489.x; Novacek MJ, 1997, NATURE, V389, P483, DOI 10.1038/39020; Oftedal O.T., 1987, Current Mammalogy, V1, P175; Oftedal O.T., 1989, P355; Oftedal O. T., 2011, ENCY DAIRY SCI, V3, P563; Oftedal OT, 1997, J MAMMARY GLAND BIOL, V2, P205, DOI 10.1023/A:1026328203526; OFTEDAL OT, 1993, PHYSIOL ZOOL, V66, P412, DOI 10.1086/physzool.66.3.30163701; OFTEDAL OT, 1993, BRIT J NUTR, V70, P59, DOI 10.1079/BJN19930105; Oftedal OT, 2002, J MAMMARY GLAND BIOL, V7, P225, DOI 10.1023/A:1022896515287; Oftedal OT, 2002, J MAMMARY GLAND BIOL, V7, P253, DOI 10.1023/A:1022848632125; OFTEDAL OT, 1987, PHYSIOL ZOOL, V60, P560, DOI 10.1086/physzool.60.5.30156130; Oftedal OT, 2000, P NUTR SOC, V59, P99, DOI 10.1017/S0029665100000124; OFTEDAL OT, 1995, HDB MILK COMPOSITION, P749; Ogg SL, 2004, P NATL ACAD SCI USA, V101, P10084, DOI 10.1073/pnas.0402930101; Packard Mary J., 1997, P265, DOI 10.1016/B978-012676460-4/50009-3; PEREZ MD, 1995, J DAIRY SCI, V78, P978, DOI 10.3168/jds.S0022-0302(95)76713-3; PERVAIZ S, 1985, SCIENCE, V228, P335, DOI 10.1126/science.2580349; Piotte CP, 1996, ARCH BIOCHEM BIOPHYS, V330, P59, DOI 10.1006/abbi.1996.0225; Piotte CP, 1998, J MOL EVOL, V46, P361, DOI 10.1007/PL00006313; POND CM, 1977, EVOLUTION, V31, P177, DOI 10.1111/j.1558-5646.1977.tb00995.x; PRAGER EM, 1988, J MOL EVOL, V27, P326, DOI 10.1007/BF02101195; Qasba PK, 1997, CRIT REV BIOCHEM MOL, V32, P255, DOI 10.3109/10409239709082574; Quagliata S, 2006, CARYOLOGIA, V59, P187, DOI 10.1080/00087114.2006.10797915; Ramakrishnan B, 2001, J MOL BIOL, V310, P205, DOI 10.1006/jmbi.2001.4757; Ranganathan S, 1999, J MOL GRAPH MODEL, V17, P106, DOI 10.1016/S1093-3263(99)00023-6; REEVES PG, 1993, J NUTR, V123, P1939; Reich CM, 2007, BIOLOGY LETT, V3, P546, DOI 10.1098/rsbl.2007.0265; Reilly SM, 2003, SCIENCE, V299, P400, DOI 10.1126/science.1074905; Rhodes DA, 2001, GENOMICS, V71, P351, DOI 10.1006/geno.2000.6406; Rijnkels M, 2003, GENOMICS, V82, P417, DOI 10.1016/S0888-7543(03)00114-9; Rijnkels M, 2002, J MAMMARY GLAND BIOL, V7, P327, DOI 10.1023/A:1022808918013; Robinson GW, 2004, BREAST CANCER RES, V6, P105, DOI 10.1186/bcr776; Sanchez D, 2003, MOL BIOL EVOL, V20, P775, DOI 10.1093/molbev/msg079; SANCHEZ D, 2006, LIPOCALINS, P5; SAWYER L, 2003, ADV DAIRY CHEM, V1, P319, DOI DOI 10.1007/978-1-4419-8602-3; Senda A, 2010, ANIM SCI J, V81, P687, DOI 10.1111/j.1740-0929.2010.00787.x; Shaper NL, 1998, J MAMMARY GLAND BIOL, V3, P315, DOI 10.1023/A:1018719612087; Sharp JA, 2006, CURR TOP DEV BIOL, V72, P275, DOI 10.1016/S0070-2153(05)72006-8; Sharp JA, 2007, EVOL DEV, V9, P378, DOI 10.1111/j.1525-142X.2007.00175.x; Sharp JA, 2008, BMC BIOL, V6, DOI 10.1186/1741-7007-6-48; Shennan DB, 2000, PHYSIOL REV, V80, P925; Sidor CA, 1998, PALEOBIOLOGY, V24, P254; Smith IA, 2010, J IMMUNOL, V184, P3514, DOI 10.4049/jimmunol.0900416; Smith VJ, 2010, MAR DRUGS, V8, P1213, DOI 10.3390/md8041213; Smolenski G, 2007, J PROTEOME RES, V6, P207, DOI 10.1021/pr0603405; Smyth E, 2004, INT J DAIRY TECHNOL, V57, P121, DOI 10.1111/j.1471-0307.2004.00141.x; STACEY A, 1995, P NATL ACAD SCI USA, V92, P2835, DOI 10.1073/pnas.92.7.2835; Starck JM, 1998, AVIAN GROWTH DEV EVO; STINNAKRE MG, 1994, P NATL ACAD SCI USA, V91, P6544, DOI 10.1073/pnas.91.14.6544; Stoeckelhuber M, 2003, J INVEST DERMATOL, V121, P28, DOI 10.1046/j.1523-1747.2003.12328.x; Stoeckelhuber M, 2006, ANAT REC PART A, V288A, P877, DOI 10.1002/ar.a.20356; Stoeckelhuber M, 2011, HISTOL HISTOPATHOL, V26, P177, DOI 10.14670/HH-26.177; TAIGEN TL, 1984, ECOLOGY, V65, P248, DOI 10.2307/1939477; Thomas B, 2008, PEDIATR RES, V64, P381, DOI 10.1203/PDR.0b013e318180e499; Thompson MB, 2006, HERPETOL MONOGR, V20, P178, DOI 10.1655/0733-1347(2007)20[178:MAFCTT]2.0.CO;2; TOBA T, 1991, J SCI FOOD AGR, V54, P305, DOI 10.1002/jsfa.2740540217; Topcic D, 2009, EVOL DEV, V11, P363, DOI 10.1111/j.1525-142X.2009.00343.x; Treccani L, 2006, BIOPHYS J, V91, P2601, DOI 10.1529/biophysj.106.086108; Triplett AA, 2005, GENESIS, V43, P1, DOI 10.1002/gene.20149; Tyndale-Biscoe H., 1987, REPROD PHYSL MARSUPI; Uemura Y, 2009, COMP BIOCHEM PHYS A, V152, P158, DOI 10.1016/j.cbpa.2008.09.013; Urashima T, 2001, GLYCOCONJUGATE J, V18, P357, DOI 10.1023/A:1014881913541; Varki A, 1998, TRENDS CELL BIOL, V8, P34, DOI 10.1016/S0962-8924(97)01198-7; Vorbach C, 2003, TRENDS IMMUNOL, V24, P512, DOI 10.1016/S1471-4906(03)00237-0; Vorbach C, 2002, GENE DEV, V16, P3223, DOI 10.1101/gad.1032702; Vorbach C, 2006, BIOESSAYS, V28, P606, DOI 10.1002/bies.20423; Watson CJ, 2008, DEVELOPMENT, V135, P995, DOI 10.1242/dev.005439; West KL, 2007, J ZOOL, V273, P148, DOI 10.1111/j.1469-7998.2007.00309.x; Yang MC, 2009, FEBS J, V276, P2251, DOI 10.1111/j.1742-4658.2009.06953.x; Zhang ZW, 2009, ZOOL SCI, V26, P80, DOI 10.2108/zsj.26.80; Zhao Y, 2006, COMP BIOCHEM PHYS C, V142, P46, DOI 10.1016/j.cbpc.2005.10.001; Zou Z, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-8-r177 151 71 72 4 141 CAMBRIDGE UNIV PRESS CAMBRIDGE EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND 1751-7311 1751-732X ANIMAL Animal MAR 2012 6 3 355 368 10.1017/S1751731111001935 14 Agriculture, Dairy & Animal Science; Veterinary Sciences Agriculture; Veterinary Sciences 896AK WOS:000300537600002 22436214 Bronze 2019-02-21 J Van Leeuwen, TE; Rosenfeld, JS; Richards, JG Van Leeuwen, Travis E.; Rosenfeld, Jordan S.; Richards, Jeffrey G. Effects of food ration on SMR: influence of food consumption on individual variation in metabolic rate in juvenile coho salmon (Onchorhynchus kisutch) JOURNAL OF ANIMAL ECOLOGY English Article coho salmon; consumption; dominance; energy balance; growth depression; individual variation in standard metabolic rate; oxygen uptake; prey-mediated; standard metabolic rate; territoriality TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; RAINBOW-TROUT; GROWTH DEPRESSION; STEELHEAD TROUT; SOCIAL-STATUS; BROWN TROUT; ENERGY; CONSEQUENCES 1. Consistency of differences in standard metabolic rate (SMR) between individual juvenile salmonids and the apparently limited ability of individuals to regulate their SMR has led many researchers to conclude that differences in individual SMR are fixed (i.e. genetic). 2. To test for the effects of food ration on individual performance and metabolism, SMR was estimated by measuring oxygen consumption using flow-through respirometry on individually separated young of the year coho salmon (Oncorhynchus kisutch) placed on varying food rations over a period of 44 days. 3. Results demonstrate that the quantity of food consumed directly affects SMR of juvenile coho salmon, independent of specific dynamic action (SDA, an elevation in metabolic rate from the increased energy demands associated with digestion immediately following a meal) and indicates that higher food consumption is a cause of elevated SMR rather than a consequence of it. Juvenile coho salmon therefore demonstrated an ability to regulate their SMR according to food availability and ultimately food consumption. 4. This study indicates that food consumption may play a pivotal role in understanding individual variation in SMR independent of inherent genetic differences. We suggest that studies involving SMR need to be cautious about the effects of intra-individual differences in food consumption in communal tanks or in different microhabitats in the wild as disproportionate food consumption may contribute more to variation inSMR than intrinsic (genetic) factors. 5. In general, our results suggest that evolutionary changes in SMR are likely a response to selection on food consumption and growth, rather than SMR itself. [Van Leeuwen, Travis E.; Richards, Jeffrey G.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; [Rosenfeld, Jordan S.] Univ British Columbia, British Columbia Minist Environm, Vancouver, BC V6T 1Z4, Canada Van Leeuwen, TE (reprint author), Univ British Columbia, Dept Zool, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada. t.vanleeuwen@fisheries.ubc.ca NSERC We would like to thank three anonymous reviewers for helpful comments that greatly improved the manuscript. We would also like to thank Dr. Dave Bates for advice and assistance with stream selection and fish collection and Dr. Lorne Rothman, who provided scholarly advice on statistical analysis. Research was part of a dissertation prepared in partial fulfilment of a MSc. Degree at the University of British Columbia. Research was funded by an NSERC discovery grant to J.S.R. ABBOTT JC, 1989, BEHAVIOUR, V108, P104, DOI 10.1163/156853989X00079; Alsop DH, 1997, J EXP BIOL, V200, P2337; Alvarez D, 2006, EVOL ECOL, V20, P345, DOI 10.1007/s10682-006-0004-1; Bech C, 1999, P ROY SOC B-BIOL SCI, V266, P2161, DOI 10.1098/rspb.1999.0903; Beck F, 1995, J APPL ICHTHYOL, V11, P263, DOI 10.1111/j.1439-0426.1995.tb00026.x; Boily P, 2002, J EXP BIOL, V205, P3207; Bozinovic S., 2009, COMP BIOCH PHYSL A, V152, P560; BRETT JR, 1971, J FISH RES BOARD CAN, V28, P409, DOI 10.1139/f71-053; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Cutts CJ, 1998, J FISH BIOL, V52, P1026; Cutts CJ, 2002, FUNCT ECOL, V16, P73, DOI 10.1046/j.0269-8463.2001.00603.x; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; DiBattista JD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P675, DOI 10.1086/504612; Ege R., 1914, Internationale Revue der Hydrobiologie Leipzig, V7, DOI 10.1002/iroh.19140070105; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; Gilmour KM, 2005, INTEGR COMP BIOL, V45, P263, DOI 10.1093/icb/45.2.263; JOBLING M, 1981, J FISH BIOL, V18, P385, DOI 10.1111/j.1095-8649.1981.tb03780.x; Jones B., 2003, DESIGN ANAL CROSSOVE; Kleiber M., 1961, FIRE LIFE INTRO ANIM; Littell RC, 2000, STAT MED, V19, P1793, DOI 10.1002/1097-0258(20000715)19:13<1793::AID-SIM482>3.3.CO;2-H; Littell RC, 2006, SAS MIXED MODELS; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; MCCARTHY ID, 1992, J FISH BIOL, V41, P257, DOI 10.1111/j.1095-8649.1992.tb02655.x; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1111/j.1095-8649.2001.tb00167.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Millidine KJ, 2009, P ROY SOC B-BIOL SCI, V276, P2103, DOI 10.1098/rspb.2009.0080; O'Connor KI, 2000, J FISH BIOL, V57, P41, DOI 10.1006/jfbi.2000.1280; Pakkasmaa S, 2006, J COMP PHYSIOL B, V176, P387, DOI 10.1007/s00360-005-0057-4; Priede I.G., 1985, P33; Ricker W. E., 1975, B FISHERIES RES BOAR, V191, P191; Rooning B., 2005, J EXP BIOL, V208, P4663; Rosenfeld J.S., 2009, FISHERIES MANAGEMENT, V16, P139; Rosenfeld JS, 2001, CAN J FISH AQUAT SCI, V58, P585, DOI 10.1139/cjfas-58-3-585; Seppanen E, 2010, COMP BIOCHEM PHYS A, V156, P278, DOI 10.1016/j.cbpa.2010.02.014; SHUTER BJ, 1980, T AM FISH SOC, V109, P1, DOI 10.1577/1548-8659(1980)109<1:SSOTEO>2.0.CO;2; Sloman KA, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2038; Speakman JR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P900, DOI 10.1086/427059; Steiner UK, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006160; SULLIVAN K. D., 2001, ANAL EFFECTS TEMPERA; Van Leeuwen TE, 2011, J ANIM ECOL, V80, P1012, DOI 10.1111/j.1365-2656.2011.01841.x; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Williams TD, 2001, CURR ORNITHOL, V16, P355; Yamamoto T, 1998, J FISH BIOL, V52, P281, DOI 10.1111/j.1095-8649.1998.tb00799.x 44 23 25 1 32 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2012 81 2 395 402 10.1111/j.1365-2656.2011.01924.x 8 Ecology; Zoology Environmental Sciences & Ecology; Zoology 895NI WOS:000300502600010 22066987 Bronze 2019-02-21 J van Turnhout, CAM; Leuven, RSEW; Hendriks, AJ; Kurstjens, G; Van Strien, A; Foppen, RPB; Siepel, H van Turnhout, C. A. M.; Leuven, R. S. E. W.; Hendriks, A. J.; Kurstjens, G.; Van Strien, A.; Foppen, R. P. B.; Siepel, H. Ecological strategies successfully predict the effects of river floodplain rehabilitation on breeding birds RIVER RESEARCH AND APPLICATIONS English Article biological traits; life-history; restoration; population trend; monitoring; river specialists; river Rhine; river Meuse THEORETICAL HABITAT TEMPLETS; LIFE-HISTORY TACTICS; UPPER RHONE RIVER; SPECIES RICHNESS; LOWLAND RIVERS; PRESENT STATE; RHINE; EUROPE; BIODIVERSITY; RESTORATION To improve the ecological functioning of riverine ecosystems, large-scale floodplain rehabilitation has been carried out in the RhineMeuse Delta since the 1990s. This paper evaluates changes in abundance of 93 breeding bird species over a period of 10 years in response to rehabilitation, by comparing population changes in 75 rehabilitated sites with 124 non-rehabilitated reference sites. Such quantitative, multi-species, large-scale and long-term evaluations of floodplain rehabilitation on biodiversity are still scarce, particularly studies that focus on the terrestrial component. We try to understand the effects by relating population trends to ecological and life-history traits and strategies of breeding birds. More specifically, we try to answer the question whether rehabilitation of vegetation succession or hydro-geomorphological river processes is the key driver behind recent population changes in rehabilitated sites. Populations of 35 species have significantly performed better in rehabilitated sites compared to non-rehabilitated floodplains, whereas only 8 have responded negatively to rehabilitation. Differences in effects between species are best explained by the trait selection of nest location. Reproductive investment and migratory behaviour were less strong predictors. Based on these three traits we defined eight life-history strategies that successfully captured a substantial amount of variation in rehabilitation effects. We conclude that spontaneous vegetation succession and initial excavations are currently more important drivers of population changes than rehabilitation of hydrodynamics. The latter are strongly constrained by river regulation. If rehabilitation of hydro-geomorphological processes remains incomplete in future, artificial cyclic floodplain rejuvenation will be necessary for sustainable conservation of characteristic river birds. Copyright (C) 2010 John Wiley & Sons, Ltd. [van Turnhout, C. A. M.; Foppen, R. P. B.] SOVON Dutch Ctr Field Ornithol, NL-6503 GA Nijmegen, Netherlands; [van Turnhout, C. A. M.; Leuven, R. S. E. W.; Hendriks, A. J.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands; [van Turnhout, C. A. M.; Siepel, H.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Ecophysiol, NL-6500 GL Nijmegen, Netherlands; [Kurstjens, G.] Kurstjens Ecol Adviesbur, NL-6753 CS Beek Ubbergen, Netherlands; [Van Strien, A.] Stat Netherlands, NL-2490 HA The Hague, Netherlands; [Siepel, H.] Univ Wageningen & Res Ctr, ALTERRA, Ctr Ecosyst Studies, NL-6700 AA Wageningen, Netherlands van Turnhout, CAM (reprint author), SOVON Dutch Ctr Field Ornithol, POB 6521, NL-6503 GA Nijmegen, Netherlands. chris.vanturnhout@sovon.nl Leuven, Rob/A-3303-2012; Hendriks, Aalbert Jan/C-6767-2013; Siepel, Henk/C-2579-2011 Leuven, Rob/0000-0001-5434-6005; Siepel, Henk/0000-0003-4503-4485 ADMIRAAL W, 1993, HYDROBIOLOGIA, V265, P97, DOI 10.1007/BF00007264; Antheunisse AM, 2006, RIVER RES APPL, V22, P1039, DOI 10.1002/rra.956; Baptist MJ, 2004, RIVER RES APPL, V20, P285, DOI 10.1002/rra.778; Bennett P., 2002, EVOLUTIONARY ECOLOGY; BIBBY CJ, 1997, BIRD CENSUS TECHNIQU; Buijse AD, 2002, FRESHWATER BIOL, V47, P889, DOI 10.1046/j.1365-2427.2002.00915.x; CHARDON JP, 2000, EUROPEAN WATER MANAG, V3, P35; Cramp S, 1977, HDB BIRDS EUROPE MID, V1; DE BRUIN D., 1987, OOIEVAAR TOEKOMST RI; de Nooij RJW, 2006, HYDROBIOLOGIA, V565, P153, DOI 10.1007/s10750-005-1911-9; De Nooij RJW, 2004, RIVER RES APPL, V20, P299, DOI 10.1002/rra.779; DEVAATE AB, 2003, THESIS WAGENINGEN U; Donald PF, 2007, SCIENCE, V317, P810, DOI 10.1126/science.1146002; Foppen RPB, 1998, NEW CONCEPTS FOR SUSTAINABLE MANAGEMENT OF RIVER BASINS, P85; FURNESS RW, 1993, BIRDS MONITORS ENV C; Geerling GW, 2008, GEOMORPHOLOGY, V99, P317, DOI 10.1016/j.geomorph.2007.11.011; Green RE, 2004, IBIS, V146, P501, DOI 10.1111/j.1474-919x.2004.00291.x; Green RH, 1979, SAMPLING DESIGN STAT; Green Rhys E., 1997, Vogelwelt, V118, P117; Gregory RD, 2005, PHILOS T R SOC B, V360, P269, DOI 10.1098/rstb.2004.1602; Grift RE, 2001, THESIS U WAGENINGEN; Hagemeijer E. J. M, 1997, EBCC ATLAS EUROPEAN; JUGET J, 1994, FRESHWATER BIOL, V31, P327, DOI 10.1111/j.1365-2427.1994.tb01744.x; Junk W. J., 2004, RAP PUBLICATION, V2, P117; Koffijberg K, 2007, LEVENDE NATUUR, V108, P193; Kosinski Z, 2004, ORNIS FENNICA, V81, P145; Kwak RGM, 1988, BROEDVOGELDISTRICTEN; Kyle G, 2009, RIVER RES APPL, V25, P892, DOI 10.1002/rra.1192; Leibak E, 1994, BIRDS ESTONIA STATUS; Lenders HJR, 2003, THESIS U NIJMEGEN NE; LENDERS HJR, 2001, LANDSCAPE URBAN PLAN, V55, P119; Leuven RSEW, 2002, FRESHWATER BIOL, V47, P845, DOI 10.1046/j.1365-2427.2002.00918.x; McCullagh P., 1989, GEN LINEAR MODELS; McGill BJ, 2006, TRENDS ECOL EVOL, V12, P474; Miller JR, 2004, ECOL APPL, V14, P1394, DOI 10.1890/02-5376; Nienhuis PH, 2002, HYDROBIOLOGIA, V478, P53, DOI 10.1023/A:1021070428566; Nienhuis PH, 2001, HYDROBIOLOGIA, V444, P85, DOI 10.1023/A:1017509410951; Payne R.W., 2006, GENSTAT RELEASE 9 3; Peters B, 2008, MAAS BEELD SUCCESFAC; Postma R, 1996, 95060 RIZA MIN VERK; Poudevigne I, 2002, RIVER RES APPL, V18, P239, DOI 10.1002/rra.667; Raat AJP, 2001, REGUL RIVER, V17, P131, DOI 10.1002/rrr.608; Schaeffer Norbert, 1999, Oekologie der Voegel, V21, P1; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; Sikora A., 2007, ATLAS BREEDING BIRDS; Simons JHEJ, 2001, REGUL RIVER, V17, P473, DOI 10.1002/rrr.661.abs; SMITS AJM, 2000, NEW APPROACHES RIVER; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Speek BJ, 1984, THIEMES VOGELTREKATL; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TACHET H, 1994, FRESHWATER BIOL, V31, P397, DOI 10.1111/j.1365-2427.1994.tb01748.x; ter Braak C, 1994, P 12 INT C IBCC EOAC; Teunissen Wolf, 2006, Levende Natuur, V107, P70; Thoms MC, 2006, RIVER RES APPL, V22, P115, DOI 10.1002/rra.900; Thorp JH, 2006, RIVER RES APPL, V22, P123, DOI 10.1002/rra.901; Tockner K, 2002, ENVIRON CONSERV, V29, P308, DOI 10.1017/S037689290200022X; van Beusekom R., 2005, RODE LIJST NEDERLAND; Van Dijk A. J., 2004, HANDLEIDING BROEDVOG; Van Turnhout CAM, 2007, BIOL CONSERV, V134, P505, DOI 10.1016/j.biocon.2006.09.011; Van Turnhout CAM, 2010, BIOL CONSERV, V143, P173, DOI 10.1016/j.biocon.2009.09.023; VanDijk GM, 1995, REGUL RIVER, V11, P377, DOI 10.1002/rrr.3450110311; Vaughan IP, 2007, FRESHWATER BIOL, V52, P2270, DOI 10.1111/j.1365-2427.2007.01837.x; Verberk Wilco, 2009, Levende Natuur, V110, P148; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Ward JV, 1999, REGUL RIVER, V15, P125, DOI 10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E; Wernham CV, 2002, MIGRATION ATLAS MOVE; Wijnhoven S, 2006, HYDROBIOLOGIA, V565, P135, DOI 10.1007/s10750-005-1910-x; Winter HV, 2009, RIVER RES APPL, V25, P16, DOI 10.1002/rra.1081; *WWF, 1992, LIV RIV 69 9 9 2 38 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1535-1459 RIVER RES APPL River Res. Appl. MAR 2012 28 3 269 282 10.1002/rra.1455 14 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources 903MU WOS:000301121500001 2019-02-21 J Blouin, NA; Lane, CE Blouin, Nicolas A.; Lane, Christopher E. Red algal parasites: Models for a life history evolution that leaves photosynthesis behind again and again BIOESSAYS English Article genome reduction; life history; parasite evolution; red algae NUCLEAR GENOME REDUCTION; PLASTID GENOME; ENCEPHALITOZOON-CUNICULI; PLASMODIUM-FALCIPARUM; LEVRINGIELLA-GARDNERI; MITOCHONDRIAL-DNA; SECRETORY PATHWAY; PORPHYRA-PURPUREA; MALARIA PARASITES; COMPLETE SEQUENCE Many of the most virulent and problematic eukaryotic pathogens have evolved from photosynthetic ancestors, such as apicomplexans, which are responsible for a wide range of diseases including malaria and toxoplasmosis. The primary barrier to understanding the early stages of evolution of these parasites has been the difficulty in finding parasites with closely related free-living lineages with which to make comparisons. Parasites found throughout the florideophyte red algal lineage, however, provide a unique and powerful model to investigate the genetic origins of a parasitic lifestyle. This is because they share a recent common ancestor with an extant free-living red algal species and parasitism has independently arisen over 100 times within this group. Here, we synthesize the relevant hypotheses with respect to how these parasites have proliferated. We also place red algal research in the context of recent developments in understanding the genome evolution of other eukaryotic photosynthesizers turned parasites. [Blouin, Nicolas A.; Lane, Christopher E.] Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA Blouin, NA (reprint author), Univ Rhode Isl, Dept Biol Sci, Kingston, RI 02881 USA. nblouin@mail.uri.edu Gordon and Betty Moore Foundation We would like to thank our reviewers for their helpful suggestions. We also acknowledge the Gordon and Betty Moore Foundation-sponsored MEGAMER facility for resources and use of space at the UCSC, and particularly Brandon Carter for help and logistical facilitation. Amiri H, 2003, J MOL EVOL, V56, P137, DOI 10.1007/s00239-002-2387-2; Archibald JM, 2007, BIOESSAYS, V29, P392, DOI 10.1002/bies.20551; Archibald JM, 2009, J HERED, V100, P582, DOI 10.1093/jhered/esp055; Archibald JM, 2009, CURR BIOL, V19, pR81, DOI 10.1016/j.cub.2008.11.067; Armbrust EV, 2004, SCIENCE, V306, P79, DOI 10.1126/science.1101156; AVIV D, 1987, THEOR APPL GENET, V73, P821, DOI 10.1007/BF00289385; Baum J, 2008, TRENDS PARASITOL, V24, P557, DOI 10.1016/j.pt.2008.08.006; Beakes GW, 2012, PROTOPLASMA, V249, P3, DOI 10.1007/s00709-011-0269-2; Berriman M, 2005, SCIENCE, V309, P416, DOI 10.1126/science.1112642; Blanc G, 2010, PLANT CELL, V22, P2943, DOI 10.1105/tpc.110.076406; Broadwater ST, 1997, J PHYCOL, V33, P396, DOI 10.1111/j.0022-3646.1997.00396.x; Brooks CF, 2010, CELL HOST MICROBE, V7, P62, DOI 10.1016/j.chom.2009.12.002; Burger G, 1999, PLANT CELL, V11, P1675, DOI 10.1105/tpc.11.9.1675; Burger G, 2003, NUCLEIC ACIDS RES, V31, P2353, DOI 10.1093/nar/gkg326; Butterfield NJ, 2000, PALEOBIOLOGY, V26, P386, DOI 10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO;2; BUTTERFIELD NJ, 1990, SCIENCE, V250, P104, DOI 10.1126/science.11538072; CALLOW JA, 1979, NEW PHYTOL, V83, P451, DOI 10.1111/j.1469-8137.1979.tb07470.x; Corradi N, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001277; COURT GJ, 1980, J PHYCOL, V16, P270; Dawes CJ, 1998, MARINE BOT, P480; de Koning AP, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-12; DREW KM, 1954, ANN BOT-LONDON, V18, P183, DOI 10.1093/oxfordjournals.aob.a083390; Emery C., 1909, REND R ACCAD SCI BOL, P36; Engel C, 1997, VIE MILIEU, V47, P333; FELDMANN J, 1958, REV GEN BOT, V65, P49; FREDERICQ S, 1989, Japanese Journal of Phycology, V37, P167; Fritsch FE, 1945, PHAEOPHYCEAE RHODOPH, VII, P939; Gantt E, 2010, CELL ORIG LIFE EXTRE, V13, P129, DOI 10.1007/978-90-481-3795-4_7; Gardner MJ, 2002, NATURE, V419, P498, DOI 10.1038/nature01097; Gillham NW., 1994, ORGANELLE GENES GENO, P424; Goff L. J., 1982, PROGR PHYCOLOGICAL R, V1, P289; GOFF LJ, 1987, ANN NY ACAD SCI, V503, P402, DOI 10.1111/j.1749-6632.1987.tb40626.x; Goff LJ, 1997, EVOLUTION, V51, P1068, DOI 10.1111/j.1558-5646.1997.tb03954.x; Goff LJ, 1996, J PHYCOL, V32, P297, DOI 10.1111/j.0022-3646.1996.00297.x; GOFF LJ, 1995, PLANT CELL, V7, P1899; GOFF LJ, 1994, J PHYCOL, V30, P695, DOI 10.1111/j.0022-3646.1994.00695.x; GOFF LJ, 1984, P NATL ACAD SCI-BIOL, V81, P5420, DOI 10.1073/pnas.81.17.5420; GOFF LJ, 1985, J PHYCOL, V21, P483; GRATZER WB, 1993, SEMIN HEMATOL, V30, P232; Guiry MD, 2011, ALGAEBASE WORLD WIDE; Hancock L, 2010, GENOME BIOL EVOL, V2, P897, DOI 10.1093/gbe/evq075; Hardham AR, 2001, AUSTRALAS PLANT PATH, V30, P91, DOI 10.1071/AP01006; HOMMERSAND MH, 1990, BIOL RED ALGAE, P305; HRAZDINA G, 1992, ANNU REV PLANT PHYS, V43, P241, DOI 10.1146/annurev.pp.43.060192.001325; Janouskovec J, 2010, P NATL ACAD SCI USA, V107, P10949, DOI 10.1073/pnas.1003335107; Katinka MD, 2001, NATURE, V414, P450, DOI 10.1038/35106579; Kawahara K, 2009, J BIOCHEM, V145, P229, DOI 10.1093/jb/mvn161; Keeling PJ, 2010, PHILOS T R SOC B, V365, P729, DOI 10.1098/rstb.2009.0103; Keeling PJ, 2005, CURR OPIN GENET DEV, V15, P601, DOI 10.1016/j.gde.2005.09.003; Knauf U, 2002, MOL GENET GENOMICS, V267, P492, DOI 10.1007/s00438-002-0681-6; Krause K, 2008, CURR GENET, V54, P111, DOI 10.1007/s00294-008-0208-8; KREMER BP, 1983, MAR BIOL, V76, P231, DOI 10.1007/BF00393022; KUGRENS P, 1972, J PHYCOL, V8, P331, DOI 10.1111/j.1529-8817.1972.tb04047.x; KUGRENS P, 1972, J PHYCOL, V8, P370, DOI 10.1111/j.0022-3646.1972.00370.x; KUGRENS P, 1986, J PHYCOL, V22, P8, DOI 10.1111/j.1529-8817.1986.tb02509.x; KUGRENS P, 1973, Phycologia, V12, P163, DOI 10.2216/i0031-8884-12-3-163.1; Kurihara A, 2010, J PHYCOL, V46, P580, DOI 10.1111/j.1529-8817.2010.00834.x; Kylin H., 1956, GATTUNGEN RHODOPHYCE; Lane CE, 2008, TRENDS ECOL EVOL, V23, P268, DOI 10.1016/j.tree.2008.02.004; Lane CE, 2006, J EUKARYOT MICROBIOL, V53, P515, DOI 10.1111/j.1550-7408.2006.00135.x; Leander BS, 2008, J EUKARYOT MICROBIOL, V55, P59, DOI 10.1111/j.1550-7408.2008.00308.x; Leander BS, 2008, TRENDS PARASITOL, V24, P60, DOI 10.1016/j.pt.2007.11.005; LEBLANC C, 1995, J MOL BIOL, V250, P484, DOI 10.1006/jmbi.1995.0392; Levesque CA, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-7-r73; Levitan A, 2005, P NATL ACAD SCI USA, V102, P6225, DOI 10.1073/pnas.0500676102; Lim L, 2010, PHILOS T R SOC B, V365, P749, DOI 10.1098/rstb.2009.0273; Mendonca AG, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1001082; Muller H., 1871, VERH NATURH VER PREU, P1; Nakayama T, 2009, CURR BIOL, V19, pR284, DOI 10.1016/j.cub.2009.02.043; Obornik M, 2011, PROTIST, V162, P115, DOI 10.1016/j.protis.2010.02.004; Ohta N, 1998, NUCLEIC ACIDS RES, V26, P5190, DOI 10.1093/nar/26.22.5190; Perez-Brocal V, 2008, MOL BIOL EVOL, V25, P2475, DOI 10.1093/molbev/msn193; PERL A, 1991, MOL GEN GENET, V228, P193; Pesaresi P, 2007, CURR OPIN PLANT BIOL, V10, P600, DOI 10.1016/j.pbi.2007.07.007; REITH M, 1993, PLANT CELL, V5, P465; Richards TA, 2003, PROTIST, V154, P17, DOI 10.1078/143446103764928468; Rokas A, 2008, CURR OPIN GENET DEV, V18, P472, DOI 10.1016/j.gde.2008.09.004; Rumpho ME, 2011, J EXP BIOL, V214, P303, DOI 10.1242/jeb.046540; Saunders GW, 2010, PHYCOLOGIA, V49, P628, DOI 10.2216/0031-8884-49.6.628; Schneider CW, 2007, BOT MAR, V50, P197, DOI 10.1515/BOT.2007.025; SETCHELL WA, 1918, P AM PHILOS SOC, V57, P155; Slamovits CH, 2004, CURR BIOL, V14, P891, DOI 10.1016/j.cub.2004.04.041; Spanu PD, 2010, SCIENCE, V330, P1543, DOI 10.1126/science.1194573; Striepen B, 2004, P NATL ACAD SCI USA, V101, P3154, DOI 10.1073/pnas.0304686101; Sun J, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-49; Vaidya AB, 2009, ANNU REV MICROBIOL, V63, P249, DOI 10.1146/annurev.micro.091208.073424; Verbruggen H, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-16; Villarejo A, 2005, NAT CELL BIOL, V7, P1224, DOI 10.1038/ncb1330; von Ballmoos C, 2009, ANNU REV BIOCHEM, V78, P649, DOI 10.1146/annurev.biochem.78.081307.104803; Waller RF, 2000, EMBO J, V19, P1794, DOI 10.1093/emboj/19.8.1794; Walter RF, 2005, CURR ISSUES MOL BIOL, V7, P57; Wickett NJ, 2008, MOL BIOL EVOL, V25, P393, DOI 10.1093/molbev/msm267; Winkler HH, 1999, TRENDS BIOCHEM SCI, V24, P64, DOI 10.1016/S0968-0004(98)01334-6; Woelkerling WJ, 2008, PHYCOLOGIA, V47, P265, DOI 10.2216/07-85.1; Yan ZH, 2010, BMC DEV BIOL, V10, DOI 10.1186/1471-213X-10-31; Zrenner R, 2006, ANNU REV PLANT BIOL, V57, P805, DOI 10.1146/annurev.arplant.57.032905.105421; Zuccarello GC, 2004, J PHYCOL, V40, P937, DOI 10.1111/j.1529-8817.2004.04029.x 97 21 21 3 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0265-9247 1521-1878 BIOESSAYS Bioessays MAR 2012 34 3 226 235 10.1002/bies.201100139 10 Biochemistry & Molecular Biology; Biology Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics 894TD WOS:000300448900013 22247039 2019-02-21 J Heiri, C; Wolf, A; Rohrer, L; Brang, P; Bugmann, H Heiri, Caroline; Wolf, Annett; Rohrer, Lukas; Brang, Peter; Bugmann, Harald Successional pathways in Swiss mountain forest reserves EUROPEAN JOURNAL OF FOREST RESEARCH English Article Abies alba; Forest succession; Long-term forest monitoring; Mountain forest; Picea abies; Structural development; Succession theory; Temporal dynamics STAND-STRUCTURE; OLD-GROWTH; DECIDUOUS FOREST; DYNAMICS; DIVERSITY; REGENERATION; MANAGEMENT; DISTRIBUTIONS; MORTALITY; INDEXES Knowledge on the natural dynamics of Norway spruce-European silver fir forests is scarce, but is of high importance for the sustainable management of these ecosystems. Using a unique data set from five forest reserves in the Swiss Alps that covers up to 35 years, we elucidated communalities and differences in stand structure and species composition across the reserves and over time and investigated the role of site conditions versus intrinsic forest dynamics. For the early and late successional phases, we found a clear relationship between stand structure (diameter distributions) and species composition. Two pathways of early succession were evident as a function of the disturbance regime. Thus, the spatial extent of disturbances in spruce-fir forests strongly determines the pathway in early succession. Contrary to earlier descriptions of clearly distinguishable optima phases, our data did not reveal a relationship between stand structure and species composition for the early, mid-, and late optimum phases. Although the reserves investigated here are characterized by highly different climatic and soil conditions, their temporal development was found to fit well into a single successional scheme, suggesting that in spruce-fir mountain forests, the life-history strategies of the tree species may have a stronger influence on successional trajectories than site conditions per se. [Heiri, Caroline; Brang, Peter] WSL Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland; [Wolf, Annett; Rohrer, Lukas; Bugmann, Harald] Swiss Fed Inst Technol Zurich, Inst Terr Ecosyst, Dept Environm Sci, CH-8092 Zurich, Switzerland Heiri, C (reprint author), WSL Swiss Fed Inst Forest Snow & Landscape Res, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland. caroline.heiri@wsl.ch Heiri, Caroline/S-5836-2016; Bugmann, Harald/A-1252-2008 Heiri, Caroline/0000-0002-0951-0846; Bugmann, Harald/0000-0003-4233-0094; Brang, Peter/0000-0003-0766-9826 AUSTIN MP, 1989, VEGETATIO, V83, P35, DOI 10.1007/BF00031679; BONCINA A, 1998, VIRGIN FORESTS FORES, P95; Brang P, 2008, MONITORING KONZEPT N; Brang Peter, 2006, Forest Snow and Landscape Research, V80, P23; Burrascano S, 2008, PLANT BIOSYST, V142, P313, DOI 10.1080/11263500802150613; Busing RT, 2005, ECOLOGY, V86, P73, DOI 10.1890/04-0410; Busing RT, 1996, J VEG SCI, V7, P685, DOI 10.2307/3236380; Busing RT, 1998, J VEG SCI, V9, P881, DOI 10.2307/3237053; Butler Manning D, 2007, THESIS ALBERT LUDWIG; Clements FE, 1936, J ECOL, V24, P252, DOI 10.2307/2256278; Commarmot Brigitte, 2005, Forest Snow and Landscape Research, V79, P45; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; D'Amato AW, 2008, ECOL APPL, V18, P1182, DOI 10.1890/07-0919.1; Ellenberg H, 1996, VEGETATION MITTELEUR; ELLENBERG H, 1972, MITT SCHWEIZ ANST FO, V48, P388; Emborg J, 1998, FOREST ECOL MANAG, V106, P83, DOI 10.1016/S0378-1127(97)00299-5; FINEGAN B, 1984, NATURE, V312, P109, DOI 10.1038/312109a0; FRANKLIN J F, 1989, P3; Giraudoux P, 2008, PGIRMESS DATA ANAL E; GLEASON H. A., 1939, AMER MIDLAND NAT, V21, P92, DOI 10.2307/2420377; Gross D, 1982, THESIS ETH ZURICH; Heiri C, 2009, ECOL APPL, V19, P1920, DOI 10.1890/08-0516.1; Holeksa J, 2007, EUR J FOREST RES, V126, P303, DOI 10.1007/s10342-006-0149-z; Horvat I., 1974, VEGETATION SUDOSTEUR; Kimmins JP, 2004, EMULATING NATURAL FOREST LANDSCAPED DISTURBANCES: CONCEPTS AND APPLICATIONS, P8; KOOP H, 1987, FOREST ECOL MANAG, V20, P135, DOI 10.1016/0378-1127(87)90155-1; Korpel S., 1995, URWALDER WESTKARPATE; KUOCH ROLF, 1954, MITTEIL SCHWEIZ ANST FORST VERSUCHSWESEN, V30, P133; Legendre P, 1998, NUMERICAL ECOLOGY; Leibundgut H, 1962, RICHTLINIEN AU UNPUB; Leibundgut H, 1982, EUROPAISCHE URWALDER; Leibundgut H., 1959, SCHWEIZ Z FORSTWESEN, V110, P111; Leibundgut H., 1993, EUROPAISCHE URWALDER; Lexerod NL, 2006, FOREST ECOL MANAG, V222, P17, DOI 10.1016/j.foreco.2005.10.046; LEYER I, 2007, MULTIVARIATE STAT OK; MAYER H, 1981, FORSTWISS CENTRALBL, V100, P111, DOI 10.1007/BF02640624; MAYER H., 1974, WALDER OSTALPENRAUME; Meyer P, 2000, ENTWICKLUNG BAUMARTE; Neumann M, 2001, FOREST ECOL MANAG, V145, P91, DOI 10.1016/S0378-1127(00)00577-6; Oliver CD, 1996, FOREST STAND DYNAMIC; Ott E, 1997, GEBIRGSNADELWALDER P; PARKER GR, 1985, FOREST ECOL MANAG, V11, P31, DOI 10.1016/0378-1127(85)90057-X; Parolini JD, 1995, THESIS ETH ZURICH; Peterken GF, 1996, NATURAL WOODLAND ECO; Pickett STA, 2009, APPL VEG SCI, V12, P9, DOI 10.1111/j.1654-109X.2009.01019.x; Piovesan G, 2005, J VEG SCI, V16, P13, DOI 10.1658/1100-9233(2005)016[0013:SDADOA]2.0.CO;2; Podlaski R., 2004, Journal of Forest Science (Prague), V50, P55; R Development Core Team, 2008, R LANG ENV STAT COMP; Remmert H, 1991, ECOLOGICAL STUDIES, V85; Rubin BD, 2006, FOREST ECOL MANAG, V222, P427, DOI 10.1016/j.foreco.2005.10.049; Shannon CE., 1949, MATH THEORY COMMUNIC; Siegel S, 1988, NONPARAMETRIC STAT B; SPIES TA, 1989, ECOLOGY, V70, P543, DOI 10.2307/1940198; Tabaku V, 2000, THESIS GEORG AUGUST; Thornton PE, 1997, J HYDROL, V190, P214, DOI 10.1016/S0022-1694(96)03128-9; Tilman D., 1987, ECOL MONOGR, V57; Van Der Maarel E., 2005, VEGETATION ECOLOGY; Walentowski H, 1998, DISSERTATIONES BOT; WATT AS, 1947, J ECOL, V35, P1, DOI 10.2307/2256497; Wohlgemuth T, 2008, PLANT BIOSYST, V142, P604, DOI 10.1080/11263500802410975; Wolf A, 2005, FOREST ECOL MANAG, V215, P112; ZUKRIGL K, 1991, Geobios (Jodhpur), V18, P202 62 5 5 0 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1612-4669 EUR J FOREST RES Eur. J. For. Res. MAR 2012 131 2 503 518 10.1007/s10342-011-0525-1 16 Forestry Forestry 903BC WOS:000301088000021 2019-02-21 J Jonason, PK; Webster, GD Jonason, Peter K.; Webster, Gregory D. A protean approach to social influence: Dark Triad personalities and social influence tactics PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Cheater-detection; Personality; Social influence TERM MATING STRATEGY; LIFE-HISTORY THEORY; EVOLUTIONARY PSYCHOLOGY; MACHIAVELLIANISM; PSYCHOPATHY; NARCISSISM; DOMAINS; MODEL To avoid detection, those high on Dark Triad traits (i.e., narcissism, psychopathy, and Machiavellianism) may adopt a protean approach to interpersonal influence. We show the Dark Triad traits correlate with a number of unique tactics of influence (Study 1; N = 259). We show this protean approach was insensitive to differences in targets of manipulation (Study 2; N = 296). When forced to choose one tactic to solve different adaptive problems, the Dark Triad traits were correlated with unique tactical choices (Study 3; N = 268). We show these associations are generally robust to controlling for the Big Five and participants' sex (Study 1 and 2). We discuss the theoretical implications of these findings for both life history and cheater-detection theories. (C) 2011 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Sch Psychol, Penrith, NSW 2751, Australia; [Webster, Gregory D.] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Psychol, Locked Bag 1797, Penrith, NSW 2751, Australia. peterkarljonason@yahoo.com Ali F, 2009, PERS INDIV DIFFER, V47, P758, DOI 10.1016/j.paid.2009.06.016; Baumeister RF, 2007, PERSPECT PSYCHOL SCI, V2, P396, DOI 10.1111/j.1745-6916.2007.00051.x; Benotsch E. G., 2004, BASIC APPL SOC PSYCH, V16, P35; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; BUSS DM, 1992, J PERS, V60, P477, DOI 10.1111/j.1467-6494.1992.tb00981.x; BUSS DM, 1991, J PERS, V59, P179, DOI 10.1111/j.1467-6494.1991.tb00773.x; Christie R, 1970, STUDIES MACHIAVELLIA; Cosmides L., 1992, ADAPTED MIND EVOLUTI, P163, DOI DOI 10.1098/RSTB.2006.1991; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; DRIVER PM, 1988, PROTEAN BEHAV BIOL U; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JD, 2008, PERS SOC PSYCHOL B, V34, P1004, DOI 10.1177/0146167208316688; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Gunnthorsdottir A, 2002, J ECON PSYCHOL, V23, P49, DOI 10.1016/S0167-4870(01)00067-8; Hare RD, 1996, CRIM JUSTICE BEHAV, V23, P25, DOI 10.1177/0093854896023001004; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2002, PERS SOC PSYCHOL REV, V6, P347, DOI 10.1207/S15327957PSPR0604_09; Kline P, 2000, HDB PSYCHOL TESTING; Kowalski RM, 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Wilson DS, 1996, PSYCHOL BULL, V119, P285, DOI 10.1037/0033-2909.119.2.285 29 88 89 5 41 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. MAR 2012 52 4 521 526 10.1016/j.paid.2011.11.023 6 Psychology, Social Psychology 904SL WOS:000301218100010 2019-02-21 J Mack, KML Mack, Keenan M. L. Selective feedback between dispersal distance and the stability of mutualism OIKOS English Article NEGATIVE SPECIES INTERACTIONS; VISCOUS POPULATIONS; EVOLUTION; ALTRUISM; COOPERATION; ECOLOGY; MODEL; MOBILITY; ORIGIN The evolution and maintenance of mutually beneficial interactions has been one of the oldest problems for evolutionary theory. For cooperation to be stable, mechanisms such as spatial population structure must exist that prevent non-cooperative individuals from invading cooperative groups. Selection for certain traits like increased dispersal can erode that structure. Here, I used a spatially explicit individual based dual lattice computer simulation to investigate how the evolution of dispersal interacts with the evolution of mutualism and how this interaction affects the stability of mutualism in the face of non-mutualists. I ran simulations manipulating the self-structuring phenotype, dispersal distance, over a range of environmental conditions, as well as letting both dispersal and mutualism evolve independently, with and without a cost of dispersal. I found that environmental productivity is negatively correlated with the stability of mutualism, and that the stability of mutualism relied on the ability of mutualists to evolve shorter dispersal distances than non-mutualists. The inclusion of a dispersal cost essentially fixed the upper limit of dispersal, and therefore limits the ability of non-mutualists to evolve higher average dispersal than mutualists, but as costs are relaxed, the differences are recovered. These results show how selection on seemingly unrelated traits can align suites of traits into holistic life history strategies. Indiana Univ, Bloomington, IN 47405 USA Mack, KML (reprint author), Indiana Univ, 1001 E 3rd St,Jordan Hall 149C, Bloomington, IN 47405 USA. kmmack@indiana.edu NSF [DEB - 0919434] I thank J. Bever, T. Platt and the Bever/Schultz lab group for comments on this article. I acknowledge support from NSF grant no. DEB - 0919434. AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; BOUCHER DH, 1982, ANNU REV ECOL SYST, V13, P315, DOI 10.1146/annurev.es.13.110182.001531; Briggs CJ, 2004, THEOR POPUL BIOL, V65, P299, DOI 10.1016/j.tpb.2003.11.001; Brooker RW, 2007, J THEOR BIOL, V245, P59, DOI 10.1016/j.jtbi.2006.09.033; Callaway RM, 2002, NATURE, V417, P844, DOI 10.1038/nature00812; Doebeli M, 1998, P NATL ACAD SCI USA, V95, P8676, DOI 10.1073/pnas.95.15.8676; DUGATKIN LA, 1997, COOPERATION ANIMALS; Dytham C, 2006, OIKOS, V113, P530, DOI 10.1111/j.2006.0030-1299.14395.x; FRANK SA, 1994, J THEOR BIOL, V170, P393, DOI 10.1006/jtbi.1994.1200; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Hanski I, 2008, THEOR ECOL-NETH, V1, P29, DOI 10.1007/s12080-007-0004-y; Hauert C, 2004, NATURE, V428, P643, DOI 10.1038/nature02360; HUFFAKER C. B., 1958, HILGARDIA, V27, P343; Killingback T, 1999, P ROY SOC B-BIOL SCI, V266, P1723, DOI 10.1098/rspb.1999.0838; Koella JC, 2000, P ROY SOC B-BIOL SCI, V267, P1979, DOI 10.1098/rspb.2000.1239; Le Galliard JF, 2005, AM NAT, V165, P206, DOI 10.1086/427090; Lion S, 2008, ECOL LETT, V11, P277, DOI 10.1111/j.1461-0248.2007.01132.x; Lord JM, 2006, OECOLOGIA, V150, P310, DOI 10.1007/s00442-006-0523-z; Luce RD, 1957, GAMES DECISIONS INTR; MACARTHUR RH, 1958, ECOLOGY, V39, P599, DOI 10.2307/1931600; Marsaglia G., 2000, J STAT SOFTW, V5, P1, DOI DOI 10.18637/JSS.V005.I08; NOWAK MA, 1992, NATURE, V359, P826, DOI 10.1038/359826a0; Platt TG, 2009, TRENDS ECOL EVOL, V24, P370, DOI 10.1016/j.tree.2009.02.009; Sicardi EA, 2009, J THEOR BIOL, V256, P240, DOI 10.1016/j.jtbi.2008.09.022; TAYLOR PD, 1992, EVOL ECOL, V6, P352, DOI 10.1007/BF02270971; Taylor PD, 2000, EVOLUTION, V54, P1135; Travis JMJ, 2006, J THEOR BIOL, V241, P896, DOI 10.1016/j.jtbi.2006.01.025; Travis JMJ, 2005, BIOL LETT-UK, V1, P5, DOI 10.1098/rsbl.2004.0236; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; van Baalen M, 1998, J THEOR BIOL, V193, P631, DOI 10.1006/jtbi.1998.0730; WILSON DS, 1992, EVOL ECOL, V6, P331, DOI 10.1007/BF02270969; Yamamura N, 2004, J THEOR BIOL, V226, P421, DOI 10.1016/j.jtbi.2003.09.016 34 5 5 0 41 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0030-1299 OIKOS Oikos MAR 2012 121 3 442 448 10.1111/j.1600-0706.2011.19420.x 7 Ecology Environmental Sciences & Ecology 900HH WOS:000300877100014 2019-02-21 J Cook, KV; O'Connor, CM; McConnachie, SH; Gilmour, KM; Cooke, SJ Cook, K. V.; O'Connor, C. M.; McConnachie, S. H.; Gilmour, K. M.; Cooke, S. J. Condition dependent intra-individual repeatability of stress-induced cortisol in a freshwater fish COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Condition factor; Cortisol; Fish; Glucocorticoid secretion; Individual variation; Lepomis macrochirus; Repeatability; Stress response JUVENILE CHINOOK SALMON; INDIVIDUAL VARIATION; RAINBOW-TROUT; LEPOMIS-MACROCHIRUS; BLUEGILL SUNFISH; PHYSIOLOGICAL STRESS; ONCORHYNCHUS-MYKISS; COPING STYLES; RESPONSES; CONSISTENCY The glucocorticoid (GC) stress response is thought to be an individual trait associated with behaviour and life history strategies. Studies exploring such relationships typically assume measured hormone values to be repeatable within an individual. However, repeatability of GCs has proven variable in wild animals and underlying reasons remain unknown. We assessed individual repeatability of circulating stress-induced cortisol. the primary GC in teleost fish, and glucose concentrations in a wild teleost fish held under consistent laboratory conditions. We also tested the hypothesis that the magnitude of intra-individual variability in stress-induced cortisol concentrations ("cortisol variability") is influenced by body condition. Wild-caught bluegill sunfish (Lepomis macrochirus) were subjected to repeated standardized stressors and blood sampled (3 times over 6 days) once cortisol concentrations peaked. Various indicators of fish condition, both whole body and physiological, were also measured. Overall, stress-induced circulating cortisol concentrations were repeatable but stress-induced glucose was not. Cortisol variability was related to Fulton's condition factor and size (eviscerated mass) where smaller fish in poor condition exhibited increased cortisol variability. The findings have implications for the interpretation of studies that examine correlates of GC concentrations as they suggest consistency in stress responsiveness is influenced by factors such as size and condition. (C) 2011 Elsevier Inc. All rights reserved. [Cook, K. V.; O'Connor, C. M.; McConnachie, S. H.; Cooke, S. J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Gilmour, K. M.] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada; [Cooke, S. J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada Cook, KV (reprint author), Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. katrina.vcook@gmail.com Cooke, Steven/F-4193-2010 Cooke, Steven/0000-0002-5407-0659 Natural Sciences and Engineering Research Council All fish were sampled under an Ontario Ministry of Natural Resources scientific collection permit and handled in accordance with the guidelines of the Canadian Council on Animal Care. This research was supported by the Natural Sciences and Engineering Research Council Discovery grants to S.J.C. and K.M.G. Thanks to J. Weatherhead, L. Nowell, A. Nagrodski, C. Suski, G. Raby and S. Wilson for assistance with field work, and the staff of the Queen's University Biological Station for logistical support. ADAMS SM, 1993, T AM FISH SOC, V122, P63, DOI 10.1577/1548-8659(1993)122<0063:AQHAIF>2.3.CO;2; Barton B.A., 1991, Annual Review of Fish Diseases, V1, P3, DOI 10.1016/0959-8030(91)90019-G; BARTON BA, 1988, PROG FISH CULT, V50, P16, DOI 10.1577/1548-8640(1988)050<0016:FADCAS>2.3.CO;2; Barton BA, 2002, INTEGR COMP BIOL, V42, P517, DOI 10.1093/icb/42.3.517; BARTON BA, 1987, DIS AQUAT ORGAN, V2, P173; BARTON BA, 1986, T AM FISH SOC, V115, P245, DOI 10.1577/1548-8659(1986)115<245:MADECP>2.0.CO;2; Bennett A.F., 1987, P147; Bonga SEW, 1997, PHYSIOL REV, V77, P591, DOI 10.1152/physrev.1997.77.3.591; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Cargnelli LM, 2006, J ANIM ECOL, V75, P627, DOI 10.1111/j.1365-2656.2006.01083.x; CHELLAPPA S, 1995, J FISH BIOL, V47, P775, DOI 10.1111/j.1095-8649.1995.tb06002.x; Cockrem JF, 2009, GEN COMP ENDOCR, V163, P158, DOI 10.1016/j.ygcen.2009.03.029; Collier CP, 2010, J UROLOGY, V183, P2294, DOI 10.1016/j.juro.2010.02.011; Cook KV, 2011, HORM BEHAV, V60, P489, DOI 10.1016/j.yhbeh.2011.07.017; Cooke SJ, 2008, J FISH BIOL, V73, P1351, DOI 10.1111/j.1095-8649.2008.02008.x; Cooke SJ, 2005, BIODIVERS CONSERV, V14, P1195, DOI 10.1007/s10531-004-7845-0; Cooke SJ, 2003, N AM J FISH MANAGE, V23, P883, DOI 10.1577/M02-096; Evans D.H., 1993, PHYSL FISHES, P260; Fobert E, 2009, FISH RES, V99, P38, DOI 10.1016/j.fishres.2009.04.006; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Jentoft S, 2005, COMP BIOCHEM PHYS A, V141, P353, DOI 10.1016/j.cbpb.2005.06.006; Ketterson Ellen D., 1999, American Naturalist, V154, P4; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kralj-Fiser S, 2007, HORM BEHAV, V51, P239, DOI 10.1016/j.yhbeh.2006.10.006; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Maule AG, 1996, FISH SHELLFISH IMMUN, V6, P221, DOI 10.1006/fsim.1996.0022; McConnachie S.H., 2010, THESIS CARLETON U OT; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Neff BD, 2004, ENVIRON BIOL FISH, V71, P297, DOI 10.1007/s10641-004-1263-8; Overli O, 2007, NEUROSCI BIOBEHAV R, V31, P396, DOI 10.1016/j.neubiorev.2006.10.006; PICKERING AD, 1984, J FISH BIOL, V24, P731, DOI 10.1111/j.1095-8649.1984.tb04844.x; POTTINGER TG, 1992, AQUACULTURE, V103, P275, DOI 10.1016/0044-8486(92)90172-H; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Romero LM, 2008, GEN COMP ENDOCR, V156, P27, DOI 10.1016/j.ygcen.2007.10.001; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schjolden J, 2005, PHYSIOL BIOCHEM ZOOL, V78, P715, DOI 10.1086/432153; Schreck CB, 2000, BIOLOGY OF ANIMAL STRESS, P147, DOI 10.1079/9780851993591.0147; SILBERGELD EK, 1974, B ENVIRON CONTAM TOX, V11, P20, DOI 10.1007/BF01685023; Tort L, 2001, AQUAC RES, V32, P593, DOI 10.1046/j.1365-2109.2001.00607.x; Wada H, 2008, HORM BEHAV, V53, P472, DOI 10.1016/j.yhbeh.2007.11.018; While GM, 2010, HORM BEHAV, V58, P208, DOI 10.1016/j.yhbeh.2010.03.016; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Wilson ADM, 2011, CAN J FISH AQUAT SCI, V68, P749, DOI 10.1139/F2011-019; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 45 23 23 1 34 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. MAR 2012 161 3 337 343 10.1016/j.cbpa.2011.12.002 7 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology 897IO WOS:000300643200008 22179071 2019-02-21 J Lyimo, IN; Keegan, SP; Ranford-Cartwright, LC; Ferguson, HM Lyimo, I. N.; Keegan, S. P.; Ranford-Cartwright, L. C.; Ferguson, H. M. The impact of uniform and mixed species blood meals on the fitness of the mosquito vector Anopheles gambiae s.s: does a specialist pay for diversifying its host species diet? JOURNAL OF EVOLUTIONARY BIOLOGY English Article constraints; host-parasite interaction; insects; life history evolution; malaria; natural selection; trade-offs FEEDING-BEHAVIOR; DIPTERA-CULICIDAE; WESTERN KENYA; EVOLUTION; FUNESTUS; PLANTS; SUGAR; COEXISTENCE; ENVIRONMENT; FECUNDITY We investigated the fitness consequences of specialization in an organism whose host choice has an immense impact on human health: the African malaria vector Anopheles gambiae s.s. We tested whether this mosquitos specialism on humans can be attributed to the relative fitness benefits of specialist vs. generalist feeding strategies by contrasting their fecundity and survival on human-only and mixed host diets consisting of blood meals from humans and animals. When given only one blood meal, An. gambiae s.s. survived significantly longer on human and bovine blood, than on canine or avian blood. However, when blood fed repeatedly, there was no evidence that the fitness of An. gambiae s.s. fed a human-only diet was greater than those fed generalist diets. This suggests that the adoption of generalist host feeding strategies in An. gambiae s.s. is not constrained by intraspecific variation in the resource quality of blood from other available host species. [Lyimo, I. N.] Ifakara Hlth Inst, Environm & Biomed Themat Grp, Ifakara, Tanzania; [Lyimo, I. N.; Keegan, S. P.; Ranford-Cartwright, L. C.] Univ Glasgow, Coll Med Vet & Life Sci, Inst Infect Immun & Inflammat, Glasgow, Lanark, Scotland; [Lyimo, I. N.; Ferguson, H. M.] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland Lyimo, IN (reprint author), Ifakara Hlth Inst, Environm & Biomed Themat Grp, POB 53, Ifakara, Tanzania. ilyimo@ihi.or.tz Ranford-Cartwright, Lisa/H-4701-2013 Ranford-Cartwright, Lisa/0000-0003-1992-3940; Ferguson, Heather/0000-0002-9625-5176; Keegan, Shaun/0000-0002-8302-4408 University of Glasgow; BBSRC; European Union [228421 Infravec]; Biotechnology and Biological Sciences Research Council [BB/D020042/1] We thank Elizabeth Peat and Dorothy Armstrong for technical assistance during this study. INL was supported by a University of Glasgow Faculty Studentship. Funding was provided by a BBSRC David Philips Fellowship to HMF. Research leading to these results also received funding from the European Union Seventh Framework Programme FP7 (2007-2013) under grant agreement no 228421 Infravec. Abrams PA, 2006, AM NAT, V167, P329, DOI 10.1086/499382; Abrams PA, 2006, AM NAT, V168, P645, DOI 10.1086/507878; Agrawal AA, 2002, AM NAT, V159, P553, DOI 10.1086/339463; Allard CM, 2005, ENVIRON ENTOMOL, V34, P6, DOI 10.1603/0046-225X-34.1.6; Beier JC, 1996, J MED ENTOMOL, V33, P613, DOI 10.1093/jmedent/33.4.613; BENNETT GF, 1970, CAN J ZOOLOG, V48, P539, DOI 10.1139/z70-090; BERNAYS EA, 1994, ECOLOGY, V75, P1997, DOI 10.2307/1941604; Bracks M.A.H., 2006, MED VET ENTOMOL, V20, P53; Burnham K. P, 2002, MODEL SELECTION MULT; Carter R, 1993, Methods Mol Biol, V21, P67; Crawley M. J., 2007, R BOOK; DOWNE AER, 1975, J MED ENTOMOL, V12, P431, DOI 10.1093/jmedent/12.4.431; EDMAN JD, 1987, INSECT SCI APPL, V8, P617, DOI 10.1017/S1742758400022694; Egas M, 2004, AM NAT, V163, P518, DOI 10.1086/382599; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gary RE, 2006, MED VET ENTOMOL, V20, P308, DOI 10.1111/j.1365-2915.2006.00638.x; Gary RE, 2004, MED VET ENTOMOL, V18, P102, DOI 10.1111/j.0269-283X.2004.00483.x; Gary RE, 2001, J MED ENTOMOL, V38, P22, DOI 10.1603/0022-2585-38.1.22; Gary Richard E. Jr, 2009, Parasites & Vectors, V2, P1; GILLIES M. T., 1953, EAST AFRICAN MED JOUR, V30, P129; GILLIES MT, 1972, B ENTOMOL RES, V61, P389, DOI 10.1017/S0007485300047295; GILLIES MT, 1965, B ENTOMOL RES, V56, P237, DOI 10.1017/S0007485300056339; Harrington LC, 2001, J MED ENTOMOL, V38, P411, DOI 10.1603/0022-2585-38.3.411; Hauge MS, 1998, ENTOMOL EXP APPL, V89, P319, DOI 10.1046/j.1570-7458.1998.00415.x; Hawkey C. M., 1991, Comparative Haematology International, V1, P1, DOI 10.1007/BF00422687; HAWKEY CM, 1991, BRIT J HAEMATOL, V77, P392, DOI 10.1111/j.1365-2141.1991.tb08590.x; Hurd H, 2005, EVOLUTION, V59, P2560; HURD H, 1995, PARASITOL TODAY, V11, P411, DOI 10.1016/0169-4758(95)80021-2; JAENIKE J, 1990, ANNU REV ECOL SYST, V21, P243, DOI 10.1146/annurev.es.21.110190.001331; Kelly-Hope LA, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-268; Kilpatrick AM, 2007, AM J TROP MED HYG, V77, P667, DOI 10.4269/ajtmh.2007.77.667; Kilpatrick AM, 2006, PLOS BIOL, V4, P606, DOI 10.1371/journal.pbio.0040082; Kiszewski A, 2004, AM J TROP MED HYG, V70, P486, DOI 10.4269/ajtmh.2004.70.486; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Lyimo IN, 2009, TRENDS PARASITOL, V25, P189, DOI 10.1016/j.pt.2009.01.005; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; Manda H, 2007, MED VET ENTOMOL, V21, P103, DOI 10.1111/j.1365-2915.2007.00672.x; MATHER TN, 1983, AM J TROP MED HYG, V32, P189, DOI 10.4269/ajtmh.1983.32.189; Michaud JP, 2008, ENTOMOL EXP APPL, V126, P40, DOI 10.1111/j.1570-7458.2007.00636.x; Nemi J.C., 1986, ESSENTIALS VET HEMAT; PRICE PW, 1980, ANNU REV ECOL SYST, V11, P41, DOI 10.1146/annurev.es.11.110180.000353; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; RAPPORT DJ, 1980, AM NAT, V116, P324, DOI 10.1086/283631; Thomas HQ, 2010, BIOL CONTROL, V53, P353, DOI 10.1016/j.biocontrol.2010.02.011; VIA S, 1990, ANNU REV ENTOMOL, V35, P421, DOI 10.1146/annurev.en.35.010190.002225; Wintrobe MM, 1934, FOLIA HAEMATOL, V51, P32; WOKE P. A., 1937, American Journal of Tropical Medicine, V17, P729; WOKE P. A., 1937, Journal of Parasitology, V23, P311, DOI 10.2307/3272429 48 11 11 3 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAR 2012 25 3 452 460 10.1111/j.1420-9101.2011.02442.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 895MV WOS:000300501200004 22221693 Bronze 2019-02-21 J Song, Y; Scheu, S; Drossel, B Song, Y.; Scheu, S.; Drossel, B. The ecological advantage of sexual reproduction in multicellular long-lived organisms JOURNAL OF EVOLUTIONARY BIOLOGY English Article amphibians and reptiles; birds; life history evolution; mammals; quantitative genetics; simulation; theory; trade-offs COMMUNITY STRUCTURE; GEOGRAPHIC PARTHENOGENESIS; POPULATION; DIVERSITY; FOOD; CONSUMER; RECOMBINATION; COMPETITION; ECOSYSTEMS; HYPOTHESIS We present a model for the advantage of sexual reproduction in multicellular long-lived species in a world of structured resources in short supply. The model combines features of the Tangled Bank and the Red Queen hypothesis of sexual reproduction and is of broad applicability. The model is ecologically explicit with the dynamics of resources and consumers being modelled by differential equations. The life history of consumers is shaped by body mass-dependent rates as implemented in the metabolic theory of ecology. We find that over a broad range of parameters, sexual reproduction wins despite the two-fold cost of producing males, due to the advantage of producing offspring that can exploit underutilized resources. The advantage is largest when maturation and production of offspring set in before the resources of the parents become depleted, but not too early, due to the cost of producing males. The model thus leads to the dominance of sexual reproduction in multicellular animals living in complex environments, with resource availability being the most important factor affecting survival and reproduction. [Song, Y.; Drossel, B.] Tech Univ Darmstadt, Inst Condensed Matter Phys, D-64289 Darmstadt, Germany; [Scheu, S.] Univ Gottingen, JF Blumenbach Inst Zool & Anthropol, Gottingen, Germany Song, Y (reprint author), Tech Univ Darmstadt, Inst Condensed Matter Phys, Hochschulstr 6, D-64289 Darmstadt, Germany. yixian@fkp.tu-darmstadt.de Song, Yixian/0000-0003-4611-8277 Deutsche Forschungsgemeinschaft (DFG) [Dr300/6] This study was funded by the Deutsche Forschungsgemeinschaft (DFG) under contract number Dr300/6. Ament I, 2008, J THEOR BIOL, V254, P520, DOI 10.1016/j.jtbi.2008.06.024; ANDERSSON M, 1994, MONOGRAPHS BEHAV ECO; Araujo MS, 2011, ECOL LETT, V14, P948, DOI 10.1111/j.1461-0248.2011.01662.x; Bailey JK, 2009, PHILOS T R SOC B, V364, P1607, DOI 10.1098/rstb.2008.0336; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Balvanera P, 2006, ECOL LETT, V9, P1146, DOI 10.1111/j.1461-0248.2006.00963.x; Bangert RK, 2006, MOL ECOL, V15, P1379, DOI 10.1111/j.1365-294X.2005.02749.x; Bell G, 1987, Experientia Suppl, V55, P117; Bell G, 1982, MASTERPIECE NATURE E; Bell G., 1988, SEX DEATH PROTOZOA H; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Cadotte MW, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005695; Clutton-Brock T. H, 1991, MONOGRAPHS BEHAV ECO; Clutton-Brock T, 2009, Q REV BIOL, V84, P3, DOI 10.1086/596461; Cornelissen T, 2008, OIKOS, V117, P1121, DOI [10.1111/j.0030-1299.2008.16588.x, 10.1111/j.2008.0030-1299.16588.x]; Devictor V, 2010, ECOL LETT, V13, P1030, DOI 10.1111/j.1461-0248.2010.01493.x; Doebeli M, 1996, EVOLUTION, V50, P532, DOI 10.1111/j.1558-5646.1996.tb03866.x; Ellers J, 2011, ECOLOGY, V92, P1605, DOI 10.1890/10-2082.1; FELSENSTEIN J, 1974, GENETICS, V78, P737; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Ghiselin M.T, 1974, EC NATURE EVOLUTION; Gruner DS, 2008, ECOL LETT, V11, P740, DOI 10.1111/j.1461-0248.2008.01192.x; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; Harper J. L, 2005, ECOLOGY INDIVIDUALS; HOLLING C. S., 1959, CANADIAN ENT, V91, P293; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; JAENIKE J, 1978, Evolutionary Theory, V3, P191; Jousset A, 2011, ISME J, V5, P1108, DOI 10.1038/ismej.2011.9; Kartascheff B, 2010, THEOR ECOL-NETH, V3, P195, DOI 10.1007/s12080-009-0063-3; Kearney M, 2006, MOL ECOL, V15, P1743, DOI 10.1111/j.1365-294X.2006.02898.x; Lively CM, 2009, J EVOLUTION BIOL, V22, P2086, DOI 10.1111/j.1420-9101.2009.01824.x; Lively CM, 2000, NATURE, V405, P679, DOI 10.1038/35015069; MANNING JT, 1976, HEREDITY, V36, P351, DOI 10.1038/hdy.1976.42; Maynard Smith J, 1978, EVOLUTION SEX; MULLER HJ, 1964, MUTAT RES, V1, P2, DOI 10.1016/0027-5107(64)90047-8; Oksanen L, 2000, AM NAT, V155, P703, DOI 10.1086/303354; Rall BC, 2008, OIKOS, V117, P202, DOI 10.1111/j.2007.0030-1299.15491.x; Salathe M, 2008, TRENDS ECOL EVOL, V23, P439, DOI 10.1016/j.tree.2008.04.010; Schadler M, 2010, ENTOMOL EXP APPL, V135, P162, DOI 10.1111/j.1570-7458.2010.00976.x; Scheu S, 2007, P ROY SOC B-BIOL SCI, V274, P1225, DOI 10.1098/rspb.2007.0040; Schmid Bernhard, 2009, P14; Schreiber SJ, 2011, ECOLOGY, V92, P1582; SMITH JM, 1971, J THEOR BIOL, V30, P319; Song Y, 2011, OIKOS, V120, P1601, DOI 10.1111/j.1600-0706.2011.19698.x; Song Y, 2010, EVOL ECOL RES, V12, P831; Song YX, 2011, J THEOR BIOL, V273, P55, DOI 10.1016/j.jtbi.2010.12.020; Speight MR, 2008, ECOLOGY INSECTS CONC; Stearns S, 1992, EVOLUTION LIFE HIST; Swales AKE, 2005, REPRODUCTION, V130, P389, DOI 10.1530/rep.1.00395; Tack AJM, 2011, ECOLOGY, V92, P1594, DOI 10.1890/10-2006.1; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; TURNER FB, 1970, ECOLOGY, V51, P741, DOI 10.2307/1934059; VANDEL A., 1928, BULL BIOL FRANCE ET BELGIQUE, V62, P164; VRIJENHOEK RC, 1979, AM ZOOL, V19, P787; Walker M, 2001, OIKOS, V93, P177, DOI 10.1034/j.1600-0706.2001.930201.x; WEISMANN A, 1889, ESSAYS HEREDITY KIND; West SA, 1999, J EVOLUTION BIOL, V12, P1003; White TCR, 2008, BIOL REV, V83, P227, DOI 10.1111/j.1469-185X.2008.00041.x; Williams G., 1975, SEX EVOLUTION; Wu JQ, 2010, ANNU REV GENET, V44, P1, DOI 10.1146/annurev-genet-102209-163500 61 5 5 2 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAR 2012 25 3 556 565 10.1111/j.1420-9101.2012.02454.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 895MV WOS:000300501200013 22268809 Bronze 2019-02-21 J Jabbour, F; Renner, SS Jabbour, Florian; Renner, Susanne S. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Beringia; Delphinieae; Life history evolution; Mediterranean; Molecular clock; Tibetan Plateau GENETIC DIVERSITY; CHLOROPLAST DNA; TIBETAN PLATEAU; NEW-WORLD; HISTORY; POPULATIONS; EVOLUTION; SEQUENCES; CONSOLIDA; CLIMATE The tribe Delphinieae (Ranunculaceae) comprises two species-rich genera, Aconitum and Delphinium, the latter including Consolida and Aconitella. The 650-700 species are distributed in Eurasia and North America; three species occur on tropical African mountains. Maximum likelihood analyses of 2088 aligned nucleotides of plastid and nuclear sequences obtained from up to 185 species of Delphinieae from throughout the geographic range (plus relevant outgroups) show that three short-lived (facultative annual or biennial) Mediterranean species belonging to Delphinium subgenus Staphisagria are the sister clade to all other Delphinieae, implying that Staphisagria needs to be raised to genus status if Delphinium and Aconitum are to become mutually monophyletic. Molecular clock dating suggests an origin of the sampled Delphinieae in the Early Oligocene (c. 32.3 Ma) and expansion to North America of Aconitum and Delphinium around 3.3 and 2.9 Ma ago, respectively; the East African Mts. were reached by long-distance dispersal some 2.4 Ma ago, coincident with the major uplift of the East African Rift system. The ancestral growth form of the Delphinieae could not be reconstructed, but Late Miocene bursts in diversification rates in the Himalayan and southwestern Chinese clades of Aconitum and Delphinium appear to be associated with transitions from short-lived to long-lived life histories. (C) 2011 Elsevier Inc. All rights reserved. [Jabbour, Florian; Renner, Susanne S.] Univ Munich LMU, D-80638 Munich, Germany Jabbour, F (reprint author), Univ Munich LMU, Menzinger Str 67, D-80638 Munich, Germany. jabbour@bio.lmu.de Jabbour, Florian/0000-0002-7729-1067 German Science Foundation (DFG) [RE 603/12-1] The authors thank P. Lemey for advice about Bayesian ancestral area reconstruction in BEAST, R. Verlaque for discussion of Staphisagria, Q.E. Yang and Q. Yuan for providing material of three Chinese species, A. Rojas for sequencing East African species as part of an intensive research training project, the curators of G and MO for loan of material, and two anonymous reviewers for their valuable comments. Financial support for FJ's project came from the German Science Foundation (DFG) Grant No. RE 603/12-1. Agnew A.D.Q., 1974, UPLAND KENYA WILD FL, P78; Blanche C., 1991, PENINSULA IBERICA IL; Blanche C., 1997, BOCCONEA, V5, P535; Blanche C, 1987, SAUSSUREA, V18, P1; Bosch M, 2001, FLORA, V196, P101, DOI 10.1016/S0367-2530(17)30025-7; Bosch Maria, 1997, Lagascalia, V19, P545; Brigham-Grette J, 2001, QUATERNARY SCI REV, V20, P15, DOI 10.1016/S0277-3791(00)00134-7; Chalet A.O., 1993, FLORA EUROPAEA, V1, P2113; DAVIS PH, 1965, FLORA TURKEY, V1, P1; De La Fuente G, 1990, COLLECTANEA BOT BARC, V19, P129; DRUMMOND AJ, 2006, PLOS BIOL, V4, P88, DOI DOI 10.1371/J0URNAL.PBI0.0040088; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond CS, 2008, MOL PHYLOGENET EVOL, V48, P408, DOI 10.1016/j.ympev.2008.03.009; Eastwood R.J., SYST BIOL IN PRESS; ERBAR C, 1998, FLORA, V194, P317; Goker M., 2008, BMC EVOL BIOL, V8; GREGORY WC, 1941, T AM PHILOS SOC, V31, P443, DOI DOI 10.2307/1005611; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; HOOT SB, 1991, SYST BOT, V16, P741, DOI 10.2307/2418876; Hutchinson J., 1954, FLORA W TROPICAL A 1, VI, P65; Jabbour Florian, 2011, PhytoKeys, V7, P21, DOI 10.3897/phytokeys.7.2010; Jabbour F, 2011, TAXON, V60, P1029; Jabbour F, 2009, ANN BOT-LONDON, V104, P809, DOI 10.1093/aob/mcp162; JOHANSSON JT, 1993, PLANT SYST EVOL, V187, P29, DOI 10.1007/BF00994090; Katoh K, 2009, METHODS MOL BIOL, V537, P39, DOI 10.1007/978-1-59745-251-9_3; Kita Y, 2000, PLANT SYST EVOL, V225, P1, DOI 10.1007/BF00985455; Koontz JA, 2004, SYST BOT, V29, P345, DOI 10.1600/036364404774195539; KOSUGE K, 1988, BOT MAG TOKYO, V101, P223, DOI 10.1007/BF02488601; Krumbiegel A., 2001, BEITR BIOL PFLANZ, V72, P287; Kurita M., 1955, BOT MAG TOKYO, V68, P248; Lemey P, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000520; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; Liangqian L, 2001, FLORA CHINA, P149; Maddison W. P., 2009, MESQUITE MODULAR SYS; Magallon S, 2001, EVOLUTION, V55, P1762, DOI 10.1111/j.0014-3820.2001.tb00826.x; MALYUTIN N I, 1987, Botanicheskii Zhurnal (St. Petersburg), V72, P683; Molnar P, 2010, ANNU REV EARTH PL SC, V38, P77, DOI 10.1146/annurev-earth-040809-152456; Molnar P, 2009, TECTONICS, V28, DOI 10.1029/2008TC002271; MUNZ PA, 1967, J ARNOLD ARBORETUM, V48, P30; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Rambaut A, 2007, TRACER V1 4; Raunkiaer C., 1918, KGL DANSKE VIDENSK S, V1, P1; Orellana MR, 2009, FOLIA GEOBOT, V44, P47, DOI 10.1007/s12224-009-9028-y; Orellana MR, 2009, GENETICA, V135, P221, DOI 10.1007/s10709-008-9271-9; Sepulchre P, 2006, SCIENCE, V313, P1419, DOI 10.1126/science.1129158; Simon J., 1999, CONSPECT CHROMOSOME; Soininen E.M., 2009, FRONT ZOOL, V6; Stamatakis A, 2008, SYST BIOL, V57, P758, DOI 10.1080/10635150802429642; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Stevens P. F., 2001, ANGIOSPERM PHYLOGENY; Sun G, 2011, NATURE, V471, P625, DOI 10.1038/nature09811; TABERLET P, 1991, PLANT MOL BIOL, V17, P1105, DOI 10.1007/BF00037152; Tamura K., 2011, MOL BIOL EVOL, DOI [10.1093/molbev/msr1121, DOI 10.1093/MOLBEV/MSR1121]; TAMURA M, 1990, Acta Phytotaxonomica et Geobotanica, V41, P93; TAMURA M., 1993, FAMILIES GENERA VASC, VII, P563; Turabekova MA, 2010, EUR J MED CHEM, V45, P3885, DOI 10.1016/j.ejmech.2010.05.042; Utelli AB, 2000, PLANT SYST EVOL, V224, P195, DOI 10.1007/BF00986343; Utelli AB, 1999, HEREDITY, V82, P574, DOI 10.1038/sj.hdy.6885070; VERLAQUE R, 2001, BOCCONEA, V13, P189; Vila R, 2011, P ROY SOC B-BIOL SCI, V278, P2737, DOI 10.1098/rspb.2010.2213; von Balthazar M, 2000, INT J PLANT SCI, V161, P785, DOI 10.1086/314302; Wang LY, 2009, MOL ECOL, V18, P709, DOI 10.1111/j.1365-294X.2008.04055.x; Wang W T, 2001, FLORA CHINA, V6, P223; Wang W, 2009, PERSPECT PLANT ECOL, V11, P81, DOI 10.1016/j.ppees.2009.01.001; Warnock K.J., 1996, JEPSON MANUAL HIGHER, P916; WATSON L, 1992, FAMILIES FLOWERING P; Yang QinEr, 1996, Acta Phytotaxonomica Sinica, V34, P39; Yuan Q, 2008, BOT J LINN SOC, V158, P172, DOI 10.1111/j.1095-8339.2008.00849.x; Zhang FM, 2005, PLANT SYST EVOL, V254, P39, DOI 10.1007/s00606-005-0298-4; Zhao YL, 2010, NEUROTOXICOLOGY, V31, P752, DOI 10.1016/j.neuro.2010.06.005; 杨亲二, 2001, 植物分类学报, V39, P502 71 44 48 3 70 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. MAR 2012 62 3 928 942 10.1016/j.ympev.2011.12.005 15 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 892GS WOS:000300275300014 22182994 2019-02-21 J Johnson, PTJ; Rohr, JR; Hoverman, JT; Kellermanns, E; Bowerman, J; Lunde, KB Johnson, Pieter T. J.; Rohr, Jason R.; Hoverman, Jason T.; Kellermanns, Esra; Bowerman, Jay; Lunde, Kevin B. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk ECOLOGY LETTERS English Article Amphibian decline; conservation; dilution effect; emerging disease; immunoecology; phylogenetic comparative methods; Ribeiroia ondatrae; trematode WEST-NILE-VIRUS; IMMUNE DEFENSE; AMPHIBIAN COMMUNITY; TROPICAL BIRDS; TRADE-OFFS; ECOLOGY; RESISTANCE; TOLERANCE; PARASITES; PATHOGEN Parasite infections often lead to dramatically different outcomes among host species. Although an emerging body of ecoimmunological research proposes that hosts experience a fundamental trade-off between pathogen defences and life-history activities, this line of inquiry has rarely been extended to the most essential outcomes of host-pathogen interactions: namely, infection and disease pathology. Using a comparative experimental approach involving 13 amphibian host species and a virulent parasite, we test the hypothesis that pace-of-life predicts parasite infection and host pathology. Trematode exposure increased mortality and malformations in nine host species. After accounting for evolutionary history, species that developed quickly and metamorphosed smaller (fast-species) were particularly prone to infection and pathology. This pattern likely resulted from both weaker host defences and greater adaptation by parasites to infect common hosts. Broader integration between life history theory and disease ecology can aid in identifying both reservoir hosts and species at risk of disease-driven declines. [Johnson, Pieter T. J.; Hoverman, Jason T.; Kellermanns, Esra] Univ Colorado, Boulder, CO 80309 USA; [Rohr, Jason R.] Univ S Florida, Dept Integrat Biol, Tampa, FL 33620 USA; [Bowerman, Jay] Sunriver Nat Ctr, Sunriver, OR 97707 USA; [Lunde, Kevin B.] Univ Calif Berkeley, Berkeley, CA 94720 USA Johnson, PTJ (reprint author), Univ Colorado, Boulder, CO 80309 USA. pieter.johnson@colorado.edu Hoverman, Jason/D-1756-2013; Lunde, Kevin/D-4202-2009 Hoverman, Jason/0000-0002-4002-2728; NSF [DEB-0553768]; US Department of Agriculture [NRI 2006-01370, 2009-35102-05043]; US Environmental Protection Agency [R833835]; David and Lucile Packard Foundation For assistance in conducting experiments and collecting data, we thank E. Daly, S. Todd, R. Hartson, E. Preu, M. Redmond, M. McGrath, G. Cropsey, E. Holldorf, C. de Jesus, J. Jenkins, I. Buller, D. Larson, A. Price and B. LaFonte. Comments from R. Ostfeld, J. Cronin, two anonymous referees and members of the Johnson Lab helped shape the manuscript. M. Lajeunesse generously provided help with the phylogenetic analyses. This project was supported by grants from NSF (DEB-0553768 to PTJJ), the US Department of Agriculture (NRI 2006-01370, 2009-35102-05043 to JRR), the US Environmental Protection Agency (R833835 to JRR) and a fellowship from the David and Lucile Packard Foundation (to PTJJ). Arriero E, 2008, J EVOLUTION BIOL, V21, P1504, DOI 10.1111/j.1420-9101.2008.01613.x; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Borer ET, 2009, P NATL ACAD SCI USA, V106, P503, DOI 10.1073/pnas.0808778106; Burnham K. P, 2002, MODEL SELECTION MULT; Craft ME, 2008, J ANIM ECOL, V77, P1257, DOI 10.1111/j.1365-2656.2008.01410.x; Cronin JP, 2010, ECOL LETT, V13, P1221, DOI 10.1111/j.1461-0248.2010.01513.x; Daszak P, 2000, SCIENCE, V287, P443, DOI 10.1126/science.287.5452.443; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; HART BL, 1994, PARASITOLOGY, V109, pS139, DOI 10.1017/S0031182000085140; Hasselquist D, 2007, J ORNITHOL, V148, pS571, DOI 10.1007/s10336-007-0201-x; Hawley D. M., 2010, FUNCT ECOL, V25, P48, DOI DOI 10.1111/J.1365-2435.2010.01753.X; Haydon DT, 2002, EMERG INFECT DIS, V8, P1468; Johnson PTJ, 2011, FUNCT ECOL, V25, P726, DOI 10.1111/j.1365-2435.2010.01830.x; Johnson PTJ, 2009, J ANIM ECOL, V78, P191, DOI 10.1111/j.1365-2656.2008.01455.x; Johnson PTJ, 1999, SCIENCE, V284, P802, DOI 10.1126/science.284.5415.802; Johnson PTJ, 2001, HERPETOLOGICA, V57, P336; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; Keesing F, 2006, ECOL LETT, V9, P485, DOI 10.1111/j.1461-0248.2006.00885.x; Kilpatrick AM, 2006, P R SOC B, V273, P2327, DOI 10.1098/rspb.2006.3575; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Komar N, 2003, EMERG INFECT DIS, V9, P311, DOI 10.3201/eid0903.020628; LaDeau SL, 2007, NATURE, V447, P710, DOI 10.1038/nature05829; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; LoGiudice K, 2003, P NATL ACAD SCI USA, V100, P567, DOI 10.1073/pnas.0233733100; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Martin LB, 2006, INTEGR COMP BIOL, V46, P1030, DOI 10.1093/icb/icl039; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; McGarigal K, 2000, MULTIVARIATE STAT WI; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Ostfeld R, 2000, CAN J ZOOL, V78, P2061, DOI 10.1139/cjz-78-12-2061; Paradis E., 2011, PACKAGE APE VERSION; Poulin R., 2004, PARASITE BIODIVERSIT; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; R Development Core Team, 2008, R LANG ENV STAT COMP; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rohr JR, 2010, FUNCT ECOL, V24, P1110, DOI 10.1111/j.1365-2435.2010.01709.x; Rosseel Y., 2011, LATENT VARIABLE ANAL; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Todd BD, 2007, AM NAT, V170, P793, DOI 10.1086/521958; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 50 115 116 6 137 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1461-023X ECOL LETT Ecol. Lett. MAR 2012 15 3 235 242 10.1111/j.1461-0248.2011.01730.x 8 Ecology Environmental Sciences & Ecology 887RH WOS:000299946200008 22221837 2019-02-21 J Norse, EA; Brooke, S; Cheung, WWL; Clark, MR; Ekeland, L; Froese, R; Gjerde, KM; Haedrich, RL; Heppell, SS; Morato, T; Morgan, LE; Pauly, D; Sumaila, R; Watson, R Norse, Elliott A.; Brooke, Sandra; Cheung, William W. L.; Clark, Malcolm R.; Ekeland, Lvar; Froese, Rainer; Gjerde, Kristina M.; Haedrich, Richard L.; Heppell, Selina S.; Morato, Telmo; Morgan, Lance E.; Pauly, Daniel; Sumaila, Rashid; Watson, Reg Sustainability of deep-sea fisheries MARINE POLICY English Article Sustainability; Deep-sea fisheries; Fishery collapse; Fisheries economics; Clark's law; High seas ROUGHY HOPLOSTETHUS-ATLANTICUS; APHANOPUS-CARBO LOWE; LIFE-HISTORY STRATEGIES; ORANGE ROUGHY; EXTINCTION RISK; MARINE FISHES; BLACK SCABBARDFISH; CONTINENTAL-SLOPE; POPULATION REGULATION; NORTHEAST ATLANTIC As coastal fisheries around the world have collapsed, industrial fishing has spread seaward and deeper in pursuit of the last economically attractive concentrations of fishable biomass. For a seafood-hungry world depending on the oceans' ecosystem services, it is crucial to know whether deep-sea fisheries can be sustainable. The deep sea is by far the largest but least productive part of the oceans, although in very limited places fish biomass can be very high. Most deep-sea fishes have life histories giving them far less population resilience/productivity than shallow-water fishes, and could be fished sustainably only at very low catch rates if population resilience were the sole consideration. But like old-growth trees and great whales, their biomass makes them tempting targets while their low productivity creates strong economic incentive to liquidate their populations rather than exploiting them sustainably (Clark's Law). Many deep-sea fisheries use bottom trawls, which often have high impacts on nontarget fishes (e.g., sharks) and invertebrates (e.g., corals), and can often proceed only because they receive massive government subsidies. The combination of very low target population productivity, nonselective fishing gear, economics that favor population liquidation and a very weak regulatory regime makes deep-sea fisheries unsustainable with very few exceptions. Rather, deep-sea fisheries more closely resemble mining operations that serially eliminate fishable populations and move on. Instead of mining fish from the least-suitable places on Earth, an ecologically and economically preferable strategy would be rebuilding and sustainably fishing resilient populations in the most suitable places, namely shallower and more productive marine ecosystems that are closer to markets. (C) 2011 Published by Elsevier Ltd. [Norse, Elliott A.; Brooke, Sandra] Marine Conservat Inst, Bellevue, WA 98004 USA; [Cheung, William W. L.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England; [Clark, Malcolm R.] Natl Inst Water & Atmospher Res NIWA, Wellington 6021, New Zealand; [Ekeland, Lvar] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada; [Froese, Rainer] Leibniz Inst Marine Sci, IFM GEOMAR, D-24105 Kiel, Germany; [Gjerde, Kristina M.] IUCN Global Marine Programme, CH-1196 Gland, Switzerland; [Haedrich, Richard L.] Mem Univ, Norwich, VT 05055 USA; [Heppell, Selina S.] Oregon State Univ, Corvallis, OR 97330 USA; [Morato, Telmo] Univ Acores, Dept Oceanografia & Pescas, P-9901862 Horta, Portugal; [Morato, Telmo] Secretariat Pacific Community, Ocean Fisheries Program, Noumea, New Caledonia; [Morgan, Lance E.] Marine Conservat Inst, Glen Ellen, CA 95442 USA; [Pauly, Daniel; Sumaila, Rashid; Watson, Reg] Univ British Columbia, Fisheries Ctr, Vancouver, BC V6T 1Z4, Canada Norse, EA (reprint author), Marine Conservat Inst, 2122 112th Ave NE,Suite B-300, Bellevue, WA 98004 USA. elliott.norse@marine-conservation.org Morato, Telmo/A-4548-2009; Watson, Reg/F-4850-2012; Cheung, William/F-5104-2013; Froese, Rainer/C-9687-2009 Morato, Telmo/0000-0003-2393-4773; Watson, Reg/0000-0001-7201-8865; Cheung, William/0000-0003-3626-1045; Froese, Rainer/0000-0001-9745-636X Allain V, 2001, FISH RES, V51, P165, DOI 10.1016/S0165-7836(01)00243-0; Anderson OF, 2003, MAR FRESHWATER RES, V54, P643, DOI 10.1071/MF02163; [Anonymous], 2004, INT J MARINE COASTAL, V19, P209; Baker KD, 2009, ENVIRON BIOL FISH, V85, P79, DOI 10.1007/s10641-009-9465-8; Bax NJ, 2005, FAO FISHERIES P, V3/1, P259; Bensch A., 2008, 522 FAO, P145; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; Berkes F, 2006, SCIENCE, V311, P1557, DOI 10.1126/science.1122804; Bordalo-Machado P, 2009, REV FISH BIOL FISHER, V19, P49, DOI 10.1007/s11160-008-9089-7; Borets LA, 1975, SOME RESULTS STUDIES, P82; Boyer DC, 2001, S AFR J MARINE SCI, V23, P205; Branch TA, 2001, S AFR J MARINE SCI, V23, P181; CAB International, 2002, PIN SILV IMP; Cavanagh RD, 2005, FAO FISHERIES P, V3/2, P366; Cheung WWL, 2007, MAR ECOL PROG SER, V333, P1, DOI 10.3354/meps333001; Cheung WWL, 2005, BIOL CONSERV, V124, P97, DOI 10.1016/j.biocon.2005.01.017; Chuenpagdee R, 2003, FRONT ECOL ENVIRON, V1, P517; Clark CW, 2010, LAND ECON, V86, P209, DOI 10.3368/le.86.2.209; CLARK CW, 1973, SCIENCE, V181, P630, DOI 10.1126/science.181.4100.630; CLARK CW, 1973, J POLIT ECON, V81, P950, DOI 10.1086/260090; Clark M, 2001, FISH RES, V51, P123, DOI 10.1016/S0165-7836(01)00240-5; Clark M. R, 2007, BLACKWELL FISHERIES, P361; Clark MR, 2009, LAT AM J AQUAT RES, V37, P501, DOI 10.3856/vol37-issue3-fulltext-17; Clark MR, 2000, FISH RES, V45, P217, DOI 10.1016/S0165-7836(99)00121-6; Cohen MP, 1998, GARDEN BRISTLECONES; Danovaro R, 2008, CURR BIOL, V18, P1, DOI 10.1016/j.cub.2007.11.056; Davies AJ, 2007, BIOL CONSERV, V138, P299, DOI 10.1016/j.biocon.2007.05.011; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Devine JA, 2006, NATURE, V439, P29, DOI 10.1038/439029a; DRUFFEL ERM, 1995, GEOCHIM COSMOCHIM AC, V59, P5031, DOI 10.1016/0016-7037(95)00373-8; Dulvy NK, 2003, FISH FISH, V4, P25, DOI 10.1046/j.1467-2979.2003.00105.x; Dunn M, 2007, NZ SCI REV, V63, P70; EMEIS KC, 2001, SCI INTEGRATED COAST; FAO, 2009, INT GUID MAN DEEP SE; FAO, 1995, COD COND RESP FISH; FAO, 2005, 472 FAO; FAO, 2007, 838 FAO, P203; *FAO, 2009, FISHSTAT PLUS UN SOF; Figueiredo I, 2003, ICES J MAR SCI, V60, P774, DOI 10.1016/S1054-3139(03)00064-X; Food and Agricultural Organization FAO, 2004, STAT WORLD FISH AQ; Food and Agriculture Organization (FAO), 2009, STAT WORLD FISH AQ 2; Francis RICC, 2005, B MAR SCI, V76, P337; Freitas Mafalda, 2007, Bocagiana (Funchal), P1; Freiwald A., 2004, COLD WATER CORAL REE; Froese R, 2000, J FISH BIOL, V56, P758, DOI 10.1006/jfbi.1999.1194; Fuller S. D., 2008, WE FISH MATTERS ADDR; Garcia VB, 2008, P R SOC B, V275, P83, DOI 10.1098/rspb.2007.1295; GENIN A, 2007, SEAMOUNTS ECOLOGY FI, P85; Gianni M., 2004, HIGH SEAS BOTTOM FIS; Glover AG, 2003, ENVIRON CONSERV, V30, P219, DOI 10.1017/S0376892903000225; Gordon HS, 1954, J POLIT ECON, V62, P124, DOI 10.1086/257497; Graham KJ, 2001, MAR FRESHWATER RES, V52, P549, DOI 10.1071/MF99174; Grigg R., 2002, MAR FISH REV, V64, P13; Gulland JA, 1971, FAO97 FISH TECHN PAP, P425; HARDIN G, 1968, SCIENCE, V162, P1243; Hayashi Moritaka, 2004, INT J MARINE COASTAL, V19, P289; HIGH SEAS TASK FORCE, 2006, CLOS NET STOPP ILL F; Hoenig JM, 1984, FISH B-NOAA, V81, P4; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; ICES, 2008, 2008ACOM14 ICES CM; IUCN, 2007, OV CONS DEEP SEA CHO; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Japp D.W., 2007, 838 FAO, P39; Japp DW, 2005, FAO P, V3/1, P162; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Koslow JA, 2000, ICES J MAR SCI, V57, P548, DOI 10.1006/jmsc.2000.0722; Koslow JA, 1996, J FISH BIOL, V49, P54, DOI 10.1111/j.1095-8649.1996.tb06067.x; Kulikov MY, 1992, ABUNDANCE DYNAMICS B, P4; Kyne PM, 2007, COLLATION SUMMARIZAT; Large P. A., 2003, Journal of Northwest Atlantic Fishery Science, V31, P151; Last P. R., 1994, SHARKS RAYS AUSTR; Lodge M. W., 2007, RECOMMENDED BEST PRA; LUDWIG D, 1993, SCIENCE, V260, P17, DOI 10.1126/science.260.5104.17; Lutz MJ, 2007, J GEOPHYS RES-OCEANS, V112, DOI 10.1029/2006JC003706; Martins R, 1995, DEEP WATER FISHERIES, P323; McAllister DE, 1999, GLOBAL TRAWLING GROU; McAllister MK, 2001, CAN J FISH AQUAT SCI, V58, P1871, DOI 10.1139/cjfas-58-9-1871; McCann K, 1997, CAN J FISH AQUAT SCI, V54, P1289, DOI 10.1139/cjfas-54-6-1289; MERRETT NR, 1997, DEEP SEA DEMERSAL FI, P282; Milazzo M. J., 1998, 406 WORLD BANK; Ministry of Fisheries-New Zealand, 2009, REP FISH ASS PLEN MA, P1036; Minto C, 2006, ENVIRON BIOL FISH, V77, P39, DOI 10.1007/s10641-006-9053-0; Moore JA, 1999, FISHERIES, V24, P16, DOI 10.1577/1548-8446(1999)024<0016:DFFLFH>2.0.CO;2; Mora C, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000131; Morales-Nin B, 2002, ICES J MAR SCI, V59, P352, DOI 10.1006/jmsc.2001.1154; Morato T, 2006, FISH FISH, V7, P24, DOI 10.1111/j.1467-2979.2006.00205.x; Morato T, 2006, J FISH BIOL, V68, P209, DOI 10.1111/j.1095-8649.2005.00894.x; Morato T, 2007, BLACKWELL FISHERIES, V12, p[170, 527]; Musick JA, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Natural Environment Research Council, 2009, DEEP SEA FISH STOCKS; NMFS, 2004, FIN PROGR SUPPL GROU; Noronha AC, 1925, FISH MADEIRA BLACK S; NORSE EA, 1990, ANCIENT FORESTS PACI; Norse EA, 2010, B MAR SCI, V86, P179; Orlov AM, 2008, S AM FISH SOC, V63; Ostrom E, 2009, SCIENCE, V325, P419, DOI 10.1126/science.1172133; Parrish FA, 2007, CRCP3 NOAA, P155; PAULY D, 1995, TRENDS ECOL EVOL, V10, P430, DOI 10.1016/S0169-5347(00)89171-5; Pauly D, 2005, PHILOS T ROY SOC B, V360, P5, DOI 10.1098/rstb.2004.1574; PAULY D, 1980, J CONSEIL, V39, P175; Pauly D, 2003, SCIENCE, V302, P1359, DOI 10.1126/science.1088667; Pauly D, 2005, MILLENNIUM ECOSYSTEM, V1, P477; Paya I., 2005, FAO FISH P, V3/2, P97; Perez J. A. A., 2003, Journal of Northwest Atlantic Fishery Science, V31, P1; Priede IG, 2006, P R SOC B, V273, P1435, DOI 10.1098/rspb.2005.3461; Probert PK, 2007, FISH AQUATIC RESOURC, P443; Reynolds JD, 2005, P ROY SOC LOND B BIO, V262, P2337; Rice J, 2006, 2006057 DFO CSAS; Rick TC, 2009, SCIENCE, V325, P952, DOI 10.1126/science.1178539; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Roark EB, 2006, MAR ECOL PROG SER, V327, P1, DOI 10.3354/meps327001; Roark EB, 2009, P NATL ACAD SCI USA, V106, P5204, DOI 10.1073/pnas.0810875106; Roberts Callum, 2007, UNNATURAL HIST SEA; Roberts CM, 2002, TRENDS ECOL EVOL, V17, P242, DOI 10.1016/S0169-5347(02)02492-8; Roff Derek A., 1992; ROGERS AD, 2008, SCI GUIDELINES SCI G; ROWE GT, 1986, OCEANOL ACTA, V9, P199; RYTHER JH, 1969, SCIENCE, V166, P72, DOI 10.1126/science.166.3901.72; Sadovy Y, 2001, J FISH BIOL, V59, P90, DOI 10.1006/jfbi.2001.1760; SASAKI T, 1986, 43 NOAA NMFS, P21; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sethi SA, 2010, P NATL ACAD SCI 0621; Sharp R, 2009, N AM J FISH MANAGE, V29, P18, DOI 10.1577/M07-170.1; Shotton R, 2005, REV STATE WORLD MARI, P188; Sissenwine MP, 2007, 838 FAO, P61; Stevens JD, 2000, ICES J MAR SCI, V57, P476, DOI 10.1006/jmsc.2000.0724; Sumaila U. R., 2006, FISHERIES CTR RES RE, V14; Sumaila UR, 2005, ECOL ECON, V52, P135, DOI 10.1016/j.ecolecon.2003.11.012; Sumaila UR, 2010, MAR POLICY, V34, P495, DOI 10.1016/j.marpol.2009.10.004; Sverdrup H. U., 1961, OCEANS THEIR PHYS CH; Thiel H, 2003, ECOSY WORLD, V28, P427; United Nations, 1995, INT LEGAL MAT, V34, P1547; Watling L, 1998, CONSERV BIOL, V12, P1180, DOI 10.1046/j.1523-1739.1998.0120061180.x; Watling L, 2010, P INT SCI WORKSH; Watson R, 2001, NATURE, V414, P534, DOI 10.1038/35107050; White M, 2007, SEAMOUNTS ECOLOGY FI, P65; Williams A, 2010, MAR ECOL-EVOL PERSP, V31, P183, DOI 10.1111/j.1439-0485.2010.00385.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Yanagimoto T, 1999, OUTLINE JAPANESE TRA 143 132 133 9 203 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0308-597X 1872-9460 MAR POLICY Mar. Pol. MAR 2012 36 2 307 320 10.1016/j.marpol.2011.06.008 14 Environmental Studies; International Relations Environmental Sciences & Ecology; International Relations 864EH WOS:000298219300001 2019-02-21 J Gaos, AR; Lewison, RL; Yanez, IL; Wallace, BP; Liles, MJ; Nichols, WJ; Baquero, A; Hasbun, CR; Vasquez, M; Urteaga, J; Seminoff, JA Gaos, Alexander R.; Lewison, Rebecca L.; Yanez, Ingrid L.; Wallace, Bryan P.; Liles, Michael J.; Nichols, Wallace J.; Baquero, Andres; Hasbun, Carlos R.; Vasquez, Mauricio; Urteaga, Jose; Seminoff, Jeffrey A. Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles BIOLOGY LETTERS English Article Hawksbill; habitat use; mangroves; estuary; eastern Pacific; life history SEA-TURTLES; ERETMOCHELYS-IMBRICATA; POPULATION; MIGRATION Adult hawksbill turtles (Eretmochelys imbricata) are typically described as open-coast, coral reef and hard substrate dwellers. Here, we report new satellite tracking data on female hawksbills from several countries in the eastern Pacific that revealed previously undocumented behaviour for adults of the species. In contrast to patterns of habitat use exhibited by their Caribbean and Indo-Pacific counterparts, eastern Pacific hawksbills generally occupied inshore estuaries, wherein they had strong associations with mangrove saltwater forests. The use of inshore habitats and affinities with mangrove saltwater forests presents a previously unknown life-history paradigm for adult hawksbill turtles and suggests a potentially unique evolutionary trajectory for the species. Our findings highlight the variability in life-history strategies that marine turtles and other wide-ranging marine wildlife may exhibit among ocean regions, and the importance of understanding such disparities from an ecological and management perspective. [Gaos, Alexander R.; Lewison, Rebecca L.] San Diego State Univ, San Diego, CA 92182 USA; [Gaos, Alexander R.; Yanez, Ingrid L.; Liles, Michael J.] Eastern Pacific Hawksbill Initiat, San Diego, CA USA; [Wallace, Bryan P.] Conservat Int, Global Marine Div, Arlington, VA USA; [Wallace, Bryan P.] Duke Univ, Marine Lab, Div Marine Sci & Conservat, Beaufort, NC 28516 USA; [Liles, Michael J.] Texas A&M Univ, College Stn, TX USA; [Nichols, Wallace J.] Calif Acad Sci, San Francisco, CA 94118 USA; [Baquero, Andres] Fdn Equilibrio Azul, Quito, Ecuador; [Baquero, Andres] Univ San Francisco Quito, Galapagos Inst Arts & Sci, Quito, Ecuador; [Hasbun, Carlos R.] US Agcy Int Dev, San Salvador, El Salvador; [Vasquez, Mauricio] Univ El Salvador, Inst Ciencias Mar & Limnol, Dept Limnol & Ocean Sci, San Salvador, El Salvador; [Urteaga, Jose] Flora & Fauna Int, Managua, Nicaragua; [Seminoff, Jeffrey A.] Natl Ocean & Atmospher Adm, SW Fisheries Sci Ctr, La Jolla, CA USA Gaos, AR (reprint author), San Diego State Univ, San Diego, CA 92182 USA. info@hawksbill.org Southwest Fisheries Science Centre of the National Ocean and Atmospheric Administration; National Fish and Wildlife Foundation; US Fish and Wildlife Service; Machalilla National Park; Paso Pacifico; Asociacion para el Desarrollo Empresarial y Ambiental de Puerto Parada; Fundacion para la Proteccion del Arrecife de Los Cobanos; Cooperativa de Pescadores El Maculis; Ministry of the Environment and Natural Resources of El Salvador; Cooperativa Multisectorial de Jiquilillo; Los Zorros y Padre Ramos; Ocean Foundation We thank Southwest Fisheries Science Centre of the National Ocean and Atmospheric Administration, National Fish and Wildlife Foundation, US Fish and Wildlife Service, Machalilla National Park, Paso Pacifico, Asociacion para el Desarrollo Empresarial y Ambiental de Puerto Parada, Fundacion para la Proteccion del Arrecife de Los Cobanos, Cooperativa de Pescadores El Maculis, Ministry of the Environment and Natural Resources of El Salvador, Cooperativa Multisectorial de Jiquilillo, Los Zorros y Padre Ramos and The Ocean Foundation for financial/logisitical support. We recognize the following individuals: Rene Flores, Cristabel Flores, Georgina Mariona, Wilfredo Lopez, Tarla Peterson, Sarah Otterstrom, Liza Gonzalez, Salvador Sanchez, Perla Torres, Eduardo Altamirano Urbina, Eddy Maradiaga, Luis Manzanares, Micaela Pena, Juan Pablo Munoz, Gabriela Anhalzer, Felipe Vallejo, Michelle Pico, Earl Possardt, Grover Jeane, Michael Carey, Philippe Gaspar, Remy Lopez, Michael Coyne and Harry Johnson. We acknowledge insightful reviewer comments by Graeme Hayes. Allen MS, 2007, CORAL REEFS, V26, P959, DOI 10.1007/s00338-007-0234-x; Bjorndal KA, 2010, MAR BIOL, V157, P135, DOI 10.1007/s00227-009-1304-0; BOLTEN AB, 2003, BIOL SEA TURTLES, V2, P243; Bowen BW, 2007, MOL ECOL, V16, P4886, DOI 10.1111/j.1365-294X.2007.03542.x; Gaos AR, 2010, ORYX, V44, P595, DOI 10.1017/S0030605310000773; Godley B. J., 2008, Endangered Species Research, V4, P3, DOI 10.3354/esr00060; Hasbun C. R., 1998, MAR TURTLE NEWSLETT, V81, P10; Hawkes LA, 2006, CURR BIOL, V16, P990, DOI 10.1016/j.cub.2006.03.063; Hays GC, 1999, MAR ECOL PROG SER, V189, P263, DOI 10.3354/meps189263; Hewitt GM, 1996, BIOL J LINN SOC, V58, P247, DOI 10.1006/bijl.1996.0035; Leon YM, 2002, MAR ECOL PROG SER, V245, P249, DOI 10.3354/meps245249; Liles Michael J., 2011, Endangered Species Research, V14, P23, DOI 10.3354/esr00338; LIMPUS CJ, 1992, WILDLIFE RES, V19, P489, DOI 10.1071/WR9920489; Malarde J.-P., 2011, IMPROVING ARGOS DOPP; McClellan CM, 2007, BIOLOGY LETT, V3, P592, DOI 10.1098/rsbl.2007.0355; MEYLAN A, 1988, SCIENCE, V239, P393, DOI 10.1126/science.239.4838.393; Mortimer J. A., 2008, IUCN RED LIST THREAT; Phillips SJ, 2006, ECOL MODEL, V190, P231, DOI 10.1016/j.ecolmodel.2005.03.026; PLOTKIN P, 2003, BIOL SEA TURTLES, V2, P225; PRITCHARD PCH, 1984, TURTLES VENEZUELA, V2; Saba VS, 2008, ECOLOGY, V89, P1414, DOI 10.1890/07-0364.1; Schofield G, 2010, DIVERS DISTRIB, V16, P840, DOI 10.1111/j.1472-4642.2010.00694.x; Wallace B. P., 2009, ENDANGERED SPECIES R, V7, P1, DOI DOI 10.3354/ESR00177 23 20 24 0 54 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. FEB 23 2012 8 1 54 56 10.1098/rsbl.2011.0603 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 879IF WOS:000299322200017 21880620 Green Published, Bronze 2019-02-21 J Armstrong, G; Phillips, B Armstrong, Graeme; Phillips, Ben Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories PLOS ONE English Article NORTHERN AUSTRALIA; CLIMATE-CHANGE; ECOSYSTEMS; PERSISTENCE; MANAGEMENT; KIMBERLEY; LANDSCAPE; BIODIVERSITY; COEXISTENCE; CHALLENGES Wildfire is a fundamental disturbance process in many ecological communities, and is critical in maintaining the structure of some plant communities. In the past century, changes in global land use practices have led to changes in fire regimes that have radically altered the composition of many plant communities. As the severe biodiversity impacts of inappropriate fire management regimes are recognized, attempts are being made to manage fires within a more 'natural' regime. In this aim, the focus has typically been on determining the fire regime to which the community has adapted. Here we take a subtly different approach and focus on the probability of a patch being burnt. We hypothesize that competing sympatric taxa from different plant functional groups are able to coexist due to the stochasticity of the fire regime, which creates opportunities in both time and space that are exploited differentially by each group. We exploit this situation to find the fire probability at which three sympatric grasses, from different functional groups, are able to co-exist. We do this by parameterizing a spatio-temporal simulation model with the life-history strategies of the three species and then search for the fire frequency and scale at which they are able to coexist when in competition. The simulation gives a clear result that these species only coexist across a very narrow range of fire probabilities centred at 0.2. Conversely, fire scale was found only to be important at very large scales. Our work demonstrates the efficacy of using competing sympatric species with different regeneration niches to determine the probability of fire in any given patch. Estimating this probability allows us to construct an expected historical distribution of fire return intervals for the community; a critical resource for managing fire-driven biodiversity in the face of a growing carbon economy and ongoing climate change. [Armstrong, Graeme] Charles Darwin Univ, Res Inst Environm & Livelihoods, Darwin, NT 0909, Australia; [Phillips, Ben] James Cook Univ, Ctr Trop Biodivers & Climate Change, Townsville, Qld 4811, Australia Armstrong, G (reprint author), Charles Darwin Univ, Res Inst Environm & Livelihoods, Darwin, NT 0909, Australia. graeme.armstrong@fba.org.au Phillips, Ben/C-7957-2009; Research ID, CTBCC/O-3564-2014 Phillips, Ben/0000-0003-2580-2336; Australian Wildlife Conservancy; Holsworth Wildlife Research Endowment; Northern Territory Research and Innovation Fund; Australian Research Council Financial support was provided by Australian Wildlife Conservancy, Australian Research Council, Holsworth Wildlife Research Endowment, and the Northern Territory Research and Innovation Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. [Anonymous], 2009, S PLUS; Archibald S, 2010, INT J WILDLAND FIRE, V19, P861, DOI 10.1071/WF10008; Armstrong G, 2011, HEREDITY, V107, P558, DOI 10.1038/hdy.2011.42; Armstrong G, 2011, INT J WILDLAND FIRE, V20, P974, DOI 10.1071/WF10130; Armstrong G, 2011, AUSTRAL ECOL, V36, P849, DOI 10.1111/j.1442-9993.2010.02228.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Bond WJ, 2005, NEW PHYTOL, V165, P525, DOI 10.1111/j.1469-8137.2004.01252.x; Bowman DMJS, 1998, NEW PHYTOL, V140, P385, DOI 10.1046/j.1469-8137.1998.00289.x; Bunk S, 2004, PLOS BIOL, V2, P154, DOI 10.1371/journal.pbio.0020054; Crowley G, 2009, AUSTRAL ECOL, V34, P196, DOI 10.1111/j.1442-9993.2008.01921.x; Duren OC, 2010, FIRE ECOL, V6, P76, DOI 10.4996/fireecology.0602076; Enright NJ, 2008, GEOGR COMPASS, V2, P979, DOI 10.1111/j.1749-8198.2008.00126.x; ERNST WHO, 1992, VEGETATIO, V102, P1, DOI 10.1007/BF00031700; Fensham RJ, 1997, J BIOGEOGR, V24, P11, DOI 10.1111/j.1365-2699.1997.tb00046.x; Flannigan MD, 2009, INT J WILDLAND FIRE, V18, P483, DOI 10.1071/WF08187; Groeneveld J, 2002, J ECOL, V90, P762, DOI 10.1046/j.1365-2745.2002.00712.x; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Higgins SI, 2008, J ECOL, V96, P679, DOI 10.1111/j.1365-2745.2008.01391.x; Higuera PE, 2011, HOLOCENE, V21, P327, DOI 10.1177/0959683610374882; Jongejans E, 1999, OIKOS, V87, P362, DOI 10.2307/3546752; Keith David, 1996, Proceedings of the Linnean Society of New South Wales, V116, P37; Keith DA, 2007, J ECOL, V95, P1324, DOI 10.1111/j.1365-2745.2007.01302.x; Krawchuk MA, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005102; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Legge Sarah, 2011, Ecological Management & Restoration, V12, P84, DOI 10.1111/j.1442-8903.2011.00595.x; Lehmann CER, 2008, J APPL ECOL, V45, P1304, DOI 10.1111/j.1365-2664.2008.01496.x; Niklasson M, 2000, ECOLOGY, V81, P1484; Noble J, 1996, J VEG SCI, V7, P329; ODOWD DJ, 1984, ECOLOGY, V65, P1052, DOI 10.2307/1938313; Ooi MKJ, 2006, INT J WILDLAND FIRE, V15, P261, DOI 10.1071/WF05024; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; Preece N, 2002, J BIOGEOGR, V29, P321, DOI 10.1046/j.1365-2699.2002.00677.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Russell-Smith J, 2003, INT J WILDLAND FIRE, V12, P283, DOI 10.1071/WF03015; Russell-Smith J, 2009, AUSTR J BOT, V58, P300; RussellSmith J, 1997, HUM ECOL, V25, P159, DOI 10.1023/A:1021970021670; Strassburg BBN, 2010, CONSERV LETT, V3, P98, DOI 10.1111/j.1755-263X.2009.00092.x; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; Thuiller W, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000938; Tilman D, 2004, PNAS, V101, P19854; Vigilante T, 2004, AUST J BOT, V52, P405, DOI 10.1071/BT03157; WESTOBY M, 1988, AUST J ECOL, V13, P161, DOI 10.1111/j.1442-9993.1988.tb00965.x; Wood SW, 2010, FOREST ECOL MANAG, V260, P438, DOI 10.1016/j.foreco.2010.04.037; Yates CP, 2008, INT J WILDLAND FIRE, V17, P768, DOI 10.1071/WF07150; Yates CJ, 2010, AUSTRAL ECOL, V35, P374, DOI 10.1111/j.1442-9993.2009.02044.x 46 3 4 0 21 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1932-6203 PLOS ONE PLoS One FEB 21 2012 7 2 e31544 10.1371/journal.pone.0031544 8 Multidisciplinary Sciences Science & Technology - Other Topics 926ZM WOS:000302873700068 22363670 DOAJ Gold, Green Published 2019-02-21 J Koster, JM; Tankersley, KB Koster, Jeremy M.; Tankersley, Kenneth B. Heterogeneity of hunting ability and nutritional status among domestic dogs in lowland Nicaragua PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article Canis lupus familiaris; life history theory; Mayangna; Miskito; stable isotopes PERFORMANCE; HUNTERS; SUCCESS; BOLIVIA; WOLVES; SIZE; AGE In past and modern human societies, dogs have played an important role as hunting companions. Given considerable ethnographic evidence that dogs vary in their hunting abilities, this paper addresses the effects of key demographic variables, namely age and sex, on the amount of harvested game that dogs contribute in an indigenous Nicaraguan community. Controlling for variation in the time spent potentially hunting, male dogs and older dogs are significantly associated with greater harvests. These results may account for documented preferences for males in both archaeological and ethnographic contexts. Among societies in which dogs are used both as hunting companions and sources of food, the age-related delay in peak hunting ability also suggests a tradeoff that might explain the consumption of dogs shortly after they have reached adult size. Informant rankings of two cohorts of dogs indicate that residents of the community exhibit high agreement about the relative abilities of the dogs, and the rankings indicate that dogs from the same household exhibit comparable skill. There is little evidence that talented, highly-ranked dogs are provided a more nutritious diet, as measured by nitrogen-based and carbon-based isotopic analysis of hair samples. Overall, although dogs can be quite advantageous as hunting companions, this research suggests that the heterogeneity of hunting ability combines with the high mortality of dogs to impose risks on households that depend on dogs as a source of harvested meat. [Koster, Jeremy M.; Tankersley, Kenneth B.] Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA Koster, JM (reprint author), Univ Cincinnati, Dept Anthropol, Cincinnati, OH 45221 USA. jeremy.koster@uc.edu Fulbright Student Grant; National Science Foundation [BCS-0413037, BCS-0963752]; Hill Foundation; William Sanders dissertation grant; Charles Phelps Taft Research Center; Court Family Foundation; University of Cincinnati Research Council We thank Jeff Winking, Mark Grote, Angela Perri, and Brooke Crowley for valuable suggestions. This research was supported by a Fulbright Student Grant, the National Science Foundation (BCS-0413037, BCS-0963752), the Hill Foundation, a William Sanders dissertation grant, the Charles Phelps Taft Research Center, the Court Family Foundation, and the University of Cincinnati Research Council. ARCHER J, 1977, ANIM BEHAV, V25, P479, DOI 10.1016/0003-3472(77)90023-9; Bohannon P, 1966, SOURCE NOTEBOOK TIV; Borgatti Stephen, 2002, UCINET WINDOWS SOFTW; CLUTTONBROCK J, 1994, J ARCHAEOL SCI, V21, P819, DOI 10.1006/jasc.1994.1079; Crockford Susan Janet, 2000, DOGS TIME ARCHAEOLOG, P115; Descola P., 1994, SOC NATURE NATIVE EC; DWYER PD, 1983, HUM ECOL, V11, P145, DOI 10.1007/BF00891741; EstiokoGriffin A., 1981, WOMAN GATHERER, P121; Fiorello CV, 2006, CONSERV BIOL, V20, P762, DOI 10.1111/j.1523-1739.2006.00466.x; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HILL K, 1983, ADAPTIVE RESPONSES N, P223; Holmsen K, 2010, THESIS U ARIZONA TUC; Ikeya K, 1994, AFRICAN STUDY MONOGR, V15, P119; ISAAC BL, 1977, HUM ECOL, V5, P137, DOI 10.1007/BF00889540; JOHNSON A, 1975, ETHNOLOGY, V14, P301, DOI 10.2307/3773258; KEEGAN WF, 1986, AM ANTHROPOL, V88, P92, DOI 10.1525/aa.1986.88.1.02a00060; Koster J. M., 2007, THESIS PENN STATE U; Koster J, 2010, CURR ANTHROPOL, V51, P257, DOI 10.1086/651073; Koster J, 2009, J ANTHROPOL RES, V65, P575, DOI 10.3998/jar.0521004.0065.403; Koster JM, 2008, CURR ANTHROPOL, V49, P935, DOI 10.1086/592021; Koster JM, HUM NAT, V22, P394; Koster JM, 2008, ENVIRON CONSERV, V25, P211; Lee RB, 1979, IKUNG SAN MEN WOMEN; Lupo K. D., 2011, ETHNOZOOARCHAEOLOGY, P4; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; MacNulty DR, 2009, J ANIM ECOL, V78, P532, DOI 10.1111/j.1365-2656.2008.01517.x; Marlowe FW, 2002, ETHNICITY HUNTER GAT, P247; Mitchell P.J., 2008, ANIMALS PEOPLE ARCHA, P104; Morey D, 2010, DOGS DOMESTICATION D; Nobayashi A., 2006, DOGS PEOPLE SOCIAL W, P77; Petzke KJ, 2005, J NUTR, V135, P1515; POLITIS G, 2007, NUKAK ETHNOARCHAEOLO; Pongracz P, 2005, J COMP PSYCHOL, V119, P136, DOI 10.1037/0735-7036.119.2.136; Puri R.K., 2005, DEADLY DANCES BORNEA; Rasbash J, 2009, USERS GUIDE MLWIN; ROMNEY AK, 1987, AM BEHAV SCI, V31, P163, DOI 10.1177/000276487031002003; Sand H, 2006, ANIM BEHAV, V72, P781, DOI 10.1016/j.anbehav.2005.11.030; Schmutz SM, 1998, J HERED, V89, P233, DOI 10.1093/jhered/89.3.233; Schwartz M., 1997, HIST DOGS EARLY AM; Schwertl M, 2003, RAPID COMMUN MASS SP, V17, P1312, DOI 10.1002/rcm.1042; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; Smith EA, 2003, BEHAV ECOL, V14, P116, DOI 10.1093/beheco/14.1.116; Stocks A, 2003, HUM ORGAN, V62, P344, DOI 10.17730/humo.62.4.exekjumfqej3vpx4; Tankersley KB, 2009, N AM ARCHAEOL, V30, P361, DOI 10.2190/NA.30.4.b; VANHEST A, 1989, HORM BEHAV, V23, P57, DOI 10.1016/0018-506X(89)90074-3; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; Warren DM, 2004, THESIS BLOOMINGTON; WELLER SC, 1987, AM BEHAV SCI, V31, P178, DOI 10.1177/000276487031002004; Yin S, 2004, ANIM BEHAV, V68, P343, DOI 10.1016/j.anbehav.2003.07.016 49 15 15 1 22 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. FEB 21 2012 109 8 E463 E470 10.1073/pnas.1112515109 8 Multidisciplinary Sciences Science & Technology - Other Topics 895KM WOS:000300495100003 22232662 Green Published, Bronze 2019-02-21 J Zakas, C; Schult, N; McHugh, D; Jones, KL; Wares, JP Zakas, Christina; Schult, Nancy; McHugh, Damhnait; Jones, Kenneth L.; Wares, John P. Transcriptome Analysis and SNP Development Can Resolve Population Differentiation of Streblospio benedicti, a Developmentally Dimorphic Marine Annelid PLOS ONE English Article DEVELOPING SEA-URCHIN; CAPITELLA SP-I; HELIOCIDARIS-ERYTHROGRAMMA; NONSYNONYMOUS SUBSTITUTIONS; POLYCHAETE STREBLOSPIO; BENTHIC INVERTEBRATES; LARVAL DEVELOPMENT; GENE-EXPRESSION; LIFE-CYCLES; EVOLUTION Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms, which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454 sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX (Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina). This allowed us to evaluate markers that may be associated with life-history mode. [Zakas, Christina; Wares, John P.] Univ Georgia, Dept Genet, Athens, GA 30602 USA; [Schult, Nancy; McHugh, Damhnait] Colgate Univ, Dept Biol, Hamilton, NY 13346 USA; [Jones, Kenneth L.] Univ Colorado, Dept Biochem & Mol Genet, Sch Med, Aurora, CO USA Zakas, C (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA. christinazakas@gmail.com Picker Interdisciplinary Science Institute at Colgate University; University of Georgia Research Foundation Funds from the Picker Interdisciplinary Science Institute at Colgate University to DM, and the University of Georgia Research Foundation to JPW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Barreto FS, 2010, MOL ECOL, V20, P560; Bohonak AJ, 1999, Q REV BIOL, V74, P21, DOI 10.1086/392950; Boyle MJ, 2008, EVOL DEV, V10, P89, DOI 10.1111/j.1525-142X.2007.00216.x; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; Collin R, 2001, MOL ECOL, V10, P2249, DOI 10.1046/j.1365-294X.2001.01372.x; Conesa A, 2005, BIOINFORMATICS, V21, P3674, DOI 10.1093/bioinformatics/bti610; Doyle J. J., 1987, PHYTOCHEMISTRY B, V19, P11, DOI DOI 10.2307/4119796; EMLET RB, 1995, DEV BIOL, V167, P405, DOI 10.1006/dbio.1995.1037; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Foltz DW, 2010, EVOL DEV, V12, P222, DOI 10.1111/j.1525-142X.2010.00406.x; Foltz DW, 2004, GENETICA, V122, P115, DOI 10.1023/B:GENE.0000041002.97173.1e; Foltz DW, 2003, J MOL EVOL, V57, P607, DOI 10.1007/s00239-003-2495-5; Frobius AC, 2006, DEV GENES EVOL, V216, P81, DOI 10.1007/s00427-005-0049-0; FU YX, 1993, GENETICS, V133, P693; Giard A., 1905, 6TH INT C ZOOL BERN, P617; Gibson G, 2010, INVERTEBR BIOL, V129, P328, DOI 10.1111/j.1744-7410.2010.00213.x; Grosberg R, 2001, MARINE COMMUNITY ECOLOGY, P61; Haag ES, 1999, DEV BIOL, V211, P77, DOI 10.1006/dbio.1999.9283; Hart M, 2000, SEMIN CELL DEV BIOL, V11, P411, DOI 10.1006/scdb.2000.0194; Hellberg ME, 1996, EVOLUTION, V50, P1167, DOI 10.1111/j.1558-5646.1996.tb02357.x; Helyar SJ, 2011, MOL ECOL RESOUR, V11, P123, DOI 10.1111/j.1755-0998.2010.02943.x; HENRY JJ, 1990, DEV BIOL, V141, P55, DOI 10.1016/0012-1606(90)90101-N; Hudson RR, 2002, BIOINFORMATICS, V18, P337, DOI 10.1093/bioinformatics/18.2.337; Ingvarsson PK, 2005, GENETICS, V169, P945, DOI 10.1534/genetics.104.034959; JABLONSKI D, 1986, B MAR SCI, V39, P565; JABLONSKI D, 1983, BIOL REV, V58, P21, DOI 10.1111/j.1469-185X.1983.tb00380.x; Krug PJ, 2011, AM MALACOL BULL, V29, P169, DOI 10.4003/006.029.0210; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; Levin Lisa A., 1995, P1; Luikart G, 2003, NAT REV GENET, V4, P981, DOI 10.1038/nrg1226; Lynch M, 2009, GENETICS, V182, P295, DOI 10.1534/genetics.109.100479; Mahon AR, 2009, MAR BIOL RES, V5, P172, DOI 10.1080/17451000802317683; Margulies M, 2005, NATURE, V437, P376, DOI 10.1038/nature03959; Marsh AG, 2005, J EXP ZOOL PART B, V304B, P238, DOI 10.1002/jez.b.21037; McEdward LR, 2000, SEMIN CELL DEV BIOL, V11, P403, DOI 10.1006/scdb.2000.0193; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; PALUMBI SR, 1994, ANNU REV ECOL SYST, V25, P547, DOI 10.1146/annurev.ecolsys.25.1.547; Palumbi Stephen R., 1995, P369; Pannell JR, 2003, EVOLUTION, V57, P949; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; Pernet B, 2006, MAR BIOL, V149, P803, DOI 10.1007/s00227-006-0266-8; Pernet B, 2010, EVOL DEV, V12, P618, DOI 10.1111/j.1525-142X.2010.00446.x; Peterson KJ, 2008, PHILOS T R SOC B, V363, P1435, DOI 10.1098/rstb.2007.2233; Raff RA, 2000, EVOL DEV, V2, P102, DOI 10.1046/j.1525-142x.2000.00035.x; Schulze SR, 2000, EVOLUTION, V54, P1247; Skibinski DOF, 2004, MOL BIOL EVOL, V21, P1753, DOI 10.1093/molbev/msh193; Sotka EE, 2005, ECOL LETT, V8, P448, DOI 10.1111/j.1461-0248.2004.00719.x; Stadler T, 2009, GENETICS, V182, P205, DOI 10.1534/genetics.108.094904; STRATHMANN RR, 1990, AM ZOOL, V30, P197; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Strathmann RR, 1978, EVOLUTION, V32, P899; TAJIMA F, 1989, GENETICS, V123, P585; Thornton K, 2003, BIOINFORMATICS, V19, P2325, DOI 10.1093/bioinformatics/btg316; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Todd CD, 1998, HYDROBIOLOGIA, V375-76, P1, DOI 10.1023/A:1017007527490; Todd CD, 1998, J EXP MAR BIOL ECOL, V228, P1, DOI 10.1016/S0022-0981(98)00005-7; Vera JC, 2008, MOL ECOL, V17, P1636, DOI 10.1111/j.1365-294X.2008.03666.x; Wakeley J, 2008, MOL BIOL EVOL, V25, P2615, DOI 10.1093/molbev/msn209; Wares JP, 2010, EVOLUTION, V64, P1136, DOI 10.1111/j.1558-5646.2009.00870.x; WRAY GA, 1989, DEV BIOL, V132, P458, DOI 10.1016/0012-1606(89)90242-X; Wray Gregory A., 1995, P413 63 9 9 1 27 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 16 2012 7 2 e31613 10.1371/journal.pone.0031613 8 Multidisciplinary Sciences Science & Technology - Other Topics 925XS WOS:000302796200077 22359608 DOAJ Gold, Green Published 2019-02-21 J Bleu, J; Massot, M; Haussy, C; Meylan, S Bleu, Josefa; Massot, Manuel; Haussy, Claudy; Meylan, Sandrine Experimental litter size reduction reveals costs of gestation and delayed effects on offspring in a viviparous lizard PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article costs of reproduction; gestation; litter size reduction; maternal effect; surgery; viviparity LACERTA ZOOTOCA VIVIPARA; LIFE-HISTORY EVOLUTION; TRADE-OFFS; NATURAL-SELECTION; LOCOMOTOR PERFORMANCE; PHYSIOLOGICAL COSTS; THERMAL PREFERENCES; REPRODUCTIVE EFFORT; SCELOPORUS-JARROVI; EGG-PRODUCTION Experimental studies have often been employed to study costs of reproduction, but rarely to study costs of gestation. Disentangling the relative importance of each stage of the reproductive cycle should help to assess the costs and benefits of different reproductive strategies. To that end, we experimentally reduced litter size during gestation in a viviparous lizard. We measured physiological and behavioural parameters during gestation and shortly after parturition, as well as survival and growth of females and their offspring. This study showed four major results. First, the experimental litter size reduction did not significantly affect the cellular immune response, the metabolism and the survival of adult females. Second, females with reduced litter size decreased their basking time. Third, these females also had an increased postpartum body condition. As postpartum body condition is positively related to future reproduction, this result indicates a gestation cost. Fourth, even though offspring from experimentally reduced litters had similar weight and size at birth as other offspring, their growth rate after birth was significantly increased. This shows the existence of a maternal effect during gestation with delayed consequences. This experimental study demonstrates that there are some costs to gestation, but it also suggests that some classical trade-offs associated with reproduction may not be explained by gestation costs. [Bleu, Josefa; Massot, Manuel; Haussy, Claudy; Meylan, Sandrine] ENS, UPMC, Lab Ecol & Evolut, CNRS,UMR 7625, F-75005 Paris, France; [Meylan, Sandrine] Univ Paris 04, IUFM Paris, F-75016 Paris, France Bleu, J (reprint author), ENS, UPMC, Lab Ecol & Evolut, CNRS,UMR 7625, 7 Quai St Bernard, F-75005 Paris, France. josefa.bleu@snv.jussieu.fr Bleu, Josefa/B-2574-2009 Bleu, Josefa/0000-0002-3403-8272; Massot, Manuel/0000-0002-2762-4417 Agence Nationale de la Recherche (ANR) [07-BLAN-0217]; Ministere de l'Enseignement Superieur et de la Recherche We are grateful to the Parc National des Cevennes and the Office National des Forets for providing facilities during our field seasons. We thank the students who helped collecting data, especially Lydie Blottiere, Adelaide Roguet and Melodie Tort. The Agence Nationale de la Recherche (ANR) (grant 07-BLAN-0217 to M. M.) and the Ministere de l'Enseignement Superieur et de la Recherche (PhD grant to J.B.) supported this study. All experiments complied with the current laws of France. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Andrews R.M., 1982, Biology of Reptilia, V13, P273; ANDREWS RM, 1985, PHYSIOL ZOOL, V58, P214, DOI 10.1086/physzool.58.2.30158569; Angilletta MJ, 2000, FUNCT ECOL, V14, P39, DOI 10.1046/j.1365-2435.2000.00387.x; AVERY RA, 1974, J ZOOL, V173, P419, DOI 10.1111/j.1469-7998.1974.tb04124.x; Bardsen BJ, 2009, OIKOS, V118, P837, DOI 10.1111/j.1600-0706.2008.17414.x; BAUWENS D, 1985, J HERPETOL, V19, P353, DOI 10.2307/1564263; Belliure J, 2004, J EXP ZOOL PART A, V301A, P401, DOI 10.1002/jez.a.20066; Blackburn D.G., 1999, ENCY REPROD, P994; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Burnham K. P., 1998, MODEL SELECTION INFE; CARRASCAL LM, 1992, ETHOLOGY, V92, P143; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Cote J, 2010, GEN COMP ENDOCR, V166, P142, DOI 10.1016/j.ygcen.2009.11.008; Cox RM, 2006, J ANIM ECOL, V75, P1361, DOI 10.1111/j.1365-2656.2006.01160.x; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; DAUPHINVILLEMANT C, 1987, GEN COMP ENDOCR, V67, P292, DOI 10.1016/0016-6480(87)90183-3; DEMARCO V, 1992, J EXP ZOOL, V262, P383, DOI 10.1002/jez.1402620404; DUFAURE JP, 1961, ARCH ANAT MICROSC MO, V50, P309; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HEULIN B, 1987, Amphibia-Reptilia, V8, P393, DOI 10.1163/156853887X00162; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; Kunkele J, 2000, J ZOOL, V250, P533, DOI 10.1017/S095283690000409X; Ladyman M, 2003, PHYSIOL BIOCHEM ZOOL, V76, P497, DOI 10.1086/376420; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Le Galliard JF, 2010, J ANIM ECOL, V79, P1296, DOI 10.1111/j.1365-2656.2010.01732.x; Le Galliard JF, 2003, FUNCT ECOL, V17, P877, DOI 10.1046/j.0269-8463.2003.00800.x; LECOMTE J, 1992, Amphibia-Reptilia, V13, P21, DOI 10.1163/156853892X00193; Lin CX, 2008, ZOOLOGY, V111, P188, DOI 10.1016/j.zool.2007.06.005; MADERSON PF, 1962, NATURE, V195, P401, DOI 10.1038/195401b0; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Massot M, 2011, FUNCT ECOL, V25, P848, DOI 10.1111/j.1365-2435.2011.01837.x; Mathies T, 1997, FUNCT ECOL, V11, P498, DOI 10.1046/j.1365-2435.1997.00119.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Meylan S, 2005, HORM BEHAV, V48, P44, DOI 10.1016/j.yhbeh.2004.11.022; MICHENER GR, 1989, OECOLOGIA, V78, P77, DOI 10.1007/BF00377200; Miles DB, 2000, EVOLUTION, V54, P1386; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Oksanen TA, 2002, EVOLUTION, V56, P1530; Oksanen TA, 2001, P ROY SOC B-BIOL SCI, V268, P661, DOI 10.1098/rspb.2000.1409; Oksanen TA, 2007, EVOLUTION, V61, P2822, DOI 10.1111/j.1558-5646.2007.00245.x; Olsson M, 2000, J EVOLUTION BIOL, V13, P263; PANIGEL MAURICE, 1956, ANN SCI NAT ZOOL, V18, P569; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Qualls CP, 1998, OIKOS, V82, P539, DOI 10.2307/3546374; ROFF DA, 2002, LIFE HIST EVOLUTION; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stewart JR, 2009, J EXP BIOL, V212, P2520, DOI 10.1242/jeb.030643; Surget-Groba Y, 2001, MOL PHYLOGENET EVOL, V18, P449, DOI 10.1006/mpev.2000.0896; Tella JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003295; Uller T, 2005, J ZOOL, V265, P295, DOI 10.1017/S0952836904006326; Uller T, 2010, OECOLOGIA, V162, P663, DOI 10.1007/s00442-009-1503-x; Valencak TG, 2009, J EXP BIOL, V212, P231, DOI 10.1242/jeb.022640; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vinkler M, 2010, FUNCT ECOL, V24, P1081, DOI 10.1111/j.1365-2435.2010.01711.x; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; White GC, 1999, BIRD STUDY, V46, P120; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 71 16 17 0 29 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 7 2012 279 1728 489 498 10.1098/rspb.2011.0966 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 870ID WOS:000298661700010 21715409 Green Published, Bronze 2019-02-21 J Westley, PAH; Conway, CM; Fleming, IA Westley, Peter A. H.; Conway, Corinne M.; Fleming, Ian A. Phenotypic divergence of exotic fish populations is shaped by spatial proximity and habitat differences across an invaded landscape EVOLUTIONARY ECOLOGY RESEARCH English Article allometry; biological invasions; coloration patterns; geometric morphometrics; microevolution; phenotypic divergence with distance; phenotypic plasticity; salmonid fishes TROUT SALMO-TRUTTA; LIFE-HISTORY EVOLUTION; SALVELINUS-ALPINUS L.; BROWN TROUT; ATLANTIC SALMON; RAPID EVOLUTION; GEOMETRIC MORPHOMETRICS; LOUGH MELVIN; STREAM FISH; COHO SALMON Background: Brown trout (Salmo trutta) were introduced into, and subsequently colonized, a number of disparate watersheds on the island of Newfoundland, Canada (110,638 km(2)), starting in 1883. Questions: Do environmental features of recently invaded habitats shape population-level phenotypic variability? Are patterns of phenotypic variability suggestive of parallel adaptive divergence? And does the extent of phenotypic divergence increase as a function of distance between populations? Hypotheses: Populations that display similar phenotypes will inhabit similar environments. Patterns in morphology, coloration, and growth in an invasive stream-dwelling fish should be consistent with adaptation, and populations closer to each other should be more similar than should populations that are farther apart. Organism and study system: Sixteen brown trout populations of probable common descent, inhabiting a gradient of environments. These populations include the most ancestral (similar to 130 years old) and most recently established (similar to 20 years old). Analytical methods: We used multivariate statistical techniques to quantify morphological (e.g. body shape via geometric morphometrics and linear measurements of traits), meristic (e.g. counts of pigmentation spots), and growth traits from 1677 individuals. To account for ontogenetic and allometric effects on morphology, we conducted separate analyses on three distinct size/age classes. We used the BIO-ENV routine and Mantel tests to measure the correlation between phenotypic and habitat features. Results: Phenotypic similarity was significantly correlated with environmental similarity, especially in the larger size classes of fish. The extent to which these associations between phenotype and habitat result from parallel evolution, adaptive phenotypic plasticity, or historical founder effects is not known. Observed patterns of body shape and fin sizes were generally consistent with predictions of adaptive trait patterns, but other traits showed less consistent patterns with habitat features. Phenotypic differences increased as a function of straight-line distance (km) between watersheds and to a lesser extent fish dispersal distances, which suggests habitat has played a more significant role in shaping population phenotypes compared with founder effects. Conclusion: Recently established brown trout populations exhibit phenotype-by-environment correlations consistent with adaptation to newly encountered environments, a characteristic that may aid their spread to additional systems. [Westley, Peter A. H.; Conway, Corinne M.; Fleming, Ian A.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF, Canada Westley, PAH (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. resolute@uw.edu Fleming, Ian/I-7217-2012 Conservation Corps of Newfoundland and Labrador; Institute of Biodiversity and Ecosystem Sustainability, Department of Fisheries and Oceans Canada; Natural Sciences and Engineering Research Council of Canada We thank Haley Cohen, Claire Lewis, Chris Corcoran, and Cameron Tobin for their assistance during the 2008 field season. Ryan Stanley assisted us greatly in the colour analysis and Mike Kinnison provided useful comments on an earlier version of the manuscript. Funding was provided by The Conservation Corps of Newfoundland and Labrador, the Institute of Biodiversity and Ecosystem Sustainability, Department of Fisheries and Oceans Canada, and the Natural Sciences and Engineering Research Council of Canada. Adams DC, 2004, ITAL J ZOOL, V71, P5, DOI 10.1080/11250000409356545; Aparicio E, 2005, J FISH BIOL, V67, P931, DOI 10.1111/j.1095-8649.2005.00794.x; Armstrong JD, 2003, FISH RES, V62, P143, DOI 10.1016/S0165-7836(02)00160-1; Ayllon F, 2006, J EVOLUTION BIOL, V19, P1352, DOI 10.1111/j.1420-9101.2005.01075.x; Bergman TJ, 2008, BIOL J LINN SOC, V94, P231, DOI 10.1111/j.1095-8312.2008.00981.x; Bernatchez L, 1992, MOL ECOL, V1, P161, DOI 10.1111/j.1365-294X.1992.tb00172.x; BISSON PA, 1988, T AM FISH SOC, V117, P262, DOI 10.1577/1548-8659(1988)117<0262:CHHUAB>2.3.CO;2; BLANC JM, 1994, AQUAT LIVING RESOUR, V7, P133, DOI 10.1051/alr:1994016; Chevin LM, 2011, J EVOLUTION BIOL, V24, P1462, DOI 10.1111/j.1420-9101.2011.02279.x; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Clarke K, 2001, CHANGE MARINE COMMUN; CLARKE KR, 1993, MAR ECOL PROG SER, V92, P205, DOI 10.3354/meps092205; Crawford SS, 2008, REV FISH BIOL FISHER, V18, P313, DOI 10.1007/s11160-007-9079-1; Dahlgren R., 2004, California Agriculture, V58, P149; Davidson AM, 2011, ECOL LETT, V14, P419, DOI 10.1111/j.1461-0248.2011.01596.x; Devlin RH, 2012, CAN J ZOOL, V90, P193, DOI [10.1139/z11-126, 10.1139/Z11-126]; DONNELLY WA, 1984, J FISH BIOL, V25, P183, DOI 10.1111/j.1095-8649.1984.tb04865.x; Drinan TJ, 2012, ECOL FRESHW FISH, V21, P420, DOI 10.1111/j.1600-0633.2012.00561.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; Eroukhmanoff F, 2009, MOL ECOL, V18, P4912, DOI 10.1111/j.1365-294X.2009.04408.x; FERGUSON A, 1989, FRESHWATER BIOL, V21, P35, DOI 10.1111/j.1365-2427.1989.tb01346.x; FERGUSON A, 1991, BIOL J LINN SOC, V43, P221, DOI 10.1111/j.1095-8312.1991.tb00595.x; FERGUSON A, 1981, J FISH BIOL, V18, P629, DOI 10.1111/j.1095-8649.1981.tb03805.x; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Franssen NR, 2011, EVOL APPL, V4, P791, DOI 10.1111/j.1752-4571.2011.00200.x; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; GIBSON R J, 1988, Polskie Archiwum Hydrobiologii, V35, P385; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Groot C., 1991, PACIFIC SALMON LIFE; Haas TC, 2010, BIOL LETTERS, V6, P803, DOI 10.1098/rsbl.2010.0401; Haugen TO, 2000, OIKOS, V90, P107, DOI 10.1034/j.1600-0706.2000.900111.x; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Hustins D, 2007, BROWN TROUT RAINBOW; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; Imre I, 2002, J FISH BIOL, V61, P1171, DOI 10.1006/jfbi.2002.2131; JOHNSTON RF, 1964, SCIENCE, V144, P548, DOI 10.1126/science.144.3618.548; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Keeley ER, 2007, J EVOLUTION BIOL, V20, P725, DOI 10.1111/j.1420-9101.2006.01240.x; Kimura C., 1964, GENETICS, V49, P561; Kinnison M.T., 2004, EVOLUTION ILLUMINATE, P209; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Kittilsen S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034281; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; LEGENDRE L., 1998, NUMERICAL ECOLOGY; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Losos JB, 2000, EVOLUTION, V54, P301, DOI 10.1111/j.0014-3820.2000.tb00032.x; Loy A, 1998, J MORPHOL, V237, P137, DOI 10.1002/(SICI)1097-4687(199808)237:2<137::AID-JMOR5>3.0.CO;2-Z; MACCRIMM.HR, 1968, J FISH RES BOARD CAN, V25, P2527, DOI 10.1139/f68-225; Mccoy MW, 2006, OECOLOGIA, V148, P547, DOI 10.1007/s00442-006-0403-6; McDowall RM, 2005, NEW ZEAL J ZOOL, V32, P17, DOI 10.1080/03014223.2005.9518393; Michaud WK, 2008, EVOL ECOL RES, V10, P1051; NICIEZA AG, 1995, FUNCT ECOL, V9, P448, DOI 10.2307/2390008; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Pakkasmaa S, 2000, EVOL ECOL, V14, P721, DOI 10.1023/A:1011691810801; Paul MJ, 2001, ANNU REV ECOL SYST, V32, P333, DOI 10.1146/annurev.ecolsys.32.081501.114040; Pavey SA, 2010, T AM FISH SOC, V139, P1584, DOI 10.1577/T09-182.1; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Development Core Team, 2009, R LANG ENV STAT COMP; REIST JD, 1986, CAN J ZOOL, V64, P1363, DOI 10.1139/z86-203; Rohlf F.J., 2006, TPSRELW VERSON 1 46; Rohlf F.J., 2005, TPSDIG2 12; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; STEARNS SC, 1983, AM ZOOL, V23, P65; Stelkens R.B., 2012, MOL ECOL, V21, P2896; Stevens M, 2007, BIOL J LINN SOC, V90, P211, DOI 10.1111/j.1095-8312.2007.00725.x; Sugimoto M, 2002, MICROSC RES TECHNIQ, V58, P496, DOI 10.1002/jemt.10168; SUMPTER JP, 1985, GEN COMP ENDOCR, V59, P257, DOI 10.1016/0016-6480(85)90377-6; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Valentin AE, 2008, J FISH BIOL, V73, P623, DOI 10.1111/j.1095-8649.2008.01961.x; Walton Izaak, 1653, COMPLEAT ANGLER CONT; Ward A.D., 2004, ENV HYDROLOGY; Wedekind C, 2008, P ROY SOC B-BIOL SCI, V275, P1737, DOI 10.1098/rspb.2008.0072; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westley PAH, 2011, DIVERS DISTRIB, V17, P566, DOI 10.1111/j.1472-4642.2011.00751.x; Westley PAH, 2011, AM NAT, V177, P496, DOI 10.1086/658902; Whiteley AR, 2009, EVOLUTION, V63, P1519, DOI 10.1111/j.1558-5646.2009.00627.x; WILLIAMS CK, 1989, J ANIM ECOL, V58, P495, DOI 10.2307/4844; Wootton R. J., 1990, ECOLOGY TELEOST FISH; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825 89 6 6 2 44 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. FEB 2012 14 2 147 167 21 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 020BZ WOS:000309784900002 2019-02-21 J Klepaker, T; Ostbye, K; Bernatchez, L; Vollestad, LA Klepaker, Tom; Ostbye, Kjartan; Bernatchez, Louis; Vollestad, L. Asbjorn Spatio-temporal patterns in pelvic reduction in threespine stickleback (Gasterosteus aculeatus L.) in Lake Storvatnet EVOLUTIONARY ECOLOGY RESEARCH English Article assortative mating; natural selection; ontogeny; pelvic reduction; regressive evolution; structural mutation dynamics MAXIMUM-LIKELIHOOD-ESTIMATION; LATERAL-PLATE REDUCTION; 3-SPINED STICKLEBACK; PARALLEL EVOLUTION; FRESH-WATER; SYMPATRIC STICKLEBACKS; POPULATION-STRUCTURE; COALESCENT APPROACH; MIGRATION RATES; SPECIES-PAIR Questions: The pelvic girdle with associated spines is an integrated anti-predator defence apparatus, and is assumed to protect against piscivores in the threespine stickleback. On the other hand, it might be costly to produce the pelvic apparatus in ion-poor and mineral-challenging freshwater. Hypothesis: Stickleback with a reduced pelvic apparatus should use more shelter and be more nocturnal, avoiding predation risk. In contrast, stickleback with a well-developed pelvic apparatus should have reduced mortality during ontogeny in encounters with piscivores and thus have a longer expected lifespan. Given these two life-history strategies, we expect assortative mating as a result of divergent selection. Organism: Marine and freshwater threespine stickleback (Gasterosteus aculeatus L.). Places and times: Two representative ancestral marine populations and 36 freshwater populations in northwestern Norway (Lake Storvatnet, the main focus of the study, and three lakes downstream of it). Material was collected from 2006 to 2009. Analytical methods: We categorized nominal pelvic apparatus development (CPS morphs) in all fish, and measured metrics associated with these categories in a subsample. We also studied temporal, spatial, and habitat variation in the distribution of pelvic morphs in Lake Storvatnet. In this population, and downstream populations, we contrasted the detailed pelvic morphology with the measured genetic diversity (microsatellites), also estimating gene flow. In Lake Storvatnet, we tested for genetic divergence and signs of potential build-up of reproductive isolation via assortative mating among the observed nominal categories of pelvic reduction (CPS). Results: Pelvic reduction was seen only in Lake Storvatnet, where more than 50% of fish had a reduced pelvis. The distribution of pelvic morphs was stable over time and did not differ between habitats. The proportion of fish with pelvic reduction decreased with age. Freshwater stickleback tended to have a smaller pelvis than marine fish. The Lake Storvatnet stickleback were genetically differentiated from the downstream Lake Gjerhaugsvatn population, and both of these were different from the marine populations, with little gene flow among populations. No apparent genetic structure was found between CPS morphs within Lake Storvatnet. However, genetic factorial correspondence axes were significantly correlated with pelvic principal component axes in Lake Storvatnet, suggesting some phenotype x genetic association. Conclusion: The weak association between phenotypes and genetic structure observed in this study may reflect the build-up of early steps of reproductive isolation. Given time, such mechanisms may lead to the evolution of assortative mating, which may drive adaptive pelvic morphs (niche peaks), further resulting in genetically divergent populations and pelvic morphs. [Klepaker, Tom] Univ Bergen, Aquat Behav Ecol Res Grp, Dept Biol, N-5020 Bergen, Norway; [Ostbye, Kjartan; Vollestad, L. Asbjorn] Univ Oslo, CEES, Dept Biol, Oslo, Norway; [Ostbye, Kjartan] Hedmark Univ Coll, Dept Forestry & Wildlife Management, Elverum, Norway; [Bernatchez, Louis] Univ Laval, IBIS, Quebec City, PQ, Canada Klepaker, T (reprint author), Univ Bergen, Aquat Behav Ecol Res Grp, Dept Biol, POB 7800, N-5020 Bergen, Norway. tom.klepaker@bio.uib.no Vollestad, Leif Asbjorn/0000-0002-9389-7982 Research Council of Norway This study received support from the Research Council of Norway. We wish to thank the Froskeland landowner-association and Ole Jonny Brenna for help during sample collection, accommodation, a boat, and permission for gill-net fishing. We acknowledge Vicky Albert and Guillaume Cote for conducting most of the genetic laboratory work. Thanks to Sean Rogers, Dolph Schluter, and Catherine Peichel for access to and help with microsatellite marker selection. Thanks to Torstein Pedersen and Rune Knudsen for access to the Barents Sea sample. Andraso GM, 1997, EVOL ECOL, V11, P83, DOI 10.1023/A:1018487529938; Antao T, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-323; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Beerli P, 1999, GENETICS, V152, P763; Beerli P, 2001, P NATL ACAD SCI USA, V98, P4563, DOI 10.1073/pnas.081068098; Belkhir K., 1996, 5171 CNRS UMR; Bell M. A., 1974, CONTRIBUTIONS SCI NA, V257, P1; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BELL MA, 1985, COPEIA, P789, DOI 10.2307/1444775; BELL MA, 1987, BIOL J LINN SOC, V31, P347, DOI 10.1111/j.1095-8312.1987.tb01998.x; BELL MA, 1994, COPEIA, P314; BELL MA, 1993, EVOLUTION, V47, P906, DOI 10.1111/j.1558-5646.1993.tb01243.x; Bell MA, 2004, EVOLUTION, V58, P814; Bell MA, 2007, J EXP ZOOL PART B, V308B, P189, DOI 10.1002/jez.a.21132; Bergstrom CA, 2002, CAN J ZOOL, V80, P207, DOI 10.1139/Z01-226; Berner D, 2011, OECOLOGIA, V166, P961, DOI 10.1007/s00442-011-1934-z; BREDER C. M., 1960, ZOOLOGICA [NEW YORK], V45, P155; CAMPBELL RN, 1985, BEHAVIOUR, V93, P161, DOI 10.1163/156853986X00838; Campione M, 1999, DEVELOPMENT, V126, P1225; Chan YF, 2010, SCIENCE, V327, P302, DOI 10.1126/science.1182213; Coyle SM, 2007, J HERED, V98, P581, DOI 10.1093/jhered/esm066; Cresko WA, 2004, P NATL ACAD SCI USA, V101, P6050, DOI 10.1073/pnas.0308479101; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; GILES N, 1983, J ZOOL, V199, P535; GUO SW, 1992, BIOMETRICS, V48, P361, DOI 10.2307/2532296; HAGEN DW, 1972, EVOLUTION, V26, P32, DOI 10.1111/j.1558-5646.1972.tb00172.x; Hedrick PW, 2006, ANNU REV ECOL EVOL S, V37, P67, DOI 10.1146/annurev.ecolsys.37.091305.110132; Hendry AP, 2004, EVOLUTION, V58, P2319; Hoogland R., 1957, Behaviour, V10, P205; Hunt G, 2008, EVOLUTION, V62, P700, DOI 10.1111/j.1558-5646.2007.00310.x; Jensen JW, 1996, J FISH BIOL, V49, P33; Jones FC, 2012, CURR BIOL, V22, P83, DOI 10.1016/j.cub.2011.11.045; Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x; KLEPAKER T, 1993, CAN J ZOOL, V71, P1251, DOI 10.1139/z93-171; Klepaker TO, 2008, J ZOOL, V276, P81, DOI 10.1111/j.1469-7998.2008.00471.x; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; Marchinko KB, 2009, EVOLUTION, V63, P127, DOI 10.1111/j.1558-5646.2008.00529.x; Matschiner M, 2009, BIOINFORMATICS, V25, P1982, DOI 10.1093/bioinformatics/btp303; MCPHAIL JD, 1992, CAN J ZOOL, V70, P361, DOI 10.1139/z92-054; Moodie G.E.E., 1976, CAN FIELD NAT, V87, P173; MORI S, 1987, JPN J ICHTHYOL, V34, P33; MUNZING J, 1963, EVOLUTION, V17, P320, DOI 10.2307/2406161; Myhre F, 2009, J FISH BIOL, V75, P2062, DOI 10.1111/j.1095-8649.2009.02404.x; Ostbye K, 2006, MOL ECOL, V15, P3983, DOI 10.1111/j.1365-294X.2006.03062.x; Pritchard JK, 2000, GENETICS, V155, P945; QUELLER DC, 1989, EVOLUTION, V43, P258, DOI 10.1111/j.1558-5646.1989.tb04226.x; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; REIMCHEN TE, 1983, EVOLUTION, V37, P931, DOI 10.1111/j.1558-5646.1983.tb05622.x; REIMCHEN TE, 1980, CAN J ZOOL, V58, P1232, DOI 10.1139/z80-173; Reimchen TE, 2002, EVOLUTION, V56, P2472; Reimchen TE, 2001, CAN J ZOOL, V79, P533, DOI 10.1139/cjz-79-3-533; Reimchen TE, 2000, BEHAVIOUR, V137, P1081, DOI 10.1163/156853900502448; Reimchen Thomas E., 1994, P240; Sambrook J., 1989, MOL CLONING LAB MANU; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Shapiro MD, 2004, NATURE, V428, P717, DOI 10.1038/nature02415; Shapiro MD, 2006, P NATL ACAD SCI USA, V103, P13753, DOI 10.1073/pnas.0604706103; Skjelkvale B.L., 1996, 3613 NIVA; Vamosi SM, 2002, ANN ZOOL FENN, V39, P237; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Wang JL, 2011, MOL ECOL RESOUR, V11, P141, DOI 10.1111/j.1755-0998.2010.02885.x; Wilson GA, 2003, GENETICS, V163, P1177; WOOTTON RJ, 1984, FUNCTIONAL BIOL STIC; Wootton RJ., 1976, BIOL STICKLEBACKS 67 6 6 0 30 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. FEB 2012 14 2 169 191 23 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 020BZ WOS:000309784900003 2019-02-21 J Lebreton, JD; Devillard, S; Popy, S; Desprez, M; Besnard, A; Gaillard, JM Lebreton, Jean-Dominique; Devillard, Sebastien; Popy, Simon; Desprez, Marine; Besnard, Aurelien; Gaillard, Jean-Michel Towards a vertebrate demographic data bank JOURNAL OF ORNITHOLOGY English Article Population dynamics; Demography; Comparative approach; Databases; Vertebrates LIFE-HISTORY; HABITAT DISTRIBUTION; POPULATION-DYNAMICS; CAPTURE-RECAPTURE; REEVALUATION; EVOLUTION; SURVIVAL; TACTICS; MAMMALS The development of computers, appropriate statistical methodology and specialized software has induced an explosion in empirical research on vertebrate population dynamics. Many long-term programs have led to impressive datasets and to the publication of hundreds of estimates of vital rates critical to many areas of ecology: evolution of life history strategies, conservation biology, behavioral ecology, population management, etc. Such estimates are still usually available through regular scientific articles, and their use for comparative purposes suffers from several shortcomings: duplication of technical work, lack of evaluation of methodological bias, and difficulties in linking vital rates estimates with other basic traits such as body size. It thus seems it is time to propose a demographic databank to collect the information on vertebrate demography published and being published and make it widely available. The resulting database should become the equivalent for vertebrate demography to what "Genbank" is for DNA sequences. Bird demography has a critical mass of knowledge adequate for a first step. This paper reviews, based on a prototype database, the outline of such a project of demographic database: type of data and estimates stored, assessment of methodology and data quality, data documentation, taxonomical and phylogenetical information, link with other existing biodiversity databases, procedures for depositing information, links with scientific journals, etc. The contours of a collaborative group to launch such a project are also discussed. [Lebreton, Jean-Dominique; Popy, Simon; Desprez, Marine; Besnard, Aurelien] CNRS, CEFE, F-34293 Montpellier 5, France; [Devillard, Sebastien; Gaillard, Jean-Michel] Univ Lyon 1, F-69622 Villeurbanne, France Lebreton, JD (reprint author), CNRS, CEFE, 1919 Route Mende, F-34293 Montpellier 5, France. jean-dominique.lebreton@cefe.cnrs.fr Desprez, Marine/I-8054-2014 Gaillard, Jean-Michel/0000-0003-0174-8451 Beissinger SR, 2000, P NATL ACAD SCI USA, V97, P11688, DOI 10.1073/pnas.97.22.11688; Beissinger SR, 2002, POPULATION VIABILITY; Benson DA, 2008, NUCLEIC ACIDS RES, V36, pD25, DOI 10.1093/nar/gkm929; BERGMANN C, 1847, GOETTINGER STUDIEN 1, P595; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blackburn Tim M., 1999, Diversity and Distributions, V5, P165, DOI 10.1046/j.1472-4642.1999.00046.x; Borer E.T., 2009, B ECOL SOC AM, V90, P205, DOI DOI 10.1890/0012-9623-90.2.205; Caswell H., 2001, MATRIX POPULATION MO; Ceri S, 1991, CONCEPTUAL DATA BASE; Charnov Eric L., 1993, P1; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; CLOBERT J, 1991, BIRD POPULATION STUD, P75; Collar N. J., 1997, HDB BIRDS WORLD, V4, P13; Cooke F, 1995, SNOW GOOSE LA PEROUS; Cooke Fred, 1993, P295; Davis KE, 2008, THESIS U GLASGOW; DELHOYO J. D, 1992, HDB BIRDS WORLD, V1; Desprez M, 2009, DEMOGRAPHIE COMP STA; Durner GM, 2009, ECOL MONOGR, V79, P25, DOI 10.1890/07-2089.1; Edwards JL, 2000, SCIENCE, V289, P2312, DOI 10.1126/science.289.5488.2312; ERNEST SKM, 2003, ECOLOGY, V84, P3401; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; Gayon J, 2000, AM ZOOL, V40, P748, DOI 10.1668/0003-1569(2000)040[0748:HOTCOA]2.0.CO;2; Guarino N., 1998, FOIS 98; HOLT RD, 1985, THEOR POPUL BIOL, V28, P181, DOI 10.1016/0040-5809(85)90027-9; LACK D, 1966, POPULATION STUDIES B; Lebreton JD, 1991, BIRD POPULATION STUD, P104; McDonald David B., 1993, Current Ornithology, V10, P139; Morin X, 2008, J ECOL, V96, P784, DOI 10.1111/j.1365-2745.2008.01369.x; Niel C, 2005, CONSERV BIOL, V19, P826, DOI 10.1111/j.1523-1739.2005.00310.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Partel M, 2006, ACTA OECOL, V30, P97, DOI 10.1016/j.actao.2006.02.002; Perrins CM, 1991, BIRD POPULATION STUD; Pradel R, 1999, BIRD STUDY, V46, P74; Prevot-Julliard AC, 1998, AUK, V115, P85; R Development Core Team, 2006, R LANG ENV STAT COMP; Schmidt BR, 2002, AMPHIBIA-REPTILIA, V23, P375, DOI 10.1163/15685380260449234; Seber GAF, 2002, J APPL STAT, V29, P5, DOI 10.1080/02664760120108700; Shipley B., 2002, CAUSE CORRELATION BI; Swihart R. K., 2002, B ECOL SOC AM, V83, P149; Thomson DL, 2009, ENVIRON ECOL STAT SE, V3, P1099, DOI 10.1007/978-0-387-78151-8_51; Weimerskirch H, 1997, BIOL CONSERV, V79, P257, DOI 10.1016/S0006-3207(96)00084-5; Whitlock MC, 2010, AM NAT, V175, pE45, DOI 10.1086/650340 45 5 5 0 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 J ORNITHOL J. Ornithol. FEB 2012 152 2 S617 S624 10.1007/s10336-010-0582-0 8 Ornithology Zoology 016RZ WOS:000309538300029 2019-02-21 J Barberan, A; Bates, ST; Casamayor, EO; Fierer, N Barberan, Albert; Bates, Scott T.; Casamayor, Emilio O.; Fierer, Noah Using network analysis to explore co-occurrence patterns in soil microbial communities ISME JOURNAL English Article co-occurrence; soil; network analysis; community ecology; pyrosequencing; 16S rRNA gene RIBOSOMAL-RNA; BACTERIAL COMMUNITIES; SEQUENCE DATA; DIVERSITY; ARCHAEA; SCALE; DISTRIBUTIONS; CONTRASTS; BIOSPHERE; ABUNDANCE Exploring large environmental datasets generated by high-throughput DNA sequencing technologies requires new analytical approaches to move beyond the basic inventory descriptions of the composition and diversity of natural microbial communities. In order to investigate potential interactions between microbial taxa, network analysis of significant taxon co-occurrence patterns may help to decipher the structure of complex microbial communities across spatial or temporal gradients. Here, we calculated associations between microbial taxa and applied network analysis approaches to a 16S rRNA gene barcoded pyrosequencing dataset containing >160 000 bacterial and archaeal sequences from 151 soil samples from a broad range of ecosystem types. We described the topology of the resulting network and defined operational taxonomic unit categories based on abundance and occupancy (that is, habitat generalists and habitat specialists). Co-occurrence patterns were readily revealed, including general non-random association, common life history strategies at broad taxonomic levels and unexpected relationships between community members. Overall, we demonstrated the potential of exploring inter-taxa correlations to gain a more integrated understanding of microbial community structure and the ecological rules guiding community assembly. The ISME Journal (2012) 6, 343-351; doi: 10.1038/ismej.2011.119; published online 8 September 2011 [Barberan, Albert; Casamayor, Emilio O.] CSIC, Dept Continental Ecol, Biogeodynam & Biodivers Grp, CEAB, Blanes 17300, Girona, Spain; [Bates, Scott T.; Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; [Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA Barberan, A (reprint author), CSIC, Dept Continental Ecol, Biogeodynam & Biodivers Grp, CEAB, Acces Cala St Francesc 14, Blanes 17300, Girona, Spain. abarberan@ceab.csic.es Casamayor, Emilio/A-3676-2010; Barberan, Albert/A-5319-2013 Casamayor, Emilio/0000-0001-7074-3318; Spanish FPU; EOC from Spanish Ministerio de Ciencia e Innovacion (MICINN) [CGL2009-13318, GRACCIE CSD2007-00067] We thank members of the Fierer lab, particularly Chris Lauber, Kelly Ramirez and Bob Bowers. We also thank Antoni Fernandez-Guerra in the Casamayor lab for QIIME installation and optimization in the CSIC-Blanes server, and members of the Rob Knight lab in UC, particularly Greg Caporaso for computational support and the development of QIIME. AB is supported by the Spanish FPU predoctoral scholarship program and EOC by grants PIRENA CGL2009-13318 and CONSOLIDER-INGENIO 2010 GRACCIE CSD2007-00067 from the Spanish Ministerio de Ciencia e Innovacion (MICINN). Auguet JC, 2010, ISME J, V4, P182, DOI 10.1038/ismej.2009.109; Barberan A, 2011, MICROB ECOL, V61, P465, DOI 10.1007/s00248-010-9775-6; Barberan A, 2010, AQUAT MICROB ECOL, V59, P1, DOI 10.3354/ame01389; BASTIAN M, 2009, INT AAAI C WEBL SOC; Bates ST, 2011, ISME J, V5, P908, DOI 10.1038/ismej.2010.171; Bergmann GT, 2011, SOIL BIOL BIOCHEM, V43, P1450, DOI 10.1016/j.soilbio.2011.03.012; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Chaffron S, 2010, GENOME RES, V20, P947, DOI 10.1101/gr.104521.109; Costello EK, 2009, SCIENCE, V326, P1694, DOI 10.1126/science.1177486; Csardi G, 2006, INTERJOURNAL COMPLEX, V1695, P2006; Curtis TP, 2002, P NATL ACAD SCI USA, V99, P10494, DOI 10.1073/pnas.142680199; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Fierer N, 2007, APPL ENVIRON MICROB, V73, P7059, DOI 10.1128/AEM.00358-07; Fierer N, 2008, P NATL ACAD SCI USA, V105, P17994, DOI 10.1073/pnas.0807920105; Freilich S, 2010, NUCLEIC ACIDS RES, V38, P3857, DOI 10.1093/nar/gkq118; Fuhrman JA, 2008, AQUAT MICROB ECOL, V53, P69, DOI 10.3354/ame01222; Galand PE, 2009, ISME J, V3, P860, DOI 10.1038/ismej.2009.23; Guimera R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288; Guo QF, 2000, J ECOL, V88, P551, DOI 10.1046/j.1365-2745.2000.00466.x; HOLMES AJ, 1995, FEMS MICROBIOL LETT, V132, P203, DOI 10.1111/j.1574-6968.1995.tb07834.x; Horner-Devine MC, 2007, ECOLOGY, V88, P1345, DOI 10.1890/06-0286; Hughes JB, 2001, APPL ENVIRON MICROB, V67, P4399, DOI 10.1128/AEM.67.10.4399-4406.2001; Janssen PH, 2006, APPL ENVIRON MICROB, V72, P1719, DOI 10.1128/AEM.72.3.1719-1728.2006; Jones RT, 2009, ISME J, V3, P442, DOI 10.1038/ismej.2008.127; Junker B.H., 2008, ANAL BIOL NETWORKS; Konstantinidis KT, 2007, CURR OPIN MICROBIOL, V10, P504, DOI 10.1016/j.mib.2007.08.006; Krause AE, 2003, NATURE, V426, P282, DOI 10.1038/nature02115; Lauber CL, 2009, APPL ENVIRON MICROB, V75, P5111, DOI 10.1128/AEM.00335-09; Leininger S, 2006, NATURE, V442, P806, DOI 10.1038/nature04983; Lozupone CA, 2007, P NATL ACAD SCI USA, V104, P11436, DOI 10.1073/pnas.0611525104; Magurran AE, 2003, NATURE, V422, P714, DOI 10.1038/nature01547; McCaig AE, 2001, APPL ENVIRON MICROB, V67, P4554, DOI 10.1128/AEM.67.10.4554-4559.2001; Moody J, 2001, AM J SOCIOL, V107, P679, DOI 10.1086/338954; Newman MEJ, 2006, P NATL ACAD SCI USA, V103, P8577, DOI 10.1073/pnas.0601602103; Newman MEJ, 2003, SIAM REV, V45, P167, DOI 10.1137/S003614450342480; OKSANEN J, 2007, R PACKAGE VERSION, V1, P8; Pace NR, 1997, SCIENCE, V276, P734, DOI 10.1126/science.276.5313.734; Pandit SN, 2009, ECOLOGY, V90, P2253, DOI 10.1890/08-0851.1; Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200; Philippot L, 2010, NAT REV MICROBIOL, V8, P523, DOI 10.1038/nrmicro2367; Prosser JI, 2007, NAT REV MICROBIOL, V5, P384, DOI 10.1038/nrmicro1643; Proulx SR, 2005, TRENDS ECOL EVOL, V20, P345, DOI 10.1016/j.tree.2005.04.004; Roesch LF, 2007, ISME J, V1, P283, DOI 10.1038/ismej.2007.53; Ruan QS, 2006, BIOINFORMATICS, V22, P2532, DOI 10.1093/bioinformatics/btl417; Sogin ML, 2006, P NATL ACAD SCI USA, V103, P12115, DOI 10.1073/pnas.0605127103; STONE L, 1990, OECOLOGIA, V85, P74, DOI 10.1007/BF00317345; TORSVIK V, 1990, APPL ENVIRON MICROB, V56, P782; van der Gast CJ, 2011, ISME J, V5, P780, DOI 10.1038/ismej.2010.175; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; Youssef NH, 2009, ISME J, V3, P305, DOI 10.1038/ismej.2008.106 51 424 437 38 413 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1751-7362 1751-7370 ISME J ISME J. FEB 2012 6 2 343 351 10.1038/ismej.2011.119 9 Ecology; Microbiology Environmental Sciences & Ecology; Microbiology 901RJ WOS:000300984200012 21900968 Green Published, Bronze 2019-02-21 J Niehaus, AC; Angilletta, MJ; Sears, MW; Franklin, CE; Wilson, RS Niehaus, Amanda C.; Angilletta, Michael J., Jr.; Sears, Michael W.; Franklin, Craig E.; Wilson, Robbie S. Predicting the physiological performance of ectotherms in fluctuating thermal environments JOURNAL OF EXPERIMENTAL BIOLOGY English Article acclimation; development; growth; reaction norm; temperature FROG LIMNODYNASTES-PERONII; COMPLEX LIFE-CYCLES; OF-ALL-TEMPERATURES; STRIPED MARSH FROG; REACTION NORMS; AMPHIBIAN METAMORPHOSIS; PHENOTYPIC PLASTICITY; TIME CONSTRAINTS; DEVELOPMENTAL PLASTICITY; DROSOPHILA-MELANOGASTER Physiological ecologists have long sought to understand the plasticity of organisms in environments that vary widely among years, seasons and even hours. This is now even more important because human-induced climate change is predicted to affect both the mean and variability of the thermal environment. Although environmental change occurs ubiquitously, relatively few researchers have studied the effects of fluctuating environments on the performance of developing organisms. Even fewer have tried to validate a framework for predicting performance in fluctuating environments. Here, we determined whether reaction norms based on performance at constant temperatures (18, 22, 26, 30 and 34 degrees C) could be used to predict embryonic and larval performance of anurans at fluctuating temperatures (18-28 degrees C and 18-34C). Based on existing theory, we generated hypotheses about the effects of stress and acclimation on the predictability of performance in variable environments. Our empirical models poorly predicted the performance of striped marsh frogs (Limnodynastes peronii) at fluctuating temperatures, suggesting that extrapolation from studies conducted under artificial thermal conditions would lead to erroneous conclusions. During the majority of ontogenetic stages, growth and development in variable environments proceeded more rapidly than expected, suggesting that acute exposures to extreme temperatures enable greater performance than do chronic exposures. Consistent with theory, we predicted performance more accurately for the less variable thermal environment. Our results underscore the need to measure physiological performance under naturalistic thermal conditions when testing hypotheses about thermal plasticity or when parameterizing models of life-history evolution. [Niehaus, Amanda C.; Franklin, Craig E.; Wilson, Robbie S.] Univ Queensland, Sch Biol Sci, St Lucia, Qld 4068, Australia; [Angilletta, Michael J., Jr.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA; [Sears, Michael W.] Bryn Mawr Coll, Dept Biol, Bryn Mawr, PA 19010 USA Wilson, RS (reprint author), Univ Queensland, Sch Biol Sci, St Lucia, Qld 4068, Australia. r.wilson@uq.edu.au Franklin, Craig/G-7343-2012 Franklin, Craig/0000-0003-1315-3797 Ecological Society of Australia; International Postgraduate Research Scholarship; UQ Graduate School; Australian Research Council (ARC) A.C.N. was supported by a student research grant from the Ecological Society of Australia, an International Postgraduate Research Scholarship and a UQ Graduate School Scholarship. R.S.W. was supported by an Australian Research Council (ARC) Postdoctoral Fellowship. Angilletta MJ, 2006, J THERM BIOL, V31, P541, DOI 10.1016/j.jtherbio.2006.06.002; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; Ashmore GM, 2003, OECOLOGIA, V134, P182, DOI 10.1007/s00442-002-1109-z; BECK SD, 1983, ANNU REV ENTOMOL, V28, P91, DOI 10.1146/annurev.en.28.010183.000515; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Broyden C. G, 1970, J I MATH ITS APPL, V6, P76, DOI [10.1093/imamat/6.1.76, DOI 10.1093/IMAMAT/6.1.76]; BRUCE RC, 2005, HERPETOL MONOGR, P180; Bubily O. A., 2002, HEREDITY, V89, P70; Burnham K. P, 2002, MODEL SELECTION MULT; CASAGRANDE RA, 1987, ENVIRON ENTOMOL, V16, P556, DOI 10.1093/ee/16.2.556; CHRISTIAN KA, 1986, COPEIA, P1012; Condon CH, 2010, J EXP BIOL, V213, P3705, DOI 10.1242/jeb.046979; Dadour IR, 2001, MED VET ENTOMOL, V15, P177, DOI 10.1046/j.1365-2915.2001.00291.x; Davidson G, 2003, J APPL MICROBIOL, V94, P816, DOI 10.1046/j.1365-2672.2003.01871.x; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; FLETCHER R, 1970, COMPUT J, V13, P317, DOI 10.1093/comjnl/13.3.317; Frisch D, 2004, EVOL ECOL RES, V6, P541; GABRIEL W, 1992, J EVOLUTION BIOL, V5, P41, DOI 10.1046/j.1420-9101.1992.5010041.x; Georges A, 2005, PHYSIOL BIOCHEM ZOOL, V78, P18, DOI 10.1086/425200; GOLDFARB D, 1970, MATH COMPUT, V24, P23, DOI 10.2307/2004873; Gosner K. L., 1960, Herpetologica, V16, P183; Hentschel BT, 1999, AM NAT, V154, P549, DOI 10.1086/303263; HUEY RB, 1984, EVOLUTION, V38, P441, DOI 10.1111/j.1558-5646.1984.tb00302.x; HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521; Jiang L, 2004, J ANIM ECOL, V73, P569, DOI 10.1111/j.0021-8790.2004.00830.x; JOHNS DM, 1981, MAR BIOL, V63, P301, DOI 10.1007/BF00396000; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kingsolver JG, 1997, PHYSIOL ZOOL, V70, P631, DOI 10.1086/515872; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kraft PG, 2005, AUSTRAL ECOL, V30, P558, DOI 10.1111/j.1442-9993.2005.01469.x; Lerin J, 2004, ENVIRON ENTOMOL, V33, P107, DOI 10.1603/0046-225X-33.2.107; Loeschcke V, 1999, J EVOLUTION BIOL, V12, P605, DOI 10.1046/j.1420-9101.1999.00060.x; McDiarmid R. W., 1999, TADPOLES BIOL ANURAN, P10; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1989, ECOLOGY, V70, P1775, DOI 10.2307/1938111; Niehaus AC, 2006, J ANIM ECOL, V75, P686, DOI 10.1111/j.1365-2656.2006.01089.x; Niehaus AC, 2012, J COMP PHYSIOL B, V182, P199, DOI 10.1007/s00360-011-0611-1; Niehaus AC, 2011, J EXP BIOL, V214, P1965, DOI 10.1242/jeb.054478; Olsson M, 2002, J EVOLUTION BIOL, V15, P625, DOI 10.1046/j.1420-9101.2002.00417.x; Oufiero CE, 2006, EVOLUTION, V60, P1066; Palaima A, 2004, EVOL ECOL RES, V6, P215; Petavy G, 2004, EVOL ECOL RES, V6, P873; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Podrabsky JE, 2004, J EXP BIOL, V207, P2237, DOI 10.1242/jeb.01016; Qualls FJ, 1998, BIOL J LINN SOC, V64, P477, DOI 10.1111/j.1095-8312.1998.tb00345.x; Rogers KD, 2004, COMP BIOCHEM PHYS A, V137, P731, DOI 10.1016/j.cbpb.2004.02.008; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; Scheiner SM, 2002, J EVOLUTION BIOL, V15, P889, DOI 10.1046/j.1420-9101.2002.00468.x; SCHOOLFIELD RM, 1981, J THEOR BIOL, V88, P719, DOI 10.1016/0022-5193(81)90246-0; SEMLITSCH RD, 1988, COPEIA, P978; SHANNO DF, 1970, MATH COMPUT, V24, P647, DOI 10.2307/2004840; Shine R, 2001, BIOL J LINN SOC, V72, P555, DOI 10.1006/bijl.2000.0516; SIDDIQUI WH, 1972, ANN ENTOMOL SOC AM, V65, P993, DOI 10.1093/aesa/65.5.993; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; Somero G. N, 2002, BIOCH ADAPTATION; Stillman JH, 2000, PHYSIOL BIOCHEM ZOOL, V73, P200, DOI 10.1086/316738; TAYLOR PS, 1990, ENVIRON ENTOMOL, V19, P1422, DOI 10.1093/ee/19.5.1422; The R Development Core Team, 2007, R LANG ENV STAT COMP; TINGLE CCD, 1988, ENTOMOL EXP APPL, V46, P19, DOI 10.1111/j.1570-7458.1988.tb02263.x; van der Have TM, 2002, OIKOS, V98, P141, DOI 10.1034/j.1600-0706.2002.980115.x; Warkentin KM, 2001, ECOLOGY, V82, P2860, DOI 10.1890/0012-9658(2001)082[2860:EKFIEH]2.0.CO;2; Wedekind C, 2005, ECOLOGY, V86, P2525, DOI 10.1890/04-1738; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WIDDOWS J, 1971, J MAR BIOL ASSOC UK, V51, P827, DOI 10.1017/S0025315400018002; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Wilson RS, 2007, P R SOC B, V274, P1199, DOI 10.1098/rspb.2006.0401; Wilson RS, 1999, J COMP PHYSIOL B, V169, P445, DOI 10.1007/s003600050241; Wilson RS, 2001, J EXP BIOL, V204, P4227; WORNER SP, 1992, ENVIRON ENTOMOL, V21, P689, DOI 10.1093/ee/21.4.689 75 98 99 3 146 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. FEB 2012 215 4 694 701 10.1242/jeb.058032 8 Biology Life Sciences & Biomedicine - Other Topics 890ZO WOS:000300185900020 22279077 Green Published, Bronze 2019-02-21 J Le Galliard, JF; Remy, A; Ims, RA; Lambin, X Le Galliard, Jean-Francois; Remy, Alice; Ims, Rolf A.; Lambin, Xavier Patterns and processes of dispersal behaviour in arvicoline rodents MOLECULAR ECOLOGY English Article condition-dependent dispersal; mammals; mating systems; natal and breeding dispersal; sex-biased dispersal VOLES MICROTUS-OCHROGASTER; RED-BACKED VOLES; CLETHRIONOMYS-RUFOCANUS-BEDFORDIAE; SPATIALLY STRUCTURED POPULATIONS; MOTHER-OFFSPRING INTERACTIONS; DENSITY-DEPENDENT DISPERSAL; AFFECT NATAL DISPERSAL; SEX-BIASED DISPERSAL; SPACE-USE RESPONSES; GREY-SIDED VOLE A good understanding of mammalian societies requires measuring patterns and comprehending processes of dispersal in each sex. We investigated dispersal behaviour in arvicoline rodents, a subfamily of mammals widespread in northern temperate environments and characterized by a multivoltine life cycle. In arvicoline rodents, variation in life history strategies occurs along a continuum from precocial to delayed maturation that reflects seasonal and ecological fluctuations. We compared dispersal across and within species focusing on the effects of external (condition-dependent) and internal (phenotype-dependent) factors. Our data revealed substantial, unexplained variation between species for dispersal distances and a strong variation within species for both dispersal distance and fraction. Some methodological aspects explained variation across studies, which cautions against comparisons that do not control for them. Overall, the species under consideration display frequent short-distance dispersal events and extremely flexible dispersal strategies, but they also have hitherto unexpected capacity to disperse long distances. Female arvicolines are predominantly philopatric relative to males, but we found no clear association between the mating system and the degree of sex bias in dispersal across species. Dispersal is a response to both various proximate and ultimate factors, including competition, inbreeding avoidance, mate searching and habitat quality. In particular, our review suggests that costs and benefits experienced during transience and settlement are prime determinants of condition dependence. Patterns of phenotype-dependent dispersal are idiosyncratic, except for a widespread association between an exploration/activity syndrome and natal dispersal. Consequences for population dynamics and genetic structures are discussed. [Le Galliard, Jean-Francois] Univ Paris 06, CNRS, Lab Ecol Evolut, UMR 7625, F-75005 Paris, France; [Le Galliard, Jean-Francois] Ecole Normale Super, CNRS ENS, CEREEP Ecotron IleDeFrance, UMS 3194, F-77140 St Pierre Les Nemours, France; [Remy, Alice] Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, NO-2480 Koppang, Norway; [Remy, Alice] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, NO-0316 Oslo, Norway; [Ims, Rolf A.] Univ Tromso, Inst Arctic & Marine Biol, N-9073 Tromso, Norway; [Lambin, Xavier] Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 2TZ, Scotland Le Galliard, JF (reprint author), Univ Paris 06, CNRS, Lab Ecol Evolut, UMR 7625, Case 237,7 Quai St Bernard, F-75005 Paris, France. galliard@biologie.ens.fr Le Galliard, Jean-Francois/E-8702-2011; Lambin, Xavier/E-8284-2011 Le Galliard, Jean-Francois/0000-0002-5965-9868; Lambin, Xavier/0000-0003-4643-2653 Norwegian Research Council (NFR) [182612]; Region Ile-de-France R2DS program [2007-06]; Agence Nationale de la Recherche (ANR) [07-JCJC-0120]; Leverhulme Trust [RF-2011-304] We thank Nicolas Perrin, Nelly Menard, Eric Petit and Jean-Sebastien Pierre for their patience during the slow writing of this manuscript after the conference 'Social systems: demographic and genetic issues' organized in Rennes. We thank two anonymous reviewers and Eric Petit for comments that substantially improved a previous version of the manuscript. This study was funded by a grant from the Norwegian Research Council (NFR project 182612). J.-F. L. G was supported by the Region Ile-de-France R2DS program (grant 2007-06) and the Agence Nationale de la Recherche (ANR grant 07-JCJC-0120). XL was supported in part by a Leverhulme Trust Research Fellowship (RF-2011-304). Aars J, 2006, MOL ECOL, V15, P1455, DOI 10.1111/j.1365-294X.2006.02889.x; Aars J, 1999, OIKOS, V85, P204, DOI 10.2307/3546487; Aars J, 2000, AM NAT, V155, P252, DOI 10.1086/303317; Aars J, 1998, MOL ECOL, V7, P1383, DOI 10.1046/j.1365-294x.1998.00487.x; Adams RI, 2010, WEST N AM NATURALIST, V70, P296, DOI 10.3398/064.070.0303; Anderson P. K., 1989, DISPERSAL RODENTS RE, V9; Andreassen HP, 2006, ECOLOGY, V87, P88, DOI 10.1890/04-1574; Andreassen HP, 1998, ECOLOGY, V79, P1223, DOI 10.1890/0012-9658(1998)079[1223:SURTHF]2.0.CO;2; Andreassen HP, 2002, DISPERSAL ECOLOGY, P237; Andreassen HP, 2001, ECOLOGY, V82, P2911, DOI 10.2307/2679970; Andreassen HP, 1998, ACTA THERIOL, V43, P371, DOI 10.4098/AT.arch.98-48; Arnaud CM, 2012, MOL ECOL, V21, P493, DOI 10.1111/j.1365-294X.2011.05219.x; BEACHAM TD, 1979, OECOLOGIA, V42, P11, DOI 10.1007/BF00347614; Berthier K, 2006, MOL ECOL, V15, P2665, DOI 10.1111/j.1365-294X.2006.02959.x; Berthier K, 2005, MOL ECOL, V14, P2861, DOI 10.1111/j.1365-294X.2005.02636.x; BOLLINGER EK, 1993, ECOLOGY, V74, P1153, DOI 10.2307/1940485; BONDRUPNIELSEN S, 1993, OIKOS, V67, P317, DOI 10.2307/3545477; BONDRUPNIELSEN S, 1992, OIKOS, V65, P358, DOI 10.2307/3545033; BOONSTRA R, 1987, J ANIM ECOL, V56, P655, DOI 10.2307/5075; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BOYCE CCK, 1988, J ANIM ECOL, V57, P723, DOI 10.2307/5089; Clobert Jean, 2004, P307, DOI 10.1016/B978-012323448-3/50015-5; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Clutton-Brock TH, 2012, MOL ECOL, V21, P472, DOI 10.1111/j.1365-294X.2011.05232.x; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; Crone EE, 2001, ECOLOGY, V82, P831; Davis-Born R, 2000, CAN J ZOOL, V78, P864, DOI 10.1139/cjz-78-5-864; DIFFENDORFER JE, 1995, ECOLOGY, V76, P827, DOI 10.2307/1939348; do Rosario IT, 2007, INT J WILDLAND FIRE, V16, P450, DOI 10.1071/WF06096; EBENHARD T, 1990, ECOLOGY, V71, P1833, DOI 10.2307/1937592; Ehrich D, 2001, OIKOS, V94, P143, DOI 10.1034/j.1600-0706.2001.10963.x; Ehrich D, 2001, HEREDITY, V86, P716, DOI 10.1046/j.1365-2540.2001.00883.x; Ehrich D, 2009, OIKOS, V118, P1441, DOI 10.1111/j.1600-0706.2009.17532.x; Ergon T, 2001, NATURE, V411, P1043, DOI 10.1038/35082553; Fisher DO, 2009, POPUL ECOL, V51, P289, DOI 10.1007/s10144-008-0122-4; Fortier GM, 1998, J MAMMAL, V79, P337, DOI 10.2307/1382870; Francl KE, 2008, CAN J ZOOL, V86, P344, DOI 10.1139/Z07-140; Gauffre B, 2008, MOL ECOL, V17, P4619, DOI 10.1111/j.1365-294X.2008.03950.x; Gauffre B, 2009, P R SOC B, V276, P3487, DOI 10.1098/rspb.2009.0881; GETZ LL, 1994, ETHOL ECOL EVOL, V6, P267, DOI 10.1080/08927014.1994.9522980; GETZ LL, 1978, J MAMMAL, V59, P208, DOI 10.2307/1379900; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Guillot G, 2009, MOL ECOL, V18, P4734, DOI 10.1111/j.1365-294X.2009.04410.x; Guivier E, 2011, MOL ECOL, V20, P3569, DOI 10.1111/j.1365-294X.2011.05199.x; Gundersen G, 1998, ANIM BEHAV, V56, P1355, DOI 10.1006/anbe.1998.0911; Gundersen G, 1999, ACTA THERIOL, V44, P283, DOI 10.4098/AT.arch.99-26; Gundersen G, 2002, ECOL LETT, V5, P294, DOI 10.1046/j.1461-0248.2002.00320.x; Gundersen G, 2001, ECOL LETT, V4, P14, DOI 10.1046/j.1461-0248.2001.00182.x; Hamilton G, 2005, GENETICS, V170, P409, DOI 10.1534/genetics.104.034199; Handley LJL, 2007, MOL ECOL, V16, P1559, DOI 10.1111/j.1365-294X.2006.03152.x; Hanski I, 2004, ECOL LETT, V7, P958, DOI 10.1111/j.1461-0248.2004.00654.x; Heckel G, 2005, EVOLUTION, V59, P2231; Hedrick PW, 2005, EVOLUTION, V59, P1633, DOI 10.1111/j.0014-3820.2005.tb01814.x; Heller R, 2009, MOL ECOL, V18, P2080, DOI 10.1111/j.1365-294X.2009.04185.x; HESKE EJ, 1990, J MAMMAL, V71, P510, DOI 10.2307/1381789; HESTBECK JB, 1982, OIKOS, V39, P157, DOI 10.2307/3544480; Holekamp KE, 2012, MOL ECOL, V21, P613, DOI 10.1111/j.1365-294X.2011.05240.x; Hoset KS, 2008, BEHAV ECOL, V19, P139, DOI 10.1093/beheco/arm112; Ims RA, 2000, NATURE, V408, P194, DOI 10.1038/35041562; IMS RA, 1993, BIOL CONSERV, V63, P261, DOI 10.1016/0006-3207(93)90722-D; Ims RA, 2005, P ROY SOC B-BIOL SCI, V272, P913, DOI 10.1098/rspb.2004.3025; IMS RA, 1991, OIKOS, V62, P216, DOI 10.2307/3545267; Ims RA, 2008, TRENDS ECOL EVOL, V23, P79, DOI 10.1016/j.tree.2007.10.010; Ims Rolf A., 2001, P203; Ims Rolf A., 1997, P247, DOI 10.1016/B978-012323445-2/50015-8; Ishibashi Y, 1998, RES POPUL ECOL, V40, P51, DOI 10.1007/BF02765221; Ishibashi Y, 1997, MOL ECOL, V6, P63, DOI 10.1046/j.1365-294X.1997.00152.x; Ishibashi Y, 2008, MOL ECOL, V17, P4887, DOI 10.1111/j.1365-294X.2008.03969.x; Jacquot JJ, 2004, J MAMMAL, V85, P1009, DOI 10.1644/BPR-019; KAWATA M, 1987, OECOLOGIA, V72, P115, DOI 10.1007/BF00385054; KAWATA M, 1989, OIKOS, V54, P220, DOI 10.2307/3565270; LAMBIN X, 1994, OIKOS, V69, P353, DOI 10.2307/3546160; Lambin X, 1997, BEHAV ECOL SOCIOBIOL, V40, P363, DOI 10.1007/s002650050352; Lambin X, 1998, J ANIM ECOL, V67, P1, DOI 10.1046/j.1365-2656.1998.00181.x; LAMBIN X, 1994, ETHOL ECOL EVOL, V6, P213; Lambin X, 1998, P ROY SOC B-BIOL SCI, V265, P1491, DOI 10.1098/rspb.1998.0462; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; LAMBIN X, 1994, ECOLOGY, V75, P224, DOI 10.2307/1939396; LAMBIN X, DISPERSAL E IN PRESS; Lambin Xavier, 2004, P515, DOI 10.1016/B978-012323448-3/50023-4; Lambin Xavier, 2001, P110; LAPOLLA VN, 1993, LANDSCAPE ECOL, V8, P25, DOI 10.1007/BF00129865; Le Galliard JF, 2007, BEHAV ECOL, V18, P665, DOI 10.1093/beheco/arm023; Le Galliard JF, 2006, BEHAV ECOL, V17, P733, DOI 10.1093/beheco/arl002; Le Galliard JF, 2003, P ROY SOC B-BIOL SCI, V270, P1163, DOI 10.1098/rspb.2003.2360; Leblois R, 2004, GENETICS, V166, P1081, DOI 10.1534/genetics.166.2.1081; LIDICKER WZJ, 1985, BIOL NEW WORLD MICRO, P725; Lin YK, 2001, CAN J ZOOL, V79, P110, DOI 10.1139/cjz-79-1-110; Lin YTK, 2002, EVOL ECOL, V16, P387, DOI 10.1023/A:1020216502620; Lin YTK, 2001, ECOL MONOGR, V71, P245, DOI 10.1890/0012-9615(2001)071[0245:TIOHQO]2.0.CO;2; Lofgren O, 1996, ACTA THERIOL, V41, P383; Lucia KE, 2008, BEHAV ECOL, V19, P774, DOI 10.1093/beheco/arn028; MADISON DM, 1990, ADV LIF SCI, P25; MAZURKIEWICZ M, 1975, Acta Theriologica, V20, P71; MCGUIRE B, 1995, CAN J ZOOL, V73, P383, DOI 10.1139/z95-042; MCGUIRE B, 1993, BEHAV ECOL SOCIOBIOL, V32, P293; MCSHEA WJ, 1990, ANIM BEHAV, V39, P346, DOI 10.1016/S0003-3472(05)80880-2; Morris DW, 2010, ECOLOGY, V91, P3131, DOI 10.1890/10-0479.1; Neuwald JL, 2010, BIOL CONSERV, V143, P2028, DOI 10.1016/j.biocon.2010.05.007; Paetkau D, 2004, MOL ECOL, V13, P55, DOI 10.1046/j.1365-294X.2004.02008.x; Peles JD, 1996, J MAMMAL, V77, P857, DOI 10.2307/1382691; Pinheiro J. C., 2000, MIXED EFFECT MODELS; Pita R, 2007, BIOL CONSERV, V134, P383, DOI 10.1016/j.biocon.2006.08.026; PUGH SR, 1991, CAN J ZOOL, V69, P2638, DOI 10.1139/z91-371; Rajska-Jurgiel E, 2000, ACTA THERIOL, V45, P367; RAJSKAJURGIEL E, 1992, ACTA THERIOL, V37, P73, DOI 10.4098/AT.arch.92-9; Ratkiewicz M, 2006, ACTA THERIOL, V51, P337, DOI 10.1007/BF03195180; Redeker S, 2006, MAMM BIOL, V71, P144, DOI 10.1016/j.mambio.2005.12.003; Remy A, 2011, J ANIM ECOL, V80, P929, DOI 10.1111/j.1365-2656.2011.01849.x; ROBINSON GR, 1992, SCIENCE, V257, P524, DOI 10.1126/science.257.5069.524; Rousset F, 1997, GENETICS, V145, P1219; SAITOH T, 1995, RES POPUL ECOL, V37, P49, DOI 10.1007/BF02515761; Schooley RL, 2009, ECOL APPL, V19, P1708, DOI 10.1890/08-2169.1; Schradin C, 2012, MOL ECOL, V21, P541, DOI 10.1111/j.1365-294X.2011.05256.x; Schweizer M, 2007, MOL ECOL, V16, P2463, DOI 10.1111/j.1365-294X.2007.03284.x; Selonen V, 2010, J ANIM ECOL, V79, P1093, DOI 10.1111/j.1365-2656.2010.01714.x; Sherratt TN, 2000, J APPL ECOL, V37, P148, DOI 10.1046/j.1365-2664.2000.00472.x; Smith FA, 2003, ECOLOGY, V84, P3403, DOI 10.1890/02-9003; Smith JE, 2006, OIKOS, V112, P209; Solomon NG, 2009, MOL ECOL, V18, P4680, DOI 10.1111/j.1365-294X.2009.04361.x; Solomon NG, 2003, J MAMMAL, V84, P1182, DOI 10.1644/BLe-013; Stacy JE, 1997, MOL ECOL, V6, P751, DOI 10.1046/j.1365-294X.1997.d01-470.x; STEEN H, 1994, ANN ZOOL FENN, V31, P271; STEEN H, 1995, OIKOS, V73, P65, DOI 10.2307/3545726; Stenseth NC, 1999, OIKOS, V87, P427, DOI 10.2307/3546809; STENSETH NC, 1992, ANIMAL DISPERSAL SMA; Stewart WA, 1999, BIOL J LINN SOC, V68, P159, DOI 10.1111/j.1095-8312.1999.tb01164.x; STODDART DM, 1970, J ANIM ECOL, V39, P403, DOI 10.2307/2979; Telfer S, 2003, MOL ECOL, V12, P1939, DOI 10.1046/j.1365-294X.2003.01859.x; Telfer S, 2003, J ZOOL, V259, P23, DOI 10.1017/S0952836902003321; WATTS CHS, 1970, J ZOOL, V161, P247; Whitlock MC, 2011, MOL ECOL, V20, P1083, DOI 10.1111/j.1365-294X.2010.04996.x; Wilson D. E., 2005, MAMMAL SPECIES WORLD, P142; Witt WC, 2001, CAN J ZOOL, V79, P1597, DOI 10.1139/cjz-79-9-1597; Wolff JO, 1997, CONSERV BIOL, V11, P945, DOI 10.1046/j.1523-1739.1997.96136.x; Wolff JO, 2007, RODENT SOC ECOLOGICA, V1th, P610 136 41 41 3 85 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 MOL ECOL Mol. Ecol. FEB 2012 21 3 SI 505 523 10.1111/j.1365-294X.2011.05410.x 19 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 875LW WOS:000299032600005 22211403 Bronze 2019-02-21 J Lutermann, H; Medger, K; Horak, IG Lutermann, Heike; Medger, Katarina; Horak, Ivan G. Effects of life-history traits on parasitism in a monogamous mammal, the eastern rock sengi (Elephantulus myurus) NATURWISSENSCHAFTEN English Article Macroscelidea; Rhipicephalus; Monogamy; Sex-biased parasitism; Tick burden SEXUAL SIZE DIMORPHISM; HOST-NEMATODE SYSTEM; MALE RED GROUSE; IXODID TICKS; BIASED PARASITISM; SOCIAL-STRUCTURE; SHREWS; IMMUNOCOMPETENCE; ECTOPARASITES; TESTOSTERONE The distribution of parasites is often characterised by substantial aggregation with a small proportion of hosts harbouring the majority of parasites. This pattern can be generated by abiotic and biotic factors that affect hosts and determine host exposure and susceptibility to parasites. Climate factors can change a host's investment in life-history traits (e. g. growth, reproduction) generating temporal patterns of parasite aggregation. Similarly, host age may affect such investment. Furthermore, sex-biased parasitism is common among vertebrates and has been linked to sexual dimorphism in morphology, behaviour and physiology. Studies exploring sex-biased parasitism have been almost exclusively conducted on polygynous species where dimorphic traits are often correlated. We investigated the effects of season and life-history traits on tick loads of the monogamous eastern rock sengi (Elephantulus myurus). We found larger tick burdens during the non-breeding season possibly as a result of energetic constraints and/or climate effects on the tick. Reproductive investment resulted in increased larval abundance for females but not males and may be linked to sex-specific life-history strategies. The costs of reproduction could also explain the observed age effect with yearling individuals harbouring lower larval burdens than adults. Although adult males had the greatest larval tick loads, host sex appears to play a minor role in generating the observed parasite heterogeneities. Our study suggests that reproductive investment plays a major role for parasite patterns in the study species. [Lutermann, Heike; Medger, Katarina] Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, ZA-0028 Hatfield, South Africa; [Horak, Ivan G.] Univ Pretoria, Fac Vet Sci, Dept Vet Trop Dis, ZA-0110 Onderstepoort, South Africa Lutermann, H (reprint author), Univ Pretoria, Mammal Res Inst, Dept Zool & Entomol, Private Bag X20, ZA-0028 Hatfield, South Africa. hlutermann@zoology.up.ac.za Lutermann, Heike/A-4692-2008 Lutermann, Heike/0000-0002-7521-2302; Medger, Katarina/0000-0003-4964-6761 National Research Foundation (NRF); University of Pretoria We thank the management, particularly D. Dewsnap, and staff of the Goro Game Reserve for permission to collect animals in the reserve and their continuous support. A. Harwood, A. Kohler, W. Matten, K. Ntuli, A. Prins, L. Riato and M. Sebonego are thanked for help during the field work. The manuscript was greatly improved by the comments of three anonymous reviewers. KM acknowledges a doctoral grant from the National Research Foundation (NRF), HL a Research Fellowship from the University of Pretoria and IGH funding from the University of Pretoria and the NRF. Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Benoit JB, 2010, J INSECT PHYSIOL, V56, P1366, DOI 10.1016/j.jinsphys.2010.02.014; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Burnham K. P, 2002, MODEL SELECTION MULT; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; Christe P, 2000, ECOL LETT, V3, P207; Cornell SJ, 2008, P R SOC B, V275, P511, DOI 10.1098/rspb.2007.1415; FitzGibbon CD, 1997, J ZOOL, V242, P167; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fourie LJ, 2005, ONDERSTEPOORT J VET, V72, P293; FOURIE LJ, 1995, MAMMAL REV, V25, P31, DOI 10.1111/j.1365-2907.1995.tb00435.x; FOURIE LJ, 1992, S AFR J ZOOL, V27, P108; Harrison A, 2010, OIKOS, V119, P1099, DOI 10.1111/j.1600-0706.2009.18072.x; Hawlena H, 2006, OECOLOGIA, V148, P30, DOI 10.1007/s00442-005-0345-4; Hughes VL, 2001, J PARASITOL, V87, P49, DOI 10.1007/s004360000287; Klein SL, 2004, PARASITE IMMUNOL, V26, P247, DOI 10.1111/j.0141-9838.2004.00710.x; Krasnov BR, 2005, OECOLOGIA, V146, P209, DOI 10.1007/s00442-005-0189-y; Lourenco S, 2008, PARASITOL RES, V104, P127, DOI 10.1007/s00436-008-1170-6; Lutermann H, 2012, MED VET ENTOMOL, V26, P255, DOI 10.1111/j.1365-2915.2011.01002.x; Martin L.B., 2008, PHILOS T R SOC B, V363, P329, DOI DOI 10.1098/RSTB.2007.2142; Medger K, 2010, THESIS U PRETORIA; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Morand S, 2004, PARASITOLOGY, V129, P505, DOI 10.1016/ensam.inra.fr; Mougeot F, 2006, BEHAV ECOL, V17, P117, DOI 10.1093/beheco/arj005; Mougeot F, 2004, BEHAV ECOL, V15, P930, DOI 10.1093/beheco/arh087; Mzilikazi N, 2004, PHYSIOL BIOCHEM ZOOL, V77, P285, DOI 10.1086/381470; NEEDHAM GR, 1991, ANNU REV ENTOMOL, V36, P659, DOI 10.1146/annurev.en.36.010191.003303; Nelson R. J., 2002, SEASONAL PATTERNS ST; Nelson RJ, 2004, TRENDS IMMUNOL, V25, P187, DOI 10.1016/j.it.2004.02.001; Olsson M, 2000, P ROY SOC B-BIOL SCI, V267, P2339, DOI 10.1098/rspb.2000.1289; Pelletier F, 2005, OIKOS, V110, P473, DOI 10.1111/j.0030-1299.2005.14120.x; Porteous IS, 1998, PARASITOLOGY, V116, P269, DOI 10.1017/S0031182097002205; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Randolph SE, 2002, INT J PARASITOL, V32, P979, DOI 10.1016/S0020-7519(02)00030-9; Randolph SE, 2004, PARASITOLOGY, V129, pS37, DOI 10.1017/S0031182004004925; Rathbun G.B, 1979, ADV ETHOL, V20, P1; Rathbun GB, 2006, J ZOOL, V269, P391, DOI 10.1111/j.1469-7998.2006.00087.x; Ribble DO, 2005, BELG J ZOOL, V135, P167; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rozsa L, 2000, J PARASITOL, V86, P228, DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2; Scantlebury M, 2010, J ZOOL, V282, P246, DOI 10.1111/j.1469-7998.2010.00734.x; Schubert M, 2009, BEHAV ECOL SOCIOBIOL, V64, P257, DOI 10.1007/s00265-009-0842-2; Schubert M, 2009, ETHOLOGY, V115, P972, DOI 10.1111/j.1439-0310.2009.01684.x; Skinner J, 2005, MAMMALS SO AFRICAN S; Soliman S, 2001, J PARASITOL, V87, P1308, DOI 10.1645/0022-3395(2001)087[1308:EOSSAA]2.0.CO;2; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; WILSON K, 2001, ECOLOGY WILDLIFE DIS, P6; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 48 7 8 0 41 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0028-1042 NATURWISSENSCHAFTEN Naturwissenschaften FEB 2012 99 2 103 110 10.1007/s00114-011-0874-0 8 Multidisciplinary Sciences Science & Technology - Other Topics 897UB WOS:000300682000003 22170351 2019-02-21 J Hettyey, A; Vagi, B; Torok, J; Hoi, H Hettyey, Attila; Balazs Vagi; Janos Toeroek; Hoi, Herbert Allocation in reproduction is not tailored to the probable number of matings in common toad (Bufo bufo) males BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Life history; Natural history; Potential reproductive rate; Repeated mating; Reproductive success; Resource allocation FROGS RANA-TEMPORARIA; SEXUAL SELECTION; PHYSALAEMUS-PUSTULOSUS; FERTILIZATION SUCCESS; INDETERMINATE GROWTH; RESOURCE-ALLOCATION; NEOTROPICAL FROG; MATE CHOICE; BODY-SIZE; MID-WALES The theory of life history evolution assumes trade-offs between competing fitness traits such as reproduction, somatic growth, and maintenance. One prediction of this theory is that if large individuals have a higher reproductive success, small/young individuals should invest less in reproduction and allocate more resources in growth than large/old individuals. We tested this prediction using the common toad (Bufo bufo), a species where mating success of males is positively related to their body size. We measured testes mass, soma mass, and sperm stock size in males of varying sizes that were either (1) re-hibernated at the start of the breeding season, (2) kept without females throughout the breeding season, or (3) repeatedly provided with gravid females. In the latter group, we also estimated fertilization success and readiness to re-mate. Contrary to our predictions, the relationship between testes mass and soma mass was isometric, sperm stock size relative to testes mass was unrelated to male size, fertilization success was not higher in matings with larger males, and smaller males were not less likely to engage in repeated matings than larger males. These results consistently suggest that smaller males did not invest less in reproduction to be able to allocate more in growth than larger males. Causes for this unexpected result may include relatively low year-to-year survival, unpredictable between-year variation in the strength of sexual selection and low return rates of lowered reproductive investment. [Hettyey, Attila; Hoi, Herbert] Univ Vet Med Vienna, Konrad Lorenz Inst Ethol, Dept Integrat Biol & Evolut, A-1160 Vienna, Austria; [Hettyey, Attila; Hoi, Herbert] Austrian Acad Sci, Konrad Lorenz Inst Ethol, A-1160 Vienna, Austria; [Balazs Vagi; Janos Toeroek] Eotvos Lorand Univ, Behav Ecol Grp, Dept Systemat Zool & Ecol, H-1117 Budapest, Hungary Hettyey, A (reprint author), Univ Vet Med Vienna, Konrad Lorenz Inst Ethol, Dept Integrat Biol & Evolut, Savoyenstr 1 A, A-1160 Vienna, Austria. hettyeyattila@yahoo.de Torok, Janos/C-6144-2008 Torok, Janos/0000-0002-4799-5522; Hettyey, Attila/0000-0003-0678-0936 Hungarian Scientific Research Fund (OTKA) [F-61374]; Hungarian National Office for Research and Technology (NKTH); Austrian Science Fund (FWF) [P19264] We would like to thank Eszter Soltesz-Katona, Zoltan Soltesz, and Mark Szederkenyi for their help in the field, Dustin Penn for continuing support, Goran Arnqvist for a fruitful discussion on the theoretical background, Leif Engqvist for statistical advice, and Yoshan Moodley for comments on the manuscript. We would also like to thank the Kozep-Duna-Volgyi KTVF for issuing the permission to conduct the experiment (No. 13369-2/2008) and the Pilisi Parkerdo Zrt. for allowing us to use their roads. Animals were treated in accordance with the Hungarian Act of Animal Care and Experimentation (1998. XXVIII. Section 243/1998). Research was supported by the Hungarian Scientific Research Fund (OTKA, F-61374), the Hungarian National Office for Research and Technology (NKTH), and the Austrian Science Fund (FWF, P19264). Aday DD, 2003, ECOLOGY, V84, P3370; Andersson M., 1994, SEXUAL SELECTION; APHA, 1985, STAND METH EX WAT WA; Arak A., 1983, P181; Arntzen JW, 1999, ETHOL ECOL EVOL, V11, P407, DOI 10.1080/08927014.1999.9522823; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; BERGLUND A, 1991, EVOLUTION, V45, P770, DOI 10.1111/j.1558-5646.1991.tb04346.x; Bonduriansky R, 2003, EVOLUTION, V57, P2450; DAVIES NB, 1978, NATURE, V274, P683, DOI 10.1038/274683a0; DAVIES NB, 1979, ANIM BEHAV, V27, P1253, DOI 10.1016/0003-3472(79)90070-8; DAVIES NB, 1977, NATURE, V269, P56, DOI 10.1038/269056a0; Duellman W. E., 1994, BIOL AMPHIBIANS; Emlen DJ, 2000, ANNU REV ENTOMOL, V45, P661, DOI 10.1146/annurev.ento.45.1.661; Engqvist L, 2005, ANIM BEHAV, V70, P967, DOI 10.1016/j.anbehav.2005.01.016; GIBBONS MM, 1986, J ZOOL, V209, P579, DOI 10.1111/j.1469-7998.1986.tb03613.x; GITTINS SP, 1983, J ANIM ECOL, V52, P981, DOI 10.2307/4468; GITTINS SP, 1980, J ANIM ECOL, V49, P161, DOI 10.2307/4281; Grafe TU, 2001, J COMP PHYSIOL B, V171, P69, DOI 10.1007/s003600000151; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hettyey A, 2007, BEHAV ECOL SOCIOBIOL, V61, P1303, DOI 10.1007/s00265-007-0361-y; Hettyey A, 2009, BIOL J LINN SOC, V96, P361, DOI 10.1111/j.1095-8312.2008.01126.x; HEUSSER H, 1968, Revue Suisse de Zoologie, V75, P927; Hinojosa I, 2003, ANIM BEHAV, V66, P449, DOI 10.1006/anbe.2003.2220; HOGLUND J, 1989, ANIM BEHAV, V38, P423, DOI 10.1016/S0003-3472(89)80035-1; HOGLUND J, 1988, ETHOLOGY, V79, P324; Hosken DJ, 2005, EVOL ECOL, V19, P501, DOI 10.1007/s10682-005-1023-z; Howard RD, 1998, ANIM BEHAV, V55, P1151, DOI 10.1006/anbe.1997.0682; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Kitchener AC, 2000, EXPTL BIOL REV, P291; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; Lengagne T, 2007, BIOL J LINN SOC, V92, P755, DOI 10.1111/j.1095-8312.2007.00930.x; Lofts B, 1975, PHYSL AMPHIBIA; LOMAN J, 1986, OIKOS, V46, P57, DOI 10.2307/3565380; Loman J, 2010, AMPHIBIA-REPTILIA, V31, P509, DOI 10.1163/017353710X524705; McLister JD, 2003, CAN J ZOOL, V81, P388, DOI 10.1139/Z03-013; Nollert A., 1992, AMPHIBIEN EUROPAS BE; PETRIE M, 1992, ANIM BEHAV, V43, P173, DOI 10.1016/S0003-3472(05)80087-9; Rakitin A, 1999, CAN J FISH AQUAT SCI, V56, P2315, DOI 10.1139/cjfas-56-12-2315; Reading CJ, 1998, OECOLOGIA, V117, P469, DOI 10.1007/s004420050682; Reyer HU, 1999, P ROY SOC B-BIOL SCI, V266, P2101, DOI 10.1098/rspb.1999.0894; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 2002, LIFE HIST EVOLUTION; RYAN MJ, 1983, EVOLUTION, V37, P261, DOI 10.1111/j.1558-5646.1983.tb05536.x; RYAN MJ, 1983, ECOLOGY, V64, P1456, DOI 10.2307/1937500; RYSER J, 1989, OECOLOGIA, V78, P264, DOI 10.1007/BF00377165; Schmidt BR, 2002, AMPHIBIA-REPTILIA, V23, P375, DOI 10.1163/15685380260449234; Schneider JM, 1997, OIKOS, V79, P92, DOI 10.2307/3546094; Simmons LW, 1996, EVOL ECOL, V10, P97, DOI 10.1007/BF01239350; SMITHGILL SJ, 1980, COPEIA, P723, DOI 10.2307/1444450; Sokal R. R, 1981, BIOMETRY; Stearns S, 1992, EVOLUTION LIFE HIST; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; TEJEDO M, 1992, ANIM BEHAV, V44, P557, DOI 10.1016/0003-3472(92)90065-H; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Waelti MO, 2007, OECOLOGIA, V152, P415, DOI 10.1007/s00442-007-0671-9; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WELLS KD, 1977, ANIM BEHAV, V25, P666, DOI 10.1016/0003-3472(77)90118-X; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 59 2 2 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. FEB 2012 66 2 201 208 10.1007/s00265-011-1267-2 8 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 891WS WOS:000300248100004 2019-02-21 J Brodersen, J; Malmquist, HJ; Landkildehus, F; Lauridsen, TL; Amsinck, SL; Bjerring, R; Sondergaard, M; Johansson, LS; Christoffersen, KS; Jeppesen, E Brodersen, Jakob; Malmquist, Hilmar J.; Landkildehus, Frank; Lauridsen, Torben L.; Amsinck, Susanne L.; Bjerring, Rikke; Sondergaard, Martin; Johansson, Liselotte S.; Christoffersen, Kirsten S.; Jeppesen, Erik Short-and long term niche segregation and individual specialization of brown trout (Salmo trutta) in species poor Faroese lakes ENVIRONMENTAL BIOLOGY OF FISHES English Article Niche complexity; Stable isotopes; Trout; Stickleback; Aquatic ecology; Faroe Islands CHARR SALVELINUS-ALPINUS; LIFE-HISTORY EVOLUTION; TOP-DOWN CONTROL; SUB-ARCTIC LAKE; INTERSPECIFIC COMPETITION; POECILIA-RETICULATA; BENTHIC PATHWAYS; NUTRIENT STATE; POPULATIONS; DEPTH Trophic niche divergence is considered to be a major process by which species coexistence is facilitated. When studying niche segregation in lake ecosystems, we tend to view the niche on a one-dimensional pelagic-littoral axis. In reality, however, the niche use may be more complex and individual fidelity to a niche may be variable both between and within populations. In order to study this complexity, relative simple systems with few species are needed. In this paper, we study how competitor presence affects the resource use of brown trout (Salmo trutta) in 11 species-poor Faroese lakes by comparing relative abundance, stable isotope ratios and diet in multiple habitats. In the presence of three-spined sticklebacks (Gasterosteus aculeatus), a higher proportion of the trout population was found in the pelagic habitat, and trout in general relied on a more pelagic diet base as compared to trout living in allopatry or in sympatry with Arctic charr (Salvelinus alpinus). Diet analyses revealed, however, that niche-segregation may be more complex than described on a one-dimensional pelagic-littoral axis. Trout from both littoral and offshore benthic habitats had in the presence of sticklebacks a less benthic diet as compared to trout living in allopatry or in sympatry with charr. Furthermore, we found individual habitat specialization between littoral/benthic and pelagic trout in deep lakes. Hence, our findings indicate that for trout populations interspecific competition can drive shifts in both habitat and niche use, but at the same time they illustrate the complexity of the ecological niche in freshwater ecosystems. [Brodersen, Jakob; Landkildehus, Frank; Lauridsen, Torben L.; Amsinck, Susanne L.; Bjerring, Rikke; Sondergaard, Martin; Johansson, Liselotte S.; Jeppesen, Erik] Aarhus Univ, Dept Biosci, DK-8600 Silkeborg, Denmark; [Brodersen, Jakob] Lund Univ, Dept Biol Aquat Ecol, S-22362 Lund, Sweden; [Malmquist, Hilmar J.] Nat Hist Museum Kopavogur, IS-200 Kopavogur, Iceland; [Christoffersen, Kirsten S.] Univ Copenhagen, Freshwater Biol Lab, DK-3400 Hillerod, Denmark; [Jeppesen, Erik] Greenland Climate Res Ctr GCRC, Greenland Inst Nat Resources, Nuuk, Greenland; [Jeppesen, Erik] Sino Danish Ctr Educ & Res SDC, Beijing, Peoples R China Brodersen, J (reprint author), EAWAG Swiss Fed Inst Aquat Sci & Technol, Dept Fish Ecol & Evolut, Ctr Ecol Evolut & Biochem, Seestr 79, CH-6047 Kastanienbaum, Switzerland. jakob.brodersen@eawag.ch Sondergaard, Martin/J-2478-2013; Jeppesen, Erik/A-4463-2012; Lauridsen, Torben/K-9417-2013; Bjerring, Rikke/J-4869-2013 Jeppesen, Erik/0000-0002-0542-369X; Bjerring, Rikke/0000-0003-0393-3044; Sondergaard, Martin/0000-0002-1514-0482; Lauridsen, Torben/0000-0003-0139-2395 Carlsberg Foundation; Nordic Arctic Research Programme; Danish North Atlantic Research Programme; EU; REFRESH; CRES; Greenland Research Centre; Galathea We are grateful to Jane Stougaard Pedersen, Karina Jensen and Lissa Skov Hansen for identification of zooplankton samples. Special thanks go to Kirsten Landkildehus Thomsen for chemical analysis and Anne Mette Poulsen for manuscript editing. We also wish to thank Juana Jacobsen and Kathe Mogelvang for graphical layout. The project was partly funded by the Carlsberg Foundation, The Nordic Arctic Research Programme 1999-2003 and The Danish North Atlantic Research Programme. The study was also supported by the EU projects EUROLIMPACS (www.eurolimpacs.ucl.ac.uk) and WISER (www.wiser.eu), REFRESH, CRES, Greenland Research Centre and by Galathea 3. Furthermore, we thank Andy Jones, Geraldine Thiere and Karin Olsson for valuable comments on the manuscript. Amsinck SL, 2006, FRESHWATER BIOL, V51, P2124, DOI 10.1111/j.1365-2427.2006.01627.x; Amundsen PA, 2007, J ANIM ECOL, V76, P149, DOI 10.1111/j.1365-2656.2006.01179.x; Appelberg M, 1995, WATER AIR SOIL POLL, V85, P401, DOI 10.1007/BF00476862; BENNINGTON CC, 1994, ECOLOGY, V75, P717, DOI 10.2307/1941729; Bolnick DI, 2007, P NATL ACAD SCI USA, V104, P10075, DOI 10.1073/pnas.0703743104; Chase J. M., 2003, ECOLOGICAL NICHES LI; CHRISTOFFERSEN K, 2002, ANN SOC SCI FAEROE S, V36, P59; Domenici P, 2008, P ROY SOC B-BIOL SCI, V275, P195, DOI 10.1098/rspb.2007.1088; Forseth T, 2003, OIKOS, V101, P467, DOI 10.1034/j.1600-0706.2003.11257.x; Gasith A., 1991, VERHANDLUNGEN INT VE, V24, P1073; HANSSON S, 1995, ECOL MODEL, V77, P167, DOI 10.1016/0304-3800(93)E0075-E; Hershey AE, 2006, LIMNOL OCEANOGR, V51, P177, DOI 10.4319/lo.2006.51.1.0177; Horppila J, 2000, J FISH BIOL, V56, P51, DOI 10.1006/jfbi.1999.1140; Hubbell Stephen P., 2001, V32, pi; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Jansen PA, 2002, CAN J FISH AQUAT SCI, V59, P6, DOI 10.1139/F01-184; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Jensen JP, 2002, ANN SOC SCI FAEROE S, P34; Jeppesen E, 1997, HYDROBIOLOGIA, V342, P151, DOI 10.1023/A:1017046130329; Jeppesen E, 2003, ECOSYSTEMS, V6, P313, DOI 10.1007/s10021-002-0145-1; Jeppesen E, 2001, HYDROBIOLOGIA, V442, P329, DOI 10.1023/A:1017508211819; JEPPESEN E, 2002, ANN SOC SCI FAEROE S, V36, P126; Jeppesen E., 2002, ANN SOC SCI FAEROE S, V36, P114; Jonsson B, 2008, OECOLOGIA, V157, P553, DOI 10.1007/s00442-008-1103-1; Kahilainen K, 2002, ECOL FRESHW FISH, V11, P158, DOI 10.1034/j.1600-0633.2002.t01-2-00001.x; Kelly CD, 2000, CAN J ZOOL, V78, P1674, DOI 10.1139/cjz-78-9-1674; Klemetsen A, 2002, ENVIRON BIOL FISH, V64, P39, DOI 10.1023/A:1016062421601; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; L'Abee-Lund JH, 2002, ECOL FRESHW FISH, V11, P260, DOI 10.1034/j.1600-0633.2002.00020.x; LABEELUND JH, 1992, J FISH BIOL, V41, P91, DOI 10.1111/j.1095-8649.1992.tb03172.x; Landkildehus F, 2002, ANN SOC SCI FAEROE S, P28; LANGELAND A, 1991, J ANIM ECOL, V60, P895, DOI 10.2307/5420; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Leips J, 1999, J ANIM ECOL, V68, P595, DOI 10.1046/j.1365-2656.1999.00311.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; MALMQUIST HJ, 1992, OECOLOGIA, V92, P354, DOI 10.1007/BF00317461; MALMQUIST HJ, 2002, ANN SOC SCI FAEROE S, V36, P94; Mehner T, 2007, FRESHWATER BIOL, V52, P2285, DOI 10.1111/j.1365-2427.2007.01836.x; Post DM, 2007, OECOLOGIA, V152, P179, DOI 10.1007/s00442-006-0630-x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Riget F, 2000, POLAR BIOL, V23, P550, DOI 10.1007/s003000000120; Saksgard R, 2004, HYDROBIOLOGIA, V521, P187, DOI 10.1023/B:HYDR.0000026359.00934.52; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; SCHOENER TW, 1982, AM SCI, V70, P586; Sondergaard M, 2005, ARCH HYDROBIOL, V162, P143, DOI 10.1127/0003-9136/2005/0162-0143; Svanback R, 2009, AM NAT, V173, P507, DOI 10.1086/597223; TILMAN D, 1987, AM NAT, V129, P769, DOI 10.1086/284672; Vadeboncoeur Y, 2003, LIMNOL OCEANOGR, V48, P1408, DOI 10.4319/lo.2003.48.4.1408; Vadeboncoeur Y, 2002, BIOSCIENCE, V52, P44, DOI 10.1641/0006-3568(2002)052[0044:PTLBTR]2.0.CO;2; Vadeboncoeur Y, 2008, ECOLOGY, V89, P2542, DOI 10.1890/07-1058.1; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WERNER EE, 1977, AM NAT, V111, P553, DOI 10.1086/283184 55 7 7 0 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes FEB 2012 93 3 305 318 10.1007/s10641-011-9914-z 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 885HC WOS:000299768600001 2019-02-21 J McMillan, JR; Dunham, JB; Reeves, GH; Mills, JS; Jordan, CE McMillan, John R.; Dunham, Jason B.; Reeves, Gordon H.; Mills, Justin S.; Jordan, Chris E. Individual condition and stream temperature influence early maturation of rainbow and steelhead trout, Oncorhynchus mykiss ENVIRONMENTAL BIOLOGY OF FISHES English Article Rainbow trout; Steelhead trout; Alternative male phenotypes; Resident male maturity; Anadromy; Life history SALMO-SALAR L; WILD ATLANTIC SALMON; LIFE-HISTORY TACTICS; BODY-SIZE; BROWN TROUT; BROOK CHARR; SALVELINUS-FONTINALIS; WATER TEMPERATURE; MATING SYSTEM; PARR Alternative male phenotypes in salmonine fishes arise from individuals that mature as larger and older anadromous marine-migrants or as smaller and younger freshwater residents. To better understand the processes influencing the expression of these phenotypes we examined the influences of growth in length (fork length) and whole body lipid content in rainbow trout (Oncorhynchus mykiss). Fish were sampled from the John Day River basin in northeast Oregon where both anadromous ("steelhead") and freshwater resident rainbow trout coexist. Larger males with higher lipid levels had a greater probability of maturing as a resident at age-1+. Among males, 38% were maturing overall, and the odds ratios of the logistic model indicated that the probability of a male maturing early as a resident at age-1+ increased 49% (95% confidence interval (CI) = 23-81%) for every 5 mm increase in length and 33% (95% CI = 10-61%) for every 0.5% increase in whole body lipid content. There was an inverse association between individual condition and water temperature as growth was greater in warmer streams while whole body lipid content was higher in cooler streams. Our results support predictions from life history theory and further suggest that relationships between individual condition, maturation, and environmental variables (e.g., water temperature) are shaped by complex developmental and evolutionary influences. [McMillan, John R.; Mills, Justin S.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Dunham, Jason B.] US Geol Survey, Forest & Rangeland Ecosyst Sci Ctr, Corvallis, OR USA; [Reeves, Gordon H.] US Forest Serv, Pacific NW Res Stn, Corvallis, OR 97331 USA; [Jordan, Chris E.] Natl Ocean & Atmospher Adm, Corvallis, OR USA McMillan, JR (reprint author), Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA. jmcmillan71@gmail.com NOAA; USGS; USFS; North Umpqua Foundation All sampling was conducted in accordance with the Oregon Department of Fish and Wildlife permit # OR2007-3680 M1 approved by NOAA and USFWS under the Endangered Species Act. Tim Unterwegner, Jim Ruzycki, Jeff Neal, Shelly Miller, and Chris James at ODFW helped identify survey locations and provided critical information on the John Day River basin. Nick Weber, Ian Tattam, Jeremiah Leslie assisted in data collection. Martin Fitzpatrick at USGS provided suggestions that improved the methods and manuscript. Funding was provided by NOAA, USGS, USFS, and the North Umpqua Foundation. Use of trade or firm names is for reader information only and does not constitute endorsement of any product or service by the U.S. Government. Adams S.M., 1998, MULTIPLE STRESSES EC, P13; ALLISON P., 1999, LOGISTIC REGRESSION; [Anonymous], 1987, TECATOR APPL NOTE AN, V92, P1; *AOAC, 1998, OFF METH AN; Aubin-Horth N, 2006, CAN J FISH AQUAT SCI, V63, P2067, DOI 10.1139/F06-103; Bacon PJ, 2005, J ANIM ECOL, V74, P1, DOI 10.1111/j.1365-2656.2004.00875.x; BAGLINIERE JL, 1985, AQUACULTURE, V45, P249, DOI 10.1016/0044-8486(85)90274-1; Baum D, 2005, J FISH BIOL, V67, P1370, DOI 10.1111/j.1095-8649.2005.00832.x; Baum D, 2004, J ANIM ECOL, V73, P253, DOI 10.1111/j.0021-8790.2004.00803.x; Behnke R. J., 2002, TROUT SALMON N AM; Berg OK, 1998, J FISH BIOL, V52, P1272, DOI 10.1111/j.1095-8649.1998.tb00971.x; Biro PA, 2004, CAN J FISH AQUAT SCI, V61, P1513, DOI [10.1139/f04-083, 10.1139/F04-083]; Brett J. R., 1952, Journal of the Fisheries Research Board of Canada, V9, P265; BROWN LR, 1991, CAN J FISH AQUAT SCI, V48, P849, DOI 10.1139/f91-101; Busby P. J, 1996, NMFSNWFSC27 US DEP C; Chapman D. G., 1951, U CALIFORNIA PUBL ST, V1, P131; Chernoff E, 2007, J FISH BIOL, V70, P334, DOI 10.1111/j.1095-8649.2007.01328.x; Christie MR, 2011, MOL ECOL, V20, P1263, DOI 10.1111/j.1365-294X.2010.04994.x; Clemens BJ, 2009, REV FISH SCI, V17, P174, DOI 10.1080/10641260802618375; Dunham J., 2005, RMRSGTR150WWW USDA F; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Emling ST, 1977, SCIENCE, V197, P215; Feldhaus JW, 2006, THESIS OREGON STATE; FLAIN M, 1988, NEW ZEAL J MAR FRESH, V22, P497, DOI 10.1080/00288330.1988.9516319; Fleming Ian A., 2004, P264; GIBBONS JW, 1972, PROG FISH CULT, V34, P88, DOI 10.1577/1548-8640(1972)34[88:WROLBT]2.0.CO;2; Graham TP, 1974, AEC S SERIES, P151; GRIMES DV, 1993, T AM FISH SOC, V122, P636, DOI 10.1577/1548-8659(1993)122<0636:NVAVPO>2.3.CO;2; Gross MR, 1998, J THEOR BIOL, V192, P445, DOI 10.1006/jtbi.1998.0665; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hoar WS, 1979, FISH PHYSIOL, V8, P575; Houston CJG, 1981, THESIS U BRIT COLUMB; Jones JW, 1940, PROC R SOC SER B-BIO, V128, P485, DOI 10.1098/rspb.1940.0022; Jones MW, 2001, HEREDITY, V86, P675, DOI 10.1046/j.1365-2540.2001.00880.x; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; KEPSHIRE BM, 1983, AQUACULTURE, V32, P295, DOI 10.1016/0044-8486(83)90226-0; Madrinan F, 2008, THESIS OREGON STATE; McCormick JL, 2010, P118590 USDOE BOW AD; MCCULLOUGH D. A., 1999, 910R99010 EPA; McMillan J. R., 2009, THESIS OREGON STATE; McMillan JR, 2007, T AM FISH SOC, V136, P736, DOI 10.1577/T06-165.1; Mills JS, ENV BIO FIS IN PRESS; Morales-Nin B., 2002, P91; Morgan IJ, 2002, J FISH BIOL, V60, P674, DOI 10.1006/jfbi.2002.1886; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI [10.1139/f03-036, 10.1139/F03-036]; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Quinn TP, 2004, REV FISH BIOL FISHER, V14, P421, DOI 10.1007/s11160-005-0802-5; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Railsback SF, 1999, T AM FISH SOC, V128, P241, DOI 10.1577/1548-8659(1999)128<0241:BMOSTG>2.0.CO;2; Ramsey F. L., 2002, STAT SLEUTH COURSE M; REEVES GH, 1987, CAN J FISH AQUAT SCI, V44, P1603, DOI 10.1139/f87-194; Reshetnikov Y.S., 1970, J ICHTHYOL, V10, P804; Rikardsen AH, 2000, J FISH BIOL, V56, P328, DOI 10.1111/j.1095-8649.2000.tb02110.x; Rosenberger AE, 2005, N AM J FISH MANAGE, V25, P251; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; SCHMIDT SP, 1979, J FISH RES BOARD CAN, V36, P90, DOI 10.1139/f79-014; Schultz T, 2004, DOEBP000058404 BPA; Seamons TR, 2004, ENVIRON BIOL FISH, V69, P333, DOI 10.1023/B:EBFI.0000022893.88086.8f; Silverstein JT, 1997, CAN J FISH AQUAT SCI, V54, P444, DOI 10.1139/cjfas-54-2-444; Simpkins DG, 2003, CAN J ZOOL, V81, P1641, DOI 10.1139/Z03-157; SIMPSON AL, 1992, CAN J ZOOL, V70, P1737, DOI 10.1139/z92-241; Stevens DL, 2004, J AM STAT ASSOC, V99, P262, DOI 10.1198/016214504000000250; Sutton SG, 2000, T AM FISH SOC, V129, P527, DOI 10.1577/1548-8659(2000)129<0527:RAFWBW>2.0.CO;2; Tattam I, 2006, THESIS OREGON STATE; Temple GM, 2006, N AM J FISH MANAGE, V26, P941, DOI 10.1577/M05-086.1; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Theriault V, 2003, J FISH BIOL, V63, P1144, DOI 10.1046/j.1095-8649.2003.00233.x; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Tipping JM, 2003, N AM J AQUACULT, V65, P318, DOI 10.1577/C02-040; Tocher DR, 2003, REV FISH SCI, V11, P107, DOI 10.1080/713610925; WARD BR, 1989, CAN J FISH AQUAT SCI, V46, P1853, DOI 10.1139/f89-233; Wassermann Gustavo Javier, 2002, Cienc. Rural, V32, P133, DOI 10.1590/S0103-84782002000100023 75 33 34 8 61 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes FEB 2012 93 3 343 355 10.1007/s10641-011-9921-0 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 885HC WOS:000299768600004 2019-02-21 J Nyberg, CH Nyberg, Colleen H. Diurnal cortisol rhythms in Tsimane' Amazonian foragers: New insights into ecological HPA axis research PSYCHONEUROENDOCRINOLOGY English Article Cortisol; Stress; HPA axis; Homeostasis; Allostasis; Developmental plasticity; Market integration; Life history theory; Bolivia EVOLUTIONARY-DEVELOPMENTAL THEORY; PITUITARY-ADRENAL AXIS; C-REACTIVE PROTEIN; SALIVARY CORTISOL; PSYCHOLOGICAL STRESS; INDIVIDUAL-DIFFERENCES; NUTRITIONAL-STATUS; LOWLAND BOLIVIA; METABOLIC SYNDROME; GLUCOCORTICOID-RECEPTOR Although a growing body of research has documented important pathways by which the HPA axis mediates the interface between the psychosocial world and individual health, there is a paucity of data from nonwestern populations, particularly from those populations with distinct nutritional and infectious disease ecologies. The specific objectives of this study are: (1) to document variation in diurnal cortisol rhythms among the Tsimane', a remote population in the Bolivian Amazon, (2) to explore this variation by age and by gender, and (3) to compare diurnal rhythms from this study to other population based studies of cortisol conducted in industrialized nations. Salivary cortisol samples were collected twice daily, immediately upon waking and before bed, for three consecutive days from 303 participants (age 1.6-82 years, 1564 samples) in conjunction with the Tsimane' Amazonian Panel Study (TAPS). Cortisol rhythms showed strong age effects across the developmental span, with basal levels and slopes increasing into adulthood, although individuals older than 60 years demonstrated a precipitous flattening of the diurnal slope. Cortisol profiles were elevated in adult females compared to their age-matched male counterparts, and diurnal slopes, as well as mean cortisol concentrations among the Tsimane' were the lowest reported in any population based study of HPA axis function. Although the within-population variation in cortisol profiles was consistent with the established correlates of time of day, age, and sex, the between-population comparisons revealed dramatically lower levels of HPA activity among the Tsimane'. This study provides a benchmark against which to reference cortisol levels from industrialized populations, and expands the range of documented variation in HPA axis function in a nonwestern context. (C) 2011 Elsevier Ltd. All rights reserved. Univ Massachusetts, Dept Anthropol, Boston, MA 02125 USA Nyberg, CH (reprint author), Univ Massachusetts, Dept Anthropol, 100 Morrissey Blvd, Boston, MA 02125 USA. colleen.nyberg@umb.edu National Science Foundation DDIG [BCS-0622576]; American Association of University Women Dissertation Fellowship; Northwestern University Research was supported by a National Science Foundation DDIG (BCS-0622576), an American Association of University Women Dissertation Fellowship, a Northwestern University Graduate Research Grant, and a Northwestern University Fellowship and a Northwestern University FAN Grant. Adam EK, 2001, PSYCHONEUROENDOCRINO, V26, P189, DOI 10.1016/S0306-4530(00)00045-7; Adam EK, 2006, PSYCHONEUROENDOCRINO, V31, P664, DOI 10.1016/j.psyneuen.2006.01.010; Adam EK, 2009, PSYCHONEUROENDOCRINO, V34, P1423, DOI 10.1016/j.psyneuen.2009.06.011; Anacker C., 2010, PSYCHONEUROENDOCRINO; BAKER P, 1986, CHANGING SAMOANS BEH; Barker DJP, 2004, J EPIDEMIOL COMMUN H, V58, P114, DOI 10.1136/jech.58.2.114; Bateson P, 2001, INT J EPIDEMIOL, V30, P928, DOI 10.1093/ije/30.5.928; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Besedovsky HO, 1996, ENDOCR REV, V17, P64, DOI 10.1210/er.17.1.64; Bjorntorp P, 2000, BLOOD PRESSURE, V9, P71, DOI 10.1080/08037050050151762; Bjorntorp P, 2000, BRIT J NUTR, V83, pS49, DOI 10.1017/S0007114500000957; BLALOCK JE, 1989, PHYSIOL REV, V69, P1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRILLON DJ, 1995, AM J PHYSIOL-ENDOC M, V268, pE501; Bruce J, 2002, PSYCHONEUROENDOCRINO, V27, P635, DOI 10.1016/S0306-4530(01)00031-2; Burke HM, 2005, PSYCHONEUROENDOCRINO, V30, P846, DOI 10.1016/j.psyneune.2005.02.010; Byron E, 2003, THESIS U FLORIDA; Campbell BC, 2006, AGING CLIN EXP RES, V18, P470; Champagne FA, 2003, PHYSIOL BEHAV, V79, P359, DOI 10.1016/S0031-9384(03)00149-5; Chen E., 2010, MOL PSYCHIATR; Chisholm JS, 2008, EVOLUTIONARY MED HLT, P134; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Chrousos GP, 2000, ANN NY ACAD SCI, V917, P38, DOI 10.1111/j.1749-6632.2000.tb05371.x; Clow A, 2004, STRESS, V7, P29, DOI 10.1080/10253890410001667205; Cohen S, 2006, PSYCHOSOM MED, V68, P41, DOI 10.1097/01.psy.0000195967.51768.ea; Cohen S, 2007, JAMA-J AM MED ASSOC, V298, P1685, DOI 10.1001/jama.298.14.1685; Cole SW, 2008, BRAIN BEHAV IMMUN, V22, P1049, DOI 10.1016/j.bbi.2008.02.006; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Curley JP, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.025.2009; DALLMAN MF, 1993, FRONT NEUROENDOCRIN, V14, P303, DOI 10.1006/frne.1993.1010; Dantzer R, 2008, NAT REV NEUROSCI, V9, P46, DOI 10.1038/nrn2297; Darnall BD, 2009, BRAIN BEHAV IMMUN, V23, P595, DOI 10.1016/j.bbi.2009.02.019; de Kloet ER, 2008, ENDOCRINOLOGY, V149, P3241, DOI 10.1210/en.2008-0471; de Rooij SR, 2006, PSYCHONEUROENDOCRINO, V31, P1257, DOI 10.1016/j.psyneuen.2006.09.007; DeCaro JA, 2008, DEV PSYCHOBIOL, V50, P183, DOI 10.1002/dev.20255; Decker SA, 2000, HORM BEHAV, V38, P29, DOI 10.1006/hbeh.2000.1597; Decker Seamus A, 2006, J Physiol Anthropol, V25, P91, DOI 10.2114/jpa2.25.91; DeSantis AS, 2007, J ADOLESCENT HEALTH, V41, P3, DOI 10.1016/j.jadohealth.2007.03.006; DRESSLER W W, 1991, Ethnicity and Disease, V1, P60; Dressler WW, 1999, HUM BIOL, V71, P583; Du J, 2009, P NATL ACAD SCI USA, V106, P3543, DOI 10.1073/pnas.0812671106; Elenkov IJ, 2000, ANN NY ACAD SCI, V917, P94; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; Ellison PT, 2010, ANN NY ACAD SCI, V1204, P11, DOI 10.1111/j.1749-6632.2010.05611.x; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; Ellison PT, 1996, HUM BIOL, V68, P955; Epel ES, 2000, PSYCHOSOM MED, V62, P623, DOI 10.1097/00006842-200009000-00005; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Fernald LC, 2003, EUR J CLIN NUTR, V57, P1458, DOI 10.1038/sj.ejcn.1601710; Fernald LC, 1998, AM J CLIN NUTR, V68, P691, DOI 10.1093/ajcn/68.3.691; Fernald LCH, 2009, LANCET, V374, P1997, DOI 10.1016/S0140-6736(09)61676-7; Fish EW, 2004, ANN NY ACAD SCI, V1036, P167, DOI 10.1196/annals.1330.011; Flinn MV, 1997, AM J PHYS ANTHROPOL, V102, P33; Foster Z, 2005, AM J PHYS ANTHROPOL, V126, P343, DOI 10.1002/ajpa.20098; Galeeva A, 2010, VITAM HORM, V82, P367, DOI 10.1016/S0083-6729(10)82019-9; Glaser R, 2005, NAT REV IMMUNOL, V5, P243, DOI 10.1038/nri1571; Gluckman PD, 2010, GENOME MED, V2, DOI 10.1186/gm135; Gluckman PD, 2009, LANCET, V373, P1654, DOI 10.1016/S0140-6736(09)60234-8; Godoy R, 2005, SOC SCI MED, V61, P907, DOI 10.1016/j.socscimed.2005.01.007; Godoy R, 2010, AM J HUM BIOL, V22, P336, DOI 10.1002/ajhb.20996; Godoy R, 2010, ECON HUM BIOL, V8, P88, DOI 10.1016/j.ehb.2009.08.002; Godoy R, 2009, CURR ANTHROPOL, V50, P560, DOI 10.1086/599983; Godoy RA, 2006, SOC SCI MED, V63, P359, DOI 10.1016/j.socscimed.2006.01.021; Graves T. D., 1979, MED ANTHROPOL WIN, P23; Gunnar M, 2007, ANNU REV PSYCHOL, V58, P145, DOI 10.1146/annurev.psych.58.110405.085605; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Gunnar MR, 2002, PSYCHONEUROENDOCRINO, V27, P199, DOI 10.1016/S0306-4530(01)00045-2; Gunnar MR, 2001, DEV PSYCHOPATHOL, V13, P515, DOI 10.1017/S0954579401003066; Gurven M, 2007, AM J HUM BIOL, V19, P376, DOI 10.1002/ajhb.20600; Gurven M, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006590; Hardie TL, 2002, PSYCHIAT RES, V112, P121, DOI 10.1016/S0165-1781(02)00182-8; Hauner KKY, 2008, PSYCHONEUROENDOCRINO, V33, P1344, DOI 10.1016/j.psyneuen.2008.07.011; Heim C, 2000, PSYCHONEUROENDOCRINO, V25, P1, DOI 10.1016/S0306-4530(99)00035-9; Hellhammer DH, 2009, PSYCHONEUROENDOCRINO, V34, P163, DOI 10.1016/j.psyneuen.2008.10.026; Hershberger AM, 2004, J CLIN ENDOCR METAB, V89, P4701, DOI 10.1210/jc.2003-031144; Hruschka DJ, 2005, PSYCHONEUROENDOCRINO, V30, P698, DOI 10.1016/j.psyneuen.2005.03.002; Huanca T., 2006, TSIMANE ORAL TRADITI; Ice GH, 2004, PSYCHONEUROENDOCRINO, V29, P355, DOI 10.1016/S0306-4530(03)00034-9; Ice GH, 2005, J CROSS-CULT GERONTO, V20, P91, DOI 10.1007/s10823-005-9085-5; JAMES GD, 1987, SOC SCI MED, V25, P981, DOI 10.1016/0277-9536(87)90002-5; Jasienska G, 2006, P NATL ACAD SCI USA, V103, P12759, DOI 10.1073/pnas.0605488103; Jessop DS, 2008, STRESS, V11, P1, DOI 10.1080/10253890701365527; Jones A, 2006, J CLIN ENDOCR METAB, V91, P1868, DOI 10.1210/jc.2005-2077; JONETZMENTZEL L, 1993, EUR J CLIN CHEM CLIN, V31, P525; Kajantie E, 2002, CLIN ENDOCRINOL, V57, P635, DOI 10.1046/j.1365-2265.2002.01659.x; KIRSCHBAUM C, 1994, PSYCHONEUROENDOCRINO, V19, P313, DOI 10.1016/0306-4530(94)90013-2; Klimes-Dougan B, 2001, DEV PSYCHOPATHOL, V13, P695, DOI 10.1017/S0954579401003157; Koupil I, 2005, CLIN ENDOCRINOL, V62, P661, DOI 10.1111/j.1365-2265.2005.02275.x; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; Kudielka BM, 2009, PSYCHONEUROENDOCRINO, V34, P2, DOI 10.1016/j.psyneuen.2008.10.004; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lee AL, 2002, BIPOLAR DISORD, V4, P117, DOI 10.1034/j.1399-5618.2002.01144.x; Leonard WR, 2008, ECON HUM BIOL, V6, P299, DOI 10.1016/j.ehb.2008.04.001; Levine S, 2005, PSYCHONEUROENDOCRINO, V30, P939, DOI 10.1016/j.psyneuen.2005.03.013; Lohman T. G., 1988, ANTHROPOMETRIC STAND; Lupien SJ, 2000, BIOL PSYCHIAT, V48, P976, DOI 10.1016/S0006-3223(00)00965-3; Lupien SJ, 2009, NAT REV NEUROSCI, V10, P434, DOI 10.1038/nrn2639; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; McDade T. W., 2010, HUMAN EVOLUTIONARY B, P58; McDade TW, 2010, P ROY SOC B-BIOL SCI, V277, P1129, DOI 10.1098/rspb.2009.1795; McDade TW, 2005, AM J PHYS ANTHROPOL, V128, P906, DOI 10.1002/ajpa.20222; McDade TW, 2002, MED ANTHROPOL Q, V16, P123, DOI 10.1525/maq.2002.16.2.123; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 2001, HUM PSYCHOPHARM CLIN, V16, pS7, DOI 10.1002/hup.266; MCGARVEY S T, 1979, Human Biology, V51, P461; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miller GE, 2002, HEALTH PSYCHOL, V21, P531, DOI 10.1037//0278-6133.21.6.531; Miller G, 2009, ANNU REV PSYCHOL, V60, P501, DOI 10.1146/annurev.psych.60.110707.163551; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Moss HB, 1999, BIOL PSYCHIAT, V45, P1293, DOI 10.1016/S0006-3223(98)00216-9; Nadeau S, 2003, J NEUROSCI, V23, P5536; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2004, AM J HUM BIOL, V16, P523, DOI 10.1002/ajhb.20057; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; Nunez-de la Mora A, 2007, PLOS MED, V4, P813, DOI 10.1371/journal.pmed.0040167; Nyberg C. H, 2009, THESIS NW U; Obel C, 2005, PSYCHONEUROENDOCRINO, V30, P647, DOI 10.1016/j.psyneuen.2004.11.006; Oberlander TF, 2008, EPIGENETICS-US, V3, P97, DOI 10.4161/epi.3.2.6034; Phillips DIW, 2007, J INTERN MED, V261, P453, DOI 10.1111/j.1365-2796.2007.01801.x; Pike RL, 2006, AM J HUM BIOL, V18, P729, DOI 10.1002/ajhb.20548; Power ML, 2006, AM J HUM BIOL, V18, P431, DOI 10.1002/ajhb.20521; Raison CL, 2003, AM J PSYCHIAT, V160, P1554, DOI 10.1176/appi.ajp.160.9.1554; Raudenbush S., 2002, HIERARCHICAL LINEAR; Reyes-Garcia V, 2003, SCIENCE, V299, P1707, DOI 10.1126/science.1080274; Reyes-Garcia V, 2008, SOC SCI MED, V67, P2107, DOI 10.1016/j.socscimed.2008.09.029; Rivest S, 2003, BRAIN BEHAV IMMUN, V17, P13, DOI 10.1016/S0889-1591(02)00055-7; Romeo RD, 2005, VITAM HORM, V71, P1, DOI 10.1016/S0083-6729(05)71001-3; Romero LM, 2010, P ROY SOC B-BIOL SCI, V277, P3157, DOI 10.1098/rspb.2010.0678; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Rosmalen JGM, 2005, PSYCHONEUROENDOCRINO, V30, P483, DOI 10.1016/j.psyneuen.2004.12.007; Rosmond R, 2005, PSYCHONEUROENDOCRINO, V30, P1, DOI 10.1016/j.psyneuen.2004.05.007; ROSNER W, 1990, ENDOCR REV, V11, P80, DOI 10.1210/edrv-11-1-80; Sapolsky RM, 2001, P NATL ACAD SCI USA, V98, P12320, DOI 10.1073/pnas.231475998; Schulkin J, 2003, HORM BEHAV, V43, P21, DOI 10.1016/S0018-506X(02)00035-1; Shansky RM, 2004, MOL PSYCHIATR, V9, P531, DOI 10.1038/sj.mp.4001435; Sharrock KCB, 2008, AM J HUM BIOL, V20, P392, DOI 10.1002/ajhb.20765; Singer JD, 2003, APPL LONGITUDINAL DA; Sloboda D. M., 2009, CURR GERONTOL GERIAT, P60874; Sorrells SF, 2007, BRAIN BEHAV IMMUN, V21, P259, DOI 10.1016/j.bbi.2006.11.006; Steptoe A, 2008, AM J EPIDEMIOL, V167, P96, DOI 10.1093/aje/kwm252; STERLING P, 1988, HDB LIFE STRESS COGN; Tanner S, 2009, AM J HUM BIOL, V21, P651, DOI 10.1002/ajhb.20944; Tornhage CJ, 2002, J PEDIATR ENDOCR MET, V15, P197; Tronick E, 2009, HARVARD REV PSYCHIAT, V17, P147, DOI 10.1080/10673220902899714; Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4; Undurraga EA, 2010, MED ANTHROPOL Q, V24, P522, DOI 10.1111/j.1548-1387.2010.01121.x; Vasunilashorn S, 2010, AM J HUM BIOL, V22, P731, DOI 10.1002/ajhb.21074; Vedhara K, 2007, PSYCHONEUROENDOCRINO, V32, P865, DOI 10.1016/j.psyneuen.2007.06.006; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Wallerius S, 2003, J ENDOCRINOL INVEST, V26, P616, DOI 10.1007/BF03347017; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Worthman CM, 2008, DEV PSYCHOPATHOL, V20, P233, DOI 10.1017/S0954579408000114; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Yehuda R, 2004, PSYCHIATRY, V67, P391, DOI 10.1521/psyc.67.4.391.56572; Yehuda Rachel, 2008, Prog Brain Res, V167, P121 160 14 15 0 9 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0306-4530 PSYCHONEUROENDOCRINO Psychoneuroendocrinology FEB 2012 37 2 178 190 10.1016/j.psyneuen.2011.06.002 13 Endocrinology & Metabolism; Neurosciences; Psychiatry Endocrinology & Metabolism; Neurosciences & Neurology; Psychiatry 888BW WOS:000299979800002 21719201 2019-02-21 J Kaeuffer, R; Peichel, CL; Bolnick, DI; Hendry, AP Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P. PARALLEL AND NONPARALLEL ASPECTS OF ECOLOGICAL, PHENOTYPIC, AND GENETIC DIVERGENCE ACROSS REPLICATE POPULATION PAIRS OF LAKE AND STREAM STICKLEBACK EVOLUTION English Article Adaptive divergence; adaptive radiation; constraint; ecological speciation; genomic; natural selection; parallel evolution GASTEROSTEUS-ACULEATUS L; STABLE-ISOTOPE ANALYSES; LATERAL-PLATE REDUCTION; LIFE-HISTORY EVOLUTION; BLUE-GREEN-ALGAE; THREESPINE STICKLEBACK; PELVIC REDUCTION; 3-SPINED STICKLEBACK; ADAPTIVE DIVERGENCE; FRESH-WATER Parallel (or convergent) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some nonparallel evolution is present. It is therefore important to explicitly quantify the parallel and nonparallel aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in six independent watersheds. Morphological traits differed in the degree to which lakestream divergence was parallel across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lakestream divergence in genetic markers was associated within some of the lakestream divergence in morphological traits. Our results suggest that parallel evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respects to the dichotomous habitat classifications frequently used in such studies. [Kaeuffer, Renaud; Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; [Kaeuffer, Renaud; Hendry, Andrew P.] McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada; [Peichel, Catherine L.] Fred Hutchinson Canc Res Ctr, Div Human Biol, Seattle, WA 98109 USA; [Bolnick, Daniel I.] Univ Texas Austin, Howard Hughes Med Inst, Sect Integrat Biol, Austin, TX 78712 USA Kaeuffer, R (reprint author), McGill Univ, Redpath Museum, 859 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. renaud.kaeuffer@mail.mcgill.ca Bolnick, Daniel/G-4440-2015 Bolnick, Daniel/0000-0003-3148-6296; Peichel, Catherine/0000-0002-7731-8944 FQRNT; NIH [P50 HG002568]; David and Lucille Packard Foundation; Howard Hughes Medical Institute; NSERC We are grateful to J.S. Moore for his help in the field and Western Forest Products for accommodation in Port McNeil. We also thank S. Barrette, C. Macnaugthon, and S. Muttalib for their help in morphological measurements, and the entire Peichel lab for their help with the genetic analyses. D. Berner had many insightful comments on the manuscript and gave permission to use his stickleback drawings. Additional improvements were made based on comments by M. Bell and five other referees. This work was financially supported by an FQRNT postdoctoral fellowship (RK), an NIH grant P50 HG002568 (CLP), a David and Lucille Packard Foundation fellowship (DIB), the Howard Hughes Medical Institute (DIB), and NSERC (APH). Aguirre WE, 2009, BIOL J LINN SOC, V98, P139, DOI 10.1111/j.1095-8312.2009.01267.x; Albert AYK, 2008, EVOLUTION, V62, P76, DOI 10.1111/j.1558-5646.2007.00259.x; Alfaro ME, 2005, AM NAT, V165, pE140, DOI 10.1086/429564; Alfaro ME, 2004, EVOLUTION, V58, P495, DOI 10.1111/j.0014-3820.2004.tb01673.x; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; ARNOLD SJ, 1983, AM ZOOL, V23, P347; BARTON NH, 1984, ANNU REV ECOL SYST, V15, P133, DOI 10.1146/annurev.es.15.110184.001025; BAUMGARTNER JV, 1988, CAN J ZOOL, V66, P467, DOI 10.1139/z88-066; Beaumont MA, 2004, MOL ECOL, V13, P969, DOI 10.1111/j.1365-294X.2004.02125.x; Belkhir K, 2004, GENETIX 4 05 LOGICIE; Bell M. A., 1997, V82, P323; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BELL MA, 1976, SYST ZOOL, V25, P211, DOI 10.2307/2412489; BELL MA, 1987, BIOL J LINN SOC, V31, P347, DOI 10.1111/j.1095-8312.1987.tb01998.x; BELL MA, 1994, COPEIA, P314; BELL MA, 1985, COPEIA, P437; BELL MA, 1993, EVOLUTION, V47, P906, DOI 10.1111/j.1558-5646.1993.tb01243.x; BELL MA, 1974, NAT HIST MUS LOS ANG, V257, P1; BENTZEN P, 1984, CAN J ZOOL, V62, P2280, DOI 10.1139/z84-331; Bergstrom CA, 2002, CAN J ZOOL, V80, P207, DOI 10.1139/Z01-226; Berner D, 2008, J EVOLUTION BIOL, V21, P1653, DOI 10.1111/j.1420-9101.2008.01583.x; Berner D, 2011, J EVOLUTION BIOL, V24, P1975, DOI 10.1111/j.1420-9101.2011.02330.x; Berner D, 2010, MOL ECOL, V19, P4963, DOI 10.1111/j.1365-294X.2010.04858.x; Berner D, 2010, EVOLUTION, V64, P2265, DOI 10.1111/j.1558-5646.2010.00982.x; Berner D, 2009, EVOLUTION, V63, P1740, DOI 10.1111/j.1558-5646.2009.00665.x; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Bolnick DI, 2008, BIOL J LINN SOC, V94, P273, DOI 10.1111/j.1095-8312.2008.00978.x; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Bolnick DI, 2009, EVOL ECOL RES, V11, P1217; Bolnick DI, 2009, EVOLUTION, V63, P2004, DOI 10.1111/j.1558-5646.2009.00699.x; Bolnick DI, 2004, EVOLUTION, V58, P608, DOI 10.1111/j.0014-3820.2004.tb01683.x; CALDER JA, 1973, GEOCHIM COSMOCHIM AC, V37, P133, DOI 10.1016/0016-7037(73)90251-2; Chan YF, 2010, SCIENCE, V327, P302, DOI 10.1126/science.1182213; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; COHAN FM, 1989, AM NAT, V134, P613, DOI 10.1086/285000; Colosimo PF, 2004, PLOS BIOL, V2, P635, DOI 10.1371/journal.pbio.0020109; Cresko WA, 2004, P NATL ACAD SCI USA, V101, P6050, DOI 10.1073/pnas.0308479101; De Brito RA, 2005, EVOLUTION, V59, P2333, DOI 10.1554/05-151.1; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1986, NATURAL SELECTION WI; Finlay JC, 1999, LIMNOL OCEANOGR, V44, P1198, DOI 10.4319/lo.1999.44.5.1198; France RL, 1995, LIMNOL OCEANOGR, V40, P1310, DOI 10.4319/lo.1995.40.7.1310; FRANCIS RC, 1986, CAN J ZOOL, V64, P2257, DOI 10.1139/z86-339; FUTUYMA DJ, 1986, EVOLUTIONARY BIOL; GILES N, 1983, J ZOOL, V199, P535; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Gow JL, 2006, MOL ECOL, V15, P739, DOI 10.1111/j.1365-294X.2006.02825.x; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; GROSS HP, 1977, Z ZOOL SYST EVOL, V15, P252; GROSS HP, 1984, COPEIA, P87; HAGEN DW, 1972, EVOLUTION, V26, P32, DOI 10.1111/j.1558-5646.1972.tb00172.x; HAGEN DW, 1973, HEREDITY, V30, P273, DOI 10.1038/hdy.1973.38; HAGEN DW, 1973, HEREDITY, V31, P75, DOI 10.1038/hdy.1973.59; Hatfield T, 1997, AM NAT, V149, P1009, DOI 10.1086/286036; Hendry AP, 2011, J EVOLUTION BIOL, V24, P23, DOI 10.1111/j.1420-9101.2010.02155.x; Hendry AP, 2009, J FISH BIOL, V75, P2000, DOI 10.1111/j.1095-8649.2009.02419.x; Hendry AP, 2002, EVOLUTION, V56, P1199; Hendry AP, 2004, EVOLUTION, V58, P2319; Hohenlohe P. A., 2010, PLOS GENET, V6, DOI DOI 10.1371/JOURNAL.PGEN.1000862; Ingram T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020782; Irschick DJ, 2008, EVOL ECOL RES, V10, P177; JONES R, 1992, EVOLUTION, V46, P353, DOI 10.1111/j.1558-5646.1992.tb02043.x; LANDE R, 1992, EVOLUTION, V46, P381, DOI 10.1111/j.1558-5646.1992.tb02046.x; Landry L, 2010, J EVOLUTION BIOL, V23, P2602, DOI 10.1111/j.1420-9101.2010.02121.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; LAVIN PA, 1993, CAN J ZOOL, V71, P11, DOI 10.1139/z93-003; LINDSEY CC, 1962, CAN J ZOOLOG, V40, P271, DOI 10.1139/z62-028; Logan JM, 2008, J ANIM ECOL, V77, P838, DOI 10.1111/j.1365-2656.2008.01394.x; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; Marchinko KB, 2009, EVOLUTION, V63, P127, DOI 10.1111/j.1558-5646.2008.00529.x; Matthews B, 2010, ECOLOGY, V91, P1025, DOI 10.1890/09-0235.1; McKinnon JS, 2002, TRENDS ECOL EVOL, V17, P480, DOI 10.1016/S0169-5347(02)02579-X; MCPHAIL JD, 1993, CAN J ZOOL, V71, P515, DOI 10.1139/z93-072; Millar NP, 2006, OIKOS, V113, P1; MOODIE GEE, 1972, HEREDITY, V28, P155, DOI 10.1038/hdy.1972.21; Myhre F, 2009, J FISH BIOL, V75, P2062, DOI 10.1111/j.1095-8649.2009.02404.x; Newsome SD, 2007, FRONT ECOL ENVIRON, V5, P429, DOI 10.1890/060150.1; Ozgo M, 2011, BIOL J LINN SOC, V102, P251, DOI 10.1111/j.1095-8312.2010.01585.x; PARDUE JW, 1976, GEOCHIM COSMOCHIM AC, V40, P309, DOI 10.1016/0016-7037(76)90208-8; Peichel CL, 2001, NATURE, V414, P901, DOI 10.1038/414901a; Post DM, 2007, OECOLOGIA, V152, P179, DOI 10.1007/s00442-006-0630-x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; Reimchen TE, 2008, BEHAVIOUR, V145, P561, DOI 10.1163/156853908792451449; Reimchen TE, 2006, CAN J ZOOL, V84, P643, DOI 10.1139/Z06-036; REIMCHEN TE, 1992, EVOLUTION, V46, P1224, DOI 10.1111/j.1558-5646.1992.tb00631.x; REIMCHEN TE, 1985, CAN J ZOOL, V63, P2944, DOI 10.1139/z85-441; Reimchen Thomas E., 1994, P240; REIST JD, 1986, CAN J ZOOL, V64, P1363, DOI 10.1139/z86-203; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Robinson BW, 2000, BEHAVIOUR, V137, P865, DOI 10.1163/156853900502501; ROHLF F, 2006, TPSDIG2; ROHLF FJ, 2005, TPSRELW; Romero A, 2011, AM SCI, V99, P144, DOI 10.1511/2011.89.144; Rosenblum EB, 2011, EVOLUTION, V65, P946, DOI 10.1111/j.1558-5646.2010.01190.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D, 2004, AM NAT, V163, P809, DOI 10.1086/383621; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Shapiro MD, 2004, NATURE, V428, P717, DOI 10.1038/nature02415; Sharpe DMT, 2008, EVOL ECOL RES, V10, P849; Simoes P, 2008, EVOLUTION, V62, P1817, DOI 10.1111/j.1558-5646.2008.00423.x; Snowberg LK, 2008, AM NAT, V172, P733, DOI 10.1086/591692; SPITZE K, 1993, GENETICS, V135, P367; Spoljaric MA, 2007, J FISH BIOL, V70, P1484, DOI 10.1111/j.1095-8649.2007.01425.x; Steiner CC, 2009, MOL BIOL EVOL, V26, P35, DOI 10.1093/molbev/msn218; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Svensson EI, 2006, EVOLUTION, V60, P1242; Taylor EB, 2000, P ROY SOC B-BIOL SCI, V267, P2375, DOI 10.1098/rspb.2000.1294; Thompson CE, 1997, EVOLUTION, V51, P1955, DOI 10.1111/j.1558-5646.1997.tb05117.x; Wainwright PC, 2005, INTEGR COMP BIOL, V45, P256, DOI 10.1093/icb/45.2.256; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; Walker JA, 2007, AM NAT, V170, P681, DOI 10.1086/521957; WEBB PW, 1984, AM ZOOL, V24, P107; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; WITHLER RE, 1985, CAN J ZOOL, V63, P528, DOI 10.1139/z85-078; Wund MA, 2008, AM NAT, V172, P449, DOI 10.1086/590966; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR 121 116 116 4 97 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution FEB 2012 66 2 402 418 10.1111/j.1558-5646.2011.01440.x 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 882FG WOS:000299547200008 22276537 Green Accepted, Bronze 2019-02-21 J Iida, Y; Poorter, L; Sterck, FJ; Kassim, AR; Kubo, T; Potts, MD; Kohyama, TS Iida, Yoshiko; Poorter, Lourens; Sterck, Frank J.; Kassim, Abd R.; Kubo, Takuya; Potts, Matthew D.; Kohyama, Takashi S. Wood density explains architectural differentiation across 145 co-occurring tropical tree species FUNCTIONAL ECOLOGY English Article allometry; engineering theory; hierarchical Bayesian approach; light capture; mechanical stability; tree architecture; tropical rainforest MIXED DIPTEROCARP FOREST; LIFE-HISTORY STRATEGIES; RAIN-FOREST; FUNCTIONAL TRAITS; ADULT STATURE; DEMOGRAPHIC RATES; ALLOMETRY; HEIGHT; GROWTH; SIZE 1.Because of its mechanical properties, wood density may affect the way that trees expand their stem and crown to exploit favourable light conditions in a mechanically stable way. From engineering theory and wood density properties, it is predicted that in terms of biomass investment, low-density wood is more efficient for vertical stem expansion, while high-density wood is more efficient for horizontal branch expansion. So far, these predictions have rarely been tested by empirical studies. 2. We tested these predictions for 145 co-occurring tree species in a Malaysian tropical rainforest. For each species, we selected trees across a broad size range and measured architectural dimensions (stem diameter, height of the lowest foliage and crown width). We used a hierarchical Bayesian model to estimate species-specific allometric relationships between architectural dimensions including estimated stem biomass. Then, we examined correlations between species wood density and estimated architectural variables at standardized heights. 3. When species were compared at standardized tree heights, wood density correlated negatively with stem diameter and positively with stem biomass at most reference heights. This indicates that species with low wood density produce thicker stems but at lower biomass costs. Wood density correlated positively with crown width and negatively with height of the lowest foliage, which indicates that high wood density species have wider and deeper crowns than low wood density species. These relationships were maintained at most reference heights. However, the relationship with crown width was nonsignificant above 18 m height. This may reflect large plastic response of lateral crown expansion to a local condition. 4. Wood density explains the trade-off between effective vertical stem expansion and horizontal crown expansion across co-occurring tropical tree species. Such mechanical constraints characterize the difference in tree architecture between low wood density species that show an efficient height expansion to attain better light conditions in the exposed canopy and high wood density species that show an efficient horizontal crown expansion to enhance current light interception and persistence in the shaded forest understorey. Our study thus suggests that the mechanical constraints set by wood density contribute to the co-existence of species differing in architecture and light capture strategy. [Iida, Yoshiko; Kubo, Takuya; Kohyama, Takashi S.] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan; [Iida, Yoshiko; Poorter, Lourens; Sterck, Frank J.] Wageningen Univ, Ctr Ecosyst Studies, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; [Kassim, Abd R.] Forest Res Inst Malaysia, Forestry & Conservat Div, Kepong 52109, Malaysia; [Potts, Matthew D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA Iida, Y (reprint author), Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan. yyoshiko503@gmail.com Kohyama, Takashi/A-4031-2012; Kubo, Takuya/A-3414-2012 Kohyama, Takashi/0000-0001-7186-8585; Kubo, Takuya/0000-0001-6202-9624; Iida, Yoshiko/0000-0001-6544-0101; Poorter, Lourens/0000-0003-1391-4875 F. H. Levinson Fund; Japan Society for the Promotion of Science [19405006, 21405006]; Center for Tropical Forest Science; JSPS We thank the Pasoh field assistants and staffs of the Forest Research Institute Malaysia (FRIM) and Tatsuyuki Seino for their kind help in field research. We acknowledge funding from 'F. H. Levinson Fund' and access to unpublished data from S. Joseph Wright. We gratefully acknowledge all people who are related to the Global Wood Density Database and thank Dr Niels Anten, Dr David King, and two anonymous reviewers for their comments. This study was supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 19405006 & 21405006) and a grant from the Center for Tropical Forest Science. Yoshiko Iida was granted a Research Fellowship for Young Scientists and Excellent Young Researchers Overseas Visit Program from JSPS. The 50-ha Forest Dynamics Plot at Pasoh is a collaborative project of the Forest Research Institute Malaysia (FRIM), the National Institute for Environmental Studies, Japan (NIES), and the Center for Tropical Forest Science-Arnold Arboretum Asia Program, Harvard University (CTFS-AA). Aiba M, 2009, FUNCT ECOL, V23, P265, DOI 10.1111/j.1365-2435.2008.01500.x; Aiba SI, 1997, J ECOL, V85, P611, DOI 10.2307/2960532; Anten NPR, 2010, AM NAT, V175, P250, DOI 10.1086/649581; Bohlman S, 2006, J TROP ECOL, V22, P123, DOI 10.1017/S0266467405003019; Chave J, 2006, ECOL APPL, V16, P2356, DOI 10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Condit R., 1998, TROPICAL FOREST CENS; Davies SJ, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P35; Falster DS, 2006, NEW PHYTOL, V171, P237, DOI 10.1111/j.1469-8137.2006.01809.x; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Falster DS, 2003, TRENDS ECOL EVOL, V18, P337, DOI 10.1016/S0169-5347(03)00061-2; Gelman A, 2003, BAYESIAN DATA ANAL; GIVNISH TJ, 1988, AUST J PLANT PHYSIOL, V15, P63, DOI 10.1071/PP9880063; HIROSE T, 1995, ECOLOGY, V76, P466, DOI 10.2307/1941205; Iida Y, 2011, FUNCT ECOL, V25, P1260, DOI 10.1111/j.1365-2435.2011.01884.x; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; King DA, 2006, FOREST ECOL MANAG, V223, P152, DOI 10.1016/j.foreco.2005.10.066; King DA, 2009, FUNCT ECOL, V23, P284, DOI 10.1111/j.1365-2435.2008.01514.x; KOHYAMA T, 1990, FUNCT ECOL, V4, P515, DOI 10.2307/2389319; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Kohyama T, 1987, FUNCT ECOL, V1, P399, DOI 10.2307/2389797; KOHYAMA T, 1993, J ECOL, V81, P131, DOI 10.2307/2261230; Kooyman RM, 2009, ANN BOT-LONDON, V104, P987, DOI 10.1093/aob/mcp185; Larjavaara M, 2010, FUNCT ECOL, V24, P701, DOI 10.1111/j.1365-2435.2010.01698.x; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Meinzer FC, 2003, OECOLOGIA, V134, P1, DOI 10.1007/s00442-002-1088-0; Muller-Landau HC, 2010, P NATL ACAD SCI USA, V107, P4242, DOI 10.1073/pnas.0911637107; Niklas K., 1992, PLANT BIOMECHANICS E; Noguchi S, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P51; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2003, ECOLOGY, V84, P602, DOI 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Development Core Team, 2009, R LANG ENV STAT COMP; Russo SE, 2010, FUNCT ECOL, V24, P253, DOI 10.1111/j.1365-2435.2009.01670.x; Santiago LS, 2004, OECOLOGIA, V140, P543, DOI 10.1007/s00442-004-1624-1; Sarmiento C, 2011, AM J BOT, V98, P140, DOI 10.3732/ajb.1000034; Spiegelhalter DJ, 2003, WINBUGS VERSION 1 4; Sterck FJ, 1998, AM J BOT, V85, P266, DOI 10.2307/2446315; Sterck FJ, 2007, ECOL MONOGR, V77, P405, DOI 10.1890/06-1670.1; Sterck FJ, 2006, J ECOL, V94, P1192, DOI 10.1111/j.1365-2745.2006.01162.x; Swenson NG, 2008, AM J BOT, V95, P516, DOI 10.3732/ajb.95.4.516; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Tilman D., 1982, RESOURCE COMPETITION; Turner I.M., 2001, ECOLOGY TREE TROPICA; UMEKI K, 1995, ECOL MODEL, V82, P11, DOI 10.1016/0304-3800(94)00081-R; *USDA, 1999, WOOD HDB WOOD ENG MA; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Zanne A. E, 2009, GLOBAL WOOD DENSITY 52 44 45 1 77 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2012 26 1 274 282 10.1111/j.1365-2435.2011.01921.x 9 Ecology Environmental Sciences & Ecology 877SZ WOS:000299204300030 Bronze 2019-02-21 J Kim, E; Donohue, K Kim, Eunsuk; Donohue, Kathleen The effect of plant architecture on drought resistance: implications for the evolution of semelparity in Erysimum capitatum FUNCTIONAL ECOLOGY English Article adaptive differentiation; drought resistance; life history; monocarpy; natural selection; polycarpy; rosette development LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; NATURAL-SELECTION; GENETIC-VARIATION; REPRODUCTION; MORTALITY; GROWTH; COSTS; CONSTRAINTS; ADAPTATION 1. Constraints of resource allocation between reproduction and adult survival have been implicated in much life-history variation, yet physiological or functional trade-offs with juvenile survival may be just as important. Here, we examined selection on a juvenile trait that is a key determinant of semelparous (monocarpic) vs. iteroparous (polycarpic) life-history expression. 2. In Erysimum capitatum, iteroparous plants produce more rosettes at the juvenile stage than do semelparous plants; those rosettes perennate, enabling subsequent reproductive episodes. Thus, the number of rosettes produced before reproduction is a strong determinant of iteroparity. We tested whether increased rosette production compromised juvenile survival under conditions similar to those in which semelparity predominates over iteroparity. 3. Using plants from six natural populations, we tested the association between rosette production and juvenile survival under drought conditions typical of the field sites of semelparous E. capitatum populations. We also manipulated rosette number by physically removing rosettes and examined the effect of rosette removal on drought resistance. 4. Under drought conditions, plants with fewer rosettes had higher survival, and the physical excision of rosettes improved survival (significantly or marginally) under drought stress in five of six natural populations. 5. The lower production of rosettes, typical of semelparous E. capitatum, was associated with increased juvenile survival under drought stress. The results suggest adaptive differentiation of rosette production, at least partially in response to drought stress. Given the role of apical dominance in multiple rosette development, natural selection seems to favour stronger apical dominance under drought conditions. Drought stress is predicted to be more common at high elevation as a result of climate change, and the novel drought stress could increase juvenile mortality of alpine E. capitatum. Because rosette production at the juvenile stage is necessary for iteroparity, these results demonstrate that drought-induced selection on traits that determine early survival has significant potential to influence the evolution of adult life-history expression. [Kim, Eunsuk] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA; [Donohue, Kathleen] Duke Univ, Dept Biol, Durham, NC 27708 USA Kim, E (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. eunsukkim@sc.edu Kim, Eunsuk/A-5177-2013 Department of Organismic and Evolutionary Biology at Harvard University The authors thank Dr. Naomi Pierce and Dr. N. Michele Holbrook for their insightful comments throughout this experiment, J. Sherwood, W. Weigle and Lauren Ruane for managing plants in the greenhouse. We also thank the associate editor and two anonymous reviewers for valuable comments on the manuscript. Funding was provided by the Department of Organismic and Evolutionary Biology at Harvard University. AARSSEN LW, 1995, OIKOS, V74, P149, DOI 10.2307/3545684; ALLISON P., 1999, LOGISTIC REGRESSION; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; Bonser SP, 2005, J EVOLUTION BIOL, V18, P1009, DOI 10.1111/j.1420-9101.2005.00904.x; Calanca P, 2007, GLOBAL PLANET CHANGE, V57, P151, DOI 10.1016/j.gloplacha.2006.11.001; Campbell Scientific Inc, 2001, HYDR INSTR MAN; Chaves MM, 2003, FUNCT PLANT BIOL, V30, P239, DOI 10.1071/FP02076; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; FOSTER SA, 1992, J FISH BIOL, V41, P21, DOI 10.1111/j.1095-8649.1992.tb03865.x; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; HARTE J, 1995, ECOL APPL, V5, P132, DOI 10.2307/1942058; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Kim E, 2011, AM J BOT, V98, P1752, DOI 10.3732/ajb.1100194; Kim E, 2011, J ECOL, V99, P1237, DOI 10.1111/j.1365-2745.2011.01831.x; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Lambers H., 2008, PLANT PHYSL ECOLOGY; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lesica P, 2005, FUNCT ECOL, V19, P471, DOI 10.1111/j.1365-2435.2005.00972.x; MAUN MA, 1994, VEGETATIO, V111, P59; McDowell N, 2008, NEW PHYTOL, V178, P719, DOI 10.1111/j.1469-8137.2008.02436.x; McKay JK, 2008, EVOLUTION, V62, P3014, DOI 10.1111/j.1558-5646.2008.00474.x; McSteen P, 2005, ANNU REV PLANT BIOL, V56, P353, DOI 10.1146/annurev.arplant.56.032604.144122; Miriti MN, 2006, J ECOL, V94, P973, DOI 10.1111/j.1365-2745.2006.01138.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Parry M. L., 2007, CONTRIBUTION WORKING; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Poorter L, 2007, AM NAT, V169, P433, DOI 10.1086/512045; Price R. A., 1987, THESIS U CALIFORNIA; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Ranta E, 2000, EVOLUTION, V54, P145, DOI 10.1111/j.0014-3820.2000.tb00015.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff Derek A., 1992; SCHAFFER WM, 1977, ECOLOGY, V58, P60, DOI 10.2307/1935108; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Schmitz G, 2005, CURR OPIN PLANT BIOL, V8, P506, DOI 10.1016/j.pbi.2005.07.010; SILVERTOWN J, 1989, EVOL TREND PLANT, V3, P87; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; STRATTON DA, 1992, EVOLUTION, V46, P107, DOI 10.1111/j.1558-5646.1992.tb01988.x; TAKADA T, 1995, J THEOR BIOL, V173, P51, DOI 10.1006/jtbi.1995.0042; TAYLOR RV, 1994, ARCTIC ALPINE RES, V26, P14, DOI 10.2307/1551871; Vuorissalo T.O., 1999, LIFE HIST EVOLUTION; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 53 5 5 1 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2012 26 1 294 303 10.1111/j.1365-2435.2011.01936.x 10 Ecology Environmental Sciences & Ecology 877SZ WOS:000299204300032 Bronze 2019-02-21 J Palacios, MG; Sparkman, AM; Bronikowski, AM Palacios, Maria G.; Sparkman, Amanda M.; Bronikowski, Anne M. Corticosterone and pace of life in two life-history ecotypes of the garter snake Thamnophis elegans GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Corticosterone; Life-history; Physiological mechanism; Reptile; Stress; Trade-off COMMON-GARDEN EXPERIMENT; STRESS-RESPONSE; TRADE-OFFS; EVOLUTIONARY ECOLOGY; UTA-STANSBURIANA; IMMUNE DEFENSE; REPRODUCTION; HORMONE; TESTOSTERONE; POPULATION Glucocorticoids are main candidates for mediating life-history trade-offs by regulating the balance between current reproduction and survival. It has been proposed that slow-living organisms should show higher stress-induced glucocorticoid levels that favor self-maintenance rather than current reproduction when compared to fast-living organisms. We tested this hypothesis in replicate populations of two ecotypes of the garter snake (Thamnophis elegans) that exhibit slow and fast pace of life strategies. We subjected free-ranging snakes to a capture-restraint protocol and compared the stress-induced corticosterone levels between slow- and fast-living snakes. We also used a five-year dataset to assess whether baseline corticosterone levels followed the same pattern as stress-induced levels in relation to pace of life. In accordance with the hypothesis, slow-living snakes showed higher stress-induced corticosterone levels than fast-living snakes. Baseline corticosterone levels showed a similar pattern with ecotype, although differences depended on the year of study. Overall, however, levels of glucocorticoids are higher in slow-living than fast-living snakes, which should favor self-maintenance and survival at the expense of current reproduction. The results of the present study are the first to relate glucocorticoid levels and pace of life in a reptilian system and contribute to our understanding of the physiological mechanisms involved in life-history evolution. (C) 2011 Elsevier Inc. All rights reserved. [Palacios, Maria G.; Sparkman, Amanda M.; Bronikowski, Anne M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA Palacios, MG (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. mgp@iastate.edu Palacios, Maria/I-6140-2012 Bronikowski, Anne/0000-0001-6432-298X National Science Foundation [DEB-0323379, IOS-0922528, DEB-0710158] We are grateful to C. Vleck for granting access to her laboratory for conducting the corticosterone radioimmunoassays, and to members of the Bronikowski and Vleck labs and an anonymous reviewer for comments on previous versions of the manuscript. We also thank T. Schwartz, M. Manes, M. Brandenburg, K Robert, J. Chamberlain, S. Zylstra, A. Lehman, S. Arnold and the Oregon State University crew, K. Martin, and USFS Tom Rickman for field support and M. Manes for help with the radioimmunoassays. Work with the snakes was carried out in accordance with standard animal care protocols and approved by Iowa State University Animal Care and Use Committee (IACUC #: 3-2-5125-J) The State of California Department of Fish and Game granted collecting permits. This research was supported by grants from the National Science Foundation to A. Bronikowski (DEB-0323379, IOS-0922528) and a National Science Foundation Doctoral Dissertation Improvement Grant to A. Sparkman (DEB-0710158). Angelier F, 2011, J EVOLUTION BIOL, V24, P1274, DOI 10.1111/j.1420-9101.2011.02260.x; Angelier F, 2009, P R SOC B, V276, P3545, DOI 10.1098/rspb.2009.0868; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Bronikowski A, 2010, INTEGR COMP BIOL, V50, P880, DOI 10.1093/icb/icq132; Bronikowski AM, 2008, AGE, V30, P169, DOI 10.1007/s11357-008-9060-5; Burnham K. P., 1998, MODEL SELECTION INFE; Cash WB, 1997, GEN COMP ENDOCR, V108, P427, DOI 10.1006/gcen.1997.6999; DUNLAP KD, 1995, J HERPETOL, V29, P345, DOI 10.2307/1564983; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; GREENBERG N, 1987, HORMONES REPROD FINC; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; KETTERSON ED, 1992, AM NAT, V140, pS33, DOI 10.1086/285396; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kuhlman JR, 2010, FUNCT ECOL, V24, P830, DOI 10.1111/j.1365-2435.2010.01710.x; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Manier MK, 2007, J EVOLUTION BIOL, V20, P1705, DOI 10.1111/j.1420-9101.2007.01401.x; Manier MK, 2005, MOL ECOL, V14, P3965, DOI 10.1111/j.1365-294X.2005.02734.x; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Miller RA, 2002, EXP BIOL MED, V227, P500; Mills SC, 2008, AM NAT, V171, P339, DOI 10.1086/527520; Palacios MG, 2011, J ANIM ECOL, V80, P431, DOI 10.1111/j.1365-2656.2010.01785.x; Phillips JB, 2008, COPEIA, P570, DOI 10.1643/CP-06-176; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; Robert KA, 2009, HORM BEHAV, V55, P24, DOI 10.1016/j.yhbeh.2008.07.008; Roff Derek A., 1992; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; Sparkman AM, 2009, ECOLOGY, V90, P720, DOI 10.1890/08-0850.1; Sparkman AM, 2009, J ANIM ECOL, V78, P1242, DOI 10.1111/j.1365-2656.2009.01587.x; Stebbins R. C., 2003, FIELD GUIDE W AMPHIB; Sykes KL, 2009, J EXP ZOOL PART A, V311A, P172, DOI 10.1002/jez.515; Ujvari B, 2006, BEHAV ECOL, V17, P20, DOI 10.1093/beheco/ari091; Weatherhead PJ, 1996, CAN J ZOOL, V74, P1617, DOI 10.1139/z96-179; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zimmerman LM, 2010, J EXP BIOL, V213, P661, DOI 10.1242/jeb.038315 47 28 28 1 43 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. FEB 1 2012 175 3 443 448 10.1016/j.ygcen.2011.11.042 6 Endocrinology & Metabolism Endocrinology & Metabolism 885UC WOS:000299805300010 22178432 2019-02-21 J Poykko, H; Hyvarinen, M Poykko, Heikki; Hyvarinen, Marko To grow fast or to grow big? Time-limited larvae of Eilema depressum speed up their growth and reduce number of instars ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article age and size at maturity; developmental plasticity; growth rate; instar number variability; Melanohalea exasperata; Parmelia sulcata; reaction norm; Lepidoptera; Arctiidae; Lithosiinae LICHEN SECONDARY METABOLITES; LIFE-HISTORY PLASTICITY; HOST-PLANT QUALITY; BODY-SIZE; PHENOTYPIC PLASTICITY; SEASONAL ENVIRONMENT; CLINAL VARIATION; REACTION NORMS; DIAPAUSE; LEPIDOPTERA According to life-history theory, longer development time may result in bigger adults. However, reaction norms describing age and size at maturity often follow an L-shaped form. This relationship is attributable to the simple notion that slowly growing individuals may not lengthen their development excessively after the maturation decision has been made, for example, when development is time limited in seasonal environments. In arthropods, growth occurs within instars, and thus the optimal growth strategy might be mediated by the phenotypic adjustment of instar numbers. We studied the relationship between age and size at maturity of a lichen-feeding moth, Eilema depressum (Esper) (Lepidoptera: Arctiidae: Lithosiinae), and the variability of instar numbers in relation to achieved adult body mass and time used for maturation. A positive relationship between age and size at maturity was found across developmental pathways and a negative one within the developmental pathways. Directly developing larvae had higher growth rates, attained smaller pupal mass, and passed fewer instars than larvae maturing after overwintering. Host quality did not affect whether larvae matured during the remaining or the next season. High variation in the number of instars together with variable growth rates indicates high plasticity in adaptation to varying environmental conditions. Our results also confirm previous results that instar number variability may be a key characteristic mediating age and size at maturity in insects. [Poykko, Heikki; Hyvarinen, Marko] Univ Oulu, Dept Biol, FIN-90014 Oulu, Finland Poykko, H (reprint author), Univ Oulu, Dept Biol, POB 3000, FIN-90014 Oulu, Finland. heikki.poykko@oulu.fi Hyvarinen, Marko/0000-0001-8736-0946 Ella and Georg Ehrnrooth's Foundation; Graduate School of Evolutionary Ecology; Oskar Oflund Foundation This study was financially supported by Ella and Georg Ehrnrooth's Foundation, Graduate School of Evolutionary Ecology and Oskar Oflund Foundation. We are grateful to Veijo Jormalainen, Toomas Tammaru, Juha Tuomi, and all members of the Invertebrate Evolution and Behavior Research Group (http://cc.oulu.fi/similar to inverteb) for their invaluable comments and suggestions on earlier versions of this manuscript. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; CLARE GK, 1990, NEW ZEAL J ZOOL, V17, P141, DOI 10.1080/03014223.1990.10422590; DALY HV, 1985, ANNU REV ENTOMOL, V30, P415, DOI 10.1146/annurev.en.30.010185.002215; Davidowitz G, 2003, EVOL DEV, V5, P188, DOI 10.1046/j.1525-142X.2003.03026.x; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Esperk T, 2007, J ECON ENTOMOL, V100, P627, DOI 10.1603/0022-0493(2007)100[627:IVINOL]2.0.CO;2; Esperk T, 2007, ECOL ENTOMOL, V32, P243, DOI 10.1111/j.1365-2311.2007.00872.x; Etile E, 2008, OIKOS, V117, P135, DOI 10.1111/j.2007.0030-1299.16114.x; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Frago E, 2009, J INSECT PHYSIOL, V55, P952, DOI 10.1016/j.jinsphys.2009.06.013; Gadenne C, 1997, J INSECT PHYSIOL, V43, P425, DOI 10.1016/S0022-1910(96)00122-9; GARCIA-BARROS E, 1985, Boletin de la Asociacion Espanola de Entomologia, V9, P223; Gotthard K, 1998, J EVOLUTION BIOL, V11, P21; Gotthard K, 1999, OIKOS, V84, P453, DOI 10.2307/3546424; Gotthard K, 2010, J EVOLUTION BIOL, V23, P1129, DOI 10.1111/j.1420-9101.2010.01994.x; GOTTHARD K, 2001, ANIMAL DEV ECOLOGY, P287; Henwood B. P., 1997, Entomologist's Gazette, V48, P257; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Hulden H, 2000, ATLAS FINNISH MACROL; Hunter MD, 1997, ECOLOGY, V78, P977, DOI 10.1890/0012-9658(1997)078[0977:HPQIDA]2.0.CO;2; Hutchinson JMC, 1997, PHILOS T R SOC B, V352, P113, DOI 10.1098/rstb.1997.0007; Kingsolver JG, 2007, P ROY SOC B-BIOL SCI, V274, P977, DOI 10.1098/rspb.2006.0036; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Lepidopterologen-Arbeitsgruppe, 2000, SCHMETT IHR LEB ART; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; Poykko H, 2005, ECOLOGY, V86, P2623, DOI 10.1890/04-1632; Poykko H, 2003, J ANIM ECOL, V72, P383, DOI 10.1046/j.1365-2656.2003.00709.x; Poykko H, 2010, J EVOLUTION BIOL, V23, P1278, DOI 10.1111/j.1420-9101.2010.01990.x; Reavey D., 1991, P293; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; Sehnal F, 1985, COMPREHENSIVE INSECT, V2, P1; Slansky F. Jr, 1985, P87; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Tauber J, 1986, SEASONAL ADAPTATIONS; Wedell N, 1997, OIKOS, V78, P569, DOI 10.2307/3545619; WIKLUND C, 1992, EVOLUTION, V46, P519, DOI 10.1111/j.1558-5646.1992.tb02055.x; WIPKING W, 1995, OECOLOGIA, V102, P202, DOI 10.1007/BF00333252; Wipking W, 2000, J INSECT PHYSIOL, V46, P127, DOI 10.1016/S0022-1910(99)00108-0; WIPKING W, 1994, SERIES ENTOM, V52, P313; WIPKING W, 1988, OECOLOGIA, V77, P557, DOI 10.1007/BF00377274 47 10 10 1 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. FEB 2012 142 2 145 152 10.1111/j.1570-7458.2011.01208.x 8 Entomology Entomology 873WY WOS:000298916500008 2019-02-21 J Pimentel, C; Santos, M; Ferreira, C; Nilsson, JA Pimentel, Carla; Santos, Marcia; Ferreira, Claudia; Nilsson, Jan-Ake Temperature, size, reproductive allocation, and life-history evolution in a gregarious caterpillar BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article adaptive; clutch size; egg; development time; Lepidoptera; phenology; social insects; Thaumetopoea pityocampa FOREST TENT CATERPILLAR; BERGMANNS RULE; BODY-SIZE; THAUMETOPOEA-PITYOCAMPA; PROCESSIONARY MOTH; CELL-SIZE; LOCAL ADAPTATION; OFFSPRING SIZE; COLONY SIZE; ECTOTHERMS The present study aimed to investigate the relationship between growth rate, final mass, and larval development, as well as how this relationship influences reproductive trade-offs, in the context of a gregarious life-style and the need to keep an optimal group size. We use as a model two sympatric populations of the pine processionary moth Thaumetopoea pityocampa, which occur in different seasons and thus experience different climatic conditions. Thaumetopoea pityocampa is a strictly gregarious caterpillar throughout the larval period, which occurs during winter in countries all over the Mediterranean Basin. However, in 1997, a population in which larval development occurs during the summer was discovered in Portugal, namely the summer population (SP), as opposed to the normal winter population (WP), which coexists in the same forest feeding on the same host during the winter. Both populations were monitored over 3 years, with an assessment of the length of the larval period and its relationship with different climatic variables, final mass and adult size, egg size and number, colony size, and mortality at different life stages. The SP larval period was reduced as a result of development in the warmer part of the year, although it reached the same final mass and adult size as the WP. Despite an equal size at maturity, a trade-off between egg size and number was found between the two populations: SP produced less but bigger eggs than WP. This contrasts with the findings obtained in other Lepidoptera species, where development in colder environments leads to larger eggs at the expense of fecundity, but corroborates the trend found at a macro-geographical scale for T. pityocampa, with females from northern latitudes and a colder environment producing more (and smaller) eggs. The results demonstrate the importance of the number of eggs in cold environments as a result of an advantage of large colonies when gregarious caterpillars develop in such environments, and these findings are discussed in accordance with the major theories regarding size in animals. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 340349. [Pimentel, Carla; Ferreira, Claudia] Univ Nova Lisboa, Fac Ciencias & Tecnol, DCEA, P-2825516 Caparica, Portugal; [Nilsson, Jan-Ake] Lund Univ, Dept Anim Ecol, S-22362 Lund, Sweden; [Santos, Marcia] Univ Tecn Lisboa, Inst Super Agron ISA, Ctr Estudos Florestais CEF, P-1349017 Lisbon, Portugal Pimentel, C (reprint author), Dartmouth Coll, Dept Biol Sci LSC, Hanover, NH 03755 USA. carla.s.pimentel@dartmouth.edu Pimentel, Carla/P-8252-2014 Pimentel, Carla/0000-0002-8364-8990; ferreira, claudia/0000-0002-9404-6098 Portuguese Foundation for Science and Technology (FCT) [PRAXXIS XXI /BD/18 119/98, SFRH /BPD/46 995/2008] The authors would like to thank the National Forest Services for allowing this study to be conducted in the National Pine forest of Leiria. We also thank Veronica Amparo, Evelina Moura, and Marta Neves for help during fieldwork, as well as Maria Rosa Paiva for supplying the facilities and material means necessary for the development of the work. Comments by two anonymous referees helped to improve the final version of the manuscript. C. Pimentel was funded by the Portuguese Foundation for Science and Technology (FCT), with grants PRAXXIS XXI /BD/18 119/98 and SFRH /BPD/46 995/2008. Allen PE, 2010, INSECT SOC, V57, P199, DOI 10.1007/s00040-010-0068-3; Anderson DR., 2008, MODEL BASED INFERENC; Arendt J, 2007, BIOL REV, V82, P241, DOI 10.1111/j.1469-185X.2007.00013.x; Arnett AE, 1999, EVOLUTION, V53, P1180, DOI 10.1111/j.1558-5646.1999.tb04531.x; Ashton KG, 2003, EVOLUTION, V57, P1151, DOI 10.1111/j.0014-3820.2003.tb00324.x; Ashton KG, 2002, CAN J ZOOL, V80, P708, DOI 10.1139/Z02-049; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Atkinson D, 2006, EVOL DEV, V8, P202, DOI 10.1111/j.1525-142X.2006.00090.x; Atkinson D, 2001, EXPTL BIOL REV, P269; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; AYRES MP, 1994, ECOL MONOGR, V64, P465, DOI 10.2307/2937146; Battisti A, 2005, ECOL APPL, V15, P2084, DOI 10.1890/04-1903; BILIOTTI E., 1956, Revue de Pathologie Vegetale, V35, P50; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Blanckenhorn WU, 2005, J THERM BIOL, V30, P213, DOI 10.1016/j.jtherbio.2004.11.004; Cabral MT., 1979, ANAIS I SUPER AGRON, V38, P18; Cesaraccio C, 2001, INT J BIOMETEOROL, V45, P161; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Costa J. T., 2006, OTHER INSECT SOC; CUSHMAN JH, 1993, OECOLOGIA, V95, P30, DOI 10.1007/BF00649503; Despland E, 2007, ENTOMOL EXP APPL, V122, P181, DOI 10.1111/j.1570-7458.2006.00512.x; Ernsting G, 2000, AM NAT, V155, P804, DOI 10.1086/303361; Fischer K, 2001, POPUL ECOL, V43, P105, DOI 10.1007/PL00012009; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; Heinze J, 2003, ECOGRAPHY, V26, P349, DOI 10.1034/j.1600-0587.2003.03478.x; Hodar JA, 2002, ECOL ENTOMOL, V27, P292, DOI 10.1046/j.1365-2311.2002.00415.x; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; JOOS B, 1988, ECOLOGY, V69, P2004, DOI 10.2307/1941178; KASPARI M, 1995, AM NAT, V145, P610, DOI 10.1086/285758; LAMY M, 1990, J APPL ENTOMOL, V110, P425, DOI 10.1111/j.1439-0418.1990.tb00142.x; LINDSEY CC, 1966, EVOLUTION, V20, P456, DOI 10.1111/j.1558-5646.1966.tb03380.x; MAYR E, 1956, EVOLUTION, V10, P105, DOI 10.2307/2406103; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Parry D, 2001, ECOL ENTOMOL, V26, P281, DOI 10.1046/j.1365-2311.2001.00319.x; Partridge L, 1997, EVOLUTION, V51, P632, DOI 10.1111/j.1558-5646.1997.tb02454.x; Perez-Contreras T, 2003, ANN ZOOL FENN, V40, P505; Pimentel C, 2006, FOREST ECOL MANAG, V233, P108, DOI 10.1016/j.foreco.2006.06.005; Pimentel C, 2011, AGR FOREST ENTOMOL, V13, P273, DOI 10.1111/j.1461-9563.2011.00520.x; Pimentel C, 2010, BIOL J LINN SOC, V100, P224, DOI 10.1111/j.1095-8312.2010.01413.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; ROMANOVSKY YE, 1982, INT REV GES HYDROBIO, V67, P341; Ronnas C, 2010, ECOL ENTOMOL, V35, P436, DOI 10.1111/j.1365-2311.2010.01199.x; Ruf C, 2000, NATURWISSENSCHAFTEN, V87, P193, DOI 10.1007/s001140050702; RUOHOMAKI K, 1992, ECOL ENTOMOL, V17, P69, DOI 10.1111/j.1365-2311.1992.tb01041.x; Santos H, 2011, J EVOLUTION BIOL, V24, P146, DOI 10.1111/j.1420-9101.2010.02147.x; SOUTHWICK EE, 1985, J COMP PHYSIOL B, V156, P143, DOI 10.1007/BF00692937; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; Woods HA, 1999, AM ZOOL, V39, P244; Zovi D, 2008, ECOLOGY, V89, P1388, DOI 10.1890/07-0883.1 51 6 6 1 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 2012 105 2 340 349 10.1111/j.1095-8312.2011.01794.x 10 Evolutionary Biology Evolutionary Biology 874UN WOS:000298983700007 Bronze 2019-02-21 J Byrne, PG; Roberts, JD Byrne, Phillip G.; Roberts, J. Dale Evolutionary causes and consequences of sequential polyandry in anuran amphibians BIOLOGICAL REVIEWS English Article sexual selection; mating system; polyandry; evolution; genetic benefits; mate choice; external fertilization SPERM COMPETITION GAMES; FROG CRINIA-GEORGIANA; FEMALE MATING FREQUENCY; LEAF-FOLDING FROG; INCREASES FERTILIZATION SUCCESS; TREEFROG HYLA-CHRYSOSCELIS; AMAZONIAN POISON FROGS; NEST-SITE SELECTION; PUERTO-RICAN FROG; MATE CHOICE Among anuran amphibians (frogs and toads), there are two types of polyandry: simultaneous polyandry, where sperm from multiple males compete to fertilize eggs, and sequential polyandry, where eggs from a single female are fertilized by multiple males in a series of temporally separate mating events, and sperm competition is absent. Here we review the occurrence of sequential polyandry in anuran amphibians, outline theoretical explanations for the evolution of this mating system and discuss potential evolutionary implications. Sequential polyandry has been reported in a limited number of anurans, but its widespread taxonomic and geographic distribution suggests it may be common. There have been no empirical studies that have explicitly investigated the evolutionary consequences of sequential polyandry in anurans, but species with this mating pattern share an array of behavioural, morphological and physiological characteristics, suggesting that there has been common sexual selection on their reproductive system. Sequential polyandry may have a number of adaptive benefits, including spreading the risk of brood failure in unpredictable environments, insuring against male infertility, or providing genetic benefits, either through good genes, intrinsic compatibility or genetic diversity effects. Anurans with sequential polyandry provide untapped opportunities for innovative research approaches that will contribute significantly to understanding anuran evolution and also, more broadly, to the development of sexual-selection and life-history theory. [Byrne, Phillip G.] Univ Wollongong, Sch Biol Sci, Inst Conservat Biol & Environm Management, Wollongong, NSW 2522, Australia; [Roberts, J. Dale] Univ Western Australia, Ctr Evolutionary Biol, Crawley, WA 6009, Australia; [Roberts, J. Dale] Univ Western Australia, Sch Anim Biol M092, Crawley, WA 6009, Australia Byrne, PG (reprint author), Univ Wollongong, Sch Biol Sci, Inst Conservat Biol & Environm Management, Wollongong, NSW 2522, Australia. pbyrne@uow.edu.au Byrne, Phillip/0000-0003-2183-9959 Australian Research Council; Australian National University; Monash University; University of Witwatersrand; University of Wollongong; University of Western Australia P.G. Byrne and J.D. Roberts acknowledge the support of the Australian Research Council, the Australian National University, Monash University, the University of Witwatersrand, the University of Wollongong and the University of Western Australia. We also thank Brian Sullivan, Leigh Simmons, Bob Wong and Aimee Silla for comments on earlier versions of the manuscript. ABT G, 1993, BEHAV ECOL SOCIOBIOL, V32, P221; Achermann JC, 1999, MOL ENDOCRINOL, V13, P812, DOI 10.1210/me.13.6.812; Alcock J., 2009, ANIMAL BEHAV EVOLUTI; ARAK A, 1988, ANIM BEHAV, V36, P416, DOI 10.1016/S0003-3472(88)80012-5; Arak A., 1983, P181; ARNQVIST G, 1989, OIKOS, V56, P344, DOI 10.2307/3565619; Asay MJ, 2005, CHEM SIGNAL, V10, P24, DOI 10.1007/0-387-25160-X_4; Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; BACKWELL PRY, 1990, HERPETOLOGICA, V46, P7; BACKWELL PRY, 1991, J HERPETOL, V25, P497, DOI 10.2307/1564780; BACKWELL PRY, 1991, HERPETOLOGICA, V47, P226; BALINSKY BI, 1985, S AFR J ZOOL, V20, P61; Ball MA, 1996, J THEOR BIOL, V180, P141, DOI 10.1006/jtbi.1996.0090; Ball MA, 1997, J THEOR BIOL, V186, P459, DOI 10.1006/jtbi.1997.0406; Barandun Jonas, 1997, Amphibia-Reptilia, V18, P347, DOI 10.1163/156853897X00404; Bastos RP, 1996, J HERPETOL, V30, P355, DOI 10.2307/1565172; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Baugh AT, 2009, BEHAV ECOL, V20, P1153, DOI 10.1093/beheco/arp120; Bergstrom J, 2002, ANIM BEHAV, V64, P49, DOI 10.1006/anbe.2002.3032; Birkhead T, 2000, PROMISCUITY EVOLUTIO; Birkhead TR, 1995, REPROD FERT DEVELOP, V7, P755, DOI 10.1071/RD9950755; BLAIR WF, 1960, ECOLOGY, V41, P165, DOI 10.2307/1931950; Booksmythe I, 2008, ANIM BEHAV, V76, P1775, DOI 10.1016/j.anbehav.2008.07.022; BOURNE GR, 1993, ANIM BEHAV, V45, P1051, DOI 10.1006/anbe.1993.1131; BRADFORD DF, 1988, PHYSIOL ZOOL, V61, P470, DOI 10.1086/physzool.61.5.30161269; BRADFORD DF, 1985, PHYSIOL ZOOL, V58, P491, DOI 10.1086/physzool.58.5.30158576; BRADFORD DF, 1990, PHYSIOL ZOOL, V63, P1157, DOI 10.1086/physzool.63.6.30152638; BROCKMANN HJ, 1994, BEHAV ECOL SOCIOBIOL, V35, P153, DOI 10.1007/BF00167954; BYRNE P. G., 2010, BEHAV ECOLO IN PRESS; Byrne PG, 2003, P ROY SOC B-BIOL SCI, V270, P2079, DOI 10.1098/rspb.2003.2433; Byrne PG, 2002, J EVOLUTION BIOL, V15, P347, DOI 10.1046/j.1420-9101.2002.00409.x; Byrne PG, 2004, BEHAV ECOL, V15, P857, DOI 10.1093/beheco/arh098; Byrne PG, 2002, J HERPETOL, V36, P125, DOI 10.1670/0022-1511(2002)036[0125:CCOBSP]2.0.CO;2; Byrne PG, 1999, P ROY SOC B-BIOL SCI, V266, P717, DOI 10.1098/rspb.1999.0695; Byrne PG, 2008, ANIM BEHAV, V76, P1157, DOI 10.1016/j.anbehav.2008.05.019; Byrne PG, 2007, ANIM BEHAV, V74, P1155, DOI 10.1016/j.anbehav.2006.10.033; Byrne PG, 2009, P R SOC B, V276, P115, DOI 10.1098/rspb.2008.0794; Byrne PG, 2008, COPEIA, P57, DOI 10.1643/CE-05-294; Chambers J, 2006, AUSTRAL ECOL, V31, P68, DOI 10.1111/j.1442-9993.2006.01544.x; CHARLESWORTH D, 1987, ANNU REV ECOL SYST, V18, P237, DOI 10.1146/annurev.es.18.110187.001321; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Coma R, 1997, J EXP MAR BIOL ECOL, V214, P107, DOI 10.1016/S0022-0981(97)00017-8; Crump M.L., 1974, Miscellaneous Publs Mus nat Hist Univ Kans, VNo. 61, P1; Crump Martha L., 1996, Advances in the Study of Behavior, V25, P109; CURTSINGER JW, 1991, AM NAT, V138, P93, DOI 10.1086/285206; Daly JW, 1998, J NAT PROD, V61, P162, DOI 10.1021/np970460e; DAVIES NB, 1979, ANIM BEHAV, V27, P1253, DOI 10.1016/0003-3472(79)90070-8; de Gaudemar B, 1998, J FISH BIOL, V53, P434, DOI 10.1006/jfbi.1998.0716; DeLay LS, 1996, CONDOR, V98, P300, DOI 10.2307/1369148; Denton JS, 1996, HERPETOL J, V6, P49; DeWoody JA, 2001, J HERED, V92, P167, DOI 10.1093/jhered/92.2.167; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; DEWSBURY DA, 1981, SOUTHWEST NAT, V26, P193, DOI 10.2307/3671115; Duellman W. E., 1986, BIOL AMPHIBIANS; Dziminski MA, 2008, EVOLUTION, V62, P879, DOI 10.1111/j.1558-5646.2008.00328.x; Eberhard W.G., 1996, FEMALE CONTROL SEXUA; Emerson SB, 1997, BEHAV ECOL SOCIOBIOL, V41, P227, DOI 10.1007/s002650050383; EMLEN ST, 1976, BEHAV ECOL SOCIOBIOL, V1, P283, DOI 10.1007/BF00300069; EMLEN ST, 1977, COPEIA, P749; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Evans JP, 2005, EVOLUTION, V59, P106; FAIRBAIRN DJ, 1993, BEHAV ECOL, V4, P224, DOI 10.1093/beheco/4.3.224; Gerhardt H. C., 2002, ACOUSTIC COMMUNICATI; GOMENDIO M, 1991, P ROY SOC B-BIOL SCI, V243, P181, DOI 10.1098/rspb.1991.0029; GRAFE TU, 1992, PHYSIOL ZOOL, V65, P153, DOI 10.1086/physzool.65.1.30158244; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hettyey A., 2005, Herpetological Review, V36, P33; Hettyey A, 2005, COPEIA, P403, DOI 10.1643/CE-04-115R2; Hettyey A, 2003, BEHAV ECOL, V14, P294, DOI 10.1093/beheco/14.2.294; Hettyey A, 2009, ANIM BEHAV, V78, P1365, DOI 10.1016/j.anbehav.2009.09.006; Hettyey A, 2009, BIOL J LINN SOC, V96, P361, DOI 10.1111/j.1095-8312.2008.01126.x; Hosken DJ, 2003, EVOL BIOL, V33, P173; Hosken DJ, 1999, BEHAV ECOL, V10, P462, DOI 10.1093/beheco/10.4.462; HOWARD RD, 1985, EVOLUTION, V39, P260, DOI 10.1111/j.1558-5646.1985.tb05665.x; Immler S, 2009, BEHAV ECOL SOCIOBIOL, V63, P1219, DOI 10.1007/s00265-009-0744-3; Jaquiery J, 2010, EVOLUTION, V64, P108, DOI 10.1111/j.1558-5646.2009.00816.x; JENNIONS MD, 1993, BIOL J LINN SOC, V50, P211; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; JENNIONS MD, 1992, ANIM BEHAV, V44, P1091, DOI 10.1016/S0003-3472(05)80321-5; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Karlsson K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012755; KATZ D. F., 1990, FERTILIZATION MAMMAL; KELLER L, 1995, ADV STUD BEHAV, V24, P291, DOI 10.1016/S0065-3454(08)60397-6; Kindle TK, 2006, CAN J ZOOL, V84, P1345, DOI 10.1139/Z06-127; King JR, 2005, MOL ECOL, V14, P653, DOI 10.1111/j.1365-294X.2005.02438.x; KLUGE A. G., 1981, MISC PUBL MUS ZOOL, V160, P1; Kouba AJ, 2009, THERIOGENOLOGY, V71, P214, DOI 10.1016/j.theriogenology.2008.09.055; KRUPA J J, 1986, Prairie Naturalist, V18, P151; KRUPA JJ, 1988, COPEIA, P800, DOI 10.2307/1445408; Lank DB, 2002, BEHAV ECOL, V13, P209, DOI 10.1093/beheco/13.2.209; LEMCKERT FL, 1993, J HERPETOL, V27, P420, DOI 10.2307/1564830; LESCURE J, 1982, REV FRANCAISE AQUARI, V8, P107; LEVINS R, 1967, EVOLUTION CHANGING E; Levitan DR, 2005, INTEGR COMP BIOL, V45, P848, DOI 10.1093/icb/45.5.848; Levitan DR, 2002, ECOLOGY, V83, P464, DOI 10.2307/2680028; LIMERICK S, 1980, HERPETOLOGICA, V36, P69; Lips KR, 2001, OECOLOGIA, V128, P509, DOI 10.1007/s004420100687; Lode T, 2004, P ROY SOC B-BIOL SCI, V271, pS399, DOI 10.1098/rsbl.2004.0195; Lynch M, 1998, GENETICS ANAL QUANTI; MacColl ADC, 2003, EVOLUTION, V57, P2191; Marshall DJ, 2005, J EVOLUTION BIOL, V18, P735, DOI 10.1111/j.1420-9101.2004.00873.x; McLeod L, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006347; MILINSKI M, 1992, P ROY SOC B-BIOL SCI, V250, P229, DOI 10.1098/rspb.1992.0153; Mitchell NJ, 2002, AUST J ZOOL, V50, P225, DOI 10.1071/ZO01086; Mitchell NJ, 2001, P ROY SOC B-BIOL SCI, V268, P87, DOI 10.1098/rspb.2000.1334; Moller A. P, 1998, SPERM COMPETITION SE; Montanarin A, 2011, ETHOL ECOL EVOL, V23, P141, DOI 10.1080/03949370.2011.554884; MORRIS MR, 1989, BEHAV ECOL SOCIOBIOL, V25, P275, DOI 10.1007/BF00300054; Morrow EH, 2002, J EVOLUTION BIOL, V15, P702, DOI 10.1046/j.1420-9101.2002.00445.x; Neff BD, 2005, MOL ECOL, V14, P19, DOI 10.1111/j.1365-294X.2004.02395.x; Noble G. K., 1942, BULL AMER MUS NAT HIST, V80, P127; Nunn CL, 2000, SCIENCE, V290, P1168, DOI 10.1126/science.290.5494.1168; Parker GA, 2005, BIOL LETTERS, V1, P235, DOI 10.1098/rsbl.2004.0273; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P120, DOI 10.1098/rspb.1990.0114; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; Parker GA, 1996, P ROY SOC B-BIOL SCI, V263, P1291, DOI 10.1098/rspb.1996.0189; PERRILL SA, 1983, COPEIA, P513; Peters SE, 2000, J EXP BIOL, V203, P3639; Poelman EH, 2008, J HERPETOL, V42, P270, DOI 10.1670/07-1031.1; Poelman EH, 2007, EVOL ECOL, V21, P215, DOI 10.1007/s10682-006-9000-8; Pomiankowski A, 2005, J INSECT PHYSIOL, V51, P1165, DOI 10.1016/j.jinsphys.2005.06.006; POUGH FH, 1983, ECOLOGY, V64, P244, DOI 10.2307/1937072; Prohl H, 2002, BEHAV ECOL, V13, P175, DOI 10.1093/beheco/13.2.175; Prohl H, 1999, BEHAV ECOL SOCIOBIOL, V46, P215, DOI 10.1007/s002650050612; PYBURN WF, 1970, COPEIA, P209; RABB GB, 1960, COPEIA, P271; Reyer HU, 2004, HERPETOLOGICA, V60, P349, DOI 10.1655/03-77; Reyer HU, 1999, P ROY SOC B-BIOL SCI, V266, P2101, DOI 10.1098/rspb.1999.0894; Rice WR, 1996, NATURE, V381, P232, DOI 10.1038/381232a0; RITKE ME, 1990, J HERPETOL, V24, P135, DOI 10.2307/1564220; ROBERTS J. D., 2011, ADV STUDY BEHAV, V3, P1; Roberts JD, 1999, ANIM BEHAV, V57, P721, DOI 10.1006/anbe.1998.1019; ROBERTSON JGM, 1990, ANIM BEHAV, V39, P639, DOI 10.1016/S0003-3472(05)80374-4; Roesli M, 2000, ANIM BEHAV, V60, P745, DOI 10.1006/anbe.2000.1519; RYAN MJ, 1983, ECOLOGY, V64, P1456, DOI 10.2307/1937500; Scarlata JK, 2003, J HERPETOL, V37, P580, DOI 10.1670/174-02N; SHAPIRO DY, 1994, ECOLOGY, V75, P1334, DOI 10.2307/1937458; Shapiro DY, 1996, BEHAV ECOL, V7, P19, DOI 10.1093/beheco/7.1.19; Sherman CDH, 2008, P R SOC B, V275, P971, DOI 10.1098/rspb.2007.1626; Sherman CDH, 2008, AUSTRAL ECOL, V33, P348, DOI 10.1111/j.1442-9993.2007.01823.x; Sherman CDH, 2009, BIOL LETTERS, V5, P232, DOI 10.1098/rsbl.2008.0796; Shine R, 1996, ECOLOGY, V77, P1808, DOI 10.2307/2265785; Short R.V., 1979, Advances in the Study of Behavior, V9, P131, DOI 10.1016/S0065-3454(08)60035-2; Shuster SM, 2009, P NATL ACAD SCI USA, V106, P10009, DOI 10.1073/pnas.0901132106; SIH A, 1990, AM NAT, V135, P284, DOI 10.1086/285044; SIH A, 1994, J FISH BIOL, V45, P111, DOI 10.1006/jfbi.1994.1217; SILVERSTONE P A, 1973, Herpetologica, V29, P295; Simmons LW, 2009, J EVOLUTION BIOL, V22, P225, DOI 10.1111/j.1420-9101.2008.01628.x; Simmons LW, 2007, MOL ECOL, V16, P4613, DOI 10.1111/j.1365-294X.2007.03528.x; Simmons LW, 2005, ANNU REV ECOL EVOL S, V36, P125, DOI 10.1146/annurev.ecolsys.36.102403.112501; Skerratt FL, 2007, ECOHEALTH, V4, P125; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; St Mary CM, 2001, ETHOLOGY, V107, P1035, DOI 10.1046/j.1439-0310.2001.00747.x; STEARNS SC, 1992, EVOLUTION LIFE HISTO; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; SULLIVAN B. K., 1995, AMPHIBIAN BIOL, V2; Summers K, 1997, BEHAV ECOL, V8, P260, DOI 10.1093/beheco/8.3.260; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; TELFORD SR, 1988, BEHAVIOUR, V106, P265, DOI 10.1163/156853988X00287; Telford SR, 1998, TRENDS ECOL EVOL, V13, P216, DOI 10.1016/S0169-5347(98)01372-X; TELFORD SR, 1990, COPEIA, P644; Thornhill R., 1983, EVOLUTION INSECT MAT; Thrall PH, 1997, AM NAT, V149, P485, DOI 10.1086/286001; Thumm K, 2002, AUST J ZOOL, V50, P151, DOI 10.1071/ZO01038; Torres-Vila LM, 2005, BEHAV ECOL, V16, P114, DOI 10.1093/beheco/arh138; TOWNSEND DS, 1994, J HERPETOL, V28, P34, DOI 10.2307/1564677; TRIVERS R., 1972, SEXUAL SELECTION DES, P133; Tsuji H, 1998, COPEIA, P769, DOI 10.2307/1447813; Tsuji H, 2000, HERPETOLOGICA, V56, P153; TUNNER H G, 1974, Zeitschrift fuer Zoologische Systematik und Evolutionsforschung, V12, P309; Ursprung E, 2011, MOL ECOL, V20, P1759, DOI 10.1111/j.1365-294X.2011.05056.x; Velez A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1695, DOI 10.1007/s00265-010-0983-3; Vieites DR, 2004, NATURE, V431, P305, DOI 10.1038/nature02879; Villinger J, 2008, P R SOC B, V275, P1225, DOI 10.1098/rspb.2008.0022; Vladic T, 1997, J FISH BIOL, V50, P1088, DOI 10.1006/jfbi.1996.0373; Waldman B, 2004, BEHAV ECOL, V15, P88, DOI 10.1093/beheco/arg071; WALKER WF, 1980, AM NAT, V115, P780, DOI 10.1086/283600; WATSON PJ, 1991, ANIM BEHAV, V41, P343, DOI 10.1016/S0003-3472(05)80486-5; Wedell N, 2002, BEHAV ECOL, V13, P450, DOI 10.1093/beheco/13.4.450; Welch AM, 1998, SCIENCE, V280, P1928, DOI 10.1126/science.280.5371.1928; WELLS K D, 1976, Herpetologica, V32, P85; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; WELLS K. D., 1976, THESIS CORNELL U; WELLS KD, 1980, BEHAV ECOL SOCIOBIOL, V6, P199, DOI 10.1007/BF00569201; WELLS KD, 1979, BIOTROPICA, V11, P301, DOI 10.2307/2387922; Weygoldt P., 1980, Salamandra, V16, P215; WEYGOLDT P, 1980, BEHAV ECOL SOCIOBIOL, V7, P329, DOI 10.1007/BF00300674; WHITE A., 1993, HERPETOLOGY AUSTR; Wogel H, 2005, J NAT HIST, V39, P2035, DOI 10.1080/00222930500044581; WOODRUFF D S, 1976, Journal of Herpetology, V10, P313, DOI 10.2307/1563068; WOODRUFF DS, 1976, COPEIA, P445, DOI 10.2307/1443357; Wyatt T.D., 2003, PHEROMONES ANIMAL BE; Yasui Y, 1998, TRENDS ECOL EVOL, V13, P246, DOI 10.1016/S0169-5347(98)01383-4; Yasui Y, 2001, ECOL RES, V16, P605, DOI 10.1046/j.1440-1703.2001.00423.x; Yasui Y, 1997, AM NAT, V149, P573, DOI 10.1086/286006; ZEH DW, 1985, AM ZOOL, V25, P785; Zeh JA, 1996, P ROY SOC B-BIOL SCI, V263, P1711, DOI 10.1098/rspb.1996.0250; Zeh JA, 1998, P NATL ACAD SCI USA, V95, P13732, DOI 10.1073/pnas.95.23.13732; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x; Zimmermann H., 1984, Aquarien Magazin, V18, P35; Zimmermann H., 1981, Zeitschrift des Koelner Zoo, V24, P83 203 18 18 0 52 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1464-7931 BIOL REV Biol. Rev. FEB 2012 87 1 209 228 10.1111/j.1469-185X.2011.00191.x 20 Biology Life Sciences & Biomedicine - Other Topics 871IU WOS:000298732300011 21740503 2019-02-21 J Roberts, JA; Vo, HD; Fujita, MK; Moritz, C; Kearney, M Roberts, J. A.; Vo, H. D.; Fujita, M. K.; Moritz, C.; Kearney, M. Physiological implications of genomic state in parthenogenetic lizards of reciprocal hybrid origin JOURNAL OF EVOLUTIONARY BIOLOGY English Article Amphibians; evolutionary physiology; life-history evolution; reptiles; speciation AUSTRALIAN ARID ZONE; HETERONOTIA-BINOEI GEKKONIDAE; CYTOCHROME-C-OXIDASE; MITOCHONDRIAL-DNA; PHYLOGENETIC CONSTRAINTS; DARWINS COROLLARY; CELL-SIZE; EVOLUTION; DROSOPHILA; GECKO Parthenogenesis often evolves in association with hybridization, but the associated ecological consequences are poorly understood. The Australian gecko Heteronotia binoei is unusual because triploid parthenogenesis evolved through reciprocal crosses between two sexual lineages, resulting in four possible cytonuclear genotypes. In this species complex, we compared the performance of these parthenogenetic genotypes with their sexual progenitors for a suite of physiological traits (metabolic rate, thermal tolerance, locomotor performance, and in vitro activity and gene sequence divergence of a cytonuclear metabolic pathway, cytochrome C oxidase). Mass-specific metabolic rate scaled differently with body mass for parthenogens and sexuals, while heat tolerance provided the only evidence for cytonuclear incompatibility in hybrid parthenogens. The most prominent phenotypic effects were attributable to nuclear genome dosage. Overall, our results suggest that the hybrid/polyploidy origin of parthenogenetic H. binoei has had surprisingly few negative fitness consequences and may have produced a broader overall niche for the species. [Roberts, J. A.; Kearney, M.] Univ Melbourne, Dept Zool, Parkville, Vic 3010, Australia; [Vo, H. D.] Lund Univ, Sch Ecol & Biol Sci, Lund, Sweden; [Fujita, M. K.; Moritz, C.] Univ Calif Berkeley, Dept Integrat Biol, Museum Vertebrate Zool, Berkeley, CA 94720 USA Kearney, M (reprint author), Univ Melbourne, Dept Zool, Parkville, Vic 3010, Australia. mrke@unimelb.edu.au Vo, Hong/D-3357-2015; Moritz, Craig/A-7755-2012; Kearney, Michael/R-3404-2017 Vo, Hong/0000-0002-4024-2368; Moritz, Craig/0000-0001-5313-7279; Kearney, Michael/0000-0002-3349-8744 Australian Research Council [DP0771924]; University of Melbourne [0703441]; Department of Environment and Conservation [SF004376] This work was supported by an Australian Research Council Grant DP0771924 to MK and CM and was undertaken under The University of Melbourne Animal Ethics Permit 0703441. Western Australian specimens were collected under Department of Environment and Conservation research permit no. SF004376. We are also grateful for constructive comments on this manuscript from Natalie Briscoe and two anonymous reviewers. ANDREWS RM, 1985, PHYSIOL ZOOL, V58, P214, DOI 10.1086/physzool.58.2.30158569; Arnold ML, 1997, NATURAL HYBRIDIZATIO; Avise J., 2008, CLONALITY GENETICS E; Ballard JWO, 2005, ANNU REV ECOL EVOL S, V36, P621, DOI 10.1146/annurev.ecolsys.36.091704.175513; Banci L, 1999, J BIOL INORG CHEM, V4, P824, DOI 10.1007/s007750050356; Barton NH, 2001, MOL ECOL, V10, P551, DOI 10.1046/j.1365-294x.2001.01216.x; Birdsell JA, 2003, EVOL BIOL, V33, P27; Bolnick DI, 2008, GENETICS, V178, P1037, DOI 10.1534/genetics.107.081364; Burton RS, 2006, AM NAT, V168, pS14, DOI 10.1086/509046; Burton RS, 1999, AM ZOOL, V39, P451; CAPALDI RA, 1983, BIOCHIM BIOPHYS ACTA, V726, P135, DOI 10.1016/0304-4173(83)90003-4; Conroy CJ, 2009, J AM ASSOC LAB ANIM, V48, P28; Coyne J. A., 2004, SPECIATION; COYNE JA, 1989, EVOLUTION, V43, P362, DOI 10.1111/j.1558-5646.1989.tb04233.x; Crow J. F., 2000, Plant Breeding Reviews, V17, P225; Cullum AJ, 1997, AM NAT, V150, P24, DOI 10.1086/286055; Dowling DK, 2007, GENETICS, V175, P235, DOI 10.1534/genetics.105.052050; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Ellison CK, 2008, J EVOLUTION BIOL, V21, P1844, DOI 10.1111/j.1420-9101.2008.01608.x; Ellison CK, 2006, EVOLUTION, V60, P1382, DOI 10.1111/j.0014-3820.2006.tb01217.x; Fujita MK, 2010, EVOLUTION, V64, P2293, DOI 10.1111/j.1558-5646.2010.00993.x; Greer A. E., 1989, BIOL EVOLUTION AUSTR; Grossman LI, 2001, MOL PHYLOGENET EVOL, V18, P26, DOI 10.1006/mpev.2000.0890; Hayner N.T., 1982, METHODS CELL SCI, V7, P1381; KAMEL S, 1985, COMP BIOCHEM PHYS A, V82, P217, DOI 10.1016/0300-9629(85)90729-7; Kearney M, 2005, PHYSIOL BIOCHEM ZOOL, V78, P316, DOI 10.1086/430033; Kearney M, 2005, J EVOLUTION BIOL, V18, P609, DOI 10.1111/j.1420-9101.2004.00866.x; Kearney M, 2004, AM NAT, V164, P803, DOI 10.1086/425986; Kearney M, 2004, ECOLOGY, V85, P3119, DOI 10.1890/03-0820; Kearney M, 2004, EVOLUTION, V58, P1560; Kearney M, 2003, EVOL ECOL RES, V5, P953; Kearney M, 2006, MOL ECOL, V15, P1743, DOI 10.1111/j.1365-294X.2006.02898.x; Kearney M, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P447, DOI 10.1007/978-90-481-2770-2_21; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kozlowski J, 2003, P NATL ACAD SCI USA, V100, P14080, DOI 10.1073/pnas.2334605100; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Lutterschmidt WI, 1997, CAN J ZOOL, V75, P1561, DOI 10.1139/z97-783; MCDONALD JH, 1991, NATURE, V351, P652, DOI 10.1038/351652a0; Mee JA, 2011, PHYSIOL BIOCHEM ZOOL, V84, P306, DOI 10.1086/659245; MORITZ C, 1992, GENETICA, V87, P53, DOI 10.1007/BF00128773; MORITZ C, 1993, GENETICA, V90, P269, DOI 10.1007/BF01435044; MORITZ C, 1991, GENETICS, V129, P211; MORITZ C, 1992, EVOLUTION, V46, P184, DOI 10.1111/j.1558-5646.1992.tb01993.x; Murphy RW, 2000, ZOOL J LINN SOC-LOND, V130, P527, DOI 10.1111/j.1096-3642.2000.tb02200.x; Nei M., 1987, MOL EVOLUTIONARY GEN; Rieseberg LH, 1998, NEW PHYTOL, V140, P599, DOI 10.1046/j.1469-8137.1998.00315.x; Sackton TB, 2003, EVOLUTION, V57, P2315; Schlosser IJ, 1998, ECOLOGY, V79, P953, DOI 10.1890/0012-9658(1998)079[0953:NROCAS]2.0.CO;2; Sinclair EA, 2010, EVOLUTION, V64, P1346, DOI 10.1111/j.1558-5646.2009.00893.x; SMITH JM, 1971, J THEOR BIOL, V30, P319; Strasburg JL, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000760; Strasburg JL, 2005, MOL ECOL, V14, P2755, DOI 10.1111/j.1365-294X.2005.02627.X; Strasburg JL, 2004, MOL ECOL NOTES, V4, P456, DOI 10.1111/j.1471-8286.2004.00679.x; SZARSKI H, 1983, J THEOR BIOL, V105, P201, DOI 10.1016/S0022-5193(83)80002-2; Tiffin P, 2001, P ROY SOC B-BIOL SCI, V268, P861, DOI 10.1098/rspb.2000.1578; Turelli M, 2007, GENETICS, V176, P1059, DOI 10.1534/genetics.106.065979; Vrijenhoek R., 1984, POPULATION BIOL EVOL, P217; West SA, 1999, J EVOLUTION BIOL, V12, P1003; WETHERINGTON JD, 1987, EVOLUTION, V41, P721, DOI 10.1111/j.1558-5646.1987.tb05848.x; White CR, 2006, PHYSIOL BIOCHEM ZOOL, V79, P977, DOI 10.1086/505994; White M. J. D., 1978, MODES SPECIATION 61 8 9 2 53 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. FEB 2012 25 2 252 263 10.1111/j.1420-9101.2011.02438.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 875PI WOS:000299043300003 22192477 2019-02-21 J Vijendravarma, RK; Narasimha, S; Kawecki, TJ Vijendravarma, R. K.; Narasimha, S.; Kawecki, T. J. Chronic malnutrition favours smaller critical size for metamorphosis initiation in Drosophila melanogaster JOURNAL OF EVOLUTIONARY BIOLOGY English Article critical weight; dietary restriction; experimental evolution; life history; starvation resistance; stress tolerance; trade-offs CORRELATED RESPONSES; CRITICAL WEIGHT; BODY-SIZE; SELECTION; EVOLUTION; TRAITS; GROWTH Critical size at which metamorphosis is initiated represents an important checkpoint in insect development. Here, we use experimental evolution in Drosophila melanogaster to test the long-standing hypothesis that larval malnutrition should favour a smaller critical size. We report that six fly populations subject to 112 generations of laboratory natural selection on an extremely poor larval food evolved an 18% smaller critical size (compared to six unselected control populations). Thus, even though critical size is not plastic with respect to nutrition, smaller critical size can evolve as an adaptation to nutritional stress. We also demonstrate that this reduction in critical size (rather than differences in growth rate) mediates a trade-off in body weight that the selected populations experience on standard food, on which they show a 1517% smaller adult body weight. This illustrates how developmental mechanisms that control life history may shape constraints and trade-offs in life history evolution. [Vijendravarma, R. K.; Narasimha, S.; Kawecki, T. J.] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Kawecki, TJ (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. tadeusz.kawecki@unil.ch Kawecki, Tadeusz/K-5466-2015; Vijendravarma, Roshan/E-9985-2013 Kawecki, Tadeusz/0000-0002-9244-1991; Swiss National Science Foundation We thank B. Hollis and three reviewers for comments. This work was supported by the Swiss National Science Foundation. De Moed GH, 1999, J EVOLUTION BIOL, V12, P852, DOI 10.1046/j.1420-9101.1999.00103.x; Edgar BA, 2006, NAT REV GENET, V7, P907, DOI 10.1038/nrg1989; GEBHARDT MD, 1993, J EVOLUTION BIOL, V6, P1, DOI 10.1046/j.1420-9101.1993.6010001.x; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Mirth C, 2005, CURR BIOL, V15, P1796, DOI 10.1016/j.cub.2005.09.017; Neto-Silva RM, 2009, ANNU REV CELL DEV BI, V25, P197, DOI 10.1146/annurev.cellbio.24.110707.175242; Partridge L, 1999, GENET RES, V74, P43, DOI 10.1017/S0016672399003778; Prasad NG, 2001, EVOLUTION, V55, P1363; Royes V.W., 1964, J EXP ZOOL, V156, P105; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Vijendravarma RK, 2011, J EVOLUTION BIOL, V24, P897, DOI 10.1111/j.1420-9101.2010.02225.x 11 11 11 1 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. FEB 2012 25 2 288 292 10.1111/j.1420-9101.2011.02419.x 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 875PI WOS:000299043300006 22122120 Bronze 2019-02-21 J Bos, N; Lefevre, T; Jensen, AB; d'Ettorre, P Bos, N.; Lefevre, T.; Jensen, A. B.; d'Ettorre, P. Sick ants become unsociable JOURNAL OF EVOLUTIONARY BIOLOGY English Article ants; chemical communication; host-parasite interaction; infection; insects; life history evolution TERMITE ZOOTERMOPSIS-ANGUSTICOLLIS; COPTOTERMES-FORMOSANUS SHIRAKI; LEAF-CUTTING ANTS; SOCIAL IMMUNITY; DISEASE RESISTANCE; METARHIZIUM-ANISOPLIAE; PATHOGEN TRANSMISSION; GROUP FACILITATION; AGE POLYETHISM; WOOD ANTS Parasites represent a severe threat to social insects, which form high-density colonies of related individuals, and selection should favour host traits that reduce infection risk. Here, using a carpenter ant (Camponotus aethiops) and a generalist insect pathogenic fungus (Metarhizium brunneum), we show that infected ants radically change their behaviour over time to reduce the risk of colony infection. Infected individuals (i) performed less social interactions than their uninfected counterparts, (ii) did not interact with brood anymore and (iii) spent most of their time outside the nest from day 3 post-infection until death. Furthermore, infected ants displayed an increased aggressiveness towards non-nestmates. Finally, infected ants did not alter their cuticular chemical profile, suggesting that infected individuals do not signal their physiological status to nestmates. Our results provide evidence for the evolution of unsociability following pathogen infection in a social animal and suggest an important role of inclusive fitness in driving such evolution. [Bos, N.; Jensen, A. B.; d'Ettorre, P.] Univ Copenhagen, Dept Biol, Ctr Social Evolut, Copenhagen, Denmark; [Lefevre, T.] Emory Univ, Dept Biol, Atlanta, GA 30322 USA; [Jensen, A. B.] Univ Copenhagen, Dept Agr & Ecol, Ctr Social Evolut, Copenhagen, Denmark; [d'Ettorre, P.] Univ Paris 13, LEEC, F-93430 Villetaneuse, France Bos, N (reprint author), Univ Copenhagen, Dept Biol, Ctr Social Evolut, Copenhagen, Denmark. nbos@bio.ku.dk Jensen, Annette/E-5478-2013; Lefevre, Thierry/E-2157-2011; Jensen, Annette/G-7558-2014; Bos, Nick/H-4903-2012 Jensen, Annette/0000-0002-2044-2274; LEFEVRE, Thierry/0000-0002-9736-6142 Danish National Research Foundation; Faculty of Science, University of Copenhagen We would like to thank all members of the Centre for Social Evolution for providing a pleasant working environment. Many thanks to Louise Lee Munck Larsen for helping with rearing M. brunneum and to Jelle van Zweden for comments and discussion. This work was supported by the Danish National Research Foundation and by a grant from the Faculty of Science, University of Copenhagen to PdE. Aitchison J., 1986, STAT ANAL COMPOSITIO; Ances BM, 2010, J INFECT DIS, V201, P336, DOI 10.1086/649899; Andersen SB, 2009, AM NAT, V174, P424, DOI 10.1086/603640; Baayen RH, 2008, J MEM LANG, V59, P390, DOI 10.1016/j.jml.2007.12.005; Bischoff JF, 2009, MYCOLOGIA, V101, P512, DOI 10.3852/07-202; Boomsma J.J., 2005, P139, DOI 10.1079/9780851998121.0139; Bos N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019435; Boulay R, 2000, ANIM BEHAV, V59, P1127, DOI 10.1006/anbe.2000.1408; Bourke AFG, 2011, OX ECOL EV, P1, DOI 10.1093/acprof:oso/9780199231157.001.0001; BULL JJ, 1991, EVOLUTION, V45, P875, DOI 10.1111/j.1558-5646.1991.tb04356.x; Bulmer MS, 2009, P NATL ACAD SCI USA, V106, P12652, DOI 10.1073/pnas.0904063106; Calleri DV, 2006, INSECT SOC, V53, P204, DOI 10.1007/s00040-005-0859-0; Castella G, 2008, ANIM BEHAV, V75, P1591, DOI 10.1016/j.anbehav.2007.10.014; Chapuisat M, 2007, P R SOC B, V274, P2013, DOI 10.1098/rspb.2007.0531; Christe P, 2003, ECOL LETT, V6, P19, DOI 10.1046/j.1461-0248.2003.00395.x; Cotter SC, 2010, BEHAV ECOL, V21, P663, DOI 10.1093/beheco/arq070; Crawley M. J., 2007, R BOOK; Cremer S, 2007, CURR BIOL, V17, pR693, DOI 10.1016/j.cub.2007.06.008; Cremer S, 2009, PHILOS T R SOC B, V364, P129, DOI 10.1098/rstb.2008.0166; De Souza DJ, 2008, J INSECT PHYSIOL, V54, P828, DOI 10.1016/j.jinsphys.2008.03.001; Erdfelder E, 1996, BEHAV RES METH INS C, V28, P1, DOI 10.3758/BF03203630; Errard C, 1997, INSECT SOC, V44, P189, DOI 10.1007/s000400050040; Gillespie JP, 2000, ARCH INSECT BIOCHEM, V44, P49, DOI 10.1002/1520-6327(200006)44:2<49::AID-ARCH1>3.3.CO;2-6; Hamilton C, 2011, BIOL LETTERS, V7, P89, DOI 10.1098/rsbl.2010.0466; Heinze J, 2010, CURR BIOL, V20, P249, DOI 10.1016/j.cub.2009.12.031; Holman L, 2010, P ROY SOC B-BIOL SCI, V277, P3793, DOI 10.1098/rspb.2010.0984; Hughes WOH, 2004, EVOLUTION, V58, P1251, DOI 10.1111/j.0014-3820.2004.tb01704.x; Hughes WOH, 2002, P ROY SOC B-BIOL SCI, V269, P1811, DOI 10.1098/rspb.2002.2113; Lacey Lawrence A., 1997, P1, DOI 10.1016/B978-012432555-5/50004-X; Lefevre T, 2009, TRENDS ECOL EVOL, V24, P41, DOI 10.1016/j.tree.2008.08.007; Lenoir A, 2009, J CHEM ECOL, V35, P913, DOI 10.1007/s10886-009-9669-6; LOEHLE C, 1995, ECOLOGY, V76, P326, DOI 10.2307/1941192; Maynard Smith John, 1995, MAJOR TRANSITIONS EV; McCallum H, 2001, TRENDS ECOL EVOL, V16, P295, DOI 10.1016/S0169-5347(01)02144-9; Moore J, 2002, PARASITES BEHAV ANIM; MYERS JH, 1995, TRENDS ECOL EVOL, V10, P194, DOI 10.1016/S0169-5347(00)89051-5; ODONNELL S, 1995, BEHAV ECOL, V6, P269, DOI 10.1093/beheco/6.3.269; OI DH, 1993, FLA ENTOMOL, V76, P63, DOI 10.2307/3496014; Ottoni EB, 2000, BEHAV RES METH INS C, V32, P446, DOI 10.3758/BF03200814; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2008, LANG ENV STAT COMP; Rosengaus RB, 1998, BEHAV ECOL SOCIOBIOL, V44, P125, DOI 10.1007/s002650050523; Rueppell O, 2010, J EVOLUTION BIOL, V23, P1538, DOI 10.1111/j.1420-9101.2010.02022.x; Schmid-Hempel P., 1998, PARASITES SOCIAL INS; Simone M, 2009, EVOLUTION, V63, P3016, DOI 10.1111/j.1558-5646.2009.00772.x; Starks PT, 2000, NATURWISSENSCHAFTEN, V87, P229, DOI 10.1007/s001140050709; Tofilski A, 2002, BEHAV ECOL SOCIOBIOL, V51, P234, DOI [10.1007/s00265-001-0429-z, 10.1007/S00265-001-0429-Z]; Traniello JFA, 2002, P NATL ACAD SCI USA, V99, P6838, DOI 10.1073/pnas.102176599; Ugelvig LV, 2007, CURR BIOL, V17, P1967, DOI 10.1016/j.cub.2007.10.029; van Zweden JS, 2010, INSECT HYDROCARBONS: BIOLOGY, BIOCHEMISTRY, AND CHEMICAL ECOLOGY, P222, DOI 10.1017/CBO9780511711909.012; van Zweden JS, 2009, J INSECT PHYSIOL, V55, P158, DOI 10.1016/j.jinsphys.2008.11.001; Walker TN, 2009, BIOL LETTERS, V5, P446, DOI 10.1098/rsbl.2009.0107; Wilson-Rich N, 2009, ANNU REV ENTOMOL, V54, P405, DOI 10.1146/annurev.ento.53.103106.093301; Wilson-Rich N, 2007, J INVERTEBR PATHOL, V95, P17, DOI 10.1016/j.jip.2006.11.004; Woyciechowski M, 1998, APIDOLOGIE, V29, P191, DOI 10.1051/apido:19980111; Woyciechowski M, 2009, INSECT SOC, V56, P193, DOI 10.1007/s00040-009-0012-6; Yanagawa A, 2007, BIOCONTROL, V52, P75, DOI 10.1007/s10526-006-9020-x; Yanagawa A, 2008, J INVERTEBR PATHOL, V97, P165, DOI 10.1016/j.jip.2007.09.005; Yek SH, 2010, BIOL REV, V86, P774, DOI [10.1111/j.1469-185X.2010.00170.x, DOI 10.1111/J.1469-185X.2010.00170.X] 59 56 57 2 103 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2012 25 2 342 351 10.1111/j.1420-9101.2011.02425.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 875PI WOS:000299043300011 22122288 2019-02-21 J Sibly, RM; Zuo, WY; Kodric-Brown, A; Brown, JH Sibly, Richard M.; Zuo, Wenyun; Kodric-Brown, Astrid; Brown, James H. Rensch's Rule in Large Herbivorous Mammals Derived from Metabolic Scaling AMERICAN NATURALIST English Article sexual selection; size dimorphism SEXUAL SIZE DIMORPHISM; HOME-RANGE AREA; BODY-SIZE; SOCIAL-ORGANIZATION; POPULATION-DENSITY; MORTALITY-RATES; ALLOMETRY; ECOLOGY; MASS; MARSUPIALS Rensch's rule, which states that the magnitude of sexual size dimorphism tends to increase with increasing body size, has evolved independently in three lineages of large herbivorous mammals: bovids (antelopes), cervids (deer), and macropodids (kangaroos). This pattern can be explained by a model that combines allometry, life-history theory, and energetics. The key features are that female group size increases with increasing body size and that males have evolved under sexual selection to grow large enough to control these groups of females. The model predicts relationships among body size and female group size, male and female age at first breeding, death and growth rates, and energy allocation of males to produce body mass and weapons. Model predictions are well supported by data for these megaherbivores. The model suggests hypotheses for why some other sexually dimorphic taxa, such as primates and pin-nipeds (seals and sea lions), do or do not conform to Rensh's rule. [Sibly, Richard M.] Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England; [Zuo, Wenyun; Kodric-Brown, Astrid; Brown, James H.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Brown, James H.] Santa Fe Inst, Santa Fe, NM 87501 USA Sibly, RM (reprint author), Univ Reading, Sch Biol Sci, Reading RG6 6AS, Berks, England. r.m.sibly@reading.ac.uk Sibly, Richard/0000-0001-6828-3543 National Science Foundation [DEB-0541625]; Howard Hughes Medical Institute-National Institute of Biomedical Imaging and Bioengineering Interfaces We thank E. Belding for help with data mining and M. Foellmer and D. Frynta for comments that helped us to improve the article. J.H.B. and W.Z. were supported by a Howard Hughes Medical Institute-National Institute of Biomedical Imaging and Bioengineering Interfaces grant, and R.M.S. and J.H.B. were supported by National Science Foundation grant DEB-0541625. Abouheif E, 1997, AM NAT, V149, P540, DOI 10.1086/286004; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calder III WA, 1984, SIZE FUNCTION LIFE H; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T.H., 1988, P325; Colwell RK, 2000, AM NAT, V156, P495, DOI 10.1086/303406; Croft D. B., 1989, KANGAROOS WALLABIES, V2, P505; Croft DB, 2006, MARSUPIALS, P229, DOI 10.1017/CBO9780511541889.010; Dale J, 2007, P R SOC B, V274, P2971, DOI 10.1098/rspb.2007.1043; DAMUTH J, 1981, NATURE, V290, P699, DOI 10.1038/290699a0; DAMUTH J, 1987, BIOL J LINN SOC, V31, P193, DOI 10.1111/j.1095-8312.1987.tb01990.x; Dial KP, 2008, TRENDS ECOL EVOL, V23, P394, DOI 10.1016/j.tree.2008.03.005; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Fairbairn DJ, 1997, ANNU REV ECOL SYST, V28, P659, DOI 10.1146/annurev.ecolsys.28.1.659; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Fisher DO, 2001, ECOLOGY, V82, P3531, DOI 10.2307/2680170; Fisher DO, 2000, J ANIM ECOL, V69, P1083, DOI 10.1046/j.1365-2656.2000.00450.x; Fisher RA, 1930, GENETICAL THEORY NAT; Frydlova P, 2010, BIOL J LINN SOC, V100, P293, DOI 10.1111/j.1095-8312.2010.01430.x; FULLER TK, 1989, J MAMMAL, V70, P184, DOI 10.2307/1381685; GEIST V, 1988, J ZOOL, V214, P45, DOI 10.1111/j.1469-7998.1988.tb04985.x; Geist V., 1998, DEER WORLD THEIR EVO; GEORGIADIS N, 1985, AFR J ECOL, V23, P75, DOI 10.1111/j.1365-2028.1985.tb00718.x; Gordon AD, 2006, INT J PRIMATOL, V27, P27, DOI 10.1007/s10764-005-9003-2; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; JARMAN P, 1983, BIOL REV, V58, P485, DOI 10.1111/j.1469-185X.1983.tb00398.x; JARMAN PJ, 1974, BEHAVIOUR, V48, P215, DOI 10.1163/156853974X00345; JARMAN PJ, 1989, KANGAROOS WALLABIES, V2, P527; Jetz W, 2004, SCIENCE, V306, P266, DOI 10.1126/science.1102138; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Kelt DA, 2001, AM NAT, V157, P637, DOI 10.1086/320621; Kelt DA, 1999, ECOLOGY, V80, P337; KENAGY GJ, 1990, J ANIM ECOL, V59, P73, DOI 10.2307/5159; Kodric-Brown A, 2006, P NATL ACAD SCI USA, V103, P8733, DOI 10.1073/pnas.0602994103; Lindenfors Patrik, 2007, P16; Loison A, 1999, EVOL ECOL RES, V1, P611; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; McCoy MW, 2009, ECOL LETT, V12, P731, DOI 10.1111/j.1461-0248.2009.01338.x; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Nagy KA, 2005, J EXP BIOL, V208, P1621, DOI 10.1242/jeb.01553; Owen-Smith R. N, 1988, MEGAHERBIVORES; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; Peters R.H., 1983, P1; Reiss M. J, 1989, ALLOMETRY GROWTH REP; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Sibly R.M., 1981, P109; Sibly RM, 1997, J ZOOL, V243, P1, DOI 10.1111/j.1469-7998.1997.tb05751.x; Smith RJ, 2002, INT J PRIMATOL, V23, P1095, DOI 10.1023/A:1019654100876; SOLBERG EJ, 1994, J MAMMAL, V75, P1069, DOI 10.2307/1382491; WHITE EP, METABOLIC E IN PRESS 54 9 10 1 38 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2012 179 2 169 177 10.1086/663686 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 875AE WOS:000299000400006 22218307 2019-02-21 J van Noordwijk, CGE; Boer, P; Mabelis, AA; Verberk, WCEP; Siepel, H van Noordwijk, C. G. E. (Toos); Boer, Peter; Mabelis, A. A. (Bram); Verberk, Wilco C. E. P.; Siepel, Henk Life-history strategies as a tool to identify conservation constraints: A case-study on ants in chalk grasslands ECOLOGICAL INDICATORS English Article Reproduction tactic; Formicidae; Species traits; Restoration; Habitat isolation; Dispersal; Microclimate FRESH-WATER MACROINVERTEBRATES; RESTORATION MANAGEMENT; CALCAREOUS GRASSLANDS; FOUNDING STRATEGIES; SPECIES RESPONSES; LASIUS-NIGER; TRAITS; HYMENOPTERA; FORMICIDAE; LANDSCAPE Species' life-history traits underlie species-environment relationships. Therefore, analysis of species traits, combined into life-history strategies, can be used to identify key factors shaping the local species composition. This is demonstrated in a case-study on ants in chalk grasslands. We developed four life-history strategies based on traits related to reproduction, development, dispersal and synchronization that are documented in the literature. These theoretical strategies reflect different responses to certain environmental conditions. They can be characterized as generalists (G), poor dispersers (D), species whose distribution is limited to sites with high food availability (F) and species that are restricted to sites with high soil temperatures during nest founding (T). Next, we tested whether the occurrence of these strategies differed between six Dutch chalk grasslands and four reference sites situated in Germany and Belgium. We found significant differences in species numbers between sites for strategies D and T but not for strategies F and G. The differences could be explained by differences in connectivity and microhabitat conditions; species richness of strategy D decreased exponentially with increasing distance to the next nearest chalk grassland, while summer soil temperature strongly affected species richness of strategy T. From these relationships we could successfully identify the most relevant bottlenecks for the occurrence of both of these strategies in Dutch chalk grasslands. Management recommendations resulting from this analysis include adapting the management timing in Dutch chalk grasslands and focussing on counteracting habitat isolation. With this case-study we demonstrate that the life-history strategy approach is a valuable alternative to approaches that try to identify key factors by analysing the variation in environmental parameters. The main advantage of the presented alternative is the focus on mechanistically understanding species responses, allowing a comparison of processes rather than occurrences of single species. (C) 2011 Elsevier Ltd. All rights reserved. [van Noordwijk, C. G. E. (Toos); Verberk, Wilco C. E. P.] Bargerveen Fdn, NL-6525 ED Nijmegen, Netherlands; [van Noordwijk, C. G. E. (Toos); Verberk, Wilco C. E. P.; Siepel, Henk] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Ecophysiol, NL-6500 GL Nijmegen, Netherlands; [Mabelis, A. A. (Bram); Siepel, Henk] Wageningen UR, Ctr Ecosyst Studies, Alterra, NL-6700 AA Wageningen, Netherlands van Noordwijk, CGE (reprint author), Bargerveen Fdn, Toernooiveld 1, NL-6525 ED Nijmegen, Netherlands. t.vannoordwijk@science.ru.nl; p.boer@quicknet.nl; bram.mabelis@wur.nl; wilco@aquaticecology.nl; henk.siepel@wur.nl Verberk, Wilco/E-6337-2011; Siepel, Henk/C-2579-2011 Verberk, Wilco/0000-0002-0691-583X; Siepel, Henk/0000-0003-4503-4485 Dutch Ministry of Agriculture, Nature and Food quality (now Ministry of Economy, Agriculture and Innovation) [0 + BN] We thank Natuurmonumenten, Staatsbosbeheer, Stichting het Limburgs Landschap, Ville de Vise, Stad Bad-Munstereifel and the Nordrhein-Westfalen-Stiftung for their permission to conduct research on their premises. Many thanks to the members of the Dutch Carabidae Foundation and to everyone else who helped with the fieldwork. Special thanks go to Kees Alders for sorting most of the pitfall trap samples. We thank Eva Remke and two anonymous referees for their helpful comments. This research was financed by the Dutch Ministry of Agriculture, Nature and Food quality (now Ministry of Economy, Agriculture and Innovation) as part of the chalk grassland project within the Development and Management of Nature quality program (0 + BN). Andelman SJ, 2000, P NATL ACAD SCI USA, V97, P5954, DOI 10.1073/pnas.100126797; ANDERSEN AN, 1995, J BIOGEOGR, V22, P15, DOI 10.2307/2846070; ANDRASFALVY A, 1961, ARTEN INSECT SOC, V8, P299; BOBBINK R, 1993, BIODIVERS CONSERV, V2, P616, DOI 10.1007/BF00051962; BOER P., 2010, MIEREN BENELUX; Bourke A. F. G., 1995, MONOGRAPHS BEHAV ECO; Bourke AFG, 1999, J EVOLUTION BIOL, V12, P245, DOI 10.1046/j.1420-9101.1999.00028.x; Bradshaw AD, 1996, CAN J FISH AQUAT SCI, V53, P3, DOI 10.1139/f95-265; Bremner J, 2006, ECOL INDIC, V6, P609, DOI 10.1016/j.ecolind.2005.08.026; Cristofoli S, 2010, ECOL INDIC, V10, P773, DOI 10.1016/j.ecolind.2009.11.013; Cronin JT, 2004, OECOLOGIA, V139, P503, DOI 10.1007/s00442-004-1549-8; Dauber J, 2005, GLOBAL ECOL BIOGEOGR, V14, P213, DOI 10.1111/j.1466-822x.2005.00150.x; Dauber J, 2006, CONSERV BIOL, V20, P1150, DOI 10.1111/j.1523-1739.2006.00373.x; Davies KF, 2004, ECOLOGY, V85, P265, DOI 10.1890/03-0110; DEBOER D, 1983, NATUURHISTORISCH MAA, V72, P5; Dekoninck W, 2007, BELG J ZOOL, V137, P137; Eidmann H, 1943, Z MORPHOL OKOL TIERE, V39, P217; Hobbs RJ, 1996, RESTOR ECOL, V4, P93, DOI 10.1111/j.1526-100X.1996.tb00112.x; Holldobler B., 1990, ANTS; Holt RD, 1999, ECOLOGY, V80, P1495, DOI 10.2307/176542; Johnson RA, 2006, INSECT SOC, V53, P316, DOI 10.1007/s00040-006-0874-9; KELLER L, 1989, OECOLOGIA, V80, P236, DOI 10.1007/BF00380157; Kipyatkov VE, 2004, J EVOL BIOCHEM PHYS+, V40, P165, DOI 10.1023/B:JOEY.0000033808.45455.75; KIPYATKOV VE, 1993, P C SOC INS, V2, P48; KIPYATKOV VE, 2001, ACTA SOC ZOOLOGICAE, V65, P198; Lambeets K, 2009, BIOL CONSERV, V142, P625, DOI 10.1016/j.biocon.2008.11.015; Mabelis AA, 2001, NETH J ZOOL, V51, P299, DOI 10.1163/156854201753247569; MABELIS AA, 1983, NATURRHISTORISCH MAA, V72, P33; MABELIS AA, 2009, NATUURHISTORISCH MAA, V98, P189; Mabelis Abraham, 1994, Memorabilia Zoologica, V48, P147; Mabelis Abraham A., 2006, Myrmecologische Nachrichten, V9, P1; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Michener WK, 1997, RESTOR ECOL, V5, P324, DOI 10.1046/j.1526-100X.1997.00546.x; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; Schlick-Steiner BC, 2006, INSECT SOC, V53, P274, DOI 10.1007/s00040-006-0869-6; SCHOETERS E, 2001, ONZE MIEREN; Seifert B, 2007, AMEISEN MITTEL NORDE; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; SIEPEL H, 1995, BIOL FERT SOILS, V19, P75, DOI 10.1007/BF00336351; SMITS NAC, 2010, THESIS UTRECHT U UTR; SOMMER K, 1995, ANIM BEHAV, V50, P287, DOI 10.1006/anbe.1995.0244; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stille M, 1996, OECOLOGIA, V105, P87, DOI 10.1007/BF00328795; STITZ H, 1939, HAUTFLUGGLER ODER HY, V1; Stoutjesdijk P., 1992, MICROCLIMATE VEGETAT; TSCHINKEL WR, 1991, INSECT SOC, V38, P77, DOI 10.1007/BF01242715; van Kleef HH, 2006, HYDROBIOLOGIA, V565, P201, DOI 10.1007/s10750-005-1914-6; van Turnhout CAM, 2012, RIVER RES APPL, V28, P269, DOI 10.1002/rra.1455; Verberk WCEP, 2010, BASIC APPL ECOL, V11, P440, DOI 10.1016/j.baae.2010.04.001; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Verberk WCEP, 2010, ENVIRON SCI ENG TECH, P137; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; WAGNER TL, 1984, ANN ENTOMOL SOC AM, V77, P208, DOI 10.1093/aesa/77.2.208; WallisDeVries MF, 2002, BIOL CONSERV, V104, P265, DOI 10.1016/S0006-3207(01)00191-4; WALOFF N., 1957, INSECTES SOCIAUX, V4, P391, DOI 10.1007/BF02224159; White PS, 1997, RESTOR ECOL, V5, P338, DOI 10.1046/j.1526-100X.1997.00547.x; Willems JH, 2001, RESTOR ECOL, V9, P147, DOI 10.1046/j.1526-100x.2001.009002147.x; Williams NM, 2010, BIOL CONSERV, V143, P2280, DOI 10.1016/j.biocon.2010.03.024 60 13 14 1 40 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X ECOL INDIC Ecol. Indic. FEB 2012 13 1 303 313 10.1016/j.ecolind.2011.06.028 11 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 835NG WOS:000296042500033 2019-02-21 J Kudo, H; Karino, K Kudo, Hiromi; Karino, Kenji Short-term change in male sexually selected traits and female mate preference in the guppy Poecilia reticulata ICHTHYOLOGICAL RESEARCH English Article Sexual selection; Female mate preference; Mate choice; Sexual ornaments; Plasticity; Guppy LIFE-HISTORY EVOLUTION; ORANGE SPOT COLORATION; DIGITALLY-MODIFIED VIDEOS; CAROTENOID LIMITATION; RELATIVE IMPORTANCE; MATING PREFERENCES; NATURAL-POPULATION; FERAL GUPPIES; TOTAL LENGTH; CHOICE Some recent theoretical studies predict the plasticity of female preferences for male sexual ornaments. However, only little empirical information is available regarding changes in female preferences within a short period in the wild. In this study, we examined the short-term change in the exaggeration of sexually selected traits in males and intensity of female preferences in the guppy Poecilia reticulata of a wild population in Okinawa, Japan. We collected adult guppies from a single collection site with an interval of 2-3 months. The results indicated that the degrees of exaggeration of male sexually selected traits, such as orange spot patterns and body size, changed with an interval of 2-3 months. The intensity of female preferences in each collection term was quantified by a laboratory experiment using an identical pair of digitally modified male images. The intensity of female preferences for the conspicuous male image also changed with an interval of 2-3 months. Males that were collected in July exhibited the greatest degree of exaggeration of sexually selected traits. On the other hand, males that were collected in April showed a smaller degree of exaggeration of these traits; however, females that were captured in April exhibited the greatest mate preferences for the conspicuous male image. [Kudo, Hiromi; Karino, Kenji] Tokyo Gakugei Univ, Dept Biol, Koganei, Tokyo 1848501, Japan Kudo, H (reprint author), Tokyo Gakugei Univ, Dept Biol, 4-1-1 Nukui Kita, Koganei, Tokyo 1848501, Japan. r096002y@st.u-gakugei.ac.jp Japan Society for the Promotion of Science [19570015] We are grateful to A. Sato, R. Aihara, S. Fukuda, and S. Miyazaki for help with culture maintenance and fieldwork and to two anonymous reviewers for valuable comments on the earlier version of the manuscript. This study was partly supported by a Grant-in-Aid for Scientific Research (no. 19570015) to KK from the Japan Society for the Promotion of Science. Alonzo SH, 2001, BEHAV ECOL SOCIOBIOL, V49, P176, DOI 10.1007/s002650000265; Andersson M., 1994, SEXUAL SELECTION; BROOKS R, 1995, ANIM BEHAV, V50, P301, DOI 10.1006/anbe.1995.0246; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Chaine AS, 2008, SCIENCE, V319, P459, DOI 10.1126/science.1149167; Darwin C, 1871, DESCENT MAN SELECTIO; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; Evans JP, 2003, NATURE, V421, P360, DOI 10.1038/nature01367; Evans JP, 2004, P ROY SOC B-BIOL SCI, V271, P2035, DOI 10.1098/rspb.2004.2815; Evans JP, 2002, J FISH BIOL, V60, P495, DOI 10.1006/jfbi.2001.1849; Fisher RA, 1930, GENETICAL THEORY NAT; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; GWYNNE DT, 1983, J AUST ENTOMOL SOC, V22, P79; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, HEREDITY, V69, P229, DOI 10.1038/hdy.1992.120; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Karino K, 2004, ICHTHYOL RES, V51, P316, DOI 10.1007/s10228-004-0234-6; Karino K, 2004, BEHAVIOUR, V141, P585, DOI 10.1163/1568539041166672; Karino K, 2005, BEHAV ECOL SOCIOBIOL, V59, P1, DOI 10.1007/s00265-005-0001-3; Karino K, 2002, BEHAVIOUR, V139, P1491, DOI 10.1163/15685390260514735; Karino K, 2010, J FISH BIOL, V77, P299, DOI 10.1111/j.1095-8649.2010.02688.x; Karino K, 2001, J ETHOL, V19, P33, DOI 10.1007/s101640170015; Karino K, 2007, BEHAVIOUR, V144, P101, DOI 10.1163/156853907779947427; Karino K, 2011, BEHAV ECOL SOCIOBIOL, V65, P1305, DOI 10.1007/s00265-011-1144-z; Karino K, 2008, ENVIRON BIOL FISH, V83, P397, DOI 10.1007/s10641-008-9360-8; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; Kodric-Brown A, 2001, BEHAV ECOL SOCIOBIOL, V50, P346, DOI 10.1007/s002650100374; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kokko H, 2008, GENETICA, V134, P55, DOI 10.1007/s10709-008-9249-7; Liley RN, 1966, BEHAVIOUR S, V13, P1; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Mead LS, 2004, TRENDS ECOL EVOL, V19, P264, DOI 10.1016/j.tree.2004.03.003; Nicoletto PF, 1999, ENVIRON BIOL FISH, V56, P333, DOI 10.1023/A:1007444904705; ODONALD P, 1983, THEOR POPUL BIOL, V23, P64, DOI 10.1016/0040-5809(83)90005-9; POMIANKOWSKI A, 1987, J THEOR BIOL, V128, P195, DOI 10.1016/S0022-5193(87)80169-8; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P5, DOI 10.1016/S0169-5347(00)02030-9; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Sato A, 2006, ICHTHYOL RES, V53, P398, DOI 10.1007/s10228-006-0364-0; Zuk M, 1998, Q REV BIOL, V73, P415, DOI 10.1086/420412 48 7 7 2 29 SPRINGER TOKYO TOKYO 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN 1341-8998 ICHTHYOL RES Ichthyol. Res. JAN 25 2012 59 1 1 7 10.1007/s10228-011-0239-x 7 Zoology Zoology 915SO WOS:000302047900001 2019-02-21 J Gove, RP; Chen, W; Zweber, NB; Erwin, R; Rychtar, J; Remington, DL Gove, Robert P.; Chen, William; Zweber, Nicholas B.; Erwin, Rebecca; Rychtar, Jan; Remington, David L. Effects of causal networks on the structure and stability of resource allocation trait correlations JOURNAL OF THEORETICAL BIOLOGY English Article Life-history evolution; G-matrix; Trait network; Path models; Arabidopsis lyrata QUANTITATIVE GENETIC-ANALYSIS; INTEGRATIVE GENOMICS APPROACH; PHENOTYPIC PLASTICITY; ARABIDOPSIS-LYRATA; PATH-ANALYSIS; G-MATRIX; SEGREGATING POPULATIONS; NATURAL-SELECTION; LOCAL ADAPTATION; EVOLUTION Discovering the mechanisms by which genetic variation influences phenotypes is integral to understanding life-history evolution. Models describing causal relationships among traits in a developmental hierarchy provide a functional basis for understanding the correlations often observed among life-history traits. In this paper, we evaluate a developmental network model of life-history traits based on the perennial herb Arabidopsis lyrata, evaluate phenotypic, genetic, and environmental covariance matrices obtained under different scenarios of quantitative trait locus (QTL) effects in simulated crosses, test the efficacy of structural equation modeling to identify the correct basis for multiple-trait QTL effects, and compare model predictions with field data. We found that the trait network constrained the phenotypic covariance patterns to varying degrees, depending on which traits were directly affected by QTLs. Genetic and environmental covariance matrices were strongly correlated only when direct QTL effects were spread over many traits. Structural equation models that included all simulated traits correctly identified traits directly affected by QTLs, but heuristic search algorithms found several network structures other than the correct one that also fit the data closely. Estimated correlations among a subset of traits in F(2) data from field studies corresponded closely to model predictions when simulated QTLs affected traits known to differ between the parental populations. Our results show that causal trait network models can unify several aspects of quantitative genetic theory with empirical observations on genetic and phenotypic covariance patterns, and that incorporating trait networks into genetic analysis offers promise for elucidating mechanisms of life history evolution. (C) 2011 Elsevier Ltd. All rights reserved. [Chen, William; Zweber, Nicholas B.; Erwin, Rebecca; Remington, David L.] Univ N Carolina, Dept Biol, Greensboro, NC 27402 USA; [Gove, Robert P.; Rychtar, Jan] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27402 USA Remington, DL (reprint author), Univ N Carolina, Dept Biol, POB 26170, Greensboro, NC 27402 USA. dlreming@uncg.edu National Science Foundation [0634182, 0850465, 0926288] The authors thank Outi Savolainen and Paivi Leinonen for providing the data from the Norway field study site and for constructive suggestions on the manuscript, and fair anonymous reviewers whose suggestions have greatly improved the manuscript. Support for undergraduate research on this project was funded by National Science Foundation Grants 0634182 (R.G., R.E., J.R. and D.L.R), 0850465 (W.C., N.Z., J.R. and D.L.R), and 0926288 (J.R. and D.L.R.). AKAIKE H, 1987, PSYCHOMETRIKA, V52, P317, DOI 10.1007/BF02294359; AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Arnold SJ, 2008, EVOLUTION, V62, P2451, DOI 10.1111/j.1558-5646.2008.00472.x; ATCHLEY WR, 1991, BIOL REV, V66, P101, DOI 10.1111/j.1469-185X.1991.tb01138.x; Bjorklund M, 2004, EVOLUTION, V58, P1157; Byers DL, 2005, GENETICA, V123, P107, DOI 10.1007/s10709-003-2721-5; Cheverud JM, 2007, GENET MOL BIOL, V30, P461, DOI 10.1590/S1415-47572007000300027; Cheverud JM, 1996, J EVOLUTION BIOL, V9, P5, DOI 10.1046/j.1420-9101.1996.9010005.x; CHEVERUD JM, 1983, EVOLUTION, V37, P895, DOI 10.1111/j.1558-5646.1983.tb05619.x; Clauss MJ, 2006, TRENDS PLANT SCI, V11, P449, DOI 10.1016/j.tplants.2006.07.005; CRESPI BJ, 1989, EVOLUTION, V43, P18, DOI 10.1111/j.1558-5646.1989.tb04204.x; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; Fox J, 2006, STRUCT EQU MODELING, V13, P465, DOI 10.1207/s15328007sem1303_7; GROMKO MH, 1995, EVOLUTION, V49, P685, DOI 10.1111/j.1558-5646.1995.tb02305.x; HEGMANN JP, 1970, NATURE, V226, P284, DOI 10.1038/226284a0; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Jamniczky HA, 2009, EVOLUTION, V63, P1540, DOI 10.1111/j.1558-5646.2009.00651.x; Johnson JB, 2008, EVOLUTION, V62, P1243, DOI 10.1111/j.1558-5646.2008.00343.x; Kelly J.K., 2009, EVOLUTION, V43, P813; KINGSOLVER JG, 1991, TRENDS ECOL EVOL, V6, P276, DOI 10.1016/0169-5347(91)90004-H; Koelewijn HP, 2004, NEW PHYTOL, V163, P67, DOI 10.1111/j.1469-8137.2004.01078.x; Lacey EP, 2005, AM J BOT, V92, P920, DOI 10.3732/ajb.92.6.920; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1980, GENETICS, V94, P203; Leinonen PH, 2011, EVOLUTION, V65, P90, DOI 10.1111/j.1558-5646.2010.01119.x; Leinonen PH, 2009, AM J BOT, V96, P1129, DOI 10.3732/ajb.0800080; Li RH, 2006, PLOS GENET, V2, P1046, DOI 10.1371/journal.pgen0020114; Liu B, 2008, GENETICS, V178, P1763, DOI 10.1534/genetics.107.080069; Lynch M, 1998, GENETICS ANAL QUANTI; Mackay TFC, 2009, NAT REV GENET, V10, P565, DOI 10.1038/nrg2612; Marquez EJ, 2008, EVOLUTION, V62, P2688, DOI 10.1111/j.1558-5646.2008.00476.x; MITCHELLOLDS T, 1990, GENETICS, V124, P417; Mitteroecker P, 2007, SYST BIOL, V56, P818, DOI 10.1080/10635150701648029; Neto EC, 2008, GENETICS, V179, P1089, DOI 10.1534/genetics.107.085167; Phillips P.C., 1997, CPC COMMON PRINCIPAL; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Pigliucci M, 2007, EVOLUTION, V61, P2743, DOI 10.1111/j.1558-5646.2007.00246.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Remington DL, 2009, GENETICS, V181, P1087, DOI 10.1534/genetics.108.092668; Riihimaki M, 2005, GENETICA, V123, P63, DOI 10.1007/s10709-003-2711-7; Rockman MV, 2008, NATURE, V456, P738, DOI 10.1038/nature07633; Roff D. A, 1997, EVOLUTIONARY QUANTIT; Salazar-Ciudad I, 2002, P NATL ACAD SCI USA, V99, P8116, DOI 10.1073/pnas.132069499; Schadt EE, 2005, NAT GENET, V37, P710, DOI 10.1038/ng1589; Scheiner SM, 2000, J EVOLUTION BIOL, V13, P423, DOI 10.1046/j.1420-9101.2000.00191.x; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Shipley B, 1997, AM NAT, V149, P1113, DOI 10.1086/286041; SLATKIN M, 1987, EVOLUTION, V41, P799, DOI 10.1111/j.1558-5646.1987.tb05854.x; SPIRTES P, 2000, CAUSATION PREDICTION; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S, 1992, EVOLUTION LIFE HIST; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; The MathWorks, 2007, MATLAB VERS 7 4; Tonsor SJ, 2007, AM NAT, V169, pE119, DOI 10.1086/513493; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WAGNER GP, 1989, GENETICS, V122, P223; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988; WEIS AE, 1994, EVOLUTION, V48, P734, DOI 10.1111/j.1558-5646.1994.tb01357.x; Willmore KE, 2007, EVOL BIOL, V34, P99, DOI 10.1007/s11692-007-9008-1; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Wright S, 1918, GENETICS, V3, P367; Wright S., 1921, J AGR RES, V10, P557; Zhu J, 2004, CYTOGENET GENOME RES, V105, P363, DOI 10.1159/000078209 66 59 61 1 14 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 J THEOR BIOL J. Theor. Biol. JAN 21 2012 293 1 14 10.1016/j.jtbi.2011.09.034 14 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 878GP WOS:000299243800001 22004994 2019-02-21 J Baxter, EM; Jarvis, S; Palarea-Albaladejo, J; Edwards, SA Baxter, Emma M.; Jarvis, Susan; Palarea-Albaladejo, Javier; Edwards, Sandra A. The Weaker Sex? The Propensity for Male-Biased Piglet Mortality PLOS ONE English Article PIGS SUS-SCROFA; DOMESTIC PIGS; MATERNAL INVESTMENT; PARENTAL OPTIMISM; CONTINUOUS NOISE; NEONATAL PIG; WEIGHT-GAIN; TRADE-OFF; RATIO; BEHAVIOR For the most part solutions to farm animal welfare issues, such as piglet mortality, are likely to lie within the scientific disciplines of environmental design and genetic selection, however understanding the ecological basis of some of the complex dynamics observed between parent and offspring could make a valuable contribution. One interesting, and often discussed, aspect of mortality is the propensity for it to be sex-biased. This study investigated whether known physiological and behavioural indicators of piglet survival differed between the sexes and whether life history strategies (often reported in wild or feral populations) relating to parental investment were being displayed in a domestic population of pigs. Sex ratio (proportion of males (males/males+females)) at birth was 0.54 and sex allocation (maternal investment measured as piglet birth weight/litter weight) was statistically significantly male-biased at 0.55 (t(35) = 2.51 P = 0.017), suggesting that sows invested more in sons than daughters during gestation. Despite this investment in birth weight, a known survival indicator, total pre-weaning male mortality was statistically significantly higher than female mortality (12% vs. 7% respectively z = 2.06 P = 0.040). Males tended to suffer from crushing by the sow more than females and statistically significantly more males died from disease-related causes. Although males were born on average heavier, with higher body mass index and ponderal index, these differences were not sustained. In addition male piglets showed impaired thermoregulation compared to females. These results suggest male-biased mortality exists despite greater initial maternal investment, and therefore reflects the greater susceptibility of this sex to causal mortality factors. Life history strategies are being displayed by a domestic population of pigs with sows in this study displaying a form of parental optimism by allocating greater resources at birth to males and providing an over-supply of this more vulnerable sex in expectation of sex-biased mortality. [Baxter, Emma M.] Scottish Agr Coll, Edinburgh, Midlothian, Scotland; [Jarvis, Susan] Univ Edinburgh, Royal Dick Sch Vet Studies, Easter Bush, Midlothian, Scotland; [Palarea-Albaladejo, Javier] Biomath & Stat Scotland, Edinburgh, Midlothian, Scotland; [Edwards, Sandra A.] Newcastle Univ, Sch Agr Food & Rural Dev, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England Baxter, EM (reprint author), Scottish Agr Coll, Edinburgh, Midlothian, Scotland. Emma.Baxter@sac.ac.uk Palarea-Albaladejo, Javier/J-5591-2013 Palarea-Albaladejo, Javier/0000-0003-0162-669X; Edwards, Sandra/0000-0002-8890-0112 Scottish Government [WP2.4]; Scottish Government Rural and Environment Science and Analytical Services This work was supported by the Scottish Government under WP2.4 and the Scottish Government Rural and Environment Science and Analytical Services. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ALGERS B, 1991, CAN J ANIM SCI, V71, P51, DOI 10.4141/cjas91-006; ALGERS B, 1985, APPL ANIM BEHAV SCI, V14, P49, DOI 10.1016/0168-1591(85)90037-1; Andersen IL, 2006, APPL ANIM BEHAV SCI, V97, P85, DOI 10.1016/j.applanim.2005.11.020; Bandrick M, 2011, Vet Rec, V168, P100, DOI 10.1136/vr.c6163; Baxter EM, 2008, THERIOGENOLOGY, V69, P773, DOI 10.1016/j.theriogenology.2007.12.007; Baxter EM, 2009, LIVEST SCI, V124, P266, DOI 10.1016/j.livsci.2009.02.008; CASTREN H, 1991, LIVEST PROD SCI, V28, P321, DOI 10.1016/0301-6226(91)90013-G; CHEN ZY, 1993, J ANIM SCI, V71, P1895, DOI 10.2527/1993.7171895x; Clutton-Brock T.H., 1994, P347; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; Darwin C, 1871, DESCENT MAN SELECTIO; DEPASSILLE AMB, 1988, CAN J ANIM SCI, V68, P325, DOI 10.4141/cjas88-037; Fernandez-Llario P, 1999, ANIM BEHAV, V58, P1079, DOI 10.1006/anbe.1999.1234; Forbes LS, 1998, J THEOR BIOL, V192, P3, DOI 10.1006/jtbi.1997.0596; FRANK SA, 1990, ANNU REV ECOL SYST, V21, P13, DOI 10.1146/annurev.ecolsys.21.1.13; FRASER D, 1995, APPL ANIM BEHAV SCI, V44, P139, DOI 10.1016/0168-1591(95)00610-5; Fraser D, 1990, J Reprod Fertil Suppl, V40, P355; Gaskins H. R., 1995, P39; Gustafsson M, 1999, APPL ANIM BEHAV SCI, V62, P305, DOI 10.1016/S0168-1591(98)00236-6; Held S, 2005, ANIM COGN, V8, P114, DOI 10.1007/s10071-004-0242-y; Herpin P., 1995, P57; Herpin P, 2001, J ANIM SCI, V79, P5; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; HOLLAND RE, 1990, CLIN MICROBIOL REV, V3, P345; HORRELL I, 1992, APPL ANIM BEHAV SCI, V33, P319, DOI 10.1016/S0168-1591(05)80069-3; James WH, 1998, ANIM BEHAV, V55, P767, DOI 10.1006/anbe.1997.0676; JENSEN P, 1986, APPL ANIM BEHAV SCI, V16, P131, DOI 10.1016/0168-1591(86)90105-X; Kalmbach E, 2005, BEHAV ECOL, V16, P442, DOI 10.1093/beheco/ari018; KLAVER J, 1981, J ANIM SCI, V52, P1091; KLEIBER M, 1947, PHYSIOL REV, V27, P511; Krackow S, 1997, PHYSIOL BEHAV, V63, P81, DOI 10.1016/S0031-9384(97)00393-4; LEDIVIDICH J, 1991, BIOL NEONATE, V59, P268; Marchant JN, 2001, ANIM SCI, V72, P19, DOI 10.1017/S135772980005551X; Meat and Livestock Commission, 2006, PIG YB 2006; Meikle DB, 1997, ANIM BEHAV, V53, P428, DOI 10.1006/anbe.1996.0376; Meikle DB, 1998, ANIM BEHAV, V55, P770, DOI 10.1006/anbe.1997.0677; MEIKLE DB, 1993, ANIM BEHAV, V46, P79, DOI 10.1006/anbe.1993.1163; Mendl M, 1998, ANIM BEHAV, V55, P773, DOI 10.1006/anbe.1997.0678; Mendl M, 1997, ANIM BEHAV, V53, P432, DOI 10.1006/anbe.1996.0380; MENDL M, 1995, ANIM BEHAV, V50, P1361, DOI 10.1016/0003-3472(95)80051-4; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; Mock DW, 1998, ANIM BEHAV, V56, P1, DOI 10.1006/anbe.1998.0842; Moses RA, 1998, ANIM BEHAV, V55, P563, DOI 10.1006/anbe.1997.0643; MOUNT LE, 1966, BRIT MED BULL, V22, P84, DOI 10.1093/oxfordjournals.bmb.a070444; Muirhead MR, 1997, MANAGING PIG HLTH TR; Nishida S., 1977, Japanese Journal of Animal Reproduction, V23, P55; Ono KA, 1996, BEHAV ECOL SOCIOBIOL, V38, P31, DOI 10.1007/s002650050214; Pope WF, 1994, EMBRYONIC MORTALITY, P53; Price EO, 1999, APPL ANIM BEHAV SCI, V65, P245, DOI 10.1016/S0168-1591(99)00087-8; Puppe B, 2007, APPL ANIM BEHAV SCI, V105, P75, DOI 10.1016/j.applanim.2006.05.016; Reynolds John D., 1994, P53; Rutkowska J, 2011, P ROY SOC B-BIOL SCI, V278, P2962, DOI 10.1098/rspb.2010.2654; Salmon H, 2009, DEV COMP IMMUNOL, V33, P384, DOI 10.1016/j.dci.2008.07.007; SPINKA M, 1995, APPL ANIM BEHAV SCI, V43, P197, DOI 10.1016/0168-1591(95)00560-F; Stearns S, 1992, EVOLUTION LIFE HIST; STOLBA A, 1980, APPL ANIM ETHOL, V6, P382, DOI 10.1016/0304-3762(80)90140-6; STOLBA A, 1981, APPL ANIM ETHOL, V7, P388, DOI 10.1016/0304-3762(81)90072-9; Trillmich E, 1986, BEHAV ECOL SOCIOBIOL, V19, P157; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Tuchscherer M, 2000, THERIOGENOLOGY, V54, P371, DOI 10.1016/S0093-691X(00)00355-1; Weary DM, 1996, ANIM BEHAV, V51, P619, DOI 10.1006/anbe.1996.0066; Wells JCK, 2003, Q REV BIOL, V78, P169, DOI 10.1086/374952; WESTROM BR, 1985, BIOL NEONATE, V47, P359; WILLIAMS GC, 1979, PROC R SOC SER B-BIO, V205, P567, DOI 10.1098/rspb.1979.0085 65 26 26 2 37 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1932-6203 PLOS ONE PLoS One JAN 17 2012 7 1 e30318 10.1371/journal.pone.0030318 9 Multidisciplinary Sciences Science & Technology - Other Topics 907XU WOS:000301454400112 22272334 DOAJ Gold, Green Published 2019-02-21 J Lipowsky, A; Roscher, C; Schumacher, J; Schmid, B Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard Density-Independent Mortality and Increasing Plant Diversity Are Associated with Differentiation of Taraxacum officinale into r- and K-Strategists PLOS ONE English Article EXPERIMENTAL GRASSLANDS; DANDELIONS TARAXACUM; SPECIES-DIVERSITY; COMPETITIVE RELATIONSHIPS; GENETIC DIFFERENTIATION; APOMICTIC DANDELIONS; POPULATION; IDENTITY; GROWTH; COMMUNITY Background: Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. Methodology/Principal Findings: We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Conclusions/Significance: Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with the corresponding selection regimes was maintained during the 5-year experimental period. [Lipowsky, Annett] Max Planck Inst Biogeochem, D-07745 Jena, Germany; [Lipowsky, Annett; Schmid, Bernhard] Univ Zurich, Inst Evolutionary Biol & Environm Studies, Zurich, Switzerland; [Roscher, Christiane] Helmholtz Ctr Environm Res, Dept Community Ecol, Halle, Germany; [Schumacher, Jens] Univ Jena, Inst Stochast, Jena, Germany Lipowsky, A (reprint author), Max Planck Inst Biogeochem, D-07745 Jena, Germany. annett.lipowsky@access.uzh.ch Schmid, Bernhard/C-8625-2009 Schmid, Bernhard/0000-0002-8430-3214 German Science Foundation [FOR 456]; Friedrich Schiller University of Jena; Max Planck Society; Swiss National Science Foundation [31003A-107531] The Jena Experiment is funded by the German Science Foundation (FOR 456) with support from the Friedrich Schiller University of Jena, the Max Planck Society, and the Swiss National Science Foundation (31003A-107531 to B. S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ABRAHAMSON WG, 1973, AM NAT, V107, P651, DOI 10.1086/282864; Alpert Peter, 2000, Perspectives in Plant Ecology Evolution and Systematics, V3, P52, DOI 10.1078/1433-8319-00004; Bates D, 2006, LME4 LINEAR MIXED EF; BAZZAZ FA, 1996, PLANTS CHANGING ENV, P320; Bischoff A, 2010, OIKOS, V119, P445, DOI 10.1111/j.1600-0706.2009.17776.x; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; COX T, 1987, ANN BOT-LONDON, V59, P81, DOI 10.1093/oxfordjournals.aob.a087288; Crawley M. J., 2007, R BOOK; De Kroon H., 2003, ROOT ECOLOGY; Dukes JS, 1999, TRENDS ECOL EVOL, V14, P135, DOI 10.1016/S0169-5347(98)01554-7; Fakheran S, 2010, P NATL ACAD SCI USA, V107, P19120, DOI 10.1073/pnas.1010846107; FORD H, 1981, BIOL J LINN SOC, V15, P355, DOI 10.1111/j.1095-8312.1981.tb00769.x; FORD H, 1985, HEREDITY, V55, P289, DOI 10.1038/hdy.1985.110; Fridley JD, 2007, J ECOL, V95, P908, DOI 10.1111/j.1365-2745.2007.01256.x; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GLEESON SK, 1994, FUNCT ECOL, V8, P543, DOI 10.2307/2390080; GREENE DF, 1989, ECOLOGY, V70, P339, DOI 10.2307/1937538; Higgins SI, 1996, ECOLOGY, V77, P2043, DOI 10.2307/2265699; Holm L. G., 1997, WORLD WEEDS NATURAL; HUGHES J, 1985, HEREDITY, V54, P245, DOI 10.1038/hdy.1985.32; Kahmen S, 2004, J VEG SCI, V15, P21, DOI 10.1658/1100-9233(2004)015[0021:PFTRTG]2.0.CO;2; KLUGE G, 2000, BER DTSCH WETTERDIEN, V213, P1; Latzel V, 2009, OIKOS, V118, P1669, DOI 10.1111/j.1600-0706.2009.17767.x; Leishman MR, 1999, NEW PHYTOL, V141, P487, DOI 10.1046/j.1469-8137.1999.00354.x; Linhart YB, 1996, ANNU REV ECOL SYST, V27, P237, DOI 10.1146/annurev.ecolsys.27.1.237; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; Lorentzen S, 2008, PERSPECT PLANT ECOL, V10, P73, DOI 10.1016/j.ppees.2007.12.001; LYMAN JC, 1984, HEREDITY, V53, P1, DOI 10.1038/hdy.1984.58; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1963, EVOLUTION, V17, P373, DOI 10.1111/j.1558-5646.1963.tb03295.x; Marco Diana E., 2002, Biological Invasions, V4, P193, DOI 10.1023/A:1020518915320; Marquard E, 2009, J ECOL, V97, P696, DOI 10.1111/j.1365-2745.2009.01521.x; Menken SBJ, 1995, EVOLUTION, V49, P1108, DOI 10.1111/j.1558-5646.1995.tb04437.x; MOGIE M, 1990, OIKOS, V59, P175, DOI 10.2307/3545532; MOLGAARD P, 1977, OIKOS, V29, P376, DOI 10.2307/3543629; Nathan R, 2002, NATURE, V418, P409, DOI 10.1038/nature00844; Nestmann S, 2011, MOL ECOL, V20, P2188, DOI 10.1111/j.1365-294X.2011.05027.x; Oelmann Y, 2007, SOIL SCI SOC AM J, V71, P720, DOI 10.2136/sssaj2006.0205; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Roscher C, 2004, BASIC APPL ECOL, V5, P107, DOI 10.1078/1439-1791-00216; Roscher C, 2009, J ECOL, V97, P32, DOI 10.1111/j.1365-2745.2008.01451.x; Roscher C, 2008, ANN BOT-LONDON, V102, P113, DOI 10.1093/aob/mcn070; Roscher C, 2009, OIKOS, V118, P1524, DOI 10.1111/j.1600-0706.2009.17601.x; SAWADA S, 1982, Japanese Journal of Ecology, V32, P347; SCHMID B, 1990, ECOLOGY, V71, P523, DOI 10.2307/1940306; Silvertown J, 2009, ECOL LETT, V12, P165, DOI 10.1111/j.1461-0248.2008.01273.x; SOLBRIG OT, 1974, J ECOL, V62, P473, DOI 10.2307/2258993; Spehn EM, 2000, FUNCT ECOL, V14, P326, DOI 10.1046/j.1365-2435.2000.00437.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sultan SE, 1996, ECOLOGY, V77, P1791, DOI 10.2307/2265784; TAYLOR DR, 1990, AM NAT, V136, P305, DOI 10.1086/285100; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; TURKINGTON R, 1989, J ECOL, V77, P717, DOI 10.2307/2260981; Tweney J, 1999, ANN BOT-LONDON, V83, P45, DOI 10.1006/anbo.1998.0790; Uhlemann I., 2001, Feddes Repertorium, V112, P15; van Dijk PJ, 2003, PHILOS T ROY SOC B, V358, P1113, DOI 10.1098/rstb.2003.1302; Van Dijk PJ, 1999, HEREDITY, V83, P715, DOI 10.1046/j.1365-2540.1999.00620.x; Vavrek MC, 1998, AM J BOT, V85, P947, DOI 10.2307/2446361; Vellend M, 2005, ECOL LETT, V8, P767, DOI 10.1111/j.1461-0248.2005.00775.x; Vellend M, 2009, WEED SCI, V57, P410, DOI 10.1614/WS-09-004.1; Verhoeven KJF, 2010, NEW PHYTOL, V185, P1108, DOI 10.1111/j.1469-8137.2009.03121.x; Whitlock R, 2007, J ECOL, V95, P895, DOI 10.1111/j.1365-2745.2007.01275.x; Yang HS, 1996, ECOLOGY, V77, P2098 64 12 14 0 42 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 9 2012 7 1 e28121 10.1371/journal.pone.0028121 9 Multidisciplinary Sciences Science & Technology - Other Topics 102TA WOS:000315865800002 22253688 DOAJ Gold, Green Published 2019-02-21 J Horvathova, T; Nakagawa, S; Uller, T Horvathova, Terezia; Nakagawa, Shinichi; Uller, Tobias Strategic female reproductive investment in response to male attractiveness in birds PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article maternal effects; reproductive investment; differential allocation; parental care; birds; phenotypic plasticity FLYCATCHER FICEDULA-ALBICOLLIS; SEXUAL SELECTION; PARENTAL CARE; BARN SWALLOW; DIFFERENTIAL ALLOCATION; OFFSPRING VIABILITY; LAYING ORDER; MATERNAL TESTOSTERONE; PLUMAGE COLORATION; EGG INVESTMENT Life-history theory predicts that individuals should adjust their reproductive effort according to the expected fitness returns on investment. Because sexually selected male traits should provide honest information about male genetic or phenotypic quality, females may invest more when paired with attractive males. However, there is substantial disagreement in the literature whether such differential allocation is a general pattern. Using a comparative meta-regression approach, we show that female birds generally invest more into reproduction when paired with attractive males, both in terms of egg size and number as well as food provisioning. However, whereas females of species with bi-parental care tend to primarily increase the number of eggs when paired with attractive males, females of species with female-only care produce larger, but not more, eggs. These patterns may reflect adaptive differences in female allocation strategies arising from variation in the signal content of sexually selected male traits between systems of parental care. In contrast to reproductive effort, female allocation of immune-stimulants, anti-oxidants and androgens to the egg yolk was not consistently increased when mated to attractive males, which probably reflects the context-dependent costs and benefits of those yolk compounds to females and offspring. [Horvathova, Terezia; Uller, Tobias] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [Horvathova, Terezia] Comenius Univ, Dept Zool, Fac Nat Sci, Bratislava 84215, Slovakia; [Nakagawa, Shinichi] Univ Otago, Dept Zool, Dunedin 9054, New Zealand Uller, T (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. tobias.uller@zoo.ox.ac.uk Nakagawa, Shinichi/B-5571-2011 Nakagawa, Shinichi/0000-0002-7765-5182 Marsden Fund; University of Otago We are grateful to all researchers who took their time to provide additional information or unpublished data and an anonymous reviewer for helpful comments. S.N. is supported by the Marsden Fund and the University of Otago Research Fund. Badyaev AV, 2008, J EVOLUTION BIOL, V21, P449, DOI 10.1111/j.1420-9101.2007.01498.x; Badyaev AV, 2006, J EVOLUTION BIOL, V19, P1044, DOI 10.1111/j.1420-9101.2006.01106.x; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Badyaev AV, 2002, BEHAV ECOL, V13, P591, DOI 10.1093/beheco/13.5.591; Bluhm CK, 2004, ANIM BEHAV, V68, P985, DOI 10.1016/j.anbehav.2004.01.012; Bolund E, 2009, P R SOC B, V276, P707, DOI 10.1098/rspb.2008.1251; Bonisoli-Alquati A, 2011, HORM BEHAV, V59, P75, DOI 10.1016/j.yhbeh.2010.10.013; Buchanan KL, 2000, P ROY SOC B-BIOL SCI, V267, P321, DOI 10.1098/rspb.2000.1003; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; BURLEY N, 1988, AM NAT, V132, P611, DOI 10.1086/284877; Carere C, 2007, TRENDS ENDOCRIN MET, V18, P73, DOI 10.1016/j.tem.2007.01.003; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cohen J, 1988, STAT POWER ANAL BEHA; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; D'Alba L, 2010, BEHAV ECOL SOCIOBIOL, V64, P1037, DOI 10.1007/s00265-010-0919-y; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Eising CM, 2003, ANIM BEHAV, V66, P1027, DOI 10.1006/anbe.2003.2287; Forstmeier W, 2004, BEHAV ECOL, V15, P555, DOI 10.1093/beheco/arh051; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2001, TRENDS ECOL EVOL, V16, P21, DOI 10.1016/S0169-5347(00)02017-6; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Gilbert L, 2006, P R SOC B, V273, P1765, DOI 10.1098/rspb.2006.3520; Gowaty PA, 2008, J EVOLUTION BIOL, V21, P1189, DOI 10.1111/j.1420-9101.2008.01559.x; Gowaty PA, 2007, P NATL ACAD SCI USA, V104, P15023, DOI 10.1073/pnas.0706622104; Groothuis TGG, 2005, BIOL LETTERS, V1, P78, DOI 10.1098/rsbl.2004.0233; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; Gruebler MU, 2010, BEHAV ECOL, V21, P513, DOI 10.1093/beheco/arq017; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hargitai R, 2006, FUNCT ECOL, V20, P829, DOI 10.1111/j.1365-2435.2006.01171.x; Harris WE, 2009, PHILOS T R SOC B, V364, P1039, DOI 10.1098/rstb.2008.0299; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; Hettyey A, 2010, ETHOLOGY, V116, P1, DOI 10.1111/j.1439-0310.2009.01704.x; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; HILL GE, 1991, NATURE, V350, P337, DOI 10.1038/350337a0; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Isaksson C, 2006, BEHAV ECOL SOCIOBIOL, V60, P556, DOI 10.1007/s00265-006-0200-6; Jones KS, 2009, AM NAT, V174, P122, DOI 10.1086/599299; Kelly NB, 2010, J EVOLUTION BIOL, V23, P2461, DOI 10.1111/j.1420-9101.2010.02111.x; Kingma SA, 2009, BEHAV ECOL, V20, P172, DOI 10.1093/beheco/arn130; Kokko H, 1998, P ROY SOC B-BIOL SCI, V265, P1871, DOI 10.1098/rspb.1998.0515; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Lipsey M. W., 2001, PRACTICAL METAANALYS; Loyau A, 2007, BEHAV ECOL SOCIOBIOL, V61, P1043, DOI 10.1007/s00265-006-0337-3; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Magrath MJL, 2009, CURR BIOL, V19, P792, DOI 10.1016/j.cub.2009.03.068; Moore AJ, 1997, EVOLUTION, V51, P1352, DOI 10.1111/j.1558-5646.1997.tb01458.x; Muller W, 2007, AM NAT, V169, pE84, DOI 10.1086/511962; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; NORRIS KJ, 1990, BEHAV ECOL SOCIOBIOL, V27, P275; Oksanen TA, 1999, P ROY SOC B-BIOL SCI, V266, P1495, DOI 10.1098/rspb.1999.0806; PALOKANGAS P, 1994, ANIM BEHAV, V47, P443, DOI 10.1006/anbe.1994.1058; Partecke J, 2008, DEV NEUROBIOL, V68, P1538, DOI 10.1002/dneu.20676; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P95, DOI 10.1016/S0169-5347(00)02063-2; R Development Core Team, 2011, R LANG ENV STAT COMP; Ratikainen II, 2010, BEHAV ECOL, V21, P195, DOI 10.1093/beheco/arp168; Reed WL, 2009, AM NAT, V174, P685, DOI 10.1086/605962; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Romano M, 2008, J EVOLUTION BIOL, V21, P1626, DOI 10.1111/j.1420-9101.2008.01599.x; Rubolini D, 2006, BEHAV ECOL SOCIOBIOL, V59, P344, DOI 10.1007/s00265-005-0057-0; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Russell AF, 2007, P R SOC B, V274, P513, DOI 10.1098/rspb.2006.3698; Saino N, 1995, BEHAV ECOL, V6, P397, DOI 10.1093/beheco/6.4.397; Saino N, 2002, J EVOLUTION BIOL, V15, P735, DOI 10.1046/j.1420-9101.2002.00448.x; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1729, DOI 10.1098/rspb.2002.2088; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Smiseth PT, 2001, BEHAV ECOL, V12, P164, DOI 10.1093/beheco/12.2.164; Starck JM, 1998, AVIAN GROWTH DEV EVO; Uller T, 2009, SEMIN CELL DEV BIOL, V20, P304, DOI 10.1016/j.semcdb.2008.11.013; Vezina F, 2002, PHYSIOL BIOCHEM ZOOL, V75, P377, DOI 10.1086/343137; Voltura KM, 2002, ETHOLOGY, V108, P1011, DOI 10.1046/j.1439-0310.2002.00831.x; Wolf JB, 1999, J EVOLUTION BIOL, V12, P1157 79 86 89 2 139 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 7 2012 279 1726 163 170 10.1098/rspb.2011.0663 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 856WD WOS:000297674300022 21632630 Green Published, Bronze 2019-02-21 J Johnston, DW; Bowers, MT; Friedlaender, AS; Lavigne, DM Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M. The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus) PLOS ONE English Article ARCTIC MARINE MAMMALS; NORTHWEST ATLANTIC; PHOCA-GROENLANDICA; REPRODUCTIVE PARAMETERS; MORTALITY Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. [Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.] Duke Univ, Marine Lab, Div Marine Sci & Conservat, Nicholas Sch Environm, Beaufort, NC 28516 USA; [Lavigne, David M.] Int Fund Anim Welf, Guelph, ON, Canada Johnston, DW (reprint author), Duke Univ, Marine Lab, Div Marine Sci & Conservat, Nicholas Sch Environm, Beaufort, NC 28516 USA. david.johnston@duke.edu Johnston, David/0000-0003-2424-036X Duke University Marine Laboratory; International Fund for Animal Welfare This work was funded by the Duke University Marine Laboratory and the International Fund for Animal Welfare. The funders had no role in study design, data collection and analysis or decision to publish the manuscript. Bates D. M., 2010, LME4 LINEAR MIXED EF; Cavalieri D. J., 1996, SEA ICE CONCENTRATIO; Chernook VI, 2008, MAR MAMM HOL 5 C OD, P100; DFO (Department of Fisheries and Oceans), 2007, REV IC COND POT IMP; Friedlaender AS, 2010, PROG OCEANOGR, V86, P261, DOI 10.1016/j.pocean.2010.04.002; Harris DE, 2006, NORTHEAST NAT, V13, P403, DOI 10.1656/1092-6194(2006)13[403:GAOISS]2.0.CO;2; HURRELL JW, 2003, N ATLANTIC OSCILLATI, P1, DOI DOI 10.1029/134GM01; Johnston DW, 2005, CLIMATE RES, V29, P209, DOI 10.3354/cr029209; KJELLQWIST SA, 1995, ICES J MAR SCI, V52, P197, DOI 10.1016/1054-3139(95)80035-2; Kokic P, 2011, ENVIRONMETRICS, V22, P409, DOI 10.1002/env.1074; Kovacs K, 2010, IUCN RED LIST THREAT; KOVACS KM, 1985, J MAMMAL, V66, P556, DOI 10.2307/1380934; KOVACS KM, 2011, MAR BIODIVERS, V41, P181, DOI DOI 10.1007/S12526-010-0061-0; KRAUS SD, 1990, MAR MAMMAL SCI, V6, P278, DOI 10.1111/j.1748-7692.1990.tb00358.x; Lavigne D.M., 1988, HARPS HOODS ICE BREE; Lavigne DM, 1999, MAR MAMMAL SCI, V15, P871, DOI 10.1111/j.1748-7692.1999.tb00851.x; Lavigne DM, 2002, ENCY MARINE MAMMALS, P560; Maslanik J, 1999, NEAR REAL TIME DMSP, DOI 10. 5067/U8C09DWVX9LM; Moline MA, 2008, ANN NY ACAD SCI, V1134, P267, DOI 10.1196/annals.1439.010; Moore SE, 2008, ECOL APPL, V18, pS157, DOI 10.1890/06-0571.1; Nilssen KT, 1998, SARSIA, V83, P337, DOI 10.1080/00364827.1998.10413693; Oritsland T, 1971, ICNAF REDBOOK 1971, P185; Pyenson ND, 2011, P ROY SOC B-BIOL SCI, V278, P3608, DOI 10.1098/rspb.2011.0441; Qian S. S., 2009, ENV ECOLOGICAL STAT; Ragen TJ, 2008, ECOL APPL, V18, pS166, DOI 10.1890/06-0734.1; Rosing-Asvid A, 2008, MAR MAMMAL SCI, V24, P730, DOI 10.1111/j.1748-7692.2008.00216.x; Sarkar D., 2010, LATTICE LATTICE GRAP; Sergeant D, 1991, CANADIAN SPECIAL PUB; Sjare B, 2010, ICES J MAR SCI, V67, P304, DOI 10.1093/icesjms/fsp267; Stenson G, 2005, ESTIMATES HUMAN INDU; Stirling I, 2006, ARCTIC, V59, P261; TEMTE JL, 1994, J ZOOL, V233, P369, DOI 10.1111/j.1469-7998.1994.tb05271.x; Toughill K, 1998, TORONTO STAR; Vinnikov KY, 1999, SCIENCE, V286, P1934, DOI 10.1126/science.286.5446.1934; Wang MY, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037820 35 15 15 5 102 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1932-6203 PLOS ONE PLoS One JAN 4 2012 7 1 e29158 10.1371/journal.pone.0029158 8 Multidisciplinary Sciences Science & Technology - Other Topics 902VE WOS:000301070200018 22238591 DOAJ Gold, Green Published 2019-02-21 J Maciel-Silva, AS; Valio, IFM; Rydin, H Maciel-Silva, Adaises S.; Marques Valio, Ivany F.; Rydin, Hakan Altitude affects the reproductive performance in monoicous and dioicous bryophytes: examples from a Brazilian Atlantic rainforest AOB PLANTS English Article MOSS SYNTRICHIA-CANINERVIS; LIFE-HISTORY STRATEGIES; GAMETANGIAL INDUCTION; DESERT MOSS; SPOROPHYTE PRODUCTION; FLOWERING PLANTS; PHYSICAL FACTORS; SEX EXPRESSION; PHENOLOGY; GROWTH Background and aims Short life cycles and trade-offs linked to breeding systems make bryophytes good models for the study of plant reproductive strategies. Our aim was to test if differences in sexual reproductive performance of bryophytes in tropical rainforests are driven by the breeding system of the species (monoicous or dioicous) or are mainly affected by the habitat. Methodology The reproductive performance (sexual branches, gametangia (sex organs), fertilization and sporophyte production) of 11 species was repeatedly monitored and analysed from populations at sea-level and montane sites of a Brazilian Atlantic rainforest over 15 months. Principal results Monoicous species had the highest reproductive performance, particularly for sexual branches, fertilized gametangia and sporophyte production. Species at the sea-level site produced more sexual branches and had more female-biased sex ratios of gametangia than species in the montane site. Fertilizations were more frequent at the montane site, but sporophyte frequency was similar between the two sites. Fertilization tended to occur mostly in the periods of heavy rain (October to December). Conclusions Breeding system is not the only major influence on the reproductive performance of bryophytes. We show that habitat is also an important factor determining life-history differentiation. Female-biased sex ratios and low rates of fertilization are seen to be compensated for by high production of reproductive structures at the initial phases of the reproductive cycle. [Maciel-Silva, Adaises S.; Marques Valio, Ivany F.] Univ Estadual Campinas UNICAMP, Dept Biol Vegetal, Inst Biol, BR-13083970 Campinas, SP, Brazil; [Rydin, Hakan] Uppsala Univ, Dept Plant Ecol, Evolutionary Biol Ctr, SE-75236 Uppsala, Sweden Maciel-Silva, AS (reprint author), Univ Fed Rural Rio de Janeiro UFRRJ, Inst Biol, Dept Bot, CP 74582, BR-23851970 Seropedica, RJ, Brazil. adaisesmaciel@hotmail.com MACIEL-SILVA, ADAISES/F-7081-2012 'Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior' (Capes); 'Conselho Nacional de Pesquisa e Tecnologia' (CNPq); State of Sao Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient [03/1259507, COTEC/IF 41.065/2005, IBAMA/CGEN 093/2005]; 'Conselho Nacional de Pesquisa e Tecnologia' (CNPq-bolsista de produtividade SR); Swedish research councils VR and Formas A.S.M.-S.'s work was supported by the 'Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior' (Capes), 'Conselho Nacional de Pesquisa e Tecnologia' (CNPq) and the State of Sao Paulo Research Foundation (FAPESP) as part of the Thematic Project Functional Gradient (Process Number 03/1259507), within the BIOTA/FAPESP Program - The Biodiversity Virtual Institute (www.biota.org.br). COTEC/IF 41.065/2005 and IBAMA/CGEN 093/2005 permit. I.F.M.V. was supported by the 'Conselho Nacional de Pesquisa e Tecnologia' (CNPq-bolsista de produtividade SR), and H.R. by the Swedish research councils VR and Formas. ALLEN BH, 1987, TAXON, V36, P57, DOI 10.2307/1221353; Alves LF, 2010, FOREST ECOL MANAG, V260, P679, DOI 10.1016/j.foreco.2010.05.023; BAWA KS, 1980, ANNU REV ECOL SYST, V11, P15, DOI 10.1146/annurev.es.11.110180.000311; BAWA KS, 1981, ANN MO BOT GARD, V68, P254, DOI 10.2307/2398798; Bengtsson BO, 2000, J EVOLUTION BIOL, V13, P415, DOI 10.1046/j.1420-9101.2000.00187.x; Bisang I, 2005, J BRYOL, V27, P207, DOI 10.1179/174328205X69959; Bowker MA, 2000, AM J BOT, V87, P517, DOI 10.2307/2656595; Caners RT, 2009, PLANT ECOL, V204, P55, DOI 10.1007/s11258-008-9565-0; CHOPRA RN, 1983, BOT REV, V49, P29, DOI 10.1007/BF02861008; CHOPRA RN, 1981, NEW PHYTOL, V89, P439, DOI 10.1111/j.1469-8137.1981.tb02325.x; CHOPRA RN, 1982, NEW PHYTOL, V92, P251, DOI 10.1111/j.1469-8137.1982.tb03383.x; Cronberg N, 2006, SCIENCE, V313, P1255, DOI 10.1126/science.1128707; DURING HJ, 1979, LINDBERGIA, V5, P2; EGUNYOMI A, 1979, NOVA HEDWIGIA, V31, P377; Eppley SM, 2007, HEREDITY, V98, P38, DOI 10.1038/sj.hdy.6800900; FARMER AM, 1990, LICHENOLOGIST, V22, P191, DOI 10.1017/S0024282990000147; FRAHM JP, 1991, J BIOGEOGR, V18, P669, DOI 10.2307/2845548; Garcia MB, 2008, AM J BOT, V95, P258, DOI 10.3732/ajb.95.2.258; GEMMELL A. R., 1950, NEW PHYTOL, V49, P64, DOI 10.1111/j.1469-8137.1950.tb05144.x; Glime J. M., 2007, BRYOPHYTE ECOLOGY PH; GOMEZPOMPA A, 1972, SCIENCE, V177, P762, DOI 10.1126/science.177.4051.762; Gradstein S. Robbert, 2001, Memoirs of the New York Botanical Garden, V86, P1; Grime J. P., 2001, PLANT STRATEGIES VEG; HARPER JL, 1965, J ECOL, V53, P273, DOI 10.2307/2257975; Hassel K, 2005, ECOGRAPHY, V28, P71, DOI 10.1111/j.0906-7590.2005.03910.x; Hautier Y, 2009, J PLANT ECOL-UK, V2, P125, DOI 10.1093/jpe/rtp011; Hedderson TA, 2008, J BRYOL, V30, P1, DOI 10.1179/174328208X282175; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; KUMRA PK, 1983, BOT GAZ, V144, P533, DOI 10.1086/337407; Laaka-Lindberg S, 2005, J BRYOL, V27, P253, DOI 10.1179/174328205X70001; laFargeEngland C, 1996, BRYOLOGIST, V99, P170; Lobel S, 2009, OECOLOGIA, V161, P569, DOI 10.1007/s00442-009-1402-1; Longton R.E., 1983, NEW MANUAL BRYOLOGY, P386; Longton RE, 1997, ADV BRYOLOG, V6, P65; LONGTON RE, 1992, BIOL CONSERV, V59, P89, DOI 10.1016/0006-3207(92)90566-6; LONGTON RE, 1990, BRYOPHYTE DEV PHYSL, P139; Maciel-Silva AS, 2011, BRYOLOGIST, V114, P708, DOI 10.1639/0007-2745-114.4.708; Maciel-Silva AS, 2012, OECOLOGIA, V168, P321, DOI 10.1007/s00442-011-2100-3; McLetchie DN, 2001, BRYOLOGIST, V104, P69, DOI 10.1639/0007-2745(2001)104[0069:SSGRIT]2.0.CO;2; McLetchie DN, 2000, OIKOS, V90, P227, DOI 10.1034/j.1600-0706.2000.900203.x; Milla R, 2009, FUNCT ECOL, V23, P111, DOI 10.1111/j.1365-2435.2008.01484.x; MISHLER BD, 1988, PLANT REPROD ECOLOGY, P285; Murray-Smith C, 2009, CONSERV BIOL, V23, P151, DOI 10.1111/j.1523-1739.2008.01075.x; Nadkarni MN, 1984, BIOTROPICA, V16, P249; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oliveira SM, 2002, J BRYOL, V24, P251; OLIVEIRA SM, 2001, J BRYOL, V23, P17; OLIVEIRA SM, 1998, ACTA BOT BRAS, V12, P385; Reynolds LA, 2011, J BRYOL, V33, P148, DOI 10.1179/1743282011Y.0000000004; Ribeiro MC, 2009, BIOL CONSERV, V142, P1141, DOI 10.1016/j.biocon.2009.02.021; ROHRER JR, 1982, BRYOLOGIST, V85, P394, DOI 10.2307/3242905; Rydgren K, 2010, J ECOL, V98, P1224, DOI 10.1111/j.1365-2745.2010.01639.x; SCHOFIELD WB, 1985, INTRO BRYOLOGY; SETZER J, 1966, ATLAS CLIMATOLOGICO; Stark LR, 2005, BRYOLOGIST, V108, P183, DOI 10.1639/0007-2745(2005)108[0183:SEPSAS]2.0.CO;2; Stark LR, 2000, AM J BOT, V87, P1599, DOI 10.2307/2656736; Stark LR, 2002, BRYOLOGIST, V105, P204, DOI 10.1639/0007-2745(2002)105[0204:PAIROT]2.0.CO;2; Stehmann JR, 2009, PLANTAS FLORESTA ATL, P3; Turetsky MR, 2003, BRYOLOGIST, V106, P395, DOI 10.1639/05; Veloso H. P, 1991, CLASSIFICACAO VEGETA; VENEKLAAS EJ, 1990, J ECOL, V78, P974, DOI 10.2307/2260947; von Arx G, 2006, ECOLOGY, V87, P665, DOI 10.1890/05-1041; WATSON MF, 1988, LICHENOLOGIST, V20, P327, DOI 10.1017/S0024282988000441; Whitmore T. C., 1985, J TROP ECOL, V1, P375, DOI DOI 10.1017/S0266467400000481 64 8 10 1 12 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2041-2851 AOB PLANTS Aob Plants 2012 pls016 10.1093/aobpla/pls016 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 229KV WOS:000325264100014 22822422 DOAJ Gold, Green Published 2019-02-21 S Stark, JD Racke, KD; McGaughey, BD; Cowles, JL; Hall, AT; Jackson, SH; Jenkins, JJ; Johnston, JJ Stark, John D. Demography and Modeling To Improve Pesticide Risk Assessment of Endangered Species PESTICIDE REGULATION AND THE ENDANGERED SPECIES ACT ACS Symposium Series English Proceedings Paper Symposium on the Endangered Species Act and Pesticide Regulation: Scientific and Process Improvements / 242nd Meeting of the American-Chemical-Society AUG 30-SEP 01, 2011 Denver, CO Amer Chem Soc, AGRO Div, Dow AgroScienes, CropLife Amer, Intrinsik Environm Sci LIFE-HISTORY STRATEGIES; POPULATION-LEVEL; TOXICITY; TRAITS; SUSCEPTIBILITY; CONSERVATION; DYNAMICS; SALMON; TIME The present ecological risk assessment process for pesticides as practiced by the United States Environmental Protection Agency under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) consists of developing short-term toxicity data for a few select species and comparing these data to expected environmental concentrations to develop risk quotients (RQ). Risk quotients are then compared to "levels of concern" (LOC) which vary depending upon the type of pesticide being evaluated and the type of organisms likely to be exposed. The LOC is supposed to account for all of the types of uncertainty associated with the risk assessment. There are several problems associated with this process. For example, populations do not respond the same way to wtoxicant exposures as do individuals. Populations, if thinned may compensate for losses and actually grow faster than expected. Furthermore, exposure to pesticides can result in a proportion of a population dying while the remaining individuals are impaired due to multiple sublethal effects. Another issue is that the few species that are used for the development of toxicity data may not be good representatives of the many species they are supposed to protect. These species are often chosen based on ease of rearing and evaluation, not because they are good representatives of many species. Susceptibility of a population to pesticides is influenced by life history traits and differences in life history traits are not considered in the current risk assessment process. It has also been shown that populations of organisms often exist as mixtures of life stages. The makeup of the population structure can greatly influence susceptibility to pesticides and this is also not considered in the risk assessment process. Furthermore, different life stages may exhibit vastly different susceptibility to toxicants, yet usually only one life stage is evaluated. In this chapter, the current risk assessment process and new approaches to improve risk assessment of pesticides are discussed. The new approach consists of developing population-level measures of toxicant effect that incorporate the total effect (lethal and multiple sublethal effects) followed by population modeling to determine the probability that specific concentrations of pesticides will drive populations to extirpation or whether populations will recover. Washington State Univ, Puyallup Res & Extens Ctr, Puyallup, WA 98371 USA Stark, JD (reprint author), Washington State Univ, Puyallup Res & Extens Ctr, 2606 W Pioneer, Puyallup, WA 98371 USA. starkj@wsu.edu Akcakaya HR, 2008, DEMOGRAPHIC TOXICITY; [Anonymous], 1993, ANN BOOK ASTM STAND, V11.04, P1028; Banks JE, 2008, ECOL MODEL, V210, P155, DOI 10.1016/j.ecolmodel.2007.07.022; Banks J.E., 1998, INTEGR BIOL, V5, P1, DOI DOI 10.1002/(SICI)1520-6602(1998)1:5; Banks JE, 2010, RISK ANAL, V30, P175, DOI 10.1111/j.1539-6924.2009.01349.x; Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1897/1551-5028(1997)016<1983:RAOTBO>2.3.CO;2; Carey J. R., 1993, APPL DEMOGRAPHY BIOL; Caswell H., 2001, MATRIX POPULATION MO; Chen XD, 2010, ECOTOX ENVIRON SAFE, V73, P132, DOI 10.1016/j.ecoenv.2009.09.016; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; Deardorff AD, 2009, B ENVIRON CONTAM TOX, V82, P549, DOI 10.1007/s00128-009-9643-6; EPA US, 2004, OV EC RISK ASS PROC; Forbes VE, 2011, HUM ECOL RISK ASSESS, V17, P287, DOI 10.1080/10807039.2011.552391; Forbes VE, 2010, ECOL APPL, V20, P1449, DOI 10.1890/09-1063.1; Forbes VE, 2001, ENVIRON TOXICOL CHEM, V20, P442, DOI 10.1897/1551-5028(2001)020<0442:ACSEMA>2.0.CO;2; Grube A., PESTICIDE IND SALES; Hansen F, 1999, FUNCT ECOL, V13, P157, DOI 10.1046/j.1365-2435.1999.00299.x; Hansen FT, 1999, ECOL APPL, V9, P482, DOI 10.2307/2641138; Hanson N., INTEGR ENV IN PRESS; Hanson N., ENV TOXICOL IN PRESS; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Laetz CA, 2009, ENVIRON HEALTH PERSP, V117, P348, DOI 10.1289/ehp.0800096; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; McNair J. B., 1995, SETAC NEWS, V15, P18; Morris WF, 2002, QUANTITATIVE CONSERV; Norris K, 2003, J APPL ECOL, V40, P890, DOI 10.1046/j.1365-2664.2003.00840.x; Pressat R., 1985, DICT DEMOGRAPHY; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 1997, ECOTOX ENVIRON SAFE, V37, P273, DOI 10.1006/eesa.1997.1552; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621; STARK JD, 1995, J ECON ENTOMOL, V88, P1089, DOI 10.1093/jee/88.5.1089; Stark JD, 1999, ECOTOX ENVIRON SAFE, V42, P282, DOI 10.1006/eesa.1998.1760; Stark JD, 2007, J ECON ENTOMOL, V100, P1027, DOI 10.1603/0022-0493(2007)100[1027:IERMOP]2.0.CO;2; Stark JD, 2005, INTEGR ENVIRON ASSES, V1, P109, DOI 10.1897/IEAM_2004-002r.1; Stark JD, 2012, ENVIRON POLLUT, V164, P24, DOI 10.1016/j.envpol.2012.01.011; Suter GW, 2006, ECOLOGICAL RISK ASSE; U.S. Environmental Protection Agency, 2007, APP E RISK QUOT METH; US EPA, 1998, EPA630R95002F; VANSTRAALEN NM, 1989, ECOTOX ENVIRON SAFE, V17, P190, DOI 10.1016/0147-6513(89)90038-9; Webb JK, 2002, ECOL RES, V17, P59, DOI 10.1046/j.1440-1703.2002.00463.x 42 2 2 0 8 AMER CHEMICAL SOC WASHINGTON 1155 SIXTEENTH ST NW, WASHINGTON, DC 20036 USA 0097-6156 978-0-8412-2703-3 ACS SYM SER ACS Symp. Ser. 2012 1111 259 270 12 Agriculture, Multidisciplinary; Environmental Sciences Agriculture; Environmental Sciences & Ecology BEO32 WOS:000317550400019 2019-02-21 J Richardson, GB; Hardesty, P Richardson, George B.; Hardesty, Patrick Immediate Survival Focus: Synthesizing Life History Theory and Dual Process Models to Explain Substance Use EVOLUTIONARY PSYCHOLOGY English Article life history strategies; dual process models; substance use ENVIRONMENTAL RISK; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; FUTURE ORIENTATION; SENSATION SEEKING; GENERAL FACTOR; K-FACTOR; PERSONALITY; PERSPECTIVE; ADDICTION Researchers have recently applied evolutionary life history theory to the understanding of behaviors often conceived of as prosocial or antisocial. In addition, researchers have applied cognitive science to the understanding of substance use and used dual process models, where explicit cognitive processes are modeled as relatively distinct from implicit cognitive processes, to explain and predict substance use behaviors. In this paper we synthesized these two theoretical perspectives to produce an adaptive and cognitive framework for explaining substance use. We contend that this framework provides new insights into the nature of substance use that may be valuable for both clinicians and researchers. [Richardson, George B.] Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA; [Hardesty, Patrick] Univ Louisville, Louisville, KY 40292 USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA. george.richardson@uc.edu Adams J, 2009, HEALTH PSYCHOL, V28, P529, DOI 10.1037/a0015198; Allen TJ, 1998, DRUG ALCOHOL DEPEN, V50, P137, DOI 10.1016/S0376-8716(98)00023-4; Beck A. T, 1993, COGNITIVE THERAPY SU; Bogg T, 2004, PSYCHOL BULL, V130, P887, DOI 10.1037/0033-2909-130.6.887; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics, 2005, NAT LONG SURV YOUTH; Carbon CC, 2012, Q J EXP PSYCHOL, V65, P2258, DOI 10.1080/17470218.2012.696121; Cavazos-Rehg PA, 2011, AIDS BEHAV, V15, P869, DOI 10.1007/s10461-010-9669-0; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Conrey FR, 2007, SOC COGNITION, V25, P718, DOI 10.1521/soco.2007.25.5.718; Cunningham WA, 2004, J COGNITIVE NEUROSCI, V16, P1717, DOI 10.1162/0898929042947919; Cunningham WA, 2007, TRENDS COGN SCI, V11, P97, DOI 10.1016/j.tics.2006.12.005; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eccles JS, 2002, ANNU REV PSYCHOL, V53, P109, DOI 10.1146/annurev.psych.53.100901.135153; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Field M., 2006, COGNITION ADDICTION, P31; Figueredo A. J., 2011, OXFORD HDB SEXUAL CO; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Fromme K., 1993, PSYCHOL ASSESSMENT, V5, P19, DOI DOI 10.1037/1040-3590.5.1.19; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Gilbert P, 1998, BRIT J MED PSYCHOL, V71, P447, DOI 10.1111/j.2044-8341.1998.tb01002.x; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Goldman MP, 2006, COGNITION ADDICTION, P31; Griffith J. W., 2009, PSYCHOL MED 1 VIEW, P1; Higgins E. T., 2004, HDB SELF REGULATION, P171; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P929, DOI 10.1001/archpsyc.60.9.929; Kilpatrick DG, 2000, J CONSULT CLIN PSYCH, V68, P19, DOI 10.1037//0022-006X.68.1.19; KLINGER E, 2004, HDB MOTIVATIONAL COU, P3, DOI DOI 10.1002/9780470713129.CH1; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Laub JH, 2000, AM J PSYCHIAT, V157, P96, DOI 10.1176/ajp.157.1.96; Lieberman M., 2007, SOCIAL NEUROSCIENCE, P290; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald KB, 2008, PSYCHOL REV, V115, P1012, DOI 10.1037/a0013327; Margaron H, 2004, SUBST USE MISUSE, V39, P1423, DOI 10.1081/JA-120039399; Marlatt G. A., 2011, HARM REDUCTION PRAGM; McCusker C. G., 2006, COGNITION ADDICTION, P117; McCusker CG, 2001, ADDICTION, V96, P47, DOI 10.1046/j.1360-0443.2001.961474.x; MEALEY L, 2000, SEX DIFFERENCES DEV; MUNAFO MR, 2006, COGNITION ADDICTION; Nation M, 2006, AM J DRUG ALCOHOL AB, V32, P415, DOI 10.1080/00952990600753867; Nesse R. M., 1996, WHY WE GET SICK NEW; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; Nobile M, 2007, DEV PSYCHOPATHOL, V19, P1147, DOI 10.1017/S0954579407000594; Office of National Drug Control Policy (ONDCP), 2004, EX OFF PRES PUBL, V207303; Peters RJ, 2005, AM J ADDICTION, V14, P478, DOI 10.1080/10550490500247206; Petry NM, 1998, ADDICTION, V93, P729, DOI 10.1046/j.1360-0443.1998.9357298.x; Putman P, 2004, EMOTION, V4, P305, DOI 10.1037/1528-3542.4.3.305; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Redish AD, 2008, BEHAV BRAIN SCI, V31, P461, DOI 10.1017/S0140525X08004986; Richardson G. B., SEX DRUGS RECI UNPUB; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; RoseKrasnor L, 1997, SOC DEV, V6, P111, DOI 10.1111/1467-9507.00029; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schutter D.J.L.G., 2007, SOCIAL NEUROSCIENCE, P197; SEFCEK JA, 2007, THESIS U ARIZONA; Shaffer H. J., 2012, APA ADDICTION SYNDRO, V1, pxxvii; Stacy A. W., 2006, COGNITION ADDICTION, P31; Stoel RD, 2006, BEHAV GENET, V36, P229, DOI 10.1007/s10519-005-9028-5; Tesser A., 1995, ADV SOCIAL PSYCHOL; The National Center on Addiction and Substance Abuse (CASA), 2005, SHOV; Torregrossa MM, 2008, BIOL PSYCHIAT, V63, P253, DOI 10.1016/j.biopsych.2007.11.014; Vigil-Colet A, 2004, PERS INDIV DIFFER, V37, P1431, DOI 10.1016/j.paid.2004.01.013; Volkow ND, 2007, ARCH NEUROL-CHICAGO, V64, P1575, DOI 10.1001/archneur.64.11.1575; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037/0022-3514.77.6.1271; Zuckerman M, 1996, NEUROPSYCHOBIOLOGY, V34, P125, DOI 10.1159/000119303 77 9 9 0 10 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 4 731 749 10.1177/147470491201000408 19 Psychology, Experimental Psychology 066DP WOS:000313200700008 23213672 DOAJ Gold 2019-02-21 J Tybur, JM; Bryan, AD; Hooper, AEC Tybur, Joshua M.; Bryan, Angela D.; Hooper, Ann E. Caldwell An Evolutionary Perspective on Health Psychology: New Approaches and Applications EVOLUTIONARY PSYCHOLOGY English Article health psychology; life history theory; tradeoffs; pathogen avoidance PHYSICAL-ACTIVITY; BEHAVIOR-CHANGE; OBESITY EPIDEMIC; UNITED-STATES; BIRTH-WEIGHT; RISK-TAKING; USE CONDOMS; US ADULTS; LIFE; INTENTIONS Although health psychologists' efforts to understand and promote health are most effective when guided by theory, health psychology has not taken full advantage of theoretical insights provided by evolutionary psychology. Here, we argue that evolutionary perspectives can fruitfully inform strategies for addressing some of the challenges facing health psychologists. Evolutionary psychology's emphasis on modular, functionally specialized psychological systems can inform approaches to understanding the myriad behaviors grouped under the umbrella of "health," as can theoretical perspectives used by evolutionary anthropologists, biologists, and psychologists (e.g., Life History Theory). We detail some early investigations into evolutionary health psychology, and we provide suggestions for directions for future research. [Tybur, Joshua M.] Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands; [Bryan, Angela D.] Univ Colorado, Dept Psychol & Neurosci, Boulder, CO 80309 USA; [Hooper, Ann E. Caldwell] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Tybur, JM (reprint author), Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands. j.m.tybur@vu.nl Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508 Albarracin D, 2005, PSYCHOL BULL, V131, P856, DOI 10.1037/0033-2909.131.6.856; Andersen LG, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008192; BARALDI E, 1991, EUR J PEDIATR, V150, P713, DOI 10.1007/BF01958761; Barkow L. Cosmides, ADAPTED MIND, P19; Barrett HC, 2006, PSYCHOL REV, V113, P628, DOI 10.1037/0033-295X.113.3.628; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Bribiescas RG, 2006, MEN EVOLUTIONARY LIF; Bryan A, 2001, J APPL SOC PSYCHOL, V31, P1911, DOI 10.1111/j.1559-1816.2001.tb00210.x; Bryan AD, 2009, PEDIATRICS, V124, pE1180, DOI 10.1542/peds.2009-0679; Buckworth RK, 2007, HDB SPORT PSYCHOL, P509, DOI DOI 10.1002/9781118270011.CH23; Cahill K, 2010, COCHRANE DATABASE SY, V11; Calle EE, 2003, NEW ENGL J MED, V348, P1625, DOI 10.1056/NEJMoa021423; Centers for Medicare and Medicaid Research, 2011, NAT HLTH EXP PROJ 20; Charnov Eric L., 1993, P1; Cooper ML, 1999, HEALTH PSYCHOL, V18, P464; Cosmides L., 1992, ADAPTED MIND EVOLUTI, P163, DOI DOI 10.1098/RSTB.2006.1991; Dandona P, 2004, TRENDS IMMUNOL, V25, P4, DOI 10.1016/j.it.2003.10.013; DeScioli P., PSYCHOL B IN PRESS; DiClemente RJ, 2009, ARCH PEDIAT ADOL MED, V163, P1112, DOI 10.1001/archpediatrics.2009.205; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison P. T., 2008, EN STUD HOM EV S PAL; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; FESSLER DMT, 2003, J COGNITION CULTURE, V3, P1, DOI DOI 10.1163/156853703321598563; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Fiore MC, 2008, TREATING TOBACCO USE; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Gerrard M, 1996, PSYCHOL BULL, V119, P390, DOI 10.1037/0033-2909.119.3.390; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Giles J, 2011, NATURE, V470, P18, DOI 10.1038/470018a; Goldenberg JL, 2008, PSYCHOL REV, V115, P1032, DOI 10.1037/a0013326; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Hill SE, 2011, PERS SOC PSYCHOL B, V37, P383, DOI 10.1177/0146167210395603; Hillis SD, 1997, AM J OBSTET GYNECOL, V176, P103, DOI 10.1016/S0002-9378(97)80020-8; James WPT, 2008, INT J OBESITY, V32, pS120, DOI 10.1038/ijo.2008.247; JANZ NK, 1984, HEALTH EDUC QUART, V11, P1, DOI 10.1177/109019818401100101; JESSOR R, 1995, DEV PSYCHOL, V31, P923, DOI 10.1037//0012-1649.31.6.923; Johnson BT, 2010, AM J PUBLIC HEALTH, V100, P2193, DOI 10.2105/AJPH.2008.155200; Jonason PK, 2007, J SOC PSYCHOL, V147, P5, DOI 10.3200/SOCP.147.1.5-14; King AC, 2007, HEALTH PSYCHOL, V26, P718, DOI 10.1037/0278-6133.26.6.718; King DE, 2009, AM J MED, V122, P528, DOI 10.1016/j.amjmed.2008.11.013; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Lieberman D, 2007, NATURE, V445, P727, DOI 10.1038/nature05510; MANSON JAE, 1990, NEW ENGL J MED, V322, P882, DOI 10.1056/NEJM199003293221303; Marcus BH, 2007, HEALTH PSYCHOL, V26, P401, DOI 10.1037/0278-6133.26.4.401; McBride CM, 2012, AM J PUBLIC HEALTH, V102, P401, DOI 10.2105/AJPH.2011.300513; McEachan RRC, 2011, HEALTH PSYCHOL REV, V5, P97, DOI 10.1080/17437199.2010.521684; Mealey L, 1997, J SEX RES, V34, P223, DOI 10.1080/00224499709551887; Mokdad AH, 1999, JAMA-J AM MED ASSOC, V282, P1519, DOI 10.1001/jama.282.16.1519; Painter JE, 2008, ANN BEHAV MED, V35, P358, DOI 10.1007/s12160-008-9042-y; Pollan M, 2006, OMNIVORES DILEMMA; ROSENSTOCK IM, 1974, HEALTH EDUC QUART, V2, P328, DOI 10.1177/109019817400200403; ROZIN P, 1987, PSYCHOL REV, V94, P23, DOI 10.1037//0033-295X.94.1.23; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Schaller M, 2011, CURR DIR PSYCHOL SCI, V20, P99, DOI 10.1177/0963721411402596; Seefeldt V, 2002, SPORTS MED, V32, P143, DOI 10.2165/00007256-200232030-00001; Sheeran P, 1999, J APPL SOC PSYCHOL, V29, P1624, DOI 10.1111/j.1559-1816.1999.tb02045.x; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; SYMONS D, 1989, ETHOL SOCIOBIOL, V10, P131, DOI 10.1016/0162-3095(89)90016-2; Thornhill R., 2008, EVOLUTIONARY BIOL HU; Tooby J., 1992, PSYCHOL FDN CULTURE; Tooby J., 2005, HDB EVOLUTIONARY PSY, P5, DOI DOI 10.1002/9780470939376.CH1; Troiano RP, 2008, MED SCI SPORT EXER, V40, P181, DOI 10.1249/mss.0b013e31815a51b3; Tybur J. M., PSYCHOL REV IN PRESS; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; Vickers MH, 2003, AM J PHYSIOL-REG I, V285, pR271, DOI 10.1152/ajpregu.00051.2003; Warburton DER, 2006, CAN MED ASSOC J, V174, P801, DOI 10.1503/cmaj.051351; Webb TL, 2006, PSYCHOL BULL, V132, P249, DOI 10.1037/0033-2909.132.2.249; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X 74 6 6 0 33 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 5 855 867 10.1177/147470491201000508 13 Psychology, Experimental Psychology 066EV WOS:000313204100008 23253791 DOAJ Gold 2019-02-21 J Mobaek, R; Mysterud, A; Holand, O; Austrheim, G Mobaek, Ragnhild; Mysterud, Atle; Holand, Oystein; Austrheim, Gunnar Age class, density and temporal effects on diet composition of sheep in an alpine ecosystem BASIC AND APPLIED ECOLOGY English Article Climate effects; Density dependence; Foraging; Life history; Large mammals; Seasonality; Sheep LIFE-HISTORY TRAITS; LARGE HERBIVORE; RED DEER; POPULATION-DYNAMICS; HABITAT SELECTION; BIGHORN EWES; PATTERNS; DEPENDENCE; SYNCHRONY; PHENOLOGY Understanding diet selection is important since diet determines energy intake and therefore growth of ungulate populations. Yet very few studies have reported annual variation in diet. Density-dependent diet choice by large herbivores has been reported several times, but these studies are typically either short-term or they lack replication of the density treatment. In a landscape-scale experiment with 3 replicates of two densities (25 and 80 individuals/km(2)) of domestic sheep, we determined diet composition using microhistological analysis during 6 summer grazing seasons (2002-2007) in alpine habitats. We tested how age class, density and temporal variation (within season, annually, and over years) affected summer diet. There was marked evidence of additive effects of these factors on overall diet composition, but interactions were few. The interaction between density and annual variation was an important determinant of the proportion of the main forage component (Avenella flexuosa), but not of the proportions of herbs, Salix spp. and for "other" forage plants. Surprisingly, the density effect on this intermediate quality forage (A. flexuosa) was not consistent among years (both positive, negative and no effects), likely arising due to large variation in the proportion of the other forage plants. We discuss how foraging ecology can supplement the insight from life history theory in explaining variation in vital rates. [Mysterud, Atle] Univ Oslo, Dept Biol, CEES, NO-0316 Oslo, Norway; [Mobaek, Ragnhild; Holand, Oystein] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, NO-1432 As, Norway; [Austrheim, Gunnar] Norwegian Univ Sci & Technol, Sect Nat Hist, Museum Nat Hist & Archaeol, NO-7491 Trondheim, Norway Mysterud, A (reprint author), Univ Oslo, Dept Biol, CEES, POB 1066 Blindern, NO-0316 Oslo, Norway. atle.mysterud@bio.uio.no Research Council of Norway [Pr. 183268/S30]; Directorate for nature management; Norwegian University of Life Sciences The study was financed by the Research Council of Norway (Pr. 183268/S30 and YFF to AM), the Directorate for nature management, and the Norwegian University of Life Sciences (PhD scholarship to RM). We thank Kyrre Kausrud, Camilla Iversen, Kristina Ehrlinger, Lars Korslund, Stephen Parfitt and Harald Askilsrud for collecting faeces samples, and Barbro Dahlberg for performing the microhistological analyses. We are grateful to Jean-Michel Gaillard, Ivar Herfindal, Rene Van der Wal and two anonymous referees for helpful comments to a previous draft, and to Leif Egil Loe and Nigel G. Yoccoz for help with script to plot mixed-effect models. Austrheim G, 2005, PLANT ECOL, V179, P217, DOI 10.1007/s11258-005-0197-3; Austrheim G, 2008, OIKOS, V117, P837, DOI 10.1111/j.2008.0030-1299.16543.x; Bailey DW, 1996, J RANGE MANAGE, V49, P386, DOI 10.2307/4002919; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; BOWNS JE, 1986, J RANGE MANAGE, V39, P431, DOI 10.2307/3899445; Braak CJF ter, 2002, CANOCO REFERENCE MAN; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Daigle C, 2004, CAN FIELD NAT, V118, P360, DOI 10.22621/cfn.v118i3.13; DEMMENT MW, 1985, AM NAT, V125, P641, DOI 10.1086/284369; Evju M, 2006, ECOSCIENCE, V13, P459, DOI 10.2980/1195-6860(2006)13[459:SHSATA]2.0.CO;2; Evju M, 2009, OECOLOGIA, V161, P77, DOI 10.1007/s00442-009-1358-1; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FOWLER CW, 1987, CURRENT MAMMALOGY, P401; FREELAND WJ, 1990, ECOLOGY, V71, P589, DOI 10.2307/1940312; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Hebblewhite M, 2008, ECOL MONOGR, V78, P141, DOI 10.1890/06-1708.1; HOLECHEK JL, 1982, J RANGE MANAGE, V35, P309, DOI 10.2307/3898308; Jongman R, 1995, DATA ANAL COMMUNITY; Kausrud K, 2006, J ZOOL, V270, P63, DOI 10.1111/j.1469-7998.2006.00118.x; Langvatn R, 2004, AM NAT, V163, P763, DOI 10.1086/383594; Leps J., 2003, MULTIVARIATE ANAL EC; Loe LE, 2005, J ANIM ECOL, V74, P579, DOI 10.1111/j.1365-2656.2005.00987.x; Marell A, 2006, BASIC APPL ECOL, V7, P13, DOI 10.1016/j.baae.2005.04.005; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; McLoughlin PD, 2010, J ANIM ECOL, V79, P4, DOI 10.1111/j.1365-2656.2009.01613.x; Mobaek R., OIKOS IN PRESS; Mobaek R, 2009, OIKOS, V118, P209, DOI 10.1111/j.1600-0706.2008.16935.x; Morris DW, 2003, OECOLOGIA, V136, P1, DOI 10.1007/s00442-003-1241-4; MYSTERUD A, 2003, N ATLANTIC OSCILLATI, P235; Mysterud A, 2011, BASIC APPL ECOL, V12, P195, DOI 10.1016/j.baae.2011.03.002; Nicholson MC, 2006, J ZOOL, V269, P39, DOI 10.1111/j.1469-7998.2006.00051.x; Pettorelli N, 2005, P ROY SOC B-BIOL SCI, V272, P2357, DOI 10.1098/rspb.2005.3218; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Ramp D, 2002, OIKOS, V98, P393, DOI 10.1034/j.1600-0706.2002.980304.x; SENFT RL, 1987, BIOSCIENCE, V37, P789, DOI 10.2307/1310545; Simard MA, 2008, J ANIM ECOL, V77, P678, DOI 10.1111/j.1365-2656.2008.01374.x; TERBRAAK CJF, 1988, ADV ECOL RES, V18, P271; Weladji Robert B., 2002, Rangifer, V22, P33; WHITE RG, 1983, OIKOS, V40, P377, DOI 10.2307/3544310 41 8 8 1 41 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1439-1791 1618-0089 BASIC APPL ECOL Basic Appl. Ecol. 2012 13 5 466 474 10.1016/j.baae.2012.06.009 9 Ecology Environmental Sciences & Ecology 044XD WOS:000311657600009 2019-02-21 J Lloyd, MJ; Metaxas, A; deYoung, B Lloyd, Michelle J.; Metaxas, Anna; deYoung, Brad Patterns in vertical distribution and their potential effects on transport of larval benthic invertebrates in a shallow embayment MARINE ECOLOGY PROGRESS SERIES English Article Vertical migration; Temperature; Fluorescence; Diel period; Water column structure; Larval behavior; Larval transport; Biophysical model parameters RHITHROPANOPEUS-HARRISII BRACHYURA; PLACOPECTEN-MAGELLANICUS; SCALLOP LARVAE; FOOD PATCHES; BEHAVIORAL-RESPONSES; MIGRATION BEHAVIOR; OFFSHORE TRANSPORT; BIVALVE LARVAE; WATER COLUMN; SEA Measurements of larval vertical distributions at high temporal and spatial resolutions as well as larval behavioural responses to environmental characteristics are needed to parameterize bio-physical models of larval dispersal or transport. We studied larval vertical distribution for 7 taxonomic groups (gastropods, bivalves, polychaetes, bryozoans, asteroids, carideans and brachyurans), with different morphology, swimming abilities and life-history strategies, and examined whether these vary with physical or biological factors and periodic cycles (diel period and tidal state) in the field. Using a pump, we collected plankton samples at 6 depths (3, 6, 9, 12, 18 and 24 m), over a 36 and a 26 h period. Temperature, salinity, fluorescence and current velocity were measured concurrently. Larval vertical distribution varied among taxonomic groups, but 4 patterns could be distinguished: (1) larvae exclusively in the mixed layer (asteroids), (2) larvae predominantly below the thermocline, halocline and pycnocline (gastropods, bivalves, polychaetes), (3) larvae associated predominantly with the fluorescence maximum (bryozoans and carideans) and (4) larval distribution varying dielly (gastropods, polychaetes, carideans and brachyurans). Based on flow velocities and depending on distribution, asteroid larvae were likely to be transported farther than those of bryozoans and carideans, while direction and magnitude of transport varied for the other larvae. For most taxonomic groups, behaviour observed in the field agreed with measured laboratory responses to relevant cues. For asteroids and bivalves, simple behavioural parameters can be generated that can be utilized to improve the accuracy of biophysical models. [Lloyd, Michelle J.; Metaxas, Anna] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada; [deYoung, Brad] Mem Univ, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada Lloyd, MJ (reprint author), Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. michelle.lloyd@dal.ca NSERC Strategic Network CHONe; National Sciences and Engineering Research Council (NSERC); CHONe; Faculty of Graduate Studies, Dalhousie University We thank R. Daigle, J. Short, S. Henderson, D. Ross, R. Stanley, J. Foley and J. Hrycik for assistance in the field; M. Merrimen, J. Lindley, W. Judge, D. Shillinger, C. Taggart and J. Grant for providing and assisting with equipment; A. Roy and R. Horricks for assistance in the laboratory; T. Ross, K.Colbo and M. Lesperance for assistance with data processing. This study was done within the Canadian Healthy Oceans Network (CHONe). The research was funded by grants from the NSERC Strategic Network CHONe to A. M. and B.deY., and by a National Sciences and Engineering Research Council (NSERC) Discovery Grant to A. M. M. J. L. was supported by fellowships from NSERC, CHONe and the Faculty of Graduate Studies, Dalhousie University. Biogeographical data contained in this study will be submitted to the Oceanographic Biogeographic Information System (OBIS) and may be accessed on-line at www.iobis.org Baker P, 2003, ESTUARIES, V26, P837, DOI 10.1007/BF02803342; BROOKINS KG, 1985, ESTUARIES, V8, P60, DOI 10.2307/1352122; Burdett-Coutts V, 2004, J EXP MAR BIOL ECOL, V308, P221, DOI 10.1016/j.jembe.2004.02.023; CHIA FS, 1984, CAN J ZOOL, V62, P1205, DOI 10.1139/z84-176; CRONIN TW, 1986, B MAR SCI, V39, P192; Daigle RM, 2011, J EXP MAR BIOL ECOL, V409, P89, DOI 10.1016/j.jembe.2011.08.008; DARO MH, 1974, HYDROBIOLOGIA, V44, P149, DOI 10.1007/BF00187267; deYoung B, 2010, MARINE ECOSYSTEMS AND GLOBAL CHANGE, P89; DiBacco C, 2001, MAR ECOL PROG SER, V217, P191, DOI 10.3354/meps217191; dos Santos A, 2008, MAR ECOL PROG SER, V359, P171, DOI 10.3354/meps07341; FORWARD RB, 1989, MAR BIOL, V101, P159, DOI 10.1007/BF00391455; FORWARD RB, 1985, MAR BIOL, V90, P9, DOI 10.1007/BF00428209; Gallager SM, 1996, MAR BIOL, V124, P679, DOI 10.1007/BF00351049; Garland ED, 2002, LIMNOL OCEANOGR, V47, P803, DOI 10.4319/lo.2002.47.3.0803; Garrison LP, 1999, MAR ECOL PROG SER, V176, P103, DOI 10.3354/meps176103; Gawarkiewicz G, 2007, OCEANOGRAPHY, V20, P40, DOI 10.5670/oceanog.2007.28; Gilbert CS, 2010, PROG OCEANOGR, V87, P37, DOI 10.1016/j.pocean.2010.09.021; Greenwood A, 2001, J MAR BIOL ASSOC UK, V81, P213, DOI 10.1017/S0025315401003666; Hays GC, 2003, HYDROBIOLOGIA, V503, P163, DOI 10.1023/B:HYDR.0000008476.23617.b0; Huebert KB, 2011, LIMNOL OCEANOGR, V56, P1653, DOI 10.4319/lo.2011.56.5.1653; Kingsford MJ, 2002, B MAR SCI, V70, P309; Lesperance M., 2011, ANAL PHYS OCEANOGRAP; Lloyd MJ, 2012, MAR ECOL PROG SER, V464, P135, DOI 10.3354/meps09872; MANN R, 1991, MAR ECOL PROG SER, V68, P257; Manuel JL, 1997, J PLANKTON RES, V19, P1929, DOI 10.1093/plankt/19.12.1929; Manuel JL, 1996, MAR ECOL PROG SER, V142, P147, DOI 10.3354/meps142147; Martin D, 1997, J PLANKTON RES, V19, P2079, DOI 10.1093/plankt/19.12.2079; MCCONNAUGHEY RA, 1984, MAR BIOL, V81, P139, DOI 10.1007/BF00393112; Metaxas A, 2006, J EXP MAR BIOL ECOL, V334, P187, DOI 10.1016/j.jembe.2006.01.025; Metaxas A, 1998, MAR BIOL, V130, P433, DOI 10.1007/s002270050264; Metaxas A, 2001, CAN J FISH AQUAT SCI, V58, P86, DOI 10.1139/cjfas-58-1-86; Metaxas A, 2009, BIOL BULL-US, V216, P257; MILEIKOVSKY SA, 1973, MAR BIOL, V23, P11, DOI 10.1007/BF00394107; North EW, 2008, MAR ECOL PROG SER, V359, P99, DOI 10.3354/meps07317; Ouellet P, 2006, FISH OCEANOGR, V15, P373, DOI 10.1111/j-1365-2419.2005.00394.x; PEARSE JS, 1986, B MAR SCI, V39, P477; Pechenik J.A., 1987, P551; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; PETIPA TS, 1955, DOKL AKAD NAUK SSSR+, V104, P323; PETRIE B, 1978, J FISH RES BOARD CAN, V35, P1116, DOI 10.1139/f78-176; Poulin E, 2002, LIMNOL OCEANOGR, V47, P1248, DOI 10.4319/lo.2002.47.4.1248; Prairie JC, 2010, LIMNOL OCEANOGR, V55, P1943, DOI 10.4319/lo.2010.55.5.1943; RABY D, 1994, MAR ECOL PROG SER, V103, P275, DOI 10.3354/meps103275; Sameoto JA, 2008, BIOL BULL-US, V214, P329, DOI 10.2307/25470674; Sameoto JA, 2008, J EXP MAR BIOL ECOL, V367, P131, DOI 10.1016/j.jembe.2008.09.003; Shanks Alan L., 1995, P323; Short J, 2013, J MAR BIOL ASSOC UK, V93, P591, DOI 10.1017/S0025315412000768; Stow CA, 2009, J MARINE SYST, V76, P4, DOI 10.1016/j.jmarsys.2008.03.011; Strathmann MF, 1987, REPROD DEV MARINE IN; Tamaki A, 2010, ESTUAR COAST SHELF S, V86, P125, DOI 10.1016/j.ecss.2009.11.005; Tapia FJ, 2010, ESTUAR COAST SHELF S, V86, P265, DOI 10.1016/j.ecss.2009.11.003; TREMBLAY MJ, 1990, MAR ECOL PROG SER, V61, P1, DOI 10.3354/meps061001; TREMBLAY MJ, 1990, MAR ECOL PROG SER, V67, P19, DOI 10.3354/meps067019; Woods Hole Science Center, 2011, SEA MAT MATLAB TOOLS; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385; Young Craig M., 1995, P249 56 11 11 1 62 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 469 37 52 10.3354/meps09983 16 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 043OK WOS:000311553600004 Bronze 2019-02-21 J McClanahan, TR; Humphries, AT McClanahan, T. R.; Humphries, A. T. Differential and slow life-history responses of fishes to coral reef closures MARINE ECOLOGY PROGRESS SERIES English Article Ecological indicators; Fisheries management; Life-history characteristics; Longevity; Marine protected areas; Succession; Reserves; Chronosequence MARINE PROTECTED AREAS; POPULATION REGULATION; TROPHIC CASCADES; AMERICAN FISHES; FOOD WEBS; RESERVES; COMMUNITIES; SUCCESSION; RECOVERY; BIODIVERSITY Life-history strategies are expected to underlie key ecological responses to disturbances and are becoming increasingly important in evaluations of the increasing frequency and magnitude of anthropogenic and climate stressors. Here, we evaluate changes in life histories of coral reef fishes after fishing disturbance, including feeding (mean trophic level), growth, reproduction, and mortality characteristics using a 42 yr fish biomass chronosequence created by Kenya's fisheries closures. As expected, the longer the closure, or time since fishing disturbance, the greater the mean age and body size metrics, and the lower the growth rate and mortality metrics. Unexpectedly, a linear decline in the mean trophic level of the fish community with the age of fisheries closure was found and was attributable to relatively slow recovery of the abundant herbivores. Trophic level and other life-history metrics were not significantly correlated with one another, and the life histories of herbivorous fishes (e. g. Acanthuridae, Scaridae) produced these weak relationships. None of the life-history metrics displayed clear leveling after 42 yr of closure, which corroborates other findings that indicate that the closures do not represent undisturbed or pristine ecosystems. Growth, reproduction, and mortality parameters are most influenced by the cessation of fishing, and these metrics indicate that herbivorous fishes can be slow to fully recover, necessitating appropriate restrictions to insure their populations and associated ecological functions are maintained. [McClanahan, T. R.] Wildlife Conservat Soc, Marine Programs, Bronx, NY 10460 USA; [Humphries, A. T.] Rhodes Univ, Dept Zool & Entomol, Coastal Res Grp, ZA-6140 Grahamstown, South Africa; [Humphries, A. T.] Wildlife Conservat Soc, Coral Reef Conservat Project, Mombasa, Kenya McClanahan, TR (reprint author), Wildlife Conservat Soc, Marine Programs, Bronx, NY 10460 USA. tmcclanahan@wcs.org McClanahan, Timothy/0000-0001-5821-3584 Western Indian Ocean Marine Science Association; Tiffany; McBean; John D. MacArthur Foundation; Catherine T. MacArthur Foundation This work was supported by grants to the Wildlife Conservation Society from the Western Indian Ocean Marine Science Association, and the Tiffany, McBean, and John D. and Catherine T. MacArthur Foundations. Kenya's Office of the President provided clearance to do research in Kenya, Kenya Wildlife Services provided permission to work in the parks, and Kiruwitu Community Organization (Vipingo) provided permission to work in their closure. We are grateful for the assistance of E. Mbaru and C. Ruiz Sebastian for organizing the data and T. Branch, A. MacNeil, and E. Darling for statistical advice. Ackerman JL, 2004, OECOLOGIA, V139, P568, DOI 10.1007/s00442-004-1536-0; Ault TR, 1998, ECOL MONOGR, V68, P25, DOI 10.1890/0012-9615(1998)068[0025:SATPFO]2.0.CO;2; Babcock RC, 2010, P NATL ACAD SCI USA, V107, P18256, DOI 10.1073/pnas.0908012107; Bakker JP, 1996, J VEG SCI, V7, P147, DOI 10.2307/3236314; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Branch TA, 2010, NATURE, V468, P431, DOI 10.1038/nature09528; Burnham K. P, 2002, MODEL SELECTION MULT; Claudet J, 2010, ECOL APPL, V20, P830, DOI 10.1890/08-2131.1; Claudet J, 2008, ECOL LETT, V11, P481, DOI 10.1111/j.1461-0248.2008.01166.x; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; COOPER WILLIAM S., 1926, ECOLOGY, V7, P391, DOI 10.2307/1931166; Cowen RK, 2000, SCIENCE, V287, P857, DOI 10.1126/science.287.5454.857; Cowen RK, 2006, SCIENCE, V311, P522, DOI 10.1126/science.1122039; Cowles Henry Chandler, 1899, BOT GAZ, V27, P95, DOI DOI 10.1086/327796; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Daw TM, 2011, COAST MANAGE, V39, P412, DOI 10.1080/08920753.2011.589224; Emslie MJ, 2008, MAR ECOL PROG SER, V371, P177, DOI 10.3354/meps07657; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; GLEASON HA, 1917, B TORREY BOTANICAL C, V44, P463; Graham NAJ, 2006, P NATL ACAD SCI USA, V103, P8425, DOI 10.1073/pnas.0600693103; GRIME JP, 1973, NATURE, V242, P344, DOI 10.1038/242344a0; Guarderas AP, 2011, MAR ECOL PROG SER, V429, P219, DOI 10.3354/meps09103; Halpern BS, 2002, ECOL LETT, V5, P361, DOI 10.1046/j.1461-0248.2002.00326.x; Hicks CC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036022; Hughes TP, 2010, TRENDS ECOL EVOL, V25, P633, DOI 10.1016/j.tree.2010.07.011; HUSTON M, 1987, AM NAT, V130, P168, DOI 10.1086/284704; JENNINGS S, 1998, ADV MAR BIOL, V34, P202; Johnson EA, 2008, ECOL LETT, V11, P419, DOI 10.1111/j.1461-0248.2008.01173.x; Jones GP, 2004, P NATL ACAD SCI USA, V101, P8251, DOI 10.1073/pnas.0401277101; McClanahan TR, 2007, MAR ECOL PROG SER, V340, P221, DOI 10.3354/meps340221; McClanahan TR, 2011, FISHERIES MANAG ECOL, V18, P50, DOI 10.1111/j.1365-2400.2010.00768.x; McClanahan TR, 2008, ECOL APPL, V18, P1516, DOI 10.1890/07-0876.1; McClanahan TR, 2007, ECOL APPL, V17, P1055, DOI 10.1890/06-1450; McClanahan TR, 2009, MAR ECOL PROG SER, V396, P99, DOI 10.3354/meps08279; McClanahan TR, 2011, CONSERV BIOL, V25, P945, DOI 10.1111/j.1523-1739.2011.01694.x; McClanahan TR, 2001, ECOL APPL, V11, P559, DOI 10.2307/3060909; McClanahan TR, 2005, MAR ECOL PROG SER, V294, P241, DOI 10.3354/meps294241; MCCLANAHAN TR, 1994, CORAL REEFS, V13, P231, DOI 10.1007/BF00303637; McClanahan TR, 1996, CONSERV BIOL, V10, P1187, DOI 10.1046/j.1523-1739.1996.10041187.x; MCCLANAHAN TR, 1988, MAR ECOL PROG SER, V44, P191, DOI 10.3354/meps044191; Micheli F, 2004, ECOL APPL, V14, P1709, DOI 10.1890/03-5260; Mora C, 2002, TRENDS ECOL EVOL, V17, P422, DOI 10.1016/S0169-5347(02)02584-3; Mumby PJ, 2006, SCIENCE, V311, P98, DOI 10.1126/science.1121129; Mumby PJ, 2004, NATURE, V427, P533, DOI 10.1038/nature02286; O'Leary JK, 2010, ECOLOGY, V91, P3584, DOI 10.1890/09-2059.1; ODUM EP, 1969, SCIENCE, V164, P262, DOI 10.1126/science.164.3877.262; Olden JD, 2010, AM FISH SOC S, V78, P83; OLSON JERRY S., 1958, BOT GAZ, V119, P125, DOI 10.1086/335973; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; PICKETT STA, 1987, BOT REV, V53, P335, DOI 10.1007/BF02858321; R Development Core Team, 2011, R LANG ENV STAT COMP; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Russ GR, 2004, OECOLOGIA, V138, P622, DOI 10.1007/s00442-003-1456-4; Sandin SA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001548; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; TILMAN D, 1980, AM NAT, V116, P362, DOI 10.1086/283633; Walker LR, 2010, J ECOL, V98, P725, DOI 10.1111/j.1365-2745.2010.01664.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6; Zuur AF, 2007, STAT BIOL HEALTH, P1 65 26 26 1 44 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 469 121 131 10.3354/meps10009 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 043OK WOS:000311553600010 Bronze 2019-02-21 J Dawe, EG; Mullowney, DR; Moriyasu, M; Wade, E Dawe, Earl G.; Mullowney, Darrell R.; Moriyasu, Mikio; Wade, Elmer Effects of temperature on size-at-terminal molt and molting frequency in snow crab Chionoecetes opilio from two Canadian Atlantic ecosystems MARINE ECOLOGY PROGRESS SERIES English Article Snow crab; Terminal molt; Molting frequency; Size; Temperature; Atlantic Canada EASTERN BERING-SEA; ST-LAWRENCE; BONNE BAY; BREEDING MIGRATION; BENTHIC STAGES; SOUTHERN GULF; MAJIDAE; BRACHYURA; GROWTH; NEWFOUNDLAND The effect of temperature on molting frequency and size-at-terminal molt of the snow crab Chionoecetes opilio was investigated and compared between 2 Canadian Atlantic ecosystems based on spring and summer surveys. We found that the size-at-terminal molt was directly related to temperature but that the effect of temperature was much clearer and occurred at smaller sizes for females than for males. By focusing on recently molted (new-shelled) crabs, we showed that size-at-terminal molt is conditioned by temperature over a variable number of instars and intermolt periods leading up to the terminal molt. Crabs of both sexes larger than about 50 mm carapace width (CW), on annual molting schedules, sometimes skipped a molt. The frequency of skip-molting differed between the areas and sexes, and was directly related to size and inversely related to temperature. We develop a hypothesis to explain the relationships of terminal size with temperature and molting frequency that is consistent with life-history theory and snow crab bioenergetics and considers differences between the sexes. The implications to natural mortality and recruitment to fisheries are also discussed. [Dawe, Earl G.; Mullowney, Darrell R.] Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, St John, NF A1C 5X1, Canada; [Moriyasu, Mikio; Wade, Elmer] Fisheries & Oceans Canada, Gulf Fisheries Ctr, Moncton, NB E1C 9B6, Canada Dawe, EG (reprint author), Fisheries & Oceans Canada, NW Atlantic Fisheries Ctr, POB 5667, St John, NF A1C 5X1, Canada. earl.dawe@dfo-mpo.gc.ca Alunno-Bruscia M, 1998, CAN J FISH AQUAT SCI, V55, P459, DOI 10.1139/cjfas-55-2-459; Biron M, 2008, FISH RES, V91, P260, DOI 10.1016/j.fishres.2007.11.029; Brose U, 2010, FUNCT ECOL, V24, P28, DOI 10.1111/j.1365-2435.2009.01618.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Burmeister A, 2010, POLAR BIOL, V33, P775, DOI 10.1007/s00300-009-0755-6; Choi JS, 2007, 2007017 DFO CAN SCI; Comeau M, 1998, CAN J FISH AQUAT SCI, V55, P262, DOI 10.1139/cjfas-55-1-262; CONAN GY, 1986, CAN J FISH AQUAT SCI, V43, P1710, DOI 10.1139/f86-214; Conan GY, 1992, CAN TECH REP FISH AQ; Dawe E, 2011, 2011073 DFO CAN SCI; Dawe EG, 2010, FISH RES, V101, P70, DOI 10.1016/j.fishres.2009.09.008; Dawe EG, 2002, LOW WAKE FI, V19, P577; Dawe EG, 1997, 9707 DFO CAN SCI ADV; Dawe EG, 2008, 2008B02 ICES CM; Doubleday W. G., 1981, NAFO SCI COUNC STUD, V2, P7; Dutil JD, 2010, J SHELLFISH RES, V29, P1025, DOI 10.2983/035.029.0404; Elner RW, 1995, J EXP MAR BIOL ECOL, V193, P93, DOI 10.1016/0022-0981(95)00112-3; ELNER RW, 1992, AM ZOOL, V32, P524; ENNIS GP, 1990, CAN J FISH AQUAT SCI, V47, P2242, DOI 10.1139/f90-249; Ernst B, 2012, CAN J FISH AQUAT SCI, V69, P532, DOI 10.1139/F2011-173; Fisheries Resource Conservation Council (FRCC), 2005, FRCC05R1; FOYLE TP, 1989, J EXP BIOL, V145, P371; Godbout G, 2002, AQUACULTURE, V206, P323, DOI 10.1016/S0044-8486(01)00712-8; Hartnoll R. G, 1982, BIOL CRUSTACEA, P11; HARTNOLL RG, 1993, J CRUSTACEAN BIOL, V13, P647, DOI 10.2307/1549095; Hebert M, 2002, CRUSTACEANA, V75, P671, DOI 10.1163/156854002760202679; Hebert M, 2011, 2011082 DFO CAN SCI; HINES AH, 1989, B MAR SCI, V45, P356; LOVRICH GA, 1995, CAN J ZOOL, V73, P1712, DOI 10.1139/z95-203; Marcello LA, 2012, MAR ECOL PROG SER, V469, P249, DOI 10.3354/meps09766; Maynard DR, 1987, P OCEANS 87 OC INT W, V3, P962; McCallum B, 1996, NAFO SCI COUNCIL STU, V29, P93; Moriyasu Mikio, 2011, V15, P95; OHALLORAN MJ, 1988, J CRUSTACEAN BIOL, V8, P164, DOI 10.2307/1548309; Orensanz JM, 2007, J CRUSTACEAN BIOL, V27, P576; Paul A.J., 2001, Alaska Fishery Research Bulletin, V8, P132; Sainte-Marie B, 1999, MAR ECOL PROG SER, V181, P141, DOI 10.3354/meps181141; SAINTE-MARIE B, 1992, CAN J FISH AQUAT SCI, V49, P1282, DOI 10.1139/f92-144; SAINTE-MARIE B, 1995, CAN J FISH AQUAT SCI, V52, P903, DOI 10.1139/f95-091; Sainte-Marie B, 1998, 9838 DFO CAN SCI ADV; Sainte-Marie B, 2008, B MAR SCI, V83, P131; TAYLOR DM, 1985, FISH B-NOAA, V83, P707; Thompson R.J., 1990, P INT S KING TANN CR, P283; van der Meer J, 2006, TRENDS ECOL EVOL, V21, P136, DOI 10.1016/j.tree.2005.11.004; Walsh SJ, 1996, NAFO SCI COUN STUDIE, V29, P105 45 12 12 0 19 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 469 279 296 10.3354/meps09793 18 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 043OK WOS:000311553600022 Bronze 2019-02-21 J Lin, LH; Mao, F; Chen, C; Ji, X Lin, Long-Hui; Mao, Fei; Chen, Ce; Ji, Xiang Reproductive traits of the gray ratsnake Ptyas korros from three geographically distinct populations CURRENT ZOOLOGY English Article Colubridae; Life-history; Reproductive output; Egg size; Clutch size; Geographical variation; Egg-laying date CROTALUS-VIRIDIS-OREGANUS; LIFE-HISTORY EVOLUTION; EGG-SIZE; OFFSPRING SIZE; CLUTCH SIZE; PHENOTYPIC PLASTICITY; TRADE-OFFS; VIVIPAROUS SNAKE; ELAPHE-CARINATA; KING RATSNAKE We collected gravid gray rat snakes Ptyas korros from three geographically distinct populations in China, Chenzhou (CZ), Jiangshan (JS) and Dinghai (DH), to study geographical variation in female reproductive traits. Egg-laying dates differed among the three populations such that at the most northern latitude egg-laying was latest, and earliest at the most southern latitutde. Clutch size, clutch mass, egg mass, egg shape, within clutch variability in egg sizes and relative clutch mass differed among the three populations, whereas post-oviposition body mass did not. Except for egg-laying date, none of the traits examined varied in a geographically continuous trend. CZ and DH females, although separated by a distance of approximately 1100 km as the crow flies, were similar in nearly all traits examined. JS females were distinguished from CZ and DH females by their higher fecundity (clutch size), greater reproductive output (clutch mass) and more rounded eggs. Our data do not validate the prediction that larger offspring should be produced in colder localities. The absence of an egg size-number trade-off in each of the three populations presumably suggests that P. korros is among species where eggs are well optimized for size within a population [Current Zoology 58 (6): 820-827, 2012]. [Chen, Ce; Ji, Xiang] Nanjing Normal Univ, Coll Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Jiangsu, Peoples R China; [Lin, Long-Hui; Mao, Fei] Hangzhou Normal Univ, Sch Life Sci, Hangzhou Key Lab Anim Adaptat & Evolut, Hangzhou 310036, Zhejiang, Peoples R China Ji, X (reprint author), Nanjing Normal Univ, Coll Life Sci, Jiangsu Key Lab Biodivers & Biotechnol, Nanjing 210046, Jiangsu, Peoples R China. xji@mail.hz.zj.cn Natural Science Foundation of China [30770378, 31071910]; Zhejiang Provincial Foundation of Natural Science [Z3090461]; Hangzhou Bureau of Science and Technology [20100332T20]; Zhejiang Department of Science and Technology for Innovation Teams [2010R50039-26] The work was carried out in compliance with the current laws on animal welfare and research in China, and was supported by grants from Natural Science Foundation of China (30770378 and 31071910), Zhejiang Provincial Foundation of Natural Science (Z3090461), Hangzhou Bureau of Science and Technology (20100332T20) and Zhejiang Department of Science and Technology for Innovation Teams (2010R50039-26). We thank Jian-Fang Gao, Rui-Bin Hu, Yan-Fu Qu and Ling Zhang for their help during the research. ANDREN C, 1983, Amphibia-Reptilia, V4, P63, DOI 10.1163/156853883X00274; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Ballinger R.E., 1983, P241; BALLINGER RE, 1977, ECOLOGY, V58, P628, DOI 10.2307/1939012; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Boersma M, 1997, EVOL ECOL, V11, P439, DOI 10.1023/A:1018484824003; Burt MD, 1928, COPEIA, V1928, P8; Caley MJ, 2001, EVOLUTION, V55, P1245; CASTILLA AM, 1992, CAN J ZOOL, V70, P395, DOI 10.1139/z92-059; CLARK D R JR, 1974, Herpetologica, V30, P372; Diller Lowell V., 2002, Herpetological Monographs, P26; DILLER LV, 1984, HERPETOLOGICA, V40, P182; Du Wei Guo, 2008, Asiatic Herpetological Research, V11, P24; Du Wei-Guo, 2002, Acta Ecologica Sinica, V22, P548; DUNLAP KD, 1990, COPEIA, P568; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Greene H. W., 1997, EVOLUTION MYSTERY NA; IVERSON JB, 1993, CAN J ZOOL, V71, P2448, DOI 10.1139/z93-341; Ji X, 2005, BIOL J LINN SOC, V85, P27, DOI 10.1111/j.1095-8312.2005.00470.x; Ji X, 2000, HERPETOL J, V10, P13; JI X, 2002, CHIN J APPL ECOL, V13, P680; Ji XA, 2000, J HERPETOL, V34, P54, DOI 10.2307/1565238; Ji X, 2007, BIOL J LINN SOC, V91, P315, DOI 10.1111/j.1095-8312.2007.00791.x; Ji X, 2006, COMP BIOCHEM PHYS A, V144, P474, DOI 10.1016/j.cbpa.2006.04.013; Ji X, 2009, OECOLOGIA, V159, P689, DOI 10.1007/s00442-008-1252-2; Ji Xiang, 2000, Acta Zoologica Sinica, V46, P138; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; King RB, 1993, J HERPETOL, V27, P171; KOFRON CP, 1979, COPEIA, P463; Lancaster DL, 2003, TEX J SCI, V55, P25; MADSEN T, 1994, EVOLUTION, V48, P1389, DOI 10.1111/j.1558-5646.1994.tb05323.x; MATHIES T, 1995, OECOLOGIA, V104, P101, DOI 10.1007/BF00365568; Niewiarowski PH, 2004, EVOLUTION, V58, P619, DOI 10.1111/j.0014-3820.2004.tb01684.x; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Qu YF, 2011, BIOL J LINN SOC, V104, P701, DOI 10.1111/j.1095-8312.2011.01749.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; ROFF DA, 2002, LIFE HIST EVOLUTION; Rohr DH, 1997, J ANIM ECOL, V66, P567, DOI 10.2307/5950; Rollinson N, 2008, OIKOS, V117, P144, DOI 10.1111/j.2007.0030-1299.16088.x; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SEIGEL RA, 1991, HERPETOLOGICA, V47, P301; Seigel RA, 2001, FUNCT ECOL, V15, P36; SEIGEL RA, 1992, FUNCT ECOL, V6, P382, DOI 10.2307/2389275; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SHINE R, 1980, COPEIA, P831; SHINE R, 2000, J EVOLUTION BIOL, V13, P49; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Taborsky B, 2006, BIOL LETT-UK, V2, P225, DOI 10.1098/rsbl.2005.0422; Tanaka K, 2011, J NAT HIST, V45, P211, DOI 10.1080/00222933.2010.522262; TINKLE DW, 1957, ECOLOGY, V38, P69, DOI 10.2307/1932127; Wang Z, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016585; Wapstra E, 2001, J HERPETOL, V35, P194, DOI 10.2307/1566108; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; Zong Y, 1998, FAUNA SINICA REPTILI, P253; Zuffi MAL, 2009, BIOL J LINN SOC, V96, P383, DOI 10.1111/j.1095-8312.2008.01124.x 59 4 4 0 13 CURRENT ZOOLOGY BEIJING CHINESE ACAD SCIENCES, INST ZOOLOGY, BEICHEN XILU, CHAOYANG DISTRICT, BEIJING, 100101, PEOPLES R CHINA 1674-5507 CURR ZOOL Curr. Zool. 2012 58 6 820 827 10.1093/czoolo/58.6.820 8 Zoology Zoology 034CA WOS:000310846500005 DOAJ Gold 2019-02-21 J Baudisch, A Baudisch, Annette Birds Do It, Bees Do It, We Do It: Contributions of Theoretical Modelling to Understanding the Shape of Ageing across the Tree of Life GERONTOLOGY English Article Ageing; Trade-offs; Modelling; Mortality; Theory; Comparative approach OPTIMAL RESOURCE-ALLOCATION; NATURAL-SELECTION; OPTIMALITY THEORY; SENESCENCE; EVOLUTION; REPRODUCTION; AGE; HISTORIES; MORTALITY; GROWTH Organisms of different species age differently. Current theory explains why life should get worse, i.e. why patterns of increasing risk of death should evolve. However, for some species the risk of death remains constant or even falls with advancing age. Evolutionary theory to explain the observed diversity of shapes of ageing is lacking. Theoretical models can provide insights into this diversity. Comparing assumptions of models that find increasing mortality patterns with models that find a variety of patterns, including constant and falling mortality over age, I identify conditions that licence constant or negative shapes of ageing. The results suggest that patterns of improvement and maintenance over age emerge when models potentially allow organisms to (1) escape the 'damage ratchet', (2) achieve maintenance and repair in parallel, (3) face increasing future reproductive potential and (4) incorporate flexible trade-offs. With these insights, theoretical models contribute to hypotheses about which species may follow life history strategies of negligible or negative ageing. Copyright (C) 2012 S. Karger AG, Basel Max Planck Inst Demog Res, Max Planck Res Grp Modelling Evolut Ageing, DE-18057 Rostock, Germany Baudisch, A (reprint author), Max Planck Inst Demog Res, Max Planck Res Grp Modelling Evolut Ageing, Konrad Zuse Str 1, DE-18057 Rostock, Germany. baudisch@demogr.mpg.de Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; Baudisch A, 2008, INEVITABLE SENESCENC; Baudisch A, 2011, METHODS ECOL EVOL, V2, P375, DOI 10.1111/j.2041-210X.2010.00087.x; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Charnov EL, 2005, EVOL ECOL RES, V7, P1221; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Chu CYC, 2006, THEOR POPUL BIOL, V69, P193, DOI 10.1016/j.tpb.2005.11.004; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Cichon M, 2000, EVOL ECOL RES, V2, P857; Cichon M, 2001, J EVOLUTION BIOL, V14, P180, DOI 10.1046/j.1420-9101.2001.00243.x; Clark JR., 1983, J ARBORICULT, V9, P201; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Finch C.E, 1990, LONGEVITY SENESCENCE; Finch CE, 2009, GERONTOLOGY, V55, P307, DOI 10.1159/000215589; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 1986, SOC STUDY HUMAN BIOL, P1; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7; Medawar P.B., 1952, UNIQUENESS INDIVIDUA, P44; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Moorad JA, 2010, CURR BIOL, V20, pR406, DOI 10.1016/j.cub.2010.03.016; Munch SB, 2006, P NATL ACAD SCI USA, V103, P16604, DOI 10.1073/pnas.0601735103; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PYKE GH, 1977, Q REV BIOL, V52, P137, DOI 10.1086/409852; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Robson AJ, 2007, AM ECON REV, V97, P492, DOI 10.1257/aer.97.2.492; ROFF DA, 2002, LIFE HIST EVOLUTION; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Seymour RM, 2007, PLOS COMPUT BIOL, V3, P2580, DOI 10.1371/journal.pcbi.0030256; Sgro CM, 1999, SCIENCE, V286, P2521, DOI 10.1126/science.286.5449.2521; Silvertown J, 2001, EVOL ECOL RES, V3, P1; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Sozou PD, 2004, P ROY SOC B-BIOL SCI, V271, P457, DOI 10.1098/rspb.2003.2614; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens D. W, 1986, FORAGING THEORY; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Wensink MJ, 2012, BIOGERONTOLOGY, V13, P197, DOI 10.1007/s10522-011-9362-3; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008 52 11 11 0 17 KARGER BASEL ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND 0304-324X GERONTOLOGY Gerontology 2012 58 6 481 489 10.1159/000341861 9 Geriatrics & Gerontology Geriatrics & Gerontology 030HR WOS:000310562300001 22948534 Other Gold 2019-02-21 J Jonason, PK; Schmitt, DP Jonason, Peter K.; Schmitt, David P. What Have You Done For Me Lately? Friendship-Selection in the Shadow of the Dark Triad Traits EVOLUTIONARY PSYCHOLOGY English Article Dark Triad; friendship; evolutionary psychology; narcissism; psychopathy; Machiavellianism OPPOSITE-SEX FRIENDSHIP; TERM MATING STRATEGY; LIFE-HISTORY THEORY; GENETIC SIMILARITY; NARCISSISM; PERSONALITY; EVOLUTION; SOCIOBIOLOGY; MANIPULATION; COOPERATION The current studies examined how the Dark Triad personality traits (i.e., Machiavellianism, narcissism, and psychopathy) facilitate the strategic structuring of an individual's social environment in terms of same- and opposite-sex friends. In one study using normative questions (N = 267) and another using a budget-allocation task (N = 114), we found that the Dark Triad traits were associated with choosing friends for strategic purposes and to create a volatile environment. Narcissistic individuals reported relatively more reasons to form friendships, such as shared interests, makes me feel good, and intelligence. Women high in narcissism chose same-sex friends who were attractive and women high on Machiavellianism chose same-sex friends who have social status. Men high on psychopathy devalued traits associated with good social relationships in favor of friends who could facilitate their mating efforts and to offset risks incurred in their life history strategy. Results are discussed using the selection-manipulation-evocation framework for explaining how personality traits interact with social environments and integrated with findings from evolutionary biology. [Jonason, Peter K.] Univ Western Sydney, Sch Psychol, Bankstown, NSW, Australia; [Schmitt, David P.] Bradley Univ, Dept Psychol, Peoria, IL 61625 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Psychol, Bankstown, NSW, Australia. p.jonason@uws.edu.au Ackerman JM, 2009, PERS SOC PSYCHOL B, V35, P1285, DOI 10.1177/0146167209335640; Aitken S., 2010, J SOCIAL EVOLUTIONAR, V4, P194, DOI DOI 10.1037/H0099290; Alexander R.D., 1979, SOCIAL EXCHANGE DEV, P197; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; AXELROD R, 1981, SCIENCE, V211, P1390, DOI 10.1126/science.7466396; Benenson JF, 2009, PSYCHOL SCI, V20, P184, DOI 10.1111/j.1467-9280.2009.02269.x; Bleske AL, 2000, PERS RELATIONSHIP, V7, P131, DOI 10.1111/j.1475-6811.2000.tb00008.x; Bleske-Rechek AL, 2001, PERS SOC PSYCHOL B, V27, P1310, DOI 10.1177/01461672012710007; Bogart LA, 2004, BASIC APPL SOC PSYCH, V26, P35, DOI 10.1207/s15324834basp2601_4; Braun V, 2006, QUALITATIVE RES PSYC, V3, P71, DOI DOI 10.1191/1478088706QP0630A; Buffardi LE, 2008, PERS SOC PSYCHOL B, V34, P1303, DOI 10.1177/0146167208320061; BULMER M, 1979, SOCIOL REV, V27, P651, DOI 10.1111/j.1467-954X.1979.tb00354.x; BUSS DM, 1987, J PERS SOC PSYCHOL, V52, P1219, DOI 10.1037//0022-3514.52.6.1219; BUSS DM, 1992, J PERS, V60, P477, DOI 10.1111/j.1467-6494.1992.tb00981.x; BUSS DM, 1987, J PERS SOC PSYCHOL, V53, P1214, DOI 10.1037/0022-3514.53.6.1214; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; BUSS DM, 1984, J PERS SOC PSYCHOL, V47, P361, DOI 10.1037//0022-3514.47.2.361; Caine Nancy G., 1993, P200; Christie R, 1970, STUDIES MACHIAVELLIA; Connor RC, 2003, ANIMAL SOCIAL COMPLEXITY, P115; Cosmides L., 1992, ADAPTED MIND EVOLUTI, P163, DOI DOI 10.1098/RSTB.2006.1991; Costa Jr P. T., 1992, REVISED NEO PERSONAL; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; De Waal Frans, 2000, CHIMPANZEE POLITICS; Duck S., 1991, UNDERSTANDING RELATI; Dunbar R, 1996, GROOMING GOSSIP EVOL; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fischer Claude, 1982, DWELL FRIENDS PERSON; Foster JD, 2008, PERS SOC PSYCHOL B, V34, P1004, DOI 10.1177/0146167208316688; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037//0022-3514.59.6.1216; Gordon D. S., 2009, J SOCIAL EVOLUTIONAR, V3, P182, DOI DOI 10.1016/0092-6566(82)90044-7; Hill K, 2009, P ROY SOC B-BIOL SCI, V276, P3863, DOI 10.1098/rspb.2009.1061; Hrdy S.B., 2009, SUBSTITUTE PARENTS B, pxi; Jonason P.K., 2007, EVOLUTIONARY PSYCHOL, V5, P716; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones DN, 2010, SOC PSYCHOL PERS SCI, V1, P12, DOI 10.1177/1948550609347591; KENRICK DT, 1988, AM PSYCHOL, V43, P23, DOI 10.1037/0003-066X.43.1.23; Kowalski R.M, 2001, BEHAVING BADLY AVERS; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Lewis DMG, 2011, EVOL PSYCHOL-US, V9, P543; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; McCrae RR, 2002, INT CUL PSY, P105; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Morf CC, 2001, PSYCHOL INQ, V12, P177, DOI 10.1207/S15327965PLI1204_1; NISBETT RE, 1977, PSYCHOL REV, V84, P231, DOI 10.1037//0033-295X.84.3.231; Nunnally JC, 1978, PSYCHOMETRIC THEORY; PACKER C, 1982, NATURE, V296, P740, DOI 10.1038/296740a0; Paulhus D. L., SELF REPORT IN PRESS; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rushton J. Philippe, 1995, RACE EVOLUTION BEHAV; RUSHTON JP, 1989, BEHAV BRAIN SCI, V12, P503, DOI 10.1017/S0140525X00057320; RUSHTON JP, 1989, ETHOL SOCIOBIOL, V10, P361; RUSHTON JP, 1987, ACTA GENET MED GEMEL, V36, P289, DOI 10.1017/S0001566000006048; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SCHEEL D, 1991, ANIM BEHAV, V41, P697, DOI 10.1016/S0003-3472(05)80907-8; Schmitt N, 1996, PSYCHOL ASSESSMENT, V8, P350, DOI 10.1037/1040-3590.8.4.350; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Silverman I, 2005, HDB EVOLUTIONARY PSY, P177; Silverman I, 2007, ARCH SEX BEHAV, V36, P261, DOI 10.1007/s10508-006-9168-6; Thornhill R, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P249; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Vigil JM, 2007, HUM NATURE-INT BIOS, V18, P143, DOI 10.1007/s12110-007-9003-3; Wilson E.O., 1975, P1; Wrangham RW, 1999, YEARB PHYS ANTHROPOL, V42, P1 73 32 32 0 51 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 3 400 421 10.1177/147470491201000303 22 Psychology, Experimental Psychology 020JX WOS:000309805900003 22947669 DOAJ Gold 2019-02-21 J Rudolf, VHW; Sorrell, I; Pedersen, AB Rudolf, Volker H. W.; Sorrell, Ian; Pedersen, Amy B. Revenge of the host: cannibalism, ontogenetic niche shifts, and the evolution of life-history strategies in host-parasitoid systems EVOLUTIONARY ECOLOGY RESEARCH English Article cannibalism; life-history evolution; mutual predation; ontogenetic niche shift; role reversal; size structure STRUCTURED POPULATIONS; MICROPLITIS-DEMOLITOR; INTRAGUILD PREDATION; SPECIES INTERACTIONS; INSECT PARASITOIDS; TOP PREDATORS; FOOD-WEB; DYNAMICS; CONSEQUENCES; SIZE Question: How does cannibalism in the host alter the evolution of a parasitoid's oviposition strategy? Can differences in cannibalism risk between parasitized and healthy hosts alter the stage-specific foraging of parasitoids? Can host-specific differences in cannibalistic behaviour explain why parasitoids vary in what host stages they attack? Mathematical methods: We examined the evolutionary dynamics of a stage-structured host parasitoid model using two complementary approaches: (I) individual-based numerical simulations of evolutionary dynamics, and (2) the theory of adaptive dynamics focusing on evolutionarily stable strategies (ESSs). Assumptions: Cannibalism in the host is assumed to be stage structured, with larger stages consuming smaller stages. The consumption of parasitized hosts also results in killing of the parasitoid's offspring. Vulnerability to cannibalism of parasitized versus healthy hosts was allowed to vary. The parasitoid's preference for attacking early versus late host stages was the trait under selection and allowed to evolve. Results: When cannibalism rates increase relative to the parasitoid's attack rates, the ESS of the parasitoid shifts from attacking only early host stages to attacking only late host stages. This shift occurs at lower cannibalism rates when parasitized hosts are more susceptible to cannibalism than healthy hosts. Under equilibrium conditions, a small boundary area exists between these two regions where attacking only early or only late host stages are alternative ESSs. The threshold and alternative stable ESSs are the result of cannibalism, which creates a positive feedback between the parasitoid's oviposition rate and its own mortality. Intermediate strategies, where parasitoids evolve to attack both stages, occur only when host populations exhibit large population oscillations or when generalist parasitoids that attack both stages have a foraging advantage. [Rudolf, Volker H. W.] Rice Univ, Dept Ecol & Evolutionary Biol, Houston, TX 77005 USA; [Sorrell, Ian] Univ Strathclyde, Dept Math & Stat, Glasgow, Lanark, Scotland; [Pedersen, Amy B.] Univ Edinburgh, Ctr Immun Infect & Evolut, Inst Evolutionary Biol, Sch Biol Sci, Edinburgh, Midlothian, Scotland Rudolf, VHW (reprint author), Rice Univ, Dept Ecol & Evolutionary Biol, 6100 Main St, Houston, TX 77005 USA. volker.rudol@rice.edu Pedersen, Amy/0000-0002-1385-1360 NSF [DEB-0841686]; Wellcome Trust [095831] This work was supported in part by NSF DEB-0841686 to V.H.W.R. A.B.P. was funded by an Advanced Fellowship as part of a Wellcome Trust Strategic Grant for the Centre for Immunity, Infection and Evolution (grant reference 095831). Abrams PA, 2000, ANNU REV ECOL SYST, V31, P79, DOI 10.1146/annurev.ecolsys.31.1.79; Akinkurolere RO, 2009, J ECON ENTOMOL, V102, P610, DOI 10.1603/029.102.0219; Boots M, 1998, ECOL ENTOMOL, V23, P118, DOI 10.1046/j.1365-2311.1998.00115.x; BRIGGS CJ, 1993, AM NAT, V141, P372, DOI 10.1086/285479; Burgio Giovanni, 2005, Bulletin of Insectology, V58, P135; Chapman JW, 2000, BEHAV ECOL SOCIOBIOL, V48, P321, DOI 10.1007/s002650000237; Claessen D, 2004, P ROY SOC B-BIOL SCI, V271, P333, DOI 10.1098/rspb.2003.2555; Costantino RF, 1997, SCIENCE, V275, P389, DOI 10.1126/science.275.5298.389; De Roos AM, 2008, P NATL ACAD SCI USA, V105, P13930, DOI 10.1073/pnas.0803834105; De Roos AM, 2002, P NATL ACAD SCI USA, V99, P12907, DOI 10.1073/pnas.192174199; de Roos AM, 2003, P ROY SOC B-BIOL SCI, V270, P611, DOI 10.1098/rspb.2002.2286; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Harvey J.A., 1996, ENTOMOL EXP APPL, V81, P39; HARVEY JA, 1994, ECOLOGY, V75, P1420, DOI 10.2307/1937465; Harvey JA, 2004, ECOL ENTOMOL, V29, P35, DOI 10.1111/j.0307-6946.2004.00568.x; Magalhaes S, 2005, P ROY SOC B-BIOL SCI, V272, P1929, DOI 10.1098/rspb.2005.3127; McGill BJ, 2007, ANNU REV ECOL EVOL S, V38, P403, DOI 10.1146/annurev.ecolsys.36.091704.175517; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Michaud JP, 2003, ECOL ENTOMOL, V28, P92, DOI 10.1046/j.1365-2311.2002.00481.x; Miller TEX, 2011, TRENDS ECOL EVOL, V26, P457, DOI 10.1016/j.tree.2011.05.005; MP Hassell, 2000, SPATIAL TEMPORAL DYN; Murdoch WW, 1996, AM NAT, V148, P807, DOI 10.1086/285957; MURDOCH WW, 2003, MONOGRAPHS POPULATIO; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; Palomares F, 1999, AM NAT, V153, P492, DOI 10.1086/303189; Persson L, 2003, P NATL ACAD SCI USA, V100, P4035, DOI 10.1073/pnas.0636404100; Phillips BL, 2004, P NATL ACAD SCI USA, V101, P17150, DOI 10.1073/pnas.0406440101; POLIS GA, 1991, AM NAT, V138, P123, DOI 10.1086/285208; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; RAND DA, 1994, PHILOS T ROY SOC B, V343, P261, DOI 10.1098/rstb.1994.0025; Reed DJ, 1996, OECOLOGIA, V105, P189, DOI 10.1007/BF00328545; Richardson ML, 2010, ANNU REV ENTOMOL, V55, P39, DOI 10.1146/annurev-ento-112408-085314; Rudolf VHW, 2011, ECOL LETT, V14, P75, DOI 10.1111/j.1461-0248.2010.01558.x; Rudolf VHW, 2007, ECOLOGY, V88, P2991, DOI 10.1890/07-0179.1; Rudolf VHW, 2007, ECOLOGY, V88, P2697, DOI 10.1890/06-1266.1; Rudolf VHW, 2007, P R SOC B, V274, P1205, DOI 10.1098/rspb.2006.0449; Rudolf VHW, 2010, AM NAT, V175, P513, DOI 10.1086/651616; Sait SM, 1997, ECOL ENTOMOL, V22, P225, DOI 10.1046/j.1365-2311.1997.t01-1-00051.x; Schreiber S, 2008, ECOL LETT, V11, P576, DOI 10.1111/j.1461-0248.2008.01171.x; Schreiber SJ, 2000, AM NAT, V155, P637, DOI 10.1086/303347; STRAND MR, 1988, ANN ENTOMOL SOC AM, V81, P822, DOI 10.1093/aesa/81.5.822; VANBAALEN M, 1993, AM NAT, V142, P646, DOI 10.1086/285562; VET LEM, 1993, OECOLOGIA, V95, P410, DOI 10.1007/BF00320996; VINSON SB, 1976, ANNU REV ENTOMOL, V21, P109, DOI 10.1146/annurev.en.21.010176.000545; VINSON SB, 1980, ANNU REV ENTOMOL, V25, P397, DOI 10.1146/annurev.en.25.010180.002145; Wagner JD, 1999, EVOL ECOL RES, V1, P375; Wakano JY, 2002, EVOL ECOL RES, V4, P719; Wearing HJ, 2004, J ANIM ECOL, V73, P706, DOI 10.1111/j.0021-8790.2004.00846.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Woodward G, 2002, J ANIM ECOL, V71, P1063, DOI 10.1046/j.1365-2656.2002.00669.x; Yang LH, 2010, ECOL LETT, V13, P1, DOI 10.1111/j.1461-0248.2009.01402.x 55 6 6 0 21 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. JAN 2012 14 1 31 49 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 022GE WOS:000309944900002 2019-02-21 J Rahman, MA; Yusoff, FM; Arshad, A; Shamsudin, MN; Amin, SMN Rahman, M. Aminur; Yusoff, Fatimah Md; Arshad, A.; Shamsudin, Mariana Nor; Amin, S. M. N. Embryonic, Larval, and Early Juvenile Development of the Tropical Sea Urchin, Salmacis sphaeroides (Echinodermata: Echinoidea) SCIENTIFIC WORLD JOURNAL English Article GENUS ECHINOMETRA; GROWTH; METAMORPHOSIS; OKINAWA; HYBRIDS; FORM; CLYPEASTEROIDA; TEMPERATURE; INDUCTION; PRODUCTS Salmacis sphaeroides (Linnaeus, 1758) is one of the regular echinoids, occuring in the warm Indo-West Pacific, including Johor Straits, between Malaysia and Singapore. In order to investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of S. sphaeroides in laboratory condition. Gametes were obtained from adult individuals by 0.5 M KCl injection into the coelomic cavity. Fertilization rate at limited sperm concentration (10(-5) dilution) was 96.6 +/- 1.4% and the resulting embryos were reared at 24 degrees C. First cleavage (2-cell), 4-cell, 8-cell, 16-cell, 32-cell, and multicell (Morulla) stages were achieved 01.12, 02.03, 02.28, 02.51, 03.12, and 03.32 h postfertilization. Ciliated blastulae with a mean length of 174.72 +/- 4.43 mu m hatched 08.45 h after sperm entry. The gastrulae formed 16.15 h postfertilization and the archenteron elongated constantly while ectodermal red-pigmented cells migrated synchronously to the apical plate. Pluteus larva started to feed unicellular algae in 2 d, grew continuously, and finally attained metamorphic competence in 35 d after fertilization. Metamorphosis took approximately 1 h 30 min from attachment to the complete resorption of larval tissues and the development of complete juvenile structure with adult spines, extended tubefeet and well-developed pedicellaria, the whole event of which usually took place within 1 d postsettlement. This study represents the first successful investigation on embryonic, larval, and early juvenile development of S. sphaeroides. The findings would greatly be helpful towards the understanding of ontogeny and life-history strategies, which will facilitate us to develop the breeding, seed production, and culture techniques of sea urchins in captive condition. [Rahman, M. Aminur; Yusoff, Fatimah Md; Arshad, A.; Shamsudin, Mariana Nor] Univ Putra Malaysia, Lab Marine Biotechnol, Inst Biosci, Upm Serdang 43400, Selangor, Malaysia; [Yusoff, Fatimah Md; Arshad, A.; Amin, S. M. N.] Univ Putra Malaysia, Dept Aquaculture, Fac Agr, Upm Serdang 43400, Selangor, Malaysia Rahman, MA (reprint author), Univ Putra Malaysia, Lab Marine Biotechnol, Inst Biosci, Upm Serdang 43400, Selangor, Malaysia. aminur1963@gmail.com Amin, S.M.N./A-9962-2011 Amin, S.M.N./0000-0003-1489-4191; Arshad, Aziz/0000-0002-8305-0833 Universiti Putra Malaysia (UPM) through Research University Grant Scheme (RUGS) The authors would like to extend our grateful thanks and appreciation to Universiti Putra Malaysia (UPM) for the financial support through Research University Grant Scheme (RUGS) during this study. Sincere thanks are also due to the science officers, research assistants, and students of the Lab. of Marine Biotechnology, Institute of Bioscience, UPM for their assistance and cooperation, which made this work successful. Andrew N. L., 2004, SEA URCHINS FISHERIE, P96; Andrew NL, 2002, OCEANOGR MAR BIOL, V40, P343; Britton G., 2004, CAROTENOIDS HDB; BURKE RD, 1980, J EXP MAR BIOL ECOL, V47, P223, DOI 10.1016/0022-0981(80)90040-4; Caldwell J.W., 1972, THESIS U FLORIDA; Chen GQ, 2010, FOOD CHEM, V120, P973, DOI 10.1016/j.foodchem.2009.11.034; Dincer T, 2007, CRIT REV FOOD SCI, V47, P21, DOI 10.1080/10408390600550265; EMLET RB, 1988, BIOL BULL, V174, P4, DOI 10.2307/1541754; EMLET RB, 1986, J EXP MAR BIOL ECOL, V95, P183, DOI 10.1016/0022-0981(86)90202-9; FUJISAWA H, 1993, DEV GROWTH DIFFER, V35, P395; Gosselin P, 1998, ZOOMORPHOLOGY, V118, P31, DOI 10.1007/s004350050054; Haniffa M.A., 2003, Indian Journal of Fisheries, V50, P355; HINEGARDNER RT, 1969, BIOL BULL-US, V137, P465, DOI 10.2307/1540168; Ichihiro K., 1993, BREEDING PROCESSING; KANENIWA M, 1986, B JPN SOC SCI FISH, V52, P1681; KLUMPP DW, 1993, AQUAT BOT, V45, P205, DOI 10.1016/0304-3770(93)90022-O; LANE DJW, 2000, RAFFLES B ZOOLOGY S, V8, P459; Lawrence J.M., 2001, J WORLD AQUACULTURE, V32, P34; Lawrence JM, 1997, J WORLD AQUACULT SOC, V28, P91, DOI 10.1111/j.1749-7345.1997.tb00966.x; Lawrence JM, 2007, DEV AQUAC FISH SCI, V37, P1; MAZUR J E, 1971, Ohio Journal of Science, V71, P30; MCEDWARD LR, 1984, J EXP MAR BIOL ECOL, V82, P259, DOI 10.1016/0022-0981(84)90109-6; Miller BA, 1999, J EXP MAR BIOL ECOL, V235, P67, DOI 10.1016/S0022-0981(98)00164-6; Miskelly A., 2002, SEA URCHINS INDOPACI; Nunes CDP, 2007, ZOOMORPHOLOGY, V126, P103, DOI 10.1007/s00435-007-0032-6; Oshima T., 1986, B JPN SOC SCI FISH, V52, P511; Pearse John S., 1991, P513; Pulz O, 2004, APPL MICROBIOL BIOT, V65, P635, DOI 10.1007/s00253-004-1647-x; Rahman M. Aminur, 2002, Pakistan Journal of Biological Sciences, V5, P114; Rahman M. R., 2004, Pakistan Journal of Biological Sciences, V7, P1070; Rahman MA, 2005, AQUACULTURE, V245, P121, DOI 10.1016/j.aquaculture.2004.11.049; Rahman MA, 2000, AQUACULTURE, V183, P45, DOI 10.1016/S0044-8486(99)00283-5; Rahman MA, 2001, BIOL BULL, V200, P97, DOI 10.2307/1543303; Rahmani MA, 2001, ZOOL STUD, V40, P29; Robinson S., 2004, SEA URCHINS FISHERIE, P343; Schoppe S., 2000, GUIDE COMMON SHALLOW; Shimabukuro S, 1991, AQUACULTURE TROPICAL, P313; Strathmann MF, 1987, REPROD DEV MARINE IN; Takata H, 2004, ZOOL SCI, V21, P1025, DOI 10.2108/zsj.21.1025; TAN LEO W. H, 1988, GUIDE SEASHORE LIFE; Thet MM, 2004, ZOOL SCI, V21, P265, DOI 10.2108/zsj.21.265; TORTONESE E, 1951, ATTUALITA ZOOLOGICHE, V7, P207; Tsuchiya Makoto, 2009, Galaxea - Tokyo, V11, P149; Vellutini BC, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009654; Wray Gregory A., 1997, P309; Yulin L., 1998, P 3 INT C MAR BIOL S, P75; YUREVA MI, 2003, RUSSIAN J MARINE BIO, V29, P189 47 10 11 1 23 HINDAWI PUBLISHING CORPORATION NEW YORK 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA 1537-744X SCI WORLD J Sci. World J. 2012 938482 10.1100/2012/938482 9 Multidisciplinary Sciences Science & Technology - Other Topics 021LV WOS:000309887200001 23055824 DOAJ Gold, Green Published 2019-02-21 J Shelton, AO; Mangel, M Shelton, Andrew O.; Mangel, Marc Estimating von Bertalanffy parameters with individual and environmental variations in growth JOURNAL OF BIOLOGICAL DYNAMICS English Article SALMON ONCORHYNCHUS-KISUTCH; BAYESIAN HIERARCHICAL METAANALYSIS; MAXIMUM-LIKELIHOOD APPROACH; LIFE-HISTORY STRATEGIES; TAG-RECAPTURE DATA; ANTARCTIC KRILL; COHO SALMON; MODELING GROWTH; DENSITY-DEPENDENCE; SIZE Variation among individuals is an ubiquitous feature of natural populations. However, the relative roles of intrinsic individual differences and stochastic processes in generating variation remain poorly understood. For somatic growth, identifying the contribution of individual and stochastic processes to observed variation in size has important implications both for basic and applied biology. Here we propose and develop methods for estimating individual variation in growth using size-at-age data. We modify the von Bertalanffy growth model to explicitly incorporate individual, environmental, and stochastic variation and provide analytic expressions for the mean and variance of length-at-age in populations. We use a Bayesian statistical model to estimate individual variation from length-at-age data and apply the model to simulated data to test its efficacy. Although a first step towards understanding individual variation, we demonstrate that estimating individual variation from observational samples is possible and provide a platform for future analytical and statistical developments. [Shelton, Andrew O.; Mangel, Marc] Univ Calif Santa Cruz, Ctr Stock Assessment Res, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Calif Santa Cruz, Dept Appl Math & Stat, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA; [Mangel, Marc] Univ Bergen, Dept Biol, N-5020 Bergen, Norway Shelton, AO (reprint author), Univ Calif Santa Cruz, Ctr Stock Assessment Res, Mail Stop SOE-2, Santa Cruz, CA 95064 USA. ole.shelton@noaa.gov; msmangel@ucsc.edu Center for Stock Assessment Research, a partnership between the Fisheries Ecology Division, NOAA Fisheries, Santa Cruz, CA; University of California Santa Cruz; NSF [EF-0924195] This work was supported by the Center for Stock Assessment Research, a partnership between the Fisheries Ecology Division, NOAA Fisheries, Santa Cruz, CA and the University of California Santa Cruz and by NSF grant EF-0924195 to MM. We thank E.J. Dick, S. Munch, W. Satterthwaite, and S. Vincenzi for helpful discussions and comments on the manuscript Alonzo SH, 2003, J APPL ECOL, V40, P692, DOI 10.1046/j.1365-2664.2003.00830.x; Beverton R.J.H., 1957, UK MIN AGR FISH FISH, V19, P97; BJORNSTAD ON, 1994, OIKOS, V69, P167, DOI 10.2307/3545298; Candy SG, 2006, MAR ECOL PROG SER, V306, P17, DOI 10.3354/meps306017; Carlson SM, 2010, ECOLOGY, V91, P1016, DOI 10.1890/09-0252.1; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; Connover D.O., 2002, SCIENCE, V297, P94; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Cressie N., 2011, STAT SPATIAL TEMPORA; Csillery K, 2010, TRENDS ECOL EVOL, V25, P410, DOI 10.1016/j.tree.2010.04.001; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; DEANGELIS DL, 1993, AM NAT, V142, P604, DOI 10.1086/285560; DeGroot Morris H, 1970, OPTIMAL STAT DECISIO; DERISO RB, 1988, CAN J FISH AQUAT SCI, V45, P1054, DOI 10.1139/f88-129; Essington TE, 2001, CAN J FISH AQUAT SCI, V58, P2129, DOI 10.1139/cjfas-58-11-2129; Eveson JP, 2007, CAN J FISH AQUAT SCI, V64, P602, DOI 10.1139/F07-036; FABENS AJ, 1965, GROWTH, V29, P265; Francis R.I.C.C., 1988, New Zealand Journal of Marine and Freshwater Research, V22, P42; Fujiwara M, 2004, ECOL LETT, V7, P106, DOI 10.1046/j.1461-0248.2003.00556.x; Gelman A., 2004, BAYESIAN DATA ANAL; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Grimm V, 2002, OECOLOGIA, V131, P196, DOI 10.1007/s00442-002-0875-y; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Gudmundsson G, 2005, CAN J FISH AQUAT SCI, V62, P1746, DOI 10.1139/F05-074; Hare JA, 1997, ECOLOGY, V78, P2415; Harper J. L., 1977, POPULATION BIOL PLAN; Harvey CJ, 2009, CAN J FISH AQUAT SCI, V66, P1449, DOI 10.1139/F09-087; He X., 2007, T AM FISH SOC, V136, P318; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; Helser TE, 2007, CAN J FISH AQUAT SCI, V64, P470, DOI 10.1139/F07-024; Kawaguchi S, 2006, MAR ECOL PROG SER, V306, P1, DOI 10.3354/meps306001; Kawaguchi S, 2007, POLAR BIOL, V30, P689, DOI 10.1007/s00300-006-0226-2; Kimura DK, 2008, CAN J FISH AQUAT SCI, V65, P1879, DOI 10.1139/F08-091; KITCHELL JF, 1977, J FISH RES BOARD CAN, V34, P1922, DOI 10.1139/f77-258; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Koskella B, 2009, EVOLUTION, V63, P2213, DOI 10.1111/j.1558-5646.2009.00711.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Laslett GM, 2002, CAN J FISH AQUAT SCI, V59, P976, DOI 10.1139/F02-069; MAGNUSON JJ, 1962, CAN J ZOOLOG, V40, P313, DOI 10.1139/z62-029; Mangel M, 2006, THEORETICAL BIOLOGIST'S TOOLBOX: QUANTITATIVE METHODS FOR ECOLOGY AND EVOLUTIONARY BIOLOGY, P1, DOI 10.2277/ 0521537487; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; PALMER AR, 1984, OECOLOGIA, V62, P162, DOI 10.1007/BF00379009; PARMA AM, 1990, CAN J FISH AQUAT SCI, V47, P274, DOI 10.1139/f90-030; PASZKOWSKI CA, 1985, CAN J ZOOL, V63, P2401, DOI 10.1139/z85-355; Pfister CA, 2005, ECOLOGY, V86, P2673, DOI 10.1890/04-1952; Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2; Pfister CA, 2002, ECOLOGY, V83, P59; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Punt AE, 2006, FISH RES, V82, P119, DOI 10.1016/j.fishres.2006.08.003; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Development Core Team, 2011, R LANG ENV STAT COMP; RICE JA, 1993, CAN J FISH AQUAT SCI, V50, P133, DOI 10.1139/f93-015; Ricker W.E., 1958, FISH RES BD CANADA B, V119; Ryer CH, 1996, J FISH BIOL, V48, P686, DOI 10.1111/j.1095-8649.1996.tb01464.x; SAINSBURY KJ, 1980, CAN J FISH AQUAT SCI, V37, P241, DOI 10.1139/f80-031; SCHMITT J, 1987, J ECOL, V75, P651, DOI 10.2307/2260197; SCHMITT J, 1986, ECOLOGY, V67, P1502, DOI 10.2307/1939081; Siegfried KI, 2006, ENVIRON BIOL FISH, V77, P301, DOI 10.1007/s10641-006-9112-6; Snover ML, 2006, AM NAT, V167, pE140, DOI 10.1086/502804; Snover ML, 2005, CAN J FISH AQUAT SCI, V62, P1219, DOI 10.1139/F05-058; Stopher KV, 2008, P ROY SOC B-BIOL SCI, V275, P2137, DOI 10.1098/rspb.2008.0502; Tinker MT, 2008, P NATL ACAD SCI USA, V105, P560, DOI 10.1073/pnas.0709263105; Troynikov VS, 1998, B MATH BIOL, V60, P1099, DOI 10.1006/bulm.1998.0058; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; WANG YG, 1995, CAN J FISH AQUAT SCI, V52, P252, DOI 10.1139/f95-025; Wang YG, 1998, CAN J FISH AQUAT SCI, V55, P2393, DOI 10.1139/cjfas-55-11-2393; WEINER J, 1985, ECOLOGY, V66, P743, DOI 10.2307/1940535; West L., 1986, ECOLOGY, V67, P789; Wiedenmann J, 2008, MAR ECOL PROG SER, V358, P191, DOI 10.3354/meps07350; Wood SN, 2010, NATURE, V466, P1102, DOI 10.1038/nature09319; Yin GS, 2009, BAYESIAN ANAL, V4, P191, DOI 10.1214/09-BA407 76 13 13 1 31 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1751-3758 J BIOL DYNAM J. Biol. Dyn. 2012 6 2 SI 3 30 10.1080/17513758.2012.697195 28 Ecology; Mathematical & Computational Biology Environmental Sciences & Ecology; Mathematical & Computational Biology 019AP WOS:000309709600002 22882022 DOAJ Gold 2019-02-21 J Lloyd, MJ; Metaxas, A; deYoung, B Lloyd, Michelle J.; Metaxas, Anna; deYoung, Brad Physical and biological factors affect the vertical distribution of larvae of benthic gastropods in a shallow embayment MARINE ECOLOGY PROGRESS SERIES English Article Vertical migration; Temperature; Fluorescence; Lunar phase; Diel period; Tidal state; Water column structure; Stratification MARINE INVERTEBRATE LARVAE; 9-M DEEP MESOCOSMS; PLACOPECTEN-MAGELLANICUS; FOOD PATCHES; TEMPERATURE STRATIFICATION; HORIZONTAL TRANSPORT; AVOIDING PREDATORS; TIDAL/DIEL MODEL; CREPIDULA-PLANA; SCALLOP LARVAE Marine gastropods form a diverse taxonomic group, yet little is known about the factors that affect their larval distribution and abundance. We investigated the larval vertical distribution and abundance of 9 meroplanktonic gastropod taxa (Margarites spp., Crepidula spp., Astyris lunata, Diaphana minuta, Littorinimorpha, Arrhoges occidentalis, Ilyanassa spp., Bittiolum alternatum and Nudibranchia), with similar morphology and swimming abilities, but different adult habitats and life-history strategies. We explored the role of physical (temperature, salinity, density, current velocities) and biological (fluorescence) factors, as well as periodic cycles (lunar phase, tidal state, diel period) in regulating larval vertical distribution. Using a pump, we collected plankton samples at 6 depths (3, 6, 9, 12, 18 and 24 m) at each tidal state, every 2 h over a 36 and a 26 h period, during a spring and neap tide, respectively, in St. George's Bay, Nova Scotia. Concurrently, we measured temperature, salinity, density, fluorescence (as a proxy for chlorophyll, i.e. phytoplankton density), and current velocity. Larval abundance was most strongly related to temperature, except for Littorinimorpha and Crepidula spp., for which it was most strongly related to fluorescence. Margarites spp., A. lunata, Ilyanassa spp. and B. alternatum exhibited either diel or reverse-diel vertical migration during 1 or both lunar phases. For Crepidula spp., Littorinimorpha, A. occidentalis and Nudibranchia, larval vertical distribution differed between lunar phases. Only the larval vertical distribution of Margarites spp., D. minuta and Ilyanassa spp. varied with tidal state during 1 or both lunar phases. The key factors determining the vertical distribution of gastropod larvae were temperature, fluorescence, and light, although the importance of each factor varied among taxa. Differences in vertical distribution may enable these larvae to partition over a wide range of potential habitats for settlement. [Lloyd, Michelle J.; Metaxas, Anna] Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada; [deYoung, Brad] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada Lloyd, MJ (reprint author), Dalhousie Univ, Dept Oceanog, Halifax, NS B3H 4R2, Canada. michelle.lloyd@dal.ca National Sciences and Engineering Research Council (NSERC) Strategic Network CHONe; NSERC Discovery Grant; NSERC, CHONe; Faculty of Graduate Studies, Dalhousie University We thank R. Daigle, J. Short, S. Henderson, D. Ross, R. Stanley, J. Foley and J. Hrycik for assistance in the field; M. Merrimen, J. Lindley, W. Judge, D. Schillinger, C. Taggart and J. Grant for providing and assisting with equipment; A. Roy and R. Horricks for assistance in the laboratory; T. Ross, K. Colbo, and M. Lesperance for assistance with data processing. This study was part of the Canadian Healthy Oceans Network (CHONe). The research was funded by grants from the National Sciences and Engineering Research Council (NSERC) Strategic Network CHONe to A. M. and B. deY., and by a NSERC Discovery Grant to A. M.. M. J. L. was supported by fellowships from NSERC, CHONe, and the Faculty of Graduate Studies, Dalhousie University. Biogeographical data contained in this study will be submitted to the Oceanographic Biogeographic Information System (OBIS) and may be accessed on-line at www.iobis.org. Appeltans W., 2011, WORLD REGISTER MARIN; BARILE PJ, 1994, J EXP MAR BIOL ECOL, V183, P147; Blanchard M, 2008, AQUAT LIVING RESOUR, V21, P197, DOI 10.1051/alr:2008025; Brunel P, 1998, CANADIAN SPECIAL PUB, V126; Burdett-Coutts V, 2004, J EXP MAR BIOL ECOL, V308, P221, DOI 10.1016/j.jembe.2004.02.023; CHIA FS, 1984, CAN J ZOOL, V62, P1205, DOI 10.1139/z84-176; Collin R, 2001, MOL ECOL, V10, P2249, DOI 10.1046/j.1365-294X.2001.01372.x; Daigle RM, 2011, J EXP MAR BIOL ECOL, V409, P89, DOI 10.1016/j.jembe.2011.08.008; DARO MH, 1974, HYDROBIOLOGIA, V44, P149, DOI 10.1007/BF00187267; DiBacco C, 2001, MAR ECOL PROG SER, V217, P191, DOI 10.3354/meps217191; FORWARD RB, 1988, OCEANOGR MAR BIOL, V26, P361; Fuchs HL, 2010, J MAR RES, V68, P153, DOI 10.1357/002224010793079013; Fuchs HL, 2004, LIMNOL OCEANOGR, V49, P1937, DOI 10.4319/lo.2004.49.6.1937; Gallager SM, 1996, MAR BIOL, V124, P679, DOI 10.1007/BF00351049; Garland ED, 2002, LIMNOL OCEANOGR, V47, P803, DOI 10.4319/lo.2002.47.3.0803; Higgins FA, 2012, J THERM BIOL, V37, P83, DOI 10.1016/j.jtherbio.2011.11.004; Kingsford MJ, 2002, B MAR SCI, V70, P309; LEBOUR MARIE V., 1937, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V22, P105; Lesperance M, 2011, PHYS PHYS OCEANOGRAP; LIMA GM, 1985, J EXP MAR BIOL ECOL, V90, P55, DOI 10.1016/0022-0981(85)90074-7; Manuel JL, 1997, J PLANKTON RES, V19, P1949, DOI 10.1093/plankt/19.12.1949; Manuel JL, 1997, J PLANKTON RES, V19, P1929, DOI 10.1093/plankt/19.12.1929; Metaxas A, 1998, MAR BIOL, V130, P433, DOI 10.1007/s002270050264; Metaxas A, 2001, CAN J FISH AQUAT SCI, V58, P86, DOI 10.1139/cjfas-58-1-86; MILEIKOVSKY SA, 1973, MAR BIOL, V23, P11, DOI 10.1007/BF00394107; OHMAN MD, 1983, SCIENCE, V220, P1404, DOI 10.1126/science.220.4604.1404; Pearce CM, 1996, MAR BIOL, V124, P693, DOI 10.1007/BF00351050; Pechenik J.A., 1987, P551; PENNINGTON JT, 1986, J EXP MAR BIOL ECOL, V104, P69, DOI 10.1016/0022-0981(86)90098-5; PETIPA TS, 1955, DOKL AKAD NAUK SSSR+, V104, P323; PETRIE B, 1978, J FISH RES BOARD CAN, V35, P1116, DOI 10.1139/f78-176; Petrie B., 1977, REPORT SERIES BEDFOR; Poulin E, 2002, LIMNOL OCEANOGR, V47, P1248, DOI 10.4319/lo.2002.47.4.1248; Rabiner L. R., 1975, THEORY APPL DIGITAL; RABY D, 1994, MAR ECOL PROG SER, V103, P275, DOI 10.3354/meps103275; ROUGHGARDEN J, 1994, PHILOS T ROY SOC B, V343, P79, DOI 10.1098/rstb.1994.0010; Sameoto JA, 2008, J EXP MAR BIOL ECOL, V367, P131, DOI 10.1016/j.jembe.2008.09.003; SCHELTEMA RS, 1967, BIOL BULL-US, V132, P253, DOI 10.2307/1539893; SCHELTEMA RUDOLF S., 1962, TRANS AMER MICROSC SOC, V81, P1, DOI 10.2307/3223940; SCHELTEMA RUDOLPH S., 1965, HYDROBIOLOGIA, V25, P321, DOI 10.1007/BF00838496; SHANKS A, 2001, IDENTIFICATION GUIDE; Short J, 2013, J MAR BIOL ASSOC UK, V93, P591, DOI 10.1017/S0025315412000768; Strathmann MF, 1987, REPROD DEV MARINE IN; Strathmann R.R., 1987, P465; THIRIOTQUIEVREUX C, 1982, MALACOLOGIA, V23, P37; THIRIOTQUIEVREUX C, 1983, ESTUARIES, V6, P387, DOI 10.2307/1351398; THIRIOTQUIEVREUX C, 1980, VELIGER, V23, P1; THORSON GUNNAR, 1946, MEDDEL KOMM DANMARKS FISKERI OG HAVUNDERSOGELSER SER PLANKTON, V4, P1; TREMBLAY MJ, 1990, MAR ECOL PROG SER, V61, P1, DOI 10.3354/meps061001; Vargas CA, 2006, ECOLOGY, V87, P444, DOI 10.1890/05-0265; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385; Young Craig M., 1995, P249 53 6 7 2 34 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 464 135 U168 10.3354/meps09872 21 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 010WP WOS:000309125500009 Bronze 2019-02-21 J Macdonald, JI; Tonkin, ZD; Ramsey, DSL; Kaus, AK; King, AK; Crook, DA Macdonald, Jed I.; Tonkin, Zeb D.; Ramsey, David S. L.; Kaus, Andrew K.; King, Alison K.; Crook, David A. Do invasive eastern gambusia (Gambusia holbrooki) shape wetland fish assemblage structure in south-eastern Australia? MARINE AND FRESHWATER RESEARCH English Article alien species; Murray-Darling Basin; native fishes; niche overlap; occupancy models FRESH-WATER FISH; CYPRINUS-CARPIO; FLOODPLAIN RIVER; COMMON CARP; PSEUDOMUGIL-SIGNIFER; BEHAVIORAL-RESPONSES; IBERIAN PENINSULA; CLIMATE-CHANGE; PLAGUE MINNOW; MURRAY RIVER Defining the ecological impacts conferred by invasive fishes provides a framework for evaluating the feasibility of control efforts in invaded waterways, and for predicting the consequences of future incursions. Eastern gambusia (Gambusia holbrooki) is a remarkably successful invader of freshwater systems worldwide, with the capacity to detrimentally impact native fishes both directly (e.g. competition, predation, agonistic interactions) and indirectly (e.g. triggering trophic cascades). Here, we modelled the influence of eastern gambusia and several environmental covariates on fish species diversity, abundance and condition based on quantitative survey data collected from 93 wetlands in south-eastern Australia. We predicted that small-bodied, wetland specialist species sharing dietary-and habitat-niches with eastern gambusia would be most severely impacted, and that environmental stressors associated with wetland drying during late summer would magnify these impacts. Eastern gambusia influenced the occurrence, abundance and/or body condition of most common wetland species; however, the direction and level of impact appeared dependent on both biotic and environmental forces. From these results, we postulate that generalist life-history strategies that permit niche-segregation may release some native species from competitive/predatory pressures, allowing coexistence with eastern gambusia in resource-limited, environmentally harsh habitats, whilst specialist species that occupy narrower ecological niches may be less resistant. [Macdonald, Jed I.; Tonkin, Zeb D.; Ramsey, David S. L.; Kaus, Andrew K.; King, Alison K.; Crook, David A.] Arthur Rylah Inst Environm Res, Dept Sustainabil & Environm, Heidelberg, Vic 3084, Australia Macdonald, JI (reprint author), S Australian Res & Dev Inst, Henley Beach, SA 5022, Australia. jedimacdonald@gmail.com Crook, David/0000-0003-4035-050X Murray-Darling Basin Authority (MDBA) through its Native Fish Strategy This study was funded by the Murray-Darling Basin Authority (MDBA) through its Native Fish Strategy. We greatly appreciate the contribution of Heleena Bamford (MDBA) in coordinating the project, and we thank Renae Ayres, Leah Beesley, Fern Hames (Arthur Rylah Institute for Environmental Research), Dale McNeil (South Australian Research and Development Institute), Jamie Knight (New South Wales Department of Industry and Investment), David Maynard (Australian Maritime College), Kylie Hall and Wayne Fulton (Victorian Department of Primary Industries) for valuable input into the direction of the project. Thanks also to David Semmens (The University of Melbourne) for assistance in the field, and to Kerryn Herman (Birdlife Australia), Dale McNeil, Andrew Boulton and an anonymous reviewer for suggestions that improved the quality of the manuscript. The study was conducted under Victorian Department of Sustainability and Environment Animal Care and Ethics Approval Permit No. AEC 08/07, NSW DPI Scientific Collection Permit No. P07/0115-1.0 and Victorian Department of Primary Industries Fisheries Collection Permit No. RP827. ARTHINGTON AH, 1991, CAN J FISH AQUAT SCI, V48, P33, DOI 10.1139/f91-302; ARTHINGTON AH, 1983, AUST J ECOL, V8, P87, DOI 10.1111/j.1442-9993.1983.tb01597.x; Barrier R. F. G., 1994, Ecology of Freshwater Fish, V3, P93, DOI 10.1111/j.1600-0633.1994.tb00110.x; Beesley LS, 2010, MAR FRESHWATER RES, V61, P605, DOI 10.1071/MF09137; Bond N. R., 2003, Ecological Management & Restoration, V4, P193, DOI 10.1046/j.1442-8903.2003.00156.x; Bond N, 2011, MAR FRESHWATER RES, V62, P1043, DOI 10.1071/MF10286; Bond NR, 2005, RESTOR ECOL, V13, P39, DOI 10.1111/j.1526-100X.2005.00006.x; Brown P, 2005, MAR FRESHWATER RES, V56, P1151, DOI 10.1071/MF05023; Caiola N, 2005, J APPL ICHTHYOL, V21, P358, DOI 10.1111/j.1439-0426.2005.00684.x; Cardona L, 2006, BIOL INVASIONS, V8, P835, DOI 10.1007/s10530-005-0420-0; Clavero M, 2005, TRENDS ECOL EVOL, V20, P110, DOI 10.1016/j.tree.2005.01.003; Clavero M, 2006, ECOL APPL, V16, P2313, DOI 10.1890/1051-0761(2006)016[2313:HDAIRO]2.0.CO;2; Copp GH, 2005, J APPL ICHTHYOL, V21, P242, DOI 10.1111/j.1439-0426.2005.00690.x; Costelloe JF, 2010, MAR FRESHWATER RES, V61, P857, DOI 10.1071/MF09090; Courtenay W.R. Jr, 1989, P319; CRIVELLI AJ, 1981, J FISH BIOL, V18, P271, DOI 10.1111/j.1095-8649.1981.tb03769.x; Crook DA, 2010, MAR FRESHWATER RES, V61, P379, DOI 10.1071/MF09209; CROWDER LB, 1982, ECOLOGY, V63, P1802, DOI 10.2307/1940122; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; Fey DP, 2005, FISH B-NOAA, V103, P725; Froese R, 2006, J APPL ICHTHYOL, V22, P241, DOI 10.1111/j.1439-0426.2006.00805.x; GEHRKE PC, 1992, J FISH BIOL, V40, P695, DOI 10.1111/j.1095-8649.1992.tb02617.x; Gozlan RE, 2010, J FISH BIOL, V76, P751, DOI 10.1111/j.1095-8649.2010.02566.x; Grenouillet G, 2002, ECOGRAPHY, V25, P641, DOI 10.1034/j.1600-0587.2002.250601.x; Hargrave CW, 2006, OECOLOGIA, V149, P123, DOI 10.1007/s00442-006-0435-y; Ho SS, 2011, MAR FRESHWATER RES, V62, P372, DOI 10.1071/MF10222; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Howe E, 1997, MAR FRESHWATER RES, V48, P425, DOI 10.1071/MF96114; Ivantsoff W, 1999, MAR FRESHWATER RES, V50, P467, DOI 10.1071/MF98106; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jones M., 2004, IMPACT FLOW REGULATI; Karolak S, 2006, MDBC PUBLICATION; Keller K, 2008, J FISH BIOL, V73, P1714, DOI 10.1111/j.1095-8649.2008.02045.x; Kelleway J, 2010, MAR FRESHWATER RES, V61, P430, DOI 10.1071/MF09113; Kennard MJ, 2005, FRESHWATER BIOL, V50, P174, DOI 10.1111/j.1365-2427.2004.01293.x; Kilsby NN, 2012, RIVER RES APPL, V28, P543, DOI 10.1002/rra.1466; King AJ, 2005, MAR FRESHWATER RES, V56, P215, DOI 10.1071/MF04117; King AJ, 2004, J FISH BIOL, V65, P1582, DOI 10.1111/j.1095-8649.2004.00567.x; King AJ, 2003, CAN J FISH AQUAT SCI, V60, P773, DOI 10.1139/F03-057; King AJ, 2002, HYDROBIOLOGIA, V472, P223, DOI 10.1023/A:1016307602735; King AJ, 2007, ASSESSING EFFECTIVEN; Knight J, 1999, DENSITY DEPENDENT IN; Koehn JD, 2004, NEW ZEAL J MAR FRESH, V38, P457, DOI 10.1080/00288330.2004.9517253; Kolar CS, 2002, SCIENCE, V298, P1233, DOI 10.1126/science.1075753; Lambertini M, 2011, SCIENCE, V333, P404, DOI 10.1126/science.333.6041.404-b; Leprieur F, 2008, DIVERS DISTRIB, V14, P291, DOI 10.1111/j.1472-4642.2007.00409.x; Lintermans M., 2007, FISHES MURRAY DARLIN; LLOYD L N, 1986, Transactions of the Royal Society of South Australia, V110, P49; Lloyd LN, 1990, INTRO TRANSLOCATED F, P94; Lowe S, 2000, 100 WORLDS WORST INV; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; Macdonald J., 2008, MURRAY DARLING BASIN; MacKenzie D. I., 2006, OCCUPANCY ESTIMATION; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; Margaritora Fiorenza G., 2001, Journal of Limnology, V60, P189; Matthews WJ, 2003, FRESHWATER BIOL, V48, P1232, DOI 10.1046/j.1365-2427.2003.01087.x; McKinnon LJ, 1997, MONITORING FISH ASPE; McMaster D, 2008, MAR FRESHWATER RES, V59, P177, DOI 10.1071/MF07140; McNeil D. G., 2004, THESIS LA TROBE U ME; McNeil DG, 2007, FRESHWATER BIOL, V52, P412, DOI 10.1111/j.1365-2427.2006.01705.x; Morrongiello J., 2006, IMPACTS DROUGHT FISH; Murphy BF, 2008, INT J CLIMATOL, V28, P859, DOI 10.1002/joc.1627; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; POWER ME, 1990, SCIENCE, V250, P811, DOI 10.1126/science.250.4982.811; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; Pyke GH, 2008, ANNU REV ECOL EVOL S, V39, P171, DOI 10.1146/annurev.ecolsys.39.110707.173451; R Development Core Team, 2011, R LANG ENV STAT COMP; Rehwinkel R., 2009, GUNBOWER FOREST FISH; Richardson A., 2005, STATUS GUNBOWER ISLA; Rincon PA, 2002, J FISH BIOL, V61, P1560, DOI 10.1006/jfbi.2002.2175; Rowe DK, 2008, REV IMPACTS GAMBUSIA; ROZAS LP, 1988, OECOLOGIA, V77, P101, DOI 10.1007/BF00380932; Schlosser I.J., 1987, P17; Sivakumaran KP, 2003, ENVIRON BIOL FISH, V68, P321, DOI 10.1023/A:1027381304091; Smith BB, 2004, T ROY SOC SOUTH AUST, V128, P249; Snickars M, 2004, J FISH BIOL, V65, P1604, DOI 10.1111/j.1095-8649.2004.00570.x; Stoffels RJ, 2003, ENVIRON BIOL FISH, V66, P293, DOI 10.1023/A:1023918420927; Stuart IG, 2006, FISHERIES MANAG ECOL, V13, P213, DOI 10.1111/j.1365-2400.2006.00495.x; Tonkin Z., 2008, BARMAH MILLEWA FISH; Tonkin Zeb, 2008, Ecological Management & Restoration, V9, P196, DOI 10.1111/j.1442-8903.2008.00418.x; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Warburton K, 2003, P LINN SOC N S W, V124, P115; Willis SC, 2005, OECOLOGIA, V142, P284, DOI 10.1007/s00442-004-1723-z; Winemiller KO, 2000, T AM FISH SOC, V129, P451, DOI 10.1577/1548-8659(2000)129<0451:FASIRT>2.0.CO;2 84 15 15 2 47 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 1323-1650 MAR FRESHWATER RES Mar. Freshw. Res. 2012 63 8 659 671 10.1071/MF12019 13 Fisheries; Limnology; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography 990ZR WOS:000307671100001 2019-02-21 J Compton, TJ; Morrison, MA; Leathwick, JR; Carbines, GD Compton, Tanya J.; Morrison, Mark A.; Leathwick, John R.; Carbines, Glen D. Ontogenetic habitat associations of a demersal fish species, Pagrus auratus, identified using boosted regression trees MARINE ECOLOGY PROGRESS SERIES English Article Pagrus auratus; Fish; Essential fish habitat; Ecosystem management; Species distribution modelling CORAL-REEF FISHES; JUVENILE SNAPPER; DISTRIBUTION MODELS; SPATIAL-ANALYSIS; MARINE FISH; NEW-ZEALAND; COD GADUS; PREDICTION; RICHNESS; BIODIVERSITY In coastal areas, the identification of habitat types critical to fish life history strategies can provide useful information for ecosystem-based management. Recent studies show that species distribution modelling can be a cost effective tool for describing fish habitat. However, few modelling studies have examined ontogenetic habitat associations. This is critical, as fish species often have different habitat preferences depending on their life stage. In this study, we used boosted regression trees (BRT) to describe ontogenetic habitat associations in snapper Pagrus auratus across the inner Hauraki Gulf of New Zealand. The BRT models identified that juvenile snapper were most frequently associated with slow orbital velocities and slow tidal current speeds, as well as biogenic sedimentary structures (area under the receiver operating curve or AUC, a measure of model performance, 0.79). In contrast, larger snapper were associated with faster tidal currents and faster orbital velocities (AUC 0.78). Juvenile and adult snapper were spatially separated; juvenile snapper occurred in waters close to shore, whereas large snapper occurred mainly in the channels between the islands and the waters around the islands. The successful discrimination of adult and juvenile habitat associations suggests that a modelling approach such as this could be useful for ecosystem-based management. [Morrison, Mark A.] Natl Inst Water & Atmospher Res Ltd, Auckland 1149, New Zealand; [Compton, Tanya J.; Leathwick, John R.] Natl Inst Water & Atmospher Res Ltd, Hamilton 3216, New Zealand; [Carbines, Glen D.] Stock Monitoring Serv Ltd, Auckland 0742, New Zealand Compton, TJ (reprint author), Royal Netherlands Inst Sea Res, Landsdiep 4, NL-1797 SZ T Horntje, Netherlands. tanya.compton@nioz.nl New Zealand Ministry of Science and Innovation programmes [CO1X0506, CO1X0907] We thank B. Venables, P. Dunstan, F. Oehler and T. Diettrich for helpful comments on the statistics and modelling, M. Hadfield and R. Gorman for providing the physical variables, U. Shankar for providing GIS support, D. Parsons, N. Usmar, M. Rijkenberg and J. Hewitt for useful contributions to the manuscript and N. Lewis of the vessel 'Team Effort' for many nights of work in the field. This work was funded by New Zealand Ministry of Science and Innovation programmes CO1X0506 and CO1X0907. We thank 2 referees for their useful comments on this paper. Armstrong CW, 2008, ICES J MAR SCI, V65, P817, DOI 10.1093/icesjms/fsn092; Austin M, 2007, ECOL MODEL, V200, P1, DOI 10.1016/j.ecolmodel.2006.07.005; Beger M, 2008, MAR ECOL PROG SER, V361, P1, DOI 10.3354/meps07481; Crossland J, 1982, NZ FISH RES DIV OCCA; Dahlgren CP, 2000, ECOLOGY, V81, P2227; De'ath G, 2007, ECOLOGY, V88, P243, DOI 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; Elith J, 2006, ECOGRAPHY, V29, P129, DOI 10.1111/j.2006.0906-7590.04596.x; Elith J, 2009, ANNU REV ECOL EVOL S, V40, P677, DOI 10.1146/annurev.ecolsys.110308.120159; FRANCIS MP, 1994, NEW ZEAL J MAR FRESH, V28, P201, DOI 10.1080/00288330.1994.9516608; Friedlander AM, 1998, J EXP MAR BIOL ECOL, V224, P1, DOI 10.1016/S0022-0981(97)00164-0; Friedman J, 2000, ANN STAT, V28, P337, DOI 10.1214/aos/1016218223; Friedman JH, 2001, ANN STAT, V29, P1189, DOI 10.1214/aos/1013203451; Fulton CJ, 2002, MAR ECOL PROG SER, V236, P255, DOI 10.3354/meps236255; Gratwicke B, 2005, MAR ECOL PROG SER, V292, P301, DOI 10.3354/meps292301; Green AL, 1996, MAR ECOL PROG SER, V133, P1, DOI 10.3354/meps133001; Guisan A, 2007, ECOL MONOGR, V77, P615, DOI 10.1890/06-1060.1; Guisan A, 2005, ECOL LETT, V8, P993, DOI 10.1111/j.1461-0248.2005.00792.x; Hadfield M, 2002, MFE01517; HANLEY JA, 1982, RADIOLOGY, V143, P29, DOI 10.1148/radiology.143.1.7063747; Hartill B, 2007, 200726 MIN PRIM IND; Hartill BW, 2003, MAR FRESHWATER RES, V54, P931, DOI 10.1071/MF02095; Jeffrey CFG, 2010, P 62 GULF CAR FISH I, P37; Kailola P. J, 1993, AUSTR FISHERIES RESO; Kemp WM, 2005, MAR ECOL PROG SER, V303, P1, DOI 10.3354/meps303001; Kingsford M, 1998, STUDYING TEMPERATE M; Knudby A, 2010, REMOTE SENS ENVIRON, V114, P1230, DOI 10.1016/j.rse.2010.01.007; Knudby A, 2010, ECOL MODEL, V221, P503, DOI 10.1016/j.ecolmodel.2009.11.008; Laurel BJ, 2009, J EXP MAR BIOL ECOL, V377, P28, DOI 10.1016/j.jembe.2009.06.010; Laurel BJ, 2003, MAR ECOL PROG SER, V251, P245, DOI 10.3354/meps251245; Leathwick JR, 2006, MAR ECOL PROG SER, V321, P267, DOI 10.3354/meps321267; Lecchini D, 2005, MAR BIOL, V147, P47, DOI 10.1007/s00227-004-1543-z; Lindholm JB, 1999, MAR ECOL PROG SER, V180, P247, DOI 10.3354/meps180247; Lirman D, 1999, B MAR SCI, V65, P235; Lotze HK, 2006, SCIENCE, V312, P1806, DOI 10.1126/science.1128035; McPhee D. P., 2002, Pacific Conservation Biology, V8, P40; Monk J, 2010, MAR ECOL PROG SER, V420, P157, DOI 10.3354/meps08858; Morrison M, 2006, FISH RES, V82, P150, DOI 10.1016/j.fishres.2006.06.024; Morrison M, 2001, TRAWL SURVEY SNAPPER; Palumbi SR, 2009, FRONT ECOL ENVIRON, V7, P204, DOI 10.1890/070135; Parsons DM, 2011, CAN J FISH AQUAT SCI, V68, P632, DOI 10.1139/F11-005; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Pittman SJ, 2007, ECOL MODEL, V204, P9, DOI 10.1016/j.ecolmodel.2006.12.017; Pittman SJ, 2009, J COASTAL RES, V25, P27, DOI [10.2112/SI53-004.1, 10.2112/S153-004.1]; Pittman SJ, 2003, ADV MAR BIOL, V44, P205, DOI 10.1016/S0065-2881(03)44004-2; R Development Core Team, 2011, R LANG ENV STAT COMP; Ridgeway G., 2006, GBM GEN BOOSTED REGR; Ross PM, 2007, MAR FRESHWATER RES, V58, P1144, DOI 10.1071/MF07017; Snelder TH, 2007, ENVIRON MANAGE, V39, P12, DOI 10.1007/s00267-005-0206-2; Stoner AW, 2007, J SEA RES, V57, P137, DOI 10.1016/j.seares.2006.08.005; Stoner AW, 2001, MAR ECOL PROG SER, V213, P253, DOI 10.3354/meps213253; Thrush SF, 2002, ANNU REV ECOL SYST, V33, P449, DOI 10.1146/annurev.ecolsys.33.010802.150515; Thrush SF, 2003, ECOL APPL, V13, P1433, DOI 10.1890/02-5198; Thrush SF, 2002, MAR ECOL PROG SER, V245, P273, DOI 10.3354/meps245273; Usmar N, 2009, THESIS U AUCKLAND; Valavanis VD, 2008, HYDROBIOLOGIA, V612, P5, DOI 10.1007/s10750-008-9493-y; WARWICK RM, 1980, MAR ECOL PROG SER, V3, P97, DOI 10.3354/meps003097; Watling L, 1998, CONSERV BIOL, V12, P1180, DOI 10.1046/j.1523-1739.1998.0120061180.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Willis TJ, 2001, NEW ZEAL J MAR FRESH, V35, P581, DOI 10.1080/00288330.2001.9517024 60 14 15 0 14 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 462 219 230 10.3354/meps09790 12 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 991TA WOS:000307723300017 Bronze 2019-02-21 J Rao, LL; Wang, XT; Li, S Rao, Li-Lin; Wang, Xiao-Tian; Li, Shu Short-term modulation of temporal discounting in the view of life-history theory and optimal foraging theory INTERNATIONAL JOURNAL OF PSYCHOLOGY English Meeting Abstract [Rao, Li-Lin] Chinese Acad Sci, Beijing 100864, Peoples R China 0 0 0 0 1 PSYCHOLOGY PRESS HOVE 27 CHURCH RD, HOVE BN3 2FA, EAST SUSSEX, ENGLAND 0020-7594 INT J PSYCHOL Int. J. Psychol. 2012 47 1 SI 176 176 1 Psychology, Multidisciplinary Psychology 986WU WOS:000307377702144 2019-02-21 J Semmens, D; Swearer, SE Semmens, D.; Swearer, S. E. Trade-offs obscure the relationship between egg size and larval traits in the diadromous fish Galaxias maculatus MARINE ECOLOGY PROGRESS SERIES English Article Life history theory; Maternal effects; Offspring size; Phenotypic plasticity LIFE-HISTORY TRAITS; COD GADUS-MORHUA; FRESH-WATER FISH; MATERNAL INFLUENCES; OXYGEN-CONSUMPTION; METABOLIC-RATES; SURVIVAL; GROWTH; PERFORMANCE; SELECTION Egg size is one of the most frequently used surrogate measures of maternal investment and is strongly related to fitness-determining traits, such as offspring size in many marine animals, but the relationship is not universal. Because the amount of yolk allocated to eggs is finite, not all fitness-determining traits can be simultaneously maximised, and trade-offs should be expected. The results of the present study show that egg size (quantified as cross-sectional area) poorly predicts the size of larval morphological traits (length, yolk sac area, oil globule area, myomere depth, and eye area) in the native Australian fish Galaxias maculatus. Egg size was correlated with yolk sac size and larval body depth, but it explained <13% of the total variation in these traits. Moreover, egg size did not predict the time it took for larvae to hatch, nor did it predict the duration from hatching to starvation. However, when egg size and yolk sac size (i.e. yolk remaining at hatching) were both included as predictors, the fits with larval traits improved greatly (r(2) = 0.02 to 0.46 for larval length, r(2) = 0.11 to 0.17 for myomere depth, and r(2) < 0.001 to 0.14 for eye area). These findings indicate that there is a trade-off between the quantity of yolk at hatching and the size of larval morphological traits in G. maculatus. The remaining unexplained variation may be a consequence of trade-offs with other unmeasured traits, such as metabolic rate, and the potential that egg size is not a good proxy for maternal investment. [Semmens, D.; Swearer, S. E.] Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia Semmens, D (reprint author), Univ Melbourne, Dept Zool, Melbourne, Vic 3010, Australia. dasemm@unimelb.edu.au Swearer, Stephen/X-4882-2018 Swearer, Stephen/0000-0001-6381-9943 Australian Research Council Discovery Project Grant; Melbourne Research Scholarship We thank M. Elgar, M. McCormick and 3 anonymous reviewers for their helpful comments on the manuscript. This study was funded by an Australian Research Council Discovery Project Grant awarded to S.E.S, and D.S. was supported by a Melbourne Research Scholarship. These experiments complied with Australian law and were conducted with approval from the Animal Ethics Committee at the University of Melbourne. Allen JD, 2008, BIOL BULL-US, V214, P42, DOI 10.2307/25066658; BAILEY KM, 1989, ADV MAR BIOL, V25, P1; Bang A, 2005, MAR BIOL, V147, P1419, DOI 10.1007/s00227-005-0037-y; Bang A, 2004, J FISH BIOL, V64, P1285, DOI 10.1111/j.1095-8649.2004.00391.x; Bang A, 2007, MAR ECOL PROG SER, V331, P233, DOI 10.3354/meps331233; Barbee NC, 2011, MAR FRESHWATER RES, V62, P790, DOI 10.1071/MF10284; Benzie V., 1968, Proceedings of the New Zealand Ecological Society, VNo. 15, P31; BENZIE V, 1968, New Zealand Journal of Marine and Freshwater Research, V2, P606; Bernardo J, 1996, AM ZOOL, V36, P216; Berra TM, 1996, MAR FRESHWATER RES, V47, P845, DOI 10.1071/MF9960845; Bochdansky AB, 2005, MAR BIOL, V147, P1413, DOI 10.1007/s00227-005-0036-z; Chambers R. Christopher, 1997, Fish and Fisheries Series, V21, P63; CHAMBERS RC, 1989, FISH B-NOAA, V87, P515; Chambers RC, 1996, AM ZOOL, V36, P180; Cowen Robert K., 1997, Fish and Fisheries Series, V21, P423; DOCKER MF, 1986, CAN J ZOOL, V64, P1104, DOI 10.1139/z86-165; DUARTE CM, 1989, OECOLOGIA, V80, P401, DOI 10.1007/BF00379043; Fisher R, 2007, MAR ECOL PROG SER, V344, P257, DOI 10.3354/meps06927; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; Giesing ER, 2011, P ROY SOC B-BIOL SCI, V278, P1753, DOI 10.1098/rspb.2010.1819; Gunasekera RM, 1996, AQUACULTURE, V146, P121, DOI 10.1016/S0044-8486(96)01365-8; Hare JA, 1997, ECOLOGY, V78, P2415; Heath DD, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P178; Herrera JC, 1996, OCEANOL ACTA, V19, P313; Heyer CJ, 2001, CAN J FISH AQUAT SCI, V58, P1477, DOI 10.1139/cjfas-58-7-1477; Hicks A, 2010, MAR FRESHWATER RES, V61, P1252, DOI 10.1071/MF10011; Holmes TH, 2009, OECOLOGIA, V159, P401, DOI 10.1007/s00442-008-1220-x; Iguchi K, 1999, J FISH BIOL, V54, P705, DOI 10.1006/jfbi.1998.0909; Kavanagh KD, 2003, BIOL J LINN SOC, V80, P187, DOI 10.1046/j.1095-8312.2003.00229.x; Kennedy J, 2007, J SEA RES, V58, P65, DOI 10.1016/j.seares.2007.01.003; Kerrigan BA, 1997, MAR BIOL, V127, P395, DOI 10.1007/s002270050026; Khan MA, 2005, AQUACULT NUTR, V11, P11, DOI 10.1111/j.1365-2095.2004.00318.x; LAGOMARSINO IV, 1988, COPEIA, P1086; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marteinsdottir G, 1998, J FISH BIOL, V52, P1241, DOI 10.1006/jfbi.1998.0670; McDowall RM, 2006, FISH FISH, V7, P153, DOI 10.1111/j.1467-2979.2006.00217.x; MCDOWALL RM, 1994, B MAR SCI, V54, P385; MCDOWALL RM, 1968, NZ MAR DEP FISH RES, V2, P1; MCEDWARD LR, 1987, EVOLUTION, V41, P914, DOI 10.1111/j.1558-5646.1987.tb05865.x; MCEDWARD LR, 1987, MAR ECOL PROG SER, V37, P159, DOI 10.3354/meps037159; MITCHELL CP, 1989, NEW ZEAL J MAR FRESH, V23, P325, DOI 10.1080/00288330.1989.9516369; Morgan Steven G., 1995, P279; Pakkasmaa S, 2006, J COMP PHYSIOL B, V176, P387, DOI 10.1007/s00360-005-0057-4; Pepin P, 1997, CAN J FISH AQUAT SCI, V54, P2, DOI 10.1139/f96-154; R Development Core Team, 2011, R LANG ENV STAT COMP; Regnier T, 2010, J COMP PHYSIOL B, V180, P25, DOI 10.1007/s00360-009-0385-x; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D., 1991, UNITY EVOLUTIONARY B, V2, P780; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Semmens D, 2011, J FISH BIOL, V79, P980, DOI 10.1111/j.1095-8649.2011.03074.x; Semmens D, 2009, THESIS U MELBOURNE; Taborsky B, 2006, BIOL LETT-UK, V2, P225, DOI 10.1098/rsbl.2005.0422; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Waters JM, 2000, MOL ECOL, V9, P1815, DOI 10.1046/j.1365-294x.2000.01082.x; Waters JM, 1999, MOL PHYLOGENET EVOL, V11, P1, DOI 10.1006/mpev.1998.0554 56 4 4 1 27 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 461 165 174 10.3354/meps09814 10 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 986PF WOS:000307354700013 Bronze 2019-02-21 J Martone, RG; Micheli, F Martone, Rebecca G.; Micheli, Fiorenza Geographic variation in demography of a temperate reef snail: importance of multiple life-history traits MARINE ECOLOGY PROGRESS SERIES English Article Demographic rates; Geographic variation; Megastraea undosa; Fisheries management; Temperature; Resource availability; Life history BAJA-CALIFORNIA; MARKED ANIMALS; FOOD; GROWTH; REPRODUCTION; POPULATION; FISHERIES; SURVIVAL; PSEUDOREPLICATION; INVERTEBRATE Individual- and population-level performance may reflect trade-offs between energy allocation to different key demographic processes, such as growth and reproduction, which can, in turn, be influenced by local biotic and abiotic conditions. We explored geographic variation in demographic rates of an exploited benthic species, the wavy-turban snail Megastraea undosa, along the Pacific coast of Baja California, Mexico. We compared key life-history traits (i.e. fecundity, size at maturity, growth, and survivorship) of populations existing between 20 and 170 km apart under different conditions of ocean temperature and food availability. Trade-offs between growth and reproduction were evident across this environmental gradient, with higher growth rates in warmer locations leading to lower size-specific investment in gonad production. Because later onset of reproduction in populations from warmer areas was compensated by greater fecundity at larger sizes, geographic variation in life-history strategies resulted in similar age-specific reproductive output among different populations. However, we observed that, while there is substantial variation in demographic rates of the study species, harvest management is applied uniformly, and this results in southern populations achieving lower reproductive output before they reach a legally harvestable size. Our results highlight the importance of considering geographic variation in multiple life-history traits when managing across a mosaic of land-and seascapes characterized by varying environmental conditions. [Martone, Rebecca G.; Micheli, Fiorenza] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA Martone, RG (reprint author), Univ British Columbia, Aquat Ecosyst Res Lab, Inst Resources Environm & Sustainabil, 429-2202 Main Mall, Vancouver, BC V6T 1Z4, Canada. rebecca.martone@gmail.com NSF-Biocomplexity in the Environment Grant [OCE-0410439]; Stanford VPUE Faculty Grant for undergraduate research; Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust We thank many people for their assistance in the field including, but not limited to, Alison Haupt, Rodrigo Beas, Geoff Shester, Caitlin Mulholland-Olson, Elisa Serviere-Zaragoza, Sergio Guzman-del-Proo, Jorge Belmar, Jorge Carillo, Fernando Lopez-Sala, Courtney Abshire, Tania Pena, and Laura Gonzalez. Thanks to Brandon Cortez for spending many hours in the histology laboratory and maintaining his sense of humor. Thanks to Russ Markel, Ole Shelton, and Uli Steiner for much appreciated statistical and R advice. Muchas gracias a FEDECOOP por su apoyo. We thank the people of Bahia Tortugas, Punta Abreojos, and La Bocana for their graciousness and support, especially Alejandro Villa and his family and Daniel Aguilar. This research was supported by NSF-Biocomplexity in the Environment Grant OCE-0410439, a Stanford VPUE Faculty Grant for undergraduate research, and a grant from the Earl H. Myers and Ethel M. Myers Oceanographic and Marine Biology Trust. Aguilar Rosas R, 1990, CIENC MAR, V16, P111; Belmar-Perez J, 1991, I CIENC MAR LIMNOL U, V18, P169; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Broitman BR, 2008, ECOL MONOGR, V78, P403, DOI 10.1890/06-1805.1; Broitman BR, 2006, MAR ECOL PROG SER, V327, P15, DOI 10.3354/meps327015; Burnham K. P, 2002, MODEL SELECTION MULT; Chase JM, 1999, AM NAT, V154, P571, DOI 10.1086/303261; Clare TS, 1938, AM J BOT, V25, P494, DOI 10.2307/2436676; Costello C, 2010, P NATL ACAD SCI USA, V107, P18294, DOI 10.1073/pnas.0908057107; Cox TE, 2006, MAR BIOL, V148, P1295, DOI 10.1007/s00227-005-0166-3; Cruz-Rivera E, 2000, OECOLOGIA, V123, P252, DOI 10.1007/s004420051012; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; Doak DF, 2010, NATURE, V467, P959, DOI 10.1038/nature09439; Efron B, 1998, INTRO BOOTSTRAP; Espinosa-Carreon TL, 2004, J GEOPHYS RES, V109, P1; FABENS AJ, 1965, GROWTH, V29, P265; Foster GG, 1999, MAR BIOL, V134, P307, DOI 10.1007/s002270050548; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Gaines SD, 2010, P NATL ACAD SCI USA, V107, P18286, DOI 10.1073/pnas.0906473107; Gluyas-Millan MG, 1999, CIENC MAR, V25, P91, DOI 10.7773/cm.v25i1.647; Gotelli N. J., 2004, PRIMER ECOLOGICAL ST; Halliday EBB, 1991, NATURAL HIST FEEDING; HARGROVE WW, 1992, LANDSCAPE ECOL, V6, P251, DOI 10.1007/BF00129703; Hernandez-Carmona G, 2001, BOT MAR, V44, P221, DOI 10.1515/BOT.2001.029; Hilborn R, 2005, PHILOS T R SOC B, V360, P47, DOI 10.1098/rstb.2004.1569; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Lazier J. R. N., 1991, DYNAMICS MARINE ECOS; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Leslie HM, 2005, P NATL ACAD SCI USA, V102, P10534, DOI 10.1073/pnas.0503874102; Lester SE, 2007, ECOLOGY, V88, P2229, DOI 10.1890/06-1784.1; Luna L. G., 1968, MANUAL HISTOLOGICAL; Mahoney K, 2007, ESTIMATING BIOMASS M; Martone R.L.G., 2009, THESIS STANFORD U ST; McCay B. J., MAR POLICY IN PRESS; Menge BA, 2008, ECOL LETT, V11, P151, DOI 10.1111/j.1461-0248.2007.01135.x; MORRIS R. H., 1980, INTERTIDAL INVERTEBR; Morris WF, 2003, QUANTITATIVE CONSERV; Petes LE, 2008, ECOL MONOGR, V78, P387, DOI 10.1890/07-0605.1; Phillips NE, 2005, MAR ECOL PROG SER, V295, P79, DOI 10.3354/meps295079; Ponce-Diaz G, 2004, J SHELLFISH RES, V23, P1051; Prince J, 2005, B MAR SCI, V76, P557; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Rogers-Bennett L, 2004, J SHELLFISH RES, V23, P553; Ruxton GD, 2008, BEHAV ECOL, V19, P690, DOI 10.1093/beheco/arn020; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; Schwalm CC, 1973, POPULATION DYNAMICS; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; Sokal R. R, 1981, BIOMETRY; Somero GN, 2002, INTEGR COMP BIOL, V42, P780, DOI 10.1093/icb/42.4.780; Stearns S, 1992, EVOLUTION LIFE HIST; Stoeckmann AM, 2001, J N AM BENTHOL SOC, V20, P486, DOI 10.2307/1468043; Townsend C. R., 2000, ESSENTIALS ECOLOGY; Trussell GC, 2003, ECOLOGY, V84, P629, DOI 10.1890/0012-9658(2003)084[0629:TMEIRI]2.0.CO;2; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; White GC, 1999, BIRD STUDY, V46, P120; Wilson JA, 2006, ECOL SOC, V11; Yee EH, 2004, MAR BIOL, V145, P895, DOI 10.1007/s00227-004-1379-6; Zaytsev O, 2003, J OCEANOGR, V59, P489, DOI 10.1023/A:1025544700632; Zuidema PA, 2009, AM NAT, V174, P709, DOI 10.1086/605981 61 11 11 0 21 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 457 85 99 10.3354/meps09693 15 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 978PB WOS:000306755000007 Bronze 2019-02-21 J Miller, AA; Rucas, SL Miller, Alissa A.; Rucas, Stacey L. Sleep-Wake State Tradeoffs, Impulsivity and Life History Theory EVOLUTIONARY PSYCHOLOGY English Article sleep; life-history theory; impulsivity; firefighters SENSATION SEEKING; DECISION-MAKING; ONE NIGHT; DEPRIVATION; BEHAVIOR; RISK; WOMEN; MODEL; PERSONALITY; PROPENSITY Evolutionary ecological theory predicts that sleep-wake state tradeoffs may be related to local environmental conditions and should therefore correlate to alterations in behavioral life history strategies. It was predicted that firefighters who slept more and reported better quality sleep on average would exhibit lower impulsivity inclinations related to slower life history trajectories. UPPS impulsivity scores and self-reported sleep averages were analyzed and indicated a negative association between sleep variables and urgency and a positive association with premeditation. Perseverance, and in some cases premeditation, however, disclosed an unpredicted marginally significant positive association between increased and emergency nighttime waking-related sleep deprivation. Sensation seeking was not associated with sleep variables, but was strongly associated with number of biological children. This research contributes to understanding the implications of human sleep across ecological and behavioral contexts and implies further research is necessary for constructing evolutionarily oriented measures of impulsivity inclination and its meaning in the context of life history strategies. [Miller, Alissa A.] Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA; [Rucas, Stacey L.] Calif Polytech State Univ San Luis Obispo, Dept Social Sci, San Luis Obispo, CA 93407 USA Miller, AA (reprint author), Washington State Univ, Dept Anthropol, Pullman, WA 99164 USA. amiller@wsu.edu Acheson A, 2007, PHYSIOL BEHAV, V91, P579, DOI 10.1016/j.physbeh.2007.03.020; AGUIAR GFD, 1991, CHRONOBIOLOGIA, V18, P9; Anderson JR, 1998, AM J PRIMATOL, V46, P63, DOI 10.1002/(SICI)1098-2345(1998)46:1<63::AID-AJP5>3.0.CO;2-T; Arendt J, 2006, CHRONOBIOL INT, V23, P21, DOI 10.1080/07420520500464361; Banks S, 2007, J CLIN SLEEP MED, V3, P519; Benington JH, 2000, SLEEP, V23, P959; Bernier A, 2010, CHILD DEV, V81, P1739, DOI 10.1111/j.1467-8624.2010.01507.x; Chaumet G, 2009, AVIAT SPACE ENVIR MD, V80, P73, DOI 10.3357/ASEM.2366.2009; Costa Jr P.T., 1992, REVISED NEOPERSONALI; Cross CP, 2010, EVOL PSYCHOL-US, V8, P779, DOI 10.1177/147470491000800418; Donohew L, 2000, PERS INDIV DIFFER, V28, P1079, DOI 10.1016/S0191-8869(99)00158-0; EYSENCK SBG, 1985, PERS INDIV DIFFER, V6, P613, DOI 10.1016/0191-8869(85)90011-X; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Harrison Y, 1999, ORGAN BEHAV HUM DEC, V78, P128, DOI 10.1006/obhd.1999.2827; Harrison Y, 2000, J EXP PSYCHOL-APPL, V6, P236, DOI 10.1037//1076-898X.6.3.236; HOWARD RC, 1994, PERS INDIV DIFFER, V16, P605, DOI 10.1016/0191-8869(94)90188-0; Keye D, 2009, EUR J PSYCHOL ASSESS, V25, P175, DOI 10.1027/1015-5759.25.3.175; McCoul MD, 2001, PERS INDIV DIFFER, V31, P1303, DOI 10.1016/S0191-8869(00)00222-1; Mckenna BS, 2007, J SLEEP RES, V16, P245, DOI 10.1111/j.1365-2869.2007.00591.x; McKenna J J, 1986, Med Anthropol, V10, P9; McKenna James J, 2005, Paediatr Respir Rev, V6, P134, DOI 10.1016/j.prrv.2005.03.006; Miller J, 2003, PERS INDIV DIFFER, V34, P1403, DOI 10.1016/S0191-8869(02)00122-8; Mischel W, 2002, CURR DIR PSYCHOL SCI, V11, P50, DOI 10.1111/1467-8721.00166; Nederkoorn C, 2009, INT J OBESITY, V33, P905, DOI 10.1038/ijo.2009.98; Nilsson JP, 2005, J SLEEP RES, V14, P1, DOI 10.1111/j.1365-2869.2005.00442.x; Opp M.R, 2009, BMC EVOLUTIONARY BIO, V9, P1; Ostaszewski P., 1997, EUROPEAN PSYCHOL, V2, P35, DOI DOI 10.1027/1016-9040.2.1.35; Pine A, 2010, J NEUROSCI, V30, P8888, DOI 10.1523/JNEUROSCI.6028-09.2010; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Reynolds B, 2004, BEHAV PROCESS, V67, P343, DOI 10.1016/j.beproc.2004.06.003; Robbins RN, 2004, J ADOLESCENT RES, V19, P428, DOI 10.1177/074355840328860; Rodehn M, 1999, Nurs Stand, V13, P44; Saper CB, 2005, J COMP NEUROL, V493, P92, DOI 10.1002/cne.20770; Schmidt RE, 2010, J SLEEP RES, V19, P3, DOI 10.1111/j.1365-2869.2009.00741.x; Schmidt RE, 2008, BEHAV SLEEP MED, V6, P178, DOI 10.1080/15402000802162570; Shneerson JM, 2005, SLEEP MED GUIDE SLEE, P22; Sicard B, 2001, MIL MED, V166, P871; Siegel JM, 2005, NATURE, V437, P1264, DOI 10.1038/nature04285; Stenuit P, 2008, BIOL PSYCHOL, V77, P81, DOI 10.1016/j.biopsycho.2007.09.011; Venkatraman V, 2007, SLEEP, V30, P603, DOI 10.1093/sleep/30.5.603; Waldeck TL, 1997, J SUBST ABUSE, V9, P269, DOI 10.1016/S0899-3289(97)90021-3; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; Wingrove J, 1997, PERS INDIV DIFFER, V22, P333, DOI 10.1016/S0191-8869(96)00222-X; Worthman C. M., 2002, ADOLESCENT SLEEP PAT, P69; Worthman CM, 2007, J FAM PSYCHOL, V21, P124, DOI 10.1037/0893-3200.21.1.124; Worthman CM, 2008, EVOLUTIONARY MED HLT, P291 46 0 0 1 14 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 2 173 186 14 Psychology, Experimental Psychology 973ZD WOS:000306398500001 22947632 DOAJ Gold 2019-02-21 J Frederick, MJ Frederick, Michael J. Birth Weight Predicts Scores on the ADHD Self-Report Scale and Attitudes Towards Casual Sex in College Men: A Short-Term Life History Strategy? EVOLUTIONARY PSYCHOLOGY English Article Life-history theory; development; ADHD; impulsivity; short-term strategy SYMPTOMS; STUDENTS; CHILDREN; DISEASE; HEALTH Early development can have long-term effects on physiology and behavior. While severe disturbances predictably lead to dysfunction, recent work in humans and animals has led to a growing appreciation for the more subtle ways in which early conditions can modulate behavioral tendencies later in life. Life history theory predicts that early cues signaling a stressful or suboptimal environment might lead an organism to adopt a strategy favoring short-term gains and early reproduction. Fifty college men reported their birth weight, completed the Attention-Deficit/Hyperactivity Disorder (ADHD) Self-Report Scale, and answered a series of questions about their sexual history and attitudes towards short-term sexual encounters. Lower birth weights were associated with higher scores on the ADHD scale (r = -.352; p <= .05) and more favorable attitudes towards casual sex (r = -.456; p <= 0.001). There was a significant interaction between birth weight and casual sex favorability in predicting number of sexual partners (F-1,F-46 = 4.994; p <= .05). This suggests that, although men who are smaller at birth may otherwise be at a disadvantage in reproductive terms, they may offset their reduced fitness by being more willing to engage in casual sex. Hamilton Coll, Dept Psychol, Clinton, NY 13323 USA Frederick, MJ (reprint author), Hamilton Coll, Dept Psychol, Clinton, NY 13323 USA. mjfreder@hamilton.edu Adler L, 2003, ADULT ADHD SELF REPO; Barker D. J. P., 1995, GROWTH, P255; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; Breslau N, 2000, BIOL PSYCHIAT, V47, P71, DOI 10.1016/S0006-3223(99)00131-6; Cameron N., 2004, SOC NEUR SAN DIEG CA; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Faurie C, 2004, EVOL HUM BEHAV, V25, P1, DOI 10.1016/S1090-5138(03)00064-3; Gluckman PD, 2010, J DEV ORIG HLTH DIS, V1, P6, DOI 10.1017/S2040174409990171; Gluckman PD, 2006, MISMATCH WHY OUR WOR; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; GOLDSTEIN S, 1998, ADHD REPORT, V6, P1; Gudjonsson GH, 2010, PERS INDIV DIFFER, V48, P601, DOI 10.1016/j.paid.2009.12.015; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; Hartmann T., 1993, ATTENTION DEFICIT DI; Johnstone RA, 1996, EVOLUTION, V50, P1382, DOI 10.1111/j.1558-5646.1996.tb03912.x; Kelly YJ, 2001, INT J EPIDEMIOL, V30, P88, DOI 10.1093/ije/30.1.88; Lahti J, 2006, J CHILD PSYCHOL PSYC, V47, P1167, DOI 10.1111/j.1469-7610.2006.01661.x; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; Phillips DIW, 2001, BRIT MED J, V322, P771, DOI 10.1136/bmj.322.7289.771; Scheres A, 2008, J NEURAL TRANSM, V115, P221, DOI 10.1007/s00702-007-0813-6; ShelleyTremblay JF, 1996, J GENET PSYCHOL, V157, P443, DOI 10.1080/00221325.1996.9914877; Tripp G, 2009, NEUROPHARMACOLOGY, V57, P579, DOI 10.1016/j.neuropharm.2009.07.026 23 4 4 0 2 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2012 10 2 342 351 10 Psychology, Experimental Psychology 973ZD WOS:000306398500012 22947643 DOAJ Gold 2019-02-21 J Stanley, CE; Taylor, JM; King, RS Stanley, Charles E.; Taylor, Jason M.; King, Ryan S. Coupling Fish Community Structure with Instream Flow and Habitat Connectivity between Two Hydrologically Extreme Years TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article GREAT-PLAINS RIVER; ASSEMBLAGE STRUCTURE; LIFE-HISTORY; SPATIAL VARIATION; AMERICAN FISHES; STREAM; PATTERNS; ABUNDANCE; IMPOUNDMENT; VARIABILITY Hydrologic variability and instream habitat connectivity play fundamental roles in structuring fish communities in lotic ecosystems. We collected fish assemblage and physical habitat data from 28 central Texas streams during the summers of 2006 (a drought year with minimal summer precipitation and low stream flow) and 2007 (an exceptionally wet year with periodic flooding in spring and sustained high flows throughout summer). We evaluated the correspondence between the magnitude of physical habitat and fish community composition change in stream reaches sampled in these two contrasting years using ordination, successional vector analysis, and indicator species analysis. In 2006, streams characterized by disconnected pools had different fish community structure and habitat characteristics than streams that had habitats connected by flowing water. The amount of interannual change in both fish community structure and habitat characteristics was greatest between streams that had disconnected pools in 2006 and their paired samples in 2007. Indicator species analysis identified species that had affinities to disconnected habitats during 2006, which included opportunistic life history strategists typical of temporary waters (western mosquitofish Gambusia affinis and blackstripe topminnow Fundulus notatus) and equilibrium strategists that rely on stable pool habitats for nesting (longear sunfish Lepomis megalotis and largemouth bass Micropterus salmoides). Conversely, indicator species of connected riffle-pool habitat included fluvial specialists (central stoneroller Campostoma anomalum, spotted bass Micropterus punctulatus, and bullhead minnow Pimephales vigilax). In summer 2007, the numbers of most species of fish declined markedly compared with 2006. Community structure between previously disconnected and connected stream types was also highly variable in 2007. However, strong recruitment of juveniles following spring flooding and sustained high summer flow significantly increased the frequency and abundance of two periodical strategists, channel catfish Ictalurus punctatus and flathead catfish Pylodictus olivaris in both types of streams in 2007. These findings provide important insights into how individual species' life history strategies influence the response of fish community structure to extreme hydrologic events, which are likely to increase in frequency in many parts of the world due to climate change. [Stanley, Charles E.; Taylor, Jason M.; King, Ryan S.] Baylor Univ, Dept Biol, Ctr Reservoir & Aquat Syst Res, Waco, TX 76798 USA King, RS (reprint author), Baylor Univ, Dept Biol, Ctr Reservoir & Aquat Syst Res, 1 Bear Pl,97388, Waco, TX 76798 USA. ryan_s_king@baylor.edu Texas Commission on Environmental Quality [582-6-80304] This study was funded by a contract from the Texas Commission on Environmental Quality to K. Winemiller and R. King (contract 582-6-80304). We especially thank M. Fisher and G. Easley for providing logistical support. The Texas Parks and Wildlife Department provided collecting permits, and Texas Agrilife Research and Baylor University gave administrative support. We thank J. Grimm, D. Lang, A. Flores, S. Sumpaongoen, and J. Back for field assistance and three anonymous reviewers for comments that helped improve an earlier draft. Allan JD, 1995, STREAM ECOLOGY STRUC; Anderson MJ, 2006, ECOL LETT, V9, P683, DOI 10.1111/j.1461-0248.2006.00926.x; Anderson MJ, 2006, BIOMETRICS, V62, P245, DOI 10.1111/j.1541-0420.2005.00440.x; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Dauwalter DC, 2007, AM MIDL NAT, V158, P60, DOI 10.1674/0003-0031(2007)158[60:SCNSSA]2.0.CO;2; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; ECHELLE AA, 1972, AM MIDL NAT, V88, P109, DOI 10.2307/2424492; FAITH DP, 1989, BIOL CONSERV, V50, P77, DOI 10.1016/0006-3207(89)90006-2; FAUSCH KD, 1991, COPEIA, P659, DOI 10.2307/1446392; Griffith G. E., 2004, ECOREGIONS TEXAS; Haas JJ, 2001, J FRESHWATER ECOL, V16, P551, DOI 10.1080/02705060.2001.9663846; Herbert ME, 2003, COPEIA, P273, DOI 10.1643/0045-8511(2003)003[0273:SVOHFA]2.0.CO;2; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Hubbs C, 2008, ANNOTATED CHECKLIST; Jackson D. C., 2004, NATURAL HIST FISHERI; JENNINGS MJ, 1994, ENVIRON BIOL FISH, V39, P153, DOI 10.1007/BF00004932; MATTHEWS WJ, 1981, AM MIDL NAT, V105, P149, DOI 10.2307/2425020; McCune B, 2006, PC ORD MULTIVARIATE; McCune B, 2002, ANAL ECOLOGICAL COMM; MEADOR MR, 1992, AM MIDL NAT, V127, P106, DOI 10.2307/2426326; MIELKE PW, 1984, HDB STATISTICS, V4, P813; NOAA (National Oceanic and Atmospheric Administration), 2008, NAT CLIM DAT CTR ARC; NOLTIE DB, 1986, ENVIRON BIOL FISH, V17, P61, DOI 10.1007/BF00000402; Oksanen J, 2011, VEGAN COMMUNITY ECOL; Olden J. D., 2010, SYMPOSIUM, V73, P83; Ostrand KG, 2002, ECOL FRESHW FISH, V11, P137, DOI 10.1034/j.1600-0633.2002.00005.x; Pease AA, 2011, T AM FISH SOC, V140, P1409, DOI 10.1080/00028487.2011.623994; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; Richter BD, 2003, ECOL APPL, V13, P206, DOI 10.1890/1051-0761(2003)013[0206:ESWMMR]2.0.CO;2; ROSS S.T., 2001, INLAND FISHES MISSIS; Shephard S, 2006, T AM FISH SOC, V135, P1224, DOI 10.1577/T05-183.1; Spranza JJ, 2000, ENVIRON BIOL FISH, V59, P99, DOI 10.1023/A:1007630417266; TAYLOR CM, 1993, ECOGRAPHY, V16, P16, DOI 10.1111/j.1600-0587.1993.tb00054.x; Taylor CM, 1997, OECOLOGIA, V110, P560, DOI 10.1007/s004420050196; TCEQ (Texas Commission on Environmental Quality), 2003, SURF WAT QUAL MON PR, V2; Thomas C, 2007, FRESHWATER FISHES TE; Wilde GR, 1999, TEX J SCI, V51, P203; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 40 10 10 3 53 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. 2012 141 4 1000 1015 10.1080/00028487.2012.675893 16 Fisheries Fisheries 974UI WOS:000306462500012 2019-02-21 J Kuparinen, A; Mantyniemi, S; Hutchings, JA; Kuikka, S Kuparinen, Anna; Mantyniemi, Samu; Hutchings, Jeffrey A.; Kuikka, Sakari Increasing biological realism of fisheries stock assessment: towards hierarchical Bayesian methods ENVIRONMENTAL REVIEWS English Review Bayesian statistics; fisheries management; harvesting; life histories; overfishing; stock assessment COD GADUS-MORHUA; SALMON ONCORHYNCHUS-GORBUSCHA; FISH POPULATION-SIZE; INDUCED EVOLUTION; LIFE-HISTORY; MARINE FISH; ATLANTIC COD; STRATEGY EVALUATION; NATURAL MORTALITY; RECREATIONAL FISHERIES Excessively high rates of fishing mortality have led to rapid declines of several commercially important fish stocks. To harvest fish stocks sustainably, fisheries management requires accurate information about population dynamics, but the generation of this information, known as fisheries stock assessment, traditionally relies on conservative and rather narrowly data-driven modelling approaches. To improve the information available for fisheries management, there is a demand to increase the biological realism of stock-assessment practices and to better incorporate the available biological knowledge and theory. Here, we explore the development of fisheries stock-assessment models with an aim to increasing their biological realism, and focus particular attention on the possibilities provided by the hierarchical Bayesian modelling framework and ways to develop this approach as a means of efficiently incorporating different sources of information to construct more biologically realistic stock-assessment models. The main message emerging from our review is that to be able to efficiently improve the biological realism of stock-assessment models, fisheries scientists must go beyond the traditional stock-assessment data and explore the resources available in other fields of biological research, such as ecology, life-history theory and evolutionary biology, in addition to utilizing data available from other stocks of the same or comparable species. The hierarchical Bayesian framework provides a way of formally integrating these sources of knowledge into the stock-assessment protocol and to accumulate information from multiple sources and over time. [Kuparinen, Anna] Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, FIN-00014 Helsinki, Finland; [Mantyniemi, Samu; Kuikka, Sakari] Univ Helsinki, Fisheries & Environm Management Grp, Dept Environm Sci, FIN-00014 Helsinki, Finland; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Hutchings, Jeffrey A.] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, NO-0316 Oslo, Norway Kuparinen, A (reprint author), Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, POB 65, FIN-00014 Helsinki, Finland. anna.kuparinen@helsinki.fi Mantyniemi, Samu/B-4219-2008 Mantyniemi, Samu/0000-0002-3367-6280; Kuikka, Sakari/0000-0001-8802-8013 Academy of Finland; Natural Sciences and Engineering Research Council of Canada; European Union [244706/ECOKNOWS] The research leading to these results has received funding from the Academy of Finland (AK), the Natural Sciences and Engineering Research Council of Canada (JH) and from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 244706/ECOKNOWS project (AK, SM, SK). However, this paper does not necessarily reflect the European Commission's views and in no way anticipates the Commission's future policy in the area. Adams CE, 1997, J FISH BIOL, V51, P750, DOI 10.1006/jfbi.1997.0476; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; Arendt JD, 2011, EVOLUTION, V65, P43, DOI 10.1111/j.1558-5646.2010.01112.x; Atkinson D, 1997, TRENDS ECOL EVOL, V12, P235, DOI 10.1016/S0169-5347(97)01058-6; Babcock R, 1999, CAN J FISH AQUAT SCI, V56, P1668, DOI 10.1139/cjfas-56-9-1668; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Berec L, 2007, TRENDS ECOL EVOL, V22, P185, DOI 10.1016/j.tree.2006.12.002; Berger J. O., 1992, J ITAL STAT SOC, V1, P17, DOI [DOI 10.1007/BF02589047, 10.1007/BF02589047]; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Beyer E.B., 1989, DANA, V7, P45; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Brandon J. R., 2006, Journal of Cetacean Research and Management, V8, P225; Brannstrom A, 2005, P ROY SOC B-BIOL SCI, V272, P2065, DOI 10.1098/rspb.2005.3185; Brattey J., 2004, 2004083 CAN SCI ADV; Breen PA, 2003, MAR FRESHWATER RES, V54, P619, DOI 10.1071/MF02174; Buckland ST, 2007, STAT SCI, V22, P44, DOI 10.1214/088342306000000673; Bull B., 2002, 117 NIWA; Burnham K. P., 1998, MODEL SELECTION INFE; Butterworth DS, 2008, ICES J MAR SCI, V65, P1717, DOI 10.1093/icesjms/fsn178; Butterworth DS, 2010, ICES J MAR SCI, V67, P567, DOI 10.1093/icesjms/fsq009; Butterworth DS, 1999, ICES J MAR SCI, V56, P985, DOI 10.1006/jmsc.1999.0532; Charnov Eric L., 1993, P1; Coleman FC, 2004, SCIENCE, V305, P1958, DOI 10.1126/science.1100397; Conn PB, 2010, CAN J FISH AQUAT SCI, V67, P511, DOI 10.1139/F09-194; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Consuegra S, 2005, J FISH BIOL, V67, P129, DOI 10.1111/j.1095-8649.2005.00844.x; Cooke SJ, 2006, BIOL CONSERV, V128, P93, DOI 10.1016/j.biocon.2005.09.019; Cotter AJR, 2004, FISH FISH, V5, P235, DOI 10.1111/j.1467-2679.2004.00157.x; Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; DICKERSIN K, 1990, JAMA-J AM MED ASSOC, V263, P1385, DOI 10.1001/jama.263.10.1385; EASTERBROOK PJ, 1991, LANCET, V337, P867, DOI 10.1016/0140-6736(91)90201-Y; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; FAO, 2010, STAT WORLD FISH AQ; FRIDRIKSSON ARNI, 1934, CONS PERM INTERNAT EXPLOR MER RAPP ET PROCES VERBAUX REUNIONS, V86, P1; Froese R, 2008, FISH RES, V92, P231, DOI 10.1016/j.fishres.2008.01.005; Froese R, 2010, FISH FISH, V11, P194, DOI 10.1111/j.1467-2979.2009.00349.x; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goodwin NB, 2006, CAN J FISH AQUAT SCI, V63, P494, DOI 10.1139/f05-234; Gotelli N.J., 2008, PRIMER ECOLOGY; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Gulland J.A., 1965, 3 ICES CM; Hampton J, 2001, MAR FRESHWATER RES, V52, P937, DOI 10.1071/MF01049; He X, 2006, FISH B-NOAA, V104, P428; Heino M, 2002, B MAR SCI, V70, P639; Helser TE, 2004, ECOL MODEL, V178, P399, DOI 10.1016/j.ecolmodel.2004.02.013; Hilborn R, 2003, SCI MAR, V67, P15, DOI 10.3989/scimar.2003.67s115; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hilborn R, 2012, NAT RESOUR MODEL, V25, P122, DOI 10.1111/j.1939-7445.2011.00100.x; Hillary R, 2012, ECOLOGICAL IN PRESS; Hobbs NT, 2006, ECOL APPL, V16, P5, DOI 10.1890/04-0645; Hoeting JA, 1999, STAT SCI, V14, P382; Hutchings J.A., 2011, ECOLOGY CANADIAN CON; Hutchings J.A., 2002, HDB FISH BIOL FISHER, V1; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; ICCAT, 2010, 2010 ATL BLUEF TUN S; ICES, 2010, 2010ACOM10 ICES CM; ICES, 2010, 2010ACOM06 ICES CM; ICES, 2010, WORKSH REV REC ADV S; ICES, 2008, 2008ACOM05 ICES CM; ICES, 2000, CMACFM05 ICES; ICES (International Council for the Exploration of the Sea), 2010, 2010ACOM11 ICES CM; ISC, 2008, PAC BLUEF TUN WORK G; Jaynes E. T., 2003, PROBABILITY THEORY L; JEFFREYS H., 1961, THEORY PROBABILITY; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Kell LT, 2006, DEV AQUAC FISH SCI, V36, P379; Kell LT, 2005, ICES J MAR SCI, V62, P1483, DOI 10.1016/j.icesjms.2005.05.006; Kell LT, 2005, ICES J MAR SCI, V62, P750, DOI 10.1016/j.icesjms.2005.01.001; Kinas Paul G., 2007, Pan-American Journal of Aquatic Sciences, V2, P103; Kirkwood G.P., 1997, AM FISHERIES SOC S, P41; Kolody D., 2008, MULTIFAN CL STOCK AS; Koster FW, 2003, SCI MAR, V67, P101, DOI 10.3989/scimar.2003.67s1101; Kraak SBM, 2010, FISH FISH, V11, P119, DOI 10.1111/j.1467-2979.2009.00352.x; Kuparinen A, 2008, FISH FISH, V9, P201, DOI 10.1111/j.1467-2979.2008.00284.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; Lambert Yvan, 2009, Journal of Northwest Atlantic Fishery Science, V41, P93; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/cjfas-54-9-1976; Linden A, 2011, ECOLOGY, V92, P1414, DOI 10.1890/10-1831.1; Link J. S., 2010, ECOSYSTEM BASED FISH; Lohmueller KE, 2003, NAT GENET, V33, P177, DOI 10.1038/ng1071; Mantyniemi S, 2002, CAN J FISH AQUAT SCI, V59, P1748, DOI 10.1139/F02-146; Mantyniemi S, 2009, ICES J MAR SCI, V66, P2278, DOI 10.1093/icesjms/fsp206; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Martell SJD, 2008, CAN J FISH AQUAT SCI, V65, P1586, DOI 10.1139/F08-055; McAllister MK, 1998, ICES J MAR SCI, V55, P1031, DOI 10.1006/jmsc.1998.0425; Megrey BA, 2005, ICES J MAR SCI, V62, P1256, DOI 10.1016/j.icejms.2005.05.018; Methot R.D., 2010, USER MANUAL STOCK SY; METHOT RD, 1990, INPFC B, V50, P259; Meyer R, 1999, CAN J FISH AQUAT SCI, V56, P1078, DOI 10.1139/cjfas-56-6-1078; Michielsens C, 2004, CAN J FISH AQUAT SCI, V61, P1032, DOI 10.1139/F04-048; Michielsens CGJ, 2008, CAN J FISH AQUAT SCI, V65, P962, DOI 10.1139/F08-015; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P1968, DOI 10.1139/F06-095; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P321, DOI 10.1139/F05-215; Millar RB, 2000, CAN J FISH AQUAT SCI, V57, P43, DOI 10.1139/f99-169; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; Millar RB, 2000, J R STAT SOC C-APPL, V49, P327, DOI 10.1111/1467-9876.00195; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; Myers RA, 2002, N AM J FISH MANAGE, V22, P351, DOI 10.1577/1548-8675(2002)022<0351:IBPWLD>2.0.CO;2; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Myers RA, 1998, FISH RES, V37, P51; Nash RDM, 2009, FISH RES, V95, P88, DOI 10.1016/j.fishres.2008.08.003; Newman KB, 2009, BIOMETRICS, V65, P572, DOI 10.1111/j.1541-0420.2008.01073.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pacific Salmon Commission, 2010, 23 PAC SALM COMM; Parrish JK, 1999, ENVIRON BIOL FISH, V55, P157, DOI 10.1023/A:1007472602017; Patterson K, 2001, FISH FISH, V2, P125, DOI 10.1046/j.1467-2960.2001.00042.x; Patterson KR, 1999, CAN J FISH AQUAT SCI, V56, P208, DOI 10.1139/cjfas-56-2-208; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Peterman RM, 2004, ICES J MAR SCI, V61, P1331, DOI 10.1016/j.icesjms.2004.08.017; Pinsky M.L., 2011, P NATL ACAD IN PRESS; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; POPE JG, 1982, J CONSEIL, V40, P176; Pope JG, 2006, ICES J MAR SCI, V63, P1029, DOI 10.1016/j.icesjms.2006.04.015; Post JR, 2002, FISHERIES, V27, P6, DOI 10.1577/1548-8446(2002)027<0006:CRF>2.0.CO;2; Pulkkinen H, 2011, MAR ECOL PROG SER, V443, P29, DOI 10.3354/meps09368; Punt AE, 1997, FISH RES, V29, P217, DOI 10.1016/S0165-7836(96)00539-5; Punt AE, 1997, REV FISH BIOL FISHER, V7, P35, DOI 10.1023/A:1018419207494; Punt AE, 1999, ICES J MAR SCI, V56, P860, DOI 10.1006/jmsc.1999.0538; Punt AE, 2007, ICES J MAR SCI, V64, P603, DOI 10.1093/icesjms/fsm035; Pyper BJ, 2001, CAN J FISH AQUAT SCI, V58, P1501, DOI 10.1139/cjfas-58-8-1501; Quesne W.J.F., 2012, J ANIM ECOL, V49, P20, DOI [10.1111/j.1365-2664.2011.02087.x, DOI 10.1111/J.1365-2664.2011.02087.X]; Quinn T. J., 1999, QUANTITATIVE FISH DY; Rahikainen M, 2004, FISH RES, V67, P111, DOI 10.1016/j.fishres.2003.09.047; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; Reza F. M., 1961, INTRO INFORM THEORY; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Ricard D., 2012, FISH FISH IN PRESS; Rivot E, 2001, CAN J FISH AQUAT SCI, V58, P2284, DOI 10.1139/cjfas-58-11-2284; Rivot E, 2008, CAN J FISH AQUAT SCI, V65, P117, DOI 10.1139/F07-153; Rochet MJ, 2009, ICES J MAR SCI, V66, P754, DOI 10.1093/icesjms/fsp023; Rodd FH, 1997, ECOLOGY, V78, P419; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruokolainen L, 2009, TRENDS ECOL EVOL, V24, P555, DOI 10.1016/j.tree.2009.04.009; Scarnecchia DL, 2007, REV FISH SCI, V15, P211, DOI 10.1080/10641260701486981; Schnute JT, 2001, CAN J FISH AQUAT SCI, V58, P10, DOI 10.1139/f00-150; SHEPHERD SA, 1995, MAR FRESHWATER RES, V46, P669, DOI 10.1071/MF9950669; Shimada Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028859; Smith A.D.M., 1998, FISHERIES STOCK ASSE; Smith ADM, 2008, FISH RES, V94, P373, DOI 10.1016/j.fishres.2008.06.006; SOHN JJ, 1977, SCIENCE, V195, P199, DOI 10.1126/science.831271; STECF, 2005, 2 PLEN M BRUSS 7 11; Su ZM, 2004, CAN J FISH AQUAT SCI, V61, P2471, DOI 10.1139/f04-168; SUURONEN P, 1992, CAN J FISH AQUAT SCI, V49, P2104, DOI 10.1139/f92-234; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Symes D, 1997, OCEAN COAST MANAGE, V35, P137, DOI 10.1016/S0964-5691(97)00030-6; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Thorson JT, 2011, CAN J FISH AQUAT SCI, V68, P1681, DOI 10.1139/F2011-086; Trippel EA, 1998, T AM FISH SOC, V127, P339, DOI 10.1577/1548-8659(1998)127<0339:ESAVAS>2.0.CO;2; Trippel Edward A., 1999, Journal of Northwest Atlantic Fishery Science, V25, P61, DOI 10.2960/J.v25.a6; Tukey J. W., 1977, EXPLORATORY DATA ANA; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Uusitalo L, 2005, ICES J MAR SCI, V62, P708, DOI 10.1016/j.icesjms.2005.02.005; Venturelli PA, 2010, ECOLOGY, V91, P2003, DOI 10.1890/09-1218.1; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Vinther M, 2001, ICES J MAR SCI, V58, P311, DOI 10.1006/jmsc.2000.1012; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C. J, 1992, QUANTITATIVE FISHERI; Walters G.J., 1988, CAN J FISH AQUAT SCI, V45, P1848, DOI [10.1139/f88-217, DOI 10.1139/F88-217]; Wittgenstein L., 2001, TRACTATUS LOGICOPHI; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Wyatt RJ, 2003, CAN J FISH AQUAT SCI, V60, P997, DOI 10.1139/F03-085; Wyatt RJ, 2002, CAN J FISH AQUAT SCI, V59, P695, DOI 10.1139/F02-041 191 27 27 1 65 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 1208-6053 1181-8700 ENVIRON REV Environ. Rev. 2012 20 2 135 151 10.1139/A2012-006 17 Environmental Sciences Environmental Sciences & Ecology 970CB WOS:000306104600004 2019-02-21 J Trebaticka, L; Suortti, P; Sundell, J; Ylonen, H Trebaticka, Lenka; Suortti, Paula; Sundell, Janne; Ylonen, Hannu Predation risk and reproduction in the bank vole WILDLIFE RESEARCH English Article breeding suppression; progressing time; weasel BREEDING SUPPRESSION; CLETHRIONOMYS-GLAREOLUS; SMALL MUSTELIDS; LITTER SIZE; POPULATION; BEHAVIOR; WEASELS; DECISION; MAMMALS; FIELD Context. Life-history strategies are the means that organisms use to achieve successful reproduction in environments that vary in time and space. Individual animals maximise life-time reproductive success (LRS) through optimal timing of reproduction and investment in offspring. A crucial factor affecting LRS is predation risk in a highly seasonal environment. According to the breeding-suppression hypothesis (BSH), females should delay breeding under short periods of high predation risk. Delayed breeding under risk is suggested to have substantial consequences for females' fitness. Aims. We tested the BSH in an iteroparous boreal small rodent, the bank vole, Myodes glareolus. Methods. We used caged-live weasels and spread weasel scent to simulate increased predation risk in four of eight 0.25-ha outdoor enclosures. We monitored females' reproduction in three periods (May, July, August), i.e. during the breeding season over the course of summer. Key results. Contrary to our main prediction, predation risk did not affect timing of mating, pregnancy rate or litter size in any study period. Conclusions and implications. We conclude that during the short but resource-rich breeding season of boreal summer, postponing breeding does not seem to be an optimal strategy for females, even under high risk of predation. Under favourable summer condition, i.e. in circumstances without any constraining factors such as food or conspecific density, females manage to balance the costs of predation against benefits of resource availability and do not suppress breeding. Although the BSH has been studied widely, also our results reveal the intricacies of this adaptive behaviour. [Trebaticka, Lenka; Suortti, Paula; Sundell, Janne; Ylonen, Hannu] Univ Jyvaskyla, Dept Biol & Environm Sci, Konnevesi Res Stn, FI-40014 Jyvaskyla, Finland; [Suortti, Paula] Univ Helsinki, Dept Biosci, FI-00014 Helsinki, Finland; [Sundell, Janne] Univ Helsinki, Lammi Biol Stn, Lammi 16900, Finland Trebaticka, L (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, Konnevesi Res Stn, POB 35, FI-40014 Jyvaskyla, Finland. trebatickalenka@yahoo.com CIMO; Academy of Finland [208478, 44878] Monique and Thilo Liesenjohann, Maija Aarva, Krista Hummastenniemi, Marko Haapakoski, Jyrki Raatikainen, Janne Koskinen and Kari Oksanen are greatly acknowledged for helping in the field. Emil Tkadlec kindly provided statistical advice. We thank Erkki Korpimaki, Jens Jacob, John S. Millar and Ines Klemme for valuable comments on an earlier version of the manuscript. John Loehr kindly checked the language. The study was supported by CIMO to LT and Academy of Finland to JS (project no. 208478) and HY (no. 44878). The experiment was run under permission by the Committee for Animal Experimentation of the University of Jyvaskyla (25/22.5.2006). Apfelbach R, 2005, NEUROSCI BIOBEHAV R, V29, P1123, DOI 10.1016/j.neubiorev.2005.05.005; Bolbroe T, 2000, ANN ZOOL FENN, V37, P169; Bronson F. H., 1989, MAMMALIAN REPROD BIO; Caro T., 2005, ANTIPREDATOR DEFENSE; Dohle H. J., 1991, WISSENSCHAFTLICHE BE, V1990/34, P109; Fuelling O, 2004, OECOLOGIA, V138, P151, DOI 10.1007/s00442-003-1417-y; Haapakoski M, 2012, J ANIM ECOL, V81, P1183, DOI 10.1111/j.1365-2656.2012.02005.x; Havelka MA, 2004, J MAMMAL, V85, P940, DOI 10.1644/013; Jochym M, 2012, OECOLOGIA, V170, P943, DOI 10.1007/s00442-012-2372-2; KING CM, 2006, NATURAL HIST WEASELS; Klemme I, 2007, ANIM BEHAV, V73, P623, DOI 10.1016/j.anbehav.2006.07.010; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kokko H, 1996, OIKOS, V77, P173, DOI 10.2307/3545599; Kokko H, 2000, ECOLOGY, V81, P252, DOI 10.2307/177148; KORPIMAKI E, 1994, EVOL ECOL, V8, P357, DOI 10.1007/BF01238188; Koskela E, 1996, ANIM BEHAV, V51, P1159, DOI 10.1006/anbe.1996.0117; LAMBIN X, 1995, TRENDS ECOL EVOL, V10, P204, DOI 10.1016/S0169-5347(00)89055-2; Lambin X, 2001, J ANIM ECOL, V70, P191, DOI 10.1046/j.1365-2656.2001.00494.x; Liang H, 2007, ZOOLOGY, V110, P118, DOI 10.1016/j.zool.2006.11.004; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; Lima SL, 1998, ADV STUD BEHAV, V27, P215; Mappes T, 1998, OIKOS, V82, P365, DOI 10.2307/3546977; Millar JS, 1994, ECOSCIENCE, V1, P317, DOI 10.1080/11956860.1994.11682257; Negus N.C., 1988, EVOLUTION LIFE HIST, P65; Nelson EH, 2004, ECOLOGY, V85, P1853, DOI 10.1890/03-3109; Norrdahl K, 2000, MAMMAL REV, V30, P147, DOI 10.1046/j.1365-2907.2000.00064.x; Prevot-Julliard AC, 1999, J ANIM ECOL, V68, P684, DOI 10.1046/j.1365-2656.1999.00307.x; SAS Institute Inc, 2008, SAS 9 2 HELP DOC; SIH A, 1994, J FISH BIOL, V45, P111, DOI 10.1006/jfbi.1994.1217; Sikes RS, 1998, OIKOS, V83, P452, DOI 10.2307/3546673; SIMMS DA, 1979, CAN J ZOOL, V57, P504, DOI 10.1139/z79-061; Sundell J, 2002, ANN ZOOL FENN, V39, P325; Sundell J, 2008, INTEGR ZOOL, V3, P51, DOI 10.1111/j.1749-4877.2008.00077.x; Tkadlec E, 1998, EVOL ECOL, V12, P191, DOI 10.1023/A:1006583713042; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; YLONEN H, 1994, EVOL ECOL, V8, P658, DOI 10.1007/BF01237848; Ylonen H, 2001, ADV VERTEBRATE PEST, P123; Ylonen Hannu, 2007, P328; YLONER H, 1989, OIKOS, V55, P138, DOI 10.2307/3565886 39 6 6 0 32 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 1035-3712 WILDLIFE RES Wildl. Res. 2012 39 5 463 468 10.1071/WR12012 6 Ecology; Zoology Environmental Sciences & Ecology; Zoology 967ZX WOS:000305947900011 2019-02-21 J De Baca, TC; Figueredo, AJ; Ellis, BJ De Baca, Tomas Cabeza; Figueredo, Aurelio Jose; Ellis, Bruce J. An Evolutionary Analysis of Variation in Parental Effort: Determinants and Assessment PARENTING-SCIENCE AND PRACTICE English Article LIFE-HISTORY THEORY; OFFSPRING RELATIONSHIPS; ENVIRONMENTAL RISK; FAMILY; SOCIALIZATION; MALTREATMENT; EXPRESSION; INVESTMENT; FRAMEWORK; CHILDREN Utilizing an evolutionary framework can elucidate the causes of variation in parental effort and guide measurement of relevant parenting constructs. The current article presents an evolutionary analysis of the determinants of parental effort and suggests that evolutionarily informed measures are needed to test evolutionary hypotheses. Towards this end, we employ evolutionary theory to guide development of new Parental Effort Scales, which supplement and extend extant methods for assessing coparenting. [De Baca, Tomas Cabeza] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA De Baca, TC (reprint author), Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, 650 N Pk Ave, Tucson, AZ 85721 USA. tdebaca@email.arizona.edu Ahrons C., 1987, REMARRIAGE STEPPAREN, P225; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Beaulieu DA, 2008, EVOL HUM BEHAV, V29, P249, DOI 10.1016/j.evolhumbehav.2008.01.002; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bornstein MH, 2007, DEV PSYCHOL, V43, P850, DOI 10.1037/0012-1649.43.4.850; Brown J, 1998, CHILD ABUSE NEGLECT, V22, P1065, DOI 10.1016/S0145-2134(98)00087-8; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Bugental DB, 2004, DEV PSYCHOL, V40, P234, DOI 10.1037/0012-1649.40.2.234; Burch RL, 2000, EVOL HUM BEHAV, V21, P429, DOI 10.1016/S1090-5138(00)00056-8; Daly M., 1988, HOMICIDE; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2012, MEASUREMENT HU UNPUB; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Finer LB, 2006, PERSPECT SEX REPRO H, V38, P90, DOI 10.1363/3809006; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; HALBERSTADT AG, 1986, J PERS SOC PSYCHOL, V51, P827, DOI 10.1037/0022-3514.51.4.827; HETHERINGTON ME, 1999, MONOGRAPHS SOC RES C, V259; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Kaplan H, 2001, FOUND HUM B, P293; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Mann J., 1992, ADAPTED MIND EVOLUTI, P367; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; McHale JP, 2004, J ADULT DEV, V11, P221, DOI 10.1023/B:JADE.0000035629.29960.ed; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RAGOZIN AS, 1982, DEV PSYCHOL, V18, P627, DOI 10.1037/0012-1649.18.4.627; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Snyder D. K., 1981, MANUAL THEMARITAL SA; Sotomayor-Peterson M., 2012, COPARENTING TO UNPUB; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trumbo Stephen T., 1996, Advances in the Study of Behavior, V25, P3 38 11 11 0 18 PSYCHOLOGY PRESS HOVE 27 CHURCH RD, HOVE BN3 2FA, EAST SUSSEX, ENGLAND 1529-5192 PARENT-SCI PRACT Parent.-Sci. Pract. 2012 12 2-3 SI 94 104 10.1080/15295192.2012.680396 11 Family Studies; Psychology, Developmental Family Studies; Psychology 961RZ WOS:000305487200002 2019-02-21 J Fyllas, NM; Quesada, CA; Lloyd, J Fyllas, Nikolaos M.; Quesada, Carlos A.; Lloyd, Jon Deriving Plant Functional Types for Amazonian forests for use in vegetation dynamics models PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Plant Functional Types; RLQ analysis; Amazonia; Tropical forests; Functional traits; Vegetation dynamics; Dynamic global vegetation models (DGVMs) TROPICAL RAIN-FOREST; KALIMANTAN INDONESIAN BORNEO; LEAF ECONOMICS SPECTRUM; BASIN-WIDE VARIATIONS; SPECIES TRAITS; ECOLOGICAL DATA; FRENCH-GUIANA; DIAMETER INCREMENT; 4TH-CORNER PROBLEM; NEIGHBOR MATRICES Recent advances in our understanding of the linkages between plant physiological and morphological traits suggest a new means by which to define Plant Functional Types (Phi) for use in conceptual and mathematical models of vegetation dynamics. In this study we used data from the RAINFOR-network database, aiming to numerically derive Phi for tropical forest trees by jointly analysing an Amazon-wide dataset of (409) species abundance, species functional traits (10) and site edaphic and climatic conditions across 53 plots. We followed a stepwise procedure of numerical Phi do definition with increasing complexity, starting from a simple PCA on species functional traits. We subsequently applied a three-table (RLQ) multivariate ordination method in two ways: with and without spatial autocorrelation between plots being taken into account. In all cases the environmental contribution to trait variation had been partialled out. Thus our results link species-specific "inherent" trait values with associated species abundances along environmental gradients. Our final classification of Amazonian tree species based on foliar dry leaf mass per area (M-A), leaf concentrations of C, N, P, Ca, K, Mg, carbon isotopic discrimination (Delta), branch xylem density (rho(X)) and maximum tree height (H-max) yielded four discrete Phi. These Phi were found to represent distinct life-history strategies and can be aligned with previous empirical definitions of tropical tree guilds. In particular, two ecological dimensions are identified: (1) a leaf deployment dimension which co-varies with soil fertility and (2) a stem deployment dimension which co-varies with soil texture. By analysing diameter growth rates of the same trees used to define the four Phi we found each Phi to have a different overall growth pattern. Furthermore, from a Basin-wide forest survey, differences in the relative abundance of the four Phi were related to stand level basal area growth and/or turnover rate variations. These new derived Phi should enhance our ability to better understand and model the dynamics of the Amazon forest, with the general procedure for plant functional trait definition described here potentially applicable to many other ecosystems. (C) 2011 Elsevier GmbH. All rights reserved. [Fyllas, Nikolaos M.; Quesada, Carlos A.; Lloyd, Jon] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England; [Quesada, Carlos A.] Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil; [Lloyd, Jon] James Cook Univ, Sch Earth & Environm Sci, Cairns, Qld, Australia Fyllas, NM (reprint author), Univ Leeds, Sch Geog, Woodhouse Lane, Leeds LS2 9JT, W Yorkshire, England. n.fyllas@leeds.ac.uk James Cook University, TESS/B-8171-2012; Lloyd, Jonathan/F-8893-2010 Lloyd, Jonathan/0000-0002-5458-9960; Fyllas, Nikolaos/0000-0002-5651-5578 UK National Research Council (NERC) QUEST (Quantifying the Earth System) initiative; subprogram QUERCC (Quantifying and Understanding Ecosystems Role in the Carbon Cycle); NERC "Tropical Biomes in Transition" (TROBIT) consortium project; Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme; Gordon and Betty Moore Foundation Much of the data analysis of this work was funded through the UK National Research Council (NERC) QUEST (Quantifying the Earth System) initiative, subprogram QUERCC (Quantifying and Understanding Ecosystems Role in the Carbon Cycle) and the NERC "Tropical Biomes in Transition" (TROBIT) consortium project. This research was also supported by a Marie Curie Intra-European Fellowship within the 7th European Community Framework Programme to Nikos Fyllas. Discussions and comments from two anonymous reviewers, Dr. Florian Jeltsch, Dr. Tim Baker and Prof. Oliver Phillips greatly improved this study. Shiela Lloyd helped with manuscript preparation. The RAINFOR project and associated database is supported by the Gordon and Betty Moore Foundation. Ackerly David D., 1996, P619; Albert CH, 2010, FUNCT ECOL, V24, P1192, DOI 10.1111/j.1365-2435.2010.01727.x; Baker TR, 2009, BIOGEOSCIENCES, V6, P297, DOI 10.5194/bg-6-297-2009; Baraloto C, 2010, FUNCT ECOL, V24, P208, DOI 10.1111/j.1365-2435.2009.01600.x; Bernhardt-Romermann M, 2008, OIKOS, V117, P1533, DOI 10.1111/j.2008.0030-1299.16776.x; Borcard D, 2002, ECOL MODEL, V153, P51, DOI 10.1016/S0304-3800(01)00501-4; Borcard D, 2004, ECOLOGY, V85, P1826, DOI 10.1890/03-3111; Box E.O., 1996, J VEG SCI, P09; BRYANT JP, 1983, OIKOS, V40, P357, DOI 10.2307/3544308; Chao KJ, 2008, J ECOL, V96, P281, DOI 10.1111/j.1365-2745.2007.01343.x; Chao KJ, 2009, J VEG SCI, V20, P260, DOI 10.1111/j.1654-1103.2009.05755.x; Chave J, 1999, ECOL MODEL, V124, P233, DOI 10.1016/S0304-3800(99)00171-4; Choler P, 2005, ARCT ANTARCT ALP RES, V37, P444, DOI 10.1657/1523-0430(2005)037[0444:CSIAPT]2.0.CO;2; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Condit R, 1996, J VEG SCI, V7, P405, DOI 10.2307/3236284; Coq S, 2010, ECOLOGY, V91, P2080, DOI 10.1890/09-1076.1; Cox PM, 2000, NATURE, V408, P184, DOI 10.1038/35041539; Davies SJ, 1998, J ECOL, V86, P662, DOI 10.1046/j.1365-2745.1998.00299.x; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 1997, J VEG SCI, V8, P463, DOI 10.2307/3237198; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Domingues TF, 2010, PLANT CELL ENVIRON, V33, P959, DOI 10.1111/j.1365-3040.2010.02119.x; Dray S, 2003, ECOLOGY, V84, P3078, DOI 10.1890/03-0178; Dray S., 2007, R NEWS, V7, P47, DOI DOI 10.1159/000323281; Dray S, 2008, COMPUT STAT DATA AN, V52, P2228, DOI 10.1016/j.csda.2007.07.015; Dray S, 2006, ECOL MODEL, V196, P483, DOI 10.1016/j.ecolmodel.2006.02.015; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; du Rietz G.E., 1931, ACTA PHYTOGEOGRAPHIC; FARQUHAR GD, 1989, ANNU REV PLANT PHYS, V40, P503, DOI 10.1146/annurev.pp.40.060189.002443; FARQUHAR GD, 1980, PLANTA, V149, P78, DOI 10.1007/BF00386231; Field C, 1986, EC PLANT FORM FUNCTI, P25; Fine P. V. A., 2006, Ecology, V87, P150, DOI 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Fisher R, 2010, NEW PHYTOL, V187, P666, DOI 10.1111/j.1469-8137.2010.03340.x; Fyllas NM, 2009, BIOGEOSCIENCES, V6, P2677, DOI 10.5194/bg-6-2677-2009; Gourlet-Fleury S, 2000, FOREST ECOL MANAG, V131, P269, DOI 10.1016/S0378-1127(99)00212-1; Guidi L, 2009, ECOL MODEL, V220, P451, DOI 10.1016/j.ecolmodel.2008.11.006; Hausner VH, 2003, ECOL APPL, V13, P999, DOI 10.1890/1051-0761(2003)13[999:SITFML]2.0.CO;2; Hodnett MG, 2002, GEODERMA, V108, P155, DOI 10.1016/S0016-7061(02)00105-2; Hulshof CM, 2010, FUNCT ECOL, V24, P217, DOI 10.1111/j.1365-2435.2009.01614.x; Huth A, 2000, ECOL MODEL, V134, P1, DOI 10.1016/S0304-3800(00)00328-8; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Killeen T.J., 2005, NEOTROPICAL SAVANNAS, P213; Kohler P, 2000, J TROP ECOL, V16, P591, DOI 10.1017/S0266467400001590; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lavorel S., 2007, TERRESTRIAL ECOSYSTE, P149, DOI DOI 10.1007/978-3-540-32730-1_13; Legendre P, 1997, ECOLOGY, V78, P547; Legendre P, 1998, NUMERICAL ECOLOGY; Lieberman D., 1985, J TROP ECOL, V1, P97, DOI DOI 10.1017/S026646740000016X; Lloyd J, 2010, BIOGEOSCIENCES, V7, P1833, DOI 10.5194/bg-7-1833-2010; Lopez-Gonzalez G, 2011, J VEG SCI, V22, P610, DOI 10.1111/j.1654-1103.2011.01312.x; Malhado ACM, 2009, BIOGEOSCIENCES, V6, P1577, DOI 10.5194/bg-6-1577-2009; Malhi Y, 2004, PHILOS T ROY SOC B, V359, P311, DOI 10.1098/rstb.2003.1433; Mercado LM, 2009, BIOGEOSCIENCES, V6, P1247, DOI 10.5194/bg-6-1247-2009; Mercado L.M., 2011, PHILOS T RO IN PRESS; Messier J, 2010, ECOL LETT, V13, P838, DOI 10.1111/j.1461-0248.2010.01476.x; Moorcroft PR, 2001, ECOL MONOGR, V71, P557, DOI 10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2; Morton A.G., 1981, HIST BOT SCI; Nabeshima E, 2004, TREE PHYSIOL, V24, P745, DOI 10.1093/treephys/24.7.745; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Ostle NJ, 2009, J ECOL, V97, P851, DOI 10.1111/j.1365-2745.2009.01547.x; Patino S, 2009, BIOGEOSCIENCES, V6, P545, DOI 10.5194/bg-6-545-2009; Patino S., 2011, BIOGEOSCIENCES DISCU, V8, P5083; Pavord A., 2009, BLOOMSBURY; Peacock J, 2007, J VEG SCI, V18, P535, DOI 10.1658/1100-9233(2007)18[535:TRDMFB]2.0.CO;2; Phillips PD, 2003, ECOL MODEL, V159, P1, DOI 10.1016/S0304-3800(02)00126-6; Phillips PD, 2002, FOREST ECOL MANAG, V157, P205, DOI 10.1016/S0378-1127(00)00666-6; Picard N, 2003, ECOL MODEL, V163, P175, DOI 10.1016/S0304-3800(03)00010-3; Pillar VD, 2003, J VEG SCI, V14, P323, DOI 10.1111/j.1654-1103.2003.tb02158.x; Poorter H, 1999, NEW PHYTOL, V143, P163, DOI 10.1046/j.1469-8137.1999.00428.x; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; Poorter L, 2007, AM NAT, V169, P433, DOI 10.1086/512045; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; PRENTICE IC, 1992, J BIOGEOGR, V19, P117, DOI 10.2307/2845499; Prentice IC, 2007, TERRESTRIAL ECOSYSTE, P175, DOI [DOI 10.1007/978-3-540-32730-1_15, 10.1007/978-3-540-32730-1_15]; Quesada CA, 2011, BIOGEOSCIENCES, V8, P1415, DOI 10.5194/bg-8-1415-2011; Quesada CA, 2010, BIOGEOSCIENCES, V7, P1515, DOI 10.5194/bg-7-1515-2010; Quesada C. A., 2009, BIOGEOSCI DISCUSS, V6, P3993, DOI DOI 10.5194/BGD-6-3993-2009; R Development Core Team, 2010, R LANG ENV STAT COMP; RAAIMAKERS D, 1995, OECOLOGIA, V102, P120, DOI 10.1007/BF00333319; Rao IM, 1997, BOOKS SOIL PLANT ENV, P173; Raunkiaer C., 1934, LIFE FORMS PLANTS ST; Read AF, 2008, PLOS BIOL, V6, DOI DOI 10.1371/JOURNAL.PBIO.1000004; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; REICH PB, 1994, OECOLOGIA, V97, P62, DOI 10.1007/BF00317909; Ribera I, 2001, ECOLOGY, V82, P1112; Santiago LS, 2007, FUNCT ECOL, V21, P19, DOI 10.1111/j.1365-2435.2006.01218.x; Santiago LS, 2007, ECOLOGY, V88, P1126, DOI 10.1890/06-1841; Sato H, 2009, FOREST ECOL MANAG, V257, P2277, DOI 10.1016/j.foreco.2009.03.002; Scheiter S, 2009, GLOBAL CHANGE BIOL, V15, P2224, DOI 10.1111/j.1365-2486.2008.01838.x; Shiodera S, 2008, J TROP ECOL, V24, P121, DOI 10.1017/S0266467407004725; Sitch S, 2003, GLOBAL CHANGE BIOL, V9, P161, DOI 10.1046/j.1365-2486.2003.00569.x; Smith T. M., 1997, PLANT FUNCTIONAL TYP; Sombroek W, 2001, AMBIO, V30, P388, DOI 10.1639/0044-7447(2001)030[0388:SATPOA]2.0.CO;2; Sombroek Wim, 2000, Acta Amazonica, V30, P81; SPECHT RL, 1990, AUST J BOT, V38, P459, DOI 10.1071/BT9900459; SWAINE MD, 1988, VEGETATIO, V75, P81, DOI 10.1007/BF00044629; ter Steege H, 2010, AMAZONIA: LANDSCAPE AND SPECIES EVOLUTION: A LOOK INTO THE PAST, P349; Thuiller W, 2008, PERSPECT PLANT ECOL, V9, P137, DOI 10.1016/j.ppees.2007.09.004; Thuiller W, 2006, ECOLOGY, V87, P1755, DOI 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2; Turner I. M., 2001, ECOLOGY TREES TROPIC; Uriarte M, 2004, J ECOL, V92, P348, DOI 10.1111/j.0022-0477.2004.00867.x; VANCLAY JK, 1991, FOREST ECOL MANAG, V42, P143, DOI 10.1016/0378-1127(91)90022-N; Villadas PJ, 2007, MICROB ECOL, V53, P317, DOI 10.1007/s00248-006-9158-1; Warming Eugenius, 1909, OECOLOGY PLANTS INTR; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Westoby M, 2006, TRENDS ECOL EVOL, V21, P261, DOI 10.1016/j.tree.2006.02.004; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x; ZEIDE B, 1993, FOREST SCI, V39, P594, DOI 10.1093/forestscience/39.3.594 114 20 21 5 53 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. 2012 14 2 97 110 10.1016/j.ppees.2011.11.001 14 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 960IH WOS:000305380700003 2019-02-21 J Edwards, CTT; Hillary, RM; Levontin, P; Blanchard, JL; Lorenzen, K Edwards, C. T. T.; Hillary, R. M.; Levontin, P.; Blanchard, J. L.; Lorenzen, K. Fisheries Assessment and Management: A Synthesis of Common Approaches with Special Reference to Deepwater and Data-Poor Stocks REVIEWS IN FISHERIES SCIENCE English Article deepwater fisheries; stock assessment; management procedure ROUGHY HOPLOSTETHUS-ATLANTICUS; TOOTHFISH DISSOSTICHUS-ELEGINOIDES; MAXIMUM REPRODUCTIVE RATE; LIFE-HISTORY STRATEGIES; AFRICAN HAKE RESOURCE; US WEST-COAST; ORANGE ROUGHY; NEW-ZEALAND; POPULATION-DYNAMICS; NATURAL MORTALITY Deepwater fish populations are often characterized by their life-history as being highly susceptible to overexploitation. Moreover, dependent fisheries often develop rapidly, so overexploitation may occur before resource dynamics are quantified sufficiently to assess safe biological limits. It is therefore crucial to employ assessment methods that make the best use of limited data and management procedures that account for large uncertainties. This review provides a critical synthesis of assessment and management approaches for deepwater fisheries. Given limitations in the data, it is clear that assessments are likely to benefit from the application of derived relationships between life-history characteristics and the sharing of this and other information across stocks. It is important that uncertainty in assessment results is represented adequately, and management methods must in turn ensure that decision mechanisms are robust to an incomplete picture of resource dynamics. This requires construction and testing of harvest control rules within a simulation framework. Harvest control rules themselves, however, need not be complicated, and simple empirical approaches can be adequate for situations in which only relative changes in biomass can be discerned from the data. Development and testing of these control rules is likely to prove a productive area of future research. [Edwards, C. T. T.] Imperial Coll London, Div Biol, Ascot SL5 7PY, Berks, England; [Hillary, R. M.] CSIRO Marine & Atmospher Res, Wealth Oceans Natl Res Flagship, Hobart, Tas, Australia; [Levontin, P.] Univ London Imperial Coll Sci Technol & Med, Ctr Environm Policy, London, England; [Blanchard, J. L.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Lorenzen, K.] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA Edwards, CTT (reprint author), Imperial Coll London, Div Biol, Silwood Pk, Ascot SL5 7PY, Berks, England. charles.edwards@imperial.ac.uk Blanchard, Julia/E-4919-2010; Lorenzen, Kai/A-3032-2015; Hillary, Richard/L-3300-2013 Blanchard, Julia/0000-0003-0532-4824; Lorenzen, Kai/0000-0002-9691-3693 Commission of the European Communities under the DEEP-FISHMAN project [227390]; U.S Fish and Wildlife Service SFR project [F-136-R] This study was carried out with financial support from the Commission of the European Communities under the DEEP-FISHMAN project (grant agreement 227390). KL acknowledges supplementary funding from U.S Fish and Wildlife Service SFR project F-136-R. Agnew DJ, 2009, CCAMLR SCI, V16, P71; Allain V, 2001, FISH RES, V51, P165, DOI 10.1016/S0165-7836(01)00243-0; Annala J. H., 2003, MAY 2003 STOCK ASSES; Apostolaki P, 2009, AQUAT LIVING RESOUR, V22, P217, DOI 10.1051/alr/2009022; Ault J. S, 1991, ICLARM FISHBYTE, V9, P137; Beare DJ, 2005, ICES J MAR SCI, V62, P996, DOI 10.1016/j.icesjms.2005.03.003; BERGSTAD OA, 1994, SARSIA, V79, P33; Beverton R. J. H., 1956, RAPPORTS PROCES VERB, V140, P67; Beverton R. J. H., 1957, FISHERY INVESTIGATIO, VII; Bogaards JA, 2009, ICES J MAR SCI, V66, P665, DOI 10.1093/icesjms/fsp038; Brandao A, 2009, CCAMLR SCI, V16, P33; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; Brodziak J, 2011, ESTIMATING NATURAL M; Brooks EN, 2007, ICES J MAR SCI, V64, P413, DOI 10.1093/icesjms/fsl046; Brooks EN, 2010, ICES J MAR SCI, V67, P165, DOI 10.1093/icesjms/fsp225; Butterworth D. S, 1997, GLOBAL TRENDS FISHER; Butterworth DS, 2007, ICES J MAR SCI, V64, P613, DOI 10.1093/icesjms/fsm003; Butterworth DS, 2008, ICES J MAR SCI, V65, P1717, DOI 10.1093/icesjms/fsn178; Butterworth DS, 1999, ICES J MAR SCI, V56, P985, DOI 10.1006/jmsc.1999.0532; Cadrin SX, 2008, FISH RES, V94, P367, DOI 10.1016/j.fishres.2008.06.004; Carbonell A, 2003, FISH RES, V65, P323, DOI 10.1016/j.fishres.2003.09.023; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; Charnov Eric L., 1993, P1; Charuau A, 1995, NATO ADV WORKSH DEEP; Clark M, 2001, FISH RES, V51, P123, DOI 10.1016/S0165-7836(01)00240-5; Clark M. R, 1995, DEEPWATER FISHERIES; Clark MR, 1996, J FISH BIOL, V49, P114, DOI 10.1111/j.1095-8649.1996.tb06070.x; Clark MR, 2000, FISH RES, V45, P217, DOI 10.1016/S0165-7836(99)00121-6; Clark W G., 1993, P INT S MAN STRAT EX; Clark WG, 2002, N AM J FISH MANAGE, V22, P251, DOI 10.1577/1548-8675(2002)022<0251:FRTYL>2.0.CO;2; CLARK WG, 1991, CAN J FISH AQUAT SCI, V48, P734, DOI 10.1139/f91-088; Clarke M. W., 2003, Journal of Northwest Atlantic Fishery Science, V31, P401; Clarke M. W, 2003, DEEP SEA 2003; Cooke JG, 1999, ICES J MAR SCI, V56, P797, DOI 10.1006/jmsc.1999.0552; Cortes E, 1998, FISH RES, V39, P199, DOI 10.1016/S0165-7836(98)00183-0; Cotter J, 2009, AQUAT LIVING RESOUR, V22, P135, DOI 10.1051/alr/2009016; DAFF, 2007, COMM FISH HARV STRAT; Darby C, 1994, VIRTUAL POPULATION A; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; Dorn MW, 2002, N AM J FISH MANAGE, V22, P280, DOI 10.1577/1548-8675(2002)022<0280:AOWCRH>2.0.CO;2; Dowling NA, 2008, FISH RES, V94, P380, DOI 10.1016/j.fishres.2008.09.033; Du Buit Marie-Henriette, 1995, Cybium, V19, P199; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; EHRHARDT NM, 1992, T AM FISH SOC, V121, P115, DOI 10.1577/1548-8659(1992)121<0115:AOTLMM>2.3.CO;2; FAO, 1995, COD COND RESP FISH; FAO, 2003, FISH MAN; FAO, 1996, PREC APPR CAPT FISH; FAO, 2008, 855 FAO; FAO, 2009, INT GUID MAN DEEPW F; Francis R. I. C. C., 2002, REV 2001 HOKI STOCK; Froese R, 2004, FISH FISH, V5, P86, DOI 10.1111/j.1467-2979.2004.00144.x; Gavaris S, 1988, ADAPTIVE FRAMEWORK E; Gedamke T, 2006, T AM FISH SOC, V135, P476, DOI 10.1577/T05-153.1; Gedamke T, 2007, N AM J FISH MANAGE, V27, P605, DOI 10.1577/M05-157.1; Goodyear C. Phillip, 2003, International Commission for the Conservation of Atlantic Tunas Collective Volume of Scientific Papers, V55, P633; Gordon J. D. M, 2003, DEEP SEA 2003; Gulland J. A, 1969, MANUAL METHODS FISH; Gulland J.A., 1992, REV LENGTH BASED APP; GUNDERSON DR, 1977, FISH B-NOAA, V75, P369; Harley SJ, 2001, CAN J FISH AQUAT SCI, V58, P1760, DOI 10.1139/cjfas-58-9-1760; Harley SJ, 2001, CAN J FISH AQUAT SCI, V58, P1569, DOI 10.1139/cjfas-58-8-1569; Hewitt DA, 2005, FISH B-NOAA, V103, P433; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hilborn R, 2001, CAN J FISH AQUAT SCI, V58, P579, DOI 10.1139/cjfas-58-3-579; Hillary R, 2012, ECOLOGICAL IN PRESS; Hillary R, 2007, EXPLORATORY ASSESSME; Hillary RM, 2006, CCAMLR SCI, V13, P65; Hillary RM, 2009, CCAMLR SCI, V16, P101; Hoenig J. M, 1990, LIFE HIST PATTERNS E; HOENIG JM, 1983, FISH B-NOAA, V81, P898; Horn PL, 2002, FISH RES, V56, P275, DOI 10.1016/S0165-7836(01)00325-3; ICES, 2008, REP WORK GROUP BIOL; ICES, 2009, REP WORK GROUP BIOL; ICES, 2001, REP WORK GROUP BIOL; Japp D., 2006, DEEP SEA RESOURCES F; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Kell LT, 2007, ICES J MAR SCI, V64, P640, DOI 10.1093/icesjms/fsm012; KIMURA DK, 1982, CAN J FISH AQUAT SCI, V39, P1467, DOI 10.1139/f82-198; KIMURA DK, 1984, CAN J FISH AQUAT SCI, V41, P1325, DOI 10.1139/f84-162; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kirkwood G. P, 1997, GLOBAL TRENDS FISHER; Kompas T, 2004, APPL ECON, V36, P1631, DOI 10.1080/0003684042000218561; Koslow JA, 2000, ICES J MAR SCI, V57, P548, DOI 10.1006/jmsc.2000.0722; Laptikhovsky V, 2005, FISH RES, V74, P11, DOI 10.1016/j.fishres.2005.04.006; Large P. A., 2003, Journal of Northwest Atlantic Fishery Science, V31, P151; Large P. A., 2003, DEEP SEA 2003; Large P. A., REV FISH SC IN PRESS; LEAMAN B M, 1984, International North Pacific Fisheries Commission Bulletin, P85; Lee HH, 2011, FISH RES, V109, P89, DOI 10.1016/j.fishres.2011.01.021; Leslie PH, 1939, J ANIM ECOL, V8, P94, DOI 10.2307/1255; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/cjfas-54-9-1976; Lorenzen K, 2000, CAN J FISH AQUAT SCI, V57, P2374, DOI 10.1139/cjfas-57-12-2374; Lorenzen K, 2010, B MAR SCI, V86, P169; LUDWIG D, 1989, CAN J FISH AQUAT SCI, V46, P137, DOI 10.1139/f89-018; LUDWIG D, 1985, CAN J FISH AQUAT SCI, V42, P1066, DOI 10.1139/f85-132; Mace P. M., 1993, CANADIAN SPECIAL PUB; MACE PM, 1994, CAN J FISH AQUAT SCI, V51, P110, DOI 10.1139/f94-013; Magnusson J. V., 1988, SILVER SMELT ARGENTI; Mangel M, 2010, FISH FISH, V11, P89, DOI 10.1111/j.1467-2979.2009.00345.x; Maunder M. N., 1996, SCH FISH 7 ANN GRAD; Maunder M. N., 2007, 8 IATTC; Maunder MN, 2004, FISH RES, V70, P141, DOI 10.1016/j.fishres.2004.08.002; McAllister M.K., 2000, ICCAT COLL VOL SCI P, P1523; McAllister MK, 2001, S AFR J MARINE SCI, V23, P241; McAllister MK, 2001, CAN J FISH AQUAT SCI, V58, P1871, DOI 10.1139/cjfas-58-9-1871; Michielsens CGJ, 2006, CAN J FISH AQUAT SCI, V63, P321, DOI 10.1139/F05-215; Millar RB, 2002, CAN J FISH AQUAT SCI, V59, P383, DOI 10.1139/f02-009; Minto C., 2006, FECUNDITY MATURITY O; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 2002, N AM J FISH MANAGE, V22, P351, DOI 10.1577/1548-8675(2002)022<0351:IBPWLD>2.0.CO;2; Myers RA, 2001, CAN J FISH AQUAT SCI, V58, P1464, DOI 10.1139/cjfas-58-7-1464; Myers RA, 2001, ICES J MAR SCI, V58, P937, DOI 10.1006/jmsc.2001.1109; Myers RA, 1997, FISH B-NOAA, V95, P762; Needle C. L., 2007, ICES ANN SCI C 17 21; Patterson K. R., 1996, INTEGRATED CATCH AT; PAULY D, 1980, J CONSEIL, V39, P175; PAULY D, 1987, ICLARM C P, V13, P468; Pella J. J., 1969, Bulletin Inter-American Tropical Tuna Commission, V13, P421; Perez JAA, 2005, FISH RES, V72, P149, DOI 10.1016/j.fishres.2004.11.004; POLACHECK T, 1993, CAN J FISH AQUAT SCI, V50, P2597, DOI 10.1139/f93-284; Pope J. G, 1972, INT COMM NW ATL FISH, V9, P65; Porch CE, 2006, FISH B-NOAA, V104, P89; Punt A. E, 2003, DEEP SEA 2003; Punt AE, 2002, MAR FRESHWATER RES, V53, P631, DOI 10.1071/MF01008; Punt AE, 2008, FISH RES, V94, P251, DOI 10.1016/j.fishres.2007.12.008; Rademeyer RA, 2008, AFR J MAR SCI, V30, P291, DOI 10.2989/AJMS.2008.30.2.8.558; Rademeyer RA, 2008, AFR J MAR SCI, V30, P263, DOI 10.2989/AJMS.2008.30.2.7.557; Rademeyer RA, 2007, ICES J MAR SCI, V64, P618, DOI 10.1093/icesjms/fsm050; Radomski P, 2005, CAN J FISH AQUAT SCI, V62, P436, DOI 10.1139/F04-228; Restrepo VR, 1999, ICES J MAR SCI, V56, P846, DOI 10.1006/jmsc.1999.0546; Ricker W. E, 1975, FISHERIES RES BOARD, V191; RICKER WE, 1963, J FISH RES BOARD CAN, V20, P257, DOI 10.1139/f63-022; Rikhter V. A., 1976, ONE APPROACHES ESTIM; Roberts CM, 2002, TRENDS ECOL EVOL, V17, P242, DOI 10.1016/S0169-5347(02)02492-8; Rochet MJ, 2003, CAN J FISH AQUAT SCI, V60, P86, DOI 10.1139/F02-164; Rose GA, 1999, CAN J FISH AQUAT SCI, V56, P118, DOI 10.1139/cjfas-56-S1-118; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sainsbury K., 2008, BEST PRACTICE REFERE; Schaefer M. B, 1957, INTERAM TROP TUNA CO, V2, P247; Schaefer MB, 1954, INTERAM TROP TUNA CO, V1, P27; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; Shepherd JG, 1997, ICES J MAR SCI, V54, P741, DOI 10.1006/jmsc.1997.0222; Shepherd JG, 1999, ICES J MAR SCI, V56, P584, DOI 10.1006/jmsc.1999.0498; Smith A. D. M., 2002, STOCK ASSESSMENT NE; Smith ADM, 1999, ICES J MAR SCI, V56, P967, DOI 10.1006/jmsc.1999.0540; Trenkel VM, 2008, CAN J FISH AQUAT SCI, V65, P1024, DOI 10.1139/F08-028; Ulrich C, 2002, CAN J FISH AQUAT SCI, V59, P829, DOI 10.1139/F02-057; Vasconcellos M, 2003, FISH RES, V59, P363, DOI 10.1016/S0165-7836(02)00026-7; Venables WN, 2004, FISH RES, V70, P319, DOI 10.1016/j.fishres.2004.08.011; Walters C, 1996, REV FISH BIOL FISHER, V6, P21, DOI 10.1007/BF00058518; Walters C. J, 1992, QUANTITATIVE FISHERI; Wayte S, 2007, ECOLOGICAL RISK ASSE; Wayte S., 2002, STOCK ASSESSMENT REP; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 156 13 13 1 49 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 1064-1262 1547-6553 REV FISH SCI Rev. Fish. Sci. 2012 20 3 136 153 10.1080/10641262.2012.683210 18 Fisheries Fisheries 962CM WOS:000305516900002 2019-02-21 J Steffen, JE; Appel, AG Steffen, John E.; Appel, Arthur G. The effect of temperature on standard metabolic rate of Brown Anoles AMPHIBIA-REPTILIA English Article ectotherms; oxygen consumption; reptiles; standard metabolic rate LIZARD SCELOPORUS-OCCIDENTALIS; OXYGEN-CONSUMPTION; GROWTH-RATES; SAGREI; FLORIDA; SEX; PHENETICS; BEHAVIOR; REPTILES; MAMMALS Understanding the influences of sex and ambient temperature on metabolic rates of reptiles is of fundamental interest to biologists because of the role that temperature-dependent metabolic rates play in shaping behaviour, life history evolution and geographic range. We investigated the effects of sex, body mass and temperature on standard metabolic rate, respiratory quotient (RQ), and Q(10) in male and female Brown Anoles, Norops sagrei. When mass-adjusted, oxygen consumption increased linearly with temperature, and there was no effect of sex. RQ did not differ by sex or temperature. Q(10) was within the range published for other lizards. [Steffen, John E.] Penn State Univ, Behrend Coll, Sch Sci, Erie, PA 16563 USA; [Appel, Arthur G.] Auburn Univ, Dept Entomol & Plant Pathol, Auburn, AL 36849 USA Steffen, JE (reprint author), Penn State Univ, Behrend Coll, Sch Sci, Erie, PA 16563 USA. jes73@psu.edu ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ANDREWS RM, 1985, PHYSIOL ZOOL, V58, P214, DOI 10.1086/physzool.58.2.30158569; BEAUPRE SJ, 1993, PHYSIOL ZOOL, V66, P128, DOI 10.1086/physzool.66.1.30158291; Bennett A.F., 1976, P127; Bennett A.F., 1982, Biology of Reptilia, V13, P155; BENNETT AF, 1972, J COMP PHYSIOL, V81, P277, DOI 10.1007/BF00693632; Bull J.J, 1980, Q REV BIOL, V55, P13; BULL JJ, 1979, SCIENCE, V206, P1186, DOI 10.1126/science.505003; Echternacht A.C., 1995, Herpetological Review, V26, P107; CLARKE D R JR, 1974, Southwestern Naturalist, V19, P9, DOI 10.2307/3669786; Clausen HJ, 1936, J CELL COMPAR PHYSL, V8, P367, DOI 10.1002/jcp.1030080307; Dessauer H.C, 1953, P SOC EXP BIOL MED, V90, P524; Duvall D., 1982, Biology of Reptilia, V13, P201; Echternacht A.C., 1995, HERP REV, V26, P10; FITCH HS, 1970, MISCELLANEOUS PUBLIC, V52, P1; GARLAND T, 1987, AM J PHYSIOL, V252, pR439; Goldberg SR, 2000, J PARASITOL, V86, P750, DOI 10.1645/0022-3395(2000)086[0750:TOHTHV]2.0.CO;2; GOLDBERG SR, 1974, COPEIA, P176; HEUSNER AA, 1981, COMP BIOCHEM PHYS A, V69, P363, DOI 10.1016/0300-9629(81)92991-1; Huey R.B., 1982, Biology of Reptilia, V12, P25; HUEY RB, 1976, Q REV BIOL, V51, P363, DOI 10.1086/409470; HUEY RB, 1991, AM NAT, V137, pS91, DOI 10.1086/285141; JAMES C, 1988, OECOLOGIA, V75, P307, DOI 10.1007/BF00378615; Kleiber M., 1961, FIRE LIFE INTRO ANIM; LEE JC, 1989, COPEIA, P930, DOI 10.2307/1445979; LEE JC, 1992, COPEIA, P942, DOI 10.2307/1446624; LEE JC, 1985, COPEIA, P182, DOI 10.2307/1444808; Licht P., 1970, U CALIF PUBL ZOOL, V95, P1; Licht P, 1984, PHYSL REPROD REPROD, P206; Lighton J.R.B., 2008, MEASURING METABOLIC; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; MCKEOWN S, 1996, FIELD GUIDE REPTILES; McMann S, 2003, J HERPETOL, V37, P538, DOI 10.1670/75-00A; Means B.D, 1990, HERP REV, V21, P96; NIEWIAROWSKI PH, 1993, ECOLOGY, V74, P1992, DOI 10.2307/1940842; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; NIEWIAROWSKI PH, 1992, FUNCT ECOL, V6, P15, DOI 10.2307/2389766; Paterson AV, 2002, HERPETOLOGICA, V58, P382, DOI 10.1655/0018-0831(2002)058[0382:EOAIRO]2.0.CO;2; PIANKA ER, 1970, ECOLOGY, V51, P703, DOI 10.2307/1934053; Platt Steven G., 1994, Herpetological Review, V25, P33; Pough F. Harvey, 1992, P395; ROBERTS LA, 1968, ECOLOGY, V49, P809, DOI 10.2307/1936532; Roe JH, 2005, J HERPETOL, V39, P595, DOI 10.1670/75-05A.1; Savage J., 2002, AMPHIBIANS REPTILES; Savage VM, 2007, P NATL ACAD SCI USA, V104, P4718, DOI 10.1073/pnas.0611235104; Schmidt-Nielsen K, 1984, SCALING WHY IS ANIMA; Schwartz A., 1991, AMPHIBIANS REPTILES; Shine R, 1999, TRENDS ECOL EVOL, V14, P186, DOI 10.1016/S0169-5347(98)01575-4; Spellerberg I.F., 1973, P239; Vance V.J, 1953, THESIS U ARIZONA TUC; West GB, 2002, P NATL ACAD SCI USA, V99, P2473, DOI 10.1073/pnas.012579799 51 3 3 3 77 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 0173-5373 AMPHIBIA-REPTILIA Amphib. Reptil. 2012 33 2 297 302 10.1163/156853812X634026 6 Zoology Zoology 958WC WOS:000305270600013 2019-02-21 J De Merona, B; Vigouroux, R De Merona, Bernard; Vigouroux, Regis The role of ecological strategies in the colonization success of pelagic fish in a large tropical reservoir (Petit-Saut Reservoir, French Guiana) AQUATIC LIVING RESOURCES English Article Freshwater fish; Biodiversity conservation; Life history; Diet; Ecomorphology; South America LIFE-HISTORY STRATEGIES; BROKOPONDO RESERVOIR; HABITAT TEMPLET; AMERICAN FISHES; SPECIES TRAITS; NICHE OVERLAP; SOUTH-AMERICA; ASSEMBLAGES; COMMUNITIES; PATTERNS Although many studies have been made on fish community changes in reservoirs, the diversity of situations means that general models are still difficult to construct. In order to be useful to managers, the information gathered in these studies must cover the regional taxonomic peculiarities. The inclusion of ecological strategies allows the detection of general patterns of fish community change. In the present study, multivariate analyses and non-parametric tests were used in order to detect relationships between ecological traits of 39 fish species and pelagic fish assemblages. We used gillnet captures of fish made in the Sinnamary River before filling of the Petit-Saut Reservoir and in the reservoir 8 years after closure of the dam and published data on fish species diet, life history parameters and morphology. Significant relationships were detected between fish assemblages and every ecological trait, which would have allowed the forecast of the type of species able to colonize the Petit-Saut Reservoir. Provided that the general characteristics of a river before damming are taken into account, it seems that feeding strategies can be used to predict future fish population and species changes on a general basis. Conversely, the lack of published data prevents definitive conclusions from being drawn concerning life-history and swimming strategies. [De Merona, Bernard] Ctr IRD Cayenne, UMR Borea, Cayenne 97323, French Guiana; [Vigouroux, Regis] Lab Hydreco, Kourou 97388, French Guiana De Merona, B (reprint author), Ctr IRD Cayenne, UMR Borea, Rte Montabo Km 0-275,BP 165, Cayenne 97323, French Guiana. bernard.de.merona@ird.fr Electricite de France (EDF) This work was funded by Electricite de France (EDF). The authors would like to thank the technical staff of Hydreco - Roland Aboikoni, Laurent Guillemet, Benoit Burban, Sebastien Lereun and Simon Clavier - for their help with the field collections. Agostinho AA, 1999, THEORETICAL RESERVOIR ECOLOGY AND ITS APPLICATIONS, P227; Agostinho AA, 2007, ECOLOGIA MANEJO RECU; Agostinho C. S., 2003, Braz. J. Biol., V63, P177, DOI 10.1590/S1519-69842003000200002; Araujo Lima C. A. R. M., 1995, LIMNOLOGY BRAZIL, P105; Balogun J.K., 1995, CURRENT STATUS FISHE, P1; Balon E.K, 1973, MAN MADE LAKES THEIR, P149; Charvet S, 2000, FRESHWATER BIOL, V43, P277, DOI 10.1046/j.1365-2427.2000.00545.x; Chookajorn T., 1999, P95; Clarke K, 2001, CHANGE MARINE COMMUN; Clarke K. R., 2001, PRIMER V5 USER MANUA; de Merona B, 2003, ACTA OECOL, V24, P147, DOI 10.1016/S1146-609X(03)00065-1; De Merona B, 1999, REGUL RIVER, V15, P339, DOI 10.1002/(SICI)1099-1646(199907/08)15:4<339::AID-RRR546>3.0.CO;2-0; DE MERONA B., 2005, FLEUVE BARRAGE POISS; de Merona B, 2009, NEOTROP ICHTHYOL, V7, P683, DOI 10.1590/S1679-62252009000400018; dos Santos Geraldo Mendes, 1996, Acta Amazonica, V25, P247; GATZ A J JR, 1979, Tulane Studies in Zoology and Botany, V21, P91; GATZ AJ, 1979, ECOLOGY, V60, P711, DOI 10.2307/1936608; Gido KB, 2000, COPEIA, P917, DOI 10.1643/0045-8511(2000)000[0917:DOTOFA]2.0.CO;2; Gillespie GJ, 2003, J FISH BIOL, V62, P1099, DOI 10.1046/j.1095-8649.2003.00100.x; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Horeau V, 1996, REV ECOL-TERRE VIE, V51, P29; HURLBERT SH, 1978, ECOLOGY, V59, P67, DOI 10.2307/1936632; Ita E.O, 1984, ETAT PECHERIES RESER, P43; KARR JR, 1981, FISHERIES, V6, P21, DOI 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2; KEITH P, 2000, ATLAS POISSONS EAU D, V2; Latif A.F.A., 1973, MAN MADE LAKES THEIR, P661; Le Bail P.Y., 2000, ATLAS POISSONS EAU D, V2; Lelek A, 1973, MAN MADE LAKES THEIR, P655; Machena D, 1995, CIFA TECHNICAL PAPER, P41; Mason NWH, 2008, J ANIM ECOL, V77, P661, DOI 10.1111/j.1365-2656.2008.01379.x; Merona B.de, 2010, PEIXES PESCA BAIXO R; Mol JH, 2007, NEOTROP ICHTHYOL, V5, P351, DOI 10.1590/S1679-62252007000300015; Pholprasith S., 1999, P103; PLANQUETTE P, 1996, ATLAS POISSONS EAU D, V1; Ponton Dominique, 1998, Polskie Archiwum Hydrobiologii, V45, P201; Rashid M.M, 1995, CURRENT STATUS FISHE, P81; Reynolds J.D, 1990, GHANA J SCI, V11, P3; Santos G.M.dos, 1996, ENERGIA AMAZONIA, P251; Sfakiotakis M, 1999, IEEE J OCEANIC ENG, V24, P237, DOI 10.1109/48.757275; Sissakian C., 1998, Hydroecologie Appliquee, V9, P1, DOI 10.1051/hydro:1997001; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; TONN WM, 1990, AM NAT, V136, P345, DOI 10.1086/285102; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Vanderpuye C.J, 1984, CIFA TECHNICAL PAPER, P261; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 49 5 6 1 27 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0990-7440 AQUAT LIVING RESOUR Aquat. Living Resour. JAN 2012 25 1 41 54 10.1051/alr/2011153 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 928AY WOS:000302953200004 Bronze 2019-02-21 J Gibbs, M; Van Dyck, H; Breuker, CJ Gibbs, Melanie; Van Dyck, Hans; Breuker, Casper J. Development on drought-stressed host plants affects life history, flight morphology and reproductive output relative to landscape structure EVOLUTIONARY APPLICATIONS English Article agriculture; climate change; life history evolution; phenotypic plasticity BUTTERFLY PARARGE-AEGERIA; CLIMATE-CHANGE; EGG SIZE; PHENOTYPIC PLASTICITY; TEMPERATURE; BEHAVIOR; HABITAT; OVIPOSITION; LEPIDOPTERA; L. With global climate change, rainfall is becoming more variable. Predicting the responses of species to changing rainfall levels is difficult because, for example in herbivorous species, these effects may be mediated indirectly through changes in host plant quality. Furthermore, species responses may result from a simultaneous interaction between rainfall levels and other environmental variables such as anthropogenic land use or habitat quality. In this eco-evolutionary study, we examined how male and female Pararge aegeria (L.) from woodland and agricultural landscape populations were affected by the development on drought-stressed host plants. Compared with individuals from woodland landscapes, when reared on drought-stressed plants agricultural individuals had longer development times, reduced survival rates and lower adult body masses. Across both landscape types, growth on drought-stressed plants resulted in males and females with low forewing aspect ratios and in females with lower wing loading and reduced fecundity. Development on drought-stressed plants also had a landscape-specific effect on reproductive output; agricultural females laid eggs that had a significantly lower hatching success. Overall, our results highlight several potential mechanisms by which low water availability, via changes in host plant quality, may differentially influence P. aegeria populations relative to landscape structure. [Gibbs, Melanie] NERC Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England; [Gibbs, Melanie; Van Dyck, Hans] UCL, Earth & Life Inst, Biodivers Res Ctr, Behav Ecol & Conservat Grp, Louvain, Belgium; [Breuker, Casper J.] Oxford Brookes Univ, Dept Biol & Med Sci, Fac Hlth & Life Sci, Evolutionary Dev Biol Res Grp, Oxford OX3 0BP, England Gibbs, M (reprint author), NERC Ctr Ecol & Hydrol, Maclean Bldg,Benson Lane, Wallingford OX10 8BB, Oxon, England. mela1@ceh.ac.uk Gibbs, Melanie/E-6771-2012; Breuker, Casper/N-6582-2013 Gibbs, Melanie/0000-0002-4091-9789; Breuker, Casper/0000-0001-7909-1950 UCL [FSR06]; FRFC of the FNRS [2.4595.07, 2.4556.05]; FNRS, Wallonia, Belgium; ARC [10/15-031]; Natural Environment Research Council [CEH010021] Hubert Baltus helped with the butterfly rearing. Michel Pirnay, Jean-Pierre Motte and Marc Migon provided technical assistance. This article is publication number BRC 230 of the Biodiversity Research Centre of the UCL. The research was supported by three research grants to HVD (FSR06-grant of UCL and FRFC 2.4595.07, 2.4556.05 of the FNRS Fund for Scientific Research, Wallonia, Belgium and ARC-grant of the Academie Louvain ARC grant no 10/15-031). Baguette M, 2007, LANDSCAPE ECOL, V22, P1117, DOI 10.1007/s10980-007-9108-4; Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x; Bauerfeind SS, 2008, BASIC APPL ECOL, V9, P443, DOI 10.1016/j.baae.2007.05.005; Berwaerts K, 2001, J ZOOL, V255, P261, DOI 10.1017/S0952836901001327; BETTS CR, 1988, J EXP BIOL, V138, P271; Bink F.A., 1992, ECOLOGISCHE ATLAS DA; Breuker CJ, 2010, MORPHOMETRICS NONMOR, P271; Chardon JP, 2003, LANDSCAPE ECOL, V18, P561, DOI 10.1023/A:1026062530600; Dover J, 2000, J ENVIRON MANAGE, V60, P51, DOI 10.1006/jema.2000.0361; Dudley R., 2000, BIOMECHANICS INSECT; Gibbs M, 2005, J INSECT SCI, V5, DOI 10.1093/jis/5.1.39; Gibbs M, 2004, J INSECT SCI, V4, DOI 10.1093/jis/4.1.16; Gibbs M, 2011, J ZOOL, V283, P162, DOI 10.1111/j.1469-7998.2010.00756.x; Gibbs M, 2006, J INSECT SCI, V6; Gibbs M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-345; Gibbs M, 2011, ECOGRAPHY, V34, P336, DOI 10.1111/j.1600-0587.2010.06573.x; Gibbs M, 2010, OECOLOGIA, V163, P341, DOI 10.1007/s00442-010-1613-5; Gibbs M, 2010, PHYSIOL ENTOMOL, V35, P29, DOI 10.1111/j.1365-3032.2009.00706.x; Gibbs M, 2009, BEHAV ECOL SOCIOBIOL, V64, P1, DOI 10.1007/s00265-009-0849-8; GOULSON D, 1993, ECOL ENTOMOL, V18, P315, DOI 10.1111/j.1365-2311.1993.tb01107.x; HEINRICH B, 1986, ECOLOGY, V67, P593, DOI 10.2307/1937682; Hill JK, 1999, OECOLOGIA, V121, P165, DOI 10.1007/s004420050918; Hill JK, 2001, ECOL LETT, V4, P313, DOI 10.1046/j.1461-0248.2001.00222.x; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; KARLSSON B, 1987, ECOL ENTOMOL, V12, P473, DOI 10.1111/j.1365-2311.1987.tb01029.x; KARLSSON B, 1994, OIKOS, V69, P224, DOI 10.2307/3546142; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Merckx T, 2007, ANIM BEHAV, V74, P1029, DOI 10.1016/j.anbehav.2006.12.020; Merckx T, 2006, OIKOS, V113, P226, DOI 10.1111/j.2006.0030-1299.14501.x; Morecroft MD, 2002, GLOBAL ECOL BIOGEOGR, V11, P7, DOI 10.1046/j.1466-822X.2002.00174.x; POLLARD E, 1988, J APPL ECOL, V25, P819, DOI 10.2307/2403748; Roff Derek A., 1992; Schweiger O, 2006, LANDSCAPE ECOL, V21, P989, DOI 10.1007/s10980-005-6057-7; Sgro CM, 2011, EVOL APPL, V4, P326, DOI 10.1111/j.1752-4571.2010.00157.x; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P229, DOI 10.1111/j.1365-2311.1986.tb00298.x; SOTA T, 1992, OECOLOGIA, V90, P353, DOI 10.1007/BF00317691; Stearns S, 1992, EVOLUTION LIFE HIST; Stefanescu C, 2004, J BIOGEOGR, V31, P905, DOI 10.1111/j.1365-2699.2004.01088.x; Stevens C. M., 2010, PLOS ONE, V5; SVARD L, 1989, BEHAV ECOL SOCIOBIOL, V24, P395, DOI 10.1007/BF00293267; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Turlure C, 2010, GLOBAL CHANGE BIOL, V16, P1883, DOI 10.1111/j.1365-2486.2009.02133.x; Van Dyck H, 1998, OECOLOGIA, V114, P326, DOI 10.1007/s004420050454; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X 47 19 19 4 41 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JAN 2012 5 1 66 75 10.1111/j.1752-4571.2011.00209.x 10 Evolutionary Biology Evolutionary Biology 897ZC WOS:000300701200007 25568030 DOAJ Gold, Green Published 2019-02-21 J Leicht-Young, SA; Pavlovic, NB; Adams, JV Leicht-Young, Stacey A.; Pavlovic, Noel B.; Adams, Jean V. Competitive Interactions of Garlic Mustard (Alliaria petiolata) and Damesrocket (Hesperis matronalis) INVASIVE PLANT SCIENCE AND MANAGEMENT English Article Competition; invasive species; replacement series EASTERN DECIDUOUS FORESTS; INVASIVE PLANT; MICROSTEGIUM-VIMINEUM; DENSITY; BRASSICACEAE; POPULATIONS; UNDERSTORY; GROWTH; COMMUNITIES; VEGETATION Competitive interactions between native plants and nonnative, invasive plant species have been extensively studied; however, within degraded landscapes, the effect of interspecific interactions among invasive plants is less explored. We investigated a competitive interaction between two sympatric, invasive mustard species that have similar life history strategies and growth forms: garlic mustard and damesrocket. Greenhouse experiments using a full range of reciprocal density ratios were conducted to investigate interspecific competition. Garlic mustard had a negative effect on the final biomass, number of leaves, and relative growth rate in height of damesrocket. Survival of damesrocket was not negatively affected by interspecific competition with garlic mustard; however, garlic mustard showed higher mortality because of intraspecific competition. These results indicated that although garlic mustard has been observed to be the dominant species in this landscape, it may not completely outcompete damesrocket in all situations. Studies of invasive species in competition are important in degraded landscapes because this is the common situation in many natural areas. [Pavlovic, Noel B.] US Geol Survey, Great Lakes Sci Ctr, Lake Michigan Ecol Res Stn, Porter, IN 46304 USA; US Geol Survey, Great Lakes Sci Ctr, Ann Arbor, MI 48105 USA Pavlovic, NB (reprint author), US Geol Survey, Great Lakes Sci Ctr, Lake Michigan Ecol Res Stn, 1100 N Mineral Springs Rd, Porter, IN 46304 USA. npavlovic@usgs.gov U.S. Geological Survey We thank Katie Kangas, Laura Cremin, Kelly McAvoy, and Krystalynn Frohnapple for assistance in conducting the experiment. Dr. Young Choi and Dr. Kemuel Badger provided useful comments on an earlier draft of this manuscript. This research was supported by the U.S. Geological Survey. This article is contribution No. 1681 of the U.S. Geological Survey Great Lakes Science Center. Use of trade, product, or firm names does not imply endorsement by the U.S. Government. Adams D. W., 2004, RESTORING AM GARDENS; Anderson RC, 1996, RESTOR ECOL, V4, P181, DOI 10.1111/j.1526-100X.1996.tb00118.x; Bauer JT, 2010, RESTOR ECOL, V18, P720, DOI 10.1111/j.1526-100X.2008.00507.x; Belote RT, 2006, BIOL INVASIONS, V8, P1629, DOI 10.1007/s10530-005-3932-8; Byers DL, 1998, J TORREY BOT SOC, V125, P138, DOI 10.2307/2997301; Call LJ, 2005, PLANT ECOL, V176, P275, DOI 10.1007/s11258-004-0338-0; FIRBANK LG, 1985, J APPL ECOL, V22, P503, DOI 10.2307/2403181; Flory SL, 2006, PLANT ECOL, V184, P131, DOI 10.1007/s11258-005-9057-4; Flory SL, 2010, OECOLOGIA, V164, P1029, DOI 10.1007/s00442-010-1697-y; Francis A, 2009, CAN J PLANT SCI, V89, P189; Gibson DJ, 1999, J ECOL, V87, P1, DOI 10.1046/j.1365-2745.1999.00321.x; Gleason HA, 1991, MANUAL VASCULAR PLAN; Harper J. L., 1977, POPULATION BIOL PLAN; Hausman CE, 2010, BIOL INVASIONS, V12, P2013, DOI 10.1007/s10530-009-9604-3; HUENNEKE LF, 1995, CONSERV BIOL, V9, P416, DOI 10.1046/j.1523-1739.1995.9020416.x; Hwang BC, 2008, BIOL INVASIONS, V10, P771, DOI 10.1007/s10530-007-9171-4; Hwang BC, 2010, AM MIDL NAT, V163, P212, DOI 10.1674/0003-0031-163.1.212; KIRA TATUO, 1953, JOUR INST POLYTECH [OSAKA CITY UNIV] SER D BIOL, V4, P1; Lankau R, 2010, BIOL INVASIONS, V12, P2059, DOI 10.1007/s10530-009-9608-z; Larson DL, 2010, BIOL CONSERV, V143, P1901, DOI 10.1016/j.biocon.2010.04.045; Leicht SA, 2005, J TORREY BOT SOC, V132, P573, DOI 10.3159/1095-5674(2005)132[573:ATCAOJ]2.0.CO;2; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; McCarthy B., 1997, ASSESSMENT MANAGEMEN, P117; Meekins JF, 2002, AM MIDL NAT, V147, P256, DOI 10.1674/0003-0031(2002)147[0256:EOPDOT]2.0.CO;2; Meekins JF, 2001, ECOL APPL, V11, P1336, DOI 10.2307/3060924; Meekins JF, 1999, INT J PLANT SCI, V160, P743, DOI 10.1086/314156; Mitchell RJ, 2001, OHIO J SCI, V101, P22; Morrison JA, 2007, J TORREY BOT SOC, V134, P1, DOI 10.3159/1095-5674(2007)134[1:ECOTCS]2.0.CO;2; Murphy S. D., 2007, Ecological Restoration, V25, P85, DOI 10.3368/er.25.2.85; NUZZO V, 1993, BIOLOGICAL POLLUTION: THE CONTROL AND IMPACT OF INVASIVE EXOTIC SPECIES, P137; Nuzzo VA, 1999, BIOL INVASIONS, V1, P169; Ogden JAE, 2005, BIOL CONSERV, V125, P427, DOI 10.1016/j.biocon.2005.03.025; Pavlovic NB, 2009, AM MIDL NAT, V161, P165, DOI 10.1674/0003-0031-161.1.165; Prati D, 2004, AM J BOT, V91, P285, DOI 10.3732/ajb.91.2.285; R Development Core Team, 2009, R LANG ENV STAT COMP; Rothfels CJ, 2002, CAN J BOT, V80, P131, DOI [10.1139/b01-142, 10.1139/B01-142]; Simberloff D, 1999, BIOL INVASIONS, V1, P21, DOI [DOI 10.1023/A:1010086329619, 10.1023/A:1010086329619]; Stinson K, 2007, NORTHEAST NAT, V14, P73, DOI 10.1656/1092-6194(2007)14[73:IOGMIO]2.0.CO;2; Stinson KA, 2006, PLOS BIOL, V4, P727, DOI 10.1371/journal.pbio.0040140; USDA-NRCS, 2011, PLANTS DAT; WATKINSON AR, 1984, ANN BOT-LONDON, V53, P469, DOI 10.1093/oxfordjournals.aob.a086711; WATKINSON AR, 1980, J THEOR BIOL, V83, P345, DOI 10.1016/0022-5193(80)90297-0; Wixted KL, 2010, PLANT ECOL, V208, P347, DOI 10.1007/s11258-009-9711-3 43 2 3 2 56 WEED SCI SOC AMER LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA 1939-7291 INVAS PLANT SCI MANA Invasive Plant Sci. Manag. JAN-MAR 2012 5 1 27 36 10.1614/IPSM-D-11-00025.1 10 Plant Sciences Plant Sciences 917TC WOS:000302200500004 2019-02-21 J Bunnell, DB; Madenjian, CP; Rogers, MW; Holuszko, JD; Begnoche, LJ Bunnell, David B.; Madenjian, Charles P.; Rogers, Mark W.; Holuszko, Jeffrey D.; Begnoche, Linda J. Exploring Mechanisms Underlying Sex-Specific Differences in Mortality of Lake Michigan Bloaters TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article WALLEYE STIZOSTEDION-VITREUM; LIFE-HISTORY EVOLUTION; COREGONUS-HOYI; SIZE DIMORPHISM; GROWTH DYNAMICS; SALMON; RATIO; CONSEQUENCES; MATURATION; SURVIVAL Sex-specific differences in mortality rates have been observed among freshwater and marine fish taxa, and underlying mechanisms can include sex-specific differences in (1) age at maturity, (2) growth rate, or (3) activity or behavior during the spawning period. We used a long-term (1973-2009) Lake Michigan data set to evaluate whether there were sex-specific differences in catch per unit effort, mortality, age at maturity, and length at age in bloaters Coregonus hoyi. Because bloater population biomass varied 200-fold during the years analyzed, we divided the data into three periods: (1) 1973-1982 (low biomass), (2) 1983-1997 (high biomass), and (3) 1998-2009 (low biomass). Mortality was higher for males than for females in periods 2 and 3; the average instantaneous total mortality rate (Z) over these two periods was 0.71 for males and 0.57 for females. Length at age was slightly greater (2-6%) for females than for males in different age-classes (3-6 years) during each period. Age at maturity was earlier for males than for females in periods 1 and 2, but the mean difference was only 0.2-0.4 years. To test the hypothesis that somatic lipids declined more in males than in females during spawning (perhaps due to increased activity or reduced feeding), we estimated sex-specific percent somatic lipids for fish sampled in 2005-2006 and 2007-2008. During 2005-2006, somatic lipids declined from prespawning to postspawning for males but were unchanged for females. During 2007-2008, however, somatic lipids were unchanged formales, whereas they increased for females. We found that sex-specific differences in Z occurred in the Lake Michigan bloater population, but our hypotheses that sex-specific differences in maturity and growth could explain this pattern were generally unsupported. Our hypothesis that somatic lipids in males declined during spawning at a faster rate than in females will require additional research to clarify its importance. [Bunnell, David B.; Madenjian, Charles P.; Rogers, Mark W.; Holuszko, Jeffrey D.; Begnoche, Linda J.] US Geol Survey, Great Lakes Sci Ctr, Ann Arbor, MI 48105 USA Bunnell, DB (reprint author), US Geol Survey, Great Lakes Sci Ctr, 1451 Green Rd, Ann Arbor, MI 48105 USA. dbunnell@usgs.gov Bunnell, David/0000-0003-3521-7747 BEAMISH FWH, 1964, CAN J ZOOLOG, V42, P189, DOI 10.1139/z64-017; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Beverton RJH, 2004, ICES J MAR SCI, V61, P165, DOI 10.1016/j.icesjms.2004.01.001; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; BOWEN SH, 1991, CAN J FISH AQUAT SCI, V48, P569, DOI 10.1139/f91-072; Brown E. H., 1970, BIOL COREGONID FISHE, P501; BROWN EH, 1987, CAN J FISH AQUAT SCI, V44, P371; Bunnell DB, 2006, CAN J FISH AQUAT SCI, V63, P832, DOI 10.1139/FO5-271; Bunnell DB, 2005, CAN J FISH AQUAT SCI, V62, P15, DOI 10.1139/F04-172; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Cooke SJ, 2004, FUNCT ECOL, V18, P398, DOI 10.1111/j.0269-8463.2004.00878.x; Crowley PH, 2000, ECOLOGY, V81, P2592, DOI 10.1890/0012-9658(2000)081[2592:SDWFDD]2.0.CO;2; Deason Hilary J., 1947, TRANS AMER FISH SOC, V74, P88, DOI 10.1577/1548-8659(1944)74[88:AAGOTK]2.0.CO;2; DEMARTINI EE, 1983, ENVIRON BIOL FISH, V8, P29, DOI 10.1007/BF00004943; Eck GW, 1995, ERGEB LIMNOL, V46, P173; EMERY L, 1978, T AM FISH SOC, V107, P785, DOI 10.1577/1548-8659(1978)107<785:FOTBCH>2.0.CO;2; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; GELFAND AE, 1990, J AM STAT ASSOC, V85, P972, DOI 10.2307/2289594; Gelman A., 2004, BAYESIAN DATA ANAL; HAMBRIGHT KD, 1991, ARCH HYDROBIOL, V121, P389; Henderson BA, 2003, CAN J FISH AQUAT SCI, V60, P1345, DOI 10.1139/F03-115; HENDERSON BA, 1994, CAN J FISH AQUAT SCI, V51, P986, DOI 10.1139/f94-099; HESSELBERG RJ, 1990, J GREAT LAKES RES, V16, P121, DOI 10.1016/S0380-1330(90)71403-7; Hoenig JM, 2005, T AM FISH SOC, V134, P754, DOI 10.1577/T04-125.1; HOLTBY LB, 1990, ECOLOGY, V71, P678, DOI 10.2307/1940322; Hutchings JA, 2006, FUNCT ECOL, V20, P347, DOI 10.1111/j.1365-2435.2006.01092.x; Isermann DA, 2010, N AM J FISH MANAGE, V30, P812, DOI 10.1577/M09-179.1; Jobes Frank W., 1943, TRANS AMER FISH SOC, V72, P108, DOI 10.1577/1548-8659(1942)72[108:TAGABD]2.0.CO;2; JOBES FRANK W., 1949, PAPERS MICHIGAN ACAD SCI ARTS AND LETT, V33, P135; Luczyncki M, 1986, ERGEBN LIMNOL, V22, P115; Luksenburg JA, 2002, J FISH BIOL, V61, P1453, DOI 10.1006/jfbi.2002.2159; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Madenjian CP, 1998, T AM FISH SOC, V127, P236, DOI 10.1577/1548-8659(1998)127<0236:OASPID>2.0.CO;2; Madenjian CP, 2003, T AM FISH SOC, V132, P1104, DOI 10.1577/T02-133; Madenjian CP, 2010, STATUS TRENDS PREY F; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; Rennie MD, 2008, J ANIM ECOL, V77, P916, DOI 10.1111/j.1365-2656.2008.01412.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Rodd FH, 1997, ECOLOGY, V78, P405; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Ruzycki JR, 2003, ECOL APPL, V13, P23, DOI 10.1890/1051-0761(2003)013[0023:EOILTO]2.0.CO;2; Rybicki R. W., 1996, 2027 MICH DEP NAT RE; SHACKELL NL, 1994, CAN J FISH AQUAT SCI, V51, P642, DOI 10.1139/f94-065; SMITH BD, 1991, T AM FISH SOC, V120, P650, DOI 10.1577/1548-8659(1991)120<0650:NPCOIF>2.3.CO;2; SMITH STANFORD H., 1964, TRANS AMER FISH SOC, V93, P155, DOI 10.1577/1548-8659(1964)93[155:SOTDCP]2.0.CO;2; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Szalai EB, 2003, CAN J FISH AQUAT SCI, V60, P55, DOI 10.1139/F03-003; Tamate T, 2004, ECOL FRESHW FISH, V13, P96, DOI 10.1111/j.1600-0633.2004.00043.x; TeWinkel LM, 2002, ERGEB LIMNOL, V57, P307; Warner DM, 2008, T AM FISH SOC, V137, P1683, DOI 10.1577/T07-130.1; WELLS L, 1966, T AM FISH SOC, V95, P388, DOI 10.1577/1548-8659(1966)95[388:SADDOL]2.0.CO;2; Wilderbuer TK, 2009, N AM J FISH MANAGE, V29, P306, DOI 10.1577/M07-152.1; WOOTON RL, 1990, ECOLOGY TELEOST FISH 56 10 10 1 20 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0002-8487 T AM FISH SOC Trans. Am. Fish. Soc. JAN 2012 141 1 204 214 10.1080/00028487.2012.655124 11 Fisheries Fisheries 903XC WOS:000301154500020 2019-02-21 J Mims, MC; Olden, JD Mims, Meryl C.; Olden, Julian D. Life history theory predicts fish assemblage response to hydrologic regimes ECOLOGY English Article disturbance; flow regime; freshwater fishes; life history; traits; United States ALTERED FLOW REGIMES; FRESH-WATER FISHES; AMERICAN FISHES; RIVER SYSTEMS; UNITED-STATES; STRATEGIES; HABITAT; TEMPLET; TRAITS; RECOMMENDATIONS The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P <= 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales. [Mims, Meryl C.; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Mims, MC (reprint author), Univ Washington, Sch Aquat & Fishery Sci, 1122 NE Boat St, Seattle, WA 98195 USA. mmims@uw.edu Olden, Julian/0000-0003-2143-1187; Mims, Meryl/0000-0003-0570-988X University of Washington; National Science Foundation [DGE-0718124]; John N. Cobb Scholarship in Fisheries; University of Washington's School of Aquatic and Fishery Sciences; U.S. Environmental Protection Agency [833834] We thank Alan Herlihy for providing the fish occurrence data, LeRoy Poff and Zach Shattuck for their contributions to the trait database, and Dave Lawrence for his assistance with ensuring consistent taxonomy. Tim Essington, Josh Lawler, Daniel Schindler, and two anonymous reviewers provided valuable comments that greatly improved the manuscript. Funding for M. C. Mims was provided by a University of Washington Top Scholar Graduate Fellowship and a National Science Foundation Graduate Research Fellowship (Grant No. DGE-0718124), and by the John N. Cobb Scholarship in Fisheries and the H. Mason Keeler Endowment for Excellence through University of Washington's School of Aquatic and Fishery Sciences. J. D. Olden acknowledges funding support from the U.S. Environmental Protection Agency Science to Achieve Results (STAR) Program (Grant No. 833834). Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Cade BS, 2003, FRONT ECOL ENVIRON, V1, P412, DOI 10.2307/3868138; Eros T., 2005, LARGE RIVERS, V16, P289; Falcone J. A., 2010, Ecology, V91, P621, DOI 10.1890/09-0889.1; Freeman MC, 2001, ECOL APPL, V11, P179, DOI 10.1890/1051-0761(2001)011[0179:FAHEOJ]2.0.CO;2; Gilliom R. J., 1995, DESIGN NATL WATER QU; Herlihy AT, 2006, AM FISH S S, V48, P87; Hughes RM, 2000, HYDROBIOLOGIA, V422, P429, DOI 10.1023/A:1017029107669; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Kelly V., 2008, THESIS OREGON STATE; Kennard MJ, 2010, RIVER RES APPL, V26, P137, DOI 10.1002/rra.1249; Kleinschmidt Associates, 2008, SMALLM BASS BROOK TR; KOENKER R, 1978, ECONOMETRICA, V46, P33, DOI 10.2307/1913643; Koenker R., 2005, QUANTREG QUANTILE RE; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Larned ST, 2010, J AM WATER RESOUR AS, V46, P541, DOI 10.1111/j.1752-1688.2010.00433.x; Legendre P, 1998, NUMERICAL ECOLOGY; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MAC ARTHUR ROBERT H., 1967; Martin FD, 2008, HYDROBIOLOGIA, V598, P139, DOI 10.1007/s10750-007-9146-6; Mathews R, 2007, J AM WATER RESOUR AS, V43, P1400, DOI 10.1111/j.1752-1688.2007.00099.x; McCann K, 1998, ECOLOGY, V79, P2957, DOI 10.2307/176529; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Minckley WL, 1999, GREAT BASIN NAT, V59, P230; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Olden J. D., 2010, COMMUNITY ECOLOGY ST, P83; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Poff NL, 1996, FRESHWATER BIOL, V36, P71, DOI 10.1046/j.1365-2427.1996.00073.x; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; R Development Core Team, 2005, R 2 11 0 R PROJ STAT; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Richter BD, 2006, RIVER RES APPL, V22, P297, DOI 10.1002/rra.892; Rogers W.H., 1992, STATA TECHNICAL B, V9, P16; Rosenbaum P. R., 1995, J AM STAT ASSOC, V90, P1423; Simley J. D., 2009, NATL MAP HYDROGRAPHY; Souchon Y, 2008, RIVER RES APPL, V24, P506, DOI 10.1002/rra.1134; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tockner K, 2000, HYDROL PROCESS, V14, P2861, DOI 10.1002/1099-1085(200011/12)14:16/17<2861::AID-HYP124>3.0.CO;2-F; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vogel R. M., 2005, USGS HYDROCLIMATIC D; Winemiller K. O., 2005, CANADIAN J FISHERIES, V52, P875; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 60 119 120 4 142 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology JAN 2012 93 1 35 45 10.1890/11-0370.1 11 Ecology Environmental Sciences & Ecology 915AU WOS:000301996100007 22486085 2019-02-21 J Hulshof, CM; Stegen, JC; Swenson, NG; Enquist, CAF; Enquist, BJ Hulshof, Catherine M.; Stegen, James C.; Swenson, Nathan G.; Enquist, Carolyn A. F.; Enquist, Brian J. Interannual variability of growth and reproduction in Bursera simaruba: the role of allometry and resource variability ECOLOGY English Article allocation; allometry; Bursera simaruba; Costa Rica; life history theory; tropical dry forest TROPICAL FORESTS; DRY-FOREST; PLANTS; COSTS; FRUIT; SIZE; ALLOCATION; RESPONSES; TREE; POPULATIONS Plants are expected to differentially allocate resources to reproduction, growth, and survival in order to maximize overall fitness. Life history theory predicts that the allocation of resources to reproduction should occur at the expense of vegetative growth. Although it is known that both organism size and resource availability can influence life history traits, few studies have addressed how size dependencies of growth and reproduction and variation in resource supply jointly affect the coupling between growth and reproduction. In order to understand the relationship between growth and reproduction in the context of resource variability, we utilize a long-term observational data set consisting of 670 individual trees over a 10-year period within a local population of Bursera simaruba (L.) Sarg. We (1) quantify the functional form and variability in the growth-reproduction relationship at the population and individual-tree level and (2) develop a theoretical framework to understand the allometric dependence of growth and reproduction. Our findings suggest that the differential responses of allometric growth and reproduction to resource availability, both between years and between microsites, underlie the apparent relationship between growth and reproduction. Finally, we offer an alternative approach for quantifying the relationship between growth and reproduction that accounts for variation in allometries. [Hulshof, Catherine M.; Enquist, Brian J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; [Stegen, James C.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA; [Swenson, Nathan G.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA; [Enquist, Carolyn A. F.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Enquist, Carolyn A. F.] USA, Natl Phenol Network, Tucson, AZ 85719 USA; [Enquist, Carolyn A. F.] Wildlife Soc, Bethesda, MD 20814 USA; [Enquist, Brian J.] Santa Fe Inst, Santa Fe, NM 87501 USA; [Enquist, Brian J.] Conservat Int, Trop Ecol Assessment & Monitoring TEAM Initiat, Arlington, VA 22202 USA Hulshof, CM (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. hulshof@email.arizona.edu Swenson, Nathan/A-3514-2012; Stegen, James/Q-3078-2016 Swenson, Nathan/0000-0003-3819-9767; Stegen, James/0000-0001-9135-7424; Hulshof, Catherine/0000-0002-2200-8076; Enquist, Brian/0000-0002-6124-7096 NSF [DBI-0906005, DBI-0805618]; TEAM from Conservation International; NSF ATB [DEB-0133974] Warm thanks to D. Venable, T. Huxman, and two anonymous reviewers for providing valuable and enlightening comments. We also thank G. C. Stevens for providing his impressive original data set; without it this study would not have been possible. C. M. Hulshof was supported by a NSF Graduate Diversity Fellowship and partially supported by a TEAM fellowship to B. J. Enquist from Conservation International. J. C. Stegen was supported by a NSF Postdoctoral Fellowship in Bioinformatics (DBI-0906005). N. G. Swenson was supported by a NSF Postdoctoral Fellowship in Bioinformatics (DBI-0805618). B. J. Enquist was supported by an NSF ATB award (DEB-0133974). ACOSTA FJ, 1993, OIKOS, V68, P267, DOI 10.2307/3544839; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Calder III WA, 1984, SIZE FUNCTION LIFE H; CHAPIN FS, 1987, BIOSCIENCE, V37, P49, DOI 10.2307/1310177; Chave J, 2005, OECOLOGIA, V145, P87, DOI 10.1007/s00442-005-0100-x; CHIARIELLO NR, 1991, RESPONSE PLANTS MULT, P161; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; DENSLOW JS, 1990, ECOLOGY, V71, P165, DOI 10.2307/1940257; Dunphy BK, 2007, AM J BOT, V94, P1786, DOI 10.3732/ajb.94.11.1786; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; FOX JF, 1991, ECOLOGY, V72, P1013, DOI 10.2307/1940601; GREENBERG R, 1995, J TROP ECOL, V11, P619, DOI 10.1017/S0266467400009184; Grime J. P, 1979, PLANT STRATEGIES VEG; Hagnauer W., 1993, SISTEMA AGROECOLOGIC; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Hartshorn G. S., 1983, COSTA RICAN NATURAL, P118; Holdridge L. R., 1971, FOREST ENV TROPICAL; HUBBELL SP, 1980, OIKOS, V35, P214, DOI 10.2307/3544429; ISOBE T, 1990, ASTROPHYS J, V364, P104, DOI 10.1086/169390; JANZEN DH, 1988, ANN MO BOT GARD, V75, P105, DOI 10.2307/2399468; Kerkhoff AJ, 2009, J THEOR BIOL, V257, P519, DOI 10.1016/j.jtbi.2008.12.026; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Koenig WD, 2009, AM NAT, V173, P682, DOI 10.1086/597605; Levins R., 1968, EVOLUTION CHANGING E; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Niklas KJ, 1994, PLANT ALLOMETRY SCAL; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; PETERS RH, 1988, OECOLOGIA, V74, P612, DOI 10.1007/BF00380061; PITELKA LF, 1980, AM J BOT, V67, P942, DOI 10.2307/2442435; R Development Core Team, 2011, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; SCOTT PE, 1984, BIOTROPICA, V16, P319, DOI 10.2307/2387943; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stevens G. C., 1983, COSTA RICAN NATURAL, P201; STEVENS GC, 1987, ECOLOGY, V68, P77, DOI 10.2307/1938806; Sugiyama S, 1998, FUNCT ECOL, V12, P280, DOI 10.1046/j.1365-2435.1998.00187.x; THOMPSON K, 1981, AM NAT, V117, P205, DOI 10.1086/283700; TUOMI J, 1983, AM ZOOL, V23, P25; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Wheelwright NT, 2004, P NATL ACAD SCI USA, V101, P8051, DOI 10.1073/pnas.0402735101; WILLIAMSON GB, 1984, B TORREY BOT CLUB, V111, P51, DOI 10.2307/2996210; Wright SJ, 1999, ECOLOGY, V80, P1632, DOI 10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073 51 6 6 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology JAN 2012 93 1 180 190 10.1890/11-0740.1 11 Ecology Environmental Sciences & Ecology 915AU WOS:000301996100020 22486098 2019-02-21 J Scott, RD; Heikkonen, J Scott, Robert D.; Heikkonen, Jukka Estimating age at first maturity in fish from change-points in growth rate MARINE ECOLOGY PROGRESS SERIES English Article Plaice; Maturation; Segmented regression; Reaction norm; Genetic adaptation; Phenotypic plasticity NORTH-SEA PLAICE; MATURATION REACTION NORMS; PLEURONECTES-PLATESSA L; LIFE-HISTORY EVOLUTION; REPRODUCTION; REGRESSION; FISHERIES; SIZE; PATTERNS; DISTRIBUTIONS Recent studies have drawn attention to the potential for evolutionary changes in life-history traits as a consequence of the size-selective process of fishing, and evidence of so-called fisheries-induced evolution has been reported for a number of different species. Most studies of fisheries-induced evolution have focused on changes in sexual maturation using the probabilistic maturation reaction norm method, which requires specific information on the age at which maturation occurs, often derived from macroscopic examination of the gonads. In the absence of sufficiently detailed measurements of maturity it is necessary to derive estimates of the age at which maturation occurs from alternative sources of information, for example, from length at age data. We apply a relatively simple segmented regression model to length at age data for plaice Pleuronectes platessa in the Irish Sea in order to identify the change-point between 2 specific growth schedules that can be used as a proxy for age at first maturity in individual cohorts. We use a Bayesian approach for model fitting and map the resulting distribution of change-points using Gaussian mixture models to show that the age at which the change-point occurred in individual cohorts of both male and female plaice in the Irish Sea has declined progressively over an 18 yr period between 1988 and 2005. [Scott, Robert D.; Heikkonen, Jukka] Commiss European Communities, Joint Res Ctr, IPSC Maritime Affairs Unit, I-21027 Ispra, VA, Italy; [Scott, Robert D.] Cefas, Lowestoft Lab, Lowestoft NR33 0HT, Suffolk, England; [Heikkonen, Jukka] Univ Turku, Dept Informat Technol, Turku 20014, Finland Scott, RD (reprint author), Commiss European Communities, Joint Res Ctr, IPSC Maritime Affairs Unit, Via E Fermi 2749, I-21027 Ispra, VA, Italy. robert.scott@cefas.co.uk Scott, Robert/B-8365-2013; Heikkonen, Jukka/R-4912-2017 Barot S, 2004, EVOL ECOL RES, V6, P659; Barrowman NJ, 2000, CAN J FISH AQUAT SCI, V57, P665, DOI 10.1139/cjfas-57-4-665; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Bishop C. M, 2006, PATTERN RECOGNITION; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Charnov Eric L., 1993, P1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dumas A, 2007, AQUACULTURE, V267, P139, DOI 10.1016/j.aquaculture.2007.01.041; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Froese R, 2003, J APPL ICHTHYOL, V19, P376, DOI 10.1111/j.1439-0426.2003.00490.x; Gelman A, 2003, BAYESIAN DATA ANAL; GEMAN S, 1984, IEEE T PATTERN ANAL, V6, P721, DOI 10.1109/TPAMI.1984.4767596; Gilks WR, 1996, MARKOV CHAIN MONTE C; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; He JX, 2002, CAN J FISH AQUAT SCI, V59, P250, DOI 10.1139/F02-008; He JX, 2001, ECOLOGY, V82, P784, DOI 10.1890/0012-9658(2001)082[0784:AASAFR]2.0.CO;2; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; HEINO M, 2002, 2002Y14 ICES CM; HORWOOD JW, 1990, J MAR BIOL ASSOC UK, V70, P515, DOI 10.1017/S0025315400036559; ICES ( International Council for Exploration of the Sea), 2009, 2009ACOM09 ICES CM, P09; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Julious SA, 2001, J ROY STAT SOC D-STA, V50, P51, DOI 10.1111/1467-9884.00260; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; LAIDIG TE, 1991, FISH B-NOAA, V89, P611; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LEES B, 1993, LANCET, V341, P673, DOI 10.1016/0140-6736(93)90433-H; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; Mangel M, 2001, EVOL ECOL RES, V3, P583; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Nash RDM, 2000, J SEA RES, V44, P55, DOI 10.1016/S1385-1101(00)00046-0; Nash RDM, 2005, FLATFISHES: BIOLOGY AND EXPLOITATION, P138, DOI 10.1002/9780470995259.ch7; O'Brien CM, 2002, CM2002ACFM10 ICES ST, P10; Perez-Rodriguez A, 2009, EVOL APPL, V2, P291, DOI 10.1111/j.1752-4571.2009.00084.x; Poos JJ, 2011, J THEOR BIOL, V279, P102, DOI 10.1016/j.jtbi.2011.03.001; QUANDT RE, 1958, J AM STAT ASSOC, V53, P873, DOI 10.2307/2281957; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; RIJNSDORP AD, 1989, J FISH BIOL, V35, P401; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 1995, BEL BAR LIB, P581; Rijnsdorp AD, 2010, ICES J MAR SCI, V67, P1931, DOI 10.1093/icesjms/fsq049; ROFF DA, 1991, NETH J SEA RES, V27, P197, DOI 10.1016/0077-7579(91)90024-U; SALKELD PN, 1995, MAR ECOL PROG SER, V124, P117, DOI 10.3354/meps124117; Seber G. A. F., 2003, NONLINEAR REGRESSION; Solmundsson J, 2003, FISH RES, V61, P57, DOI 10.1016/S0165-7836(02)00212-6; Stamps JA, 1998, AM NAT, V152, P470, DOI 10.1086/286183; Tsoularis A, 2002, MATH BIOSCI, V179, P21, DOI 10.1016/S0025-5564(02)00096-2; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003 51 7 7 1 30 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 450 147 157 10.3354/meps09565 11 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 915ZK WOS:000302066000011 Bronze 2019-02-21 J Lorenzon, RE; Quiroga, MA Lorenzon, Rodrigo E.; Quiroga, Martin A. Breeding biology of the White-rumped Swallow (Tachycineta leucorrhoa; Hirundinidae) in a wetland: a comparative approach AVIAN BIOLOGY RESEARCH English Article birds; life history; Tachycineta spp.; reproductive parameters LIFE-HISTORY EVOLUTION; TREE SWALLOWS; CLUTCH-SIZE; PARENTAL CARE; REPRODUCTIVE-PERFORMANCE; SEASONAL DECLINE; PASSERINE BIRDS; BICOLOR; GROWTH; VARIABILITY We studied the reproductive biology of the White-rumped Swallow (Tachycineta leucorrhoa) in a colony of 50 nests boxes located in a wetland of the Parana River, Santa Fe, Argentina between 2004 and 2006. The nest boxes were checked regularly and reproductive parameters, as well as morphological data of eggs and nestlings, were recorded. The species had an average clutch size of 4.7 eggs whose volumes and weight means were 2.04 cm(3) and 2.17 g. respectively. The incubation period averaged 15.9 days and decreased with the clutch size. The mean nestling period was 23.8 days. Clutch size, number of nestlings per nest and the nestling period decreased with the advance of the breeding seasons, while the incubation time increased. Breeding parameters showed a similarity with those reported for the population from Chascomus site, although the eggs were 5% heavier, the incubation period took one more day and the reproductive success was also higher. With the closely related species Tachycineta meyeni, the studied species showed a lower clutch size. Finally, considering another closely related species Tachycineta bicolor, the White-rumped Swallow showed the reproductive life history traits characteristic of species in the southern hemisphere. We provide new information for this species nesting on wetlands, a fact that contributes to the understanding of changes in the life history of the Tachycineta genus along the American continent. [Lorenzon, Rodrigo E.; Quiroga, Martin A.] Inst Nacl Limnol INALI CONICET UNL, RA-3000 Paraje El Pozo, Santa Fe, Argentina; [Quiroga, Martin A.] Univ Autonoma Entre Rios, Fac Ciencia & Tecnol, RA-3100 Corrientes, Parana, Argentina; [Quiroga, Martin A.] Univ Autonoma Entre Rios, Fac Ciencia & Tecnol, RA-3100 Andres Pasos, Parana, Argentina Lorenzon, RE (reprint author), Inst Nacl Limnol INALI CONICET UNL, Ciudad Univ S-N, RA-3000 Paraje El Pozo, Santa Fe, Argentina. mquiroga@inali.unl.edu.ar Lorenzon, Rodrigo Ezequiel/0000-0002-9854-9039 National Science Foundation, PIRE [OISE-0730180] We thank Mr Francisco Caminos for allowing us to conduct part of this study on their grounds. We also thank P. Peltzer for critical reading of the manuscript and to R. Regner, E. Lordi and E. Creus (INALI-CONICET-UNL) for setting up and maintaining nest boxes. This study was made possible by a National Science Foundation, PIRE grant OISE-0730180. Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; BRAWN JD, 1991, OECOLOGIA, V86, P193, DOI 10.1007/BF00317531; Burkart R., 1999, ECORREGIONES ARGENTI; BUTLER RW, 1988, J FIELD ORNITHOL, V59, P395; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; de la Pena M. R, 2010, NIDOS AVES ARGENTINA; DRENT RH, 1980, ARDEA, V68, P225; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; HOUSTON DC, 1983, J ZOOL, V200, P509; KLOMP H, 1970, ARDEA, V58, P1; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; Liljesthrom M, 2009, WILSON J ORNITHOL, V121, P783, DOI 10.1676/09-018.1; MANNING TH, 1979, AUK, V96, P207; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Massoni V, 2007, IBIS, V149, P10; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; Mezquida Eduardo T., 2002, Hornero, V17, P31; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; NAROSKY T, 2003, GUIA IDENTIFICACION; Nooker JK, 2005, AUK, V122, P1225, DOI 10.1642/0004-8038(2005)122[1225:EOFAWA]2.0.CO;2; Panigatti J., 1981, ESTADO ACTUAL FUTURO; PERRINS CM, 1989, WILSON BULL, V101, P236; Ramstack JM, 1998, WILSON BULL, V110, P233; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; Robertson R.J., 1992, Birds of North America, V11, P1; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; Tinbergen JM, 2002, OX ORN SER, V13, P299; Turner A, 1989, HDB SWALLOWS MARTINS; Weidinger K, 1996, J ZOOL, V239, P755, DOI 10.1111/j.1469-7998.1996.tb05476.x; Whittingham LA, 2001, CONDOR, V103, P166, DOI 10.1650/0010-5422(2001)103[0166:FRTIBP]2.0.CO;2; Williams Joseph B., 1996, P375; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; YOUNG BE, 1994, AUK, V111, P545; ZACH R, 1982, AUK, V99, P695 46 2 2 0 7 SCIENCE REVIEWS 2000 LTD ST ALBANS PO BOX 314, ST ALBANS AL1 4ZG, HERTS, ENGLAND 1758-1559 AVIAN BIOL RES Avian Biol. Res. 2012 5 1 47 53 10.3184/175815512X13267955937297 7 Agriculture, Dairy & Animal Science; Ornithology; Zoology Agriculture; Zoology 913TG WOS:000301899700007 2019-02-21 J Roulette, CJ; Hagen, EH Roulette, Casey J.; Hagen, Edward H. Tobacco, cannabis, parasites, and life history strategies in hunter-gatherers from the Central African Republic AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Meeting Abstract 81st Annual Meeting of the American-Association-of-Physical-Anthropologists 2012 Portland, OR Amer Assoc Phys Anthropol [Roulette, Casey J.] Washington State Univ, Pullman, WA 99164 USA; [Hagen, Edward H.] Washington State Univ Vancouver, Vancouver, BC, Canada 0 1 1 0 5 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2012 147 54 253 253 1 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 895LW WOS:000300498701143 2019-02-21 S McGlynn, TP Berenbaum, MR McGlynn, Terrence P. The Ecology of Nest Movement in Social Insects ANNUAL REVIEW OF ENTOMOLOGY, VOL 57 Annual Review of Entomology English Review; Book Chapter absconding; ant; emigration; migration; nomadism; relocation ANT APHAENOGASTER-ARANEOIDES; APIS-MELLIFERA-SCUTELLATA; INVASIVE ARGENTINE ANT; SEASONAL POLYDOMY; PHEIDOLE-DESERTORUM; LINEPITHEMA-HUMILE; SWARMING COLONIES; DECISION-MAKING; HARVESTER ANT; RAIN-FOREST Social insect colonies are typically mobile entities, moving nests from one location to another throughout the life of a colony. The majority of social insect species-ants, bees, wasps, and termites-have likely adopted the habit of relocating nests periodically. The syndromes of nest relocation include legionary nomadism, unstable nesting, intrinsic nest relocation, and adventitious nest relocation. The emergence of nest movement is a functional response to a broad range of potential selective forces, including colony growth, competition, foraging efficiency, microclimate, nest deterioration, nest quality, parasitism, predation, and seasonality. Considering the great taxonomic and geographic distribution of nest movements, assumptions regarding the nesting biology of social insects should be reevaluated, including our understanding of population genetics, life-history evolution, and the role of competition in structuring communities. Calif State Univ Dominguez Hills, Dept Biol, Carson, CA 90747 USA McGlynn, TP (reprint author), Calif State Univ Dominguez Hills, Dept Biol, Carson, CA 90747 USA. terry.mcglynn@gmail.com McGlynn, Terrence/E-3405-2010 McGlynn, Terrence/0000-0002-4290-6156 Andersen AN, 2008, AUSTRAL ECOL, V33, P211, DOI 10.1111/j.1442-9993.2007.01810.x; ANDERSEN AN, 1991, ANT - PLANT INTERACTIONS, P539; Armbrecht I, 2004, SCIENCE, V304, P284, DOI 10.1126/science.1094981; ARON S, 1986, INSECT SOC, V33, P338, DOI 10.1007/BF02224249; Avargues-Weber A, 2009, INSECT SOC, V56, P177, DOI 10.1007/s00040-009-0009-1; Banschbach VS, 1997, INSECT SOC, V44, P109, DOI 10.1007/s000400050034; BODLEY JH, 1980, BIOTROPICA, V12, P67, DOI 10.2307/2387775; Boulay R, 2007, BEHAV ECOL SOCIOBIOL, V61, P1531, DOI 10.1007/s00265-007-0385-3; Brady SG, 2003, P NATL ACAD SCI USA, V100, P6575, DOI 10.1073/pnas.1137809100; Breed MD, 1999, J TROP ECOL, V15, P765, DOI 10.1017/S0266467499001169; Brown MJF, 1999, INSECT SOC, V46, P66, DOI 10.1007/s000400050114; Buczkowski G, 2008, ECOL ENTOMOL, V33, P780, DOI 10.1111/j.1365-2311.2008.01034.x; BYRNE MM, 1994, BIOTROPICA, V26, P61, DOI 10.2307/2389111; CARLSON DM, 1973, ECOLOGY, V54, P452, DOI 10.2307/1934357; Dahbi A, 2008, J ETHOL, V26, P119, DOI 10.1007/s10164-007-0041-4; Dejean A, 2010, CR BIOL, V333, P35, DOI 10.1016/j.crvi.2009.10.007; DEVITA J, 1979, ECOLOGY, V60, P729; DROUAL R, 1984, ANIM BEHAV, V32, P1054, DOI 10.1016/S0003-3472(84)80221-3; DROUAL R, 1983, BEHAV ECOL SOCIOBIOL, V12, P203, DOI 10.1007/BF00290772; DROUAL R, 1981, Psyche (Cambridge), V88, P135, DOI 10.1155/1981/43265; DYER FC, 1994, INSECT SOC, V41, P129, DOI 10.1007/BF01240473; Elias M, 2005, BEHAV ECOL SOCIOBIOL, V57, P339, DOI 10.1007/s00265-004-0864-8; Fournier D, 2005, NATURE, V435, P1230, DOI 10.1038/nature03705; Franks Nigel R., 2007, Swarm Intelligence, V1, P81, DOI 10.1007/s11721-007-0007-8; Franks NR, 2006, ANIM BEHAV, V72, P611, DOI 10.1016/j.anbehav.2005.11.019; Gibb H, 2003, INSECT SOC, V50, P323, DOI 10.1007/s00040-003-0689-x; GORDON DM, 1992, ANN ENTOMOL SOC AM, V85, P44, DOI 10.1093/aesa/85.1.44; Gordon DM, 2001, AM MIDL NAT, V146, P321, DOI 10.1674/0003-0031(2001)146[0321:EOWOIO]2.0.CO;2; Heller NE, 2006, ECOL ENTOMOL, V31, P499, DOI 10.1111/j.1365-2311.2006.00806.x; Hepburn HR, 2011, HONEYBEES OF ASIA, P133, DOI 10.1007/978-3-642-16422-4_7; HERBERS JM, 1985, INSECT SOC, V32, P224, DOI 10.1007/BF02224913; Holldobler B., 1990, ANTS; Holway DA, 2000, ANIM BEHAV, V59, P433, DOI 10.1006/anbe.1999.1329; Hubbell SP, 1977, ECOLOGY, V58, P950, DOI DOI 10.2307/1936917; Hughes DP, 2004, BEHAV ECOL, V15, P1037, DOI 10.1093/beheco/arh111; Hunt JH, 1999, BIOTROPICA, V31, P192; HUNT JH, 1995, INSECT SOC, V42, P223, DOI 10.1007/BF01240417; Hunt JH, 2001, ANN ENTOMOL SOC AM, V94, P555, DOI 10.1603/0013-8746(2001)094[0555:OOTNSF]2.0.CO;2; INOUE T, 1984, J APICULT RES, V23, P136, DOI 10.1080/00218839.1984.11100622; ITO Y, 1992, J ETHOL, V10, P109, DOI 10.1007/BF02350115; KOENIGER N, 1980, J APICULT RES, V19, P21, DOI 10.1080/00218839.1980.11099994; Kronauer DJC, 2009, MYRMECOL NEWS, V12, P51; KUGLER C, 1983, BIOTROPICA, V15, P190, DOI 10.2307/2387828; Lach L, 2010, ANT ECOLOGY, P1; Laskis KO, 2009, J INSECT SCI, V9, DOI 10.1673/031.009.0201; LEAL IR, 1995, BEHAV ECOL SOCIOBIOL, V37, P373, DOI 10.1007/BF00170584; LEVINGS SC, 1982, ECOLOGY, V63, P338, DOI 10.2307/1938951; Lewis LA, 2008, APIDOLOGIE, V39, P354, DOI 10.1051/apido:2008018; Litte M., 1981, SMITHSON CONTRIB ZOO, V327, P1; LONGHURST C, 1979, INSECT SOC, V26, P204, DOI 10.1007/BF02223798; Longino JT, 2005, BIOTROPICA, V37, P670, DOI 10.1111/j.1744-7429.2005.00085.x; LOPEZ F, 1994, TRENDS ECOL EVOL, V9, P150, DOI 10.1016/0169-5347(94)90185-6; Matsuura M, 1999, INSECT SOC, V46, P219, DOI 10.1007/s000400050137; McGlynn TP, 2007, ECOL ENTOMOL, V32, P621, DOI 10.1111/j.1365-2311.2007.00909.x; McGlynn TP, 2010, J TROP ECOL, V26, P559, DOI 10.1017/S0266467410000313; McGlynn Terry, 2010, Journal of Insect Science (Tucson), V10, P1, DOI 10.1673/031.010.19501; McGlynn TP, 2006, BIOTROPICA, V38, P419, DOI 10.1111/j.1744-7429.2006.00153.x; McGlynn TP, 2004, OIKOS, V106, P611, DOI 10.1111/j.0030-1299.2004.13135.x; McGlynn TP, 2003, J INSECT BEHAV, V16, P687, DOI 10.1023/B:JOIR.0000007704.22329.a5; Mertl AL, 2009, BIOTROPICA, V41, P633, DOI 10.1111/j.1744-7429.2009.00520.x; Miller LR, 1994, AUST J ENTOMOL, V33, P317; Moffett M.W., 1988, P355; Nakamura Masao, 2004, Kasetsart Journal Natural Sciences, V38, P196; Neumann P, 2000, NATURE, V406, P474, DOI 10.1038/35020193; NOIROT C, 1986, INSECT SOC, V33, P361, DOI 10.1007/BF02223945; Paar J, 2004, J HERED, V95, P119, DOI 10.1093/jhered/esh026; Peeters C, 2001, ANNU REV ENTOMOL, V46, P601, DOI 10.1146/annurev.ento.46.1.601; Philpott SM, 2005, ECOL APPL, V15, P1478, DOI 10.1890/04-1496; Powell S, 2008, FUNCT ECOL, V22, P902, DOI 10.1111/j.1365-2435.2008.01436.x; Pratt SC, 2008, BEHAV ECOL SOCIOBIOL, V62, P1369, DOI 10.1007/s00265-008-0565-9; Rettenmeyer CW, 2011, INSECT SOC, V58, P281, DOI 10.1007/s00040-010-0128-8; ROCKWOOD LL, 1973, J ANIM ECOL, V42, P803, DOI 10.2307/3140; ROISIN Y, 1986, BEHAV ECOL SOCIOBIOL, V18, P437, DOI 10.1007/BF00300519; Ross KG, 1991, SOCIAL BIOL WASPS; Roubik DW, 2006, APIDOLOGIE, V37, P124, DOI 10.1051/apido:2006026; Rupf T, 2008, NATURWISSENSCHAFTEN, V95, P811, DOI 10.1007/s00114-008-0387-7; RYTI RT, 1986, OECOLOGIA, V69, P446, DOI 10.1007/BF00377067; RYTI RT, 1992, AM NAT, V139, P355, DOI 10.1086/285331; Sallee R. M., 1947, Proceedings of the Iowa Academy of Science, V54, P349; SCHNEIDER SS, 1992, INSECT SOC, V39, P403, DOI 10.1007/BF01240624; SCHNEIDER SS, 1994, INSECT SOC, V41, P115, DOI 10.1007/BF01240472; SMALLWOOD J, 1982, INSECT SOC, V29, P138, DOI 10.1007/BF02228747; SMALLWOOD J, 1979, J ANIM ECOL, V48, P373, DOI 10.2307/4167; SMALLWOOD J, 1982, ECOLOGY, V63, P124, DOI 10.2307/1937038; SNYDER LE, 1991, BEHAV ECOL SOCIOBIOL, V28, P409, DOI 10.1007/BF00164122; Sonnentag Peter J., 2009, Journal of Insect Science (Tucson), V9, P1, DOI 10.1673/031.009.1101; SPENCER HERBERT, 1941, FLORIDA ENT, V24, P6, DOI 10.2307/3492285; Steiner FM, 2010, ANT ECOLOGY, P177; STRASSMANN JE, 1988, ECOLOGY, V69, P1497, DOI 10.2307/1941647; Thorne BL, 2000, ENVIRON ENTOMOL, V29, P256, DOI 10.1603/0046-225X(2000)029[0256:NGASIT]2.0.CO;2; Tinaut A, 1999, SOCIOBIOLOGY, V34, P99; TSUJI K, 1988, INSECT SOC, V35, P321, DOI 10.1007/BF02225809; Tsutsui ND, 2003, CONSERV BIOL, V17, P48, DOI 10.1046/j.1523-1739.2003.02018.x; Tsutsui ND, 2003, P NATL ACAD SCI USA, V100, P1078, DOI 10.1073/pnas.0234412100; Visscher PK, 2007, ANNU REV ENTOMOL, V52, P255, DOI 10.1146/annurev.ento.51.110104.151025; Wiernasz DC, 2008, MOL ECOL, V17, P1137, DOI 10.1111/j.1365-294X.2007.03646.x; Witte V, 2000, INSECT SOC, V47, P76, DOI 10.1007/s000400050012; Witte V, 2008, NATURWISSENSCHAFTEN, V95, P1049, DOI 10.1007/s00114-008-0421-9 98 48 49 3 107 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0066-4170 978-0-8243-0157-6 ANNU REV ENTOMOL Annu. Rev. Entomol. 2012 57 291 308 10.1146/annurev-ento-120710-100708 18 Entomology Entomology BYR10 WOS:000299834000016 21910641 2019-02-21 J Rijnsdorp, AD; van Overzee, HMJ; Poos, JJ Rijnsdorp, Adriaan D.; van Overzee, Harriet M. J.; Poos, Jan Jaap Ecological and economic trade-offs in the management of mixed fisheries: a case study of spawning closures in flatfish fisheries MARINE ECOLOGY PROGRESS SERIES English Article Ecosystem approach; Closed areas; Closed seasons; Discards; Bottom trawling impact; Selection differential; Indicators; Good environmental status NORTH-SEA PLAICE; PLEURONECTES-PLATESSA L; LIFE-HISTORY EVOLUTION; EVOLVING FISH STOCKS; DEMERSAL FISHERIES; ECOSYSTEM APPROACH; REACTION NORMS; ADULT PLAICE; IMPACT; COMMUNITIES As a contribution to the ecosystem approach to fisheries management, we estimated the effects of spawning closures on stock status, ecosystem impacts and economic performance. We focused on the flatfish fishery in the North Sea and explored how spawning closures for plaice and sole contribute to sustainable management of 4 target species (sole, plaice, turbot and brill). Seasonal patterns in fishing effort and catchability by age group and area were estimated to quantify the effect of different spawning closure scenarios on the selection pattern. The scenario performance was evaluated using indicators of stock status (spawning stock biomass), economic performance of the fishery (yield, revenue) and ecosystem impact (discards, bycatch of cod and rays, seabed integrity, fisheries-induced evolution). In a single-species context, spawning closures may be beneficial for the target species, while in a mixed fisheries and ecosystem context, negative effects may occur. A spawning closure for plaice combines positive effects on the plaice stock and the revenue with reductions of the negative impact for several ecosystem indicators and only a small negative effect on sea bed integrity. The effects did not differ when evaluated at current levels of effort or at maximum sustainable yield (MSY) effort. Tailor-made solutions are required that need to be developed in stakeholder consultation to trade-off the ecological and economic objectives. Mixed-species MSY was lower than the sum of the single-species MSYs. [Rijnsdorp, Adriaan D.; van Overzee, Harriet M. J.; Poos, Jan Jaap] Inst Marine Resources & Ecol Studies, Wageningen IMARES, NL-1970 AB Ijmuiden, Netherlands; [Rijnsdorp, Adriaan D.] Wageningen Univ, Aquaculture & Fisheries Grp, NL-6700 AH Wageningen, Netherlands Rijnsdorp, AD (reprint author), Inst Marine Resources & Ecol Studies, Wageningen IMARES, POB 68, NL-1970 AB Ijmuiden, Netherlands. adriaan.rijnsdorp@wur.nl Rijnsdorp, Adriaan/A-4217-2008; Poos, Jan Jaap/B-9940-2009 Rijnsdorp, Adriaan/0000-0003-0785-9662; Poos, Jan Jaap/0000-0002-8507-5751 Ministry of Economic Affairs, Agriculture and Innovation (ELI) [G080734, G080735, G092394, G092428, G103061, G103063, G103066]; national programme Kennis Basis WOT 'trade-offs msy targets' (KBWOT) This manuscript was prepared as part of a research project commissioned by the 'Stichting Vis & Seizoen' and supported by the Ministry of Economic Affairs, Agriculture and Innovation (EL&I) through the 'Visserij Innovatie Platform' (G080734, G080735, G092394, G092428, G103061, G103063, G103066). The contribution of J.J.P. was partly funded by the national programme Kennis Basis WOT 'trade-offs msy targets' (KBWOT). Critical comments of D. Miller and M. Dickey-Collas on an earlier version of the manuscript are highly appreciated. Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Beverton R.J.H., 1957, FISHERIES INVESTIG 2, V19; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; Daan N, 1997, J SEA RES, V37, P321, DOI 10.1016/S1385-1101(97)00026-9; Daan N., 1978, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V172, P39; Dinmore TA, 2003, ICES J MAR SCI, V60, P371, DOI 10.1016/S1054-3139(03)00010-9; Fulton E, 1999, CAN J FISH AQUAT SCI, V56, P1096, DOI 10.1139/cjfas-56-6-1096; GIBSON RN, 1994, NETH J SEA RES, V32, P191, DOI 10.1016/0077-7579(94)90040-X; Gillis DM, 1998, CAN J FISH AQUAT SCI, V55, P37, DOI 10.1139/cjfas-55-1-37; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Groeneveld RA, 2011, ICES J MAR SCI, V68, P919, DOI 10.1093/icesjms/fsr013; Hall SJ, 2005, FISH FISH, V6, P134, DOI 10.1111/j.1467-2979.2005.00183.x; Harding D, 1978, P 5 REUN CONS INT EX, V172, P102; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Hiddink JG, 2006, ECOSYSTEMS, V9, P1190, DOI 10.1007/s10021-005-0164-9; Hsieh CH, 2006, NATURE, V443, P859, DOI 10.1038/nature05232; Hunter E, 2004, MAR ECOL PROG SER, V279, P261, DOI 10.3354/meps279261; Hunter E, 2004, J ANIM ECOL, V73, P377, DOI 10.1111/j.0021-8790.2004.00801.x; ICES, 2010, REP ICES ADV COMM 20, P35; ICES, 1965, 5 ICES, V5; Innes JP, 2010, J ENVIRON MANAGE, V91, P932, DOI 10.1016/j.jenvman.2009.11.011; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Jennings S, 2002, MAR ECOL PROG SER, V243, P251, DOI 10.3354/meps243251; Jennings S, 1999, FISH RES, V40, P125, DOI 10.1016/S0165-7836(98)00208-2; Jennings S, 2011, FISH FISH, V12, P125, DOI 10.1111/j.1467-2979.2011.00409.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kaiser MJ, 2006, MAR ECOL PROG SER, V311, P1, DOI 10.3354/meps311001; Kraak SBM, 2008, ICES J MAR SCI, V65, P697, DOI 10.1093/icesjms/fsn045; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; MURAWSKI SA, 1984, CAN J FISH AQUAT SCI, V41, P897, DOI 10.1139/f84-106; Piet GJ, 2007, ICES J MAR SCI, V64, P110, DOI 10.1093/icesjms/fsl006; Piet GJ, 2008, ICES J MAR SCI, V65, P1449, DOI 10.1093/icesjms/fsn124; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Poos JJ, 2010, ICES J MAR SCI, V67, P323, DOI 10.1093/icesjms/fsp241; Poos JJ, 2007, CAN J FISH AQUAT SCI, V64, P304, DOI 10.1139/F06-177; Pope JG, 2000, ICES J MAR SCI, V57, P689, DOI 10.1006/jmsc.2000.0729; Quirijns FJ, 2008, FISH RES, V89, P1, DOI 10.1016/j.fishres.2007.08.016; R Development Core Team, 2010, R LANG ENV STAT COMP; Rice J, 2008, J SEA RES, V60, P8, DOI 10.1016/j.seares.2008.02.002; Rijnsdorp AD, 2007, J SEA RES, V57, P114, DOI 10.1016/j.seares.2006.09.003; RIJNSDORP AD, 1995, ICES J MAR SCI, V52, P963, DOI 10.1006/jmsc.1995.0092; Rijnsdorp AD, 2000, ICES J MAR SCI, V57, P894, DOI 10.1006/jmsc.2000.0576; Rijnsdorp AD, 2006, ICES J MAR SCI, V63, P556, DOI 10.1016/j.icesjms.2005.10.003; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; RIJNSDORP AD, 1993, EXPLOITATION EVOLVIN, P19; Rijnsdorp AD, 2011, CAN J FISH AQUAT SCI, V68, P1064, DOI 10.1139/F2011-032; Shucksmith R, 2006, J SEA RES, V56, P317, DOI 10.1016/j.seares.2006.06.001; Solmundsson J, 2003, FISH RES, V61, P57, DOI 10.1016/S0165-7836(02)00212-6; Stelzenmuller V, 2010, MAR ECOL PROG SER, V398, P19, DOI 10.3354/meps08345; Temming A, 2007, ECOSYSTEMS, V10, P865, DOI 10.1007/s10021-007-9066-3; Ulrich C, 2011, ICES J MAR SCI, V68, P1535, DOI 10.1093/icesjms/fsr060; Van Beek FA, 1998, 1998BB5 ICES CM; Van Overzee HMJ, 2010, C07710 IMARES; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; VANBEEK FA, 1990, NETH J SEA RES, V26, P151, DOI 10.1016/0077-7579(90)90064-N; Verweij MC, 2010, MAR POLICY, V34, P1144, DOI 10.1016/j.marpol.2010.03.014; Verweij MC, 2010, MAR POLICY, V34, P522, DOI 10.1016/j.marpol.2009.10.008; Walker PA, 1996, ICES J MAR SCI, V53, P1085, DOI 10.1006/jmsc.1996.0135; Wood SN, 2008, J ROY STAT SOC B, V70, P495, DOI 10.1111/j.1467-9868.2007.00646.x; Wood SN., 2006, GEN ADDITIVE MODELS; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x 64 18 18 0 45 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 447 179 194 10.3354/meps09519 16 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 897OG WOS:000300660600013 Bronze 2019-02-21 J Ota, K; Hori, M; Kohda, M Ota, Kazutaka; Hori, Michio; Kohda, Masanori Changes in reproductive life-history strategies in response to nest density in a shell-brooding cichlid, Telmatochromis vittatus NATURWISSENSCHAFTEN English Article Alternative reproductive tactics; Interpopulation comparison; Nest choice; Nest piracy; Sperm competition; Body size ALTERNATIVE MATING BEHAVIORS; SPERM COMPETITION GAMES; SEXUAL SIZE DIMORPHISM; LAKE TANGANYIKA; POMATOSCHISTUS-MINUTUS; TERRITORIAL MALES; POPULATION-STRUCTURE; RHODEUS-SERICEUS; SAND GOBY; SELECTION To determine whether the appearance of a reproductively parasitic tactic varies, and how this variation affects territorial males of the Lake Tanganyika cichlid fish Telmatochromis vittatus, we examined the reproductive ecology of territorial males in Mtondwe and compared it with that of a neighboring Wonzye population, where nest density differs from that at Mtondwe. In Wonzye, with high nest density, male tactics change with their body size from a territorial to a non-territorial parasitic tactic called piracy in which they conquer several nests defended by territorial males and take over the nests while females are spawning. These "pirate" males could decrease the costs incurred by travelling among nests by exclusively targeting aggregations of nests in close proximity while avoiding separate nests. Territorial males in Wonzye sacrifice the potential higher attractiveness offered by large nests and instead compete for nests farther from neighbors on which pirates less frequently intrude. In contrast, the Mtondwe population had lower nest density and piracy was absent. Given that the success of piracy depends on the close proximity of nests, nest density is likely responsible for the observed variation in the occurrence of piracy between the two populations. Furthermore, in Mtondwe, territorial males competed for larger nests and were smaller than the territorial males in Wonzye. Thus, this lower nest density may free territorial males from the selection pressures for increased size caused by both defense against nest piracy and the need to develop into pirates as they grow. [Ota, Kazutaka; Hori, Michio] Kyoto Univ, Fac Biol, Dept Sci, Kyoto 6068502, Japan; [Kohda, Masanori] Osaka City Univ, Dept Biol & Geosci, Sumiyoshi Ku, Osaka 5588585, Japan Ota, K (reprint author), Kyoto Univ, Fac Biol, Dept Sci, Kyoto 6068502, Japan. kztk@terra.zool.kyoto-u.ac.jp Ota, Kazutaka/0000-0002-7097-7330 Ministry of Education, Culture, Sports, Science and Technology; MEXT [A06] We thank the staff of the Lake Tanganyika Research Unit at the Fisheries Research Institute of Zambia for their support during field work. We are very grateful to Kaya Matsuoka and Anny Mogollon for English correction and anonymous reviewers for their helpful comments on an earlier version of this manuscript. This work was supported partly by Overseas Scientific Research grant (Ministry of Education, Culture, Sports, Science and Technology; MEXT) to M. K. and Global COE project A06 (MEXT). The present study was conducted with permission from the Zambian Ministry of Agriculture, Food and Fisheries for fish research in Lake Tanganyika. ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Awata S, 2008, BEHAV ECOL SOCIOBIOL, V62, P1701, DOI 10.1007/s00265-008-0598-0; Balshine S, 2001, BEHAV ECOL SOCIOBIOL, V50, P134, DOI 10.1007/s002650100343; Bessert ML, 2007, J HERED, V98, P716, DOI 10.1093/jhered/esm092; Calsbeek R, 2002, P ROY SOC B-BIOL SCI, V269, P157, DOI 10.1098/rspb.2001.1856; Corl A, 2010, P NATL ACAD SCI USA, V107, P4254, DOI 10.1073/pnas.0909480107; Corl A, 2010, EVOLUTION, V64, P79, DOI 10.1111/j.1558-5646.2009.00791.x; DOWNHOWER JF, 1980, ANIM BEHAV, V28, P728, DOI 10.1016/S0003-3472(80)80132-1; Duftner N, 2006, MOL ECOL, V15, P2381, DOI 10.1111/j.1365.294X.2006.02949.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Fairbairn DJ, 2005, AM NAT S, V11, P69, DOI 0003-0147/2005/1660S4-40916; Fitze PS, 2011, AM NAT, V178, P256, DOI 10.1086/660826; Fitzpatrick JL, 2007, BIOL REPROD, V77, P280, DOI 10.1095/biolreprod.106.059550; Gamble S, 2003, ECOL LETT, V6, P463, DOI 10.1046/j.1461-0248.2003.00449.x; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Jones AG, 2001, P NATL ACAD SCI USA, V98, P9151, DOI 10.1073/pnas.171310198; Klug H, 2010, J EVOLUTION BIOL, V23, P447, DOI 10.1111/j.1420-9101.2009.01921.x; Koblmuller S, 2007, GENETICA, V130, P121, DOI 10.1007/s10709-006-0027-0; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kvarnemo S, 1996, TRENDS ECOL EVOL, V11, P404, DOI [10.1016/0169-5347(96)10056-2, DOI 10.1016/0169-5347(96)10056-2]; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Larison B, 2007, BEHAV ECOL, V18, P1021, DOI 10.1093/beheco/arm071; LINDSTROM K, 1988, OIKOS, V53, P67, DOI 10.2307/3565664; LUGLI M, 1992, ENVIRON BIOL FISH, V35, P37, DOI 10.1007/BF00001156; Lukasik P, 2006, EVOLUTION, V60, P399, DOI 10.1111/j.0014-3820.2006.tb01116.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Mills SC, 2003, BEHAV ECOL SOCIOBIOL, V54, P98, DOI 10.1007/s00265-003-0616-1; Nakaya K, 1992, ECOL LIMNOL STUD LAK, V8, P47; Nevado B, 2009, MOL ECOL, V18, P4240, DOI 10.1111/j.1365-294X.2009.04348.x; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Ota K, 2006, J ETHOL, V24, P91, DOI 10.1007/s10164-005-0167-1; Ota K, 2006, J ETHOL, V24, P9, DOI 10.1007/s10164-005-0154-6; Ota K, 2011, J FISH BIOL, V78, P700, DOI 10.1111/j.1095-8649.2010.02872.x; Ota K, 2007, THESIS OSAKA CITY U; Ota K, 2010, BEHAV ECOL, V21, P1293, DOI 10.1093/beheco/arq146; Ota K, 2010, J BIOSCIENCES, V35, P257, DOI 10.1007/s12038-010-0030-6; PARKER GA, 1990, P ROY SOC B-BIOL SCI, V242, P127, DOI 10.1098/rspb.1990.0115; Reichard M, 2004, MOL ECOL, V13, P1569, DOI 10.1111/j.1365-294X.2004.02151.x; Sato Tetsu, 1997, P219; SHUSTER SM, 1991, NATURE, V350, P608, DOI 10.1038/350608a0; Simmons LW, 1999, P ROY SOC B-BIOL SCI, V266, P145, DOI 10.1098/rspb.1999.0614; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Singer A, 2006, J EVOLUTION BIOL, V19, P1641, DOI 10.1111/j.1420-9101.2006.01114.x; Taborsky M, 2001, J HERED, V92, P100, DOI 10.1093/jhered/92.2.100; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; Takahashi T, 2004, J FISH BIOL, V65, P419, DOI 10.1111/j.1095-8649.2004.00459.x; Takahashi T, 2009, MOL ECOL, V18, P3110, DOI 10.1111/j.1365-294X.2009.04248.x; Tomkins JL, 2002, ANIM BEHAV, V63, P1009, DOI 10.1006/anbe.2001.1994; Tomkins JL, 2004, NATURE, V431, P1099, DOI 10.1038/nature02918; Tomkins JL, 2011, CURR BIOL, V21, P569, DOI 10.1016/j.cub.2011.02.032; VANDENBERGHE EP, 1988, NATURE, V334, P697, DOI 10.1038/334697a0; WARNER RR, 1980, ECOLOGY, V61, P772, DOI 10.2307/1936747 52 3 3 1 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0028-1042 NATURWISSENSCHAFTEN Naturwissenschaften JAN 2012 99 1 23 31 10.1007/s00114-011-0864-2 9 Multidisciplinary Sciences Science & Technology - Other Topics 897TV WOS:000300681400004 22089034 2019-02-21 J Hiltunen, T; Friman, VP; Kaitala, V; Mappes, J; Laakso, J Hiltunen, Teppo; Friman, Ville-Petri; Kaitala, Veijo; Mappes, Johanna; Laakso, Jouni Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article Diversity; Evenness; Predator-prey interaction; Resource competition; Temporal variation; Rapid evolution; Trophic dynamics MODEL ADAPTIVE RADIATION; SPECIES-DIVERSITY; TETRAHYMENA-THERMOPHILA; VARIABLE ENVIRONMENTS; POPULATION-DYNAMICS; PREY INTERACTIONS; COMPETITION; MECHANISMS; MAINTENANCE; COEXISTENCE Predation and temporal resource availability are among the most important factors determining prey community dynamics and composition. Both factors have been shown to affect prey diversity, but less is known about their interactive effects, especially in rapidly evolving prey communities. In a laboratory microcosm experiment, we manipulated the presence of the predatory protozoan Tetrahymena thermophila and the temporal patterns in the availability of resources for a bacterial prey community. We found that both predation and temporal fluctuations in prey resources resulted in a more even prey community, and these factors also interacted so that the effect of predation was only seen in a fluctuating environment. One possible explanation for this finding could be differences in prey species grazing resistance and resource use abilities, which likely had the greatest effect on prey community structure in fluctuating environments with periodical resource limitation. We also found that prey communities evolved to be more grazing-resistant during the experiment, and that this effect was due to a clear increase in the grazing resistance of the bacterium Serratia marcescens. Our results demonstrate that temporal variability in prey resources and predation can promote more even prey species proportions by allowing the existence of both defensive and competitive prey life-history strategies. (C) 2011 Elsevier Masson SAS. All rights reserved. [Hiltunen, Teppo; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni] Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Evolutionary Res, Jyvaskyla 40014, Finland; [Friman, Ville-Petri; Kaitala, Veijo; Laakso, Jouni] Univ Helsinki, Dept Biol & Environm Sci, Integrat Ecol Unit, FIN-00014 Helsinki, Finland Hiltunen, T (reprint author), Cornell Univ, Dept Ecol & Evolutionary Biol, Corson Hall, Ithaca, NY 14853 USA. tjh92@cornell.edu Hiltunen, Teppo/A-4308-2015; Laakso, Jouni/I-7794-2013 Hiltunen, Teppo/0000-0001-7206-2399; Laakso, Jouni/0000-0001-8245-9912; Friman, Ville-Petri/0000-0002-1592-157X; Mappes, Johanna/0000-0002-1117-5629 Academy of Finland [106993]; Centre of Excellence in Evolutionary Ecology, University of Jyvaskyla We thank T. Ketola, LE. Jones and the Hairston lab group for valuable comments, M. Niskanen for assistance in the lab and K. Viipale for conceptual help. We also thank K. Blackley for editing the language. The study was funded by the Academy of Finland (project #106993) and the Centre of Excellence in Evolutionary Ecology, University of Jyvaskyla. Abrams PA, 2000, ANNU REV ECOL SYST, V31, P79, DOI 10.1146/annurev.ecolsys.31.1.79; Angers A.L, 2009, P NATL ACAD SCI USA, V14, P11641; ATCC, 2007, LGC PROM PROT COLL; Bohannan BJM, 1999, AM NAT, V153, P73, DOI 10.1086/303151; Bohannan BJM, 2000, AM NAT, V156, P329, DOI 10.1086/303393; Chase JM, 2002, ECOL LETT, V5, P302, DOI 10.1046/j.1461-0248.2002.00315.x; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Chesson P. L., 1986, COMMUNITY ECOLOGY; Edeline E, 2008, P NATL ACAD SCI USA, V105, P19792, DOI 10.1073/pnas.0808011105; Friman VP, 2008, P ROY SOC B-BIOL SCI, V275, P1625, DOI 10.1098/rspb.2008.0174; Friman VP, 2011, AM NAT, V177, P334, DOI 10.1086/658364; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Gallet R, 2007, AM NAT, V170, P143, DOI 10.1086/518567; Grover JP, 1997, RESOURCE COMPETITION; Hall AR, 2008, EVOL ECOL RES, V10, P735; HARDIN G, 1960, SCIENCE, V131, P1292, DOI 10.1126/science.131.3409.1292; Hiltunen T, 2008, ACTA OECOL, V33, P291, DOI 10.1016/j.actao.2007.12.002; Jiang L, 2006, ECOL RES, V21, P723, DOI 10.1007/s11284-006-0181-y; Jones SE, 2010, P NATL ACAD SCI USA, V107, P5881, DOI 10.1073/pnas.0912765107; JURGENS K, 1994, MAR ECOL PROG SER, V112, P169, DOI 10.3354/meps112169; Ketola T, 2004, EVOLUTION, V58, P741; Kirk KL, 2002, FRESHWATER BIOL, V47, P1089, DOI 10.1046/j.1365-2427.2002.00841.x; Laakso J, 2003, OIKOS, V102, P663, DOI 10.1034/j.1600-0706.2003.12319.x; Leibold MA, 1996, AM NAT, V147, P784, DOI 10.1086/285879; Matz C, 2005, TRENDS MICROBIOL, V13, P302, DOI 10.1016/j.tim.2005.05.009; Meyer JR, 2007, NATURE, V446, P432, DOI 10.1038/nature05599; Oliver JD, 2005, J MICROBIOL, V43, P93; Ostfeld RS, 2000, TRENDS ECOL EVOL, V15, P232, DOI 10.1016/S0169-5347(00)01862-0; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Petchey OL, 2000, P ROY SOC B-BIOL SCI, V267, P747, DOI 10.1098/rspb.2000.1066; Rosenzweig ML, 1995, SPECIES DIVERSITY SP; Roxburgh SH, 2004, ECOLOGY, V85, P359, DOI 10.1890/03-0266; Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x; SOMMER U, 2002, COMPETITION COEXISTE, V161; Tilman D., 1982, RESOURCE COMPETITION; Worm B, 2002, NATURE, V417, P848, DOI 10.1038/nature00830; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 38 9 9 0 54 GAUTHIER-VILLARS/EDITIONS ELSEVIER PARIS 23 RUE LINOIS, 75015 PARIS, FRANCE 1146-609X ACTA OECOL Acta Oecol.-Int. J. Ecol. JAN 2012 38 77 83 10.1016/j.actao.2011.09.010 7 Ecology Environmental Sciences & Ecology 887DO WOS:000299907300011 2019-02-21 J Vainikka, A; Hyvarinen, P Vainikka, Anssi; Hyvarinen, Pekka Ecologically and evolutionarily sustainable fishing of the pikeperch Sander lucioperca: Lake Oulujarvi as an example FISHERIES RESEARCH English Article Fisheries management; Density-dependence; Fisheries-induced evolution; Population dynamics LIFE-HISTORY EVOLUTION; PIKE ESOX-LUCIUS; STIZOSTEDION-LUCIOPERCA; REACTION NORMS; RECREATIONAL FISHERIES; SELECTIVE MORTALITY; NATURAL MORTALITY; INLAND WATERS; BROWN TROUT; BALTIC SEA Due to the multitude of participants and a diverse range of fishing gear used freshwater fisheries are often managed using minimum size limits (MSL) rather than regulations of total fishing effort. However, a concern has arisen whether attempts to improve ecological sustainability of fisheries by increasing MSLs would induce undesired adaptations to selective fishing. We examined the ecological and evolutionary impacts of varying fishing mortality rates under varying MSLs, with and without stockings, in an age-, size-, and maturity-structured evolutionary model which was parameterized for the Lake Oulujarvi pikeperch, Sander lucioperca. We found that at the current level of harvesting (fishing mortality rate, F=0.7) and stockings (430 000 year(-1)), and under the assumption of strongly density-dependent growth, the nation-wide MSL of 370 mm maximizes theoretical biomass yield in a deterministic model but does not prevent severe recruitment overfishing under further increased fishing pressures or stochasticity in recruitment success. The recently imposed, local MSL of 450 mm better ensures stable yields, and even increases them if individual growth is density-independent, but further increase of MSL to 500 mm would already reduce yield especially if there was discard mortality for undersized fish. Given density-dependent growth, equal survival between wild and stocked fish, and sustainable fishing mortality rate, stockings do not increase yield or significantly improve the stability of yields. Evolutionarily stable size at maturation decreases under strong fishing mortality, but increased MSLs reduce the magnitude of this undesired effect. Negatively size-dependent natural mortality was found to have a positive effect on the otherwise negative selection for length-at-age. Increased MSLs also reduce the total selection for decreased length-at-age. Our results support the intentions to increase MSLs in order to improve both ecological and evolutionary sustainability of recreational fisheries. (C) 2011 Elsevier B.V. All rights reserved. [Vainikka, Anssi] Univ Eastern Finland, Dept Biol, FI-90014 Oulu, Finland; [Vainikka, Anssi] Univ Oulu, FI-90014 Oulu, Finland; [Hyvarinen, Pekka] Finnish Game, FI-88300 Paltamo, Finland; [Hyvarinen, Pekka] Fisheries Res Inst, FI-88300 Paltamo, Finland Vainikka, A (reprint author), Univ Eastern Finland, Dept Biol, POB 3000, FI-90014 Oulu, Finland. anssi.vainikka@gmail.com Vainikka, Anssi/0000-0002-0172-5615 Academy of Finland [127398] This research has been supported by the Academy of Finland (project 127398). We thank Eero Taskila, Fortum Power and Heat Oy and Poyry Finland Oy for kindly providing us data on catches, fish ages and fishing efforts. We thank Tapio Keskinen ja Juha Karjalainen for helpful discussions regarding the energy intake of pikeperch. Tapio Keskinen and the behavioural ecology group of University of Oulu are acknowledged for their helpful comments on the manuscript. For help with the earlier versions of the base model, U. Dieckmann, D. Boukal, A. Brannstrom and A. Gardmark are gratefully acknowledged. The cited grey literature and unpublished data sources are available from the authors upon request. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Balik I, 2004, TURK J VET ANIM SCI, V28, P715; BEVERTON RJH, 1957, FISH INVEST SER, V2, P1; Buckel JA, 2000, J EXP MAR BIOL ECOL, V245, P25, DOI 10.1016/S0022-0981(99)00155-0; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Catalano MJ, 2010, FISH RES, V105, P38, DOI 10.1016/j.fishres.2010.03.002; Coggins LG, 2007, FISH FISH, V8, P196, DOI 10.1111/j.1467-2679.2007.00247.x; Cowx IG, 2010, J FISH BIOL, V76, P2194, DOI 10.1111/j.1095-8649.2010.02686.x; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; Day T, 2002, EVOLUTION, V56, P877; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dayananda D., 2002, FINANCIAL APPRAISAL; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; ESHEL I, 1983, J THEOR BIOL, V103, P99, DOI 10.1016/0022-5193(83)90201-1; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fleming IA, 1997, ICES J MAR SCI, V54, P1051, DOI 10.1006/jmsc.1997.0289; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Gjedrem T, 2000, AQUAC RES, V31, P25, DOI 10.1046/j.1365-2109.2000.00389.x; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Hansson S, 1997, FISH RES, V32, P123, DOI 10.1016/S0165-7836(97)00050-7; Heikinheimo O, 2006, FISH RES, V77, P192, DOI 10.1016/j.fishres.2005.11.005; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Henderson BA, 2003, CAN J FISH AQUAT SCI, V60, P1345, DOI 10.1139/F03-115; Huusko A, 2005, J ANIM ECOL, V74, P525, DOI 10.1111/j.1365-2656.2005.00951.x; Hyvarinen P, 2006, J FISH BIOL, V68, P87, DOI 10.1111/j.1095-8649.2005.00879.x; JOHNSON FRITZ H., 1961, TRANS AMER FISH SOC, V90, P312, DOI 10.1577/1548-8659(1961)90[312:WESDIO]2.0.CO;2; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Keskinen T, 2008, T AM FISH SOC, V137, P1741, DOI 10.1577/T07-113.1; Korhonen P.K., 2004, KALA JA RIISTARA POR; Kosior M, 2001, B SEA FISHERIES I, V154, P3; Lappalainen J, 2000, CAN J FISH AQUAT SCI, V57, P451, DOI 10.1139/cjfas-57-2-451; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Lewin WC, 2006, REV FISH SCI, V14, P305, DOI 10.1080/10641260600886455; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; PAULY D, 1980, J CONSEIL, V39, P175; Peltonen H, 1996, ANN ZOOL FENN, V33, P481; Persson L, 2006, J FISH BIOL, V69, P1, DOI 10.1111/j.1095-8649.2006.01269.x; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Post JR, 2008, ECOL APPL, V18, P1038, DOI 10.1890/07-0465.1; Post JR, 2003, N AM J FISH MANAGE, V23, P22, DOI 10.1577/1548-8675(2003)023<0022:AOAHRF>2.0.CO;2; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Rindorf A, 2005, J EXP MAR BIOL ECOL, V324, P1, DOI 10.1016/j.jembe.2005.04.013; Ruuhijarvi J, 1996, J APPL ICHTHYOL, V12, P185, DOI 10.1111/j.1439-0426.1996.tb00087.x; Ruuhijarvi J, 1996, ANN ZOOL FENN, V33, P553; Salojarvi Kalervo, 1992, Finnish Fisheries Research, V13, P1; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Sogard SM, 1997, B MAR SCI, V60, P1129; Sutela T, 2002, FISHERIES MANAG ECOL, V9, P57, DOI 10.1046/j.1365-2400.2002.00251.x; Sutela T., 1995, KALA JA RIISTARA POR, P26; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Taskila E., 2011, OULUJARVEN KALATALOU; Tymchuk WE, 2006, T AM FISH SOC, V135, P442, DOI 10.1577/T05-181.1; Vaisanen J., 2005, OULUJARVEN KAYTTO JA; Vehanen T, 1998, J APPL ICHTHYOL, V14, P15, DOI 10.1111/j.1439-0426.1998.tb00608.x; Vinni M, 2009, J FISH BIOL, V74, P967, DOI 10.1111/j.1095-8649.2009.02181.x; Walters C. J, 1992, QUANTITATIVE FISHERI 70 17 17 3 44 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. JAN 2012 113 1 8 20 10.1016/j.fishres.2011.09.004 13 Fisheries Fisheries 887EZ WOS:000299911000002 2019-02-21 J Rotella, JJ; Link, WA; Chambert, T; Stauffer, GE; Garrott, RA Rotella, Jay J.; Link, William A.; Chambert, Thierry; Stauffer, Glenn E.; Garrott, Robert A. Evaluating the demographic buffering hypothesis with vital rates estimated for Weddell seals from 30 years of mark-recapture data JOURNAL OF ANIMAL ECOLOGY English Article demography; environmental canalization; Leptonychotes weddellii; marine mammal; pinniped; population dynamics POPULATION-GROWTH RATE; SOUTHERN ELEPHANT SEALS; AGE-SPECIFIC SURVIVAL; ANTARCTIC FUR SEALS; LONG-LIVED SEABIRD; LIFE-HISTORIES; TEMPORAL VARIATION; ENVIRONMENTAL STOCHASTICITY; CLIMATE-CHANGE; MCMURDO-SOUND 1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top-and middle-trophic levels were not substantially impacted by human activity. [Rotella, Jay J.; Chambert, Thierry; Stauffer, Glenn E.; Garrott, Robert A.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Link, William A.] US Geol Survey, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA Rotella, JJ (reprint author), Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA. rotella@montana.edu Chambert, Thierry/0000-0002-9450-9080 National Science Foundation, Division of Polar Programs [DEB-0635739]; NSF; Raytheon Polar Services Company; Antarctic Support Associates; United States Navy and Air Force; Petroleum Helicopters Incorporated We thank the many individuals who have worked on projects associated with the Erebus Bay Weddell seal population since the 1960s. We thank J. D. Nichols for helpful suggestions during analysis, and we thank D. B. Siniff for discussions that improved this manuscript. We are grateful to J.-M. Gaillard, J. D. Nichols and two anonymous reviewers for their useful comments on earlier drafts of the manuscript. The project was supported by the National Science Foundation, Division of Polar Programs (grant no. DEB-0635739 to R. A. Garrott, J. J. Rotella, and D. B. Siniff) and prior NSF grants to R. A. Garrott, J. J. Rotella, D. B. Siniff and J. W. Testa. Logistical support for fieldwork in Antarctica was provided by Raytheon Polar Services Company, Antarctic Support Associates, the United States Navy and Air Force, and Petroleum Helicopters Incorporated. Animal handling protocol was approved by Montana State University's Animal Care and Use Committee (Protocol #41-05). Altwegg R, 2007, AM NAT, V169, P47, DOI 10.1086/510215; Amason A.N., 1981, CANADIAN J FISHERIES, V38, P1077; Barbraud C, 2011, J ANIM ECOL, V80, P89, DOI 10.1111/j.1365-2656.2010.01752.x; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; BENTON TG, 1995, EVOL ECOL, V9, P559, DOI 10.1007/BF01237655; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Berteaux D, 2006, CLIMATE RES, V32, P95, DOI 10.3354/cr032095; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Boyd IL, 2000, FUNCT ECOL, V14, P623, DOI 10.1046/j.1365-2435.2000.t01-1-00463.x; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Bradshaw CJA, 2000, J AGRIC BIOL ENVIR S, V5, P475, DOI 10.2307/1400661; Bradshaw CJA, 2002, POLAR BIOL, V25, P650, DOI 10.1007/s00300-002-0396-5; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; CAM E, 2002, AM NAT, V159, P97; Cameron MF, 2004, CAN J ZOOL, V82, P601, DOI 10.1139/Z04-025; Cameron MF, 2007, ANTARCT SCI, V19, P149, DOI 10.1017/S0954102007000223; Caswell H, 1999, P NATL ACAD SCI USA, V96, P3308, DOI 10.1073/pnas.96.6.3308; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 2001, MATRIX POPULATION MO; CLUTTONBROCK TH, 1988, REPROD SUCCESS, P472; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; de Little Siobhan C., 2007, BMC Ecology, V7, P3, DOI 10.1186/1472-6785-7-3; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Doherty PF, 2004, OIKOS, V105, P606; Engen S, 2009, AM NAT, V174, P795, DOI 10.1086/647930; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; Frederiksen M, 2008, J ANIM ECOL, V77, P1020, DOI 10.1111/j.1365-2656.2008.01422.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; Hadley GL, 2007, J ANIM ECOL, V76, P448, DOI 10.1111/j.1365-2656.2007.01219.x; Hadley GL, 2006, J ANIM ECOL, V75, P1058, DOI 10.1111/j.1365-2656.2006.01118.x; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; JENKINS D, 1963, J ANIM ECOL, V32, P317, DOI 10.2307/2598; Jenouvrier S, 2005, OIKOS, V108, P511, DOI 10.1111/j.0030-1299.2005.13351.x; Jongejans E, 2010, ECOL LETT, V13, P736, DOI 10.1111/j.1461-0248.2010.01470.x; Karell P, 2009, J ANIM ECOL, V78, P1050, DOI 10.1111/j.1365-2656.2009.01563.x; King R., 2009, BAYESIAN ANAL POPULA; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Lake S, 2008, MAR ECOL PROG SER, V366, P259, DOI 10.3354/meps07502; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Link WA, 2010, BAYESIAN INFERENCE WITH ECOLOGICAL APPLICATIONS, P1; LINK WA, 1994, OIKOS, V69, P539, DOI 10.2307/3545869; Link WA, 2002, ECOLOGY, V83, P3299, DOI 10.2307/3072080; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; McMahon CR, 2009, J EXP MAR BIOL ECOL, V372, P36, DOI 10.1016/j.jembe.2009.02.006; McMahon CR, 2005, P ROY SOC B-BIOL SCI, V272, P923, DOI 10.1098/rspb.2004.3038; McMahon CR, 2005, MAR ECOL PROG SER, V288, P273, DOI 10.3354/meps288273; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Nevoux M, 2010, OECOLOGIA, V162, P383, DOI 10.1007/s00442-009-1482-y; NICHOLS JD, 1992, J WILDLIFE MANAGE, V56, P485, DOI 10.2307/3808863; Nur N, 1999, BIRD STUDY, V46, P92; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Pistorius PA, 2000, J WILDLIFE MANAGE, V64, P373, DOI 10.2307/3803235; Pistorius PA, 1999, OECOLOGIA, V121, P201, DOI 10.1007/s004420050922; Proffitt KM, 2008, MAR MAMMAL SCI, V24, P677, DOI 10.1111/j.1748-7692.2008.00207.x; Proffitt KM, 2007, OIKOS, V116, P1683, DOI 10.1111/j.2007.0030-1299.16139.x; Proffitt KM, 2007, ECOSYSTEMS, V10, P119, DOI 10.1007/s10021-006-9003-x; R Development Core Team, 2010, R LANG ENV STAT COMP; Reid JM, 2004, J ANIM ECOL, V73, P777, DOI 10.1111/j.0021-8790.2004.00854.x; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Rotella JJ, 2009, ECOLOGY, V90, P975, DOI 10.1890/08-0971.1; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Schofield MR, 2009, ENVIRON ECOL STAT, V16, P369, DOI 10.1007/s10651-007-0069-1; Sim IMW, 2011, J ANIM ECOL, V80, P159, DOI 10.1111/j.1365-2656.2010.01750.x; SINIFF DB, 1977, ECOL MONOGR, V47, P319, DOI 10.2307/1942520; Smith WO, 2007, PHILOS T R SOC B, V362, P95, DOI 10.1098/rstb.2006.1956; STIRLING I, 1969, ECOLOGY, V50, P573, DOI 10.2307/1936247; TESTA JW, 1987, ECOL MONOGR, V57, P149, DOI 10.2307/1942622; TULJAPURKAR SD, 1982, THEOR POPUL BIOL, V21, P141, DOI 10.1016/0040-5809(82)90010-7; Tuljapurkar Shripad, 2006, Ecol Lett, V9, P327, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; van de Pol M, 2010, ECOLOGY, V91, P1192; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Wheatley KE, 2006, J ANIM ECOL, V75, P724, DOI 10.1111/j.1365-2656.01093.x; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 88 31 32 3 64 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2012 81 1 162 173 10.1111/j.1365-2656.2011.01902.x 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology 859BO WOS:000297849300017 21939440 Bronze 2019-02-21 J Mokkonen, M; Koskela, E; Mappes, T; Mills, SC Mokkonen, Mikael; Koskela, Esa; Mappes, Tapio; Mills, Suzanne C. Sexual antagonism for testosterone maintains multiple mating behaviour JOURNAL OF ANIMAL ECOLOGY English Article bank vole; life history evolution; mating behaviour; mating system; sexual conflict; sexually antagonistic selection SPERM COMPETITION; REPRODUCTIVE SUCCESS; GENETIC BENEFITS; BATEMAN GRADIENT; IMMUNE-SYSTEM; LITTER SIZE; TRADE-OFFS; SELECTION; CONFLICT; EVOLUTION 1. The persistence of multiple mating remains one of the fundamental questions in evolutionary biology. In theory, multiple mating is predicted to improve female fitness cumulatively through direct and/or genetic benefits. However, intra-locus sexual conflicts may potentially constrain or even eliminate these benefits owing to the gender load imposed by sexually antagonistic selection. 2. Here, we tested whether sexually antagonistic selection can maintain the variance in multiple mating behaviour of bank voles (Myodes glareolus) by manipulating the hormone testosterone through artificial selection in the laboratory. Among mammals, testosterone is a sexually dimorphic fitness-related trait under selection and is known to affect mating behaviour. We conducted mating trials in which females derived from family-based selection of testosterone were sequentially paired with four males of different testosterone profiles. 3. We show that artificial selection for high testosterone increased the mating rate of males, but clearly decreased the number of partners that females mated with and vice versa). Because multiple mating was beneficial for the reproductive success of both sexes, as evidenced by the positive Bateman gradients, the divergent evolutionary interests of testosterone between the sexes can maintain this polygynandrous mating system. 4. Our results highlight how mating rate is concordantly selected in both sexes; however, it is largely influenced by testosterone, which is under sexually antagonistic selection. 5. This study is the first one to emphasise the direct and indirect effects of the endocrine system not only on reproductive physiology and behaviour but also for the evolution of genetic mating strategies in mammals. [Mokkonen, Mikael; Mappes, Tapio] Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Evolutionary Res, Jyvaskyla 40014, Finland; [Mills, Suzanne C.] Univ Perpignan, Lab Excellence CORAIL, CBETM, USR CNRS EPHE 3278, F-66860 Perpignan, France Mokkonen, M (reprint author), Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Evolutionary Res, POB 35, Jyvaskyla 40014, Finland. mikael.mokkonen@jyu.fi Mills, Suzanne/K-5538-2012; Mappes, Tapio/B-9780-2013 Koskela, Esa/0000-0002-9418-5733; Mills, Suzanne/0000-0001-8948-3384; Mappes, Tapio/0000-0002-5936-7355 Academy of Finland [115961, 119200, 218107, 118603, 109165, 204284, 103508, 108566]; Centre of Excellence in Evolutionary Research in the University of Jyvaskyla; Vanamo Biological Society and Ehrnrooth Foundation This study was financially supported by the Academy of Finland (grant no. 115961, 119200 and 218107 to E. K.; 118603, 109165 and 204284 to T. M.; 103508 and 108566 to S. C. M.) and the Centre of Excellence in Evolutionary Research in the University of Jyvaskyla. M. M. was additionally supported by the Vanamo Biological Society and Ehrnrooth Foundation. We thank D. Hosken, V. Lummaa and T. Laaksonen for comments, the staff of the Experimental Animal Unit of the University of Jyvaskyla , as well as R. Nara, A.- M. Pihlajamaki and H. Pietilainen for assistance with laboratory analyses. AGREN G, 1990, ANIM BEHAV, V40, P417, DOI 10.1016/S0003-3472(05)80521-4; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Arnqvist G, 2005, SEXUAL CONFLICT; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bedhomme Stephanie, 2007, P185; BONDRUPNIELSEN S, 1985, ANN ZOOL FENN, V22, P385; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Connallon T, 2010, EVOLUTION, V64, P1671, DOI 10.1111/j.1558-5646.2009.00934.x; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; DALY M, 1978, AM NAT, V112, P771, DOI 10.1086/283319; Fedorka KM, 2002, ANIM BEHAV, V64, P361, DOI [10.1006/anbe.2002.3052, 10.1006/snbe.2002.3052]; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Gay L, 2011, J EVOLUTION BIOL, V24, P449, DOI 10.1111/j.1420-9101.2010.02182.x; Gockel J, 1997, MOL ECOL, V6, P597, DOI 10.1046/j.1365-294X.1997.00222.x; Gowaty PA, 2010, P NATL ACAD SCI USA, V107, P13771, DOI 10.1073/pnas.1006174107; Greiner S, 2010, GEN COMP ENDOCR, V168, P466, DOI 10.1016/j.ygcen.2010.06.008; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Hernandez-Tristan R, 1999, PHYSIOL BEHAV, V67, P401, DOI 10.1016/S0031-9384(99)00077-3; Holland B, 1999, P NATL ACAD SCI USA, V96, P5083, DOI 10.1073/pnas.96.9.5083; Hosken D.J., 2001, CURR BIOL, V11, P469; Hunt J, 2009, J EVOLUTION BIOL, V22, P13, DOI 10.1111/j.1420-9101.2008.01633.x; Innocenti P, 2010, EVOLUTION, V64, P2775, DOI 10.1111/j.1558-5646.2010.01021.x; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; Jones AG, 2009, EVOLUTION, V63, P1673, DOI 10.1111/j.1558-5646.2009.00664.x; Jones AG, 2000, P ROY SOC B-BIOL SCI, V267, P677, DOI 10.1098/rspb.2000.1055; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Ketterson ED, 2005, AM NAT, V166, pS85, DOI 10.1086/444602; King RB, 2004, J ZOOL, V264, P143, DOI 10.1017/S0952836904005655; KLEIMAN DG, 1977, Q REV BIOL, V52, P39, DOI 10.1086/409721; Kokko H, 2005, EVOL ECOL, V19, P123, DOI 10.1007/s10682-004-7919-1; Koskela E, 1997, J ANIM ECOL, V66, P341, DOI 10.2307/5980; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; Mills SC, 2007, EVOLUTION, V61, P1748, DOI 10.1111/j.1558-5646.2007.00145.x; Mills SC, 2007, P R SOC B, V274, P143, DOI 10.1098/rspb.2006.3639; Mills SC, 2009, AM NAT, V173, P475, DOI 10.1086/597222; Oksanen TA, 2003, J ANIM ECOL, V72, P321, DOI 10.1046/j.1365-2656.2003.00703.x; Park J.H., 2011, HORMONES REPROD VERT, P139; Parker G.A., 1979, P123; Poikonen T, 2008, EVOLUTION, V62, P612, DOI 10.1111/j.1558-5646.2007.00293.x; Rikalainen K, 2008, MOL ECOL RESOUR, V8, P1164, DOI 10.1111/j.1755-0998.2008.02228.x; Robinson MR, 2006, EVOLUTION, V60, P2168, DOI 10.1111/j.0014-3820.2006.tb01854.x; Schroderus E, 2010, AM NAT, V176, pE90, DOI 10.1086/656264; Stewart AD, 2005, P ROY SOC B-BIOL SCI, V272, P2029, DOI 10.1098/rspb.2005.3182; Stockley P, 2003, P ROY SOC B-BIOL SCI, V270, P271, DOI 10.1098/rspb.2002.2228; Stockley P, 1997, TRENDS ECOL EVOL, V12, P154, DOI 10.1016/S0169-5347(97)01000-8; Tregenza T, 1998, EVOLUTION, V52, P1726, DOI 10.1111/j.1558-5646.1998.tb02252.x; van Doorn GS, 2009, ANN NY ACAD SCI, V1168, P52, DOI 10.1111/j.1749-6632.2009.04573.x; Van Hout AJM, 2010, GEN COMP ENDOCR, V168, P505, DOI 10.1016/j.ygcen.2010.06.012; Wilson N, 1997, P ROY SOC B-BIOL SCI, V264, P1491, DOI 10.1098/rspb.1997.0206; Zeh JA, 1996, P ROY SOC B-BIOL SCI, V263, P1711, DOI 10.1098/rspb.1996.0250 50 23 23 1 24 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2012 81 1 277 283 10.1111/j.1365-2656.2011.01903.x 7 Ecology; Zoology Environmental Sciences & Ecology; Zoology 859BO WOS:000297849300029 21950272 2019-02-21 J Kerney, RR; Blackburn, DC; Muller, H; Hanken, J Kerney, Ryan R.; Blackburn, David C.; Mueller, Hendrik; Hanken, James DO LARVAL TRAITS RE-EVOLVE? EVIDENCE FROM THE EMBRYOGENESIS OF A DIRECT-DEVELOPING SALAMANDER, PLETHODON CINEREUS EVOLUTION English Article Development; direct development; Dollo's Law; evolutionary developmental biology; life history evolution; Plethodontidae LIFE-HISTORY EVOLUTION; PHYLOGENETIC-RELATIONSHIPS; DOLLOS LAW; SKELETAL MORPHOGENESIS; LUNGLESS SALAMANDERS; EURYCEA-BISLINEATA; MARSUPIAL FROGS; URODELE SKULL; BODY-SIZE; AMPHIBIA Recent molecular phylogenies suggest the surprising reacquisition of posthatching metamorphosis within an otherwise direct-developing clade of lungless salamanders (family Plethodontidae). Metamorphosis was long regarded as plesiomorphic for plethodontids, yet the genus Desmognathus, which primarily includes metamorphosing species, is now nested within a much larger clade of direct-developing species. The extent to which the putative reacquisition of metamorphosis in Desmognathus represents a true evolutionary reversal is contingent upon the extent to which both larva-specific features and metamorphosis were actually lost during the evolution of direct development. In this study we analyze development of the hyobranchial skeleton, which is dramatically remodeled during salamander metamorphosis, in the direct-developing red-backed salamander, Plethodon cinereus. We find dramatic remodeling of the hyobranchial skeleton during embryogenesis in P. cinereus and the transient appearance of larva-specific cartilages. Hyobranchial development in this direct-developing plethodontid is highly similar to that in metamorphosing plethodontids (e.g., Desmognathus). The proposed reacquisition of hyobranchial metamorphosis within Desmognathus does not represent the re-evolution of a lost phenotype, but instead the elaboration of an existing developmental sequence. [Kerney, Ryan R.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada; [Blackburn, David C.] Univ Kansas, Biodivers Inst, Lawrence, KS 66045 USA; [Blackburn, David C.] Univ Kansas, Nat Hist Museum, Lawrence, KS 66045 USA; [Mueller, Hendrik] Univ Jena, Inst Spezielle Zool & Evolut Biol, Phylet Museum, D-07743 Jena, Germany; [Mueller, Hendrik; Hanken, James] Harvard Univ, Museum Comparat Zool, Cambridge, MA 02138 USA; [Mueller, Hendrik; Hanken, James] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA Kerney, RR (reprint author), Dalhousie Univ, Dept Biol, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. ryankerney@gmail.com Mueller, Hendrik/B-4979-2010 Mueller, Hendrik/0000-0001-6764-7376; Kerney, Ryan/0000-0002-4740-7735; Blackburn, David/0000-0002-1810-9886; Hanken, James/0000-0003-2782-9671 Volkswagen Foundation; Bruce Family Scholarship in Herpetology; German Science Foundation (DFG) [OL134/8-1]; U.S. National Science Foundation [EF-0334846-AmphibiaTree] We thank D. Wake, C. Rose, and two anonymous reviewers for insightful comments on earlier versions of this manuscript. RRK is an American Association of Anatomists (AAA) Postdoctoral Fellow, and this work was funded in part by AAA and by a Natural Science and Engineering Research Council of Canada grant to B. Hall. DCB acknowledges L. Trueb for support and advice during the illustration of hyobranchial cartilage development. HM is supported by a Volkswagen Foundation Postdoctoral Fellowship, a Bruce Family Scholarship in Herpetology (Highlands Biological Station), and by the German Science Foundation (DFG, OL134/8-1 to L. Olsson and HM). Additional support was provided by the U.S. National Science Foundation (EF-0334846-AmphibiaTree) to JH. ALBERCH P, 1986, DEV BIOL, V117, P233, DOI 10.1016/0012-1606(86)90366-0; ALBERCH P, 1985, J EMBRYOL EXP MORPH, V88, P71; ALBERCH P, 1987, DEV EVOLUTIONARY PRO, P23; ALBERCH P, 1989, FORTSCHR ZOOL, V35, P163; BAHIR MM, 2005, RAFFLES B ZOOLOGY S, V12, P339; Blackburn David C., 2004, Journal of Morphology, V260, P279; Blackburn DC, 2008, MOL PHYLOGENET EVOL, V49, P806, DOI 10.1016/j.ympev.2008.08.015; Bonnet R. M., 2005, HERPETOL REV, V36, P112; Bruce Richard C., 2005, Herpetological Review, V36, P107; Chippindale Paul T., 2005, Herpetological Review, V36, P113; Chippindale PT, 2004, EVOLUTION, V58, P2809; Collin R, 2004, EVOLUTION, V58, P1488; Collin R, 2008, TRENDS ECOL EVOL, V23, P602, DOI 10.1016/j.tree.2008.06.013; Cunningham CW, 1998, TRENDS ECOL EVOL, V13, P361, DOI 10.1016/S0169-5347(98)01382-2; Deban SM, 2007, J EXP BIOL, V210, P655, DOI 10.1242/jeb.02664; Dent JN, 1942, J MORPHOL, V71, P577, DOI 10.1002/jmor.1050710307; Dollo L., 1893, B SOC BELG GEOL, V7, P164; DUELLMAN WE, 1987, HERPETOLOGICA, V43, P141; Ehmcke J, 2000, ANN ANAT, V182, P327, DOI 10.1016/S0940-9602(00)80005-9; FitzJohn RG, 2009, SYST BIOL, V58, P595, DOI 10.1093/sysbio/syp067; Galis F, 2010, EVOLUTION, V64, P2466, DOI 10.1111/j.1558-5646.2010.01041.x; Goldberg EE, 2008, EVOLUTION, V62, P2727, DOI 10.1111/j.1558-5646.2008.00505.x; GOULD S J, 1970, Journal of the History of Biology, V3, P189, DOI 10.1007/BF00137351; Gunzburger MS, 2003, HERPETOLOGICA, V59, P459, DOI 10.1655/02-82; HANKEN J, 1992, J EVOLUTION BIOL, V5, P549, DOI 10.1046/j.1420-9101.1992.5040549.x; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; Heinicke MP, 2009, ZOOTAXA, P1; Hilton William A., 1947, HERPETO LOGICA, V3, P191; Horstadius S., 1946, Nova Acta Societatis Scientiarum Upsaliensis (4), V13, P1; Houghton H., 1903, OHIO NAT, V3, P369; Kerney R, 2007, J MORPHOL, V268, P715, DOI 10.1002/jmor.10545; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; Kingsley J., 1892, AM NAT, V26, P671; KLYMKOWSKY MW, 1991, METHOD CELL BIOL, V36, P419; Kohlsdorf T, 2010, EVOLUTION, V64, P2477, DOI 10.1111/j.1558-5646.2010.01042.x; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2005, EVOLUTION, V59, P2000; LARSEN JH, 1963, THESIS U WASHINGTON; LOMBARD RE, 1986, SYST ZOOL, V35, P532, DOI 10.2307/2413113; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; Maddison WP, 2007, SYSTEMATIC BIOL, V56, P701, DOI 10.1080/10635150701607033; Marks S. B., 1994, Journal of Morphology, V220, P371; Marks SB, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P261; Meegaskumbura M., 2002, SCIENCE, V298, P339; Mendelson JR, 2000, ZOOL J LINN SOC-LOND, V128, P125; Muller H, 2007, COPEIA, P726, DOI 10.1643/0045-8511(2007)2007[726:RIBFAA]2.0.CO;2; Muller H, 2006, J MORPHOL, V267, P968, DOI 10.1002/jmor.10454; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Oakley TH, 2000, EVOLUTION, V54, P397; Piatt J, 1935, J MORPHOL, V57, P213, DOI 10.1002/jmor.1050570112; PIATT J, 1939, COPEIA, P220; PIERSOL WH, 1910, T CAN I, V8, P469; Presnell J. K., 1997, HUMASONS ANIMAL TISS; REILLY SM, 1988, J MORPHOL, V195, P237, DOI 10.1002/jmor.1051950302; Ronquist F, 2004, TRENDS ECOL EVOL, V19, P475, DOI 10.1016/j.tree.2004.07.002; Rose C, 2009, BIOESSAYS, V31, P287, DOI 10.1002/bies.200800059; Rose Christopher S., 2003, Amphibian Biology, V5, P1684; ROSE CS, 1995, J MORPHOL, V223, P149, DOI 10.1002/jmor.1052230204; ROSE CS, 1995, COPEIA, P228; ROSE CS, 1995, J MORPHOL, V223, P125, DOI 10.1002/jmor.1052230203; ROTH G, 1985, ACTA BIOTHEOR, V34, P175, DOI 10.1007/BF00046783; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; SHAFFER HB, 1984, EVOLUTION, V38, P1194, DOI 10.1111/j.1558-5646.1984.tb05643.x; Smith L., 1920, J MORPHOL, V33, P526; Titus TA, 1996, SYST BIOL, V45, P451, DOI 10.2307/2413525; TRUEB L, 1993, SKULL, V2, P255; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; Wake D. B., 1982, ENV ADAPTATION EVOLU, P51; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Wake David B., 2000, P95, DOI 10.1016/B978-012632590-4/50005-8; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Wake DB, 1996, INT J DEV BIOL, V40, P859; Webster AJ, 2002, P ROY SOC B-BIOL SCI, V269, P143, DOI 10.1098/rspb.2001.1873; Whiting MF, 2003, NATURE, V421, P264, DOI 10.1038/nature01313; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; Wiens JJ, 2007, EVOLUTION, V61, P1886, DOI 10.1111/j.1558-5646.2007.00159.x; Wiens JJ, 2011, EVOLUTION, V65, P1283, DOI 10.1111/j.1558-5646.2011.01221.x; Wilder IW, 1925, MORPHOLOGY AMPHIBIAN; WORTHINGTON RD, 1971, AM MIDL NAT, V85, P349, DOI 10.2307/2423762 79 18 19 3 47 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JAN 2012 66 1 252 262 10.1111/j.1558-5646.2011.01426.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 871LH WOS:000298739100020 22220879 Bronze 2019-02-21 J Crossin, GT; Dawson, A; Phillips, RA; Trathan, PN; Gorman, KB; Adlard, S; Williams, TD Crossin, Glenn T.; Dawson, Alistair; Phillips, Richard A.; Trathan, Phil N.; Gorman, Kristen B.; Adlard, Stacey; Williams, Tony D. Seasonal patterns of prolactin and corticosterone secretion in an Antarctic seabird that moults during reproduction GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Prolactin; Corticosterone; Physiological conflict; Incubation; Chick rearing; Giant petrel; Macronectes; Life-history; Foraging behaviour; Parental care GIANT PETRELS MACRONECTES; SOUTH GEORGIA; ADRENOCORTICAL-RESPONSE; STURNUS-VULGARIS; BREEDING OVERLAP; POSTNUPTIAL MOLT; FEATHER QUALITY; TROPICAL BIRDS; CLUTCH SIZE; STRESS In avian species that have evolved life-history strategies wherein molt and breeding overlap, there are potential conflicts between the regulatory roles of baseline prolactin and corticosterone in parental care (positive) and moult (negative). We describe seasonal patterns of hormonal secretion, moult, and parental behaviour in sibling species of giant petrels (Macronectes spp.) which begin moult during the incubation/early chick-rearing stage of reproduction. With the exception of male Southern giant petrels (Macronectes giganteus), prolactin secretion and moult in Northern (Macronectes halli) and female Southern giant petrels conformed to those observed in all other avian species, with the initiation of moult coincident with decreases from peak prolactin levels. However, male Southern giant petrels began moulting early in incubation when prolactin was increasing and had not yet peaked, which suggests a requirement of prolactin for incubation behaviour and a dissociation of prolactin from moult. Corticosterone showed little seasonal variation and no relationship with moult. When comparing prolactin, corticosterone, and moult in failed vs. active breeders, we found that failed breeding enabled a more rapid down-regulation of prolactin, thus facilitating a more rapid moult. We present specific examples of the behavioural ecology of giant petrels which we conclude help mediate any potential hormonal conflicts between parental care and moult. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved. [Crossin, Glenn T.; Gorman, Kristen B.; Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Crossin, Glenn T.; Dawson, Alistair] Ctr Ecol & Hydrol, Nat Environm Res Council, Penicuik EH26 0QB, Midlothian, Scotland; [Phillips, Richard A.; Trathan, Phil N.; Adlard, Stacey] British Antarctic Survey, NERC, Cambridge CB3 0ET, England Crossin, GT (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. crossin@interchange.ubc.ca Dawson, Alistair/B-4221-2012 Dawson, Alistair/0000-0001-6492-872X; Gorman, Kristen B./0000-0002-0258-9264 British Antarctic Survey through an Antarctic Funding Initiative; National Science and Engineering Research Council of Canada (NSERC); NSERC; NSERC E-BIRD; Natural Environment Research Council [bas0100025, CEH010021] Many thanks to Fabrice Le Bouard and Dickie Hall at the British Antarctic Survey for their kind assistance on Bird Island. Thanks too to Peter Sharp at the Roslin Institute for assistance with the prolactin assay. Oliver Love, Eunice Chin, Katrina Salvante, and members of the Soma Lab at the University of British Columbia provided helpful advice concerning corticosterone radio-immunoassay. Financial support for this work was provided by the British Antarctic Survey through an Antarctic Funding Initiative Collaborative Gearing Scheme awarded to AD, PNT, and RAP. Additional support was provided through a National Science and Engineering Research Council of Canada (NSERC) Post-doctoral Fellowship and NSERC E-BIRD funding to GTC, and through an NSERC Discovery Grant to TDW. Allard KA, 2008, POLAR BIOL, V31, P181, DOI 10.1007/s00300-007-0345-4; Angelier F, 2009, GEN COMP ENDOCR, V163, P142, DOI 10.1016/j.ygcen.2009.03.028; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Barbraud C, 1998, CONDOR, V100, P563, DOI 10.2307/1369726; Bentley GE, 1997, GEN COMP ENDOCR, V107, P428, DOI 10.1006/gcen.1997.6941; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bradshaw WE, 2007, ANNU REV ECOL EVOL S, V38, P1, DOI 10.1146/annurev.ecolsys.37.091305.110115; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; Dawson A, 1998, ENDOCRINOLOGY, V139, P485, DOI 10.1210/en.139.2.485; Dawson A, 2009, GEN COMP ENDOCR, V161, P267, DOI 10.1016/j.ygcen.2009.01.016; Dawson A., 2004, AUK, V121, P279; Dawson A, 2008, PHILOS T R SOC B, V363, P1621, DOI 10.1098/rstb.2007.0004; Dawson A, 2006, GEN COMP ENDOCR, V147, P314, DOI 10.1016/j.ygcen.2006.02.001; Dawson A, 2010, GEN COMP ENDOCR, V167, P122, DOI 10.1016/j.ygcen.2010.02.004; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Dorward DF, 1962, IBIS, V103, P174, DOI 10.1111/j.1474-919X.1962.tb07244.x; Dufty A. M., 1986, J ZOOL LONDON, V212, P669; FOSTER MS, 1975, CONDOR, V77, P304, DOI 10.2307/1366226; FOSTER MS, 1974, EVOLUTION, V28, P182, DOI 10.1111/j.1558-5646.1974.tb00739.x; Gonzalez-Solis Jacob, 2005, P92; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; HECTOR JAL, 1986, J ZOOL, V208, P237; HELMS CW, 1968, AM ZOOL, V8, P151; Hemborg C, 1999, IBIS, V141, P226, DOI 10.1111/j.1474-919X.1999.tb07545.x; HOLMES RT, 1966, AUK, V83, P517, DOI 10.2307/4083147; HOUSTON DC, 1975, IBIS, V117, P474, DOI 10.1111/j.1474-919X.1975.tb04240.x; HUNTER S, 1984, J ZOOL, V203, P441; HUNTER S, 1983, J ZOOL, V200, P521; HUNTER S, 1984, IBIS, V126, P119, DOI 10.1111/j.1474-919X.1984.tb07993.x; INGOLFSSON A, 1970, IBIS, V112, P83, DOI 10.1111/j.1474-919X.1970.tb00077.x; King J.R., 1974, NUTTALL ORNITHOLOGIC; Kjellen Nils, 1994, Ornis Svecica, V4, P1; Kuenzel WJ, 2003, POULTRY SCI, V82, P981, DOI 10.1093/ps/82.6.981; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Monteiro LR, 1996, CONDOR, V98, P216, DOI 10.2307/1369139; Murphy EJ, 1998, FISH OCEANOGR, V7, P381, DOI 10.1046/j.1365-2419.1998.00081.x; Murton R. K., 1977, AVIAN BREEDING CYCLE; Neto JM, 2006, IBIS, V148, P39, DOI 10.1111/j.1474-919X.2006.00477.x; Newman AEM, 2008, GEN COMP ENDOCR, V155, P503, DOI 10.1016/j.ygcen.2007.08.007; NEWTON I, 1982, ARDEA, V70, P163; PAYNE ROBERT B., 1965, CONDOR, V67, P220, DOI 10.2307/1365400; PLIKAYTIS BD, 1994, J CLIN MICROBIOL, V32, P2441; Reinert BD, 1997, J EXP ZOOL, V279, P367, DOI 10.1002/(SICI)1097-010X(19971101)279:4<367::AID-JEZ6>3.0.CO;2-M; RICKLEFS R, 2002, TRENDS ECOL EVOL, V16, P479; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Schmidt KL, 2008, AM J PHYSIOL-REG I, V295, pR103, DOI 10.1152/ajpregu.00002.2008; Shultz MT, 2008, GEN COMP ENDOCR, V155, P717, DOI 10.1016/j.ygcen.2007.11.002; Sockman KW, 2006, BIOL REV, V81, P629, DOI 10.1017/S1464793106007147; Stearns S, 1992, EVOLUTION LIFE HIST; Washburn BE, 2002, CONDOR, V104, P558, DOI 10.1650/0010-5422(2002)104[0558:UACART]2.0.CO;2; Wingfield J. C., 2000, HDB PHYSL 7, P211; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 1998, AM ZOOL, V38, P191 60 9 9 1 38 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. JAN 1 2012 175 1 74 81 10.1016/j.ygcen.2011.10.003 8 Endocrinology & Metabolism Endocrinology & Metabolism 875WL WOS:000299065800010 22020257 Green Published 2019-02-21 J Caruso, CM; Maherali, H; Benscoter, AM Caruso, Christina M.; Maherali, Hafiz; Benscoter, Allison M. WHY ARE TRADE-OFFS BETWEEN FLOWER SIZE AND NUMBER INFREQUENTLY DETECTED? A TEST OF THREE HYPOTHESES INTERNATIONAL JOURNAL OF PLANT SCIENCES English Article constraint; floral display evolution; independent contrasts; Mimulus guttatus; pollination; trade-offs EICHHORNIA-PANICULATA PONTEDERIACEAE; MIMULUS-GUTTATUS; FLORAL DISPLAY; PHENOTYPIC CORRELATIONS; QUANTITATIVE GENETICS; INDEPENDENT CONTRASTS; ATTRACTIVE STRUCTURES; ADAPTIVE EVOLUTION; ALLOCATION; SELECTION Although the flower is the unit of sexual reproduction in angiosperms, a plant's reproductive success is determined by its entire floral display. A trade-off between the size and number of flowers produced is an assumption of models of floral display evolution, but this trade-off is often not observed. We tested three hypotheses for why a trade-off between flower size and number is not observed, using 32 populations of Mimulus guttatus and 83 genera from the California flora. We found support for the hypothesis that high variance in resource acquisition masks a trade-off between flower size and number. In contrast, we did not find support for the hypothesis that trade-offs between current and future reproduction mask negative correlations between flower size and number in lineages with a perennial life history. We also did not find support for the hypothesis that negative flower size-number correlations are less likely to be observed in lineages with lower variation in flower number because the correlation between two variables is weaker when the range of values is narrower. Overall, our results support the life history evolution literature in suggesting that high variance in resource acquisition relative to allocation can often explain why traits that are predicted to trade off are instead positively correlated. [Caruso, Christina M.; Maherali, Hafiz] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada; [Benscoter, Allison M.] Univ Florida, Ft Lauderdale Res & Educ Ctr, Ft Lauderdale, FL 33314 USA Caruso, CM (reprint author), Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. carusoc@uoguelph.ca Caruso, Christina/0000-0001-7069-9572 Natural Science and Engineering Research Council of Canada This work was supported by Discovery Grants from the Natural Science and Engineering Research Council of Canada to Christina M. Caruso and Hafiz Maherali. We thank M. Arcand, N. Deravi, T. King, K. Maclellan, A. Porter, S. Scott, S. Weber, and J. Wray for help with data collection. M. Mucci assisted in the greenhouse. We thank J. Willis and C. Wu for providing Mimulus seeds. E. Elle, N. Gale, G. Poon, P. Vogan, E. Wassink, and S. Weber provided helpful comments on an early version of the manuscript. Ackerly DD, 2000, EVOLUTION, V54, P1480, DOI 10.1111/j.0014-3820.2000.tb00694.x; Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Ashman TL, 2006, HEREDITY, V96, P343, DOI 10.1038/sj.hdy.6800815; Bernardo J, 1996, AM ZOOL, V36, P216; Berntson GM, 2000, ECOLOGY, V81, P1072, DOI 10.2307/177179; Caruso CM, 2006, HEREDITY, V97, P86, DOI 10.1037/sj.hdy.6800853; Caruso CM, 2004, EVOLUTION, V58, P732; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; COHEN D, 1990, AM NAT, V135, P218, DOI 10.1086/285040; Davies TJ, 2004, P NATL ACAD SCI USA, V101, P1904, DOI 10.1073/pnas.0308127100; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fishman L, 2002, EVOLUTION, V56, P2138; Fishman L, 2008, NEW PHYTOL, V177, P802, DOI 10.1111/j.1469-8137.2007.02265.x; Futuyma DJ, 2010, EVOLUTION, V64, P1865, DOI 10.1111/j.1558-5646.2010.00960.x; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Goodwillie C, 2010, NEW PHYTOL, V185, P311, DOI 10.1111/j.1469-8137.2009.03043.x; Harder LD, 2004, PLANT SPEC BIOL, V19, P137, DOI 10.1111/j.1442-1984.2004.00110.x; HARDER LD, 1995, NATURE, V373, P512, DOI 10.1038/373512a0; Hickman J. C., 1993, JEPSON MANUAL HIGHER; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Lowry DB, 2008, EVOLUTION, V62, P2196, DOI 10.1111/j.1558-5646.2008.00457.x; MEAGHER TR, 1992, EVOLUTION, V46, P445, DOI 10.1111/j.1558-5646.1992.tb02050.x; Morgan MT, 1998, AM J BOT, V85, P1231, DOI 10.2307/2446632; MOSIMANN JE, 1979, EVOLUTION, V33, P444, DOI 10.1111/j.1558-5646.1979.tb04697.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Roels SAB, 2011, EVOLUTION, V65, P2541, DOI 10.1111/j.1558-5646.2011.01326.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; SAKAI S, 1993, EVOLUTION, V47, P1711, DOI 10.1111/j.1558-5646.1993.tb01263.x; SAKAI S, 1995, EVOLUTION, V49, P557, DOI 10.1111/j.1558-5646.1995.tb02287.x; Sakai Satoki, 2000, Plant Species Biology, V15, P261, DOI 10.1046/j.1442-1984.2000.00045.x; Sargent RD, 2007, AM J BOT, V94, P2059, DOI 10.3732/ajb.94.12.2059; Sato H, 1999, AM J BOT, V86, P1699, DOI 10.2307/2656668; SCHEMSKE DW, 1995, EVOLUTION, V49, P207, DOI 10.1111/j.1558-5646.1995.tb05972.x; SCHOEN DJ, 1995, EVOLUTION, V49, P131, DOI 10.1111/j.1558-5646.1995.tb05965.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vickery R. K., 1978, EVOL BIOL, V11, P405; Waitt DE, 1998, HEREDITY, V80, P310, DOI 10.1046/j.1365-2540.1998.00298.x; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; WEBB CO, 2008, PHYLOCOM USERS MANUA; Whitlock M.C., 2009, ANAL BIOL DATA; Willis JH, 1996, EVOLUTION, V50, P1501, DOI 10.1111/j.1558-5646.1996.tb03923.x; WILLIS JH, 1993, HEREDITY, V71, P145, DOI 10.1038/hdy.1993.118; Worley AC, 2000, EVOLUTION, V54, P1533; Worley AC, 2001, J EVOLUTION BIOL, V14, P469, DOI 10.1046/j.1420-9101.2001.00296.x; Worley AC, 2000, INT J PLANT SCI, V161, P69, DOI 10.1086/314225; Zar J. H., 1999, BIOSTATISTICAL ANAL 49 3 5 0 19 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1058-5893 INT J PLANT SCI Int. J. Plant Sci. JAN 2012 173 1 26 35 10.1086/662656 10 Plant Sciences Plant Sciences 875HZ WOS:000299022300004 2019-02-21 J Walsh, MR; Post, DM Walsh, M. R.; Post, D. M. The impact of intraspecific variation in a fish predator on the evolution of phenotypic plasticity and investment in sex in Daphnia ambigua JOURNAL OF EVOLUTIONARY BIOLOGY English Article diapause; genotype environment interaction; life-history evolution LIFE-HISTORY SHIFTS; INDUCIBLE DEFENSES; LOCAL ADAPTATION; INDUCED DIAPAUSE; CHEMICAL CUES; POPULATIONS; PULEX; MAGNA; ZOOPLANKTON; RESPONSES Theory predicts that the evolution of phenotypic plasticity depends upon cues that indicate environmental change. Predators typically induce plastic responses in prey. However, variation among populations of predators alters the frequency of predation and, possibly, the evolution of plasticity. We compared responses to predator cues in Daphnia ambigua from lakes where alewife (Alosa pseudoharengus) either do (anadromous) or do not (landlocked) migrate between marine and freshwater. In anadromous lakes, Daphnia are abundant each spring but eliminated by alewives in summer, whereas Daphnia are constantly under the threat of predation in landlocked lakes. Daphnia from anadromous lakes grew faster, matured earlier and larger, produced more offspring and invested more in sex than Daphnia from landlocked lakes. We observed several significant lake type-by-predator treatment interactions. These interactions, whereby the differences between lakes were greater in predator-conditioned water, agree with theory and argue that Daphnia plasticity has been influenced by variation in alewives. [Walsh, M. R.; Post, D. M.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Walsh, MR (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. matthew.walsh@yale.edu Post, David/A-6987-2009 Post, David/0000-0003-1434-7729 National Science Foundation; Yale Institute for Biospheric Studies We thank Steve Stearns and Dave Strayer for the use of equipment and Jakob Brodersen, Torrance Hanley, Elizabeth Hatton, Jennifer Howeth, Andrew Jones and Derek West for help in the field or laboratory. Comments by two anonymous reviewers improved the quality of this paper. The National Science Foundation and the Yale Institute for Biospheric Studies provided funding. ABRAMOFF MD, 2004, IMAGE PROCESSING IMA, V11, P36; Alpert P, 2002, EVOL ECOL, V16, P285, DOI 10.1023/A:1019684612767; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; BLACK AR, 1993, LIMNOL OCEANOGR, V38, P986, DOI 10.4319/lo.1993.38.5.0986; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; Boersma M, 1999, LIMNOL OCEANOGR, V44, P393, DOI 10.4319/lo.1999.44.2.0393; Bradshaw A, 1965, ADV GENET, V13, P15; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Caceres CE, 2004, OECOLOGIA, V141, P425, DOI 10.1007/s00442-004-1657-5; Caceres CE, 2004, LIMNOL OCEANOGR, V49, P1333, DOI 10.4319/lo.2004.49.4_part_2.1333; Caceres CE, 2003, ECOLOGY, V84, P1189, DOI 10.1890/0012-9658(2003)084[1189:HLTRTE]2.0.CO;2; COHEN D, 1970, AM NAT, V104, P389, DOI 10.1086/282672; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cousyn C, 2001, P NATL ACAD SCI USA, V98, P6256, DOI 10.1073/pnas.111606798; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; Deng HW, 1997, LIMNOL OCEANOGR, V42, P609, DOI 10.4319/lo.1997.42.3.0609; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; GLIWICZ MZ, 1986, NATURE, V320, P746, DOI 10.1038/320746a0; HAIRSTON NG, 1990, ECOLOGY, V71, P2218, DOI 10.2307/1938634; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HAIRSTON NG, 1986, P NATL ACAD SCI USA, V83, P4831, DOI 10.1073/pnas.83.13.4831; HANLEY T, 2009, THESIS YALE U NEW HA; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; Hoverman JT, 2009, FUNCT ECOL, V23, P1179, DOI 10.1111/j.1365-2435.2009.01586.x; Innes DJ, 1997, OECOLOGIA, V111, P53, DOI 10.1007/s004420050207; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Laforsch C, 2006, LIMNOL OCEANOGR, V51, P1466, DOI 10.4319/lo.2006.51.3.1466; Lass S., 2003, HYDROBIOLOGIA, V491, P21; Levins R., 1968, EVOLUTION CHANGING E; Lind M.I., 2007, RANA TEMPORARIA P B, V275, P1073; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; LYNCH M, 1992, ECOLOGY, V73, P1620, DOI 10.2307/1940015; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Pijanowska J, 1996, J PLANKTON RES, V18, P1407, DOI 10.1093/plankt/18.8.1407; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Relyea RA, 2002, ECOL MONOGR, V72, P77, DOI 10.1890/0012-9615(2002)072[0077:LPDIPP]2.0.CO;2; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schluchter MD, 1990, J STAT COMPUT SIM, V37, P69, DOI DOI 10.1080/00949659008811295; Schmalhausen II, 1949, FACTORS EVOLUTION TH; Slusarczyk M, 1999, OECOLOGIA, V119, P159, DOI 10.1007/s004420050772; SLUSARCZYK M, 1995, ECOLOGY, V76, P1008, DOI 10.2307/1939364; Slusarczyk M, 2001, ECOLOGY, V82, P1089, DOI 10.2307/2679905; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; Stibor H, 2000, FUNCT ECOL, V14, P455, DOI 10.1046/j.1365-2435.2000.00441.x; STIRLING G, 1995, FUNCT ECOL, V9, P778, DOI 10.2307/2390252; TAYLOR F, 1980, THEOR POPUL BIOL, V18, P125, DOI 10.1016/0040-5809(80)90044-1; Tessier AJ, 2004, ECOL LETT, V7, P695, DOI 10.1111/j.1461-0248.2004.00627.x; Trussell GC, 2000, P NATL ACAD SCI USA, V97, P2123, DOI 10.1073/pnas.040423397; Urban M.C., 2007, J ANIM ECOL, V77, P346; Van Buskirk J, 2001, J EVOLUTION BIOL, V14, P482, DOI 10.1046/j.1420-9101.2001.00282.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WALLS M, 1989, LIMNOL OCEANOGR, V34, P390, DOI 10.4319/lo.1989.34.2.0390; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634; Weber A, 2003, HYDROBIOLOGIA, V491, P273, DOI 10.1023/A:1024481217605; WEIDER LJ, 1993, OIKOS, V67, P385, DOI 10.2307/3545351; Winer B. J., 1971, STAT PRINCIPLES EXPT; YOUNG S, 1994, FRESHWATER BIOL, V32, P479, DOI 10.1111/j.1365-2427.1994.tb01141.x 66 16 17 2 60 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JAN 2012 25 1 80 89 10.1111/j.1420-9101.2011.02403.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 861IX WOS:000298013700007 22022990 Bronze 2019-02-21 J Schroeder, J; Burke, T; Mannarelli, ME; Dawson, DA; Nakagawa, S Schroeder, J.; Burke, T.; Mannarelli, M. -E.; Dawson, D. A.; Nakagawa, S. Maternal effects and heritability of annual productivity JOURNAL OF EVOLUTIONARY BIOLOGY English Article Aves; evolution of ageing; heritability of fitness; life-history evolution; quantitative genetics WILD BIRD POPULATION; SPARROWS PASSER-DOMESTICUS; REPRODUCTIVE SUCCESS; LIFE-HISTORY; HOUSE SPARROWS; INDIVIDUAL QUALITY; PARENTAL CARE; AGE; SENESCENCE; EVOLUTION Within-individual consistency and among-individual heterogeneity in fitness are prerequisites for selection to take place. Within-individual variation in productivity between years, however, can vary considerably, especially when organisms become older and more experienced. We examine individual consistency in annual productivity, the covariation between survival and annual productivity, and the sources of variation in annual productivity, while accounting for advancing age, to test the individual-quality and resource-allocation life-history theory hypotheses. We use long-term data from a pedigreed, wild population of house sparrows. Within-individual annual productivity first increased and later decreased with age, but there were no selective mortality due to individual quality and no correlation between lifespan and productivity. Individuals were consistent in their annual productivity (C = 0.49). Narrow-sense heritability was low (h2 = 0.09), but maternal effects explained much of the variation (M = 0.33). Such effects can influence evolutionary processes and are of major importance for our understanding of how variation in fitness can be maintained. [Schroeder, J.; Burke, T.; Mannarelli, M. -E.; Dawson, D. A.; Nakagawa, S.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Nakagawa, S.] Univ Otago, Dept Zool, Dunedin, New Zealand; [Nakagawa, S.] Max Planck Inst Ornithol, Dept Behav Ecol & Evolutionary Genet, Seewiesen, Germany Schroeder, J (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. julia.schroeder@gmail.com Burke, Terry/B-3196-2011; Nakagawa, Shinichi/B-5571-2011; Schroeder, Julia/B-1436-2010 Burke, Terry/0000-0003-3848-1244; Nakagawa, Shinichi/0000-0002-7765-5182; Schroeder, Julia/0000-0002-4136-843X NERC [NE/F006071/1]; Humbolt Fellowship; Natural Environment Research Council [NE/F006071/1, NBAF010001] We thank the Lundy Company and their staff for allowing us to work on Lundy Island and for invaluable support in the field. We thank Ian Owens, Hannah Dugdale and Martijn Hammers for conceptual contributions and inspiring discussions, Ian Cleasby, Maria Karlsson, Nancy Ockendon, Duncan Gillespie and Simon Griffith for field data collection, and Sophy Allen for molecular work. This work was funded by the grant NE/F006071/1 from NERC to TB, and SN was supported by a Humbolt Fellowship. Bengtson Sven-Axel, 2004, Frodskaparrit, V51, P237; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bouwhuis S, 2010, J ANIM ECOL, V79, P1251, DOI 10.1111/j.1365-2656.2010.01730.x; Brommer J.E., 2009, HEREDITY, V104, P363; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Dawson D.A., MOL ECOL RE IN PRESS; Fisher RA, 1930, GENETICAL THEORY NAT; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hatch MI, 2007, J AVIAN BIOL, V38, P603, DOI 10.1111/j.0908-8857.2007.04044.x; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lailvaux SP, 2011, P ROY SOC B-BIOL SCI, V278, P321, DOI 10.1098/rspb.2010.1591; Limmer B, 2009, ANIM BEHAV, V77, P1095, DOI 10.1016/j.anbehav.2009.01.015; Magnussen Egdfinn, 2009, Frodskaparrit, V57, P182; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Nakagawa S, 2007, J EVOLUTION BIOL, V20, P1674, DOI 10.1111/j.1420-9101.2007.01403.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Ockendon N, 2009, BEHAV ECOL, V20, P305, DOI 10.1093/beheco/arp006; Priest NK, 2002, EVOLUTION, V56, P927; R Development Core Team, 2010, R LANG ENV STAT COMP; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Schroeder J, 2011, J AVIAN BIOL, V42, P271, DOI 10.1111/j.1600-048X.2010.05271.x; Stearns S, 1992, EVOLUTION LIFE HIST; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; WETTON JH, 1995, P ROY SOC B-BIOL SCI, V260, P91, DOI 10.1098/rspb.1995.0064; Wheelwright NT, 2003, ANIM BEHAV, V65, P435, DOI 10.1006/anbe.2003.2086; Wilson AJ, 2007, CURR BIOL, V17, P2136, DOI 10.1016/j.cub.2007.11.043; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 39 23 23 0 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2012 25 1 149 156 10.1111/j.1420-9101.2011.02412.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 861IX WOS:000298013700013 22082138 Bronze 2019-02-21 J Leuzinger, S; Willis, BL; Anthony, KRN Leuzinger, Sebastian; Willis, Bette L.; Anthony, Kenneth R. N. Energy allocation in a reef coral under varying resource availability MARINE BIOLOGY English Article LIGHT-SATURATION CURVES; LIFE-HISTORY EVOLUTION; GREAT-BARRIER-REEF; TRADE-OFFS; REPRODUCTIVE EFFORT; HERMATYPIC CORALS; BUILDING CORALS; GROWTH; PHOTOSYNTHESIS; PLASTICITY An organism's pattern of resource allocation to reproduction and growth over time critically impacts on its lifetime reproductive success. During times of low resource availability, there are two fundamental, mutually exclusive strategies of energy investment: maintenance of somatic tissues to support survival and later reproduction or investment into an immediate reproductive event at the risk of subsequent death. Here, we examine energy allocation patterns in the coral Montipora digitata to determine whether energy investment during periods of resource shortage favours growth or reproduction in a sessile, modular marine species. We manipulated light regimes (two levels of shading) on plots within a shallow reef flat habitat (Orpheus Island, Great Barrier Reef, Australia) and quantified energy uptake (rates of net photosynthesis), energy investment into reproduction (E(R)), tissue growth per unit surface area (E(T)) and energy channelled into calcification (E(C)). With declining resource availability (i.e. reduced photosynthesis), relative energy investment shifted from high (similar to 80%) allocation to tissue growth (E(R): E(T): E(C) = 11: 81:8%) to an increasing proportion channelled into reproduction and skeletal growth (20: 31:49%). At the lowest light regime, calcification was maintained but reproduction was halted and thus energy content per unit surface area of tissue declined, although no mortality was observed. The changing hierarchy in energy allocation among life functions with increasing resource limitation found here for an autotrophic coral, culminating in cessation of reproduction when limitations are severe, stands in contrast to observations from annual plants. However, the strategy may be optimal for maximising fitness components (growth, reproduction and survival) through time in marine modular animals. [Leuzinger, Sebastian] ETH, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland; [Willis, Bette L.] James Cook Univ, Sch Trop & Marine Biol, Townsville, Qld 4811, Australia; [Willis, Bette L.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Anthony, Kenneth R. N.] Australian Inst Marine Sci, Townsville, Qld 4810, Australia Leuzinger, S (reprint author), ETH, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland. Sebastian.Leuzinger@env.ethz.ch Leuzinger, Sebastian/C-1330-2011; Anthony, Kenneth/G-4299-2011 Anthony, Kenneth/0000-0002-2383-2729 Australian Research Council [A00105071, A 19933007]; CRC We are grateful to Noel Nevers, Sarah Dalesman and Vincent Riviere for assistance in the field and to the staff of Orpheus Island Research Station. The research was supported by grants from the Australian Research Council to K.R.N.A. (A00105071) and to BLW (A 19933007) and a CRC Reef Research Award to S.L. Anthony KRN, 2004, OECOLOGIA, V141, P373, DOI 10.1007/s00442-004-1647-7; Anthony KRN, 2003, FUNCT ECOL, V17, P246, DOI 10.1046/j.1365-2435.2003.00731.x; Anthony KRN, 2002, LIMNOL OCEANOGR, V47, P1417, DOI 10.4319/lo.2002.47.5.1417; Anthony KRN, 1999, J EXP MAR BIOL ECOL, V232, P85, DOI 10.1016/S0022-0981(98)00099-9; Anthony KRN, 2000, J EXP MAR BIOL ECOL, V252, P221, DOI 10.1016/S0022-0981(00)00237-9; Bachtiar I, 1994, THESIS JAMES COOK U; Barnes DJ, 1990, CORAL REEFS ECOSYSTE, V25, P209; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Buddemeier RW, 1976, MAR BIOL, V14, P183; Busalmen JP, 1995, COMP BIOCHEM PHYS B, V112, P743, DOI 10.1016/0305-0491(95)00131-X; Calow P, 1987, EVOLUTIONARY PHYSL E; CHALKER BE, 1983, J EXP MAR BIOL ECOL, V73, P37, DOI 10.1016/0022-0981(83)90004-7; CHALKER BE, 1981, MAR BIOL, V63, P135, DOI 10.1007/BF00406821; CHIARIELLO NR, 1991, RESPONSE PLANTS MULT, P161; CULLEN JJ, 1991, MAR BIOL, V111, P183, DOI 10.1007/BF01319699; DAVIES PS, 1991, MAR BIOL, V108, P137, DOI 10.1007/BF01313481; DAVIES PS, 1989, MAR BIOL, V101, P389; DeAngelis DL, 1992, INDIVIDUAL BASED MOD; Edmunds PJ, 2007, MAR BIOL, V150, P783, DOI 10.1007/s00227-006-0406-1; EDMUNDS PJ, 1986, MAR BIOL, V92, P339, DOI 10.1007/BF00392674; ELENDT BP, 1989, ARCH HYDROBIOL, V116, P415; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Fischer B, 2011, EVOLUTION, V65, P1221, DOI 10.1111/j.1558-5646.2010.01198.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Fisher RA, 1930, GENETICAL THEORY NAT; FOLCH J, 1957, J BIOL CHEM, V226, P497; GOREAU TF, 1959, BIOL BULL, V117, P239, DOI 10.2307/1538903; Grottoli AG, 2006, NATURE, V440, P1186, DOI 10.1038/nature04565; Gutow L, 2007, MAR ECOL PROG SER, V344, P159, DOI 10.3354/meps06894; HARLAND AD, 1992, MAR BIOL, V113, P357, DOI 10.1007/BF00349159; HEYWARD AJ, 1985, AUST J MAR FRESH RES, V36, P441; JASSBY AD, 1976, LIMNOL OCEANOGR, V21, P540, DOI 10.4319/lo.1976.21.4.0540; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; Kirk JT, 1994, LIGHT PHOTOSYNTHESIS; Leuzinger S, 2003, OECOLOGIA, V136, P524, DOI 10.1007/s00442-003-1305-5; LOGAN A, 1991, CORAL REEFS, V10, P155, DOI 10.1007/BF00572174; Lough JM, 1997, J EXP MAR BIOL ECOL, V211, P29, DOI 10.1016/S0022-0981(96)02710-4; Maynard Smith J., 1971, GROUP SELECTION, P163; MCCLOSKEY LR, 1994, MAR BIOL, V119, P13, DOI 10.1007/BF00350101; McCloskey LR, 1978, MONOGR OCEANOGR METH, V4, P379; MUSCATINE L, 1990, ECOSYSTEMS WORLD, V25, P75; Nespolo RF, 2009, EVOLUTION, V63, P2402, DOI 10.1111/j.1558-5646.2009.00706.x; Noonburg EG, 1998, FUNCT ECOL, V12, P211, DOI 10.1046/j.1365-2435.1998.00174.x; REEKIE EG, 2005, REPROD ALLOCATION PL; RICHMOND RH, 1987, B MAR SCI, V41, P594; RIEGL B, 1995, J EXP MAR BIOL ECOL, V186, P259, DOI 10.1016/0022-0981(94)00164-9; ROGERS CS, 1979, J EXP MAR BIOL ECOL, V41, P269, DOI 10.1016/0022-0981(79)90136-9; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stelzer CP, 2001, ECOLOGY, V82, P2521; STIMSON JS, 1987, B MAR SCI, V41, P889; Stobart B., 1992, P 7 INT COR REEF S, V1, P494; Stobart B, 1994, THESIS JAMES COOK U; STROMGREN T, 1987, CORAL REEFS, V6, P43, DOI 10.1007/BF00302211; The R Development Core Team, 2007, R LANG ENV STAT COMP; TYTLER EM, 1986, J EXP MAR BIOL ECOL, V99, P257, DOI 10.1016/0022-0981(86)90227-3; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Ward S, 2000, J EXP MAR BIOL ECOL, V246, P179, DOI 10.1016/S0022-0981(99)00182-3; WARREN CE, 1967, BIOL BASIS FRESHWATE, P175; WELLINGTON GM, 1982, OECOLOGIA, V52, P311, DOI 10.1007/BF00367953; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Withers P. C., 1992, COMP ANIMAL PHYSL; Yamashiro H, 1999, COMP BIOCHEM PHYS B, V122, P397, DOI 10.1016/S0305-0491(99)00014-0; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zubay G, 1983, BIOCHEMISTRY 64 16 16 0 43 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0025-3162 MAR BIOL Mar. Biol. JAN 2012 159 1 177 186 10.1007/s00227-011-1797-1 10 Marine & Freshwater Biology Marine & Freshwater Biology 877RF WOS:000299198900016 2019-02-21 J Stevens, VM; Trochet, A; Van Dyck, H; Clobert, J; Baguette, M Stevens, Virginie M.; Trochet, Audrey; Van Dyck, Hans; Clobert, Jean; Baguette, Michel How is dispersal integrated in life histories: a quantitative analysis using butterflies ECOLOGY LETTERS English Review behaviours; dispersal; evolutionary constraints; global change; habitat fragmentation; life-history evolution; metapopulation dynamics; migration; morphology; phylogeny POPULATION VIABILITY ANALYSIS; LONG-DISTANCE DISPERSAL; BODY-SIZE; STRUCTURED METAPOPULATIONS; HETEROGENEOUS ENVIRONMENT; FRAGMENTED LANDSCAPES; HABITAT FRAGMENTATION; CONSERVATION BIOLOGY; DEMOGRAPHIC TACTICS; CLIMATE-CHANGE As dispersal plays a key role in gene flow among populations, its evolutionary dynamics under environmental changes is particularly important. The inter-dependency of dispersal with other life history traits may constrain dispersal evolution, and lead to the indirect selection of other traits as a by-product of this inter-dependency. Identifying the dispersals relationships to other life-history traits will help to better understand the evolutionary dynamics of dispersal, and the consequences for species persistence and ecosystem functioning under global changes. Dispersal may be linked to other life-history traits as their respective evolutionary dynamics may be inter-dependent, or, because they are mechanistically related to each other. We identify traits that are predicted to co-vary with dispersal, and investigated the correlations that may constrain dispersal using published information on butterflies. Our quantitative analysis revealed that (1) dispersal directly correlated with demographic traits, mostly fecundity, whereas phylogenetic relationships among species had a negligible influence on this pattern, (2) gene flow and individual movements are correlated with ecological specialisation and body size, respectively and (3) routine movements only affected short-distance dispersal. Together, these results provide important insights into evolutionary dynamics under global environmental changes, and are directly applicable to biodiversity conservation. [Stevens, Virginie M.] Univ Liege, FRS FNRS, B-4020 Liege, Belgium; [Stevens, Virginie M.; Trochet, Audrey; Clobert, Jean; Baguette, Michel] CNRS, Stn Ecol Expt, USR 2936, F-09200 Moulis, France; [Van Dyck, Hans] Catholic Univ Louvain, Earth & Life Inst, Biodivers Res Ctr, B-1348 Louvain, Belgium; [Baguette, Michel] Museum Natl Hist Nat, Dept Ecol & Gest Biodiversite, F-75005 Paris, France Stevens, VM (reprint author), Univ Liege, FRS FNRS, 22 Quai Van Beneden, B-4020 Liege, Belgium. stevens@dr14.cnrs.fr ARC [ARC 10/15-031]; French Agence Nationale de la Recherche (ANR) through the EU; EU We warmly thank Sandrine Pavoine and Simon Blanchet for their priceless help with PGLS, Camille Turlure, Sofie Vandewoestijne, Benjamin Bergerot and Jan Christian Habel for access to unpublished data, Zdenek Fric for providing the butterfly phylogeny, and Radika Michniewicz for improving the language. VMS benefitted from a postdoctoral fellow of the F.R.S.-FNRS. HVD was supported by an ARC-research grant (no. ARC 10/15-031). MB and JC acknowledged supports from the project TenLamas funded by the French Agence Nationale de la Recherche (ANR) through the EU FP6 BiodivERsA Eranet, from the EU FP7 SCALES project ('Securing the conservations of biodiversity across Administrative levels and spatial, temporal and Ecological Scales'; project no. 226852) and from projects funded by the French Agence Nationale de la Recherche : DIAME (open call, 2007) and MOBIGEN (6th extinction call, 2009). Baguette M, 2003, ECOGRAPHY, V26, P153, DOI 10.1034/j.1600-0587.2003.03364.x; Baguette M, 1998, ACTA OECOL, V19, P17, DOI 10.1016/S1146-609X(98)80004-0; Baguette M, 2007, LANDSCAPE ECOL, V22, P1117, DOI 10.1007/s10980-007-9108-4; Barbaro L, 2009, ECOGRAPHY, V32, P321, DOI 10.1111/j.1600-0587.2008.05546.x; Berg MP, 2010, GLOBAL CHANGE BIOL, V16, P587, DOI 10.1111/j.1365-2486.2009.02014.x; Bink F.A., 1992, ECOLOGISCHE ATLAS DA; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradbury IR, 2008, P ROY SOC B-BIOL SCI, V275, P1803, DOI 10.1098/rspb.2008.0216; Brook BW, 2000, NATURE, V404, P385, DOI 10.1038/35006050; BROWN JS, 1992, EVOL ECOL, V19, P423; Burnham K. P, 2002, MODEL SELECTION MULT; Calabrese JM, 2008, J ANIM ECOL, V77, P746, DOI 10.1111/j.1365-2656.2008.01385.x; Caro T, 2005, CONSERV BIOL, V19, P1821, DOI 10.1111/j.1523-1739.2005.00251.x; Cizek L, 2006, ECOL ENTOMOL, V31, P337, DOI 10.1111/j.1365-2311.2006.00783.x; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Clobert Jean, 2004, P307, DOI 10.1016/B978-012323448-3/50015-5; Clobert Jean, 2008, P323; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; COMINS HN, 1980, J THEOR BIOL, V82, P205, DOI 10.1016/0022-5193(80)90099-5; Cook LM, 2001, ECOGRAPHY, V24, P497, DOI 10.1034/j.1600-0587.2001.d01-205.x; Dawideit BA, 2009, J ANIM ECOL, V78, P388, DOI 10.1111/j.1365-2656.2008.01504.x; Dennis RLH, 2004, ECOL ENTOMOL, V29, P12, DOI 10.1111/j.1365-2311.2004.00572.x; Dennis RLH, 2003, OIKOS, V102, P417, DOI 10.1034/j.1600-0706.2003.12387.x; DENNO RF, 1989, ECOL ENTOMOL, V14, P31, DOI 10.1111/j.1365-2311.1989.tb00751.x; Devictor V, 2008, GLOBAL ECOL BIOGEOGR, V17, P252, DOI 10.1111/j.1466-8238.2007.00364.x; Dingle H, 1996, MIGRATION BIOL LIFE; Dullinger S, 2004, J ECOL, V92, P241, DOI 10.1111/j.0022-0477.2004.00872.x; Ehrlich P., 2004, WINGS CHECKERSPOTS M; Engler R, 2009, DIVERS DISTRIB, V15, P590, DOI 10.1111/j.1472-4642.2009.00566.x; FELTWELL J, 1982, LARGE WHITE BUTTERFL; GADGIL M, 1971, ECOLOGY, V52, P253, DOI 10.2307/1934583; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Guisan A, 2005, ECOL LETT, V8, P993, DOI 10.1111/j.1461-0248.2005.00792.x; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hanski I. A., 1997, METAPOPULATION BIOL; Henle K, 2004, BIODIVERS CONSERV, V13, P207, DOI 10.1023/B:BIOC.0000004319.91643.9e; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Hovestadt T, 2011, J ANIM ECOL, V80, P1070, DOI 10.1111/j.1365-2656.2011.01848.x; Hughes CL, 2007, ECOL ENTOMOL, V32, P437, DOI 10.1111/j.1365-2311.2007.00890.x; Ims Rolf A., 1997, P247, DOI 10.1016/B978-012323445-2/50015-8; Jenkins DG, 2007, GLOBAL ECOL BIOGEOGR, V16, P415, DOI 10.1111/j.1466-8238.2007.00312.x; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Johnson C. G., 1969, MIGRATION DISPERSAL; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Komonen A, 2004, OIKOS, V105, P41, DOI 10.1111/j.0030-1299.2004.12958.x; KONVICKA M, 2011, POPUL ECOL; Lafranchis T., 2000, PAPILLONS JOUR FRANC; LAVIE B, 1978, CAN J GENET CYTOL, V20, P589, DOI 10.1139/g78-068; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; MOLE S, 1993, OECOLOGIA, V93, P121, DOI 10.1007/BF00321201; Nurmi T, 2008, THEOR POPUL BIOL, V73, P222, DOI 10.1016/j.tpb.2007.12.002; Nurmi T, 2011, J THEOR BIOL, V275, P78, DOI 10.1016/j.jtbi.2011.01.023; O'Brien DM, 2004, OIKOS, V105, P279, DOI 10.1111/j.0030-1299.2004.13012.x; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; ODENDAAL FJ, 1989, OECOLOGIA, V78, P283, DOI 10.1007/BF00377167; PAGEL MD, 1988, Q REV BIOL, V63, P413, DOI 10.1086/416027; Paradis E, 1998, J ANIM ECOL, V67, P518, DOI 10.1046/j.1365-2656.1998.00215.x; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Phillips BL, 2010, J EVOLUTION BIOL, V23, P2595, DOI 10.1111/j.1420-9101.2010.02118.x; R Development Core Team, 2011, R LANG ENV STAT COMP; ROFF DA, 1975, OECOLOGIA, V19, P217, DOI 10.1007/BF00345307; ROFF DA, 2002, LIFE HIST EVOLUTION; Ronce O, 2000, EVOL ECOL, V14, P233, DOI 10.1023/A:1011068005057; Ronce O, 2001, EVOLUTION, V55, P1520; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; ROSE MR, 1982, HEREDITY, V48, P63, DOI 10.1038/hdy.1982.7; Samways MJ, 2007, BIODIVERS CONSERV, V16, P4095, DOI 10.1007/s10531-007-9209-z; SCHMIDTNIELSEN K, 1972, SCIENCE, V177, P222, DOI 10.1126/science.177.4045.222; Schneider C, 2003, ECOL ENTOMOL, V28, P252, DOI 10.1046/j.1365-2311.2003.00495.x; Schtickzelle N, 2006, ECOLOGY, V87, P1057, DOI 10.1890/0012-9658(2006)87[1057:DDWHFI]2.0.CO;2; Schtickzelle N, 2005, BIOL CONSERV, V126, P569, DOI 10.1016/j.biocon.2005.06.030; Schtickzelle N, 2005, OIKOS, V109, P89, DOI 10.1111/j.0030-1299.2005.13745.x; Shapiro A.M., 1975, P181; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stamps JA, 2005, ECOLOGY, V86, P510, DOI 10.1890/04-0516; Stearns S, 1992, EVOLUTION LIFE HIST; Stefanescu C, 2009, OIKOS, V118, P1109, DOI 10.1111/j.1600-0706.2009.17274.x; STENSETH NC, 1992, ANIMAL DISPERSAL SMA; Stevens VM, 2010, BIOL REV, V85, P625, DOI 10.1111/j.1469-185X.2009.00119.x; Stevens VM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011123; Sutherland GD, 2000, CONSERV ECOL, V4; Tauber M.J., 1986, SEASONAL ADAPTATION; Thomas CD, 2000, P ROY SOC B-BIOL SCI, V267, P139, DOI 10.1098/rspb.2000.0978; Thomson FJ, 2010, J ECOL, V98, P1310, DOI 10.1111/j.1365-2745.2010.01724.x; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; Trakhtenbrot A, 2005, DIVERS DISTRIB, V11, P173, DOI 10.1111/j.1366-9516.2005.00156.x; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P723, DOI 10.1098/rspb.1999.0696; TUCKER VA, 1970, COMP BIOCHEM PHYSIOL, V34, P841, DOI 10.1016/0010-406X(70)91006-6; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Watt Ward B., 2003, P603; WIKLUND C, 1987, AM NAT, V130, P828, DOI 10.1086/284750 99 69 70 0 148 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1461-023X ECOL LETT Ecol. Lett. JAN 2012 15 1 74 86 10.1111/j.1461-0248.2011.01709.x 13 Ecology Environmental Sciences & Ecology 856KC WOS:000297637800010 22070676 Bronze 2019-02-21 J Le Lann, C; Visser, B; van Baaren, J; van Alphen, JJM; Ellers, J Le Lann, Cecile; Visser, Bertanne; van Baaren, Joan; van Alphen, Jacques J. M.; Ellers, Jacintha Comparing resource exploitation and allocation of two closely related aphid parasitoids sharing the same host EVOLUTIONARY ECOLOGY English Article Aphidius avenae; Aphidius rhopalosiphi; Coexistence; Community; Guild; Life history; Lipids; Metabolism; Reproduction; Survival HYPERPARASITOIDS LYSIBIA-NANA; GELIS-AGILIS HYMENOPTERA; LIFE-HISTORY EVOLUTION; EGG-PRODUCTION; VENTURIA-CANESCENS; BODY-SIZE; INSECT PARASITOIDS; ENERGY ALLOCATION; ASOBARA-TABIDA; WASP Species belonging to the same guild (i.e. sharing the same resources) can reduce the negative effects of resource competition through niche partitioning. Coexisting species may differ in their resource exploitation and in the associated allocation of nutrients, depending on their resource niche. Trade-offs in nutrient allocation, such as between reproduction and survival, or between early and late reproduction, are moderated by the abundance and distribution of resources. In this study we investigate differences in larval resource exploitation and adult reproductive strategy of two sympatric aphid parasitoids sharing a common host. The habitat specialist Aphidius rhopalosiphi and the generalist Aphidius avenae occur in cereal crops of Western Europe, where both species attack the major host resource: the grain aphid Sitobion avenae. For this purpose, we measured their acquisition of capital lipid resources, their age-specific fecundity and reproductive effort, their life span and their metabolic rate. We found that these species do not differ neither in larval lipid accumulation nor in the number of eggs at emergence and the timing of egg production, but diverge in other adult reproductive strategies. The rate of adult egg production was higher in A. rhopalosiphi than A. avenae, but at the expense of producing smaller eggs. Throughout adult life, reproductive effort was higher in A. avenae, perhaps facilitated by its higher metabolic rate than A. rhopalosiphi. The divergence between species in life history syndromes likely reflects their adaptations to their resource niche. A high egg production probably allows the specialist A. rhopalosiphi to exploit more S. avenae individuals in cereal crops, while the generalist A. avenae because of its variety of hosts, maximizes the investment per egg but at the expense of a lower lifespan. Our results suggest that differential resource allocation may be a more common pattern that promotes coexistence of species within a guild. [Le Lann, Cecile; van Baaren, Joan; van Alphen, Jacques J. M.] Univ Rennes 1, Unite Mixte Rech CNRS 6553, ECOBIO, F-35042 Rennes, France; [Le Lann, Cecile; Visser, Bertanne; Ellers, Jacintha] Vrije Univ Amsterdam, Dept Ecol Sci, NL-1081 HV Amsterdam, Netherlands Le Lann, C (reprint author), Univ Rennes 1, Unite Mixte Rech CNRS 6553, ECOBIO, F-35042 Rennes, France. c.lelann@vu.nl Ellers, Jacintha/K-5823-2012; Visser, Bertanne/J-9796-2012; Le Lann, Cecile/C-1005-2013 Ellers, Jacintha/0000-0003-2665-1971; Le Lann, Cecile/0000-0003-4719-3228; Visser, Bertanne/0000-0003-4465-6020 Ministere de l'Enseignement Superieur et de la Recherche; Rennes Metropole; COMPAREVOL program (Marie Curie Excellence Chair); Region Bretagne; Netherlands Organisation for Scientific Research (NWO) ALW [816.01.013] Acknowledgments All of the experiments conducted in this study comply with French and Dutch legal code requirements. We thank Nicolas Chazot for technical assistance with egg size measurements. We are grateful to the people of UMR INRA ESE 'Ecologie et Sante des Ecosystemes', for hosting us for some experiments and especially to Marc Roucaute and Dominique Huteau for providing access and help with the ultra-precision balance. This research was supported by a grant to C. L. L. from the Ministere de l'Enseignement Superieur et de la Recherche and a travel and research grant from Rennes Metropole, by the COMPAREVOL program (Marie Curie Excellence Chair, http://comparevol.univ-rennes1.fr/) and by the ECOCLIM program founded by the Region Bretagne. B. V. was funded by Netherlands Organisation for Scientific Research (NWO) ALW Grant 816.01.013. Askew R.R., 1986, P225; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernardo J, 1996, AM ZOOL, V36, P216; Bezemer TM, 2005, ECOL ENTOMOL, V30, P571, DOI 10.1111/j.0307-6946.2005.00726.x; Boggs CL, 1997, ECOLOGY, V78, P192; Boivin G, 2009, ECOL ENTOMOL, V34, P240, DOI 10.1111/j.1365-2311.2008.01063.x; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Carton Y., 1986, P347; Chapman R. F., 1998, INSECTS STRUCTURE FU; Chase J. M., 2003, ECOLOGICAL NICHES LI; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clutton-Brock T., 1991, P234; Colinet H, 2005, ECOL ENTOMOL, V30, P473, DOI 10.1111/j.0307-6946.2005.00716.x; Eijs IEM, 1999, ECOL LETT, V2, P27, DOI 10.1046/j.1461-0248.1999.21045.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 1996, NETH J ZOOL, V46, P227, DOI 10.1163/156854295X00186; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fox CW, 2000, ANNU REV ENTOMOL, V45, P41; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Harvey JA, 2008, EVOL ECOL, V22, P153, DOI 10.1007/s10682-007-9164-x; Harvey JA, 2005, APPL ENTOMOL ZOOL, V40, P309, DOI 10.1303/aez.2005.309; Harvey JA, 2002, ECOLOGY, V83, P2349; Harvey JA, 2008, PHYSIOL ENTOMOL, V33, P217, DOI 10.1111/j.1365-3032.2008.00623.x; Harvey JA, 2009, ENTOMOL EXP APPL, V132, P155, DOI 10.1111/j.1570-7458.2009.00882.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Khambhampati S, 2000, SYSTEMATIC ENTOMOLOG, V25, P437; KRAAIJEVELD AR, 1994, PHYSIOL ENTOMOL, V19, P9, DOI 10.1111/j.1365-3032.1994.tb01068.x; KRESPI L, 1990, THESIS U RENNES RENN; Lalonde RG, 2005, J ANIM ECOL, V74, P630, DOI 10.1111/j.1365-2656.2005.00958.x; Le Lann C, 2011, FUNCT ECOL, V25, P641, DOI 10.1111/j.1365-2435.2010.01813.x; Le Lann C, 2011, PHYSIOL ENTOMOL, V36, P21, DOI 10.1111/j.1365-3032.2010.00758.x; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Outreman Y, 2001, ECOL ENTOMOL, V26, P271, DOI 10.1046/j.1365-2311.2001.00318.x; Outreman Y, 2001, J INSECT PHYSIOL, V47, P339, DOI 10.1016/S0022-1910(00)00142-6; Pelosse P, 2007, EVOL ECOL, V21, P669, DOI 10.1007/s10682-006-9145-5; Pelosse P, 2010, ENTOMOL EXP APPL, V135, P68, DOI 10.1111/j.1570-7458.2009.00965.x; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; R Development Core Team, 2010, R LANG ENV STAT COMP; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; Rivero A, 1999, P ROY SOC B-BIOL SCI, V266, P1169, DOI 10.1098/rspb.1999.0759; Rivero A, 2002, EVOL ECOL RES, V4, P407; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Roberts HLS, 2004, J INSECT PHYSIOL, V50, P195, DOI 10.1016/j.jinsphys.2003.11.007; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosenheim JA, 1999, EVOL ECOL, V13, P141, DOI 10.1023/A:1006612519265; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; STARY P, 1974, Zeitschrift fuer Angewandte Entomologie, V77, P141; Stary P, 1970, BIOL APHID PARASITES; STAVRAKI.HG, 1966, ANN EPIPHYT, V17, P391; Stilmant D, 2008, OECOLOGIA, V156, P905, DOI 10.1007/s00442-008-1036-8; TILMAN D, 1982, RESSOURCE COMPETITIO; van Baaren J, 2004, ETHOL ECOL EVOL, V16, P231; van Baaren J, 2009, B ENTOMOL RES, V99, P299, DOI 10.1017/S0007485308006342; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VINSON SB, 1980, Q REV BIOL, V55, P143, DOI 10.1086/411731; Visser B, 2008, J INSECT PHYSIOL, V54, P1315, DOI 10.1016/j.jinsphys.2008.07.014; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107 64 14 14 0 44 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2012 26 1 79 94 10.1007/s10682-011-9498-2 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 862PN WOS:000298105900007 Green Published 2019-02-21 J Willisch, CS; Biebach, I; Koller, U; Bucher, T; Marreros, N; Ryser-Degiorgis, MP; Keller, LF; Neuhaus, P Willisch, Christian S.; Biebach, Iris; Koller, Ursina; Bucher, Thomas; Marreros, Nelson; Ryser-Degiorgis, Marie-Pierre; Keller, Lukas F.; Neuhaus, Peter Male reproductive pattern in a polygynous ungulate with a slow life-history: the role of age, social status and alternative mating tactics EVOLUTIONARY ECOLOGY English Article Growth; Life-history; Polygynous ungulate; Reproduction; Survival SEXUAL SIZE DIMORPHISM; WHITE-TAILED DEER; MALE FALLOW DEER; MALE ALPINE IBEX; BUCKS DAMA-DAMA; CAPRA-IBEX; POPULATION FLUCTUATIONS; TERRITORIAL UNGULATE; COMPUTER-PROGRAM; BREEDING SUCCESS According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the 'tending' tactic, while success among young, subordinate males via the sneaking tactic 'coursing' was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction. [Willisch, Christian S.; Biebach, Iris; Koller, Ursina; Bucher, Thomas; Keller, Lukas F.] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Willisch, Christian S.; Neuhaus, Peter] Univ Neuchatel, Dept Ecoethol, Inst Biol, CH-2009 Neuchatel, Switzerland; [Marreros, Nelson; Ryser-Degiorgis, Marie-Pierre] Univ Bern, Ctr Fish & Wildlife Hlth, Vetsuisse Fac, CH-3001 Bern, Switzerland; [Neuhaus, Peter] Univ Calgary, Dept Biol Sci, Calgary, AB T2N 1N4, Canada Willisch, CS (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. willichristian@yahoo.com Marreros, Nelson/0000-0001-6802-4912 Federal Office of the Environment (FOEN) We thank J-C Roch, as well as K. Bieri Willisch, P. Decristophoris, P. Deleury, I. Glanzmann, N. Grandjean, C. Hebeisen, B. Hofer, I. Leathwood, H. Nimmervoll, B. Nussberger, L. Senn, C. Wittker, and numerous volunteers for their help with the captures, data collection and laboratory work. We are grateful to J. Hadfield, E. Postma and P. Wandeler for their assistance with genetic and statistical analyses. We thank R. Bshary, A. McElligott and M. Taborsky for comments and discussions on earlier drafts of the manuscript. The paper benefited greatly from the comments by two anonymous referees and J. A. Endler. Many thanks go to the authorities of the Canton Vaud who made this study in the population 'Cape au Moine' (VD) possible. Financial support by the Federal Office of the Environment (FOEN) is gratefully acknowledged. APPLEBY MC, 1982, BEHAVIOUR, V80, P259, DOI 10.1163/156853982X00382; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bergeron P, 2010, BEHAV ECOL SOCIOBIOL, V64, P1299, DOI 10.1007/s00265-010-0944-x; Biebach I, 2009, MOL ECOL, V18, P5046, DOI 10.1111/j.1365-294X.2009.04420.x; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1988, BEHAV ECOL SOCIOBIOL, V23, P281, DOI 10.1007/BF00300575; CLUTTONBROCK TH, 1992, J ANIM ECOL, V61, P381, DOI 10.2307/5330; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Coltman DW, 1999, MOL ECOL, V8, P1199, DOI 10.1046/j.1365-294x.1999.00683.x; Coltman DW, 1999, AM NAT, V154, P730, DOI 10.1086/303274; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; De Vries H, 1998, ANIM BEHAV, V55, P827, DOI 10.1006/anbe.1997.0708; DEVRIES H, 1993, BEHAVIOUR, V125, P157, DOI 10.1163/156853993X00218; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; Grotan V, 2008, GLOBAL CHANGE BIOL, V14, P218, DOI 10.1111/j.1365-2486.2007.01484.x; Hadfield JD, 2006, MOL ECOL, V15, P3715, DOI 10.1111/j.1365-294X.2006.03050.x; Harris RB, 2002, WILDLIFE SOC B, V30, P634; HARVEY PH, 1985, NATURE, V315, P319, DOI 10.1038/315319a0; Hogg JT, 1997, BEHAV ECOL SOCIOBIOL, V41, P33, DOI 10.1007/s002650050361; Isvaran K, 2005, CURR SCI INDIA, V89, P1192; Johnson PCD, 2007, GENETICS, V175, P827, DOI 10.1534/genetics.106.064618; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Loison A, 1999, EVOL ECOL RES, V1, P611; Lups P, 2007, BEITRAGE JAGD WILDFO, V32, P495; McElligott AG, 1998, ETHOLOGY, V104, P789; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; McElligott AG, 2000, BEHAV ECOL SOCIOBIOL, V48, P203, DOI 10.1007/s002650000234; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Pelletier F, 2005, BEHAV ECOL, V16, P280, DOI 10.1093/beheco/arh162; Pemberton JM, 1999, BIOL J LINN SOC, V68, P289, DOI 10.1006/bijl.1999.0342; PEMBERTON JM, 1992, BEHAV ECOL, V3, P66, DOI 10.1093/beheco/3.1.66; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Preston BT, 2001, NATURE, V409, P681, DOI 10.1038/35055617; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RATTI P, 1977, Z JAGDWISS, V23, P188, DOI 10.1007/BF01905758; Ricca MA, 2002, J WILDLIFE MANAGE, V66, P1255, DOI 10.2307/3802958; Roed KH, 2005, J WILDLIFE MANAGE, V69, P1163, DOI 10.2193/0022-541X(2005)069[1163:VIMRSI]2.0.CO;2; Roed KH, 2002, MOL ECOL, V11, P1239, DOI 10.1046/j.1365-294X.2002.01509.x; Say L, 2003, MOL ECOL, V12, P2793, DOI 10.1046/j.1365-294X.2003.01945.x; Shuster SM, 2003, MONOGRAPHS BEHAV ECO; Sorin AB, 2004, J MAMMAL, V85, P356, DOI 10.1644/1545-1542(2004)085<0356:PAFWDO>2.0.CO;2; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stevenson I. R., 2004, SOAY SHEEP DYNAMICS; Stevenson IR, 1995, P ROY SOC B-BIOL SCI, V262, P267, DOI 10.1098/rspb.1995.0205; Taberlet P, 1999, TRENDS ECOL EVOL, V14, P323, DOI 10.1016/S0169-5347(99)01637-7; Toigo C, 2003, OIKOS, V101, P376, DOI 10.1034/j.1600-0706.2003.12073.x; Toigo C, 2007, J ANIM ECOL, V76, P679, DOI 10.1111/j.1365-2656.2007.01254.x; Valiere N, 2002, MOL ECOL NOTES, V2, P377, DOI 10.1046/j.1471-8286.2002.00228.x; Vanpe C, 2008, BEHAV ECOL, V19, P309, DOI 10.1093/beheco/arm132; Vanpe C, 2009, J MAMMAL, V90, P661, DOI 10.1644/08-MAMM-A-137R.1; Wehausen JD, 2004, J HERED, V95, P503, DOI 10.1093/jhered/esh068; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Willisch CS, 2010, BEHAV ECOL, V21, P372, DOI 10.1093/beheco/arp200; Willisch CS, 2009, J MAMMAL, V90, P1421, DOI 10.1644/08-MAMM-A-316R1.1; Wilson GA, 2002, CAN J ZOOL, V80, P1537, DOI 10.1139/Z02-147; Wolff JO, 1998, OIKOS, V83, P529, DOI 10.2307/3546680 66 27 27 1 85 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. JAN 2012 26 1 187 206 10.1007/s10682-011-9486-6 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 862PN WOS:000298105900014 2019-02-21 J Nebel, S; Bauchinger, U; Buehler, DM; Langlois, LA; Boyles, M; Gerson, AR; Price, ER; McWilliams, SR; Guglielmo, CG Nebel, Silke; Bauchinger, Ulf; Buehler, Deborah M.; Langlois, Lillie A.; Boyles, Michelle; Gerson, Alexander R.; Price, Edwin R.; McWilliams, Scott R.; Guglielmo, Christopher G. Constitutive immune function in European starlings, Sturnus vulgaris, is decreased immediately after an endurance flight in a wind tunnel JOURNAL OF EXPERIMENTAL BIOLOGY English Article constitutive immune function; European starlings; Sturnus vulgaris; life-history trade-off; migratory flight; wind tunnel PHYSIOLOGICAL TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; REPRODUCTIVE EFFORT; LIFE-HISTORY; ANTIBODY RESPONSIVENESS; MULTIVARIATE-ANALYSIS; EVOLUTIONARY ECOLOGY; PIED FLYCATCHERS; OXIDATIVE STRESS; MIGRATORY BIRDS Life-history theory predicts that animals face a trade-off in energy allocation between performing strenuous exercise, such as migratory flight, and mounting an immune response. We experimentally tested this prediction by studying immune function in European starlings, Sturnus vulgaris, flown in a wind tunnel. Specifically, we predicted that constitutive immune function decreases in response to training and, additionally, in response to immediate exercise. We compared constitutive immune function among three groups: (1). 'untrained' birds that were kept in cages and were not flown; (2). 'trained' birds that received flight training over a 15 day period and performed a 1-4 h continuous flight, after which they rested for 48 h before being sampled; and (3). 'post-flight' birds that differed from the. 'trained' group only in being sampled immediately after the final flight. A bird in our trained group represents an individual during migration that has been resting between migratory flights for at least 2 days. A bird in our post-flight group represents an individual that has just completed a migratory flight and has not yet had time to recover. Three of our four indicators (haptoglobin, agglutination and lysis) showed the predicted decrease in immune function in the post-flight group, and two indicators (haptoglobin, agglutination) showed the predicted decreasing trend from the untrained to trained to post-flight group. Haptoglobin levels were negatively correlated with flight duration. No effect of training or flight was detected on leukocyte profiles. Our results suggest that in European starlings, constitutive immune function is decreased more as a result of immediate exercise than of exercise training. Because of the recent emergence of avian-borne diseases, understanding the trade-offs and challenges faced by long-distance migrants has gained a new level of relevance and urgency. [Nebel, Silke; Gerson, Alexander R.; Price, Edwin R.; Guglielmo, Christopher G.] Univ Western Ontario, Dept Biol, Adv Facil Avian Res, London, ON N6A 5B7, Canada; [Bauchinger, Ulf; Langlois, Lillie A.; Boyles, Michelle; McWilliams, Scott R.] Univ Rhode Isl, Dept Nat Resources Sci, Kingston, RI 02881 USA; [Buehler, Deborah M.] Royal Ontario Museum, Dept Nat Hist, Toronto, ON M5S 2C6, Canada; [Buehler, Deborah M.] Univ Toronto, Toronto, ON M5S 3B2, Canada Nebel, S (reprint author), Univ Western Ontario, Dept Biol, Adv Facil Avian Res, London, ON N6A 5B7, Canada. snebel2@uwo.ca Gerson, Alexander/E-3313-2010; Price, Edwin/E-3080-2010; Nebel, Silke/D-4993-2009; McWilliams, Scott/B-8728-2013 Price, Edwin/0000-0001-6042-7020; McWilliams, Scott/0000-0002-9727-1151; Buehler, Deborah/0000-0003-3669-6364 US National Science Foundation [IOS-0748349]; United States Department of Agriculture [RIAES-538748]; University of Rhode Island; Natural Science and Engineering Council of Canada [NSERC] [311901-2005]; Canada Foundation for Innovation [11826]; Ontario Research Fund [11743]; University of Western Ontario [SG10-18]; Natural Science and Engineering Council of Canada [PDF-373488-2009]; Netherlands Organisation for Scientific Research [NWO] [Rubicon 825.09.0190] Funding was provided to S.R.M. by the US National Science Foundation [grant no. IOS-0748349], the United States Department of Agriculture [grant no. RIAES-538748] and the University of Rhode Island, and to C.G.G. by the Natural Science and Engineering Council of Canada [NSERC Discovery Grant; 311901-2005 RGPIN], the Canada Foundation for Innovation [grant no. 11826], the Ontario Research Fund [grant no. 11743], and the University of Western Ontario Academic Development Fund [grant no. SG10-18]. D. M. B. was supported by the Natural Science and Engineering Council of Canada [NSERC grant no. PDF-373488-2009] and the Netherlands Organisation for Scientific Research [NWO; Rubicon 825.09.0190]. Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Altizer SM, 2000, ECOL ENTOMOL, V25, P125, DOI 10.1046/j.1365-2311.2000.00246.x; Altizer S, 2011, SCIENCE, V331, P296, DOI 10.1126/science.1194694; Apanius V, 1998, ADV STUD BEHAV, V27, P133; Ardia DR, 2008, AVIAN IMMUNOLOGY, P421, DOI 10.1016/B978-012370634-8.50025-1; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; BAJ Z, 1994, INT J SPORTS MED, V15, P319, DOI 10.1055/s-2007-1021067; Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; Buehler DM, 2008, PHILOS T R SOC B, V363, P247, DOI 10.1098/rstb.2007.2138; Buehler DM, 2010, AUK, V127, P394, DOI 10.1525/auk.2010.09017; Buehler DM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P561, DOI 10.1086/603635; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; BUEHLER DM, 2010, INTEGR COMP BIOL, V50, P261; Butler P.J., 1990, P300; Campbell T. W., 1995, AVIAN HEMATOLOGY CYT; Campbell TW, 2007, AVIAN EXOTIC ANIMAL; CARDINET GH, 1964, CALIF VET, V18, P31; Cooper CE, 2002, BIOCHEM SOC T, V30, P280, DOI 10.1042/bst0300280; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Davis AK, 2005, J FIELD ORNITHOL, V76, P334, DOI 10.1648/0273-8570-76.4.334; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; DELERS F, 1988, BIOCHEM CELL BIOL, V66, P208, DOI 10.1139/o88-028; Dhabhar FS, 2002, INTEGR COMP BIOL, V42, P556, DOI 10.1093/icb/42.3.556; DHABHAR FS, 1995, J IMMUNOL, V154, P5511; Dobryszycka W, 1997, EUR J CLIN CHEM CLIN, V35, P647; DOLBEER RA, 1982, J FIELD ORNITHOL, V53, P28; EARLE RA, 1993, ARDEA, V81, P21; Exton MS, 1997, APPETITE, V29, P369, DOI 10.1006/appe.1997.0116; FOLSTAD I, 1991, CAN J ZOOL, V69, P2423, DOI 10.1139/z91-340; Gerson AR, 2011, SCIENCE, V333, P1434, DOI 10.1126/science.1210449; GLEESON M, 1995, CLIN EXP IMMUNOL, V102, P210; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUTTERIDGE JMC, 1987, BIOCHIM BIOPHYS ACTA, V917, P219, DOI 10.1016/0005-2760(87)90125-1; Hasselquist D, 2007, J EXP BIOL, V210, P1123, DOI 10.1242/jeb.02712; Hoffmann D, 2010, J MED VIROL, V82, P446, DOI 10.1002/jmv.21704; Johnson Craig R., 1993, Oceanography and Marine Biology an Annual Review, V31, P177; Juul-Madsen HR, 2008, AVIAN IMMUNOLOGY, P129, DOI 10.1016/B978-012370634-8.50010-X; KING JR, 1974, AVIAN ENERGETICS, V15, P4; Klasing KC, 1998, POULTRY SCI, V77, P983, DOI 10.1093/ps/77.7.983; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; Landys-Ciannelli MM, 2002, J AVIAN BIOL, V33, P451, DOI 10.1034/j.1600-048X.2002.03051.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lim YK, 2000, KIDNEY INT, V58, P1033, DOI 10.1046/j.1523-1755.2000.00261.x; Liu J, 2005, SCIENCE, V309, P1206, DOI 10.1126/science.1115273; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lopez P, 2005, BIOL LETT-UK, V1, P404, DOI 10.1098/rsbl.2005.0360; Marra PP, 2004, BIOSCIENCE, V54, P393, DOI 10.1641/0006-3568(2004)054[0393:WNVAW]2.0.CO;2; Martin LB, 2005, CAN J ZOOL, V83, P780, DOI 10.1139/Z05-062; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P2267, DOI 10.1098/rspb.2006.3590; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; Mendes L, 2005, OIKOS, V109, P396, DOI 10.1111/j.0030-1299.2005.13509.x; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Nieman DC, 1999, SPORTS MED, V27, P73, DOI 10.2165/00007256-199927020-00001; NIEMAN DC, 1995, MED SCI SPORT EXER, V27, P986, DOI 10.1249/00005768-199507000-00006; NIEMAN DC, 1997, INT J SPORTS MED S1, V18, P91; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; OLSON CL, 1976, PSYCHOL BULL, V83, P579, DOI 10.1037//0033-2909.83.4.579; Pedersen BK, 2000, PHYSIOL REV, V80, P1055; PEIRCE MA, 1981, J NAT HIST, V15, P419, DOI 10.1080/00222938100770321; Piersma T, 1996, CONDOR, V98, P363, DOI 10.2307/1369154; Reed Kurt D, 2003, Clin Med Res, V1, P5; Rolff J, 2003, SCIENCE, V301, P472, DOI 10.1126/science.1080623; Sanz JJ, 2004, J ANIM ECOL, V73, P441, DOI 10.1111/j.0021-8790.2004.00815.x; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Senturk UK, 2005, J APPL PHYSIOL, V99, P1434, DOI 10.1152/japplphysiol.01392.2004; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sokal RR, 1995, BIOMETRY; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; TVEDE N, 1991, Scandinavian Journal of Medicine and Science in Sports, V1, P163; van Gils JA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000184; Willmer P., 2000, ENV PHYSL ANIMALS; Wolach B, 1998, SCAND J MED SCI SPOR, V8, P91; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 80 32 32 0 46 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 J EXP BIOL J. Exp. Biol. JAN 2012 215 2 272 278 10.1242/jeb.057885 7 Biology Life Sciences & Biomedicine - Other Topics 866TA WOS:000298404800014 22189771 Bronze, Green Published 2019-02-21 J Jarvis, JC; Moore, KA; Kenworthy, WJ Jarvis, Jessie C.; Moore, Kenneth A.; Kenworthy, W. Judson Characterization and ecological implication of eelgrass life history strategies near the species' southern limit in the western North Atlantic MARINE ECOLOGY PROGRESS SERIES English Article Zostera marina; Life-history; Annual; Perennial; Seed bank; Biomass ZOSTERA-MARINA L; LOWER CHESAPEAKE BAY; CLIMATE-CHANGE; ENVIRONMENTAL-FACTORS; AQUATIC PLANT; SEED; SEAGRASSES; PHENOLOGY; L.; RECOLONIZATION Eelgrass Zostera marina L. populations located near the species southern limit in the western North Atlantic were assessed monthly from July 2007 through November 2008. We identified (1) dominant life history strategies and local environmental conditions in southern Z. marina populations, (2) quantified differences in reproductive phenology between populations and different local environmental conditions, and (3) compared reproductive strategies to established annual and perennial life history paradigms. Observed populations expressed both life history strategies with one Z. marina population completely losing aboveground biomass and reestablishing from seeds (annual model) while another population retained aboveground biomass throughout the year (perennial model). A third life history strategy, characterized here as a mixed-annual population, was also observed after some seedlings were found to reproduce both sexually and asexually during their first year of growth thereby not conforming to any currently established life history paradigm. Development of multiple life history strategies within this region may be in response to stressful summer water temperatures associated with the southern edge of the species' range. We suggest that neither annual nor perennial life history strategies always provide a superior mechanism for population persistence as perennial populations can be susceptible to multiple consecutive years of stress, and annual populations are unable to fully exploit available resources throughout much of the year. The mixed-annual strategy observed here represents another possible life history model which may provide the mechanism necessary for Z. marina populations to persist during times of environmental transition. [Jarvis, Jessie C.; Moore, Kenneth A.] Coll William & Mary, Sch Marine Sci, Virginia Inst Marine Sci, Gloucester Point, VA 23062 USA; [Kenworthy, W. Judson] NOAA, Ctr Coastal Fisheries & Habitat Res, NCCOS, NOS, Beaufort, NC 28516 USA Jarvis, JC (reprint author), Richard Stockton Coll New Jersey, Galloway, NJ 08205 USA. jessie.jarvis@stockton.edu Jarvis, Jessie/M-5929-2013 Jarvis, Jessie/0000-0001-8467-0287 National Estuarine Research Reserve Graduate Research Fellowship Program; Virginia Institute of Marine Science; Center for Coastal Fisheries and Habitat Research The authors would like to thank the National Estuarine Research Reserve Graduate Research Fellowship Program and the Virginia Institute of Marine Science Graduate Research Assistantship Program for funding. Field and laboratory support was provided by the Center for Coastal Fisheries and Habitat Research. We would also like to thank Erin Shields, Brittany Haywood, Giuseppe Di Carlo, Brooke Landry, and Brandon Jarvis for field and laboratory assistance. This is contribution number 3183 from the Virginia Institute of Marine Science, School of Marine Science, College of William and Mary. ALLISON P., 1999, LOGISTIC REGRESSION; AOSA, 1981, J SEED TECHNOL, V6, P1; Baker HG, 1989, ECOLOGY SOIL SEED BA, P9, DOI 10.1016/B978-0-12-440405-2.50007-5; Burke MK, 1996, MAR ECOL PROG SER, V137, P195, DOI 10.3354/meps137195; CONACHER CA, 1994, AQUAT BOT, V49, P47, DOI 10.1016/0304-3770(94)90005-1; DECOCK AWAM, 1981, AQUAT BOT, V10, P99, DOI 10.1016/0304-3770(81)90013-9; den Hartog C, 1970, SEA GRASSES WORLD; Erftemeijer PLA, 2001, GLOBAL SEAGRASS RESEARCH METHODS, P345, DOI 10.1016/B978-044450891-1/50019-0; Fishman JR, 1996, J EXP MAR BIOL ECOL, V198, P11, DOI 10.1016/0022-0981(95)00176-X; FONSECA MS, 1985, EL859 USA CORPS ENG; GAGNON PS, 1980, AQUAT BOT, V8, P157, DOI 10.1016/0304-3770(80)90047-9; Green E. P, 2003, WORLD ATLAS SEAGRASS; Greve TM, 2005, AQUAT BOT, V82, P143, DOI 10.1016/j.aquabot.2005.03.004; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; HARLIN MM, 1982, AQUAT BOT, V14, P127, DOI 10.1016/0304-3770(82)90092-4; Harper J. L., 1977, POPULATION BIOL PLAN; HARRISON PG, 1993, AQUAT BOT, V45, P63, DOI 10.1016/0304-3770(93)90053-Y; Harwell MC, 2002, ESTUARIES, V25, P1196, DOI 10.1007/BF02692216; Harwell MC, 2002, ECOLOGY, V83, P3319, DOI 10.2307/3072082; Hoffle H, 2011, ESTUAR COAST SHELF S, V92, P35, DOI 10.1016/j.ecss.2010.12.017; HOOTSMANS MJM, 1987, AQUAT BOT, V28, P275, DOI 10.1016/0304-3770(87)90005-2; Hosokawa S, 2009, OIKOS, V118, P1158, DOI 10.1111/j.1600-0706.2009.17288.x; JACOBS RPWM, 1981, AQUAT BOT, V10, P45, DOI 10.1016/0304-3770(81)90004-8; Jarvis JC, 2010, HYDROBIOLOGIA, V649, P55, DOI 10.1007/s10750-010-0258-z; Kallstrom B, 2008, AQUAT BOT, V88, P148, DOI 10.1016/j.aquabot.2007.09.005; KEDDY CJ, 1987, AQUAT BOT, V27, P243, DOI 10.1016/0304-3770(87)90044-1; KEDDY CJ, 1978, AQUAT BOT, V5, P163, DOI 10.1016/0304-3770(78)90059-1; Kenworthy W. J., 1981, THESIS U VIRGINIA CH; Knepel K, 2002, 31115011H LACH INSTR; LAKON G, 1949, PLANT PHYSIOL, V24, P389, DOI 10.1104/pp.24.3.389; Lee KS, 2007, MAR ECOL PROG SER, V342, P105, DOI 10.3354/meps342105; Les DH, 1997, SYST BOT, V22, P443, DOI 10.2307/2419820; LIAO N, 2002, 31107061B QUIKCHEM L; LINCOLN RJ, 1990, DICT ECOLOGY EVOLUTI; MARSH JA, 1986, J EXP MAR BIOL ECOL, V101, P257, DOI 10.1016/0022-0981(86)90267-4; Mcfarland DG, 2011, J AQUAT PLANT MANAGE, V49, P9; Meling-Lopez AE, 1999, AQUAT BOT, V65, P59, DOI 10.1016/S0304-3770(99)00031-5; Moore KA, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P361; Moore KA, 2008, J COASTAL RES, P135, DOI 10.2112/SI55-014; Morita T, 2007, AQUAT BOT, V87, P38, DOI 10.1016/j.aquabot.2007.03.001; Murdoch A. J., 2000, Seeds: the ecology of regeneration in plant communities, P183, DOI 10.1079/9780851994321.0183; Najjar RG, 2010, ESTUAR COAST SHELF S, V86, P1, DOI 10.1016/j.ecss.2009.09.026; Nejrup LB, 2008, AQUAT BOT, V88, P239, DOI 10.1016/j.aquabot.2007.10.006; Olesen B, 1999, AQUAT BOT, V65, P209, DOI 10.1016/S0304-3770(99)00041-8; ORTH RJ, 1986, AQUAT BOT, V24, P335, DOI 10.1016/0304-3770(86)90100-2; PENHALE PA, 1977, J EXP MAR BIOL ECOL, V26, P211, DOI 10.1016/0022-0981(77)90109-5; PHILLIPS RC, 1983, AQUAT BOT, V15, P145, DOI 10.1016/0304-3770(83)90025-6; PHILLIPS RC, 1983, AQUAT BOT, V17, P85, DOI 10.1016/0304-3770(83)90020-7; PHILLIPS RC, 1983, AQUAT BOT, V16, P1, DOI 10.1016/0304-3770(83)90047-5; PLUMB RH, 1981, EPACE811 USA CORPS E; Plus M, 2003, AQUAT BOT, V77, P121, DOI 10.1016/S0304-3770(03)00089-5; ROBERTSON AI, 1984, MAR BIOL, V80, P131, DOI 10.1007/BF02180180; Rogers CE, 2000, CLIM RES, V14, P235, DOI 10.3354/cr014235; Santamaria-Gallegos NA, 2000, AQUAT BOT, V66, P329, DOI 10.1016/S0304-3770(99)00082-0; Scavia D, 2002, ESTUARIES, V25, P149, DOI 10.1007/BF02691304; SETCHELL WILLIAM ALBERT, 1929, UNIV CALIFORNIA PUBL BOT, V14, P389; Short FT, 1999, AQUAT BOT, V63, P169, DOI 10.1016/S0304-3770(98)00117-X; SILBERHORN GM, 1983, AQUAT BOT, V15, P133, DOI 10.1016/0304-3770(83)90024-4; SMITH P, 2002, 31107041E QUIKCHEM L; SOLORZANO L, 1969, LIMNOL OCEANOGR, V14, P799, DOI 10.4319/lo.1969.14.5.0799; Street Michael W., 2005, N CAROLINA COASTAL H; Strickland J.D., 1972, B FISH RES BOARD CAN, V167, P1, DOI DOI 10.1002/IROH.19700550118; TAYLOR A. R. A., 1957, CANADIAN JOUR BOT, V35, P681; TAYLOR A. R. A., 1957, CANADIAN JOUR BOT, V35, P477; THAYER GA, 1984, FWSOBS84; THAYER GW, 1977, J EXP MAR BIOL ECOL, V30, P109, DOI 10.1016/0022-0981(77)90007-7; TOMLINSON PB, 1974, AQUACULTURE, V4, P107, DOI 10.1016/0044-8486(74)90027-1; van Katwijk MM, 2004, AQUAT BOT, V80, P1, DOI 10.1016/j.aquabot.2004.04.003; VANLENT F, 1994, AQUAT BOT, V48, P59, DOI 10.1016/0304-3770(94)90073-6; Waycott M, 2006, SEAGRASSES BIOL ECOL; Waycott M, 2009, P NATL ACAD SCI USA, V106, P12377, DOI 10.1073/pnas.0905620106; ZAR JH, 1996, BIOSTATISTIAL ANAL 72 24 25 0 29 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2012 444 43 56 10.3354/meps09428 14 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 874PP WOS:000298970900004 Bronze 2019-02-21 J McDougald, D; Rice, SA; Barraud, N; Steinberg, PD; Kjelleberg, S McDougald, Diane; Rice, Scott A.; Barraud, Nicolas; Steinberg, Peter D.; Kjelleberg, Staffan Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal NATURE REVIEWS MICROBIOLOGY English Review PSEUDOMONAS-AERUGINOSA BIOFILMS; STAPHYLOCOCCUS-EPIDERMIDIS BIOFILMS; STARVATION-INDUCED DISPERSION; LIFE-HISTORY EVOLUTION; NITRIC-OXIDE; XANTHOMONAS-CAMPESTRIS; BACTERIAL BIOFILMS; EXTRACELLULAR DNA; ESCHERICHIA-COLI; CELL-DEATH In most environments, bacteria reside primarily in biofilms, which are social consortia of cells that are embedded in an extracellular matrix and undergo developmental programmes resulting in a predictable biofilm 'life cycle'. Recent research on many different bacterial species has now shown that the final stage in this life cycle includes the production and release of differentiated dispersal cells. The formation of these cells and their eventual dispersal is initiated through diverse and remarkably sophisticated mechanisms, suggesting that there are strong evolutionary pressures for dispersal from an otherwise largely sessile biofilm. The evolutionary aspect of biofilm dispersal is now being explored through the integration of molecular microbiology with eukaryotic ecological and evolutionary theory, which provides a broad conceptual framework for the diversity of specific mechanisms underlying biofilm dispersal. Here, we review recent progress in this emerging field and suggest that the merging of detailed molecular mechanisms with ecological theory will significantly advance our understanding of biofilm biology and ecology. [McDougald, Diane; Rice, Scott A.; Barraud, Nicolas; Steinberg, Peter D.; Kjelleberg, Staffan] Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia; [McDougald, Diane; Rice, Scott A.; Barraud, Nicolas; Steinberg, Peter D.; Kjelleberg, Staffan] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia; [McDougald, Diane; Rice, Scott A.; Steinberg, Peter D.] Nanyang Technol Univ, Adv Environm Biotechnol Ctr, Singapore 639798, Singapore; [McDougald, Diane; Steinberg, Peter D.] Sydney Inst Marine Sci, Mosman, NSW 2088, Australia; [Steinberg, Peter D.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Kjelleberg, Staffan] Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 637551, Singapore Kjelleberg, S (reprint author), Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia. s.kjelleberg@unsw.edu.au McDougald, Diane/B-5564-2009; Rice, Scott/A-6084-2019; Kjelleberg, Staffan/C-9229-2015; Barraud, Nicolas/D-1569-2010; Chiang, Vincent, Ming-Hsien/D-4312-2016 McDougald, Diane/0000-0001-5827-8441; Rice, Scott/0000-0002-9486-2343; Kjelleberg, Staffan/0000-0003-4271-6413; Barraud, Nicolas/0000-0002-1807-7765; Chiang, Vincent, Ming-Hsien/0000-0002-2029-7863 Australian Research Council; Environmental Biotechnology Cooperative Research Centre; National Health and Medical Research Council The authors acknowledge S. Longford for help with the figures and the Australian Research Council, Environmental Biotechnology Cooperative Research Centre and National Health and Medical Research Council for ongoing and long term support of this research. This is publication number 0058 of the Sydney Institute of Marine Science, Australia. Abee T, 2011, CURR OPIN BIOTECH, V22, P172, DOI 10.1016/j.copbio.2010.10.016; Alexandre G, 2010, MICROBIOL-SGM, V156, P2283, DOI 10.1099/mic.0.039214-0; Allison DG, 1998, FEMS MICROBIOL LETT, V167, P179, DOI 10.1016/S0378-1097(98)00386-3; An SW, 2010, APPL ENVIRON MICROB, V76, P8160, DOI 10.1128/AEM.01233-10; Banin E, 2006, APPL ENVIRON MICROB, V72, P2064, DOI 10.1128/AEM.72.3.2064-2069.2006; Barken KB, 2008, ENVIRON MICROBIOL, V10, P2331, DOI 10.1111/j.1462-2920.2008.01658.x; Barraud N, 2006, J BACTERIOL, V188, P7344, DOI 10.1128/JB.00779-06; Barraud N, 2009, J BACTERIOL, V191, P7333, DOI 10.1128/JB.00975-09; Barraud N, 2009, MICROB BIOTECHNOL, V2, P370, DOI 10.1111/j.1751-7915.2009.00098.x; Baty AM, 2000, APPL ENVIRON MICROB, V66, P3574, DOI 10.1128/AEM.66.8.3574-3585.2000; Benach J, 2007, EMBO J, V26, P5153, DOI 10.1038/sj.emboj.7601918; Bishop CD, 2003, EVOL DEV, V5, P542, DOI 10.1046/j.1525-142X.2003.03059.x; Boles BR, 2008, PLOS PATHOG, V4, DOI 10.1371/journal.ppat.1000052; Boles BR, 2005, MOL MICROBIOL, V57, P1210, DOI 10.1111/j.1365-2958.2005.04743.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; BOYD A, 1994, APPL ENVIRON MICROB, V60, P2355; Brusca R., 2003, INVERTEBRATES; Carlson HK, 2010, MOL MICROBIOL, V77, P930, DOI 10.1111/j.1365-2958.2010.07259.x; Chaignon P, 2007, APPL MICROBIOL BIOT, V75, P125, DOI 10.1007/s00253-006-0790-y; Christen M, 2007, P NATL ACAD SCI USA, V104, P4112, DOI 10.1073/pnas.0607738104; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cook R. E., 1985, POPULATION BIOL EVOL; Crossman L, 2004, MICROBES INFECT, V6, P623, DOI 10.1016/j.micinf.2004.01.013; Davies DG, 2009, J BACTERIOL, V191, P1393, DOI 10.1128/JB.01214-08; Davies DG, 1998, SCIENCE, V280, P295, DOI 10.1126/science.280.5361.295; DELAQUIS PJ, 1989, MICROBIAL ECOL, V18, P199, DOI 10.1007/BF02075808; Delgado-Nixon VM, 2000, BIOCHEMISTRY-US, V39, P2685, DOI 10.1021/bi991911s; Delille A, 2007, APPL ENVIRON MICROB, V73, P5782, DOI 10.1128/AEM.00838-07; Deng YY, 2011, CHEM REV, V111, P160, DOI 10.1021/cr100354f; Dow JM, 2003, P NATL ACAD SCI USA, V100, P10995, DOI 10.1073/pnas.1833360100; ELTON CS, 1950, ECOLOGY INVASIONS AN; Flemming HC, 2010, NAT REV MICROBIOL, V8, P623, DOI 10.1038/nrmicro2415; Garcia-Contreras R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002394; Giacometti A, 2003, ANTIMICROB AGENTS CH, V47, P1979, DOI 10.1128/AAC.47.6.1979-1983.2003; Giba Z, 2007, PLANT CELL MONOGRAPH, V5, P91; Gjermansen M, 2005, ENVIRON MICROBIOL, V7, P894, DOI 10.1111/j.1462-2920.2005.00775.x; Gjermansen M, 2010, MOL MICROBIOL, V75, P815, DOI 10.1111/j.1365-2958.2009.06793.x; Glick R, 2010, J BACTERIOL, V192, P2973, DOI 10.1128/JB.01601-09; Hall-Stoodley L, 2004, NAT REV MICROBIOL, V2, P95, DOI 10.1038/nrmicro821; Hammer BK, 2003, MOL MICROBIOL, V50, P101, DOI 10.1046/j.1365-2958.2003.03688.x; HARRISON PL, 1984, SCIENCE, V223, P1186, DOI 10.1126/science.223.4641.1186; Hausner M, 1999, APPL ENVIRON MICROB, V65, P3710; Hentzer M., 2005, BIOFILMS, V2, P37, DOI DOI 10.1017/S1479050505001699; Hickman JW, 2008, MOL MICROBIOL, V69, P376, DOI 10.1111/j.1365-2958.2008.06281.x; Hughes KA, 1998, MICROBIOL-UK, V144, P3039, DOI 10.1099/00221287-144-11-3039; Hughes KA, 1998, J APPL MICROBIOL, V85, P583, DOI 10.1046/j.1365-2672.1998.853541.x; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; Hunt SM, 2004, APPL ENVIRON MICROB, V70, P7418, DOI 10.1128/AEM.70.12.7418-7425.2004; HUYNH TT, 2011, THESIS U NEW S WALES; Ito A, 2008, BIOTECHNOL BIOENG, V99, P1462, DOI 10.1002/bit.21695; Izano EA, 2008, APPL ENVIRON MICROB, V74, P470, DOI 10.1128/AEM.02073-07; JAMES GA, 1995, J BACTERIOL, V177, P907, DOI 10.1128/jb.177.4.907-915.1995; Jobling MG, 1997, MOL MICROBIOL, V26, P1023, DOI 10.1046/j.1365-2958.1997.6402011.x; Kader A, 2006, MOL MICROBIOL, V60, P602, DOI 10.1111/j.1365-2958.2006.05123.x; Kaplan JB, 2010, J DENT RES, V89, P205, DOI 10.1177/0022034509359403; Kaplan JB, 2004, ANTIMICROB AGENTS CH, V48, P2633, DOI 10.1128/AAC.48.7.2633-2636.2004; Kaplan JB, 2003, J BACTERIOL, V185, P1399, DOI 10.1128/JB.185.4.1399-1404.2003; Kaplan JB, 2002, APPL ENVIRON MICROB, V68, P4943, DOI 10.1128/AEM.68.10.4943-4950.2002; Karatan E, 2009, MICROBIOL MOL BIOL R, V73, P310, DOI 10.1128/MMBR.00041-08; Kirov SM, 2007, MICROBIOL-SGM, V153, P3264, DOI 10.1099/mic.0.2007/009092-0; KJELLEBERG S, 2007, BIOFILM MODE LIFE ME, P5; Koh KS, 2007, J BACTERIOL, V189, P119, DOI 10.1128/JB.00930-06; KOH KS, MOL ECOL IN PRESS; Kolenbrander PE, 2010, NAT REV MICROBIOL, V8, P471, DOI 10.1038/nrmicro2381; Kolodkin-Gal I, 2010, SCIENCE, V328, P627, DOI 10.1126/science.1188628; Kuiper I, 2004, MOL MICROBIOL, V51, P97, DOI 10.1046/j.1365-2958.2003.03751.x; Kumar A, 2007, P NATL ACAD SCI USA, V104, P11568, DOI 10.1073/pnas.0705054104; Labbate M, 2004, J BACTERIOL, V186, P692, DOI 10.1128/JB.186.3.692-698.2004; Lam H, 2009, SCIENCE, V325, P1552, DOI 10.1126/science.1178123; Landini P, 2010, APPL MICROBIOL BIOT, V86, P813, DOI 10.1007/s00253-010-2468-8; Lauderdale KJ, 2010, J ORTHOP RES, V28, P55, DOI 10.1002/jor.20943; Lee VT, 2007, MOL MICROBIOL, V65, P1474, DOI 10.1111/j.1365-2958.2007.05879.x; Lu TK, 2007, P NATL ACAD SCI USA, V104, P11197, DOI 10.1073/pnas.0704624104; Ma Q, 2011, ENVIRON MICROBIOL, V13, P631, DOI 10.1111/j.1462-2920.2010.02368.x; Mai-Prochnow A, 2004, APPL ENVIRON MICROB, V70, P3232, DOI 10.1128/AEM.70.6.3232-3238.2004; Mann EE, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005822; Manuel SGA, 2007, FEBS J, V274, P5987, DOI 10.1111/j.1742-4658.2007-06121-x; Marshall DJ, 2007, ADV MAR BIOL, V53, P1; Matz C, 2005, TRENDS MICROBIOL, V13, P302, DOI 10.1016/j.tim.2005.05.009; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MERIGHI M, 2010, PSEUDOMONAS, V6, P97; Merritt JH, 2010, MBIO, V1, DOI 10.1128/mBio.00183-10; Mitchell HL, 2010, MICROBIOL-SGM, V156, P774, DOI 10.1099/mic.0.033654-0; Monds RD, 2009, TRENDS MICROBIOL, V17, P73, DOI 10.1016/j.tim.2008.11.001; Moreau-Marquis S, 2008, AM J PHYSIOL-LUNG C, V295, pL25, DOI 10.1152/ajplung.00391.2007; Morgan R, 2006, J BACTERIOL, V188, P7335, DOI 10.1128/JB.00599-06; Musk DJ, 2005, CHEM BIOL, V12, P789, DOI 10.1016/j.chembiol.2005.05.007; ORENT W, 2009, DISCOVER 0717; ORTZEN D, 2008, CELL MOL LIFE SCI, V65, P910; Paul JH, 2008, ISME J, V2, P579, DOI 10.1038/ismej.2008.35; Paul R, 2004, GENE DEV, V18, P715, DOI 10.1101/gad.289504; Periasamy S, 2009, INFECT IMMUN, V77, P3542, DOI 10.1128/IAI.00345-09; Potter AJ, 2009, J INFECT DIS, V199, P227, DOI 10.1086/595737; Purevdorj-Gage B, 2005, MICROBIOL-SGM, V151, P1569, DOI 10.1099/mic.0.27536-0; Puskas A, 1997, J BACTERIOL, V179, P7530, DOI 10.1128/jb.179.23.7530-7537.1997; Rice SA, 2005, J BACTERIOL, V187, P3477, DOI 10.1128/JB.187.10.3477-3485.2005; Rice SA, 2009, ISME J, V3, P271, DOI 10.1038/ismej.2008.109; Rollet C, 2009, FEMS MICROBIOL LETT, V290, P135, DOI 10.1111/j.1574-6968.2008.01415.x; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; ROSENBERG E, 1983, FEMS MICROBIOL LETT, V17, P157; ROSS P, 1987, NATURE, V325, P279, DOI 10.1038/325279a0; Rowe MC, 2010, FEMS MICROBIOL LETT, V307, P102, DOI 10.1111/j.1574-6968.2010.01968.x; Ryan RP, 2006, P NATL ACAD SCI USA, V103, P6712, DOI 10.1073/pnas.0600345103; Sanchez-Contreras M, 2002, J BACTERIOL, V184, P1587, DOI 10.1128/JB.184.6.1587-1596.2002; Sauer K, 2004, J BACTERIOL, V186, P7312, DOI 10.1128/JB.186.21.7312-7326.2004; Sawyer LK, 2000, WATER SCI TECHNOL, V41, P139; Schlag S, 2007, J BACTERIOL, V189, P7911, DOI 10.1128/JB.00598-07; Schleheck D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005513; Schmidt I, 2004, J BACTERIOL, V186, P2781, DOI 10.1128/JB.186.9.2781-2788.2004; SCHOOLING SR, 2004, BIOFILMS, V1, P91, DOI DOI 10.1017/S147905050400119X; Sillankorva S, 2010, BIOFOULING, V26, P567, DOI 10.1080/08927014.2010.494251; Southey-Pillig CJ, 2005, J BACTERIOL, V187, P8114, DOI 10.1128/JB.187.23.8114-8126.2005; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Tao F, 2010, J BACTERIOL, V192, P1020, DOI 10.1128/JB.01253-09; Thormann KM, 2005, J BACTERIOL, V187, P1014, DOI 10.1128/JB.187.3.1014-1021.2005; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Tolker-Nielsen T, 2000, J BACTERIOL, V182, P6482, DOI 10.1128/JB.182.22.6482-6489.2000; Webb JS, 2004, J BACTERIOL, V186, P8066, DOI 10.1128/JB.186.23.8066-8073.2004; Webb JS, 2003, J BACTERIOL, V185, P4585, DOI 10.1128/JB.185.15.4585-4592.2003; Whitchurch CB, 2002, SCIENCE, V295, P1487, DOI 10.1126/science.295.5559.1487; Whiteley M, 2001, NATURE, V413, P860, DOI 10.1038/35101627; Yarwood JM, 2004, J BACTERIOL, V186, P1838, DOI 10.1128/JB.186.6.1838-1850.2004; Zegans ME, 2009, J BACTERIOL, V191, P210, DOI 10.1128/JB.00797-08 123 295 299 19 238 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1740-1526 NAT REV MICROBIOL Nat. Rev. Microbiol. JAN 2012 10 1 39 50 10.1038/nrmicro2695 12 Microbiology Microbiology 865RK WOS:000298327800012 22120588 2019-02-21 J Dunkel, CS; Kim, JK; Papini, DR Dunkel, Curtis S.; Kim, Jwa K.; Papini, Dennis R. The General Factor of Psychosocial Development and its relation to the General Factor of Personality and Life History strategy PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Psychosocial development; Life History theory; General Factor of Personality HIGHER-ORDER FACTORS; SOCIAL DESIRABILITY; K-FACTOR; IDENTITY CONSOLIDATION; BIG 5; INVENTORY; GENERATIVITY; COVITALITY; VALIDITY; HEALTH It was hypothesized that the eight Erilcsonian psychosocial stages form a single latent variable or General Factor of Psychosocial Development (GFPD) and that this latent factor is associated with the General Factor of Personality (GFP) and Life History (LH) strategy to the extent that the variables form a higher order Super-K factor. Correlational analyses and confirmatory factor analyses each supported the hypothesized GFPD. Additionally, correlational and confirmatory factor analyses supported the hypothesis that the three variables form a single Super-K factor. The results of Study 3 suggest that the relationship between the psychosocial stages and between the GFPD. GFP, and LH strategy remained after controlling for social desirable response biases. (C) 2011 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA; [Kim, Jwa K.; Papini, Dennis R.] Middle Tennessee State Univ, Murfreesboro, TN USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu AMOS, 2009, AMOS VERS 18 COMP SO; Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2007, EUR J PSYCHOL ASSESS, V23, P63, DOI 10.1027/1015-5759.23.2.63; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Byrne B. M., 2010, STRUCTURAL EQUATION; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Erdle S, 2010, PERS INDIV DIFFER, V48, P762, DOI 10.1016/j.paid.2010.01.025; Erikson E.H., 1968, IDENTITY YOUTH CRISI; Erikson E. H., 1950, CHILDHOOD SOC; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Hawley G. A, 1988, MEASURES PSYCHOSOCIA; John O. P, 2008, HDB PERSONALITY THEO, P114, DOI DOI 10.1037/0021-9010.87.3.530; Markstrom CA, 1997, J YOUTH ADOLESCENCE, V26, P705, DOI 10.1023/A:1022348709532; MCADAMS DP, 1992, J PERS SOC PSYCHOL, V62, P1003, DOI 10.1037//0022-3514.62.6.1003; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; OCHSE R, 1986, J PERS SOC PSYCHOL, V50, P1240, DOI 10.1037/0022-3514.50.6.1240; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; REYNOLDS WM, 1982, J CLIN PSYCHOL, V38, P119, DOI 10.1002/1097-4679(198201)38:1<119::AID-JCLP2270380118>3.0.CO;2-I; ROSENTHAL DA, 1981, J YOUTH ADOLESCENCE, V10, P525, DOI 10.1007/BF02087944; Rushton J. P., 2011, WILEY BLACKWELL HDB, P134; Rushton JP, 2010, TWIN RES HUM GENET, V13, P131, DOI 10.1375/twin.13.2.131; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; SAUCIER G, 1994, J PERS ASSESS, V63, P506, DOI 10.1207/s15327752jpa6303_8; Schwartz SJ, 2010, AM J HEALTH BEHAV, V34, P214; Schwartz SJ, 2007, IDENTITY, V7, P27, DOI 10.1080/15283480701319583; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003 40 12 12 0 10 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JAN 2012 52 2 202 206 10.1016/j.paid.2011.10.016 5 Psychology, Social Psychology 868KT WOS:000298522900017 2019-02-21 J Schimel, JP; Schaeffer, SM Schimel, Joshua P.; Schaeffer, Sean M. Microbial control over carbon cycling in soil FRONTIERS IN MICROBIOLOGY English Review microbial communities; carbon; diversity; litter; roots; soil A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically "narrow" processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the "broad" processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil is it sequestered or not? [Schimel, Joshua P.; Schaeffer, Sean M.] Univ Calif Santa Barbara, Dept Ecol Evolution & Marine Biol, Santa Barbara, CA 93106 USA Schimel, JP (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolution & Marine Biol, Santa Barbara, CA 93106 USA. schimel@lifesci.ucsb.edu Schaeffer, Sean/G-5071-2012 Schaeffer, Sean/0000-0002-9684-2952 U.S. National Science Foundation Ecosystem Science Program [DEB-0444712; DEB-1145875] We thank Dr, Patricia Holden for contributing to the thinking that led to this paper, and to three reviewers who offered valuable criticism and suggestion that substantially improved this paper. We thank the U.S. National Science Foundation Ecosystem Science Program for supporting this effort, both through grants from the Ecosystem Science Program (DEB-0444712; DEB-1145875) and for supporting the Enzymes in the Environment Research Coordination Network, which supported the workshop "Incorporating Enzymes and Microbial Physiology into Biogeochemical Models" in Ft. Collins Co in May 2012; participants at the workshop offered valuable insights. Allison SD, 2005, ECOL LETT, V8, P626, DOI 10.1111/j.1461-0248.2005.00756.x; Allison SD, 2008, P NATL ACAD SCI USA, V105, P11512, DOI 10.1073/pnas.0801925105; Allison SD, 2010, NAT GEOSCI, V3, P336, DOI 10.1038/NGEO846; Aneja MK, 2004, J MICROBIOL METH, V59, P223, DOI 10.1016/j.mimet.2004.07.005; Austin AT, 2006, NATURE, V442, P555, DOI 10.1038/nature05038; Bakken LR, 2012, PHILOS T R SOC B, V367, P1226, DOI 10.1098/rstb.2011.0321; Baldrian P, 2012, ISME J, V6, P248, DOI 10.1038/ismej.2011.95; Barberan A, 2012, ISME J, V6, P343, DOI 10.1038/ismej.2011.119; Barker JS, 2008, FOREST ECOL MANAG, V255, P598, DOI 10.1016/j.foreco.2007.09.029; Baumann K, 2011, EUR J SOIL SCI, V62, P666, DOI 10.1111/j.1365-2389.2011.01380.x; Beckage B, 2012, FRONT BIOGEOGR, V3, P145; Bertin C, 2003, PLANT SOIL, V256, P67, DOI 10.1023/A:1026290508166; BODEGOM P, 2001, APPL ENVIRON MICROB, V67, P3586; Bodelier PLE, 2000, NATURE, V403, P421, DOI 10.1038/35000193; Boot C. M., 2012, SOIL BIOL B IN PRESS; Braker G, 2011, ADV APPL MICROBIOL, V75, P33, DOI 10.1016/B978-0-12-387046-9.00002-5; Brandt LA, 2010, ECOSYSTEMS, V13, P765, DOI 10.1007/s10021-010-9353-2; Caldwell BA, 2005, PEDOBIOLOGIA, V49, P637, DOI 10.1016/j.pedobi.2005.06.003; Carrington EM, 2012, SOIL BIOL BIOCHEM, V47, P179, DOI 10.1016/j.soilbio.2011.12.024; Carson JK, 2010, APPL ENVIRON MICROB, V76, P3936, DOI 10.1128/AEM.03085-09; Chapin F. S., 2002, PRINCIPLES TERRESTRI; Chen WM, 2003, J BACTERIOL, V185, P7266, DOI 10.1128/JB.185.24.7266-7272.2003; CHENU C, 1993, GEODERMA, V56, P143, DOI 10.1016/0016-7061(93)90106-U; Chenu C, 2001, BIOL FERT SOILS, V34, P349, DOI 10.1007/s003740100419; Chenu C, 1996, SOIL BIOL BIOCHEM, V28, P877, DOI 10.1016/0038-0717(96)00070-3; Clark DB, 2011, GEOSCI MODEL DEV, V4, P701, DOI 10.5194/gmd-4-701-2011; Clark JS, 2011, ECOL LETT, V14, P1273, DOI 10.1111/j.1461-0248.2011.01685.x; Clark JS, 2010, SCIENCE, V327, P1129, DOI 10.1126/science.1183506; Craine JM, 2007, ECOLOGY, V88, P2105, DOI 10.1890/06-1847.1; da Rocha UN, 2009, FEMS MICROBIOL ECOL, V69, P313, DOI 10.1111/j.1574-6941.2009.00702.x; Dai XY, 2002, COMMUN SOIL SCI PLAN, V33, P789, DOI 10.1081/CSS-120003066; DeAngelis KM, 2010, ENVIRON MICROBIOL, V12, P3137, DOI 10.1111/j.1462-2920.2010.02286.x; DeAngelis KM, 2009, ISME J, V3, P168, DOI 10.1038/ismej.2008.103; Dechesne A, 2008, FEMS MICROBIOL ECOL, V64, P1, DOI 10.1111/j.1574-6941.2008.00446.x; Dennis PG, 2010, FEMS MICROBIOL ECOL, V72, P313, DOI 10.1111/j.1574-6941.2010.00860.x; Donnell A. G. O., 2007, NAT REV MICROBIOL, V5, P689; Dumbrell AJ, 2010, ISME J, V4, P337, DOI 10.1038/ismej.2009.122; Dungait JAJ, 2012, GLOBAL CHANGE BIOL, V18, P1781, DOI 10.1111/j.1365-2486.2012.02665.x; Ekschmitt K, 2005, GEODERMA, V128, P167, DOI 10.1016/j.geoderma.2004.12.024; Falkowski PG, 2008, SCIENCE, V320, P1034, DOI 10.1126/science.1153213; Fierer N, 2006, P NATL ACAD SCI USA, V103, P626, DOI 10.1073/pnas.0507535103; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; Fierer N, 2012, ISME J, V6, P1007, DOI 10.1038/ismej.2011.159; Fierer N, 2011, AM J BOT, V98, P439, DOI 10.3732/ajb.1000498; Fierer N, 2009, SOIL BIOL BIOCHEM, V41, P2249, DOI 10.1016/j.soilbio.2009.06.009; Fisk MC, 2011, PLANT SOIL, V341, P279, DOI 10.1007/s11104-010-0643-4; Follows MJ, 2011, ANNU REV MAR SCI, V3, P427, DOI 10.1146/annurev-marine-120709-142848; Freschet GT, 2012, J ECOL, V100, P619, DOI 10.1111/j.1365-2745.2011.01943.x; Gorres JH, 1999, PLANT SOIL, V212, P75, DOI 10.1023/A:1004694202862; Grandy AS, 2009, GEODERMA, V150, P278, DOI 10.1016/j.geoderma.2009.02.007; Groffman PM, 1999, BIOSCIENCE, V49, P139, DOI 10.2307/1313539; Hanson CA, 2008, ECOSYSTEMS, V11, P1157, DOI 10.1007/s10021-008-9186-4; Harmon ME, 2009, GLOBAL CHANGE BIOL, V15, P1320, DOI 10.1111/j.1365-2486.2008.01837.x; HARRIS RF, 1981, WATER POTENTIAL RELA, P23; Henao LJ, 2009, MAT SCI ENG C-MATER, V29, P2326, DOI 10.1016/j.msec.2009.06.001; Hinsinger P, 2009, PLANT SOIL, V321, P117, DOI 10.1007/s11104-008-9885-9; Holden PA, 1997, BIOTECHNOL BIOENG, V56, P656, DOI 10.1002/(SICI)1097-0290(19971220)56:6<656::AID-BIT9>3.0.CO;2-M; Holden PA, 2011, ARCHITECTURE AND BIOLOGY OF SOILS: LIFE IN INNER SPACE, P118, DOI 10.1079/9781845935320.0118; Hubbell Stephen P., 2001, V32, pi; Isobe K, 2011, J FOREST RES-JPN, V16, P351, DOI 10.1007/s10310-011-0266-5; Jaeger CH, 1999, APPL ENVIRON MICROB, V65, P2685; Jiang L, 2007, ECOLOGY, V88, P1075, DOI 10.1890/06-1556; Jiao YQ, 2010, APPL ENVIRON MICROB, V76, P2916, DOI 10.1128/AEM.02289-09; Jobbagy EG, 2000, ECOL APPL, V10, P423, DOI 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2; Joergensen RG, 2008, SOIL BIOL BIOCHEM, V40, P2977, DOI 10.1016/j.soilbio.2008.08.017; John B, 2005, GEODERMA, V128, P63, DOI 10.1016/j.geoderma.2004.12.013; Kakumanu ML, 2013, SOIL BIOL BIOCHEM, V57, P644, DOI 10.1016/j.soilbio.2012.08.014; Kemmitt SJ, 2008, SOIL BIOL BIOCHEM, V40, P61, DOI 10.1016/j.soilbio.2007.06.021; Klanjscek T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0026955; Kogel-Knabner I, 2002, SOIL BIOL BIOCHEM, V34, P139, DOI 10.1016/S0038-0717(01)00158-4; Krull ES, 2003, FUNCT PLANT BIOL, V30, P207, DOI 10.1071/FP02085; Kurland CG, 2003, P NATL ACAD SCI USA, V100, P9658, DOI 10.1073/pnas.1632870100; Lennon JT, 2012, ECOLOGY, V93, P1867, DOI 10.1890/11-1745.1; Liang B, 2012, CRIT REV MICROBIOL, V38, P95, DOI 10.3109/1040841X.2011.618114; Liang C, 2011, BIOGEOCHEMISTRY, V106, P303, DOI 10.1007/s10533-010-9525-3; Locey KJ, 2010, J BIOGEOGR, V37, P1835, DOI 10.1111/j.1365-2699.2010.02357.x; Manzoni S, 2012, ECOLOGY, V93, P930, DOI 10.1890/11-0026.1; Manzoni S, 2009, SOIL BIOL BIOCHEM, V41, P1355, DOI 10.1016/j.soilbio.2009.02.031; McMahon SK, 2011, SOIL BIOL BIOCHEM, V43, P287, DOI 10.1016/j.soilbio.2010.10.013; Meyer O., 1993, BIODIVERSITY ECOSYST, V99, P67; Miller AE, 2005, SOIL BIOL BIOCHEM, V37, P2195, DOI 10.1016/j.soilbio.2005.03.021; Miller AE, 2007, BIOGEOCHEMISTRY, V84, P233, DOI 10.1007/s10533-007-9112-4; Moorhead DL, 2006, ECOL MONOGR, V76, P151, DOI 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2; Morales SE, 2011, FEMS MICROBIOL ECOL, V75, P2, DOI 10.1111/j.1574-6941.2010.00938.x; Mummey D, 2006, MICROB ECOL, V51, P404, DOI 10.1007/s00248-006-9020-5; Navarro-Garcia F, 2012, SOIL BIOL BIOCHEM, V44, P1, DOI 10.1016/j.soilbio.2011.09.019; Neher DA, 1999, PLANT SOIL, V212, P85, DOI 10.1023/A:1004665120360; Or D, 2007, ADV WATER RESOUR, V30, P1505, DOI 10.1016/j.advwatres.2006.05.025; Park EJ, 2007, SOIL BIOL BIOCHEM, V39, P2758, DOI 10.1016/j.soilbio.2007.06.007; Parton W, 2007, SCIENCE, V315, P361, DOI 10.1126/science.1134853; Paterson E, 2007, NEW PHYTOL, V173, P600, DOI 10.1111/j.1469-8137.2006.01931.x; Peay KG, 2008, BIOSCIENCE, V58, P799, DOI 10.1641/B580907; Philippot L, 2010, NAT REV MICROBIOL, V8, P523, DOI 10.1038/nrmicro2367; Pingnatello J. J., 1999, ADV AGRON, V69, P1; Placella SA, 2012, P NATL ACAD SCI USA, V109, P10931, DOI 10.1073/pnas.1204306109; Prosser JI, 2007, NAT REV MICROBIOL, V5, P384, DOI 10.1038/nrmicro1643; Prosser JI, 2012, FEMS MICROBIOL ECOL, V81, P507, DOI 10.1111/j.1574-6941.2012.01435.x; Rabus R, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 2, THIRD EDITION, P659, DOI 10.1007/0-387-30742-7_22; Rasse DP, 2005, PLANT SOIL, V269, P341, DOI 10.1007/s11104-004-0907-y; Reid A., 2011, INCORPORATING MICROB; Remenant B, 2009, SOIL BIOL BIOCHEM, V41, P29, DOI 10.1016/j.soilbio.2008.09.005; Rillig MC, 2007, BIOGEOCHEMISTRY, V85, P25, DOI 10.1007/s10533-007-9102-6; ROBERSON EB, 1995, SOIL SCI SOC AM J, V59, P1587, DOI 10.2136/sssaj1995.03615995005900060012x; Rosenzweig R, 2009, VADOSE ZONE J, V8, P1080, DOI 10.2136/vzj2009.0017; Rousk J, 2009, APPL ENVIRON MICROB, V75, P1589, DOI 10.1128/AEM.02775-08; Roux-Michollet DD, 2010, J MICROBIOL METH, V83, P312, DOI 10.1016/j.mimet.2010.09.016; Ruamps LS, 2011, SOIL BIOL BIOCHEM, V43, P280, DOI 10.1016/j.soilbio.2010.10.010; Salles JF, 2012, FRONT MICROBIOL, V3, DOI 10.3389/fmicb.2012.00209; SCHIMEL J, 1995, ECOL STU AN, V113, P239; Schimel J. P., 2005, Biological diversity and function in soils, P171, DOI 10.1017/CBO9780511541926.011; Schimel J, 2007, ECOLOGY, V88, P1386, DOI 10.1890/06-0219; Schimel JP, 2011, SOIL BIOL BIOCHEM, V43, P1101, DOI 10.1016/j.soilbio.2011.01.008; Schimel JP, 1998, GLOBAL CHANGE BIOL, V4, P745, DOI 10.1046/j.1365-2486.1998.00195.x; Schimel JP, 2004, ECOLOGY, V85, P591, DOI 10.1890/03-8002; Schimel JP, 2005, SOIL BIOL BIOCHEM, V37, P1411, DOI 10.1016/j.soilbio.2004.12.011; Schimel JP, 2003, SOIL BIOL BIOCHEM, V35, P549, DOI 10.1016/S0038-0717(03)00015-4; Schimel JP, 1999, SOIL BIOL BIOCHEM, V31, P831, DOI 10.1016/S0038-0717(98)00182-5; Schmidt MWI, 2011, NATURE, V478, P49, DOI 10.1038/nature10386; Schneider T, 2012, ISME J, V6, P1749, DOI 10.1038/ismej.2012.11; SINSABAUGH RL, 1994, SOIL BIOL BIOCHEM, V26, P1305, DOI 10.1016/0038-0717(94)90211-9; SINSABAUGH RL, 1994, BIOL FERT SOILS, V17, P69, DOI 10.1007/BF00418675; Sinsabaugh RL, 2009, NATURE, V462, P795, DOI 10.1038/nature08632; Sistla SA, 2012, NEW PHYTOL, V196, P68, DOI 10.1111/j.1469-8137.2012.04234.x; Six J, 2006, SOIL SCI SOC AM J, V70, P555, DOI 10.2136/sssaj2004.0347; Six J, 2004, SOIL TILL RES, V79, P7, DOI 10.1016/j.still.2004.03.008; Sloan WT, 2006, ENVIRON MICROBIOL, V8, P732, DOI 10.1111/j.1462-2920.2005.00956.x; Sollins P, 2006, SOIL BIOL BIOCHEM, V38, P3313, DOI 10.1016/j.soilbio.2006.04.014; Stevenson F.J., 1982, HUMUS CHEM; Strickland MS, 2009, ECOLOGY, V90, P441, DOI 10.1890/08-0296.1; SUGAI SF, 1993, SOIL BIOL BIOCHEM, V25, P1379, DOI 10.1016/0038-0717(93)90052-D; Sutherland IW, 2001, TRENDS MICROBIOL, V9, P222, DOI 10.1016/S0966-842X(01)02012-1; Sutton R, 2005, ENVIRON SCI TECHNOL, V39, P9009, DOI 10.1021/es050778q; Trumbore S, 2009, ANNU REV EARTH PL SC, V37, P47, DOI 10.1146/annurev.earth.36.031207.124300; Waksman S. A., 1927, PRINCIPLES SOIL MICR; Wallenstein MD, 2010, SOIL BIOL BIOCHEM, V42, P484, DOI 10.1016/j.soilbio.2009.12.001; Wang G, 2010, ENVIRON MICROBIOL, V12, P1363, DOI 10.1111/j.1462-2920.2010.02180.x; Xiang SR, 2008, SOIL BIOL BIOCHEM, V40, P2281, DOI 10.1016/j.soilbio.2008.05.004; Yoo G, 2011, ECOL ENG, V37, P487, DOI 10.1016/j.ecoleng.2010.12.016; Young I. M., 2005, Biological diversity and function in soils, P31, DOI 10.1017/CBO9780511541926.003 139 238 246 29 497 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-302X FRONT MICROBIOL Front. Microbiol. 2012 3 348 10.3389/fmicb.2012.00348 11 Microbiology Microbiology V31DF WOS:000208863600351 23055998 DOAJ Gold, Green Published 2019-02-21 J Marini, MA; Borges, FJA; Lopes, LE; Sousa, NOM; Grassler, DT; Santos, LR; Paiva, LV; Duca, C; Manica, LT; Rodrigues, SS; Franca, LF; Costa, PM; Franca, LC; Heming, NM; Silveira, MB; Pereira, ZP; Lobo, Y; Medeiros, RCS; Roper, JJ Marini, Miguel A.; Borges, Fabio J. A.; Lopes, Leonardo E.; Sousa, Nadinni O. M.; Grassler, Daniel T.; Santos, Luane R.; Paiva, Luciana V.; Duca, Charles; Manica, Lilian T.; Rodrigues, Sheila S.; Franca, Leonardo F.; Costa, Priscila M.; Franca, Letice C.; Heming, Neander M.; Silveira, Mariana B.; Pereira, Zelia P.; Lobo, Yonara; Medeiros, Rita C. S.; Roper, James J. BREEDING BIOLOGY OF BIRDS IN THE CERRADO OF CENTRAL BRAZIL ORNITOLOGIA NEOTROPICAL English Article Eggs; nests; reproduction; savanna; Central Brazil We report the nesting biology of birds in the Cerrado (savanna, both natural and anthropic) of the Federal District of central Brazil, with emphasis on nests, eggs, nesting periods, brood patches, reproductive behavior and period of nesting activity. With 196 nests of 42 species found from 2002 through 2009, we found that most species nested from September to November/December, at the onset of the rainy season, with extensive overlap among species. Contrary to expected for a tropical region, the breeding season period of most species was brief, and lasted 3-4 months. As expected for a tropical region, most species laid two eggs, but clutch sizes reached a maximum of six eggs in a few species. The strong seasonality of the Cerrado, with a rainy season of 7-8 months, is apparently the most important factor that limits breeding and other activities (ex. molt) in this region. Few studies like this are available for the Neotropical region, yet they are fundamental and are still needed and useful for the development of life history theory. Therefore, we recommend that breeding biology receives much more emphasis in future research than to date. Accepted 27 September 2012. [Marini, Miguel A.] Univ Brasilia, Dept Zool, BR-70910900 Brasilia, DF, Brazil; [Borges, Fabio J. A.; Grassler, Daniel T.; Santos, Luane R.; Paiva, Luciana V.; Duca, Charles; Manica, Lilian T.; Franca, Leonardo F.; Costa, Priscila M.; Franca, Letice C.; Heming, Neander M.; Silveira, Mariana B.; Pereira, Zelia P.; Lobo, Yonara] Univ Brasilia, Programa Posgrad Ecol, BR-70910900 Brasilia, DF, Brazil; [Lopes, Leonardo E.; Sousa, Nadinni O. M.; Rodrigues, Sheila S.; Medeiros, Rita C. S.] Univ Brasilia, Programa Posgrad Biol Anim, BR-70910900 Brasilia, DF, Brazil Marini, MA (reprint author), Univ Brasilia, Dept Zool, BR-70910900 Brasilia, DF, Brazil. marini@unb.br Roper, James/H-7986-2012; Duca, Charles/I-2993-2015 Roper, James/0000-0002-2947-5136; Duca, Charles/0000-0003-3903-8260; Heming, Neander/0000-0003-2461-5045 CNPq; CAPES; FAP-DF; Programa de Pos-graduacao em Ecologia; Programa de Pos-graduacao em Biologia Animal (UnB); FINATEC; FUNPAR; Neotropical Grassland Conservancy We thank CNPq for the Productivity scholarship for MAM, and to CNPq and CAPES for the many authors that had a students scholarship. The research project that led to this work was funded by CNPq, FAP-DF, Programa de Pos-graduacao em Ecologia, Programa de Pos-graduacao em Biologia Animal (UnB), FINATEC, FUNPAR, and Neotropical Grassland Conservancy. We thank ESE-CAE (SEMARH/DF) and the private owners of Jardim Morumbi for authorization to use their properties, and IBAMA for banding authorizations. Aguilar TM, 2008, J FIELD ORNITHOL, V79, P24, DOI 10.1111/j.1557-9263.2008.00142.x; Borges FJA, 2008, REV BRAS ORNITOL, V16, P38; Borges FJA, 2010, BIODIVERS CONSERV, V19, P223, DOI 10.1007/s10531-009-9718-z; Antas P. T. Z., 2009, AVES COMUNS PLANALTO; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; BAILLIE SR, 1990, IBIS, V132, P151, DOI 10.1111/j.1474-919X.1990.tb01035.x; Begon M., 2006, ECOLOGY INDIVIDUALS; BELTON W, 1984, B AM MUS NAT HIST, V178, P369; BELTON W, 1985, B AM MUS NAT HIST, V180, pU3; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Brannstrom C, 2008, LAND USE POLICY, V25, P579, DOI 10.1016/j.landusepol.2007.11.008; BRASIL, 2007, MAP COB VEG BIOM BRA; Brown J. L., 1987, HELPING COMMUNAL BRE; Buzzeti Dante, 2005, Atualidades Ornitologicas, V127, P4; Carvalho CBV., 2007, Braz. J. Biol., V67, P275, DOI 10.1590/S1519-69842007000200012; Christie D. A., 2009, HDB BIRDS WORLD, V14; CRUZ A, 1989, WILSON BULL, V101, P62; Da Silva JMC, 2002, BIOSCIENCE, V52, P225, DOI 10.1641/0006-3568(2002)052[0225:BPACIT]2.0.CO;2; da Silva Jose Maria Cardoso, 1995, Steenstrupia, V21, P69; Dantas Santos Marcos Persio, 2007, Bulletin of the British Ornithologists' Club, V127, P249; de Medeiros RDS, 2007, REV BRAS ZOOL, V24, P12, DOI 10.1590/S0101-81752007000100002; de La Pena MR, 2005, REPROD AVES ARGENTIN; Sousa NOD, 2007, REV BRAS ORNITOL, V15, P569; Nóbrega Paula Fernanda Albonette de, 2010, Pap. Avulsos Zool. (São Paulo), V50, P511, DOI 10.1590/S0031-10492010003100001; del Hoyo J., 1994, HDB BIRDS WORLD, V2; Del Hoyo J., 1996, HDB BIRDS WORLD, V3; del Hoyo J, 2002, HDB BIRDS WORLD, V7; del Hoyo J., 2003, HDB BIRDS WORLD, V8; Del Hoyo J., 2005, HDB BIRDS WORLD, V10; del Hoyo J, 1997, HDB BIRDS WORLD, V4; Del-Hoyo J, 2010, HDB BIRDS WORLD, V15; DELHOYO J, 2004, HDB BIRDS WORLD, V9; DELHOYO J. D, 1992, HDB BIRDS WORLD, V1; Desante DE, 1998, AVIAN CONSERVATION: RESEARCH AND MANAGEMENT, P93; Di Giacomo A. G., 2005, HIST NATURAL PAISAJE, V4, P201; DIAS BFS, 1990, CERRADO CARACTERIZAC, P583; Dias Raphael I., 2009, Oecologia Brasiliensis, V13, P183; Duca C, 2011, WILSON J ORNITHOL, V123, P259, DOI 10.1676/10-116.1; Dunning Jr J.B., 2007, CRC HDB AVIAN BODY M; Elliott A, 2011, HDB BIRDS WORLD, V16; Elliott A, 1999, HDB BIRDS WORLD, V5; EULER C., 1900, REV MUS PAULISTA, V4, P9; Faria LCR, 2008, REV BRAS ZOOL, V25, P172, DOI 10.1590/S0101-81752008000200003; Franca LF, 2009, EMU, V109, P265, DOI 10.1071/MU09052; Gomes HB, 2010, WILSON J ORNITHOL, V122, P600, DOI 10.1676/08-098.1; Greeney Harold F., 2004, Bulletin of the British Ornithologists' Club, V124, P28; Greeney Harold F., 2011, Bulletin of the British Ornithologists' Club, V131, P24; Gressler DT, 2011, ORNITOL NEOTROP, V22, P319; Gressler DT, 2007, REV BRAS ORNITOL, V15, P598; Hoffmann D, 2011, ZOOLOGIA-CURITIBA, V28, P305, DOI [10.1590/S1984-46702011000300004, 10.1590/S1984-4670201100030000]; Ihering H. von, 1900, REV MUS PAULISTA, V4, P191; *IUCN, 2008, 2008 IUCN RED LIST T; Janzen D., 1986, GUANACASTE NATL PARK; Johnson EI, 2012, J AVIAN BIOL, V43, P141, DOI 10.1111/j.1600-048X.2011.05574.x; KLINK CA, 1993, WORLDS SAVANNAS EC D, V12, P259; Lopes LE, 2005, BIRD CONSERV INT, V15, P337, DOI 10.1017/S0959270905000675; Lopes Leonardo Esteves, 2005, Pap. Avulsos Zool. (São Paulo), V45, P127, DOI 10.1590/S0031-10492005001200001; Manica LT, 2012, J ORNITHOL, V153, P149, DOI 10.1007/s10336-011-0718-x; Marchant S., 1959, Ibis, V101, P137, DOI 10.1111/j.1474-919X.1959.tb02370.x; MARCHANT S., 1960, IBIS, V102, P349, DOI 10.1111/j.1474-919X.1960.tb08415.x; Marini M. A., 2009, BIOTA NEOTROP, V9, P54; Marini MA, 2005, CONSERV BIOL, V19, P665, DOI 10.1111/j.1523-1739.2005.00706.x; MARINI MA, 1992, WILSON BULL, V104, P168; Marini MA, 2001, CONDOR, V103, P767, DOI 10.1650/0010-5422(2001)103[0767:APOMAR]2.0.CO;2; Marini MA, 2010, ORNITOL NEOTROP, V21, P581; Marini Miguel A., 1997, Ornitologia Neotropical, V8, P93; Marini Miguel Angelo, 2009, Neotropical Biology and Conservation, V4, P3, DOI 10.4013/nbc.2009.41.01; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MMA, 1999, AR PRIOR CONS BIOD C; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nimer E, 1979, CLIMATOLOGIA BRASIL; ONIKI Y, 1983, Revista Brasileira de Biologia, V43, P45; ONIKI Y, 1983, Ciencia e Cultura (Sao Paulo), V35, P1875; ONIKI Y, 1983, Ciencia e Cultura (Sao Paulo), V35, P1880; Paiya L. V., WILSON J OR IN PRESS; Pereira ZP, 2011, THESIS; Piratelli Augusto Joao, 2000, Ararajuba, V8, P99; PRADO AD, 2006, ATUALIDADES ORNITOLO, V134, P4; Ratter JA, 1997, ANN BOT-LONDON, V80, P223, DOI 10.1006/anbo.1997.0469; Remsen Jr J. V., 2012, CLASSIFICATION BIRD; Repenning M, 2011, EMU, V111, P268, DOI 10.1071/MU10018; Ribeiro J. F., 1998, CERRADO AMBIENTE FLO, P89; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Ricklefs R. E., 1969, LIV BIRD, V15, P33; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Rodrigues LD, 2011, WILSON J ORNITHOL, V123, P726; Rodrigues M, 2009, REV BRAS ORNITOL, V17, P155; Roper James J., 2000, Ararajuba, V8, P85; Roper James J., 2003, Ornitologia Neotropical, V14, P1; Roper JJ, 2010, OIKOS, V119, P719, DOI 10.1111/j.1600-0706.2009.18047.x; Rubio Tatiana Colombo, 2008, Pap. Avulsos Zool. (São Paulo), V48, P181, DOI 10.1590/S0031-10492008001700001; SANTOS L. R., 2010, J FIELD ORNITHOL, V81, P252; Silva J. M. C., 2005, CERRADO ECOLOGIA BIO, P220; Silveira MB, 2012, CONDOR, V114, P435, DOI 10.1525/cond.2012.110022; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SNOW D. W., 1964, ZOOLOGICA [NEW YORK], V49, P1; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Stutchbury BJM, 2008, WILSON J ORNITHOL, V120, P26, DOI 10.1676/07-018.1; Willis E. O., 1979, REVISED LIST BIRDS B; Wischhoff U, 2012, WILSON J ORNITHOL, V124, P166, DOI 10.1676/11-004.1; de Lima AMX, 2009, J TROP ECOL, V25, P605, DOI 10.1017/S0266467409990289; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; Zimmer KJ, 2001, AUK, V118, P56, DOI 10.1642/0004-8038(2001)118[0056:ACNSOF]2.0.CO;2 103 12 14 0 0 NEOTROPICAL ORNITHOLOGICAL SOC, USGS PATUXENT WILDLIFE RESEARCH CTR ATHENS UNIV GEORGIA, WARNELL SCH FOREST RESOURCES, ATHENS, GA 30602-2152 USA 1075-4377 ORNITOL NEOTROP ORNITOL. NEOTROP. 2012 23 3 385 405 21 Ornithology Zoology V40HI WOS:000209469300008 2019-02-21 S Banks, JE; Ackleh, A; Stark, JD Kojima, F; Kobayashi, F; Nakamoto, H Banks, John E.; Ackleh, Azmy; Stark, John D. Population models & data in applied ecology: Surrogate species SIMULATION AND MODELING RELATED TO COMPUTATIONAL SCIENCE AND ROBOTICS TECHNOLOGY Studies in Applied Electromagnetics and Mechanics English Proceedings Paper International Workshop on Simulation and Modeling related to Computational Science and Robotics Technology (SiMCRT) NOV 01-03, 2011 Kobe Univ, Kobe, JAPAN AF Off Sci Res, Asian Off Aerosp R & D, U S Army Rdecom Kobe Univ Parasitoid; salmonid; Leslie matrix model LIFE-HISTORY STRATEGIES; RISK-ASSESSMENT; GROWTH-RATE; SUSCEPTIBILITY; EXTRAPOLATION; TEPHRITIDAE; PARASITOIDS; SENSITIVITY; TOXICITY; DIPTERA The use of surrogate species is a tool commonly used to predict the effects of toxicants on endangered/threatened or economically important species. While use of surrogate species has been critized as being overly simplistic, a quantitative measure linking life history traits and population predictions has been sorely missing. We derive here a closed-form expression aimed at determining conditions under which sublethal effects of a toxicant on surrogate species population outcomes will reliably predict responses of species of concern. We derive a simple inequality that allows us to compare critical thresholds in fecundity reduction across species and thereby pinpoint the level below which surrogate species outcomes indicate a positive population growth, while the listed species actually is driven to extinction. We thus establish a means of determining conditions under which we might be prone to making a "type II" error in assessing ecological risk using surrogate species. Finally, we use the derived expression to illustrate two cases studies - one in which we are using several fish species as surrogates for endangered salmonids, and the second in which we are comparing the compatibility of a suite of parasitoid wasps with pesticide use. In both cases we highlight potential pitfalls associated with the use of a "one-size-fits-all" approach to protection of species. We discuss the ramifications of these findings on risk assessment and resource management. [Banks, John E.] Univ Washington, Environm Sci Program Interdisciplinary Arts & Sci, 1900 Commerce St, Tacoma, WA 98195 USA; [Ackleh, Azmy] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA; [Stark, John D.] Washington State Univ, Ecotoxicol Program, Puyallup, WA 98371 USA Banks, JE (reprint author), Univ Washington, Environm Sci Program Interdisciplinary Arts & Sci, 1900 Commerce St, Tacoma, WA 98195 USA. banksj@uw.edu Ankley GT, 2006, AQUAT TOXICOL, V78, P91, DOI 10.1016/j.aquatox.2006.01.018; Banks J.E., 1998, INTEGR BIOL, V5, P1, DOI DOI 10.1002/(SICI)1520-6602(1998)1:5; Banks JE, 2011, BIOL CONTROL, V59, P336, DOI 10.1016/j.biocontrol.2011.09.005; Banks JE, 2010, RISK ANAL, V30, P175, DOI 10.1111/j.1539-6924.2009.01349.x; Billoir E, 2007, ECOL MODEL, V203, P204, DOI 10.1016/j.ecolmodel.2006.11.021; Buckler DR, 2005, ARCH ENVIRON CON TOX, V49, P546, DOI 10.1007/s00244-004-0151-8; Carmo EL, 2010, BIOCONTROL, V55, P455, DOI 10.1007/s10526-010-9269-y; Casas J, 2000, PARASITOID POPULATION BIOLOGY, P17; Caswell H., 2001, MATRIX POPULATION MO; Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1897/1551-5028(1998)017<0099:ACEOSU>2.3.CO;2; COSTELLO MJ, 1995, AGR ECOSYST ENVIRON, V52, P187, DOI 10.1016/0167-8809(94)00535-M; Cushing J. M., 1998, ENV SCI TECHNOLOGY, V71; Duan JJ, 1997, BIOL CONTROL, V8, P177, DOI 10.1006/bcon.1997.0503; Dyer SD, 2008, ENVIRON SCI TECHNOL, V42, P3076, DOI 10.1021/es702302e; Fairchild JE, 2008, ENVIRON TOXICOL CHEM, V27, P623, DOI 10.1897/07-342.1; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes VE, 2002, PHILOS T ROY SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Jepsen SJ, 2007, BIOCONTROL, V52, P721, DOI 10.1007/s10526-006-9058-9; Leslie PH, 1945, BIOMETRIKA, V33, P184, DOI 10.1093/biomet/33.3.183; Lopes C, 2005, ECOL MODEL, V188, P30, DOI 10.1016/j.ecolmodel.2005.05.004; Mohamed S. A., 2008, J APPL ENTOMOLOGY, V132; MURDOCH WW, 1994, ECOLOGY, V75, P271, DOI 10.2307/1939533; Nowak JT, 2001, J ECON ENTOMOL, V94, P1122, DOI 10.1603/0022-0493-94.5.1122; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621; Stark JD, 2007, J ECON ENTOMOL, V100, P1027, DOI 10.1603/0022-0493(2007)100[1027:IERMOP]2.0.CO;2; THEILING KM, 1988, AGR ECOSYST ENVIRON, V21, P191, DOI 10.1016/0167-8809(88)90088-6; Vargas RI, 2001, J ECON ENTOMOL, V94, P817, DOI 10.1603/0022-0493-94.4.817 30 0 0 0 1 IOS PRESS AMSTERDAM NIEUWE HEMWEG 6B, 1013 BG AMSTERDAM, NETHERLANDS 1383-7281 978-1-61499-092-5; 978-1-61499-091-8 STUD APPL ELECTROMAG 2012 37 34 43 10.3233/978-1-61499-092-5-34 10 Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics Engineering; Mathematics; Mechanics BG9CO WOS:000393056500003 2019-02-21 J Scelza, BA Scelza, Brooke A. Female choice and extra-pair paternity in a traditional human population BIOLOGY LETTERS English Article extra-pair paternity; female choice; Himba; Namibia; life-history theory PARTIBLE PATERNITY; SELECTION; EVOLUTION; HISTORY Seeking out extra-pair paternity (EPP) is a viable reproductive strategy for females in many pair-bonded species. Across human societies, women commonly engage in extra-marital affairs, suggesting this strategy may also be an important part of women's reproductive decision-making. Here, I show that among the Himba 17 per cent of all recorded marital births are attributed by women to EPP, and EPP is associated with significant increases in women's reproductive success. In contrast, there are no cases of EPP among children born into 'love match' marriages. This rate of EPP is higher than has been recorded in any other small-scale society. These results illustrate the importance of seeking EPP as a mechanism of female choice in humans, while simultaneously showing it to be highly variable and context-dependent. Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA Scelza, BA (reprint author), Univ Calif Los Angeles, Dept Anthropol, 341 Haines Hall,POB 951553, Los Angeles, CA 90095 USA. bscelza@gmail.com UCLA Centre for the Study of Women; UCLA This research was funded by the UCLA Centre for the Study of Women and a UCLA Faculty Research Grant. Joan Silk and Eric Smith provided helpful comments on the manuscript. My research assistant Kemuu Jakurama was indispensable. Finally, I would like to thank the Himba for their hospitality, good humour and friendship. Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Andersson M., 1994, SEXUAL SELECTION; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Baker R. R., 1995, HUMAN SPERM COMPETIT; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Beckerman S, 1998, CURR ANTHROPOL, V39, P164, DOI 10.1086/204706; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Forstmeier W, 2002, P ROY SOC B-BIOL SCI, V269, P1479, DOI 10.1098/rspb.2002.2039; Goodale JC, 1971, TIWI WIVES STUDY WOM; Greiling H, 2000, PERS INDIV DIFFER, V28, P929, DOI 10.1016/S0191-8869(99)00151-8; Hill K., 1996, ACHE LIFE HIST ECOLO; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; Hrdy SB, 2000, ANN NY ACAD SCI, V907, P75, DOI 10.1111/j.1749-6632.2000.tb06617.x; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Mulder MB, 2009, HUM NATURE-INT BIOS, V20, P130, DOI 10.1007/s12110-009-9060-x; NEEL JV, 1975, AM J PHYS ANTHROPOL, V42, P25, DOI 10.1002/ajpa.1330420105; Petrie M, 1998, P NATL ACAD SCI USA, V95, P9390, DOI 10.1073/pnas.95.16.9390; Shostak M., 1981, NISA LIFE WORDS KUNG; Snyder BF, 2007, EVOLUTION, V61, P2457, DOI 10.1111/j.1558-5646.2007.00212.x; Walker RS, 2010, P NATL ACAD SCI USA, V107, P19195, DOI 10.1073/pnas.1002598107; Wiessner P, 2009, ORIG HUM BEHAV, V2, P251; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437 23 47 47 0 29 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. DEC 23 2011 7 6 889 891 10.1098/rsbl.2011.0478 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 846IQ WOS:000296890900028 21733870 Green Published, Other Gold 2019-02-21 J Riesch, R; Plath, M; Schlupp, I Riesch, Ruediger; Plath, Martin; Schlupp, Ingo Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation BIOLOGY LETTERS English Article cave fauna; ecological speciation; life-history evolution; local adaptation; Poecilia mexicana ADAPTED FISH POPULATIONS; TOXIC HYDROGEN-SULFIDE; POECILIA-MEXICANA; SEXUAL SELECTION; DIFFERENTIATION; ENVIRONMENTS; DIVERGENCE; MIGRANTS Divergent selection through biotic factors like predation or parasitism can promote reproductive isolation even in the absence of geographical barriers. On the other hand, evidence for a role of adaptation to abiotic factors during ecological speciation in animals is scant. In particular, the role played by perpetual darkness in establishing reproductive isolation in cave animals (troglobites) remains elusive. We focused on two reproductively isolated ecotypes (surface-and cave-dwelling) of the widespread livebearer Poecilia mexicana, and raised offspring of wild-caught females to sexual maturity in a 12-month common-garden experiment. Fish were reared in light or darkness combined with high-or low-food conditions. Females, but not males, of the surface ecotype suffered from almost complete reproductive failure in darkness, especially in the low-food treatment. Furthermore, surface fish suffered from a significantly higher rate of spontaneous, stress-related infection with bacterial columnaris disease. This experimental evidence for strong selection by permanent darkness on non-adapted surface-dwelling animals adds depth to our understanding of the selective forces establishing and maintaining reproductive isolation in cave faunas. [Riesch, Ruediger; Schlupp, Ingo] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA; [Riesch, Ruediger] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA; [Riesch, Ruediger] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA; [Plath, Martin] Goethe Univ Frankfurt, Dept Ecol & Evolut, D-60054 Frankfurt, Germany Riesch, R (reprint author), Univ Oklahoma, Dept Zool, 730 Van Vleet Oval, Norman, OK 73019 USA. ruedigerriesch@web.de Riesch, Rudiger/A-5787-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667 National Science Foundation of America [DEB-0743406] We would like to thank T. Colston and F. J. Gracia de Leon for help in the field, and J. Curtis and A. Makowicz for help during the experiment. D. N. Reznick graciously provided the common-garden protocols upon which this experiment is based. Funding came from the National Science Foundation of America (DEB-0743406). Bonga SEW, 1997, PHYSIOL REV, V77, P591, DOI 10.1152/physrev.1997.77.3.591; CHARNOV E L, 1982; Coyne J. A., 2004, SPECIATION; Culver D.C., 2009, BIOL CAVES OTHER SUB; Dumpala PR, 2010, PROTEOME SCI, V8, DOI 10.1186/1477-5956-8-26; GORDON MS, 1962, COPEIA, P360, DOI DOI 10.2307/1440903; Kohler A, 2011, BEHAV ECOL SOCIOBIOL, V65, P1513, DOI 10.1007/s00265-011-1161-y; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; MacColl ADC, 2010, FUNCT ECOL, V24, P847, DOI 10.1111/j.1365-2435.2010.01691.x; Nosil P, 2004, P ROY SOC B-BIOL SCI, V271, P1521, DOI 10.1098/rspb.2004.2751; Parzefall J, 2001, ENVIRON BIOL FISH, V62, P263, DOI 10.1023/A:1011899817764; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Snowberg LK, 2009, J EVOLUTION BIOL, V22, P762, DOI 10.1111/j.1420-9101.2009.01699.x; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2009, BIOL LETTERS, V5, P506, DOI 10.1098/rsbl.2009.0272; Yoshizawa M, 2010, CURR BIOL, V20, P1631, DOI 10.1016/j.cub.2010.07.017 19 17 17 0 31 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. DEC 23 2011 7 6 909 912 10.1098/rsbl.2011.0237 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 846IQ WOS:000296890900034 21561964 Bronze, Green Published 2019-02-21 J Vogeli, M; Laiolo, P; Serrano, D; Tella, JL Voegeli, Matthias; Laiolo, Paola; Serrano, David; Tella, Jose L. Predation of experimental nests is linked to local population dynamics in a fragmented bird population BIOLOGY LETTERS English Article habitat fragmentation; nest predation; artificial nest experiment; population viability analysis ARTIFICIAL NESTS; RATES; BIAS; EXTINCTION; ATTRIBUTES Artificial nest experiments (ANEs) are widely used to obtain proxies of natural nest predation for testing a variety of hypotheses, from those dealing with variation in life-history strategies to those assessing the effects of habitat fragmentation on the persistence of bird populations. However, their applicability to real-world scenarios has been criticized owing to the many potential biases in comparing predation rates of artificial and natural nests. Here, we aimed to test the validity of estimates of ANEs using a novel approach. We related predation rates on artificial nests to population viability analyses in a songbird metapopulation as a way of predicting the real impact of predation events on the local populations studied. Predation intensity on artificial nests was negatively related to the species' annual population growth rate in small local populations, whereas the viability of large local populations did not seem to be influenced, even by high nest predation rates. The potential of extrapolation from ANEs to real-world scenarios is discussed, as these results suggest that artificial nest predation estimates may predict demographic processes in small structured populations. [Voegeli, Matthias; Serrano, David; Tella, Jose L.] Estn Biol Donana EBD CSIC, Dept Conservat Biol, Seville 41092, Spain; [Voegeli, Matthias] Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada; [Laiolo, Paola] Res Unity Biodivers UO CSIC PA, Oviedo 33071, Spain Vogeli, M (reprint author), Estn Biol Donana EBD CSIC, Dept Conservat Biol, Seville 41092, Spain. matthias.voegeli@usask.ca Laiolo, Paola/B-6566-2014; Serrano, David/B-5352-2013; Vogeli, Matthias/G-1815-2010; CSIC, EBD Donana/C-4157-2011; Tella, Jose/I-3707-2015 Laiolo, Paola/0000-0002-2009-6797; Serrano, David/0000-0001-6205-386X; Vogeli, Matthias/0000-0002-3408-0972; CSIC, EBD Donana/0000-0003-4318-6602; Tella, Jose/0000-0002-3038-7424 CSIC; Junta of Andalucia [RNM1274]; [I3P-CISC/MICINN] M.V. was supported by pre- and post-doctoral fellowships (I3P-CISC/MICINN), and with P. L. by a PIE project (CSIC). Funds were provided by Excellence Project RNM1274, Junta of Andalucia. We thank G. D. Fairhurst, and three anonymous referees for comments on the article. CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; Cresswell W, 1997, ANIM BEHAV, V53, P93, DOI 10.1006/anbe.1996.0281; GREENWOOD JJ, 1996, BASIC TECHNIQUES ECO, P11; HASKELL DG, 1995, CONSERV BIOL, V9, P1316, DOI 10.1046/j.1523-1739.1995.9051316.x; Laiolo P, 2008, ANIM CONSERV, V11, P433, DOI 10.1111/j.1469-1795.2008.00202.x; Laiolo P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001822; MAJOR RE, 1990, IBIS, V132, P608, DOI 10.1111/j.1474-919X.1990.tb00285.x; MARTIN TE, 1988, P NATL ACAD SCI USA, V85, P2196, DOI 10.1073/pnas.85.7.2196; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Moore RP, 2004, ECOLOGY, V85, P1562, DOI 10.1890/03-0088; Rangen SA, 2000, AUK, V117, P136, DOI 10.1642/0004-8038(2000)117[0136:VAOAOA]2.0.CO;2; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Rotella JJ, 2000, AUK, V117, P92, DOI 10.1642/0004-8038(2000)117[0092:CNSEFO]2.0.CO;2; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SUAREZ F, 2009, ALONDRAS ESPANA PENI; Tella JL, 2005, ORYX, V39, P90, DOI 10.1017/S0030605305000165; Thompson FR, 2004, CONSERV BIOL, V18, P373, DOI 10.1111/j.1523-1739.2004.00167.x; Vogeli M, 2010, BIOL CONSERV, V143, P1057, DOI 10.1016/j.biocon.2009.12.040; Weidinger K, 2001, IBIS, V143, P632, DOI 10.1111/j.1474-919X.2001.tb04891.x; Woodroffe R, 1998, SCIENCE, V280, P2126, DOI 10.1126/science.280.5372.2126 20 9 9 3 20 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. DEC 23 2011 7 6 954 957 10.1098/rsbl.2011.0241 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 846IQ WOS:000296890900046 21493624 Green Published, Bronze 2019-02-21 J Pincheira-Donoso, D Pincheira-Donoso, Daniel Predictable Variation of Range-Sizes across an Extreme Environmental Gradient in a Lizard Adaptive Radiation: Evolutionary and Ecological Inferences PLOS ONE English Article LIFE-HISTORY EVOLUTION; CLIMATE-CHANGE; BODY-SIZE; SPECIES RICHNESS; PHYLOGENETIC INERTIA; GEOGRAPHIC-VARIATION; LIOLAEMUS LIZARDS; BOULENGERI CLADE; GENUS LIOLAEMUS; RAPOPORTS RULE Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses), such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding) in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule) predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational) ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations. Univ Exeter, Ctr Ecol & Conservat, Coll Life & Environm Sci, Exeter, Devon, England Pincheira-Donoso, D (reprint author), Univ Exeter, Ctr Ecol & Conservat, Coll Life & Environm Sci, Streatham Campus, Exeter, Devon, England. D.PincheiraDonoso@exeter.ac.uk Leverhulme Trust; CRIDESAT (University of Atacama) The author is indebted to the Leverhulme Trust for support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; I thank Jan Stipala and anonymous referees for thoughtful critical comments on earlier versions of this manuscript. I am also indebted to J.M. Cei (JMC-DC), M. Contreras, E. Solar and J. Artigas (MZUC), R. Gemel and H. Grillitsch (NHMV), N. Ibarguengoytia (UNComahue), I. Ineich (MNHNP), C. McCarthy (NHML), J. Navarro (DBGUCH), H. Nunez (MNHN), M. Oliver-Roedel (ZMB), E. Pereyra (IBAUNC), J. Scolaro (CENPAT, JAS-DC), F. Videla (IADIZA), for providing unrestricted access to Liolaemus specimens, and to J.M. Cei for unpublished data on some species. Finally, I thank CRIDESAT (University of Atacama) for an honorary fellowship. Abdala CS, 2007, ZOOTAXA, P1; Addo-Bediako A, 2000, P ROY SOC B-BIOL SCI, V267, P739, DOI 10.1098/rspb.2000.1065; Bauwens D, 1996, ECOLOGY, V77, P1818, DOI 10.2307/2265786; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; BROWN JH, 1989, SCIENCE, V243, P1145, DOI 10.1126/science.243.4895.1145; Brown RP, 1999, ECOGRAPHY, V22, P277, DOI 10.1111/j.1600-0587.1999.tb00503.x; Carothers JH, 2001, REV CHIL HIST NAT, V74, P313; Cei J. M., 1993, REPTILES NOROESTE NO; Cei JM, 1986, REPTILES CTR CTR OES; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Cruz FB, 2005, J EVOLUTION BIOL, V18, P1559, DOI 10.1111/j.1420-9101.2005.00936.x; del Barrio G, 2006, ENVIRON SCI POLICY, V9, P129, DOI 10.1016/j.envsci.2005.11.005; Gomez JMD, 2009, ZOOL SCR, V38, P1, DOI 10.1111/j.1463-6409.2008.00357.x; Espinoza RE, 2004, P NATL ACAD SCI USA, V101, P16819, DOI 10.1073/pnas.0401226101; Etienne RS, 2004, AM NAT, V163, P69, DOI 10.1086/380582; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FUENTES ER, 1979, ARCH BIOL MED EXP, V12, P179; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Gaston K. J., 2003, STRUCTURE DYNAMICS G; Gaston KJ, 2009, P R SOC B, V276, P1395, DOI 10.1098/rspb.2008.1480; Gaston KJ, 1998, TRENDS ECOL EVOL, V13, P70, DOI 10.1016/S0169-5347(97)01236-6; Gomez Molina E., 1981, Mountain Research and Development, V1, P115; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Hewitt Godfrey M., 2005, P176; Hoglund J, 2009, EVOLUTIONARY CONSERVATION GENETICS, P1; Huey RB, 2010, SCIENCE, V328, P832, DOI 10.1126/science.1190374; Hughes Kimberly A., 2004, P119, DOI 10.1017/CBO9780511542022.010; Ibarguengoytia NR, 2010, J THERM BIOL, V35, P21, DOI 10.1016/j.jtherbio.2009.10.003; IPCC, 2007, CLIM CHANG 2007 IMP; JAKSIC FM, 1998, ECOLOGIA VERTEBRADOS; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Korner C, 2002, MOUNTAIN BIODIVERSITY: A GLOBAL ASSESSMENT, P3; La Sorte FA, 2010, P ROY SOC B-BIOL SCI, V277, P3401, DOI 10.1098/rspb.2010.0612; Labra A, 2009, AM NAT, V174, P204, DOI 10.1086/600088; Lee MSY, 1998, EVOLUTION, V52, P1441, DOI 10.1111/j.1558-5646.1998.tb02025.x; Losos JB, 2003, LIZARD SOCIAL BEHAVIOR, P356; Lutgens F.K., 1998, ATMOSPHERE INTRO MET; Martins E P, 2004, COMPARE VERSION 4 6B; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; Massot M, 2008, GLOBAL CHANGE BIOL, V14, P461, DOI 10.1111/j.1365-2486.2007.01514.x; Meiri S, 2010, J ZOOL, V281, P218, DOI 10.1111/j.1469-7998.2010.00696.x; Meiri S, 2008, GLOBAL ECOL BIOGEOGR, V17, P724, DOI 10.1111/j.1466-8238.2008.00414.x; Miles DB, 2000, EVOLUTION, V54, P1386; Nagy L, 2009, BIOL ALPINE HABITATS; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Parmesan C, 2007, GLOBAL CHANGE BIOL, V13, P1860, DOI 10.1111/j.1365-2486.2007.01404.x; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Parmesan Camille, 2005, P41; Peters R.H., 1983, P1; Pincheira-Donoso D, 2007, J EVOLUTION BIOL, V20, P2067, DOI 10.1111/j.1420-9101.2007.01394.x; Pincheira-Donoso D, 2011, HERPETOL J, V21, P35; Pincheira-Donoso D, 2008, EVOL ECOL RES, V10, P11; Pincheira-Donoso D, 2007, ZOOTAXA, P25; Pincheira-Donoso D, 2008, ZOOTAXA, P1; Pincheira-Donoso D, 2011, EVOL BIOL, V38, P197, DOI 10.1007/s11692-011-9118-7; Pincheira-Donoso D, 2009, ECOL RES, V24, P1223, DOI 10.1007/s11284-009-0607-4; Pincheira-Donoso D, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-68; Pough F. H., 2004, HERPETOLOGY; Pounds JA, 2006, NATURE, V439, P161, DOI 10.1038/nature04246; Pounds JA, 1999, NATURE, V398, P611, DOI 10.1038/19297; Rapoport E. H., 1982, AREOGRAPHY GEOGRAPHI; Reed RN, 2003, ECOGRAPHY, V26, P107, DOI 10.1034/j.1600-0587.2003.03388.x; ROHDE K, 1993, AM NAT, V142, P1, DOI 10.1086/285526; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Rosenzweig C., 2007, CLIMATE CHANGE 2007, V2007, P79; Schulte JA, 2000, BIOL J LINN SOC, V69, P75, DOI 10.1006/bijl.1999.0346; Scolaro J. A., 2005, REPTILES PATAGONICOS; Scolaro JA, 2006, REPTILES PATAGONICOS; Scolaro JA, 2010, ZOOTAXA, P17; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; Smith RJ, 1999, J HUM EVOL, V36, P423, DOI 10.1006/jhev.1998.0281; SQUEO FA, 1993, MT RES DEV, V13, P203, DOI 10.2307/3673638; STEVEN AJ, 1983, COLEOPTERISTS B, V37, P232; STEVENS GC, 1989, AM NAT, V133, P240, DOI 10.1086/284913; Thomas CD, 1999, NATURE, V399, P213, DOI 10.1038/20335; Thomas CD, 2001, NATURE, V411, P577, DOI 10.1038/35079066; Thomas Chris D., 2005, P75; Thomas CD, 2006, TRENDS ECOL EVOL, V21, P415, DOI 10.1016/j.tree.2006.05.012; Thomas CD, 2010, DIVERS DISTRIB, V16, P488, DOI 10.1111/j.1472-4642.2010.00642.x; Wiens JJ, 2004, EVOLUTION, V58, P193, DOI 10.1111/j.0014-3820.2004.tb01586.x; Wiens JJ, 2011, Q REV BIOL, V86, P75, DOI 10.1086/659883; Williams SE, 2003, P ROY SOC B-BIOL SCI, V270, P1887, DOI 10.1098/rspb.2003.2464; Wilson RJ, 2005, ECOL LETT, V8, P1138, DOI 10.1111/j.1461-0248.2005.00824.x; Zani PA, 2005, ECOLOGY, V86, P1206, DOI 10.1890/04-1248; Zar JH., 2009, BIOSTATISTICAL ANAL 89 12 14 3 27 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One DEC 14 2011 6 12 e28942 10.1371/journal.pone.0028942 8 Multidisciplinary Sciences Science & Technology - Other Topics 866GS WOS:000298369100129 22194953 DOAJ Gold, Green Published 2019-02-21 J Tybur, JM; Gangestad, SW Tybur, Joshua M.; Gangestad, Steven W. Mate preferences and infectious disease: theoretical considerations and evidence in humans PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review mate preferences; mate choice; disease avoidance; major histocompatibility complex; disgust MAJOR HISTOCOMPATIBILITY COMPLEX; SEXUALLY-TRANSMITTED-DISEASE; HUMAN FACIAL ATTRACTIVENESS; LIFE-HISTORY EVOLUTION; MENSTRUAL-CYCLE; WOMENS PREFERENCES; DISGUST SENSITIVITY; CLASS-I; INDIVIDUAL-DIFFERENCES; APPARENT HEALTH Mate preferences may operate in part to mitigate the threats posed by infectious disease. In this paper, we outline various ways in which preferring healthy mates can offer direct benefits in terms of pathogen avoidance and indirect benefits in terms of heritable immunity to offspring, as well as the costs that may constrain mate preferences for health. We then pay special attention to empirical work on mate preferences in humans given the depth and breadth of research on human mating. We review this literature and comment on the degree to which human mate preferences may reflect preferences for health. [Gangestad, Steven W.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Tybur, Joshua M.] Vrije Univ Amsterdam, Dept Social & Org Psychol, Amsterdam, Netherlands Gangestad, SW (reprint author), Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA. sgangest@unm.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Gangestad, Steven/0000-0002-8879-4348 Able DJ, 1996, P NATL ACAD SCI USA, V93, P2229, DOI 10.1073/pnas.93.5.2229; Ackerman JM, 2009, J EXP SOC PSYCHOL, V45, P478, DOI 10.1016/j.jesp.2008.12.008; Adamo SA, 2005, BEHAV ECOL, V16, P871, DOI 10.1093/beheco/ari068; Adamo SA, 2009, ANIM BEHAV, V77, P67, DOI 10.1016/j.anbehav.2008.09.011; Birkhead TR, 2006, EVOLUTION, V60, P2389; Boothroyd LG, 2005, EVOL HUM BEHAV, V26, P417, DOI 10.1016/j.evolhumbehav.2005.01.001; Boots M, 2002, P ROY SOC B-BIOL SCI, V269, P585, DOI 10.1098/rspb.2001.1932; BORGIA G, 1990, AM ZOOL, V30, P279; BORGIA G, 1986, BEHAV ECOL SOCIOBIOL, V19, P355, DOI 10.1007/BF00295708; Brooks R, 2011, P ROY SOC B-BIOL SCI, V278, P810, DOI 10.1098/rspb.2010.0964; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Carrington M, 2003, ANNU REV MED, V54, P535, DOI 10.1146/annurev.med.54.101601.152346; Case TI, 2006, EVOL HUM BEHAV, V27, P357, DOI 10.1016/j.evolhumbehav.2006.03.003; Coetzee V, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000640; Curtis V, 2004, P ROY SOC B-BIOL SCI, V271, pS131, DOI 10.1098/rsbl.2003.0144; DeBruine L, 2010, EVOL PSYCHOL-US, V8, P768; DeBruine LM, 2011, P ROY SOC B-BIOL SCI, V278, P813, DOI 10.1098/rspb.2010.2200; DeBruine LM, 2010, P ROY SOC B-BIOL SCI, V277, P2405, DOI 10.1098/rspb.2009.2184; DeBruine LM, 2010, EVOL HUM BEHAV, V31, P69, DOI 10.1016/j.evolhumbehav.2009.09.003; Denic S, 2008, EVOL HUM BEHAV, V29, P364, DOI 10.1016/j.evolhumbehav.2008.04.006; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Duncan LA, 2009, PERS INDIV DIFFER, V47, P541, DOI 10.1016/j.paid.2009.05.001; Feinberg DR, 2006, HORM BEHAV, V49, P215, DOI 10.1016/j.yhbeh.2005.07.004; Fessler DMT, 2005, EVOL HUM BEHAV, V26, P344, DOI 10.1016/j.evolhumbehav.2004.12.001; Fessler DMT, 2003, EVOL HUM BEHAV, V24, P406, DOI 10.1016/S1090-5138(03)00054-0; Fessler DMT, 2002, CURR ANTHROPOL, V43, P19, DOI 10.1086/324128; Fessler DMT, 2001, RIV BIOL-BIOL FORUM, V94, P403; Fincher CL, 2008, P R SOC B, V275, P2587, DOI 10.1098/rspb.2008.0688; Fincher CL, 2008, P R SOC B, V275, P1279, DOI 10.1098/rspb.2008.0094; Fink B, 2006, EVOL HUM BEHAV, V27, P433, DOI 10.1016/j.evolhumbehav.2006.08.007; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Gangestad SW, 2008, P ROY SOC B-BIOL SCI, V275, P991, DOI 10.1098/rspb.2007.1425; Gangestad SW, 2007, J PERS SOC PSYCHOL, V92, P151, DOI 10.1037/0022-3514.92.1.151; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gangestad SW, 2010, ANIM BEHAV, V80, P1005, DOI 10.1016/j.anbehav.2010.09.003; Gangestad SW, 1998, P ROY SOC B-BIOL SCI, V265, P927, DOI 10.1098/rspb.1998.0380; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; GANGESTAD SW, 1990, J PERS, V58, P69, DOI 10.1111/j.1467-6494.1990.tb00908.x; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gangestad SW, 2004, PSYCHOL SCI, V15, P203, DOI 10.1111/j.0956-7976.2004.01503010.x; Garver-Apgar CE, 2006, PSYCHOL SCI, V17, P830, DOI 10.1111/j.1467-9280.2006.01789.x; Getty T, 2006, TRENDS ECOL EVOL, V21, P83, DOI 10.1016/j.tree.2005.10.016; Getty T, 2002, AM NAT, V159, P363, DOI 10.1086/338992; Grammer K, 2003, BIOL REV, V78, P385, DOI 10.1017/S1464793102006085; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Hale ML, 2009, J EVOLUTION BIOL, V22, P1284, DOI 10.1111/j.1420-9101.2009.01746.x; Hata TR, 2000, J INVEST DERMATOL, V115, P441, DOI 10.1046/j.1523-1747.2000.00060.x; Hawkes K, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P443; Hedrick PW, 1997, AM J HUM GENET, V61, P505, DOI 10.1086/515519; Henderson JJA, 2003, EVOL HUM BEHAV, V24, P351, DOI 10.1016/S1090-5138(03)00036-9; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Ihara Y, 2000, ANTHROPOL SCI, V108, P199, DOI 10.1537/ase.108.199; Jacob S, 2002, NAT GENET, V30, P175, DOI 10.1038/ng830; Jeffery KJM, 2000, J IMMUNOL, V165, P7278, DOI 10.4049/jimmunol.165.12.7278; Jones BC, 2005, HORM BEHAV, V48, P283, DOI 10.1016/j.yhbeh.2005.03.010; Jones BC, 2005, P ROY SOC B-BIOL SCI, V272, P347, DOI 10.1098/rspb.2004.2962; Jones BC, 2004, PERCEPTION, V33, P569, DOI 10.1068/p3463; Jones BC, 2001, EVOL HUM BEHAV, V22, P417, DOI 10.1016/S1090-5138(01)00083-6; Jones BC, 2008, ARCH SEX BEHAV, V37, P78, DOI 10.1007/s10508-007-9268-y; Kalick SM, 1998, PSYCHOL SCI, V9, P8, DOI 10.1111/1467-9280.00002; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan HS, 2009, P R SOC B, V276, P1837, DOI 10.1098/rspb.2008.1831; Knell RJ, 1999, EVOLUTION, V53, P957, DOI 10.1111/j.1558-5646.1999.tb05389.x; Knell RJ, 2004, BIOL REV, V79, P557, DOI 10.1017/S1464793103006365; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 2002, EVOLUTION, V56, P1091; Kokko H, 2003, P ROY SOC B-BIOL SCI, V270, P653, DOI 10.1098/rspb.2002.2235; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Leinders-Zufall T, 2004, SCIENCE, V306, P1033, DOI 10.1126/science.1102818; Letendre K, 2010, BIOL REV, V85, P669, DOI 10.1111/j.1469-185X.2010.00133.x; Lie HC, 2008, EVOLUTION, V62, P2473, DOI 10.1111/j.1558-5646.2008.00478.x; Lie HC, 2010, EVOL HUM BEHAV, V31, P48, DOI 10.1016/j.evolhumbehav.2009.07.001; Little AC, 2007, HORM BEHAV, V51, P633, DOI 10.1016/j.yhbeh.2007.03.006; Little AC, 2011, P ROY SOC B-BIOL SCI, V278, P2032, DOI 10.1098/rspb.2010.1925; Loehle C, 1997, ECOL MODEL, V103, P231, DOI 10.1016/S0304-3800(97)00106-3; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Matts PJ, 2007, J AM ACAD DERMATOL, V57, P977, DOI 10.1016/j.jaad.2007.07.040; Milinski M, 2006, ANNU REV ECOL EVOL S, V37, P159, DOI 10.1146/annurev.ecolsys.37.091305.110242; Miller Geoffrey, 2000, MATING MIND SEXUAL C; Moller AP, 1997, ASYMMETRY DEV STABIL; Mortensen CR, 2010, PSYCHOL SCI, V21, P440, DOI 10.1177/0956797610361706; Mougeot F, 2010, J EXP BIOL, V213, P400, DOI 10.1242/jeb.037101; Oaten M, 2009, PSYCHOL BULL, V135, P303, DOI 10.1037/a0014823; Ober C, 1997, AM J HUM GENET, V61, P497, DOI 10.1086/515511; Oum RE, 2011, COGNITION EMOTION, V25, P717, DOI 10.1080/02699931.2010.496997; Park JH, 2003, J NONVERBAL BEHAV, V27, P65, DOI 10.1023/A:1023910408854; Pause BM, 2006, P ROY SOC B-BIOL SCI, V273, P471, DOI 10.1098/rspb.2005.3342; Penn DJ, 2002, P NATL ACAD SCI USA, V99, P11260, DOI 10.1073/pnas.162006499; Penn DJ, 1999, AM NAT, V153, P145, DOI 10.1086/303166; Penton-Voak IS, 2003, J COMP PSYCHOL, V117, P264, DOI 10.1037/0735-7036.117.3.264; Puts DA, 2005, EVOL HUM BEHAV, V26, P388, DOI 10.1016/j.evolhumbehav.2005.03.001; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Roberts SC, 2008, P ROY SOC B-BIOL SCI, V275, P2715, DOI 10.1098/rspb.2008.0825; Roberts SC, 2005, EVOL HUM BEHAV, V26, P213, DOI 10.1016/j.evolhumbehav.2004.09.002; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Santos PSC, 2005, HORM BEHAV, V47, P384, DOI 10.1016/j.yhbeh.2004.11.005; Schaller M, 2008, J PERS SOC PSYCHOL, V95, P212, DOI 10.1037/0022-3514.95.1.212; Scott IML, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013585; Searcy WA, 2005, MG BEH ECOL, P1; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Stephen ID, 2009, INT J PRIMATOL, V30, P845, DOI 10.1007/s10764-009-9380-z; Stevenson RJ, 2011, ARCH SEX BEHAV, V40, P79, DOI 10.1007/s10508-009-9529-z; Stevenson RJ, 2005, EUR J SOC PSYCHOL, V35, P375, DOI 10.1002/ejsp.263; Symons D, 1992, ADAPTED MIND EVOLUTI, P137; Symons D., 1979, EVOLUTION HUMAN SEXU; Thio CL, 2003, J VIROL, V77, P12083, DOI 10.1128/JVI.77.22.12083-12087.2003; Thornhill R, 2006, EVOL HUM BEHAV, V27, P131, DOI 10.1016/j.evolhumbehav.2005.06.001; Thornhill R, 1999, EVOL HUM BEHAV, V20, P175, DOI 10.1016/S1090-5138(99)00005-7; Thornhill R, 2003, BEHAV ECOL, V14, P668, DOI 10.1093/beheco/arg043; THORNHILL R, 1993, HUM NATURE-INT BIOS, V4, P237, DOI 10.1007/BF02692201; Thornhill R., 2008, EVOLUTIONARY BIOL HU; Thornhill R, 2009, BIOL REV, V84, P113, DOI 10.1111/j.1469-185X.2008.00062.x; Thrall PH, 2000, P ROY SOC B-BIOL SCI, V267, P1555, DOI 10.1098/rspb.2000.1178; Thrall PH, 1997, AM NAT, V149, P485, DOI 10.1086/286001; Tybur JM, 2011, PERS INDIV DIFFER, V51, P343, DOI 10.1016/j.paid.2011.04.003; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; Tybur JM, 2010, EVOL PSYCHOL-US, V8, P599, DOI 10.1177/147470491000800406; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Wedekind C, 1997, P ROY SOC B-BIOL SCI, V264, P1471, DOI 10.1098/rspb.1997.0204; WEDEKIND C, 1995, P ROY SOC B-BIOL SCI, V260, P245, DOI 10.1098/rspb.1995.0087; Weeden J, 2005, PSYCHOL BULL, V131, P635, DOI 10.1037/0033-2909.131.5.635; Welling L. L., 2007, J EVOLUTIONARY PSYCH, V5, P131, DOI DOI 10.1556/JEP.2007.1012 124 53 56 1 69 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. DEC 12 2011 366 1583 SI 3375 3388 10.1098/rstb.2011.0136 14 Biology Life Sciences & Biomedicine - Other Topics 842IQ WOS:000296591900003 22042915 Green Published, Bronze 2019-02-21 J Kamo, M; Hayashi, TI; Akita, T Kamo, Masashi; Hayashi, Takehiko I.; Akita, Tetsuya Potential effects of life-history evolution on ecological risk assessment ECOLOGICAL APPLICATIONS English Article acclimation; adaptation; chemical tolerance; ecological risk assessment; life-history evolution; population-level risk assessment; r/K selection; resource-allocation model DENSITY-DEPENDENT SELECTION; HEAVY-METALS; TOXIC-CHEMICALS; ZINC TOLERANCE; DAPHNIA-MAGNA; POPULATIONS; ENVIRONMENTS; ACCLIMATION; ADAPTATION; EXPOSURE We investigated theoretically how the sensitivity of organisms to the toxicity of chemicals varies depending on their life-history traits, which are subject to evolution. We used a resource-allocation model in which organisms allocate their resources to reproduction, maintenance of life (reduction of death), and reduction of the toxicities of chemicals. First we investigated the optimal allocation rates in the absence of chemicals. We found that when evolution occurred in low-density populations, the allocation rate for reproduction was larger than that for maintenance of life, and hence an r-strategy evolved. The r-strategists had lower sensitivity (higher resistance) against the toxicity than K-strategists, which was the optimal strategy in high-density populations. Second, we examined the optimal allocation rates in the presence of chemicals. The allocation rate for the reduction of toxicity varied depending on the shape of functions for the reduction of toxicity. When the efficiency for the reduction was low, organisms did not allocate resources to reduce toxicity, and they remained sensitive to chemicals (sensitive type). When the toxicity was efficiently reduced, the organisms allocated resources to reduce the toxicity and became insensitive to the chemicals (resistant type). When the function for the reduction had a sigmoidal shape, evolutionary bistability appeared, and the organisms eventually evolved either to allocate resources for chemical reduction or not to do so depending on the initial conditions of evolution. This result explains the large variation in the sensitivities to chemicals in organisms collected from polluted areas. We also found that the toxicity required to reduce the population growth rate by 10% (EC10) was higher for the resistant type than for the sensitive type in general; however, when the toxicity tests were conducted under a resource-poor condition, EC10 was even smaller in the resistant type than in the sensitive type (i.e., resistant organisms are more sensitive than sensitive organisms). This counterintuitive result occurred because the allocation of resources for toxicity reduction was larger than needed, and was thus an overinvestment under the resource-poor condition. Together with the results, we conclude that lacking an understanding of the evolutionary aspect may lead to insufficient risk assessment and management. [Kamo, Masashi] Adv Ind Sci & Technol, Res Inst Sci Safety & Sustainabil, Tsukuba, Ibaraki 3058569, Japan; [Hayashi, Takehiko I.] Natl Inst Environm Studies, Res Ctr Environm Risk, Tsukuba, Ibaraki, Japan; [Akita, Tetsuya] Grad Univ Adv Studies, Hayama, Kanagawa 2400193, Japan Kamo, M (reprint author), Adv Ind Sci & Technol, Res Inst Sci Safety & Sustainabil, Onogawa 16-1, Tsukuba, Ibaraki 3058569, Japan. masashi-kamo@aist.go.jp Kamo, Masashi/C-6049-2015 Kamo, Masashi/0000-0002-6972-3333 JSPS [22651011] This research was partially supported by JSPS Grant-in-aid for Challenging Exploratory Research (22651011). Akcakaya HR, 2008, DEMOGRAPHIC TOXICITY; BOYCE MS, 1980, AM NAT, V115, P480, DOI 10.1086/283575; Calow P, 2003, ENVIRON SCI TECHNOL, V37, P146; Carson Rachel, 2002, SILENT SPRING; Devi U. V, 1987, B ENV CONTAMINATION, V39, P1020; Einum S, 2008, EVOL APPL, V1, P239, DOI 10.1111/j.1752-4571.2008.00021.x; Forbes VE, 2008, ENVIRON TOXICOL CHEM, V27, P1987, DOI 10.1897/08-029.1; Forbes VE, 2002, PHILOS T ROY SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129; Grimm V, 2009, ENVIRON SCI POLLUT R, V16, P614, DOI 10.1007/s11356-009-0228-z; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; HORNOR SG, 1985, HYDROBIOLOGIA, V128, P155, DOI 10.1007/BF00008735; Iwasaki Y, 2010, ECOTOX ENVIRON SAFE, V73, P465, DOI 10.1016/j.ecoenv.2010.01.015; JOLY B, 1979, ANN INST PASTEUR MIC, VB130, P341; Kamo M, 2008, HUM ECOL RISK ASSESS, V14, P714, DOI 10.1080/10807030802235110; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; LEVIN SA, 1984, ENVIRON MANAGE, V8, P375, DOI 10.1007/BF01871807; MAC ARTHUR ROBERT H., 1967; Miyatake T, 1993, P IAEA FAO INT S 19, P201; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; MUNZINGER A, 1990, WATER RES, V24, P845, DOI 10.1016/0043-1354(90)90134-R; Muyssen BTA, 2005, ENVIRON TOXICOL CHEM, V24, P895, DOI 10.1897/04-112R.1; Muyssen BTA, 2001, CHEMOSPHERE, V45, P507, DOI 10.1016/S0045-6535(01)00047-9; Nakamaru M, 2002, ENVIRON TOXICOL CHEM, V21, P195, DOI [10.1897/1551-5028(2002)021<0195:ERTHGP>2.0.CO;2, 10.1002/etc.5620210127]; OECD [Organisation for Economic Co-operation and Development], 1984, OECD TEST GUIDL 202; Pastorok R, 2002, ECOLOGICAL MODELING, P1; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Sample BE, 2000, SETAC SP P, P225; SHEHATA FHA, 1982, BRIT PHYCOL J, V17, P5, DOI 10.1080/00071618200650021; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Suter GW, 2006, ECOLOGICAL RISK ASSE; van Straalen NM, 2002, HUM ECOL RISK ASSESS, V8, P983, DOI 10.1080/1080-700291905783 33 4 4 1 25 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. DEC 2011 21 8 3191 3198 10.1890/11-0234.1 8 Ecology; Environmental Sciences Environmental Sciences & Ecology 877GU WOS:000299166300024 2019-02-21 J Wooten, JA; Rissler, LJ Wooten, Jessica A.; Rissler, Leslie J. Ecological associations and genetic divergence in Black-bellied Salamanders (Desmognathus quadramaculatus) of the Southern Appalachian Mountains ACTA HERPETOLOGICA English Article Salamanders; Desmognathus quadramaculatus; Desmognathus marmoratus; AFLP; streams; Desmognathus folkertsi; mtDNA; ecoregions FRAGMENT LENGTH POLYMORPHISM; MULTILOCUS GENOTYPE DATA; MOLECULAR PHYLOGENETIC ANALYSIS; LIFE-HISTORY EVOLUTION; POPULATION-STRUCTURE; PLETHODONTID SALAMANDERS; RAPID DIVERSIFICATION; DUSKY SALAMANDERS; COMPARATIVE PHYLOGEOGRAPHY; STATISTICAL TESTS The discovery and subsequent description of cryptic biodiversity is often challenging, especially for groups that have undergone rapid lineage accumulation in the relatively recent past. Even without formal descriptions, understanding genetic diversity patterns as they relate to underlying ecological or historical processes can be important for conservation. The dusky salamanders of the genus Desmognathus, with 20 described species, comprise the second largest genus of plethodontid salamanders in the eastern United States. However, due to the presence of high genetic diversity and relatively few morphological synapomorphies, the number of species is likely to increase. For the three nominal species within the D. quadramaculatus species complex, including D. quadramaculatus, D. folkertsi, and D. marmoratus, we used a portion of the mitochondrial genome and nuclear markers in the form of amplified fragment length polymorphisms (AFLP) to uncover spatial patterns of genetic diversity. Within D. quadramaculatus and D. marmoratus, we uncovered four well-supported lineages with the mitochondrial sequences; phylogeographic patterns were not congruent with the AFLP data. Both sets of markers identified a clear isolation by stream distance. Using multiple regressions, we found that historical river drainages and terrestrial ecoregions explained the phylogeographic patterning we observed for D. quadramaculatus. [Wooten, Jessica A.] Univ Findlay, Dept Biol, Findlay, OH 45840 USA; [Rissler, Leslie J.] Univ Alabama, Dept Biol Sci, Tuscaloosa, AL 35487 USA Wooten, JA (reprint author), Univ Findlay, Dept Biol, Findlay, OH 45840 USA. Rissler@as.ua.edu NSF [DEB 0414033]; American Museum of Natural History; University of Alabama This manuscript is a result of a chapter from the Ph.D. dissertation of Jessica Wooten under the direction of L. Rissler. H. Smith-Somerville, P. Harris, J. Lopez-Bautista, and C. Camp provided comments on earlier versions of the manuscript. Many people helped in the field or obtained tissue for us, including S. Eagle, W. Van Devender, A. Van Devender, C. Camp, D. Beamer, M. Chadwick, C. Cox, S. Parker, J. Hodgson, D. Merritt, J. Humphries, J. Waldron, Z. Felix, B. Sutton, R. Makowsky, C. Makowsky, S. Fields, and W. Smith. W. Holznagel, L. Tolley-Jordan, and E. Toorens provided assistance with the laboratory work and AFLP fragment analysis. P. Bradford extracted the stream distances for each locality. All salamander research was approved by the Institutional Animal Care and Use Committee (IACUC) protocol number 05-242-3 to Leslie Rissler at The University of Alabama. This research was funded by: a NSF DEB 0414033 awarded to Leslie Rissler, American Museum of Natural History grant awarded to Jessica Wooten, and The University of Alabama. Abell R, 1999, FRESHWATER ECOREGION; Adams DC, 2000, P NATL ACAD SCI USA, V97, P4106, DOI 10.1073/pnas.97.8.4106; Agrimonti C, 2007, CONSERV GENET, V8, P385, DOI 10.1007/s10592-006-9177-y; Albach DC, 2006, MOL ECOL, V15, P3269, DOI 10.1111/j.1365-294X.2006.02980.x; Andrade IM, 2007, ANN BOT-LONDON, V100, P1143, DOI 10.1093/aob/mcm200; Assefa A, 2007, CONSERV GENET, V8, P273, DOI 10.1007/s10592-006-9167-0; Beamer DA, 2008, MOL PHYLOGENET EVOL, V47, P143, DOI 10.1016/j.ympev.2008.01.015; Bensch S, 2005, MOL ECOL, V14, P2899, DOI 10.1111/j.1365-294X.2005.02655.x; Bickford D, 2007, TRENDS ECOL EVOL, V22, P148, DOI 10.1016/j.tree.2006.11.004; Blears MJ, 1998, J IND MICROBIOL BIOT, V21, P99, DOI 10.1038/sj.jim.2900537; Bonett Ronald M., 2007, BMC Ecology, V7, P7, DOI 10.1186/1472-6785-7-7; Burridge CP, 2006, EVOLUTION, V60, P1038; Camp CD, 1996, COPEIA, P78, DOI 10.2307/1446943; Camp CD, 2002, HERPETOLOGICA, V58, P471, DOI 10.1655/0018-0831(2002)058[0471:ANSOBS]2.0.CO;2; Carisio L, 2004, J BIOGEOGR, V31, P1149, DOI 10.1111/j.1365-2699.2004.01074.x; Carr DE, 1996, HERPETOLOGICA, V52, P56; CASGRAIN P, 2001, PERMUTE VERSION 3 4; CASGRAIN P, 2001, R PACKAGE MULTIVARIA; Chippindale PT, 2004, EVOLUTION, V58, P2809; Creer S, 2004, J EVOLUTION BIOL, V17, P100, DOI 10.1046/j.1420-9101.2003.00642.x; Crespi EJ, 2003, MOL ECOL, V12, P969, DOI 10.1046/j.1365-294X.2003.01797.x; CURTIS JMR, 2003, BIOL CONSERV, V115, P45, DOI DOI 10.1016/S0006-3207(03)00092-2; Davis EB, 2008, MOL ECOL, V17, P120, DOI 10.1111/j.1365-294X.2007.03469.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; EXCOFFIER L, 1992, GENETICS, V131, P479; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Falush D, 2003, GENETICS, V164, P1567; Falush D, 2007, MOL ECOL NOTES, V7, P574, DOI 10.1111/j.1471-8286.2007.01758.x; Finn DS, 2006, MOL ECOL, V15, P3553, DOI 10.1111/j.1365-294X.2006.03034.x; FU YX, 1993, GENETICS, V133, P693; Fu YX, 1997, GENETICS, V147, P915; Garcia AAF, 2004, GENET MOL BIOL, V27, P579, DOI 10.1590/S1415-47572004000400019; Garcia-Paris M, 2000, COPEIA, P42; Garoia F, 2007, MOL ECOL, V16, P1377, DOI 10.1111/j.1365-294X.2007.03247.x; GOWER JC, 1971, BIOMETRICS, V27, P857, DOI 10.2307/2528823; Grant EHC, 2010, P NATL ACAD SCI USA, V107, P6936, DOI 10.1073/pnas.1000266107; Hanken J., 2007, COPEIA, P556, DOI DOI 10.1643/0045-8511(2007)2007[556:MSFTCR]2.0.CO;2; Highton R, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P31; Hijmans R, 2001, PLANT GENETIC RESOUR, V127, P15; HILLIS DM, 1993, SYST BIOL, V42, P182, DOI 10.2307/2992540; Hoarau JY, 2001, THEOR APPL GENET, V103, P84, DOI 10.1007/s001220000390; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Huelsenbeck JP, 2001, SYST BIOL, V50, P351, DOI 10.1080/106351501300317978; Jackson N. D., 2005, THESIS B YOUNG U PRO; Jehle R, 2007, BIOLOGY LETT, V3, P526, DOI 10.1098/rsbl.2007.0311; Jensen J. B., 2008, AMPHIBIANS REPTILES; Jensen John B., 1999, Herpetological Review, V30, P20; Jockusch EL, 2001, HERPETOL MONOGR, V15, P54, DOI 10.2307/1467038; Jones MT, 2006, MOL PHYLOGENET EVOL, V38, P280, DOI 10.1016/j.ympev.2005.05.007; Kimura M., 1983, NEUTRAL THEORY MOL E; Kinkead KE, 2007, CONSERV GENET, V8, P281, DOI 10.1007/s10592-006-9168-z; Kozak KH, 2006, P ROY SOC B-BIOL SCI, V273, P539, DOI 10.1098/rspb.2005.3326; Kozak KH, 2005, EVOLUTION, V59, P2000; Larget B, 1999, MOL BIOL EVOL, V16, P750, DOI 10.1093/oxfordjournals.molbev.a026160; LARSON A, 1981, EVOLUTION, V35, P405, DOI 10.1111/j.1558-5646.1981.tb04902.x; LEGENDRE P, 1994, EVOLUTION, V48, P1487, DOI 10.1111/j.1558-5646.1994.tb02191.x; Lowe WH, 2006, ECOLOGY, V87, P334, DOI 10.1890/05-0232; LYNCH M, 1994, MOL ECOL, V3, P91, DOI 10.1111/j.1365-294X.1994.tb00109.x; Makowsky R, 2009, GENETICA, V135, P169, DOI 10.1007/s10709-008-9267-5; MARTOF B, 1953, ECOLOGY, V34, P436, DOI 10.2307/1930915; MARTOF BERNARDS, 1962, AMER MIDLAND NAT, V67, P1, DOI 10.2307/2422814; MAYDEN RL, 1988, SYST ZOOL, V37, P329, DOI 10.2307/2992197; McCranie JR, 2005, J HERPETOL, V39, P108, DOI 10.1670/0022-1511(2005)039[0108:NSOMSO]2.0.CO;2; Measey GJ, 2007, CONSERV GENET, V8, P1177, DOI 10.1007/s10592-006-9292-0; Mendelson TC, 2006, MOL PHYLOGENET EVOL, V41, P445, DOI 10.1016/j.ympev.2006.05.010; Mila B, 2010, MOL ECOL, V19, P108, DOI 10.1111/j.1365-294X.2009.04441.x; MILLS GR, 1996, THESIS MARSHALL U HU; Mock KE, 2004, MOL ECOL, V13, P1085, DOI 10.1111/j.1365-294X.2004.02143.x; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Mueller UG, 1999, TRENDS ECOL EVOL, V14, P389, DOI 10.1016/S0169-5347(99)01659-6; NEI M, 1978, GENETICS, V89, P583; Nei M., 1987, MOL EVOLUTIONARY GEN; Nicole F, 2007, CONSERV GENET, V8, P1273, DOI 10.1007/s10592-006-9277-8; Ogden R, 2002, MOL ECOL, V11, P437, DOI 10.1046/j.0962-1083.2001.01442.x; PEAKALL R, 2006, MOL ECOL NOTES, V6, P288, DOI DOI 10.1111/J.1471-8286.2005.01155.X; Pizzo A, 2006, BIOL J LINN SOC, V89, P197, DOI 10.1111/j.1095-8312.2006.00674.x; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Pritchard JK, 2000, GENETICS, V155, P945; Riberon A, 2004, MOL PHYLOGENET EVOL, V31, P910, DOI 10.1016/j.ympev.2003.10.016; Ricketts T.H., 1999, TERRESTRIAL ECOREGIO; Rissler LJ, 2004, AM NAT, V164, P201, DOI 10.1086/422200; Rissler LJ, 2003, MOL PHYLOGENET EVOL, V27, P197, DOI 10.1016/S1055-7903(02)00405-0; Rozas J, 2003, BIOINFORMATICS, V19, P2496, DOI 10.1093/bioinformatics/btg359; Rozas J, 1999, BIOINFORMATICS, V15, P174, DOI 10.1093/bioinformatics/15.2.174; Seman K, 2003, GENET RESOUR CROP EV, V50, P649, DOI 10.1023/A:1024447404492; Shaw KL, 2002, P NATL ACAD SCI USA, V99, P16122, DOI 10.1073/pnas.242585899; SLATKIN M, 1993, EVOLUTION, V47, P264, DOI 10.1111/j.1558-5646.1993.tb01215.x; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; TAJIMA F, 1989, GENETICS, V123, P597; TAJIMA F, 1983, GENETICS, V105, P437; Tilley SG, 2008, ZOOL J LINN SOC-LOND, V152, P115, DOI 10.1111/j.1096-3642.2007.00336.x; Tilley Stephen G., 1996, Herpetological Monographs, V10, P1, DOI 10.2307/1466979; Titus TA, 1996, SYST BIOL, V45, P451, DOI 10.2307/2413525; Vekemans X, 2002, MOL ECOL, V11, P139, DOI 10.1046/j.0962-1083.2001.01415.x; Vekemans X., 2002, AFLP SURV VERSION 1; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; VOS P, 1995, NUCLEIC ACIDS RES, V23, P4407, DOI 10.1093/nar/23.21.4407; Voss SR, 1997, P NATL ACAD SCI USA, V94, P14185, DOI 10.1073/pnas.94.25.14185; VOSS SR, 1995, J HERPETOL, V29, P493, DOI 10.2307/1565011; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WAKE DB, 1983, J THEOR BIOL, V101, P211, DOI 10.1016/0022-5193(83)90335-1; Wake DB, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P95; Wang ZS, 2003, EVOLUTION, V57, P2852; Whitlock A, 2006, AMPHIBIA-REPTILIA, V27, P126, DOI 10.1163/156853806776052029; Wiens JJ, 2006, EVOLUTION, V60, P2585; Wilcox TP, 2002, MOL PHYLOGENET EVOL, V25, P361, DOI 10.1016/S1055-7903(02)00244-0; Wilding CS, 2001, J EVOLUTION BIOL, V14, P611, DOI 10.1046/j.1420-9101.2001.00304.x; Wooten J.A, 2007, THESIS U ALABAMA TUS; Wooten JA, 2010, CONSERV GENET, V11, P835, DOI 10.1007/s10592-009-9916-y; Wooten Jessica A, 2009, BMC Res Notes, V2, P26, DOI 10.1186/1756-0500-2-26; WRIGHT S, 1965, EVOLUTION, V19, P395, DOI 10.2307/2406450; Wright S, 1931, GENETICS, V16, P0097; Wright S, 1943, GENETICS, V28, P114; Zhivotovsky LA, 1999, MOL ECOL, V8, P907, DOI 10.1046/j.1365-294x.1999.00620.x; Zwickl DJ., 2006, THESIS U TEXAS AUSTI 116 6 6 0 12 FIRENZE UNIV PRESS FIRENZE JOURNALS DIVISION, BORGO ALBIZI, 28, FIRENZE, 50122, ITALY 1827-9635 1827-9643 ACTA HERPETOL Acta Herpetol. DEC 2011 6 2 175 208 34 Zoology Zoology 881BF WOS:000299453600006 DOAJ Gold 2019-02-21 J Martin, SB; Leberg, PL Martin, Shannon B.; Leberg, Paul L. Influence of environmental stress on age- and size-at-maturity: genetic and plastic responses of coastal marsh fishes to changing salinities CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article SEA-LEVEL RISE; LIFE-HISTORY EVOLUTION; MOSQUITOFISH GAMBUSIA-HOLBROOKI; PHENOTYPIC PLASTICITY; LOCAL ADAPTATION; EASTERN MOSQUITOFISH; REACTION NORMS; DEVELOPMENTAL THRESHOLDS; POECILIA-RETICULATA; HETERANDRIA-FORMOSA As sea levels rise, salt water will intrude into freshwater coastal habitats with greater frequency and stress resident organisms inducing physiological trade-offs that influence life history tactics. Western mosquitofish (Gambusia affinis) and least killifish (Heterandria formosa), collected along a salinity gradient and maintained in a common freshwater environment for two years (>= 4 generations), were used to examine historical (genetic effects) and contemporary environmental effects of salinity on age- and size-at-maturity. There was phenotypic plasticity for sexual maturation and genetic variance among source populations for size-at-maturity, but no genetic variance for plasticity itself as indicated by the lack: of genetic-by-environment interactions. Gambusia affinis males and H. formosa females exhibited stress by maturing at smaller sizes and older ages in response to being reared in 0 and 12 ppt, respectively. Our results suggest that habitats in which these fishes are most abundant do not correspond to the salinities at which they can rapidly mature at larger sizes, indicating that other environmental factors are also influential to their distribution and abundance along salinity gradients. [Martin, Shannon B.; Leberg, Paul L.] Univ Louisiana Lafayette, Dept Biol, Lafayette, LA 70504 USA Martin, SB (reprint author), Apalachicola Field Lab, Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, Eastpoint, FL 32328 USA. Shannon.Martin@MyFWC.com EPA National Center of Environmental Research; Louisiana Board of Regents EPSCor; CREST; Coastal Conservation Association of Louisiana Comments by P. Klerks, L. Rozas, J. Albert, J. Neigel, K. Donohue, and anonymous reviewers improved the original manuscript. We thank the EPA National Center of Environmental Research, the Louisiana Board of Regents EPSCor, the CREST scholars program, and the Coastal Conservation Association of Louisiana for funding this project. This research complied with all state and federal ethical requirements and was conducted under Institutional Animal Care and Use Committee (IACUC) No. 2004-8717-020. Akin S, 2003, TEX J SCI, V55, P255; Baer CF, 2000, EVOLUTION, V54, P238, DOI 10.1111/j.0014-3820.2000.tb00024.x; BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BIGFORD TE, 1991, COAST MANAGE, V19, P417, DOI 10.1080/08920759109362152; BROWNPETERSON N, 1990, ENVIRON BIOL FISH, V27, P33, DOI 10.1007/BF00004902; Calow P., 1985, P13; CAMPTON DE, 1988, J FISH BIOL, V33, P203, DOI 10.1111/j.1095-8649.1988.tb05463.x; CAMPTON DE, 1988, AQUACULTURE, V68, P221, DOI 10.1016/0044-8486(88)90355-9; CASWELL H, 1983, AM ZOOL, V23, P35; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conner JK, 2004, PRIMER ECOLOGICAL GE; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Constantz G.D., 1989, P33; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Donoghue JF, 2011, CLIMATIC CHANGE, V107, P17, DOI 10.1007/s10584-011-0077-x; DUNSON WA, 1991, AM NAT, V138, P1067, DOI 10.1086/285270; FARR JA, 1986, COPEIA, P467; Gelwick FP, 2001, ESTUARIES, V24, P285, DOI 10.2307/1352952; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; Glazier DS, 2002, EVOLUTION, V56, P1696; Gomez-Mestre I, 2003, EVOLUTION, V57, P1889; GORNITZ V, 1995, EARTH SURF PROC LAND, V20, P7, DOI 10.1002/esp.3290200103; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; HENRICH S, 1988, J EVOLUTION BIOL, V1, P275, DOI 10.1046/j.1420-9101.1998.1030275.x; Hitch AT, 2011, ESTUAR COAST, V34, P653, DOI 10.1007/s12237-010-9367-1; HUGHES AL, 1985, ENVIRON BIOL FISH, V14, P251, DOI 10.1007/BF00002628; Johnson JB, 2001, EVOLUTION, V55, P1486; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Leips J, 1999, J ANIM ECOL, V68, P595, DOI 10.1046/j.1365-2656.1999.00311.x; Leips J, 2000, ECOL MONOGR, V70, P289, DOI 10.1890/0012-9615(2000)070[0289:GIOEPD]2.0.CO;2; Levins R., 1968, EVOLUTION CHANGING E; Littell R. C., 2006, SAS SYSTEM MIXED MOD; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Martin SB, 2009, AQUAT BIOL, V8, P15, DOI 10.3354/ab00203; MEFFE GK, 1992, COPEIA, P94, DOI 10.2307/1446539; Meffe GK, 1995, CAN J FISH AQUAT SCI, V52, P2704, DOI 10.1139/f95-259; NICHOLLS RJ, 2007, CLIMATE CHANGE 2007, P315; Nordlie FG, 2006, REV FISH BIOL FISHER, V16, P51, DOI 10.1007/s11160-006-9003-0; PENLAND S, 1990, J COASTAL RES, V6, P323; Peterson Mark S., 1994, Reviews in Fisheries Science, V2, P95; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Purcell KM, 2010, J FISH BIOL, V77, P1209, DOI 10.1111/j.1095-8649.2010.02727.x; Purcell KM, 2008, EVOL APPL, V1, P155, DOI 10.1111/j.1752-4571.2007.00001.x; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Richardson JML, 2006, OECOLOGIA, V147, P596, DOI 10.1007/s00442-005-0306-y; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 2001, P99; Roff Derek A., 1992; ROZAS LP, 1988, OECOLOGIA, V77, P101, DOI 10.1007/BF00380932; SAS Institute Inc, 2007, SAS EENT GUID 4 1 SA; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; Sibly RM, 1999, ECOL APPL, V9, P496, DOI 10.1890/1051-0761(1999)009[0496:EEDFSS]2.0.CO;2; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Snelson F.F. Jr, 1989, P149; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1984, EVOLUTION, V38, P368, DOI 10.1111/j.1558-5646.1984.tb00295.x; STEARNS SC, 1980, EVOLUTION, V34, P65, DOI 10.1111/j.1558-5646.1980.tb04789.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1983, AM ZOOL, V23, P65; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; STEARNS SC, 1983, EVOLUTION, V37, P618, DOI 10.1111/j.1558-5646.1983.tb05578.x; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Taborsky B, 2006, P ROY SOC B-BIOL SCI, V273, P741, DOI 10.1098/rspb.2005.3347; Titus JG, 2001, CLIMATE RES, V18, P205, DOI 10.3354/cr018205; Trexler J.C., 1989, P201; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Visser JM, 1998, ESTUARIES, V21, P818, DOI 10.2307/1353283; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Webster PJ, 2005, SCIENCE, V309, P1844, DOI 10.1126/science.1116448; Wedemeyer G.A., 1990, P451; Weeks SC, 1997, COPEIA, P869; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZIMMERER EJ, 1983, COPEIA, P243 90 4 4 1 23 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. DEC 2011 68 12 2121 2131 10.1139/F2011-119 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 877OA WOS:000299190600008 2019-02-21 J Badzinski, SS; Kennedy, L; Petrie, SA; Schummer, ML Badzinski, Shannon S.; Kennedy, Lisa; Petrie, Scott A.; Schummer, Michael L. Variation in Body Composition and Digestive Organs of Tundra Swans during Migration at Long Point, Lake Erie, Ontario WATERBIRDS English Article Cygnus columbianus; digestive organs; Great Lakes; migration; nutrient reserves; staging area; Tundra Swan LESSER SNOW GEESE; NUTRIENT-RESERVE DYNAMICS; CANADA GEESE; PHENOTYPIC FLEXIBILITY; CYGNUS-COLUMBIANUS; POPULATION TRENDS; REPRODUCTION; PERFORMANCE; CHRONOLOGY; BREEDERS Tundra Swans (Cygnus columbianus) spend a substantial portion of their annual cycle at migratory staging areas. Despite the potential importance of staging areas to conservation of Eastern Population (EP) Tundra Swans, few data are available to assess life-history strategies of the species during migration. During 1999 and 2000, 48 adult Tundra Swans were collected during peak periods of spring and autumn migration at Long Point, Ontario, Canada, to establish baselines on nutrient reserve levels and morphology of digestive organs. Results were compared to nutrient reserve data for EP Tundra Swans collected at a major wintering area in North Carolina, USA. Lipid reserve levels did not differ between sexes nor varied with body size, but lipid reserves were approximately two times greater in autumn than spring. Males had greater protein reserves than females, and protein reserves were similar during autumn and spring. Although digestive organs were predicted to be longer and heavier during autumn, no seasonal variation in digestive organs was detected. Lipid reserve levels of Tundra Swans at Long Point during spring were similar to those recorded for wintering birds in North Carolina, suggesting that lipid reserves catabolized from autumn through winter were not replenished prior to arriving at this initial spring staging area. The results highlight the importance of managing quality aquatic and terrestrial foraging habitats at staging areas for conservation EP Tundra Swans. Received 24 June 2011, accepted 14 September 2011. [Badzinski, Shannon S.; Petrie, Scott A.; Schummer, Michael L.] Long Point Waterfowl, Port Rowan, ON N0E 1M0, Canada; [Badzinski, Shannon S.] Environm Canada, Canadian Wildlife Serv, Ottawa, ON K1A 0H3, Canada; [Kennedy, Lisa] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada Schummer, ML (reprint author), Long Point Waterfowl, POB 160, Port Rowan, ON N0E 1M0, Canada. mschummer@longpointwaterfowl.org Long Point Waterfowl; Bluff's Hunting Club; Ducks Unlimited Canada; Ontario Federation of Anglers and Hunters; S. C. Johnson Son, Ltd.; Waterfowl Research Foundation; Aylmer Order of Good Cheer; Ontario Power Generation; Long Point Waterfowlers' Association Financial support was provided by Long Point Waterfowl, The Bluff's Hunting Club, Ducks Unlimited Canada, The Ontario Federation of Anglers and Hunters, S. C. Johnson & Son, Ltd., the Waterfowl Research Foundation, Aylmer Order of Good Cheer, Ontario Power Generation, and the Long Point Waterfowlers' Association. Long Point Waterfowl, the University of Western Ontario, Bird Studies Canada and the Canadian Wildlife Service provided logistical support. R. C. Bailey and J. Millar provided guidance in development of this manuscript. AFTON AD, 1991, CONDOR, V93, P89, DOI 10.2307/1368610; Alisauskas RT, 2002, J WILDLIFE MANAGE, V66, P181, DOI 10.2307/3802884; ANKNEY CD, 1978, AUK, V95, P459; ANKNEY CD, 1991, CONDOR, V93, P1029, DOI 10.2307/3247743; Badzinski SS, 2006, HYDROBIOLOGIA, V567, P195, DOI 10.1007/s10750-006-0045-z; Baldassarre GA, 2006, WATERFOWL ECOLOGY MA; Barney E. S., 2008, THESIS U W ONTARIO L; Bart J, 1991, P 3 INT SWAN S OXF 1; Bellrose F., 1980, DUCKS GEESE SWANS N; Bortner J.B., 1985, THESIS U MARYLAND CO; BROMLEY RG, 1993, CONDOR, V95, P193, DOI 10.2307/1369400; BUCHSBAUM R, 1986, ECOLOGY, V67, P386, DOI 10.2307/1938581; Craigie GE, 2003, CAN J ZOOL, V81, P1057, DOI 10.1139/Z03-089; Dekinga A, 2001, J EXP BIOL, V204, P2167; EARNST SL, 1992, CONDOR, V94, P847, DOI 10.2307/1369282; EARNST SL, 1991, P 3 IWRB INT SWAN S, P260; Froelich A. J, 2001, DISCCRS I S, P214; GAUTHIER G, 1984, CONDOR, V86, P192, DOI 10.2307/1367040; GLANDER CM, 2006, ARDEA, V94, P679; Klaassen M, 2001, NATURE, V413, P794, DOI 10.1038/35101654; Klaassen M, 2006, ARDEA, V94, P371; LIMPERT RJ, 1994, BIRDS N AM, V89; LINDSTROM A, 1993, IBIS, V135, P70, DOI 10.1111/j.1474-919X.1993.tb02811.x; Lumsden HG, 2002, WATERBIRDS, V25, P293; MCLANDRESS MR, 1981, AUK, V98, P65; Nolet BA, 2002, J ANIM ECOL, V71, P451, DOI 10.1046/j.1365-2656.2002.00610.x; Nolet BA, 2001, IBIS, V143, P63, DOI 10.1111/j.1474-919X.2001.tb04170.x; Pennycuick CJ, 1996, J AVIAN BIOL, V27, P118, DOI 10.2307/3677141; Petrie S. A., 1998, WATERFOWL WETL UNPUB; Petrie SA, 2002, WATERBIRDS, V25, P143; Petrie SA, 2003, CAN J ZOOL, V81, P861, DOI 10.1139/Z03-063; Piersma T, 1998, J AVIAN BIOL, V29, P511, DOI 10.2307/3677170; Powell JA, 2000, J THEOR BIOL, V204, P415, DOI 10.1006/jtbi.2000.2026; R-Development-Core-Team, 2005, R LANG ENV STAT COMP; Serie JR, 2002, WATERBIRDS, V25, P32; Starck JM, 1999, J EXP BIOL, V202, P3171; WYPKEMA RCP, 1979, CAN J ZOOL, V57, P213, DOI 10.1139/z79-020 37 3 3 0 14 WATERBIRD SOC WASHINGTON NATL MUSEUM NATURAL HISTORY SMITHSONIAN INST, WASHINGTON, DC 20560 USA 1524-4695 WATERBIRDS Waterbirds DEC 2011 34 4 468 475 10.1675/063.034.0409 8 Ornithology Zoology 881CQ WOS:000299458500009 2019-02-21 J Rushworth, CA; Song, BH; Lee, CR; Mitchell-Olds, T Rushworth, Catherine A.; Song, Bao-Hua; Lee, Cheng-Ruei; Mitchell-Olds, Thomas Boechera, a model system for ecological genomics MOLECULAR ECOLOGY English Review ecological genetics; evolution of sex; life history evolution; plant mating; population geneticsuempirical; quantitative genetics; systems ARABIS-HOLBOELLII BRASSICACEAE; FREQUENCY-DEPENDENT SELECTION; NORTH-AMERICAN BOECHERA; ARABIDOPSIS-THALIANA; LINKAGE DISEQUILIBRIUM; NATURAL-POPULATIONS; SELF-FERTILIZATION; GENETIC DIVERSITY; LOCAL ADAPTATION; APOMICTIC HYBRIDS The selection and development of a study system for evolutionary and ecological functional genomics (EEFG) depend on a variety of factors. Here, we present the genus Boechera as an exemplary system with which to address ecological and evolutionary questions. Our focus on Boechera is based on several characteristics as follows: (i) native populations in undisturbed habitats where current environments reflect historical conditions over several thousand years; (ii) functional genomics benefitting from its close relationship to Arabidopsis thaliana; (iii) inbreeding tolerance enabling development of recombinant inbred lines, near-isogenic lines and positional cloning; (iv) interspecific crosses permitting mapping for genetic analysis of speciation; (v) apomixis (asexual reproduction by seeds) in a genetically tractable diploid; and (vi) broad geographic distribution in North America, permitting ecological genetics for a large research community. These characteristics, along with the current sequencing of three Boechera species by the Joint Genome Institute, position Boechera as a rapidly advancing system for EEFG studies. [Rushworth, Catherine A.; Song, Bao-Hua; Lee, Cheng-Ruei; Mitchell-Olds, Thomas] Duke Univ, Inst Genome Sci & Policy, Dept Biol, Durham, NC 27708 USA Mitchell-Olds, T (reprint author), Duke Univ, Inst Genome Sci & Policy, Dept Biol, POB 90338, Durham, NC 27708 USA. tmo1@duke.edu Mitchell-Olds, Thomas/K-8121-2012 Mitchell-Olds, Thomas/0000-0003-3439-9921; Lee, Cheng-Ruei/0000-0002-1913-9964; Rushworth, Catherine/0000-0003-0715-1234 NIH [R01 GM086496]; NSF [EF-0723447] We thank R. Colautti, J. Anderson, C. Willis, M. R. Wagner, K. Prasad and C. Rothfels for helpful discussion and comments. We also thank Detlef Weigel, Stephen Wright, Karen Schumaker, Rod Wing, Dan Rokhsar, Jeremy Schmutz and the DOE Joint Genome Institute for permission to use genomic sequence data from Capsella and Thellungiella. Special thanks to P. Alexander for permission to use his photographs. This research has been supported by grants from the NIH (R01 GM086496) and NSF (EF-0723447). Al-Shehbaz IA, 2006, PLANT SYST EVOL, V259, P89, DOI 10.1007/s00606-006-0415-z; Al-Shehbaz I.A., 2010, FLORA N AM N MEXICO, V7, P348; Al-Shehbaz IA, 2003, NOVON, V13, P381, DOI 10.2307/3393366; Aliyu OM, 2010, AM J BOT, V97, P1719, DOI 10.3732/ajb.1000188; Anderson J, 2010, FUNCTIONAL ECOLOGY, V25, P312; Anderson JT, 2011, TRENDS GENET, V27, P258, DOI 10.1016/j.tig.2011.04.001; Anderson JT, 2011, EVOLUTION, V65, P771, DOI 10.1111/j.1558-5646.2010.01175.x; Arntz AM, 2001, OECOLOGIA, V127, P455, DOI 10.1007/s004420100650; Asker S. E, 1992, APOMIXIS PLANTS; Bailey CD, 2006, MOL BIOL EVOL, V23, P2142, DOI 10.1093/molbev/msl087; Bailey CD, 2002, SYST BOT, V27, P318; Bednarek P, 2009, SCIENCE, V323, P101, DOI 10.1126/science.1163732; Beilstein MA, 2006, AM J BOT, V93, P607, DOI 10.3732/ajb.93.4.607; Beilstein MA, 2008, AM J BOT, V95, P1307, DOI 10.3732/ajb.0800065; Beilstein MA, 2010, P NATL ACAD SCI USA, V107, P18724, DOI 10.1073/pnas.0909766107; Benderoth M, 2006, P NATL ACAD SCI USA, V103, P9118, DOI 10.1073/pnas.0601738103; Bernier J, 2009, FIELD CROP RES, V110, P139, DOI 10.1016/j.fcr.2008.07.010; Bocher T, 1951, BIOL SKRIFTER, V6, P1; Brachi B, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000940; Brader G, 2006, PLANT J, V46, P758, DOI 10.1111/j.1365-313X.2006.02743.x; Bressan M, 2009, ISME J, V3, P1243, DOI 10.1038/ismej.2009.68; Brunelle A, 2005, QUATERNARY SCI REV, V24, P2281, DOI 10.1016/j.quascirev.2005.11.010; Carman JG, 1997, BIOL J LINN SOC, V61, P51, DOI 10.1006/bijl.1996.0118; Carman JG, 2001, FLOWERING OF APOMIXIS: FROM MECHANISMS TO GENETIC ENGINEERING, P95; Carmona D, 2011, FUNCT ECOL, V25, P358, DOI 10.1111/j.1365-2435.2010.01794.x; Charlesworth D, 2003, PHILOS T R SOC B, V358, P1051, DOI 10.1098/rstb.2003.1296; CHARLESWORTH D, 1977, GENETICS, V86, P213; Coop G, 2010, GENETICS, V185, P1411, DOI 10.1534/genetics.110.114819; Corral JM, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P495, DOI 10.1007/978-90-481-2770-2_23; Dobes C, 2004, AM J BOT, V91, P2087, DOI 10.3732/ajb.91.12.2087; Dobes CH, 2004, MOL ECOL, V13, P349, DOI 10.1046/j.1365-294X.2003.02064.x; Dobes C, 2007, SYST BIODIVERS, V5, P321, DOI 10.1017/S1477200007002423; Dobes C, 2006, ANN MO BOT GARD, V93, P517, DOI 10.3417/0026-6493(2007)93[517:EKAMOR]2.0.CO;2; Farrar JJ, 1999, GREAT BASIN NAT, V59, P384; Feder ME, 2003, NAT REV GENET, V4, P651, DOI 10.1038/nrg1128; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; Franzke A, 2009, TAXON, V58, P425, DOI 10.1002/tax.582009; Grimanelli D, 2001, TRENDS GENET, V17, P597, DOI 10.1016/S0168-9525(01)02454-4; Halkier BA, 2006, ANNU REV PLANT BIOL, V57, P303, DOI 10.1146/annurev.arplant.57.032905.105228; Hancock AM, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001375; Haugen R, 2008, OIKOS, V117, P231, DOI 10.1111/j.2007.0030-1299.16111.x; Hu TT, 2011, NAT GENET, V43, P476, DOI 10.1038/ng.807; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Jones T, 2006, PLANT ECOL, V184, P245, DOI 10.1007/s11258-005-9070-7; Kantama L, 2007, P NATL ACAD SCI USA, V104, P14026, DOI 10.1073/pnas.0706647104; Kiefer C, 2009, MOL PHYLOGENET EVOL, V52, P303, DOI 10.1016/j.ympev.2009.03.016; Kim S, 2007, NAT GENET, V39, P1151, DOI 10.1038/ng2115; Kirkpatrick M, 2006, GENETICS, V173, P419, DOI 10.1534/genetics.105.047985; Kliebenstein DJ, 2005, CURR OPIN PLANT BIOL, V8, P264, DOI 10.1016/j.pbi.2005.03.002; Kliebenstein DJ, 2005, PLANT J, V44, P25, DOI 10.1111/j.1365-313X.2005.02508.x; Knight CA, 2006, MOL ECOL, V15, P1229, DOI 10.1111/j.1365-294X.2006.02818.x; Koch MA, 2001, MOL BIOL EVOL, V18, P1882, DOI 10.1093/oxfordjournals.molbev.a003729; Kuittinen H, 2008, MOL BIOL EVOL, V25, P319, DOI 10.1093/molbev/msm257; Lee CR, 2011, MOL ECOL, V20, P4631, DOI 10.1111/j.1365-294X.2011.05310.x; Lo EYY, 2010, J EVOLUTION BIOL, V23, P2249, DOI 10.1111/j.1420-9101.2010.02087.x; Loomis ES, 2009, INT J PLANT SCI, V170, P759, DOI 10.1086/599241; Loudet O, 2005, THEOR APPL GENET, V110, P742, DOI 10.1007/s00122-004-1900-9; Lovell JT, 2011, MOL ECOL, V20, P4840, DOI 10.1111/j.1365-294X.2011.05346.x; Lowry DB, 2010, PLOS BIOL, V8; Manzaneda AJ, 2010, NEW PHYTOL, V188, P464, DOI 10.1111/j.1469-8137.2010.03385.x; Maynard Smith J, 1978, EVOLUTION SEX; McKay JK, 2001, P ROY SOC B-BIOL SCI, V268, P1715, DOI 10.1098/rspb.2001.1715; Metcalf CJE, 2009, ECOL LETT, V12, P593, DOI 10.1111/j.1461-0248.2009.01320.x; Mitchell-Olds T, 2007, NAT REV GENET, V8, P845, DOI 10.1038/nrg2207; Morrell PL, 2005, P NATL ACAD SCI USA, V102, P2442, DOI 10.1073/pnas.0409804102; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; Naumova TN, 2001, SEX PLANT REPROD, V14, P195, DOI 10.1007/s00497-001-0118-0; Nice CC, 2005, MOL ECOL, V14, P1741, DOI 10.1111/j.1365-294X.2005.02527.x; Nordborg M, 2005, PLOS BIOL, V3, P1289, DOI 10.1371/journal.pbio.0030196; Ossowski S, 2010, SCIENCE, V327, P92, DOI 10.1126/science.1180677; Oyama RK, 2008, PLANT SYST EVOL, V273, P257, DOI 10.1007/s00606-008-0017-z; Ozias-Akins P, 2007, ANNU REV GENET, V41, P509, DOI 10.1146/annurev.genet.40.110405.09051; Paun O, 2006, MOL ECOL, V15, P897, DOI 10.1111/j.1365-294X.2006.02800.x; Porter S.C., 1983, LATE QUATERNARY ENV, V1, P71; Raguso RA, 2004, CURR OPIN PLANT BIOL, V7, P434, DOI 10.1016/j.pbi.2004.05.010; Rollins R. C., 1993, CRUCIFERAE CONTINENT; Roy BA, 1998, OECOLOGIA, V115, P73, DOI 10.1007/s004420050493; ROY BA, 1989, J HERED, V80, P506; ROY BA, 1993, EVOLUTION, V47, P111, DOI 10.1111/j.1558-5646.1993.tb01203.x; ROY BA, 1993, OECOLOGIA, V95, P533, DOI 10.1007/BF00317438; Roy BA, 1996, ECOLOGY, V77, P2445, DOI 10.2307/2265745; Roy BA, 2001, EVOLUTION, V55, P41; ROY BA, 1993, NATURE, V362, P56, DOI 10.1038/362056a0; ROY BA, 1994, ECOLOGY, V75, P352, DOI 10.2307/1939539; Roze D, 2005, GENETICS, V170, P841, DOI 10.1534/genetics.104.036384; Savolainen O, 2000, MOL BIOL EVOL, V17, P645, DOI 10.1093/oxfordjournals.molbev.a026343; Schmid KJ, 2005, GENETICS, V169, P1601, DOI 10.1534/genetics.104.033795; Schranz ME, 2009, HEREDITY, V102, P465, DOI 10.1038/hdy.2009.12; Schranz ME, 2007, CURR OPIN PLANT BIOL, V10, P168, DOI 10.1016/j.pbi.2007.01.014; Schranz ME, 2007, PLANT PHYSIOL, V144, P286, DOI 10.1104/pp.107.096685; Schranz ME, 2006, NEW PHYTOL, V171, P425, DOI 10.1111/j.1469-8137.2006.01765.x; Schranz ME, 2005, AM J BOT, V92, P1797, DOI 10.3732/ajb.92.11.1797; Sharbel TF, 2005, CYTOGENET GENOME RES, V109, P283, DOI 10.1159/000082411; Sharbel TF, 2004, CYTOGENET GENOME RES, V106, P173, DOI 10.1159/000079284; Sharbel TF, 2010, PLANT CELL, V22, P655, DOI 10.1105/tpc.109.072223; Sharbel TF, 2009, PLANT J, V58, P870, DOI 10.1111/j.1365-313X.2009.03826.x; Siemens DH, 2010, EVOL ECOL, V24, P1291, DOI 10.1007/s10682-010-9374-5; Siemens DH, 2009, MOL ECOL, V18, P4974, DOI 10.1111/j.1365-294X.2009.04389.x; Siemens DH, 2005, EVOL ECOL, V19, P321, DOI 10.1007/s10682-005-6639-5; Sobel JM, 2010, EVOLUTION, V64, P295, DOI 10.1111/j.1558-5646.2009.00877.x; Song BH, 2007, MOL ECOL, V16, P4079, DOI 10.1111/j.1365-294X.2007.03500.x; Song BH, 2009, GENETICS, V181, P1021, DOI 10.1534/genetics.108.095364; Song BH, 2006, MOL ECOL, V15, P357, DOI 10.1111/j.1365-294X.2005.02817.x; Stebbins G. L., 1950, VARIATION EVOLUTION; Stotz HU, 2011, PLANT J, V67, P81, DOI 10.1111/j.1365-313X.2011.04578.x; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Takebayashi N, 2001, AM J BOT, V88, P1143, DOI 10.2307/3558325; Taskin KM, 2003, PLANT CELL TISS ORG, V72, P173, DOI 10.1023/A:1022291324492; THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673; Town CD, 2006, PLANT CELL, V18, P1348, DOI 10.1105/tpc.106.041665; Vogel H, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001081; VOIGT ML, 2007, APOMIXIS EVOLUTION M, P235; Wakeley J, 2003, GENETICS, V164, P1043; Wall PK, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-347; Wellmer F, 2010, TRENDS GENET, V26, P519, DOI 10.1016/j.tig.2010.09.001; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; Windham Michael D., 2006, Harvard Papers in Botany, V11, P61, DOI 10.3100/1043-4534(2006)11[61:NANSOB]2.0.CO;2; Windham Michael D., 2007, Harvard Papers in Botany, V12, P235, DOI 10.3100/1043-4534(2007)12[235:NANSOB]2.0.CO;2; Windham Michael D., 2007, Harvard Papers in Botany, V11, P257, DOI 10.3100/1043-4534(2007)11[257:NANSOB]2.0.CO;2; Windsor AJ, 2006, PLANT PHYSIOL, V140, P1169, DOI 10.1104/pp.105.073981; Wu CA, 2008, HEREDITY, V100, P220, DOI 10.1038/sj.hdy.6801018 121 54 55 0 45 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. DEC 2011 20 23 4843 4857 10.1111/j.1365-294X.2011.05340.x 15 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 859ZW WOS:000297915700005 22059452 Bronze, Green Accepted 2019-02-21 J Shaw, AK; Levin, SA Shaw, Allison K.; Levin, Simon A. To breed or not to breed: a model of partial migration OIKOS English Article RANDOMLY VARYING ENVIRONMENTS; ESS GERMINATION STRATEGIES; LEATHERBACK TURTLES; MARINE TURTLES; REPRODUCTION; POPULATION; DYNAMICS; EVOLUTION; PATTERNS; DENSITY Migration is used by a number of species as a strategy for dealing with a seasonally variable environment. In many migratory species, only some individuals migrate within a given season (migrants) while the rest remain in the same location (residents), a phenomenon called partial migration. Most examples of partial migration considered in the literature (both empirically and theoretically) fall into one of two categories: either species where residents and migrants share a breeding ground and winter apart, or species where residents and migrants share an overwintering ground and breed apart. However, a third form of partial migration can occur when non-migrating individuals actually forgo reproduction, essentially a special form of low-frequency reproduction. While this type of partial migration is well documented in many taxa, it is not often included in the partial migration literature, and has not been considered theoretically to date. In this paper we present a model for this partial migration scenario and determine under what conditions an individual should skip a breeding opportunity (resulting in partial migration), and under what conditions individuals should breed every chance they get (resulting in complete migration). In a constant environment, we find that partial migration is expected to occur when the mortality cost of migration is high, and when individuals can greatly increase their fecundity by skipping a year before breeding. In a stochastic environment, we find that an individual should skip migration more frequently with increased risk of a bad year (higher probability and severity), with higher mortality cost of migration, and with lower mortality cost of skipping. We discuss these results in the context of empirical data and existing life history theory. [Shaw, Allison K.; Levin, Simon A.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA Shaw, AK (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. akshaw@princeton.edu Shaw, Allison/E-7161-2010 Shaw, Allison/0000-0001-7969-8365 National Science Foundation [DGE-0646086] We would like to thank Iain Couzin, Henry Horn, Per Lundberg, Dan Rubenstein, Daniel Stanton and the Levin lab for helpful discussions and feedback, and the organizers of the CAnMove Symposium on Partial Migration for organizing this thematic on partial migration. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant no. DGE-0646086 to AKS. Aguilar R, 2005, J EXP MAR BIOL ECOL, V319, P117, DOI 10.1016/j.jembe.2004.08.030; Barta Z, 2006, OIKOS, V112, P580, DOI 10.1111/j.0030-1299.2006.14240.x; BELL JD, 1992, J FISH BIOL, V40, P107, DOI 10.1111/j.1095-8649.1992.tb02558.x; Benaim M, 2009, THEOR POPUL BIOL, V76, P19, DOI 10.1016/j.tpb.2009.03.007; Bock B.C., 1985, Contributions in Marine Science, V27, P435; Brodersen J, 2011, OIKOS, V120, P1838, DOI 10.1111/j.1600-0706.2011.19433.x; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; CARR A, 1975, Biological Conservation, V8, P161, DOI 10.1016/0006-3207(75)90060-9; Caswell H., 2001, MATRIX POPULATION MO; Caut S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001845; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1967, AM NAT, V101, P5, DOI 10.1086/282464; COHEN D, 1968, J ECOL, V56, P219, DOI 10.2307/2258075; Corkeron PJ, 1999, MAR MAMMAL SCI, V15, P1228, DOI 10.1111/j.1748-7692.1999.tb00887.x; Craig AS, 1997, CAN J ZOOL, V75, P1923, DOI 10.1139/z97-822; Dingle H, 1996, MIGRATION BIOL LIFE; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; ELLNER S, 1987, AM NAT, V130, P798, DOI 10.1086/284746; Engelhard GH, 2005, BIOL LETT-UK, V1, P172, DOI 10.1098/rsbl.2004.0290; FERRIERE R, 1995, THEOR POPUL BIOL, V48, P126, DOI 10.1006/tpbi.1995.1024; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GIBSON-HILL C. A., 1947, BULL RAFFLES MUS, V18, P43; Green PT, 1997, J TROP ECOL, V13, P17, DOI 10.1017/S0266467400010221; Griswold CK, 2010, P ROY SOC B-BIOL SCI, V277, P2711, DOI 10.1098/rspb.2010.0550; Hartnoll RG, 2007, J CRUSTACEAN BIOL, V27, P425, DOI 10.1651/S-2772.1; HASSELL MP, 1976, J ANIM ECOL, V45, P471, DOI 10.2307/3886; Hatase H, 2004, MAR BIOL, V144, P807, DOI 10.1007/s00227-003-1232-3; Hays GC, 2000, J THEOR BIOL, V206, P221, DOI 10.1006/jtbi.2000.2116; Hebblewhite M, 2011, OIKOS, V120, P1860, DOI 10.1111/j.1600-0706.2011.19436.x; Hughes G.R., 1995, BIOL CONSERVATION SE, P81; Husting E. L., 1965, Copeia, V1965, P352, DOI 10.2307/1440800; JENSEN GC, 1989, CAN J FISH AQUAT SCI, V46, P932, DOI 10.1139/f89-120; JONSSON N, 1991, J ANIM ECOL, V60, P937, DOI 10.2307/5423; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; KAITALA A, 1993, AM NAT, V142, P59, DOI 10.1086/285529; Lack D., 1944, British Birds, V37, P143; Lack David, 1943, BRIT BIRDS, V37, P122; Lalonde RG, 2006, AM NAT, V168, P127, DOI 10.1086/505155; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; Le Bohec C, 2007, J ANIM ECOL, V76, P1149, DOI 10.1111/j.1365-2656.2007.01268.x; LUNDBERG P, 1987, J THEOR BIOL, V125, P351, DOI 10.1016/S0022-5193(87)80067-X; McGill BJ, 2007, ANNU REV ECOL EVOL S, V38, P403, DOI 10.1146/annurev.ecolsys.36.091704.175517; Mellinger DK, 2004, MAR MAMMAL SCI, V20, P48, DOI 10.1111/j.1748-7692.2004.tb01140.x; Menu F, 2000, AM NAT, V155, P724, DOI 10.1086/303355; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; MOORE R, 1982, AUST J MAR FRESH RES, V33, P671, DOI 10.1071/MF9820671; Morrissey CA, 2004, CONDOR, V106, P815, DOI 10.1650/7455; MORTIMER JA, 1987, COPEIA, P103, DOI 10.2307/1446043; Musick John A., 1997, P137; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; Nilsson ALK, 2011, OIKOS, V120, P1784, DOI 10.1111/j.1600-0706.2011.19440.x; OLSEN A. M., 1954, AUSTRALIAN JOUR MARINE AND FRESHWATER RES, V5, P353; Pimentel R. A., 1960, AM MIDL NAT, V63, P470, DOI DOI 10.2307/2422806; POLLOCK BR, 1984, MAR ECOL PROG SER, V19, P17, DOI 10.3354/meps019017; Pritchard P. C. H., 1973, IUCN MONOGR MAR TU 2, V2, P1; QUINN SP, 1985, COPEIA, P613; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROERDINK JBTM, 1988, J MATH BIOL, V26, P199, DOI 10.1007/BF00277733; Russell Anthony P., 2005, P151, DOI 10.1007/3-540-26604-6_7; Saba VS, 2007, J APPL ECOL, V44, P395, DOI 10.1111/j.1365-2664.2007.01276.x; Schulz J.P., 1975, Zoologische Verh Leiden, VNo. 143, P1; Scott W.B., 1973, Bulletin Fish Res Bd Canada, V184, P1; SMITH JM, 1973, NATURE, V246, P15, DOI 10.1038/246015a0; Solow AR, 2002, ECOL LETT, V5, P742, DOI 10.1046/j.1461-0248.2002.00374.x; Taylor CM, 2007, BIOLOGY LETT, V3, P280, DOI 10.1098/rsbl.2007.0053; Thorpe J.E., 1994, Aquaculture and Fisheries Management, V25, P77; TULJAPURKAR S, 1993, THEOR POPUL BIOL, V43, P251, DOI 10.1006/tpbi.1993.1011; TWITTY V, 1964, P NATL ACAD SCI USA, V51, P51, DOI 10.1073/pnas.51.1.51; Wolcott T.G., 1988, P55, DOI 10.1017/CBO9780511753428.004 72 41 45 1 43 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos DEC 2011 120 12 1871 1879 10.1111/j.1600-0706.2011.19443.x 9 Ecology Environmental Sciences & Ecology 862LS WOS:000298093100012 2019-02-21 J de Andreazzi, CS; Rademaker, V; Gentile, R; Herrera, HM; Jansen, AM; D'Andrea, PS de Andreazzi, Cecilia S.; Rademaker, Vitor; Gentile, Rosana; Herrera, Heitor M.; Jansen, Ana M.; D'Andrea, Paulo S. Population ecology of small rodents and marsupials in a semi-deciduous tropical forest of the southeast Pantanal, Brazil ZOOLOGIA English Article Gracilinanus agilis; Oecomys mamorae; population dynamics; seasonality; small mammal; Thrichomys pachyurus SMALL MAMMALS; ATLANTIC FOREST; REPRODUCTIVE PATTERNS; AGE STRUCTURE; MATO-GROSSO; DYNAMICS; OPOSSUM; DIDELPHIDAE; ABUNDANCE; SEASONALITY The Pantanal is a South American biome characterized by extensive plains and stark environmental seasonality. Several habitats are subject to annual flooding, forcing small mammal species to aggregate in dry forest patches, which most likely influences their population dynamics and life history strategies. In order to investigate the seasonal influence on the life history traits of these small mammals, we conducted a 2-year mark-recapture study in the southeastern region of the Brazilian Pantanal (Nhecolandia) and analyzed the population dynamics of the most abundant small mammal species with the jackknife estimator. A trapping effort of 21,560 trap-nights resulted in 615 individuals in 1,171 captures (success = 5.43%). Three species of rodents - Oecomys mamorae (Thomas, 1906), Thrichomys pachyurus (Wagner, 1845), and Clyomys laticeps (Thomas, 1841) - and three species of marsupials - Gracilinanus agilis (Burmeister, 1854), Thylamys macrurus (Olfers, 1818), and Monodelphis domestica (Wagner, 1842) - were obtained. The most abundant species was O. mamorae, followed by G. agilis and T. pachyurus. Oecomys mamorae was more abundant in the wet season and presented an opportunistic reproductive strategy. Gracilianus agilis displayed increased population sizes in the dry season and synchronized, seasonal reproduction during the rainy season. Thrichomys pachyurus had a small population size, delayed response to variations in environmental conditions and higher reproductive rates in the dry season. All species revealed different life history strategies (seasonal, opportunistic or delayed response to environmental variations), coinciding with periods of higher resource availability in order to maximize survival. [Rademaker, Vitor; Gentile, Rosana; D'Andrea, Paulo S.] Fiocruz MS, Lab Biol & Parasitol Mamiferos Silvestres Reserva, BR-21045900 Rio De Janeiro, RJ, Brazil; [Herrera, Heitor M.; Jansen, Ana M.] Fiocruz MS, Lab Biol Tripanosomatideos, BR-21045900 Rio De Janeiro, RJ, Brazil; [Herrera, Heitor M.] EMBRAPA, Ctr Pesquisa Agr Pantanal, BR-79320900 Corumba, MS, Brazil; [de Andreazzi, Cecilia S.] Fiocruz MS, CJM, BR-22713375 Rio De Janeiro, RJ, Brazil D'Andrea, PS (reprint author), Fiocruz MS, Lab Biol & Parasitol Mamiferos Silvestres Reserva, Ave Brasil 4365, BR-21045900 Rio De Janeiro, RJ, Brazil. dandrea@ioc.fiocruz.br D'Andrea, Paulo/G-6820-2011; Gentile, Rosana/C-3101-2013; Andreazzi, Cecilia/B-1317-2013 Andreazzi, Cecilia/0000-0002-9817-0635 Conselho Nacional de Pesquisas e Desenvolvimento; Instituto Oswaldo Cruz/Fiocruz; Conservacao Internacional do Brasil; Earthwatch Institute; FUNDECT To Diogo Loretto, Natalie Olifiers, Samantha T. Mansur, Tatiana P.T. Abreu and staff from the Laboratorio de Biologia e Parasitologia de Mamiferos Silvestres Reservatorios FIOCRUZ/RJ who helped us during field work. Cibele Bonvicino for karyotype identification of small mammal species. Claudio Bidau and Fernando Fernandez for important contributions. This work was supported by the Conselho Nacional de Pesquisas e Desenvolvimento, Instituto Oswaldo Cruz/Fiocruz, Conservacao Internacional do Brasil, Earthwatch Institute and FUNDECT. The assistance provided by Alexine Keuroghlian, Donald P. Eaton and by the local inhabitants is gratefully acknowledged, especially the Rio Negro farm staff. Abdon MD, 1998, PESQUI AGROPECU BRAS, V33, P1675; Adamoli J., 1987, RECURSOS FORRAGEIROS, P15; Adler GH, 1998, ECOLOGY, V79, P242, DOI 10.1890/0012-9658(1998)079[0242:IORAOP]2.0.CO;2; ALHO C.J.R, 2000, 3 S REC NAT SOC PANT, P1; ALHO C R J, 1987, Revista Brasileira de Zoologia, V4, P151; Andersen DC, 2000, J MAMMAL, V81, P1087, DOI 10.1644/1545-1542(2000)081<1087:MPORSM>2.0.CO;2; Aragona M, 2009, ZOOLOGIA-CURITIBA, V26, P220, DOI 10.1590/S1984-46702009000200004; AUGUST P.V, 1984, CONTRIBUTIONS MAMMAL, P71; AUGUST PV, 1983, ECOLOGY, V64, P1495, DOI 10.2307/1937504; Baker J. R., 1938, P161; Begon M., 1979, INVESTIGATING ANIMAL; BERGALLO HD, 1994, STUD NEOTROP FAUNA E, V29, P197, DOI 10.1080/01650529409360932; Bergallo HG, 1999, J MAMMAL, V80, P472, DOI 10.2307/1383294; BERGALLO HG, 1995, MAMMALIA, V59, P51, DOI 10.1515/mamm.1995.59.1.51; BERGALLO HG, 1994, J ZOOL, V232, P551, DOI 10.1111/j.1469-7998.1994.tb00003.x; Bonecker ST, 2009, MAMM BIOL, V74, P469, DOI 10.1016/j.mambio.2009.05.010; BURNHAM KP, 1979, ECOLOGY, V60, P927, DOI 10.2307/1936861; Caceres NC, 1998, Z SAUGETIERKD, V63, P169; CERQUEIRA R, 1993, MAMMALIA, V57, P507, DOI 10.1515/mamm.1993.57.4.507; Cerqueira Rui, 2005, Arquivos do Museu Nacional Rio de Janeiro, V63, P29; Cerqueira Rui, 1993, Ciencia e Cultura (Sao Paulo), V45, P140; D’Andrea PS., 2007, Braz. J. Biol., V67, P179, DOI 10.1590/S1519-69842007000100025; da Cunha CN, 2006, AMAZONIANA, V19, P1; DaFonseca GAB, 1988, B FLORIDA STATE MUSE, V34, P99; de Queiroz Neto J. P., 2007, REV BRASILEIRA CARTO, V59, P101; EISENBERG JF, 1999, MAMMALS NEOTROPICS C, V3; FERNANDEZ FAS, 1995, OECOLOGIA BRASILIENS, V2, P1; FLEMING TH, 1973, J MAMMAL, V54, P439, DOI 10.2307/1379129; Gentile R, 2004, MAMMALIA, V68, P109, DOI 10.1515/mamm.2004.012; Gentile R, 2000, STUD NEOTROP FAUNA E, V35, P1, DOI 10.1076/0165-0521(200004)35:1;1-M;FT001; Harris M. B., 2005, MEGADIVERSIDADE, V1, P156; Herrera HM, 2007, ACTA TROP, V102, P55, DOI 10.1016/j.actatropica.2007.03.001; Keuroghlian A., 2009, International Journal of Biodiversity and Conservation, V1, P87; LACHER TE, 1989, J MAMMAL, V70, P396, DOI 10.2307/1381526; Lee A. K., 1985, EVOLUTIONARY ECOLOGY; Leiner NO, 2008, J MAMMAL, V89, P153, DOI 10.1644/07-MAMM-A-083.1; Lima M, 2001, P ROY SOC B-BIOL SCI, V268, P2053, DOI 10.1098/rspb.2001.1735; LORINI ML, 1994, Z SAUGETIERKD, V59, P65; MARES MA, 1995, J MAMMAL, V76, P750, DOI 10.2307/1382745; Marinho-Filho Jader, 2002, P266; Martins EG, 2006, J TROP ECOL, V22, P461, DOI 10.1017/S0266467406003269; Mendel SM, 2008, J MAMMAL, V89, P159, DOI 10.1644/06-MAMM-A-263.1; Nimer E., 1989, CLIMATOLOGIA BRASIL; Oaks JR, 2008, J MAMMAL, V89, P904, DOI 10.1644/07-MAMM-A-045.1; OCONNELL MA, 1989, J MAMMAL, V70, P532, DOI 10.2307/1381425; PINE R H, 1985, Annals of Carnegie Museum, V54, P195; Pinheiro F, 2002, AUSTRAL ECOL, V27, P132, DOI 10.1046/j.1442-9993.2002.01165.x; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Pott A, 1994, PLANTAS PANTANAL; Rademaker V, 2006, AUSTRAL ECOL, V31, P337, DOI 10.1111/j.1442-9993.2006.01562.x; ROBERTS MS, 1988, J MAMMAL, V69, P542, DOI 10.2307/1381346; SCHALLER G B, 1983, Arquivos de Zoologia (Sao Paulo), V31, P1; SEBER GAF, 1986, BIOMETRICS, V42, P267, DOI 10.2307/2531049; Seidl AF, 2001, ECOL ECON, V36, P413, DOI 10.1016/S0921-8009(00)00238-X; Sikes RS, 2011, J MAMMAL, V92, P235, DOI 10.1644/10-MAMM-F-355.1; SILVA JSV, 1998, PESQUISA AGROPECUARI, V33, P1703; Soriano P. J., 1988, ECOTROPICOS, V1, P3; Teixeira BR, 2005, MEM I OSWALDO CRUZ, V100, P627; Tyndale-Biscoe C.H., 1976, J MAMMAL, V37, P247; VIEIRA EM, 2003, MAMMALIA, V67, P1, DOI DOI 10.1515/MAMM.2003.67.1.1; Vieira Marcus V., 1997, Revista Brasileira de Biologia, V57, P99; VIVAS A.M, 1988, ECOTROPICOS, V1, P82; VIVAS AM, 1986, REV CHIL HIST NAT, V59, P179; Vivas AM, 1985, B SOC VENEZ CIENC NA, V143, P79; Zar J. H., 1999, BIOSTATISTICAL ANAL 65 6 7 0 39 SOC BRASILEIRA ZOOLOGIA, UNIV FEDERAL PARANA CURITIBA CAIXA POSTAL 19020, CURITIBA, PARANA 81531-980, BRAZIL 1984-4670 ZOOLOGIA-CURITIBA Zoologia DEC 2011 28 6 762 770 10.1590/S1984-46702011000600009 9 Zoology Zoology 875XH WOS:000299068000009 DOAJ Gold, Green Published 2019-02-21 J Dziock, F; Gerisch, M; Siegert, M; Hering, I; Scholz, M; Ernst, R Dziock, Frank; Gerisch, Michael; Siegert, Marian; Hering, Isabel; Scholz, Mathias; Ernst, Raffael Reproducing or dispersing? Using trait based habitat templet models to analyse Orthoptera response to flooding and land use AGRICULTURE ECOSYSTEMS & ENVIRONMENT English Article RLQ; Fourth corner; Orthoptera; Floodplains; Life history strategies; Disturbance; Traits database SPECIES TRAITS; LONG-TERM; ENVIRONMENT RELATIONSHIPS; GRASSHOPPER ASSEMBLAGES; FLOODPLAIN GRASSLANDS; TALLGRASS PRAIRIE; SPATIAL STRUCTURE; TRADE-OFFS; DIVERSITY; ECOLOGY Habitat templet theory predicts that habitat provides the templet on which evolution shapes species' multiple traits and thus their characteristic life-history strategies. By analysing entire trait communities (multiple species and traits) in this framework we can enhance our understanding of how species composition changes as environmental constraints vary across the landscape. Here, we study multiple traits of floodplain Orthoptera communities under the influence of two different sources of disturbance, land use and seasonal flooding. The application of two recently developed statistical techniques qualitative RLQ analysis and subsequent fourth-corner permutation tests revealed two different life history strategies in Orthoptera as a response to ecological disturbances, resulting from land use management and seasonal flooding. Orthoptera species seem to have developed two complementary strategies: (i) the high active dispersal-low reproduction strategy in intensive land use situations and (ii) the high passive dispersalhigh reproduction strategy in areas with high flood disturbance. Disturbance gradients act as trait filters allowing only particular trait combinations i.e. species with particular preadaptations to survive, whereas others go regionally extinct. Reproduction and dispersal capacity seem to be inversely associated with the disturbance gradients. Ovariole number, taken as the measure for reproduction, showed significant phylogenetic signal, which could potentially confound this relationship. Nonetheless, RLQ analyses coupled with fourth-corner permutation tests proved a powerful tool to reveal and disentangle different evolutionary strategies. (C) 2011 Elsevier B.V. All rights reserved. [Dziock, Frank] Univ Appl Sci, Chair Anim Ecol, HTW Dresden, Fak Landbau Landespflege, D-01326 Dresden, Germany; [Dziock, Frank; Hering, Isabel] Tech Univ Berlin, Dept Biodivers Dynam, D-12165 Berlin, Germany; [Gerisch, Michael; Siegert, Marian; Scholz, Mathias] UFZ Helmholtz Ctr Environm Res, Dept Conservat Biol, D-04318 Leipzig, Germany; [Siegert, Marian] Karl Franzens Univ Graz, Dept Zool, A-8010 Graz, Austria; [Ernst, Raffael] Senckenberg Nat Hist Collect Dresden, Museum Zool, D-01109 Dresden, Germany Dziock, F (reprint author), Univ Appl Sci, Chair Anim Ecol, HTW Dresden, Fak Landbau Landespflege, Pillnitzer Pl 2, D-01326 Dresden, Germany. Dziock@htw-dresden.de Abouheif E, 1999, EVOL ECOL RES, V1, P895; Barbaro L, 2000, CAN J BOT, V78, P1010, DOI 10.1139/cjb-78-8-1010; Baur B., 2006, HEUSCHRECKEN SCHWEIZ; Bellmann H., 1993, STIMMEN HEIMISCHEN H; Bohnke R., 2002, ELBE NEUE HORIZONTE, V10, P267; Braschler B, 2009, ECOL ENTOMOL, V34, P321, DOI 10.1111/j.1365-2311.2008.01080.x; Chessel D., 2004, COMMENT OBTENIR REPR; Debinski DM, 2001, BIOL CONSERV, V98, P179, DOI 10.1016/S0006-3207(00)00153-1; Detzel P, 1998, HEUSCHRECKEN BADEN W; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; Dray S, 2007, J STAT SOFTW, V22, P1; Dziock F, 2006, INT REV HYDROBIOL, V91, P341, DOI 10.1002/iroh.200510889; Ellis LM, 2001, REGUL RIVER, V17, P1, DOI 10.1002/1099-1646(200101/02)17:1<1::AID-RRR603>3.0.CO;2-L; Ernst R, 2008, J TROP ECOL, V24, P111, DOI 10.1017/S0266467407004737; Fischer FP, 1997, ECOL APPL, V7, P909; Fischer Niels, 2009, Hercynia, V42, P255; Foeckler F, 2006, INT REV HYDROBIOL, V91, P314, DOI 10.1002/iroh.200610887; Follner K, 2006, INT REV HYDROBIOL, V91, P364, DOI 10.1002/iroh.200510890; Follner K, 2010, RIVER RES APPL, V26, P877, DOI 10.1002/rra.1300; Gallardo B, 2009, J LIMNOL, V68, P315, DOI 10.3274/JL09-68-2-14; Gardiner T, 2009, J INSECT CONSERV, V13, P97, DOI 10.1007/s10841-007-9129-y; Gebeyehu S, 2003, AGR ECOSYST ENVIRON, V95, P613, DOI 10.1016/S0167-8809(02)00178-0; Gerisch M, 2012, RIVER RES APPL, V28, P81, DOI 10.1002/rra.1438; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Guido M, 2001, ACTA OECOL, V22, P175, DOI 10.1016/S1146-609X(01)01109-2; Guido Marco, 2000, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V73, P353; Hausner VH, 2003, ECOL APPL, V13, P999, DOI 10.1890/1051-0761(2003)13[999:SITFML]2.0.CO;2; Henle K, 2006, INT REV HYDROBIOL, V91, P292, DOI 10.1002/iroh.200610886; Hochkirch A, 2009, BIOL J LINN SOC, V97, P118, DOI 10.1111/j.1095-8312.2008.01199.x; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; Humbert JY, 2009, AGR ECOSYST ENVIRON, V130, P1, DOI 10.1016/j.agee.2008.11.014; Ilg C, 2009, HYDROBIOLOGIA, V621, P63, DOI 10.1007/s10750-008-9632-5; Ilg C, 2008, ECOLOGY, V89, P2392, DOI 10.1890/08-0528.1; Ingrisch S., 1998, HEUSCHRECKEN MITTELE; Joern A, 2005, ECOLOGY, V86, P861, DOI 10.1890/04-0135; Jombart T., 2009, ADEPHYLO EXPLORATORY; Jombart T, 2010, J THEOR BIOL, V264, P693, DOI 10.1016/j.jtbi.2010.03.038; Jonas JL, 2007, OECOLOGIA, V153, P699, DOI 10.1007/s00442-007-0761-8; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Knop E, 2006, J APPL ECOL, V43, P120, DOI 10.1111/j.1365-2664.2005.01113.x; Kruess A, 2002, CONSERV BIOL, V16, P1570, DOI 10.1046/j.1523-1739.2002.01334.x; Kuhn I, 2009, GLOBAL ECOL BIOGEOGR, V18, P745, DOI 10.1111/j.1466-8238.2009.00481.x; Lambeets K, 2008, J ANIM ECOL, V77, P1162, DOI 10.1111/j.1365-2656.2008.01443.x; Leps J., 2003, MULTIVARIATE ANAL EC; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Maas S., 2002, GEFAHRDUNGSANALYSE H; Marini L, 2009, INSECT CONSERV DIVER, V2, P213, DOI 10.1111/j.1752-4598.2009.00053.x; Marini L, 2009, AGR ECOSYST ENVIRON, V132, P232, DOI 10.1016/j.agee.2009.04.003; Ode B., 1997, ZINGENDE SPRINKHANEN; OKSANEN J, 2009, VEGAN COMMUNITY ECOL, V1, P15; Pavoine S, 2008, THEOR POPUL BIOL, V73, P79, DOI 10.1016/j.tpb.2007.10.001; Peres-Neto PR, 2006, ECOLOGY, V87, P2614, DOI 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2; Peres-Neto PR, 2010, GLOBAL ECOL BIOGEOGR, V19, P174, DOI 10.1111/j.1466-8238.2009.00506.x; Peter W., 1999, UMWELTSYSTEMANALYSE, V33, P53; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Poniatowski D, 2011, AGR ECOSYST ENVIRON, V145, P5, DOI 10.1016/j.agee.2010.10.006; Poniatowski D, 2009, EUR J ENTOMOL, V106, P599, DOI 10.14411/eje.2009.075; R Development Core Team, 2011, R LANG ENV STAT COMP; REICH M, 1991, Regulated Rivers Research and Management, V6, P333, DOI 10.1002/rrr.3450060411; Reinhardt K, 2005, ECOGRAPHY, V28, P593, DOI 10.1111/j.2005.0906-7590.04285.x; Ribera I, 2001, ECOLOGY, V82, P1112; Riede K, 1998, J INSECT CONSERV, V2, P217, DOI 10.1023/A:1009695813606; Roff DA, 2002, EVOLUTION, V56, P84; Roff Derek A., 1992; Roxburgh SH, 2004, ECOLOGY, V85, P359, DOI 10.1890/03-0266; Schmitz OJ, 2009, ECOLOGY, V90, P2339, DOI 10.1890/08-1919.1; Scholten M., 2005, Archiv fuer Hydrobiologie Supplement, V155, P579; Scholz M., 2009, ENTWICKLUNG INDIKATI; Simmons AD, 2004, AM NAT, V164, P378, DOI 10.1086/423430; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stadler B, 2003, OECOLOGIA, V135, P422, DOI 10.1007/s00442-003-1193-8; STATZNER B, 1994, FRESHWATER BIOL, V31, P253, DOI 10.1111/j.1365-2427.1994.tb01739.x; Stirling G, 2001, EVOL ECOL RES, V3, P157; Thorens P., 1993, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V66, P173; Thuiller W, 2006, ECOLOGY, V87, P1755, DOI 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; Wallaschek M., 2004, GERADFLUGLER LANDES; WARNE A C, 1975, Entomologist's Gazette, V26, P127; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Wettstein W, 1999, J APPL ECOL, V36, P363, DOI 10.1046/j.1365-2664.1999.00404.x; Whitman Douglas W., 2008, Journal of Orthoptera Research, V17, P117, DOI 10.1665/1082-6467-17.2.117; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 84 17 18 2 38 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0167-8809 1873-2305 AGR ECOSYST ENVIRON Agric. Ecosyst. Environ. DEC 2011 145 1 SI 85 94 10.1016/j.agee.2011.07.015 10 Agriculture, Multidisciplinary; Ecology; Environmental Sciences Agriculture; Environmental Sciences & Ecology 873PE WOS:000298894500010 2019-02-21 J Baker, RL; Diggle, PK Baker, Robert L.; Diggle, Pamela K. NODE-SPECIFIC BRANCHING AND HETEROCHRONIC CHANGES UNDERLIE POPULATION-LEVEL DIFFERENCES IN MIMULUS GUTTATUS (PHRYMACEAE) SHOOT ARCHITECTURE AMERICAN JOURNAL OF BOTANY English Article axillary meristem; branching; development; evolution; heterochrony; life history evolution; meristem limitation; Mimulus; shoot architecture VERBASCUM-THAPSUS SCROPHULARIACEAE; TRANSMISSION RATIO DISTORTION; LIFE-HISTORY TRAITS; GROUND BUD BANKS; INBREEDING DEPRESSION; MERISTEM LIMITATION; PHENOTYPIC VARIATION; SPERGULARIA-MARINA; HERBACEOUS PLANTS; APICAL DOMINANCE Premise of the study: Shoot architecture is a fundamentally developmental aspect of plant biology with implications for plant form, function, reproduction, and life history evolution. Mimulus guttatus is morphologically diverse and becoming a model for evolutionary biology. Shoot architecture, however, has never been studied from a developmental perspective in M. guttatus. Methods: We examined the development of branches and flowers in plants from two locally adapted populations of M. guttatus with contrasting flowering times, life histories, and branch numbers. We planted second-generation seed in growth chambers to control for maternal and environmental effects. Key results: Most branches occurred at nodes one and two of the main axis. Onset of branching occurred earlier and at a greater frequency in perennials than in annuals. In perennials, almost all flowers occurred at the fifth or more distal nodes. In annuals, most flowers occurred at the third and more distal nodes. Accessory axillary meristems and higher-order branching did not influence shoot architecture. Conclusions: We found no evidence for trade-offs between flowers and branches because axillary meristem number was not limiting: a large number of meristems remained quiescent. If, however, quiescence is a component of meristem allocation strategy, then meristems may be limited despite presence of quiescent meristems. At the two basalmost nodes, branch number was determined by mechanisms governing either meristem initiation or outgrowth, rather than flowering vs. branching. At the third and more distal nodes, heterochronic processes contributed to flowering time and branch number differences between populations. [Baker, Robert L.; Diggle, Pamela K.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA Baker, RL (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. Robert.Baker@colorado.edu Department of Ecology and Evolutionary Biology; Natural History Museum at the University of Colorado, Boulder The authors thank the Department of Ecology and Evolutionary Biology and the Natural History Museum at the University of Colorado, Boulder for financial support for this project. C. Lay (University of Colorado, Boulder) and G. Carey (University of Colorado, Boulder) provided help with the statistical analysis. The manuscript was improved by the comments of A. Randle (University of Colorado, Boulder), J. Bachelier (Harvard University), and three anonymous reviewers. AARSSEN LW, 1995, OIKOS, V74, P149, DOI 10.2307/3545684; ALBERCH P, 1979, PALEOBIOLOGY, V5, P296; ALBERCH P, 1985, SYST ZOOL, V34, P46, DOI 10.2307/2413344; Andalo C, 1999, NEW PHYTOL, V142, P173, DOI 10.1046/j.1469-8137.1999.00396.x; Barthelemy D, 2007, ANN BOT-LONDON, V99, P375, DOI 10.1093/aob/mcl260; BELL AD, 1991, PLANT FORM ILLUSTRAT; Benson EJ, 2004, AM J BOT, V91, P416, DOI 10.3732/ajb.91.3.416; Bergstrom CA, 2003, EVOLUTION, V57, P2128; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; Bonser SP, 1996, OIKOS, V77, P347, DOI 10.2307/3546076; Box MS, 2010, TRENDS PLANT SCI, V15, P241, DOI 10.1016/j.tplants.2010.02.004; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLEMAN JS, 1994, TRENDS ECOL EVOL, V9, P187, DOI 10.1016/0169-5347(94)90087-6; Crawley M. J., 2007, R BOOK; Cumming G, 2007, J CELL BIOL, V177, P7, DOI 10.1083/jcb.200611141; Dalgleish HJ, 2006, NEW PHYTOL, V171, P81, DOI 10.1111/j.1469-8137.2006.01739.x; DELESALLE VA, 1995, AM J BOT, V82, P798, DOI 10.2307/2445620; Diggle PK, 1999, INT J PLANT SCI, V160, pS123, DOI 10.1086/314217; DOLE JA, 1992, AM J BOT, V79, P650, DOI 10.2307/2444881; FARNSWORTH KD, 1995, FUNCT ECOL, V9, P355, DOI 10.2307/2389997; Fernandez J, 2001, HEREDITY, V86, P480, DOI 10.1046/j.1365-2540.2001.00851.x; Fishman L, 2002, EVOLUTION, V56, P2138; Fishman L, 2001, GENETICS, V159, P1701; Galloway LF, 1995, EVOLUTION, V49, P1095, DOI 10.1111/j.1558-5646.1995.tb04436.x; GARDNER MJ, 1986, BMJ-BRIT MED J, V292, P746, DOI 10.1136/bmj.292.6522.746; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Gould S. J., 1977, ONTOGENY PHYLOGENY; GUERRANT EO, 1988, HETEROCHRONY EVOLUTI, P348; Hall MC, 2010, MOL ECOL, V19, P2739, DOI 10.1111/j.1365-294X.2010.04680.x; Hall MC, 2006, GENETICS, V172, P1829, DOI 10.1534/genetics.105.051227; Hall MC, 2005, GENETICS, V170, P375, DOI 10.1534/genetics.104.038653; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Halle F., 1978, TROPICAL TREES FORES; HUBBELL SP, 1979, AM NAT, V113, P277, DOI 10.1086/283385; JEPSON WL, 1960, MANUAL FLOWERING PLA; JONES CS, 1992, EVOLUTION, V46, P1827, DOI 10.1111/j.1558-5646.1992.tb01172.x; Kelly JK, 2002, INT J PLANT SCI, V163, P575, DOI 10.1086/340735; Li P, 2000, BOT REV, V66, P57, DOI 10.1007/BF02857782; Lortie CJ, 1997, INT J PLANT SCI, V158, P461, DOI 10.1086/297456; Lortie CJ, 2000, AM J BOT, V87, P1789, DOI 10.2307/2656830; Lortie CJ, 2000, AM J BOT, V87, P1793, DOI 10.2307/2656831; Lowry DB, 2008, PHILOS T R SOC B, V363, P3009, DOI 10.1098/rstb.2008.0064; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; Lowry DB, 2009, NEW PHYTOL, V183, P776, DOI 10.1111/j.1469-8137.2009.02901.x; MAZER SJ, 1992, AM J BOT, V79, P1185, DOI 10.2307/2445218; Meloche CG, 2001, AM J BOT, V88, P980, DOI 10.2307/2657079; Moczek AP, 2010, PHILOS T R SOC B, V365, P593, DOI 10.1098/rstb.2009.0263; Moody A, 1999, AM J BOT, V86, P1512, DOI 10.2307/2656789; Nilsson P, 1996, AM NAT, V147, P269, DOI 10.1086/285849; Onishi K, 2003, PLANT PROD SCI, V6, P179, DOI 10.1626/pps.6.179; Pinheiro J, 2011, NLME LINEAR NONLINEA; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Rothman K J, 1990, Epidemiology, V1, P43, DOI 10.1097/00001648-199001000-00010; Sachs T, 1999, PLANT CELL ENVIRON, V22, P757, DOI 10.1046/j.1365-3040.1999.00220.x; Sweigart A, 1999, HEREDITY, V83, P625, DOI 10.1038/sj.hdy.6886020; Sweigart AL, 2006, GENETICS, V172, P2465, DOI 10.1534/genetics.105.053686; Thiele J, 2009, BASIC APPL ECOL, V10, P340, DOI 10.1016/j.baae.2008.04.002; TORSTENSSON P, 1986, HOLARCTIC ECOL, V9, P20; TROLL W, 1959, ALLGEMEINE BOT LEHRB; van Kleunen M, 2007, EVOL ECOL, V21, P185, DOI 10.1007/s10682-006-0019-7; Vickery R. K., 1978, EVOL BIOL, V11, P405; VICKERY RK, 1956, UTAH ACAD SCI ARTS L, V33, P45; VONGOETHE JW, 1790, VERSUCH METAMORPHOSE; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; WERNER PA, 1975, OECOLOGIA, V20, P197, DOI 10.1007/BF00347472; WILLIS JH, 1993, EVOLUTION, V47, P864, DOI 10.1111/j.1558-5646.1993.tb01240.x; WILLIS JH, 1993, HEREDITY, V71, P145, DOI 10.1038/hdy.1993.118; WILLIS JH, 1992, HEREDITY, V69, P562, DOI 10.1038/hdy.1992.172; Willis JH, 1999, EVOLUTION, V53, P1678, DOI 10.1111/j.1558-5646.1999.tb04553.x; WILTSHIRE RJE, 1994, J EVOLUTION BIOL, V7, P447, DOI 10.1046/j.1420-9101.1994.7040447.x; Wu CA, 2008, HEREDITY, V100, P220, DOI 10.1038/sj.hdy.6801018; Wu CA, 2010, OECOLOGIA, V162, P23, DOI 10.1007/s00442-009-1448-0; Yoccoz NG, 1991, B ECOL SOC AM, V72, P106 74 7 7 0 23 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 AM J BOT Am. J. Bot. DEC 2011 98 12 1924 1934 10.3732/ajb.1100098 11 Plant Sciences Plant Sciences 863PB WOS:000298176800017 22123715 Bronze 2019-02-21 J Granek, JA; Kayikci, O; Magwene, PM Granek, Joshua A.; Kayikci, Oemuer; Magwene, Paul M. Pleiotropic signaling pathways orchestrate yeast development CURRENT OPINION IN MICROBIOLOGY English Review PROTEIN-KINASE-A; LIFE-HISTORY STRATEGIES; HAPLOID INVASIVE GROWTH; LONG-TERM SURVIVAL; SACCHAROMYCES-CEREVISIAE; PSEUDOHYPHAL DIFFERENTIATION; BUDDING YEAST; TRANSCRIPTIONAL ACTIVATOR; BIOFILM FORMATION; CELL-GROWTH Developmental phenotypes in Saccharomyces cerevisiae and related yeasts include responses such as filamentous growth, sporulation, and the formation of biofilms and complex colonies. These developmental phenotypes are regulated by evolutionarily conserved, nutrient-responsive signaling networks. The signaling mechanisms that control development in yeast are highly pleiotropic - all the known pathways contribute to the regulation of multiple developmental outcomes. This degree of pleiotropy implies that perturbations of these signaling pathways, whether genetic, biochemical, or environmentally induced, can manifest in multiple (and sometimes unexpected) ways. We summarize the current state of knowledge of developmental pleiotropy in yeast and discuss its implications for understanding functional relationships. [Magwene, Paul M.] Duke Univ, Dept Biol, Durham, NC 27708 USA; Duke Univ, IGSP Ctr Syst Biol, Durham, NC 27708 USA Magwene, PM (reprint author), Duke Univ, Dept Biol, Box 90338, Durham, NC 27708 USA. paul.magwene@duke.edu Granek, Joshua/0000-0003-3908-5016; Magwene, Paul/0000-0002-7659-2589 NIH [P50GM081883-01]; NSF [MCB-0614959] We thank Jennifer Reininga and Debra Murray for helpful comments on this manuscript. This work was supported in part by the NIH (P50GM081883-01) and NSF (MCB-0614959). Barbet NC, 1996, MOL BIOL CELL, V7, P25; Borges-Walmsley MI, 2000, TRENDS MICROBIOL, V8, P302, DOI 10.1016/S0966-842X(00)01698-X; Borneman AR, 2006, GENE DEV, V20, P435, DOI 10.1101/gad.1389306; Chavel CA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000883; Chen RE, 2007, BBA-MOL CELL RES, V1773, P1311, DOI 10.1016/j.bbamcr.2007.05.003; Chen RE, 2010, GENETICS, V185, P855, DOI 10.1534/genetics.110.115808; Coenye T, 2010, J MICROBIOL METH, V83, P89, DOI 10.1016/j.mimet.2010.08.018; Colomina N, 2003, MOL CELL BIOL, V23, P7415, DOI 10.1128/MCB.23.20.7415-7424.2003; Cullen PJ, 2000, P NATL ACAD SCI USA, V97, P13619, DOI 10.1073/pnas.240345197; Cutler NS, 2001, MOL BIOL CELL, V12, P4103, DOI 10.1091/mbc.12.12.4103; Cybulski N, 2009, TRENDS BIOCHEM SCI, V34, P620, DOI 10.1016/j.tibs.2009.09.004; Davis DA, 2009, CURR OPIN MICROBIOL, V12, P365, DOI 10.1016/j.mib.2009.05.006; Fidalgo M, 2006, P NATL ACAD SCI USA, V103, P11228, DOI 10.1073/pnas.0601713103; Fontana L, 2010, SCIENCE, V328, P321, DOI 10.1126/science.1172539; Georis I, 2009, GENETICS, V181, P861, DOI 10.1534/genetics.108.099051; GIMENO CJ, 1992, CELL, V68, P1077, DOI 10.1016/0092-8674(92)90079-R; Govender P, 2011, FEMS MICROBIOL LETT, V317, P117, DOI 10.1111/j.1574-6968.2011.02219.x; Granek JA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000823; Hall-Stoodley L, 2004, NAT REV MICROBIOL, V2, P95, DOI 10.1038/nrmicro821; Hall-Stoodley L, 2009, CELL MICROBIOL, V11, P1034, DOI 10.1111/j.1462-5822.2009.01323.x; Hedbacker K, 2008, FRONT BIOSCI-LANDMRK, V13, P2408, DOI 10.2741/2854; Honigberg SM, 1998, MOL CELL BIOL, V18, P4548, DOI 10.1128/MCB.18.8.4548; Honigberg SM, 2003, J CELL SCI, V116, P2137, DOI 10.1242/jcs.00460; Kassir Y, 2003, INT REV CYTOL, V224, P111, DOI 10.1016/S0074-7696(05)24004-4; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Kim J, 2011, ANNU REV BIOCHEM, V80, P1001, DOI 10.1146/annurev-biochem-062209-094414; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kuchin S, 2002, MOL CELL BIOL, V22, P3994, DOI 10.1128/MCB.22.12.3994-4000.2002; Lamb TM, 2003, MOL CELL BIOL, V23, P677, DOI 10.1128/MCB.23.2.677-686.2003; Lamb TM, 2001, J BIOL CHEM, V276, P1850, DOI 10.1074/jbc.M008381200; Lambrechts MG, 1996, P NATL ACAD SCI USA, V93, P8419, DOI 10.1073/pnas.93.16.8419; Liu ZC, 2006, ANNU REV GENET, V40, P159, DOI 10.1146/annurev.genet.40.110405.090613; Lo WS, 1998, MOL BIOL CELL, V9, P161, DOI 10.1091/mbc.9.1.161; Loewith R, 2011, BIOCHEM SOC T, V39, P437, DOI 10.1042/BST0390437; Magwene PM, 2011, P NATL ACAD SCI USA, V108, P1987, DOI 10.1073/pnas.1012544108; MCCUSKER JH, 1994, INFECT IMMUN, V62, P5447; McDonald CM, 2009, GENETICS, V181, P511, DOI 10.1534/genetics.108.098434; Neiman AM, 2005, MICROBIOL MOL BIOL R, V69, P565, DOI 10.1128/MMBR.69.4.565-584.2005; Ohkuni K, 1998, YEAST, V14, P623, DOI 10.1002/(SICI)1097-0061(199805)14:7<623::AID-YEA264>3.0.CO;2-D; Palkova Z, 2006, FEMS MICROBIOL REV, V30, P806, DOI 10.1111/j.1574-6976.2006.00034.x; Pan XW, 2000, CURR OPIN MICROBIOL, V3, P567, DOI 10.1016/S1369-5274(00)00142-9; Pan XW, 2002, MOL CELL BIOL, V22, P3981, DOI 10.1128/MCB.22.12.3981-3993.2002; Pan XW, 1999, MOL CELL BIOL, V19, P4874; Piccirillo S, 2010, GENETICS, V184, P707, DOI 10.1534/genetics.109.113480; Pimienta G, 2007, CELL CYCLE, V6, P2628, DOI 10.4161/cc.6.21.4930; Purnapatre K, 2002, GENES CELLS, V7, P675, DOI 10.1046/j.1365-2443.2002.00551.x; Ramachandran V, 2011, GENETICS, V187, P441, DOI 10.1534/genetics.110.123372; Reynolds TB, 2001, SCIENCE, V291, P878, DOI 10.1126/science.291.5505.878; ROBERTS RL, 1994, GENE DEV, V8, P2974, DOI 10.1101/gad.8.24.2974; Rubin-Bejerano I, 2004, MOL CELL BIOL, V24, P6967, DOI 10.1128/MCB.24.16.6967-6979.2004; Saito H, 2010, CURR OPIN MICROBIOL, V13, P677, DOI 10.1016/j.mib.2010.09.001; Schink B, 1997, MICROBIOL MOL BIOL R, V61, P262; Schneper L, 2004, CURR OPIN MICROBIOL, V7, P624, DOI 10.1016/j.mib.2004.10.002; Smukalla S, 2008, CELL, V135, P726, DOI 10.1016/j.cell.2008.09.037; Soulard A, 2010, MOL BIOL CELL, V21, P3475, DOI 10.1091/mbc.E10-03-0182; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Spor A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001579; Stephan JS, 2010, AUTOPHAGY, V6, P294, DOI 10.4161/auto.6.2.11129; Stovicek V, 2010, FUNGAL GENET BIOL, V47, P1012, DOI 10.1016/j.fgb.2010.08.005; Strudwick N, 2010, MOL CELL BIOL, V30, P5514, DOI 10.1128/MCB.00390-10; Thevelein JM, 2005, BIOCHEM SOC T, V33, P253, DOI 10.1042/BST0330253; Thevelein JM, 1999, MOL MICROBIOL, V33, P904, DOI 10.1046/j.1365-2958.1999.01538.x; Thomas G, 1997, CURR OPIN CELL BIOL, V9, P782, DOI 10.1016/S0955-0674(97)80078-6; Vachova L, 2004, J BIOL CHEM, V279, P37973, DOI 10.1074/jbc.M404594200; VELDE SV, 2008, EUKARYOT CELL, V7, P286; Vinod PK, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001663; Zaman S, 2009, MOL SYST BIOL, V5, DOI 10.1038/msb.2009.2; Zaman S, 2008, ANNU REV GENET, V42, P27, DOI 10.1146/annurev.genet.41.110306.130206; Zhang J, 2010, CURR OPIN MICROBIOL, V13, P382, DOI 10.1016/j.mib.2010.04.004; Zheng XF, 1997, P NATL ACAD SCI USA, V94, P3070, DOI 10.1073/pnas.94.7.3070; Zurita-Martinez SA, 2005, EUKARYOT CELL, V4, P63, DOI 10.1128/EC.4.1.63-71.2005 71 13 14 0 11 CURRENT BIOLOGY LTD LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 1369-5274 1879-0364 CURR OPIN MICROBIOL Curr. Opin. Microbiol. DEC 2011 14 6 676 681 10.1016/j.mib.2011.09.004 6 Microbiology Microbiology 868LK WOS:000298524600008 21962291 Green Accepted 2019-02-21 J Vermonden, K; Brodersen, KP; Jacobsen, D; van Kleef, H; van der Velde, G; Leuven, RSEW Vermonden, K.; Brodersen, K. P.; Jacobsen, D.; van Kleef, H.; van der Velde, G.; Leuven, R. S. E. W. The influence of environmental factors and dredging on chironomid larval diversity in urban drainage systems in polders strongly influenced by seepage from large rivers JOURNAL OF THE NORTH AMERICAN BENTHOLOGICAL SOCIETY English Article biodiversity; ditches; eutrophication; life-history strategies; macroinvertebrates; non-biting midges; rehabilitation; surface waters; urban ecology FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; INVERTEBRATE COMMUNITIES; CATCHMENT URBANIZATION; BIOLOGICAL TRAITS; LAND-USE; STREAMS; RESTORATION; QUALITY; RESPONSES Interest in the biodiversity value of urban waters is growing. Understanding key ecological processes is essential for effective management of these aquatic ecosystems. Our paper focuses on identifying the key factors that structure chironomid assemblages, such as water quality and dredging, in urban waters strongly influenced by seepage of large rivers. Chironomid assemblages were studied in urban surface-water systems (man-made drainage ditches) in polder areas along lowland reaches of the rivers Rhine-Meuse in The Netherlands. Multivariate analysis was used to identify the key environmental factors. Taxon richness, Shannon index (H'), rareness of species, and life-history strategies at urban locations were compared with available data from similar man-made water bodies in rural areas, and the effectiveness of dredging for restoring chironomid diversity in urban waters was tested. Three different chironomid associations were distinguished by Two-Way Indicator Species Analysis. Variation within and among chironomid associations were significantly related to substrate (sludge layer and substrate type: sand vs clay), % cover of lemnids, submerged vegetation, filamentous algae, and water transparency. Chironomid taxon richness and H' were similar in urban and rural waters, probably because of their similar hydrologic, morphologic, and water-quality conditions and their similar dredging and weed-control regimes. Rareness was slightly higher in urban than in rural waters. In urban water systems, chironomid taxon richness was negatively related to sludge layer and % cover of lemnids. Dredging changed chironomid species composition, and increased taxon richness and life-history strategies indicative of good 02 conditions. Therefore, dredging can be regarded as an effective measure to restore diversity of chironomid communities in urban waters affected by nutrient-rich seepage or inlet of river water. [Vermonden, K.; Leuven, R. S. E. W.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, NL-6525 AJ Nijmegen, Netherlands; [Vermonden, K.; Brodersen, K. P.; Jacobsen, D.] Univ Copenhagen, Freshwater Biol Lab, DK-3400 Hillerod, Denmark; [van Kleef, H.] Bargerveen Fdn, NL-6525 AJ Nijmegen, Netherlands; [van der Velde, G.] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Anim Ecol & Ecophysiol, NL-6525 AJ Nijmegen, Netherlands; [van der Velde, G.] Netherlands Ctr Biodivers Nat, NL-2300 RA Leiden, Netherlands Leuven, RSEW (reprint author), Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Environm Sci, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands. kim_vermonden@hotmail.com; klaus.brodersen@gmail.com; djacobsen@bio.ku.dk; h.vankleef@science.ru.nl; g.vandervelde@science.ru.nl; r.leuven@science.ru.nl van der Velde, Gerard/C-7776-2011; Jacobsen, Dean/K-4920-2014; Leuven, Rob/A-3303-2012 Jacobsen, Dean/0000-0001-5137-297X; Leuven, Rob/0000-0001-5434-6005 municipal authority of Nijmegen; municipal authority of Arnhem; Radboud University Nijmegen Henk Vallenduuk and Henk Moller Pillot identified the chironomids. We thank Marij Orbons, Ankie Brock, Jelle Eygensteyn, An de Schryver, Kim Lotterman, Moni Poelen, Brechje Rijkens, Stefan Witteveen, Johannes Radinger, Tiago Saborida, and Martin Versteeg for assistance in the laboratory and the field. Moreover, we thank Hans van Ammers (Municipality of Arnhem), Harriet de Ruiter (Waterboard Rivierenland), Ton Verhoeven (Municipality of Nijmegen), and Henk Velthorst (Municipality of Arnhem) for stimulating discussions on the functioning of urban water systems. We thank 2 anonymous referees and Christopher Walsh for critical comments on an earlier draft of our paper and for suggestions to improve our paper. This project was financially supported by the Interreg IIIb North-West Europe Urban water programme, the municipal authorities of Nijmegen and Arnhem, and Radboud University Nijmegen. Armitage P, 1995, CHIRONOMIDAE BIOL EC; Berezina NA, 2001, RUSS J ECOL+, V32, P343, DOI 10.1023/A:1011978311733; Bernhardt ES, 2007, FRESHWATER BIOL, V52, P738, DOI 10.1111/j.1365-2427.2006.01718.x; Blakely TJ, 2006, FRESHWATER BIOL, V51, P1634, DOI 10.1111/j.1365-2427.2006.01601.x; Bond N. R., 2003, Ecological Management & Restoration, V4, P193, DOI 10.1046/j.1442-8903.2003.00156.x; Booth DB, 2005, J N AM BENTHOL SOC, V24, P724, DOI 10.1899/0887-3593(2005)024\[0724:CAPFRU\]2.0.CO;2; BRAY JR, 1957, ECOL MONOGR, V27, P326; Carew ME, 2007, FRESHWATER BIOL, V52, P2444, DOI 10.1111/j.1365-2427.2007.01840.x; Clarke K. R, 1994, CHANGE MARINE COMMUN; CLARKE KR, 1993, MAR ECOL PROG SER, V92, P205, DOI 10.3354/meps092205; de Haas EM, 2002, ENVIRON TOXICOL CHEM, V21, P2165, DOI [10.1897/1551-5028(2002)021<2165:ROBITC>2.0.CO;2, 10.1002/etc.5620211020]; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; Doledec S, 2010, J N AM BENTHOL SOC, V29, P286, DOI 10.1899/08-090.1; Ehrenfeld JG, 2000, ECOL ENG, V15, P253, DOI 10.1016/S0925-8574(00)00080-X; FOSTER GN, 1989, FRESHWATER BIOL, V22, P343, DOI 10.1111/j.1365-2427.1989.tb01109.x; GRASSHOFF K, 1972, J CONSEIL, V34, P516; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; HENRIKSEN A, 1965, ANALYST, V90, P29, DOI 10.1039/an9659000029; Hill M. O., 1979, TWINSPAN FORTRAN PRO; Jeppesen E, 1999, HYDROBIOLOGIA, V395, P419, DOI 10.1023/A:1017071602549; Jongman R, 1995, DATA ANAL COMMUNITY; KAMPHAKE LJ, 1967, WATER RES, V1, P205, DOI 10.1016/0043-1354(67)90011-5; King RS, 2002, J N AM BENTHOL SOC, V21, P150, DOI 10.2307/1468306; Kratzer EB, 2006, J N AM BENTHOL SOC, V25, P954, DOI 10.1899/0887-3593(2006)025[0954:MDIRTL]2.0.CO;2; Larson MG, 2001, ECOL ENG, V18, P211, DOI 10.1016/S0925-8574(01)00079-9; LENAT DR, 1994, HYDROBIOLOGIA, V294, P185, DOI 10.1007/BF00021291; LEOPOLD LB, 1968, 554 US GEOL SURV; LEUVEN RSE, 1987, ENTOMOLOGICA SCAND S, V29, P269; MACCHIUSI F, 1992, FRESHWATER BIOL, V28, P207, DOI 10.1111/j.1365-2427.1992.tb00577.x; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; METCALFE JL, 1989, ENVIRON POLLUT, V60, P101, DOI 10.1016/0269-7491(89)90223-6; Moog O, 2002, FAUNA AQUATICA AUSTR; Moreno P, 2006, HYDROBIOLOGIA, V560, P311, DOI 10.1007/s10750-005-0869-y; O'Brien J, 1962, WASTES ENG, V33, P670; Parr LB, 2004, SCI TOTAL ENVIRON, V321, P273, DOI 10.1016/j.scitotenv.2003.09.004; Paul MJ, 2001, ANNU REV ECOL SYST, V32, P333, DOI 10.1146/annurev.ecolsys.32.081501.114040; Peters R.H., 1983, P1; Pillot H.K.M.M, 2009, CHIRONOMIDAE LARVAE, P144; PINDER LCV, 1986, ANNU REV ENTOMOL, V31, P1, DOI 10.1146/annurev.en.31.010186.000245; PINDER LCV, 1983, ENTOMOLOGICA SCAND S, V19, P7; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Postel S., 1997, Nature's services: societal dependence on natural ecosystems., P195; Principe RE, 2008, INT REV HYDROBIOL, V93, P342, DOI 10.1002/iroh.200710974; Roy AH, 2003, FRESHWATER BIOL, V48, P329, DOI 10.1046/j.1365-2427.2003.00979.x; Ruley JE, 2002, ECOL ENG, V19, P265, DOI 10.1016/S0925-8574(02)00096-4; SCHEFFER M, 1993, TRENDS ECOL EVOL, V8, P275, DOI 10.1016/0169-5347(93)90254-M; SHANNON CE, 1948, BELL SYST TECH J, V27, P623, DOI 10.1002/j.1538-7305.1948.tb00917.x; Shuster W. D., 2005, URBAN WATER J, V2, P263, DOI DOI 10.1080/15730620500386529; Statzner B, 1997, FRESHWATER BIOL, V38, P109, DOI 10.1046/j.1365-2427.1997.00195.x; Suren AM, 2005, RIVER RES APPL, V21, P439, DOI 10.1002/rra.817; Syrovatka V, 2009, FUND APPL LIMNOL, V174, P43, DOI 10.1127/1863-9135/2009/0174-0043; Ter Braak C. J. F., 1998, CANOCO REFERENCE MAN; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Vallenduuk H.J., 2007, CHIRONOMIDAE LARVAE, VI; VAN DER VELDE G., 1987, ENTOMOLOGICA SCAND S, V29, P255; van Kleef HH, 2006, HYDROBIOLOGIA, V565, P201, DOI 10.1007/s10750-005-1914-6; VAN KLEEF H. H., 2010, THESIS RADBOUD U NIJ; Verberk W. C. E. P., 2006, Journal for Nature Conservation (Jena), V14, P78, DOI 10.1016/j.jnc.2005.11.002; Verberk WCEP, 2010, BASIC APPL ECOL, V11, P440, DOI 10.1016/j.baae.2010.04.001; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vermonden K, 2010, AQUAT SCI, V72, P379, DOI 10.1007/s00027-010-0141-z; Vermonden K, 2012, RESOUR CONSERV RECY, V64, P56, DOI 10.1016/j.resconrec.2011.01.003; Vermonden K, 2009, HYDROL PROCESS, V23, P3110, DOI 10.1002/hyp.7422; Vermonden K, 2009, BIOL CONSERV, V142, P1105, DOI 10.1016/j.biocon.2009.01.026; Walsh CJ, 2007, FRESHWATER BIOL, V52, P574, DOI 10.1111/j.1365-2427.2006.01706.x; Walsh CJ, 2000, HYDROBIOLOGIA, V431, P107, DOI 10.1023/A:1004029715627; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P706, DOI 10.1899/0887-3593(2005)024\\[0706:TUSSCK\\]2.0.CO;2; Walsh CJ, 2005, J N AM BENTHOL SOC, V24, P690, DOI 10.1899/0887-3593(2005)024\\[0690:SRIUCT\\]2.0.CO;2; Walsh CJ, 2001, FRESHWATER BIOL, V46, P535, DOI 10.1046/j.1365-2427.2001.00690.x; Wenger SJ, 2009, J N AM BENTHOL SOC, V28, P1080, DOI 10.1899/08-186.1; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; WITTEVEEN+BOS, 2006, AN GROUNDW SYST NIJM; Woodcock T, 2005, WETLANDS, V25, P306, DOI 10.1672/7 75 4 4 2 30 NORTH AMER BENTHOLOGICAL SOC LAWRENCE 1041 NEW HAMSPHIRE STREET, LAWRENCE, KS 66044 USA 0887-3593 J N AM BENTHOL SOC J. N. Am. Benthol. Soc. DEC 2011 30 4 1074 1092 10.1899/10-047.1 19 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 864EA WOS:000298218600016 2019-02-21 J Eadie, JM; Lyon, BE Eadie, John McA; Lyon, Bruce E. The relative role of relatives in conspecific brood parasitism MOLECULAR ECOLOGY English Article animal mating; breeding systems; behaviour; social evolution; birds; host-parasite interactions; life history evolution PHILOPATRIC BIRD POPULATION; WOOD DUCKS; RELATEDNESS; EVOLUTION; GOLDENEYES; SELECTION; KINSHIP Conspecific brood parasites lay their eggs in the nests of other females in the same population, leading to a fascinating array of possible games among parasites and their hosts (Davies 2000; Lyon & Eadie 2008). Almost 30 years ago, Andersson & Eriksson (1982) first suggested that perhaps this form of parasitism was not what it seemed-indeed, perhaps it was not parasitism at all! Andersson & Eriksson (1982) observed that conspecific brood parasitism (CBP) was disproportionally common in waterfowl (Anatidae), a group of birds for which natal philopatry is female-biased rather than the more usual avian pattern of male-biased natal philopatry. Accordingly, Andersson (1984) reasoned (and demonstrated in an elegantly simple model) that relatedness among females might facilitate the evolution of CBP-prodding us to reconsider it as a kin-selected and possibly cooperative breeding system rather than a parasitic interaction. The idea was much cited but rarely tested empirically until recently-a number of new studies, empowered with a battery of molecular techniques, have now put Anderssons hypothesis to the test (Table 1). The results are tantalizing, but also somewhat conflicting. Several studies, focusing on waterfowl, have found clear evidence that hosts and parasites are often related (Andersson & Ahlund 2000; Roy Nielsen 2006; Andersson & Waldeck 2007; Waldeck 2008; Jaatinen 2009; Tiedemann . 2011). However, this is not always the case (Semel & Sherman 2001; Anderholm 2009; and see Poysa 2004). In a new study reported in this issue of Molecular Ecology, Jaatinen (2011a) provide yet another twist to this story that might explain not only why such variable results have been obtained, but also suggests that the games between parasites and their hosts-and the role of kinship in these games-may be even more complex than Andersson (1984) imagined. Indeed, the role of kinship in CBP may be very much one of relative degree! [Eadie, John McA] Univ Calif Davis, Ecol Grp, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA; [Eadie, John McA] Univ Calif Davis, Anim Behav Grad Grp, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA; [Lyon, Bruce E.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA Eadie, JM (reprint author), Univ Calif Davis, Ecol Grp, Dept Wildlife Fish & Conservat Biol, Davis, CA 95616 USA. jmeadie@ucdavis.edu Eadie, John/E-4820-2011; Lyon, Bruce/E-8491-2011 National Science Foundation [0443807, 0710455]; Dennis G. Raveling Endowment We acknowledge support from the National Science Foundation (#0443807 B.E.L.; #0710455 J.M.E.) and the Dennis G. Raveling Endowment (J.M.E.). Ahlund M, 2001, NATURE, V414, P600, DOI 10.1038/414600b; Anderholm S, 2009, MOL ECOL, V18, P4955, DOI 10.1111/j.1365-294X.2009.04397.x; Andersson M, 2000, P NATL ACAD SCI USA, V97, P13188, DOI 10.1073/pnas.220137897; ANDERSSON M, 1982, AM NAT, V120, P1, DOI 10.1086/283965; Andersson M, 2001, AM NAT, V158, P599, DOI 10.1086/324113; ANDERSSON M, 1984, PRODUCERS SCROUNGERS, P195; Andersson M, 2007, MOL ECOL, V16, P2797, DOI 10.1111/j.1365-294X.2007.03301.x; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; Davis JM, 2004, TRENDS ECOL EVOL, V19, P411, DOI 10.1016/j.tree.2004.04.006; de Valpine P, 2008, AM NAT, V172, P547, DOI 10.1086/590956; Dickinson JL, 2007, MOL ECOL, V16, P2610, DOI 10.1111/j.1365-294X.2007.03377.x; EADIE JM, 1992, AM NAT, V140, P621, DOI 10.1086/285431; Eadie JM, 1989, THESIS U BRIT COLUMB; Eadie John M., 2000, Birds of North America, P1; EMLEN ST, 1986, ETHOLOGY, V71, P2; HAMILTON W, 1964, J THEOR BIOL, V7, P7, DOI DOI 10.1016/0022-5193(64)90038-4; Hauber ME, 2001, TRENDS NEUROSCI, V24, P609, DOI 10.1016/S0166-2236(00)01916-0; Jaatinen K, 2011, MOL ECOL, V20, P5328, DOI 10.1111/j.1365-294X.2011.05281.x; Jaatinen K, 2011, BEHAV ECOL, V22, P144, DOI 10.1093/beheco/arq162; Jaatinen K, 2009, MOL ECOL, V18, P2713, DOI 10.1111/j.1365-294X.2009.04223.x; Lopez-Sepulcre A, 2002, ANIM BEHAV, V64, P215, DOI 10.1006/anbe.2002.3043; Lyon BE, 2000, P NATL ACAD SCI USA, V97, P12942, DOI 10.1073/pnas.97.24.12942; LYON BE, 1993, ANIM BEHAV, V46, P911, DOI 10.1006/anbe.1993.1273; Lyon BE, 2008, ANNU REV ECOL EVOL S, V39, P343, DOI 10.1146/annurev.ecolsys.39.110707.173354; McRae SB, 1996, BEHAV ECOL SOCIOBIOL, V38, P115, DOI 10.1007/s002650050224; Nielsen CR, 2006, BEHAV ECOL, V17, P491, DOI 10.1093/beheco/arj057; Poysa H, 2004, ANIM BEHAV, V67, P673, DOI 10.1016/j.anbehav.2003.08.009; Semel B, 2001, ANIM BEHAV, V61, P787, DOI 10.1006/anbe.2000.1657; Tiedemann R, 2011, MOL ECOL, V20, P3237, DOI 10.1111/j.1365-294X.2011.05158.x; Waldeck P, 2008, BEHAV ECOL, V19, P67, DOI 10.1093/beheco/arm113; West SA, 2010, SCIENCE, V327, P1341, DOI 10.1126/science.1178332; Zink AG, 2000, AM NAT, V155, P395, DOI 10.1086/303325 32 11 12 0 67 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0962-1083 MOL ECOL Mol. Ecol. DEC 2011 20 24 5114 5118 10.1111/j.1365-294X.2011.05320.x 5 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 862KJ WOS:000298089300002 22250302 Bronze 2019-02-21 J Egset, CK; Bolstad, GH; Rosenqvist, G; Endler, JA; Pelabon, C Egset, C. K.; Bolstad, G. H.; Rosenqvist, G.; Endler, J. A.; Pelabon, C. Geographical variation in allometry in the guppy (Poecilia reticulata) JOURNAL OF EVOLUTIONARY BIOLOGY English Article predation; sexual selection; shape; size; swimming performance LIFE-HISTORY EVOLUTION; ONE-SIZE-FITS; SWIMMING PERFORMANCE; NATURAL-SELECTION; SEXUAL SELECTION; COLOR PATTERNS; TRINIDADIAN GUPPY; STATIC ALLOMETRY; BERG HYPOTHESIS; MALE GENITALIA Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope. [Egset, C. K.; Bolstad, G. H.; Rosenqvist, G.; Pelabon, C.] Univ Sci & Technol NTNU, Ctr Conservat Biol, Dept Biol, NO-7491 Trondheim, Norway; [Endler, J. A.] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Geelong, Vic 3217, Australia Egset, CK (reprint author), Univ Sci & Technol NTNU, Ctr Conservat Biol, Dept Biol, NO-7491 Trondheim, Norway. camilla.k.egset@gmail.com Endler, John/B-6659-2009; Bolstad, Geir H./K-3631-2014 Endler, John/0000-0002-7557-7627; Bolstad, Geir H./0000-0003-1356-8239 The National Science Foundation (USA); Research Council of Norway [166869/V40, 196434/V40] The authors would like to thank Tonje Aronsen, Anders G. Finstad, Thomas F. Hansen, Line K. Larsen, Irja Ratikainen, Grethe Robertsen, Kjetil Lysne Voje, Russell Bonduriansky and an anonymous reviewer for helpful comments on earlier versions of this manuscript. Anders G. Finstad and Ivar Herfindal helped with statistical issues and R. The National Science Foundation (USA) supported J. A. Endler's work collecting data at Trinidad. The Research Council of Norway supported this project (projects 166869/V40 and 196434/V40). All field work was carried out with the approval of the Trinidadian government at the time. Basolo AL, 2004, BIOL J LINN SOC, V83, P87, DOI 10.1111/j.1095-8312.2004.00369.x; Bates DM, 2010, LME4 MIXED EFFECTS M; Bernstein S, 2002, EVOLUTION, V56, P1707; BISCHOFF RJ, 1985, BEHAV ECOL SOCIOBIOL, V17, P253, DOI 10.1007/BF00300143; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Bonduriansky R, 2003, EVOLUTION, V57, P2450; Bonduriansky R, 2007, EVOLUTION, V61, P838, DOI 10.1111/j.1558-5646.2007.00081.x; CARVALHO GR, 1991, BIOL J LINN SOC, V42, P389, DOI 10.1111/j.1095-8312.1991.tb00571.x; COCK AG, 1966, Q REV BIOL, V41, P131, DOI 10.1086/404940; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Eberhard WG, 1998, EVOLUTION, V52, P415, DOI 10.1111/j.1558-5646.1998.tb01642.x; Eberhard WG, 2009, EVOLUTION, V63, P48, DOI 10.1111/j.1558-5646.2008.00528.x; Enders CK, 2007, PSYCHOL METHODS, V12, P121, DOI 10.1037/1082-989X.12.2.121; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Frankino WA, 2007, EVOLUTION, V61, P2958, DOI 10.1111/j.1558-5646.2007.00249.x; Frankino WA, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P419; Frankino WA, 2005, SCIENCE, V307, P718, DOI 10.1126/science.1105409; Gayon J, 2000, AM ZOOL, V40, P748, DOI 10.1668/0003-1569(2000)040[0748:HOTCOA]2.0.CO;2; GOULD SJ, 1971, AM NAT, V105, P113, DOI 10.1086/282710; GOULD SJ, 1966, BIOL REV, V41, P587, DOI 10.1111/j.1469-185X.1966.tb01624.x; GREEN AJ, 1992, ANIM BEHAV, V43, P170, DOI 10.1016/S0003-3472(05)80086-7; HANSEN TF, 2011, SYST BIOL IN PRESS; Hansen TF, 2007, EVOL BIOL, V34, P86, DOI 10.1007/s11692-007-9006-3; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; HEISLER IL, 1987, AM NAT, V130, P582, DOI 10.1086/284732; Houde A., 1997, SEX COLOR MATE CHOIC; Houle D, 2011, Q REV BIOL, V86, P3, DOI 10.1086/658408; Huxley J.S., 1932, PROBLEM RELATIVE GRO; Huxley JS, 1924, NATURE, V114, P895, DOI 10.1038/114895a0; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Johansson J, 2004, OIKOS, V105, P595, DOI 10.1111/j.0030-1299.2004.12938.x; Karino K, 2006, ZOOL SCI, V23, P255, DOI 10.2108/zsj.23.255; Kelly CD, 2000, CAN J ZOOL, V78, P1674, DOI 10.1139/cjz-78-9-1674; Knell RJ, 2009, ECOL ENTOMOL, V34, P1, DOI 10.1111/j.1365-2311.2008.01022.x; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; NEWELL ND, 1949, EVOLUTION, V3, P103, DOI 10.2307/2405545; NICOLETTO PF, 1991, BEHAV ECOL SOCIOBIOL, V28, P365, DOI 10.1007/BF00164386; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Pelabon C, 2011, FUNCT ECOL, V25, P247, DOI 10.1111/j.1365-2435.2010.01770.x; PETRIE M, 1992, ANIM BEHAV, V43, P173, DOI 10.1016/S0003-3472(05)80087-9; PETRIE M, 1988, ANIM BEHAV, V36, P1174, DOI 10.1016/S0003-3472(88)80076-9; R Development Core Team, 2010, R LANG ENV STAT COMP; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Suk HY, 2009, HEREDITY, V102, P425, DOI 10.1038/hdy.2009.7; Teissier G, 1936, MEM MUS R HIST NAT B, V3, P627; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; WHITE JOHN F., 1965, AMERNATUR, V99, P5, DOI 10.1086/282344; WILKINSON GS, 1993, GENET RES, V62, P213, DOI 10.1017/S001667230003192X; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 60 19 21 3 64 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. DEC 2011 24 12 2631 2638 10.1111/j.1420-9101.2011.02387.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 856KS WOS:000297639600009 21955207 Bronze 2019-02-21 J Dijkstra, PD; Wiegertjes, GF; Forlenza, M; van der Sluijs, I; Hofmann, HA; Metcalfe, NB; Groothuis, TGG Dijkstra, P. D.; Wiegertjes, G. F.; Forlenza, M.; van der Sluijs, I.; Hofmann, H. A.; Metcalfe, N. B.; Groothuis, T. G. G. The role of physiology in the divergence of two incipient cichlid species JOURNAL OF EVOLUTIONARY BIOLOGY English Article 11-Ketotestosterone; carotenoids; cichlid; immune function; male-male competition; oxidative stress; steroid; teleost; testosterone MALE-MALE COMPETITION; LIFE-HISTORY EVOLUTION; LAKE-VICTORIA; OXIDATIVE STRESS; SEXUAL SELECTION; TRADE-OFFS; IMMUNOCOMPETENCE HANDICAP; SYMPATRIC SPECIATION; INDIVIDUAL VARIATION; AGGRESSIVE-BEHAVIOR Sexual selection on male coloration has been implicated in the evolution of colourful species flocks of East African cichlid fish. During adaptive radiations, animals diverge in multiple phenotypic traits, but the role of physiology has received limited attention. Here, we report how divergence in physiology may contribute to the stable coexistence of two hybridizing incipient species of cichlid fish from Lake Victoria. Males of Pundamilia nyererei (males are red) tend to defeat those of Pundamilia pundamilia (males are blue), yet the two sibling species coexist in nature. It has been suggested that red males bear a physiological cost that might offset their dominance advantage. We tested the hypothesis that the two species differ in oxidative stress levels and immune function and that this difference is correlated with differences in circulating steroid levels. We manipulated the social context and found red males experienced significantly higher oxidative stress levels than blue males, but only in a territorial context when colour and aggression are maximally expressed. Red males exhibited greater aggression levels and lower humoral immune response than blue males, but no detectable difference in steroid levels. Red males appear to trade off increased aggressiveness with physiological costs, contributing to the coexistence of the two species. Correlated divergence in colour, behaviour and physiology might be widespread in the dramatically diverse cichlid radiations in East African lakes and may play a crucial role in the remarkably rapid speciation of these fish. [Dijkstra, P. D.; Hofmann, H. A.] Univ Texas Austin, Sect Integrat Biol, Austin, TX 78712 USA; [Dijkstra, P. D.; Groothuis, T. G. G.] Univ Groningen, Behav Biol Res Grp, Haren, Netherlands; [Dijkstra, P. D.; Metcalfe, N. B.] Univ Glasgow, Coll Med Vet & Life Sci, Inst Biodivers Anim Hlth & Comparat Med, Glasgow, Lanark, Scotland; [Wiegertjes, G. F.; Forlenza, M.] Wageningen Univ, Wageningen Inst Anim Sci, Cell Biol & Immunol Grp, Dept Anim Sci, Wageningen, Netherlands; [van der Sluijs, I.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada; [Hofmann, H. A.] Univ Texas Austin, Inst Neurosci, Inst Cellular & Mol Biol, Austin, TX 78712 USA Dijkstra, PD (reprint author), Univ Texas Austin, Sect Integrat Biol, 1 Univ Stn C0930, Austin, TX 78712 USA. pddijkstra@gmail.com Wiegertjes, Geert/E-3330-2012; Metcalfe, Neil/C-5997-2009; Forlenza, Maria/O-2683-2014 Metcalfe, Neil/0000-0002-1970-9349; Forlenza, Maria/0000-0001-9026-7320; Hofmann, Hans/0000-0002-3335-330X Dutch government; Fisheries Society of the British Isles; EU; NWO (SLW) We thank Roelie Veenstra-Wiegman, Sjoerd Veenstra, Monique Huizinga and Sara Schaafsma for their assistance with fish care. We are very grateful to Anja Taverne-Thiele, Bernd Riedstra and Simon Verhulst for help with the immune assay, and Winnie Boner for help with the oxidative stress assays. We thank Celeste Kidd and Lin Huffman for technical assistance with the hormone assays. Lauren O'Connell, Martine Maan, Anne Peters and Ole Seehausen provided useful comments on earlier versions of the manuscript. We thank Thomas Flatt and three anonymous reviewers for improving the manuscript. The research was supported by a Rubicon grant from the Dutch government, a Fisheries Society of the British Isles Research grant and an EU (International Outgoing Marie Curie fellowship) to P.D.D., and a NWO (SLW) grant to T.G.G. The research was carried out with an animal experiment licence (DEC 3137 and DEC 4335A) from Groningen University and complied with current laws in The Netherlands. Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971; Ardia DR, 2011, FUNCT ECOL, V25, P61, DOI 10.1111/j.1365-2435.2010.01759.x; Baerends GP, 1950, BEHAV S, V1, P233; Bagni M, 2007, AQUACULTURE, V263, P52, DOI 10.1016/j.aquaculture.2006.07.049; Ball GF, 2008, PHILOS T R SOC B, V363, P1699, DOI 10.1098/rstb.2007.0010; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Blais J, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000734; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Clotfelter ED, 2007, BEHAV ECOL, V18, P1139, DOI 10.1093/beheco/arm090; Cohen J, 1988, STAT POWER ANAL BEHA; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Dijkstra PD, 2006, BEHAV ECOL SOCIOBIOL, V59, P704, DOI 10.1007/s00265-005-0100-1; Dijkstra PD, 2005, BEHAV ECOL SOCIOBIOL, V58, P136, DOI 10.1007/s00265-005-0919-5; DIJKSTRA PD, 2009, BEHAV ECOL, V20; Dijkstra PD, 2008, BEHAV ECOL SOCIOBIOL, V62, P747, DOI 10.1007/s00265-007-0500-5; Dijkstra PD, 2007, BEHAV ECOL SOCIOBIOL, V61, P599, DOI 10.1007/s00265-006-0289-7; Dijkstra PD, 2010, EVOLUTION, V64, P2797, DOI 10.1111/j.1558-5646.2010.01046.x; Dijkstra PD, 2009, BEHAV ECOL, V20, P593, DOI 10.1093/beheco/arp036; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fitze PS, 2007, AM NAT, V169, pS137, DOI 10.1086/510094; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Forlenza M, 2008, MOL IMMUNOL, V45, P3178, DOI 10.1016/j.molimm.2008.02.025; FRALEY NB, 1982, Z TIERPSYCHOL, V60, P66; Genner MJ, 2005, FISH FISH, V6, P1, DOI 10.1111/j.1467-2679.2005.00173.x; Goodson JL, 2001, BRAIN RES REV, V35, P246, DOI 10.1016/S0165-0173(01)00043-1; Gray SM, 2007, TRENDS ECOL EVOL, V22, P71, DOI 10.1016/j.tree.2006.10.005; Greenwood AK, 2008, P ROY SOC B-BIOL SCI, V275, P2393, DOI 10.1098/rspb.2008.0622; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Griffith SC, 2006, ANIM BEHAV, V71, P749, DOI 10.1016/j.anbehav.2005.07.016; Hill GE, 1999, AM NAT, V154, P589, DOI 10.1086/303264; HIRSCHENHAUSER K, 2004, ANIM BEHAV, V68, P541; Hofmann HA, 1999, P NATL ACAD SCI USA, V96, P14171, DOI 10.1073/pnas.96.24.14171; Hofmann HA, 2003, J NEUROBIOL, V54, P272, DOI 10.1002/neu.10172; HUDSON L, 1989, PRACTICAL IMMUNOLOGY; IWAMA G, 1996, FISH IMMUNE SYSTEM O; Jennings DH, 2000, GEN COMP ENDOCR, V120, P289, DOI 10.1006/gcen.2000.7564; Kidd CE, 2010, GEN COMP ENDOCR, V165, P277, DOI 10.1016/j.ygcen.2009.07.008; KIME DE, 1993, REV FISH BIOL FISHER, V3, P160, DOI 10.1007/BF00045230; KOCHER TD, 2004, NAT GENET, V5, P289; Korzan WJ, 2008, HORM BEHAV, V54, P463, DOI 10.1016/j.yhbeh.2008.05.006; KREUKNIET MB, 1994, POULTRY SCI, V73, P336, DOI 10.3382/ps.0730336; Kurtz J, 2007, AM NAT, V170, P509, DOI 10.1086/521316; Leeuwenburgh C, 2001, CURR MED CHEM, V8, P829, DOI 10.2174/0929867013372896; LOZANO GA, 1994, OIKOS, V70, P309, DOI 10.2307/3545643; Maan ME, 2008, BIOL J LINN SOC, V94, P53, DOI 10.1111/j.1095-8312.2008.00989.x; Maan ME, 2006, BEHAV ECOL, V17, P691, DOI 10.1093/beheco/ark020; Maan ME, 2004, P ROY SOC B-BIOL SCI, V271, P2445, DOI 10.1098/rspb.2004.2911; Magalhaes IS, 2009, J EVOLUTION BIOL, V22, P260, DOI 10.1111/j.1420-9101.2008.01637.x; Matsuo M, 2000, FREE RADICALS EXERCI, P1; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; McGraw KJ, 2005, ANIM BEHAV, V69, P757, DOI 10.1016/j.anbehav.2004.06.022; McKinnon JS, 2010, MOL ECOL, V19, P5101, DOI 10.1111/j.1365-294X.2010.04846.x; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Mills SC, 2008, AM NAT, V171, P339, DOI 10.1086/527520; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nosil Patrik, 2009, P127; Oliveira RF, 2001, NATURE, V409, P475, DOI 10.1038/35054128; Owen-Ashley NT, 2004, P ROY SOC B-BIOL SCI, V271, pS498, DOI 10.1098/rsbl.2004.0230; Parmentier HK, 2001, POULTRY SCI, V80, P894, DOI 10.1093/ps/80.7.894; Pauers MJ, 2008, BIOL LETTERS, V4, P156, DOI 10.1098/rsbl.2007.0581; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Pryke SR, 2007, BIOLOGY LETT, V3, P494, DOI 10.1098/rsbl.2007.0213; Ros AFH, 2006, P R SOC B, V273, P901, DOI 10.1098/rspb.2005.3407; Ros AFH, 2006, PHYSIOL BEHAV, V89, P164, DOI 10.1016/j.physbeh.2006.05.043; Salzburger W, 2004, NATURWISSENSCHAFTEN, V91, P277, DOI 10.1007/s00114-004-0528-6; Salzburger W, 2009, MOL ECOL, V18, P169, DOI 10.1111/j.1365-294X.2008.03981.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Seehausen O, 1997, SCIENCE, V277, P1808, DOI 10.1126/science.277.5333.1808; Seehausen O, 1999, ECOL LETT, V2, P262; Seehausen O, 2004, P ROY SOC B-BIOL SCI, V271, P1345, DOI 10.1098/rspb.2004.2737; Seehausen O, 2008, NATURE, V455, P620, DOI 10.1038/nature07285; Seehausen O, 2006, P ROY SOC B-BIOL SCI, V273, P1987, DOI 10.1098/rspb.2006.3539; Seehausen Ole, 1998, Ichthyological Exploration of Freshwaters, V9, P129; Seehausen Ole, 2009, P155; Sinervo B, 2006, ANNU REV ECOL EVOL S, V37, P581, DOI 10.1146/annurev.ecolsys.37.091305.110128; Soma KK, 2008, FRONT NEUROENDOCRIN, V29, P476, DOI 10.1016/j.yfrne.2007.12.003; TANGANELLI I, 2000, DIABETES RES CLIN PR, V50, pS1; Trainor BC, 2006, ENDOCRINOLOGY, V147, P5119, DOI 10.1210/en.2006-0511; van Doorn GS, 2009, SCIENCE, V326, P1704, DOI 10.1126/science.1181661; van Doorn GS, 2004, AM NAT, V163, P709, DOI 10.1086/383619; Vandermeer J, 2002, P NATL ACAD SCI USA, V99, P8731, DOI 10.1073/pnas.142073599; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Wendelaar BSE, 1997, PHYSIOL REV, V77, P591; West-Eberhard M. J., 1979, P AM PHILOS SOC, V51, P222; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Witte-Maas E., 1985, HAPLOCHROMIS NYERERE; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 91 25 25 0 34 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. DEC 2011 24 12 2639 2652 10.1111/j.1420-9101.2011.02389.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 856KS WOS:000297639600010 21955260 2019-02-21 J Dorn, A; Ng'oma, E; Janko, K; Reichwald, K; Polacik, M; Platzer, M; Cellerino, A; Reichard, M Dorn, A.; Ng'oma, E.; Janko, K.; Reichwald, K.; Polacik, M.; Platzer, M.; Cellerino, A.; Reichard, M. Phylogeny, genetic variability and colour polymorphism of an emerging animal model: The short-lived annual Nothobranchius fishes from southern Mozambique MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Ageing; Allopatric speciation; Cyprinodontiformes; Killifish; Life history; Mozambique AFRICAN ANNUAL KILLIFISH; SPECIES TREES; GENUS NOTHOBRANCHIUS; MOLECULAR PHYLOGENY; AGING RESEARCH; CYPRINODONTIFORMES; FURZERI; RESTRICTION; POPULATIONS; VERTEBRATE Nothobranchius are a group of small, extremely short-lived killifishes living in temporary savannah pools in Eastern Africa and that survive annual desiccation of their habitat as dormant eggs encased in dry mud. One mitochondrial (COI) and three nuclear (CX32.2, GHITM, PNP) loci were used to investigate the phylogenetic relationship of Nothobranchius species from southern and central Mozambique. This group shows marked variation in captive lifespan at both the inter- and intraspecific levels; lifespan varies from a few months to over a year. As their distribution encompasses a steep gradient between semi-arid and humid habitats, resulting in contrasting selection pressures on evolution of lifespan and associated life history traits, Mozambican Nothobranchius spp. have recently become a model group in studies of ageing, age-related disorders and life history evolution. Consequently, intraspecific genetic variation and male colour morph distribution was also examined in the recovered clades. Using Bayesian species tree reconstruction and single loci analyses, three large clades were apparent and their phylogenetic substructure was revealed at the inter- and intra-specific levels within those clades. The Nothobranchius furzeri and Nothobranchius orthonotus clades were strongly geographically structured. Further, it was demonstrated that male colour has no phylogenetic signal in N. furzeri, where colour morphs are sympatric, but is associated with two reciprocally monophyletic groups in Nothobranchius rachovii clade, where colour morphs are parapatric. Finally, our analysis showed that a polymorphism in the Melanocortin I receptor gene (which controls pigmentation in many vertebrates and was a candidate gene of male colouration in N. furzeri) is unrelated to colour phenotypes of the study species. Our results raise significant implications for future comparative studies of the species and populations analysed in the present work. (C) 2011 Elsevier Inc. All rights reserved. [Polacik, M.; Reichard, M.] Acad Sci Czech Republic, Inst Vertebrate Biol, CS-60365 Brno, Czech Republic; [Dorn, A.; Ng'oma, E.; Reichwald, K.; Platzer, M.; Cellerino, A.] Fritz Lipmann Inst, Leibniz Inst Age Res, D-07745 Jena, Germany; [Janko, K.] Acad Sci Czech Republic, Inst Anim Physiol & Genet, Libechov 27721, Czech Republic; [Cellerino, A.] Scuola Normale Super Pisa, I-56100 Pisa, Italy Reichard, M (reprint author), Acad Sci Czech Republic, Inst Vertebrate Biol, Kvetna 8, CS-60365 Brno, Czech Republic. adorn@fli-leibniz.de; enoch@fli-leibniz.de; janko@iapg.cas.cz; kathrinr@fli-leibniz.de; polaci-k@ivb.cz; mplatzer@fli-leibniz.de; a.cellerino@sns.it; reichard@ivb.cz Polacik, Matej/A-8260-2010; Reichard, Martin/C-6563-2009; Cellerino, Alessandro/M-9380-2013 Cellerino, Alessandro/0000-0003-3834-0097; Ng'oma, Enoch/0000-0002-6741-7922 Czech Science Foundation [206/09/0814]; Academy of Sciences of the Czech Republic [IRP IAPG AVOZ 50450515,]; Leibniz Graduate School on Ageing and Age-Related Diseases (LGSA) Financial support for this study was provided by Czech Science Foundation project No. 206/09/0814 (MR, KJ, MP), Academy of Sciences of the Czech Republic Grant IRP IAPG AVOZ 50450515, and Leibniz Graduate School on Ageing and Age-Related Diseases (LGSA). All fieldwork complied with the legal regulations of Mozambique (collection permit 154/II/2009/DARPPE and sample export permit 049MP00518-A/09 of the Mozambican Ministry of Fisheries). We thank Kathleen Seitz, Tom Hofmann, Eileen Powalsky and Heike Harzer for expert technical assistance. Belfiore NM, 2008, SYST BIOL, V57, P294, DOI 10.1080/10635150802044011; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Echelle AA, 2005, COPEIA, P320, DOI 10.1643/CG-03-093R3; Edwards SV, 2007, P NATL ACAD SCI USA, V104, P5936, DOI 10.1073/pnas.0607004104; EXCOFFIER L, 1992, GENETICS, V131, P479; Finch JM, 2008, QUATERNARY RES, V70, P442, DOI 10.1016/j.yqres.2008.07.003; Froese R, 2010, FISHBASE; Garmin, 2008, GARM AFR SER 2008 TO; Genade T, 2005, AGING CELL, V4, P223, DOI 10.1111/j.1474-9726.2005.00165.x; Graf M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011958; Gross JB, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000326; HAAS R, 1976, EVOLUTION, V30, P614, DOI 10.1111/j.1558-5646.1976.tb00938.x; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Hartmann N, 2009, MECH AGEING DEV, V130, P290, DOI 10.1016/j.mad.2009.01.003; Hayward NK, 2003, ONCOGENE, V22, P3053, DOI 10.1038/sj.onc.1206445; Herrera M, 2004, J GERONTOL A-BIOL, V59, P101; Hrbek T, 2003, J EVOLUTION BIOL, V16, P17, DOI 10.1046/j.1420-9101.2003.00475.x; JUBB R A, 1971, Journal of the American Killifish Association, V8, P12; Kirschner J., AGING CELL UNPUB; Liu L, 2008, BIOINFORMATICS, V24, P2542, DOI 10.1093/bioinformatics/btn484; Liu L, 2007, SYST BIOL, V56, P504, DOI 10.1088/10635150701429982; Mundy NI, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000388; Murphy WJ, 1997, MOL BIOL EVOL, V14, P790, DOI 10.1093/oxfordjournals.molbev.a025819; Pekkala Y., 2008, 48 GEOL SURV FINL, V48; Polacik M, 2011, J FISH BIOL, V78, P796, DOI 10.1111/j.1095-8649.2010.02893.x; Polacik M, 2010, J FISH BIOL, V77, P754, DOI 10.1111/j.1095-8649.2010.02717.x; Polacik M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022684; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Reichard M, 2009, J FISH BIOL, V74, P198, DOI 10.1111/j.1095-8649.2008.02129.x; Reichard M, 2010, ZOOTAXA, P49; Reichard M, 2010, BIOL J LINN SOC, V100, P62, DOI 10.1111/j.1095-8312.2010.01406.x; Reichwald K, 2009, GENOME BIOL, V10, DOI 10.1186/gb-2009-10-2-r16; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Schneider S., 2008, ARLEQUIN SOFTWARE PO; Shidlovskiy KM, 2010, ZOOTAXA, P37; Stephens M, 2001, AM J HUM GENET, V68, P978, DOI 10.1086/319501; TAKAHATA N, 1989, GENETICS, V122, P957; Terzibasi E, 2007, EXP GERONTOL, V42, P81, DOI 10.1016/j.exger.2006.06.039; Terzibasi E, 2009, AGING CELL, V8, P88, DOI 10.1111/j.1474-9726.2009.00455.x; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; VALDESALICI S, 2003, P ROY SOC LOND B BIO, V270, P189, DOI DOI 10.1098/RSBL.2003.0048; Valdesalici S, 2007, ZOOTAXA, P61; Valdesalici Stefano, 2008, Aqua (Miradolo Terme), V14, P187; Valenzano DR, 2009, GENETICS, V183, P1385, DOI 10.1534/genetics.109.108670; VALVERDE P, 1995, NAT GENET, V11, P328, DOI 10.1038/ng1195-328; Wafters B. R., 2009, J AM KILLIFISH ASS, V42, P37; Webb SA, 2004, MOL PHYLOGENET EVOL, V30, P527, DOI 10.1016/S1055-7903(03)00257-4; Widlund HR, 2003, ONCOGENE, V22, P3035, DOI 10.1038/sj.onc.1206443; WILDEKAMP RH, 2004, WORLD KILLIES ATLAS, V4; WILGENBUSCH J.C., 2004, AWTY SYSTEM GRAPHICA; Wood T., 2000, BKA KILLI NEWS, V2000, P105 52 30 30 1 27 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. DEC 2011 61 3 739 749 10.1016/j.ympev.2011.06.010 11 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 852WG WOS:000297387600013 21708276 2019-02-21 J Kaila, L; Mutanen, M; Nyman, T Kaila, Lauri; Mutanen, Marko; Nyman, Tommi Phylogeny of the mega-diverse Gelechioidea (Lepidoptera): Adaptations and determinants of success MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Phylogeny; Adaptive radiation; Diversification; Gelechioidea; Speciation rates; Feeding modes HOST-PLANT ASSOCIATIONS; COLEOPHORIDAE; GLYPHIDOCERA; ELACHISTIDAE; CHARACTERS; EVOLUTION; RADIATION; PATTERNS; INSECTA The Gelechioidea, with 18,000 described and many more unnamed species ranks among the most diverse lepidopteran superfamilies. Nevertheless, their taxonomy has remained largely unresolved, and phylogenetic affinities among gelechioid families and lower taxa have been insufficiently understood. We constructed, for the first time, a comprehensive molecular phylogeny for the Gelechioidea. We sampled seven genes, in total 5466 base pairs, of 109 gelechioid taxa representing 32 of 37 recognized subfamilies, and two outgroup taxa. We used maximum likelihood methods and Bayesian inference to construct phylogenetic trees. We found that the families Autostichidae, Lecithoceridae, Xyloryctidae, and Oecophoridae s. str., in this order, are the most basally arising clades. Elachistidae s. I. was found to be paraphyletic, with families such as Gelechiidae and Cosmopterigidae nested within it, and Parametriotinae associated with several families previously considered unrelated to them. Using the phylogenetic trees, we examined patterns of life history evolution and determinants of the success of different lineages. Gelechioids express unusually wide variability in life-history strategies, including herbivorous, saprophagous, fungivorous, and carnivorous lineages. Most species are highly specialized in diet and other life history traits. The results suggest that either saprophagy was the ancestral feeding strategy from which herbivory evolved independently on multiple occasions, or that the ancestor was herbivorous with repeated origins of saprophagy. External feeding is an ancestral trait from which internal feeding evolved independently several times. In terms of species number, saprophages are dominant in Australia, while elsewhere several phytophagous lineages have extensively specialized and diversified. Internal feeding has remained a somewhat less generally adopted feeding mode, although in a few lineages significant radiations of leaf mining species have occurred. We conclude that diverse feeding modes, specialization among saprophages, repeated shifts to phytophagy, and a generally high specialization rate on single plant species (monophagy) are the major factors behind the success of the Gelechioidea. (C) 2011 Elsevier Inc. All rights reserved. [Kaila, Lauri] Univ Helsinki, Finnish Museum Nat Hist, FIN-00014 Helsinki, Finland; [Mutanen, Marko] Univ Oulu, Dept Biol, Zool Museum, Oulu 90014, Finland; [Nyman, Tommi] Univ Eastern Finland, Dept Biol, FI-80101 Joensuu, Finland Kaila, L (reprint author), Univ Helsinki, Finnish Museum Nat Hist, POB 17, FIN-00014 Helsinki, Finland. lauri.kaila@helsinki.fi; marko.mutanen@oulu.fi; tommi.nyman@uef.fi Kaila, Lauri/0000-0003-0277-1872 NSF [531769]; Finnish Academy [1110906] We are indebted to all people who provided us with invaluable material of often rare taxa: Sibyl Bucheli, Lyle Buss, Glenn Cocking, Sami Haapala, Robert Hoare, Juhani Itamies, Urmas Jurivete, Jari-Pekka Kaitila, Ole Karsholt, Jaakko Kullberg, Jean-Francois Landry, Tomi Mutanen, Kari Nupponen, Steven Passoa, Olle Pellmyr, Jani Raitanen, Panu Valimaki, Hugo van der Wolf, Andy Young and Andreas Zwick. Notable additions were obtained from the LepTree project collections (headed by Charles Mitten, US NSF award #531769) and the Australian National Insect Collection (ANIC). We thank Niklas Wahlberg and Carlos Pena for providing us with a workbench for sequence handling. Laura Tormala did excellent work in the laboratory, for which we are very grateful. Marianna Teravainen checked the language. Maria Heikkila and two anonymous referees gave invaluable comments to the draft. The study was financially supported by the Finnish Academy, grant #1110906 to Lauri Kaila. Adamski D, 2005, ZOOTAXA, P1; Adamski D, 2010, ZOOTAXA, P41, DOI 10.11646/zootaxa.2656.1.2; ADAMSKI D, 1987, P ENTOMOL SOC WASH, V89, P329; Adamski D., 2010, SMITHSONIAN CONTRB Z, V630, P1; Berenbaum MR, 1999, ANN ENTOMOL SOC AM, V92, P971, DOI 10.1093/aesa/92.6.971; Bucheli S, 2002, CLADISTICS, V18, P71, DOI 10.1006/clad.2001.0181; Bucheli SR, 2009, ZOOTAXA, P1; Bucheli SR, 2005, MOL PHYLOGENET EVOL, V35, P380, DOI 10.1016/j.ympev.2005.02.003; Common I. F. B., 1997, MONOGRAPHS AUSTR LEP, V5; Common I.F.B., 1994, MONOGRAPHS AUSTR LEP, V3; Common I.F.B., 1990, MOTHS AUSTR; Common Ian F. B., 1994, Invertebrate Taxonomy, V8, P809, DOI 10.1071/IT9940809; Common IFB, 2000, MONOGRAPHS AUSTR LEP, P8; Connor EF, 1997, OIKOS, V79, P6, DOI 10.2307/3546085; DIXON AFG, 1987, AM NAT, V129, P580, DOI 10.1086/284659; Dugdale J.S., 1988, FAUNA NZ, V30, P1; Emmet A.M., 1996, P126; Forbes WTM, 1923, CORNELL U AGR EXPT S, V68, P1; Franz NM, 2010, SYST ENTOMOL, V35, P597, DOI 10.1111/j.1365-3113.2010.00534.x; GASTON KJ, 1992, ECOL ENTOMOL, V17, P86, DOI 10.1111/j.1365-2311.1992.tb01044.x; Hall T.A., 1999, NUCL ACIDS S SER, V41, P95, DOI DOI 10.1021/BK-1999-0734.CH008; Heikkila M, 2010, SYST ENTOMOL, V35, P71, DOI 10.1111/j.1365-3113.2009.00483.x; Hering E.M., 1951, BIOL LEAF MINERS; Hoare R. J. B., 2005, FAUNA NZ, V54, P1; Hodges R.W., 1998, HDB ZOOLOGIE LEPID 1, V1, P131; Hodges R. W., 1986, MOTHS AM N MEXICO; Huemer P, 2010, MICROLEPIDOPTERA EUR, V6, P1; Hunt T, 2007, SCIENCE, V318, P1913, DOI 10.1126/science.1146954; Kaila L, 2004, CLADISTICS, V20, P303, DOI 10.1111/j.1096-0031.2004.00027.x; Kaila L, 2011, MONOGR AUST LEPIDOPT, V11, P1; Kaila L, 1999, SYST ENTOMOL, V24, P139, DOI 10.1046/j.1365-3113.1999.00069.x; Kaila L., 2011, ANIMAL BIOD IN PRESS; Kaila Lauri, 1997, Acta Zoologica Fennica, V206, P1; Kaila Lauri, 1999, Acta Zoologica Fennica, V211, P1; Kouki Jari, 1999, Ecological Bulletins, V47, P30; Kristensen N. P., 1998, HDB ZOOLOGY, VIV, P7; Kumar S, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-357; Landry J.-F., 1995, FABRERIES, V23, P25; Leraut P., 1992, Entomologica Gallica, V3, P129; Leschen RAB, 2007, SYSTEMATIC BIOL, V56, P97, DOI 10.1080/10635150701211844; Maddison W. P, 2010, MESQUITE MODULAR SYS; Mayhew PJ, 2007, BIOL REV, V82, P425, DOI 10.1111/j.1469-185X.2007.00018.x; Menken SBJ, 2010, EVOLUTION, V64, P1098, DOI 10.1111/j.1558-5646.2009.00889.x; MICHAELIS H N, 1981, Entomologist's Record and Journal of Variation, V93, P60; Miller MA, 2009, CIPRES PORTALS; Minet J, 1990, ALEXANOR, V16, P239; MITTER C, 1988, AM NAT, V132, P107, DOI 10.1086/284840; Mutanen M, 2010, P ROY SOC B-BIOL SCI, V277, P2839, DOI 10.1098/rspb.2010.0392; Novotny V, 2010, J ANIM ECOL, V79, P1193, DOI 10.1111/j.1365-2656.2010.01728.x; Nyman T, 2006, EVOLUTION, V60, P1622, DOI 10.1554/05-674.1; Passoa S. C., 1995, THESIS U ILLINOIS UR; Pierce Naomi E., 1995, Journal of the Lepidopterists' Society, V49, P412; Powell J.A., 1973, Smithsonian Contributions to Zoology, VNo. 120, P1; Powell JA, 1998, HDB ZOOLOGY, V35, P403; Price P. W., 1980, EVOLUTIONARY BIOL PA; Rambaut A, 2009, TRACER VERSION 1 5; Regier JC, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-280; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rubinoff D, 2005, SCIENCE, V309, P575, DOI 10.1126/science.1110397; Rubinoff D, 2010, P NATL ACAD SCI USA, V107, P5903, DOI 10.1073/pnas.0912501107; Saito Tosihisa, 2005, Tinea, V18, P45; Schmitz P, 2011, ANN ENTOMOL SOC AM, V104, P1, DOI 10.1603/AN10073; Sinev S. Yu, 1993, Entomological Review (English Translation of Entomologicheskoye Obozreniye), V72, P10; Sinev S.Yu., 1989, ZOOL ZH, V69, P140; Stamatakis A, 2008, SYST BIOL, V57, P758, DOI 10.1080/10635150802429642; Tokar Z., 2005, OECOPHORIDAE; Ueda Tatsuya, 1997, Japanese Journal of Entomology, V65, P108; Wahlberg N, 2008, SYSTEMATIC BIOL, V57, P231, DOI 10.1080/10635150802033006; Whitfield JB, 2008, ANNU REV ENTOMOL, V53, P449, DOI 10.1146/annurev.ento.53.103106.093304; Winkler IS, 2008, SPECIALIZATION, SPECIATION, AND RADIATION: THE EVOLUTIONARY BIOLOGY OF HERBIVOROUS INSECTS, P240; Zimmerman E.C., 1978, INSECTS HAWAII, V9, P1903 71 44 54 1 26 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. DEC 2011 61 3 801 809 10.1016/j.ympev.2011.08.016 9 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 852WG WOS:000297387600018 21903172 2019-02-21 J Robbins, AM; Stoinski, T; Fawcett, K; Robbins, MM Robbins, Andrew M.; Stoinski, Tara; Fawcett, Katie; Robbins, Martha M. Lifetime Reproductive Success of Female Mountain Gorillas AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article fitness; longevity; fertility; offspring survival; dominance; life history BABOONS PAPIO-CYNOCEPHALUS; INDIVIDUAL FITNESS; SEXUAL SELECTION; NATURAL-SELECTION; LONG-TERM; SOCIAL-STRUCTURE; RHESUS MACAQUES; DOMINANCE RANK; BIGHORN EWES; VITAL-RATES Studies of lifetime reproductive success (LRS) are important for understanding population dynamics and life history strategies, yet relatively little information is available for long-lived species. This study provides a preliminary assessment of LRS among female mountain gorillas in the Virunga volcanoes region. Adult females produced an average of 3.6 +/- 2.1 surviving offspring during their lifetime, which indicates a growing population that contrasts with most other great apes. The standardized variance in LRS (variance/mean(2) = 0.34) was lower than many other mammals and birds. When we excluded the most apparent source of environmental variability (poaching), the average LRS increased to 4.3 +/- 1.8 and the standardized variance dropped in half. Adult lifespan was a greater source of variance in LRS than fertility or offspring survival. Females with higher LRS had significantly longer adult lifespans and higher dominance ranks. Results for LRS were similar to another standard fitness measurement, the individually estimated finite rate of increase (kind), but kind showed diminishing benefits for greater longevity. Am J Phys Anthropol 146:582-593, 2011. (C) 2011 Wiley Periodicals, Inc. [Robbins, Andrew M.; Robbins, Martha M.] Max Planck Inst Evolutionary Anthropol, D-04103 Leipzig, Germany; [Stoinski, Tara; Fawcett, Katie] Dian Fossey Gorilla Fund Int, Atlanta, GA 30315 USA Robbins, MM (reprint author), Max Planck Inst Evolutionary Anthropol, Deutsch Pl 6, D-04103 Leipzig, Germany. robbins@eva.mpg.de Karisoke Research Center; Max Planck Society The Karisoke Research Center is a project of the Dian Fossey Gorilla Fund International (DFGFI). We thank the Rwandan government and national park authorities for their long-term commitment to gorilla conservation and their support of the Karisoke Research Center. We are greatly indebted to the many Karisoke field assistants and researchers for their work in collecting demographic data over the past 40 years and to Netzin Gerald Steklis for developing the demographic database and maintaining it for over a decade. We also thank the public and private agencies, foundations, and individuals that have provided support for the Karisoke Research Center over the last 4 decades. We thank Maryke Gray, the International Gorilla Conservation Program, and the Ranger Based Monitoring program for the use of the demographic data from the Susa Group. Max Planck Society provided support for data analysis and write up of the project. We are grateful to Christopher Ruff and three anonymous reviewers for their helpful comments about earlier versions of this manuscript. ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Arnold SJ, 2001, GENETICA, V112, P9, DOI 10.1023/A:1013373907708; Avise JC, 2009, P NATL ACAD SCI USA, V106, P9933, DOI 10.1073/pnas.0903381106; BARROWCLOUGH GF, 1993, AM NAT, V141, P281, DOI 10.1086/285473; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V32, P103, DOI 10.1007/BF00164042; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Blomquist GE, 2009, BEHAV ECOL SOCIOBIOL, V63, P1345, DOI 10.1007/s00265-009-0792-8; Blomquist GE, 2009, GENETICA, V135, P209, DOI 10.1007/s10709-008-9270-x; BORRIES C, 1991, INT J PRIMATOL, V12, P231, DOI 10.1007/BF02547586; Breuer T, 2010, BEHAV ECOL SOCIOBIOL, V64, P515, DOI 10.1007/s00265-009-0867-6; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; BROWN D, 1988, REPROD SUCCESS, P439; Byrne C. L, 2008, APPL ITERATIVE METHO; CABANA G, 1991, EVOLUTION, V45, P228, DOI 10.1111/j.1558-5646.1991.tb05282.x; Caswell H., 2001, MATRIX POPULATION MO; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Chatterjee S, 1991, REGRESSION ANAL EXAM; Cheney D.L., 1988, P384; Cheney DL, 2004, INT J PRIMATOL, V25, P401, DOI 10.1023/B:IJOP.0000019159.75573.13; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Coltman DW, 1999, AM NAT, V154, P730, DOI 10.1086/303274; Cote SD, 2000, BEHAVIOUR, V137, P1541, DOI 10.1163/156853900502718; CROW JAMES F., 1958, HUMAN BIOL, V30, P1; Darwin C, 1859, ORIGIN SPECIES; De Vries H, 1998, ANIM BEHAV, V55, P827, DOI 10.1006/anbe.1997.0708; Deaner Robert O., 2003, P233; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; DOWNHOWER JF, 1987, EVOLUTION, V41, P1395, DOI 10.1111/j.1558-5646.1987.tb02476.x; Dugdale HL, 2010, J EVOLUTION BIOL, V23, P282, DOI 10.1111/j.1420-9101.2009.01896.x; Dunbar Robin I.M., 2003, P285; Dupont LM, 2000, PALAEOGEOGR PALAEOCL, V155, P95, DOI 10.1016/S0031-0182(99)00095-4; Dupont LM, 2001, GEOLOGY, V29, P195, DOI 10.1130/0091-7613(2001)029<0195:MPECIT>2.0.CO;2; EBERHARDT L L, 1977, Environmental Conservation, V4, P205; FAY JM, 1995, J HUM EVOL, V29, P93, DOI 10.1006/jhev.1995.1048; FEDIGAN LM, 1986, FOLIA PRIMATOL, V47, P143, DOI 10.1159/000156271; Ferguson IM, 2001, EVOL ECOL RES, V3, P199; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; Forcada J, 2008, GLOBAL CHANGE BIOL, V14, P2473, DOI 10.1111/j.1365-2486.2008.01678.x; FOSSEY D, 1983, GORILLAS MIST; Gagnon A, 2009, AM J HUM BIOL, V21, P533, DOI 10.1002/ajhb.20893; GERALD CN, 1995, THESIS PRINCETON U P; Grafen A., 1988, REPROD SUCCESS, P454; Gray M., 2009, J AFRICAN ECOLOGY, V48, P588; Guschanski K, 2009, BIOL CONSERV, V142, P290, DOI 10.1016/j.biocon.2008.10.024; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HARCOURT A. H, 2007, GORILLA SOC CONFLICT; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST ECOLO; Hurt LS, 2006, POP STUD-J DEMOG, V60, P55, DOI 10.1080/00324720500436011; IUCN, 2008, RED LIST THREAT SPEC; Janson CH, 1993, ECOLOGICAL RISK AVER, P57; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; Kaar P, 1998, P ROY SOC B-BIOL SCI, V265, P2415, DOI 10.1098/rspb.1998.0592; Kelly MJ, 1998, J ZOOL, V244, P473, DOI 10.1017/S0952836998004014; Kingsolver JG, 2007, BIOSCIENCE, V57, P561, DOI 10.1641/B570706; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Knott CD, 2001, REPROD ECOLOGY HUMAN, P429; Kruger O, 2001, OIKOS, V93, P260, DOI 10.1034/j.1600-0706.2001.930209.x; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Laird RA, 2009, J EVOLUTION BIOL, V22, P974, DOI 10.1111/j.1420-9101.2009.01709.x; le Boeuf B.J., 1988, P344; Le Bourg E, 2007, AGEING RES REV, V6, P141, DOI 10.1016/j.arr.2007.04.002; Leigh S. R., 2007, PRIMATES PERSPECTIVE, P396; Leigh SR, 1996, AM J PHYS ANTHROPOL, V99, P43, DOI 10.1002/(SICI)1096-8644(199601)99:1<43::AID-AJPA3>3.0.CO;2-0; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; MEDAWAR PB, 1946, MODERN Q, V1, P30; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; MILLER P, 1998, POPULATION BIOL SIMU, P71; Millon A, 2010, J ANIM ECOL, V79, P426, DOI 10.1111/j.1365-2656.2009.01637.x; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Mundry R, 1998, ANIM BEHAV, V56, P256, DOI 10.1006/anbe.1998.0756; Murphy MT, 2007, AUK, V124, P1010, DOI 10.1642/0004-8038(2007)124[1010:LRSOFE]2.0.CO;2; Neuhaus P, 2004, J ANIM ECOL, V73, P36, DOI 10.1111/j.1365-2656.2004.00793.x; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; Packer C., 1988, P363; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettorelli N, 2007, OIKOS, V116, P1879, DOI 10.1111/j.2007.0030-1299.16187.x; PRICE PW, 1996, BIOL EVOLUTION; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Purvis Andy, 2003, P25; Ransome RD, 1995, PHILOS T ROY SOC B, V350, P153, DOI 10.1098/rstb.1995.0149; RHINE RJ, 1992, AM J PRIMATOL, V27, P245, DOI 10.1002/ajp.1350270403; Rhine RJ, 2000, AM J PRIMATOL, V51, P229, DOI 10.1002/1098-2345(200008)51:4<229::AID-AJP2>3.0.CO;2-C; RHINE RJ, 1989, AM J PRIMATOL, V19, P69, DOI 10.1002/ajp.1350190202; RIBBLE DO, 1992, J ANIM ECOL, V61, P457, DOI 10.2307/5336; Ricklefs RE, 2007, ECOL LETT, V10, P867, DOI 10.1111/j.1461-0248.2007.01085.x; Robbins AM, 2007, ETHOLOGY, V113, P235, DOI 10.1111/j.1439-0310.2006.01319.x; Robbins AM, 2006, AM J PHYS ANTHROPOL, V131, P511, DOI 10.1002/ajpa.20474; Robbins AM, 2009, ANIM BEHAV, V77, P831, DOI 10.1016/j.anbehav.2008.12.005; Robbins MM, 2007, BEHAV ECOL SOCIOBIOL, V61, P919, DOI 10.1007/s00265-006-0321-y; Robbins MM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019788; Robbins MM, 2009, BIOL CONSERV, V142, P2886, DOI 10.1016/j.biocon.2009.07.010; Robbins MM, 2005, BEHAVIOUR, V142, P779, DOI 10.1163/1568539054729123; Robbins MM, 2004, AM J PRIMATOL, V64, P145, DOI 10.1002/ajp.20069; Robbins MM, 2004, AM J PRIMATOL, V63, P201, DOI 10.1002/ajp.20052; Robbins MM, 2010, PRIMATES PERSPECTIVE, P326; Schaller GB, 1963, MOUNTAIN GORILLA ECO; Setchell JM, 2005, BEHAV ECOL SOCIOBIOL, V58, P474, DOI 10.1007/s00265-005-0946-2; Shuster SM, 2003, MATING SYSTEMS STRAT; SMITH JLD, 1991, CONSERV BIOL, V5, P484, DOI 10.1111/j.1523-1739.1991.tb00355.x; Sokal RR, 1995, BIOMETRY; Soule M. E., 1987, VIABLE POPULATIONS C; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Stewart K.J., 1987, P155; Storz JF, 2002, EVOLUTION, V56, P817; Strassmann BI, 2003, AM J HUM BIOL, V15, P361, DOI 10.1002/ajhb.10154; SUGIYAMA Y, 1994, AM J PRIMATOL, V32, P311, DOI 10.1002/ajp.1350320408; SUTHERLAND WJ, 1985, ANIM BEHAV, V33, P1349, DOI 10.1016/S0003-3472(85)80197-4; SUTHERLAND WJ, 1987, SEXUAL SELECTION TES, P209; Thalmann OH, 2007, MOL BIOL EVOL, V24, P146, DOI 10.1093/molbev/msl160; van Noordwijk MA, 1999, PRIMATES, V40, P105, DOI 10.1007/BF02557705; Vanpe C, 2008, BEHAV ECOL, V19, P309, DOI 10.1093/beheco/arm132; von Holst D, 2002, BEHAV ECOL SOCIOBIOL, V51, P245, DOI 10.1007/S00265-001-0420-1; Wade MJ, 2004, AM NAT, V164, pE83, DOI 10.1086/424531; Wasser SK, 2004, BEHAV ECOL SOCIOBIOL, V56, P338, DOI 10.1007/s00265-004-0797-2; Watts D.P., 2001, MOUNTAIN GORILLAS 3, P215; WATTS DP, 1991, AM J PRIMATOL, V24, P211, DOI 10.1002/ajp.1350240307; WATTS DP, 1994, BEHAV ECOL SOCIOBIOL, V34, P347, DOI 10.1007/s002650050050; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393; White PA, 2005, BEHAV ECOL, V16, P606, DOI 10.1093/beheco/ari033; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Yamagiwa J, 2001, MOUNTAIN GORILLAS 3, P89 137 26 27 0 72 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. DEC 2011 146 4 582 593 10.1002/ajpa.21605 12 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 851ZO WOS:000297311600010 21989942 2019-02-21 J Iida, Y; Kohyama, TS; Kubo, T; Kassim, A; Poorter, L; Sterck, F; Potts, MD Iida, Yoshiko; Kohyama, Takashi S.; Kubo, Takuya; Kassim, Abd Rahman; Poorter, Lourens; Sterck, Frank; Potts, Matthew D. Tree architecture and life-history strategies across 200 co-occurring tropical tree species FUNCTIONAL ECOLOGY English Article allometry; hierarchical Bayesian approach; light capture; Pasoh; tropical rainforest RAIN-FOREST TREES; MIXED DIPTEROCARP FOREST; SHADE TOLERANCE; ALLOMETRY; GROWTH; SIZE; TRAITS; HEIGHT; HETEROGENEITY; REGENERATION 1. Tree architecture is thought to allow species to partition horizontal and vertical light gradients in the forest canopy. Tree architecture is closely related to light capture, carbon gain and the efficiency with which trees reach the canopy. Previous studies that investigated how light gradients drive differentiation in tree architecture have produced inconsistent results, partially because of the differences in which tree species and ontogenetic stages were studied. 2. We examined the relationship between stem diameter, tree height, foliage height, crown width and life-history strategy over a broad size range of 200 randomly selected, co-occurring tree species in a lowland rainforest in Peninsular Malaysia. We developed a hierarchical Bayesian model to account for both intra- and interspecific variation and describe the relationships among tree architectural variables. We analysed interspecific variation in tree architectural variables in relation to adult stature and light requirement for species regeneration as a function of tree size. 3. There was little interspecific variation in architectural variables, this is partly because of large intraspecific variation in response to canopy heterogeneity, but it also suggests architectural convergence within this community. However, interspecific analyses showed that, for large-statured species, small size classes had thinner stems with narrow and shallow crowns, whereas large-size classes had wider crowns. Light-demanding species (as indicated by high sapling mortality in shaded conditions) showed weak trends in tree architecture and were only characterized by wide crowns at intermediate sizes. 4. In summary, tree architectural traits overlapped across the species community. This suggests that architectural convergence and equalizing effects occur in this diverse tropical forest and that community-wide allometric equations can be used to describe forest height and carbon storage. Light resource partitioning also occurs, indicating stabilizing effects. Interspecific architectural variation in relation to adult stature supports the theory of the trade-off between early reproduction and vegetative growth. In closed rainforests, adult stature imposes a stronger force on architectural differentiation of species than regeneration light requirements. [Iida, Yoshiko; Kohyama, Takashi S.; Kubo, Takuya] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan; [Kassim, Abd Rahman] Forest Res Inst Malaysia, Kepong 52109, Malaysia; [Poorter, Lourens; Sterck, Frank] Wageningen Univ, Forest Ecol & Forest Management Grp, Ctr Ecosyst Studies, NL-6700 AA Wageningen, Netherlands; [Potts, Matthew D.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA Iida, Y (reprint author), Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido 0600810, Japan. yyoshiko503@gmail.com Hashim, Mazlan/J-7291-2012; Kohyama, Takashi/A-4031-2012; Kubo, Takuya/A-3414-2012 Hashim, Mazlan/0000-0001-8284-3332; Kohyama, Takashi/0000-0001-7186-8585; Kubo, Takuya/0000-0001-6202-9624; Poorter, Lourens/0000-0003-1391-4875; Iida, Yoshiko/0000-0001-6544-0101 Japan Society for the Promotion of Science (KAKENHI) [19405006, 21405006]; CTFS; JSPS We would like to acknowledge our field assistants at Pasoh, the staff of the Forest Research Institute Malaysia (FRIM), and Tatsuyuki Seino for helping with our field research. We also thank members of the Potts Group at UC Berkeley for constructive comments on an earlier version of this article. Helpful comments were provided by Dr. M. Tjoelker and anonymous reviewers. This study was supported by Grand-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science (KAKENHI; 19405006 & 21405006) and by a grant from the CTFS. Yoshiko Iida is supported by a Research Fellowship for Young Scientists and Excellent Young Researchers Overseas Visit Program from JSPS. The 50-ha Forest Dynamics Plot at Pasoh is a collaborative project of the Forest Research Institute Malaysia (FRIM), the National Institute for Environmental Studies, Japan (NIES) and the CTFS-Arnold ArboretumAsia Program, Harvard University (CTFS-AA). Aiba SI, 1997, J ECOL, V85, P611, DOI 10.2307/2960532; Bohlman S., 2006, TROPICAL ECOLOGY, V22, P123; Chave J, 2005, OECOLOGIA, V145, P87, DOI 10.1007/s00442-005-0100-x; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CLARK DB, 1991, J ECOL, V79, P447, DOI 10.2307/2260725; Clark JS, 2004, ECOL MONOGR, V74, P415, DOI 10.1890/02-4093; Condit R., 1998, TROPICAL FOREST CENS; Davies SJ, 1998, J ECOL, V86, P662, DOI 10.1046/j.1365-2745.1998.00299.x; Davies SJ, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P35; Davies SJ, 1999, AM J BOT, V86, P1786, DOI 10.2307/2656675; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Gelman A, 2003, BAYESIAN DATA ANAL; King DA, 2006, FOREST ECOL MANAG, V223, P152, DOI 10.1016/j.foreco.2005.10.066; King DA, 1996, J TROP ECOL, V12, P25, DOI 10.1017/S0266467400009299; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kochummen K. M., 1997, TREE FLORA PASOH FOR; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Kohyama T, 1987, FUNCT ECOL, V1, P399, DOI 10.2307/2389797; KOHYAMA T, 1993, J ECOL, V81, P131, DOI 10.2307/2261230; Kohyama T, 2009, J ECOL, V97, P463, DOI 10.1111/j.1365-2745.2009.01490.x; Kubo T, 2000, J TROP ECOL, V16, P753, DOI 10.1017/S026646740000170X; Noguchi S, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P51; Okuda T, 2004, FOREST ECOL MANAG, V203, P63, DOI 10.1016/j.foreco.2004.07.056; Poorter L, 2003, ECOLOGY, V84, P602, DOI 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2; Poorter L, 2007, AM NAT, V169, P433, DOI 10.1086/512045; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; R Development Core Team, 2009, R LANG ENV STAT COMP; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Spiegelhalter DJ, 2003, WINBUGS VERSION 1 4; Sterck FJ, 2001, PLANT ECOL, V153, P279, DOI 10.1023/A:1017507723365; Sterck FJ, 1998, AM J BOT, V85, P266, DOI 10.2307/2446315; Sterck FJ, 2007, ECOL MONOGR, V77, P405, DOI 10.1890/06-1670.1; TAKENAKA A, 1994, J PLANT RES, V107, P321, DOI 10.1007/BF02344260; Thomas SC, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P171; Thomas SC, 1996, OIKOS, V76, P145, DOI 10.2307/3545756; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Turner I.M., 2001, ECOLOGY TREE TROPICA; UMEKI K, 1995, ECOL MODEL, V82, P11, DOI 10.1016/0304-3800(94)00081-R; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Wright SJ, 2005, J TROP ECOL, V21, P307, DOI 10.1017/S0266467405002294 42 34 40 3 93 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. DEC 2011 25 6 1260 1268 10.1111/j.1365-2435.2011.01884.x 9 Ecology Environmental Sciences & Ecology 849WQ WOS:000297156500013 2019-02-21 J Reid, D; Armstrong, JD; Metcalfe, NB Reid, Donald; Armstrong, John D.; Metcalfe, Neil B. Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon FUNCTIONAL ECOLOGY English Article Atlantic salmon; density; dominance; feeding territory; growth; intraspecific variation; standard metabolic rate LIFE-HISTORY STRATEGIES; LAKE DISTRICT STREAM; BROWN TROUT; SOCIAL-STATUS; INDIVIDUAL VARIATION; DEPENDENT GROWTH; BASAL-METABOLISM; BANK VOLES; BODY-MASS; SALAR 1. Physiological traits can vary greatly within a species and consequently have a significant impact on other aspects of performance. Many species exhibit substantial variation in basal or standard metabolic rate (SMR), even after controlling for body size and age, yet the ecological consequences of this are little known. 2. We examined the relationships between mass-specific SMR of yearling salmon (estimated from their ventilation rate) and their feeding and growth rates across a range of natural population densities within a semi-natural stream environment. 3. Standard metabolic rate was strongly correlated with dominance rank, and higher ranking fish were more likely to acquire good feeding territories. Despite this, there was no overall relationship between SMR and growth. We show for the first time that this paradox can be explained because within territories of a given quality, there was a negative correlation between SMR and growth rate, presumably owing to the costs of metabolism. 4. These effects were also influenced by density: lower densities led to reduced aggression and competition and hence higher average feeding and growth rates. Moreover, at low densities, where availability of good feeding locations was not limiting, there was no relationship between SMR and growth. 5. As a result of these processes, there was a context-dependent trade-off in energy budgets: the fish achieving the greatest growth were those with the lowest SMR that was necessary to achieve dominance over conspecifics (and hence acquire a good territory), but this minimum threshold SMR increased with population density. These relationships and trade-offs can explain the persistence of variation in SMR within populations. [Reid, Donald; Metcalfe, Neil B.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Coll Med Vet & Life Sci, Glasgow G12 8QQ, Lanark, Scotland; [Armstrong, John D.] Marine Scotland Sci, Freshwater Lab, Pitlochry PH16 5LB, Scotland Reid, D (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Coll Med Vet & Life Sci, Glasgow G12 8QQ, Lanark, Scotland. d.reid.2@research.gla.ac.uk Metcalfe, Neil/C-5997-2009 Metcalfe, Neil/0000-0002-1970-9349; Armstrong, John/0000-0003-2015-0500; Reid, Donald/0000-0002-6429-6328 NERC We thank Jason Henry and Dave Stewart for help with electrofishing and Mike Miles, Steve Keay and Jim Muir for help with fish husbandry and advice. We also thank three referees and the associate editor for helpful comments on the manuscript. Donald Reid was funded by a NERC PhD studentship with CASE partner Marine Scotland. Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Armstrong JD, 2003, FISH RES, V62, P143, DOI 10.1016/S0165-7836(02)00160-1; Bech C, 1999, P ROY SOC B-BIOL SCI, V266, P2161, DOI 10.1098/rspb.1999.0903; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bochdansky AB, 2005, MAR BIOL, V147, P1413, DOI 10.1007/s00227-005-0036-z; Bohlin T, 2002, J ANIM ECOL, V71, P683, DOI 10.1046/j.1365-2656.2002.00631.x; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Boratynski Z, 2009, FUNCT ECOL, V23, P330, DOI 10.1111/j.1365-2435.2008.01505.x; Cutts CJ, 2002, J FISH BIOL, V61, P1540, DOI 10.1006/jfbi.2002.2173; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; EGGLISHAW HJ, 1977, J FISH BIOL, V11, P647, DOI 10.1111/j.1095-8649.1977.tb05722.x; ELLIOTT JM, 1984, J ANIM ECOL, V53, P327, DOI 10.2307/4360; ELLIOTT JM, 1984, J ANIM ECOL, V53, P979, DOI 10.2307/4672; Enders E. C., 2005, Canadian Data Report of Fisheries and Aquatic Sciences, V1176, pIV; FAUSCH KD, 1984, CAN J ZOOL, V62, P441, DOI 10.1139/z84-067; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Frappell PB, 2004, PHYSIOL BIOCHEM ZOOL, V77, P865, DOI 10.1086/425191; Fry X, 1947, EFFECTS ENV ANIMAL A; Harwood AJ, 2003, BEHAV ECOL, V14, P902, DOI 10.1093/beheco/arg080; HAYES JP, 1992, FUNCT ECOL, V6, P5, DOI 10.2307/2389765; Hopkins Kevin D., 1992, Journal of the World Aquaculture Society, V23, P173, DOI 10.1111/j.1749-7345.1992.tb00766.x; Hulbert AJ, 2000, ANNU REV PHYSIOL, V62, P207, DOI 10.1146/annurev.physiol.62.1.207; Imre I, 2005, J ANIM ECOL, V74, P508, DOI 10.1111/j.1365-2656.2005.00949.x; Kaspersson R, 2010, ANIM BEHAV, V79, P709, DOI 10.1016/j.anbehav.2009.12.025; Kvist A, 2001, FUNCT ECOL, V15, P465, DOI 10.1046/j.0269-8463.2001.00549.x; Labocha MK, 2004, P ROY SOC B-BIOL SCI, V271, P367, DOI 10.1098/rspb.2003.2612; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lobon-Cervia J, 2007, FUNCT ECOL, V21, P117, DOI 10.1111/j.1365-2435.2006.01204.x; MacLean A, 2003, J FISH BIOL, V63, P1610, DOI 10.1111/j.1095-8649.2003.00254.x; Martin-Smith KM, 2002, J ANIM ECOL, V71, P413, DOI 10.1046/j.1365-2656.2002.00609.x; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; Millidine KJ, 2008, CAN J FISH AQUAT SCI, V65, P2081, DOI 10.1139/F08-118; Millidine KJ, 2009, P ROY SOC B-BIOL SCI, V276, P2103, DOI 10.1098/rspb.2009.0080; NAKANO S, 1995, J ANIM ECOL, V64, P75, DOI 10.2307/5828; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; O'Brien RM, 2007, QUAL QUANT, V41, P673, DOI 10.1007/s11135-006-9018-6; O'Connor KI, 1999, ANIM BEHAV, V58, P1269, DOI 10.1006/anbe.1999.1260; Priede I.G., 1985, P33; PUCKETT KJ, 1985, BEHAVIOUR, V92, P97, DOI 10.1163/156853985X00398; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; Sears MW, 2005, COMP BIOCHEM PHYS A, V140, P171, DOI 10.1016/j.cbpb.2004.12.003; Sloman KA, 2008, ANIM BEHAV, V76, P1279, DOI 10.1016/j.anbehav.2008.06.012; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V23, P49, DOI 10.1023/A:1007855100185; Steyermark AC, 2005, J EXP BIOL, V208, P1201, DOI 10.1242/jeb.01492; Steyermark AC, 2002, ZOOLOGY, V105, P147, DOI 10.1078/0944-2006-00055; Suter HC, 2002, J FISH BIOL, V61, P606, DOI 10.1006/jfbi.2002.2084; Valdimarsson SK, 1998, J FISH BIOL, V52, P42, DOI 10.1111/j.1095-8649.1998.tb01551.x 50 32 35 3 50 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. DEC 2011 25 6 1360 1367 10.1111/j.1365-2435.2011.01894.x 8 Ecology Environmental Sciences & Ecology 849WQ WOS:000297156500024 Bronze 2019-02-21 J Diamantidis, AD; Carey, JR; Nakas, CT; Papadopoulos, NT Diamantidis, Alexandros D.; Carey, James R.; Nakas, Christos T.; Papadopoulos, Nikos T. Population-specific demography and invasion potential in medfly ECOLOGY AND EVOLUTION English Article Biological invasions; Ceratitis capitata; Intrinsic rate of increase; Life history traits; Population growth rates MEDITERRANEAN FRUIT-FLY; CERATITIS-CAPITATA LARVAE; LIFE-HISTORY EVOLUTION; BIOLOGICAL INVASIONS; ENVIRONMENTAL-CHANGE; COMMUNITY ECOLOGY; TEPHRITIDAE; DIPTERA; FLIES; DIVERSITY Biological invasions are constantly gaining recognition as a significant component of global change. The Mediterranean fruit fly (medfly) constitutes an ideal model species for the study of biological invasions due to its (1) almost cosmopolitan geographic distribution, (2) huge economic importance, and (3) well-documented invasion history. Under a common garden experimental set up, we tested the hypothesis that medfly populations obtained from six global regions [Africa (Kenya), Pacific (Hawaii), Central America (Guatemala), South America (Brazil), Extra-Mediterranean (Portugal), and Mediterranean (Greece)] have diverged in important immature life-history traits such as preadult survival and developmental times. We also tested the hypothesis that medfly populations from the above regions exhibit different population growth rates. For this purpose, data on the life history of immatures were combined with adult survival and reproduction data derived from an earlier study in order to calculate population parameters for the above six populations. Our results clearly show that medfly populations worldwide exhibit significant differences in preadult survival, developmental rates of immatures and important population parameters such as the intrinsic rate of increase. Therefore, geographically isolated medfly populations may share different invasion potential, since population growth rates could influence basic population processes that operate mostly during the last two stages of an invasion event, such as establishment and spread. Our findings provide valuable information for designing population suppression measures and managing invasiveness of medfly populations worldwide. [Diamantidis, Alexandros D.; Nakas, Christos T.; Papadopoulos, Nikos T.] Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Ionia 38446, Magnisias, Greece; [Diamantidis, Alexandros D.; Carey, James R.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA Papadopoulos, NT (reprint author), Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Phytokou St N, Ionia 38446, Magnisias, Greece. nikopap@uth.gr Papadopoulos, Nikos/B-9156-2011; Nakas, Christos/F-3052-2011 Papadopoulos, Nikos/0000-0003-2480-8189; Nakas, Christos/0000-0003-4155-722X National Institute on Ageing [P01-AG022500-01, P01-AG08761-10]; Organization for Economic Co-operation and Development (OECD) Co-operative Research Program This study was supported by the National Institute on Ageing grants P01-AG022500-01 and P01-AG08761-10 awarded to James R. Carey. NTP was partially supported by the Organization for Economic Co-operation and Development (OECD) Co-operative Research Program The authors are grateful to P. Rendon (ARS USDA, Guatemela), D. McInnis and R. Vargas (USDA, Hawaii), A. Malavasi (Mosca Fruit, Brazil), B. Paranhos (Emprapa, Brazil), L. Dantas (Madeira), C. Caceres (IAEA, Vienna), and S. Ekesi (ICIPE, Kenya) for providing wild material. Comments from three anonymous reviewers greatly improved the quality of this paper. ANDOW DA, 1990, LANDSCAPE ECOL, V4, P177, DOI 10.1007/BF00132860; Boller E. F., 1985, HDB INSECT REARING, V2, P135; Bonizzoni M, 2004, MOL ECOL, V13, P3845, DOI 10.1111/j.1365-294X.2004.02371.x; Bonizzoni M, 2000, INSECT MOL BIOL, V9, P251, DOI 10.1046/j.1365-2583.2000.00184.x; Carey J. R., 1993, APPL DEMOGRAPHY BIOL; CAREY JR, 1982, ECOL MODEL, V16, P125, DOI 10.1016/0304-3800(82)90005-9; Carey JR, 1996, ECOLOGY, V77, P1690, DOI 10.2307/2265775; CAREY JR, 1984, ECOL ENTOMOL, V9, P261, DOI 10.1111/j.1365-2311.1984.tb00850.x; CAREY JR, 2003, LONGEVITY BIOL DEMOG; Carroll SP, 1996, BIOL CONSERV, V78, P207, DOI 10.1016/0006-3207(96)00029-8; Ciosi M, 2008, MOL ECOL, V17, P3614, DOI 10.1111/j.1365-294X.2008.03866.x; Collett D., 2003, MODELING SURVIVAL DA; CRAWLEY MJ, 1986, PHILOS T ROY SOC B, V314, P711, DOI 10.1098/rstb.1986.0082; DAVISON AC, 1997, CAMBRIDGE SERIES STA, V1; De Breme F, 1842, ANN SOC ENTOMOL FRAN, V11, P183; Delatte H, 2009, BIOL INVASIONS, V11, P1059, DOI 10.1007/s10530-008-9328-9; Diamantidis AD, 2008, J APPL ENTOMOL, V132, P695, DOI 10.1111/j.1439-0418.2008.01325.x; Diamantidis AD, 2008, ENTOMOL EXP APPL, V128, P389, DOI 10.1111/j.1570-7458.2008.00730.x; Diamantidis AD, 2011, BIOL J LINN SOC, V102, P334, DOI 10.1111/j.1095-8312.2010.01579.x; Diamantidis AD, 2009, BIOL J LINN SOC, V97, P106, DOI 10.1111/j.1095-8312.2009.01178.x; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Duyck PF, 2007, DIVERS DISTRIB, V13, P535, DOI 10.1111/j.1472-4642.2007.00360.x; Engen S, 1998, BIOMETRICS, V54, P840, DOI 10.2307/2533838; FIMIANI P, 1989, FRUIT FLIES THEIR BI, P39; France KE, 2006, OIKOS, V113, P515; Futuyma Douglas, 2005, EVOLUTION; Gasperi G, 2002, GENETICA, V116, P125, DOI 10.1023/A:1020971911612; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Harmon JP, 2009, SCIENCE, V323, P1347, DOI 10.1126/science.1167396; Hoffmann AA, 2001, EVOLUTION, V55, P436; Hulme PE, 2009, SCIENCE, V324, P40, DOI 10.1126/science.1171111; Keitt TH, 2001, AM NAT, V157, P203, DOI 10.1086/318633; Kneitel JM, 2004, ECOL LETT, V7, P69, DOI 10.1046/j.1461-0248.2003.00551.x; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; KRAINACKER DA, 1987, OECOLOGIA, V73, P583, DOI 10.1007/BF00379420; LAWTON JH, 1986, PHILOS T ROY SOC B, V314, P607, DOI 10.1098/rstb.1986.0076; Levine JM, 2000, SCIENCE, V288, P852, DOI 10.1126/science.288.5467.852; Liebhold AM, 2008, ANNU REV ENTOMOL, V53, P387, DOI 10.1146/annurev.ento.52.110405.091401; LIQUIDO NJ, 1991, MISCELLANEOUS PUBLIC, V77, P1863; LODGE DM, 1993, TRENDS ECOL EVOL, V8, P133, DOI 10.1016/0169-5347(93)90025-K; Malacrida AR, 2007, GENETICA, V131, P1, DOI 10.1007/s10709-006-9117-2; Malacrida AR, 1998, J HERED, V89, P501, DOI 10.1093/jhered/89.6.501; Miyatake T, 1998, RES POPUL ECOL, V40, P301, DOI 10.1007/BF02763462; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Myers JH, 2000, TRENDS ECOL EVOL, V15, P316, DOI 10.1016/S0169-5347(00)01914-5; Novoseltsev VN, 2004, MECH AGEING DEV, V125, P77, DOI 10.1016/j.mad.2003.10.007; Nyamukondiwa C, 2010, ECOL ENTOMOL, V35, P565, DOI 10.1111/j.1365-2311.2010.01215.x; Nyamukondiwa C, 2010, PHYSIOL ENTOMOL, V35, P255, DOI 10.1111/j.1365-3032.2010.00736.x; Papadopoulos NT, 2003, BIOCONTROL, V48, P191, DOI 10.1023/A:1022651306249; Papadopoulos NT, 2002, ANN ENTOMOL SOC AM, V95, P564, DOI 10.1603/0013-8746(2002)095[0564:DPOTMF]2.0.CO;2; Perrings C, 2005, TRENDS ECOL EVOL, V20, P212, DOI 10.1016/j.tree.2005.02.011; Pimentel D, 2001, AGR ECOSYST ENVIRON, V84, P1, DOI 10.1016/S0167-8809(00)00178-X; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Pysek P, 2010, P NATL ACAD SCI USA, V107, P12157, DOI 10.1073/pnas.1002314107; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sax DF, 2000, GLOBAL ECOL BIOGEOGR, V9, P363, DOI 10.1046/j.1365-2699.2000.00217.x; SIMBERLOFF D, 1988, ANNU REV ECOL SYST, V19, P473, DOI 10.1146/annurev.es.19.110188.002353; Simberloff D, 2009, BIOL INVASIONS, V11, P149, DOI 10.1007/s10530-008-9317-z; Sokal RR, 1995, BIOMETRY; Taylor CM, 2005, ECOL LETT, V8, P895, DOI 10.1111/j.1461-0248.2005.00787.x; Vargas RI, 2000, ANN ENTOMOL SOC AM, V93, P75, DOI 10.1603/0013-8746(2000)093[0075:CDOTHF]2.0.CO;2; Vitousek PM, 1996, AM SCI, V84, P468; Yoshida T, 2007, ECOL RES, V22, P849, DOI 10.1007/s11284-007-0435-3; Yuval B, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P429; Zayed Amro, 2007, PLoS ONE, V2, P1; ZUCOLOTO FS, 1991, J INSECT PHYSIOL, V37, P21, DOI 10.1016/0022-1910(91)90014-Q; ZUCOLOTO FS, 1987, J INSECT PHYSIOL, V33, P349, DOI 10.1016/0022-1910(87)90123-5 67 20 21 1 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2011 1 4 10.1002/ece3.33 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055TV WOS:000312441500004 22393516 DOAJ Gold, Green Published 2019-02-21 J Scarabotti, PA; Lopez, JA; Pouilly, M Scarabotti, Pablo A.; Lopez, Javier A.; Pouilly, Marc Flood pulse and the dynamics of fish assemblage structure from neotropical floodplain lakes ECOLOGY OF FRESHWATER FISH English Article Parana River Basin; determinism; Argentina; hydrological connectivity; lowland rivers PARANA RIVER FLOODPLAIN; ENVIRONMENTAL VARIATION; TROPICAL RIVER; COMMUNITY; MACROPHYTES; HABITATS; SCALE; BASIN The dynamics of fish assemblages from seven floodplain lakes of Salado River (Argentina) was monthly analysed during two contrasting hydrological seasons. Partial canonical correspondence analysis indicated that assemblage structure was predictably linked to environmental characteristics that varied along temporal and spatial scales. Species distributed differentially along an environmental gradient of temperature, hydrometric level, conductivity, macrophyte cover and transparency in relation to their sensory capabilities (following piscivory-transparency-morphometry model) and life history strategies. During high water season, assemblages were associated with temperature and hydrometric level, factors which varied mainly across temporal scales and exhibit a regional range of action. During low waters, assemblage structure correlated with macrophyte cover and transparency, factors that varied fundamentally on spatial scales and have local impact. These results indicate that the determinism of fish assemblages does not vary substantially between hydrometric periods, although the environmental variables affecting fish assemblages and their scale of action are clearly different. [Scarabotti, Pablo A.; Lopez, Javier A.] Inst Nacl Limnol CONICET UNL, RA-3000 Santa Fe, Argentina; [Scarabotti, Pablo A.; Lopez, Javier A.] Univ Nacl Litoral, Fac Humanidades & Ciencias, Dept Ciencias Nat, Paraje El Pozo, Santa Fe, Argentina; [Pouilly, Marc] Museum Natl Hist Nat, Inst Rech Dev, UMR BOREA, F-75231 Paris, France Scarabotti, PA (reprint author), Inst Nacl Limnol CONICET UNL, Paraje El Pozo S-N, RA-3000 Santa Fe, Argentina. pscarabotti@gmail.com Pouilly, Marc/E-9119-2014; ANIKUZHIYIL, ANISH/Y-8609-2018 Pouilly, Marc/0000-0003-4209-3367; ANIKUZHIYIL, ANISH/0000-0001-9686-1283; Lopez, Javier Alejandro/0000-0002-5156-6915 Instituto Nacional de Limnologia; Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina (CONICET) de Limnologia, especially Esteban Creus, Eduardo Lordi, Ramon Regner for the collaboration with the fieldwork. Arturo Kehr kindly shared laboratory facilities and suggestions for statistical analysis. We thank Cedric Hubas (MNHN, Paris), Romina Ghirardi (INALI, Santa Fe) and three anonymous reviewers for the critical reading of the manuscript. Financial support for this study was provided by the Instituto Nacional de Limnologia and by postdoctoral fellowships of the Consejo Nacional de Investigaciones Cientificas y Tecnicas of Argentina (CONICET) to Pablo A. Scarabotti and Javier A. Lopez. Agostinho AA, 2000, BIODIVERSITY IN WETLANDS: ASSESSMENT, FUNCTION AND CONSERVATION, VOL 1, P89; Anderson M.J., 1998, AUSTR J ECOLOGY, V23, P167; Arratia G., 2003, CATFISHES; Arrington DA, 2006, J N AM BENTHOL SOC, V25, P126, DOI 10.1899/0887-3593(2006)25[126:HATSFP]2.0.CO;2; Arrington DA, 2005, OECOLOGIA, V144, P157, DOI 10.1007/s00442-005-0014-7; De Paggi SB, 2008, INT REV HYDROBIOL, V93, P659, DOI 10.1002/iroh.200711027; Bell G, 2000, AM NAT, V155, P606, DOI 10.1086/303345; Bonetto A. A., 1969, Physis Buenos Aires, V29, P213; Bonetto A. A., 1986, ECOLOGY RIVER SYSTEM, P573; BORCARD D, 1992, ECOLOGY, V73, P1045, DOI 10.2307/1940179; CAROLSFELD J, 2003, MIGRATORY FISHES S A; CHASE JM, 2003, ECOLOGICAL NICHES; Cleveland W.S., 1975, ELEMENTS GRAPHING DA; Crampton WGR, 2006, COMMUNICATION FISHES, p[647, 718]; Delariva Rosilene Luciana, 1994, Revista UNIMAR, V16, P41; DENEIFF AP, 1994, AQUAT BOT, V47, P213; Drago E.C., 1980, ECOLOGIA, V4, P45; Drago EC, 2003, AMAZONIANA, V17, P291; FICH, 2006, EST EV HIDR MORF DIN; Fortin M.-J., 2005, SPATIAL ANAL GUIDE E; Fuentes C. M., 1998, NATURA NEOTROPICALIS, V29, P25; Goulding M., 1980, FISHES FOREST EXPLOR; Goulding M., 1988, RIO NEGRO RICH LIFE; HAMILTON SK, 1990, ARCH HYDROBIOL, V119, P393; Hubbell Stephen P., 2001, V32, pi; INCyTH, 1986, CAR HIDR CUENC RIO S; Jepsen DB, 1997, ENVIRON BIOL FISH, V49, P449, DOI 10.1023/A:1007371132144; Neiff JJ, 2009, NEOTROP ICHTHYOL, V7, P39, DOI 10.1590/S1679-62252009000100006; JUNK W J, 1983, Amazoniana, V7, P397; Junk WJ, 1997, CENTRAL AMAZON FLOOD; Junk WJ, 2004, P 2 INT S MAN LARG R, V2, P117; Junk Wolfgang J., 1997, Ecological Studies, V126, P385; LEGENDRE P, 1993, ECOLOGY, V74, P1659, DOI 10.2307/1939924; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lewis WM, 2000, BIOSCIENCE, V50, P681, DOI 10.1641/0006-3568(2000)050[0681:EDOTOF]2.0.CO;2; Manly B., 1991, MULTIVARIATE STAT ME; Meschiatti AJ, 2000, ENVIRON BIOL FISH, V58, P133, DOI 10.1023/A:1007637631663; Neiff J.J., 1984, ECOSUR, V21, P51; Okland RH, 2003, J VEG SCI, V14, P693, DOI 10.1111/j.1654-1103.2003.tb02201.x; Okland RH, 1999, J VEG SCI, V10, P131, DOI 10.2307/3237168; Oldani N.O., 1984, Revista de la Asociacion de Ciencias Naturales del Litoral, V15, P175; Oliveros O.B., 1980, ECOLOGIA, V4, P115; Petry P, 2003, J FISH BIOL, V63, P547, DOI 10.1046/j.1095-8649.2003.00169.x; PINELALLOUL B, 1995, ECOSCIENCE, V2, P1; Pouilly M., 2004, P 2 INT S MAN LARG R, V2, P243; Quiros R., 2000, MANAGEMENT ECOLOGY R, P456; Ricklefs R. E, 1993, SPECIES DIVERSITY EC; Rodriguez MA, 1997, ECOL MONOGR, V67, P109, DOI 10.2307/2963507; RODRIGUEZ MA, 1994, OECOLOGIA, V99, P166, DOI 10.1007/BF00317098; Rossi Liliana, 2007, P305, DOI 10.1007/978-3-540-70624-3_12; Saint-Paul U, 2000, ENVIRON BIOL FISH, V57, P235, DOI 10.1023/A:1007699130333; SAZIMA I, 1983, ENVIRON BIOL FISH, V9, P87, DOI 10.1007/BF00690855; Suarez YR, 2001, FISHERIES MANAG ECOL, V8, P173, DOI 10.1046/j.1365-2400.2001.00236.x; Sverlij S.B., 1993, FAO SINOPSIS PESCA, V154, P64; Tejerina-Garro FL, 1998, ENVIRON BIOL FISH, V51, P399, DOI 10.1023/A:1007401714671; Ter Braak C. J. F., 1998, CANOCO REFERENCE MAN; Tilman D., 1982, RESOURCE COMPETITION; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Winemiller Kirk O., 1996, P99, DOI 10.1016/B978-012178075-3/50006-4; Winemiller KO, 2000, T AM FISH SOC, V129, P451, DOI 10.1577/1548-8659(2000)129<0451:FASIRT>2.0.CO;2; Winemiller KO, 1998, J FISH BIOL, V53, P267, DOI 10.1006/jfbi.1998.0832; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; ZARET TM, 1971, ECOLOGY, V52, P336, DOI 10.2307/1934593 63 26 26 1 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish DEC 2011 20 4 605 618 10.1111/j.1600-0633.2011.00510.x 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 840NW WOS:000296448500013 2019-02-21 J Brown, FD; D'Anna, I; Sommer, RJ Brown, Federico D.; D'Anna, Isabella; Sommer, Ralf J. Host-finding behaviour in the nematode Pristionchus pacificus PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article ambush; behavioural genetics; body-waving; host attachment; nictation; Pristionchus pacificus CAENORHABDITIS-ELEGANS; ENTOMOPATHOGENIC NEMATODES; GENETIC-ANALYSIS; DAUER LARVA; C-ELEGANS; PARASITIC NEMATODE; PHYMATA-AMERICANA; SEARCH STRATEGIES; DEVELOPMENTAL AGE; JUMPING BEHAVIOR Costs and benefits of foraging have been studied in predatory animals. In nematodes, ambushing or cruising behaviours represent adaptations that optimize foraging strategies for survival and host finding. A behaviour associated with host finding of ambushing nematode dauer juveniles is a sit-and-wait behaviour, otherwise known as nictation. Here, we test the function of nictation by relating occurrence of nictation in Pristionchus pacificus dauer juveniles to the ability to attach to laboratory host Galleria mellonella. We used populations of recently isolated and mutagenized laboratory strains. We found that nictation can be disrupted using a classical forward genetic approach and characterized two novel nictation-defective mutant strains. We identified two recently isolated strains from la Reunion island, one with a higher proportion of nictating individuals than the laboratory strain P. pacificus PS312. We found a positive correlation between nictation frequencies and host attachment in these strains. Taken together, our combination of genetic analyses with natural variation studies presents a new approach to the investigation of behavioural and ecological functionality. We show that nictation behaviour in P. pacificus nematodes serves as a host-finding behaviour. Our results suggest that nictation plays a role in the evolution of new life-history strategies, such as the evolution of parasitism. [Brown, Federico D.; D'Anna, Isabella; Sommer, Ralf J.] Max Planck Inst Dev Biol, Dept Evolutionary Biol, D-72076 Tubingen, Germany Brown, FD (reprint author), Univ Los Andes, Dept Ciencias Biol, Apartado Aereo 4976, Bogota, Colombia. fd.brown46@uniandes.edu.co Brown, Federico/B-2035-2013 Brown, Federico/0000-0001-9250-5011 Max Planck Society; DAAD We thank Dr Robbie Rae for the S. carpocapsae dauers and helpful discussions. We thank Dr Akira Ogawa for ideas and suggestions and Dr Dan Bumbarger for discussion. We are grateful to Metta Riebesell for help on the figures and movies; Simone Kienle for providing the 'high nictators'; and Andreas Weller for help on initial beetle attachment experiments, as well as for help on the 'wet-plate' dauer induction protocol. We thank Dr Erik Ragsdale for comments on this manuscript. We are grateful to Dr Andrew Crawford at the U. de los Andes for assistance on the statistics, and Dr Andrew Brown at Becker Underwood, UK, for supplying Steinernema and Phasmarhabditis nematodes. Thanks to Monica Rodriguez and Diego Rubio for proof-reading the manuscript. Funds for research came from the Max Planck Society, and a three month DAAD Study and Research Fellowship granted to F.D.B. ALBERT PS, 1988, DEV BIOL, V126, P270, DOI 10.1016/0012-1606(88)90138-8; ALBERT PS, 1983, J COMP NEUROL, V219, P461, DOI 10.1002/cne.902190407; Antebi A, 2000, GENE DEV, V14, P1512; Antebi A, 1998, DEVELOPMENT, V125, P1191; Ao W, 2004, SCIENCE, V305, P1743, DOI 10.1126/science.1102216; Apfeld J, 1998, CELL, V95, P199, DOI 10.1016/S0092-8674(00)81751-1; Baird SE, 1999, NEMATOLOGY, V1, P471, DOI 10.1163/156854199508478; Barr MM, 1999, NATURE, V401, P386, DOI 10.1038/43916; BOVIEN P, 1937, VIDENSK MEDD DANSK N, V101; BRENNER S, 1974, GENETICS, V77, P71; Burnell AM, 2005, EXP GERONTOL, V40, P850, DOI 10.1016/j.exger.2005.09.006; Campbell JF, 2003, J NEMATOL, V35, P142; Campbell JF, 1999, NATURE, V397, P485, DOI 10.1038/17254; Campbell JF, 1997, FUND APPL NEMATOL, V20, P393; Campbell JF, 1999, CAN J ZOOL, V77, P1947, DOI 10.1139/cjz-77-12-1947; CAMPBELL JF, 1993, BEHAVIOUR, V126, P155, DOI 10.1163/156853993X00092; Campbell JF, 2000, BEHAVIOUR, V137, P591, DOI 10.1163/156853900502231; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; CHALFIE M, 1989, SCIENCE, V243, P1027, DOI 10.1126/science.2646709; Croll N.A., 1977, BIOL NEMATODES, P152; CROLL NA, 1970, EXP PARASITOL, V27, P350, DOI 10.1016/0014-4894(70)90038-X; DASILVA AP, 2006, WORMBOOK, DOI DOI 10.1895/WORMBOOK.1.114.1; Dieterich C, 2009, TRENDS GENET, V25, P203, DOI 10.1016/j.tig.2009.03.006; DUSENBERY DB, 1980, J COMP PHYSIOL, V136, P327, DOI 10.1007/BF00657352; GRECO CE, 1994, CAN J ZOOL, V72, P1583, DOI 10.1139/z94-210; Greco CF, 1995, CAN J ZOOL, V73, P1912, DOI 10.1139/z95-224; HEDGECOCK EM, 1975, P NATL ACAD SCI USA, V72, P4061, DOI 10.1073/pnas.72.10.4061; Hernandez AD, 1995, J PARASITOL, V81, P865, DOI 10.2307/3284031; Herrmann M, 2007, ZOOL SCI, V24, P883, DOI 10.2108/zsj.24.883; Herrmann M, 2006, ZOOLOGY, V109, P96, DOI 10.1016/j.zool.2006.03.001; Herrmann M, 2010, BIOL J LINN SOC, V100, P170, DOI 10.1111/j.1095-8312.2010.01410.x; Hobert O, 1999, J CELL BIOL, V144, P45, DOI 10.1083/jcb.144.1.45; Holt SJ, 2003, MECH AGEING DEV, V124, P779, DOI 10.1016/S0047-6374(03)00132-5; Hong RL, 2008, EVOL DEV, V10, P273, DOI 10.1111/j.1525-142X.2008.00236.x; Hong RL, 2006, BIOESSAYS, V28, P651, DOI 10.1002/bies.20404; Inoue T, 2007, GENETICS, V177, P809, DOI 10.1534/genetics.107.078857; Ishibashi N., 1990, P139; Kaya Harry K., 1997, P281, DOI 10.1016/B978-012432555-5/50016-6; KIONTKE K, 2006, WORMBOOK, DOI DOI 10.1895/WORMBOOK.1.37.1; Kruitbos LM, 2010, NEMATOLOGY, V12, P309, DOI 10.1163/138855409X12506855979794; Kruitbos LM, 2009, NEMATOLOGY, V11, P917, DOI 10.1163/156854109X443433; LACEY LA, 1995, BIOCONTROL SCI TECHN, V5, P121, DOI 10.1080/09583159550040060; LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905; Lee Donald L., 2002, P61; LEWIS EE, 1992, PARASITOLOGY, V105, P309, DOI 10.1017/S0031182000074230; LEWIS EE, 2006, BEHAV ECOLOGY ENTOMO; LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540; OBRIEN WJ, 1990, SEARCH STRATEGIES FO; Ogawa A, 2009, CURR BIOL, V19, P67, DOI 10.1016/j.cub.2008.11.063; OSCHE G, 1956, ZOOLOGISCHER ANZEI S, V19, P391; Peden EM, 2005, CURR BIOL, V15, P394, DOI 10.1016/j.cub.2004.12.073; PIANKA ER, 1966, ECOLOGY, V47, P1055, DOI 10.2307/1935656; POPHAM JD, 1978, CAN J ZOOL, V56, P1556, DOI 10.1139/z78-217; Rae RG, 2006, NEMATOLOGY, V8, P197, DOI 10.1163/156854106777998746; REED EM, 1965, NATURE, V206, P210, DOI 10.1038/206210a0; RIDDLE DL, 1981, NATURE, V290, P668, DOI 10.1038/290668a0; RIDDLE DL, 1988, NEMATODE CAENORHABDI, P393; RIDDLE DL, 1997, GENETIC ENV REGULATI, P739, DOI DOI 10.1101/087969532.33.739; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Sokal R.R., 1981, BIOMETRY PRINCIPLES; Sommer RJ, 1996, CURR BIOL, V6, P52, DOI 10.1016/S0960-9822(02)00421-9; SONERUD GA, 1992, BEHAV ECOL SOCIOBIOL, V30, P207, DOI 10.1007/BF00166705; Sudhaus W., 2008, EVOLUTION INSECT PAR; TRENT C, 1983, GENETICS, V104, P619; Vanfleteren JR, 1996, J EXP ZOOL, V274, P93; VINEY M, 2007, STRONGYLOIDES SPP WO, DOI DOI 10.1895/WORMBOOK.1.141.1; Volk J., 1950, Zoologische Jahrbuecher Jena Systematik, V79, P1; VOWELS JJ, 1992, GENETICS, V130, P105; Weller AM, 2010, J PARASITOL, V96, P525, DOI 10.1645/GE-2319.1; Wicks SR, 2000, DEV BIOL, V221, P295, DOI 10.1006/dbio.2000.9686 70 17 18 1 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 7 2011 278 1722 3260 3269 10.1098/rspb.2011.0129 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 824OG WOS:000295210800014 21411455 Bronze, Green Published 2019-02-21 J Castellano, S; Cadeddu, G Castellano, Sergio; Cadeddu, Giorgia Does quality affect growth rate and age at maturity in species with indeterminate growth? EVOLUTIONARY ECOLOGY RESEARCH English Article amphibian; game theory; life-history theory; lifetime reproductive success; mate choice; sexual selection; skeletochronology SEXUAL SIZE DIMORPHISM; LIFE-HISTORY EVOLUTION; BODY-SIZE; RANA-TEMPORARIA; NATURAL-SELECTION; BUFO-VIRIDIS; ALLOCATION; PLASTICITY; TREEFROG; TRAITS Background: Life-history theory uses optimality models to predict among-population variation in age and size at first reproduction. To predict within-population variation in these traits, however, models should take into account the frequency-dependent effects of life-history strategies. Hypotheses: Growth rate costs that differ between individuals according to their quality are responsible for variation in life-history traits within a population. Theory incorporating such different costs will predict aspects of age and body size among male Tyrrhenian tree frogs, Hyla sarda (Anura: Hylidae), in a wild population. Mathematical method: Two-player, non-zero-sum game. Key assumptions: Growth is biphasic and decreases after sexual maturity. Males vary in their size and age at first reproduction. Growth imposes different survival costs on higher- and lower-quality males. Males of either higher or lower quality can choose to grow fast or slow, and to reach maturity early or late. Independent of their quality, larger males experience higher mating success. Theoretical predictions: Higher-quality males should grow faster than lower-quality males. Faster-growing males should mature sooner than slower-growing males. Field method: We measured the age and the body size of two groups of reproductive males: males that were first captured at the breeding site in 2007 and recaptured in 2008 (recaptured males), and males that were first captured in 2008 (newly captured males). Result: As predicted, recaptured males were larger than newly captured males of both the 2008 and 2007 age classes. [Castellano, Sergio; Cadeddu, Giorgia] Univ Turin, Dipartimento Biol Anim & Uomo, I-10123 Turin, Italy Castellano, S (reprint author), Univ Turin, Dipartimento Biol Anim & Uomo, Via Accademia Albertina 13, I-10123 Turin, Italy. sergio.castellano@unito.it BERNARDO J, 1994, AM NAT, V143, P14, DOI 10.1086/285594; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brown CR, 1998, EVOLUTION, V52, P1461, DOI 10.1111/j.1558-5646.1998.tb02027.x; Cadeddu G, 2012, J ZOOL, V286, P285, DOI 10.1111/j.1469-7998.2011.00878.x; Castellano S, 1999, J ZOOL, V248, P83, DOI 10.1017/S0952836999005099; Castellano S, 2004, COPEIA, P659, DOI 10.1643/CE-03-182R2; Castellano S, 2011, ETHOL ECOL EVOL, V23, P329, DOI 10.1080/03949370.2011.575801; Castellano S, 2009, ANIM BEHAV, V77, P213, DOI 10.1016/j.anbehav.2008.08.035; Castellano S, 2009, BEHAV ECOL SOCIOBIOL, V63, P1109, DOI 10.1007/s00265-009-0756-z; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; FRANCILLON H, 1985, CR ACAD SCI III-VIE, V300, P327; Friedl TWP, 2005, ANIM BEHAV, V70, P1141, DOI 10.1016/j.anbehav.2005.01.01; GJERDE B, 1989, AQUACULTURE, V80, P25, DOI 10.1016/0044-8486(89)90271-8; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; HOWARD RD, 1978, EVOLUTION, V32, P850, DOI 10.1111/j.1558-5646.1978.tb04639.x; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johnstone Rufus A., 1997, P155; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lardner B, 2003, OECOLOGIA, V137, P541, DOI 10.1007/s00442-003-1390-5; Laugen AT, 2005, GENET RES, V86, P161, DOI 10.1017/S0016672305007810; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Laurila A, 2008, ECOLOGY, V89, P1399, DOI 10.1890/07-1521.1; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McElligott AG, 2001, BEHAV ECOL SOCIOBIOL, V49, P266, DOI 10.1007/s002650000293; Miller BLW, 2007, J EVOLUTION BIOL, V20, P1554, DOI 10.1111/j.1420-9101.2007.01331.x; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Roff Derek A., 1992; ROGERS KL, 1994, J HERPETOL, V28, P133, DOI 10.2307/1564611; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Rosso A, 2005, EVOL ECOL, V18, P303, DOI 10.1007/s10682-004-0925-5; Scott DE, 2007, OECOLOGIA, V153, P521, DOI 10.1007/s00442-007-0755-6; Stearns S, 1992, EVOLUTION LIFE HIST; Stock M, 2008, MOL PHYLOGENET EVOL, V49, P1019, DOI 10.1016/j.ympev.2008.08.029; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Thomas L.C., 1984, THEORY APPL; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vargas-Salinas F, 2006, AMPHIBIA-REPTILIA, V27, P419, DOI 10.1163/156853806778189936; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965 44 0 0 0 12 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. NOV 2011 13 8 797 812 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 978TS WOS:000306769300003 2019-02-21 J Fontaine, JJ; Arriero, E; Schwabl, H; Martin, TE Fontaine, Joseph J.; Arriero, Elena; Schwabl, Hubert; Martin, Thomas E. NEST PREDATION AND CIRCULATING CORTICOSTERONE LEVELS WITHIN AND AMONG SPECIES CONDOR English Article calendar effect; corticosterone; life history; nest predation; parental care LIFE-HISTORY EVOLUTION; STRESS-RESPONSE; REPRODUCTIVE SUCCESS; ADRENOCORTICAL RESPONSES; PHYSIOLOGICAL STRESS; CLUTCH SIZE; TRADE-OFFS; BIRDS; RISK; FOOD Variation in the risk of predation to offspring can influence the expression of reproductive strategies both within and among species. Appropriate expression of reproductive strategies in environments that differ in predation risk can have clear advantages for fitness. Although adult-predation risk appears to influence glucocorticosteroid levels, leading to changes in behavioral and life-history strategies, the influence of offspring-predation risk on adult glucocorticosteroid levels remains unclear. We compared total baseline corticosteronc concentrations in Gray-headed Juncos (Junco hyemalis dorsalis) nesting on plots with and without experimentally reduced risk of nest predation. Despite differences in risk between treatments, we failed to find differences in total baseline corticosterone concentrations. When we examined corticosterone concentrations across a suite of sympatric species, however, higher risk of nest predation correlated with higher total baseline corticosterone levels. As found previously, total baseline corticosterone was negatively correlated with body condition and positively correlated with date of sampling. However, we also found that corticosterone levels increased seasonally, independent of stage of breeding. Nest predation can alter the expression of birds' reproductive strategies, but our findings suggest that total baseline corticosterone is not the physiological mechanism regulating these responses. [Martin, Thomas E.] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA; [Fontaine, Joseph J.; Arriero, Elena] Univ Montana, Dept Ecosyst & Conservat Sci, Missoula, MT 59812 USA; [Schwabl, Hubert] Washington State Univ, Sch Biol Sci, Pullman, WA 99164 USA Fontaine, JJ (reprint author), Univ Nebraska, US Geol Survey, Nebraska Cooperat Fish & Wildlife Res Unit, Lincoln, NE 68583 USA. jfontaine2@unl.edu Fontaine, Joseph/F-6557-2010; Martin, Thomas/F-6016-2011; Evolution and Conservation Biology, UCM Group/K-9382-2014; Arriero, Elena/J-8224-2016 Fontaine, Joseph/0000-0002-7639-9156; Martin, Thomas/0000-0002-4028-4867; Arriero, Elena/0000-0003-4230-6537 U.S. Geological Survey; Montana Fish, Wildlife and Parks; University of Montana; U.S. Fish and Wildlife Service; Wildlife Management Institute; National Science Foundation [DEB-9527318, DEB-9707598, DEB-9981527, DEB-0543178]; American Ornithologists' Union and Sigma Xi; Spanish Ministry of Education and Science We thank K. Decker, B. Heidinger, A. Chalfoun, D. Emlen, R. Fletcher, J. Maron, D. Reznick, and a multitude of anonymous reviewers for comments and support, and M. Martel, R. Laws, and numerous field assistants for their hard work. We also thank C. Taylor and the Coconino National Forest staff for their support, as well as G. Witmer and the National Wildlife Research Center for the use of their equipment. The Montana Cooperative Wildlife Research Unit is jointly supported by a cooperative agreement of the U.S. Geological Survey; Montana Fish, Wildlife and Parks; the University of Montana; the U.S. Fish and Wildlife Service; and the Wildlife Management Institute. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. government. This work was supported by funding to TEM from the U.S. Geological Survey's Climate Change Research Program and the National Science Foundation (DEB-9527318, DEB-9707598, DEB-9981527 and DEB-0543178), funding to JJF from the American Ornithologists' Union and Sigma Xi, and funding to EA from the Spanish Ministry of Education and Science. Adams NJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P69, DOI 10.1086/423740; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Begon M, 1996, ECOLOGY INDIVIDUALS; BERTHOLD P, 1996, CONTROL BIRD MIGRATI; Biancucci L, 2010, J ANIM ECOL, V79, P1086, DOI 10.1111/j.1365-2656.2010.01720.x; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Breuner CW, 2006, HORM METAB RES, V38, P260, DOI 10.1055/s-2005-925347; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Butler LK, 2009, GEN COMP ENDOCR, V162, P313, DOI 10.1016/j.ygcen.2009.04.008; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P248, DOI 10.1006/gcen.2001.7749; Cyr NE, 2007, GEN COMP ENDOCR, V151, P82, DOI 10.1016/j.ygcen.2006.12.003; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Eriksen MS, 2003, BRIT POULTRY SCI, V44, P690, DOI 10.1080/00071660310001643660; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gwinner E, 1996, IBIS, V138, P47, DOI 10.1111/j.1474-919X.1996.tb04312.x; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hayward LS, 2006, GEN COMP ENDOCR, V146, P144, DOI 10.1016/j.ygcen.2005.10.016; Hayward LS, 2004, GEN COMP ENDOCR, V135, P365, DOI 10.1016/j.ygcen.2003.11.002; HELDINGER BJ, 2006, P ROY SOC LOND B BIO, V273, P2227; HENSLER GL, 1981, WILSON BULL, V93, P42; Holberton RL, 2003, AUK, V120, P1140, DOI 10.1642/0004-8038(2003)120[1140:MTCSRA]2.0.CO;2; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Kitaysky AS, 1999, FUNCT ECOL, V13, P577, DOI 10.1046/j.1365-2435.1999.00352.x; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.1890/0012-9658(1998)079[0656:AMPOCS]2.0.CO;2; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; MAYFIELD HF, 1975, WILSON BULL, V87, P456; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; PIANKA ER, 2000, EVOLUTIONARY ECOLOGY; Raouf SA, 2006, ANIM BEHAV, V71, P39, DOI 10.1016/j.anbehav.2005.03.027; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2005, COMP BIOCHEM PHYS A, V140, P73, DOI 10.1016/j.cbpb.2004.11.004; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubolini D, 2005, HORM BEHAV, V47, P592, DOI 10.1016/j.yhbeh.2005.01.006; Saino N, 2005, J EXP ZOOL PART A, V303A, P998, DOI 10.1002/jez.a.224; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Schoech SJ, 1999, AUK, V116, P64, DOI 10.2307/4089454; Schwabl H, 1995, ZOOL-ANAL COMPLEX SY, V99, P113; Silverin B, 1998, ANIM BEHAV, V55, P1411, DOI 10.1006/anbe.1997.0717; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Styrsky JD, 2004, ANIM BEHAV, V67, P1141, DOI 10.1016/j.anbehav.2003.07.012; Wikelski M, 2006, TRENDS ECOL EVOL, V21, P38, DOI 10.1016/j.tree.2005.10.018; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1995, AM ZOOL, V35, P285; Zanette L, 2003, P ROY SOC B-BIOL SCI, V270, P799, DOI 10.1098/rspb.2002.2311 66 11 11 3 35 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 1938-5129 CONDOR Condor NOV 2011 113 4 825 833 10.1525/cond.2011.110027 9 Ornithology Zoology 862YJ WOS:000298129700013 Green Published 2019-02-21 J Stephenson, NL; van Mantgem, PJ; Bunn, AG; Bruner, H; Harmon, ME; O'Connell, KB; Urban, DL; Franklin, JF Stephenson, Nathan L.; van Mantgem, Phillip J.; Bunn, Andrew G.; Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.; Urban, Dean L.; Franklin, Jerry F. Causes and implications of the correlation between forest productivity and tree mortality rates ECOLOGICAL MONOGRAPHS English Article competition; consumer controls; forest dynamics; functional traits; life-history trade-offs; net primary productivity; permanent sample plots; plant enemies; temperate forest; tree growth; tree mortality; tropical forest LIFE-HISTORY STRATEGIES; BARRO-COLORADO ISLAND; MOIST TROPICAL FOREST; LOWLAND DIPTEROCARP FOREST; WOOD DECOMPOSITION RATES; NET PRIMARY PRODUCTION; FUNCTIONAL TRAITS; OLD-GROWTH; AMAZONIAN FORESTS; INTERSPECIFIC VARIATION At global and regional scales, tree mortality rates are positively correlated with forest net primary productivity (NPP). Yet causes of the correlation are unknown, in spite of potentially profound implications for our understanding of environmental controls of forest structure and dynamics and, more generally, our understanding of broad-scale environmental controls of population dynamics and ecosystem processes. Here we seek to shed light on the causes of geographic patterns in tree mortality rates, and we consider some implications of the positive correlation between mortality rates and NPP. To reach these ends, we present seven hypotheses potentially explaining the correlation, develop an approach to help distinguish among the hypotheses, and apply the approach in a case study comparing a tropical and temperate forest. Based on our case study and literature synthesis, we conclude that no single mechanism controls geographic patterns of tree mortality rates. At least four different mechanisms may be at play, with the dominant mechanisms depending on whether the underlying productivity gradients are caused by climate or soil fertility. Two of the mechanisms are consequences of environmental selection for certain combinations of life-history traits, reflecting trade-offs between growth and defense (along edaphic productivity gradients) and between reproduction and persistence (as manifested in the adult tree stature continuum along climatic and edaphic gradients). The remaining two mechanisms are consequences of environmental influences on the nature and strength of ecological interactions: competition (along edaphic gradients) and pressure from plant enemies (along climatic gradients). For only one of these four mechanisms, competition, can high mortality rates be considered to be a relatively direct consequence of high NPP. The remaining mechanisms force us to adopt a different view of causality, in which tree growth rates and probability of mortality can vary with at least a degree of independence along productivity gradients. In many cases, rather than being a direct cause of high mortality rates, NPP may remain high in spite of high mortality rates. The independent influence of plant enemies and other factors helps explain why forest biomass can show little correlation, or even negative correlation, with forest NPP. [Stephenson, Nathan L.; van Mantgem, Phillip J.] US Geol Survey, Western Ecol Res Ctr, Sequoia Kings Canyon Field Stn, Three Rivers, CA 93271 USA; [Bunn, Andrew G.] Woods Hole Res Ctr, Woods Hole, MA 02543 USA; [Bruner, Howard; Harmon, Mark E.; O'Connell, Kari B.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA; [Urban, Dean L.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA; [Franklin, Jerry F.] Univ Washington, Coll Forest Resources, Seattle, WA 98195 USA Stephenson, NL (reprint author), US Geol Survey, Western Ecol Res Ctr, Sequoia Kings Canyon Field Stn, 47050 Gen Highway Unit 4, Three Rivers, CA 93271 USA. nstephenson@usgs.gov Bunn, Andrew/0000-0001-9027-2162 NSF [DEB-0218088]; Wind River Canopy Crane Program [PNW 08-DG-11261952-488]; USDA Forest Service Pacific Northwest Research Station; U.S. National Park Service; U.S. Geological Survey (USGS); U.S. National Science Foundation; Center for Tropical Forest Science; Smithsonian Tropical Research Institute; John D. and Catherine T. MacArthur Foundation; Mellon Foundation; Celera Foundation We thank Jerome Chave, David Clark, Phyllis Coley, Richard Condit, Adrian Das, Monica Geber, Jon Keeley, Andrew Larson, Egbert Leigh, Jr., David Peterson, Catherine Pfister, Douglas Sheil, Mark Swanson, Steven Voelker, and several anonymous reviewers for helpful discussions or comments on manuscript drafts. Rick Condit kindly supplied information to facilitate analysis of the BCI data. Special thanks are due to Julie Yee for insightful statistical advice, Gody Spycher for substantial contributions to data management and quality control, and Adrian Das for conducting some analyses. We especially offer deep thanks to the hundreds of people who have established and maintained the forest plots and their associated databases. Data from Oregon and Washington were funded through NSF's Long-term Studies Program (DEB-0218088), the Wind River Canopy Crane Program through cooperative agreement PNW 08-DG-11261952-488 with the USDA Forest Service Pacific Northwest Research Station, various awards through the USDA Forest Service's Pacific Northwest Research Station, and the McIntire-Stennis Cooperative Forestry Program. Data from California were funded through a number of awards from the U.S. National Park Service and the U.S. Geological Survey (USGS). The Forest Dynamics Plot at Barro Colorado Island (BCI) has been made possible through 15 U.S. National Science Foundation grants to Stephen P. Hubbell, and generous support from the Center for Tropical Forest Science, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation, the Celera Foundation, and numerous private individuals. The BCI plot is part of the Center for Tropical Forest Science, a global network of large-scale forest plots. This paper is a contribution from the Western Mountain Initiative, a USGS global change research project, and CORFOR, the Cordillera Forest Dynamics Network. Acker SA, 1998, MAN BIOSPH, V21, P93; Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Anderson KJ, 2006, ECOL LETT, V9, P673, DOI 10.1111/j.1461-0248.2006.00914.x; Anten NPR, 2010, AM NAT, V175, P250, DOI 10.1086/649581; Apolinario FE, 2004, FOREST ECOL MANAG, V194, P23, DOI 10.1016/j.foreco.2004.01.052; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; BARBOUR MG, 1977, TERRESTRIAL VEGETATI; Barone JA, 2000, BIOTROPICA, V32, P307, DOI 10.1111/j.1744-7429.2000.tb00474.x; Barone JA, 1998, J ANIM ECOL, V67, P400, DOI 10.1046/j.1365-2656.1998.00197.x; Bauer S, 2004, PLANT ECOL, V170, P135, DOI 10.1023/B:VEGE.0000019041.42440.ea; BEAVER RA, 1979, NATURE, V281, P139, DOI 10.1038/281139a0; Bigler C, 2004, ECOL MODEL, V174, P225, DOI 10.1016/j.ecolmodel.2003.09.025; Bohlman S, 2006, J TROP ECOL, V22, P123, DOI 10.1017/S0266467405003019; BOISVENUE C, 2006, GLOBAL CHANGE BIOL, V12, P1, DOI DOI 10.1111/J.1365-2486.2005.001080.X; Brenes-Arguedas T, 2009, ECOLOGY, V90, P1751, DOI 10.1890/08-1271.1; Brodribb TJ, 2009, PLANT PHYSIOL, V149, P575, DOI 10.1104/pp.108.129783; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BUCHMAN RG, 1983, CAN J FOREST RES, V13, P601, DOI 10.1139/x83-087; Bugmann H, 2001, CLIMATIC CHANGE, V51, P259, DOI 10.1023/A:1012525626267; BULTMAN J D, 1976, Biotropica, V8, P71, DOI 10.2307/2989627; Burns R. M., 1990, USDA FOREST SERVICE, V654; Canham CD, 2006, ECOL APPL, V16, P540, DOI 10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2; CASTELLO JD, 1995, BIOSCIENCE, V45, P16, DOI 10.2307/1312531; Cebrian J, 1999, AM NAT, V154, P449, DOI 10.1086/303244; Chambers JQ, 2000, OECOLOGIA, V122, P380, DOI 10.1007/s004420050044; Chao KJ, 2008, J ECOL, V96, P281, DOI 10.1111/j.1365-2745.2007.01343.x; Chao KJ, 2009, J VEG SCI, V20, P260, DOI 10.1111/j.1654-1103.2009.05755.x; Chave J, 2003, J ECOL, V91, P240, DOI 10.1046/j.1365-2745.2003.00757.x; Chave J, 2009, DRYAD DIGIT REPOS, DOI [10.5061/dryad.234, DOI 10.5061/DRYAD.234]; Chave J, 2008, PLOS BIOL, V6, P455, DOI 10.1371/journal.pbio.0060045; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; CLARK JS, 1990, J ECOL, V78, P275, DOI 10.2307/2261112; Coley P. D., 1991, PLANT ANIMAL INTERAC, P25; COLEY PD, 1985, SCIENCE, V230, P895, DOI 10.1126/science.230.4728.895; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; COLEY PD, 1993, ECOLOGY, V74, P619, DOI 10.2307/1939322; Coley Phyllis D., 1996, P123; Coley Phyllis D., 1996, P337; Condit R, 1996, J VEG SCI, V7, P405, DOI 10.2307/3236284; Condit R, 1999, PHILOS T R SOC B, V354, P1739, DOI 10.1098/rstb.1999.0517; Condit R, 1996, J TROP ECOL, V12, P231, DOI 10.1017/S0266467400009433; CONDIT R, 1995, ECOL MONOGR, V65, P419, DOI 10.2307/2963497; Coomes DA, 2003, ECOL LETT, V6, P980, DOI 10.1046/j.1461-0248.2003.00520.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; Coomes DA, 2009, J ECOL, V97, P705, DOI 10.1111/j.1365-2745.2009.01507.x; Cornwell WK, 2009, GLOBAL CHANGE BIOL, V15, P2431, DOI 10.1111/j.1365-2486.2009.01916.x; DIETZE MC, GLOBAL CHAN IN PRESS; Dobbertin M, 2001, FOREST ECOL MANAG, V141, P271, DOI 10.1016/S0378-1127(00)00335-2; Eid T, 2001, FOREST ECOL MANAG, V154, P69, DOI 10.1016/S0378-1127(00)00634-4; ENDARA MJ, 2011, FUNCT ECOL, V25, P389, DOI DOI 10.1111/J.1365-2435.2010.01803.X; Enquist BJ, 2001, NATURE, V410, P655, DOI 10.1038/35070500; Enquist BJ, 2009, P NATL ACAD SCI USA, V106, P7046, DOI 10.1073/pnas.0812303106; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Ferrell G.T., 1996, SIERRA NEVADA ECOSYS, VII, P1177; FERRY R, 2010, J ECOL, V98, P106; Fine PVA, 2006, ECOLOGY, V87, pS150, DOI 10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2; Fine PVA, 2004, SCIENCE, V305, P663, DOI 10.1126/science.1098982; Franceschi VR, 2005, NEW PHYTOL, V167, P353, DOI 10.1111/j.1469-8137.2005.01436.x; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; FRANKLIN JF, 1973, PNW8 USDA FOR SERV; Frazier MR, 2006, AM NAT, V168, P512, DOI 10.1086/506977; Garcia-Guzman G, 2007, ECOLOGY, V88, P589, DOI 10.1890/05-1174; Gaston KJ, 2008, J BIOGEOGR, V35, P483, DOI 10.1111/j.1365-2699.2007.01772.x; GENTRY AH, 1987, BIOTROPICA, V19, P216, DOI 10.2307/2388339; Gilbert B, 2006, ECOLOGY, V87, P1281, DOI 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2; Gilbert Gregory S., 2005, P141, DOI 10.1017/CBO9780511541971.007; GILBERT GS, 1994, OECOLOGIA, V98, P100, DOI 10.1007/BF00326095; Gilbert GS, 2002, BIODIVERS CONSERV, V11, P947, DOI 10.1023/A:1015896204113; Gillman LN, 2006, ECOLOGY, V87, P1234, DOI 10.1890/0012-9658(2006)87[1234:TIOPOT]2.0.CO;2; Givnish TJ, 1999, J ECOL, V87, P193, DOI 10.1046/j.1365-2745.1999.00333.x; Goldberg DE, 1999, ECOLOGY, V80, P1118, DOI 10.2307/177059; Gonzalez G, 2008, AMBIO, V37, P588, DOI 10.1579/0044-7447-37.7.588; Gonzalez JGA, 2004, ANN FOREST SCI, V61, P439, DOI 10.1051/forest:2004037; Grime J. P., 2001, PLANT STRATEGIES VEG; Guariguata MR, 1996, BIOTROPICA, V28, P23, DOI 10.2307/2388768; Hacke UG, 2001, PERSPECT PLANT ECOL, V4, P97, DOI 10.1078/1433-8319-00017; Hallam A, 2006, J TROP ECOL, V22, P41, DOI 10.1017/S0266467405002919; Hansen EM, 2000, ANNU REV PHYTOPATHOL, V38, P515, DOI 10.1146/annurev.phyto.38.1.515; HARMON ME, 1986, ADV ECOL RES, V15, P133, DOI 10.1016/S0065-2504(08)60121-X; Harmon ME, 2004, ECOSYSTEMS, V7, P498, DOI 10.1007/s10021-004-0140-9; Harper J. L., 1977, POPULATION BIOL PLAN; Hawkins AE, 2011, CAN J FOREST RES, V41, P1256, DOI [10.1139/x11-053, 10.1139/X11-053]; HERAULT B, 2011, OECOLOGIA, V164, P243; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Hickman J. C., 1993, JEPSON MANUAL HIGHER; Hoffmann WA, 2011, GLOBAL CHANGE BIOL, V17, P2731, DOI 10.1111/j.1365-2486.2011.02401.x; HOWE HF, 1990, J TROP ECOL, V6, P259, DOI 10.1017/S0266467400004508; Hudgins JW, 2003, NEW PHYTOL, V159, P677, DOI 10.1046/j.1469-8137.2003.00839.x; Hudiburg T, 2009, ECOL APPL, V19, P163, DOI 10.1890/07-2006.1; Ingwell LL, 2010, J ECOL, V98, P879, DOI 10.1111/j.1365-2745.2010.01676.x; Issartel J, 2011, OECOLOGIA, V165, P1, DOI 10.1007/s00442-010-1807-x; Johnson DM, 2009, TREE PHYSIOL, V29, P879, DOI 10.1093/treephys/tpp031; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Kalka MB, 2008, SCIENCE, V320, P71, DOI 10.1126/science.1153352; Keane RE, 2001, CLIMATIC CHANGE, V51, P509, DOI 10.1023/A:1012539409854; Keddy P, 1997, OIKOS, V80, P253, DOI 10.2307/3546593; Keeling HC, 2007, GLOBAL ECOL BIOGEOGR, V16, P618, DOI 10.1111/j.1466-8238.2007.00314.x; King DA, 2006, J ECOL, V94, P670, DOI 10.1111/j.1365-2745.2006.01112.x; King DA, 2006, FOREST ECOL MANAG, V223, P152, DOI 10.1016/j.foreco.2005.10.066; King DA, 2006, J TROP ECOL, V22, P11, DOI 10.1017/S0266467405002774; Kobe RK, 1996, ECOL MONOGR, V66, P181, DOI 10.2307/2963474; Korner C, 2009, ANNU REV ECOL EVOL S, V40, P61, DOI 10.1146/annurev.ecolsys.110308.120217; Kohyama T, 2003, J ECOL, V91, P797, DOI 10.1046/j.1365-2745.2003.00810.x; Kohyama T, 2009, J ECOL, V97, P463, DOI 10.1111/j.1365-2745.2009.01490.x; KORNING J, 1994, J TROP ECOL, V10, P151, DOI 10.1017/S026646740000780X; Kueppers LM, 2004, OECOLOGIA, V141, P641, DOI 10.1007/s00442-004-1689-x; LaFrankie JV, 2006, ECOLOGY, V87, P2298, DOI 10.1890/0012-9658(2006)87[2298:CSACOT]2.0.CO;2; LANG GE, 1979, BIOTROPICA, V11, P316, DOI 10.2307/2387928; Larjavaara M, 2010, FUNCT ECOL, V24, P701, DOI 10.1111/j.1365-2435.2010.01698.x; Larson AJ, 2010, CAN J FOREST RES, V40, P2091, DOI 10.1139/X10-149; Susan GWL, 2009, J VEG SCI, V20, P323, DOI 10.1111/j.1654-1103.2009.01044.x; Laurance WF, 2004, NATURE, V428, P171, DOI 10.1038/nature02383; LEAVENGOOD SA, 1998, IDENTIFYING COMMON N; Leigh E. G., 1999, TROPICAL FOREST ECOL; Leigh Egbert G. Jr., 1996, P111; Leigh EG, 2004, TROPICAL FOREST DIVERSITY AND DYNAMISM: FINDINGS FROM A LARGE-SCALE PLOT NETWORK, P451; Lewis SL, 2009, ANNU REV ECOL EVOL S, V40, P529, DOI 10.1146/annurev.ecolsys.39.110707.173345; Lewis SL, 2009, NATURE, V457, P1003, DOI 10.1038/nature07771; Lewis SL, 2004, PHILOS T ROY SOC B, V359, P421, DOI 10.1098/rstb.2003.1431; Lewis SL, 2006, PHILOS T R SOC B, V361, P195, DOI 10.1098/rstb.2005.1711; LIEBERMAN D, 1987, J TROP ECOL, V3, P347, DOI 10.1017/S0266467400002327; Lines ER, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013212; Litton CM, 2007, GLOBAL CHANGE BIOL, V13, P2089, DOI 10.1111/j.1365-2486.2007.01420.x; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Losos EC, 2004, TROPICAL FOREST DIVE; Maherali H, 2004, ECOLOGY, V85, P2184, DOI 10.1890/02-0538; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; MANOKARAN N, 1987, J TROP ECOL, V3, P315, DOI 10.1017/S0266467400002303; Markesteijn L, 2011, PLANT CELL ENVIRON, V34, P137, DOI 10.1111/j.1365-3040.2010.02231.x; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; MATTSON WJ, 1975, SCIENCE, V190, P515, DOI 10.1126/science.190.4214.515; Mayr S, 2006, ECOLOGY, V87, P3175, DOI 10.1890/0012-9658(2006)87[3175:FDICAT]2.0.CO;2; McCarthy John, 2001, Environmental Reviews, V9, P1, DOI 10.1139/er-9-1-1; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; McCulloh K, 2010, NEW PHYTOL, V186, P439, DOI 10.1111/j.1469-8137.2010.03181.x; McDowell N, 2008, NEW PHYTOL, V178, P719, DOI 10.1111/j.1469-8137.2008.02436.x; McDowell NG, 2011, PLANT PHYSIOL, V155, P1051, DOI 10.1104/pp.110.170704; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; MCNAUGHTON SJ, 1989, NATURE, V341, P142, DOI 10.1038/341142a0; Meinzer FC, 2005, FUNCT ECOL, V19, P558, DOI 10.1111/j.1365-2435.2005.01017.x; Meinzer FC, 2009, FUNCT ECOL, V23, P922, DOI 10.1111/j.1365-2435.2009.01577.x; Mencuccini M, 2007, TREE PHYSIOL, V27, P463, DOI 10.1093/treephys/27.3.463; Moles AT, 2011, NEW PHYTOL, V191, P777, DOI 10.1111/j.1469-8137.2011.03732.x; Moles AT, 2011, FUNCT ECOL, V25, P380, DOI 10.1111/j.1365-2435.2010.01814.x; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles AT, 2009, ECOGRAPHY, V32, P78, DOI 10.1111/j.1600-0587.2008.05613.x; Muller-Landau HC, 2006, ECOL LETT, V9, P589, DOI 10.1111/j.1461-0248.2006.00915.x; Muller-Landau HC, 2006, ECOL LETT, V9, P575, DOI 10.1111/j.1461-0248.2006.00904.x; Munne-Bosch S, 2008, TRENDS PLANT SCI, V13, P216, DOI 10.1016/j.tplants.2008.02.002; Nair KSS, 2007, TROPICAL FOREST INSECT PESTS: ECOLOGY, IMPACT, AND MANAGEMENT, P1, DOI 10.1017/CBO9780511542695; Nascimento HEM, 2005, J VEG SCI, V16, P625, DOI 10.1658/1100-9233(2005)016[0625:DALCFA]2.0.CO;2; Newbery DM, 1999, PHILOS T R SOC B, V354, P1763, DOI 10.1098/rstb.1999.0519; Niklas KJ, 2003, ECOL LETT, V6, P631, DOI 10.1046/j.1461-0248.2003.00473.x; Noetzli KP, 2003, ANN FOREST SCI, V60, P773, DOI 10.1051/forest:2003072; NOODEN LD, 1988, SENESCENCE AGING PLA; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Parton W, 2007, SCIENCE, V315, P361, DOI 10.1126/science.1134853; Pedersen BS, 1998, ECOLOGY, V79, P79, DOI 10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2; Penuelas J, 2010, NEW PHYTOL, V187, P564, DOI 10.1111/j.1469-8137.2010.03360.x; Phillips OL, 2004, PHILOS T ROY SOC B, V359, P381, DOI 10.1098/rstb.2003.1438; Phillips OL, 2008, PHILOS T R SOC B, V363, P1819, DOI 10.1098/rstb.2007.0033; Pitman NCA, 2002, ECOLOGY, V83, P3210; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2003, ECOLOGY, V84, P602, DOI 10.1890/0012-9658(2003)084[0602:AORFTS]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Powers JS, 2009, J ECOL, V97, P801, DOI 10.1111/j.1365-2745.2009.01515.x; PUTZ FE, 1984, ECOLOGY, V65, P1713, DOI 10.2307/1937767; Putz Francis E., 1996, P95; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Reich PB, 1999, ECOLOGY, V80, P1955, DOI 10.2307/176671; Reich PB, 2003, INT J PLANT SCI, V164, pS143, DOI 10.1086/374368; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Rosso P, 1998, EUR J FOREST PATHOL, V28, P43; Russo SE, 2010, FUNCT ECOL, V24, P253, DOI 10.1111/j.1365-2435.2009.01670.x; Sala A, 2010, NEW PHYTOL, V186, P274, DOI 10.1111/j.1469-8137.2009.03167.x; Scheidel U, 2003, ACTA OECOL, V24, P275, DOI 10.1016/j.actao.2003.09.004; Schemske DW, 2009, ANNU REV ECOL EVOL S, V40, P245, DOI 10.1146/annurev.ecolsys.39.110707.173430; Schnitzer SA, 2002, TRENDS ECOL EVOL, V17, P223, DOI 10.1016/S0169-5347(02)02491-6; Schnitzer SA, 2005, J ECOL, V93, P1115, DOI 10.1111/j.1365-2745.2005.01056.x; SCHOWALTER TD, 1995, FOREST ECOL MANAG, V78, P115, DOI 10.1016/0378-1127(95)03592-4; SCHOWALTER TD, 1989, CAN J FOREST RES, V19, P318, DOI 10.1139/x89-047; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Shaw DC, 2006, WEST N AM NATURALIST, V66, P473, DOI 10.3398/1527-0904(2006)66[473:SHIAOC]2.0.CO;2; Sheil D, 2003, TRENDS ECOL EVOL, V18, P18, DOI 10.1016/S0169-5347(02)00005-8; SHEIL D, 1995, FOREST ECOL MANAG, V77, P11, DOI 10.1016/0378-1127(95)03583-V; Shen GH, 2001, FOREST SCI, V47, P203; Silver WL, 2001, OECOLOGIA, V129, P407, DOI 10.1007/s004420100740; Silvertown J, 1999, AM NAT, V154, P321, DOI 10.1086/303238; Smithwick EAH, 2002, ECOL APPL, V12, P1303, DOI 10.1890/1051-0761(2002)012[1303:PUBOCS]2.0.CO;2; Sperry JS, 2008, PLANT CELL ENVIRON, V31, P632, DOI 10.1111/j.1365-3040.2007.01765.x; Stamp N, 2003, Q REV BIOL, V78, P23, DOI 10.1086/367580; Stephenson NL, 1998, J BIOGEOGR, V25, P855, DOI 10.1046/j.1365-2699.1998.00233.x; Stephenson NL, 2005, ECOL LETT, V8, P524, DOI 10.1111/j.1461-0248.2005.00746.x; Strauss SY, 2002, TRENDS ECOL EVOL, V17, P278, DOI 10.1016/S0169-5347(02)02483-7; SUDWORTH GB, 1967, FOREST TREES PACIFIC; TERBORGH J, 1985, AM NAT, V126, P760, DOI 10.1086/284452; Thomas SC, 1996, OIKOS, V76, P145, DOI 10.2307/3545756; Turnblom EC, 2000, CAN J FOREST RES, V30, P1410, DOI 10.1139/cjfr-30-9-1410; Turner I. M., 2001, ECOLOGY TREES TROPIC; Uriarte M, 2004, ECOL MONOGR, V74, P591, DOI 10.1890/03-4031; Valladares F, 2008, ANNU REV ECOL EVOL S, V39, P237, DOI 10.1146/annurev.ecolsys.39.110707.173506; Van Bael SA, 2005, OECOLOGIA, V143, P106, DOI 10.1007/s00442-004-1774-1; Van Bael SA, 2004, J TROP ECOL, V20, P625, DOI 10.1017/S0266467404001725; van Dam NM, 2009, ANNU REV ECOL EVOL S, V40, P373, DOI 10.1146/annurev.ecolsys.110308.120314; van Geffen KG, 2010, ECOLOGY, V91, P3686, DOI 10.1890/09-2224.1; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; Van Tuyl S, 2005, FOREST ECOL MANAG, V209, P273, DOI 10.1016/j.foreco.2005.02.002; Vasiliauskas R, 2001, FORESTRY, V74, P319, DOI 10.1093/forestry/74.4.319; WARING RH, 1987, BIOSCIENCE, V37, P569, DOI 10.2307/1310667; WARING RH, 1985, ECOLOGY, V66, P889, DOI 10.2307/1940551; WARING RH, 1979, SCIENCE, V204, P1380, DOI 10.1126/science.204.4400.1380; Weedon JT, 2009, ECOL LETT, V12, P45, DOI 10.1111/j.1461-0248.2008.01259.x; WEINER J, 1985, ECOLOGY, V66, P743, DOI 10.2307/1940535; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; WELDEN CW, 1991, ECOLOGY, V72, P35, DOI 10.2307/1938900; WELLMAN F L, 1968, Ceiba, V14, P17; Werner PA, 2007, J TROP ECOL, V23, P611, DOI 10.1017/S0266467407004476; Westoby M, 2006, TRENDS ECOL EVOL, V21, P261, DOI 10.1016/j.tree.2006.02.004; Wheeler EA, 2007, IAWA J, V28, P229, DOI 10.1163/22941932-90001638; Whittaker R.H, 1975, COMMUNITIES ECOSYSTE; WICKMAN BE, 1963, PSW7 USDA FOR SERV P; WOLCOTT GN, 1950, B U PUERTO RICO SAN, V85; Wong A. H. H., 2004, 0420306 IRGWP; WONG M, 1990, J ECOL, V78, P579, DOI 10.2307/2260885; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Zhao MS, 2010, SCIENCE, V329, P940, DOI [10.1126/science.1192666, 10.1126/science.1189590]; ZIMMERMAN JK, 1994, J ECOL, V82, P911, DOI 10.2307/2261454 237 53 55 2 98 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. NOV 2011 81 4 527 555 10.1890/10-1077.1 29 Ecology Environmental Sciences & Ecology 867XP WOS:000298488400001 Bronze 2019-02-21 J Glazier, DS; Butler, EM; Lombardi, SA; Deptola, TJ; Reese, AJ; Satterthwaite, EV Glazier, Douglas S.; Butler, Eric M.; Lombardi, Sara A.; Deptola, Travis J.; Reese, Andrew J.; Satterthwaite, Erin V. Ecological effects on metabolic scaling: amphipod responses to fish predators in freshwater springs ECOLOGICAL MONOGRAPHS English Article allometric scaling; Amphipoda; body mass and composition; cell size and number; Cottus cognatus; exoskeleton; fish predators; freshwater springs; Gammarus minus; growth; metabolic rate LIFE-HISTORY EVOLUTION; GAMMARUS-MINUS; BODY-SIZE; GENERAL-MODEL; OXYGEN-CONSUMPTION; MECHANISTIC BASIS; ONTOGENIC GROWTH; HYALELLA-AZTECA; 3/4-POWER LAW; COMPOUND EYES Metabolic rate is commonly thought to scale with body mass to the 3/4 power as a result of universal body design constraints. However, recent comparative work has shown that the metabolic-scaling slope may vary significantly among species and higher taxa, apparently in response to different lifestyles and ecological conditions, though the precise mechanisms involved are not well understood. To better understand these underappreciated ecological effects and their causes, it is important to control for extraneous phylogenetic and environmental influences. We demonstrate how this may be done by comparing the ontogenetic scaling of resting metabolic rate among populations of the same species (the amphipod Gammarus minus) in mid-Appalachian freshwater springs with similar, relatively constant environmental conditions, except for the varying presence of the predatory fish Cottus cognatus. We found that populations of G. minus exhibit significantly lower metabolic-scaling slopes (0.54-0.62) in three freshwater springs with C. cognatus than in two springs without these fish (0.76-0.77). We tested multiple hypothetical causes for these population differences. Our results best supported the hypothesis that metabolic scaling was influenced by the effects of size-selective predation on the ontogeny of growth, a metabolically expensive process. The body size scaling of growth is significantly less steep in the populations inhabiting springs with vs. without fish, thus paralleling the interpopulation differences in metabolic scaling. Prematurational growth of G. minus is as high or higher in the fish springs, whereas postmaturational growth is significantly lower, often approaching zero. Similarly, the amphipods in the fish springs tend to have higher metabolic rates at small sizes, but lower metabolic rates at large sizes, compared to those in the fishless springs. Our results do not support other hypothetical causes of the interpopulation variation in metabolic scaling, including differential scaling of cell size or low-metabolism body components (fat and mineralized exoskeleton), or possible effects of other environmental factors associated with the presence of fish. However, fish-induced population differences in adult behavioral activity may influence metabolic scaling in G. minus, a possibility under current study. We conclude that ecological factors may significantly influence metabolic scaling, contrary to common belief. [Glazier, Douglas S.; Butler, Eric M.; Lombardi, Sara A.; Deptola, Travis J.; Reese, Andrew J.; Satterthwaite, Erin V.] Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA Glazier, DS (reprint author), Juniata Coll, Dept Biol, Huntingdon, PA 16652 USA. glazier@juniata.edu Kresge Foundation; William J. von Liebig Foundation We thank N. W. Pelkey and T. L. Righetti for help with the statistical analyses; J. J. Borrelli, J. Doughty, and M. T. Horne for field and laboratory assistance; R. N. Finn for suggesting that we should examine the allometry of exoskeleton mass; D. Christian, R. D. Morningstar, J. Painter, the Petersburg Borough and the MeadWestvaco Corporation for access to their springs; and two anonymous reviewers for their helpful comments. This research was supported by grants from the Kresge Foundation and William J. von Liebig Foundation awarded to Juniata College. Abjornsson K, 2004, ECOLOGY, V85, P1859, DOI 10.1890/03-0074; Abjornsson Kajsa, 2000, Aquatic Ecology, V34, P379, DOI 10.1023/A:1011442331229; Abjornsson K, 2009, HYDROBIOLOGIA, V635, P215, DOI 10.1007/s10750-009-9914-6; ADAM K, 1983, CLIN SCI, V65, P561, DOI 10.1042/cs0650561; Agutter Paul S, 2004, Theor Biol Med Model, V1, P13, DOI 10.1186/1742-4682-1-13; Agutter PS, 2011, J EXP BIOL, V214, P1055, DOI 10.1242/jeb.054502; ANDERSSON KG, 1986, HYDROBIOLOGIA, V133, P209, DOI 10.1007/BF00005592; Anteau MJ, 2011, HYDROBIOLOGIA, V664, P69, DOI 10.1007/s10750-010-0583-2; Arendt JD, 2000, J EXP ZOOL, V288, P219, DOI 10.1002/1097-010X(20001015)288:3<219::AID-JEZ3>3.0.CO;2-C; Banavar JR, 2010, P NATL ACAD SCI USA, V107, P15816, DOI 10.1073/pnas.1009974107; Banavar JR, 1999, NATURE, V399, P130, DOI 10.1038/20144; BARLOW GW, 1961, BIOL BULL, V121, P209, DOI 10.2307/1539427; BARLOW HB, 1952, J EXP BIOL, V29, P667; Basset A, 1995, HYDROBIOLOGIA, V316, P127, DOI 10.1007/BF00016894; Belia S, 2005, PSYCHOL METHODS, V10, P389, DOI 10.1037/1082-989X.10.4.389; Bokma F, 2004, FUNCT ECOL, V18, P184, DOI 10.1111/j.0269-8463.2004.00817.x; Bollache L, 2006, ANIM BEHAV, V72, P627, DOI 10.1016/j.anbehav.2005.11.020; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BULNHEIM HP, 1979, OECOLOGIA, V44, P80, DOI 10.1007/BF00346402; Capellini I, 2010, ECOLOGY, V91, P2783, DOI 10.1890/09-0817.1; CHAMBERLIN TC, 1965, SCIENCE, V148, P754, DOI 10.1126/science.148.3671.754; Chown SL, 2007, FUNCT ECOL, V21, P282, DOI 10.1111/j.1365-2435.2007.01245.x; Cothran RD, 2004, ANIM BEHAV, V68, P1133, DOI 10.1016/j.anbehav.2003.09.021; CULVER D, 1995, ADAPTATION NATURAL S; Cumming G., 2008, STAT MED, V28, P205, DOI [10.1002/sim.3471, DOI 10.1002/SIM.3471]; Czarnoleski M, 2008, J EXP BIOL, V211, P391, DOI 10.1242/jeb.013169; DAVISON J, 1955, BIOL BULL, V109, P407, DOI 10.2307/1539173; DAVISON J, 1956, BIOL BULL, V111, P264; DeLong JP, 2010, P NATL ACAD SCI USA, V107, P12941, DOI 10.1073/pnas.1007783107; Dennis SR, 2011, P ROY SOC B-BIOL SCI, V278, P1687, DOI 10.1098/rspb.2010.1989; DODDS PS, 2010, PHYS REV LETT, V104, DOI DOI 10.1103/PHYSREVLETT.104.048702.]; ELLIOTT JM, 1975, OECOLOGIA, V19, P195, DOI 10.1007/BF00345305; Elliott JM, 2002, FRESHWATER BIOL, V47, P75, DOI 10.1046/j.1365-2427.2002.00782.x; Enquist BJ, 2007, NATURE, V445, pE9, DOI 10.1038/nature05548; Glazier D. S., 1998, P49; Glazier D. S., 2009, ENCY INLAND WATERS, V1, P734, DOI DOI 10.1016/B978-012370626-3.00259-3; Glazier DS, 2008, P ROY SOC B-BIOL SCI, V275, P1405, DOI 10.1098/rspb.2008.0118; Glazier DS, 2011, INVERTEBR BIOL, V130, P60, DOI 10.1111/j.1744-7410.2010.00220.x; Glazier DS, 2010, BIOL REV, V85, P111, DOI 10.1111/j.1469-185X.2009.00095.x; Glazier DS, 2009, FUNCT ECOL, V23, P963, DOI 10.1111/j.1365-2435.2009.01583.x; Glazier DS, 2009, COMP BIOCHEM PHYS A, V153, P403, DOI 10.1016/j.cbpa.2009.03.020; Glazier DS, 2009, J COMP PHYSIOL B, V179, P821, DOI 10.1007/s00360-009-0363-3; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; Glazier DS, 2006, BIOSCIENCE, V56, P325, DOI 10.1641/0006-3568(2006)56[325:TPLINU]2.0.CO;2; Glazier DS, 1999, ARCH HYDROBIOL, V146, P257; GLAZIER DS, 1987, HYDROBIOLOGIA, V150, P33, DOI 10.1007/BF00006608; Glazier DS, 2000, ECOL LETT, V3, P142, DOI 10.1046/j.1461-0248.2000.00132.x; GLAZIER DS, 1992, FRESHWATER BIOL, V28, P149, DOI 10.1111/j.1365-2427.1992.tb00572.x; Glazier DS, 2000, OECOLOGIA, V122, P335, DOI 10.1007/s004420050039; Glazier DS, 1997, FUNCT ECOL, V11, P126, DOI 10.1046/j.1365-2435.1997.00061.x; GLAZIER DS, 1991, LIMNOL OCEANOGR, V36, P354, DOI 10.4319/lo.1991.36.2.0354; GLAZIER DS, 1992, OECOLOGIA, V90, P540, DOI 10.1007/BF01875448; GLAZIER DS, 2009, ENCY INLAND WATERS, V2, P89; GOOCH JL, 1990, AM MIDL NAT, V124, P93, DOI 10.2307/2426082; GOOCH JL, 1991, MEMOIRS ENTOMOLOGICA, V155, P29; HALLBERG E, 1980, ZOOMORPHOLOGIE, V94, P279, DOI 10.1007/BF00998206; Hawlena D, 2010, AM NAT, V176, P537, DOI 10.1086/656495; Heinze J, 2003, ECOGRAPHY, V26, P349, DOI 10.1034/j.1600-0587.2003.03478.x; Hemmingsen A. M., 1960, REPORTS STENO MEM HO, V13, P1; HOLOMUZKI JR, 1990, FRESHWATER BIOL, V24, P509, DOI 10.1111/j.1365-2427.1990.tb00728.x; Holsinger JR, 1976, FRESHWATER AMPHIPOD; Hoque A. T. M. R., 2010, Marine Ecology, Progress Series, V404, P31, DOI 10.3354/meps08505; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; Hui DF, 2007, J THEOR BIOL, V249, P168, DOI 10.1016/j.jtbi.2007.07.003; Isaac NJB, 2010, ECOL LETT, V13, P728, DOI 10.1111/j.1461-0248.2010.01461.x; Kerkhoff AJ, 2009, J THEOR BIOL, V257, P519, DOI 10.1016/j.jtbi.2008.12.026; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; Kishida O, 2010, POPUL ECOL, V52, P37, DOI 10.1007/s10144-009-0182-0; KLEIBER MAX, 1932, HILGARDIA, V6, P315; Kolokotrones T, 2010, NATURE, V464, P753, DOI 10.1038/nature08920; Kozlowski J, 2003, P NATL ACAD SCI USA, V100, P14080, DOI 10.1073/pnas.2334605100; Kozlowski J, 2010, BIOL LETTERS, V6, P792, DOI 10.1098/rsbl.2010.0288; Kullmann H, 2008, BIOL LETTERS, V4, P458, DOI 10.1098/rsbl.2008.0246; Laundre JW, 2010, OPEN J ECOL, V3, P1, DOI [10.1139/cjz-79-8-1401, DOI 10.2174/1874213001003030001]; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Makarieva AM, 2008, P NATL ACAD SCI USA, V105, P16994, DOI 10.1073/pnas.0802148105; MCFEETERS BJ, 2011, ECOSPHERE, V2, P1; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; NEWMAN RM, 1984, ECOLOGY, V65, P1535, DOI 10.2307/1939133; O'Connor MP, 2007, OIKOS, V116, P1058, DOI 10.1111/j.2006.0030-1299.15534.x; Oakley TH, 2003, INTEGR COMP BIOL, V43, P522, DOI 10.1093/icb/43.4.522; Ohlberger J, 2007, J COMP PHYSIOL B, V177, P905, DOI 10.1007/s00360-007-0189-9; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Peng YH, 2010, FUNCT ECOL, V24, P502, DOI 10.1111/j.1365-2435.2009.01667.x; Preisser EL, 2009, ECOL LETT, V12, P315, DOI 10.1111/j.1461-0248.2009.01290.x; Price CA, 2007, P NATL ACAD SCI USA, V104, P13204, DOI 10.1073/pnas.0702242104; Reich PB, 2006, NATURE, V439, P457, DOI 10.1038/nature04282; Reinhold K, 1999, FUNCT ECOL, V13, P217, DOI 10.1046/j.1365-2435.1999.00300.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Riisgard HU, 1998, ECOL LETT, V1, P71; Sangiorgio F, 2010, HYDROBIOLOGIA, V654, P227, DOI 10.1007/s10750-010-0390-9; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; SERNETZ M, 1989, ENERGY TRANSFORMATIO, P82; Sih A., 1987, P203; Simcic T, 2003, FRESHWATER BIOL, V48, P1093, DOI 10.1046/j.1365-2427.2003.01075.x; Smith RJ, 2009, AM J PHYS ANTHROPOL, V140, P476, DOI 10.1002/ajpa.21090; Smith RW, 1997, PROCEEDINGS OF THE TWENTY-SECOND ANNUAL SAS USERS GROUP INTERNATIONAL CONFERENCE, P1252; Starry O, 1998, INT REV HYDROBIOL, V83, P371, DOI 10.1002/iroh.19980830505; STEVENSON RD, 1995, P ROY SOC B-BIOL SCI, V259, P105, DOI 10.1098/rspb.1995.0016; Stoks R, 2003, EVOLUTION, V57, P574; Strobbe F, 2011, BEHAV ECOL SOCIOBIOL, V65, P241, DOI 10.1007/s00265-010-1032-y; STRONG DR, 1972, ECOLOGY, V53, P1103, DOI 10.2307/1935422; STRONG DR, 1973, ECOLOGY, V54, P1383; SUNARDI T, 2007, AQUATIC ECOLOGY, V41, P111; SUTCLIFFE DW, 1984, FRESHWATER BIOL, V14, P443, DOI 10.1111/j.1365-2427.1984.tb00168.x; Tollrian Ralph, 1999, P177; Vaca HF, 2010, BIOL LETTERS, V6, P136, DOI 10.1098/rsbl.2009.0610; Vamosi SM, 2005, CAN J ZOOL, V83, P894, DOI 10.1139/Z05-063; Van Cauter E, 1998, SLEEP, V21, P553; WALSH PJ, 1981, MAR BIOL, V62, P25, DOI 10.1007/BF00396948; Wellborn GA, 2005, BIOL J LINN SOC, V84, P161, DOI 10.1111/j.1095-8312.2005.00422.x; WELLBORN GA, 1995, AM MIDL NAT, V133, P322, DOI 10.2307/2426397; WELLBORN GA, 1994, J FRESHWATER ECOL, V9, P159, DOI 10.1080/02705060.1994.9664443; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; Wellborn GA, 2008, MOL ECOL, V17, P2927, DOI 10.1111/j.1365-294X.2008.03805.x; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 2005, J EXP BIOL, V208, P1575, DOI 10.1242/jeb.01589; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; White CR, 2007, ECOLOGY, V88, P315, DOI 10.1890/05-1883; White CR, 2006, BIOL LETTERS, V2, P125, DOI 10.1098/rsbl.2005.0378; White CR, 2011, COMP BIOCHEM PHYS A, V158, P346, DOI 10.1016/j.cbpa.2010.10.004; WIESER W, 1994, BIOL REV, V69, P1, DOI 10.1111/j.1469-185X.1994.tb01484.x; Winkelmann C, 2011, FRESHWATER BIOL, V56, P1030, DOI 10.1111/j.1365-2427.2010.02543.x; Wohlfahrt B, 2007, ECOL ENTOMOL, V32, P567, DOI 10.1111/j.1365-2311.2007.00902.x; Wooster DE, 1998, OECOLOGIA, V115, P253, DOI 10.1007/s004420050514 127 24 27 3 45 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9615 1557-7015 ECOL MONOGR Ecol. Monogr. NOV 2011 81 4 599 618 10.1890/11-0264.1 20 Ecology Environmental Sciences & Ecology 867XP WOS:000298488400004 2019-02-21 J Yates, AJ; Van Baalen, M; Antia, R Yates, Andrew J.; Van Baalen, Minus; Antia, Rustom Virus Replication Strategies and the Critical CTL Numbers Required for the Control of Infection PLOS COMPUTATIONAL BIOLOGY English Article SIMIAN IMMUNODEFICIENCY VIRUS; CD8(+) T-CELLS; IN-VIVO; IMMUNE-RESPONSES; TARGET-CELLS; ANTIGEN TRANSPORT; RHESUS MACAQUES; HIV; LYMPHOCYTES; MEMORY Vaccines that elicit protective cytotoxic T lymphocytes (CTL) may improve on or augment those designed primarily to elicit antibody responses. However, we have little basis for estimating the numbers of CTL required for sterilising immunity at an infection site. To address this we begin with a theoretical estimate obtained from measurements of CTL surveillance rates and the growth rate of a virus. We show how this estimate needs to be modified to account for (i) the dynamics of CTL-infected cell conjugates, and (ii) features of the virus lifecycle in infected cells. We show that provided the inoculum size of the virus is low, the dynamics of CTL-infected cell conjugates can be ignored, but knowledge of virus life-histories is required for estimating critical thresholds of CTL densities. We show that accounting for virus replication strategies increases estimates of the minimum density of CTL required for immunity over those obtained with the canonical model of virus dynamics, and demonstrate that this modeling framework allows us to predict and compare the ability of CTL to control viruses with different life history strategies. As an example we predict that lytic viruses are more difficult to control than budding viruses when net reproduction rates and infected cell lifetimes are controlled for. Further, we use data from acute SIV infection in rhesus macaques to calculate a lower bound on the density of CTL that a vaccine must generate to control infection at the entry site. We propose that critical CTL densities can be better estimated either using quantitative models incorporating virus life histories or with in vivo assays using virus-infected cells rather than peptide-pulsed targets. [Yates, Andrew J.] Albert Einstein Coll Med, Dept Microbiol & Immunol, Dept Syst & Computat Biol, Bronx, NY 10467 USA; [Van Baalen, Minus] Univ Paris 06, CNRS, Ecole Normale Super, UMR Ecol & Evolut 7625, Paris, France; [Antia, Rustom] Emory Univ, Dept Biol, Atlanta, GA 30322 USA Yates, AJ (reprint author), Albert Einstein Coll Med, Dept Microbiol & Immunol, Dept Syst & Computat Biol, Bronx, NY 10467 USA. andrew.yates@einstein.yu.edu; rustom.antia@emory.edu van Baalen, Minus/J-9285-2012 National Institutes of Health (NIH) [R01AI093870, R01AI049334] The National Institutes of Health provided support (NIH grants R01AI093870 to Andrew Yates, R01AI049334 to Rustom Antia). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Althaus CL, 2009, J VIROL, V83, P7659, DOI 10.1128/JVI.01799-08; Althaus CL, 2008, PLOS COMPUT BIOL, V4, DOI 10.1371/journal.pcbi.1000103; Asquith B, 2007, P NATL ACAD SCI USA, V104, P6365, DOI 10.1073/pnas.0700666104; Beltman JB, 2007, J EXP MED, V204, P771, DOI 10.1084/jem.20061278; Cushing J. M., 1998, INTRO STRUCTURED POP, V71; Elemans M, 2011, PLOS COMPUT BIOL, V7, DOI 10.1371/journal.pcbi.1001103; Finzi D, 1999, NAT MED, V5, P512; Ganusov VV, 2006, PLOS COMPUT BIOL, V2, P182, DOI 10.1371/journal.pcbi.0020024; Ganusov VV, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015959; Ganusov VV, 2010, VIROLOGY, V405, P193, DOI 10.1016/j.virol.2010.05.029; Ganusov VV, 2008, J VIROL, V82, P11749, DOI 10.1128/JVI.01128-08; Graw F, 2011, P ROY SOC B-BIOL SCI, V278, P3395, DOI 10.1098/rspb.2011.0453; Graw F, 2009, PLOS COMPUT BIOL, V5, DOI 10.1371/journal.pcbi.1000466; Handel A, 2007, TRENDS IMMUNOL, V28, P463, DOI 10.1016/j.it.2007.08.006; Handel A, 2009, J R SOC INTERFACE, V6, P447, DOI 10.1098/rsif.2008.0258; Ho DD, 2002, CELL, V110, P135, DOI 10.1016/S0092-8674(02)00832-2; Klatt NR, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000747; Li QS, 2005, NATURE, V434, P1148, DOI 10.1038/nature03513; Linderman JJ, 2010, J IMMUNOL, V184, P2873, DOI 10.4049/jimmunol.0903117; Mandl JN, 2007, J VIROL, V81, P11982, DOI 10.1128/JVI.00946-07; Matano T, 1998, J VIROL, V72, P164; Mempel TR, 2006, IMMUNITY, V25, P129, DOI 10.1016/j.immuni.2006.04.015; PERELSON AS, 1984, J IMMUNOL, V132, P2190; Perelson AS, 2002, NAT REV IMMUNOL, V2, P28, DOI 10.1038/nri700; Petravic J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015083; Pilyugin SS, 2000, B MATH BIOL, V62, P869, DOI 10.1006/bulm.2000.0181; R Development Core Team, 2011, R LANG ENV STAT COMP; Regoes RR, 2007, P NATL ACAD SCI USA, V104, P1599, DOI 10.1073/pnas.0508830104; Regoes RR, 2004, J VIROL, V78, P4866, DOI 10.1128/JVI.78.9.4866-4875.2004; Reilly C, 2007, AIDS, V21, P163, DOI 10.1097/QAD.0b013e328012565b; Scherer A, 2006, PLOS COMPUT BIOL, V2, P948, DOI 10.1371/journal.pcbi.0020109; Schmidt NW, 2008, P NATL ACAD SCI USA, V105, P14017, DOI 10.1073/pnas.0805452105; Schmitz JE, 1999, SCIENCE, V283, P857, DOI 10.1126/science.283.5403.857; Spira AI, 1996, J EXP MED, V183, P215, DOI 10.1084/jem.183.1.215; Sud D, 2006, J IMMUNOL, V176, P4296, DOI 10.4049/jimmunol.176.7.4296; VALITUTTI S, 1995, NATURE, V375, P148, DOI 10.1038/375148a0; van Baalen CA, 2002, EUR J IMMUNOL, V32, P2644, DOI 10.1002/1521-4141(200209)32:9<2644::AID-IMMU2644>3.0.CO;2-R; Vezys V, 2009, NATURE, V457, P196, DOI 10.1038/nature07486; Wick WD, 2008, STAT MED, V27, P4805, DOI 10.1002/sim.3198; Wick WD, 2005, J VIROL, V79, P13579, DOI 10.1128/JVI.79.21.13579-13586.2005; Wodarz D, 2000, PHILOS T ROY SOC B, V355, P329, DOI 10.1098/rstb.2000.0570; Wodarz D, 2000, PHILOS T ROY SOC B, V355, P1059, DOI 10.1098/rstb.2000.0643; Wong JK, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000748; Yates A, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001301; Zhang ZQ, 1999, SCIENCE, V286, P1353, DOI 10.1126/science.286.5443.1353 45 7 7 0 2 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1553-734X PLOS COMPUT BIOL PLoS Comput. Biol. NOV 2011 7 11 e1002274 10.1371/journal.pcbi.1002274 9 Biochemical Research Methods; Mathematical & Computational Biology Biochemistry & Molecular Biology; Mathematical & Computational Biology 851JG WOS:000297263700024 22125483 DOAJ Gold, Green Published 2019-02-21 J Gonzalez-Voyer, A; Kolm, N Gonzalez-Voyer, A.; Kolm, N. Rates of phenotypic evolution of ecological characters and sexual traits during the Tanganyikan cichlid adaptive radiation JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; habitat; phenotypic evolution; rate of evolution; sexual dimorphism; Tanganyikan cichlid PHYLOGENETIC COMPARATIVE-ANALYSIS; LIFE-HISTORY EVOLUTION; RAPID EVOLUTION; LAKE VICTORIA; MORPHOLOGICAL DIVERSITY; NATURAL-POPULATIONS; SIZE DIMORPHISM; FISH RADIATIONS; COLOR PATTERNS; PARENTAL CARE Theory suggests that sexual traits evolve faster than ecological characters. However, characteristics of a species niche may also influence evolution of sexual traits. Hence, a pending question is whether ecological characters and sexual traits present similar tempo and mode of evolution during periods of rapid ecological divergence, such as adaptive radiation. Here, we use recently developed phylogenetic comparative methods to analyse the temporal dynamics of evolution for ecological and sexual traits in Tanganyikan cichlids. Our results indicate that whereas disparity in ecological characters was concentrated early in the radiation, disparity in sexual traits remained high throughout the radiation. Thus, closely related Tanganyikan cichlids presented higher disparity in sexual traits than ecological characters. Sexual traits were also under stronger selection than ecological characters. In sum, our results suggest that ecological characters and sexual traits present distinct evolutionary patterns, and that sexual traits can evolve faster than ecological characters, even during adaptive radiation. [Gonzalez-Voyer, A.; Kolm, N.] Uppsala Univ, Dept Anim Ecol, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden; [Gonzalez-Voyer, A.] Estn Biol Donana EBD CSIC, Dept Integrat Ecol, Seville, Spain Gonzalez-Voyer, A (reprint author), Uppsala Univ, Dept Anim Ecol, Evolutionary Biol Ctr, Norbyvagen 18D, S-75236 Uppsala, Sweden. alejandro.gonzalez@ebd.csic.es CSIC, EBD Donana/C-4157-2011 CSIC, EBD Donana/0000-0003-4318-6602; Kolm, Niclas/0000-0001-5791-336X Wenner-Grens Foundations; Swedish Research Council; Spanish Ministry of Science and Innovation The work was funded by Wenner-Grens Foundations and Swedish Research Council grants to N. Kolm. A. Gonzalez-Voyer was funded by a Wenner-Grens Foundations post-doctoral stipend and a Juan de la Cierva postdoctoral contract from the Spanish Ministry of Science and Innovation. Heinz S. Buscher, John L. Fitzpatrick, Ola Svensson, Carl Westholm and S. Koblmuller assisted with species ranking. Members of the r-sig-phylo mailing list provided useful answers to questions about data analysis and simulations. Associate Editor A. Caballero and two reviewers provided valuable comments. Albertson RC, 1999, P NATL ACAD SCI USA, V96, P5107, DOI 10.1073/pnas.96.9.5107; Andersson M., 1994, SEXUAL SELECTION; Arnqvist G, 1998, NATURE, V393, P784, DOI 10.1038/31689; Ballentine B, 2006, EVOLUTION, V60, P1936; Barlow G. W., 2000, CICHLID FISHES NATUR; Boake CRB, 2005, BEHAV GENET, V35, P297, DOI 10.1007/s10519-005-3221-4; Bouton N, 2002, BIOL J LINN SOC, V76, P39, DOI 10.1046/j.1095-8312.2002.00046.x; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Chakrabarty P, 2005, COPEIA, P359, DOI 10.1643/CG-04-089R2; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Clabaut C, 2007, EVOLUTION, V61, P560, DOI 10.1111/j.1558-5646.2007.00045.x; Danley PD, 2001, MOL ECOL, V10, P1075, DOI 10.1046/j.1365-294X.2001.01283.x; Darwin C, 1871, DESCENT MAN SELECTIO; DECAPRONA MDC, 1986, J FISH BIOL, V29, P151, DOI 10.1111/j.1095-8649.1986.tb05006.x; Deutsch JC, 1997, BIOL J LINN SOC, V62, P1; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Erlandsson A, 1997, S AFR J SCI, V93, P498; Fisher RA, 1930, GENETICAL THEORY NAT; Fitzpatrick JL, 2009, P NATL ACAD SCI USA, V106, P1128, DOI 10.1073/pnas.0809990106; Foster DJ, 2008, J EVOLUTION BIOL, V21, P263, DOI 10.1111/j.1420-9101.2007.01449.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; GASHAGAZA M M, 1991, Physiology and Ecology Japan, V28, P29; Gavrilets S, 2000, NATURE, V403, P886, DOI 10.1038/35002564; Gavrilets S, 2009, SCIENCE, V323, P732, DOI 10.1126/science.1157966; Genner MJ, 2007, MOL BIOL EVOL, V24, P1269, DOI 10.1093/molbev/msm050; Gomez D, 2004, ECOL LETT, V7, P279, DOI 10.1111/j.1461-0248.2004.00584.x; Gonzalez-Voyer A, 2008, EVOLUTION, V62, P2015, DOI 10.1111/j.1558-5646.2008.00426.x; Gonzalez-Voyer A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-238; Gonzalez-Voyer A, 2009, EVOLUTION, V63, P2266, DOI 10.1111/j.1558-5646.2009.00705.x; Gonzalez-Voyer A, 2009, P ROY SOC B-BIOL SCI, V276, P161, DOI 10.1098/rspb.2008.0979; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Harmon LJ, 2003, SCIENCE, V301, P961, DOI 10.1126/science.1084786; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Harmon LJ, 2010, EVOLUTION, V64, P2385, DOI 10.1111/j.1558-5646.2010.01025.x; Holland B, 1998, EVOLUTION, V52, P1, DOI 10.1111/j.1558-5646.1998.tb05132.x; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Hulsey CD, 2006, EVOLUTION, V60, P2096, DOI 10.1111/j.0014-3820.2006.tb01847.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Koblmuller S, 2008, MOL PHYLOGENET EVOL, V49, P153, DOI 10.1016/j.ympev.2008.05.045; Koblmuller S, 2008, HYDROBIOLOGIA, V615, P5, DOI 10.1007/s10750-008-9552-4; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; Konings A., 2005, BACK NATURE GUIDE TA; LIEM KF, 1973, SYST ZOOL, V22, P425, DOI 10.2307/2412950; Losos JB, 1998, SCIENCE, V279, P2115, DOI 10.1126/science.279.5359.2115; Losos JB, 2002, AM NAT, V160, P147, DOI 10.1086/341557; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; Mabuchi K, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-10; MANLY BFJ, 1997, RANDOMIZATION MONTE; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; Nagl S, 2000, P ROY SOC B-BIOL SCI, V267, P1049, DOI 10.1098/rspb.2000.1109; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Pollen AA, 2007, BRAIN BEHAV EVOLUT, V70, P21, DOI 10.1159/000101067; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Core Development Team, 2009, R LANG ENV STAT COMP; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Salzburger W, 2005, BMC EVOL BIOL, V5, DOI 10.1186/1471-2148-5-17; Salzburger W, 2002, SYST BIOL, V51, P113, DOI 10.1080/106351502753475907; Salzburger W, 2009, MOL ECOL, V18, P169, DOI 10.1111/j.1365-294X.2008.03981.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schwarzer J, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-186; Seehausen O, 1997, SCIENCE, V277, P1808, DOI 10.1126/science.277.5333.1808; Seehausen O, 1999, J EVOLUTION BIOL, V12, P514; Seehausen O, 1999, ECOL LETT, V2, P262; Seehausen O, 2000, ADV ECOL RES, V31, P237, DOI 10.1016/S0065-2504(00)31015-7; Seehausen O, 2008, NATURE, V455, P620, DOI 10.1038/nature07285; Sefc KM, 2009, MOL ECOL, V18, P3508, DOI 10.1111/j.1365-294X.2009.04295.x; Sefc KM, 2008, MOL ECOL, V17, P2531, DOI 10.1111/j.1365-294X.2008.03763.x; Simpson GG., 1953, MAJOR FEATURES EVOLU; Snoeks J, 2000, ADV ECOL RES, V31, P17, DOI 10.1016/S0065-2504(00)31005-4; Stelkens RB, 2010, EVOLUTION, V64, P617, DOI 10.1111/j.1558-5646.2009.00849.x; Takahashi T, 2003, ICHTHYOL RES, V50, P367, DOI 10.1007/s10228-003-0181-7; Tsuboi M., 2011, EVOL ECOL; WESTEBERHARD MJ, 1983, Q REV BIOL, V58, P155, DOI 10.1086/413215; Young KA, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004740 81 16 16 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. NOV 2011 24 11 2378 2388 10.1111/j.1420-9101.2011.02365.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 852CU WOS:000297325600008 21848985 2019-02-21 J Losdat, S; Helfenstein, F; Saladin, V; Richner, H Losdat, S.; Helfenstein, F.; Saladin, V.; Richner, H. Higher in vitro resistance to oxidative stress in extra-pair offspring JOURNAL OF EVOLUTIONARY BIOLOGY English Article extra-pair offspring; fitness benefits; oxidative stress; Parus major DROSOPHILA-MELANOGASTER; GENETIC BENEFITS; LIFE-SPAN; ANTIOXIDANT CAPACITY; FREE-RADICALS; PATERNITY; MECHANISMS; EVOLUTION; BIRDS; SUSCEPTIBILITY Oxidative stress is considered to act as a universal physiological constraint in life-history evolution of animals. This should be of interest for extra-pair paternity behaviour, and we tested here the prediction that offspring arising from extra-pair matings of female great tits show higher resistance to oxidative stress than within-pair offspring. Resistance to oxidative stress, measured as the whole blood resistance to a controlled free-radical attack, was significantly higher for extra-pair offspring as predicted although these were not heavier or in better body condition than within-pair offspring. Since resistance to oxidative stress has been suggested to enhance survival and reproductive rates, extra-pair offspring with superior resistance to oxidative stress, be it through maternal effects or paternal inheritance, may achieve higher fitness and thus provide significant indirect fitness benefits to their mothers. In addition, because oxidative stress affects colour signals and sperm traits, females may also gain fitness benefits by producing sons that are more attractive (sexy-sons hypothesis) and have sperm of superior quality (sexy-sperm hypothesis). Heritability of resistance to oxidative stress as well as maternal effects may both act as proximate mechanisms for the observed result. Disentangling these two mechanisms would require an experimental approach. Future long-term studies should also aim at experimentally testing whether higher resistance to oxidative stress of EP nestlings indeed translates into fitness benefits to females. [Losdat, S.; Helfenstein, F.; Saladin, V.; Richner, H.] Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, CH-3012 Bern, Switzerland Losdat, S (reprint author), Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Baltzerstr 6, CH-3012 Bern, Switzerland. sylvain_losdat@yahoo.fr Richner, Heinz/B-1659-2008; Helfenstein, Fabrice/I-5634-2013 Richner, Heinz/0000-0001-7390-0526; Helfenstein, Fabrice/0000-0001-8412-0461 Swiss National Science Foundation [3100A0-122566] The studies were financially supported by a Swiss National Science Foundation grant (3100A0-122566) to HR. Akcay E, 2007, EVOL ECOL RES, V9, P855; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Benzie IFF, 2000, EUR J NUTR, V39, P53, DOI 10.1007/s003940070030; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Birkhead T. R, 1992, SPERM COMPETITION BI; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; Brzezinska-Slebodzinska E, 2001, ACTA VET HUNG, V49, P413, DOI 10.1556/AVet.49.2001.4.5; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Dreiss AN, 2008, J EVOLUTION BIOL, V21, P1814, DOI 10.1111/j.1420-9101.2008.01578.x; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Esterbauer H, 1996, REV PHYSIOL BIOCH P, V127, P31, DOI 10.1007/BFb0048264; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fossoy F, 2008, EVOLUTION, V62, P145, DOI 10.1111/j.1558-5646.2007.00284.x; Garvin JC, 2006, MOL ECOL, V15, P3833, DOI 10.1111/j.1365-294X.2006.03042.x; Griffith SC, 2007, AM NAT, V169, P274, DOI 10.1086/510601; Halliwell B, 2007, FREE RADICALS BIOL M; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; KELLER L, 1995, ADV STUD BEHAV, V24, P291, DOI 10.1016/S0065-3454(08)60397-6; Kempenaers B, 1997, BEHAV ECOL, V8, P481, DOI 10.1093/beheco/8.5.481; KEMPENAERS B, 2009, CURR BIOL, V19, P364; Khazaeli AA, 2007, MECH AGEING DEV, V128, P486, DOI 10.1016/j.mad.2007.06.005; Kim SY, 2010, J EVOLUTION BIOL, V23, P769, DOI 10.1111/j.1420-9101.2010.01942.x; Kim SY, 2011, EVOL ECOL, V25, P461, DOI 10.1007/s10682-010-9426-x; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Lesgards JF, 2002, ENVIRON HEALTH PERSP, V110, P479, DOI 10.1289/ehp.02110479; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Magrath MJL, 2009, CURR BIOL, V19, P792, DOI 10.1016/j.cub.2009.03.068; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mougeot F, 2010, J EXP BIOL, V213, P400, DOI 10.1242/jeb.037101; Olsson M, 2008, BIOL LETTERS, V4, P186, DOI 10.1098/rsbl.2007.0611; Saladin V, 2003, MOL ECOL NOTES, V3, P520, DOI 10.1046/j.1471-8286.2003.00498.x; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Sies H., 1991, OXIDATIVE STRESS OXI; Sorci G, 2009, PHILOS T R SOC B, V364, P71, DOI 10.1098/rstb.2008.0151; Surai PF, 2002, NATURAL ANTIOXIDANTS; Tremellen K, 2008, HUM REPROD UPDATE, V14, P243, DOI 10.1093/humupd/dmn004; Trivers R, 1972, SEXUAL SELECTION DES, P139; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; Vermeulen CJ, 2005, BIOGERONTOLOGY, V6, P387, DOI 10.1007/s10522-005-4903-2; Wahl RUR, 1998, J CHEM SOC PERK T 2, P2009, DOI 10.1039/a801624k; WEATHERHEAD PJ, 1979, AM NAT, V113, P201, DOI 10.1086/283379; Westneat DF, 2003, ANNU REV ECOL EVOL S, V34, P365, DOI 10.1146/annurev.ecolsys.34.011802.132439; Zou CG, 2001, LIFE SCI, V69, P75, DOI 10.1016/S0024-3205(01)01112-2 50 0 0 0 31 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. NOV 2011 24 11 2525 2530 10.1111/j.1420-9101.2011.02374.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 852CU WOS:000297325600021 21899636 Bronze 2019-02-21 J Leisnham, PT; Towler, L; Juliano, SA Leisnham, P. T.; Towler, L.; Juliano, S. A. Geographic Variation of Photoperiodic Diapause but Not Adult Survival or Reproduction of the Invasive Mosquito Aedes albopictus (Diptera: Culicidae) in North America ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA English Article diapause; life history evolution; survival; fecundity; reproductive investment LA-CROSSE-VIRUS; EGG DIAPAUSE; SIZE; DESICCATION; TEMPERATURE; POPULATIONS; COEXISTENCE; RESISTANCE; EVOLUTION; FECUNDITY Climate differences across latitude can result in seasonal constraints and selection on life-history characters. Because Aedes albopictus (Skuse) invaded North America in the mid-1980s, it has spread across a range of approximate to 14 degrees latitude and populations in the north experience complete adult mortality because of cold winter temperatures that are absent in the south. Life-table experiments were conducted to test for differences in the adult survival and reproductive schedules of Ae. albopictus females from three populations from the northern (Salem, NJ; Springfield, IL; Eureka, MO; approximate to 39 degrees N) and southern (Palm Beach, Palmetto, Tampa, FL; approximate to 27-28 degrees N) extremes of the species distribution in North America. There were consistent differences between northern and southern populations in incidence of photoperiodically-induced egg diapause. Under short daylength, diapause eggs constituted twice the proportion of total viable eggs from northern females (81.9-92.1%) than southern females (35.9-42.7%). There were no consistent differences between northern and southern populations in resource allocation between reproduction and maintenance, reproduction over time, and reproductive investment among offspring, and no apparent trade-offs between diapause incidence with reproduction or longevity. Our results suggest that the main response of North American Ae. albopictus to unfavorable winter climates is via the life history strategy of producing diapausing eggs, rather than quantitative variation in reproduction, and that there are no detectable costs to adult survival. Inherent geographic variation in the expression of diapause, consistent with the latitudinal extremes of A. albopictus, indicates evolutionary loss of diapause response in southern populations because of the invasion of A. albopictus in North America. [Leisnham, P. T.; Towler, L.; Juliano, S. A.] Illinois State Univ, Sch Biol Sci, Behav Ecol Evolut & Systemat Sect, Normal, IL 61761 USA Leisnham, PT (reprint author), Univ Maryland, Dept Environm Sci & Technol, College Pk, MD 20770 USA. leisnham@umd.edu NIAID [R01-(AI)-44793] We thank Deborah O'Donnell, Peter Armbruster, Michelle Tseng, Courtney Janiec, and Ebony Murrell for field collections or help maintaining the experiment, and Kavitha Damal, Phil Lounibos, and Sabine Loew for useful discussion. Anesthetization of mice was done under IACUC Protocol #02-2007. This experiment was funded subcontract to SAJ from NIAID grant R01-(AI)-44793. Armbruster P, 2002, J MED ENTOMOL, V39, P699, DOI 10.1603/0022-2585-39.4.699; Armbruster P, 2006, ANN ENTOMOL SOC AM, V99, P1234, DOI 10.1603/0013-8746(2006)99[1234:GVOLGI]2.0.CO;2; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Birungi J, 2002, ANN ENTOMOL SOC AM, V95, P125, DOI 10.1603/0013-8746(2002)095[0125:GSOAAD]2.0.CO;2; Blackmore MS, 2000, J VECTOR ECOL, V25, P212; Braks MAH, 2006, MED VET ENTOMOL, V20, P53, DOI 10.1111/j.1365-2915.2006.00612.x; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; DETINOVA T, 1962, AGE GROUPING METHODS; Dobson SL, 2001, J MED ENTOMOL, V38, P382, DOI 10.1603/0022-2585-38.3.382; FOCKS DA, 1994, J MED ENTOMOL, V31, P278, DOI 10.1093/jmedent/31.2.278; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gerhardt RR, 2001, EMERG INFECT DIS, V7, P807; Hahn DA, 2007, J INSECT PHYSIOL, V53, P760, DOI 10.1016/j.jinsphys.2007.03.018; HANSON SM, 1995, J MED ENTOMOL, V32, P599, DOI 10.1093/jmedent/32.5.599; HAWLEY WA, 1987, SCIENCE, V236, P1114, DOI 10.1126/science.3576225; Ibanez-Bernal S, 1997, MED VET ENTOMOL, V11, P305, DOI 10.1111/j.1365-2915.1997.tb00413.x; Juliano SA, 2005, ECOL LETT, V8, P558, DOI 10.1111/j.1461-0248.2005.00755.x; Juliano SA, 2002, OECOLOGIA, V130, P458, DOI 10.1007/s004420100811; Kesavaraju B, 2008, OECOLOGIA, V155, P631, DOI 10.1007/s00442-007-0935-4; Leisnham PT, 2008, J MED ENTOMOL, V45, P210, DOI 10.1603/0022-2585(2008)45[210:GVIASA]2.0.CO;2; Leisnham PT, 2009, ECOLOGY, V90, P2405, DOI 10.1890/08-1569.1; Leisnham PT, 2010, OECOLOGIA, V164, P221, DOI 10.1007/s00442-010-1624-2; Lounibos LP, 2008, J AM MOSQUITO CONTR, V24, P11, DOI 10.2987/5656.1; Lounibos LP, 2003, ANN ENTOMOL SOC AM, V96, P512, DOI 10.1603/0013-8746(2003)096[0512:AEOPDI]2.0.CO;2; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; NAWROCKI SJ, 1987, J AM MOSQUITO CONTR, V3, P314; OMEARA GF, 1995, J MED ENTOMOL, V32, P554, DOI 10.1093/jmedent/32.4.554; PUMPUNI CB, 1992, J AM MOSQUITO CONTR, V8, P223; Reznick D. N., 2001, AM NAT, V157, P12; RIOS L, 2004, PUBLICATION EENY, V319; ROFF DA, 2002, LIFE HIST EVOLUTION; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; *SAS I, 2003, SAS US GUID STAT VER; Scheiner S.M, 2001, DESIGN ANAL ECOLOGIC, P99; SHROYER DA, 1983, J MED ENTOMOL, V20, P601, DOI 10.1093/jmedent/20.6.601; SOTA T, 1992, OECOLOGIA, V90, P353, DOI 10.1007/BF00317691; SPRENGER D, 1986, J AM MOSQUITO CONTR, V2, P217; Swanson J, 2000, J MED ENTOMOL, V37, P454, DOI 10.1603/0022-2585(2000)037[0454:OAEOAA]2.0.CO;2; Turell MJ, 2005, J MED ENTOMOL, V42, P57, DOI 10.1603/0022-2585(2005)042[0057:AUOTPO]2.0.CO;2; Urbanski JM, 2010, P ROY SOC B-BIOL SCI, V277, P2683, DOI 10.1098/rspb.2010.0362 40 19 19 0 29 ENTOMOLOGICAL SOC AMER LANHAM 10001 DEREKWOOD LANE, STE 100, LANHAM, MD 20706-4876 USA 0013-8746 ANN ENTOMOL SOC AM Ann. Entomol. Soc. Am. NOV 2011 104 6 1309 1318 10.1603/AN11032 10 Entomology Entomology 849ZJ WOS:000297163900021 22707762 Green Accepted 2019-02-21 J Kerney, R Kerney, Ryan Embryonic Staging Table for a Direct-Developing Salamander, Plethodon cinereus (Plethodontidae) ANATOMICAL RECORD-ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY English Article Plethodontidae; lungless salamanders; direct development; staging table; Plethodon cinereus; embryology FROG ELEUTHERODACTYLUS-COQUI; LIFE-HISTORY EVOLUTION; FINE-STRUCTURE; FAMILY PLETHODONTIDAE; LUNGLESS SALAMANDERS; DIAGNOSTIC STAGES; LIMB DEVELOPMENT; GENE-EXPRESSION; BODY-SIZE; METAMORPHOSIS This work presents a refined staging table for the direct-developing red-backed salamander Plethodon cinereus, which is based on the incomplete staging system of James Norman Dent (J Morphol 1942; 71: 577-601). This common species from eastern North America is a member of the species-rich lungless salamander family Plethodontidae. The staging table presented here covers several stages omitted by Dent and reveals novel developmental features of P. cinereus embryos. These include putative Leydig cells and open gill clefts, which are found in larvae of metamorphosing species but were previously reported as absent in direct-developing Plethodon. Other features found in larvae of metamorphosing salamander species, such as the palatopterygoid bone and lateral line neuromasts, were not observed in this material. The occurrence of larval and metamorphic features in these embryos has direct bearing on the patterns of life history evolution within the plethodontidae family. This study emphasizes the degree to which typically larval structures are retained in this direct-developing species and provides a staging table for further investigations into the development and evolution of plethodontid salamanders. Anat Rec, 294:1796-1808, 2011. (C) 2011 Wiley-Liss, Inc. Dalhousie Univ, Dept Biol, Halifax, NS B3H 4J1, Canada Kerney, R (reprint author), Dalhousie Univ, Dept Biol, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. ryankerney@gmail.com Kerney, Ryan/0000-0002-4740-7735 Alberch P., 1989, Progress in Zoology, V35, P163; Anderson PL, 1943, ANAT REC, V86, P59, DOI 10.1002/ar.1090860105; Bininda-Emonds ORP, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-182; Blackburn David C., 2004, Journal of Morphology, V260, P279; Bordzilovskaya NP, 1989, DEV BIOL AXOLOTL, P201; BRAEKEVELT CR, 1992, HISTOL HISTOPATHOL, V7, P463; BRAEKEVELT CR, 1992, HISTOL HISTOPATHOL, V7, P471; Chippindale PT, 2004, EVOLUTION, V58, P2809; COLLAZO A, 1994, J EXP ZOOL, V268, P239, DOI 10.1002/jez.1402680309; Collazo A, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-6; Crespi EJ, 2004, OECOLOGIA, V138, P306, DOI 10.1007/s00442-003-1410-5; DAWLEY EM, 1989, J MORPHOL, V200, P163, DOI 10.1002/jmor.1052000206; DAWLEY EM, 1988, J MORPHOL, V198, P243, DOI 10.1002/jmor.1051980210; Dempster WT, 1930, J MORPHOL, V50, P71, DOI 10.1002/jmor.1050500104; Dent JN, 1942, J MORPHOL, V71, P577, DOI 10.1002/jmor.1050710307; Duellman W. E., 1994, BIOL AMPHIBIANS; FOX H, 1984, AMPHIBIAN MORPHOGENE; Franssen RA, 2005, J MORPHOL, V265, P87, DOI 10.1002/jmor.10339; Fritzsch B., 1989, P99; GILHEN J, 1984, AMPHIBIANS REPTILES; Glucksohn Salome, 1931, Wilhelm Roux Arch Entwickl Mech Org, V125, P341, DOI 10.1007/BF00576359; Goodale HD, 1911, AM J ANAT, V12, P173, DOI 10.1002/aja.1000120204; Grant MP, 1931, ANAT RECORD, V51, P1, DOI 10.1002/ar.1090510102; Grant MP, 1930, ANAT REC, V45, P1, DOI 10.1002/ar.1090450102; Gunzburger MS, 2003, HERPETOLOGICA, V59, P459, DOI 10.1655/02-82; Hanken J., 2003, KEYWORDS CONCEPTS EV, P97; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; HARA K, 1977, Wilhelm Roux's Archives of Developmental Biology, V181, P89, DOI 10.1007/BF00857270; HARRISON RG, 1969, ORG DEV EMBRYO, P44; JARIAL MS, 1989, J ANAT, V167, P95; Jockusch EL, 1996, INT J DEV BIOL, V40, P911; KELLY DE, 1966, ANAT REC, V154, P685, DOI 10.1002/ar.1091540314; Kerney R, 2007, J MORPHOL, V268, P715, DOI 10.1002/jmor.10545; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2005, EVOLUTION, V59, P2000; LINKE R, 1986, J MORPHOL, V189, P131, DOI 10.1002/jmor.1051890204; LYNN WG, 1947, BIOL BULL, V93, P199; Marks SB, 1998, COPEIA, P637, DOI 10.2307/1447793; Marks SB, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P261; Miller Loye, 1944, COPEIA, V1944, P224, DOI 10.2307/1438678; Montgomery T. H., 1901, Proceedings of the Academy Philadelphia, P503; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; MULLER GB, 1991, ANNU REV ECOL SYST, V22, P229, DOI 10.1146/annurev.ecolsys.22.1.229; Muller H, 2005, ZOOMORPHOLOGY, V124, P171, DOI 10.1007/s00435-005-0005-6; Nakashima K, 2002, CELL, V108, P17, DOI 10.1016/S0092-8674(01)00622-5; NORMAN MF, 1985, ANAT REC, V211, P102, DOI 10.1002/ar.1092110115; Nye HLD, 2003, DEV DYNAM, V226, P555, DOI 10.1002/dvdy.10237; Ohmura H, 1998, DIFFERENTIATION, V63, P237, DOI 10.1046/j.1432-0436.1998.6350237.x; Olsson L, 1996, J MORPHOL, V229, P105, DOI 10.1002/(SICI)1097-4687(199607)229:1<105::AID-JMOR7>3.0.CO;2-2; Oyama J, 1930, ZOOL MAG, V42, P465; Packard MJ, 1996, COMP BIOCHEM PHYS A, V113, P343, DOI 10.1016/0300-9629(95)02074-8; Petranka J. W, 1998, SALAMANDERS US CANAD; PIERSOL WH, 1910, T CAN I, V8, P469; Presnell J. K., 1997, HUMASONS ANIMAL TISS; Ringia AM, 2007, HERPETOLOGICA, V63, P258, DOI 10.1655/0018-0831(2007)63[258:OEDAGO]2.0.CO;2; ROTH G, 1993, BRAIN BEHAV EVOLUT, V42, P137, DOI 10.1159/000114147; Schlosser G, 1999, DEV BIOL, V213, P354, DOI 10.1006/dbio.1999.9404; Sive H.L., 2000, EARLY DEV XENOPUS LA; TAKAYA H, 1972, P JPN ACAD, V48, P422, DOI 10.2183/pjab1945.48.422; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Vieites DR, 2011, MOL PHYLOGENET EVOL, V59, P623, DOI 10.1016/j.ympev.2011.03.012; Vieites DR, 2006, KARSENIA KOREANA; WAKE D. B., 1966, MEMOIRS SO CALIFORNI, V4, P1; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Wake DB, 2009, ANNU REV ECOL EVOL S, V40, P333, DOI 10.1146/annurev.ecolsys.39.110707.173552; WAKE DB, 1993, HERPETOLOGICA, V49, P194; Wake DB, 1996, INT J DEV BIOL, V40, P859; WAKE DB, 1987, AM ZOOL, V27, pA166; Wake DB, 1998, CAN J ZOOL, V76, P2058, DOI 10.1139/cjz-76-11-2058; Watson S, 2000, AMPHIBIA-REPTILIA, V21, P143, DOI 10.1163/156853800507336; Welten MCM, 2005, EVOL DEV, V7, P18, DOI 10.1111/j.1525-142X.2005.05003.x; Wilder IW, 1913, BIOL BULL-US, V24, P251, DOI 10.2307/1536169; Wilder IW, 1913, BIOL BULL-US, V24, P293, DOI 10.2307/1536155; Wilder IW, 1925, MORPHOLOGY AMPHIBIAN; Will U., 1988, P159; Wong CJ, 2005, INT J DEV BIOL, V49, P375, DOI 10.1387/ijdb.041910cw 77 8 9 1 7 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1932-8486 1932-8494 ANAT REC Anat. Rec. NOV 2011 294 11 1796 1808 10.1002/ar.21480 13 Anatomy & Morphology Anatomy & Morphology 848BT WOS:000297022800003 21965144 2019-02-21 J Hoekman, D; Dreyer, J; Jackson, RD; Townsend, PA; Gratton, C Hoekman, David; Dreyer, Jamin; Jackson, Randall D.; Townsend, Philip A.; Gratton, Claudio Lake to land subsidies: Experimental addition of aquatic insects increases terrestrial arthropod densities ECOLOGY English Article arthropod community; Collembola; cross-ecosystem movement; detrital food web; field experiment; heathland; Iceland; lake-to-land subsidy; midges; mites; resource pulse BOTTOM-UP; FOOD WEBS; TOP-DOWN; POPULATION-DYNAMICS; RESOURCE SUBSIDIES; NATURAL ENEMIES; FRESH-WATER; COMMUNITY; RESPONSES; ECOLOGY Aquatic insects are a common and important subsidy to terrestrial systems, yet little is known about how these inputs affect terrestrial food webs, especially around lakes. Myvatn, a lake in northern Iceland, has extraordinary midge (Chironomidae) emergences that result in large inputs of biomass and nutrients to terrestrial arthropod communities. We simulated this lake-to-land resource pulse by collecting midges from Myvatn and spreading their dried carcasses on 1-m(2) plots at a nearby site that receives very little midge deposition. We hypothesized a positive bottom-up response of detritivores that would be transmitted to their predators and would persist into the following year. We sampled the arthropod community once per month for two consecutive summers. Midge addition resulted in significantly different arthropod communities and increased densities of some taxa in both years. Detritivores, specifically Diptera larvae, Collembola, and Acari increased in midge-addition plots, and so did some predators and parasitoids. Arthropod densities were still elevated a year after midge addition, and two years of midge addition further increased the density of higher-order consumers (e.g., Coleoptera and Hymenoptera). Midge addition increased arthropod biomass by 68% after one year and 108% after two years. By manipulating the nutrient pulse delivered by midges we were able to elucidate food web consequences of midge deposition and spatial and temporal dynamics that are difficult to determine based on comparative approaches alone. Resources cross ecosystem boundaries and are assimilated over time because of life-history strategies that connect aquatic and terrestrial food webs and these systems cannot be fully understood in isolation from each other. [Hoekman, David; Gratton, Claudio] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA; [Dreyer, Jamin] Univ Wisconsin, Dept Zool, Madison, WI 53706 USA; [Jackson, Randall D.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA; [Townsend, Philip A.] Univ Wisconsin, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA Hoekman, D (reprint author), Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA. dhoekman@wisc.edu Townsend, Philip/B-5741-2008 Townsend, Philip/0000-0001-7003-8774 National Science Foundation [DEB-0717148] Many thanks to Arni Einarsson and the Myvatn Research Station for facilitating our research in Iceland. Erica Nystrom, Jaclyn Entringer, Kyle Webert, and Heather Sage helped conduct the field experiments and count samples. Tony Ives and Jake Vander Zanden engaged us in stimulating discussions. Thank you to the anonymous reviewers who helped us improve this manuscript. This work was supported by the National Science Foundation DEB-0717148. Anderson DR, 2000, J WILDLIFE MANAGE, V64, P912, DOI 10.2307/3803199; Bartz KK, 2005, ECOSYSTEMS, V8, P529, DOI 10.1007/s10021-005-0064-z; Baxter CV, 2005, FRESHWATER BIOL, V50, P201, DOI 10.1111/j.1365-2427.2004.01328.x; Chen BR, 1999, ECOLOGY, V80, P761, DOI 10.1890/0012-9658(1999)080[0761:BULOPA]2.0.CO;2; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Currie DJ, 2007, J BIOGEOGR, V34, P2009, DOI 10.1111/j.1365-2699.2007.01808.x; Denno RF, 2005, ANN ZOOL FENN, V42, P295; DREYER J, OIKOS IN PRESS; Einarsson A, 2004, AQUAT ECOL, V38, P317, DOI 10.1023/B:AECO.0000032090.72702.a9; Einarsson A, 2002, J ANIM ECOL, V71, P832, DOI 10.1046/j.1365-2656.2002.00648.x; Gratton C, 2003, ECOLOGY, V84, P2692, DOI 10.1890/02-0666; Gratton C, 2003, OECOLOGIA, V134, P487, DOI 10.1007/s00442-002-1137-8; Gratton C, 2008, ECOSYSTEMS, V11, P764, DOI 10.1007/s10021-008-9158-8; Gratton C, 2009, ECOLOGY, V90, P2689, DOI 10.1890/08-1546.1; Henschel JR, 2004, FOOD WEB AT THE LANDSCAPE LEVEL, P189; Hoekman D, 2007, AM MIDL NAT, V157, P52, DOI 10.1674/0003-0031(2007)157[52:TABRIA]2.0.CO;2; Hopkin S. P., 1997, BIOL SPRINGTAILS INS; Huckett H. C., 1987, MANUAL NEARCTIC DIPT, V2, P1099; Johnson N. F., 2004, BORROR DELONGS INTRO; Jonsson M, 2009, ACTA OECOL, V35, P698, DOI 10.1016/j.actao.2009.06.011; Langellotto GA, 2004, OECOLOGIA, V139, P1, DOI 10.1007/s00442-004-1497-3; LINDEGAARD C, 1979, OIKOS, V32, P202, DOI 10.2307/3544228; Lundberg J, 2003, ECOSYSTEMS, V6, P87, DOI 10.1007/s10021-002-0150-4; MacLean Jr SF, 1980, ARCTIC ECOSYSTEM COA, P411; Marczak LB, 2007, ECOLOGY, V88, P140, DOI 10.1890/0012-9658(2007)88[140:MTLHAP]2.0.CO;2; Merritt R. M., 1996, INTRO AQUATIC INSECT; Naiman RJ, 2002, ECOSYSTEMS, V5, P399, DOI 10.1007/s10021-001-0083-3; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; Paetzold A, 2006, FRESHWATER BIOL, V51, P1103, DOI 10.1111/j.1365-2427.2006.01559.x; Paetzold A, 2005, ECOSYSTEMS, V8, P748, DOI 10.1007/s10021-005-0004-y; Polis GA, 1997, ANNU REV ECOL SYST, V28, P289, DOI 10.1146/annurev.ecolsys.28.1.289; POLIS GA, 1995, P NATL ACAD SCI USA, V92, P4382, DOI 10.1073/pnas.92.10.4382; Power ME, 2004, FOOD WEB AT THE LANDSCAPE LEVEL, P387; Richardson JS, 2010, RIVER RES APPL, V26, P55, DOI 10.1002/rra.1283; Sabo JL, 2002, ECOLOGY, V83, P1860, DOI 10.2307/3071770; Spiller DA, 2010, ECOLOGY, V91, P1424, DOI 10.1890/09-0715.1; UNDERWOOD AJ, 1998, EXPT ECOLOGY ISSUES, P249; Walter D. E, 1999, MITES ECOLOGY EVOLUT; Wardle D. A., 2002, COMMUNITIES ECOSYSTE; WHARTON RA, 1997, SPECIAL PUBLICATION, P439; Yang LH, 2006, OECOLOGIA, V147, P522, DOI 10.1007/s00442-005-0276-0; Yang LH, 2010, ECOL MONOGR, V80, P125, DOI 10.1890/08-1996.1 42 43 45 4 80 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 ECOLOGY Ecology NOV 2011 92 11 2063 2072 10.1890/11-0160.1 10 Ecology Environmental Sciences & Ecology 840GB WOS:000296426000008 22164831 2019-02-21 J Thomson, FJ; Moles, AT; Auld, TD; Kingsford, RT Thomson, Fiona J.; Moles, Angela T.; Auld, Tony D.; Kingsford, Richard T. Seed dispersal distance is more strongly correlated with plant height than with seed mass JOURNAL OF ECOLOGY English Article dispersal; dispersal mechanism; dispersal syndrome; long-distance dispersal; maximum dispersal; plant dispersal; plant height; seed mass; seed size WIND; SIZE; EVOLUTION; FOREST; CAPACITY; TRAITS; AUSTRALIA; WORLDWIDE; PATTERNS; ECOLOGY 1. It is often assumed that there is a trade-off between maternal provisioning and dispersal capacity, leading small-seeded species to disperse further than large-seeded species. However, this relationship between dispersal distance and seed mass has only been quantified for species from particular sites or with particular dispersal syndromes. 2. We provided the first large-scale, cross-species quantification of the correlations between dispersal distance and both seed mass and plant height. Seed mass was positively related to mean dispersal distance, with a 100-fold increase in seed mass being associated with a 4.5-fold increase in mean dispersal distance (R(2) = 0.16; n = 210 species; P < 0.001). However, plant height had substantially stronger explanatory power than did seed mass, and we found a 5-fold increase in height was associated with a 4.6-fold increase in mean dispersal distance (R(2) = 0.54; n = 211 species; P < 0.001). 3. Once plant height was accounted for, we found that small-seeded species dispersed further than did large-seeded species (R(2) = 0.54; n = 181 species; slope = -0.130; P < 0.001); however, seed mass only added 2% to the R(2) of the model. Within dispersal syndromes, tall species dispersed further than did short species, while seed mass had little influence on dispersal distance. 4. Synthesis. These findings enhance our understanding of plant life-history strategies and improve our ability to predict which species are best at colonizing new environments. [Thomson, Fiona J.; Kingsford, Richard T.] Univ New S Wales, Australian Wetland & Rivers Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Thomson, Fiona J.; Moles, Angela T.] Univ New S Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Auld, Tony D.] Dept Environm Climate Change & Water, Sydney, NSW 2220, Australia Thomson, FJ (reprint author), Univ New S Wales, Australian Wetland & Rivers Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. fiona.thomson@student.unsw.edu.au Thomson, Fiona/F-7719-2011; Moles, Angela/C-3083-2008 Moles, Angela/0000-0003-2041-7762 Managing for Ecosystem Change in the Greater Blue Mountains World Heritage Area project [LP0774833]; Australian Research Council; New South Wales Department of Environment, Climate Change and Water; Hawkesbury-Nepean Catchment Management Authority; Blue Mountains City Council; New South Wales Department of Primary Industry; Blue MountainsWorld Heritage Institute We thank all the authors whose work contributed to this study and the two anonymous reviewers for their helpful comments. This work was part of the Managing for Ecosystem Change in the Greater Blue Mountains World Heritage Area project (LP0774833), funded by the Australian Research Council and the New South Wales Department of Environment, Climate Change and Water, Hawkesbury-Nepean Catchment Management Authority, Blue Mountains City Council, New South Wales Department of Primary Industry and the Blue MountainsWorld Heritage Institute. Andersen AN, 1998, AUST J ECOL, V23, P483, DOI 10.1111/j.1442-9993.1998.tb00756.x; Beaumont KP, 2009, ACTA OECOL, V35, P429, DOI 10.1016/j.actao.2009.01.005; BEER T, 1977, NEW PHYTOL, V78, P681, DOI 10.1111/j.1469-8137.1977.tb02173.x; Bossuyt B, 2006, LANDSCAPE ECOL, V21, P1195, DOI 10.1007/s10980-006-0016-9; Brach AR, 2006, TAXON, V55, P188, DOI 10.2307/25065540; Bullock JM, 2003, ECOGRAPHY, V26, P692, DOI 10.1034/j.1600-0587.2003.03525.x; Bullock JM, 2000, OECOLOGIA, V124, P506, DOI 10.1007/s004420000344; Cain ML, 1998, ECOL MONOGR, V68, P325, DOI 10.1890/0012-9615(1998)068[0325:SDATHM]2.0.CO;2; CHEW WL, 1989, FLORA AUSTR, V3, P15; Clark CJ, 2005, ECOLOGY, V86, P2684, DOI 10.1890/04-1325; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Gomez C, 1998, J BIOGEOGR, V25, P573, DOI 10.1046/j.1365-2699.1998.2530573.x; GREENE DF, 1993, OIKOS, V67, P69, DOI 10.2307/3545096; GREENE DF, 1986, OECOLOGIA, V68, P629, DOI 10.1007/BF00378783; Hickman J. C., 1993, JEPSON MANUAL HIGHER; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; HUGHES L, 1994, J ECOL, V82, P933, DOI 10.2307/2261456; Hyatt LA, 2003, OIKOS, V103, P590, DOI 10.1034/j.1600-0706.2003.12235.x; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Jenkins DG, 2007, GLOBAL ECOL BIOGEOGR, V16, P415, DOI 10.1111/j.1466-8238.2007.00312.x; KING DA, 1990, FUNCT ECOL, V4, P27, DOI 10.2307/2389648; Kiviniemi K, 1999, OIKOS, V86, P241, DOI 10.2307/3546442; Kleyer M, 2008, J ECOL, V96, P1266, DOI 10.1111/j.1365-2745.2008.01430.x; Levin SA, 2003, ANNU REV ECOL EVOL S, V34, P575, DOI 10.1146/annurev.ecolsys.34.011802.132428; Liu K., 2008, SEED INFORM DATABASE; Manzano P, 2006, FRONT ECOL ENVIRON, V4, P244, DOI 10.1890/1540-9295(2006)004[0244:ELSDVS]2.0.CO;2; Moles AT, 2009, J ECOL, V97, P923, DOI 10.1111/j.1365-2745.2009.01526.x; Moles Angela T., 2008, P217; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moles AT, 2005, P NATL ACAD SCI USA, V102, P10540, DOI 10.1073/pnas.0501473102; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Muller-Landau HC, 2008, J ECOL, V96, P653, DOI 10.1111/j.1365-2745.2008.01399.x; Nathan R, 2006, SCIENCE, V313, P786, DOI 10.1126/science.1124975; Ness JH, 2004, ECOLOGY, V85, P1244, DOI 10.1890/03-0364; Ness JH, 2004, OECOLOGIA, V138, P448, DOI 10.1007/s00442-003-1440-z; Soons MB, 2004, ECOLOGY, V85, P3056, DOI 10.1890/03-0522; Tackenberg O, 2003, ECOL MONOGR, V73, P191, DOI 10.1890/0012-9615(2003)073[0191:AOWDPI]2.0.CO;2; THOMPSON K, 1989, AM NAT, V133, P722, DOI 10.1086/284947; Travis JMJ, 2010, DIVERS DISTRIB, V16, P690, DOI 10.1111/j.1472-4642.2010.00674.x; Vander Wall SB, 2004, TRENDS ECOL EVOL, V19, P155, DOI 10.1016/j.tree.2003.12.004; Venable DL, 2008, ECOLOGY, V89, P2218, DOI 10.1890/07-0386.1; VENABLE DL, 1988, AM NAT, V131, P360, DOI 10.1086/284795; Vittoz P, 2007, BOT HELV, V117, P109, DOI 10.1007/s00035-007-0797-8; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Wenny DG, 2001, EVOL ECOL RES, V3, P51; Will H, 2008, J ECOL, V96, P1011, DOI 10.1111/j.1365-2745.2007.01341.x; WILLSON MF, 1993, VEGETATIO, V107, P107; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Xiao ZS, 2005, ACTA OECOL, V28, P221, DOI 10.1016/j.actao.2005.04.006 51 215 225 14 221 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. NOV 2011 99 6 1299 1307 10.1111/j.1365-2745.2011.01867.x 9 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 840FR WOS:000296425000001 2019-02-21 J Garcia, MB; Dahlgren, JP; Ehrlen, J Garcia, Maria B.; Dahlgren, Johan P.; Ehrlen, Johan No evidence of senescence in a 300-year-old mountain herb JOURNAL OF ECOLOGY English Article ageing; Borderea pyrenaica; demography; integral projection model; life span; longevity; plant development and life-history traits; reproductive value; sex BORDEREA-PYRENAICA DIOSCOREACEAE; NATURAL-SELECTION; AGE; PLANTS; MODEL; POPULATION; REGRESSION; MORTALITY; TRAITS; STAGE 1. Understanding how vital rates and reproductive value change with age is fundamental to demography, life history evolution and population genetics. The universality of organism senescence has been questioned on both theoretical and empirical grounds, and the prevalence and strength of senescence remain a controversial issue. Plants are particularly interesting for studies of senescence since individuals of many species have been reported to reach very high ages. 2. In this study, we examined whether the herb Borderea pyrenaica, known to reach ages of more than 300 years, experiences senescence. We collected detailed demographic information from male and female individuals in two populations over 5 years. An unusual morphological feature in this species enabled us to obtain exact age estimates for each of the individuals at the end of the demographic study. 3. We used restricted cubic regression splines and generalized linear models to determine nonlinear effects of age and size on vital rates. We then incorporated the effects of age and size in integral projection models of demography for determining the relationship between age and reproductive value. As the species is dioecious, we performed analyses separately for males and females and examined also the hypothesis that a larger reproductive effort in females comes at a senescence cost. 4. We found no evidence for senescence. Recorded individuals reached 260 years, but growth and fecundity of female and male individuals did not decrease at high ages, and survival and reproductive value increased with age. The results were qualitatively similar also when accounting for size and among-individual vital rate heterogeneity, with the exception that male flowering probability decreased with age when accounting for size increases. 5. Synthesis. Overall, our results show that performance of both male and female plants of B. pyrenaica may increase rather than decrease at ages up to several centuries, and they support the notion that senescence may be negligible in long-lived modular organisms. This highlights the need to explore mechanisms that enable some species to maintain high reproductive values also at very high ages and to identify the evolutionary reasons why some organisms appear to experience no or negligible senescence. [Dahlgren, Johan P.; Ehrlen, Johan] Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden; [Garcia, Maria B.] Inst Pirena Ecol CSIC, Zaragoza 50080, Spain Ehrlen, J (reprint author), Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden. ehrlen@botan.su.se Ehrlen, Johan/H-6286-2013 Ehrlen, Johan/0000-0001-8539-8967 National Park of Ordesa [018/2008]; Regional Government of Aragon [B4-3200/96/503]; Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS); Swedish Research Council We are grateful to R. Antor, D. Guzman and D. Goni for field assistance, Carlos M. Herrera for technical support during age dating, the National Park of Ordesa (project 018/2008) and the Regional Government of Aragon (LIFE project B4-3200/96/503) for supporting and funding to M.B.G., The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) for funding to J.E. and J.P.D., and The Swedish Research Council to J.E. Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Bond BJ, 2000, TRENDS PLANT SCI, V5, P349, DOI 10.1016/S1360-1385(00)01691-5; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; CLEVELAND WS, 1979, J AM STAT ASSOC, V74, P829, DOI 10.2307/2286407; Dahlgren JP, 2011, ECOLOGY, V92, P1181, DOI 10.1890/i0012-9658-92-5-1187; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ehlers BK, 2004, PLANT ECOL, V174, P71, DOI 10.1023/B:VEGE.0000046060.77491.b9; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Finch C.E, 1990, LONGEVITY SENESCENCE; Fisher RA, 1930, GENETICAL THEORY NAT; GARCIA MB, 1995, INT J PLANT SCI, V156, P236, DOI 10.1086/297246; GARCIA MB, 1995, OECOLOGIA, V101, P59, DOI 10.1007/BF00328901; Garcia MB, 1995, PLANT SYST EVOL, V198, P17, DOI 10.1007/BF00985105; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harper J. L., 1977, POPULATION BIOL PLAN; Harrell Jr FE, 2001, REGRESSION MODELING; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Kaplan HS, 2009, P R SOC B, V276, P1837, DOI 10.1098/rspb.2008.1831; KIRKWOOD TBL, 1990, GENETIC EFFECTS AGIN, V2, P9; Lanner RM, 2001, EXP GERONTOL, V36, P675, DOI 10.1016/S0531-5565(00)00234-5; Lee TCM, 2007, COMPUTATION STAT, V22, P159, DOI 10.1007/s00180-007-0031-6; Low M, 2009, J ANIM ECOL, V78, P761, DOI 10.1111/j.1365-2656.2009.01543.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Munne-Bosch S, 2008, TRENDS PLANT SCI, V13, P216, DOI 10.1016/j.tplants.2008.02.002; Partridge L, 1996, P ROY SOC B-BIOL SCI, V263, P1365, DOI 10.1098/rspb.1996.0200; R Development Core Team, 2009, R LANG ENV STAT COMP; ROACH DA, 1993, GENETICA, V91, P53, DOI 10.1007/BF01435987; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; Steinsaltz D, 2005, ADV APPL MATH, V35, P16, DOI 10.1016/j.aam.2004.09.003; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; WATKINSON AR, 1986, PHILOS T ROY SOC B, V313, P31, DOI 10.1098/rstb.1986.0024; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Young LJ, 1999, J AGRIC BIOL ENVIR S, V4, P258, DOI 10.2307/1400385 36 29 30 1 42 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. NOV 2011 99 6 1424 1430 10.1111/j.1365-2745.2011.01871.x 7 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 840FR WOS:000296425000013 2019-02-21 J Luo, Y; Chen, HYH Luo, Yong; Chen, Han Y. H. Competition, species interaction and ageing control tree mortality in boreal forests JOURNAL OF ECOLOGY English Article asymmetric competition; boosted regression trees; intra-specific interaction; non-equilibrium forests; plant-plant interactions; shade tolerance; size-dependent; species traits; stand crowding; tree ageing BELOW-GROUND COMPETITION; LIFE-HISTORY STRATEGIES; RAIN-FOREST; TROPICAL FORESTS; DENSITY-DEPENDENCE; REGRESSION TREES; SHADE TOLERANCE; GROWTH; SIZE; DIVERSITY 1. Tree mortality has important influences on forest structure and composition, but the mechanisms that cause tree mortality are not well understood. Asymmetric competition is known to be a dominant cause of plant mortality, but this idea has not received much attention in studies of long-lived trees. 2. We hypothesised that while tree mortality is dependent on size relative to neighbours as a result of asymmetric competition, tree mortality of shade-tolerant species varies little with size because of their physiological and morphological adaptations to shaded environments. Furthermore, we hypothesised that tree mortality is higher in more crowded stands because of higher average resource competition, in conspecific stands because of potential negative intra-specific interactions, and in older stands because of the physiological limitations and susceptibility to minor disturbances of large trees. 3. Using data from repeatedly measured permanent sampling plots that covered a wide range of tree sizes, stand developmental stages and stand compositions in boreal forests, we simultaneously tested, by boosted regression tree models, the effects of an individual's relative size, stand crowding, species interaction and ageing on mortality of Pinus banksiana, Populus tremuloides, Betula papyrifera and Picea mariana. 4. Mortality increased strongly with decreasing relative size for all study species, and the size-dependent mortality was stronger for shade-intolerant than for shade-tolerant species. With increasing stand basal area, mortality increased for Pinus banksiana, Populus tremuloides and Picea mariana but decreased for Betula papyrifera. Mortality was higher in stands with more conspecific neighbours for Populus tremuloides, Betula papyrifera and Picea mariana, but was slightly lower for Pinus banksiana. Mortality also increased with stand age for all species. Furthermore, the size-dependent mortality was generally stronger in more crowded stands. 5. Synthesis. Our findings show that tree mortality over a wide range of tree sizes, stand developmental stages and stand compositions in non-equilibrium boreal forests was strongly controlled by competition, but species interactions and ageing were also important mechanisms. Furthermore, the relative importance of these mechanisms to tree mortality differed with the shade tolerance of species. [Luo, Yong; Chen, Han Y. H.] Lakehead Univ, Fac Nat Resources Management, Thunder Bay, ON P7B 5E1, Canada Chen, HYH (reprint author), Lakehead Univ, Fac Nat Resources Management, 955 Oliver Rd, Thunder Bay, ON P7B 5E1, Canada. hchen1@lakeheadu.ca Chen, Han/A-1359-2008 Chen, Han/0000-0001-9477-5541 Natural Sciences and Engineering Research Council of Canada [283336-09]; Ministry of Research and Innovation We gratefully acknowledge John Parton and Karen Zhou for their assistance in accessing the data, and Drs. Jian Wang and Gordon Kayahara for their valuable comments. The work was funded by the Natural Sciences and Engineering Research Council of Canada (Discover Grant 283336-09) and an Ontario Early Researcher Award from the Ministry of Research and Innovation to HC. Brassard BW, 2008, ECOSYSTEMS, V11, P1078, DOI 10.1007/s10021-008-9180-x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BURNS RM, 1990, USDA AGR HDB, V654; Callaway RM, 1995, BOT REV, V61, P306, DOI 10.1007/BF02912621; Canham CD, 1999, OECOLOGIA, V121, P1, DOI 10.1007/s004420050900; Canham CD, 2004, CAN J FOREST RES, V34, P778, DOI 10.1139/X03-232; Chen HYH, 2008, FOREST ECOL MANAG, V255, P3980, DOI 10.1016/j.foreco.2008.03.040; Chen HYH, 2012, GLOBAL ECOL BIOGEOGR, V21, P441, DOI 10.1111/j.1466-8238.2011.00689.x; Chen Han Y. H., 2002, Environmental Reviews, V10, P137, DOI 10.1139/a02-007; Coates KD, 2009, J ECOL, V97, P118, DOI 10.1111/j.1365-2745.2008.01458.x; Comita LS, 2010, SCIENCE, V329, P330, DOI 10.1126/science.1190772; CONNELL JH, 1984, ECOL MONOGR, V54, P141, DOI 10.2307/1942659; Coomes DA, 2007, J ECOL, V95, P1084, DOI 10.1111/j.1365-2745.2007.01280.x; Coomes DA, 2007, J ECOL, V95, P27, DOI 10.1111/j.1365-2745.2006.01179.x; DANELL K, 1985, ECOLOGY, V66, P1867, DOI 10.2307/2937382; Das A, 2008, ECOLOGY, V89, P1744, DOI 10.1890/07-0524.1; De'ath G, 2007, ECOLOGY, V88, P243, DOI 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2; Domec JC, 2008, P NATL ACAD SCI USA, V105, P12069, DOI 10.1073/pnas.0710418105; Dwyer JM, 2010, J VEG SCI, V21, P573, DOI 10.1111/j.1654-1103.2009.01167.x; Elith J, 2008, J ANIM ECOL, V77, P802, DOI 10.1111/j.1365-2656.2008.01390.x; Enquist BJ, 2002, SCIENCE, V295, P1517, DOI 10.1126/science.1066360; Enquist BJ, 2009, P NATL ACAD SCI USA, V106, P7046, DOI 10.1073/pnas.0812303106; *ENV CAN, 2005, CAN CLIM NORM 1971 2; Fenton N, 2005, FOREST ECOL MANAG, V213, P151, DOI 10.1016/j.foreco.2005.03.017; Franklin JF, 2002, FOREST ECOL MANAG, V155, P399, DOI 10.1016/S0378-1127(01)00575-8; FRANKLIN JF, 1987, BIOSCIENCE, V37, P550, DOI 10.2307/1310665; Friedman JH, 2003, STAT MED, V22, P1365, DOI 10.1002/sim.1501; Gonzalez MA, 2010, J ECOL, V98, P137, DOI 10.1111/j.1365-2745.2009.01607.x; Greene DF, 1999, CAN J FOREST RES, V29, P824, DOI 10.1139/cjfr-29-6-824; Guneralp B, 2007, TREE PHYSIOL, V27, P269, DOI 10.1093/treephys/27.2.269; Hart SA, 2008, ECOL MONOGR, V78, P123, DOI 10.1890/06-2140.1; Hastie T., 2008, SPRINGER SERIES STAT; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; KOBE RK, 1995, ECOL APPL, V5, P517, DOI 10.2307/1942040; Kueffer C, 2007, J ECOL, V95, P273, DOI 10.1111/j.1365-2745.2007.01213.x; Kunstler G, 2009, J ECOL, V97, P685, DOI 10.1111/j.1365-2745.2009.01482.x; Larson AJ, 2010, CAN J FOREST RES, V40, P2091, DOI 10.1139/X10-149; Laurance WF, 2004, NATURE, V428, P171, DOI 10.1038/nature02383; Legare S, 2005, PLANT SOIL, V275, P207, DOI 10.1007/s11104-005-1482-6; Leverenz JW, 1996, TREE PHYSIOL, V16, P109; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Lugo AE, 1996, BIOTROPICA, V28, P585, DOI 10.2307/2389099; Lutz JA, 2006, ECOL MONOGR, V76, P257, DOI 10.1890/0012-9615(2006)076[0257:TMDEFD]2.0.CO;2; Mangan SA, 2010, NATURE, V466, P752, DOI 10.1038/nature09273; Muller-Landau HC, 2006, ECOL LETT, V9, P575, DOI 10.1111/j.1461-0248.2006.00904.x; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; PEET RK, 1987, BIOSCIENCE, V37, P586, DOI 10.2307/1310669; Peters HA, 2003, ECOL LETT, V6, P757, DOI 10.1046/j.1461-0248.2003.00492.x; Phillips OL, 2009, SCIENCE, V323, P1344, DOI 10.1126/science.1164033; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Development Core Team, 2009, R LANG ENV STAT COMP; Ridgeway G., 2007, GEN BOOSTED MODELS G; Schnitzer SA, 2005, J ECOL, V93, P1115, DOI 10.1111/j.1365-2745.2005.01056.x; Schwinning S, 1998, OECOLOGIA, V113, P447, DOI 10.1007/s004420050397; Senici D, 2010, ECOSYSTEMS, V13, P1227, DOI 10.1007/s10021-010-9383-9; Taylor AR, 2011, ECOGRAPHY, V34, P208, DOI 10.1111/j.1600-0587.2010.06455.x; Thorpe HC, 2008, ECOL APPL, V18, P1652, DOI 10.1890/07-1697.1; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x 59 48 49 2 71 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. NOV 2011 99 6 1470 1480 10.1111/j.1365-2745.2011.01882.x 11 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 840FR WOS:000296425000018 Bronze 2019-02-21 J Kuan, SH; Lin, YK Kuan, S. -H.; Lin, Y. K. Bigger or faster? Spring and summer tadpole cohorts use different life-history strategies JOURNAL OF ZOOLOGY English Article Fejervarya limnocharis; irrigation; rice field; temperature; temporal divergence ANURAN LARVAL GROWTH; AMPHIBIAN METAMORPHOSIS; RANA-TEMPORARIA; SCAPHIOPUS-COUCHII; DESERT PONDS; BODY-SIZE; TEMPERATURE; FROG; PLASTICITY; POPULATION Temporal variation in environmental conditions is a situation faced by prolonged breeders. Yet, few experimental studies provide evidence that such variation may lead to temporal divergence in life-history strategy. The breeding season of a prolonged breeder, the Indian rice frog Fejervarya limnocharis, is interrupted by a mid-summer drainage between the two rice crops, which separates the breeding population into spring and summer cohorts. We used a common garden experiment to test whether tadpoles of the two cohorts have evolved different metamorphic strategies to cope with different environmental temperatures. In a temperature (low and high) by cohort (spring and summer) factorial experiment, we found both spring and summer tadpoles had greater body growth rates, less weight loss before metamorphosis, and thus potentially higher fitness, when raised under their respective field temperatures. The spring tadpoles responded to low temperature with higher body weight at metamorphosis, while the summer tadpoles did not have such a response. On the other hand, while both spring and summer tadpoles responded to high temperature with accelerated developmental rates, summer tadpoles grew significantly faster than the spring ones. In conclusion, the study shows that spring and summer cohorts of Indian rice frog F. limnocharis use different life-history strategies to obtain higher fitness in their respective thermal environments. [Kuan, S. -H.; Lin, Y. K.] Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, Taipei 10617, Taiwan; [Lin, Y. K.] Natl Taiwan Univ, Dept Life Sci, Taipei 10617, Taiwan Lin, YK (reprint author), Natl Taiwan Univ, Inst Ecol & Evolutionary Biol, Life Sci Bldg 617R,1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan. kirklin@ntu.edu.tw Taiwan National Science Council [NSC95-2621-B-002-004] We are grateful to W.-C. Cheng, C.-H. Hsu and K.-H. Hsu, who helped with field work, and S.-M. Yang and H. Song, who helped take care of tadpoles. We thank the staff members, W.-T. Liang and P.-L. Miao, at the Ankang Branch Farm for their logistic support. We would like to thank all members in Y.K.L.'s research group for the stimulating discussions. Finally, we deeply appreciate the constructive comments from M.-F. Chuang and Y.-C. Kam, S.-M. Lin, K.-Y. Lue, L.-J. Wang and C.-S. Wu on an earlier draft of the paper. Financial support for this research came from the Taiwan National Science Council (NSC95-2621-B-002-004) to Y.K.L. Adolph EF, 1931, BIOL BULL-US, V61, P376, DOI 10.2307/1536954; Alexander P.S., 1979, Journal of Asian Ecology, V1, P68; ALFORD RA, 1988, AM NAT, V131, P91, DOI 10.1086/284775; Altwegg R, 2003, EVOLUTION, V57, P872; Alvarez D, 2002, OECOLOGIA, V131, P186, DOI 10.1007/s00442-002-0876-x; Alvarez D, 2002, FUNCT ECOL, V16, P640, DOI 10.1046/j.1365-2435.2002.00658.x; Atkinson D, 1996, OIKOS, V77, P359, DOI 10.2307/3546078; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Benavides AG, 2005, REV CHIL HIST NAT, V78, P295, DOI 10.4067/S0716-078X2005000200013; BERVEN KA, 1988, COPEIA, P605, DOI 10.2307/1445378; BERVEN KA, 1979, EVOLUTION, V33, P609, DOI 10.1111/j.1558-5646.1979.tb04714.x; BERVEN KA, 1983, AM ZOOL, V23, P85; Blouin MS, 2000, OECOLOGIA, V125, P358, DOI 10.1007/s004420000458; BROWN HA, 1990, GEN COMP ENDOCR, V79, P136, DOI 10.1016/0016-6480(90)90097-6; Castaneda LE, 2006, PHYSIOL BIOCHEM ZOOL, V79, P919, DOI 10.1086/506006; COLLINS JP, 1979, ECOLOGY, V60, P738, DOI 10.2307/1936611; Gosner K. L., 1960, Herpetologica, V16, P183; GUAN SH, 2005, THESIS NATL CHANGHUA; HARKEY GA, 1988, COPEIA, P1001; Harris RN, 1999, TADPOLES, P279; Hetherington T.E., 1988, P339; Lai Su-Ju, 2002, Acta Zoologica Taiwanica, V13, P11; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; LEIPS J, 1994, ECOLOGY, V75, P1345, DOI 10.2307/1937459; Lesbarreres D, 2007, HEREDITY, V99, P41, DOI 10.1038/sj.hdy.6800961; Loman J, 2002, J ZOOL, V258, P115, DOI 10.1017/S0952836902001255; Morand A, 1997, CR ACAD SCI III-VIE, V320, P645, DOI 10.1016/S0764-4469(97)85698-3; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; NEWMAN RA, 1994, COPEIA, P372; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; POUGH FH, 1984, OECOLOGIA, V65, P138, DOI 10.1007/BF00384476; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Rose CS, 2005, TRENDS ECOL EVOL, V20, P129, DOI 10.1016/j.tree.2005.01.005; SIBLY RM, 1994, FUNCT ECOL, V8, P486, DOI 10.2307/2390073; SINSCH U, 1988, OECOLOGIA, V76, P399, DOI 10.1007/BF00377035; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; SMITH DC, 1983, ECOLOGY, V64, P501, DOI 10.2307/1939970; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; Stahlberg F, 2001, J EVOLUTION BIOL, V14, P755, DOI 10.1046/j.1420-9101.2001.00333.x; TRAVIS J, 1984, ECOLOGY, V65, P1155, DOI 10.2307/1938323; Walsh PT, 2008, J ZOOL, V274, P143, DOI 10.1111/j.1469-7998.2007.00367.x; Watkins TB, 2006, PHYSIOL BIOCHEM ZOOL, V79, P140, DOI 10.1086/498182; Wells K.D., 2007, ECOLOGY BEHAV AMPHIB, P559; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305 48 5 5 1 27 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0952-8369 J ZOOL J. Zool. NOV 2011 285 3 165 171 10.1111/j.1469-7998.2011.00836.x 7 Zoology Zoology 848CD WOS:000297024900001 2019-02-21 J Nord, A; Nilsson, JA Nord, Andreas; Nilsson, Jan-Ake Incubation Temperature Affects Growth and Energy Metabolism in Blue Tit Nestlings AMERICAN NATURALIST English Article RMR; egg temperature; embryonic development; epigenetic temperature adaptation; growth trajectories STARLINGS STURNUS-VULGARIS; EMBRYOS GALLUS-DOMESTICUS; LIFE-HISTORY EVOLUTION; FEMALE GREAT TITS; CLUTCH SIZE; EGG TEMPERATURE; CHICKEN EMBRYOS; TREE SWALLOWS; PARUS-MAJOR; HYPOTHERMIC INCUBATION Because the maintenance of proper developmental temperatures during avian incubation is costly to parents, embryos of many species experience pronounced variation in incubation temperature. However, the effects of such temperature variation on nestling development remain relatively unexplored. To investigate this, we artificially incubated wild blue tit (Cyanistes caeruleus L.) clutches at 35.0 degrees, 36.5 degrees, or 38.0 degrees C for two-thirds of the incubation period. We returned clutches to their original nests before hatching and subsequently recorded nestling growth and resting metabolic rate. The length of the incubation period decreased with temperature, whereas hatching success increased. Nestlings from the lowest incubation temperature group had shorter tarsus lengths at 2 weeks of age, but body mass and wing length were not affected by temperature. In addition, nestlings from the lowest temperature group had a significantly higher resting metabolic rate compared with mid- and high-temperature nestlings, which may partly explain observed size differences between the groups. These findings suggest that nest microclimate can influence nestling phenotype, but whether observed differences carry over to later life-history stages remains unknown. [Nord, Andreas; Nilsson, Jan-Ake] Lund Univ, Sect Evolutionary Ecol, Dept Biol, SE-22362 Lund, Sweden Nord, A (reprint author), Lund Univ, Sect Evolutionary Ecol, Dept Biol, Ecol Bldg, SE-22362 Lund, Sweden. andreas.nord@biol.lu.se Swedish Research Council; Royal Physiographic Society; Lund Animal Protection Foundation; Helge Ax:son Johnson Foundation; Langman Cultural Foundation We thank S. Chiriac, B. Hansson, S. Kundisch, M. Ljungqvist, and J. Nilsson for assistance in the field and M. Stjernman for assistance in the field as well as helpful discussions on statistical analyses. Comments from L. Raberg and two anonymous referees improved a previous version of the manuscript. This study was supported by the Swedish Research Council (to J.-A.N.) and the Royal Physiographic Society, the Lund Animal Protection Foundation, the Helge Ax:son Johnson Foundation, and the Langman Cultural Foundation (to A.N.). All experimental protocols comply with national legislation and were approved by the Malmo/Lund Animal Care committee (permit M 94-07). Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Ardia DR, 2010, P ROY SOC B-BIOL SCI, V277, P1881, DOI 10.1098/rspb.2009.2138; Ardia DR, 2009, J ANIM ECOL, V78, P4, DOI 10.1111/j.1365-2656.2008.01453.x; BIEBACH H, 1981, ARDEA, V69, P141; BIEBACH H, 1984, PHYSIOL ZOOL, V57, P26, DOI 10.1086/physzool.57.1.30155963; BIEBACH H, 1979, Journal fuer Ornithologie, V120, P121, DOI 10.1007/BF01642994; Black JL, 2004, J EXP BIOL, V207, P1553, DOI 10.1242/jeb.00910; Black JL, 2004, J EXP BIOL, V207, P1543, DOI 10.1242/jeb.00909; Blouin-Demers G, 2004, CAN J ZOOL, V82, P449, DOI 10.1139/Z04-014; BOOTH DT, 1987, PHYSIOL ZOOL, V60, P437, DOI 10.1086/physzool.60.4.30157905; Broggi J, 2004, J ANIM ECOL, V73, P967, DOI 10.1111/j.0021-8790.2004.00872.x; Bryan SM, 1999, P ROY SOC B-BIOL SCI, V266, P157, DOI 10.1098/rspb.1999.0616; Cresswell W, 2004, BEHAV ECOL, V15, P498, DOI 10.1093/beheco/arh042; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; D'Alba L, 2009, J THERM BIOL, V34, P93, DOI 10.1016/j.jtherbio.2008.11.005; de Heij ME, 2008, J AVIAN BIOL, V39, P121, DOI 10.1111/j.2008.0908-8857.04286.x; de Heij ME, 2007, J EXP BIOL, V210, P2006, DOI 10.1242/jeb.001420; Deeming DC, 2008, J THERM BIOL, V33, P345, DOI 10.1016/j.jtherbio.2008.05.002; DEEMING DC, 1989, J COMP PHYSIOL B, V159, P183, DOI 10.1007/BF00691739; DEEMING DC, 2002, AVIAN INCUBATION BEH, P63; Du WG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015308; Eiby Y, 2008, AUK, V125, P594, DOI 10.1525/auk.2008.07083; Eiby YA, 2009, J COMP PHYSIOL B, V179, P875, DOI 10.1007/s00360-009-0370-4; Engstrand SM, 2002, J AVIAN BIOL, V33, P371, DOI 10.1034/j.1600-048X.2002.02900.x; Feast M, 1998, J ANAT, V193, P383, DOI 10.1046/j.1469-7580.1998.19330383.x; Gavrilov VM, 1985, ACTA INT ORNITHOL C, P421; George G. A. F., 2003, LINEAR REGRESSION AN; Gorman HE, 2004, P ROY SOC B-BIOL SCI, V271, P1923, DOI 10.1098/rspb.2004.2799; HAFTORN S, 1988, ORNIS SCAND, V19, P97, DOI 10.2307/3676458; HAFTORN S, 1985, AUK, V102, P470; HAFTORN S, 1983, Fauna Norvegica Series C Cinclus, V6, P22; Hammond CL, 2007, J EXP BIOL, V210, P2667, DOI 10.1242/jeb.005751; Hepp GR, 2006, FUNCT ECOL, V20, P307, DOI 10.1111/j.1365-2435.2006.01108.x; HILL RW, 1972, J APPL PHYSIOL, V33, P261; Jones D. N., 2002, AVIAN INCUBATION BEH, P192; Joseph NS, 2006, POULTRY SCI, V85, P932, DOI 10.1093/ps/85.5.932; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lighton J.R.B., 2008, MEASURING METABOLIC; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lundy H, 1969, FERTILITY HATCHABILI, P143; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moraes VMB, 2004, J THERM BIOL, V29, P55, DOI 10.1016/j.jtherbio.2003.10.006; MORENO J, 1994, J AVIAN BIOL, V25, P125, DOI 10.2307/3677030; Mortola JP, 2006, COMP BIOCHEM PHYS A, V145, P441, DOI 10.1016/j.cbpa.2006.07.020; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Naguib M, 2005, BIOL LETT-UK, V1, P95, DOI 10.1098/rsbl.2004.0277; Nichelmann M, 1999, ORNIS FENNICA, V76, P177; Nichelmann M, 2002, COMP BIOCHEM PHYS A, V131, P751, DOI 10.1016/S1095-6433(02)00013-2; Niizuma Y, 2005, J AVIAN BIOL, V36, P421, DOI 10.1111/j.0908-8857.2005.03252.x; Nilsson J.A, 2006, ACTA ZOOLOGICA SIN S, V52, P662; Nilsson JA, 1996, J ANIM ECOL, V65, P825, DOI 10.2307/5680; Nilsson JF, 2008, J AVIAN BIOL, V39, P553, DOI 10.1111/j.2008.0908-8857.04199.x; Nord A, 2010, FUNCT ECOL, V24, P1031, DOI 10.1111/j.1365-2435.2010.01719.x; Olson CR, 2008, J MORPHOL, V269, P875, DOI 10.1002/jmor.10635; Olson CR, 2006, PHYSIOL BIOCHEM ZOOL, V79, P927, DOI 10.1086/506003; Perez J. H., 2008, BIOL LETT, V4, P4; Reid JM, 2002, BEHAV ECOL SOCIOBIOL, V51, P255, DOI 10.1007/S00265-001-0435-1; Remes V, 2002, EVOLUTION, V56, P2505; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Serrat MA, 2008, P NATL ACAD SCI USA, V105, P19348, DOI 10.1073/pnas.0803319105; Shinder D, 2009, POULTRY SCI, V88, P636, DOI 10.3382/ps.2008-00213; Sokal RR, 1995, BIOMETRY; Strausberger BM, 1998, AUK, V115, P843, DOI 10.2307/4089503; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; TINBERGEN JM, 2002, AVIAN INCUBATION BEH, P299; Tombre IM, 1996, J ANIM ECOL, V65, P325, DOI 10.2307/5878; Tzschentke B, 2008, COMPUT ELECTRON AGR, V64, P61, DOI 10.1016/j.compag.2008.05.003; Tzschentke B, 2007, POULTRY SCI, V86, P1025, DOI 10.1093/ps/86.5.1025; Vleck Carol M., 1996, P417; VLECK CM, 1981, CONDOR, V83, P229, DOI 10.2307/1367313; WEATHERS WW, 1985, COMP BIOCHEM PHYS A, V81, P411, DOI 10.1016/0300-9629(85)90156-2; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; Williams Joseph B., 1996, P375 79 64 64 3 99 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. NOV 2011 178 5 639 651 10.1086/662172 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 843ZB WOS:000296715600010 22030733 2019-02-21 J Pelosse, P; Jervis, MA; Bernstein, C; Desouhant, E Pelosse, Perrine; Jervis, Mark A.; Bernstein, Carlos; Desouhant, Emmanuel Does synovigeny confer reproductive plasticity upon a parasitoid wasp that is faced with variability in habitat richness? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article carbohydrates; egg- and time-limitation; Hymenoptera; Ichneumonidae; lipids; nutrient dynamics; proteins; resource allocation; trade-off; Venturia canescens LIFE-HISTORY EVOLUTION; VENTURIA-CANESCENS; EGG LIMITATION; HYMENOPTERAN PARASITOIDS; NUTRITIONAL RESOURCES; ANAGASTA-KUEHNIELLA; RAPID-DETERMINATION; HOST AVAILABILITY; TIME LIMITATION; ALLOCATION Understanding the factors that constrain the reproductive success of animals and their demographics requires detailed insight into the processes of resource acquisition and allocation in relation to habitat richness. Parasitoid wasp females are valuable models in this respect because their lifetime reproductive success is closely tied to host availability. Parasitoids that manufacture eggs throughout adult life (i.e. 'synovigenic' species) and characteristically acquire nutrients via feeding are predicted to be plastic in their allocation to egg manufacture. Using the synovigenic parasitoid wasp Venturia canescens, we tested whether this prediction holds when females are faced with variation in the availability of both hosts and food. Laboratory experiments were conducted to determine how environmental variation affects parasitoid reproductive success and the lifetime dynamics of egg load and of major nutrient types. Our results, surprisingly, show that female V. canescens lacks a significant degree of reproductive plasticity under our experimental conditions. In particular, allocation of resources to reproduction was high irrespective of host availability. We attribute this lack of flexibility to the low energy content of V. canescens' eggs and to features peculiar to the ecology of this species. Our findings shed new light on the physiological factors that constrain parasitoid lifetime reproductive success. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 621-632. [Pelosse, Perrine; Bernstein, Carlos; Desouhant, Emmanuel] Univ Lyon, F-69000 Lyon, France; [Pelosse, Perrine; Bernstein, Carlos; Desouhant, Emmanuel] Univ Lyon 1, F-69000 Villeurbanne, France; [Pelosse, Perrine; Bernstein, Carlos; Desouhant, Emmanuel] Univ Lyon 1, CNRS, Lab Biometrie & Biol Evolut, UMR5558, F-69622 Villeurbanne, France; [Pelosse, Perrine] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA; [Jervis, Mark A.] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Pelosse, P (reprint author), Univ Lyon, F-69000 Lyon, France. pelosse@uta.edu; emmanuel.desouhant@univ-lyon1.fr DESOUHANT, Emmanuel/A-9537-2013 DESOUHANT, Emmanuel/0000-0003-0317-4463 Amat I, 2006, OECOLOGIA, V148, P153, DOI 10.1007/s00442-005-0332-9; Amat I, 2009, BEHAV ECOL SOCIOBIOL, V63, P563, DOI 10.1007/s00265-008-0691-4; BELING I., 1932, ZEITSCHR ANGEW ENT, V19, P223; Bernstein C, 2002, ECOL ENTOMOL, V27, P415, DOI 10.1046/j.1365-2311.2002.00432.x; Bernstein Carlos, 2008, P129, DOI 10.1002/9780470696200.ch7; Bodin A, 2009, J INSECT PHYSIOL, V55, P643, DOI 10.1016/j.jinsphys.2009.04.003; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Boggs CL, 1997, ECOLOGY, V78, P181; Boggs CL, 1997, ECOLOGY, V78, P192; Casas J, 2005, ECOLOGY, V86, P545, DOI 10.1890/04-0812; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Casas J, 2003, J ANIM ECOL, V72, P691, DOI 10.1046/j.1365-2656.2003.00740.x; Casas J, 2009, ECOLOGY, V90, P537, DOI 10.1890/08-0507.1; CORBET SA, 1971, NATURE, V232, P481, DOI 10.1038/232481b0; COX DR, 1972, J R STAT SOC B, V34, P187; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; Desouhant E, 2010, ECOL RES, V25, P419, DOI 10.1007/s11284-009-0671-9; Dieckhoff C, 2010, ENTOMOL EXP APPL, V136, P254, DOI 10.1111/j.1570-7458.2010.01024.x; Driessen G, 1999, J ANIM ECOL, V68, P445, DOI 10.1046/j.1365-2656.1999.00296.x; Eliopoulos PA, 2003, PHYSIOL ENTOMOL, V28, P268, DOI 10.1111/j.1365-3032.2003.00341.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Giron D, 2002, FUNCT ECOL, V16, P750, DOI 10.1046/j.1365-2435.2002.00679.x; Harvey JA, 1997, ENTOMOL EXP APPL, V84, P93, DOI 10.1046/j.1570-7458.1997.00202.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; Heimpel GE, 1998, BIOL CONTROL, V11, P160, DOI 10.1006/bcon.1997.0587; HEIMPEL GE, 2005, PLANT FOOD CARNIVORO, P266; Jervis MA, 2005, TRENDS ECOL EVOL, V20, P585, DOI 10.1016/j.tree.2005.08.015; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; JERVIS MA, 1993, J NAT HIST, V27, P67, DOI 10.1080/00222939300770051; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; LeRalec A, 1995, ENTOMOPHAGA, V40, P87; LEWIS WJ, 1990, NATURE, V348, P635, DOI 10.1038/348635a0; Lucchetta P, 2007, BEHAV ECOL SOCIOBIOL, V61, P1409, DOI 10.1007/s00265-007-0372-8; Mangel M, 1998, EVOL ECOL, V12, P871, DOI 10.1023/A:1006502901441; Metzger M, 2008, ECOL ENTOMOL, V33, P167, DOI 10.1111/j.1365-2311.2007.00953.x; Olson DM, 2000, PHYSIOL ENTOMOL, V25, P17, DOI 10.1046/j.1365-3032.2000.00155.x; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; PELOSSE P, 2008, THESIS U CLAUDE BERN; Pelosse P, 2007, EVOL ECOL, V21, P669, DOI 10.1007/s10682-006-9145-5; Pinheiro J., 2008, NLME LINEAR NONLINEA; Price P.W., 1975, P87; R Development Core Team, 2009, R LANG ENV STAT COMP; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; RiveroLynch AP, 1997, FUNCT ECOL, V11, P184, DOI 10.1046/j.1365-2435.1997.00076.x; Roberts HLS, 2004, J INSECT PHYSIOL, V50, P195, DOI 10.1016/j.jinsphys.2003.11.007; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 2008, AM NAT, V172, P486, DOI 10.1086/591677; SALT G, 1976, ECOL ENTOMOL, V1, P63, DOI 10.1111/j.1365-2311.1976.tb01205.x; Schneider MV, 2002, J EVOLUTION BIOL, V15, P191, DOI 10.1046/j.1420-9101.2002.00394.x; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Sirot E, 1996, BEHAV ECOL, V7, P189, DOI 10.1093/beheco/7.2.189; Stjernholm F, 2005, BIOL J LINN SOC, V86, P363, DOI 10.1111/j.1095-8312.2005.00542.x; Strand Michael R., 2008, P113, DOI 10.1002/9780470696200.ch6; Therneau T, 2009, SURVIVAL SURVIVAL AN; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P299; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302; Visser B, 2008, J INSECT PHYSIOL, V54, P1315, DOI 10.1016/j.jinsphys.2008.07.014; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107; Vogt JT, 2000, J INSECT PHYSIOL, V46, P697, DOI 10.1016/S0022-1910(99)00158-4; Wu ZS, 2007, PHYSIOL ENTOMOL, V32, P143, DOI 10.1111/j.1365-3032.2007.00560.x 70 11 11 0 18 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. NOV 2011 104 3 621 632 10.1111/j.1095-8312.2011.01741.x 12 Evolutionary Biology Evolutionary Biology 843WH WOS:000296706400010 Bronze 2019-02-21 J Gamelon, M; Besnard, A; Gaillard, JM; Servanty, S; Baubet, E; Brandt, S; Gimenez, O Gamelon, Marlene; Besnard, Aurelien; Gaillard, Jean-Michel; Servanty, Sabrina; Baubet, Eric; Brandt, Serge; Gimenez, Olivier HIGH HUNTING PRESSURE SELECTS FOR EARLIER BIRTH DATE: WILD BOAR AS A CASE STUDY EVOLUTION English Article Birth timing; elastogram; exploited populations; population dynamics; selection gradient analyses; Sus scrofa scrofa MARK-RECAPTURE DATA; CLIMATE-CHANGE; EVOLUTIONARY CONSEQUENCES; TEMPORAL VARIATION; POPULATION-GROWTH; NATURAL-SELECTION; SUS-SCROFA; RED DEER; SURVIVAL; REPRODUCTION Exploitation by humans affects the size and structure of populations. This has evolutionary and demographic consequences that have typically being studied independent of one another. We here applied a framework recently developed applying quantitative tools from population ecology and selection gradient analysis to quantify the selection on a quantitative trait-birth date-through its association with multiple fitness components. From the long-term monitoring (22 years) of a wild boar (Sus scrofa scrofa) population subject to markedly increasing hunting pressure, we found that birth dates have advanced by up to 12 days throughout the study period. During the period of low hunting pressure, there was no detectable selection. However, during the period of high hunting pressure, the selection gradient linking breeding probability in the first year of life to birth date was negative, supporting current life-history theory predicting selection for early births to reproduce within the first year of life with increasing adult mortality. [Gamelon, Marlene; Besnard, Aurelien; Gimenez, Olivier] Ctr Ecol Fonct & Evolut, Unite Mixte Rech 5175, F-34293 Montpellier 5, France; [Gamelon, Marlene; Brandt, Serge] Off Natl Chasse & Faune Sauvage, F-59120 Chateauvillain, France; [Gaillard, Jean-Michel] Univ Lyon 1, Lab Biometrie & Biol Evolut, Unite Mixte Rech 5558, F-69622 Villeurbanne, France; [Servanty, Sabrina] USGS Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA; [Servanty, Sabrina] Colorado State Univ, Colorado Cooperat Fish & Wildlife Res Unit, Ft Collins, CO 80523 USA; [Baubet, Eric] CNERA Cervides Sangliers, Off Natl Chasse & Faune Sauvage, F-01330 Montfort, Birieux, France Gamelon, M (reprint author), Ctr Ecol Fonct & Evolut, Unite Mixte Rech 5175, Campus CNRS,1919 Route Mende, F-34293 Montpellier 5, France. marlene.gamelon@univ-lyon1.fr; aurelien.besnard@cefe.cnrs.fr; jean-michel.gaillard@univ-lyon1.fr; sab.servanty@free.fr; eric.baubet@oncfs.gouv.fr; serge.brandt@oncfs.gouv.fr; olivier.gimenez@cefe.cnrs.fr Gimenez, Olivier/G-4281-2010 Gamelon, Marlene/0000-0002-9433-2369 ANR-JCJC [ANR-08-JCJC-0088-01] We are grateful to all those who helped capturing and marking wild boar, as well as those who helped collecting harvested wild boars, particularly P. Van den Bulck and G. Corbeau. We are grateful to the Office National des Forets and to F. Jehle, who allowed us to work on the study area. We thank A. Charmantier, T. Coulson, and one anonymous referee for their helpful comments that markedly improved our article. We warmly thank E. Bean for correcting our English. This work was supported by an ANR-JCJC grant, "Towards Capture-Recapture Mixed Models" (ANR-08-JCJC-0088-01). Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Baubet Eric, 2009, Acta Silvatica & Lignaria Hungarica, V5, P159; Boonstra R, 1998, ECOL MONOGR, V68, P371, DOI 10.1890/0012-9615(1998)068[0371:TIOPIS]2.0.CO;2; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Burnham K. P, 2002, MODEL SELECTION MULT; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Caswell H., 2001, MATRIX POPULATION MO; Choquet R, 2008, CAN J STAT, V36, P43, DOI 10.1002/cjs.5550360106; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Coulson T, 2003, EVOLUTION, V57, P2879; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Davison A. C., 1997, BOOTSTRAP METHODS TH; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Dunn PO, 1999, P ROY SOC B-BIOL SCI, V266, P2487, DOI 10.1098/rspb.1999.0950; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fernandez-Llario P, 2004, EUR J WILDLIFE RES, V50, P13, DOI 10.1007/s10344-003-0028-6; Festa-Bianchet M, 2003, ANIMAL BEHAVIOR AND WILDLIFE CONSERVATION, P191; FESTABIANCHET M, 1988, J MAMMAL, V69, P157, DOI 10.2307/1381764; FESTABIANCHET M, 1988, J ZOOL, V214, P653, DOI 10.1111/j.1469-7998.1988.tb03764.x; Fisher RA, 1930, GENETICAL THEORY NAT; Gaillard J. M., 2003, CASE UNGULATES, P115; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1992, OECOLOGIA, V90, P167, DOI 10.1007/BF00317173; GAILLARD JM, 1993, J MAMMAL, V74, P738, DOI 10.2307/1382296; Gimenez O, 2006, EVOLUTION, V60, P460; Gimenez O, 2008, AM NAT, V172, P441, DOI 10.1086/589520; Gimenez O, 2009, EVOLUTION, V63, P3097, DOI 10.1111/j.1558-5646.2009.00783.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hilton-Taylor C., 2000, IUCN RED LIST THREAT, pxviii; Hine E, 2011, P NATL ACAD SCI USA, V108, P3659, DOI 10.1073/pnas.1011876108; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; Johnson PJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012866; Keane A, 2005, BIOL CONSERV, V126, P216, DOI 10.1016/j.biocon.2005.05.011; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; KREBS CJ, 1995, SCIENCE, V269, P1112, DOI 10.1126/science.269.5227.1112; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lebreton JD, 2005, AUST NZ J STAT, V47, P49, DOI 10.1111/j.1467-842X.2005.00371.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lebreton JD, 2009, ADV ECOL RES, V41, P87, DOI 10.1016/S0065-2504(09)00403-6; Legendre S, 1995, J APPL STAT, V22, P817, DOI 10.1080/02664769524649; Lomas LA, 2007, J WILDLIFE MANAGE, V71, P884, DOI 10.2193/2006-203; Mauget R., 1984, S INT SANGLIER TOULO, V22, P15; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pemberton JM, 2010, PHILOS T R SOC B, V365, P2431, DOI 10.1098/rstb.2010.0108; *R DEV TEAM, 2009, R LANG ENV STAT COMP; RUTBERG AT, 1987, AM NAT, V130, P692, DOI 10.1086/284739; Sadleir R.M.F.S., 1987, P123; Schaub M, 2004, ECOLOGY, V85, P930, DOI 10.1890/03-0012; Servanty S, 2011, J APPL ECOL, V48, P835, DOI 10.1111/j.1365-2664.2011.02017.x; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; SLOBODKIN LAWRENCE B., 1961; Smekens MJ, 2001, ACTA OECOL, V22, P187, DOI 10.1016/S1146-609X(01)01120-1; Toigo C, 2003, OIKOS, V101, P376, DOI 10.1034/j.1600-0706.2003.12073.x; Toigo C, 2008, J WILDLIFE MANAGE, V72, P1532, DOI 10.2193/2007-378; Truve J, 2003, WILDLIFE BIOL, V9, P51; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Williams B. K., 2002, ANAL MANAGEMENT ANIM 67 32 32 1 85 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2011 65 11 3100 3112 10.1111/j.1558-5646.2011.01366.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 843VK WOS:000296702800007 22023578 Bronze 2019-02-21 J Akhmetzhanov, AR; Grognard, F; Mailleret, L Akhmetzhanov, Andrei R.; Grognard, Frederic; Mailleret, Ludovic OPTIMAL LIFE-HISTORY STRATEGIES IN SEASONAL CONSUMER-RESOURCE DYNAMICS EVOLUTION English Article Foraging-reproduction trade-off; individual behavior; population dynamics; semi-discrete model TIME POPULATION-MODELS; PREDATOR-PREY DYNAMICS; INDETERMINATE GROWTH; EVOLUTION; REPRODUCTION; DISCRETE; CYCLES; HOST; PARASITOIDS; ALLOCATION The interplay between individual adaptive life histories and populations dynamics is an important issue in ecology. In this context, we considered a seasonal consumer-resource model with nonoverlapping generations. We focused on the consumers decision-making process through which they maximize their reproductive output via a differential investment into foraging for resources or reproducing. Our model takes a semi-discrete form, and is composed of a continuous time within-season part, similar to a dynamic model of energy allocation, and of a discrete time part, depicting the between seasons reproduction and mortality processes. We showed that the optimal foraging-reproduction strategies of the consumers may be "determinate" or "indeterminate" depending on the season length. More surprisingly, it depended on the consumers population density as well, with large densities promoting indeterminacy. A bifurcation analysis showed that the long-term dynamics produced by this model were quite rich, ranging from both populations' extinction, coexistence at some season-to-season equilibrium or on (quasi)-periodic motions, to initial condition-dependent dynamics. Interestingly, we observed that any long-term sustainable situation corresponds to indeterminate consumers' strategies. Finally, a comparison with a model involving typical nonoptimal consumers highlighted the stabilizing effects of the optimal life histories of the consumers. [Akhmetzhanov, Andrei R.; Grognard, Frederic; Mailleret, Ludovic] INRIA, BIOCORE Team, Sophia Antipolis, France; [Mailleret, Ludovic] INRA, UR 880, URIH, Sophia Antipolis, France Akhmetzhanov, AR (reprint author), McMaster Univ, Dept Biol, Theoret Biol Lab, Hamilton, ON, Canada. ludovic.mailleret@sophia.inra.fr Akhmetzhanov, Andrei/B-5530-2013 Akhmetzhanov, Andrei/0000-0003-3269-7351; Mailleret, Ludovic/0000-0001-7019-8401 Agropolis Foundation; RNSC [0902-013]; INRA [394576] The authors are grateful to P. Bernhard, V. Lemesle, and E. Wajnberg for their comments on an earlier version of this manuscript. We also acknowledge F. Halkett, F. Hamelin, and V. Ravigne for insightful discussions on the present topic, as well as S. Gandon and two anonymous referees for their interesting remarks. ARA was funded by a Post-Doctoral fellowship from INRIA Sophia Antipolis Mediterranee. This research has been supported by grants from Agropolis Foundation and RNSC (project ModPEA, covenant support number 0902-013), and from INRA (call for proposal "Gestion durable des resistances aux bio-agresseurs", project Metacarpe, contract number 394576). ABRAMS PA, 1992, AM NAT, V140, P573, DOI 10.1086/285429; Agrios GN, 2005, PLANT PATHOLOGY; Bellman R, 1957, DYNAMIC PROGRAMMING; Briggs CJ, 1996, THEOR POPUL BIOL, V50, P149, DOI 10.1006/tpbi.1996.0027; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; DeAngelis DL, 2005, ANNU REV ECOL EVOL S, V36, P147, DOI 10.1146/annurev.ecolsys.36.102003.152644; Dercole F, 2008, PRINC SER THEOR COMP, P1; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Eskola HTM, 2007, B MATH BIOL, V69, P329, DOI 10.1007/s11538-006-9126-4; Eskola HTM, 2011, B MATH BIOL, V73, P1312, DOI 10.1007/s11538-010-9560-1; Eskola HTM, 2009, THEOR POPUL BIOL, V75, P98, DOI 10.1016/j.tpb.2008.12.001; FRYXELL JM, 1994, EVOL ECOL, V8, P407, DOI 10.1007/BF01238191; Geritz SAH, 1997, PHYS REV LETT, V78, P2024, DOI 10.1103/PhysRevLett.78.2024; Geritz SAH, 2004, J THEOR BIOL, V228, P261, DOI 10.1016/j.jtbi.2004.01.003; Gilchrist MA, 2006, EVOLUTION, V60, P970; GODFRAY HCJ, 1994, J ANIM ECOL, V63, P1, DOI 10.2307/5577; Hackett-Jones E, 2009, THEOR ECOL-NETH, V2, P19, DOI 10.1007/s12080-008-0025-1; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Higginson AD, 2010, ECOLOGY, V91, P2756, DOI 10.1890/08-2269.1; Higginson AD, 2010, EVOLUTION, V64, P53, DOI 10.1111/j.1558-5646.2009.00813.x; HOLT RD, 1983, AM NAT, V122, P521, DOI 10.1086/284153; HUNTER W. RUSSELL, 1961, PROC ZOOL SOC LONDON, V136, P219; Iglesias J, 1996, J MOLLUS STUD, V62, P495, DOI 10.1093/mollus/62.4.495; Ims RA, 2008, TRENDS ECOL EVOL, V23, P79, DOI 10.1016/j.tree.2007.10.010; Irie T, 2005, AM NAT, V165, P238, DOI 10.1086/427157; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; Iwasa Y, 2000, EVOL ECOL RES, V2, P437; Knight TM, 2005, NATURE, V437, P880, DOI 10.1038/nature03962; Kooijman S. A. L. M, 2010, DYNAMIC ENERGY BUDGE; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Krivan V, 1999, THEOR POPUL BIOL, V55, P111, DOI 10.1006/tpbi.1998.1399; Krivan V, 1997, THEOR POPUL BIOL, V51, P201, DOI 10.1006/tpbi.1997.1300; Lessells C.M., 1991, P32; LEVINS R, 1966, AM SCI, V54, P421; Lika K, 2003, B MATH BIOL, V65, P809, DOI 10.1016/S0092-8240(03)00039-9; Mailleret L, 2009, PHILOS T R SOC A, V367, P4779, DOI 10.1098/rsta.2009.0153; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Melikyan A. A, 1998, GEN CHARACTERISTICS; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Murdoch W. W., 2003, CONSUMER RESOURCE DY; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; Pachepsky E, 2008, ECOLOGY, V89, P280, DOI 10.1890/07-0641.1; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PERRIN N, 1993, EVOL ECOL, V7, P576, DOI 10.1007/BF01237822; Polis G. A., 1996, FOOD WEBS CONT PERSP, P313; Pontryagin L. S., 1962, MATH THEORY OPTIMAL; ROHANI P, 1994, AM NAT, V144, P491, DOI 10.1086/285688; Sachs JL, 2004, Q REV BIOL, V79, P135, DOI 10.1086/383541; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schreiber S, 2008, ECOL LETT, V11, P576, DOI 10.1111/j.1461-0248.2008.01171.x; Singh A, 2007, J THEOR BIOL, V247, P733, DOI 10.1016/j.jtbi.2007.04.004; Stearns S, 1992, EVOLUTION LIFE HIST; Sumpter DJT, 2001, P ROY SOC B-BIOL SCI, V268, P925, DOI 10.1098/rspb.2001.1604; Takimoto G, 2003, AM NAT, V162, P93, DOI 10.1086/375540; Twombly S, 1996, ECOLOGY, V77, P1855, DOI 10.2307/2265789; van Baalen M, 2001, AM NAT, V157, P512, DOI 10.1086/319933; Vincent T L, 1997, NONLINEAR OPTIMAL CO; West SA, 2002, SCIENCE, V296, P72, DOI 10.1126/science.1065507; Wiggins S., 2003, INTRO APPL NONLINEAR; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435; Wildy EL, 2001, OECOLOGIA, V128, P202, DOI 10.1007/s004420100641; Yamamura N, 2007, J THEOR BIOL, V246, P530, DOI 10.1016/j.jtbi.2007.01.010 66 4 4 1 38 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2011 65 11 3113 3125 10.1111/j.1558-5646.2011.01381.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 843VK WOS:000296702800008 22023579 Bronze 2019-02-21 J Mideo, N; Nelson, WA; Reece, SE; Bell, AS; Read, AF; Day, T Mideo, Nicole; Nelson, William A.; Reece, Sarah E.; Bell, Andrew S.; Read, Andrew F.; Day, Troy BRIDGING SCALES IN THE EVOLUTION OF INFECTIOUS DISEASE LIFE HISTORIES: APPLICATION EVOLUTION English Article MALARIA PLASMODIUM-CHABAUDI; FUNCTION-VALUED TRAITS; WITHIN-HOST DYNAMICS; PARASITE VIRULENCE; TRADE-OFF; POPULATION BIOLOGY; MOSQUITO INFECTION; GENETIC-ANALYSIS; SEX-RATIO; TRANSMISSION Within- and between-host disease processes occur on the same timescales, therefore changes in the within-host dynamics of parasites, resources, and immunity can interact with changes in the epidemiological dynamics to affect evolutionary outcomes. Consequently, studies of the evolution of disease life histories, that is, infection-age-specific patterns of transmission and virulence, have been constrained by the need for a mechanistic understanding of within-host disease dynamics. In a companion paper (Day et al. 2011), we develop a novel approach that quantifies the relevant within-host aspects of disease through genetic covariance functions. Here, we demonstrate how to apply this theory to data. Using two previously published datasets from rodent malaria infections, we show how to translate experimental measures into disease life-history traits, and how to quantify the covariance in these traits. Our results show how patterns of covariance can interact with epidemiological dynamics to affect evolutionary predictions for disease life history. We also find that the selective constraints on disease life-history evolution can vary qualitatively, and that "simple" virulence-transmission trade-offs that are often the subject of experimental investigation can be obscured by trade-offs within one trait alone. Finally, we highlight the type and quality of data required for future applications. [Mideo, Nicole; Reece, Sarah E.] Univ Edinburgh, Ctr Immun Infect & Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Nelson, William A.; Day, Troy] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Reece, Sarah E.] Univ Edinburgh, Inst Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Reece, Sarah E.] Univ Edinburgh, Inst Immunol, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Reece, Sarah E.] Univ Edinburgh, Inst Infect Res, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland; [Bell, Andrew S.; Read, Andrew F.] Penn State Univ, Ctr Infect Dis Dynam, Dept Biol, University Pk, PA 16827 USA; [Bell, Andrew S.; Read, Andrew F.] Penn State Univ, Ctr Infect Dis Dynam, Dept Entomol, University Pk, PA 16827 USA; [Read, Andrew F.] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA; [Day, Troy] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada Mideo, N (reprint author), Univ Edinburgh, Ctr Immun Infect & Evolut, Sch Biol Sci, Edinburgh EH9 3JT, Midlothian, Scotland. N.Mideo@ed.ac.uk; tday@mast.queensu.ca Nelson, William/D-1405-2013; Reece, Sarah/C-9447-2009; Mideo, Nicole/F-4520-2010 Reece, Sarah/0000-0001-6716-6732; Day, Troy/0000-0002-1052-6140 Wellcome Trust; NSERC; Canada Research Chairs Program We thank M. Morrissey, D. Nussey and A. Wilson for discussion; two anonymous reviewers for helpful suggestions on the manuscript; and the Wellcome Trust (NM, SR, AB, AR), an NSERC Discovery Grant (WN), an NSERC Steacie Fellowship and the Canada Research Chairs Program (TD) for funding. Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Alizon S, 2005, AM NAT, V165, pE155, DOI 10.1086/430053; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Alizon S, 2008, AM NAT, V172, pE150, DOI 10.1086/590958; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Andre JB, 2006, EVOLUTION, V60, P13; Andre JB, 2003, EVOLUTION, V57, P1489, DOI 10.1554/02-667; Antolin MF, 2008, ANNU REV ECOL EVOL S, V39, P415, DOI 10.1146/annurev.ecolsys.37.091305.110119; Barnes KI, 2005, ACTA TROP, V94, P230, DOI 10.1016/j.actatropica.2005.04.014; Bell AS, 2006, EVOLUTION, V60, P1358, DOI 10.1554/05-611.1; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; BREMERMANN HJ, 1983, J THEOR BIOL, V100, P411, DOI 10.1016/0022-5193(83)90438-1; Collins WE, 2003, AM J TROP MED HYG, V68, P366, DOI 10.4269/ajtmh.2003.68.366; Coombs D, 2007, THEOR POPUL BIOL, V72, P576, DOI 10.1016/j.tpb.2007.08.005; Day T, 2003, TRENDS ECOL EVOL, V18, P113, DOI 10.1016/S0169-5347(02)00049-6; Day T, 2002, P ROY SOC B-BIOL SCI, V269, P1317, DOI 10.1098/rspb.2002.2021; Day T, 2001, EVOLUTION, V55, P2389; Day T., 2011, BRIDGING SC IN PRESS; EWALD PW, 1983, ANNU REV ECOL SYST, V14, P465, DOI 10.1146/annurev.es.14.110183.002341; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Ganusov VV, 2002, EVOLUTION, V56, P213, DOI 10.1111/j.0014-3820.2002.tb01332.x; Gilchrist MA, 2006, THEOR POPUL BIOL, V69, P145, DOI 10.1016/j.tpb.2005.07.002; Gilchrist MA, 2002, J THEOR BIOL, V218, P289, DOI 10.1006/yjtbi.3076; Grant AJ, 2008, PLOS BIOL, V6, P757, DOI 10.1371/journal.pbio.0060074; Hine E, 2006, GENETICS, V173, P1135, DOI 10.1534/genetics.105.054627; Jaffrezic F, 2000, GENETICS, V156, P913; Kingsolver JG, 2001, GENETICA, V112, P87, DOI 10.1023/A:1013323318612; KIRKPATRICK M, 1990, GENETICS, V124, P979; KIRKPATRICK M, 1994, GENET RES, V64, P57, DOI 10.1017/S0016672300032559; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Levin SA, 1997, SCIENCE, V275, P334, DOI 10.1126/science.275.5298.334; Lipsitch M, 1997, TRENDS MICROBIOL, V5, P31, DOI 10.1016/S0966-842X(97)81772-6; Mackinnon MJ, 1999, EVOLUTION, V53, P689, DOI 10.1111/j.1558-5646.1999.tb05364.x; Meyer K, 2005, PHILOS T R SOC B, V360, P1443, DOI 10.1098/rstb.2005.1681; Mideo N, 2008, AM NAT, V172, pE214, DOI 10.1086/591684; Mideo N, 2008, CELL MICROBIOL, V10, P1947, DOI 10.1111/j.1462-5822.2008.01208.x; Mideo N, 2008, TRENDS ECOL EVOL, V23, P511, DOI 10.1016/j.tree.2008.05.009; Miller MR, 2010, PLOS COMPUT BIOL, V6, DOI 10.1371/journal.pcbi.1000946; Paul REL, 2007, INFECT GENET EVOL, V7, P577, DOI 10.1016/j.meegid.2007.04.004; Pletcher SD, 1999, GENETICS, V153, P825; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Robert V, 1996, T ROY SOC TROP MED H, V90, P621, DOI 10.1016/S0035-9203(96)90408-3; SASAKI A, 1991, THEOR POPUL BIOL, V39, P201, DOI 10.1016/0040-5809(91)90036-F; Sinden RE, 2007, PLOS PATHOG, V3, P2005, DOI 10.1371/journal.ppat.0030195; Smith DL, 2007, PLOS BIOL, V5, P531, DOI 10.1371/journal.pbio.0050042; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Wargo AR, 2007, P R SOC B, V274, P2629, DOI 10.1098/rspb.2007.0873; Wood SN, 2001, ECOL MONOGR, V71, P1, DOI 10.1890/0012-9615(2001)071[0001:PSEM]2.0.CO;2; Wood SN., 2006, GEN ADDITIVE MODELS 53 20 20 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2011 65 11 3298 3310 10.1111/j.1558-5646.2011.01382.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 843VK WOS:000296702800022 22023593 Green Accepted 2019-02-21 J Borges, I; Soares, AO; Magro, A; Hemptinne, JL Borges, Isabel; Soares, Antonio Onofre; Magro, Alexandra; Hemptinne, Jean-Louis Prey availability in time and space is a driving force in life history evolution of predatory insects EVOLUTIONARY ECOLOGY English Article Aphid; Coccid; Coccinellidae; Lifestyle; Life history traits; Slow-fast continuum GUPPIES POECILIA-RETICULATA; BIOLOGICAL-CONTROL; RAPID EVOLUTION; COCCINELLIDAE; COLEOPTERA; PATTERNS; TEMPERATURE; LADYBIRDS; HOMOPTERA; STYLE Environmental constraints can be determinant key factors conditioning predator life history evolution. Prey seems to have conditioned life history evolution in their ladybird predator, with the predators of aphids apparently presenting faster development, greater fecundity and shorter longevity than species preying on coccids. However a rigorous comparison has never been done. We hypothesize that aphids and coccids differ by their developmental rate, abundance, and distribution in the field, which act as ecological constraints promoting life history evolution in ladybird predators. Field data reveal that aphids are ephemeral resources available in the form of large colonies randomly distributed in the habitat whereas coccids form smaller colonies that tend to be aggregated in space and available for longer periods. A comparison in laboratory conditions of two predatory species belonging to the tribe Scymnini (Coleoptera: Coccinellidae) show that the aphidophagous species lives at a faster pace than the coccidophagous: it develops faster, matures earlier, is more fecund, has a shorter reproductive life-span and allocate proportionally more fat in its gonads relative to soma. This indicates that the life histories of aphidophagous and coccidophagous ladybird predators appear to have evolved in response to particular patterns of prey availability in time and space. Under the light of these results, the existence of a slow-fast continuum in ladybirds is briefly addressed. [Borges, Isabel; Soares, Antonio Onofre] Univ Azores, Dept Biol, CIRN, P-9501801 Ponta Delgada, Azores, Portugal; [Borges, Isabel; Soares, Antonio Onofre] Univ Azores, Azorean Biodivers Grp, CITA A, P-9701851 Angra Do Heroismo, Azores, Portugal; [Magro, Alexandra; Hemptinne, Jean-Louis] Univ Toulouse, ENFA, UMR CNRS Evolut & Diversite Biol 5174, F-31326 Castanet Tolosan, France Borges, I (reprint author), Univ Azores, Dept Biol, CIRN, Rua Mae Deus,Apartado 1422, P-9501801 Ponta Delgada, Azores, Portugal. isabelborges@uac.pt Hemptinne, Jean-Louis/C-5989-2009; Magro, Alexandra/G-8328-2011; Soares, Antonio/M-4207-2013 Hemptinne, Jean-Louis/0000-0003-3875-2497; Magro, Alexandra/0000-0002-7043-0845; Soares, Antonio/0000-0001-7922-6296; Borges, Isabel/0000-0003-1807-0659 POCI 2010; FSE; Programa Pessoa, France; French Ministry of Foreign Affairs [14714PG] I. B. was funded by a PhD grant (POCI 2010 and FSE) and by Programa Pessoa 2007/2008 France. A. O. S. was funded by Programa Pessoa 2007/2008 France. J.-L. H. was funded by a grant from the French Ministry of Foreign Affairs (EGIDE/Project Pessoa PAI 2007/2008 # 14714PG). The authors express their gratitude to Roberto Resendes for helping in the field work, to Rafael Arruda for assistance in the laboratory work, to Luis Silva for identifying plant host species, to J. A. Ilharco for aphid species identification, to Felipe Ramon-Portugal for assistance in fat content determination, and to Servicos Agrarios for growing maize. Thanks are also due to Servicos Florestais de Ponta Delgada for allowing access to the study area. We thank J. P. Michaud for constructive comments on an earlier version of the manuscript and for improving the English. Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; BEGON M, 1996, ECOLOGY INDIVIDUAL P; Borges I, 2006, J APPL ENTOMOL, V130, P461, DOI 10.1111/j.1439-0418.2006.01097.x; Bursell E., 1970, INTRO INSECT PHYSL; Canepari Claudio, 2001, Bollettino della Societa Entomologica Italiana, V133, P207; Chapman R. F., 1998, INSECTS STRUCTURE FU; Crawley Michael J., 1992, P90, DOI 10.1002/9781444314076.ch4; Dixon A. F. G., 1998, APHID ECOLOGY; Dixon A. F. G., 2000, INSECT PREDATOR PREY; Dixon AFG, 1999, P ROY SOC B-BIOL SCI, V266, P1549, DOI 10.1098/rspb.1999.0814; Dixon AFG, 1997, ENTOMOPHAGA, V42, P71, DOI 10.1007/BF02769882; Dixon AFG, 2009, FUNCT ECOL, V23, P257, DOI 10.1111/j.1365-2435.2008.01489.x; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Evans EW, 2003, EUR J ENTOMOL, V100, P1, DOI 10.14411/eje.2003.001; Fisk DL, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-22; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Giorgi JA, 2009, BIOL CONTROL, V51, P215, DOI 10.1016/j.biocontrol.2009.05.019; Harvey P.H., 1989, Oxford Surveys in Evolutionary Biology, V6, P13; HEMPTINNE JL, 1992, OECOLOGIA, V90, P238, DOI 10.1007/BF00317181; Herz A, 2002, EUR J ENTOMOL, V99, P117, DOI 10.14411/eje.2002.020; HODEK I., 1996, ECOLOGY COCCINELLIDA; Iwao S., 1968, Researches on Population Ecology Kyoto University, V10, P1, DOI 10.1007/BF02514729; IZHEVSKY SS, 1988, ENTOMOPHAGA, V33, P101, DOI 10.1007/BF02372318; KINDLMANN P, 1993, EUR J ENTOMOL, V90, P443; Kontodimas DC, 2004, ENVIRON ENTOMOL, V33, P1, DOI 10.1603/0046-225X-33.1.1; Latta LC, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-21; LLOYD M, 1967, J ANIM ECOL, V36, P1, DOI 10.2307/3012; Magro A, 2010, MOL PHYLOGENET EVOL, V54, P833, DOI 10.1016/j.ympev.2009.10.022; Magro A., 2003, P 8 INT S EC APH BIO, P29; Majerus M.E.N., 1989, NATURALISTS HDB, V10; MHAMED BT, 2001, J APPL ENTOMOL, V125, P527; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; Persad A, 2002, BIOCONTROL, V47, P137, DOI 10.1023/A:1014581616965; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Sengonca C, 2003, Z PFLANZENK PFLANZEN, V110, P250; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Silva L, 2010, LIST TERRESTRIAL MAR, P117; Southwood T. R. E., 2000, ECOLOGICAL METHODS; *SPSS INC, 2001, BAS VERS 11 5; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; STEARNS SC, 2004, EVOLUTION LIFE HIST; Uygun N, 2000, BIOCONTROL, V45, P453, DOI 10.1023/A:1026505329762; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Zar J. H., 1996, BIOSTATISTICAL ANAL 49 16 20 3 24 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. NOV 2011 25 6 1307 1319 10.1007/s10682-011-9481-y 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 834RV WOS:000295982300009 2019-02-21 J Gooderham, K; Schulte-Hostedde, A Gooderham, Krista; Schulte-Hostedde, Albrecht Macroparasitism influences reproductive success in red squirrels (Tamiasciurus hudsonicus) BEHAVIORAL ECOLOGY English Article fitness; life-history traits; mammals; parasite richness AFRICAN GROUND-SQUIRREL; BODY CONDITION; TRADE-OFFS; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; ECTOPARASITE LOADS; GLAUCOMYS-SABRINUS; PARASITE INFECTION; IMMUNE DEFENSE; SPLEEN MASS Life-history theory predicts that all organisms have finite energy reserves. In order to optimize fitness, individuals must make trade-offs in allocating energy among survival, growth, and reproduction. Parasites have the ability to negatively impact host fitness and shift the balance of energy trade-offs. The aim of our study was to determine the relationships among parasite load and reproductive success in a free-living population of North American red squirrels (Tamiasciurus hudsonicus) in Algonquin Park, Ontario. We hypothesized that heavily parasitized individuals must allocate more energy toward immune function. As energy storage is finite, this will inevitably reduce the resources available for reproduction. Here, we show that parasite richness can compromise fitness through decreasing reproductive success. However, ectoparasite intensity increased with increasing reproductive success in males but not females, suggesting a possible trade-offs between secondary sexual characteristics in males and immunosuppressive qualities of testosterone. Our study provides unique evidence of the costs parasites exact on their hosts. It is among the relatively few studies conducted within an ecological context incorporating host fitness in relation to multiple parasite infections. [Gooderham, Krista; Schulte-Hostedde, Albrecht] Laurentian Univ, Dept Biol, Sudbury, ON P3E 2C6, Canada Schulte-Hostedde, A (reprint author), Laurentian Univ, Dept Biol, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada. aschultehostedde@laurentian.ca Schulte-Hostedde, Albrecht/C-2007-2009 NSERC; Canadian Foundation for Innovation; Ontario Ministry of Research and Innovation We would like to acknowledge NSERC and the Canadian Foundation for Innovation and the Ontario Ministry of Research and Innovation for financial support. Agnew P, 2000, MICROBES INFECT, V2, P891, DOI 10.1016/S1286-4579(00)00389-0; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bonanno VL, 2009, BEHAV ECOL SOCIOBIOL, V63, P835, DOI 10.1007/s00265-009-0718-5; Bouslama Z, 2001, ECOSCIENCE, V8, P320, DOI 10.1080/11956860.2001.11682659; Brown ED, J HELMINTHOL, V68, P105; Corbin E, 2008, MAMMAL REV, V38, P108, DOI 10.1111/j.1365-2907.2007.00112.x; Degen AA, 2006, Micromammals and Macroparasites: From Evolutionary Ecology to Management, P371, DOI 10.1007/978-4-431-36025-4_19; Dowling DK, 2001, BEHAV ECOL SOCIOBIOL, V50, P257, DOI 10.1007/s002650100360; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fox A, 2001, ECOL LETT, V4, P139, DOI 10.1046/j.1461-0248.2001.00207.x; Gangloff MM, 2008, HYDROBIOLOGIA, V610, P25, DOI 10.1007/s10750-008-9419-8; Gibbons LM, 2009, RVC FAO GUIDE VET DI; Gorrell JC, 2008, CAN J ZOOL, V86, P99, DOI 10.1139/Z07-123; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Gunn MR, 2005, MOL ECOL NOTES, V5, P650, DOI 10.1111/j.1471-8286.2005.01022.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Heylen D, 2009, OIKOS, V118, P1499, DOI 10.1111/j.1600-0706.2009.17606.x; Hillegass MA, 2008, BEHAV ECOL, V19, P1006, DOI 10.1093/beheco/arn070; Hillegass MA, 2010, BEHAV ECOL, V21, P696, DOI 10.1093/beheco/arq041; Holland G, 1949, SIPONAPTERA CANADA; Hughes VL, 2001, J PARASITOL, V87, P49, DOI 10.1007/s004360000287; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; IMS RA, 1987, J ANIM ECOL, V56, P585, DOI 10.2307/5070; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Khokhlova IS, 2002, J ZOOL, V258, P349, DOI 10.1017/S0952836902001498; Krasnov BR, 2005, OECOLOGIA, V146, P209, DOI 10.1007/s00442-005-0189-y; Kristan DM, 2004, PHYSIOL BIOCHEM ZOOL, V77, P440, DOI 10.1086/383513; Kruczek M, 1997, BEHAV PROCESS, V40, P171, DOI 10.1016/S0376-6357(97)00785-7; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; MacIntosh AJJ, 2010, PRIMATES, V51, P353, DOI 10.1007/s10329-010-0211-9; Meagher S, 2002, J PARASITOL, V88, P833, DOI 10.2307/3285517; Medvedev SG, 2006, MICROMAMMALS MACROPA, P371; Michalakis Yannis, 2009, P19; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Morand S, 2000, CAN J ZOOL, V78, P1356, DOI 10.1139/cjz-78-8-1356; Morand S, 2006, MICROMAMMALS AND MACROPARASITES: FROM EVOLUTIONARY ECOLOGY TO MANAGEMENT, P3, DOI 10.1007/978-4-431-36025-4_1; Mougeot F, 2006, BEHAV ECOL, V17, P117, DOI 10.1093/beheco/arj005; MUNGER JC, 1989, ECOLOGY, V70, P904, DOI 10.2307/1941358; Neuhaus P, 2003, P ROY SOC B-BIOL SCI, V270, pS213, DOI 10.1098/rsbl.2003.0073; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pacejka AJ, 1998, ECOLOGY, V79, P1797; Patterson LD, 2011, ANIM BEHAV, V81, P1129, DOI 10.1016/j.anbehav.2011.02.016; Pauli JN, 2004, J WILDLIFE DIS, V40, P579, DOI 10.7589/0090-3558-40.3.579; Perez-Orella C, 2005, CAN J ZOOL, V83, P1381, DOI 10.1139/Z05-126; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; POORBAUGH JOHN H., 1961, JOUR KANSAS ENTOMOL SOC, V34, P198; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; Radespiel U, 2000, AM J PRIMATOL, V51, P21, DOI 10.1002/(SICI)1098-2345(200005)51:1<21::AID-AJP3>3.0.CO;2-C; ROFF DA, 2002, LIFE HIST EVOLUTION; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; ROSSANIGO CE, 1991, VET PARASITOL, V39, P115, DOI 10.1016/0304-4017(91)90067-6; Santos-Flores CJ, 2003, HYDROBIOLOGIA, V500, P145, DOI 10.1023/A:1024638620460; Scantlebury M, 2007, P R SOC B, V274, P2169, DOI 10.1098/rspb.2007.0690; Scantlebury M, 2010, J ZOOL, V282, P246, DOI 10.1111/j.1469-7998.2010.00734.x; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schulte-Hostedde AI, 2011, J MAMMAL, V92, P221, DOI 10.1644/10-MAMM-A-020.1; Schwanz LE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1351, DOI 10.1007/s00265-008-0563-y; Seivwright LJ, 2005, P ROY SOC B-BIOL SCI, V272, P2299, DOI 10.1098/rspb.2005.3233; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sorci G, 1996, OIKOS, V76, P121, DOI 10.2307/3545754; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; Thomas F., 2009, ECOLOGY EVOLUTION PA; Voordouw MJ, 2008, MALARIA J, V14, P1; WEDEKIND C, 1992, P ROY SOC B-BIOL SCI, V247, P169, DOI 10.1098/rspb.1992.0024; Yacob HT, 2006, VET PARASITOL, V137, P184, DOI 10.1016/j.vetpar.2006.01.020; ZUK M, 2002, AM NAT, V160, P9, DOI DOI 10.1086/342131 69 24 25 1 50 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. NOV-DEC 2011 22 6 1195 1200 10.1093/beheco/arr112 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 838MB WOS:000296295000016 Bronze 2019-02-21 J Heg, D; Schurch, R; Rothenberger, S Heg, Dik; Schuerch, Roger; Rothenberger, Susan Behavioral type and growth rate in a cichlid fish BEHAVIORAL ECOLOGY English Article animal personality; behavioral syndromes; Cichlidae; dominance; status-dependent growth LIFE-HISTORY; NEOLAMPROLOGUS-PULCHER; PERSONALITY-TRAITS; ANIMAL PERSONALITY; HELPERS; BENEFITS; POPULATIONS; EVOLUTION; DECISIONS; ECOLOGY Behavioral syndromes or animal personalities may emerge due to covariation with different life-history strategies individual animals pursue, like risk-associated feeding rates translating in different growth trajectories. However, less clear is how this might affect individuals in cooperatively breeding species, where subordinates assist dominants in raising offspring, and growth has profound life-history and social consequences. Here, we examined the effects of behavioral type on growth rates and feeding in the cooperatively breeding cichlid fish Neolamprologus pulcher, comparing growth rates of individuals settled inside a group (dominant or subordinate) or unsettled fish (aggregation) of different behavioral types (bold-shy continuum) under a feeding regime where food could not be monopolized. Controlling for other factors, we found no effect of the behavioral type on the growth rates of dominants and subordinates in either sex. In contrast, bold female aggregation fish were significantly growing faster in length compared with shy female aggregation fish, whereas no such effect was detected in male aggregation fish. These growth rate differences were largely matched by differences in feeding rates, but locomotion appeared more important in determining growth than feeding rate. Our results show that differences in social status may need to be taken into account when testing for correlations between behavioral type and growth in vertebrates, and cautions that growth adjustments may get obscured due to correlated changes in other costly behaviors, like locomotion. [Heg, Dik; Schuerch, Roger; Rothenberger, Susan] Univ Bern, Inst Ecol & Evolut, Dept Behav Ecol, CH-3012 Bern, Switzerland Heg, D (reprint author), Univ Bern, Inst Social & Prevent Med, Clin Trials Unit, Finkenhubelweg 11, CH-3012 Bern, Switzerland. dheg@ispm.unibe.ch Schurch, Roger/0000-0001-9075-8912 Swiss National Science Foundation(SNSF) [3100A-108473] Swiss National Science Foundation(SNSF 3100A-108473 to D.H.). Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Balshine-Earn S, 1998, BEHAV ECOL, V9, P432, DOI 10.1093/beheco/9.5.432; Bergmuller R, 2005, P ROY SOC B-BIOL SCI, V272, P325, DOI 10.1098/rspb.2004.2960; Bergmuller Ralph, 2007, BMC Ecology, V7, P12, DOI 10.1186/1472-6785-7-12; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bruintjes R, 2010, FUNCT ECOL, V24, P1054, DOI 10.1111/j.1365-2435.2010.01715.x; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Gashagaza M.M., 1988, African Study Monographs, V9, P1; Grantner A, 1998, J COMP PHYSIOL B, V168, P427, DOI 10.1007/s003600050162; Hamilton IM, 2008, J FISH BIOL, V72, P1079, DOI 10.1111/j.1095-8649.2007.01787.x; Heg D, 2004, P ROY SOC B-BIOL SCI, V271, pS505, DOI 10.1098/rsbl.2004.0232; Heg D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1249, DOI 10.1007/s00265-008-0553-0; Heg D, 2011, BEHAV ECOL, V22, P82, DOI 10.1093/beheco/arq170; Heg D, 2010, BEHAV ECOL SOCIOBIOL, V64, P1309, DOI 10.1007/s00265-010-0945-9; Heg D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005458; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; Norusis M. J., 2007, SPSS 15 0 ADV STAT P; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Riebli T, 2011, ANIM BEHAV, V81, P313, DOI 10.1016/j.anbehav.2010.11.001; Schurch R, 2010, PHILOS T R SOC B, V365, P4089, DOI 10.1098/rstb.2010.0177; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Schurch R, 2010, ETHOLOGY, V116, P257, DOI 10.1111/j.1439-0310.2009.01738.x; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; TABORSKY M, 1984, ANIM BEHAV, V32, P1236, DOI 10.1016/S0003-3472(84)80241-9; TABORSKY M, 1981, BEHAV ECOL SOCIOBIOL, V8, P143, DOI 10.1007/BF00300826; van Oers K, 2005, BEHAV ECOL, V16, P716, DOI 10.1093/beheco/ari045; van Overveld T, 2010, BIOL LETTERS, V6, P187, DOI 10.1098/rsbl.2009.0764; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 32 16 16 0 44 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. NOV-DEC 2011 22 6 1227 1233 10.1093/beheco/arr118 7 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 838MB WOS:000296295000020 Bronze, Green Published 2019-02-21 J Song, ZB; Boenke, MC; Rodd, FH Song, Zhaobin; Boenke, Morgan C.; Rodd, F. Helen Interpopulation Differences in Shoaling Behaviour in Guppies (Poecilia reticulata): Roles of Social Environment and Population Origin ETHOLOGY English Article LIFE-HISTORY EVOLUTION; ANTIPREDATOR BEHAVIOR; TRINIDADIAN GUPPIES; SCHOOLING PREFERENCES; PREDATOR RECOGNITION; BODY-SIZE; FISH; AVOIDANCE; CHOICE; STICKLEBACKS In Trinidad, guppies (Poecilia reticulata) in high-predation localities show more cohesive shoaling behaviour than those living with less dangerous predators in low-predation sites. We evaluated the relative contributions of population origin (i.e. genetic and/or maternal effects) and social environment on the expression of shoaling by assessing the behaviour of juveniles reared in a range of social conditions. Focal individuals, offspring of guppies from populations from high- or low-predation localities, were reared in a multifactorial experiment; we created four different social conditions by manipulating the source and demography of the conspecific residents with whom focal individuals interacted. We found that high-predation fish displayed a stronger propensity to shoal than low-predation ones. Our results also suggest a role for interactions between the source of the focal individuals, the demography of the group in which they were reared and the origin of the guppies with whom they were reared. Depending on their origin (high- vs. low-predation) and rearing density, our focal fish were more likely to shoal if they were reared with high-predation residents. Learning from high-predation residents, aggressive interactions with low-predation residents and/or phenotype matching could have played a role in driving this effect of social environment. This effect of the phenotype of conspecifics on shoaling development would enhance heritable differences in shoaling propensity such that both could contribute to the well-documented difference in shoaling behaviour of high- and low-predation guppies in natural populations. [Song, Zhaobin; Boenke, Morgan C.; Rodd, F. Helen] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada; [Song, Zhaobin] Sichuan Univ, Coll Life Sci, Chengdu 610064, Peoples R China; [Boenke, Morgan C.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada Rodd, FH (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Harbord St, Toronto, ON M5S 3G5, Canada. helen.rodd@utoronto.ca China Scholarship Council [2003851023]; NSERC (Canada); NSF (USA) [BSR 88-18071, DEB 91-19432]; Government of Ontario; York University Faculty of Graduate Studies We thank Marla Sokolowski for advice and providing the facilities to run the experiment; David Reznick for advice about all things guppy and support and assistance in the field; K. Hughes, K. Grant and S. Hyndman for assistance with the fish; Anne Magurran and several anonymous reviewers for very helpful comments on the manuscript; and A. Sharma and C. Rodd for technical support. This project was supported by State Scholarship Fund of China Scholarship Council (No. 2003851023); NSERC (Canada) grants to M.B. Sokolowski and F.H.R.; NSF (USA) grants to D. Reznick (BSR 88-18071 and DEB 91-19432); the Government of Ontario; and York University Faculty of Graduate Studies. Barber I, 1998, J FISH BIOL, V53, P1365, DOI 10.1006/jfbi.1998.0788; Beecham JA, 1999, J THEOR BIOL, V198, P533, DOI 10.1006/jtbi.1999.0930; Botham MS, 2005, BEHAV ECOL SOCIOBIOL, V59, P181, DOI 10.1007/s00265-005-0018-7; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Brown C, 2002, ANIM BEHAV, V64, P41, DOI 10.1006/anbe.2002.3021; Brown C, 2003, FISH FISH, V4, P280, DOI 10.1046/j.1467-2979.2003.00122.x; BROWN GE, 1993, ANIM BEHAV, V46, P1223, DOI 10.1006/anbe.1993.1313; Chapman BB, 2008, ANIM BEHAV, V76, P923, DOI 10.1016/j.anbehav.2008.03.022; Chapman BB, 2008, BEHAV ECOL, V19, P87, DOI 10.1093/beheco/arm111; Croft DP, 2003, OIKOS, V100, P429, DOI 10.1034/j.1600-0706.2003.12023.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Engeszer RE, 2004, CURR BIOL, V14, P881, DOI 10.1016/j.cub.2004.04.042; Evans JP, 2000, P NATL ACAD SCI USA, V97, P10074, DOI 10.1073/pnas.180207297; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Ferrari MCO, 2005, ANIM BEHAV, V70, P777, DOI 10.1016/j.anbehav.2005.01.009; Foster SA, 1999, GEOGRAPHIC VARIATION IN BEHAVIOR, P287; Griffiths SW, 1999, BEHAV ECOL SOCIOBIOL, V45, P437, DOI 10.1007/s002650050582; Griffiths SW, 1998, ANIM BEHAV, V56, P689, DOI 10.1006/anbe.1998.0767; Griffiths SW, 2003, FISH FISH, V4, P256, DOI 10.1046/j.1467-2979.2003.00129.x; Griffiths SW, 1997, P ROY SOC B-BIOL SCI, V264, P547, DOI 10.1098/rspb.1997.0078; Herczeg G, 2009, ANIM BEHAV, V77, P575, DOI 10.1016/j.anbehav.2008.10.023; Hoare DJ, 2000, J FISH BIOL, V57, P1351, DOI 10.1006/jfbi.2000.1446; Houde A., 1997, SEX COLOR MATE CHOIC; Huizinga M, 2009, J EVOLUTION BIOL, V22, P1860, DOI 10.1111/j.1420-9101.2009.01799.x; Kelley JL, 2003, FISH FISH, V4, P216, DOI 10.1046/j.1467-2979.2003.00126.x; Kelley JL, 2003, BEHAV ECOL SOCIOBIOL, V54, P225, DOI 10.1007/s00265-003-0621-4; Kelley JL, 2003, ANIM BEHAV, V65, P655, DOI 10.1006/anbe.2003.2076; Kolluru GR, 2009, BEHAV ECOL, V20, P131, DOI 10.1093/beheco/arn124; Kozak GM, 2008, BEHAV ECOL, V19, P667, DOI 10.1093/beheco/arn022; Krause J, 1996, ETHOLOGY, V102, P40; Krause J, 2000, BIOL REV, V75, P477; Krause J., 2002, LIVING GROUPS; Lachlan RF, 1998, ANIM BEHAV, V56, P181, DOI 10.1006/anbe.1998.0760; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, J FISH BIOL, V45, P401, DOI 10.1111/j.1095-8649.1994.tb01322.x; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; MAGURRAN AE, 1987, PROC R SOC SER B-BIO, V229, P439, DOI 10.1098/rspb.1987.0004; PITCHER TJ, 1993, BEHAV TELEOST FISHES, P363; RANTA E, 1992, ANIM BEHAV, V43, P160, DOI 10.1016/S0003-3472(05)80082-X; Ranta Esa, 1994, Ecoscience, V1, P99; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rodd FH, 1997, ECOLOGY, V78, P419; Rodd FH, 1997, ECOLOGY, V78, P405; RODD FH, 1995, ANIM BEHAV, V49, P1139; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; RODD FH, 1994, THESIS YORK U TORONT; RUZZANTE DE, 1993, EVOLUTION, V47, P456, DOI 10.1111/j.1558-5646.1993.tb02106.x; Salvanes AGV, 2007, ANIM BEHAV, V74, P805, DOI 10.1016/j.anbehav.2007.02.007; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Spence R, 2007, ETHOLOGY, V113, P62, DOI 10.1111/j.1439-0310.2006.01295.x; *STATSOFT INC, 2001, STATISTICA DAT AN SO; Svensson PA, 2000, J FISH BIOL, V56, P1477, DOI 10.1006/jfbi.2000.1274 57 11 11 0 62 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0179-1613 ETHOLOGY Ethology NOV 2011 117 11 1009 1018 10.1111/j.1439-0310.2011.01952.x 10 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 840DI WOS:000296418100008 2019-02-21 J Zanchi, C; Troussard, JP; Martinaud, G; Moreau, J; Moret, Y Zanchi, Caroline; Troussard, Jean-Philippe; Martinaud, Guillaume; Moreau, Jerome; Moret, Yannick Differential expression and costs between maternally and paternally derived immune priming for offspring in an insect JOURNAL OF ANIMAL ECOLOGY English Article cost of immunity; host-parasite interaction; insect; maternal and paternal effects DROSOPHILA-MELANOGASTER; TENEBRIO-MOLITOR; INFECTION; DEFENSE; INVERTEBRATE; TRANSMISSION; RESISTANCE; INDUCTION; SYSTEM; BEETLE 1. When parasitized, both vertebrates and invertebrates can enhance the immune defence of their offspring, although this transfer of immunity is achieved by different mechanisms. In some insects, immune-challenged males can also initiate trans-generational immune priming (TGIP), but its expressions appear qualitatively different from the one induced by females similarly challenged. 2. The existence of male TGIP challenges the traditional view of the parental investment theory, which predicts that females should invest more into their progeny than males. However, sexual dimorphism in life-history strategies and the potential costs associated with TGIP may nevertheless lead to dissymmetric investment between males and females into the immune protection of the offspring. 3. Using the yellow mealworm beetle, Tenebrio molitor, we show that after parental exposure to a bacterial-like infection, maternal and paternal TGIP are associated with the enhancement of different immune effectors and different fitness costs in the offspring. While all the offspring produced by challenged mothers had enhanced immune defence, only those from early reproductive episodes were immune primed by challenged fathers. 4. Despite the fact that males and females may share a common interest in providing their offspring with an immune protection from the current pathogenic threat, they seem to have evolved different strategies concerning this investment. [Zanchi, Caroline; Troussard, Jean-Philippe; Martinaud, Guillaume; Moreau, Jerome; Moret, Yannick] Univ Bourgogne, CNRS, Equipe Ecol Evolut, UMR Biogeosci 5561, F-21000 Dijon, France Zanchi, C (reprint author), Univ Bourgogne, CNRS, Equipe Ecol Evolut, UMR Biogeosci 5561, 6 Blvd Gabriel, F-21000 Dijon, France. caroline.zanchi@u-bourgogne.fr moreau, jerome/A-3496-2013; Moret, Yannick/I-9282-2012 CNRS; ANR [ANR-07-JCJC-0134, ANR-08-JCJC-0006] We thank B. Bois, C. Bonnet, A. Duroux, A. Pernat, B. Quaglietti, C. Saciat and F. Vogelweith for technical assistance and M. A. Gillingham, T. Rigaud, O. Roth and an anonymous referee for valuable comments on the manuscript. This study was supported by the CNRS and grants from the ANR (ANR-07-JCJC-0134 and ANR-08-JCJC-0006). BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Eslin P, 1998, J INSECT PHYSIOL, V44, P807, DOI 10.1016/S0022-1910(98)00013-4; Freitak D, 2009, P ROY SOC B-BIOL SCI, V276, P2617, DOI 10.1098/rspb.2009.0323; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Haine ER, 2008, SCIENCE, V322, P1257, DOI 10.1126/science.1165265; Haine ER, 2008, J INSECT PHYSIOL, V54, P1090, DOI 10.1016/j.jinsphys.2008.04.013; Hasselquist D, 2009, PHILOS T R SOC LON B, V364, P51, DOI 10. 1098/ rstb. 2008. 0137; Ichikawa T, 2009, ZOOL SCI, V26, P525, DOI 10.2108/zsj.26.525; Jokela J, 2010, J ANIM ECOL, V79, P305, DOI 10.1111/j.1365-2656.2009.01649.x; Koella JC, 2002, EVOLUTION, V56, P1074; Kraaijeveld AR, 2001, P ROY SOC B-BIOL SCI, V268, P259, DOI 10.1098/rspb.2000.1354; Lemaitre B, 1997, P NATL ACAD SCI USA, V94, P14614, DOI 10.1073/pnas.94.26.14614; Linder JE, 2009, FLY, V3, P143, DOI 10.4161/fly.8051; Little TJ, 2003, CURR BIOL, V13, P489, DOI 10.1016/S0960-9822(03)00163-5; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Moret Y, 2006, P R SOC B, V273, P1399, DOI 10.1098/rspb.2006.3465; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; PHAM NL, 2007, PLOS PATHOG, V3, pE26; Rahman MM, 2004, P NATL ACAD SCI USA, V101, P2696, DOI 10.1073/pnas.0306669101; Roth O, 2010, J ANIM ECOL, V79, P403, DOI 10.1111/j.1365-2656.2009.01617.x; Roth O, 2009, DEV COMP IMMUNOL, V33, P1151, DOI 10.1016/j.dci.2009.04.005; Sadd BM, 2007, CURR BIOL, V17, pR1046, DOI 10.1016/j.cub.2007.11.007; Sadd BM, 2009, BIOL LETTERS, V5, P798, DOI 10.1098/rsbl.2009.0458; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Schmid-Hempel P, 2005, ANNU REV ENTOMOL, V50, P529, DOI 10.1146/annurev.ento.50.071803.130420; Soderhall K, 1998, CURR OPIN IMMUNOL, V10, P23, DOI 10.1016/S0952-7915(98)80026-5; Sorrentino RP, 2002, DEV BIOL, V243, P65, DOI 10.1006/dbio.2001.0542; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tidbury HJ, 2011, P ROY SOC B-BIOL SCI, V278, P871, DOI 10.1098/rspb.2010.1517; Vorburger C, 2008, ECOL ENTOMOL, V33, P189, DOI 10.1111/j.1365-2311.2007.00949.x 30 62 62 0 65 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. NOV 2011 80 6 1174 1183 10.1111/j.1365-2656.2011.01872.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 840PM WOS:000296452700008 21644979 Bronze 2019-02-21 J Easty, LK; Schwartz, AK; Gordon, SP; Hendry, AP Easty, Laura K.; Schwartz, Amy K.; Gordon, Swanne P.; Hendry, Andrew P. Does sexual selection evolve following introduction to new environments? ANIMAL BEHAVIOUR English Article colour; contemporary evolution; divergent selection; guppy; mate choice; natural population; Poecilia reticulata; sexual selection GUPPIES POECILIA-RETICULATA; FEMALE MATE CHOICE; LIFE-HISTORY EVOLUTION; MALE COLOR PATTERNS; MALE PREDATION RISK; TRINIDADIAN GUPPIES; REPRODUCTIVE ISOLATION; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; CONTEMPORARY EVOLUTION The rate of evolution of mating preferences and mate signalling traits can influence local adaptation and diversification under environmental change. However, the rate of evolution of female preferences has not been directly examined in natural populations. An opportunity to do so arose through the introduction of high-predation Trinidadian guppies, Poecilia reticulata, from the Yarra River into high-and low-predation environments in the Damier River. Nine years (13-26 guppy generations) after the introduction, we tested whether female preferences for key aspects of male colour differed between the rivers and between introduced high-and low-predation populations. Based on two independent laboratory experiments, we conclude that little divergence in female preferences has apparently occurred between any of the populations, or between predation regimes. In combination with previous work, these results suggest that the evolution of guppy colour and female preferences are influenced by factors in addition to just predation, and that female preferences may generally take longer to evolve than other types of traits, particularly in populations that experience weak or fluctuating sexual selection gradients. (C) 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Schwartz, Amy K.] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Easty, Laura K.; Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; [Easty, Laura K.; Hendry, Andrew P.] McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada; [Gordon, Swanne P.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Schwartz, AK (reprint author), Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Graham Kerr Bldg, Glasgow G12 8QQ, Lanark, Scotland. amy.schwartz@glasgow.ac.uk Gordon, Swanne/0000-0002-9840-725X Natural Sciences and Engineering Research Council of Canada (USRA); Fonds Quebecois de Recherche sur la Nature et les Technologies We are grateful to D. Reznick for introducing us to the Damier experimental introduction, and for helping in the field. Field work was also assisted by M. Kinnison, D. Weese and N. Millar. Laboratory fish rearing was assisted by M. Piette, Z. Jafry and N. Karim. The manuscript was greatly improved by two anonymous referees. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to A P H, postgraduate scholarship to S.G. and USRA to L.K.E.) and by the Fonds Quebecois de Recherche sur la Nature et les Technologies (postgraduate fellowship to A.K.S. and S.G.). Ahuja A, 2008, GENETICS, V179, P503, DOI 10.1534/genetics.107.08063; ANDERSSON M, 1982, NATURE, V299, P818, DOI 10.1038/299818a0; ANDERSSON S, 1994, CONDOR, V96, P1, DOI 10.2307/1369058; Archard GA, 2006, BEHAVIOUR, V143, P1317, DOI 10.1163/156853906778987515; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; Becher SA, 2004, P ROY SOC B-BIOL SCI, V271, P1009, DOI 10.1098/rspb.2004.2701; BISCHOFF RJ, 1985, BEHAV ECOL SOCIOBIOL, V17, P253, DOI 10.1007/BF00300143; Blows MW, 2003, EVOLUTION, V57, P1622; Boughman JW, 2001, NATURE, V411, P944, DOI 10.1038/35082064; BREDEN F, 1987, NATURE, V329, P831, DOI 10.1038/329831a0; Brooks R, 2002, GENETICA, V116, P343, DOI 10.1023/A:1021228308636; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Brooks R, 2001, EVOLUTION, V55, P1644; Candolin U, 2007, J EVOLUTION BIOL, V20, P233, DOI 10.1111/j.1420-9101.2006.01207.x; Candolin U, 2008, TRENDS ECOL EVOL, V23, P446, DOI 10.1016/j.tree.2008.04.008; Chenoweth SF, 2006, NAT REV GENET, V7, P681, DOI 10.1038/nrg1924; Cooper H., 1994, HDB RES SYNTHESIS; Cornwallis CK, 2010, TRENDS ECOL EVOL, V25, P145, DOI 10.1016/j.tree.2009.09.008; Deering MD, 2002, J ETHOL, V20, P25, DOI 10.1007/s10164-002-0050-2; Delcourt M, 2009, P ROY SOC B-BIOL SCI, V276, P2009, DOI 10.1098/rspb.2008.1459; DUGATKIN LA, 1992, P ROY SOC B-BIOL SCI, V249, P179, DOI 10.1098/rspb.1992.0101; DUGATKIN LA, 1992, AM NAT, V139, P1384, DOI 10.1086/285392; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; FARR JA, 1980, ANIM BEHAV, V28, P1195, DOI 10.1016/S0003-3472(80)80108-4; Gamble S, 2003, ECOL LETT, V6, P463, DOI 10.1046/j.1461-0248.2003.00449.x; Godin JGJ, 2005, ANIM BEHAV, V69, P999, DOI 10.1016/j.anbehav.2004.07.016; Godin JGJ, 1996, ANIM BEHAV, V51, P117, DOI 10.1006/anbe.1996.0010; GODIN JGJ, 1995, ANIM BEHAV, V49, P1427, DOI 10.1016/0003-3472(95)90063-2; Gong A, 1996, ANIM BEHAV, V52, P1007, DOI 10.1006/anbe.1996.0248; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; Grether GF, 2005, P ROY SOC B-BIOL SCI, V272, P2181, DOI 10.1098/rspb.2005.3197; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hall M, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-1; Hegyi G, 2006, J EVOLUTION BIOL, V19, P228, DOI 10.1111/j.1420-9101.2005.00970.x; Hegyi G, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013855; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Higgie M, 2000, SCIENCE, V290, P519, DOI 10.1126/science.290.5491.519; Hollis B, 2009, EVOLUTION, V63, P324, DOI 10.1111/j.1558-5646.2008.00551.x; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, HEREDITY, V69, P229, DOI 10.1038/hdy.1992.120; HOUDE AE, 1988, ANIM BEHAV, V36, P510, DOI 10.1016/S0003-3472(88)80022-8; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Houde AE, 1997, ANIM BEHAV, V53, P343, DOI 10.1006/anbe.1996.0399; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Karim N, 2007, J EVOLUTION BIOL, V20, P1339, DOI 10.1111/j.1420-9101.2007.01350.x; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kemp DJ, 2008, BIOL J LINN SOC, V95, P734, DOI 10.1111/j.1095-8312.2008.01112.x; KENNEDY CEJ, 1987, BEHAV ECOL SOCIOBIOL, V21, P291, DOI 10.1007/BF00299966; Kobayashi H, 2002, ZOOL SCI, V19, P545, DOI 10.2108/zsj.19.545; Kodric-Brown A, 2002, ANIM BEHAV, V63, P391, DOI 10.1006/anbe.2001.1917; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kwan L, 2010, EVOLUTION, V64, P710, DOI 10.1111/j.1558-5646.2009.00864.x; Liley N. R., 1966, Behaviour Suppl, V13, P1; Lindholm A, 2002, AM NAT, V160, pS214, DOI 10.1086/342898; Lindstrom J, 2009, AM NAT, V174, P515, DOI 10.1086/606008; Lorch PD, 2003, EVOL ECOL RES, V5, P867; Magurran AE, 2005, CURR BIOL, V15, pR867, DOI 10.1016/j.cub.2005.10.034; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; Millar NP, 2006, OIKOS, V113, P1; Nickel D, 2009, GENOME, V52, P49, DOI 10.1139/G08-102; Nosil P, 2002, NATURE, V417, P440, DOI 10.1038/417440a; Nosil P, 2003, P ROY SOC B-BIOL SCI, V270, P1911, DOI 10.1098/rspb.2003.2457; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Pfennig KS, 2008, EVOL ECOL RES, V10, P763; Pilastro A, 2007, ANIM BEHAV, V74, P321, DOI 10.1016/j.anbehav.2006.09.016; Pitcher TE, 2003, P ROY SOC B-BIOL SCI, V270, P1623, DOI 10.1098/rspb.2002.2280; Price AC, 2006, ETHOLOGY, V112, P22, DOI 10.1111/j.1439-0310.2006.01142.x; Qvarnstrom A, 2006, NATURE, V441, P84, DOI 10.1038/nature04564; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RICE WR, 1993, EVOLUTION, V47, P1637, DOI 10.1111/j.1558-5646.1993.tb01257.x; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; Rosenqvist G, 1997, BEHAV ECOL, V8, P194, DOI 10.1093/beheco/8.2.194; Rundle HD, 2005, PLOS BIOL, V3, P1988, DOI 10.1371/journal.pbio.0030368; Rutstein AN, 2007, ANIM BEHAV, V74, P1277, DOI 10.1016/j.anbehav.2007.02.022; RYAN MJ, 1993, PHILOS T ROY SOC B, V340, P187, DOI 10.1098/rstb.1993.0057; Savalli UM, 1995, ETHOL ECOL EVOL, V7, P379, DOI 10.1080/08927014.1995.9522945; Schwartz AK, 2007, EVOL ECOL RES, V9, P71; Seehausen O, 1997, SCIENCE, V277, P1808, DOI 10.1126/science.277.5333.1808; Shohet AJ, 2009, J FISH BIOL, V75, P1323, DOI 10.1111/j.1095-8649.2009.02366.x; Smith EJ, 2002, BEHAV ECOL, V13, P11, DOI 10.1093/beheco/13.1.11; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; STONER G, 1988, BEHAV ECOL SOCIOBIOL, V22, P285, DOI 10.1007/BF00299844; Svensson EI, 2007, FUNCT ECOL, V21, P422, DOI 10.1111/j.1365-2435.2007.01265.x; Svensson EI, 2007, AM NAT, V170, P101, DOI 10.1086/518181; Syriatowicz Alexandra, 2004, BMC Ecology, V4, P5, DOI 10.1186/1472-6785-4-5; Tanaka Y, 1996, J THEOR BIOL, V180, P197, DOI 10.1006/jtbi.1996.0096; van der Sluijs I, 2011, EVOL ECOL, V25, P623, DOI 10.1007/s10682-010-9450-x; Watt PJ, 2001, J FISH BIOL, V59, P843, DOI 10.1006/jfbi.2001.1699; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; White EM, 2003, ANIM BEHAV, V65, P693, DOI 10.1006/anbe.2003.2117; WINEMILLER KO, 1990, ENVIRON BIOL FISH, V29, P179, DOI 10.1007/BF00002218; Zajitschek SRK, 2008, AM NAT, V172, P843, DOI 10.1086/593001; ZOUROS E, 1980, EVOLUTION, V34, P421, DOI 10.1111/j.1558-5646.1980.tb04830.x 103 5 5 2 79 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. NOV 2011 82 5 1085 1095 10.1016/j.anbehav.2011.08.001 11 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 840FE WOS:000296423200020 2019-02-21 J Uller, T; Leimu, R Uller, Tobias; Leimu, Roosa Founder events predict changes in genetic diversity during human-mediated range expansions GLOBAL CHANGE BIOLOGY English Article admixture; conservation genetics; genetic diversity; invasive species; re-introductions LIFE-HISTORY EVOLUTION; MULTIPLE INTRODUCTIONS; PHENOTYPIC PLASTICITY; MATING SYSTEM; SUCCESS; POPULATIONS; INVASION; BOTTLENECKS; CONSEQUENCES; COLONIZATION Intentional or accidental introduction of species to new locations is predicted to result in loss of genetic variation and increase the likelihood of inbreeding, thus reducing population viability and evolutionary potential. However, multiple introductions and large founder numbers can prevent loss of genetic diversity and may therefore facilitate establishment success and range expansion. Based on a meta-analysis of 119 introductions of 85 species of plants and animals, we here show a quantitative effect of founding history on genetic diversity in introduced populations. Both introduction of large number of individuals and multiple introduction events significantly contribute to maintaining or even increasing genetic diversity in introduced populations. The most consistent loss of genetic diversity is seen in insects and mammals, whereas introduced plant populations tend to have higher genetic variation than native populations. However, loss or gain of genetic diversity does not explain variation in the extent to which plant or animal populations become invasive outside of their native range. These results provide strong support for predictions from population genetics theory with respect to patterns of genetic diversity in introduced populations, but suggest that invasiveness is not limited by genetic bottlenecks. [Uller, Tobias] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [Leimu, Roosa] Univ Oxford, Dept Plant Sci, Oxford OX1 3RB, England Uller, T (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. tobias.uller@zoo.ox.ac.uk Badyaev AV, 2009, PHILOS T R SOC B, V364, P1125, DOI 10.1098/rstb.2008.0285; Blackburn TM, 2009, OXFORD AVIAN BIOL, P1; Bomford M, 2009, BIOL INVASIONS, V11, P713, DOI 10.1007/s10530-008-9285-3; Briscoe D. A, 2010, INTRO CONSERVATION G; Cheverud JM, 1996, EVOLUTION, V50, P1042, DOI 10.1111/j.1558-5646.1996.tb02345.x; Clark A, 2006, PRINCIPLES POPULATIO; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Colautti RI, 2004, DIVERS DISTRIB, V10, P135, DOI 10.1111/j.1366-9516.2004.00061.x; Collyer ML, 2007, ECOL RES, V22, P902, DOI 10.1007/s11284-007-0385-9; Cooper H. M., 2009, HDB RES SYNTHESIS ME; Crawford KM, 2010, MOL ECOL, V19, P1253, DOI 10.1111/j.1365-294X.2010.04550.x; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Dupont L, 2010, BIOL INVASIONS, V12, P2707, DOI 10.1007/s10530-009-9676-0; Frankham R, 2005, BIOL CONSERV, V126, P131, DOI 10.1016/j.biocon.2005.05.002; Frankham R, 2010, BIOL CONSERV, V143, P1919, DOI 10.1016/j.biocon.2010.05.011; Gaither MR, 2010, MOL ECOL, V19, P1107, DOI 10.1111/j.1365-294X.2010.04535.x; Genton BJ, 2005, MOL ECOL, V14, P4275, DOI 10.1111/j.1365-294X.2005.02750.x; Gurevitch J., 2001, DESIGN ANAL ECOLOGIC, P347; Huff DD, 2010, CONSERV GENET, V11, P2379, DOI 10.1007/s10592-010-0124-6; JARMAN P, 1983, BIOL REV, V58, P485, DOI 10.1111/j.1469-185X.1983.tb00398.x; Jarvis JP, 2009, J EVOLUTION BIOL, V22, P1658, DOI 10.1111/j.1420-9101.2009.01776.x; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Kolbe JJ, 2004, NATURE, V431, P177, DOI 10.1038/nature02807; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Novak S. J., 2004, SPECIES INVASIONS IN, P201; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Ouborg NJ, 2010, CONSERV GENET, V11, P643, DOI 10.1007/s10592-009-0016-9; Pairon M, 2010, ANN BOT-LONDON, V105, P881, DOI 10.1093/aob/mcq065; Piertney SB, 2010, GENETICA, V138, P419, DOI 10.1007/s10709-008-9322-2; Reed DH, 2001, EVOLUTION, V55, P1095; Roman J, 2007, TRENDS ECOL EVOL, V22, P454, DOI 10.1016/j.tree.2007.07.002; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Rosenthal DM, 2008, MOL ECOL, V17, P4657, DOI 10.1111/j.1365-294X.2008.03844.x; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SAX DF, 2004, SPECIES INVASIONS IN; Simberloff D, 2009, ANNU REV ECOL EVOL S, V40, P81, DOI 10.1146/annurev.ecolsys.110308.120304; Suarez AV, 2008, AM NAT, V172, pS72, DOI 10.1086/588638; Suarez AV, 2008, MOL ECOL, V17, P351, DOI 10.1111/j.1365-294X.2007.03456.x; Thompson GM, 1922, NATURALIZATION ANIMA; Tsutsui ND, 2003, P NATL ACAD SCI USA, V100, P1078, DOI 10.1073/pnas.0234412100; Wares JP, 2005, SPECIES INVASIONS: INSIGHTS INTO ECOLOGY, EVOLUTION, AND BIOGEORGRAPHY, P229; Wilson JRU, 2009, TRENDS ECOL EVOL, V24, P136, DOI 10.1016/j.tree.2008.10.007; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825 47 47 48 4 93 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. NOV 2011 17 11 3478 3485 10.1111/j.1365-2486.2011.02509.x 8 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 836UA WOS:000296137000017 2019-02-21 J Liu, JH; Lummaa, V Liu, Jianghua; Lummaa, Virpi Age at first reproduction and probability of reproductive failure in women EVOLUTION AND HUMAN BEHAVIOR English Article Delayed reproduction; Sexual maturity; Life history; Lineage persistence PREINDUSTRIAL HUMAN-POPULATIONS; LIFE-HISTORY TRAITS; MATERNAL AGE; NATURAL-SELECTION; BIRTH-WEIGHT; FECUNDITY; FITNESS; SUCCESS; HUMANS; PARENTHOOD Life history theory predicts a trade-off between fitness benefits and costs of delaying age at first reproduction (AFR). In many human populations, maternal AFR has been increasingly delayed beyond sexual maturity over the past decades, raising a question of whether any fitness benefits accrued outweigh costs incurred. To investigate the cost benefit trade-off concerning AFR in women, we construct a theoretical model and test its predictions using pedigree data from historical Finnish mothers. The model predicts that the probability of reproductive failure (no offspring produced reaching breeding) will increase with AFR if the benefit with delaying in terms of improvement to offspring quality (i.e., breeding probability) cannot offset the cost from decline in offspring quantity. The data show that offspring quantity declined significantly with delayed reproduction, while offspring quality remained initially constant before declining when AFR was delayed beyond 30. Consistent with the theoretical model's predictions, reproductive failure probability increased markedly with delaying AFR after 30, independently of maternal socioeconomic status. Our study is the first to investigate the associations between delay in AFR after sexual maturity and changes in not only offspring quantity but also offspring quality and suggest a significant evolutionary disadvantage of delayed AFR beyond 30 for lineage persistence in a predemographic transition society. (C) 2011 Elsevier Inc. All rights reserved. [Liu, Jianghua; Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Liu, JH (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. jianghua.liu@sheffield.ac.uk University of Sheffield; Kone Foundation; European Research Council; Royal Society of London We thank Alexandra Alvergne, Andrew Beckerman, Fansuo Geng, Duncan Gillespie, Ben Hatchwell, Bobbi S. Low, Jenni Pettay, Ian Rickard, Matt Robinson, Andrew F. Russell, Jessica Stapley and Masao Yamashita for comments. We thank Lasse Iso-livari, Kimmo Pokkinen, Aino Siitonen and Timo Verho for collecting the genealogical data. We thank the University of Sheffield (JL), Kone Foundation (VL, JL), the European Research Council and the Royal Society of London (VL) for funding. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Buss D. M., 1999, EVOLUTIONARY PSYCHOL; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Crawley M. J., 2007, R BOOK; Faraway J. J., 2006, EXTENDING LINEAR MOD; Fisher R.A., 1999, GENETICAL THEORY NAT; Frejka T, 2006, DEMOGR RES, V15, P147, DOI 10.4054/DemRes.2006.15.6; Geronimus AT, 1996, SOC SCI MED, V42, P589, DOI 10.1016/0277-9536(95)00159-X; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Griffiths AJF, 2008, INTRO GENETIC ANAL; Hajnal J., 1965, POPULATION HIST ESSA, P101; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hill K., 1996, ACHE LIFE HIST ECOLO; Hoekstra R. J., 2005, EVOLUTION; Hollier LM, 2000, OBSTET GYNECOL, V96, P701, DOI 10.1016/S0029-7844(00)01019-X; HRDY SB, 1992, ETHOL SOCIOBIOL, V13, P409, DOI 10.1016/0162-3095(92)90011-R; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; Kannisto V., 1999, DEMOGR RES, V1, DOI [10.4054/DemRes.1999.1.1, DOI 10.4054/DEMRES.1999.1.1]; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; KAPLAN HS, 1995, HUMAN REPROD DECISIO, P96; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Lahdenpera M, 2007, P ROY SOC B-BIOL SCI, V274, P2437, DOI 10.1098/rspb.2007.0688; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LEE KS, 1988, AM J OBSTET GYNECOL, V158, P84, DOI 10.1016/0002-9378(88)90783-1; Liao TF, 2000, QUAL QUANT, V34, P137, DOI 10.1023/A:1004798429785; Low BS, 2003, BIODEMOGRAPHY OF HUMAN REPRODUCTION AND FERTILITY, P105; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; Lummaa V, 2001, P ROY SOC B-BIOL SCI, V268, P1977, DOI 10.1098/rspb.2001.1786; LUTTBEG B, 2000, HUMAN BEHAV ADAPTATI, P345; LUTZ W, 1987, FINNISH FERTILITY 17; Mace R, 1996, ETHOL SOCIOBIOL, V17, P263, DOI 10.1016/0162-3095(96)00044-1; Malthus Thomas, 1803, ESSAY PRINCIPLE POPU; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; MORING B, 1993, J FAM HIST, V18, P395, DOI 10.1177/036319909301800407; Moring B, 1996, CONTINUITY CHANGE, V11, P91, DOI 10.1017/S0268416000003106; Moring B., 2009, STEM FAMILY EURASIAN, P173; Mueller U, 2001, POPUL DEV REV, V27, P469, DOI 10.1111/j.1728-4457.2001.00469.x; MULDER MB, 1989, J BIOSOC SCI, V21, P179; MULDER MB, 1989, BEHAV ECOL SOCIOBIOL, V24, P145, DOI 10.1007/BF00292097; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Pettay JE, 2008, EVOLUTION, V62, P2297, DOI 10.1111/j.1558-5646.2008.00452.x; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; R Development Core Team, 2009, R LANG ENV STAT COMP; RAYMOND EG, 1994, BRIT J OBSTET GYNAEC, V101, P301, DOI 10.1111/j.1471-0528.1994.tb13614.x; Rickard IJ, 2007, P ROY SOC B-BIOL SCI, V274, P2981, DOI 10.1098/rspb.2007.1051; Roff Derek A., 1992; SCHWARTZ D, 1982, NEW ENGL J MED, V306, P404, DOI 10.1056/NEJM198202183060706; Sear R, 2000, P ROY SOC B-BIOL SCI, V267, P1641, DOI 10.1098/rspb.2000.1190; Sobotka T., 2004, THESIS U GRONINGEN; SOININEN AM, 1974, OLD TRADITIONAL AGR; Stearns S, 1992, EVOLUTION LIFE HIST; Tarin JJ, 1998, HUM REPROD, V13, P2371, DOI 10.1093/humrep/13.9.2371; VANLANDINGHAM MJ, 1988, AM J PUBLIC HEALTH, V78, P499, DOI 10.2105/AJPH.78.5.499; VANNOORDZAADSTRA BM, 1991, BMJ-BRIT MED J, V302, P1361, DOI 10.1136/bmj.302.6789.1361; VOLAND E, 1990, ETHOLOGY, V84, P144; Wirilander Kaarlo, 1974, HERRASVAKEA SUOMEN S; Wood J., 1994, DYNAMICS HUMAN REPRO 58 14 14 2 27 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. NOV 2011 32 6 433 443 10.1016/j.evolhumbehav.2010.10.007 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 834JL WOS:000295955500007 2019-02-21 J Gillath, O; Landau, MJ; Selcuk, E; Goldenberg, JL Gillath, Omri; Landau, Mark J.; Selcuk, Emre; Goldenberg, Jamie L. Effects of low survivability cues and participant sex on physiological and behavioral responses to sexual stimuli JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY English Article Sex; Death; Life history theory; Sexual selection; Implicit measures MORTALITY SALIENCE; LIFE; ATTACHMENT; CHILDHOOD; EVOLUTION; PRESSURE; STRESS; DEATH According to life history theory, environmental cues indicating that one's future survivability is low increase reproductive effort. This suggests that exposure to low survivability cues will increase people's preparedness to engage in sex. However, according to sexual selection theory and parental investment theory, evolutionary pressures favored a more conservative sexual strategy among women compared to men. We therefore hypothesized that men, but not women, would respond to low survivability cues with increased sexual preparedness. Accordingly, both subliminal and supraliminal death primes (as compared with control primes) led men, but not women, to exhibit increased physiological arousal in response to sexual images (Study 1), and stronger approach-oriented behavioral responses to sexual images (Study 2). Theoretical implications for life history theory are discussed. (C) 2011 Elsevier Inc. All rights reserved. [Gillath, Omri] Univ Kansas, Dept Psychol, Lawrence, KS 66045 USA; [Selcuk, Emre] Cornell Univ, Ithaca, NY 14853 USA; [Goldenberg, Jamie L.] Univ S Florida, Tampa, FL 33620 USA Gillath, O (reprint author), Univ Kansas, Dept Psychol, 1415 Jayhawk Blvd,Rm 518, Lawrence, KS 66045 USA. ogillath@ku.edu Gillath, Omri/0000-0001-8791-227X; Selcuk, Emre/0000-0002-2955-4221 Baumeister RF, 2001, PERS SOC PSYCHOL REV, V5, P242, DOI 10.1207/S15327957PSPR0503_5; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BOHLEN JG, 1984, ARCH INTERN MED, V144, P1745, DOI 10.1001/archinte.144.9.1745; Chen M, 1999, PERS SOC PSYCHOL B, V25, P215, DOI 10.1177/0146167299025002007; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 1998, J PERS, V66, P383, DOI 10.1111/1467-6494.00017; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FOX CA, 1969, J REPROD FERTIL, V19, P405; GADGIL M, 1972, AM NAT, V106, P14, DOI 10.1086/282748; GILLATH O, 2007, J SEX RES, V44, P1; Gillath O, 2010, EUR J SOC PSYCHOL, V40, P122, DOI 10.1002/ejsp.614; Goldenberg JL, 2002, J SEX RES, V39, P310, DOI 10.1080/00224490209552155; Goldenberg JL, 1999, J PERS SOC PSYCHOL, V77, P1173, DOI 10.1037/0022-3514.77.6.1173; Goldenberg JL, 2001, J EXP PSYCHOL GEN, V130, P427, DOI 10.1037//0096-3445.130.3.427; GRABER B, 1991, SEX ABUSE-J RES TR, V4, P151; GREENBERG J, 1994, J PERS SOC PSYCHOL, V67, P627, DOI 10.1037//0022-3514.67.4.627; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; James Long Company, 1999, IBI AN SYST; Jarvis B. G., 2002, DIRECTRT RES SOFTWAR; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Landau MJ, 2006, J PERS SOC PSYCHOL, V90, P129, DOI 10.1037/0022-3514.90.1.129; Lang PJ, 2005, A6 U FLOR CTR RES PS; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROFF DA, 2002, LIFE HIST EVOLUTION; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; SOLOMON S, 1991, ADV EXPT SOCIAL PSYC, V24, P91; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; WASSER SK, 2001, REPROD ECOLOGY HUMAN, P137; WATSON D, 1994, PANAS X MANUAL UNPUB; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 39 4 4 0 9 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0022-1031 J EXP SOC PSYCHOL J. Exp. Soc. Psychol. NOV 2011 47 6 1219 1224 10.1016/j.jesp.2011.05.003 6 Psychology, Social Psychology 833QO WOS:000295900200023 2019-02-21 J Cicero, L; Sivinski, J; Rull, J; Aluja, M Cicero, Lizette; Sivinski, John; Rull, Juan; Aluja, Martin Effect of larval host food substrate on egg load dynamics, egg size and adult female size in four species of braconid fruit fly (Diptera: Tephritidae) parasitoids JOURNAL OF INSECT PHYSIOLOGY English Article Reproductive investment; Egg-load dynamics; Tephritidae; Braconidae; Anastrepha ludens GENERALIZED LINEAR-MODELS; BODY-SIZE; FLIES DIPTERA; PHENOTYPIC PLASTICITY; BIOLOGICAL-CONTROL; ANASTREPHA SPP.; FITNESS CONSEQUENCES; VENTURIA-CANESCENS; OVIPOSITOR LENGTH; REACTION NORMS Life history theory predicts that individuals will allocate resources to different traits so as to maximize overall fitness. Because conditions experienced during early development can have strong downstream effects on adult phenotype and fitness, we investigated how four species of synovigenic, larval-pupal parasitoids that vary sharply in their degree of specialization (niche breadth) and life history (Diachasmimorpha longicaudata, Doryctobracon crawfordi, Opius hirtus and Utetes anastrephae), allocate resources acquired during the larval stage towards adult reproduction. Parasitoid larvae developed in a single host species reared on four different substrates that differed in quality. We measured parasitoid egg load at the moment of emergence and at 24 h, egg numbers over time, egg size, and also adult size. We predicted that across species the most specialized would have a lower capacity to respond to changes in host substrate quality than wasps with a broad host range, and that within species, females that emerged from hosts that developed in better quality substrates would have the most resources to invest in reproduction. Consistent with our predictions, the more specialized parasitoids were less plastic in some responses to host diet than the more generalist. However, patterns of egg load and size were variable across species. In general, there was a remarkable degree of reproductive effort-allocation constancy within parasitoid species. This may reflect more "time-limited" rather than "egg-limited" foraging strategies where the most expensive component of reproductive success is to locate and handle patchily-distributed and fruit-sequestered hosts. If so, egg costs, independent of degree of specialization, are relatively trivial and sufficient resources are available in fly larvae stemming from all of the substrates tested. (C) 2011 Elsevier Ltd. All rights reserved. [Cicero, Lizette; Rull, Juan; Aluja, Martin] Inst Ecol AC, Xalapa 91070, Veracruz, Mexico; [Sivinski, John] Ctr Med Agr & Vet Entomol, Gainesville, FL 32608 USA Cicero, L (reprint author), Inst Ecol AC, Km 2-5 Carretera Antigua A,Coatepec 351, Xalapa 91070, Veracruz, Mexico. liciju@gmail.com Cicero, Lizette/A-9848-2016; Aluja, Martin/Q-6810-2018 Cicero, Lizette/0000-0002-8486-5700; Aluja, Martin/0000-0002-2936-3011 Consejo Nacional de Ciencia y Tecnologia (CONACyT) [46846-Q]; Campana Nacional contra las Moscas de la Fruta (SAGARPA-IICA-INECOL); United States Department of Agriculture - Agricultural Research Service (USDA-ARS) This article is part of the Ph.D. Disseration of Lizette Cicero directed by Martin Aluja. Lizette Cicero acknowledges a fellowship by the Consejo Nacional de Ciencia y Tecnologia (CONACyT). We are grateful to Trevor Williams and two anonymous referees for many insightful suggestions for improvement and for identifying many weaknesses that guided us along the all-encompassing revision we ended up performing on a previous version of the manuscript. We thank Jovita Martinez Tlapa, Cecilia Arcos Martinez, Israel Peralta Mendez, Jesus Pale Pale, Brizia Gonzalez Luna, Carlo Sormani and Rafael Casas Ortega for technical assistance. This research was funded by CONACyT (46846-Q), Campana Nacional contra las Moscas de la Fruta (SAGARPA-IICA-INECOL), and the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). Aluja M, 2000, P ENTOMOL SOC WASH, V102, P802; ALUJA M, 1994, ANNU REV ENTOMOL, V39, P155, DOI 10.1146/annurev.en.39.010194.001103; ALUJA M, 1990, ENTOMOPHAGA, V35, P39, DOI 10.1007/BF02374299; Aluja M, 1998, ANN ENTOMOL SOC AM, V91, P821, DOI 10.1093/aesa/91.6.821; Aluja M, 2003, ENVIRON ENTOMOL, V32, P1377, DOI 10.1603/0046-225X-32.6.1377; Aluja M, 2008, CASOS CONTROL BIOL M, P193; Aluja M, 2009, BIOCONTROL SCI TECHN, V19, P49, DOI 10.1080/09583150802377373; Arakawa R, 2004, APPL ENTOMOL ZOOL, V39, P177, DOI 10.1303/aez.2004.177; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; Blough DK, 1999, J HEALTH ECON, V18, P153, DOI 10.1016/S0167-6296(98)00032-0; Blough OK, 2000, HLTH SERV OUTCOMES R, V1, P185, DOI DOI 10.1023/A:1012597123667; Cancino J, 2009, BIOCONTROL SCI TECHN, V19, P193, DOI 10.1080/09583150802377423; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Crawley M. J., 2007, R BOOK; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Eben A, 2000, ENVIRON ENTOMOL, V29, P87, DOI 10.1603/0046-225X-29.1.87; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Fischer K, 2002, OECOLOGIA, V131, P375, DOI 10.1007/s00442-002-0913-9; Foote R. H., 1993, HDB FRUIT FLIES DIPT; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 1996, OECOLOGIA, V107, P541, DOI 10.1007/BF00333946; Garcia-Medel D, 2007, BIOL CONTROL, V43, P12, DOI 10.1016/j.biocontrol.2007.06.008; Gauld I. D., 1988, HYMENOPTERA, P332; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HARVEY JA, 1994, ECOLOGY, V75, P1420, DOI 10.2307/1937465; Harvey JA, 2004, ECOL ENTOMOL, V29, P35, DOI 10.1111/j.0307-6946.2004.00568.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Jenner W, 2006, BASIC APPL ECOL, V7, P461, DOI 10.1016/j.baae.2005.07.010; JERVIS M, 1986, BIOL REV, V61, P461; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kaspi R, 2002, PHYSIOL ENTOMOL, V27, P29, DOI 10.1046/j.1365-3032.2001.00264.x; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; Lopez M, 1999, BIOL CONTROL, V15, P119, DOI 10.1006/bcon.1999.0711; Montoya P, 2000, BIOL CONTROL, V18, P216, DOI 10.1006/bcon.2000.0819; Nestel D, 2003, ANN ENTOMOL SOC AM, V96, P237, DOI 10.1603/0013-8746(2003)096[0237:LCAPPD]2.0.CO;2; ONEILL KM, 1990, J ZOOL, V220, P115, DOI 10.1111/j.1469-7998.1990.tb04297.x; Otto M, 1998, OECOLOGIA, V117, P353, DOI 10.1007/s004420050668; Ozkan C, 2007, J PEST SCI, V80, P79, DOI 10.1007/s10340-006-0155-4; PLUMMER CC, 1941, TECHNICAL B USDA, V775, P1; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; R Development Core Team, 2010, R LANG ENV STAT COMP; Rivero A, 2001, P ROY SOC B-BIOL SCI, V268, P1231, DOI 10.1098/rspb.2001.1645; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; Sarfraz M, 2008, BIOL CONTROL, V44, P42, DOI 10.1016/j.biocontrol.2007.10.023; SENRAYAN R, 1991, J APPL ENTOMOL, V112, P237, DOI 10.1111/j.1439-0418.1991.tb01053.x; Shanbhag BA, 2000, COPEIA, P1062; Sivinski J, 1997, ANN ENTOMOL SOC AM, V90, P604, DOI 10.1093/aesa/90.5.604; Sivinski J, 2000, BIOL CONTROL, V18, P258, DOI 10.1006/bcon.2000.0836; Sivinski J, 2003, FLA ENTOMOL, V86, P143, DOI 10.1653/0015-4040(2003)086[0143:TEOOLI]2.0.CO;2; Sivinski J, 2001, ANN ENTOMOL SOC AM, V94, P886, DOI 10.1603/0013-8746(2001)094[0886:OLIAGO]2.0.CO;2; SIVINSKI JM, 1992, J INSECT BEHAV, V5, P491, DOI 10.1007/BF01058194; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Steigenga MJ, 2005, J EVOLUTION BIOL, V18, P281, DOI 10.1111/j.1420-9101.2004.00855.x; Strand MR, 2000, PARASITOID POPULATION BIOLOGY, P139; THOMPSON JD, 1991, TRENDS ECOL EVOL, V6, P246, DOI 10.1016/0169-5347(91)90070-E; Thorne AD, 2006, P ROY SOC B-BIOL SCI, V273, P1099, DOI 10.1098/rspb.2005.3416; URRUTIA C, 2007, ENTOMOLOGIA EXPT APP, V123, P63, DOI DOI 10.1111/J.1570-7458.2007.00526.X; WALLIN H, 1992, ENTOMOL EXP APPL, V65, P129, DOI 10.1111/j.1570-7458.1992.tb01636.x; Wang XG, 2004, BEHAV ECOL SOCIOBIOL, V56, P513, DOI 10.1007/s00265-004-0829-y; WEDDERBURN RWM, 1974, BIOMETRIKA, V61, P439, DOI 10.1093/biomet/61.3.439; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHARTON RA, 1983, ANN ENTOMOL SOC AM, V76, P721, DOI 10.1093/aesa/76.4.721; Wheeler D, 1996, ANNU REV ENTOMOL, V41, P407, DOI 10.1146/annurev.en.41.010196.002203; Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 73 12 12 2 31 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 J INSECT PHYSIOL J. Insect Physiol. NOV 2011 57 11 1471 1479 10.1016/j.jinsphys.2011.07.014 9 Entomology; Physiology; Zoology Entomology; Physiology; Zoology 835YU WOS:000296074000003 21819991 2019-02-21 J Pontoppidan, MB; Petersen, PM; Philipp, M Pontoppidan, M. -B.; Petersen, P. M.; Philipp, M. For she that hath, to her shall be given ... Implications of flowering in Anemone nemorosa L. PLANT BIOLOGY English Article Allocation; Anemone nemorosa L.; plasticity; preformation; trade-offs LIFE-HISTORY EVOLUTION; ORGAN PREFORMATION; RESOURCE-ALLOCATION; TRADE-OFFS; LONG-TERM; REPRODUCTION; COSTS; GROWTH; RANUNCULACEAE; HERBS We looked for life-history trade-offs between flowering, vegetative growth and somatic maintenance in the common woodland herb Anemone nemorosa. A. nemorosa forms a horizontal rhizome system consisting of previously formed annual segments and terminated by a flowering or non-flowering shoot. Resources acquired by the aboveground parts are used for flowering, seed production, storage and growth of the annual segments. Resources stored in the rhizome during the growing period are used for preformation of buds, somatic maintenance between two growing periods and development of aboveground parts in the following spring. We hypothesised that the decision to invest in flower buds depends on the amount of resources stored in the recently formed annual segment. We also hypothesised a trade-off between flowering and segment growth and, finally, as a consequence, we expected individual rhizomes to alternate between the flowering and the non-flowering state. We found that segments producing flower buds were significantly longer than non-flowering segments, indicating that resource level influences the function of the preformed buds. Contrary to our expectations, we found flowering rhizomes produced longer annual segments than non-flowering rhizomes. We suggest the larger leaf area of flowering rhizomes and occasional abortion of flowers or seeds as possible mechanisms behind this pattern. Our study shows that even though the decision to produce a flower bud is taken in another time-frame than that in which the actual flowering and fruiting takes place, an ostensibly inexpedient decision is changed to a neutral or even an advantageous incident. [Pontoppidan, M. -B.; Petersen, P. M.; Philipp, M.] Univ Copenhagen, Dept Biol, Sect Ecol & Evolut, DK-2100 Copenhagen, Denmark Pontoppidan, MB (reprint author), Univ Copenhagen, Dept Biol, Sect Ecol & Evolut, Univ Pk 15, DK-2100 Copenhagen, Denmark. mbp@bio.ku.dk Alpert P, 2002, EVOL ECOL, V16, P285, DOI 10.1023/A:1019684612767; Andersson S, 2005, AM J BOT, V92, P279, DOI 10.3732/ajb.92.2.279; BIERZYCHUDEK P, 1982, NEW PHYTOL, V90, P757, DOI 10.1111/j.1469-8137.1982.tb03285.x; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Duchoslav M, 2009, POL J ECOL, V57, P15; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Geber MA, 1997, J ECOL, V85, P211, DOI 10.2307/2960652; Geber Monica A., 1997, P113, DOI 10.1016/B978-012083490-7/50006-2; Horibata S, 2007, ANN BOT-LONDON, V100, P565, DOI 10.1093/aob/mcm131; INOUYE DW, 1986, AM J BOT, V73, P1535, DOI 10.2307/2443919; Lord J, 1998, NEW ZEAL J ECOL, V22, P25; Muller N, 2000, PLANT SYST EVOL, V221, P69, DOI 10.1007/BF01086381; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Philipp M, 2007, PLANT SPEC BIOL, V22, P23, DOI 10.1111/j.1442-1984.2007.00172.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Shefferson RP, 2007, J ECOL, V95, P865, DOI 10.1111/j.1365-2745.2007.01263.x; SHIRREFFS DA, 1985, J ECOL, V73, P1005, DOI 10.2307/2260164; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Suzuki Jun-ichirou, 1999, Plant Species Biology, V14, P11, DOI 10.1046/j.1442-1984.1999.00002.x; Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x; TUOMI J, 1983, AM ZOOL, V23, P25; Tyler G, 2001, ANN BOT-LONDON, V87, P623, DOI 10.1006/anbo.2001.1383; Watson MA, 1997, ECOLOGY AND EVOLUTION OF CLONAL PLANTS, P31; Werger MJA, 2006, OECOLOGIA, V147, P396, DOI 10.1007/s00442-005-0280-4; Whigham DE, 2004, ANNU REV ECOL EVOL S, V35, P583, DOI 10.1146/annurev.ecolsys.35.021103.105708; Worley AC, 1999, AM J BOT, V86, P1136, DOI 10.2307/2656977 26 3 3 1 13 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1435-8603 PLANT BIOLOGY Plant Biol. NOV 2011 13 6 842 847 10.1111/j.1438-8677.2011.00442.x 6 Plant Sciences Plant Sciences 835JD WOS:000296031800003 21973160 2019-02-21 J Hou, C; Bolt, KM; Bergman, A Hou, Chen; Bolt, Kendra M.; Bergman, Aviv A general model for ontogenetic growth under food restriction PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article energy allocation; food restriction; growth; metabolism CHRONIC CALORIC RESTRICTION; ENERGY-EXPENDITURE; METABOLIC-RATE; DIETARY RESTRICTION; RHESUS-MONKEYS; LIFE-SPAN; BODY-TEMPERATURE; JAPANESE-QUAIL; PHYSIOLOGICAL VARIABLES; FEED RESTRICTION Food restriction (FR) retards animals' growth. Understanding the underlying mechanisms of this phenomenon is important to conceptual problems in life-history theory, as well as to applied problems in animal husbandry and biomedicine. Despite a considerable amount of empirical data published since the 1930s, there is no relevant general theoretical framework that predicts how animals vary their energy budgets and life-history traits under FR. In this paper, we develop such a general quantitative model based on fundamental principles of metabolic energy allocation during ontogeny. This model predicts growth curves under varying conditions of FR, such as the compensatory growth, different age at which FR begins, its degree and its duration. Our model gives a quantitative explanation for the counter-intuitive phenomenon that under FR, lower body temperature and lower metabolism lead to faster growth and larger adult size. This model also predicts that the animals experiencing FR reach the same fraction of their adult mass at the same age as their ad libitum counterparts. All predictions are well supported by empirical data from mammals and birds of varying body size, under different conditions of FR. [Hou, Chen; Bolt, Kendra M.; Bergman, Aviv] Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA Bergman, A (reprint author), Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA. aviv.bergman@einstein.yu.edu Hou, Chen/0000-0002-3665-225X Ellison Medical Foundation [AG-SS-2235]; NIH [R01-AG028872, P01-AG027734] This work has been supported by grants from the Ellison Medical Foundation Senior Scholar Award AG-SS-2235, and NIH grants R01-AG028872 and P01-AG027734. We gratefully acknowledge the careful reviews and excellent suggestions of two anonymous reviewers of earlier versions of this manuscript. ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; BALLOR DL, 1991, J APPL PHYSIOL, V71, P801; Blanc S, 2003, J CLIN ENDOCR METAB, V88, P16, DOI 10.1210/jc.2002-020405; BOYLE PC, 1981, AM J PHYSIOL, V241, pR392; BRODY S, 1964, BIOENERGETICS GROWTH; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Charnov EL, 2001, EVOL ECOL RES, V3, P521; Cummins K. W, 1971, Mitt int Verein theor angew Limnol, VNo. 18, P1; DeLany JP, 1999, J GERONTOL A-BIOL, V54, pB5, DOI 10.1093/gerona/54.1.B5; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; DUFFY PH, 1990, CHRONOBIOL INT, V7, P113, DOI 10.3109/07420529009056963; DUFFY PH, 1989, MECH AGEING DEV, V48, P117, DOI 10.1016/0047-6374(89)90044-4; Duffy PH, 1997, ENVIRON RES, V73, P242, DOI 10.1006/enrs.1997.3714; DULLOO AG, 1993, INT J OBESITY, V17, P115; Ehrhardt N, 2005, J COMP PHYSIOL B, V175, P193, DOI 10.1007/s00360-005-0475-3; Engelbregt MJT, 2000, PEDIATR RES, V48, P803, DOI 10.1203/00006450-200012000-00017; Evans SA, 2005, J APPL PHYSIOL, V99, P1336, DOI 10.1152/japplphysiol.01380.2004; Evans SA, 2005, AM J PHYSIOL-REG I, V288, pR1468, DOI 10.1152/ajpregu.000602.2004; EVEN PC, 1993, BRIT J NUTR, V70, P421, DOI 10.1079/BJN19930136; Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781; Ferguson M, 2007, MECH AGEING DEV, V128, P539, DOI 10.1016/j.mad.2007.07.005; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GLASS AR, 1976, PEDIATR RES, V10, P951, DOI 10.1203/00006450-197611000-00009; Hassan SM, 2003, POULTRY SCI, V82, P1163, DOI 10.1093/ps/82.7.1163; HOCKING PM, 1992, BRIT POULTRY SCI, V33, P253, DOI 10.1080/00071669208417464; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; JIN YH, 1994, MECH AGEING DEV, V75, P59, DOI 10.1016/0047-6374(94)90028-0; KIRKWOOD RN, 1987, P NUTR SOC, V46, P177, DOI 10.1079/PNS19870026; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KOIZUMI A, 1992, J NUTR, V122, P1446; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159; Lawler DF, 2008, BRIT J NUTR, V99, P793, DOI 10.1017/S0007114507871686; LETO S, 1976, J GERONTOL, V31, P149, DOI 10.1093/geronj/31.2.149; MACLEOD MG, 1978, BRIT POULTRY SCI, V19, P349, DOI 10.1080/00071667808416487; MACLEOD MG, 1979, BRIT POULTRY SCI, V20, P521, DOI 10.1080/00071667908416616; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; MCCARTER R, 1992, ENDOCRINOL METAB, V26, pE448; MCCARTER RJ, 1989, AM J PHYSIOL, V257, pE175; MCCARTER RJM, 1995, CLIN GERIATR MED, V11, P553, DOI 10.1016/S0749-0690(18)30256-8; McCay CM, 1935, J NUTR, V10, P63; MERRY BJ, 1979, J REPROD FERTIL, V57, P253; MOHAN PF, 1985, NUTR RES, V5, P1409, DOI 10.1016/S0271-5317(85)80051-8; Moscrip TD, 2000, J GERONTOL A-BIOL, V55, pB373, DOI 10.1093/gerona/55.8.B373; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; Nagy KA, 1999, ANNU REV NUTR, V19, P247, DOI 10.1146/annurev.nutr.19.1.247; NELSON W, 1986, J NUTR, V116, P2244; ORTIGUES I, 1995, BRIT J NUTR, V73, P209, DOI 10.1079/BJN19950024; Ottinger MA, 2005, MECH AGEING DEV, V126, P967, DOI 10.1016/j.mad.2005.03.017; PACHECO DMG, 1993, J NUTR, V123, P90; Peters R.H., 1983, P1; Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2; RAMSEY JJ, 1997, AM J PHYSIOL-ENDOC M, V35, pE901; Ricklefs RE, 2003, FUNCT ECOL, V17, P384, DOI 10.1046/j.1365-2435.2003.00745.x; Rikke BA, 2003, MECH AGEING DEV, V124, P663, DOI 10.1016/S0047-6374(03)00003-4; Rising R, 2006, NUTR METABOLISM, V3, DOI 10.1186/1743-7075-3-11; Robbins C. T., 1983, WILDLIFE FEEDING NUT; ROBINSON J J, 1990, Nutrition Research Reviews, V3, P253, DOI 10.1079/NRR19900015; ROFF D, 2001, LIFE HIST EVOLUTION; ROTHWELL NJ, 1982, BIOSCIENCE REP, V2, P543, DOI 10.1007/BF01314214; Schoener T. W., 1971, A Rev Ecol Syst, V2, P369, DOI 10.1146/annurev.es.02.110171.002101; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Stearns S, 1992, EVOLUTION LIFE HIST; TAYLOR SCS, 1968, ANIM PROD, V10, P157, DOI 10.1017/S0003356100026106; van der Ziel CE, 2001, PHYSIOL BIOCHEM ZOOL, V74, P52, DOI 10.1086/319314; Weed JL, 1997, PHYSIOL BEHAV, V62, P97, DOI 10.1016/S0031-9384(97)00147-9; Weindruch R., 1988, RETARDATION AGING DI; WEINDRUCH RH, 1979, FED PROC, V38, P2007; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Zubair AK, 1996, WORLD POULTRY SCI J, V52, P189, DOI 10.1079/WPS19960015; Zuo WY, 2009, SCIENCE, V325, DOI 10.1126/science.1171949 72 16 17 2 24 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 7 2011 278 1720 2881 2890 10.1098/rspb.2011.0047 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 811VS WOS:000294244900004 21345868 Green Published, Bronze 2019-02-21 J Fujiwara, M; Pfeiffer, G; Boggess, M; Day, S; Walton, J Fujiwara, Masami; Pfeiffer, Georgia; Boggess, May; Day, Sarah; Walton, Jay Coexistence of competing stage-structured populations SCIENTIFIC REPORTS English Article FOOD WEBS; ECOLOGY; MODELS This paper analyzes the stability of a coexistence equilibrium point of a model for competition between two stage-structured populations. In this model, for each population, competition for resources may affect any one of the following population parameters: reproduction, juvenile survival, maturation rate, or adult survival. The results show that the competitive strength of a population is affected by (1) the ratio of the population parameter influenced by competition under no resource limitation (maximum compensatory capacity) over the same parameter under a resource limitation due to competition (equilibrium rate) and (2) the ratio of interspecific competition over intraspecific competition; this ratio was previously shown to depend on resource-use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies of organisms play an important role in coexistence. [Fujiwara, Masami] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Pfeiffer, Georgia; Boggess, May; Walton, Jay] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA; [Pfeiffer, Georgia; Day, Sarah] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA Fujiwara, M (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA. fujiwara@tamu.edu Fujiwara, Masami/C-3115-2012 Fujiwara, Masami/0000-0002-9255-6043 King Abdullah University of Science and Technology (KAUST) [KUS-C1-016-04]; NSF [DMS-0850470, DMS-0811370] We thank editor and anonymous reviewers for providing comments. MF and JW were supported in part by Award No. KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). GP, MB, and JW were supported in part by the NSF REU program DMS-0850470. GP and SD were supported by NSF DMS-0811370. Beverton R.J.H., 1957, DYNAMICS EXPLOITED F; Caswell H., 2001, MATRIX POPULATION MO; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; COHEN JE, 1993, ECOLOGY, V74, P252, DOI 10.2307/1939520; Cohen JE, 2009, P NATL ACAD SCI USA, V106, P22335, DOI 10.1073/pnas.0910582106; CUSHING JM, 2007, J BIOL DYNAM, V1, P1, DOI DOI 10.1080/17513750601125705; Gause GF, 1932, J EXP BIOL, V9, P389; HARDIN G, 1960, SCIENCE, V131, P1292, DOI 10.1126/science.131.3409.1292; HASSELL MP, 1976, THEOR POPUL BIOL, V9, P202, DOI 10.1016/0040-5809(76)90045-9; Hubbell SP, 1997, CORAL REEFS, V16, pS9, DOI 10.1007/s003380050237; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171; Loreau M, 2001, SCIENCE, V294, P804, DOI 10.1126/science.1064088; Lotka AJ, 1920, P NATL ACAD SCI USA, V6, P410, DOI 10.1073/pnas.6.7.410; Moll JD, 2008, AM NAT, V171, P839, DOI 10.1086/587517; Mougi A, 2005, ECOL RES, V20, P581, DOI 10.1007/s11284-005-0070-9; Neubert MG, 2000, J MATH BIOL, V41, P103, DOI 10.1007/s002850070001; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Rudolf VHW, 2011, ECOL LETT, V14, P75, DOI 10.1111/j.1461-0248.2010.01558.x; Stearns S, 1992, EVOLUTION LIFE HIST; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Yodzis P, 2000, ECOLOGY, V81, P261, DOI 10.2307/177149 23 6 6 0 14 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2045-2322 SCI REP-UK Sci Rep OCT 5 2011 1 107 10.1038/srep00107 8 Multidisciplinary Sciences Science & Technology - Other Topics 835SF WOS:000296055400001 22355624 DOAJ Gold, Green Published 2019-02-21 J Charnov, EL; Warne, R Charnov, Eric L.; Warne, Robin Average adult size in female lizards EVOLUTIONARY ECOLOGY RESEARCH English Article Bertalanffy growth; growth curve; indeterminate growth; life-history strategy; r/K selection LIFE-HISTORIES Background: In organisms with indeterminate growth, the average size ((W) over bar in mass, (L) over bar in length) of an adult is a problem in life-history evolution because it involves the size at first reproduction, W-alpha (or L-alpha), as well as the additional growth thereafter, which reflects the balance between allocation of personal production to reproduction versus growth. Theory: Life-history evolution theory is used to predict that the average adult length (L) over bar for indeterminate growing female lizards should be about 1.2 times the body length at first reproduction, L-alpha within non-growing (r = 0) populations. Test: (L) over bar and L-alpha are estimated from field samples in 123 populations of 99 species. Results: The average ratio, (L) over bar /L-alpha, is 1.19 with a standard error for the mean of 0.008. The ratio does not correlate with L-alpha itself. Absence of correlation shows that r approximate to 0 even for small-bodied species, which, in turn, rejects the hypothesis that small-bodied species of lizards are r-selected compared with large-bodied species. [Charnov, Eric L.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA; [Warne, Robin] So Illinois Univ, Dept Zool, Carbondale, IL 62901 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rlc@unm.edu Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov EL, 2009, EVOL ECOL RES, V11, P983; Charnov Eric L., 1993, P1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; TURNER FB, 1970, J ANIM ECOL, V39, P505, DOI 10.2307/2985 7 1 1 1 11 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. OCT 2011 13 7 753 757 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 962JU WOS:000305542200007 2019-02-21 J Fischer, M; Weyand, A; Rudmann-Maurer, K; Stocklin, J Fischer, Markus; Weyand, Anne; Rudmann-Maurer, Katrin; Stoecklin, Juerg Adaptation of Poa alpina to altitude and land use in the Swiss Alps ALPINE BOTANY English Article Alpine grassland; Common garden experiment; Phenotypic plasticity; Quantitative genetic diversity; Reproduction PRIMARY SUCCESSION GRADIENT; LIFE-HISTORY EVOLUTION; GENETIC DIVERSITY; LOCAL ADAPTATION; SPECIES-DIVERSITY; CLONAL PLANT; GRASSLAND COMMUNITIES; VIVIPARA L; POPULATIONS; L. Current land use and climate change are prompting questions about the ability of plants to adapt to such environmental change. Therefore, we experimentally addressed plant performance and quantitative-genetic diversity of the common Alpine Meadow Grass Poa alpina. We asked how land use and altitude affect the occurrence of P. alpina in the field and whether its common- garden performance suggests adaptation to conditions at plant origin and differences in quantitative genetic diversity among plant origins. Among 216 candidate grassland sites of different land use and altitude from 12 villages in the Swiss Alps, P. alpina occurred preferentially in fertilized and grazed sites and at higher elevations. In a common garden at 1,500 m asl, we grew two plants of [ 600 genotypes representing 78 grassland sites. After 2 years, nearly 90% of all plants had reproduced. In agreement with adaptive advantages of vegetative reproduction at higher altitudes, only 23% of reproductive plants from lower altitudes reproduced via vegetative bulbils, but 55% of plants from higher altitudes. In agreement with adaptive advantages of reproduction in grazed sites, allocation to reproductive biomass was higher in plants from grazed grasslands than from mown ones. For 53 grasslands, we also investigated broad-sense heritability H-2, which was significant for all studied traits and twice as high for grazed as for mown grasslands. Moreover, possibly associated with their higher landscape diversity, H-2 was higher for sites of villages of Romanic cultural tradition than for those of Germanic and Walser traditions. We suggest promoting diverse land use regimes to conserve not only landscape and plant species diversity, but also adaptive genetic differentiation and heritable genetic variation. [Fischer, Markus] Univ Bern, Inst Plant Sci, Bot Garden, CH-3013 Bern, Switzerland; [Weyand, Anne] Univ Zurich, Inst Environm Sci & Evolut, CH-8057 Zurich, Switzerland; [Rudmann-Maurer, Katrin; Stoecklin, Juerg] Univ Basel, Inst Bot, CH-4056 Basel, Switzerland; [Fischer, Markus] Univ Bern, Oeschger Ctr, CH-3013 Bern, Switzerland Fischer, M (reprint author), Univ Bern, Inst Plant Sci, Bot Garden, Altenbergrain 21, CH-3013 Bern, Switzerland. markus.fischer@ips.unibe.ch Stocklin, Jurg/F-5029-2012; Fischer, Markus/C-6411-2008 Fischer, Markus/0000-0002-5589-5900 Swiss National Science Foundation SNF [4048-064494/1] We are grateful to Christine and Kai HuovinenHufschmid for providing land and care for our plants. We also thank numerous student workers for their great help in the field and lab, all municipalities and farmers for the permission to work on their land, and Mark van Kleunen, Oliver Bossdorf and two anonymous reviewers for helpful comments on previous drafts of the manuscript. This study was financed by the Swiss National Science Foundation SNF (grant 4048-064494/1 within the National Research Program 48 "Landscapes and Habitats of the Alps"). Abrahamson W. G., 1980, DEMOGRAPHY EVOLUTION, P89; Assefa K, 2001, HEREDITAS, V134, P103, DOI 10.1111/j.1601-5223.2001.00103.x; Bachmann MA, 1980, THESIS U ZURICH ZURI; Batzing W, 1991, ALPEN ENTSTEHUNG GEF, P33; Batzing W., 2003, ALPEN GESCH ZUKUNFT; Batzing Werner, 1993, SOZIOOKONOMISCHE STR; BILLINGS WD, 1974, ARCTIC ALPINE ENV, P403; Bliss L, 1972, ANNU REV ECOL SYST, V2, P405; Burnham K. P, 2002, MODEL SELECTION MULT; Byars SG, 2007, EVOLUTION, V61, P2925, DOI 10.1111/j.1558-5646.2007.00248.x; Byars SG, 2009, INT J PLANT SCI, V170, P906, DOI 10.1086/599238; Byars SG, 2009, ANN BOT-LONDON, V103, P885, DOI 10.1093/aob/mcp018; Conert H.J., 1998, GUSTAV HEGI ILLUSTRI, P690; Duckert-Henriod M. M., 1987, CONTRIBUTION CYTOTAX; Ellenberg H, 1996, VEGETATION MITTELEUR; Ellenberg H, 1992, SCRIPTA GEOBOTANICA; Ellmer M, 2011, EVOL ECOL, V25, P509, DOI 10.1007/s10682-010-9417-y; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fischer M, 2004, J EVOLUTION BIOL, V17, P331, DOI 10.1046/j.1420-9101.2003.00677.x; Fischer M, 2001, EVOL ECOL, V15, P565, DOI 10.1023/A:1016013721469; Fischer M, 2002, BIOL CONSERV, V104, P1, DOI 10.1016/S0006-3207(01)00149-5; Fischer M, 2008, MT RES DEV, V28, P148, DOI 10.1659/mrd.0964; GEDGE KE, 1994, J VEG SCI, V5, P99, DOI 10.2307/3235643; Gimenez-Benavides L, 2007, ANN BOT-LONDON, V99, P723, DOI 10.1093/aol/mcm007; Gomez JM, 2001, J ARID ENVIRON, V49, P855, DOI 10.1006/jare.2001.0798; Gonzalo-Turpin H, 2009, J ECOL, V97, P742, DOI 10.1111/j.1365-2745.2009.01509.x; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; HARMER R, 1978, NEW PHYTOL, V81, P745, DOI 10.1111/j.1469-8137.1978.tb01649.x; Hautier Y, 2009, J PLANT ECOL-UK, V2, P125, DOI 10.1093/jpe/rtp011; HEIDE OM, 1989, ARCTIC ALPINE RES, V21, P305, DOI 10.2307/1551570; Kikvidze Z, 2011, ALPINE BOT, V121, P63, DOI 10.1007/s00035-010-0085-x; Kolliker R, 1998, MOL ECOL, V7, P1557, DOI 10.1046/j.1365-294x.1998.00486.x; Korner C, 2003, ALPINE PLANT LIFE FU; Landolt E., 1977, OKOLOGISCHE ZEIGERWE; Leimu R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004010; Lennartsson T, 1998, ECOLOGY, V79, P1061, DOI 10.2307/176601; Machon N, 2001, BIODIVERS CONSERV, V10, P1543, DOI 10.1023/A:1011816610775; Marcante S, 2009, ANN BOT-LONDON, V103, P1129, DOI 10.1093/aob/mcp047; Maurer K, 2006, BIOL CONSERV, V130, P438, DOI 10.1016/j.biocon.2006.01.005; Maurer K, 2005, MOL ECOL NOTES, V5, P719, DOI 10.1111/j.1471-8286.2005.01019.x; Meirmans PG, 2003, J EVOLUTION BIOL, V16, P343, DOI 10.1046/j.1420-9101.2003.00515.x; MUNTZING A, 1980, HEREDITAS, V92, P291; MUNTZING ARNE, 1933, HEREDITAS, V17, P131; Odat N, 2004, MOL ECOL, V13, P1251, DOI 10.1111/j.1365-294X.2004.02115.x; Odat N, 2010, J PLANT ECOL, V3, P41, DOI 10.1093/jpe/rtp017; Olsson EGA, 2000, LANDSCAPE ECOL, V15, P155, DOI 10.1023/A:1008173628016; Pierce S, 2000, J EXP BOT, V51, P1705, DOI 10.1093/jexbot/51.351.1705; Reisch C, 2005, BASIC APPL ECOL, V6, P35, DOI 10.1016/j.baae.2004.09.004; Reisch C, 2003, FLORA, V198, P321, DOI 10.1078/0367-2530-00103; Reisch C, 2009, EVOL ECOL, V23, P753, DOI 10.1007/s10682-008-9270-4; Rudmann-Maurer K, 2008, BASIC APPL ECOL, V9, P494, DOI 10.1016/j.baae.2007.08.005; Rudmann-Maurer K, 2007, ANN BOT-LONDON, V100, P1249, DOI 10.1093/aob/mcm203; Scheepens JF, 2010, OECOLOGIA, V164, P141, DOI 10.1007/s00442-010-1650-0; SCHWARZENBACH FH, 1953, EXPERIENTIA, V9, P96, DOI 10.1007/BF02178333; Silvertown J., 2001, INTRO PLANT POPULATI; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; Steiner AM, 1997, PLANT VAR SEEDS, V10, P129; Stocklin J, 2009, BOT HELV, V119, P125, DOI 10.1007/s00035-009-0065-1; Theurillat J.-P., 2003, VVolume 167, P185; Trtikova M, 2010, ECOGRAPHY, V33, P556, DOI 10.1111/j.1600-0587.2009.05708.x; van Kleunen M, 2004, BASIC APPL ECOL, V5, P173, DOI 10.1078/1439-1791-00225; van Kleunen M, 2001, OIKOS, V94, P515, DOI 10.1034/j.1600-0706.2001.940313.x; Vellend M, 2004, ECOLOGY, V85, P3043, DOI 10.1890/04-0435; Vellend M, 2005, ECOL LETT, V8, P767, DOI 10.1111/j.1461-0248.2005.00775.x; Winkler E, 2010, ARCT ANTARCT ALP RES, V42, P227, DOI 10.1657/1938-4246-42.2.227 66 16 16 0 53 SPRINGER BASEL AG BASEL PICASSOPLATZ 4, BASEL, 4052, SWITZERLAND 1664-2201 ALPINE BOT Alp. Bot. OCT 2011 121 2 91 105 10.1007/s00035-011-0096-2 15 Plant Sciences Plant Sciences 889UU WOS:000300100700003 2019-02-21 J Segner, H Segner, Helmut Moving beyond a descriptive aquatic toxicology: The value of biological process and trait information AQUATIC TOXICOLOGY English Article Biological response profile; Toxicity pathway; Phenotypic trait; Effect propgataion; Multiple stress LIFE-HISTORY STRATEGIES; ENDOCRINE DISRUPTION; FISH POPULATIONS; RISK-ASSESSMENT; TRACE ORGANICS; CLIMATE-CHANGE; ECOTOXICOLOGY; TOXICITY; ECOLOGY; ENVIRONMENT In order to improve the ability to link chemical exposure to toxicological and ecological effects, aquatic toxicology will have to move from observing what chemical concentrations induce adverse effects to more explanatory approaches, that are concepts which build on knowledge of biological processes and pathways leading from exposure to adverse effects, as well as on knowledge on stressor vulnerability as given by the genetic, physiological and ecological (e.g., life history) traits of biota. Developing aquatic toxicology in this direction faces a number of challenges, including (i) taking into account species differences in toxicant responses on the basis of the evolutionarily developed diversity of phenotypic vulnerability to environmental stressors, (ii) utilizing diversified biological response profiles to serve as biological read across for prioritizing chemicals, categorizing them according to modes of action, and for guiding targeted toxicity evaluation; (iii) prediction of ecological consequences of toxic exposure from knowledge of how biological processes and phenotypic traits lead to effect propagation across the levels of biological hierarchy; and (iv) the search for concepts to assess the cumulative impact of multiple stressors. An underlying theme in these challenges is that, in addition to the question of what the chemical does to the biological receptor, we should give increasing emphasis to the question how the biological receptor handles the chemicals, i.e., through which pathways the initial chemical-biological interaction extends to the adverse effects, how this extension is modulated by adaptive or compensatory processes as well as by phenotypic traits of the biological receptor. (C) 2011 Elsevier B.V. All rights reserved. Univ Bern, Vetsuisse Fac, Ctr Fish & Wildlife Hlth, CH-3001 Bern, Switzerland Segner, H (reprint author), Univ Bern, Vetsuisse Fac, Ctr Fish & Wildlife Hlth, POB 8466, CH-3001 Bern, Switzerland. Helmut.Segner@vetsuisse.unibe.ch Segner, Helmut/D-5714-2014 Segner, Helmut/0000-0002-1783-1295 Altenburger R, 2004, ENVIRON SCI TECHNOL, V38, P6353, DOI 10.1021/es049528k; Ankley GT, 2009, AQUAT TOXICOL, V92, P168, DOI 10.1016/j.aquatox.2009.01.013; Backhaus T, 2004, ENVIRON SCI TECHNOL, V38, P6363, DOI 10.1021/es0497678; Blanck H., 1988, FUNCTIONAL TESTING A, P219; Bontje D, 2009, WATER RES, V43, P3292, DOI 10.1016/j.watres.2009.04.036; Borchardt D., 2010, WASSERRAHMENRICHTLIN; Borsuk ME, 2006, ECOL MODEL, V192, P224, DOI 10.1016/j.ecolmodel.2005.07.006; Calow P, 2003, ENVIRON SCI TECHNOL, V37, p146A, DOI 10.1021/es0324003; Carey C, 2005, INTEGR COMP BIOL, V45, P4, DOI 10.1093/icb/45.1.4; Carney SA, 2006, BIRTH DEFECTS RES A, V76, P7, DOI 10.1002/bdra.20216; Chapman PM, 2002, MAR POLLUT BULL, V44, P7, DOI 10.1016/S0025-326X(01)00253-3; COLLIER TK, 1992, TOXICOL APPL PHARM, V113, P319, DOI 10.1016/0041-008X(92)90131-B; Couillard CM, 2008, ENVIRON REV, V16, P19, DOI 10.1139/A07-008; De Zwart D., 2009, ENV ASSESSM MANAGE, V5, P313; Eggen RIL, 2004, ENVIRON SCI TECHNOL, V38, p58A, DOI 10.1021/es040349c; Enoch SJ, 2008, CHEMOSPHERE, V73, P243, DOI 10.1016/j.chemosphere.2008.06.052; Escher BI, 2002, ENVIRON SCI TECHNOL, V36, P4201, DOI 10.1021/es015848h; Fairchild WL, 1999, ENVIRON HEALTH PERSP, V107, P349, DOI 10.2307/3434538; Froehlicher M, 2009, AQUAT TOXICOL, V95, P307, DOI 10.1016/j.aquatox.2009.04.007; Hansen FT, 1999, ECOL APPL, V9, P482, DOI 10.2307/2641138; Hoffmann-Riem H, 2002, NATURE, V416, P123, DOI 10.1038/416123a; Hutchinson TH, 2006, ENVIRON HEALTH PERSP, V114, P106, DOI 10.1289/ehp.8062; Jokela J, 2005, OIKOS, V108, P156, DOI 10.1111/j.0030-1299.2005.13185.x; Kooijman S. A. L. M., 1998, ECOTOXICOLOGY ECOLOG, P483; Kramer VJ, 2011, ENVIRON TOXICOL CHEM, V30, P64, DOI 10.1002/etc.375; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Maltby L, 1999, ECOL APPL, V9, P431, DOI 10.2307/2641131; McLachlan JA, 2001, ENDOCR REV, V22, P319, DOI 10.1210/er.22.3.319; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mothersill C, 2010, MUTAT RES-FUND MOL M, V687, P63, DOI 10.1016/j.mrfmmm.2010.01.010; Naito W., 2007, ENV ASSESSM MANAGE, V3, P68; Nakayama-Casanova A., MAR POLL B, DOI [10.1016/j.marpolbul.2011.05.007, DOI 10.1016/J.MARPOLBUL.2011.05.007]; Nendza M, 2001, QUANT STRUCT-ACT REL, V19, P581; NEWMAN MC, 2001, POPULATION ECOTOXICO; Niyogi S, 2004, ENVIRON SCI TECHNOL, V38, P6177, DOI 10.1021/es0496524; Portner HO, 2008, SCIENCE, V322, P690, DOI 10.1126/science.1163156; POSTHUMA L, 2002, SPECIES SENSITIVITY; Posthuma L, 2006, ENVIRON TOXICOL CHEM, V25, P1094, DOI 10.1897/05-305R.1; Reif D.M., 2011, ENV HLTH PERSP, V118, P1714; Relyea R, 2006, ECOL LETT, V9, P1157, DOI 10.1111/j.1461-0248.2006.00966.x; RICE CD, 2001, TARGET ORGAN TOXICIT, V2, P96; Rohr JR, 2006, TRENDS ECOL EVOL, V21, P606, DOI 10.1016/j.tree.2006.07.002; Rose KA, 2000, ECOL APPL, V10, P367, DOI 10.2307/2641099; Sanderson H, 2009, ENVIRON TOXICOL CHEM, V28, P1359, DOI 10.1897/09-119.1; SCHAAF WE, 1987, ESTUARIES, V10, P267, DOI 10.2307/1351854; Schiedek D, 2007, MAR POLLUT BULL, V54, P1845, DOI 10.1016/j.marpolbul.2007.09.020; Schmitt-Jansen M, 2008, BASIC APPL ECOL, V9, P337, DOI 10.1016/j.baae.2007.08.008; Schuurmann G, 1998, ECOTOXICOLOGY, P665; Schwarzenbach RP, 2006, SCIENCE, V313, P1072, DOI 10.1126/science.1127291; Segner H, 2006, ENVIRON SCI TECHNOL, V40, P1084, DOI 10.1021/es051791d; Segner H, 2001, AQUAT TOXICOL, V53, P153, DOI 10.1016/S0166-445X(01)00162-X; Segner H, 2007, NATO SCI PEACE SECUR, P39, DOI 10.1007/978-1-4020-6335-0_4; Segner H, 2011, REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY, P1145, DOI 10.1016/B978-0-12-382032-7.10086-4; Silva E, 2002, ENVIRON SCI TECHNOL, V36, P1751, DOI 10.1021/es0101227; Slikker W, 2004, TOXICOL APPL PHARM, V201, P203, DOI 10.1016/j.taap.2004.06.019; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2005, INTEGR ENVIRON ASSES, V1, P109, DOI 10.1897/IEAM_2004-002r.1; Sumpter JP, 2005, ENVIRON SCI TECHNOL, V39, P4321, DOI 10.1021/es048504a; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P198, DOI 10.1002/ieam.109; Van Straalen N, 2003, ENVIRON SCI TECHNOL, V37, p324A; VERHAAR HJM, 1992, CHEMOSPHERE, V25, P471, DOI 10.1016/0045-6535(92)90280-5; Villeneuve DL, 2011, ENVIRON TOXICOL CHEM, V30, P1, DOI 10.1002/etc.396; von der Ohe Peter C., 2009, Integrated Environmental Assessment and Management, V5, P50, DOI 10.1897/IEAM_2008-043.1; Vonk JA, 2009, ATLA-ALTERN LAB ANIM, V37, P557; Wenger M, 2011, FISH SHELLFISH IMMUN, V31, P90, DOI 10.1016/j.fsi.2011.04.007 65 34 34 1 50 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. OCT 2011 105 3-4 SI 50 55 10.1016/j.aquatox.2011.06.016 6 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology 875VF WOS:000299062600007 22099344 2019-02-21 J Van Leeuwen, TE; Rosenfeld, JS; Richards, JG Van Leeuwen, Travis E.; Rosenfeld, Jordan S.; Richards, Jeffrey G. Failure of physiological metrics to predict dominance in juvenile Pacific salmon (Oncorhynchus spp.): habitat effects on the allometry of growth in dominance hierarchies CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; ATLANTIC SALMON; COHO SALMON; BROWN TROUT; RAINBOW-TROUT; STEELHEAD TROUT; METABOLIC-RATE; ROSYSIDE DACE; PRIOR RESIDENCE; SOCIAL-STATUS Territoriality is one of the best examples of interference competition and generally results in larger, dominant individuals gaining preferential access to food. However, the expectation of higher growth of dominant individuals among juvenile salmonids has received only mixed support. We used outdoor semi-natural stream channels stocked with varying sizes of young of the year juvenile salmonids under high and low food rations (i) to examine the mechanisms underlying variation in the benefits of dominance and (ii) to demonstrate that inconsistencies in the apparent benefits of dominance are a logical outcome of the allometry of growth and differential energy intake among fish of different size in a dominance hierarchy. Growth of dominants exceeded that of subordinates when food was abundant, but subordinates grew faster than dominants in low food treatments and when dominant fish increased in size and approached the capacity of their habitat. In general, size disparity within a dominance hierarchy may promote higher growth of subdominants because of the lower energetic requirements of smaller individuals, and the allometry of fish growth, relative to habitat capacity, can reverse the expected growth and condition of dominant and subordinate fish. [Van Leeuwen, Travis E.; Richards, Jeffrey G.] Univ British Columbia, Dept Zool, Vancouver, BC V6T 1Z4, Canada; [Rosenfeld, Jordan S.] Univ British Columbia, British Columbia Minist Environm, Vancouver, BC V6T 1Z4, Canada Van Leeuwen, TE (reprint author), Univ British Columbia, Dept Zool, 6270 Univ Blvd, Vancouver, BC V6T 1Z4, Canada. t.vanLeeuwen@fisheries.ubc.ca Natural Sciences and Engineering Research Council of Canada (NSERC) We thank Neil Metcalfe and two anonymous reviewers for helpful comments that greatly improved the manuscript. We also thank Dave Bates for advice and assistance with stream selection and fish collection, as well as Antoine Leduc. This research was part of a dissertation prepared in partial fulfillment of a M.Sc. degree at the University of British Columbia and was funded by an Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant to J.S.R. ABBOTT JC, 1985, BEHAVIOUR, V92, P241; Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Armstrong JD, 2006, J ZOOL, V269, P403, DOI 10.1111/j.1469-7998.2006.00157.x; Armstrong JD, 1997, J ANIM ECOL, V66, P519, DOI 10.2307/5946; BACHMAN RA, 1984, T AM FISH SOC, V113, P1, DOI 10.1577/1548-8659(1984)113<1:FBOFWA>2.0.CO;2; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; CHAPMAN DW, 1966, AM NAT, V100, P345, DOI 10.1086/282427; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; EJIKE C, 1980, T AM FISH SOC, V109, P423, DOI 10.1577/1548-8659(1980)109<423:SASHRI>2.0.CO;2; Elliott JM, 2002, J FISH BIOL, V61, P1268, DOI 10.1006/jfbi.2002.2154; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; GRAND TC, 1994, ANIM BEHAV, V47, P91, DOI 10.1006/anbe.1994.1010; Hansen EA, 2009, BEHAV ECOL, V20, P616, DOI 10.1093/beheco/arp039; HARTMAN GF, 1965, J FISH RES BOARD CAN, V22, P1035, DOI 10.1139/f65-095; Harvey BC, 2005, CAN J FISH AQUAT SCI, V62, P650, DOI 10.1139/F04-225; Harwood AJ, 2003, BEHAV ECOL, V14, P902, DOI 10.1093/beheco/arg080; Hazelton PD, 2009, FRESHWATER BIOL, V54, P1977, DOI 10.1111/j.1365-2427.2009.02248.x; HILL J, 1993, ECOLOGY, V74, P685, DOI 10.2307/1940796; Huntingford FA, 1997, J FISH BIOL, V51, P1009, DOI 10.1006/jfbi.1997.0510; Huntingford FA, 1987, ANIMAL CONFLICT; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Kahler TH, 2001, CAN J FISH AQUAT SCI, V58, P1947, DOI 10.1139/cjfas-58-10-1947; Martin-Smith KM, 2002, J ANIM ECOL, V71, P413, DOI 10.1046/j.1365-2656.2002.00609.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1986, J FISH BIOL, V28, P525, DOI 10.1111/j.1095-8649.1986.tb05190.x; NAKANO S, 1995, J ANIM ECOL, V64, P75, DOI 10.2307/5828; Piccolo JJ, 2007, ECOL FRESHW FISH, V16, P432, DOI 10.1111/j.1600-0633.2007.00242.x; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; Post JR, 2001, ECOLOGY, V82, P1040, DOI 10.2307/2679901; Reinhardt UG, 1999, CAN J FISH AQUAT SCI, V56, P1206, DOI 10.1139/cjfas-56-7-1206; Ricker W. E., 1975, B FISH RES BOARD CAN, V191; Rincon PA, 2002, ECOLOGY, V83, P1808, DOI 10.1890/0012-9658(2002)083[1808:NSTIAS]2.0.CO;2; Rincon PA, 2001, J FISH BIOL, V59, P968, DOI 10.1006/jfbi.2001.1711; Rosenfeld JS, 2009, FISHERIES MANAG ECOL, V16, P202, DOI 10.1111/j.1365-2400.2009.00656.x; Rosenfeld JS, 2005, CAN J FISH AQUAT SCI, V62, P1691, DOI 10.1139/F05-072; SHUTER BJ, 1990, T AM FISH SOC, V119, P314, DOI 10.1577/1548-8659(1990)119<0314:CPVATZ>2.3.CO;2; Sloman KA, 2008, ANIM BEHAV, V76, P1279, DOI 10.1016/j.anbehav.2008.06.012; Sloman KA, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2038; Sloman KA, 2000, FISH PHYSIOL BIOCHEM, V22, P11, DOI 10.1023/A:1007837400713; Sloman KA, 2001, PHYSIOL BIOCHEM ZOOL, V74, P383, DOI 10.1086/320426; SULLIVAN K. D., 2001, ANAL EFFECTS TEMPERA; THORPE JE, 1992, ENVIRON BIOL FISH, V33, P331, DOI 10.1007/BF00010944; Van Leeuwen TE, 2011, J ANIM ECOL, V80, P1012, DOI 10.1111/j.1365-2656.2011.01841.x; Vollestad LA, 2003, ANIM BEHAV, V66, P561, DOI 10.1006/anbe.2003.2237; Young KA, 2003, BEHAV ECOL, V14, P127, DOI 10.1093/beheco/14.1.127 45 5 5 1 14 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0706-652X CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. OCT 2011 68 10 1811 1818 10.1139/F2011-099 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 864AC WOS:000298208400010 2019-02-21 J Greiffenstein, MF Greiffenstein, Manfred F. SECULAR IQ INCREASES BY EPIGENESIS? THE HYPOTHESIS OF COGNITIVE GENOTYPE OPTIMIZATION PSYCHOLOGICAL REPORTS English Article EVOLUTIONARY PSYCHOLOGY; BRAIN-DEVELOPMENT; INTELLIGENCE; TRENDS; MYOPIA; TWIN; PERSONALITY; COMPLEXITY; GENES; GIRLS The short timescale of massive secular IQ gains ("Flynn Effect") is inconsistent with positive selection of a recent gene mutation, but other genetic mechanisms are possible. Principles of evolutionary psychology, combined with secular trends, suggest an epigenetic explanation: the Cognitive Genome Optimization Hypothesis. Per life-history theory, favorable secular trends may change the phenotypic expression of the genotype which controls the neurophysiology of problem solving. The hypothesis posits two intermediate steps between reliable nutrition (the starting point) and higher IQs (ending point): (1) Earlier cognitive maturation and (2) further calibration of cognitive function by reliable social resources (cultural complexity, mandatory education). Unlike earlier generations, more resources can be deployed to cognitive maturation than to physical survival, and more time is available to calibrate cognitive processing into the upper end of the trait value range for intelligence. The secular trend of earlier puberty timing is critical: data show an association between puberty and higher IQ. Greiffenstein, MF (reprint author), 32121 Woodward Ave,Suite 201, Royal Oak, MI USA. mfgreiff@comcast.net CAMERON J. L., 2004, INTRODUCTION 3, P110; Caplan LJ, 2006, J MARRIAGE FAM, V68, P883, DOI 10.1111/j.1741-3737.2006.00302.x; CAREY S, 1980, DEV PSYCHOL, V16, P257, DOI 10.1037//0012-1649.16.4.257; Charnov Eric L., 1993, P1; Chechik G, 1998, NEURAL COMPUT, V10, P1759, DOI 10.1162/089976698300017124; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Dirani M, 2008, INVEST OPHTH VIS SCI, V49, P534, DOI 10.1167/iovs.07-1123; DOUGLAS JWB, 1964, J CHILD PSYCHOL PSYC, V5, P185, DOI 10.1111/j.1469-7610.1964.tb02140.x; Duchaine B, 2001, CURR OPIN NEUROBIOL, V11, P225, DOI 10.1016/S0959-4388(00)00201-4; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Euling S. Y., 2008, PEDIATRICS, V121, P172, DOI DOI 10.1542/PEDS.2007-1813D; Feinberg I., 1982, J PSYCHIATR RES, V17, P319; Feinberg I, 2010, BRAIN COGNITION, V72, P56, DOI 10.1016/j.bandc.2009.09.008; Feldkamper M, 2003, DEV OPHTHALMOL, V37, P34; Flieller A, 1999, DEV PSYCHOL, V35, P1048, DOI 10.1037/0012-1649.35.4.1048; Flynn J. R, 2007, WHAT IS INTELLIGENCE; Flynn JR, 2009, WHAT IS INTELLIGENCE: BEYOND THE FLYNN EFFECT, P1; FLYNN JR, 1987, PSYCHOL BULL, V101, P171, DOI 10.1037/0033-2909.101.2.171; FLYNN JR, 1987, PSYCHOL BULL, V101, P427, DOI 10.1037/h0090408; Giedd JN, 2004, ANN NY ACAD SCI, V1021, P77, DOI 10.1196/annals.1308.009; Giedd JN, 1999, NAT NEUROSCI, V2, P861, DOI 10.1038/13158; HINSHAW S. P., 2009, ORIGINS HUMAN MIND; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Klump KL, 2006, TWIN RES HUM GENET, V9, P971, DOI 10.1375/twin.9.6.971; KOHN ML, 1978, AM J SOCIOL, V84, P24, DOI 10.1086/226739; Lemery-Chalfant K, 2006, TWIN RES HUM GENET, V9, P1030, DOI 10.1375/183242706779462363; Lenroot RK, 2006, NEUROSCI BIOBEHAV R, V30, P718, DOI 10.1016/j.neubiorev.2006.06.001; Lipsey M. W., 2001, PRACTICAL METAANALYS; LYNN R, 1990, PERS INDIV DIFFER, V11, P273, DOI 10.1016/0191-8869(90)90241-I; LYNN R, 1977, B BRIT PSYCHOL SOC, V30, P69; LYNN R, 1982, NATURE, V297, P222, DOI 10.1038/297222a0; Lynn R, 2002, IQ WEALTH NATIONS; Lynn R., 1998, RISING CURVE LONG TE, P207; Martorell R, 1998, RISING CURVE LONG TE, P183, DOI DOI 10.1037/10270-006; McClellan JM, 2006, JAMA-J AM MED ASSOC, V296, P582, DOI 10.1001/jama.296.5.582; MCGUE M, 1993, NATURE NURTURE PSYCH, P59, DOI DOI 10.1037/10131-003; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Mingroni MA, 2007, PSYCHOL REV, V114, P806, DOI 10.1037/0033-295X.114.3.806; MOISAN J, 1990, AM J EPIDEMIOL, V132, P953, DOI 10.1093/oxfordjournals.aje.a115738; Neisser U, 1998, RISING CURVE LONG TE, P3; Neisser U., 1998, RISING CURVE LONG TE, P81, DOI DOI 10.1037/10270-003; Nesse RM, 2001, WESTERN J MED, V174, P358, DOI 10.1136/ewjm.174.5.358; Parent AS, 2003, ENDOCR REV, V24, P668, DOI 10.1210/er.2002-0019; Pollen AA, 2007, BRAIN BEHAV EVOLUT, V70, P21, DOI 10.1159/000101067; Schaie K Warner, 2005, Res Hum Dev, V2, P43, DOI 10.1207/s15427617rhd0201&2_3; SCHOOLER C, 1998, RISING CURVE LONG TE, P67, DOI DOI 10.1037/10270-002; Shangguan FF, 2009, PSYCHONEUROENDOCRINO, V34, P983, DOI 10.1016/j.psyneuen.2009.01.012; Shayer M, 2007, BRIT J EDUC PSYCHOL, V77, P25, DOI 10.1348/000709906X96987; Shayer M, 2009, BRIT J EDUC PSYCHOL, V79, P409, DOI 10.1348/978185408X383123; SHIELDS J., 1962, MONOZYGOTIC DIZYGOTI; Shields J, 1954, EUGEN REV, V45, P213; Sigman M., 1998, RISING CURVE LONG TE, DOI DOI 10.1037/10270-005; SMITH JM, 1978, ANNU REV ECOL SYST, V9, P31, DOI 10.1146/annurev.es.09.110178.000335; Snow R. E., 1982, HDB HUMAN INTELLIGEN, P493; STEIN Z, 1975, FAMINE HUMAN DEV DUT; Stone CP, 1937, J COMP PSYCHOL, V23, P439, DOI 10.1037/h0060575; Storfer M, 1999, INT J NEUROSCI, V98, P153, DOI 10.3109/00207459908997465; Sundet JM, 2004, INTELLIGENCE, V32, P349, DOI 10.1016/j.intell.2004.06.004; Terman L. M, 1973, STANFORD BINET INTEL; Tuddenham RD, 1948, AM PSYCHOL, V3, P54, DOI 10.1037/h0054962; van de Berg R, 2008, INVEST OPHTH VIS SCI, V49, P882, DOI 10.1167/iovs.07-0930; Wechsler D., 1949, WECHSLER INTELLIGENC; WECHSLER D., 1974, WECHSLER INTELIGENCE; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135 65 5 5 0 6 AMMONS SCIENTIFIC, LTD MISSOULA PO BOX 9229, MISSOULA, MT 59807-9229 USA 0033-2941 PSYCHOL REP Psychol. Rep. OCT 2011 109 2 353 366 10.2466/03.04.10.19.PR0.109.5.353-366 14 Psychology, Multidisciplinary Psychology 854YR WOS:000297531200001 22238843 2019-02-21 J Mathes, EW Mathes, Eugene W. INVESTMENT IN PERSONAL DEVELOPMENT SCALE: A PRELIMINARY STUDY PSYCHOLOGICAL REPORTS English Article Life history theory suggests that reproduction of the species involves three areas of investment: personal development, mating, and nurturing offspring. Using the rational method of test construction, a 29-item scale was constructed to measure investment in personal development, the Investment in Personal Development Scale. Scale scores were statistically significantly correlated with age, year in school, identity commitment, and conscientiousness. Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Mathes, EW (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. EW-Mathes@wiu.edu BALISTRERI E, 1995, J ADOLESCENCE, V18, P179, DOI 10.1006/jado.1995.1012; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; JOHN OP, 1999, HDB PERSONALITY THEO, P102 3 0 0 0 4 AMMONS SCIENTIFIC, LTD MISSOULA PO BOX 9229, MISSOULA, MT 59807-9229 USA 0033-2941 PSYCHOL REP Psychol. Rep. OCT 2011 109 2 389 392 10.2466/07.PR0.109.5.389-392 4 Psychology, Multidisciplinary Psychology 854YR WOS:000297531200005 22238847 2019-02-21 J O'Brien, TG; Kinnaird, MF O'Brien, Timothy G.; Kinnaird, Margaret F. Demography of Agile Gibbons (Hylobates agilis) in a Lowland Tropical Rain Forest of Southern Sumatra, Indonesia: Problems in Paradise INTERNATIONAL JOURNAL OF PRIMATOLOGY English Article Agile gibbon; Demography of agile gibbons; Resource competition; Sumatra, Indonesia SYMPHALANGUS-SYNDACTYLUS; INFECTIOUS-DISEASES; SYMPATRIC GIBBONS; LAR; POPULATION; SIAMANG; ECOLOGY; REPRODUCTION; CONSERVATION; DISPERSAL Gibbons are among the best-studied Asian primates, but few studies address their demography and life history strategies. We used annual censuses to study the demography of agile gibbons (Hylobates agilis) between 1998 and 2009 in rain forests of Bukit Barisan Selatan National Park, Indonesia. The population declined from 22 individuals (9 groups) to 14 individuals (5 groups) over the 12 yr of study. Infant survival to the juvenile age class was 33.3%, and 16.7% of infants survived to the subadult age class. The interbirth interval was 3.83 +/- 1.15 yr and birth rate was 0.22-0.28 infants female(-1) yr(-1). Two groups colonized the study area but subsequently disappeared. We documented 7 immigrations, 17 disappearances, and >= 10 transients in the population. Compared to lar gibbons (Hylobates lar) and Bornean white-bearded gibbons (Hylobates albibarbis), Way Canguk's agile gibbon population is characterized by slow reproduction, low survival, and high group turnover. We hypothesize that, although the habitat is high in fruit resources, agile gibbons may be displaced or excluded from the best fruit resources by larger and more numerous competitors, incurring costs of decreased opportunities to forage and increased travel, and leading to higher mortality for young agile gibbons. The reproductive potential of this agile gibbon population is insufficient to compensate for high mortality, and the population is unlikely to persist without immigration from outside the area. Given the agile gibbons' endangered status and limited capacity to respond demographically to change, it is likely that intensive management interventions will be required to conserve this species. [O'Brien, Timothy G.; Kinnaird, Margaret F.] Wildlife Conservat Soc, Bronx, NY 10460 USA; [O'Brien, Timothy G.; Kinnaird, Margaret F.] Mpala Res Ctr, Nanyuki 10400, Kenya O'Brien, TG (reprint author), Wildlife Conservat Soc, Bronx, NY 10460 USA. tobrien@wcs.org U.S. Fish and Wildlife Service [98210-1-G084]; Disney Conservation Fund This research is a collaborative effort by the Wildlife Conservation Society and the Indonesian Ministry of Forestry, Directorate General for Nature Conservation (PHKA). Our research was funded by the Wildlife Conservation Society, the U.S. Fish and Wildlife Service Great Apes Conservation Fund (grant no. 98210-1-G084), the Disney Conservation Fund, and E. McBean. We thank A. Dwiyahreni, M. Iqbal, A. Nurcahyo, M. Nusawalo, M. Prasetyaningrum, M. Rusmanto, Sunarto, D. Suyadi, N. Winarni, Aris, Bawk, Tegu, and Wariono for assistance with data collection over the years. A. Elder provided valuable insights into the interspecific relationships of Way Canguk primates, L. Morino provided details of clouded leopard predation on a juvenile siamang at Way Canguk, and R Palombit and C. van Schaik provided information on the relationships of lar gibbons and siamangs in northern Sumatra. Our manuscript was greatly improved by the comments of J. Setchell and 2 anonymous reviewers. Altmann J., 1980, BABOON MOTHERS INFAN; Bartlett T. Q., 2007, PRIMATES PERSPECTIVE, P274; Borries C, 2011, BEHAV ECOL SOCIOBIOL, V65, P685, DOI 10.1007/s00265-010-1070-5; Brockelman WY, 1998, BEHAV ECOL SOCIOBIOL, V42, P329, DOI 10.1007/s002650050445; BUTYNSKI TM, 1990, ECOL MONOGR, V60, P1, DOI 10.2307/1943024; Chapman CA, 2005, EVOL ANTHROPOL, V14, P134, DOI 10.1002/evan.20068; Chivers D., 1980, MALAYAN FOREST PRIMA, P209; Chivers D.J., 1974, Contributions Primatol, V4, P1; COLLIAS NICHOLAS, 1952, PROC AMER PHIL SOC, V96, P143; ELDER AA, 2010, AM SOC PRIM C LOC LO; GEISSMAN T, 2007, GIBBON J, V1, P5; GEISSMANN T, 1991, AM J PRIMATOL, V23, P11, DOI 10.1002/ajp.1350230103; Gillespie TR, 2008, YEARB PHYS ANTHROPOL, V51, P53, DOI 10.1002/ajpa.20949; Hopkins ME, 2007, DIVERS DISTRIB, V13, P561, DOI 10.1111/j.1472-4642.2007.00364.x; International Union for Conservation of Nature (IUCN), 2010, IUCN RED LIST THREAT; Janson Charles H., 1993, P57; Kinnaird MF, 1998, CONSERV BIOL, V12, P954, DOI 10.1046/j.1523-1739.1998.012005954.x; Kinnaird MF, 2003, CONSERV BIOL, V17, P245, DOI 10.1046/j.1523-1739.2003.02040.x; KINNAIRD MF, 2005, FRUITS FRUGIVORES SE, P155; Lappan S., 2005, THESIS NEW YORK U; Lappan S, 2007, AM J PRIMATOL, V69, P692, DOI 10.1002/ajp.20382; Leighton D.R., 1987, P135; Marshall A. J., 2004, THESIS HARVARD U; Marshall Andrew J., 2006, P313; Marshall Andrew J., 2009, P161, DOI 10.1007/978-0-387-88604-6_9; Marshall AJ, 2009, BIOTROPICA, V41, P257, DOI 10.1111/j.1744-7429.2008.00461.x; MAY RM, 1979, NATURE, V280, P455, DOI 10.1038/280455a0; Milton K, 1996, J ZOOL, V239, P39, DOI 10.1111/j.1469-7998.1996.tb05435.x; MITANI JC, 1990, INT J PRIMATOL, V11, P411, DOI 10.1007/BF02196129; MITANI JC, 1987, BEHAV ECOL SOCIOBIOL, V20, P265, DOI 10.1007/BF00292179; Morino L, 2011, FOLIA PRIMATOL, V81, P362, DOI 10.1159/000324303; Nunn CL, 2006, INFECT DIS PRIMATES; O'Brien TG, 2004, INT J PRIMATOL, V25, P267, DOI 10.1023/B:IJOP.0000019152.83883.1c; O'Brien TG, 2003, ANIM CONSERV, V6, P115, DOI 10.1017/S136794300300159; O'Brien TG, 2003, SCIENCE, V300, P587, DOI 10.1126/science.1082328; PALOMBIT R, 1992, THESIS U CALIFORNIA; PALOMBIT RA, 1995, INT J PRIMATOL, V16, P739, DOI 10.1007/BF02735718; Pulliam H. Ronald, 1996, P45; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Rabinowitz A., 1989, Natural History Bulletin of the Siam Society, V37, P235; RAEMAEKERS J, 1979, FOLIA PRIMATOL, V31, P227, DOI 10.1159/000155886; Raemakers J. J., 1980, MALAYAN FOREST PRIMA, P279; Reichard U, 1998, AM J PRIMATOL, V46, P35, DOI 10.1002/(SICI)1098-2345(1998)46:1<35::AID-AJP4>3.0.CO;2-W; Reichard UH, 2008, INT J PRIMATOL, V29, P823, DOI 10.1007/s10764-008-9285-2; Reichard Ulrich H., 2003, P3; Rudran R, 2003, INT J PRIMATOL, V24, P925, DOI 10.1023/A:1026241625910; SAVINI T, 2009, BIOTROPICA, V41, P501; Savini T, 2008, AM J PHYS ANTHROPOL, V135, P1, DOI 10.1002/ajpa.20578; Setchell Joanna M., 2004, P175, DOI 10.1017/CBO9780511542459.012; Sokal RR, 1995, BIOMETRY; Uhde NL, 2002, EAT OR BE EATEN, P268, DOI 10.1017/CBO9780511610233.017; van Schaik Carel P., 2004, P190; VANSCHAIK CP, 1983, BEHAVIOUR, V85, P91, DOI 10.1163/156853983X00057; Walsh T. D., 2003, NATURE, V422, P611; Whittaker Danielle J., 2009, P3, DOI 10.1007/978-0-387-88604-6_1; Yanuar Achmad, 1993, Tigerpaper (Bangkok), V20, P30; Yanuar Achmad, 2009, P453, DOI 10.1007/978-0-387-88604-6_21 57 3 4 0 43 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0164-0291 INT J PRIMATOL Int. J. Primatol. OCT 2011 32 5 1203 1217 10.1007/s10764-011-9537-4 15 Zoology Zoology 857UL WOS:000297747200012 2019-02-21 J Levitis, DA; Lackey, LB Levitis, Daniel A.; Lackey, Laurie Bingaman A measure for describing and comparing postreproductive life span as a population trait METHODS IN ECOLOGY AND EVOLUTION English Article demography; life-history evolution; life-table methods; menopause; primates; simulation; Type I error REPRODUCTIVE PARAMETERS; POECILIA-RETICULATA; NATURAL-SELECTION; MENOPAUSE; SENESCENCE; EVOLUTION; MORTALITY; HUMANS; SURVIVAL; HISTORY 1. While classical life-history theory does not predict postreproductive life span (PRLS), it has been detected in a great number of taxa, leading to the view that it is a broadly conserved trait and attempts to reconcile theory with these observations. We suggest an alternative: the apparently wide distribution of significant PRLS is an artefact of insufficient methods. 2. PRLS is traditionally measured in units of time between each individual's last parturition and death, after excluding those individuals for whom this interval is short. A mean of this measure is then calculated as a population value. We show this traditional population measure (which we denote PrT) to be inconsistently calculated, inherently biased, strongly correlated with overall longevity, uninformative on the importance of PRLS in a population's life history, unable to use the most commonly available form of relevant data and without a realistic null hypothesis. Using data altered to ensure that the null hypothesis is true, we find a false-positive rate of 0 47 for PrT. 3. We propose an alternative population measure, using life-table methods. Postreproductive representation (PrR) is the proportion of adult years lived which are postreproductive. We briefly derive PrR and discuss its properties. We employ a demographic simulation, based on the null hypothesis of simultaneous and proportional decline in survivorship and fecundity, to produce a null distribution for PrR based on the age-specific rates of a population. 4. In an example analysis, using data on 84 populations of human and nonhuman primates, we demonstrate the ability of PrR to represent the effects of artificial protection from mortality and of humanness on PRLS. PrR is found to be higher for all human populations under a wide range of conditions than for any nonhuman primate in our sample. A strong effect of artificial protection is found, but humans under the most adverse conditions still achieve PrR of >0.3. 5. PrT should not be used as a population measure and should be used as an individual measure only with great caution. The use of PrRas an intuitive, statistically valid and intercomparable population life-history measure is encouraged. [Levitis, Daniel A.] Max Planck Inst Demog Res, Lab Evolutionary Biodemog, D-18057 Rostock, Germany; [Levitis, Daniel A.] Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA; [Levitis, Daniel A.] Univ Calif Berkeley, Dept Demog, Berkeley, CA 94720 USA; [Lackey, Laurie Bingaman] Int Species Informat Syst, Eagan, MN 55121 USA Levitis, DA (reprint author), Max Planck Inst Demog Res, Lab Evolutionary Biodemog, Konrad Zuse Str 1, D-18057 Rostock, Germany. levitis@demogr.mpg.de Max Planck Society; Ruth L. Kirschstein National Research Service Award (NIA) [T32-AG000246]; Museum of Vertebrate Zoology; [P01 AG022500] We thank Ronald Lee and his lab, D. Reznick, C. Moritz, E. Lacey, W. Koenig, O. Jones, I. Levitis and two anonymous reviewers for suggestions and encouragement. We thank ISIS and its members, N. Blurton-Jones and K. Hawkes, for providing us with data. DL's research was supported by the Max Planck Society, the Ruth L. Kirschstein National Research Service Award (NIA grant T32-AG000246), by Ronald Lee's subproject in P01 AG022500 and by the Museum of Vertebrate Zoology. Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Austad S.N., 1997, ZEUS SALMON BIODEMOG, P161; Biodemographic Database, 2010, BIOD DAT; Blurton-Jones N. G., 2002, AM J HUM BIOL, V14, P184, DOI DOI 10.1002/AJHB.10038; Bongaarts J, 1982, DETERMINANTS FERTILI; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; CAREY JR, 2000, LONGEVITY RECORDS LI; Carlson SM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001286; CARO TM, 1995, INT J PRIMATOL, V16, P205, DOI 10.1007/BF02735478; Charlesworth B, 2000, GENETICS, V156, P927; Charnov Eric L., 1993, P1; Chen JJ, 2007, J GERONTOL A-BIOL, V62, P126, DOI 10.1093/gerona/62.2.126; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Doblhammer G, 2000, POP STUD-J DEMOG, V54, P169, DOI 10.1080/713779087; Fedigan L. M., 2007, COMPARISONS JAPANESE, P437; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; Gillespie DOS, 2010, AM NAT, V176, P159, DOI 10.1086/653668; GURVEN M, 2008, CULTURAL CONTEXT AGI, P53; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2009, AM J HUM BIOL, V21, P578, DOI 10.1002/ajhb.20890; Hill K, 1991, Hum Nat, V2, P313, DOI 10.1007/BF02692196; John A. M., 1988, PLANTATION SLAVES TR; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Kachel AF, 2010, P ROYAL SOC B, V278, P384; Kasuya T., 1984, Reports of the International Whaling Commission Special Issue, P259; KIDD NAC, 1985, ECOL ENTOMOL, V10, P357, DOI 10.1111/j.1365-2311.1985.tb00732.x; Kirkwood T. B. L, 1992, AM J CLIN NUTR, V28, P20; Kirkwood TBL, 2010, ANN NY ACAD SCI, V1204, P21, DOI 10.1111/j.1749-6632.2010.05520.x; KOYAMA N, 1992, PRIMATES, V33, P33, DOI 10.1007/BF02382761; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; McAuliffe K, 2005, TRENDS ECOL EVOL, V20, P650, DOI 10.1016/j.tree.2005.09.003; Michels KB, 1996, LANCET, V348, P1152, DOI 10.1016/S0140-6736(96)05418-9; Minois N, 2005, P NATL ACAD SCI USA, V102, P402, DOI 10.1073/pnas.0408332102; Mooney JC, 1999, ZOO BIOL, V18, P421, DOI 10.1002/(SICI)1098-2361(1999)18:5<421::AID-ZOO7>3.0.CO;2-6; Pavard S, 2008, AM J PHYS ANTHROPOL, V136, P194, DOI 10.1002/ajpa.20794; Pavelka MSM, 1999, AM J PHYS ANTHROPOL, V109, P455, DOI 10.1002/(SICI)1096-8644(199908)109:4<455::AID-AJPA3>3.0.CO;2-Z; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Preston SH, 2001, DEMOGRAPHY MEASURING; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Steinsaltz D, 2011, PALEOBIOLOGY, V37, P113, DOI 10.1666/08056.1; The R Development Core Team, 2010, R LANG ENV STAT COMP; Tuljapurkar S. D., 2007, PLOS ONE, V2, pe758; Wachter KW, 1997, ZEUS SALMON BIODEMOG; Ward E. J., 2009, FRONTIERS ZOOLOGY, V4 48 20 20 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. OCT 2011 2 5 446 453 10.1111/j.2041-210X.2011.00095.x 8 Ecology Environmental Sciences & Ecology 852CI WOS:000297323700003 22081792 Bronze, Green Accepted 2019-02-21 J Bortolotti, LE; Harriman, VB; Clark, RG; Dawson, RD Bortolotti, L. E.; Harriman, V. B.; Clark, R. G.; Dawson, R. D. Can changes in provisioning by parent birds account for seasonally declining patterns of offspring recruitment? CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article NESTLING TREE SWALLOWS; REPRODUCTIVE SUCCESS; TACHYCINETA-BICOLOR; DIRECTIONAL SELECTION; BREEDING SUCCESS; BARN SWALLOWS; NESTING BIRD; BROOD-SIZE; QUALITY; GROWTH Declining reproductive success among individuals that breed later in the season occurs in numerous taxa and is particularly well-documented in birds. Principal ideas advanced to explain this pattern, the date and parental quality hypotheses, consider the ultimate causes of this phenomenon and have received much attention; however, proximate mechanisms have not been clearly elucidated. Parental provisioning could mediate a seasonal decline in nestling fitness. We delayed hatch dates and manipulated brood sizes of Tree Swallows (Tachycineta bicolor (Vieillot, 1808)) to assess the ability of parents to compensate for deteriorating environmental conditions and increased demands of more chicks. We measured provisioning rates using audio recordings of nestlings begging. Brood size was the best predictor of provisioning frequency, with parents feeding larger broods more frequently than smaller ones. Delayed hatching did not reduce provisioning rate despite declining food abundance. Date and food abundance were unrelated to provisioning rate, suggesting no seasonal change in the quantity of food nestlings receive. However, provisioning frequency was informative about life-history strategies of Tree Swallows, showing that late breeders incurred the costs of deteriorating environmental conditions rather than passing these costs on to their offspring. [Bortolotti, L. E.; Harriman, V. B.] Univ Saskatchewan, Dept Biol, Saskatoon, SK S7N 5E2, Canada; [Clark, R. G.] Environm Canada, Prairie & No Wildlife Res Ctr, Saskatoon, SK S7N 0X4, Canada; [Dawson, R. D.] Univ No British Columbia, Prince George, BC V2N 4Z9, Canada Bortolotti, LE (reprint author), Univ Alberta, Dept Biol Sci, CW 405 Biol Sci Bldg, Edmonton, AB T6G 2E9, Canada. lauren.bortolotti@ualberta.ca Bortolotti, Lauren/F-2026-2010 Bortolotti, Lauren/0000-0003-1505-8427 Natural Sciences and Engineering Research Council of Canada (NSERC); University of Saskatchewan; Environment Canada We thank C. Spence and the St. Denis Automatic Weather Station Team for weather data, as well as P. Bloom, M. Bidwell, G. Bortolotti, and anonymous reviewers for helpful comments on the manuscript. This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) to R. G. C. and R. D. D. L. E. B. was supported by a NSERC undergraduate research award and V. B. H. by a University of Saskatchewan postgraduate research award. Core funding at the NWA was provided by Environment Canada. Ambrosini R, 2006, ECOSCIENCE, V13, P298, DOI 10.2980/i1195-6860-13-3-298.1; Aparicio JM, 1998, J AVIAN BIOL, V29, P121, DOI 10.2307/3677189; Ardia DR, 2007, CAN J ZOOL, V85, P847, DOI 10.1139/Z07-070; Arnold JM, 2004, J AVIAN BIOL, V35, P33, DOI 10.1111/j.0908-8857.2004.03059.x; *AV BIOAC, 1999, SASLAB LIGHT VERS 3; Blums P, 2002, J ANIM ECOL, V71, P280, DOI 10.1046/j.1365-2656.2002.00598.x; Burnham K. P., 1998, MODEL SELECTION INFE; Childress RB, 2003, OSTRICH, V74, P102, DOI 10.2989/00306520309485375; CUSHMAN JH, 1994, OECOLOGIA, V99, P194, DOI 10.1007/BF00317101; Dawson RD, 2005, OECOLOGIA, V144, P499, DOI 10.1007/s00442-005-0075-7; Dawson RD, 2008, CAN J ZOOL, V86, P843, DOI 10.1139/Z08-065; Delhey K, 2010, AUK, V127, P222, DOI 10.1525/auk.2009.09050; DELOPE F, 1993, OIKOS, V67, P557, DOI 10.2307/3545368; Garcia-Navas V, 2011, IBIS, V153, P59, DOI 10.1111/j.1474-919X.2010.01077.x; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; HATCHWELL BJ, 1991, J ANIM ECOL, V60, P721, DOI 10.2307/5410; Hipfner JM, 2010, AUK, V127, P195, DOI 10.1525/auk.2009.09135; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Huber S, 2001, ECOGRAPHY, V24, P205, DOI 10.1034/j.1600-0587.2001.240211.x; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kelly MG, 2000, AM J BOT, V87, P382, DOI 10.2307/2656634; LOMBARDO MP, 1986, CONDOR, V88, P297, DOI 10.2307/1368876; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; McCarty JP, 1999, CONDOR, V101, P246, DOI 10.2307/1369987; MCNAMARA JM, 1992, EVOL ECOL, V6, P170, DOI 10.1007/BF02270710; Merino S, 2000, OIKOS, V90, P327, DOI 10.1034/j.1600-0706.2000.900213.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; NUR N, 1984, OECOLOGIA, V65, P125, DOI 10.1007/BF00384475; O'Brien EL, 2008, J ANIM ECOL, V77, P127, DOI 10.1111/j.1365-2656.2007.01315.x; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Potti J, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001276; Potti J, 2008, ACTA ORNITHOL, V43, P76, DOI 10.3161/000164508X345356; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; QUINNEY TE, 1986, AUK, V103, P389; QUINNEY TE, 1986, WILSON BULL, V98, P147; ROBERTSON RJ, 1992, BIRDS N AM; Rossmanith E, 2007, J ORNITHOL, V148, P323, DOI 10.1007/s10336-007-0134-4; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; *SAS I INC, 2003, SAS VERS 9 1 COMP PR; SCHULTZ ET, 1993, EVOLUTION, V47, P520, DOI 10.1111/j.1558-5646.1993.tb02111.x; SEDINGER JS, 1991, ECOLOGY, V72, P496, DOI 10.2307/2937190; Shutler D, 2004, CAN J ZOOL, V82, P442, DOI [10.1139/z04-016, 10.1139/Z04-016]; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tomas G, 2008, OECOLOGIA, V156, P305, DOI 10.1007/s00442-008-1001-6; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Wardrop SL, 2003, IBIS, V145, P439, DOI 10.1046/j.1474-919X.2003.00184.x; Whittingham LA, 2003, ANIM BEHAV, V65, P1203, DOI 10.1006/anbe.2003.2178; WIGGINS DA, 1994, OIKOS, V70, P359, DOI 10.2307/3545773; ZACH R, 1982, CAN J ZOOL, V60, P1080, DOI 10.1139/z82-149 57 13 13 0 30 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA 0008-4301 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. OCT 2011 89 10 921 928 10.1139/Z11-068 8 Zoology Zoology 848BV WOS:000297023100005 2019-02-21 J Saraux, C; Robinson-Laverick, SM; Le Maho, Y; Ropert-Coudert, Y; Chiaradia, A Saraux, Claire; Robinson-Laverick, Sarah M.; Le Maho, Yvon; Ropert-Coudert, Yan; Chiaradia, Andre Plasticity in foraging strategies of inshore birds: how Little Penguins maintain body reserves while feeding offspring ECOLOGY English Article bimodal trips; body condition; chick rearing; Eudyptula minor; foraging strategies; Little Penguin; parental investment; Phillip Island, Victoria, Australia; trip duration EUDYPTULA-MINOR; PELAGIC SEABIRD; WANDERING ALBATROSSES; GEOGRAPHIC STRUCTURE; CROZET ISLANDS; CHICK GROWTH; FOOD; PATTERNS; SHEARWATER; SUCCESS Breeding animals face important time and energy constraints when caring for themselves and their offspring. For long-lived species, life-history theory predicts that parents should favor survival over current reproductive attempts, thus investing more into their own maintenance than the provisioning of their young. In seabirds, provisioning strategies may additionally be influenced by the distance between breeding sites and foraging areas, and offshore and inshore species should thus exhibit different strategies. Here, we examine the provisioning strategies of an inshore seabird using a long-term data set on more than 200 Little Penguins, Eudyptula minor. They alternated between two consecutive long and several short foraging trips all along chick rearing, a strategy almost never observed for inshore animals. Short trips allowed for regular provisioning of the chicks (high feeding frequency and larger meals), whereas long trips were performed when parent body mass was low and enabled them to rebuild their reserves, suggesting that adult body condition may be a key factor in initiating long trips. Inshore seabirds do use dual strategies of alternating short and long trips, but from our data, on a simpler and less flexible way than for offshore birds. [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Univ Strasbourg, IPHC, F-67087 Strasbourg, France; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] CNRS, UMR 7178, F-67037 Strasbourg, France; [Saraux, Claire] AgroParisTech, ENGREF, F-75732 Paris, France; [Robinson-Laverick, Sarah M.] Australian Antarctic Div, Kingston, Tas 7050, Australia; [Chiaradia, Andre] Phillip Isl Nat Pk, Res Dept, Cowes, Vic 3922, Australia Saraux, C (reprint author), Univ Strasbourg, IPHC, 23 Rue Becquerel, F-67087 Strasbourg, France. claire.saraux@iphc.cnrs.fr Saraux, Claire/0000-0001-5061-4009; Chiaradia, Andre/0000-0002-6178-4211 BHP-Billiton; Penguin Foundation; Australian Academy of Science We thank V. A. Viblanc for his great help and useful comments on the manuscript. We are especially grateful to T. Hart for his advice on statistics (especially the use of GLMM against use of Hidden Markov Models). We also thank two anonymous reviewers for very helpful suggestions. This study was based on data collected over several years; we are very grateful for all field assistance from several volunteers and students (in particular, J. Yorke, T. Daniel, P. Fallow, M. Salton, P. Wasiak, and R. Long) and the staff of the Phillip Island Nature Park (in particular, P. Dann, L. Renwick, and all field rangers). The Automated Penguin Monitoring System was kindly provided by the Australian Antarctic Division, with particular thanks to Knowles Kerry and Kym Newbery, as well as all engineers involved in the research and development of this system. We are also thankful for grants received from BHP-Billiton, Penguin Foundation, and the Australian Academy of Science. Ainley DG, 2004, ECOL MONOGR, V74, P159, DOI 10.1890/02-4073; Ainley DG, 2003, ECOLOGY, V84, P709, DOI 10.1890/0012-9658(2003)084[0709:PRCAGS]2.0.CO;2; Arnould JPY, 2004, EMU, V104, P261, DOI 10.1071/MU04035; Ballard G, 2010, MAR ECOL PROG SER, V405, P287, DOI 10.3354/meps08514; Bates DM, 2009, LME4 LINEAR MIXED EF; Benvenuti S, 1998, AUK, V115, P57, DOI 10.2307/4089111; Birkhead T. R., 1985, BEHAV ECOLOGY, P147; Booth AM, 2000, IBIS, V142, P144, DOI 10.1111/j.1474-919X.2000.tb07696.x; Cannell BL, 1998, IBIS, V140, P467, DOI 10.1111/j.1474-919X.1998.tb04608.x; CHAURAND T, 1994, J ANIM ECOL, V63, P275, DOI 10.2307/5546; CHEREL Y, 1985, AM J PHYSIOL, V249, pR387; CHEREL Y, 1993, POLAR BIOL, V13, P355; Chiaradia A., 2010, ICES J MARINE SCI; Chiaradia A, 2006, ARDEA, V94, P257; Chiaradia Andre F., 1999, Marine Ornithology, V27, P13; Collins M, 1999, WILDLIFE RES, V26, P705, DOI 10.1071/WR98003; Congdon BC, 2005, MAR ECOL PROG SER, V301, P293, DOI 10.3354/meps301293; COSTA DP, 1991, AM ZOOL, V31, P111; Cullen JM, 2009, MAR ECOL PROG SER, V378, P269, DOI 10.3354/meps07881; Daniel TA, 2007, ANIM BEHAV, V74, P1241, DOI 10.1016/j.anbehav.2007.01.029; DRENT RH, 1980, ARDEA, V68, P225; GOODMAN D, 1974, AM NAT, V108, P247, DOI 10.1086/282906; Granadeiro JP, 1998, ANIM BEHAV, V56, P1169, DOI 10.1006/anbe.1998.0827; Hedd A., 1998, THESIS U TASMANIA HO; Kato A, 2008, AUK, V125, P588, DOI 10.1525/auk.2008.06273; Kerry K., 1993, P NIPR S POL BIOL TO; KLOMP NI, 1991, EMU, V91, P32, DOI 10.1071/MU9910032; Lescroel A, 2005, MAR ECOL PROG SER, V302, P245, DOI 10.3354/meps302245; Lewis S, 2001, NATURE, V412, P816, DOI 10.1038/35090566; Markman S, 2004, J ANIM ECOL, V73, P747, DOI 10.1111/j.0021-8790.2004.00847.x; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Murphy Mary E., 1996, P31; NUR N, 1988, ARDEA, V76, P155; Orians G.H., 1979, P155; Partridge L., 1985, P207; R Development Core Team, 2008, R LANG ENV STAT COMP; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robinson S, 2005, IBIS, V147, P483, DOI 10.1111/j.1474-919x.2005.00431.x; Ropert-Coudert Y, 2006, MAR BIOL, V149, P139, DOI 10.1007/s00227-005-0188-x; Ropert-Coudert Y, 2004, BEHAV ECOL, V15, P824, DOI 10.1093/beheco/arh086; Schultz MA, 2000, J AVIAN BIOL, V31, P287, DOI 10.1034/j.1600-048X.2000.310303.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TRIVERS RL, 1974, AM ZOOL, V14, P249; WEAVERS BW, 1992, EMU, V91, P302; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; Weimerskirch H, 1997, BEHAV ECOL, V8, P635, DOI 10.1093/beheco/8.6.635; WEIMERSKIRCH H, 1986, IBIS, V128, P195, DOI 10.1111/j.1474-919X.1986.tb02669.x; Weimerskirch H, 1998, J ANIM ECOL, V67, P99, DOI 10.1046/j.1365-2656.1998.00180.x; Weimerskirch H, 1997, ECOLOGY, V78, P2051; WEIMERSKIRCH H, 1994, ANIM BEHAV, V47, P472, DOI 10.1006/anbe.1994.1065; Welcker J, 2009, J AVIAN BIOL, V40, P388, DOI 10.1111/j.1600-048X.2008.04620.x; WILLIAMS TD, 1990, J APPL ECOL, V27, P1042, DOI 10.2307/2404394; WILSON RP, 1989, COMP BIOCHEM PHYS A, V94, P461, DOI 10.1016/0300-9629(89)90121-7 53 31 33 3 48 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2011 92 10 1909 1916 10.1890/11-0407.1 8 Ecology Environmental Sciences & Ecology 834JI WOS:000295955200006 22073782 2019-02-21 J Feurdean, A; Tantau, I; Farcas, S Feurdean, Angelica; Tantau, Ioan; Farcas, Sorina Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status QUATERNARY SCIENCE REVIEWS English Article Pinus diploxylontype; Pinus cembra; Picea abies; Quercus; Tree establishment; Range distribution; Variability; Climate; Resilience; Pollen maps; Holocene; Romania; Eastern Europe POLLEN ACCUMULATION RATES; NW ROMANIA; CLIMATE VARIABILITY; GUTAIULUI MOUNTAINS; VEGETATION HISTORY; NORWAY SPRUCE; CONSERVATION MANAGEMENT; NORTHWESTERN ROMANIA; FOREST DYNAMICS; FOSSIL POLLEN This paper examines fourteen fossil pollen datasets from Romania. It aims to investigate the temporal and spatial variability in the range distribution and abundance of three forest taxa, Pinus, Picea abies, and Quercus, during the Holocene. This is essential for understanding their current status in the forests of Eastern Europe, the conditions under which they arose, and the timing and processes responsible for their variability. Results from this synthesis do not indicate any apparent time lag in the establishment of Pinus diploxylon type (Pinus sylvestris and Pin us mu go), Pin us cembra, P. abies, and Quercus across Romania within the limits of the dating resolution. However, the onset of the mass expansion of P. abies was not uniform, spreading earlier from sites in the western and north-western Carpathians (11,000-10,500 yr BP) than in the east (10,000 yr BP). We found that sites from the western, north-western, and northern Carpathians contained higher abundances of P. abies, whilst Quercus was in higher abundances in sites from the east, but there was no regional distinctiveness in the abundance of Pinus across the study area. However, P. diploxylon type was found in much higher abundance than P. cembra. Additionally, results indicate a greater proportion of Pinus (mainly P. diplxylon type) at high elevations, P. abies at mid to high elevations, and Quercus at low elevations (< 500 m). The dominance of Pinus in the early Holocene boreal forest is likely the legacy of its local glacial refugia, fast life history strategies, high stress tolerance, and large habitat availability. In contrast, Pinus exhibited poor competitive abilities and was quickly replaced with P. abies and temperate deciduous taxa after 10,500 yr BP. P abies has persisted in large abundances at higher elevations (above 1000 m) until the present day, as a result of good competitive abilities, and resilience to climate change and disturbance. The long-term dominance of P. abies appears to have been spatially constrained, as populations below ca 1000 m were replaced by Fagus sylvatica from ca 4000 years ago, Recently, Pinus (mainly P. sylvestris) and P. abies have both experienced range expansions a consequence of forest management. Quercus is the only continental deciduous tree that has maintained high abundance throughout the whole Holocene. Members of this genus demonstrated high resilience to climate change and disturbance; following a period of decline it was capable of recovery during subsequent intervals of warm conditions or disturbance. (C) 2011 Elsevier Ltd. All rights reserved. [Feurdean, Angelica] Senckenberg Res Inst, D-60325 Frankfurt, Germany; [Feurdean, Angelica] Nat Hist Museum, D-60325 Frankfurt, Germany; [Feurdean, Angelica] LOEWE Biodivers & Climate Res Ctr, D-60325 Frankfurt, Germany; [Tantau, Ioan] Univ Babes Bolyai, Dept Geol, Cluj Napoca 400084, Romania; [Farcas, Sorina] Inst Biol Res, Cluj Napoca 400015, Romania Feurdean, A (reprint author), Senckenberg Res Inst, Senckenberganlage 25, D-60325 Frankfurt, Germany. angelica.feurdean@senckenberg.de Farcas, Sorina/D-9699-2016; Tantau, Ioan/B-8788-2011; Biodiversity & Climate Res Ctr, BiK-F/C-4266-2012 Tantau, Ioan/0000-0002-7197-916X; Feurdean, Angelica/0000-0002-2497-3005 German Research Foundation [FE-1096/2-1]; IT; SF [PN II ID_2263 (CNCSIS)] AF acknowledges funding from German Research Foundation, grant FE-1096/2-1, IT and SF the grant PN II ID_2263 (CNCSIS). Suggestions on the manuscript from colleagues at the Oxford Long-Term Ecology Laboratory, particularly Alistair Seddon and two anonymous referees are greatly appreciated. Academia Romana, 2002, ROM MED SI RET EL TR; Administrat ia Parcului Natural Apuseni, 2006, PLAN MAN PARC NAT AP; Andresen CS, 2005, MAR GEOL, V214, P323, DOI 10.1016/j.margeo.2004.11.010; Behre K-E, 1988, VEGETATION HIST, P633; BENNETT KD, 1995, GIORNALE BOT ITALIAN, V129, P243; BERGER A, 1991, QUATERNARY SCI REV, V10, P297, DOI 10.1016/0277-3791(91)90033-Q; Binney HA, 2009, QUATERNARY SCI REV, V28, P2445, DOI 10.1016/j.quascirev.2009.04.016; Birks HJB, 2008, PLANT ECOL DIVERS, V1, P147, DOI 10.1080/17550870802349146; Bjorkman L, 2003, REV PALAEOBOT PALYNO, V124, P79, DOI 10.1016/S0034-6667(02)00249-X; Bjorkman L, 2002, QUATERNARY SCI REV, V21, P1039, DOI 10.1016/S0277-3791(01)00061-0; Bodnariuc A, 2002, QUATERNARY SCI REV, V21, P1465, DOI 10.1016/S0277-3791(01)00117-2; Bond G, 2001, SCIENCE, V294, P2130, DOI 10.1126/science.1065680; Bradshaw RHW, 2005, ECOLOGY, V86, P1679, DOI 10.1890/03-0785; Brostrom A, 2008, VEG HIST ARCHAEOBOT, V17, P461, DOI 10.1007/s00334-008-0148-8; Chirita C., 1981, PADURILE ROMANIEI, P254; Cristea V., 1993, FITOSOCIOLOGIE SI VE; DAVIS MB, 1964, SCIENCE, V145, P1293, DOI 10.1126/science.145.3638.1293; de Beaulieu J.L, 1992, VEG HIST ARCHAEOBOT, V1, P233; Ellenberg H, 1996, VEGETATION MITTELEUR; Farcas S, 1999, CR ACAD SCI III-VIE, V322, P799, DOI 10.1016/S0764-4469(00)80039-6; Farcas S., 2006, DINAMICA SPATIALA TE; FARCAS S, 2004, STUDII CERCETARI BIO, V9, P99; Farcas S, 2003, WURZBURGER GEOGRAPHI, V63, P113; Farcas S., 2009, TRANSYLVANIAN REV SY, V5, P21; Feurdean A, 2005, HOLOCENE, V15, P435, DOI 10.1191/0959683605hl803rp; Feurdean A, 2004, J QUATERNARY SCI, V19, P809, DOI 10.1002/jqs.872; Feurdean A., 2005, STUD U BABES BOLYAI, P63; Feurdean A, 2009, HOLOCENE, V19, P1; Feurdean A., 2008, STUD U BABES BOLYAI, V53, P5; Feurdean A, 2008, DIVERS DISTRIB, V14, P1004, DOI 10.1111/j.1472-4642.2008.00514.x; Feurdean A, 2008, FOREST ECOL MANAG, V256, P421, DOI 10.1016/j.foreco.2008.04.050; Feurdean A, 2008, PALAEOGEOGR PALAEOCL, V260, P494, DOI 10.1016/j.palaeo.2007.12.014; Feurdean A, 2007, QUATERNARY RES, V68, P364, DOI 10.1016/j.yqres.2007.08.003; Feurdean A, 2007, REV PALAEOBOT PALYNO, V145, P305, DOI 10.1016/j.revpalbo.2006.12.004; Feurdean A, 2010, J BIOGEOGR, V37, P2197, DOI 10.1111/j.1365-2699.2010.02370.x; Gaillard MJ, 2008, VEG HIST ARCHAEOBOT, V17, P419, DOI 10.1007/s00334-008-0169-3; Giesecke T, 2004, J BIOGEOGR, V31, P1523, DOI 10.1111/j.1365-2699.2004.01095.x; Giesecke T, 2008, HOLOCENE, V18, P293, DOI 10.1177/0959683607086767; Hahn H., 2009, J BIOGEOGR, V36, P1798; Hicks S, 2001, REV PALAEOBOT PALYNO, V117, P183, DOI 10.1016/S0034-6667(01)00086-0; Hicks S, 2006, VEG HIST ARCHAEOBOT, V15, P253, DOI 10.1007/s00334-006-0063-9; HUNTLEY B, 1983, ATLAS PRESENT POLLEN; Jackson ST, 2004, ANNU REV EARTH PL SC, V32, P495, DOI 10.1146/annurev.earth.32.101802.120435; Jackson ST, 2009, P NATL ACAD SCI USA, V106, P19685, DOI 10.1073/pnas.0901644106; Kaplan JO, 2009, QUATERNARY SCI REV, V28, P3016, DOI 10.1016/j.quascirev.2009.09.028; Kutzbach J. E., 1993, P5; Lang G, 1994, QUARTARE VEGETATIONS; Latalowa M., 2004, LATE GLACIAL HOLOCEN, P165; Latalowa M, 2006, QUATERNARY SCI REV, V25, P2780, DOI 10.1016/j.quascirev.2006.06.007; Lindbladh M, 2010, J ECOL, V98, P1330, DOI 10.1111/j.1365-2745.2010.01733.x; Magyari E, 2009, HYDROBIOLOGIA, V631, P29, DOI 10.1007/s10750-009-9801-1; Magyari EK, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-66; Mayewski PA, 2004, QUATERNARY RES, V62, P243, DOI 10.1016/j.yqres.2004.07.001; Milecka K., 2004, LATE GLACIAL HOLOCEN, P189; Miller PA, 2008, J ECOL, V96, P247, DOI 10.1111/j.1365-2745.2007.01342.x; Moore P. D., 1991, POLLEN ANAL; Onac BP, 2002, J QUATERNARY SCI, V17, P319, DOI 10.1002/jqs.685; Pardoe SH, 2010, VEG HIST ARCHAEOBOT, V19, P271; Persoiu A., 2011, AGU CHAPM C CLIM LAN; Petit RJ, 2003, SCIENCE, V300, P1563, DOI 10.1126/science.1083264; Poska A, 2010, VEG HIST ARCHAEOBOT, V19, P91, DOI 10.1007/s00334-009-0230-x; PRENTICE IC, 1991, ECOLOGY, V72, P2038, DOI 10.2307/1941558; Ralska-Jasiewiczowa M, 2004, LATE GLACIAL HOLOCEN; Ravazzi C, 2002, REV PALAEOBOT PALYNO, V120, P131, DOI 10.1016/S0034-6667(01)00149-X; Reimer PJ, 2009, RADIOCARBON, V51, P1111, DOI 10.1017/S0033822200034202; Rosch M, 2000, FLORA, V195, P277; Schnitchen C, 2006, J PALEOLIMNOL, V36, P1, DOI 10.1007/s10933-006-0001-y; Seppa H, 2009, J ECOL, V97, P629, DOI 10.1111/j.1365-2745.2009.01505.x; Spieksma F. Th. M., 2003, Aerobiologia, V19, P171, DOI 10.1023/B:AERO.0000006528.37447.15; Stancioiu PT, 2006, EUR J FOREST RES, V125, P151, DOI 10.1007/s10342-005-0069-3; STANESCU V, 1997, FLORA FORESTIERA LEM; Stuiver M., 2005, CALIB 6 0; Svenning JC, 2007, GLOBAL ECOL BIOGEOGR, V16, P234, DOI 10.1111/j.1466-822x.2006.00280.x; Tamas T, 2005, GEOL Q, V49, P185; Tantau I, 2006, J QUATERNARY SCI, V21, P49, DOI 10.1002/jqs.937; Tantau I, 2003, VEG HIST ARCHAEOBOT, V12, P113, DOI 10.1007/s00334-003-0015-6; Tantau I, 2006, HIST VEGETATION TARD; Tantau I, 2011, PALAEOGEOGR PALAEOCL, V309, P281, DOI 10.1016/j.palaeo.2011.06.011; Tantau I, 2009, QUATERNARY RES, V72, P164, DOI 10.1016/j.yqres.2009.05.002; Tinner W, 1999, J ECOL, V87, P273, DOI 10.1046/j.1365-2745.1999.00346.x; Tinner W, 2005, GLOBAL CHANGE MOUNTA, P133; Toader T., 2004, PADURILE ROMANIEI PA; Tollefsrud MM, 2008, MOL ECOL, V17, P4134, DOI 10.1111/j.1365-294X.2008.03893.x; Tonkov S, 2005, HOLOCENE, V15, P663, DOI 10.1191/0959683605hl842rp; Tzedakis PC, 2007, ENCY QUATERNARY SCI, P2597; van der Knaap WO, 2010, VEG HIST ARCHAEOBOT, V19, P285, DOI 10.1007/s00334-010-0250-6; Van der Knaap WO, 2005, QUATERNARY SCI REV, V24, P631; VERA FWM, 2006, LARGE HERBIVORE ECOL, P203; Wanner H, 2008, QUATERNARY SCI REV, V27, P1791, DOI 10.1016/j.quascirev.2008.06.013; Wardle DA, 2004, SCIENCE, V305, P509, DOI 10.1126/science.1098778; WEST RG, 1977, PLEISTOCENE GEOLOGY; Willis Katherine J., 1998, P107; Wohlfarth B, 2001, QUATERNARY SCI REV, V20, P1897, DOI 10.1016/S0277-3791(01)00014-2 93 32 33 1 34 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0277-3791 QUATERNARY SCI REV Quat. Sci. Rev. OCT 2011 30 21-22 3060 3075 10.1016/j.quascirev.2011.07.005 16 Geography, Physical; Geosciences, Multidisciplinary Physical Geography; Geology 830NK WOS:000295663500014 2019-02-21 J Nilsson, KA; Lundback, S; Postavnicheva-Harri, A; Persson, L Nilsson, Karin A.; Lundback, Sow; Postavnicheva-Harri, Alexandra; Persson, Lennart Guppy populations differ in cannibalistic degree and adaptation to structural environments OECOLOGIA English Article Cannibalism; Size dependence; Habitat use; Structural heterogeneity; Predation LIFE-HISTORY EVOLUTION; RISK-TAKING BEHAVIOR; POECILIA-RETICULATA; FITNESS CONSEQUENCES; ARCTIC CHARR; NOTONECTA-HOFFMANNI; NATURAL-POPULATIONS; LARVAL DEVELOPMENT; OFFSPRING SIZE; GROWTH-RATES There is considerable variation in cannibalism between different species and also between individuals of different species, although relatively little is known about what creates this variation. We investigated the degree of cannibalism in guppy (Poecilia reticulata) populations originating from high and low predation environments in Trinidad, and also how cannibalism was affected by the presence of refuges. Females from two populations were allowed to feed on juveniles from two populations in aquaria trials. The cannibalism was size-dependent and varied depending on both juvenile and female origin. Low predation females were more efficient cannibals and low predation juveniles were better at avoiding cannibalism compared to high predation guppies when no refuges were present. The high predation females were superior cannibals and the high predation juveniles were better at escaping cannibalism than the low predation guppies when refuges were present. We discuss whether the differences in cannibalism and response to refuge addition relate to predation-induced habitat shifts and differences in the guppies' natural environment. [Nilsson, Karin A.; Lundback, Sow; Postavnicheva-Harri, Alexandra; Persson, Lennart] Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden Nilsson, KA (reprint author), Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden. karin.nilsson@emg.umu.se Persson, Lennart/B-2885-2012 Swedish Research Council; Knut and Alice Wallenberg foundation We thank David Reznick for sending us guppies and for commenting on the manuscript and Volker Rudolf and anonymous reviewers for their helpful comments. This work was supported by the Swedish Research Council to L. Persson. Economical support for buying aquarium facilities and image analysis system used in the experiment was given by the Knut and Alice Wallenberg foundation. Amundsen PA, 1999, ECOL FRESHW FISH, V8, P43, DOI 10.1111/j.1600-0633.1999.tb00051.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; BASHEY F, 2002, THESIS U CALIFORNIA; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BAUR B, 1994, ANIM BEHAV, V48, P851, DOI 10.1006/anbe.1994.1309; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Chapman JW, 1999, BEHAV ECOL, V10, P298, DOI 10.1093/beheco/10.3.298; CHRISTENSEN B, 1993, BEHAV ECOL SOCIOBIOL, V32, P1; Claessen D, 2004, P ROY SOC B-BIOL SCI, V271, P333, DOI 10.1098/rspb.2003.2555; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; Claessen D, 2002, ECOLOGY, V83, P1660, DOI 10.2307/3071986; ClausWalker DB, 1997, CAN J ZOOL, V75, P687, DOI 10.1139/z97-089; Cohen Miriam, 2005, Current Herpetology, V24, P55, DOI 10.3105/1345-5834(2005)24[55:TESOIC]2.0.CO;2; CRAWLEY M, 2002, STAT COMPUTING INTRO; Denoel M, 2006, BIOL J LINN SOC, V89, P373, DOI 10.1111/j.1095-8312.2006.00681.x; DIEHL S, 1995, ECOLOGY, V76, P1712, DOI 10.2307/1940705; DIEHL S, 1988, OIKOS, V53, P207, DOI 10.2307/3566064; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Elgar M., 1992, CANNIBALISM ECOLOGY; Finstad AG, 2001, ECOL FRESHW FISH, V10, P220, DOI 10.1034/j.1600-0633.2001.100404.x; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; FOX LR, 1975, ECOLOGY, V56, P868, DOI 10.2307/1936297; Gerber GP, 2000, OECOLOGIA, V124, P599, DOI 10.1007/s004420000414; Getto P, 2005, J MATH BIOL, V51, P695, DOI 10.1007/s00285-005-0342-6; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HECK HL, 1991, HABITAT STRUCTURE PH, P281; Hopper KR, 1996, ECOLOGY, V77, P191, DOI 10.2307/2265668; Jeppesen E, 1998, STRUCTURING ROLE SUB; JOHANSSON F, 2008, AQUATIC INSECTS CHAL; Kelley JL, 2003, FISH FISH, V4, P216, DOI 10.1046/j.1467-2979.2003.00126.x; Keren-Rotem T, 2006, BEHAV ECOL SOCIOBIOL, V59, P723, DOI 10.1007/s00265-005-0102-z; Keskinen T, 2004, J FISH BIOL, V65, P1147, DOI 10.1111/j.1095-8649.2004.00500.x; Langellotto GA, 2006, ECOL ENTOMOL, V31, P575, DOI 10.1111/j.1365-2311.2006.00816.x; LEONARDSSON K, 1991, ECOLOGY, V72, P1273, DOI 10.2307/1941101; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lion S, 2009, THEOR POPUL BIOL, V76, P132, DOI 10.1016/j.tpb.2009.05.005; Magnhagen C, 2008, ANIM BEHAV, V75, P509, DOI 10.1016/j.anbehav.2007.06.007; MALMQUIST HJ, 1992, J ANIM ECOL, V61, P21, DOI 10.2307/5505; Persson A, 2002, ECOLOGY, V83, P3014; PERSSON L, 1995, ECOLOGY, V76, P70, DOI 10.2307/1940632; Pfenning DW, 2000, AM NAT, V155, P335, DOI 10.1086/303329; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2008, MOL ECOL, V17, P97, DOI 10.1111/j.1365-294X.2007.03474.x; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Rodd FH, 1997, ECOLOGY, V78, P405; Rudolf VHW, 2006, ECOLOGY, V87, P362, DOI 10.1890/05-0961; Rudolf VHW, 2008, ECOLOGY, V89, P1650, DOI 10.1890/07-0709.1; Rudolf VHW, 2010, AM NAT, V175, P513, DOI 10.1086/651616; SAVINO JF, 1982, T AM FISH SOC, V111, P255, DOI 10.1577/1548-8659(1982)111<255:PIBLBA>2.0.CO;2; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Smith C., 1991, Reviews in Fish Biology and Fisheries, V1, P41, DOI 10.1007/BF00042661; STENSETH NC, 1985, J THEOR BIOL, V115, P161, DOI 10.1016/S0022-5193(85)80093-X; STEVENS L, 1989, EVOLUTION, V43, P169, DOI 10.1111/j.1558-5646.1989.tb04215.x; Svenning MA, 2005, J FISH BIOL, V66, P957, DOI 10.1111/j.0022-1112.2005.00646.x; van Kooten T, 2010, CAN J FISH AQUAT SCI, V67, P401, DOI 10.1139/F09-157; VANDENBOSCH F, 1988, J MATH BIOL, V26, P619, DOI 10.1007/BF00276144; Via S, 1999, HEREDITY, V82, P267, DOI 10.1038/sj.hdy.6884820; WADE MJ, 1980, EVOLUTION, V34, P844, DOI 10.1111/j.1558-5646.1980.tb04023.x; Wagner JD, 1999, EVOL ECOL RES, V1, P375; Warfe DM, 2006, OECOLOGIA, V150, P141, DOI 10.1007/s00442-006-0505-1; WEEKS SC, 1993, COPEIA, P1003; WISSINGER SA, 1988, CAN J ZOOL, V66, P543, DOI 10.1139/z88-080 73 7 7 0 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2011 167 2 391 400 10.1007/s00442-011-1990-4 10 Ecology Environmental Sciences & Ecology 834SN WOS:000295984500009 21516310 2019-02-21 J Sletvold, N; Agren, J Sletvold, Nina; Agren, Jon Among-population variation in costs of reproduction in the long-lived orchid Gymnadenia conopsea: an experimental study OECOLOGIA English Article Fitness components; Hand-pollination; Life-history evolution; Reproductive allocation; Trade-off LADYS-SLIPPER ORCHID; HISTORY TRADE-OFFS; PERENNIAL HERB; EXPERIMENTAL MANIPULATIONS; RESOURCE-ALLOCATION; SIZE; PLANT; STORAGE; GROWTH; SAXIFRAGA A cost of reproduction in terms of reduced future performance underlies all life-history models, yet costs have been difficult to detect in short-term experiments with long-lived plants. The likelihood of detecting costs should depend on the range of variation in reproductive effort that can be induced, and also on the shape of the cost function across this range, which should be affected by resource availability. Here, we experimentally examined the effects of both reduced and increased fruit production in two populations of the long-lived orchid Gymnadenia conopsea located at sites that differ in length of the growing season. Plants that were prevented from fruiting produced more flowers in the population with a longer growing season, had higher survival in the other population, and grew larger compared to control plants in both populations. Fruit production was pollen-limited in both populations, and increased reproductive investment after supplemental hand-pollination was associated with reduced fecundity the following year. The results demonstrate that the shape of the cost function varies among fitness components, and that costs can be differentially expressed in different populations. They are consistent with the hypothesis that differences in temporal overlap between allocation to reproduction and other functions will induce among-population variation in reproductive costs. [Sletvold, Nina] Museum Nat Hist & Archaeol, NTNU, N-7491 Trondheim, Norway; [Agren, Jon] Uppsala Univ, EBC, Dept Ecol & Genet, S-75236 Uppsala, Sweden Sletvold, N (reprint author), Museum Nat Hist & Archaeol, NTNU, N-7491 Trondheim, Norway. nina.sletvold@vm.ntnu.no; jon.agren@ebc.uu.se Agren, Jon/E-6093-2011 Agren, Jon/0000-0001-9573-2463 Norwegian Research Council; Swedish Research Council This study was financially supported by grants from the Norwegian Research Council to N.S., and from the Swedish Research Council to J.A. We thank J.M. Grindeland for assistance during field work, and A.A. Winn and two anonymous reviewers for helpful comments on the manuscript. Our work complied with the current laws of Norway. AGREN J, 1993, AM NAT, V141, P338, DOI 10.1086/285477; AGREN J, 1994, OIKOS, V70, P35, DOI 10.2307/3545696; Aragon CF, 2009, AM J BOT, V96, P904, DOI 10.3732/ajb.0800223; Bell G., 1986, Oxford Surveys in Evolutionary Biology, V3, P83; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; CHARLESWORTH B, 1994, EVOLUTION AGE STRUCT, V1; CHEPLICK GP, 1995, AM J BOT, V82, P621, DOI 10.2307/2445420; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; Dostal P, 2009, BASIC APPL ECOL, V10, P525, DOI 10.1016/j.baae.2008.12.004; Ehrlen J, 2001, J ECOL, V89, P237, DOI 10.1046/j.1365-2745.2001.00546.x; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; FOX JF, 1995, OIKOS, V72, P283, DOI 10.2307/3546230; Franco Miguel, 1997, P210; Garcia MB, 2002, AM J BOT, V89, P1295, DOI 10.3732/ajb.89.8.1295; Gustafsson S, 2004, NORD J BOT, V24, P599, DOI 10.1111/j.1756-1051.2004.tb01645.x; Hemborg AM, 1998, OIKOS, V83, P273, DOI 10.2307/3546838; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; Henriksson J, 2000, ANN BOT-LONDON, V86, P503, DOI 10.1006/anbo.2000.1206; Huhta AP, 2009, PLANT ECOL, V201, P599, DOI 10.1007/s11258-008-9535-6; Hulten E, 1986, ATLAS N EUROPEAN VAS, V1-3; HUTCHINGS MJ, 1987, J ECOL, V75, P729, DOI 10.2307/2260202; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Jersakova J, 2010, EVOL ECOL, V24, P1199, DOI 10.1007/s10682-010-9356-7; King EG, 2011, J EVOLUTION BIOL, V24, P256, DOI 10.1111/j.1420-9101.2010.02160.x; Laaksonen K., 1979, FENNIA, V157, P171; Lonn M, 2006, HEREDITAS, V143, P222; LUBBERS AE, 1989, ECOLOGY, V70, P85, DOI 10.2307/1938415; LYNGSTAD A, 2010, THESIS NORWEGIAN U S; Mendez M, 1999, PLANT BIOLOGY, V1, P115, DOI 10.1111/j.1438-8677.1999.tb00717.x; Meyer B, 2007, ENTOMOL GEN, V30, P299; Moen A, 1999, NATL ATLAS NORWAY VE; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oien DI, 2002, TRENDS AND FLUCTUATIONS AND UNDERLYING MECHANISMS IN TERRESTRIAL ORCHID POPULATIONS, P3; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Primack R, 1998, AM J BOT, V85, P1672, DOI 10.2307/2446500; PRIMACK RB, 1990, AM NAT, V136, P638, DOI 10.1086/285120; PRIMACK RB, 1982, EVOLUTION, V36, P742, DOI 10.1111/j.1558-5646.1982.tb05440.x; Reekie E., 2005, REPROD ALLOCATION PL, P189, DOI 10. 1016/B978-012088386-8/50007-7; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Ronsheim ML, 2000, AM J BOT, V87, P1769, DOI 10.2307/2656827; Saikkonen K, 1998, ECOLOGY, V79, P1620, DOI 10.2307/176782; Sandvik SM, 2001, OIKOS, V93, P303, DOI 10.1034/j.1600-0706.2001.930213.x; Sandvik SM, 2009, PLANT ECOL, V205, P1, DOI 10.1007/s11258-009-9594-3; Shefferson RP, 2003, ECOLOGY, V84, P1199, DOI 10.1890/0012-9658(2003)084[1199:LHTIAR]2.0.CO;2; Sletvold N, 2010, INT J PLANT SCI, V171, P999, DOI 10.1086/656597; SNOW AA, 1989, ECOLOGY, V70, P1286, DOI 10.2307/1938188; Stearns S, 1992, EVOLUTION LIFE HIST; SYRJANEN K, 1993, OIKOS, V67, P465, DOI 10.2307/3545358; Thompson FL, 2004, J EVOLUTION BIOL, V17, P581, DOI 10.1111/j.1420-9101.2004.00701.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; WELLS TCE, 1991, POPULATION ECOLOGY T; Worley AC, 1996, J ECOL, V84, P195, DOI 10.2307/2261355 58 15 15 1 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia OCT 2011 167 2 461 468 10.1007/s00442-011-2006-0 8 Ecology Environmental Sciences & Ecology 834SN WOS:000295984500015 21556943 Other Gold, Green Published 2019-02-21 J MacColl, ADC MacColl, Andrew D. C. The ecological causes of evolution TRENDS IN ECOLOGY & EVOLUTION English Review LIFE-HISTORY EVOLUTION; STICKLEBACK GASTEROSTEUS-ACULEATUS; GUPPIES POECILIA-RETICULATA; NATURAL-SELECTION; THREESPINE STICKLEBACK; 3-SPINED STICKLEBACK; PHENOTYPIC SELECTION; SEXUAL SELECTION; TRINIDADIAN GUPPIES; TEMPORAL DYNAMICS Natural selection is the process that results in adaptive evolution, but it is not the cause of evolution. The cause of natural selection and, therefore, of adaptive evolution, is any environmental factor (agent of selection) that results in differential fitness among phenotypes. Surprisingly little is known about selective agents, how they interact or their relative importance across taxa. Here, I outline three approaches for their investigation: functional analysis, correlational analysis and experimental manipulation. By refocusing attention on the structure and consequences of ecological variation, a better characterisation of selective agents would improve understanding of natural selection and evolution, including adaptive radiation, coevolution, the niche, the evolutionary ecology of the ranges of species and their response to environmental change. [MacColl, Andrew D. C.] Univ Nottingham, Sch Biol, Nottingham NG7 2RD, England MacColl, ADC (reprint author), Univ Nottingham, Sch Biol, Univ Pk, Nottingham NG7 2RD, England. andrew.maccoll@nottingham.ac.uk MacColl, Andrew/B-7090-2014 MacColl, Andrew/0000-0003-2102-6130 Natural Environment Research Council [NE/C517525/1] Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; ANHOLT BR, 1991, EVOLUTION, V45, P1091, DOI 10.1111/j.1558-5646.1991.tb04377.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Baquero F, 2009, ENV MICROBIOL REP, V1, P469, DOI 10.1111/j.1758-2229.2009.00053.x; Barrett RDH, 2010, J FISH BIOL, V77, P311, DOI 10.1111/j.1095-8649.2010.02640.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Barrett RDH, 2009, EVOLUTION, V63, P2831, DOI 10.1111/j.1558-5646.2009.00762.x; Bates HW, 1862, T LINN SOC LOND, V23, P495, DOI DOI 10.1111/J.1096-3642.1860.TB00146.X; Bell MA, 2004, EVOLUTION, V58, P814; Bergstrom CA, 2002, CAN J ZOOL, V80, P207, DOI 10.1139/Z01-226; Bertin L., 1925, Ann Inst Ocean Monaco, V2, P1; Bertrand M, 2008, J FISH BIOL, V72, P555, DOI 10.1111/j.1095-8649.2007.01720.x; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Boberg E, 2009, FUNCT ECOL, V23, P1022, DOI 10.1111/j.1365-2435.2009.01595.x; Bolnick DI, 2004, EVOLUTION, V58, P608, DOI 10.1111/j.0014-3820.2004.tb01683.x; Brockhurst MA, 2010, ECOLOGY, V91, P334, DOI 10.1890/09-0293.1; Cable J, 2005, SYST PARASITOL, V60, P159, DOI 10.1007/s11230-004-6348-4; Calsbeek R, 2007, EVOLUTION, V61, P1052, DOI 10.1111/j.1558-5646.2007.00093.x; Calsbeek R, 2010, NATURE, V465, P613, DOI 10.1038/nature09020; Carlson SM, 2007, ECOLOGY, V88, P2620, DOI 10.1890/06-1171.1; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; CLARKE B, 1975, GENETICS, V79, P101; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Colwell RK, 2009, P NATL ACAD SCI USA, V106, P19651, DOI 10.1073/pnas.0901650106; Darwin C., 1859, ORIGIN SPECIES MEANS; DEJONG G, 1994, Q REV BIOL, V69, P3, DOI 10.1086/418431; Ehrlen J, 2003, AM NAT, V162, P796, DOI 10.1086/379350; Endler J. A., 1986, NATURAL SELECTION WI; ffrench-Constant RH, 2004, TRENDS GENET, V20, P163, DOI 10.1016/j.tig.2004.01.003; Fishman L, 2008, NEW PHYTOL, V177, P802, DOI 10.1111/j.1469-8137.2007.02265.x; Flight PA, 2010, MAR ECOL PROG SER, V404, P139, DOI 10.3354/meps08504; Garant D, 2004, AM NAT, V164, pE115, DOI 10.1086/424764; Gaston K. J., 2003, STRUCTURE DYNAMICS G; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; GILES N, 1983, J ZOOL, V199, P535; Gomulkiewicz R, 2007, HEREDITY, V98, P249, DOI 10.1038/sj.hdy.6800949; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Griffith TM, 2006, OIKOS, V114, P5, DOI 10.1111/j.2006.0030-1299.14472.x; Haldane J. B. S., 1954, BIOCH GENETICS; Hendry AP, 2009, CAN J FISH AQUAT SCI, V66, P1383, DOI 10.1139/F09-074; Holt RD, 2009, P NATL ACAD SCI USA, V106, P19659, DOI 10.1073/pnas.0905137106; Huber H, 2009, ANN BOT-LONDON, V103, P377, DOI 10.1093/aob/mcn149; Jackson ST, 2009, P NATL ACAD SCI USA, V106, P19685, DOI 10.1073/pnas.0901644106; Jonzen N, 2010, J ANIM ECOL, V79, P109, DOI 10.1111/j.1365-2656.2009.01601.x; Kaplan RH, 2006, EVOLUTION, V60, P142; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Knudsen R, 2010, J ANIM ECOL, V79, P161, DOI 10.1111/j.1365-2656.2009.01625.x; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lau JA, 2008, ECOLOGY, V89, P1023, DOI 10.1890/06-1999.1; MacColl ADC, 2009, ECOGRAPHY, V32, P153, DOI 10.1111/j.1600-0587.2008.05486.x; Marchinko KB, 2009, EVOLUTION, V63, P127, DOI 10.1111/j.1558-5646.2008.00529.x; MCCLUSKEY S, 1993, BIOCHEM SYST ECOL, V21, P171, DOI 10.1016/0305-1978(93)90034-O; McGregor R, 1998, EVOL ECOL, V12, P629, DOI 10.1023/A:1006569030135; McPeek MA, 1996, ECOLOGY, V77, P1355, DOI 10.2307/2265533; Moeller DA, 2005, EVOLUTION, V59, P786, DOI 10.1554/04-656; MOODIE GEE, 1973, BEHAVIOUR, V47, P95, DOI 10.1163/156853973X00292; Myhre F, 2009, J FISH BIOL, V75, P2062, DOI 10.1111/j.1095-8649.2009.02404.x; Nosil P, 2006, P NATL ACAD SCI USA, V103, P9090, DOI 10.1073/pnas.0601575103; Nosil P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001907; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Parmesan C, 2000, J ECOL, V88, P392, DOI 10.1046/j.1365-2745.2000.00449.x; Paterson S, 2010, NATURE, V464, P275, DOI 10.1038/nature08798; Pfennig DW, 2007, EVOLUTION, V61, P257, DOI 10.1111/j.1558-5646.2007.00034.x; Punzalan D, 2010, AM NAT, V175, P401, DOI 10.1086/650719; RAUSHER MD, 1992, EVOLUTION, V46, P616, DOI 10.1111/j.1558-5646.1992.tb02070.x; REIMCHEN TE, 1992, EVOLUTION, V46, P1224, DOI 10.1111/j.1558-5646.1992.tb00631.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; ROBERTSON A, 1968, POPULATION BIOL EVOL, P5; Sandring S, 2009, EVOLUTION, V63, P1292, DOI 10.1111/j.1558-5646.2009.00624.x; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schwartz AK, 2010, FUNCT ECOL, V24, P354, DOI 10.1111/j.1365-2435.2009.01652.x; Sexton JP, 2009, ANNU REV ECOL EVOL S, V40, P415, DOI 10.1146/annurev.ecolsys.110308.120317; Sibly RM, 1998, J ANIM ECOL, V67, P17, DOI 10.1046/j.1365-2656.1998.00178.x; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Simpson GG., 1953, MAJOR FEATURES EVOLU; Sinervo B, 2002, HEREDITY, V89, P329, DOI 10.1038/sj.hdy.6800148; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Soberon J, 2009, P NATL ACAD SCI USA, V106, P19644, DOI 10.1073/pnas.0901637106; Song JH, 2010, J STRUCT BIOL, V171, P318, DOI 10.1016/j.jsb.2010.04.009; Stoks R, 1999, EVOL ECOL, V13, P115, DOI 10.1023/A:1006656616539; Svensson E, 2000, EVOLUTION, V54, P1396; Taylor EB, 1999, REV FISH BIOL FISHER, V9, P299, DOI 10.1023/A:1008955229420; Thompson J. N., 2005, GEOGRAPHIC MOSAIC CO; Tiffin P, 2000, EVOLUTION, V54, P1024; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; Wark AR, 2010, J EXP BIOL, V213, P108, DOI 10.1242/jeb.031625; Whitlock MC, 1997, EVOLUTION, V51, P1044, DOI 10.1111/j.1558-5646.1997.tb03951.x; Wiens JJ, 2010, ECOL LETT, V13, P1310, DOI 10.1111/j.1461-0248.2010.01515.x; Yoder JB, 2010, J EVOLUTION BIOL, V23, P1581, DOI 10.1111/j.1420-9101.2010.02029.x 100 121 124 15 229 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. OCT 2011 26 10 514 522 10.1016/j.tree.2011.06.009 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 831QE WOS:000295745400010 21763030 2019-02-21 J Kramer, KL Kramer, Karen L. The evolution of human parental care and recruitment of juvenile help TRENDS IN ECOLOGY & EVOLUTION English Review HUMAN LIFE-HISTORY; HUNTER-GATHERERS; WILD CHIMPANZEES; HUMAN GROWTH; TRADE-OFFS; MEN HUNT; FERTILITY; CHILDREN; INVESTMENT; SUCCESS Provisioning of juveniles is a defining characteristic of human life history. Human children are also unusual in cooperating with their siblings, mothers and other adults in the exchange of resources and labor. This article highlights this distinctly human and twofold nature of juvenility within the context of life history evolution and cooperative breeding. Juveniles benefit from continued investment and from helping to support their siblings during a life stage when they cannot contribute to their own reproduction. Rather than juvenile dependence signifying a costly extension of parental care, juvenile provisioning and help are suggested to develop in tandem with the broader pattern of food sharing and division of labor that characterizes human subsistence and sociality. [Kramer, Karen L.] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA Kramer, KL (reprint author), Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA. kkramer@fas.harvard.edu National Science Foundation [0349963]; National Institutes of Health [AG19044-01] I extend much appreciation to the Maya and Pume for the years spent living and working in their communities recording interactions between children and their caretakers. Funding for this research was provided by the National Science Foundation (0349963) and the National Institutes of Health (AG19044-01). Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Bates LA, 2009, BEHAV ECOL SOCIOBIOL, V64, P247, DOI 10.1007/s00265-009-0841-3; Bean Allison, 1999, P339, DOI 10.1017/CBO9780511542466.017; Becker G, 1975, HUMAN CAPITAL; Bentley G.R., 2009, SUBSTITUTE PARENTS; Bereczkei T, 1998, EVOL HUM BEHAV, V19, P283, DOI 10.1016/S1090-5138(98)00027-0; Bird RB, 2002, HUM NATURE-INT BIOS, V13, P239, DOI 10.1007/s12110-002-1009-2; Bird RB, 2008, CURR ANTHROPOL, V49, P655, DOI 10.1086/587700; Blurton Jones N., 1997, UNITING PSYCHOL BIOL, P164; Blurton Jones N. G., 1994, KEY ISSUES HUNTER GA, P189; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; BULATAO RA, 1983, DETERMINANTS FERTILI; CAIN MT, 1977, POPUL DEV REV, V3, P201, DOI 10.2307/1971889; CALDWELL JC, 1976, POPUL DEV REV, V2, P321, DOI 10.2307/1971615; CALDWELL JC, 1978, POPUL DEV REV, V4, P553, DOI 10.2307/1971727; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Clutton-Brock T, 2002, SCIENCE, V296, P69, DOI 10.1126/science.296.5565.69; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; Codding BF, 2011, P ROY SOC B-BIOL SCI, V278, P2502, DOI 10.1098/rspb.2010.2403; de Waal FBM, 2008, ANNU REV PSYCHOL, V59, P279, DOI 10.1146/annurev.psych.59.103006.093625; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; ELLISON PT, 2001, FERTILE GROUND NATUR; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Gould R., 1980, LIVING ARCHAEOLOGY; Grummer-Strawn L.M., 1998, DEATH BIRTH MORTALIT, P39; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; Gurven M, 2009, CURR ANTHROPOL, V50, P51, DOI 10.1086/595620; Hames R., 1988, HUMAN REPROD BEHAV, P237; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2010, CURR ANTHROPOL, V51, P259, DOI 10.1086/651074; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST; Howell N., 2010, LIFE HIST DOBE KUNG; HRDY S. B., 1999, MOTHER NATURE; HRDY SB, 2009, MOTHERS OTHERS; Hurtado M., 1992, HUM NATURE, V3, P1; Ivey P.K., 2005, HUNTER GATHERER CHIL, P191; Janson Charles H., 1993, P57; JONES NB, 1994, J ANTHROPOL RES, V50, P217, DOI 10.1086/jar.50.3.3630178; Jones Nicholas Blurton, 1999, P140, DOI 10.1017/CBO9780511542466.009; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 2002, AM J HUM BIOL, V14, P233, DOI 10.1002/ajhb.10041; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan H., 1997, ZEUS SALMON BIODEMOG, P175; Kaplan HS, 2009, PHILOS T R SOC B, V364, P3289, DOI 10.1098/rstb.2009.0115; Kramer K, 2005, MAYA CHILDREN HELPER; Kramer K. L, 2009, SUBSTITUTE PARENTS B, P77; Kramer K.L., HUM NAT IN PRESS; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2004, RES ECON AN, V23, P335, DOI 10.1016/S0190-1281(04)23014-1; Lawson DW, 2008, INT J EPIDEMIOL, V37, P1408, DOI 10.1093/ije/dyn116; Lee R, 2000, SHARING WEALTH DEMOG, P17; Lee R. B., 1979, KUNG SAN MEN WOMEN W; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Mulder MB, 2009, SCIENCE, V326, P682, DOI 10.1126/science.1178336; NAG M, 1978, CURR ANTHROPOL, V19, P293, DOI 10.1086/202076; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; PUSEY AE, 1983, ANIM BEHAV, V31, P363, DOI 10.1016/S0003-3472(83)80055-4; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Russell AF, 2003, BEHAV ECOL, V14, P486, DOI 10.1093/beheco/arg022; Sellen DW, 2006, SCH AM RES, P155; Silk JB, 2006, COOPERATION IN PRIMATES AND HUMANS: MECHANISMS AND EVOLUTIONS, P25, DOI 10.1007/3-540-28277-7_2; SMITH BH, 1995, ANNU REV ANTHROPOL, V24, P257, DOI 10.1146/annurev.an.24.100195.001353; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Sugiyama Lawrence S., 2005, HUNTER GATHERER CHIL, P237; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Thorne BL, 1997, ANNU REV ECOL SYST, V28, P27, DOI 10.1146/annurev.ecolsys.28.1.27; Tucker Bram, 2005, HUNTER GATHERER CHIL, P147; Turke P. W., 1988, HUMAN REPROD BEHAV D, P173; WEISNER TS, 1977, CURR ANTHROPOL, V18, P169, DOI 10.1086/201883; ZELLER AC, 1987, MAN, V22, P528, DOI 10.2307/2802504 85 39 40 1 163 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 1872-8383 TRENDS ECOL EVOL Trends Ecol. Evol. OCT 2011 26 10 533 540 10.1016/j.tree.2011.06.002 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 831QE WOS:000295745400012 21784548 2019-02-21 J Edenbrow, M; Croft, DP Edenbrow, M.; Croft, D. P. Behavioural types and life history strategies during ontogeny in the mangrove killifish, Kryptolebias marmoratus ANIMAL BEHAVIOUR English Article animal personality; behavioural type; Kryptolebias marmoratus; life history; mangrove killifish; plasticity; Rivulus marmoratus VARIANCE-COVARIANCE MATRICES; FISH RIVULUS-MARMORATUS; SELF-FERTILIZING FISH; RISK-TAKING BEHAVIOR; MALE GREAT TITS; PERSONALITY-TRAITS; GASTEROSTEUS-ACULEATUS; PHENOTYPIC PLASTICITY; EXPLORATORY-BEHAVIOR; ANIMAL PERSONALITY Consistent differences in behaviour, termed behavioural types (BTs) are well documented in the animal kingdom. Relatively little is known, however, about how and why consistency is maintained within populations. In recent years, theoretical work suggests that life history trade-offs may be an important mechanism driving the maintenance of interindividual variation in BTs. We used a laboratory population of a clonal vertebrate, the mangrove killifish, as a model organism. This fish is an internally self-fertilizing simultaneous hermaphrodite that exhibits within-genotype homozygosity. We utilized 20 genotypes to examine BT plasticity (boldness and exploration), the development of behavioural correlations, and relationships between life history strategy and BTs at five age points during ontogeny. We found that BT scores increased during early ontogeny and reached an asymptote near sexual maturity. We also found considerable variation in BT developmental plasticity at the genotype level. Moreover, although genotypes exhibited high levels of plasticity in BTs, strong, significant positive correlations between exploration and boldness emerged from day 61 onwards. Furthermore, we observed no difference between genotypes in growth rate and growth was unrelated to BTs. Contrary to our predictions, we found that while genotypes differed in their age at first reproduction and reproductive output, these differences were unrelated to BT expression prior to and following sexual maturity. We discuss these results in relation to mechanisms proposed to drive interindividual variation in BTs and we highlight the potential of the mangrove killifish as a model organism for animal personality studies. (C) 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Edenbrow, M.; Croft, D. P.] Univ Exeter, Washington Singer Labs, Ctr Res Anim Behav, Sch Psychol, Exeter EX4 4QG, Devon, England Edenbrow, M (reprint author), Univ Exeter, Washington Singer Labs, Ctr Res Anim Behav, Sch Psychol, Perry Rd, Exeter EX4 4QG, Devon, England. mathewedenbrow@hotmail.com Croft, Darren/B-5503-2009; Edenbrow, Mathew/K-3331-2013 Croft, Darren/0000-0001-6869-5097; Edenbrow, Mathew/0000-0002-3318-6337 Fisheries Society of the British Isles; Nuffield Science Foundation We thank the Fisheries Society of the British Isles (M.E.) and the Nuffield Science Foundation (D.P.C.) for funding this research, David Bechler (Valdosta State University, Georgia) who supplied fish, Scott Taylor and Ben Chapman for collecting fish from Florida, the anonymous referees and Stephen Lea, David Jacoby and Emma Foster for helpful comments on the manuscript, and Patrick Hamilton, Wiebke Schuett, Theodoros Economou, Safi Darden, Sasha Dall, Sinead English, Don Mitchell and Jens Krause for their advice and suggestions as well as Sonia Chapman for technical support. Akaike H, 1974, IEEE T AUTOMATIC CON, V19; Arnold SJ, 1999, EVOLUTION, V53, P1516, DOI 10.1111/j.1558-5646.1999.tb05415.x; Bates DM, 2009, LME4 LINEAR MIXED EF; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Brodin T, 2009, BEHAV ECOL, V20, P30, DOI 10.1093/beheco/arn111; Budaev SV, 2010, ETHOLOGY, V116, P472, DOI 10.1111/j.1439-0310.2010.01758.x; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2009, FUNCT ECOL, V23, P150, DOI 10.1111/j.1365-2435.2008.01468.x; Carere C, 2005, BEHAVIOUR, V142, P1329, DOI 10.1163/156853905774539328; Cavigelli SA, 2003, P NATL ACAD SCI USA, V100, P16131, DOI 10.1073/pnas.2535721100; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Conrad JL, 2009, J FISH BIOL, V75, P1410, DOI 10.1111/j.1095-8649.2009.02372.x; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, BEHAV ECOL, V15, P1023, DOI 10.1093/beheco/arh115; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Earley RL, 2000, ETHOLOGY, V106, P743, DOI 10.1046/j.1439-0310.2000.00586.x; Earley RL, 2008, HORM BEHAV, V53, P442, DOI 10.1016/j.yhbeh.2007.11.017; Faraway J. J., 2006, EXTENDING LINEAR MOD; Flury B., 1988, COMMON PRINCIPAL COM; Grageda MVC, 2005, ENVIRON BIOL FISH, V73, P427, DOI 10.1007/s10641-005-2196-6; GRIZZLE JM, 1987, COPEIA, P237, DOI 10.2307/1446065; HARRINGTON R. W., 1963, PHYSIOL ZOOL, V36, P325; Hsu YY, 2009, BEHAV ECOL SOCIOBIOL, V63, P1247, DOI 10.1007/s00265-009-0791-9; Hsu YY, 1999, ANIM BEHAV, V57, P903, DOI 10.1006/anbe.1998.1049; Hsu YY, 2001, ANIM BEHAV, V61, P777, DOI 10.1006/anbe.2000.1650; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Johnson JC, 2005, BEHAV ECOL SOCIOBIOL, V58, P390, DOI 10.1007/s00265-005-0943-5; KALLMAN KD, 1964, BIOL BULL, V126, P101, DOI 10.2307/1539420; Ketterson ED, 1999, AM NAT, V154, pS4, DOI 10.1086/303280; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Laakkonen MVM, 2007, CAN J FISH AQUAT SCI, V64, P665, DOI 10.1139/F07-041; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Mackiewicz M, 2006, J HERED, V97, P508, DOI 10.1093/jhered/es1017; Mackiewicz M, 2006, P ROY SOC B-BIOL SCI, V273, P2449, DOI 10.1098/rspb.2006.3594; Mackiewicz M, 2006, P NATL ACAD SCI USA, V103, P9924, DOI 10.1073/pnas.0603847103; Martin SB, 2007, J FISH BIOL, V71, P1383, DOI 10.1111/j.1095-8649.2007.01603.x; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; Minamimoto M, 2006, ENVIRON BIOL FISH, V75, P159, DOI 10.1007/s10641-005-4504-6; Mroczek D.K., 2006, HDB PERSONALITY DEV; MUNRO AD, 1985, HORM BEHAV, V19, P353, DOI 10.1016/0018-506X(85)90034-0; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI [10.1111/j.1558-5646.1999.tb05414.x, 10.2307/2640896]; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Priestley SM, 2006, J NUTR, V136, p2078S, DOI 10.1093/jn/136.7.2078S; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Pruitt JN, 2010, J EVOLUTION BIOL, V23, P748, DOI 10.1111/j.1420-9101.2010.01940.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Raghunathan TE, 1996, PSYCHOL METHODS, V1, P178, DOI 10.1037/1082-989X.1.2.178; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Sakakura Y, 2000, ENVIRON BIOL FISH, V59, P309, DOI 10.1023/A:1007627411492; Sakakura Y, 2006, ICHTHYOL RES, V53, P427, DOI 10.1007/s10228-006-0362-2; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Sih A, 2005, BEHAVIOUR, V142, P1417, DOI 10.1163/156853905774539454; Sih A, 2003, ANIM BEHAV, V65, P29, DOI 10.1006/anbe.2002.2025; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sinn DL, 2006, J EVOLUTION BIOL, V19, P1437, DOI 10.1111/j.1420-9101.2006.01136.x; Sinn DL, 2008, ANIM BEHAV, V75, P433, DOI 10.1016/j.anbehav.2007.05.008; Sinn DL, 2010, BEHAV ECOL SOCIOBIOL, V64, P693, DOI 10.1007/s00265-009-0887-2; Sinn DL, 2005, J COMP PSYCHOL, V119, P99, DOI 10.1037/0735-7036.119.1.99; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stamps JA, 2010, PHILOS T R SOC B, V365, P4029, DOI 10.1098/rstb.2010.0218; Stapley J, 2005, BEHAV ECOL, V16, P514, DOI 10.1093/beheco/ari019; Stearns S, 1992, EVOLUTION LIFE HIST; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; Tatarenkov A, 2009, P NATL ACAD SCI USA, V106, P14456, DOI 10.1073/pnas.0907852106; TAYLOR D S, 1990, Florida Scientist, V53, P239; Taylor DS, 2008, AM NAT, V171, P263, DOI 10.1086/524960; Taylor D. Scott, 2000, Florida Scientist, V63, P242; Taylor DS, 2001, ENVIRON BIOL FISH, V61, P455, DOI 10.1023/A:1011607905888; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; van Oers K, 2004, HEREDITY, V93, P496, DOI 10.1038/sj.hdy.6800530; Verbeek MEM, 1996, BEHAVIOUR, V133, P945, DOI 10.1163/156853996X00314; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Webster MM, 2009, BEHAV ECOL SOCIOBIOL, V63, P511, DOI 10.1007/s00265-008-0685-2; Wilson ADM, 2005, ETHOLOGY, V111, P849, DOI 10.1111/j.1439-0310.2005.01110.x; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 101 37 37 1 65 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 ANIM BEHAV Anim. Behav. OCT 2011 82 4 731 741 10.1016/j.anbehav.2011.07.003 11 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 825HS WOS:000295262800018 2019-02-21 J Lu, X; Yu, TL; Ke, DH Lu, Xin; Yu, Tonglei; Ke, Dianhua Helped ground tit parents in poor foraging environments reduce provisioning effort despite nestling starvation ANIMAL BEHAVIOUR English Article environmental variability; ground tit; helping behaviour; kin selection; life history; Parus humilis WHITE-WINGED CHOUGHS; COOPERATIVELY BREEDING BIRDS; REPRODUCTIVE SUCCESS; HATCHING ASYNCHRONY; HELPING-BEHAVIOR; KIN-SELECTION; COST; SURVIVAL; FITNESS; INVESTMENT Life history theory views parental effort as a dynamic response to current productivity benefits and personal survival costs. Classical provisioning models specific to avian cooperative breeding systems predict that nestling starvation caused by local food limitation will induce helped parents to maintain their effort to ensure fledging success. Yet, food shortages may impose such a high provisioning cost that selection favours parents that lighten their workload at the expense of offspring productivity. We tested this alternative prediction with the ground tit, Parus humilis, which is an insectivorous, facultative cooperative breeder; helpers are mostly philopatric male offspring. Our study was based on data from three breeding seasons over which rainfall, and hence food resources, varied greatly. Total amount of food delivered to the young was highest for group-fed broods in food-rich environments, although helped male and female parents invested less than their counterparts with no helpers, and provisioning rate of the latter in both types of environmental conditions was similar to that of group-fed broods in food-poor environments. The variation in care level was mirrored by the observed pattern of partial brood loss, the single largest cause limiting productivity. The lowered effort in association with increased brood reduction under poor foraging conditions suggests ground tit parents with helpers trade future fitness against current reproduction to cope with harsh, unpredictable environments. This finding broadens our understanding of interspecific variability of parental response to the presence of helpers across ecological gradients. (C) 2011 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Lu, Xin; Yu, Tonglei; Ke, Dianhua] Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China. luxinwh@gmail.com National Sciences Foundation of China [30830019] This work was funded by National Sciences Foundation of China (Grant 30830019). Thanks to Z. W. Peng, X. Y Ma, L. Q. Fan, Y. Y. Guo, J. J. Liang and R. Huo for their assistance in field data collection. The manuscript benefited from discussion with S. Y. Tang and W. Chen, and from comments by Drs J. Wright, A. Pilastro, A. Turner and three anonymous referees. Arnqvist G, 2005, SEXUAL CONFLICT; Blackmore CJ, 2007, J ZOOL, V273, P326, DOI 10.1111/j.1469-7998.2007.00332.x; Canestrari D, 2007, ANIM BEHAV, V73, P349, DOI 10.1016/j.anbehav.2006.04.013; CLARKE MF, 1984, BEHAV ECOL SOCIOBIOL, V14, P137, DOI 10.1007/BF00291904; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; CLUTTONBROCK TH, 1988, REPROD SUCCESS; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; Cockburn A, 2008, J ANIM ECOL, V77, P430, DOI 10.1111/j.1365-2656.2007.01351.x; Covas R, 2008, BEHAV ECOL SOCIOBIOL, V63, P103, DOI 10.1007/s00265-008-0640-2; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Davis SE, 2005, ECOLOGY, V86, P1047, DOI 10.1890/04-0989; Dickinson J. L., 2004, COOPERATIVE BREEDING, P48; Dickinson JL, 1996, BEHAV ECOL, V7, P168, DOI 10.1093/beheco/7.2.168; Doerr ED, 2007, J ANIM ECOL, V76, P966, DOI 10.1111/j.1365-2656.2007.01280.x; Du B, 2010, BEHAV ECOL SOCIOBIOL, V64, P1631, DOI 10.1007/s00265-010-0976-2; Du B, 2009, MOL ECOL, V18, P3929, DOI 10.1111/j.1365-294X.2009.04336.x; Eguchi K, 2002, J ANIM ECOL, V71, P123, DOI 10.1046/j.0021-8790.2001.00585.x; EMLEN ST, 1991, J ANIM ECOL, V60, P309, DOI 10.2307/5462; Emlen Stephen T., 1997, P228; Erikstad KE, 1998, ECOLOGY, V79, P1781; Fitzmaurice GM, 2004, APPL LONGITUDINAL AN; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Hatchwell BJ, 2004, BEHAV ECOL, V15, P1, DOI 10.1093/beheco/arg091; Heinsohn R, 1995, EMU, V95, P252, DOI 10.1071/MU9950252; HEINSOHN R, 1994, P ROY SOC B-BIOL SCI, V256, P293, DOI 10.1098/rspb.1994.0083; HEINSOHN RG, 1992, EVOL ECOL, V6, P97, DOI 10.1007/BF02270705; Heinsohn Robert G., 2004, P67, DOI 10.1017/CBO9780511606816.005; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Johannessen LE, 2011, IBIS, V153, P373, DOI 10.1111/j.1474-919X.2011.01115.x; Ke D. H, 2009, THESIS WUHAN U; Ke DH, 2009, IBIS, V151, P321, DOI 10.1111/j.1474-919X.2009.00913.x; Khan MZ, 2002, BEHAV ECOL SOCIOBIOL, V51, P336, DOI 10.1007/s00265-001-0441-3; KOMDEUR J, 1994, BEHAV ECOL SOCIOBIOL, V34, P175, DOI 10.1007/BF00167742; Lack D., 1954, NATURAL REGULATION A; Legge S, 2000, ANIM BEHAV, V59, P1009, DOI 10.1006/anbe.2000.1382; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Lu X, 2009, J ARID ENVIRON, V73, P1103, DOI 10.1016/j.jaridenv.2009.06.011; Luck GW, 2002, AM NAT, V160, P809, DOI 10.1086/343881; MacColl ADC, 2003, ANIM BEHAV, V66, P955, DOI 10.1006/anbe.2003.2268; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Meade J, 2010, J ANIM ECOL, V79, P529, DOI 10.1111/j.1365-2656.2009.01656.x; Newton I, 1989, LIFETIME REPROD BIRD; Peng Z. W, 2007, THESIS WUHAN U; Rabenold K.N., 1990, P157, DOI 10.1017/CBO9780511752452.007; RAITT RJ, 1984, WILSON BULL, V96, P206; Remes V, 2002, EVOLUTION, V56, P2505; REYER HU, 1984, ANIM BEHAV, V32, P1163, DOI 10.1016/S0003-3472(84)80233-X; Roff Derek A., 1992; ROWLEY I, 1978, IBIS, V120, P178, DOI 10.1111/j.1474-919X.1978.tb06774.x; Russell AF, 2003, P NATL ACAD SCI USA, V100, P3333, DOI 10.1073/pnas.0636503100; te Marvelde L, 2009, ANIM BEHAV, V77, P727, DOI 10.1016/j.anbehav.2008.12.008; Wang C, 2011, MOL ECOL, V20, P2851, DOI 10.1111/j.1365-294X.2011.05070.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLFENDEN GE, 1978, BIOSCIENCE, V28, P104, DOI 10.2307/1307423; Wright J, 1998, BEHAV ECOL SOCIOBIOL, V42, P423, DOI 10.1007/s002650050456 58 10 12 4 32 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. OCT 2011 82 4 861 867 10.1016/j.anbehav.2011.07.024 7 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 825HS WOS:000295262800034 2019-02-21 J McKellar, AE; Hendry, AP McKellar, A. E.; Hendry, A. P. Environmental factors influencing adult sex ratio in Poecilia reticulata: laboratory experiments JOURNAL OF FISH BIOLOGY English Article predation; resource limitation; sex-biased mortality; guppies; Trinidad LIFE-HISTORY EVOLUTION; MALE MATING-BEHAVIOR; TRINIDADIAN GUPPIES; NATURAL-POPULATIONS; PREDATION RISK; WILD GUPPIES; SELECTION; MORTALITY; COMPETITION; EMIGRATION The potential causes of adult sex ratio variation in guppies Poecilia reticulata were tested in laboratory experiments that evaluated the mortality rates of male and female P. reticulata exposed to potential predators (Hart's rivulus Rivulus hartii and freshwater prawns Macrobrachium crenulatum) and to different resource levels. Poecilia reticulata mortality increased in the presence of R. hartii and M. crenulatum, and low resource levels had an effect on mortality only in the presence of M. crenulatum. Rivulus hartii preyed more often on male than on female P. reticulata, and this sex-biased predation was not simply the result of males being smaller than females. In contrast, no sex-biased mortality was attributable to M. crenulatum or low resource levels. (C) 2011 The Authors Journal of Fish Biology (C) 2011 The Fisheries Society of the British Isles McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada McKellar, AE (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. ann.mckellar@queensu.ca Natural Sciences and Engineering Council of Canada; Canada Graduate Scholarship M. Boisjoly, J.-S. Moore and A. Schwartz helped collect fish in the field. M. Boisjoly, O. Dutczak, C. LeBlond, C. Saliba and A. Schwartz helped in the laboratory. E. Crispo and A. Schwartz provided useful comments on an earlier version of the manuscript. The Natural Sciences and Engineering Council of Canada provided financial support in the form of a Discovery grant to A. P. H and a Canada Graduate Scholarship to A. E. M. Barbosa M, 2010, BIOL J LINN SOC, V100, P414, DOI 10.1111/j.1095-8312.2010.01425.x; Berger J, 1999, J MAMMAL, V80, P1084, DOI 10.2307/1383162; BROWN LP, 1982, AM NAT, V120, P694, DOI 10.1086/284023; Chapman BB, 2010, BEHAV ECOL, V21, P501, DOI 10.1093/beheco/arq003; Clutton-Brock TH, 2002, NATURE, V415, P633, DOI 10.1038/415633a; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; COX DR, 1972, J R STAT SOC B, V34, P187; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Croft DP, 2004, ENVIRON BIOL FISH, V71, P127, DOI 10.1007/s10641-003-0092-5; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; DUSSAULT GV, 1981, CAN J ZOOL, V59, P684, DOI 10.1139/z81-098; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Evans JP, 1999, ANIM BEHAV, V58, P1001, DOI 10.1006/anbe.1999.1212; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GEODAKYAN VA, 1967, GENETIKA, V3, P152; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Hazlett BA, 2005, NEW ZEAL J MAR FRESH, V39, P157, DOI 10.1080/00288330.2005.9517298; Jirotkul M, 1999, ANIM BEHAV, V58, P287, DOI 10.1006/anbe.1999.1149; KLEIN DR, 1968, J WILDLIFE MANAGE, V32, P350, DOI 10.2307/3798981; Kraak SBM, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P158, DOI 10.1017/CBO9780511542053.008; Krackow S, 2002, ETHOLOGY, V108, P1041, DOI 10.1046/j.1439-0310.2002.00843.x; LAWRENCE WS, 1987, ECOLOGY, V68, P539, DOI 10.2307/1938459; Lee E. T., 2003, STAT METHODS SURVIVA; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LOVICH JE, 1990, OIKOS, V59, P126, DOI 10.2307/3545132; Magellan K, 2007, ANIM BEHAV, V74, P1545, DOI 10.1016/j.anbehav.2007.03.015; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; MAGURRAN AE, 1990, ANIM BEHAV, V40, P443, DOI 10.1016/S0003-3472(05)80524-X; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; McKellar AE, 2009, OECOLOGIA, V159, P735, DOI 10.1007/s00442-008-1257-x; Millar NP, 2006, OIKOS, V113, P1; Nicoletto PF, 1999, ENVIRON BIOL FISH, V55, P227, DOI 10.1023/A:1007587809618; Petersen JH, 1998, BIOMETRICS, V54, P646, DOI 10.2307/3109771; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; REYNOLDS JD, 1986, BEHAV ECOL SOCIOBIOL, V18, P303, DOI 10.1007/BF00300008; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick D.N., 1989, P125; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rodd FH, 1997, ECOLOGY, V78, P405; Rutkowska J, 2008, PHILOS T R SOC B, V363, P1675, DOI 10.1098/rstb.2007.0006; Schultz R. J., 1977, Evolutionary Biol, V10, P277; Schwartz AK, 2010, FUNCT ECOL, V24, P354, DOI 10.1111/j.1365-2435.2009.01652.x; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Seghers BH, 1978, VERH INT VEREIN LIMN, V20, P2055; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Sommer S, 2000, ANIM BEHAV, V59, P1087, DOI 10.1006/anbe.2000.1381; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; WAAGE JK, 1982, ANN APPL BIOL, V101, P159; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 62 6 6 1 21 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 J FISH BIOL J. Fish Biol. OCT 2011 79 4 937 953 10.1111/j.1095-8649.2011.03065.x 17 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 828UP WOS:000295529000006 21967582 2019-02-21 J Zuniga-Vega, JJ; Suarez-Rodriguez, M; Espinosa-Perez, H; Johnson, JB Zuniga-Vega, J. J.; Suarez-Rodriguez, M.; Espinosa-Perez, H.; Johnson, J. B. Morphological and reproductive variation among populations of the Pacific molly Poecilia butleri JOURNAL OF FISH BIOLOGY English Article body shape; geometric morphometrics; life-history traits; Poeciliidae; reproduction; viviparous fishes LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; GAMBUSIA-AFFINIS; LEAST KILLIFISH; UNIQUE FEATURES; OFFSPRING SIZE; BODY SHAPE; TRADE-OFF; GUPPIES In viviparous organisms, pregnant females typically experience an increase in body mass and body volume. In this study, the prediction that variation in reproductive traits among populations of viviparous organisms should be related to variation among populations in body shape was tested in the Pacific molly Poecilia butleri, a viviparous fish that inhabits western Mexico and northern Central America. Variation among 10 populations in four reproductive traits was examined: brood size, individual embryo mass, total reproductive allotment and degree of maternal provisioning of nutrients to developing embryos. Variation among these populations in body shape was also examined. Significant variation among populations was observed in both brood size and reproductive allotment but not in embryo mass or degree of maternal provisioning. Significant variation among populations was also observed in body shape. After correcting for female size, however, reproductive traits and body shape were not associated among populations. This suggests that selective pressures acting on reproduction do not necessarily affect morphology and vice versa. Several factors might contribute to this unexpected lack of association between reproductive traits and morphology. (C) 2011 The Authors Journal of Fish Biology (C) 2011 The Fisheries Society of the British Isles [Zuniga-Vega, J. J.; Suarez-Rodriguez, M.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Espinosa-Perez, H.] Univ Nacl Autonoma Mexico, Inst Biol, Dept Zool, Mexico City 04510, DF, Mexico; [Johnson, J. B.] Brigham Young Univ, Evolutionary Ecol Labs, Dept Biol, Provo, UT 84602 USA; [Johnson, J. B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Zuniga-Vega, JJ (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. jzuniga@ciencias.unam.mx Zuniga-Vega, Jose Jaime/B-9423-2013 Brigham Young University; Universidad Nacional Autonoma de Mexico (DGAPA) [PAPIIT IN206309-3] Field assistance was provided by O. Camacho-Cortes, I. Casas-Lopez, L. Christensen, L. Nay, H. Perez-Mendoza, E. Schott and L. Scott. Laboratory assistance was provided by F. Rodriguez-Reyes and B. Zuniga-Ruiz. Fieldwork was conducted under permits FAUT-0117 and DGOPA/1864/210205/.-0765. This study was supported by Brigham Young University through the Roger and Victoria Sant Endowment and by Universidad Nacional Autonoma de Mexico (DGAPA) through the project PAPIIT IN206309-3. P. Unmack and three anonymous reviewers provided valuable comments. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Boehning-Gaese Katrin, 2000, Evolutionary Ecology Research, V2, P823; Brys R, 2010, PLANT BIOLOGY, V12, P597, DOI 10.1111/j.1438-8677.2009.00259.x; Cardini A, 2009, ETHOL ECOL EVOL, V21, P209, DOI 10.1080/08927014.2009.9522476; CHEONG RT, 1984, COPEIA, P720; Chivers DP, 2008, EVOL ECOL, V22, P561, DOI 10.1007/s10682-007-9182-8; Constantz G.D., 1989, P33; Costa C, 2007, ENVIRON BIOL FISH, V78, P115, DOI 10.1007/s10641-006-9081-9; Du WG, 2010, J EXP ZOOL PART A, V313A, P123, DOI 10.1002/jez.583; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Ghedotti MJ, 2000, ZOOL J LINN SOC-LOND, V130, P1, DOI 10.1006/zjls.1999.0213; Gomes JL, 2007, J FISH BIOL, V71, P1799, DOI 10.1111/j.1095-8649.2007.01653.x; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; GRIFFITH H, 1994, J ZOOL, V233, P541, DOI 10.1111/j.1469-7998.1994.tb05364.x; HARDER LD, 1985, OECOLOGIA, V67, P286, DOI 10.1007/BF00384301; HAYNES JL, 1995, COPEIA, P147; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hummel T. J., 1971, PSYCHOL BULL, V86, P964; Hussel JT, 1972, ECOL MONOGR, V42, P317; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson Jerald B., 2011, P38; Langerhans RB, 2007, J EVOLUTION BIOL, V20, P1171, DOI 10.1111/j.1420-9101.2006.01282.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Leips J, 1999, J ANIM ECOL, V68, P595, DOI 10.1046/j.1365-2656.1999.00311.x; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; Mateos M, 2005, J BIOGEOGR, V32, P775, DOI 10.1111/j.1365-2699.2005.01236.x; Miller R.R., 1975, Occasional Papers of the Museum of Zoology University of Michigan, VNo. 672, P1; Miller RR, 2005, FRESHWATER FISHES ME; Morris-Pocock JA, 2010, MOL PHYLOGENET EVOL, V54, P883, DOI 10.1016/j.ympev.2009.11.013; Mutun S, 2010, ACTA ZOOL ACAD SCI H, V56, P153; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pires MN, 2007, J EXP ZOOL PART A, V307A, P113, DOI 10.1002/jez.a.356; Ramirez-Bautista A, 2009, HERPETOL CONSERV BIO, V4, P164; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1993, COPEIA, P103, DOI 10.2307/1446300; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, BIOL J LINN SOC, V92, P77, DOI 10.1111/j.1095-8312.2007.00869.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; REZNICK DN, 1992, COPEIA, P782, DOI 10.2307/1446155; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2010, EVOL ECOL, V24, P789, DOI 10.1007/s10682-009-9335-z; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Riesch R, 2009, ENVIRON BIOL FISH, V84, P89, DOI 10.1007/s10641-008-9392-0; Rodd FH, 1997, ECOLOGY, V78, P419; ROHLF FJ, 1993, CONTRIBUTIONS MORPHO, P131; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SNELSON FF, 1986, COPEIA, P295, DOI 10.2307/1444990; Stearns S, 1992, EVOLUTION LIFE HIST; Svendsen JC, 2009, J FISH BIOL, V75, P901, DOI 10.1111/j.1095-8649.2009.02310.x; Tabachnick B. G., 2007, USING MULTIVARIATE S; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Thompson MB, 2002, COMP BIOCHEM PHYS B, V131, P631, DOI 10.1016/S1096-4959(02)00013-1; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; van Dijk RE, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-107; VONDRACEK B, 1988, ENVIRON BIOL FISH, V21, P45, DOI 10.1007/BF02984442; Wourms JP, 1988, FISH PHYSIOL, VXI, P1; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; Zhang XG, 2009, ENVIRON BIOL FISH, V86, P193, DOI 10.1007/s10641-008-9388-9; Zuniga-Vega JJ, 2007, OIKOS, V116, P995, DOI 10.1111/j.2007.0030-1299.15763.x 70 14 14 2 21 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 J FISH BIOL J. Fish Biol. OCT 2011 79 4 1029 1046 10.1111/j.1095-8649.2011.03081.x 18 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 828UP WOS:000295529000012 21967588 2019-02-21 J Hanson, N; Stark, JD Hanson, Niklas; Stark, John D. AN APPROACH FOR DEVELOPING SIMPLE GENERIC MODELS FOR ECOLOGICAL RISK ASSESSMENTS OF FISH POPULATIONS ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY English Article Chemical risk assessment; Population models; Population extrapolation; Protection goals; Population growth rate LIFE-HISTORY STRATEGIES; POTENTIAL APPLICATION; CYCLE TOXICITY; GROWTH; PESTICIDES; VIABILITY; RELEVANT; MINNOW It has been argued that current approaches for ecological risk assessment (ERA) do not provide value relevance for risk managers and that the uncertainty in the predictions is large. One important reason for this is that current approaches are based on individual-level endpoints, but the environmental protection goals are defined on the population level: Population models may be useful tools to link the individual to the population and thus increase value relevance and reduce uncertainty. However, this requires that simple models and guidance on how to use them are made available for risk assessors. In the present study, an approach for developing simple generic models for the ERA of fish populations is presented. Fish have high ecological and economic value and are frequently used in ERA. It is, therefore, highly desirable to develop better methods for ERA of fish populations. The models were based on five types of life histories, and they were set up to be useful in a number of different management scenarios based on different environmental protection goals. A decision framework was set up for three levels of models (continuous, time limited, and varying exposure) and three levels of environmental protection. Data from previously published studies were tested for two of the environmental protection levels. The models provided maximum acceptable concentrations (MAC) that fell between the MACs of traditional ERA based on acute or chronic data, respectively. Environ. Toxicol. Chem. 2011;30:2372-2383. (C) 2011 SETAC [Hanson, Niklas; Stark, John D.] Washington State Univ, Puyallup Res & Extens Ctr, Puyallup, WA 98371 USA Hanson, N (reprint author), Washington State Univ, Puyallup Res & Extens Ctr, Puyallup, WA 98371 USA. niklas.hanson@dpes.gu.se Hanson, Niklas/D-3435-2009 Swedish Research Council Niklas Hanson's participation in this study was financed by the Swedish Research Council. Akcakaya HR, 2008, DEMOGRAPHIC TOXICITY; Ankley GT, 2003, ENVIRON TOXICOL CHEM, V22, P1350, DOI 10.1897/1551-5028(2003)022<1350:EOTAGP>2.0.CO;2; Backhaus Thomas, 2010, Integrated Environmental Assessment and Management, V6, P323, DOI 10.1002/ieam.95; Barnthouse L. W., 2007, POPULATION LEVEL ECO; BEYER J, 1996, THESIS U BERGEN BERG; Brock TCM, 2009, LINKING AQUATIC EXPO; Brock TCM, 2006, INTEGR ENVIRON ASSES, V2, pE20, DOI 10.1002/ieam.5630020402; Calow P, 1997, ENVIRON TOXICOL CHEM, V16, P1983, DOI 10.1897/1551-5028(1997)016<1983:RAOTBO>2.3.CO;2; Calow Peter, 2010, Integrated Environmental Assessment and Management, V6, P784, DOI 10.1002/ieam.117; Caswell H., 2001, MATRIX POPULATION MO; Chapman PM, 1998, ENVIRON TOXICOL CHEM, V17, P99, DOI 10.1897/1551-5028(1998)017<0099:ACEOSU>2.3.CO;2; Ehrlich P, 1981, EXTINCTION CAUSES CO; European Commission, 2002, SANCO32682001 EUR CO; Forbes Valery E, 2010, Integr Environ Assess Manag, V6, P191, DOI 10.1002/ieam.25; Forbes Valery E., 2009, Integrated Environmental Assessment and Management, V5, P167, DOI 10.1897/IEAM_2008-029.1; Forbes VE, 2002, HUM ECOL RISK ASSESS, V8, P473, DOI 10.1080/20028091057033; Forbes VE, 2002, BIOSCIENCE, V52, P249, DOI 10.1641/0006-3568(2002)052[0249:EIERAB]2.0.CO;2; Galic Nika, 2010, Integrated Environmental Assessment and Management, V6, P338, DOI 10.1002/ieam.68; Giesy JP, 2002, AQUAT TOXICOL, V59, P35, DOI 10.1016/S0166-445X(01)00235-1; Hanson N, 2011, ENVIRON MODEL ASSESS, V16, P401, DOI 10.1007/s10666-011-9257-3; Hayashi TI, 2009, ECOL RES, V24, P945, DOI 10.1007/s11284-008-0561-6; Hommen Udo, 2010, Integrated Environmental Assessment and Management, V6, P325, DOI 10.1002/ieam.69; Jiao Y, 2009, ECOL MODEL, V220, P1681, DOI 10.1016/j.ecolmodel.2009.04.008; Lin BL, 2005, ENVIRON SCI TECHNOL, V39, P4833, DOI 10.1021/es0489893; Manning CS, 1999, ARCH ENVIRON CON TOX, V37, P258, DOI 10.1007/s002449900513; Pastorok RA, 2002, ECOLOGICAL MODELING; Ratner S, 1997, CONSERV BIOL, V11, P879, DOI 10.1046/j.1523-1739.1997.95457.x; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Roex EWM, 2000, ENVIRON TOXICOL CHEM, V19, P685, DOI 10.1897/1551-5028(2000)019<0685:RBAATA>2.3.CO;2; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; Spromberg JA, 2005, ENVIRON TOXICOL CHEM, V24, P1532, DOI 10.1897/04-160.1; Stark JD, 2004, BIOL CONTROL, V29, P392, DOI 10.1016/j.biocontrol.2003.07.003; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; US Environmental Protection Agency (EPA), 2009, EPASAB09012; VANDERLINDEN AMA, 2006, 601506008 RIVM; Velez-Espino LA, 2005, ECOL FRESHW FISH, V14, P125, DOI 10.1111/j.1600-0633.2005.00084.x; WALKER BH, 1992, CONSERV BIOL, V6, P18, DOI 10.1046/j.1523-1739.1992.610018.x; Walters C. J, 1992, QUANTITATIVE FISHERI; Yokota H, 2001, ENVIRON TOXICOL CHEM, V20, P2552, DOI 10.1897/1551-5028(2001)020<2552:LCTONT>2.0.CO;2 39 8 8 0 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0730-7268 1552-8618 ENVIRON TOXICOL CHEM Environ. Toxicol. Chem. OCT 2011 30 10 2372 2383 10.1002/etc.636 12 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology 825VE WOS:000295309400025 21805500 2019-02-21 J Schaible, R; Ringelhan, F; Kramer, BH; Miethe, T Schaible, Ralf; Ringelhan, Felix; Kramer, Boris H.; Miethe, Tanja Environmental challenges improve resource utilization for asexual reproduction and maintenance in hydra EXPERIMENTAL GERONTOLOGY English Article Autophagy; Hormesis; Hydra; Longevity; Senescence; Trade-off; Life history DROSOPHILA-MELANOGASTER; LIFE-SPAN; CAENORHABDITIS-ELEGANS; DIETARY-RESTRICTION; CELL-CYCLE; CALORIC RESTRICTION; MILD STRESS; BODY-SIZE; TEMPERATURE; HORMESIS Variation in life history can reflect genetic differences, and may be caused by environmental effects on phenotypes. Understanding how these two sources of life history variation interact to express an optimal allocation of resources in a changing environment is central to life history theory. This study addresses variation in the allocation of resources to asexual reproduction and to maintenance of Hydra magnipapillata in relation to differences in temperature and food availability. Hydra is a non-senescent, persistent species with primarily clonal reproduction. We recorded changes in budding rate and mean survival under starvation, which indicate changes in the allocation of resources to asexual reproduction and maintenance. In constant conditions we observed a clear trade-off between asexual reproduction and maintenance, where budding increased linearly with food intake while starvation survival stayed rather constant. In contrast, an environment with fluctuations in temperature or food availability promotes maintenance and increases the survival chances of hydra under starvation. Surprisingly, asexual reproduction also tends to be positively affected by fluctuating environmental conditions, which suggests that in this case there is no clear trade-off between asexual reproduction and maintenance in hydra. Environmental stresses have a beneficial impact on the fitness-related phenotypical traits of the basal metazoan hydra. The results indicate that, if the stress occurs in hormetic doses, variable stressful and fluctuating environments can be salutary for hydra. A closer examination of this dynamic can therefore enable us to develop a deeper understanding of the evolution of aging and longevity. (C) 2011 Elsevier Inc. All rights reserved. [Schaible, Ralf; Ringelhan, Felix; Kramer, Boris H.; Miethe, Tanja] Max Planck Inst Demog Res, D-18057 Rostock, Germany Schaible, R (reprint author), Max Planck Inst Demog Res, Konrad Zuse Str 1, D-18057 Rostock, Germany. schaible@demogr.mpg.de Bochdanovits Z, 2003, J EVOLUTION BIOL, V16, P1159, DOI 10.1046/j.1420-9101.2003.00621.x; BODE HR, 1977, J CELL SCI, V24, P31; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; BOSCH TCG, 1984, DEV BIOL, V104, P161, DOI 10.1016/0012-1606(84)90045-9; Calabrese EJ, 2003, ANNU REV PHARMACOL, V43, P175, DOI 10.1146/annurev.pharmtox.43.100901.140223; CAMPBELL RD, 1967, J MORPHOL, V121, P19, DOI 10.1002/jmor.1051210103; Carey JR, 2008, AGING CELL, V7, P470, DOI 10.1111/j.1474-9726.2008.00389.x; Castilho AL, 2007, J CRUSTACEAN BIOL, V27, P548, DOI 10.1651/S-2788.1; Chera S, 2009, BBA-MOL CELL RES, V1793, P1432, DOI 10.1016/j.bbamcr.2009.03.010; DAVID CN, 1972, J CELL SCI, V11, P557; Galliot B, 2010, MOL REPROD DEV, V77, P837, DOI 10.1002/mrd.21206; Gomez FH, 2009, J THERM BIOL, V34, P17, DOI 10.1016/j.jtherbio.2008.09.003; Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Lakowski B, 1998, P NATL ACAD SCI USA, V95, P13091, DOI 10.1073/pnas.95.22.13091; Le Bourg E, 1999, EXP GERONTOL, V34, P157, DOI 10.1016/S0531-5565(98)00077-1; Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004; Lee GD, 2006, AGING CELL, V5, P515, DOI 10.1111/j.1474-9726.2006.00241.x; Mangel M, 2008, FUNCT ECOL, V22, P422, DOI 10.1111/j.1365-2435.2008.01410.x; Marshall KE, 2010, P R SOC B, V277, P963, DOI 10.1098/rspb.2009.1807; Martinez DE, 1998, EXP GERONTOL, V33, P217, DOI 10.1016/S0531-5565(97)00113-7; MASORO EJ, 1988, J GERONTOL, V43, pB59, DOI 10.1093/geronj/43.3.B59; McCabe J, 1997, EVOLUTION, V51, P1164, DOI 10.1111/j.1558-5646.1997.tb03964.x; Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990; OTTO JJ, 1977, J CELL SCI, V28, P117; Ozdemir N, 2009, J ANIM VET ADV, V8, P669; PARK HD, 1972, J EXP ZOOL, V179, P283, DOI 10.1002/jez.1401790214; Parsons PA, 2005, BIOL REV, V80, P589, DOI 10.1017/S1464793105006822; Parsons PA, 2007, BIOGERONTOLOGY, V8, P233, DOI 10.1007/s10522-007-9080-z; Partridge L, 2005, MECH AGEING DEV, V126, P938, DOI 10.1016/j.mad.2005.03.023; Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002; Roff Derek A., 1992; SANYAL S, 1966, INDIAN J EXP BIOL, V4, P88; SCHROEDER LA, 1981, LIMNOL OCEANOGR, V26, P690, DOI 10.4319/lo.1981.26.4.0690; SCHROEDER LA, 1982, OECOLOGIA, V53, P238, DOI 10.1007/BF00545670; Semenchenko GV, 2004, BIOGERONTOLOGY, V5, P17, DOI 10.1023/B:BGEN.0000017681.46326.9e; Stearns S, 1992, EVOLUTION LIFE HIST; STEBBING ARD, 1982, SCI TOTAL ENVIRON, V22, P213, DOI 10.1016/0048-9697(82)90066-3; Terman A, 2005, BIOGERONTOLOGY, V6, P205, DOI 10.1007/s10522-005-7956-3; VERDONESMITH C, 1982, EXP GERONTOL, V17, P255, DOI 10.1016/0531-5565(82)90013-4; Yashin AI, 2001, MECH AGEING DEV, V122, P1477, DOI 10.1016/S0047-6374(01)00273-1 41 15 15 0 24 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. OCT 2011 46 10 794 802 10.1016/j.exger.2011.06.004 9 Geriatrics & Gerontology Geriatrics & Gerontology 825WO WOS:000295313000004 21763414 2019-02-21 J Haselhorst, MSH; Edwards, CE; Rubin, MJ; Weinig, C Haselhorst, Monia S. H.; Edwards, Christine E.; Rubin, Matthew J.; Weinig, Cynthia Genetic architecture of life history traits and environment-specific trade-offs MOLECULAR ECOLOGY English Article Brassica rapa; life history traits; meristem limitation; QTL x environment interactions; resource limitation LEAF ECONOMICS SPECTRUM; ARABIDOPSIS-THALIANA; DROSOPHILA-MELANOGASTER; BRASSICA-RAPA; FLOWERING TIME; NATURAL ENVIRONMENTS; THERMAL-ACCLIMATION; HERITABLE VARIATION; RESPONSE CURVES; AVENA-BARBATA Life history theory predicts the evolution of trait combinations that enhance fitness, and the occurrence of trade-offs depends in part on the magnitude of variation in growth rate or acquisition. Using recombinant inbred lines, we examined the genetic architecture of age and size at reproduction across abiotic conditions encountered by cultivars and naturalized populations of Brassica rapa. We found that genotypes are plastic to seasonal setting, such that reproduction was accelerated under conditions encountered by summer annual populations and genetic variances for age at reproduction varied across simulated seasonal settings. Using an acquisition-allocation model, we predicted the likelihood of trade-offs. Consistent with predicted relationships, we observed a trade-off where early maturity is associated with small size at maturity under simulated summer and fall annual conditions but not under winter annual conditions. The trade-off in the summer annual setting was observed despite significant genotypic variation in growth rate, which is often expected to decouple age and size at reproduction because rapidly growing genotypes could mature early and attain a larger size relative to slowly growing genotypes that mature later. The absence of a trade-off in the winter setting is presumably attributable to the absence of genotypic differences in age at reproduction. We observed QTL for age at reproduction that jointly regulated size at reproduction in both the summer and fall annual settings, but these QTL were environment-specific (i.e. different QTL contributed to the trade-off in the fall vs. summer annual settings). Thus, at least some of the genetic mechanisms underlying observed trade-offs differed across environments. [Haselhorst, Monia S. H.; Edwards, Christine E.; Rubin, Matthew J.; Weinig, Cynthia] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA; [Haselhorst, Monia S. H.; Rubin, Matthew J.; Weinig, Cynthia] Univ Wyoming, Program Ecol, Laramie, WY 82071 USA Weinig, C (reprint author), Univ Wyoming, Dept Bot, 1000 E Univ Ave, Laramie, WY 82071 USA. cweinig@uwyo.edu Edwards, Christine/0000-0001-8837-4872 NSF [DBI-0605736] The authors thank O. Deninno, A. Faulconer and A. Hemenway for assistance with plant husbandry and trait measurements; C. A. Buerkle and Z. Gompert for assistance with creating figures; and Motypic means, genetic variances and M. Brock for assistance in QTL mapping. This research was funded by NSF grant DBI-0605736 to CW. ABRAMOFF MD, 2004, IMAGE PROCESSING IMA, V11, P36; ADLER LS, 1993, FUNCT ECOL, V7, P736, DOI 10.2307/2390196; Amasino R, 2010, PLANT J, V61, P1001, DOI 10.1111/j.1365-313X.2010.04148.x; Awadalla P, 1999, GENETICS, V152, P413; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Blonder B, 2011, ECOL LETT, V14, P91, DOI 10.1111/j.1461-0248.2010.01554.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Busch F, 2007, PLANT PHYSIOL, V143, P1242, DOI 10.1104/pp.106.092312; CHURCHILL GA, 1994, GENETICS, V138, P963; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; DIGGLE PK, 1993, AM J BOT, V80, P967, DOI 10.2307/2445518; Dillaway DN, 2010, PLANT CELL ENVIRON, V33, P888, DOI 10.1111/j.1365-3040.2010.02114.x; Dmitriew C, 2010, AM NAT, V175, P640, DOI 10.1086/652470; Doerge RW, 1996, GENETICS, V142, P285; Donohue K, 2000, EVOLUTION, V54, P1969; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Duffy NM, 1999, OIKOS, V84, P284, DOI 10.2307/3546723; Edwards C, 2011, GENETICS IN PRESS, DOI [10.1534/genetics.110.125112, DOI 10.1534/GENETICS.110.125112]; Edwards CE, 2011, HEREDITY, V106, P661, DOI 10.1038/hdy.2010.103; Edwards CE, 2009, THEOR APPL GENET, V119, P991, DOI 10.1007/s00122-009-1103-5; Fry JD, 1996, EVOLUTION, V50, P2316, DOI 10.1111/j.1558-5646.1996.tb03619.x; GALEN C, 1993, EVOLUTION, V47, P1073, DOI 10.1111/j.1558-5646.1993.tb02136.x; Gardner KM, 2008, J EVOLUTION BIOL, V21, P737, DOI 10.1111/j.1420-9101.2008.01522.x; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; GIESEL JT, 1986, AM NAT, V128, P593, DOI 10.1086/284590; Gurganus MC, 1998, GENETICS, V149, P1883; Gutteling EW, 2007, HEREDITY, V98, P206, DOI 10.1038/sj.hdy.6800929; Hadfield JD, 2010, AM NAT, V175, P116, DOI 10.1086/648604; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; HINATA K, 1984, Indian Journal of Genetics and Plant Breeding, V44, P102; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Holland JB, 2006, CROP SCI, V46, P642, DOI 10.2135/cropsci2005.0191; HOLLOWAY GJ, 1990, HEREDITY, V64, P323, DOI 10.1038/hdy.1990.40; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Iannucci A, 2008, FIELD CROP RES, V106, P156, DOI 10.1016/j.fcr.2007.11.005; JIANG CJ, 1995, GENETICS, V140, P1111; KOORNNEEF M, 1991, MOL GEN GENET, V229, P57, DOI 10.1007/BF00264213; Lambers H., 2008, PLANT PHYSL ECOLOGY; Latta RG, 2009, EVOLUTION, V63, P2153, DOI 10.1111/j.1558-5646.2009.00701.x; Lou P, 2007, J EXP BOT, V58, P4005, DOI 10.1093/jxb/erm255; Iniguez-Luy FL, 2009, THEOR APPL GENET, V120, P31, DOI 10.1007/s00122-009-1157-4; Marino G, 2010, FUNCT ECOL, V24, P263, DOI 10.1111/j.1365-2435.2009.01630.x; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; MitchellOlds T, 1996, EVOLUTION, V50, P140, DOI 10.1111/j.1558-5646.1996.tb04480.x; Norry FM, 2002, EVOLUTION, V56, P299; Ow LF, 2008, FUNCT PLANT BIOL, V35, P448, DOI 10.1071/FP08104; Ow LF, 2010, GLOBAL CHANGE BIOL, V16, P288, DOI 10.1111/j.1365-2486.2009.01892.x; Pigliucci M, 2001, OECOLOGIA, V127, P501, DOI 10.1007/s004420000613; Poorter H, 2001, PLANT GROWTH CARBON; Poorter H, 2010, J EXP BOT, V61, P2043, DOI 10.1093/jxb/erp358; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Price CA, 2010, AM J BOT, V97, P1808, DOI 10.3732/ajb.1000118; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; Roff Derek A., 1992; SAMSON DA, 1986, AM NAT, V127, P667, DOI 10.1086/284512; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; Shipley B, 2005, FUNCT ECOL, V19, P602, DOI 10.1111/j.1365-2435.2005.01008.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stinchcombe JR, 2002, EVOLUTION, V56, P1063; Ungerer MC, 2003, GENETICS, V165, P353; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANOOIJEN JW, 1992, THEOR APPL GENET, V84, P803, DOI 10.1007/BF00227388; Vieira C, 2000, GENETICS, V154, P213; Voorrips RE, 2002, J HERED, V93, P77, DOI 10.1093/jhered/93.1.77; WANG S, 2007, WINDOWS QTL CARTOGRA; WATSON MA, 1984, AM NAT, V123, P411, DOI 10.1086/284212; Weinig C, 2004, BIOSCIENCE, V54, P627, DOI 10.1641/0006-3568(2004)054[0627:EEOTEO]2.0.CO;2; Weinig C, 2002, GENETICS, V162, P1875; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WESTERMAN JM, 1970, HEREDITY, V25, P609, DOI 10.1038/hdy.1970.66; WILLIAMS PH, 1986, SCIENCE, V232, P1385, DOI 10.1126/science.232.4756.1385; WINDIG JJ, 1994, HEREDITY, V73, P459, DOI 10.1038/hdy.1994.144; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; Wright IJ, 2005, GLOBAL ECOL BIOGEOGR, V14, P411, DOI 10.1111/j.1466-822x.2005.00172.x; ZENG ZB, 1994, GENETICS, V136, P1457; ZENG ZB, 1993, P NATL ACAD SCI USA, V90, P10972, DOI 10.1073/pnas.90.23.10972; Zhao JJ, 2005, THEOR APPL GENET, V110, P1301, DOI 10.1007/s00122-005-1967-y 80 13 15 4 60 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. OCT 2011 20 19 4042 4058 10.1111/j.1365-294X.2011.05227.x 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 824VJ WOS:000295230000009 21902746 2019-02-21 J Emel, SL; Bonett, RM Emel, Sarah L.; Bonett, Ronald M. Considering alternative life history modes and genetic divergence in conservation: a case study of the Oklahoma salamander CONSERVATION GENETICS English Article Complex life cycles; Plethodontidae; Paedomorphosis; Metamorphosis; Eurycea HUMAN MITOCHONDRIAL-DNA; ONTOGENIC NICHE SHIFTS; EURYCEA-TYNERENSIS; POPULATION-STRUCTURE; PLETHODONTID SALAMANDERS; EVOLUTIONARY PROCESSES; PHYLOGENETIC ANALYSIS; AMPHIBIAN DECLINES; BUFFER ZONES; GROWTH Alternative life history strategies can provide important variation for the long-term persistence of a lineage. However, conservation of such lineages can be complicated because each life history mode may have different habitat requirements and may be vulnerable to different environmental perturbations. The Oklahoma salamander (Eurycea tynerensis) is endemic to the Ozark Plateau of North America, and has two discrete life history modes, biphasic (metamorphic) and aquatic (paedomorphic). Until recently, these modes were considered separate species and conservation attention focused only on paedomorphic populations. We perform phylogenetic analyses of the mitochondrial gene cytochrome b (Cytb) and nuclear gene proopiomelanocortin (POMC) to assess patterns of historical isolation in E. tynerensis, and test whether life history mode is randomly distributed with respect to the phylogeny and geography. We find three divergent Cytb lineages and significant shifts in POMC allele frequencies between the eastern, western, and southwestern portions of the distribution. Life history mode varies extensively, but paedomorphosis is largely restricted to the widespread western clade. Therefore, the two most divergent and narrowly distributed clades (southwestern and eastern) were previously overlooked due to their metamorphic life history. Paedomorphosis has allowed E. tynerensis to drastically increase its niche breadth and distribution size. Nevertheless, metamorphosis is also an important attribute, and metamorphic populations are the ultimate source for paedomorphic evolution. Preservation of divergent genetic lineages, and regions that include adjacent habitat for both life history modes, may be the most effective way to maintain historical and adaptive variation and provide gateways for ongoing life history evolution. [Emel, Sarah L.; Bonett, Ronald M.] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA Bonett, RM (reprint author), Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA. ron-bonett@utulsa.edu National Science Foundation [DEB 1050322]; Sigma Xi; Tulsa Chapter of the American Association of Zookeepers; University of Tulsa; College of Engineering and Natural Sciences at The University of Tulsa; Nature Conservancy; U.S. Fish and Wildlife Service; Founders of Doctor's Hospital Funding for this work was provided by the National Science Foundation (DEB 1050322), Sigma Xi Grants-in-Aid of Research program, the Tulsa Chapter of the American Association of Zookeepers, The University of Tulsa Student Research Grant Program, the College of Engineering and Natural Sciences at The University of Tulsa, the Nature Conservancy, and the U.S. Fish and Wildlife Service. This research was in part performed on equipment funded by the Founders of Doctor's Hospital. We would like to thank A. Trujano for assistance with Arlequin, M. Miller for comments on Alleles In Space, and C. Brown, M. Buchheim, S. Martin, M. Steffen, H. Wells, and four anonymous reviewers for comments that improved our manuscript. We would also like to thank D. Fenolio, W. Myers, E. Timpe, A. Trujano, and G. Zhang, for their assistance in the field, and K. Irwin (AR Game and Fish Commission), J. Briggler (MO Department of Conservation), C. Wilson and J. Tubbs (Nature Conservancy), and M. Howrey (OK Department of Wildlife Conservation) for issuing permits and facilitating other aspects of our fieldwork. Achaz G, 2011, INTRAPOP NEUTRALITY; AmphibiaWeb, 2011, AMPHIBIAWEB INF AMPH; AVISE JC, 1992, OIKOS, V63, P62, DOI 10.2307/3545516; Beechie T, 2006, BIOL CONSERV, V130, P560, DOI 10.1016/j.biocon.2006.01.019; Bernatchez L, 1995, AM FISH S S, V17, P114; Bickford D, 2007, TRENDS ECOL EVOL, V22, P148, DOI 10.1016/j.tree.2006.11.004; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Bonett RM, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-6; Bonett RM, 2004, MOL ECOL, V13, P1189, DOI 10.1111/j.1365-294X.2004.02130.x; BONETT RM, 2005, AMPHIBIAN DECLINES C, P767; Bonett RM, 2010, GEN COMP ENDOCR, V168, P209, DOI 10.1016/j.ygcen.2010.03.014; Chippindale Paul T., 2000, Herpetological Monographs, P1; CLARK PJ, 1954, ECOLOGY, V35, P445, DOI 10.2307/1931034; Cline George R., 2001, Proceedings of the Oklahoma Academy of Science, V81, P1; Cline GR, 1997, P OKLA ACAD SCI, V77, P103; Collins JP, 2003, DIVERS DISTRIB, V9, P89, DOI 10.1046/j.1472-4642.2003.00012.x; Crandall KA, 2000, TRENDS ECOL EVOL, V15, P290, DOI 10.1016/S0169-5347(00)01876-0; de Guia APO, 2007, ECOL RES, V22, P604, DOI 10.1007/s11284-006-0059-z; Denoel M, 2009, BIOL CONSERV, V142, P509, DOI 10.1016/j.biocon.2008.11.008; Denver RJ, 2009, GEN COMP ENDOCR, V164, P20, DOI 10.1016/j.ygcen.2009.04.016; Dizon AE, 1995, AM FISH S S, V17, P288; Duellman W. E., 1986, BIOL AMPHIBIANS; Endler J. A., 1986, NATURAL SELECTION WI; EXCOFFIER L, 1992, GENETICS, V131, P479; EXCOFFIER L, 2006, ARLEQUIN VER 3 1 USE; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Fitzpatrick BM, 2010, P NATL ACAD SCI USA, V107, P3606, DOI 10.1073/pnas.0911802107; Fraser DJ, 2001, MOL ECOL, V10, P2741, DOI 10.1046/j.1365-294X.2001.t01-1-01411.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Groot C., 1991, PACIFIC SALMON LIFE; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Hanken J, 1999, TRENDS ECOL EVOL, V14, P7, DOI 10.1016/S0169-5347(98)01534-1; Hare MP, 2001, TRENDS ECOL EVOL, V16, P700, DOI 10.1016/S0169-5347(01)02326-6; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; HARPENDING HC, 1994, HUM BIOL, V66, P591; Hjelm J, 2000, OECOLOGIA, V122, P190, DOI 10.1007/PL00008846; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; IUCN, 2008, AN AMPH 2008 IUCN RE; KEZER J, 1952, COPEIA, P234, DOI 10.2307/1439269; KIKUYAMA S, 1993, INT REV CYTOL, V145, P105, DOI 10.1016/S0074-7696(08)60426-X; Kohler J, 2005, BIOSCIENCE, V55, P693, DOI 10.1641/0006-3568(2005)055[0693:NAAGCA]2.0.CO;2; LARSON A, 1984, GENETICS, V106, P293; LEWONTIN R. C., 1958, GENETICS, V43, P419; Maddison W. P., 2009, MESQUITE MODULAR SYS; Martinez-Solano I, 2007, MOL ECOL, V16, P4335, DOI 10.1111/j.1365-294X.2007.03527.x; McKnight ML, 2007, SOUTHEAST NAT, V6, P727, DOI 10.1656/1528-7092(2007)6[727:LHACVI]2.0.CO;2; Miller MP, 2005, J HERED, V96, P722, DOI 10.1093/jhered/esi119; Moore GA, 1941, COPEIA, P139; MOORE GEORGE A., 1939, AMER MIDLAND NAT, V22, P696, DOI 10.2307/2420347; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Moritz C, 2002, SYST BIOL, V51, P238, DOI 10.1080/10635150252899752; MORITZ C, 1992, SYST BIOL, V41, P273, DOI 10.2307/2992567; Nylander J. A. A., 2004, MRMODELTEST VERSION; Oklahoma Department of Wildlife Conservation Natural Resources Section, 2009, OKL END THREAT SPEC; Olson MH, 1996, ECOLOGY, V77, P179, DOI 10.2307/2265667; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Petranka J. W, 1998, SALAMANDERS US CANAD; Piganeau G, 2004, MOL BIOL EVOL, V21, P2319, DOI 10.1093/molbev/msh244; Piganeau G, 2004, HEREDITY, V92, P282, DOI 10.1038/sj.hdy.6800413; Posada D, 2006, COLLAPSE VERSION 1 2; ROGERS AR, 1992, MOL BIOL EVOL, V9, P552; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rovito SM, 2009, P NATL ACAD SCI USA, V106, P3231, DOI 10.1073/pnas.0813051106; RYDER OA, 1986, TRENDS ECOL EVOL, V1, P9, DOI 10.1016/0169-5347(86)90059-5; Schierup MH, 2000, GENETICS, V156, P879; Semlitsch Raymond D., 2003, P1; Semlitsch RD, 2000, J WILDLIFE MANAGE, V64, P615, DOI 10.2307/3802732; Semlitsch RD, 1998, CONSERV BIOL, V12, P1113, DOI 10.1046/j.1523-1739.1998.97274.x; Semlitsch RD, 2003, CONSERV BIOL, V17, P1219, DOI 10.1046/j.1523-1739.2003.02177.x; Shi Y-B., 2000, AMPHIBIAN METAMORPHO; Smith TB, 1996, ANNU REV ECOL SYST, V27, P111, DOI 10.1146/annurev.ecolsys.27.1.111; Stuart SN, 2004, SCIENCE, V306, P1783, DOI 10.1126/science.1103538; Swofford D. L., 2001, PAUP PHYLOGENETIC AN; TAJIMA F, 1989, GENETICS, V123, P585; TUMLISON R, 1990, COPEIA, P242, DOI 10.2307/1445843; TUMLISON R, 1990, HERPETOLOGICA, V46, P169; Tumlison R, 2003, SOUTHWEST NAT, V48, P93, DOI 10.1894/0038-4909(2003)048<0093:ABTOSE>2.0.CO;2; Tymchuk WV, 2010, MOL ECOL, V19, P1842, DOI 10.1111/j.1365-294X.2010.04596.x; Waples R.S., 1991, MAR FISH REV, V53, P11; Watters JV, 2003, BIOL CONSERV, V112, P435, DOI 10.1016/S0006-3207(02)00343-9; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Weir BS, 1996, GENETIC DATA ANAL; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WESTEBERHARD MJ, 1986, P NATL ACAD SCI USA, V83, P1388, DOI 10.1073/pnas.83.5.1388; Whiteman Howard H., 1998, P317; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; WILBUR HM, 1980, ANNU REV ECOL SYST, V11, P67, DOI 10.1146/annurev.es.11.110180.000435 88 14 14 1 24 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1566-0621 CONSERV GENET Conserv. Genet. OCT 2011 12 5 1243 1259 10.1007/s10592-011-0226-9 17 Biodiversity Conservation; Genetics & Heredity Biodiversity & Conservation; Genetics & Heredity 819BE WOS:000294799600010 2019-02-21 J Zandona, E; Auer, SK; Kilham, SS; Howard, JL; Lopez-Sepulcre, A; O'Connor, MP; Bassar, RD; Osorio, A; Pringle, CM; Reznick, DN Zandona, Eugenia; Auer, Sonya K.; Kilham, Susan S.; Howard, Jason L.; Lopez-Sepulcre, Andres; O'Connor, Michael P.; Bassar, Ronald D.; Osorio, Arthela; Pringle, Catherine M.; Reznick, David N. Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies FUNCTIONAL ECOLOGY English Article C/N ratio; eco-evolutionary feedback; gut content analysis; indirect effects of predation; Poecilia reticulata; resource use; trophic ecology; tropical streams POECILIA-RETICULATA; ECOLOGICAL COMMUNITIES; RESOURCE AVAILABILITY; NUTRIENT COMPOSITION; OFFSPRING SIZE; GENETIC-BASIS; FOOD QUALITY; EVOLUTION; GROWTH; FISH 1. Life histories evolve as a response to multiple agents of selection, such as age-specific mortality, resource availability or environmental fluctuations. Predators can affect life-history evolution directly, by increasing the mortality of prey, and indirectly, by modifying prey density and resources available to the survivors. Increasing survivor densities can intensify intraspecific competition and cause evolutionary changes in their selectivity, also affecting nutrient acquisition. 2. Here, we show that different life-history traits in guppies (Poecilia reticulata) are correlated with differences in resource consumption and prey selectivity. We examined differences in wild-caught guppy diet among stream types with high (HP) and low predation (LP) pressure and how they are related to benthic invertebrate biomass. Fish and invertebrate samples were collected from two HP and two LP reaches of two distinct study rivers in Trinidad. 3. Our results reveal a strong association between life history and diet. Guppies from HP environments mature earlier and have higher fecundity and reproductive allotment than those from LP environments. Prior work revealed that their population densities are lower and that they grow faster than their LP counterparts. Here, we show that these life-history differences are repeated and that HP guppies feed primarily on invertebrates. In contrast, guppies from LP sites feed primarily on detritus and algae, which are a poorer quality food. LP guppies fed on invertebrates according to their availability, while HP guppies were selective towards those invertebrates with the lower carbon/nitrogen body ratio and thus with higher nutritional value. 4. Our study suggests that as predators shape the life histories of their prey and alter prey population densities, they can also indirectly shape their prey's foraging and diet selectivity. This is, to our knowledge, the first report on how intraspecific differences in life-history traits are correlated with prey selectivity, where prey stoichiometry is included. Although there are clear limitations of association data, our study suggests that the patterns of resource use and life history evolve in concert with one another. However, further research is needed to investigate the possible causal links between risk of predation, the indirect effects of predators on guppy population density, the evolution of life-history traits and nutrient acquisition. [Zandona, Eugenia; Kilham, Susan S.; Howard, Jason L.; O'Connor, Michael P.] Drexel Univ, Dept Biol, Philadelphia, PA 19104 USA; [Auer, Sonya K.; Lopez-Sepulcre, Andres; Bassar, Ronald D.; Osorio, Arthela; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Pringle, Catherine M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Zandona, E (reprint author), Drexel Univ, Dept Biol, 3141 Chestnut St, Philadelphia, PA 19104 USA. eugenia.zandona@gmail.com Zandona, Eugenia/B-3449-2013; Pringle, Catherine/I-1841-2012; Lopez-Sepulcre, Andres/G-2404-2010 Zandona, Eugenia/0000-0003-4754-5326; Lopez-Sepulcre, Andres/0000-0001-9708-0788; reznick, david/0000-0002-1144-0568 NSF [EF-0623632]; Mozino scholarship Thanks to E. Chiu, M. Thury-Drott, J. Holding, K. Sullamfor laboratory help. Discussion with R. El-Sabaawi, M. Marshall, E. Palkovacs, J. Russell, J. Spotila, M. Weksler greatly improved the manuscript. We thank the William Beebe Research Center and ASA Wright in Trinidad for providing lodging and research facilities. Fish were collected and handled with the approval of the University of California Riverside IACUC AUP (no. A-20080008) and conforming to the legislation in Trinidad. This research was funded by the NSF FIBR program, grant no. EF-0623632 to DNR and the J. Mozino scholarship to EZ. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; Bolnick DI, 2001, NATURE, V410, P463, DOI 10.1038/35068555; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; Cappuccino N., 1995, POPULATION DYNAMICS; Charlesworth B., 1980, EVOLUTION AGE STRUCT; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gende SM, 2001, OECOLOGIA, V127, P372, DOI 10.1007/s004420000590; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hill WR, 2001, ECOLOGY, V82, P2306, DOI 10.1890/0012-9658(2001)082[2306:SERTFL]2.0.CO;2; Jensen K, 2011, OECOLOGIA, V165, P577, DOI 10.1007/s00442-010-1811-1; Jensen TC, 2004, FRESHWATER BIOL, V49, P1138, DOI 10.1111/j.1365-2427.2004.01255.x; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; MACARTHUR RH, 1966, AM NAT, V100, P603, DOI 10.1086/282454; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; Mayntz D, 2003, OIKOS, V101, P631, DOI 10.1034/j.1600-0706.2003.12408.x; Mayntz D, 2001, OECOLOGIA, V127, P207, DOI 10.1007/s004420000591; Merritt R. W., 2007, INTRO AQUATIC INSECT; Olsson J, 2007, BIOL J LINN SOC, V90, P517, DOI 10.1111/j.1095-8312.2007.00742.x; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Perez G. R, 1996, GUIA ESTUDIO MACROIN; POWER ME, 1992, ECOLOGY, V73, P733, DOI 10.2307/1940153; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Rodd FH, 1997, ECOLOGY, V78, P405; Roff Derek A., 1992; SINERVO B, 1994, ECOLOGY, V75, P776, DOI 10.2307/1941734; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STRAUSS RE, 1979, T AM FISH SOC, V108, P344, DOI 10.1577/1548-8659(1979)108<344:REFIEI>2.0.CO;2; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Twombly S, 1998, ECOLOGY, V79, P1711; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; WERNER EE, 1974, ECOLOGY, V55, P1042, DOI 10.2307/1940354; Winer B. J., 1971, STAT PRINCIPLES EXPT; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; Zandona E., 2010, THESIS DREXEL U PHIL 55 63 65 10 92 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. OCT 2011 25 5 964 973 10.1111/j.1365-2435.2011.01865.x 10 Ecology Environmental Sciences & Ecology 823OP WOS:000295132100004 Bronze 2019-02-21 J Bergeron, P; Careau, V; Humphries, MM; Reale, D; Speakman, JR; Garant, D Bergeron, Patrick; Careau, Vincent; Humphries, Murray M.; Reale, Denis; Speakman, John R.; Garant, Dany The energetic and oxidative costs of reproduction in a free-ranging rodent FUNCTIONAL ECOLOGY English Article ageing; field metabolic rate; life-history theory; litter size; mammals; oxidative stress; wild population DOUBLY-LABELED WATER; CHIPMUNKS TAMIAS-STRIATUS; EASTERN CHIPMUNKS; INCREASED SUSCEPTIBILITY; MICROSATELLITE LOCI; ZEBRA FINCHES; STRESS; EXPENDITURE; DAMAGE; DETERMINANTS 1. As understanding of the energetic costs of reproduction in birds and mammals continues to improve, oxidative stress is an increasingly cited example of a non-energetic cost of reproduction that may serve as a proximal physiological link underlying life-history trade-offs. 2. Here, we provide the first study to measure daily energy expenditure (DEE) and oxidative damage in a wild population. We measured both traits on eastern chipmunks (Tamias striatus) and assessed their relationships with age, reproductive status, litter size and environmental conditions. 3. We found that both physiological traits were correlated with environmental characteristics (e. g. temperature, seasons). DEE tended to increase with decreasing temperature, while oxidative damage was lower in spring, after a winter of torpor expression, than in autumn. We also found that DEE decreased with age, while oxidative damage was elevated in young individuals, reduced in animals of intermediate age and tended to increase at older age. 4. After controlling for age and environmental variables, we found that both female DEE and oxidative damage increased with litter size, although the latter increased weakly. 5. Our results corroborate findings from laboratory studies but highlight the importance of considering environmental conditions, age and reproductive status in broader analyses of the causes and consequences of physiological costs of reproduction in wild animals. [Bergeron, Patrick; Garant, Dany] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada; [Careau, Vincent] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Humphries, Murray M.] McGill Univ, Quebec City, PQ H9X 3V9, Canada; [Reale, Denis] Univ Quebec Montreal, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada; [Speakman, John R.] Univ Aberdeen, Aberdeen Ctr Energy Regulat & Obes, Aberdeen AB24 2TZ, Scotland Bergeron, P (reprint author), Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada. patrick.bergeron@usherbrooke.ca Careau, Vincent/A-9778-2008; Garant, Dany/D-7406-2013; John, Speakman/A-9494-2008 Careau, Vincent/0000-0002-2826-7837; Garant, Dany/0000-0002-8091-1044; John, Speakman/0000-0002-2457-1823 Natural Sciences and Engineering Research Council of Canada (NSERC); Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) We are grateful to the technicians, research assistants and graduate students who helped with collecting data in the field and helped with laboratory analyses, especially P. Bourgault, M. Landry-Cuerrier, A.-M. Lavoie, G. Dubuc-Messier, J. Chambers and P.O. Montiglio. We thank D. Lafontaine who kindly provided the fluorometer and B. Heppell who helped us using it. We also thank the associate editor, an anonymous referee and D. Nussey for their comments on a previous version of the manuscript. P. B. and V. C. were supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT). This work was funded by NSERC Discovery Grants to D. R., M. M. H and D. G., as well as by a research team grant provided by the FQRNT to D. R., M. M. H, D. G., Don Kramer and Don Thomas. We are grateful to the Ruiter Valley Land Trust for allowing us to conduct this research within their boundaries. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Anderson SJ, 2007, MOL ECOL NOTES, V7, P513, DOI 10.1111/j.1471-8286.2006.01638.x; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Burnham KP, 2002, MODEL SELECTION INFE; Careau V, 2010, OECOLOGIA, V162, P303, DOI 10.1007/s00442-009-1466-y; Chambers JL, 2010, J HERED, V101, P413, DOI 10.1093/jhered/esq029; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; DELAHAY RJ, 1995, PARASITOLOGY, V110, P473, DOI 10.1017/S0031182000064817; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; EVEN PC, 2001, AM J PHYSIOL-REG I, V280, P1887; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; GARRATT M, P ROYAL S B IN PRESS; GIROUD S, 2009, AM J PHYSIOL-REG I, V297, pR959; Golden TR, 2002, AGING CELL, V1, P117, DOI 10.1046/j.1474-9728.2002.00015.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Humphries MM, 2000, ECOLOGY, V81, P2867, DOI 10.1890/0012-9658(2000)081[2867:TDOOLS]2.0.CO;2; Humphries MM, 2002, OECOLOGIA, V133, P30, DOI 10.1007/s00442-002-1014-5; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Landry-Cuerrier M, 2008, ECOLOGY, V89, P3306, DOI 10.1890/08-0121.1; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Munro D, 2008, CAN J ZOOL, V86, P364, DOI 10.1139/Z08-008; Munro D, 2005, J ANIM ECOL, V74, P692, DOI 10.1111/j.1365-2656.2005.00968.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Orr AL, 2009, COMP BIOCHEM PHYS A, V153, P213, DOI 10.1016/j.cbpa.2009.02.016; Peters MB, 2007, MOL ECOL NOTES, V7, P877, DOI 10.1111/j.1471-8286.2007.01735.x; Ricklefs RE, 1996, AM NAT, V147, P1047, DOI 10.1086/285892; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roberts SB, 2006, PHYSIOL REV, V86, P651, DOI 10.1152/physrev.00019.2005; Rubolini D, 2006, J EVOLUTION BIOL, V19, P1571, DOI 10.1111/j.1420-9101.2006.01121.x; Scantlebury M, 2005, PHYSIOL BEHAV, V84, P739, DOI 10.1016/j.physbeh.2005.02.022; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; SMITH LC, 1972, CAN J ZOOLOG, V50, P1069, DOI 10.1139/z72-145; SOHAL RS, 1993, P NATL ACAD SCI USA, V90, P7255, DOI 10.1073/pnas.90.15.7255; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SOHAL RS, 1995, MECH AGEING DEV, V81, P15, DOI 10.1016/0047-6374(94)01578-A; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Speakman JR, 2005, PHYSIOL BIOCHEM ZOOL, V78, P650, DOI 10.1086/430234; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; SPEAKMAN JR, 1987, J THEOR BIOL, V127, P79, DOI 10.1016/S0022-5193(87)80162-5; SPEAKMAN JR, 1990, ANAL CHEM, V62, P703, DOI 10.1021/ac00206a011; SPEAKMAN JR, 1993, FUNCT ECOL, V7, P746; SPEAKMAN JR, 1994, FUNCT ECOL, V8, P336, DOI 10.2307/2389826; Speakman JR, 1997, DOUBLY LABELLED WATE; Stearns S, 1992, EVOLUTION LIFE HIST; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; TRYON CA, 1973, J MAMMAL, V54, P145, DOI 10.2307/1378877; TZANKOFF SP, 1978, J APPL PHYSIOL, V45, P536; Visser GH, 1999, PHYSIOL BIOCHEM ZOOL, V72, P740, DOI 10.1086/316713; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 65 64 67 3 65 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. OCT 2011 25 5 1063 1071 10.1111/j.1365-2435.2011.01868.x 9 Ecology Environmental Sciences & Ecology 823OP WOS:000295132100014 Bronze 2019-02-21 J Kruger, DJ Kruger, Daniel J. Evolutionary theory in public health and the public health of evolutionary theory FUTURES English Article IMPRINTED GENES; DISEASE; RISK; SEX; SOCIOBIOLOGY; STRATEGIES; MORTALITY; CONFLICT; MEDICINE Evolutionary theory is the most powerful explanatory system in the life sciences and is the only framework that can unify knowledge in otherwise disparate fields of research. Considerable advances have been made in the application of evolutionary biology to health issues in recent decades. Health researchers and practitioners could benefit considerably from an understanding of the basic principles of evolution and how humans have been shaped by natural and sexual selection, even if they are not explicitly testing evolutionary hypotheses. Life History Theory is a powerful framework that can be used for examining modern human environments and developing environments that maximize opportunities for positive health outcomes. Many of the recommendations derived from this framework converge with the visions of current public health advocates. Despite the benefits of an evolutionary framework, the challenges that face those attempting to integrate evolutionary theory into public health are perhaps greater than those in the social sciences. Although considerable advancements in the understanding of health issues have already been made, health researchers with an evolutionary perspective are very few in number and face constraining disciplinary attributes. Advances in medical technology will continue to extend the boundaries of saving lives in danger, however traditional public health efforts may be reaching their limits of effectiveness in encouraging health-promoting behaviors. This may partially account for the current interest in broad social and policy change to enhance health and reduce health disparities amongst sub-populations. Such substantial physical and social restructuring will face many challenges and gradual progress may be enhanced by a strong foundation of evolutionary human science. The slow but eventual integration of evolutionary principles will gradually enhance the effectiveness of health interventions and provide an ultimate explanation for patterns in health outcomes that are otherwise puzzling. The speed at which the field of public health adopts a Darwinian framework has yet to be determined, and several futures are possible. This pace will depend on several factors, including the visible utility of evolutionary theory for addressing the health promotion goals of the field. (C) 2011 Elsevier Ltd. All rights reserved. Univ Michigan, Sch Publ Hlth, Ann Arbor, MI 48109 USA Kruger, DJ (reprint author), Univ Michigan, Sch Publ Hlth, 1420 Washington Hts, Ann Arbor, MI 48109 USA. djk2012@gmail.com Kruger, Daniel/0000-0002-2757-7016 BEST R, 1999, BUILDING VALUE PREDE, P11; Bostrom A, 2003, FUTURES, V35, P553, DOI 10.1016/S0016-3287(02)00100-3; Boyer P, 2000, PHILOS PSYCHOL, V13, P277, DOI 10.1080/09515080050128123; Bruening K, 1999, ENVIRON HEALTH PERSP, V107, P431, DOI 10.2307/3434623; Brummett BH, 2001, PSYCHOSOM MED, V63, P267, DOI 10.1097/00006842-200103000-00010; Buss D. M., 1994, EVOLUTION DESIRE STR; *CDCP, 1999, CHRON DIS THEIR RISK; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Commission on Social Determinants of Health, 2008, CLOS GAP GEN HLTH EQ; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Cronin H, 1991, ANT PEACOCK ALTRUISM; DAWKINS R., 2006, GOD DELUSION; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; DUNBAR RIM, 1992, J HUM EVOL, V22, P469, DOI 10.1016/0047-2484(92)90081-J; Eaton SB, 1997, EUR J CLIN NUTR, V51, P207, DOI 10.1038/sj.ejcn.1600389; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fila SA, 2006, INT J BEHAV NUTR PHY, V3, DOI 10.1186/1479-5868-3-11; Frumkin P, 2001, AM J PREV MED, V20, P234, DOI 10.1016/S0749-3797(00)00317-2; Graves JAM, 1998, REPROD FERT DEVELOP, V10, P23, DOI 10.1071/R98014; Hadley C., 1998, DICHOTOMOUS MALE REP; Hancock T, 1995, FUTURES, V27, P935, DOI 10.1016/0016-3287(95)00060-7; Hawks J, 2007, P NATL ACAD SCI USA, V104, P20753, DOI 10.1073/pnas.0707650104; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hopcroft RL, 2006, EVOL HUM BEHAV, V27, P104, DOI 10.1016/j.evolhumbehav.2005.07.004; House JS, 2001, PSYCHOSOM MED, V63, P273, DOI 10.1097/00006842-200103000-00011; KENRICK DT, 1997, EVOLUTIONARY SOCIAL; Kevles Daniel, 1985, NAME EUGENICS GENETI; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; Kolbert E, 2006, FIELD NOTES CATASTRO; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; KRUGER DJ, 2008, AM COLL EP M TUCS AR; Kwiatkowski DP, 2005, AM J HUM GENET, V77, P171, DOI 10.1086/432519; Lindeberg S, 2007, DIABETOLOGIA, V50, P1795, DOI 10.1007/s00125-007-0716-y; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; MAC ARTHUR ROBERT H., 1967; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; MARMOT MG, 1987, ANNU REV PUBL HEALTH, V8, P111, DOI 10.1146/annurev.pu.08.050187.000551; Martens P, 2002, FUTURES, V34, P635, DOI 10.1016/S0016-3287(02)00005-8; McMinn J, 2006, PLACENTA, V27, P540, DOI 10.1016/j.placenta.2005.07.004; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; Nell V, 2002, CURR DIR PSYCHOL SCI, V11, P75, DOI 10.1111/1467-8721.00172; Nesse R. M., 1995, WHY WE GET SICK NEW; NOVACEK MJ, 2001, COMMUNICATION; Nuttgens P., 1997, STORY ARCHITECTURE; Pearce F., 2006, LAST GENERATION NATU; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POYNTER J, 2006, HUMAN EXPT 2 YEARS 2, V2; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; READ AF, 2008, EVOLUTION HLTH DIS, P139; Reik W, 2003, J PHYSIOL-LONDON, V547, P35, DOI 10.1113/jphysiol.2002.033274; Roff Derek A., 1992; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Saad G, 2006, PSYCHOL MARKET, V23, P617, DOI 10.1002/mar.20149; Saad G, 2007, EVOLUTIONARY BASES C; Saad G, 2007, MED HYPOTHESES, V68, P692, DOI 10.1016/j.mehy.2006.08.012; Segerstrale U., 2000, DEFENDERS TRUTH BATT; SKRIPAK J, 2006, PEDIATRICS S, V18, pS7; Stearns S, 1992, EVOLUTION LIFE HIST; Summers RW, 2005, GUT, V54, P87, DOI 10.1136/gut.2004.041749; Thompson EE, 2004, AM J HUM GENET, V75, P1059, DOI 10.1086/426406; TISHKOFF SA, 2007, NAT GENET, V39, P7; TRIVERS RL, 1974, AM ZOOL, V14, P249; Waltner-Toews D, 2000, FUTURES, V32, P655, DOI 10.1016/S0016-3287(00)00014-8; Wilson E. O., 1998, CONSILIENCE UNITY KN; Wilson EO, 1984, BIOPHILIA HUMAN BOND; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 67 1 1 0 30 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0016-3287 1873-6378 FUTURES Futures OCT 2011 43 8 SI 762 770 10.1016/j.futures.2011.05.019 9 Economics; Regional & Urban Planning Business & Economics; Public Administration 822TI WOS:000295072100005 2019-02-21 J Kindsvater, HK; Bonsall, MB; Alonzo, SH Kindsvater, H. K.; Bonsall, M. B.; Alonzo, S. H. Survival costs of reproduction predict age-dependent variation in maternal investment JOURNAL OF EVOLUTIONARY BIOLOGY English Article age-dependence; dynamic state-variable model; life-history theory; maternal effect; offspring size; reproductive investment OFFSPRING SIZE; NATURAL-SELECTION; CLUTCH SIZE; TRADE-OFF; EGG SIZE; MOTHERS; NUMBER; REFINEMENT; PHENOTYPE; EVOLUTION Life-history theory predicts that older females will increase reproductive effort through increased fecundity. Unless offspring survival is density dependent or female size constrains offspring size, theory does not predict variation in offspring size. However, empirical data suggest that females of differing age or condition produce offspring of different sizes. We used a dynamic state-variable model to determine when variable offspring sizes can be explained by an interaction between female age, female state and survival costs of reproduction. We found that when costs depend on fecundity, young females with surplus state increase offspring size and reduce number to minimize fitness penalties. When costs depend on total reproductive effort, only older females increase offspring size. Young females produce small offspring, because decreasing offspring size is less expensive than number, as fitness from offspring investment is nonlinear. Finally, allocation patterns are relatively stable when older females are better at acquiring food and are therefore in better condition. Our approach revealed an interaction between female state, age and survival costs, providing a novel explanation for observed variation in reproductive traits. [Kindsvater, H. K.; Alonzo, S. H.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA; [Bonsall, M. B.] Univ Oxford, Dept Zool, Math Ecol Res Grp, Oxford OX1 3PS, England; [Bonsall, M. B.] Univ Oxford, St Peters Coll, Oxford, England Kindsvater, HK (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, POB 208106, New Haven, CT 06520 USA. holly.kindsvater@yale.edu Kindsvater, Holly/0000-0001-7580-4095; Bonsall, Michael/0000-0003-0250-0423 US EPA STAR; Yale University; NSF; Royal Society This work was supported by the US EPA STAR Fellowship (H. K. K.), Yale University (S. H. A. and H. K. K.), NSF (S. H. A. and H. K. K) and the Royal Society (M. B. B.). We thank Michael Jennions and an anonymous reviewer for comments that greatly improved this manuscript. Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Beekey MA, 2004, AM MIDL NAT, V151, P274, DOI 10.1674/0003-0031(2004)151[0274:TEOSBC]2.0.CO;2; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Clark C, 2000, DYNAMIC STATE VARIAB; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Fischer K, 2006, J EVOLUTION BIOL, V19, P380, DOI 10.1111/j.1420-9101.2005.01046.x; Ford NB, 2010, HERPETOLOGICA, V66, P451, DOI 10.1655/09-057.1; Gagliano M, 2007, J ANIM ECOL, V76, P174, DOI 10.1111/j.1365-2656.2006.01187.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; Mangel M, 1988, DYNAMIC MODELING BEH; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667 28 21 21 0 32 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. OCT 2011 24 10 2230 2240 10.1111/j.1420-9101.2011.02351.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 822NG WOS:000295054500013 21745251 Bronze 2019-02-21 J Wesner, JS; Billman, EJ; Meier, A; Belk, MC Wesner, Jeff S.; Billman, Eric J.; Meier, Adam; Belk, Mark C. Morphological convergence during pregnancy among predator and nonpredator populations of the livebearing fish Brachyrhaphis rhabdophora (Teleostei: Poeciliidae) BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article geometric morphometrics; life history; morphology; predation; trade-off LIFE-HISTORY EVOLUTION; ENVIRONMENTAL GRADIENTS; REPRODUCTION; RISK; SIZE; DIVERSIFICATION; CONSTRAINTS; DIVERGENCE; INVESTMENT; RETICULATA Predation can drive morphological divergence in prey populations, although examples of divergent selection are typically limited to nonreproductive individuals. In livebearing females, shape often changes drastically during pregnancy, reducing speed and mobility and enhancing susceptibility to predation. In the present study, we document morphological divergence among populations of nonreproductive female livebearing fish (Brachyrhaphis rhabdophora) in predator and nonpredator environments. We then test the hypothesis that shape differences among nonreproductive females are maintained among reproductive females between predator and nonpredator environments. Nonreproductive females in predator environments had larger caudal regions and more fusiform bodies than females in nonpredator environments; traits that are associated with burst speed in fish. Shape differences were maintained in reproductive females, although the magnitude of this difference declined relative to nonreproductive females, suggesting morphological convergence during pregnancy. Phenotypic change vector analysis revealed that females in predator environments became more similar to females in nonpredator environments in the transition from nonreproductive to reproductive. Furthermore, the level of reproductive allocation affected shape similarly between predator environments. These results suggest a life-history constraint on morphology, in which predator-driven morphological divergence among nonreproductive B. rhabdophora is not maintained at the same level during pregnancy. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 386-392. [Wesner, Jeff S.; Billman, Eric J.; Meier, Adam; Belk, Mark C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA Wesner, JS (reprint author), Brigham Young Univ, Dept Biol, 401 WIDB, Provo, UT 84602 USA. jeffwesner@gmail.com Brigham Young University's Office of Research and Creative Activities We gratefully acknowledge the help of Eric Makel-prang, Tu Trahn, John Aedo, John Schellenburg, Shalane Brower, and other research assistants. This study was supported in part by a grant from Brigham Young University's Office of Research and Creative Activities. We thank Javier Guevara Sequerra at the Costa Rican Ministerio del Ambiente y Energia, Sistema Nacional de Areas de Conservasion, for help in obtaining collecting permits. This research was approved by the IACUC at Brigham Young University. Abraham N, 1923, ANN NAT MUS, V5, P89; Adams DC, 2007, EVOLUTION, V61, P510, DOI 10.1111/j.1558-5646.2007.00063.x; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Beck CW, 2005, EVOL ECOL RES, V7, P1077; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Butler D, 2007, ASREML R REFERENCE M; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; Colston TJ, 2010, BIOL J LINN SOC, V101, P476, DOI 10.1111/j.1095-8312.2010.01502.x; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; HAYNES JL, 1995, COPEIA, P147; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; KORPIMAKI E, 1994, EVOL ECOL, V8, P357, DOI 10.1007/BF01238188; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Mikolajewski DJ, 2010, EVOLUTION, V64, P3327, DOI 10.1111/j.1558-5646.2010.01078.x; Relyea RA, 2002, ECOLOGY, V83, P1953, DOI 10.1890/0012-9658(2002)083[1953:TMFOPH]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Riesch R, 2010, BIOL J LINN SOC, V101, P417, DOI 10.1111/j.1095-8312.2010.01522.x; Roff Derek A., 1992; Rohlf F. J., 2005, TPSDIG DIGITIZE LAND; ROHLF FJ, 2003, TPSRELW RELATIVE WAR; Rohlf FJ, 2004, TPSUTIL FILE UTILITY; SINERVO B, 1991, J EXP BIOL, V155, P323; STIBOR H, 1992, OECOLOGIA, V92, P162, DOI 10.1007/BF00317358; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zuniga-Vega JJ, 2007, OIKOS, V116, P995, DOI 10.1111/j.2007.0030-1299.15763.x 32 31 31 3 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. OCT 2011 104 2 386 392 10.1111/j.1095-8312.2011.01715.x 7 Evolutionary Biology Evolutionary Biology 820JV WOS:000294902700011 Bronze 2019-02-21 J Jervis, M; Ferns, P Jervis, Mark; Ferns, Peter Towards a general perspective on life-history evolution and diversification in parasitoid wasps BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article balanced mortality hypothesis; comparative analysis; dichotomous hypothesis; Hymenoptera; ovigeny index hypothesis; parasitism; reproductive strategy; trade-offs DEVELOPMENTAL TRADE-OFFS; EGG MATURATION; RIBOSOMAL-RNA; BODY-SIZE; PHYLOGENETIC-RELATIONSHIPS; RESOURCE-ALLOCATION; CADDIS FLIES; CLUTCH SIZE; 28S RDNA; HYMENOPTERA In attempting to explain the marked interspecific variation evident in many components of life-history in parasitoid wasps, biologists have sought to identify general predictors of suites of 'important' life-history traits. Two predictors currently in general use are: (1) the parasitoid mode of larval development in relation to future host growth and development [no further host growth and development ( = idiobiosis) versus continued host growth and development ( = koinobiosis)]; and (2) the ovigeny index (the degree to which the lifetime potential complement of eggs is mature at the start of adult life in females). These have been postulated to share several life-history correlates, and an earlier comparative analysis showed the predictors to be associated. Two questions are thus posed: which life-history variables are actually common to both idio/koinobiosis and the ovigeny index, and which are responsible for the link between these two axes of life-history diversity? Through comparative analyses of a database of life-history traits for 133 parasitoid wasp species, four life-history correlates out of the 11 we investigated are shown to account for the association between the two predictors: the relative level of resource investment per egg (degree of yolk richness, which is lower in koinobionts), pre-adult lifespan (longer in koinobionts), female lifespan (shorter in koinobionts), and maximum egg load (larger in koinobionts). Our findings pave the way for full integration of the dichotomous hypothesis with the ovigeny index hypothesis, to provide a holistic perspective on parasitoid wasp life-history diversity and evolution. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 443-461. [Jervis, Mark; Ferns, Peter] Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales Jervis, M (reprint author), Cardiff Univ, Cardiff Sch Biosci, Cardiff CF10 3AX, S Glam, Wales. jervis@cardiff.ac.uk Askew R.R., 1975, P130; Askew R.R., 1986, P225; Askew RR, 1971, PARASITIC INSECTS; Banks JC, 2006, MOL PHYLOGENET EVOL, V41, P690, DOI 10.1016/j.ympev.2006.06.001; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bernstein Carlos, 2008, P129, DOI 10.1002/9780470696200.ch7; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; Carey JR, 2002, EXP GERONTOL, V37, P567, DOI 10.1016/S0531-5565(01)00180-2; Carr M, 2010, INSECT SYST EVOL, V41, P55, DOI 10.1163/187631210X486995; Clausen C. P., 1940, ENTOMOPHAGOUS INSECT; Davis RB, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-109; EGGLETON P, 1992, PHILOS T R SOC B, V337, P1, DOI 10.1098/rstb.1992.0079; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2004, EVOL ECOL RES, V6, P993; Flanders S. E., 1935, Annals of the Entomological Society of America, V28, P438; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; FLANDERS STANLEY E., 1950, CANADIAN ENT, V82, P134; Gaston K.J., 2000, PATTERN PROCESS MACR; Gauld I., 1988, HYMENOPTERA; Gauld Ian D., 1995, P40; GAULD ID, 1988, BIOL J LINN SOC, V35, P351, DOI 10.1111/j.1095-8312.1988.tb00476.x; GAULD ID, 1982, SYST ENTOMOL, V7, P73, DOI 10.1111/j.1365-3113.1982.tb00127.x; Gauthier N, 2000, SYST ENTOMOL, V25, P521, DOI 10.1046/j.1365-3113.2000.00134.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; HAESELBARTH E, 1979, Z ANGEW ENTOMOL, V87, P186; Hajek A. E, 2004, NATURAL ENEMIES INTR; Harvey JA, 2005, ENTOMOL EXP APPL, V117, P1, DOI 10.1111/j.1570-7458.2005.00348.x; Hawkins B. A., 1994, PATTERN PROCESS HOST; Hawkins BA, 1999, OIKOS, V86, P493, DOI 10.2307/3546654; Jervis M. A., 2005, INSECTS NATURAL ENEM, P74; Jervis MA, 1998, BIOL J LINN SOC, V63, P461, DOI 10.1111/j.1095-8312.1998.tb00326.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2003, FUNCT ECOL, V17, P375, DOI 10.1046/j.1365-2435.2003.00742.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2000, BIOL J LINN SOC, V70, P121, DOI 10.1006/bijl.1999.0396; JERVIS MA, 2005, ECOL ENTOMOL, V30, P1; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2007, EVOL ECOL, V21, P307, DOI 10.1007/s10682-006-9102-3; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; Jones TS, 2009, OECOLOGIA, V159, P627, DOI 10.1007/s00442-008-1247-z; Kambhampati S, 2000, SYST ENTOMOL, V25, P437, DOI 10.1046/j.1365-3113.2000.00129.x; LaSalle J., 1993, HYMENOPTERA BIODIVER; Mayhew PJ, 1999, J ANIM ECOL, V68, P906, DOI 10.1046/j.1365-2656.1999.00338.x; Mayhew PJ, 2001, OIKOS, V92, P372, DOI 10.1034/j.1600-0706.2001.920221.x; Michel-Salzat A, 2004, SYST ENTOMOL, V29, P371, DOI 10.1111/j.0307-6970.2004.00246.x; MP Hassell, 2000, SPATIAL TEMPORAL DYN; Murdoch W. W., 2003, CONSUMER RESOURCE DY; Murphy N, 2008, MOL PHYLOGENET EVOL, V47, P378, DOI 10.1016/j.ympev.2008.01.022; Murphy NP, 2007, BIOL J LINN SOC, V91, P653, DOI 10.1111/j.1095-8312.2007.00825.x; Nakagawa S, 2004, BEHAV ECOL, V15, P1044, DOI 10.1093/beheco/arh107; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Perneger TV, 1999, BRIT MED J, V318, P1288; Perneger TV, 1998, BRIT MED J, V316, P1236, DOI 10.1136/bmj.316.7139.1236; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Price P.W., 1975, P87; PRICE P W, 1973, Environmental Entomology, V2, P623; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price PW, 1973, AM NAT, V107, P685; Quicke D.L., 1997, PARASITIC WASPS; Quicke DLJ, 2009, J NAT HIST, V43, P1305, DOI 10.1080/00222930902807783; Rivero A, 1999, RES POPUL ECOL, V41, P39, DOI 10.1007/PL00011981; ROFF DA, 2002, LIFE HIST EVOLUTION; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 2008, AM NAT, V172, P486, DOI 10.1086/591677; Rosenheim JA, 2007, ANN ENTOMOL SOC AM, V100, P549, DOI 10.1603/0013-8746(2007)100[549:POAEAS]2.0.CO;2; Shaw M.R., 1991, Handbooks for the Identification of British Insects, V7, P1; SHAW S R, 1985, Entomography, V3, P277; Shaw S. R., 2004, P RUSSIAN ENTOMOLOGI, V75, P82; Shi M, 2005, MOL PHYLOGENET EVOL, V37, P104, DOI 10.1016/j.ympev.2005.03.035; Smith F. E., 1954, DYNAMICS GROWTH PROC, P277; SMITH RH, 1991, ADV ECOL RES, V21, P63, DOI 10.1016/S0065-2504(08)60097-5; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens DJ, 1999, P ROY SOC B-BIOL SCI, V266, P1049, DOI 10.1098/rspb.1999.0742; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Traynor RE, 2005, OIKOS, V109, P305, DOI 10.1111/j.0030-1299.2005.13666.x; Visser B, 2010, P NATL ACAD SCI USA, V107, P8677, DOI 10.1073/pnas.1001744107; WAAGE JK, 1979, J ANIM ECOL, V48, P353, DOI 10.2307/4166; Wajnberg E., 2008, BEHAV ECOLOGY PARASI; Whitfield JB, 1998, ANNU REV ENTOMOL, V43, P129, DOI 10.1146/annurev.ento.43.1.129; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913; Zaldivar-Riveron A, 2006, MOL PHYLOGENET EVOL, V38; Zaldivar-Riveron A, 2008, INVERTEBR SYST, V22, P345, DOI 10.1071/IS07028 86 20 20 0 30 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 BIOL J LINN SOC Biol. J. Linnean Soc. OCT 2011 104 2 443 461 10.1111/j.1095-8312.2011.01719.x 19 Evolutionary Biology Evolutionary Biology 820JV WOS:000294902700016 Bronze 2019-02-21 J Wolf, A; Anderegg, WRL; Ryan, SJ; Christensen, J Wolf, Adam; Anderegg, William R. L.; Ryan, Sadie J.; Christensen, Jon Robust detection of plant species distribution shifts under biased sampling regimes ECOSPHERE English Article change detection; herbarium specimen; museum collection; species distribution modeling The great diversity of terrestrial plants testifies to a wide variety of life-history strategies for dealing with the problem of surviving to reproduce in a stressful environment while competing with other biota. It is essential to develop an understanding of how global environmental changes are perturbing the distribution of species throughout the globe. However, the most abundant collections of historic data on species distributions, i.e., museums and herbaria, are affected by sample biases that strongly compromise our ability to use these data for change detection studies. Here, we present a simulation study to find robust methods for rejecting spurious shifts in the geographic range or the environmental niche occupied by species, under a variety of sampling biases. We present two methods for addressing bias. The first method is a Bayesian weighting method from machine learning theory, in which each specimen is reweighted to achieve uniform sampling intensity in time, based on sampling intensity for all specimens. An alternative method uses binomial probabilities of selecting the observed number of samples of a target relative to all specimens, and estimates the likelihood associated with the binomial probabilities using Markov chain Monte Carlo (MCMC). We find that without dealing with sampling bias, using raw data is almost certain to provide inaccurate results, under even the mildest perturbations to idealized sampling. Among the two methods for addressing bias, the empirical estimate of the probability density of a change provided by MCMC was essential for accurately rejecting false changes. The performance of the weighting method, while an improvement over the use of raw data, was limited to cases in which the bias was weak. We conclude that species distribution changes are most robustly estimated using binomial probabilities, in which the probability space is explored empirically by MCMC. [Wolf, Adam] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Anderegg, William R. L.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Ryan, Sadie J.] Univ Calif Santa Barbara, NCEAS, Santa Barbara, CA 93101 USA; [Christensen, Jon] Stanford Univ, Dept Hist, Stanford, CA 94305 USA Wolf, A (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. adamwolf@princeton.edu Ryan, Sadie/0000-0002-4308-6321 Araujo MB, 2006, J BIOGEOGR, V33, P1677, DOI 10.1111/j.1365-2699.2006.01584.x; Bolker B. M, 2008, ECOLOGICAL MODELS DA; Cortes C, 2008, LECT NOTES ARTIF INT, V5254, P38, DOI 10.1007/978-3-540-87987-9_8; Crimmins SM, 2011, SCIENCE, V331, P324, DOI 10.1126/science.1199040; Doak DF, 2010, NATURE, V467, P959, DOI 10.1038/nature09439; Elith J, 2006, ECOGRAPHY, V29, P129, DOI 10.1111/j.2006.0906-7590.04596.x; Elith J, 2007, DIVERS DISTRIB, V13, P265, DOI 10.1111/j.1472-4642.2007.00340.x; Freitag S, 1998, ANIM CONSERV, V1, P119, DOI 10.1111/j.1469-1795.1998.tb00019.x; Graham CH, 2004, TRENDS ECOL EVOL, V19, P497, DOI 10.1016/j.tree.2004.07.006; Graham RW, 1996, SCIENCE, V272, P1601; Hadly EA, 2009, P NATL ACAD SCI USA, V106, P19707, DOI 10.1073/pnas.0901648106; HECKMAN JJ, 1979, ECONOMETRICA, V47, P153, DOI 10.2307/1912352; Hirsch T., 2010, GLOBAL BIODIVERSITY; Hoekstra J. M., 2010, ATLAS GLOBAL CONSERV; Keeley Jon E., 2004, Madrono, V51, P372; Kelly AE, 2008, P NATL ACAD SCI USA, V105, P11823, DOI 10.1073/pnas.0802891105; Lenoir J, 2008, SCIENCE, V320, P1768, DOI 10.1126/science.1156831; Lenoir J, 2009, ECOGRAPHY, V32, P765, DOI 10.1111/j.1600-0587.2009.05791.x; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; METROPOLIS N, 1953, J CHEM PHYS, V21, P1087, DOI 10.1063/1.1699114; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING SY; Moritz C, 2008, SCIENCE, V322, P261, DOI 10.1126/science.1163428; Murphy HT, 2010, ECOL LETT, V13, P1233, DOI 10.1111/j.1461-0248.2010.01526.x; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Phillips SJ, 2009, ECOL APPL, V19, P181, DOI 10.1890/07-2153.1; Press W. H., 2007, NUMERICAL RECIPES AR; Reddy S, 2003, J BIOGEOGR, V30, P1719, DOI 10.1046/j.1365-2699.2003.00946.x; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Schapire R. E., 2005, ADV NEURAL INFORM PR, V17, P323; Shaffer HB, 1998, TRENDS ECOL EVOL, V13, P27, DOI 10.1016/S0169-5347(97)01177-4; Shoo LP, 2006, AUSTRAL ECOL, V31, P22, DOI 10.1111/j.1442-9993.2006.01539.x; Tingley MW, 2009, TRENDS ECOL EVOL, V24, P625, DOI 10.1016/j.tree.2009.05.009; Wake DB, 2009, P NATL ACAD SCI USA, V106, P19631, DOI 10.1073/pnas.0911097106; Walther GR, 2010, PHILOS T R SOC B, V365, P2019, DOI 10.1098/rstb.2010.0021; Walther GR, 2005, J VEG SCI, V16, P541, DOI 10.1658/1100-9233(2005)16[541:TITUSO]2.0.CO;2; Warren DL, 2008, EVOLUTION, V62, P2868, DOI 10.1111/j.1558-5646.2008.00482.x; Willis CG, 2008, P NATL ACAD SCI USA, V105, P17029, DOI 10.1073/pnas.0806446105; Zadrozny Bianca, 2004, P 21 INT C MACH LEAR 39 6 6 2 18 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere OCT 2011 2 10 UNSP 115 10.1890/ES11-00162.1 23 Ecology Environmental Sciences & Ecology V30JA WOS:000208811100009 DOAJ Gold 2019-02-21 J Bogdanowicz, AM; Olejniczak, P; Lembicz, M; Zukowski, W Bogdanowicz, Agnieszka M.; Olejniczak, Pawel; Lembicz, Marlena; Zukowski, Waldemar Costs of reproduction in life history of a perennial plant Carex secalina CENTRAL EUROPEAN JOURNAL OF BIOLOGY English Article Age; Biomass reduction; Common garden; Life history; Reproductive allocation SEED PRODUCTION; SIZE; ALLOCATION; POPULATIONS; ORCHIDACEAE; LIMITATION; CYPERACEAE; INTERPLAY; GROWTH; HERB We tested a hypothesis based on life history theory that examines reproductive costs incurred by individuals in consecutive years of their life. A multi-year dataset of resource allocation to vegetative and reproductive structures was analysed in Carex secalina - a perennial, monoecious sedge, reproducing only sexually. In a four-year garden experiment, we assessed above-ground biomass at the end of each season and reproductive allocation expressed as the total length of male and female spikes. The study was aimed at determining how size and age of a plant relates to its reproduction, and how the rate of reproduction affects the year-toyear biomass change in Carex secalina. We observed that after each reproductive episode, individuals had significantly smaller sizes and produced a lower number of generative tillers. The total production of reproductive structures decreased significantly with age in all populations. Moreover, the decrease in plant biomass was greater when more reproductive structures were produced in a previous year, which indicates that the plants incur costs of reproduction in terms of above-ground biomass production. [Bogdanowicz, Agnieszka M.; Lembicz, Marlena; Zukowski, Waldemar] Adam Mickiewicz Univ Poznan, Dept Plant Taxon, PL-61614 Poznan, Poland; [Olejniczak, Pawel] Polish Acad Sci, Inst Nat Conservat, PL-31120 Krakow, Poland Bogdanowicz, AM (reprint author), Adam Mickiewicz Univ Poznan, Dept Plant Taxon, PL-61614 Poznan, Poland. agab@amu.edu.pl Lembicz, Marlena/0000-0003-1714-4716 Polish Ministry of Science and Higher Education [2P04C12030, NN305036134] We thank Elzbieta Obarska for helpful discussions and Maria Urbanska for her assistance in maintaining experimental plants in the garden. The work was supported by Polish Ministry of Science and Higher Education (projects 2P04C12030 and NN305036134). Alvarez-Cansino L, 2010, ANN BOT-LONDON, V106, P989, DOI 10.1093/aob/mcq197; Andersson S, 2006, CAN J BOT, V84, P904, DOI 10.1139/B06-041; Andrieu E, 2007, OECOLOGIA, V152, P515, DOI 10.1007/s00442-007-0662-x; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; Bazzaz F. A., 1985, STUDIES PLANT DEMOGR, P373; CALVO RN, 1990, AM J BOT, V77, P736, DOI 10.2307/2444365; Cao GX, 2008, PLANT ECOL, V194, P99, DOI 10.1007/s11258-007-9277-x; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Cunningham SA, 1997, OECOLOGIA, V111, P36, DOI 10.1007/s004420050205; Dudash MR, 1997, ECOLOGY, V78, P484; HARTNETT DC, 1990, OECOLOGIA, V84, P254, DOI 10.1007/BF00318281; Hemborg AM, 1998, OIKOS, V83, P273, DOI 10.2307/3546838; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; Horibata S, 2007, ANN BOT-LONDON, V100, P565, DOI 10.1093/aob/mcm131; Jacquemyn H, 2010, J ECOL, V98, P1204, DOI 10.1111/j.1365-2745.2010.01697.x; Jongejans E, 2006, OECOLOGIA, V147, P369, DOI 10.1007/s00442-005-0325-8; Karlsson P. Staffan, 2005, P1, DOI 10.1016/B978-012088386-8/50001-6; KARLSSON PS, 1990, OIKOS, V59, P393, DOI 10.2307/3545151; Lembicz M, 2011, FLORA, V206, P158, DOI 10.1016/j.flora.2010.09.006; Lembicz Marlena, 2006, Polish Botanical Studies, V22, P343; Matsuyama S, 2008, ANN BOT-LONDON, V101, P1391, DOI 10.1093/aob/mcn048; Mendez M, 2003, OECOLOGIA, V137, P69, DOI 10.1007/s00442-003-1319-z; Milla R, 2006, PLANT BIOLOGY, V8, P103, DOI 10.1055/s-2005-872890; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Primack R, 1998, AM J BOT, V85, P1672, DOI 10.2307/2446500; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Reekie EG, 1998, CAN J BOT, V76, P43, DOI 10.1139/b97-160; ROFF DA, 2002, LIFE HIST EVOLUTION; Sato T, 2002, OIKOS, V96, P453, DOI 10.1034/j.1600-0706.2002.960307.x; SCHMID B, 1993, EVOLUTION, V47, P61, DOI 10.1111/j.1558-5646.1993.tb01199.x; SILVERTOWN J, 1999, AM NAT, V29, P321; Stearns S, 1992, EVOLUTION LIFE HIST; TUOMI J, 1983, AM ZOOL, V23, P25; Wang TH, 2006, CAN J BOT, V84, P485, DOI 10.1139/B06-011; Welham CVJ, 1998, CAN J BOT, V76, P166, DOI 10.1139/b97-176; Zukowski W, 2005, ACTA SOC BOT POL, V74, P141 36 3 3 2 15 VERSITA WARSAW SOLIPSKA 14A-1, 02-482 WARSAW, POLAND 1895-104X CENT EUR J BIOL Cent. Eur. J. Biol. OCT 2011 6 5 870 877 10.2478/s11535-011-0044-6 8 Biology Life Sciences & Biomedicine - Other Topics 814OE WOS:000294465300020 Other Gold 2019-02-21 J Denison, RF; Kiers, ET Denison, R. Ford; Kiers, E. Toby Life Histories of Symbiotic Rhizobia and Mycorrhizal Fungi CURRENT BIOLOGY English Review ARBUSCULAR MYCORRHIZAS; FUNCTIONAL DIVERSITY; MEDICAGO-TRUNCATULA; PHOSPHATE TRANSPORTER; INEFFECTIVE RHIZOBIA; POPULATION-DYNAMICS; GENETIC-VARIABILITY; PHASEOLUS-VULGARIS; PHOSPHORUS FLUXES; LEGUME SANCTIONS Research on life history strategies of microbial symbionts is key to understanding the evolution cif cooperation with hosts, but also their survival between hosts. Rhizobia are soil bacteria known for fixing nitrogen inside legume root nodules. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that provide plants with nutrients and other benefits. Both kinds of symbionts employ strategies to reproduce during symbiosis using host resources; to repopulate the soil; to survive in the soil between hosts; and to find and infect new hosts. Here we focus on the fitness of the microbial symbionts and how interactions at each of these stages has shaped microbial life-history strategies. During symbiosis, microbial fitness could be increased by diverting more resources to individual reproduction, but that may trigger fitness-reducing host sanctions. To survive in the soil, symbionts employ sophisticated strategies, such as persister formation for rhizobia and reversal of spore germination by mycorrhizae. Interactions among symbionts, from rhizobial quorum sensing to fusion of genetically distinct fungal hyphae, increase adaptive plasticity. The evolutionary implications of these interactions and of microbial strategies to repopulate and survive in the soil are largely unexplored. [Denison, R. Ford] Univ Minnesota, St Paul, MN 55108 USA; [Kiers, E. Toby] Vrije Univ Amsterdam, Fac Earth & Life Sci, Inst Ecol Sci, NL-1081 HV Amsterdam, Netherlands Denison, RF (reprint author), Univ Minnesota, 1987 Upper Buford Circle, St Paul, MN 55108 USA. denis036@umn.edu; toby.kiers@vu.nl Toby, Kiers/H-4819-2017 Toby, Kiers/0000-0002-0597-1653 National Science Foundation; NWO We are grateful to Egbert Leigh, Jan Jansa and Erik Verbruggen for comments on this manuscript. Our research on symbiosis has been supported by the National Science Foundation (R.F.D.) and by NWO 'Vidi' and 'Meervoud' grants (E.T.K.). Akcay E, 2007, P R SOC B, V274, P25, DOI 10.1098/rspb.2006.3689; Angelard C, 2011, NEW PHYTOL, V189, P652, DOI 10.1111/j.1469-8137.2010.03602.x; Angelard C, 2010, CURR BIOL, V20, P1216, DOI 10.1016/j.cub.2010.05.031; Antunes PM, 2011, NEW PHYTOL, V189, P507, DOI 10.1111/j.1469-8137.2010.03480.x; Avio L, 2006, NEW PHYTOL, V172, P347, DOI 10.1111/j.1469-8137.2006.01839.x; Bago B, 2000, PLANT PHYSIOL, V124, P949, DOI 10.1104/pp.124.3.949; BAUER WD, 1990, PLANT SOIL, V129, P45, DOI 10.1007/BF00011690; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; BONFANTE P, 2010, NAT COMMUN, V1, P1, DOI DOI 10.1038/NCOMMS1046; Bottomley PJ, 1992, BIOL NITROGEN FIXATI, P293; Breuillin F, 2010, PLANT J, V64, P1002, DOI 10.1111/j.1365-313X.2010.04385.x; BROCKWELL J, 1987, AUST J AGR RES, V38, P61, DOI 10.1071/AR9870061; Bucher M, 2009, CURR OPIN PLANT BIOL, V12, P500, DOI 10.1016/j.pbi.2009.06.001; CASSMAN KG, 1981, SOIL SCI SOC AM J, V45, P517, DOI 10.2136/sssaj1981.03615995004500030015x; Croll D, 2009, NEW PHYTOL, V181, P924, DOI 10.1111/j.1469-8137.2008.02726.x; Dalling JW, 2009, AM NAT, V173, P531, DOI 10.1086/597221; Daniels R, 2002, J BIOL CHEM, V277, P462, DOI 10.1074/jbc.M106655200; DANSO SKA, 1975, CAN J MICROBIOL, V21, P884, DOI 10.1139/m75-131; De Souza FA, 2005, MYCOL RES, V109, P697, DOI 10.1017/S09532756205002546; den Bakker HC, 2010, MOL BIOL EVOL, V27, P2474, DOI 10.1093/molbev/msq155; Denison RF, 2004, FEMS MICROBIOL LETT, V237, P187, DOI 10.1016/j.femsle.2004.07.013; Denison RF, 2000, AM NAT, V156, P567, DOI 10.1086/316994; Diggle SP, 2007, PHILOS T R SOC B, V362, P1241, DOI 10.1098/rstb.2007.2049; Ehinger M, 2009, NEW PHYTOL, V184, P412, DOI 10.1111/j.1469-8137.2009.02983.x; ENGLAND LS, 1993, SOIL BIOL BIOCHEM, V25, P525, DOI 10.1016/0038-0717(93)90189-I; Fitter AH, 2006, NEW PHYTOL, V172, P3, DOI 10.1111/j.1469-8137.2006.01861.x; Friesen ML, 2010, J EVOLUTION BIOL, V23, P323, DOI 10.1111/j.1420-9101.2009.01902.x; Fujishige NA, 2006, FEMS MICROBIOL ECOL, V56, P195, DOI 10.1111/j.1574-6941.2005.00044.x; GAWORZEWSKA ET, 1982, J GEN MICROBIOL, V128, P1179; Giovannetti M, 2004, NEW PHYTOL, V164, P175, DOI 10.1111/j.1469-8137.2004.01145.x; Giovannetti M, 2010, ARBUSCULAR MYCORRHIZAS: PHYSIOLOGY AND FUNCTION, P3, DOI 10.1007/978-90-481-9489-6_1; Gladfelter AS, 2006, CURR OPIN MICROBIOL, V9, P547, DOI 10.1016/j.mib.2006.09.002; Goel AK, 1999, MICROBIOL RES, V154, P43; Gruber N, 2008, NATURE, V451, P293, DOI 10.1038/nature06592; Gubry-Rangin C, 2010, P ROY SOC B-BIOL SCI, V277, P1947, DOI 10.1098/rspb.2009.2072; GULASH M, 1984, APPL ENVIRON MICROB, V48, P149; Hagen MJ, 1996, MOL ECOL, V5, P707, DOI 10.1111/j.1365-294X.1996.tb00367.x; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; Hart MM, 2005, PEDOBIOLOGIA, V49, P269, DOI 10.1016/j.pedobi.2004.12.001; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Heath KD, 2009, EVOLUTION, V63, P652, DOI 10.1111/j.1558-5646.2008.00582.x; HEIJNEN CE, 1991, FEMS MICROBIOL ECOL, V85, P65, DOI 10.1016/0378-1097(91)90632-K; Heitman J, 2007, SEX IN FUNGI: MOLECULAR DETERMINATION AND EVOLUTIONARY IMPLICATIONS, P1; Herre EA, 2007, ECOLOGY, V88, P550, DOI 10.1890/05-1606; Hijri M, 2005, NATURE, V433, P160, DOI 10.1038/nature03069; HIRSCH AM, 2010, SYMBIOSES STRESS JOI, P375; Hirsch PR, 1996, NEW PHYTOL, V133, P159, DOI 10.1111/j.1469-8137.1996.tb04351.x; Hoeksema JD, 2010, ECOL LETT, V13, P394, DOI 10.1111/j.1461-0248.2009.01430.x; IJdo M, 2010, FEMS MICROBIOL ECOL, V72, P114, DOI 10.1111/j.1574-6941.2009.00829.x; Jansa J, 2005, PLANT SOIL, V276, P163, DOI 10.1007/s11104-005-4274-0; Jansa J, 2008, NEW PHYTOL, V177, P779, DOI 10.1111/j.1469-8137.2007.02294.x; Javot H, 2007, P NATL ACAD SCI USA, V104, P1720, DOI 10.1073/pnas.0608136104; Ji KX, 2010, J MICROBIOL BIOTECHN, V20, P238, DOI 10.4014/jmb.0906.06042; Johnson NC, 2010, P NATL ACAD SCI USA, V107, P2093, DOI 10.1073/pnas.0906710107; Johnson NC, 2010, NEW PHYTOL, V185, P631, DOI 10.1111/j.1469-8137.2009.03110.x; Johnson NC, 2003, ECOLOGY, V84, P1895, DOI 10.1890/0012-9658(2003)084[1895:NEAMAA]2.0.CO;2; Kiers ET, 2008, ANNU REV ECOL EVOL S, V39, P215, DOI 10.1146/annurev.ecolsys.39.110707.173423; Kiers ET, 2007, P ROY SOC B-BIOL SCI, V274, P3119, DOI 10.1098/rspb.2007.1187; Kiers ET, 2006, ECOLOGY, V87, P1627, DOI 10.1890/0012-9658(2006)87[1627:MSITAM]2.0.CO;2; Kiers ET, 2006, EVOL ECOL RES, V8, P1077; Kiers ET, 2011, P NATL ACAD SCI USA, V108, pE7, DOI 10.1073/pnas.1014546108; Kiers ET, 2003, NATURE, V425, P78, DOI 10.1038/nature01931; KIERS ET, 2011, SCIENCE IN PRESS; KLOPPHOLZ S, 2011, CURR BIOL IN PRESS; Kobae Y, 2010, PLANT CELL PHYSIOL, V51, P341, DOI 10.1093/pcp/pcq013; Koch AM, 2006, ECOL LETT, V9, P103, DOI 10.1111/j.1461-0248.2005.00853.x; Koch AM, 2004, P NATL ACAD SCI USA, V101, P2369, DOI 10.1073/pnas.0306441101; KUCEY RMN, 1989, CAN J MICROBIOL, V35, P661, DOI 10.1139/m89-107; Kuhn G, 2001, NATURE, V414, P745, DOI 10.1038/414745a; KUYKENDALL LD, 1989, PLANT SOIL, V116, P275, DOI 10.1007/BF02214558; Laguerre G, 2007, NEW PHYTOL, V176, P680, DOI 10.1111/j.1469-8137.2007.02212.x; Leigh EG, 2010, J EVOLUTION BIOL, V23, P2507, DOI 10.1111/j.1420-9101.2010.02114.x; Lekberg Y, 2010, FEMS MICROBIOL ECOL, V74, P336, DOI 10.1111/j.1574-6941.2010.00956.x; Lendenmann M, 2011, MYCORRHIZA, V21, P689, DOI 10.1007/s00572-011-0371-5; Lohrke SM, 2000, SYMBIOSIS, V29, P59; Maherali H, 2007, SCIENCE, V316, P1746, DOI 10.1126/science.1143082; Maillet F, 2011, NATURE, V469, P58, DOI 10.1038/nature09622; Marleau J, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-51; Matz C, 2005, TRENDS MICROBIOL, V13, P302, DOI 10.1016/j.tim.2005.05.009; Mikkelsen BL, 2008, NEW PHYTOL, V180, P890, DOI 10.1111/j.1469-8137.2008.02623.x; MOAWAD H, 1987, BIOL FERT SOILS, V5, P112; MOAWAD HA, 1984, APPL ENVIRON MICROB, V47, P607; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Nagy R, 2009, NEW PHYTOL, V181, P950, DOI 10.1111/j.1469-8137.2008.02721.x; Nijjer S, 2010, AM MIDL NAT, V163, P124, DOI 10.1674/0003-0031-163.1.124; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Olsson PA, 2010, FEMS MICROBIOL ECOL, V72, P123, DOI 10.1111/j.1574-6941.2009.00833.x; Oono R, 2011, P ROY SOC B-BIOL SCI, V278, P2698, DOI 10.1098/rspb.2010.2193; Oono R, 2010, PLANT PHYSIOL, V154, P1541, DOI 10.1104/pp.110.163436; Oono R, 2010, NEW PHYTOL, V187, P508, DOI 10.1111/j.1469-8137.2010.03261.x; Oono R, 2009, NEW PHYTOL, V183, P967, DOI 10.1111/j.1469-8137.2009.02941.x; Pamiske M, 2008, NAT REV MICROBIOL, V6, P763, DOI DOI 10.1038/NRMICRO1987; Pawlowska TE, 2005, FEMS MICROBIOL LETT, V251, P185, DOI 10.1016/j.femsle.2005.08.007; Pawlowska TE, 2004, NATURE, V427, P733, DOI 10.1038/nature02290; PETERS NK, 1986, SCIENCE, V233, P977, DOI 10.1126/science.3738520; PIERCE M, 1983, PLANT PHYSIOL, V73, P286, DOI 10.1104/pp.73.2.286; Powell JR, 2011, MOL ECOL, V20, P655, DOI 10.1111/j.1365-294X.2010.04964.x; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; RAMIREZ C, 1980, APPL ENVIRON MICROB, V40, P492; Ratcliff W. C., 2011, COMMON INTEGR BIOL, V4, P1; Ratcliff WC, 2008, FEMS MICROBIOL ECOL, V65, P391, DOI 10.1111/j.1574-6941.2008.00544.x; Ratcliff WC, 2010, CURR BIOL, V20, P1740, DOI 10.1016/j.cub.2010.08.036; Ratcliff WC, 2009, ISME J, V3, P870, DOI 10.1038/ismej.2009.38; Ratcliff WC, 2011, SCIENCE, V332, P547, DOI 10.1126/science.1205970; Redfield RJ, 2002, TRENDS MICROBIOL, V10, P365, DOI 10.1016/S0966-842X(02)02400-9; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Rosemeyer V, 1998, J BACTERIOL, V180, P815; Sachs JL, 2010, J EVOLUTION BIOL, V23, P1075, DOI 10.1111/j.1420-9101.2010.01980.x; Sanchez-Contreras M, 2007, PHILOS T R SOC B, V362, P1149, DOI 10.1098/rstb.2007.2041; Sanders IR, 2010, ANNU REV GENET, V44, P271, DOI 10.1146/annurev-genet-102108-134239; Sbrana C, 2011, MYCOLOGIA, V103, P307, DOI 10.3852/10-125; Schaarschmidt S, 2007, PLANT PHYSIOL, V143, P1827, DOI [10.1104/pp.106.096446, 10.1104/pp.107.096446]; SCHWINGHAMER E A, 1971, Soil Biology and Biochemistry, V3, P355, DOI 10.1016/0038-0717(71)90046-0; SCHWINGHAMER E A, 1978, Soil Biology and Biochemistry, V10, P383, DOI 10.1016/0038-0717(78)90062-7; SEGOVIA L, 1991, APPL ENVIRON MICROB, V57, P426; Sikes BA, 2010, ECOLOGY, V91, P1591, DOI 10.1890/09-1858.1; Silva C, 1999, MOL ECOL, V8, P277, DOI 10.1046/j.1365-294X.1999.00564.x; Simms EL, 2006, P ROY SOC B-BIOL SCI, V273, P77, DOI 10.1098/rspb.2005.3292; Smith FA, 2009, NEW PHYTOL, V182, P347, DOI 10.1111/j.1469-8137.2008.02753.x; THOMPSON LM, 1978, SOILS SOIL FERTILITY; Thonar C, 2011, PLANT SOIL, V339, P231, DOI 10.1007/s11104-010-0571-3; Thornton HG, 1930, P R SOC LOND B-CONTA, V106, P110, DOI 10.1098/rspb.1930.0015; Vandenkoornhuyse P, 2007, P NATL ACAD SCI USA, V104, P16970, DOI 10.1073/pnas.0705902104; Verbruggen E, 2010, EVOL APPL, V3, P547, DOI 10.1111/j.1752-4571.2010.00145.x; Wehner J, 2010, PEDOBIOLOGIA, V53, P197, DOI 10.1016/j.pedobi.2009.10.002; West SA, 2002, P ROY SOC B-BIOL SCI, V269, P685, DOI 10.1098/rspb.2001.1878; Weyl EG, 2010, P NATL ACAD SCI USA, V107, P15712, DOI 10.1073/pnas.1005294107; WONG PP, 1971, PLANT PHYSIOL, V47, P750, DOI 10.1104/pp.47.6.750; YOUNG JPW, 1987, APPL ENVIRON MICROB, V53, P397 129 67 70 3 164 CELL PRESS CAMBRIDGE 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R775 R785 10.1016/j.cub.2011.06.018 11 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400022 21959168 Bronze 2019-02-21 J Jones, JH Jones, James Holland Primates and the Evolution of Long, Slow Life Histories CURRENT BIOLOGY English Review QUANTITATIVE GENETIC-ANALYSIS; BRAIN-SIZE EVOLUTION; NATURAL-SELECTION; CRANIAL MORPHOLOGY; HUMAN-POPULATION; FEMALE MAMMALS; HUMAN GROWTH; MORTALITY; HUMANS; DEMOGRAPHY Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life-history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life-history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explains their low reproductive-effort tactics. I discuss recent applications of life-history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally. Stanford Univ, Dept Anthropol, Woods Inst Environm, Stanford, CA 94305 USA Jones, JH (reprint author), Stanford Univ, Dept Anthropol, Woods Inst Environm, 450 Serra Mall,Bldg 50, Stanford, CA 94305 USA. jhr1@stanford.edu Jones, James/0000-0003-1680-6757 NICHD NIH HHS [K01 HD051494, K01 HD051494-05] ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Amos W, 2010, P R SOC B, V277, P131, DOI 10.1098/rspb.2009.1473; ATCHLEY WR, 1984, EVOLUTION, V38, P1165, DOI 10.1111/j.1558-5646.1984.tb05640.x; ATCHLEY WR, 1984, GENET RES, V43, P289, DOI 10.1017/S0016672300026070; AUSTAD SN, 1992, AM J PRIMATOL, V28, P251, DOI 10.1002/ajp.1350280403; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; AUSTAD SN, 1993, J GERONTOL, V46, pB47; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Bird DW, 2002, HUM NATURE-INT BIOS, V13, P269, DOI 10.1007/s12110-002-1010-9; Bishai D, 2003, DEMOGR RES, V8, P261, DOI DOI 10.4054/DEMRES.2003.8.9; Blomquist GE, 2010, EVOL ECOL, V24, P657, DOI 10.1007/s10682-009-9323-3; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; BOAG PT, 1981, SCIENCE, V214, P82, DOI 10.1126/science.214.4516.82; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; CHAMOV EL, 1993, EVOL ANTHROPOL, V1, P191; CHAMOV EL, 1973, AM NAT, V107, P791; Chapman CA, 1999, J TROP ECOL, V15, P189, DOI 10.1017/S0266467499000759; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov Eric L., 1993, P1; Charpentier MJE, 2008, MOL ECOL, V17, P2026, DOI 10.1111/j.1365-294X.2008.03724.x; Cheverud JM, 1996, J EVOLUTION BIOL, V9, P5, DOI 10.1046/j.1420-9101.1996.9010005.x; Chu CYC, 2008, THEOR POPUL BIOL, V73, P171, DOI 10.1016/j.tpb.2007.11.005; COALE A, 1974, SCI AM, V231; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Colman RJ, 2009, SCIENCE, V325, P201, DOI 10.1126/science.1173635; Conklin-Brittain NL, 1998, INT J PRIMATOL, V19, P971, DOI 10.1023/A:1020370119096; Curran LM, 2000, ECOL MONOGR, V70, P101, DOI 10.1890/0012-9615(2000)070[0101:VRTSVI]2.0.CO;2; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; DEACON TW, 1990, INT J PRIMATOL, V11, P237, DOI 10.1007/BF02192870; DEACON TW, 1990, INT J PRIMATOL, V11, P193, DOI 10.1007/BF02192869; Deaner Robert O., 2003, P233; Dewar RE, 2007, P NATL ACAD SCI USA, V104, P13723, DOI 10.1073/pnas.0704346104; Dobzhansky T., 1950, American Scientist, V38, P209; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; Excoffier L, 1999, P NATL ACAD SCI USA, V96, P10597, DOI 10.1073/pnas.96.19.10597; Fisher R. A., 1958, GENETICAL THEORY NAT; FLINN MV, 1989, SOCIOBIOLOGY SEXUAL, P206; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; Godoy R, 2005, J ANTHROPOL RES, V61, P157, DOI 10.3998/jar.0521004.0061.202; Gould L, 1999, INT J PRIMATOL, V20, P69, DOI 10.1023/A:1020584200807; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Harvey P.H., 1987, P181; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; Howell N., 1979, DEMOGRAPHY DOBE KUNG; HRDY SB, 1999, HIST MOTHERS INFANTS; Janson Charles H., 1993, P57; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Judge DS, 2000, J GERONTOL A-BIOL, V55, pB201, DOI 10.1093/gerona/55.4.B201; KACHEL AF, 2010, P ROYAL S B IN PRESS; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kappeler PM, 1996, AM NAT, V148, P868, DOI 10.1086/285960; Keyfitz N., 1990, WORLD POPULATION GRO; KNOTT C, 2001, REPROD ECOLOGY, P299; Knott CD, 1998, INT J PRIMATOL, V19, P1061, DOI 10.1023/A:1020330404983; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kozlowski J, 1997, AM NAT, V149, P352; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kramer KL, 2009, AM J HUM BIOL, V21, P430, DOI 10.1002/ajhb.20930; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 1985, P21; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee RD, 2002, POPUL DEV REV, V28, P475, DOI 10.1111/j.1728-4457.2002.00475.x; Leigh SR, 2001, EVOL ANTHROPOL, V10, P223, DOI 10.1002/evan.20002; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Lewontin R., 1965, GENETICS COLONIZING; MAC ARTHUR ROBERT H., 1967; Mangel M, 2001, EVOL ECOL RES, V3, P583; Marlowe Frank W, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marshall AJ, 2007, INT J PRIMATOL, V28, P1218, DOI 10.1007/s10764-007-9218-5; MARTIN RD, 2003, PRIMATE LIFE HIST SO; Medawar P, 1952, UNSOLVED PROBLEM BIO; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Newson L, 2005, PERS SOC PSYCHOL REV, V9, P360, DOI 10.1207/s15327957pspr0904_5; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; PARKER GA, 1990, NATURE, V348, P27, DOI 10.1038/348027a0; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; Pearl J., 2000, CAUSALITY; Peccei JS, 2001, EVOL ANTHROPOL, V10, P43, DOI 10.1002/evan.1013; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Phelan JP, 2005, AGEING RES REV, V4, P339, DOI 10.1016/j.arr.2005.06.001; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PURVIS A, 1995, J ZOOL, V237, P259, DOI 10.1111/j.1469-7998.1995.tb02762.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roseman CC, 2010, AM J PHYS ANTHROPOL, V143, P1, DOI 10.1002/ajpa.21341; Roseman CC, 2009, EVOL BIOL, V36, P282, DOI 10.1007/s11692-009-9067-6; Rothman JM, 2008, AM J PRIMATOL, V70, P1191, DOI 10.1002/ajp.20611; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Storz JF, 2002, EVOLUTION, V56, P817; THOMPSON ME, 2007, CURR BIOL, V17, P1; Tuljapurkar S., 1990, POPULATION DYNAMICS, V85; Turke P. W., 1988, HUMAN REPROD BEHAV D, P173; Tutin Caroline E.G., 1994, P181; van Noordwijk MA, 2005, AM J PHYS ANTHROPOL, V127, P79, DOI 10.1002/ajpa.10426; VANSCHAIK CP, 1993, ANNU REV ECOL SYST, V24, P353, DOI 10.1146/annurev.es.24.110193.002033; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wood J., 1994, DYNAMICS HUMAN REPRO; Wrangham R, 2010, EVOL ANTHROPOL, V19, P187, DOI 10.1002/evan.20275; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; Wright SJ, 1999, ECOLOGY, V80, P1632, DOI 10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2; Zimmermann Elke, 2007, P1163, DOI 10.1007/978-3-540-33761-4_38 133 43 43 2 82 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R708 R717 10.1016/j.cub.2011.08.025 10 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400015 21959161 Bronze, Green Accepted 2019-02-21 J Sommer, RJ; Ogawa, A Sommer, Ralf J.; Ogawa, Akira Hormone Signaling and Phenotypic Plasticity in Nematode Development and Evolution CURRENT BIOLOGY English Review CONTROLLING DAUER FORMATION; ELEGANS LARVAL DEVELOPMENT; AGE-1 PI3 KINASE; CAENORHABDITIS-ELEGANS; C-ELEGANS; LIFE-SPAN; PRISTIONCHUS-PACIFICUS; TRANSCRIPTION FACTOR; REPRODUCTIVE DEVELOPMENT; ENVIRONMENTAL CUES Phenotypic plasticity refers to the ability of an organism to adopt different phenotypes depending on environmental conditions. In animals and plants, the progression of juvenile development and the formation of dormant stages are often associated with phenotypic plasticity, indicating the importance of phenotypic plasticity for life-history theory. Phenotypic plasticity has long been emphasized as a crucial principle in ecology and as facilitator of phenotypic evolution. In nematodes, several examples of phenotypic plasticity have been studied at the genetic and developmental level. In addition, the influence of different environmental factors has been investigated under laboratory conditions. These studies have provided detailed insight into the molecular basis of phenotypic plasticity and its ecological and evolutionary implications. Here, we review recent studies on the formation of dauer larvae in Caenorhabditis elegans, the evolution of nematode parasitism and the generation of a novel feeding trait in Pristionchus pacificus. These examples reveal a conserved and co-opted role of an endocrine signaling module involving the steroid hormone dafachronic acid. We will discuss how hormone signaling might facilitate life-history and morphological evolution. [Sommer, Ralf J.; Ogawa, Akira] Max Planck Inst Dev Biol, Dept Evolutionary Biol, D-72076 Tubingen, Germany Sommer, RJ (reprint author), Max Planck Inst Dev Biol, Dept Evolutionary Biol, Spemannstr 37, D-72076 Tubingen, Germany. ralf.sommer@tuebingen.mpg.de ALBERT PS, 1988, DEV BIOL, V126, P270, DOI 10.1016/0012-1606(88)90138-8; ALBERT PS, 1981, J COMP NEUROL, V198, P435, DOI 10.1002/cne.901980305; ANDERSON GL, 1978, CAN J ZOOL, V56, P1786, DOI 10.1139/z78-244; Angelo G, 2009, SCIENCE, V326, P954, DOI 10.1126/science.1178343; Antebi A, 2000, GENE DEV, V14, P1512; Antebi A, 1998, DEVELOPMENT, V125, P1191; BARGMANN CI, 1991, SCIENCE, V251, P1243, DOI 10.1126/science.2006412; Barriere A, 2005, CURR BIOL, V15, P1176, DOI 10.1016/j.cub.2005.06.022; Baugh LR, 2006, CURR BIOL, V16, P780, DOI 10.1016/j.cub.2006.03.021; Beldade P, 2002, NATURE, V416, P844, DOI 10.1038/416844a; Bento G, 2010, NATURE, V466, P494, DOI 10.1038/nature09164; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Butcher RA, 2008, P NATL ACAD SCI USA, V105, P14288, DOI 10.1073/pnas.0806676105; Butcher RA, 2007, NAT CHEM BIOL, V3, P420, DOI 10.1038/nchembio.2007.3; Butcher RA, 2009, P NATL ACAD SCI USA, V106, P1875, DOI 10.1073/pnas.0810338106; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; Dieterich C, 2009, TRENDS GENET, V25, P203, DOI 10.1016/j.tig.2009.03.006; DORMAN JB, 1995, GENETICS, V141, P1399; Dumas KJ, 2010, DEV BIOL, V340, P605, DOI 10.1016/j.ydbio.2010.02.022; ESTEVEZ M, 1993, NATURE, V365, P644, DOI 10.1038/365644a0; Floyd R, 2002, MOL ECOL, V11, P839, DOI 10.1046/j.1365-294X.2002.01485.x; FRIEDMAN DB, 1988, GENETICS, V118, P75; Fuchs G., 1915, ZOOL JB, V38, P109; GEORGI LL, 1990, CELL, V61, P635, DOI 10.1016/0092-8674(90)90475-T; Gerisch B, 2004, DEVELOPMENT, V131, P1765, DOI 10.1242/dev.01068; Gerisch B, 2001, DEV CELL, V1, P841, DOI 10.1016/S1534-5807(01)00085-5; Gilbert S F, 2009, ECOLOGICAL DEV BIOL; GOLDEN JW, 1982, SCIENCE, V218, P578, DOI 10.1126/science.6896933; GOLDEN JW, 1984, DEV BIOL, V102, P368, DOI 10.1016/0012-1606(84)90201-X; GOTTLIEB S, 1994, GENETICS, V137, P107; Hallem EA, 2011, CURR BIOL, V21, P377, DOI 10.1016/j.cub.2011.01.048; Herrmann M, 2007, ZOOL SCI, V24, P883, DOI 10.2108/zsj.24.883; Herrmann M, 2010, BIOL J LINN SOC, V100, P170, DOI 10.1111/j.1095-8312.2010.01410.x; Hertweck M, 2004, DEV CELL, V6, P577, DOI 10.1016/S1534-5807(04)00095-4; Hirschmann H., 1951, Zoologische Jahrbuecher (Systematik), V80, P132; Holt SJ, 2003, MECH AGEING DEV, V124, P779, DOI 10.1016/S0047-6374(03)00132-5; Hong RL, 2008, EVOL DEV, V10, P273, DOI 10.1111/j.1525-142X.2008.00236.x; Hong RL, 2006, CURR BIOL, V16, P2359, DOI 10.1016/j.cub.2006.10.031; Hu P. J. Dauer, 2007, WORMBOOK; Inoue T, 2000, DEV BIOL, V217, P192, DOI 10.1006/dbio.1999.9545; Jeong PY, 2005, NATURE, V433, P541, DOI 10.1038/nature03201; JEZYK PF, 1967, COMP BIOCHEM PHYSIOL, V23, P691, DOI 10.1016/0010-406X(67)90334-9; Jia KL, 2002, DEVELOPMENT, V129, P221; Jones SJM, 2001, GENOME RES, V11, P1346, DOI 10.1101/gr.184401; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kim K, 2009, SCIENCE, V326, P994, DOI 10.1126/science.1176331; Kimura KD, 1997, SCIENCE, V277, P942, DOI 10.1126/science.277.5328.942; Kiontke K, 2010, CURR BIOL, V20, pR710, DOI 10.1016/j.cub.2010.07.009; KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0; Kops GJPL, 1999, NATURE, V398, P630; LAMBSHEAD PJD, 1993, OCEANIS S D, V19, P5; Lee DL, 2002, BIOL NEMATODES; Lee RYN, 2001, CURR BIOL, V11, P1950, DOI 10.1016/S0960-9822(01)00595-4; Li J, 2004, DEVELOPMENT, V131, P5741, DOI 10.1242/dev..01408; Li WQ, 2003, GENE DEV, V17, P844, DOI 10.1101/gad.1066503; Lin K, 2001, NAT GENET, V28, P139, DOI 10.1038/88850; Mak HY, 2004, DEVELOPMENT, V131, P1777, DOI 10.1242/dev.01069; Martin R, 2008, ORG BIOMOL CHEM, V6, P4293, DOI 10.1039/b815064h; Matyash V, 2004, PLOS BIOL, V2, P1561, DOI 10.1371/journal.pbio.0020280; MAUPAS E., 1899, ARCH ZOOL EXP GEN, V7, P563; Mayer MG, 2011, P ROY SOC B-BIOL SCI, V278, P2784, DOI 10.1098/rspb.2010.2760; Moczek AP, 2004, AM NAT, V163, P184, DOI 10.1086/381741; Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0; Motola DL, 2006, CELL, V124, P1209, DOI 10.1016/j.cell.2006.01.037; Nemetschke L, 2010, CURR BIOL, V20, P1687, DOI 10.1016/j.cub.2010.08.014; Nijhout H.F., 1994, INSECT HORMONES; Ogawa A, 2009, CURR BIOL, V19, P67, DOI 10.1016/j.cub.2008.11.063; Ogawa A, 2011, DEVELOPMENT, V138, P1281, DOI 10.1242/dev.058909; Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194; Ogg S, 1998, MOL CELL, V2, P887, DOI 10.1016/S1097-2765(00)80303-2; ORIORDAN VB, 1990, COMP BIOCHEM PHYS B, V95, P125, DOI 10.1016/0305-0491(90)90258-U; OSCHE G, 1956, ZOOLOGISCHER ANZEI S, V19, P391; Paradis S, 1999, GENE DEV, V13, P1438, DOI 10.1101/gad.13.11.1438; Paradis S, 1998, GENE DEV, V12, P2488, DOI 10.1101/gad.12.16.2488; Patel DS, 2008, DEVELOPMENT, V135, P2239, DOI 10.1242/dev.016972; Patterson GI, 1997, GENE DEV, V11, P2679, DOI 10.1101/gad.11.20.2679; Poinar Jr G. O., 1983, NATURAL HIST NEMATOD; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Ren PF, 1996, SCIENCE, V274, P1389, DOI 10.1126/science.274.5291.1389; RIDDLE D. L., 1997, C ELEGANS; RIDDLE DL, 1981, NATURE, V290, P668, DOI 10.1038/290668a0; Rottiers V, 2006, DEV CELL, V10, P473, DOI 10.1016/j.devcel.2006.02.008; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Sharma KK, 2009, MOL ENDOCRINOL, V23, P640, DOI 10.1210/me.2008-0415; Sommer RJ, 2009, NAT REV GENET, V10, P416, DOI 10.1038/nrg2567; Srinivasan J, 2008, NATURE, V454, P1115, DOI 10.1038/nature07168; STANCH TA, 1995, GENETICS, V139, P171; Streit A, 2008, PARASITOLOGY, V135, P285, DOI 10.1017/S003118200700399X; Sudhaus Walter, 2010, Palaeodiversity, P117; THOMAS JH, 1993, GENETICS, V134, P1105; Tian H, 2008, CURR BIOL, V18, P142, DOI 10.1016/j.cub.2007.12.048; von Lieven AF, 2000, J ZOOL SYST EVOL RES, V38, P37, DOI 10.1046/j.1439-0469.2000.381125.x; VOWELS JJ, 1992, GENETICS, V130, P105; WADSWORTH WG, 1989, DEV BIOL, V132, P167, DOI 10.1016/0012-1606(89)90214-5; Wang J, 2003, DEVELOPMENT, V130, P1621, DOI 10.1242/dev.00363; Wang Z, 2009, P NATL ACAD SCI USA, V106, P9138, DOI 10.1073/pnas.0904064106; Weller AM, 2010, J PARASITOL, V96, P525, DOI 10.1645/GE-2319.1; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitman DW, 2009, PHENOTYPIC PLASTICIT; Wolkow CA, 2002, J BIOL CHEM, V277, P49591, DOI 10.1074/jbc.M207866200; 2005, WORMBOOK 101 49 50 2 42 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R758 R766 10.1016/j.cub.2011.06.034 9 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400020 21959166 Bronze 2019-02-21 J Viney, M; Cable, J Viney, Mark; Cable, Jo Macroparasite Life Histories CURRENT BIOLOGY English Review CONSTRAINTS INFLUENCING SURVIVAL; NEMATODE STRONGYLOIDES-RATTI; BLOOD FLUKE DEVELOPMENT; PSEUDODIPLORCHIS-AMERICANUS; NEMATOSPIROIDES-DUBIUS; PARASITIC NEMATODES; HELMINTH-PARASITES; AFRICAN PARASITE; EVOLUTION; HOST Parasites and parasitism is common. Worm macroparasites have evolved life-history traits that allow them to successfully transmit between spatially and temporally separated patches of host resource and to survive within these environments. Macroparasites have common life-history strategies to achieve this, but these general themes are modified in a myriad of ways related to the specific biology of their hosts. Parasite life histories are also dynamic, responding to conditions inside and outside of hosts, and they continue to evolve, especially in response to our attempts to control them and the harm that they cause. [Viney, Mark] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England; [Cable, Jo] Cardiff Univ, Sch Biosci, Cardiff CF10 3AX, Wales Viney, M (reprint author), Univ Bristol, Sch Biol Sci, Woodland Rd, Bristol BS8 1UG, Avon, England. mark.viney@bristol.ac.uk Cable, Joanne/A-4360-2010 Cable, Joanne/0000-0002-8510-7055 Abolins SR, 2011, MOL ECOL, V20, P881, DOI 10.1111/j.1365-294X.2010.04910.x; Albonico M, 1999, ADV PARASIT, V42, P277, DOI 10.1016/S0065-308X(08)60151-7; Anthony RM, 2007, NAT REV IMMUNOL, V7, P975, DOI 10.1038/nri2199; ARTIS D, 2001, PARASITIC NEMATODES; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; BEHNKE JM, 1983, PARASITE IMMUNOL, V5, P397, DOI 10.1111/j.1365-3024.1983.tb00755.x; BIANCO AE, 1989, PARASITOLOGY, V99, pS113, DOI 10.1017/S0031182000083451; Blank RB, 2006, J INFECT DIS, V194, P1609, DOI 10.1086/508896; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Cable J, 2002, INT J PARASITOL, V32, P255, DOI 10.1016/S0020-7519(01)00330-7; CABLE J, 1992, PARASITOLOGY, V105, P229, DOI 10.1017/S0031182000074151; Cable J, 2000, PARASITOLOGY, V121, P621, DOI 10.1017/S0031182000006971; CABLE J, 1991, PARASITOLOGY, V103, P253, DOI 10.1017/S0031182000059539; Cribb TH, 2003, ADV PARASIT, V54, P197, DOI 10.1016/S0065-308X(03)54004-0; Davies SJ, 2003, INT J PARASITOL, V33, P1277, DOI 10.1016/S0020-7519(03)00161-9; Davies SJ, 2001, SCIENCE, V294, P1358, DOI 10.1126/science.1064462; Devaney E, 1996, PARASITOL TODAY, V12, P418, DOI 10.1016/0169-4758(96)10065-X; DOBSON C, 1991, J PARASITOL, V77, P884, DOI 10.2307/3282736; Dyer M, 2000, PARASITOL TODAY, V16, P102, DOI 10.1016/S0169-4758(99)01608-7; GALLIEN L, 1935, FROHL TRAV STAT ZOOL, V12, P1; Gandon S, 2001, NATURE, V414, P751, DOI 10.1038/414751a; Gardner MP, 2006, AGING CELL, V5, P315, DOI 10.1111/j.1474-9726.2006.00226.x; Gardner MP, 2004, EXP GERONTOL, V39, P1267, DOI 10.1016/j.exger.2004.06.011; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Gems D, 2000, BIOGERONTOLOGY, V1, P289, DOI 10.1023/A:1026546719091; GRAFF DJ, 1967, J PARASITOL, V53, P1030, DOI 10.2307/3276831; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; GRANT WN, 2011, MOL PHYSL BASIS NEMA; Guinnee MA, 2003, PARASITOLOGY, V127, P507, DOI 10.1017/S0031182003003998; HARNETT W, 2001, PARASITIC NEMATODES; HAWDON JM, 1991, PARASITE HOST ASS CO; HAWKING F, 1967, PROC R SOC SER B-BIO, V169, P59, DOI 10.1098/rspb.1967.0079; Hayes KS, 2010, SCIENCE, V328, P1391, DOI 10.1126/science.1187703; Henderson NG, 2006, VET IMMUNOL IMMUNOP, V112, P62, DOI 10.1016/j.vetimm.2006.03.012; Hewitson JP, 2009, MOL BIOCHEM PARASIT, V167, P1, DOI 10.1016/j.molbiopara.2009.04.008; HOTEZ P, 1993, PARASITOL TODAY, V9, P23, DOI 10.1016/0169-4758(93)90159-D; Hu Patrick J, 2007, WormBook, P1; Jackson JA, 2004, J INFECT DIS, V190, P1804, DOI 10.1086/425014; Jackson JA, 2001, PARASITOLOGY, V123, P455, DOI 10.1017/S0031182001008745; Jackson JA, 2011, MOL ECOL, V20, P893, DOI 10.1111/j.1365-294X.2010.04907.x; Jackson JA, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-16; Kaplan RM, 2004, TRENDS PARASITOL, V20, P477, DOI 10.1016/j.pt.2004.08.001; Kuris AM, 2008, NATURE, V454, P515, DOI 10.1038/nature06970; Littlewood DTJ, 1999, BIOL J LINN SOC, V68, P257, DOI 10.1006/bijl.1999.0341; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; Mackinnon MJ, 2004, PHILOS T R SOC B, V359, P965, DOI 10.1098/rstb.2003.1414; Maizels RM, 2009, J EXP MED, V206, P2059, DOI 10.1084/jem.20091903; Maizels RM, 2004, IMMUNOL REV, V201, P89, DOI 10.1111/j.0105-2896.2004.00191.x; Maizels RM, 2003, NAT REV IMMUNOL, V3, P733, DOI 10.1038/nri1183; Moore J, 2002, OXFORD SERIES ECOLOG; MOQBEL R, 1980, EXP PARASITOL, V49, P139, DOI 10.1016/0014-4894(80)90112-5; Morand S, 1998, PARASITOL TODAY, V14, P193, DOI 10.1016/S0169-4758(98)01223-X; Olson PD, 2005, ADV PARASIT, V60, P165, DOI 10.1016/S0065-308X(05)60003-6; PAGE AP, 2007, WORMBOOK, DOI DOI 10.1895/WORM-BOOK.1.138.1; Paterson S, 2007, P R SOC B, V274, P1467, DOI 10.1098/rspb.2006.0433; Pearce EJ, 2002, NAT REV IMMUNOL, V2, P499, DOI 10.1038/nri843; Philippe H, 2011, NATURE, V470, P255, DOI 10.1038/nature09676; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; Read AF, 1996, PARASITOL TODAY, V12, P337, DOI 10.1016/0169-4758(96)10056-9; READ AF, 1995, PARASITOLOGY, V111, P359, DOI 10.1017/S0031182000081919; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; RIDDLE D. L., 1997, C ELEGANS; Roff Derek A., 1992; SMITHERS SR, 1969, PROC R SOC SER B-BIO, V171, P483, DOI 10.1098/rspb.1969.0007; Sommer RJ, 2011, CURR BIOL, V21, pR758, DOI 10.1016/j.cub.2011.06.034; Stear MJ, 1997, NATURE, V389, P27, DOI 10.1038/37895; Stearns S, 1992, EVOLUTION LIFE HIST; Tetteh KKA, 1999, INFECT IMMUN, V67, P4771; Thomas F, 2000, INT J PARASITOL, V30, P669, DOI 10.1016/S0020-7519(00)00040-0; Thomas F, 2002, TRENDS PARASITOL, V18, P387, DOI 10.1016/S1471-4922(02)02339-5; Thomas F., 2005, PARASITISM ECOSYSTEM; Tinsley RC, 2011, PARASITOLOGY, V138, P1039, DOI 10.1017/S0031182011000424; Tinsley RC, 2011, PARASITOLOGY, V138, P1029, DOI 10.1017/S0031182011000461; Tinsley RC, 2004, CAN J ZOOL, V82, P270, DOI [10.1139/z03-218, 10.1139/Z03-218]; Tinsley RC, 1999, PARASITOLOGY, V119, pS31; Trouve S, 1998, OECOLOGIA, V115, P370, DOI 10.1007/s004420050530; Viney ME, 2006, PARASITOLOGY, V133, P477, DOI 10.1017/S003118200600062X; Viney ME, 2005, INT J PARASITOL, V35, P1473, DOI 10.1016/j.ijpara.2005.07.006; VINEY ME, 1994, PARASITOLOGY, V109, P511, DOI 10.1017/S0031182000080768; Viney ME, 1996, P ROY SOC B-BIOL SCI, V263, P201, DOI 10.1098/rspb.1996.0032; VINEY ME, 2011, PARASITIC NEMATODES; VINEY ME, 2007, WORMBOOK, DOI DOI 10.1895/WORM-BOOK.1.141.1; Walk ST, 2010, INFLAMM BOWEL DIS, V16, P1841, DOI 10.1002/ibd.21299; Windsor DA, 1998, INT J PARASITOL, V28, P1939, DOI 10.1016/S0020-7519(98)00153-2; ZELLER E, 1876, Z WISS ZOOL, V27, P238; ZELLER E, 1872, RUD ZTSCHR WISSENSCH, V22, P1 88 17 17 0 43 CELL PRESS CAMBRIDGE 50 HAMPSHIRE ST, FLOOR 5, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. SEP 27 2011 21 18 R767 R774 10.1016/j.cub.2011.07.023 8 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology 827IY WOS:000295423400021 21959167 Bronze 2019-02-21 J Fawcett, TW; Kuijper, B; Weissing, FJ; Pen, I Fawcett, Tim W.; Kuijper, Bram; Weissing, Franz J.; Pen, Ido Sex-ratio control erodes sexual selection, revealing evolutionary feedback from adaptive plasticity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article evolutionary equilibrium; Fisher process; good genes; phenotypic plasticity; sex-ratio bias COSTLY MATE PREFERENCES; GENETIC ASSIMILATION; MODELS; ATTRACTIVENESS; OPTIMIZATION; ADJUSTMENT; SPECIATION; CHOICE Female choice is a powerful selective force, driving the elaboration of conspicuous male ornaments. This process of sexual selection has profound implications for many life-history decisions, including sex allocation. For example, females with attractive partners should produce more sons, because these sons will inherit their father's attractiveness and enjoy high mating success, thereby yielding greater fitness returns than daughters. However, previous research has overlooked the fact that there is a reciprocal feedback from life-history strategies to sexual selection. Here, using a simple mathematical model, we show that if mothers adaptively control offspring sex in relation to their partner's attractiveness, sexual selection is weakened and male ornamentation declines. This weakening occurs because the ability to determine offspring sex reduces the fitness difference between females with attractive and unattractive partners. We use individual-based, evolutionary simulations to show that this result holds under more biologically realistic conditions. Sexual selection and sex allocation thus interact in a dynamic fashion: The evolution of conspicuous male ornaments favors sex-ratio adjustment, but this conditional strategy then undermines the very same process that generated it, eroding sexual selection. We predict that, all else being equal, the most elaborate sexual displays should be seen in species with little or no control over offspring sex. The feedback process we have described points to a more general evolutionary principle, in which a conditional strategy weakens directional selection on another trait by reducing fitness differences. [Fawcett, Tim W.; Kuijper, Bram; Weissing, Franz J.; Pen, Ido] Univ Groningen, Theoret Biol Grp, NL-9700 CC Groningen, Netherlands Fawcett, TW (reprint author), Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England. tim.fawcett@cantab.net Fawcett, Tim/A-5439-2010; Kuijper, Bram/E-9409-2013 Fawcett, Tim/0000-0001-6337-901X; Kuijper, Bram/0000-0002-7263-2846; Weissing, Franz J./0000-0003-3281-663X Netherlands Organization for Scientific Research [810.67.021] We thank John McNamara, Tobias Uller, the editor, and two anonymous referees for constructive feedback on the manuscript. This research was funded by The Netherlands Organization for Scientific Research Grant 810.67.021 (to F.J.W.). Andersson M., 1994, SEXUAL SELECTION; Blackburn GS, 2010, AM NAT, V176, P264, DOI 10.1086/655220; BROCKMANN HJ, 1979, ANIM BEHAV, V27, P487, DOI 10.1016/0003-3472(79)90185-4; BULMER M, 1989, THEOR POPUL BIOL, V35, P195, DOI 10.1016/0040-5809(89)90017-8; BURLEY N, 1981, SCIENCE, V211, P721, DOI 10.1126/science.211.4483.721; Ellegren H, 1996, P NATL ACAD SCI USA, V93, P11723, DOI 10.1073/pnas.93.21.11723; Fawcett TW, 2007, BEHAV ECOL, V18, P71, DOI 10.1093/beheco/ar1052; FRANK SA, 1988, J THEOR BIOL, V135, P415, DOI 10.1016/S0022-5193(88)80256-X; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; KIRKPATRICK M, 1982, AM NAT, V119, P833, DOI 10.1086/283958; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; LANDE R, 1981, P NATL ACAD SCI-BIOL, V78, P3721, DOI 10.1073/pnas.78.6.3721; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Otto S., 2007, BIOL GUIDE MATH MODE; Pal C, 1999, J THEOR BIOL, V200, P19, DOI 10.1006/jtbi.1999.0974; PE I, 2000, P BIOL SCI, V367, P2411; Pen I, 2000, P ROY SOC B-BIOL SCI, V267, P539, DOI 10.1098/rspb.2000.1034; Pen I, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P26, DOI 10.1017/CBO9780511542053.003; Pen I., 2000, SELECTION, V1, P59, DOI DOI 10.1556/SELECT.1.2000.1-3.11; Pike TW, 2005, BIOL LETT-UK, V1, P204, DOI 10.1098/rsbl.2005.0295; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; POMIANKOWSKI A, 1987, J THEOR BIOL, V128, P195, DOI 10.1016/S0022-5193(87)80169-8; Sheldon BC, 1999, NATURE, V402, P874; Taylor PD, 1996, EVOLUTION, V50, P2106, DOI 10.1111/j.1558-5646.1996.tb03598.x; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; West S.A., 2009, SEX ALLOCATION 30 24 24 1 44 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 20 2011 108 38 15925 15930 10.1073/pnas.1105721108 6 Multidisciplinary Sciences Science & Technology - Other Topics 822FS WOS:000295030000054 21911375 Green Published, Bronze 2019-02-21 J Camarasa, C; Sanchez, I; Brial, P; Bigey, F; Dequin, S Camarasa, Carole; Sanchez, Isabelle; Brial, Pascale; Bigey, Frederic; Dequin, Sylvie Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence for Origin-Dependent Metabolic Traits PLOS ONE English Article LIFE-HISTORY STRATEGIES; ALCOHOLIC FERMENTATION; POPULATION-STRUCTURE; ETHANOL TOLERANCE; GENETIC DIVERSITY; SUGAR-TRANSPORT; YEAST; STRAINS; GENOME; STUCK The species Saccharomyces cerevisiae includes natural strains, clinical isolates, and a large number of strains used in human activities. The aim of this work was to investigate how the adaptation to a broad range of ecological niches may have selectively shaped the yeast metabolic network to generate specific phenotypes. Using 72 S. cerevisiae strains collected from various sources, we provide, for the first time, a population-scale picture of the fermentative metabolic traits found in the S. cerevisiae species under wine making conditions. Considerable phenotypic variation was found suggesting that this yeast employs diverse metabolic strategies to face environmental constraints. Several groups of strains can be distinguished from the entire population on the basis of specific traits. Strains accustomed to growing in the presence of high sugar concentrations, such as wine yeasts and strains obtained from fruits, were able to achieve fermentation, whereas natural yeasts isolated from "poor-sugar" environments, such as oak trees or plants, were not. Commercial wine yeasts clearly appeared as a subset of vineyard isolates, and were mainly differentiated by their fermentative performances as well as their low acetate production. Overall, the emergence of the origin-dependent properties of the strains provides evidence for a phenotypic evolution driven by environmental constraints and/or human selection within S. cerevisiae. [Camarasa, Carole; Sanchez, Isabelle; Brial, Pascale; Bigey, Frederic; Dequin, Sylvie] INRA, UMR1083, F-34060 Montpellier, France; [Camarasa, Carole; Sanchez, Isabelle; Brial, Pascale; Bigey, Frederic; Dequin, Sylvie] SupAgro, UMR1083, Montpellier, France; [Camarasa, Carole; Sanchez, Isabelle; Brial, Pascale; Bigey, Frederic; Dequin, Sylvie] Univ Montpellier 1, UMR1083, Montpellier, France Camarasa, C (reprint author), INRA, UMR1083, F-34060 Montpellier, France. camarasa@supagro.inra.fr Bigey, Frederic/0000-0002-6240-3038 Aa E, 2006, FEMS YEAST RES, V6, P702, DOI 10.1111/j.1567-1364.2006.00059.x; Albertin W, 2011, APPL ENVIRON MICROB, V77, P2772, DOI 10.1128/AEM.02547-10; Alexandre H, 1996, MICROBIOL-SGM, V142, P469, DOI 10.1099/13500872-142-3-469; Argueso JL, 2009, GENOME RES, V19, P2258, DOI 10.1101/gr.091777.109; Azumi M, 2001, YEAST, V18, P1145, DOI 10.1002/yea.767; BELY M, 1990, AM J ENOL VITICULT, V41, P319; Ben-Ari G, 2006, PLOS GENET, V2, P1815, DOI 10.1371/journal.pgen.0020195; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bisson LF, 1999, AM J ENOL VITICULT, V50, P107; Blateyron L, 2001, J BIOSCI BIOENG, V91, P184, DOI 10.1263/jbb.91.184; Cavalieri D, 2003, J MOL EVOL, V57, pS226, DOI 10.1007/s00239-003-0031-2; Codon AC, 1998, APPL MICROBIOL BIOT, V49, P154, DOI 10.1007/s002530051152; Cubillos FA, 2011, MOL ECOL, V20, P1401, DOI 10.1111/j.1365-294X.2011.05005.x; Diezmann S, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005317; Dray S, 2007, J STAT SOFTW, V22, P1; Ezeronye OU, 2009, J APPL MICROBIOL, V106, P1569, DOI 10.1111/j.1365-2672.2008.04118.x; Fay JC, 2005, PLOS GENET, V1, P66, DOI 10.1371/journal.pgen.0010005; Fay JC, 2004, GENOME BIOL, V5, DOI 10.1186/gb-2004-5-4-r26; Gilbert H, 2009, 249 U CAL; Hennequin C, 2001, J CLIN MICROBIOL, V39, P551, DOI 10.1128/JCM.39.2.551-559.2001; Homann OR, 2005, PLOS GENET, V1, P715, DOI 10.1371/journal.pgen.0010080; Hu XH, 2007, GENETICS, V175, P1479, DOI 10.1534/genetics.106.065292; Kim HS, 2007, P NATL ACAD SCI USA, V104, P19387, DOI 10.1073/pnas.0708194104; Kim HS, 2009, FEMS YEAST RES, V9, P713, DOI 10.1111/j.1567-1364.2009.00516.x; Kim J, 1996, APPL ENVIRON MICROB, V62, P1563; Kvitek DJ, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000223; Legras JL, 2007, MOL ECOL, V16, P2091, DOI 10.1111/j.1365-294X.2007.03266.x; Liti G, 2009, NATURE, V458, P337, DOI 10.1038/nature07743; Magwene PM, 1987, P NATL ACAD SCI USA, V108, P1987; Manginot C, 1998, ENZYME MICROB TECH, V23, P511, DOI 10.1016/S0141-0229(98)00080-5; Marullo P, 2009, FEMS YEAST RES, V9, P1148, DOI 10.1111/j.1567-1364.2009.00550.x; McGovern PE, 2004, P NATL ACAD SCI USA, V101, P17593, DOI 10.1073/pnas.0407921102; Mortimer R, 1999, RES MICROBIOL, V150, P199, DOI 10.1016/S0923-2508(99)80036-9; Mortimer RK, 2000, GENOME RES, V10, P403, DOI 10.1101/gr.10.4.403; Muller LAH, 2009, MOL ECOL, V18, P2779, DOI 10.1111/j.1365-294X.2009.04234.x; Nogami S, 2007, PLOS GENET, V3, P305, DOI 10.1371/journal.pgen.0030031; Novo M, 2009, P NATL ACAD SCI USA, V106, P16333, DOI 10.1073/pnas.0904673106; Palkova Z, 2004, EMBO REP, V5, P470, DOI 10.1038/sj.embor.7400145; Parrou JL, 1997, MICROBIOL-UK, V143, P1891, DOI 10.1099/00221287-143-6-1891; Perlstein EO, 2007, NAT GENET, V39, P496, DOI 10.1038/ng1991; Quan H, 1996, BIOMETRICS, V52, P1195, DOI 10.2307/2532835; Sablayrolles JM, 1996, J FERMENT BIOENG, V82, P377, DOI 10.1016/0922-338X(96)89154-9; SALMON JM, 1989, APPL ENVIRON MICROB, V55, P953; Santos J, 2008, MICROBIOL-SGM, V154, P422, DOI 10.1099/mic.0.2007/011445-0; Schacherer J, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000322; Schacherer J, 2009, NATURE, V458, P342, DOI 10.1038/nature07670; Sinha H, 2006, PLOS GENET, V2, P140, DOI 10.1371/journal.pgen.0020013; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Spor A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001579; Steinmetz LM, 2002, NATURE, V416, P326, DOI 10.1038/416326a; Varela C, 2004, APPL ENVIRON MICROB, V70, P3392, DOI 10.1128/AEM.70.6.3392-3400.2004; Warringer J, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002111; Wei W, 2007, P NATL ACAD SCI USA, V104, P12825, DOI 10.1073/pnas.0701291104; Winzeler EA, 2003, GENETICS, V163, P79 54 45 45 1 22 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA 1932-6203 PLOS ONE PLoS One SEP 16 2011 6 9 e25147 10.1371/journal.pone.0025147 12 Multidisciplinary Sciences Science & Technology - Other Topics 824BI WOS:000295173800068 21949874 DOAJ Gold, Green Published 2019-02-21 J Walsh, MR; Post, DM Walsh, Matthew R.; Post, David M. Interpopulation variation in a fish predator drives evolutionary divergence in prey in lakes PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history evolution; local adaptation; temperature; countergradient variation LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; LATITUDINAL COMPENSATION; ECOSYSTEM PROCESSES; ADAPTIVE EVOLUTION; THERMAL EVOLUTION; LOCAL ADAPTATION; REACTION NORMS; DAPHNIA-MAGNA; GROWTH-RATE Ecological factors are known to cause evolutionary diversification. Recent work has shown that evolution in strongly interacting predator species has reciprocal impacts on ecosystems. These divergent impacts of predators may alter the selective landscape and cause the evolution of prey. Yet, this link between intraspecific variation and evolution is unexplored. We compared the life history of a species of zooplankton (Daphnia ambigua) from lakes in New England in which the dominant planktivorous predator, the alewife (Alosa pseudoharengus), differs in feeding traits and migratory behaviour. Anadromous alewife (seasonal migrants) exhibit larger gapes, gill-raker spacing and target larger prey than landlocked alewife (year-round freshwater resident). In 'anadromous' lakes, Daphnia are abundant in the spring but extirpated by alewife predation in summer. Daphnia are rare year-round in 'landlocked' lakes. We show that Daphnia from lakes with anadromous alewife grew faster, matured earlier but at the same size and produced more offspring than Daphnia from lakes with landlocked or no alewife across multiple temperature and resource treatments. Our results are inconsistent with a response to size-selective predation but are better explained as an adaptation to colder temperatures and shorter periods of development (countergradient variation) mediated by seasonal alewife predation. [Walsh, Matthew R.; Post, David M.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Walsh, MR (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. matthew.walsh@yale.edu Post, David/A-6987-2009 Post, David/0000-0003-1434-7729 National Science Foundation; Yale Institute for Biospheric Studies We thank Suzanne Alonzo, Steve Stearns and Dave Strayer for use of equipment, and Jakob Brodersen, Torrance Hanley, Elizabeth Hatton, Jennifer Howeth and Andrew Jones for help in the field or laboratory. We thank Kim LaPierre and Linda Puth for providing biovolume data. Comments by three anonymous reviewers greatly improved this paper. The National Science Foundation and the Yale Institute for Biospheric Studies provided funding. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BILLERBECK JM, 2001, EVOLUTION, V55, P1883, DOI DOI 10.1111/J.0014-3820.2COL.TB00835.X; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARPENTER SR, 1992, TRENDS ECOL EVOL, V7, P332, DOI 10.1016/0169-5347(92)90125-U; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Chown SL, 1999, BIOL REV, V74, P87, DOI 10.1017/S000632319800526X; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cousyn C, 2001, P NATL ACAD SCI USA, V98, P6256, DOI 10.1073/pnas.111606798; De Block M, 2008, ECOGRAPHY, V31, P115, DOI 10.1111/j.2007.0906-7590.05313.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; deMeester L, 1996, EVOLUTION, V50, P1293, DOI 10.1111/j.1558-5646.1996.tb02369.x; ELSER JJ, 1988, LIMNOL OCEANOGR, V33, P1, DOI 10.4319/lo.1988.33.1.0001; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Gotelli NJ, 1998, PRIMER ECOLOGY; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; HANLEY T, 2009, THESIS YALE U NEW HA; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; JAMES AC, 1995, J EVOLUTION BIOL, V8, P315, DOI 10.1046/j.1420-9101.1995.8030315.x; James AC, 1998, AM NAT, V151, P530, DOI 10.1086/286138; JONSSON B, 1991, CAN J FISH AQUAT SCI, V48, P1838, DOI 10.1139/f91-217; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEVINS R, 1969, AM NAT, V103, P483, DOI 10.1086/282616; LEVINTON JS, 1983, BIOL BULL, V165, P686, DOI 10.2307/1541471; Littell RC, 1996, SAS SYSTEM MIXED MOD; Michels H, 2007, HYDROBIOLOGIA, V594, P117, DOI 10.1007/s10750-007-9086-1; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; PARTRIDGE L, 1994, J EVOLUTION BIOL, V7, P645, DOI 10.1046/j.1420-9101.1994.7060645.x; PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; ROCHA O, 1985, J PLANKTON RES, V7, P279, DOI 10.1093/plankt/7.2.279; Roff Derek A., 1992; Scharf I, 2009, OECOLOGIA, V160, P453, DOI 10.1007/s00442-009-1316-y; Schweitzer JA, 2004, ECOL LETT, V7, P127, DOI 10.1111/j.1461-0248.2003.00562.x; SMOKER WW, 1986, AQUACULTURE, V57, P219, DOI 10.1016/0044-8486(86)90200-0; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Thompson J. N., 2005, GEOGRAPHIC MOSAIC CO; Van Doorslaer W, 2009, EVOLUTION, V63, P1867, DOI 10.1111/j.1558-5646.2009.00679.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Yamahira K, 2007, EVOLUTION, V61, P1577, DOI 10.1111/j.1558-5646.2007.00130.x 62 45 46 3 62 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 7 2011 278 1718 2628 2637 10.1098/rspb.2010.2634 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 797QK WOS:000293142200011 21270045 Bronze, Green Published 2019-02-21 J Charnov, EL; Zuo, WY Charnov, Eric L.; Zuo, Wenyun Growth, mortality, and life-history scaling across species EVOLUTIONARY ECOLOGY RESEARCH English Article allometry; body size; fish; maturity; optimal life history EVOLUTION; TEMPERATURE; FISHES; SIZE Hypothesis: Allometric scaling of mortality versus adult body size across species is predicted by evolutionary life-history theory to be present (and precise) only if all the species in the data set share the same value for the 'height' parameter in their body-size growth curves. Results: This basic prediction is tested and supported in a large fish data set, with the various species spanning the entire range of marine environments, and having about a 12 x range in growth curve height. [Charnov, Eric L.; Zuo, Wenyun] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA Charnov, EL (reprint author), Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. rlc@unm.edu Charnov EL, 2004, INTEGR COMP BIOL, V44, P494, DOI 10.1093/icb/44.6.494; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Charnov EL, 2008, ENVIRON BIOL FISH, V83, P185, DOI 10.1007/s10641-007-9315-5; Charnov EL, 2011, EVOL ECOL RES, V13, P553; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Cury P, 2000, ECOL RES, V15, P101, DOI 10.1046/j.1440-1703.2000.00321.x; Griffiths D, 2007, CAN J FISH AQUAT SCI, V64, P249, DOI 10.1139/F07-002 9 1 1 1 22 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. SEP 2011 13 6 661 664 4 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 920XG WOS:000302441700008 2019-02-21 J Manyanga, P; Soderstrom, L; Hedderson, TA Manyanga, Phelex; Soderstrom, Lars; Hedderson, Terry A. Co-variation of life history characters in the family Lophoziaceae: a multivariate analysis BRYOLOGIST English Article Bryophyte reproduction; reproductive system; reproductive mode; sporophyte frequency; gemmae frequency; diaspore size RECIPROCAL TRANSPLANT EXPERIMENT; ASEXUAL REPRODUCTION; TETRAPHIS-PELLUCIDA; SILVICOLA BUCH; EVOLUTION; PHYLOGENY; ECOLOGY; BIOLOGY; MOSSES; SIZE The particular combinations of life history traits that organisms display are a product of trade-offs between conflicting demands on finite energy budgets. Organisms are, therefore, expected to display combinations of co-evolved life history traits, sometimes referred to as tactics or strategies, that overall maximize fitness within the constraints imposed by environmental and/or genetic limitations. This study uses a combination of Principal Component and Cluster analyses to examine patterns of life history co-variation in the family Lophoziaceae, based on data obtained from literature. We also evaluate the relationship between sexuality, reproductive mode and sporophyte/gemma frequency among members of this family. The species studied are resolved into more or less coherent groups that have specific life history trait combinations. No evidence of either phylogenetic constraint or close relationship to habitat parameters could be demonstrated. The results suggest trade-offs between spore frequency and gemma frequency. Dioicous species dominate the family, with about 90% of the species being dioicous. The relationship between sexuality and sporophyte frequency is statistically significant: monoicous species produce sporophytes more frequently than dioicous species. Mode of reproduction and gemmae production were both independent of sexuality. For species that can reproduce both ways, sexuality was independent of diaspore frequency. The data are consistent with the idea of coevolved life history "strategies" as in most others organisms studied. [Manyanga, Phelex; Hedderson, Terry A.] Univ Cape Town, Bolus Herbarium, Dept Bot, ZA-7701 Rondebosch, South Africa; [Soderstrom, Lars] Norwegian Univ Sci & Technol, Dept Biol, N-7491 Trondheim, Norway Manyanga, P (reprint author), Bindura Univ Sci Educ, Dept Biol Sci, P Bag 1020, Bindura, Zimbabwe. pmanyanga@gmail.com Soderstrom, Lars/A-1196-2013 Soderstrom, Lars/0000-0002-9315-4978 Research Council of Norway; South African National Research Foundation This study was supported by the Research Council of Norway and the South African National Research Foundation through grants to L. Sederstrom & T. Hedderson. We thank Sanna Laaka-Lindberg for the help mainly in the compilation of data from literature. A number of people have provided assistance and support during the study and we are grateful to them. Special thanks to Ryan de Roo, Natalie Algar, Kristian Hassel, Urban Gunnarsson (Norway), Riitta Ryoma (Finland), Ana Seneca (Portugal), and Lisa Pokorny Montero (Spain), for the experiences shared and help throughout the duration of this study. Bakalin VA, 2003, ANN BOT FENN, V40, P47; Bapna K. R., 2000, HEPATICOLOGY INDIA, V2; Bednarek-Ochyra H., 2000, LIVERWORT FLORA ANTA; BELL G, 1989, AM NAT, V133, P553, DOI 10.1086/284935; BELL G, 1997, SELECTION MECH EVOLU; Bell G, 1982, MASTERPIECE NATURE E; Bengtsson BO, 2000, J EVOLUTION BIOL, V13, P415, DOI 10.1046/j.1420-9101.2000.00187.x; Bowker MA, 2000, AM J BOT, V87, P517, DOI 10.2307/2656595; CODY ML, 1966, AM NAT, V100, P371, DOI 10.1086/282431; Cronberg N, 2006, SCIENCE, V313, P1255, DOI 10.1126/science.1128707; Damsholt K, 2002, ILLUSTRATED FLORA NO; de Roo RT, 2007, TAXON, V56, P301, DOI 10.1002/tax.562005; DEVISSER AJG, 2007, NATURE REV GENETICS, V8, P139; During H.J, 1990, CLONAL GROWTH PLANTS, P153; During Heinjo J., 1992, P1; During HJ, 1997, ADV BRYOLOG, V6, P103; DURING HJ, 1979, LINDBERGIA, V5, P2; FRISVOLL AA, 1982, BRYOLOGIST, V85, P142, DOI 10.2307/3243159; FRYE TC, 1937, U WASHINGTON PUBLICA, V6, P337; Fuselier L, 2008, BRYOLOGIST, V111, P248, DOI 10.1639/0007-2745(2008)111[248:VILHCB]2.0.CO;2; GEMMELL A. R., 1950, NEW PHYTOL, V49, P64, DOI 10.1111/j.1469-8137.1950.tb05144.x; Grime J. P, 1979, PLANT STRATEGIES VEG; Grolle R, 2000, J BRYOL, V22, P103, DOI 10.1179/jbr.2000.22.2.103; HARPER JL, 1967, J ECOL, V55, P242; Hedderson TA, 1995, J BRYOL, V18, P639, DOI 10.1179/jbr.1995.18.4.639; Hedderson TA, 1996, OIKOS, V77, P31, DOI 10.2307/3545582; Hedderson TA, 2008, J BRYOL, V30, P1, DOI 10.1179/174328208X282175; Hendrix S. D., 1988, Plant reproductive ecology: patterns and strategies, P246; HUTCHINGS JA, 1985, OIKOS, V45, P118, DOI 10.2307/3565229; JOHANSSON ME, 1994, OIKOS, V70, P65, DOI 10.2307/3545700; KASHYAP SR, 1923, LIVERWORTS W HIMALAY; KIMMERER RW, 1991, BRYOLOGIST, V94, P255, DOI 10.2307/3243962; KIMMERER RW, 1991, BRYOLOGIST, V94, P284, DOI 10.2307/3243966; KIMMERER RW, 1994, BRYOLOGIST, V97, P20, DOI 10.2307/3243344; KONDRASHOV AS, 1988, NATURE, V336, P435, DOI 10.1038/336435a0; Krzanowski WJ, 1994, MULTIVARIATE ANAL 2; Laaka-Lindberg S, 2005, J BRYOL, V27, P253, DOI 10.1179/174328205X70001; Laaka-Lindberg S, 2001, J BRYOL, V23, P3, DOI 10.1179/jbr.2001.23.1.3; Laaka-Lindberg S, 2001, OIKOS, V94, P525, DOI 10.1034/j.1600-0706.2001.940314.x; Laaka-Lindberg Sanna, 2000, Lindbergia, V25, P78; LAUDER GV, 1982, J THEOR BIOL, V97, P57, DOI 10.1016/0022-5193(82)90276-4; Longton R.E., 1982, J HATTORI BOT LAB, V52, P219; Longton R.E., 1983, NEW MANUAL BRYOLOGY, P386; Longton RE, 1997, ADV BRYOLOG, V6, P65; LONGTON RE, 1992, BIOL CONSERV, V59, P89, DOI 10.1016/0006-3207(92)90566-6; LONGTON RE, 1988, J HATTORI BOT LAB, V64, P15; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; Macvicar SM, 1926, STUDENTS HDB BRIT HE; Maynard Smith J, 1978, EVOLUTION SEX; MICHOD RE, 1988, EVOLUTION SEX; MISHLER BD, 1988, PLANT REPROD ECOLOGY, P284; MURPHY MT, 1989, OIKOS, V54, P3, DOI 10.2307/3565891; NEWTON AE, 1994, J HATTORI BOT LAB, V76, P127; Nielsen R, 2006, SCIENCE, V311, P960, DOI 10.1126/science.1124663; Otto SP, 2002, NAT REV GENET, V3, P252, DOI 10.1038/nrg761; PARTRIDGE L, 1991, PHILOS T ROY SOC B, V332, P3, DOI 10.1098/rstb.1991.0027; PATON J, 1967, T BRIT BRYOLOGICAL S, V5, P439; PATON J. A., 1999, LIVERWORT FLORA BRIT; Pohjamo M, 2006, EVOL ECOL, V20, P415, DOI 10.1007/s10682-006-0011-2; RENZAGLIA KS, 1999, HAUSSKNECHTIA S, V9, P307; RYDGREN R, 2003, BRYOLOGIST, V106, P212; Schill D, 2003, J HATTORI BOT LAB, P115; SCHUSTER RM, 1969, HEPATICAE ANTHOCEROT, V2; Silvertown J., 2001, INTRO PLANT POPULATI; Soderstrom L, 1981, WAHLENBERGIA, V7, P141; Sokal RR, 1995, BIOMETRY; STARK LR, 1983, SYST BOT, V8, P381, DOI 10.2307/2418357; *STATS, 2003, STAT EL TXB; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1982, ENV ADAPTATION EVOLU, P3; Sundberg S, 2002, CAN J BOT, V80, P543, DOI 10.1139/B02-060; SUNDBERG S, 2000, THESIS FS TECHNOLOGY, V581, P1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WYATT R, 1982, J HATTORI BOT LAB, V52, P179 76 1 1 0 4 AMER BRYOLOGICAL LICHENOLOGICAL SOC INC OMAHA C/O DR ROBERT S EGAN, SEC-TRES, ABLS, UNIV NEBRASKA OMAHA, DEPT BIOLOGY, OMAHA, NE 68182-0040 USA 0007-2745 BRYOLOGIST Bryologist FAL 2011 114 3 583 594 10.1639/0007-2745-114.3.583 12 Plant Sciences Plant Sciences 855MO WOS:000297568700014 2019-02-21 J Lamarque, LJ; Delzon, S; Lortie, CJ Lamarque, Laurent Jean; Delzon, Sylvain; Lortie, Christopher James Tree invasions: a comparative test of the dominant hypotheses and functional traits BIOLOGICAL INVASIONS English Article Tree invasion; Systematic review; Meta-analysis; Invasiveness; Invasibility; Functional traits INCREASED COMPETITIVE ABILITY; ENEMY RELEASE HYPOTHESIS; ALIEN PLANT INVASIONS; ACER-PLATANOIDES L.; PEPPER SCHINUS-TEREBINTHIFOLIUS; LIFE-HISTORY STRATEGIES; SOIL BIOTA INTERACTIONS; RELATIVE GROWTH-RATE; SAPIUM-SEBIFERUM; CHINESE TALLOW Trees act as ecosystem engineers and invasions by exotic tree species profoundly impact recipient communities. Recently, research on invasive trees has dramatically increased, enabling the assessment of general trends in tree invasion. Analysing 90 studies dealing with 45 invasive tree species, we conducted a quantitative review and a meta-analysis to estimate the relevance of eight leading hypotheses for explaining tree invasions. We also tested whether species functional traits (growth rate, density/cover, germination, biomass and survival) equally promote tree invasiveness. Overall, our results suggest that several hypotheses, linked to invasibility or invasiveness, are pertinent to explain tree invasions. Furthermore, more than one hypothesis has been supported for a given species, which indicates that multiple factors lead to the success of invasive tree species. In addition, growth rate appears to be the most efficient predictor of invasiveness for invasive trees and could thus be used as a means to identify potential alien tree invasions. We conclude that further investigations are needed to test the consistency of some hypotheses across a broader pool of invasive tree species, whilst experimental studies with the same tree species across a larger range of sites would help to reveal the full suite of factors that affect tree invasions. [Lamarque, Laurent Jean; Delzon, Sylvain] Univ Bordeaux, INRA, UMR BIOGECO, Talence, France; [Lamarque, Laurent Jean; Lortie, Christopher James] York Univ, Dept Biol, Toronto, ON M3J 1P3, Canada Delzon, S (reprint author), Univ Bordeaux, INRA, UMR BIOGECO, Talence, France. sylvain.delzon@u-bordeaux1.fr Delzon, Sylvain/R-9538-2018; lortie, christopher/F-6241-2014 Delzon, Sylvain/0000-0003-3442-1711; lortie, christopher/0000-0002-4291-7023 Canada Foundation for Innovation; Conseils generaux de Gironde et du Gers et des Landes entitled "Programme d'etude de l'invasion de l'erable negundo dans les ripisylves du Sud-Ouest de la France" We thank D. M. Richardson and two anonymous referees for their valuable comments that improved the manuscript. This study was supported by a grant of Canada Foundation for Innovation to CJL and a French grant of Conseils generaux de Gironde et du Gers et des Landes entitled "Programme d'etude de l'invasion de l'erable negundo dans les ripisylves du Sud-Ouest de la France" to SD. Adams DC, 1997, ECOLOGY, V78, P1277, DOI 10.1890/0012-9658(1997)078[1277:RTFMAO]2.0.CO;2; Adams JM, 2009, BIOL INVASIONS, V11, P1005, DOI 10.1007/s10530-008-9312-4; Aguilar R, 2006, ECOL LETT, V9, P968, DOI 10.1111/j.1461-0248.2006.00927.x; Alston KP, 2006, BIOL CONSERV, V132, P183, DOI 10.1016/j.biocon.2006.03.023; Relva MA, 2010, BIOL INVASIONS, V12, P303, DOI 10.1007/s10530-009-9623-0; Barton AM, 2004, BIOL INVASIONS, V6, P205, DOI 10.1023/B:BINV.0000022139.03833.e5; Baruch Z, 1999, OECOLOGIA, V121, P183, DOI 10.1007/s004420050920; Baruch Z, 2000, INT J PLANT SCI, V161, P107, DOI 10.1086/314233; Battaglia LL, 2009, J ECOL, V97, P239, DOI 10.1111/j.1365-2745.2008.01471.x; Bellingham PJ, 2005, J VEG SCI, V16, P675; Belote RT, 2008, ECOLOGY, V89, P183, DOI 10.1890/07-0270.1; Belote RT, 2009, BIOL INVASIONS, V11, P1045, DOI 10.1007/s10530-008-9315-1; Blackburn TM, 2009, ECOGRAPHY, V32, P83, DOI 10.1111/j.1600-0587.2008.05661.x; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Blumenthal D, 2005, SCIENCE, V310, P243, DOI 10.1126/science.1114851; Blumenthal D, 2009, P NATL ACAD SCI USA, V106, P7899, DOI 10.1073/pnas.0812607106; Blumenthal DM, 2006, ECOL LETT, V9, P887, DOI 10.1111/j.1461-0248.2006.00934.x; Bruno JF, 2003, TRENDS ECOL EVOL, V18, P119, DOI 10.1016/S0169-5347(02)00045-9; Callaway RM, 2006, TRENDS ECOL EVOL, V21, P369, DOI 10.1016/j.tree.2006.04.008; Callaway RM, 2000, SCIENCE, V290, P521, DOI 10.1126/science.290.5491.521; Carvalho LM, 2010, OIKOS, V119, P1172, DOI 10.1111/j.1600-0706.2009.18148.x; Chabrerie O, 2008, DIVERS DISTRIB, V14, P204, DOI 10.1111/j.1472-4642.2007.00453.x; Chaneton EJ, 2004, WEED TECHNOL, V18, P1325, DOI 10.1614/0890-037X(2004)018[1325:EOHLGT]2.0.CO;2; Cincotta CL, 2009, BIOL INVASIONS, V11, P379, DOI 10.1007/s10530-008-9255-9; Closset-Kopp D, 2011, BIOL INVASIONS, V13, P1341, DOI 10.1007/s10530-010-9893-6; Colautti RI, 2006, BIOL INVASIONS, V8, P1023, DOI 10.1007/s10530-005-3735-y; Conway WC, 2002, AM MIDL NAT, V148, P43, DOI 10.1674/0003-0031(2002)148[0043:PAIBTE]2.0.CO;2; Crooks JA, 2002, OIKOS, V97, P153, DOI 10.1034/j.1600-0706.2002.970201.x; Davis MA, 2000, J ECOL, V88, P528, DOI 10.1046/j.1365-2745.2000.00473.x; Dezzotti A, 2009, INVEST AGRAR-SIST R, V18, P181; Donnelly MJ, 2008, ESTUAR COAST, V31, P960, DOI 10.1007/s12237-008-9092-1; Donnelly MJ, 2008, J EXP MAR BIOL ECOL, V357, P149, DOI 10.1016/j.jembe.2008.01.009; Erfmeier A, 2010, BIOL INVASIONS, V12, P657, DOI 10.1007/s10530-009-9472-x; Feng YL, 2007, ACTA OECOL, V31, P40, DOI 10.1016/j.actao.2006.03.009; Franks SJ, 2008, AM NAT, V171, P678, DOI 10.1086/587078; Franks SJ, 2008, BIOL INVASIONS, V10, P455, DOI 10.1007/s10530-007-9143-8; Gaertner M, 2009, PROG PHYS GEOG, V33, P319, DOI 10.1177/0309133309341607; Gates S, 2002, J ANIM ECOL, V71, P547, DOI 10.1046/j.1365-2656.2002.00634.x; Green PT, 2004, BIOL INVASIONS, V6, P1, DOI 10.1023/B:BINV.0000010144.12808.cb; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Gurevitch J, 2001, ADV ECOL RES, V32, P199, DOI 10.1016/S0065-2504(01)32013-5; Gurevitch J, 2008, BIOL INVASIONS, V10, P821, DOI 10.1007/s10530-008-9241-2; Hedges LV, 1985, STAT METHODS METAANA; Heimpel GE, 2010, BIOL INVASIONS, V12, P2913, DOI 10.1007/s10530-010-9736-5; Hierro JL, 2005, J ECOL, V93, P5, DOI [10.1111/j.0022-0477.2004.00953.x, 10.1111/j.1365-2745.2004.00953.x]; Higgins SI, 1998, PLANT ECOL, V135, P79, DOI 10.1023/A:1009760512895; Higgins SI, 1996, ECOLOGY, V77, P2043, DOI 10.2307/2265699; Hoffmann WA, 2002, ANN BOT-LONDON, V90, P37, DOI 10.1093/aob/mcf140; Howard TG, 2004, BIOL INVASIONS, V6, P393, DOI 10.1023/B:BINV.0000041559.67560.7e; Huang W, 2010, J ECOL, V98, P1157, DOI 10.1111/j.1365-2745.2010.01704.x; Inderjit, 2005, PLANT SOIL, V277, P1, DOI 10.1007/s11104-004-6638-2; Iponga DM, 2010, AFR J ECOL, V48, P155, DOI 10.1111/j.1365-2028.2009.01094.x; Iponga DM, 2009, AUSTRAL ECOL, V34, P678, DOI 10.1111/j.1442-9993.2009.01975.x; Iponga DM, 2009, BIOL INVASIONS, V11, P159, DOI 10.1007/s10530-008-9221-6; Jackson RB, 2002, NATURE, V418, P623, DOI 10.1038/nature00910; JONES RB, 1998, TECHDIG VERSION 2 0D; Kaproth MA, 2008, FOREST SCI, V54, P490; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Keay J, 2000, TEX J SCI, V52, P57; Knapp LB, 2008, FOREST ECOL MANAG, V255, P92, DOI 10.1016/j.foreco.2007.08.023; Knight KS, 2008, DIVERS DISTRIB, V14, P666, DOI 10.1111/j.1472-4642.2008.00468.x; Knight KS, 2005, OIKOS, V109, P81, DOI 10.1111/j.0030-1299.2005.13639.x; Krivanek M, 2006, DIVERS DISTRIB, V12, P319, DOI 10.1111/j.1366-9516.2006.00249.x; Krivanek M, 2006, CONSERV BIOL, V20, P1487, DOI 10.1111/j.1523-1739.2006.00477; Kuppinger DM, 2010, BIOL INVASIONS, V12, P3473, DOI 10.1007/s10530-010-9745-4; Lankau RA, 2004, ECOL ENTOMOL, V29, P66, DOI 10.1111/j.0307-6946.2004.00575.x; Leger EA, 2007, FOREST SCI, V53, P701; Leimu R, 2006, J ECOL, V94, P942, DOI 10.1111/j.1365-2745.2006.01150.x; Lesica P, 2004, PLANT SOIL, V267, P357, DOI 10.1007/s11104-005-0153-y; Levine JM, 1999, OIKOS, V87, P15, DOI 10.2307/3546992; Liu H, 2007, BIOL INVASIONS, V9, P773, DOI 10.1007/s10530-006-9074-9; Liu H, 2006, BIOL INVASIONS, V8, P1535, DOI 10.1007/s10530-005-5845-y; Lockwood JL, 2009, DIVERS DISTRIB, V15, P904, DOI 10.1111/j.1472-4642.2009.00594.x; Lonsdale WM, 1999, ECOLOGY, V80, P1522, DOI 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2; Lorenzo P, 2008, ALLELOPATHY J, V22, P453; Lorenzo P, 2010, AUST J BOT, V58, P546, DOI 10.1071/BT10094; Lorenzo P, 2010, APPL SOIL ECOL, V44, P245, DOI 10.1016/j.apsoil.2010.01.001; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; Mack RN, 1996, BIOL CONSERV, V78, P107, DOI 10.1016/0006-3207(96)00021-3; Maron JL, 2001, OIKOS, V95, P361, DOI 10.1034/j.1600-0706.2001.950301.x; Martin PH, 2006, J ECOL, V94, P1070, DOI 10.1111/j.1365-2745.2006.01159.x; Martin PH, 2010, OIKOS, V119, P807, DOI 10.1111/j.1600-0706.2009.17941.x; Mazia CN, 2001, OECOLOGIA, V128, P594, DOI 10.1007/s004420100709; McCay TS, 2009, BIOL INVASIONS, V11, P1835, DOI 10.1007/s10530-008-9362-7; Milbau A, 2003, NEW PHYTOL, V159, P657, DOI 10.1046/j.1469-8137.2003.00833.x; Milton SJ, 2007, J ECOL, V95, P648, DOI 10.1111/j.1365-2745.2007.01247.x; Morgan EC, 2005, J TORREY BOT SOC, V132, P11, DOI 10.3159/1095-5674(2005)132[11:PAEOBP]2.0.CO;2; Morrison JA, 2007, J ECOL, V95, P1036, DOI 10.1111/j.1365-2745.2007.01270.x; Nasir H, 2005, J CHEM ECOL, V31, P2179, DOI 10.1007/s10886-005-6084-5; Nijjer S, 2007, P R SOC B, V274, P2621, DOI 10.1098/rspb.2007.0804; Mazia C, 2010, BIOL INVASIONS, V12, P3109, DOI 10.1007/s10530-010-9702-2; Nunez MA, 2008, AUSTRAL ECOL, V33, P317, DOI 10.1111/j.1442-9993.2007.01819.x; Ohlemuller R, 2006, OIKOS, V112, P493, DOI 10.1111/j.0030-1299.2006.13887.x; Peperkorn R, 2005, FUNCT PLANT BIOL, V32, P933, DOI 10.1071/FP04197; Pysek P, 2004, TAXON, V53, P131, DOI 10.2307/4135498; Pysek P, 2008, TRENDS ECOL EVOL, V23, P237, DOI 10.1016/j.tree.2008.02.002; Pysek Petr, 2007, V193, P97; Pysek P, 2009, ECOLOGY, V90, P2734, DOI 10.1890/08-0857.1; RANDALL JM, 1993, BIOLOGICAL POLLUTION: THE CONTROL AND IMPACT OF INVASIVE EXOTIC SPECIES, P159; Randall JM, 1996, WEED TECHNOL, V10, P370; Reich PB, 2001, ECOLOGY, V82, P1703; Reinhart KO, 2006, BIOL INVASIONS, V8, P231, DOI 10.1007/s10530-004-5163-9; Reinhart KO, 2005, ECOGRAPHY, V28, P573, DOI 10.1111/j.2005.0906-7590.04166.x; Reinhart KO, 2004, ECOL APPL, V14, P1737, DOI 10.1890/03-5204; Reinhart KO, 2003, ECOL LETT, V6, P1046, DOI 10.1046/j.1461-0248.2003.00539.x; Reinhart KO, 2010, NEW PHYTOL, V186, P484, DOI 10.1111/j.1469-8137.2009.03159.x; Rejmanek M, 1996, ECOLOGY, V77, P1655, DOI 10.2307/2265768; Rejmanek M, 1996, BIOL CONSERV, V78, P171, DOI 10.1016/0006-3207(96)00026-2; Rejmanek M., 2005, VEGETATION ECOLOGY, P332, DOI DOI 10.1002/9781118452592.CH13; Reynolds LV, 2010, J VEG SCI, V21, P733, DOI 10.1111/j.1654-1103.2010.01179.x; Richardson DM, 2006, PRESLIA, V78, P375; Richardson DM, 2006, PROG PHYS GEOG, V30, P409, DOI 10.1191/0309133306pp490pr; Richardson David M., 1998, P450; Richardson DM, 2011, FIFTY YEARS OF INVASION ECOLOGY: THE LEGACY OF CHARLES ELTON, P409; Richardson David M., 2000, Diversity and Distributions, V6, P93, DOI 10.1046/j.1472-4642.2000.00083.x; Richardson DM, 2004, S AFR J SCI, V100, P45; RICHARDSON DM, 1991, AM NAT, V137, P639, DOI 10.1086/285186; RICHARDSON DM, 1994, J BIOGEOGR, V21, P511, DOI 10.2307/2845655; Richardson DM, 1998, CONSERV BIOL, V12, P18, DOI 10.1046/j.1523-1739.1998.96392.x; RICHARDSON DM, DIVERS DIST IN PRESS; Rogers WE, 2005, PLANT ECOL, V181, P57, DOI 10.1007/s11258-005-3029-6; Rogers WE, 2004, J APPL ECOL, V41, P561, DOI 10.1111/j.0021-8901.2004.00914.x; Rogers WE, 2003, AM J BOT, V90, P243, DOI 10.3732/ajb.90.2.243; Rogers WE, 2002, BASIC APPL ECOL, V3, P297, DOI 10.1078/1439-1791-00120; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Rosenberg MS, 2005, EVOLUTION, V59, P464, DOI 10.1111/j.0014-3820.2005.tb01004.x; Rouget M, 2001, PLANT ECOL, V152, P79, DOI 10.1023/A:1011412427075; Rouget M, 2003, AM NAT, V162, P713, DOI 10.1086/379204; Saccone P, 2010, NEW PHYTOL, V187, P831, DOI 10.1111/j.1469-8137.2010.03289.x; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Schumacher E, 2008, BIOTROPICA, V40, P543, DOI 10.1111/j.1744-7429.2008.00407.x; Schumacher E, 2009, BIOL INVASIONS, V11, P1941, DOI 10.1007/s10530-008-9371-6; Siemann E, 2003, ECOL APPL, V13, P1503, DOI 10.1890/03-5022; Siemann E, 2003, J ECOL, V91, P923, DOI 10.1046/j.1365-2745.2003.00822.x; Siemann E, 2003, ECOLOGY, V84, P1489, DOI 10.1890/0012-9658(2003)084[1489:HDRLAS]2.0.CO;2; Siemann E, 2003, OECOLOGIA, V135, P451, DOI 10.1007/s00442-003-1217-4; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; Siemann E, 2007, GLOBAL CHANGE BIOL, V13, P2184, DOI 10.1111/j.1365-2486.2007.01425.x; Siemann E, 2007, J ECOL, V95, P689, DOI 10.1111/j.1365-2745.2007.01253.x; Siemann E, 2006, P R SOC B, V273, P2763, DOI 10.1098/rspb.2006.3644; Siemann E, 2006, BIOL INVASIONS, V8, P979, DOI 10.1007/s10530-005-0825-9; Simberloff D, 2010, AUSTRAL ECOL, V35, P489, DOI 10.1111/j.1442-9993.2009.02058.x; Swanborough P, 1996, FUNCT ECOL, V10, P176, DOI 10.2307/2389841; Tecco PA, 2007, APPL VEG SCI, V10, P211, DOI 10.1658/1402-2001(2007)10[211:FAIUTA]2.0.CO;2; Tecco PA, 2006, AUSTRAL ECOL, V31, P293, DOI 10.1111/j.1442-9993.2006.01557.z; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Vanhellemont M, 2009, BIOL INVASIONS, V11, P1451, DOI 10.1007/s10530-008-9353-8; Wardle D. A., 2002, COMMUNITIES ECOSYSTE; Williams JL, 2008, OECOLOGIA, V157, P239, DOI 10.1007/s00442-008-1075-1; Williamson M, 1996, ECOLOGY, V77, P1661, DOI 10.2307/2265769; Williamson M, 1996, BIOL INVASIONS; Williamson M, 2006, BIOL INVASIONS, V8, P1561, DOI 10.1007/s10530-005-5849-7; Yamashita N, 2002, PLANT CELL ENVIRON, V25, P1341, DOI 10.1046/j.1365-3040.2002.00907.x; Yelenik SG, 2004, RESTOR ECOL, V12, P44, DOI 10.1111/j.1061-2971.2004.00289.x; Zalba SM, 2008, J ENVIRON MANAGE, V88, P539, DOI 10.1016/j.jenvman.2007.03.018; Zou JW, 2008, ECOGRAPHY, V31, P663, DOI 10.1111/j.0906-7590.2008.05540.x; Zou JW, 2008, BIOL INVASIONS, V10, P291, DOI 10.1007/s10530-007-9130-0; Zou JW, 2006, OECOLOGIA, V150, P272, DOI 10.1007/s00442-006-0512-2; Zou JW, 2009, BASIC APPL ECOL, V10, P79, DOI 10.1016/j.baae.2007.11.010 159 71 76 6 117 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions SEP 2011 13 9 1969 1989 10.1007/s10530-011-0015-x 21 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 839EL WOS:000296348000004 2019-02-21 J Arthington, AH; Balcombe, SR Arthington, Angela H.; Balcombe, Stephen R. Extreme flow variability and the 'boom and bust' ecology of fish in arid-zone floodplain rivers: a case history with implications for environmental flows, conservation and management ECOHYDROLOGY English Review fish; flood pulse; connectivity; refugia; environmental flows; conservation ANASTOMOSING CHANNEL SYSTEM; COOPER CREEK; DRYLAND RIVERS; ASSEMBLAGE STRUCTURE; MEDITERRANEAN STREAM; INTERMITTENT-STREAM; AQUATIC REFUGIA; LOWLAND RIVERS; DESERT STREAM; DRY-SEASON Floodplain rivers in arid and semi-arid regions may be the most threatened of all river systems because water resource developments typically dampen their most distinctive characteristics-extreme flow variability and 'boom and bust' ecological dynamics. This article shows how one of the world's most variable arid-zone river systems-Cooper Creek in Australia's Lake Eyre Basin-functions and how it supports its unique fish assemblage and productive fisheries. The ecological roles of drought refugia, channel flows and flooding are reviewed in relation to fish persistence and losses, life history strategies, movement potential, food web processes and production levels. Comparisons are drawn with other floodplain rivers and fisheries to draw out common understandings and universal principles for conservation and management of arid-zone rivers and their fish resources. Ecological implications of hydrologic alterations and land-based activities are presented to highlight the importance of maintaining the hydrologic, geomorphic, sedimentary and biogeochemical processes of arid-zone river systems. Preservation or restoration of natural flow intermittency, sequential flood pulses, complex habitat mosaics, connectivity and identification of the environmental flow requirements for highly valued species and processes are key scientific principles for the management of arid-zone floodplain rivers. Copyright (C) 2011 John Wiley & Sons, Ltd. [Arthington, Angela H.] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia; [Arthington, Angela H.] Griffith Univ, eWater Cooperat Res Ctr, Nathan, Qld 4111, Australia Arthington, AH (reprint author), Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia. a.arthington@griffith.edu.au Balcombe, Stephen/C-5237-2008 Arthington, Angela/0000-0001-5967-7954 Cooperative Research Centre (CRC) for Freshwater Ecology, Canberra; eWater CRC; National Water Commission This review has drawn upon publications arising from the Dryland River Refugia Project, a multi-disciplinary and multi-institutional investigation of environmental factors and processes sustaining waterhole biodiversity in dryland rivers of western Queensland, funded by the former Cooperative Research Centre (CRC) for Freshwater Ecology, Canberra. Compilation of this review was supported by funding from the eWater CRC, and the National Water Commission through the Raising National Water Standards Program. We thank colleagues from the Australian Rivers Institute at Griffith University, the Bureau of Meteorology, the Queensland Department of Environment and Resource Management, and the Murray-Darling Basin Freshwater Research Centre (Northern Basin Laboratory) for field assistance, data on river discharge and valuable discussions. We are indebted to landowners Bob Morrish (Springfield), Angus Emmott (Noonbah), Sandy Kidd (Mayfield), David Smith (Hammond Downs) and George Scott (Tanbar) for access to waterholes on their properties and for their hospitality and encouragement. Field research was conducted under Queensland Fisheries Permit PRM00157K and Griffith University Animal Experimentation Ethics permit AES/03/02. Arthington AH, 2005, MAR FRESHWATER RES, V56, P25, DOI 10.1071/MF04111; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Arthington AH, 2010, MAR FRESHWATER RES, V61, P842, DOI 10.1071/MF09096; Balcombe SR, 2007, FRESHWATER BIOL, V52, P2385, DOI 10.1111/j.1365-2427.2007.01855.x; Balcombe SR, 2011, RIVER RES APPL, V27, DOI 10.1002/rra.1345; Balcombe SR, 2005, J FISH BIOL, V67, P1552, DOI 10.1111/j.1095-8649.2005.00858.x; Balcombe SR, 2006, MAR FRESHWATER RES, V57, P619, DOI 10.1071/MF06025; Balcombe SR, 2009, MAR FRESHWATER RES, V60, P146, DOI 10.1071/MF08118; BAYLEY P B, 1991, Regulated Rivers Research and Management, V6, P75, DOI 10.1002/rrr.3450060203; BAYLEY PB, 1998, SPECIAL PUBLICATION, V106, P385; Bond NR, 2008, HYDROBIOLOGIA, V600, P3, DOI 10.1007/s10750-008-9326-z; Bond NR, 2003, AUSTRAL ECOL, V28, P611, DOI 10.1046/j.1442-9993.2003.t01-1-01317.x; Bunn SE, 2006, ECOLOGY OF DESERT RIVERS, P76; Bunn SE, 2006, RIVER RES APPL, V22, P179, DOI 10.1002/rra.904; Bunn SE, 2003, FRESHWATER BIOL, V48, P619, DOI 10.1046/j.1365-2427.2003.01031.x; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Burford MA, 2008, MAR FRESHWATER RES, V59, P224, DOI 10.1071/MF07159; COSTELLOE JF, 2004, ARIDFLOW SCI REPORT; Craig J. F., 2004, FISH RES, V66, P272; Crook DA, 1999, MAR FRESHWATER RES, V50, P941, DOI 10.1071/MF99072; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Davies B R, 1994, RIVERS HDB, V2, P484; Dekar MP, 2007, ECOL FRESHW FISH, V16, P335, DOI 10.1111/j.1600-0633.2006.00226.x; *DERM, 2010, COOP CREEK CATCHM WA; *DERM, 2010, LAK EYR BAS WILD RIV; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Fellows CS, 2009, FRESHWATER BIOL, V54, P236, DOI 10.1111/j.1365-2427.2008.02104.x; FISHER SG, 1982, ECOL MONOGR, V52, P93, DOI 10.2307/2937346; Gotelli NJ, 1999, EVOL ECOL RES, V1, P835; GRIMM NB, 1987, ECOLOGY, V68, P1157, DOI 10.2307/1939200; Hamilton SK, 2005, LIMNOL OCEANOGR, V50, P743, DOI 10.4319/lo.2005.50.3.0743; Heiler G, 1995, REGUL RIVER, V11, P351, DOI 10.1002/rrr.3450110309; Huey JA, 2006, BIOL J LINN SOC, V87, P457, DOI 10.1111/j.1095-8312.2006.00590.x; Hughes JM, 2006, J FISH BIOL, V68, P270, DOI 10.1111/j.1095-8649.2006.0107.x; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jensen JG, 2001, WATER SCI TECHNOL, V43, P157; JUNK W. J., 1989, SPECIAL PUBLICATION, V106, P110; Kennard MJ, 1995, THESIS GRIFFITH U BR; Kerezsy A, 2010, THESIS GRIFFITH U BR; Kingsford RT, 2006, ECOLOGY OF DESERT RIVERS, P203; Kingsford RT, 2006, ECOLOGY OF DESERT RIVERS, P154; Kingsford RT, 2006, ECOLOGY OF DESERT RIVERS, P336; Kingsford RT, 1999, BIOL CONSERV, V88, P231, DOI 10.1016/S0006-3207(98)00098-6; KNIGHTON AD, 1994, GEOMORPHOLOGY, V9, P311, DOI 10.1016/0169-555X(94)90052-3; KNIGHTON AD, 1994, HYDROL PROCESS, V8, P137, DOI 10.1002/hyp.3360080205; Knighton AD, 2000, GEOMORPHOLOGY, V35, P101, DOI 10.1016/S0169-555X(00)00026-X; Knighton AD, 2001, J HYDROL, V254, P102, DOI 10.1016/S0022-1694(01)00498-X; Labbe TR, 2000, ECOL APPL, V10, P1774, DOI 10.2307/2641238; Lancaster J, 1997, J N AM BENTHOL SOC, V16, P221, DOI 10.2307/1468253; Larned ST, 2010, FRESHWATER BIOL, V55, P717, DOI 10.1111/j.1365-2427.2009.02322.x; Leigh C, 2010, MAR FRESHWATER RES, V61, P896, DOI 10.1071/MF10106; Lowe-McConnell R. H., 1985, ECOLOGICAL STUDIES T; MAGOR B, 2000, 1000 CAMPFIRES, P232; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; Maltchik L, 2006, AQUAT CONSERV, V16, P665, DOI 10.1002/aqc.805; Matthews WJ, 2003, FRESHWATER BIOL, V48, P1232, DOI 10.1046/j.1365-2427.2003.01087.x; McMahon TA, 2003, FRESHWATER BIOL, V48, P1147, DOI 10.1046/j.1365-2427.2003.01098.x; Medeiros ESF, 2008, HYDROBIOLOGIA, V614, P19, DOI 10.1007/s10750-008-9533-7; MORRISH RB, 1998, WETLANDS DRY LAND UN, P77; Morton S. R., 1995, BIODIVERSITY SERIES; Murphy BF, 2008, INT J CLIMATOL, V28, P859, DOI 10.1002/joc.1627; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Nekola JC, 1999, ECOLOGY, V80, P2459, DOI 10.1890/0012-9658(1999)080[2459:PANTIO]2.0.CO;2; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Nunn AD, 2010, ECOL FRESHW FISH, V19, P153, DOI 10.1111/j.1600-0633.2009.00399.x; Ogden RW, 2002, HYDROBIOLOGIA, V489, P277, DOI 10.1023/A:1023293925854; Olden JD, 2010, AM FISH S S, V73, P83; ORR TM, 1984, AUSTR J MARINE FRESH, V35, P197; Pires DF, 2010, ECOL FRESHW FISH, V19, P74, DOI 10.1111/j.1600-0633.2009.00391.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Propst DL, 2008, ECOL APPL, V18, P1236, DOI 10.1890/07-1489.1; Puckridge J. T, 1999, THESIS U ADELAIDE AD; Puckridge JT, 2000, REGUL RIVER, V16, P385, DOI 10.1002/1099-1646(200009/10)16:5<385::AID-RRR592>3.0.CO;2-W; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; Pusey B., 2004, FRESHWATER FISHES N; Rodriguez MA, 1997, ECOL MONOGR, V67, P109, DOI 10.2307/2963507; RUELLO NV, 1976, AUST J MAR FRESH RES, V27, P667; Sheldon F, 2010, MAR FRESHWATER RES, V61, P885, DOI 10.1071/MF09239; Stearns S, 1992, EVOLUTION LIFE HIST; Tejerina-Garro FL, 1998, ENVIRON BIOL FISH, V51, P399, DOI 10.1023/A:1007401714671; Tharme RE, 2003, RIVER RES APPL, V19, P397, DOI 10.1002/rra.736; Thoms MC, 2000, REGUL RIVER, V16, P375, DOI 10.1002/1099-1646(200009/10)16:5<375::AID-RRR591>3.0.CO;2-#; Tockner Klement, 2008, P45, DOI 10.1017/CBO9780511751790.006; Tockner K, 2010, RIVER RES APPL, V26, P76, DOI 10.1002/rra.1328; Tooth S, 2000, EARTH-SCI REV, V51, P67, DOI 10.1016/S0012-8252(00)00014-3; Unmack PJ, 2001, J ARID ENVIRON, V49, P653, DOI 10.1006/jare.2001.0813; Unmack PJ, 1996, FISHES SAHUL, V10, P460; Van Zalinge N. P., 2000, COMMON PROPERTY MEKO, P109; Velasco J, 2003, FRESHWATER BIOL, V48, P1408, DOI 10.1046/j.1365-2427.2003.01099.x; Wager R, 2000, FISHES LAKE EYRE CAT; Walker Keith F., 1997, Aquatic Conservation, V7, P63, DOI 10.1002/(SICI)1099-0755(199703)7:1<63::AID-AQC218>3.0.CO;2-5; WALKER KF, 1995, REGUL RIVER, V11, P85, DOI 10.1002/rrr.3450110108; WARD JV, 1995, REGUL RIVER, V11, P105, DOI 10.1002/rrr.3450110109; Welcomme RL, 2006, RIVER RES APPL, V22, P377, DOI 10.1002/rra.914; Welcomme RL, 2006, ECOL STUD-ANAL SYNTH, V190, P123; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wishart MJ, 2006, ECOLOGY OF DESERT RIVERS, P315; Young WJ, 2006, ECOLOGY OF DESERT RIVERS, P11; Zeug SC, 2008, RIVER RES APPL, V24, P90, DOI 10.1002/rra.1061 100 53 53 2 104 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1936-0584 ECOHYDROLOGY Ecohydrology SEP-OCT 2011 4 5 708 720 10.1002/eco.221 13 Ecology; Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources 823RO WOS:000295142100010 2019-02-21 J Lees, DC; Driskell, WB Lees, D. C.; Driskell, W. B. GROWTH RATES FOR THE KELPS AGARUM CLATHRATUM, SACCHARINA GROENLANDICA, AND EUALARIA FISTULOSA IN KACHEMAK BAY, ALASKA - DIFFERENCES IN LIFE HISTORY STRATEGIES JOURNAL OF PHYCOLOGY English Meeting Abstract dennislees@cox.net; bdriskell@comcast.net 0 0 0 1 7 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-3646 J PHYCOL J. Phycol. SEP 2011 47 2 SI S47 S47 1 Plant Sciences; Marine & Freshwater Biology Plant Sciences; Marine & Freshwater Biology 822ZO WOS:000295090200141 2019-02-21 J Hui, C; Richardson, DM; Robertson, MP; Wilson, JRU; Yates, CJ Hui, Cang; Richardson, David M.; Robertson, Mark P.; Wilson, John R. U.; Yates, Colin J. Macroecology meets invasion ecology: linking the native distributions of Australian acacias to invasiveness DIVERSITY AND DISTRIBUTIONS English Article Biological invasions; invasive species; native geographical range; spatial scales; species range size distribution; wattles PLANT INVASIONS; BIOTIC HOMOGENIZATION; SPECIES DISTRIBUTIONS; BIOLOGICAL INVASIONS; PROPAGULE PRESSURE; ALIEN PLANTS; RANGE SIZE; ABUNDANCE; CONSERVATION; PATTERNS Aim Species' native ranges reflect the net outcome of interactions between life-history strategies and biotic and abiotic influences over evolutionary time-scales. Differences in native ranges might be indicative both of relative historical performance and adaptability to new conditions. Consequently, the native ranges of successful invaders might have distinctive biogeographical characteristics. We test this hypothesis by (1) quantifying macroecological patterns of the entire assemblage of native taxa in Acacia subgenus Phyllodineae in Australia, (2) testing whether highly invasive taxa represent random samples from the patterns observed for the assemblage as a whole and (3) exploring the link between native geographical range and the position of species along the introduction-naturalization-invasion continuum. Location Australia and worldwide. Methods Three distributional metrics representing particular biogeographical characteristics of species' native ranges - the logarithms of range size, percolation intercept and percolation exponent - were calculated by fitting a revised alpha hull to records from Australia's Virtual Herbarium. Randomization and cascaded tests were used to compare these metrics for species at different stages of invasion. Results The macroecological patterns of the three distributional metrics displayed lognormal-like frequency distributions. Most invasive species had significantly lower percolation exponents and larger native ranges than expected from random draws from the entire assemblage of Australian acacias, but percolation intercepts were not significantly different. This can be explained by a selection bias at the early stages of invasion. Main conclusions The outcome of the natural experiment of transplanting many Australian acacias into novel environments is not random. While invasive species have a particular macroecological pattern, this can be explained by the observation that species with large native ranges and low percolation exponents (i.e. high population increase rate) are most likely to have been introduced and naturalized. Whether this pattern is an artefact of human selection or reflects a human bias towards selecting invasive species remains to be seen. [Hui, Cang; Richardson, David M.; Wilson, John R. U.] Univ Stellenbosch, Ctr Invas Biol, Dept Bot & Zool, ZA-7602 Matieland, South Africa; [Robertson, Mark P.] Univ Pretoria, Dept Zool & Entomol, Ctr Invas Biol, ZA-0001 Pretoria, South Africa; [Wilson, John R. U.] S African Natl Biodivers Inst, ZA-7735 Claremont, South Africa; [Yates, Colin J.] Dept Environm & Conservat, Div Sci, Bentley, WA 6983, Australia Hui, C (reprint author), Univ Stellenbosch, Ctr Invas Biol, Dept Bot & Zool, Private Bag X1, ZA-7602 Matieland, South Africa. chui@sun.ac.za Hui, Cang/A-1781-2008; Richardson, David/A-1495-2008; Wilson, John/B-4101-2008 Hui, Cang/0000-0002-3660-8160; Richardson, David/0000-0001-9574-8297; Wilson, John/0000-0003-0174-3239 DST-NRF Centre of Excellence for Invasion Biology; Working for Water Programme; Oppenheimer Memorial Trust; Stellenbosch University; NRF Data on Australian Acacia species records are used with permission of the Council of Heads of Australian Herbaria, the custodian of Australia's Virtual Herbarium. We acknowledge financial support from the DST-NRF Centre of Excellence for Invasion Biology and the Working for Water Programme through their collaborative project on 'Research for Integrated Management of Invasive Alien Species'. The Oppenheimer Memorial Trust and Stellenbosch University funded the October 2010 Acacia workshop in Stellenbosch at which a preliminary version of this paper was presented. C.H. is supported by the NRF Blue Sky Programme and Subcommittee B fund at Stellenbosch University. We are grateful to Rachael Gallagher, Carla Harris, Michelle Leishman, Dan Murphy and Jaco le Roux for their advice on the native distribution of invasive acacias in Australia. Blackburn TM, 2011, TRENDS ECOL EVOL, V26, P333, DOI 10.1016/j.tree.2011.03.023; BROWN JH, 1984, AM NAT, V124, P255, DOI 10.1086/284267; Burgman MA, 2003, ANIM CONSERV, V6, P19, DOI 10.1017/S1367943003003044; Castro-Diez P, 2011, DIVERS DISTRIB, V17, P934, DOI 10.1111/j.1472-4642.2011.00778.x; Colautti RI, 2006, BIOL INVASIONS, V8, P1023, DOI 10.1007/s10530-005-3735-y; Colwell RK, 2009, P NATL ACAD SCI USA, V106, P19651, DOI 10.1073/pnas.0901650106; Duncan RP, 2001, J ANIM ECOL, V70, P621, DOI 10.1046/j.1365-2656.2001.00517.x; EDELSBRUNNER H, 1983, IEEE T INFORM THEORY, V29, P551, DOI 10.1109/TIT.1983.1056714; Gaertner M, 2009, PROG PHYS GEOG, V33, P319, DOI 10.1177/0309133309341607; Gallagher RV, 2011, DIVERS DISTRIB, V17, P884, DOI 10.1111/j.1472-4642.2011.00805.x; Gaston K. J., 2003, STRUCTURE DYNAMICS G; Gaston K.J., 2000, PATTERN PROCESS MACR; Gaston KJ, 2009, J APPL ECOL, V46, P1, DOI 10.1111/j.1365-2664.2008.01596.x; Gaston KJ, 2001, GLOBAL ECOL BIOGEOGR, V10, P179, DOI 10.1046/j.1466-822x.2001.00225.x; Gibson MR, 2011, DIVERS DISTRIB, V17, P911, DOI 10.1111/j.1472-4642.2011.00808.x; Global Compendium of Weeds, 2010, AGWEST HAW EC RISK P; Gravuer K, 2008, P NATL ACAD SCI USA, V105, P6344, DOI 10.1073/pnas.0712026105; Griffin AR, 2011, DIVERS DISTRIB, V17, P837, DOI 10.1111/j.1472-4642.2011.00814.x; HANSKI I, 1993, AM NAT, V142, P17, DOI 10.1086/285527; Hui C, 2006, J ANIM ECOL, V75, P140, DOI 10.1111/j.1365-2656.2005.01029.x; Hui C, 2011, J APPL ECOL, V48, P768, DOI 10.1111/j.1365-2664.2011.01974.x; Hui C, 2011, ECOL MODEL, V222, P442, DOI 10.1016/j.ecolmodel.2010.10.020; Hui C, 2010, ECOGRAPHY, V33, P95, DOI 10.1111/j.1600-0587.2009.05997.x; Hui C, 2009, ECOL APPL, V19, P2038, DOI 10.1890/08-2236.1; IUCN, 2001, IUCN RED LIST CAT CR; Jenkins C, 2011, BIOL INVASIONS, V13, P1471, DOI 10.1007/s10530-010-9907-4; JONES MC, 1995, COMMUN STAT SIMULAT, V24, P911, DOI 10.1080/03610919508813284; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Kueffer C, 2010, PERSPECT PLANT ECOL, V12, P145, DOI 10.1016/j.ppees.2009.06.002; McGill BJ, 2007, ECOL LETT, V10, P995, DOI 10.1111/j.1461-0248.2007.01094.x; McKinney ML, 1999, TRENDS ECOL EVOL, V14, P450, DOI 10.1016/S0169-5347(99)01679-1; Miller BP, 2007, DIVERS DISTRIB, V13, P406, DOI 10.1111/j.1472-4642.2007.00348.x; Miller JT, 2011, DIVERS DISTRIB, V17, P848, DOI 10.1111/j.1472-4642.2011.00780.x; Newbold T, 2010, PROG PHYS GEOG, V34, P3, DOI 10.1177/0309133309355630; Okabe A., 2000, SPATIAL TESSELLATION; Olden JD, 2004, TRENDS ECOL EVOL, V19, P18, DOI 10.1016/j.tree.2003.09.010; Poynton R.J., 2009, TREE PLANTING SO AFR, V3; Proches S, 2012, GLOBAL ECOL BIOGEOGR, V21, P513, DOI 10.1111/j.1466-8238.2011.00703.x; Pysek P, 2004, TAXON, V53, P131, DOI 10.2307/4135498; Pysek P, 2009, DIVERS DISTRIB, V15, P891, DOI 10.1111/j.1472-4642.2009.00602.x; Rejmanek M, 1996, BIOL CONSERV, V78, P171, DOI 10.1016/0006-3207(96)00026-2; Richardson DM, 2007, DIVERS DISTRIB, V13, P299, DOI 10.1111/j.1472-4642.2007.00337.x; Richardson DM, 2006, PROG PHYS GEOG, V30, P409, DOI 10.1191/0309133306pp490pr; Richardson DM, 2011, DIVERS DISTRIB, V17, P771, DOI 10.1111/j.1472-4642.2011.00824.x; Richardson DM, 2011, DIVERS DISTRIB, V17, P788, DOI 10.1111/j.1472-4642.2011.00782.x; Richardson DM, 2011, FIFTY YEARS OF INVASION ECOLOGY: THE LEGACY OF CHARLES ELTON, P409; Richardson DM, 2010, DIVERS DISTRIB, V16, P313, DOI 10.1111/j.1472-4642.2010.00660.x; Richardson David M., 2000, Diversity and Distributions, V6, P93, DOI 10.1046/j.1472-4642.2000.00083.x; Robertson MP, 2010, DIVERS DISTRIB, V16, P363, DOI 10.1111/j.1472-4642.2010.00639.x; Ruxton GD, 2006, BEHAV ECOL, V17, P688, DOI 10.1093/beheco/ark016; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Soberon J, 2009, P NATL ACAD SCI USA, V106, P19644, DOI 10.1073/pnas.0901637106; Sole RV, 2005, OIKOS, V110, P177, DOI 10.1111/j.0030-1299.2005.13843.x; Thuiller W, 2006, ECOLOGY, V87, P1755, DOI 10.1890/0012-9658(2006)87[1755:IBESTA]2.0.CO;2; Verling E, 2005, P ROY SOC B-BIOL SCI, V272, P1249, DOI 10.1098/rspb.2005.3090; Williamson M, 1999, ECOGRAPHY, V22, P5, DOI 10.1111/j.1600-0587.1999.tb00449.x; Wilson JRU, 2007, DIVERS DISTRIB, V13, P11, DOI 10.1111/j.1472-4642.2006.00302.x; Wilson JRU, 2011, DIVERS DISTRIB, V17, P1030, DOI 10.1111/j.1472-4642.2011.00815.x; Wilson RJ, 2004, NATURE, V432, P393, DOI 10.1038/nature03031 59 41 41 0 30 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1366-9516 1472-4642 DIVERS DISTRIB Divers. Distrib. SEP 2011 17 5 SI 872 883 10.1111/j.1472-4642.2011.00804.x 12 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 817EZ WOS:000294655400008 Bronze 2019-02-21 J Colautti, RI; Barrett, SCH Colautti, Robert I.; Barrett, Spencer C. H. POPULATION DIVERGENCE ALONG LINES OF GENETIC VARIANCE AND COVARIANCE IN THE INVASIVE PLANT LYTHRUM SALICARIA IN EASTERN NORTH AMERICA EVOLUTION English Article Fitness trade-off; G matrix; purple loosestrife; quantitative genetics LIFE-HISTORY EVOLUTION; GENERAL-PURPOSE GENOTYPES; PURPLE LOOSESTRIFE; NATURAL-SELECTION; G-MATRIX; PHENOTYPIC PLASTICITY; QUANTITATIVE TRAITS; ADAPTIVE EVOLUTION; LOCAL ADAPTATION; INTRODUCED POPULATIONS Evolution during biological invasion may occur over contemporary timescales, but the rate of evolutionary change may be inhibited by a lack of standing genetic variation for ecologically relevant traits and by fitness trade-offs among them. The extent to which these genetic constraints limit the evolution of local adaptation during biological invasion has rarely been examined. To investigate genetic constraints on life-history traits, we measured standing genetic variance and covariance in 20 populations of the invasive plant purple loosestrife (Lythrum salicaria) sampled along a latitudinal climatic gradient in eastern North America and grown under uniform conditions in a glasshouse. Genetic variances within and among populations were significant for all traits; however, strong intercorrelations among measurements of seedling growth rate, time to reproductive maturity and adult size suggested that fitness trade-offs have constrained population divergence. Evidence to support this hypothesis was obtained from the genetic variance-covariance matrix (G) and the matrix of (co)variance among population means (D), which were 79.8% (95% C.I. 77.7-82.9%) similar. These results suggest that population divergence during invasive spread of L. salicaria in eastern North America has been constrained by strong genetic correlations among life-history traits, despite large amounts of standing genetic variation for individual traits. [Colautti, Robert I.; Barrett, Spencer C. H.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Colautti, RI (reprint author), Duke Univ, Dept Biol, POB 90338, Durham, NC 27708 USA. rob.colautti@utoronto.ca Barrett, Spencer/M-3751-2013; Colautti, Robert/E-6804-2011 Colautti, Robert/0000-0003-4213-0711 University of North Carolina's research computing cluster; Ontario Government; University of Toronto; Ontario Premier's Discovery Award; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Research Chair program We thank M. Blows, J. Stinchcombe, K. Rice, A. Weis, and C. Eckert for comments on the manuscript; L. Flagel for assistance running SAS on University of North Carolina's research computing cluster; the Ontario Government and the University of Toronto for scholarship support to RIC; the Canada Research Chair program and an Ontario Premier's Discovery Award for funding to SCHB; and the Natural Sciences and Engineering Research Council of Canada (NSERC) for a graduate scholarship to RIC and a Discovery Grant to SCHB. Arnold SJ, 2008, EVOLUTION, V62, P2451, DOI 10.1111/j.1558-5646.2008.00472.x; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Barrett S. C. H., 1990, Plant population genetics, breeding, and genetic resources., P254; Barrett S. C. H., 1989, Isozymes in plant biology., P106; Barrett Spencer C. H., 2000, P115; Blossey B, 2001, BIODIVERS CONSERV, V10, P1787, DOI 10.1023/A:1012065703604; Blows MW, 2004, AM NAT, V163, P329, DOI 10.1086/381941; Calsbeek B, 2009, EVOLUTION, V63, P2627, DOI 10.1111/j.1558-5646.2009.00735.x; Chen YH, 2006, OECOLOGIA, V149, P656, DOI 10.1007/s00442-006-0482-4; Chenoweth SF, 2008, EVOLUTION, V62, P1437, DOI 10.1111/j.1558-5646.2008.00374.x; Chenoweth SF, 2010, AM NAT, V175, P186, DOI 10.1086/649594; Chun YJ, 2009, MOL ECOL, V18, P3020, DOI 10.1111/j.1365-294X.2009.04254.x; Cohn RD, 1999, J AGRIC BIOL ENVIR S, V4, P238, DOI 10.2307/1400384; Colautti RI, 2010, INT J PLANT SCI, V171, P960, DOI 10.1086/656444; Colautti RI, 2010, P ROY SOC B-BIOL SCI, V277, P1799, DOI 10.1098/rspb.2009.2231; DICKERSON GE, 1955, COLD SPRING HARB SYM, V20, P213, DOI 10.1101/SQB.1955.020.01.020; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Eckert CG, 1996, EVOLUTION, V50, P1512, DOI 10.1111/j.1558-5646.1996.tb03924.x; ECKERT CG, 1992, EVOLUTION, V46, P1014, DOI 10.1111/j.1558-5646.1992.tb00616.x; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Etterson JR, 2004, EVOLUTION, V58, P1459; Facon B, 2008, CURR BIOL, V18, P363, DOI 10.1016/j.cub.2008.01.063; Fisher RA, 1930, GENETICAL THEORY NAT; Garcia-Ramos G, 2002, EVOLUTION, V56, P661, DOI 10.1554/0014-3820(2002)056[0661:ESOSI]2.0.CO;2; Geber MA, 2003, INT J PLANT SCI, V164, pS21, DOI 10.1086/368233; Griffith TM, 2006, AM NAT, V167, P153, DOI 10.1086/498945; Guillaume F, 2007, EVOLUTION, V61, P2398, DOI 10.1111/j.1558-5646.2007.00193.x; Hine E, 2009, PHILOS T R SOC B, V364, P1567, DOI 10.1098/rstb.2008.0313; Hohenlohe PA, 2008, AM NAT, V171, P366, DOI 10.1086/527498; Houghton-Thompson J, 2005, ANN BOT-LONDON, V96, P877, DOI 10.1093/aob/mci240; HOULE D, 1992, GENETICS, V130, P195; Jones AG, 2004, EVOLUTION, V58, P1639; Jones AG, 2003, EVOLUTION, V57, P1747; Keller SR, 2010, J EVOLUTION BIOL, V23, P1720, DOI 10.1111/j.1420-9101.2010.02037.x; KEMPTHORNE IO, 1955, GENETICS, V40, P168; KRZANOWSKI WJ, 1979, J AM STAT ASSOC, V74, P703, DOI 10.2307/2286995; LANDE R, 1988, SCIENCE, V241, P1455, DOI 10.1126/science.3420403; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2007, GENETICA, V129, P179, DOI 10.1007/s10709-006-9013-9; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lee PLM, 2004, INT J PLANT SCI, V165, P833, DOI 10.1086/422043; Lynch M, 1998, GENETICS ANAL QUANTI; Ma H, 1998, TRENDS GENET, V14, P26, DOI 10.1016/S0168-9525(97)01309-7; MAL TK, 1992, CAN J PLANT SCI, V72, P1305; Malacrida AR, 1998, J HERED, V89, P501, DOI 10.1093/jhered/89.6.501; Mazer S.J., 1999, LIFE HIST EVOLUTION, P85, DOI 10.1007/978-94-010-9460-3_4; McGoey BV, 2009, NEW PHYTOL, V183, P880, DOI 10.1111/j.1469-8137.2009.02934.x; McGuigan K, 2005, AM NAT, V165, P32, DOI 10.1086/426600; McGuigan K, 2010, EVOLUTION, V64, P1899, DOI 10.1111/j.1558-5646.2010.00968.x; McKay JK, 2002, TRENDS ECOL EVOL, V17, P285, DOI 10.1016/S0169-5347(02)02478-3; Merila J, 2001, J EVOLUTION BIOL, V14, P892, DOI 10.1046/j.1420-9101.2001.00348.x; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; Montague JL, 2008, J EVOLUTION BIOL, V21, P234, DOI 10.1111/j.1420-9101.2007.01456.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Novak SJ, 2005, SPECIES INVASIONS: INSIGHTS INTO ECOLOGY, EVOLUTION, AND BIOGEORGRAPHY, P201; Olsson K, 2002, J EVOLUTION BIOL, V15, P983, DOI 10.1046/j.1420-9101.2002.00457.x; OLSSON K, 2004, THESIS U UMEA U UMEA; ONeil P, 1997, EVOLUTION, V51, P267, DOI 10.1111/j.1558-5646.1997.tb02408.x; Orr HA, 2000, EVOLUTION, V54, P13, DOI 10.1111/j.0014-3820.2000.tb00002.x; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Phillips PC, 2001, GENETICS, V158, P1137; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI [10.1111/j.1558-5646.1999.tb05414.x, 10.2307/2640896]; RICE KJ, 1991, OECOLOGIA, V88, P77, DOI 10.1007/BF00328406; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 1999, EVOLUTION, V53, P216, DOI 10.1111/j.1558-5646.1999.tb05347.x; Ross CA, 2009, BIOL INVASIONS, V11, P441, DOI 10.1007/s10530-008-9261-y; SATTERTHWAITE FE, 1946, BIOMETRICS BULL, V2, P110, DOI 10.2307/3002019; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; SHAW RG, 1991, EVOLUTION, V45, P143, DOI 10.1111/j.1558-5646.1991.tb05273.x; Simonsen AK, 2010, INT J PLANT SCI, V171, P972, DOI 10.1086/656512; Simpson GG, 1999, ANNU REV CELL DEV BI, V15, P519, DOI 10.1146/annurev.cellbio.15.1.519; Thompson E. B., 1987, SPREAD IMPACT CONTRO; Tsutsui ND, 2000, P NATL ACAD SCI USA, V97, P5948, DOI 10.1073/pnas.100110397; Tufto J, 2000, AM NAT, V156, P121, DOI 10.1086/303381; TURELLI M, 1988, EVOLUTION, V42, P1342, DOI 10.1111/j.1558-5646.1988.tb04193.x; *USDA, 2009, PLANTS DAT; Verhoeven KJF, 2011, P ROY SOC B-BIOL SCI, V278, P2, DOI 10.1098/rspb.2010.1272; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; WILLIAMS DG, 1995, ECOLOGY, V76, P1569, DOI 10.2307/1938158; Yakimowski SB, 2005, BIOL INVASIONS, V7, P687, DOI 10.1007/s10530-004-5858-y; YANOFSKY MF, 1995, ANNU REV PLANT PHYS, V46, P167, DOI 10.1146/annurev.pp.46.060195.001123; ZENG ZB, 1988, EVOLUTION, V42, P363, DOI 10.1111/j.1558-5646.1988.tb04139.x; Zhang YY, 2010, MOL ECOL, V19, P1774, DOI 10.1111/j.1365-294X.2010.04609.x 89 29 29 3 90 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution SEP 2011 65 9 2514 2529 10.1111/j.1558-5646.2011.01313.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 816JK WOS:000294594300008 21884053 Bronze 2019-02-21 J Glenn, AL; Kurzban, R; Raine, A Glenn, Andrea L.; Kurzban, Robert; Raine, Adrian Evolutionary theory and psychopathy AGGRESSION AND VIOLENT BEHAVIOR English Article Psychopathy; Adaptation; Pathology; Genetic; Mutation LIFE-HISTORY THEORY; TAXOMETRIC ANALYSIS; PERSONALITY-TRAITS; MENTAL-DISORDERS; GENETIC MODELS; DARK TRIAD; BEHAVIOR; EMOTION; INTELLIGENCE; MODULATION Psychopathy represents a unique set of personality traits including deceitfulness, lack of empathy and guilt, impulsiveness, and antisocial behavior. Most often in the literature, psychopathy is described as pathology a disorder that has been linked to a variety of biological deficits and environmental risk factors. However, from an evolutionary perspective, psychopathy, while it could be a disorder, has been construed in the context of an adaptive strategy. In this article we will examine the strengths and weaknesses of two models suggesting that psychopathy is an adaptive strategy, and one model suggesting that it is a form of pathology resulting from accumulated mutations. Overall, we do not find that there is strong enough evidence to draw firm conclusions about one theory over another, but we highlight some areas where future research may be able to shed light on the issue. (C) 2011 Elsevier Ltd. All rights reserved. [Glenn, Andrea L.; Kurzban, Robert; Raine, Adrian] Univ Penn, Dept Psychol, Philadelphia, PA 19104 USA; [Raine, Adrian] Univ Penn, Dept Criminol, Philadelphia, PA 19104 USA; [Raine, Adrian] Univ Penn, Dept Psychiat, Philadelphia, PA 19104 USA Glenn, AL (reprint author), 3809 Walnut St, Philadelphia, PA 19104 USA. aglenn@sas.upenn.edu Anderson S. W., 1999, NAT NEUROSCI, V2, P1031; Arnett PA, 1997, CLIN PSYCHOL REV, V17, P903, DOI 10.1016/S0272-7358(97)00045-7; Babiak P., 2006, SNAKES SUITS PSYCHOP; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Barr KN, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P293; BELMORE MF, 1994, J INTERPERS VIOLENCE, V9, P339, DOI 10.1177/088626094009003004; Benning SD, 2005, PSYCHOPHYSIOLOGY, V42, P753, DOI 10.1111/j.1469-8986.2005.00353.x; Bernstein DP, 1998, ADDICT BEHAV, V23, P855, DOI 10.1016/S0306-4603(98)00072-0; Blair RJR, 2007, ANN NY ACAD SCI, V1121, P461, DOI 10.1196/annals.1401.017; Blair RJ, 2005, PSYCHOPATH EMOTION B; Blair RJR, 2005, DEV PSYCHOPATHOL, V17, P865, DOI 10.1017/S0954579405050418; Blair RJR, 2001, J ABNORM CHILD PSYCH, V29, P491, DOI 10.1023/A:1012225108281; Blonigen DM, 2003, PERS INDIV DIFFER, V35, P179, DOI 10.1016/S0191-8869(02)00184-8; Bouchard TJ, 2001, BEHAV GENET, V31, P243; Buss DM, 2009, PERSPECT PSYCHOL SCI, V4, P359, DOI 10.1111/j.1745-6924.2009.01138.x; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Chen CS, 1999, EVOL HUM BEHAV, V20, P309, DOI 10.1016/S1090-5138(99)00015-X; Cima M, 2008, BIOL PSYCHOL, V78, P75, DOI 10.1016/j.biopsycho.2007.12.011; Colledge E, 2001, PERS INDIV DIFFER, V30, P1175, DOI 10.1016/S0191-8869(00)00101-X; Cooke DJ, 1999, J ABNORM PSYCHOL, V108, P58, DOI 10.1037/0021-843X.108.1.58; Cornell DG, 1996, J CONSULT CLIN PSYCH, V64, P783, DOI 10.1037/0022-006X.64.4.783; Cosmides L., 2000, METAREPRESENTATIONS, P53; Dahle KP, 2006, INT J LAW PSYCHIAT, V29, P431, DOI 10.1016/j.ijlp.2006.03.001; Damasio AR, 2000, ARCH GEN PSYCHIAT, V57, P128, DOI 10.1001/archpsyc.57.2.128; DELGIUDICE M, NEUROSCIENC IN PRESS; Ebstein RP, 2006, MOL PSYCHIATR, V11, P427, DOI 10.1038/sj.mp.4001814; Edens JF, 2006, J ABNORM PSYCHOL, V115, P131, DOI 10.1037/0021-843X.115.1.131; Eisenberg DTA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-173; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flor H, 2002, PSYCHOPHYSIOLOGY, V39, P505, DOI 10.1017/S0048577202394046; Gao Y, 2010, PSYCHOL MED, V40, P1007, DOI 10.1017/S0033291709991279; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glenn AL, 2007, J ABNORM PSYCHOL, V116, P508, DOI 10.1037/0021-843X.116.3.508; Glenn AL, 2009, J PERS DISORD, V23, P384, DOI 10.1521/pedi.2009.23.4.384; Grafman J, 1996, NEUROLOGY, V46, P1231, DOI 10.1212/WNL.46.5.1231; Guay JP, 2007, J ABNORM PSYCHOL, V116, P701, DOI 10.1037/0021-843X.116.4.701; Hagen EH, 1999, EVOL HUM BEHAV, V20, P325, DOI 10.1016/S1090-5138(99)00016-1; Hanley C., 1973, INT J CRIMINOLOGY PE, V1, P69; Hare R. D., 2003, HARE PSYCHOPATHY CHE; Haukka J, 2003, AM J PSYCHIAT, V160, P460, DOI 10.1176/appi.ajp.160.3.460; Ishikawa SS, 2001, J ABNORM PSYCHOL, V110, P423, DOI 10.1037//0021-843X.110.3.423; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Justus AN, 2007, PERS INDIV DIFFER, V43, P2057, DOI 10.1016/j.paid.2007.06.020; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Keller MC, 2006, BEHAV BRAIN SCI, V29, P429; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Ketelaar T, 2003, COGNITION EMOTION, V17, P429, DOI 10.1080/02699930143000662; Kosson DS, 2002, EMOTION, V2, P398, DOI 10.1037/1528-3542.2.4.398; Krischer MK, 2008, INT J LAW PSYCHIAT, V31, P253, DOI 10.1016/j.ijlp.2008.04.008; Lang S, 2002, ACTA PSYCHIAT SCAND, V106, P93, DOI 10.1034/j.1600-0447.106.s412.20.x; Larsson H, 2006, J ABNORM PSYCHOL, V115, P221, DOI 10.1037/0021-843X.115.2.221; Loney BR, 1998, J PSYCHOPATHOL BEHAV, V20, P231, DOI 10.1023/A:1023015318156; Loney BR, 2007, AGGRESSIVE BEHAV, V33, P242, DOI 10.1002/ab.20184; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lykken D. T., 1995, ANTISOCIAL PERSONALI; MacCabe JH, 2009, PSYCHOL MED, V39, P1667, DOI 10.1017/S0033291709005431; Marshall LA, 1999, J PERS DISORD, V13, P211, DOI 10.1521/pedi.1999.13.3.211; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MILGRAM S, 1963, J ABNORM PSYCHOL, V67, P371, DOI 10.1037/h0040525; Murphy D., 2000, EVOLUTION HUMAN MIND, P62; Nesse RM, 1994, WHY WE GET SICK NEW; O'Leary MM, 2007, PSYCHONEUROENDOCRINO, V32, P183, DOI 10.1016/j.psyneuen.2006.12.004; ONEILL ML, 2003, INT J FORENSIC MENT, V2, P35; PATRICK CJ, 1993, J ABNORM PSYCHOL, V102, P82, DOI 10.1037//0021-843X.102.1.82; PATRICK CJ, 1994, PSYCHOPHYSIOLOGY, V31, P319, DOI 10.1111/j.1469-8986.1994.tb02440.x; Raine A, 2004, BIOL PSYCHIAT, V55, P185, DOI 10.1016/S0006-3223(03)00727-3; Raine A, 1998, NEUROPSY NEUROPSY BE, V11, P1; Raine A, 1993, PSYCHOPATHOLOGY CRIM; Raine A, 2010, BRIT J PSYCHIAT, V197, P186, DOI 10.1192/bjp.bp.110.078485; ROZIN P, 1994, J PERS SOC PSYCHOL, V66, P870, DOI 10.1037/0022-3514.66.5.870; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; Sadeh N, 2010, J ABNORM PSYCHOL, V119, P604, DOI 10.1037/a0019709; Salekin RT, 2004, J CLIN CHILD ADOLESC, V33, P731, DOI 10.1207/s15374424jccp3304_8; Stephens D. W, 1986, FORAGING THEORY; Taylor J, 2003, J ABNORM CHILD PSYCH, V31, P633, DOI 10.1023/A:1026262207449; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; Vitale JE, 2005, AGGRESSIVE BEHAV, V31, P99, DOI 10.1002/ab.20050; VRANA SR, 1988, J ABNORM PSYCHOL, V97, P487, DOI 10.1037//0021-843X.97.4.487; Walters GD, 2008, J PERS ASSESS, V90, P491, DOI 10.1080/00223890802248828; Weeden J, 2008, EVOL HUM BEHAV, V29, P327, DOI 10.1016/j.evolhumbehav.2008.03.004; WEILER BL, 1996, CRIMINAL BEHAV MENTA, V0006; Wernke MR, 2008, AGGRESS VIOLENT BEH, V13, P229, DOI 10.1016/j.avb.2008.04.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wheatley T, 2005, PSYCHOL SCI, V16, P780, DOI 10.1111/j.1467-9280.2005.01614.x; Widom CS, 1985, AGGRESSION DANGEROUS, P57; YANG Y, 2005, BIOL PSYCHIAT, V15, P1103 91 59 60 1 46 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 1359-1789 AGGRESS VIOLENT BEH Aggress. Violent Behav. SEP-OCT 2011 16 5 SI 371 380 10.1016/j.avb.2011.03.009 10 Criminology & Penology; Psychology, Multidisciplinary Criminology & Penology; Psychology 815ML WOS:000294529600002 2019-02-21 J Gettler, LT; McDade, TW; Kuzawa, CW Gettler, Lee T.; McDade, Thomas W.; Kuzawa, Christopher W. Cortisol and Testosterone in Filipino Young Adult Men: Evidence for Co-regulation of Both Hormones by Fatherhood and Relationship Status AMERICAN JOURNAL OF HUMAN BIOLOGY English Article LIFE-HISTORY EVOLUTION; RAT LEYDIG-CELLS; SALIVARY TESTOSTERONE; CUSHINGS-SYNDROME; SEX-DIFFERENCES; PARAVENTRICULAR NUCLEUS; MACACA-FASCICULARIS; SELECTIVE ATTENTION; CIRCADIAN VARIATION; SERUM TESTOSTERONE Objectives: Although cortisol (CURT) may suppress testosterone (T) production under stress, in many species males' T and CURT are co-elevated during mate acquisition or conspecific competition. It is presently unknown how CURT co-varies with T in relation to fatherhood/relationship status in men. Here we evaluate associations between waking (AM) and pre-bed (PM) salivary CURT and T, and with plasma total T and luteinizing hormone. We also test whether co-elevation or co-downregulation of CURT and T are present in men who are mating-oriented (non-pairbonded, non-fathers) and parenting-oriented (pairbonded and/or fathers), respectively. Methods: Data come from 630 of young adult Filipino males (21-23 years) enrolled in the Cebu Longitudinal Health and Nutrition Survey, a population-based birth cohort study in Cebu City, Philippines. Results: T and CURT were positively related in AM (r = 0.37) and PM (r = 0.30) saliva samples (both P < 0.001). The positive relationship between AM measures was strengthened as caloric intake improved (interaction P < 0.05). Mating-oriented men were more likely to have co-elevated PM CURT and T (P < 0.05), defined as being in the highest tertile for both hormones, while parenting-oriented men were more likely to have co-downregulated (lowest tertile for both hormones) AM (P < 0.05) and PM (P < 0.001) CURT and T. Conclusions: CURT and T are positively related upon waking and before bed and are more likely to be co-elevated in mating-oriented men and co-downregulated in parenting-oriented men. Our findings support the interpretation that CURT and T serve complementary roles in facilitating men's mating effort. Am. J. Hum. Biol. 23:609-620, 2011. (C) 2011 Wiley-Liss, Inc. [Gettler, Lee T.; McDade, Thomas W.; Kuzawa, Christopher W.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [Gettler, Lee T.; McDade, Thomas W.; Kuzawa, Christopher W.] Northwestern Univ, Ctr Social Dispar & Hlth, Inst Policy Res, Cells Soc C2S, Evanston, IL 60208 USA Kuzawa, CW (reprint author), Northwestern Univ, Dept Anthropol, 1810 Hinman Ave, Evanston, IL 60208 USA. kuzawa@northwestern.edu Wenner Gren Foundation [7356]; National Science Foundation [BCS-0542182]; Interdisciplinary Obesity Center [RR20649]; Center for Environmental Health and Susceptibility [ES10126]; [7-2004-E] Contract grant sponsor: Wenner Gren Foundation; Contract grant number; 7356; Contract grant sponsor: National Science Foundation; Contract grant number: BCS-0542182; Contract grant sponsor: Interdisciplinary Obesity Center; Contract grant number: RR20649; Contract grant sponsor: Center for Environmental Health and Susceptibility; Contract grant number: ES10126; Contract grant sponsor: project 7-2004-E. ADAIR LS, 1993, DEMOGRAPHY, V30, P63, DOI 10.2307/2061863; ADAIR LS, 2010, INT J EPIDE IN PRESS; Adam EK, 2006, P NATL ACAD SCI USA, V103, P17058, DOI 10.1073/pnas.060503103; Ainsworth BE, 2000, MED SCI SPORT EXER, V32, pS498, DOI 10.1097/00005768-200009001-00009; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; Axelsson J, 2005, J CLIN ENDOCR METAB, V90, P4530, DOI 10.1210/jc.2005-0520; Berg SJ, 2001, MAYO CLIN PROC, V76, P582; Bernichtein S, 2008, TRENDS ENDOCRIN MET, V19, P231, DOI 10.1016/j.tem.2008.06.003; Bertherat J, 2005, J CLIN ENDOCR METAB, V90, P1302, DOI 10.1210/jc.2004-1256; Boonstra R, 2001, ECOLOGY, V82, P1930, DOI 10.2307/2680058; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Booth A, 1999, J HEALTH SOC BEHAV, V40, P130, DOI 10.2307/2676369; Booth A, 1999, J BEHAV MED, V22, P1, DOI 10.1023/A:1018705001117; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Bribiescas RG, 2008, EVOLUTION HLTH DIS, P77; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Buunk BP, 2002, PERS RELATIONSHIP, V9, P271, DOI 10.1111/1475-6811.00018; Cohen D, 1996, J PERS SOC PSYCHOL, V70, P945, DOI 10.1037/0022-3514.70.5.945; COHEN S, 1983, J HEALTH SOC BEHAV, V24, P385, DOI 10.2307/2136404; Cooke RR, 1996, CLIN CHEM, V42, P249; COOKE RR, 1993, CLIN ENDOCRINOL, V39, P163, DOI 10.1111/j.1365-2265.1993.tb01769.x; Cooper MS, 2000, BONE, V27, P375, DOI 10.1016/S8756-3282(00)00344-6; Creel S, 1997, BEHAV ECOL, V8, P298, DOI 10.1093/beheco/8.3.298; CUMMING DC, 1983, J CLIN ENDOCR METAB, V57, P671, DOI 10.1210/jcem-57-3-671; Czoty PW, 2009, J NEUROENDOCRINOL, V21, P68, DOI 10.1111/j.1365-2826.2008.01800.x; DABBS JM, 1990, PHYSIOL BEHAV, V48, P83, DOI 10.1016/0031-9384(90)90265-6; DABBS JM, 1990, PSYCHOL SCI, V1, P209, DOI 10.1111/j.1467-9280.1990.tb00200.x; DAITZMAN R, 1980, PERS INDIV DIFFER, V1, P103, DOI 10.1016/0191-8869(80)90027-6; Dittami J, 2008, GEN COMP ENDOCR, V155, P552, DOI 10.1016/j.ygcen.2007.08.009; ELIAS M, 1981, AGGRESSIVE BEHAV, V7, P215, DOI 10.1002/1098-2337(1981)7:3<215::AID-AB2480070305>3.0.CO;2-M; Erickson K, 2003, NEUROSCI BIOBEHAV R, V27, P233, DOI 10.1016/S0149-7634(03)00033-2; FAIMAN C, 1971, J CLIN ENDOCR METAB, V33, P186, DOI 10.1210/jcem-33-2-186; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; *FNRI, 1997, FOOD NUTR RES I FOOD; Gao HB, 1997, ENDOCRINOLOGY, V138, P156, DOI 10.1210/en.138.1.156; Gerra G, 1999, NEUROPSYCHOBIOLOGY, V39, P207, DOI 10.1159/000026586; Gettler LT, 2010, AM J PHYS ANTHROPOL, V142, P590, DOI 10.1002/ajpa.21282; Gettler LT, 2010, AM ANTHROPOL, V112, P7, DOI 10.1111/j.1548-1433.2009.01193.x; Gray PB, 2007, HORM BEHAV, V52, P499, DOI 10.1016/j.yhbeh.2007.07.005; Gray PB, 2010, FATHERHOOD EVOLUTION, P304; Gray Peter B., 2009, ENDOCRINOLOGY SOCIAL, P270; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; HAUTANEN A, 1993, METABOLISM, V42, P870, DOI 10.1016/0026-0495(93)90062-S; Hoogeveen AR, 1996, INT J SPORTS MED, V17, P423; Hu GX, 2008, STEROIDS, V73, P1018, DOI 10.1016/j.steroids.2007.12.020; Kunz-Ebrecht SR, 2004, SOC SCI MED, V58, P1523, DOI 10.1016/s0277-9536(03)00347-2; Kuzawa CW, 2009, HORM BEHAV, V56, P429, DOI 10.1016/j.yhbeh.2009.07.010; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; Lacroix A, 1999, NEW ENGL J MED, V341, P1577, DOI 10.1056/NEJM199911183412104; Lance VA, 2001, J EXP ZOOL, V289, P285, DOI 10.1002/1097-010X(20010415/30)289:5<285::AID-JEZ2>3.3.CO;2-2; Liening SH, 2010, PHYSIOL BEHAV, V99, P8, DOI 10.1016/j.physbeh.2009.10.001; Lohman T. G., 1988, ANTHROPOMETRIC STAND; Lukas WD, 2005, AM J HUM BIOL, V17, P489, DOI 10.1002/ajhb.20402; Lund TD, 2004, J NEUROENDOCRINOL, V16, P272, DOI 10.1111/j.0953-8194.2004.01167.x; Lynch JW, 2002, HORM BEHAV, V41, P275, DOI 10.1006/hbeh.2002.1772; MACADAMS MR, 1986, ANN INTERN MED, V104, P648, DOI 10.7326/0003-4819-104-5-648; Mateos C, 2005, ANIM BEHAV, V69, P249, DOI 10.1016/j.anbehav.2004.03.010; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; McDade TW, 2011, AM J HUM BIOL, V23, P313, DOI 10.1002/ajhb.21128; McEwen BS, 2010, HORM BEHAV, V57, P105, DOI 10.1016/j.yhbeh.2009.09.011; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Mehta PH, 2008, J PERS SOC PSYCHOL, V94, P1078, DOI 10.1037/0022-3514.94.6.1078; MONDER C, 1994, ENDOCRINOLOGY, V134, P1199, DOI 10.1210/en.134.3.1199; Moore IT, 2000, PHYSIOL BIOCHEM ZOOL, V73, P307, DOI 10.1086/316748; Mooring MS, 2006, HORM BEHAV, V49, P369, DOI 10.1016/j.yhbeh.2005.08.008; Mooring MS, 2004, HORM BEHAV, V46, P392, DOI 10.1016/j.yhbeh.2004.03.008; Morgan CA, 2000, BIOL PSYCHIAT, V47, P891, DOI 10.1016/S0006-3223(99)00307-8; Muehlenbein MP, 2010, BIOPSYCHOSOC MED, V4, DOI 10.1186/1751-0759-4-21; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; Muller MN, 2004, BEHAV ECOL SOCIOBIOL, V55, P332, DOI 10.1007/s00265-003-0713-1; Muniyappa R, 2010, J GERONTOL A-BIOL, V65, P1185, DOI 10.1093/gerona/glq128; Ostner J, 2008, BEHAV ECOL SOCIOBIOL, V62, P627, DOI 10.1007/s00265-007-0487-y; Pabon JE, 1996, J CLIN ENDOCR METAB, V81, P2397, DOI 10.1210/jc.81.6.2397; PACKER C, 1979, ANIM BEHAV, V27, P1, DOI 10.1016/0003-3472(79)90126-X; PAUL A, 1993, PRIMATES, V34, P491, DOI 10.1007/BF02382660; Pearson TA, 2003, CIRCULATION, V107, P499, DOI 10.1161/01.CIR.0000052939.59093.45; Popma A, 2007, BIOL PSYCHIAT, V61, P405, DOI 10.1016/j.biopsych.2006.06.006; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; RIVIER C, 1991, BIOL REPROD, V45, P523, DOI 10.1095/biolreprod45.4.523; Roney JR, 2006, P R SOC B, V273, P2169, DOI 10.1098/rspb.2006.3569; Roney JR, 2010, P R SOC B, V277, P57, DOI 10.1098/rspb.2009.1538; Rubinow DR, 2005, NEUROPSYCHOPHARMACOL, V30, P1906, DOI 10.1038/sj.npp.1300742; Salvador A, 2003, PSYCHONEUROENDOCRINO, V28, P364, DOI 10.1016/S0306-4530(02)00028-8; Sapolsky RM, 2004, ANNU REV ANTHROPOL, V33, P393, DOI 10.1146/annurev.anthro.33.070203.144000; SAPOLSKY RM, 1991, PSYCHONEUROENDOCRINO, V16, P281, DOI 10.1016/0306-4530(91)90015-L; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Suay F, 1999, PSYCHONEUROENDOCRINO, V24, P551, DOI 10.1016/S0306-4530(99)00011-6; Tilbrook AJ, 2002, STRESS, V5, P83, DOI 10.1080/10253890290027912; Tomlinson JW, 2004, ENDOCR REV, V25, P831, DOI 10.1210/er.2003-0031; TOUITOU Y, 1990, EUR J APPL PHYSIOL O, V60, P288, DOI 10.1007/BF00379398; van der Meij L, 2010, HORM BEHAV, V58, P501, DOI 10.1016/j.yhbeh.2010.04.009; van Honk J, 1999, HORM BEHAV, V36, P17, DOI 10.1006/hbeh.1999.1521; van Honk J, 2000, PSYCHONEUROENDOCRINO, V25, P577, DOI 10.1016/S0306-4530(00)00011-1; VANSCHAIK CP, 1991, PRIMATES, V32, P345, DOI 10.1007/BF02382675; Viau V, 1996, J NEUROSCI, V16, P1866; Vierhapper H, 2000, METABOLISM, V49, P229, DOI 10.1016/S0026-0495(00)91429-X; Vitzthum VJ, 2009, AM J HUM BIOL, V21, P762, DOI 10.1002/ajhb.20927; Weibel L, 1996, AM J PHYSIOL-ENDOC M, V270, pE608; Williamson M, 2007, J COMP NEUROL, V503, P717, DOI 10.1002/cne.21411; Wirth MM, 2007, PHYSIOL BEHAV, V90, P496, DOI 10.1016/j.physbeh.2006.10.016; Worthman CM, 1999, HORMONES HLTH BEHAV, P47; Wroblewski EE, 2009, ANIM BEHAV, V77, P873, DOI 10.1016/j.anbehav.2008.12.014; Yang XY, 2006, CELL, V126, P801, DOI 10.1016/j.cell.2006.06.050; ZORRILLA EP, 1995, PSYCHONEUROENDOCRINO, V20, P591, DOI 10.1016/0306-4530(95)00005-9 107 36 38 1 14 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2011 23 5 609 620 10.1002/ajhb.21187 12 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 813TH WOS:000294392600005 21638512 2019-02-21 J Fujita, M; Shell-Duncan, B; Ndemwa, P; Brindle, E; Lo, YJ; Kombe, Y; O'Connor, K Fujita, Masako; Shell-Duncan, Bettina; Ndemwa, Philip; Brindle, Eleanor; Lo, Yun-Jia; Kombe, Yeri; O'Connor, Kathleen Vitamin A Dynamics in Breastmilk and Liver Stores: A Life History Perspective AMERICAN JOURNAL OF HUMAN BIOLOGY English Article RELATIVE-DOSE-RESPONSE; RETINOL-BINDING-PROTEIN; RENDILLE PASTORALISTS; NORTHERN KENYA; SERUM RETINOL; MATERNAL-DIETARY; LACTATING WOMEN; PLASMA RETINOL; BETA-CAROTENE; DEFICIENCY Objectives: Newborns are dependent on breastmilk vitamin A for building hepatic stores of vitamin A that will become critical for survival after weaning. It has been documented that vitamin A concentrations in breastmilk decline across the first year postpartum in both well-nourished and malnourished populations. The reason for this decline has been assumed to be a sign of concurrently depleting maternal hepatic stores. This study investigates this assumption to clarify why the decline occurs, drawing on life history theory. Methods: A cross sectional survey was conducted among lactating mothers in Kenya in 2006. Data were used to examine (1) the relationship between liver vitamin A and time, (2) if the relationship between milk and liver vitamin A varies by time, and (3) by maternal parity. Results: The relationship between liver vitamin A and time fits the quadratic pattern with marginal significance (P = 0.071, n = 192); the liver vitamin A declined during early postpartum then recovered in late postpartum time, controlling covariates. The milk-liver vitamin A relationship varied by postpartum time periods (P = 0.03) and by maternal parity (P = 0.005). Mothers in earlier postpartum or higher parity had a stronger positive relationship between milk and liver vitamin A than mothers in later postpartum or lower parity. Conclusions: Our observations are consistent with life history tradeoffs and negate the assumption that maternal hepatic and milk vitamin A decline together. Rather, maternal liver vitamin A has a dynamic relationship with milk vitamin A, particularly depending on postpartum time and maternal parity. Am. J. Hum. Biol. 23:664-673, 2011. (C) 2011 Wiley-Liss, Inc. [Fujita, Masako] Michigan State Univ, Dept Anthropol, E Lansing, MI 48824 USA; [Shell-Duncan, Bettina; O'Connor, Kathleen] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Shell-Duncan, Bettina; Brindle, Eleanor; O'Connor, Kathleen] Univ Washington, Ctr Studies Demog & Ecol, Seattle, WA 98195 USA; [Ndemwa, Philip; Kombe, Yeri] Kenya Govt Med Res Ctr, Ctr Publ Hlth Res, Nairobi, Kenya; [Lo, Yun-Jia] Michigan State Univ, Dept Counseling Educ Psychol & Special Educ, E Lansing, MI 48824 USA; [Lo, Yun-Jia] Michigan State Univ, Ctr Stat Training & Consulting, E Lansing, MI 48824 USA Fujita, M (reprint author), Michigan State Univ, Dept Anthropol, 328 Baker Hall, E Lansing, MI 48824 USA. masakof@msu.edu Brindle, Eleanor/0000-0002-4272-0909 NSF Dissertation Improvement [0622358]; Wenner-Gren Foundation Research [7460]; Micronutrient Initiative (Ottawa) Contract grant sponsor: NSF Dissertation Improvement; Contract grant number: 0622358; Contract grant sponsor: Wenner-Gren Foundation Research; Contract grant number: 7460; Contract grant sponsor: Micronutrient Initiative (Ottawa). Ahmed F, 2003, PUBLIC HEALTH NUTR, V6, P447, DOI 10.1079/PHN2002454; BIERI JG, 1979, AM J CLIN NUTR, V32, P2143; Black R, 2003, B WORLD HEALTH ORGAN, V81, P79; BOEDIMAN D, 1979, J TROP PED ENV CH H, V25, P107, DOI 10.1093/tropej/25.4.107; Brindle E, 2010, J IMMUNOL METHODS, V362, P112, DOI 10.1016/j.jim.2010.09.014; Ellison P. T., 1991, APPLICATIONS BIOL AN, P14; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Erhardt, 2003, SIGHT LIFE VITAMIN A; Ettyang GA, 2003, ANN NUTR METAB, V47, P276, DOI 10.1159/000072400; Fawzi W, 2002, JAIDS-J ACQ IMM DEF, V31, P331, DOI 10.1097/00126334-200211010-00010; Fratkin E., 1991, SURVIVING DROUGHT DE; Fratkin EM, 1999, CURR ANTHROPOL, V40, P729, DOI 10.1086/300093; Frisancho A. R, 1990, ANTHROPOMETRIC STAND, P1; Fujita M, 2008, AM J HUM BIOL, V20, P219; Fujita M, 2004, AM J PHYS ANTHROPOL, V123, P277, DOI 10.1002/ajpa.10310; Fujita M., 2006, J DEV ALTERNATIVE AR, V25, P88; FUJITA M, 2009, MICR FOR BEIJ CHIN M; Fujita M., 2008, THESIS U WASHINGTON; FUJITA M, 2009, AM J PHYS ANTHROPOL, V138, P130; FUJITA M, 2007, ANN M CAN ASS PHYS A; Fujita M, 2005, STUD HUM ECOL ADAPT, V1, P209; Fujita M, 2009, AM J CLIN NUTR, V90, P217, DOI 10.3945/ajcn.2009.27569; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBREMEDHIN M, 1976, AM J CLIN NUTR, V29, P441; GIBSON RS, 1990, PRINCIPLES NUTR ASSE, P37; Gross R, 1998, EUR J CLIN NUTR, V52, P884, DOI 10.1038/sj.ejcn.1600660; Haskell MJ, 1999, J MAMMARY GLAND BIOL, V4, P243, DOI 10.1023/A:1018745812512; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; JELLIFFE DB, 1978, AM J CLIN NUTR, V31, P492; KALTON G, 1983, INTRO SURVEY SAMPLIN, P5; KATZ J, 1995, J NUTR, V125, P2122; KELSEY JL, 1986, MONOGRAPHS EPIDEMIOL, V10; Lombardi J., 1998, COMP VERTEBRATE REPR, P353; LUCAS A, 1978, BRIT MED J, V1, P1018, DOI 10.1136/bmj.1.6119.1018; MCLAREN DS, 2001, SIGHT LIFE MANUAL VI; Nathan MA, 1996, SOC SCI MED, V43, P503, DOI 10.1016/0277-9536(95)00428-9; Newman V., 1993, VITAMIN A BREASTFEED; Panpanich R, 2002, ANN TROP PAEDIATR, V22, P321, DOI 10.1179/027249302125001976; Rice AL, 1999, J NUTR, V129, P356; Rice AL, 2000, AM J CLIN NUTR, V71, P799; Rice AL, 2000, ADV EXP MED BIOL, V478, P375; Rosales FJ, 1996, J LIPID RES, V37, P962; ROSE MR, 1983, AM ZOOL, V25, P15; Roth E. A., 1994, AM ANTHROPOL, V95, P597; Roth EA, 1999, HUM ECOL, V27, P517, DOI 10.1023/A:1018787826307; Roy SK, 1997, EUR J CLIN NUTR, V51, P302, DOI 10.1038/sj.ejcn.1600398; Shell-Duncan B, 2000, AM J PHYS ANTHROPOL, V113, P183, DOI 10.1002/1096-8644(200010)113:2<183::AID-AJPA4>3.0.CO;2-6; Shell-Duncan B, 2004, SOC SCI MED, V58, P2485, DOI 10.1016/j.socscimed.2003.09.016; SIBLY R, 1987, J THEOR BIOL, V125, P177, DOI 10.1016/S0022-5193(87)80039-5; Sobania N.W., 1988, ECOLOGY SURVIVAL CAS, P219; SOMMER A, 1982, ARCH OPHTHALMOL-CHIC, V100, P399; Sommer A, 1996, VITAMIN A DEFICIENCY; StataCorp LP, 2004, STATA STAT SOFTW VER; Stearns S, 1992, EVOLUTION LIFE HIST; STOLTZFUS FTJ, 1993, AM J CLIN NUTR, V58, P167; Stoltzfus RJ, 1995, B WORLD HEALTH ORGAN, V73, P703; Stoltzfus RJ, 2002, ADV EXP MED BIOL, V503, P39; Tanumihardjo SA, 2005, AM J CLIN NUTR, V82, P1135; Thurnham DI, 2003, LANCET, V362, P2052, DOI 10.1016/S0140-6736(03)15099-4; UNDERWOOD BA, 1994, AM J CLIN NUTR S, V59, P517; *UNICEF, 2004, VIT MIN DEF REP GLOB; VALLEGGIA CR, 2004, J BIOSOC SCI, V36, P573; Wang C D, 1999, J Perinatol, V19, P343, DOI 10.1038/sj.jp.7200204; WHO, 1998, SAF VIT A DOS PREGN; WHO, 1996, IND ASS VIT A DEF TH; *WHO, 2004, WORLD HLTH REP 2003; *WHO UNICEF IVACG, 1988, VIT A SUPPL GUID THE; WILLIAMS CD, 1983, ARCH DIS CHILD, V58, P550, DOI 10.1136/adc.58.7.550; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 69 12 13 0 7 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2011 23 5 664 673 10.1002/ajhb.21195 10 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 813TH WOS:000294392600012 21695742 Green Accepted 2019-02-21 J Zheng, YC; Peng, R; Kuro-O, M; Zeng, XM Zheng, Yuchi; Peng, Rui; Kuro-o, Masaki; Zeng, Xiaomao Exploring Patterns and Extent of Bias in Estimating Divergence Time from Mitochondrial DNA Sequence Data in a Particular Lineage: A Case Study of Salamanders (Order Caudata) MOLECULAR BIOLOGY AND EVOLUTION English Article molecular clock; substitution saturation; substitution model; deep calibration; mitochondrial genome; nuclear exon BRANCH-LENGTH ESTIMATION; LIFE-HISTORY EVOLUTION; PHYLOGENETIC ANALYSIS; PLETHODONTID SALAMANDERS; MOLECULAR EVOLUTION; FOSSIL CALIBRATIONS; MAXIMUM-LIKELIHOOD; RAPID DIVERSIFICATION; BAYESIAN-ESTIMATION; MODERN AMPHIBIANS In the practice of molecular dating, substitution saturation will bias the results if not properly modeled. Date estimates based on commonly used mitochondrial DNA sequences likely suffer from this problem because of their high substitution rate. Nevertheless, the patterns and extent of such expected bias remain unknown for many major evolutionary lineages, which often differ in ages, available calibrations, and substitution rates of their mitochondrial genome. In this case study of salamanders, we used estimates based on multiple nuclear exons to assess the effects of saturation on dating divergences using mitochondrial genome sequences on a timescale of similar to 200-300 My. The results indicated that, due to saturation for older divergences and in the absence of younger effective calibration points, dates derived from the mitochondrial data were considerably overestimated and systematically biased toward the calibration point for the ingroup root. The overestimate might be as great as 3-10 times (about 20 My) older than actual divergence dates for recent splitting events and 40 My older for events that are more ancient. For deep divergences, dates estimated were strongly compressed together. Furthermore, excluding the third codon positions of protein-coding genes or only using the RNA genes or second codon positions did not considerably improve the performance. In the order Caudata, slowly evolving markers such as nuclear exons are preferred for dating a phylogeny covering a relatively wide time span. Dates estimated from these markers can be used as secondary calibrations for dating recent events based on rapidly evolving markers for which mitochondrial DNA sequences are attractive candidates due to their short coalescent time. In other groups, similar evaluation should be performed to facilitate the choice of markers for molecular dating and making inferences from the results. [Zheng, Yuchi; Peng, Rui; Zeng, Xiaomao] Chinese Acad Sci, Chengdu Inst Biol, Dept Herpetol, Chengdu, Peoples R China; [Peng, Rui] Sichuan Univ, Coll Life Sci, Sichuan Key Lab Conservat Biol Endangered Wildlif, Chengdu 610064, Peoples R China; [Kuro-o, Masaki] Hirosaki Univ, Dept Biol, Hirosaki, Aomori, Japan Zheng, YC (reprint author), Chinese Acad Sci, Chengdu Inst Biol, Dept Herpetol, Chengdu, Peoples R China. zhengyc@cib.ac.cn; zengxm@cib.ac.cn Zeng, Xiaomao/0000-0002-1952-2170 National Natural Sciences Foundation of China [NSFC-30870287, NSFC-30900134]; Chinese Academy of Sciences [08B3031100, 09C3011100, KSCX2-YW-Z-0906]; National Science Foundation [EF-0334939] We are grateful for the access to the Paradactylodon tissue samples, which are deposited in the Museum of Vertebrate Zoology at Berkeley. We thank David Wake, Jinzhong Fu, and Rachel Mueller for their valuable comments and suggestions on this manuscript. We thank Huijie Qiao, Chaodong Zhu, Jianping Jiang, and Xianguang Guo for their help with this work. We also thank Koichiro Tamura and two anonymous reviewers for their insightful and constructive comments. Part of this work was carried out using the resources of the Computational Biology Service Unit from Cornell University which is partially funded by Microsoft Corporation. This work was supported by the National Natural Sciences Foundation of China (NSFC-30870287, NSFC-30900134), by the Chinese Academy of Sciences (08B3031100, 09C3011100, KSCX2-YW-Z-0906), and by the National Science Foundation (EF-0334939). AmphibiaWeb, 2010, INF AMPH BIOL CONS; Anderson J, 2008, EVOL BIOL, V35, P231, DOI 10.1007/s11692-008-9044-5; Arbogast BS, 2002, ANNU REV ECOL SYST, V33, P707, DOI 10.1146/annurev.ecolsys.33.010802.150500; Benton MJ, 2007, MOL BIOL EVOL, V24, P26, DOI 10.1093/molbev/msl150; Blaxter Mark, 2009, P247; Bonett RM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005615; Bossuyt Franky, 2009, P357; Brown RP, 2010, SYST BIOL, V59, P119, DOI 10.1093/sysbio/syp082; BROWN WM, 1979, P NATL ACAD SCI USA, V76, P1967, DOI 10.1073/pnas.76.4.1967; Campbell V, 2009, SYST BIOL, V58, P560, DOI 10.1093/sysbio/syp056; Cannatella David C., 2009, P353; Cannone JJ, 2002, BMC BIOINFORMATICS, V3, DOI 10.1186/1471-2105-3-2; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chippindale PT, 2004, EVOLUTION, V58, P2809; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Edwards SV, 2000, EVOLUTION, V54, P1839; Evans SE, 2005, ZOOL J LINN SOC-LOND, V143, P599, DOI 10.1111/j.1096-3642.2005.00159.x; Evans SE, 1996, PHILOS T R SOC B, V351, P627, DOI 10.1098/rstb.1996.0061; FARRIS JS, 1994, CLADISTICS, V10, P315, DOI 10.1111/j.1096-0031.1996.tb00196.x; FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x; Forest F, 2009, ANN BOT-LONDON, V104, P789, DOI 10.1093/aob/mcp192; Funk DJ, 2003, ANNU REV ECOL EVOL S, V34, P397, DOI 10.1146/annurev.ecolsys.34.011802.132421; Galtier N, 2006, GENOME RES, V16, P215, DOI 10.1101/gr.4305906; Galtier N, 2009, MOL ECOL, V18, P4541, DOI 10.1111/j.1365-294X.2009.04380.x; Gao KQ, 2003, NATURE, V422, P424, DOI 10.1038/nature01491; Gardner JD, 2003, J VERTEBR PALEONTOL, V23, P769, DOI 10.1671/1828-4; Hedges S.B, 2009, TIMETREE LIFE; Hedges SB, 2004, TRENDS GENET, V20, P242, DOI 10.1016/j.tig.2004.03.004; Ho SYW, 2007, J AVIAN BIOL, V38, P409, DOI 10.1111/j.2007.0908-8857.04168.x; Hugall AF, 2007, SYST BIOL, V56, P543, DOI 10.1080/10635150701477825; Hurley IA, 2007, P ROY SOC B-BIOL SCI, V274, P489, DOI 10.1098/rspb.2006.3749; Inoue J, 2010, SYST BIOL, V59, P74, DOI [10.1093/sysbio/syp096, 10.1093/sysbio/syp078]; Kelchner SA, 2007, TRENDS ECOL EVOL, V22, P87, DOI 10.1016/j.tree.2006.10.004; Kishino H, 2001, MOL BIOL EVOL, V18, P352, DOI 10.1093/oxfordjournals.molbev.a003811; Lowe TM, 1997, NUCLEIC ACIDS RES, V25, P955, DOI 10.1093/nar/25.5.955; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; Maddison WP, 2006, SYST BIOL, V55, P21, DOI 10.1080/10635150500354928; Moore William S., 2009, P445; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; NAYLOR BG, 1993, CAN J EARTH SCI, V30, P814, DOI 10.1139/e93-067; Nei M., 2000, MOL EVOLUTION PHYLOG, P40; Nichols R, 2001, TRENDS ECOL EVOL, V16, P358, DOI 10.1016/S0169-5347(01)02203-0; Nilsson MA, 2010, GENE, V455, P22, DOI 10.1016/j.gene.2010.02.002; NYLANDER JAA, 2004, MRMODELTEST V 2 DIST; Peng R, 2010, MOL PHYLOGENET EVOL, V56, P252, DOI 10.1016/j.ympev.2009.12.011; Phillips MJ, 2009, GENE, V441, P132, DOI 10.1016/j.gene.2008.08.017; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; Pulquerio MJF, 2007, TRENDS ECOL EVOL, V22, P180, DOI 10.1016/j.tree.2006.11.013; Rabosky DL, 2008, EVOLUTION, V62, P1866, DOI 10.1111/j.1558-5646.2008.00409.x; Rambaut A, 2007, TRACER V1 4; Rannala B, 2007, SYST BIOL, V56, P453, DOI 10.1080/10635150701420643; Revell LJ, 2005, SYST BIOL, V54, P973, DOI 10.1080/10635150500354647; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rutschmann F, 2006, DIVERS DISTRIB, V12, P35, DOI 10.1111/j.1366-9516.2006.00210.x; San Mauro D, 2010, MOL PHYLOGENET EVOL, V56, P554, DOI 10.1016/j.ympev.2010.04.019; Sanders KL, 2008, J EVOLUTION BIOL, V21, P682, DOI 10.1111/j.1420-9101.2008.01525.x; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sanderson MJ, 2001, AM J BOT, V88, P1499, DOI 10.2307/3558458; Sanderson MJ, 2003, BIOINFORMATICS, V19, P301, DOI 10.1093/bioinformatics/19.2.301; Sanderson MJ, 2004, R8S VERSION 1 70 USE; Schwartz RS, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-5; Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201; Simon C, 2006, ANNU REV ECOL EVOL S, V37, P545, DOI 10.1146/annurev.ecolsys.37.091305.110018; Stamatakis A, 2007, J VLSI SIG PROC SYST, V48, P271, DOI 10.1007/s11265-007-0067-4; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Strugnell Jan M., 2009, P242; Sullivan J, 2005, ANNU REV ECOL EVOL S, V36, P445, DOI 10.1146/annurev.ecolsys.36.102003.152633; Thompson JD, 1997, NUCLEIC ACIDS RES, V25, P4876, DOI 10.1093/nar/25.24.4876; Thorne JL, 1998, MOL BIOL EVOL, V15, P1647, DOI 10.1093/oxfordjournals.molbev.a025892; Thorne JL, 2002, SYST BIOL, V51, P689, DOI 10.1080/10635150290102456; TIHEN JA, 1981, J HERPETOL, V15, P35, DOI 10.2307/1563644; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Vieites David R., 2009, P365; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, EVOLUTION, V60, P2585; Wilke T, 2009, AM MALACOL BULL, V27, P25, DOI 10.4003/006.027.0203; Wuyts J, 2004, NUCLEIC ACIDS RES, V32, pD101, DOI 10.1093/nar/gkh065; Yang ZH, 2006, MOL BIOL EVOL, V23, P212, DOI 10.1093/molbev/msj024; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088; Zhang P, 2008, MOL PHYLOGENET EVOL, V49, P586, DOI 10.1016/j.ympev.2008.08.020; Zhang P, 2006, P NATL ACAD SCI USA, V103, P7360, DOI 10.1073/pnas.0602325103; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010 85 60 64 0 24 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0737-4038 1537-1719 MOL BIOL EVOL Mol. Biol. Evol. SEP 2011 28 9 2521 2535 10.1093/molbev/msr072 15 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 815TO WOS:000294552700014 21422243 Bronze 2019-02-21 J Remmel, T; Davison, J; Tammaru, T Remmel, Triinu; Davison, John; Tammaru, Toomas Quantifying predation on folivorous insect larvae: the perspective of life-history evolution BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Review body size; larval mortality; Lepidoptera; optimality models; top-down effects GYPSY-MOTH LEPIDOPTERA; SIZE-DEPENDENT PREDATION; ENEMY-FREE SPACE; EPIPHYAS-POSTVITTANA LEPIDOPTERA; PLUTELLA-XYLOSTELLA LEPIDOPTERA; EPIRRITA-AUTUMNATA LEPIDOPTERA; BEETLE GALERUCELLA-LINEOLA; TREE-FEEDING INSECTS; SAWFLY ATHALIA-ROSAE; WILLOW LEAF BEETLE Assumptions about mortality rates form a cornerstone for models of life-history evolution. When seeking adaptive explanations for body sizes, the size dependence of predation risk is of particular interest. Here, we review published studies that provide (1) estimates of the daily predation rates experienced by insect larvae feeding on tree leaves or (2) evidence concerning the relationship between predation risk and larval size. Larvae were found to experience an average avian predation rate of 3.1% per day and an average arthropod predation rate of 10.5% per day. In some studies, mortality rates were systematically dependent on parameters of the larvae (e. g. coloration) or of the environment (host plant, season), but not to the extent that would render generalizations meaningless. Nevertheless, mortality rates varied considerably more for arthropod than avian predators, making an estimate of avian predation rate more reliable for use in quantitative models. Moreover, birds tend to be a more important predator guild exploiting the larger larval stages, as indicated by the predominantly positive size dependence of avian predation risk. By contrast, predation by arthropods was generally negatively size dependent. Based on the available data, we estimate that avian predation rates increase approximately 3.6-fold, while arthropod predation rates decrease approximately 4.9-fold, in response to a 2-fold increase in the linear size of prey. A modelling exercise showed that realistic mortality rates - if assumed to be independent of size - cannot serve as a basis for adaptive explanations for observed body sizes. However, by assuming a positive size dependence of mortality risk within the limits observed for bird predation, it is possible to explain a wide range of body sizes within an optimality framework. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104, 1-18. [Remmel, Triinu; Davison, John; Tammaru, Toomas] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, EE-51014 Tartu, Estonia Remmel, T (reprint author), Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, 46 Vanemuise St, EE-51014 Tartu, Estonia. triinu.remmel@ut.ee Remmel, Triinu/H-3207-2012 Remmel, Triinu/0000-0003-0794-658X Estonian Target Financing [SF0180122S08]; Estonian Science Foundation [7522]; European Union through the (Center of Excellence FIBIR) We thank Toomas Esperk, Juhan Javois, Ann Kraut, Freerk Molleman, Siiri-Lii Sandre, Anu Sang, Robby Stoks, Tiit Teder and the anonymous reviewers for their valuable comments on the manuscript. The study was financed by Estonian Target Financing grant SF0180122S08, Estonian Science Foundation grant 7522 and by the European Union through the European Regional Development Fund (Center of Excellence FIBIR). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ATLEGRIM O, 1992, ECOGRAPHY, V15, P19, DOI 10.1111/j.1600-0587.1992.tb00003.x; BAKER RR, 1970, J ZOOL, V162, P43; Beatty CD, 2005, ANIM BEHAV, V70, P199, DOI 10.1016/j.anbehav.2004.09.023; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; BERENBAUM MR, 1992, J INSECT BEHAV, V5, P547, DOI 10.1007/BF01048003; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Berger D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1655, DOI 10.1007/s00265-008-0594-4; Berger D, 2006, EVOL ECOL, V20, P575, DOI 10.1007/s10682-006-9118-8; BERNAYS EA, 1988, ENTOMOL EXP APPL, V49, P131, DOI 10.1111/j.1570-7458.1988.tb02484.x; BERNAYS EA, 1989, OECOLOGIA, V79, P427, DOI 10.1007/BF00384324; Bjorkman C, 2000, POPUL ECOL, V42, P91, DOI 10.1007/s101440050013; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Boege K, 2006, OIKOS, V115, P559, DOI 10.1111/j.2006.0030-1299.15076.x; Caldas Astrid, 1992, Journal of Research on the Lepidoptera, V31, P195; CAMPBELL RW, 1977, ENVIRON ENTOMOL, V6, P315, DOI 10.1093/ee/6.2.315; Cappuccino Naomi, 1995, P65, DOI 10.1016/B978-012159270-7/50005-1; CHIRAVATHANAPONG SN, 1980, FLA ENTOMOL, V63, P146, DOI 10.2307/3494667; Clark BR, 1997, ECOL ENTOMOL, V22, P408, DOI 10.1046/j.1365-2311.1997.00091.x; Cogni R, 2002, J APPL ENTOMOL, V126, P74, DOI 10.1046/j.1439-0418.2002.00593.x; COOK SP, 1994, ENVIRON ENTOMOL, V23, P360, DOI 10.1093/ee/23.2.360; CORNELL HV, 1995, AM NAT, V145, P563, DOI 10.1086/285756; Cornell HV, 1998, ECOL ENTOMOL, V23, P340, DOI 10.1046/j.1365-2311.1998.00140.x; Cory JS, 2006, TRENDS ECOL EVOL, V21, P278, DOI 10.1016/j.tree.2006.02.005; Cowan JH, 1996, ICES J MAR SCI, V53, P23, DOI 10.1006/jmsc.1996.0003; CRAWFORD HS, 1989, ECOLOGY, V70, P152, DOI 10.2307/1938422; DANTHANARAYANA W, 1983, J ANIM ECOL, V52, P1, DOI 10.2307/4585; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Clercq P, 2000, BIOL CONTROL, V18, P65, DOI 10.1006/bcon.1999.0808; DeLong Allison Kimber, 1999, Natural Resource Modeling, V12, P129; Dicke M, 2000, ENTOMOL EXP APPL, V97, P237, DOI 10.1023/A:1004111624780; DYER L. A., 1997, J RES LEPIDOPTERA, V34, P48; DYER LA, 1993, OECOLOGIA, V96, P575, DOI 10.1007/BF00320516; Elkinton JS, 2008, ENVIRON ENTOMOL, V37, P1429, DOI 10.1603/0046-225X-37.6.1429; Endler JA, 2004, AM NAT, V163, P532, DOI 10.1086/382662; Esperk T, 2004, PHYSIOL ENTOMOL, V29, P56, DOI 10.1111/j.1365-3032.2004.0365.x; Exnerova A, 2003, BIOL J LINN SOC, V78, P517, DOI 10.1046/j.0024-4066.2002.00161.x; Exnerova A, 2007, BEHAV ECOL, V18, P148, DOI 10.1093/beheco/arl061; FEENY P, 1985, ECOL MONOGR, V55, P167, DOI 10.2307/1942556; Frank SD, 2007, BIOL CONTROL, V41, P230, DOI 10.1016/j.biocontrol.2007.01.012; Freitas AVL, 1996, J ANIM ECOL, V65, P205, DOI 10.2307/5723; Gamberale G, 1996, P ROY SOC B-BIOL SCI, V263, P1329, DOI 10.1098/rspb.1996.0195; Gamberale G, 1996, ANIM BEHAV, V52, P597, DOI 10.1006/anbe.1996.0200; Gamberale-Stille G, 2001, BEHAV ECOL, V12, P768, DOI 10.1093/beheco/12.6.768; Gentry GL, 2002, ECOLOGY, V83, P3108; GIBB JA, 1963, J ANIM ECOL, V32, P489, DOI 10.2307/2605; GIBB JA, 1958, J ANIM ECOL, V27, P375, DOI 10.2307/2245; Gomes-Filho A., 2003, J RES LEPIDOPTERA, V37, P37; Gotthard K, 2004, INTEGR COMP BIOL, V44, P471, DOI 10.1093/icb/44.6.471; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Gotthard K, 2005, OIKOS, V109, P503, DOI 10.1111/j.0030-1299.2005.14074.x; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; Grant JB, 2006, J EXP BIOL, V209, P3018, DOI 10.1242/jeb.02335; Greenberg R, 2000, ECOLOGY, V81, P1750, DOI 10.1890/0012-9658(2000)081[1750:TIOAIO]2.0.CO;2; Grieco F, 2002, ANIM BEHAV, V64, P517, DOI 10.1006/ANBE.2002.3073; Grieco F, 2001, ANIM BEHAV, V62, P107, DOI 10.1006/anbe.2001.1736; Grieco Fabrizio, 1999, Acta Ornithologica (Warsaw), V34, P199; Grushecky ST, 1998, ENVIRON ENTOMOL, V27, P268, DOI 10.1093/ee/27.2.268; Gunnarsson B, 1999, CAN J ZOOL, V77, P1419, DOI 10.1139/cjz-77-9-1419; HAGGSTROM H, 1995, OECOLOGIA, V104, P308, DOI 10.1007/BF00328366; Hajek AE, 2007, BIOL CONTROL, V41, P1, DOI 10.1016/j.biocontrol.2006.11.003; HARRISON S, 1995, OECOLOGIA, V101, P309, DOI 10.1007/BF00328816; Haseeb M, 2001, APPL ENTOMOL ZOOL, V36, P353, DOI 10.1303/aez.2001.353; Hawkins BA, 1997, ECOLOGY, V78, P2145, DOI 10.1890/0012-9658(1997)078[2145:PPAPAM]2.0.CO;2; HAY ME, 1990, LIMNOL OCEANOGR, V35, P1734, DOI 10.4319/lo.1990.35.8.1734; Heinrich Bernd, 1993, P224; Herrick NJ, 2008, BIOL CONTROL, V45, P386, DOI 10.1016/j.biocontrol.2008.02.008; HOLMES R T, 1979, Science (Washington D C), V206, P462, DOI 10.1126/science.206.4417.462; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hooks CRR, 2003, ECOL ENTOMOL, V28, P522, DOI 10.1046/j.1365-2311.2003.00544.x; Hu Yushan, 1989, Natural Enemies of Insects, V11, P164; Hunter AF, 2000, OIKOS, V91, P213, DOI 10.1034/j.1600-0706.2000.910202.x; Ishihara M, 2008, POPUL ECOL, V50, P35, DOI 10.1007/s10144-007-0066-0; ITO Y, 1968, Researches on Population Ecology (Tokyo), V10, P177, DOI 10.1007/BF02510872; Jansson G, 2003, SCAND J FOREST RES, V18, P225, DOI 10.1080/02827580308622; Jeschke JM, 2004, BIOL REV, V79, P337, DOI 10.1017/S1464793103006286; Jeschke JM, 2002, ECOL MONOGR, V72, P95, DOI 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2; Jones GA, 2005, CROP PROT, V24, P185, DOI 10.1016/j.cropro.2004.07.002; Jullien M, 1998, J ANIM ECOL, V67, P227, DOI 10.1046/j.1365-2656.1998.00171.x; Kalka MB, 2008, SCIENCE, V320, P71, DOI 10.1126/science.1153352; Karhu KJ, 1998, OECOLOGIA, V113, P509, DOI 10.1007/s004420050403; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; KLOMP H., 1966, ADVANCE ECOL RES, V3, P207, DOI 10.1016/S0065-2504(08)60312-8; Koh LP, 2006, BIOTROPICA, V38, P132, DOI 10.1111/j.1744-7429.2006.00114.x; Kokubo A., 1965, Researches on Population Ecology Kyoto University, V7, P23, DOI 10.1007/BF02518812; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KRISTENSEN CO, 1994, J APPL ENTOMOL, V117, P92, DOI 10.1111/j.1439-0418.1994.tb00712.x; Larsson S, 1997, ECOL ENTOMOL, V22, P445, DOI 10.1046/j.1365-2311.1997.00083.x; LAWRENCE WS, 1990, ECOL ENTOMOL, V15, P53, DOI 10.1111/j.1365-2311.1990.tb00783.x; Leimar O, 1996, OIKOS, V76, P228, DOI 10.2307/3546194; Liebhold A, 2000, POPUL ECOL, V42, P257, DOI 10.1007/PL00012004; Lill JT, 2001, EVOLUTION, V55, P2236; Lill JT, 2001, OECOLOGIA, V126, P418, DOI 10.1007/s004420000557; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lindstrom L, 2006, ANIM BEHAV, V72, P323, DOI 10.1016/j.anbehav.2005.10.015; Lindstrom L, 1999, BEHAV ECOL, V10, P317, DOI 10.1093/beheco/10.3.317; Lindstrom L, 2001, P ROY SOC B-BIOL SCI, V268, P159, DOI 10.1098/rspb.2000.1344; LINGLE S, 2008, AM NAT, V172, P12; Loiselle BA, 2002, BIOTROPICA, V34, P327, DOI 10.1646/0006-3606(2002)034[0327:WSUAEC]2.0.CO;2; Lopez R, 2000, ENVIRON ENTOMOL, V29, P116, DOI 10.1603/0046-225X-29.1.116; Ma Jun, 2005, Insect Science, V12, P281, DOI 10.1111/j.1005-295X.2005.00034.x; Mand T, 2007, EVOL ECOL, V21, P485, DOI 10.1007/s10682-006-9130-z; Mappes J, 2005, TRENDS ECOL EVOL, V20, P598, DOI 10.1016/j.tree.2005.07.011; Margraf N, 2003, FUNCT ECOL, V17, P605, DOI 10.1046/j.1365-2435.2003.00775.x; Marples NM, 1996, ANIM BEHAV, V51, P1417, DOI 10.1006/anbe.1996.0145; MASON RR, 1983, CAN ENTOMOL, V115, P1119, DOI 10.4039/Ent1151119-9; Mazia CN, 2004, ECOGRAPHY, V27, P29, DOI 10.1111/j.0906-7590.2004.03641.x; Medina RF, 2002, ENVIRON ENTOMOL, V31, P1097, DOI 10.1603/0046-225X-31.6.1097; Mooney KA, 2006, J ANIM ECOL, V75, P350, DOI 10.1111/j.1365-2656.2006.01054.x; Mooney KA, 2010, P NATL ACAD SCI USA, V107, P7335, DOI 10.1073/pnas.1001934107; MOSER ME, 1986, IBIS, V128, P392, DOI 10.1111/j.1474-919X.1986.tb02688.x; Muller C, 2002, ENTOMOL EXP APPL, V104, P153, DOI 10.1046/j.1570-7458.2002.01002.x; Muller C, 2001, J CHEM ECOL, V27, P2505, DOI 10.1023/A:1013631616141; Murphy SM, 2004, P NATL ACAD SCI USA, V101, P18048, DOI 10.1073/pnas.0406490102; Naef-Daenzer L, 2000, J AVIAN BIOL, V31, P206, DOI 10.1034/j.1600-048X.2000.310212.x; Nakazawa T, 2007, ECOL FRESHW FISH, V16, P362, DOI 10.1111/j.1600-0633.2007.00234.x; Nishida R, 2002, ANNU REV ENTOMOL, V47, P57, DOI 10.1146/annurev.ento.47.091201.145121; Nomikou M, 2003, OECOLOGIA, V136, P484, DOI 10.1007/s00442-003-1289-1; OJALA K, 2006, VARIATION DEFE UNPUB; Oliveira PS, 2004, NATURWISSENSCHAFTEN, V91, P557, DOI 10.1007/s00114-004-0585-x; PAK GA, 1986, J APPL ENTOMOL, V101, P55, DOI 10.1111/j.1439-0418.1986.tb00833.x; Philpott SM, 2005, BIOTROPICA, V37, P468, DOI 10.1111/j.1744-7429.2005.00063.x; Philpott SM, 2004, OECOLOGIA, V140, P140, DOI 10.1007/s00442-004-1561-z; Posa MRC, 2007, J TROP ECOL, V23, P27, DOI 10.1017/S0266467406003671; Remmel T, 2009, ECOL ENTOMOL, V34, P98, DOI 10.1111/j.1365-2311.2008.01044.x; Remmel T, 2009, J ANIM ECOL, V78, P973, DOI 10.1111/j.1365-2656.2009.01566.x; RICE JA, 1993, T AM FISH SOC, V122, P481, DOI 10.1577/1548-8659(1993)122<0481:IBSSPA>2.3.CO;2; Richards LA, 2008, BIOTROPICA, V40, P736, DOI 10.1111/j.1744-7429.2008.00438.x; Richards LA, 2007, OIKOS, V116, P31, DOI 10.1111/j.2006.0030-1299.15043.x; Riipi M, 2001, NATURE, V413, P512, DOI 10.1038/35097061; ROBERTIS AD, 2000, LIMNOLOGY OCEANOGRAP, V45, P1838; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; ROFF DA, 2002, LIFE HIST EVOLUTION; Roger C, 2000, ENTOMOL EXP APPL, V94, P3, DOI 10.1023/A:1003909804831; ROPER TJ, 1990, ANIM BEHAV, V39, P466, DOI 10.1016/S0003-3472(05)80410-5; Sandre SL, 2007, EUR J ENTOMOL, V104, P745, DOI 10.14411/eje.2007.095; Schmaedick MA, 1999, ENVIRON ENTOMOL, V28, P439, DOI 10.1093/ee/28.3.439; SMILEY J, 1986, ECOLOGY, V67, P516, DOI 10.2307/1938594; SMILEY JT, 1985, ECOLOGY, V66, P845, DOI 10.2307/1940546; Stearns S, 1992, EVOLUTION LIFE HIST; Stireman JO, 2003, ECOLOGY, V84, P296, DOI 10.1890/0012-9658(2003)084[0296:DOPHAI]2.0.CO;2; Svadova K, 2009, ANIM BEHAV, V77, P327, DOI 10.1016/j.anbehav.2008.09.034; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Tammaru T, 2002, OECOLOGIA, V133, P430, DOI 10.1007/s00442-002-1057-7; Tammaru T, 1998, ECOL ENTOMOL, V23, P80, DOI 10.1046/j.1365-2311.1998.00106.x; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; Tanhuanpaa M, 1999, J ANIM ECOL, V68, P562, DOI 10.1046/j.1365-2656.1999.00305.x; Tanhuanpaa M, 2001, ECOLOGY, V82, P281, DOI 10.2307/2680103; Teder T, 2010, OECOLOGIA, V162, P117, DOI 10.1007/s00442-009-1439-1; Thaler JS, 2008, ENTOMOL EXP APPL, V128, P34, DOI 10.1111/j.1570-7458.2008.00737.x; TORGERSEN TR, 1984, ENVIRON ENTOMOL, V13, P1018, DOI 10.1093/ee/13.4.1018; Tremblay I, 2003, ECOLOGY, V84, P3033, DOI 10.1890/02-0663; Trigo JR, 2000, J BRAZIL CHEM SOC, V11, P551, DOI 10.1590/S0103-50532000000600002; Tschanz B, 2005, FUNCT ECOL, V19, P391, DOI 10.1111/j.1365-2435.2005.00999.x; Valenti MA, 1998, ENVIRON ENTOMOL, V27, P305, DOI 10.1093/ee/27.2.305; VANBALEN JH, 1973, ARDEA, V61, P1; VANDENBERG H, 1993, J APPL ECOL, V30, P640; Visser ME, 2006, OECOLOGIA, V147, P164, DOI 10.1007/s00442-005-0299-6; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WESELOH RM, 1990, ENVIRON ENTOMOL, V19, P448, DOI 10.1093/ee/19.3.448; WHELAN CJ, 1989, ENVIRON ENTOMOL, V18, P43, DOI 10.1093/ee/18.1.43; Wiklund C, 2008, OECOLOGIA, V157, P287, DOI 10.1007/s00442-008-1077-z; Williams-Guillen K, 2008, SCIENCE, V320, P70, DOI 10.1126/science.1152944; Zalucki MP, 2002, ANNU REV ENTOMOL, V47, P361, DOI 10.1146/annurev.ento.47.091201.145220 169 41 41 4 61 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. SEP 2011 104 1 1 18 10.1111/j.1095-8312.2011.01721.x 18 Evolutionary Biology Evolutionary Biology 809RS WOS:000294075000001 Bronze 2019-02-21 J Eraly, D; Hendrickx, F; Backeljau, T; Bervoets, L; Lens, L Eraly, Debbie; Hendrickx, Frederik; Backeljau, Thierry; Bervoets, Lieven; Lens, Luc Direct and indirect effects of metal stress on physiology and life history variation in field populations of a lycosid spider ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY English Article Pardosa saltans; Metal; Metallothionein; Life history; Ecological effects; Field study CONTAMINATED GRASSLAND ECOSYSTEM; METALLOTHIONEIN-LIKE PROTEINS; ORCHESELLA-CINCTA COLLEMBOLA; INDUSTRIALLY POLLUTED AREAS; ISOPOD PORCELLIO SCABER; HEAVY-METALS; WOLF-SPIDER; TERRESTRIAL INVERTEBRATES; PIRATA-PIRATICUS; CADMIUM ACCUMULATION 1. Under stress, life history theory predicts reduced growth rates and adult sizes, reduced reproductive allocation, production of larger offspring and postponed reproduction. Both direct and indirect effects of metals can explain these trends, mainly linked to energetic constraints. Metallothionein-like proteins (MTLP's) are believed to be an important defense mechanism against the adverse effects of metals and other stressors. 2. We tested these predictions comparing six field populations of the wolf spider Pardosa saltans, three of which were on sites that are historically polluted with heavy metals. 3. As expected for life histories evolving under energetic constraints, adult size and condition correlated negatively and egg mass positively with Cd concentrations for a subset of four populations. In the population that showed the highest cadmium and zinc body burdens, reproductive output and allocation were lowest and reproduction was postponed. 4. Contrary to our expectation, for all six study populations MTLP concentrations did not increase in exposed populations, indicating that this defense mechanism cannot explain the observed variation in life histories. 5. We conclude that indirect and synergistic effects of metal pollution may be more important than physiological defense mechanisms in shaping life history traits in field populations. (C) 2011 Elsevier Inc. All rights reserved. [Eraly, Debbie; Hendrickx, Frederik; Lens, Luc] Univ Ghent, Dept Biol, Terr Ecol Unit, B-9000 Ghent, Belgium; [Hendrickx, Frederik; Backeljau, Thierry] Royal Belgian Inst Nat Sci, B-1000 Brussels, Belgium; [Backeljau, Thierry; Bervoets, Lieven] Univ Antwerp, Dept Biol, Ecophysiol Biochem & Toxicol Grp, B-2020 Antwerp, Belgium Eraly, D (reprint author), Univ Ghent, Dept Biol, Terr Ecol Unit, KL Ledeganckstr 35, B-9000 Ghent, Belgium. debbieraly@gmail.com; frederik.hendrickx@naturalsciences.be; Thierry.backeljau@naturalsciences.be; lieven.bervoets@ua.ac.be; luc.lens@ugent.be Bervoets, Lieven/E-5012-2015; Hendrickx, Frederik/F-3149-2013 Research Foundation Flanders [G.0202.06] We are indebted to K. Franck for help with experiments, S. Joosen for MT analysis and V. Mubiana for metal analysis. M. Van de Acker provided constructive comments which substantially improved the quality of this manuscript. This study was funded through research grant G.0202.06 of Research Foundation Flanders to LL, FH, J.-P. Maelfait and T. Backeljau. The funding source was not involved in the conception of this study or writing of the article. DE is a research assistant of FWO Flanders. Aisenberg A, 2009, ETHOLOGY, V115, P1127, DOI 10.1111/j.1439-0310.2009.01701.x; ALDERWEIRT M, 1990, STUDIEDOCUMENTEN KBI, V61; Amiard JC, 2006, AQUAT TOXICOL, V76, P160, DOI 10.1016/j.aquatox.2005.08.015; Bahrndorff S, 2006, ENVIRON POLLUT, V139, P550, DOI 10.1016/j.envpol.2005.05.024; BENGTSSON G, 1992, OIKOS, V63, P289, DOI 10.2307/3545390; BENGTSSON G, 1984, AMBIO, V13, P29; Bertin G, 2006, BIOCHIMIE, V88, P1549, DOI 10.1016/j.biochi.2006.10.001; Bizoux JP, 2004, BELG J BOT, V137, P91; BLUST R, 1988, J ANAL ATOM SPECTROM, V3, P387, DOI 10.1039/ja9880300387; Brandon R, 1991, ADAPTATION ENV; BREYMEYER A, 1969, Proceedings of the National Symposium on Radioecology, P715; BROWN BE, 1982, BIOL REV, V57, P621, DOI 10.1111/j.1469-185X.1982.tb00375.x; CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F; Clements WH, 2009, ENVIRON TOXICOL CHEM, V28, P1789, DOI 10.1897/09-140.1; COLVIN J, 1993, PHYSIOL ENTOMOL, V18, P109, DOI 10.1111/j.1365-3032.1993.tb00456.x; COUGHTREY PJ, 1979, OECOLOGIA, V39, P51, DOI 10.1007/BF00345996; Creamer RE, 2008, SOIL USE MANAGE, V24, P37, DOI 10.1111/j.1475-2743.2007.00131.x; Dabrio M, 2002, J INORG BIOCHEM, V88, P123, DOI 10.1016/S0162-0134(01)00374-9; Dallinger R, 1996, COMP BIOCHEM PHYS C, V113, P125, DOI 10.1016/0742-8413(95)02078-0; DALLINGER R, 1992, OECOLOGIA, V89, P32, DOI 10.1007/BF00319012; Dallinger R., 1993, ECOTOXICOLOGY METALS; Danielson-Francois A, 2002, J ARACHNOL, V30, P20, DOI 10.1636/0161-8202(2002)030[0020:BCAMCI]2.0.CO;2; Das P, 1997, ENVIRON POLLUT, V98, P29, DOI 10.1016/S0269-7491(97)00110-3; De Bakker D, 2000, EKOL BRATISLAVA, V19, P45; Dhuyvetter H, 2007, EVOLUTION, V61, P184, DOI 10.1111/j.1558-5646.2007.00015.x; DONKER MH, 1993, OECOLOGIA, V96, P316, DOI 10.1007/BF00317500; DONKER MH, 1993, SETAC SP P, P383; Du Laing G, 2002, SCI TOTAL ENVIRON, V289, P71, DOI 10.1016/S0048-9697(01)01025-7; DUVIGNEAUD J, 1987, Naturalistes Belges, V68, P33; DUVIGNEAUD J, 1979, B COMMISSION ROYALE, V8, P217; EDGAR WD, 1971, J ANIM ECOL, V40, P303, DOI 10.2307/3248; Eraly D, 2010, ENVIRON POLLUT, V158, P2124, DOI 10.1016/j.envpol.2010.02.026; Eraly D, 2009, BEHAV ECOL, V20, P856, DOI 10.1093/beheco/arp072; Foelix R. F, 1996, BIOL SPIDERS; Forbes VE, 2006, ENVIRON TOXICOL CHEM, V25, P272, DOI 10.1897/05-257R.1; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fox GA, 2003, EVOL ECOL RES, V5, P1; Graitson Eric, 2005, Notes Fauniques de Gembloux, V57, P49; HAGSTRUM DW, 1971, ANN ENTOMOL SOC AM, V64, P757, DOI 10.1093/aesa/64.4.757; Heikens A, 2001, ENVIRON POLLUT, V113, P385, DOI 10.1016/S0269-7491(00)00179-2; Hendrickx F, 2003, J ARACHNOL, V31, P331, DOI 10.1636/m01-98; Hendrickx F, 2004, ENVIRON POLLUT, V127, P335, DOI 10.1016/j.envpol.2003.09.001; Hendrickx F, 2003, OECOLOGIA, V134, P189, DOI 10.1007/s00442-002-1031-4; Hendrickx F, 2003, ECOTOX ENVIRON SAFE, V55, P287, DOI 10.1016/S0147-6513(02)00129-X; Hendrickx F, 2001, BELG J ZOOL, V131, P79; Hensbergen PJ, 2000, COMP BIOCHEM PHYS C, V125, P17, DOI 10.1016/S0742-8413(99)00087-0; Hollis L, 2001, ARCH ENVIRON CON TOX, V41, P468, DOI 10.1007/s002440010273; Hopkin S. P, 1989, ECOPHYSIOLOGY METALS; HOPKIN SP, 1985, B ENVIRON CONTAM TOX, V34, P183, DOI 10.1007/BF01609722; Hopkin SP, 1993, HDB ECOTOXICOLOGY, P397; HUNTER BA, 1987, J APPL ECOL, V24, P573, DOI 10.2307/2403894; HUNTER BA, 1987, J APPL ECOL, V24, P587, DOI 10.2307/2403895; JANSSEN MPM, 1991, ARCH ENVIRON CON TOX, V20, P305, DOI 10.1007/BF01064395; Janssens TKS, 2009, INSECT SCI, V16, P3, DOI 10.1111/j.1744-7917.2009.00249.x; Jones DT, 1998, ENVIRON POLLUT, V99, P215, DOI 10.1016/S0269-7491(97)00188-7; JUNG CS, 2008, J ASIA-PAC ENTOMOL, V8, P185; Jung MP, 2007, WIT TR BIOMED HEALTH, V11, P229, DOI 10.2495/EHR070241; Jung MP, 2008, WATER AIR SOIL POLL, V195, P15, DOI 10.1007/s11270-008-9723-y; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; KITO H, 1982, COMP BIOCHEM PHYS C, V73, P121, DOI 10.1016/0306-4492(82)90178-2; KLEIN D, 1994, ANAL BIOCHEM, V221, P405, DOI 10.1006/abio.1994.1434; Klerks PL, 2002, HUM ECOL RISK ASSESS, V8, P971, DOI 10.1080/1080-700291905774; KLERKS PL, 1987, ENVIRON POLLUT, V45, P173, DOI 10.1016/0269-7491(87)90057-1; KLERKS PL, 1993, SETAC SP P, P223; Kramarz P, 1999, B ENVIRON CONTAM TOX, V63, P531, DOI 10.1007/s001289901013; KRAMARZ P, 2000, DEMOGRAPHY ECOTOXICO, P91; Lagisz M, 2008, ECOTOXICOLOGY, V17, P59, DOI 10.1007/s10646-007-0176-7; LARSEN KJ, 1994, ENVIRON TOXICOL CHEM, V13, P503, DOI 10.1897/1552-8618(1994)13[503:DAOHMB]2.0.CO;2; LINDQVIST L, 1995, COMP BIOCHEM PHYS C, V111, P325, DOI 10.1016/0742-8413(95)00057-U; LINDQVIST L, 1994, ENVIRON TOXICOL CHEM, V13, P1669, DOI 10.1897/1552-8618(1994)13[1669:EOCAZD]2.0.CO;2; Lock K, 2003, EUR J SOIL BIOL, V39, P25, DOI 10.1016/S1164-5563(02)00006-7; LUDWIG M, 1988, PROTOPLASMA, V143, P43, DOI 10.1007/BF01282958; Lukkari T, 2004, ENVIRON POLLUT, V129, P377, DOI 10.1016/j.envpol.2003.12.008; MACNAIR MR, 1998, ENV STRESS ADAPTATIO, P3; Maelfait Jean-Pierre, 1998, P293; Maelfait JP, 1996, NATO ASI 2, V10, P165; Marczyk G., 1993, Science of the Total Environment, P1315; Mason A. Z., 1995, METAL SPECIATION BIO, P479; Morgan AJ, 2007, ENVIRON SCI TECHNOL, V41, P1085, DOI 10.1021/es061992x; Mouneyrac C, 2002, AQUAT TOXICOL, V57, P225, DOI 10.1016/S0166-445X(01)00201-6; Nahmani J, 2002, EUR J SOIL BIOL, V38, P297, DOI 10.1016/S1164-5563(02)01169-X; Nordberg M, 1998, TALANTA, V46, P243, DOI 10.1016/S0039-9140(97)00345-7; Nosil P, 2008, MOL ECOL, V17, P2103, DOI 10.1111/j.1365-294X.2008.03715.x; NYFFELER M, 1981, DEUT ENTOMOL Z, V28, P297; Park JD, 2001, TOXICOLOGY, V163, P93, DOI 10.1016/S0300-483X(01)00375-4; POSTHUMA L, 1993, COMP BIOCHEM PHYS C, V106, P11, DOI 10.1016/0742-8413(93)90251-F; POSTHUMA L, 1993, OIKOS, V67, P235, DOI 10.2307/3545468; RABITSCH WB, 1995, ENVIRON POLLUT, V90, P249, DOI 10.1016/0269-7491(94)00100-R; READ KJ, 1998, WATER AIR SOIL POLL, V106, P17; RICE WR, 1994, P NATL ACAD SCI USA, V91, P225, DOI 10.1073/pnas.91.1.225; ROBERTS MJ, 1998, SPIDERS BRITAIN NO E; Roesijadi G, 1996, COMP BIOCHEM PHYS C, V113, P117, DOI 10.1016/0742-8413(95)02077-2; Rozen A, 2006, SOIL BIOL BIOCHEM, V38, P489, DOI 10.1016/j.soilbio.2005.06.003; SALO S, 1991, THESIS U HELSINKI; Santiago-Rivas S, 2007, TALANTA, V71, P1580, DOI 10.1016/j.talanta.2006.07.038; SAS Institute Inc, 2004, SAS STAT 9 1 US GUID; SHAW AJ, 1999, GENETICS ECOTOXICOLO, P9; Shirley MDF, 1999, EVOLUTION, V53, P826, DOI 10.1111/j.1558-5646.1999.tb05376.x; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S, 1992, EVOLUTION LIFE HIST; STEGEMAN JJ, 1992, SETAC SP P, P235; Stone D, 2001, ENVIRON POLLUT, V113, P239, DOI 10.1016/S0269-7491(00)00134-2; Tamate T, 2000, OIKOS, V90, P209, DOI 10.1034/j.1600-0706.2000.900201.x; Tojal Catarina, 2002, ScientificWorldJournal, V2, P978; Topfer-Hofmann Gaby, 2000, Bulletin of the British Arachnological Society, V11, P257; TRANVIK L, 1993, J APPL ECOL, V30, P43, DOI 10.2307/2404269; TYLER G, 1989, WATER AIR SOIL POLL, V47, P189, DOI 10.1007/BF00279327; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; van Straalen NM, 2001, PEDOBIOLOGIA, V45, P451, DOI 10.1078/0031-4056-00099; VANHOOK RI, 1975, ENVIRON RES, V9, P76, DOI 10.1016/0013-9351(75)90051-1; VANSTRAALEN NM, 1987, J APPL ECOL, V24, P953, DOI 10.2307/2403992; Viarengo A, 1999, BIOMARKERS, V4, P455, DOI 10.1080/135475099230615; VIARENGO A, 1993, COMP BIOCHEM PHYS C, V104, P355, DOI 10.1016/0742-8413(93)90001-2; Weis AE, 2005, EVOL ECOL RES, V7, P161; Wilczek G, 2005, COMP BIOCHEM PHYS C, V141, P194, DOI 10.1016/j.cca.2005.06.007; Wilczek G, 2004, ENVIRON POLLUT, V132, P453, DOI 10.1016/j.envpol.2004.05.011; Wilczek G, 1996, FRESEN J ANAL CHEM, V354, P643; Wilczek G, 2000, EKOL BRATISLAVA, V19, P283; Wilczek G, 2008, ECOTOX ENVIRON SAFE, V70, P127, DOI 10.1016/j.ecoenv.2007.03.005; Winterer J, 2004, ECOL LETT, V7, P785, DOI 10.1111/j.1461-0248.2004.00626.x; Xie LT, 2004, AQUAT TOXICOL, V66, P73, DOI 10.1016/j.aquatox.2003.08.003; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 124 9 9 3 27 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0147-6513 ECOTOX ENVIRON SAFE Ecotox. Environ. Safe. SEP 2011 74 6 1489 1497 10.1016/j.ecoenv.2011.04.014 9 Environmental Sciences; Toxicology Environmental Sciences & Ecology; Toxicology 810DO WOS:000294105800005 21513981 2019-02-21 J Johow, J; Fox, M; Knapp, LA; Voland, E Johow, Johannes; Fox, Molly; Knapp, Leslie A.; Voland, Eckart The presence of a paternal grandmother lengthens interbirth interval following the birth of a granddaughter in Krummhorn (18th and 19th centuries) EVOLUTION AND HUMAN BEHAVIOR English Article Paternal grandmothers; Interbirth intervals; Life history theory; X-chromosomal relatedness; Krummhorn RESOURCE COMPETITION; LIFE; 19TH-CENTURY; POPULATION; INVESTMENT; EVOLUTION; REPRODUCTION; RESEMBLANCE; STRATEGIES; LACTATION Because only daughters inherit the paternal X-chromosome, an asymmetry in adaptive investment decisions has been suggested for certain patrilineal kin. Namely, paternal grandmothers (PGMs) may favor a granddaughter over a grandson, because (within the limits of paternity uncertainty) the former definitely carries one of their X-chromosomes, while the latter definitely does not. Here, we test the hypothesis that the PGMs' sex-specific favoritism influences reproductive scheduling. Using family-reconstitution data, we analyzed interbirth intervals (IBIs) in the historical population from the Krummhorn (Ostfriesland, Germany). In order to account for potentially timevarying effects on IBIs we applied (and combined) both the additive hazards regression of Aalen and the Cox proportional hazards model. We found that the presence of the PGM but not that of the maternal grandmother (MGM), correlates with the IBI following the birth of a grandchild as a function of the grandchild's sex. Specifically, in the presence of a PGM, the IBIs following the birth of a granddaughter are longer than in her absence. However, contrary to predictions from theoretical life history framework, model estimates for a PGM's effect on a mother's IBI did not significantly vary over time This study supports the hypothesis that PGM behavior differs according to her grandchild's sex. Further research should now explore the biological mechanism underlying this phenomenon. (C) 2011 Elsevier Inc. All rights reserved. [Johow, Johannes; Voland, Eckart] Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35392 Giessen, Germany; [Fox, Molly; Knapp, Leslie A.] Univ Cambridge, Dept Biol Anthropol, Cambridge CB2 1TN, England Voland, E (reprint author), Univ Giessen, Zentrum Philosophie & Grundlagen Wissensch, D-35392 Giessen, Germany. eckart.voland@phil.uni-giessen.de Fox, Molly/0000-0001-9219-8971 Alvergne A, 2009, ANIM BEHAV, V78, P61, DOI 10.1016/j.anbehav.2009.03.019; Baldi I, 2006, AUST J STAT, V35, P77; Beise J, 2008, AM J HUM BIOL, V20, P325, DOI 10.1002/ajhb.20730; BROCKDORFF N, 2007, EPIGENETICS, P321; Coeurjolly JF, 2009, R J, V1, P26; COX DR, 1972, J R STAT SOC B, V34, P187; Euler H. A., 2008, FAM RELAT, P230; Fox M, 2010, P ROY SOC B-BIOL SCI, V277, P567, DOI 10.1098/rspb.2009.1660; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; HAMILTON W, 1964, J THEOR BIOL, V7, P7, DOI DOI 10.1016/0022-5193(64)90038-4; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Isles AR, 2006, PHILOS T R SOC B, V361, P2229, DOI 10.1098/rstb.2006.1942; KRAUS D, 2009, PROPTEST TESTS PROPO; Leonetti DL, 2007, CURR ANTHROPOL, V48, P861, DOI 10.1086/520976; LOW BS, 1991, ETHOL SOCIOBIOL, V12, P411, DOI 10.1016/0162-3095(91)90024-K; MESSING S, 2010, WVIOPLOT WEIGHTED VI; PANTERBRICK C, 1991, J BIOSOC SCI, V23, P137; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Piperata BA, 2009, AM J HUM BIOL, V21, P817, DOI 10.1002/ajhb.20898; Platek SM, 2004, EVOL HUM BEHAV, V25, P394, DOI 10.1016/j.evolhumbehav.2004.08.007; Pollet TV, 2009, J BIOSOC SCI, V41, P355, DOI 10.1017/S0021932009003307; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; R Development Core Team, 2010, R LANG ENV STAT COMP; Reiches MW, 2009, AM J HUM BIOL, V21, P421, DOI 10.1002/ajhb.20906; Rice WR, 2010, P ROY SOC B-BIOL SCI, V277, P2727, DOI 10.1098/rspb.2010.0409; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Scheike T., 2010, TIMEREG TIMEREG PACK; Scheike TH, 2002, SCAND J STAT, V29, P75, DOI 10.1111/1467-9469.00065; Sear R, 2003, EVOL HUM BEHAV, V24, P25, DOI 10.1016/S1090-5138(02)00105-8; STRAKAGEIERSBAC.S, 1988, HOMO, V39, P171; Therneau T, 2009, SURVIVAL SURVIVAL AN; Tracer DP, 2009, AM J HUM BIOL, V21, P635, DOI 10.1002/ajhb.20928; Vitzthum VJ, 2008, ANNU REV ANTHROPOL, V37, P53, DOI 10.1146/annurev.anthro.37.081407.085112; Voland E, 2000, EVOL ANTHROPOL, V9, P134; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; VOLAND E, GRANDMOTHERHOOD EVOL; Voland E, 2005, GRANDMOTHERHOOD EVOL, P239; Willfuhr KP, 2009, AM J HUM BIOL, V21, P488, DOI 10.1002/ajhb.20909 41 6 6 0 19 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2011 32 5 315 325 10.1016/j.evolhumbehav.2010.11.004 11 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 810DJ WOS:000294105300003 2019-02-21 J Richter-Boix, A; Tejedo, M; Rezende, EL Richter-Boix, Alex; Tejedo, Miguel; Rezende, Enrico L. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis ECOLOGY AND EVOLUTION English Article Anuran tadpoles; developmental plasticity; evolutionary trade-off; life-history theory; phylogenetic analyses ADAPTIVE PHENOTYPIC PLASTICITY; LIFE-HISTORY TRAITS; AMPHIBIAN METAMORPHOSIS; REACTION NORMS; RANA-TEMPORARIA; MOLECULAR PHYLOGENY; GLOBAL PATTERNS; GROWTH-RATES; SIZE; FROGS Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates. [Richter-Boix, Alex] Uppsala Univ, Dept Populat Biol & Conservat Biol, EBC, SE-75236 Uppsala, Sweden; [Tejedo, Miguel] CSIC, Estn Biol Donana, Dept Evolutionary Ecol, E-41092 Seville, Spain; [Rezende, Enrico L.] Univ Autonoma Barcelona, Grp Biol Evolutiva, Dept Genet & Microbiol, Bellaterra 08193, Barcelona, Spain Richter-Boix, A (reprint author), Uppsala Univ, Dept Populat Biol & Conservat Biol, EBC, Norbyvagen 18 D, SE-75236 Uppsala, Sweden. alex.richter@ebc.uu.se Rezende, Enrico/B-8029-2012; Richter-Boix, Alex/E-3990-2012 Rezende, Enrico/0000-0002-6245-9605; Richter-Boix, Alex/0000-0002-8559-5191 Direccion General de Investigacion Cientifica y Tecnica (MICINN) [CGL2004-01872/BOS, CGL2009-12767-C02-02]; Ministerio de Ciencia e Innovacion (MICINN, Spain) [BFU2009-07564]; Spanish Ministry of Education and Culture [MEC2007-0944]; Ministerio de Ciencia e Innovacion (Spain) We are very grateful to M. D. Boone, J. Loman for providing important unpublished data, F. Johansson, A. Laurila, C. Navas, R. Stoks, J. Wiens, and two anonymous reviewers for their comments on earlier versions of the manuscript. This research was partially funded by project (CGL2004-01872/BOS and CGL2009-12767-C02-02) from Direccion General de Investigacion Cientifica y Tecnica (MICINN), conceded to M. Tejedo and by the grant BFU2009-07564 from the Ministerio de Ciencia e Innovacion (MICINN, Spain) awarded to ELR. AR-B was supported by a Spanish Ministry of Education and Culture postdoctoral grant (MEC2007-0944). ELR is currently a Ramon y Cajal Fellow funded by the Ministerio de Ciencia e Innovacion (Spain). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Adams MJ, 2000, ECOL APPL, V10, P559, DOI 10.1890/1051-0761(2000)010[0559:PPATEO]2.0.CO;2; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Babbitt KJ, 2003, CAN J ZOOL, V81, P1539, DOI 10.1139/Z03-131; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Boone MD, 2004, COPEIA, P683, DOI 10.1643/CE-03-229R1; Brady LD, 2000, J ZOOL, V252, P61; Buchholz DR, 2002, COPEIA, P180, DOI 10.1643/0045-8511(2002)002[0180:EPODIS]2.0.CO;2; Burnham K. P, 2002, MODEL SELECTION MULT; Cei Jose M., 1980, Monitore Zoologico Italiano Monografia, V2, P1; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2008, EVOLUTION, V62, P485, DOI 10.1111/j.1558-5646.2007.00283.x; Denver RJ, 1997, AM ZOOL, V37, P172; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Doughty Paul, 2004, P126; Faivovich J, 2005, B AM MUS NAT HIST, P6, DOI 10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Garcia-Paris M, 2003, MOL PHYLOGENET EVOL, V28, P12, DOI 10.1016/S1055-7903(03)00036-8; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; Garland T, 1999, SYST BIOL, V48, P547, DOI 10.1080/106351599260139; Gomes FR, 2009, J EVOLUTION BIOL, V22, P1088, DOI 10.1111/j.1420-9101.2009.01718.x; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Harris RN, 1999, TADPOLES, P279; Hillis DM, 2005, MOL PHYLOGENET EVOL, V34, P299, DOI 10.1016/j.ympev.2004.10.007; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Lannoo M, 2005, AMPHIBIAN DECLINES: THE CONSERVATION STATUS OF UNITED STATES SPECIES, P1; Leips J, 2000, ECOLOGY, V81, P2997, DOI 10.2307/177396; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Marangoni F, 2009, J HERPETOL, V43, P546, DOI 10.1670/08-230R1.1; Merila J, 2004, J EVOLUTION BIOL, V17, P1132, DOI 10.1111/j.1420-9101.2004.00744.x; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Pauly GB, 2004, EVOLUTION, V58, P2517; PFENNIG DW, 1992, FUNCT ECOL, V6, P167, DOI 10.2307/2389751; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; Read K, 2001, MOL PHYLOGENET EVOL, V21, P294, DOI 10.1006/mpev.2001.1014; Reques R, 1997, J EVOLUTION BIOL, V10, P829, DOI 10.1007/s000360050057; Richardson JML, 2001, AM NAT, V157, P282, DOI 10.1086/319196; Richter-Boix A, 2006, EVOL ECOL RES, V8, P1139; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Schauble CS, 2000, MOL PHYLOGENET EVOL, V16, P379, DOI 10.1006/mpev.2000.0803; Scott E, 2005, CLADISTICS, V21, P507, DOI 10.1111/j.1096-0031.2005.00079.x; SEMLITSCH RD, 1988, COPEIA, P978; SMITHGILL SJ, 1979, AM NAT, V113, P563, DOI 10.1086/283413; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Turkheimer FE, 2003, J CEREBR BLOOD F MET, V23, P490, DOI 10.1097/01.WCB.0000050065.57184.BB; Ultsch GR, 1999, TADPOLES, P189; Veith M, 2003, MOL PHYLOGENET EVOL, V26, P310, DOI 10.1016/S1055-7903(02)00324-X; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, AM NAT, V168, P579, DOI 10.1086/507882; WILBUR HM, 1987, ECOLOGY, V68, P1437, DOI 10.2307/1939227; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WOODWARD BD, 1983, ECOLOGY, V64, P1549, DOI 10.2307/1937509 63 38 40 1 66 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. SEP 2011 1 1 15 25 10.1002/ece3.2 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 055TE WOS:000312439700003 22393479 DOAJ Gold, Green Published 2019-02-21 J Gergs, A; Classen, S; Hommen, U; Preuss, TG Gergs, Andre; Classen, Silke; Hommen, Udo; Preuss, Thomas G. Identification of realistic worst case aquatic macroinvertebrate species for prospective risk assessment using the trait concept ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH English Article Aquatic; Macroinvertebrate; Species; Trait LIFE-HISTORY STRATEGIES; INVERTEBRATE COMMUNITIES; BIOLOGICAL TRAITS; STREAMS; PESTICIDES; PERSPECTIVES; MANAGEMENT; TOXICANTS; PATTERNS; BIVALVIA Purpose Approaches in environmental risk assessment for pesticides are becoming more and more realistic. Thereby, risk assessment has to be protective in a way that no long-lasting (adverse) effects on populations will occur in the environment. Since this imperative includes species generally showing high population vulnerability due to their life history traits, prospective risk assessment should be based on realistic worst cases. Based on life history traits, the purpose of the current study was to verify whether a worst case combination of low potential for intrinsic recovery and low ability for recolonisation can be found in the field. Methods Combinations of traits related to dispersal ability and reproduction of macroinvertebrates were investigated using monitoring data from edge of field water bodies in Germany. The relative distribution of traits was analyzed across different agricultural regions and across sites of different potential for exposure to pesticides. Species were sorted in a tiered approach in order to gain a list of realistic worst case species. Results Life history traits were found equally distributed across different regions. Thereby, dispersal ability and voltinism were not randomly combined. Within the data analysed, low dispersal ability was found to be exclusive to semivoltine taxa. Owing to their appearance in reference sites, poor dispersal ability and a long time reproduction, three species were considered potentially worst case. Conclusions The trait approach was found to be suitable in comparing trait distributions within different regions and in compiling a list of critical taxa for consideration in environmental risk assessment. [Gergs, Andre; Preuss, Thomas G.] Rhein Westfal TH Aachen, Inst Environm Res, Aachen, Germany; [Classen, Silke] Rhein Westfal TH Aachen, Res Inst Ecosyst Anal & Assessment Gaiac, Aachen, Germany; [Hommen, Udo] Fraunhofer Inst Mol Biol & Appl Ecol IME, Schmallenberg, Germany Gergs, A (reprint author), Rhein Westfal TH Aachen, Inst Environm Res, Aachen, Germany. andre.gergs@bio5.rwth-aachen.de Hommen, Udo/K-2182-2013; Preuss, Thomas G./A-7926-2009 Preuss, Thomas G./0000-0001-6249-6003; Gergs, Andre/0000-0002-1752-1342 Federal Environment Agency (UBA), Germany [3707 63 4001] The authors would like to thank Mascha Rubach and Phillipe Usseglio-Polatera for kindly making trait databases available. Thanks are also given to Devdutt Kulkarni and Lara Ibrahim for proof reading. This study was conducted in the frame of the GeoRisk project (2008-2010) which was financially supported by the Federal Environment Agency (UBA), Germany under Project-Number 3707 63 4001. Aldridge DC, 1999, J MOLLUS STUD, V65, P47, DOI 10.1093/mollus/65.1.47; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Barnthouse L. W., 2007, POPULATION LEVEL ECO; Barnthouse LW, 2004, ENVIRON TOXICOL CHEM, V23, P500, DOI 10.1897/02-521; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; Beketov MA, 2008, ENVIRON POLLUT, V156, P980, DOI 10.1016/j.envpol.2008.05.005; Brock T, 2010, LINKING AQUATIC EXPO, P269; Brock TCM, 2006, INTEGR ENVIRON ASSES, V2, pE20, DOI 10.1002/ieam.5630020402; Charvet S, 1998, ARCH HYDROBIOL, V142, P415; Corbet Philip S., 2006, International Journal of Odonatology, V9, P1; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; FOCUS (FOrum for Co-ordination of pesticide fate models and their USe), 2001, SANCO48022001 FOCUS; Hendley P, 2001, ENVIRON TOXICOL CHEM, V20, P669, DOI 10.1897/1551-5028(2001)020<0669:PRAOCP>2.0.CO;2; Heneghan PA, 1999, POND FX ECOTOXICOLOG; HOMMEN U, 2010, SETAC EUR ANN M SEV; Hommen Udo, 2010, Integrated Environmental Assessment and Management, V6, P325, DOI 10.1002/ieam.69; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Liess M, 2002, ENVIRON TOXICOL CHEM, V21, P138, DOI [10.1897/1551-5028(2002)021<0138:PRTTIA>2.0.CO;2, 10.1002/etc.5620210120]; NIEMI GJ, 1990, ENVIRON MANAGE, V14, P571, DOI 10.1007/BF02394710; PANTEL S, 2003, VORSCHLAGE MULTIVARI; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; Rubach Mascha N., 2011, Integrated Environmental Assessment and Management, V7, P172, DOI 10.1002/ieam.105; Schafer RB, 2007, SCI TOTAL ENVIRON, V382, P272, DOI 10.1016/j.scitotenv.2007.04.040; Schafers C, 2006, ENVIRON TOXICOL CHEM, V25, P3275, DOI 10.1897/05-677R.1; Schulz R, 2001, ENVIRON TOXICOL CHEM, V20, P2537, DOI 10.1897/1551-5028(2001)020<2537:CEOPFA>2.0.CO;2; Schulz Ralf, 2009, Integrated Environmental Assessment and Management, V5, P69, DOI 10.1897/IEAM_2008-032.1; SEITZ A, 1991, COMP BIOCHEM PHYS C, V100, P301, DOI 10.1016/0742-8413(91)90172-P; SEUNTJENS P, 2008, NATO SCI PEACE SEC C, V3, P181; Sibly R.M., 1986, PHYSL ECOLOGY ANIMAL; SMITH ME, 1986, HYDROBIOLOGIA, V133, P79, DOI 10.1007/BF00010805; Solomon KR, 2008, EXTRAPOLATION PRACTI; Stark JD, 2004, P NATL ACAD SCI USA, V101, P732, DOI 10.1073/pnas.0304903101; Statzner B, 2001, BASIC APPL ECOL, V2, P73, DOI 10.1078/1439-1791-00039; Stettmer C, 1996, EUR J ENTOMOL, V93, P579; TACHET H, 2002, INVERTEBRES EAU DOUC, P587; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V44, P563; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P198, DOI 10.1002/ieam.109; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P169, DOI 10.1002/ieam.103; Van den Brink PJ, 2008, ENVIRON SCI TECHNOL, V42, P8999, DOI 10.1021/es801991c; VANSTRAALEN NM, 1994, NETH J ZOOL, V44, P112, DOI 10.1163/156854294X00097; VERBERK WCE, 2008, MATCHING SPECIES CHA; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vieira NKM, 2004, FRESHWATER BIOL, V49, P1243, DOI 10.1111/j.1365-2427.2004.01261.x; WOGRAM J, 2009, LINKING AQUATIC EXPO, P250 46 12 12 0 23 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0944-1344 ENVIRON SCI POLLUT R Environ. Sci. Pollut. Res. SEP 2011 18 8 1316 1323 10.1007/s11356-011-0484-6 8 Environmental Sciences Environmental Sciences & Ecology 807LN WOS:000293899700008 21445542 2019-02-21 J Lewitus, E; Soligo, C Lewitus, Eric; Soligo, Christophe Life-History Correlates of Placental Structure in Eutherian Evolution EVOLUTIONARY BIOLOGY English Review Placentation; Mutational mapping; Character association; Ancestral state reconstruction; Genomic-imprinting; Viviparity ANCESTRAL CHARACTER STATES; DRIVEN CONFLICT HYPOTHESIS; FETAL MEMBRANES; GROWTH-HORMONE; GENETIC INCOMPATIBILITY; STABILIZING SELECTION; LIKELIHOOD APPROACH; ECHINOPS-TELFAIRI; REPRODUCTIVE MODE; OXYGEN-AFFINITY The eutherian placenta shows remarkable evolutionary plasticity. To date, however, success in identifying selection pressures behind the observed diversity of placental structures has been limited. Evolutionary convergence among definitive placental morphologies and between placental morphologies and life-history variables can be used to suggest functions of derived aspects of placentation. In this paper, we use, for the first time, a comprehensive phylogenetic comparative approach to map phenotypic character states of both placental morphologies and life-history characteristics of species onto hypotheses of phylogenetic relationships in Eutheria. We employ phylogenetic methods for ancestral reconstruction, mutational mapping, and association analysis to resolve associations between five aspects of placental structure and to identify dominant combinations, or syndromes, of placental morphology. We map twenty life-history characters onto the eutherian phylogeny to examine how they correlate, over evolutionary time, with the multivariate diversification of placental structures. We identify two distinct eutherian constellations, based on associations between life-history and placental structure, which broadly reflect a dichotomy between slow and fast life-history strategies. In addition, we suggest that the observed association between placental invasiveness and group size is indicative of the effect of social behavior on the utility of genomic-imprinting in eutherian evolution. [Lewitus, Eric; Soligo, Christophe] UCL, Dept Anthropol, London, England Lewitus, E (reprint author), UCL, Dept Anthropol, London, England. e.lewitus@ucl.ac.uk; c.soligo@ucl.ac.uk Abd-Elnaeim MM, 1999, CELLS TISSUES ORGANS, V164, P141, DOI 10.1159/000016652; Allen WR, 2003, PLACENTA, V24, P598, DOI 10.1016/S0143-4004(03)00102-4; Allen WR, 2002, REPRODUCTION, P105; AMOROSO EC, 1959, ANN NY ACAD SCI, V75, P855, DOI 10.1111/j.1749-6632.1959.tb44596.x; Archibald J. David, 2005, P1; Armstrong Terri S, 2003, Oncol Nurs Forum, V30, P601, DOI 10.1188/03.ONF.601-606; ARNOLD SJ, 2009, EVOLUTION, V59, P2059; Asher Robert J., 2003, Journal of Mammalian Evolution, V10, P131, DOI 10.1023/A:1025504124129; ASHWAL S, 1984, PEDIATR RES, V18, P1309, DOI 10.1203/00006450-198412000-00018; Baur R, 1977, Adv Anat Embryol Cell Biol, V53, P3; BAUR R, 1981, PLACENTA S, V53, P1; Beese K, 2009, J ZOOL SYST EVOL RES, V47, P49, DOI 10.1111/j.1439-0469.2008.00491.x; BELANGER C, 1971, STUDIES SECRETION MO; BENIRSCHKE K, 2000, PATHOLOGY HUMAN PLAC; BENIRSCHKE K, 2010, COMP PLACENTATION; Bianchi DW, 2001, ANN NY ACAD SCI, V945, P119; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bollback JP, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-88; BOLLBACK JP, 2005, STAT METHODS MOL EVO, P189; BRAUNSTEIN GD, 1980, AM J OBSTET GYNECOL, V138, P1205, DOI 10.1016/S0002-9378(16)32793-4; Bressan FF, 2009, PLACENTA, V30, P823, DOI 10.1016/j.placenta.2009.07.007; Burton GJ, 2002, J CLIN ENDOCR METAB, V87, P2954, DOI 10.1210/jc.87.6.2954; Calsbeek R, 2007, EVOLUTION, V61, P2493, DOI 10.1111/j.1558-5646.2007.00206.x; Carter AM, 2008, REPROD FERT DEVELOP, V20, P537, DOI 10.1071/RD08009; Carter AM, 2007, PLACENTA, V28, pS129, DOI 10.1016/j.placenta.2007.01.014; Carter AM, 2007, PLACENTA, V28, P259, DOI 10.1016/j.placenta.2006.04.010; Carter AM, 2009, PLACENTA, V30, pS19, DOI 10.1016/j.placenta.2008.11.006; Carter AM, 2005, PLACENTA, V26, P251, DOI 10.1016/j.placenta.2004.06.001; Carter AM, 2004, PLACENTA, V25, P218, DOI 10.1016/j.placenta.2003.08.009; CARTER AM, 1989, J DEV PHYSIOL, V12, P305; Carter AM, 1999, PLACENTA, V20, P513, DOI 10.1053/plac.1999.0413; Carter AM, 2001, PLACENTA, V22, P800, DOI 10.1053/plac.2001.0739; Carter Anthony M, 2004, Reprod Biol Endocrinol, V2, P46, DOI 10.1186/1477-7827-2-46; CHARD T, 1982, RES CLIN LAB, V12, P207; Cifelli RL, 2007, NATURE, V447, P918, DOI 10.1038/447918a; Collar DC, 2008, BIOL LETTERS, V4, P84, DOI 10.1098/rsbl.2007.0509; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Croy BA, 2006, IMMUNOL REV, V214, P161; Cunningham CW, 1999, SYST BIOL, V48, P665, DOI 10.1080/106351599260238; Dobson F. Stephen, 2007, P99; Elliot MG, 2008, J EVOLUTION BIOL, V21, P1763, DOI 10.1111/j.1420-9101.2008.01590.x; Elliot MG, 2009, PLACENTA, V30, P949, DOI 10.1016/j.placenta.2009.08.004; Elliot MG, 2006, AM NAT, V168, P114, DOI 10.1086/505162; Enders AC, 2009, PLACENTA, V30, pS15, DOI 10.1016/j.placenta.2008.09.018; Enders AC, 2006, PLACENTA, V27, pS11, DOI 10.1016/j.placenta.2005.10.013; Enders AC, 2004, PLACENTA, V25, pS3, DOI 10.1016/j.placenta.2004.01.011; ENDERS AC, 1965, AM J ANAT, V116, P29, DOI 10.1002/aja.1001160103; ENDERS AC, 1998, TROPHOBLAST RES, V12, P1; Estes S, 2007, AM NAT, V169, P227, DOI 10.1086/510633; FABER JJ, 1992, AM ZOOL, V32, P343; FELSENSTEIN J, 1988, ANNU REV GENET, V22, P521, DOI 10.1146/annurev.ge.22.120188.002513; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Flietstra RJ, 1996, ENDOCRINE, V5, P103, DOI 10.1007/BF02738662; FRANZKE R, 1982, PFLUGERS ARCHIV, V294, P21; Freyer C, 2009, J EXP ZOOL PART B, V312B, P545, DOI 10.1002/jez.b.21239; GILL T, 1987, IMMUNOREGULATION FET; Graves JAM, 2010, PLACENTA, V31, pS27, DOI 10.1016/j.placenta.2009.12.029; Haig D, 2008, PLACENTA, V29, pS36, DOI 10.1016/j.placenta.2007.09.010; Haig D, 2004, PLACENTA, V25, pS10, DOI 10.1016/j.placenta.2004.01.006; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1996, AM J REPROD IMMUNOL, V35, P226; Hallstrom BM, 2007, MOL BIOL EVOL, V24, P2059, DOI 10.1093/molbv/msm136; HANDWERGER S, 1992, SEMIN REPROD ENDOCR, V10, P106, DOI 10.1055/s-2007-1018866; Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Hill JP, 1932, PHILOS T R SOC LON B, V221, P45, DOI 10.1098/rstb.1932.0002; Homko CJ, 1999, SEMIN REPROD ENDOCR, V17, P119, DOI 10.1055/s-2007-1016219; Huelsenbeck JP, 2003, SYST BIOL, V52, P641, DOI 10.1080/10635150390235467; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Jauniaux E, 2004, J CLIN ENDOCR METAB, V89, P1452, DOI 10.1210/jc.2003-031332; JELKMANN W, 1977, PFLUG ARCH EUR J PHY, V372, P149, DOI 10.1007/BF00585329; JENKS GF, 1971, ANN ASSOC AM GEOGR, V61, P217, DOI 10.1111/j.1467-8306.1971.tb00779.x; Jones AG, 2003, EVOLUTION, V57, P1747; KASTENDIECK E, 1977, PFLUG ARCH EUR J PHY, V370, P165; KAUFMANN P, 1981, PLACENTA S, V1, P13; KING BF, 1993, HUMAN YOLK SAC YOLK, P1; Klisch K, 2007, PLACENTA, V28, P353, DOI 10.1016/j.placenta.2006.03.014; Kriegs JO, 2006, PLOS BIOL, V4, P537, DOI 10.1371/journal.pbio.0040091; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Le Gros Clark W. E., 1959, ANTECEDENTS MAN; LEUTENEGGER W, 1973, FOLIA PRIMATOL, V20, P280, DOI 10.1159/000155580; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; LILLEGRAVEN JA, 1987, BIOL J LINN SOC, V32, P281, DOI 10.1111/j.1095-8312.1987.tb00434.x; Lin YH, 2002, MOL BIOL EVOL, V19, P2060, DOI 10.1093/oxfordjournals.molbev.a004031; LONGO LD, 1977, J APPL PHYSIOL, V43, P885; Luckett W.P., 1974, Contributions Primatol, V3, P142; LUCKETT WP, 1976, FOLIA PRIMATOL, V25, P245; LUCKETT WP, 1993, J EXP ZOOL, V266, P514, DOI 10.1002/jez.1402660604; LUCKETT WP, 1977, MAJOR PATTERNS VERTE, P439; MAC ARTHUR ROBERT H., 1967; Maddison W. P., 2009, MESQUITE MODULAR SYS; Madsen O, 2001, NATURE, V409, P610, DOI 10.1038/35054544; Martin RD, 2003, J REPROD IMMUNOL, V59, P111, DOI 10.1016/S0165-0375(03)00042-1; Martin RD, 1990, PRIMATE ORIGINS EVOL; Martin RD, 2007, YEARB PHYS ANTHROPOL, V50, P59, DOI 10.1002/ajpa.20734; Martin RD, 2008, EVOL BIOL, V35, P125, DOI 10.1007/s11692-008-9016-9; Martins EP, 2000, TRENDS ECOL EVOL, V15, P296, DOI 10.1016/S0169-5347(00)01880-2; McVean GT, 1997, P ROY SOC B-BIOL SCI, V264, P739, DOI 10.1098/rspb.1997.0105; Mess A, 2006, J EXP ZOOL PART B, V306B, P140, DOI 10.1002/jez.b.21079; Mess A, 2003, J EXP ZOOL PART A, V299A, P3, DOI 10.1002/jez.a.10287; Mess AM, 2009, PLACENTA, V30, P914, DOI 10.1016/j.placenta.2009.07.008; Mess A, 2007, COMP BIOCHEM PHYS A, V148, P769, DOI 10.1016/j.cbpa.2007.01.029; METCALFE J, 1967, PHYSIOL REV, V47, P782; Miglino MA, 2008, PLACENTA, V29, P748, DOI 10.1016/j.placenta.2008.05.007; Miglino MA, 2004, PLACENTA, V25, P438, DOI 10.1016/j.placenta.2003.11.002; Moffett A, 2006, NAT REV IMMUNOL, V6, P584, DOI 10.1038/nri1897; MOLL W, 1972, RESP GAS EXCHANGE BL; MOORE T, 1991, CELL, V64, P1045; MOSSMAN HW, 1991, PLACENTA, V12, P1, DOI 10.1016/0143-4004(91)90504-9; MOSSMAN HW, 1987, VERTEBRATE FETAL MEM; Murphy WJ, 2007, GENOME RES, V17, P413, DOI 10.1101/gr.5918807; Murphy WJ, 2001, SCIENCE, V294, P2348, DOI 10.1126/science.1067179; Nelson JL, 2003, AUTOIMMUNITY, V36, P5, DOI 10.1080/0891693031000067304; Nielsen R, 2002, SYST BIOL, V51, P729, DOI 10.1080/10635150290102393; Nishihara H, 2009, P NATL ACAD SCI USA, V106, P5235, DOI 10.1073/pnas.0809297106; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; Papper Z, 2009, P NATL ACAD SCI USA, V106, P17083, DOI 10.1073/pnas.0908377106; PETSCHOW R, 1978, RESP PHYSIOL, V35, P271, DOI 10.1016/0034-5687(78)90003-8; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pijnenborg R, 2004, PLACENTA, V25, P233, DOI 10.1016/j.placenta.2003.08.008; Prasad AB, 2008, MOL BIOL EVOL, V25, P1795, DOI 10.1093/molbev/msn104; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reik W, 1998, CURR OPIN GENET DEV, V8, P154, DOI 10.1016/S0959-437X(98)80136-6; Revell LJ, 2010, J EVOLUTION BIOL, V23, P407, DOI 10.1111/j.1420-9101.2009.01911.x; Revell LJ, 2008, EVOL ECOL RES, V10, P311; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Ronquist F., 2005, MRBAYES 3 1 MANUAL; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; Schroder HJ, 1997, EXP PHYSIOL, V82, P403, DOI 10.1113/expphysiol.1997.sp004035; Schultz TR, 1999, SYST BIOL, V48, P651, DOI 10.1080/106351599260229; Shoshani J, 1998, MOL PHYLOGENET EVOL, V9, P572, DOI 10.1006/mpev.1998.0520; Spencer M, 2007, SYSTEMATIC BIOL, V56, P25, DOI 10.1080/10635150601156313; Springer Mark S., 2005, P37; SPRINGER MS, 2004, ORIGIN TIMING RELATI; STEVEN D, 1975, COMP PLACENTATION, P58; Steven D.H., 1983, P111; Vogel P, 2005, PLACENTA, V26, P591, DOI 10.1016/j.placenta.2004.11.005; VOOGT J, 1982, BIOL REPROD, V26, P800, DOI 10.1095/biolreprod26.5.800; WADDELL J, 2006, MOL PHYLOGENET EVOL, V28, P197; Walker JA, 2007, AM NAT, V170, P681, DOI 10.1086/521957; Waters PD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000158; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Wildman DE, 2007, P NATL ACAD SCI USA, V104, P14395, DOI 10.1073/pnas.0704342104; WILKENING RB, 1992, PLACENTA, V13, P1, DOI 10.1016/0143-4004(92)90002-B; Wilson DE, 2005, MAMMAL SPECIES WORLD; Wislocki GB, 1929, CONTRIB EMBRYOL, V20, P53; Wooding F.B.P., 1994, P233; Wooding F. B. P., 2008, COMP PLACENTATION ST; Zeh DW, 2000, BIOESSAYS, V22, P938, DOI 10.1002/1521-1878(200010)22:10<938::AID-BIES9>3.0.CO;2-9; Zeh JA, 1997, P ROY SOC B-BIOL SCI, V264, P69, DOI 10.1098/rspb.1997.0010; Zeh JA, 1996, P ROY SOC B-BIOL SCI, V263, P1711, DOI 10.1098/rspb.1996.0250; Zeh JA, 2008, ANN NY ACAD SCI, V1133, P126, DOI 10.1196/annals.1438.006 153 7 7 1 35 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. SEP 2011 38 3 287 305 10.1007/s11692-011-9115-x 19 Evolutionary Biology Evolutionary Biology 806YT WOS:000293854900004 2019-02-21 J Canestrari, D; Marcos, JM; Baglione, V Canestrari, D.; Marcos, J. M.; Baglione, V. Helpers at the nest compensate for reduced maternal investment in egg size in carrion crows JOURNAL OF EVOLUTIONARY BIOLOGY English Article carrion crows; cooperative breeding; egg size; helpers; maternal effects; maternal strategies COOPERATIVELY BREEDING BIRDS; CORVUS-CORONE-CORONE; REPRODUCTIVE SUCCESS; ALBUMIN REMOVAL; KIN SELECTION; BREEDERS; HYPOTHESIS; EVOLUTION; BENEFITS; QUALITY Life history theory predicts that mothers should trade off current and future reproductive attempts to maximize lifetime fitness. When breeding conditions are favourable, mothers may either increase investment in the eggs to improve the quality of the offspring or save resources for future reproduction as the good raising environment is likely to compensate for a 'bad start'. In cooperatively breeding birds, the presence of helpers improves breeding conditions so that mothers may vary the number, size and quality of the eggs in response to the composition of the group. Here, we show that in cooperatively breeding carrion crows Corvus corone corone, where nonbreeding males are more philopatric and more helpful at the nest than females, breeding females decreased egg size as the number of subordinate males in the group increased. However, despite the smaller investment in egg size, fledglings' weight increased in groups with more male subordinates, improving post-fledging survival and indicating that helpers fully compensated for the initial 'bad start'. These results highlight a 'hidden effect' of helpers that bears profound implications for understanding the ultimate function of helping. [Canestrari, D.; Marcos, J. M.; Baglione, V.] Univ Valladolid, Dept Agroforestry, Palencia 34004, Spain; [Baglione, V.] UVA INIA, Sustainable Forest Management Res Inst, Palencia, Spain Canestrari, D (reprint author), Univ Valladolid, Dept Agroforestry, Avda Madrid 44, Palencia 34004, Spain. daniela.canestrari@uva.es Canestrari, Daniela/F-9696-2016; Baglione, Vittorio/D-6456-2014 Canestrari, Daniela/0000-0001-9112-0208; Baglione, Vittorio/0000-0001-8464-7861 Spanish Ministry of Science and Innovation; ESF-EUROCORES TECT [CGL2008-01829BOS, SEJ2007-29836-E] We are grateful to two anonymous referees for improving the manuscript and to Walt Koenig for useful discussions. This work was supported by the Spanish Ministry of Science and Innovation through the 'Juan de la Cierva' program-FSE (to DC) and the projects CGL2008-01829BOS and SEJ2007-29836-E (COCOR 'Cooperation in Corvids' of the ESF-EUROCORES TECT program) to VB. Arnold KE, 1998, P ROY SOC B-BIOL SCI, V265, P739, DOI 10.1098/rspb.1998.0355; Baglione V, 2006, P R SOC B, V273, P1529, DOI 10.1098/rspb.2006.3481; Baglione V, 2003, SCIENCE, V300, P1947, DOI 10.1126/science.1082429; Baglione V, 2002, ANIM BEHAV, V64, P887, DOI 10.1006/anbe.2002.2007; Baglione V, 2002, AUK, V119, P790, DOI 10.1642/0004-8038(2002)119[0790:CBGOCC]2.0.CO;2; Baglione V, 2010, P ROY SOC B-BIOL SCI, V277, P3275, DOI 10.1098/rspb.2010.0745; Bonisoli-Alquati A, 2007, FUNCT ECOL, V21, P310, DOI 10.1111/j.1365-2435.2006.01226.x; Bonisoli-Alquati A, 2008, ECOLOGY, V89, P2315, DOI 10.1890/07-1066.1; BURLEY N, 1986, AM NAT, V127, P415, DOI 10.1086/284493; CANESTRARI D, 2005, BEHAV ECOL SOCIOBIOL, V52, P422, DOI DOI 10.1007/S00265-004-0879-1; Canestrari D, 2008, ANIM BEHAV, V76, P943, DOI 10.1016/j.anbehav.2008.05.013; Canestrari D, 2008, ANIM BEHAV, V75, P403, DOI 10.1016/j.anbehav.2007.05.005; Canestrari D, 2007, ANIM BEHAV, V73, P349, DOI 10.1016/j.anbehav.2006.04.013; Canestrari D, 2010, BEHAV ECOL, V21, P233, DOI 10.1093/beheco/arp177; CHIARATI E, 2011, BEHAV ECOL IN PRESS, DOI DOI 10.1007/200265-011-1187-1; Cockburn A, 1998, ANNU REV ECOL SYST, V29, P141, DOI 10.1146/annurev.ecolsys.29.1.141; CRAWLEY MJ, 2002, STAT COMPUTING; CRICK HQP, 1992, IBIS, V134, P56, DOI 10.1111/j.1474-919X.1992.tb07230.x; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; Dickinson Janis L., 2004, P48, DOI 10.1017/CBO9780511606816.004; Griffin AS, 2002, TRENDS ECOL EVOL, V17, P15, DOI 10.1016/S0169-5347(01)02355-2; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Heinsohn Robert G., 2004, P67, DOI 10.1017/CBO9780511606816.005; HOYT DF, 1979, AUK, V96, P73; Koenig WD, 2009, BEHAV ECOL SOCIOBIOL, V63, P1659, DOI 10.1007/s00265-009-0773-y; KRIST M, 2010, BIOL REV IN PRESS; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; REID WV, 1990, EVOLUTION, V44, P1780, DOI 10.1111/j.1558-5646.1990.tb05248.x; Richardson DS, 2002, EVOLUTION, V56, P2313; Russell AF, 2008, P R SOC B, V275, P29, DOI 10.1098/rspb.2007.0821; Russell AF, 2007, SCIENCE, V317, P941, DOI 10.1126/science.1146037; Russell AF, 2009, PHILOS T R SOC B, V364, P1143, DOI 10.1098/rstb.2008.0298; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Stearns S, 1992, EVOLUTION LIFE HIST; Taborsky B, 2007, BEHAV ECOL, V18, P652, DOI 10.1093/beheco/arm026; Vinuela J, 1997, J ANIM ECOL, V66, P781, DOI 10.2307/5995; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x; Woxvold IA, 2005, J ANIM ECOL, V74, P1039, DOI 10.1111/j.1365-2656.2005.01001.x 41 25 25 0 47 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. SEP 2011 24 9 1870 1878 10.1111/j.1420-9101.2011.02313.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 807OX WOS:000293910500003 21605220 Bronze 2019-02-21 J Cam, E; Aubry, L Cam, Emmanuelle; Aubry, Lise Early development, recruitment and life history trajectory in long-lived birds JOURNAL OF ORNITHOLOGY English Review Life history evolution; Longitudinal studies; Long-term effects; Population dynamics OYSTERCATCHERS HAEMATOPUS-OSTRALEGUS; BROOD SIZE MANIPULATIONS; CAPTURE-RECAPTURE MODELS; YOLK TESTOSTERONE LEVELS; BRANT BRANTA-BERNICLA; PRE-BREEDING SURVIVAL; TIT PARUS-MAJOR; POPULATION-DYNAMICS; REPRODUCTIVE SUCCESS; GREAT TITS Lindstrom (in Trends Ecol Evol 14:343-347, 1999) synthesized knowledge about "early development and fitness in birds and mammals", interesting tracks and challenges for future studies. Today, there is unambiguous evidence that Lindstrom's first statement holds in long-lived birds: "It is obvious that adverse environmental conditions might have immediate effects [aEuro broken vertical bar]." However, whether there are "long-term fitness consequences of conditions experienced during early development" (Lindstrom's second statement) is unclear for long-lived birds. The extent to which the disadvantage of frail individuals at independence is expressed predominantly in terms of higher mortality and disappearance from the population before recruitment, or persists after recruitment, is still an open question. Due to the rarity of relevant data and the fact that most studies are retrospective, heterogeneity in methods and timescales hampers the identification of general patterns. Nevertheless, several studies have provided evidence of a relationship between early conditions and future reproductive parameters, or lifetime reproductive success. Evidence from large mammals suggests substantial long-term individual and population effects of early conditions, including trans-generational maternal effects. Evidence from short-lived birds also suggests long-term individual consequences, and maternal effects have been documented in long-lived ones. Despite logistical and financial difficulties inherent in long-term studies, they are the only way of addressing Lindstrom's second statement. Existing long-term longitudinal datasets should be re-analyzed using recently developed capture-mark-recapture models handling state uncertainty and unobservable heterogeneity in populations. Statistical methods designed to estimate lifetime reproductive success or incorporate pedigree information in standard situations of studies of wild vertebrates with imperfect detection offer new opportunities to assess long-term fitness consequences of early development in long-lived birds. [Cam, Emmanuelle] Ctr Ecol Fonct & Evolut, CNRS, UMR 5175, F-34293 Montpellier 05, France; [Cam, Emmanuelle] CNRS, UMR 5174, Lab Evolut & Div Biol, F-31062 Toulouse 09, France; [Aubry, Lise] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA Cam, E (reprint author), Ctr Ecol Fonct & Evolut, CNRS, UMR 5175, 1919 Route Mende, F-34293 Montpellier 05, France. emmacam@cict.fr Aubry, Lise/0000-0003-3318-7329 ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ARNASON A N, 1973, Researches on Population Ecology (Tokyo), V15, P1; ASHMOLE NP, 1968, AUK, V85, P90, DOI 10.2307/4083627; Aubry LM, 2011, J ANIM ECOL, V80, P375, DOI 10.1111/j.1365-2656.2010.01784.x; Aubry LM, 2009, ENVIRON ECOL STAT SE, V3, P365, DOI 10.1007/978-0-387-78151-8_16; Aubry LM, 2009, ECOLOGY, V90, P2491, DOI 10.1890/08-1475.1; AUTHIER M, 2011, J EVOL BIOL IN PRESS; Barbraud C, 2003, J ANIM ECOL, V72, P246, DOI 10.1046/j.1365-2656.2003.00695.x; Barker DJP, 1994, MOTHERS BABIES DIS L; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Becker PH, 2008, P NATL ACAD SCI USA, V105, P12349, DOI 10.1073/pnas.0804179105; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Belthoff JR, 1998, ANIM BEHAV, V55, P405, DOI 10.1006/anbe.1997.0625; Bengtsson T, 2000, POP STUD-J DEMOG, V54, P263, DOI 10.1080/713779096; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; BERGERON P, 2010, J ANIM ECOL, V80, P361; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; Blount JD, 2003, P ROY SOC B-BIOL SCI, V270, P1691, DOI 10.1098/rspb.2003.2411; BOAG PT, 1987, AUK, V104, P155; BOERSMA PD, 1982, AM NAT, V120, P733, DOI 10.1086/284027; Bogdanova MI, 2011, P ROY SOC B-BIOL SCI, V278, P2412, DOI 10.1098/rspb.2010.2601; Both C, 1999, P ROY SOC B-BIOL SCI, V266, P465, DOI 10.1098/rspb.1999.0660; BOULINIER T, 2008, TRENDS ECOL EVOL, V23, P202; Braasch A, 2009, J ORNITHOL, V150, P401, DOI 10.1007/s10336-008-0362-2; Bruinzeel LW, 2004, BEHAV ECOL, V15, P290, DOI 10.1093/beheco/arh019; Burger J., 1980, P367; Burness GP, 2000, J EXP BIOL, V203, P3513; Cadiou B, 1999, IBIS, V141, P321, DOI 10.1111/j.1474-919X.1999.tb07554.x; CADIOU B, 1994, ANIM BEHAV, V47, P847, DOI 10.1006/anbe.1994.1116; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 2005, ECOL MONOGR, V75, P419, DOI 10.1890/04-1551; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; Cam E, 2002, J APPL STAT, V29, P163, DOI 10.1080/02664760120108502; Cameron TC, 2004, J ANIM ECOL, V73, P996, DOI 10.1111/j.0021-8790.2004.00886.x; Cappe O., 2005, INFERENCE HIDDEN MAR; Carere C, 2005, ANIM BEHAV, V70, P795, DOI 10.1016/j.anbehav.2005.01.003; CHABRZYK G, 1976, J ANIM ECOL, V45, P187, DOI 10.2307/3774; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charmantier A, 2006, AM NAT, V167, P453, DOI 10.1086/499378; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; CHOUDHURY S, 1992, ANIM BEHAV, V44, P171, DOI 10.1016/S0003-3472(05)80768-7; Christensen TK, 1999, J AVIAN BIOL, V30, P302, DOI 10.2307/3677356; CLUTTONBROCK TH, 1988, REPROD SUCCESS; CLUTTONBROCK TH, 2010, TRENDS ECOL EVOL, V1284, P1; COOCH EG, 1993, OECOLOGIA, V93, P128, DOI 10.1007/BF00321202; Cooch EG, 2002, J APPL STAT, V29, P143, DOI 10.1080/02664760120108494; COOCH EG, 1991, ECOLOGY, V72, P503, DOI 10.2307/2937191; Crespin L, 2006, J ANIM ECOL, V75, P228, DOI 10.1111/j.1365-2656.2006.01035.x; CROXALL JP, 1990, J ANIM ECOL, V59, P775, DOI 10.2307/4895; DANCHIN E, 1991, P INT ORNITHOL C, V20, P1641; DeKogel CH, 1997, J ANIM ECOL, V66, P167; DeKogel CH, 1996, ANIM BEHAV, V51, P699, DOI 10.1006/anbe.1996.0073; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; DINGEMANSE NJ, 2005, BEHAVIOUR, V142, P1165, DOI DOI 10.1163/156853905774539445); Dittmann T, 2005, ANIM BEHAV, V70, P13, DOI 10.1016/j.anbehav.2004.09.015; Dittmann T, 2003, ANIM BEHAV, V65, P981, DOI 10.1006/anbe.2003.2128; Dittmann T, 2007, BEHAV PROCESS, V76, P198, DOI 10.1016/j.beproc.2007.05.002; Doblhammer G, 2001, P NATL ACAD SCI USA, V98, P2934, DOI 10.1073/pnas.041431898; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Drent PJ, 1983, THESIS U GRONINGEN; Drummond H, 2003, AM NAT, V161, P794, DOI 10.1086/375170; Dupuis JA, 1995, BIOMETRIKA, V82, P761, DOI 10.1093/biomet/82.4.761; Eising CM, 2006, BIOL LETTERS, V2, P20, DOI 10.1098/rsbl.2005.0391; Erikstad KE, 1998, ECOLOGY, V79, P1781; Feare Chris J., 2002, Marine Ornithology, V30, P46; Festa-Bianchet M, 2000, BEHAV ECOL, V11, P633, DOI 10.1093/beheco/11.6.633; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; Forchhammer MC, 2001, J ANIM ECOL, V70, P721, DOI 10.1046/j.0021-8790.2001.00532.x; Fox GA, 2002, ECOLOGY, V83, P1928, DOI 10.2307/3071775; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GARNETT MC, 1981, IBIS, V123, P31, DOI 10.1111/j.1474-919X.1981.tb00170.x; Gasparini J, 2007, J EVOLUTION BIOL, V20, P874, DOI 10.1111/j.1420-9101.2007.01315.x; Gil D, 2003, ARDEOLA, V50, P281; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; Gorman HE, 2004, P ROY SOC B-BIOL SCI, V271, P1923, DOI 10.1098/rspb.2004.2799; Groothuis TGG, 2005, BIOL LETTERS, V1, P78, DOI 10.1098/rsbl.2004.0233; GUSTAFSSON L, 1988, NATURE, V335, P813, DOI 10.1038/335813a0; Hall AJ, 2001, J ANIM ECOL, V70, P138; Halley DJ, 1995, AUK, V112, P947; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; Hario M, 2009, ORNIS FENNICA, V86, P81; HARRIS MP, 1992, IBIS, V134, P335, DOI 10.1111/j.1474-919X.1992.tb08012.x; HARRIS MP, 1994, J AVIAN BIOL, V25, P268, DOI 10.2307/3677273; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Hawkes K, 2010, P NATL ACAD SCI USA, V107, P8977, DOI 10.1073/pnas.0914627107; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; HEDGREN S, 1981, ORNIS SCAND, V12, P51, DOI 10.2307/3675904; HEINSOHN RG, 1991, AM NAT, V137, P864, DOI 10.1086/285198; Henaux V, 2007, J AVIAN BIOL, V38, P44, DOI 10.1111/j.0908-8857.2007.03712.x; HESTBECK JB, 1991, ECOLOGY, V72, P523, DOI 10.2307/2937193; Hipfner JM, 2001, AUK, V118, P1076, DOI 10.1642/0004-8038(2001)118[1076:FRCORI]2.0.CO;2; Inchausti P, 2009, PHILOS T R SOC B, V364, P1117, DOI 10.1098/rstb.2008.0292; Jenouvrier S, 2008, OIKOS, V117, P620, DOI 10.1111/j.2007.0030-1299.16394.x; JONES HJ, 2010, J ANIM ECOL, V79, P1262; Kendall BE, 2002, CONSERV BIOL, V16, P109, DOI 10.1046/j.1523-1739.2002.00036.x; Kendall W. L., 2004, Animal Biodiversity and Conservation, V27, P97; KLOMP NI, 1992, J APPL ECOL, V29, P341, DOI 10.2307/2404503; Koenig WD, 1996, TRENDS ECOL EVOL, V11, P514, DOI 10.1016/S0169-5347(96)20074-6; Kontiainen P, 2008, J EVOLUTION BIOL, V21, P88, DOI 10.1111/j.1420-9101.2007.01468.x; KORPIMAKI, 1988, J ANIM ECOL, V57, P433; Krause ET, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005015; Kruuk LEB, 2008, P R SOC B, V275, P593, DOI 10.1098/rspb.2007.1689; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Kruuk LEB, 2008, ANNU REV ECOL EVOL S, V39, P525, DOI 10.1146/annurev.ecolsys.39.110707.173542; Lailvaux SP, 2011, P ROY SOC B-BIOL SCI, V278, P321, DOI 10.1098/rspb.2010.1591; LARSSON K, 1993, J EVOLUTION BIOL, V6, P195, DOI 10.1046/j.1420-9101.1993.6020195.x; LARSSON K, 1991, J EVOLUTION BIOL, V4, P619, DOI 10.1046/j.1420-9101.1991.4040619.x; LARSSON K, 1992, EVOLUTION, V46, P235, DOI 10.1111/j.1558-5646.1992.tb01998.x; Lendvai AZ, 2009, GEN COMP ENDOCR, V160, P30, DOI 10.1016/j.ygcen.2008.10.004; Lewis S, 2006, J ANIM ECOL, V75, P1304, DOI 10.1111/j.1365-2656.2006.01152.x; Limmer B, 2010, OIKOS, V119, P500, DOI 10.1111/j.1600-0706.2009.16673.x; Limmer B, 2009, ANIM BEHAV, V77, P1095, DOI 10.1016/j.anbehav.2009.01.015; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; LLOYD CS, 1979, IBIS, V121, P165, DOI 10.1111/j.1474-919X.1979.tb04959.x; Loison A, 2004, ECOLOGY, V85, P1992, DOI 10.1890/03-0600; Ludwigs J-D, 2006, ACTA ZOOL SINICA, V52, P96; Lynch M, 1998, GENETICS ANAL QUANTI; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Marzolin G, 2002, J WILDLIFE MANAGE, V66, P1023, DOI 10.2307/3802934; MARZOLIN G, 2011, ECOLOGY IN PRESS; McDonald PG, 2005, BEHAV ECOL, V16, P922, DOI 10.1093/beheco/ari071; Meathrel C. E., 2007, J ORNITHOL, V148, P385, DOI DOI 10.1007/S10336-007-0204-7; MEATHREL CE, 1993, OECOLOGIA, V93, P162, DOI 10.1007/BF00317665; Merila J, 2001, J EVOLUTION BIOL, V14, P918, DOI 10.1046/j.1420-9101.2001.00353.x; Merila J, 1997, J AVIAN BIOL, V28, P279, DOI 10.2307/3676940; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moe SJ, 2002, ECOLOGY, V83, P1597, DOI 10.2307/3071980; Morrison KW, 2009, CONDOR, V111, P433, DOI 10.1525/cond.2009.080099; Mougin J.-L., 2000, Ringing and Migration, V20, P107; Muller W, 2009, BEHAV ECOL SOCIOBIOL, V63, P809, DOI 10.1007/s00265-009-0714-9; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Nager RG, 2000, BEHAV ECOL SOCIOBIOL, V48, P452, DOI 10.1007/s002650000262; NAGER RG, 2006, ACTA ZOOL SIN S, V52, P658; NELSON DA, 1987, CONDOR, V89, P340, DOI 10.2307/1368486; Nevoux M, 2010, OECOLOGIA, V162, P383, DOI 10.1007/s00442-009-1482-y; Newton I, 1989, LIFETIME REPROD BIRD; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; NUSSEY DH, 2007, CURR BIOL, V17, P1000, DOI DOI 10.1016/J.CUB.2007.10.005; Papaix J, 2010, J EVOLUTION BIOL, V23, P2176, DOI 10.1111/j.1420-9101.2010.02079.x; PERRINS CM, 1965, J ANIM ECOL, V34, P601, DOI 10.2307/2453; PERRINS CM, 1973, IBIS, V115, P535, DOI 10.1111/j.1474-919X.1973.tb01991.x; PIKERING SPC, 1989, IBIS, V131, P183; Plaistow SJ, 2009, PHILOS T R SOC B, V364, P1049, DOI 10.1098/rstb.2008.0251; POSTMA E, 2007, J ORNITHOL, V148, P633, DOI DOI 10.1007/S10336-007-0191-8; Potti J, 1999, EVOLUTION, V53, P279, DOI 10.1111/j.1558-5646.1999.tb05353.x; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reed ET, 2003, ECOLOGY, V84, P219, DOI 10.1890/0012-9658(2003)084[0219:AAECAR]2.0.CO;2; Reid JM, 2008, J ANIM ECOL, V77, P777, DOI 10.1111/j.1365-2656.2008.01400.x; Reid JM, 2003, J ANIM ECOL, V72, P36, DOI 10.1046/j.1365-2656.2003.00673.x; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; Rose KE, 1998, J ANIM ECOL, V67, P979, DOI 10.1046/j.1365-2656.1998.6760979.x; ROSSITER M, 1994, BIOSCIENCE, V44, P752, DOI 10.2307/1312584; Rouan L, 2009, ENVIRON ECOL STAT SE, V3, P867, DOI 10.1007/978-0-387-78151-8_40; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; Rubolini D, 2006, BEHAV ECOL SOCIOBIOL, V59, P344, DOI 10.1007/s00265-005-0057-0; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Sagar PM, 1998, IBIS, V140, P329, DOI 10.1111/j.1474-919X.1998.tb04397.x; SCHLUTER D, 1993, EVOLUTION, V47, P658, DOI 10.1111/j.1558-5646.1993.tb02119.x; Schreiber E. A., 2004, Animal Biodiversity and Conservation, V27, P531; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Sedinger JS, 2004, AUK, V121, P68, DOI 10.1642/0004-8038(2004)121[0068:EEAROB]2.0.CO;2; SEDINGER JS, 1995, ECOLOGY, V76, P2404, DOI 10.2307/2265816; SERVENTY D. L., 1967, PROC INT ORNITHOL CONGR, V14, P165; Solberg EJ, 2004, ECOGRAPHY, V27, P677, DOI 10.1111/j.0906-7590.2004.03864.x; SPEAR L, 1994, J ANIM ECOL, V63, P283, DOI 10.2307/5547; SPEAR L, 1993, IBIS, V137, P352; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stienen EWM, 2002, IBIS, V144, P567, DOI 10.1046/j.1474-919X.2002.00086.x; Szep T, 2000, OECOLOGIA, V125, P201, DOI 10.1007/s004420000447; TEPLITSKY C, 2008, EVOLUTION, V63, P716; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; Thompson PM, 2001, NATURE, V413, P417, DOI 10.1038/35096558; TINBERGEN JM, 1990, J ANIM ECOL, V59, P1113, DOI 10.2307/5035; Tobler M, 2007, HORM BEHAV, V52, P640, DOI 10.1016/j.yhbeh.2007.07.016; Tschirren B, 2007, AM NAT, V169, P87, DOI 10.1086/509945; ULIJASZEK SJ, 1996, LONG TERM CONSEQUENC, P25; Van de Pol M, 2006, IBIS, V148, P203, DOI 10.1111/j.1474-919x.2006.00479.x; Van de Pol M, 2006, J ANIM ECOL, V75, P616, DOI 10.1111/j.1365-2656.2006.01079.x; van de Pol M, 2007, AM NAT, V170, P530, DOI 10.1086/521237; Van der Jeugd HP, 1998, J ANIM ECOL, V67, P953, DOI 10.1046/j.1365-2656.1998.6760953.x; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; VANNOORDWIJK AJ, 1988, GENET RES, V51, P149; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; VAUPEL JW, 1985, SOCIOL METHODOL, V15, P179, DOI DOI 10.2307/270850); Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; Vergara P, 2010, BEHAV ECOL, V21, P507, DOI 10.1093/beheco/arq011; Verhulst S, 1997, ECOLOGY, V78, P864; Vinuela J, 1999, BEHAV ECOL SOCIOBIOL, V45, P33, DOI 10.1007/s002650050537; Votier SC, 2008, J ANIM ECOL, V77, P974, DOI 10.1111/j.1365-2656.2008.01421.x; Walling CA, 2007, BEHAV ECOL SOCIOBIOL, V61, P1007, DOI 10.1007/s00265-006-0333-7; Watson MJ, 1999, WATERBIRDS, V22, P463, DOI 10.2307/1522125; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Williams B. K., 2002, ANAL MANAGEMENT ANIM; Wilson AJ, 2008, FUNCT ECOL, V22, P431, DOI 10.1111/j.1365-2435.2008.01412.x; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson Alastair J., 2009, P83; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Yoerg SI, 1998, BEHAV ECOL, V9, P471, DOI 10.1093/beheco/9.5.471 209 37 37 1 72 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. SEP 2011 152 1 187 201 10.1007/s10336-011-0707-0 15 Ornithology Zoology 801AV WOS:000293409700016 2019-02-21 J Almbro, M; Dowling, DK; Simmons, LW Almbro, Maria; Dowling, Damian K.; Simmons, Leigh W. Effects of vitamin E and beta-carotene on sperm competitiveness ECOLOGY LETTERS English Article Antioxidants; fertility; infertility; male fertility; oxidative stress; reactive oxygen species; reproductive success; sexual selection; sperm; sperm competition CRICKET TELEOGRYLLUS-OCEANICUS; LIFE-HISTORY EVOLUTION; OXIDATIVE STRESS; ASCORBIC-ACID; ACHETA-DOMESTICUS; SEMEN QUALITY; TRADE-OFFS; ANTIOXIDANTS; AVAILABILITY; DNA Sperm are particularly prone to oxidative damage because they generate reactive oxygen species (ROS), have a high polyunsaturated fat content and a reduced capacity to repair DNA damage. The dietary compounds vitamin E and beta-carotene are argued to have antioxidant properties that help to counter the damaging effects of excess ROS. Here in, we tested the post-copulatory consequences for male crickets (Teleogryllus oceanicus) of dietary intake of these two candidate antioxidants. During competitive fertilisation trials, vitamin E, but not beta-carotene, singularly enhanced sperm competitiveness. However, the diet combining a high vitamin E dose and beta-carotene produced males with the most competitive ejaculates, possibly due to the known ability of beta-carotene to recycle vitamin E. Our results provide support for the idea that these two common dietary compounds have interactive antioxidant properties in vivo, by affecting the outcomes of male reproductive success under competitive conditions. [Almbro, Maria; Simmons, Leigh W.] Univ Western Australia, Sch Anim Biol M092, Ctr Evolutionary Biol, Crawley, WA 6009, Australia; [Dowling, Damian K.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Almbro, M (reprint author), Univ Western Australia, Sch Anim Biol M092, Ctr Evolutionary Biol, Crawley, WA 6009, Australia. maria.almbro@.uwa.edu.au Dowling, Damian/C-9016-2009; Simmons, Leigh/B-1815-2011 Dowling, Damian/0000-0003-2209-3458; Simmons, Leigh/0000-0003-0562-1474 Australian Research Council; West Australian Centres of Excellence in Science and Innovation programme; University of Western Australia This study was supported by funding from the Australian Research Council and the West Australian Centres of Excellence in Science and Innovation programme (to LWS), and a University of Western Australia Research Development Award (to DKD). Adabi SG, 2011, ANIM REPROD SCI, V123, P119, DOI 10.1016/j.anireprosci.2010.11.006; Aitken RJ, 2002, NATURE, V415, P963, DOI 10.1038/415963a; Andersson M., 1994, SEXUAL SELECTION; Apel K, 2004, ANNU REV PLANT BIOL, V55, P373, DOI 10.1146/annurev.arplant.55.031903.141701; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bertrand S, 2006, J EXP BIOL, V209, P4414, DOI 10.1242/jeb.02540; Blount JD, 2001, ECOL LETT, V4, P393, DOI 10.1046/j.1461-0248.2001.00255.x; Blount JD, 2004, ARCH BIOCHEM BIOPHYS, V430, P10, DOI 10.1016/j.abb.2004.03.039; Bohm F, 1997, J AM CHEM SOC, V119, P621, DOI 10.1021/ja962512c; BOWERS R. E., 1940, SCIENCE, V92, P291, DOI 10.1126/science.92.2387.291; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Costantini D, 2008, FUNCT ECOL, V22, P367, DOI 10.1111/j.1365-2435.2007.01366.x; Crawley M. J., 1993, GLIM ECOLOGISTS; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Eskenazi B, 2005, HUM REPROD, V20, P1006, DOI 10.1093/humrep/deh725; Fraga CG, 1996, MUTAT RES-FUND MOL M, V351, P199, DOI 10.1016/0027-5107(95)00251-0; FRAGA CG, 1991, P NATL ACAD SCI USA, V88, P11003, DOI 10.1073/pnas.88.24.11003; Garcia-Gonzalez F, 2005, CURR BIOL, V15, P271, DOI 10.1016/j.cub.2005.01.032; Halliwell B, 2007, FREE RADICALS BIOL M; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; KERKUT GA, 1985, COMPREHENSIVE INSECT; KESKESAMMAR L, 2003, EUROP J CLIN NUTR, V58, P1231; LEE CY, 1986, FOOD CHEM, V20, P285, DOI 10.1016/0308-8146(86)90097-X; Locatello L, 2006, J EVOLUTION BIOL, V19, P1595, DOI 10.1111/j.1420-9101.2006.01117.x; MCFARLANE JE, 1992, COMP BIOCHEM PHYS A, V103, P179, DOI 10.1016/0300-9629(92)90260-W; McGraw KJ, 2004, CHEMOECOLOGY, V14, P25, DOI 10.1007/s00049-003-0255-z; MEIKLE JES, 1965, CAN J ZOOLOG, V43, P87, DOI 10.1139/z65-007; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nappi AJ, 2000, BIOESSAYS, V22, P469, DOI 10.1002/(SICI)1521-1878(200005)22:5<469::AID-BIES9>3.3.CO;2-W; Peters A, 2004, J EVOLUTION BIOL, V17, P1111, DOI 10.1111/j.1420-9101.2004.00743.x; Pike TW, 2007, BIOLOGY LETT, V3, P353, DOI 10.1098/rsbl.2007.0072; Simmons L. W., 2001, SPERM COMPETITION IT; Simmons LW, 2010, BEHAV ECOL, V21, P1330, DOI 10.1093/beheco/arq154; Simmons LW, 2010, BEHAV ECOL, V21, P1179, DOI 10.1093/beheco/arq132; Simmons LW, 2003, BEHAV ECOL, V14, P539, DOI 10.1093/beheco/arg038; Suleiman SA, 1996, J ANDROL, V17, P530; Surai PF, 2002, NATURAL ANTIOXIDANTS; Svensson PA, 2011, BEHAVIOUR, V148, P131, DOI 10.1163/000579510X548673; Taylor CT, 2001, ENVIRON TOXICOL PHAR, V10, P189, DOI 10.1016/S1382-6689(01)00099-0; THOMPSON JN, 1964, PROC R SOC SER B-BIO, V159, P510, DOI 10.1098/rspb.1964.0017; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; Vertuani S, 2004, CURR PHARM DESIGN, V10, P1677, DOI 10.2174/1381612043384655; von Lintig J, 2004, J NUTR, V134, p251S; VONSCHANTZ T, 1999, P ROY SOC LOND B BIO, V10, P1; Young AJ, 2001, ARCH BIOCHEM BIOPHYS, V385, P20, DOI 10.1006/abbi.2000.2149; Yousef MI, 2003, ANIM REPROD SCI, V76, P99, DOI 10.1016/S0378-4320(02)00226-9 48 44 45 1 23 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. SEP 2011 14 9 891 895 10.1111/j.1461-0248.2011.01653.x 5 Ecology Environmental Sciences & Ecology 804BI WOS:000293628300008 21749600 2019-02-21 J Brand, C; Miserendino, ML Brand, Cecilia; Laura Miserendino, Maria Life history strategies and production of caddisflies in a perennial headwater stream in Patagonia HYDROBIOLOGIA English Article Life cycles; Trichoptera; Biomass; Mountain rivers; Voltinism; Secondary production SPRING-FED STREAM; FOREST STREAM; NEW-ZEALAND; LAND-USE; MACROINVERTEBRATE COMMUNITIES; MOUNTAIN STREAM; WATER-QUALITY; TRICHOPTERA; PLECOPTERA; GLOSSOSOMATIDAE Synchrony, one of the main traits of population life histories, refers to the degree to which individuals complete a certain stage of the life cycle at the same time. It can be governed by temperature, variations in temperature, photoperiodic cues, detritus inputs, or discharge regimes. We investigated life cycles and secondary production of five caddisfly species in a second order stream in the Patagonian Mountains. In addition, we analyzed what environmental variables were implied in the caddisfly assemblage variation. Mastigoptila sp. (Glossosomatidae) and Eosericostoma aequispina (Helicophidae), Myotrichia murina (Sericostomatidae), Brachysetodes quadrifidus (Leptoceridae), and Neoatopsyche brevispina (Hydrobiosidae) showed univoltine life cycles, with an extended recruitment with no overlapping cohorts and a relatively well-synchronized imaginal emergence taking place during spring summer seasons. However, Myotrichia murina (Sericostomatidae) displayed a complex life cycle with mixed populations taking 10-12 months to develop, and pupae being collected almost continuously. The annual secondary production per species varied from 11.06 (E. aequispina) to 310.5 mg m(-2) year(-1) (M. murina), being overall caddisfly production (0.5 g m(-2) year(-1)) similar to that reported for cold springs in other regions. The highest growth rates (K) were observed during late winter and spring (mostly September) and ranged from 0.70 to 3.70% day(-1) in M. longicornuta and N. brevispina, respectively. Redundancy analysis indicated that seasonally dynamic variables, water temperature, discharge, and detritus biomass were the main predictors of caddisfly assemblage variation; consequently at this cold stream (mean annual 5.9 degrees C), with a regular availability of food supply, these parameters ruled Trichoptera life histories and secondary production. As documented for other mountainous temperate areas, synchrony would be a dominant trait on life histories of Trichoptera species inhabiting Patagonian streams. [Brand, Cecilia; Laura Miserendino, Maria] Univ Nacl Patagonia San Juan Bosco, LIESA, RA-9200 Esquel, Chubut, Argentina Brand, C (reprint author), Univ Nacl Patagonia San Juan Bosco, LIESA, Sede Esquel Sarmiento 849, RA-9200 Esquel, Chubut, Argentina. cecibrand@hotmail.com CONICET We would like to thank Sebastian Ferrer, Diego Brand, Santiago Brand, Dr. Cecilia Y. Di Prinzio, and Lic. Luis Epele for fieldtrip and laboratory assistance. Technician Rodolfo Kusch manufactured and programmed the thermograph. Dr. Miguel Archangelsky and Prof. Cristina M. Zuppa revised and commented on the English style. Thanks to the two anonymous reviewers and Dr. Nuria Bonada for the critical comments and suggestions that allow us to review several theoretical aspects that greatly improved this manuscript. This work was partially funded by CONICET. This is Scientific Contribution No. 65 from LIESA. ALLAN J. D., 2007, STREAM ECOLOGY STRUC; Alvarez M, 2005, FRESHWATER BIOL, V50, P930, DOI 10.1111/j.1365-2427.2005.01370.x; Angrisano Elisa B., 1998, Revista de la Sociedad Entomologica Argentina, V57, P121; Becker G, 2005, LIMNOLOGICA, V35, P52, DOI 10.1016/j.limno.2005.01.003; Beltran A., 1997, THESIS U BUENOS AIRE; Benke A.C., 1984, P289; BENKE AC, 1993, PROC INT ASSOC THEOR, V25, P15; Benke Arthur C., 1996, P557; BRAND C, ZOOSYMPOSIA IN PRESS; Butler M.G., 1984, P24; Carabelli F, 2008, PATTERNS AND PROCESSES IN FOREST LANDSCAPES: MULTIPLE USE AND SUSTAINABLE MANAGEMENT, P89, DOI 10.1007/978-1-4020-8504-8_6; Cereghino R, 1997, ARCH HYDROBIOL, V138, P307; Collier KJ, 2008, FRESHWATER BIOL, V53, P603, DOI 10.1111/j.1365-2427.2007.01923.x; Dobrin M, 2003, CAN J ZOOL, V81, P1083, DOI 10.1139/Z03-091; ELLIOTT JM, 1995, CR ACAD SCI III-VIE, V318, P237; ELLIOTT JM, 1969, OIKOS, V20, P110, DOI 10.2307/3543750; Garcia AR, 2006, INT REV HYDROBIOL, V91, P71, DOI 10.1002/iroh.200510822; Gordon N. D., 2004, STREAM HYDROLOGY INT; Hollmann MET, 2006, ANN LIMNOL-INT J LIM, V42, P233, DOI 10.1051/limn/2006024; Hughes SJ, 2006, HYDROBIOLOGIA, V553, P27, DOI 10.1007/s10750-005-0627-1; Huryn AD, 2000, ANNU REV ENTOMOL, V45, P83, DOI 10.1146/annurev.ento.45.1.83; HURYN AD, 1988, FRESHWATER BIOL, V20, P141, DOI 10.1111/j.1365-2427.1988.tb00438.x; HYNES HBN, 1970, ANNU REV ENTOMOL, V15, P25, DOI 10.1146/annurev.en.15.010170.000325; Masi Carolina Isabel, 2009, Ecol. austral, V19, P185; IVERSEN TM, 1980, HOLARCTIC ECOL, V3, P65; Jin HS, 2007, HYDROBIOLOGIA, V575, P245, DOI 10.1007/s10750-006-0370-2; Jobbagy Esteban G., 1995, Ecologia Austral, V5, P47; KOMZAK P, 2002, ENTOMOLOGICA KELTE S, V15, P425; KRUEGER CC, 1983, ECOLOGY, V64, P840, DOI 10.2307/1937207; Miserendino ML, 2010, ECOL INDIC, V10, P311, DOI 10.1016/j.ecolind.2009.06.008; Miserendino ML, 2007, FUND APPL LIMNOL, V169, P307, DOI 10.1127/1863-9135/2007/0169-0307; Leon Rolando J. C., 1998, Ecologia Austral, V8, P125; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2002, ECOLOGY, V83, P370; Marchant R, 1999, FRESHWATER BIOL, V42, P655, DOI 10.1046/j.1365-2427.1999.00505.x; Mendez PK, 2008, ANN ENTOMOL SOC AM, V101, P573, DOI 10.1603/0013-8746(2008)101[573:LHOTNR]2.0.CO;2; Michaelis F. B., 1974, THESIS U CANTERBURY; Miserendino L, 2008, ANN LIMNOL, V44, P1; Miserendino ML, 2008, WATER AIR SOIL POLL, V194, P91, DOI 10.1007/s11270-008-9701-4; Miserendino Maria Laura, 1999, Ecologia Austral, V9, P28; Miserendino ML, 2004, RIVER RES APPL, V20, P967, DOI 10.1002/rra.798; Miserendino ML, 2003, NEW ZEAL J MAR FRESH, V37, P525, DOI 10.1080/00288330.2003.9517187; Miyasaka H, 2008, LIMNOLOGY, V9, P75, DOI 10.1007/s10201-008-0238-4; MOREIRA GRP, 1994, J N AM BENTHOL SOC, V13, P19, DOI 10.2307/1467262; Paruelo Jose M., 1998, Ecologia Austral, V8, P85; Pascual Miguel A., 1998, P410; PETERSEN RC, 1974, FRESHWATER BIOL, V4, P343, DOI 10.1111/j.1365-2427.1974.tb00103.x; RICHARDSON J S, 1986, Journal of the North American Benthological Society, V5, P191, DOI 10.2307/1467706; Richardson JS, 2001, HYDROBIOLOGIA, V455, P87, DOI 10.1023/A:1011943532162; ROEDING CE, 1989, J N AM BENTHOL SOC, V8, P149, DOI 10.2307/1467633; Sangpradub N, 1999, ARCH HYDROBIOL, V146, P471; Scarsbrook Mike R., 2000, P76; Sganga J.V., 2009, MACROINVERTEBRADOS B, DOI DOI 10.1603/008.103.0401; SMOCK LA, 1980, OIKOS, V35, P397, DOI 10.2307/3544656; Sweeney B.W., 1984, P56; SWEENEY BW, 1981, ECOLOGY, V62, P1353, DOI 10.2307/1937299; SWEENEY BW, 1986, FRESHWATER BIOL, V16, P39, DOI 10.1111/j.1365-2427.1986.tb00946.x; Ter Braak C. J. F, 1999, CANOCO WINDOWS VERSI; Ter Braak C. J. F., 1998, CANOCO REFERENCE MAN; TOWNS DR, 1981, AUST J MAR FRESH RES, V32, P191; Tsuruishi T, 2003, LIMNOLOGY, V4, P11, DOI 10.1007/s10201-003-0091-4; Valverde Alejandra del C., 1999, Revista de la Sociedad Entomologica Argentina, V58, P11; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; VILLANUEVA VD, 2010, INT J LIMNOLOGY, V46, P1; VINCE G, 2010, SCIENCE, V239, P382; Ward J. V., 1992, AQUATIC INSECT ECOLO; Wiggins G. B., 2004, CADDISFLIES UNDERWAT; WINTERBOURN MJ, 1966, NEW ZEAL J SCI, V9, P312; WINTERBOURN MJ, 1978, NEW ZEAL J ZOOL, V5, P157, DOI 10.1080/03014223.1978.10423746; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; WINTERBOURN MJ, 1971, CAN J ZOOLOG, V49, P623, DOI 10.1139/z71-100; Zwick P, 1996, FRESHWATER BIOL, V35, P81, DOI 10.1046/j.1365-2427.1996.00482.x 72 6 6 1 19 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia SEP 2011 673 1 137 151 10.1007/s10750-011-0768-3 15 Marine & Freshwater Biology Marine & Freshwater Biology 797XC WOS:000293162400011 2019-02-21 J Hamrova, E; Mergeay, J; Petrusek, A Hamrova, Eva; Mergeay, Joachim; Petrusek, Adam Strong differences in the clonal variation of two Daphnia species from mountain lakes affected by overwintering strategy BMC EVOLUTIONARY BIOLOGY English Article FRESH-WATER ZOOPLANKTON; CYCLICAL PARTHENOGEN DAPHNIA; GENETIC-STRUCTURE; NATURAL-POPULATIONS; LONGISPINA COMPLEX; EUROPEAN DAPHNIA; DIVERSITY; DIFFERENTIATION; HYBRIDS; ACIDIFICATION Background: The population structure of cyclical parthenogens such as water fleas is strongly influenced by the frequency of alternations between sexual and asexual (parthenogenetic) reproduction, which may differ among populations and species. We studied genetic variation within six populations of two closely related species of water fleas of the genus Daphnia (Crustacea, Cladocera). D. galeata and D. longispina both occur in lakes in the Tatra Mountains (Central Europe), but their populations show distinct life history strategies in that region. In three studied lakes inhabited by D. galeata, daphnids overwinter under the ice as adult females. In contrast, in lakes inhabited by D. longispina, populations apparently disappear from the water column and overwinter as dormant eggs in lake sediments. We investigated to what extent these different strategies lead to differences in the clonal composition of late summer populations. Results: Analysis of genetic variation at nine microsatellite loci revealed that clonal richness (expressed as the proportion of different multilocus genotypes, MLGs, in the whole analysed sample) consistently differed between the two studied species. In the three D. longispina populations, very high clonal richness was found (MLG/N ranging from 0.97 to 1.00), whereas in D. galeata it was much lower (0.05 to 0.50). The dominant MLGs in all D. galeata populations were heterozygous at five or more loci, suggesting that such individuals all represented the same clonal lineages rather than insufficiently resolved groups of different clones. Conclusions: The low clonal diversities and significant deviations from Hardy-Weinberg equilibrium in D. galeata populations were likely a consequence of strong clonal erosion over extended periods of time (several years or even decades) and the limited influence of sexual reproduction. Our data reveal that populations of closely related Daphnia species living in relatively similar habitats (permanent, oligotrophic mountain lakes) within the same region may show strikingly different genetic structures, which most likely depend on their reproductive strategy during unfavourable periods. We assume that similar impacts of life history on population structures are also relevant for other cyclical parthenogen groups. In extreme cases, prolonged clonal erosion may result in the dominance of a single clone within a population, which might limit its microevolutionary potential if selection pressures suddenly change. [Hamrova, Eva; Petrusek, Adam] Charles Univ Prague, Fac Sci, Dept Ecol, CZ-12844 Prague 2, Czech Republic; [Mergeay, Joachim] Univ Leuven, Lab Aquat Ecol & Evolutionary Biol, B-3000 Louvain, Belgium; [Mergeay, Joachim] Res Inst Nat & Forest, B-9500 Geraardsbergen, Belgium Petrusek, A (reprint author), Charles Univ Prague, Fac Sci, Dept Ecol, Vinicna 7, CZ-12844 Prague 2, Czech Republic. petrusek@cesnet.cz Petrusek, Adam/A-3510-2008; Mergeay, Joachim/E-7670-2011 Petrusek, Adam/0000-0001-5150-4370; Mergeay, Joachim/0000-0002-6504-0551 Czech Science Foundation [P506/10/P167]; Czech Ministry of Education [MSM0021620828]; Charles University; Research Foundation - Flanders We thank Luc De Meester for continuous support, Joost Vanoverbeke for helpful discussions, and Karel Janko, Markus Pfenninger and three anonymous reviewers for comments on the manuscript. The study was supported by the Czech Science Foundation (project no. P506/10/P167), the Czech Ministry of Education (MSM0021620828) and the Mobility Fund of the Charles University. Joachim Mergeay was supported by a postdoctoral grant of the Research Foundation - Flanders. Aguilera X, 2007, LIMNOL OCEANOGR, V52, P2079, DOI 10.4319/lo.2007.52.5.2079; BELKHIR K, 1996, 5000 CNRS UMR U MONT; BLAZKA P, 1964, ZBOR PRAC TATR NAR P, V7, P227; BOILEAU MG, 1992, J EVOLUTION BIOL, V5, P25, DOI 10.1046/j.1420-9101.1992.5010025.x; Brede N, 2006, MOL ECOL NOTES, V6, P536, DOI 10.1111/j.1471-8286.2005.01218.x; Brede N, 2009, P NATL ACAD SCI USA, V106, P4758, DOI 10.1073/pnas.0807187106; Brendonck L, 2003, HYDROBIOLOGIA, V491, P65, DOI 10.1023/A:1024454905119; Caceres CE, 2009, EVOLUTION, V63, P2474, DOI 10.1111/j.1558-5646.2009.00707.x; Caceres CE, 2004, LIMNOL OCEANOGR, V49, P1333, DOI 10.4319/lo.2004.49.4_part_2.1333; CHAO A, 2003, PROGRAM SPADE SPECIE; Crawford NG, 2010, MOL ECOL RESOUR, V10, P556, DOI 10.1111/j.1755-0998.2009.02801.x; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; De Meester L, 1999, P ROY SOC B-BIOL SCI, V266, P2471; De Meester L, 2006, ARCH HYDROBIOL, V167, P217, DOI 10.1127/0003-9136/2006/0167-0217; De Meester Luc, 2004, P122; Decaestecker E, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P295, DOI 10.1007/978-90-481-2770-2_15; DeMeester L, 1996, ECOSCIENCE, V3, P385, DOI 10.1080/11956860.1996.11682356; Domis LND, 2007, OECOLOGIA, V150, P682, DOI 10.1007/s00442-006-0549-2; Dufresne F, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020049; ERTL M, 1963, BIOL BRATISLAV, V18, P787; Gliwicz ZM, 2001, OECOLOGIA, V128, P368, DOI 10.1007/s004420100673; Gomez A, 2000, MOL ECOL, V9, P203, DOI 10.1046/j.1365-294x.2000.00849.x; Gyllstrom M, 2004, AQUAT SCI, V66, P274, DOI 10.1007/s00027-004-0712-y; Hamrova E, 2011, THESIS CHARLES U PRA; Hamrova E, 2010, HYDROBIOLOGIA, V643, P97, DOI 10.1007/s10750-010-0127-9; HARTNETT DC, 1985, J ECOL, V73, P407, DOI 10.2307/2260483; Horicka Z, 2006, BIOLOGIA, V61, pS121, DOI 10.2478/s11756-006-0125-6; Janko K, 2008, EVOLUTION, V62, P1264, DOI 10.1111/j.1558-5646.2008.00359.x; Janko K, 2011, BIOL DIRECT, V6, DOI 10.1186/1745-6150-6-17; Jankowski T, 2004, J EVOLUTION BIOL, V17, P312, DOI 10.1046/j.1420-9101.2003.00666.x; Jost L, 2008, MOL ECOL, V17, P4015, DOI 10.1111/j.1365-294X.2008.03887.x; KNESLOVA P, 1997, STUDIE TANAP, V2, P123; Kopacek J, 2006, BIOLOGIA, V61, pS21, DOI 10.2478/s11756-006-0117-6; Lampert W, 2010, LIMNOL OCEANOGR, V55, P1893, DOI 10.4319/lo.2010.55.5.1893; LITYNSKI A, 1913, B INT ACAD SCI B SMN, P566; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; Mergeay J, 2007, ECOLOGY, V88, P3032, DOI 10.1890/06-1538.1; Nielsen EE, 2006, MOL ECOL NOTES, V6, P971, DOI 10.1111/j.1471-8286.2006.01433.x; Petrusek A, 2008, ZOOL SCR, V37, P507, DOI 10.1111/j.1463-6409.2008.00336.x; Petrusek A, 2007, FUND APPL LIMNOL, V169, P279, DOI 10.1127/1863-9135/2007/0169-0279; Rellstab C, 2009, J PLANKTON RES, V31, P261, DOI 10.1093/plankt/fbn120; Rogstad SH, 2002, PLANT ECOL, V161, P111, DOI 10.1023/A:1020301011283; Schwenk Klaus, 1998, Aquatic Ecology, V32, P37, DOI 10.1023/A:1009939901198; Spaak P, 1996, HEREDITY, V76, P539, DOI 10.1038/hdy.1996.77; Sunnucks P, 1997, MOL ECOL, V6, P1059, DOI 10.1046/j.1365-294X.1997.00280.x; Thielsch A, 2009, MOL ECOL, V18, P1616, DOI 10.1111/j.1365-294X.2009.04130.x; Vanoverbeke J, 2010, J EVOLUTION BIOL, V23, P997, DOI 10.1111/j.1420-9101.2010.01970.x; Vanoverbeke J, 1997, HYDROBIOLOGIA, V360, P135, DOI 10.1023/A:1003160903708; Wolinska J, 2009, EVOLUTION, V63, P1893, DOI 10.1111/j.1558-5646.2009.00663.x; Yin MB, 2010, MOL ECOL, V19, P4168, DOI 10.1111/j.1365-294X.2010.04807.x; Zaffagnini F., 1987, Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi, V45, P245; Zeis B, 2010, FRESHWATER BIOL, V55, P2296, DOI 10.1111/j.1365-2427.2010.02434.x 52 24 24 2 44 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. AUG 8 2011 11 231 10.1186/1471-2148-11-231 10 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 812JZ WOS:000294290900001 21824417 DOAJ Gold, Green Published 2019-02-21 J Bruna, EM; Izzo, TJ; Inouye, BD; Uriarte, M; Vasconcelos, HL Bruna, Emilio M.; Izzo, Thiago J.; Inouye, Brian D.; Uriarte, Maria; Vasconcelos, Heraldo L. Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens PLOS ONE English Article LONG-DISTANCE DISPERSAL; SPECIES COEXISTENCE; SEED DISPERSAL; HOST PLANTS; MUTUALISM; PATTERNS; RECRUITMENT; COMPETITION; LIMITATION; COMMUNITY Background: The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants. Methodology/Principal Findings: We used empirical data and inverse modeling-a technique developed by plant ecologists to model seed dispersal-to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors. Conclusions/Significance: We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens. [Bruna, Emilio M.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32610 USA; [Bruna, Emilio M.] Univ Florida, Ctr Latin Amer Studies, Gainesville, FL USA; [Izzo, Thiago J.] Univ Fed Mato Grosso, Dept Bot & Ecol, Cuiaba, Mato Grosso, Brazil; [Inouye, Brian D.] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Uriarte, Maria] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY USA; [Vasconcelos, Heraldo L.] Univ Fed Uberlandia, Inst Biol, BR-38400 Uberlandia, MG, Brazil; [Bruna, Emilio M.; Izzo, Thiago J.; Inouye, Brian D.; Uriarte, Maria; Vasconcelos, Heraldo L.] Inst Nacl de Pesquisas da Amazonia, Biol Dynam Forest Fragments Project, Manaus, Amazonas, Brazil; [Bruna, Emilio M.; Izzo, Thiago J.; Inouye, Brian D.; Uriarte, Maria; Vasconcelos, Heraldo L.] Smithsonian Trop Res Inst, Manaus, Amazonas, Brazil Bruna, EM (reprint author), Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32610 USA. embruna@ufl.edu Vasconcelos, Heraldo/C-3353-2013; Bruna, Elena/C-4939-2014; Bruna, Emilio/H-2769-2012; Izzo, Thiago/K-7405-2012; Uriarte, Maria/L-8944-2013 Vasconcelos, Heraldo/0000-0001-6969-7131; Bruna, Elena/0000-0001-5427-1461; Bruna, Emilio/0000-0003-3381-8477; Izzo, Thiago/0000-0002-4613-3787; US National Science Foundation [DEB-0453631, DEB-0452720]; University of Florida This research was supported by Grants DEB-0453631 and DEB-0452720 from the US National Science Foundation (http://nsf.gov). Publication of this article was funded in part by the University of Florida Open-Access Publishing Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Bernays EA, 1994, HOST PLANT SELECTION; BIERREGAARD RO, LESSONS AMAZONIA ECO; Blatrix R, 2010, SIGNAL COMMUN PLANTS, P127, DOI 10.1007/978-3-642-12162-3_9; Brouat C, 2001, P ROY SOC B-BIOL SCI, V268, P2131, DOI 10.1098/rspb.2001.1763; Bruna EM, 2005, BIOL CONSERV, V124, P209, DOI 10.1016/j.biocon.2005.01.026; Bruna EM, 2004, OECOLOGIA, V138, P558, DOI 10.1007/s00442-003-1455-5; Canham CD, 2006, ECOL APPL, V16, P62, DOI 10.1890/04-0657; Clark JS, 1999, ECOLOGY, V80, P1475, DOI 10.1890/0012-9658(1999)080[1475:SDNAFP]2.0.CO;2; Clark JS, 1998, ECOL MONOGR, V68, P213, DOI 10.1890/0012-9615(1998)068[0213:SASSOR]2.0.CO;2; Darvill B, 2010, MOL ECOL, V19, P53, DOI 10.1111/j.1365-294X.2009.04423.x; Dattilo W, 2009, BIOTROPICA, V41, P642, DOI 10.1111/j.1744-7429.2009.00518.x; Debout GDG, 2009, OIKOS, V118, P873, DOI 10.1111/j.1600-0706.2009.16317.x; Edwards DP, 2006, INSECT SOC, V53, P172, DOI 10.1007/s00040-005-0855-4; FEARNSIDE PM, 2002, LESSONS AMAZONIA ECO, P291; Fonseca CR, 1996, J ANIM ECOL, V65, P339, DOI 10.2307/5880; Fonseca CR, 1999, J TROP ECOL, V15, P807, DOI 10.1017/S0266467499001194; Frederickson ME, 2006, OECOLOGIA, V149, P418, DOI 10.1007/s00442-006-0460-x; GREENE DF, 1992, AM NAT, V139, P825, DOI 10.1086/285359; Greene DF, 2002, DISPERSAL ECOLOGY, P3; Heil M, 2003, ANNU REV ECOL EVOL S, V34, P425, DOI 10.1146/annurev.ecolsys.34.011802.132410; Holldobler B., 1990, ANTS; Izzo TJ, 2009, INSECT SOC, V56, P341, DOI 10.1007/s00040-009-0029-x; Lapola DM, 2005, SOCIOBIOLOGY, V46, P433; LONGINO JT, 1991, J NAT HIST, V25, P1571, DOI 10.1080/00222939100770981; LONGINO JT, 1989, BIOTROPICA, V21, P126, DOI 10.2307/2388703; MARKIN G P, 1971, Journal of the Georgia Entomological Society, V6, P145; Michelanceli FA, 2000, SYST BOT, V25, P211, DOI 10.2307/2666640; Nathan R, 2002, NATURE, V418, P409, DOI 10.1038/nature00844; Nathan R, 2000, TRENDS ECOL EVOL, V15, P278, DOI 10.1016/S0169-5347(00)01874-7; Palmer TM, 2003, AM NAT, V162, pS63, DOI 10.1086/378682; Palmer TM, 2000, OECOLOGIA, V123, P425, DOI 10.1007/s004420051030; Palmer TM, 2010, P NATL ACAD SCI USA, V107, P17234, DOI 10.1073/pnas.1006872107; Pinto SRR, 2010, TROP CONSERV SCI, V3, P389, DOI 10.1177/194008291000300404; R core development team, 2008, R LANG ENV STAT COMP; RIBBENS E, 1994, ECOLOGY, V75, P1794, DOI 10.2307/1939638; SIMBERLOFF DS, 1969, ECOLOGY, V50, P278, DOI 10.2307/1934856; Stanton ML, 1999, NATURE, V401, P578, DOI 10.1038/44119; Stanton ML, 2002, ECOL MONOGR, V72, P347, DOI 10.1890/0012-9615(2002)072[0347:CCTOIA]2.0.CO;2; STEEL RG, 1961, BIOMETRICS, V17, P539, DOI 10.2307/2527854; Suni SS, 2010, HEREDITY, V104, P168, DOI 10.1038/hdy.2009.124; Tackenberg O, 2003, ECOL MONOGR, V73, P173, DOI 10.1890/0012-9615(2003)073[0173:MLDOPD]2.0.CO;2; Trager MD, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014308; Turke M, 2010, ECOL ENTOMOL, V35, P662, DOI 10.1111/j.1365-2311.2010.01222.x; Vasconcelos HL, 2000, BIOTROPICA, V32, P100, DOI 10.1111/j.1744-7429.2000.tb00452.x; VASCONCELOS HL, 1991, OECOLOGIA, V87, P295, DOI 10.1007/BF00325269; VASCONCELOS HL, 1993, OECOLOGIA, V95, P439, DOI 10.1007/BF00321000; Wilson EO, 2005, P NATL ACAD SCI USA, V102, P7411, DOI 10.1073/pnas.0502264102; Yu DW, 2004, J ANIM ECOL, V73, P1102, DOI 10.1111/j.0021-8790.2004.00877.x; Yu DW, 2001, AM NAT, V158, P49, DOI 10.1086/320865; Yu DW, 2001, ECOLOGY, V82, P1761, DOI 10.2307/2679816; Yu DW, 1997, ECOL MONOGR, V67, P273, DOI 10.1890/0012-9615(1997)067[0273:ESOSSI]2.0.CO;2 51 11 11 1 27 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One AUG 3 2011 6 8 e22937 10.1371/journal.pone.0022937 8 Multidisciplinary Sciences Science & Technology - Other Topics 803CQ WOS:000293558900045 21826219 DOAJ Gold, Green Published 2019-02-21 J Purin, S; Morton, JB Purin, Sonia; Morton, Joseph B. In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi MYCORRHIZA English Article Arbuscular mycorrhizal fungi; Glomeromycota; Anastomosis; Hyphal fusion; Vegetative compatibility PROGRAMMED CELL-DEATH; VEGETATIVE INCOMPATIBILITY; HYPHAL FUSION; NEUROSPORA-CRASSA; FILAMENTOUS FUNGI; HETEROKARYON INCOMPATIBILITY; PHANEROCHAETE-VELUTINA; RHIZOCTONIA-SOLANI; GENETIC EXCHANGE; SELF FUSIONS Arbuscular mycorrhizal fungi (AMF) form obligate symbiotic associations with plants. As a result, the role of hyphal interactions in the establishment and maintenance of common mycorrhizal networks is poorly understood because of constraints on methods for in situ analysis. We designed a rhizohyphatron that allows the examination of intact mycelia growing from whole mycorrhizal plants. Plants preinoculated with spores were cultivated in a compartment with a connecting tube from which hyphae extend through a fine nylon mesh onto agar-coated slides. Species selected from each of the five AMF genera were used to assess and characterize the anastomosis behavior in the rhizohyphatron. Hyphal networks of Paraglomus occultum, Ambispora leptoticha, Scutellospora heterogama, and Gigaspora gigantea growing on the agar-coated slides showed no evidence of hyphal fusion. In contrast, anastomosis occurred in the hyphal networks of Glomus clarum and Glomus intraradices at an average frequency of less than 15% for both species. The rhizohyphatron developed in this study will provide knowledge of the biology and genetics of self/non-self recognition in AMF and help to better understand Glomeromycotan life history strategies. [Purin, Sonia; Morton, Joseph B.] W Virginia Univ, Morgantown, WV 26506 USA Purin, S (reprint author), W Virginia Univ, 1090 Agr Sci Bldg, Morgantown, WV 26506 USA. spurinwvu@gmail.com Fulbright/CAPES; NSF [DEB-0649341] The authors wish to thank Bill Wheeler and Robert Bills for the help in building and maintaining the rhizohyphatrons. We would like to thank Dr. J. Yao for the use of the inverted microscope in his laboratory. We are especially indebted to Dr. Teresa Pawlowska for insightful guidance and mentorship. Funding was provided by a Fulbright/CAPES Ph.D. scholarship to Sonia Purin and NSF grant DEB-0649341 to Joseph Morton. AINSWORTH AM, 1986, J GEN MICROBIOL, V132, P191; AINSWORTH AM, 1989, J GEN MICROBIOL, V135, P1643; Andrews J. H., 1992, FUNGAL COMMUNITY ITS, P119; AYLMORE RC, 1986, J GEN MICROBIOL, V132, P571; Bago B, 1999, PROTOPLASMA, V209, P77, DOI 10.1007/BF01415703; BECARD G, 1988, NEW PHYTOL, V108, P211, DOI 10.1111/j.1469-8137.1988.tb03698.x; Bever JD, 2005, NATURE, V433, pE3, DOI 10.1038/nature03294; Biella S, 2002, P ROY SOC B-BIOL SCI, V269, P2269, DOI 10.1098/rspb.2002.2148; CORRELL JC, 1989, MYCOL RES, V93, P21, DOI 10.1016/S0953-7562(89)80130-3; Croll D, 2009, NEW PHYTOL, V181, P924, DOI 10.1111/j.1469-8137.2008.02726.x; de la Providencia IE, 2005, NEW PHYTOL, V165, P261, DOI 10.1111/j.1469-8137.2004.01236.x; Declerck S., 2005, IN VITRO CULTURE MYC, P17; Giovannetti M, 1996, NEW PHYTOL, V133, P65, DOI 10.1111/j.1469-8137.1996.tb04342.x; GIOVANNETTI M, 1994, NEW PHYTOL, V127, P703, DOI 10.1111/j.1469-8137.1994.tb02973.x; Giovannetti M, 2004, NEW PHYTOL, V164, P175, DOI 10.1111/j.1469-8137.2004.01145.x; Giovannetti M, 2003, APPL ENVIRON MICROB, V69, P616, DOI 10.1128/AEM.69.1.616-624.2003; Giovannetti M, 2001, NEW PHYTOL, V151, P717, DOI 10.1046/j.0028-646x.2001.00216.x; Giovannetti M, 1999, APPL ENVIRON MICROB, V65, P5571; Glass NL, 2006, CURR OPIN MICROBIOL, V9, P553, DOI 10.1016/j.mib.2006.09.001; Glass NL, 2003, EUKARYOT CELL, V2, P1, DOI 10.1128/EC.2.11.1-8.2003; Glass NL, 2000, ANNU REV GENET, V34, P165, DOI 10.1146/annurev.genet.34.1.165; GREGORY PH, 1984, T BRIT MYCOL SOC, V82, P1, DOI 10.1016/S0007-1536(84)80206-5; Hickey PC, 2002, FUNGAL GENET BIOL, V37, P109, DOI 10.1016/S1087-1845(02)00035-X; HYAKUMACHI M, 1987, T BRIT MYCOL SOC, V89, P155, DOI 10.1016/S0007-1536(87)80147-X; Jany JL, 2010, AM NAT, V175, P424, DOI 10.1086/650725; KAWAMOTO H, 1989, APPL ENTOMOL ZOOL, V24, P490, DOI 10.1303/aez.24.490; Kues U, 2000, MICROBIOL MOL BIOL R, V64, P316, DOI 10.1128/MMBR.64.2.316-353.2000; LESLIE JF, 1993, ANNU REV PHYTOPATHOL, V31, P127, DOI 10.1146/annurev.py.31.090193.001015; Liu YC, 1996, PHYTOPATHOLOGY, V86, P79, DOI 10.1094/Phyto-86-79; Marek SM, 2003, FUNGAL GENET BIOL, V40, P126, DOI 10.1016/S1087-1845(03)00086-0; McCabe PM, 1999, MYCOL RES, V103, P487, DOI 10.1017/S0953756298007291; Mikkelsen BL, 2008, NEW PHYTOL, V180, P890, DOI 10.1111/j.1469-8137.2008.02623.x; MORTON JB, 1993, MYCOTAXON, V48, P491; Pawlowska TE, 2004, NATURE, V427, P733, DOI 10.1038/nature02290; PONTECORVO G, 1956, ANNU REV MICROBIOL, V10, P393, DOI 10.1146/annurev.mi.10.100156.002141; PUNJA ZK, 1983, PHYTOPATHOLOGY, V73, P1279, DOI 10.1094/Phyto-73-1279; Saupe SJ, 2000, CURR OPIN MICROBIOL, V3, P608, DOI 10.1016/S1369-5274(00)00148-X; Sbrana C, 2007, MYCORRHIZA, V17, P667, DOI 10.1007/s00572-007-0144-3; Schussler A, 2001, MYCOL RES, V105, P1413, DOI 10.1017/S0953756201005196; Smith ML, 2000, GENETICS, V155, P1095; Voets L, 2006, NEW PHYTOL, V172, P185, DOI 10.1111/j.1469-8137.2006.01873.x 41 9 9 1 31 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0940-6360 MYCORRHIZA Mycorrhiza AUG 2011 21 6 505 514 10.1007/s00572-010-0356-9 10 Mycology Mycology 819PJ WOS:000294838700005 21221661 2019-02-21 J Miller, DA; Clark, WR; Arnold, SJ; Bronikowski, AM Miller, David A.; Clark, William R.; Arnold, Stevan J.; Bronikowski, Anne M. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories ECOLOGY English Article deterministic demography; Eagle Lake, California (USA); garter snake; life history; stochastic demography; Thamnophis elegans TABLE RESPONSE EXPERIMENTS; THAMNOPHIS-ELEGANS; ENVIRONMENTAL STOCHASTICITY; VARIABLE ENVIRONMENTS; GROWTH-RATE; DELAYED REPRODUCTION; POECILIA-RETICULATA; NATURAL-SELECTION; VITAL-RATES; EVOLUTION Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4-23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution. [Miller, David A.; Clark, William R.; Bronikowski, Anne M.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; [Arnold, Stevan J.] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA Bronikowski, AM (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. abroniko@iastate.edu Miller, David/E-4492-2012 Miller, David/0000-0002-3011-3677 National Science Foundation [DEB7812560, BSR8111489, BSR8918581, BSR9119588, DEB9520694, IOS0922528, DEB0323379]; National Institutes of Health [GM35492] We thank the many individuals who have helped to collect data over the past 30 years, especially L. Houck, F. Janzen, G. Kephart, and C. R. Peterson. Dave Otis provided statistical advice on the common correlation statistics for elasticity and CV correlations. Animals were studied with the permission of the State of California Department of Fish and Game and approved by our Institutional Animal Care Committees. This research was funded by grants from the National Science Foundation to S. J. Arnold (DEB7812560, BSR8111489, BSR8918581, BSR9119588); to A. M. Bronikowski (DEB9520694, IOS0922528); to S. J. Arnold and A. M. Bronikowski (DEB0323379); and from the National Institutes of Health to S. J. Arnold (GM35492). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; BENTON TG, 1995, EVOL ECOL, V9, P559, DOI 10.1007/BF01237655; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; Bishop CJ, 2008, J WILDLIFE MANAGE, V72, P1085, DOI 10.2193/2007-423; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Bronikowski AM, 2000, EVOLUTION, V54, P1760; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2010, J ECOL, V98, P324, DOI 10.1111/j.1365-2745.2009.01627.x; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Dalgleish HJ, 2010, J ECOL, V98, P209, DOI 10.1111/j.1365-2745.2009.01585.x; Davison R, 2010, J ECOL, V98, P255, DOI 10.1111/j.1365-2745.2009.01611.x; Doak DF, 2005, AM NAT, V166, pE14, DOI 10.1086/430642; Ezard THG, 2008, AM NAT, V172, P424, DOI 10.1086/589897; Fieberg J, 2001, ECOL LETT, V4, P244, DOI 10.1046/j.1461-0248.2001.00202.x; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Graybill F. A., 1976, THEORY APPL LINEAR M; Haridas CV, 2005, AM NAT, V166, P481, DOI 10.1086/444444; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; Jonzen N, 2010, J ANIM ECOL, V79, P109, DOI 10.1111/j.1365-2656.2009.01601.x; KEPHART DG, 1982, OECOLOGIA, V52, P287, DOI 10.1007/BF00363852; KEPHART DG, 1982, ECOLOGY, V63, P1232, DOI 10.2307/1938848; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Manier MK, 2007, J EVOLUTION BIOL, V20, P1705, DOI 10.1111/j.1420-9101.2007.01401.x; Manier MK, 2005, MOL ECOL, V14, P3965, DOI 10.1111/j.1365-294X.2005.02734.x; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Morris WF, 2004, AM NAT, V163, P579, DOI 10.1086/382550; Morris WF, 2002, QUANTITATIVE CONSERV; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nevoux M, 2010, ECOLOGY, V91, P2416, DOI 10.1890/09-0143.1; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Robert KA, 2010, AM NAT, V175, P147, DOI 10.1086/649595; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; TULJAPURKAR S, 1990, P NATL ACAD SCI USA, V87, P1139, DOI 10.1073/pnas.87.3.1139; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; Tuljapurkar S., 1990, POPULATION DYNAMICS; Tuljapurkar S, 2010, J ANIM ECOL, V79, P1, DOI 10.1111/j.1365-2656.2009.01619.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; White G. C., 2008, ENV ECOLOGICAL STAT, V3, P1119; White GC, 2000, METH C CONS, P288 61 31 31 0 53 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0012-9658 1939-9170 ECOLOGY Ecology AUG 2011 92 8 1658 1671 14 Ecology Environmental Sciences & Ecology 801RW WOS:000293459100012 21905432 2019-02-21 J Devine, JA; Heino, M Devine, Jennifer A.; Heino, Mikko Investigating the drivers of maturation dynamics in Barents Sea haddock (Melanogrammus aeglefinus) FISHERIES RESEARCH English Article Barents Sea; Haddock; Life history; Maturation; Melanogrammus aeglefinus; Probabilistic maturation reaction norms LIFE-HISTORY EVOLUTION; PROBABILISTIC REACTION NORMS; COD GADUS-MORHUA; ATLANTIC COD; CONTEMPORARY MICROEVOLUTION; PLEURONECTES-PLATESSA; FISH STOCKS; FISHERIES; SIZE; GROWTH Changes in size and age at maturation of many exploited fish stocks have been investigated and the influences of environmental factors and exploitation have often been inferred, but not explicitly investigated. Here we determine probabilistic maturation reaction norms (PMRNs) for Barents Sea haddock (Melanogrammus aeglefinus) using generalized linear models (GLMs) and mixed effect models (GLMMs), which account for the correlation among samples within a tow station, and investigate the effects of fishing mortality, environmental factors (NAO, water temperature, and salinity), and potential density dependence or species interaction effects. We found little evidence of a consistent trend in maturation tendencies for Barents Sea haddock for cohorts 1983-2003, ages 4-6 years. Female haddock matured at larger lengths for a given age than males, but overall patterns were similar for both sexes. The GLMM approach gave consistently higher PMRN midpoint estimates than the GLM approach, which indicated that PMRNs that do not account for correlations within the data may bias estimates. Environmental factors, rather than exploitation, density dependence, or species interactions, were responsible for the observed changes in size and age at maturation in Barents Sea haddock during the late 1980s through early 2000s. Little evidence of fisheries-induced evolution was found in these fish over the time period investigated. The lack of a significant temporal trend in maturation may be due to several challenges in estimating representative population parameters for this stock, the trait change being in a period of stasis or reversal, or adaptation by the fish to higher exploitation in the past resulting in negligible evolutionary selection during the study period when exploitation has been more moderate. (C) 2011 Elsevier B.V. All rights reserved. [Devine, Jennifer A.; Heino, Mikko] Univ Bergen, Dept Biol, NO-5020 Bergen, Norway; [Devine, Jennifer A.; Heino, Mikko] Inst Marine Res, NO-5817 Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Devine, JA (reprint author), Univ Bergen, Dept Biol, POB 7803, NO-5020 Bergen, Norway. ja.devine@ymail.com; mikko.heino@imr.no Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940 Specific Targeted Research Programme FinE (Fisheries-induced Evolution) [SSP-2006-044276]; European Community; Norwegian Research Council [173417/S40]; Bergen Research Foundation We thank the two anonymous referees, whose constructive comments and suggestions greatly improved the manuscript. This research has been supported by the Specific Targeted Research Programme FinE (Fisheries-induced Evolution; contract number SSP-2006-044276), funded through the European Community's Sixth Framework Programme, a Norwegian Research Council grant (project 173417/S40), and the Bergen Research Foundation. The article does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. AGLEN A, 2008, IMR PINRO JOINT REPO, P52; AGLEN A, 2005, IMR PINRO JOINT REPO; AGLEN A, 2000, IMR PINRO JOINT REPO, P74; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Bates D, 2010, IME4 LINEAR MIXED EF; Baulier L, 2006, 2006H19 ICES CM; Bochkov Y.A., 1982, SB NAUCHN T PINRO, V46, P113; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Burnham K. P, 2002, MODEL SELECTION MULT; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conover DO, 2005, CAN J FISH AQUAT SCI, V62, P730, DOI 10.1139/F05-069; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Demidenko E., 2004, MIXED MODELS THEORY; Devold F., 1938, Fiskeridirektoratets Skrifter (Havundersok), V5, P1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Froese R, 2000, J FISH BIOL, V56, P758, DOI 10.1006/jfbi.1999.1194; GJOSAETER J, 1987, ENVIRON BIOL FISH, V20, P293; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Halliday RG, 1999, FISH RES, V41, P255, DOI 10.1016/S0165-7836(99)00020-X; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M., 2002, 2002Y14 ICES CM, P14; Heino M, 2008, B MAR SCI, V83, P69; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hurrell JW, 2009, J MARINE SYST, V78, P28, DOI 10.1016/j.jmarsys.2008.11.026; HURRELL JW, 2004, MARINE ECOSYSTEMS CL, P252; Huse I, 2000, ICES J MAR SCI, V57, P1271, DOI 10.1006/jmsc.2000.0813; *ICES, 2010, 2010ACOM05 ICES CM, P664; *ICES, 2009, 2009ACOM02 ICES CM, P58; *ICES, 2008, REP ICES ADV COMM, V3, P106; INGVALDSEN R, 2006, HAVETS RESSURSER MIL, P20; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; KORSBREKKE K, 2003, REPORT WORKING GROUP, P89; Korsbrekke Knut, 1999, Journal of Northwest Atlantic Fishery Science, V25, P37, DOI 10.2960/J.v25.a4; KOVTSOVA MV, 1993, 1993G58 ICES CM; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Loeng H, 1997, ICES J MAR SCI, V54, P310, DOI 10.1006/jmsc.1996.0165; MANLY FJ, 1991, RANDOMIZATION BOOTST; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; NELSON K, 1987, POPULATION GENETICS, P345; Neuheimer AB, 2010, CAN J FISH AQUAT SCI, V67, P854, DOI 10.1139/F10-025; Olsen E, 2010, ICES J MAR SCI, V67, P87, DOI 10.1093/icesjms/fsp229; Ottersen G, 2000, ICES J MAR SCI, V57, P339, DOI 10.1006/jmsc.1999.0529; Ottersen G, 2001, LIMNOL OCEANOGR, V46, P1774, DOI 10.4319/lo.2001.46.7.1774; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; PENNINGTON M, 1994, BIOMETRICS, V50, P725, DOI 10.2307/2532786; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1993, CAN J FISH AQUAT SCI, V50; ROLLEFSEN G., 1933, FISKERIDIREK SKR SER HAVUNDERS REP NORWEGIAN FISH AND MAR INVEST, V4, P1; Schauer U, 2002, DEEP-SEA RES PT I, V49, P2281, DOI 10.1016/S0967-0637(02)00125-5; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; SILLIMAN RP, 1975, FISH B-NOAA, V73, P495; Smith G. M., 2009, MIXED EFFECTS MODELS; SOLEMDAL P, 1989, 25 HELP, P43; STIANSEN JE, 2005, IMR PINRO JOINT REPO, P122; Stokes T. M., 1993, EXPLOITATION EVOLVIN; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Templeman W., 1978, RES B ICNAF, V13, P53; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Tobin D, 2010, J FISH BIOL, V77, P1252, DOI 10.1111/j.1095-8649.2010.02739.x; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vainikka A, 2009, MAR ECOL PROG SER, V383, P285, DOI 10.3354/meps07970; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 78 9 9 0 31 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 FISH RES Fish Res. AUG 2011 110 3 441 449 10.1016/j.fishres.2011.05.016 9 Fisheries Fisheries 807CF WOS:000293870400007 2019-02-21 J Miura, O; Frankel, V; Torchin, ME Miura, Osamu; Frankel, Victor; Torchin, Mark E. DIFFERENT DEVELOPMENTAL STRATEGIES IN GEMINATE MUD SNAILS, CERITHIDEOPSIS CALIFORNICA AND C. PLICULOSA, ACROSS THE ISTHMUS OF PANAMA JOURNAL OF MOLLUSCAN STUDIES English Article EGG SIZE; MARINE-INVERTEBRATES; REPRODUCTIVE STRATEGIES; EVOLUTION; HISTORY; TRAITS; STAGE; TIME Larval developmental strategy is a key life-history trait governing many aspects of the ecology and evolution of marine invertebrates. We compared developmental strategies of two geminate, or sister, species of mud snails (Potamididae) on either side of the Isthmus of Panama, Cerithideopsis californica on the Pacific and C. pliculosa on the Atlantic coast. We found that these snails, separated by the rise of the Isthmus about 3 Ma, had different reproductive strategies. Larvae of C. californica hatched as small swimming veligers, whereas larvae of C. pliculosa hatched as large swimming-crawling veligers. Additionally, the larval duration of C. pliculosa was about 1 week shorter than that of C. californica under controlled laboratory conditions. This pattern of larval development is consistent with models of life-history evolution in which larger propagules are selected in low-productivity environments (in this case, the Atlantic) and smaller ones are favoured in highly productive environments (the Pacific). [Miura, Osamu] Kyoto Univ, Grad Sch Global Environm Studies, Sakyo Ku, Kyoto 6068501, Japan; [Miura, Osamu; Frankel, Victor; Torchin, Mark E.] Smithsonian Trop Res Inst, Balboa, Ancon, Panama Miura, O (reprint author), Kochi Univ, Div Marine Biotechnol, Oceanog Sect, Ctr Sci Res, Kochi 7838502, Japan. miurao@kochi-u.ac.jp STRI; Smithsonian Marine Science Network; Japan Society for the Promotion of Science We thank C. Schloder, Y. Kam, J. Javier and staff of the Punta Galeta Marine Station (Smithsonian Institution) for their field and laboratory assistance. We thank K. McDonald and two anonymous reviewers for providing useful comments on the manuscript. Support was provided by STRI and a Smithsonian Marine Science Network Postdoctoral Fellowship (to O.M.) and Japan Society for the Promotion of Science (Grant-in-Aid for JSPS Fellows to O.M.). Coates Anthony G., 1996, P21; DCROZ L, 1991, REV BIOL TROP, V39, P233; Fortunato H, 2004, INVERTEBR REPROD DEV, V46, P139, DOI 10.1080/07924259.2004.9652617; HART MW, 1995, AM NAT, V146, P415, DOI 10.1086/285807; HAVENHAND JN, 1993, MAR ECOL PROG SER, V97, P247, DOI 10.3354/meps097247; Jackson J. B. C., 2000, P 11 INT BRYOZ ASS C, P249; JOHANNESSON K, 1988, MAR BIOL, V99, P507, DOI 10.1007/BF00392558; Lessios HA, 2008, ANNU REV ECOL EVOL S, V39, P63, DOI 10.1146/annurev.ecolsys.38.091206.095815; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; MACDONALD KB, 1967, THESIS U CALIFORNIA; Miura O, 2010, MOL PHYLOGENET EVOL, V56, P40, DOI 10.1016/j.ympev.2010.04.012; Moran AL, 2004, EVOLUTION, V58, P2718; Reid DG, 2008, MOL PHYLOGENET EVOL, V47, P680, DOI 10.1016/j.ympev.2008.01.003; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Wehrtmann IS, 2002, MAR BIOL, V140, P605, DOI 10.1007/s00227-001-0733-1; Wellington GM, 2001, MAR BIOL, V138, P11, DOI 10.1007/s002270000449 18 9 9 0 11 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0260-1230 J MOLLUS STUD J. Molluscan Stud. AUG 2011 77 3 255 258 10.1093/mollus/eyr012 4 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology 799SB WOS:000293305300007 Bronze 2019-02-21 J Lebl, K; Bieber, C; Adamik, P; Fietz, J; Morris, P; Pilastro, A; Ruf, T Lebl, Karin; Bieber, Claudia; Adamik, Peter; Fietz, Joanna; Morris, Pat; Pilastro, Andrea; Ruf, Thomas Survival rates in a small hibernator, the edible dormouse: a comparison across Europe ECOGRAPHY English Article SQUIRRELS SPERMOPHILUS-COLUMBIANUS; POPULATION-DYNAMICS; GLIS-GLIS; FAT DORMOUSE; REPRODUCTIVE SUCCESS; SEASONAL SURVIVAL; VOLE POPULATION; SEXUAL-ACTIVITY; MARKED ANIMALS; CLIMATE-DRIVEN Understanding how local environmental factors lead to temporal variability of vital rates and to plasticity of life history tactics is one of the central questions in population ecology. We used long-term capture-recapture data from five populations of a small hibernating rodent, the edible dormouse Glis glis, collected over a large geographical range across Europe, to determine and analyze both seasonal patterns of local survival and their relation to reproductive activity. In all populations studied, survival was lowest in early summer, higher in late summer and highest during hibernation in winter. In reproductive years survival was always lower than in non-reproductive years, and females had higher survival rates than males. Very high survival rates during winter indicate that edible dormice rarely die from starvation due to insufficient energy reserves during the hibernation period. Increased mortality in early summer was most likely caused by high predation risk and unmet energy demands. Those effects have probably an even stronger impact in reproductive years, in which dormice were more active. Although these patterns could be found in all areas, there were also considerable differences in average survival rates, with resulting differences in mean lifetime reproductive success between populations. Our results suggest that edible dormice have adapted their life history strategies to maximize lifetime reproductive success depending on the area specific frequency of seeding events of trees producing energy-rich seeds. [Lebl, Karin; Bieber, Claudia; Ruf, Thomas] Univ Vet Med Vienna, Res Inst Wildlife Ecol, AT-1160 Vienna, Austria; [Adamik, Peter] Palacky Univ, Fac Sci, Dept Zool, CZ-77146 Olomouc, Czech Republic; [Fietz, Joanna] Univ Ulm, Inst Expt Ecol, DE-89069 Ulm, Germany; [Morris, Pat] Royal Holloway Univ London, Sch Biol Sci, Egham TW20 0EX, Surrey, England; [Pilastro, Andrea] Univ Padua, Dept Biol, IT-35121 Padua, Italy Lebl, K (reprint author), Univ Vet Med Vienna, Res Inst Wildlife Ecol, Savoyenstr 1, AT-1160 Vienna, Austria. Karin.Lebl@vetmeduni.ac.at Adamik, Peter/I-2057-2013; Lebl, Karin/B-8519-2014 Adamik, Peter/0000-0003-1566-1234; Lebl, Karin/0000-0001-8818-2483; Bieber, Claudia/0000-0001-8919-3117; Pilastro, Andrea/0000-0001-9803-6308; Ruf, Thomas/0000-0002-9235-7079 city of Vienna; province of Lower Austria; Austrian Science Fund (FWF) [P20534-B17]; Czech Science Foundation; Czech Ministry of Education; German Research Foundation (DFG) [FI 831/3-2]; German Wildlife Foundation We thank R. Berlato, P. Gava, A. Gazarkova, T. Gomiero, T. Kager, M. Kral, K. Kurbisch, A. Menegatti, E. Missiaglia, A. Pagliani, F. Rossi, B. Rotter, W. Schlund, Z. Skracek and M. Vanakova for their assistance with the field work and A. Duscher for creating the map (Fig. 1). We are grateful to the respective land owners (Austrian Forestral Agency, Royal Forestry Society [England], Azienda Regionale Foreste Demaniali del Veneto and Corpo Forestale dello Stato [Italy]) for their permissions to use the areas for our dormouse research, and the meteorological institutes for their supply with climatic data. This project was supported by the city of Vienna, the province of Lower Austria and the Austrian Science Fund (FWF, Project P20534-B17). Further support was given by Czech Science Foundation and the Czech Ministry of Education. JF was financially supported by the Margarete von Wrangell Programme, the German Research Foundation (DFG, FI 831/3-2), and the German Wildlife Foundation. We declare that this study complies with the current laws of Austria, Czechia, England, Germany and Italy. Adamik P, 2008, J ZOOL, V275, P209, DOI 10.1111/j.1469-7998.2008.00415.x; Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; ARMITAGE KB, 1974, ECOLOGY, V55, P1233, DOI 10.2307/1935452; ARNOLD W, 1990, BEHAV ECOL SOCIOBIOL, V27, P239; Bauer H-G, 2005, KOMPENDIUM VOGEL MIT; Bieber C, 1998, J ZOOL, V244, P223, DOI 10.1111/j.1469-7998.1998.tb00027.x; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; Bjornstad ON, 1999, TRENDS ECOL EVOL, V14, P427, DOI 10.1016/S0169-5347(99)01677-8; Borrego N, 2008, J MAMMAL, V89, P365, DOI 10.1644/07-MAMM-A-061R1.1; Bowman J, 2005, CAN J ZOOL, V83, P1486, DOI [10.1139/z05-144, 10.1139/Z05-144]; Bryant AA, 2005, CAN J ZOOL, V83, P674, DOI 10.1139/Z05-055; Burnham K. P, 2002, MODEL SELECTION MULT; Caswell H., 2001, MATRIX POPULATION MO; Ciannelli L, 2007, ECOLOGY, V88, P635, DOI 10.1890/05-2035; Engen S, 2009, AM NAT, V174, P795, DOI 10.1086/647930; Farand E, 2002, CAN J ZOOL, V80, P342, DOI 10.1139/Z02-004; Fietz J, 2005, J COMP PHYSIOL B, V175, P45, DOI 10.1007/s00360-004-0461-1; Fietz J, 2004, OECOLOGIA, V138, P202, DOI 10.1007/s00442-003-1423-0; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Grosbois V, 2008, BIOL REV, V83, P357, DOI 10.1111/j.1469-185X.2008.00047.x; Heldmaier G, 2004, RESP PHYSIOL NEUROBI, V141, P317, DOI 10.1016/j.resp.2004.03.014; Ims RA, 2000, NATURE, V408, P194, DOI 10.1038/35041562; JALLAGEAS M, 1989, J COMP PHYSIOL B, V159, P333, DOI 10.1007/BF00691513; Jurczyszyn M, 2007, ACTA THERIOL, V52, P181, DOI 10.1007/BF03194213; Kager T., 2004, THESIS U ULM GERMANY; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Laake J., 2008, PROGRAM MARK GENTLE; Lebl K, 2010, J COMP PHYSIOL B, V180, P447, DOI 10.1007/s00360-009-0425-6; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liebhold A, 2004, ANNU REV ECOL EVOL S, V35, P467, DOI 10.1146/annurev.ecolsys.34.011802.132516; Lundberg P, 2000, TRENDS ECOL EVOL, V15, P460, DOI 10.1016/S0169-5347(00)01981-9; McCleery RA, 2008, J WILDLIFE MANAGE, V72, P133, DOI 10.2193/2007-138; Meaney CA, 2003, SOUTHWEST NAT, V48, P610, DOI 10.1894/0038-4909(2003)048<0610:ASAHOP>2.0.CO;2; Mitchell-Jones AJ, 1999, ATLAS EUROPEAN MAMMA; Neuhaus P, 1999, CAN J ZOOL, V77, P879, DOI 10.1139/cjz-77-6-879; Neuhaus P, 2001, CAN J ZOOL, V79, P465, DOI 10.1139/cjz-79-3-465; NORRDAHL K, 1995, P ROY SOC B-BIOL SCI, V261, P49, DOI 10.1098/rspb.1995.0116; OEHLERT GW, 1992, AM STAT, V46, P27, DOI 10.2307/2684406; Pilastro A, 1996, J ZOOL, V239, P601, DOI 10.1111/j.1469-7998.1996.tb05946.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; R Development Core Team, 2009, R LANG ENV STAT COMP; Rood F. H., 1997, ECOLOGY, V78, P405; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Sanz-Aguilar A, 2009, ECOGRAPHY, V32, P637, DOI 10.1111/j.1600-0587.2009.05596.x; Schaub M, 2001, J ZOOL, V255, P89, DOI 10.1017/S0952836901001133; Schlund W, 2002, MAMM BIOL, V67, P219, DOI 10.1078/1616-5047-00033; Schlund W., 1997, MAMM BIOL, V62, P187; Schwartz OA, 2005, J ZOOL, V265, P73, DOI 10.1017/S0952836904006089; Scinski M, 2008, MAMM BIOL, V73, P119, DOI 10.1016/j.mambio.2007.01.002; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; Sendor T, 2003, J ANIM ECOL, V72, P308, DOI 10.1046/j.1365-2656.2003.00702.x; Sinclair ARE, 1996, OIKOS, V75, P164, DOI 10.2307/3546240; Stawski C, 2010, NATURWISSENSCHAFTEN, V97, P29, DOI 10.1007/s00114-009-0606-x; Vietinghoff-Riesch A., 1960, MONOGRAPHIEN WILDSAU, V14, P1; White GC, 1999, BIRD STUDY, V46, P120; Zoufal K., 2005, THESIS U VIENNA AUST 58 33 34 1 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography AUG 2011 34 4 683 692 10.1111/j.1600-0587.2010.06691.x 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 796DZ WOS:000293031700015 Bronze, Green Published 2019-02-21 J Benesh, DP; Chubb, JC; Parker, GA Benesh, Daniel P.; Chubb, James C.; Parker, Geoff A. EXPLOITATION OF THE SAME TROPHIC LINK FAVORS CONVERGENCE OF LARVAL LIFE-HISTORY STRATEGIES IN COMPLEX LIFE CYCLE HELMINTHS EVOLUTION English Article Brownian motion; convergence; GALM; Ornstein-Uhlenbeck model; parallelism; trophic transmission GAMMARUS-LACUSTRIS AMPHIPODA; FOOD-WEB STRUCTURE; INTERMEDIATE HOSTS; PHYLOGENETIC INERTIA; TIME CONSTRAINTS; INDEPENDENT CONTRASTS; STABILIZING SELECTION; PARASITE MANIPULATION; CORRELATED EVOLUTION; NICHE CONSERVATISM Switching from one host to the next is a critical life-history transition in parasites with complex life cycles. Growth and mortality rates are thought to influence the optimal time and size at transmission, but these rates are difficult to measure in parasites. The parasite life cycle, in particular the trophic link along which transmission occurs, may be a reasonable proxy for these rates, leading to the hypothesis that life cycle should shape life-history strategy. We compiled data on the size and age at infectivity for trophically transmitted helminths (i.e., acanthocephalans, cestodes, and nematodes), and then categorized species into trophic links (e.g., planktonic crustaceans to fish, insects to terrestrial vertebrates, etc.). Comparative analyses that explicitly included stabilizing selection within trophic links fit the data significantly better than random walk models, indicating that parasites with different life cycles have different optimal times/sizes for host switching. The major helminth groups have often independently evolved similar life cycles, and we show that this has frequently led to convergent and/or parallel evolution of size and age at infectivity. This suggests that for particular life cycles there are universal optimal transmission strategies, applicable to widely divergent taxa, although the cases of parallelism might indicate that lineage-specific constraints sometimes prevent evolution to a single adaptive peak. [Benesh, Daniel P.] Max Planck Inst Evolutionary Biol, Dept Evolutionary Ecol, D-24306 Plon, Germany; [Chubb, James C.; Parker, Geoff A.] Univ Liverpool, Inst Integrat Biol, Dept Ecol Evolut & Behav, Liverpool L69 7ZB, Merseyside, England Benesh, DP (reprint author), Max Planck Inst Evolutionary Biol, Dept Evolutionary Ecol, August Thienemann Str 2, D-24306 Plon, Germany. benesh@evolbio.mpg.de Parker, Geoffrey/A-2219-2008; Parker, Geoff/C-4337-2008 Parker, Geoff/0000-0003-4795-6352 Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Ackerly DD, 2000, EVOLUTION, V54, P1480, DOI 10.1111/j.0014-3820.2000.tb00694.x; Amundsen PA, 2009, J ANIM ECOL, V78, P563, DOI 10.1111/j.1365-2656.2008.01518.x; Anderson R. C., 2000, NEMATODE PARASITES V; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Ball MA, 2008, J THEOR BIOL, V253, P202, DOI 10.1016/j.jtbi.2008.02.025; Beckerman AP, 2006, P NATL ACAD SCI USA, V103, P13745, DOI 10.1073/pnas.0603039103; Benesh DP, 2010, INT J PARASITOL, V40, P487, DOI 10.1016/j.ijpara.2009.10.001; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BETHEL WM, 1974, J PARASITOL, V60, P272, DOI 10.2307/3278463; Bininda-Emonds ORP, 2002, ANNU REV ECOL SYST, V33, P265, DOI 10.1146/annurex.ecolysis.33.010802.150511; Blaxter ML, 2003, ADV PARASIT, V54, P101, DOI 10.1016/S0065-308X(03)54003-9; Blomberg SP, 2002, J EVOLUTION BIOL, V15, P899, DOI 10.1046/j.1420-9101.2002.00472.x; BRATTEY J, 1986, J PARASITOL, V72, P633, DOI 10.2307/3281450; Brose U, 2006, ECOLOGY, V87, P2411, DOI 10.1890/0012-9658(2006)87[2411:CBRINF]2.0.CO;2; Brose U, 2010, FUNCT ECOL, V24, P28, DOI 10.1111/j.1365-2435.2009.01618.x; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Butler MA, 2004, AM NAT, V164, P683, DOI 10.1086/426002; Cattin MF, 2004, NATURE, V427, P835, DOI 10.1038/nature02327; Charnov Eric L., 1993, P1; Chilton NB, 2006, MOL PHYLOGENET EVOL, V40, P118, DOI 10.1016/j.ympev.2006.01.003; Choisy M, 2003, AM NAT, V162, P172, DOI 10.1086/375681; Chubb JC, 2010, TRENDS PARASITOL, V26, P93, DOI 10.1016/j.pt.2009.11.008; Ciampaglio CN, 2001, PALEOBIOLOGY, V27, P695, DOI 10.1666/0094-8373(2001)027<0695:DCIMOP>2.0.CO;2; COHEN JE, 1993, J ANIM ECOL, V62, P67, DOI 10.2307/5483; Cribb TH, 2003, ADV PARASIT, V54, P197, DOI 10.1016/S0065-308X(03)54004-0; Crompton D. W. T., 1985, BIOL ACANTHOCEPHALA; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; DENNY M, 1969, PARASITOLOGY, V59, P795; DiazUriarte R, 1996, SYST BIOL, V45, P27, DOI 10.2307/2413510; Dunn CW, 2008, NATURE, V452, P745, DOI 10.1038/nature06614; Estes S, 2007, AM NAT, V169, P227, DOI 10.1086/510633; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Garcia-Varela M, 2006, MOL PHYLOGENET EVOL, V40, P61, DOI 10.1016/j.ympev.2006.02.010; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Gomez JM, 2010, NATURE, V465, P918, DOI 10.1038/nature09113; Hammerschmidt K, 2009, EVOLUTION, V63, P1976, DOI 10.1111/j.1558-5646.2009.00687.x; Hansen TF, 2005, EVOLUTION, V59, P2063; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Hansen TF, 2008, EVOLUTION, V62, P1965, DOI 10.1111/j.1558-5646.2008.00412.x; Harmon LJ, 2005, EVOLUTION, V59, P409; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Iwasa Y, 2006, EVOL ECOL RES, V8, P1427; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Labra A, 2009, AM NAT, V174, P204, DOI 10.1086/600088; Lafferty KD, 2002, TRENDS ECOL EVOL, V17, P507, DOI 10.1016/S0169-5347(02)02615-0; Lafferty KD, 2006, P NATL ACAD SCI USA, V103, P11211, DOI 10.1073/pnas.0604755103; Lagrue C, 2007, J EVOLUTION BIOL, V20, P1189, DOI 10.1111/j.1420-9101.2006.01277.x; Lefebvre F, 2005, PARASITOLOGY, V130, P587, DOI 10.1017/S0031182004007103; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Little R. J. A., 2002, STAT ANAL MISSING DA; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; Maddison W. P., 2009, MESQUITE MODULAR SYS; Martins EP, 2000, TRENDS ECOL EVOL, V15, P296, DOI 10.1016/S0169-5347(00)01880-2; Martins EP, 2002, EVOLUTION, V56, P1; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; Meldal BHM, 2007, MOL PHYLOGENET EVOL, V42, P622, DOI 10.1016/j.ympev.2006.08.025; MENG XL, 1992, BIOMETRIKA, V79, P103, DOI 10.1093/biomet/79.1.103; Michaud M, 2006, EVOL ECOL, V20, P39, DOI 10.1007/s10682-005-3274-0; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Mouillot D, 2008, ECOLOGY, V89, P2043, DOI 10.1890/07-1241.1; Nakagawa S, 2008, TRENDS ECOL EVOL, V23, P592, DOI 10.1016/j.tree.2008.06.014; OLSEN OW, 1986, ANIMAL PARASITES THE; Olson PD, 2008, J PARASITOL, V94, P898, DOI 10.1645/GE-1456.1; Olson PD, 2003, INT J PARASITOL, V33, P733, DOI 10.1016/S0020-7519(03)00049-3; Olson PD, 2005, ADV PARASIT, V60, P165, DOI 10.1016/S0065-308X(05)60003-6; Otto SB, 2007, NATURE, V450, P1226, DOI 10.1038/nature06359; Parker GA, 2009, J THEOR BIOL, V258, P135, DOI 10.1016/j.jtbi.2009.01.016; Parker GA, 2003, NATURE, V425, P480, DOI 10.1038/nature02012; Parker GA, 2003, J EVOLUTION BIOL, V16, P47, DOI 10.1046/j.1420-9101.2003.00504.x; Parker GA, 2009, EVOLUTION, V63, P448, DOI 10.1111/j.1558-5646.2008.00565.x; Petchey OL, 2008, P NATL ACAD SCI USA, V105, P4191, DOI 10.1073/pnas.0710672105; Peters R.H., 1983, P1; PODESTA RB, 1970, J PARASITOL, V56, P1124, DOI 10.2307/3277556; POULIN R, 1994, PARASITOLOGY, V109, pS109, DOI 10.1017/S0031182000085127; POULIN R, 1992, PARASITOLOGY, V105, P265, DOI 10.1017/S0031182000074199; Poulin R, 2010, ADV STUD BEHAV, V41, P151, DOI 10.1016/S0065-3454(10)41005-0; Pulkkinen K, 2000, J PARASITOL, V86, P664, DOI 10.2307/3284945; Relyea RA, 2007, OECOLOGIA, V152, P389, DOI 10.1007/s00442-007-0675-5; Revell LJ, 2008, SYST BIOL, V57, P591, DOI 10.1080/10635150802302427; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHOLZ T, 1991, FOLIA PARASIT, V38, P225; Seppala O, 2005, ANIM BEHAV, V70, P889, DOI 10.1016/j.anbehav.2005.01.020; Shama LNS, 2009, FRESHWATER BIOL, V54, P150, DOI 10.1111/j.1365-2427.2008.02102.x; Shostak AW, 2008, PARASITOLOGY, V135, P1019, DOI 10.1017/S0031182008004459; SMYTH JD, 1989, PHYSL BIOCH CESTODES; Stayton CT, 2006, EVOLUTION, V60, P824; TOKESON JPE, 1982, J PARASITOL, V68, P112, DOI 10.2307/3281332; VALKOUNOVA J, 1980, Vestnik Ceskoslovenske Spolecnosti Zoologicke, V44, P230; Valtonen ET, 2010, OECOLOGIA, V162, P139, DOI 10.1007/s00442-009-1451-5; VANBUUREN S, 2010, MICE MULTIVARIATE IM; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; West GB, 2005, J EXP BIOL, V208, P1575, DOI 10.1242/jeb.01589; Wiens JJ, 2005, ANNU REV ECOL EVOL S, V36, P519, DOI 10.1146/annurev.ecolsys.36.102803.095431; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305 97 10 11 0 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2011 65 8 2286 2299 10.1111/j.1558-5646.2011.01301.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 798DL WOS:000293182700012 21790575 2019-02-21 J Rosenheim, JA Rosenheim, Jay A. STOCHASTICITY IN REPRODUCTIVE OPPORTUNITY AND THE EVOLUTION OF EGG LIMITATION IN INSECTS EVOLUTION English Article Bet hedging; Liebig's Law; life-history evolution; limiting factors; oviposition behavior; time limitation RANDOMLY VARYING ENVIRONMENT; LIMITED ENCOUNTER RATES; OVIPOSITION DECISIONS; POLLEN LIMITATION; TIME ALLOCATION; LIFE EXPECTANCY; CLUTCH SIZE; TRADE-OFF; HOST USE; PARASITOIDS Is reproduction by adult female insects limited by the finite time available to locate hosts (time limitation) or by the finite supply of eggs (egg limitation)? An influential model predicted that stochasticity in reproductive opportunity favors elevated fecundity, rendering egg limitation sufficiently rare that its importance would be greatly diminished. Here, I use models to explore how stochasticity shapes fecundity, the likelihood of egg limitation, and the ecological importance of egg limitation. The models make three predictions. First, whereas spatially stochastic environments favor increased fecundity, temporally stochastic environments favor increases, decreases, or intermediate maxima in fecundity, depending on egg costs. Second, even when spatially or temporally stochastic environments favor life histories with less-frequent egg limitation, stochasticity still increases the proportion of all eggs laid in the population that is laid by females destined to become egg limited. This counterintuitive result is explained by noting that stochasticity concentrates reproduction in the hands of a few females that are likely to become egg limited. Third, spatially or temporally stochastic environments amplify the constraints imposed by time and eggs on total reproduction by the population. I conclude that both egg and time constraints are fundamental in shaping insect reproductive behavior and population dynamics in stochastic environments. [Rosenheim, Jay A.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA; [Rosenheim, Jay A.] Univ Calif Davis, Ctr Populat Biol, Davis, CA 95616 USA Rosenheim, JA (reprint author), Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA. jarosenheim@ucdavis.edu Lady Davis Visiting Professorship; Hebrew University of Jerusalem; USDA [NRICGP 2001-35316-11013]; NSF [DMS-1022639] I gratefully acknowledge S. Schreiber for contributing the formal justification for the use of the geometric mean for the case of temporal heterogeneity (eqs. 6-9). For helpful discussions I thank S. Kaplan, N. Kashtan, S. Schreiber, G. Shinar, and M. Turelli. I also thank J. Casas, A. Forbes, G. Heimpel, M. Segoli, M. Segoli, F. Sivakoff, and an anonymous reviewer for their very constructive suggestions on earlier drafts of the manuscript. I wish to extend a special thanks to J. Ellers, whose suggestions improved substantially both the content and tone of the article. I thank U. Alon, Department of Molecular Cell Biology, Weizmann Institute for Science, and M. Coll, Department of Entomology, Hebrew University of Jerusalem, for graciously hosting me during my sabbatical year. I also gratefully acknowledge support from a Lady Davis Visiting Professorship, Hebrew University of Jerusalem and grants from the USDA (NRICGP 2001-35316-11013) and NSF (DMS-1022639). Alexander RM, 1997, J THEOR BIOL, V184, P247, DOI 10.1006/jtbi.1996.0270; Ashman TL, 2004, ECOLOGY, V85, P2408, DOI 10.1890/03-8024; Babendreier D, 2002, ENTOMOL EXP APPL, V105, P63, DOI 10.1046/j.1570-7458.2002.01034.x; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Bernstein Carlos, 2008, P129, DOI 10.1002/9780470696200.ch7; Boggs Carol L., 2003, P185; Burd M, 2009, AM J BOT, V96, P1159, DOI 10.3732/ajb.0800183; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Casas J, 2009, ECOLOGY, V90, P537, DOI 10.1890/08-0507.1; CHARNOV EL, 1985, ENVIRON ENTOMOL, V14, P383, DOI 10.1093/ee/14.4.383; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1990, AM NAT, V135, P218, DOI 10.1086/285040; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2004, EVOL ECOL RES, V6, P993; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Gandon S, 2009, EVOLUTION, V63, P2974, DOI 10.1111/j.1558-5646.2009.00776.x; Getz WM, 1996, AM NAT, V148, P333, DOI 10.1086/285928; GILLESPIE J, 1973, THEOR POPUL BIOL, V4, P193, DOI 10.1016/0040-5809(73)90028-2; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Haccou Patsy, 2008, P193, DOI 10.1002/9780470696200.ch9; Haldane J. B. S., 1963, Journal of Genetics, V58, P237, DOI 10.1007/BF02986143; Hassell MP, 1978, DYNAMICS ARTHROPOD P; Heimpel GE, 2003, ECOL LETT, V6, P556, DOI 10.1046/j.1461-0248.2003.00466.x; Hopper KR, 1999, ANNU REV ENTOMOL, V44, P535, DOI 10.1146/annurev.ento.44.1.535; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Jervis MA, 2007, EVOL ECOL, V21, P307, DOI 10.1007/s10682-006-9102-3; Kean J, 2003, ECOL LETT, V6, P604, DOI 10.1046/j.1461-0248.2003.00468.x; Knight TM, 2006, AM J BOT, V93, P271, DOI 10.3732/ajb.93.2.271; Kon R, 2009, SIAM J APPL MATH, V69, P959, DOI 10.1137/080717006; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Lotka A. J., 1925, ELEMENTS PHYS BIOL; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; MANGEL M, 1987, J MATH BIOL, V25, P1, DOI 10.1007/BF00275885; MANGEL M, 1989, AM NAT, V133, P688, DOI 10.1086/284945; Mangel M, 1998, EVOL ECOL, V12, P871, DOI 10.1023/A:1006502901441; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; MP Hassell, 2000, SPATIAL TEMPORAL DYN; Murdoch W. W., 2003, CONSUMER RESOURCE DY; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Orr HA, 2007, EVOLUTION, V61, P2997, DOI 10.1111/j.1558-5646.2007.00237.x; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; Richard R, 2009, ECOL MONOGR, V79, P465, DOI 10.1890/08-1566.1; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff DA, 2008, J GENET, V87, P339, DOI 10.1007/s12041-008-0056-9; ROITBERG BD, 1993, NATURE, V364, P108, DOI 10.1038/364108a0; Roitberg BD, 2010, BEHAV ECOL SOCIOBIOL, V64, P627, DOI 10.1007/s00265-009-0880-9; Rosenheim JA, 1999, EVOL ECOL, V13, P141, DOI 10.1023/A:1006612519265; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; ROSENHEIM JA, 1991, J ANIM ECOL, V60, P873, DOI 10.2307/5419; Rosenheim JA, 2008, AM NAT, V172, P486, DOI 10.1086/591677; Rosenheim JA, 2010, AM NAT, V175, P662, DOI 10.1086/652468; Sakai S, 1996, J THEOR BIOL, V183, P317, DOI 10.1006/jtbi.1996.0223; Schreiber SJ, 2006, J MATH BIOL, V52, P719, DOI 10.1007/s00285-005-0346-2; Schreiber Sebastian J., 2007, Journal of Biological Dynamics, V1, P273, DOI 10.1080/17513750701450235; Schreiber SJ, 2006, P ROY SOC B-BIOL SCI, V273, P185, DOI 10.1098/rspb.2005.3236; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Shea K, 1996, J ANIM ECOL, V65, P743, DOI 10.2307/5673; Tentelier C, 2006, BEHAV ECOL, V17, P515, DOI 10.1093/beheco/arj062; Thompson W. R., 1924, Annales de la Faculte des Sciences de Marseille, V2, P69; Van Baalen M, 2000, PARASITOID POPULATION BIOLOGY, P103; van Baalen Minus, 2008, P31, DOI 10.1002/9780470696200.ch2; VISSER ME, 1992, J ANIM ECOL, V61, P93, DOI 10.2307/5512; Wajnberg E, 2006, BEHAV ECOL SOCIOBIOL, V60, P589, DOI 10.1007/s00265-006-0198-9; West SA, 2000, ECOL LETT, V3, P294, DOI 10.1046/j.1461-0248.2000.00153.x; West SA, 2002, J THEOR BIOL, V214, P499, DOI 10.1006/jtbi.2001.2475 72 24 25 0 21 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution AUG 2011 65 8 2300 2312 10.1111/j.1558-5646.2011.01305.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 798DL WOS:000293182700013 21790576 Bronze 2019-02-21 J Uller, T; While, GM; Cadby, CD; Harts, A; O'Connor, K; Pen, I; Wapstra, E Uller, Tobias; While, Geoffrey M.; Cadby, Chloe D.; Harts, Anna; O'Connor, Katherine; Pen, Ido; Wapstra, Erik ALTITUDINAL DIVERGENCE IN MATERNAL THERMOREGULATORY BEHAVIOUR MAY BE DRIVEN BY DIFFERENCES IN SELECTION ON OFFSPRING SURVIVAL IN A VIVIPAROUS LIZARD EVOLUTION English Article Life-history evolution; maternal effect; phenotypic plasticity; selection-natural DEPENDENT SEX DETERMINATION; NEST-SITE CHOICE; LIFE-HISTORY EVOLUTION; NIVEOSCINCUS-OCELLATUS; NATURAL-SELECTION; BODY-SIZE; PHENOTYPIC PLASTICITY; NONLINEAR SELECTION; REPTILES; TEMPERATURE Plastic responses to temperature during embryonic development are common in ectotherms, but their evolutionary relevance is poorly understood. Using a combination of field and laboratory approaches, we demonstrate altitudinal divergence in the strength of effects of maternal thermal opportunity on offspring birth date and body mass in a live-bearing lizard (Niveoscincus ocellatus). Poor thermal opportunity decreased birth weight at low altitudes where selection on body mass was negligible. In contrast, there was no effect of maternal thermal opportunity on body mass at high altitudes where natural selection favored heavy offspring. The weaker effect of poor maternal thermal opportunity on offspring development at high altitude was accompanied by a more active thermoregulation and higher body temperature in highland females. This may suggest that passive effects of temperature on embryonic development have resulted in evolution of adaptive behavioral compensation for poor thermal opportunity at high altitudes, but that direct effects of maternal thermal environment are maintained at low altitudes because they are not selected against. More generally, we suggest that phenotypic effects of maternal thermal opportunity or incubation temperature in reptiles will most commonly reflect weak selection for canalization or selection on maternal strategies rather than adaptive plasticity to match postnatal environments. [Uller, Tobias; While, Geoffrey M.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England; [While, Geoffrey M.; Cadby, Chloe D.; Harts, Anna; O'Connor, Katherine; Wapstra, Erik] Univ Tasmania, Sch Zool, Hobart, Tas 7001, Australia; [Harts, Anna; Pen, Ido] Univ Groningen, Theoret Biol Grp, NL-9750 AA Haren, Netherlands Uller, T (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, S Parks Rd, Oxford OX1 3PS, England. tobias.uller@zoo.ox.ac.uk While, Geoffrey/O-6306-2017; Wapstra, Erik/J-7482-2014 While, Geoffrey/0000-0001-8122-9322; Wapstra, Erik/0000-0002-2050-8026 Wenner-Gren Foundations; Australian Research Council; Hermon Slade Foundation; WV Scott Bequest Fund; Australian Greenhouse Office We are very grateful to Associate Editor E. Svensson and three anonymous reviewers for constructive comments on previous drafts. This work was supported by the Wenner-Gren Foundations (TU), the Australian Research Council (TU, IP, EW), the Hermon Slade Foundation (TU, IP, EW, CC), the WV Scott Bequest Fund (CC, GW, EW), and the Australian Greenhouse Office (KO, EW). Angilletta MJ, 2009, ECOLOGY, V90, P2933, DOI 10.1890/08-2224.1; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Atkins N, 2007, BIOL J LINN SOC, V90, P735, DOI 10.1111/j.1095-8312.2007.00770.x; Atkinson D., 1996, ANIMALS TEMPERATURE, P183; Badyaev AV, 2009, PHILOS T R SOC B, V364, P1125, DOI 10.1098/rstb.2008.0285; Badyaev AV, 2005, AM NAT, V166, pS17, DOI 10.1086/444601; Blows MW, 2003, AM NAT, V162, P815, DOI 10.1086/378905; Booth DT, 2006, PHYSIOL BIOCHEM ZOOL, V79, P274, DOI 10.1086/499988; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Brown GP, 2004, ECOLOGY, V85, P1627, DOI 10.1890/03-0107; Buckley CR, 2007, EVOL ECOL RES, V9, P169; CADBY CD, 2010, INTEGR ZOOL, V5, P163; Calsbeek R, 2007, EVOLUTION, V61, P1071, DOI 10.1111/j.1558-5646.2007.00098.x; Calsbeek R, 2007, EVOLUTION, V61, P1052, DOI 10.1111/j.1558-5646.2007.00093.x; Corney S, 2010, CLIMATE FUTURES TASM; de Jong G., 2009, PHENOTYPIC PLASTICIT, P523; Deeming D. C, 2004, REPTILIAN INCUBATION; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; Doody JS, 2006, EVOL ECOL, V20, P307, DOI 10.1007/s10682-006-0003-2; Gibbs M, 2009, BEHAV ECOL SOCIOBIOL, V64, P1, DOI 10.1007/s00265-009-0849-8; Hare Jonathon R., 2007, Herpetological Review, V38, P311; Harlow P., 1996, HERPETOL REV, V2, P71; Huey R.B., 1982, Biology of Reptilia, V12, P25; HUEY RB, 1976, Q REV BIOL, V51, P363, DOI 10.1086/409470; Iraeta P, 2008, ECOSCIENCE, V15, P298, DOI 10.2980/15-3-3119; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; Janzen FJ, 2001, ANIM BEHAV, V62, P73, DOI 10.1006/anbe.2000.1732; Langkilde T, 2005, EVOLUTION, V59, P2275; Littell R. C., 2006, SAS SYSTEM MIXED MOD; Lorenzon P, 2001, EVOLUTION, V55, P392; Lynch M, 1998, GENETICS ANAL QUANTI; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Neaves L, 2006, J EXP ZOOL PART A, V305A, P74, DOI 10.1002/jez.a.249; Pen I, 2010, NATURE, V468, P436, DOI 10.1038/nature09512; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI [10.1111/j.1558-5646.1999.tb05414.x, 10.2307/2640896]; Resetarits WJ, 1996, AM ZOOL, V36, P205; Rieger JF, 1996, OECOLOGIA, V107, P463, DOI 10.1007/BF00333936; Robert KA, 2010, SEX DEV, V4, P119, DOI 10.1159/000260373; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; SCHLUTER D, 1994, AM NAT, V143, P597, DOI 10.1086/285622; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Shine R, 2004, EVOLUTION, V58, P1809; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; Svensson E, 2000, EVOLUTION, V54, P1396; Telemeco RS, 2009, ECOLOGY, V90, P17, DOI 10.1890/08-1452.1; Uller T, 2003, EVOLUTION, V57, P927; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Wapstra E, 2010, J EVOLUTION BIOL, V23, P651, DOI 10.1111/j.1420-9101.2009.01924.x; Wapstra E, 2001, COPEIA, P646, DOI 10.1643/0045-8511(2001)001[0646:GVIAAS]2.0.CO;2; Wapstra E, 2001, J HERPETOL, V35, P194, DOI 10.2307/1566108; Wapstra E, 1999, AUST J ZOOL, V47, P539, DOI 10.1071/ZO99038; Wapstra E, 2000, FUNCT ECOL, V14, P345, DOI 10.1046/j.1365-2435.2000.00428.x; Wapstra E, 2009, J ANIM ECOL, V78, P84, DOI 10.1111/j.1365-2656.2008.01470.x; Warner DA, 2008, ANIM BEHAV, V75, P861, DOI 10.1016/j.anbehav.2007.07.007; Warner DA, 2009, EVOL ECOL, V23, P281, DOI 10.1007/s10682-007-9222-4; Webb JK, 2006, EVOLUTION, V60, P115, DOI 10.1554/05-460.1 58 24 24 4 60 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2011 65 8 2313 2324 10.1111/j.1558-5646.2011.01303.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 798DL WOS:000293182700014 21790577 2019-02-21 J Cornelius, JM; Perfito, N; Zann, R; Breuner, CW; Hahn, TP Cornelius, Jamie M.; Perfito, Nicole; Zann, Richard; Breuner, Creagh W.; Hahn, Thomas P. Physiological trade-offs in self-maintenance: plumage molt and stress physiology in birds JOURNAL OF EXPERIMENTAL BIOLOGY English Article corticosterone; corticosteroid-binding globulin; environmental predictability; opportunism; protein; red crossbill; zebra finch STARLINGS STURNUS-VULGARIS; ZONOTRICHIA-LEUCOPHRYS-GAMBELII; WHITE-CROWNED SPARROWS; PITUITARY-ADRENAL AXIS; SEED-EATING BIRDS; POSTNUPTIAL MOLT; SEASONAL-CHANGES; FEATHER GROWTH; ZEBRA FINCHES; CORTICOSTERONE TREATMENT Trade-offs between self-maintenance processes can affect life-history evolution. Integument replacement and the stress response both promote self-maintenance and affect survival in vertebrates. Relationships between the two processes have been studied most extensively in birds, where hormonal stress suppression is down regulated during molt in seasonal species, suggesting a resource-based trade-off between the two processes. The only species found to differ are the rock dove and Eurasian tree sparrow, at least one of which performs a very slow molt that may reduce resource demands during feather growth, permitting investment in the stress response. To test for the presence of a molt-stress response trade-off, we measured hormonal stress responsiveness during and outside molt in two additional species with extended molts, red crossbills (Loxia curvirostra) and zebra finches (Taeniopygia guttata). We found that both species maintain hormonal stress responsiveness during molt. Further, a comparative analysis of all available species revealed a strong relationship between molt duration and degree of hormonal suppression. Though our results support trade-off hypotheses, these data can also be explained by alternative hypotheses that have not been formally addressed in the literature. We found a strong relationship between stress suppression and seasonality of breeding and evidence suggesting that the degree of suppression may be either locally adaptable or plastic and responsive to local environmental conditions. We hypothesize that environmental unpredictability favors extended molt duration, which in turn allows for maintenance of the hormonal stress response, and discuss implications of a possible trade-off for the evolution of molt schedules. [Cornelius, Jamie M.; Hahn, Thomas P.] Univ Calif Davis, Anim Behav Grad Grp, Davis, CA 95616 USA; [Cornelius, Jamie M.; Hahn, Thomas P.] Univ Calif Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA; [Perfito, Nicole] Univ Calif Berkeley, Berkeley, CA 94720 USA; [Zann, Richard] La Trobe Univ, Bundoora, Vic 3086, Australia; [Breuner, Creagh W.] Univ Montana, Missoula, MT 59812 USA Cornelius, JM (reprint author), Max Planck Inst Ornithol, Schlossalle 1, D-78315 Radolfzell am Bodensee, Germany. cornelius@ucdavis.edu NSF [IBN-0235911, IOS-0744705]; PEO scholar award; UC This publication is dedicated to Richard Zann, who died in the tragic bush fires in Australia in February 2009. We would like to thank Taylor Chapple and B. Man for assistance in the field and Del Norte State Park, Grand Teton National Park, The Murie Center and the Columbia River Land Trust for access to red crossbill field sites. We would like to thank Michaela Hau for intellectual and financial support for fieldwork in Australia, Anita Smyth, Mitchell Jones and Cameron Wallace at the Centre for Arid Zone Research, and Jim Adelman and Katherine Beebe for assistance in the field. Barbara Clucas was of great assistance in performing phylogenetic analyses and Keith Sockman advised on statistical analyses, though he finds Bonferroni corrections to be un-useful. Dongming Li and Gang Wang were helpful in discussing Eurasian tree sparrow data. Barbara Helm and two anonymous reviewers provided comments that greatly improved the manuscript. Funding for red crossbill research was provided by NSF grants IBN-0235911 and IOS-0744705 to T. P. H. J.M.C. was partially supported by a PEO scholar award, an Achievement Reward for College Scientists and UC-Davis graduate fellowships. Adkisson Curtis S., 1996, Birds of North America, V256, P1; ASTHEIMER LB, 1992, ORNIS SCAND, V23, P355, DOI 10.2307/3676661; Astheimer LB, 1995, HORM BEHAV, V29, P442, DOI 10.1006/hbeh.1995.1276; ASTHEIMER LB, 1994, GEN COMP ENDOCR, V94, P33, DOI 10.1006/gcen.1994.1057; Astheimer LB, 2000, HORM BEHAV, V37, P31, DOI 10.1006/hbeh.1999.1555; BARLOW JC, 2000, BIRDS N AM, V560; BARSANO CP, 1989, ENDOCRINOLOGY, V124, P1101, DOI 10.1210/endo-124-3-1101; Benkman CW, 2003, EVOLUTION, V57, P1176; BENKMAN CW, 1987, ECOL MONOGR, V57, P251, DOI 10.2307/2937083; BENKMAN CW, 1993, ECOL MONOGR, V63, P305, DOI 10.2307/2937103; Boily P, 1996, AM J PHYSIOL-REG I, V270, pR1051; Breuner CW, 2006, HORM METAB RES, V38, P260, DOI 10.1055/s-2005-925347; Breuner CW, 2003, HORM BEHAV, V43, P115, DOI 10.1016/S0018-506X(02)00020-X; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Breuner CW, 1998, GEN COMP ENDOCR, V111, P386, DOI 10.1006/gcen.1998.7128; BROWN J, 1992, COMP BIOCHEM PHYS A, V102, P217, DOI 10.1016/0300-9629(92)90037-Q; Busch DS, 2008, GEN COMP ENDOCR, V158, P224, DOI 10.1016/j.ygcen.2008.07.010; BUTTEMER WA, 1991, J COMP PHYSIOL B, V161, P427; Buttemer WA, 2003, J COMP PHYSIOL B, V173, P223, DOI 10.1007/s00360-003-0326-z; CHEREL Y, 1994, AM J PHYSIOL, V266, pR1182; Cornelius JM, 2010, P ROY SOC B-BIOL SCI, V277, P2399, DOI 10.1098/rspb.2010.0164; Cyr NE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P452, DOI 10.1086/589547; Dawson A, 1998, ENDOCRINOLOGY, V139, P485, DOI 10.1210/en.139.2.485; Dawson A, 2004, IBIS, V146, P493, DOI 10.1111/j.1474-919x.2004.00290.x; DAWSON A, 1994, IBIS, V136, P335, DOI 10.1111/j.1474-919X.1994.tb01104.x; DELACRUZ LF, 1981, COMP BIOCHEM PHYS A, V70, P649, DOI 10.1016/0300-9629(81)92594-9; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; DEVENPORT L, 1989, LIFE SCI, V45, P1389, DOI 10.1016/0024-3205(89)90026-X; Diaz-Uriarte R, 1998, SYST BIOL, V47, P654, DOI 10.1080/106351598260653; DONGMING L, J EXP ZOO A IN PRESS; EXTON JH, 1972, METABOLISM, V21, P945, DOI 10.1016/0026-0495(72)90028-5; Fowells HA, 1968, SILVICS US; Groth J. G., 1993, THESIS U CALIFORNIA; GROTH JG, 1988, CONDOR, V90, P745, DOI 10.2307/1368832; HAHN TP, 1992, ORNIS SCAND, V23, P314, DOI 10.2307/3676655; Hahn TP, 1997, CURR ORNITHOL, V14, P39; HAHN TP, 1995, J EXP ZOOL, V272, P213, DOI 10.1002/jez.1402720306; HAHN TP, 1996, BIRDS N AM, V240; Hedenstrom A, 1999, J EXP BIOL, V202, P67; HICKSON RC, 1995, AM J PHYSIOL-ENDOC M, V268, pE730; Hinsley SA, 2003, IBIS, V145, P337, DOI 10.1046/j.1474-919X.2003.00167.x; Hoye BJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016230; HUMPHREY PS, 1956, AUK, V76, P1; Irwin Kenneth, 2010, Western Birds, V41, P10; Johnston RF, 1995, FERAL PIGEONS; JORGENSEN CB, 1988, GEN COMP ENDOCR, V71, P29; KELSEY R, 2008, THESIS U CALIFORNIA; KING JR, 1978, ACTA INT ORNITHOL C, V17, P312; Knox Alan G., 2000, Birds of North America, V543, P1; Koenig WD, 2000, AM NAT, V155, P59, DOI 10.1086/303302; Koenig WD, 2001, J ANIM ECOL, V70, P609, DOI 10.1046/j.1365-2656.2001.00516.x; Kuenzel WJ, 2003, POULTRY SCI, V82, P981, DOI 10.1093/ps/82.6.981; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; LARSON DL, 1986, IBIS, V128, P137, DOI 10.1111/j.1474-919X.1986.tb02101.x; Li DM, 2008, GEN COMP ENDOCR, V158, P47, DOI 10.1016/j.ygcen.2008.06.002; LING JK, 1970, Q REV BIOL, V45, P16, DOI 10.1086/406361; Lohmus M, 2003, BEHAV ECOL SOCIOBIOL, V54, P233, DOI 10.1007/s00265-003-0618-z; LOWTHER PE, 1992, BIRDS N AM, V12; Lynn SE, 2003, HORM BEHAV, V43, P150, DOI 10.1016/S0018-506X(02)00023-5; Lyon BE, 1995, BIRDS N AM, V198-199; MacDougall-Shackleton Scott A., 2000, Birds of North America, V559, P1; Maddison W. P., 2006, MESQUITE MODULAR SYS; MARTINS EP, 1991, EVOLUTION, V45, P534, DOI 10.1111/j.1558-5646.1991.tb04328.x; Midford P. E., 2005, PDAP PACKAGE MESQUIT; MILLER ALDEN H., 1961, CONDOR, V63, P143, DOI 10.2307/1365527; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; Murphy Mary E., 1996, P158; MURPHY ME, 1990, CONDOR, V92, P913, DOI 10.2307/1368727; MURPHY ME, 1988, CAN J ZOOL, V66, P1403, DOI 10.1139/z88-206; MURPHY ME, 1995, COMP BIOCHEM PHYS A, V111, P385, DOI 10.1016/0300-9629(95)00039-A; Newton I, 2005, IBIS, V147, P667, DOI 10.1111/j.1474-919X.2005.00439.x; Newton I., 1972, FINCHES; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Perfito N, 2007, FUNCT ECOL, V21, P291, DOI 10.1111/j.1365-2435.2006.01237.x; Portugal SJ, 2007, J EXP BIOL, V210, P1391, DOI 10.1242/jeb.004598; RICHARDSON MI, 2003, THESIS U WASHINGTON; RIVIERE JE, 1977, GEN COMP ENDOCR, V31, P398, DOI 10.1016/0016-6480(77)90027-2; ROBINSON DE, 1976, J COMP PHYSIOL, V105, P153, DOI 10.1007/BF00691117; Roff Derek A., 1992; Romero LM, 2006, GEN COMP ENDOCR, V149, P66, DOI 10.1016/j.ygcen.2006.05.011; Romero LM, 2000, GEN COMP ENDOCR, V119, P52, DOI 10.1006/gcen.2000.7491; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; Romero LM, 1998, GEN COMP ENDOCR, V109, P347, DOI 10.1006/gcen.1997.7048; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Romero LM, 2001, J COMP PHYSIOL B, V171, P231, DOI 10.1007/s003600000167; Romero LM, 1997, COMP BIOCHEM PHYS C, V116, P171, DOI 10.1016/S0742-8413(96)00208-3; Sibley CG, 1990, PHYLOGENY CLASSIFICA; Silverin B, 1997, ANIM BEHAV, V53, P451, DOI 10.1006/anbe.1996.0295; Silverin B, 1998, POULT AVIAN BIOL REV, V9, P153; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEFANO FJE, 1964, GEN COMP ENDOCR, V4, P473, DOI 10.1016/0016-6480(64)90055-3; STETTENHEIM P, 1976, P INT ORNITHOL C, V16, P385; Strochlic DE, 2008, COMP BIOCHEM PHYS A, V149, P68, DOI 10.1016/j.cbpa.2007.10.011; Swaddle JP, 1997, CAN J ZOOL, V75, P1135, DOI 10.1139/z97-136; Tarlow EM, 2003, GEN COMP ENDOCR, V133, P297, DOI 10.1016/S0016-6480(03)00192-8; Van Der Jeugd HP, 2009, GLOBAL CHANGE BIOL, V15, P1057, DOI 10.1111/j.1365-2486.2008.01804.x; Wada H, 2006, PHYSIOL BIOCHEM ZOOL, V79, P784, DOI 10.1086/505509; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WEISS DE, 1980, J ANIM SCI, V51, P1367; WILLIAMSON FS, 1971, BIOSCIENCE, V21, P701, DOI 10.2307/1295752; Wingfield J.C., 1983, P265; WINGFIELD JC, 1976, CONDOR, V78, P570, DOI 10.2307/1367117; Wingfield JC, 2005, J MAMMAL, V86, P248, DOI 10.1644/BHE-004.1; WINGFIELD JC, 1979, GEN COMP ENDOCR, V38, P322, DOI 10.1016/0016-6480(79)90066-2; WINGFIELD JC, 1992, J EXP ZOOL, V261, P214, DOI 10.1002/jez.1402610212; ZANN R, 1985, IBIS, V127, P184, DOI 10.1111/j.1474-919X.1985.tb05054.x; Zann R, 1996, ZEBRA FINCH SYNTHESI; ZANN RA, 1995, EMU, V95, P208, DOI 10.1071/MU9950208; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 109 29 29 4 46 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. AUG 2011 214 16 2768 2777 10.1242/jeb.057174 10 Biology Life Sciences & Biomedicine - Other Topics 797YW WOS:000293167300021 21795575 Bronze 2019-02-21 J Damuth, J; Janis, CM Damuth, John; Janis, Christine M. On the relationship between hypsodonty and feeding ecology in ungulate mammals, and its utility in palaeoecology BIOLOGICAL REVIEWS English Article hypsodonty; ungulates; grazing; palaeoecology; dental wear; soil consumption; Cenozoic; palaeoenvironments; grasslands; diet prediction AMERICAN GRASSLAND BIOME; WHITE-TAILED DEER; SOIL-INGESTION; TOOTH WEAR; DENTAL MICROWEAR; PLANT-SURFACES; MINERAL LICKS; NEW-WORLD; RED DEER; PRIMARY PRODUCTIVITY High-crowned (hypsodont) teeth are widely found among both extant and extinct mammalian herbivores. Extant grazing ungulates (hoofed mammals) have hypsodont teeth (a derived condition), and so extinct hypsodont forms have usually been presumed to have been grazers. Thus, hypsodonty among ungulates has, over the past 150 years, formed the basis of widespread palaeoecological interpretations, and has figured prominently in the evolutionary study of the spread of grasslands in the mid Cenozoic. However, perceived inconsistencies between levels of hypsodonty and dental wear patterns in both extant and extinct ungulates have caused some workers to reject hypsodonty as a useful predictive tool in palaeobiology, a view that we consider both misguided and premature. Despite the acknowledged association between grazing and hypsodonty, the quantitative relationship of hypsodonty to the known ecology of living ungulate species, critical in making interpretations of the fossil record, was little studied until the past two decades. Also, much of the literature on ungulate ecology relevant to understanding hypsodonty has yet to be fully incorporated into the perspectives of palaeontologists. Here we review the history and current state of our knowledge of the relationship between hypsodonty and ungulate ecology, and reassert the value of hypsodonty for our understanding of ungulate feeding behaviour. We also show how soil consumption, rather than the consumption of grass plants per se, may be the missing piece of the puzzle in understanding the observed correlation between diets, habitats, and hypsodonty in ungulates. Additionally, we show how hypsodonty may impact life-history strategies, and resolve some controversies regarding the relevance of hypsodonty to the prediction of the diets of extinct species. This in turn strengthens the utility of hypsodonty in the determination of past environmental conditions, and we provide a revised view of a traditional example of evolutionary trends in palaeobiology, that of the evolution of hypsodonty in horses and its correlation with the Miocene spread of grasslands in North America. [Damuth, John] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA; [Janis, Christine M.] Brown Univ, Dept Ecol & Evolutionary Biol, Providence, RI 02912 USA Damuth, J (reprint author), Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. damuth@lifesci.ucsb.edu Damuth, John/0000-0002-1635-9726 NSF [EAR-0958250, EAR-0958597]; Bushnell Foundation (Brown University) We thank Marcus Clauss for comments on an earlier version of this review, and Mikael Fortelius for subsequent useful discussion. We also thank Russ Secord (University of Nebraska State Museum), Farish Jenkins (Museum of Comparative Zoology, Harvard University) and Jin Meng (American Museum of Natural History) for access to fossil horse specimens. J. D. acknowledges support from NSF EAR-0958250. C. M. J. acknowledges support from NSF EAR-0958597 and the Bushnell Foundation (Brown University). Abrahams PW, 2003, ENVIRON GEOCHEM HLTH, V25, P17, DOI 10.1023/A:1021217402950; ARCHER M, 1994, HIST AUSTR VEGETATIO, P80; ARTHUR WJ, 1988, J RANGE MANAGE, V41, P162, DOI 10.2307/3898955; ARTHUR WJ, 1979, J RANGE MANAGE, V32, P67, DOI 10.2307/3897389; Ayotte JB, 2006, J MAMMAL, V87, P878, DOI 10.1644/06-MAMM-A-055R1.1; BAILEY CB, 1981, CAN J ANIM SCI, V61, P219, DOI 10.4141/cjas81-031; BAKER G, 1959, NATURE, V184, P1583, DOI 10.1038/1841583b0; Bekhuis PDBM, 2008, AFR J ECOL, V46, P668, DOI 10.1111/j.1365-2028.2008.00956.x; BERESFORD NA, 1991, SCI TOTAL ENVIRON, V107, P237, DOI 10.1016/0048-9697(91)90261-C; BERGER J, 1986, WILD HORSES GREAT BA; BERNOR RL, 2003, SURROUNDING FOSSIL M, P35; BEYER WN, 1994, J WILDLIFE MANAGE, V58, P375, DOI 10.2307/3809405; Billet G, 2009, PALAEOGEOGR PALAEOCL, V274, P114, DOI 10.1016/j.palaeo.2009.01.004; BLANK RR, 1994, PLANT SOIL, V164, P35, DOI 10.1007/BF00010108; BOYDE A, 1984, ANAT EMBRYOL, V170, P57, DOI 10.1007/BF00319458; Brewer P, 2008, J VERTEBR PALEONTOL, V28, P1144, DOI 10.1671/0272-4634-28.4.1144; CALEF GW, 1975, J MAMMAL, V56, P240, DOI 10.2307/1379626; Carranza J, 2004, NATURE, V432, P215, DOI 10.1038/nature03004; Carroll R., 1988, VERTEBRATE PALEONTOL; CARY EE, 1990, J AGR FOOD CHEM, V38, P108, DOI 10.1021/jf00091a022; Clauss M, 2010, ANIMAL, V4, P979, DOI 10.1017/S1751731110000388; CLAUSS M, 2008, ZOO WILD ANIMAL MED, V6, P444; Clauss Marcus, 2008, V195, P47, DOI 10.1007/978-3-540-72422-3_3; Clayton L, 1999, J MAMMAL, V80, P1147, DOI 10.2307/1383165; Codron D, 2008, BIOL J LINN SOC, V94, P755, DOI 10.1111/j.1095-8312.2008.01028.x; Codron D, 2007, EUR J WILDLIFE RES, V53, P100, DOI 10.1007/s10344-006-0071-1; Court N., 1992, Historical Biology, V6, P91; COVERT HH, 1981, AM J PHYS ANTHROPOL, V55, P331, DOI 10.1002/ajpa.1330550307; Custodio Carlo C., 1996, Mammalian Species, V520, P1; Damuth J., 1990, P229; Damuth John D., 2002, Journal of Vertebrate Paleontology, V22, p48A; DREICER M, 1984, HEALTH PHYS, V46, P177, DOI 10.1097/00004032-198401000-00015; DUBOST G, 1984, J MAMMAL, V65, P298, DOI 10.2307/1381169; EHRLICH PR, 1964, EVOLUTION, V18, P586, DOI 10.1111/j.1558-5646.1964.tb01674.x; Eronen JT, 2010, EVOL ECOL RES, V12, P217; Eronen JT, 2010, EVOL ECOL RES, V12, P235; Eronen JT, 2010, EVOLUTION, V64, P398, DOI 10.1111/j.1558-5646.2009.00830.x; Feranec RS, 2007, EVOL ECOL RES, V9, P555; Feranec RS, 2003, PALEOBIOLOGY, V29, P230, DOI 10.1666/0094-8373(2003)029<0230:SIHATP>2.0.CO;2; Fortelius M., 1985, ACTA ZOOL FENN, V180, P1; Fortelius Mikael, 2000, American Museum Novitates, V3301, P1, DOI 10.1206/0003-0082(2000)301<0001:FCOUMU>2.0.CO;2; FUTUYMA DJ, 1986, EVOLUTIONARY BIOL; GALIMUHTASIB HU, 1992, ECOLOGY, V73, P1724, DOI 10.2307/1940024; GREEN N, 1988, SCI TOTAL ENVIRON, V69, P367, DOI 10.1016/0048-9697(88)90352-X; Gugel IL, 2001, AM J PHYS ANTHROPOL, V114, P124, DOI 10.1002/1096-8644(200102)114:2<124::AID-AJPA1012>3.0.CO;2-S; Gurovich Y, 2009, J MAMM EVOL, V16, P25, DOI 10.1007/s10914-008-9097-3; HAYEK LAC, 1991, ANN ZOOL FENN, V28, P187; HEALY W. B., 1965, NEW ZEAL J AGR RES, V8, P737; HEALY WB, 1965, NATURE, V208, P806, DOI 10.1038/208806a0; HEDLEY MJ, 2007, AUSTR FERT IND C AUG; HERRERA CM, 1985, OIKOS, V45, P446, DOI 10.2307/3565581; Hill T., 2007, STAT METHODS APPL; HINTON TG, 1995, J ENVIRON RADIOACTIV, V29, P11, DOI 10.1016/0265-931X(95)00008-X; Hodson MJ, 2005, ANN BOT-LONDON, V96, P1027, DOI 10.1093/aob/mci255; HOFMANN R R, 1972, Mammalia, V36, P226, DOI 10.1515/mamm.1972.36.2.226; HOLDRIDGE LR, 1947, SCIENCE, V105, P367, DOI 10.1126/science.105.2727.367; Houston DC, 2001, MAMMAL REV, V31, P249, DOI 10.1046/j.1365-2907.2001.00091.x; Hummel J, 2011, P ROY SOC B-BIOL SCI, V278, P1742, DOI 10.1098/rspb.2010.1939; HUXLEY TH, 1886, AM ADDRESSES LECT ST; Jacobs BF, 1999, ANN MO BOT GARD, V86, P590, DOI 10.2307/2666186; Janis C.M., 1988, Memoires du Museum National d'Histoire Naturelle Serie C Sciences de la Terre, V53, P367; JANIS C M, 1990, Australian Mammalogy, V13, P49; JANIS CM, 1995, FUNCTIONAL MORPHOLOGY IN VERTEBRATE PALEONTOLOGY, P76; JANIS CM, 1988, BIOL REV, V63, P197, DOI 10.1111/j.1469-185X.1988.tb00630.x; Janis CM, 2004, PALAEOGEOGR PALAEOCL, V207, P371, DOI 10.1016/j.palaeo.2003.09.032; Janis CM, 2008, EVOLUTION OF TERTIARY MAMMALS OF NORTH AMERICA, VOL 2, P1, DOI 10.1017/CBO9780511541438; Janis CM, 2002, PALAEOGEOGR PALAEOCL, V177, P183, DOI 10.1016/S0031-0182(01)00359-5; Janis CM, 2000, P NATL ACAD SCI USA, V97, P7899, DOI 10.1073/pnas.97.14.7899; JANIS CM, 2008, EVOLUTION TERTIARY M, V2, P645; Janis CM, 2007, ICONS EVOLUTION, P257; JANZEN DH, 1981, ECOLOGY, V62, P587, DOI 10.2307/1937725; JEFFREY D, 2003, MANUAL EQUINE DENT, P71; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; JUDSON O, 2010, NY TIMES; Jurado OM, 2008, J ZOO WILDLIFE MED, V39, P69, DOI 10.1638/06-064.1; Kaiser Thomas M., 2006, Beitraege zur Palaeontologie, V30, P241; Kaiser TM, 2009, MAMM BIOL, V74, P425, DOI 10.1016/j.mambio.2008.09.003; Kaiser TM, 2004, QUATERNARY RES, V62, P316, DOI 10.1016/j.yqres.2004.09.002; Kaiser TM, 2003, PALAEOGEOGR PALAEOCL, V198, P381, DOI 10.1016/S0031-0182(03)00480-2; KAY RF, 1983, AM J PHYS ANTHROPOL, V61, P33, DOI 10.1002/ajpa.1330610104; Kay RF, 1999, P NATL ACAD SCI USA, V96, P13235, DOI 10.1073/pnas.96.23.13235; KENNEDY JF, 1995, AM MIDL NAT, V134, P324, DOI 10.2307/2426301; King SJ, 2005, P NATL ACAD SCI USA, V102, P16579, DOI 10.1073/pnas.0508377102; KIRBY DR, 1980, J RANGE MANAGE, V33, P207, DOI 10.2307/3898286; Klaus G, 1998, J TROP ECOL, V14, P829, DOI 10.1017/S0266467498000595; Klein RG, 1976, S AFRICAN ARCHAEOLOG, V31, P75, DOI [10.2307/3887730, DOI 10.2307/3887730]; Kojola I, 1998, OECOLOGIA, V117, P26, DOI 10.1007/s004420050627; Kovalevsky VO, 1874, PALAEONTOGRAPHICA, V22, P210; KREULEN DA, 1985, MAMMAL REV, V15, P107, DOI 10.1111/j.1365-2907.1985.tb00391.x; Laca EA, 2001, J RANGE MANAGE, V54, P413, DOI 10.2307/4003112; LANGMAN VA, 1978, J WILDLIFE MANAGE, V42, P141, DOI 10.2307/3800701; Launchbaugh KL, 2001, J RANGE MANAGE, V54, P431, DOI 10.2307/4003114; LI JG, 1994, BODENKULTUR, V45, P15; Loe LE, 2003, OECOLOGIA, V135, P346, DOI 10.1007/s00442-003-1192-9; Lubinski PM, 2001, INT J OSTEOARCHAEOL, V11, P218, DOI 10.1002/oa.536; Lucas P.W., 2004, DENT FUNCTIONAL MORP; LUCAS PW, 1995, FOLIA PRIMATOL, V64, P30, DOI 10.1159/000156829; LUCAS SG, 1998, EVOLUTION TERTIARY M, V1, P260; LUDWIG TG, 1968, NZ J AGR RES, V9, P157; LULL RS, 1917, ORGANIC EVOLUTION; MacFadden BJ, 1997, TRENDS ECOL EVOL, V12, P182, DOI 10.1016/S0169-5347(97)01049-5; MacFadden BJ, 2000, ANNU REV ECOL SYST, V31, P33, DOI 10.1146/annurev.ecolsys.31.1.33; MacFadden BJ, 1999, SCIENCE, V283, P824, DOI 10.1126/science.283.5403.824; MACFADDEN BJ, 1994, TRENDS ECOL EVOL, V9, P481, DOI 10.1016/0169-5347(94)90313-1; MacFadden BJ, 1997, PALEOBIOLOGY, V23, P77; MACFADDEN BJ, 1998, EVOLUTION TERTIARY M, V1, P537; Mainland IL, 2003, J ARCHAEOL SCI, V30, P1513, DOI 10.1016/S0305-4403(03)00055-4; MARTIN L, 1985, NATURE, V314, P260, DOI 10.1038/314260a0; Massey FP, 2007, OECOLOGIA, V152, P677, DOI 10.1007/s00442-007-0703-5; Massey FP, 2006, P R SOC B, V273, P2299, DOI 10.1098/rspb.2006.3586; Massey FP, 2009, BASIC APPL ECOL, V10, P622, DOI 10.1016/j.baae.2009.04.004; Matthew WD, 1926, Q REV BIOL, V1, P139, DOI 10.1086/394242; MATTHEW WD, 1913, AM MUSEUM NATURAL HI, V36, P1; MAYLAND HF, 1977, J RANGE MANAGE, V30, P264, DOI 10.2307/3897301; Mayland HF, 2001, J RANGE MANAGE, V54, P441, DOI 10.2307/4003115; MAYLAND HF, 1975, J RANGE MANAGE, V28, P448, DOI 10.2307/3897219; MCNAUGHTON SJ, 1983, P NATL ACAD SCI-BIOL, V80, P790, DOI 10.1073/pnas.80.3.790; MCNAUGHTON SJ, 1985, ECOLOGY, V66, P528, DOI 10.2307/1940401; Melzer SE, 2010, BIOGEOCHEMISTRY, V97, P263, DOI 10.1007/s10533-009-9371-3; Mendoza M, 2008, J ZOOL, V274, P134, DOI 10.1111/j.1469-7998.2007.00365.x; Mendoza M, 2002, J ZOOL, V258, P223, DOI 10.1017/S0952836902001346; Mihlbachler Matthew C., 2006, Journal of Mammalian Evolution, V13, P11, DOI 10.1007/s10914-005-9001-3; MINSON D J, 1971, Australian Journal of Experimental Agriculture and Animal Husbandry, V11, P18, DOI 10.1071/EA9710018; Mohr E, 1971, ASIATIC WILD HORSE; MOLNAR L, 2006, P EAZWV 6 SCI M BUD; MONES A, 1982, Palaeontologische Zeitschrift, V56, P107; Muller DWH, 2010, AM J VET RES, V71, P275, DOI 10.2460/ajvr.71.3.275; Nussey DH, 2007, J ANIM ECOL, V76, P402, DOI 10.1111/j.1365-2656.2007.01212.x; Osborn H.F., 1910, AGE MAMMALS EUROPE A; Ozaki M, 2007, J ZOOL, V272, P244, DOI 10.1111/j.1469-7998.2006.00264.x; Ozaki M, 2010, J ZOOL, V280, P202, DOI 10.1111/j.1469-7998.2009.00653.x; PEREZBARBERIA FJ, 2001, SCIENCE, V268, P1021; PINDER JE, 1991, J ENVIRON RADIOACTIV, V13, P341, DOI 10.1016/0265-931X(91)90006-2; PIPERNO D. R, 2006, PHYTOLITHS COMPREHEN; Prasad V, 2005, SCIENCE, V310, P1177, DOI 10.1126/science.1118806; REA RV, 2007, WILDLIFE AFIELD, V4, P86; Rhind SM, 2002, J ENVIRON MONITOR, V4, P142, DOI 10.1039/b107539j; RIVALS F, 2010, J VERTEBR PALEONTOL, pA151; Rivals Florent, 2007, Journal of Mammalian Evolution, V14, P182, DOI 10.1007/s10914-007-9044-8; ROBINETTE W. LESLIE, 1957, JOUR WILDLIFE MANAGEMENT, V21, P134, DOI 10.2307/3797579; Romer A. S., 1966, VERTEBRATE PALEONTOL; RUE L. L. III, 1997, DEER N AM; SALTER R E, 1980, Northwest Science, V54, P109; SANSON G D, 1978, Australian Mammalogy, V2, P23; Sanson G, 2006, AM J BOT, V93, P1531, DOI 10.3732/ajb.93.10.1531; Sanson GD, 2007, J ARCHAEOL SCI, V34, P526, DOI 10.1016/j.jas.2006.06.009; Schmitz-Munker M., 1988, Courier Forschungsinstitut Senckenberg, V107, P129; SCOTT WB, 1913, HIST LAND MAMMALS W; Semprebon G, 2004, J VERTEBR PALEONTOL, V24, P427, DOI 10.1671/2431; Semprebon GM, 2007, PALAEOGEOGR PALAEOCL, V253, P332, DOI 10.1016/j.palaeo.2007.06.006; SHEPPARD SC, 1995, ENVIRON MONIT ASSESS, V34, P24; SHEWMAKER GE, 1989, J RANGE MANAGE, V42, P122, DOI 10.2307/3899308; Simpson GG., 1953, MAJOR FEATURES EVOLU; Simpson GG, 1944, TEMPO MODE EVOLUTION; Simpson GG, 1951, HORSES STORY HORSE F; SKIPWORTH JP, 1974, J WILDLIFE MANAGE, V38, P880, DOI 10.2307/3800060; SKOGLAND T, 1988, OIKOS, V51, P238, DOI 10.2307/3565648; Smith KEC, 2000, SCI TOTAL ENVIRON, V246, P207, DOI 10.1016/S0048-9697(99)00459-3; SNEVA FA, 1983, OREGON AGR EXPT STAT, V682, P1; SOLOUNIAS N, 1994, ANN ZOOL FENN, V31, P219; Solounias N, 2002, AM MUS NOVIT, P1, DOI 10.1206/0003-0082(2002)366<0001:AITROU>2.0.CO;2; SOLOUNIAS N, 1988, PALAEOGEOGR PALAEOCL, V65, P149, DOI 10.1016/0031-0182(88)90021-1; SOLOUNIAS N, 1988, PALEOBIOLOGY, V14, P287; SPINAGE CA, 1972, E AFR WILDL J, V10, P273; STEBBINS GL, 1981, ANN MO BOT GARD, V68, P75, DOI 10.2307/2398811; Stiling P. D., 2008, BIOLOGY; STIRTON RA, 1947, EVOLUTION, V1, P32, DOI 10.2307/2405401; STIRTON RA, 1959, TIME LIFE MAN; STOCK C, 1963, LOS ANGELES COUNTY M, V8, P1; Stromberg CAE, 2006, PALEOBIOLOGY, V32, P236, DOI 10.1666/0094-8373(2006)32[236:EOHIET]2.0.CO;2; STROMBERG CAE, 2010, J VERTEBR PALEONTOL, pA171; Takahashi Hiroshi, 1999, Mammal Study, V24, P17, DOI 10.3106/mammalstudy.24.17; TEAFORD MF, 1988, SCANNING MICROSCOPY, V2, P1149; THORNTON I, 1983, SCI TOTAL ENVIRON, V28, P287, DOI 10.1016/S0048-9697(83)80026-6; Tobler MW, 2009, J TROP ECOL, V25, P261, DOI 10.1017/S0266467409005896; Turkalo Andrea K., 2001, P207; UNGAR PS, 1995, AM J PHYS ANTHROPOL, V97, P93, DOI 10.1002/ajpa.1330970202; VAITHIYANATHAN S, 1994, SMALL RUMINANT RES, V14, P103, DOI 10.1016/0921-4488(94)90099-X; VANSOEST PJ, 1968, J DAIRY SCI, V51, P1644, DOI 10.3168/jds.S0022-0302(68)87246-7; VANVALEN L, 1960, EVOLUTION, V14, P531; Veiberg V, 2007, OIKOS, V116, P1805, DOI 10.1111/j.2007.0030-1299.16159.x; von Koenigswald W, 1999, ACTA PALAEONTOL POL, V44, P263; VOORHIES MR, 1979, SCIENCE, V206, P331, DOI 10.1126/science.206.4416.331; WEBB SD, 1977, ANNU REV ECOL SYST, V8, P355, DOI 10.1146/annurev.es.08.110177.002035; WEBB SD, 1978, ANNU REV ECOL SYST, V9, P393, DOI 10.1146/annurev.es.09.110178.002141; WEEKS HP, 1978, AM MIDL NAT, V100, P384, DOI 10.2307/2424838; WHITE TE, 1959, CONTRIBUTIONS MUSEUM, V13, P211; Williams Susan H., 2001, Journal of Mammalian Evolution, V8, P207, DOI 10.1023/A:1012231829141 188 150 154 3 86 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. AUG 2011 86 3 733 758 10.1111/j.1469-185X.2011.00176.x 26 Biology Life Sciences & Biomedicine - Other Topics 793TG WOS:000292845500010 21418504 2019-02-21 J Valkiunas, G Valkiunas, Gediminas Haemosporidian vector research: marriage of molecular and microscopical approaches is essential MOLECULAR ECOLOGY English Editorial Material biomedicine; birds; disease biology; ecological genetics; insects; life history evolution MORPHOLOGY; PARASITES Many species of malaria and related haemosporidian parasites (Haemosporida) are responsible for diseases in wild and domestic animals. These pathogens are exclusively transmitted by blood-sucking dipteran insects (Diptera). Traditional vector studies, which are based mainly on experimental infection and subsequent dissection of insects, are time-consuming, so progress in the identification of the vectors has been slow. Since the discovery of haemosporidians in wildlife by V. Danilewsky in 1884, it took over 70 years to determine the main vector groups of these parasites. However, precise vector-parasite relationships remain insufficiently investigated in wildlife, particularly at the species level of haemosporidians and their vectors. Molecular tools have provided innovative opportunities to speed such research. In this issue of Molecular Ecology, Martinez-de la Puente et al. (2011) collected, for the first time, a significant PCR-based set of data on the presence of lineages of the pigment-forming haemosporidians (species of Haemoproteus and Plasmodium) in biting midges (Culicoides). They identified numerous associations between Culicoides spp. and Haemoproteus spp., indicating directions for future targeting vector studies of haemoproteids. Nat Res Ctr, LT-08412 Vilnius 21, Lithuania Valkiunas, G (reprint author), Nat Res Ctr, Akademijos 2, LT-08412 Vilnius 21, Lithuania. gedvalk@ekoi.lt ATKINSON CT, 1988, J PARASITOL, V74, P228, DOI 10.2307/3282448; Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x; EARLE RA, 1993, AVIAN PATHOL, V22, P67, DOI 10.1080/03079459308418901; Ferrell ST, 2007, J ZOO WILDLIFE MED, V38, P309, DOI 10.1638/1042-7260(2007)038[0309:FHIIMA]2.0.CO;2; Garnham P. C. C, 1966, MALARIA PARASITES OT; Kim KS, 2009, PARASITOL RES, V105, P1351, DOI 10.1007/s00436-009-1568-9; Krizanauskiene A, 2010, PARASITOLOGY, V137, P217, DOI 10.1017/S0031182009991235; Martinez-de la Puente J, 2011, MOL ECOL, V20, P3275, DOI 10.1111/j.1365-294X.2011.05136.x; Olias P, 2011, EMERG INFECT DIS, V17, P950, DOI 10.3201/eid1705.101618; Perkins SL, 2009, J PARASITOL, V95, P424, DOI 10.1645/GE-1750.1; Valkiunas G, 2005, AVIAN MALARIA PARASI; WALKER D, 1972, VET REC, V91, P70, DOI 10.1136/vr.91.3.70 12 36 37 1 11 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0962-1083 MOL ECOL Mol. Ecol. AUG 2011 20 15 3084 3086 10.1111/j.1365-294X.2011.05187.x 3 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 795GU WOS:000292963100002 21901870 Bronze 2019-02-21 J Johnson, DW; Hixon, MA Johnson, D. W.; Hixon, M. A. Sexual and lifetime selection on body size in a marine fish: the importance of life-history trade-offs JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; balancing selection; coral reef fish; fitness; invisible fraction; mating success; optimal body size CARIBBEAN REEF FISH; BICOLOR DAMSELFISH; STEGASTES-PARTITUS; PHENOTYPIC SELECTION; REPRODUCTIVE SUCCESS; NATURAL-POPULATIONS; DEPENDENT MORTALITY; FEMALE CHOICE; EVOLUTION; GROWTH Many field measurements of viability and sexual selection on body size indicate that large size is favoured. However, life-history theory predicts that body size may be optimized and that patterns of selection may often be stabilizing rather than directional. One reason for this discrepancy may be that field estimates of selection tend to focus on limited components of fitness and may not fully measure life-history trade-offs. We use an 8-year, demographic field study to examine both sexual selection and lifetime selection on body size of a coral reef fish (the bicolour damselfish, Stegastes partitus). Selection via reproductive success of adults was very strong (standardized selection differential = 1.04). However, this effect was balanced by trade-offs between large adult size and reduced cumulative survival during the juvenile phase. When we measured lifetime fitness (net reproductive rate), selection was strongly stabilizing and only weakly directional, consistent with predictions from life-history theory. [Johnson, D. W.; Hixon, M. A.] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA Johnson, DW (reprint author), Natl Ctr Ecol Anal & Synth, 735 State St,Suite 300, Santa Barbara, CA 93101 USA. johnson@nceas.ucsb.edu NSF [OCE-00-93976, OCE-05-50709, OCE-08-51162]; NOAA, courtesy of the Caribbean Marine Research Center We are very thankful to many people who helped in the field and made this labour-intensive study possible: G. Almany, A. Altieri, T. Anderson, C. Bartels, E. Bartels, A. Bartholomew, M. Bond, K. Buch, B. Byrne, M. Carr, M. Christie, N. Ehlers, D. Frerich, L. Hatley, W. Head, S. Hixon, B. Kakuk, K. Kroecker, A. King, B. McLeod, J. Noell, M. Novak, K. Overholtzer-McLeod, C. Stallings, M. Webster and T. Young. We are also grateful to the staff of the Caribbean Marine Research Center (CMRC), especially T. Wolcott and B. Gadd, for greatly facilitating our long-term research. R. Lamb and M. Cook assisted with the laboratory analysis of egg mass data. Financial support was provided by NSF grants OCE-00-93976, OCE-05-50709 and OCE-08-51162 to M.A.H. and by grants to M.A.H. from NOAA's National Undersea Research Program, courtesy of the Caribbean Marine Research Center. R. Warner, J. Williams, W. Blanckenhorn and one anonymous reviewer provided helpful reviews of the manuscript. ARNOLD SJ, 1984, EVOLUTION, V38, P720, DOI 10.1111/j.1558-5646.1984.tb00345.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bolker BM, 2008, TRENDS ECOL EVOL, V24, P127, DOI DOI 10.1016/J.TREE.2008.10.008; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; Carr MH, 2002, P NATL ACAD SCI USA, V99, P11241, DOI 10.1073/pnas.162653499; COLE KS, 1995, J FISH BIOL, V47, P181, DOI 10.1006/jfbi.1995.0125; Emery A. R., 1968, COMP ECOLOGY DAMSELF; Endler J. A., 1986, NATURAL SELECTION WI; Frederick JL, 1997, B MAR SCI, V61, P399; Grafen A., 1988, REPROD SUCCESS, P454; GULLAND J. A., 1959, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V25, P47; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hixon M.A., 1991, P475; Hixon MA, 2005, ECOLOGY, V86, P2847, DOI 10.1890/04-1455; Hoey A. S, 2006, P 10 INT COR REEF S, P420; HOWARD RD, 1985, EVOLUTION, V39, P260, DOI 10.1111/j.1558-5646.1985.tb05665.x; Hunt J, 2009, J EVOLUTION BIOL, V22, P13, DOI 10.1111/j.1420-9101.2008.01633.x; Johnson DW, 2010, J EVOLUTION BIOL, V23, P724, DOI 10.1111/j.1420-9101.2010.01938.x; Johnson DW, 2008, OECOLOGIA, V155, P43, DOI 10.1007/s00442-007-0882-0; Johnson DW, 2010, EVOLUTION, V64, P2614, DOI 10.1111/j.1558-5646.2010.01027.x; JOHNSON DW, EVOL APPL IN PRESS; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2007, BIOSCIENCE, V57, P561, DOI 10.1641/B570706; KNAPP RA, 1991, BEHAV ECOL, V2, P295, DOI 10.1093/beheco/2.4.295; Knapp RA, 1995, B MAR SCI, V57, P672; KNAPP RA, 1991, ANIM BEHAV, V41, P747, DOI 10.1016/S0003-3472(05)80341-0; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Legendre P, 1998, NUMERICAL ECOLOGY; MCARDLE BH, 1988, CAN J ZOOL, V66, P2329, DOI 10.1139/z88-348; McCormick MI, 2006, ECOLOGY, V87, P1104, DOI 10.1890/0012-9658(2006)87[1104:MMCLTS]2.0.CO;2; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; MORSE WW, 1989, FISH B-NOAA, V87, P417; Myrberg A. A., 1972, ANIM BEHAV MONOGR, V5, P197; MYRBERG AA, 1972, BEHAVIOUR, V41, P207, DOI 10.1163/156853972X00013; PEPIN P, 1993, CAN J FISH AQUAT SCI, V50, P2166, DOI 10.1139/f93-242; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Preziosi RF, 2000, EVOLUTION, V54, P558; R Development Core Team, 2009, R LANG ENV STAT COMP; Rasband W. S, 2009, IMAGE J; ROBERTSON DR, 1988, ECOLOGY, V69, P370, DOI 10.2307/1940435; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; ROFF DA, 2002, LIFE HIST EVOLUTION; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; SCHMALE MC, 1981, ANIM BEHAV, V29, P1172, DOI 10.1016/S0003-3472(81)80069-3; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sogard SM, 1997, B MAR SCI, V60, P1129; Sponaugle S, 1996, MAR FRESHWATER RES, V47, P433, DOI 10.1071/MF9960433; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; WADE MJ, 1989, EVOLUTION, V43, P1567, DOI 10.1111/j.1558-5646.1989.tb02606.x; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133; Young KV, 2004, SCIENCE, V304, P65, DOI 10.1126/science.1094790 59 20 20 1 38 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. AUG 2011 24 8 1653 1663 10.1111/j.1420-9101.2011.02298.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WN WOS:000292699200003 21605216 Bronze 2019-02-21 J Okada, K; Katsuki, M; Okada, Y; Miyatake, T Okada, K.; Katsuki, M.; Okada, Y.; Miyatake, T. Immature performance linked with exaggeration of a sexually selected trait in an armed beetle JOURNAL OF EVOLUTIONARY BIOLOGY English Article horned beetle; resource allocation; sexual selection; trade-off; weapon HORNED FLOUR BEETLE; ANTAGONISTIC COEVOLUTION; GNATOCERUS-CORNUTUS; TRADE-OFFS; LIBRODOR-JAPONICUS; ONTHOPHAGUS-TAURUS; GENETIC QUALITY; DUNG BEETLE; BODY PARTS; COSTS Exaggerated traits can be costly and are often trade-off against other characters, such as life-history traits. Thus, the evolution of an exaggerated trait is predicted to affect male life-history strategies. However, there has been very little experimental evidence of the impact of the evolution of sexually selected traits on life-history traits. This study investigated whether increased investment in exaggerated traits can generate evolutionary changes in the life-history strategy for armed males. Male flour beetles, Gnatocerus cornutus, have enlarged mandibles that are used in male-male competition, but females lack this character exaggeration completely. We subjected these weapons to 11 generations of bidirectional selection and found a correlated response in pupal survival but not in larval survival or adult longevity in the male. That is, selecting for male mandibles negatively impacted survival during the production of mandibles. There is no correlated response in the life-history traits of the female. [Okada, K.; Katsuki, M.; Okada, Y.; Miyatake, T.] Okayama Univ, Lab Evolutionary Ecol, Grad Sch Environm Sci, Okayama 7008530, Japan Okada, K (reprint author), Okayama Univ, Lab Evolutionary Ecol, Grad Sch Environm Sci, Tsushima Naka 111, Okayama 7008530, Japan. okaken@cc.okayama-u.ac.jp Miyatake, Takahisa/B-1570-2011; Miyatake, Takahisa/B-6580-2017 Miyatake, Takahisa/0000-0002-5476-0676 Japanese Ministry of Education, Science, Sports and Culture [21870025] We thank Dr Rhonda R. Snook and the anonymous referees for helpful comments on the manuscript. This study was supported by a Grant-in-Aid for Scientific Research (KAKENHI 21870025) to K.O. from the Japanese Ministry of Education, Science, Sports and Culture. Andersson M., 1994, SEXUAL SELECTION; ARNQVIST G, 1994, AM NAT, V144, P119, DOI 10.1086/285664; Brooks R, 2000, NATURE, V406, P67, DOI 10.1038/35017552; Cotter SC, 2008, BEHAV ECOL, V19, P331, DOI 10.1093/beheco/arm137; COWLEY DE, 1990, AM NAT, V135, P242, DOI 10.1086/285041; Eberhard W.G., 1979, P231; Emlen DJ, 2001, SCIENCE, V291, P1534, DOI 10.1126/science.1056607; Grafen A., 2002, MODERN STAT LIFE SCI; Holland B, 1999, P NATL ACAD SCI USA, V96, P5083, DOI 10.1073/pnas.96.9.5083; Hosken DJ, 2001, CURR BIOL, V11, P489, DOI 10.1016/S0960-9822(01)00146-4; House CM, 2011, EVOL ECOL, V25, P363, DOI 10.1007/s10682-010-9423-0; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Hunt J, 1997, BEHAV ECOL SOCIOBIOL, V41, P109, DOI 10.1007/s002650050370; KAWANO K, 1995, ANN ENTOMOL SOC AM, V88, P92, DOI 10.1093/aesa/88.1.92; Kotiaho JS, 2000, BEHAV ECOL SOCIOBIOL, V48, P188, DOI 10.1007/s002650000221; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Kotiaho JS, 1998, P ROY SOC B-BIOL SCI, V265, P2203, DOI 10.1098/rspb.1998.0560; Lailvaux SP, 2010, ECOLOGY, V91, P1530, DOI 10.1890/09-0963.1; Martin OY, 2003, EVOLUTION, V57, P2765; Moczek AP, 2004, AM NAT, V163, P184, DOI 10.1086/381741; Nijhout HF, 1998, P NATL ACAD SCI USA, V95, P3685, DOI 10.1073/pnas.95.7.3685; Okada K, 2008, ECOL ENTOMOL, V33, P269, DOI 10.1111/j.1365-2311.2007.00965.x; Okada K, 2007, ANIM BEHAV, V74, P749, DOI 10.1016/j.anbehav.2006.09.020; Okada K, 2010, EVOL ECOL, V24, P1339, DOI 10.1007/s10682-010-9370-9; Okada K, 2010, BEHAV ECOL SOCIOBIOL, V64, P361, DOI 10.1007/s00265-009-0852-0; Okada K, 2009, ANIM BEHAV, V77, P1057, DOI 10.1016/j.anbehav.2009.01.008; Parzer HF, 2008, EVOLUTION, V62, P2423, DOI 10.1111/j.1558-5646.2008.00448.x; PRESTWICH KN, 1994, AM ZOOL, V34, P625; Rice WR, 2005, EVOLUTION, V59, P682; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Roff D. A, 1997, EVOLUTIONARY QUANTIT; ROFF DA, 2002, LIFE HIST EVOLUTION; RYAN MJ, 1988, AM ZOOL, V28, P885; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; SAS Institute, 2007, JMP REL 7; Shingleton AW, 2007, BIOESSAYS, V29, P536, DOI 10.1002/bies.20584; Shuster S. M., 2003, MATING SYSTEM STRATE; Simmons LW, 2007, EVOLUTION, V61, P2684, DOI 10.1111/j.1558-5646.2007.00243.x; Simmons LW, 2006, P NATL ACAD SCI USA, V103, P16346, DOI 10.1073/pnas.0603474103; Tomkins JL, 2005, P ROY SOC B-BIOL SCI, V272, P543, DOI 10.1098/rspb.2004.2950; Tomkins JL, 2004, TRENDS ECOL EVOL, V19, P323, DOI 10.1016/j.tree.2004.03.029; TSUDA Y, 1984, APPL ENTOMOL ZOOL, V19, P129, DOI 10.1303/aez.19.129; Yamane T, 2010, P ROY SOC B-BIOL SCI, V277, P1705, DOI 10.1098/rspb.2009.2017 43 9 9 0 6 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. AUG 2011 24 8 1737 1743 10.1111/j.1420-9101.2011.02303.x 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WN WOS:000292699200011 21615586 Bronze 2019-02-21 J Montana, CG; Choudhary, SK; Dey, S; Winemiller, KO Montana, C. G.; Choudhary, S. K.; Dey, S.; Winemiller, K. O. Compositional trends of fisheries in the River Ganges, India FISHERIES MANAGEMENT AND ECOLOGY English Article assemblage structure; fish community; flood pulse; floodplain; life-history strategy LIFE-HISTORY STRATEGIES; FLOODPLAIN FISHERIES; POPULATION REGULATION; TROPICAL FLOODPLAIN; COMMUNITY STRUCTURE; FISH ASSEMBLAGE; AMERICAN FISHES; PARANA RIVER; PATTERNS; BANGLADESH Monthly surveys of local fisheries from five principal landing sites on the River Ganges at Bhagalpur, India, were conducted from 2001 to 2007. Fishes of a range of sizes with mostly periodic-type life-history strategies, including many catfishes and carps, dominated the catch. Average annual yield (total mean monthly catch in units of biomass) was highly variable but trended downward during the study. Statistical ordination revealed associations between assemblage composition and hydrological seasons. Overall yields in this reach of the River Ganges tended to be greatest when the annual flood pulse was sustained longer. Patterns of average stock yields and inter-annual variability of yields were associated with species life-history strategies, with the most abundant and least variable species having periodic-type strategies of seasonal spawning, high fecundity, small eggs and no parental care. Although not appearing to have declined precipitously during the study, many stocks in this stretch of the River Ganges, including those of the largest and most valuable species, nonetheless seemed to remain below historical yield levels because of multiple impacts, including chronic intense fishing and other anthropogenic impacts. [Montana, C. G.; Winemiller, K. O.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, Sect Ecol Evolut & Systemat Biol, College Stn, TX 77843 USA; [Choudhary, S. K.; Dey, S.] TM Bhagalpur Univ, Vikramshila Biodivers Res & Educ Ctr, Bhagalpur, Bihar, India Winemiller, KO (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci, Sect Ecol Evolut & Systemat Biol, College Stn, TX 77843 USA. k-winemiller@tamu.edu Montana, Carmen/H-1387-2012 Winemiller, Kirk/0000-0003-0236-5129 Whale and Dolphin Conservation Society, UK; US Fulbright Program for International Exchange of Scholars The authors thank the Whale and Dolphin Conservation Society, UK, for funding the field work, and the Centre for Wildlife Studies and National Centre for Biological Sciences, Bangalore, provided institutional support. Our collaboration was supported by a fellowship to SKC from the US Fulbright Program for International Exchange of Scholars. ADAMS PB, 1980, FISH B-NOAA, V78, P1; AGNIHOTRI NP, 1994, ENVIRON MONIT ASSESS, V30, P105, DOI 10.1007/BF00545617; AGOSTINHO AA, 1995, HYDROBIOLOGIA, V303, P141, DOI 10.1007/BF00034051; Agostinho Angelo Antonio, 2003, P19; APHA, 1998, STAND METH EX WAT WA; ARTHINGTON AH, 2003, P 2 INT S MAN LARG R, V1, P21; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; BAYLEY PB, 1988, ENVIRON BIOL FISH, V21, P127, DOI 10.1007/BF00004848; Choudhary SK, 2006, ORYX, V40, P189, DOI 10.1017/S0030605306000664; CHRISTENSEN MS, 1993, J APPL ICHTHYOL, V9, P202, DOI 10.1111/j.1439-0426.1993.tb00396.x; CLARKE KR, 1994, MAR BIOL, V118, P167, DOI 10.1007/BF00699231; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Craig JF, 2004, FISH RES, V66, P271, DOI 10.1016/S0165-7836(03)00196-6; De Graaf G, 2003, FISHERIES MANAG ECOL, V10, P191, DOI 10.1046/j.1365-2400.2003.00339.x; DOKULIL MT, 1994, HYDROBIOLOGIA, V289, P65, DOI 10.1007/BF00007409; FAITH DP, 1989, BIOL CONSERV, V50, P77, DOI 10.1016/0006-3207(89)90006-2; FIELD JG, 1982, MAR ECOL PROG SER, V8, P37, DOI 10.3354/meps008037; Giri SS, 2002, AQUACULTURE, V213, P151, DOI 10.1016/S0044-8486(02)00012-1; GROSSMAN GD, 1990, ENVIRON MANAGE, V14, P661, DOI 10.1007/BF02394716; Halls AS, 1999, FISHERIES MANAG ECOL, V6, P261, DOI 10.1111/j.1365-2400.1999.tb00080.x; Halls AS, 1998, J FISH BIOL, V53, P358, DOI 10.1006/jfbi.1998.0827; Islam MS, 2006, AQUAT ECOL, V40, P263, DOI 10.1007/s10452-005-9023-1; Jayaram KC, 1999, FRESHWATER FISHES IN; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; Jhingran V. G., 1991, FISH FISHERIES INDIA; JHINGRAN VG, 1978, AQUACULTURE, V14, P141; Neiff JJ, 2009, NEOTROP ICHTHYOL, V7, P39, DOI 10.1590/S1679-62252009000100006; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Junk WJ., 1997, ECOL STUD, V126, P525; Kelkar N, 2010, CONSERV BIOL, V24, P1130, DOI 10.1111/j.1523-1739.2010.01467.x; KHANNA DR, 1993, ECOLOGY POLLUTION GA, P8; Kurup B. M., 1992, P NAT SEM END FISH I, P121; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; McCune B, 2002, ANAL ECOLOGICAL COMM; McCune B, 1999, PC ORD MULTIVARIATE; Mukherjee D., 1993, Environmentalist, V13, P199, DOI 10.1007/BF01901382; Payne A. I., 2004, P 2 INT S MAN LARG R, VI, P229; PAYNE AL, 1996, R5485 DFID MRAG LTD; Petrere Jr M, 2005, REV FISH BIOL FISHER, V14, P403, DOI [10.1007/s11160-004-8362-7, DOI 10.1007/S11160-004-8362-7]; RAHMAN MJ, 2001, THESIS U HULL BANGLA; Raj N, 2009, CURR SCI INDIA, V96, P245; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Singh I. B, 2007, LARGE RIVERS GEOMORP, P347, DOI DOI 10.1002/9780470723722; Sinha M., 2001, Aquatic Ecosystem Health & Management, V4, P493, DOI 10.1080/146349801317276143; SRIVASTAVA G, 1994, FISHES U P BIHAR VAR; Talwar PK, 1991, INLAND FISHES INDIA, V1-2; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Temple S.A., 1995, GANGES BASIN OVERVIE; TRIVEDY RK, 1986, CHEM BIOL METHODS WA; Vorosmarty C.J., 1998, RIVER DISCHARGE DATA; Welcomme R.L., 1975, 3 FAO CIFA, V3; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; Welcomme Robin, 2008, Ecohydrology & Hydrobiology, V8, P169, DOI 10.2478/v10104-009-0013-0; WILDE SA, 1972, SOIL PLANT ANAL TREE; Winemiller K. O., 2005, P 2 INT S MAN LARG R, V2, P285; Winemiller Kirk O., 1996, P298; Winemiller Kirk O., 1996, P99, DOI 10.1016/B978-012178075-3/50006-4; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Winemiller KO, 1998, J FISH BIOL, V53, P267, DOI 10.1006/jfbi.1998.0832; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 62 8 10 0 6 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0969-997X FISHERIES MANAG ECOL Fisheries Manag. Ecol. AUG 2011 18 4 282 296 10.1111/j.1365-2400.2010.00782.x 15 Fisheries Fisheries 786WC WOS:000292337600003 2019-02-21 J Pires, MN; Bassar, RD; McBride, KE; Regus, JU; Garland, T; Reznick, DN Pires, Marcelo N.; Bassar, Ronald D.; McBride, Kevin E.; Regus, John U.; Garland, Theodore, Jr.; Reznick, David N. Why do placentas evolve? An evaluation of the life-history facilitation hypothesis in the fish genus Poeciliopsis FUNCTIONAL ECOLOGY English Article adaptation; life-history evolution; maternal effect; phenotypic plasticity; predation; reproductive strategies; placenta; placentation HETERANDRIA-FORMOSA; LIVEBEARING FISH; PARENTAL CARE; LIVE-BEARING; POPULATION DIFFERENCES; PHENOTYPIC PLASTICITY; VIVIPAROUS COCKROACH; FOLLICULAR PLACENTA; FETAL MEMBRANES; TELEOST FISHES 1. The Northern Clade of the fish genus Poeciliopsis includes six closely related species, three of which lack placentas and three that have placentas but vary in the extent of post-fertilization provisioning. 2. We used this diversity to evaluate a series of hypotheses proposed in earlier publications concerning why the placenta has evolved. All hypotheses share the attribute of arguing that the placenta evolved to enhance the evolution of some other life-history trait, such as to reduce the age at maturation or to increase offspring size. We refer to these hypotheses collectively as 'life-history facilitation hypotheses'. 3. A general way to evaluate the plausibility of such proposals is to ask whether the evolution of the placenta is predictably associated with the evolution of other components of the life history. 4. We evaluated such associations in two ways. First, we performed a multivariate analysis of life-history data for fish collected and preserved in nature. This analysis included 16 populations across all six species. Secondly, we performed a more complete quantification of the life histories of the laboratory descendents from five populations representing four species, then performed a similar multivariate analysis. The laboratory study added information about the timing of reproduction ( age at maturity, frequency of reproduction). 5. Both analyses yielded similar results, which were that the evolution of increased placentation is correlated with the evolution of a smaller size at first reproduction, the production of fewer and smaller offspring per litter, but an increase in the number of litters that were developing simultaneously in the ovary ( superfetation). Increased placentation is associated with progressively earlier ages at maturation and shorter intervals between the birth of successive litters of offspring. Overall, increased placentation was associated with an increase in the rate of production of offspring early in life. A peculiar attribute of placentation is that this increase in the rate of offspring production can be attained despite a simultaneous reduction in the proportional quantity of resources devoted to reproduction. 6. These trends support one of the life history facilitation hypotheses, which is that placentation facilitates earlier maturity and a higher rate of reproduction early in life. They also suggest a possible connection between the evolution of the placenta and the well-established theory of life-history evolution, since these same life history attributes are predicted to evolve in response to exposure to high extrinsic rates of adult mortality. [Pires, Marcelo N.; Bassar, Ronald D.; McBride, Kevin E.; Regus, John U.; Garland, Theodore, Jr.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Pires, MN (reprint author), Univ Calif Riverside, Dept Biol, 900 Univ Ave, Riverside, CA 92521 USA. marcelo.pires@email.ucr.edu reznick, david/0000-0002-1144-0568 National Science Foundation (US) [DEB-0416085] We are very grateful to Yuridia Reynoso, who performed or oversaw all of the dissections used to characterize the life histories plus managed all of the data. Doug Nelson, from the University of Michigan Museum of Zoology and Bob Vrijenhoek generously gave us access to their collections of wild-caught fishes for use in dissection and life-history characterization. Mariana Mateos arranged for permits to work and collect in Mexico and was our guide for both of our field expeditions. This work was supported by grant DEB-0416085 from the National Science Foundation (US). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Arias AL, 2000, COPEIA, P792, DOI 10.1643/0045-8511(2000)000[0792:LHOPCA]2.0.CO;2; BAUR B, 1994, EXPERIENTIA, V50, P5, DOI 10.1007/BF01992042; Belk MC, 1998, OECOLOGIA, V113, P203, DOI 10.1007/s004420050369; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; CONSTANTZ GD, 1980, COPEIA, P876, DOI 10.2307/1444470; CONSTANTZ GD, 1979, OECOLOGIA, V40, P189, DOI 10.1007/BF00347936; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Farley RD, 1998, J MORPHOL, V237, P187, DOI 10.1002/(SICI)1097-4687(199809)237:3<187::AID-JMOR1>3.0.CO;2-X; Flemming AF, 2003, J EXP ZOOL PART A, V299A, P33, DOI 10.1002/jez.a.10289; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARLAND T, 1991, ANNU REV ECOL SYST, V22, P193, DOI 10.1146/annurev.es.22.110191.001205; Gasser M, 2000, EVOLUTION, V54, P1260; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Glazier DS, 1999, ARCH HYDROBIOL, V146, P257; Greven H, 1998, J EXP ZOOL, V282, P507; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; GROVE BD, 1994, J MORPHOL, V220, P167, DOI 10.1002/jmor.1052200206; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HAYNES JL, 1995, COPEIA, P147; Holbrook GL, 2004, P NATL ACAD SCI USA, V101, P5595, DOI 10.1073/pnas.0400209101; HUEBNER E, 1994, TISSUE CELL, V26, P867, DOI 10.1016/0040-8166(94)90037-X; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Jennions MD, 2006, ENVIRON BIOL FISH, V76, P211, DOI 10.1007/s10641-006-9022-7; Johnson JB, 2001, EVOLUTION, V55, P1486; Korniushin AV, 2003, ACTA ZOOL-STOCKHOLM, V84, P293, DOI 10.1046/j.1463-6395.2003.00150.x; Korsgaard B., 1989, Advances in Comparative and Environmental Physiology, V5, P209; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; Lombardi J, 1996, AM ZOOL, V36, P106; LUNING J, 1992, OECOLOGIA, V92, P383, DOI 10.1007/BF00317464; Makioka T., 1968, Science Reports Tokyo Kyoiku Daigaku, V13B, P207; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; Mateos M, 2005, J BIOGEOGR, V32, P775, DOI 10.1111/j.1365-2699.2005.01236.x; Mateos M, 2002, EVOLUTION, V56, P972; Meier R, 1999, BIOL REV, V74, P199, DOI 10.1017/S0006323199005320; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Mossman HW, 1937, CONTRIB EMBRYOL, V26, P133; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Paulesu L, 2005, DEV COMP IMMUNOL, V29, P409, DOI 10.1016/j.dci.2004.09.007; Pijanowska J, 2006, ARCH HYDROBIOL, V167, P37, DOI 10.1127/0003-9136/2006/0167-0037; Pires MN, 2007, J EXP ZOOL PART A, V307A, P113, DOI 10.1002/jez.a.356; Reynolds JD, 2002, PHILOS T R SOC B, V357, P269, DOI 10.1098/rstb.2001.0930; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; Reznick D.N., 1980, THESIS U PENNSYLVANI; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, EVOLUTION, V61, P2570, DOI 10.1111/j.1558-5646.2007.00207.x; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; ROSE MR, 1983, AM ZOOL, V23, P15; Schrader M, 2005, COPEIA, P649; SCRIMSHAW NS, 1944, COPEIA, P180; SMITH C, 1995, REV FISH BIOL FISHER, V5, P7, DOI 10.1007/BF01103363; Sparkes TC, 1996, BEHAV ECOL SOCIOBIOL, V39, P411, DOI 10.1007/s002650050308; Stearns S, 1992, EVOLUTION LIFE HIST; Stewart JR, 2003, J EXP ZOOL PART A, V299A, P13, DOI 10.1002/jez.a.10288; Swain R, 2000, COMP BIOCHEM PHYS A, V127, P441, DOI 10.1016/S1095-6433(00)00275-0; Tavolga William N., 1947, ZOOLOGICA [NEW YORK], V32, P1; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Thompson MB, 2006, J COMP PHYSIOL B, V176, P179, DOI 10.1007/s00360-005-0048-5; Trexler J.C., 1989, P201; Trexler JC, 1997, ECOLOGY, V78, P1370; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Turner CL, 1947, SCI MON, V65, P508; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Turner CL, 1940, J MORPHOL, V67, P59, DOI 10.1002/jmor.1050670103; Turner CL, 1939, SCIENCE, V90, P42, DOI 10.1126/science.90.2324.42; VITT LJ, 1983, CAN J ZOOL, V61, P2798, DOI 10.1139/z83-367; VITT LJ, 1991, COPEIA, P916, DOI 10.2307/1446087; Von Rintelen T, 2005, BIOL J LINN SOC, V85, P513, DOI 10.1111/j.1095-8312.2005.00515.x; Vrcibradic D, 1998, COPEIA, P612, DOI 10.2307/1447791; WAKE MH, 1993, J EXP ZOOL, V266, P394, DOI 10.1002/jez.1402660507; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; Warburg MR, 1996, INVERTEBR REPROD DEV, V29, P213, DOI 10.1080/07924259.1996.9672515; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Williford A, 2004, EVOL DEV, V6, P67, DOI 10.1111/j.1525-142X.2004.04012.x; WOOLLACOTT RM, 1975, J MORPHOL, V147, P355, DOI 10.1002/jmor.1051470308; Wourms J.P., 1988, P1; WOURMS JP, 1992, AM ZOOL, V32, P276; WOURMS JP, 1993, ENVIRON BIOL FISH, V38, P269, DOI 10.1007/BF00842922 91 16 16 0 40 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2011 25 4 757 768 10.1111/j.1365-2435.2011.01842.x 12 Ecology Environmental Sciences & Ecology 786TE WOS:000292330000004 2019-02-21 J Cooper, CB; Voss, MA; Ardia, DR; Austin, SH; Robinson, WD Cooper, Caren B.; Voss, Margaret A.; Ardia, Daniel R.; Austin, Suzanne H.; Robinson, W. Douglas Light increases the rate of embryonic development: implications for latitudinal trends in incubation period FUNCTIONAL ECOLOGY English Article avian incubation period; embryonic metabolic rate; house sparrow; life-history evolution; Passer domesticus; photoacceleration; photocycles; photoperiod LIFE-HISTORY; CHICK-EMBRYO; CIRCADIAN-RHYTHMS; PLASMA MELATONIN; GENE-EXPRESSION; EGG TEMPERATURE; SURVIVAL RATES; TROPICAL BIRDS; TREE SWALLOWS; GROWTH 1. In wild birds, incubation period shortens and the general pace of life quickens with distance from the equator. Temperature and various biotic factors, including adult behaviours, cannot fully account for longer incubation periods of equatorial birds and only explain some of the variation between tropical and temperate life histories. Here we consider the role of differences in light in driving variation in incubation period. In poultry, incubation periods can be experimentally shortened by exposing eggs to light. The positive influence of light on embryonic growth, called photoacceleration, can begin within hours after an egg is laid. 2. We artificially incubated house sparrow (Passer domesticus) eggs under photoperiods similar to those found at temperate (18Light : 6Dark) and tropical (12L : 12D) latitudes. We also measured embryonic metabolic rate during light and dark phases. 3. Eggs of house sparrows collected from the wild developed more rapidly under 'temperate' than 'tropical' photoperiods and had higher metabolic rates during phases of light exposure than during phases of darkness. Metabolic rates during light phases were high enough to account for a 1 day difference in incubation periods between temperate and tropical birds. 4. Based on a synthesis of photoacceleration studies on domesticated galliformes and our experimental results on a wild passerine, we provide the first support for the testable hypothesis that differences in photoperiod may influence variation in the rate of embryonic development across latitudes in birds. [Cooper, Caren B.] Cornell Univ, Cornell Lab Ornithol, Ithaca, NY 14850 USA; [Voss, Margaret A.] Penn State Univ, Sch Sci, Behrend Coll, Erie, PA 16563 USA; [Ardia, Daniel R.] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA; [Austin, Suzanne H.; Robinson, W. Douglas] Oregon State Univ, Oak Creek Lab Biol, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Cooper, CB (reprint author), Cornell Univ, Cornell Lab Ornithol, 159 Sapsucker Woods Rd, Ithaca, NY 14850 USA. caren.cooper@cornell.edu Voss, Margaret/H-6720-2016 Voss, Margaret/0000-0002-7969-4871 U. S. National Science Foundation IRCEB [0212587] We received support from the U. S. National Science Foundation IRCEB (grant 0212587 to WDR). AKASAKA K, 1995, BRAIN RES, V692, P283, DOI 10.1016/0006-8993(95)00643-5; Ardia DR, 2010, P ROY SOC B-BIOL SCI, V277, P1881, DOI 10.1098/rspb.2009.2138; Ardia DR, 2009, J ANIM ECOL, V78, P4, DOI 10.1111/j.1365-2656.2008.01453.x; Bacon W. L., 1984, Poultry Digest, V43, P114; Blount JD, 2006, IBIS, V148, P509, DOI 10.1111/j.1474-919X.2006.00554.x; Brawn JD, 1999, P INT ORN C, V22, P297; CAREY C, 1982, AUK, V99, P710; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; DAAN S, 1975, OECOLOGIA, V18, P269, DOI 10.1007/BF00345851; Dawson A, 2002, J BIOL RHYTHM, V17, P259, DOI 10.1177/07430402017003009; Dawson A, 2001, J BIOL RHYTHM, V16, P365, DOI 10.1177/074873001129002079; Ghatpande A, 1995, CELL MOL BIOL RES, V41, P613; GIMENO MA, 1967, NATURE, V214, P1014, DOI 10.1038/2141014a0; Gwinner E, 1997, J PINEAL RES, V23, P176, DOI 10.1111/j.1600-079X.1997.tb00352.x; Halevy O, 2006, AM J PHYSIOL-REG I, V290, pR1062, DOI 10.1152/ajpregu.00378.2005; Hill WL, 2004, DEV PSYCHOBIOL, V45, P174, DOI 10.1002/dev.20021; Isakson S., 1970, COMP BIOCH PHYSL, V55, P229; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Karu T. I., 1988, Lasers in the Life Sciences, V2, P53; KING JR, 1981, CONDOR, V83, P362, DOI 10.2307/1367507; KUEHLER CM, 1993, WILDLIFE SOC B, V21, P165; Kuo ZY, 1932, PSYCHOL REV, V39, P499, DOI 10.1037/h0075984; Lack D, 1968, ECOLOGICAL ADAPTATIO; LACK D, 1965, OISEAU 35 SPECIAL, P76; LAUBER JK, 1975, COMP BIOCHEM PHYS A, V51, P903, DOI 10.1016/0300-9629(75)90073-0; LOWTHER PE, 2006, BIRDS N AM ONLINE; LYNCH HJ, 1984, LIFE SCI, V35, P841, DOI 10.1016/0024-3205(84)90409-0; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; MEAD PS, 1985, AUK, V102, P781; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Moriya K, 1999, COMP BIOCHEM PHYS A, V124, P461, DOI 10.1016/S1095-6433(99)00138-5; Morton M.L., 1976, P 16 INT ORN C CANB, P322; Nakao N, 2007, ENDOCRINOLOGY, V148, P3031, DOI 10.1210/en.2007-0044; Nichelmann M, 2004, J THERM BIOL, V29, P613, DOI 10.1016/j.therbio.2004.08.032; Nichelmann M, 1999, COMP BIOCHEM PHYS A, V124, P429, DOI 10.1016/S1095-6433(99)00135-X; Okabayashi N, 2003, BRAIN RES, V990, P231, DOI 10.1016/S0006-8993(03)03531-5; PREDA V, 1962, ACAD REPUBLICII POPU, V12, P235; PRINZINGER R, 1992, NATURWISSENSCHAFTEN, V79, P278, DOI 10.1007/BF01175397; RAHN H, 1989, J ORNITHOL, V130, P59, DOI 10.1007/BF01647162; RICKLEFS R E, 1969, Living Bird, V8, P165; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1976, IBIS, V118, P176, DOI DOI 10.1111/J.1474-919X.1976.TB03065.X; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; Romanoff A. L., 1949, AVIAN EGG; ROMANOFF AL, 1967, BIOCH AVIAN EMBRYO Q; Rompre Ghislain, 2008, Ecotropica-Bonn, V14, P81; ROWLAND KW, 1985, WORLD POULTRY SCI, V1, P5; Rozenboim I, 2004, POULTRY SCI, V83, P1413, DOI 10.1093/ps/83.8.1413; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; Shafey T. M., 2004, International Journal of Poultry Science, V3, P228; Shafey TM, 2004, BRIT POULTRY SCI, V45, P223, DOI 10.1080/00071660410001715821; SHUTZE JV, 1962, NATURE, V4854, P594; SIEGEL PB, 1969, COMP BIOCHEM PHYSIOL, V28, P753, DOI 10.1016/0010-406X(69)92108-2; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1985, NEOTROPICAL ORNITHOL, V36, P575; SLAUGH BT, 1988, THERIOGENOLOGY, V30, P291, DOI 10.1016/0093-691X(88)90178-1; Styrsky JD, 2004, ANIM BEHAV, V67, P1141, DOI 10.1016/j.anbehav.2003.07.012; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; Wai MSM, 2006, MICROSC RES TECHNIQ, V69, P99, DOI 10.1002/jemt.20279; WALTER JH, 1973, BRIT POULTRY SCI, V14, P533, DOI 10.1080/00071667308416062; WALTER JH, 1972, POULTRY SCI, V51, P1122, DOI 10.3382/ps.0511122; Wetherbee D. K., 1961, Bird-Banding, V32, P141, DOI 10.2307/4510881; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2008, PHILOS T R SOC B, V363, P411, DOI 10.1098/rstb.2007.2147; Zeman M, 1999, J PINEAL RES, V26, P28, DOI 10.1111/j.1600-079X.1999.tb00563.x 69 22 23 0 49 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2011 25 4 769 776 10.1111/j.1365-2435.2011.01847.x 8 Ecology Environmental Sciences & Ecology 786TE WOS:000292330000005 Bronze 2019-02-21 J Verrier, D; Guinet, C; Authier, M; Tremblay, Y; Shaffer, S; Costa, DP; Groscolas, R; Arnould, JPY Verrier, Delphine; Guinet, Christophe; Authier, Matthieu; Tremblay, Yann; Shaffer, Scott; Costa, Daniel P.; Groscolas, Rene; Arnould, John P. Y. The ontogeny of diving abilities in subantarctic fur seal pups: developmental trade-off in response to extreme fasting? FUNCTIONAL ECOLOGY English Article aerobic dive limit; behavioural plasticity; diving behaviour; diving physiology; growth strategy; myoglobin; oxygen stores; weaning BODY OXYGEN STORES; LIONS EUMETOPIAS-JUBATUS; PUSILLUS-DORIFERUS PUPS; AEROBIC DIVE LIMIT; AMSTERDAM ISLAND; POSTFLEDGING SURVIVAL; ARCTOCEPHALUS-GAZELLA; FORAGING BEHAVIOR; SKELETAL-MUSCLES; WEDDELL SEALS 1. A major hypothesis of life-history theory is that conditions of early development affect future survival and reproductive success. Responses to detrimental environments during early ontogeny may involve trade-offs between current and future fitness. Yet, the functional mechanisms involved in such evolutionary trade-offs remain poorly documented. 2. The physiological and behavioural ontogeny of diving abilities was examined in subantarctic fur seal (Arctocephalus tropicalis Gray) pups to assess whether the repeated extreme fasts they naturally endure throughout the period of maternal dependence impacts on their development. 3. The ontogeny of pup body oxygen storage capacity was slow, in particular for the muscle compartment, which shows limited increase in myoglobin content (0.23-0.85 g 100 g wet muscle(-1)). As a consequence, by the time of weaning, mass-specific oxygen stores had only reached 76%, 24% and 61% of adult female capacity for blood, muscle and total, respectively. Concomitantly, in marked contrast to other pinniped infants, they spent decreasing amounts of time in water (16-7%) with age and exhibited very little diving experience and skills. 4. Overall, in addition to experiencing the longest fasting durations throughout the maternal dependence period, subantarctic fur seal pups demonstrate the lowest levels of mass-specific total oxygen stores and maximum dive duration of any otariid near the age of weaning reported to date. 5. Furthermore, dives that exceeded the calculated aerobic dive limit occurred with a very low frequency (0.04%), suggesting that behavioural limitations linked to the necessity to conserve energy to survive repeated fasting, rather than restricted oxygen storage capacity, constrained pup diving behaviour. 6. Hence, these animals appear to trade-off the early development of both their physiological and behavioural diving abilities in favour of body fat accumulation to survive the prolonged fasts they must endure and, potentially, provide a nutritional buffer while they locate appropriate food patches after weaning. While promoting pre-weaning survival, this strategy renders pups more vulnerable to unpredictable changes in environmental conditions and food availability at the transition to independent foraging and, thus, could have negative impact on post-weaning survival. [Verrier, Delphine] Univ Melbourne, Dept Zool, Parkville, Vic 3010, Australia; [Verrier, Delphine; Groscolas, Rene] UMR 7178 CNRS UdS, Dept Ecol Physiol & Ethol, Inst Pluridisciplinaire Hubert Curien, F-67087 Strasbourg 2, France; [Guinet, Christophe; Authier, Matthieu] UPR 1934 CNRS, Ctr Etud Biol Chize, F-79360 Villiers En Bois, France; [Tremblay, Yann; Shaffer, Scott; Costa, Daniel P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Inst Marine Sci, Long Marine Lab, Santa Cruz, CA 95060 USA; [Shaffer, Scott] San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA; [Arnould, John P. Y.] Deakin Univ, Sch Life & Environm Sci, Burwood, Vic 3125, Australia Verrier, D (reprint author), Ctr Int Rech Med Franceville, Ctr Primatol, BP 769, Franceville, Gabon. ddlafouine@free.fr Shaffer, Scott/D-5015-2009 Shaffer, Scott/0000-0002-7751-5059; Costa, Daniel/0000-0002-0233-5782 French Polar Institute (IPEV) [119/109]; Sea World Research and Rescue Foundation; Terres Australes et Antarctiques Francaises; University of Melbourne, Australia The present research (project no. 119/109) was performed at Martin de Vivies station and supported by the French Polar Institute (IPEV). Financial and logistical support was also provided by Sea World Research and Rescue Foundation and Terres Australes et Antarctiques Francaises. D.V. was the recipient of an International Postgraduate Research Scholarship and Melbourne International Research Scholarship awarded by the University of Melbourne, Australia. We would like to thank Alan-Brice Rousset, Gwenn Le Corgne, Alexandre Allag, Bruno Dauteloup and Tanguy Deville for their help in the field. The technical assistance of Mike Weise and Stella Villegas in the laboratory was also much appreciated. Arnould JPY, 2003, J EXP BIOL, V206, P4497, DOI 10.1242/jeb.00703; Arnould JPY, 2002, J ZOOL, V256, P351, DOI 10.1017/S0952836902000389; Baker JD, 2000, CAN J ZOOL, V78, P100, DOI 10.1139/cjz-78-1-100; Baylis AMM, 2005, CAN J ZOOL, V83, P1149, DOI 10.1139/Z05-097; Beauplet G, 2005, J ANIM ECOL, V74, P1160, DOI 10.1111/j.1365-2656.2005.01016.x; Beauplet G, 2004, MAR ECOL PROG SER, V273, P211, DOI 10.3354/meps273211; Blas J, 2007, P NATL ACAD SCI USA, V104, P8880, DOI 10.1073/pnas.0700232104; BONNER WN, 1984, S ZOOL SOC LONDON, V51, P253; Burns JM, 2007, J COMP PHYSIOL B, V177, P687, DOI 10.1007/s00360-007-0167-2; Burns JM, 1996, J COMP PHYSIOL B, V166, P473, DOI 10.1007/BF02338290; Burns JM, 2005, PHYSIOL BIOCHEM ZOOL, V78, P1057, DOI 10.1086/432922; Burns JM, 1999, CAN J ZOOL, V77, P737, DOI 10.1139/cjz-77-5-737; BUTLER H, 2006, COMP BIOCH PHYSL A, V145, P1; Caley MJ, 1996, ANNU REV ECOL SYST, V27, P477, DOI 10.1146/annurev.ecolsys.27.1.477; CASTELLINI MA, 1981, J COMP PHYSIOL, V143, P191; CLOSE RI, 1972, PHYSIOL REV, V52, P129; Costa DP, 2007, AQUAT CONSERV, V17, pS44, DOI 10.1002/aqc.917; Costa DP, 1998, PHYSIOL ZOOL, V71, P208, DOI 10.1086/515911; Costa DP, 2004, ANNU REV PHYSIOL, V66, P209, DOI 10.1146/annurev.physiol.66.032102.114245; Costa DP, 2001, COMP BIOCHEM PHYS A, V129, P771, DOI 10.1016/S1095-6433(01)00346-4; Davis RW, 1999, J EXP BIOL, V202, P1091; ELSAYED H, 1995, CLIN LAB HAEMATOL, V17, P189; FestaBianchet M, 1997, CAN J ZOOL, V75, P1372, DOI 10.1139/z97-763; FOLDAGER N, 1991, COMPUT BIOL MED, V21, P35, DOI 10.1016/0010-4825(91)90033-6; Fowler SL, 2007, FUNCT ECOL, V21, P922, DOI 10.1111/j.1365-2435.2007.01295.x; Fowler SL, 2006, J ANIM ECOL, V75, P358, DOI 10.1111/j.1365-2656.2006.01055.x; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Garry DJ, 1996, DEV GENET, V19, P146, DOI 10.1002/(SICI)1520-6408(1996)19:2<146::AID-DVG6>3.0.CO;2-9; GENTRY RL, 1986, FUR SEALS MATERNAL S; Georges JY, 2000, ECOLOGY, V81, P295, DOI 10.2307/177427; Georges JY, 2000, POLAR BIOL, V23, P59, DOI 10.1007/s003000050008; Guinet C, 2005, CAN J ZOOL, V83, P962, DOI 10.1139/Z05-087; Hall AJ, 2001, J ANIM ECOL, V70, P138; Hendry AP, 2007, FUNCT ECOL, V21, P455, DOI 10.1111/j.1365-2435.2007.01240.x; Horning M, 1997, MAR MAMMAL SCI, V13, P100, DOI 10.1111/j.1748-7692.1997.tb00614.x; Horning M, 1997, BEHAVIOUR, V134, P1211, DOI 10.1163/156853997X00133; *ICSH, 1978, J CLIN PATHOL, V31, P139; ILLIUS AW, 1990, J ANIM ECOL, V59, P89, DOI 10.2307/5160; Jorgensen C, 2001, J EXP BIOL, V204, P3993; Kooyman GL, 1998, ANNU REV PHYSIOL, V60, P19, DOI 10.1146/annurev.physiol.60.1.19; Le Boeuf Burney J., 1994, P121; Lestyk KC, 2009, J COMP PHYSIOL B, V179, P985, DOI 10.1007/s00360-009-0378-9; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; MARTIN P, 1984, ANIM BEHAV, V32, P1257, DOI 10.1016/S0003-3472(84)80245-6; McCafferty DJ, 1998, CAN J ZOOL, V76, P513, DOI 10.1139/cjz-76-3-513; McMahon CR, 2000, ANTARCT SCI, V12, P149; Merrick RL, 1997, CAN J ZOOL, V75, P776, DOI 10.1139/z97-099; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Noren SR, 2005, PHYSIOL BIOCHEM ZOOL, V78, P482, DOI 10.1086/430228; Noren SR, 2002, J ZOOL, V258, P105, DOI 10.1017/S0952836902001243; Noren SR, 2001, J COMP PHYSIOL B, V171, P127, DOI 10.1007/s003600000161; OHATA CA, 1977, J THERM BIOL, V2, P141, DOI 10.1016/0306-4565(77)90020-1; Olsson O, 1997, POLAR BIOL, V18, P161, DOI 10.1007/s003000050172; ONO KA, 1987, BEHAV ECOL SOCIOBIOL, V21, P109, DOI 10.1007/BF02395438; Pitcher KW, 2005, CAN J ZOOL, V83, P1214, DOI 10.1139/Z05-098; Rea LD, 2007, CAN J ZOOL, V85, P190, DOI 10.1139/Z06-204; REYNAFARJE B, 1963, J LAB CLIN MED, V61, P138; Richmond JP, 2005, GEN COMP ENDOCR, V141, P240, DOI 10.1016/j.ycgen.2005.01.004; Richmond JP, 2006, J COMP PHYSIOL B, V176, P535, DOI 10.1007/s00360-006-0076-9; Rutishauser MR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P669, DOI 10.1086/421749; Spence-Bailey LM, 2007, J COMP PHYSIOL B, V177, P483, DOI 10.1007/s00360-007-0146-7; Stearns S, 1992, EVOLUTION LIFE HIST; TERRADOS N, 1990, J APPL PHYSIOL, V68, P2369; Thorson Philip H., 1994, P271; Trillmich F, 1991, PINNIPEDS EL NINO RE; VERRIER D, 2011, FUNCTIONAL ECOLOGY, DOI DOI 10.1111/J.1365-2435.2010.01823.X; Verrier D, 2009, AM J PHYSIOL-REG I, V297, pR1582, DOI 10.1152/ajpregu.90857.2008; Wang T, 2006, ANNU REV PHYSIOL, V68, P223, DOI 10.1146/annurev.physiol.68.040104.105739; Weise MJ, 2007, J EXP BIOL, V210, P278, DOI 10.1242/jeb.02643; WESTERTERP K, 1977, PHYSIOL ZOOL, V50, P331, DOI 10.1086/physzool.50.4.30155736; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 72 18 18 1 33 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. AUG 2011 25 4 818 828 10.1111/j.1365-2435.2011.01846.x 11 Ecology Environmental Sciences & Ecology 786TE WOS:000292330000011 Bronze 2019-02-21 J Wasserman, RJ; Strydom, NA Wasserman, Ryan J.; Strydom, Nadine A. The importance of estuary head waters as nursery areas for young estuary- and marine-spawned fishes in temperate South Africa ESTUARINE COASTAL AND SHELF SCIENCE English Article ebb and flow; abstraction; impoundment; migration; fish barriers; life-history strategies; estuary dependence; olfactory cues ADJACENT COASTAL AREA; FRESH-WATER; LARGEMOUTH BASS; RIVER-ESTUARY; MICROPTERUS-SALMOIDES; COMMUNITY STRUCTURE; GUADIANA ESTUARY; SUNDAYS ESTUARY; FEEDING ECOLOGY; LARVAL The restriction of freshwater flow into estuaries, the presence of in-stream barriers and the occurrence of invasive fish species in these habitats are identified as major threats to these young estuary- and marine-spawned fish species. These aspects have been investigated using the distribution and abundance of young estuary- and marine-spawned fish species in the headwater environments of four permanently open estuaries of the Eastern Cape, South Africa. Fishes were collected twice per season over the 2009 and 2010 period, using mixed method sampling with seine net hauls and overnight fyke net deployments. Of the 74,751 fishes collected, 37,444 fishes, 18 families and 34 species were taken in fyke net catches, while 34,308 fishes, 21 families and 38 species were caught in seine nets. In the Great Fish, Kowie, Kariega and Sundays River systems, juveniles of estuarine residents dominated headwater catches, followed by juveniles of estuary-dependent marine species. The prevalence of larval and small juvenile stages of estuary- and marine-spawned fish species highlights the potential importance of these transitional areas for young fish. (C) 2011 Elsevier Ltd. All rights reserved. [Wasserman, Ryan J.; Strydom, Nadine A.] Nelson Mandela Metropolitan Univ, Dept Zool, ZA-6000 Port Elizabeth, South Africa Strydom, NA (reprint author), Nelson Mandela Metropolitan Univ, POB 77000, ZA-6031 Port Elizabeth, South Africa. nadine.strydom@nmmu.ac.za Wasserman, Ryan/D-5492-2012 National Research Foundation, South Africa This work is based on financial support from the National Research Foundation, South Africa. Gratitude is expressed to the NRF, South Africa for funding this research. Tanja van der Ven, Bevan O Reilly, Tim Vink, Tinus Sonnekus and Peter Watt-Pringle are thanked for their field assistance. Mr. Biggs, Mr. Gates, Mr. Mayor, Mr. and Mrs. Swart and Waters Meeting Reserve, Eastern Cape Parks are also thanked for permission to access sampling sites on their properties. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and therefore the NRF does not accept any liability in regard thereto. Abell R, 2007, BIOL CONSERV, V134, P48, DOI 10.1016/j.biocon.2006.08.017; Adams SB, 2001, ECOSYSTEMS, V4, P296, DOI 10.1007/s10021-001-0012-5; Araujo FG, 1999, J FISH BIOL, V55, P836, DOI 10.1111/j.1095-8649.1999.tb00721.x; Baird D, 2001, LOICZ REPORTS STUDIE; Bate G, 2002, WATER SA, V28, P271; BLABER SJM, 1981, ENVIRON BIOL FISH, V6, P351, DOI 10.1007/BF00005764; BLABER SJM, 1979, J FISH BIOL, V15, P37, DOI 10.1111/j.1095-8649.1979.tb03571.x; BLABER SJM, 1977, BIOL J LINN SOC, V9, P277, DOI 10.1111/j.1095-8312.1977.tb00270.x; BLABER SJM, 1980, J FISH BIOL, V17, P143, DOI 10.1111/j.1095-8649.1980.tb02749.x; BOK AH, 2008, 3 SUND RIV FRESHW FI; BOK AH, 2007, 28707 TT WAT RES COM; BRUTON MN, 1975, J FISH BIOL, V7, P423, DOI 10.1111/j.1095-8649.1975.tb04618.x; Bruton NM, 1987, AM FISH SOC S, V1, P104; Chicharo MA, 2006, ESTUAR COAST SHELF S, V70, P39, DOI 10.1016/j.ecss.2006.05.036; Clark DL, 2005, MAR ECOL PROG SER, V292, P287, DOI 10.3354/meps292287; Clarke K. R, 1994, CHANGE MARINE COMMUN; Dawes C.J., 1981, MARINE BOT, P306; DayJr J. W., 1989, ESTUARINE ECOLOGY; Faria A, 2006, ESTUAR COAST SHELF S, V70, P85, DOI 10.1016/j.ecss.2006.05.032; Guenther CB, 2006, T AM FISH SOC, V135, P570, DOI 10.1577/T05-031.1; Heydorn AEF, 1982, 409 CSIR; Hindell JS, 2007, J FISH BIOL, V71, P1331, DOI 10.1111/j.1095-8649.2007.01594.x; Hoeksema SD, 2006, ESTUAR COAST SHELF S, V67, P503, DOI 10.1016/j.ecss.2005.12.003; James NC, 2008, ESTUAR COAST SHELF S, V77, P143, DOI 10.1016/j.ecss.2007.09.010; Jansen Wolfgang, 1999, Limnologica, V29, P425, DOI 10.1016/S0075-9511(99)80050-4; KINGSFORD MJ, 1994, CONT SHELF RES, V14, P655, DOI 10.1016/0278-4343(94)90111-2; KOWARSKY J, 1981, AUST J MAR FRESH RES, V32, P93; Lamberth SJ, 2003, AFR J MAR SCI, V25, P131, DOI 10.2989/18142320309504005; LAURENSON LJB, 1984, THESIS RHODES U GRAH; Leis JM, 2006, MAR BIOL, V148, P655, DOI 10.1007/s00227-005-0108-0; Lubke R., 1998, FIELD GUIDE E SO CAP; Lukey JR, 2006, ESTUAR COAST SHELF S, V67, P10, DOI 10.1016/j.ecss.2005.10.021; MACKAY HM, 1990, ESTUAR COAST SHELF S, V31, P203, DOI 10.1016/0272-7714(90)90047-U; Maes J, 2005, J APPL ICHTHYOL, V21, P86, DOI 10.1111/j.1439-0426.2004.00628.x; MALLIN MA, 1993, MAR ECOL PROG SER, V93, P199, DOI 10.3354/meps093199; Mansfield S, 1998, NEW ZEAL J MAR FRESH, V32, P375, DOI 10.1080/00288330.1998.9516832; MARAIS JFK, 1980, S AFR J ZOOL, V15, P66; Masters JEG, 2006, AQUAT CONSERV, V16, P77, DOI 10.1002/aqc.686; MEADOR MR, 1989, T AM FISH SOC, V118, P409, DOI 10.1577/1548-8659(1989)118<0409:BAMOLB>2.3.CO;2; Meixler MS, 2009, ECOL MODEL, V220, P2782, DOI 10.1016/j.ecolmodel.2009.07.014; Miskiewicz A.G., 1986, P740; Montoya-Maya PH, 2009, AFR ZOOL, V44, P75, DOI 10.3377/004.044.0108; Morais P, 2010, J SEA RES, V64, P295, DOI 10.1016/j.seares.2010.04.001; Norris AJ, 2010, T AM FISH SOC, V139, P610, DOI 10.1577/T09-135.1; Pattrick P., 2007, African Journal of Aquatic Science, V32, P113, DOI 10.2989/AJAS.2007.32.2.2.199; Pech GA, 1995, 2357 DEP WAT AFF FOR; Peer AC, 2006, CAN J FISH AQUAT SCI, V63, P1911, DOI 10.1139/F06-089; Rehage JS, 2007, B MAR SCI, V80, P625; Rolls RJ, 2011, BIOL CONSERV, V144, P339, DOI 10.1016/j.biocon.2010.09.011; Simier M, 2006, ESTUAR COAST SHELF S, V69, P615, DOI 10.1016/j.ecss.2006.05.028; Skelton P. H, 1993, COMPLETE GUIDE FRESH; Sklar FH, 1998, ENVIRON MANAGE, V22, P547, DOI 10.1007/s002679900127; Smith M. M., 1995, SMITHS SEA FISHES; Snow GC, 2000, ESTUAR COAST SHELF S, V51, P255, DOI 10.1006/ecss.2000.0638; Strydom NA, 2000, WATER SA, V26, P319; Strydom NA, 2003, AFR ZOOL, V38, P29; Strydom NA, 2003, ENVIRON BIOL FISH, V66, P349, DOI 10.1023/A:1023949607821; SUTHERLAND K, 2010, THESIS N MANDELA MET; TerMorshuizen LD, 1996, T ROY SOC S AFR, V51, P257; van der Elst RP, 1975, J FISH BIOL, V9, P371; Wallace J.H., 1975, Investigational Rep oceanogr Res Inst Durban, VNo. 42, P1; WARLEN SM, 1990, ESTUARIES, V13, P453, DOI 10.2307/1351789; Wasserman RJ, 2010, AFR ZOOL, V45, P63, DOI 10.3377/004.045.0102; WATTLING RJ, 1983, WATER SA, V9, P66; Weisberg SB, 1996, ESTUARIES, V19, P723, DOI 10.2307/1352531; West RJ, 2000, FISHERIES MANAG ECOL, V7, P523, DOI 10.1046/j.1365-2400.2000.00222.x; Weyl OLF, 2006, AFR ZOOL, V41, P294, DOI 10.3377/1562-7020(2006)41[294:FROPBT]2.0.CO;2; Whitfield A. K., 2000, 577300 WAT RES COMM; WHITFIELD AK, 1985, S AFR J ZOOL, V20, P166; Whitfield AK, 1996, S AFR J MARINE SCI, V17, P49; WHITFIELD AK, 1994, S AFR J ZOOL, V29, P175; Whitfield AK, 2005, AQUAT LIVING RESOUR, V18, P275, DOI 10.1051/alr:2005032; WHITFIELD AK, 1994, S AFR J SCI, V90, P411; WHITFIELD AK, 1998, ICHTHYOLOGICAL MONOG; WOOLDRIDGE T, 1982, S AFR J ZOOL, V17, P151; Yamashita Y, 2003, J FISH BIOL, V63, P617, DOI 10.1046/j.1095-8649.2003.00175.x 76 22 22 1 30 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. JUL 30 2011 94 1 56 67 10.1016/j.ecss.2011.05.023 12 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 810TQ WOS:000294150400006 2019-02-21 J Etterson, MA; Ellis-Felege, SN; Evers, D; Gauthier, G; Grzybowski, JA; Mattsson, BJ; Nagy, LR; Olsen, BJ; Pease, CM; Post van der Burg, M; Potvien, A Etterson, Matthew A.; Ellis-Felege, Susan N.; Evers, David; Gauthier, Gilles; Grzybowski, Joseph A.; Mattsson, Brady J.; Nagy, Laura R.; Olsen, Brian J.; Pease, Craig M.; Post van der Burg, Max; Potvien, Aaron Modeling fecundity in birds: Conceptual overview, current models, and considerations for future developments ECOLOGICAL MODELLING English Article; Proceedings Paper Conference of the International-Society-for-Ecological-Modelling OCT 06-09, 2009 Quebec City, CANADA Int Soc Ecolog Modelling Birds; Seasonal fecundity; Reproductive success; Individual-based model; Markov chain; Partial differential equations LIFE-HISTORY EVOLUTION; ANNUAL REPRODUCTIVE SUCCESS; SEASONAL FECUNDITY; CLUTCH-SIZE; NEST PREDATION; BREEDING SUCCESS; WOOD THRUSH; DEMOGRAPHIC PARAMETERS; MULTIBROODED SONGBIRDS; TEMPORARY EMIGRATION Fecundity is fundamental to the fitness, population dynamics, conservation, and management of birds. For all the efforts made to measure fecundity or its surrogates over the past century of avian research, it is still mismeasured, misrepresented, and misunderstood. Fundamentally, these problems arise because of partial observability of underlying processes such as renesting, multiple brooding, and temporary emigration. Over the last several decades, various analytical approaches have been developed to estimate fecundity from incomplete and biased data. These, include scalar arithmetic formulae, partial differential equations, individual-based simulations, and Markov chain methodology. In this paper, we: (1) identify component processes of avian reproduction; (2) review existing methods for modeling fecundity; (3) place these diverse models under a common conceptual framework; (4) describe the parameterization, validation, and limitations of such models; and (5) point out future considerations and challenges in the application of fecundity models. We hope this synthesis of existing literature will help direct researchers toward the most appropriate methods to assess avian reproductive success for answering questions in evolutionary ecology, natural history, population dynamics, reproductive toxicology, and management. Published by Elsevier B.V. [Etterson, Matthew A.] US EPA, Midcontinent Ecol Div, Duluth, MN 55803 USA; [Ellis-Felege, Susan N.; Mattsson, Brady J.] Univ Georgia, Warnell Sch Forestry & Nat Resources, Athens, GA 30602 USA; [Evers, David] BioDivers Res Inst, Gorham, ME 04038 USA; [Gauthier, Gilles] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Gauthier, Gilles] Univ Laval, Ctr Etud Nord, Quebec City, PQ G1V 0A6, Canada; [Grzybowski, Joseph A.] Univ Cent Oklahoma, Coll Math & Sci, Edmond, OK USA; [Grzybowski, Joseph A.] Sam Noble Oklahoma Museum Nat Hist, Norman, OK USA; [Nagy, Laura R.] Tetra Tech EC, Portland, OR 97201 USA; [Olsen, Brian J.] Univ Maine, Climate Change Inst, Sch Biol & Ecol, Orono, ME 04469 USA; [Pease, Craig M.] Vermont Law Sch, Environm Law Ctr, S Royalton, VT 05068 USA; [Post van der Burg, Max] Auburn Univ, Sch Forestry & Wildlife Sci, Auburn, AL 36849 USA; [Potvien, Aaron] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA Etterson, MA (reprint author), US EPA, Midcontinent Ecol Div, 6201 Congdon Blvd, Duluth, MN 55803 USA. etterson.matthew@epa.gov Mattsson, Brady/K-1688-2015 Mattsson, Brady/0000-0002-3182-9538; Ellis-Felege, Susan/0000-0002-4534-0055; Post van der Burg, Max/0000-0002-3943-4194 Ackerman JT, 2003, J WILDLIFE MANAGE, V67, P576, DOI 10.2307/3802715; Anders AD, 2005, CONSERV BIOL, V19, P66, DOI 10.1111/j.1523-1739.2005.00543.x; Arcese P, 1996, P NATL ACAD SCI USA, V93, P4608, DOI 10.1073/pnas.93.10.4608; Bennett RS, 2007, INTEGR ENVIRON ASSES, V3, P498, DOI 10.1897/IEAM_2007-029.1; Brennan L. A., 1999, BIRDS N AM, V397; Brommer JE, 2002, AUK, V119, P544, DOI 10.1642/0004-8038(2002)119[0544:RASIAV]2.0.CO;2; BURGER LW, 1995, J WILDLIFE MANAGE, V59, P417, DOI 10.2307/3802447; CLARK J, 2000, DYNAMIC STATE VARIAB; CLOBERT J, 1991, BIRD POPULATION STUD, P75; COWARDIN LM, 1979, J WILDLIFE MANAGE, V43, P18, DOI 10.2307/3800632; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Crowder M. J., 2001, CLASSICAL COMPETING; CURTIS PD, 1993, QUAIL, V3, P55; DAVIES NB, 1992, DUNNOCK BEHAV SOCIAL; Dececco JA, 2000, CONDOR, V102, P653, DOI 10.1650/0010-5422(2000)102[0653:CSFOFN]2.0.CO;2; Desante DF, 1995, J APPL STAT, V22, P935, DOI 10.1080/02664769524720; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Donovan TM, 1995, CONSERV BIOL, V9, P1380, DOI 10.1046/j.1523-1739.1995.09061380.x; DZUBIN A, 1972, US DEP INT WILDL RES, V2, P113; ELLISFELEGE SN, STUD AV BIO IN PRESS; ETTERSON MA, SOURCES SIN IN PRESS; Etterson Matthew A., 2007, Studies in Avian Biology, V34, P55; Etterson MA, 2008, AUK, V125, P687, DOI 10.1525/auk.2008.07045; Etterson MA, 2007, AUK, V124, P432, DOI 10.1642/0004-8038(2007)124[432:PRADCO]2.0.CO;2; Etterson MA, 2009, ECOL APPL, V19, P622, DOI 10.1890/08-0499.1; Evers D. C., 2010, BIRDS N AM, V313; Farnsworth GL, 2005, AUK, V122, P1000, DOI 10.1642/0004-8038(2005)122[1000:RBMNEA]2.0.CO;2; Farnsworth GL, 2001, AUK, V118, P973, DOI 10.1642/0004-8038(2001)118[0973:HMBCST]2.0.CO;2; Fletcher RJ, 2006, J WILDLIFE MANAGE, V70, P145, DOI 10.2193/0022-541X(2006)70[145:CDPFDS]2.0.CO;2; Fujiwara M, 2002, ECOLOGY, V83, P3266, DOI 10.2307/3072077; Gauthier G, 2004, INTEGR COMP BIOL, V44, P119, DOI 10.1093/icb/44.2.119; Gauthier G, 2010, J ANIM ECOL, V79, P879, DOI 10.1111/j.1365-2656.2010.01683.x; Gill FB., 2007, ORNITHOLOGY; GNAM R, 1991, IBIS, V133, P400, DOI 10.1111/j.1474-919X.1991.tb04588.x; Goetz JE, 2003, AUK, V120, P1044, DOI 10.1642/0004-8038(2003)120[1044:MPAMMF]2.0.CO;2; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; Grant TA, 2005, AUK, V122, P661, DOI 10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2; Greenberg Russell, 2006, Studies in Avian Biology, P96; Grzybowski JA, 2005, AUK, V122, P280, DOI 10.1642/0004-8038(2005)122[0280:RDSFIS]2.0.CO;2; Grzybowski JA, 2000, ECOLOGY AND MANAGEMENT OF COWBIRDS AND THEIR HOSTS, P145; Guthery F.S., 2000, BOBWHITES; Haegen WMV, 2002, CONDOR, V104, P496, DOI 10.1650/0010-5422(2002)104[0496:PORAAN]2.0.CO;2; HAHN TP, 1995, J EXP ZOOL, V272, P213, DOI 10.1002/jez.1402720306; Heisey DM, 2006, J WILDLIFE MANAGE, V70, P1544, DOI 10.2193/0022-541X(2006)70[1544:AROMTE]2.0.CO;2; HEISEY DM, 2007, STUD AVIAN BIOL, V34, P55; Hilborn R., 1997, ECOLOGICAL DETECTIVE; JAMES FC, 1974, CONDOR, V76, P159, DOI 10.2307/1366726; Jenouvrier S, 2008, OIKOS, V117, P620, DOI 10.1111/j.2007.0030-1299.16394.x; Johnsgard PA, 1997, AVIAN BROOD PARASITE; Johnson Douglas H., 2007, Studies in Avian Biology, V34, P1; Johnson Douglas H., 2007, Studies in Avian Biology, V34, P65; Jones J, 2005, AUK, V122, P306, DOI 10.1642/0004-8038(2005)122[0306:RBMNEA]2.0.CO;2; Karlin S., 1981, 2 COURSE STOCHASTIC; Kendall WL, 2002, ECOLOGY, V83, P3276; Kendall WL, 1997, ECOLOGY, V78, P563; Kershner EL, 2004, AUK, V121, P1146, DOI 10.1642/0004-8038(2004)121[1146:PMASOJ]2.0.CO;2; KLOMP H, 1970, ARDEA, V58, P1; Koenig WD, 2007, CONDOR, V109, P334, DOI 10.1650/0010-5422(2007)109[334:LSAFNI]2.0.CO;2; Kroll AJ, 2009, J ORNITHOL, V150, P409, DOI 10.1007/s10336-008-0353-3; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Lang JD, 2002, AUK, V119, P109, DOI 10.1642/0004-8038(2002)119[0109:WTMAHU]2.0.CO;2; Larson MA, 2001, J WILDLIFE MANAGE, V65, P880, DOI 10.2307/3803037; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lepage D, 2000, J ANIM ECOL, V69, P414, DOI 10.1046/j.1365-2656.2000.00404.x; Lynch JJ, 1964, WILDFOWL TRUST ANN R, V15, P114, DOI 10.5061/dryas.28660; MacKenzie D. I., 2005, OCCUPANCY ESTIMATION; Manolis JC, 2000, AUK, V117, P615, DOI 10.1642/0004-8038(2000)117[0615:UNFISS]2.0.CO;2; Marshall MR, 2002, ECOL APPL, V12, P261, DOI 10.2307/3061151; Marti C. D, 2005, BIRDS N AM ONLINE; MARTIN TE, 1993, J FIELD ORNITHOL, V64, P507; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Mattsson BJ, 2007, AUK, V124, P1186, DOI 10.1642/0004-8038(2007)124[1186:WLCDBP]2.0.CO;2; MAUSER DM, 1994, J WILDLIFE MANAGE, V58, P82, DOI 10.2307/3809552; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Morgan MR, 2010, AUK, V127, P86, DOI 10.1525/auk.2009.09132; Murray BG, 2000, CONDOR, V102, P470, DOI 10.1650/0010-5422(2000)102[0470:MARSIB]2.0.CO;2; MURRAY BG, 1991, AUK, V108, P942; Nagy LR, 2005, ECOLOGY, V86, P675, DOI 10.1890/04-0155; Nagy LR, 2004, J AVIAN BIOL, V35, P487, DOI 10.1111/j.0908-8857.2004.03429.x; Nolan V, 1978, ORNITHOL MONOGR, V26; Nur N, 2004, CONDOR, V106, P457, DOI 10.1650/7336; Olofsson H, 2009, P ROY SOC B-BIOL SCI, V276, P2963, DOI 10.1098/rspb.2009.0500; Olsen B. J., 2008, OECOLOGIA, V15, P421; Olson GS, 2005, J WILDLIFE MANAGE, V69, P918, DOI 10.2193/0022-541X(2005)069[0918:MOSODF]2.0.CO;2; ORING LW, 1994, BEHAV ECOL, V5, P9, DOI 10.1093/beheco/5.1.9; Ortiz-Catedral L, 2008, AUST J ZOOL, V56, P389, DOI 10.1071/ZO08069; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pease CM, 1995, AUK, V112, P343, DOI 10.2307/4088722; Peterson MJ, 1998, ECOL MODEL, V111, P283, DOI 10.1016/S0304-3800(98)00111-2; Pintillie M., 2006, COMPETING RISKS PRAC; Pollock Kenneth H., 2004, P43; Post van der Burg M, 2009, J AVIAN BIOL, V40, P263, DOI 10.1111/j.1600-048X.2008.04460.x; POULIN B, 1992, ECOLOGY, V73, P2295, DOI 10.2307/1941476; Powell LA, 1999, AUK, V116, P1001, DOI 10.2307/4089680; Powell LA, 2006, CONDOR, V108, P292, DOI 10.1650/0010-5422(2006)108[292:APMFPM]2.0.CO;2; Pradel R, 1997, ECOLOGY, V78, P1431; Pradel R, 1999, BIRD STUDY, V46, P74; Reed E. T., 2004, Animal Biodiversity and Conservation, V27, P35; Reed ET, 2003, ARCTIC, V56, P76; RICKLEFS RE, 1980, AUK, V97, P38; RICKLEFS RE, 1970, ECOLOGY, V51, P508, DOI 10.2307/1935387; RICKLEFS RE, 1977, AUK, V94, P86; RICKLEFS RE, 1970, SCIENCE, V168, P559; RICKLEFS RE, 1973, BREEDING BIOL; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robinson WD, 2001, J FIELD ORNITHOL, V72, P43, DOI 10.1648/0273-8570-72.1.43; Roelofs W, 2005, ECOTOXICOLOGY, V14, P895, DOI 10.1007/s10646-005-0035-3; Rohwer S, 2009, P NATL ACAD SCI USA, V106, P19050, DOI 10.1073/pnas.0908121106; Schmidt KA, 1999, CONSERV BIOL, V13, P46, DOI 10.1046/j.1523-1739.1999.97065.x; Schmidt KA, 2008, J ANIM ECOL, V77, P830, DOI 10.1111/j.1365-2656.2008.01378.x; SCOTT DM, 1983, AUK, V100, P583; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Simons TR, 2000, CONSERV BIOL, V14, P1133, DOI 10.1046/j.1523-1739.2000.98606.x; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Smith PA, 2009, CONDOR, V111, P414, DOI 10.1525/cond.2009.090002; SNOW D. W., 1964, ZOOLOGICA [NEW YORK], V49, P1; SORENSON MD, 1991, ANIM BEHAV, V42, P771, DOI 10.1016/S0003-3472(05)80122-8; Stanley T. R., 2010, Auk, V127, P79; Stanley TR, 2004, WILSON BULL, V116, P267, DOI 10.1676/04-042; Thompson BC, 2001, J FIELD ORNITHOL, V72, P527, DOI 10.1648/0273-8570-72.4.527; Thompson FR, 2004, CONSERV BIOL, V18, P373, DOI 10.1111/j.1523-1739.2004.00167.x; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Verner J., 1997, BIRDS N AM, V308; VICKERY PD, 1992, AUK, V109, P697, DOI 10.2307/4088145; Walk JW, 2004, AUK, V121, P1250, DOI 10.1642/0004-8038(2004)121[1250:RDAAFO]2.0.CO;2; Weimerskirch H, 1997, BIOL CONSERV, V79, P257, DOI 10.1016/S0006-3207(96)00084-5; Williams B. K., 2002, ANAL MANAGEMENT ANIM; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Woodworth BL, 1999, CONSERV BIOL, V13, P67, DOI 10.1046/j.1523-1739.1999.97267.x; Zanette L, 2007, AUK, V124, P210, DOI 10.1642/0004-8038(2007)124[210:RTCT]2.0.CO;2; Zicus MC, 2003, WILSON BULL, V115, P409, DOI 10.1676/03-064 139 24 24 4 54 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. JUL 24 2011 222 14 SI 2178 2190 10.1016/j.ecolmodel.2010.10.013 13 Ecology Environmental Sciences & Ecology 796GB WOS:000293038700003 2019-02-21 J Lorrain, A; Arguelles, J; Alegre, A; Bertrand, A; Munaron, JM; Richard, P; Cherel, Y Lorrain, Anne; Argueelles, Juan; Alegre, Ana; Bertrand, Arnaud; Munaron, Jean-Marie; Richard, Pierre; Cherel, Yves Sequential Isotopic Signature Along Gladius Highlights Contrasted Individual Foraging Strategies of Jumbo Squid (Dosidicus gigas) PLOS ONE English Article SOUTHERN-OCEAN; STABLE-ISOTOPES; DIET; DELTA-N-15; OMMASTREPHIDAE; WATERS; SPECIALIZATION; CEPHALOPODA; INVESTIGATE; DELTA-C-13 Background: Cephalopods play a major role in marine ecosystems, but knowledge of their feeding ecology is limited. In particular, intra- and inter-individual variations in their use of resources has not been adequatly explored, although there is growing evidence that individual organisms can vary considerably in the way they use their habitats and resources. Methodology/Principal Findings: Using delta C-13 and delta N-15 values of serially sampled gladius (an archival tissue), we examined high resolution variations in the trophic niche of five large (>60 cm mantle length) jumbo squids (Dosidicus gigas) that were collected off the coast of Peru. We report the first evidence of large inter-individual differences in jumbo squid foraging strategies with no systematic increase of trophic level with size. Overall, gladius delta C-13 values indicated one or several migrations through the squid's lifetime (similar to 8-9 months), during which delta N-15 values also fluctuated (range: 1 to 5 parts per thousand). One individual showed an unexpected terminal 4.6 parts per thousand delta N-15 decrease (more than one trophic level), thus indicating a shift from higher- to lower-trophic level prey at that time. The data illustrate the high diversity of prey types and foraging histories of this species at the individual level. Conclusions/Significance: The isotopic signature of gladii proved to be a powerful tool to depict high resolution and ontogenic variations in individual foraging strategies of squids, thus complementing traditional information offered by stomach content analysis and stable isotopes on metabolically active tissues. The observed differences in life history strategies highlight the high degree of plasticity of the jumbo squid and its high potential to adapt to environmental changes. [Lorrain, Anne; Munaron, Jean-Marie] LEMAR UMR CNRS UBO IRD 6539, IRD, Plouzane, France; [Argueelles, Juan; Alegre, Ana; Bertrand, Arnaud] IMARPE, Lima, Peru; [Bertrand, Arnaud] UMR212 EME IFREMER IRD UM2, IRD, Sete, France; [Richard, Pierre] UMR 6250 CNRS Univ La Rochelle, La Rochelle, France; [Cherel, Yves] CNRS, UPR 1934, Ctr Etudes Biol Chize, Villers En Bois, France Lorrain, A (reprint author), LEMAR UMR CNRS UBO IRD 6539, IRD, Plouzane, France. anne.lorrain@ird.fr Bertrand, Arnaud/E-4251-2010; Lorrain, Anne/A-4152-2009; Richard, Pierre/N-6482-2014; Munaron, Jean-Marie/B-8282-2015 Bertrand, Arnaud/0000-0003-4723-179X; Lorrain, Anne/0000-0002-1289-2072; Richard, Pierre/0000-0002-0393-9967; Arguelles J, 2008, PROG OCEANOGR, V79, P308, DOI 10.1016/j.pocean.2008.10.003; ARKHIPKIN AI, 1991, NTR ITPP SPEC PUBL, V1, P11; Bazzino G, 2010, PROG OCEANOGR, V86, P59, DOI 10.1016/j.pocean.2010.04.017; Bearhop S, 2004, J ANIM ECOL, V73, P1007, DOI 10.1111/j.0021-8790.2004.00861.x; Bertrand A, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010330; Bograd SJ, 2008, GEOPHYS RES LETT, V35, DOI 10.1029/2008GL034185; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Chavez FP, 2008, PROG OCEANOGR, V79, P95, DOI 10.1016/j.pocean.2008.10.012; Cherel Y, 2009, BIOL LETTERS, V5, P830, DOI 10.1098/rsbl.2009.0552; Cherel Y, 2007, MAR ECOL PROG SER, V329, P281, DOI 10.3354/meps329281; Cherel Y, 2009, MAR BIOL, V156, P699, DOI 10.1007/s00227-008-1121-x; DENIRO MJ, 1978, GEOCHIM COSMOCHIM AC, V42, P495, DOI 10.1016/0016-7037(78)90199-0; FUENZALIDA R., 2009, DEEP SEA RES 2, V56, P992, DOI [101016/j.dsr2.2008.11.001, DOI 10.1016/J.DSR2.2008.11.001]; Goodwin DH, 2003, PALAIOS, V18, P110, DOI 10.1669/0883-1351(2003)18<110:RAFOOI>2.0.CO;2; Graham BS, 2010, ISOSCAPES: UNDERSTANDING MOVEMENT, PATTERN, AND PROCESS ON EARTH THROUGH ISOTOPE MAPPING, P299, DOI 10.1007/978-90-481-3354-3_14; Guerra A, 2010, ICES J MAR SCI, V67, P1425, DOI 10.1093/icesjms/fsq091; Ibanez CM, 2008, HELGOLAND MAR RES, V62, P331, DOI 10.1007/s10152-008-0120-0; Jaeger A, 2010, RAPID COMMUN MASS SP, V24, P3456, DOI 10.1002/rcm.4792; KOJIDANOVIK J, 2008, WATERBIRDS, V31, P169; MARKAIDA U., 2003, J MAR BIOL ASSOC UK, V83, P1; Naqvi SWA, 2000, NATURE, V408, P346, DOI 10.1038/35042551; Newsome SD, 2009, ECOLOGY, V90, P961, DOI 10.1890/07-1812.1; Nigmatullin CM, 2001, FISH RES, V54, P9, DOI 10.1016/S0165-7836(01)00371-X; Paulmier A, 2009, PROG OCEANOGR, V80, P113, DOI 10.1016/j.pocean.2008.08.001; Perez JAA, 1996, CAN J FISH AQUAT SCI, V53, P2837, DOI 10.1139/cjfas-53-12-2837; RAU GH, 1982, DEEP-SEA RES, V29, P1035, DOI 10.1016/0198-0149(82)90026-7; Rodhouse PG, 1996, PHILOS T ROY SOC B, V351, P1003, DOI 10.1098/rstb.1996.0090; Ruiz-Cooley RI, 2010, MAR ECOL PROG SER, V399, P187, DOI 10.3354/meps08383; Ruiz-Cooley RI, 2006, J MAR BIOL ASSOC UK, V86, P437, DOI 10.1017/S0025315406013324; Sigman DM, 1999, GLOBAL BIOGEOCHEM CY, V13, P1149, DOI 10.1029/1999GB900038; Vander Zanden HB, 2010, BIOL LETTERS, V6, P711, DOI 10.1098/rsbl.2010.0124; Vanderklift MA, 2003, OECOLOGIA, V136, P169, DOI 10.1007/s00442-003-1270-z; Voss M, 2001, DEEP-SEA RES PT I, V48, P1905, DOI 10.1016/S0967-0637(00)00110-2; Webb SC, 1998, J EXP BIOL, V201, P2903; ZEIDBERG LD, 2008, N PACIFIC P NATL ACA, V104, P12948 35 31 39 1 29 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 14 2011 6 7 e22194 10.1371/journal.pone.0022194 6 Multidisciplinary Sciences Science & Technology - Other Topics 793HP WOS:000292811300045 21779391 DOAJ Gold, Green Published 2019-02-21 J Cheng, RX; Meng, L; Mills, NJ; Li, BP Cheng, Rui-Xia; Meng, Ling; Mills, Nickolas J.; Li, Baoping Host preference between symbiotic and aposymbiotic Aphis fabae, by the aphid parasitoid, Lysiphlebus ambiguus JOURNAL OF INSECT SCIENCE English Article Aphidiidae; bacterial symbiosis; Buchnera aphidicola; host choice; host instar; host suitability; sex ratio AMINO-ACID POOLS; ACYRTHOSIPHON-PISUM; PEA APHID; OFFSPRING FITNESS; BACTERIA; HYMENOPTERA; ERVI; MYCETOCYTE; INSECT; SIZE Few empirical studies have directly explored the association between Buchnera aphidicola (Enterobacteriales: Enterobacteriaceae), the primary endosymbiont of aphids, and the life history strategies of aphid parasitoids. A series of paired-choice experiments were conducted to explore the preference of the parasitoid Lysiphlebus ambiguus Halliday (Hymenoptera: Aphididae) for symbiotic and aposymbiotic Aphis fabae Scopoli (Hemiptera: Aphididae) and the suitability of these hosts for parasitoid development. When given a choice between symbiotic and aposymbiotic aphids of the same instar, the parasitoid significantly preferred symbiotic over aposymbiotic aphids only during the later instars (L-4 and adult). The suitability of aposymbiotic aphids for parasitoid development was equal to that of symbiotic aphids in terms of survivorship and sex ratio, but was significantly lower than that of symbiotic aphids for L-4 and adult instars in development rate and/or female adult size. When given a choice between similar-sized symbiotic L-2 and aposymbiotic L-4 aphids, the parasitoid preferred the former. No significant differences in preference or host suitability were demonstrated when the parasitoid was given a choice between different instars of aposymbiotic aphids. While parasitoid lifetime fecundity increased with aphid instar at the time of oviposition, there was no significant influence of previous development from symbiotic versus aposymbiotic aphids. These results suggest that while L. ambiguus can discriminate between symbiotic and aposymbiotic A. fabae during later instars and when the aphids are of a similar size, the primary endosymbiont is not needed for successful parasitoid development; and its absence only compromises parasitoid growth reared from later instar aposymbiotic host. [Cheng, Rui-Xia; Meng, Ling; Li, Baoping] Nanjing Agr Univ, Dept Entomol, Nanjing 210095, Peoples R China; [Cheng, Rui-Xia] Off Landscape Management, Kunshan City, Jiangsu Prov, Peoples R China; [Mills, Nickolas J.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA Cheng, RX (reprint author), Nanjing Agr Univ, Dept Entomol, Nanjing 210095, Peoples R China. lbp@njau.edu.cn Mills, Nicholas/0000-0001-8885-8674 Natural Science Fund of China (NSFC) [30370237, 30871670] We thank Ge Zhao-yu and Wang Cai-yun for help in field collection of the aphid parasitoid, and Yang De-song for review of earlier versions of the manuscript. This study was supported by the Natural Science Fund of China (NSFC, 30370237, 30871670). AYAL Y, 1993, AM NAT, V141, P120, DOI 10.1086/285464; Bermingham J, 2009, APPL ENVIRON MICROB, V75, P7294, DOI 10.1128/AEM.01472-09; Brinza L, 2009, CR BIOL, V332, P1034, DOI 10.1016/j.crvi.2009.09.007; Cao Lin, 2006, Shengtaixue Zazhi, V25, P1380; Chandler SM, 2008, P ROY SOC B-BIOL SCI, V275, P565, DOI 10.1098/rspb.2007.1478; Chen CY, 2009, SYMBIOSIS, V49, P53, DOI 10.1007/s13199-009-0011-4; Cheng RX, 2010, ENVIRON ENTOMOL, V39, P389, DOI 10.1603/EN08312; Cloutier C, 2003, ENTOMOL EXP APPL, V109, P13, DOI 10.1046/j.1570-7458.2003.00087.x; Douglas AE, 2006, PHYSIOL ENTOMOL, V31, P262, DOI 10.1111/j.1365-3032.2006.00516.x; DOUGLAS AE, 1987, J INSECT PHYSIOL, V33, P109, DOI 10.1016/0022-1910(87)90082-5; Douglas AE, 1998, ANNU REV ENTOMOL, V43, P17, DOI 10.1146/annurev.ento.43.1.17; Douglas AE, 1996, J INSECT PHYSIOL, V42, P247, DOI 10.1016/0022-1910(95)00105-0; DOUGLAS AE, 1992, ENTOMOL EXP APPL, V65, P195, DOI 10.1111/j.1570-7458.1992.tb01643.x; Dunbar HE, 2007, PLOS BIOL, V5, P1006, DOI 10.1371/journal.pbio.0050096; Falabella P, 2000, ENTOMOL EXP APPL, V97, P1, DOI 10.1023/A:1004097427267; Ferrari J, 2004, ECOL ENTOMOL, V29, P60, DOI 10.1111/j.1365-2311.2004.00574.x; GERLING D, 1990, J INSECT BEHAV, V3, P501, DOI 10.1007/BF01052014; Gunduz EA, 2009, P ROY SOC B-BIOL SCI, V276, P987, DOI 10.1098/rspb.2008.1476; Harvey JA, 2005, ENTOMOL EXP APPL, V117, P1, DOI 10.1111/j.1570-7458.2005.00348.x; Henry LM, 2005, ENTOMOL EXP APPL, V116, P167, DOI 10.1111/j.1570-7458.2005.00318.x; Koga R, 2003, P ROY SOC B-BIOL SCI, V270, P2543, DOI 10.1098/rspb.2003.2537; Koga R, 2007, FEMS MICROBIOL ECOL, V60, P229, DOI 10.1111/j.1574-6941.2007.00284.x; LAMB KP, 1967, J INVERTEBR PATHOL, V9, P3, DOI 10.1016/0022-2011(67)90035-3; Li BP, 2004, ENTOMOL EXP APPL, V110, P249, DOI 10.1111/j.0013-8703.2004.00144.x; Li Xian-Hui, 2006, Acta Entomologica Sinica, V49, P428; Miao Xue-xia, 2003, Entomologia Sinica, V10, P167; Miao XX, 2004, APPL ENTOMOL ZOOL, V39, P243, DOI 10.1303/aez.2004.243; Moran NA, 2005, APPL ENVIRON MICROB, V71, P3302, DOI 10.1128/AEM.71.6.3302-3310.2005; Ode PJ, 2005, ENTOMOL EXP APPL, V115, P303, DOI 10.1111/j.1570-7458.2005.00261.x; OHTAKA C, 1991, SYMBIOSIS, V11, P19; Oliver KM, 2009, SCIENCE, V325, P992, DOI 10.1126/science.1174463; Oliver KM, 2005, P NATL ACAD SCI USA, V102, P12795, DOI 10.1073/pnas.0506131102; Pennacchio F, 1999, ARCH INSECT BIOCHEM, V40, P53, DOI 10.1002/(SICI)1520-6327(1999)40:1<53::AID-ARCH6>3.3.CO;2-A; Rahbe Y, 2002, J INSECT PHYSIOL, V48, P507, DOI 10.1016/S0022-1910(02)00053-7; Rivero A, 2000, ECOL ENTOMOL, V25, P467, DOI 10.1046/j.1365-2311.2000.00276.x; Russell JA, 2006, P ROY SOC B-BIOL SCI, V273, P603, DOI 10.1098/rspb.2005.3348; SASAKI T, 1995, J INSECT PHYSIOL, V41, P41, DOI 10.1016/0022-1910(94)00080-Z; The R Development Core Team, 2007, R LANG ENV STAT COMP; WARDLE AR, 1991, ENVIRON ENTOMOL, V20, P889, DOI 10.1093/ee/20.3.889; Wilkinson TL, 1998, COMP BIOCHEM PHYS A, V119, P871, DOI 10.1016/S1095-6433(98)00013-0; Xu Q, 2008, B ENTOMOL RES, V98, P389, DOI 10.1017/S0007485308005683; Xu Qing-Hua, 2007, Acta Entomologica Sinica, V50, P488 42 0 0 1 13 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1536-2442 2250-2645 J INSECT SCI J Insect Sci. JUL 2 2011 11 81 13 Entomology Entomology 786QE WOS:000292322200001 21870967 DOAJ Gold 2019-02-21 J Marin-Moratalla, N; Jordana, X; Garcia-Martinez, R; Kohler, M Marin-Moratalla, Nekane; Jordana, Xavier; Garcia-Martinez, Ruben; Koehler, Meike Tracing the evolution of fitness components in fossil bovids under different selective regimes COMPTES RENDUS PALEVOL English Article Large herbivores; Paleohistology; Life History; Paleodemography; Insularity; Ecology LIFE-HISTORY EVOLUTION; DENTAL DEVELOPMENT; POPULATION-DYNAMICS; LARGE HERBIVORES; GROWTH-RATE; BODY-SIZE; BONE; MICROSTRUCTURE; ENAMEL; TEETH Hard tissue histology is a valuable tool to reconstruct life history traits in fossil ungulates. We estimated certain fitness components (age at weaning, age at maturity, life span and generation time) in two fossil bovids that evolved under different selective regimes, the insular Myotragus balearicus and the continental Gazella borbonica. Our results provide evidence that the mainland G. borbonica conforms to the predictions for ungulates of similar body size. However, the insular M. balearicus does not fit predictions from body mass scaling, as it shows an important delay in age at weaning and, especially, in age at first reproduction. The considerable differences in the onset of these fitness components reflect the differences in resource availability and in extrinsic mortality that exist between insular and continental ecosystems. The significant delay in life history traits in Myotragus most likely resulted in severe constraints on the ability of this insular mammal to respond to ecological disturbances. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. [Koehler, Meike] Univ Autonoma Barcelona, ICP, ICREA, E-08193 Barcelona, Spain; [Marin-Moratalla, Nekane; Jordana, Xavier; Garcia-Martinez, Ruben] Univ Autonoma Barcelona, ICP, Dept Paleobiol, E-08193 Barcelona, Spain Kohler, M (reprint author), Univ Autonoma Barcelona, ICP, ICREA, E-08193 Barcelona, Spain. meike.kohler@icp.cat Jordana, Xavier/G-7537-2017; Jordana, Xavier/L-9301-2014 Jordana, Xavier/0000-0002-6016-6630; Jordana, Xavier/0000-0001-8990-4388; Kohler, Meike/0000-0001-9228-3164 Ministerio de Ciencia e Innovacion (MICINN) [CGL2008-06204/BTE, BES-2009-02641, JCI-2010-08157]; ICREA We wish to thank C. Constantino for access to the collections of the Museu Bateau de Ciencies Naturals; Eric Pianka for comments on generation time; Hospital Mutua de Terrassa for Computed Tomography; J. Fortuny for technical help; and both M. Laurin and an anonymous referee for their helpful comments. This work was supported by the Ministerio de Ciencia e Innovacion (MICINN) (M. Kohler, CGL2008-06204/BTE). N. Marin-Moratalla receives a scholarship from MICINN (BES-2009-02641). X. Jordana holds a grant from the Juan de la Cierva Program of the MICINN (JCI-2010-08157). ALCOVER JA, 1981, CHIMERAS PAST; Andres Maria, 2008, Studia Geologica Salmanticensia Volumen Especial, V8, P17; Beynon AD, 1998, J HUM EVOL, V35, P163, DOI 10.1006/jhev.1998.0230; BOYDE A, 1988, SCANNING MICROSCOPY, V2, P1479; Boyde Alan, 1963, 3 INT M FOR IMM MED, P36; BROMAGE TG, 1991, AM J PHYS ANTHROPOL, V86, P205, DOI 10.1002/ajpa.1330860209; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Calder III WA, 1984, SIZE FUNCTION LIFE H; Carranza J, 2004, NATURE, V432, P215, DOI 10.1038/nature03004; Cassinello J, 2005, BIOL CONSERV, V122, P453, DOI 10.1016/j.biocon.2004.09.006; Castanet J, 2006, CR PALEVOL, V5, P629, DOI 10.1016/j.crpv.2005.10.006; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; Chinsamy-Turan A., 2005, MICROSTRUCTURE DINOS; de Margerie E, 2004, J EXP BIOL, V207, P869, DOI 10.1242/jeb.00841; de Margerie E, 2002, CR BIOL, V325, P221, DOI 10.1016/S1631-0691(02)01429-4; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Erickson GM, 2005, TRENDS ECOL EVOL, V20, P677, DOI 10.1016/j.tree.2005.08.012; Franz-Odendaal TA, 2003, J BIOSCIENCES, V28, P765, DOI 10.1007/BF02708437; FURLEY CW, 1986, AFR J ECOL, V24, P121, DOI 10.1111/j.1365-2028.1986.tb00351.x; Gaillard Jean-Michel, 2007, Alces, V43, P1; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; Kirkwood TBL, 2005, CELL, V120, P437, DOI 10.1016/j.cell.2005.01.027; Klevezal G. A., 1996, RECORDING STRUCTURES; Kohler M, 2004, BRAIN BEHAV EVOLUT, V63, P125, DOI 10.1159/000076239; Kohler M., 2010, ISLANDS EVOLUTION, V19, P261; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Kurten B., 2009, PLEISTOCENE MAMMALS; Laurin M, 2010, SYST BIOL, V59, P689, DOI 10.1093/sysbio/syq059; LESLIE PH, 1966, J ANIM ECOL, V35, P291, DOI 10.2307/2396; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; MAC ARTHUR ROBERT H., 1967; Macho GA, 2002, BIOL J LINN SOC, V75, P271, DOI 10.1046/j.1095-8312.2002.00013.x; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Mendelssohn Heinrich, 1995, Mammalian Species, V490, P1; Moya-Sola Salvador, 1999, P435; Nowak RM, 1999, WALKERS MAMMALS WORL; Oates JF, 2006, PRIMATES, V47, P102, DOI 10.1007/s10329-005-0149-5; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Peters R.H., 1983, P1; Pianka E.R., 2000, EVOLUTIONARY ECOLOGY, P528; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Ralls K., 1980, International Zoo Yearbook, V20, P137, DOI 10.1111/j.1748-1090.1980.tb00957.x; Ricklefs R.E., 2007, EC NATURE, P199; Ripple WJ, 2010, BIOSCIENCE, V60, P516, DOI 10.1525/bio.2010.60.7.7; ROFF DA, 2002, LIFE HIST EVOLUTION; Saether BE, 1997, TRENDS ECOL EVOL, V12, P143, DOI 10.1016/S0169-5347(96)10068-9; Schultz A, 1956, PRIMATOLOGIA, P887; Schultz AH, 1935, AM J PHYS ANTHROPOL, V19, P489, DOI 10.1002/ajpa.1330190417; Schwartz GT, 2002, P NATL ACAD SCI USA, V99, P6124, DOI 10.1073/pnas.092685099; Smith B. Holly, 2000, P212, DOI 10.1017/CBO9780511542626.015; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Stearns S, 1992, EVOLUTION LIFE HIST; Suc Jean-Pierre, 1995, Acta Zoologica Cracoviensia, V38, P3; Veiberg V, 2007, BIOLOGY LETT, V3, P268, DOI 10.1098/rsbl.2006.0610; Walther F. R., 1990, GRZIMEKS ENCY MAMMAL, V5, P462; Wronski T, 2010, MAMM BIOL, V75, P74, DOI 10.1016/j.mambio.2008.09.001; Yom-Tov Yoram, 1995, Mammalian Species, V491, P1 63 16 16 0 8 ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PARIS 23 RUE LINOIS, 75724 PARIS, FRANCE 1631-0683 1777-571X CR PALEVOL C. R. Palevol JUL-SEP 2011 10 5-6 469 478 10.1016/j.crpv.2011.03.007 10 Paleontology Paleontology 822DJ WOS:000295023800018 2019-02-21 J Garcia-Martinez, R; Marin-Moratalla, N; Jordana, X; Kohler, M Garcia-Martinez, Ruben; Marin-Moratalla, Nekane; Jordana, Xavier; Koehler, Meike The ontogeny of bone growth in two species of dormice: Reconstructing life history traits COMPTES RENDUS PALEVOL English Article Bone histology; Growth pattern; Life history; Bone tissue types; Skeletochronology; Conservation EDIBLE DORMOUSE; SEXUAL-MATURITY; FAT DORMOUSE; PATTERNS; AGE; MICROSTRUCTURE; SKELETOCHRONOLOGY; POPULATION; DINOSAURS; MAMMALS Though bone histology has become a powerful tool to reconstruct life history strategies and physiology in living and extinct reptiles and amphibians, it is of limited use in mammals. Dormice (Myoxidae) are good candidates for assessing the relation between bone microstructure and life history due to their long life span, marked physiological cycles and negligible bone remodelling. We carried out the most comprehensive study so far analyzing 16 wild individuals of unknown age belonging to two different species of dormice, Glis glis and Eliomys quercinus. Our study shows a high degree of consistency in the number of resting lines present in bones of the same individual, with femora providing the most accurate age estimations. Moreover, the presence of a single LAG in some juveniles allows discerning between offspring from different reproductive events (early or late litters). (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved. [Koehler, Meike] Univ Autonoma Barcelona, ICP, Catalan Inst Res & Adv Studies, E-08193 Barcelona, Spain; [Garcia-Martinez, Ruben; Marin-Moratalla, Nekane; Jordana, Xavier] Univ Autonoma Barcelona, ICP, Dept Paleobiol, E-08193 Barcelona, Spain Kohler, M (reprint author), Univ Autonoma Barcelona, ICP, Catalan Inst Res & Adv Studies, E-08193 Barcelona, Spain. meike.kohler@icp.cat Jordana, Xavier/L-9301-2014; Jordana, Xavier/G-7537-2017 Jordana, Xavier/0000-0001-8990-4388; Jordana, Xavier/0000-0002-6016-6630; Kohler, Meike/0000-0001-9228-3164 Spanish Ministry of Science and Innovation [CGL2008-06204/BTE]; MICINN [BES-2009-02641]; Juan de la Cierva [JCI-2010-08157]; ICREA We wish to thank A. Arrizabalaga and R. Garcia for access to the collections of the Museum de Ciencies Naturals de Granollers and Instituto Pirenaico de Ecologia respectively. We also want to thank the ICP restoration team and especially S. Val, for her help in preparing the material. The authors also are grateful to S. de Esteban, G. Macho and R. Minwer-Barakat as well as two anonymous referees, for their constructive comments. This work was supported by the Spanish Ministry of Science and Innovation (CGL2008-06204/BTE). N. Marin-Moratalla receives a scholarship from MICINN (BES-2009-02641). X. Jordana is Juan de la Cierva researcher (JCI-2010-08157). Bieber C, 1998, J ZOOL, V244, P223; BLANCO JC, 2007, ATLAS LIBRO ROJO MAM, P66; Botha J, 2005, PALAEONTOLOGY, V48, P385, DOI 10.1111/j.1475-4983.2005.00447.x; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Cambra-Moo O, 2006, CR PALEVOL, V5, P685, DOI 10.1016/j.crpv.2005.12.018; Castanet J, 2006, CR PALEVOL, V5, P629, DOI 10.1016/j.crpv.2005.10.006; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; CASTANET J, 2000, C R ACAD SCI PARIS S, V3, P543; CASTIEN E, 2007, CONSERVACION BIODIVE, P457; Chinsamy A, 2008, S AFR J SCI, V104, P311; Chinsamy A, 2006, ACTA PALAEONTOL POL, V51, P325; Chinsamy-Turan A., 2005, MICROSTRUCTURE DINOS; de Magalhaes JP, 2009, AGING CELL, V8, P65, DOI 10.1111/j.1474-9726.2008.00442.x; de Margerie E, 2002, CR BIOL, V325, P221, DOI 10.1016/S1631-0691(02)01429-4; De Ricqles A., 1991, BONE, P1; Erickson GM, 2005, TRENDS ECOL EVOL, V20, P677, DOI 10.1016/j.tree.2005.08.012; Erickson GM, 2007, BIOL LETTERS, V3, P558, DOI 10.1098/rsbl.2007.0254; GILDELGADO JA, 2006, MAMMALIA, V71, P76; Guarino FM, 2003, J BIOSCIENCES, V28, P775, DOI 10.1007/BF02708438; Horner JR, 1999, PALEOBIOLOGY, V25, P295; Jordana X, 2011, PALAEOGEOGR PALAEOCL, V300, P59, DOI 10.1016/j.palaeo.2010.12.008; Klevezal G. A., 1996, RECORDING STRUCTURES; Kohler M., 2010, ISLANDS EVOLUTION, V19, P261; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; Krystufek B, 2005, MAMMAL REV, V35, P210, DOI 10.1111/j.1365-2907.2005.00056.x; Lebl K, 2011, ECOGRAPHY, V34, P683, DOI 10.1111/j.1600-0587.2010.06691.x; Moreno S., 2002, Galemys, V14, P1; Moreno S, 2005, ENCICLOPEDIA VIRTUAL; MORRIS P, 1972, Mammal Review, V2, P69, DOI 10.1111/j.1365-2907.1972.tb00160.x; Nowak RM, 1999, WALKERS MAMMALS WORL; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Ponton F, 2004, ACTA ORNITHOL, V39, P137, DOI 10.3161/068.039.0210; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Ricklefs R.E., 2007, EC NATURE, P199; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Schwartz GT, 2002, P NATL ACAD SCI USA, V99, P6124, DOI 10.1073/pnas.092685099; Starck JM, 2002, J MORPHOL, V254, P232, DOI 10.1002/jmor.10029; Stearns S, 1992, EVOLUTION LIFE HIST; Tumarkin-Deratzian AR, 2007, J HERPETOL, V41, P341, DOI 10.1670/0022-1511(2007)41[341:FBIWAA]2.0.CO;2 41 15 15 0 6 ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PARIS 23 RUE LINOIS, 75724 PARIS, FRANCE 1631-0683 CR PALEVOL C. R. Palevol JUL-SEP 2011 10 5-6 489 498 10.1016/j.crpv.2011.03.011 10 Paleontology Paleontology 822DJ WOS:000295023800020 2019-02-21 J Ahlstrom, T Ahlstrom, T. Life-History Theory, Past Human Populations and Climatic Perturbations INTERNATIONAL JOURNAL OF OSTEOARCHAEOLOGY English Article bioarchaeology; climate; life history theory; matrix population models; stature INTRAUTERINE GROWTH-RETARDATION; BIRTH-WEIGHT; DEVELOPMENTAL PLASTICITY; FETAL ORIGINS; MORTALITY; EVOLUTION; AGE; ENVIRONMENTS; PREGNANCY; FAMINE A sensitivity and elasticity analysis is performed on historical life-tables, that of Swedish females from 1751-1755 and 1966-1970, i.e. during and after the Little Ice Age. Coupled with life-history theory, this approach supplies us with some ideas on how stature can be understood as a proxy for conditions during the intrauterine growth, important if we aspire to calibrate proposed climatic perturbations and their effect on past societies. Matrix population models represent a versatile tool that has been used extensively in conservation biology, ecology, primatology and evolutionary demography. As of yet, applications in bioarchaeology/human osteology have been restricted to population forecasting. The following paper introduces matrix population models and discusses their use in bioarchaeology. Copyright (C) 2010 John Wiley & Sons, Ltd. Lund Univ, Inst Archaeol & Ancient Hist, S-22350 Lund, Sweden Ahlstrom, T (reprint author), Lund Univ, Inst Archaeol & Ancient Hist, Sandgatan 1, S-22350 Lund, Sweden. Torbjorn.Ahlstrom@ark.lu.se Adair LS, 2001, CIRCULATION, V104, P1034, DOI 10.1161/hc3401.095037; Alberts Susan C., 2003, P66; Barker DJ, 1998, MOTHERS BABIES HLTH; Barker DJP, 2002, INT J EPIDEMIOL, V31, P1235, DOI 10.1093/ije/31.6.1235; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BENNIKE P, 1985, PALEOPATHOLOGY DANIS; Bogin B, 1999, PATTERNS HUMAN GROWT; Bogin B, 1998, BIOL STANDARD LIVING, P277; Buikstra J. E., 2006, BIOARCHAEOLOGY CONTE; Case T. J., 2000, ILLUSTRATED GUIDE TH; Caswell H., 2001, MATRIX POPULATION MO; Chamberlain A., 2006, DEMOGRAPHY ARCHAEOLO; Cowie J, 2007, CLIMATE CHANGE: BIOLOGICAL AND HUMAN ASPECTS, P1; Cresswell JL, 1997, EARLY HUM DEV, V49, P143, DOI 10.1016/S0378-3782(97)00028-5; DOSSANTOS SI, 2004, BRIT J CANCER, V91, P519; DYKE B, 1981, ANNU REV ANTHROPOL, V10, P193, DOI 10.1146/annurev.an.10.100181.001205; Eriksson M, 2004, J INTERN MED, V255, P236, DOI 10.1046/j.1365-2796.2003.01289.x; Eveleth Phyllis B., 1991, WORLDWIDE VARIATION; Fisher RA, 1930, GENETICAL THEORY NAT; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; Gilbert SF, 2001, DEV BIOL, V233, P1, DOI 10.1006/dbio.2001.0210; Gluckman PD, 2004, TRENDS ENDOCRIN MET, V15, P183, DOI 10.1016/j.tem.2004.03.002; HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248; HAWKES K., 2006, EVOLUTION HUMAN LIFE; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hill K., 1996, ACHE LIFE HIST ECOLO; Hofsten E., 1976, SWEDISH POPULATION H; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Ibanez L, 2000, J CLIN ENDOCR METAB, V85, P2624, DOI 10.1210/jc.85.7.2624; Jones PD, 2004, REV GEOPHYS, V42, DOI 10.1029/2003RG000143; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Kuzawa CW, 2003, AM J CLIN NUTR, V77, P960; LARSEN C. S., 1997, BIOARCHAEOLOGY INTER; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI DOI 10.1093/BI0MET/33.3.183; Li HJ, 2003, AM J CLIN NUTR, V77, P1498; Lienhardt A, 2002, HORM RES, V57, P88, DOI 10.1159/000058108; LUMEY LH, 1994, SOC HIST MED, V7, P229, DOI 10.1093/shm/7.2.229; Malthus T. R, 1798, ESSAY PRINCIPLE POPU; Malthus T. R., 1798, ESSAY PRINCIPLE POPU; McDade TW, 2001, AM J CLIN NUTR, V74, P543; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Moore SE, 1997, NATURE, V388, P434, DOI 10.1038/41245; Morris WF, 2002, QUANTITATIVE CONSERV; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; National Central Bureau of Statistics, 1969, HIST STAT SWED 1; Paine R. R., 2002, PALEODEMOGRAPHY AGE, P169; Paine RR, 2000, AM J PHYS ANTHROPOL, V112, P181, DOI 10.1002/(SICI)1096-8644(2000)112:2<181::AID-AJPA5>3.0.CO;2-9; Preston SH, 2001, DEMOGRAPHY MEASURING; Ranta E, 2006, ECOLOGY POPULATIONS; Roff Derek A., 1992; SCOTT S, 1998, HUMAN DEMOGRAPHY DIS; Searle SR, 1982, MATRIX ALGEBRA USEFU; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; Siler W, 1983, Stat Med, V2, P373; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S, 1992, EVOLUTION LIFE HIST; Strauss RS, 1997, J PEDIATR-US, V130, P95, DOI 10.1016/S0022-3476(97)70316-0; USHER MB, 1966, J APPL ECOL, V3, P355, DOI 10.2307/2401258; Van der Zee H. A., 1998, HUNGER WINTER OCCUPI; Vaupel James W., 2002, PALEODEMOGRAPHY AGE; Wahlund S, 1932, THESIS UPPSALA U UPP; Williams JT, 1992, INT J OSTEOARCHAEOL, V2, P131 65 3 3 0 18 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1047-482X 1099-1212 INT J OSTEOARCHAEOL Int. J. Osteoarchaeol. JUL-AUG 2011 21 4 407 419 10.1002/oa.1147 13 Anthropology; Archaeology Anthropology; Archaeology 808BR WOS:000293949000003 2019-02-21 J Karino, K; Ikeuchi, M Karino, Kenji; Ikeuchi, Mari Female fecundity and early offspring growth in the guppy, Poecilia reticulata ICHTHYOLOGICAL RESEARCH English Article Fecundity; Offspring size; Offspring growth; Brood retention time; Poecilia reticulata LIFE-HISTORY EVOLUTION; INSEMINATION EFFICIENCY; MALE ATTRACTIVENESS; SEX-RATIOS; SIZE; REPRODUCTION; COMPETITION; POPULATION; PLASTICITY; RESOURCES We examined the relationships between family (female parentage), body size of females, brood retention time between mating and parturition, female fecundity, and early growth of offspring in the guppy Poecilia reticulata. Mature, virgin females from a single brood were mated with a single male. Results of generalized linear models indicate that the effect of the family on female fecundity and offspring growth was significant, which suggested that these traits are genetically determined to a certain extent. Larger females at the time of mating produced larger broods, although female body size at the time of parturition did not affect brood size, in contrast to the results of some previous studies in guppies. Brood size was negatively associated with the body size of neonates. Results highlighted significant associations between brood retention time and female fecundity as well as offspring growth. In addition, the interaction between the family and brood retention time was significantly associated with female fecundity and offspring growth. Females of some families had longer retention times of larger broods, whereas those of other families had shorter retention times of smaller broods. On the other hand, females with longer brood retention times produced smaller neonates with slower growth. Since the family also affected the brood retention time, selection may work against the duration of brood retention of females via the size, growth and number of offspring, depending on environmental factors such as the intensity of predation or competition in neonates. [Karino, Kenji; Ikeuchi, Mari] Tokyo Gakugei Univ, Dept Biol, Tokyo 1848501, Japan Karino, K (reprint author), Tokyo Gakugei Univ, Dept Biol, Tokyo 1848501, Japan. kkarino@u-gakugei.ac.jp Japan Society for the Promotion of Science [19570015] We are grateful to the two reviewers for their valuable comments on early version of the manuscript, and to Aya Sato for the help with the experiments. This study was partly supported by a Grant-in-Aid for Scientific Research (#19570015) to KK from the Japan Society for the Promotion of Science. This work complied with the current laws of Japan. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 1997, EVOLUTION, V51, P1946, DOI 10.1111/j.1558-5646.1997.tb05116.x; Barbosa M, 2010, J EVOLUTION BIOL, V23, P2442, DOI 10.1111/j.1420-9101.2010.02105.x; Barbosa M, 2010, BIOL J LINN SOC, V100, P414, DOI 10.1111/j.1095-8312.2010.01425.x; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bell M. F., 1994, EVOLUTIONARY BIOL TH; BREDEN F, 1995, ENVIRON BIOL FISH, V42, P323, DOI 10.1007/BF00004926; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; Evans JP, 2007, BEHAV ECOL SOCIOBIOL, V61, P719, DOI 10.1007/s00265-006-0302-1; Evans JP, 2000, P NATL ACAD SCI USA, V97, P10074, DOI 10.1073/pnas.180207297; Houde A., 1997, SEX COLOR MATE CHOIC; Jonsson N, 1999, J FISH BIOL, V55, P767, DOI 10.1006/jfbi.1999.1035; Karino K, 2004, BEHAVIOUR, V141, P585, DOI 10.1163/1568539041166672; Karino K, 2010, J FISH BIOL, V77, P299, DOI 10.1111/j.1095-8649.2010.02688.x; Karino K, 2009, ETHOLOGY, V115, P682, DOI 10.1111/j.1439-0310.2009.01650.x; Liley N. R., 1966, Behaviour Suppl, V13, P1; Lynch M, 1998, GENETICS ANAL QUANTI; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Marsh-Matthews E, 2005, OECOLOGIA, V144, P12, DOI 10.1007/s00442-005-0030-7; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; Ojanguren AF, 2005, J FISH BIOL, V67, P1184, DOI 10.1111/j.1095-8649.2005.00805.x; Pilastro A, 2007, ANIM BEHAV, V74, P321, DOI 10.1016/j.anbehav.2006.09.016; Pilastro A, 1999, P ROY SOC B-BIOL SCI, V266, P1887, DOI 10.1098/rspb.1999.0862; Potts G. W., 1984, FISH REPROD STRATEGI; REYNOLDS JD, 1992, P ROY SOC B-BIOL SCI, V250, P57, DOI 10.1098/rspb.1992.0130; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1991, EVOLUTIONARY BIOL, P780; RIDLEY M, 1996, EVOLUTION; ROFF DA, 2002, LIFE HIST EVOLUTION; Sato A, 2011, ZOOL SCI, V28, P98, DOI 10.2108/zsj.28.98; Sato A, 2010, ETHOLOGY, V116, P524, DOI 10.1111/j.1439-0310.2010.01767.x; Shine R, 1999, OECOLOGIA, V119, P1, DOI 10.1007/s004420050754; Shine R, 2003, J EVOLUTION BIOL, V16, P823, DOI 10.1046/j.1420-9101.2003.00600.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; Travis J., 1989, P185; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Watt PJ, 2001, J FISH BIOL, V59, P843, DOI 10.1006/jfbi.2001.1699; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; WOURMS JP, 1981, AM ZOOL, V21, P473 45 0 0 0 29 SPRINGER TOKYO TOKYO 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN 1341-8998 ICHTHYOL RES Ichthyol. Res. JUL 2011 58 3 255 262 10.1007/s10228-011-0222-6 8 Zoology Zoology 798FB WOS:000293186900009 2019-02-21 J Schlomer, GL; Del Giudice, M; Ellis, BJ Schlomer, Gabriel L.; Del Giudice, Marco; Ellis, Bruce J. Parent-Offspring Conflict Theory: An Evolutionary Framework for Understanding Conflict Within Human Families PSYCHOLOGICAL REVIEW English Article parent-offspring conflict; life history theory; genomic imprinting; prenatal conflict; sibling relations ANTENATAL MATERNAL ANXIETY; HUMAN LIFE-HISTORY; RISK-FACTORS; SOCIAL BRAIN; TERMINAL INVESTMENT; MIDDLE CHILDHOOD; GENE-EXPRESSION; BIRTH-WEIGHT; DEVELOPMENTAL PLASTICITY; SIBLING RELATIONSHIPS Decades of research demonstrate that conflict shapes and permeates a broad range of family processes. In the current article, we argue that greater insight, integration of knowledge, and empirical achievement in the study of family conflict can be realized by utilizing a powerful theory from evolutionary biology that is barely known within psychology: parent-offspring conflict theory (POCT). In the current article, we articulate POCT for psychological scientists, extend its scope by connecting it to the broader framework of life history theory, and draw out its implications for understanding conflict within human families. We specifically apply POCT to 2 instances of early mother-offspring interaction (prenatal conflict and weaning conflict); discuss the effects of genetic relatedness on behavioral conflict between parents, children, and their siblings; review the emerging literature on parent-offspring conflict over the choice of mates and spouses; and examine parent-offspring conflict from the perspective of imprinted genes. This review demonstrates the utility of POCT, not only for explaining what is known about conflict within families but also for generating novel hypotheses, suggesting new lines of research, and moving us toward the "big picture" by integrating across biological and psychological domains of knowledge. [Schlomer, Gabriel L.] Univ Arizona, Norton Sch Family & Consumer Sci, Arizona Ctr Res & Outreach, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ Turin, Dept Psychol, Biol Social Behav Lab, Ctr Cognit Sci, I-10123 Turin, Italy Schlomer, GL (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, Arizona Ctr Res & Outreach, McClelland Pk,650 N Pk Ave, Tucson, AZ 85721 USA. schlomer@email.arizona.edu; marco.delgiudice@unito.it Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 John and Doris Norton Endowment for Fathers, Parenting, and Families, Frances McClelland Institute, University of Arizona Gabriel L. Schlomer and Marco Del Giudice contributed equally to this article. Funding for this international collaboration was provided by the John and Doris Norton Endowment for Fathers, Parenting, and Families, Frances McClelland Institute, University of Arizona. We thank Dario Maestripieri for helpful comments on this article. We also thank Tomas Cabeza De Baca for his assistance on drafts of this article. ABELL TL, 1992, GASTROENTEROL CLIN N, V21, P835; Ahluwalia IB, 2005, PEDIATRICS, V116, P1408, DOI 10.1542/peds.2005-0013; Ainsworth MS, 1978, PATTERNS ATTACHMENT; Allen E, 2003, P NATL ACAD SCI USA, V100, P9940, DOI 10.1073/pnas.1737401100; Altmann J., 1980, BABOON MOTHERS INFAN; *AM DIAB ASS, 2004, DIABETES CARE S1, V27, pS88, DOI DOI 10.2337/DIACARE.27.2007.S88; Andrews PW, 2006, HUM NATURE-INT BIOS, V17, P190, DOI 10.1007/s12110-006-1017-8; Apicella CL, 2004, EVOL HUM BEHAV, V25, P371, DOI 10.1016/j.evolhumbehav.2004.06.003; Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; Apostolou M., 2007, EVOLUTIONARY PSYCHOL, V5, P70; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Apostolou M, 2010, EVOL HUM BEHAV, V31, P39, DOI 10.1016/j.evolhumbehav.2009.06.010; Apostolou M, 2008, EVOL PSYCHOL, V6, P456; Apostolou M, 2008, EVOL PSYCHOL, V6, P303; Arck PC, 2001, HUM REPROD, V16, P1505, DOI 10.1093/humrep/16.7.1505; Arnett JJ, 1999, AM PSYCHOL, V54, P317, DOI 10.1037/0003-066X.54.5.317; Arngrimsson R, 2005, NAT GENET, V37, P460, DOI 10.1038/ng0505-460; BADCOCK C, 2009, IMPRINTED BRAIN GENE; Barash D. P., 2001, MYTH MONOGAMY FIDELI; Barratt MS, 1996, INT J BEHAV DEV, V19, P581, DOI 10.1177/016502549601900308; Barrett L, 2000, ETHOLOGY, V106, P645, DOI 10.1046/j.1439-0310.2000.00577.x; Bartolomei MS, 1997, ANNU REV GENET, V31, P493, DOI 10.1146/annurev.genet.31.1.493; BATESON P, 1994, TRENDS ECOL EVOL, V9, P399, DOI 10.1016/0169-5347(94)90066-3; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Beaudet AL, 2002, AM J HUM GENET, V70, P1389, DOI 10.1086/340969; Beaulieu DA, 2008, EVOL HUM BEHAV, V29, P249, DOI 10.1016/j.evolhumbehav.2008.01.002; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BELSKY J, 1999, HDB ATTACHMENT THEOR, P141; Bereczkei T, 2001, INT J BEHAV DEV, V25, P501, DOI 10.1080/01650250042000573; BERMAN CM, 1993, BEHAV ECOL SOCIOBIOL, V32, P391, DOI 10.1007/BF00168823; BOGIN B, 1997, AM J PHYS ANTHROPOL, V104, P63, DOI DOI 10.1002/(SICI)1096-8644(1997)25+<63::AID-AJPA3>3.0.CO;2-8; Boney CM, 2005, PEDIATRICS, V115, pE290, DOI 10.1542/peds.2004-1808; Borgerhoff Mulder M., 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Bornstein MH, 2007, DEV PSYCHOL, V43, P850, DOI 10.1037/0012-1649.43.4.850; Braza F, 2004, HUM ECOL, V32, P163, DOI 10.1023/B:HUEC.0000019761.98723.af; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; Brown J, 1998, CHILD ABUSE NEGLECT, V22, P1065, DOI 10.1016/S0145-2134(98)00087-8; Brown WM, 2004, MED HYPOTHESES, V63, P377, DOI 10.1016/j.mehy.2004.05.010; Bugental DB, 2010, J EXP CHILD PSYCHOL, V106, P30, DOI 10.1016/j.jecp.2009.10.004; Bugental DB, 2004, DEV PSYCHOL, V40, P234, DOI 10.1037/0012-1649.40.2.234; BUHRMESTER D, 1992, CHILDRENS SIBLING RELATIONS, P19; BUHRMESTER D, 1990, CHILD DEV, V61, P1387, DOI 10.2307/1130750; Buller D., 2005, ADAPTING MINDS; Burch RL, 2000, EVOL HUM BEHAV, V21, P429, DOI 10.1016/S1090-5138(00)00056-8; Buunk AP, 2008, REV GEN PSYCHOL, V12, P47, DOI 10.1037/1089-2680.12.1.47; Buunk AP, 2010, J FAM PSYCHOL, V24, P391, DOI 10.1037/a0020252; Cassidy J., 2008, HDB ATTACHMENT; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; CIRICILLE VG, 1995, SIBLING RELATIONSHIP; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Collins W. A., 2006, CLOSE RELATIONSHIPS, P111; Crespi B, 2008, BEHAV BRAIN SCI, V31, P284, DOI 10.1017/S0140525X08004457; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; CUNNINGHAM AS, 1991, J PEDIATR-US, V118, P659, DOI 10.1016/S0022-3476(05)80023-X; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Daly M., 1988, HOMICIDE; Daly M, 2007, FDN EVOLUTIONARY PSY, P383; DALY M, 2005, COMMUNICATION; Daly M., 1984, INFANTICIDE COMP EVO, P487; Davies W, 2005, NEUROSCI BIOBEHAV R, V29, P421, DOI 10.1016/j.neubiorev.2004.11.007; Davies W, 2008, FRONT NEUROENDOCRIN, V29, P413, DOI 10.1016/j.yfrne.2007.12.001; De Goede IHA, 2009, J YOUTH ADOLESCENCE, V38, P75, DOI 10.1007/s10964-008-9286-7; Del Giudice M., 2011, OXFORD HDB EVOLUTION, P65; Del Giudice M, 2007, MED HYPOTHESES, V68, P250, DOI 10.1016/j.mehy.2006.05.066; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; Dickins BJA, 2008, BEHAV BRAIN SCI, V31, P267, DOI 10.1017/S0140525X08004287; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Drummond H, 2001, ANIM BEHAV, V61, P517, DOI 10.1006/anbe.2000.1641; DUNN J, 1994, DEV PSYCHOL, V30, P315, DOI 10.1037/0012-1649.30.3.315; EASTERLING TR, 1990, OBSTET GYNECOL, V76, P1061; El-Sheikh M, 2004, DEV PSYCHOPATHOL, V16, P631, DOI 10.1017/S0954579404004705; El-Sheikh M, 2001, J ABNORM CHILD PSYCH, V29, P417, DOI 10.1023/A:1010447503252; ELLIS BJ, 2011, EVOLUTIONARY B UNPUB; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; ELLISSCHWABE M, 1986, J PSYCHOL, V120, P59, DOI 10.1080/00223980.1986.9712616; Feig DS, 2008, CAN MED ASSOC J, V179, P229, DOI 10.1503/cmaj.080012; Fessler DMT, 2005, AM J PHYS ANTHROPOL, V127, P95, DOI 10.1002/ajpa.20039; Fisher RA, 1930, GENETICAL THEORY NAT; Flaxman SM, 2008, AM NAT, V172, P54, DOI 10.1086/588081; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Forbes LS, 1997, TRENDS ECOL EVOL, V12, P446, DOI 10.1016/S0169-5347(97)01179-8; Forbes S, 2002, TRENDS ECOL EVOL, V17, P115, DOI 10.1016/S0169-5347(01)02428-4; Fouts HN, 2005, CURR ANTHROPOL, V46, P29, DOI 10.1086/425659; Fouts HN, 2004, ETHNOLOGY, V43, P65, DOI 10.2307/3773856; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; GODFRAY HCJ, 1995, NATURE, V376, P133, DOI 10.1038/376133a0; GODFRAY HCJ, 1991, NATURE, V352, P328, DOI 10.1038/352328a0; GOLDBERG S, 1986, CHILD DEV, V57, P37, DOI 10.2307/1130635; GOMENDIO M, 1991, ANIM BEHAV, V42, P993, DOI 10.1016/S0003-3472(05)80152-6; GOSHEN R, 1994, AM J OBSTET GYNECOL, V170, P700, DOI 10.1016/S0002-9378(94)70254-3; GOTTLANDER K, 1987, ORNIS SCAND, V18, P269, DOI 10.2307/3676895; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Gray SJ, 1996, HUM BIOL, V68, P437; Gregg C, 2010, SCIENCE, V329, P643, DOI 10.1126/science.1190830; Guttman N, 2000, SOC SCI MED, V50, P1457, DOI 10.1016/S0277-9536(99)00387-1; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Haig D, 1996, J EVOLUTION BIOL, V9, P357, DOI 10.1046/j.1420-9101.1996.9030357.x; Haig D, 2004, ANNU REV GENET, V38, P553, DOI 10.1146/annurev.genet.37.110801.142741; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1997, P ROY SOC B-BIOL SCI, V264, P1657, DOI 10.1098/rspb.1997.0230; Haig D, 2003, AM J HUM BIOL, V15, P320, DOI 10.1002/ajhb.10150; Haig D, 2000, PHILOS T ROY SOC B, V355, P1593, DOI 10.1098/rstb.2000.0720; Haig D, 2010, P NATL ACAD SCI USA, V107, P1731, DOI 10.1073/pnas.0904111106; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HETHERINGTON ME, 1999, MONOGRAPHS SOC RES C, V259; HETHERINGTON ME, 1992, CHILD DEV, V57, P227; HOFER H, 1995, REV SUISSE ZOOL, V102, P895; Hofer H, 2008, BEHAV ECOL SOCIOBIOL, V62, P341, DOI 10.1007/s00265-007-0421-3; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Hrdy S. B., 1999, MOTHER NATURE MATERN; Huizink AC, 2002, J AM ACAD CHILD PSY, V41, P1078, DOI 10.1097/01.CHI.0000020276.43550.4B; Isles AR, 2006, PHILOS T R SOC B, V361, P2229, DOI 10.1098/rstb.2006.1942; Jankowiak W, 2000, EVOL HUM BEHAV, V21, P125, DOI 10.1016/S1090-5138(00)00027-1; Johnstone RA, 1996, P ROY SOC B-BIOL SCI, V263, P1677, DOI 10.1098/rspb.1996.0245; Kaplan HS, 2003, OFFSPRING, P170; Keller MC, 2008, BEHAV BRAIN SCI, V31, P273, DOI 10.1017/S0140525X08004342; Kelsey G, 2011, BIOESSAYS, V33, P362, DOI 10.1002/bies.201100004; Khashan AS, 2008, ARCH GEN PSYCHIAT, V65, P146, DOI 10.1001/archgenpsychiatry.2007.20; KILNER R, 1995, P ROY SOC B-BIOL SCI, V260, P343, DOI 10.1098/rspb.1995.0102; Kim KJ, 2001, DEV PSYCHOL, V37, P775, DOI 10.1037/0012-1649.37.6.775; KLOMP H, 1970, ARDEA, V58, P1; Kolliker M, 2005, AM NAT, V166, P506, DOI 10.1086/491687; Kolliker M, 2003, P ROY SOC B-BIOL SCI, V270, pS110, DOI 10.1098/rsbl.2003.0032; Kolliker M, 2001, ANIM BEHAV, V62, P395, DOI 10.1006/anbe.2001.1792; Konner M, 2005, HUNTER GATHERER CHIL, P19; Kushnick G, 2009, J BIOSOC SCI, V41, P183, DOI 10.1017/S0021932008002988; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Langer O, 2005, AM J OBSTET GYNECOL, V192, P989, DOI 10.1016/j.ajog.2004.11.039; LAURSEN B, 1994, PSYCHOL BULL, V115, P197, DOI 10.1037/0033-2909.115.2.197; Laursen B, 1998, CHILD DEV, V69, P817, DOI 10.2307/1132206; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Leonard M, 1996, BEHAV ECOL SOCIOBIOL, V38, P341, DOI 10.1007/s002650050250; Lessells CM, 1999, P ROY SOC B-BIOL SCI, V266, P1637, DOI 10.1098/rspb.1999.0826; LIND T, 1988, DIABETES MELLITUS PR, P75; Lindheimer MD, 2008, J AM SOC HYPERTENS, V2, P484, DOI 10.1016/j.jash.2008.10.001; Long TAF, 2005, J EVOLUTION BIOL, V18, P509, DOI 10.1111/j.1420-9101.2005.00888.x; Luke B, 2007, TWIN RES HUM GENET, V10, P778, DOI 10.1375/twin.10.5.778; Maestripieri D, 2002, INT J PRIMATOL, V23, P923, DOI 10.1023/A:1015537201184; MALKIN CM, 1994, J COMP FAM STUD, V25, P121; Mann J., 1992, ADAPTED MIND EVOLUTI, P367; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; McCarton CM, 1996, PEDIATRICS, V98, P1167; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; McGue M, 2005, DEV PSYCHOL, V41, P971, DOI 10.1037/0012-1649.41.6.974; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; MENDL M, 1988, J ZOOL, V215, P15, DOI 10.1111/j.1469-7998.1988.tb04882.x; MENDL M, 1994, BEHAV PROCESS, V31, P285, DOI 10.1016/0376-6357(94)90013-2; Mersky JP, 2009, CHILD MALTREATMENT, V14, P73, DOI 10.1177/1077559508318399; Miller Geoffrey, 2000, MATING MIND SEXUAL C; Mohler E, 2006, EARLY HUM DEV, V82, P731, DOI 10.1016/j.earlhumdev.2006.02.010; MONTEMAYOR R, 1986, J ADOLESCENT RES, V1, P15, DOI DOI 10.1177/074355488611003; MOORE MP, 1983, BRIT MED J, V287, P580, DOI 10.1136/bmj.287.6392.580; Moreno-Rueda G, 2007, ARDEOLA, V54, P15; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; O'Connor TG, 2006, J CHILD PSYCHOL PSYC, V47, P498, DOI 10.1111/j.1469-7610.2005.01527.x; Ogbuanu CA, 2009, WOMEN HEALTH ISS, V19, P268, DOI 10.1016/j.whi.2009.03.005; Oudejans CBM, 2008, PLACENTA, V29, pS78, DOI 10.1016/j.placenta.2007.09.005; Overpeck MD, 1998, NEW ENGL J MED, V339, P1211, DOI 10.1056/NEJM199810223391706; PAIKOFF RL, 1991, PSYCHOL BULL, V110, P47, DOI 10.1037/0033-2909.110.1.47; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; PARKER GA, 1979, ANIM BEHAV, V27, P1210, DOI 10.1016/0003-3472(79)90068-X; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Pave R, 2010, PRIMATES, V51, P221, DOI 10.1007/s10329-010-0189-3; Pepper GV, 2006, P ROY SOC B-BIOL SCI, V273, P2675, DOI 10.1098/rspb.2006.3633; Pickler RH, 2009, JOGNN-J OBST GYN NEO, V38, P468, DOI 10.1111/j.1552-6909.2009.01043.x; Pollet TV, 2007, EVOL HUM BEHAV, V28, P176, DOI 10.1016/j.evolhumbehav.2006.10.001; Profet M, 1992, ADAPTED MIND EVOLUTI, P327; PRUETT CL, 1993, J DIVORCE REMARRIAGE, V19, P165, DOI 10.1300/J087v19n03_11; PRYCE CR, 1995, MOTHERHOOD IN HUMAN AND NONHUMAN PRIMATES, P1; PUGESEK BH, 1990, BEHAV ECOL SOCIOBIOL, V27, P211; PUGESEK BH, 1995, ANIM BEHAV, V49, P641; PUGESEK BH, 1990, ECOLOGY, V71, P811, DOI 10.2307/1940332; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P1, DOI 10.1016/S1090-5138(02)00104-6; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RAGOZIN AS, 1982, DEV PSYCHOL, V18, P627, DOI 10.1037/0012-1649.18.4.627; Renk K, 2005, FAM J, V13, P139, DOI 10.1177/1066480704271190; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robson A, 1998, INFANT BEHAV DEV, V21, P331, DOI 10.1016/S0163-6383(98)90010-8; Roff Derek A., 1992; Ros HS, 1998, AM J EPIDEMIOL, V147, P1062; Ross Glynis, 2006, Aust Fam Physician, V35, P392; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Royle NJ, 2002, NATURE, V416, P733, DOI 10.1038/416733a; Schalkwyk LC, 2010, AM J HUM GENET, V86, P196, DOI 10.1016/j.ajhg.2010.01.014; Scheper- Hughes N., 1992, DEATH WEEPING VIOLEN; Schlomer GL, 2010, J RES ADOLESCENCE, V20, P287, DOI 10.1111/j.1532-7795.2010.00641.x; Schnitzer PG, 2005, PEDIATRICS, V116, pE687, DOI 10.1542/ped.205-0296; Scott-Phillips TC, 2011, PERSPECT PSYCHOL SCI, V6, P38, DOI 10.1177/1745691610393528; Sear R., 2011, EVOLUTIONARY PSYCHOL, P216; Smetana J, 1999, CHILD DEV, V70, P1447, DOI 10.1111/1467-8624.00105; Smetana J. G, 2005, CONFLICT CONTRADICTI, P69; SMETANA JG, 1991, DEV PSYCHOL, V27, P1000, DOI 10.1037//0012-1649.27.6.1000; SMETANA JG, 1989, CHILD DEV, V60, P1052, DOI 10.2307/1130779; Smiseth PT, 2008, P ROY SOC B-BIOL SCI, V275, P1823, DOI 10.1098/rspb.2008.0199; Smith M., 2007, THESIS; Soltis J, 2004, BEHAV BRAIN SCI, V27, P443; STAMPS J, 1985, BEHAVIOUR, V94, P1, DOI 10.1163/156853985X00253; Steinberg L, 2001, J RES ADOLESCENCE, V11, P1, DOI 10.1111/1532-7795.00001; Steinberg L., 1989, BIOL ADOLESCENT BEHA, V1, P71; STERNS SC, 1992, EVOLUTION LIFE HIST; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; Sulloway F. J., 1996, BORN REBEL BIRTH ORD; SYMONDS EM, 1980, J ROY SOC MED, V73, P871; Temrin H, 2000, P ROY SOC B-BIOL SCI, V267, P943, DOI 10.1098/rspb.2000.1094; Temrin H, 2011, CURR ZOOL, V57, P253, DOI 10.1093/czoolo/57.3.253; Thakkar KN, 2008, BEHAV BRAIN SCI, V31, P277, DOI 10.1017/S0140525X0800438X; THORNHILL R, 1993, HUM NATURE-INT BIOS, V4, P237, DOI 10.1007/BF02692201; Thornhill R, 1997, BIOL REV, V72, P497, DOI 10.1017/S0006323197005082; Tooley GA, 2006, EVOL HUM BEHAV, V27, P224, DOI 10.1016/j.evolhumbahev.2005.10.001; Trillmich F, 2008, BEHAV ECOL SOCIOBIOL, V62, P363, DOI 10.1007/s00265-007-0423-1; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trumbo Stephen T., 1996, Advances in the Study of Behavior, V25, P3; Ubeda F, 2010, EVOLUTION, V64, P2587, DOI 10.1111/j.1558-5646.2010.01015.x; Ubeda F, 2008, ADV EXP MED BIOL, V626, P101; Ubeda F, 2008, PLOS BIOL, V6, P1678, DOI 10.1371/journal.pbio.0060208; Van den Bergh BRH, 2005, NEUROSCI BIOBEHAV R, V29, P237, DOI 10.1016/j.neubiorev.2004.10.007; Van den Bergh BRH, 2004, CHILD DEV, V75, P1085, DOI 10.1111/j.1467-8624.2004.00727.x; Volk A., 2007, EVOLUTIONARY PSYCHOL, V5, P1, DOI DOI 10.1556/JEP.2007.1018; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Wessel J, 2002, ACTA OBSTET GYN SCAN, V81, P1021, DOI 10.1034/j.1600-0412.2002.811105.x; White PA, 2008, BEHAV ECOL SOCIOBIOL, V62, P353, DOI 10.1007/s00265-007-0422-2; Whittingham LA, 2003, ANIM BEHAV, V65, P1203, DOI 10.1006/anbe.2003.2178; Wilcox AJ, 2001, INT J EPIDEMIOL, V30, P1233, DOI 10.1093/ije/30.6.1233; Wilkins JF, 2003, NAT REV GENET, V4, P359, DOI 10.1038/nrg1062; WILKINS JF, 2008, GENOMIC IMPRINTING A, V626; Williams Geroge C, 1966, ADAPTATION NATURAL S; WILSON MI, 1980, J BIOSOC SCI, V12, P333; Zahavi A, 1997, HANDICAP PRINCIPLE M; Zhao Q, 2008, INT J PRIMATOL, V29, P583, DOI 10.1007/s10764-008-9255-8 239 35 36 0 79 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0033-295X 1939-1471 PSYCHOL REV Psychol. Rev. JUL 2011 118 3 496 521 10.1037/a0024043 26 Psychology; Psychology, Multidisciplinary Psychology 792MQ WOS:000292750900004 21604906 2019-02-21 J Marrari, M; Daly, KL; Timonin, A; Semenova, T Marrari, Marina; Daly, Kendra L.; Timonin, Alexander; Semenova, Tatjana The zooplankton of Marguerite Bay, Western Antarctic Peninsula-Part I: Abundance, distribution, and population response to variability in environmental conditions DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY English Article Euphausia superba; Thysanoessa macrura; Euphausia crystallorophias; Copepods; Ostracods; Pteropods; Antarctic Peninsula; Southern Ocean KRILL EUPHAUSIA-SUPERBA; BRANSFIELD STRAIT REGION; DIEL VERTICAL MIGRATION; LIFE-CYCLE STRATEGIES; MARGINAL ICE-ZONE; SOUTHERN-OCEAN; WEDDELL-SEA; SCOTIA SEA; THYSANOESSA-MACRURA; METRIDIA-GERLACHEI The zooplankton community of Marguerite Bay was studied during austral fall of 2001 and 2002 using net and concurrent environmental data. Interannual differences were observed in zooplankton species composition, developmental stages, and abundances, which were linked to unusually high chlorophyll concentrations in the Bellingshausen Sea and Marguerite Bay during spring-summer 2000/2001. Copepod abundance was significantly higher in 2001 than in 2002 (46.3 and 28.3 ind m(-3) in 2001 and 2002, respectively). During 2001, the copepod community was dominated by two species. Calanoides acutus, a herbivore, and Metridia gerlachei, an omnivore, accounted for 46% and 45% of the community, respectively. During 2002, however, several species were relatively abundant, including M. gerlachei, Ctenocalanus spp., C acutus, Oithona spp., and Paraeuchaeta spp. Euphausiids also showed a rapid population response to high chlorophyll levels in 2001. Even though average total euphausiid (juvenile/adult) abundances were similar during both years (0.20 and 0.15 ind m(-3) for 2001 and 2002, respectively), species composition showed marked interannual differences due to varying life history strategies among species. Thysanoessa macrura, which has a relatively rapid development from larval to juvenile stages between spring and fall of the same year, was the most abundant euphausiid in 2001. In contrast, Euphausia crystallorophias and Euphausia superba juvenile/adult populations increased in 2002, owing to a slower development in which larval stages overwinter and recruit to juveniles during the following spring/summer. Other zooplankton groups those were abundant in Marguerite Bay, but showed little variability between years, included ostracods, pteropods, chaetognaths, medusae, amphipods, and mysids. Summer phytoplankton concentrations strongly influenced copepods and euphausiids; however, there were no clear associations between zooplankton distributions and fall environmental conditions (i.e., pigment concentrations and surface salinity) or bottom depth. It is notable that ostracods and pteropods had the highest abundances of non-copepod zooplankton. (C) 2010 Elsevier Ltd. All rights reserved. [Daly, Kendra L.] Univ S Florida, Coll Marine Sci, St Petersburg, FL 33701 USA; [Marrari, Marina] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA; [Timonin, Alexander; Semenova, Tatjana] Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow 117851, Russia Daly, KL (reprint author), Univ S Florida, Coll Marine Sci, 140 7th Ave S, St Petersburg, FL 33701 USA. marina@seawifs.gsfc.nasa.gov NSF [OPP-9910610, OPP-196489] We thank the captain and crew of the R.V. L.M. Gould for support at sea, and Meng Zhou, Yiwu Zhu, Ryan Dorland, Dan Mertes, and Joe Smith for collecting the 1 m2-MOCNESS samples. We are grateful to Jason Zimmerman for assistance with MOCNESS sample analyses, and to Kevin Arrigo and Gert van Dijken for kindly providing sea ice images. We also thank Chuanmin Hu for help with SeaWiFS data processing, and Meng Zhou for assistance with figure preparation. Chlorophyll data for 2001 provided by C. Fritsen. Funding for this research provided by NSF Grant nos. OPP-9910610 and OPP-196489. This publication represents US GLOBEC contribution no. 697. AINLEY DG, 1996, POLAR OCEANOGRAPHY B, P599; Ashjian CJ, 2008, DEEP-SEA RES PT II, V55, P455, DOI 10.1016/j.dsr2.2007.11.016; Ashjian CJ, 2004, DEEP-SEA RES PT II, V51, P2073, DOI 10.1016/j.dsr2.2004.07.025; Atkinson A, 1999, MAR ECOL PROG SER, V176, P63, DOI 10.3354/meps176063; ATKINSON A, 1991, MAR BIOL, V109, P79, DOI 10.1007/BF01320234; ATKINSON A, 1988, POLAR BIOL, V8, P463, DOI 10.1007/BF00264723; Atkinson A, 1998, J MARINE SYST, V15, P289, DOI 10.1016/S0924-7963(97)00081-X; Beardsley RC, 2004, DEEP-SEA RES PT II, V51, P1947, DOI 10.1016/j.dsr.2004.07.031; Brierley AS, 1997, MAR ECOL PROG SER, V150, P87, DOI 10.3354/meps150087; BRINTON E, 1991, DEEP-SEA RES, V38, P1195, DOI 10.1016/0198-0149(91)90102-L; BRINTON E, 1986, POLAR BIOL, V5, P221, DOI 10.1007/BF00446090; Cabal JA, 2002, DEEP-SEA RES PT II, V49, P869, DOI 10.1016/S0967-0645(01)00128-X; Conover R.J., 1991, Journal of Marine Systems, V2, P1, DOI 10.1016/0924-7963(91)90011-I; Croxall J.P., 1984, P533; Daly KL, 2004, POLAR BIOL, V28, P72, DOI 10.1007/s00300-004-0660-y; DALY KL, 1990, LIMNOL OCEANOGR, V35, P1564, DOI 10.4319/lo.1990.35.7.1564; DALY KL, 1988, DEEP-SEA RES, V35, P21, DOI 10.1016/0198-0149(88)90055-6; DALY KL, 2004, DEEP SEA RES 2, V51, P2119; DEIBEL D, 2007, POLYNYAS WINDOWS POL, V74, P271; Donnelly J, 2006, POLAR BIOL, V29, P280, DOI 10.1007/s00300-005-0051-z; EVERSON I, 1986, POLAR BIOL, V6, P83, DOI 10.1007/BF00258257; Fach BA, 2006, DEEP-SEA RES PT I, V53, P987, DOI 10.1016/j.dsr.2006.03.006; Garibotti IA, 2003, MAR ECOL PROG SER, V261, P21, DOI 10.3354/meps261021; HAMNER WM, 1983, SCIENCE, V220, P433, DOI 10.1126/science.220.4595.433; Hempel G., 1985, P266; HEMPEL I, 1980, MEERESFORSCHUNG, V28, P32; Hewitt RP, 2003, AQUAT LIVING RESOUR, V16, P205, DOI 10.1016/S0990-7440(03)00019-6; HOLMHANSEN O, 1991, DEEP-SEA RES, V38, P961, DOI 10.1016/0198-0149(91)90092-T; HOPKINS TL, 1993, DEEP-SEA RES PT I, V40, P81, DOI 10.1016/0967-0637(93)90054-7; HOPKINS TL, 1988, POLAR BIOL, V9, P79, DOI 10.1007/BF00442033; HOPKINS TL, 1985, MAR BIOL, V89, P197, DOI 10.1007/BF00392890; Hunt BPV, 2008, PROG OCEANOGR, V78, P193, DOI 10.1016/j.pocean.2008.06.001; IKEDA T, 1984, J EXP MAR BIOL ECOL, V75, P107, DOI 10.1016/0022-0981(84)90175-8; Ikeda T., 1986, MEM NATN I POLAR RES, V40, P183; Klinck JM, 2004, DEEP-SEA RES PT II, V51, P1925, DOI 10.1016/j.dsr2.2004.08.001; Lancraft TM, 2004, DEEP-SEA RES PT II, V51, P2247, DOI 10.1016/j.dsr2.2004.07.004; Lascara CM, 1999, DEEP-SEA RES PT I, V46, P951, DOI 10.1016/S0967-0637(98)00099-5; LAWS RM, 1985, AM SCI, V73, P26; Loeb V, 1997, NATURE, V387, P897, DOI 10.1038/43174; LOPEZ MDG, 1995, POLAR BIOL, V15, P21; MAKAROV RR, 1979, MAR BIOL, V52, P377, DOI 10.1007/BF00389079; MAKAROV RR, 1981, BIOMASS HDB, V3; Marr J, 1962, DISCOVERY REP, V32, P33; Marrari M, 2008, DEEP-SEA RES PT II, V55, P377, DOI 10.1016/j.dsr2.2007.11.011; Marrari M, 2011, DEEP-SEA RES PT II, V58, P1614, DOI 10.1016/j.dsr2.2010.12.006; Marrari M, 2006, REMOTE SENS ENVIRON, V105, P367, DOI 10.1016/j.rse.2006.07.008; MARSCHALL HP, 1988, POLAR BIOL, V9, P129, DOI 10.1007/BF00442041; MAUCHLINE J, 1981, BIOMASS HDB, V5; Meyer B, 2003, MAR ECOL PROG SER, V257, P167, DOI 10.3354/meps257167; MOFFAT C, 2008, DEEP SEA RES 2, V55, P276; Moline Mark A., 1997, P67; MUJICA A, 1989, PESQUISA ANTARTICA B, V1, P35; Nemoto T., 1958, Scientific Reports of the Whales Research Institute Tokyo, VNo. 13, P193; Niehoff B, 2002, POLAR BIOL, V25, P583, DOI 10.1007/s00300-002-0378-7; NORDHAUSEN W, 1992, MAR ECOL PROG SER, V83, P185, DOI 10.3354/meps083185; NORDHAUSEN W, 1994, POLAR BIOL, V14, P219; OREILLY JE, 2000, SEAWIFS POSTLAUNCH T, V11; PARK T, 1994, B SCRIPPS I OCEANOGR, V29; Parkinson CL, 2002, ANN GLACIOL, V34, P435, DOI 10.3189/172756402781817482; Quetin LB, 2003, MAR BIOL, V143, P833, DOI 10.1007/s00227-003-1130-8; Ross R M, 1996, FDN ECOLOGICAL RES W; ROSS RM, 1983, MAR BIOL, V77, P201, DOI 10.1007/BF00395807; Ross RM, 2008, DEEP-SEA RES PT II, V55, P2086, DOI 10.1016/j.dsr2.2008.04.037; Schnack-Schiel SB, 2001, HYDROBIOLOGIA, V453, P9, DOI 10.1023/A:1013195329066; SCHNACKSCHIEL SB, 1994, SOUTHERN OCEAN ECOLOGY: THE BIOMASS PERSPECTIVE, P79; SCHNACKSCHIEL SB, 1991, MAR ECOL PROG SER, V70, P17, DOI 10.3354/meps070017; SCHNACKSCHIEL SB, 1995, ICES J MAR SCI, V52, P541, DOI 10.1016/1054-3139(95)80068-9; SHAPIRO SS, 1968, J AM STAT ASSOC, V63, P1343, DOI 10.2307/2285889; Siegel V, 1998, POLAR BIOL, V19, P393, DOI 10.1007/s003000050264; Siegel V, 1996, ARCH FISH MAR RES, V44, P115; Siegel V., 1988, P219; SIEGEL V, 1987, MAR BIOL, V96, P483, DOI 10.1007/BF00397966; SIEGEL V, 1989, Archiv fuer Fischereiwissenschaft, V39, P45; SIEGEL V, 1992, ARCH FISCHEREIWISS, V41, P101; Thorpe SE, 2007, DEEP-SEA RES PT I, V54, P792, DOI 10.1016/j.dsr.2007.01.008; Vaughan DG, 1996, NATURE, V379, P328, DOI 10.1038/379328a0; Voronina NM, 1998, J MARINE SYST, V17, P375, DOI 10.1016/S0924-7963(98)00050-5; Wiebe PH, 2004, MAR BIOL, V144, P493, DOI 10.1007/s00227-003-1228-z; Zar J. H., 1984, BIOSTATISTICAL ANAL; ZHOU M, 2004, DEEP SEA RES 2, V51, P209 80 20 20 0 32 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0967-0645 DEEP-SEA RES PT II Deep-Sea Res. Part II-Top. Stud. Oceanogr. JUL-AUG 2011 58 13-16 1599 1613 10.1016/j.dsr2.2010.12.007 15 Oceanography Oceanography 788IM WOS:000292438600008 2019-02-21 J Love, OP; Williams, TD Love, O. P.; Williams, T. D. Manipulating developmental stress reveals sex-specific effects of egg size on offspring phenotype JOURNAL OF EVOLUTIONARY BIOLOGY English Article developmental stress; egg size; European starling (Sturnus vulgaris); maternal effect; offspring quality; sex allocation STARLING STURNUS-VULGARIS; FLUCTUATING ASYMMETRY; FLIGHT PERFORMANCE; REARING CONDITIONS; REPRODUCTIVE INVESTMENT; HAEMATOPUS-OSTRALEGUS; COMPENSATORY GROWTH; IMMUNE-RESPONSE; TIT NESTLINGS; SURVIVAL The general lack of experimental evidence for strong, positive effects of egg size on offspring phenotype has led to suggestions that avian egg size is a neutral trait. To better understand the functional significance of intra-specific variation in egg size as a determinant of offspring fitness within a life-history (sex-specific life-history strategies) and an environmental (poor rearing conditions) context, we experimentally increased developmental stress (via maternal feather-clipping) in the sexually size-dimorphic European starling (Sturnus vulgaris) and measured phenotypic traits in offspring across multiple biological scales. As predicted by life-history theory, sons and daughters had different responses when faced with developmental stress and variation in egg size. In response to developmental stress, small egg size in normally faster-growing sons was associated with catch-up growth prior to attaining larger adult size, resulting in a reduction in developmental stability. Daughters apparently avoided this developmental instability by reducing growth rate and eventual adult body mass and size. Interestingly, large egg size provided offspring with greater developmental flexibility under poor growth conditions. Large-egg sons and daughters avoided the reduction in developmental stability, and daughters also showed enhanced escape performance during flight trials. Furthermore, large egg size resulted in elevated immune responses for both sexes under developmental stress. These findings show that there can be significant, but complex, context-specific effects of egg size on offspring phenotype at least up to fledging, but these can only be demonstrated by appreciating variation in the quality of the offspring environment and life histories. Results are therefore consistent with egg size playing a significant role in shaping the phenotypic outcome of offspring in species that show even greater intra-specific variation in egg size than starlings. [Love, O. P.] Univ Windsor, Windsor, ON N9B 3P4, Canada; [Williams, T. D.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada Love, OP (reprint author), Univ Windsor, 401 Sunset Ave, Windsor, ON N9B 3P4, Canada. olove@uwindsor.ca Natural Sciences and Engineering Research Council of Canada (NSERC) The Davis family at Davistead Dairy Farm generously supported our starling research; E. Rowland, J. Verspoor, E. Chin and L. Sheldon provided countless hours and hard work both in the field and laboratory. We thank C. Semeniuk for extremely helpful comments, and A. Roulin and one anonymous reviewer for help on an earlier version of the manuscript. The Natural Sciences and Engineering Research Council of Canada (NSERC) provided operating grants to TDW and OPL, and under-graduate awards to J. Verspoor and L. Sheldon. Alvarez D, 2007, OIKOS, V116, P1144, DOI 10.1111/j.2007.0030-1299.15861.x; Arnold KE, 2007, J AVIAN BIOL, V38, P356, DOI 10.1111/j.2007.0908-8857.03818.x; Bize P, 2002, OECOLOGIA, V132, P231, DOI 10.1007/s00442-002-0980-y; Blount JD, 2000, TRENDS ECOL EVOL, V15, P47, DOI 10.1016/S0169-5347(99)01774-7; Buchanan KL, 2003, P ROY SOC B-BIOL SCI, V270, P1149, DOI 10.1098/rspb.2003.2330; CABE PR, 1993, BIRDS N AM, P48; Chin EH, 2005, J AVIAN BIOL, V36, P549, DOI 10.1111/j.0908-8857.2005.03496.x; Chin EH, 2009, P ROY SOC B-BIOL SCI, V276, P499, DOI 10.1098/rspb.2008.1294; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Fargallo JA, 2002, ECOL LETT, V5, P95, DOI 10.1046/j.1461-0248.2002.00290.x; Flux J. E. C., 1992, Notornis, V39, P293; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; GROOTHUIS TGG, 2005, NEUROSCI BIOBEHAV R, V29, P325; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; HILL H, 2003, P NATL C UND RES NCU; Inness CLW, 2008, P ROY SOC B-BIOL SCI, V275, P1703, DOI 10.1098/rspb.2008.0357; Jager TD, 2000, IBIS, V142, P603, DOI 10.1111/j.1474-919X.2000.tb04460.x; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Kontiainen P, 2008, J EVOLUTION BIOL, V21, P88, DOI 10.1111/j.1420-9101.2007.01468.x; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Krist M, 2009, J ANIM ECOL, V78, P907, DOI 10.1111/j.1365-2656.2009.01536.x; Lemberget T, 2009, OECOLOGIA, V159, P83, DOI 10.1007/s00442-008-1212-x; Love OP, 2009, GEN COMP ENDOCR, V163, P169, DOI 10.1016/j.ygcen.2008.10.001; Love OP, 2008, AM NAT, V172, pE135, DOI 10.1086/590959; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; McNamara JM, 2005, BEHAV ECOL, V16, P1008, DOI 10.1093/beheco/ari087; MEATHREL CE, 1993, OECOLOGIA, V93, P162, DOI 10.1007/BF00317665; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Pfennig DW, 2000, EVOLUTION, V54, P1738; Pryke SR, 2009, SCIENCE, V323, P1605, DOI 10.1126/science.1168928; Raberg L, 2005, OECOLOGIA, V145, P496, DOI 10.1007/s00442-005-0133-1; REED CWL, 2009, AM NAT, V174, P685; Risch TS, 2000, CAN J ZOOL, V78, P967, DOI 10.1139/cjz-78-6-967; Roulin A, 2009, NATURWISSENSCHAFTEN, V96, P375, DOI 10.1007/s00114-008-0489-2; Rowland E, 2007, J AVIAN BIOL, V38, P612, DOI 10.1111/j.2007.0908-8857.04082.x; Saino N, 2010, P ROY SOC B-BIOL SCI, V277, P1203, DOI 10.1098/rspb.2009.2012; Shuster SM, 2009, P NATL ACAD SCI USA, V106, P10009, DOI 10.1073/pnas.0901132106; Smith HG, 1998, OECOLOGIA, V115, P59, DOI 10.1007/s004420050491; SMITH HG, 1995, ECOLOGY, V76, P1, DOI 10.2307/1940626; Soderman F, 2007, OECOLOGIA, V151, P593, DOI 10.1007/s00442-006-0611-0; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; SWADDLE JP, 1994, ANIM BEHAV, V48, P986, DOI 10.1006/anbe.1994.1327; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; Tschirren B, 2003, J ANIM ECOL, V72, P839, DOI 10.1046/j.1365-2656.2003.00755.x; Van de Pol M, 2006, IBIS, V148, P203, DOI 10.1111/j.1474-919x.2006.00479.x; VANDONGEN S, 2006, J EVOLUTION BIOL, V19, P1727, DOI DOI 10.1111/J.1420-9101.2006.01175.X; Verspoor JJ, 2007, BEHAV ECOL, V18, P967, DOI 10.1093/beheco/arm089; Wagner EC, 2007, PHYSIOL BIOCHEM ZOOL, V80, P293, DOI 10.1086/512586; Walling CA, 2007, BEHAV ECOL SOCIOBIOL, V61, P1007, DOI 10.1007/s00265-006-0333-7; Williams EV, 2003, J AVIAN BIOL, V34, P371, DOI 10.1111/j.0908-8857.2003.02964.x; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WILLIAMS TD, 1994, BIOL REV, V68, P35, DOI DOI 10.1111/J.1469-185X.1994.TB01485.X; Winkler DW, 1995, AUK, V112, P737 59 8 8 0 33 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2011 24 7 1497 1504 10.1111/j.1420-9101.2011.02282.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WK WOS:000292698700011 21569153 Bronze 2019-02-21 J Galimov, Y; Walser, B; Haag, CR Galimov, Y.; Walser, B.; Haag, C. R. Frequency and inheritance of non-male producing clones in Daphnia magna: evolution towards sex specialization in a cyclical parthenogen? JOURNAL OF EVOLUTIONARY BIOLOGY English Article ecological genetics; life history evolution; sex-ratio PULEX; POPULATION; GYNODIOECY; RATIO; REPRODUCTION; CRUSTACEA; GENETICS; PLANT; EGGS In Daphnia (Cladocera, Crustacea), parthenogenetic reproduction alternates with sexual reproduction. Individuals of both sexes that belong to the same parthenogenetic line are genetically identical, and their sex is determined by the environment. Previously, non-male producing (NMP) genotypes have been described in species of the Daphnia pulex group. Such genotypes can only persist through phases of sexual reproduction if they co-occur with normal (MP) genotypes that produce both males and females, and thus the breeding system polymorphism is similar to gynodioecy (coexistence of females with hermaphrodites), which is well known in plants. Here we show that the same breeding system polymorphism also occurs in Daphnia magna, a species that has diverged from D. pulex more than 100 MY ago. Depending on the population, between 0% and 40% of D. magna females do not produce males when experimentally exposed to a concentration of the putative sex hormone methyl farnesoate that normally leads to male-only clutches. Natural broods of these NMP females never contained males, contrasting with high proportions of male offspring in MP females from the same populations. The results from a series of crossing experiments suggest that NMP is determined by a dominant allele at a single nuclear locus (or a several closely linked loci): NMP x MP crosses always yielded 50% NMP and 50% MP offspring, whereas MP x MP crosses always yielded 100% MP offspring. Based on cytochrome c oxidase subunit I-sequences, we found that NMP genotypes from different populations belong to three highly divergent mitochondrial lineages, potentially representing three independent evolutionary origins of NMP in D. magna. Thus, the evolution of NMP genotypes in cyclical parthenogens may be more common than previously thought. Moreover, MP genotypes that coexist with NMP genotypes may have responded to the presence of the latter by partially specializing on male production. Hence, these populations of D. magna may be a model for an evolutionary transition from a purely environmental to a partially genetic sex determination system. [Galimov, Y.] RAS, Inst Dev Biol, Moscow 119334, Russia; [Walser, B.; Haag, C. R.] Univ Fribourg, CH-1700 Fribourg, Switzerland Galimov, Y (reprint author), RAS, Inst Dev Biol, Ul Vavilova 26, Moscow 119334, Russia. yangalimov@gmail.com Haag, Christoph/B-6488-2009; Galimov, Yan/S-6242-2018 Haag, Christoph/0000-0002-8817-1431; Galimov, Yan/0000-0002-8589-0166 Swiss National Science Foundation; Russian Foundation of Basic Research We are grateful to L. Yu. Yampolsky and N.S. Mugue for contributing materials and for helpful advice and discussions throughout the project. We thank V. R. Alekseev and D. Ebert for contributing samples, C. Haag-Liautard, A. A. Minin, and E. F. Uryuppova for advice and comments, and Moscow Zoo and N. I. Skuratov for sampling permits and support. We are grateful to two anonymous reviewers for their comments that helped to improve the manuscript. This work has been supported by the Swiss National Science Foundation and the Russian Foundation of Basic Research. Agresti A, 1998, AM STAT, V52, P119, DOI 10.2307/2685469; Bailey MF, 2005, EVOLUTION, V59, P287; Barr CM, 2004, J EVOLUTION BIOL, V17, P786, DOI 10.1111/j.1420-9101.2004.00732.x; Burland T G, 2000, Methods Mol Biol, V132, P71; Carmona MJ, 2009, J EVOLUTION BIOL, V22, P1975, DOI 10.1111/j.1420-9101.2009.01811.x; CHARLESWORTH B, 1978, AM NAT, V112, P975, DOI 10.1086/283342; Charlesworth D, 2006, CURR BIOL, V16, pR726, DOI 10.1016/j.cub.2006.07.068; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; Colbourne JK, 1996, PHILOS T ROY SOC B, V351, P349, DOI 10.1098/rstb.1996.0028; De Gelas K, 2005, MOL ECOL, V14, P753, DOI 10.1111/j.1365-294X.2004.02434.x; De Meester L, 1999, P ROY SOC B-BIOL SCI, V266, P2471; Delph LF, 2007, TRENDS ECOL EVOL, V22, P17, DOI 10.1016/j.tree.2006.09.013; DEMEESTER L, 1993, FRESHWATER BIOL, V30, P219; Ebert D., 1993, Russian Journal of Aquatic Ecology, V1, P143; Fitzsimmons JM, 2005, J PLANKTON RES, V27, P121, DOI 10.1093/plankt/fbh145; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Haag CR, 2002, EVOLUTION, V56, P518; Innes DJ, 2000, P ROY SOC B-BIOL SCI, V267, P991, DOI 10.1098/rspb.2000.1101; Innes DJ, 1997, OECOLOGIA, V111, P53, DOI 10.1007/s004420050207; INNES DJ, 1993, J EVOLUTION BIOL, V6, P559, DOI 10.1046/j.1420-9101.1993.6040559.x; INNES DJ, 1989, J HERED, V80, P6, DOI 10.1093/oxfordjournals.jhered.a110791; INNES DJ, 1988, EVOLUTION, V42, P1024, DOI 10.1111/j.1558-5646.1988.tb02521.x; KLUTTGEN B, 1994, WATER RES, V28, P743, DOI 10.1016/0043-1354(94)90157-0; LLOYD DG, 1975, GENETICA, V45, P325, DOI 10.1007/BF01508307; Lynch M, 2008, GENETICS, V180, P317, DOI 10.1534/genetics.107.084657; MERCOT H, 1995, J EVOLUTION BIOL, V8, P283, DOI 10.1046/j.1420-9101.1995.8030283.x; MITCHELL SE, 1995, J ANIM ECOL, V64, P777, DOI 10.2307/5856; Montero-Pau J, 2008, LIMNOL OCEANOGR-METH, V6, P218, DOI 10.4319/lom.2008.6.218; Olmstead AW, 2002, J EXP ZOOL, V293, P736, DOI 10.1002/jez.10162; Rispe C, 1999, OIKOS, V86, P254, DOI 10.2307/3546443; ROSS M D, 1970, Evolution, V24, P827, DOI 10.1111/j.1558-5646.1970.tb01820.x; Scharer L, 2009, EVOLUTION, V63, P1377, DOI 10.1111/j.1558-5646.2009.00669.x; Tessier AJ, 2004, ECOL LETT, V7, P695, DOI 10.1111/j.1461-0248.2004.00627.x; van Damme JMM, 2004, HEREDITY, V93, P175, DOI 10.1038/sj.hdy.6800490; Yampolsky LY, 2005, ZH OBSHCH BIOL, V66, P416; YAMPOLSKY LY, 1992, EVOLUTION, V46, P833, DOI 10.1111/j.1558-5646.1992.tb02089.x; YAMPOLSKY LY, 1992, GENETIKA+, V28, P41 37 21 22 0 19 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. JUL 2011 24 7 1572 1583 10.1111/j.1420-9101.2011.02288.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 791WK WOS:000292698700017 21599772 2019-02-21 J Bergh, NG; Verboom, GA Bergh, Nicola G.; Verboom, G. Anthony ANOMALOUS CAPITULUM STRUCTURE AND MONOECY MAY CONFER FLEXIBILITY IN SEX ALLOCATION AND LIFE HISTORY EVOLUTION IN THE IFLOGA LINEAGE OF PAPER DAISIES (COMPOSITAE: GNAPHALIEAE) AMERICAN JOURNAL OF BOTANY English Article annual; capitulum; Gnaphalieae; gynomonoecy; Ifloga; life-history evolution; monoecy; perennial; sex allocation; sex ratio; sexual system ANCESTRAL CHARACTER STATES; SQUARED-CHANGE PARSIMONY; HELIANTHEAE SENSU-LATO; POLLEN-OVULE RATIOS; FLOWERING PLANTS; PHYLOGENETIC ANALYSIS; SOUTHERN-AFRICA; ASTERACEAE; SELECTION; SYSTEMS Premise of the study: Evolutionary significance of the Compositae capitulum and variation in its structure is poorly understood, although it may permit flexibility in sexual expression. Optimal sex ratio differs with life-history and reproductive strategy. We explore how the genus Ifloga and related members of southern African Gnaphalieae achieved different sex ratios, and the associations of these ratios with annual and perennial life history. Methods: Sex allocation was measured using the male to female ratio (M/F), a novel approximator of the pollen to ovule ratio (P/O). Life-history (annuality/perenniality), capitulum structure, capitular sexual system, and M/F were reconstructed on time-proportional phylogenies. Trait associations were examined using phylogenetically independent contrasts (PICs). Key results: Annual taxa have strongly female-biased capitula, as measured by M/F, and either gynomonoecious or monoecious sexual systems, while perennials have equal or male-biased capitula that are hermaphroditic or monoecious. These results are largely supported by PIC analysis. Different sexual systems afford differing flexibility in sex allocation, with hermaphrodites having the least, and monoecious taxa the greatest, range in M/F. Within Ifloga, the anomalous capitulum evolved in an annual, gynomonoecious ancestor, followed by two independent gains of monoecy. Two subsequent gains of perenniality occurred within a monoecious sublineage. Conclusions: Different life histories have divergent sex allocation optima and are strongly associated with different sexual systems in gnaphalioid daisies. An anomalous capitulum structure in Ifloga may have facilitated the evolution of monoecy, which in turn may be linked to the evolution of life-history diversity in the genus. [Bergh, Nicola G.] S African Natl Biodivers Inst, Compton Herbarium, Kirstenbosch Res Ctr, ZA-7735 Cape Town, South Africa; [Bergh, Nicola G.; Verboom, G. Anthony] Univ Cape Town, Bolus Herbarium, Dept Bot, ZA-7925 Cape Town, South Africa Bergh, NG (reprint author), S African Natl Biodivers Inst, Compton Herbarium, Kirstenbosch Res Ctr, Private Bag X7, ZA-7735 Cape Town, South Africa. n.bergh@sanbi.org.za Compton Herbarium (South African National Biodiversity Institute); University of Cape Town; National Research Foundation of South Africa The authors thank C. Trisos for discussions on the biology of Ifloga; J. Slingsby for help with R software; staff of PRE and WIND herbaria for loan of material and of PRE in particular for permission to extract DNA from herbarium material of I. spicata and I. glomerata, I. and C. Jardine for locality information and material of I. decumbens; A. le Roux (Succulent Karoo Knowledge Centre) for research space and accommodation; Northern and Western Cape Nature Conservation for collecting permits; D. Gwynne-Evans, P.O. Karis, M. Koekemoer, V. Hoffmann, and T. Moore for field-trip assistance and / or plant specimens; and the Compton Herbarium (South African National Biodiversity Institute), University of Cape Town and National Research Foundation of South Africa for funding. ABBOTT RJ, 1985, NEW PHYTOL, V101, P219, DOI 10.1111/j.1469-8137.1985.tb02828.x; Adamson RS, 1934, ANN BOT-LONDON, V48, P505, DOI 10.1093/oxfordjournals.aob.a090462; AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Anderberg A. A., 1991, OPERA BOT, V104, P1; Archibald JK, 2005, SYST BOT, V30, P196, DOI 10.1600/0363644053661977; ASHMAN TL, 1992, ECOLOGY, V73, P1237, DOI 10.2307/1940672; Baldwin BG, 2002, SYST BOT, V27, P161; Baldwin BG, 2009, SYSTEMATICS EVOLUTIO, P689; BATTJES J, 1993, AM J BOT, V80, P419, DOI 10.2307/2445389; Bayer RJ, 2000, AM J BOT, V87, P259, DOI 10.2307/2656914; Bena G, 1998, P ROY SOC B-BIOL SCI, V265, P1141, DOI 10.1098/rspb.1998.0410; Bentham G., 1873, GENERA PLANTARUM 1, V2, P163; BERGH NG, TAXON; BERGH NG, 2009, THESIS U CAPE TOWN C; Bergh NG, 2009, MOL PHYLOGENET EVOL, V51, P5, DOI 10.1016/j.ympev.2008.09.001; Bertin RI, 2002, BIOL J LINN SOC, V77, P413, DOI 10.1046/j.1095-8312.2002.00137.x; Bertin RI, 1998, AM J BOT, V85, P235, DOI 10.2307/2446311; Bertin RI, 2010, BIOL J LINN SOC, V101, P544, DOI 10.1111/j.1095-8312.2010.01508.x; BEYERS JBP, 1995, BOTHALIA, V25, P107; BREMER K, 1978, BOT NOTISER, V131, P369; Bremer K., 1976, OPERA BOT, V40, P1; BURTT BL, 1977, BIOL CHEM COMPOSITAE, V1, P41; Carlquist S., 1962, Phytomorphology, V12, P30; CARLQUIST S, 1966, ALISO, V6, P1; Carlquist S, 1957, TROP WOODS, V106, P29; CARLQUIST SHERWIN, 1961, ALISO, V5, P21; CARLQUIST SHERWIN, 1960, TROPICAL WOODS, V113, P54; CARLQUIST SHERWIN, 1958, TROPICAL WOODS, V108, P1; Chan R, 2002, AM J BOT, V89, P1103, DOI 10.3732/ajb.89.7.1103; Chan R, 2001, INT J PLANT SCI, V162, P1347, DOI 10.1086/323277; CHARNOV E L, 1982; CRONQUIST ARTHUR, 1955, AMER MIDLAND NAT, V53, P478, DOI 10.2307/2422084; CRUDEN RW, 1977, EVOLUTION, V31, P32, DOI 10.1111/j.1558-5646.1977.tb00979.x; Cruden RW, 2000, PLANT SYST EVOL, V222, P143, DOI 10.1007/BF00984100; de Jong TJ, 2008, EVOL ECOL RES, V10, P1087; DIETTERT R. A., 1938, LLOYDIA, V1, P3; Drummond A. J., 2007, ROUGH GUIDE BEAST 1; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; FARRIS JS, 1970, SYST ZOOL, V19, P83, DOI 10.2307/2412028; FAYED AA, 1988, SYSTEMATIC REVISION, V3, P115; Feild TS, 2003, INT J PLANT SCI, V164, pS129, DOI 10.1086/374193; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Franks SJ, 2007, P NATL ACAD SCI USA, V104, P1278, DOI 10.1073/pnas.0608379104; GALBANYCASALS M, 2010, TAXON, V56, P1671; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Harder LD, 2010, PHILOS T R SOC B, V365, P529, DOI 10.1098/rstb.2009.0226; HARRIS EM, 1995, BOT REV, V61, P93, DOI 10.1007/BF02887192; Harris EM, 1999, BOT REV, V65, P348, DOI 10.1007/BF02857754; Heads M, 2005, CLADISTICS, V21, P62, DOI 10.1111/j.1096-0031.2005.00052.x; Hilliard O.M., 1983, FLORA SO AFRICA 7, V33; HILLIARD OM, 1981, BOT J LINN SOC, V82, P181; HILLIARD OM, 1981, BOT J LINN SOC, V82, P293; Huelsenbeck JP, 2002, SYST BIOL, V51, P673, DOI 10.1080/10635150290102366; Huelsenbeck JP, 2002, SYST BIOL, V51, P32, DOI 10.1080/106351502753475862; HUEY RB, 1987, EVOLUTION, V41, P1098, DOI 10.1111/j.1558-5646.1987.tb05879.x; Jurgens A, 2002, SEX PLANT REPROD, V14, P279, DOI 10.1007/s00497-001-0124-2; Kalisz S, 2003, ECOLOGY, V84, P2928, DOI 10.1890/02-0519; Karis P. O., 1989, OPERA BOT, V99, P1; Katinas L, 2000, SYST BOT, V25, P33, DOI 10.2307/2666671; KOEHNE E, 1869, THESIS FREIDRICHWILH; Koekemoer M, 1999, BOTHALIA, V29, P65; KOEKEMOER M, 1993, BOTHALIA, V23, P197; Koekemoer M., 2002, THESIS RAND AFRIKAAN; LAWALREE A, 1948, CELLULE, V52, P214; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; LLOYD DAVID G., 1965, CONTRIB GRAY HERB HARVARD UNIV, V195, P3; LLOYD DG, 1980, NEW ZEAL J BOT, V18, P103, DOI 10.1080/0028825X.1980.10427235; LLOYD DG, 1979, AM NAT, V113, P67, DOI 10.1086/283365; LLOYD DG, 1989, MORE EXACT ECOLOGY, P185; Lundberg J, 2009, SYSTEMATICS EVOLUTIO, P157; Maddison W. P, 2010, MESQUITE MODULAR SYS; MADDISON WP, 1991, SYST ZOOL, V40, P304, DOI 10.2307/2992324; MCARDLE B, 1994, SYST BIOL, V43, P573, DOI 10.2307/2413555; Michalski SG, 2009, NEW PHYTOL, V183, P470, DOI 10.1111/j.1469-8137.2009.02861.x; Moss EH, 1940, AM J BOT, V27, P762, DOI 10.2307/2436903; Nylander J. A. A, 2004, MRMODELTEST V2; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; Pagel M, 2006, AM NAT, V167, P808, DOI 10.1086/503444; Panero JL, 1999, P NATL ACAD SCI USA, V96, P13886, DOI 10.1073/pnas.96.24.13886; Pelser P. B., 2009, SYSTEMATICS EVOLUTIO, P495; Pfeil BE, 2009, TAXON, V58, P511, DOI 10.1002/tax.582015; R Development Core Team, 2010, R LANG ENV STAT COMP; Rambaut A, 2003, TRACER V1 3 MCMC TRA; RENNER SS, 1995, AM J BOT, V82, P596, DOI 10.2307/2445418; RICHARDS AJ, 1986, PLANT SEXUAL SYSTEMS; Scofield DG, 2006, P ROY SOC B-BIOL SCI, V273, P275, DOI 10.1098/rspb.2005.3304; SHARMAN KV, 1988, AUST J BOT, V36, P575, DOI 10.1071/BT9880575; Simpson GG., 1953, MAJOR FEATURES EVOLU; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith SA, 2008, SCIENCE, V322, P86, DOI 10.1126/science.1163197; Stebbins G.L., 1977, BIOL CHEM COMPOSITAE, VI, P41; STUESSY TF, 1988, TAXON, V37, P114, DOI 10.2307/1220938; SWOFFORD DL, 1987, MATH BIOSCI, V87, P199, DOI 10.1016/0025-5564(87)90074-5; Torices R, 2009, AM J BOT, V96, P1011, DOI 10.3732/ajb.0800231; TRAVESET A, 1992, AM MIDL NAT, V127, P309, DOI 10.2307/2426537; Verboom GA, 2004, AM J BOT, V91, P1364, DOI 10.3732/ajb.91.9.1364; Ward J, 2009, SYSTEMATICS EVOLUTIO, P539; Webb C, 2009, PHYLOCOM SOFTWARE AN; Weiblen GD, 2000, AM NAT, V155, P46, DOI 10.1086/303303; WILLSON MF, 1979, AM NAT, V113, P777, DOI 10.1086/283437; Willson MF., 1983, PLANT REPROD ECOLOGY; Yampolsky C, 1922, BIBLIOTHECA GENETICA, V3, P1 103 3 4 1 15 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. JUL 2011 98 7 1113 1127 10.3732/ajb.1000457 15 Plant Sciences Plant Sciences 787LF WOS:000292377000019 21700801 Bronze 2019-02-21 J Lewis, Z; Wedell, N; Hunt, J Lewis, Zenobia; Wedell, Nina; Hunt, John EVIDENCE FOR STRONG INTRALOCUS SEXUAL CONFLICT IN THE INDIAN MEAL MOTH, PLODIA INTERPUNCTELLA EVOLUTION English Article Antagonistic selection; genetic covariance matrix; intralocus sexual conflict; life-history; Plodia interpunctella LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; QUANTITATIVE GENETICS; ONTOGENIC CONFLICT; ATTRACTIVE TRAITS; SIZE DIMORPHISM; EGG-PRODUCTION; X-CHROMOSOME; BODY-SIZE; SELECTION Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70 degrees. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species. [Lewis, Zenobia; Wedell, Nina; Hunt, John] Univ Exeter, Ctr Ecol & Conservat, Penryn TR10 9EZ, Cornwall, England Lewis, Z (reprint author), Univ Exeter, Ctr Ecol & Conservat, Cornwall Campus, Penryn TR10 9EZ, Cornwall, England. J.Hunt@exeter.ac.uk Hunt, John/F-1279-2014 Hunt, John/0000-0002-4962-8750; Lewis, Zenobia/0000-0001-9464-7638 Biotechnology and Biological Sciences Research Council; Japan Society for the Promotion of Science; Leverhulme Trust; Natural Environmental Research Council; Royal Society; Natural Environment Research Council [NE/G016399/1] We thank S. Sait, K. Kirby, T. Cameron, and M. Gage for providing insects and rearing advice, and T. Price for comments on the manuscript. S. Chenoweth and D. Punzalan also provided helpful advice on data analysis. This work was supported by a Biotechnology and Biological Sciences Research Council studentship (NW), the Japan Society for the Promotion of Science (ZL), the Leverhulme Trust (NW), Natural Environmental Research Council (NW, JH) and the Royal Society (NW, JH). Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Barker BS, 2010, EVOLUTION, V64, P2601, DOI 10.1111/j.1558-5646.2010.01023.x; Bisgaard S, 1996, TECHNOMETRICS, V38, P238, DOI 10.2307/1270607; BLOWS M, 2007, ADAPTATION FITNESS A, P83; Blows MW, 2007, J EVOLUTION BIOL, V20, P1, DOI 10.1111/j.1420-9101.2006.01164.x; Blows MW, 2003, EVOLUTION, V57, P1622; Blows MW, 2003, AM NAT, V162, P815, DOI 10.1086/378905; Bonduriansky R, 2005, EVOLUTION, V59, P138, DOI 10.1111/j.0014-3820.2005.tb00901.x; BONDURIANSKY R, 2007, AM NAT, V167, P9; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brommer JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000744; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; Chenoweth SF, 2005, AM NAT, V165, P281, DOI 10.1086/427271; Chenoweth SF, 2010, AM NAT, V175, P186, DOI 10.1086/649594; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P1671, DOI 10.1073/pnas.041378098; Cook PA, 1997, PHILOS T ROY SOC B, V352, P771, DOI 10.1098/rstb.1997.0061; Cook PA, 1999, J INSECT BEHAV, V12, P767, DOI 10.1023/A:1020952909933; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Day T, 2004, GENETICS, V167, P1537, DOI 10.1534/genetics.103.026211; Draper N.R., 1981, APPL REGRESSION ANAL; DRAPER NR, 1988, TECHNOMETRICS, V30, P423, DOI 10.2307/1269805; Ellegren H, 2007, NAT REV GENET, V8, P689, DOI 10.1038/nrg2167; FAIRBAIRN DJ, 2006, HEREDITY, P1; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fedorka KM, 2004, NATURE, V429, P65, DOI 10.1038/nature02492; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Foley B, 2007, GENETICS, V175, P1465, DOI 10.1534/genetics.106.065771; Fry J. D., 2004, GENETIC ANAL COMPLEX, P11; GAGE MJG, 1994, FUNCT ECOL, V8, P594, DOI 10.2307/2389920; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; Gavrilets S, 2005, EVOL ECOL, V19, P167, DOI 10.1007/s10682-004-7916-4; Green P, 1994, NONPARAMETRIC REGRES; GRULA JW, 1980, EVOLUTION, V34, P688, DOI 10.1111/j.1558-5646.1980.tb04007.x; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hunt John, 2010, P46; Ingleby FC, 2010, ANIM BEHAV, V80, P37, DOI 10.1016/j.anbehav.2010.03.022; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; KOKKO H, 2003, ANN ZOOL FENN, V40, P201; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LEWIS Z, 2005, THESIS U LEEDS LEEDS; LONG AD, 1995, GENETICS, V139, P1273; Long TAF, 2007, P ROY SOC B-BIOL SCI, V274, P3105, DOI 10.1098/rspb.2007.1140; Lynch M, 1998, GENETICS ANAL QUANTI; Mainguy J, 2009, P ROY SOC B-BIOL SCI, V276, P4067, DOI 10.1098/rspb.2009.1231; McIntyre LM, 2006, GENOME BIOL, V7, DOI 10.1186/gb-2006-7-8-r79; Merila J, 1997, MOL ECOL, V6, P1167, DOI 10.1046/j.1365-294X.1997.00295.x; Merila J, 1998, EVOLUTION, V52, P870, DOI 10.1111/j.1558-5646.1998.tb03711.x; Mitchell-Olds T., 1987, EVOLUTION, V41, P1139, DOI 10.2307/2409084; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Parker GA, 1998, PHILOS T R SOC B, V353, P261, DOI 10.1098/rstb.1998.0208; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Partridge L, 1998, SCIENCE, V281, P2003, DOI 10.1126/science.281.5385.2003; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Pischedda A, 2006, PLOS BIOL, V4, P2099, DOI 10.1371/journal.pbio.0040356; Poissant J, 2008, P R SOC B, V275, P623, DOI 10.1098/rspb.2007.1361; Prasad NG, 2007, AM NAT, V169, P29, DOI 10.1086/509941; PRICE DK, 1993, HEREDITY, V71, P405, DOI 10.1038/hdy.1993.155; PRICE DK, 1994, AM NAT, V144, P908, DOI 10.1086/285718; PROWELL DP, 1998, ENDLESS FORMS SPECIE, P209; Rand DM, 2001, GENETICS, V159, P173; Reid J., 1976, MOTHS BUTTERFLIES GR, V1, P117; Reynolds RJ, 2010, EVOLUTION, V64, P1076, DOI 10.1111/j.1558-5646.2009.00874.x; Rhen T, 2007, SEX DEV, V1, P255, DOI 10.1159/000104775; RICE WR, 1984, EVOLUTION, V38, P735, DOI 10.1111/j.1558-5646.1984.tb00346.x; Rice WR, 2002, GENETICA, V116, P179, DOI 10.1023/A:1021205130926; Rice WR, 2001, J EVOLUTION BIOL, V14, P685, DOI 10.1046/j.1420-9101.2001.00319.x; Rice WR, 1996, NATURE, V381, P232, DOI 10.1038/381232a0; SPERLING FAH, 1994, CAN ENTOMOL, V126, P807, DOI 10.4039/Ent126807-3; Stillwell RC, 2010, P ROY SOC B-BIOL SCI, V277, P2069, DOI 10.1098/rspb.2009.2277; Stinchecombe J. R., 2008, EVOLUTION, V62, P2345; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Traut W, 1996, Q REV BIOL, V71, P239, DOI 10.1086/419371; Vicoso B, 2006, NAT REV GENET, V7, P645, DOI 10.1038/nrg1914; Wedell N, 2006, EVOLUTION, V60, P1638, DOI 10.1554/06-018.1; Wedell N, 2006, ANIM BEHAV, V71, P999, DOI 10.1016/j.anbehav.2005.06.023; Wedell N, 2009, BIOL LETTERS, V5, P678, DOI 10.1098/rsbl.2009.0452 80 66 66 1 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUL 2011 65 7 2085 2097 10.1111/j.1558-5646.2011.01267.x 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 788LS WOS:000292447000022 21729062 Bronze 2019-02-21 J Chasnov, JR Chasnov, Jeffrey R. EVOLUTION OF INCREASED SELF-SPERM PRODUCTION IN POSTDAUER HERMAPHRODITIC NEMATODES EVOLUTION English Article Adaptation; Caenorhabditis elegans; life-history evolution; reproductive strategies CAENORHABDITIS-ELEGANS A recent study suggests that postdauer Caenorhabditis elegans hermaphrodites produce more self-sperm and have larger brood sizes than worms that bypass diapause. Why might natural selection favor increased self-sperm production in postdauer hermaphrodites? This question is addressed by developing an age-structured model for an exponentially growing worm population descending from a founder postdauer hermaphrodite. It is assumed that natural selection favors those founders that have the largest number of living descendants at some fixed future time. Increased self-sperm production in postdauer hermaphrodites can then evolve when the diapause-bypassing descendants suffer a higher mortality rate than their parental postdauer founders. Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China Chasnov, JR (reprint author), Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China. jeffrey.chasnov@ust.hk Chasnov, Jeffrey/0000-0002-1573-028X Research Grants Council, Hong Kong [600406] I thank Zhu Weiming for his preliminary work on this problem during his Summer Undergraduate Research Opportunities Program (UROP). This study was supported by a grant from the Research Grants Council, Hong Kong (Project No. 600406). BARKER DM, 1992, EVOLUTION, V46, P1951, DOI 10.1111/j.1558-5646.1992.tb01181.x; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; Charlesworth B., 1980, EVOLUTION AGE STRUCT; CICHE T, 2007, BIOL GENOME HETERORH; Cutter AD, 2004, EVOLUTION, V58, P651, DOI 10.1111/j.0014-3820.2004.tb01687.x; Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050; Fisher RA, 1930, GENETICAL THEORY NAT; Hall SE, 2010, CURR BIOL, V20, P149, DOI 10.1016/j.cub.2009.11.035; HODGKIN J, 1991, P ROY SOC B-BIOL SCI, V246, P19, DOI 10.1098/rspb.1991.0119; HOTEZ P, 1993, PARASITOL TODAY, V9, P23, DOI 10.1016/0169-4758(93)90159-D; Ogawa A, 2009, CURR BIOL, V19, P67, DOI 10.1016/j.cub.2008.11.063; RIDDLE D. L., 1997, C ELEGANS; Van Voorhies WA, 2005, BIOL LETTERS, V1, P247, DOI 10.1098/rsbl.2004.0278; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1 14 2 2 0 5 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution JUL 2011 65 7 2117 2122 10.1111/j.1558-5646.2011.01272.x 6 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 788LS WOS:000292447000025 21729065 2019-02-21 J Spencer, RJ; Janzen, FJ Spencer, Ricky-John; Janzen, Fredric J. Hatching Behavior in Turtles INTEGRATIVE AND COMPARATIVE BIOLOGY English Article PIG-NOSED TURTLE; LIFE-HISTORY STAGE; SEA-TURTLES; CARETTOCHELYS-INSCULPTA; HATCHLING TURTLES; CARETTA-CARETTA; CHRYSEMYS-PICTA; PREDATION RISK; REPRODUCTIVE SYNCHRONY; NOCTURNAL EMERGENCE Incubation temperature plays a prominent role in shaping the phenotypes and fitness of embryos, including affecting developmental rates. In many taxa, including turtles, eggs are deposited in layers such that thermal gradients alter developmental rates within a nest. Despite this thermal effect, a nascent body of experimental work on environmentally cued hatching in turtles has revealed unexpected synchronicity in hatching behavior. This review discusses environmental cues for hatching, physiological mechanisms behind synchronous hatching, proximate and ultimate causes for this behavior, and future directions for research. Four freshwater turtle species have been investigated experimentally, with hatching in each species elicited by different environmental cues and responding via various physiological mechanisms. Hatching of groups of eggs in turtles apparently involves some level of embryo-embryo communication and thus is not a purely passive activity. Although turtles are not icons of complex social behavior, life-history theory predicts that the group environment of the nest can drive the evolution of environmentally cued hatching. [Spencer, Ricky-John] Univ Western Sydney, Sch Nat Sci, Water & Wildlife Ecol Grp WWE, Penrith, NSW 1797, Australia; [Spencer, Ricky-John] Univ Western Sydney, Sch Nat Sci, NPAU, Penrith, NSW 1797, Australia; [Janzen, Fredric J.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA Spencer, RJ (reprint author), Univ Western Sydney, Sch Nat Sci, Water & Wildlife Ecol Grp WWE, Locked Bag 1797, Penrith, NSW 1797, Australia. ricky.spencer@uws.edu.au School of Natural Sciences at the University of Western Sydney; Division of Animal Behavior (SICB) We are particularly grateful to K. Martin, K. Warkentin, and R. Strauthman for the invitation to present a manuscript to ICB and for organizing the symposium "Environmentally Cued Hatching across Taxa: Embryos Choose A Birthday" at the SICB 2011 annual conference. We also thank the Division of Animal Behavior (SICB) for sponsoring the symposium. This review was stimulated by valuable discussions with J. McGlashan and M. Thompson.; A research grant from the School of Natural Sciences at the University of Western Sydney supported travel to the symposium. Andrews R.M., 2004, P75; Birchard GF, 2000, J THERM BIOL, V25, P287, DOI 10.1016/S0306-4565(99)00100-X; BIRCHARD GF, 1995, PHYSIOL ZOOL, V65, P799; Booth D.T., 1991, P325, DOI 10.1017/CBO9780511585739.021; Bowen KD, 2005, J ZOOL, V267, P397, DOI 10.1017/S0952836905007533; BRADBURY IR, 2005, LIMN OCEANOG, V86, P1873; Brent G A, 2000, Rev Endocr Metab Disord, V1, P27, DOI 10.1023/A:1010056202122; BUSTARD HR, 1967, NATURE, V214, P317, DOI 10.1038/214317a0; Buys N, 1998, AVIAN PATHOL, V27, P605, DOI 10.1080/03079459808419391; Cann J, 1998, AUSTR FRESHWATER TUR; CARR ARCHIE, 1961, ANIMAL BEHAVIOUR, V9, P68, DOI 10.1016/0003-3472(61)90051-3; Cassar-Malek I, 2007, DOMEST ANIM ENDOCRIN, V33, P91, DOI 10.1016/j.domaniend.2006.04.011; Chivers DP, 2001, OIKOS, V92, P135, DOI 10.1034/j.1600-0706.2001.920116.x; Colbert PL, 2010, FUNCT ECOL, V24, P112, DOI 10.1111/j.1365-2435.2009.01602.x; Costanzo JP, 2008, J EXP ZOOL PART A, V309A, P297, DOI 10.1002/jez.460; Crossley DA, 2003, J EXP BIOL, V206, P2703, DOI 10.1242/jeb.00476; DAVIES JC, 1983, CAN J ZOOL, V59, P1201; De Smit L, 2006, COMP BIOCHEM PHYS A, V145, P166, DOI 10.1016/j.cbpa.2006.06.046; DECUYPERE E, 1991, POULT SCI S, V22, P239; Deeming D. C., 1991, EGG INCUBATION ITS E; Depari Joseph A., 1996, Chelonian Conservation and Biology, V2, P5; Dewil E, 1996, BRIT POULTRY SCI, V37, P1003, DOI 10.1080/00071669608417931; DMIEL R, 1967, COPEIA, P332; Doody JS, 2003, J ZOOL, V259, P179, DOI 10.1017/S0952836902003217; Doody JS, 2001, CAN J ZOOL, V79, P1062, DOI 10.1139/cjz-79-6-1062; DOODY JS, 2004, BIOL J LINN SOC, V80, P1; DRIVER PM, 1965, NATURE, V206, P315, DOI 10.1038/206315a0; Du WG, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009557; Du WG, 2009, J EXP BIOL, V212, P1302, DOI 10.1242/jeb.027425; ECKRICH CE, 1995, HERPETOLOGICA, V51, P349; EWERT M.A., 1985, BIOL REPTILIA, V14, P76; Ferguson M.W.J., 1985, Biology of Reptilia, V14, P329; FOWDEN AL, 1995, REPROD FERT DEVELOP, V7, P351, DOI 10.1071/RD9950351; FRECHETTE B, 2000, EURO J ENTOMOL, V76, P177; Georges A, 2005, PHYSIOL BIOCHEM ZOOL, V78, P18, DOI 10.1086/425200; GEORGES A, 1992, AUST J ZOOL, V40, P511, DOI 10.1071/ZO9920511; GEORGES A, 1988, DRY SEASON DISTRIBUT, P1; GEORGES A., 2008, CHELONIAN RES MONOGR, V5, P91; Georges Arthur, 2004, P79; GUTZKE WHN, 1987, PHYSIOL ZOOL, V60, P9, DOI 10.1086/physzool.60.1.30158624; GYURIS E, 1993, WILDLIFE RES, V20, P345, DOI 10.1071/WR9930345; HARVELL CD, 1990, Q REV BIOL, V65, P323, DOI 10.1086/416841; HIMMSHAGEN J, 1983, NUTR REV, V41, P261; IMS RA, 1990, AM NAT, V136, P485, DOI 10.1086/285109; Jackson DC, 2004, COMP BIOCHEM PHYS A, V139, P221, DOI 10.1016/j.cbpb.2004.09.005; Janzen FJ, 2000, ECOLOGY, V81, P2290; Kolbe JJ, 2002, COPEIA, P220, DOI 10.1643/0045-8511(2002)002[0220:EAOAEL]2.0.CO;2; Lack D, 1968, ECOLOGICAL ADAPTATIO; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LOHMANN KJ, 1991, J EXP BIOL, V155, P37; LYNN W. GARDNER, 1960, AMER MIDLAND NAT, V64, P309, DOI 10.2307/2422664; MALONEY JE, 1990, COPEIA, P378, DOI 10.2307/1446343; Martin KLM, 2001, AM ZOOL, V41, P526, DOI 10.1668/0003-1569(2001)041[0526:BSIFPT]2.0.CO;2; Miller J.D., 1985, Biology of Reptilia, V14, P269; MROSOVSKY N, 1980, AM ZOOL, V20, P531; MROSOVSKY N, 1980, BIOL CONSERV, V18, P271, DOI 10.1016/0006-3207(80)90003-8; MROSOVSKY N, 1968, NATURE, V220, P1338, DOI 10.1038/2201338a0; MROSOVSKY N, 1978, ANIMAL MIGRATION NAV, P413; Nagle RD, 2004, CAN J ZOOL, V82, P1211, DOI 10.1139/Z04-096; O'Steen S, 1999, PHYSIOL BIOCHEM ZOOL, V72, P520, DOI 10.1086/316690; ODONOGHUE M, 1995, OIKOS, V74, P115, DOI 10.2307/3545680; Packard G. C., 1988, BIOL REPTILIA, V16, P524; PACKARD GC, 1987, ECOLOGY, V68, P983, DOI 10.2307/1938369; Peterson CC, 2005, J HERPETOL, V39, P678, DOI 10.1670/122-05N.1; PRITCHARD P C H, 1969, Bulletin of the Florida State Museum Biological Sciences, V13, P85; SALMON M, 1989, ETHOLOGY, V83, P215; SEXTON OJ, 1974, PHYSIOL ZOOL, V47, P91, DOI 10.1086/physzool.47.2.30155626; SIH A, 1993, AM NAT, V142, P947, DOI 10.1086/285583; Speer-Blank TM, 2004, COPEIA, P21; Spencer RJ, 2006, ECOLOGY, V87, P3109, DOI 10.1890/0012-9658(2006)87[3109:CDGIAL]2.0.CO;2; Spencer RJ, 2002, ECOLOGY, V83, P2136, DOI 10.2307/3072045; Spencer RJ, 2001, OIKOS, V93, P401, DOI 10.1034/j.1600-0706.2001.930305.x; STAMPER DL, 1990, COMP BIOCHEM PHYS A, V96, P67, DOI 10.1016/0300-9629(90)90042-Q; Testa JW, 2002, J MAMMAL, V83, P699, DOI 10.1644/1545-1542(2002)083<0699:DPONIS>2.0.CO;2; Thompson M. B., 1997, BIOL HUSBANDRY HEALT, P88; THOMPSON MB, 1989, RESP PHYSIOL, V76, P243, DOI 10.1016/0034-5687(89)90101-1; THOMPSON MB, 1988, COPEIA, P996; Tucker JK, 2008, BEHAV ECOL, V19, P35, DOI 10.1093/beheco/arm097; Tucker John K., 1997, Illinois Natural History Survey Biological Notes, V140, P1; Tucker John K., 1999, Chelonian Conservation and Biology, V3, P401; Vince M. A., 1969, P233; VINCE MA, 1971, ANIM BEHAV, V19, P62, DOI 10.1016/S0003-3472(71)80135-5; VITT LJ, 1991, CAN J ZOOL, V69, P504, DOI 10.1139/z91-077; Vonesh JR, 2000, COPEIA, P560, DOI 10.1643/0045-8511(2000)000[0560:DPOTAE]2.0.CO;2; Warkentin KM, 2000, ANIM BEHAV, V60, P503, DOI 10.1006/anbe.2000.1508; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; WEBB GJW, 1986, J ZOOL B, V1, P512; Weisrock DW, 1999, FUNCT ECOL, V13, P94, DOI 10.1046/j.1365-2435.1999.00288.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; ZWEIFEL RG, 1989, AM MUS NOVIT, P18 90 22 23 0 58 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 INTEGR COMP BIOL Integr. Comp. Biol. JUL 2011 51 1 100 110 10.1093/icb/icr045 11 Zoology Zoology 786MY WOS:000292313800010 21659391 Bronze 2019-02-21 J Visser, MD; Jongejans, E; van Breugel, M; Zuidema, PA; Chen, YY; Kassim, AR; de Kroon, H Visser, Marco D.; Jongejans, Eelke; van Breugel, Michiel; Zuidema, Pieter A.; Chen, Yu-Yun; Kassim, Abdul Rahman; de Kroon, Hans Strict mast fruiting for a tropical dipterocarp tree: a demographic cost-benefit analysis of delayed reproduction and seed predation JOURNAL OF ECOLOGY English Article delayed reproduction; demography; Dipterocarpaceae; elasticity; life-history evolution; plant population and community dynamics; predator satiation hypothesis; stochastic matrix model RAIN-FOREST; EVOLUTIONARY ECOLOGY; SPATIAL-PATTERNS; RESOURCE-ALLOCATION; WOODY-PLANTS; EL-NINO; RECRUITMENT; DISPERSAL; DYNAMICS; IMPACT 1. Masting, the production of large seed crops at intervals of several years, is a reproductive adaptation displayed by many tree species. The predator satiation hypothesis predicts that starvation of seed predators between mast years and satiation during mast years decreases seed predation and thus enhances tree regeneration. 2. Mast fruiting comes at demographic costs such as missed reproduction opportunities and increased density-dependence of recruits, but it remains unknown if predator satiation constitutes a sufficiently large benefit for masting to evolve as a viable life-history strategy. So far, no studies have quantified the net fitness consequences of masting. 3. Using a long-term demographic data set of the dipterocarp Shorea leprosula in a Malaysian forest, we constructed stochastic matrix population models and performed a demographic cost benefit analysis. 4. For observed values of mast frequency and seed predation rates, we show that strict masting strongly increases fitness compared with fruiting annually. Model results also show that the demographic costs of mast fruiting are very low compared to the demographic losses due to seed predation in a scenario of annual fruiting. Finally, we find that mast fruiting would still be selected for even at low levels of seed predation and when including additional costs such as decreased adult growth rates, limiting crop size and density-dependent seedling survival. 5. Synthesis. Our results are consistent with the predictions of the predator satiation hypothesis: mast fruiting increases fitness for a range of seed predation levels. Under seed predation pressure annually fruiting species are at a strong disadvantage and as a result a mast fruiting strategy may swiftly confer a fitness advantage. Our study shows that demographic modelling allows the weighing of fitness benefits and costs of life-history phenomena such as strict masting. [Visser, Marco D.; van Breugel, Michiel] Univ Wageningen & Res Ctr, NL-6880 GB Velp, Netherlands; [Visser, Marco D.; Jongejans, Eelke; de Kroon, Hans] Radboud Univ Nijmegen, Inst Water & Wetland Res, Dept Expt Plant Ecol, NL-6525 AJ Nijmegen, Netherlands; [van Breugel, Michiel] Smithsonian Trop Res Inst, Ctr Trop Forest Sci, Balboa, Ancon, Panama; [Zuidema, Pieter A.] Univ Utrecht, Inst Environm Biol Ecol & Biodivers, NL-3584 CH Utrecht, Netherlands; [Chen, Yu-Yun] Natl Donghwa Univ, Dept Nat Resources & Environm Studies, Hualien 974, Taiwan; [Kassim, Abdul Rahman] Forest Res Inst Malaysia, Nat Forest Div, Kuala Lumpur, Malaysia Visser, MD (reprint author), Univ Wageningen & Res Ctr, Van Hall Larenstein,Larensteinselaan 26A, NL-6880 GB Velp, Netherlands. rn.visser@science.ru.nl de Kroon, Hans/B-3359-2009; Zuidema, Pieter/C-8951-2009; Jongejans, Eelke/B-4832-2008 de Kroon, Hans/0000-0001-6151-3561; Zuidema, Pieter/0000-0001-8100-1168; Jongejans, Eelke/0000-0003-1148-7419; van Breugel, Michiel/0000-0003-2778-7803 Smithsonian Tropical Research Institute; Netherlands Organization for Scientific Research (NWO) [863.08.006]; HSBC; ERC [242955]; US NSF [DEB-0108388]; NSF [DEB-0075334] We thank the Forest Research Institute Malaysia (FRIM) for logistical support in the field. We are grateful for the helpful comments of four anonymous reviewers. In addition, we thank W. van der Werf, P.A. Jansen and S. Tuljapurkar for their comments and discussions. M.D.V. acknowledges funding from the Smithsonian Tropical Research Institute short-term fellowship program. E.J. acknowledges funding from the Netherlands Organization for Scientific Research (NWO-veni grant, 863.08.006). M.v.B. acknowledges support from the HSBC Climate Partnership. P.A.Z. was supported by ERC grant 242955. We acknowledge S.P.Hubbell, S.J. Wright and I-Fang Sun for their effort to establish the Pasoh forest dynamics plot seed and seedling monitoring project with financial aid from US NSF (grant no.: DEB-0108388). The Pasoh forest 50-ha dynamics plot research was in part supported by NSF grant DEB-0075334 to P.S. Ashton and S.J. Davies. Appanah S., 1985, Journal of Tropical Ecology, V1, P225; APPANAH S, 1981, Malaysian Forester, V44, P37; Ashton P. S., 1982, Flora Malesiana, I, Spermatophyta, V9, P237; ASHTON PS, 1988, ANNU REV ECOL SYST, V19, P347, DOI 10.1146/annurev.es.19.110188.002023; ASHTON PS, 1988, AM NAT, V132, P44, DOI 10.1086/284837; Baraloto C, 2004, OECOLOGIA, V141, P701, DOI 10.1007/s00442-004-1691-3; Bas JM, 2006, PLANT ECOL, V183, P77, DOI 10.1007/s11258-005-9008-0; Boscolo M., 1998, DEV DISCUSSION PAPER, V652, P1; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Burgess P. F., 1972, Malayan Forester, V35, P103; Cannon CH, 2007, ECOL LETT, V10, P956, DOI 10.1111/j.1461-0248.2007.01089.x; Caswell H., 2001, MATRIX POPULATION MO; CHAPIN FS, 1990, ANNU REV ECOL SYST, V21, P423, DOI 10.1146/annurev.ecolsys.21.1.423; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Choo K.T., 1983, 75 FOR RES I MAL MAL; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; CONDIT R, 1995, TRENDS ECOL EVOL, V10, P18, DOI 10.1016/S0169-5347(00)88955-7; CONDIT R, 1995, ECOL MONOGR, V65, P419, DOI 10.2307/2963497; CONNELL J H, 1971, P298; CRAWLEY MJ, 1992, SEEDS ECOLOGY REGENE, P157; Crone EE, 2004, ECOLOGY, V85, P1944, DOI 10.1890/03-0256; Curran LM, 2000, ECOL MONOGR, V70, P129, DOI 10.1890/0012-9615(2000)070[0129:ETOTSS]2.0.CO;2; Curran LM, 1999, SCIENCE, V286, P2184, DOI 10.1126/science.286.5447.2184; Curran LM, 2000, ECOL MONOGR, V70, P101, DOI 10.1890/0012-9615(2000)070[0101:VRTSVI]2.0.CO;2; DEJONG G, 1994, Q REV BIOL, V69, P3, DOI 10.1086/418431; den Ouden J., 2004, PREDATION DISPERSAL, P223; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; Fenner M, 2005, ECOLOGY SEEDS; Fisher R. A., 1958, GENETICAL THEORY NAT; FOX JED, 1976, FOREST ECOL MANAG, V1, P37, DOI 10.1016/0378-1127(76)90006-2; Fox JED, 1972, THESIS U WALES BANGO; Gillett JB, 1962, TAXONOMY GEOGRAPHY, P37; Grant A, 1996, THEOR POPUL BIOL, V50, P18, DOI 10.1006/tpbi.1996.0021; Hammond D. S., 1998, Dynamics of tropical communities : the 37th symposium of the British Ecological Society, Cambridge University, 1996., P51; Harms KE, 2000, NATURE, V404, P493, DOI 10.1038/35006630; Harper J. L., 1977, POPULATION BIOL PLAN; Herrera CM, 1998, AM NAT, V152, P576, DOI 10.1086/286191; HETT JM, 1971, ECOLOGY, V52, P1071, DOI 10.2307/1933815; HOLLING C. S., 1959, CANADIAN ENT, V91, P293; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P210; HUISMAN J, 1993, J VEG SCI, V4, P37, DOI 10.2307/3235732; Hulme Philip E., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P32, DOI 10.1078/1433-8319-00050; Ichie T, 2005, J TROP ECOL, V21, P237, DOI 10.1017/S0266467404002214; Isagi Y, 1997, J THEOR BIOL, V187, P231, DOI 10.1006/jtbi.1997.0442; JANZEN D H, 1974, Biotropica, V6, P69, DOI 10.2307/2989823; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Jones CG, 1998, SCIENCE, V279, P1023, DOI 10.1126/science.279.5353.1023; KELLY D, 1994, TRENDS ECOL EVOL, V9, P465, DOI 10.1016/0169-5347(94)90310-7; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Kelly D, 1997, OIKOS, V78, P143, DOI 10.2307/3545810; Kerkhoff AJ, 2004, EVOL ECOL RES, V6, P1003; LALONDE RG, 1992, AM NAT, V139, P1293, DOI 10.1086/285387; LEFKOVITCH LP, 1965, BIOMETRICS, V21, P1, DOI 10.2307/2528348; Leigh EG, 2004, BIOTROPICA, V36, P447, DOI 10.1111/j.1744-7429.2004.tb00342.x; Lewis O.T., 2008, J APPL ECOL, V45, P1503; Manokaran M., 1990, 104 FOR RES I MAL; Manokaran N, 2004, TROPICAL FOREST DIVERSITY AND DYNAMISM: FINDINGS FROM A LARGE-SCALE PLOT NETWORK, P585; Maycock CR, 2005, J VEG SCI, V16, P635, DOI 10.1658/1100-9233(2005)016[0635:RODDLI]2.0.CO;2; Medway FLSL, 1972, BIOL J LINN SOC, V4, P117; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Muller-Landau H. C., 2007, Seed dispersal: theory and its application in a changing world, P407, DOI 10.1079/9781845931650.018; Nakagawa M, 2005, BIOTROPICA, V37, P389, DOI 10.1111/j.1744-7429.2005.00051.x; Nathan R, 2000, TRENDS ECOL EVOL, V15, P278, DOI 10.1016/S0169-5347(00)01874-7; Newman MF, 1996, MANUALS DIPTEROCARPS; Norden N, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001079; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Numata S, 1999, J TROP ECOL, V15, P695, DOI 10.1017/S026646749900111X; Numata S, 2003, AM J BOT, V90, P1025, DOI 10.3732/ajb.90.7.1025; Overgaard R., 2007, Forestry (Oxford), V80, P555, DOI 10.1093/forestry/cpm020; Paine CET, 2007, ECOLOGY, V88, P3076, DOI 10.1890/06-1835.1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Poorter L, 2005, J ECOL, V93, P268, DOI 10.1111/j.1365-2745.2005.00958.x; RAICH JW, 1990, J TROP ECOL, V6, P203, DOI 10.1017/S0266467400004326; Rees M, 2002, AM NAT, V160, P44, DOI 10.1086/340603; Sakai S, 1999, AM J BOT, V86, P62, DOI 10.2307/2656955; Satake A, 2004, POPUL ECOL, V46, P119, DOI 10.1007/s10144-004-0183-y; Satake A, 2004, AM NAT, V163, P591, DOI 10.1086/382661; SCHUPP EW, 1995, ECOSCIENCE, V2, P267, DOI 10.1080/11956860.1995.11682293; Shibata M, 1998, ECOLOGY, V79, P54, DOI 10.2307/176864; SILVERTOWN JW, 1980, BIOL J LINN SOC, V14, P235, DOI 10.1111/j.1095-8312.1980.tb00107.x; Sist P, 2003, ANN FOREST SCI, V60, P803, DOI 10.1051/forest:2003075; Socrianegara I., 1993, PLANT RESOURCES SE A, P384; SORK VL, 1993, VEGETATIO, V108, P133; SORK VL, 1993, ECOLOGY, V74, P528, DOI 10.2307/1939313; Sun IF, 2007, J ECOL, V95, P818, DOI 10.1111/j.1365-2745.2007.01235.x; SWAINE MD, 1987, J TROP ECOL, V3, P359, DOI 10.1017/S0266467400002339; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; VAZQUEZYANES C, 1993, ANNU REV ECOL SYST, V24, P69, DOI 10.1146/annurev.es.24.110193.000441; WALLER DM, 1979, J THEOR BIOL, V80, P223, DOI 10.1016/0022-5193(79)90207-8; Wenny DG, 1998, P NATL ACAD SCI USA, V95, P6204, DOI 10.1073/pnas.95.11.6204; WHEELWRIGHT NT, 1985, OIKOS, V44, P465, DOI 10.2307/3565788; Wich SA, 2000, J TROP ECOL, V16, P563, DOI 10.1017/S0266467400001577; Williamson GB, 2002, OIKOS, V97, P459, DOI 10.1034/j.1600-0706.2002.970317.x; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; Zuidema PA, 2002, J TROP ECOL, V18, P1; Zuidema PA, 2010, J ECOL, V98, P345, DOI 10.1111/j.1365-2745.2009.01626.x 97 34 34 5 93 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 J ECOL J. Ecol. JUL 2011 99 4 1033 1044 10.1111/j.1365-2745.2011.01825.x 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 788BG WOS:000292419800016 2019-02-21 J Saraux, C; Chiaradia, A; Le Maho, Y; Ropert-Coudert, Y Saraux, Claire; Chiaradia, Andre; Le Maho, Yvon; Ropert-Coudert, Yan Everybody needs somebody: unequal parental effort in little penguins BEHAVIORAL ECOLOGY English Article attendance patterns; individual quality; meal size; parental care; reproductive costs; seabirds BLUE-FOOTED BOOBY; EUDYPTULA-MINOR; FORAGING BEHAVIOR; BREEDING SUCCESS; SEX-DIFFERENCES; REPRODUCTIVE-PERFORMANCE; WANDERING ALBATROSSES; PROVISIONING RULES; MANX SHEARWATERS; ADELIE PENGUINS According to life-history theory, individuals optimize their decisions in order to maximize their fitness. This raises a conflict between parents, which need to cooperate to ensure the propagation of their genes but at the same time need to minimize the associated costs. Trading-off between benefits and costs of a reproduction is one of the major forces driving demographic trends and has shaped several different parental care strategies. Using little penguins (Eudyptula minor) as a model, we investigated whether individuals of a pair provide equal parental effort when raising offspring and whether their behavior was consistent over 8 years of contrasting resource availability. Using an automated identification system, we found that 72% of little penguin pairs exhibited unforced (i.e., that did not result from desertion of 1 parent) unequal partnership through the postguard stage. This proportion was lower in favorable years. Although being an equal pair appeared to be a better strategy, it was nonetheless the least often observed. Individuals that contributed less than their partner were not less experienced (measured by age), and gender did not explain differences between partners. Furthermore, birds that contributed little or that contributed a lot tended to be consistent in their level of contribution across years. We suggest that unequal effort during breeding may reflect differences in individual quality, and we encourage future studies on parental care to consider this consistent low and high contributor behavior when investigating differences in pair investment into its offspring. [Chiaradia, Andre] Res Dept, Cowes, Vic 3922, Australia; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, F-67087 Strasbourg, France; [Saraux, Claire; Le Maho, Yvon; Ropert-Coudert, Yan] Ctr Natl Rech Sci, Unite Mixte Rech 7178, F-67087 Strasbourg, France; [Saraux, Claire] AgroParisTech ENGREF, F-75732 Paris, France Chiaradia, A (reprint author), Res Dept, Phillip Isl Nat Pk,POB 97, Cowes, Vic 3922, Australia. achiaradia@penguins.org.au Saraux, Claire/0000-0001-5061-4009; Chiaradia, Andre/0000-0002-6178-4211 BHP-Billiton; Penguin Foundation; Australian Academy of Science Grants received from BHP-Billiton, Penguin Foundation and the Australian Academy of Science. Aho T, 1997, BEHAV ECOL SOCIOBIOL, V41, P49, DOI 10.1007/s002650050362; Andersson M., 1994, SEXUAL SELECTION; Arnould JPY, 2004, EMU, V104, P261, DOI 10.1071/MU04035; Barlow KE, 2002, IBIS, V144, P248, DOI 10.1046/j.1474-919X.2002.00046.x; Barta ZN, 2002, AM NAT, V159, P687, DOI 10.1086/339995; BATES D., 2009, IME4 LINEAR MIXED EF; Beaulieu M, 2009, ANIM BEHAV, V78, P313, DOI 10.1016/j.anbehav.2009.05.006; BERGERON P, 2010, J ANIM ECOL, V80, P361; Bethge P, 1997, J ZOOL, V242, P483; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Bull L, 2000, NEW ZEAL J ZOOL, V27, P291, DOI 10.1080/03014223.2000.9518237; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Chiaradia A, 2006, ARDEA, V94, P257; Chiaradia A, 2010, ICES J MAR SCI, V67, P1710, DOI 10.1093/icesjms/fsq067; Chiaradia Andre F., 1999, Marine Ornithology, V27, P13; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Collins M, 1999, WILDLIFE RES, V26, P705, DOI 10.1071/WR98003; Cullen JM, 2009, MAR ECOL PROG SER, V378, P269, DOI 10.3354/meps07881; Daniel TA, 2007, ANIM BEHAV, V74, P1241, DOI 10.1016/j.anbehav.2007.01.029; DANN P, 1988, EMU, V88, P101, DOI 10.1071/MU9880101; Dann P., 1990, P63; Daunt F, 2007, FUNCT ECOL, V21, P561, DOI 10.1111/j.1365-2435.2007.01260.x; DRENT RH, 1980, ARDEA, V68, P225; FASOLA M, 1995, CAN J ZOOL, V73, P1461, DOI 10.1139/z95-172; GALES R, 1990, AUST WILDLIFE RES, V17, P231; Gauthier-Clerc M, 2001, ANIM BEHAV, V62, P661, DOI 10.1006/anbe.2001.1803; GOODEY W, 1993, EMU, V93, P180, DOI 10.1071/MU9930180; GUERRA M, 1995, BEHAVIOUR, V132, P479, DOI 10.1163/156853995X00162; Hamer KC, 2006, BEHAV ECOL, V17, P132, DOI 10.1093/beheco/arj008; HARRIS MP, 1992, IBIS, V134, P335, DOI 10.1111/j.1474-919X.1992.tb08012.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; KERRY KR, 1993, WILDLIFE RES, V20, P725, DOI 10.1071/WR9930725; Komdeur J, 1996, BEHAV ECOL, V7, P417, DOI 10.1093/beheco/7.4.417; KORPIMAKI E, 1988, J ANIM ECOL, V57, P433, DOI 10.2307/4915; Lack D, 1968, ECOLOGICAL ADAPTATIO; LALONDE RG, 1991, AM NAT, V138, P680, DOI 10.1086/285242; Lewis S, 2005, IBIS, V147, P408, DOI 10.1111/j.1474-919x.2005.00428.x; Lewis S, 2002, P ROY SOC B-BIOL SCI, V269, P1687, DOI 10.1098/rspb.2002.2083; Markman S, 2004, J ANIM ECOL, V73, P747, DOI 10.1111/j.0021-8790.2004.00847.x; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Newton I, 1989, LIFETIME REPROD BIRD; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; Numata M, 2000, NEW ZEAL J ZOOL, V27, P277, DOI 10.1080/03014223.2000.9518236; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Quillfeldt P, 2004, ANIM BEHAV, V68, P613, DOI 10.1016/j.anbehav.2003.12.002; R Development Core Team, 2008, R LANG ENV STAT COMP; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robinson S, 2005, IBIS, V147, P483, DOI 10.1111/j.1474-919x.2005.00431.x; Saether B.-E., 1990, Current Ornithology, V7, P251; SCHMUTZ JA, 1993, CONDOR, V95, P222, DOI 10.2307/1369404; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; Sidhu LA, 2007, AUK, V124, P815, DOI 10.1642/0004-8038(2007)124[815:MMAASI]2.0.CO;2; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; SMITH JM, 1977, MEASURING SELECTION, P265; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Takahashi A, 2003, FUNCT ECOL, V17, P590, DOI 10.1046/j.1365-2435.2003.00772.x; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Velando A, 2003, J ANIM ECOL, V72, P846, DOI 10.1046/j.1365-2656.2003.00756.x; Wade MJ, 2002, AM NAT, V160, P285, DOI 10.1086/341520; Webb JN, 1999, ANIM BEHAV, V58, P983, DOI 10.1006/anbe.1999.1215; Weimerskirch H, 2000, ECOLOGY, V81, P309, DOI 10.1890/0012-9658(2000)081[0309:SDIPIA]2.0.CO;2; Weimerskirch H, 1997, ECOLOGY, V78, P2051; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; WITKANDER U, 2000, J AVIAN BIOL, V31, P447; Yorke J., 2004, New Zealand Journal of Zoology, V31, P115; Zimmer I, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016098 67 12 12 2 49 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JUL-AUG 2011 22 4 837 845 10.1093/beheco/arr049 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 779AH WOS:000291750000021 Bronze 2019-02-21 J Purcell, KL Purcell, Kathryn L. Long-term avian research at the San Joaquin Experimental Range: Recommendations for monitoring and managing oak woodlands FOREST ECOLOGY AND MANAGEMENT English Article Avian monitoring; Experimental forests and ranges; Life history strategies; Nest boxes; Oak woodlands; Source-sink dynamics POINT COUNTS; CALIFORNIA QUAIL; PINE WOODLANDS; DENSITY; VARIABILITY; TRANSECTS; SUCCESS; INDEXES; DESIGN; TRENDS Experimental forests and ranges are living laboratories that provide opportunities for conducting scientific research and transferring research results to partners and stakeholders. They are invaluable for their long-term data and capacity to foster collaborative, interdisciplinary research. The San Joaquin Experimental Range (SJER) was established to develop appropriate land management practices on foothill rangelands in California. SJER has a long and rich history of avian research. Natural history observations recorded since 1935 demonstrate that oak woodlands are one of the most diverse habitat types in North America. Early avian studies focused on California quail (Callipepla californica) as a game species and led to insights on quail diet and habitat requirements. Starting in the late 1970s, the focus of avian research shifted to methods for detecting changes in wildlife populations over time and response to management practices. This research has led to important recommendations for implementing bird monitoring programs. Using data collected on bird numbers, in conjunction with monitoring reproductive success of all species, recent studies have examined life history strategies, source-sink dynamics, the effects of livestock grazing, and the impacts of an invasive species on native cavity-nesting species. We are currently in the process of examining population trends and predicting the effects of climate change using long-term data. SJER continues to provide unique opportunities for research and educational activities that increase our understanding of the foothill oak woodlands of California. Published by Elsevier B.V. US Forest Serv, USDA, Pacific SW Res Stn, Sierra Nevada Res Ctr, Fresno, CA 93710 USA Purcell, KL (reprint author), US Forest Serv, USDA, Pacific SW Res Stn, Sierra Nevada Res Ctr, 2081 E Sierra Ave, Fresno, CA 93710 USA. kpurcell@fs.fed.us Purcell, Kathryn/S-2592-2016 U.S. Forest Service, Pacific Southwest Research Station, Fresno We thank those who had the vision and foresight to create an experimental area dedicated to learning how to better manage California's foothill oak woodlands. I am ever grateful to Jerry Verner for envisioning and initiating this work, especially the still ongoing point count monitoring. We are deeply indebted to the many field assistants who have helped us collect these data. Sylvia Mori provided help with statistical analyses. The manuscript benefitted from constructive reviews by J. Verner, Scott Stoleson and David King. Funding for this research was provided by the U.S. Forest Service, Pacific Southwest Research Station, Fresno. Anderson DR, 2003, WILDLIFE SOC B, V31, P288; DUNCAN DA, 1968, CALIF FISH GAME, V54, P123; DUNCAN DA, 1966, T SEC WIL, P93; DWERNYCHUK LW, 1972, CAN J ZOOLOG, V50, P559, DOI 10.1139/z72-076; Ellingson AR, 2003, WILDLIFE SOC B, V31, P896; Fitch H. S., 1946, California Fish and Game, V32, P144; Fitch Henry S., 1946, CONDOR, V48, P205, DOI 10.2307/1363939; FITCH HENRY S., 1940, CONDOR, V42, P73, DOI 10.2307/1364321; FRETWELL S D, 1969, Acta Biotheoretica, V19, P16, DOI 10.1007/BF01601953; GLADING BEN, 1940, JOUR WILDLIFE MANAGEMENT, V4, P128, DOI 10.2307/3795650; GLADING BEN, 1941, CALIFORNIA FISH AND GAME, V27, P33; Glading Ben, 1943, CALIFORNIA FISH AND GAME, V29, P157; Glading Ben, 1944, CALIFORNIA FISH AND GAME, V30, P71; GLADING BEN, 1938, CALIFORNIA FISH AND GAME, V24, P318; HENSLER GL, 1981, WILSON BULL, V93, P42; Herman Carlton M., 1943, CALIFORNIA FISH AND GAME, V29, P168; HINES JE, 1989, 23 US FISH WLD S; Hutto RL, 2003, WILDLIFE SOC B, V31, P903; Jewett Stanley G., 1942, CONDOR, V44, P79; Johnson DH, 2008, J WILDLIFE MANAGE, V72, P857, DOI 10.2193/2007-294; LARSON JH, 1985, CATI PUBL; LEHMANN D, 1997, SIALIA, V19, P125; LEOPOLD AS, 1977, CALIFORNIA QUAIL; Mason Edwin A., 1944, JOUR WILDLIFE MANAGEMENT, V8, P232, DOI 10.2307/3795703; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; OLSEN RG, 2008, P 6 S OAK WOODL TOD, P457; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; Purcell Kathryn L., 2005, Studies in Avian Biology, V30, P33; Purcell KL, 2005, CONDOR, V107, P305, DOI 10.1650/7595; Purcell KL, 1997, J FIELD ORNITHOL, V68, P283; Purcell KL, 1998, CONSERV BIOL, V12, P442, DOI 10.1046/j.1523-1739.1998.96354.x; Purcell KL, 1997, AUK, V114, P646, DOI 10.2307/4089284; PURCELL KL, 1995, THESIS U NEVADA RENO; PURCELL KL, 2008, P 6 S OAK WOODL TOD, P279; PURCELL KL, 2002, OAKS CALIFORNIAS CHA, P305; PURCELL ML, 2007, VERTEBRATE FAUNA SAN; Robbins C. S., 1970, Audubon Fld Notes, V24, P723; Rosenstock SS, 2002, AUK, V119, P46, DOI 10.1642/0004-8038(2002)119[0046:LCTCPA]2.0.CO;2; *S PLUS, 1999, US MAN VERS 2000; *SAS I INC, 2000, SAS PROC GUID VERS 8; SHIELDS PW, 1966, CALIF FISH GAME, V52, P275; Small A, 1994, CALIFORNIA BIRDS THE; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; VERNER J, 1986, AUK, V103, P117; Verner J, 1997, PROCEEDINGS OF A SYMPOSIUM ON OAK WOODLANDS: ECOLOGY, MANAGEMENT, AND URBAN INTERFACE ISSUES, P381; VERNER J, 1985, CONDOR, V87, P47, DOI 10.2307/1367130; VERNER J, 1988, CONDOR, V90, P401, DOI 10.2307/1368569; Verner J, 1999, CONDOR, V101, P219, DOI 10.2307/1369985; Verner J., 1985, Current Ornithology, V2, P247; VERNER J, 1990, CONDOR, V92, P313, DOI 10.2307/1368229; VERNER J, 1989, ANN ZOOL FENN, V26, P191; Verner J, 1981, STUDIES AVIAN BIOL, P543; VERNER J., 1988, PSW395 USDA FOR SERV; Verner Jared, 1996, Transactions of the Western Section of the Wildlife Society, V32, P1; WADDELL KL, 2005, USDA FOREST SERVICE 55 0 0 2 27 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0378-1127 1872-7042 FOREST ECOL MANAG For. Ecol. Manage. JUL 1 2011 262 1 SI 12 19 10.1016/j.foreco.2010.07.039 8 Forestry Forestry 781DA WOS:000291909600003 2019-02-21 J Medina-Roldan, E; Bardgett, RD Medina-Roldan, Eduardo; Bardgett, Richard D. Plant and soil responses to defoliation: a comparative study of grass species with contrasting life history strategies PLANT AND SOIL English Article Defoliation; Microbial biomass; Grassland; Nitrogen cycling; Herbivory; Life history strategies MICROBIAL BIOMASS; EXTRACTION METHOD; UPLAND GRASSLAND; LOLIUM-PERENNE; FESTUCA-RUBRA; TEMPERATE GRASSLANDS; GRAZING ECOSYSTEM; CARBON ALLOCATION; NARDUS-STRICTA; NITROGEN The overall aim of this study was to test for inter-species variation in plant and soil responses to defoliation among a broad range of temperate grass species and life-history strategies. We used a microcosm experiment where a range of grass species differing in life history traits were subjected to different intensities of defoliation, and a range of aboveground and belowground plant and soil responses were measured. All plant attributes, including accumulated shoot biomass, root biomass and root length, showed a strong negative response to defoliation, although plant species exhibited subtle differences in the way that they responded to increased severity of defoliation. Defoliation also exerted a strong influence on soil properties, decreasing soil microbial carbon (C) and the soil microbial C:nitrogen (N) ratio, and increasing inorganic N availability and potential N mineralisation across all species. Despite the wide range in life history strategies, plant species did not differ in their influence on most of the soil variables, except for the rate of nitrate mineralisation, which was lowest under plant species that displayed the least relative detrimental responses to defoliation. Collectively, our results suggest that plant and soil responses to defoliation are reasonably consistent across a broad range of grass species, with only subtle inter-specific differences among species. [Medina-Roldan, Eduardo; Bardgett, Richard D.] Univ Lancaster, Soil & Ecosyst Ecol Lab, Lancaster Environm Ctr, Lancaster LA1 4YQ, England Medina-Roldan, E (reprint author), Univ Lancaster, Soil & Ecosyst Ecol Lab, Lancaster Environm Ctr, Lancaster LA1 4YQ, England. e.medina@lancaster.ac.uk Mexican National Council for Science and Technology (CONACYT) We are grateful to the Mexican National Council for Science and Technology (CONACYT) for the doctoral scholarship granted to EMR, to Helen Quirk for technical advice in the laboratory and to Jorge Paz-Ferreiro and two anonymous reviewers for their valuable comments. Ayres E, 2007, FUNCT ECOL, V21, P256, DOI 10.1111/j.1365-2435.2006.01227.x; Bardgett RD, 1999, FUNCT ECOL, V13, P650, DOI 10.1046/j.1365-2435.1999.00362.x; Bardgett RD, 2003, ECOLOGY, V84, P2258, DOI 10.1890/02-0274; Bardgett RD, 2003, ECOLOGY, V84, P1277, DOI 10.1890/0012-9658(2003)084[1277:SMCEWP]2.0.CO;2; Bardgett RD, 1998, SOIL BIOL BIOCHEM, V30, P1867, DOI 10.1016/S0038-0717(98)00069-8; Bardgett RD, 2010, ABOVEGROUND BELOWGRO; Bazot S, 2005, FUNCT ECOL, V19, P886, DOI 10.1111/j.1365-2435.2005.01037.x; Berg G, 1997, PLANT ECOL, V132, P1, DOI 10.1023/A:1009727804007; Bezemer TM, 2006, J ECOL, V94, P893, DOI 10.1111/j.1365-2745.2006.01158.x; Briske D. D., 1996, ECOLOGY MANAGEMENT G, P37; BROOKES PC, 1985, SOIL BIOL BIOCHEM, V17, P837, DOI 10.1016/0038-0717(85)90144-0; Burke IC, 1998, BIOGEOCHEMISTRY, V42, P121, DOI 10.1023/A:1005987807596; CABRERA ML, 1993, SOIL SCI SOC AM J, V57, P1007, DOI 10.2136/sssaj1993.03615995005700040021x; Campbell C. A., 1993, SOIL SAMPLING METHOD, P341; CHAPIN SF, 1979, OECOLOGIA, V42, P67; CLAPHAM AR, 1987, FLORA BRIT ISLES; CLARHOLM M, 1985, SOIL BIOL BIOCHEM, V17, P181, DOI 10.1016/0038-0717(85)90113-0; CRAWLEY MJ, 1990, J APPL ECOL, V27, P803, DOI 10.2307/2404378; Cumming DHM, 2003, OECOLOGIA, V134, P560, DOI 10.1007/s00442-002-1149-4; DAY TA, 1990, ECOLOGY, V71, P180, DOI 10.2307/1940258; De Mazancourt C, 1998, ECOLOGY, V79, P2242; ELBERSE WT, 1993, FUNCT ECOL, V7, P223, DOI 10.2307/2389891; Engqvist L, 2005, ANIM BEHAV, V70, P967, DOI 10.1016/j.anbehav.2005.01.016; Ferraro DO, 2002, OIKOS, V98, P125, DOI 10.1034/j.1600-0706.2002.980113.x; Gastal F, 2010, NUTR CYCL AGROECOSYS, V88, P245, DOI 10.1007/s10705-010-9352-x; Grayston SJ, 2001, SOIL BIOL BIOCHEM, V33, P533, DOI 10.1016/S0038-0717(00)00194-2; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; Guitian R, 2000, PLANT SOIL, V220, P271, DOI 10.1023/A:1004787710886; Hamilton EW, 2008, SOIL BIOL BIOCHEM, V40, P2865, DOI 10.1016/j.soilbio.2008.08.007; Hamilton EW, 2001, ECOLOGY, V82, P2397, DOI 10.1890/0012-9658(2001)082[2397:CPSSMA]2.0.CO;2; Harrison KA, 2010, J ECOL, V98, P384, DOI 10.1111/j.1365-2745.2009.01614.x; Hartley SE, 1999, J ECOL, V87, P330, DOI 10.1046/j.1365-2745.1999.00353.x; Hill MO, 1997, J VEG SCI, V8, P579, DOI 10.2307/3237210; Hokka V, 2004, OIKOS, V106, P73, DOI 10.1111/j.0030-1299.2004.12963.x; HOLLAND JN, 1995, APPL SOIL ECOL, V2, P275; Holland JN, 1996, OECOLOGIA, V107, P87, DOI 10.1007/BF00582238; Ilmarinen K, 2005, SOIL BIOL BIOCHEM, V37, P433, DOI 10.1016/j.soilbio.2004.07.034; Innes L, 2004, BIOL FERT SOILS, V40, P7, DOI 10.1007/s00374-004-0748-0; Kaye JP, 1997, TRENDS ECOL EVOL, V12, P139, DOI 10.1016/S0169-5347(97)01001-X; Kembel SW, 2005, AM NAT, V166, P216, DOI 10.1086/431287; Kimura K, 1999, PLANT SOIL, V216, P117, DOI 10.1023/A:1004778925316; Klironomos JN, 2004, APPL SOIL ECOL, V26, P133, DOI 10.1016/j.apsoil.2003.11.001; Markham JH, 2009, ECOL RES, V24, P93, DOI 10.1007/s11284-008-0485-1; Marschner P, 2004, PLANT SOIL, V261, P199, DOI 10.1023/B:PLSO.0000035569.80747.c5; Massey FP, 2007, J ECOL, V95, P414, DOI 10.1111/j.1365-2745.2007.01223.x; Mawdsley JL, 1997, BIOL FERT SOILS, V24, P52, DOI 10.1007/s003740050207; McNaughton SJ, 1998, ECOLOGY, V79, P587, DOI 10.1890/0012-9658(1998)079[0587:RBAPIA]2.0.CO;2; Medina-Roldan E, 2007, RANGELAND ECOL MANAG, V60, P79, DOI 10.2111/05-219R2.1; Mikola J, 2002, SOIL BIOL BIOCHEM, V34, P1869, DOI 10.1016/S0038-0717(02)00200-6; Mikola J, 2009, ECOL MONOGR, V79, P221, DOI 10.1890/08-1846.1; Mikola J, 2001, OIKOS, V92, P333, DOI 10.1034/j.1600-0706.2001.920216.x; Mikola J, 2001, SOIL BIOL BIOCHEM, V33, P205, DOI 10.1016/S0038-0717(00)00131-0; Milchunas D. G., 1993, ECOL MONOGR, V63, P328; OESTERHELD M, 1992, OECOLOGIA, V92, P313, DOI 10.1007/BF00317456; Orwin KH, 2010, J ECOL, V98, P1074, DOI 10.1111/j.1365-2745.2010.01679.x; OWEN DF, 1980, OIKOS, V35, P230, DOI 10.2307/3544430; Paterson E, 2000, J EXP BOT, V51, P1449, DOI 10.1093/jexbot/51.349.1449; Paterson E, 1999, PLANT SOIL, V216, P155, DOI 10.1023/A:1004789407065; Pinheiro J., 2008, NLME LINEAR NONLINEA; R Development Core Team, 2010, R LANG ENV STAT COMP; Ritchie ME, 1998, ECOLOGY, V79, P165, DOI 10.2307/176872; RODUIT N, 2007, JMICRO VISION LOGICI; RODWELL JS, 1992, GRASSLANDS MONTANE C; Sankaran M, 2004, ECOLOGY, V85, P1052, DOI 10.1890/03-0354; SEAGLE SW, 1992, ECOLOGY, V73, P1105, DOI 10.2307/1940184; SPARLING GP, 1990, SOIL BIOL BIOCHEM, V22, P301, DOI 10.1016/0038-0717(90)90104-8; Van der Graaf AJ, 2005, FUNCT ECOL, V19, P961, DOI 10.1111/j.1365-2435.2005.01056.x; VANCE ED, 1987, SOIL BIOL BIOCHEM, V19, P703, DOI 10.1016/0038-0717(87)90052-6; Wardle DA, 2001, ECOL MONOGR, V71, P587, DOI 10.1890/0012-9615(2001)071[0587:IBMINZ]2.0.CO;2; WELCH D, 1986, J APPL ECOL, V23, P1047, DOI 10.2307/2403954; Zar JH, 1998, BIOSTATISTICAL ANAL 72 8 8 5 70 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X PLANT SOIL Plant Soil JUL 2011 344 1-2 377 388 10.1007/s11104-011-0756-4 12 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences 777WA WOS:000291654600025 2019-02-21 J Hubbeling, D Hubbeling, Dieneke Life history theory as a possible explanation for teenage pregnancy PSYCHOLOGICAL MEDICINE English Letter INEQUALITY SW London & St Georges Mental Hlth NHS Trust, Springfield Univ Hosp, London, England Hubbeling, D (reprint author), SW London & St Georges Mental Hlth NHS Trust, Springfield Univ Hosp, London, England. dieneke@doctors.org.uk Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Webb RT, 2011, PSYCHOL MED, V41, P1867, DOI 10.1017/S0033291711000055; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 5 0 0 0 9 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0033-2917 PSYCHOL MED Psychol. Med. JUL 2011 41 7 1564 1564 10.1017/S0033291711000651 1 Psychology, Clinical; Psychiatry; Psychology Psychology; Psychiatry 780KL WOS:000291854700024 21557894 Bronze 2019-02-21 J Webb, RT; Abel, KM Webb, Roger T.; Abel, Kathryn M. Life history theory as a possible explanation for teenage pregnancy reply PSYCHOLOGICAL MEDICINE English Letter EXPECTANCY [Webb, Roger T.; Abel, Kathryn M.] Univ Manchester, Manchester Acad Hlth Sci Ctr, Manchester M13 9PL, Lancs, England Webb, RT (reprint author), Univ Manchester, Manchester Acad Hlth Sci Ctr, Manchester M13 9PL, Lancs, England. roger.webb@manchester.ac.uk Webb, Roger/0000-0001-8532-2647; Abel, Kathryn M/0000-0003-3538-8896 Boldsen JL, 1992, INT J ANTHR, V7, P1; Hobcraft J, 2001, BRIT J SOCIOL, V52, P495; Leyland AH, 2004, J EPIDEMIOL COMMUN H, V58, P296, DOI 10.1136/jech.2003.007278; Raleigh VS, 1997, J EPIDEMIOL COMMUN H, V51, P649, DOI 10.1136/jech.51.6.649; Seamark CJ, 1997, BRIT J GEN PRACT, V47, P175; WHAN EH, 2005, HEALTH CARE WOMEN IN, V26, P591; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271 7 0 0 0 5 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0033-2917 PSYCHOL MED Psychol. Med. JUL 2011 41 7 1564 1565 2 Psychology, Clinical; Psychiatry; Psychology Psychology; Psychiatry 780KL WOS:000291854700025 2019-02-21 J Roksandic, M; Armstrong, SD Roksandic, Mirjana; Armstrong, Stephanie D. Using the Life History Model to Set the Stage(s) of Growth and Senescence in Bioarchaeology and Paleodemography AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article skeletal biology; paleodemography; life history theory; bioarchaeology TOOTH CEMENTUM ANNULATION; SKELETAL AGE; DEATH DISTRIBUTIONS; DENTAL DEVELOPMENT; AURICULAR SURFACE; EVOLUTION; MORTALITY; MENARCHE; POPULATIONS; DEMOGRAPHY Paleodemography, the study of demographic parameters of past human populations, relies on assumptions including biological uniformitarianism, stationary populations, and the ability to determine point age estimates from skeletal material. These assumptions have been widely criticized in the literature and various solutions have been proposed. The majority of these solutions rely on statistical modeling, and have not seen widespread application. Most bioarchaeologists recognize that our ability to assess chronological age is inherently limited, and have instead resorted to large, qualitative, age categories. However, there has been little attempt in the literature to systematize and define the stages of development and ageing used in bioarchaeology. We propose that stages should be based in the human life history pattern, and their skeletal markers should have easily defined and clear endpoints. In addition to a standard five-stage developmental model based on the human life history pattern, current among human biologists, we suggest divisions within the adult stage that recognize the specific nature of skeletal samples. We therefore propose the following eight stages recognizable in human skeletal development and senescence: infancy, early childhood, late childhood, adolescence, young adulthood, full adulthood, mature adulthood, and senile adulthood. Striving toward a better prediction of chronological ages will remain important and could eventually help us understand to what extent past societies differed in the timing of these life stages. Furthermore, paleodemographers should try to develop methods that rely on the type of age information accessible from the skeletal material, which uses life stages, rather than point age estimates. Am J Phys Anthropol 145: 337-347, 2011. (C) 2011 Wiley-Liss, Inc. [Roksandic, Mirjana] Univ Winnipeg, Dept Anthropol, Winnipeg, MB R3B 2E9, Canada; [Armstrong, Stephanie D.] Univ Winnipeg, Dept Anthropol, Winnipeg, MB R3T 2N2, Canada Roksandic, M (reprint author), Univ Winnipeg, Dept Anthropol, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada. m.roksandic@uwinnipeg.ca Roksandic, Mirjana/0000-0003-0291-6357; Mowat, Stephanie/0000-0003-4840-6221 SSHRC [861-2009-0071]; NSERC-USRA Grant sponsor: SSHRC; Grant number: 861-2009-0071; Grant sponsor: NSERC-USRA. ACSADI G., 1970, HIST HUMAN LIFE SPAN; Albert AM, 1998, FORENSIC SCI INT, V97, P11, DOI 10.1016/S0379-0738(98)00143-1; ANGEL J L, 1969, American Journal of Physical Anthropology, V30, P427, DOI 10.1002/ajpa.1330300314; Angel JL, 1971, PEOPLE LERNA ANAL PR; APTER D, 1980, CLIN ENDOCRINOL, V12, P107, DOI 10.1111/j.1365-2265.1980.tb02125.x; Aykroyd RG, 1999, AM ANTIQUITY, V64, P55, DOI 10.2307/2694345; Beall C. M., 1984, AGE ANTHR THEORY, P82; BENNETT KA, 1973, AM J PHYS ANTHROPOL, V39, P223, DOI 10.1002/ajpa.1330390212; BLAKELY RL, 1971, AM J PHYS ANTHROPOL, V34, P43, DOI 10.1002/ajpa.1330340104; BOCQUET JP, 1977, HOMME, V17, P65; Bocquet-Appel JP, 2008, RECENT ADVANCES IN PALAEODEMOGRAPHY, P63, DOI 10.1007/978-1-4020-6424-1_3; BocquetAppel JP, 1996, AM J PHYS ANTHROPOL, V99, P571, DOI 10.1002/(SICI)1096-8644(199604)99:4<571::AID-AJPA4>3.0.CO;2-X; BOCQUETAPPEL JP, 1985, J HUM EVOL, V14, P107, DOI 10.1016/S0047-2484(85)80001-4; BOCQUETAPPEL JP, 1982, J HUM EVOL, V11, P321, DOI 10.1016/S0047-2484(82)80023-7; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; BOGIN B, 1990, BIOSCIENCE, V40, P16, DOI 10.2307/1311235; BOGIN B, 1994, ACTA PAEDIATR, V83, P29, DOI 10.1111/j.1651-2227.1994.tb13418.x; Bogin B, 1999, PATTERNS HUMAN GROWT; BOGIN B, 2003, PATTERNS GROWTH DEV, P15; Bogin B, 2001, GROWTH HUMANITY; Brooks S, 1990, HUMAN EVOLUTION, V5, P227, DOI DOI 10.1007/BF02437238; BUIKSTRA JE, 1985, AM ANTHROPOL, V87, P316, DOI 10.1525/aa.1985.87.2.02a00050; BUIKSTRA JE, 1997, INTEGRATING ARCHAEOL, V24, P367; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Carmody RN, 2010, AM J PHYS ANTHROPOL, P76; CASTRO JMB, 2004, J ANTHROPOL RES, V60, P5; Chamberlain A., 2006, DEMOGRAPHY ARCHAEOLO; Chumlea WC, 2003, PEDIATRICS, V111, P110, DOI 10.1542/peds.111.1.110; DAINTON M, 1999, HUMAN GROWTH STUDIES, P32; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; DeWitte SN, 2009, AM J PHYS ANTHROPOL, V139, P222, DOI 10.1002/ajpa.20974; Freedman DS, 2002, PEDIATRICS, V110, DOI 10.1542/peds.110.4.e43; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Glenn N. D., 1977, COHORT ANAL; Gowland R. L, 2006, SOCIAL ARCHAEOLOGY F, P143; Greene D, 1986, HUM EVOL, V1, P193; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hoppa R. D., 2002, PALEODEMOGRAPHY AGE, P1; Hoppa R.D., 2002, PALEODEMOGRAPHY AGE, P9, DOI DOI 10.1017/CBO9780511542428; HOROWITZ S, 1988, AM J PHYS ANTHROPOL, V76, P189, DOI 10.1002/ajpa.1330760207; ISCAN MY, 1986, FORENSIC OSTEOLOGY A, P68; JACKES M, 1993, CURR ANTHROPOL, V34, P434, DOI 10.1086/204188; Jackes M, 2011, SOCIAL BIOARCHAEOLOG, P107, DOI DOI 10.1002/9781444390537.CH5; Jackes M, 2008, IRON GATES GORGE MES, P77; Jackes M, 2008, RECENT ADVANCES IN PALAEODEMOGRAPHY, P209, DOI 10.1007/978-1-4020-6424-1_8; KAPPELER PM, 2003, PRIMATE LIFE HIST SO, P107; Kemkes-Grottenthaler A., 2002, PALEODEMOGRAPHY AGE, P48; KEY CA, 1994, INT J OSTEOARCHAEOL, V4, P193, DOI DOI 10.1002/0A.1390040304; KONIGSBERG LW, 1992, AM J PHYS ANTHROPOL, V89, P235, DOI 10.1002/ajpa.1330890208; Konigsberg Lyle W., 1994, Evolutionary Anthropology, V3, P92, DOI 10.1002/evan.1360030306; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; Krogman W. M., 1986, HUMAN SKELETON FOREN; Kvaal S.I., 1994, INT J OSTEOARCHAEOL, V4, P363; Lancaster HO, 1990, EXPECTATIONS LIFE ST; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; Leidy LE, 1996, AM J HUM BIOL, V8, P699, DOI 10.1002/(SICI)1520-6300(1996)8:6<699::AID-AJHB1>3.0.CO;2-P; LOVEJOY CO, 1985, AM J PHYS ANTHROPOL, V68, P15, DOI 10.1002/ajpa.1330680103; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MADELINE LA, 1995, RADIOLOGY, V196, P747, DOI 10.1148/radiology.196.3.7644639; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MCKINLEY KR, 1971, AM J PHYS ANTHROPOL, V34, P417, DOI 10.1002/ajpa.1330340311; MILNER GR, 1989, AM J PHYS ANTHROPOL, V80, P49, DOI 10.1002/ajpa.1330800107; MOERMAN ML, 1982, AM J OBSTET GYNECOL, V143, P528, DOI 10.1016/0002-9378(82)90542-7; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Mosothwane MN, 2004, S AFR ARCHAEOL BULL, V59, P45, DOI 10.2307/3889242; Muller HG, 2002, AM J PHYS ANTHROPOL, V117, P1; MURRAY KA, 1991, J FORENSIC SCI, V36, P1162; Nagaoka T, 2007, AM J PHYS ANTHROPOL, V134, P301, DOI 10.1002/ajpa.20670; Nagar Y, 2004, HUM EVOL, V19, P145; OWSLEY DW, 1979, AM J PHYS ANTHROPOL, V51, P145, DOI 10.1002/ajpa.1330510202; PAINE RR, 1989, AM J PHYS ANTHROPOL, V79, P51, DOI 10.1002/ajpa.1330790106; PETERSEN W, 1975, CURR ANTHROPOL, V16, P227, DOI 10.1086/201542; PIONTEK J, 1981, AM J PHYS ANTHROPOL, V54, P129, DOI 10.1002/ajpa.1330540116; Renz H, 2006, HOMO, V57, P29, DOI 10.1016/j.jchb.2005.09.002; ROKSANDIC M, 2002, FUT DIR PAL 3 INT WO; Roksandic M, 2009, AM J PHYS ANTHROPOL, V140, P583, DOI 10.1002/ajpa.21136; SATTENSPIEL L, 1983, AM ANTIQUITY, V48, P489, DOI 10.2307/280557; Scheuer L., 2000, DEV JUVENILE OSTEOLO; Schwartz JH, 1995, SKELETON KEYS INTRO; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; SMITH BH, 1991, AM J PHYS ANTHROPOL, V86, P157, DOI 10.1002/ajpa.1330860206; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; Steyn M, 2003, WORLD ARCHAEOL, V35, P276, DOI 10.1080/0043824062000111425; STOTT GG, 1982, J DENT RES, V61, P814, DOI 10.1177/00220345820610063401; Strier KB, 2007, PRIMATE BEHAV ECOLOG; Ubelaker DH, 1978, HUMAN SKELETAL REMAI; VANGERVEN DP, 1983, J HUM EVOL, V12, P353, DOI 10.1016/S0047-2484(83)80162-6; Weeks J. R., 2005, POPULATION INTRO CON; Weinstein J., 2001, DEMOGRAPHY SCI POPUL; Wittwer-Backofen U, 2004, AM J PHYS ANTHROPOL, V123, P119, DOI 10.1002/ajpa.10303; Worthman CM, 1999, EVOLUTIONARY MEDICI NE, P135; Yoder C. J., 2003, J ARCHAEOL RES, V11, P43, DOI DOI 10.1023/A:1021200925063 93 28 28 0 24 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JUL 2011 145 3 337 347 10.1002/ajpa.21508 11 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 781QX WOS:000291949700001 21469078 2019-02-21 J Robillard, MM; McLaughlin, RL; Mackereth, RW Robillard, Melissa M.; McLaughlin, Robert L.; Mackereth, Robert W. Diversity in Habitat Use and Trophic Ecology of Brook Trout in Lake Superior and Tributary Streams Revealed Through Stable Isotopes TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article LIFE-HISTORY STRATEGIES; PARTIAL MIGRATION; ATLANTIC SALMON; SALVELINUS-FONTINALIS; POPULATION-STRUCTURE; PERSONALITY-TRAITS; MOVEMENT PATTERNS; SOCIAL-STATUS; NIPIGON BAY; BROWN TROUT Two distinct types of brook trout Salvelinus fontinalis have been hypothesized to occur in Lake Superior: large fish that inhabit Lake Superior for much of the year but spawn in tributary streams, and small fish that are resident in tributary streams. The lake type has declined markedly in range and abundance, and a greater understanding of the behavior and ecology of these populations is needed to support conservation efforts. Comparisons of stable isotope (delta C-13 and delta N-15) signatures between fish caught in the lake and those captured in streams supported the hypothesis of relatively distinct types differing in habitat use and trophic ecology. Comparisons of delta C-13 values for brook trout, other fishes, and aquatic invertebrates collected from stream, stream-mouth, and lake habitats suggested that large-type brook trout are lake specialists, whereas small-type brook trout are stream specialists, stream-lake generalists, or some mixture of the two. Delineating the diversity in habitat use and trophic ecology of Lake Superior brook trout represents a crucial initial step toward understanding the mechanisms responsible for the observed phenotypic diversity and for developing science-based plans to conserve or restore this diversity. [Robillard, Melissa M.; McLaughlin, Robert L.] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada; [Mackereth, Robert W.] Lakehead Univ, Ontario Minist Nat Resources, Ctr No Forest Ecosyst Res, Thunder Bay, ON P7B 5E1, Canada Robillard, MM (reprint author), Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada. mrobilla@uoguelph.ca OMNR; Great Lakes Fishery Commission; Natural Science and Engineering Research Council This project was conducted in partnership with the Centre for Northern Forest Ecosystem Research (OMNR Applied Research and Development Branch). We thank J. George, K. Cullis, M. Chase, and R. Swainson (OMNR) and staff at the Centre for Northern Forest Ecosystem Research for field and technical support; R. Cunjak (Canadian Rivers Institute, University of New Brunswick) for providing advice in interpreting the stable isotope analyses and for reviewing this manuscript; T. Jardine (Canadian Rivers Institute) for guidance in stable isotope analysis interpretation; C. Coppaway and R. Bobrowski for assistance in the field; and the Moore, Dupuis, and Ray families for logistical support. Funding was provided by OMNR through the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem, the Great Lakes Fishery Commission Fishery Research Program, a Natural Science and Engineering Research Council Postgraduate Scholarship to M. M. R., and a Natural Science and Engineering Research Council Discovery Grant to R. L. M. All research was conducted in accordance with Animal Utilization Protocol Number 05R070 (University of Guelph). Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Brodersen J, 2008, ECOLOGY, V89, P1195, DOI 10.1890/07-1318.1; CARLSON AJ, 2003, THESIS MICHIGAN TECH; CASTONGUAY M, 1982, CAN J ZOOL, V60, P3084, DOI 10.1139/z82-392; Cunjak RA, 2005, OECOLOGIA, V144, P636, DOI 10.1007/s00442-005-0101-9; D'Amelio S, 2008, T AM FISH SOC, V137, P1213, DOI 10.1577/T05-275.1; Dingle H, 1996, MIGRATION BIOL LIFE; Doucett RR, 1999, T AM FISH SOC, V128, P278, DOI 10.1577/1548-8659(1999)128<0278:IOAANA>2.0.CO;2; Eichhorn G, 2009, J ANIM ECOL, V78, P63, DOI 10.1111/j.1365-2656.2008.01485.x; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; France RL, 1997, CAN J FISH AQUAT SCI, V54, P1255, DOI 10.1139/cjfas-54-6-1255; Fraser DJ, 2005, EVOLUTION, V59, P611; Gowan C, 2002, ENVIRON BIOL FISH, V64, P139, DOI 10.1023/A:1016010723609; Gross M. R., 1987, COMMON STRATEGIES AN, P14; Hanisch JR, 2010, N AM J FISH MANAGE, V30, P1, DOI 10.1577/M09-048.1; Haro A., 2009, CHALLENGES DIADROMOU, V69; Hendry AP, 2004, EVOLUTION ILLUMINATE, P93; Holden C, 2006, SCIENCE, V313, P779, DOI 10.1126/science.313.5788.779; Holland RA, 2006, SCIENCE, V313, P794, DOI 10.1126/science.1127272; HORNS WH, 2003, GREAT LAKES FISHERY, V301; Huckins CJ, 2008, N AM J FISH MANAGE, V28, P1321, DOI 10.1577/M05-191.1; Huckins CJ, 2008, T AM FISH SOC, V137, P1229, DOI 10.1577/T05-274.1; Jardine TD, 2005, T AM FISH SOC, V134, P1103, DOI 10.1577/T04-124.1; Jones Michael L., 1995, North American Journal of Fisheries Management, V15, P551, DOI 10.1577/1548-8675(1995)015<0551:ARAPFT>2.3.CO;2; Jones MW, 1997, J FISH BIOL, V51, P29, DOI 10.1006/jfbi.1997.0407; KAITALA A, 1993, AM NAT, V142, P59, DOI 10.1086/285529; Kennedy BP, 2005, CAN J FISH AQUAT SCI, V62, P48, DOI 10.1139/F04-184; Kerr LA, 2009, FISHERIES, V34, P114, DOI 10.1577/1548-8446-34.3.114; Kusnierz PC, 2009, J GREAT LAKES RES, V35, P385, DOI 10.1016/j.jglr.2009.04.004; Magnan P, 2002, ENVIRON BIOL FISH, V64, P9, DOI 10.1023/A:1016010903489; Malette M. D., 1993, THESIS LAURENTIAN U; MANGEL M, 1991, EVOL ECOL, V5, P30, DOI 10.1007/BF02285243; McCarthy ID, 2000, RAPID COMMUN MASS SP, V14, P1325; McPhee MV, 2007, ECOL FRESHW FISH, V16, P539, DOI 10.1111/j.1600-0633.2007.00248.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI [10.1139/f03-036, 10.1139/F03-036]; Mucha JM, 2008, T AM FISH SOC, V137, P1203, DOI 10.1577/T05-273.1; NELSON LN, 2002, ENVIRON BIOL FISH, V64, P321; Newman L. E., 1997, LAKE SUP TECHN COMM; Northcote T. G., 1997, North American Journal of Fisheries Management, V17, P1029, DOI 10.1577/1548-8675(1997)017<1029:PISAMI>2.3.CO;2; Olsson IC, 2004, J FISH BIOL, V65, P106, DOI 10.1111/j.1095-8649.2004.00430.x; Rasmussen JB, 2009, J ANIM ECOL, V78, P674, DOI 10.1111/j.1365-2656.2008.01511.x; Ridgway MS, 2008, T AM FISH SOC, V137, P1179, DOI 10.1577/T05-268.1; Robillard MM, 2011, BIOL CONSERV, V144, P1931, DOI 10.1016/j.biocon.2011.03.022; ROUNICK JS, 1985, FRESHWATER BIOL, V15, P207, DOI 10.1111/j.1365-2427.1985.tb00193.x; Rubenstein DR, 2004, TRENDS ECOL EVOL, V19, P256, DOI 10.1016/j.tree.2004.03.017; RYTHER JH, 1997, ANADROMOUS BROOK TRO; Santiago E, 1998, GENET RES, V71, P161, DOI 10.1017/S0016672398003231; Schreiner DR, 2008, N AM J FISH MANAGE, V28, P1350, DOI 10.1577/M05-173.1; Skulason S, 1999, EVOLUTION OF BIOLOGICAL DIVERSITY, P70; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Suzuki KW, 2005, CAN J FISH AQUAT SCI, V62, P671, DOI 10.1139/F04-231; Utrilla CG, 1999, J FISH BIOL, V55, P68, DOI 10.1111/j.1095-8649.1999.tb00657.x; Waples RS, 2001, J FISH BIOL, V59, P1, DOI 10.1006/jfbi.2001.1764; WILAND L., 2006, COASTER CHALLENGE RE; Wilcove D., 2007, NO WAY HOME DECLINE; Wilson CC, 2008, N AM J FISH MANAGE, V28, P1307, DOI 10.1577/M05-190.1; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wood CC, 1996, EVOLUTION, V50, P1265, DOI 10.1111/j.1558-5646.1996.tb02367.x 61 10 10 0 40 TAYLOR & FRANCIS INC PHILADELPHIA 520 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. JUL 2011 140 4 943 953 10.1080/00028487.2011.601219 11 Fisheries Fisheries 836VH WOS:000296142700006 2019-02-21 J Mitgutsch, C; Wimmer, C; Sanchez-Villagra, MR; Hahnloser, R; Schneider, RA Mitgutsch, Christian; Wimmer, Corinne; Sanchez-Villagra, Marcelo R.; Hahnloser, Richard; Schneider, Richard A. Timing of Ossification in Duck, Quail, and Zebra Finch: Intraspecific Variation, Heterochronies, and Life History Evolution ZOOLOGICAL SCIENCE English Article Aves; comparative embryology; evolution of development; intraspecific variation; ossification sequence; sequence heterochrony; skeletogenesis CRANIAL NEURAL-CREST; ANALYZING DEVELOPMENTAL SEQUENCES; MARSUPIAL-PLACENTAL DICHOTOMY; CHELYDRA-SERPENTINA REPTILIA; PYXICEPHALUS-ADSPERSUS ANURA; BIRDS AVES PALAEOGNATHAE; SKELETAL DEVELOPMENT; EMBRYONIC-DEVELOPMENT; PRECOCIAL BIRDS; CELL-MIGRATION Skeletogenic heterochronies have gained much attention in comparative developmental biology. The temporal appearance of mineralized individual bones in a species - the species ossification sequence - is an excellent marker in this kind of study. Several publications describe interspecific variation, but only very few detail intraspecific variation. In this study, we describe and analyze the temporal order of ossification of skeletal elements in the zebra finch, Taeniopygia guttata, the Japanese quail, Coturnix coturnix japonica, and the White Pekin duck, a domestic race of the mallard Anas platyrhynchos, and explore patterns of intraspecific variation in these events. The overall sequences were found to be conserved. In the duck, variability is present in the relative timing of ossification in the occipital, the basisphenoid and the otic regions of the skull and the phalanges in the postcranium. This variation appears generally in close temporal proximity. Comparison with previously published data shows differences in ossification sequence in the skull, the feet, and the pelvis in the duck, and especially the pelvis in the quail. This clearly documents variability among different breeds. [Schneider, Richard A.] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA 94143 USA; [Mitgutsch, Christian; Wimmer, Corinne; Sanchez-Villagra, Marcelo R.] Univ Zurich, Palaontol Inst, CH-8006 Zurich, Switzerland; [Hahnloser, Richard] Univ Zurich, ETH Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland Schneider, RA (reprint author), Univ Calif San Francisco, Dept Orthopaed Surg, 513 Parnassus Ave,S-1161, San Francisco, CA 94143 USA. rich.schneider@ucsf.edu Schneider, Richard/0000-0002-2626-3111 Swiss National Fond; NIDCR [R03 DE014795, R01 DE016402]; NIAMS [R21 AR052513] This work was supported by the Swiss National Fond to MRS-V and by NIDCR R03 DE014795, R01 DE016402, and NIAMS R21 AR052513 to RAS. We thank the Palaeontological Department of the University of Zurich and the Department of Orthopaedic Surgery of the University of California at San Francisco for support and Jasmina Hugi, Daisuke Koyabu, Morana Mihaljevic, Laura B. Wilson, Christian Kolb, James Neenan, Torsten Scheyer, Ingmar Werneburg, and the members of the Schneider-lab for comments and discussion. Kristin Butcher is thanked for help in handling the duck and quail specimens. Michael K. Richardson and Merijn de Bakker, University of Leiden, The Netherlands, are thanked for generously making additional zebra finch embryos available. Christopher-Zollikofer and Naoki Morimoto, University of Zurich, kindly made available the micro-CT facilities and supervised their use. Part of this study has been presented as a Master's Thesis by CW. ADRIAENS D, 1998, Can J Fish Aquat Sci, V235, P351; Balanoff AM, 2007, J VERTEBR PALEONTOL, V27, P1, DOI 10.1671/0272-4634(2007)27[1:ODOAES]2.0.CO;2; Bininda-Emonds Olaf R. P., 2003, Journal of Mammalian Evolution, V10, P335, DOI 10.1023/B:JOMM.0000019775.39109.d2; Blom J, 2004, J ZOOL, V262, P361, DOI 10.1017/S0952836903004746; Bolhuis JJ, 2006, NAT REV NEUROSCI, V7, P347, DOI 10.1038/nrn1904; Chipman AD, 2000, J EXP ZOOL, V288, P352, DOI 10.1002/1097-010X(20001215)288:4<352::AID-JEZ8>3.3.CO;2-U; Colbert MW, 2008, J EXP ZOOL PART B, V310B, P398, DOI 10.1002/jez.b.21212; Coppinger Raymond, 1995, P21; DARWIN C, 1859, ORIGIN SPECIES MEANS, P515; de Jong IML, 2009, EVOL DEV, V11, P625, DOI 10.1111/j.1525-142X.2009.00370.x; Delfino M, 2010, SEMIN CELL DEV BIOL, V21, P432, DOI 10.1016/j.semcdb.2009.11.007; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Dobney K, 2006, J ZOOL, V269, P261, DOI 10.1111/j.1469-7998.2006.00042.x; Eames BF, 2008, DEVELOPMENT, V135, P3947, DOI 10.1242/dev.023309; ERDMANN K., 1940, ZEITSCHR MORPH U OKOL TIERE, V36, P315, DOI 10.1007/BF00406236; Frobisch NB, 2008, BIOL REV, V83, P571, DOI 10.1111/j.1469-185X.2008.00055.x; Germain D, 2009, EVOL DEV, V11, P170, DOI 10.1111/j.1525-142X.2009.00318.x; Goswami A, 2009, J EXP ZOOL PART B, V312B, P186, DOI 10.1002/jez.b.21283; Haas A, 1999, ZOOMORPHOLOGY, V119, P23, DOI 10.1007/s004350050078; HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104; Harrison LB, 2008, SYST BIOL, V57, P378, DOI 10.1080/10635150802164421; Hugi Jasmina, 2010, Zoosystematics and Evolution, V86, P21, DOI 10.1002/zoos.200900011; Jeffery JE, 2002, SYST BIOL, V51, P478, DOI 10.1080/10635150290069904; Jeffery JE, 2005, SYST BIOL, V54, P230, DOI 10.1080/10635150590923227; Jeffery JE, 2002, EVOL DEV, V4, P292, DOI 10.1046/j.1525-142X.2002.02018.x; Jheon AH, 2009, J DENT RES, V88, P12, DOI 10.1177/0022034508327757; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; Koenemann S, 2002, CONTRIB ZOOL, V71, P47; Lilja C, 2001, ZOOL-ANAL COMPLEX SY, V104, P115, DOI 10.1078/0944-2006-00016; Lwigale PY, 2008, METHOD CELL BIOL, V87, P59, DOI 10.1016/S0091-679X(08)00203-3; Mabee PM, 1996, J MORPHOL, V227, P249, DOI 10.1002/(SICI)1097-4687(199603)227:3<249::AID-JMOR1>3.0.CO;2-1; Maisano JA, 2002, ZOOL J LINN SOC-LOND, V136, P277, DOI 10.1046/j.1096-3642.2002.00033.x; Maisano JA, 2002, J MORPHOL, V251, P114, DOI 10.1002/jmor.1078; Matsuzaki SS, 2009, J FISH BIOL, V75, P1206, DOI 10.1111/j.1095-8649.2009.02345.x; Maxwell EE, 2008, J MORPHOL, V269, P1056, DOI 10.1002/jmor.10633; Maxwell EE, 2008, J MORPHOL, V269, P1095, DOI 10.1002/jmor.10644; Maxwell EE, 2008, ZOOLOGY, V111, P242, DOI 10.1016/j.zool.2007.08.004; Maxwell EE, 2010, ZOOLOGY, V113, P57, DOI 10.1016/j.zool.2009.06.002; Maxwell EE, 2009, EVOL DEV, V11, P109, DOI 10.1111/j.1525-142X.2008.00307.x; Maxwell EE, 2009, ZOOL J LINN SOC-LOND, V157, P169, DOI 10.1111/j.1096-3642.2009.00533.x; Maxwell EE, 2009, ZOOL J LINN SOC-LOND, V156, P184, DOI 10.1111/j.1096-3642.2009.00480.x; Mitgutsch C, 2009, J ZOOL SYST EVOL RES, V47, P248, DOI 10.1111/j.1439-0469.2008.00502.x; Mitgutsch C, 2008, ACTA ZOOL-STOCKHOLM, V89, P69, DOI 10.1111/j.1463-6395.2007.00295.x; Moore MK, 2003, J HERPETOL, V37, P714, DOI 10.1670/246-01N; Nakane Y, 1999, DEV GROWTH DIFFER, V41, P523; Olsson L, 1996, J MORPHOL, V229, P105, DOI 10.1002/(SICI)1097-4687(199607)229:1<105::AID-JMOR7>3.0.CO;2-2; PROCHEL J, 2008, MAMM BIOL, V73, P299; Richardson MK, 2001, ZOOL-ANAL COMPLEX SY, V104, P278, DOI 10.1078/0944-2006-00033; RIEPPEL O, 1993, J ZOOL, V231, P487, DOI 10.1111/j.1469-7998.1993.tb01933.x; ROGULSKA TERESA, 1962, ZOOL POLON, V12, P223; Rose Christopher S., 2003, Amphibian Biology, V5, P1684; Sanchez-Villagra MR, 2008, EVOL DEV, V10, P519, DOI 10.1111/j.1525-142X.2008.00267.x; Sanchez-Villagra MR, 2009, J MORPHOL, V270, P1381, DOI 10.1002/jmor.10766; Sanchez-Villagra MR, 2002, J EXP ZOOL, V294, P264, DOI 10.1002/jez.10147; Schinz H. R., 1937, DENKSCHR SCHWEIZ NAT, V72, P116; Schmidt K, 2004, J EXP ZOOL PART B, V302B, P446, DOI 10.1002/jez.b.21010; Schneider RA, 2003, SCIENCE, V299, P565, DOI 10.1126/science.1077827; Schoch RR, 2006, EVOL DEV, V8, P524, DOI 10.1111/j.1525-142X.2006.00125.x; Schulmeister S, 2004, EVOL DEV, V6, P50, DOI 10.1111/j.1525-142X.2004.04005.x; SCHUMACHER GH, 1966, MORPH JB, V110, P620; Sheil CA, 2005, J ZOOL, V265, P235, DOI 10.1017/S0952836904006296; Sheil CA, 2005, J MORPHOL, V263, P71, DOI 10.1002/jmor.10290; Sheil CA, 2003, J MORPHOL, V256, P42, DOI 10.1002/jmor.10074; Sheil CA, 1999, J MORPHOL, V240, P49, DOI 10.1002/(SICI)1097-4687(199904)240:1<49::AID-JMOR5>3.0.CO;2-Z; SMITH KK, 1997, EVOLUTION, V51, P63; Starck J.M., 1989, Courier Forschungsinstitut Senckenberg, V114, P1; Starck J.M., 1993, Current Ornithology, V10, P275; Starck JM, 1996, ZOOL ANZ, V235, P53; Tamlin AL, 2009, WILDLIFE BIOL, V15, P266, DOI 10.2981/08-004; Tchernichovski O, 2001, SCIENCE, V291, P2564, DOI 10.1126/science.1058522; Tokita M, 2006, J MORPHOL, V267, P333, DOI 10.1002/jmor.10408; Tokita M, 2009, DEV BIOL, V331, P311, DOI 10.1016/j.ydbio.2009.05.548; TRUEB L, 1985, S AFR J SCI, V81, P181; Tucker AS, 2004, EVOL DEV, V6, P32, DOI 10.1111/j.1525-142X.2004.04004.x; Vaglia JL, 2003, EVOL DEV, V5, P121, DOI 10.1046/j.1525-142X.2003.03019.x; Velhagen WA, 1997, SYST BIOL, V46, P204, DOI 10.2307/2413644; WEISBECKER V, 2010, J ZOOL SYST EVOL RES; Weisbecker V, 2008, EVOLUTION, V62, P2027, DOI 10.1111/j.1558-5646.2008.00424.x; WELTEN CMM, 2005, EVOL DEV, V7, P18; Werneburg I, 2011, ACTA ZOOL-STOCKHOLM, V92, P75, DOI 10.1111/j.1463-6395.2009.00447.x; Werneburg I, 2009, DEV DYNAM, V238, P2770, DOI 10.1002/dvdy.22104; Werneburg I, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005887; Werneburg I, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-82; Wilson LAB, 2010, ORG DIVERS EVOL, V10, P243, DOI 10.1007/s13127-010-0020-4 84 25 25 0 17 ZOOLOGICAL SOC JAPAN TOKYO TOSHIN-BUILDING, HONGO 2-27-2, BUNKYO-KU, TOKYO, 113-0033, JAPAN 0289-0003 ZOOL SCI Zool. Sci. JUL 2011 28 7 491 500 10.2108/zsj.28.491 10 Zoology Zoology 782YQ WOS:000292049100004 21728797 Green Accepted 2019-02-21 J Wilson, S; Martin, K Wilson, Scott; Martin, Kathy Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range POPULATION ECOLOGY English Article Lagopus leucura; Population growth; Reproductive ecology; Seasonality; Survival; White-tailed ptarmigan WHITE-TAILED PTARMIGAN; CLUTCH-SIZE VARIATION; EGG SIZE; WILLOW PTARMIGAN; POPULATION-DYNAMICS; REPRODUCTIVE COSTS; BREEDING SUCCESS; CHICK SURVIVAL; CLIMATE-CHANGE; NEST SURVIVAL Alpine environments are unique systems to examine variation in life-history strategies because temperature and seasonality are similar across broad latitudinal gradients. We studied the life-history strategies, demography and population growth of white-tailed ptarmigan Lagopus leucura, an alpine specialist, at the latitudinal extremes of the range in the Yukon (YK, studied from 2004 to 2008) and Colorado (CO, 1987-1996). The two populations were separated by 2,400 km of latitude, and the Yukon site was approximately 2,000 m lower in elevation than the Colorado site. Yukon females bred on average 9 days earlier than those in Colorado, but the latter study was conducted 15 years earlier and breeding dates may have advanced over this period. The length of the breeding season was similar between the two populations, and females had comparable probabilities of re-nesting after failure. The two populations differed in how they allocated effort to the first clutch as Yukon females laid larger clutches (7.1 vs. 5.9 eggs) but smaller eggs (18.8 vs. 20.5 g) than those in Colorado. Demographic rates also differed; nest survival was higher in the Yukon (0.40) than in Colorado (0.24), and the resultant annual fecundity was nearly twice as high in the Yukon (3.92 vs. 1.77 chicks/female). In contrast, annual adult survival was higher in Colorado although the confidence intervals overlapped (females: YK = 0.35, CO = 0.44; males: YK = 0.48, CO = 0.59). Estimates of annual population growth (lambda) indicated both populations were declining, especially in Colorado (lambda (YK) = 0.83, lambda (CO) = 0.66), and thus, dispersal movements are likely key to long-term persistence in both cases. Our findings suggest that breeding-season temperature and seasonality affect measures related to timing of reproduction, but not the costs and benefits of clutch and egg size. [Wilson, Scott] Smithsonian Migratory Bird Ctr, Natl Zool Pk, Washington, DC 20008 USA; [Martin, Kathy] Univ British Columbia, Dept Forest Sci, Vancouver, BC V6T 1Z4, Canada; [Martin, Kathy] Environm Canada, Delta, BC V4K 3N2, Canada Wilson, S (reprint author), Canadian Wildlife Serv, 115 Perimeter Rd, Saskatoon, SK S7N 0X4, Canada. scottd.wilson@ec.gc.ca Natural Sciences and Engineering Research Council of Canada (NSERC); Environment Canada; Northern Scientific Training Program; British Columbia Upland Birds Society; Calgary Bird Banding Society; UBC Department of Forestry; Izaak Walton Killam and University We thank the many able field assistants who helped collect data in the field during these two studies, including D. Chalmers, A. Clason, S. Nouvet, G. Pelchat, A. Wilson and M. Wong for the Yukon study, and T. Artiss, L. Robb, K. Wiebe and many undergraduates for the Colorado study. We thank D. S. Hik, A. and S. Williams, and L. Goodwin for providing logistical support at Pika Camp and the Arctic Institute of North America at Kluane Lake, YK, Canada. C. E. Braun, Colorado Division of Wildlife (Fort Collins, CO, USA) provided critical logistical assistance for the duration of the Colorado study, and M. Mossop and L. Robb provided able technical assistance. Funding for the research on both sites was provided by Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery Grant, Northern Research Supplement, International Polar Year) and Environment Canada support to KM, and NSERC Postgraduate Scholarship, Northern Scientific Training Program, British Columbia Upland Birds Society, Calgary Bird Banding Society, UBC Department of Forestry, and Izaak Walton Killam and University Graduate Fellowships to SW. We thank Cameron Aldridge and an anonymous reviewer for helpful comments in revising this manuscript. Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; Bears H, 2009, J ANIM ECOL, V78, P365, DOI 10.1111/j.1365-2656.2008.01491.x; Bergerud A. T., 1988, ADAPTIVE STRATEGIES; Blomqvist D, 1997, OECOLOGIA, V110, P18, DOI 10.1007/s004420050128; BRAUN CE, 1993, BIRDS N AM; Burnham K. P, 2002, MODEL SELECTION MULT; Camfield AF, 2010, J AVIAN BIOL, V41, P273, DOI 10.1111/j.1600-048X.2009.04816.x; Caswell H., 2001, MATRIX POPULATION MO; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; CLARKE JA, 1992, CONDOR, V94, P622, DOI 10.2307/1369247; Collister DM, 2007, AVIAN CONSERV ECOL, V2; Dunn P, 2004, ADV ECOL RES, V35, P67; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; Fedy BC, 2008, MOL ECOL, V17, P1905, DOI 10.1111/j.1365-294X.2008.03720.x; Figuerola J, 2006, J ORNITHOL, V147, P57, DOI 10.1007/s10336-005-0017-5; FLINT PL, 1995, J WILDLIFE MANAGE, V59, P448, DOI 10.2307/3802450; Folk TH, 2007, POPUL ECOL, V49, P211, DOI 10.1007/s10144-007-0037-5; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; Gould WR, 1998, ECOLOGY, V79, P2531, DOI 10.1890/0012-9658(1998)079[2531:EOTVOS]2.0.CO;2; GRANT MC, 1991, IBIS, V133, P127, DOI 10.1111/j.1474-919X.1991.tb04823.x; GREENLAND D, 1989, ARCTIC ALPINE RES, V21, P380, DOI 10.2307/1551647; Hannon SJ, 2006, J ZOOL, V269, P422, DOI 10.1111/j.1469-7998.2006.00159.x; HANNON SJ, 1988, AUK, V105, P330, DOI 10.2307/4087498; HOLDER K, 2008, BIRDS N AM; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnson LS, 2006, CONDOR, V108, P591, DOI 10.1650/0010-5422(2006)108[591:CIESAC]2.0.CO;2; KREMENTZ DG, 1984, OIKOS, V43, P256, DOI 10.2307/3544780; Lack D., 1954, P143; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lewis Evans, 1904, Bird Lore Harrisburg P, V6; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; Lu X, 2005, J ORNITHOL, V146, P72, DOI 10.1007/s10336-004-0058-1; Martin K, 2004, INTEGR COMP BIOL, V44, P177, DOI 10.1093/icb/44.2.177; Martin K, 2000, CONDOR, V102, P503, DOI 10.1650/0010-5422(2000)102[0503:RDADRI]2.0.CO;2; MARTIN K, 2011, STUD AVIAN IN PRESS; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MORENO J, 1989, ORNIS SCAND, V20, P123, DOI 10.2307/3676879; Morris WF, 2002, QUANTITATIVE CONSERV; Moynahan BJ, 2007, J WILDLIFE MANAGE, V71, P1773, DOI 10.2193/2005-386; NICHOLS JD, 1982, J WILDLIFE MANAGE, V46, P953, DOI 10.2307/3808228; Pitman JC, 2006, WILSON J ORNITHOL, V118, P23, DOI 10.1676/1559-4491(2006)118[0023:NEOLPI]2.0.CO;2; R Development Core Team, 2009, R LANG ENV STAT COMP; REID W. V., 1987, STUDIES AVIAN BIOL, V10, P8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; ROHWER FC, 1988, AUK, V105, P161; Rubolini D, 2008, AUK, V125, P374, DOI 10.1525/auk.2008.07018; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Saether BE, 2008, J ANIM ECOL, V77, P869, DOI 10.1111/j.1365-2656.2008.01424.x; Salgado-Ortiz J, 2008, AUK, V125, P402, DOI 10.1525/auk.2008.07012; Sandercock BK, 2005, OECOLOGIA, V146, P13, DOI 10.1007/s00442-005-0174-5; Sandercock BK, 2005, ECOLOGY, V86, P2176, DOI 10.1890/04-0563; Sandercock BK, 2006, J WILDLIFE MANAGE, V70, P1504, DOI 10.2193/0022-541X(2006)70[1504:EODPFL]2.0.CO;2; SILVERIN B, 1995, AM ZOOL, V35, P191; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; Torti VM, 2005, OECOLOGIA, V145, P486, DOI 10.1007/s00442-005-0175-4; Valkama J, 2005, BIOL REV, V80, P171, DOI 10.1017/S146479310400658X; Wang GM, 2002, CLIM RES, V23, P81, DOI 10.3354/cr023081; WESTERSKOV K, 1950, J WILDLIFE MANAGE, V14, P56, DOI 10.2307/3795978; White GC, 1999, BIRD STUDY, V46, P120; Wiebe KL, 2000, BEHAV ECOL SOCIOBIOL, V48, P463; Wiebe KL, 1998, ANIM BEHAV, V56, P1137, DOI 10.1006/anbe.1998.0862; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson S, 2008, J ORNITHOL, V149, P629, DOI 10.1007/s10336-008-0308-8; Wilson S, 2007, CONDOR, V109, P377, DOI 10.1650/0010-5422(2007)109[377:NSPIWP]2.0.CO;2; Wilson S, 2010, J AVIAN BIOL, V41, P319, DOI 10.1111/j.1600-048X.2009.04945.x; Wilson SE, 2008, THESIS; Winkler DW, 2002, P NATL ACAD SCI USA, V99, P13595, DOI 10.1073/pnas.212251999; Wong MML, 2009, WILSON J ORNITHOL, V121, P638, DOI 10.1676/08-029.1; YOUNG BE, 1994, AUK, V111, P545 72 16 17 0 30 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JUL 2011 53 3 459 471 10.1007/s10144-011-0261-x 13 Ecology Environmental Sciences & Ecology 774NL WOS:000291393200005 2019-02-21 J Dunkel, CS; Mathes, E; Harbke, C Dunkel, Curtis S.; Mathes, Eugene; Harbke, Colin Life history strategy, identity consolidation, and psychological well-being PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history; Identity; Well-being CONFIRMATORY FACTOR-ANALYSIS; SELF-CONCEPT; K-FACTOR; HIERARCHICAL STRUCTURE; FIT INDEXES; PERSONALITY; VALIDATION; COVITALITY; VALIDITY; MODELS Previous research has shown that individual differences in life history strategies co-vary with a large array of variables to the extent that latent variables from a number of psychological measures load on a single (Super-K) factor. Similar to research on the Super-K factor, the purpose of this study was to test the hypothesis that various measures of identity would load on a single factor and that this latent variable would in turn be associated with other variables reflecting life history strategy and psychological well-being, making a Super-K factor. A sample of 248 university students were administered a variety of questionnaires related to identity, life history strategy, and psychological well-being. Confirmatory factor analyses revealed the hypothesized Super-K factor and the relationship remained even when controlling for variance in social-desirable responding. The results are discussed in terms of the association between Erikson's theory of psychosocial development and life history theory. (C) 2011 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.; Mathes, Eugene; Harbke, Colin] Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Wagonner Hall, Macomb, IL 61455 USA. c-dunkel@wiu.edu Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; Bentler P. M, 2004, EQS 6 STRUCTURAL EQU; BENTLER PM, 1990, PSYCHOL BULL, V107, P238, DOI 10.1037//0033-2909.107.2.238; BENTLER PM, 1980, PSYCHOL BULL, V88, P588, DOI 10.1037/0033-2909.107.2.238; BERZONSKY MD, 1992, IDENTITY SYTLE UNPUB; BUSS DM, 1995, PSYCHOL INQ, V6, P1, DOI 10.1207/s15327965pli0601_1; Cote J. E., 1997, J ADOLESCENCE, V20, P421; DIENER E, 1985, J PERS ASSESS, V49, P71, DOI 10.1207/s15327752jpa4901_13; Dunkel CS, 2005, IDENTITY, V5, P21, DOI 10.1207/s1532706xid0501_2; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunkel CS, 2009, REV GEN PSYCHOL, V13, P13, DOI 10.1037/a0013687; Erikson E.H., 1968, IDENTITY YOUTH CRISI; Erikson E. H., 1950, CHILDHOOD SOC; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Gladden PR, 2010, PERS INDIV DIFFER, V48, P731, DOI 10.1016/j.paid.2010.01.016; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Graham J, 2009, J PERS SOC PSYCHOL, V96, P1029, DOI 10.1037/a0015141; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Kendrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292; MARCIA JE, 1966, J PERS SOC PSYCHOL, V3, P551, DOI 10.1037/h0023281; Markstrom CA, 1997, J YOUTH ADOLESCENCE, V26, P705, DOI 10.1023/A:1022348709532; MARSH HW, 1988, J EDUC PSYCHOL, V80, P366, DOI 10.1037/0022-0663.80.3.366; MARSH HW, 1987, J EDUC MEAS, V24, P17, DOI 10.1111/j.1745-3984.1987.tb00259.x; MARSH HW, 1985, PSYCHOL BULL, V97, P562, DOI 10.1037/0033-2909.97.3.562; McCullough ME, 2002, J PERS SOC PSYCHOL, V82, P112, DOI 10.1037//0022-3514.82.1.112; OCHSE R, 1986, J PERS SOC PSYCHOL, V50, P1240, DOI 10.1037/0022-3514.50.6.1240; PROMISLOW DEL, 1991, ACTA OECOL, V12, P119; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RINDSKOPF D, 1988, MULTIVAR BEHAV RES, V23, P51, DOI 10.1207/s15327906mbr2301_3; Rosenberg M, 1965, SOC ADOLESCENT SELF; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schwartz SJ, 2010, AM J HEALTH BEHAV, V34, P214; Schwartz SJ, 2007, IDENTITY, V7, P27, DOI 10.1080/15283480701319583; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41; Watson D., 1994, MANUAL POSITIVE NEGA 41 12 12 2 19 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. JUL 2011 51 1 34 38 10.1016/j.paid.2011.03.005 5 Psychology, Social Psychology 762UG WOS:000290506300006 2019-02-21 J Rubio-Rocha, LC Rubio-Rocha, Laura C. CONTINUOUS REPRODUCTION UNDER A BIMODAL PRECIPITATION REGIME IN A HIGH ELEVATION ANOLE (ANOLIS MARIARUM) FROM ANTIOQUIA, COLOMBIA CALDASIA English Article Bimodal precipitacion; Climatic equator; Polychrotidae; reproductive cycles; sexual maturity LIFE-HISTORY EVOLUTION; MIDSUMMER DROUGHT; MATURITY; LIZARDS; SIZE; POPULATION; LIMIFRONS; AGE; POLYCHROTIDAE; PREDATION Reproductive activity was studied in two populations of Anolis mariarum during rainy and dry season months in the Antioquia department of Colombia. Minimum size at maturity was comparable at the two sites for both males (37-39 mm SVL) and females (44 mm SVL). At the population level, reproduction was continuous, with the majority of adult males and females reproductively active even during the dry season months. Juvenile size distributions also were uniform across seasons, consistent with the conclusion that recruitment is not pulsed in these populations. However, there was some evidence that certain females may lower their reproductive rates during the dry season, especially at the site receiving the least total annual precipitation (1700 mm). These results further support accumulating evidence that populations of Anolis species inhabiting the climatic equator region, where the annual precipitation regime is bimodal, are capable of maintaining continuous reproduction even when annual precipitation amounts are relatively low. In contrast, Anolis populations in areas receiving comparable amounts of annual precipitation during a single rainy season tend to cease reproductive activity during the longer dry season each year. [Rubio-Rocha, Laura C.] Univ Valle, Dept Biol, Cali, Colombia; [Rubio-Rocha, Laura C.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA Rubio-Rocha, LC (reprint author), Univ Valle, Dept Biol, Edificio 320,Ciudadela Univ Melendez, Cali, Colombia. lacaruro@gmail.com Comite para la Investigacion CODI of the Universidad de Antioquia; IDEA WILD This project was supported with a Sustainability Grant from the Comite para la Investigacion CODI of the Universidad de Antioquia and a grant from IDEA WILD. We would like to thank E. Alzate for assistance with the field work and the Alzate-Otalvaro family for offering housing at the San Antonio de Prado site. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Ardila-Marin DA, 2008, CALDASIA, V30, P151; ANDREWS R, 1974, ECOLOGY, V55, P1317, DOI 10.2307/1935459; Andrews R.M., 1983, P441; ANDREWS RM, 1979, COPEIA, P620; ANDREWS RM, 1981, ECOLOGY, V62, P556, DOI 10.2307/1937721; ANDREWS RM, 1989, COPEIA, P751, DOI 10.2307/1445508; Bock Brian C., 2010, Pap. Avulsos Zool. (São Paulo), V50, P43, DOI 10.1590/S0031-10492010000300001; Bock BC, 2009, REV BIOL TROP, V57, P1253; Borchert R, 2005, NATURE, V433, P627, DOI 10.1038/nature03259; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; ESTRADA E, 2002, ATLAS HIST VERTEBADO; FLEMING TH, 1975, ECOLOGY, V56, P1243, DOI 10.2307/1934695; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARCIA-COLLAZO R., 1993, B SOC HERPETOLOGICA, V5, P51; HUEY RB, 1977, COPEIA, P373, DOI 10.2307/1443919; LAW R, 1979, AM NAT, V114, P1; Magana V, 1999, J CLIMATE, V12, P1577, DOI 10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2; Paez V. P., 2002, GUIA CAMPO ALGUNAS E; Palacio Baena J. A., 2006, ANFIBIOS REPTILES VA; PASSEK KM, 2002, THESIS VIRGINIA POLY; Poe Steven, 2004, Herpetological Monographs, P37; PRATT NC, 1994, ANIM BEHAV, V47, P1101, DOI 10.1006/anbe.1994.1148; RAMIREZ MP, 1991, TRIANEA, V4, P513; Ramirez-Bautista A, 1997, HERPETOLOGICA, V53, P423; RAND AS, 1982, ECOLOGY TROPICAL FOR, P47; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RUBIOR LC, 2009, THESIS U VALLE CALI; Serrano-Cardozo Victor Hugo, 2007, South American Journal of Herpetology, V2, P31, DOI 10.2994/1808-9798(2007)2[31:ARAOGA]2.0.CO;2; SHINE R, 1991, EVOLUTION, V45, P1696, DOI 10.1111/j.1558-5646.1991.tb02675.x; Small RJO, 2007, J CLIMATE, V20, P4853, DOI 10.1175/JCLI4261.1; Stamps J, 1997, EVOL ECOL, V11, P21, DOI 10.1023/A:1018479312191; StatSoft Inc., 2007, STATISTICA DAT AN SO; TOKARZ RR, 1995, HERPETOLOGICAL MONOGRAPHS, NO 9, 1995, P17, DOI 10.2307/1466994; VITT LJ, 1986, COPEIA, P773, DOI 10.2307/1444960; Vitt LJ, 2009, HERPETOLOGY; Watling JI, 2005, J HERPETOL, V39, P341, DOI 10.1670/80-02A.1 38 1 1 0 3 INST CIENCIAS NATURALES, MUSEO HISTORIA NATURAL BOGOTA FAC CIENCIAS, UNIV NACIONAL COLOMBIA, APARTADO 7495, BOGOTA, 00000, COLOMBIA 0366-5232 CALDASIA Caldasia JUN 30 2011 33 1 91 104 14 Plant Sciences; Multidisciplinary Sciences; Zoology Plant Sciences; Science & Technology - Other Topics; Zoology 824JJ WOS:000295197900006 DOAJ Gold 2019-02-21 J April, J; Mayden, RL; Hanner, RH; Bernatchez, L April, Julien; Mayden, Richard L.; Hanner, Robert H.; Bernatchez, Louis Genetic calibration of species diversity among North America's freshwater fishes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article DNA barcoding; cytochrome c oxidase I; biodiversity; evolutionarily significant units; aquatic ecosystem LAMPETRA-PLANERI BLOCH; MITOCHONDRIAL-DNA; CONSERVATION STATUS; UNITED-STATES; LAMPREYS; TELEOSTEI; BARCODES; SPECIATION; BROOK; PHYLOGEOGRAPHY Freshwater ecosystems are being heavily exploited and degraded by human activities all over the world, including in North America, where fishes and fisheries are strongly affected. Despite centuries of taxonomic inquiry, problems inherent to species identification continue to hamper the conservation of North American freshwater fishes. Indeed, nearly 10% of species diversity is thought to remain undescribed. To provide an independent calibration of taxonomic uncertainty and to establish a more accessible molecular identification key for its application, we generated a standard reference library of mtDNA sequences (DNA barcodes) derived from expert-identified museum specimens for 752 North American freshwater fish species. This study demonstrates that 90% of known species can be delineated using barcodes. Moreover, it reveals numerous genetic discontinuities indicative of independently evolving lineages within described species, which points to the presence of morphologically cryptic diversity. From the 752 species analyzed, our survey flagged 138 named species that represent as many as 347 candidate species, which suggests a 28% increase in species diversity. In contrast, several species of parasitic and nonparasitic lampreys lack such discontinuity and may represent alternative life history strategies within single species. Therefore, it appears that the current North American freshwater fish taxonomy at the species level significantly conceals diversity in some groups, although artificially creating diversity in others. In addition to providing an easily accessible digital identification system, this study identifies 151 fish species for which taxonomic revision is required. [April, Julien; Bernatchez, Louis] Univ Laval, Inst Biol Integrat & Syst, Quebec City, PQ G1V 0A6, Canada; [Mayden, Richard L.] St Louis Univ, Dept Biol, St Louis, MO 63103 USA; [Hanner, Robert H.] Univ Guelph, Biodivers Inst Ontario, Guelph, ON N1G 2W1, Canada April, J (reprint author), Univ Laval, Inst Biol Integrat & Syst, Quebec City, PQ G1V 0A6, Canada. julien.april.1@ulaval.ca Natural Sciences and Engineering Research Council of Canada We thank the following people for their valuable help in collecting samples: David Ward from Arizona Game and Fish; Tom Near and Benjamin Keck from the Peabody Museum of Natural History; Christian Smith from the Abernathy Fish Technology Center; Paul Rister from the Kentucky Department of Fish and Wildlife Resources; John Lyons from the Wisconsin Department of Natural Resources and the University of Wisconsin Zoological Museum; and Larry M. Page, Rob Robins, and Molly Phillips from the Florida Museum of Natural History. We also thank Miranda G. Haskins for assistance in subsampling biological material and Heather Braid for assistance in generating DNA sequences. We are grateful to Paul Hebert for his support and interest throughout the present study. We also thank the editor and three anonymous referees for their very constructive and useful comments. This research is a contribution to the research program of Quebec Ocean and was supported through funding to the Canadian Barcode of Life Network from the Natural Sciences and Engineering Research Council of Canada and other sponsors (listed at http://www.BOLNET.ca). ABELL R. A., 2000, FRESHWATER ECOREGION; Alroy J, 2000, PALEOBIOLOGY, V26, P707, DOI 10.1666/0094-8373(2000)026<0707:NMFQMP>2.0.CO;2; Avise J. C., 2000, PHYLOGEOGRAPHY HIST; Avise JC, 1998, P ROY SOC B-BIOL SCI, V265, P1707, DOI 10.1098/rspb.1998.0492; Beamish R.J., 1986, P31; Bernatchez L, 1998, MOL ECOL, V7, P431, DOI 10.1046/j.1365-294x.1998.00319.x; Blank M, 2008, CAN J FISH AQUAT SCI, V65, P2780, DOI 10.1139/F08-178; BROWN WM, 1979, P NATL ACAD SCI USA, V76, P1967, DOI 10.1073/pnas.76.4.1967; Butler R.S., 2003, ENDANGERED SPECIES B, V28, P24; Byrkjedal I, 2007, J FISH BIOL, V71, P111, DOI 10.1111/j.1095-8649.2007.01550.x; Cochran PA, 2008, J FRESHWATER ECOL, V23, P161, DOI 10.1080/02705060.2008.9664567; Coyne J. A., 2004, SPECIATION; Cracraft J., 1983, Current Ornithology, V1, P159; Docker MF, 2009, AM FISH S S, V72, P71; Espanhol R, 2007, MOL ECOL, V16, P1909, DOI 10.1111/j.1365-294X.2007.03279.x; FAO, 2009, STAT WORLD FISH AQ 2; Ficetola GF, 2008, BIOL LETTERS, V4, P423, DOI 10.1098/rsbl.2008.0118; Fraser DJ, 2001, MOL ECOL, V10, P2741, DOI 10.1046/j.1365-294X.2001.t01-1-01411.x; Froese R, 2010, FISHBASE; Grande T, 2004, COPEIA, P743; Harris PM, 2005, COPEIA, P340, DOI 10.1643/CG-04-035R1; Hebert PDN, 2010, BIOL LETTERS, V6, P359, DOI 10.1098/rsbl.2009.0848; Hebert PDN, 2004, P NATL ACAD SCI USA, V101, P14812, DOI 10.1073/pnas.0406166101; Hebert PDN, 2003, P ROY SOC B-BIOL SCI, V270, P313, DOI 10.1098/rspb.2002.2218; HUBBS CL, 1955, SYST ZOOL, V4, P1, DOI 10.2307/2411933; Hubert N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002490; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Kaartinen R, 2010, ECOL ENTOMOL, V35, P623, DOI 10.1111/j.1365-2311.2010.01224.x; Kerr KCR, 2007, MOL ECOL NOTES, V7, P535, DOI 10.1111/j.1471-8286.2006.01670.x; Kinziger AP, 2000, COPEIA, P1007, DOI 10.1643/0045-8511(2000)000[1007:NSOCTC]2.0.CO;2; Lara A, 2010, MOL ECOL RESOUR, V10, P421, DOI 10.1111/j.1755-0998.2009.02785.x; Mayden R. L., 1997, V54, P381; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; Nelson J. S., 2004, SPECIAL PUBLICATION, V29; Okada K, 2010, GENE, V465, P45, DOI 10.1016/j.gene.2010.06.009; Pedial JM, 2010, FRONT ZOOL, V7, P16; Podjasek JO, 2005, CAN J ZOOL, V83, P1138, DOI 10.1139/Z05-108; Ratnasingham S, 2007, MOL ECOL NOTES, V7, P355, DOI 10.1111/j.1471-8286.2006.01678.x; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Schreiber A, 1998, J ZOOL SYST EVOL RES, V36, P85, DOI 10.1111/j.1439-0469.1998.tb00781.x; Smith MA, 2008, P NATL ACAD SCI USA, V105, P12359, DOI 10.1073/pnas.0805319105; SOKAL RR, 1970, AM NAT, V104, P127, DOI 10.1086/282646; Turgeon J, 1999, EVOLUTION, V53, P1857, DOI 10.2307/2640446; Victor BC, 2009, ZOOTAXA, P24; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Waples R.S., 1995, EVOLUTION AQUATIC EC, V17, P8; Waples R.S., 1991, MAR FISH REV, V53, P11; Ward RD, 2009, J FISH BIOL, V74, P329, DOI 10.1111/j.1095-8649.2008.02080.x; Ward RD, 2005, PHILOS T R SOC B, V360, P1847, DOI 10.1098/rstb.2005.1716; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; Warren ML, 2000, FISHERIES, V25, P7, DOI 10.1577/1548-8446(2000)025<0007:DDACSO>2.0.CO;2; Wong EHK, 2008, FOOD RES INT, V41, P828, DOI 10.1016/j.foodres.2008.07.005; Wong EHK, 2009, MOL ECOL RESOUR, V9, P243, DOI 10.1111/j.1755-0998.2009.02653.x; Yamazaki Y, 2006, J FISH BIOL, V68, P251, DOI 10.1111/j.1095-8649.2006.01070.x; ZANANDREA G, 1959, NATURE, V184, P380 55 123 126 3 67 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUN 28 2011 108 26 10602 10607 10.1073/pnas.1016437108 6 Multidisciplinary Sciences Science & Technology - Other Topics 785SX WOS:000292251000048 21670289 Bronze, Green Published 2019-02-21 J Boyd, R; Richerson, PJ; Henrich, J Boyd, Robert; Richerson, Peter J.; Henrich, Joseph The cultural niche: Why social learning is essential for human adaptation PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article cognitive niche; cultural evolution; human evolution; human adaptation; intelligence LIFE-HISTORY EVOLUTION; TRANSMISSION; COEVOLUTION; OVERIMITATION; INTELLIGENCE; PREFERENCE In the last 60,000 y humans have expanded across the globe and now occupy a wider range than any other terrestrial species. Our ability to successfully adapt to such a diverse range of habitats is often explained in terms of our cognitive ability. Humans have relatively bigger brains and more computing power than other animals, and this allows us to figure out how to live in a wide range of environments. Here we argue that humans may be smarter than other creatures, but none of us is nearly smart enough to acquire all of the information necessary to survive in any single habitat. In even the simplest foraging societies, people depend on a vast array of tools, detailed bodies of local knowledge, and complex social arrangements and often do not understand why these tools, beliefs, and behaviors are adaptive. We owe our success to our uniquely developed ability to learn from others. This capacity enables humans to gradually accumulate information across generations and develop well-adapted tools, beliefs, and practices that are too complex for any single individual to invent during their lifetime. [Boyd, Robert] Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA; [Richerson, Peter J.] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA; [Henrich, Joseph] Univ British Columbia, Dept Psychol, Vancouver, BC V6T 1Z4, Canada; [Henrich, Joseph] Univ British Columbia, Dept Econ, Vancouver, BC V6T 1Z4, Canada Boyd, R (reprint author), Univ Calif Los Angeles, Dept Anthropol, Los Angeles, CA 90095 USA. rboyd@anthro.ucla.edu; pjricherson@ucdavis.edu; henrich@psych.ubc.ca National Institutes of Health [RC1TW008631-02]; Canadian Institute for Advanced Research We thank Clark Barrett for very useful comments on a previous draft of this article, and two anonymous referees for their help. This work was supported in part by National Institutes of Health Grant RC1TW008631-02 (to R.B.) and the Canadian Institute for Advanced Research (J.H.). Atran S., 2008, NATIVE MIND CULTURAL; Balikci Asen, 1989, NETSILIK ESKIMO; Barrett C., 2007, EVOLUTION MIND FUNDA, P241; Basalla G, 1988, EVOLUTION TECHNOLOGY; Beppu A., 2009, P 31 ANN C COGN SCI; Billing J, 1998, Q REV BIOL, V73, P3, DOI 10.1086/420058; BIRCH LL, 1987, ANN CHILD DEV, V4, P171; Birch SAJ, 2008, COGNITION, V107, P1018, DOI 10.1016/j.cognition.2007.12.008; Birch SAJ, 2010, DEVELOPMENTAL SCI, V13, P363, DOI 10.1111/j.1467-7687.2009.00906.x; Bloom P., 2004, DECARTES BABY SCI CH; Boyd R., 1988, P29; BOYD R, 1995, ETHOL SOCIOBIOL, V16, P125, DOI 10.1016/0162-3095(94)00073-G; BOYER P, 2002, RELIGION EXPLAINED; BRUCE MD, 1999, HDB BIRDS WORLD, P34; Cosmides L, 2001, EVOLUTION INTELLIGEN, P145; DAMAS D, 1984, HDB N AM INDIANS, V5, P39; Fisher RA, 1930, GENETICAL THEORY NAT; Gilligan I, 2010, J ARCHAEOL METHOD TH, V17, P15, DOI 10.1007/s10816-009-9076-x; Golden Harvey, 2006, KAYAKS GREENLAND HIS; Henrich J, 2003, EVOL ANTHROPOL, V12, P123, DOI 10.1002/evan.10110; Henrich J, 2004, AM ANTIQUITY, V69, P197, DOI 10.2307/4128416; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Henrich J., 2010, INNOVATION CULTURAL, P99; Henrich J, 2011, PHILOS T R SOC B, V366, P1139, DOI 10.1098/rstb.2010.0323; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Henrich J, 2009, EVOL HUM BEHAV, V30, P244, DOI 10.1016/j.evolhumbehav.2009.03.005; Hewlett BS, 2011, PHILOS T R SOC B, V366, P1168, DOI 10.1098/rstb.2010.0373; ISSENMAN BK, 1997, SINEWS SURVIVAL; Johnson S., 2010, GOOD IDEAS COME NATU; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Klein R. G., 2009, HUMAN CAREER; Kline MA, 2010, P ROY SOC B-BIOL SCI, V277, P2559, DOI 10.1098/rspb.2010.0452; Lambert A, 2011, GATES HELL J FRANKLI; Lancy D. F., 1996, PLAYING MOTHER GROUN; Lancy D. F., 2009, ANTHR CHILDHOOD CHER; Lancy D. F., 2010, CHILDHOOD, V3, P79, DOI DOI 10.1179/CIP.2010.3.1.79; Lehmann L, 2010, J EVOLUTION BIOL, V23, P2356, DOI 10.1111/j.1420-9101.2010.02096.x; Lyons DE, 2007, P NATL ACAD SCI USA, V104, P19751, DOI 10.1073/pnas.0704452104; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; MARYROUSSELIERE G, 1996, QITDLARSSUAQ STORY P; Mason OT, 2007, N AM BOWS QUIVERS; MEEKS N, 2005, ARCTIC CLOTHING; Mourre V, 2010, SCIENCE, V330, P659, DOI 10.1126/science.1195550; Muller MN, 2006, CURR BIOL, V16, P2234, DOI 10.1016/j.cub.2006.09.042; Nelson R.K., 1969, HUNTERS NO ICE; Nielsen M, 2010, PSYCHOL SCI, V21, P729, DOI 10.1177/0956797610368808; Otak LA, 2005, ARCTIC CLOTHING; Petroski H, 1992, EVOLUTION USEFUL THI; Pinker S, 2010, P NATL ACAD SCI USA, V107, P8993, DOI 10.1073/pnas.0914630107; Rasmussen K., 1908, PEOPLE POLAR N; Rendell L, 2010, EVOLUTION, V64, P534, DOI 10.1111/j.1558-5646.2009.00817.x; Richerson P. J., 2005, NOT GENES ALONE; Richerson PJ, 2010, P NATL ACAD SCI USA, V107, P8985, DOI 10.1073/pnas.0914631107; ROGERS AR, 1988, AM ANTHROPOL, V90, P819, DOI 10.1525/aa.1988.90.4.02a00030; Rowe KC, 2008, MOL PHYLOGENET EVOL, V47, P84, DOI 10.1016/j.ympev.2008.01.001; ROZIN P, 1981, CHEM SENSES, V6, P23, DOI 10.1093/chemse/6.1.23; ROZIN P, 1979, J COMP PHYSIOL PSYCH, V93, P1001, DOI 10.1037/h0077632; SCAVENIUS JP, 1975, GREENLAND KAYAK ITS; Stenberg G, 2009, INFANCY, V14, P457, DOI 10.1080/15250000902994115; Tennie C, 2009, PHILOS T R SOC B, V364, P2405, DOI 10.1098/rstb.2009.0052; Tooby J, 1987, PRIMATE MODELS HOMIN, P183; White C. M., 1994, HDB BIRDS WORLD, V2, P216; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069; Wohlgelernter S, 2010, J COGN DEV, V11, P269, DOI 10.1080/15248371003699985; WOZENCRAFT WC, 2005, MAMMAL SPECIES WORLD, P532 65 271 282 16 173 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUN 28 2011 108 2 10918 10925 10.1073/pnas.1100290108 8 Multidisciplinary Sciences Science & Technology - Other Topics 784EE WOS:000292137100018 21690340 Bronze, Green Published 2019-02-21 J Rohlenova, K; Morand, S; Hyrsl, P; Tolarova, S; Flajshans, M; Simkova, A Rohlenova, Karolina; Morand, Serge; Hyrsl, Pavel; Tolarova, Sona; Flajshans, Martin; Simkova, Andrea Are fish immune systems really affected by parasites? an immunoecological study of common carp (Cyprinus carpio) PARASITES & VECTORS English Article CHUB LEUCISCUS-CEPHALUS; RAINBOW-TROUT; SEASONAL-CHANGES; ONCORHYNCHUS-MYKISS; RUTILUS-RUTILUS; INNATE IMMUNITY; LIFE-HISTORY; ENVIRONMENTAL-TEMPERATURE; GONADAL MATURATION; DEFENSE-MECHANISMS Background: The basic function of the immune system is to protect an organism against infection in order to minimize the fitness costs of being infected. According to life-history theory, energy resources are in a trade-off between the costly demands of immunity and other physiological demands. Concerning fish, both physiology and immunity are influenced by seasonal changes (i.e. temporal variation) associated to the changes of abiotic factors (such as primarily water temperature) and interactions with pathogens and parasites. In this study, we investigated the potential associations between the physiology and immunocompetence of common carp (Cyprinus carpio) collected during five different periods of a given year. Our sampling included the periods with temporal variability and thus, it presented a different level in exposure to parasites. We analyzed which of two factors, seasonality or parasitism, had the strongest impact on changes in fish physiology and immunity. Results: We found that seasonal changes play a key role in affecting the analyzed measurements of physiology, immunity and parasitism. The correlation analysis revealed the relationships between the measures of overall host physiology, immunity and parasite load when temporal variability effect was removed. When analyzing separately parasite groups with different life-strategies, we found that fish with a worse condition status were infected more by monogeneans, representing the most abundant parasite group. The high infection by cestodes seems to activate the phagocytes. A weak relationship was found between spleen size and abundance of trematodes when taking into account seasonal changes. Conclusions: Even if no direct trade-off between the measures of host immunity and physiology was confirmed when taking into account the seasonality, it seems that seasonal variability affects host immunity and physiology through energy allocation in a trade-off between life important functions, especially reproduction and fish condition. Host immunity measures were not found to be in a trade-off with the investigated physiological traits or functions, but we confirmed the immunosuppressive role of 11-ketotestosterone on fish immunity measured by complement activity. We suggest that the different parasite life-strategies influence different aspects of host physiology and activate the different immunity pathways. [Rohlenova, Karolina; Simkova, Andrea] Masaryk Univ, Fac Sci, Dept Bot & Zool, CS-61137 Brno, Czech Republic; [Morand, Serge] Univ Montpellier 2, CNRS, IRD, Inst Evolutionary Sci, F-34095 Montpellier, France; [Hyrsl, Pavel; Tolarova, Sona] Masaryk Univ, Fac Sci, Inst Expt Biol, CS-61137 Brno, Czech Republic; [Flajshans, Martin] Univ S Bohemia Ceske Budejovice, Res Inst Fish Culture & Hydrobiol Vodnany, Ceske Budejovice 38925, Czech Republic Simkova, A (reprint author), Masaryk Univ, Fac Sci, Dept Bot & Zool, Kotlarska 2, CS-61137 Brno, Czech Republic. simkova@sci.muni.cz Hyrsl, Pavel/N-3371-2017; Morand, Serge/M-5433-2018 Hyrsl, Pavel/0000-0002-4266-5727; Morand, Serge/0000-0003-3986-7659 Grant Agency of the Czech Republic [524/07/0188]; Ministry of Education [MSM6007665809]; Ichthyoparasitology Research Centre of the Ministry of Education, Youth and Sports of the Czech Republic [LC 522]; MU; Masaryk University [MSM0021622416] This study was funded by the Grant Agency of the Czech Republic, project No. 524/07/0188. MF was also supported by the Ministry of Education project MSM6007665809. KR was funded by the Ichthyoparasitology Research Centre of the Ministry of Education, Youth and Sports of the Czech Republic LC 522 and partially by the Rector's Programme in Support of MU Students' Creative Activities. AS was supported by the Research Project of Masaryk University (No. MSM0021622416) AINSWORTH AJ, 1991, COMP BIOCHEM PHYS A, V100, P907, DOI 10.1016/0300-9629(91)90313-2; Alvarez-Pellitero P, 2008, VET IMMUNOL IMMUNOP, V126, P171, DOI 10.1016/j.vetimm.2008.07.013; AVTALION RR, 1969, IMMUNOLOGY, V17, P927; Aydogdu A, 2002, B EUR ASSOC FISH PAT, V22, P343; Bly J.E., 1992, Fish & Shellfish Immunology, V2, P159, DOI 10.1016/S1050-4648(05)80056-7; BOLGER T, 1989, J FISH BIOL, V34, P171, DOI 10.1111/j.1095-8649.1989.tb03300.x; BORG B, 1994, COMP BIOCHEM PHYS C, V109, P219, DOI 10.1016/0742-8413(94)00063-G; Buchmann K, 1998, DIS AQUAT ORGAN, V32, P195, DOI 10.3354/dao032195; Buchmann K, 2002, INT J PARASITOL, V32, P309, DOI 10.1016/S0020-7519(01)00332-0; Buchtikova S, 2011, AQUACULTURE, V318, P169, DOI 10.1016/j.aquaculture.2011.05.013; BURROUGH RJ, 1978, J FISH BIOL, V13, P19, DOI 10.1111/j.1095-8649.1978.tb03409.x; Busacker G. P., 1990, METHODS FISH BIOL; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; CARLSON E, 2008, IMMUNE SYSTEM FISH T; Chubb J.C., 1977, Advances in Parasitology, V15, P133, DOI 10.1016/S0065-308X(08)60528-X; COLLAZOS ME, 1994, FISH SHELLFISH IMMUN, V4, P231, DOI 10.1006/fsim.1994.1021; COLLAZOS ME, 1995, J COMP PHYSIOL B, V165, P71, DOI 10.1007/BF00264688; Dalmo RA, 1997, J FISH DIS, V20, P241, DOI 10.1046/j.1365-2761.1997.00302.x; Danilova N, 2005, NAT IMMUNOL, V6, P295, DOI 10.1038/ni1166; DOUBEK J, 2003, VET HAEMATOLOGY; Duffy JE, 2002, MAR ENVIRON RES, V54, P559, DOI 10.1016/S0141-1136(02)00176-9; DUPASQUIER L, 1993, EVOLUTION IMMUNE SYS; Ellis AE, 1999, FISH SHELLFISH IMMUN, V9, P291, DOI 10.1006/fsim.1998.0192; Ellis AE, 2001, DEV COMP IMMUNOL, V25, P827, DOI 10.1016/S0145-305X(01)00038-6; ERGENS R, 1970, CAUSATIVE AGENTS PAR; Ersdal C, 2001, DIS AQUAT ORGAN, V45, P229, DOI 10.3354/dao045229; Esch GW, 1990, PARASITE COMMUNITIES; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; GEORGIEV B, 1986, Helminthologia (Bratislava), V23, P279; GRIFFIN BR, 1983, DEV COMP IMMUNOL, V7, P253, DOI 10.1016/0145-305X(83)90006-X; GUSEV AV, 1985, IDENTIFICATION KEY 1; Hakalahti T, 2004, PARASITOLOGY, V128, P655, DOI 10.1017/S0031182004004986; Hakalahti T, 2003, PARASITOLOGY, V127, P79, DOI 10.1017/S0031182003003196; Hakoyama H, 2001, BIOL J LINN SOC, V72, P401, DOI 10.1006/bijl.2000.0507; Hansen JD, 2005, P NATL ACAD SCI USA, V102, P6919, DOI 10.1073/pnas.0500027102; Hanzelova V, 2003, PARASITOL RES, V91, P130, DOI 10.1007/s00436-003-0939-x; HARDING FA, 1990, NUCLEIC ACIDS RES, V18, P6369, DOI 10.1093/nar/18.21.6369; Harris PD, 1998, PARASITOLOGY, V117, P137, DOI 10.1017/S003118209800287X; Harrison AJ, 2006, DIS AQUAT ORGAN, V68, P167, DOI 10.3354/dao068167; Hernandez A, 2003, FISH SHELLFISH IMMUN, V15, P479, DOI 10.1016/S1050-4648(03)00024-X; Hou Y, 1999, FISHERIES SCI, V65, P850, DOI 10.2331/fishsci.65.850; Hou Y, 1999, FISHERIES SCI, V65, P844, DOI 10.2331/fishsci.65.844; Hutchinson TH, 1996, FISH SHELLFISH IMMUN, V6, P473, DOI 10.1006/fsim.1996.0045; JOHANSEN K, 1976, PERSPECTIVES EXPT BI, P219; Kadlec D, 2003, J HELMINTHOL, V77, P317, DOI 10.1079/JOH2003183; Kappe A, 2006, DIS AQUAT ORGAN, V70, P255, DOI 10.3354/dao070255; KEYMER AE, 1991, BEHAV ECOLOGY IMPACT; KHOTENOVSKY IA, 1985, MONOGENEA; Kortet R, 2004, ECOL FRESHW FISH, V13, P119, DOI 10.1111/j.1600-0633.2004.00039.x; Kortet R, 2003, BIOL J LINN SOC, V78, P117, DOI 10.1046/j.1095-8312.2003.00136.x; KOSKIVAARA M, 1991, Aqua Fennica, V21, P47; Kubala L, 1996, VET MED-CZECH, V41, P323; Lamkova K, 2007, PARASITOL RES, V101, P775, DOI 10.1007/s00436-007-0546-3; Langston AL, 2002, FISH SHELLFISH IMMUN, V12, P61, DOI 10.1006/fsim.2001.0354; Le Morvan C, 1998, J EXP BIOL, V201, P165; Lefebvre F, 2004, J FISH BIOL, V64, P435, DOI 10.1111/j.0022-1112.2004.00309.x; LENHARDT M, 1992, J FISH BIOL, V40, P709, DOI 10.1111/j.1095-8649.1992.tb02618.x; LUSKOVA V, 1997, ANN CYCLES NORMAL VA; Magnadottir B, 1999, COMP BIOCHEM PHYS B, V122, P181, DOI 10.1016/S0305-0491(98)10157-8; MALMBERG G, 1970, ARK ZOOL, V23, P1; Manning M. J., 1994, P69; MCEWAN AD, 1970, J COMP PATHOL, V80, P259, DOI 10.1016/0021-9975(70)90093-9; McKeown CA, 1997, INT J PARASITOL, V27, P377, DOI 10.1016/S0020-7519(96)00204-4; Modra H, 1998, ACTA VET BRNO, V67, P215, DOI 10.2754/avb199867040215; Molnar K, 2003, ACTA PARASITOL, V48, P222; Munoz G, 2007, J PARASITOL, V93, P17, DOI 10.1645/GE-969R.1; Nikoskelainen S, 2004, DEV COMP IMMUNOL, V28, P581, DOI 10.1016/j.dci.2003.10.003; Nikoskelainen S, 2002, DEV COMP IMMUNOL, V26, P797, DOI 10.1016/S0145-305X(02)00032-0; Ottova E, 2005, EVOL ECOL RES, V7, P581; Owens IPF, 1999, TRENDS ECOL EVOL, V14, P170, DOI 10.1016/S0169-5347(98)01580-8; PENNYCUICK L, 1971, PARASITOLOGY, V63, P378; Piersma T, 1997, TRENDS ECOL EVOL, V12, P134, DOI 10.1016/S0169-5347(97)01003-3; Poisot T, 2009, J FISH BIOL, V75, P1667, DOI 10.1111/j.1095-8649.2009.02400.x; PRAVDA D, 2003, HAEMATOLOGY FISHES; Reimchen TE, 2001, BIOL J LINN SOC, V73, P51, DOI 10.1006/bijl.2001.0523; Roff Derek A., 1992; ROHDE K, 1995, INT J PARASITOL, V25, P945, DOI 10.1016/0020-7519(95)00015-T; Rohlenova K, 2010, J BIOMED BIOTECHNOL, DOI 10.1155/2010/418382; Ruane NM, 2000, FISH SHELLFISH IMMUN, V10, P451, DOI 10.1006/fsim.1999.0260; Saha NR, 2002, FISH PHYSIOL BIOCHEM, V26, P379, DOI 10.1023/B:FISH.0000009275.25834.67; SANCHEZ C, 1993, VET IMMUNOL IMMUNOP, V36, P65, DOI 10.1016/0165-2427(93)90006-P; Scharsack JP, 2004, DIS AQUAT ORGAN, V59, P141, DOI 10.3354/dao059141; Scholz T., 1989, AMPHILINIDA CESTODA; SCOTT AL, 1985, DEV COMP IMMUNOL, V9, P241, DOI 10.1016/0145-305X(85)90115-6; Secombes C. J., 1996, Annual Review of Fish Diseases, V6, P167, DOI 10.1016/S0959-8030(96)90012-5; Secombes CJ, 1996, FISH IMMUNE SYSTEM O, P63; Simkova A, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-29; Sitja-Bobadilla A, 2008, FISH SHELLFISH IMMUN, V25, P358, DOI 10.1016/j.fsi.2008.03.018; Sitja-Bobadilla A, 2009, FOLIA PARASIT, V56, P143; Skarstein F, 2001, CAN J ZOOL, V79, P271, DOI 10.1139/cjz-79-2-271; Smyth J. D., 1983, PHYSL TREMATODES; SORCI G, 2007, ECOLOGIE EVOLUTIVE R; STOLEN JS, 1984, DEV COMP IMMUNOL, V8, P89, DOI 10.1016/0145-305X(84)90013-2; Suzuki Y, 1997, FISH PHYSIOL BIOCHEM, V17, P415, DOI 10.1023/A:1007795827112; Suzuki Y, 1996, FISHERIES SCI, V62, P754, DOI 10.2331/fishsci.62.754; SVOBODOVA Z, 1986, UNIVERSAL METHODS HE; Taskinen J, 2002, EVOL ECOL RES, V4, P919; Tschirren B, 2006, P R SOC B, V273, P1773, DOI 10.1098/rspb.2006.3524; Vainikka A, 2009, FUNCT ECOL, V23, P187, DOI 10.1111/j.1365-2435.2008.01482.x; Virta M, 1997, J IMMUNOL METHODS, V201, P215, DOI 10.1016/S0022-1759(96)00225-6; Walker PD, 2005, COMP BIOCHEM PHYS A, V141, pS90; WEBER RE, 1990, ANIMAL NUTRITION TRA, V2, P58; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 103 33 35 1 43 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1756-3305 PARASITE VECTOR Parasites Vectors JUN 27 2011 4 120 10.1186/1756-3305-4-120 18 Parasitology; Tropical Medicine Parasitology; Tropical Medicine 808BK WOS:000293948100001 21708010 DOAJ Gold, Green Published 2019-02-21 J Cruaud, A; Jabbour-Zahab, R; Genson, G; Kjellberg, F; Kobmoo, N; van Noort, S; Yang, DR; Peng, YQ; Ubaidillah, R; Hanson, PE; Santos-Mattos, O; Farache, FHA; Pereira, RAS; Kerdelhue, C; Rasplus, JY Cruaud, Astrid; Jabbour-Zahab, Roula; Genson, Gwenaelle; Kjellberg, Finn; Kobmoo, Noppol; van Noort, Simon; Yang Da-Rong; Peng Yan-Qiong; Ubaidillah, Rosichon; Hanson, Paul E.; Santos-Mattos, Otilene; Farache, Fernando H. A.; Pereira, Rodrigo A. S.; Kerdelhue, Carole; Rasplus, Jean-Yves Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea) BMC EVOLUTIONARY BIOLOGY English Article ALTERNATIVE REPRODUCTIVE TACTICS; SECONDARY STRUCTURAL MODEL; EXPANSION SEGMENTS D2; MALE DIMORPHISM; NEW-WORLD; LIKELIHOOD APPROACH; SEXUAL SELECTION; MATE COMPETITION; MALE MORPHOLOGY; MATING TACTICS Background: Non-pollinating Sycophaginae (Hymenoptera, Chalcidoidea) form small communities within Urostigma and Sycomorus fig trees. The species show differences in galling habits and exhibit apterous, winged or dimorphic males. The large gall inducers oviposit early in syconium development and lay few eggs; the small gall inducers lay more eggs soon after pollination; the ostiolar gall-inducers enter the syconium to oviposit and the cleptoparasites oviposit in galls induced by other fig wasps. The systematics of the group remains unclear and only one phylogeny based on limited sampling has been published to date. Here we present an expanded phylogeny for sycophagine fig wasps including about 1.5 times the number of described species. We sequenced mitochondrial and nuclear markers (4.2 kb) on 73 species and 145 individuals and conducted maximum likelihood and Bayesian phylogenetic analyses. We then used this phylogeny to reconstruct the evolution of Sycophaginae life-history strategies and test if the presence of winged males and small brood size may be correlated. Results: The resulting trees are well resolved and strongly supported. With the exception of Apocrytophagus, which is paraphyletic with respect to Sycophaga, all genera are monophyletic. The Sycophaginae are divided into three clades: (i) Eukoebelea; (ii) Pseudidarnes, Anidarnes and Conidarnes and (iii) Apocryptophagus, Sycophaga and Idarnes. The ancestral states for galling habits and male morphology remain ambiguous and our reconstructions show that the two traits are evolutionary labile. Conclusions: The three main clades could be considered as tribes and we list some morphological characters that define them. The same biologies re-evolved several times independently, which make Sycophaginae an interesting model to test predictions on what factors will canalize the evolution of a particular biology. The ostiolar gallinducers are the only monophyletic group. In 15 Myr, they evolved several morphological adaptations to enter the syconia that make them strongly divergent from their sister taxa. Sycophaginae appears to be another example where sexual selection on male mating opportunities favored winged males in species with small broods and wingless males in species with large broods. However, some species are exceptional in that they lay few eggs but exhibit apterous males, which we hypothesize could be due to other selective pressures selecting against the reappearance of winged morphs. [Cruaud, Astrid; Jabbour-Zahab, Roula; Genson, Gwenaelle; Kerdelhue, Carole; Rasplus, Jean-Yves] INRA IRD CIRAD Montpellier SupAgro, INRA UMR Ctr Biol & Gest Populat, CBGP, F-34988 Montferrier Sur Lez, France; [Kjellberg, Finn; Kobmoo, Noppol] CNRS UMR Ctr Ecol Fonct & Evolut, CEFE, F-34293 Montpellier 5, France; [van Noort, Simon] S African Museum, Nat Hist Div, Iziko Museums Cape Town, ZA-8000 Cape Town, South Africa; [Yang Da-Rong; Peng Yan-Qiong] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Forest Ecol, Kunming 650223, Yunnan, Peoples R China; [Ubaidillah, Rosichon] Biol Res Ctr, Museum Zool Bogoriense, Entomol Lab, Div Zool,LIPI, Bogor 16911, Indonesia; [Hanson, Paul E.] Univ Costa Rica, Escuela Biol, San Jose, Costa Rica; [Santos-Mattos, Otilene] Inst Nacl de Pesquisas da Amazonia, BR-69060001 Manaus, Amazonas, Brazil; [Farache, Fernando H. A.; Pereira, Rodrigo A. S.] Depto Biol FFCLRP USP, BR-14040901 Ribeirao Preto, SP, Brazil Cruaud, A (reprint author), INRA IRD CIRAD Montpellier SupAgro, INRA UMR Ctr Biol & Gest Populat, CBGP, Campus Int Baillarguet,CS 30016, F-34988 Montferrier Sur Lez, France. cruaud@supagro.inra.fr Rasplus, Jean-Yves/O-2873-2017; Farache, Fernando/D-6049-2015; Kobmoo, Noppol/G-5138-2013; van Noort, Simon/C-4006-2017; Pereira, Rodrigo/I-5967-2012 Rasplus, Jean-Yves/0000-0001-8614-6665; Farache, Fernando/0000-0001-7655-8826; van Noort, Simon/0000-0001-6930-9741; Pereira, Rodrigo/0000-0002-7736-4211; Kjellberg, Finn/0000-0001-6708-9538; Kerdelhue, Carole/0000-0001-7667-902X ANR (National Research Agency); Lien Siang Chou (National Taiwan University, Taipei, Taiwan); Biota/Fapesp [04/10299-4]; CNPq [302769/2008-0]; FAPESP [07/06054-4]; NRF [GUN 61497] We thank Dominique Strasberg (La Reunion, France) and William Ramirez (San Jose, Costa Rica) for contributing samples. We also thank all our guides in Borneo, Sulawesi, Papua Barat and Gabon, especially Jaman, Lary and Mado. We also thank Alexandre Dehne Garcia and Arnaud Estoup (CBGP, Montpellier) for their help with cluster computers and John Heraty and James Munroe (University of California, Riverside) for their advice on alignment and their provision of alignment framework for Chalcidoidea. Special thanks to Emmanuelle Jousselin (CBGP, Montpellier) for valuable discussion and help. Financial support was provided by grants from the ANR (National Research Agency) that supports the 'NiceFigs' and "BioFigs" projects, led by Martine Hossaert-McKey (CNRS, Montpellier, France) and Lien Siang Chou (National Taiwan University, Taipei, Taiwan), Biota/Fapesp (04/10299-4) and CNPq (302769/2008-0) that support R.A.S.P., a fellowship FAPESP grant (07/06054-4) to F.H.A.F. and an NRF grant GUN 61497 to S.v.N. We thank the anonymous reviewers for their careful read and thoughtful comments on previous version of this article. ABDURAHIMAN UC, 1978, ENTOMON, V3, P181; ACS Z, 2010, MOL PHYLOGENETICS EV; Aikake H., 1973, 2 INT S INF THEOR, P267; AINSWORTH R, 1990, J PARASITOL, V76, P812, DOI 10.2307/3282799; Andersson M., 1994, SEXUAL SELECTION; ANSARI M H, 1967, Indian Journal of Entomology, V29, P380; BAKER C. F., 1913, Philippine Journal of Science, V8, P63; Bean D, 2001, ANIM BEHAV, V62, P535, DOI 10.1006/anbe.2001.1779; BOUCEK Z, 1993, J NAT HIST, V27, P173, DOI 10.1080/00222939300770071; Boucek Z., 1988, AUSTRALASIAN CHALCID; Brisson JA, 2010, PHILOS T R SOC B, V365, P605, DOI 10.1098/rstb.2009.0255; BRONSTEIN JL, 1991, OIKOS, V61, P175, DOI 10.2307/3545335; Bronstein JL, 1999, FLA ENTOMOL, V82, P454, DOI 10.2307/3496871; Buzatto BA, 2011, EVOL ECOL, V25, P331, DOI 10.1007/s10682-010-9431-0; Compton S. G, 1994, PARASITOID COMMUNITY, P323; COMPTON SG, 1989, P K NED AKAD C BIOL, V92, P57; COMPTON SV, 2009, AFRICAN NATURAL HIST; CONLAN KF, 1987, AM ZOOL, V27, pA35; Cook JM, 2006, ANIM BEHAV, V71, P1095, DOI 10.1016/j.anbehav.2005.07.027; Cook James M., 2005, P83, DOI 10.1079/9780851998121.0083; Cook JM, 2010, ECOL ENTOMOL, V35, P54, DOI 10.1111/j.1365-2311.2009.01148.x; Cook JM, 2003, TRENDS ECOL EVOL, V18, P241, DOI 10.1016/S0169-5347(03)00062-4; Cook JM, 1997, P ROY SOC B-BIOL SCI, V264, P747, DOI 10.1098/rspb.1997.0106; Corl A, 2010, EVOLUTION, V64, P79, DOI 10.1111/j.1558-5646.2009.00791.x; Cruaud A, 2011, J BIOGEOGR, V38, P209, DOI 10.1111/j.1365-2699.2010.02429.x; Cruaud A, 2010, CLADISTICS, V26, P359, DOI 10.1111/j.1096-0031.2009.00291.x; DANFORTH BN, 1991, BEHAV ECOL SOCIOBIOL, V29, P235, DOI 10.1007/BF00163980; Elias LG, 2008, SYMBIOSIS, V45, P107; Emlen DJ, 2005, EVOLUTION, V59, P1060; Emlen DJ, 2005, AM NAT, V166, pS42, DOI 10.1086/444599; FRANK JH, 1987, TRENDS ECOL EVOL, V2, P259; GALIL J, 1970, NEW PHYTOL, V69, P103, DOI 10.1111/j.1469-8137.1970.tb04054.x; Gibson GAP, 1999, ZOOL SCR, V28, P87, DOI 10.1046/j.1463-6409.1999.00016.x; GIBSON GAP, 1993, HYMENOPTERA WORLD ID, P610; Gillespie J, 2004, INSECT MOL BIOL, V13, P495, DOI 10.1111/j.0962-1075.2004.00509.x; Gillespie JJ, 2006, INSECT MOL BIOL, V15, P657, DOI 10.1111/j.1365-2583.2006.00689.x; Gillespie JJ, 2005, MOL BIOL EVOL, V22, P1593, DOI 10.1093/molbev/msi152; GODFRAY HCJ, 1988, ECOL ENTOMOL, V13, P283, DOI 10.1111/j.1365-2311.1988.tb00358.x; Gordh G., 2001, DICT ENTOMOLOGY; Greeff JM, 2003, CR BIOL, V326, P121, DOI 10.1016/S1631-0691(03)00010-6; Grissell E.E., 1995, Memoirs on Entomology International, V2, P1; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hamilton W.D., 1979, P167; Herre Edward Allen, 1997, P226, DOI 10.1017/CBO9780511721946.014; HILL DS, 1967, J NAT HIST, V1, P413, DOI 10.1080/00222936700770401; HURTADOGONZALES JL, 2010, BMC EVOL BIOL, V10; Joseph K. J., 1964, Proceedings of the Royal Entomological Society of London (B), V33, P63; Jousselin E, 2004, MOL PHYLOGENET EVOL, V33, P706, DOI 10.1016/j.ympev.2004.08.008; Jousselin E, 2001, OIKOS, V94, P287, DOI 10.1034/j.1600-0706.2001.940209.x; Kerdelhue C, 2000, ECOLOGY, V81, P2832, DOI 10.1890/0012-9658(2000)081[2832:CCESOO]2.0.CO;2; Kerdelhue C, 1996, OIKOS, V75, P3, DOI 10.2307/3546315; Kjellberg F, 2001, P ROY SOC B-BIOL SCI, V268, P1113, DOI 10.1098/rspb.2001.1633; KJER KM, 1995, MOL PHYLOGENET EVOL, V4, P314, DOI 10.1006/mpev.1995.1028; Lewis PO, 2001, SYST BIOL, V50, P913, DOI 10.1080/106351501753462876; Maddison WP, 2008, MESQUITE MODULAR SYS; Marussich WA, 2007, MOL ECOL, V16, P1925, DOI 10.1111/j.1365-294X.2007.03278.x; Matthews RW, 2009, ANNU REV ENTOMOL, V54, P251, DOI 10.1146/annurev.ento.54.110807.090440; MAYR G, 1885, VERHANDLUNGEN ZOOLOG, V35, P147; Moore JC, 2009, ANIM BEHAV, V78, P147, DOI 10.1016/j.anbehav.2009.04.006; Moore JC, 2004, BEHAV ECOL, V15, P735, DOI 10.1093/beheco/arh069; MURRAY MG, 1989, ANIM BEHAV, V38, P186, DOI 10.1016/S0003-3472(89)80081-8; MURRAY MG, 1990, ANIM BEHAV, V39, P434, DOI 10.1016/S0003-3472(05)80406-3; Nazareno AG, 2007, IHERINGIA SER ZOOL, V97, P441, DOI 10.1590/S0073-47212007000400013; Niu LM, 2009, ECOL ENTOMOL, V34, P696, DOI 10.1111/j.1365-2311.2009.01123.x; Nylander JAA, 2004, MRAIC PL; Oettler J, 2010, EVOLUTION, V64, P3310, DOI 10.1111/j.1558-5646.2010.01090.x; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; Peng YQ, 2008, SYMBIOSIS, V45, P9; Peng YQ, 2005, J TROP ECOL, V21, P581, DOI 10.1017/S0266467405002634; Pereira RAS, 2005, OIKOS, V110, P613, DOI 10.1111/j.0030-1299.2005.13234.x; Pienaar J, 2003, ECOL LETT, V6, P286, DOI 10.1046/j.1461-0248.2003.00441.x; Proffit M, 2007, J ANIM ECOL, V76, P296, DOI 10.1111/j.1365-2656.2007.01213.x; Radwan J, 2001, ETHOL ECOL EVOL, V13, P69; Ramirez William, 1996, Revista de Biologia Tropical, V44-45, P277; Rasplus JY, 1998, CR ACAD SCI III-VIE, V321, P517, DOI 10.1016/S0764-4469(98)80784-1; RASPLUS JY, 2007, INTRO HYMENOPTERA RE, P683; Reinholdt K, 2003, P ROY SOC B-BIOL SCI, V270, P1171, DOI 10.1098/rspb.2003.2368; Romo-Beltran A, 2009, EVOL ECOL, V23, P699, DOI 10.1007/s10682-008-9265-1; Ronsted N, 2005, P ROY SOC B-BIOL SCI, V272, P2593, DOI 10.1098/rspb.2005.3249; Pereira RA, 2007, BIOL J LINN SOC, V92, P9, DOI 10.1111/j.1095-8312.2007.00826.x; Shuster SM, 2003, MATING SYSTEMS STRAT; Silvieus SI, 2008, SPECIALIZATION, SPECIATION, AND RADIATION: THE EVOLUTIONARY BIOLOGY OF HERBIVOROUS INSECTS, P225; Stamatakis A., 2006, INT PAR DISTR PROC S, P8; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673; Tomkins JL, 2004, NATURE, V431, P1099, DOI 10.1038/nature02918; Vanacker D, 2003, BELG J ZOOL, V133, P143; WALKER F., 1871, NOTES CHALCIDIAE 3, P37; Wang RW, 2008, SYMBIOSIS, V45, P113; Weiblen GD, 2002, MOL ECOL, V11, P1573, DOI 10.1046/j.1365-294X.2002.01529.x; West SA, 1996, J BIOGEOGR, V23, P447, DOI 10.1111/j.1365-2699.1996.tb00006.x; West SA, 1998, J EVOLUTION BIOL, V11, P531, DOI 10.1007/s000360050104; WEST SA, 1994, P ROY SOC B-BIOL SCI, V258, P67, DOI 10.1098/rspb.1994.0143; Wiebes J. T., 1966, Zoologische Mededeelingen Leiden, V41, P151; WIEBES JT, 1976, GARDENS B SINGAPORE, V29, P207; Yang Cheng-yun, 2005, Zoological Research, V26, P379 96 39 40 0 46 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. JUN 22 2011 11 178 10.1186/1471-2148-11-178 15 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 798PA WOS:000293221400001 21696591 DOAJ Gold, Green Published 2019-02-21 J Nettle, D; Coall, DA; Dickins, TE Nettle, Daniel; Coall, David A.; Dickins, Thomas E. Early-life conditions and age at first pregnancy in British women PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article developmental plasticity; developmental programming; maternal effects; parental effects; life history; National Child Development Study FATHER ABSENCE; REPRODUCTIVE DEVELOPMENT; DEVELOPMENTAL PLASTICITY; EVOLUTIONARY PERSPECTIVE; CHILDHOOD EXPERIENCE; MATERNAL INFLUENCES; TEENAGE PREGNANCY; NATURAL-SELECTION; LONGITUDINAL TEST; RHESUS MACAQUES There is growing evidence that the reproductive schedules of female mammals can be affected by conditions experienced during early development, with low parental investment leading to accelerated life-history strategies in the offspring. In humans, the relationships between early-life conditions and timing of puberty are well studied, but much less attention has been paid to reproductive behaviour. Here, we investigate associations between early-life conditions and age at first pregnancy (AFP) in a large, longitudinally studied cohort of British women (n = 4553). Low birthweight for gestational age, short duration of breastfeeding, separation from mother in childhood, frequent family residential moves and lack of paternal involvement are all independently associated with earlier first pregnancy. Apart from that of birthweight, the effects are robust to adjustment for family socioeconomic position (SEP) and the cohort member's mother's age at her birth. The association between childhood SEP and AFP is partially mediated by early-life conditions, and the association between early-life conditions and AFP is partially mediated by emotional and behavioural problems in childhood. The overall relationship between early-life adversities and AFP appears to be approximately additive. [Nettle, Daniel] Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Coall, David A.] Edith Cowan Univ, Sch Exercise Biomed & Hlth Sci, Churchlands, WA 6018, Australia; [Dickins, Thomas E.] Univ E London, Dept Psychol, London E15 4LZ, England; [Dickins, Thomas E.] London Sch Econ, Ctr Philosophy Nat & Social Sci, London WC2A 2AE, England Nettle, D (reprint author), Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. daniel.nettle@ncl.ac.uk Nettle, Daniel/B-2259-2008; Dickins, Tom/L-3016-2016 Nettle, Daniel/0000-0001-9089-2599; Dickins, Tom/0000-0002-5788-0948; Coall, David/0000-0002-0488-2683 Adair LS, 2001, PEDIATRICS, V107, DOI 10.1542/peds.107.4.e59; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; Arbuckle J. L, 2008, AMOS VERSION 17 0 2; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron NM, 2008, HORM BEHAV, V54, P178, DOI 10.1016/j.yhbeh.2008.02.013; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; Comings DE, 2002, CHILD DEV, V73, P1046, DOI 10.1111/1467-8624.00456; Cooper C, 1996, BRIT J OBSTET GYNAEC, V103, P814, DOI 10.1111/j.1471-0528.1996.tb09879.x; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Harden A, 2009, BRIT MED J, V339, DOI 10.1136/bmj.b4254; Ibanez L, 2006, PEDIATRICS, V117, P117, DOI 10.1542/peds.2005-0664; Koziel S, 2002, J PAEDIATR CHILD H, V38, P268, DOI 10.1046/j.1440-1754.2002.00793.x; Maestripieri D, 2005, P ROY SOC B-BIOL SCI, V272, P1243, DOI 10.1098/rspb.2005.3059; Maestripieri D, 2006, BEHAV NEUROSCI, V120, P1017, DOI 10.1037/0735-7044.120.5.1017; McElreath R, 2008, CURR ANTHROPOL, V49, P307, DOI 10.1086/524364; Meade CS, 2008, HEALTH PSYCHOL, V27, P419, DOI 10.1037/0278-6133.27.4.419; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Opdahl S, 2008, BRIT J CANCER, V99, P201, DOI 10.1038/sj.bjc.6604449; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Schafer JL, 1999, STAT METHODS MED RES, V8, P3, DOI 10.1191/096228099671525676; Seamark CJ, 1997, BRIT J GEN PRACT, V47, P175; Seckl JR, 2000, KIDNEY INT, V57, P1412, DOI 10.1046/j.1523-1755.2000.00984.x; Sloboda DM, 2007, J CLIN ENDOCR METAB, V92, P46, DOI 10.1210/jc.2006-1378; Sloboda DM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006744; SPSS, 2008, SPSS STAT REL 17 0 0; Stott DH, 1965, SOCIAL ADJUSTMENT CH; Teilmann G, 2006, PEDIATRICS, V118, pE391, DOI 10.1542/peds.2005-2939; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Vikat A., 2002, J EPIDEMIOL COMMUN H, V59, P223; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276 49 64 64 0 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2011 278 1712 1721 1727 10.1098/rspb.2010.1726 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 752UI WOS:000289719900016 21068037 Green Published, Bronze 2019-02-21 J Tarwater, CE; Ricklefs, RE; Maddox, JD; Brawn, JD Tarwater, Corey E.; Ricklefs, Robert E.; Maddox, J. Dylan; Brawn, Jeffrey D. Pre-reproductive survival in a tropical bird and its implications for avian life histories ECOLOGY English Article age at reproduction; first-year survival; juvenile; life histories; post-fledging period; reproductive investment; survival; Thamnophilus atrinucha; tropical EXTENDED PARENTAL CARE; JUVENILE SURVIVAL; POPULATION; EVOLUTION; DISPERSAL; CONSEQUENCES; PASSERINES; PREDATION; PATTERNS; FITNESS The factors that affect survival until reproduction are essential to understanding the organization of life histories within and among species. Theory predicts, for example, that survival until reproduction influences the optimum level of reproductive investment by parents, which might partly explain prolonged parental care in species with high first-year survival. Tests and refinements of life-history theory have been hampered, however, by a lack of field-based estimates of pre-reproductive survival, especially for tropical species, which have been the subject of many comparative analyses. Tropical species are predicted to have higher first-year survival and delayed reproduction compared to Northern Hemisphere species. We estimated survival until reproduction, age at first reproduction, and sources of variation in juvenile survival in a Neotropical passerine, the Western Slaty-Antshrike (Thamnophilus atrinucha), in central Panama. We observed that fledged antshrikes had 76% survival through the dependent period and 48% survival to the age of 1 year; survival rate was lowest during the first week after leaving the nest. Timing of fledging within the breeding season, fledgling mass, and age at dispersal influenced survival, while sex of offspring and year did not. Individuals did not breed until two years of age, and post-fledging pre-reproductive survival was 41% of annual adult survival. High survival until reproduction in antshrikes balanced their low annual productivity, resulting in a stable population. Survival during the post-fledging period of dependence and the first year of independence in the Western Slaty-Antshrike exceeded estimates for Northern Hemisphere species. This difference appears to be associated with the extended post-fledging parental care, delayed dispersal, low costs of dispersal, and the less seasonal environment of antshrikes. [Tarwater, Corey E.; Brawn, Jeffrey D.] Univ Illinois, Program Ecol Evolut & Conservat Biol, Champaign, IL 61820 USA; [Ricklefs, Robert E.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA; [Maddox, J. Dylan] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA; [Brawn, Jeffrey D.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA Tarwater, CE (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 140 Mulford Hall, Berkeley, CA 94720 USA. tarwater@berkeley.edu National Science Foundation IRCEB [IBN-0212587]; University of Illinois; Smithsonian Tropical Research Institute; Cooper Ornithological Society; Wilson Ornithological Society We thank R. Bassar, S. Bassar, C. Batista, D. Buehler, A. Castillo, I. Gallo, B. Lascelles, and I. Ochoa for help in the field. Thanks to A. Suarez, P. Weatherhead, R. Fuller, and two anonymous reviewers for helpful comments on the manuscript. Thanks also to J. P. Kelley and T. J. Benson for general support. The Autoridad Nacional del Ambiente granted permission to work in the Republic of Panama. Thanks to the Smithsonian Tropical Research Institute for providing logistical support. This work was funded by National Science Foundation IRCEB grant IBN-0212587, and grants from the University of Illinois, Smithsonian Tropical Research Institute, Cooper Ornithological Society, and Wilson Ornithological Society. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Baker MB, 2004, ECOLOGY, V85, P1039, DOI 10.1890/02-0507; BRAWN JD, 1999, P 22 INT ORN C DURB, P297; Burnham KP, 2002, MODEL SELECTION INFE; Cam E, 2003, J ANIM ECOL, V72, P411, DOI 10.1046/j.1365-2656.2003.00708.x; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gradwohl J., 1982, ECOLOGY TROPICAL FOR, P347; Green DJ, 2001, J ANIM ECOL, V70, P505, DOI 10.1046/j.1365-2656.2001.00503.x; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; GRIESSER M, 2010, NEW RES BEHAV CHEM E, P47; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs R.E., 1973, P366; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; RICKLEFS RE, 1977, AUK, V94, P86; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Ridley AR, 2008, J AVIAN BIOL, V39, P389, DOI 10.1111/j.2008.0908-8857.04479.x; Robinson WD, 2000, ECOL MONOGR, V70, P209, DOI 10.1890/0012-9615(2000)070[0209:FBCSIC]2.0.CO;2; Russell EM, 2004, BEHAV ECOL, V15, P831, DOI 10.1093/beheco/arh088; Russell EM, 2000, EMU, V100, P377, DOI 10.1071/MU0005S; SEUTIN G, 1991, CAN J ZOOL, V69, P82, DOI 10.1139/z91-013; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Stearns S, 1992, EVOLUTION LIFE HIST; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Tarwater CE, 2008, BEHAV ECOL SOCIOBIOL, V62, P1441, DOI 10.1007/s00265-008-0574-8; Tarwater CE, 2010, ANIM BEHAV, V80, P535, DOI 10.1016/j.anbehav.2010.06.017; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Geroge C, 1966, ADAPTATION NATURAL S 47 38 38 1 61 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology JUN 2011 92 6 1271 1281 10.1890/10-1386.1 11 Ecology Environmental Sciences & Ecology 791BD WOS:000292633900009 21797155 2019-02-21 J Del Giudice, M; Ellis, BJ; Shirtcliff, EA Del Giudice, Marco; Ellis, Bruce J.; Shirtcliff, Elizabeth A. The Adaptive Calibration Model of stress responsivity NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS English Review Adaptation; Allostasis; Biological sensitivity to context; Cortisol; Developmental switch point; Evolution; Gender; Life history strategies; Plasticity; Reactivity; Sex differences; Stress PITUITARY-ADRENAL AXIS; HUMAN LIFE-HISTORY; CALLOUS-UNEMOTIONAL TRAITS; EVOLUTIONARY-DEVELOPMENTAL THEORY; RESPIRATORY SINUS ARRHYTHMIA; SALIVARY CORTISOL RESPONSES; NERVOUS-SYSTEM ACTIVITY; TEND-AND-BEFRIEND; SEX-DIFFERENCES; INDIVIDUAL-DIFFERENCES This paper presents the Adaptive Calibration Model (ACM), an evolutionary-developmental theory of individual differences in the functioning of the stress response system. The stress response system has three main biological functions: (1) to coordinate the organism's allostatic response to physical and psychosocial challenges; (2) to encode and filter information about the organism's social and physical environment, mediating the organism's openness to environmental inputs; and (3) to regulate the organism's physiology and behavior in a broad range of fitness-relevant areas including defensive behaviors, competitive risk-taking, learning, attachment, affiliation and reproductive functioning. The information encoded by the system during development feeds back on the long-term calibration of the system itself, resulting in adaptive patterns of responsivity and individual differences in behavior. Drawing on evolutionary life history theory, we build a model of the development of stress responsivity across life stages, describe four prototypical responsivity patterns, and discuss the emergence and meaning of sex differences. The ACM extends the theory of biological sensitivity to context (BSC) and provides an integrative framework for future research in the field. (C) 2010 Elsevier Ltd. All rights reserved. [Del Giudice, Marco] Univ Turin, Dept Psychol, Ctr Cognit Sci, I-10123 Turin, Italy; [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA; [Shirtcliff, Elizabeth A.] Univ New Orleans, Dept Psychol, New Orleans, LA 70148 USA Del Giudice, M (reprint author), Univ Turin, Dept Psychol, Ctr Cognit Sci, Via Po 14, I-10123 Turin, Italy. marco.delgiudice@unito.it; bjellis@email.arizona.edu; birdie.shirtcliff@uno.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Regione Piemonte, bando Scienze Umane e Sociali [L.R. n. 4/2006]; National Institute of Mental Health [K01 MH077687]; University of Arizona Marco Del Giudice was supported by the Regione Piemonte, bando Scienze Umane e Sociali 2008, L.R. n. 4/2006. Elizabeth Shirtcliff was supported by a grant from the National Institute of Mental Health for the duration of this project (K01 MH077687). International collaboration on this project was supported by the John & Doris Norton Endowment for Fathers, Parenting, and Families at the University of Arizona. ADAM EK, 2007, HUMAN BEHAV LEARNING, P264; Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; af Klinteberg B., 2004, PSYCHOBIOLOGY PERSON, P429; Ahnert L, 2004, CHILD DEV, V75, P639, DOI 10.1111/j.1467-8624.2004.00698.x; Alexander N, 2011, BEHAV BRAIN RES, V216, P53, DOI 10.1016/j.bbr.2010.07.003; Alexander N, 2009, PSYCHONEUROENDOCRINO, V34, P1294, DOI 10.1016/j.psyneuen.2009.03.017; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Alkon A, 2003, DEV PSYCHOBIOL, V42, P64, DOI 10.1002/dev.10082; Allison A.L., FIGHT FLIGH IN PRESS; Alvares GA, 2010, EXP CLIN PSYCHOPHARM, V18, P316, DOI 10.1037/a0019719; Amin Zenab, 2005, Behav Cogn Neurosci Rev, V4, P43, DOI 10.1177/1534582305277152; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Auchus RJ, 2004, CLIN ENDOCRINOL, V60, P288, DOI 10.1046/j.1365-2265.2003.01858.x; Bagdy G, 1996, BEHAV BRAIN RES, V73, P277; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Bakermans-Kranenburg M.J., 2009, SCAN, V3, P128; Baldwin JS, 2008, J ABNORM CHILD PSYCH, V36, P67, DOI 10.1007/s10802-007-9160-1; Barsegyan A, 2010, P NATL ACAD SCI USA, V107, P16655, DOI 10.1073/pnas.1011975107; Bateup HS, 2002, EVOL HUM BEHAV, V23, P181, DOI 10.1016/S1090-5138(01)00100-3; Bauer AM, 2002, J DEV BEHAV PEDIATR, V23, P102, DOI 10.1097/00004703-200204000-00007; Beauchaine T, 2001, DEV PSYCHOPATHOL, V13, P183, DOI 10.1017/S0954579401002012; Beauchaine TP, 2007, BIOL PSYCHOL, V74, P174, DOI 10.1016/j.biopsycho.2005.08.008; BELLE D, 1987, GENDER STRESS, P257; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Belsky J., 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bergman K, 2007, J AM ACAD CHILD PSY, V46, P1454, DOI 10.1097/chi.0b013e31814a62f6; BERNTSON GG, 1991, PSYCHOL REV, V98, P459, DOI 10.1037/0033-295X.98.4.459; Best JR, 2009, DEV REV, V29, P180, DOI 10.1016/j.dr.2009.05.002; Blair C, 2005, CHILD DEV, V76, P554, DOI 10.1111/j.1467-8624.2005.00863.x; Blair C, 2006, ANN NY ACAD SCI, V1094, P263, DOI 10.1196/annals.1376.031; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1999, ANNU REV ANTHROPOL, V28, P109, DOI 10.1146/annurev.anthro.28.1.109; Booth A, 2008, J RES ADOLESCENCE, V18, P239, DOI 10.1111/j.1532-7795.2008.00559.x; Bosch JA, 2009, PSYCHOSOM MED, V71, P877, DOI 10.1097/PSY.0b013e3181baef05; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyce WT, 2001, BRIT J PSYCHIAT, V179, P144, DOI 10.1192/bjp.179.2.144; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Boyce WT, 1995, ANN BEHAV MED, V17, P315, DOI 10.1007/BF02888596; BOYCE WT, 1996, CHILD DEV BEHAV PEDI; BRADBURN NM, 1979, IMPROVING INTERVIEW, P85; Brody S, 2002, PSYCHONEUROENDOCRINO, V27, P933, DOI 10.1016/S0306-4530(02)00007-0; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Bubier JL, 2009, J FAM PSYCHOL, V23, P500, DOI 10.1037/a0015555; Bugental DB, 2000, PSYCHOL BULL, V126, P187, DOI 10.1037/0033-2909.126.2.187; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037/0033-2909.125.3.367; Calkins SD, 1998, SOC DEV, V7, P350, DOI 10.1111/1467-9507.00072; Calkins SD, 1997, DEV PSYCHOBIOL, V31, P125, DOI 10.1002/(SICI)1098-2302(199709)31:2<125::AID-DEV5>3.0.CO;2-M; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Campbell B, 2006, AM J HUM BIOL, V18, P569, DOI 10.1002/ajhb.20528; Carter CS, 1998, PSYCHONEUROENDOCRINO, V23, P779; Carver CS, 2008, PSYCHOL BULL, V134, P912, DOI 10.1037/a0013740; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne FA, 2010, PERSPECT PSYCHOL SCI, V5, P564, DOI 10.1177/1745691610383494; Chen J.Y., OXYTOCIN SO IN PRESS; Chichinadze K, 2008, PHYSIOL BEHAV, V94, P595, DOI 10.1016/j.physbeh.2008.03.020; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cicchetti D, 2001, DEV PSYCHOPATHOL, V13, P677, DOI 10.1017/S0954579401003145; Cicchetti D., 1995, DEV PSYCHOPATHOL, V2, P32; Cools R, 2008, TRENDS COGN SCI, V12, P31, DOI 10.1016/j.tics.2007.10.01; Costello EJ, 2003, ARCH GEN PSYCHIAT, V60, P837, DOI 10.1001/archpsyc.60.8.837; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Crijnen AAM, 1997, J AM ACAD CHILD PSY, V36, P1269, DOI 10.1097/00004583-199709000-00020; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Daly M., 1984, INFANTICIDE COMP EVO, P487; Davis EP, 2011, J CHILD PSYCHOL PSYC, V52, P119, DOI 10.1111/j.1469-7610.2010.02314.x; Davis J, 2007, EVOL HUM BEHAV, V28, P228, DOI 10.1016/j.evolhumbehav.2007.02.003; de Weerth C, 2003, EARLY HUM DEV, V73, P39, DOI 10.1016/S0378-3782(03)00074-4; Deakin JFW, 2003, J NEURAL TRANSM-SUPP, P79; Del Giudice M., 2010, EVOLUTION PERSONALIT, P154; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; Del Giudice M, 2009, DEV REV, V29, P1, DOI 10.1016/j.dr.2008.09.001; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Denollet J, 2000, J PSYCHOSOM RES, V49, P255, DOI 10.1016/S0022-3999(00)00177-X; Denollet J, 1996, LANCET, V347, P417, DOI 10.1016/S0140-6736(96)90007-0; Denson TF, 2009, MOTIV EMOTION, V33, P42, DOI 10.1007/s11031-008-9114-0; Derakshan N, 1997, J PERS SOC PSYCHOL, V73, P816, DOI 10.1037/0022-3514.73.4.816; Diamond LM, 2005, J SOC PERS RELAT, V22, P499, DOI 10.1177/0265407505054520; Dickerson SS, 2008, HEALTH PSYCHOL, V27, P116, DOI 10.1037/0278-6133.27.1.116; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Ditzen B, 2009, BIOL PSYCHIAT, V65, P728, DOI 10.1016/j.biopsych.2008.10.011; Domes G, 2010, PSYCHONEUROENDOCRINO, V35, P83, DOI 10.1016/j.psyneuen.2009.06.016; Donzella B, 2000, DEV PSYCHOBIOL, V37, P209, DOI 10.1002/1098-2302(2000)37:4<209::AID-DEV1>3.0.CO;2-S; Doussard-Roosevelt JA, 2003, DEV PSYCHOBIOL, V43, P230, DOI 10.1002/dev.10136; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Dufty AM, 2002, TRENDS ECOL EVOL, V17, P190, DOI 10.1016/S0169-5347(02)02498-9; Ebling FJP, 2005, REPRODUCTION, V129, P675, DOI 10.1530/rep.1.00367; Eisenberg N, 2001, CHILD DEV, V72, P1112, DOI 10.1111/1467-8624.00337; El-Sheikh M, 2008, J ABNORM CHILD PSYCH, V36, P601, DOI 10.1007/s10802-007-9204-6; El-Sheikh M, 2009, MONOGR SOC RES CHILD, V74, P1, DOI 10.1111/j.1540-5834.2009.00501.x; Ellis B.J., 2010, EVOLUTION PERSONALIT; Ellis B.J., 2011, DEV PSYCHOPATHOL, V23; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison P. T., 2009, ENDOCRINOLOGY SOCIAL, P54; ELLISON PT, 2001, FERTILE GROUND NATUR; Enebrink P, 2005, NORD J PSYCHIAT, V59, P431, DOI 10.1080/08039480500360690; Ennis M, 2001, STRESS HEALTH, V17, P253, DOI 10.1002/smi.904; Essex M.J., 2011, DEV PSYCHOPATHOL, V23; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Fabes RA, 1997, J PERS SOC PSYCHOL, V73, P1107, DOI 10.1037/0022-3514.73.5.1107; Fairbanks Lynn A., 2009, P159; Figueredo A.J., 2009, BIOPSYCHOSOCIAL PERS; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fink G, 1999, BEHAV BRAIN RES, V105, P53, DOI 10.1016/S0166-4328(99)00082-0; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 1996, HUM NATURE-INT BIOS, V7, P125, DOI 10.1007/BF02692108; FLINN MV, 2003, SOCIAL CULTURAL LIVE, P107; Forbes EE, 2010, BRAIN COGNITION, V72, P66, DOI 10.1016/j.bandc.2009.10.007; Fowles D. C., 2006, HDB PSYCHOPATHY, P14; Frick PJ, 2000, PSYCHOL ASSESSMENT, V12, P382, DOI 10.1037//1040-3590.12.4.382; Frick PJ, 2003, J ABNORM CHILD PSYCH, V31, P457, DOI 10.1023/A:1023899703866; Fries E, 2005, PSYCHONEUROENDOCRINO, V30, P1010, DOI 10.1016/j.psyneuen.2005.04.006; FULLER RW, 1992, FRONT NEUROENDOCRIN, V13, P250; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Ganzel BL, 2010, PSYCHOL REV, V117, P134, DOI 10.1037/a0017773; GARMEZY N, 1991, PEDIATR ANN, V20, P459, DOI 10.3928/0090-4481-19910901-05; Gatzke-Kopp LM, 2011, NEUROSCI BIOBEHAV R, V35, P794, DOI 10.1016/j.neubiorev.2010.09.013; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gell JS, 1998, J CLIN ENDOCR METAB, V83, P3695, DOI 10.1210/jc.83.10.3695; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; Gold PW, 2002, MOL PSYCHIATR, V7, P254, DOI 10.1038/sj/mp/4001032; Goldstein David S, 2008, Endocr Regul, V42, P111; Gonzalez-Bono E, 1999, HORM BEHAV, V35, P55, DOI 10.1006/hbeh.1998.1496; Gotlib IH, 2008, BIOL PSYCHIAT, V63, P847, DOI 10.1016/j.biopsych.2007.10.008; Gray Peter B., 2009, ENDOCRINOLOGY SOCIAL, P270; Grumbach M. M., 2003, WILLIAMS TXB ENDOCRI; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P953, DOI 10.1016/j.psyneuen.2009.02.010; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P62, DOI 10.1016/j.psyneuen.2008.08.013; Gunnar MR, 2002, PSYCHONEUROENDOCRINO, V27, P199, DOI 10.1016/S0306-4530(01)00045-2; Gunnar MR, 1997, DEV PSYCHOBIOL, V31, P65, DOI 10.1002/(SICI)1098-2302(199707)31:1<65::AID-DEV6>3.0.CO;2-S; GUNNAR MR, 2005, ATTACHMENT BONDING N, P245; GUNNAR MR, 2006, DEV PSYCHOPATHOLOGY, V2; Gustafsson PE, 2010, PSYCHONEUROENDOCRINO, V35, P1410, DOI 10.1016/j.psyneuen.2010.04.004; Gutteling BM, 2004, STRESS, V7, P257, DOI 10.1080/10253890500044521; Gutteling BM, 2005, PSYCHONEUROENDOCRINO, V30, P541, DOI 10.1016/j.psyneuen.2005.01.002; Habib KE, 2001, ENDOCRIN METAB CLIN, V30, P695, DOI 10.1016/S0889-8529(05)70208-5; Hagan MJ, 2011, PSYCHOPHARMACOLOGY, V214, P231, DOI 10.1007/s00213-010-1889-5; Hall JR, 2006, HDB PSYCHOPATHY, P459; Haller J, 2006, NEUROSCI BIOBEHAV R, V30, P292, DOI 10.1016/j.neubiorev.2005.01.005; Haller J, 2005, EUR J PHARMACOL, V526, P89, DOI 10.1016/j.ejphar.2005.09.064; Haller J, 2004, J NEUROENDOCRINOL, V16, P550, DOI 10.1111/j.1365-2826.2004.01201.x; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hawes DJ, 2009, CURR OPIN PSYCHIATR, V22, P357, DOI 10.1097/YCO.0b013e32832bfa6d; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Heinrichs M, 2003, BIOL PSYCHIAT, V54, P1389, DOI 10.1016/S0006-3223(03)00465-7; Herbison AE, 2007, HORM RES, V68, P75, DOI 10.1159/000110583; Herdt G, 2000, ARCH SEX BEHAV, V29, P587, DOI 10.1023/A:1002006521067; Herman JP, 2003, FRONT NEUROENDOCRIN, V24, P151, DOI 10.1016/j.yfrne.2003.07.001; Heyland A, 2005, BIOESSAYS, V27, P64, DOI 10.1002/bies.20136; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hill-Soderlund AL, 2008, DEV PSYCHOBIOL, V50, P361, DOI 10.1002/dev.20302; HOFER MA, 1984, PSYCHOSOM MED, V46, P183, DOI 10.1097/00006842-198405000-00001; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; HRDY S. B., 1999, MOTHER NATURE; Hurlemann R, 2010, J NEUROSCI, V30, P4999, DOI 10.1523/JNEUROSCI.5538-09.2010; Ibanez L, 2000, ENDOCR REV, V21, P671, DOI 10.1210/er.21.6.671; Jackson JJ, 2009, BEHAV BRAIN SCI, V32, P31, DOI 10.1017/S0140525X09000132; Janson Charles H., 1993, P57; Jezova D, 1996, ACTA NEUROBIOL EXP, V56, P779; Joffe TH, 1997, J HUM EVOL, V32, P593, DOI 10.1006/jhev.1997.0140; Kajantie E, 2006, PSYCHONEUROENDOCRINO, V31, P151, DOI 10.1016/j.psyneuen.2005.07.002; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Katz LF, 2007, BIOL PSYCHOL, V74, P154, DOI 10.1016/j.biopsycho.2005.10.010; Keiley MK, 2003, J ABNORM CHILD PSYCH, V31, P267, DOI 10.1023/A:1023277413027; Kemp AH, 2010, BIOL PSYCHIAT, V67, P1067, DOI [10.1016/j.biopsych.2009.12.012, 10.1016/j.biopsych.2009.11.019]; Kern S, 2008, PSYCHONEUROENDOCRINO, V33, P517, DOI 10.1016/j.psyneuen.2008.01.010; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kiecolt-Glaser JK, 2003, J CONSULT CLIN PSYCH, V71, P176, DOI 10.1037/0022-006X.71.1.176; KiecoltGlaser JK, 1997, PSYCHOSOM MED, V59, P339, DOI 10.1097/00006842-199707000-00001; Kirk KM, 2001, EVOLUTION, V55, P423; KIRSCHBAUM C, 1995, PSYCHOSOM MED, V57, P23, DOI 10.1097/00006842-199501000-00004; Klimes-Dougan B, 2001, DEV PSYCHOPATHOL, V13, P695, DOI 10.1017/S0954579401003157; Knapp R, 2003, INTEGR COMP BIOL, V43, P658, DOI 10.1093/icb/43.5.658; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koob GF, 2008, PHILOS T R SOC B, V363, P3113, DOI 10.1098/rstb.2008.0094; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kosfeld M, 2005, NATURE, V435, P673, DOI 10.1038/nature03701; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Kramer KL, 2002, HUM NATURE-INT BIOS, V13, P299, DOI 10.1007/s12110-002-1011-8; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Kudielka BM, 2005, BIOL PSYCHOL, V69, P113, DOI 10.1016/j.biopsycho.2004.11.009; Kudielka BM, 2009, PSYCHONEUROENDOCRINO, V34, P2, DOI 10.1016/j.psyneuen.2008.10.004; Labrie F, 2005, J ENDOCRINOL, V187, P169, DOI 10.1677/joe.1.06264; Labrie F, 2001, FRONT NEUROENDOCRIN, V22, P185, DOI 10.1006/frne.2001.0216; Lancaster JB, 2009, ENDOCRINOLOGY SOCIAL, P95; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lancy D.F., HUM NAT IN PRESS; Lass-Hennemann J, 2010, P ROY SOC B-BIOL SCI, V277, P2175, DOI 10.1098/rspb.2010.0258; Laurent H, 2007, BIOL PSYCHOL, V76, P61, DOI 10.1016/j.biopsycho.2007.06.002; Leadbeater BJ, 1999, DEV PSYCHOL, V35, P1268, DOI 10.1037/0012-1649.35.5.1268; Legendre A, 1996, MERRILL PALMER QUART, V42, P554; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Levesque M, 2010, AGGRESSIVE BEHAV, V36, P358, DOI 10.1002/ab.20362; Levine S, 2005, PSYCHONEUROENDOCRINO, V30, P939, DOI 10.1016/j.psyneuen.2005.03.013; Lewis M, 2002, CHILD DEV, V73, P1034, DOI 10.1111/1467-8624.00455; Li I, 2007, DEV PSYCHOBIOL, V49, P633, DOI 10.1002/dev.20239; Lighthall NR, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006002; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lovallo W.R., 2007, ENCY STRESS, P282; Luecken LJ, 2009, HORM BEHAV, V55, P412, DOI 10.1016/j.yhbeh.2008.12.007; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Macri S, 2009, HORM BEHAV, V56, P391, DOI 10.1016/j.yhbeh.2009.07.006; Macri S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001015; MALARKEY WB, 1994, PSYCHOSOM MED, V56, P41, DOI 10.1097/00006842-199401000-00006; Manuck S. B., 2006, BIOL AGGRESSION, P65; Marazziti Donatella, 2006, Clin Pract Epidemiol Ment Health, V2, P28, DOI 10.1186/1745-0179-2-28; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Marsee MA, 2005, BEHAV SCI LAW, V23, P803, DOI 10.1002/bsl.662; Martorell GA, 2006, J FAM PSYCHOL, V20, P641, DOI 10.1037/0893-3200.20.4.641; MASON JW, 1968, PSYCHOSOM MED, V30, P576, DOI 10.1097/00006842-196809000-00020; Mazur A, 1997, EVOL HUM BEHAV, V18, P317, DOI 10.1016/S1090-5138(97)00013-5; McCarthy MM, 1996, PHYSIOL BEHAV, V60, P1209, DOI 10.1016/S0031-9384(96)00212-0; McCarthy MM, 1995, ADV EXP MED BIOL, V395, P235; McClintock MK, 1996, CURR DIR PSYCHOL SCI, V5, P178, DOI 10.1111/1467-8721.ep11512422; McCormack K, 2006, DEV PSYCHOBIOL, V48, P537, DOI 10.1002/dev.20157; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McEwen BS, 1998, ANN NY ACAD SCI, V840, P33, DOI 10.1111/j.1749-6632.1998.tb09546.x; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; McIntyre M.H., 2009, ENDOCRINOLOGY SOCIAL, P225; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miczek K. A., 2006, BIOL AGGRESSION, P114; Miller Geoffrey, 2000, MATING MIND SEXUAL C; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Mock D. W., 2004, MORE KIN LESS KIND E; Mohler E, 2006, EARLY HUM DEV, V82, P731, DOI 10.1016/j.earlhumdev.2006.02.010; Moore TM, 2002, AGGRESSIVE BEHAV, V28, P299, DOI 10.1002/ab.90027; Mueller A, 2010, PSYCHONEUROENDOCRINO, V35, P289, DOI 10.1016/j.psyneuen.2009.07.002; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; MURANAKA M, 1988, PSYCHOPHYSIOLOGY, V25, P330, DOI 10.1111/j.1469-8986.1988.tb01251.x; Murray-Close D, 2008, DEV PSYCHOL, V44, P1160, DOI 10.1037/a0012564; Nachmias M, 1996, CHILD DEV, V67, P508, DOI 10.1111/j.1467-8624.1996.tb01748.x; Nair A, 2007, NEUROPSYCHOPHARMACOL, V32, P1504, DOI 10.1038/sj.npp.1301276; Nakamura K, 2008, J ASSIST REPROD GEN, V25, P47, DOI 10.1007/s10815-008-9206-5; Nalivaiko E, 2009, NEUROSCI BIOBEHAV R, V33, P95, DOI 10.1016/j.neubiorev.2008.05.026; Nelson EE, 2005, PSYCHOL MED, V35, P163, DOI 10.1017/S0033291704003915; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nesse R. M., 2007, ENCY STRESS, P965; NETTER P, 1983, NEUROPSYCHOBIOLOGY, V10, P148, DOI 10.1159/000118002; NETTER P, 1987, J CLIN HYPERTENS, V3, P727; Netter P., 2004, PSYCHOBIOLOGY PERSON, P353; Netter P., 1991, STRESS EMOTION, V14, P187; Newton T.L., 1992, J PERS SOC PSYCHOL, V32, P790; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; O'Connor TG, 2005, BIOL PSYCHIAT, V58, P211, DOI 10.1016/j.biopsych.2005.03.032; O'Leary MM, 2007, PSYCHONEUROENDOCRINO, V32, P183, DOI 10.1016/j.psyneuen.2006.12.004; O'Neal CR, 2010, CHILD DEV, V81, P290, DOI 10.1111/j.1467-8624.2009.01395.x; Obradovic J., 2011, DEV PSYCHOPATHOL, V23; Obradovic J, 2010, CHILD DEV, V81, P270, DOI 10.1111/j.1467-8624.2009.01394.x; Oitzl MS, 2010, NEUROSCI BIOBEHAV R, V34, P853, DOI 10.1016/j.neubiorev.2009.07.006; Oldehinkel AJ, 2004, DEV PSYCHOPATHOL, V16, P421, DOI 10.1017/S0954579404044591; Oskis A, 2011, J CHILD PSYCHOL PSYC, V52, P111, DOI 10.1111/j.1469-7610.2010.02296.x; Ouellet-Morin I, 2008, ARCH GEN PSYCHIAT, V65, P211, DOI 10.1001/archgenpsychiatry.2007.27; Oveis C, 2009, EMOTION, V9, P265, DOI 10.1037/a0015383; Pacak K, 2001, ENDOCR REV, V22, P502, DOI 10.1210/er.22.4.502; Pajer K, 2001, ARCH GEN PSYCHIAT, V58, P297, DOI 10.1001/archpsyc.58.3.297; Palmert MR, 2001, J CLIN ENDOCR METAB, V86, P4536, DOI 10.1210/jc.86.9.4536; Parker KJ, 2006, P NATL ACAD SCI USA, V103, P3000, DOI 10.1073/pnas.0506571103; PEDERSEN CA, 2005, ATTACHMENT BONDING N, P385; Pedersen SS, 2003, EUR J CARDIOV PREV R, V10, P241, DOI 10.1097/01.hjr.0000085246.65733.06; Pellegrini A. D., 2005, ORIGINS SOCIAL MIND, P219; Pellegrini AD, 2001, MERRILL PALMER QUART, V47, P142, DOI 10.1353/mpq.2001.0004; Penke L., 2010, EVOLUTION PERSONALIT; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pereira Michael E., 1993, P3; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Plant TM, 2004, HUM REPROD UPDATE, V10, P67, DOI 10.1093/humupd/dmh001; Popma A, 2007, BIOL PSYCHIAT, V61, P405, DOI 10.1016/j.biopsych.2006.06.006; Porges SW, 2007, BIOL PSYCHOL, V74, P116, DOI 10.1016/j.biopsycho.2006.06.009; PORGES SW, 1995, PSYCHOPHYSIOLOGY, V32, P301, DOI 10.1111/j.1469-8986.1995.tb01213.x; Porges SW, 2001, INT J PSYCHOPHYSIOL, V42, P123, DOI 10.1016/S0167-8760(01)00162-3; Porter RJ, 2004, PSYCHOPHARMACOLOGY, V173, P1, DOI 10.1007/s00213-004-1774-1; Powers SI, 2006, J PERS SOC PSYCHOL, V90, P613, DOI 10.1037/0022-3514.90.4.613; Propper C, 2008, CHILD DEV, V79, P1377, DOI 10.1111/j.1467-8624.2008.01194.x; Pruessner JC, 1997, PSYCHONEUROENDOCRINO, V22, P615, DOI 10.1016/S0306-4530(97)00072-3; Pruessner JC, 2010, PSYCHONEUROENDOCRINO, V35, P179, DOI 10.1016/j.psyneuen.2009.02.016; Quas JA, 2004, CHILD DEV, V75, P797, DOI 10.1111/j.1467-8624.2004.00707.x; Quas JA, 2000, DEV PSYCHOBIOL, V37, P153, DOI 10.1002/1098-2302(200011)37:3<153::AID-DEV4>3.0.CO;2-Y; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quirin M, 2008, PSYCHONEUROENDOCRINO, V33, P581, DOI 10.1016/j.psyneuen.2008.01.013; Raine A, 1997, J AM ACAD CHILD PSY, V36, P1457, DOI 10.1097/00004583-199710000-00029; RAUSTEVONWRIGHT M, 1981, PSYCHOPHYSIOLOGY, V18, P362; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; ROFF DA, 2002, LIFE HIST EVOLUTION; ROGOSCH FA, 1994, SOC DEV, V3, P291, DOI 10.1111/j.1467-9507.1994.tb00046.x; Roozendaal B, 2000, PSYCHONEUROENDOCRINO, V25, P213, DOI 10.1016/S0306-4530(99)00058-X; Rubin K.H., 2002, EMOTIONAL REGULATION, P81; Rubinow DR, 1998, BIOL PSYCHIAT, V44, P839, DOI 10.1016/S0006-3223(98)00162-0; Rutter M, 2004, DEV PSYCHOL, V40, P81, DOI 10.1037/0012-1649.40.1.81; Rutter M., 1993, J ADOLESCENT HEALTH, V14, P690; Sameroff A. J., 1996, 5 7 YEAR SHIFT AGE R; Sanchez MM, 2001, DEV PSYCHOPATHOL, V13, P419, DOI 10.1017/S0954579401003029; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scaramella LV, 1999, J RES ADOLESCENCE, V9, P111, DOI 10.1207/s15327795jra0902_1; SCARR S, 1992, CHILD DEV, V63, P1, DOI 10.2307/1130897; SCHANBERG SM, 1984, P SOC EXP BIOL MED, V175, P135; SCHLEGEL A, 1995, ETHOS, V23, P15, DOI 10.1525/eth.1995.23.1.02a00020; Schlotz W, 2008, PSYCHOSOM MED, V70, P787, DOI 10.1097/PSY.0b013e3181810658; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schommer NC, 2003, PSYCHOSOM MED, V65, P450, DOI 10.1097/01.PSY.0000035721.12441.17; Shirtcliff E.A., ATTACHMENT IN PRESS; Shirtcliff EA, 2005, DEV PSYCHOPATHOL, V17, P167, DOI 10.1017/S0954579405050091; Shirtcliff EA, 2008, DEV PSYCHOBIOL, V50, P690, DOI 10.1002/dev.20336; Shirtcliff EA, 2009, BEHAV SCI LAW, V27, P137, DOI 10.1002/bsl.862; Shoal GD, 2003, J AM ACAD CHILD PSY, V42, P1101, DOI 10.1097/01.CHI.0000070246.24125.6D; Simon NG, 2006, BIOL AGGRESSION, P211; SMITH JM, 1998, EVOLUTIONARY GENETIC; Smith P. K., 2005, ORIGINS SOCIAL MIND, P271; Spangler G, 1998, INT J BEHAV DEV, V22, P681, DOI 10.1080/016502598384126; SROUFE LA, 1993, CHILD DEV, V64, P455, DOI 10.1111/j.1467-8624.1993.tb02921.x; Stark R, 2006, NEUROIMAGE, V32, P1290, DOI 10.1016/j.neuroimage.2006.05.046; Staton Lori, 2009, Dev Psychobiol, V51, P249, DOI 10.1002/dev.20361; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; STGEORGE IM, 1994, J ADOLESCENT HEALTH, V15, P573; Stifter CA, 2001, SOC DEV, V10, P189, DOI 10.1111/1467-9507.00158; Storey AE, 2000, EVOL HUM BEHAV, V21, P79, DOI 10.1016/S1090-5138(99)00042-2; Stroud LR, 2002, BIOL PSYCHIAT, V52, P318, DOI 10.1016/S0006-3223(02)01333-1; Sugarman DB, 1997, J INTERPERS VIOLENCE, V12, P275, DOI 10.1177/088626097012002008; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Susman EJ, 2006, NEUROSCI BIOBEHAV R, V30, P376, DOI 10.1016/j.neubiorev.2005.08.002; Tamres LK, 2002, PERS SOC PSYCHOL REV, V6, P2, DOI 10.1207/S15327957PSPR0601_1; Tarullo AR, 2006, HORM BEHAV, V50, P632, DOI 10.1016/j.yhbeh.2006.06.010; Taylor SE, 2000, PSYCHOL REV, V107, P411, DOI 10.1037/0033-295X.107.3.411; Taylor SE, 2008, J PERS SOC PSYCHOL, V95, P197, DOI 10.1037/0022-3514.95.1.197; Taylor SE, 2006, CURR DIR PSYCHOL SCI, V15, P273, DOI 10.1111/j.1467-8721.2006.00451.x; Theodoridou A, 2009, HORM BEHAV, V56, P128, DOI 10.1016/j.yhbeh.2009.03.019; Thrivikraman KV, 2000, BRAIN RES, V870, P87, DOI 10.1016/S0006-8993(00)02405-7; Tilbrook AJ, 2000, REV REPROD, V5, P105, DOI 10.1530/revreprod/5.2.105; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tops M, 2006, PSYCHOPHYSIOLOGY, V43, P653, DOI 10.1111/j.1469-8986.2006.00458.x; Tops M, 2006, PSYCHONEUROENDOCRINO, V31, P847, DOI 10.1016/j.psyneuen.2006.04.001; Tops M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00152; Tops M, 2009, BRAIN COGNITION, V71, P427, DOI 10.1016/j.bandc.2009.03.009; Troisi A, 2001, PHYSIOL BEHAV, V73, P443, DOI 10.1016/S0031-9384(01)00459-0; Uziel L, 2010, PERSPECT PSYCHOL SCI, V5, P243, DOI 10.1177/1745691610369465; Valentino R J, 1998, Adv Pharmacol, V42, P781; van Bokhoven I, 2005, J NEURAL TRANSM, V112, P1083, DOI 10.1007/s00702-004-0253-5; van den Bos R, 2009, PSYCHONEUROENDOCRINO, V34, P1449, DOI 10.1016/j.psyneuen.2009.04.016; van Goozen SHM, 1998, BIOL PSYCHIAT, V43, P156, DOI 10.1016/S0006-3223(98)00360-6; van Goozen SHM, 2000, J AM ACAD CHILD PSY, V39, P1438, DOI 10.1097/00004583-200011000-00019; van Goozen SHM, 2002, ARCH SEX BEHAV, V31, P247, DOI 10.1023/A:1015248803022; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Honk J, 2003, NEUROREPORT, V14, P1993, DOI 10.1097/01.wnr.0000091690.72892.ec; van Marle HJF, 2009, BIOL PSYCHIAT, V66, P649, DOI 10.1016/j.biopsych.2009.05.014; vanLenthe F, 1996, INT J OBESITY, V20, P121; Verona E, 2006, BIOL PSYCHOL, V71, P33, DOI 10.1016/j.biopsycho.2005.02.001; Viau V, 2002, J NEUROENDOCRINOL, V14, P506, DOI 10.1046/j.1365-2826.2002.00798.x; Viau V, 2005, ENDOCRINOLOGY, V146, P137, DOI 10.1210/en.2004-0846; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; Wagner Guenter P., 2005, P33; Wang JJ, 2007, SOC COGN AFFECT NEUR, V2, P227, DOI 10.1093/scan/nsm018; Waschbusch DA, 2002, J ABNORM CHILD PSYCH, V30, P641, DOI 10.1023/A:1020867831811; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; WASSER SK, 1994, HUM NATURE-INT BIOS, V5, P293, DOI 10.1007/BF02692156; Weekes N, 2006, STRESS, V9, P199, DOI 10.1080/10253890601029751; WEINBERGER DA, 1979, J ABNORM PSYCHOL, V88, P369, DOI 10.1037/0021-843X.88.4.369; Weisfeld G, 1999, EVOLUTIONARY PRINCIP; WEISFELD GE, 2005, ORIGINS SOCIAL MIND, P189; WEISFELD GE, 2005, EVOLUTIONARY PERSPEC, P331; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westenberg PM, 2009, BIOL PSYCHOL, V82, P116, DOI 10.1016/j.biopsycho.2009.06.005; White DD, 2010, EVOL PSYCHOL-US, V8, P49; Williams PG, 2009, ANN BEHAV MED, V37, P126, DOI 10.1007/s12160-009-9100-0; WILLIAMS RB, 1982, SCIENCE, V218, P483, DOI 10.1126/science.7123248; WILLIAMS RB, 1987, AM J CARDIOL, V60, P27; WILSON DS, 1994, ETHOL SOCIOBIOL, V15, P219; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf OT, 1999, BRAIN RES REV, V30, P264, DOI 10.1016/S0165-0173(99)00021-1; Worthman C.M., 2005, DEV PSYCHOBIOLOGY AG; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Wust S, 2004, ANN NY ACAD SCI, V1032, P52, DOI 10.1196/annals.1314.005; Yan LJL, 2003, JAMA-J AM MED ASSOC, V290, P2138, DOI 10.1001/jama.290.16.2138; Yim IS, 2010, PSYCHONEUROENDOCRINO, V35, P241, DOI 10.1016/j.psyneuen.2009.06.014; Zahavi A, 1997, HANDICAP PRINCIPLE M; Zak PJ, 2005, HORM BEHAV, V48, P522, DOI 10.1016/j.yhbeh.2005.07.009 411 402 403 10 174 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0149-7634 1873-7528 NEUROSCI BIOBEHAV R Neurosci. Biobehav. Rev. JUN 2011 35 7 SI 1562 1592 10.1016/j.neubiorev.2010.11.007 31 Behavioral Sciences; Neurosciences Behavioral Sciences; Neurosciences & Neurology 788EM WOS:000292428200010 21145350 Green Accepted 2019-02-21 J Corenblit, D; Baas, ACW; Bornette, G; Darrozes, J; Delmotte, S; Francis, RA; Gurnell, AM; Julien, F; Naiman, RJ; Steiger, J Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, Jose; Delmotte, Sebastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frederic; Naiman, Robert J.; Steiger, Johannes Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings EARTH-SCIENCE REVIEWS English Review biogeomorphologic feedback; landforms; biogeomorphologic succession; ecosystem engineers; niche construction; eco-evolutionary dynamics ECO-EVOLUTIONARY DYNAMICS; LIFE-HISTORY EVOLUTION; ECOSYSTEM ENGINEERS; SELF-ORGANIZATION; RIVER CORRIDORS; SALT-MARSH; LANDSCAPE EVOLUTION; NICHE CONSTRUCTION; SPECIES-DIVERSITY; PLANT-COMMUNITIES This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales. (C) 2011 Elsevier B.V. All rights reserved. [Corenblit, Dov] Univ Paris Diderot, CNRS, UMR 8586, PRODIG Pole Rech Org & Diffus Informat Geog, F-75013 Paris, France; [Baas, Andreas C. W.; Francis, Robert A.] Kings Coll London, Dept Geog, Strand London WC2R 2LS, England; [Bornette, Gudrun] Univ Lyon 1, CNRS, UMR 5023, LEHNA Lab Ecol Hydrosyst Nat & Anthropises, F-69622 Lyon, France; [Delmotte, Sebastien] MAD Environm, Gradignan, France; [Gurnell, Angela M.] Univ London, Sch Geog, London E1 4NS, England; [Julien, Frederic] Univ Toulouse 3, CNRS, UMR 5245, ECOLAB Lab Ecol Fonct, F-31062 Toulouse, France; [Naiman, Robert J.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Steiger, Johannes] Univ Clermont Ferrand, Clermont Univ, GEOLAB, F-63000 Clermont Ferrand, France; [Steiger, Johannes] CNRS, UMR 6042, GEOLAB Lab Geog Phys & Environnemen, F-63057 Clermont Ferrand, France; [Corenblit, Dov; Darrozes, Jose] CNRS, UMR 5563, GET Geosci Environm Toulouse, F-31400 Toulouse, France Corenblit, D (reprint author), CNRS, UMR 5563, GET Geosci Environm Toulouse, F-31400 Toulouse, France. corenblit@yahoo.fr Baas, Andreas/C-2683-2013; bornette, gudrun/J-6404-2017; Bornette, Gudrun/B-3938-2009; Naiman, Robert/K-3113-2012 bornette, gudrun/0000-0002-2242-0060; Francis, Robert/0000-0002-4598-0861 French Ministry of Ecology, Energy, Sustainable Development; Sea (MEEDDM); French National Centre of Scientific Research (CNRS) D. Corenblit, J. Steiger and S. Delmotte acknowledge support by the French research project "GALE&T - Waters & Territories" financed by the French Ministry of Ecology, Energy, Sustainable Development and the Sea (MEEDDM) and the French National Centre of Scientific Research (CNRS). We thank Heather Viles and the anonymous reviewers for their comments which contributed to improve this review. Algeo TJ, 1998, PHILOS T R SOC B, V353, P113, DOI 10.1098/rstb.1998.0195; ALPERT P, 1985, VEGETATIO, V64, P141; Angers DA, 1998, BIOGEOCHEMISTRY, V42, P55, DOI 10.1023/A:1005944025343; Baas ACW, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2006GL029152; Baas ACW, 2002, GEOMORPHOLOGY, V48, P309, DOI 10.1016/S0169-555X(02)00187-3; Baas ACW, 2007, GEOMORPHOLOGY, V91, P311, DOI 10.1016/j.geomorph.2007.04.012; Badano EI, 2006, OIKOS, V115, P369, DOI 10.1111/j.2006.0030-1299.15132.x; BAK P, 1988, PHYS REV A, V38, P364, DOI 10.1103/PhysRevA.38.364; Barot S, 2004, OIKOS, V106, P185, DOI 10.1111/j.0030-1299.2004.13038.x; Barre P, 2007, BIOGEOCHEMISTRY, V82, P77, DOI 10.1007/s10533-006-9054-2; Bechtold JS, 2009, ECOSYSTEMS, V12, P1352, DOI 10.1007/s10021-009-9294-9; Belyea LR, 2006, ECOL MONOGR, V76, P299, DOI 10.1890/0012-9615(2006)076[0299:BTLTPB]2.0.CO;2; Bendix J, 2000, HYDROL PROCESS, V14, P2977, DOI 10.1002/1099-1085(200011/12)14:16/17<2977::AID-HYP130>3.0.CO;2-4; BENNETT CH, 1987, SCI AM, V275, P88; Berendse F, 1998, BIOGEOCHEMISTRY, V42, P73, DOI 10.1023/A:1005935823525; BIANCHI TS, 1989, TRENDS ECOL EVOL, V4, P234, DOI 10.1016/0169-5347(89)90167-5; Binkley D, 1998, BIOGEOCHEMISTRY, V42, P89, DOI 10.1023/A:1005948126251; Birken AS, 2006, ECOL APPL, V16, P1103, DOI 10.1890/1051-0761(2006)016[1103:POTIAF]2.0.CO;2; BLANDIN P., 1988, B ECOLOGIE, V19, P547; Bornette G, 2008, FRESHWATER BIOL, V53, P1692, DOI 10.1111/j.1365-2427.2008.01994.x; Bos AR, 2007, ESTUAR COAST SHELF S, V74, P344, DOI 10.1016/j.ecss.2007.04.006; BOYLE JR, 1973, PLANT SOIL, V38, P191, DOI 10.1007/BF00011226; Brooker RW, 2008, J ECOL, V96, P18, DOI 10.1111/j.1365-2745.2007.01295.x; Brooker RW, 2006, NEW PHYTOL, V171, P271, DOI 10.1111/j1.469-8137.2006.01752.x; Bruno JF, 2003, TRENDS ECOL EVOL, V18, P119, DOI 10.1016/S0169-5347(02)00045-9; Bruno JF, 2000, ECOLOGY, V81, P1179, DOI 10.1890/0012-9658(2000)081[1179:FOCBPC]2.0.CO;2; BRUNSDEN D, 1979, T I BRIT GEOGR, V4, P463, DOI 10.2307/622210; Brunsden D., 1980, Z GEOMORPHOLOGIE S, V36, P16; Burbank DW, 2003, NATURE, V426, P652, DOI 10.1038/nature02187; Butler D. R, 1995, ZOOGEOMORPHOLOGY ANI, DOI 10.1017/CB09780511529900; Butler DR, 2005, GEOMORPHOLOGY, V71, P48, DOI 10.1016/j.geomorph.2004.08.016; BUTLER DR, 1991, J GEOGR, V90, P210, DOI 10.1080/00221349108979304; Cabaco S, 2008, ESTUAR COAST SHELF S, V79, P354, DOI 10.1016/j.ecss.2008.04.021; Cannone N, 2008, GEODERMA, V144, P50, DOI 10.1016/j.geoderma.2007.10.008; Cardinale BJ, 2004, FUNCT ECOL, V18, P381, DOI 10.1111/j.0269-8463.2004.00865.x; Carter NEA, 2005, GEOMORPHOLOGY, V67, P273, DOI 10.1016/j.geomorph.2004.10.004; Chapin FS, 1997, SCIENCE, V277, P500, DOI 10.1126/science.277.5325.500; Coco G, 2007, GEOMORPHOLOGY, V91, P271, DOI 10.1016/j.geomorph.2007.04.023; Cogger H. G., 1998, ENCY REPTILES AMPHIB; COPPER P, 2001, HIST SEDIMENTOLOGY A, P89; Corenblit D, 2008, CATENA, V73, P261, DOI 10.1016/j.catena.2007.11.002; Corenblit D, 2007, EARTH-SCI REV, V84, P56, DOI 10.1016/j.earscirev.2007.05.004; Corenblit D, 2010, ECOGRAPHY, V33, P1136, DOI 10.1111/j.1600-0587.2010.05894.x; Corenblit D, 2010, EARTH SURF PROC LAND, V35, P1744, DOI 10.1002/esp.2064; Corenblit D, 2009, EARTH SURF PROC LAND, V34, P1790, DOI 10.1002/esp.1876; Corenblit D, 2009, EARTH SURF PROC LAND, V34, P891, DOI 10.1002/esp.1788; Corenblit D, 2009, GLOBAL ECOL BIOGEOGR, V18, P507, DOI 10.1111/j.1466-8238.2009.00461.x; Cowles Henry Chandler, 1899, BOT GAZ, V27, P95, DOI DOI 10.1086/327796; COX GW, 1987, CATENA, V14, P165, DOI 10.1016/S0341-8162(87)80015-2; CRAWFORD RMM, 1989, STUDIES PLANT SURVIV; D'Alpaos A, 2007, GEOMORPHOLOGY, V91, P186, DOI 10.1016/j.geomorph.2007.04.013; Daleo P, 2007, ECOL LETT, V10, P902, DOI 10.1111/j.1461-0248.2007.01082.x; Dangerfield JM, 1998, J TROP ECOL, V14, P507, DOI 10.1017/S0266467498000364; Darby SE, 2010, EARTH SURF PROC LAND, V35, P368, DOI 10.1002/esp.1921; Davies NS, 2010, EARTH-SCI REV, V98, P171, DOI 10.1016/j.earscirev.2009.11.002; Davies NS, 2010, GEOLOGY, V38, P51, DOI 10.1130/G30443.1; Dawkins R, 2004, BIOL PHILOS, V19, P377, DOI 10.1023/B:BIPH.0000036180.14904.96; Dawkins R, 1982, EXTENDED PHENOTYPE; Dawkins R., 1976, SELFISH GENE; Dayton PK, 1972, P C CONS PROBL ANT, P81; de Haan J, 2006, ECOL COMPLEX, V3, P293, DOI 10.1016/j.ecocom.2007.02.003; DEAN WRJ, 1991, J ARID ENVIRON, V20, P231, DOI 10.1016/S0140-1963(18)30711-0; Delmotte S, 2007, GEOCHIM COSMOCHIM AC, V71, P844, DOI 10.1016/j.gca.2006.11.007; DIETRICH LEP, 2006, CURR BIOL, V16, P395; Dietrich WE, 2006, NATURE, V439, P411, DOI 10.1038/nature04452; Dorgan KM, 2006, OCEANOGR MAR BIOL, V44, P85; DREVER JI, 1994, GEOCHIM COSMOCHIM AC, V58, P2325, DOI 10.1016/0016-7037(94)90013-2; Dupraz C, 2009, EARTH-SCI REV, V96, P141, DOI 10.1016/j.earscirev.2008.10.005; Edwards P., 1999, WETLANDS ECOLOGY MAN, V7, P141, DOI DOI 10.1023/A:1008411311774; Egli M, 2008, GEOMORPHOLOGY, V102, P307, DOI 10.1016/j.geomorph.2008.04.001; Emerson BC, 2005, NATURE, V434, P1015, DOI 10.1038/nature03450; Eppinga MB, 2008, ECOSYSTEMS, V11, P520, DOI 10.1007/s10021-008-9138-z; Erwin DH, 2000, EVOL DEV, V2, P78, DOI 10.1046/j.1525-142x.2000.00045.x; Erwin DH, 2008, TRENDS ECOL EVOL, V23, P304, DOI 10.1016/j.tree.2008.01.013; Escapa M, 2008, ESTUAR COAST SHELF S, V80, P365, DOI 10.1016/j.ecss.2008.08.020; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Fanjul E, 2008, ESTUAR COAST SHELF S, V79, P300, DOI 10.1016/j.ecss.2008.04.005; Fearnehough W, 1998, GEOMORPHOLOGY, V23, P171, DOI 10.1016/S0169-555X(97)00111-6; Fisher SG, 2007, GEOMORPHOLOGY, V89, P84, DOI 10.1016/j.geomorph.2006.07.013; Fonstad MA, 2006, GEOMORPHOLOGY, V77, P217, DOI 10.1016/j.geomorph.2006.01.006; Francis RA, 2008, EARTH SURF PROC LAND, V33, P1622, DOI 10.1002/esp.1626; Francis RA, 2009, AQUAT SCI, V71, P290, DOI 10.1007/s00027-009-9182-6; Francis Robert A., 2008, Wetlands Ecology and Management, V16, P371, DOI 10.1007/s11273-007-9074-2; FRENCH JR, 1993, EARTH SURF PROC LAND, V18, P63, DOI 10.1002/esp.3290180105; Friedrichs C.T., 2001, J COASTAL RES, V27, P7, DOI DOI 10.2307/25736162; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Gabet EJ, 2003, ANNU REV EARTH PL SC, V31, P249, DOI 10.1146/annurev.earth.31.100901.141314; Gillikin DP, 2005, CRUSTACEANA, V78, P1273, DOI 10.1163/156854005775903618; Godderis Y, 2004, PALAEOGEOGR PALAEOCL, V202, P309, DOI 10.1016/S0031-0182(03)00641-2; Godderis Y, 2009, NATURE, V460, P40, DOI 10.1038/460040a; GODFREY PJ, 1977, INT J BIOMETEOROL, V21, P203, DOI 10.1007/BF01552874; GOODNIGHT CJ, 1990, EVOLUTION, V44, P1614, DOI 10.1111/j.1558-5646.1990.tb03850.x; Gorbushina AA, 2007, ENVIRON MICROBIOL, V9, P1613, DOI 10.1111/j.1462-2920.2007.01301.x; GRAF WL, 1978, GEOL SOC AM BULL, V89, P1491, DOI 10.1130/0016-7606(1978)89<1491:FATTSO>2.0.CO;2; Griffiths P, 2005, BIOL PHILOS, V20, P11, DOI 10.1007/s10539-004-1605-0; Grime J. P., 2001, PLANT STRATEGIES VEG; Grimm K, 1997, PALAIOS, V12, P299, DOI 10.2307/3515332; Grotzinger JP, 1999, ANNU REV EARTH PL SC, V27, P313, DOI 10.1146/annurev.earth.27.1.313; Gumbricht T, 2004, EARTH SURF PROC LAND, V29, P15, DOI 10.1002/esp.1008; Gurnell A, 2005, FRONT ECOL ENVIRON, V3, P377, DOI 10.1890/1540-9295(2005)003[0377:EODWOB]2.0.CO;2; Gurnell AM, 1998, PROG PHYS GEOG, V22, P167, DOI 10.1177/030913339802200202; Gurnell AM, 2001, EARTH SURF PROC LAND, V26, P31, DOI 10.1002/1096-9837(200101)26:1<31::AID-ESP155>3.0.CO;2-Y; Gurnell A, 2006, EARTH SURF PROC LAND, V31, P1558, DOI 10.1002/esp.1342; Gutierrez JL, 2003, OIKOS, V101, P79, DOI 10.1034/j.1600-0706.2003.12322.x; Hall K, 2005, GEOMORPHOLOGY, V67, P171, DOI 10.1016/j.geomorph.2004.09.027; Hall K, 2003, GEOMORPHOLOGY, V55, P219, DOI 10.1016/S0169-555X(03)00141-7; Haloin JR, 2008, ANN NY ACAD SCI, V1133, P87, DOI 10.1196/annals.1438.003; Hasiotis ST, 2003, PALAEOGEOGR PALAEOCL, V192, P259, DOI 10.1016/S0031-0182(02)00689-2; Hasiotis Stephen T., 2004, Ichnos, V11, P103, DOI 10.1080/10420940490428760; HASTINGS A, 1993, ANNU REV ECOL SYST, V24, P1, DOI 10.1146/annurev.es.24.110193.000245; Hazen RM, 2008, AM MINERAL, V93, P1693, DOI 10.2138/am.2008.2955; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hesp PA, 2008, GEOMORPHOLOGY, V99, P205, DOI 10.1016/j.geomorph.2007.11.001; Hesse PP, 2006, GEOMORPHOLOGY, V81, P276, DOI 10.1016/j.geomorph.2006.04.012; Higashi M., 1993, MUTUALISM COMMUNITY, P311; Holland L., 1981, THESIS U CANTERBURY; Hooper DU, 2005, ECOL MONOGR, V75, P3, DOI 10.1890/04-0922; Hugenholtz CH, 2005, GEOMORPHOLOGY, V70, P53, DOI 10.1016/j.geomorph.2005.03.011; Jefferies RL, 2006, J ECOL, V94, P234, DOI 10.1111/j.1365-2745.2005.01086.x; Johnson DL, 2002, GEOARCHAEOLOGY, V17, P631, DOI 10.1002/gea.10030; JOHNSON DL, 1990, SOIL SCI, V149, P84, DOI 10.1097/00010694-199002000-00004; Johnson MTJ, 2007, TRENDS ECOL EVOL, V22, P250, DOI 10.1016/j.tree.2007.01.014; Jones CG, 1997, ECOLOGY, V78, P1946, DOI 10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2; JONES CG, 1994, OIKOS, V69, P373, DOI 10.2307/3545850; Jorgensen SE, 1998, ECOL MODEL, V111, P261, DOI 10.1016/S0304-3800(98)00104-5; Jouquet P, 2006, APPL SOIL ECOL, V32, P153, DOI 10.1016/j.apsoil.2005.07.004; Kappler A, 2004, GEOCHIM COSMOCHIM AC, V68, P1217, DOI 10.1016/j.gca.2003.09.006; Karrenberg S, 2002, FRESHWATER BIOL, V47, P733, DOI 10.1046/j.1365-2427.2002.00894.x; KENNEDY M, 2006, SCIENCE, V311, P1146; Kenrick P, 1997, NATURE, V389, P33, DOI 10.1038/37918; Kidron GJ, 2009, EARTH SURF PROC LAND, V34, P123, DOI 10.1002/esp.1706; Kleidon A, 2010, PHYS LIFE REV, V7, P424, DOI 10.1016/j.plrev.2010.10.002; Knoll AH, 2003, GEOBIOLOGY, V1, P3, DOI 10.1046/j.1472-4669.2003.00002.x; KNOX JC, 1972, ANN ASSOC AM GEOGR, V62, P401, DOI 10.1111/j.1467-8306.1972.tb00872.x; Kocurek G, 2005, GEOMORPHOLOGY, V72, P94, DOI 10.1016/j.geomorph.2005.05.005; Lague D, 2005, J GEOPHYS RES-EARTH, V110, DOI 10.1029/2004JF000259; LANCASTER N, 1995, GEOMORPHOLOGY DESERT; Lapenis AG, 2002, PROF GEOGR, V54, P379, DOI 10.1111/0033-0124.00337; Latterell JJ, 2006, FRESHWATER BIOL, V51, P523, DOI 10.1111/j.1365-2427.2006.01513.x; Leopold LB, 1962, 500A US GEOL SURV PR, P1; Levin S, 1999, FRAGILE DOMINION COM; Levin SA, 2005, BIOSCIENCE, V55, P1075, DOI 10.1641/0006-3568(2005)055[1075:SATEOC]2.0.CO;2; LEVIN SA, 1991, THEORETICAL POPULATI, V37, P171; Lewontin R, 2000, TRIPLE HELIX GENE OR; Lewontin R.C., 1983, P273; Lin GW, 2008, EARTH SURF PROC LAND, V33, P1354, DOI 10.1002/esp.1716; Loreau M, 2001, SCIENCE, V294, P804, DOI 10.1126/science.1064088; Lotka A. J., 1925, ELEMENTS PHYS BIOL; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P151, DOI 10.1073/pnas.8.6.151; Lotka AJ, 1922, P NATL ACAD SCI USA, V8, P147, DOI 10.1073/pnas.8.6.147; Lovelock J, 2003, NATURE, V426, P769, DOI 10.1038/426769a; Lovelock J., 1988, AGES GAIA BIOGRAPHY; LOVELOCK JE, 1974, TELLUS, V26, P2; Lucas Y, 2001, ANNU REV EARTH PL SC, V29, P135, DOI 10.1146/annurev.earth.29.1.135; Ludwig JA, 1999, CATENA, V37, P257, DOI 10.1016/S0341-8162(98)00067-8; Lundberg J, 2006, GEOL SOC AM SPEC PAP, V404, P51, DOI 10.1130/2006.2404(06); LUNDQUIST CF, 2005, INT J SPELEOL, V35, P13; Lyons KG, 2005, CONSERV BIOL, V19, P1019, DOI 10.1111/j.1523-1739.2005.00106.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Malanson GP, 1999, ANN ASSOC AM GEOGR, V89, P746, DOI 10.1111/0004-5608.00174; Margulis Lynn, 1998, SYMBIOTIC PLANET NEW; Marston RA, 2010, GEOMORPHOLOGY, V116, P206, DOI 10.1016/j.geomorph.2009.09.028; Meysman FJR, 2006, TRENDS ECOL EVOL, V21, P688, DOI 10.1016/j.tree.2006.08.002; MILLS LS, 1993, BIOSCIENCE, V43, P219, DOI 10.2307/1312122; Minkoff DR, 2006, ESTUAR COAST SHELF S, V69, P403, DOI 10.1016/j.ecss.2006.05.008; Mitton JB, 2003, BIOSCIENCE, V53, P208, DOI 10.1641/0006-3568(2003)053[0208:TUOEAE]2.0.CO;2; MOLNAR P, 1990, NATURE, V346, P29, DOI 10.1038/346029a0; Montgomery DR, 2000, GEOLOGY, V28, P1107, DOI 10.1130/0091-7613(2000)28<1107:COTPSA>2.0.CO;2; Moore JW, 2006, BIOSCIENCE, V56, P237, DOI 10.1641/0006-3568(2006)056[0237:AEEIS]2.0.CO;2; Moore PD, 1996, NATURE, V380, P285, DOI 10.1038/380285a0; Mora CI, 1996, SCIENCE, V271, P1105, DOI 10.1126/science.271.5252.1105; Morton O., 2007, EATING SUN PLANTS PO; Murray AB, 2008, WATER RESOUR RES, V44, DOI 10.1029/2007WR006410; Murray AB, 2009, GEOMORPHOLOGY, V103, P496, DOI 10.1016/j.geomorph.2008.08.013; Murray AB, 2003, EARTH SURF PROC LAND, V28, P131, DOI 10.1002/esp.428; Murray JMH, 2002, GEOMORPHOLOGY, V47, P15, DOI 10.1016/S0169-555X(02)00138-1; Naeem S, 2002, NATURE, V416, P23, DOI 10.1038/416023a; Naiman RJ, 1997, BIOSCIENCE, V47, P521, DOI 10.2307/1313120; NAIMAN RJ, 1994, ECOLOGY, V75, P905, DOI 10.2307/1939415; NAIMAN RJ, 1988, BIOSCIENCE, V38, P753, DOI 10.2307/1310784; NAIMAN RJ, 1988, BIOSCIENCE, V38, P750, DOI 10.2307/1310783; Naylor LA, 2002, GEOMORPHOLOGY, V47, P3, DOI 10.1016/S0169-555X(02)00137-X; Nield JM, 2008, EARTH SURF PROC LAND, V33, P724, DOI 10.1002/esp.1571; Nield JM, 2008, GLOBAL PLANET CHANGE, V64, P76, DOI 10.1016/j.gloplacha.2008.10.002; Nungesser MK, 2003, ECOL MODEL, V165, P175, DOI 10.1016/S0304-3800(03)00067-X; Nuutinen V, 2011, SOIL BIOL, V24, P123, DOI 10.1007/978-3-642-14636-7_8; Odling-Smee F.J., 1988, P73; Odling-Smee FJ, 2003, NICHE CONSTRUCTION N; OdlingSmee FJ, 1996, AM NAT, V147, P641, DOI 10.1086/285870; ODUM EP, 1969, SCIENCE, V164, P262, DOI 10.1126/science.164.3877.262; Opperman JJ, 2008, BIOSCIENCE, V58, P1069, DOI 10.1641/B581110; OSTERKAMP WR, 1995, GEOMORPHOLOGY, V13, P1, DOI 10.1016/0169-555X(95)00063-B; Paarlberg AJ, 2005, ESTUAR COAST SHELF S, V64, P577, DOI 10.1016/j.ecss.2005.04.008; PACALA SW, 1997, SPATIAL ECOLOGY, P185; Pagani M, 2009, NATURE, V460, P85, DOI 10.1038/nature08133; Pahl-Wostl C., 1995, DYNAMIC NATURE ECOSY; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pedersen JBT, 2007, GEOMORPHOLOGY, V90, P115, DOI 10.1016/j.geomorph.2007.01.012; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier JD, 2009, EARTH SURF PROC LAND, V34, P1245, DOI 10.1002/esp.1809; Perez FL, 2010, GEOMORPHOLOGY, V116, P218, DOI 10.1016/j.geomorph.2009.11.017; Perry CT, 2009, ESTUAR COAST SHELF S, V81, P225, DOI 10.1016/j.ecss.2008.10.019; PERRY PD, 1995, TRENDS ECOL EVOL, V10, P241; Perucca E, 2007, WATER RESOUR RES, V43, DOI 10.1029/2006WR005234; PESTRONG R, 1972, SEDIMENT GEOL, V8, P251, DOI 10.1016/0037-0738(72)90044-9; Phillips JD, 2006, HYDROL EARTH SYST SC, V10, P731, DOI 10.5194/hess-10-731-2006; PHILLIPS JD, 1995, PROG PHYS GEOG, V19, P309, DOI 10.1177/030913339501900301; Phillips JD, 2001, ANN ASSOC AM GEOGR, V91, P609, DOI 10.1111/0004-5608.00261; PHILLIPS JD, 1995, GEOMORPHOLOGY, V13, P337, DOI 10.1016/0169-555X(95)00023-X; PHILLIPS JD, 1999, EARTH SURFACE SYSTEM; Phillips JD, 2008, EARTH-SCI REV, V89, P144, DOI 10.1016/j.earscirev.2008.04.003; Phillips JD, 2008, PROG PHYS GEOG, V32, P51, DOI 10.1177/0309133308089497; Phillips JD, 2006, GEOMORPHOLOGY, V76, P109, DOI 10.1016/j.geomorph.2005.10.004; Phillips JD, 2009, AM J SCI, V309, P271, DOI 10.2475/04.2009.01; Phillips JD, 2009, GEODERMA, V149, P143, DOI 10.1016/j.geoderma.2008.11.028; Pickett S. T. A, 1985, ECOLOGY NATURAL DIST; Post DM, 2007, GEOMORPHOLOGY, V89, P111, DOI 10.1016/j.geomorph.2006.07.014; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Power ME, 1996, BIOSCIENCE, V46, P609, DOI 10.2307/1312990; Rasmussen C, 2005, SOIL SCI SOC AM J, V69, P1266, DOI 10.2136/sssaj2004.0283; RASMUSSEN C, 2007, SOIL SCI SOC AM J, V71, P1867; Reichman OJ, 2002, TRENDS ECOL EVOL, V17, P44, DOI 10.1016/S0169-5347(01)02329-1; Reinhardt L, 2010, EARTH SURF PROC LAND, V35, P78, DOI 10.1002/esp.1912; Renschler CS, 2007, GEOMORPHOLOGY, V89, P1, DOI 10.1016/j.geomorph.2006.07.011; Retallack G.J, 2001, SOILS INTRO PALEOPED; Retallack GJ, 1997, SCIENCE, V276, P583, DOI 10.1126/science.276.5312.583; Reusch TBH, 2006, MOL ECOL, V15, P277, DOI 10.1111/j.1365-294X.2005.02779.x; Rietkerk M, 2002, AM NAT, V160, P524, DOI 10.1086/342078; Rietkerk M, 2008, TRENDS ECOL EVOL, V23, P169, DOI 10.1016/j.tree.2007.10.013; RUTIN J, 1996, GEOMORPHOLOGY, V15, P59; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schumm S. A., 2005, RIVER VARIABILITY CO; SCHUMM SA, 1968, GEOL SOC AM BULL, V79, P1573, DOI 10.1130/0016-7606(1968)79[1573:SCPCOT]2.0.CO;2; SCHWARTZMAN DW, 1991, GLOBAL PLANET CHANGE, V90, P357; Selby M. J., 1985, EARTHS CHANGING SURF; SHACHAK M, 1987, SCIENCE, V236, P1098, DOI 10.1126/science.236.4805.1098; Simons AM, 2002, J EVOLUTION BIOL, V15, P688, DOI 10.1046/j.1420-9101.2002.00437.x; Smith CH, 2005, J BIOGEOGR, V32, P1509, DOI 10.1111/j.1365-2699.2005.01305.x; SMITH CH, 1989, NEW ZEAL J ZOOL, V16, P773, DOI 10.1080/03014223.1989.10422934; SMITH CH, 1986, ACTA BIOTHEOR, V35, P229, DOI 10.1007/BF00047097; SMITH DG, 1976, GEOL SOC AM BULL, V87, P857, DOI 10.1130/0016-7606(1976)87<857:EOVOLM>2.0.CO;2; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Spencer T, 2002, GEOMORPHOLOGY, V48, P23, DOI 10.1016/S0169-555X(02)00174-5; Stachowicz JJ, 2001, BIOSCIENCE, V51, P235, DOI 10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2; Stallins JA, 2006, GEOMORPHOLOGY, V77, P207, DOI 10.1016/j.geomorph.2006.01.005; Stallins JA, 2005, ECOL COMPLEX, V2, P410, DOI 10.1016/j.ecocom.2005.01.011; Stallins JA, 2003, ANN ASSOC AM GEOGR, V93, P13, DOI 10.1111/1467-8306.93102; Stallins JA, 2003, PLANT ECOL, V165, P183, DOI 10.1023/A:1022224216705; Stanley SM, 1979, MACROEVOLUTION PATTE; Steemans P, 2009, SCIENCE, V324, P353, DOI 10.1126/science.1169659; Sterflinger K, 2000, GEOMICROBIOL J, V17, P97, DOI 10.1080/01490450050023791; Tabacchi E, 2009, AQUAT SCI, V71, P279, DOI 10.1007/s00027-009-9195-1; Tal M, 2007, GEOLOGY, V35, P347, DOI 10.1130/G23260A.1; Tal M, 2010, EARTH SURF PROC LAND, V35, P1014, DOI 10.1002/esp.1908; Tansley AG, 1935, ECOLOGY, V16, P284, DOI 10.2307/1930070; Temmerman S, 2007, GEOLOGY, V35, P631, DOI 10.1130/G23502A.1; Tokeshi M, 1999, SPECIES COEXISTENCE; Tricart J, 1965, PRINCIPES METHODES G; Tucker GE, 2004, EARTH SURF PROC LAND, V29, P185, DOI 10.1002/esp.1020; Valiente-Banuet A, 2006, P NATL ACAD SCI USA, V103, P16812, DOI 10.1073/pnas.0604933103; Van Breemen N, 1998, BIOGEOCHEMISTRY, V42, P1, DOI 10.1023/A:1005962124317; Van Hulzen JB, 2007, ESTUAR COAST, V30, P3, DOI 10.1007/BF02782962; van Wesenbeeck BK, 2008, OIKOS, V117, P152, DOI 10.1111/j.2007.0030-1299.16245.x; VANBREEMEN N, 1993, GEODERMA, V57, P183, DOI 10.1016/0016-7061(93)90002-3; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Verboom WH, 2006, PLANT SOIL, V289, P71, DOI 10.1007/s11104-006-9073-8; Viles HA, 2008, EARTH SURF PROC LAND, V33, P1419, DOI 10.1002/esp.1717; Viles H. A, 1988, BIOGEOMORPHOLOGY; Viles HA, 2008, GEOGR COMPASS, V2, P899, DOI 10.1111/j.1749-8198.2008.00099.x; Volkenborn N, 2007, ESTUAR COAST SHELF S, V74, P331, DOI 10.1016/j.ecss.2007.05.001; Whitham TG, 2003, ECOLOGY, V84, P559, DOI 10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Widdicombe S, 2000, HYDROBIOLOGIA, V440, P369, DOI 10.1023/A:1004120621842; Wilby A, 2002, TRENDS ECOL EVOL, V17, P307, DOI 10.1016/S0169-5347(02)02511-9; Wiley E. O., 1988, EVOLUTION ENTROPY UN; Wilkinson MT, 2009, EARTH-SCI REV, V97, P257, DOI 10.1016/j.earscirev.2009.09.005; WILSON DS, 1980, NATURAL SELECTION PO; Wright JP, 2002, OECOLOGIA, V132, P96, DOI 10.1007/s00442-002-0929-1; Wright JP, 2006, BIOSCIENCE, V56, P203, DOI 10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2; Wright JP, 2006, J ECOL, V94, P815, DOI 10.1111/j.1365-2745.2006.01132.x; Wright JP, 2009, ECOLOGY, V90, P3418, DOI 10.1890/08-1885.1; Yair A, 2002, GEOMORPHOLOGY, V42, P43, DOI 10.1016/S0169-555X(01)00072-1; YAIR A, 1995, GEOMORPHOLOGY, V13, P87, DOI 10.1016/0169-555X(95)00025-Z; Zaady Eli, 1994, American Journal of Botany, V81, P109; Zeng Y, 2007, GEOMORPHOLOGY, V91, P378, DOI 10.1016/j.geomorph.2007.04.019; Zhong Y, 2002, ECOL LETT, V5, P427, DOI 10.1046/j.1461-0248.2002.00336.x 288 151 156 8 168 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0012-8252 1872-6828 EARTH-SCI REV Earth-Sci. Rev. JUN 2011 106 3-4 307 331 10.1016/j.earscirev.2011.03.002 25 Geosciences, Multidisciplinary Geology 771UA WOS:000291185000006 2019-02-21 J Martin, TE; Lloyd, P; Bosque, C; Barton, DC; Biancucci, AL; Cheng, YR; Ton, R Martin, Thomas E.; Lloyd, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo GROWTH RATE VARIATION AMONG PASSERINE SPECIES IN TROPICAL AND TEMPERATE SITES: AN ANTAGONISTIC INTERACTION BETWEEN PARENTAL FOOD PROVISIONING AND NEST PREDATION RISK EVOLUTION English Article Food limitation; growth rates; life history; nest predation; parental care; passerines; provisioning rate LIFE-HISTORY EVOLUTION; MOLECULAR PHYLOGENETIC ANALYSIS; TITS PARUS-MAJOR; CLUTCH SIZE; SURVIVAL RATES; GEOGRAPHIC-VARIATION; TRADE-OFF; PHENOTYPIC PLASTICITY; COLLARED FLYCATCHER; DEVELOPMENTAL RATES Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species. [Martin, Thomas E.] Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA; [Lloyd, Penn] Univ Cape Town, Percy Fitzpatrick Inst African Ornithol, DST NRF Ctr Excellence, ZA-7701 Rondebosch, South Africa; [Bosque, Carlos] Univ Simon Bolivar, Dept Biol Organismos, Caracas, Venezuela Martin, TE (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA. tom.martin@umontana.edu; penn.lloyd@gmail.com; carlosb@usb.ve; daniel.barton@umontana.edu; luis.biancucci@gmail.com; yirucheng@gmail.com; zvoneb@libero.it Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 National Science Foundation [INT-9906030, DEB-9981527, DEB-0543178, DEB-0841764]; United States Geological Survey Climate Change Research Program; National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [2005-02817]; FONACIT [DM/0000237]; INPARQUES [PA-INP-005-2004]; Ministerio del Ambiente [01-03-03-1147] We thank R. Duckworth, R. Hutto, H. Sofaer, and two anonymous reviewers for helpful comments on drafts of this manuscript. We gratefully acknowledge the help of the many field personnel that aided in collection of these data over many years and sites. This work was supported by National Science Foundation grants (INT-9906030, DEB-9981527, DEB-0543178, DEB-0841764 to TEM) for studies in Arizona, South Africa, and Venezuela, while the work in Arizona was also supported by the United States Geological Survey Climate Change Research Program, and the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2005-02817 to TEM. Permit numbers for work in Venezuela were DM/0000237 from FONACIT, PA-INP-005-2004 from INPARQUES, and 01-03-03-1147 from Ministerio del Ambiente. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; [Anonymous], 2009, PASW STAT 18 REL VER; Ardia DR, 2006, CONDOR, V108, P601, DOI 10.1650/0010-5422(2006)108[601:GVITTB]2.0.CO;2; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 2003, FUNCT ECOL, V17, P328, DOI 10.1046/j.1365-2435.2003.00737.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Badyaev AV, 2000, J EVOLUTION BIOL, V13, P290; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Biancucci L, 2010, J ANIM ECOL, V79, P1086, DOI 10.1111/j.1365-2656.2010.01720.x; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BROMMER JE, 2003, P R SOC B S3, V271, pS110, DOI DOI 10.1098/RSBL.2003.0103; Burns KJ, 2002, EVOLUTION, V56, P1240; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Chalfoun AD, 2010, CONDOR, V112, P701, DOI 10.1525/cond.2010.090242; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; CROSSNER KA, 1977, ECOLOGY, V58, P885, DOI 10.2307/1936224; Dial KP, 2008, TRENDS ECOL EVOL, V23, P394, DOI 10.1016/j.tree.2008.03.005; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Eggers S, 2005, BEHAV ECOL, V16, P309, DOI 10.1093/beheco/arh163; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fierro-Calderon K, 2007, CONDOR, V109, P680, DOI 10.1650/8305.1; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Fontaine JJ, 2007, OIKOS, V116, P1887, DOI 10.1111/j.2007.0030-1299.16043.x; Francis CM, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P375; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRAFEN A, 1992, J THEOR BIOL, V156, P405, DOI 10.1016/S0022-5193(05)80635-6; HENSLER GL, 1981, WILSON BULL, V93, P42; Hinde CA, 2010, SCIENCE, V327, P1373, DOI 10.1126/science.1186056; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Klicka J, 2005, MOL PHYLOGENET EVOL, V34, P486, DOI 10.1016/j.ympev.2004.10.001; Kolliker M, 2000, P ROY SOC B-BIOL SCI, V267, P2127, DOI 10.1098/rspb.2000.1259; Kunz C, 2000, J EVOLUTION BIOL, V13, P199; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; Lloyd JD, 2004, BEHAV ECOL, V15, P816, DOI 10.1093/beheco/arh085; Lloyd JD, 2003, P ROY SOC B-BIOL SCI, V270, P735, DOI 10.1098/rspb.2002.2289; LYON BE, 1987, BEHAV ECOL SOCIOBIOL, V20, P377, DOI 10.1007/BF00300684; MacColl ADC, 2003, EVOLUTION, V57, P2191; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2008, PHILOS T R SOC B, V363, P1663, DOI 10.1098/rstb.2007.0009; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Martin TE, 2007, ECOLOGY, V88, P367, DOI 10.1890/0012-9658(2007)88[367:CCOYOT]2.0.CO;2; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Massaro M, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002331; MAYFIELD HF, 1975, WILSON BULL, V87, P456; McAdam AG, 2003, J EVOLUTION BIOL, V16, P1249, DOI 10.1046/j.1420-9101.2003.00630.x; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; Moreno J, 1998, J FIELD ORNITHOL, V69, P269; Naef-Daenzer B, 1999, J ANIM ECOL, V68, P708, DOI 10.1046/j.1365-2656.1999.00318.x; Nolan PM, 2001, CONDOR, V103, P851, DOI 10.1650/0010-5422(2001)103[0851:TNOPVB]2.0.CO;2; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; PURVIS A, 1995, COMPUT APPL BIOSCI, V11, P247; Remes V, 2002, EVOLUTION, V56, P2505; RICHNER H, 1989, FUNCT ECOL, V3, P617, DOI 10.2307/2389577; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; Roff Derek A., 1992; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; SARGENT S, 1993, WILSON BULL, V105, P285; Scheuerlein A, 2006, IBIS, V148, P468, DOI 10.1111/j.1474-919X.2006.00549.x; SHKEDY Y, 1992, IBIS, V134, P268, DOI 10.1111/j.1474-919X.1992.tb03809.x; Sibley CG, 1990, PHYLOGENY CLASSIFICA; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1982, OECOLOGIA, V54, P159, DOI 10.1007/BF00378388; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; STARCK JM, 1998, AVIAN GROWTH DEV; Tello JG, 2009, CLADISTICS, V25, P429, DOI 10.1111/j.1096-0031.2009.00254.x; Thomson RL, 2006, OIKOS, V113, P325, DOI 10.1111/j.2006.0030-1299.14376.x; Tremblay I, 2003, ECOLOGY, V84, P3033, DOI 10.1890/02-0663; Van Buskirk J, 2000, ECOLOGY, V81, P2813, DOI 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2; Voelker G, 2007, MOL PHYLOGENET EVOL, V42, P422, DOI 10.1016/j.ympev.2006.07.016; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Williams Geroge C, 1966, ADAPTATION NATURAL S; Yuri T, 2002, MOL PHYLOGENET EVOL, V23, P229, DOI 10.1016/S1055-7903(02)00012-X 94 55 57 2 63 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 2011 65 6 1607 1622 10.1111/j.1558-5646.2011.01227.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 772XB WOS:000291270300008 21644952 2019-02-21 J Evans, SR; Gustafsson, L; Sheldon, BC Evans, Simon R.; Gustafsson, Lars; Sheldon, Ben C. DIVERGENT PATTERNS OF AGE-DEPENDENCE IN ORNAMENTAL AND REPRODUCTIVE TRAITS IN THE COLLARED FLYCATCHER EVOLUTION English Article Aging; life-history; ornamentation; plumage coloration; senescence; sexual selection SECONDARY SEXUAL CHARACTER; BLUE-FOOTED BOOBY; WILD BIRD POPULATION; INFORMATION-CONTENT; HANDICAP PRINCIPLE; NATURAL-SELECTION; PHENOTYPIC PLASTICITY; MEASURING SENESCENCE; FICEDULA-ALBICOLLIS; CRYPTIC EVOLUTION Sexual ornaments are predicted to honestly signal individual condition. We might therefore expect ornament expression to show a senescent decline, in parallel with late-life deterioration of other characters. Conversely, life-history theory predicts the reduced residual reproductive value of older individuals will favor increased investment in sexually attractive traits. Using a 25-year dataset of more than 5000 records of breeding collared flycatchers (Ficedula albicollis) of known age, we quantify cross-sectional patterns of age-dependence in ornamental plumage traits and report long-term declines in expression that mask highly significant positive age-dependency. We partition this population-level age-dependency into its between- and within-individual components and show expression of ornamental white plumage patches exhibits within-individual increases with age in both sexes, consistent with life-history theory. For males, ornament expression also covaries with life span, such that, within a cohort, ornamentation indicates survival. Finally, we compared longitudinal age-dependency of reproductive traits and ornamental traits in both sexes, to assess whether these two trait types exhibit similar age-dependency. These analyses revealed contrasting patterns: reproductive traits showed within-individual declines in late-life females consistent with senescence; ornamental traits showed the opposite pattern in both males and females. Hence, our results for both sexes suggest that age-dependent ornament expression is consistent with life-history models of optimal signaling and, unlike reproductive traits, proof against senescence. [Evans, Simon R.; Sheldon, Ben C.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 2JD, England; [Gustafsson, Lars] Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Biol, Uppsala, Sweden Evans, SR (reprint author), Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 2JD, England. simon.evans@zoo.ox.ac.uk Gustafsson, Lars/A-7634-2012; Sheldon, Ben/A-8056-2010 Gustafsson, Lars/0000-0001-6566-2863; Sheldon, Ben/0000-0002-5240-7828; Evans, Simon/0000-0002-8227-5838; Evans, Simon/0000-0001-5812-4039 Swedish Research Council; NERC We thank the numerous people who helped to collect data, A. Qvarnstrom and M. Robinson for their valuable advice and suggestions, two anonymous reviewers for their helpful comments, the Swedish Research Council for funding the long-term study and NERC for partial funding of this project, via a grant to BCS. ANDERSSON M, 1986, EVOLUTION, V40, P804, DOI 10.1111/j.1558-5646.1986.tb00540.x; Andersson M., 1994, SEXUAL SELECTION; Badyaev AV, 2003, J EVOLUTION BIOL, V16, P1065, DOI 10.1046/j.1420-9101.2003.00628.x; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; COTTON S, 2004, P ROY SOC LOND B BIO, V271, P772; Darwin C, 1871, DESCENT MAN SELECTIO; Forstmeier W, 2006, BEHAV ECOL SOCIOBIOL, V59, P634, DOI 10.1007/s00265-005-0090-z; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; Garant D, 2004, AM NAT, V164, pE115, DOI 10.1086/424764; Garant D, 2004, EVOLUTION, V58, P634, DOI 10.1111/j.0014-3820.2004.tb01685.x; Gilmour AR, 2009, ASREML USER GUIDE RE; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Graves BM, 2007, EVOL ECOL, V21, P663, DOI 10.1007/s10682-006-9144-6; Griffith SC, 2001, ANIM BEHAV, V61, P987, DOI 10.1006/anbe.2000.1666; GUSTAFSSON L, 1995, NATURE, V375, P311, DOI 10.1038/375311a0; Gustafsson L., 1989, P75; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hegyi G, 2006, J EVOLUTION BIOL, V19, P228, DOI 10.1111/j.1420-9101.2005.00970.x; Hegyi G, 2002, J EVOLUTION BIOL, V15, P710, DOI 10.1046/j.1420-9101.2002.00449.x; Hegyi G, 2008, ANIM BEHAV, V75, P977, DOI 10.1016/j.anbehav.2007.08.009; Hegyi G, 2007, J AVIAN BIOL, V38, P698, DOI 10.1111/j.2007.0908-8857.04075.x; Hegyi G, 2010, NATURWISSENSCHAFTEN, V97, P567, DOI 10.1007/s00114-010-0672-0; Hunt J, 2006, AM NAT, V168, pE72, DOI 10.1086/506918; ISAKSSON C, 2007, ECOLOGY PHYSL CAROTE; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Karlsson L., 1986, Var Fagelvarld, V45, P131; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kruuk LEB, 2002, EVOLUTION, V56, P1683; Maklakov AA, 2007, AGING CELL, V6, P739, DOI 10.1111/j.1474-9726.2007.00333.x; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; Merila J, 2001, NATURE, V412, P76, DOI 10.1038/35083580; Michl G, 2002, P NATL ACAD SCI USA, V99, P5466, DOI 10.1073/pnas.082036699; Miller LK, 2005, EVOLUTION, V59, P2414; MOLLER AP, 1989, NATURE, V339, P132; MOLLER AP, 1994, EVOLUTION, V48, P1676, DOI 10.1111/j.1558-5646.1994.tb02204.x; Nisbet ICT, 2001, EXP GERONTOL, V36, P833, DOI 10.1016/S0531-5565(00)00244-8; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Part T, 1997, ANIM BEHAV, V54, P893, DOI 10.1006/anbe.1997.0514; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Qvarnstrom A, 1999, EVOLUTION, V53, P1564, DOI 10.1111/j.1558-5646.1999.tb05419.x; Qvarnstrom A, 2000, NATURE, V405, P344, DOI 10.1038/35012605; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Rivera-Gutierrez HF, 2010, ANIM BEHAV, V80, P451, DOI 10.1016/j.anbehav.2010.06.002; ROHWER S, 1988, AM NAT, V131, P556, DOI 10.1086/284806; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Safran RJ, 2005, SCIENCE, V309, P2210, DOI 10.1126/science.1115090; Safran RJ, 2004, BEHAV ECOL, V15, P455, DOI 10.1093/beheco/arh035; Saino N, 1996, BEHAV ECOL, V7, P227, DOI 10.1093/beheco/7.2.227; Sheldon BC, 1997, P ROY SOC B-BIOL SCI, V264, P297, DOI 10.1098/rspb.1997.0042; Sheldon BC, 2003, EVOLUTION, V57, P406; Sheldon BC, 1999, ANIM BEHAV, V57, P285, DOI 10.1006/anbe.1998.0968; Svensson E, 1998, OIKOS, V83, P466, DOI 10.2307/3546674; Svensson L., 1994, IDENTIFICATION GUIDE; Torok J, 2003, BEHAV ECOL, V14, P382, DOI 10.1093/beheco/14.3.382; Torres R, 2003, BEHAV ECOL SOCIOBIOL, V55, P65, DOI 10.1007/s00265-003-0669-1; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; van desPol M., 2006, AM NAT, V167, P765; Vanpe C, 2007, AM NAT, V169, P481, DOI 10.1086/512046; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; VAUPEL JW, 1979, DEMOGRAPHY, V16, P339; Velando A, 2006, OECOLOGIA, V149, P535, DOI 10.1007/s00442-006-0457-5; Velando A, 2010, BIOL LETTERS, V6, P194, DOI 10.1098/rsbl.2009.0759; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wilson AJ, 2007, EVOL ECOL, V21, P337, DOI 10.1007/s10682-006-9106-z; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3 83 35 35 0 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 2011 65 6 1623 1636 10.1111/j.1558-5646.2011.01253.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 772XB WOS:000291270300009 21644953 2019-02-21 J Storey, RG; Quinn, JM Storey, R. G.; Quinn, J. M. Life histories and life history strategies of invertebrates inhabiting intermittent streams in Hawke's Bay, New Zealand NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH English Article New Zealand; macroinvertebrates; life history; intermittent streams; species traits; growth rate DELEATIDIUM EPHEMEROPTERA; PLECOPTERA; STONEFLIES; LEPTOPHLEBIIDAE; TRICHOPTERA; PERMANENCE; DISPERSAL; RIVER; GRIPOPTERYGIDAE; COMMUNITIES Intermittent streams are predicted to harbour macroinvertebrate taxa with particular life history traits that allow them to complete development in a limited time and survive periods without water. Three intermittent headwater streams in Hawke's Bay, New Zealand, had more taxa with very small body size, plurivoltine life cycles, low dissemination potential, long-lived adults and asexual reproduction than three nearby perennial streams. We traced the population size structure and adult flight periods of six aquatic insect taxa, and the population size structure of an aquatic snail, in three intermittent streams to provide basic information on larval growth rates and infer whether they use particular life history stages to survive summer drought. The insect taxa appeared to over-summer primarily as eggs, whereas the snail Potamopyrgus antipodarum over-summered at various stages of maturity. Final instar larvae and adults of most insect taxa appeared well ahead of stream drying, suggesting they can survive early-onset drought. However, late-onset drought would allow more larvae to complete development. [Storey, R. G.; Quinn, J. M.] Natl Inst Water & Atmospher Res Ltd, Hamilton, New Zealand Storey, RG (reprint author), Natl Inst Water & Atmospher Res Ltd, Hamilton, New Zealand. r.storey@niwa.co.nz Foundation for Research, Science and Technology [NIWX0401] We would like to thank Brian Smith for his expert advice and help with identifications; Ngaire Phillips for help with species trait analysis; Carola and Mike Hudson, Spencer and Gordon Macdonald for help with sample collection and their observations of local flow patterns; Graham Sevicke-Jones, Brett Stansfield, Vickie Hansen and Andrew Lamason for help with sample collection; and Holly Ferguson, Claire Taylor and Nathan Wagstaff for help with sample sorting. This research was funded by the Foundation for Research, Science and Technology through a postdoctoral fellowship (NIWX0401) to R. Storey. ARSCOTT DB, 2010, J N AM BENTHOL SOC, V29, P545; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Bouvet Y., 1977, P 2 INT S TRICH JUNK, P117; Briers RA, 2004, FRESHWATER BIOL, V49, P425, DOI 10.1111/j.1365-2427.2004.01198.x; DIETERICH M, 1990, NW SCI, V64, P105; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; ERMAN NA, 1995, J KANSAS ENTOMOL SOC, V68, P50; FORSYTH DJ, 1986, NEW ZEAL J MAR FRESH, V20, P47, DOI 10.1080/00288330.1986.9516128; Fritz KM, 2005, MAR FRESHWATER RES, V56, P13, DOI 10.1071/MF04244; HARPER PP, 1970, ECOLOGY, V51, P925; HART RC, 1985, HYDROBIOLOGIA, V125, P151, DOI 10.1007/BF00045932; Hawke's Bay Regional Council, 2003, RUAT PLAINS WAT RES; Huryn AD, 1996, FRESHWATER BIOL, V36, P351; Huryn AD, 1998, OECOLOGIA, V115, P173, DOI 10.1007/s004420050505; IMHOF JGA, 1981, HYDROBIOLOGIA, V77, P61, DOI 10.1007/BF00006388; Kovats ZE, 1996, FRESHWATER BIOL, V36, P265, DOI 10.1046/j.1365-2427.1996.00087.x; LINKLATER W, 1993, NEW ZEAL J MAR FRESH, V27, P61, DOI 10.1080/00288330.1993.9516546; MCELRAVY EP, 1989, J N AM BENTHOL SOC, V8, P51, DOI 10.2307/1467401; McLellan ID, 1998, NEW ZEAL J ZOOL, V25, P185, DOI 10.1080/03014223.1998.9518149; Michaelis F. B., 1974, THESIS U CANTERBURY; Mullan B., 2005, WLG200523 NAT I WAT; NEBOISS A, 1986, ATLAS TRICHOPTREA S; Resh VH, 2010, J N AM BENTHOL SOC, V29, P207, DOI 10.1899/08-082.1; RIEK E, 1970, DIVISION ENTOMOLOGY; Robinson CT, 2007, NEW ZEAL J MAR FRESH, V41, P265, DOI 10.1080/00288330709509914; SCARSBROOK MR, 2000, NZ STREAM INVERTEBRA; SCRIMGEOUR GJ, 1991, NEW ZEAL J MAR FRESH, V25, P93, DOI 10.1080/00288330.1991.9516457; Smith BJ, 2002, NEW ZEAL J MAR FRESH, V36, P863, DOI 10.1080/00288330.2002.9517138; SMITH BJ, 2007, GUIDE NZ HYDROBIOSID; SOMMERHAUSER M, 1997, P 8 INT S TRICH 1995, P425; Storey RG, 2008, NEW ZEAL J MAR FRESH, V42, P109, DOI 10.1080/00288330809509941; TOWNS DR, 1981, AUST J MAR FRESH RES, V32, P191; TOWNS DR, 1983, HYDROBIOLOGIA, V99, P37, DOI 10.1007/BF00013716; TOWNS DR, 1985, BIOL MONITORING FRES, P225; Towns DR, 1996, FAUNA NZ; WARD JB, 1993, TRICHOPTERA AD UNPUB; Williams D. D, 2006, BIOL TEMPORARY WATER; WILLIAMS DD, 1995, FRESHWATER BIOL, V34, P155, DOI 10.1111/j.1365-2427.1995.tb00432.x; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; WILLIAMS DD, 1975, CAN ENTOMOL, V107, P829, DOI 10.4039/Ent107829-8; Winterbourn M., 2004, FRESHWATERS NZ; WINTERBOURN M J, 1973, Tuatara, V20, P141; WINTERBOURN M J, 1970, Proceedings of the Malacological Society of London, V39, P139; Winterbourn MJ, 2008, HYDROBIOLOGIA, V603, P211, DOI 10.1007/s10750-007-9273-0; Winterbourn MJ, 2007, FUND APPL LIMNOL, V168, P127, DOI 10.1127/1863-9135/2007/0168-0127; Winterbourn Michael J., 2010, New Zealand Natural Sciences, V35, P1; WINTERBOURN MJ, 1966, NEW ZEAL J SCI, V9, P312; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; WINTERBOURN MJ, 1974, FRESHWATER BIOL, V4, P507, DOI 10.1111/j.1365-2427.1974.tb00111.x; Wissinger SA, 2003, FRESHWATER BIOL, V48, P255, DOI 10.1046/j.1365-2427.2003.00997.x 50 5 6 2 36 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0028-8330 NEW ZEAL J MAR FRESH N. Z. J. Mar. Freshw. Res. JUN 2011 45 2 213 230 PII 938096868 10.1080/00288330.2011.554988 18 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography 772UT WOS:000291263400003 Bronze 2019-02-21 J van der Linden, D; te Nijenhuis, J; Cremers, M; van de Ven, C van der Linden, Dimitri; te Nijenhuis, Jan; Cremers, Myckel; van de Ven, Cyril General Factors of Personality in Six Datasets and a Criterion-Related Validity Study at the Netherlands Armed Forces INTERNATIONAL JOURNAL OF SELECTION AND ASSESSMENT English Article HIGHER-ORDER FACTORS; LIFE-HISTORY THEORY; BIG 5; SOCIAL DESIRABILITY; PERSONNEL-SELECTION; JOB-PERFORMANCE; 5-FACTOR MODEL; K-FACTOR; METAANALYSIS; QUESTIONNAIRE Several papers showed that a general factor occupies the top of the hierarchical structure of personality, the so-called General Factor of Personality (GFP). The first question is whether the GFP behaves similar to the general factor of mental ability (g), in that GFP scores from different personality questionnaires correlate highly. The second question is whether the GFP is related to real-life outcomes. In six large datasets (total N=21,754) collected in the Netherlands armed forces, the GFPs extracted from six personality questionnaires generally showed high degrees of correlation suggesting they measure the same construct. Moreover, GFP was related to drop-out from military training. This evidence strengthens the view that the GFP is a substantive construct with practical relevance. [van der Linden, Dimitri] Erasmus Univ, Inst Psychol, Rotterdam, Netherlands; [te Nijenhuis, Jan; Cremers, Myckel; van de Ven, Cyril] Dutch Minist Def, Def Behav Sci Serv Ctr, The Hague, Netherlands van der Linden, D (reprint author), Erasmus Univ, Inst Psychol, Rotterdam, Netherlands. vanderlinden@fsw.eur.nl te Nijenhuis, Jan/D-1015-2013 te Nijenhuis, Jan/0000-0002-1268-6121; Van der Linden, Dimitri/0000-0001-7098-8948 Anusic I, 2009, J PERS SOC PSYCHOL, V97, P1142, DOI 10.1037/a0017159; Ashton MC, 2007, PERS SOC PSYCHOL REV, V11, P150, DOI 10.1177/1088868306294907; Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BARRICK MR, 1991, PERS PSYCHOL, V44, P1, DOI 10.1111/j.1744-6570.1991.tb00688.x; Cattell RB, 1950, J SOC PSYCHOL, V31, P3, DOI 10.1080/00224545.1950.9918993; *CEBIR, 2007, PROF INT TEST; CREMERS M, 2007, HOE INTEGER ZIJN ONZ; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; DILCHERT S, 2006, ENCY CAREER DEV, P36; Dilchert S, 2008, Z PERSONALPSYCHOL, V7, P1, DOI 10.1026/1617-6391.7.1.1; DUEL J, 2006, GW06037 MIN DEF; Eysenck HJ, 1967, BIOL BASIS PERSONALI; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; GOLDBERG LR, 1990, J PERS SOC PSYCHOL, V59, P1216, DOI 10.1037//0022-3514.59.6.1216; GUILFORD JP, 1949, GUILFORDZIMMERMAN TE; HERMANS HJM, 2004, PMT PRESTATIE MOTIVA; Hoekstra H. A., 2003, NEO PI R NEO FFI BIG; Hofstee WKB, 2001, INTELLIGENCE AND PERSONALITY: BRIDGING THE GAP IN THEORY AND MEASUREMENT, P43; Hogan J, 2007, J APPL PSYCHOL, V92, P1270, DOI 10.1037/0021-9010.92.5.1270; Hunter J. E., 2004, METHODS METAANALYSIS; Hunter J. E., 1990, METHODS METAANALYSIS; HUNTER JE, 1990, J APPL PSYCHOL, V75, P334, DOI 10.1037/0021-9010.75.3.334; Jensen A. R, 1980, BIAS MENTAL TESTING; JENSEN AR, 1994, INTELLIGENCE, V18, P231, DOI 10.1016/0160-2896(94)90029-9; Jensen AR, 1998, G FACTOR SCI MENTAL; Judge TA, 2002, J APPL PSYCHOL, V87, P530, DOI 10.1037/0021.9010.87.3.530; Kurtz JE, 2008, PERS INDIV DIFFER, V45, P22, DOI 10.1016/j.paid.2008.02.012; *LAB APPL PSYCH, 1984, HANDL GUILF LTP TEMP; LUTEIJN F, 1985, NEDERLANDSE PERSOONL; McCrae RR, 2008, J PERS SOC PSYCHOL, V95, P442, DOI 10.1037/0022-3514.95.2.442; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Ones DS, 1996, J APPL PSYCHOL, V81, P660, DOI 10.1037/0021-9010.81.6.660; ONES DS, 1993, J APPL PSYCHOL, V78, P679, DOI 10.1037//0021-9010.78.4.679; Ones DS, 1998, HUM PERFORM, V11, P245, DOI 10.1207/s15327043hup1102&3_7; Petrides KV, 2010, PERS INDIV DIFFER, V48, P906, DOI 10.1016/j.paid.2010.02.019; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2010, TWIN RES HUM GENET, V13, P131, DOI 10.1375/twin.13.2.131; Rushton JP, 2009, J RES PERS, V43, P1091, DOI 10.1016/j.jrp.2009.06.002; Rushton JP, 2009, PERS INDIV DIFFER, V47, P571, DOI 10.1016/j.paid.2009.05.011; Rushton JP, 2009, PERS INDIV DIFFER, V47, P558, DOI 10.1016/j.paid.2009.05.009; Rushton JP, 2009, PERS INDIV DIFFER, V46, P437, DOI 10.1016/j.paid.2008.11.015; Salgado JF, 2002, INT J SELECT ASSESS, V10, P117, DOI 10.1111/1468-2389.00198; Spearman C, 1904, AM J PSYCHOL, V15, P201, DOI 10.2307/1412107; TENIJENHUIS J, 2008, PERSONEELSSELECTIE O; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Van Rooy DL, 2004, J VOCAT BEHAV, V65, P71, DOI 10.1016/S0001-8791(03)00076-9; VANAMELSFOORT DJC, 2003, TM03A011 TNO TECHN M; VANDEVEN CPH, 2002, VERLOOP TIJDENS OPLE; VANKUIJK PHM, 2006, GW06074 MIN DEF; VERMEIJ AMA, 2006, P05055B MIN DEF; Veselka L, 2009, TWIN RES HUM GENET, V12, P254, DOI 10.1375/twin.12.3.254; VOS AJV, 2007, GW07092 MIN DEF; WETERINGS MP, 1998, 9809 GW MIN DEF 58 21 21 0 8 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0965-075X 1468-2389 INT J SELECT ASSESS Int. J. Sel. Assess. JUN 2011 19 2 157 169 10.1111/j.1468-2389.2011.00543.x 13 Psychology, Applied; Management Psychology; Business & Economics 763VB WOS:000290586700005 2019-02-21 J Griskevicius, V; Tybur, JM; Delton, AW; Robertson, TE Griskevicius, Vladas; Tybur, Joshua M.; Delton, Andrew W.; Robertson, Theresa E. The Influence of Mortality and Socioeconomic Status on Risk and Delayed Rewards: A Life History Theory Approach JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article financial risk; temporal discounting; childhood development; socioeconomic status; mortality EVOLUTIONARY MODEL; REPRODUCTIVE STRATEGIES; PUBERTAL MATURATION; ENVIRONMENTAL RISK; DYING YOUNG; LIVING FAST; PERSPECTIVE; ATTACHMENT; EXPERIENCE; MOTIVES Why do some people take risks and live for the present, whereas others avoid risks and save for the future? The evolutionary framework of life history theory predicts that preferences for risk and delay in gratification should be influenced by mortality and resource scarcity. A series of experiments examined how mortality cues influenced decisions involving risk preference (e.g., $10 for sure vs. 50% chance of $20) and temporal discounting (e.g., $5 now vs. $10 later). The effect of mortality depended critically on whether people grew up in a relatively resource-scarce or resource-plentiful environment. For individuals who grew up relatively poor, mortality cues led them to value the present and gamble for big immediate rewards. Conversely, for individuals who grew up relatively wealthy, mortality cues led them to value the future and avoid risky gambles. Overall, mortality cues appear to propel individuals toward diverging life history strategies as a function of childhood socioeconomic status, suggesting important implications for how environmental factors influence economic decisions and risky behaviors. [Griskevicius, Vladas] Univ Minnesota, Dept Mkt, Carlson Sch Management, Minneapolis, MN 55455 USA; [Tybur, Joshua M.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Delton, Andrew W.; Robertson, Theresa E.] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA Griskevicius, V (reprint author), Univ Minnesota, Dept Mkt, Carlson Sch Management, Minneapolis, MN 55455 USA. vladasg@umn.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Robertson, Theresa/0000-0001-8229-2323 NIH HHS [DP1 OD000516, DP1 OD000516-05] Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; Adams J, 2009, BRIT J HEALTH PSYCH, V14, P83, DOI 10.1348/135910708X299664; Aiken LS, 1991, MULTIPLE REGRESSION; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2007, OXFORD HDB EVOLUTION, P237; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Ben-Zur H, 2009, PERS SOC PSYCHOL REV, V13, P109, DOI 10.1177/1088868308330104; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BRAVER SL, 1975, EDUC PSYCHOL MEAS, V35, P283, DOI 10.1177/001316447503500206; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Caspi A, 2003, SCIENCE, V301, P386, DOI 10.1126/science.1083968; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 2004, PSYCHOSOM MED, V66, P553, DOI 10.1097/01.psy.0000126200.05189.d3; Daan Serge, 1997, P311; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DINAPOLI TP, 2008, 2008 COMPTROLLERS RE; Dohmen T, 2010, AM ECON REV, V100, P1238, DOI 10.1257/aer.100.3.1238; Eibl-Eibesfeldt I, 1989, HUMAN ETHOLOGY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FEUER A, 2008, NY TIMES 0821, P1; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Francis D, 1999, SCIENCE, V286, P1155, DOI 10.1126/science.286.5442.1155; Galobardes B, 2004, EPIDEMIOL REV, V26, P7, DOI 10.1093/expirev/mxh008; Gangestad SW, 2007, J PERS SOC PSYCHOL, V92, P151, DOI 10.1037/0022-3514.92.1.151; Green L, 2004, PSYCHOL BULL, V130, P769, DOI 10.1037/0033-2909.130.5.769; Greenberg J, 1986, PUBLIC SELF PRIVATE, P189, DOI [DOI 10.1007/978-1-4613-9564-5_10, 10.1007/978-1-4613-9564-5_10]; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; HORN HS, 1978, BEHAVIOURAL ECOLOGY, P411; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; Jablonka E, 2009, Q REV BIOL, V84, P131, DOI 10.1086/598822; Kacelnik A, 1996, AM ZOOL, V36, P402; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; Maestripieri D, 2005, P NATL ACAD SCI USA, V102, P9726, DOI 10.1073/pnas.0504122102; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Navarrete CD, 2009, PSYCHOL SCI, V20, P155, DOI 10.1111/j.1467-9280.2009.02273.x; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; RACHLIN H, 1991, J EXP ANAL BEHAV, V55, P233, DOI 10.1901/jeab.1991.55-233; RICE WR, 1994, TRENDS ECOL EVOL, V9, P235, DOI 10.1016/0169-5347(94)90258-5; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; RUBIN PH, 1979, ECON INQ, V17, P585, DOI 10.1111/j.1465-7295.1979.tb00549.x; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Tinbergen JM, 1999, BEHAV ECOL, V10, P504, DOI 10.1093/beheco/10.5.504; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096 79 192 205 11 90 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. JUN 2011 100 6 1015 1026 10.1037/a0022403 12 Psychology, Social Psychology 770CW WOS:000291065600004 21299312 Green Accepted 2019-02-21 J Kvingedal, E; Einum, S Kvingedal, Eli; Einum, Sigurd Prior residency advantage for Atlantic salmon in the wild: effects of habitat quality BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Intraspecific competition; Dispersal; Density dependence; Social dominance; Territorial contests LIFE-HISTORY STRATEGIES; PERCH PERCA-FLAVESCENS; BROWN TROUT; SALAR L; GROWTH-RATES; TERRITORIAL BEHAVIOR; ASYMMETRIC CONTESTS; FIGHTING BEHAVIOR; ENERGY DENSITY; RESOURCE VALUE Prior residency advantages have been explained by an asymmetry between the 'owner' and the 'intruder' in fighting ability (resource-holding potential) or motivation (value asymmetry (VA)). Here, we tested for the extent of prior residence effects in individually tagged Atlantic salmon juveniles being released in two bouts (4 days apart) during spring along a natural stream, and recaptured 3 months later. A prior residency advantage was detected both in terms of body growth, energy density and male gonad size. As we controlled for effects of initial body size, which correlates with dominance, these findings are in accordance with the VA hypothesis. The growth advantage of first arrivals also increased with local shelter abundance in the stream, which can be expected if a higher resource value of the habitat results in a higher defence motivation. We also found a prior residence effect on spatial distribution, with the second arrivals within each release site being recaptured further downstream. No effect on apparent survival rates was found. The observed reduced growth and energy density may have fitness consequences for the second arrivals, both in terms of lower winter survival rates and later age at maturity. For mature male parr, both decreased body and gonad growth may give an additional disadvantage through reduced fertilization rates during breeding. These costs may help to explain the tendency for stationary behaviour of stream salmonids, as the potential benefits of moving into less crowded areas would be reduced by the risk of becoming an intruder. Prior residence effects may therefore have influenced the evolution of movement behaviour in these organisms. [Einum, Sigurd] Norwegian Univ Sci & Technol, Dept Biol, Ctr Conservat Biol, N-7034 Trondheim, Norway; [Kvingedal, Eli; Einum, Sigurd] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway Einum, S (reprint author), Norwegian Univ Sci & Technol, Dept Biol, Ctr Conservat Biol, N-7034 Trondheim, Norway. sigurd.einum@bio.ntnu.no Einum, Sigurd/0000-0002-3788-7800 Norwegian Research Council We thank landowners for permission to undertake this work, L. Sundt-Hansen, A. G. Finstad and the staff at NINA Research Station for technical and field assistance and N. Metcalfe and one anonymous reviewer for helpful comments. Financial support was provided by the Norwegian Research Council. The study was conducted according to national regulations for the treatment and welfare of experimental animals. This study was performed in compliance with the Norwegian legislation on animal care and experimentation. The authors declare that they have no conflicts of interest. ABBOTT JC, 1985, BEHAVIOUR, V92, P241; Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Bates DM, 2009, LME4 LINEAR MIXED EF; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Bohlin T, 2002, J ANIM ECOL, V71, P683, DOI 10.1046/j.1365-2656.2002.00631.x; BOHLIN T, 1989, HYDROBIOLOGIA, V173, P9, DOI 10.1007/BF00008596; Bradbury JW, 1998, PRINCIPLES ANIMAL CO; Brannas E, 2004, CAN J ZOOL, V82, P1638, DOI 10.1139/Z04-147; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; DAVIES NB, 1981, J ANIM ECOL, V50, P157, DOI 10.2307/4038; Dearborn DC, 1998, BIOTROPICA, V30, P306, DOI 10.1111/j.1744-7429.1998.tb00064.x; Deverill JI, 1999, J FISH BIOL, V55, P868, DOI 10.1111/j.1095-8649.1999.tb00723.x; EASON P, 1994, BEHAV ECOL SOCIOBIOL, V34, P419, DOI 10.1007/s002650050058; Einum S, 2008, J ANIM ECOL, V77, P167, DOI 10.1111/j.1365-2656.2007.01326.x; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; ELLIOTT JM, 1990, J ANIM ECOL, V59, P803, DOI 10.2307/5015; Elwood RW, 1998, NATURE, V393, P66, DOI 10.1038/29980; ENGLUND G, 1990, ANIM BEHAV, V39, P55, DOI 10.1016/S0003-3472(05)80725-0; ENQUIST M, 1987, J THEOR BIOL, V127, P187, DOI 10.1016/S0022-5193(87)80130-3; Finstad AG, 2007, FRESHWATER BIOL, V52, P1710, DOI 10.1111/j.1365-2427.2007.01799.x; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2358, DOI 10.1139/F04-213; Finstad AG, 2009, J ANIM ECOL, V78, P226, DOI 10.1111/j.1365-2656.2008.01476.x; GRAFEN A, 1987, ANIM BEHAV, V35, P462, DOI 10.1016/S0003-3472(87)80271-3; Hartman KJ, 2008, J FISH BIOL, V73, P2352, DOI 10.1111/j.1095-8649.2008.02083.x; HARTMAN KJ, 1995, T AM FISH SOC, V124, P347, DOI 10.1577/1548-8659(1995)124<0347:EEDOF>2.3.CO;2; Harwood AJ, 2003, ANIM BEHAV, V65, P1141, DOI 10.1006/anbe.2003.2125; Hendry AP, 2003, CONSERV BIOL, V17, P795, DOI 10.1046/j.1523-1739.2003.02075.x; Huntingford FA, 1997, J FISH BIOL, V51, P1009, DOI 10.1006/jfbi.1997.0510; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; JOHNSON TB, 1991, CAN J FISH AQUAT SCI, V48, P672, DOI 10.1139/f91-084; Johnsson JI, 2000, BEHAV ECOL SOCIOBIOL, V48, P373, DOI 10.1007/s002650000244; Johnsson JI, 2004, BEHAV ECOL SOCIOBIOL, V56, P388, DOI 10.1007/s00265-004-0791-8; Johnsson JI, 2002, BEHAV ECOL SOCIOBIOL, V51, P282, DOI 10.1007/S00265-001-0430-6; Kokko H, 2006, AM NAT, V167, P901, DOI 10.1086/504604; KREBS JR, 1982, BEHAV ECOL SOCIOBIOL, V11, P185, DOI 10.1007/BF00300061; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Martin-Smith KM, 2002, J ANIM ECOL, V71, P413, DOI 10.1046/j.1365-2656.2002.00609.x; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; MYERS RA, 1987, J FISH BIOL, V31, P143, DOI 10.1111/j.1095-8649.1987.tb05220.x; Nijman V, 2000, BEHAV PROCESS, V49, P77, DOI 10.1016/S0376-6357(00)00078-4; O'Connor KI, 2000, BEHAV ECOL, V11, P13, DOI 10.1093/beheco/11.1.13; OTTO C, 1987, OIKOS, V48, P253, DOI 10.2307/3565510; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Pinheiro J., 2009, NLME LINEAR NONLINEA; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; R Development Core Team, 2009, R LANG ENV STAT COMP; RIECHERT SE, 1984, ANIM BEHAV, V32, P1, DOI 10.1016/S0003-3472(84)80318-8; ROWE DK, 1991, CAN J FISH AQUAT SCI, V48, P405, DOI 10.1139/f91-052; ROWE DK, 1990, AQUACULTURE, V86, P291, DOI 10.1016/0044-8486(90)90121-3; SMITH JM, 1976, ANIM BEHAV, V24, P159, DOI 10.1016/S0003-3472(76)80110-8; Steingrimsson SO, 2008, J ANIM ECOL, V77, P448, DOI 10.1111/j.1365-2656.2008.01360.x; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Sundt-Hansen L, 2009, FUNCT ECOL, V23, P551, DOI 10.1111/j.1365-2435.2008.01532.x; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1977, J FISH BIOL, V11, P175, DOI 10.1111/j.1095-8649.1977.tb04111.x; Tobias J, 1997, ANIM BEHAV, V54, P9, DOI 10.1006/anbe.1996.0383; Wuenschel MJ, 2006, T AM FISH SOC, V135, P379, DOI 10.1577/T04-233.1; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 64 11 12 2 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUN 2011 65 6 1295 1303 10.1007/s00265-011-1143-0 9 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 765RK WOS:000290726100014 Green Published, Other Gold 2019-02-21 J Renner, HM; Reynolds, JH; Sims, M; Renner, M Renner, Heather M.; Reynolds, Joel H.; Sims, Michelle; Renner, Martin Evaluating the power of surface attendance counts to detect long-term trends in populations of crevice-nesting auklets ENVIRONMENTAL MONITORING AND ASSESSMENT English Article Aethia cristatella; Aethia pusilla; Bering Sea; Hierarchical models; Mixed-effects; Population trends; Statistical power; Seabirds; Zero-inflated ST-LAWRENCE ISLAND; STATISTICAL POWER; COLONY ATTENDANCE; BERING-SEA; MARINE MAMMALS; ALASKA; LEAST; OCEANOGRAPHY; VARIABILITY; MANAGEMENT Power analyses are essential when developing a long-term monitoring program for a target species whose observation is logistically challenging and expensive. These analyses can be complicated when the observations have a complex variance structure reflecting many factors. Crevice-nesting seabirds such as least and crested auklets Aethia pusilla and Aethia cristatella illustrate both this need and these challenges. They are ecosystem indicators for the Bering Sea, a system expected to undergo large changes. Unfortunately, they are difficult to monitor as colonies occur on remote, hard to access islands in the Aleutians and Bering Sea, and nests occur in crevices underground, preventing direct observation. Current monitoring consists of breeding-season counts of auklets standing on the surface of sample plots in the colony; logically, a substantial decline in nesting population guarantees an eventual substantial decline in surface attendants. Yet, it remains debatable whether these highly variable counts can be used to statistically detect biologically relevant declines in the attending population let alone the nesting population. Subsequently, existing monitoring programs vary widely in survey design, effort levels, and daily summary statistics. The power of different survey designs was assessed by simulating observations from a state model developed from 11 years of observations using mixed-effects models and zero-inflated Poisson-lognormal regression. The analyses illustrate the process required for any monitoring program whose observations are described inadequately by standard statistical models. State model development revealed survey design refinements that reduce sampling variation. For least auklets, current sampling efforts provided 90% power to detect annual declines of 11% ("Critically Endangered" using IUCN Red List criteria), 4.5% ("Endangered"), or 2.4% ("Vulnerable") in two, four, or six generations, respectively; crested auklets took a few years longer. Power was more sensitive to number of days than number of plots. Results appear robust across a range of bird densities, providing guidance for monitoring other colonies or crevice-nesting species with similar life history strategies. Research should now focus on illuminating the relationship between the attending and nesting populations. Given the frequency of complicated variance structures and zero counts in ecological data, the general statistical models used here should prove widely applicable. [Renner, Heather M.] Alaska Maritime Natl Wildlife Refuge, Homer, AK 99603 USA; [Reynolds, Joel H.] Div Realty & Nat Resources, Anchorage, AK 99503 USA; [Sims, Michelle] Univ Bath, Dept Hlth, Bath BA2 7AY, Avon, England; [Renner, Martin] Univ Washington, Sch Fisheries & Aquat Sci, Seattle, WA 98105 USA Renner, HM (reprint author), Alaska Maritime Natl Wildlife Refuge, 95 Sterling Highway,Suite 1, Homer, AK 99603 USA. heather_renner@fws.gov Reynolds, Joel/E-1445-2011 Reynolds, Joel/0000-0003-4506-0501 BEDARD J, 1969, CONDOR, V71, P386, DOI 10.2307/1365737; Borchers D. L., 2002, ESTIMATING ANIMAL AB; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; BROWN H, 2001, APPL MIXED MODELS ME; BYRD GV, 1983, CONDOR, V85, P274, DOI 10.2307/1367059; Clayton D. G., 1996, MARKOV CHAIN MONTE C, P275; FAIRWEATHER PG, 1991, AUST J MAR FRESH RES, V42, P555, DOI 10.1071/MF9910555; Field SA, 2005, J WILDLIFE MANAGE, V69, P473, DOI 10.2193/0022-541X(2005)069[0473:OAOMEU]2.0.CO;2; FOWLER AC, 1994, MONITORING POPULATIO, P69; Gall A, 2004, THESIS OREGON STATE; Gelman A., 2007, DATA ANAL USING REGR; GERRODETTE T, 1987, ECOLOGY, V68, P1364, DOI 10.2307/1939220; Gibbs JP, 1999, J WILDLIFE MANAGE, V63, P1055, DOI 10.2307/3802825; Harding AMA, 2005, J WILDLIFE MANAGE, V69, P1279, DOI 10.2193/0022-541X(2005)069[1279:VICAOC]2.0.CO;2; Hatch SA, 2003, BIOL CONSERV, V111, P317, DOI 10.1016/S0006-3207(02)00301-4; Hunt GL, 2002, DEEP-SEA RES PT II, V49, P5821, DOI 10.1016/S0967-0645(02)00321-1; *IUCN, 2001, RED LIST CAT CRIT VE; IUCN, 2007, 2007 IUCN RED LIST T; Johnson DH, 2008, J WILDLIFE MANAGE, V72, P857, DOI 10.2193/2007-294; JONES IL, 1992, CONDOR, V94, P93, DOI 10.2307/1368799; Jones IL, 1993, BIRDS N AM, V70; LAMBERT D, 1992, TECHNOMETRICS, V34, P1, DOI 10.2307/1269547; Legg CJ, 2006, J ENVIRON MANAGE, V78, P194, DOI 10.1016/j.jenvman.2005.04.016; Link WA, 2002, J WILDLIFE MANAGE, V66, P277, DOI 10.2307/3803160; Martin TG, 2005, ECOL LETT, V8, P1235, DOI 10.1111/j.1461-0248.2005.00826.x; McCullagh P., 1989, GEN LINEAR MODELS; McDonald TL, 2003, ENVIRON MONIT ASSESS, V85, P277, DOI 10.1023/A:1023954311636; Niebauer HJ, 1998, J GEOPHYS RES-OCEANS, V103, P27717, DOI 10.1029/98JC02499; PETERMAN RM, 1990, CAN J FISH AQUAT SCI, V47, P2, DOI 10.1139/f90-001; PIATT JF, 1990, CONDOR, V92, P97, DOI 10.2307/1368387; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Renner HM, 2006, CONDOR, V108, P423, DOI 10.1650/0010-5422(2006)108[423:CMANTF]2.0.CO;2; SCHALL R, 1991, BIOMETRIKA, V78, P719; Seavy NE, 2007, BIOL CONSERV, V140, P187, DOI 10.1016/j.biocon.2007.08.007; Sheffield LM, 2006, CAN J ZOOL, V84, P846, DOI 10.1139/Z06-061; Sims M, 2006, J APPL ECOL, V43, P537, DOI 10.1111/j.1365-2664.2006.01163.x; Sims M, 2008, BIOL CONSERV, V141, P2921, DOI 10.1016/j.biocon.2008.07.021; Spiegelhalter D, 2003, WINBUGS USER MANUAL; Springer AM, 2007, MAR ECOL PROG SER, V352, P289, DOI 10.3354/meps07080; SPRINGER AM, 1985, MAR ECOL PROG SER, V21, P229, DOI 10.3354/meps021229; Stephensen Shawn W., 2003, Marine Ornithology, V31, P167; Taylor BL, 2007, MAR MAMMAL SCI, V23, P157, DOI 10.1111/j.1748-7692.2006.00092.x; The R Development Core Team, 2007, R LANG ENV STAT COMP; Thomas L., 1997, B ECOL SOC AM, V78, P128; Williams JC, 2010, ARCT ANTARCT ALP RES, V42, P306, DOI 10.1657/1938-4246-42.3.306 45 7 8 2 14 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0167-6369 ENVIRON MONIT ASSESS Environ. Monit. Assess. JUN 2011 177 1-4 665 679 10.1007/s10661-010-1664-4 15 Environmental Sciences Environmental Sciences & Ecology 765TU WOS:000290732300051 20811807 2019-02-21 J Decker, SA; Flinn, MV Decker, Seamus A.; Flinn, Mark V. Parenting Styles and Gender-Linked Drinking Behaviors in Dominica ETHOS English Article child development; mother-child; health; family; personality; alcohol LIFE-HISTORY THEORY; CARIBBEAN COMMUNITY; STRESS-RESPONSE; ATTACHMENT; CHILD; ACTIVATION; ADDICTION; EVOLUTION; DISORDER; CULTURE We explored links among adult alcohol consumption, personality, and retrospective childhood relationships with parents using psychometric instruments adapted for use among Dominicans (n=58; 25 men and 33 women). Compared to women, men consumed more alcohol and cigarettes, reported lower behavioral inhibition, and lower maternal "caringness" (all p <.05). Results suggest that, with respect to drinking, parenting styles predispose opposite developmental trends for men and women. Women who recalled their mothers as more caring tended to have higher behavioral activation seeking (BAS) scores and also to drink more. For men BAS was negatively correlated with maternal caring, but did not significantly correlate with alcohol consumption. Women who recalled their fathers as more controlling tended to drink less (p=.026), but men who recalled their fathers as more controlling tended to drink more (p=.0002). Maternal controllingness was also positively associated with alcohol consumption in men (p=.002), but showed no association with drinking in women. [Decker, Seamus A.] Univ Massachusetts, Dept Anthropol, Amherst, MA 01003 USA; [Flinn, Mark V.] Univ Missouri, Dept Anthropol, Columbia, MO 65211 USA Decker, SA (reprint author), Univ Massachusetts, Dept Anthropol, Amherst, MA 01003 USA. Flinn, Mark/0000-0002-8732-3085 Andersson P, 2003, NORD J PSYCHIAT, V57, P147, DOI 10.1080/08039480310000987; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berry K, 2007, CLIN PSYCHOL REV, V27, P458, DOI 10.1016/j.cpr.2006.09.006; Bock P. K., 1988, RETHINKING PSYCHOL A; Bowlby J., 1982, ATTACHMENT; Brenner SL, 2005, PSYCHOPHYSIOLOGY, V42, P108, DOI 10.1111/j.1469-8986.2005.00261.x; Brook JS, 2010, AM J ADDICTION, V19, P534, DOI 10.1111/j.1521-0391.2010.00083.x; Burns E, 2010, ADDICTION, V105, P601, DOI 10.1111/j.1360-0443.2009.02842.x; CARVER CS, 1994, J PERS SOC PSYCHOL, V67, P319, DOI 10.1037/0022-3514.67.2.319; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Comings DE, 2000, PROG BRAIN RES, V126, P325; Emery RE, 2005, PSYCHOL SCI, P1, DOI 10.1111/j.1529-1006.2005.00020.x; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; FLINN MV, 1995, CURR ANTHROPOL, V36, P854, DOI 10.1086/204444; Flinn MV, 1997, AM J PHYS ANTHROPOL, V102, P33; FLINN MV, 1996, HUMAN NATURE, V7, P1125; FOWLER JS, 2004, NEUROBIOLOGY MENTAL, P740; Franken IHA, 2006, PERS INDIV DIFFER, V40, P1497, DOI 10.1016/j.paid.2005.12.005; Heinze MC, 1996, BEHAV SCI LAW, V14, P293; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hinton A., 1999, BIOCULTURAL APPROACH, P299; Ingham J. M., 1996, PSYCHOL ANTHR RECONS; Juffer F, 2005, J CHILD PSYCHOL PSYC, V46, P263, DOI 10.1111/j.1469-7610.2004.00353.x; Kleinbaum D.G., 2008, APPL REGRESSION ANAL; Knyazev GG, 2004, PERS INDIV DIFFER, V37, P1565, DOI 10.1016/j.paid.2004.02.013; Koehler N, 2009, J SEX RES, V46, P366, DOI 10.1080/00224490902773996; Lende DH, 2002, ADDICTION, V97, P447, DOI 10.1046/j.1360-0443.2002.00022.x; MacCall CA, 2001, PRIMARY CARE PSYCHIA, V7, P137, DOI 10.1185/135525701753429317; Macfarlan SJ, 2008, HUM NATURE-INT BIOS, V19, P294, DOI 10.1007/s12110-008-9045-1; MacKenzie RD, 2008, J FORENSIC SCI, V53, P1443, DOI 10.1111/j.1556-4029.2008.00869.x; Marquez-Caraveo ME, 2007, SALUD MENT, V30, P58; Meyer C, 2004, INT J EAT DISORDER, V35, P229, DOI 10.1002/eat.10236; Myhr G, 2004, ACTA PSYCHIAT SCAND, V109, P447, DOI 10.1111/j.1600-0047.2004.00271.x; PARKER G, 1979, BRIT J MED PSYCHOL, V52, P1, DOI 10.1111/j.2044-8341.1979.tb02487.x; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; Quinlan RJ, 2006, AM ANTHROPOL, V108, P464, DOI 10.1525/aa.2006.108.3.464; Quinn N., 2005, ANTHROPOL THEOR, V5, P477, DOI DOI 10.1177/1463499605059233; Raybeck D, 2005, ETHOS, V33, P295, DOI 10.1525/eth.2005.33.3.295; Rehm J, 2005, REV PANAM SALUD PUBL, V18, P241, DOI 10.1590/S1020-49892005000900003; Rohner RP, 2005, ETHOS, V33, P367, DOI 10.1525/eth.2005.33.3.367; Rutherford MJ, 1997, J CHILD ADOLES SUBST, V6, P43; RUTTER M, 1994, STRESS RISK RESILIEN; SCHEPERHUGHES N, 1985, ETHOS, V13, P291, DOI 10.1525/eth.1985.13.4.02a00010; SCHORE A, 1999, ATTACHMENT LOSS SERI, V1, P25; Shin SH, 2009, ADDICT BEHAV, V34, P277, DOI 10.1016/j.addbeh.2008.10.023; Stacy AW, 2010, ANNU REV CLIN PSYCHO, V6, P551, DOI 10.1146/annurev.clinpsy.121208.131444; Strauss Claudia, 1992, HUMAN MOTIVES CULTUR, P1; Wallace A. F. C., 1970, CULTURE PERSONALITY; Weisner TS, 2009, ETHOS, V37, P181, DOI 10.1111/j.1548-1352.2009.01037.x; WHITING J, 1978, MAKING PSYCHOL ANTHR, P39 50 4 4 1 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0091-2131 1548-1352 ETHOS Ethos JUN 2011 39 2 189 210 10.1111/j.1548-1352.2011.01184.x 22 Anthropology; Psychology, Multidisciplinary Anthropology; Psychology 759FE WOS:000290225300008 2019-02-21 J Hanson, KC; Gale, WL; Simpson, WG; Kennedy, BM; Ostrand, KG Hanson, Kyle C.; Gale, William L.; Simpson, William G.; Kennedy, Benjamen M.; Ostrand, Kenneth G. Physiological Characterization of Hatchery-Origin Juvenile Steelhead Oncorhynchus mykiss Adopting Divergent Life-History Strategies JOURNAL OF FISH AND WILDLIFE MANAGEMENT English Article smoltification; physiology; Na+,K+-ATPase activity; Na+,K+-ATPase alpha-subunit expression; residual salmon; hatchery management SALMON SALMO-SALAR; SPRING CHINOOK SALMON; K+ ATPASE ACTIVITY; ATLANTIC SALMON; COHO SALMON; NA+,K+,2CL(-) COTRANSPORTER; SEAWATER TOLERANCE; SMOLT DEVELOPMENT; REARED STEELHEAD; GROWTH-HORMONE Smoltification by juvenile Pacific salmonids has been described as a developmental conflict whereby individuals face several life-history decisions. Smoltification occurs as a result of interactions between organismal condition and environmental cues, although some fish may forgo ocean migration and remain in freshwater streams for some time (residualize). We compared the physiological profiles of steelhead that were actively migrating to the ocean (migratory fish) and those that remained in fresh water (residuals) for at least a period of between 2 wk and 3 mo after release from a hatchery facility. In addition, we investigated the physiological characterization of residuals that further differentiated into precocial freshwater residents or parr that will either precocially mature in fresh water or migrate to the ocean in the future. Residuals had higher condition factors and gonadosomatic index than migratory fish and were characterized as less prepared for saltwater due to low levels of gill Na+,K+-ATPase activity and Na+,K+-ATPase alpha 1b-subunit expression. Residuals tended to be males with the highest condition factors. Sex-specific differences are probably reflective of male fish adopting an alternative life-history strategy foregoing outmigration as a result of condition at the time of release. Collection of residuals throughout the fall suggested that residual hatchery fish further diversify into precocially mature fish that will presumably attempt to spawn without ever migrating to the ocean or into parr that will precocially mature or migrate in a future year. [Hanson, Kyle C.; Gale, William L.; Simpson, William G.; Kennedy, Benjamen M.; Ostrand, Kenneth G.] US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, Longview, WA 98632 USA Hanson, KC (reprint author), US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, 1440 Abernathy Creek Rd, Longview, WA 98632 USA. kyle_hanson@fws.gov Kennedy, Benjamen/0000-0002-8062-1055 Bonneville Power Administration Data collection and reporting for 2007 were funded through the Bonneville Power Administration. We thank Jeff Poole and John Holmes for spawning, handling, and maintaining hatchery brood stock and their progeny. We thank the Washington Department of Fish and Wildlife for maintaining the screwtrap on Abernathy Creek for collection of migrating smolts. We also thank Patty Crandell and four anonymous reviewers for commenting on an earlier version of this manuscript. Anderson R.O., 1983, P283; Araki H, 2008, EVOL APPL, V1, P342, DOI 10.1111/j.1752-4571.2008.00026.x; Bjornsson BT, 1997, FISH PHYSIOL BIOCHEM, V17, P9, DOI 10.1023/A:1007712413908; Brannon EL, 2004, FISHERIES, V29, P12, DOI 10.1577/1548-8446(2004)29[12:TCASH]2.0.CO;2; Brockmark S, 2007, T AM FISH SOC, V136, P1453, DOI 10.1577/T06-245.1; Bystriansk JS, 2007, COMP BIOCHEM PHYS A, V148, P332, DOI 10.1016/j.cbpa.2007.05.007; Bystriansky JS, 2006, J EXP BIOL, V209, P1848, DOI 10.1242/jeb.02188; CAMPTON DE, 1995, AM FISH S S, V15, P337; D'Cotta H, 2000, AM J PHYSIOL-REG I, V278, pR101; Evans DH, 2005, PHYSIOL REV, V85, P97, DOI 10.1152/physrev.00050.2003; Folmar C.F., 1980, AQUACULTURE, V21, P1; Gale WL, 2009, N AM J AQUACULT, V71, P97, DOI 10.1577/A08-001.1; Goodman D, 2005, CAN J FISH AQUAT SCI, V62, P374, DOI 10.1139/F04-187; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Hanson KC, 2010, T AM FISH SOC, V139, P1733, DOI 10.1577/T10-014.1; Hanson KC, 2008, REV FISH SCI, V18, P421; HARACHE Y, 1980, AQUACULTURE, V19, P253, DOI 10.1016/0044-8486(80)90049-6; Hayes SA, 2004, J FISH BIOL, V65, P101, DOI 10.1111/j.1095-8649.2004.00547.x; Hill MS, 2006, CAN J FISH AQUAT SCI, V63, P1627, DOI 10.1139/F06-061; HINCH SG, 2006, BEHAV PHYSL FISH, V24, P240; HINDAR K, 1991, CAN J FISH AQUAT SCI, V48, P945, DOI 10.1139/f91-111; Hoar W.S., 1988, P275; Kennedy BM, 2007, CAN J FISH AQUAT SCI, V64, P1506, DOI 10.1139/F07-117; Kostow K, 2009, REV FISH BIOL FISHER, V19, P9, DOI 10.1007/s11160-008-9087-9; Kostow KE, 2004, CAN J FISH AQUAT SCI, V61, P577, DOI 10.1139/F04-019; Larsen DA, 2004, T AM FISH SOC, V133, P98, DOI 10.1577/T03-031; LICHATOWICH HA, 1987, AM FISH SOC S, V1, P131; Madsen SS, 2009, J EXP BIOL, V212, P78, DOI 10.1242/jeb.024612; McCormick S.D., 1987, AM FISHERIES SOC S, V1, P211; McCormick SD, 2002, J EXP BIOL, V205, P3553; MCCORMICK SD, 1994, AQUACULTURE, V121, P235, DOI 10.1016/0044-8486(94)90023-X; MCCORMICK SD, 1993, CAN J FISH AQUAT SCI, V50, P656, DOI 10.1139/f93-075; MCINERNEY JE, 1964, J FISH RES BOARD CAN, V21, P995, DOI 10.1139/f64-092; McMichael GA, 1997, T AM FISH SOC, V126, P230, DOI 10.1577/1548-8659(1997)126<0230:EORHRS>2.3.CO;2; MESA MG, 1994, J FISH BIOL, V45, P81, DOI 10.1111/j.1095-8649.1994.tb01085.x; Mobrand LE, 2005, FISHERIES, V30, P11, DOI 10.1577/1548-8446(2005)30[11:HRIWS]2.0.CO;2; MORING W, 1986, FISH CULTURE FISHERI, P75; Nilsen TO, 2007, J EXP BIOL, V210, P2885, DOI 10.1242/jeb.002873; Ostrand KG, 2007, 20306300 BONN POW AD; Price CS, 2003, CAN J FISH AQUAT SCI, V60, P910, DOI 10.1139/F03-080; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Richards JG, 2003, J EXP BIOL, V206, P4475, DOI 10.1242/jeb.00701; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; SCHMIDT SP, 1979, J FISH RES BOARD CAN, V36, P90, DOI 10.1139/f79-014; Schmittgen TD, 2008, NAT PROTOC, V3, P1101, DOI 10.1038/nprot.2008.73; Seidelin M, 2000, PHYSIOL BIOCHEM ZOOL, V73, P446, DOI 10.1086/317737; Sharpe CS, 2007, N AM J FISH MANAGE, V27, P1355, DOI 10.1577/M05-220.1; SHRIMPTON JM, 1994, CAN J FISH AQUAT SCI, V51, P2170, DOI 10.1139/f94-218; Singer TD, 2002, CAN J FISH AQUAT SCI, V59, P125, DOI [10.1139/f01-205, 10.1139/F01-205]; Snyder D.E., 1983, P165; Stefansson SO, 2007, AQUACULTURE, V273, P235, DOI 10.1016/j.aquaculture.2007.10.005; SWEETING RM, 1985, AQUACULTURE, V45, P185, DOI 10.1016/0044-8486(85)90269-8; SYMONS PEK, 1969, J FISH RES BOARD CAN, V26, P1867, DOI 10.1139/f69-170; Thorpe JE, 1998, AQUACULTURE, V168, P95, DOI 10.1016/S0044-8486(98)00342-1; THORPE JE, 1994, AQUACULTURE, V121, P105, DOI 10.1016/0044-8486(94)90012-4; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; TIPPING JM, 1995, PROG FISH CULT, V57, P120, DOI 10.1577/1548-8640(1995)057<0120:CLACFO>2.3.CO;2; Tipsmark CK, 2002, J EXP ZOOL, V293, P106, DOI 10.1002/jez.10118; Trivers R, 1972, SEXUAL SELECTION DES, P139; WAPLES RS, 1991, CAN J FISH AQUAT SCI, V48, P124, DOI 10.1139/f91-311; WARD BR, 1990, T AM FISH SOC, V119, P492, DOI 10.1577/1548-8659(1990)119<0492:ROPSFR>2.3.CO;2; Zar J. H., 1999, BIOSTATISTICAL ANAL 62 6 6 1 18 U S FISH & WILDLIFE SERVICE SHEPHERDSTOWN NATL CONSERVATION TRAINING CENTER, CONSERVATION LIBRARY, 698 CONSERVATION WAY, SHEPHERDSTOWN, WV 25443 USA 1944-687X J FISH WILDL MANAG J. Fish Wildl. Manag. JUN 2011 2 1 61 71 10.3996/092010-JFWM-032 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 044MX WOS:000311625000008 2019-02-21 J Vieites, DR; Roman, SN; Wake, MH; Wake, DB Vieites, David R.; Nieto Roman, Sandra; Wake, Marvalee H.; Wake, David B. A multigenic perspective on phylogenetic relationships in the largest family of salamanders, the Plethodontidae MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Mitochondrial genomes; Nuclear loci; Lungless salamanders; Phylogeny; New taxonomy; Amphibians COMPLETE MITOCHONDRIAL GENOMES; NORTH-AMERICAN SALAMANDERS; LIFE-HISTORY EVOLUTION; DNA-SEQUENCE DATA; MAXIMUM-LIKELIHOOD; SPECIES TREES; MORPHOLOGICAL HOMOPLASY; MOLECULAR PHYLOGENETICS; DIVERSIFICATION RATES; RAPID DIVERSIFICATION Despite several recent studies, the phylogeny of plethodontid salamanders is not yet fully resolved and the phylogenetic positions of several key genera, especially Aneides, Hemidactylium, Hydromantes and Karsenia, are contentious. Here we present a combined dataset of complete mitochondrial genomes and three nuclear loci for 20 species (16 genera) of plethodontids, representing all major clades in the family. The combined dataset without mitochondrial third codon positions provides a fully resolved, statistically well-supported tree. In this topology two major clades are recovered. A northern clade includes Aneides, Desmognathus, Ensatina, Hydromantes, Karsenia, Phaeognathus and Plethodon, with Plethodon being the sister taxon to the rest of the clade. Hydromantes and Karsenia are sister taxa, and Aneides is recovered as the sister taxon to Ensatina. Desmognathus + Phaeognathus form the sister taxon to Aneides + Ensatina. An eastern/southern clade comprises two subclades. One subclade, the spelerpines (Eurycea, Gyrinophilus, Pseudotriton, Stereochilus, Urspelerpes) is the sister taxon to a subclade comprising Hemidactylium. Batrachoseps and the tropical plethodontids (represented by Bolitoglossa, Nototriton and Thorius). In this topology Hemidactylium is well-supported as the sister taxon to Batrachoseps. Only when mitochondrial third codon positions are included using maximum likelihood analysis is Hemidactylium recovered as the sister taxon to Batrachoseps + tropical genera. Hypothesis testing of alternative topologies supports these conclusions. On the basis of these results we propose a conservative taxonomy for Plethodontidae. (C) 2011 Elsevier Inc. All rights reserved. [Wake, Marvalee H.; Wake, David B.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA; [Wake, Marvalee H.; Wake, David B.] Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA; [Nieto Roman, Sandra] Univ Vigo, Fac Ciencias, Dept Ecol & Biol Anim, Vigo 36200, Spain; [Vieites, David R.; Nieto Roman, Sandra] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain Wake, DB (reprint author), Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. wakelab@berkeley.edu Vieites, David/0000-0001-5551-7419 AmphibiaTree Project [NSF EF-0334939]; Spanish Ministry of Science and Innovation [CGL2009-10198]; Xunta de Galicia The MVZ Herpetology Collection provided tissue samples. We thank Mi-Sook Min and Steve Karsen for their help in the field and Rachel Mueller for comments on the manuscript. This work was supported by the AmphibiaTree Project (NSF EF-0334939) to D.B.W. and M.H.W. and a Spanish Ministry of Science and Innovation grant (CGL2009-10198) to D.R.V. S.N.R. was supported by an Angeles Alvarino postdoctoral Grant from the Xunta de Galicia. BEACHY CK, 1992, AM NAT, V139, P839, DOI 10.1086/285360; BRUCE RC, 1994, J EXP ZOOL, V268, P377, DOI 10.1002/jez.1402680506; Bruce Richard C., 2005, Herpetological Review, V36, P107; Bruce RC, 2007, EVOL ECOL, V21, P703, DOI 10.1007/s10682-006-9140-x; Bruford Michael W., 1992, P225; Camp CD, 2009, J ZOOL, V279, P86, DOI 10.1111/j.1469-7998.2009.00593.x; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chippindale PT, 2004, EVOLUTION, V58, P2809; CROTHER BI, 2008, SCI STANDARD ENGLISH, P1; Dubois A, 2008, ZOOTAXA, P51; Dubois Alain, 2009, Alytes (Paris), V26, P1; DUNN ER, 1926, SALAMANDERS FAMILY P; Edwards SV, 2007, P NATL ACAD SCI USA, V104, P5936, DOI 10.1073/pnas.0607004104; FROST DA, 2010, AMPHIBIAN SPECIES WO; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gunzburger MS, 2003, HERPETOLOGICA, V59, P459, DOI 10.1655/02-82; HIGHTON RICHARD, 1962, BULL FLORIDA STATE MUS, V6, P235; Huelsenbeck JP, 2002, SYST BIOL, V51, P155, DOI 10.1080/106351502753475934; Jockusch EL, 2002, BIOL J LINN SOC, V76, P361, DOI 10.1046/j.1095-8312.2002.00071.x; KISHINO H, 1989, J MOL EVOL, V29, P170, DOI 10.1007/BF02100115; Kozak KH, 2010, AM NAT, V176, P40, DOI 10.1086/653031; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2006, P ROY SOC B-BIOL SCI, V273, P539, DOI 10.1098/rspb.2005.3326; Kozak KH, 2005, EVOLUTION, V59, P2000; LARSON A, 1981, EVOLUTION, V35, P405, DOI 10.1111/j.1558-5646.1981.tb04902.x; Leache AD, 2009, SYST BIOL, V58, P547, DOI 10.1093/sysbio/syp057; Lemmon AR, 2009, SYST BIOL, V58, P130, DOI 10.1093/sysbio/syp017; Liu L, 2008, BIOINFORMATICS, V24, P2542, DOI 10.1093/bioinformatics/btn484; Liu L, 2008, EVOLUTION, V62, P2080, DOI 10.1111/j.1558-5646.2008.00414.x; Liu L, 2007, SYST BIOL, V56, P504, DOI 10.1088/10635150701429982; LOMBARD RE, 1977, J MORPHOL, V153, P39; LOMBARD RE, 1986, SYST ZOOL, V35, P532, DOI 10.2307/2413113; Macey JR, 2005, CLADISTICS, V21, P194, DOI 10.1111/j.1096-0031.2005.00054.x; MAXSON LR, 1981, HERPETOLOGICA, V37, P109; Mccranie JR, 2008, ZOOTAXA, P1; Min MS, 2005, NATURE, V435, P87, DOI 10.1038/nature03474; Mott T, 2009, MOL PHYLOGENET EVOL, V51, P190, DOI 10.1016/j.ympev.2009.01.014; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2005, MOL BIOL EVOL, V22, P2104, DOI 10.1093/molbev/msi204; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Niemiller ML, 2008, MOL ECOL, V17, P2258, DOI 10.1111/j.1365-294X.2008.03750.x; Noble G.K., 1931, BIOL AMPHIBIA, P577; Nylander JAA, 2004, SYST BIOL, V53, P47, DOI 10.1080/10635150490264699; Parra-Olea G, 2002, MOL PHYLOGENET EVOL, V22, P234, DOI 10.1006/mpev.2001.1048; Parra-Olea G, 2001, P NATL ACAD SCI USA, V98, P7888, DOI 10.1073/pnas.131203598; Parra-Olea G, 2010, ZOOTAXA, P57; Rambaut A, 2007, TRACER V1 4; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Schwartz RS, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-5; SCHWENK K, 1993, BIOL J LINN SOC, V49, P141, DOI 10.1111/j.1095-8312.1993.tb00895.x; Shimodaira H, 2001, BIOINFORMATICS, V17, P1246, DOI 10.1093/bioinformatics/17.12.1246; Shimodaira H, 2002, SYST BIOL, V51, P492, DOI 10.1080/10635150290069913; Springer MS, 2001, MOL BIOL EVOL, V18, P132, DOI 10.1093/oxfordjournals.molbev.a003787; Stamatakis A, 2005, BIOINFORMATICS, V21, P456, DOI 10.1093/bioinformatics/bti191; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; TIHEN JA, 1981, J HERPETOL, V15, P35, DOI 10.2307/1563644; Titus TA, 1996, SYST BIOL, V45, P451, DOI 10.2307/2413525; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Wake DB, 2009, ANNU REV ECOL EVOL S, V40, P333, DOI 10.1146/annurev.ecolsys.39.110707.173552; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; WAKE DB, 1987, SCIENCE, V238, P42, DOI 10.1126/science.238.4823.42; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; WAKE DB, 1963, J MORPHOL, V113, P77, DOI 10.1002/jmor.1051130106; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; Wiens JJ, 2007, P R SOC B, V274, P919, DOI 10.1098/rspb.2006.0301; Wiens JJ, 2006, EVOLUTION, V60, P2585; Wilder I. W., 1920, Copeia New York, V1920; WILGENBUSCH J.C., 2004, AWTY SYSTEM GRAPHICA; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010 70 48 51 0 44 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. JUN 2011 59 3 623 635 10.1016/j.ympev.2011.03.012 13 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 764DQ WOS:000290609000008 21414414 2019-02-21 J Kuriwada, T; Kumano, N; Shiromoto, K; Haraguchi, D Kuriwada, Takashi; Kumano, Norikuni; Shiromoto, Keiko; Haraguchi, Dai Age-dependent investment in death-feigning behaviour in the sweetpotato weevil Cylas formicarius PHYSIOLOGICAL ENTOMOLOGY English Article Life-history theory; mating history; residual reproductive value (RRV); tonic immobility PREDATOR-PREY INTERACTIONS; REPRODUCTIVE EFFORT; LIFE-HISTORY; CALLOSOBRUCHUS-CHINENSIS; ANTIPREDATOR STRATEGIES; MELOIMORPHA-JAPONICA; FABRICIUS COLEOPTERA; GENETIC CORRELATION; MATING-BEHAVIOR; FIELD CRICKETS Because life-history theory predicts that risky behaviours such as mating should increase as life expectancy decreases, predatory avoidance is expected to decrease with age. However, this prediction has not been examined. In the present study, the effect of age on death-feigning behaviour, a form of predatory avoidance behaviour in the sweetpotato weevil Cylas formicarius (Summers) (Coleoptera: Brentidae), is investigated by performing a longitudinal study. Because the effects of mating history and age usually cannot be distinguished, mating history is controlled. The results show that only female weevils decrease the investment in death-feigning behaviour with age, whereas male weevils do not show any age-related change. In addition, death-feigning behaviour of mated females is longer than that of virgin females, possibly because additional mating partners would be not needed by mated females. [Kuriwada, Takashi; Kumano, Norikuni; Shiromoto, Keiko; Haraguchi, Dai] Okinawa Prefectural Plant Protect Ctr, Okinawa 9020072, Japan Kuriwada, T (reprint author), Okinawa Prefectural Plant Protect Ctr, Okinawa 9020072, Japan. t.kuriwada@gmail.com Abrams PA, 2000, ANNU REV ECOL SYST, V31, P79, DOI 10.1146/annurev.ecolsys.31.1.79; Bilde T, 2006, BIOL LETTERS, V2, P23, DOI 10.1098/rsbl.2005.0392; CHARLESWORTH B, 1976, AM NAT, V110, P449, DOI 10.1086/283079; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cockerham KL, 1954, LA TECH B, V483, P1; DALGAARD P, 2002, INTRO STAT R; Dobson A. J, 2002, INTRO GEN LINEAR MOD; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Gyssels FGM, 2005, ETHOLOGY, V111, P411, DOI 10.1111/j.1439-0310.2005.01076.x; Hansen LS, 2008, BEHAV ECOL, V19, P546, DOI 10.1093/beheco/arm165; HEATH RR, 1986, J CHEM ECOL, V12, P1489, DOI 10.1007/BF01012367; Honma A, 2006, P R SOC B, V273, P1631, DOI 10.1098/rspb.2006.3501; Hozumi N, 2005, J INSECT BEHAV, V18, P557, DOI 10.1007/s10905-005-5612-z; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Judge KA, 2010, CAN J ZOOL, V88, P219, DOI 10.1139/Z09-139; Kemp DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1341, DOI 10.1098/rspb.2002.2000; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kuriwada T, 2006, ANN ENTOMOL SOC AM, V99, P1244, DOI 10.1603/0013-8746(2006)99[1244:FRINCW]2.0.CO;2; Kuriwada T, 2010, J APPL ENTOMOL, V134, P652, DOI 10.1111/j.1439-0418.2009.01457.x; Kuriwada T, 2011, J ETHOL, V29, P99, DOI 10.1007/s10164-010-0231-3; Kuriwada T, 2010, FLA ENTOMOL, V93, P39, DOI 10.1653/024.093.0105; Kuriwada T, 2009, ANIM BEHAV, V78, P1145, DOI 10.1016/j.anbehav.2009.07.031; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Miyatake T, 2004, P ROY SOC B-BIOL SCI, V271, P2293, DOI 10.1098/rspb.2004.2858; Miyatake T, 2001, J INSECT BEHAV, V14, P421, DOI 10.1023/A:1011196420147; Miyatake T, 2001, ANN ENTOMOL SOC AM, V94, P612, DOI 10.1603/0013-8746(2001)094[0612:EOSODF]2.0.CO;2; MIYATAKE T., 2009, P ROY SOC LOND B BIO, V276, P2762; Miyatake T, 2008, ANIM BEHAV, V75, P113, DOI 10.1016/j.anbehav.2007.04.019; Nakayama S, 2010, POPUL ECOL, V52, P329, DOI 10.1007/s10144-009-0188-7; Nakayama S, 2010, BIOL LETTERS, V6, P18, DOI 10.1098/rsbl.2009.0494; Nakayama S, 2010, ETHOLOGY, V116, P108, DOI 10.1111/j.1439-0310.2009.01721.x; Nakayama S, 2009, EVOL ECOL, V23, P711, DOI 10.1007/s10682-008-9266-0; Ohno T, 2007, P R SOC B, V274, P555, DOI 10.1098/rspb.2006.3750; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; R Development Core Team, 2009, R LANG ENV STAT COMP; Reinhard HJ, 1923, TEX AGR EXP B, V308, P1; ROFF DA, 2002, LIFE HIST EVOLUTION; SAKURATANI Y, 1994, APPL ENTOMOL ZOOL, V29, P307, DOI 10.1303/aez.29.307; Sherman M, 1954, HAWAII AGR EXPT STAT, V23, P1; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Speed M. P., 2004, AVOIDING ATTACK EVOL; Stearns S, 1992, EVOLUTION LIFE HIST; Sugimoto T, 1996, APPL ENTOMOL ZOOL, V31, P357, DOI 10.1303/aez.31.357; SUGIMOTO T, 1994, APPL ENTOMOL ZOOL, V29, P11, DOI 10.1303/aez.29.11; Venables WN, 2002, MODERN APPL STAT S; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams Geroge C, 1966, ADAPTATION NATURAL S 50 5 6 2 5 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0307-6962 PHYSIOL ENTOMOL Physiol. Entomol. JUN 2011 36 2 149 154 10.1111/j.1365-3032.2010.00777.x 6 Entomology Entomology 762OJ WOS:000290489000007 2019-02-21 J de Leon, JLP; Rodriguez, R; Acosta, M; Uribe, MC Ponce de Leon, Jose L.; Rodriguez, Rodet; Acosta, Martin; Uribe, Mari C. Egg size and its relationship with fecundity, newborn length and female size in Cuban poeciliid fishes (Teleostei: Cyprinodontiformes) ECOLOGY OF FRESHWATER FISH English Article egg size; Poeciliidae; fecundity; offspring size; endemic Cuban fishes LIFE-HISTORY EVOLUTION; GUPPIES; GAMBUSIA; REPRODUCTION; RETICULATA; PATTERNS; QUALITY; PLASTICITY; RESOURCES; PREDATION This study describes the relationship between egg size (ES) and brood size (BS), newborn length (NL) and female total length (FTL) in ten species of Cuban poeciliids. Variability and the level of association among variables are analysed and comparisons of ES among species established. Egg size has the lowest variability among the analysed variables and in most species is not correlated with BS, when the effect of FTL is controlled. Cuban poeciliids, thought to be primarily lecithotrophic, can be separated in two groups according to ES, NL and BS relative to FTL. One such group inhabits mountain streams and produces large eggs and small broods. The other group is distributed in lowland wetlands and produces small eggs and large broods. In Cuban poeciliids, ES and NL are highly correlated, which suggests adaptive value for ES. [Ponce de Leon, Jose L.; Acosta, Martin] Univ La Habana, Dept Biol Anim & Humana, Fac Biol, Havana 10400, CP, Cuba; [Rodriguez, Rodet] Univ La Habana, Museo Hist Nat Felipe Poey, Fac Biol, Havana 10400, CP, Cuba; [Uribe, Mari C.] Univ Nacl Autonoma Mexico, Lab Biol Reprod Anim, Dept Biol Comparada, Fac Ciencias, Mexico City 04510, DF, Mexico de Leon, JLP (reprint author), Univ La Habana, Dept Biol Anim & Humana, Fac Biol, Calle 25 455 Entre J&I, Havana 10400, CP, Cuba. jotaelepe76@gmail.com Rufford Small Grants for Nature Conservation [RSG 61.04.08] Authors are grateful to David Reznick and Harry Grier for the critical comments that helped improve the manuscript. To Maria Elena Morey and Marisol Sampedro for the revision of the English language. We thank Marcela E. Aguilar Morales for the assistance in histological techniques and Rufford Small Grants for Nature Conservation (RSG 61.04.08) for financial support. Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Barus V, 1998, FOLIA ZOOL, V47, P287; DELEON JLP, VIVIPAROUS IN PRESS, V2; DELEON JLP, 2008, BIOLOGIA, V22, P78; DeMarais A, 2005, COPEIA, P632, DOI 10.1643/CG-04-207R; Downhower JF, 2000, ENVIRON BIOL FISH, V59, P415, DOI 10.1023/A:1026552527018; DOWNHOWER JF, 1975, NATURE, V256, P345, DOI 10.1038/256345a0; Edwards TM, 2006, ENVIRON HEALTH PERSP, V114, P69, DOI 10.1289/ehp.8056; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Grier Harry J., 2005, P191; HAYNES JL, 1995, COPEIA, P147; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Lara A, 2010, MOL ECOL RESOUR, V10, P421, DOI 10.1111/j.1755-0998.2009.02785.x; Lima NRW, 2005, BRAZ ARCH BIOL TECHN, V48, P73, DOI 10.1590/S1516-89132005000100011; Marsh-Matthews E, 2005, OECOLOGIA, V144, P12, DOI 10.1007/s00442-005-0030-7; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; MOYLE PB, 1996, FISHES INTRO ICHTHYO; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; Pollux BJA, 2009, ANNU REV ECOL EVOL S, V40, P271, DOI 10.1146/annurev.ecolsys.110308.120209; Ponce de Leon J. L., 2010, PECES CUBANOS FAMILI; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1981, EVOLUTION, V35, P921; Reznick D.N., 1989, P125; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1996, EVOLUTION, V34, P67; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; SCRIMSHAW NS, 1946, COPEIA, P20; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Trexler JC, 1997, ECOLOGY, V78, P1370; Turcotte MM, 2008, FUNCT ECOL, V22, P1118, DOI 10.1111/j.1365-2435.2008.01461.x; Uribe Aranzabal Mari Carmen, 2009, P85; Uribe MC, 2011, J MORPHOL, V272, P241, DOI 10.1002/jmor.10912; Vergara RR, 1992, PRINCIPALES CARACTER; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; WOURMS JP, 1988, FISH PHYSL B, V11 43 11 11 1 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish JUN 2011 20 2 243 250 10.1111/j.1600-0633.2011.00489.x 8 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 758MK WOS:000290168700006 2019-02-21 J Beaulieu, M; Reichert, S; Le Maho, Y; Ancel, A; Criscuolo, F Beaulieu, Michael; Reichert, Sophie; Le Maho, Yvon; Ancel, Andre; Criscuolo, Francois Oxidative status and telomere length in a long-lived bird facing a costly reproductive event FUNCTIONAL ECOLOGY English Article Adelie penguin; breeding effort; long-lived species; oxidative stress; telomeres ADELIE PENGUINS; EXPERIMENTAL INCREASE; STRESS; LIFE; SURVIVAL; AGE P>1. Life-history theory predicts that high reproductive investment alters self-maintenance. Several mechanisms underlying the cost of reproduction have been previously suggested, but how parental effort may impact cell and organism maintenance remains largely unknown. The effects of oxidative stress - the imbalance between oxidative damage and defences - on telomere dynamics may underlie this relationship. Indeed, oxidative stress is associated with costly activities like breeding, and impacts telomere length that is known to predict survival in birds. According to life-history theory, long-lived species are expected to minimize the adverse effects of current reproduction on their body maintenance and should therefore enhance their antioxidant capacity and preserve their telomeres when breeding workload increases. 2. In this study, we tested this hypothesis by determining experimentally how the oxidative status and telomere length were modified when long-lived Adelie penguins (Pygoscelis adeliae) faced a costly reproductive event. The breeding workload was increased through a handicapping procedure that increased the cost of foraging and therefore chick-provisioning. 3. In agreement with our hypothesis, Adelie penguins substantially increased their antioxidant defences during a costly breeding effort, while oxidative damage and telomere length remained unchanged. 4. As expected in long-lived species, Adelie penguins subjected to increased breeding constraints appear to prioritize self-maintenance as shown by their increased antioxidant capacity. Moreover, the absence of effects of our experimental procedure on telomere length suggests no apparent impact of breeding workload on the senescence of this long-lived bird. However, to better understand the role of the couple 'oxidative status/telomeres' in the regulation of life-history strategies, further studies should examine: (i) the nature and the cost of additional antioxidant protection; (ii) the changes in the oxidative status of animals throughout their annual cycle and the consequences on telomere dynamics; and (iii) the repartition of antioxidant resources between young and parents. [Beaulieu, Michael; Reichert, Sophie; Le Maho, Yvon; Ancel, Andre; Criscuolo, Francois] CNRS Uds, Inst Pluridisciplinaire Hubert Curien IPHC, Dept Ecol Physiol Ethol DEPE, UMR 7178, F-67087 Strasbourg 2, France Beaulieu, M (reprint author), Univ N Carolina, Dept Biol, Coker Hall, Chapel Hill, NC 27599 USA. miklvet@hotmail.fr Beaulieu, Michael/A-5261-2011 Beaulieu, Michael/0000-0002-9948-269X French Polar Institute Paul-Emile Victor (IPEV); Terres Australes et Antarctiques Francaises (TAAF) This study was approved and supported by the French Polar Institute Paul-Emile Victor (IPEV) and the Terres Australes et Antarctiques Francaises (TAAF). We would like to thank T. Raclot, A. Dervaux, D. Lazin and A.M. Thierry for their great help in the field and H. Gachot and C. Tromp for their assistance in laboratory analyses. We also thank S. Parker who improved the English of this article. AINLEY DG, 1980, ECOLOGY, V61, P522, DOI 10.2307/1937418; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Beaulieu M, 2010, J EXP BIOL, V213, P33, DOI 10.1242/jeb.035378; Beaulieu M, 2010, P ROY SOC B-BIOL SCI, V277, P1087, DOI 10.1098/rspb.2009.1881; Beaulieu M, 2009, ANIM BEHAV, V78, P313, DOI 10.1016/j.anbehav.2009.05.006; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Blackburn EH, 2000, NATURE, V408, P53, DOI 10.1038/35040500; BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0; CAWTHON RM, 2002, NUCLEIC ACIDS RES, V30, P47; CHAPPELL MA, 1993, BEHAV ECOL SOCIOBIOL, V33, P173, DOI 10.1007/BF00216598; Chubb AL, 2004, MOL PHYLOGENET EVOL, V30, P140, DOI 10.1016/S1055-7903(03)00159-3; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; Criscuolo F, 2009, J AVIAN BIOL, V40, P342, DOI 10.1111/j.1600-048X.2008.04623.x; CROXALL JP, 1982, J ANIM ECOL, V51, P177, DOI 10.2307/4318; CULIK B, 1991, J COMP PHYSIOL B, V161, P285, DOI 10.1007/BF00262310; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Finkel T, 2003, CURR OPIN CELL BIOL, V15, P247, DOI 10.1016/S095500674(03)00002-4; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hatakeyama H, 2008, MECH AGEING DEV, V129, P550, DOI 10.1016/j.mad.2008.05.006; Haussmann MF, 2003, P ROY SOC B-BIOL SCI, V270, P1387, DOI 10.1098/rspb.2003.2385; Kelly C, 2005, AM NAT, V166, P700, DOI 10.1086/497402; KERRY KR, 1993, WILDLIFE RES, V20, P725, DOI 10.1071/WR9930725; Larionov A, 2005, BMC BIOINFORMATICS, V6, DOI 10.1186/1471-2105-6-62; Monaghan P, 2006, TRENDS ECOL EVOL, V21, P47, DOI 10.1016/j.tree.2005.11.007; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; REED TE, 2008, AM NAT, V171, P89; Richter T, 2007, EXP GERONTOL, V42, P1039, DOI 10.1016/j.exger.2007.08.005; ROFF DA, 2002, LIFE HIST EVOLUTION; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Stearns S, 1992, EVOLUTION LIFE HIST; TAYLOR ROWLAND H., 1962, IBIS, V104, P176, DOI 10.1111/j.1474-919X.1962.tb08644.x; Vleck C. M., 2007, J ORNITHOL, V148, P611, DOI DOI 10.1007/S10336-007-0186-5; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171 43 64 64 3 78 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 FUNCT ECOL Funct. Ecol. JUN 2011 25 3 577 585 10.1111/j.1365-2435.2010.01825.x 9 Ecology Environmental Sciences & Ecology 758ON WOS:000290174500016 Bronze 2019-02-21 J Han, BP; Yin, J; Lin, X; Dumont, HJ Han, Bo-Ping; Yin, Juan; Lin, Xian; Dumont, Henri J. Why is Diaphanosoma (Crustacea: Ctenopoda) so common in the tropics? Influence of temperature and food on the population parameters of Diaphanosoma dubium, and a hypothesis on the nature of tropical cladocerans HYDROBIOLOGIA English Article Cladocera; Diaphanosoma; Daphnia; Tropics; Food and lifespan; Temperature and lifespan LIFE-HISTORY STRATEGIES; EMBRYONIC-DEVELOPMENT; LAKE CHAD; GROWTH; DURATION; DAPHNIA; REPRODUCTION; ZOOPLANKTON; COPEPODS; EXCISUM Diaphanosoma dubium Manuilova from (sub)tropical South China, cultured in the laboratory at 23-29A degrees C, did not show a shortening of its lifespan at increasing temperatures, although its postembryonic development shortened, while individual clutch sizes became bigger. The optimum temperature for the population performance of this species (measured as lifetime fecundity or intrinsic rate of increase) therefore lies above 29A degrees C. Limited literature data suggest that in tropics-adapted species, the shortening of the lifespan with temperature, which follows a quadratic function, reverses at higher temperatures. Thus, the most general descriptor of the complete temperature-lifespan relationship might be a parabola. D. dubium did not show shorter lifespans when offered more food either, and again shared this characteristic with few other tropical cladocerans (and probably copepods as well) studied by other authors. Both properties combined might be typical of tropical species and offer them an advantage (a long, prolific life in warm water rich in algae) over temperate species (like Daphnia) that, if occurring in the tropics at all, live above their temperature optimum there. [Dumont, Henri J.] Univ Ghent, Dept Biol, B-9000 Ghent, Belgium; [Han, Bo-Ping; Yin, Juan; Lin, Xian] Jinan Univ, Inst Hydrobiol, Guangzhou 510632, Guangdong, Peoples R China Dumont, HJ (reprint author), Univ Ghent, Dept Biol, B-9000 Ghent, Belgium. henri.dumont@ugent.be NSF China [30670345, U0733007] Support from NSF China (No. 30670345 and U0733007) to BP Han is appreciated. We are also grateful to our colleagues, R. Gulati, R. Hart and M. Pagano, whose insights greatly helped us formulate our ideas. Amarasinghe PB, 1997, HYDROBIOLOGIA, V350, P131, DOI 10.1023/A:1003087815861; BOTTRELL HH, 1976, NORW J ZOOL, V24, P419; BOTTRELL HH, 1975, OECOLOGIA, V19, P129, DOI 10.1007/BF00369097; BROWN LA, 1938, AM NAT, V63, P248; DUMONT HJ, 1994, HYDROBIOLOGIA, V272, P27, DOI 10.1007/BF00006510; DUNCAN A, 1989, HYDROBIOLOGIA, V186, P11, DOI 10.1007/BF00048891; DUNHAM H. HOWARD, 1938, PHYSIOL ZOOL, V11, P399; GRAS R, 1969, CAH ORSTOM HYDROBIOL, V3, P43; GRAS R, 1978, CAH ORSTOM HYDROBIOL, V12, P119; Hardy E. R., 1994, Acta Amazonica, V24, P119; HART RC, 1985, HYDROBIOLOGIA, V127, P17, DOI 10.1007/BF00004659; Hart RC, 2004, HYDROBIOLOGIA, V526, P99, DOI 10.1023/B:HYDR.0000041610.56021.63; HART RC, 2000, VERH INT VEREIN LIMN, V27, P1933; HEBERT PDN, 1978, BIOL REV, V53, P387, DOI 10.1111/j.1469-185X.1978.tb00860.x; HEIP C, 1974, Biologisch Jaarboek, V42, P121; HERZIG A, 1983, HYDROBIOLOGIA, V100, P65, DOI 10.1007/BF00027423; HERZIG A, 1984, ARCH HYDROBIOL, V101, P143; Ingle L, 1933, SCIENCE, V78, P511, DOI 10.1126/science.78.2031.511-a; Ingle L, 1937, J EXP ZOOL, V76, P325, DOI 10.1002/jez.1400760206; JANA BB, 1984, HYDROBIOLOGIA, V118, P205, DOI 10.1007/BF00021044; KOROVCHINSKY NM, 1992, GUIDES IDENTIFICATIO, V1; LAMPERT W, 1977, Archiv fuer Hydrobiologie Supplement, V48, P361; Lemke AM, 2003, FRESHWATER BIOL, V48, P589, DOI 10.1046/j.1365-2427.2003.01034.x; MacArthur JW, 1929, J EXP ZOOL, V53, P221, DOI 10.1002/jez.1400530205; MAVUTI KM, 1994, HYDROBIOLOGIA, V272, P185, DOI 10.1007/BF00006520; Pagano M, 2008, J PLANKTON RES, V30, P401, DOI 10.1093/plankt/fbn014; Peters R, 1987, MEMORIE I ITALIANO I, V45, P502; PIANKA ER, 2000, EVOLUTIONARY ECOLOGY, P468; REPKA S, 1997, FRESHWATER BIOL, V37, P675; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; SCHWARTZ SS, 1984, OIKOS, V42, P114, DOI 10.2307/3544616; VIJVERBERG J, 1989, FRESHWATER BIOL, V21, P317, DOI 10.1111/j.1365-2427.1989.tb01369.x 32 6 8 2 17 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia JUN 2011 668 1 109 115 10.1007/s10750-010-0501-7 7 Marine & Freshwater Biology Marine & Freshwater Biology 758PN WOS:000290177300007 2019-02-21 J Bonsall, MB; Klug, H Bonsall, M. B.; Klug, H. Effects of among-offspring relatedness on the origins and evolution of parental care and filial cannibalism JOURNAL OF EVOLUTIONARY BIOLOGY English Article cooperation; life history evolution; offspring competition; parental care; theory PERCEIVED PATERNITY; SEXUAL SELECTION; SAND GOBY; GENETICAL EVOLUTION; DENSITY-DEPENDENCE; BROOD REDUCTION; KIN RECOGNITION; NESTLING BIRDS; CONFLICT; BEHAVIOR Parental care is expected to increase the likelihood of offspring survival at the cost of investment in future reproductive success. However, alternative parental behaviours, such as filial cannibalism, can decrease current reproductive success and consequently individual fitness. We evaluate the role of among-offspring relatedness on the evolution of parental care and filial cannibalism. Building on our previous work, we show how the evolution of care is influenced by the effect of among-offspring relatedness on both the strength of competition and filial cannibalism. When there is a positive relationship between among-offspring competition and relatedness, parental care will be favoured when among-offspring relatedness is relatively low, and the maintenance of both care and no-care strategies is expected. If the relationship between among-offspring competition and relatedness is negative, parental care is most strongly favoured when broods contain highly related offspring. Further, we highlight the range of conditions over which the level of this among-offspring relatedness can affect the co-occurrence of different care/no care and cannibalism/no cannibalism strategies. Coexistence of multiple strategies is independent of the effects of among-offspring relatedness on cannibalism but more likely when among-offspring relatedness and competition are positively associated. [Bonsall, M. B.] Univ Oxford, Dept Zool, Math Ecol Res Grp, Oxford OX1 3DL, England; [Bonsall, M. B.] Univ Oxford, St Peters Coll, Oxford, England; [Klug, H.] Univ Helsinki, Dept Biol & Environm Sci, Div Ecol & Evolut, Helsinki, Finland; [Klug, H.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA Bonsall, MB (reprint author), Univ Oxford, Dept Zool, Math Ecol Res Grp, S Parks Rd, Oxford OX1 3DL, England. michael.bonsall@zoo.ox.ac.uk Bonsall, Michael/0000-0003-0250-0423 Royal Society; NSF [0701286] We thank Allen Moore and two anonymous reviewers for constructive comments on this work. The work was supported by the Royal Society (to MBB) and an NSF International Research Program Fellowship [No. 0701286] (to HK). Alonzo SH, 2010, TRENDS ECOL EVOL, V25, P99, DOI 10.1016/j.tree.2009.07.012; BARTETT J, 1987, BEHAV ECOL SOCIOBIOL, V21, P197; BAYLIS JR, 1981, ENVIRON BIOL FISH, V6, P223, DOI 10.1007/BF00002788; BELLOWS TS, 1981, J ANIM ECOL, V50, P139, DOI 10.2307/4037; Bergstrom CT, 1998, P NATL ACAD SCI USA, V95, P5100, DOI 10.1073/pnas.95.9.5100; Bergstrom CT, 1997, PHILOS T ROY SOC B, V352, P609, DOI 10.1098/rstb.1997.0041; BLUMER LS, 1979, Q REV BIOL, V54, P149, DOI 10.1086/411154; BONCORAGLIO G, 2007, J EVOLUTION BIOL, V21, P256; Bonsall MB, 2011, J EVOLUTION BIOL, V24, P645, DOI 10.1111/j.1420-9101.2010.02203.x; Bonsall MB, 2009, THEOR POPUL BIOL, V75, P46, DOI 10.1016/j.tpb.2008.10.003; Bourke AFG, 2011, OX ECOL EV, P1, DOI 10.1093/acprof:oso/9780199231157.001.0001; BRISKIE JV, 1994, P ROY SOC B-BIOL SCI, V258, P73, DOI 10.1098/rspb.1994.0144; Buss L, 1987, EVOLUTION INDIVIDUAL; Chin-Baarstad A, 2009, ANIM BEHAV, V78, P203, DOI 10.1016/j.anbehav.2009.04.022; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Creighton JC, 2005, BEHAV ECOL, V16, P1031, DOI 10.1093/beheco/ari084; DeWoody JA, 2001, P NATL ACAD SCI USA, V98, P5090, DOI 10.1073/pnas.091102598; Dong Quan, 1992, P13; Edwards J. S., 1962, Proceedings of the Royal Entomological Society of London (A), V37, P89; Elgar M., 1992, CANNIBALISM ECOLOGY; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; Evans TA, 1999, P ROY SOC B-BIOL SCI, V266, P287, DOI 10.1098/rspb.1999.0635; Fellowes MDE, 1998, ECOL ENTOMOL, V23, P223; Forbes S, 2007, AUK, V124, P1, DOI 10.1642/0004-8038(2007)124[1:SSINB]2.0.CO;2; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GODFRAY HCJ, 1990, J THEOR BIOL, V145, P163, DOI 10.1016/S0022-5193(05)80122-5; Godfray HCJ, 2000, PHILOS T ROY SOC B, V355, P1581, DOI 10.1098/rstb.2000.0719; GRAFEN A, 1980, ANIM BEHAV, V28, P967, DOI 10.1016/S0003-3472(80)80160-6; GRAFEN A, 1990, ANIM BEHAV, V39, P42, DOI 10.1016/S0003-3472(05)80724-9; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; JARVIS JH, 1972, MAR BIOL, V13, P146, DOI 10.1007/BF00366565; Johnstone RA, 2003, BEHAV ECOL, V14, P780, DOI 10.1093/beheco/arg024; Kilner R, 1997, TRENDS ECOL EVOL, V12, P11, DOI 10.1016/S0169-5347(96)10061-6; KING PE, 1970, MAR BIOL, V7, P294, DOI 10.1007/BF00750822; Klug H, 2007, AM NAT, V170, P886, DOI 10.1086/522936; Klug H, 2010, EVOLUTION, V64, P823, DOI 10.1111/j.1558-5646.2009.00854.x; Klug H, 2009, ANIM BEHAV, V77, P1313, DOI 10.1016/j.anbehav.2009.01.035; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Komdeur Jan, 2008, P175, DOI 10.1007/978-3-540-75957-7_8; Kraak SBM, 1996, BEHAV PROCESS, V36, P85, DOI 10.1016/0376-6357(95)00019-4; Lachmann M, 1998, THEOR POPUL BIOL, V54, P146, DOI 10.1006/tpbi.1997.1372; Lessells CM, 1999, P ROY SOC B-BIOL SCI, V266, P1637, DOI 10.1098/rspb.1999.0826; Lindstrom K, 1998, BEHAV ECOL SOCIOBIOL, V42, P101, DOI 10.1007/s002650050417; Lion S, 2007, AM NAT, V170, pE26, DOI 10.1086/519462; Lissaker M, 2008, BEHAV ECOL SOCIOBIOL, V62, P1467, DOI 10.1007/s00265-008-0576-6; Manica A, 2004, ANIM BEHAV, V67, P1015, DOI 10.1016/j.anbehav.2003.09.011; Manica A, 2002, BIOL REV, V77, P261, DOI 10.1017/S1464793101005905; Maynard-Smith J., 1982, EVOLUTION THEORY GAM; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; METZ JAJ, 1996, STOCHASTIC SPATIAL S, P183; Milligan BG, 2003, GENETICS, V163, P1153; Mock D, 1997, EVOLUTION SIBLING RI; Neff BD, 2003, NATURE, V422, P716, DOI 10.1038/nature01528; Neff BD, 2001, P ROY SOC B-BIOL SCI, V268, P1559, DOI 10.1098/rspb.2001.1678; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; Odhiambo T. R., 1960, New Scientist London, V8, P449; Oldekop JA, 2007, J EVOLUTION BIOL, V20, P1998, DOI 10.1111/j.1420-9101.2007.01364.x; ORLOVE MJ, 1978, J THEOR BIOL, V73, P679, DOI 10.1016/0022-5193(78)90129-7; PAMILO P, 1982, THEOR POPUL BIOL, V21, P171, DOI 10.1016/0040-5809(82)90012-0; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Perry JC, 2005, J EVOLUTION BIOL, V18, P1523, DOI 10.1111/j.1420-9101.2005.00941.x; Pfennig DW, 1997, BIOSCIENCE, V47, P667, DOI 10.2307/1313207; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; ROHWER S, 1978, AM NAT, V112, P429, DOI 10.1086/283284; Rousset F, 2002, HEREDITY, V88, P371, DOI 10.1038/sj/hdy/6800065; Royle NJ, 2002, TRENDS ECOL EVOL, V17, P434, DOI 10.1016/S0169-5347(02)02565-X; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Sargent Robert Craig, 1992, P38; Scott MP, 1998, ANNU REV ENTOMOL, V43, P595, DOI 10.1146/annurev.ento.43.1.595; Stiver KA, 2009, ETHOLOGY, V115, P1101, DOI 10.1111/j.1439-0310.2009.01707.x; Tallamy DW, 2000, ANIM BEHAV, V60, P559, DOI 10.1006/anbe.2000.1507; Thomas LK, 2003, ANIM BEHAV, V66, P205, DOI 10.1006/anbe.2003.2202; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRIVERS RL, 1972, EXUAL SELECTION DESC, P136; Trivers Robert, 1985, SOCIAL EVOLUTION; Waxman D, 2005, J EVOLUTION BIOL, V18, P1139, DOI 10.1111/j.1420-9101.2005.00948.x; WESTNEAT DF, 1993, BEHAV ECOL, V4, P66, DOI 10.1093/beheco/4.1.66; Wright S, 1922, AM NAT, V56, P330, DOI 10.1086/279872 84 9 9 1 55 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUN 2011 24 6 1335 1350 10.1111/j.1420-9101.2011.02269.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 760GT WOS:000290313500018 21507115 Bronze 2019-02-21 J Hahn, DC; Reisen, WK Hahn, D. Caldwell; Reisen, William K. Heightened Exposure to Parasites Favors the Evolution of Immunity in Brood Parasitic Cowbirds EVOLUTIONARY BIOLOGY English Review Ecoimmunology; Brood parasitism; Cowbird; West Nile virus; Parasite-mediated selection; Evolution of immunity WEST-NILE-VIRUS; LOUIS ENCEPHALITIS VIRUSES; NEW-WORLD BLACKBIRDS; ECOLOGICAL IMMUNOLOGY; EQUINE ENCEPHALOMYELITIS; EXPERIMENTAL-INFECTION; CALIFORNIA BIRDS; LIFE-HISTORY; AVIAN HOST; TRADE-OFFS Immunologists and evolutionary biologists are interested in how the immune system evolves to fit an ecological niche. We studied the relationship between exposure to parasites and strength of immunity by investigating the response of two species of New World cowbirds (genus Molothrus, Icteridae), obligate brood parasites with contrasting life history strategies, to experimental arboviral infection. The South American shiny cowbird (M. bonariensis) is an extreme host-generalist that lays its eggs in the nests of > 225 different avian species. The Central American bronzed cowbird (M. aeneus) is a relative host-specialist that lays its eggs preferentially in the nests of approximately 12 orioles in a single sister genus. West Nile virus provided a strong challenge and delineated immune differences between these species. The extreme host-generalist shiny cowbird, like the North American host-generalist, the brown-headed cowbird, showed significantly lower viremia to three arboviruses than related icterid species that were not brood parasites. The bronzed cowbird showed intermediate viremia. These findings support the interpretation that repeated exposure to a high diversity of parasites favors the evolution of enhanced immunity in brood parasitic cowbirds and makes them useful models for future studies of innate immunity. [Hahn, D. Caldwell] USGS, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA; [Reisen, William K.] Univ Calif Davis, Ctr Vectorborne Dis, Davis, CA 95616 USA; [Reisen, William K.] Univ Calif Davis, Sch Vet Med, Dept Pathol Microbiol & Immunol, Davis, CA 95616 USA Hahn, DC (reprint author), USGS, Patuxent Wildlife Res Ctr, Laurel, MD 20708 USA. chahn@usgs.gov National Institutes of Allergy and Infectious Diseases, NIH [RO1-39483, RO1-AI47855, AI55607]; Division of Agriculture and Natural Resources, University of California; USGS-Patuxent Wildlife Research Center We thank Katsi Ramos Alvarez and Marilyn Colon, Division Recursos Terrestre, Puerto Rico for making shiny cowbirds available and arranging transport, and Scott Summers, The Nature Conservancy of Texas, for making bronzed cowbirds available and arranging transport. This research was funded, in part, by Research Grants RO1-39483, RO1-AI47855, and AI55607 from the National Institutes of Allergy and Infectious Diseases, NIH, the Coachella Valley and Kern Mosquito and Vector Control Districts, special funds for the Mosquito Research Program allocated annually through the Division of Agriculture and Natural Resources, University of California, and by base funds from USGS-Patuxent Wildlife Research Center. We thank staff of the Center for Vectorborne Diseases for excellent technical support: V.M. Martinez, H.D. Lothrop, S.S. Wheeler and B.D. Carroll assisted with bird collections; V.M. Martinez assisted with bird maintenance and bleeding; and Y. Fang, M. Shafii, S. Garcia, R.E. Chiles and S. Ashtari assisted with laboratory diagnostics. We thank R.B. Payne, S.M. Lanyon, D. Mock, and two anonymous reviewers for helpful comments on the manuscript. Use of trade, product, or firm names does not imply endorsement by the U.S. Government. Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Apanius V, 1998, AVIAN GROWTH DEV EVO, P203; ASPOECK H, 2002, TICKS INSECTS OTHER, P397; Balakrishnan CN, 2007, MOL ECOL, V16, P217, DOI 10.1111/j.1365-294X.2006.03142.x; BARTLETT CM, 1993, J PARASITOL, V79, P85, DOI 10.2307/3283282; BELETSKY LD, 1996, RED WINGED BLACKBIRD; BENNETT GF, 1995, SYSTEMATIC PARASITOL, V37, P237; Bize P, 2004, J ANIM ECOL, V73, P1080, DOI 10.1111/j.0021-8790.2004.00880.x; Blount JD, 2003, OIKOS, V102, P340, DOI 10.1034/j.1600-0706.2003.12413.x; Brown CR, 1995, P ROY SOC B-BIOL SCI, V262, P313, DOI 10.1098/rspb.1995.0211; Buehler DM, 2008, J AVIAN BIOL, V39, P560, DOI 10.1111/j.2008.0908-8857.04408.x; BUEHLER DM, 2008, BOTTLENECKS BUDGETS; Chiles RE, 1998, J VECTOR ECOL, V23, P123; CLAYTON DH, 1995, PARASITOLOGY, V110, P195, DOI 10.1017/S0031182000063964; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; Ehrlich P. R., 1988, BIRDERS HDB FIELD GU; Ellison K., 2009, BIRDS N AM ONLINE; FRIEDMANN H, 1963, HOST RELATIONS PARAS; Friedmann H., 1929, COWBIRDS STUDY BIOL; Godoy-Vitorino F, 2008, APPL ENVIRON MICROB, V74, P5905, DOI 10.1128/AEM.00574-08; GREINER EC, 1975, CAN J ZOOL, V53, P1762, DOI 10.1139/z75-211; Hahn DC, 2000, AUK, V117, P943, DOI 10.1642/0004-8038(2000)117[0943:UOLTIC]2.0.CO;2; Hahn DC, 2002, PREDICTING SPECIES OCCURRENCES: ISSUES OF ACCURACY AND SCALE, P219; Hahn DC, 2001, TRENDS ECOL EVOL, V16, P432, DOI 10.1016/S0169-5347(01)02247-9; HAHN DC, 2009, ECOLOGICAL CONDITION; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; HINTZE J, 1988, NCSS STAT SOFTWARE; Janeway C. A., 2001, IMMUNOBIOLOGY; Jaramillo A, 1999, NEW WORLD BLACKBIRDS; Johnsgard PA, 1997, AVIAN BROOD PARASITE; Kilpatrick AM, 2007, AUK, V124, P1121, DOI 10.1642/0004-8038(2007)124[1121:EOWNVT]2.0.CO;2; KLASING KC, 1998, P 22 INT ORN C DURB, P2817; Komar N, 2003, EMERG INFECT DIS, V9, P311, DOI 10.3201/eid0903.020628; Kostecke RM, 2004, SOUTHWEST NAT, V49, P487, DOI 10.1894/0038-4909(2004)049<0487:CREBBC>2.0.CO;2; Kramer LD, 2002, J MED ENTOMOL, V39, P312, DOI 10.1603/0022-2585-39.2.312; Kyle P., 1990, WILDLIFE REHABILITAT, P65; Lanyon SM, 1999, AUK, V116, P629, DOI 10.2307/4089324; LANYON SM, 1992, SCIENCE, V255, P77, DOI 10.1126/science.1553533; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Ley RE, 2008, SCIENCE, V320, P1647, DOI 10.1126/science.1155725; Lindholm AK, 1998, J ZOOL, V244, P145, DOI 10.1017/S0952836998001162; Lindstrom KM, 2004, P ROY SOC B-BIOL SCI, V271, P1513, DOI 10.1098/rspb.2004.2752; Lowther P. E., 1999, BIRDS N AM ONLINE; Lowther P. E., 1993, BIRDS N AM ONLINE; Ludwig GV, 2002, AM J TROP MED HYG, V67, P67, DOI 10.4269/ajtmh.2002.67.67; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Mendes L, 2006, J EXP BIOL, V209, P284, DOI 10.1242/jeb.02015; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; Moller Anders Pape, 1997, P105; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ortega CP, 1998, COWBIRDS OTHER BROOD; PAYNE RB, 1977, ANNU REV ECOL SYST, V8, P1, DOI 10.1146/annurev.es.08.110177.000245; Price JJ, 2009, P ROY SOC B-BIOL SCI, V276, P1971, DOI 10.1098/rspb.2008.1626; PRICE RD, 2003, CHEWING LICE WORLD C, P501; Reisen WK, 2005, J MED ENTOMOL, V42, P367, DOI 10.1603/0022-2585(2005)042[0367:AHAMDC]2.0.CO;2; Reisen WK, 2000, J MED ENTOMOL, V37, P250, DOI 10.1603/0022-2585-37.2.250; Reisen WK, 2003, J MED ENTOMOL, V40, P968, DOI 10.1603/0022-2585-40.6.968; REISEN WK, 1992, J MED ENTOMOL, V29, P582, DOI 10.1093/jmedent/29.4.582; Relsen WK, 2007, J WILDLIFE DIS, V43, P439, DOI 10.7589/0090-3558-43.3.439; Rothstein SI, 1998, PARASITIC BIRDS THEI; *SAS I, 1999, SAS STAT US GUID VER; Schmid-Hempel P, 2003, TRENDS ECOL EVOL, V18, P27, DOI 10.1016/S0169-5347(02)00013-7; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Schwartz MW, 2006, ECOLOGY, V87, P1611, DOI 10.1890/0012-9658(2006)87[1611:PEAARO]2.0.CO;2; Searcy W. A, 1995, POLYGYNY SEXUAL SELE; Searcy WA, 1999, AUK, V116, P5, DOI 10.2307/4089449; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; TIELEMAN BI, 2011, MICROBES SHAPE BIRDS; WEBSTER MS, 1992, EVOLUTION, V46, P1621, DOI 10.1111/j.1558-5646.1992.tb01158.x; Wheeler SS, 2009, CONDOR, V111, P1, DOI 10.1525/cond.2009.080013; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 72 4 4 0 15 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. JUN 2011 38 2 214 224 10.1007/s11692-011-9112-0 11 Evolutionary Biology Evolutionary Biology 756TW WOS:000290038600008 2019-02-21 J Hou, C; Bolt, K; Bergman, A Hou, Chen; Bolt, Kendra; Bergman, Aviv A General Life History Theory for Effects of Caloric Restriction on Health Maintenance BMC SYSTEMS BIOLOGY English Article DISPOSABLE SOMA THEORY; DIETARY RESTRICTION; FOOD RESTRICTION; METABOLIC-RATE; ENERGY-EXPENDITURE; RHESUS-MONKEYS; OXIDATIVE STRESS; BODY-COMPOSITION; ONTOGENIC GROWTH; FISCHER-344 RATS Background: Caloric restriction (CR) has been shown to keep organisms in a relatively youthful and healthy state compared to ad libitum fed counterparts, as well as to extend the lifespan of a diverse set of organisms. Several attempts have been made to understand the underlying mechanisms from the viewpoint of energy tradeoffs in organisms' life histories. However, most models are based on assumptions which are difficult to justify, or are endowed with free-adjusting parameters whose biological relevancy is unclear. Results: In this paper, we derive a general quantitative, predictive model based on physiological data for endotherms. We test the hypothesis that an animal's state of health is correlated with biological mechanisms responsible for the maintenance of that animal's functional integrities. Such mechanisms require energy. By suppressing animals' caloric energy supply and biomass synthesis, CR alters animals' energy allocation strategies and channels additional energy to those maintenance mechanisms, therefore enhancing their performance. Our model corroborates the observation that CR's effects on health maintenance are positively correlated with the degree and duration of CR. Furthermore, our model shows that CR's effects on health maintenance are negatively correlated to the temperature drop observed in endothermic animals, and is positively correlated to animals' body masses. These predictions can be tested by further experimental research. Conclusion: Our model reveals how animals will alter their energy budget when food availability is low, and offers better understanding of the tradeoffs between growth and somatic maintenance; therefore shedding new light on aging research from an energetic viewpoint. [Hou, Chen; Bolt, Kendra; Bergman, Aviv] Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA; [Hou, Chen] China Agr Univ, Key Lab Agr Engn Struct & Environm, Beijing 100094, Peoples R China Hou, C (reprint author), Albert Einstein Coll Med, Dept Syst & Computat Biol, Bronx, NY 10461 USA. houc75@gmail.com; aviv@einstein.yu.edu Hou, Chen/0000-0002-3665-225X Ellison Medical Foundation [AG-SS-2235]; NIH [R01-AG028872, P01-AG027734] We gratefully acknowledge the careful reviews and excellent suggestions of two anonymous reviewers of earlier versions of this manuscript. This work was supported by grants from the Ellison Medical Foundation Senior Scholar Award AG-SS-2235, and NIH grants R01-AG028872, and P01-AG027734. Abrams PA, 1995, EVOLUTION, V49, P1055, DOI 10.1111/j.1558-5646.1995.tb04433.x; BALLOR DL, 1991, J APPL PHYSIOL, V71, P801; Bartke A, 2001, NATURE, V414, P412, DOI 10.1038/35106646; Blanc S, 2003, J CLIN ENDOCR METAB, V88, P16, DOI 10.1210/jc.2002-020405; Bluher M, 2003, SCIENCE, V299, P572, DOI 10.1126/science.1078223; Brody S., 1945, BIOENERGETICS GROWTH; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CALDER WA, 1983, J THEOR BIOL, V102, P135, DOI 10.1016/0022-5193(83)90266-7; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; DeLany JP, 1999, J GERONTOL A-BIOL, V54, pB5, DOI 10.1093/gerona/54.1.B5; DEPAOLO LV, 1993, MODULATION AGING PRO, P221; DERTING TL, 1989, ECOLOGY, V70, P587, DOI 10.2307/1940210; Drenos F, 2005, MECH AGEING DEV, V126, P99, DOI 10.1016/j.mad.2004.09.026; DUFFY PH, 1989, MECH AGEING DEV, V48, P117, DOI 10.1016/0047-6374(89)90044-4; DULLOO AG, 1993, INT J OBESITY, V17, P115; Ehrhardt N, 2005, J COMP PHYSIOL B, V175, P193, DOI 10.1007/s00360-005-0475-3; Faulks SC, 2006, J GERONTOL A-BIOL, V61, P781, DOI 10.1093/gerona/61.8.781; Ferguson M, 2007, MECH AGEING DEV, V128, P539, DOI 10.1016/j.mad.2007.07.005; Frame LT, 1998, ENVIRON HEALTH PERSP, V106, P313; FURST A, 1987, HEALTH PHYS, V52, P527, DOI 10.1097/00004032-198705000-00001; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; GONZALESPACHECO DM, 1993, J NUTR, V123, P90; Hales CN, 2002, J PHYSL, V547, P5; HAMILTON GD, 1985, BIOL REPROD, V32, P773, DOI 10.1095/biolreprod32.4.773; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hart RW, 1998, EXP GERONTOL, V33, P53, DOI 10.1016/S0531-5565(97)00063-6; Heilbronn LK, 2003, AM J CLIN NUTR, V78, P361; HOLEHAN AM, 1986, BIOL REV, V61, P329, DOI 10.1111/j.1469-185X.1986.tb00658.x; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; HOU C, 2011, J GERONTOL A; HOU C, 2011, P R SOC LOND B; Hou C, 2008, SCIENCE, V322, P736, DOI 10.1126/science.1162302; Kirkwood TBL, 2005, MECH AGEING DEV, V126, P1011, DOI 10.1016/j.mad.2005.03.021; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kirkwood TBL, 1990, GENETIC EFFECTS AGIN, P9; LANE MA, 1995, AM J PHYSIOL-ENDOC M, V268, pE941; Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159; Lawler DF, 2008, BRIT J NUTR, V99, P793, DOI 10.1017/S0007114507871686; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; LINTS FA, 1989, GERONTOLOGY, V35, P36, DOI 10.1159/000212998; LIPMAN RD, 1995, AGING-CLIN EXP RES, V7, P136, DOI 10.1007/BF03324303; Lipman RD, 1998, AGING CLIN EXP RES, V10, P463, DOI 10.1007/BF03340160; Mair W, 2005, PLOS BIOL, V3, P1305, DOI 10.1371/journal.pbio.0030223; Mair W, 2008, ANNU REV BIOCHEM, V77, P727, DOI 10.1146/annurev.biochem.77.061206.171059; Masoro EJ, 2009, BBA-GEN SUBJECTS, V1790, P1040, DOI 10.1016/j.bbagen.2009.02.011; Masoro EJ, 2005, MECH AGEING DEV, V126, P913, DOI 10.1016/j.mad.2005.03.012; MASORO EJ, 1992, J GERONTOL, V47, pB202, DOI 10.1093/geronj/47.6.B202; MASORO EJ, 1982, P NATL ACAD SCI-BIOL, V79, P4239, DOI 10.1073/pnas.79.13.4239; MCCARTER R, 1985, AM J PHYSIOL, V248, pE488; MCCARTER RJ, 1992, AM J PHYSIOL, V263, pE448; MCCARTER RJ, 1989, AM J PHYSIOL, V257, pE175; MCCARTER RJM, 1995, CLIN GERIATR MED, V11, P553, DOI 10.1016/S0749-0690(18)30256-8; McCay CM, 1935, J NUTR, V10, P63; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; Merker K, 2001, MECH AGEING DEV, V122, P595, DOI 10.1016/S0047-6374(01)00219-6; Merry BJ, 2002, INT J BIOCHEM CELL B, V34, P1340, DOI 10.1016/S1357-2725(02)00038-9; MERRY BJ, 1981, EXP GERONTOL, V16, P431, DOI 10.1016/0531-5565(81)90025-5; MERRY BJ, 1995, REV CLIN GERONTOL, V5, P247; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mitteldorf J, 2001, EVOLUTION, V55, P1902; MOHAN PF, 1983, J NUTR, V113, P79; Moses ME, 2008, AM NAT, V171, P632, DOI 10.1086/587073; O'Brien DM, 2008, CURR BIOL, V18, pR155, DOI 10.1016/j.cub.2008.01.021; ORTIGUES I, 1995, BRIT J NUTR, V73, P209, DOI 10.1079/BJN19950024; Pearl R., 1928, RATE LIVING; Peters R.H., 1983, P1; Ramsey JJ, 1997, AM J PHYSIOL-ENDOC M, V272, pE901; Ramsey JJ, 2000, FREE RADICAL BIO MED, V29, P946, DOI 10.1016/S0891-5849(00)00417-2; Rattan SIS, 2004, MECH AGEING DEV, V125, P285, DOI 10.1016/j.amd.2004.01.006; Rising R, 2006, NUTR METABOLISM, V3, DOI 10.1186/1743-7075-3-11; SABATINO F, 1991, J GERONTOL, V46, pB171, DOI 10.1093/geronj/46.5.B171; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Sinclair DA, 2005, MECH AGEING DEV, V126, P987, DOI 10.1016/j.mad.2005.03.019; Sohal R.S., 1986, P23; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; SONNTAG WE, 1992, J GERONTOL, V47, pB159, DOI 10.1093/geronj/47.5.B159; Speakman JR, 2002, J NUTR, V132, p1583S, DOI 10.1093/jn/132.6.1583S; STEWART J, 1988, ENDOCRINOLOGY, V123, P1934, DOI 10.1210/endo-123-4-1934; STUCHLIKOVA E, 1975, EXP GERONTOL, V10, P141, DOI 10.1016/0531-5565(75)90043-1; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; TURTURRO A, 1994, ANN NY ACAD SCI, V719, P159, DOI 10.1111/j.1749-6632.1994.tb56827.x; Turturro A, 1998, HUM EXP TOXICOL, V17, P454, DOI 10.1191/096032798678909089; WALFORD RL, 1983, MAXIMUM LIFESPAN; Weed JL, 1997, PHYSIOL BEHAV, V62, P97, DOI 10.1016/S0031-9384(97)00147-9; Weindruch R., 1988, RETARDATION AGING DI; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; YU BP, 1994, P SOC EXP BIOL MED, V205, P97; Yu BP, 1996, FREE RADICAL BIO MED, V21, P651, DOI 10.1016/0891-5849(96)00162-1; YU BP, 1985, J GERONTOL, V40, P657, DOI 10.1093/geronj/40.6.657 93 7 7 0 7 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1752-0509 BMC SYST BIOL BMC Syst. Biol. MAY 19 2011 5 78 10.1186/1752-0509-5-78 13 Mathematical & Computational Biology Mathematical & Computational Biology 783TG WOS:000292106300001 21595962 DOAJ Gold, Green Published 2019-02-21 J Pinsky, ML; Jensen, OP; Ricard, D; Palumbi, SR Pinsky, Malin L.; Jensen, Olaf P.; Ricard, Daniel; Palumbi, Stephen R. Unexpected patterns of fisheries collapse in the world's oceans PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article body size; ecosystem-based management; food webs; life-history theory; marine conservation MARINE FOOD WEBS; LIFE-HISTORY STRATEGIES; EXTINCTION RISK; FISH; POPULATIONS; VULNERABILITY; MANAGEMENT; PACIFIC; EXPLOITATION; CONSERVATION Understanding which species are most vulnerable to human impacts is a prerequisite for designing effective conservation strategies. Surveys of terrestrial species have suggested that large-bodied species and top predators are the most at risk, and it is commonly assumed that such patterns also apply in the ocean. However, there has been no global test of this hypothesis in the sea. We analyzed two fisheries datasets (stock assessments and landings) to determine the life-history traits of species that have suffered dramatic population collapses. Contrary to expectations, our data suggest that up to twice as many fisheries for small, low trophic-level species have collapsed compared with those for large predators. These patterns contrast with those on land, suggesting fundamental differences in the ways that industrial fisheries and land conversion affect natural communities. Even temporary collapses of small, low trophic-level fishes can have ecosystem-wide impacts by reducing food supply to larger fish, seabirds, and marine mammals. [Pinsky, Malin L.; Palumbi, Stephen R.] Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Ricard, Daniel] Dalhousie Univ, Dept Biol Sci, Halifax, NS B3H 4J1, Canada Pinsky, ML (reprint author), Stanford Univ, Hopkins Marine Stn, Dept Biol, Pacific Grove, CA 93950 USA. malin.pinsky@gmail.com Pinsky, Malin/K-2884-2015; Jensen, Olaf/E-4947-2011; Ricard, Daniel/G-1814-2014 Pinsky, Malin/0000-0002-8523-8952; National Science Foundation; National Defense Science and Engineering Graduate fellowships; David H. Smith Postdoctoral Fellowship; National Science Foundation Comparative Analysis of Marine Ecosystem Organizaton [1041678]; Census of Marine Life/Future of Marine Animal Populations; Natural Sciences and Engineering Research Council; Canadian Foundation for Innovation This research was part of a National Center for Ecological Analysis and Synthesis Distributed Graduate Seminar. We thank T. Branch, R. Hilborn, and B. Worm for insightful feedback. J. Baum, C. Minto, R. Froese, and S. Tracey helped with database development. This work was supported in part by National Science Foundation and National Defense Science and Engineering Graduate fellowships (to M. L. P.), a David H. Smith Postdoctoral Fellowship (to O.P.J.), National Science Foundation Comparative Analysis of Marine Ecosystem Organizaton Grant 1041678 (to O.P.J.), and the Census of Marine Life/Future of Marine Animal Populations (D. R.); financial support for the assessment database was provided by Natural Sciences and Engineering Research Council grants to J. A. Hutchings and a Canadian Foundation for Innovation grant to H. Lotze. Baillie J, 2004, 2004 IUCN RED LIST T; Bakun A, 2003, FISH OCEANOGR, V12, P458, DOI 10.1046/j.1365-2419.2003.00258.x; Baum JK, 2003, SCIENCE, V299, P389, DOI 10.1126/science.1079777; BAUMGARTNER TR, 1992, CAL COOP OCEAN FISH, V33, P24; BEVERTON RJH, 1990, J FISH BIOL, V37, P5, DOI 10.1111/j.1095-8649.1990.tb05015.x; Burnham K. P, 2002, MODEL SELECTION MULT, P488; Byrnes JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000295; Cardillo M, 2005, SCIENCE, V309, P1239, DOI 10.1126/science.1116030; Charnov Eric L., 1993, P1; Chavez FP, 2003, SCIENCE, V299, P217, DOI 10.1126/science.1075880; Costello C, 2008, SCIENCE, V321, P1678, DOI 10.1126/science.1159478; Crawford RJM, 2007, J ORNITHOL, V148, pS253, DOI 10.1007/s10336-007-0228-z; Cury P, 2000, ICES J MAR SCI, V57, P603, DOI 10.1006/jmsc.2000.0712; de Mutsert K, 2008, P NATL ACAD SCI USA, V105, P2740, DOI 10.1073/pnas.0704354105; Denney NH, 2002, P ROY SOC B-BIOL SCI, V269, P2229, DOI 10.1098/rspb.2002.2138; Dobson A. J, 2002, INTRO GEN LINEAR MOD; DUFFY DC, 1983, BIOL CONSERV, V26, P227, DOI 10.1016/0006-3207(83)90075-7; Dulvy NK, 2002, CONSERV BIOL, V16, P440, DOI 10.1046/j.1523-1739.2002.00416.x; Dulvy NK, 2000, CONSERV BIOL, V14, P283, DOI 10.1046/j.1523-1739.2000.98540.x; Dulvy NK, 2003, FISH FISH, V4, P25, DOI 10.1046/j.1467-2979.2003.00105.x; Essington TE, 2006, P NATL ACAD SCI USA, V103, P3171, DOI 10.1073/pnas.0510964103; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fisher DO, 2004, TRENDS ECOL EVOL, V19, P391, DOI 10.1016/j.tree.2004.05.004.; Fisher JAD, 2010, MAR ECOL PROG SER, V405, P1, DOI 10.3354/meps08601; Frederiksen M, 2004, J APPL ECOL, V41, P1129, DOI 10.1111/j.0021-8901.2004.00966.x; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; Fryxell JM, 2010, SCIENCE, V328, P903, DOI 10.1126/science.1185802; Guenette S, 2006, CAN J FISH AQUAT SCI, V63, P2495, DOI 10.1139/F06-136; Holker F, 2007, SCIENCE, V316, P1285, DOI 10.1126/science.1139114; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jennings S, 1999, J ANIM ECOL, V68, P617, DOI 10.1046/j.1365-2656.1999.00312.x; Jennings S, 1999, CONSERV BIOL, V13, P1466, DOI 10.1046/j.1523-1739.1999.98324.x; Jennings S, 1998, P ROY SOC B-BIOL SCI, V265, P333, DOI 10.1098/rspb.1998.0300; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Mullon C, 2005, FISH FISH, V6, P111, DOI 10.1111/j.1467-2979.2005.00181.x; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; ROFF DA, 2002, LIFE HIST EVOLUTION; Sethi SA, 2010, P NATL ACAD SCI USA, V107, P12163, DOI 10.1073/pnas.1003236107; Von Bertalanffy L., 1938, HUM BIOL, V10, P181, DOI DOI 10.2307/41447359; Walters C. J, 1992, QUANTITATIVE FISHERI; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 48 110 114 2 107 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. MAY 17 2011 108 20 8317 8322 10.1073/pnas.1015313108 6 Multidisciplinary Sciences Science & Technology - Other Topics 765OZ WOS:000290719600050 21536889 Bronze, Green Published 2019-02-21 J Brandt, R; Navas, CA Brandt, Renata; Navas, Carlos A. Life-History Evolution on Tropidurinae Lizards: Influence of Lineage, Body Size and Climate PLOS ONE English Article RELATIVE CLUTCH MASS; LOWLAND RAIN-FOREST; PHYLOGENETIC SIGNAL; EGG SIZE; LOCOMOTOR PERFORMANCE; REPRODUCTIVE ECOLOGY; SOUTHEASTERN BRAZIL; IGUANID LIZARDS; EASTERN BRAZIL; SQUAMATA The study of life history variation is central to the evolutionary theory. In many ectothermic lineages, including lizards, life history traits are plastic and relate to several sources of variation including body size, which is both a factor and a life history trait likely to modulate reproductive parameters. Larger species within a lineage, for example tend to be more fecund and have larger clutch size, but clutch size may also be influenced by climate, independently of body size. Thus, the study of climatic effects on lizard fecundity is mandatory on the current scenario of global climatic change. We asked how body and clutch size have responded to climate through time in a group of tropical lizards, the Tropidurinae, and how these two variables relate to each other. We used both traditional and phylogenetic comparative methods. Body and clutch size are variable within Tropidurinae, and both traits are influenced by phylogenetic position. Across the lineage, species which evolved larger size produce more eggs and neither trait is influenced by temperature components. A climatic component of precipitation, however, relates to larger female body size, and therefore seems to exert an indirect relationship on clutch size. This effect of precipitation on body size is likely a correlate of primary production. A decrease in fecundity is expected for Tropidurinae species on continental landmasses, which are predicted to undergo a decrease in summer rainfall. [Brandt, Renata; Navas, Carlos A.] Univ Sao Paulo, Dept Fisiol, Inst Biociencias, Sao Paulo, Brazil Brandt, R (reprint author), Univ Sao Paulo, Dept Fisiol, Inst Biociencias, Sao Paulo, Brazil. rbrandt@ib.usp.br Brandt, Renata/H-4112-2013; Navas, Carlos/B-2138-2013 Brandt, Renata/0000-0002-8725-2360; Navas, Carlos/0000-0002-9859-0568 FAPESP [03/13235-4, 2003/01577-8, 2008/57687-0] R. B. was supported by a doctoral fellowship of FAPESP (03/13235-4). C.A.N. was funded by FAPESP (2003/01577-8 and 2008/57687-0). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Ashton KG, 2004, J EVOLUTION BIOL, V17, P1157, DOI 10.1111/j.1420-9101.2004.00764.x; BARBAULT R, 1975, B SOC ZOOL FR, V100, P153; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Bock BC, 2009, REV BIOL TROP, V57, P1253; Burnham K. P, 2002, MODEL SELECTION MULT; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Cruz FB, 1998, HERPETOL J, V8, P107; Cruz FB, 1997, STUD NEOTROP FAUNA E, V32, P28, DOI 10.1076/snfe.32.1.28.13465; Cruz FB, 1997, J HERPETOL, V31, P444, DOI 10.2307/1565679; Du WG, 2005, BIOL LETTERS, V1, P98, DOI 10.1016/rsbl.2004.0268; Dunham A.E., 1988, Biology of Reptilia, V16, P441; Dunham A. E., 1981, MISC PUBL MUS ZOOL, V158, P1; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; DUNHAM AE, 1985, AM NAT, V126, P231, DOI 10.1086/284411; Ellinger N, 2001, J HERPETOL, V35, P395, DOI 10.2307/1565957; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fitch H. S, 1970, U KANSAS MUS NAT HIS, V52, P1; FITCH HS, 1985, U KANSAS MUS NAT HIS, V76, P1; FITCH HS, 1982, OCCAS PAPERS MUS NAT, V96, P1; FROST D R, 1992, American Museum Novitates, P1; Frost DR, 2001, MOL PHYLOGENET EVOL, V21, P352, DOI 10.1006/mpev.2001.1015; Galdino CAB, 2003, J HERPETOL, V37, P687, DOI 10.1670/114-02A; Garland T, 2000, AM NAT, V155, P346, DOI 10.1086/303327; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Grizante MB, 2010, J EVOLUTION BIOL, V23, P98, DOI 10.1111/j.1420-9101.2009.01868.x; Harvey MB, 2000, ZOOL J LINN SOC-LOND, V128, P189; Heins DC, 2004, ECOL FRESHW FISH, V13, P258, DOI 10.1111/j.1600-0633.2004.00064.x; HOWLAND JM, 1990, CAN J ZOOL, V68, P1366, DOI 10.1139/z90-204; Intergovernmental Panel on Climate Change (IPCC), 2007, CONTR WORK GROUP 1 2; JAMES C, 1988, OECOLOGIA, V75, P307, DOI 10.1007/BF00378615; Kiefer MC, 2008, CAN J ZOOL, V86, P1376, DOI 10.1139/Z08-106; Kohlsdorf T, 2008, J EVOLUTION BIOL, V21, P781, DOI 10.1111/j.1420-9101.2008.01516.x; Kohlsdorf T, 2006, EVOL ECOL, V20, P549, DOI 10.1007/s10682-006-9116-x; Krasnov B, 1996, J ARID ENVIRON, V34, P477, DOI 10.1006/jare.1996.0126; Lavin SR, 2008, PHYSIOL BIOCHEM ZOOL, V81, P526, DOI 10.1086/590395; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Losos JB, 2008, ECOL LETT, V11, P995, DOI 10.1111/j.1461-0248.2008.01229.x; MADDISON WP, MESQUITE MODULAR SYS, pH34; MARENGO J. A., 2010, NOVA ACTA LEOPOLDINA, V112, P1; Martori Ricardo, 1994, Amphibia-Reptilia, V15, P317, DOI 10.1163/156853894X00092; Midford P. E., 2010, PDAP PACKAGE MESQUIT; Miles DB, 2000, EVOLUTION, V54, P1386; MILES DB, 1992, AM NAT, V139, P848, DOI 10.1086/285361; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; POPP J L, 1983, Primates, V24, P198, DOI 10.1007/BF02381082; PURVIS A, 1995, PHILOS T ROY SOC B, V348, P405, DOI 10.1098/rstb.1995.0078; RAND AS, 1982, HERPETOLOGICA, V38, P171; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Taylor HL, 2003, SOUTHWEST NAT, V48, P680, DOI 10.1894/0038-4909(2003)048<0680:PPARRO>2.0.CO;2; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; Van Sluys M, 2002, HERPETOL J, V12, P89; Van Sluys M, 2010, AMPHIBIA-REPTILIA, V31, P117, DOI 10.1163/156853810790457920; VANSLUYS M, 1993, J HERPETOL, V27, P28; Vitt L.J., 1992, P135; VITT LJ, 1982, HERPETOLOGICA, V38, P237; VITT LJ, 1981, AM NAT, V117, P506, DOI 10.1086/283731; Vitt LJ, 1996, HERPETOLOGICA, V52, P121; VITT LJ, 1991, CAN J ZOOL, V69, P504, DOI 10.1139/z91-077; Vitt LJ, 1997, CAN J ZOOL, V75, P1876, DOI 10.1139/z97-817; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; VITT LJ, 1993, CAN J ZOOL, V71, P2370, DOI 10.1139/z93-333; VITT LJ, 1983, COPEIA, P131; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Wiederhecker HC, 2002, J HERPETOL, V36, P82, DOI 10.2307/1565806; Yom-Tov Y, 2006, OECOLOGIA, V148, P213, DOI 10.1007/s00442-006-0364-9; YOMTOV Y, 1986, BIOL J LINN SOC, V29, P245, DOI 10.1111/j.1095-8312.1986.tb00278.x 72 23 23 0 25 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 13 2011 6 5 e20040 10.1371/journal.pone.0020040 7 Multidisciplinary Sciences Science & Technology - Other Topics 763LP WOS:000290558500042 21603641 DOAJ Gold, Green Published 2019-02-21 J Rogers, L; Koch, A Rogers, Lock; Koch, Alan The evolution of sex-change timing under environmental uncertainty: a test by simulation EVOLUTIONARY ECOLOGY RESEARCH English Article asymmetric fitness surface; early sex change; genetic algorithm; probabilistic size-advantage THALASSOMA-BIFASCIATUM PISCES; CORAL-REEF FISH; BLUEHEAD WRASSE; JENSENS INEQUALITY; NATURAL-SELECTION; LABRIDAE; HERMAPHRODITISM; REPRODUCTION; ANIMALS Background: Life-history theory predicts that selection for changing from an initial sex to a second sex exists when the size- or age-specific reproductive-rate curves for males and females cross. The optimal timing of sex change will be the size or age at which the curves cross. But wild populations of many sex-changing fishes do not follow this prediction; individuals generally change sex at a size or age at which the sex that they become cannot yet reproduce. This phenomenon is termed 'early sex change'. Question: Does uncertainty in the advent of successful reproduction in the second sex favour the evolution of early sex change? Method: Genetically explicit simulation to track the evolution of sex change timing. Key assumption: Reproduction in the initial sex (female) is assured but of low value, whereas reproduction in the second sex (male) is uncertain but of high value. Organisms: Our model is primarily based on the natural history of the bluehead wrasse, Thalassoma bifasciatum, but is designed to apply to many other species of sex-changing fishes. Results: Early sex change rapidly evolved under the conditions of the model. Moreover, the timing of sex change became highly variable within a population. The mean age of switching from female to male depended on the ratio of male to female reproductive rates: the higher the ratio, the earlier the mean age at which females switched. A second mechanism for early sex change arose from the asymmetrical fitness surface of females: those that switch earlier than the optimum time pay a smaller fitness penalty than those that switch later. [Rogers, Lock] Agnes Scott Coll, Dept Biol, Decatur, GA 30030 USA; [Koch, Alan] Agnes Scott Coll, Dept Math, Decatur, GA 30030 USA Rogers, L (reprint author), Agnes Scott Coll, Dept Biol, 141 E Coll Ave, Decatur, GA 30030 USA. lrogers@agnesscott.edu ALDENHOVEN JM, 1986, AUST J MAR FRESH RES, V37, P353; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Darwin C., 1859, ORIGIN SPECIES MEANS; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; HOFFMAN SG, 1985, EVOLUTION, V39, P915, DOI 10.1111/j.1558-5646.1985.tb00432.x; Holland J. H., 1975, ADAPTATION NATURAL A; Iwasa Y, 1991, BEHAV ECOL, V2, P56, DOI 10.1093/beheco/2.1.56; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3656, DOI 10.1073/pnas.73.10.3656; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Moyer J. T., 1984, J ETHOL, V2, P63; Petersen CW, 2001, BEHAV ECOL, V12, P237, DOI 10.1093/beheco/12.2.237; PHILLIPS PC, 1989, EVOLUTION, V43, P1209, DOI 10.1111/j.1558-5646.1989.tb02569.x; Rogers L, 2003, BEHAV ECOL, V14, P447, DOI 10.1093/beheco/14.3.447; Rogers L, 2001, AM NAT, V158, P543, DOI 10.1086/323119; Rogers L., 1998, THESIS U KENTUCKY LE; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; SCHULTZ ET, 1991, ENVIRON BIOL FISH, V30, P333, DOI 10.1007/BF02028849; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; THRESHER RE, 1979, MAR BIOL, V53, P161, DOI 10.1007/BF00389187; Warner R.R., 1978, SMITH CONT ZOOL, P254; Warner R. R., 1977, P 3 INT S COR REEFS, V1, P275; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x; WARNER RR, 1992, EVOLUTION, V46, P1421, DOI 10.1111/j.1558-5646.1992.tb01134.x; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; WARNER RR, 1975, SCIENCE, V190, P633, DOI 10.1126/science.1188360 26 2 2 0 16 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. MAY 2011 13 4 387 399 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 873GA WOS:000298867900005 2019-02-21 J Shustack, DP; Rodewald, AD Shustack, Daniel P.; Rodewald, Amanda D. Nest predation reduces benefits to early clutch initiation in northern cardinals Cardinalis cardinalis JOURNAL OF AVIAN BIOLOGY English Article BIRDS BREEDING SEASONS; MAGPIES PICA-PICA; REPRODUCTIVE SUCCESS; MIGRATORY BIRD; GREAT TIT; LAYING DATE; BLUE TITS; URBAN; SIZE; TIME Life history theory and empirical studies suggest that early breeding confers higher reproductive success, but the extent to which this advantage can be generalized to human-dominated systems and across species is less well understood. We studied the fitness consequences of clutch initiation for 181 female northern cardinals Cardinalis cardinalis and 1228 nests in forests within urban and rural landscapes of Ohio, USA between 2004-2007. Cardinals that bred earlier made significantly more nesting attempts, but cumulative number of young fledged was similar to that of later-breeding individuals. The expected number of fledglings produced per successful nest was unrelated to date and remained similar to 1.8 fledglings across the season, despite the fact that nest survival rates improved dramatically as the season progressed. Because the probability of resighting breeding individuals in subsequent years was unrelated to first clutch initiation date, we have no evidence that clutch initiation affected adult survival. The absence of a clear benefit to early breeding appears to be a consequence of high rates of nest predation early in the breeding season. [Shustack, Daniel P.; Rodewald, Amanda D.] Ohio State Univ, Sch Environm & Nat Res, Columbus, OH 43210 USA; [Shustack, Daniel P.] Massachusetts Coll Liberal Arts, Environm Stud Dept, N Adams, MA 01247 USA Shustack, DP (reprint author), Ohio State Univ, Sch Environm & Nat Res, 2021 Coffey Rd,210 Kottman Hall, Columbus, OH 43210 USA. Daniel.Shustack@mcla.edu Rodewald, Amanda/D-2038-2012; Rodewald, Amanda/I-6308-2016 Rodewald, Amanda/0000-0002-6719-6306 NSF [DEB-0340879, DEB-0639429]; Ohio Division of Wildl.; US Fish and Wildl. Service; Ohio Agricultural Research and Development Center Funding was provided by the NSF DEB-0340879 and DEB-0639429 to ADR, Ohio Division of Wildl. and US Fish and Wildl. Service through the State Wildl. Grant program, and the Ohio Agricultural Research and Development Center. We are grateful to M. H. Bakermans, K. L. Borgmann, L. J. Kearns, F. V. L. Leston, J. R. Smith-Castro and N. Sundell-Turner for their dedicated efforts in the field and laboratory. We thank the following technicians for their help in the field: T. Brown, M. Carll, J. Fullerton, A. Gilmore, B. Graves, J. Gray, S. Hazzard, A. Highland, L. Hitchcock, M. Howie, E. Interis, T. Jones, M. Kanode, J. Kim, L. Koerner, S. Landes, W. Li, T. Magarian, A. Maruster, L. McArthur, J. McConnell, D. Miller, J. Morcillo-Blanco, M. Nelson, E. Norris, C. O'Dell., A. Peterson, M. Santiago, K. Upstrom, B. Van Allen, and A. Vitz. We are grateful to the Franklin County Metro Parks, Columbus Recreation and Parks, Ohio Division of Wildl., the Nature Conserv., City of Bexley, Gahanna Parks and Recr. and private landowners for their cooperation and access to sites. Sound recordings of northern cardinals used for capturing individuals were provided by the Borror Lab. of Bioacoustics, The Ohio State Univ., Columbus, OH, all rights reserved. Banding was conducted under the USFWS banding permit to Paul Rodewald. Antonov A, 2003, ORNIS FENNICA, V80, P21; BARBA E, 1995, J ANIM ECOL, V64, P642, DOI 10.2307/5806; BOMAN R, 2001, AVIAN ECOLOGY CONSER, P383; Chamberlain DE, 2009, IBIS, V151, P1, DOI 10.1111/j.1474-919X.2008.00899.x; CRAMP S, 1972, IBIS, V114, P163, DOI 10.1111/j.1474-919X.1972.tb02601.x; Drent RH, 2006, ARDEA, V94, P305; EDEN SF, 1985, J ZOOL, V205, P325; Erz W., 1966, Ostrich Suppl, VNo. 6, P357; Garcia-Del-Rey E, 2006, IBIS, V148, P564, DOI 10.1111/j.1474-919X.2006.00569.x; Gardner JL, 2008, EMU, V108, P90, DOI 10.1071/MU06058; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; Gruebler MU, 2010, J AVIAN BIOL, V41, P282, DOI 10.1111/j.1600-048X.2009.04865.x; Grzybowski JA, 2005, AUK, V122, P280, DOI 10.1642/0004-8038(2005)122[0280:RDSFIS]2.0.CO;2; Halkin Sylvia L., 1999, Birds of North America, V440, P1; Hill GE, 2004, SCIENCE, V306, P2201, DOI 10.1126/science.1107749; Jones SL, 2010, WILSON J ORNITHOL, V122, P455, DOI 10.1676/08-171.1; KLOMP H, 1970, ARDEA, V58, P1; Lack D, 1968, ECOLOGICAL ADAPTATIO; MADSEN M, 2007, POLAR BIOL, V30, P1363; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; Moller AP, 2006, J ANIM ECOL, V75, P657, DOI 10.1111/j.1365-2656.2006.01086.x; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; MORNEAU F, 1995, LANDSCAPE URBAN PLAN, V32, P55, DOI 10.1016/0169-2046(94)00177-5; Murray BG, 2007, J FIELD ORNITHOL, V78, P401, DOI 10.1111/j.1557-9263.2007.00129.x; Newton I, 1998, POPULATION LIMITATIO; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; NORRIS K, 1993, J ANIM ECOL, V62, P287, DOI 10.2307/5360; Ortega YK, 2006, OECOLOGIA, V149, P340, DOI 10.1007/s00442-006-0438-8; PERRINS CM, 1989, WILSON BULL, V101, P236; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Reudink MW, 2009, P R SOC B, V276, P1619, DOI 10.1098/rspb.2008.1452; Ricklefs RE, 2000, CONDOR, V102, P3, DOI 10.1650/0010-5422(2000)102[0003:LSAMTE]2.0.CO;2; Rodewald AD, 2008, ECOLOGY, V89, P515, DOI 10.1890/07-0358.1; Rodewald AD, 2010, BIOL INVASIONS, V12, P33, DOI 10.1007/s10530-009-9426-3; RODEWARLD AD, ECOLOGY IN PRESS; Rollinson Daniel J., 2002, Urban Ecosystems, V6, P257, DOI 10.1023/B:UECO.0000004826.52945.ed; Roos S, 2002, OECOLOGIA, V133, P608, DOI 10.1007/s00442-002-1056-8; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Runge Michael C., 2005, P375; Schiegg K, 2007, IBIS, V149, P365, DOI 10.1111/j.1474-919X.2007.00654.x; Schoech SJ, 2003, AUK, V120, P1114, DOI 10.1642/0004-8038(2003)120[1114:DDATPI]2.0.CO;2; SCOTT DM, 1987, WILSON BULL, V99, P708; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Sheldon BC, 2003, EVOLUTION, V57, P406; SHUSTACK DP, 2008, THESIS OHIO STATE U; Small SL, 2007, CONDOR, V109, P721, DOI 10.1650/0010-5422(2007)109[721:STPDIA]2.0.CO;2; Stanley TR, 2002, J FIELD ORNITHOL, V73, P292, DOI 10.1648/0273-8570-73.3.292; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; VITZ AC, CONDOR IN PRESS; VONBROMSSEN A, 1980, ORNIS SCAND, V11, P173, DOI 10.2307/3676121; Wiggins DA, 1998, AUK, V115, P1063, DOI 10.2307/4089524; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; Wilson S, 2007, CONDOR, V109, P377, DOI 10.1650/0010-5422(2007)109[377:NSPIWP]2.0.CO;2 58 9 9 3 32 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0908-8857 J AVIAN BIOL J. Avian Biol. MAY 2011 42 3 204 209 10.1111/j.1600-048X.2011.05231.x 6 Ornithology Zoology 788XN WOS:000292477800002 2019-02-21 J Rebstock, GA; Boersma, PD Rebstock, Ginger A.; Boersma, P. Dee PARENTAL BEHAVIOR CONTROLS INCUBATION PERIOD AND ASYNCHRONY OF HATCHING IN MAGELLANIC PENGUINS CONDOR English Article egg temperature; incubation behavior; incubation period; onset of incubation; Spheniscus magellanicus PETREL OCEANODROMA-FURCATA; LIFE-HISTORY EVOLUTION; EGG TEMPERATURE; SPHENISCUS-MAGELLANICUS; ROCKHOPPER PENGUINS; NEST DESERTION; ADELIE PENGUIN; BIRDS; SIZE; ATTENTIVENESS In many species of birds, periods of incubation of eggs within a clutch depend on the order in which the eggs were laid and determine whether the eggs hatch asynchronously or on the same day. Magellanic Penguins (Spheniscus magellanicus) lay two eggs 4 days apart that hatch 2 days apart; first eggs take 41 days to hatch, and second eggs take 39 days. We tested whether temperatures of the two eggs differ and whether delayed onset of incubation caused this pattern. First eggs were cooler than second eggs during their first few days (P < 0.001). First eggs averaged 23.4 +/- 0.3 degrees C in the first 24-48 hours after they were laid. Second eggs averaged 27.9 +/- 0.3 degrees C, warm enough for development. Egg temperature did not stabilize (33.9 degrees C) until eggs were about 18 days old. We swapped first and second eggs of different nests to determine if parental behavior caused the differences in temperatures and incubation periods. First eggs treated as second eggs developed as fast as control second eggs, and second eggs treated as first eggs developed nearly as slowly (40 days) as control first eggs. First eggs that were stored in a cooler until second eggs were laid took 2 days longer to hatch than control first eggs. Parental incubation behavior explained why the incubation period of second eggs was shorter than that of first eggs and controlled asynchrony of hatching, which affects chick growth and survival. [Rebstock, Ginger A.; Boersma, P. Dee] Univ Washington, Dept Biol, Seattle, WA 98195 USA; [Rebstock, Ginger A.; Boersma, P. Dee] Wildlife Conservat Soc, Bronx, NY 10460 USA Rebstock, GA (reprint author), Univ Washington, Dept Biol, Box 351800, Seattle, WA 98195 USA. gar@u.washington.edu Wildlife Conservation Society (WCS); University of Washington; Exxonmobil Foundation; Pew Fellows Program in Marine Conservation; Disney Worldwide Conservation Fund; National Geographic Society; CGMK foundation; Chase foundation; Cunningham foundation; Offield foundation; Peach foundation; Thorne foundation; Kellogg foundation; Wadsworth Endowed Chair in Conservation Science; Friends of the Penguins; Wadsworth Endowed chair The Penguin Project, sponsored by the Wildlife Conservation Society (WCS) and the University of Washington, has been funded for field work by the WCS, Exxonmobil Foundation, the Pew Fellows Program in Marine Conservation, the Disney Worldwide Conservation Fund, the National Geographic Society, the CGMK, Chase, Cunningham, Offield, Peach, Thorne, and Kellogg foundations, the Wadsworth Endowed Chair in Conservation Science, and Friends of the Penguins. Data analysis was funded by the Wadsworth Endowed chair and Offield Foundation. The research was carried out under a joint agreement between the WCS and the Office of Tourism, Province of Chubut, Argentina. We thank the Province of Chubut and the La Regina family for access to the penguin colony, and the many students and field volunteers who recorded data over the years. We thank S. Villarreal for help gathering egg temperatures and E. Lee, E. Wagner, C. Gravelle, E. Wilson, and B. Abrahms for help with the egg-swap experiment. Two anonymous reviewers improved the manuscript. Boersma P.D., 1990, P15; Boersma PD, 2008, BIOSCIENCE, V58, P597, DOI 10.1641/B580707; Boersma PD, 2010, J FIELD ORNITHOL, V81, P442, DOI 10.1111/j.1557-9263.2010.00300.x; Boersma PD, 2009, IBIS, V151, P535, DOI 10.1111/j.1474-919X.2009.00943.x; Boersma PD, 2009, AUK, V126, P335, DOI 10.1525/auk.2009.08144; Boersma PD, 1995, PENGUINS: ECOLOGY AND MANAGEMENT, P3; BOERSMA PD, 1980, AUK, V97, P268; BOERSMA PD, 1982, AM NAT, V120, P733, DOI 10.1086/284027; BOERSMA PD, 1992, ACT 20 C INT ORN, V20, P961; Boonstra TA, 2010, CONDOR, V112, P304, DOI 10.1525/cond.2010.090043; BROWN CR, 1988, S AFR J ZOOL, V23, P166; Brua R. B., 2002, AVIAN INCUBATION BEH, P88; BURGER AE, 1979, AUK, V96, P100; de Leon A, 2001, POLAR BIOL, V24, P338, DOI 10.1007/s003000000216; DEEBOERSMA P, 1979, CONDOR, V81, P157, DOI 10.2307/1367282; DERKSEN DV, 1977, AUK, V94, P552; Drent R, 1975, AVIAN BIOL, VV, P333; Frere Esteban, 1992, Marine Ornithology, V20, P1; FROST PGH, 1976, J ZOOL, V179, P165, DOI 10.1111/j.1469-7998.1976.tb02289.x; HAFTORN S, 1986, Polar Research, V4, P33, DOI 10.1111/j.1751-8369.1986.tb00516.x; HAFTORN S, 1988, ORNIS SCAND, V19, P97, DOI 10.2307/3676458; HANDRICH Y, 1989, PHYSIOL ZOOL, V62, P96, DOI 10.1086/physzool.62.1.30160000; Hipfner JM, 2001, IBIS, V143, P92, DOI 10.1111/j.1474-919X.2001.tb04173.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lombardo MP, 1995, AUK, V112, P973, DOI 10.2307/4089028; LOOS ER, 2004, AUK, V121, P587, DOI DOI 10.1642/0004-8038(2004)121[; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Massaro M, 2004, CONDOR, V106, P496, DOI 10.1650/7395; Massaro M, 2006, J AVIAN BIOL, V37, P497, DOI 10.1111/j.0908-8857.2006.03783.x; Nakamura M, 2008, J APPL PHYSIOL, V105, P1897, DOI 10.1152/japplphysiol.90466.2008; Olson CR, 2006, PHYSIOL BIOCHEM ZOOL, V79, P927, DOI 10.1086/506003; Persson I, 1999, ETHOLOGY, V105, P1087, DOI 10.1046/j.1439-0310.1999.10512489.x; Poussart C, 2000, CONDOR, V102, P292, DOI 10.1650/0010-5422(2000)102[0292:TTROED]2.0.CO;2; REID BRIAN, 1965, NEW ZEAL J SCI, V8, P503; REID JM, 2002, AVIAN INCUBATION BEH, P315; RICKLEFS RE, 1983, AUK, V100, P926; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Robinson WD, 2008, AM NAT, V171, P532, DOI 10.1086/528964; Rowe KMC, 2009, AUK, V126, P141, DOI 10.1525/auk.2009.07210; RUNDE OJ, 1981, ORNIS SCAND, V12, P80, DOI 10.2307/3675908; Sockman KW, 2006, BIOL REV, V81, P629, DOI 10.1017/S1464793106007147; ST CLAIR CC, 1992, BEHAV ECOL SOCIOBIOL, V31, P409; St Clair CC, 1996, J ANIM ECOL, V65, P485; STOKES DL, 1991, AUK, V108, P923; Stoleson Scott H., 1995, Current Ornithology, V12, P191; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; VINCE MA, 1964, ANIM BEHAV, V12, P531, DOI 10.1016/0003-3472(64)90075-2; Wang JM, 2009, WILSON J ORNITHOL, V121, P512, DOI 10.1676/08-116.1; WEBB DR, 1987, CONDOR, V89, P874, DOI 10.2307/1368537; WEINRICH JA, 1978, AUK, V95, P569; WHEELWRIGHT NT, 1979, PHYSIOL ZOOL, V52, P231, DOI 10.1086/physzool.52.2.30152566; Williams TD, 1995, PENGUINS SPHENISCIDA, P249; YORIO P, 1994, AUK, V111, P215, DOI 10.2307/4088528; YORIO P, 1994, CONDOR, V96, P1076, DOI 10.2307/1369116 56 17 17 0 15 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 1938-5129 CONDOR Condor MAY 2011 113 2 316 325 10.1525/cond.2011.100162 10 Ornithology Zoology 779CD WOS:000291754800008 2019-02-21 J Nilsson, JF; Tobler, M; Nilsson, JA; Sandell, MI Nilsson, Johan F.; Tobler, Michael; Nilsson, Jan-Ake; Sandell, Maria I. Long-Lasting Consequences of Elevated Yolk Testosterone for Metabolism in the Zebra Finch PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article GENETIC CORRELATIONS; HORMONE DEPOSITION; ENERGY-METABOLISM; AVIAN EGGS; BROOD SIZE; COSTS; BASAL; HERITABILITY; SURVIVAL; BIRDS Resting metabolic rate is a common way of quantifying the cost of living in endothermic animals. The trait often makes up a substantial part of an animal's energy budget and can also be related to sustainable peak work rate as well as to daily energy expenditure. Studies have shown that metabolic rates are often heritable, but much of the variation seems to be caused by other factors (e.g., environmental and maternal effects). In a previous study, in ovo exposure to increased levels of testosterone induced metabolic costs early in life. It is, however, unknown whether in ovo androgens also have long-term effects on individual metabolic rates. In this study, we show that experimentally increased levels of in ovo testosterone in zebra finches (Taeniopygia guttata) result in a 7% higher resting metabolic rate when they are adults. This shows that maternally transferred hormones can induce long-term effects on metabolic demands and potentially influence variation in life-history strategies among offspring. Variation in maternal hormone transfer may also explain some of the large interindividual variation observed in metabolic rates. [Nilsson, Johan F.; Tobler, Michael; Nilsson, Jan-Ake; Sandell, Maria I.] Lund Univ, Dept Biol, S-22362 Lund, Sweden; [Tobler, Michael] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Nilsson, JF (reprint author), Lund Univ, Dept Biol, Ecol Bldg, S-22362 Lund, Sweden. johan.nilsson@zooekol.lu.se Nilsson, Johan/F-4141-2011; Tobler, Michael/B-2754-2013 Tobler, Michael/0000-0001-5895-6302; Nilsson, Johan/0000-0001-6744-6486 Swedish Research Council; Royal Physiographic Society in Lund Constructive comments from two anonymous referees greatly improved the manuscript. Financial support for this study was provided by the Swedish Research Council (to J.-A.N. and M.I.S.) and the Royal Physiographic Society in Lund (to M.T.). Boratynski Z, 2009, FUNCT ECOL, V23, P330, DOI 10.1111/j.1365-2435.2008.01505.x; BROGGI J, 2009, EVOL ECOL, V24, P177; BRYANT DM, 1994, ANIM BEHAV, V48, P447, DOI 10.1006/anbe.1994.1258; Buchanan KL, 2001, P ROY SOC B-BIOL SCI, V268, P1337, DOI 10.1098/rspb.2001.1669; Burness GP, 2000, J EXP BIOL, V203, P3513; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; Cyr NE, 2008, PHYSIOL BIOCHEM ZOOL, V81, P452, DOI 10.1086/589547; Eising CM, 2003, J EXP BIOL, V206, P3211, DOI 10.1242/jeb.00552; Eising CM, 2006, BIOL LETTERS, V2, P20, DOI 10.1098/rsbl.2005.0391; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Groothuis TGG, 2005, BIOL LETTERS, V1, P78, DOI 10.1098/rsbl.2004.0233; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; HILL RW, 1972, J APPL PHYSIOL, V33, P261; KLAASSEN M, 1995, OECOLOGIA, V104, P424, DOI 10.1007/BF00341339; Konarzewski M, 2005, INTEGR COMP BIOL, V45, P416, DOI 10.1093/icb/45.3.416; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Littell RC, 2006, SAS MIXED MODELS; Manttari S, 2008, J COMP PHYSIOL B, V178, P899, DOI 10.1007/s00360-008-0280-x; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Muller W, 2009, BEHAV ECOL SOCIOBIOL, V63, P809, DOI 10.1007/s00265-009-0714-9; Nespolo RF, 2003, EVOLUTION, V57, P1679; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; Roberts SB, 2006, PHYSIOL REV, V86, P651, DOI 10.1152/physrev.00019.2005; Ronning B, 2007, J EVOLUTION BIOL, V20, P1815, DOI 10.1111/j.1420-9101.2007.01384.x; Sadowska ET, 2005, EVOLUTION, V59, P672; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; Tobler M, 2007, HORM BEHAV, V52, P640, DOI 10.1016/j.yhbeh.2007.07.016; Tobler M, 2007, BIOLOGY LETT, V3, P408, DOI 10.1098/rsbl.2007.0127; Verhulst S, 2006, BIOL LETT-UK, V2, P478, DOI 10.1098/rsbl.2006.0496; Versteegh MA, 2008, COMP BIOCHEM PHYS A, V150, P452, DOI 10.1016/j.cbpa.2008.05.006; von Engelhardt N, 2006, P ROY SOC B-BIOL SCI, V273, P65, DOI 10.1098/rspb.2005.3274; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; WONE B, 2009, P R SOC B, V275, P3695; Zann R, 1996, ZEBRA FINCH SYNTHESI 38 15 16 1 18 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY-JUN 2011 84 3 287 291 10.1086/659006 5 Physiology; Zoology Physiology; Zoology 764WQ WOS:000290665700006 21527819 2019-02-21 J Pollitt, LC; MacGregor, P; Matthews, K; Reece, SE Pollitt, Laura C.; MacGregor, Paula; Matthews, Keith; Reece, Sarah E. Malaria and trypanosome transmission: different parasites, same rules? TRENDS IN PARASITOLOGY English Review AFRICAN TRYPANOSOMES; INTRASPECIFIC COMPETITION; REPRODUCTIVE RESTRAINT; PHENOTYPIC PLASTICITY; PLASMODIUM-CHABAUDI; EVOLUTION; BRUCEI; VIRULENCE; INFECTIONS; ECOLOGY African trypanosomes produce different specialized stages for within-host replication and between-host transmission and therefore face a resource allocation trade-off between maintaining the current infection (survival) and investment into transmission (reproduction). Evolutionary theory predicts the resolution of this trade-off will significantly affect virulence and infectiousness. The application of life history theory to malaria parasites has provided novel insight into their strategies for survival and reproduction; how this framework can now be applied to trypanosomes is discussed. Specifically, predictions for how parasites trade-off investment in survival and transmission in response to variation in the within-host environment are outlined. An evolutionary approach has the power to explain why patterns of investment vary between strains and during infections, giving important insights into parasite biology. [Pollitt, Laura C.; Reece, Sarah E.] Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [MacGregor, Paula; Matthews, Keith] Univ Edinburgh, Sch Biol Sci, Inst Immunol & Infect Res, Edinburgh EH9 3JT, Midlothian, Scotland; [Matthews, Keith; Reece, Sarah E.] Univ Edinburgh, Sch Biol Sci, Ctr Immun Infect & Evolut, Edinburgh EH9 3JT, Midlothian, Scotland Pollitt, LC (reprint author), Univ Edinburgh, Sch Biol Sci, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland. laura.pollitt@ed.ac.uk Reece, Sarah/C-9447-2009 Reece, Sarah/0000-0001-6716-6732; MacGregor, Paula/0000-0003-0919-3745; Matthews FMedSci FRSE, Professor Keith/0000-0003-0309-9184 NERC; Wellcome Trust We thank Nicole Mideo and Giles K.P. Barra for discussion as well as three anonymous reviewers for improving the manuscript. LCP is supported by a NERC studentship and PM, KM and SER by the Wellcome Trust. Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Antunes LCM, 2009, CRIT REV MICROBIOL, V35, P69, DOI 10.1080/10408410902733946; Babiker HA, 2008, TRENDS PARASITOL, V24, P525, DOI 10.1016/j.pt.2008.08.001; BALBER AE, 1972, EXP PARASITOL, V31, P307, DOI 10.1016/0014-4894(72)90122-1; Balmer O, 2009, ECOLOGY, V90, P3367, DOI 10.1890/08-2291.1; Berriman M, 2005, SCIENCE, V309, P416, DOI 10.1126/science.1112642; Brown SP, 2008, ECOL LETT, V11, P44, DOI 10.1111/j.1461-0248.2007.01125.x; Buckling A, 1999, PARASITOLOGY, V118, P339, DOI 10.1017/S0031182099003960; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; Dean S, 2009, NATURE, V459, P213, DOI 10.1038/nature07997; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Foster KR, 2005, SCIENCE, V308, P1269, DOI 10.1126/science.1108158; Gardner A, 2009, J EVOLUTION BIOL, V22, P659, DOI 10.1111/j.1420-9101.2008.01681.x; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Griffin AS, 2004, NATURE, V430, P1024, DOI 10.1038/nature02744; Hammill E, 2008, J EVOLUTION BIOL, V21, P705, DOI 10.1111/j.1420-9101.2008.01520.x; Harrington WE, 2009, P NATL ACAD SCI USA, V106, P9027, DOI 10.1073/pnas.0901415106; Lythgoe KA, 2007, P NATL ACAD SCI USA, V104, P8095, DOI 10.1073/pnas.0606206104; MacGregor P, 2010, J MOL MED, V88, P865, DOI 10.1007/s00109-010-0637-y; Mackinnon MJ, 2010, SCIENCE, V328, P866, DOI 10.1126/science.1185410; MacLeod A, 2001, PARASITOLOGY, V123, P475, DOI 10.1017/S0031182001008666; Matthews KR, 2004, TRENDS PARASITOL, V20, P40, DOI 10.1016/j.pt.2003.10.016; McCulloch R, 2009, TRENDS PARASITOL, V25, P359, DOI 10.1016/j.pt.2009.05.007; Mideo N, 2008, CELL MICROBIOL, V10, P1947, DOI 10.1111/j.1462-5822.2008.01208.x; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; Mideo N, 2009, TRENDS PARASITOL, V25, P261, DOI 10.1016/j.pt.2009.03.001; Morrison LJ, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000557; Morrison LJ, 2008, INFECT GENET EVOL, V8, P847, DOI 10.1016/j.meegid.2008.08.005; Oberholzer M, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1000739; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Paul REL, 2003, ECOL LETT, V6, P866, DOI 10.1046/j.1461-0248.2003.00509.x; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; POLLITT LC, AM NAT IN PRESS; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Read AF, 2001, SCIENCE, V292, P1099, DOI 10.1126/science.1059410; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2010, P ROY SOC B-BIOL SCI, V277, P3123, DOI 10.1098/rspb.2010.0564; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Roditi I, 2008, CURR OPIN MICROBIOL, V11, P345, DOI 10.1016/j.mib.2008.06.006; ROFF DA, 2002, LIFE HIST EVOLUTION; Schneider P, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-257; Stearns S, 1992, EVOLUTION LIFE HIST; Taylor JE, 2006, TRENDS GENET, V22, P614, DOI 10.1016/j.tig.2006.08.003; TURNER CMR, 1995, PARASITOLOGY, V111, P289, DOI 10.1017/S0031182000081841; Vassella E, 1997, J CELL SCI, V110, P2661; Wargo AR, 2007, P NATL ACAD SCI USA, V104, P19914, DOI 10.1073/pnas.0707766104; Wargo AR, 2007, P R SOC B, V274, P2629, DOI 10.1098/rspb.2007.0873; Wargo AR, 2006, EXP PARASITOL, V112, P13, DOI 10.1016/j.exppara.2005.08.013; West S.A., 2009, SEX ALLOCATION; West SA, 2006, NAT REV MICROBIOL, V4, P597, DOI 10.1038/nrmicro1461 54 20 24 0 20 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 1471-4922 1471-5007 TRENDS PARASITOL Trends Parasitol. MAY 2011 27 5 197 203 10.1016/j.pt.2011.01.004 7 Parasitology Parasitology 767XI WOS:000290891700004 21345732 Green Published, Other Gold 2019-02-21 J Zhang, R; Heberling, JM; Haner, E; Shea, K Zhang, Rui; Heberling, J. Mason; Haner, Emily; Shea, Katriona Tolerance of two invasive thistles to repeated disturbance ECOLOGICAL RESEARCH English Article Disturbance; Tolerance; Invasive; Carduus nutans; Carduus acanthoides HERB RORIPPA-PALUSTRIS; CARDUUS-ACANTHOIDES L; SOIL SEED BANKS; BARBAREA-VULGARIS; APICAL DOMINANCE; GLOBAL CHANGE; PLANT; DISPERSAL; HERBIVORY; SUCCESS Many invasive species have short life cycles, high reproduction, and easily dispersed offspring that make them good ruderal species under disturbance. However, the tolerance of such ruderal species to disturbance is often overlooked. In a 2-year mowing study, we applied frequent intense disturbances to examine the tolerance of two congeneric invasive thistles, Carduus acanthoides and Carduus nutans, and potential differences in their responses. Our results show that both species can survive multiple mowing events, with C. acanthoides surviving repeated intense mowing through a whole season. Furthermore, C. acanthoides was found to adjust its growth form to the disturbance regime, and successfully overwintered and reproduced in the subsequent growing season if the disturbance was terminated. Our results support the idea that tolerance to disturbance should be considered when examining invasions by short-lived monocarpic species, since avoidance of disturbance via rapid life cycle completion and seed production, and tolerance of disturbance via regrowth can co-occur in these species. Consequently, management of short-lived invasives should take both life history strategies into account. [Zhang, Rui; Heberling, J. Mason; Haner, Emily; Shea, Katriona] Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA Zhang, R (reprint author), Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA. ruz104@psu.edu Shea, Katriona/B-7954-2008 Shea, Katriona/0000-0002-7607-8248; Heberling, Mason/0000-0003-0756-5090 USDA-CSREES [2002-35320-12289]; NSF [DEB-0815373] We appreciate the help of Carrie Davila, Maria Stevens, Matthew Jennis, Jennifer Stella, Clayton Costa, Andrea Leshak, and Liza Senic in the field work. We are very grateful for comments from Suann Yang, Adam Miller, Katherine Marchetto, Ezra Schwartzberg, Eelke Jongejans, Laura Russo, Britta Teller, and two anonymous reviewers. We acknowledge the support of USDA-CSREES (Biology of Weedy and Invasive Plants) NRI grant #2002-35320-12289 and NSF grant #DEB-0815373 to K. S. Allen MR, 2006, BIOL INVASIONS, V8, P509, DOI 10.1007/s10530-005-6407-z; Bell DT, 2001, BOT REV, V67, P417, DOI 10.1007/BF02857891; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; BELSKY AJ, 1993, EVOL ECOL, V7, P109, DOI 10.1007/BF01237737; Benefield C. B., 1999, California Agriculture, V53, P17; Crawley M. J., 2007, R BOOK; DESROCHERS AM, 1988, CAN J PLANT SCI, V68, P1053, DOI 10.4141/cjps88-126; DiTomaso JM, 2003, WEED SCI, V51, P334, DOI 10.1614/0043-1745(2003)051[0334:EOLADO]2.0.CO;2; DiTomaso JM, 2000, WEED SCI, V48, P255, DOI 10.1614/0043-1745(2000)048[0255:IWIRSI]2.0.CO;2; Dukes JS, 1999, TRENDS ECOL EVOL, V14, P135, DOI 10.1016/S0169-5347(98)01554-7; Eckersten H, 2010, ACTA AGR SCAND B-S P, V60, P126, DOI 10.1080/09064710902721347; FELDMAN SR, 1990, WEED RES, V30, P161, DOI 10.1111/j.1365-3180.1990.tb01700.x; Foley JA, 2005, SCIENCE, V309, P570, DOI 10.1126/science.1111772; Fumanal B, 2008, SEED SCI RES, V18, P101, DOI 10.1017/S0960258508974316; Gao Y, 2009, ECOL RES, V24, P1033, DOI 10.1007/s11284-008-0577-y; GASSMANN A, 2002, USDA FOREST SERVICE; Grime J. P., 2001, PLANT STRATEGIES VEG; HOBBS RJ, 1992, CONSERV BIOL, V6, P324, DOI 10.1046/j.1523-1739.1992.06030324.x; Huhta AP, 2009, PLANT ECOL, V201, P599, DOI 10.1007/s11258-008-9535-6; Huhta AP, 2000, EVOL ECOL, V14, P373, DOI 10.1023/A:1011028722860; Jentsch A, 2007, FRONT ECOL ENVIRON, V5, P365, DOI 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2; Klimesova J, 2008, WEED RES, V48, P131, DOI 10.1111/j.1365-3180.2007.00608.x; Klimesova J, 2003, OIKOS, V103, P225, DOI 10.1034/j.1600-0706.2003.12725.x; Klimesova J, 2007, PLANT ECOL, V189, P237, DOI 10.1007/s11258-006-9180-x; KOK LT, 2002, USDA FOREST SERVICE; Latzel V, 2009, BIOLOGIA, V64, P923, DOI 10.2478/s11756-009-0174-8; Martinkova J, 2004, ACTA OECOL, V25, P143, DOI 10.1016/j.actao.2003.12.004; Martinkova J, 2008, BASIC APPL ECOL, V9, P44, DOI 10.1016/j.baae.2006.12.001; MCCARTY MK, 1982, WEED SCI, V30, P441; Meiman PJ, 2009, PLANT ECOL, V201, P631, DOI 10.1007/s11258-009-9577-4; Panetta FD, 2007, DIVERS DISTRIB, V13, P33, DOI 10.1111/j.1472-4642.2006.00294.x; Piippo S, 2009, BOTANY, V87, P837, DOI 10.1139/B09-057; Prinzing A, 2002, EVOL ECOL RES, V4, P385; R Development Core Team, 2008, R LANG ENV STAT COMP; Rautio P, 2005, OIKOS, V111, P179, DOI 10.1111/j.0030-1299.2005.14045.x; RHOADS AF, 2000, PLANTS PENNSYLVANIA; ROSENTHAL JP, 1994, TRENDS ECOL EVOL, V9, P145, DOI 10.1016/0169-5347(94)90180-5; Skarpaas O, 2007, AM NAT, V170, P421, DOI 10.1086/519854; Sosnova M, 2009, ACTA OECOL, V35, P691, DOI 10.1016/j.actao.2009.06.010; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Theoharides KA, 2007, NEW PHYTOL, V176, P256, DOI 10.1111/j.1469-8137.2007.02207.x; Tipping PW, 2008, WEED TECHNOL, V22, P49, DOI 10.1614/WT-07-087.1; VANDERMEIJDEN E, 1988, OIKOS, V51, P355, DOI 10.2307/3565318; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; WHITE PS, 1979, BOT REV, V45, P229, DOI 10.1007/BF02860857; White VA, 2005, WEED SCI, V53, P826, DOI 10.1614/WS-04-171R.1; Wilson JRU, 2009, TRENDS ECOL EVOL, V24, P136, DOI 10.1016/j.tree.2008.10.007; Witkowski ETF, 2001, PLANT ECOL, V152, P13, DOI 10.1023/A:1011409004004; Zar J. H., 1999, BIOSTATISTICAL ANAL 49 12 13 0 29 SPRINGER TOKYO TOKYO 1-11-11 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN 0912-3814 ECOL RES Ecol. Res. MAY 2011 26 3 575 581 10.1007/s11284-011-0816-5 7 Ecology Environmental Sciences & Ecology 763EW WOS:000290538900012 2019-02-21 J Zhao, J; Chen, J Zhao, Jin; Chen, Jin Photosynthesis, growth and foliar herbivory of four Ardisia species (Myrsinaceae) ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY English Article Ardisia; Invasive species; Phenotypic plasticity; Photosynthetic characteristics; Enemy release ENEMY RELEASE HYPOTHESIS; LIFE-HISTORY STRATEGIES; SHRUB CLIDEMIA-HIRTA; PHENOTYPIC PLASTICITY; SHADE TOLERANCE; INVASIVE PLANTS; MORPHOLOGICAL PLASTICITY; RELATIVE IMPORTANCE; BIOMASS ALLOCATION; LEAF-AREA Ardisia elliptica is an understory shrub endemic to Southeast Asia and has become a notorious invasive plant in Florida. In this study, we determined the photosynthetic capacity of A. elliptica and phylogenetically related species under four levels of irradiations. In addition, the levels of damage from natural insect herbivory of these four species under common garden conditions were investigated. The results show that A. elliptica had the higher photosynthetic capacity and the relative growth rate (RGR) which could be attributed to its high light-saturated photosynthetic rates (P-max), relatively low respiratory rate (R-d) and the increasing specific leaf area (SLA) with decreasing irradiation. A. elliptica also exhibited high phenotypic plasticity for photosynthetic traits in response to different irradiations including LSPT, P-max and RGR. Comparing to its congeners, A. elliptica suffered consistently severe damage from natural herbivory. Our results suggest that high photosynthetic capacity and high phenotypic plasticity could enable A. elliptica become a nuisance with the absence of natural enemies in introduced habitats, especially in those disturbed environments with high-light conditions. Crown Copyright (C) 2011 Published by Elsevier Masson SAS. All rights reserved. [Zhao, Jin; Chen, Jin] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan Province, Peoples R China Chen, J (reprint author), Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Mengla 666303, Yunnan Province, Peoples R China. cj@xtbg.org.cn Agrawal AA, 2003, ECOL LETT, V6, P712, DOI 10.1046/j.1461-0248.2003.00498.x; Alpert Peter, 2000, Perspectives in Plant Ecology Evolution and Systematics, V3, P52, DOI 10.1078/1433-8319-00004; Baker HG, 1974, ANNU REV ECOL SYST, V5, P1, DOI [10.1146/annurev.es.05.110174.000245, DOI 10.1146/ANNUREV.ES.05.110174.000245]; Baruch Z, 1999, OECOLOGIA, V121, P183, DOI 10.1007/s004420050920; BARUCH Z, 1985, OECOLOGIA, V67, P388, DOI 10.1007/BF00384945; BAZZAZ FA, 1979, ANNU REV ECOL SYST, V10, P351, DOI 10.1146/annurev.es.10.110179.002031; Beckstead J, 2003, ECOLOGY, V84, P2824, DOI 10.1890/02-0517; BOARDMAN NK, 1977, ANNU REV PLANT PHYS, V28, P355, DOI 10.1146/annurev.pp.28.060177.002035; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Brock MT, 2005, NEW PHYTOL, V166, P173, DOI 10.1111/j.1469-8137.2004.01300.x; Burns JH, 2006, ECOL APPL, V16, P1367, DOI 10.1890/1051-0761(2006)016[1367:RAEATA]2.0.CO;2; Burns JH, 2006, BIOL INVASIONS, V8, P797, DOI 10.1007/s10530-005-3838-5; Burns JH, 2004, DIVERS DISTRIB, V10, P387, DOI 10.1111/j.1366-9516.2004.00105.x; Callaway RM, 2000, SCIENCE, V290, P521, DOI 10.1126/science.290.5491.521; Callaway RM, 2003, ECOLOGY, V84, P1115, DOI 10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2; Chazdon Robin L., 1996, P5; Cisneros JJ, 2001, ENVIRON ENTOMOL, V30, P501, DOI 10.1603/0046-225X-30.3.501; Colautti RI, 2004, ECOL LETT, V7, P721, DOI 10.1111/j.1461-0248.2004.00616.x; Daehler CC, 2003, ANNU REV ECOL EVOL S, V34, P183, DOI 10.1146/annurev.ecolsys.34.011802.132403; DAEHLER CC, 2006, RECORDS HAWAII BIO 1, V87, P3; DANTONIO CM, 1992, ANNU REV ECOL SYST, V23, P63, DOI 10.1146/annurev.es.23.110192.000431; Davis MA, 2000, J ECOL, V88, P528, DOI 10.1046/j.1365-2745.2000.00473.x; DeWalt SJ, 2004, ECOLOGY, V85, P471, DOI 10.1890/02-0728; DeWalt SJ, 2004, OECOLOGIA, V138, P521, DOI 10.1007/s00442-003-1462-6; Durand LZ, 2001, OECOLOGIA, V126, P345, DOI 10.1007/s004420000535; ELTON CS, 1958, ECOLOGY INVASION ANI; EVANS GC, 1972, QUANTITATIVE ANAL PL, P734; FEENY P, 1970, ECOLOGY, V75, P86; *FLEPPC, 2005, LIST FLOR INV SPEC; Funk JL, 2008, J ECOL, V96, P1162, DOI 10.1111/j.1365-2745.2008.01435.x; Gerlach JD, 2003, ECOL APPL, V13, P167, DOI 10.1890/1051-0761(2003)013[0167:TLHCOI]2.0.CO;2; Gonzalez AV, 2004, ACTA OECOL, V26, P185, DOI 10.1016/j.actao.2004.05.001; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Grotkopp E, 2007, AM J BOT, V94, P526, DOI 10.3732/ajb.94.4.526; HARLEY PC, 1992, PLANT CELL ENVIRON, V15, P271, DOI 10.1111/j.1365-3040.1992.tb00974.x; Hinz HL, 2004, WEED TECHNOL, V18, P1533, DOI 10.1614/0890-037X(2004)018[1533:CIPFTN]2.0.CO;2; Hobbs RJ, 1998, CONSERV BIOL, V12, P271, DOI 10.1046/j.1523-1739.1998.96233.x; Huberty AF, 2006, OECOLOGIA, V149, P444, DOI 10.1007/s00442-006-0462-8; Kalra Y.P., 1991, METHODS MANUAL FORES, P116; Kawasaki N, 2009, ENTOMOL SCI, V12, P135, DOI 10.1111/j.1479-8298.2009.00314.x; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; KITAJIMA K, 1994, OECOLOGIA, V98, P419, DOI 10.1007/BF00324232; Kolb A, 2003, BIOL INVASIONS, V5, P229, DOI 10.1023/A:1026185503777; Koop AL, 2004, PLANT ECOL, V172, P237, DOI 10.1023/B:VEGE.0000026343.85382.a4; KOOP AL, 2003, THESIS U MIAMI; Lambrinos JG, 2004, ECOLOGY, V85, P2061, DOI 10.1890/03-8013; LANGELAND KA, 1998, IDENTIFICATION BIOL; Leger EA, 2003, ECOL LETT, V6, P257, DOI 10.1046/j.1461-0248.2003.00423.x; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; MATTSON WJ, 1980, ANNU REV ECOL SYST, V11, P119, DOI 10.1146/annurev.es.11.110180.001003; McDowell SCL, 2002, AM J BOT, V89, P1431, DOI 10.3732/ajb.89.9.1431; Niinemets U, 2003, PLANT CELL ENVIRON, V26, P941, DOI 10.1046/j.1365-3040.2003.01027.x; PAMMENTER NW, 1986, NEW PHYTOL, V102, P143, DOI 10.1111/j.1469-8137.1986.tb00806.x; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Pattison RR, 1998, OECOLOGIA, V117, P449, DOI 10.1007/s004420050680; Poorter L, 1999, FUNCT ECOL, V13, P396, DOI 10.1046/j.1365-2435.1999.00332.x; Reich PB, 1998, FUNCT ECOL, V12, P948, DOI 10.1046/j.1365-2435.1998.00274.x; Rejmanek M, 1996, BIOL CONSERV, V78, P171, DOI 10.1016/0006-3207(96)00026-2; RICE KJ, 1991, OECOLOGIA, V88, P84, DOI 10.1007/BF00328407; Richardson DM, 2006, PROG PHYS GEOG, V30, P409, DOI 10.1191/0309133306pp490pr; SCHIERENBECK KA, 1994, ECOLOGY, V80, P1292; Schweitzer JA, 1999, J TORREY BOT SOC, V126, P15, DOI 10.2307/2997251; Shipley B, 2006, FUNCT ECOL, V20, P565, DOI 10.1111/j.1365-2435.2006.01135.x; Stiling P, 2005, OECOLOGIA, V142, P413, DOI 10.1007/s00442-004-1739-4; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Theoharides KA, 2007, NEW PHYTOL, V176, P256, DOI 10.1111/j.1469-8137.2007.02207.x; Torchin ME, 2004, FRONT ECOL ENVIRON, V2, P183, DOI 10.2307/3868313; Van der Putten WH, 2000, OECOLOGIA, V124, P91, DOI 10.1007/s004420050028; VONCAEMMERER S, 1981, PLANTA, V153, P376, DOI 10.1007/BF00384257; WALKER LR, 1991, ECOLOGY, V72, P1449, DOI 10.2307/1941117; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Walters MB, 2000, FUNCT ECOL, V14, P155, DOI 10.1046/j.1365-2435.2000.00415.x; Weber E, 1999, CAN J BOT, V77, P1411, DOI 10.1139/b99-091; White TCR, 1993, INADEQUATE ENV NITRO; WILLIAMS DG, 1994, OECOLOGIA, V97, P512, DOI 10.1007/BF00325890; WILLIAMS DG, 1995, ECOLOGY, V76, P1569, DOI 10.2307/1938158; Wu Z. Y, 1996, FLORA CHINA, V15; WULLSCHLEGER SD, 1993, J EXP BOT, V44, P907, DOI 10.1093/jxb/44.5.907; Zheng YL, 2009, PLANT ECOL, V203, P263, DOI 10.1007/s11258-008-9544-5 79 2 3 0 25 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1146-609X 1873-6238 ACTA OECOL Acta Oecol.-Int. J. Ecol. MAY-JUN 2011 37 3 277 283 10.1016/j.actao.2011.02.012 7 Ecology Environmental Sciences & Ecology 759XK WOS:000290282100015 2019-02-21 J Jorgensen, C; Auer, SK; Reznick, DN Jorgensen, Christian; Auer, Sonya K.; Reznick, David N. A Model for Optimal Offspring Size in Fish, Including Live-Bearing and Parental Effects AMERICAN NATURALIST English Article growth rate; life-history evolution; live-bearing; maternal effects; mortality; offspring size LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; MARINE BENTHIC INVERTEBRATES; COD GADUS-MORHUA; OPTIMAL EGG SIZE; TELEOST FISHES; PROPAGULE SIZE; REPRODUCTIVE STRATEGIES; SELECTIVE MORTALITY; NATURAL MORTALITY Since Smith and Fretwell's seminal article in 1974 on the optimal offspring size, most theory has assumed a trade-off between offspring number and offspring fitness, where larger offspring have better survival or fitness, but with diminishing returns. In this article, we use two ubiquitous biological mechanisms to derive the shape of this trade-off: the offspring's growth rate combined with its size-dependent mortality (predation). For a large parameter region, we obtain the same sigmoid relationship between offspring size and offspring survival as Smith and Fretwell, but we also identify parameter regions where the optimal offspring size is as small or as large as possible. With increasing growth rate, the optimal offspring size is smaller. We then integrate our model with strategies of parental care. Egg guarding that reduces egg mortality favors smaller or larger offspring, depending on how mortality scales with size. For live-bearers, the survival of offspring to birth is a function of maternal survival; if the mother's survival increases with her size, then the model predicts that larger mothers should produce larger offspring. When using parameters for Trinidadian guppies Poecilia reticulata, differences in both growth and size-dependent predation are required to predict observed differences in offspring size between wild populations from high- and low-predation environments. [Jorgensen, Christian] Uni Res, N-5020 Bergen, Norway; [Auer, Sonya K.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Jorgensen, C (reprint author), Uni Res, Box 7810, N-5020 Bergen, Norway. christian.jorgensen@bio.uib.no Jorgensen, Christian/B-4453-2009 Jorgensen, Christian/0000-0001-7087-4625; reznick, david/0000-0002-1144-0568 Research Council of Norway; National Science Foundation (NSF) [DEB0416085, EF0623632] We thank F. Bashey and reviewers for comments that improved the manuscript. C.J. thanks the Research Council of Norway for funding to stay at University of California-Riverside and the members of the Reznick lab and their colleagues for a stimulating scientific and social environment. S.K.A. was funded by a Nordic Research Opportunity grant from the National Science Foundation (NSF) and the Research Council of Norway. D.N.R. was supported by grants DEB0416085 and EF0623632 from the NSF. Ahlstrom E.H., 1980, California Cooperative Oceanic Fisheries Investigations Reports, V21, P121; Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Azevedo RBR, 1996, EVOLUTION, V50, P2338, DOI 10.1111/j.1558-5646.1996.tb03621.x; BALON EK, 1991, ENVIRON BIOL FISH, V32, P249, DOI 10.1007/BF00007458; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bernardo J, 1996, AM ZOOL, V36, P216; Brillon S, 2005, MAR BIOL, V147, P895, DOI 10.1007/s00227-005-1633-6; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; CHRISTIANSEN FB, 1979, THEOR POPUL BIOL, V16, P267, DOI 10.1016/0040-5809(79)90017-0; Clark C, 2000, DYNAMIC STATE VARIAB; CONOVER DO, 1997, EARLY LIFE HIST RECR, P305; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; DEBLOIS EM, 1991, MAR ECOL PROG SER, V69, P205, DOI 10.3354/meps069205; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Evans JP, 2007, BEHAV ECOL SOCIOBIOL, V61, P719, DOI 10.1007/s00265-006-0302-1; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Fyhn HJ, 1999, SARSIA, V84, P451, DOI 10.1080/00364827.1999.10807350; Green BS, 2005, BEHAV ECOL, V16, P389, DOI 10.1093/beheco/ari007; Hendry AP, 2001, AM NAT, V157, P387, DOI 10.1086/319316; HOUDE ED, 1989, FISH B-NOAA, V87, P471; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Kiflawi M, 2006, OIKOS, V113, P168, DOI 10.1111/j.0030-1299.2001.14378.x; Kindsvater HK, 2010, EVOL ECOL RES, V12, P327; KJESBU OS, 1992, J FISH BIOL, V41, P581, DOI 10.1111/j.1095-8649.1992.tb02685.x; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1996, AM NAT, V148, P174, DOI 10.1086/285917; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; Moran AL, 2009, BIOL BULL-US, V216, P226; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PAULY D, 1988, ENVIRON BIOL FISH, V22, P261, DOI 10.1007/BF00004892; Perrin N, 1988, FUNCT ECOL, V2, P283, DOI 10.2307/2389399; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; Reznick D, 2006, OIKOS, V114, P135, DOI 10.1111/j.2006.0030-1299.14446.x; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; RICKLEFS RE, 1968, P NATL ACAD SCI USA, V61, P847, DOI 10.1073/pnas.61.3.847; RIJNSDORP AD, 1990, J CONSEIL, V47, P256; SARGENT RC, 1987, AM NAT, V129, P32, DOI 10.1086/284621; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Sogard SM, 1997, B MAR SCI, V60, P1129; TAYLOR PD, 1984, CAN J ZOOL, V62, P2264, DOI 10.1139/z84-329; Tian T, 2007, CAN J FISH AQUAT SCI, V64, P554, DOI 10.1139/F07-031; Turner CL, 1947, SCI MON, V65, P508; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; VANCE RR, 1973, AM NAT, V107, P353, DOI 10.1086/282839; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; WARE DM, 1975, J FISH RES BOARD CAN, V32, P2503, DOI 10.1139/f75-288; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; WINKLER DW, 1987, AM NAT, V129, P708, DOI 10.1086/284667; WOURMS JP, 1992, AM ZOOL, V32, P276 72 50 52 1 56 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAY 2011 177 5 E119 E135 10.1086/659622 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 758GO WOS:000290151500001 21508600 2019-02-21 J Fischer, B; Dieckmann, U; Taborsky, B Fischer, Barbara; Dieckmann, Ulf; Taborsky, Barbara WHEN TO STORE ENERGY IN A STOCHASTIC ENVIRONMENT EVOLUTION English Article Life-history evolution; models; simulations; phenotypic plasticity; trade-offs OPTIMAL RESOURCE-ALLOCATION; LIFE-HISTORY; PHENOTYPIC PLASTICITY; RESERVE MATERIALS; REACTION NORMS; FAT RESERVES; OPTIMAL SIZE; ANNUAL PLANT; GROWTH; REPRODUCTION The ability to store energy enables organisms to deal with temporarily harsh and uncertain conditions. Empirical studies have demonstrated that organisms adapted to fluctuating energy availability plastically adjust their storage strategies. So far, however, theoretical studies have investigated general storage strategies only in constant or deterministically varying environments. In this study, we analyze how the ability to store energy influences optimal energy allocation to storage, reproduction, and maintenance in environments in which energy availability varies stochastically. We find that allocation to storage is evolutionarily optimal when environmental energy availability is intermediate and energy stores are not yet too full. In environments with low variability and low predictability of energy availability, it is not optimal to store energy. As environments become more variable or more predictable, energy allocation to storage is increasingly favored. By varying environmental variability, environmental predictability, and the cost of survival, we obtain a variety of different optimal life-history strategies, from highly iteroparous to semelparous, which differ significantly in their storage patterns. Our results demonstrate that in a stochastically varying environment simultaneous allocation to reproduction, maintenance, and storage can be optimal, which contrasts with previous findings obtained for deterministic environments. [Fischer, Barbara; Dieckmann, Ulf; Taborsky, Barbara] Int Inst Appl Syst Anal IIASA, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Fischer, Barbara; Taborsky, Barbara] Univ Bern, Inst Ecol & Evolut, Dept Behav Ecol, CH-3032 Hinterkappelen, Switzerland Fischer, B (reprint author), Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth CEES, POB 1066 Blindern, N-0316 Oslo, Norway. barbara.fischer@bio.uio.no Dieckmann, Ulf/E-1424-2011 Dieckmann, Ulf/0000-0001-7089-0393; Taborsky, Barbara/0000-0003-1690-8155 Austrian Science Fund FWF [P18647-B16]; Swiss National Foundation SNF [3100A0-111796]; European Science Foundation; Austrian Science Fund; Austrian Federal Ministry of Science and Research; Vienna Science and Technology Fund; European Community [MRTN-CT-2004-005578]; Specific Targeted Research Project FinE [SSP-2006-044276] This study was funded by the Austrian Science Fund FWF (grant P18647-B16 to BT) and by the Swiss National Foundation SNF (grant 3100A0-111796 to BT). UD acknowledges support by the European Science Foundation, the Austrian Science Fund, the Austrian Federal Ministry of Science and Research, the Vienna Science and Technology Fund, and the European Community's Sixth Framework Programme, through the Marie Curie Research Training Network FishACE (Fisheries-induced adaptive changes in exploited stocks, grant MRTN-CT-2004-005578) and the Specific Targeted Research Project FinE (Fisheries-induced evolution, grant SSP-2006-044276). BEDNEKOFF PA, 1994, OIKOS, V71, P408, DOI 10.2307/3545828; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Brodin Anders, 2007, P221; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CALOW P, 1977, J THEOR BIOL, V65, P601, DOI 10.1016/0022-5193(77)90219-3; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHIARIELLO N, 1984, ECOLOGY, V65, P1290, DOI 10.2307/1938334; Clark C, 2000, DYNAMIC STATE VARIAB; CLARK CW, 1992, AM NAT, V139, P521, DOI 10.1086/285342; COHEN D, 1976, J THEOR BIOL, V56, P1, DOI 10.1016/S0022-5193(76)80043-4; COOK JR, 1963, J PROTOZOOL, V10, P436, DOI 10.1111/j.1550-7408.1963.tb01703.x; DERICKSON WK, 1976, AM ZOOL, V16, P711; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.2307/176602; DOWNER RGH, 1976, AM ZOOL, V16, P733; Ekman JB, 1990, BEHAV ECOL, V1, P62, DOI 10.1093/beheco/1.1.62; Erikstad KE, 1998, ECOLOGY, V79, P1781; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; FITZPATRICK LC, 1976, AM ZOOL, V16, P725; GABRIEL W, 1992, J EVOLUTION BIOL, V5, P41, DOI 10.1046/j.1420-9101.1992.5010041.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; HAPPOLD DCD, 1990, J ZOOL, V222, P557, DOI 10.1111/j.1469-7998.1990.tb06014.x; Houston A. I., 1993, ORNIS SCAND, V24, P105; Houston A.l, 1999, MODELS ADAPTIVE BEHA; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Iwasa Y, 1997, EVOL ECOL, V11, P41, DOI 10.1023/A:1018483429029; IWASA Y, 1989, AM NAT, V133, P480, DOI 10.1086/284931; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Kersten M, 1996, FUNCT ECOL, V10, P440, DOI 10.2307/2389936; Kooi BW, 2006, THEOR POPUL BIOL, V70, P527, DOI 10.1016/j.tpb.2006.07.005; Kooijman S. A. L. M., 1986, DYNAMICS PHYSL STRUC, P226; KOZLOWSKI J, 1988, THEOR POPUL BIOL, V34, P118, DOI 10.1016/0040-5809(88)90037-8; Lilliendahl K, 1998, ANIM BEHAV, V55, P1335, DOI 10.1006/anbe.1997.0706; LIMA SL, 1986, ECOLOGY, V67, P377, DOI 10.2307/1938580; Limpert E, 2001, BIOSCIENCE, V51, P341, DOI 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; MCCAULEY E, 1990, FUNCT ECOL, V4, P505, DOI 10.2307/2389318; MCNAMARA JM, 1990, ACTA BIOTHEOR, V38, P37, DOI 10.1007/BF00047272; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; PARNAS H, 1976, J THEOR BIOL, V56, P19, DOI 10.1016/S0022-5193(76)80044-6; PERRIN N, 1990, OIKOS, V59, P70, DOI 10.2307/3545124; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; PIANKA ER, 1976, AM ZOOL, V16, P775; Pond C.M., 1981, P190; PUGLIESE A, 1987, J THEOR BIOL, V126, P33, DOI 10.1016/S0022-5193(87)80099-1; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; RICKLEFS RE, 1991, FUNCT ECOL, V5, P174, DOI 10.2307/2389255; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; SCHAFFER WM, 1982, AM NAT, V120, P787, DOI 10.1086/284030; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Smith DEC, 1997, CAN J ZOOL, V75, P606, DOI 10.1139/z97-075; Suarez RK, 1996, ANNU REV PHYSIOL, V58, P583; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tully T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003207; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; WILKINSON J. F., 1959, EXPTL CELL RES, V7, P111, DOI 10.1016/0014-4827(59)90237-X 65 20 21 5 35 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAY 2011 65 5 1221 1232 10.1111/j.1558-5646.2010.01198.x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 754YE WOS:000289893000002 21108636 Green Accepted 2019-02-21 J Salesa, MJ; Sanchez, IM; Azanza, B; DeMiguel, D; Morales, J Salesa, Manuel J.; Sanchez, Israel M.; Azanza, Beatriz; DeMiguel, Daniel; Morales, Jorge SYSTEMATICS AND TAXONOMY OF THE SPANISH ANCHITHERIINAE, AND THEIR RELATIONSHIP WITH REGIONAL CLIMATE CHANGES: A COMMENT ON ERONEN ET AL. EVOLUTION English Editorial Material Adaptive radiation; Fossils; Herbivory; Life-History Evolution; Morphological Evolution MIOCENE; EXPANSION In a recent paper, Eronen et al. (2010; hereafter EEFJ) observe differences in occlusal morphology, tooth crown height, and mesowear pattern between populations of the Miocene tridactyl equid Anchitherium from Spain and Germany, proposing that Spanish Anchitherium underwent adaptive evolution to local or regional arid conditions. However, these authors do not take into account the actual diversity of Iberian representatives of Anchitherium, or the fact that the Spanish fossils cover a wider temporal and geographical range than those from Germany. For these reasons, we suggest that their subsequent statistical work should be reconsidered. [Salesa, Manuel J.; Sanchez, Israel M.; Morales, Jorge] CSIC, Museo Nacl Ciencias Nat, Dept Paleobiol, E-28006 Madrid, Spain; [Azanza, Beatriz] Univ Zaragoza, Inst Univ Invest Ciencias Ambientales Aragon IUCA, Dept Ciencias Tierra, Area Paleontol, E-50009 Zaragoza, Spain; [DeMiguel, Daniel] Univ Autonoma Barcelona, Inst Catala Paleont ICP, E-08193 Cerdanyola Del Valles, Spain Salesa, MJ (reprint author), CSIC, Museo Nacl Ciencias Nat, Dept Paleobiol, C Jose Gutierrez Abascal 2, E-28006 Madrid, Spain. msalesa@mncn.csic.es; israelms@mncn.csic.es; azanza@unizar.es; daniel.demiguel@icp.cat; mcnm166@mncn.csic.es Salesa, Manuel/L-1606-2015; Morales, Jorge/L-1476-2014; Azanza, Beatriz/B-5206-2008 Salesa, Manuel/0000-0003-0404-7896; Morales, Jorge/0000-0001-5170-5754; Azanza, Beatriz/0000-0003-2487-547X DeMiguel D, 2010, PALAEOGEOGR PALAEOCL, V289, P81, DOI 10.1016/j.palaeo.2010.02.010; Eronen JT, 2010, EVOLUTION, V64, P398, DOI 10.1111/j.1558-5646.2009.00830.x; Hernandez Fernandez Manuel, 2003, Coloquios de Paleontologia Volumen Extraordinario, V1, P253; Holbourn A, 2005, NATURE, V438, P483, DOI 10.1038/nature04123; Sanchez I. M., 1998, Estudios Geologicos (Madrid), V54, P39; Shevenell AE, 2004, SCIENCE, V305, P1766, DOI 10.1126/science.1100061; Shevenell AE, 2004, GEOPH MONOG SERIES, V151, P235; Zachos J, 2001, SCIENCE, V292, P686, DOI 10.1126/science.1059412 8 1 1 1 4 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution MAY 2011 65 5 1506 1510 10.1111/j.1558-5646.2011.01219.x 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 754YE WOS:000289893000024 21521200 Bronze 2019-02-21 J McIntyre, MH; Kacerosky, PM McIntyre, Matthew H.; Kacerosky, Pamela M. Age and Size at Maturity in Women: A Norm of Reaction? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article MENARCHEAL AGE; ADULT STATURE; BODY-SIZE; SECULAR CHANGES; PHENOTYPIC PLASTICITY; PHYSICAL DEVELOPMENT; PUBERTAL MATURATION; SEXUAL ORIENTATION; SOUTHERN MEXICO; HUMAN-EVOLUTION Objectives: We present the first review and meta-analysis of the association between adult stature and age at menarche over a broad range of human societies. We then outline possible biological explanations for observed empirical associations. Methods: We analyzed the association between adult stature and age at menarche in 141 samples from published reports, including 35 samples for which the within-sample association was also reported. Results: Overall and in small-scale societies, later age at menarche is associated with shorter adult stature. However, both between and within samples from industrialized societies, later age at menarche is associated with taller adult stature. Conclusions: The pattern of associations between adult stature and age at menarche may be explicable as a norm of reaction that evolved according to predictions of life history theory. However, nonadaptive explanations are also plausible, especially for the positive association observed in industrialized societies. Am. J. Hum. Biol. 23: 305-312, 2011. (c) 2010 Wiley-Liss, Inc. [McIntyre, Matthew H.; Kacerosky, Pamela M.] Univ Cent Florida, Dept Anthropol, Orlando, FL 32816 USA McIntyre, MH (reprint author), Univ Cent Florida, Dept Anthropol, 309 Howard Phillips Hall,4000 Cent Florida Blvd, Orlando, FL 32816 USA. mmcintyr@mail.ucf.edu Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; BIELICKI T, 1994, AM J HUM BIOL, V6, P245, DOI 10.1002/ajhb.1310060213; Biro FM, 2001, J PEDIATR-US, V138, P636, DOI 10.1067/mpd.2001.114476; Bogaert AF, 1998, PERS INDIV DIFFER, V24, P115, DOI 10.1016/S0191-8869(97)00111-6; Bogaert AF, 2010, ARCH SEX BEHAV, V39, P110, DOI 10.1007/s10508-008-9398-x; Bratberg GH, 2006, EUR J PEDIATR, V165, P787, DOI 10.1007/s00431-006-0174-4; BURGESS AP, 1964, HUM BIOL, V36, P177; CHANG KSF, 1969, GROWTH DEV CHINESE C; CHARNOV EL, 1990, J EVOLUTION BIOL, V3, P139, DOI 10.1046/j.1420-9101.1990.3010139.x; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov Eric L., 1993, P1; CLEGG EJ, 1980, J BIOSOC SCI, V12, P83; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; CONTRERAS ML, 1981, ARCH LATINOAM NUTR, V31, P740; Cronk CE, 1996, AM J HUM BIOL, V8, P31, DOI 10.1002/(SICI)1520-6300(1996)8:1<31::AID-AJHB3>3.0.CO;2-T; DANKERHOPFE H, 1986, YEARB PHYS ANTHROPOL, V29, P81; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; do Lago MJ, 2007, REV ASSOC MED BRAS, V53, P20, DOI 10.1590/S0104-42302007000100013; DUBROVA YE, 1995, HUM BIOL, V67, P755; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2007, AM J HUM BIOL, V19, P622, DOI 10.1002/ajhb.20662; ELLISON PT, 1982, HUM BIOL, V54, P269; ELLISON PT, 1981, AM J PHYS ANTHROPOL, V56, P71, DOI 10.1002/ajpa.1330560108; Ersoy B, 2004, EARLY HUM DEV, V76, P115, DOI 10.1016/j.earlhumdev.2003.11.001; Eveleth P, 1976, WORLDWIDE VARIATION; FRISCH RE, 1970, SCIENCE, V169, P397, DOI 10.1126/science.169.3943.397; Georgiadis E, 1997, ANN HUM BIOL, V24, P55, DOI 10.1080/03014469700004772; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Hardy R, 2006, J HYPERTENS, V24, P59, DOI 10.1097/01.hjh.0000198033.14848.93; HARVEY RG, 1973, STUDY HUMAN BIOL 2 N; Haspelmath M., 2008, WORLD ATLAS LANGUAGE; HAUTVAST J, 1971, HUM BIOL, V43, P421; HEINZ NPM, 1963, MEMOIRES ACAD ROYALE, V12, P27; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Hwang JY, 2003, ANN HUM BIOL, V30, P434, DOI 10.1080/0301446031000111393; *ICMR, 1972, GROWTH PHYS DEV IND; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Khanna G, 2004, COLLEGIUM ANTROPOL, V28, P571; Koziel SS, 2001, AM J HUM BIOL, V13, P15, DOI 10.1002/1520-6300(200101/02)13:1<15::AID-AJHB1002>3.3.CO;2-G; Kramer KL, 2010, AM J PHYS ANTHROPOL, V141, P235, DOI 10.1002/ajpa.21139; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; MALCOLM LA, 1970, HUM BIOL, V42, P293; MALCOLM LA, 1969, AM J PHYS ANTHROPOL, V31, P39, DOI 10.1002/ajpa.1330310106; MALINA RM, 1983, AM J PHYS ANTHROPOL, V60, P437, DOI 10.1002/ajpa.1330600405; MALINA RM, 1979, MONOGR SOC RES CHILD, V44, P59, DOI 10.2307/1165885; Malina RM, 2004, ANN HUM BIOL, V31, P634, DOI 10.1080/03014460400018085; Malina RM, 2010, AM J PHYS ANTHROPOL, V141, P463, DOI 10.1002/ajpa.21167; MARTINS DM, 1968, DYNAMICS CHILD GROWT; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Okasha M, 2001, ANN HUM BIOL, V28, P68; Onat T, 1995, AM J HUM BIOL, V7, P741, DOI 10.1002/ajhb.1310070609; Onland-Moret NC, 2005, AM J EPIDEMIOL, V162, P623, DOI 10.1093/aje/kwi260; Padez C, 2003, AM J HUM BIOL, V15, P415, DOI 10.1002/ajhb.10159; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Qin T, 1996, AM J HUM BIOL, V8, P417, DOI 10.1002/(SICI)1520-6300(1996)8:4<417::AID-AJHB1>3.0.CO;2-V; ROCHE AF, 1979, MONOGR SOC RES CHILD, V44, P3, DOI 10.2307/1165883; SABHARWAL KP, 1966, HUM BIOL, V38, P131; SHANGOLD MM, 1989, SOUTHERN MED J, V82, P443, DOI 10.1097/00007611-198904000-00009; SHARMA K, 1988, ANN HUM BIOL, V15, P431, DOI 10.1080/03014468800000032; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STGEORGE IM, 1994, J ADOLESCENT HEALTH, V15, P573; TANNER JM, 1962, HUM BIOL, V34, P187; Vizmanos B, 2001, AM J HUM BIOL, V13, P409, DOI 10.1002/ajhb.1065; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306; WARK ML, 1969, MED J AUSTRALIA, V2, P129; WELLENS R, 1992, AM J HUM BIOL, V4, P783, DOI 10.1002/ajhb.1310040610; Wells JCK, 2003, J THEOR BIOL, V221, P143, DOI 10.1006/jtbi.2003.3183; Wells JCK, 2007, BEST PRACT RES CL EN, V21, P415, DOI 10.1016/j.beem.2007.04.007; Wells JCK, 2006, BIOL REV, V81, P183, DOI 10.1017/S1464793105006974; Wells JCK, 2010, AM J HUM BIOL, V22, P1, DOI 10.1002/ajhb.20994 76 21 23 2 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 AM J HUM BIOL Am. J. Hum. Biol. MAY 2011 23 3 305 312 10.1002/ajhb.21122 8 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics 747XN WOS:000289354700003 21484909 2019-02-21 J Baker, MR; Kendall, NW; Branch, TA; Schindler, DE; Quinn, TP Baker, Matthew R.; Kendall, Neala W.; Branch, Trevor A.; Schindler, Daniel E.; Quinn, Thomas P. Selection due to nonretention mortality in gillnet fisheries for salmon EVOLUTIONARY APPLICATIONS English Article conservation biology; contemporary evolution; fisheries management; life history evolution; phenotypic plasticity; population dynamics SOCKEYE-SALMON; ONCORHYNCHUS-NERKA; INDUCED EVOLUTION; RIVER SYSTEM; GENETIC DIFFERENTIATION; BRITISH-COLUMBIA; PACIFIC SALMON; FISH STOCKS; BRISTOL BAY; AGE Fisheries often exert selective pressures through elevated mortality on a nonrandom component of exploited stocks. Selective removal of individuals will alter the composition of a given population, with potential consequences for its size structure, stability and evolution. Gillnets are known to harvest fish according to size. It is not known, however, whether delayed mortality due to disentanglement from gillnets exerts selective pressures that reinforce or counteract harvest selection. We examined gillnet disentanglement in exploited populations of sockeye salmon (Oncorhynchus nerka) in Bristol Bay, Alaska, to characterize the length distribution of fish that disentangle from gillnets and determine whether nonretention mortality reinforces harvest selection and exerts common pressures according to sex and age. We also evaluated discrete spawning populations to determine whether nonretention affects populations with different morphologies in distinct ways. In aggregate, nonretention mortality in fish that disentangle from gillnets counters harvest selection but with different effects by sex and age. At the level of individual spawning populations, nonretention mortality may exert stabilizing, disruptive, or directional selection depending on the size distribution of a given population. Our analyses suggest nonretention mortality exerts significant selective pressures and should be explicitly included in analyses of fishery-induced selection. [Baker, Matthew R.; Kendall, Neala W.; Branch, Trevor A.; Schindler, Daniel E.; Quinn, Thomas P.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Baker, MR (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. mattbakr@uw.edu Branch, Trevor/A-5691-2009 Gordon and Betty Moore Foundation; National Science Foundation; Pacific Seafood Processors Association; Alaska Sustainable Salmon Fund; Environmental Protection Agency We gratefully acknowledge T. Baker, M. Jones, T. Sands, G. Gablehouse and colleagues at the ADFG for consultation and for coordinating sampling and compiling data related to the Wood River. We thank S. Alin, J. Armstrong, J. Bennis, K. Bentley, C. Boatright, J. Carter, K. Doctor, D. Dougherty, M. Haraldsson, A. Hicks, A. Hilborn, R. Hilborn, G. Holtgrieve, C. Gowell, S. Kroitz, P. Lisi, J. Mudra, A. Paulsen, L. Payne, G. Pess, T. Reed, J. Reum, L. Rogers, C. Ruff, S. Sethi, and C. Vynne for assistance in the field. We also thank J. Hard and two anonymous reviewers for useful comments. Funding for this research was provided by the Gordon and Betty Moore Foundation, the National Science Foundation Biocomplexity Program, the Pacific Seafood Processors Association, the Alaska Sustainable Salmon Fund, and the Environmental Protection Agency STAR graduate fellowship program (to M. Baker). Allendorf FW, 2009, P NATL ACAD SCI USA, V106, P9987, DOI 10.1073/pnas.0901069106; ASHBROOK CE, 2004, 0404 FPA WASH DEP FI; Baker MR, 2009, J APPL ECOL, V46, P752, DOI 10.1111/j.1365-2664.2009.01673.x; BLAIR GR, 1993, T AM FISH SOC, V122, P550, DOI 10.1577/1548-8659(1993)122<0550:VILHCA>2.3.CO;2; Branch TA, 2010, CAN J FISH AQUAT SCI, V67, P886, DOI 10.1139/F10-032; BUE BG, 1986, THESIS U ALASKA FAIR; Burger CV, 1997, T AM FISH SOC, V126, P926, DOI 10.1577/1548-8659(1997)126<0926:GDOSSS>2.3.CO;2; BURGNER RL, 1964, NET SELECTIVITY RELA, P13; Carlson SM, 2009, EVOLUTION, V63, P1244, DOI 10.1111/j.1558-5646.2009.00643.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; DANN TH, 2009, GENETIC STOCK COMPOS; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dittman AH, 1996, J EXP BIOL, V199, P83; Doctor KK, 2010, T AM FISH SOC, V139, P80, DOI 10.1577/T08-227.1; EFFRON B, 1982, JACKKNIFE BOOTSTRAP; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Fournier David, 2009, AD MOD BUILD AUT DIF; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; Hamon TR, 2000, T AM FISH SOC, V129, P1300, DOI 10.1577/1548-8659(2000)129<1300:SOMOSW>2.0.CO;2; HANDCOCK MS, 1999, RELATIVE DISTRIBUTIO; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; HARTT AC, 1963, INT COMMISSION NW AT, V4, P144; Healey M.C., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P39; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; JORGENSEN C, 2009, EVOLUTIONARY APPL, V2, P394; Kendall NW, 2009, EVOL APPL, V2, P523, DOI 10.1111/j.1752-4571.2009.00086.x; Kendall NW, 2009, CAN J FISH AQUAT SCI, V66, P896, DOI 10.1139/F09-047; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; KNUDSEN C, 2001, IMPACTS SIZE SELECTI; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LAW R, 1993, LECT NOTES BIOMATH, P153; MARRIOTT RA, 1964, STREAM CATALOG WOOD, P210; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; POLICANSKY D, 1993, EXPLOITATION EVOLVIN, P8; QUINN TP, 1992, J FISH BIOL, V41, P1045, DOI 10.1111/j.1095-8649.1992.tb02733.x; Quinn TP, 2001, CAN J ZOOL, V79, P1782, DOI 10.1139/cjz-79-10-1782; REGIER HA, 1969, PROG FISH CULT, V31, P57, DOI 10.1577/1548-8640(1969)31[57:FSPUIE]2.0.CO;2; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; SCHINDLER DE, 2010, NATURE, V465, P550; Schluter D, 2000, AM NAT, V156, pS4, DOI 10.1086/303412; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sheridan A.K., 1995, Reviews in Fisheries Science, V3, P91; Stewart IJ, 2003, ENVIRON BIOL FISH, V67, P77, DOI 10.1023/A:1024436632183; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; THOMPSON RB, 1973, VIABILITY ADULT SOCK; THOMPSON RB, 1971, STUDIES LIVE DEAD SA; THOMPSON WF, 1962, STUDIES ALASKAN RED, P3; TODD ISP, 1971, J FISH RES BOARD CAN, V28, P821, DOI 10.1139/f71-123; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; VARNAVSKAYA NV, 1994, CAN J FISH AQUAT SCI, V51, P147, DOI 10.1139/f94-301; Wood CC, 1995, AM FISH S S, V17, P195; Woody Carol Ann, 2007, P363 60 11 12 0 18 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. MAY 2011 4 3 429 443 10.1111/j.1752-4571.2010.00154.x 15 Evolutionary Biology Evolutionary Biology 751TD WOS:000289639600002 25567993 DOAJ Gold, Green Published 2019-02-21 J Bell, AM; Dingemanse, NJ; Hankison, SJ; Langenhof, MBW; Rollins, K Bell, A. M.; Dingemanse, N. J.; Hankison, S. J.; Langenhof, M. B. W.; Rollins, K. Early exposure to nonlethal predation risk by size-selective predators increases somatic growth and decreases size at adulthood in threespined sticklebacks JOURNAL OF EVOLUTIONARY BIOLOGY English Article fish; Gasterosteus aculeatus; growth; life history evolution; phenotypic plasticity; size at maturity LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; QUEEN-CHARLOTTE ISLANDS; GASTEROSTEUS-ACULEATUS; TRADE-OFF; INDUCED PLASTICITY; DAPHNIA-PULEX; BEHAVIORAL-DIFFERENCES; PHENOTYPIC PLASTICITY; SOCKEYE-SALMON Predation has an important influence on life history traits in many organisms, especially when they are young. When cues of trout were present, juvenile sticklebacks grew faster. The increase in body size as a result of exposure to cues of predators was adaptive because larger individuals were more likely to survive predation. However, sticklebacks that had been exposed to cues of predators were smaller at adulthood. This result is consistent with some life history theory. However, these results prompt an alternative hypothesis, which is that the decreased size at adulthood reflects a deferred cost of early rapid growth. Compared to males, females were more likely to survive predation, but female size at adulthood was more affected by cues of predators than male size at adulthood, suggesting that size at adulthood might be more important to male fitness than to female fitness. [Bell, A. M.] Univ Illinois, Sch Integrat Biol, Urbana, IL 61801 USA; [Dingemanse, N. J.] Max Planck Inst Ornithol, Dept Behav Ecol & Evolutionary Genet, Seewiesen, Germany; [Hankison, S. J.] Ohio Wesleyan Univ, Delaware, OH 43015 USA; [Langenhof, M. B. W.] Univ Groningen, Anim Ecol Grp, Ctr Ecol & Evolutionary Studies, NL-9700 AB Groningen, Netherlands; [Langenhof, M. B. W.] Univ Groningen, Dept Behav Biol, Ctr Behav & Neurosci, NL-9700 AB Groningen, Netherlands; [Rollins, K.] Illinois State Univ, Bloomington, IL USA Bell, AM (reprint author), Univ Illinois, Sch Integrat Biol, 505 S Goodwin Ave, Urbana, IL 61801 USA. alisonmb@life.uiuc.edu Langenhof, M. Rohaa/0000-0003-3434-4357 Netherlands Organisation for Scientific Research [863.05.002] We thank Judy Stamps, Bob Wootton and David Alvarez for advice about growth, and Steve Kreuger, Lindsay Marquardt and David Ernst for technical help. Judy Stamps, Helen Rodd, Anna Price and Dorina Szuroczki provided helpful comments on the manuscript. NJD was supported by the Netherlands Organisation for Scientific Research (grant 863.05.002). This work was carried out under approval from the Animal Care and Use Committee at the University of Illinois (Protocol #06178). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; BELK MC, 1995, J FISH BIOL, V47, P237, DOI 10.1111/j.1095-8649.1995.tb01891.x; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; Bell M. F., 1994, EVOLUTIONARY BIOL TH; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Calvete C, 2005, BIOL CONSERV, V121, P623, DOI 10.1016/j.biocon.2004.06.013; Candolin U, 2003, EVOLUTION, V57, P862; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dufresne F, 1990, BEHAV ECOL, V1, P140, DOI 10.1093/beheco/1.2.140; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; Endler J. A., 1986, NATURAL SELECTION WI; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Huntingford F.A., 1994, P277; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johansson F, 2009, J ANIM ECOL, V78, P772, DOI 10.1111/j.1365-2656.2009.01530.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 1999, COPEIA, P948, DOI 10.2307/1447970; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kraak SBM, 1998, ANIM BEHAV, V56, P859, DOI 10.1006/anbe.1998.0822; Kraak SBM, 1999, BEHAV ECOL, V10, P696, DOI 10.1093/beheco/10.6.696; KRUEGER DA, 1981, LIMNOL OCEANOGR, V26, P219, DOI 10.4319/lo.1981.26.2.0219; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; Lynch M, 1998, GENETICS ANAL QUANTI; Magnhagen C, 2004, J FISH BIOL, V64, P612, DOI 10.1111/j.1095-8649.2004.00325.x; Mangel M, 2001, EVOL ECOL RES, V3, P583; Martin-Smith KM, 2002, J ANIM ECOL, V71, P413, DOI 10.1046/j.1365-2656.2002.00609.x; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2; MCPHAIL JD, 1977, HEREDITY, V38, P53, DOI 10.1038/hdy.1977.7; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; MITTELBACH GG, 1981, ECOLOGY, V62, P1370, DOI 10.2307/1937300; MOODIE GEE, 1976, SYST ZOOL, V25, P49, DOI 10.2307/2412778; MOODIE GEE, 1972, CAN J ZOOLOG, V50, P721, DOI 10.1139/z72-099; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Peichel CL, 2001, NATURE, V414, P901, DOI 10.1038/414901a; Perez KO, 2010, EVOLUTION, V64, P2450, DOI 10.1111/j.1558-5646.2010.00994.x; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; Quinn TP, 2001, T AM FISH SOC, V130, P995, DOI 10.1577/1548-8659(2001)130<0995:SASSMO>2.0.CO;2; REIMCHEN TE, 1991, COPEIA, P1098, DOI 10.2307/1446106; Reimchen Thomas E., 1994, P240; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Rodd FH, 1997, ECOLOGY, V78, P419; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schmidt BR, 2005, J EVOLUTION BIOL, V18, P415, DOI 10.1111/j.1420-9101.2004.00822.x; Sillett KB, 2000, OIKOS, V91, P468, DOI 10.1034/j.1600-0706.2000.910307.x; SMITH C, 1995, ENVIRON BIOL FISH, V43, P63, DOI 10.1007/BF00001818; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; TOLLRIAN R, 1995, ECOLOGY, V76, P1691, DOI 10.2307/1940703; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Van Buskirk J, 2002, AM NAT, V160, P87, DOI 10.1086/340599; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1986, AM NAT, V128, P319, DOI 10.1086/284565; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOTTON RJ, 1984, FUNCTIONAL BIOL STIC 75 24 24 0 34 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2011 24 5 943 953 10.1111/j.1420-9101.2011.02247.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 752LM WOS:000289692700002 21375647 Green Accepted, Bronze 2019-02-21 J Lahdenpera, M; Lummaa, V; Russell, AF Lahdenpera, M.; Lummaa, V.; Russell, A. F. Selection on male longevity in a monogamous human population: late-life survival brings no additional grandchildren JOURNAL OF EVOLUTIONARY BIOLOGY English Article ageing; grandmother hypothesis; life-history evolution; marriage patterns; mating system; senescence; sexual conflict PREINDUSTRIAL HUMAN-POPULATIONS; NATURAL-SELECTION; SEXUAL CONFLICT; EVOLUTION; SENESCENCE; FITNESS; SPAN; MENOPAUSE; BENEFITS; SWEDEN Humans are exceptionally long-lived for mammals of their size. In men, lifespan is hypothesized to evolve from benefits of reproduction throughout adult life. We use multi-generational data from pre-industrial Finland, where remarriage was possible only after spousal death, to test selection pressures on male longevity in four monogamous populations. Men showed several behaviours consistent with attempting to accrue direct fitness throughout adult life and sired more children in their lifetimes if they lost their first wife and remarried. However, remarriage did not increase grandchild production because it compromised the success of motherless first-marriage offspring. Overall, grandchild production was not improved by living beyond 51 years and was reduced by living beyond 65. Our results highlight the importance of using grandchild production to understand selection on human life-history traits. We conclude that selection for (or enforcement of) lifetime monogamy will select for earlier reproductive investment and against increased lifespan in men. [Lahdenpera, M.] Univ Turku, Dept Biol, Sect Ecol, FIN-20014 Turku, Finland; [Lummaa, V.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Russell, A. F.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Exeter EX4 4QJ, Devon, England; [Russell, A. F.] CNRS Moulis, Stn Ecol Expt, Moulis, France Lahdenpera, M (reprint author), Univ Turku, Dept Biol, Sect Ecol, FIN-20014 Turku, Finland. mirkka.lahdenpera@utu.fi Jenny and Antti Wihuri Foundation; Alfred Kordelin Foundation; Finnish Cultural Foundation; European Research Council; Royal Society, UK We thank Lasse Iso-Iivari, Kimmo Pokkinen, Aino Siitonen, Veli-Pekka Toropainen and Timo Verho for collecting the Finnish demographic data; Ben Hatchwell and two anonymous referees for helping to clarify the message; and Jenny and Antti Wihuri Foundation (ML), Alfred Kordelin Foundation (ML), Finnish Cultural Foundation (ML), the European Research Council (VL), and the Royal Society Research Fellowship scheme, UK (VL, AFR) for funding. Anderson K.G., 2006, CURR ANTHROPOL, V47, P511; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; BOONE JL, 1986, AM ANTHROPOL, V88, P859; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Dupaquier J., 1981, MARRIAGE REMARRIAGE; FORSBERG AJL, 1995, ETHOL SOCIOBIOL, V16, P221, DOI 10.1016/0162-3095(95)00003-4; Gillespie DOS, 2010, AM NAT, V176, P159, DOI 10.1086/653668; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAWKES K, 1995, EVOL ECOL, V9, P662, DOI 10.1007/BF01237661; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Jankowiak W, 2000, EVOL HUM BEHAV, V21, P125, DOI 10.1016/S1090-5138(00)00027-1; Kaar P, 1998, EVOL HUM BEHAV, V19, P139, DOI 10.1016/S1090-5138(98)00007-5; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lahdenpera M, 2007, P ROY SOC B-BIOL SCI, V274, P2437, DOI 10.1098/rspb.2007.0688; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2011, EVOLUTION, V65, P476, DOI 10.1111/j.1558-5646.2010.01142.x; LOW BS, 1990, AM ANTHROPOL, V92, P457, DOI 10.1525/aa.1990.92.2.02a00130; Lummaa V, 1998, NATURE, V394, P533, DOI 10.1038/28977; Lummaa V, 2001, J ANIM ECOL, V70, P739, DOI 10.1046/j.0021-8790.2001.00537.x; LUTHER G, 1993, SUOMEN TILASTOTOIMEN; Maklakov AA, 2008, EVOL HUM BEHAV, V29, P444, DOI 10.1016/j.evolhumbehav.2008.08.002; Marlowe FW, 2000, HUM NATURE-INT BIOS, V11, P27, DOI 10.1007/s12110-000-1001-7; MEALEY L, 2000, SEX DIFFERENCES DEV; Moring Beatrice, 2002, Hist Fam, V7, P79, DOI 10.1016/S1081-602X(01)00097-5; Mulder MB, 1998, HUM NATURE-INT BIOS, V9, P119, DOI 10.1007/s12110-998-1001-6; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; PAGET WJ, 1994, POP STUD-J DEMOG, V48, P333, DOI 10.1080/0032472031000147826; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Pollet TV, 2007, EVOL HUM BEHAV, V28, P176, DOI 10.1016/j.evolhumbehav.2006.10.001; Pollet TV, 2009, P NATL ACAD SCI USA, V106, P2114, DOI 10.1073/pnas.0810016106; Ricklefs RE, 2008, FUNCT ECOL, V22, P379, DOI 10.1111/j.1365-2435.2008.01420.x; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SOININEN AM, 1974, OLD TRADITIONAL AGR; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; SUNDIN J, 1992, SOC SCI HIST, V16, P99, DOI 10.2307/1171323; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; van de Pol M, 2006, AM NAT, V167, P764; Voland E., 1988, HUMAN REPROD BEHAV D, P253; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar JH, 2010, BIOSTATISTICAL ANAL 48 15 15 2 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAY 2011 24 5 1053 1063 10.1111/j.1420-9101.2011.02237.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 752LM WOS:000289692700011 21348903 Bronze 2019-02-21 J McGlauflin, MT; Schindler, DE; Seeb, LW; Smith, CT; Habicht, C; Seeb, JE McGlauflin, Molly T.; Schindler, Daniel E.; Seeb, Lisa W.; Smith, Christian T.; Habicht, Christopher; Seeb, James E. Spawning Habitat and Geography Influence Population Structure and Juvenile Migration Timing of Sockeye Salmon in the Wood River Lakes, Alaska TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article SINGLE-NUCLEOTIDE POLYMORPHISMS; ATLANTIC SALMON; PACIFIC SALMON; ONCORHYNCHUS-NERKA; GENETIC-DIVERGENCE; LIFE-HISTORY; REPRODUCTIVE ISOLATION; BERING-SEA; SELECTION; EVOLUTION The strict homing of sockeye salmon Oncorhynchus nerka results in reproductively isolated populations that often spawn in close proximity and share rearing habitat. High spawning fidelity enables these populations to adapt to local conditions, resulting in a wide range of life history characteristics and genetic variation within individual watersheds. The Wood River system in southwestern Alaska provides a pristine, well-studied system in which to examine fine-scale population structure and its influences on juvenile life histories. Adult sockeye salmon spawn in lake beaches, rivers, and small tributaries throughout this watershed, and juveniles rear in five nursery lakes. We genotyped 30 spawning populations and 6,066 migrating smolts at 45 single nucleotide polymorphism loci, two of which are candidates for positive selection in the study system. We show that there is significant genetic structure (F-ST = 0.032) in the Wood River lakes and that divergence is generally related to spawning rather than nursery habitat (hierarchical analysis of molecular variance; P < 0.05). Four groups of populations were identified based on genetic structure and used to determine the composition of unknown mixtures of migrating smolts using a Bayesian modeling framework. We demonstrate that smolt migration timing is related to genetic structure; stream and river populations dominate catches in early June, while beach spawners and the populations in Lake Kulik are more prevalent from mid-June to early September. Age-2 smolts are primarily produced by the Lake Kulik and beach spawning populations, showing that genetic differences may reflect divergent freshwater and migration life history strategies. These results indicate that local adaptation to spawning habitat influences genetic divergence in the Wood River lakes, affecting both adult and juvenile life stages of sockeye salmon. [McGlauflin, Molly T.; Schindler, Daniel E.; Seeb, Lisa W.; Seeb, James E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [McGlauflin, Molly T.; Smith, Christian T.] US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, Longview, WA 98632 USA; [Habicht, Christopher] Alaska Dept Fish & Game, Div Commercial Fisheries, Gene Conservat Lab, Anchorage, AK 99518 USA McGlauflin, MT (reprint author), Univ Washington, Sch Aquat & Fishery Sci, Box 355020, Seattle, WA 98195 USA. molly_mcglauflin@fws.gov Smith, Christian/0000-0002-4052-2669 Gordon and Betty Moore Foundation This work would not have been possible without the help of the Alaska Department of Fish and Game Gene Conservation Laboratory in Anchorage, which provided many of the genotypes for the baseline; the Alaska Salmon Program at the University of Washington; and the staff of the Aleknagik and Nerka field camps who helped collect the samples. Many thanks to the students and staff of the International Program for Salmon Ecological Genetics at the University of Washington for their assistance in and out of the laboratory; this project would not have been possible without their support. Funding for this project was provided by a grant from the Gordon and Betty Moore Foundation. The findings and conclusions in this article are those of the authors and do not necessarily reflect those of the U.S. Fish and Wildlife Service. Ackerman MW, 2011, T AM FISH SOC, V140, P865, DOI 10.1080/00028487.2011.588137; BAKER TT, 2006, ALASKA DEP FISH GAME, V605; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Beckman Brian R., 1998, North American Journal of Fisheries Management, V18, P537, DOI 10.1577/1548-8675(1998)018<0537:ROFSAG>2.0.CO;2; Burgner R. L, 1962, STUDIES ALASKA RED S, P247; Carlson SM, 2009, EVOLUTION, V63, P1244, DOI 10.1111/j.1558-5646.2009.00643.x; Creelman EK, 2011, T AM FISH SOC, V140, P749, DOI 10.1080/00028487.2011.584494; Debevec EM, 2000, J HERED, V91, P509, DOI 10.1093/jhered/91.6.509; Elfstrom CM, 2006, MOL ECOL NOTES, V6, P1255, DOI 10.1111/j.1471-8286.2006.01507.x; Excoffier L, 2009, HEREDITY, V103, P285, DOI 10.1038/hdy.2009.74; EXCOFFIER L, 1992, GENETICS, V131, P479; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Garcia LV, 2004, OIKOS, V105, P657, DOI 10.1111/j.0030-1299.2004.13046.x; Gomez-Uchida D, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-48; GOUDET J, 2009, PCAGEN VERSION 1 2 1; Habicht C, 2010, T AM FISH SOC, V139, P1171, DOI 10.1577/T09-149.1; Habicht C, 2007, T AM FISH SOC, V136, P82, DOI 10.1577/T06-001.1; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; KOO TSY, 1962, STUDIES ALASKA RED S, P49; Lin J, 2008, HEREDITY, V101, P341, DOI 10.1038/hdy.2008.59; Lin J, 2008, J FISH BIOL, V73, P1993, DOI 10.1111/j.1095-8649.2008.02014.x; MANTEL N, 1967, CANCER RES, V27, P209; McGinnity P, 2007, AQUACULTURE, V273, P257, DOI 10.1016/j.aquaculture.2007.10.008; McGlauflin MT, 2010, T AM FISH SOC, V139, P676, DOI 10.1577/T09-103.1; Miller KM, 1996, IMMUNOGENETICS, V43, P337, DOI 10.1007/BF02199802; Miller KM, 2001, GENETICA, V111, P237, DOI 10.1023/A:1013716020351; Morin PA, 2004, TRENDS ECOL EVOL, V19, P208, DOI 10.1016/j.tree.2004.01.009; MURRAY CB, 1988, CAN J ZOOL, V66, P266, DOI 10.1139/z88-038; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Pella J, 2001, FISH B-NOAA, V99, P151; Quinn TP, 2006, ANIM BEHAV, V72, P941, DOI 10.1016/j.anbehav.2006.03.003; Quinn TP, 2000, EVOLUTION, V54, P1372; Quinn TP, 2001, CAN J ZOOL, V79, P1782, DOI 10.1139/cjz-79-10-1782; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R-Development-Core-Team, 2005, R LANG ENV STAT COMP; Ramstad KM, 2003, T AM FISH SOC, V132, P997, DOI 10.1577/T02-108; Ramstad KM, 2010, EVOL ECOL, V24, P391, DOI 10.1007/s10682-009-9313-5; Rich HB, 2009, CAN J FISH AQUAT SCI, V66, P238, DOI 10.1139/F08-210; Rogers LA, 2008, OIKOS, V117, P1578, DOI 10.1111/j.2008.0030-1299.16758.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL NOTES, V6, P285, DOI 10.1111/j.1471-8286.2005.01146.x; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2005, ECOLOGY, V86, P198, DOI 10.1890/03-0408; Seeb JE, 2009, METHODS MOL BIOL, V578, P277, DOI 10.1007/978-1-60327-411-1_18; SEEB JE, 2010, MOL ECOLOGY RESOURCE, V11, P335; Seeb LW, 2011, T AM FISH SOC, V140, P734, DOI 10.1080/00028487.2011.584493; Seeb LW, 2000, T AM FISH SOC, V129, P1223, DOI 10.1577/1548-8659(2000)129<1223:GDOSSO>2.0.CO;2; Seeb LW, 1999, T AM FISH SOC, V128, P88, DOI 10.1577/1548-8659(1999)128<0088:AAMDDA>2.0.CO;2; Smith CT, 2005, MOL ECOL, V14, P4193, DOI 10.1111/j.1365-294X.2005.02731.x; Stewart DC, 2006, ECOL FRESHW FISH, V15, P552, DOI 10.1111/j.1600-0633.2006.00197.x; WAPLES RS, 1990, J HERED, V81, P267, DOI 10.1093/oxfordjournals.jhered.a110989; WAPLES RS, 1990, CAN J FISH AQUAT SCI, V47, P968, DOI 10.1139/f90-111; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Whalen KG, 1999, T AM FISH SOC, V128, P289, DOI 10.1577/1548-8659(1999)128<0289:MTOASS>2.0.CO;2; Wood CC, 1995, AM FISH S S, V17, P195; Wood CC, 2008, EVOL APPL, V1, P207, DOI 10.1111/j.1752-4571.2008.00028.x; Zydlewski GB, 2005, CAN J FISH AQUAT SCI, V62, P68, DOI 10.1139/F04-179 59 39 39 0 31 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. MAY 2011 140 3 763 782 10.1080/00028487.2011.584495 20 Fisheries Fisheries 779WV WOS:000291813800021 2019-02-21 J Rossignol, O; Dodson, JJ; Guderley, H Rossignol, O.; Dodson, J. J.; Guderley, H. Relationship between metabolism, sex and reproductive tactics in young Atlantic salmon (Salmo salar L.) COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Fish; Bimodality; Routine metabolic rate; Growth rate; Enzyme activity; Alternative reproductive tactic TROUT SALVELINUS-FONTINALIS; LIFE-HISTORY STRATEGIES; THREESPINE STICKLEBACK; SOCIAL-STATUS; FISH MUSCLE; GROWTH; PARR; MATURATION; EVOLUTION; SIZE Atlantic salmon can differ markedly in their growth and in the timing of reproductive maturation, leading to the dramatic contrast between the large anadromous adults and the diminutive mature male parr. This study examined the growth rates, anatomical and physiological characteristics of parr during the adoption of their discrete life histories to ascertain whether these properties can explain tactic choice. To minimise the impact of habitat differences upon these attributes, salmon were reared in the laboratory until 1.5 years of age, when the "decisions" to undergo smoltification or to mature as parr had been taken. At 1.5 years, both males and females showed bimodal size-frequency distributions. Neither the population of origin nor the paternal reproductive tactic influenced the "decision" to mature or the growth trajectories. Growth rate (% mass day(-1) during their final 10 months) and the % male and female offspring in the upper modal group were strongly correlated and varied markedly among families. Mean growth rate per family was negatively correlated with mean metabolic rate per family at emergence. Growth rate decreased as a function of parr size in January and the growth rates of upper modal fish were displaced upwards relative to those of lower modal fish. Most males in the smaller size mode matured, whereas all other fish began smoltification. Mature male parr did not differ from similarly sized female pre-smolt in routine metabolic rate, but these smaller fish had higher metabolic rates than larger male and female pre-smolts. However, mature parr differed markedly from similarly sized females and from larger male and female pre-smolts in possessing higher oxidative and lower glycolytic capacities in muscle. Overall, these data are consistent with the interpretation that growth rates dictate the distribution of parr between upper and lower modal groups. Individuals from faster growing families would be more likely to pass the threshold for smoltification and to accelerate growth, whereas those from slower growing families would remain in the lower mode. The use of metabolic capacities, e.g. metabolic rate, was linked with modal group, whereas muscle oxidative capacity was linked with male maturity. Mean family metabolic rate at emergence was negatively linked with mean growth during the subsequent year, suggesting that metabolic efficiency facilitates growth and eventually smoltification. (C) 2011 Elsevier Inc. All rights reserved. [Rossignol, O.; Dodson, J. J.; Guderley, H.] Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada Rossignol, O (reprint author), Univ Laval, Dept Biol, Quebec City, PQ G1K 7P4, Canada. orlane.rossignol.1@ulaval.ca NSERC; CIRSA; RAQ (Reseau d'aquaculture du Quebec) We thank the staff at La Station Piscicole at Tadoussac (Qc), Serge Higgins and Jean Christophe Therrien at the Laboratoire de Recherche en Sluices Aquatiques (LARSA), Universite Laval (Qc), for their help in raising the fish. We also thank Nicolas Martin and Marie-Claude Lamarche for help. We give special thanks to David Paez for his help with the experiments, the statistical analysis and for his insightful and constructive comments. We also thank Prof. Neil Metcalfe for his constructive comments. This work was funded by a research grant from an NSERC grant (Strategic programme) awarded to L. Bernatchez., J.J. Dodson, and H. Guderley and is part of the research activities of CIRSA and RAQ (Reseau d'aquaculture du Quebec). ARMSTRONG JD, 1994, J FISH BIOL, V44, P453, DOI 10.1111/j.1095-8649.1994.tb01225.x; Aubin-Horth N, 2004, EVOLUTION, V58, P136; Aubin-Horth N, 2006, CAN J FISH AQUAT SCI, V63, P2067, DOI 10.1139/F06-103; Baayen R. H, 2008, LANGUAGER DATA SETS; BAIEY JK, 1980, CAN J FISH AQUAT SCI, V37, P1379; Belanger F, 2002, FISH PHYSIOL BIOCHEM, V26, P121, DOI 10.1023/A:1025461108348; BLIER P, 2007, COMP BIOCH PHYSL A, P174; BUDDINGTON RK, 1987, AM J PHYSIOL, V252, pG65; COHIE NL, 1985, J COMP PHYSIOL B, V156, P163; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Garant D, 2003, EVOLUTION, V57, P1133; Garant D, 2002, EVOL ECOL RES, V4, P537; Garenc C, 1998, CAN J ZOOL, V76, P680, DOI 10.1139/cjz-76-4-680; Gibbons JW, 2004, BIOSCIENCE, V54, P447, DOI 10.1641/0006-3568(2004)054[0447:PTSTAI]2.0.CO;2; Glebe B. D., 1986, CAN SPEC PUBL FISH A, V89, P24; GOOLISH EM, 1995, METABOLIC CONSEQUENC, V4; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Guderley H, 2004, BIOL REV, V79, P409, DOI 10.1017/S1464793103006328; Guderley H, 2001, PHYSIOL BIOCHEM ZOOL, V74, P66, DOI 10.1086/319313; HIGGINS PJ, 1985, AQUACULTURE, V45, P33, DOI 10.1016/0044-8486(85)90256-X; HUTCHINGS JA, 1988, OECOLOGIA, V75, P169, DOI 10.1007/BF00378593; Hutchings Jeffrey A., 2004, P154; KUO N, 1994, J NEUROCHEM, V63, P751; Letcher BH, 2003, J FISH BIOL, V62, P97, DOI 10.1046/j.1095-8649.2003.00009.x; McCormick SD, 2009, INTEGR COMP BIOL, V49, P408, DOI 10.1093/icb/icp044; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; METCALFE NB, 1990, J ANIM ECOL, V59, P135, DOI 10.2307/5163; METCALFE NB, 1989, P ROY SOC LOND B BIO, P7; Mommsen TP, 2003, J COMP PHYSIOL B, V173, P409, DOI 10.1007/s00360-003-0349-5; Morasse S, 2008, PHYSIOL BIOCHEM ZOOL, V81, P402, DOI 10.1086/589012; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI [10.1139/f03-036, 10.1139/F03-036]; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; Paez DJ, 2011, J EVOLUTION BIOL, V24, P245, DOI 10.1111/j.1420-9101.2010.02159.x; PREVOST E, 1992, J FISH BIOL, V41, P1013, DOI 10.1111/j.1095-8649.1992.tb02728.x; Rossignol O, 2010, PHYSIOL BIOCHEM ZOOL, V83, P424, DOI 10.1086/649561; SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7; SOMERO GN, 1990, J EXP BIOL, V149, P319; STEARNS SC, 1980, OIKOS, V35, P266, DOI 10.2307/3544434; Thomaz D, 1997, P ROY SOC B-BIOL SCI, V264, P219, DOI 10.1098/rspb.1997.0031; THORPE JE, 1982, AQUACULTURE, V28, P123, DOI 10.1016/0044-8486(82)90015-1; THORPE JE, 1994, AQUACULTURE, V121, P105, DOI 10.1016/0044-8486(94)90012-4; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; THORPE JE, 1980, J FISH BIOL, V17, P451, DOI 10.1111/j.1095-8649.1980.tb02778.x; Tucker S, 1999, CAN J FISH AQUAT SCI, V56, P875, DOI 10.1139/cjfas-56-5-875; VILLARREAL CA, 1985, AQUACULTURE, V45, P265, DOI 10.1016/0044-8486(85)90275-3; Whalen KG, 1999, CAN J FISH AQUAT SCI, V56, P79, DOI 10.1139/cjfas-56-1-79 50 4 4 0 26 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. MAY 2011 159 1 82 91 10.1016/j.cbpa.2011.01.023 10 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology 747QE WOS:000289333700011 21300169 2019-02-21 J Kleinteich, T; Haas, A Kleinteich, Thomas; Haas, Alexander The Hyal and Ventral Branchial Muscles in Caecilian and Salamander Larvae: Homologies and Evolution JOURNAL OF MORPHOLOGY English Article Lissamphibia; cranial muscle homology; Batrachia hypothesis; amphibian larvae; caecilians COMPLETE MITOCHONDRIAL GENOMES; DISCOGLOSSUS-PICTUS DISCOGLOSSIDAE; LIFE-HISTORY EVOLUTION; AMPHIBIA GYMNOPHIONA; PLETHODONTID SALAMANDERS; HYOBRANCHIAL APPARATUS; FEEDING APPARATUS; LIVING AMPHIBIANS; MORPHOLOGY; PHYLOGENY Amphibians (Lissamphibia) are characterized by a bi-phasic life-cycle that comprises an aquatic larval stage and metamorphosis to the adult. The ancestral aquatic feeding behavior of amphibian larvae is suction feeding. The negative pressure that is needed for ingestion of prey is created by depression of the hyobranchial apparatus as a result of hyobranchial muscle action. Understanding the homologies of hyobranchial muscles in amphibian larvae is a crucial step in understanding the evolution of this important character complex. However, the literature mostly focuses on the adult musculature and terms used for hyal and ventral branchial muscles in different amphibians often do not reflect homologies across lissamphibian orders. Here we describe the hyal and ventral branchial musculature in larvae of caecilians (Gymnophiona) and salamanders (Caudata), including juveniles of two permanently aquatic salamander species. Based on previous alternative terminology schemes, we propose a terminology for the hyal and ventral branchial muscles that reflects the homologies of muscles and that is suited for studies on hyobranchial muscle evolution in amphibians. We present a discussion of the hyal and ventral branchial muscles in larvae of the most recent common ancestor of amphibians (i.e. the ground plan of Lissamphibia). Based on our terminology, the hyal and ventral branchial musculature of caecilians and salamanders comprises the following muscles: m. depressor mandibulae, m. depressor mandibulae posterior, m. hyomandibularis, m. branchiohyoideus externus, m. interhyoideus, m. interhyoideus posterior, m. subarcualis rectus I, m. subarcualis obliquus II, m. subarcualis obliquus III, m. subarcualis rectus II-IV, and m. transversus ventralis IV. Except for the m. branchiohyoideus externus, all muscles considered herein can be assigned to the ground plan of the Lissamphibia with certainty. The m. branchiohyoideus externus is either apomorphic for the Batrachia (frogs + salamanders) or salamander larvae depending on whether or not a homologous muscle is present in frog tadpoles. J. Morphol. 272:598-613, 2011. (C) 2011 Wiley-Liss, Inc. [Kleinteich, Thomas] Univ Washington, Friday Harbor Labs, Friday Harbor, WA 98250 USA; [Kleinteich, Thomas; Haas, Alexander] Univ Hamburg, Biozentrum Grindel, D-20146 Hamburg, Germany; [Kleinteich, Thomas; Haas, Alexander] Univ Hamburg, Zool Museum, D-20146 Hamburg, Germany Kleinteich, T (reprint author), Univ Washington, Friday Harbor Labs, 620 Univ Rd, Friday Harbor, WA 98250 USA. thomas.kleinteich@uni-hamburg.de German Research Foundation (DFG) [HA2323/10-1]; Studienstiftung des deutschen Volkes; Volkswagen Foundation Specimens studied here have kindly been made available by the Zoological Museum Hamburg (ZMH), the Museum of Vertebrate Zoology Berkeley (MVZ), and by Marvalee H. Wake (MHW, University of California, Berkeley). In particular, the authors are grateful to Marvalee H. Wake (Berkeley) for granting to access the Epicrionops bicolor specimens examined therein. The preparation of histological serial sections of salamander larvae by Katja Felbel and Rommy Petersohn (both Jena) is highly appreciated. Further, they thank Thomas Dejaco (Innsbruck) and Tamer Fawzy (Hamburg) for their help in digitizing the histological serial sections of the salamander specimens. Two anonymous reviewers helped to improve an earlier version of the manuscript. Thomas Kleinteich is grateful to the Studienstiftung des deutschen Volkes and to the Volkswagen Foundation for funding his research on amphibian feeding systems. Further support of this work was funded by the German Research Foundation (DFG) grant HA2323/10-1. Bauer WJ, 1997, J MORPHOL, V233, P77, DOI 10.1002/(SICI)1097-4687(199707)233:1<77::AID-JMOR7>3.0.CO;2-L; BEMIS WE, 1983, ZOOL J LINN SOC-LOND, V77, P75, DOI 10.1111/j.1096-3642.1983.tb01722.x; Bock P., 1989, ROMEIS MIKROSKOPISCH; Brower AVZ, 1996, CLADISTICS, V12, P265; Cannatella D, 1999, TADPOLES, P52; Carroll RL, 2007, ZOOL J LINN SOC-LOND, V150, P1, DOI 10.1111/j.1096-3642.2007.00246.x; Chippindale PT, 2004, EVOLUTION, V58, P2809; Deban SM, 2001, AM ZOOL, V41, P1280, DOI 10.1668/0003-1569(2001)041[1280:TEOTMC]2.0.CO;2; Deban Stephen M., 2000, P65, DOI 10.1016/B978-012632590-4/50004-6; DEJONGH HJ, 1968, NETH J ZOOL, V18, P1; DEPINNA MCC, 1991, CLADISTICS, V7, P367; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Diogo R, 2008, J ANAT, V213, P391, DOI 10.1111/j.1469-7580.2008.00953.x; Diogo R, 2008, BMC DEV BIOL, V8, DOI 10.1186/1471-213X-8-24; Druner L., 1904, ZOOL JB, V19, P361; Druner L, 1901, ZOOL JB, V15, P435; Duellman W. E., 1994, BIOL AMPHIBIANS; Eaton TH, 1936, J MORPHOL, V37, P31, DOI 10.1002/jmor.1050600104; Eaton TH, 1937, J MORPHOL, V60, P317, DOI 10.1002/jmor.1050600202; Edgeworth F. H., 1935, CRANIAL MUSCLES VERT; Edgeworth FH, 1920, J ANAT, V54, P125; Edgeworth FH, 1923, J ANAT, V57, P97; ERDMAN S, 1984, J MORPHOL, V181, P175, DOI 10.1002/jmor.1051810206; Ericsson R, 2004, J MORPHOL, V261, P131, DOI 10.1002/jmor.10151; FISCHER JG, 1864, ANATOMISCHE ABHANDLU; FOX H, 1959, PHILOS T ROY SOC B, V242, P151, DOI 10.1098/rstb.1959.0004; FOX H., 1954, TRANS ZOOL SOC LONDON, V28, P241; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; GRADWELL N, 1971, CAN J ZOOLOG, V49, P307, DOI 10.1139/z71-047; Haas A, 1997, ANAT REC, V249, P510, DOI 10.1002/(SICI)1097-0185(199712)249:4<510::AID-AR11>3.0.CO;2-R; Haas A, 2003, CLADISTICS, V19, P23, DOI 10.1016/S0748-3007(03)00006-9; Haas A, 1997, J ZOOL SYST EVOL RES, V35, P179; Haas A, 2001, J MORPHOL, V247, P1, DOI 10.1002/1097-4687(200101)247:1<1::AID-JMOR1000>3.0.CO;2-3; Hennig W., 1966, PHYLOGENETIC SYSTEMA; HILTON WILLIAM A., 1957, BULL SOUTHERN CALIFORNIA ACAD SCI, V56, P1; Hossfeld U, 2005, THEOR BIOSCI, V124, P243, DOI 10.1016/j.thbio.2005.09.003; Hoyos Julio Mario, 2004, Cuadernos de Herpetologia, V18, P65; Kleinteich T, 2007, J MORPHOL, V268, P74, DOI 10.1002/jmor.10503; Kleinteich T, 2008, J R SOC INTERFACE, V5, P1491, DOI 10.1098/rsif.2008.0155; Lawson R., 1965, Proceedings University of Newcastle Philosophical Society, V1, P52; Litzelmann E., 1923, Zeitschrift ges Anat Munchen et Berlin, V67, P457, DOI 10.1007/BF02593660; Marjanovic D, 2007, SYST BIOL, V56, P369, DOI 10.1080/10635150701397635; Muller H, 2009, BIOL J LINN SOC, V96, P491, DOI 10.1111/j.1095-8312.2008.01152.x; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Muller H., 2007, DEV MORPHOLOGICAL DI; Norris H. W., 1918, Journal of Morphology Philadelphia, V31; Nussbaum R.A., 1977, Occasional Papers of the Museum of Zoology University of Michigan, VNo. 682, P1; NUSSBAUM RA, 1983, J ZOOL, V199, P545; Nussbaum RA, 1979, OCCAS PAP MUS ZOOL U, V687, P1; O'Reilly J. C., 2002, TOPICS FUNCTIONAL EC, P153; O'Reilly James C., 2000, P149, DOI 10.1016/B978-012632590-4/50007-1; Piatt J., 1940, P9; Piatt J, 1938, J MORPHOL, V63, P531, DOI 10.1002/jmor.1050630306; PIATT J, 1939, COPEIA, P220; Pusey HK, 1943, Q J MICROSC SCI, V84, P105; PUTZ R, 2000, SOBOTTA ATLAS ANATOM, V1; REILLY SM, 1988, J MORPHOL, V195, P237, DOI 10.1002/jmor.1051950302; Reiss JO, 2002, ZOOLOGY, V105, P85, DOI 10.1078/0944-2006-00059; Richter S, 2005, THEOR BIOSCI, V124, P105, DOI 10.1016/j.thbio.2005.09.004; Rieppel O, 2002, BIOL J LINN SOC, V75, P59, DOI 10.1046/j.1095-8312.2002.00006.x; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; ROTH G, 1985, ACTA BIOTHEOR, V34, P175, DOI 10.1007/BF00046783; San Mauro D, 2005, AM NAT, V165, P590, DOI 10.1086/429523; San Mauro D, 2004, MOL PHYLOGENET EVOL, V33, P413, DOI 10.1016/j.ympev.2004.05.014; SCHLOSSER G, 1995, J MORPHOL, V226, P189; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P61, DOI 10.1159/000113323; Schoch RR, 2009, ANNU REV EARTH PL SC, V37, P135, DOI 10.1146/annurev.earth.031208.100113; Schuh R. T., 2000, BIOL SYSTEMATICS PRI; SOKOL OM, 1977, J MORPHOL, V154, P357, DOI 10.1002/jmor.1051540304; SOKOL OM, 1975, COPEIA, P1; Strong OS, 1895, J MORPHOL, V10, P101; Summers AP, 2005, ZOOLOGY, V108, P307, DOI 10.1016/j.zool.2005.09.007; Takisawa A., 1951, Okajimas Folia Anatomica Japonica, V23, P273; Trueb L., 1991, P223; Vogt L, 2010, CLADISTICS, V26, P301, DOI 10.1111/j.1096-0031.2009.00286.x; Wake D. B., 1982, ENV ADAPTATION EVOLU, P51; WAKE MH, 1989, ANN SCI NAT ZOOL, V10, P171; WAKE MH, 1993, J EXP ZOOL, V266, P394, DOI 10.1002/jez.1402660507; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; WILDER HH, 1891, ZOOL JB, V4, P653; Wilkinson M, 2002, J NAT HIST, V36, P2185, DOI 10.1080/00222930110071714; Wilkinson M, 1997, BIOL J LINN SOC, V62, P39; Wilkinson M, 2006, REPROD BIOL PHYLOGEN, V5, P39; Zardoya R, 2001, P NATL ACAD SCI USA, V98, P7380, DOI 10.1073/pnas.111455498; Zardoya R, 2000, GENETICS, V155, P765; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P479, DOI 10.1016/j.ympev.2009.06.018 87 11 11 1 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0362-2525 1097-4687 J MORPHOL J. Morphol. MAY 2011 272 5 598 613 10.1002/jmor.10940 16 Anatomy & Morphology Anatomy & Morphology 749AW WOS:000289435500009 21374703 2019-02-21 J Klepsatel, P; Flatt, T Klepsatel, Peter; Flatt, Thomas The genomic and physiological basis of life history variation in a butterfly metapopulation MOLECULAR ECOLOGY English Editorial Material adaptation; contemporary evolution; ecological genetics; genomics; proteomics; life history evolution; natural selection; population dynamics JUVENILE-HORMONE REGULATION; DROSOPHILA; DISPERSAL; ADAPTATION; DYNAMICS Unravelling the mechanisms underlying variation in life history traits is of fundamental importance for our understanding of adaptation by natural selection. While progress has been made in mapping fitness-related phenotypes to genotypes, mainly in a handful of model organisms, functional genomic studies of life history adaptations are still in their infancy. In particular, despite a few notable exceptions, the genomic basis of life history variation in natural populations remains poorly understood. This is especially true for the genetic underpinnings of life history phenotypes subject to diversifying selection driven by ecological dynamics in patchy environments-as opposed to adaptations involving strong directional selection owing to major environmental changes, such as latitudinal gradients, extreme climatic events or transitions from salt to freshwater. In this issue of Molecular Ecology, Wheat et al. (2011) now make a significant leap forward by applying the tools of functional genomics to dispersal-related life history variation in a butterfly metapopulation. Using a combination of microarrays, quantitative PCR and physiological measurements, the authors uncover several metabolic and endocrine factors that likely contribute to the observed life history phenotypes. By identifying molecular candidate mechanisms of fitness variation maintained by dispersal dynamics in a heterogeneous environment, they also begin to address fascinating interactions between the levels of physiology, ecology and evolution. [Klepsatel, Peter; Flatt, Thomas] Univ Vet Med, Inst Populat Genet, Dept Biomed Sci, A-1210 Vienna, Austria Flatt, T (reprint author), Univ Vet Med, Inst Populat Genet, Dept Biomed Sci, Vet Pl 1, A-1210 Vienna, Austria. thomas.flatt@vetmeduni.ac.at Flatt, Thomas/A-7384-2009 Flatt, Thomas/0000-0002-5990-1503 Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; FLATT T, 2011, MECH LIFE H IN PRESS; Gkouvitsas T, 2009, COMP BIOCHEM PHYS B, V153, P206, DOI 10.1016/j.cbpb.2009.02.017; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hanski I, 2004, ECOL LETT, V7, P958, DOI 10.1111/j.1461-0248.2004.00654.x; Hanski I, 2002, OIKOS, V98, P87, DOI 10.1034/j.1600-0706.2002.980109.x; Hanski I, 2006, PLOS BIOL, V4, P719, DOI 10.1371/journal.pbio.0040129; Herman WS, 2001, P ROY SOC B-BIOL SCI, V268, P2509, DOI 10.1098/rspb.2001.1765; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; JOWETT T, 1981, NATURE, V292, P633, DOI 10.1038/292633a0; Kolaczkowski B, 2011, GENETICS, V187, P245, DOI 10.1534/genetics.110.123059; Orsini L, 2009, J EVOLUTION BIOL, V22, P367, DOI 10.1111/j.1420-9101.2008.01653.x; Ramaswamy SB, 1997, ARCH INSECT BIOCHEM, V35, P539, DOI 10.1002/(SICI)1520-6327(1997)35:4<539::AID-ARCH12>3.0.CO;2-B; Roff DA, 2007, NAT REV GENET, V8, P116, DOI 10.1038/nrg2040; Saastamoinen M, 2007, OECOLOGIA, V153, P569, DOI 10.1007/s00442-007-0772-5; Saastamoinen M, 2009, P ROY SOC B-BIOL SCI, V276, P1313, DOI 10.1098/rspb.2008.1464; Siviter RJ, 2002, BIOCHEM J, V367, P187, DOI 10.1042/BJ20020567; Stapley J, 2010, TRENDS ECOL EVOL, V25, P705, DOI 10.1016/j.tree.2010.09.002; Turner TL, 2010, NAT GENET, V42, P260, DOI 10.1038/ng.515; VANSTRAALEN NM, 2006, INTRO ECOLOGICAL GEN; Vera JC, 2008, MOL ECOL, V17, P1636, DOI 10.1111/j.1365-294X.2008.03666.x; Wheat CW, 2011, MOL ECOL, V20, P1813, DOI 10.1111/j.1365-294X.2011.05062.x; Zheng CZ, 2009, PHILOS T R SOC B, V364, P1519, DOI 10.1098/rstb.2009.0005 24 4 4 0 29 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0962-1083 MOL ECOL Mol. Ecol. MAY 2011 20 9 1795 1798 10.1111/j.1365-294X.2011.05078.x 4 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 750CR WOS:000289522400001 21634052 Bronze 2019-02-21 J Sanchez-Humanes, B; Sork, VL; Espelta, JM Sanchez-Humanes, Belen; Sork, Victoria L.; Maria Espelta, Josep Trade-offs between vegetative growth and acorn production in Quercus lobata during a mast year: the relevance of crop size and hierarchical level within the canopy OECOLOGIA English Article Cost of reproduction; Growth; Mast-seeding; Modular organization; Valley oak PINUS-CONTORTA TREES; EVOLUTIONARY ECOLOGY; REPRODUCTIVE EFFORT; SEED PRODUCTION; NOTHOFAGUS-TRUNCATA; POLLEN MOVEMENT; STYRAX-OBASSIA; WOODY-PLANTS; DOUGLAS-FIR; RING GROWTH The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy. [Sanchez-Humanes, Belen; Maria Espelta, Josep] Autonomous Univ Barcelona, Ctr Ecol Res & Forestry Applicat CREAF, Bellaterra 08193, Spain; [Sork, Victoria L.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA; [Sork, Victoria L.] Univ Calif Los Angeles, Inst Environm, Los Angeles, CA 90095 USA Sanchez-Humanes, B (reprint author), Autonomous Univ Barcelona, Ctr Ecol Res & Forestry Applicat CREAF, Bellaterra 08193, Spain. belen.sanchez@creaf.uab.es Espelta, Josep Maria/I-3891-2016 Espelta, Josep Maria/0000-0002-0242-4988 Ministerio de Educacion y Ciencia; Ministerio de Ciencia e Innovacion [MCINN CGL2008-04847-C02-02]; National Science Foundation [NSF-DEB-0089445] We acknowledge UCLA and UAB statistical consultants Xiao Chen, Philip Ender, Rose Medeiros, and Llorenc Badiella for their valuable help with the data analysis. We thank Andy Lentz, Doug Scofield, Brian Alfaro, and staff of the UCSB Sedgwick Reserve for logistical assistance in the Weld and Ignacio Bartomeus for statistical assistance. We also thank Dave Kelly and two anonymous reviewers for their highly valuable comments on the manuscript. BSH was supported by the FPU program (Ministerio de Educacion y Ciencia) for research stages abroad and the Ministerio de Ciencia e Innovacion (MCINN CGL2008-04847-C02-02). V.L. Sork was supported by National Science Foundation (NSF-DEB-0089445). Our work complied with the current laws of the USA. ABRAHAMSON WG, 1975, ECOLOGY, V56, P721, DOI 10.2307/1935508; Alley JC, 1998, NEW ZEAL J BOT, V36, P453, DOI 10.1080/0028825X.1998.9512583; ASHMAN TL, 1994, AM NAT, V144, P300, DOI 10.1086/285676; Brienen RJW, 2006, FOREST ECOL MANAG, V237, P179, DOI 10.1016/j.foreco.2006.09.042; Bullock SH, 2004, ECOLOGY, V85, P2114, DOI 10.1890/03-3115; Buonaccorsi JP, 2003, J THEOR BIOL, V224, P107, DOI 10.1016/S0022-5193(03)00148-6; CHAPIN FS, 1989, AM NAT, V133, P1, DOI 10.1086/284898; CREMER KW, 1992, FOREST ECOL MANAG, V52, P179, DOI 10.1016/0378-1127(92)90501-Y; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; DICK JM, 1990, TREE PHYSIOL, V6, P151, DOI 10.1093/treephys/6.2.151; DICK JM, 1990, TREE PHYSIOL, V6, P105, DOI 10.1093/treephys/6.1.105; DOUST JL, 1988, ECOLOGY, V69, P741, DOI 10.2307/1941023; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; Espelta JM, 2008, ECOLOGY, V89, P805, DOI 10.1890/07-0217.1; Fox JC, 2001, FOREST ECOL MANAG, V154, P261, DOI 10.1016/S0378-1127(00)00632-0; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; Hasegawa S, 2003, J PLANT RES, V116, P183, DOI 10.1007/s10265-003-0085-7; Henriksson J, 2000, ANN BOT-LONDON, V86, P503, DOI 10.1006/anbo.2000.1206; Herrera CM, 1998, AM NAT, V152, P576, DOI 10.1086/286191; Ichie T, 2005, TREES-STRUCT FUNCT, V19, P703, DOI 10.1007/s00468-005-0434-3; Isagi Y, 1997, J THEOR BIOL, V187, P231, DOI 10.1006/jtbi.1997.0442; Janzen D. H., 1971, A Rev Ecol Syst, V2, P465, DOI 10.1146/annurev.es.02.110171.002341; Kawamura K, 2006, NEW PHYTOL, V171, P69, DOI 10.1111/j.1469-8137.2006.01737.x; KELLY D, 1994, TRENDS ECOL EVOL, V9, P465, DOI 10.1016/0169-5347(94)90310-7; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Koenig WD, 2003, OIKOS, V102, P581, DOI 10.1034/j.1600-0706.2003.12272.x; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; KOENIG WD, 1994, ECOLOGY, V75, P99, DOI 10.2307/1939386; KOENIG WD, 1994, CAN J FOREST RES, V24, P2105, DOI 10.1139/x94-270; Korner C, 2003, J ECOL, V91, P4, DOI 10.1046/j.1365-2745.2003.00742.x; Liebhold A, 2004, OIKOS, V104, P156, DOI 10.1111/j.0030-1299.2004.12722.x; MITCHELL RJ, 1992, FUNCT ECOL, V6, P123, DOI 10.2307/2389745; Miyazaki Y, 2002, ANN BOT-LONDON, V89, P767, DOI 10.1093/aob/mcf107; Miyazaki Y, 2007, PLANT SPEC BIOL, V22, P53, DOI 10.1111/j.1442-1984.2007.00176.x; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; MORRIS R. F., 1951, FOREST CHRON, V27, P40; NEWELL EA, 1991, J ECOL, V79, P365, DOI 10.2307/2260719; NIENSTAEDT H, 1985, CAN J FOREST RES, V15, P498, DOI 10.1139/x85-082; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Obeso JR, 2004, PERSPECT PLANT ECOL, V6, P217, DOI 10.1078/1433-8319-00080; Obeso JR, 2004, EVOL ECOL, V18, P133, DOI 10.1023/B:EVEC.0000021137.74661.82; OBESO JR, 1993, FUNCT ECOL, V7, P150, DOI 10.2307/2389881; PAVLIK BM, 1991, OAKS CALIFORNIA; Pluess AR, 2009, FOREST ECOL MANAG, V258, P735, DOI 10.1016/j.foreco.2009.05.014; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Sgro CM, 2004, HEREDITY, V93, P241, DOI 10.1038/sj.hdy.6800532; SILVERTOWN JW, 1980, BIOL J LINN SOC, V14, P235, DOI 10.1111/j.1095-8312.1980.tb00107.x; Snook LK, 2005, FOREST ECOL MANAG, V206, P221, DOI 10.1016/j.foreco.2004.11.003; SORK VL, 1993, VEGETATIO, V108, P133; Sork VL, 2002, MOL ECOL, V11, P1657, DOI 10.1046/j.1365-294X.2002.01574.x; SORK VL, 1993, ECOLOGY, V74, P528, DOI 10.2307/1939313; SORK VL, 1993, ANN SCI FOREST, V30, P128; Suzuki A, 2000, TREES-STRUCT FUNCT, V14, P329, DOI 10.1007/s004680050226; Suzuki AA, 2005, AM J BOT, V92, P2003, DOI 10.3732/ajb.92.12.2003; TUOMI J, 1983, AM ZOOL, V23, P25; Vieira J, 2009, TREES-STRUCT FUNCT, V23, P257, DOI 10.1007/s00468-008-0273-0; WARDLAW IF, 1990, NEW PHYTOL, V116, P341, DOI 10.1111/j.1469-8137.1990.tb00524.x; WATSON MA, 1984, ANNU REV ECOL SYST, V15, P233, DOI 10.1146/annurev.es.15.110184.001313; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WOOLLONS RC, 1990, NEW ZEAL J ECOL, V13, P9; Wright S, 1920, J AGRIC RES, V20, P0557; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; ZIMMERMANN MH, 1983, XYLEM STRUCTURE DEAS 69 27 33 2 60 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAY 2011 166 1 101 110 10.1007/s00442-010-1819-6 10 Ecology Environmental Sciences & Ecology 749DJ WOS:000289442000010 21049300 Green Published, Other Gold 2019-02-21 J Murphy, L; Nalpas, N; Stear, M; Cattadori, IM Murphy, L.; Nalpas, N.; Stear, M.; Cattadori, I. M. Explaining patterns of infection in free-living populations using laboratory immune experiments PARASITE IMMUNOLOGY English Article Graphidium strigosum; local and systemic acquired immunity; rabbit; small intestine; stomach; Trichostrongylus retortaeformis NEMATODE STRONGYLOIDES-RATTI; TRICHOSTRONGYLUS-RETORTAEFORMIS; HAEMONCHUS-CONTORTUS; PROTECTIVE IMMUNITY; TELADORSAGIA-CIRCUMCINCTA; OSTERTAGIA-CIRCUMCINCTA; ORYCTOLAGUS-CUNICULUS; COOPERIA-ONCOPHORA; IGA RESPONSES; LIFE-CYCLE P>The host response to different helminth species can vary and have different consequences for helminth persistence. Often these differences are generated by changes in the dynamics and intensity of the immune components against parasites with distinct life history strategies. We examined the immune response of rabbits to primary infections of the gastrointestinal nematodes Trichostrongylus retortaeformis and Graphidium strigosum under controlled conditions for 120 days post-challenge. Results showed that rabbits developed a robust and effective immune response against T. retortaeformis and abundance quickly decreased in the duodenum and was completely cleared in the remaining sections of the small intestine within 4 months. Infected individuals exhibited an initial strong inflammatory response (IFN-gamma), IL-4 expression also increased and was coupled to a rapid serum and mucus IgG and IgA and eosinophilia. Strong IL-4, serum IgA and IgG responses and eosinophilia were also observed against G. strigosum. However, parasite abundance remained consistently high throughout the infection, and this was associated with relatively low mucus antibodies. These findings suggest that immunity plays a key role in affecting the abundance of these nematodes, and different immune mechanisms are involved in regulating the dynamics of each infection and their long-term persistence in free-living host populations. [Cattadori, I. M.] Penn State Univ, Dept Biol, Ctr Infect Dis Dynam, Mueller Lab 508, University Pk, PA 16802 USA; [Murphy, L.; Stear, M.] Univ Glasgow, Sch Vet, Div Anim Prod & Publ Hlth, Glasgow, Lanark, Scotland; [Nalpas, N.] Univ Coll Dublin, Coll Life Sci, Sch Agr Food Sci & Vet Med, Anim Genom Lab, Dublin 2, Ireland Cattadori, IM (reprint author), Penn State Univ, Dept Biol, Ctr Infect Dis Dynam, Mueller Lab 508, University Pk, PA 16802 USA. imc3@psu.edu Cattadori, Isabella/0000-0001-6618-316X; Stear, Michael/0000-0001-5054-1348 HFSP; Royal Society A very special thanks to Fabienne Audebert for having enthusiastically inspired and guided IMC to the understanding of T. retortaeformis and G. strigosum parasitology. Special thanks to James McGoldrick and Brian Boag for their patience in embarking on long-term discussions on the biology of helminths and parasitological techniques with IMC and LM. Also but not last IMC is grateful to Peter J. Hudson for discussing the theory of this study while commuting to work. The authors thank A. Pathak for critical comments on the early manuscript. This study and LM were funded by a HFSP and a Royal Society grant. Anderson R. C., 2000, NEMATODE PARASITES V; Anthony RM, 2006, NAT MED, V12, P955, DOI 10.1038/nm1415; Artis D, 2006, INT J PARASITOL, V36, P723, DOI 10.1016/j.ijpara.2006.02.011; Audebert F, 2007, PARASITE, V14, P183, DOI 10.1051/parasite/2007143183; Audebert F, 2000, J HELMINTHOL, V74, P95; Audebert F, 2003, VET PARASITOL, V112, P131, DOI 10.1016/S0304-4017(02)00386-2; Audebert F, 2002, J HELMINTHOL, V76, P189, DOI 10.1079/JOH2002126; Balic A, 2006, PARASITE IMMUNOL, V28, P107, DOI 10.1111/j.1365-3024.2006.00816.x; Balic A, 2000, ADV PARASIT, V45, P181, DOI 10.1016/S0065-308X(00)45005-0; BARKER IK, 1975, J COMP PATHOL, V85, P427, DOI 10.1016/0021-9975(75)90030-4; Bleay C, 2007, INT J PARASITOL, V37, P1501, DOI 10.1016/j.ijpara.2007.04.023; Cattadori IM, 2008, INT J PARASITOL, V38, P371, DOI 10.1016/j.ijpara.2007.08.004; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; Cattadori IM, 2007, J R SOC INTERFACE, V4, P831, DOI 10.1098/rsif.2007.1075; Chylinski C, 2009, PARASITOLOGY, V136, P117, DOI 10.1017/S0031182008005143; CORNELL S, 2008, P R SOC B, V275, P473; Cuquerella M, 2009, PARASITOL RES, V104, P371, DOI 10.1007/s00436-008-1206-y; Duerr HP, 2003, PARASITOLOGY, V126, P87, DOI 10.1017/S0031182002002561; Finkelman FD, 2001, J ALLERGY CLIN IMMUN, V107, P772, DOI 10.1067/mai.2001.114989; Harrison GBL, 2003, PARASITE IMMUNOL, V25, P45, DOI 10.1046/j.1365-3024.2003.00602.x; Haupt W, 1975, Arch Exp Veterinarmed, V29, P135; Helmby H, 2003, EUR J IMMUNOL, V33, P2382, DOI 10.1002/eji.200324082; Henderson NG, 2006, VET IMMUNOL IMMUNOP, V112, P62, DOI 10.1016/j.vetimm.2006.03.012; HUDSON P. J., 1995, ECOLOGY INFECT DIS N, P52; Kanobana K, 2003, INT J PARASITOL, V33, P1487, DOI 10.1016/S0020-7519(03)00210-8; Kanobana K, 2002, INT J PARASITOL, V32, P1389, DOI 10.1016/S0020-7519(02)00132-7; Khan WI, 2003, INFECT IMMUN, V71, P2430, DOI 10.1128/IAI.71.5.2430-2438.2003; Lacroux C, 2006, VET RES, V37, P607, DOI 10.1051/vetres:2006022; Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262; MacDonald AS, 2002, INFECT IMMUN, V70, P427, DOI 10.1128/IAI.70.2.427-433.2002; Massoni J, 2011, PARASITOL RES, V109, P25, DOI 10.1007/s00436-010-2217-z; Mccoy KD, 2008, CELL HOST MICROBE, V4, P362, DOI 10.1016/j.chom.2008.08.014; Meeusen ENT, 2000, PARASITOL TODAY, V16, P95, DOI 10.1016/S0169-4758(99)01607-5; Mestecky J, 2005, MUCOSAL IMMUNOLOGY, 3RD EDITION, P1; MICHEL JF, 1952, NATURE, V169, P933, DOI 10.1038/169933a0; Moxon JV, 2010, PARASITE IMMUNOL, V32, P111, DOI 10.1111/j.1365-3024.2009.01171.x; NICKEL E-A, 1986, Angewandte Parasitologie, V27, P215; Nisbet AJ, 2010, EXP PARASITOL, V125, P329, DOI 10.1016/j.exppara.2010.02.014; PACALA SW, 1988, PARASITOLOGY, V96, P197, DOI 10.1017/S0031182000081762; Paterson S, 2002, PARASITOLOGY, V125, P283, DOI 10.1017/S0031182002002056; Pathak AK, 2010, BMC MICROBIOL, V10, DOI 10.1186/1471-2180-10-226; Pernthaner A, 2006, VET IMMUNOL IMMUNOP, V114, P135, DOI 10.1016/j.vetimm.2006.08.004; Sanchez J, 2002, VET PARASITOL, V109, P75, DOI 10.1016/S0304-4017(02)00194-2; Schallig HDFH, 2000, PARASITOLOGY, V120, pS63, DOI 10.1017/S003118209900579X; SINSKI E, 1995, VET PARASITOL, V59, P107, DOI 10.1016/0304-4017(94)00761-Z; Skapenko A, 2005, J IMMUNOL, V175, P6107, DOI 10.4049/jimmunol.175.9.6107; SKORPING A, 1991, OIKOS, V60, P365, DOI 10.2307/3545079; Sotillo J, 2007, EXP PARASITOL, V116, P390, DOI 10.1016/j.exppara.2007.02.008; Stear MJ, 1995, PARASITE IMMUNOL, V17, P643, DOI 10.1111/j.1365-3024.1995.tb01010.x; Terefe G, 2007, PARASITE IMMUNOL, V29, P415, DOI 10.1111/j.1365-3024.2007.00958.x; URBAN JF, 1991, P NATL ACAD SCI USA, V88, P5513, DOI 10.1073/pnas.88.13.5513; URBAN JF, 1992, IMMUNOL REV, V127, P205, DOI 10.1111/j.1600-065X.1992.tb01415.x; Wilkes CP, 2004, PARASITOLOGY, V128, P661, DOI 10.1017/S0031182004005062 53 20 20 0 97 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0141-9838 PARASITE IMMUNOL Parasite Immunol. MAY 2011 33 5 287 302 10.1111/j.1365-3024.2011.01281.x 16 Immunology; Parasitology Immunology; Parasitology 747CV WOS:000289298800004 21272036 2019-02-21 J Christensen, A; Andersen, K Christensen, Asbjorn; Andersen, Ken Haste General Classification of Maturation Reaction-Norm Shape from Size-based Processes BULLETIN OF MATHEMATICAL BIOLOGY English Article Optimal life-history theory; Growth; Mortality; Fisheries induced evolution; Climate change impact FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; EVOLVING FISH STOCKS; DEPENDENT MORTALITY; AGE; GROWTH; MATURITY; MODEL; POPULATIONS; PREDICTIONS Phenotypic plasticity of size at maturation is commonly described using size-age maturation reaction norms (MRNs). MRNs for age and size at maturation are analyzed and classified into three general categories related to different size scalings of growth and mortality. The underlying model for growth and mortality is based on processes at the level of the individual, and is motivated by the energy budget of fish. MRN shape is a balance between opposing factors and depends on subtle details of size dependence of growth and mortality. MRNs with both positive and negative slopes are predicted, and for certain mortality conditions also a lower critical spawning mass. The model is applied to predict a generic fishery-induced evolutionary response and allows assessment of climate change impact on MRNs. Our work stresses the importance of using realistic size dependence of mortality and growth, since this strongly influences the predicted MRNs and sensitivity to harvest pressure. [Christensen, Asbjorn; Andersen, Ken Haste] DTU Aqua, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark Christensen, A (reprint author), DTU Aqua, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark. asc@aqua.dtu.dk; kha@aqua.dtu.dk Andersen, Ken Haste/0000-0002-8478-3430 EU [44133] This work has in part been supported by EU FP6 project RECLAIM (Contract No. 44133). For comments to the manuscript we are grateful to Patrizio Mariani. Andersen KH, 2007, ECOL MODEL, V204, P246, DOI 10.1016/j.ecolmodel.2007.01.002; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; Blanchard JL, 2005, ICES J MAR SCI, V62, P405, DOI 10.1016/j.icesjms.2005.01.006; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Chambers RC, 1997, EARLY LIFE HIST RECR, P63; Cury PM, 2005, ICES J MAR SCI, V62, P430, DOI 10.1016/j.icesjms.2004.12.006; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2008, B MAR SCI, V83, P69; Jobling M., 1994, FISH FISHERIES SERIE, V13; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Peters R.H., 1983, P1; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; Reiss MJ, 1991, ALLOMETRY GROWTH REP; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Thygesen UH, 2005, P ROY SOC B-BIOL SCI, V272, P1323, DOI 10.1098/rspb.2005.3094; VINBERG GG, 1956, FISH RES BOARD CAN, V194, P1; WARE DM, 1975, J FISH RES BOARD CAN, V32, P33, DOI 10.1139/f75-005; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 33 2 2 0 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0092-8240 1522-9602 B MATH BIOL Bull. Math. Biol. MAY 2011 73 5 1004 1027 10.1007/s11538-010-9550-3 24 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 746KW WOS:000289246600004 20556532 2019-02-21 J De Luca, PA; Cocroft, RB De Luca, Paul A.; Cocroft, Reginald B. The Influence of Age on Male Mate-Searching Behaviour in Thornbug Treehoppers ETHOLOGY English Article MALE MATING SUCCESS; UMBONIA-CRASSICORNIS HOMOPTERA; YELLOW DUNG FLY; SEXUAL SELECTION; OLDER MALES; MALE COMPETITION; DEPENDENT EXPRESSION; SOCIAL-ENVIRONMENT; ENERGY RESERVES; FLIGHT CAPACITY One prediction from life-history theory is that males should increase investment in reproductive effort as they age because the opportunity for future reproductive events declines. However, older males may not be able to increase their reproductive effort if condition declines with age. The effect of age-related changes in condition may be especially important for energetically costly activities such as moving within and between habitat patches while searching for mates. Although such searching is a component of many mating systems, the relationship between age and active mate searching has not been investigated. We investigated whether mate-searching effort increased with age in the thornbug treehopper, Umbonia crassicornis (Hemiptera: Membracidae). In this species, males search for females using a 'fly-call-walk' strategy consisting of three phases: (1) flying from one plant to another; (2) walking and signalling while on a plant; and (3) close-range courtship of encountered females. We measured several aspects of mate-searching behaviour over the month-long period of a male's reproductive lifetime. Over the relevant period of male sexual activity (19-33 d), male condition remained stable. However, older males (25-33 d) did not search more actively than younger males as predicted; instead, younger males (19 d) had greater plant-to-plant flight activity and found females faster. Within-plant walking rates and courtship duration did not differ among age classes. These results suggest that thornbug males may be investing so heavily in mate searching at younger ages that they are unable to increase investment in searching effort when they get older. As a result, older males are likely to be at a competitive disadvantage when active searching is required to locate sparsely distributed females. [De Luca, Paul A.; Cocroft, Reginald B.] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA De Luca, PA (reprint author), Univ Toronto Scarborough, Dept Biol Sci, 1265 Mil Trail, Toronto, ON M1C 1A4, Canada. paul.deluca@utoronto.ca University of Missouri Research Board We thank current and former members of the Cocroft Lab (J. Hamel, G. McNett, K. Ramaswamy, R. Rodriguez and L. Sullivan) for their suggestions regarding many aspects of the design of this study. We also thank H. C. Gerhardt, J. Schul, R. Semlitsch, and M. V. Flinn for their comments on previous versions of this manuscript. This manuscript also benefited from the comments of two anonymous reviewers. B. Sonderman provided much assistance in helping to maintain the colony of U. crassicornis at the greenhouse on the MU campus. We are very grateful to P. Kendra (USDA-ARS, Miami), R. Hammer (Castellow Hammock Park, Homestead), P. Griffith (Montgomery Botanical Center, Miami), and Dr. Ethan H. Freid for helping us locate populations of U. crassicornis in south Florida in 2006. This research was supported by a University of Missouri Research Board Grant to R. B. C. Alonso JC, 2010, BEHAV ECOL SOCIOBIOL, V64, P1589, DOI 10.1007/s00265-010-0972-6; Andersson M., 1994, SEXUAL SELECTION; Bailey WJ, 2003, PHYSIOL ENTOMOL, V28, P157, DOI 10.1046/j.1365-3032.2003.00337.x; Bertram SM, 2000, ANIM BEHAV, V60, P333, DOI 10.1006/anbe.2000.1473; Bitton PP, 2007, ANIM BEHAV, V74, P1777, DOI 10.1016/j.anbehav.2007.03.018; Blanckenhorn WU, 2003, BEHAV ECOL, V14, P612, DOI 10.1093/beheco/arg052; Bonsall MB, 2004, P ROY SOC B-BIOL SCI, V271, P1143, DOI 10.1098/rspb.2004.2722; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Brown GP, 1999, BEHAV ECOL SOCIOBIOL, V47, P9, DOI 10.1007/s002650050644; Casey T.M., 1989, P257; CLARIDGE MF, 1985, ANNU REV ENTOMOL, V30, P297, DOI 10.1146/annurev.en.30.010185.001501; Claridge Michael F., 1994, P216; Cocroft R. B., 2006, INSECT SOUNDS COMMUN, P321; Cocroft RB, 2003, J INSECT BEHAV, V16, P79, DOI 10.1023/A:1022801429033; Cocroft RB, 2002, BEHAV ECOL, V13, P125, DOI 10.1093/beheco/13.1.125; Cokl A, 1999, ANIM BEHAV, V58, P1277, DOI 10.1006/anbe.1999.1272; Coley PD, 1996, ANNU REV ECOL SYST, V27, P305, DOI 10.1146/annurev.ecolsys.27.1.305; Collatz K.-G., 1986, P55; CONNER J, 1989, ANIM BEHAV, V38, P503, DOI 10.1016/S0003-3472(89)80043-0; CONOVER WJ, 1980, PRACTICAL NONPARAMET; Cotton S, 2004, P ROY SOC B-BIOL SCI, V271, P771, DOI 10.1098/rspb.2004.2688; De Luca PA, 2008, BEHAV ECOL SOCIOBIOL, V62, P1869, DOI 10.1007/s00265-008-0616-2; De Luca PA, 2009, BEHAV ECOL SOCIOBIOL, V63, P1787, DOI 10.1007/s00265-009-0803-9; DEFRAIPONT M, 1993, ANIM BEHAV, V46, P961, DOI 10.1006/anbe.1993.1277; Demary K, 2006, ETHOLOGY, V112, P485, DOI 10.1111/j.1439-0310.2005.01176.x; DEWINTER AJ, 1990, BIOL J LINN SOC, V40, P191, DOI 10.1111/j.1095-8312.1990.tb01975.x; Diaz ER, 2004, BIOL BULL-US, V206, P134, DOI 10.2307/1543637; Dunn PO, 2007, BEHAV ECOL SOCIOBIOL, V61, P449, DOI 10.1007/s00265-006-0272-3; Duvall D, 1997, ANIM BEHAV, V54, P329, DOI 10.1006/anbe.1996.0418; Engqvist L, 2009, ANIM BEHAV, V78, P491, DOI 10.1016/j.anbehav.2009.05.021; Felton A, 2006, BEHAV ECOL SOCIOBIOL, V59, P786, DOI 10.1007/s00265-005-0124-6; Fischer J, 2004, BEHAV ECOL SOCIOBIOL, V56, P140, DOI 10.1007/s00265-003-0739-4; Fischer K, 2008, P ROY SOC B-BIOL SCI, V275, P1517, DOI 10.1098/rspb.2007.1455; Forbes MR, 1996, CAN J ZOOL, V74, P1479, DOI 10.1139/z96-162; Forstmeier W, 2006, BEHAV ECOL SOCIOBIOL, V59, P634, DOI 10.1007/s00265-005-0090-z; Garamszegi LZ, 2007, ETHOLOGY, V113, P246, DOI 10.1111/j.1439-0310.2007.01337.x; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; HEDRICK AV, 1986, BEHAV ECOL SOCIOBIOL, V19, P73, DOI 10.1007/BF00303845; HOGLUND J, 1987, BEHAV ECOL SOCIOBIOL, V21, P211, DOI 10.1007/BF00292501; HOWARD RD, 1978, EVOLUTION, V32, P850, DOI 10.1111/j.1558-5646.1978.tb04639.x; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; HUNT RE, 1994, J NEW YORK ENTOMOL S, V102, P266; HUNT RE, 1991, BEHAV ECOL SOCIOBIOL, V28, P315, DOI 10.1007/BF00164380; Jacot A, 2007, ETHOLOGY, V113, P615, DOI 10.1111/j.1439-0310.2007.01360.x; Jordan LA, 2010, J EVOLUTION BIOL, V23, P2403, DOI 10.1111/j.1420-9101.2010.02104.x; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kasumovic MM, 2007, BEHAV ECOL, V18, P189, DOI 10.1093/beheco/arl072; Kemp DJ, 2008, BEHAV ECOL, V19, P1, DOI 10.1093/beheco/arm094; Kemp DJ, 2006, ETHOLOGY, V112, P471, DOI 10.1111/j.1439-0310.2005.01173.x; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kotiaho JS, 2002, BEHAV ECOL, V13, P791, DOI 10.1093/beheco/13.6.791; Kutsch W., 1989, P51; Marden JH, 2000, ANNU REV PHYSIOL, V62, P157, DOI 10.1146/annurev.physiol.62.1.157; MARDEN JH, 1994, ANIM BEHAV, V48, P1023, DOI 10.1006/anbe.1994.1335; Masters K. L, 1997, THESIS PRINCETON U P; Matsubara K, 2005, ZOOL SCI, V22, P587, DOI 10.2108/zsj.22.587; McKamey SH, 1996, SYST ENTOMOL, V21, P295, DOI 10.1111/j.1365-3113.1996.tb00602.x; MEAD FW, 1962, 8 FL DEP AGR CONS SE; Miller LK, 2005, EVOLUTION, V59, P2414; Miranda X, 2006, ANN ENTOMOL SOC AM, V99, P374, DOI 10.1603/0013-8746(2006)099[0374:SSRACJ]2.0.CO;2; OTRONEN M, 1995, FUNCT ECOL, V9, P683, DOI 10.2307/2390161; PARKER GA, 1974, BEHAVIOUR, V48, P157, DOI 10.1163/156853974X00327; PARKER GA, 1978, BEHAV ECOLOGY EVOLUT, P214; Radwan J, 2005, ANIM BEHAV, V69, P1101, DOI 10.1016/j.anbehav.2004.09.006; RITCHIE MG, 1995, P ROY SOC B-BIOL SCI, V262, P21, DOI 10.1098/rspb.1995.0171; Roberts SP, 2005, J EXP BIOL, V208, P4193, DOI 10.1242/jeb.01862; *SAS I INC, 2003, JMP IN STAT DISC SOF; Schaefer D, 2003, ETHOLOGY, V109, P385, DOI 10.1046/j.1439-0310.2003.00881.x; Scheffer SJ, 1996, BEHAV ECOL SOCIOBIOL, V38, P17, DOI 10.1007/s002650050212; Shuster S. M, 2003, MG BEH ECOL; Sikkel PC, 1998, BEHAV ECOL, V9, P439, DOI 10.1093/beheco/9.5.439; SOHAL RS, 1976, GERONTOLOGY, V22, P317; Stearns S, 1992, EVOLUTION LIFE HIST; Stewart KW, 2006, CONT T ENT, P179; Sullivan-Beckers L, 2010, EVOLUTION, V64, P3158, DOI 10.1111/j.1558-5646.2010.01073.x; Uy JAC, 2001, AM NAT, V158, P530, DOI 10.1086/323118; Wong BBM, 2005, BIOL REV, V80, P559, DOI 10.1017/S1464793105006809; WOOD TK, 1985, FLA ENTOMOL, V68, P151, DOI 10.2307/3494339; WOOD TK, 1974, CAN ENTOMOL, V106, P143, DOI 10.4039/Ent106143-2; WOOD TK, 1984, AM MIDL NAT, V112, P58, DOI 10.2307/2425457; WOOD TK, 1974, CAN ENTOMOL, V106, P169, DOI 10.4039/Ent106169-2; WOODHEAD AP, 1986, ANIM BEHAV, V34, P1874, DOI 10.1016/S0003-3472(86)80273-1; WOOLBRIGHT LL, 1990, ANIM BEHAV, V40, P135, DOI 10.1016/S0003-3472(05)80673-6; ZEIGLER DD, 1985, ENTOMOL NEWS, V96, P157 84 9 9 1 10 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2011 117 5 440 450 10.1111/j.1439-0310.2011.01893.x 11 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 746NR WOS:000289254500010 2019-02-21 J Nussle, S; Brechon, A; Wedekind, C Nussle, Sebastien; Brechon, Amanda; Wedekind, Claus Change in individual growth rate and its link to gill-net fishing in two sympatric whitefish species EVOLUTIONARY ECOLOGY English Article Rapid evolution; Artificial selection; Salmonid; Coregonus; Selection differential; Lake Brienz (Switzerland) FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; NORTH-SEA PLAICE; BODY-SIZE; COREGONUS-LAVARETUS; PACIFIC SALMON; REACTION NORMS; BROWN TROUT; LAKE; CONSEQUENCES Size-selective fishing is expected to affect traits such as individual growth rate, but the relationship between the fishery-linked selection differentials and the corresponding phenotypic changes is not well understood. We analysed a 25-year monitoring survey of sympatric populations of the two Alpine whitefish Coregonus albellus and C. fatioi. We determined the fishing-induced selection differentials on growth rates, the actual change of growth rates over time, and potential indicators of reproductive strategies that may change over time. We found marked declines in adult growth rate and significant selection differentials that may partly explain the observed declines. However, when comparing the two sympatric species, the selection differentials on adult growth were stronger in C. albellus while the decline in adult growth rate seemed more pronounced in C. fatioi. Moreover, the selection differential on juvenile growth was significant in C. albellus but not in C. fatioi, while a significant reduction in juvenile growth over the last 25 years was only found in C. fatioi. Our results suggest that size-selective fishing affects the genetics for individual growth in these whitefish, and that the link between selection differentials and phenotypic changes is influenced by species-specific factors. [Nussle, Sebastien; Brechon, Amanda; Wedekind, Claus] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland Nussle, S (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. Sebastien.Nussle@unil.ch; Amanda.Brechon@unil.ch; Claus.Wedekind@unil.ch Wedekind, Claus/S-3353-2016 Wedekind, Claus/0000-0001-6143-4716; Nussle, Sebastien/0000-0001-7070-380X Swiss National Science Foundation We thank the Fishery Inspectorate of the Bern Canton for providing the monitoring data, E. Baumgartner for technical help, E. Clark, C. Kung, T. Mehner, R. Muller, M. Pompini, A. Ross-Gillespie, M. dos Santos, R. Stelkens, J. Van Buskirk, and two anonymous reviewers for discussion and/or comments on the manuscript, and the Swiss National Science Foundation for financial support. Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Birkeland C, 2005, TRENDS ECOL EVOL, V20, P356, DOI 10.1016/j.tree.2005.03.015; Bittner D, 2010, MOL ECOL, V19, P2152, DOI 10.1111/j.1365-294X.2010.04623.x; Bittner D., 2009, THESIS U BERN BERN; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; DOUGLAS M, 1998, THESIS U ZURICH ZURI; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Finstad AG, 2003, J FISH BIOL, V62, P1222, DOI 10.1046/j.1095-8649.2003.00102.x; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P1699, DOI 10.1139/f97-100; Fraser DJ, 2001, MOL ECOL, V10, P2741, DOI 10.1046/j.1365-294X.2001.t01-1-01411.x; Fukuwaka MA, 2008, EVOL APPL, V1, P376, DOI 10.1111/j.1752-4571.2008.00029.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Gerdeaux D, 2006, ACTA OECOL, V30, P161, DOI 10.1016/j.actao.2006.02.007; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, P R SOC B, V275, P1111, DOI 10.1098/rspb.2007.1429; Hilborn R, 2006, FISHERIES, V31, P554; HOYLE C, 2004, THESIS SWISS FEDERAL; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Jacob A, 2009, ANIM BEHAV, V77, P823, DOI 10.1016/j.anbehav.2008.12.006; Jones MW, 2001, CONSERV GENET, V2, P245, DOI 10.1023/A:1012215826057; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kottelat M., 2007, HDB EUROPEAN FRESHWA; Labonne J, 2009, ANIM BEHAV, V77, P129, DOI 10.1016/j.anbehav.2008.09.018; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Link J, 1998, J FRESHWATER ECOL, V13, P55, DOI 10.1080/02705060.1998.9663591; Lods-Crozet Brigitte, 2006, Bulletin de la Societe Neuchateloise des Sciences Naturelles, V129, P29; Mertz G, 1998, CAN J FISH AQUAT SCI, V55, P478, DOI 10.1139/cjfas-55-2-478; Muller R, 2007, AQUAT SCI, V69, P271, DOI 10.1007/s00027-007-0874-5; MULLER R, 2003, BERICHT FISCHEREIINS, P81; MULLER R, 2007, AQUAT SCI, V69, P227; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P1, DOI 10.1139/f96-262; Nussle S, 2009, EVOL APPL, V2, P200, DOI 10.1111/j.1752-4571.2008.00054.x; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; R Development Core Team, 2009, R LANG ENV STAT COMP; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; RIJNSDORP AD, 1995, RECENT DEV FISH OTOL, P271; Rudolfsen G, 2008, BEHAV ECOL SOCIOBIOL, V62, P561, DOI 10.1007/s00265-007-0480-5; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Smith TB, 2008, MOL ECOL, V17, P1, DOI 10.1111/j.1365-294X.2007.03607.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Theriault V, 2007, J EVOLUTION BIOL, V20, P2266, DOI 10.1111/j.1420-9101.2007.01417.x; Thomas G, 2009, J EVOLUTION BIOL, V22, P88, DOI 10.1111/j.1420-9101.2008.01622.x; Thomas G, 2007, CAN J FISH AQUAT SCI, V64, P402, DOI 10.1139/F07-019; Thorpe JE, 1998, B MAR SCI, V62, P465; Tipping JM, 2008, N AM J AQUACULT, V70, P111, DOI [10.1577/A06-093.1, 10.1577/AO6-093.1]; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; VONLANTHEN P, 2009, THESIS U BERN BERN; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Wedekind C, 2007, BIOL CONSERV, V137, P180, DOI 10.1016/j.biocon.2007.01.025; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 64 9 10 0 24 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2011 25 3 SI 681 693 10.1007/s10682-010-9412-3 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 746OZ WOS:000289257900009 2019-02-21 J Olsen, EM; Moland, E Olsen, Esben Moland; Moland, Even Fitness landscape of Atlantic cod shaped by harvest selection and natural selection EVOLUTIONARY ECOLOGY English Article Atlantic cod; Behaviour; Capture-recapture; Harvest selection; Natural selection; Telemetry FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; GADUS-MORHUA L; ARTIFICIAL SELECTION; FISH POPULATION; REACTION NORMS; MARINE FISH; COASTAL COD; MATURATION; SIZE Harvesting may lead to evolutionary changes in life histories on a contemporary time scale, changes that could be maladaptive in natural contexts. However, our understanding of the strength and direction of harvest-induced selection versus natural selection is still limited, partly due to the difficulty of tracking the fate of individuals in the wild. Here, we present direct estimates of harvest mortality, natural mortality and site fidelity of coastal Atlantic cod (Gadus morhua) from the Norwegian Skagerrak coast. Furthermore, we present standardised selection differentials for fish body size. Estimates are obtained from acoustic telemetry, where we continuously monitored fish (n = 60) within a semi-sheltered area using a network of 25 listening stations. To obtain additional information about harvested cod, all fish (body size: 30-66 cm) were also tagged with traditional T-bar tags with a printed reward of 500 NOK (60 E). We estimate that 75% of the fish died within the study area during 1 year. Fishing mortality was markedly higher than natural mortality. Together, recreational fishers and commercial fishers caught at least 50% of the tagged fish during 1 year. Standardised selection differentials showed that fisheries targeted larger fish (i.e. favoured the survival of smaller fish), while natural selection favoured the survival of larger fish. Albeit on a small scale, we provide empirical evidence that harvesting can have a dominant influence on the fitness landscape experienced by a marine fish such as the Atlantic cod. We suggest that no-take marine reserves may help to counter evolutionary impacts of harvesting in the ocean. [Olsen, Esben Moland] Inst Marine Res Flodevigen, N-4817 His, Norway; [Moland, Even] Univ Oslo, Ctr Ecol & Evolutionary Synth CEES, Dept Biol, N-0316 Oslo, Norway Olsen, EM (reprint author), Inst Marine Res Flodevigen, N-4817 His, Norway. esben.moland.olsen@imr.no Olsen, Esben/B-1894-2012; Moland, Even/A-7788-2013 Olsen, Esben/0000-0003-3807-7524; Norwegian Research Council [178376] We thank Jan Atle Knutsen for skilled surgical implantation of the acoustic transmitters and a number of people at the Flodevigen marine research station for help with the telemetry monitoring. Suggestions from three anonymous referees improved the quality of this article. This study was presented at the International Conference on Evolutionary Ecology of Fishes Diversification, Adaptation and Speciation, November 2009, Erkner, Berlin. Our work was funded by the Norwegian Research Council through the Oceans and the Coastal Areas programme, project 178376. Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Beamish RJ, 2006, PROG OCEANOGR, V68, P289, DOI 10.1016/j.pocean.2006.02.005; BIGELOW HB, 1953, FISH B, V53, P182, DOI DOI 10.1016/J.POCEAN.2006.02.225; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; BRANDER KM, 1995, ICES J MAR SCI, V52, P1, DOI 10.1016/1054-3139(95)80010-7; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; CIANNELLI L, 2010, ECOLOGY IN PRESS; Conover DO, 2007, NATURE, V450, P179, DOI 10.1038/450179a; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Cook RM, 1997, NATURE, V385, P521, DOI 10.1038/385521a0; Dahl K., 1906, AARSBERETN NORG FISK, V1, P1; Dannevig A., 1954, Rapport Conseil Exploration Mer, V136, P7; Dannevig A., 1930, Journal du Conseil Copenhague, V5, P194; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Development Core Team, 2009, R LANG ENV STAT COMP; Dibattista JD, 2007, J EVOLUTION BIOL, V20, P201, DOI 10.1111/j.1420-9101.2006.01210.x; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Espeland SH, 2007, ICES J MAR SCI, V64, P920, DOI 10.1093/icesjms/fsm028; Espeland SH, 2010, MAR ECOL PROG SER, V405, P29, DOI 10.3354/meps08524; Espeland SH, 2008, MAR ECOL PROG SER, V372, P231, DOI 10.3354/meps07721; Falconer D. S., 1996, INTRO QUANTITATIVE G; Gagliano M, 2007, P R SOC B, V274, P1575, DOI 10.1098/rspb.2007.0242; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2002, B MAR SCI, V70, P639; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Heupel MR, 2002, CAN J FISH AQUAT SCI, V59, P624, DOI 10.1139/F02-036; Hightower JE, 2001, T AM FISH SOC, V130, P557, DOI 10.1577/1548-8659(2001)130<0557:UOTMTE>2.0.CO;2; Hilborn R, 2010, MAR POLICY, V34, P193, DOI 10.1016/j.marpol.2009.04.013; Holmes TH, 2010, MAR ECOL PROG SER, V399, P273, DOI 10.3354/meps08337; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Janzen FJ, 1998, EVOLUTION, V52, P1564, DOI 10.1111/j.1558-5646.1998.tb02237.x; Johnson DW, 2010, J EVOLUTION BIOL, V23, P724, DOI 10.1111/j.1420-9101.2010.01938.x; Jorde PE, 2007, MAR ECOL PROG SER, V343, P229, DOI 10.3354/meps06922; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; KJESBU OS, 1989, J FISH BIOL, V34, P195, DOI 10.1111/j.1095-8649.1989.tb03302.x; Knutsen H, 2003, MOL ECOL, V12, P385, DOI 10.1046/j.1365-294X.2003.01750.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Law W, 2005, P NATL ACAD SCI USA, V102, P10218, DOI 10.1073/pnas.0502931102; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Miethe T, 2010, ICES J MAR SCI, V67, P412, DOI 10.1093/icesjms/fsp248; Munday PL, 1997, J FISH BIOL, V51, P931, DOI 10.1006/jfbi.1997.0498; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P1, DOI 10.1139/f96-262; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2008, EVOL APPL, V1, P524, DOI 10.1111/j.1752-4571.2008.00024.x; Olsen EM, 2009, ECOL LETT, V12, P622, DOI 10.1111/j.1461-0248.2009.01311.x; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pine WE, 2003, FISHERIES, V28, P10, DOI 10.1577/1548-8446(2003)28[10:AROTMF]2.0.CO;2; Pollock KH, 2001, N AM J FISH MANAGE, V21, P521, DOI 10.1577/1548-8675(2001)021<0521:TRREAE>2.0.CO;2; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Russ GR, 2008, CURR BIOL, V18, pR514, DOI 10.1016/j.cub.2008.04.016; Sars G. O., 1865, NOR ACAD SCI LETT, V1, P237; SCHLUTER D, 1988, EVOLUTION, V42, P849, DOI 10.1111/j.1558-5646.1988.tb02507.x; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Svedang H, 2003, ICES J MAR SCI, V60, P32, DOI 10.1006/jmsc.2002.1330; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; SWAIN DP, 2010, EVOL APPL, DOI DOI 10.1111/J.1752-4571.2010.00128.X; Tibshirani R. J, 1990, GEN ADDITIVE MODELS; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; VETTER EF, 1988, FISH B-NOAA, V86, P25; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Zeller DC, 1999, FISH B-NOAA, V97, P1058 73 39 39 0 33 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAY 2011 25 3 SI 695 710 10.1007/s10682-010-9427-9 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 746OZ WOS:000289257900010 2019-02-21 J Jacquemin, SJ; Pyron, M Jacquemin, Stephen J.; Pyron, Mark Fishes of Indiana streams: current and historic assemblage structure HYDROBIOLOGIA English Article Fish assemblages; Historic comparison; Stream fishes; Multivariate analysis FRESH-WATER; LONG-TERM; BIOTIC HOMOGENIZATION; ILLINOIS RIVER; COMMUNITIES; HABITAT; CONSERVATION; BIODIVERSITY; ABUNDANCE; PATTERNS We examined Indiana fish assemblages using taxonomy and ecological categories to assess temporal shifts in community structure and recent environmental relationships. Historic (1945) and recent (1996-2007) presence/absence data were compiled by subbasin and analyzed with Nonmetric Multidimensional Scaling (NMS) ordination and by species richness. Canonical Correspondence Analysis (CCA) was used to test taxonomic identity and ecological category abundance data for explanation with recent (1996-2007) environmental variables. We found a decrease in assemblage heterogeneity for recent assemblages and an increase in the number of tolerant species per subbasin. Recent Indiana streams are dominated by tolerant fishes with generalist life history strategies and low functional variation. The use of ecological categories resulted in weaker relationships with environmental variables than analyses with taxonomic identities. Analyses using taxonomy resulted in strong assemblage explanation from stream size and flow variation, while analyses using ecological categories resulted in strong assemblage explanation from habitat variation in silt substrates and flow. Analyses of recent assemblage structure using ecological categories resulted in decreased assemblage variation among subbasins than in analyses using taxonomic identities. We found that fish assemblages of Indiana streams are structured primarily by habitat complexity and have been altered during the past 50 years through multiple disturbances including fragmentation, siltation, and species introductions. [Jacquemin, Stephen J.; Pyron, Mark] Ball State Univ, Dept Biol, Aquat Biol & Fisheries Ctr, Muncie, IN 47306 USA Pyron, M (reprint author), Ball State Univ, Dept Biol, Aquat Biol & Fisheries Ctr, Muncie, IN 47306 USA. mpyron@bsu.edu Pyron, Mark/D-4572-2011 Pyron, Mark/0000-0003-0451-7827 Alemadi SD, 2008, BIOL INVASIONS, V10, P59, DOI 10.1007/s10530-007-9109-x; ANDERSON AA, 1995, SOUTHWEST NAT, V40, P314; Angermeier PL, 1999, ECOL APPL, V9, P335, DOI 10.2307/2641189; Arscott DB, 2006, J N AM BENTHOL SOC, V25, P977, DOI 10.1899/0887-3593(2006)025[0977:RORATR]2.0.CO;2; AUSTEN DJ, 1994, FISHERIES, V19, P12, DOI 10.1577/1548-8446(1994)019<0012:IOTGCT>2.0.CO;2; Barko VA, 2004, AM MIDL NAT, V152, P369, DOI 10.1674/0003-0031(2004)152[0369:IEGASP]2.0.CO;2; Biro P, 1997, ECOL FRESHW FISH, V6, P196, DOI 10.1111/j.1600-0633.1997.tb00163.x; BLACK RF, 1973, GEOLOGICAL SOC AM ME, V136; BLATCHLEY WS, 1938, FISHES INDIANA; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; Flint R. F., 1957, GLACIAL PLEISTOCENE; Gammon J. R., 1998, WABASH RIVER ECOSYST; GAUCH H. G, 1982, MULTIVARIATE ANAL CO; Gerking Shelby D., 1945, INVEST INDIANA LAKES AND STREAMS, V3, P1; GORMAN OT, 1978, ECOLOGY, V59, P507, DOI 10.2307/1936581; GROSSMAN GD, 1982, AM NAT, V120, P423, DOI 10.1086/284004; Harding JS, 1998, P NATL ACAD SCI USA, V95, P14843, DOI 10.1073/pnas.95.25.14843; Higgins CL, 2009, AQUAT ECOL, V43, P1133, DOI 10.1007/s10452-009-9233-z; Hitt NP, 2008, ENVIRON MANAGE, V42, P132, DOI 10.1007/s00267-008-9115-5; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Jackson JK, 2006, FRESHWATER BIOL, V51, P591, DOI 10.1111/j.1365-2427.2006.01503.x; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; JORDAN DS, 1875, ANN REPORT GEOLOGICA, V1874, P197; KARR JR, 1981, FISHERIES, V6, P21, DOI 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2; KINSOLVING AD, 1993, ECOL APPL, V3, P531, DOI 10.2307/1941921; Koel TM, 2002, RIVER RES APPL, V18, P3, DOI 10.1002/rra.630; Kruk A, 2007, J APPL ICHTHYOL, V23, P9, DOI 10.1111/j.1439-0426.2006.00784.x; Matthews W. J., 1998, PATTERNS FRESHWATER; McCune B, 2002, ANAL ECOLOGICAL COMM; McCune B, 1999, PC ORD MULTIVARIATE; Olden JD, 2004, ECOLOGY, V85, P1867, DOI 10.1890/03-3131; Olden JD, 2004, TRENDS ECOL EVOL, V19, P18, DOI 10.1016/j.tree.2003.09.010; Olden JD, 2006, CAN J FISH AQUAT SCI, V63, P1812, DOI 10.1139/F06-082; Pegg MA, 2004, ECOL FRESHW FISH, V13, P125, DOI 10.1111/j.1600-0633.2004.00046.x; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Pollino CA, 2004, MAR FRESHWATER RES, V55, P769, DOI 10.1071/MF03180; Pont D, 2006, J APPL ECOL, V43, P70, DOI 10.1111/j.1365-2664.2005.01126.x; PRINGLE CM, 2000, BIOSCIENCE, V50, P887; Pyron M, 2008, RIVER RES APPL, V24, P1175, DOI 10.1002/rra.1155; Pyron M, 2006, FRESHWATER BIOL, V51, P1789, DOI 10.1111/j.1365-2427.2006.01609.x; Quinn JW, 2003, T AM FISH SOC, V132, P110, DOI 10.1577/1548-8659(2003)132<0110:FACIAO>2.0.CO;2; RAFINESQUE CS, ICTHYOLOGIA OHIOENSI, P1820; RANKIN ET, 1989, QUALITATIVE HABITAT; RINNE JN, 2005, AM FISHERIES SOC S, V45; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Schaefer J, 2005, ECOL APPL, V15, P1761, DOI 10.1890/04-1490; Simon T. P, 1999, ASSESSING SUSTAINABI; Simon Thomas P., 2002, Proceedings of the Indiana Academy of Science, V111, P182; Smogor Roy A., 1999, P249; Sullivan BE, 2004, J FRESHWATER ECOL, V19, P141, DOI 10.1080/02705060.2004.9664521; Taylor CM, 2008, ECOGRAPHY, V31, P787, DOI 10.1111/j.1600-0587.2008.05526.x; TAYLOR CM, 1993, ECOGRAPHY, V16, P16, DOI 10.1111/j.1600-0587.1993.tb00054.x; Trautman M. B, 1981, FISHES OHIO; Wiley DJ, 2004, T AM FISH SOC, V133, P515, DOI 10.1577/T02-162.1; Winemiller KO, 2008, J BIOGEOGR, V35, P1551, DOI 10.1111/j.1365-2699.2008.01917.x; Wootton JT, 1996, SCIENCE, V273, P1558, DOI 10.1126/science.273.5281.1558 56 15 15 0 19 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia MAY 2011 665 1 39 50 10.1007/s10750-011-0602-y 12 Marine & Freshwater Biology Marine & Freshwater Biology 736SX WOS:000288515500003 2019-02-21 J Veloso, VG; Neves, G; Capper, LD Veloso, Valeria Gomes; Neves, Gabriela; Capper, Leonardo de Almeida Sensitivity of a cirolanid isopod to human pressure ECOLOGICAL INDICATORS English Article Excirolana braziliensis; Population structure; Fecundity; Human pressure; MPAs; Sandy beach TALITRUS-SALTATOR POPULATIONS; ROAD VEHICLES ORVS; DE-JANEIRO STATE; SANDY BEACHES; EXCIROLANA-BRAZILIENSIS; LIFE-HISTORY; SECONDARY PRODUCTION; NATURAL-HISTORY; MORPHODYNAMICS; MACROFAUNA Cirolanid isopods are conspicuous members of the supralittoral and intertidal fringes of sandy beaches around the world, being dominant in terms of number or biomass. Excirolana braziliensis is one of the most abundant species on exposed sandy beaches, both urbanized and preserved, of Rio de Janeiro in southeast Brazil. Considering the negative effects of urbanization and human pressure on sandy beaches, this study aimed to analyze the population structure and reproductive aspects of E. braziliensis in different stretches of Barra da Tijuca beach (Rio de Janeiro, Brazil), which differ with respect to urbanization and occupation by bathers. Monthly samplings of E. braziliensis were conducted throughout 12 months within urbanized and preserved stretches, including measurements of beach parameters and human pressure. The anthropogenic effect seems to be a relevant factor in explaining the variability in the population structure of this species. Negative significant correlations were found between the species density and the number of visitors, who massively occupies the urbanized stretches. Similar life history strategies were observed for different populations of E. braziliensis. Although high fecundity rates were reported to all stretches, the probability of eggs/embryos survival under the adverse conditions provided by the Barra da Tijuca beach is not clearly known. According to the results of this study, it could be inferred that the human pressure over Barra da Tijuca beach affects the populations: (1) directly, through human trampling and/or natural habitat jeopardizing; or (2) indirectly, by the isolation of individuals in the preserved stretch, located between environments subjected to intense disturbance. In such case, the species strategy to thrive in a protected area of restricted size, within a highly urbanized and occupied area by bathers does not appear to be the best conservation measure for peracarid species, as in E. braziliensis. Nevertheless, E. braziliensis turned out to be a good monitoring species of impacts due to its high resistance to environmental stress, persisting in highly urbanized areas dominated by bathers. (C) 2010 Elsevier Ltd. All rights reserved. [Neves, Gabriela] Univ Fed Fluminense UFF, Dept Biol Marinha, Lab Ecol Sedimentos, BR-24001970 Niteroi, RJ, Brazil; [Veloso, Valeria Gomes; Capper, Leonardo de Almeida] Univ Fed Estado Rio de Janeiro UNIRIO, Dept Ecol & Recursos Marinhos, BR-22290024 Rio De Janeiro, Brazil; [Capper, Leonardo de Almeida] Univ Santa Ursula USU, Programa Posgrad Ciencias Mar, BR-22231040 Rio De Janeiro, Brazil Neves, G (reprint author), Univ Fed Fluminense UFF, Dept Biol Marinha, Lab Ecol Sedimentos, Caixa Postal 100-64, BR-24001970 Niteroi, RJ, Brazil. amararatna@hotmail.com Cnpq; Capes We would like to thank the Brazilian funding agencies Cnpq and Capes for sponsoring this project, Doctors CA Borzone, JRB Souza, CM Neto, EF Albuquerque for a careful reading of this manuscript, Doctor Omar Defeo for helpful critics and Doctors Janet Reid and Carla Lima Torres Mendes for the English edition. Barca-Bravo S, 2008, MAR ECOL-EVOL PERSP, V29, P91, DOI 10.1111/j.1439-0485.2007.00208.x; BILYARD GR, 1987, MAR POLLUT BULL, V18, P581, DOI 10.1016/0025-326X(87)90277-3; Brazeiro A, 2001, MAR ECOL PROG SER, V224, P35, DOI 10.3354/meps224035; Breton F, 1996, OCEAN COAST MANAGE, V32, P153, DOI 10.1016/S0964-5691(96)00032-4; Brown A. C., 1990, ECOLOGY SANDY SHORES; Caetano CHS, 2006, J COASTAL RES, V22, P825, DOI 10.2112/04-0224.1; Cardoso RS, 1996, MAR ECOL PROG SER, V142, P111, DOI 10.3354/meps142111; CARDOSO RS, 2001, BRAZIL J NAT HIST, V142, P111; CHEN Y, 1992, CAN J FISH AQUAT SCI, V49, P1228, DOI 10.1139/f92-138; CLARKE A, 1987, MAR ECOL PROG SER, V38, P89, DOI 10.3354/meps038089; Colombini I, 2003, OCEANOGR MAR BIOL, V41, P115; Defeo O, 2003, J MAR BIOL ASSOC UK, V83, P331, DOI 10.1017/S0025315403007161h; Defeo O, 1997, ESTUAR COAST SHELF S, V45, P453, DOI 10.1006/ecss.1996.0200; Defeo O, 2005, MAR ECOL PROG SER, V293, P143, DOI 10.3354/meps293143; DEFEO O, 1995, MAR ECOL PROG SER, V123, P73, DOI 10.3354/meps123073; DEFEO O, 1992, MAR BIOL, V114, P429, DOI 10.1007/BF00350034; DEFEO O, 2003, J COASTAL RES, V35, P352; DEFEO O, 2009, ESTUAR COAST SHELF S, V8, P1; DEXTER DM, 1977, J ZOOL, V183, P103; EMERY KO, 1961, LIMNOL OCEANOGR, V6, P90, DOI 10.4319/lo.1961.6.1.0090; Fanini L, 2005, OCEANOLOGIA, V47, P93; Folk RL, 1957, J SEDIMENT PETROL, V4, P101; GONCALVES AL, 1999, BARRA TIJUCA LUGAR; Gross M. G., 1971, PROCEDURES SEDIMENTA, P573; HOSIER PE, 1981, ENVIRON CONSERV, V8, P158, DOI 10.1017/S0376892900027284; KETMAIER K, 2003, ESTUAR COAST SHELF S, V58, P159; KINGSFORD MJ, 1991, MAR ECOL PROG SER, V72, P1, DOI 10.3354/meps072001; Lozoya JP, 2006, MAR FRESHWATER RES, V57, P421, DOI 10.1071/MF05067; Lucrezi S, 2009, ECOL INDIC, V9, P913, DOI 10.1016/j.ecolind.2008.10.013; MARGEM H, 2003, J COASTAL RES, V35, P402; MCARDLE SB, 1992, J COASTAL RES, V8, P398; MCLACHLAN A, 1984, MAR ECOL PROG SER, V19, P133, DOI 10.3354/meps019133; McLachlan A, 2005, J COASTAL RES, V21, P674, DOI 10.2112/03-0114.1; McLachlan A, 1996, MAR ECOL PROG SER, V131, P205, DOI 10.3354/meps131205; McLachlan A, 1996, OCEANOGR MAR BIOL, V34, P163; MCLACHLAN A, 1995, J EXP MAR BIOL ECOL, V187, P147, DOI 10.1016/0022-0981(94)00176-E; McLachlan A, 1993, J COASTAL RES, P27; Mora C, 2006, SCIENCE, V312, P1750, DOI 10.1126/science.1125295; Morgan R, 1999, J COASTAL RES, V15, P653; Murray-Jones S, 2000, FISH RES, V44, P219, DOI 10.1016/S0165-7836(99)00095-8; Nardi M, 2003, ESTUAR COAST SHELF S, V58, P199, DOI 10.1016/S0272-7714(03)00034-9; RESTREPO VR, 1991, CAN J FISH AQUAT SCI, V48, P1431, DOI 10.1139/f91-170; Roberts CM, 2003, ECOL APPL, V13, pS199; Schlacher TA, 2008, MAR POLLUT BULL, V56, P1646, DOI 10.1016/j.marpolbul.2008.06.008; Schlacher TA, 2008, ENVIRON MANAGE, V41, P878, DOI 10.1007/s00267-008-9071-0; Sheppard N, 2009, J EXP MAR BIOL ECOL, V380, P113, DOI 10.1016/j.jembe.2009.09.009; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Suguio K., 1973, INTRO SEDIMENTOLOGIA; TRIPPEL EA, 1991, CAN J FISH AQUAT SCI, V48, P1446, DOI 10.1139/f91-172; Ugolini A, 2008, MAR ENVIRON RES, V65, P349, DOI 10.1016/j.marenvres.2007.12.002; UNDERWOOD AJ, 1999, EXPT ECOLOGY THEIR L; VANHERWERDEN L, 1991, T ROY SOC S AFR, V47, P736; VANSENUS P, 1988, CRUSTACEANA, V55, P93, DOI 10.1163/156854088X00276; Veloso VG, 2008, MAR ECOL-EVOL PERSP, V29, P126, DOI 10.1111/j.1439-0485.2008.00222.x; Veloso VG, 2001, J MAR BIOL ASSOC UK, V81, P369, DOI 10.1017/S0025315401003976; Veloso VG, 2006, BIOL CONSERV, V127, P510, DOI 10.1016/j.biocon.2005.09.027; Vieira S, 2004, BIOESTATISTICA TOPIC; WENDT GE, 1985, CAH BIOL MAR, V26, P1; Weslawski Jan Marcin, 2000, Oceanological Studies, V29, P77; WILDISH DJ, 1988, CAN J ZOOL, V66, P2340, DOI 10.1139/z88-349; WILLIAMS JA, 1985, J EXP MAR BIOL ECOL, V86, P59, DOI 10.1016/0022-0981(85)90042-5; ZAR, 1996, BIOSTATISTICAL ANAL 62 17 17 0 17 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. MAY 2011 11 3 782 788 10.1016/j.ecolind.2010.10.004 7 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 720OX WOS:000287291100003 Bronze 2019-02-21 J Hackett-Jones, E; White, A; Cobbold, CA Hackett-Jones, Emily; White, Andrew; Cobbold, Christina A. The evolution of developmental timing in natural enemy systems JOURNAL OF THEORETICAL BIOLOGY English Article Adaptive dynamics; Host-parasitoid; Phenology; Mathematical model HOST-PARASITOID INTERACTIONS; POPULATION-DYNAMICS; TRADE-OFFS; STRATEGIES; COEVOLUTIONARY; COEXISTENCE; COMPLEXITY; PHENOLOGY; VIRULENCE; SELECTION Natural parasitoid systems exhibit considerable variation in their life history properties yet little is known about the effects of development time on parasitoid fitness or of the conditions that might select for rapid development at the expense of reduced parasitoid growth. In this study the techniques of adaptive dynamics are applied to a discrete time host-parasitoid model to examine the evolution of parasitoid life history strategies. In particular, we explore the conditions that select for variation in parasitoid traits, such as, the timing of parasitoid attack and emergence from the host. The process of evolutionary branching, leading to dimorphism, can occur when the benefits to reproduction of early parasitoid attack are bought at a cost in terms of mortality of late parasitoid emergence from the host. We also find that trends in parasitoid life history traits depend critically on the nature of the underlying population dynamics. Increases in the strength of host density-dependence acts to select for shorter parasitoid development time and lower searching efficiency when the underlying population dynamics are at equilibrium. This trend is reversed when the underlying population dynamics exhibit fluctuations. Here, fluctuations in host density driven by parasitism become more extreme as the strength of host density-dependence decreases and so the parasitoid selects early emergence to avoid the mortality experienced at outbreak host densities. Our results are consistent with the general principle that parasitoids facing high mortality risk favour short development times over size and high searching efficiency, whereas species facing low mortality risks favour size at the cost of increased development time. Crown Copyright (c) 2011 Published by Elsevier Ltd. All rights reserved. [Hackett-Jones, Emily] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia; [Hackett-Jones, Emily] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland; [Hackett-Jones, Emily] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland; [White, Andrew] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland; [White, Andrew] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland; [Cobbold, Christina A.] Univ Glasgow, Dept Math, Univ Gardens, Glasgow G12 8QW, Lanark, Scotland Hackett-Jones, E (reprint author), Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia. emilyhj@unimelb.edu.au; a.r.white@hw.ac.uk; c.cobbold@maths.gla.ac.uk Royal Society of Edinburgh; Scottish Government A.W. is supported by a Royal Society of Edinburgh and Scottish Government Support Research Fellowship. We thank Stefan Geritz for the help and advice in the early stages of this research. BEDDINGTON JR, 1975, NATURE, V255, P58, DOI 10.1038/255058a0; Berryman AA, 1996, TRENDS ECOL EVOL, V11, P28, DOI 10.1016/0169-5347(96)81066-4; Best A, 2010, AM NAT, V176, P63, DOI 10.1086/653002; Best A, 2009, AM NAT, V173, P779, DOI 10.1086/598494; Bonsall MB, 2004, SCIENCE, V306, P111, DOI 10.1126/science.1100680; Cobbold CA, 2009, THEOR POPUL BIOL, V75, P201, DOI 10.1016/j.tpb.2009.02.004; Dieckmann U., 2002, ADAPTIVE DYNAMICS IN; ECKMANN JP, 1985, REV MOD PHYS, V57, P617, DOI 10.1103/RevModPhys.57.617; Fellowes MDE, 2000, POPUL ECOL, V42, P195, DOI 10.1007/PL00011998; FERRIERE R, 1993, P ROY SOC B-BIOL SCI, V251, P33, DOI 10.1098/rspb.1993.0005; Gandon S, 2006, AM NAT, V167, pE1, DOI 10.1086/498398; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GODFRAY HCJ, 1994, J ANIM ECOL, V63, P1, DOI 10.2307/5577; GODFRAY HCJ, 1991, J APPL ECOL, V28, P434, DOI 10.2307/2404560; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Hackett-Jones E, 2009, THEOR ECOL-NETH, V2, P19, DOI 10.1007/s12080-008-0025-1; Harvey JA, 2005, ENTOMOL EXP APPL, V117, P1, DOI 10.1111/j.1570-7458.2005.00348.x; Harvey JA, 2002, ECOLOGY, V83, P2439, DOI 10.1890/0012-9658(2002)083[2439:TDSOEW]2.0.CO;2; Hawkins B. A., 1994, PATTERN PROCESS HOST; Holt Robert D., 1999, P219, DOI 10.1017/CBO9780511542077.018; Hoyle A, 2011, B MATH BIOL, V73, P1154, DOI 10.1007/s11538-010-9567-7; Jury E. I., 1964, THEORY APPL Z TRANSF; JURY EI, 1974, INNERS STABILITY DYN; Kon R, 2001, J THEOR BIOL, V209, P287, DOI 10.1006/jtbi.2001.2263; McGregor RR, 2000, OIKOS, V89, P305, DOI 10.1034/j.1600-0706.2000.890212.x; MEMMOTT J, 1994, J ANIM ECOL, V63, P521, DOI 10.2307/5219; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; METZ JAJ, 1996, STOCHASTIC SPATIAL S, P183; Nicholson AJ, 1935, P ZOOL SOC LOND, V3, P551, DOI DOI 10.1111/J.1096-3642.1935.TB01680.X; NOWAK M, 1990, J THEOR BIOL, V142, P237, DOI 10.1016/S0022-5193(05)80224-3; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; PARRY D, 1994, THESIS U ALBERTA EDM; Pennacchio F, 2006, ANNU REV ENTOMOL, V51, P233, DOI 10.1146/annurev.ento.51.110104.151029; Pugliese A, 2002, MATH BIOSCI, V177, P355, DOI 10.1016/S0025-5564(02)00083-4; Ringel MS, 1998, J THEOR BIOL, V194, P195, DOI 10.1006/jtbi.1998.0754; Sasaki A, 1999, P ROY SOC B-BIOL SCI, V266, P455, DOI 10.1098/rspb.1999.0659; Sisterson MS, 2004, EVOL ECOL, V18, P29, DOI 10.1023/B:EVEC.0000017692.23250.d1; Strand MR, 2000, PARASITOID POPULATION BIOLOGY, P139; Visser ME, 2005, P ROY SOC B-BIOL SCI, V272, P2561, DOI 10.1098/rspb.2005.3356; WANG YH, 1980, J ANIM ECOL, V49, P435, DOI 10.2307/4256; White A, 2006, EVOL ECOL RES, V8, P387 41 3 3 0 13 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. APR 21 2011 275 1 1 11 10.1016/j.jtbi.2010.12.040 11 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 735IG WOS:000288406900001 21195091 2019-02-21 J Palkovacs, EP; Wasserman, BA; Kinnison, MT Palkovacs, Eric P.; Wasserman, Ben A.; Kinnison, Michael T. Eco-Evolutionary Trophic Dynamics: Loss of Top Predators Drives Trophic Evolution and Ecology of Prey PLOS ONE English Article GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; RAPID EVOLUTION; TRADE-OFF; FOOD-WEB; SWIMMING PERFORMANCE; FISH COMMUNITIES; GAMBUSIA-AFFINIS; SHAPE; SELECTION Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems. [Palkovacs, Eric P.; Wasserman, Ben A.] Duke Univ, Marine Lab, Beaufort, NC 28516 USA; [Palkovacs, Eric P.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA; [Wasserman, Ben A.; Kinnison, Michael T.] Univ Maine, Sch Biol & Ecol, Orono, ME USA Palkovacs, EP (reprint author), Duke Univ, Marine Lab, Beaufort, NC 28516 USA. eric.palkovacs@duke.edu U.S.A. National Science Foundation [EF 0623632]; Maine Agricultural and Forest Experiment Station [3172]; Duke University Marine Laboratory McCurdy Endowment Funding was provided by the U.S.A. National Science Foundation (EF 0623632), the Maine Agricultural and Forest Experiment Station (contribution 3172), and the Duke University Marine Laboratory McCurdy Endowment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abdi H, 2010, WIRES COMPUT STAT, V2, P97, DOI 10.1002/wics.51; Adams DC, 1999, EVOL ECOL RES, V1, P959; Allan JD, 2005, BIOSCIENCE, V55, P1041, DOI 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Becks L, 2010, ECOL LETT, V13, P989, DOI 10.1111/j.1461-0248.2010.01490.x; Blumstein D. T., 2007, QUANTIFYING BEHAV JW; Bookstein FL., 1991, MORPHOMETRIC TOOLS L; BOOKSTEIN FL, 1996, ADV MORPHOMETRICS, V284, P131; Burns JG, 2009, J FISH BIOL, V75, P1144, DOI 10.1111/j.1095-8649.2009.02314.x; CARPENTER SR, 1985, BIOSCIENCE, V35, P634, DOI 10.2307/1309989; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; Crowder LB, 2008, ANNU REV ECOL EVOL S, V39, P259, DOI 10.1146/annurev.ecolsys.39.110707.173406; Daskalov GM, 2007, P NATL ACAD SCI USA, V104, P10518, DOI 10.1073/pnas.0701100104; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; DINGERKUS G, 1977, STAIN TECHNOL, V52, P229, DOI 10.3109/10520297709116780; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Fischer-Rousseau L, 2010, J EXP ZOOL PART B, V314B, P67, DOI 10.1002/jez.b.21311; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Grunbaum T, 2007, J EXP ZOOL PART B, V308B, P396, DOI 10.1002/jez.b.21163; Gurevitch J, 2000, AM NAT, V155, P435, DOI 10.1086/303337; Heithaus MR, 2008, TRENDS ECOL EVOL, V23, P202, DOI 10.1016/j.tree.2008.01.003; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Jones LE, 2009, PHILOS T R SOC B, V364, P1579, DOI 10.1098/rstb.2009.0004; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; KLINGENBERG CP, 1996, ADV MORPHOMETRICS, V284, P23; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lennon JT, 2008, ECOL LETT, V11, P1178, DOI 10.1111/j.1461-0248.2008.01225.x; Myers RA, 2003, NATURE, V423, P280, DOI 10.1038/nature01610; Myers RA, 2007, SCIENCE, V315, P1846, DOI 10.1126/science.1138657; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Relyea RA, 2002, ECOLOGY, V83, P1953, DOI 10.1890/0012-9658(2002)083[1953:TMFOPH]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2008, MOL ECOL, V17, P97, DOI 10.1111/j.1365-294X.2007.03474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; ROBINSON BW, 1995, COPEIA, P294; Rohlf F. J., 2009, TPSDIG VERSION 2 14; Rohlf F.J., 2009, TPSUTIL VERSION 1 44; Rohlf F.J., 2004, TPSSPLINE VERSION 1; Rohlf FJ, 2000, SYST BIOL, V49, P740, DOI 10.1080/106351500750049806; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; Rohlf FJ, 2008, TPSRELW VERSION 1 46; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Strong DR, 2010, ANNU REV ENV RESOUR, V35, P1, DOI 10.1146/annurev-environ-031809-133103; Terhorst CP, 2010, ECOLOGY, V91, P629, DOI 10.1890/09-1481.1; Van Buskirk J, 1998, OIKOS, V82, P20; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; Ward P, 2005, ECOLOGY, V86, P835, DOI 10.1890/03-0746; WASSERSUG RJ, 1976, STAIN TECHNOL, V51, P131, DOI 10.3109/10520297609116684; Yoshida T, 2004, P ROY SOC B-BIOL SCI, V271, P1947, DOI 10.1098/rspb.2004.2818; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 63 33 33 0 62 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 19 2011 6 4 e18879 10.1371/journal.pone.0018879 8 Multidisciplinary Sciences Science & Technology - Other Topics 752EC WOS:000289671100034 21526156 DOAJ Gold, Green Published 2019-02-21 J Skelhorn, J; Rowland, HM; Delf, J; Speed, MP; Ruxton, GD Skelhorn, John; Rowland, Hannah M.; Delf, Jon; Speed, Michael P.; Ruxton, Graeme D. Density-dependent predation influences the evolution and behavior of masquerading prey PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article camouflage; crypsis; habitat selection; misclassification; Selenia dentaria CAMOUFLAGE; SEARCH Predation is a fundamental process in the interaction between species, and exerts strong selection pressure. Hence, anti-predatory traits have been intensively studied. Although it has long been speculated that individuals of some species gain protection from predators by sometimes almost-uncanny resemblances to uninteresting objects in the local environment (such as twigs or stones), demonstration of antipredatory benefits to such "masquerade" have only very recently been demonstrated, and the fundamental workings of this defensive strategy remain unclear. Here we use laboratory experiments with avian predators and twig-mimicking caterpillars as masqueraders to investigate (i) the evolutionary dynamics of masquerade; and (ii) the behavioral adaptations associated with masquerade. We show that the benefit of masquerade declines as the local density of masqueraders relative to their models (twigs, in our system) increases. This occurs through two separate mechanisms: increasing model density both decreased predators' motivation to search for masqueraders, and made masqueraders more difficult to detect. We further demonstrated that masquerading organisms have evolved complex microhabitat selection strategies that allow them to best exploit the density-dependent properties of masquerade. Our results strongly suggest the existence of opportunity costs associated with masquerade. Careful evaluation of such costs will be vital to the development of a fuller understanding of both the distribution of masquerade across taxa and ecosystems, and the evolution of the life history strategies of masquerading prey. [Skelhorn, John] Univ Exeter, Washington Singer Labs, Coll Life & Environm Sci, Ctr Res Anim Behav, Exeter EX4 4QG, Devon, England; [Rowland, Hannah M.; Speed, Michael P.] Univ Liverpool, Sch Biol Sci, Liverpool L69 7ZB, Merseyside, England; [Delf, Jon] Liverpool Hope Univ, Fac Sci & Social Sci, Liverpool L16 9JD, Merseyside, England; [Ruxton, Graeme D.] Univ Glasgow, Fac Biomed & Life Sci, Div Ecol & Evolutionary Biol, Glasgow G20 8QQ, Lanark, Scotland Skelhorn, J (reprint author), Univ Exeter, Washington Singer Labs, Coll Life & Environm Sci, Ctr Res Anim Behav, Exeter EX4 4QG, Devon, England. J.P.Skelhorn@exeter.ac.uk Rowland, Hannah/0000-0002-1040-555X National Environment Research Council [NE/E016626/1]; Natural Environment Research Council [NE/E016626/1] This work was supported by National Environment Research Council Grant NE/E016626/1. Bauer B, 1996, VISION RES, V36, P1439, DOI 10.1016/0042-6989(95)00207-3; Berger D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1655, DOI 10.1007/s00265-008-0594-4; Cott HB, 1940, ADAPTIVE COLOURATION, P311; de RUITER L., 1956, ARCH NEERL AND ZOOL, V11, P285; Dimitrova M, 2010, BEHAV ECOL, V21, P176, DOI 10.1093/beheco/arp174; Dukas R, 2001, BEHAV ECOL, V12, P192, DOI 10.1093/beheco/12.2.192; EDMUNDS M, 1991, BIOL J LINN SOC, V42, P467, DOI 10.1111/j.1095-8312.1991.tb00575.x; GREENE E, 1989, SCIENCE, V243, P643, DOI 10.1126/science.243.4891.643; HERREBOUT W. M., 1963, ARCH NEERLAND ZOOL, V15, P315; Mappes J, 2005, TRENDS ECOL EVOL, V20, P598, DOI 10.1016/j.tree.2005.07.011; Merilaita S, 2001, P ROY SOC B-BIOL SCI, V268, P1925, DOI 10.1098/rspb.2001.1747; Noor MAF, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003142; Porter J., 1997, COLOUR IDENTIFICATIO; RUXTON GD, 2004, AVOIDING ATTACK EVOL, P23; Skelhorn J, 2010, SCIENCE, V327, P51, DOI 10.1126/science.1181931; Skelhorn J, 2010, BIOL J LINN SOC, V99, P1; SPEED MP, 1993, ANIM BEHAV, V46, P1246, DOI 10.1006/anbe.1993.1321; Stamp Nancy E., 1993, P283; STEPHENS DW, 1986, FORAGING THEORY, P104; Stevens M, 2009, PHILOS T R SOC B, V364, P423, DOI 10.1098/rstb.2008.0217 20 36 36 0 37 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. APR 19 2011 108 16 6532 6536 10.1073/pnas.1014629108 5 Multidisciplinary Sciences Science & Technology - Other Topics 752GV WOS:000289680400043 21464318 Bronze, Green Published 2019-02-21 J Coall, DA; Hertwig, R Coall, David A.; Hertwig, Ralph Grandparental Investment: A Relic of the Past or a Resource for the Future? CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE English Article child development; demographic transition; grandmother hypothesis; grandparental investment; intergenerational transfers FAMILY; GRANDCHILDREN; SOLICITUDE; EVOLUTION; HEALTH; BONDS From changing diapers and minding the kids when school is out to providing support when they set fire to the carpet, grandparents can be invaluable to have around. What motivates grandparents to lend a hand? Several disciplines have offered answers. The most important accounts come from life-history theory and evolutionary psychology, sociology, and economics. These accounts exist side-by-side, but there is little theoretical integration among them. But regardless of whether grandparental investment is traced back to ancestral selection pressure or attributed to an individual grandparent's values or norms, one important question is, What impact does it have in industrialized, low-fertility, low-mortality societies? We briefly review the initial evidence concerning the impact of grandparental investment in industrialized societies and conclude that in difficult circumstances, grandparents can provide the support that safeguards their grandchildren's development. Additional cross-disciplinary research to examine the effects of intergenerational transfers in our evolutionarily unique environment of grandparenthood is needed. [Coall, David A.] Univ Western Australia, Nedlands, WA 6009, Australia; [Coall, David A.] Edith Cowan Univ, Churchlands, WA 6018, Australia; [Hertwig, Ralph] Univ Basel, CH-4003 Basel, Switzerland Coall, DA (reprint author), Univ Western Australia, Fremantle Hosp, Sch Psychiat & Clin Neurosci, 1 Alma St,W Block,Level 6, Fremantle, WA 6160, Australia. david.coall@uwa.edu.au Hertwig, Ralph/B-3468-2015 Hertwig, Ralph/0000-0002-9908-9556; Coall, David/0000-0002-0488-2683 ARRONDEL L, 2006, HDB EC GIVING ALTRUI, V2, P971, DOI DOI 10.1016/S1574-0714(06)02014-8; BARRO RJ, 1974, J POLIT ECON, V82, P1095, DOI 10.1086/260266; BECKER GS, 1974, J POLIT ECON, V82, P1063, DOI 10.1086/260265; Bengtson VL, 2001, J MARRIAGE FAM, V63, P1, DOI 10.1111/j.1741-3737.2001.00001.x; BENGTSON VL, 1991, J MARRIAGE FAM, V53, P856, DOI 10.2307/352993; Botcheva LB, 2004, INT J PSYCHOL, V39, P157, DOI 10.1080/00207590344000321; Coall DA, 2010, BEHAV BRAIN SCI, V33, P1, DOI 10.1017/S0140525X09991105; COOMBS CH, 1977, PSYCHOL REV, V84, P216, DOI 10.1037/0033-295X.84.2.216; DALY M, 1980, J MARRIAGE FAM, V42, P277, DOI 10.2307/351225; Euler HA, 1996, HUM NATURE-INT BIOS, V7, P39, DOI 10.1007/BF02733489; Fox M, 2010, P ROY SOC B-BIOL SCI, V277, P567, DOI 10.1098/rspb.2009.1660; Friedman D, 2008, RATION SOC, V20, P31, DOI 10.1177/1043463107085436; Hank K, 2009, J FAM ISSUES, V30, P53, DOI 10.1177/0192513X08322627; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hughes ME, 2007, J GERONTOL B-PSYCHOL, V62, pS108, DOI 10.1093/geronb/62.2.S108; LAFERRERE A., 2006, HDB EC GIVING ALTRUI, P889; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Murphy Michael, 2003, Popul Trends, P36; Richerson Peter J., 2005, NOT GENES ALONE CULT; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; Szinovacz ME, 1998, GERONTOLOGIST, V38, P37, DOI 10.1093/geront/38.1.37; SZINOVACZ ME, 1998, HDB GRANDPARENTHOOD, P257; TINSLEY BJ, 1987, INT J AGING HUM DEV, V25, P259, DOI 10.2190/91M7-1JMA-UQV6-0VH3; *US BUR CENS, 2009, CB09FF16; Voland E, 2005, GRANDMOTHERHOOD EVOL; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 30 26 27 0 20 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0963-7214 1467-8721 CURR DIR PSYCHOL SCI Curr. Dir. Psychol. APR 2011 20 2 93 98 10.1177/0963721411403269 6 Psychology, Multidisciplinary Psychology 841JO WOS:000296508800005 2019-02-21 J Klady, RA; Henry, GHR; Lemay, V Klady, Rebecca A.; Henry, Gregory H. R.; Lemay, Valerie Changes in high arctic tundra plant reproduction in response to long-term experimental warming GLOBAL CHANGE BIOLOGY English Article Arctic tundra; climate change; long-term experimental warming; open-top chamber; reproductive biomass; seed germination; sexual reproduction; vascular plant reproductive effort and success INTERANNUAL CLIMATE VARIATION; LIFE-HISTORY STRATEGIES; POLAR DESERT; NITROGEN MINERALIZATION; ERIOPHORUM-VAGINATUM; ENVIRONMENTAL-CHANGE; ALPINE LANDSCAPE; FUNCTIONAL TYPES; SWEDISH LAPLAND; CENTRAL ALASKA We provide new information on changes in tundra plant sexual reproduction in response to long-term (12 years) experimental warming in the High Arctic. Open-top chambers (OTCs) were used to increase growing season temperatures by 1-2 degrees C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long-term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers - via increased forage availability, and the global carbon budget - as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape. [Klady, Rebecca A.; Lemay, Valerie] Univ British Columbia, Fac Forestry, Dept Forest Resources Management, Forest Sci Ctr, Vancouver, BC V6T 1Z2, Canada; [Klady, Rebecca A.; Henry, Gregory H. R.] Univ British Columbia, Dept Geog, Vancouver, BC V6T 1Z2, Canada Klady, RA (reprint author), Univ British Columbia, Fac Forestry, Dept Forest Resources Management, Forest Sci Ctr, 2045-2424 Main Mall, Vancouver, BC V6T 1Z2, Canada. rklady@gmail.com Natural Sciences and Engineering Research Council of Canada; ArcticNet; Indian and Northern Affairs Canada This study was funded through grants from the Natural Sciences and Engineering Research Council of Canada and ArcticNet to G. H. R. H., and the Northern Student Training Program of Indian and Northern Affairs Canada to R. A. K. The authors would like to acknowledge Polar Continental Shelf Project and the Royal Canadian Mounted Police for logistical support. Many thanks to the following folks for field and lab support: K.-A. Down, S. Bogart, P. Brown. We would also like to thank the two anonymous reviewers for critiquing an earlier version of this manuscript. AIKEN SG, 1999, FLORA CANADIAN ARCTI; AMEN RD, 1966, Q REV BIOL, V41, P271, DOI 10.1086/405055; ANISIMOV O, 1997, RUSSIAN METEOROLOGY, V5, P47; Arctic Climate Impact Assessment (ACIA), 2004, IMP WARM ARCT ARCT C; Arft AM, 1999, ECOL MONOGR, V69, P491, DOI 10.1890/0012-9615(1999)069[0491:ROTPTE]2.0.CO;2; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; BILLINGS WD, 1987, ARCTIC ALPINE RES, V19, P357, DOI 10.2307/1551400; BILLINGS WD, 1968, BIOL REV, V43, P481, DOI 10.1111/j.1469-185X.1968.tb00968.x; BLISS L. C., 1958, ARCTIC, V11, P180; BLISS LC, 1994, ARCTIC ALPINE RES, V26, P46, DOI 10.2307/1551876; Bliss LC, 1999, CAN J BOT, V77, P623, DOI 10.1139/cjb-77-5-623; BLISS LC, 1956, ECOL MONOGR, V26, P303, DOI 10.2307/1948544; BLISS LC, 1988, N AM TERRESTRIAL VEG; BLISS LC, 1977, TRUELOVE LOWLAND DEV, P657; BROWN RF, 1988, ANN BOT-LONDON, V61, P117, DOI 10.1093/oxfordjournals.aob.a087534; Callaghan TV, 1999, POLAR RES, V18, P191, DOI 10.1111/j.1751-8369.1999.tb00293.x; CHAMBERS JC, 1995, AM J BOT, V82, P421, DOI 10.2307/2445588; CHAPIN FS, 1995, ECOLOGY, V76, P694, DOI 10.2307/1939337; CHAPIN FS, 1983, POLAR BIOL, V2, P47, DOI 10.1007/BF00258285; Chapin FS, 1996, J VEG SCI, V7, P347, DOI 10.2307/3236278; Chapin III F. S., 1985, PHYSL ECOLOGY N AM P, P16; CONOVER WJ, 1981, TECHNOMETRICS, V23, P351, DOI 10.2307/1268225; Convey P, 1996, ANTARCT SCI, V8, P127; Dormann CF, 2002, FUNCT ECOL, V16, P4, DOI 10.1046/j.0269-8463.2001.00596.x; Dormann CF, 2002, POLAR BIOL, V25, P884, DOI 10.1007/s00300-002-0417-4; Epstein HE, 2000, ECOL APPL, V10, P824, DOI 10.1890/1051-0761(2000)010[0824:ATNBMO]2.0.CO;2; Epstein HE, 2004, GLOBAL CHANGE BIOL, V10, P1325, DOI 10.1111/j.1365-2486.2004.00810.x; Eviner VT, 2003, ANNU REV ECOL EVOL S, V34, P455, DOI 10.1146/annurev.ecolsys.34.011802.132342; Freedman Bill, 1994, P1; GOLD WG, 1995, ECOLOGY, V76, P1558, DOI 10.2307/1938157; Graae BJ, 2008, PLANT ECOL, V198, P275, DOI 10.1007/s11258-008-9403-4; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grogan P, 2000, OECOLOGIA, V125, P512, DOI 10.1007/s004420000490; Hartley AE, 1999, OIKOS, V86, P331, DOI 10.2307/3546450; Henry GHR, 1997, GLOB CHANGE BIOL, V3, P1, DOI 10.1111/j.1365-2486.1997.gcb132.x; HENRY GHR, 1990, CAN J BOT, V68, P2660, DOI 10.1139/b90-336; HILL GB, 2010, GLOBAL CHANGE BIOL, DOI DOI 10.1111/J.1365-2486.2010.02244.X; Hollister RD, 2000, GLOB CHANGE BIOL, V6, P835, DOI 10.1046/j.1365-2486.2000.00363.x; Hollister RD, 2005, GLOBAL CHANGE BIOL, V11, P525, DOI 10.1111/j.1365-2486.2005.00926.x; Hollister RD, 2005, ECOLOGY, V86, P1562, DOI 10.1890/04-0520; Hoye TT, 2007, ARCT ANTARCT ALP RES, V39, P412, DOI 10.1657/1523-0430(06-018); Hudson JMG, 2009, ECOLOGY, V90, P2657, DOI 10.1890/09-0102.1; Hudson JMG, 2010, J ECOL, V98, P1035, DOI 10.1111/j.1365-2745.2010.01690.x; Hulten E., 1968, FLORA ALASKA NEIGHBO; IPCC, 2001, CLIM CHANG 2001 IMP; JOHNSTONE JF, 1995, THESIS U BRIT COLUMB; Jones GA, 2003, J BIOGEOGR, V30, P277, DOI 10.1046/j.1365-2699.2003.00818.x; JONES MH, 1995, THESIS U BRIT COLUMB; KEVAN PG, 1972, J ECOL, V60, P831, DOI 10.2307/2258569; KHAN MA, 1984, AM J BOT, V71, P481, DOI 10.2307/2443323; LARSSON EL, 2002, THESIS U GOTEBORG SW; Marion GM, 1997, GLOB CHANGE BIOL, V3, P20, DOI 10.1111/j.1365-2486.1997.gcb136.x; MAXWELL B, 1992, ARCTIC ECOSYSTEMS CH; Miller Jr R. G., 1981, SIMULTANEOUS STAT IN; MILLER PC, 1982, HOLARCTIC ECOL, V5, P85; Molau U, 1997, GLOB CHANGE BIOL, V3, P80, DOI 10.1111/j.1365-2486.1997.gcb130.x; Molau U, 2005, AM J BOT, V92, P422, DOI 10.3732/ajb.92.3.422; MOLAU U, 1993, ARCTIC ALPINE RES, V25, P391, DOI 10.2307/1551922; Molau U, 2000, CAN J BOT, V78, P728, DOI 10.1139/cjb-78-6-728; MOONEY HA, 1961, ECOL MONOGR, V31, P1, DOI 10.2307/1950744; MUC M, 1989, CAN J BOT, V67, P1126, DOI 10.1139/b89-147; MUC M, 1994, ECOLOGY POLAR OASIS, P41; MURRAY C, 1982, HOLARCTIC ECOL, V5, P109; NADELHOFFER K, 1997, GLOBAL CHANGE ARCTIC, V134; NADELHOFFER KJ, 1992, ARCTIC ECOSYSTEMS CH, P281; NOSKO P, 1995, ARCTIC ALPINE RES, V27, P137, DOI 10.2307/1551895; OLSON R, 1979, ARCTIC ALPINE RES, V11, P343; PORSLID A, 1980, VASCULAR PLANTS CONT; Post E, 2009, SCIENCE, V325, P1355, DOI 10.1126/science.1173113; ROLPH S, 2003, THESIS U BRIT COLUMB; Rustad LE, 2001, OECOLOGIA, V126, P543, DOI 10.1007/s004420000544; Sandvik SM, 2000, ECOSCIENCE, V7, P201, DOI 10.1080/11956860.2000.11682589; SAVILE DBO, 1972, DEP AGR MONOGRAPH, V6; Shaver G.R., 1992, ARCTIC ECOSYSTEMS CH, P193; SHEARD JW, 1983, CAN J BOT, V61, P1637, DOI 10.1139/b83-175; Sorensen Thorvald, 1941, MEDDELSER OM GRONLAND, V125, P1; Steltzer H, 2008, J GEOPHYS RES-BIOGEO, V113, DOI 10.1029/2007JG000503; Stenstrom M, 1997, GLOB CHANGE BIOL, V3, P44, DOI 10.1111/j.1365-2486.1997.gcb144.x; Stocklin J, 2009, BOT HELV, V119, P125, DOI 10.1007/s00035-009-0065-1; Sturm M, 2005, BIOSCIENCE, V55, P17, DOI 10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2; SVOBODA J, 1987, ARCTIC ALPINE RES, V19, P373, DOI 10.2307/1551402; Tilman D., 1982, MONOGRAPHS POPULATIO; TIMSON J, 1965, NATURE, V207, P2016; Ungar IA, 1996, AM J BOT, V83, P604, DOI 10.2307/2445919; van Wijk MT, 2004, GLOBAL CHANGE BIOL, V10, P105, DOI 10.1111/j.1365-2486.2003.00719.x; Walker DA, 2005, J VEG SCI, V16, P267, DOI 10.1658/1100-9233(2005)016[0267:TCAVM]2.0.CO;2; Walker JKM, 2008, ISME J, V2, P982, DOI 10.1038/ismej.2008.52; WALKER LR, 1987, OIKOS, V50, P131, DOI 10.2307/3565409; WALKER MD, 1995, ECOLOGY, V76, P1067, DOI 10.2307/1940916; Walker MD, 2006, P NATL ACAD SCI USA, V103, P1342, DOI 10.1073/pnas.0503198103; WALKER MD, 1994, ECOLOGY, V75, P393, DOI 10.2307/1939543; Welker JM, 1997, GLOB CHANGE BIOL, V3, P61, DOI 10.1111/j.1365-2486.1997.gcb143.x; Welker JM, 2005, GLOBAL CHANGE BIOL, V11, P997, DOI 10.1111/j.1365-2486.2005.00961.x; WOOKEY PA, 1993, OIKOS, V67, P490, DOI 10.2307/3545361 94 53 54 3 111 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1354-1013 1365-2486 GLOBAL CHANGE BIOL Glob. Change Biol. APR 2011 17 4 1611 1624 10.1111/j.1365-2486.2010.02319.x 14 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 728CZ WOS:000287853000009 2019-02-21 J Knape, J; Jonzen, N; Skold, M; Kikkawa, J; McCallum, H Knape, Jonas; Jonzen, Niclas; Skold, Martin; Kikkawa, Jiro; McCallum, Hamish Individual heterogeneity and senescence in Silvereyes on Heron Island ECOLOGY English Article breeding; individual heterogeneity; parameter identifiability; senescence; Silvereye; survival; Zosterops lateralis chlorocephalus ZOSTEROPS-LATERALIS-CHLOROCEPHALA; DYNAMIC HETEROGENEITY; CAPRICORN SILVEREYE; POPULATION-DYNAMICS; MARKED ANIMALS; MODEL; PARAMETERS; DOMINANCE; SELECTION; SURVIVAL Individual heterogeneity and correlations between life history traits play a fundamental role in life history evolution and population dynamics. Unobserved individual heterogeneity in survival can be a nuisance for estimation of age effects at the individual level by causing bias due to mortality selection. We jointly analyze survival and breeding output from successful breeding attempts in an island population of Silvereyes (Zosterops lateralis chlorocephalus) by fitting models that incorporate age effects and individual heterogeneity via random effects. The number of offspring produced increased with age of parents in their first years of life but then eventually declined with age. A similar pattern was found for the probability of successful breeding. Annual survival declined with age even when individual heterogeneity was not accounted for. The rate of senescence in survival, however, depends on the variance of individual heterogeneity and vice versa; hence, both cannot be simultaneously estimated with precision. Model selection supported individual heterogeneity in breeding performance, but we found no correlation between individual heterogeneity in survival and breeding performance. We argue that individual random effects, unless unambiguously identified, should be treated as statistical nuisance or taken as a starting point in a search for mechanisms rather than given direct biological interpretation. [Knape, Jonas; Jonzen, Niclas] Lund Univ, Dept Biol, S-22100 Lund, Sweden; [Skold, Martin] Univ Orebro, Dept Stat, Orebro, Sweden; [Kikkawa, Jiro] Univ Queensland, Sch Integrat Biol, Brisbane, Qld, Australia; [McCallum, Hamish] Griffith Sch Environm, Griffith, NSW, Australia Knape, J (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 137 Mulford Hall 3114, Berkeley, CA 94720 USA. jknape@berkeley.edu McCallum, Hamish/E-1638-2013; Skold, Martin/C-8525-2012 McCallum, Hamish/0000-0002-3493-0412; Skold, Martin/0000-0001-7053-9667; Knape, Jonas/0000-0002-8012-5131 Swedish Research Council; Australian Research Council; University of Queensland We are grateful to Tim Coulson, Torbjorn Ergon, and James Russell for valuable comments and suggestions that helped improve the manuscript. Jonas Knape and Niclas Jonzen were financially supported by the Swedish Research Council. The field data were collected jointly with Carla Catterall on Heron Island under the permits from Environment Australia and Queensland Parks and Wildlife Service, and the project was supported by the Australian Research Council and the University of Queensland. BJORNSTAD ON, 1994, OIKOS, V69, P167, DOI 10.2307/3545298; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brook BW, 1998, J APPL ECOL, V35, P491, DOI 10.1046/j.1365-2664.1998.3540491.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; CATTERALL CP, 1989, J ANIM ECOL, V58, P557, DOI 10.2307/4848; Clegg SM, 2008, EVOLUTION, V62, P2393, DOI 10.1111/j.1558-5646.2008.00437.x; DEGNAN SM, 1993, EVOLUTION, V47, P1105, DOI 10.1111/j.1558-5646.1993.tb02139.x; Gelman A, 2003, BAYESIAN DATA ANAL; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Gimenez O, 2010, ECOLOGY, V91, P951, DOI 10.1890/09-1903.1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HOEM JM, 1990, THEOR POPUL BIOL, V37, P124, DOI 10.1016/0040-5809(90)90030-Y; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; KIKKAWA J, 1980, IBIS, V122, P437, DOI 10.1111/j.1474-919X.1980.tb00899.x; KIKKAWA J, 1983, EMU, V83, P181, DOI 10.1071/MU9830181; Kikkawa J., 2004, EYE WHITE EYE MECH B; Kikkawa Jiro, 2003, Sunbird, V33, P64; Knape J, 2008, OIKOS, V117, P430, DOI 10.1111/j.2007.0030-1299.16266.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; McCallum H, 2000, ECOL LETT, V3, P95, DOI 10.1046/j.1461-0248.2000.00120.x; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Robertson BC, 2001, BEHAV ECOL, V12, P666, DOI 10.1093/beheco/12.6.666; Robinson-Wolrath SI, 2003, J EVOLUTION BIOL, V16, P1106, DOI 10.1046/j.1420-9101.2003.00615.x; Scott SN, 2003, EVOLUTION, V57, P2147; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; Vindenes Y, 2008, AM NAT, V171, P455, DOI 10.1086/528965; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Yashin AI, 2008, THEOR POPUL BIOL, V73, P1, DOI 10.1016/j.tpb.2007.09.001; Zens MS, 2003, TRENDS ECOL EVOL, V18, P366, DOI 10.1016/S0169-5347(03)00096-X 37 19 19 0 18 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology APR 2011 92 4 813 820 10.1890/10-0183.1 8 Ecology Environmental Sciences & Ecology 763DF WOS:000290533700003 21661544 Bronze 2019-02-21 J Quinodoz, S; Thomas, MA; Dunkel, J; Schoz, EM Quinodoz, Sofia; Thomas, Michael A.; Dunkel, Joern; Schoetz, Eva-Maria The More the Merrier? JOURNAL OF STATISTICAL PHYSICS English Article Life-history theory; Planarians; Asexual reproduction; Entropy; Optimization PLANARIAN DUGESIA-JAPONICA; STEM-CELLS; TRADE-OFF; CLUTCH SIZE; GREAT TITS; REGENERATION; NUMBER; NEOBLASTS; FISSION; ENTROPY The trade-off between traits in life-history strategies has been widely studied for sexual and parthenogenetic organisms, but relatively little is known about the reproduction strategies of asexual animals. Here, we investigate clonal reproduction in the freshwater planarian Schmidtea mediterranea, an important model organism for regeneration and stem cell research. We find that these flatworms adopt a randomized reproduction strategy that comprises both asymmetric binary fission and fragmentation (generation of multiple offspring during a reproduction cycle). Fragmentation in planarians has primarily been regarded as an abnormal behavior in the past; using a large-scale experimental approach, we now show that about one third of the reproduction events in S. mediterranea are fragmentations, implying that fragmentation is part of their normal reproductive behavior. Our analysis further suggests that certain characteristic aspects of the reproduction statistics can be explained in terms of a maximum relative entropy principle. [Quinodoz, Sofia; Thomas, Michael A.; Schoetz, Eva-Maria] Princeton Univ, Lewis Sigler Inst, Carl Icahn Lab 170, Princeton, NJ 08544 USA; [Dunkel, Joern] Univ Cambridge, Dept Appl Math & Theoret Phys, Ctr Math Sci, Cambridge CB3 0WA, England Schoz, EM (reprint author), Princeton Univ, Lewis Sigler Inst, Carl Icahn Lab 170, Princeton, NJ 08544 USA. quinodoz@princeton.edu; matthree@princeton.edu; j.dunkel@damtp.cam.ac.uk; eschoetz@princeton.edu Dunkel, Jorn/B-6140-2008 Dunkel, Jorn/0000-0001-8865-2369 Lewis-Sigler Fellowship This work was inspired by a discussion EMS had with I. Fiete at UT Austin. The authors thank J. Talbot and B. Lincoln for help with worm care, R. Sedgewick and K. Wayne for their Java file I/O libraries, B. Liu, J.T. Bonner, A. Ott and W. Bialek for fruitful discussions, and A. Ott for comments on the manuscript. EMS was funded by the Lewis-Sigler Fellowship. Agata Kiyokazu, 2008, P59, DOI 10.1007/978-1-4020-8274-0_4; Alvarado AS, 2002, DEVELOPMENT, V129, P5659, DOI 10.1242/dev.00167; BAGUNA J, 1981, NATURE, V290, P14, DOI 10.1038/290014b0; BAGUNA J, 1989, DEVELOPMENT, V107, P77; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; Bronstedt H.V., 1969, PLANARIAN REGENERATI; CALOW P, 1979, AM ZOOL, V19, P715; Charnov EL, 2006, AM NAT, V167, P578, DOI 10.1086/501141; Dunkel J, 2011, PHYS BIOL, V8, DOI 10.1088/1478-3975/8/2/026003; Hori I, 2001, BELG J ZOOL, V131, P117; Hori I, 1998, HYDROBIOLOGIA, V383, P131, DOI 10.1023/A:1003415105630; JAYNES ET, 1968, IEEE T SYST SCI CYB, VSSC4, P227, DOI 10.1109/TSSC.1968.300117; KAWAKATSU M, 1959, B KYOTO GAKUGEI U B, P35; KULLBACK S, 1951, ANN MATH STAT, V22, P79, DOI 10.1214/aoms/1177729694; Mora T, 2010, P NATL ACAD SCI USA, V107, P5405, DOI 10.1073/pnas.1001705107; Newmark PA, 2002, NAT REV GENET, V3, P210, DOI 10.1038/nrg759; Oviedo NJ, 2007, DEVELOPMENT, V134, P3121, DOI 10.1242/dev.006635; Peter R, 2001, MAR ECOL-P S Z N I, V22, P35, DOI 10.1046/j.1439-0485.2001.00743.x; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Reddien PW, 2005, SCIENCE, V310, P1327, DOI 10.1126/science.1116110; Reddien PW, 2004, ANNU REV CELL DEV BI, V20, P725, DOI 10.1146/annurev.cellbio.20.010403.095114; Sheiman I. M., 2006, Russian Journal of Developmental Biology, V37, P102, DOI 10.1134/S1062360406020068; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; SMITH HG, 1989, J ANIM ECOL, V58, P383, DOI 10.2307/4837; Stearns S, 1992, EVOLUTION LIFE HIST; THOMAS M, 2011, SAPLING SCA IN PRESS; Visser ME, 1999, OIKOS, V85, P445, DOI 10.2307/3546694; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WEHRL A, 1978, REV MOD PHYS, V50, P221, DOI 10.1103/RevModPhys.50.221; ZACCANTI F, 1986, J EXP ZOOL, V238, P319, DOI 10.1002/jez.1402380306 32 6 6 0 6 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0022-4715 J STAT PHYS J. Stat. Phys. APR 2011 142 6 1324 1336 10.1007/s10955-011-0157-3 13 Physics, Mathematical Physics 749DV WOS:000289443500013 2019-02-21 J Marty, L; Dieckmann, U; Rochet, MJ; Ernande, B Marty, Lise; Dieckmann, Ulf; Rochet, Marie-Joelle; Ernande, Bruno Impact of Environmental Covariation in Growth and Mortality on Evolving Maturation Reaction Norms AMERICAN NATURALIST English Article phenotypic plasticity; growth-reproduction trade-off; source-sink population structure; density dependence; selection gradient LIFE-HISTORY EVOLUTION; SPATIALLY HETEROGENEOUS ENVIRONMENTS; FISHERIES-INDUCED EVOLUTION; NORTHEAST ARCTIC COD; PHENOTYPIC PLASTICITY; ADAPTIVE DYNAMICS; DEVELOPMENTAL THRESHOLDS; MATHEMATICALLY CORRECT; BIOLOGICALLY RELEVANT; DENSITY-DEPENDENCE Maturation age and size have important fitness consequences through their effects on survival probabilities and body sizes. The evolution of maturation reaction norms in response to environmental covariation in growth and mortality is therefore a key subject of life-history theory. The eco-evolutionary model we present and analyze here incorporates critical features that earlier studies of evolving maturation reaction norms have often neglected: the trade-off between growth and reproduction, source-sink population structure, and population regulation through density-dependent growth and fecundity. We report the following findings. First, the evolutionarily optimal age at maturation can be decomposed into the sum of a density-dependent and a density-independent component. These components measure, respectively, the hypothetical negative age at which an individual's length would be 0 and the delay in maturation relative to this offset. Second, along any growth trajectory, individuals mature earlier when mortality is higher. This allows us to deduce, third, how the shapes of evolutionarily optimal maturation reaction norms depend on the covariation between growth and mortality (positive or negative, linear or curvilinear, and deterministic or probabilistic). Providing eco-evolutionary explanations for many alternative reaction-norm shapes, our results appear to be in good agreement with current empirical knowledge on maturation dynamics. [Marty, Lise; Ernande, Bruno] IFREMER, Lab Ressources Halieut, F-62231 Boulogne, France; [Dieckmann, Ulf; Ernande, Bruno] Int Inst Appl Syst & Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Rochet, Marie-Joelle] IFREMER, F-44311 Nantes 03, France Marty, L (reprint author), IFREMER, Lab Ressources Halieut, 150 Quai Gambetta,BP 699, F-62231 Boulogne, France. lise.marty@ifremer.fr Dieckmann, Ulf/E-1424-2011; Ernande, Bruno/C-1182-2008 Dieckmann, Ulf/0000-0001-7089-0393; Ernande, Bruno/0000-0002-0727-5774 European Commission under the European Community; European Science Foundation; Austrian Science Fund; Austrian Ministry of Science and Research; Vienna Science and Technology Fund; European Community through the Marie Curie Research Training Network [MRTN-CT-2004-005578] This study has been carried out with financial support from the European Commission, as part of the Specific Targeted Research Project on "fisheries-induced evolution" (FinE; contract SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. U.D. acknowledges additional support by the European Science Foundation, the Austrian Science Fund, the Austrian Ministry of Science and Research, and the Vienna Science and Technology Fund, as well as by the European Community's Sixth Framework Programme, through the Marie Curie Research Training Network on "fisheries-induced adaptive changes in exploited stocks" (FishACE; contract MRTN-CT-2004-005578). Abrams PA, 2001, ECOL LETT, V4, P166, DOI 10.1046/j.1461-0248.2001.00199.x; ABRAMS PA, 1993, EVOL ECOL, V7, P465, DOI 10.1007/BF01237642; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; BERRIGAN D, 1994, J EVOLUTION BIOL, V7, P549, DOI 10.1046/j.1420-9101.1994.7050549.x; BEVERTON RJH, 1959, LIFESPAN ANIMALS CIB, V5, P142; BOGGS CL, 1993, ECOLOGY, V74, P433, DOI 10.2307/1939305; Brown JH, 2005, FUNCT ECOL, V19, P735, DOI 10.1111/j.1365-2435.2005.01022.x; BROWN JS, 1992, EVOL ECOL, V6, P360, DOI 10.1007/BF02270698; Burd M, 2006, ECOLOGY, V87, P2755, DOI 10.1890/0012-9658(2006)87[2755:APFRIM]2.0.CO;2; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; DEMPSTER ER, 1955, COLD SPRING HARB SYM, V20, P25, DOI 10.1101/SQB.1955.020.01.005; DEROOS AM, 1992, AM NAT, V139, P123, DOI 10.1086/285316; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U, 2006, J THEOR BIOL, V241, P370, DOI 10.1016/j.jtbi.2005.12.002; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, ICES J MAR SCI, V59, P562, DOI 10.1006/jmsc.2002.1192; HOLT RD, 1992, EVOL ECOL, V6, P433, DOI 10.1007/BF02270702; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; IWASA I, 1991, EVOLUTION, V45, P1431; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; KAWECKI TJ, 1993, EVOL ECOL, V7, P155, DOI 10.1007/BF01239386; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; Kozlowski J, 2004, FUNCT ECOL, V18, P283, DOI 10.1111/j.0269-8463.2004.00830.x; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; LACEY EP, 1988, ECOLOGY, V69, P220, DOI 10.2307/1943178; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LESTER NP, 2004, P ROYAL SOC B, V271, P1548; LEVENE H, 1953, AM NAT, V87, P331, DOI 10.1086/281792; MESZENA G, 2001, SELECTION, V2, P1585; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 2001, P ROY SOC B-BIOL SCI, V268, P499, DOI 10.1098/rspb.2000.1373; METZ JAJ, 1996, WP96004 IIASA; Metz JAJ, 1986, DYNAMICS PHYSL STRUC; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Okamoto KW, 2009, EVOL APPL, V2, P415, DOI 10.1111/j.1752-4571.2009.00095.x; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Parvinen K, 2006, J MATH BIOL, V52, P1, DOI 10.1007/s00285-005-0329-3; PAULY D, 1980, J CONSEIL, V39, P175; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Ravigne V, 2004, EVOL ECOL RES, V6, P125; Ravigne V, 2009, AM NAT, V174, pE141, DOI 10.1086/605369; Roos A. M., 1997, STRUCTURED POPULATIO, P119; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STILING P, 1988, J ANIM ECOL, V57, P581, DOI 10.2307/4926; STUBBS M, 1977, J ANIM ECOL, V46, P677, DOI 10.2307/3837; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; Walters C, 1999, REV FISH BIOL FISHER, V9, P187, DOI 10.1023/A:1008991021305; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Werner EE, 1996, ECOLOGY, V77, P157, DOI 10.2307/2265664; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH 81 14 15 0 27 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 2011 177 4 E98 E118 10.1086/658988 21 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 746IF WOS:000289237700001 21460562 Green Published 2019-02-21 J Gibbs, M; Wiklund, C; Van Dyck, H Gibbs, Melanie; Wiklund, Christer; Van Dyck, Hans Temperature, rainfall and butterfly morphology: does life history theory match the observed pattern? ECOGRAPHY English Article MELITAEA-CINXIA LEPIDOPTERA; RECENT CLIMATE-CHANGE; IN-FLIGHT MORPHOLOGY; PARARGE-AEGERIA L.; HABITAT FRAGMENTATION; LANDSCAPE STRUCTURE; PHENOTYPIC PLASTICITY; WING MORPHOLOGY; RANGE EXPANSION; REACTION NORMS Butterfly distribution and abundance is known to be influenced by temperature and rainfall. What is not clear, however, is how life history and flight morphological traits are affected by changes in local weather conditions. During the period 1989-1999, we explored the effects of ambient temperature and rainfall during larval development on adult phenotypic traits (body mass, forewing loading, forewing surface area and forewing length) in a Swedish population of the speckled wood butterfly Pararge aegeria. As different seasonal cohorts correspond to different developmental pathways (larval hibernating, pupal hibernating and directly developing), we analysed these morphological time series relative to developmental pathway. Phenotypic variation in response to the temperature and rainfall levels experienced during larval development differed in both magnitude and direction depending on the developmental pathway, and hence seasonal cohort, examined (i.e. there was a pathway-specific response). We suggest that through its developmental flexibility P. aegeria may be able to adjust to variation in weather conditions over time. Other less flexible species, however, may not be so fortunately buffered. To truly estimate the impact of climate change on biodiversity more fine-scale, local studies are required that examine the mechanisms underlying the response of species to climate change. [Gibbs, Melanie] NERC Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England; [Van Dyck, Hans] Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, BE-1348 Louvain, Belgium; [Wiklund, Christer] Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden Gibbs, M (reprint author), NERC Ctr Ecol & Hydrol, Maclean Bldg,Benson Lane, Wallingford OX10 8BB, Oxon, England. Hans.Vandyck@uclouvain.be Gibbs, Melanie/E-6771-2012 Gibbs, Melanie/0000-0002-4091-9789 Univ. catholique de Louvain (UCL) [FSR06]; Natural Environment Research Council [CEH010021] This research is supported by a FSR research grant of the Univ. catholique de Louvain (UCL) to HVD (Grant FSR06). This is publication no. BRC 186 of the Biodiversity Research Centre (UCL, Louvain-la-Neuve). Casper J. Breuker provided useful comments on an earlier version of the manuscript. Azerefegne F, 2001, J ANIM ECOL, V70, P1032, DOI 10.1046/j.0021-8790.2001.00556.x; Bale JS, 2002, GLOBAL CHANGE BIOL, V8, P1, DOI 10.1046/j.1365-2486.2002.00451.x; Berwaerts K, 1998, NETH J ZOOL, V48, P241, DOI 10.1163/156854298X00093; Berwaerts K, 2002, FUNCT ECOL, V16, P484, DOI 10.1046/j.1365-2435.2002.00650.x; BRAKEFIELD PM, 1995, J EVOLUTION BIOL, V8, P559, DOI 10.1046/j.1420-9101.1995.8050559.x; Breuker CJ, 2007, EUR J ENTOMOL, V104, P445, DOI 10.14411/eje.2007.064; Crozier LG, 2004, OECOLOGIA, V141, P148, DOI 10.1007/s00442-004-1634-z; DANTHANARAYANA W, 1976, OECOLOGIA, V26, P121, DOI 10.1007/BF00582890; DAVIES NB, 1978, ANIM BEHAV, V26, P138, DOI 10.1016/0003-3472(78)90013-1; Davies ZG, 2006, J ANIM ECOL, V75, P247, DOI 10.1111/j.1365-2656.2006.01044.x; DEMPSTER JP, 1976, ECOL ENTOMOL, V1, P71, DOI 10.1111/j.1365-2311.1976.tb01207.x; DEMPSTER JP, 1991, CONSERVATION INSECTS, P143; Dennis RLH, 2006, BIOL CONSERV, V129, P291, DOI 10.1016/j.biocon.2005.10.043; DENNIS RLH, 1989, BIOL J LINN SOC, V38, P323, DOI 10.1111/j.1095-8312.1989.tb01581.x; Dennis RLH., 1993, BUTTERFLIES CLIMATE; Dudley R., 2000, BIOMECHANICS INSECT; ELIASSON CU, 2005, BUTTERFLIES HESPERID; Forister ML, 2003, GLOBAL CHANGE BIOL, V9, P1130, DOI 10.1046/j.1365-2486.2003.00643.x; Gibbs M, 2010, PHYSIOL ENTOMOL, V35, P29, DOI 10.1111/j.1365-3032.2009.00706.x; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HENRIKSEN HJ, 1982, BUTTERFLIES SCANDINA; Hill Jane K., 2005, P519, DOI 10.1079/9780851998121.0519; Hill JK, 1999, OECOLOGIA, V121, P165, DOI 10.1007/s004420050918; Hill JK, 1999, BIOL CONSERV, V87, P277, DOI 10.1016/S0006-3207(98)00091-3; Hill JK, 2001, ECOL LETT, V4, P313, DOI 10.1046/j.1461-0248.2001.00222.x; Hill JK, 1999, P ROY SOC B-BIOL SCI, V266, P1197, DOI 10.1098/rspb.1999.0763; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; Karlsson B, 2005, J ANIM ECOL, V74, P99, DOI 10.1111/j.1365-2656.2004.00902.x; Koehl MAR, 1996, ANNU REV ECOL SYST, V27, P501, DOI 10.1146/annurev.ecolsys.27.1.501; Kooi RE, 1996, ENTOMOL EXP APPL, V80, P149, DOI 10.1111/j.1570-7458.1996.tb00906.x; McCarty JP, 2001, CONSERV BIOL, V15, P320, DOI 10.1046/j.1523-1739.2001.015002320.x; McLaughlin JF, 2002, P NATL ACAD SCI USA, V99, P6070, DOI 10.1073/pnas.052131199; Menzel A, 2006, GLOBAL ECOL BIOGEOGR, V15, P498, DOI 10.1111/j.1466-822x.2006.00247.x; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Merckx T, 2006, OIKOS, V113, P226, DOI 10.1111/j.2006.0030-1299.14501.x; Morecroft MD, 2002, GLOBAL ECOL BIOGEOGR, V11, P7, DOI 10.1046/j.1466-822X.2002.00174.x; Norberg U, 2002, BIOL J LINN SOC, V77, P445, DOI 10.1046/j.1095-8312.2002.00115.x; NORDSTROM F, 1955, K FYSIOGR SALLSK HAN, V66, P1; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; *OPT, 1999, OPT 6 5 1 US GUID TE; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; POLLARD E, 1988, J APPL ECOL, V25, P819, DOI 10.2307/2403748; Roff Derek A., 1992; Roy DB, 2003, OECOLOGIA, V134, P439, DOI 10.1007/s00442-002-1121-3; Roy DB, 2000, GLOB CHANGE BIOL, V6, P407, DOI 10.1046/j.1365-2486.2000.00322.x; Roy DB, 2001, J ANIM ECOL, V70, P201, DOI 10.1046/j.1365-2656.2001.00480.x; Schweiger O, 2006, LANDSCAPE ECOL, V21, P989, DOI 10.1007/s10980-005-6057-7; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Thomas CD, 1998, J ANIM ECOL, V67, P485, DOI 10.1046/j.1365-2656.1998.00213.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Van Dyck H, 1999, TRENDS ECOL EVOL, V14, P172, DOI 10.1016/S0169-5347(99)01610-9; Van Dyck Hans, 2003, P353; VanDyck H, 1997, ECOL ENTOMOL, V22, P116, DOI 10.1046/j.1365-2311.1997.00041.x; VanDyck H, 1997, ANIM BEHAV, V53, P39, DOI 10.1006/anbe.1996.0276; Walther GR, 2005, TRENDS ECOL EVOL, V20, P648, DOI 10.1016/j.tree.2005.10.008; WICKMAN PO, 1983, ANIM BEHAV, V31, P1206, DOI 10.1016/S0003-3472(83)80027-X; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x 64 11 11 3 57 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography APR 2011 34 2 336 344 10.1111/j.1600-0587.2010.06573.x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 745EZ WOS:000289150000016 2019-02-21 J Sundie, JM; Griskevicius, V; Vohs, KD; Kenrick, DT; Tybur, JM; Beal, DJ Sundie, Jill M.; Griskevicius, Vladas; Vohs, Kathleen D.; Kenrick, Douglas T.; Tybur, Joshua M.; Beal, Daniel J. Peacocks, Porsches, and Thorstein Veblen: Conspicuous Consumption as a Sexual Signaling System JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article conspicuous consumption; mating; costly signaling HUMAN MATE PREFERENCES; FLUCTUATING ASYMMETRY; PARENTAL INVESTMENT; WOMENS PREFERENCES; ROMANTIC MOTIVES; DECISION-MAKING; SOCIAL-EXCHANGE; CATHARACTA-SKUA; OVULATORY CYCLE; RISK-TAKING Conspicuous consumption is a form of economic behavior in which self-presentational concerns override desires to obtain goods at bargain prices. Showy spending may be a social signal directed at potential mates. We investigated such signals by examining (a) which individuals send them, (b) which contexts trigger them, and (c) how observers interpret them. Three experiments demonstrated that conspicuous consumption is driven by men who are following a lower investment (vs. higher investment) mating strategy and is triggered specifically by short-term (vs. long-term) mating motives. A fourth experiment showed that observers interpret such signals accurately, with women perceiving men who conspicuously consume as being interested in short-term mating. Furthermore, conspicuous purchasing enhanced men's desirability as a short-term (but not as a long-term) mate. Overall, these findings suggest that flaunting status-linked goods to potential mates is not simply about displaying economic resources. Instead, conspicuous consumption appears to be part of a more precise signaling system focused on short-term mating. These findings contribute to an emerging literature on human life-history strategies. [Sundie, Jill M.] Univ Texas San Antonio, Dept Mkt, San Antonio, TX 78249 USA; [Kenrick, Douglas T.] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Griskevicius, Vladas; Vohs, Kathleen D.] Univ Minnesota, Dept Mkt, Minneapolis, MN 55455 USA; [Tybur, Joshua M.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Beal, Daniel J.] Rice Univ, Dept Psychol, Houston, TX 77251 USA Sundie, JM (reprint author), Univ Texas San Antonio, Dept Mkt, 1 UTSA Blvd, San Antonio, TX 78249 USA. jill.sundie@utsa.edu Beal, Daniel/A-6076-2019; Tybur, Joshua/P-5435-2014 Beal, Daniel/0000-0003-4750-2430; Tybur, Joshua/0000-0002-0462-6508 Aiken LS, 1991, MULTIPLE REGRESSION; Andersson M., 1994, SEXUAL SELECTION; Apicella CL, 2008, EVOL HUM BEHAV, V29, P384, DOI 10.1016/j.evolhumbehav.2008.07.001; Baker MD, 2008, EVOL HUM BEHAV, V29, P391, DOI 10.1016/j.evolhumbehav.2008.06.001; Baumeister RF, 2004, PERS SOC PSYCHOL REV, V8, P339, DOI 10.1207/s15327957pspr0804_2; Bird RB, 2005, CURR ANTHROPOL, V46, P221; BOLLEN KA, 1987, SOCIOL METHOD RES, V15, P375, DOI 10.1177/0049124187015004002; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Catry P, 1997, ANIM BEHAV, V54, P1265, DOI 10.1006/anbe.1997.0543; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Dabbs James McBride, 2000, HEROES ROGUES LOVERS; Darwin C, 1871, DESCENT MAN SELECTIO; ELLISON PT, 2001, FERTILE GROUND NATUR; Ermer E, 2008, EVOL HUM BEHAV, V29, P106, DOI 10.1016/j.evolhumbehav.2007.11.002; Frank Robert H., 2007, FALLING RISING INEQU; Gangestad SW, 2007, J PERS SOC PSYCHOL, V92, P151, DOI 10.1037/0022-3514.92.1.151; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gangestad SW, 2003, EVOL HUM BEHAV, V24, P231, DOI 10.1016/S1090-5138(03)00017-5; Gangestad SW, 2004, PSYCHOL SCI, V15, P203, DOI 10.1111/j.0956-7976.2004.01503010.x; Godoy R, 2007, EVOL HUM BEHAV, V28, P124, DOI 10.1016/j.evolhumbehav.2006.08.005; Gould J, 1989, SEXUAL SELECTION; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P63, DOI 10.1037/0022-3514.91.1.63; Griskevicius V, 2010, J PERS SOC PSYCHOL, V98, P392, DOI 10.1037/a0017346; Griskevicius V, 2009, J MARKETING RES, V46, P384, DOI 10.1509/jmkr.46.3.384; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Gross M. R., 1984, Fish reproduction: strategies and tactics., P55; Gutierres SE, 1999, PERS SOC PSYCHOL B, V25, P1126, DOI 10.1177/01461672992512006; HAMER KC, 1991, J ZOOL, V223, P175, DOI 10.1111/j.1469-7998.1991.tb04758.x; Hooper PL, 2008, ADAPT BEHAV, V16, P53, DOI 10.1177/1059712307087283; Houde AE, 2001, P NATL ACAD SCI USA, V98, P12857, DOI 10.1073/pnas.241503598; HRDY S. B., 1999, MOTHER NATURE; Iredale W, 2008, EVOL PSYCHOL-US, V6, P386, DOI 10.1177/147470490800600302; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; KENRICK DT, 1993, J PERS SOC PSYCHOL, V64, P951, DOI 10.1037/0022-3514.64.6.951; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Keppel G, 2004, DESIGN ANAL RES HDB; Kirk R. E., 1995, EXPT DESIGN PROCEDUR; Kokko H, 2003, TRENDS ECOL EVOL, V18, P103, DOI 10.1016/S0169-5347(03)00009-0; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Little AC, 2002, P ROY SOC B-BIOL SCI, V269, P1095, DOI 10.1098/rspb.2002.1984; Mazur A, 1998, BEHAV BRAIN SCI, V21, P353; Miller G., 2009, SPENT SEX EVOLUTION; Miller G, 2007, EVOL HUM BEHAV, V28, P375, DOI 10.1016/j.evolhumbehav.2007.06.002; Miller Geoffrey, 2000, MATING MIND SEXUAL C; Miller GF, 2007, Q REV BIOL, V82, P97, DOI 10.1086/517857; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Penn DJ, 2003, Q REV BIOL, V78, P275, DOI 10.1086/377051; Pizzari T, 2003, BEHAV ECOL, V14, P593, DOI 10.1093/beheco/arg048; Puts DA, 2005, EVOL HUM BEHAV, V26, P388, DOI 10.1016/j.evolhumbehav.2005.03.001; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roney JR, 2003, PERS SOC PSYCHOL B, V29, P393, DOI 10.1177/0146167202250221; Rose P, 2007, PSYCHOL ADDICT BEHAV, V21, P576, DOI 10.1037/0893-164X.21.4.576; Saad G, 2007, EVOLUTIONARY BASES C; Saad G, 2009, ORGAN BEHAV HUM DEC, V110, P80, DOI 10.1016/j.obhdp.2009.06.001; SADALLA EK, 1987, J PERS SOC PSYCHOL, V52, P730, DOI 10.1037/0022-3514.52.4.730; Shackelford TK, 2005, PERS INDIV DIFFER, V39, P447, DOI 10.1016/j.paid.2005.01.023; SILVERSTEIN M. J, 2003, TRADING NEW AM LUXUR; SIMPSON JA, 1992, J PERS, V60, P31, DOI 10.1111/j.1467-6494.1992.tb00264.x; Simpson JA, 1999, J PERS SOC PSYCHOL, V76, P159, DOI 10.1037/0022-3514.76.1.159; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sundie JM, 2009, J CONSUM PSYCHOL, V19, P356, DOI 10.1016/j.jcps.2009.02.015; Tabachnick BG, 1996, USING MULTIVARIATE S; TAYLOR J, 2008, NEW ELITE INSIDE MIN; Thornhill R, 2006, EVOL HUM BEHAV, V27, P131, DOI 10.1016/j.evolhumbehav.2005.06.001; Thornhill R., 2008, EVOLUTIONARY BIOL HU; Van den Bergh B, 2008, J CONSUM RES, V35, P85, DOI 10.1086/525505; Veblen T. B., 1899, THEORY LEISURE CLASS; WARNER RR, 1984, AM SCI, V72, P128; Webster GD, 2007, J RES PERS, V41, P917, DOI 10.1016/j.jrp.2006.08.007; Wilson M, 2004, P ROY SOC B-BIOL SCI, V271, pS177, DOI 10.1098/rsbl.2003.0134; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Winer BJ, 1991, STAT PRINCIPLES EXPT; ZAHAVI A, 1997, HANDICAP PRINCIPLE 85 138 146 6 119 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. APR 2011 100 4 664 680 10.1037/a0021669 17 Psychology, Social Psychology 740FD WOS:000288776100008 21038972 2019-02-21 J Walsh, MR; Reznick, DN Walsh, Matthew R.; Reznick, David N. EXPERIMENTALLY INDUCED LIFE-HISTORY EVOLUTION IN A KILLIFISH IN RESPONSE TO THE INTRODUCTION OF GUPPIES EVOLUTION English Article Indirect effects; life-history evolution; predator-prey; Rivulus FISH BRACHYRHAPHIS-RHABDOPHORA; NATURAL-SELECTION; POECILIA-RETICULATA; DROSOPHILA-MELANOGASTER; TRADE-OFF; CONTEMPORARY MICROEVOLUTION; PHENOTYPIC PLASTICITY; ARTIFICIAL SELECTION; ADAPTIVE EVOLUTION; BODY-WEIGHT Life-history theory predicts that increased predation on juvenile age/size-classes favors delayed maturation and decreased reproductive investment. Although this theory has received correlative support, experimental tests in nature are rare. In 1976 and 1981, guppies (Poecilia reticulata) were transplanted into localities that previously only contained a killifish, Rivulus hartii. This situation presents an opportunity to experimentally test this life-history prediction because guppies prey upon young Rivulus. We evaluated the response to selection in Rivulus by measuring phenotypic and genotypic divergence between introduction and upstream "control" localities that lack guppies. Contrary to expectations, Rivulus from the introduction sites evolved earlier maturation and increased reproductive investment within 25 years. Such evolutionary changes parallel previous investigations on natural communities of Rivulus, but do not comply with predictions of age/size-specific theory. Guppies also caused reduced densities and increased growth rates of Rivulus, which are hypothesized indirect effects of predation. Additional life-history theories show that changes in density and growth can interact with predator-induced mortality to alter the predicted trajectory of evolution. We discuss how these latter frameworks improve the fit between theory and evolution in Rivulus. [Walsh, Matthew R.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Walsh, Matthew R.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA Walsh, MR (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. matthew.walsh@yale.edu reznick, david/0000-0002-1144-0568 National Science Foundation [DEB0808039, DEB0416085, EF0623632] We thank D. Fraser, M. Schrader, C. Oufiero, J. Ogren, E. Kam, and R. Sandhu for field or laboratory assistance. D. Roff, L. Nunney, the Reznick lab, and three anonymous reviewers provided helpful comments. This work was supported by a National Science Foundation Doctoral Dissertation Improvement Grant DEB0808039, and National Science Foundation Grants DEB0416085 and EF0623632 to DNR. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; Charlesworth B., 1980, EVOLUTION AGE STRUCT; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FALCONER DS, 1952, J GENET, V51, P67, DOI 10.1007/BF02986705; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; GINGERICH PD, 1983, SCIENCE, V222, P159, DOI 10.1126/science.222.4620.159; Gotelli NJ, 1998, PRIMER ECOLOGY; Hedges LV, 1999, ECOLOGY, V80, P1150, DOI 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; Houde A., 1997, SEX COLOR MATE CHOIC; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Losos JB, 2004, NATURE, V432, P505, DOI 10.1038/nature03039; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; PRICE TD, 1984, EVOLUTION, V38, P483, DOI 10.1111/j.1558-5646.1984.tb00314.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; Scheiner Samuel M., 1993, P94; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Schroder A, 2009, P NATL ACAD SCI USA, V106, P2671, DOI 10.1073/pnas.0808279106; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1992, EVOLUTION LIFE HISTO; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; Young KV, 2004, SCIENCE, V304, P65, DOI 10.1126/science.1094790 64 25 26 0 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 2011 65 4 1021 1036 10.1111/j.1558-5646.2010.01188.x 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 745IE WOS:000289158300009 21062280 Bronze 2019-02-21 J South, A; Stanger-Hall, K; Jeng, ML; Lewis, SM South, Adam; Stanger-Hall, Kathrin; Jeng, Ming-Luen; Lewis, Sara M. CORRELATED EVOLUTION OF FEMALE NEOTENY AND FLIGHTLESSNESS WITH MALE SPERMATOPHORE PRODUCTION IN FIREFLIES (COLEOPTERA: LAMPYRIDAE) EVOLUTION English Article Bioluminescence; seminal nuptial gifts; flightlessness; life-history evolution; male accessory glands; neoteny; sexual selection; sexual signals PHOTINUS-COLLUSTRANS COLEOPTERA; MALE ACCESSORY-GLANDS; NUPTIAL GIFTS; SEXUAL COMMUNICATION; DISCRETE CHARACTERS; RESOURCE-ALLOCATION; MATING HISTORY; BUSH-CRICKET; INSECTS; BUTTERFLIES The beetle family Lampyridae (fireflies) encompasses similar to 100 genera worldwide with considerable diversity in life histories and signaling modes. Some lampyrid males use reproductive accessory glands to produce spermatophores, which have been shown to increase female lifetime fecundity. Sexual dimorphism in the form of neotenic and flightless females is also common in this family. A major goal of this study was to test a hypothesized link between female flight ability and male spermatophore production. We examined macroevolutionary patterns to test for correlated evolution among different levels of female neoteny (and associated loss of flight ability), male accessory gland number (and associated spermatophore production), and sexual signaling mode. Trait reconstruction on a molecular phylogeny indicated that flying females and spermatophores were ancestral traits and that female neoteny increased monotonically and led to flightlessness within multiple lineages. In addition, male spermatophore production was lost multiple times. Our evolutionary trait analysis revealed significant correlations between increased female neoteny and male accessory gland number, as well as between flightlessness and spermatophore loss. In addition, female flightlessness was positively correlated with the use of glows as female sexual signal. Transition probability analysis supported an evolutionary sequence of female flightlessness evolving first, followed by loss of male spermatophores. These results contribute to understanding how spermatophores have evolved and how this important class of seminal nuptial gifts is linked to other traits, providing new insights into sexual selection and life-history evolution. [South, Adam; Lewis, Sara M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA; [Stanger-Hall, Kathrin] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA; [Jeng, Ming-Luen] Natl Museum Nat Sci, Taichung, Taiwan South, A (reprint author), Tufts Univ, Dept Biol, Medford, MA 02155 USA. sara.lewis@tufts.edu Jeng, Ming-Luen/0000-0001-8855-5817; Stanger-Hall, Kathrin/0000-0002-6941-4178 Tufts University; NSF [IOB 0543738, DEB 0074953] We are grateful to the many colleagues who provided specimens for this study: R. De Cock, M. Branham, L. Faust, and N. Abe. We also thank F. Hayashi for sharing anatomical data on Japanese fireflies, and T. Murray, A. Wild, and T. Chen for permission to use their excellent photos. T. Chapman, G. Arnqvist, R. De Cock, D. Hall, and several anonymous reviewers provided insightful comments that greatly improved this manuscript. This research was supported by Tufts University and by NSF grants IOB 0543738 to SML and DEB 0074953 to KSH, as well as a NSF EAPSI fellowship to AS. Agrawal AA, 2007, TRENDS ECOL EVOL, V22, P103, DOI 10.1016/j.tree.2006.10.012; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Arnqvist G, 2005, SEXUAL CONFLICT; Bocak L, 2008, P ROY SOC B-BIOL SCI, V275, P2015, DOI 10.1098/rspb.2008.0476; Bocakova M, 2007, CLADISTICS, V23, P477, DOI 10.1111/j.1096-0031.2007.00164.x; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Boggs Carol L., 1995, P215; BOGGS CL, 1990, AM NAT, V136, P598, DOI 10.1086/285118; Branham MA, 2003, CLADISTICS, V19, P1, DOI 10.1016/S0748-3007(02)00131-7; CHEN PS, 1984, ANNU REV ENTOMOL, V29, P233, DOI 10.1146/annurev.en.29.010184.001313; CICERO J M, 1988, Coleopterists Bulletin, V42, P105; Cicero JM, 2008, PAN-PAC ENTOMOL, V84, P200, DOI 10.3956/2007-53.1; Cordero C, 1996, J INSECT BEHAV, V9, P969, DOI 10.1007/BF02208983; Cratsley CK, 2003, J INSECT BEHAV, V16, P361, DOI 10.1023/A:1024876009281; Crowson R.A., 1972, Revista Univ Madr, V21, P35; Darlington P. J., 1943, ECOL MONOGR, V13, P37, DOI 10.2307/1943589; Davey K. G., 1960, Proceedings of the Royal Entomological Society of London (A), V35, P107; De Cock R, 2005, ANIM BEHAV, V70, P807, DOI 10.1016/j.anbehav.2005.01.011; Demary KC, 2007, INVERTEBR BIOL, V126, P74, DOI 10.1111/j.1744-7410.2007.00078.x; DesCock R., 2009, BIOLUMINESCENCE FOCU, P161; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ferkau C, 2006, ETHOLOGY, V112, P1117, DOI 10.1111/j.1439-0310.2006.01266.x; Fitzpatrick JL, 2009, P NATL ACAD SCI USA, V106, P1128, DOI 10.1073/pnas.0809990106; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; GARLAND T, 1992, AM NAT, V140, P509, DOI 10.1086/285424; Gould S. J., 1977, ONTOGENY PHYLOGENY; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Gwynne DT, 2008, ANNU REV ENTOMOL, V53, P83, DOI 10.1146/annurev.ento.53.103106.093423; Gwynne Darryl T., 1997, P110, DOI 10.1017/CBO9780511721946.007; HAPP GM, 1984, INSECT ULTRASTRUCTUR, V2, P365; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hayashi Fumio, 2003, Entomological Science, V6, P3, DOI 10.1046/j.1343-8786.2003.00003.x; Hughes L, 2000, BEHAV ECOL SOCIOBIOL, V47, P119, DOI 10.1007/s002650050002; Ikeda H, 2008, EVOLUTION, V62, P2065, DOI 10.1111/j.1558-5646.2008.00432.x; Jeng M.L, 2008, THESIS U KANSAS; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; KARLSSON B, 1995, EVOLUTION, V49, P955, DOI 10.1111/j.1558-5646.1995.tb02330.x; LEOPOLD RA, 1976, ANNU REV ENTOMOL, V21, P199, DOI 10.1146/annurev.en.21.010176.001215; Lewis S. M., 2009, BIOLUMINESCENCE ACTI, P147, DOI [10.1002/bio.1170100602/abstract, DOI 10.1002/BIO.1170100602/]; Lewis SM, 2008, ANNU REV ENTOMOL, V53, P293, DOI 10.1146/annurev.ento.53.103106.093346; Lewis SM, 2004, INTEGR COMP BIOL, V44, P234, DOI 10.1093/icb/44.3.234; LLOYD J E, 1972, Environmental Entomology, V1, P265; Lloyd J.E., 1979, P293; Lloyd James E., 1997, P184, DOI 10.1017/CBO9780511721946.011; Lloyd JE, 1999, FLA ENTOMOL, V82, P165, DOI 10.2307/3496569; Maas U, 2003, J MORPHOL, V257, P254, DOI 10.1002/jmor.10127; Maddison W. P., 2009, MESQUITE MODULAR SYS; MANN T, 1984, SPERMATOPHORES DEV S; McDERMOTT F. A., 1964, TRANS AMER ENTOMOL SOC, V90, P1; Midford P. E., 2008, PDAP PDTREE PACKAGE; Nespolo RF, 2008, FUNCT ECOL, V22, P624, DOI 10.1111/j.1365-2435.2008.01394.x; OBERHAUSER KS, 1988, ANIM BEHAV, V36, P1384, DOI 10.1016/S0003-3472(88)80208-2; OBERHAUSER KS, 1992, BEHAV ECOL SOCIOBIOL, V31, P367; Ohba N, 2004, INTEGR COMP BIOL, V44, P225, DOI 10.1093/icb/44.3.225; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Pagel M, 2006, AM NAT, V167, P808, DOI 10.1086/503444; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; PARKER GA, 1989, ETHOLOGY, V82, P3; PURVIS A, 1993, SYST BIOL, V42, P569, DOI 10.2307/2992489; Raff R. A., 1996, SHAPE LIFE; Reilly SM, 1997, BIOL J LINN SOC, V60, P119; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1991, AM ZOOL, V31, P243; ROFF DA, 1994, EVOL ECOL, V8, P639, DOI 10.1007/BF01237847; ROFF DA, 1990, ECOL MONOGR, V60, P389, DOI 10.2307/1943013; ROFF DA, 2002, LIFE HIST EVOLUTION; Rooney J, 1999, BEHAV ECOL, V10, P97, DOI 10.1093/beheco/10.1.97; Rooney J, 2002, ECOL ENTOMOL, V27, P373, DOI 10.1046/j.1365-2311.2002.00420.x; RUTOWSKI RL, 1983, EVOLUTION, V37, P708, DOI 10.1111/j.1558-5646.1983.tb05592.x; Sagegami-Oba R, 2007, GENE, V400, P104, DOI 10.1016/j.gene.2007.06.004; Schluter D, 1997, EVOLUTION, V51, P1699, DOI 10.1111/j.1558-5646.1997.tb05095.x; Simmons L.W, 2001, MG BEH ECOL; SIMMONS LW, 1990, BEHAV ECOL SOCIOBIOL, V27, P43; South A, 2008, J INSECT PHYSIOL, V54, P861, DOI 10.1016/j.jinsphys.2008.03.008; South A, 2011, BIOL REV, V86, P299, DOI 10.1111/j.1469-185X.2010.00145.x; SPARKS MR, 1973, J ECON ENTOMOL, V66, P719, DOI 10.1093/jee/66.3.719; Stanger-Hall KF, 2007, MOL PHYLOGENET EVOL, V45, P33, DOI 10.1016/j.ympev.2007.05.013; STEARNS SC, 1992, EVOLUTION LIFE HISTO; SVARD L, 1989, BEHAV ECOL SOCIOBIOL, V24, P395, DOI 10.1007/BF00293267; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; Vahed K, 2007, BEHAV ECOL, V18, P499, DOI 10.1093/beheco/arm021; vanderReijden ED, 1997, CAN J ZOOL, V75, P1202, DOI 10.1139/z97-143; WAGNER DL, 1992, TRENDS ECOL EVOL, V7, P216, DOI 10.1016/0169-5347(92)90047-F; Wedell N, 2004, ANIM BEHAV, V67, P1059, DOI 10.1016/j.anbehav.2003.10.007; WEDELL N, 1994, P ROY SOC B-BIOL SCI, V258, P181, DOI 10.1098/rspb.1994.0160; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williams F. X., 1917, Journal of the New York Entomological Society, V25; WING SR, 1989, J INSECT BEHAV, V2, P841, DOI 10.1007/BF01049405; WING SR, 1985, FLA ENTOMOL, V68, P627, DOI 10.2307/3494865; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 91 21 23 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 EVOLUTION Evolution APR 2011 65 4 1099 1113 10.1111/j.1558-5646.2010.01199.x 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 745IE WOS:000289158300015 21108637 Bronze 2019-02-21 J Meredith, RW; Pires, MN; Reznick, DN; Springer, MS Meredith, Robert W.; Pires, Marcelo N.; Reznick, David N.; Springer, Mark S. Molecular phylogenetic relationships and the coevolution of placentotrophy and superfetation in Poecilia (Poeciliidae: Cyprinodontiformes) MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Cyprinodontiformes; Poeciliidae; Pamphorichthys; Poecilia; Correlated evolution; Placentotrophy; Superfetation HETERANDRIA-FORMOSA; FOLLICULAR PLACENTA; FAMILY POECILIIDAE; VIVIPAROUS FISH; SAILFIN MOLLIES; LIFE-HISTORY; MIXED MODELS; EVOLUTION; ULTRASTRUCTURE; MICROPOECILIA Members of Poeciliidae are used as model organisms for experimental studies on natural and sexual selection, and comparative studies of life-history evolution. The latter have demonstrated multiple origins of both superfetation and placentotrophy within Poeciliidae. Most recently, placentotrophy has been described in five species of Poecilia (Pamphorichthys), but only one of these (P. hasemani) shows evidence of superfetation. Here, we use a molecular phylogeny based on concatenated nuclear and mitochondrial gene sequences to test hypotheses of correlated evolution between superfetation and placentotrophy in Poecilia. Taxon sampling included all species in the subgenera micropoecilia and Pamphorichthys for which the presence or absence of placentotrophy and superfetation have been determined, as well as representatives of all other Poecilia subgenera (Acanthophacelus, Limia, Mollienesia, Poecilia, Pseudolimia). Phylogenetic analyses were performed with maximum parsimony, maximum likelihood, and Bayesian methods; ancestral states for life-history characters were reconstructed with parsimony and SIMMAP; correlation analyses were performed with SIMMAP; and divergence times were estimated using a relaxed molecular clock. All subgenera in Poecilia were recovered as monophyletic. The basal split in Poecilia is between P. (Acanthophacelus) + P. (Micropoecilia) and the other five subgenera. In the latter clade, P. (Poecilia) is the sister-group to the remaining four subgenera. Within P. (Pamphorichthys), all analyses with the combined data set recovered P. (Pamphorichthys) araguaiensis as the sister taxon to P. (Pamphorichthys) hollandi, and P. (Pamphorichthys) scalpridens as the sister taxon to P. (Pamphorichthys) minor. P. (Pamphorichthys) hasemani was either the sister taxon to P. (Pamphorichthys) hollandi + P. (Pamphorichthys) minor (maximum likelihood, Bayesian) or the sister taxon to all other Pamphorichthys species (maximum parsimony). Ancestral state reconstructions suggest that placentotrophy and superfetation evolved on the same branch in P. (Micropoecilia), whereas placentotrophy evolved before superfetation in P. (Pamphorichthys). SIMMAP analyses indicate a statistically significant association between placentotrophy and superfetation. Within P. (Micropoecilia) both placentotrophy and superfetation evolved in <= 4 million years. Within P. (Pamphorichthys), superfetation evolved in <= 9 million years on the P. (Pamphorichthys) hasemani branch, and placentotrophy evolved in <= 10 million years in the common ancestor of this subgenus. (C) 2011 Elsevier Inc. All rights reserved. [Meredith, Robert W.; Pires, Marcelo N.; Reznick, David N.; Springer, Mark S.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Meredith, RW (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. robert.meredith@email.ucr.edu; mark.sprin-ger@ucr.edu reznick, david/0000-0002-1144-0568 NSF [DEB0416085] F. Breden, H. Alexander, J. de Greef, M. Schartl, and the Sao Paulo University Museum of Zoology (MZUSP), Brazil, in particular M. de Pinna, C.R. Moreira, and C.A. Figueiredo, provided some of the specimens used in this study. J.C. Trexler kindly provided a pre-print of his co-authored paper in press. This study was supported by NSF grant DEB0416085 to D.N.R. and M.S.S. Arias AL, 2000, COPEIA, P792, DOI 10.1643/0045-8511(2000)000[0792:LHOPCA]2.0.CO;2; Bollback Jonathan P., 2007, P69; Bollback JP, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-88; Breden F, 1999, MOL PHYLOGENET EVOL, V12, P95, DOI 10.1006/mpev.1998.0600; BRODIE ED, 1992, EVOLUTION, V46, P1284, DOI 10.1111/j.1558-5646.1992.tb01124.x; Casatti L, 2006, ICHTHYOL EXPLOR FRES, V17, P59; Constantz G.D., 1989, P33; COSTA WJE, 1991, BRESIL REV FR AQUARI, V2, P39; DEQUEIROZ A, 1993, SYST BIOL, V42, P368; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; EMERSON SB, 1990, EVOLUTION, V44, P2153, DOI 10.1111/j.1558-5646.1990.tb04320.x; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; Figueiredo CA, 2008, ZOOTAXA, P59; Garman S., 1895, MEM MUS COMP ZOOL, V19, P1; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; GROVE BD, 1994, J MORPHOL, V220, P167, DOI 10.1002/jmor.1052200206; Hamilton A, 2001, MOL PHYLOGENET EVOL, V19, P277, DOI 10.1006/mpev.2000.0919; Hedges SB, 2004, TRENDS GENET, V20, P242, DOI 10.1016/j.tig.2004.03.004; Houde A., 1997, SEX COLOR MATE CHOIC; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; HUBBS CL, 1926, MISCELLANEOUS PUBLIC, V16, P1; HUBBS CL, 1924, MISC PUBL MUS ZOOL, V13, P1; Huelsenbeck JP, 2003, SYST BIOL, V52, P131, DOI 10.1080/10635150390192780; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Huey RB, 2003, AM NAT, V161, P357, DOI 10.1086/346135; Hunt G, 2007, J PALEONTOL, V81, P607, DOI 10.1666/pleo0022-3360(2007)081[0607:MOAPOT]2.0.CO;2; Li CH, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-44; Lopez JV, 1994, J MOL EVOL, V39, P171; Lucinda Paulo Henrique Franco, 2005, Neotrop. ichthyol., V3, P1, DOI 10.1590/S1679-62252005000100001; Lucinda PHF, 2003, CHECK LIST FRESHWATE, P555; MADDISON DR, 2005, MACCLADE VERSION 4 0; Meredith RW, 2010, MOL PHYLOGENET EVOL, V55, P631, DOI 10.1016/j.ympev.2009.11.006; Nielsen R, 2002, SYST BIOL, V51, P729, DOI 10.1080/10635150290102393; Nielsen R, 2001, GENETICS, V159, P401; Organ CL, 2009, NATURE, V461, P389, DOI 10.1038/nature08350; Parenti LR, 1981, B AM MUS NAT HIST, V168, P335; PIRES M, BIOL J LINN SO UNPUB; PIRES M, 2007, THESIS U CALIF, P228; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; Poeser Fred N., 2002, Beaufortia, V52, P53; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; REGAN CT, 1913, P ZOOL SOC LOND, V11, P977; Reznick D, 2007, BIOL J LINN SOC, V92, P77, DOI 10.1111/j.1095-8312.2007.00869.x; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Ronquist F, 2010, ANNU REV ENTOMOL, V55, P189, DOI 10.1146/annurev.ento.54.110807.090529; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; ROSEN DONN ERIC, 1953, ZOOLOGICA [NEW YORK], V38, P1; Schluter A, 1998, ANIM BEHAV, V56, P147, DOI 10.1006/anbe.1998.0762; Schrader M, 2005, COPEIA, P649; Scrimshaw NS, 1944, BIOL BULL-US, V87, P37, DOI 10.2307/1538127; SCRIMSHAW NS, 1944, COPEIA, P180; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Swofford D. L., 2002, PAUP PHYLOGENETIC AN; Teeling EC, 2000, NATURE, V403, P188, DOI 10.1038/35003188; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Trexler JC, 1997, ECOLOGY, V78, P1370; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; TREXLER JC, VIVIPAROUS IN PRESS, V2; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Yang ZH, 2006, MOL BIOL EVOL, V23, P212, DOI 10.1093/molbev/msj024 62 23 23 1 60 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. APR 2011 59 1 148 157 10.1016/j.ympev.2011.01.014 10 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 743LY WOS:000289021000013 21292015 2019-02-21 J Lehtonen, TK; Wong, BBM; Lindstrom, K; Meyer, A Lehtonen, Topi K.; Wong, Bob B. M.; Lindstrom, Kai; Meyer, Axel Species divergence and seasonal succession in rates of mate desertion in closely related Neotropical cichlid fishes BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Body size; Lake Apoyo; Lake Xiloa; Mate desertion; Midas cichlid complex; Parental care; Seasonal variation; Species comparison RANGING CONVICT CICHLIDS; LIFE-HISTORY EVOLUTION; PARENTAL CARE; CICHLASOMA-NIGROFASCIATUM; SEXUAL SELECTION; SIZE; MONOGAMY; CONSEQUENCES; CITRINELLUM; INVESTMENT Across animal taxa, exclusive female offspring care has evolved repeatedly from biparental care, suggesting that the latter becomes evolutionarily unstable under certain conditions. Both the attributes of a species and the environment it experiences can help to predict shifts from one particular care mode to another. Nevertheless, factors inducing differences in care strategies among closely related species, or seasonal variation within species, have been subject to surprisingly little empirical testing. Here, we report the results of a field-based study that examined both among and within species variation in mate desertion in five species of closely related Nicaraguan cichlid fish in the genera Amphilophus and Amatitlania. The results show a link between female body size and male involvement in offspring care. Specifically, the larger the species the less often males were found to provide extended care. Furthermore, we found that solitary females became more common towards the end of the breeding season. We discuss the implications of this finding in the context of previous theoretical and empirical contributions regarding the frequency of offspring desertion by males. [Lehtonen, Topi K.] Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland; [Lehtonen, Topi K.; Lindstrom, Kai] Univ Helsinki, Dept Biol & Environm Sci, FIN-00014 Helsinki, Finland; [Lehtonen, Topi K.; Meyer, Axel] Univ Konstanz, Lehrstuhl Zool & Evolut Biol, Dept Biol, D-78457 Constance, Germany; [Lehtonen, Topi K.; Wong, Bob B. M.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia; [Lindstrom, Kai] Abo Akad Univ, FIN-20520 Turku, Finland Lehtonen, TK (reprint author), Univ Turku, Dept Biol, Sect Ecol, Turku 20014, Finland. topi.lehtonen@utu.fi Lehtonen, Topi/A-6679-2010; Meyer, Axel/C-9826-2009; Lindstrom, Kai/B-5479-2008 Lehtonen, Topi/0000-0002-1372-9509; Meyer, Axel/0000-0002-0888-8193; Lindstrom, Kai/0000-0002-8356-5538 Academy of Finland; Alexander von Humboldt Foundation of Germany; Oskar Oflund's Foundation; Australian Research Council; Deutsche Forschungsgemeinschaft K. McKaye, E. van den Berghe, J. McCrary and L. Lopez provided working facilities and logistic help in Nicaragua. M. Geiger helped with many of the dives and with the sinking of "Flor de Cana". L. R. Morales Herrera, R. I. Membreno Andino and M.-E. Bernal provided additional assistance in the field. The manuscript also benefited from helpful comments by O. Svensson, P. A. Svensson and two anonymous reviewers. MARENA, Nicaragua, issued the necessary working permits. Financial support was provided by the Academy of Finland (TKL and KL), the Alexander von Humboldt Foundation of Germany (TKL), Oskar Oflund's Foundation (TKL), the Australian Research Council (BBMW) and the Deutsche Forschungsgemeinschaft (AM). The study complies with the current laws of Nicaragua. Barlow G.W., 1976, P359; Barlow G.W., 1976, P333; Barlow G. W., 2000, CICHLID FISHES NATUR; Barluenga M, 2006, NATURE, V439, P719, DOI 10.1038/nature04325; Beeching SC, 1998, ANIM BEHAV, V56, P1021, DOI 10.1006/anbe.1998.0868; Blanckenhorn WU, 2005, ETHOLOGY, V111, P977, DOI 10.1111/j.1439-0310.2005.01147.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Elmer KR, 2010, PHILOS T R SOC B, V365, P1763, DOI 10.1098/rstb.2009.0271; Elmer KR, 2009, EVOLUTION, V63, P2750, DOI 10.1111/j.1558-5646.2009.00736.x; Gonzalez-Voyer A, 2008, EVOLUTION, V62, P2015, DOI 10.1111/j.1558-5646.2008.00426.x; Goodwin NB, 1998, P ROY SOC B-BIOL SCI, V265, P2265, DOI 10.1098/rspb.1998.0569; Gross MR, 2005, Q REV BIOL, V80, P37, DOI 10.1086/431023; Harrison F, 2009, J EVOLUTION BIOL, V22, P1800, DOI 10.1111/j.1420-9101.2009.01792.x; Houston AI, 2005, TRENDS ECOL EVOL, V20, P33, DOI 10.1016/j.tree.2004.10.008; Keenleyside M.H.A., 1991, P191; KEENLEYSIDE MHA, 1983, ANIM BEHAV, V31, P683, DOI 10.1016/S0003-3472(83)80223-1; KEENLEYSIDE MHA, 1990, BEHAVIOUR, V112, P202, DOI 10.1163/156853990X00202; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P66, DOI 10.1111/j.1420-9101.2005.00984.x; Kolm N, 2006, J EVOLUTION BIOL, V19, P76, DOI 10.1111/j.1420-9101.2005.00987; Kullander SO, 2003, CHECK LIST FRESHWATE, P605; Lehtonen TK, 2008, BIOL LETTERS, V4, P610, DOI 10.1098/rsbl.2008.0378; Lehtonen TK, 2008, OIKOS, V117, P867, DOI 10.1111/j.0030-1299.2008.16677.x; Marques PAM, 2003, ARDEA, V91, P245; McKaye KR, 2008, CARIBB J SCI, V44, P13; MCKAYE KR, 1986, J FISH BIOL, V29, P135, DOI 10.1111/j.1095-8649.1986.tb05005.x; Morley JI, 2002, BEHAV ECOL SOCIOBIOL, V52, P326, DOI 10.1007/s00265-002-0520-0; NAGOSHI M, 1987, JPN J ICHTHYOL, V34, P71; Reynolds JD, 1996, TRENDS ECOL EVOL, V11, pA68; Rican O, 2008, MOL PHYLOGENET EVOL, V49, P941, DOI 10.1016/j.ympev.2008.07.022; ROGERS W, 1988, ETHOLOGY, V79, P126; ROGERS W, 1987, BEHAV ECOL SOCIOBIOL, V21, P47, DOI 10.1007/BF00324434; Schmitter-Soto Juan J., 2007, Zootaxa, V1603, P1; Seno H, 2007, J THEOR BIOL, V246, P555, DOI 10.1016/j.jtbi.2007.01.015; SMITH C, 1995, REV FISH BIOL FISHER, V5, P7, DOI 10.1007/BF01103363; Stauffer JR, 2008, P BIOL SOC WASH, V121, P117, DOI 10.2988/06-37.1; STAUFFER JR, 2002, CUADERNOS INVESTIGAC, V12, P1; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; van den Berghe Eric P., 2001, Journal of Aquariculture & Aquatic Sciences, V9, P49; Velez MJ, 2002, ETHOLOGY, V108, P331, DOI 10.1046/j.1439-0310.2002.00772.x; Webb JN, 2002, PHILOS T R SOC B, V357, P331, DOI 10.1098/rstb.2001.0934; Whiteman EA, 2004, BIOL REV, V79, P351, DOI 10.1017/S1464793103006304; WISENDEN BD, 1995, ENVIRON BIOL FISH, V43, P121, DOI 10.1007/BF00002480; WISENDEN BD, 1994, BEHAV ECOL, V5, P439, DOI 10.1093/beheco/5.4.439; Wong MYL, 2008, BEHAV ECOL, V19, P353, DOI 10.1093/beheco/arm141 45 16 16 0 19 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. APR 2011 65 4 607 612 10.1007/s00265-010-1061-6 6 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 735VH WOS:000288448000005 2019-02-21 J Ricklefs, RE; Tsunekage, T; Shea, RE Ricklefs, Robert E.; Tsunekage, Toshi; Shea, Russell E. Annual adult survival in several new world passerine birds based on age ratios in museum collections JOURNAL OF ORNITHOLOGY English Article Age markers; Collecting bias; Life history; Molt; Tropical birds CAPTURE-RECAPTURE MODELS; LIFE-HISTORY EVOLUTION; RETURN RATES; COMPARATIVE DEMOGRAPHY; BREEDING DISPERSAL; THRUSHES TURDUS; PLUMAGE MATURATION; APPARENT SURVIVAL; NEOTROPICAL BIRD; MALE OVENBIRDS We estimated annual survival from proportions of first-year and older birds in museum collections of several species of North American and Neotropical passerine birds (Order Passeriformes). The quality of estimates of survival from museum specimens depends on accurate aging, usually based on plumage markers, and unbiased collecting. The advantages of an age-ratio approach are broad temporal and geographic sampling, large sample sizes, reduced bias from adult dispersal, and access to species and areas not readily sampled in mark-recapture studies. Biases in estimated survival due to sex- and age-based biases in collecting are discussed in detail. Survival estimates were higher in tropical compared to temperate populations/species in Pyrocephalus, Icterus, Pheucticus, and Cyanocompsa, but not Catharus. In seven of nine North American species, estimates of survival from museum collections exceeded those obtained in local MAPS mark-recapture studies. Generalizations concerning adult survival rates in natural populations continue to be elusive, but the use of a variety of estimation approaches will enrich the empirical database and strengthen confidence in perceived patterns of life-history traits. [Ricklefs, Robert E.; Tsunekage, Toshi] Univ Missouri, Dept Biol, St Louis, MO 63121 USA; [Shea, Russell E.] Randolph Macon Coll, Dept Biol, Ashland, VA 23005 USA Ricklefs, RE (reprint author), Univ Missouri, Dept Biol, 1 Univ Dr, St Louis, MO 63121 USA. ricklefs@umsl.edu NSF [IBN-0212587] We are grateful to the staff of the ornithology collections at the Field Museum of Natural History, American Museum of Natural History, and the National Museum of Natural History for their assistance. Steve Beissinger, Brett Sandercock, Charles Francis, and several anonymous reviewers provided helpful suggestions on earlier versions of the manuscript. We give special thanks to Kevin Winker for extensive comments. The study was funded by NSF IBN-0212587. R. E. R. has been generously supported by the Alexander von Humboldt Foundation and the Curators of the University of Missouri. Beissinger SR, 2007, ECOLOGY, V88, P296, DOI 10.1890/06-0869; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; BRAWN JD, 1999, P 22 INT ORN C DURB, P297; Burgoyne G.E. Jr, 1981, P403; Burke D, 2001, J FIELD ORNITHOL, V72, P433, DOI 10.1648/0273-8570-72.3.433; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; CLENCH MH, 1976, N AM BIRD BANDER, V1, P20; CLOBERT J, 1991, OXFORD ORNITHOLOGICA, V1, P75; Conn PB, 2005, ECOLOGY, V86, P2536, DOI 10.1890/04-1799; DuVal EH, 2005, CONDOR, V107, P915, DOI 10.1650/7793.1; FOSTER MS, 1987, EVOLUTION, V41, P547, DOI 10.1111/j.1558-5646.1987.tb05825.x; Francis C. M., 1999, INT ORNITHOL C, V22, P326; FREED LA, 1987, AM NAT, V130, P507, DOI 10.1086/284728; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.2307/177061; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; Hau M, 2000, GEN COMP ENDOCR, V117, P20, DOI 10.1006/gcen.1999.7390; Hines JE, 2003, AUK, V120, P1151, DOI 10.1642/0004-8038(2003)120[1151:OTUOTR]2.0.CO;2; Howlett JS, 2003, AUK, V120, P457, DOI 10.1642/0004-8038(2003)120[0457:DOBSTA]2.0.CO;2; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Jones SL, 2007, WILSON J ORNITHOL, V119, P89, DOI 10.1676/05-158.1; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lindberg MS, 2001, BIOMETRICS, V57, P273, DOI 10.1111/j.0006-341X.2001.00273.x; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; MCDONALD DB, 1993, ETHOLOGY, V94, P31; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Morton ES, 2000, BEHAV ECOL, V11, P648, DOI 10.1093/beheco/11.6.648; Normand SLT, 1999, STAT MED, V18, P321, DOI 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.3.CO;2-G; Porneluzi PA, 2003, CONDOR, V105, P73, DOI 10.1650/0010-5422(2003)105[73:PBSARR]2.0.CO;2; Pyle P, 1997, IDENTIFICATION GUI 1; Ricklefs RE, 2005, ECOLOGY, V86, P2541, DOI 10.1890/05-0066; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Ricklefs RE, 2007, ECOLOGY, V88, P1408, DOI 10.1890/06-1035; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; ROBSON D. S., 1961, TRANS AMER FISH SOC, V90, P181, DOI 10.1577/1548-8659(1961)90[181:CCAMR]2.0.CO;2; Roper JJ, 2005, ORNITOL NEOTROP, V16, P253; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Sandercock BK, 2006, J WILDLIFE MANAGE, V70, P1504, DOI 10.2193/0022-541X(2006)70[1504:EODPFL]2.0.CO;2; Schaub M, 2009, J ANIM ECOL, V78, P625, DOI 10.1111/j.1365-2656.2008.01508.x; SKALSKI J.R., 2005, WILDLIFE DEMOGRAPHY; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Tavecchia G, 2002, IBIS, V144, pE79, DOI 10.1046/j.1474-919X.2002.00059.x; Winker K, 1996, J FIELD ORNITHOL, V67, P236 47 18 19 0 28 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 J ORNITHOL J. Ornithol. APR 2011 152 2 481 495 10.1007/s10336-010-0614-9 15 Ornithology Zoology 735EI WOS:000288395800030 2019-02-21 J Chun, YJ; Le Corre, V; Bretagnolle, F Chun, Young Jin; Le Corre, Valerie; Bretagnolle, Francois Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France MOLECULAR ECOLOGY English Article diversifying selection; F(ST) and Q(ST); invasive species; quantitative trait; ragweed LOOSESTRIFE LYTHRUM-SALICARIA; LIFE-HISTORY EVOLUTION; GENETIC DIFFERENTIATION; COMMON RAGWEED; QUANTITATIVE TRAITS; Q(ST)-F-ST COMPARISONS; EUROPEAN POPULATIONS; NATURAL-POPULATIONS; LOCAL ADAPTATION; CLINAL VARIATION The impact of natural selection on the adaptive divergence of invasive populations can be assessed by testing the null hypothesis that the extent of quantitative genetic differentiation (Q(ST)) would be similar to that of neutral molecular differentiation (F(ST)). Using eight microsatellite loci and a common garden approach, we compared Q(ST) and F(ST) among ten populations of an invasive species Ambrosia artemisiifolia (common ragweed) in France. In a common garden study with varying water and nutrient levels, we measured Q(ST) for five traits (height, total biomass, reproductive allocation, above- to belowground biomass ratio, and days to flowering). Although low F(ST) indicated weak genetic structure and strong gene flow among populations, we found significant diversifying selection (Q(ST) > F(ST)) for reproductive allocation that may be closely related to fitness. It suggests that abiotic conditions may have exerted selection pressure on A. artemisiifolia populations to differentiate adaptively, such that populations at higher altitude or latitude evolved greater reproductive allocation. As previous studies indicate multiple introductions from various source populations of A. artemisiifolia in North America, our results suggest that the admixture of introduced populations may have increased genetic diversity and additive genetic variance, and in turn, promoted the rapid evolution and adaptation of this invasive species. [Chun, Young Jin] Korea Res Inst Biosci & Biotechnol, Bioevaluat Ctr, Cheongwon 363883, South Korea; [Le Corre, Valerie; Bretagnolle, Francois] INRA, UMR Biol & Gest Adventices 1210, F-21065 Dijon, France Chun, YJ (reprint author), Korea Res Inst Biosci & Biotechnol, Bioevaluat Ctr, Cheongwon 363883, South Korea. youngjinchun@gmail.com Le Corre, Valerie/0000-0001-6515-7795 department of Sante des Plantes et Environnement at INRA, University of Burgundy; Regional Council of Burgundy, France We thank B. Fumanal and B. Laitung for their assistance with sampling and E. Carteret for managing plants in greenhouse. B. Chauvel, G. Evanno, and A. Dornier provided constructive discussion and comments. This project was supported by the department of Sante des Plantes et Environnement at INRA, University of Burgundy, and the Regional Council of Burgundy, France. Balloux F, 2000, EVOLUTION, V54, P1414; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; BENJAMIN LR, 1986, ANN BOT-LONDON, V58, P757, DOI 10.1093/oxfordjournals.aob.a087239; BONNOT EJ, 1967, B MENSUEL SOC LINNEE, V8, P348; Cano JM, 2004, EVOLUTION, V58, P2013, DOI 10.1111/j.0014-3820.2004.tb00486.x; Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191; Chauvel B, 2006, J BIOGEOGR, V33, P665, DOI 10.1111/j.1365-2699.2005.01401.x; Chun YJ, 2010, NEW PHYTOL, V185, P1100, DOI 10.1111/j.1469-8137.2009.03129.x; Chun YJ, 2009, MOL ECOL, V18, P3020, DOI 10.1111/j.1365-294X.2009.04254.x; Crawford NG, 2010, MOL ECOL RESOUR, V10, P556, DOI 10.1111/j.1755-0998.2009.02801.x; CRNOKRAK P, 1995, HEREDITY, V75, P530, DOI 10.1038/hdy.1995.169; Crnokrak Peter, 2002, Trends in Ecology and Evolution, V17, P501, DOI 10.1016/S0169-5347(02)02602-2; DEMPSTER AP, 1977, J ROY STAT SOC B MET, V39, P1; Dlugosch KM, 2007, MOL ECOL, V16, P4269, DOI 10.1111/j.1365-294X.2007.03508.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Dunphy BK, 2005, HEREDITY, V94, P418, DOI 10.1038/sj.hdy.6800622; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Endler J. A., 1986, NATURAL SELECTION WI; Facon B, 2008, CURR BIOL, V18, P363, DOI 10.1016/j.cub.2008.01.063; Franks SJ, 2008, AM NAT, V171, P678, DOI 10.1086/587078; Friedman J, 2008, ANN BOT-LONDON, V101, P1303, DOI 10.1093/aob/mcn039; Fumanal B, 2008, WEED RES, V48, P349, DOI 10.1111/j.1365-3180.2008.00627.x; FUMANAL B, 2007, THESIS U BOURGOGNE D; Fumanal B, 2007, ANN AGR ENV MED, V14, P233; Fumanal B, 2007, ANN BOT-LONDON, V100, P305, DOI 10.1093/aob/mcm108; Genton BJ, 2005, OECOLOGIA, V146, P404, DOI 10.1007/s00442-005-0234-x; Genton BJ, 2005, MOL ECOL, V14, P4275, DOI 10.1111/j.1365-294X.2005.02750.x; GILLESPIE JH, 1989, GENETICS, V121, P129; Goudet J, 2006, GENETICS, V172, P1337, DOI 10.1534/genetics.105.050583; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Goudet J, 2007, GENETICS, V176, P1371, DOI 10.1534/genetics.106.037173; Handley RJ, 2008, ECOLOGY, V89, P407, DOI 10.1890/07-0160.1; HECKEL E, 1906, B SOC BOT FR, V53, P600, DOI DOI 10.1080/00378941.1906.10831212; Hedrick PW, 1999, EVOLUTION, V53, P313, DOI 10.1111/j.1558-5646.1999.tb03767.x; Hedrick PW, 2005, EVOLUTION, V59, P1633, DOI 10.1111/j.0014-3820.2005.tb01814.x; Hendry AP, 2002, TRENDS ECOL EVOL, V17, P502, DOI 10.1016/S0169-5347(02)02603-4; Holsinger KE, 1999, HEREDITAS, V130, P245, DOI 10.1111/j.1601-5223.1999.00245.x; Jolivet C, 2007, ANN BOT-LONDON, V100, P119, DOI 10.1093/aob/mcm088; Jost L, 2008, MOL ECOL, V17, P4015, DOI 10.1111/j.1365-294X.2008.03887.x; Keller SR, 2009, NEW PHYTOL, V183, P678, DOI 10.1111/j.1469-8137.2009.02892.x; LANDE R, 1992, EVOLUTION, V46, P381, DOI 10.1111/j.1558-5646.1992.tb02046.x; Latta RG, 2003, NEW PHYTOL, V161, P51; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Le Corre V, 2003, GENETICS, V164, P1205; Leberg PL, 2002, MOL ECOL, V11, P2445, DOI 10.1046/j.1365-294X.2002.01612.x; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Leger EA, 2007, J EVOLUTION BIOL, V20, P1090, DOI 10.1111/j.1420-9101.2006.01292.x; LEWONTIN RC, 1973, GENETICS, V74, P175; Linhart YB, 1996, ANNU REV ECOL SYST, V27, P237, DOI 10.1146/annurev.ecolsys.27.1.237; Lopez-Fanjul C, 2003, GENETICS, V164, P1627; Lunn DJ, 2000, STAT COMPUT, V10, P325, DOI 10.1023/A:1008929526011; Lynch M, 1999, EVOLUTION, V53, P100, DOI 10.1111/j.1558-5646.1999.tb05336.x; Lynch M, 1998, GENETICS ANAL QUANTI; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; McKay JK, 2002, TRENDS ECOL EVOL, V17, P285, DOI 10.1016/S0169-5347(02)02478-3; Merila J, 2001, J EVOLUTION BIOL, V14, P892, DOI 10.1046/j.1420-9101.2001.00348.x; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; MITCHELLOLDS T, 1990, GENETICS, V124, P407; Molecular Ecology Resources Primer Development Consortium, 2009, MOL ECOLOGY RESOURCE, V9, P1375; Montague JL, 2008, J EVOLUTION BIOL, V21, P234, DOI 10.1111/j.1420-9101.2007.01456.x; Murren CJ, 2009, NEW PHYTOL, V183, P691, DOI 10.1111/j.1469-8137.2009.02928.x; O'Hara RB, 2005, GENETICS, V171, P1331, DOI 10.1534/genetics.105.044545; Ostbye K, 2005, J EVOLUTION BIOL, V18, P683, DOI 10.1111/j.1420-9101.2004.00844.x; Palo JU, 2003, MOL ECOL, V12, P1963, DOI 10.1046/j.1365-294X.2003.01865.x; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; PODOLSKY RH, 1995, GENETICS, V140, P733; Prentis PJ, 2008, TRENDS PLANT SCI, V13, P288, DOI 10.1016/j.tplants.2008.03.004; PRICE GR, 1972, ANN HUM GENET, V36, P129, DOI 10.1111/j.1469-1809.1972.tb00764.x; Pujol B, 2008, MOL ECOL, V17, P4782, DOI 10.1111/j.1365-294X.2008.03958.x; R Development Core Team, 2010, R LANG ENV STAT COMP; Reed DH, 2001, EVOLUTION, V55, P1095; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Ridley CE, 2010, EVOL APPL, V3, P64, DOI 10.1111/j.1752-4571.2009.00099.x; Rousset F, 1997, GENETICS, V145, P1219; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Saether SA, 2007, J EVOLUTION BIOL, V20, P1563, DOI 10.1111/j.1420-9101.2007.01328.x; Saint-Laurent R, 2003, MOL ECOL, V12, P315, DOI 10.1046/j.1365-294X.2003.01735.x; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sanou H, 2005, MOL ECOL, V14, P2601, DOI 10.1111/j.1365-294X.2005.02601.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schuelke M, 2000, NAT BIOTECHNOL, V18, P233, DOI 10.1038/72708; Sheppard AW, 2006, WEED RES, V46, P93, DOI 10.1111/j.1365-3180.2006.00497.x; SPITZE K, 1993, GENETICS, V135, P367; Stenoien HK, 2005, MOL ECOL, V14, P137, DOI 10.1111/j.1365-294X.2004.02359.x; Storz JF, 2002, MOL ECOL, V11, P2537, DOI 10.1046/j.1365-294X.2002.01636.x; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Suarez AV, 2008, MOL ECOL, V17, P351, DOI 10.1111/j.1365-294X.2007.03456.x; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Waldmann P, 2006, THEOR APPL GENET, V112, P1441, DOI 10.1007/s00122-006-0246-x; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Whitlock MC, 1999, GENET RES, V74, P215, DOI 10.1017/S0016672399004127; Whitlock MC, 2008, MOL ECOL, V17, P1885, DOI 10.1111/j.1365-294X.2008.03712.x; WILLEMSEN RW, 1975, AM J BOT, V62, P1, DOI 10.2307/2442073; WRIGHT S, 1951, ANN EUGENIC, V15, P323; Yang RC, 1996, GENETICS, V142, P1045 96 38 38 1 57 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0962-1083 MOL ECOL Mol. Ecol. APR 2011 20 7 1378 1388 10.1111/j.1365-294X.2011.05013.x 11 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 739HK WOS:000288705300008 21306459 2019-02-21 J Jarvi-Laturi, M; Lindstrom, K; Kvarnemo, C; Svensson, O Jarvi-Laturi, M.; Lindstrom, K.; Kvarnemo, C.; Svensson, O. Sand goby males trade off between defence against egg predators and sneak intrusions JOURNAL OF ZOOLOGY English Article alternative reproductive tactics; egg predation; Gobiidae; Hinia reticulata; Nassarius nitidus; nest defence; reproductive success; sneaking GENETIC MATING PATTERNS; POMATOSCHISTUS-MINUTUS; BEHAVIORAL-RESPONSES; MALE COMPETITION; PARENTAL CARE; 2 POPULATIONS; NEST DEFENSE; COMMON GOBY; MALE SIZE; RISK According to life-history theory, a care-taking parent should balance investment in current and future reproduction in such a way that it maximizes lifetime reproductive success. In the sand goby Pomatoschistus minutus, a small marine fish with paternal care, nest-guarding males may lose current reproductive success to both parasitically fertilizing males and egg predators. Here, we observed sand gobies at a marine and a brackish site, two geographically distant and ecologically different habitats. In a field experiment, we found that sand gobies at the marine site suffered from severe egg predation by netted dogwhelks Nassarius nitidus, which are lacking at the brackish site. Because egg laying takes hours and several females often lay eggs sequentially in one nest, the risk of parasitic spawnings and egg predation overlaps in time during breeding activities. Hypothesizing that egg predators might influence the success of parasitic spawnings, we then simulated these natural conditions in a laboratory experiment with the presence or absence of egg predators, combined with the presence of sneaker males. As expected, in the egg predator treatment, egg-guarding males had to compromise between defence behaviours and thus had less time to devote to defence against sneaker males. Sneaker males took advantage of the situation and approached the nests more actively than in the predator-free treatment. However, the increase in approaches did not result in more successful parasitic fertilizations by sneaker males, as determined using microsatellite DNA. Nevertheless, in nature the adjustment of time budgets by the egg-guarding male are likely to have serious fitness consequences, both if the male fails to defend his paternity and if he fails to defend his offspring. [Kvarnemo, C.; Svensson, O.] Univ Gothenburg, Dept Zool, SE-40530 Gothenburg, Sweden; [Jarvi-Laturi, M.] Univ Helsinki, Div Ecol & Evolutionary Biol, Dept Biosci, Helsinki, Finland; [Lindstrom, K.] Abo Akad Univ, Dept Biosci, Turku, Finland Svensson, O (reprint author), Univ Gothenburg, Dept Zool, Box 463, SE-40530 Gothenburg, Sweden. ola.svensson@zool.gu.se Kvarnemo, Charlotta/D-3529-2012; Svensson, Ola/F-5232-2013; Lindstrom, Kai/B-5479-2008 Svensson, Ola/0000-0003-3752-3131; Lindstrom, Kai/0000-0002-8356-5538 Onni Talas foundation; Swedish research council; Finnish Academy; Stockholm Marine Research Centre We thank Daniel Simonsson for help with the field experiment and Annika Dahlgren for assistance with the laboratory experiment. Funding was provided by Onni Talas foundation (M.J.L.), the Swedish research council (C.K.), the Finnish Academy (K.L.), and the Stockholm Marine Research Centre (O.S.). This research was carried out with an ethical permit from the Swedish National Board for Laboratory Animals (Dnr 133-2002) and the University of Helsinki (HY 67-04). Avise JC, 2002, ANNU REV GENET, V36, P19, DOI 10.1146/annurev.genet.36.030602.090831; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; Candolin U, 2001, OIKOS, V95, P225, DOI 10.1034/j.1600-0706.2001.950204.x; Candolin U, 1997, BEHAV ECOL SOCIOBIOL, V41, P81, DOI 10.1007/s002650050367; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; CROWLEY PH, 1991, AM NAT, V137, P567, DOI 10.1086/285184; Dill LM, 1999, BEHAV ECOL, V10, P452, DOI 10.1093/beheco/10.4.452; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Figueira WF, 2007, ANIM BEHAV, V74, P329, DOI 10.1016/i.anbehav.2006.12.010; Forsgren E, 1996, EVOLUTION, V50, P646, DOI 10.1111/j.1558-5646.1996.tb03875.x; Forsgren E., 1999, BEHAV CONSERVATION L, P249; GLOOR GB, 1993, GENETICS, V135, P81; Jones AG, 2001, MOL ECOL, V10, P461, DOI 10.1046/j.1365-294x.2001.01193.x; Jones JC, 1999, BEHAVIOUR, V136, P819, DOI 10.1163/156853999501586; Komdeur J, 2001, P ROY SOC B-BIOL SCI, V268, P2103, DOI 10.1098/rspb.2001.1750; KVARNEMO C, 2010, J FISH BIOL, V7, P1609; Larmuseau MHD, 2007, MOL ECOL NOTES, V7, P147, DOI 10.1111/j.1471-8286.2006.01559.x; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LINDSTROM K, 1988, OIKOS, V53, P67, DOI 10.2307/3565664; Lindstrom K, 2005, BEHAV ECOL, V16, P70, DOI 10.1093/beheco/arh132; LINDSTROM K, 1993, ETHOL ECOL EVOL, V5, P97, DOI 10.1080/08927014.1993.9523117; LINDSTROM K, 1992, BEHAV ECOL SOCIOBIOL, V30, P53; Lissaker M, 2006, BEHAV ECOL SOCIOBIOL, V60, P864, DOI 10.1007/s00265-006-0230-0; MAGNHAGEN C, 1991, MAR ECOL PROG SER, V70, P11, DOI 10.3354/meps070011; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; MAGNHAGEN C, 1995, ANIM BEHAV, V50, P1123, DOI 10.1016/0003-3472(95)80111-1; Magnhagen Carin, 2008, P499; Mandelik Y, 2003, EVOL ECOL RES, V5, P501; Morrell LJ, 2004, BEHAV ECOL SOCIOBIOL, V56, P539, DOI 10.1007/s00265-004-0821-6; Olsson O, 2002, ANIM BEHAV, V63, P981, DOI 10.1006/anbe.2001.1985; Singer A, 2006, J EVOLUTION BIOL, V19, P1641, DOI 10.1111/j.1420-9101.2006.01114.x; Svensson O, 2003, J EVOLUTION BIOL, V16, P896, DOI 10.1046/j.1420-9101.2003.00591.x; Svensson O, 2007, BEHAV ECOL, V18, P410, DOI 10.1093/beheco/arl098; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; TRAVERS SE, 1991, ECOLOGY, V72, P2123, DOI 10.2307/1941564 35 5 5 0 23 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. APR 2011 283 4 269 275 10.1111/j.1469-7998.2011.00788.x 7 Zoology Zoology 732VF WOS:000288217100006 2019-02-21 J Laver, CRJ; Taylor, JS Laver, Christopher R. J.; Taylor, John S. RT-qPCR reveals opsin gene upregulation associated with age and sex in guppies (Poecilia reticulata)-a species with color-based sexual selection and 11 visual-opsin genes BMC EVOLUTIONARY BIOLOGY English Article POECILIA-RETICULATA-P; TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY EVOLUTION; RAINBOW-TROUT; FEMALE CHOICE; GEOGRAPHIC-VARIATION; MOLECULAR-GENETICS; NATURAL-SELECTION; MATE PREFERENCE; TELEOST FISHES Background: PCR-based surveys have shown that guppies (Poecilia reticulata) have an unusually large visual-opsin gene repertoire. This has led to speculation that opsin duplication and divergence has enhanced the evolution of elaborate male coloration because it improves spectral sensitivity and/or discrimination in females. However, this conjecture on evolutionary connections between opsin repertoire, vision, mate choice, and male coloration was generated with little data on gene expression. Here, we used RT-qPCR to survey visual-opsin gene expression in the eyes of males, females, and juveniles in order to further understand color-based sexual selection from the perspective of the visual system. Results: Juvenile and adult (male and female) guppies express 10 visual opsins at varying levels in the eye. Two opsin genes in juveniles, SWS2B and RH2-2, accounted for >85% of all visual-opsin transcripts in the eye, excluding RH1. This relative abundance (RA) value dropped to about 65% in adults, as LWS-A180 expression increased from approximately 3% to 20% RA. The juvenile-to-female transition also showed LWS-S180 upregulation from about 1.5% to 7% RA. Finally, we found that expression in guppies' SWS2-LWS gene cluster is negatively correlated with distance from a candidate locus control region (LCR). Conclusions: Selective pressures influencing visual-opsin gene expression appear to differ among age and sex. LWS upregulation in females is implicated in augmenting spectral discrimination of male coloration and courtship displays. In males, enhanced discrimination of carotenoid-rich food and possibly rival males are strong candidate selective pressures driving LWS upregulation. These developmental changes in expression suggest that adults possess better wavelength discrimination than juveniles. Opsin expression within the SWS2-LWS gene cluster appears to be regulated, in part, by a common LCR. Finally, by comparing our RT-qPCR data to MSP data, we were able to propose the first opsin-to-lambda(max) assignments for all photoreceptor types in the cone mosaic. [Laver, Christopher R. J.; Taylor, John S.] Univ Victoria, Dept Biol, Victoria, BC V8W 2Y2, Canada Taylor, JS (reprint author), Univ Victoria, Dept Biol, POB 1700, Victoria, BC V8W 2Y2, Canada. taylorjs@uvic.ca Natural Sciences and Engineering Research Council of Canada The authors thank Felix Breden, Corey Watson, and Ben Sandkam of Simon Fraser University for helpful comments and discussions, as well as for sharing unpublished sequence and MSP data, and special thanks to Anna von Rossum of Simon Fraser University for editing the manuscript. Additional thanks to researchers from the University of Victoria: Roderick Haesevoets from the Centre for Biomedical Research DNA Sequencing Facility, Caren Helbing for aid in developing a qPCR buffer, Brad Anholt for use of his Stratagene (R) Mx4000 (R) Multiplex Quantitative PCR machine, and Nigel Livingston for use of his Ocean Optics Inc USB2000 spectrophotometer. This work was supported by the Natural Sciences and Engineering Research Council of Canada. Allison WT, 2003, J COMP NEUROL, V461, P294, DOI 10.1002/uvic.ca; ANCTIL M, 1976, ZOOMORPHOLOGIE, V84, P103, DOI 10.1007/BF02568559; Anderson LG, 2010, VISION RES, V50, P2055, DOI 10.1016/j.visres.2010.07.013; ARCHER SN, 1990, VISION RES, V30, P225, DOI 10.1016/0042-6989(90)90038-M; ARCHER SN, 1987, VISION RES, V27, P1243, DOI 10.1016/0042-6989(87)90200-8; BAERENDS G. P., 1955, BEHAVIOUR, V8, P249, DOI 10.1163/156853955X00238; Bourne GR, 2003, NATURWISSENSCHAFTEN, V90, P402, DOI 10.1007/s00114-003-0444-1; Bowmaker J. K., 2008, SENSES COMPREHENSIVE; Bowmaker JK, 2008, VISION RES, V48, P2022, DOI 10.1016/j.visres.2008.03.025; Bowmaker JK, 1998, NEWS PHYSIOL SCI, V13, P63; Calkins DJ, 2001, PROG RETIN EYE RES, V20, P255, DOI 10.1016/S1350-9462(00)00026-4; Chavez AE, 2010, J NEUROSCI, V30, P2330, DOI 10.1523/JNEUROSCI.5574-09.2010; Chinen A, 2003, GENETICS, V163, P663; Collin SP, 2009, PHILOS T R SOC B, V364, P2925, DOI 10.1098/rstb.2009.0099; Collin SP, 2003, CURR BIOL, V13, pR864, DOI 10.1016/j.cub.2003.10.044; CURCIO CA, 1990, J COMP NEUROL, V292, P497, DOI 10.1002/cne.902920402; Davies WL, 2009, MOL BIOL EVOL, V26, P1803, DOI 10.1093/molbev/msp089; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; Endler JA, 2001, AM NAT, V158, P36, DOI 10.1086/320862; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Evans JP, 2003, NATURE, V421, P360, DOI 10.1038/nature01367; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; Fuller RC, 2005, J EVOLUTION BIOL, V18, P516, DOI 10.1111/j.1420-9101.2005.00886.x; Grether GF, 2008, FUNCT ECOL, V22, P294, DOI 10.1111/j.1365-2435.2007.01365.x; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 2004, P ROY SOC B-BIOL SCI, V271, P45, DOI 10.1098/rspb.2003.2526; Halstenberg S, 2005, VISUAL NEUROSCI, V22, P135, DOI 10.1017/S09522523805222022; Hayashi T, 1999, NAT GENET, V22, P90; Hoffmann M, 2007, P ROY SOC B-BIOL SCI, V274, P33, DOI 10.1098/rspb.2006.3707; Hofmann CM, 2009, INTEGR COMP BIOL, V49, P630, DOI 10.1093/icb/icp079; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Hunt DM, 2009, PHILOS T R SOC B, V364, P2941, DOI 10.1098/rstb.2009.0044; Jacobs GH, 2007, SCIENCE, V315, P1723, DOI 10.1126/science.1138838; Kaessmann H, 2009, NAT REV GENET, V10, P19, DOI 10.1038/nrg2487; Karino K, 2007, BEHAVIOUR, V144, P101, DOI 10.1163/156853907779947427; Kodric-Brown A, 2001, BEHAV ECOL SOCIOBIOL, V50, P346, DOI 10.1007/s002650100374; KodricBrown A, 1996, BEHAV ECOL SOCIOBIOL, V39, P395, DOI 10.1007/s002650050306; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; KORENBROT JI, 1989, NATURE, V337, P454, DOI 10.1038/337454a0; KUNZ Y W, 1974, Revue Suisse de Zoologie, V81, P697; KUNZ YW, 1983, CELL DIFFER DEV, V13, P115, DOI 10.1016/0045-6039(83)90103-3; KUNZ YW, 1983, CELL TISSUE RES, V230, P469, DOI 10.1007/BF00216193; KUNZ YW, 1980, EXPERIENTIA, V36, P1371, DOI 10.1007/BF01960104; KUNZ YW, 1978, EXPERIENTIA, V34, P246, DOI 10.1007/BF01944706; KUNZ YW, 1977, ZOOMORPHOLOGIE, V87, P203, DOI 10.1007/BF00995820; Lamb TD, 2007, NAT REV NEUROSCI, V8, P960, DOI 10.1038/nrn2283; Lamb TD, 2009, PHILOS T R SOC B, V364, P2911, DOI 10.1098/rstb.2009.0102; Levine J.S., 1982, Scientific American, V246, P108; Levine J.S., 1979, ENVIRON BIOL FISH, P447; LEVINE JS, 1979, SENS PROCESS, V3, P95; LEVINE JS, 1979, SCIENCE, V204, P523, DOI 10.1126/science.432658; Li P, 2005, J EXP BIOL, V208, P497, DOI 10.1242/jeb.01424; LILEY NR, 1965, BEHAVIOUR S, P1; Lukats A, 2002, INVEST OPHTH VIS SCI, V43, P2468; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MACNICHOL EF, 1978, SCIENCE, V200, P549, DOI 10.1126/science.644317; Mancuso K, 2009, NATURE, V461, P784, DOI 10.1038/nature08401; Matsumoto Y, 2006, GENE, V371, P268, DOI 10.1016/j.gene.2005.12.005; NAG TC, 1995, CELL TISSUE RES, V279, P633, DOI 10.1007/BF00318176; OKANO T, 1992, P NATL ACAD SCI USA, V89, P5932, DOI 10.1073/pnas.89.13.5932; Owens GL, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005970; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rodd FH, 1997, ECOLOGY, V78, P419; Rodd FH, 1997, ECOLOGY, V78, P405; Rodd FH, 2002, P ROY SOC B-BIOL SCI, V269, P475, DOI 10.1098/rspb.2001.1891; Sassoe-Pognetto M, 2000, EUR J NEUROSCI, V12, P2205, DOI 10.1046/j.1460-9568.2000.00106.x; Shand J, 2008, J EXP BIOL, V211, P1495, DOI 10.1242/jeb.012047; Sison-Mangus MP, 2006, J EXP BIOL, V209, P3079, DOI 10.1242/jeb.02360; Spady TC, 2006, MOL BIOL EVOL, V23, P1538, DOI 10.1093/molbev/msl014; Takechi M, 2005, J EXP BIOL, V208, P1337, DOI 10.1242/jeb.01532; Trezise AEO, 2005, CURR BIOL, V15, pR794, DOI 10.1016/j.cub.2005.09.025; Tsujimura T, 2007, P NATL ACAD SCI USA, V104, P12813, DOI 10.1073/pnas.0704061104; Veldhoen K, 2006, VISUAL NEUROSCI, V23, P169, DOI 10.1017/S0952523806232139; Wakefield MJ, 2008, VISUAL NEUROSCI, V25, P257, DOI 10.1017/S0952523808080255; Ward MN, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-210; Watson CT, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-87; WATSON CT, 2010, J MOL EVOLUTION; Weadick CJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-S1-S11; White EM, 2005, ANIM BEHAV, V69, P519, DOI 10.1016/j.anbehav.2004.05.011; WINDERICKX J, 1992, P NATL ACAD SCI USA, V89, P9710, DOI 10.1073/pnas.89.20.9710; Windsor Diana J, 2009, BMC Res Notes, V2, P159, DOI 10.1186/1756-0500-2-159; Winge O, 1927, J GENET, V18, P1, DOI 10.1007/BF03052599; YACOB A, 1977, CELL TISSUE RES, V181, P487; YACOB A, 1977, CELL TISSUE RES, V177, P181; Yokoyama S, 2000, PROG RETIN EYE RES, V19, P385, DOI 10.1016/S1350-9462(00)00002-1; Yokoyama S, 1998, MOL BIOL EVOL, V15, P560, DOI 10.1093/oxfordjournals.molbev.a025956; Yokoyama S, 2001, GENETICS, V158, P1697; YOUNG RW, 1969, INVEST OPHTH VISUAL, V8, P222 94 29 30 1 48 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. MAR 29 2011 11 81 10.1186/1471-2148-11-81 17 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 751MN WOS:000289622300001 21447186 DOAJ Gold, Green Published 2019-02-21 J Schmaltz, L; Cezilly, F; Bechet, A Schmaltz, Lucie; Cezilly, Frank; Bechet, Arnaud Using multistate recapture modelling to assess age-specific bottlenecks in breeding success: a case study in the greater flamingo Phoenicopterus roseus JOURNAL OF AVIAN BIOLOGY English Article CAPTURE-RECAPTURE; RUBER-ROSEUS; NEST DESERTION; PARENTAL AGE; REPRODUCTIVE-PERFORMANCE; PYGOSCELIS-ANTARCTICA; EVOLUTIONARY ECOLOGY; MARKED ANIMALS; SURVIVAL; INCUBATION Bird reproductive performance often increases with age or experience as a result of improved foraging skills, increased reproductive effort, improved coordination between partners, or a selection process. However, it remains unclear whether age and/or experience affect equally the successive steps of the breeding process, from egg laying to incubation and chick rearing. Using data from a long-term study of the Camargue (southern France) population of the greater flamingo Phoenicopterus roseus, we studied the influence of age on step-specific breeding performances during a single breeding season. We used, for the first time, multistate recapture models to evaluate the effect of age on breeding attendance (as a surrogate for breeding success) during incubation, early chick rearing and late chick rearing. Our results show a significant positive influence of age on breeding attendance, but only during the incubation period. Older parents had a higher probability than younger ones of completing incubation, whereas after the chick had hatched, the influence of parental age on breeding attendance was no longer significant. Although a high rate of nest desertion by younger flamingos during the middle of the incubation period coincided with a period of heavy rainfall, including rainfall level as a covariate did not improve the fit of the models. We discuss our results in relation to the evolution of life-history strategies in long-lived bird species and the influence of environmental instability. [Schmaltz, Lucie; Bechet, Arnaud] Ctr Rech Tour Valat, FR-13200 Arles, France; [Cezilly, Frank] Univ Bourgogne, Equipe Ecol Evolut, CNRS, UMR, FR-5561 Dijon, France Schmaltz, L (reprint author), Ctr Rech Tour Valat, FR-13200 Arles, France. bechet@tourduvalat.org Bechet, Arnaud/L-1466-2013 Tour du Valat Fondation; MAVA Fondation This work is part of a long-term study of greater flamingos initiated by Dr. Luc Hoffmann, pursued by Dr. Alan R. Johnson for more than 30 years, and supported by Fondations Tour du Valat and MAVA. We are grateful to the many assistants who participated in the fieldwork over many years and all the people who helped in the ringing operations. We also thank C. Juillet and R. Pradel for helping with data analyses. Two anonymous reviewers and the science editor of Journal of Avian Biology helped to improve a first version of this paper. This work would not have been possible without the authorization given by the company Salins to access Salin-de-Giraud salt pans. Ackerman JT, 2003, BEHAV ECOL SOCIOBIOL, V54, P264, DOI 10.1007/s00265-003-0628-x; Angelier F, 2007, J ANIM ECOL, V76, P1181, DOI 10.1111/j.1365-2656.2007.01295.x; BALKIZ O, 2006, THESIS U MONTPELLIER; Barbraud C, 2005, ECOLOGY, V86, P682, DOI 10.1890/04-0075; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Bechet A, 2003, J APPL ECOL, V40, P553, DOI 10.1046/j.1365-2664.2003.00812.x; BILDSTEIN KL, 1991, CONDOR, V93, P916, DOI 10.2307/3247726; Bogdanova MI, 2007, J AVIAN BIOL, V38, P83, DOI 10.1111/j.2007.0908-8857.03601.x; Bogdanova MI, 2006, FUNCT ECOL, V20, P132, DOI 10.1111/j.1365-2435.2006.01088.x; Bourgeon S, 2006, POLAR BIOL, V29, P358, DOI 10.1007/s00300-005-0064-7; Bregnballe T, 2006, J AVIAN BIOL, V37, P149, DOI 10.1111/j.0908-8857.2006.03088.x; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; CEZILLY F, 1995, IBIS, V137, P543, DOI 10.1111/j.1474-919X.1995.tb03264.x; CEZILLY F, 1993, ANIM BEHAV, V45, P1038, DOI 10.1006/anbe.1993.1125; Cezilly F, 1996, ECOLOGY, V77, P1143, DOI 10.2307/2265583; Cezilly F, 1997, IBIS, V139, P331, DOI 10.1111/j.1474-919X.1997.tb04632.x; CEZILLY F, 1994, CONDOR, V96, P809, DOI 10.2307/1369487; Cezilly F, 1996, TRENDS ECOL EVOL, V11, P27, DOI 10.1016/0169-5347(96)81065-2; Choquet R., 2004, Animal Biodiversity and Conservation, V27, P207; CHOQUET R, 2003, U CARE UTILITIES CAP; CHOQUET R, 2005, M SURGE 1 8 USERS MA; Clobert J, 1995, J APPL STAT, V22, P989, DOI 10.1080/02664769524757; CLUTTONBROCK TH, 1988, REPROD SUCCESS; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DAVIS LS, 1986, AUK, V103, P379; Dawson RD, 2008, CAN J ZOOL, V86, P843, DOI 10.1139/Z08-065; de Heij ME, 2006, P ROY SOC B-BIOL SCI, V273, P2353, DOI 10.1098/rspb.2006.3584; Fargallo JA, 2001, BEHAV ECOL SOCIOBIOL, V50, P141, DOI 10.1007/s002650100341; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; HARGROVE JW, 1994, BIOMETRICS, V50, P1129, DOI 10.2307/2533449; JOHNSON A, 2007, GREATER FLAMING; JOHNSON AR, 1983, THESIS U P SABATIER; Jouventin P., 1975, P435; Komdeur J, 1996, BEHAV ECOL, V7, P326; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Massaro M, 2004, IBIS, V146, P526, DOI 10.1111/j.1474-919X.2004.00267.x; Monadjem A, 2009, IBIS, V151, P344, DOI 10.1111/j.1474-919X.2009.00912.x; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1995, POLAR BIOL, V15, P533; Newton I, 1989, LIFETIME REPROD BIRD; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Pasinelli G, 2001, ARDEA, V89, P353; PIERSMA T, 1994, AUK, V111, P366, DOI 10.2307/4088600; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; PUGESEK BH, 1995, ANIM BEHAV, V49, P641; Pyle P, 2001, J ANIM ECOL, V70, P1088, DOI 10.1046/j.0021-8790.2001.00567.x; Ratcliffe N, 1998, J ANIM ECOL, V67, P853, DOI 10.1046/j.1365-2656.1998.6760853.x; Rendon MA, 2001, BEHAV ECOL SOCIOBIOL, V50, P55, DOI 10.1007/s002650100326; Roche EA, 2010, AUK, V127, P402, DOI 10.1525/auk.2009.09034; Roff Derek A., 1992; SALATHE T, 1983, REV ECOL-TERRE VIE, V37, P87; Schaub M, 2001, ECOLOGY, V82, P852, DOI 10.2307/2680203; Stearns S, 1992, EVOLUTION LIFE HIST; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; Tavecchia G, 2001, ECOLOGY, V82, P165, DOI 10.2307/2680094; Tinbergen JM, 2002, OX ORN SER, V13, P299; Tveraa T, 1997, BEHAV ECOL, V8, P465, DOI 10.1093/beheco/8.5.465; Warham J, 1990, PETRELS THEIR ECOLOG; WEIMERSKIRCH H, 1990, J ANIM ECOL, V59, P867, DOI 10.2307/5019; Wheelwright NT, 2003, CONDOR, V105, P279, DOI 10.1650/0010-5422(2003)105[0279:DOFSAT]2.0.CO;2; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMS JB, 1993, CONDOR, V95, P115, DOI 10.2307/1369392 68 7 8 0 19 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAR 2011 42 2 178 186 10.1111/j.1600-048X.2010.05112.x 9 Ornithology Zoology 758PO WOS:000290177400009 2019-02-21 J Snell-Rood, EC; Davidowitz, G; Papaj, DR Snell-Rood, Emilie C.; Davidowitz, Goggy; Papaj, Daniel R. Reproductive tradeoffs of learning in a butterfly BEHAVIORAL ECOLOGY English Article juvenile hormone; learning; life history; Pieris rapae; ovary maturation; trade-off PIERIS-RAPAE LEPIDOPTERA; LIFE-HISTORY STRATEGIES; SMALL CABBAGE WHITE; JUVENILE-HORMONE; BRAIN SIZE; SPATIAL MEMORY; LONG-TERM; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; MONARCH BUTTERFLIES The evolution of learning has long been hypothesized to be limited by fitness trade-offs such as delays in reproduction. We explored the relationship between host learning and reproduction in the cabbage white butterfly, Pieris rapae. The cabbage white female is innately biased to search for common green hosts but can learn to search for rare red hosts. Host learning was shown previously to vary among full-sibling families and to incur costs in terms of host search efficiency and brain size. In the present study, we show that butterflies from full-sib families with relatively better learning performance on red hosts tend to emerge as adults with relatively fewer and less-developed eggs. We also used methoprene, a juvenile hormone mimic, to advance reproduction in female cabbage whites. We found that methoprene-treated butterflies improved host-finding ability less with experience, relative to controls, providing independent evidence of a link between learning and timing of reproduction. Finally, we show that the learning experience itself is associated with additional decreases in lifetime fecundity. These results support a range of theoretical and comparative studies highlighting the importance of fitness tradeoffs in the evolution of learning and cognition. [Snell-Rood, Emilie C.; Davidowitz, Goggy; Papaj, Daniel R.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA; [Snell-Rood, Emilie C.] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA; [Davidowitz, Goggy] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA Snell-Rood, EC (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 100 Ecol Bldg,1987 Upper Buford Circle, St Paul, MN 55108 USA. snell039@umn.edu Center for Insect Science (University of Arizona); Animal Behavior Society; Sigma Xi; Deptartment of Ecology and Evolutionary Biology (University of Arizona); Philanthropic Educational Organization Center for Insect Science (University of Arizona); Animal Behavior Society; Sigma Xi; Deptartment of Ecology and Evolutionary Biology (University of Arizona); and Philanthropic Educational Organization. Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Bednekoff PA, 1997, ANIM BEHAV, V53, P335, DOI 10.1006/anbe.1996.0395; BENZ G, 1970, EXPERIENTIA, V26, P1012, DOI 10.1007/BF02114165; BENZ G, 1972, EXPERIENTIA, V28, P1507, DOI 10.1007/BF01957883; Burger JMS, 2008, EVOLUTION, V62, P1294, DOI 10.1111/j.1558-5646.2008.00376.x; CAYRE M, 1994, NATURE, V368, P57, DOI 10.1038/368057a0; Chalker-Scott L, 1999, PHOTOCHEM PHOTOBIOL, V70, P1, DOI 10.1562/0031-8655(1999)070<0001:ESOAIP>2.3.CO;2; COURTNEY SP, 1986, ADV ECOL RES, V15, P51, DOI 10.1016/S0065-2504(08)60120-8; DeVoogd TJ, 2004, BRAIN BEHAV EVOLUT, V63, P221, DOI 10.1159/000076783; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dukas Reuven, 1998, P129; Fahrbach SE, 1998, LEARN MEMORY, V5, P115; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Frank Steven A., 1996, P451; Gould KS, 2004, J BIOMED BIOTECHNOL, P314, DOI 10.1155/S1110724304406147; GREENBERG R, 1983, AM NAT, V122, P444, DOI 10.1086/284148; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Healy SD, 2007, P ROY SOC B-BIOL SCI, V274, P453, DOI 10.1098/rspb.2006.3748; Heimpel GE, 1998, BIOL CONTROL, V11, P160, DOI 10.1006/bcon.1997.0587; HERMAN WS, 1975, J COMP PHYSIOL, V99, P331, DOI 10.1007/BF00710373; HERMAN WS, 1973, J INSECT PHYSIOL, V19, P1883, DOI 10.1016/0022-1910(73)90056-5; HERMAN WS, 1981, J EXP ZOOL, V218, P387, DOI 10.1002/jez.1402180310; HERMAN WS, 1975, COMP BIOCHEM PHYS A, V51, P507, DOI 10.1016/0300-9629(75)90333-3; Hern A, 1996, ANN APPL BIOL, V128, P349, DOI 10.1111/j.1744-7348.1996.tb07328.x; Iwaniuk AN, 2003, CAN J ZOOL, V81, P1913, DOI 10.1139/Z03-190; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; JOHNSTON TD, 1982, ADV STUD BEHAV, V12, P65, DOI 10.1016/S0065-3454(08)60046-7; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; KARLINSKY A, 1963, CR HEBD ACAD SCI, V256, P4101; Kivela SM, 2008, J ANIM ECOL, V77, P529, DOI 10.1111/j.1365-2656.2008.01371.x; KOLB G, 1982, J COMP PHYSIOL, V149, P325, DOI 10.1007/BF00619148; KREBS JR, 1989, P NATL ACAD SCI USA, V86, P1388, DOI 10.1073/pnas.86.4.1388; Lamprecht R, 2004, NAT REV NEUROSCI, V5, P45, DOI 10.1038/nrn1301; Laughlin SB, 1998, NAT NEUROSCI, V1, P36, DOI 10.1038/236; LAVERTY TM, 1988, ANIM BEHAV, V36, P733, DOI 10.1016/S0003-3472(88)80156-8; Lefebvre L, 2008, BRAIN BEHAV EVOLUT, V72, P135, DOI 10.1159/000151473; Lefebvre L, 2006, BRAIN BEHAV EVOLUT, V68, P218, DOI 10.1159/000094359; MacDonald K, 2007, HUM NATURE-INT BIOS, V18, P386, DOI 10.1007/s12110-007-9019-8; MACE GM, 1982, BIOL J LINN SOC, V17, P243, DOI 10.1111/j.1095-8312.1982.tb02019.x; Maleszka R, 2001, HORM BEHAV, V40, P403, DOI 10.1006/hbeh.2001.1705; MARCHETTI K, 1989, BIOL REV, V64, P51, DOI 10.1111/j.1469-185X.1989.tb00638.x; Margulies C, 2005, CURR BIOL, V15, pR700, DOI 10.1016/j.cub.2005.08.024; MAYR E, 1974, AM SCI, V62, P650; Mery F, 2003, P ROY SOC B-BIOL SCI, V270, P2465, DOI 10.1098/rspb.2003.2548; Mery F, 2004, ANIM BEHAV, V68, P589, DOI 10.1016/j.anbehav.2003.12.005; Mery F, 2005, SCIENCE, V308, P1148, DOI 10.1126/science.111131; Nijhout H.F., 1994, INSECT HORMONES; O'Brien DM, 2002, P NATL ACAD SCI USA, V99, P4413, DOI 10.1073/pnas.072346699; OLSON DJ, 1995, J COMP PSYCHOL, V109, P173, DOI 10.1037/0735-7036.109.2.173; PAGEL MD, 1988, EVOLUTION, V42, P948, DOI 10.1111/j.1558-5646.1988.tb02513.x; Papaj DR, 2000, ANNU REV ENTOMOL, V45, P423, DOI 10.1146/annurev.ento.45.1.423; PAPAJ DR, 1989, ANNU REV ENTOMOL, V34, P315, DOI 10.1146/annurev.en.34.010189.001531; RENWICK JAA, 1994, ANNU REV ENTOMOL, V39, P377, DOI 10.1146/annurev.en.39.010194.002113; Ricklefs RE, 2004, WILSON BULL, V116, P119, DOI 10.1676/04-054; Riddiford L.M., 1979, TCA (TISSUE CULTURE ASSOCIATION) MANUAL, V5, P975, DOI 10.1007/BF00919715; Robinson GE, 1997, ARCH INSECT BIOCHEM, V35, P559, DOI 10.1002/(SICI)1520-6327(1997)35:4<559::AID-ARCH13>3.0.CO;2-9; ROOT RB, 1984, ECOLOGY, V65, P147, DOI 10.2307/1939467; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; SACHER GA, 1974, AM NAT, V108, P593, DOI 10.1086/282938; SHERRY DF, 1992, TRENDS NEUROSCI, V15, P298, DOI 10.1016/0166-2236(92)90080-R; SLANSKY F, 1977, ECOL MONOGR, V47, P209, DOI 10.2307/1942617; Smallegange RC, 2006, ANIM BIOL, V56, P157, DOI 10.1163/157075606777304159; Snell-Rood EC, 2009, BRAIN BEHAV EVOLUT, V73, P111, DOI 10.1159/000213647; Snell-Rood EC, 2009, AM NAT, V173, P615, DOI 10.1086/597609; Stephens DW, 1992, INSECT LEARNING ECOL, P195; SUZUKI Y, 1978, APPL ENTOMOL ZOOL, V13, P312, DOI 10.1303/aez.13.312; TRAYNIER RMM, 1984, PHYSIOL ENTOMOL, V9, P465, DOI 10.1111/j.1365-3032.1984.tb00789.x; TROETSCHLER RG, 1985, J ECON ENTOMOL, V78, P1521, DOI 10.1093/jee/78.6.1521; Webb S, 1988, NY FOOD LIFE SCI B, V122, P1; Wedell N, 1998, P ROY SOC B-BIOL SCI, V265, P625, DOI 10.1098/rspb.1998.0340; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WUNDERLE JM, 1991, CURR ORNITHOL, V8, P273; Wyatt GR, 1996, ADV INSECT PHYSIOL, V26, P1, DOI 10.1016/S0065-2806(08)60030-2; Zera AJ, 2007, ANNU REV ECOL EVOL S, V38, P793, DOI 10.1146/annurev.ecolsys.38.091206.095615 76 40 40 1 89 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. MAR-APR 2011 22 2 291 302 10.1093/beheco/arq169 12 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 747DC WOS:000289299500015 Bronze 2019-02-21 J Lienard, P Lienard, Pierre Life stages and risk-avoidance: Status- and context-sensitivity in precaution systems NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS English Review Precaution psychology; Life history theory; Female risk-avoidance and pregnancy; Coalitional psychology OBSESSIVE-COMPULSIVE DISORDER; HISTORY EVOLUTION; DISGUST SENSITIVITY; GENDER-DIFFERENCES; SEX-DIFFERENCES; REPRODUCTIVE STRATEGIES; INTRASEXUAL AGGRESSION; RITUALIZED BEHAVIOR; CONTAMINATION FEAR; NATURAL-SELECTION Human typical life history involves specific tradeoffs, resulting in the selection of specific cognitive adaptations, among which a suite of age- and gender-specific precaution systems sensitive to variations in the physical and social environment. Precaution systems take into account the individual's status and life-stage, information about specific threats, as well as the fact that the organism can or cannot address those threats unassisted. Systematic variation in individual decision-making and behavior in risky situations provide insights into the operation of those precaution systems. The literature survey is completed by data gathered among the pastoral Turkana of Kenya showing how variations in precautions and risk avoidance correlate with age, sex, and social conditions. (C) 2010 Elsevier Ltd. All rights reserved. Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA Lienard, P (reprint author), Univ Nevada, Dept Anthropol, 4505 S Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA. pierre.lienard@unlv.edu A. P. Association, 2000, DIAGN STAT MAN MENT; Abramowitz JS, 2003, J ANXIETY DISORD, V17, P461, DOI 10.1016/S0887-6185(02)00206-2; AINSWORTH MDS, 1991, AM PSYCHOL, V46, P333, DOI 10.1037//0003-066X.46.4.333; Altemus M., 2001, MANAGEMENT PSYCHIAT, P149; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BELL MJ, 2007, CHILDREN DISABILITIE, P71; Benenson JF, 2008, INT J PRIMATOL, V29, P1019, DOI 10.1007/s10764-008-9283-4; Benenson JF, 2009, BEHAV BRAIN SCI, V32, P268, DOI 10.1017/S0140525X0999046X; Benenson JF, 2009, PSYCHOL SCI, V20, P184, DOI 10.1111/j.1467-9280.2009.02269.x; Bengtson V. L, 2009, HDB THEORIES AGING; Bjorklund F, 2004, SCAND J PSYCHOL, V45, P279, DOI 10.1111/j.1467-9450.2004.00406.x; Blasi C. Hernandez, 2008, ANUARIO PSICOLOGIA, V39, P177; Borgerhoff Mulder M., 2000, EVOL HUM BEHAV, V21, P391, DOI DOI 10.1016/S1090-5138(00)00054-4); Boyer P, 2006, BEHAV BRAIN SCI, V29, P595, DOI 10.1017/S0140525X06009332; Boyer P, 2006, BEHAV BRAIN SCI, V29, P635, DOI 10.1017/S0140525X06009575; Boyer P, 2011, NEUROSCI BIOBEHAV R, V35, P1034, DOI 10.1016/j.neubiorev.2010.08.010; BROOKE R, 1999, TURKANA HERDERS DRY, P88; Brown B. B., 1990, THRESHOLD DEV ADOLES, P171, DOI DOI 10.1037/0022-3514.52.1.47; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037/0033-2909.125.3.367; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campbell A, 2004, J SEX RES, V41, P16, DOI 10.1080/00224490409552210; Campbell A., 2005, HDB EVOLUTIONARY PSY, P628; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conway CA, 2007, HORM BEHAV, V51, P202, DOI 10.1016/j.yhbeh.2006.10.002; Coyne SM, 2006, AGGRESSIVE BEHAV, V32, P294, DOI 10.1002/ab.20126; Crystal SR, 1999, PHYSIOL BEHAV, V67, P181, DOI 10.1016/S0031-9384(99)00055-4; Curtis VA, 2007, J EPIDEMIOL COMMUN H, V61, P660, DOI 10.1136/jech.2007.062308; Daly M, 1990, Hum Nat, V1, P81, DOI 10.1007/BF02692147; Daly M., 1988, HOMICIDE; DALY M, 2001, EVOLUTIONARY PSYCHOL, P1; Deacon B, 2007, BEHAV RES THER, V45, P2110, DOI 10.1016/j.brat.2007.03.008; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Diamond Jared, 1992, 3 CHIMPANZEE EVOLUTI; Dobson FS, 2008, CURR SCI INDIA, V95, P862; Ermer E, 2008, EVOL HUM BEHAV, V29, P106, DOI 10.1016/j.evolhumbehav.2007.11.002; Fessler DMT, 2005, EVOL HUM BEHAV, V26, P344, DOI 10.1016/j.evolhumbehav.2004.12.001; Fessler DMT, 2004, ORGAN BEHAV HUM DEC, V95, P107, DOI 10.1016/j.obhdp.2004.06.006; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher R. A., 1999, GENETIC THEORY NATUR; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; Frank R. H., 1985, CHOOSING RIGHT POND; Gat A, 2008, WAR HUMAN CIVILIZATI; Geary David C., 2010, MALE FEMALE EVOLUTIO, P213; Geary DC, 2003, DEV REV, V23, P444, DOI 10.1016/j.dr.2003.08.001; Gritsiuk R I, 1969, Pediatriia, V48, P8; GULLIVER P, 1951, COMMUNICATIONS SCH A, V26; GULLIVER PH, 1958, AM ANTHROPOL, V60, P900, DOI 10.1525/aa.1958.60.5.02a00100; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Harris CR, 2006, JUDGM DECIS MAK, V1, P48; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; HAWKES K, 1998, P NATL ACAD SCI US, V95; Hawkes K, 2006, SCH AM RES, P95; Hawkes Kristen, 2003, P204; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Huizink AC, 2004, EARLY HUM DEV, V79, P81, DOI 10.1016/j.earlhumdev.2004.04.014; Jason Grotuss, 2007, [心理学报, Acta Psychologica Sinica], V39, P439; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Jones B, 2006, PSYCHOL SCI, V17, P283, DOI 10.1111/j.1467-9280.2006.01699.x; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones NB, 2002, HUM NATURE-INT BIOS, V13, P199, DOI 10.1007/s12110-002-1008-3; JONES NB, 2002, JUVENILE PRIMATES LI, P309; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kaplan H., 2009, HDB THEORIES AGING, P39; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; KLEIN HR, 1950, ANXIETY PREGNANCY CH; Koji K., 1990, AFRICAN STUDY MONO S, V12, P51; Kraus C, 2005, J ANIM ECOL, V74, P171, DOI 10.1111/j.1365-2656.2004.00910.x; Labad J, 2005, J CLIN PSYCHIAT, V66, P428, DOI 10.4088/JCP.v66n0404; LACK D, 1948, EVOLUTION, V2, P95, DOI 10.2307/2405371; LAMPHEAR J, 1988, J AFR HIST, V29, P27; Lamphear J., 1989, ATTRACTION OPPOSITES, P235; Lancaster Jane B., 1983, HUMANS ADAPT BIOCULT, P33; Lancaster JB, 2000, PERSP ETHOL, V13, P47; Leckman JF, 2004, J NEURAL TRANSM, V111, P753, DOI 10.1007/s00702-003-0067-x; Lefebvre L, 2006, BRAIN BEHAV EVOLUT, V68, P218, DOI 10.1159/000094359; Locke JL, 2006, BEHAV BRAIN SCI, V29, P259, DOI 10.1017/S0140525X0600906X; MacArthur R.H., 2001, THEORY ISLAND BIOGEO; Maina G, 1999, PSYCHIAT RES, V89, P49, DOI 10.1016/S0165-1781(99)00090-6; McAndrew FT, 2009, AGGRESS VIOLENT BEH, V14, P330, DOI 10.1016/j.avb.2009.04.006; MESQUIDA CG, 2003, RESOURCES MATING MAL, P63; Messinger DS, 2008, HUMAN DEVELOPMENT IN THE TWENTY-FIRST CENTURY: VISIONARY IDEAS FROM SYSTEMS SCIENTISTS, P225; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Muller H. K., 1989, CHANGING GENERATIONS; MULLER HK, 1991, B SCH ORIENTAL AFR 3, P554; NEZIROGLU F, 1992, AM J PSYCHIAT, V149, P947; ODLINGSMEE FJ, 2007, SOCIAL BRAIN MATTERS, P189; Olatunji BO, 2004, BEHAV RES THER, V42, P93, DOI 10.1016/S0005-7967(03)00102-5; Osinski J, 2009, PERS INDIV DIFFER, V47, P374, DOI 10.1016/j.paid.2009.04.011; PAINE RL, 2006, EVOLUTION HUMAN LIFE; PINKER S, 2009, MEN WOMEN REAL GENDE; Potts M., 2008, SEX WAR BIOL EXPLAIN; Profet M, 1992, ADAPTED MIND EVOLUTI, P327; RACHMAN S, 1978, BEHAV RES THER, V16, P233, DOI 10.1016/0005-7967(78)90022-0; Randolph JF, 2008, J SEX MED, V5, P2274, DOI 10.1111/j.1743-6109.2008.00919.x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; RODSETH L, 1991, CURR ANTHROPOL, V32, P221, DOI 10.1086/203952; ROFF DA, 2002, LIFE HIST EVOLUTION; Rohrmann S, 2008, J PSYCHOPHYSIOL, V22, P65, DOI 10.1027/0269-8803.22.2.65; Ross D, 2007, LANG SCI, V29, P710, DOI 10.1016/j.langsci.2006.12.008; Rozin P., 2009, DISGUST ITS DISORDER, P9, DOI [10.1037/11856-001, DOI 10.1037/11856-001]; SINGH U, 1991, PSYCHOL STUD, V36, P108; Sjogren B, 1997, J PSYCHOSOM OBST GYN, V18, P266, DOI 10.3109/01674829709080698; STANDLEY K, 1979, AM J OBSTET GYNECOL, V135, P22; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, FDN EVOLUTIONARY PSY, P47; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1984, AM NAT, V123, P56, DOI 10.1086/284186; Sterelny Kim, 2007, SOCIAL INTELLIGENCE, P375; Stevenson RJ, 2009, EVOL HUM BEHAV, V30, P363, DOI 10.1016/j.evolhumbehav.2009.02.005; STRASSMANN B, 1962, P BIOL SCI, V269, P553; Szechtman H, 2004, PSYCHOL REV, V111, P111, DOI 10.1037/0033-295X.111.1.111; Thompson ME, 2008, INT J PRIMATOL, V29, P815, DOI 10.1007/s10764-008-9273-6; TIGER L, 1970, MEN GROUPS; Trivers R, 1972, SEXUAL SELECTION DES, P137; TRIVERS RL, 1974, AM ZOOL, V14, P249; Uguz F, 2007, COMPR PSYCHIAT, V48, P441, DOI 10.1016/j.comppsych.2007.05.001; van Schaik CP, 2006, SCH AM RES, P127; WIENPAHL J, 1984, LIVESTOCK PRODUCTION; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Woody EZ, 2011, NEUROSCI BIOBEHAV R, V35, P1019, DOI 10.1016/j.neubiorev.2010.08.003; Wrangham R., 1996, DEMONIC MALES APES O; Wrangham R. W., 2006, CONFLICT, P43; Wrangham RW, 2004, ANN NY ACAD SCI, V1036, P233, DOI 10.1196/annals.1330.015; ZAHAVI A, 1997, HANDICAP PRINCIPAL M; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4 136 18 18 0 15 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0149-7634 NEUROSCI BIOBEHAV R Neurosci. Biobehav. Rev. MAR 2011 35 4 SI 1067 1074 10.1016/j.neubiorev.2010.09.007 8 Behavioral Sciences; Neurosciences Behavioral Sciences; Neurosciences & Neurology 742EK WOS:000288923800009 20883720 2019-02-21 J Greenwood, JL; Dawson, RD Greenwood, Jennifer L.; Dawson, Russell D. RISK OF NEST PREDATION INFLUENCES REPRODUCTIVE INVESTMENT IN AMERICAN KESTRELS (FALCO SPARVERIUS): AN EXPERIMENTAL TEST JOURNAL OF RAPTOR RESEARCH English Article American Kestrel; Falco sparverius; red squirret; Tamiasciurus hudsonicus; audio playback; incubation; nest predation; nest-site selection; reproductive investment. LIFE-HISTORY EVOLUTION; INCUBATION BEHAVIOR; HABITAT SELECTION; CLUTCH SIZE; PARENTAL CARE; BIRDS; FOOD; CONSEQUENCES; MANIPULATION; COMPETITION Nest predation is the primary cause of nest failure in birds. Individuals should therefore adjust. parental investment to minimize the costs associated with this constraint; evidence suggests that nest predation influences nest-site selection, and drives variation in both clutch size and parental behavior. Here, we test how the perception of the risk of nest predation from red squirrels (Taminsciurus hudsonicus) influenced nest-site selection and reproductive investment of American Kestrels (Falco sparverius) breeding in the boreal forest. For this purpose, we conducted audio playbacks of squirrel vocalizations and altered nest boxes to experimentally increase cues of the presence of Red Squirrels in the vicinity of potential nests. Experimental manipulations of the risk of nest predation did not influence nest-site selection; however, experimentally increasing the perceived risk of nest predation induced kestrels to initiate breeding later, and to lay larger clutches. Parents did not appreciably alter incubation behavior in response to our manipulation, although the duration of incubation was longer where natural squirrel threat was higher. Our results showed that kestrels are capable of making facultative adjustments to current reproductive investment in response to their perception of the risk of nest predation. [Greenwood, Jennifer L.; Dawson, Russell D.] Univ No British Columbia, Ecosyst Sci & Management Program, Prince George, BC V2N 4Z9, Canada Greenwood, JL (reprint author), Univ No British Columbia, Ecosyst Sci & Management Program, 3333 Univ Way, Prince George, BC V2N 4Z9, Canada. greenwoj@unbc.ca Natural Sciences and Engineering Research Council of Canada; Canada Foundation for Innovation; British Columbia Knowledge Development Fund; University of Northern British Columbia; Northern Scientific Training Program We wish to thank K. Bildstein, J. Riegert, and an anonymous referee for helpful comments on a previous version of this manuscript. Funding was provided to RDD by the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, British Columbia Knowledge Development Fund, and the University of Northern British Columbia, and to JLG by the Northern Scientific Training Program. Assistance in the field was provided by C. McKee. Data were collected under permit from Environment Canada and Saskatchewan Ministry of Environment, and all protocols were approved by the University of Northern British Columbia Animal Care and Use Committee. ARARICIO JM, 1994, OIKOS, V71, P451; BALGOOYEN T G, 1976, University of California Publications in Zoology, V103, P1; BORTOLOTTI GR, 1992, ANIM BEHAV, V44, P811, DOI 10.1016/S0003-3472(05)80577-9; Bortolotti GR, 2003, FUNCT ECOL, V17, P651, DOI 10.1046/j.1365-2435.2003.00778.x; BORTOLOTTI GR, 1993, ORNIS SCAND, V24, P41, DOI 10.2307/3676408; Bortolotti GR, 1996, P ROY SOC B-BIOL SCI, V263, P1171, DOI 10.1098/rspb.1996.0171; BROWN JS, 1988, BEHAV ECOL SOCIOBIOL, V22, P37, DOI 10.1007/BF00395696; Conway CJ, 2000, EVOLUTION, V54, P670; Cooper CB, 2005, J FIELD ORNITHOL, V76, P352, DOI 10.1648/0273-8570-76.4.352; Dawson RD, 2006, ECOSCIENCE, V13, P75, DOI 10.2980/1195-6860(2006)13[75:FITBFP]2.0.CO;2; Dawson RD, 1997, J WILDLIFE MANAGE, V61, P1297, DOI 10.2307/3802129; Dawson RD, 2000, AUK, V117, P373, DOI 10.1642/0004-8038(2000)117[0373:EOHPOC]2.0.CO;2; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; Dawson RD, 2006, NATURWISSENSCHAFTEN, V93, P597, DOI 10.1007/s00114-006-0146-6; DOUGEZ B, 2003, ECOLOGY, V84, P2582; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; FANTAINE JJ, 2006, ECOL LETT, V9, P428; Fisher RJ, 2006, IBIS, V148, P772, DOI 10.1111/j.1474-919X.2006.00582.x; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; HOW DF, 1979, AUK, V96, P73; Lank DB, 2003, J AVIAN BIOL, V34, P225, DOI 10.1034/j.1600-048X.2003.03250.x; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; Mahon CL, 2006, J WILDLIFE MANAGE, V70, P1257, DOI 10.2193/0022-541X(2006)70[1257:NSOCIM]2.0.CO;2; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; Martin TE, 1998, ECOLOGY, V79, P656, DOI 10.1890/0012-9658(1998)079[0656:AMPOCS]2.0.CO;2; MARTIN TE, 1993, AM NAT, V142, P937, DOI 10.1086/285582; Martin TE, 1996, NATURE, V380, P338, DOI 10.1038/380338a0; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Morris DW, 2003, OECOLOGIA, V136, P1, DOI 10.1007/s00442-003-1241-4; Negro JJ, 1998, FUNCT ECOL, V12, P307, DOI 10.1046/j.1365-2435.1998.00176.x; Norusis M. J., 2000, SPSS ADV STAT USERS; ORIANS GH, 1991, AM NAT, V137, pS27; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGVOLD T, 1984, OECOLOGIA, V54, P159; Smith C, 2000, P ROY SOC B-BIOL SCI, V267, P1327, DOI 10.1098/rspb.2000.1146; Thompson FR, 2007, IBIS, V149, P98, DOI 10.1111/j.1474-919X.2007.00697.x; Thomson RL, 2006, ECOGRAPHY, V29, P507; Vedder O, 2005, BEHAV ECOL SOCIOBIOL, V58, P429, DOI 10.1007/s00265-005-0926-6; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; WIEBE KL, 1994, ECOLOGY, V75, P813, DOI 10.2307/1941737; WIEBE KL, 1997, WILDLIFE BIOL, V3, P143; Willems EP, 2009, ECOLOGY, V90, P546, DOI 10.1890/08-0765.1 50 4 5 3 27 RAPTOR RESEARCH FOUNDATION INC HASTINGS 14377 117TH STREET SOUTH, HASTINGS, MN 55033 USA 0892-1016 J RAPTOR RES J. Raptor Res. MAR 2011 45 1 15 26 10.3356/JRR-10-26.1 12 Ornithology Zoology 739CV WOS:000288691300002 2019-02-21 J Lu, X Lu, Xin Reproductive Ecology of Three Tibetan Waterbird Species, with Special Reference to Life-History Alterations along Elevational Gradients ZOOLOGICAL STUDIES English Article Anas platyrhynchos; Fulica atra; Gallinula chlorpus; High elevation; Life history CONSPECIFIC BROOD PARASITISM; IMPOUNDED CATTAIL MARSH; COOT FULICA-ATRA; CLUTCH-SIZE; BREEDING ECOLOGY; NEST SUCCESS; AVIAN EGG; GEOGRAPHIC PATTERNS; COMMON MOORHEN; INCUBATION Xin Lu (2011) Reproductive ecology of three Tibetan waterbird species, with special reference to life-history alterations along elevational gradients. Zoological Studies 50(2): 192-202. Life-history theory predicts that birds nesting at higher elevations will have lower reproductive output due to ecological constraints. Higher-elevation birds should allocate more energy into individual offspring through producing fewer and larger eggs to allow their offspring to better survive the harsh environments. To test the prediction, I collected reproductive data on 3 waterbirds, the Mallard Anas platyrhynchos, Common Moorhen Gallinula chlorpus and Eurasian Coot Fulica atra, at Lhalu Wetland (3650 m in elevation), the largest marshland with macrophytes on the Tibetan Plateau. These birds became regular nesters after prohibition of yak grazing and reed harvesting in the wetland since 2003. Mallards laid eggs from mid-Apr. to mid-June, moorhens from early May to mid-June, and coots from mid-May to late June. Clutch size and egg size of these high-elevation waterbirds were smaller or intermediate compared to those of their lowland counterparts, partially supporting the prediction. The pattern might be associated with a balance between environmental harshness and allocation of body reserves in terms of the number of clutches produced annually, and the number and size of eggs within a clutch across elevational gradients. The high-elevation mallards and moorhens primarily used reeds Phragmites australis as nesting habitat (with 92% and 68% of nests located there, respectively), whereas coots preferred rushes Juncus effusus (77%). Predation by mammals and flooding contributed to about 1/2 of the failed mallard and moorhen nests, whereas predation was responsible for the majority of coot nest loss. My data also suggest the importance of wetland management based on species-specific habitat requirements for conserving this breeding waterbird assemblage. http://zoolstud.sinica.edu.tw/Journals/50.2/192.pdf Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China Lu, X (reprint author), Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China. luxinwh@gmail.com stud, zool/G-4030-2011 National Key Technology Research and Development Program [2007BAC06B03] I thank X.S. Wu, G.H. Gong, X.H. Zeng, D.H. Ke, X.Y. Ma and R. Ci for assistance during field work, L.E. Johannessen for providing critical references, and J. Comely for comments on a draft of the manuscript. This study was conducted in the Field Research Station for Tibetan Wildlife, which is jointly administered by Wuhan Univ. (Wuhan, China) and Tibet Univ. (Lhasa, China). The National Key Technology Research and Development Program (Grant 2007BAC06B03) provided support for this study. Ackerman JT, 2003, BEHAV ECOL SOCIOBIOL, V54, P264, DOI 10.1007/s00265-003-0628-x; Alisauskas Ray T., 1992, P30; AR A, 1980, AM ZOOL, V20, P373; ARNOLD TW, 1991, CONDOR, V93, P1032, DOI 10.2307/3247744; ARNOLD TW, 1993, J WILDLIFE MANAGE, V57, P578, DOI 10.2307/3809285; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Badyaev AV, 1997, OECOLOGIA, V111, P365, DOI 10.1007/s004420050247; BANNOR BK, 2010, BIRDS N AM ONLINE; Bellrose F., 1980, DUCKS GEESE SWANS N; BRINKHOF MWG, 1993, J ANIM ECOL, V62, P577, DOI 10.2307/5206; Brisbin I. Lehr Jr, 2002, Birds of North America, V697, P1; BRUSSARD PF, 1984, ANNU REV ECOL SYST, V15, P25, DOI 10.1146/annurev.es.15.110184.000325; CAREY C, 2002, AVIAN INCUBATION BEH, P238; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; COWARDIN LM, 1985, WILDLIFE MONOGR, V92, P1; Cramp S., 1980, HDB BIRDS EUROPE MID, V2; Cramp S., 1977, BIRDS W PALEARCTIC, VI; Dillon ME, 2006, INTEGR COMP BIOL, V46, P49, DOI 10.1093/icb/icj007; DUEBBERT HF, 1983, J WILDLIFE MANAGE, V47, P309; DUNN EH, 1987, J FIELD ORNITHOL, V58, P355; DUNZHU GS, 2008, TIBET SCI TECH, V6, P26; ELDRIDGE JL, 1988, AUK, V105, P102; Hardie DC, 2010, ENVIRON REV, V18, P1, DOI 10.1139/A09-014; HELM RN, 1987, J FIELD ORNITHOL, V58, P55; HILDEN O, 1964, ANN ZOOL FENN, V1, P153; HILL DA, 1984, ORNIS SCAND, V15, P115, DOI 10.2307/3675948; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; HOYT DF, 1979, AUK, V96, P73; HUXLEY CR, 1976, BIRD STUDY, V23, P1, DOI 10.1080/00063657609476478; Jamieson IG, 2000, AUK, V117, P250, DOI 10.1642/0004-8038(2000)117[0250:HROCBP]2.0.CO;2; Jiang X. Z., 1983, AQUATIC INVERTEBRATE; Johnson LS, 2006, CONDOR, V108, P591, DOI 10.1650/0010-5422(2006)108[591:CIESAC]2.0.CO;2; KLETT AT, 1988, J WILDLIFE MANAGE, V52, P431, DOI 10.2307/3801586; KRAPU G L, 1979, Wildlife Society Bulletin, V7, P104; KRUSE AD, 1996, J WILDLIFE MANAGE, V60, P238; Lack D, 1967, WILDFOWL TRUST ANNU, V18, P125; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; Lang Aaron, 2007, Forktail, V23, P1; Laubergs A., 2004, ACTA U LATVIEN BIOL, V676, P107; Li Chun, 2008, Xibei Zhiwu Xuebao, V28, P2514; Liu Huanjin, 1985, Zoological Research, V6, P174; Loffler H., 1969, Verhandlungen der Internationalen Vereinigung fuer Theoretische und Angewandte Limnologie, V17, P373; LOKEMOEN JT, 1990, WILDLIFE MONOGR, P1; Lu X, 2005, J ORNITHOL, V146, P72, DOI 10.1007/s10336-004-0058-1; Lu X, 2009, J ARID ENVIRON, V73, P1103, DOI 10.1016/j.jaridenv.2009.06.011; Lu X, 2008, J ORNITHOL, V149, P41, DOI 10.1007/s10336-007-0210-9; Lu X, 2010, WILSON J ORNITHOL, V122, P395, DOI 10.1676/09-104.1; Lu X, 2010, J FIELD ORNITHOL, V81, P167, DOI 10.1111/j.1557-9263.2010.00274.x; LYON BE, 1993, ANIM BEHAV, V46, P911, DOI 10.1006/anbe.1993.1273; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MAYFIELD HF, 1975, WILSON BULL, V87, P456; MCRAE SB, 1995, ANIM BEHAV, V49, P1073, DOI 10.1006/anbe.1995.0136; NANCY D, 2010, MALLARD ANAS PLATYRH; OWEN M, 1980, WILD GEESE WORLD THE; PALMER RS, 1976, HDB N AM BIRDS, V2; POST W, 1991, J FIELD ORNITHOL, V62, P195; Post W, 2000, J FIELD ORNITHOL, V71, P437, DOI 10.1648/0273-8570-71.3.437; RAHN H, 1974, CONDOR, V76, P147, DOI 10.2307/1366724; Rubolini D, 2008, AUK, V125, P374, DOI 10.1525/auk.2008.07018; Samraoui F, 2007, WATERBIRDS, V30, P133, DOI 10.1675/1524-4695(2007)030[0133:TREOTC]2.0.CO;2; Scott D. A., 1989, DIRECTORY ASIAN WETL; Shah GM, 2009, INDIAN BIRDS, V4, P106; Stanevicius Vitas, 2005, Acta Zoologica Lituanica, V15, P324; Stevenson IR, 2000, NATURE, V406, P366, DOI 10.1038/35019151; Su Hualong, 1997, Chinese Journal of Zoology, V32, P26; Wang BH, 1992, XIZANG TIBET INSECT; Wang D., 2003, THESIS WUHAN U WUHAN; Wang J.-s., 1990, Chinese Journal of Zoology, V25, P24; Xing LL, 1989, J INNERMONGOLIA U, V20, P521; Yom-Tov Y, 2001, IBIS, V143, P133, DOI 10.1111/j.1474-919X.2001.tb04177.x; Zeng XH, 2009, ARDEOLA, V56, P173; ZHAO KY, 1988, VEGETATION TIBET, P225; Zheng Z. X., 1983, AVIFAUNA TIBET; [周才平 Zhou Caiping], 2004, [地理学报, Acta Geographica Sinica], V59, P74; Zicus MC, 2004, CONDOR, V106, P506, DOI 10.1650/7453; 2010, CHINA WETLAND 78 8 11 0 15 ACAD SINICA INST ZOOLOGY TAIPEI EDITORIAL OFFICE, TAIPEI 115, TAIWAN 1021-5506 ZOOL STUD Zool. Stud. MAR 2011 50 2 192 202 11 Zoology Zoology 741BB WOS:000288837000005 2019-02-21 J Lind, MI; Ingvarsson, PK; Johansson, H; Hall, D; Johansson, F Lind, Martin I.; Ingvarsson, Par K.; Johansson, Helena; Hall, David; Johansson, Frank GENE FLOW AND SELECTION ON PHENOTYPIC PLASTICITY IN AN ISLAND SYSTEM OF RANA TEMPORARIA EVOLUTION English Article Gene flow; genetic drift; life-history evolution; local adaptation; natural selection; phenotypic plasticity MAXIMUM-LIKELIHOOD-ESTIMATION; LIFE-HISTORY TRAITS; COMMON FROG; POPULATION-STRUCTURE; ADAPTIVE DIVERGENCE; NATURAL-SELECTION; DEVELOPMENTAL PLASTICITY; MORPHOLOGICAL DIVERGENCE; QUANTITATIVE TRAITS; MICROSATELLITE LOCI Gene flow is often considered to be one of the main factors that constrains local adaptation in a heterogeneous environment. However, gene flow may also lead to the evolution of phenotypic plasticity. We investigated the effect of gene flow on local adaptation and phenotypic plasticity in development time in island populations of the common frog Rana temporaria which breed in pools that differ in drying regimes. This was done by investigating associations between traits (measured in a common garden experiment) and selective factors (pool drying regimes and gene flow from other populations inhabiting different environments) by regression analyses and by comparing pairwise F(ST) values (obtained from microsatellite analyses) with pairwise Q(ST) values. We found that the degree of phenotypic plasticity was positively correlated with gene flow from other populations inhabiting different environments (among-island environmental heterogeneity), as well as with local environmental heterogeneity within each population. Furthermore, local adaptation, manifested in the correlation between development time and the degree of pool drying on the islands, appears to have been caused by divergent selection pressures. The local adaptation in development time and phenotypic plasticity is quite remarkable, because the populations are young (less than 300 generations) and substantial gene flow is present among islands. [Lind, Martin I.; Ingvarsson, Par K.; Johansson, Helena; Hall, David; Johansson, Frank] Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden; [Ingvarsson, Par K.; Hall, David] Umea Univ, Umea Plant Sci Ctr, S-90187 Umea, Sweden Lind, MI (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. martin.i.lind@gmail.com Lind, Martin/A-4189-2011; Ingvarsson, Par/G-2748-2010; Johansson, Helena/H-6042-2012 Lind, Martin/0000-0001-5602-1933; Ingvarsson, Par/0000-0001-9225-7521; Swedish Research Council; Swedish Research Council FORMAS; SJCKMS; Helge Ax:son Johnsons Stiftelse We thank J. Merila and A. Laurila for providing protocols for DNA extraction and C. Olofsson for help and advice in the laboratory. We also thank O. Rowe and three anonymous referees for valuable comments on earlier drafts of this manuscript. The research was funded by the Swedish Research Council, the Swedish Research Council FORMAS, SJCKMS and Helge Ax:son Johnsons Stiftelse. Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; ALMFELT JEM, 2005, THESIS UMEA U; Alpert P, 2002, EVOL ECOL, V16, P285, DOI 10.1023/A:1019684612767; Altwegg R, 2003, EVOLUTION, V57, P872; Baker JMR, 1999, HERPETOL J, V9, P55; Baldwin JM, 1896, AM NAT, V30, P441, DOI DOI 10.1086/276408; Beerli P, 1999, GENETICS, V152, P763; Beerli P, 2001, P NATL ACAD SCI USA, V98, P4563, DOI 10.1073/pnas.081068098; Beerli P., 2008, MIGRATE VERSION 3 0; Bergek S, 2009, BIOL J LINN SOC, V96, P746, DOI 10.1111/j.1095-8312.2008.01149.x; Berlin S, 2000, MOL ECOL, V9, P1938, DOI 10.1046/j.1365-294x.2000.01093-12.x; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; Cano JM, 2008, J INTEGR FIELD SCI, V5, P1; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Gosner K. L., 1960, Herpetologica, V16, P183; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Hall D, 2007, EVOLUTION, V61, P2849, DOI 10.1111/j.1558-5646.2007.00230.x; Hendry AP, 2004, EVOLUTION, V58, P2319; Hendry AP, 2002, TRENDS ECOL EVOL, V17, P502, DOI 10.1016/S0169-5347(02)02603-4; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Hollander J, 2008, EVOLUTION, V62, P1381, DOI 10.1111/j.1558-5646.2008.00365.x; Hutchison DW, 1999, EVOLUTION, V53, P1898, DOI 10.1111/j.1558-5646.1999.tb04571.x; Johansson F, 2005, EVOL ECOL RES, V7, P1025; Johansson M, 2006, MOL ECOL, V15, P975, DOI 10.1111/j.1365-294X.2006.02866.x; Keyghobadi N, 2005, MOL ECOL, V14, P1897, DOI 10.1111/j.1365-294X.2005.02563.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Langerhans RB, 2003, BIOL J LINN SOC, V80, P689, DOI 10.1111/j.1095-8312.2003.00266.x; Latta RG, 1998, AM NAT, V151, P283, DOI 10.1086/286119; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Laugen AT, 2002, BIOL J LINN SOC, V76, P61, DOI 10.1046/j.1095-8312.2002.00048.x; Laurila A, 1999, J ANIM ECOL, V68, P1123, DOI 10.1046/j.1365-2656.1999.00354.x; Leberg PL, 2002, MOL ECOL, V11, P2445, DOI 10.1046/j.1365-294X.2002.01612.x; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Leinonen T, 2008, J EVOLUTION BIOL, V21, P1, DOI 10.1111/j.1420-9101.2007.01445.x; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Lesbarreres D, 2005, MOL ECOL, V14, P311, DOI 10.1111/j.1365-294X.2004.02394.x; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Lind MI, 2008, P ROY SOC B-BIOL SCI, V275, P1073, DOI 10.1098/rspb.2007.1737; Lind MI, 2009, EVOLUTION, V63, P1508, DOI 10.1111/j.1558-5646.2009.00647.x; Loman Jon, 1994, Alytes (Paris), V12, P15; Mayr E., 1963, ANIMAL SPECIES EVOLU; McKay JK, 2002, TRENDS ECOL EVOL, V17, P285, DOI 10.1016/S0169-5347(02)02478-3; Merila J, 2004, J EVOLUTION BIOL, V17, P1132, DOI 10.1111/j.1420-9101.2004.00744.x; Merila J, 2000, ECOGRAPHY, V23, P457, DOI 10.1034/j.1600-0587.2000.230408.x; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1992, BIOSCIENCE, V42, P671, DOI 10.2307/1312173; Nielsen R, 2001, GENETICS, V158, P885; Niinemets U, 2003, PLANT CELL ENVIRON, V26, P941, DOI 10.1046/j.1365-3040.2003.01027.x; Nosil P, 2004, EVOLUTION, V58, P102, DOI 10.1111/j.0014-3820.2004.tb01577.x; O'Hara RB, 2005, GENETICS, V171, P1331, DOI 10.1534/genetics.105.044545; Palo JU, 2003, MOL ECOL, V12, P1963, DOI 10.1046/j.1365-294X.2003.01865.x; Petit RJ, 1998, CONSERV BIOL, V12, P844, DOI 10.1046/j.1523-1739.1998.96489.x; Pidancier N, 2002, MOL ECOL NOTES, V2, P304, DOI 10.1046/j.1471-8278.2002.00244.x; Pigliucci M, 1999, J EVOLUTION BIOL, V12, P551, DOI 10.1046/j.1420-9101.1999.00057.x; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Pritchard JK, 2000, GENETICS, V155, P945; Pujol B, 2008, MOL ECOL, V17, P4782, DOI 10.1111/j.1365-294X.2008.03958.x; Rasanen K, 2008, ECOL LETT, V11, P624, DOI 10.1111/j.1461-0248.2008.01176.x; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Richter-Boix A, 2006, EVOL ECOL RES, V8, P1139; RIECHERT SE, 1993, BEHAV ECOL SOCIOBIOL, V32, P355; Rowe G, 2001, MOL ECOL NOTES, V1, P6, DOI 10.1046/j.1471-8278 .2000.00003.x; RUIBAL R, 1959, COPEIA, P315; SCHEINER SM, 1993, AM NAT, V142, P371, DOI 10.1086/285544; Scheiner SM, 1998, J EVOLUTION BIOL, V11, P303, DOI 10.1007/s000360050090; Schuelke M, 2000, NAT BIOTECHNOL, V18, P233, DOI 10.1038/72708; Seppa P, 1999, HEREDITY, V82, P309, DOI 10.1038/sj.hdy.6884900; Sexton JP, 2002, ECOL APPL, V12, P1652, DOI 10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2; SLATKIN M, 1987, SCIENCE, V236, P787, DOI 10.1126/science.3576198; SPITZE K, 1993, GENETICS, V135, P367; Storz JF, 2002, MOL ECOL, V11, P2537, DOI 10.1046/j.1365-294X.2002.01636.x; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Valladares F, 2006, J ECOL, V94, P1103, DOI 10.1111/j.1365-2745.2006.01176.x; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Vos CC, 2001, HEREDITY, V86, P598, DOI 10.1046/j.1365-2540.2001.00865.x; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitlock MC, 1999, GENET RES, V74, P215, DOI 10.1017/S0016672399004127; Whitlock MC, 2008, MOL ECOL, V17, P1885, DOI 10.1111/j.1365-294X.2008.03712.x; Whitlock MC, 2009, GENETICS, V183, P1055, DOI 10.1534/genetics.108.099812; Widmer A, 2001, TRENDS ECOL EVOL, V16, P267, DOI 10.1016/S0169-5347(01)02163-2; Wright S, 1943, GENETICS, V28, P114; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825 90 57 57 0 67 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0014-3820 EVOLUTION Evolution MAR 2011 65 3 684 697 10.1111/j.1558-5646.2010.01122.x 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 728DI WOS:000287854000007 20825480 Bronze 2019-02-21 J Moyes, K; Morgan, B; Morris, A; Morris, S; Clutton-Brock, T; Coulson, T Moyes, Kelly; Morgan, Byron; Morris, Alison; Morris, Sean; Clutton-Brock, Tim; Coulson, Tim Individual differences in reproductive costs examined using multi-state methods JOURNAL OF ANIMAL ECOLOGY English Article individual quality; mark-recapture; red deer; survival; trade-off CAPTURE-RECAPTURE MODELS; AGE-SPECIFIC SURVIVAL; RED DEER; MARKED ANIMALS; SOAY SHEEP; TRADE-OFFS; FUR SEALS; POPULATION; SENESCENCE; KITTIWAKE P>1. Trade-offs among life-history traits are common because individuals have to partition limited resources between multiple traits. Reproductive costs are generally assumed to be high, resulting in reduced survival and fecundity in the following year. However, it is common to find positive rather than negative correlations between life-history traits. 2. Here, we use a data set from the individual-based study of red deer on the Isle of Rum to examine how these costs vary between individuals and at different ages, using multi-state mark-recapture methodology. 3. Females that had reproduced frequently in the past incurred lower costs of reproduction in terms of survival in the following year and were more likely to reproduce in two consecutive years. Older individuals and those that had not reproduced frequently exhibited higher costs. 4. These results highlight the importance of considering heterogeneity and individual quality when examining trade-offs and demonstrate the effectiveness of using detailed long-term data sets to explore life-history strategies using multi-state mark-recapture models. [Moyes, Kelly; Morgan, Byron] Univ Kent, Inst Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England; [Moyes, Kelly; Coulson, Tim] Univ London Imperial Coll Sci Technol & Med, Div Biol, Fac Life Sci, Ascot SL5 7PY, Berks, England; [Moyes, Kelly; Morris, Alison; Morris, Sean; Clutton-Brock, Tim] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England Moyes, K (reprint author), Wild Frontier Ecol Ltd, Great Snoring NR21 OHF, Norfolk, England. kellymoyes@googlemail.com Coulson, Tim/0000-0001-9371-9003 NERC; Natural Environment Research Council [NE/E017053/1] We thank Scottish Natural Heritage for permission to work on Rum, their staff for local support, Josephine Pemberton, Fiona Guinness, Martyn Baker and the many fieldworkers on the Kilmory deer project. Jean-Michel Gaillard, Martin Ridout, Dan Nussey, Stuart Sharp and Giacomo Tavecchia all provided helpful comments and discussion. The manuscript was also improved by comments from two reviewers. This work was funded by NERC (via a studentship to K.M. and a research grant to T.H.C.B.). Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; BOYD IL, 1995, J ANIM ECOL, V64, P505, DOI 10.2307/5653; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2000, J ANIM ECOL, V69, P380, DOI 10.1046/j.1365-2656.2000.00400.x; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Choquet R., 2004, Animal Biodiversity and Conservation, V27, P207; CHOQUET R, 2005, U CARE 2 2 USERS MAN; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Coulson T, 2004, ECOLOGY, V85, P411, DOI 10.1890/03-0009; CRAWLEY M, 2002, STAT COMPUTING INTRO; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; Green WCH, 1990, BEHAV ECOL, V1, P148, DOI 10.1093/beheco/1.2.148; Hallett TB, 2004, NATURE, V430, P71, DOI 10.1038/nature02708; Hurrell J. W., 1995, NAO INDEX DATA CLIMA; Landete-Castillejos T, 2005, BEHAV ECOL SOCIOBIOL, V57, P267, DOI 10.1007/s00265-004-0848-8; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; McElligott AG, 2002, P ROY SOC B-BIOL SCI, V269, P1129, DOI 10.1098/rspb.2002.1993; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; MOYES K, 2008, J ANIM ECOL, V78, P406; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Nussey DH, 2005, J ANIM ECOL, V74, P387, DOI 10.1111/j.1365-2656.2005.00941.x; Partridge L, 1987, FUNCT ECOL, V1, P317, DOI 10.2307/2389786; Pradel R, 2003, BIOMETRICS, V59, P43, DOI 10.1111/1541-0420.00006; Rivalan P, 2005, OECOLOGIA, V145, P564, DOI 10.1007/s00442-005-0159-4; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tavecchia G, 2005, J ANIM ECOL, V74, P201, DOI 10.1111/j.1365-2656.2005.00916.x; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Viallefont A, 1995, J APPL STAT, V22, P847, DOI 10.1080/02664769524667; White GC, 1999, BIRD STUDY, V46, P120; WOODROFFE R, 1995, J ZOOL, V235, P237 43 19 20 0 28 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0021-8790 J ANIM ECOL J. Anim. Ecol. MAR 2011 80 2 456 465 10.1111/j.1365-2656.2010.01789.x 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 716PL WOS:000286985800018 21182522 2019-02-21 J Lusk, CH; Sendall, K; Kooyman, R Lusk, C. H.; Sendall, K.; Kooyman, R. Latitude, solar elevation angles and gap-regenerating rain forest pioneers JOURNAL OF ECOLOGY English Article carbon gain; determinants of plant community diversity and structure; freeze-thaw embolism; light interception; subtropical rain forest; temperate rain forest; tree-fall gap; tropical rain forest; YPLANT TREE SPECIES COEXISTENCE; LIFE-HISTORY STRATEGIES; LIGHT CAPTURE; NEW-ZEALAND; POPULATION-DYNAMICS; ECONOMICS SPECTRUM; CROWN ARCHITECTURE; UNDERSTORY PLANTS; LEAF RESPIRATION; XYLEM EMBOLISM 1. Tropical rain forests have more species-rich tree assemblages than forests at higher latitudes, but is this because they comprise a wider array of niches or functional types? We address this by considering one tree functional type light-demanding canopy trees with fast foliage turnover and growth that is common in the tropics and subtropics, but virtually absent from mid-latitude rain forests. Although often referred to as 'tall pioneers' or 'large pioneers', they are by no means confined to early-successional stages, also recruiting directly to the canopy in old-growth stands by rapid growth beneath tree-fall gaps. 2. We also explored the influence of latitude on tree-fall gap light environments as a possible constraint on the geographic distribution of this functional type, using the YPLANT program to simulate light interception and potential carbon gain by seedlings of the Australian rain forest pioneer Polyscias murrayi beneath idealized gaps at tropical, subtropical and cool temperate sites (latitudes 17,29 and 42 degrees S, respectively). P. murrayi grows quickly to heights of 20-25 m, has high photosynthetic capacity and respiration rates, and a leaf life span of 6-9 months. 3. Simulated light interception and potential carbon gain were strongly influenced by latitude, and by the interaction of latitude with position within an idealized tree-fall gap of 100 m(2). Potential net daily carbon gain of P. murrayi was strongly positive beneath the gap centre at latitude 17, and beneath the poleward (i.e. southern) gap margin at latitude 29, but negative beneath both the gap centre and margin at latitude 42. Light interception and carbon gain were also influenced by geographic variation in sunshine hours, which were highest at latitude 29 and lowest at latitude 42. A larger gap of 300 m(2) permitted positive net carbon gain at all latitudes, although rates were again predicted to be highest beneath the gap centre in the tropics. 4. Synthesis. YPLANT simulations supported the hypothesis that sun angles could prevent trees with high metabolic rates from invading old-growth mid-latitude rain forests, where light environments suitable for their establishment will be scarce. Geographic variation in forest light environments is therefore likely to influence the range of viable functional types at different latitudes. [Lusk, C. H.; Sendall, K.; Kooyman, R.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2019, Australia; [Sendall, K.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA Lusk, CH (reprint author), Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2019, Australia. christopher.lusk@mq.edu.au ARC We thank Tanja Lenz for carrying out simulations and data analysis and for preparing Fig. 1, Bob Pearcy for providing YPLANT 3.1 and very generous advice on its workings, Daniel Falster for developing the original canopy file template that we modified for our procedures, Greg Pelletier for kindly making available his VBA functions for calculating solar azimuth, Colin Prentice for helpful comment and the ARC Discovery scheme for funding this research. Comments by two anonymous reviewers helped improve the manuscript. AHMED M, 1987, NEW ZEAL J BOT, V25, P217, DOI 10.1080/0028825X.1987.10410068; ALVAREZBUYLLA ER, 1992, J ECOL, V80, P275, DOI 10.2307/2261011; Atkin OK, 1998, AUST J PLANT PHYSIOL, V25, P437, DOI 10.1071/PP97159; Awada T, 2003, TREE PHYSIOL, V23, P33, DOI 10.1093/treephys/23.1.33; Baltzer JL, 2007, J ECOL, V95, P1208, DOI 10.1111/j.1365-2745.2007.01286.x; Bohlman S, 2006, J TROP ECOL, V22, P123, DOI 10.1017/S0266467405003019; BUSING RT, 1995, J ECOL, V83, P45, DOI 10.2307/2261149; CANHAM CD, 1990, CAN J FOREST RES, V20, P620, DOI 10.1139/x90-084; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; COLEY PD, 1988, OECOLOGIA, V74, P531, DOI 10.1007/BF00380050; DENSLOW JS, 1987, ANNU REV ECOL SYST, V18, P431, DOI 10.1146/annurev.es.18.110187.002243; Falster DS, 2005, OIKOS, V111, P57, DOI 10.1111/j.0030-1299.2005.13383.x; Falster DS, 2005, J ECOL, V93, P521, DOI 10.1111/j.1365-2745.2005.00992.x; Falster DS, 2003, TRENDS ECOL EVOL, V18, P337, DOI 10.1016/S0169-5347(03)00061-2; Falster DS, 2003, NEW PHYTOL, V158, P509, DOI 10.1046/j.1469-8137.2003.00765.x; Feild TS, 2001, OECOLOGIA, V127, P314, DOI 10.1007/s004420000603; Floyd A. G., 2008, RAINFOREST TREES MAI; FRANKLIN JF, 1981, FOREST SUCCESSION CO, P212; Grubb PJ, 1996, MONOG BIOL, V74, P215; HANAN JS, 1997, ADV COMPUTATIONAL LI, P28; Hubbell SP, 1999, SCIENCE, V283, P554, DOI 10.1126/science.283.5401.554; Hyland B. P. M., 2002, AUSTR TROPICAL RAIN; Jablonski D, 2006, SCIENCE, V314, P102, DOI 10.1126/science.1130880; Kneeshaw DD, 1998, ECOLOGY, V79, P783, DOI 10.2307/176578; Lambers H., 1998, PLANT PHYSL ECOLOGY; Lieberman D., 1985, J TROP ECOL, V1, P97, DOI DOI 10.1017/S026646740000016X; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; LONDON J, 1989, ADV SPACE RES-SERIES, V9, P161, DOI 10.1016/0273-1177(89)90158-0; Lusk CH, 1998, ECOLOGY, V79, P795, DOI 10.1890/0012-9658(1998)079[0795:LHDATS]2.0.CO;2; Lusk CH, 2002, OECOLOGIA, V132, P188, DOI 10.1007/s00442-002-0974-9; Lusk CH, 2008, TRENDS ECOL EVOL, V23, P299, DOI 10.1016/j.tree.2008.02.006; Miyazawa K., 2005, NEW PHYTOL, V165, P857; Moles AT, 2004, J ECOL, V92, P384, DOI 10.1111/j.0022-0477.2004.00880.x; Moles AT, 2005, SCIENCE, V307, P576, DOI 10.1126/science.1104863; MONTEITH JL, 1972, J APPL ECOL, V9, P747, DOI 10.2307/2401901; OGDEN J, 1991, J VEG SCI, V2, P165, DOI 10.2307/3235948; Ogden J, 1995, ECOLOGY SO CONIFERS, P81; Parker GG, 1997, NORTHWEST SCI, V71, P261; Pearcy RW, 2004, OECOLOGIA, V139, P163, DOI 10.1007/s00442-004-1496-4; Pearcy RW, 1996, OECOLOGIA, V108, P1, DOI 10.1007/BF00333208; PIANKA ER, 1976, J ECOL, V16, P775; Poorter L, 1999, AM J BOT, V86, P1464, DOI 10.2307/2656927; Poorter L., 2009, NEW PHYTOL, V185, P481; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; PRENTICE IC, 1990, J ECOL, V78, P340, DOI 10.2307/2261116; Quinn G.P., 2002, EXPT DESIGNS DATA AN; Reich PB, 2004, ECOL MONOGR, V74, P3, DOI 10.1890/02-4047; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Rich P. M., 1990, Remote Sensing Reviews, V5, P13; Richards P. W., 1996, TROPICAL RAIN FOREST; RICHARDSON SJ, 2002, NZ J ECOLOG IN PRESS, V34, P306; RICKLEFS RE, 1977, AM NAT, V111, P376, DOI 10.1086/283169; Roderick ML, 2001, OECOLOGIA, V129, P21, DOI 10.1007/s004420100760; ROHDE K, 1992, OIKOS, V65, P514, DOI 10.2307/3545569; Royal Botanic Gardens Kew, 2008, SEED INF DAT SID VER; Runkle J. R., 1985, The ecology of natural disturbance and patch dynamics, P17; SPERRY JS, 1992, PLANT PHYSIOL, V100, P605, DOI 10.1104/pp.100.2.605; Thornley J. H. M., 1976, MATH MODELS PLANT PH; Valladares F, 1998, OECOLOGIA, V114, P1, DOI 10.1007/s004420050413; Valladares F, 2002, AM J BOT, V89, P1275, DOI 10.3732/ajb.89.8.1275; VEBLEN TT, 1980, J ECOL, V68, P1, DOI 10.2307/2259240; VILLAR R, 1995, PLANT PHYSIOL, V107, P421, DOI 10.1104/pp.107.2.421; Wallace A. R., 1878, TROPICAL NATURE OTHE; Walters MB, 1999, NEW PHYTOL, V143, P143, DOI 10.1046/j.1469-8137.1999.00425.x; Wardle P., 1991, VEGETATION NZ; Weishampel JF, 1996, ECOL MODEL, V86, P101, DOI 10.1016/0304-3800(94)00201-0; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Whittaker R. H., 1969, DIVERSITY STABILITY, P178; Willig MR, 2003, ANNU REV ECOL EVOL S, V34, P273, DOI 10.1146/annurev.ecolsys.34.012103.144032; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; ZANNE AE, 2009, DRYAD, DOI DOI 10.5061/DRYAD.234/I 74 9 9 0 33 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-0477 J ECOL J. Ecol. MAR 2011 99 2 491 502 10.1111/j.1365-2745.2010.01766.x 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 727GF WOS:000287785300015 Bronze 2019-02-21 J Moreau, DTR; Fleming, IA; Fletcher, GL; Brown, JA Moreau, D. T. R.; Fleming, I. A.; Fletcher, G. L.; Brown, J. A. Growth hormone transgenesis does not influence territorial dominance or growth and survival of first-feeding Atlantic salmon Salmo salar in food-limited stream microcosms JOURNAL OF FISH BIOLOGY English Article competition; density; environment; genetically modified organism; prior residence WILD BROWN TROUT; OWNER-INTRUDER CONFLICTS; LIFE-HISTORY STRATEGIES; JUVENILE RAINBOW-TROUT; COHO SALMON; PRIOR RESIDENCE; ONCORHYNCHUS-KISUTCH; GENETIC-DIVERGENCE; METABOLIC-RATE; SOCIAL-STATUS This study explored the relative competitive ability and performance of first-feeding growth hormone (GH) transgenic and non-transgenic Atlantic salmon Salmo salar fry under low food conditions. Pair-wise dominance trials indicated a strong competitive advantage for residents of a contested foraging territory. Transgenic and non-transgenic individuals, however, were equally likely to be dominant. Similarly, in stream environments with limited food, the transgene did not influence the growth in mass or survival at high or low fry densities. Fry in low-density treatments, however, performed better than fry in high-density treatments. These results indicate that, under the environment examined, the growth performance of GH-transgenic and non-transgenic S. salar may be similar during first feeding, an intense period of selection in their life history. Similarities in competitive ability and growth performance with wild-type fish suggest that the capacity of transgenic S. salar to establish in natural streams may not be inhibited during early life history. [Moreau, D. T. R.; Fleming, I. A.; Fletcher, G. L.; Brown, J. A.] Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada Moreau, DTR (reprint author), Mem Univ Newfoundland, Ctr Ocean Sci, St John, NF A1C 5S7, Canada. dmoreau@mun.ca Fleming, Ian/I-7217-2012 USDA First and foremost, the authors would like to acknowledge our co-author, the late J. Brown, without whom this research would not have materialized. We would also like to thank our reviewers for their valued input into this work. Support was kindly provided by a collaborative grant led by E. Hallerman and funded by the USDA Biotechnology Risk Assessment Research Grants Program. Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; ALFORD RA, 1985, ECOLOGY, V66, P1097, DOI 10.2307/1939161; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Cook JT, 2000, AQUACULTURE, V188, P33, DOI 10.1016/S0044-8486(00)00332-X; Cutts CJ, 1999, OIKOS, V86, P479, DOI 10.2307/3546652; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; Deitch EJ, 2006, J EXP BIOL, V209, P1310, DOI 10.1242/jeb.02105; Deverill JI, 1999, J FISH BIOL, V55, P868, DOI 10.1111/j.1095-8649.1999.tb00723.x; Devlin RH, 2006, TRENDS BIOTECHNOL, V24, P89, DOI 10.1016/j.tibtech.2005.12.008; Devlin RH, 1999, AQUAC RES, V30, P479, DOI 10.1046/j.1365-2109.1999.00359.x; Devlin RH, 2004, P NATL ACAD SCI USA, V101, P9303, DOI 10.1073/pnas.0400023101; Devlin RH, 2004, AQUACULTURE, V236, P607, DOI 10.1016/j.aquaculture.2004.02.026; DEVLIN RH, 1995, CAN J FISH AQUAT SCI, V52, P1376, DOI 10.1139/f95-133; DU SJ, 1992, BIO-TECHNOL, V10, P176, DOI 10.1038/nbt0292-176; Einum S, 1997, J FISH BIOL, V50, P634, DOI 10.1006/jfbi.1996.0330; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; Elwood RW, 1998, NATURE, V393, P66, DOI 10.1038/29980; Ferguson A., 2007, ATLANTIC SALMON GENE, P367; Fleming IA, 1997, ICES J MAR SCI, V54, P1051, DOI 10.1006/jmsc.1997.0289; Fleming IA, 2000, P ROY SOC B-BIOL SCI, V267, P1517, DOI 10.1098/rspb.2000.1173; Fu C, 2005, REV SCI TECH OIE, V24, P299, DOI 10.20506/rst.24.1.1577; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; Geange SW, 2009, ECOLOGY, V90, P2868, DOI 10.1890/08-0630.1; Gong Z, 2007, ENV RISK ASSESS GENE, V3, P95; GRANT JWA, 1990, CAN J FISH AQUAT SCI, V47, P1724, DOI 10.1139/f90-197; Hindar K, 2006, ICES J MAR SCI, V63, P1234, DOI 10.1016/j.icesjms.2006.04.025; Johnsson JI, 1999, J FISH BIOL, V54, P469, DOI 10.1006/jfbi.1998.0881; JOHNSSON JI, 1994, ANIM BEHAV, V48, P177, DOI 10.1006/anbe.1994.1224; Jonsson E, 1998, HORM BEHAV, V33, P9, DOI 10.1006/hbeh.1997.1426; KALLEBERG HARRY, 1958, REPT INST FRESHWATER RES DROTTNINGHOLM, V39, P55; KEELEY ER, 1995, CAN J FISH AQUAT SCI, V52, P186, DOI 10.1139/f95-019; KEENLEYSIDE MILES H. A., 1962, BEHAVIOUR, V19, P139, DOI 10.1163/156853961X00231; LEIMAR O, 1984, J THEOR BIOL, V111, P475, DOI 10.1016/S0022-5193(84)80235-0; Levesque HM, 2008, J EXP BIOL, V211, P128, DOI 10.1242/jeb.006890; Maclean N, 2002, GENE, V295, P265, DOI 10.1016/S0378-1119(02)00735-7; Martinez R, 2000, BIOCHEM BIOPH RES CO, V267, P466, DOI 10.1006/bbrc.1999.1956; McGinnity P, 2003, P ROY SOC B-BIOL SCI, V270, P2443, DOI 10.1098/rspb.2003.2520; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1992, J ANIM ECOL, V61, P585, DOI 10.2307/5613; Morris MRJ, 2008, CAN J FISH AQUAT SCI, V65, P2807, DOI 10.1139/F08-181; Nam YK, 2007, ENV RISK ASSESS GENE, V3, P61; Neregard L, 2008, J FISH BIOL, V73, P2341, DOI 10.1111/j.1095-8649.2008.02082.x; Nislow KH, 2004, J FISH BIOL, V65, P188, DOI 10.1111/j.1095-8649.2004.00561.x; OCONNELL MF, 2003, 2003002 CAN SCI ADV, P1; Pitkanen TI, 1999, GENET ANAL-BIOMOL E, V15, P91, DOI 10.1016/S1050-3862(99)00011-X; Puckett K. J., 1985, BEHAVIOUR, V92, P99; Rahman MA, 1999, AQUACULTURE, V173, P333, DOI 10.1016/S0044-8486(98)00456-6; Rhodes JS, 1998, J FISH BIOL, V53, P1220; Snell-Rood E., 2005, ETHOLOGY, V11, P441; Stevens ED, 1998, CAN J FISH AQUAT SCI, V55, P2028, DOI 10.1139/cjfas-55-9-2028; Sundstrom FL, 2003, ETHOLOGY, V109, P701; Sundstrom LF, 2004, P ROY SOC B-BIOL SCI, V271, pS350, DOI 10.1098/rsbl.2004.0189; Sundstrom LF, 2005, EVOLUTION, V59, P1560; Sundt-Hansen L, 2007, BIOL LETTERS, V3, P165, DOI 10.1098/rsbl.2006.0598; Thorstad E, 2008, 36 NINA; Twyman RM., 2005, GENE TRANSFER ANIMAL; WILZBACH MA, 1986, ECOLOGY, V67, P898, DOI 10.2307/1939812; Yaskowiak ES, 2006, TRANSGENIC RES, V15, P465, DOI 10.1007/s11248-006-0020-5 61 17 17 0 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 J FISH BIOL J. Fish Biol. MAR 2011 78 3 726 740 10.1111/j.1095-8649.2010.02888.x 15 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 729BD WOS:000287920800004 21366569 2019-02-21 J Matsuki, T; Matsui, M Matsuki, Takashi; Matsui, Masafumi A Skeletochronological Study of Breeding Females in a Population of Japanese Clouded Salamanders (Hynobius nebulosus) ZOOLOGICAL SCIENCE English Article Life history traits; skeletochronology; age structure; age at first reproduction; longevity; Hynobius nebulosus LIFE-HISTORY EVOLUTION; KIMURAE AMPHIBIA; AGE STRUCTURE; BODY-SIZE; URODELA; CAUDATA; GROWTH; NEWTS The age structure of breeding females of Hynobius nebulosus has not been studied sufficiently. We estimated the ages of 76 individuals from a population in Kyoto by using skeletochronology. The mean age and snout-vent length (SVL) of this population were 4.6 years and 55.7 mm, respectively. It was estimated that the youngest females breed two years post hatching at a mean SVL of 46.5 mm, but a larger number of individuals begins breeding at three years and a mean SVL of 52.2 mm. Because most males also start to breed at three years, there seems to be no gender difference in the timing of sexual maturation. The age of the oldest female was estimated to be 11.8 years. It is possible that the life history of H. nebulosus is characterized by early maturation and arrested growth, and short longevity. [Matsuki, Takashi; Matsui, Masafumi] Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Kyoto 6068501, Japan Matsui, M (reprint author), Kyoto Univ, Grad Sch Human & Environm Studies, Sakyo Ku, Yoshida Nihonmatsu Cho, Kyoto 6068501, Japan. fumi@zoo.zool.kyoto-u.ac.jp Bruce RC, 2002, HERPETOLOGICA, V58, P181, DOI 10.1655/0018-0831(2002)058[0181:SAOVIA]2.0.CO;2; Caetano MH, 1996, COPEIA, P866; Castanet J., 2003, Amphibian Biology, V5, P1598; Dodd C., 1994, MEASURING MONITORING, P125; DOUGLAS ME, 1979, CAN J ZOOL, V57, P2303, DOI 10.1139/z79-299; Ento K, 2002, ZOOL SCI, V19, P241, DOI 10.2108/zsj.19.241; *ENV AG JAP, 2006, RED LIST AMPH; Halliday T, 2006, ECOLOGICAL CENSUS TECHNIQUES: A HANDBOOK, 2ND EDITION, P278, DOI 10.1017/CBO9780511790508.008; HORN HS, 1984, BEHAVIORAL ECOLOGY E, P279; HOUCK LD, 1982, COPEIA, P474, DOI 10.2307/1444637; HUSTING EL, 1965, COPEIA, P352; KUSANO T, 1982, RES POPUL ECOL, V24, P329, DOI 10.1007/BF02515580; Kusano Tamotsu, 2006, Current Herpetology, V25, P71, DOI 10.3105/1345-5834(2006)25[71:BSAASO]2.0.CO;2; Marunouchi J, 2000, AMPHIBIA-REPTILIA, V21, P381, DOI 10.1163/156853800507444; Matsui M, 2004, ZOOL SCI, V21, P661, DOI 10.2108/zsj.21.661; Matsui M, 2006, BIOL J LINN SOC, V89, P311, DOI 10.1111/j.1095-8312.2006.00676.x; Matsui M, 2009, ZOOL SCI, V26, P87, DOI 10.2108/zsj.26.87; Matsuki Takashi, 2009, Current Herpetology, V28, P41, DOI 10.3105/018.028.0201; Misawa Y, 1997, ZOOL SCI, V14, P257, DOI 10.2108/zsj.14.257; Misawa Y, 1999, ZOOL SCI, V16, P845, DOI 10.2108/zsj.16.845; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Nishikawa K, 2007, ZOOL SCI, V24, P752, DOI 10.2108/zsj.24.752; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; SAKAMOTO M, 2008, THESIS KUMAMOTO U KU; Sato I., 1943, MONOGRAPH TAILED BAT; SMIRINA EM, 1994, GERONTOLOGY, V40, P133, DOI 10.1159/000213583; TANABE S, 1997, BASIC DATA ENDANGERE, P287; TILLEY SG, 1993, HERPETOLOGICA, V49, P154; Tominaga A, 2008, ZOOL SCI, V25, P107, DOI 10.2108/zsj.25.107; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB 30 1 2 0 5 ZOOLOGICAL SOC JAPAN TOKYO HONGO MT BUILDING 4F, HONGO 7-2-2, BUNKYO-KU, TOKYO, 113-0033, JAPAN 0289-0003 ZOOL SCI Zool. Sci. MAR 2011 28 3 175 179 10.2108/zsj.28.175 5 Zoology Zoology 726NW WOS:000287731000002 21385057 2019-02-21 J McNamara, JM; Dall, SRX McNamara, John M.; Dall, Sasha R. X. The evolution of unconditional strategies via the 'multiplier effect' ECOLOGY LETTERS English Article dispersal; intergenerational effects; metapopulation; natal philopatry; optimal cue use BREEDING HABITAT SELECTION; SITE FIDELITY; REPRODUCTIVE SUCCESS; DISPERSAL STRATEGIES; VARYING ENVIRONMENTS; DEFINE FITNESS; INFORMATION; CONSEQUENCES; DENSITY; MODELS P>Ostensibly, it makes sense in a changeable world to condition behaviour and development on information when it is available. Nevertheless, unconditional behavioural and life history strategies are widespread. Here, we show how intergenerational effects can limit the evolutionary value of responding to reliable environmental cues, and thus favour the evolutionary persistence of otherwise paradoxical unconditional strategies. While cue-ignoring genotypes do poorly in the wrong environments, in the right environment they will leave many copies of themselves, which will themselves leave many copies, and so on, leading genotypes to accumulate in habitats in which they do well. We call this 'The Multiplier Effect'. We explore the consequences of the multiplier effect by focussing on the ecologically important phenomenon of natal philopatry. We model the environment as a large number of temporally varying breeding sites connected by natal dispersal between sites. Our aim is to identify which aspects of an environment promote the multiplier effect. We show, if sites remain connected through some background level of 'accidental' dispersal, unconditional natal philopatry can evolve even when there is density dependence (with its accompanying kin competition effects), and cues that are only mildly erroneous. Thus, the multiplier effect may underpin the evolution and maintenance of unconditional strategies such as natal philopatry in many biological systems. [Dall, Sasha R. X.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat Biosci, Tremough TR109EZ, Penryn, England; [McNamara, John M.] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England Dall, SRX (reprint author), Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat Biosci, Cornwall Campus, Tremough TR109EZ, Penryn, England. sashadall@iname.com Dall, Sasha/B-2642-2010 Dall, Sasha/0000-0001-9873-6507 Bell CD, 2010, CONSERV BIOL, V24, P226, DOI 10.1111/j.1523-1739.2009.01313.x; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; BOSC P, 1986, OCEANOL ACTA, V9, P489; Boulinier T, 1996, J AVIAN BIOL, V27, P252, DOI 10.2307/3677230; Boulinier T, 1996, ACTA OECOL, V17, P531; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Chesson P, 2000, THEOR POPUL BIOL, V58, P211, DOI 10.1006/tpbi.2000.1486; Craig AS, 1997, CAN J ZOOL, V75, P1923, DOI 10.1139/z97-822; Davis JM, 2008, Q REV BIOL, V83, P363, DOI 10.1086/592851; Doligez B, 2003, ANIM BEHAV, V66, P973, DOI 10.1006/anbe.2002.2270; Doligez B, 1999, J ANIM ECOL, V68, P1193, DOI 10.1046/j.1365-2656.1999.00362.x; Enfjall K, 2009, OIKOS, V118, P291, DOI 10.1111/j.1600-0706.2008.16863.x; FORBES LS, 1994, OIKOS, V70, P377, DOI 10.2307/3545775; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; HASTINGS A, 1983, THEOR POPUL BIOL, V24, P244, DOI 10.1016/0040-5809(83)90027-8; Holt RD, 2003, EVOL ECOL RES, V5, P159; HOLT RD, 1985, THEOR POPUL BIOL, V28, P181, DOI 10.1016/0040-5809(85)90027-9; Holt RD, 1996, EVOL ECOL, V10, P1, DOI 10.1007/BF01239342; Hovestadt T, 2010, ECOL MODEL, V221, P405, DOI 10.1016/j.ecolmodel.2009.11.005; Huntingford FA, 1998, J FISH BIOL, V53, P847, DOI 10.1111/j.1095-8649.1998.tb01838.x; JOHNSON ML, 1990, ANNU REV ECOL SYST, V21, P449, DOI 10.1146/annurev.es.21.110190.002313; KAWECKI TJ, 1995, EVOL ECOL, V9, P38, DOI 10.1007/BF01237695; Kawecki TJ, 2002, AM NAT, V160, P333, DOI 10.1086/341519; Koenig WD, 1996, TRENDS ECOL EVOL, V11, P514, DOI 10.1016/S0169-5347(96)20074-6; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Levins R., 1968, EVOLUTION CHANGING E; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; McElreath R, 2008, CURR ANTHROPOL, V49, P307, DOI 10.1086/524364; McNamara JM, 2011, ECOL LETT, V14, P58, DOI 10.1111/j.1461-0248.2010.01556.x; McNamara JM, 2010, OIKOS, V119, P231, DOI 10.1111/j.1600-0706.2009.17509.x; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Metz JAJ, 2001, P ROY SOC B-BIOL SCI, V268, P499, DOI 10.1098/rspb.2000.1373; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Schlossberg S, 2009, CONDOR, V111, P238, DOI 10.1525/cond.2009.080087; SMITH JM, 1973, ECOLOGY, V54, P384, DOI 10.2307/1934346; Switzer PV, 1997, BEHAV ECOL SOCIOBIOL, V40, P307, DOI 10.1007/s002650050346; Switzer PV, 1997, ANIM BEHAV, V53, P865, DOI 10.1006/anbe.1996.0352; SWITZER PV, 1993, EVOL ECOL, V7, P533, DOI 10.1007/BF01237820 41 27 27 0 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. MAR 2011 14 3 237 243 10.1111/j.1461-0248.2010.01576.x 7 Ecology Environmental Sciences & Ecology 723SZ WOS:000287528600004 21244592 2019-02-21 J Billman, EJ; Tjarks, BJ; Belk, MC Billman, E. J.; Tjarks, B. J.; Belk, M. C. Effect of predation and habitat quality on growth and reproduction of a stream fish ECOLOGY OF FRESHWATER FISH English Article nonnative species; habitat degradation; brown trout; Salmo trutta; Lepidomeda aliciae LIFE-HISTORY EVOLUTION; CHUB GILA-COPEI; GUPPIES POECILIA-RETICULATA; TROUT SALMO-TRUTTA; LEATHERSIDE CHUB; BROWN TROUT; EGG SIZE; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; SPATIAL SCALES Anthropogenic disturbances are rarely independent, requiring native fishes to respond to multiple factors to persist in changing environments. We examined the interaction of predation environment (presence of introduced brown trout, Salmo trutta) and habitat quality on growth and reproduction of southern leatherside chub, Lepidomeda aliciae, a small-bodied stream fish native to central Utah, USA. Southern leatherside chub were sampled from four streams representing a complete two-factor cross of predation environment and habitat quality. Growth was estimated using increment analysis of annuli on otoliths, and reproductive traits were measured for both sexes. Southern leatherside chub growth was greater in high-quality than in low-quality habitats, and greater in predator than in nonpredator environments. However, fish exhibited a greater growth response to presence of brown trout in low-quality habitats. Southern leatherside chub growth followed predictions of plastic responses to resource availability based on habitat quality and predation environment (lethal vs. nonlethal effects). Reproductive allocation (gonad wet mass) was significantly greater in low-quality versus high-quality habitats, but was unaffected by predation environment. Other female life-history traits were affected either by both effects or their interaction. Reproductive responses to habitat quality and predation environment were consistent with predictions based on differential mortality. Southern leatherside chub growth and reproduction responded differently to the combination of habitat quality and predation environment, thus demonstrating the importance of assessing interacting effects of anthropogenic disturbances to more fully comprehend impacts on native species and to appropriately manage, recover and restore these species and their habitats. [Billman, E. J.; Tjarks, B. J.; Belk, M. C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA Billman, EJ (reprint author), Brigham Young Univ, Dept Biol, 401 Widtsoe Bldg, Provo, UT 84602 USA. mark_belk@byu.edu Department of Biology at BYU Funding was provided by the Department of Biology at BYU. Chandler Peterson, Sage Kelley, Sudeep Ghimire, Peter Meyers, and Jonathan Wilcox helped collect and process fish. Josh Rasmussen provided assistance with statistical analyses and helped create the map of the study sites. A collecting permit was provided by the Utah Division of Wildlife Resources (COR # 1COLL5950). Collecting procedures were approved by the BYU Institute Animal Care and Use Committee (Protocol # 090503). Abrams PA, 1997, J N AM BENTHOL SOC, V16, P358, DOI 10.2307/1468024; Aedo JR, 2009, J FISH BIOL, V74, P278, DOI 10.1111/j.1095-8649.2008.02113.x; ALLAN JD, 1993, BIOSCIENCE, V43, P32, DOI 10.2307/1312104; Aparicio E, 1999, J FISH BIOL, V55, P1086, DOI 10.1111/j.1095-8649.1999.tb00743.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Beamish F. W. H., 1978, FISH PHYSIOL, P101, DOI [DOI 10.1016/S1546-5098(08)60164-8, 10.1016/S1546-5098(08)60164-8]; Belk MC, 2007, AM FISH S S, V53, P67; Bell A, 2004, WEST N AM NATURALIST, V64, P413; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Billman EJ, 2008, N AM J AQUACULT, V70, P273, DOI 10.1577/A07-044.1; Borcherding J, 2008, ECOL FRESHW FISH, V17, P207, DOI 10.1111/j.1600-0633.2007.00272.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Brett J. R, 1979, FISH PHYSIOL, V8, P599; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; BRUTON MN, 1995, ENVIRON BIOL FISH, V43, P1, DOI 10.1007/BF00001812; Burnham K. P, 2002, MODEL SELECTION MULT; Carveth CJ, 2006, T AM FISH SOC, V135, P1433, DOI 10.1577/T05-025.1; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Chivers DP, 2008, EVOL ECOL, V22, P561, DOI 10.1007/s10682-007-9182-8; COOPER SD, 1990, ECOLOGY, V71, P1503, DOI 10.2307/1938287; Crispo E, 2010, EVOL ECOL RES, V12, P47; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Ellsworth C.M., 2003, THESIS B YOUNG U PRO; Fischer JR, 2010, T AM FISH SOC, V139, P185, DOI 10.1577/T09-050.1; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; GORE JA, 1995, BIOSCIENCE, V45, P142, DOI 10.2307/1312553; Gregersen F, 2008, ECOL FRESHW FISH, V17, P110, DOI 10.1111/j.1600-0633.2007.00264.x; Gregersen F, 2006, ECOL FRESHW FISH, V15, P237, DOI 10.1111/j.1600-0633.2006.00129.x; HEINS DC, 1986, J FISH BIOL, V28, P343, DOI 10.1111/j.1095-8649.1986.tb05171.x; HEINS DC, 1992, COPEIA, P404, DOI 10.2307/1446200; Holomuzki JR, 2010, J N AM BENTHOL SOC, V29, P220, DOI 10.1899/08-044.1; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Hyvarinen P, 2006, J FISH BIOL, V68, P87, DOI 10.1111/j.1095-8649.2005.00879.x; Johnson JB, 2004, SYST BIOL, V53, P841, DOI 10.1080/1063515490522557; JOHNSON JB, 1995, GREAT BASIN NAT, V55, P183; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kahler TH, 2001, CAN J FISH AQUAT SCI, V58, P1947, DOI 10.1139/cjfas-58-10-1947; LAW R, 1979, AM NAT, V114, P299; Lundvall D, 1999, CAN J FISH AQUAT SCI, V56, P1285, DOI 10.1139/cjfas-56-7-1285; MAC ARTHUR ROBERT H., 1967; Magner JA, 2008, ENVIRON MANAGE, V42, P377, DOI 10.1007/s00267-008-9132-4; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; MILLER RR, 1989, FISHERIES, V14, P22, DOI 10.1577/1548-8446(1989)014<0022:EONAFD>2.0.CO;2; MILLS CA, 1991, CYPRINID FISHES SYST, P483; Mills MD, 2004, OECOLOGIA, V141, P713, DOI 10.1007/s00442-004-1695-z; Minckley W. L., 1991, BATTLE EXTINCTION NA; Nannini MA, 2006, ECOL FRESHW FISH, V15, P453, DOI 10.1111/j.1600-0633.2006.00177.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Quist MC, 2001, ECOL FRESHW FISH, V10, P88, DOI 10.1034/j.1600-0633.2001.100203.x; Rader RB, 1999, REGUL RIVER, V15, P353, DOI 10.1002/(SICI)1099-1646(199907/08)15:4<353::AID-RRR551>3.0.CO;2-U; RASMUSSEN JE, 2010, ECOLOGICAL IMPORTANC; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 2008, MOL ECOL, V17, P97, DOI 10.1111/j.1365-294X.2007.03474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rohlf F, 2008, TPSDIG2 DIGITIZE LAN; SAS Institute Inc, 2008, SAS 9 2 HELP DOC; SIGLER W.F., 1963, FISHES UTAH; Stockwell CA, 2000, WEST N AM NATURALIST, V60, P273; Townsend CR, 2003, CONSERV BIOL, V17, P38, DOI 10.1046/j.1523-1739.2003.02017.x; Townsend CR, 1996, BIOL CONSERV, V78, P13, DOI 10.1016/0006-3207(96)00014-6; Vander Zanden MJ, 1999, ECOLOGY, V80, P1395; Walser CA, 1999, GREAT BASIN NAT, V59, P272; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Westerberg M, 2004, ANIM BEHAV, V67, P273, DOI 10.1016/j.anbehav.2003.06.003; Wilson KW, 2001, WEST N AM NATURALIST, V61, P36; WOOTTON JT, 1994, ECOLOGY, V75, P151, DOI 10.2307/1939391; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 76 8 8 1 38 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0906-6691 ECOL FRESHW FISH Ecol. Freshw. Fish MAR 2011 20 1 102 113 10.1111/j.1600-0633.2010.00465.x 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 720VX WOS:000287311900012 2019-02-21 J Molloy, PP; Paddack, MJ; Reynolds, JD; Gage, MJG; Cote, IM Molloy, Philip P.; Paddack, Michelle J.; Reynolds, John D.; Gage, Matthew J. G.; Cote, Isabelle M. Relative size-at-sex-change in parrotfishes across the Caribbean: is there variance in a supposed life-history invariant? EVOLUTIONARY ECOLOGY English Article Hermaphroditism; Invariant life-history analysis; Protandry; Protogyny; Sex allocation theory; Sex change CHRYSOBLEPHUS-PUNICEUS PISCES; PROTOGYNOUS HERMAPHRODITE; SPARISOMA-VIRIDE; SOCIAL-CONTROL; BODY-SIZE; LOGISTIC DISTRIBUTION; CORAL-REEFS; GROWTH; FISH; ANIMALS Invariant life-history theory has been used to identify parallels in life histories across diverse taxa. One important invariant life-history model predicts that, given simple assumptions and conditions, size-at-sex-change relative to maximum attainable body size (relative size-at-sex-change, RSSC) will be invariant across populations and species in sequential hermaphrodites. Even if there are broad species-wide limits to RSSC, populations could fine-tune RSSC to local conditions and, consequently, exhibit subtle but important differences in timing of sex change. Previous analyses of the invariant sex-change model have not explicitly considered the potential for meaningful differences in RSSC within the confines of a broader 'invariance'. Furthermore, these tests differ in their geographical and taxonomic scope, which could account for their conflicting conclusions. We test the model using several populations of three female-first sex-changing Caribbean parrotfish species. We first test for species-wide invariance using traditional log-log regressions and randomisation analyses of population-specific point estimates of RSSC. We then consider error around these point estimates, which is rarely incorporated into invariant analyses, to test for differences among populations in RSSC. Log-log regressions could not unequivocally diagnose invariance in RSSC across populations; randomisation tests identified an invariant RSSC in redband parrotfish only. Analyses that incorporated within-population variability in RSSC revealed differences among populations in timing of sex change, which were independent of geography for all species. While RSSC may be evolutionarily constrained (as in redband parrotfish), within these bounds the timing of sex change may vary among populations. This variability is overlooked by traditional invariant analyses and not predicted by the existing invariant model. [Molloy, Philip P.] Univ British Columbia, Project Seahorse, Vancouver, BC V6T 1ZA, Canada; [Molloy, Philip P.; Paddack, Michelle J.; Reynolds, John D.; Cote, Isabelle M.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Molloy, Philip P.; Paddack, Michelle J.; Gage, Matthew J. G.] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England; [Paddack, Michelle J.] Santa Barbara City Coll, Santa Barbara, CA 93109 USA Molloy, PP (reprint author), Univ British Columbia, Project Seahorse, 2202 Main Mall, Vancouver, BC V6T 1ZA, Canada. philip.p.molloy@gmail.com; mjpaddack@sbcc.edu; reynolds@sfu.ca; m.gage@uea.ac.uk; imcote@sfu.ca Gage, Matthew/E-5539-2011; Reynolds, John/L-6345-2015 Reynolds, John/0000-0002-0459-0074 John and Pamela Salter Charitable Trust; BBSRC [02/A1/S/08113]; Leverhulme studentship [SAS/30146]; Government of Canada; Conservation International; National Center for Caribbean Coral Reef Research (NCORE) through EPA [R828020]; NSERC of Canada; Natural Environment Research Council [NE/C004442/1] Thanks to Fab* and Earth2Ocean labs at Simon Fraser University, Jenn Sunday, Maria Jose Juan Jorda, Arne Mooers, Wendy Palen, Nick Dulvy, Stuart West, Nick Colegrave, Wolf Blanckenhorn, Martin Reichard and two anonymous reviewers for helpful feedback on earlier versions of this manuscript, Alex Chubaty for help with R coding, and Marianne Fish for help creating Fig. 2. Particular thanks to Pete Buston for his suggestions regarding the framework of this manuscript, Table 1 and other useful comments. This is a contribution from the Earth2Ocean Group and Project Seahorse. P.P.M. was supported by the John and Pamela Salter Charitable Trust, a BBSRC studentship 02/A1/S/08113, a Leverhulme studentship # SAS/30146, a Government of Canada post-doctoral research fellowship and Conservation International's Marine Management Area Science program. M.J.P. was supported by the National Center for Caribbean Coral Reef Research (NCORE) through EPA grant #R828020. I.M.C. and J.D.R. were supported by NSERC of Canada Discovery Grants. Allsop DJ, 2003, J EVOLUTION BIOL, V16, P921, DOI 10.1046/j.1420-9101.2003.00590.x; Allsop DJ, 2003, NATURE, V425, P783, DOI 10.1038/425783a; Alonzo SH, 2004, FISH B-NOAA, V102, P1; ANTLE C, 1970, BIOMETRIKA, V57, P397, DOI 10.2307/2334848; BANNEROT S, 1987, OCEAN RES M, P561; Buston PM, 2004, NATURE, V428, DOI 10.1038/nature02512; Charnov EL, 2000, EVOL ECOL RES, V2, P1067; Charnov Eric L., 1993, P1; Chen MH, 2002, MAR BIOL, V140, P337, DOI 10.1007/s002270100700; Choat JH, 2006, MAR ECOL PROG SER, V318, P237, DOI 10.3354/meps318237; Choat JH, 1996, MAR ECOL PROG SER, V145, P33, DOI 10.3354/meps145033; Cipriani R, 2005, J EVOLUTION BIOL, V18, P1613, DOI 10.1111/j.1420-9101.2005.00949.x; CLIFTON KE, 1995, MAR ECOL PROG SER, V116, P39, DOI 10.3354/meps116039; Collin R, 2006, EVOLUTION, V60, P735, DOI 10.1111/j.0014-3820.2006.tb01152.x; Crossman DJ, 2001, LIMNOL OCEANOGR, V46, P1596, DOI 10.4319/lo.2001.46.7.1596; DeMartini EE, 2005, MAR ECOL PROG SER, V297, P259, DOI 10.3354/meps297259; Fairhurst L, 2007, AFR J MAR SCI, V29, P79, DOI 10.2989/AJMS.2007.29.1.7.71; Gardner A, 2005, AM NAT, V165, P551, DOI 10.1086/429526; GARRATT PA, 1993, S AFR J MARINE SCI, V13, P187, DOI 10.2989/025776193784287176; Gavio MA, 2006, J CRUSTACEAN BIOL, V26, P295, DOI 10.1651/C-2619.1; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; Gust N, 2002, MAR BIOL, V140, P1039, DOI 10.1007/s00227-001-0773-6; Hamilton SL, 2007, ECOL APPL, V17, P2268, DOI 10.1890/06-1930.1; Heubel KU, 2008, BIOL LETTERS, V4, P224, DOI 10.1098/rsbl.2007.0630; JONES GP, 1980, COPEIA, P660; LEIGH EG, 1976, P NATL ACAD SCI USA, V73, P3656, DOI 10.1073/pnas.73.10.3656; Linde M, 2008, J EVOLUTION BIOL, V21, P914, DOI [10.1111/j.1420-9101.2008.01508.x, 10.1111/j.1420-9101.2008.01508]; Mackie MC, 2003, CORAL REEFS, V22, P133, DOI 10.1007/s00338-003-0296-3; Molloy PP, 2007, ANIM CONSERV, V10, P30, DOI 10.1111/j.1469-1795.2006.00065.x; Munday PL, 2004, CAN J FISH AQUAT SCI, V61, P323, DOI 10.1139/F04-057; Munday PL, 2006, TRENDS ECOL EVOL, V21, P89, DOI 10.1016/j.tree.2005.10.020; Munoz RC, 2003, AM NAT, V161, P749, DOI 10.1086/374345; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; NEMTZOV SC, 1985, ENVIRON BIOL FISH, V14, P199, DOI 10.1007/BF00000827; Paddack MJ, 2009, J FISH BIOL, V75, P2509, DOI 10.1111/j.1095-8649.2009.02451.x; POLICANSKY D, 1982, ANNU REV ECOL SYST, V13, P471, DOI 10.1146/annurev.es.13.110182.002351; PUNT AE, 1993, S AFR J MARINE SCI, V13, P109, DOI 10.2989/025776193784287293; ROBERTSON DR, 1978, SMITHSON CONTRIB ZOO, V255, P1, DOI DOI 10.5479/SI.00810282.255); SCHAFER RE, 1973, BIOMETRICS, V29, P449, DOI 10.2307/2529168; SHAPIRO DY, 1981, J ZOOL, V193, P105; vanRooij JM, 1997, MAR BIOL, V128, P385, DOI 10.1007/s002270050104; VANROOIJ JM, 1995, MAR ECOL PROG SER, V122, P93, DOI 10.3354/meps122093; Vincent A, 1998, BEHAVIORAL ECOLOGY AND CONSERVATION BIOLOGY, P209; Walker SPW, 2004, MAR ECOL PROG SER, V266, P201, DOI 10.3354/meps266201; WARNER RR, 1975, AM NAT, V109, P61, DOI 10.1086/282974; WARNER RR, 1991, BIOL BULL-US, V181, P199, DOI 10.2307/1542090; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007; Westneat MW, 2005, MOL PHYLOGENET EVOL, V36, P370, DOI 10.1016/j.ympev.2005.02.001; Zar J. H., 1999, BIOSTATISTICAL ANAL 49 2 2 0 35 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 EVOL ECOL Evol. Ecol. MAR 2011 25 2 429 446 10.1007/s10682-010-9404-3 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 724NP WOS:000287583700014 2019-02-21 J Gibbs, M; Wiklund, C; Van Dyck, H Gibbs, M.; Wiklund, C.; Van Dyck, H. Phenotypic plasticity in butterfly morphology in response to weather conditions during development JOURNAL OF ZOOLOGY English Article adult phenotype; development; environment; flight morphology; Pararge aegeria; plasticity; seasonal variation; weather IN-FLIGHT MORPHOLOGY; MELITAEA-CINXIA LEPIDOPTERA; LIFE-HISTORY TRAITS; PARARGE-AEGERIA; LANDSCAPE STRUCTURE; HABITAT FRAGMENTATION; REACTION NORMS; TEMPERATURE; DESIGN; CLIMATE In seasonal environments, phenotypic plasticity in response to gradual changes in environmental variables may result in the production of discrete seasonal morphs. Production of the appropriate seasonal morph at the correct time relies on individuals interpreting environmental cues during their development. The speckled wood butterfly Pararge aegeria (L.) has previously been shown to have developmental and phenotypic plasticity across seasons and space (habitats). Here, we examine the developmental sensitivity of different seasonal cohorts of female P. aegeria to changes in local weather conditions over time (1989-1999) and determine how such temporal climatic variation affects adult phenotype development. We observed trait- and cohort-specific changes of adult phenotype development in response to local temporal changes in temperature and rainfall levels. We discuss our findings using current life-history theory and consider the potential for changes in local weather conditions to influence population variability in butterfly morphology and performance. [Gibbs, M.; Van Dyck, H.] Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, B-1348 Louvain, Belgium; [Gibbs, M.] NERC Ctr Ecol & Hydrol, Wallingford, Oxon, England; [Wiklund, C.] Stockholm Univ, Dept Zool, S-10691 Stockholm, Sweden Van Dyck, H (reprint author), Catholic Univ Louvain, Behav Ecol & Conservat Grp, Biodivers Res Ctr, Earth & Life Inst, Croix Sud 4-5, B-1348 Louvain, Belgium. hans.vandyck@uclouvain.be Gibbs, Melanie/E-6771-2012 Gibbs, Melanie/0000-0002-4091-9789 Universite catholique de Louvain (UCL) [FSR06]; Natural Environment Research Council [CEH010021] This research is supported by an FSR research grant of the Universite catholique de Louvain (UCL) to H.V.D. (Grant FSR06). This is publication no BRC 193 of the Biodiversity Research Centre (UCL, Louvain-la-Neuve). Casper J. Breuker provided valuable comments and statistical advice. ANDERSON MC, 1964, J ECOL, V52, P643, DOI 10.2307/2257853; Azevedo RBR, 1998, EVOLUTION, V52, P1353, DOI 10.1111/j.1558-5646.1998.tb02017.x; BERRIGAN D, 1991, FUNCT ECOL, V5, P448, DOI 10.2307/2389817; Berwaerts K, 1998, NETH J ZOOL, V48, P241, DOI 10.1163/156854298X00093; BETTS CR, 1988, J EXP BIOL, V138, P271; Bots J, 2009, CAN J ZOOL, V87, P86, DOI 10.1139/Z08-141; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BRAKEFIELD PM, 1995, J EVOLUTION BIOL, V8, P559, DOI 10.1046/j.1420-9101.1995.8050559.x; Breuker CJ, 2007, EUR J ENTOMOL, V104, P445, DOI 10.14411/eje.2007.064; Breuker CJ, 2010, MORPHOMETRICS NONMOR, P271; Dennis RLH., 1993, BUTTERFLIES CLIMATE; Dudley R., 2000, BIOMECHANICS INSECT; Fric Z, 2002, EVOL ECOL RES, V4, P1017; Fric Z, 2006, EVOL ECOL RES, V8, P1511; GIBBS M, 2010, ECOGRAPHY IN PRESS; Gibbs M, 2010, J INSECT PHYSIOL, V56, P1275, DOI 10.1016/j.jinsphys.2010.04.009; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; HENRIKSEN HJ, 1982, BUTTERFLIES SCANDINA; Hill JK, 2002, P ROY SOC B-BIOL SCI, V269, P2163, DOI 10.1098/rspb.2002.2134; Hill JK, 2001, ECOL LETT, V4, P313, DOI 10.1046/j.1461-0248.2001.00222.x; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; Karlsson B, 2005, J ANIM ECOL, V74, P99, DOI 10.1111/j.1365-2656.2004.00902.x; Merckx T, 2006, FUNCT ECOL, V20, P436, DOI 10.1111/j.1365-2435.2006.01124.x; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Merckx T, 2006, OIKOS, V113, P226, DOI 10.1111/j.2006.0030-1299.14501.x; Morecroft MD, 2002, GLOBAL ECOL BIOGEOGR, V11, P7, DOI 10.1046/j.1466-822X.2002.00174.x; Norberg U, 2002, BIOL J LINN SOC, V77, P445, DOI 10.1046/j.1095-8312.2002.00115.x; NORDSTROM F, 1955, DISTRIBUTION BUTTERF; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; POLLARD E, 1988, J APPL ECOL, V25, P819, DOI 10.2307/2403748; Przybylo R, 2000, J ANIM ECOL, V69, P395, DOI 10.1046/j.1365-2656.2000.00401.x; RAVENSCROFT NOM, 1994, J APPL ECOL, V31, P623, DOI 10.2307/2404153; Roff Derek A., 1992; Roy DB, 2001, J ANIM ECOL, V70, P201, DOI 10.1046/j.1365-2656.2001.00480.x; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schweiger O, 2006, LANDSCAPE ECOL, V21, P989, DOI 10.1007/s10980-005-6057-7; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stevens DJ, 2004, J THERM BIOL, V29, P205, DOI 10.1016/j.jtherbio.2004.02.005; Talloen W, 2004, EVOLUTION, V58, P360, DOI 10.1111/j.0014-3820.2004.tb01651.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Van Dyck H, 1999, TRENDS ECOL EVOL, V14, P172, DOI 10.1016/S0169-5347(99)01610-9; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WIKLUND C, 1983, ECOL ENTOMOL, V8, P233, DOI 10.1111/j.1365-2311.1983.tb00503.x; WOLTERECK R, 1909, VERH DTSCH ZOOL GES, V19, P110 49 7 7 4 30 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. MAR 2011 283 3 162 168 10.1111/j.1469-7998.2010.00756.x 7 Zoology Zoology 723SA WOS:000287526000002 2019-02-21 J Paterson, S; Piertney, SB Paterson, Steve; Piertney, Stuart B. Frontiers in host-parasite ecology and evolution MOLECULAR ECOLOGY English Review genomics; proteomics; host-parasite interactions; life history evolution; microbial biology [Paterson, Steve] Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England; [Piertney, Stuart B.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland Paterson, S (reprint author), Univ Liverpool, Inst Integrat Biol, Liverpool L69 7ZB, Merseyside, England. s.paterson@liv.ac.uk Piertney, Stuart/I-3144-2012; Paterson, Steve/D-2154-2009 Paterson, Steve/0000-0002-1307-2981; Piertney, Stuart/0000-0001-6654-0569 Natural Environment Research Council [NBAF010002, NE/D000769/1, NE/D000629/1, NE/H00775X/1] Abolins SR, 2011, MOL ECOL, V20, P881, DOI 10.1111/j.1365-294X.2010.04910.x; ANDERSON RM, 1978, J ANIM ECOL, V47, P219, DOI 10.2307/3933; Branca A, 2011, MOL ECOL, V20, P959, DOI 10.1111/j.1365-294X.2010.04977.x; Brockhurst MA, 2011, MOL ECOL, V20, P972, DOI 10.1111/j.1365-294X.2010.04835.x; Elton C. S., 1927, ANIMAL ECOLOGY; Giron D, 2011, MOL ECOL, V20, P990, DOI 10.1111/j.1365-294X.2010.04902.x; HALDANE JBS, 1949, RIC SCI, V19, P168; HAMILTON WD, 1980, OIKOS, V35, P282, DOI 10.2307/3544435; Hutchence KJ, 2011, MOL ECOL, V20, P950, DOI 10.1111/j.1365-294X.2010.04974.x; Jackson JA, 2011, MOL ECOL, V20, P893, DOI 10.1111/j.1365-294X.2010.04907.x; Knowles SCL, 2011, MOL ECOL, V20, P1062, DOI 10.1111/j.1365-294X.2010.04909.x; Megali A, 2011, MOL ECOL, V20, P1039, DOI 10.1111/j.1365-294X.2010.04905.x; Njabo KY, 2011, MOL ECOL, V20, P1049, DOI 10.1111/j.1365-294X.2010.04904.x; Pearce JM, 2011, MOL ECOL, V20, P1015, DOI 10.1111/j.1365-294X.2010.04908.x; Pedersen AB, 2011, MOL ECOL, V20, P872, DOI 10.1111/j.1365-294X.2010.04938.x; Pemberton JM, 2011, MOL ECOL, V20, P910, DOI 10.1111/j.1365-294X.2010.04992.x; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Scanlan PD, 2011, MOL ECOL, V20, P981, DOI 10.1111/j.1365-294X.2010.04903.x; SCHMIDHEMPEL P, 2010, BIOL LETT, V5, P625; Tollenaere C, 2011, MOL ECOL, V20, P1026, DOI 10.1111/j.1365-294X.2010.04633.x; WALKER EP, 1964, MAMMALS WORLD; Webster LMI, 2011, MOL ECOL, V20, P920, DOI 10.1111/j.1365-294X.2010.04906.x; Wertheim B, 2011, MOL ECOL, V20, P932, DOI 10.1111/j.1365-294X.2010.04911.x; Whiteman NK, 2011, MOL ECOL, V20, P995, DOI 10.1111/j.1365-294X.2010.04901.x 24 21 21 1 62 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0962-1083 MOL ECOL Mol. Ecol. MAR 2011 20 5 869 871 10.1111/j.1365-294X.2010.04991.x 3 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 721ZN WOS:000287397600001 21324008 Bronze 2019-02-21 J Bowden, RM; Paitz, RT; Janzen, FJ Bowden, R. M.; Paitz, Ryan T.; Janzen, Fredric J. The Ontogeny of Postmaturation Resource Allocation in Turtles PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article EGG SIZE; CHRYSEMYS-PICTA; PAINTED TURTLE; YOLK STEROIDS; INCUBATION-TEMPERATURE; STERNOTHERUS-ODORATUS; NATURAL-SELECTION; SEX DETERMINATION; PLASMA STEROIDS; MATERNAL-CARE Resource-allocation decisions vary with life-history strategy, and growing evidence suggests that long-lived endothermic vertebrates direct resources toward growth and self-maintenance when young, increasing allocation toward reproductive effort over time. Few studies have tracked the ontogeny of resource allocation (energy, steroid hormones, etc.) in long-lived ectothermic vertebrates, limiting our understanding of the generality of life-history strategies among vertebrates. We investigated how reproductively mature female painted turtles (Chrysemys picta) from two distinct age classes allocated resources over a 4-yr period and whether resource-allocation patterns varied with nesting experience. We examined age-related variation in body size, egg mass, reproductive frequency, and yolk steroids and report that younger females were smaller and allocated fewer resources to reproduction than did older females. Testosterone levels were higher in eggs from younger females, whereas eggs from second (seasonal) clutches contained higher concentrations of progesterone and estradiol. These allocation patterns resulted in older, larger females laying larger eggs and producing second clutches more frequently than their younger counterparts. We conclude that resource-allocation patterns do vary with age in a long-lived ectotherm. [Bowden, R. M.; Paitz, Ryan T.] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA; [Janzen, Fredric J.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA Bowden, RM (reprint author), Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA. rmbowde@ilstu.edu; rpaitz@ilstu.edu; fjanzen@iastate.edu Paitz, Ryan/A-8308-2008 Paitz, Ryan/0000-0003-4609-4359 National Science Foundation (NSF) [IBN-0212935, DEB-0089680, DEB-0640932] We thank all of the dedicated turtle campers who helped out over the course of this multiyear study and the Army Corps of Engineers for providing access to the field site. W. Roosenburg and two anonymous reviewers provided helpful comments, and Steve Juliano provided statistical advice. This research was supported by National Science Foundation (NSF) grants IBN-0212935 and DEB-0089680; NSF grant DEB-0640932 provides funding for ongoing work at the field site. Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; Bowden RM, 2001, GEN COMP ENDOCR, V121, P95, DOI 10.1006/gcen.2000.7579; Bowden RM, 2000, P ROY SOC B-BIOL SCI, V267, P1745, DOI 10.1098/rspb.2000.1205; CALLARD IP, 1978, GEN COMP ENDOCR, V35, P245, DOI 10.1016/0016-6480(78)90069-2; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; Clark PJ, 2001, FUNCT ECOL, V15, P70, DOI 10.1046/j.1365-2435.2001.00494.x; CONGDON JD, 1987, P NATL ACAD SCI USA, V84, P4145, DOI 10.1073/pnas.84.12.4145; Congdon JD, 2003, EXP GERONTOL, V38, P765, DOI 10.1016/S0531-5565(03)00106-2; CONGDON JD, 1982, HERPETOLOGICA, V38, P228; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Harms HK, 2005, PHYSIOL BIOCHEM ZOOL, V78, P996, DOI 10.1086/432920; Janzen FJ, 2002, J HERPETOL, V36, P308, DOI 10.2307/1566008; JANZEN FJ, 1994, P NATL ACAD SCI USA, V91, P7487, DOI 10.1073/pnas.91.16.7487; Janzen FJ, 1998, GEN COMP ENDOCR, V111, P306, DOI 10.1006/gcen.1998.7115; Janzen FJ, 2002, J EXP ZOOL, V293, P58, DOI 10.1002/jez.10092; Litzgus JD, 2008, COPEIA, P86, DOI 10.1643/CH-07-093; Lovern MB, 2008, INTEGR COMP BIOL, V48, P428, DOI 10.1093/icb/icn058; Mas F, 2008, ANIM BEHAV, V76, P1121, DOI 10.1016/j.anbehav.2008.06.011; MCPHERSON RJ, 1982, GEN COMP ENDOCR, V48, P440, DOI 10.1016/0016-6480(82)90179-4; Moore MC, 2008, INTEGR COMP BIOL, V48, P411, DOI 10.1093/icb/icn079; Nagy KA, 2005, J EXP BIOL, V208, P1621, DOI 10.1242/jeb.01553; Paitz RT, 2007, BIOL LETTERS, V3, P44, DOI 10.1098/rsbl.2006.0573; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; Rhen T, 2006, J EVOLUTION BIOL, V19, P1819, DOI 10.1111/j.1420-9101.2006.01180.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roff Derek A., 1992; Rollinson N, 2008, OIKOS, V117, P144, DOI 10.1111/j.2007.0030-1299.16088.x; Roosenburg WM, 1997, COPEIA, P290, DOI 10.2307/1447749; Roosenburg WM, 1996, J HERPETOL, V30, P198, DOI 10.2307/1565510; ROWE JW, 1994, COPEIA, P1034; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Schumacher IM, 1999, AM J VET RES, V60, P826; Schwabl H, 1996, J EXP ZOOL, V276, P157, DOI 10.1002/(SICI)1097-010X(19961001)276:2<157::AID-JEZ9>3.3.CO;2-Y; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Schwanz L. E., 2009, Ecology, V90, P1709, DOI 10.1890/08-1676.1; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; Sinn DL, 2008, ANIM BEHAV, V76, P1249, DOI 10.1016/j.anbehav.2008.06.009; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staub NL, 1997, GEN COMP ENDOCR, V108, P1, DOI 10.1006/gcen.1997.6962; Stuart-Smith J, 2007, J ZOOL, V273, P266, DOI 10.1111/j.1469-7998.2007.00324.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams TD, 2005, P ROY SOC B-BIOL SCI, V272, P173, DOI 10.1098/rspb.2004.2935; WINGFIELD JC, 1975, STEROIDS, V26, P311, DOI 10.1016/0039-128X(75)90077-X 43 9 9 0 13 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAR 2011 84 2 204 211 10.1086/658292 8 Physiology; Zoology Physiology; Zoology 725MK WOS:000287648600009 21460531 2019-02-21 J Russo, J; Madec, L Russo, Jacqueline; Madec, Luc Dual Strategy for Immune Defense in the Land Snail Cornu aspersum (Gastropoda, Pulmonata) PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article LIFE-HISTORY; ECOLOGICAL IMMUNOLOGY; EVOLUTIONARY ECOLOGY; BACTERIAL CHALLENGE; OXYGEN METABOLITES; FUNCTIONAL-ASPECTS; HELIX-ASPERSA; TRADE-OFFS; HEMOCYTES; RESISTANCE Immune defenses have been shown to be heavily involved in the evolution of physiological trade-offs. In this study, we compared the internal defense systems in two subspecies of the land snail Cornu aspersum that exhibit contrasting life-history strategies. The "fast-living" Cornu aspersum subsp. aspersa is widespread throughout the world, especially in ecosystems disturbed by man, whereas natural populations of the giant Cornu aspersum subsp. maxima, characterized by a longer life span, are present only in north Africa. Snails were experimentally challenged with Escherichia coli; the measurements used to assess their internal defense for cell-and humoral-mediated immune responses were bacterial clearance, hemocyte density, reactive oxygen species (ROS) production, and plasma antibacterial activity. Both subspecies showed a similar ability to clear bacteria from their hemolymph; however, they varied in the robustness of different individual immune components. Cornu aspersum aspersa had higher ROS activity than did C. a. maxima and lower plasma bactericidal activity. These results suggest that ecological factors can sculpt the immune response. One interpretation is that shorter life span selects for immune defenses such as ROS that, although effective, can cause long-term damage. Such different immune patterns obviously entail various costs involved in the strong intraspecific variation of life-history trade-offs we previously observed. We also have to consider that such variation might be related to intraspecific differences in the relative strength of resistance and tolerance mechanisms. [Russo, Jacqueline; Madec, Luc] Univ Rennes 1, ECOBIO, UMR 6553, F-35042 Rennes, France Russo, J (reprint author), Univ Rennes 1, ECOBIO, UMR 6553, Campus Beaulieu,Batiment 14A, F-35042 Rennes, France. jacqueline.russo@univ-rennes1.fr ADEMA CM, 1992, J INVERTEBR PATHOL, V59, P24, DOI 10.1016/0022-2011(92)90107-F; Barker G. M, 2002, MOLLUSCS CROP PESTS; BAYNE CJ, 1980, DEV COMP IMMUNOL, V4, P215, DOI 10.1016/S0145-305X(80)80025-5; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Carballal MJ, 1998, J INVERTEBR PATHOL, V72, P304, DOI 10.1006/jipa.1998.4779; CROKAERT F, 1988, J CLIN MICROBIOL, V26, P2069; DIKKEBOOM R, 1988, DEV COMP IMMUNOL, V12, P509, DOI 10.1016/0145-305X(88)90068-7; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Fevrier Y, 2009, J ZOOL, V277, P149, DOI 10.1111/j.1469-7998.2008.00523.x; HARM H, 1980, J INVERTEBR PATHOL, V36, P64, DOI 10.1016/0022-2011(80)90137-8; Hoffmann JA, 1996, CURR OPIN IMMUNOL, V8, P8, DOI 10.1016/S0952-7915(96)80098-7; Horak P, 1997, FOLIA PARASIT, V44, P161; Kurtz J, 2002, EVOL ECOL RES, V4, P431; Lee KA, 2004, TRENDS ECOL EVOL, V19, P523, DOI 10.1016/j.tree.2004.07.012; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; LEIPPE M, 1985, J INVERTEBR PATHOL, V46, P209, DOI 10.1016/0022-2011(85)90153-3; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Madec L, 1998, INVERTEBR REPROD DEV, V34, P83, DOI 10.1080/07924259.1998.9652356; Madec L, 2000, BIOL J LINN SOC, V69, P25, DOI 10.1006/bijl.1999.0324; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Miller MR, 2005, J THEOR BIOL, V236, P198, DOI 10.1016/j.jtbi.2005.03.005; Mitta G, 1999, J CELL SCI, V112, P4233; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Ottaviani E, 2006, ISJ-INVERT SURVIV J, V3, P50; PIPE RK, 1992, DEV COMP IMMUNOL, V16, P111, DOI 10.1016/0145-305X(92)90012-2; PIPE RK, 1995, AQUAT TOXICOL, V32, P59, DOI 10.1016/0166-445X(94)00076-3; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Schmid-Hempel P, 2003, P ROY SOC B-BIOL SCI, V270, P357, DOI 10.1098/rspb.2002.2265; Schneider DS, 2008, NAT REV IMMUNOL, V8, P889, DOI 10.1038/nri2432; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Storey KB, 1996, BRAZ J MED BIOL RES, V29, P1715; VANDERKNAAP WPW, 1993, COMP HAEMATOL INT, V3, P20, DOI 10.1007/BF00394923; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003 34 1 1 0 6 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAR 2011 84 2 212 221 10.1086/659123 10 Physiology; Zoology Physiology; Zoology 725MK WOS:000287648600010 21460532 2019-02-21 J Berzins, LL; Gilchrist, HG; Matson, KD; Burness, G Berzins, Lisha L.; Gilchrist, H. Grant; Matson, Kevin D.; Burness, Gary Sex-Specific Effects of Increased Incubation Demand on Innate Immunity in Black Guillemots PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article CLUTCH-SIZE; REPRODUCTIVE EFFORT; COLLARED FLYCATCHER; FUTURE REPRODUCTION; ENERGY-EXPENDITURE; TREE SWALLOWS; PARUS-MAJOR; GREAT TITS; TRADE-OFFS; COSTS Life-history theory predicts that there should be negative fitness consequences, in terms of future reproduction and survival, for parents with increased reproductive effort. We examined whether increased incubation demand affected innate immunity and body condition by performing a clutch-size manipulation experiment in black guillemots (Cepphus grylle). We found that plasma from males incubating experimentally enlarged clutches exhibited significantly reduced lysis titers compared with plasma from males incubating control clutches, while this was not observed in females. The increased incubation demand also impacted agglutination titers differently in males and females, although the effect of treatment was not significant in either sex. Among all birds, lysis titers increased and haptoglobin concentrations decreased from mid-to late incubation. Natural antibody-mediated agglutination titers and body condition were highly repeatable within the incubation bout and between years. This suggests that agglutination titers may serve as a reliable and resilient index of the immunological character of individuals in future studies. Overall, this study demonstrates that increased incubation demand impacts indices of innate immunity differently in males and females. The potential for different components of the immune system to be impacted sex-specifically should be considered in future studies linking immune function and life-history trade-offs. [Burness, Gary] Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada; [Berzins, Lisha L.] Trent Univ, Environm & Life Sci Grad Program, Peterborough, ON K9J 7B8, Canada; [Gilchrist, H. Grant] Carleton Univ, Environm Canada, Natl Wildlife Res Ctr, Sci & Technol Branch, Ottawa, ON K1A 0H3, Canada; [Matson, Kevin D.] Univ Groningen, Ctr Ecol & Evolutionary Studies, NL-9700 CC Groningen, Netherlands Burness, G (reprint author), Trent Univ, Dept Biol, Peterborough, ON K9J 7B8, Canada. garyburness@trentu.ca Matson, Kevin/G-3855-2010 Matson, Kevin/0000-0002-4373-5926 Canadian Wildlife Service; Science and Technology Branch of Environment Canada; Polar Continental Shelf Project; Nunavut Research Trust; Science Horizons; Natural Sciences and Engineering Research Council (NSERC); Northern Scientific Training Program of Indian; Northern Affairs Canada; Ontario Graduate Scholarship; ArcticNet grant; Netherlands Organisation for Scientific Research [863.08.026]; NSERC; Canadian Foundation for Innovation This work was supported by both the Canadian Wildlife Service and the Science and Technology Branch of Environment Canada. Further funding was provided by the Polar Continental Shelf Project, the Nunavut Research Trust, Science Horizons, the Natural Sciences and Engineering Research Council (NSERC) E-bird Canada project, the Northern Scientific Training Program of Indian and Northern Affairs Canada, an Ontario Graduate Scholarship to L.L.B., an ArcticNet grant to H.G.G, a Netherlands Organisation for Scientific Research Veni grant to K.D.M. (863.08.026), and an NSERC Discovery Grant and Canadian Foundation for Innovation New Opportunities grant to G.B. We thank J. Straka, I. Buttler, J. Hiscock, R. Kelly, and the East Bay Island field crew (2006-2007) for assistance in the field. We also thank the anonymous reviewers for their comments on earlier drafts of this manuscript, M. A. Versteegh for her helpful discussions regarding the statistical analysis, and Dr. B. I. Tieleman for allowing L.L.B. to visit her lab at the University of Groningen, Netherlands. ANKNEY CD, 1977, AUK, V94, P275; Ardia DR, 2006, CONDOR, V108, P601, DOI 10.1650/0010-5422(2006)108[601:GVITTB]2.0.CO;2; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; BATES D, 2008, LME4 LINEAR MIXED EF; Berzins LL, 2008, PHYSIOL BIOCHEM ZOOL, V81, P383, DOI 10.1086/529461; Berzins LL, 2009, WATERBIRDS, V32, P459, DOI 10.1675/063.032.0313; Bourgeon S, 2007, DEV COMP IMMUNOL, V31, P720, DOI 10.1016/j.dci.2006.11.009; Bourgeon S, 2006, PHYSIOL BIOCHEM ZOOL, V79, P793, DOI 10.1086/504609; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; Cichon M, 2000, OECOLOGIA, V125, P453, DOI 10.1007/s004420000461; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Dawson RD, 2008, AUK, V125, P889, DOI 10.1525/auk.2008.07165; de Heij ME, 2007, J EXP BIOL, V210, P2006, DOI 10.1242/jeb.001420; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Falconer D.S., 1981, INTRO QUANTITATIVE G; Gaston AJ, 1998, AUKS ALCIDAE; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAFTORN S, 1985, AUK, V102, P470; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hipfner JM, 1997, J AVIAN BIOL, V28, P271, DOI 10.2307/3676939; Horak P, 2003, BEHAV ECOL SOCIOBIOL, V54, P105, DOI 10.1007/s00265-003-0608-1; Ilmonen P, 2002, OECOLOGIA, V130, P199, DOI 10.1007/s004420100804; JACOBSEN KO, 1995, ECOLOGY, V76, P1636, DOI 10.2307/1938164; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Male D. K., 1996, IMMUNOLOGY; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P2267, DOI 10.1098/rspb.2006.3590; MEHLUM F, 1993, COLON WATERBIRD, V16, P45, DOI 10.2307/1521555; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MORENO J, 1995, J ANIM ECOL, V64, P721, DOI 10.2307/5851; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MORENO J, 1991, IBIS, V133, P186, DOI 10.1111/j.1474-919X.1991.tb04830.x; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; Paredes R, 2010, IBIS, V152, P48, DOI 10.1111/j.1474-919X.2009.00973.x; Quaye IK, 2008, T ROY SOC TROP MED H, V102, P735, DOI 10.1016/j.trstmh.2008.04.010; R Development Core Team, 2008, R LANG ENV STAT COMP; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; RICHNER H, 1995, P NATL ACAD SCI USA, V92, P1192, DOI 10.1073/pnas.92.4.1192; SALL J, 2005, JMP START STAT; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SZEKELY T, 1994, IBIS, V136, P341, DOI 10.1111/j.1474-919X.1994.tb01105.x; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Tulp I, 2006, J AVIAN BIOL, V37, P207, DOI 10.1111/j.2006.0908-8857.03519.x; Verboven N, 2002, ANIM BEHAV, V63, P951, DOI 10.1006/anbe.2001.1971; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Joseph B., 1996, P375; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Wojczulanis-Jakubas K, 2009, ORNIS FENNICA, V86, P140 52 4 4 0 11 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAR 2011 84 2 222 229 10.1086/658373 8 Physiology; Zoology Physiology; Zoology 725MK WOS:000287648600011 21166545 Green Published 2019-02-21 J Edenbrow, M; Darden, SK; Ramnarine, IW; Evans, JP; James, R; Croft, DP Edenbrow, M.; Darden, S. K.; Ramnarine, I. W.; Evans, J. P.; James, R.; Croft, D. P. Environmental effects on social interaction networks and male reproductive behaviour in guppies, Poecilia reticulata ANIMAL BEHAVIOUR English Article guppy; harassment network; Poecilia reticulata; predation risk; reproductive strategy; sexual network; sexual selection; social network; strategy FEMALE MATE CHOICE; LIFE-HISTORY EVOLUTION; PREDATION RISK; TRINIDADIAN GUPPY; SEXUAL SEGREGATION; MALE COMPETITION; ANTIPREDATOR BEHAVIOR; SCHOOLING BEHAVIOR; POWER ANALYSIS; FIGHTING FISH In social species, the structure and patterning of social interactions have implications for the opportunities for sexual interactions. We used social network analysis to explore the effect of habitat structural complexity on the social and sexual behaviour of male Trinidadian guppies. We used replicated semi-natural pools in which we quantified male social network structure and reproductive behaviour under simple and complex habitats. In addition, we compared two populations of guppies that differed in their evolutionary history of predation (one high, one low). The level of habitat complexity did not significantly affect social network structure. However, social networks differed significantly between populations, which we suggest is due to differences in predator experience. Males from the high-predation population had greater overall social network differentiation and fewer male-male associations than their low-risk counterparts. Contrary to our prediction that males would associate more frequently with relatively large (more fecund) females, we observed a negative correlation between female size and the strength of male-female associations. We also found no effect of population or habitat complexity on either harassment or sexual network structures. There was, however, a significant interaction between habitat structure and population on the expression of reproductive strategies, with high-predation males expressing fewer sigmoid displays in the complex habitat and the opposite trend in low-predation males. We suggest this pattern is driven by population differences in male-male competition. We discuss our results in the context of the evolution of social structure and male reproductive strategies. (C) 2010 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved. [Edenbrow, M.; Darden, S. K.; Croft, D. P.] Univ Exeter, Washington Singer Labs, Sch Psychol, Ctr Res Anim Behav, Exeter EX4 4QG, Devon, England; [Edenbrow, M.] Bangor Univ, Coll Nat Sci, Sch Biol Sci, Bangor, Gwynedd, Wales; [Ramnarine, I. W.] Univ W Indies, Dept Life Sci, St Augustine, Trinid & Tobago; [Evans, J. P.] Univ Western Australia, Sch Anim Biol M092, Ctr Evolutionary Biol, Crawley, WA 6009, Australia; [James, R.] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England Edenbrow, M (reprint author), Univ Exeter, Washington Singer Labs, Sch Psychol, Ctr Res Anim Behav, Perry Rd, Exeter EX4 4QG, Devon, England. mathewedenbrow@hotmail.com Darden, Safi/C-5940-2016; Croft, Darren/B-5503-2009; Evans, Jonathan/A-1992-2011; James, Richard/E-5061-2013; Edenbrow, Mathew/K-3331-2013 Darden, Safi/0000-0002-2567-7902; Croft, Darren/0000-0001-6869-5097; Edenbrow, Mathew/0000-0002-3318-6337 NERC [NE/E001181/1]; Natural Environment Research Council [NE/E001181/2, NE/E001181/1] Funding was provided to D. P. C. by the NERC (NE/E001181/1). ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BEAMISH FWH, 1978, FISH PHYSIOL, V7, P101, DOI DOI 10.1016/S1546-5098(08)60164-8; Botham MS, 2006, NATURWISSENSCHAFTEN, V93, P431, DOI 10.1007/s00114-006-0131-0; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Candolin U, 2001, OIKOS, V95, P225, DOI 10.1034/j.1600-0706.2001.950204.x; Candolin U, 1998, ANIM BEHAV, V56, P1205, DOI 10.1006/anbe.1998.0892; CLUTTONBROCK TH, 1995, ANIM BEHAV, V49, P1345, DOI 10.1006/anbe.1995.0166; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Croft DP, 2006, BEHAV ECOL SOCIOBIOL, V59, P644, DOI 10.1007/s00265-005-0091-y; Croft DP, 2008, EXPLORING ANIMAL SOCIAL NETWORKS, P1; Croft DP, 2004, ENVIRON BIOL FISH, V71, P127, DOI 10.1007/s10641-003-0092-5; Croft DP, 2003, OIKOS, V100, P429, DOI 10.1034/j.1600-0706.2003.12023.x; Croft DP, 2004, P ROY SOC B-BIOL SCI, V271, pS516, DOI 10.1098/rsbl.2004.0206; CROW RT, 1979, CAN J ZOOL, V57, P184, DOI 10.1139/z79-016; Darden SK, 2009, P ROY SOC B-BIOL SCI, V276, P2651, DOI 10.1098/rspb.2009.0087; Devereux CL, 2006, BEHAV ECOL, V17, P303, DOI 10.1093/beheco/arj032; Dosen LD, 2004, ETHOLOGY, V110, P245, DOI 10.1111/j.1439-0310.2004.00965.x; Doutrelant C, 2001, BEHAV ECOL, V12, P283, DOI 10.1093/beheco/12.3.283; Doutrelant C, 2000, BEHAVIOUR, V137, P1655, DOI 10.1163/156853900502763; DUGATKIN LA, 1992, P ROY SOC B-BIOL SCI, V249, P179, DOI 10.1098/rspb.1992.0101; Dzieweczynski TL, 2004, ANIM BEHAV, V68, P465, DOI 10.1016/j.anbehav.2003.08.024; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Evans JP, 2002, BEHAV ECOL SOCIOBIOL, V52, P496, DOI 10.1007/s00265-002-0535-6; FARR JA, 1980, BEHAVIOUR, V74, P38, DOI 10.1163/156853980X00311; FUIMAN LA, 1994, REV FISH BIOL FISHER, V4, P145, DOI 10.1007/BF00044127; Galef BG, 2000, BEHAV PROCESS, V51, P167, DOI 10.1016/S0376-6357(00)00126-1; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; Godin JGJ, 2005, ANIM BEHAV, V69, P999, DOI 10.1016/j.anbehav.2004.07.016; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Guevara-Fiore P, 2009, ANIM BEHAV, V77, P425, DOI 10.1016/j.anbehav.2008.10.018; Guevara-Fiore P, 2010, BEHAV ECOL SOCIOBIOL, V64, P1665, DOI 10.1007/s00265-010-0980-6; HAMILTON WD, 1971, J THEOR BIOL, V31, P295, DOI 10.1016/0022-5193(71)90189-5; Held J, 2005, BEHAV RES METHODS, V37, P155, DOI 10.3758/BF03206410; Herdman EJE, 2004, ETHOLOGY, V110, P97, DOI 10.1111/j.1439-0310.2003.00960.x; Hibler TL, 2006, ANIM BEHAV, V72, P959, DOI 10.1016/j.anbehav.2006.03.007; Hjelm J, 2001, OIKOS, V95, P520, DOI 10.1034/j.1600-0706.2001.950317.x; Hoglund J, 1998, OIKOS, V83, P478, DOI 10.2307/3546675; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1988, ANIM BEHAV, V36, P888, DOI 10.1016/S0003-3472(88)80171-4; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Krause J, 2007, BEHAV ECOL SOCIOBIOL, V62, P15, DOI 10.1007/s00265-007-0445-8; Krause J., 2002, LIVING GROUPS; Liley N. R., 1966, Behaviour Suppl, V13, P1; LILEY NR, 1974, BEHAVIOUR, V48, P185, DOI 10.1163/156853974X00336; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; Magellan K, 2005, BEHAV ECOL SOCIOBIOL, V58, P366, DOI 10.1007/s00265-005-0950-6; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1994, BEHAVIOUR, V128, P121, DOI 10.1163/156853994X00073; MAGURRAN AE, 1990, ETHOLOGY, V84, P334, DOI 10.1111/j.1439-0310.1990.tb00807.x; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; McRobert SP, 1998, ANIM BEHAV, V56, P611, DOI 10.1006/anbe.1998.0846; Mikheev VN, 2009, J ICHTHYOL, V49, P1032, DOI DOI 10.1134/S0032945209110034; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Neff BD, 2008, MOL ECOL, V17, P2975, DOI 10.1111/j.1365-294X.2008.03816.x; NEILL SRS, 1974, J ZOOL, V172, P549, DOI 10.1111/j.1469-7998.1974.tb04385.x; Newman MEJ, 2003, PHYS REV E, V67, DOI 10.1103/PhysRevE.67.026126; Newman MEJ, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.026118; Orpwood JE, 2008, ANIM BEHAV, V76, P143, DOI 10.1016/j.anbehav.2008.01.016; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Ruckstuhl KE, 2007, INTEGR COMP BIOL, V47, P245, DOI 10.1093/icb/icm030; Schooley RL, 1996, CAN J ZOOL, V74, P157, DOI 10.1139/z96-020; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Sih A, 2009, BEHAV ECOL SOCIOBIOL, V63, P975, DOI 10.1007/s00265-009-0725-6; Steidl RJ, 1997, J WILDLIFE MANAGE, V61, P270, DOI 10.2307/3802582; Stoehr Andrew M., 1999, Animal Behaviour Forum, V57, pF22, DOI 10.1006/anbe.1998.1016; Taborsky M, 1997, BEHAV ECOL SOCIOBIOL, V41, P361, DOI 10.1007/s002650050396; Thomas L, 1997, CONSERV BIOL, V11, P276, DOI 10.1046/j.1523-1739.1997.96102.x; Tosh CR, 2006, AM NAT, V167, pE52, DOI 10.1086/499413; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; Whittingham MJ, 2004, OIKOS, V106, P377, DOI 10.1111/j.0030-1299.2004.13132.x; Wong BBM, 2005, BIOL REV, V80, P559, DOI 10.1017/S1464793105006809 77 23 24 0 97 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0003-3472 1095-8282 ANIM BEHAV Anim. Behav. MAR 2011 81 3 551 558 10.1016/j.anbehav.2010.11.026 8 Behavioral Sciences; Zoology Behavioral Sciences; Zoology 720SL WOS:000287300800007 2019-02-21 J Lankau, RA; Strauss, SY Lankau, Richard A.; Strauss, Sharon Y. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications EVOLUTIONARY APPLICATIONS English Review adaptation; community ecology; conservation biology; natural selection and contemporary evolution; population ecology; species interactions; wildlife management LIFE-HISTORY EVOLUTION; ATRIPLEX-TATARICA CHENOPODIACEAE; SOCIALLY POLYMORPHIC SPIDER; DEPENDENT SELECTION; GENERALIST HERBIVORES; NATURAL-SELECTION; BACILLUS-THURINGIENSIS; HABITAT FRAGMENTATION; SPECIALIST HERBIVORE; ANIMAL POPULATIONS Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions. [Lankau, Richard A.; Strauss, Sharon Y.] Univ Illinois, Illinois Nat Hist Survey, Urbana, IL 61801 USA; [Lankau, Richard A.; Strauss, Sharon Y.] UC Davis, Dept Evolut & Ecol, Davis, CA USA Lankau, RA (reprint author), Univ Illinois, Illinois Nat Hist Survey, Urbana, IL 61801 USA. ralankau@illinois.edu Strauss, Sharon/J-1827-2012; Lankau, Richard/B-9760-2008 Lankau, Richard/0000-0001-9995-328X; Strauss, Sharon/0000-0002-6117-4085 Abrams PA, 2009, J THEOR BIOL, V261, P294, DOI 10.1016/j.jtbi.2009.07.026; Agrawal AA, 2006, Q REV BIOL, V81, P349, DOI 10.1086/511529; Alon M, 2006, INSECT BIOCHEM MOLEC, V36, P71, DOI 10.1016/j.ibmb.2005.10.007; ANDOW DA, 1991, ANNU REV ENTOMOL, V36, P561, DOI 10.1146/annurev.en.36.010191.003021; Antonovics J, 1992, PLANT RESISTANCE HER; Barry MJ, 1998, AQUAT TOXICOL, V41, P101, DOI 10.1016/S0166-445X(97)00063-5; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BEGON M, 1986, OIKOS, V46, P122, DOI 10.2307/3565389; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Berenbaum MR, 2006, ECOLOGY, V87, P3070, DOI 10.1890/0012-9658(2006)87[3070:PWAHPA]2.0.CO;2; Bergelson J, 1996, AM NAT, V148, P536, DOI 10.1086/285938; BOYCE MS, 1984, ANNU REV ECOL SYST, V15, P427; Brichette I, 2001, AQUACULTURE, V192, P155, DOI 10.1016/S0044-8486(00)00439-7; Burdon JJ, 1995, J ECOL, V83, P979, DOI 10.2307/2261179; Castillo RA, 2002, J EVOLUTION BIOL, V15, P544, DOI 10.1046/j.1420-9101.2002.00425.x; Chitty D., 1967, Proceedings of the Ecological Society of Australia, V2, P51; CHRISTIANSEN FB, 1975, AM NAT, V109, P11, DOI 10.1086/282970; Clauss MJ, 2006, J CHEM ECOL, V32, P2351, DOI 10.1007/s10886-006-9150-8; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Davis HG, 2005, EVOL ECOL, V19, P255, DOI 10.1007/s10682-005-0912-5; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Early R, 2007, J APPL ECOL, V44, P253, DOI 10.1111/j.1365-2664.2006.01268.x; Eckert CG, 2010, TRENDS ECOL EVOL, V25, P35, DOI 10.1016/j.tree.2009.06.013; Einum S, 2008, EVOL APPL, V1, P239, DOI 10.1111/j.1752-4571.2008.00021.x; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Ericson L, 1999, J ECOL, V87, P649, DOI 10.1046/j.1365-2745.1999.00384.x; Eviner VT, 2007, CALIFORNIA GRASSLAND, P94; Ewald PW, 1994, EVOLUTION INFECT DIS; Fenster CB, 2004, ANNU REV ECOL EVOL S, V35, P375, DOI 10.1146/annurev.ecolsys.34.011802.132347; FORD EB, 1931, MENDELISM EVOLUTION, P122; FORD H. D., 1930, TRANS ENT SOC LONDON, V78, P345; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Garren JM, 2009, ECOL APPL, V19, P709, DOI 10.1890/07-0646.1; Gassmann AJ, 2009, ANNU REV ENTOMOL, V54, P147, DOI 10.1146/annurev.ento.54.110807.090518; GIAMOUSTARIS A, 1995, ANN APPL BIOL, V126, P347, DOI 10.1111/j.1744-7348.1995.tb05371.x; Gratten J, 2008, SCIENCE, V319, P318, DOI 10.1126/science.1151182; Haloin JR, 2008, ANN NY ACAD SCI, V1133, P87, DOI 10.1196/annals.1438.003; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hierro JL, 2003, PLANT SOIL, V256, P29, DOI 10.1023/A:1026208327014; Honnay O, 2007, CONSERV BIOL, V21, P823, DOI 10.1111/j.1523-1739.2006.00646.x; Horiuchi S, 2008, ECOL RES, V23, P551, DOI 10.1007/s11284-007-0408-6; JANZEN DH, 1970, AM NAT, V104, P501, DOI 10.1086/282687; Johnson SD, 2000, TRENDS ECOL EVOL, V15, P140, DOI 10.1016/S0169-5347(99)01811-X; Joshi J, 2005, ECOL LETT, V8, P704, DOI 10.1111/j.1461-0248.2005.00769.x; Kelly Johnson, 1993, Bulletin of the Ecological Society of America, V74, P296; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Knell RJ, 2009, J ZOOL, V278, P83, DOI 10.1111/j.1469-7998.2009.00566.x; Kolb A, 2008, BIOL CONSERV, V141, P2540, DOI 10.1016/j.biocon.2008.07.015; Kulmatiski A, 2008, ECOL LETT, V11, P980, DOI 10.1111/j.1461-0248.2008.01209.x; Kunin WE, 1997, CONSERV BIOL, V11, P183, DOI 10.1046/j.1523-1739.1997.95469.x; Kwiatkowski MA, 2002, BEHAV ECOL, V13, P201, DOI 10.1093/beheco/13.2.201; LANKAU RA, 2010, J ECOLOGY; Lankau RA, 2008, AM NAT, V171, P150, DOI 10.1086/524959; Lankau RA, 2007, SCIENCE, V317, P1561, DOI 10.1126/science.1147455; Lankau RA, 2007, NEW PHYTOL, V175, P176, DOI 10.1111/j.1469-8137.2007.02090.x; Lankau RA, 2011, OECOLOGIA, V165, P453, DOI 10.1007/s00442-010-1736-8; Lankau RA, 2009, P NATL ACAD SCI USA, V106, P15362, DOI 10.1073/pnas.0905446106; Lankau RA, 2009, AM NAT, V174, pE40, DOI 10.1086/600083; Larsson M, 2005, OECOLOGIA, V146, P394, DOI 10.1007/s00442-005-0217-y; Lau JA, 2006, EVOLUTION, V60, P56; Lobon-Cervia J, 2008, CAN J FISH AQUAT SCI, V65, P2006, DOI 10.1139/F08-105; Loeuille N, 2010, FUNCT ECOL, V24, P18, DOI 10.1111/j.1365-2435.2009.01617.x; MAC ARTHUR ROBERT H., 1967; Maher CR, 2000, AM MIDL NAT, V143, P1, DOI 10.1674/0003-0031(2000)143[0001:AROEDO]2.0.CO;2; Mandak B, 2006, MOL ECOL, V15, P2653, DOI 10.1111/j.1365-294X.2006.02953.x; Mandak B, 2006, AM J BOT, V93, P1640, DOI 10.3732/ajb.93.11.1640; Miller TE, 1995, EVOLUTION, V49, P1125, DOI 10.1111/j.1558-5646.1995.tb04439.x; MILLER TE, 1990, AM J BOT, V77, P993, DOI 10.2307/2444570; Mimura M, 2007, AM J BOT, V94, P991, DOI 10.3732/ajb.94.6.991; Moeller DA, 2005, EVOLUTION, V59, P786, DOI 10.1554/04-656; Moorcroft PR, 1996, P ROY SOC B-BIOL SCI, V263, P31, DOI 10.1098/rspb.1996.0006; Morgan MT, 2005, AM NAT, V166, P169, DOI 10.1086/431317; Mueller LD, 1997, ANNU REV ECOL SYST, V28, P269, DOI 10.1146/annurev.ecolsys.28.1.269; MUELLER LD, 1991, AM NAT, V137, P457, DOI 10.1086/285177; NITAO JK, 1989, ECOLOGY, V70, P629, DOI 10.2307/1940214; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Peck SL, 2001, TRENDS MICROBIOL, V9, P286, DOI 10.1016/S0966-842X(01)02042-X; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; Pintor LM, 2008, OIKOS, V117, P1629, DOI 10.1111/j.1600-0706.2008.16578.x; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Pruitt JN, 2009, EVOLUTION, V63, P2966, DOI 10.1111/j.1558-5646.2009.00771.x; Reinhart KO, 2006, NEW PHYTOL, V170, P445, DOI 10.1111/j.1469-8137.2006.01715.x; Relyea RA, 2008, ECOL APPL, V18, P1728, DOI 10.1890/08-0454.1; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Roberts G, 1996, ANIM BEHAV, V51, P1077, DOI 10.1006/anbe.1996.0109; Rodgers VL, 2008, BIOSCIENCE, V58, P426, DOI 10.1641/B580510; Root KV, 2003, CONSERV BIOL, V17, P196, DOI 10.1046/j.1523-1739.2003.00447.x; ROOT RB, 1973, ECOL MONOGR, V43, P95, DOI 10.2307/1942161; Roscher C, 2007, OECOLOGIA, V153, P173, DOI 10.1007/s00442-007-0713-3; Rose KE, 1998, J ANIM ECOL, V67, P979, DOI 10.1046/j.1365-2656.1998.6760979.x; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Sargent RD, 2006, AM NAT, V167, P67, DOI 10.1086/498433; Seifert EK, 2009, ECOLOGY, V90, P1055, DOI 10.1890/08-0419.1; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; SHAW RG, 1995, GENETICS, V139, P397; Siemens DH, 1996, ENVIRON ENTOMOL, V25, P1344, DOI 10.1093/ee/25.6.1344; Simberloff D, 2004, BIOL INVASIONS, V6, P161, DOI 10.1023/B:BINV.0000022133.49752.46; Sinclair ARE, 2003, CAN J ZOOL, V81, P216, DOI 10.1139/Z03-006; Sober V, 2009, BASIC APPL ECOL, V10, P737, DOI 10.1016/j.baae.2009.06.003; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STERMITZ FR, 1989, J CHEM ECOL, V15, P2521, DOI 10.1007/BF01014728; Strauss SY, 2004, ANNU REV ECOL EVOL S, V35, P435, DOI 10.1146/annurev.ecolsys.35.112202.130215; TABASHNIK BE, 1994, ANNU REV ENTOMOL, V39, P47, DOI 10.1146/annurev.en.39.010194.000403; Thrall PH, 2003, SCIENCE, V299, P1735, DOI 10.1126/science.1080070; vanderMeijden E, 1996, ENTOMOL EXP APPL, V80, P307; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; Williamson MS, 1996, MOL GEN GENET, V252, P51, DOI 10.1007/BF02173204; Zangerl AR, 2008, P NATL ACAD SCI USA, V105, P4547, DOI 10.1073/pnas.0710280105 113 32 32 3 71 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1752-4571 EVOL APPL Evol. Appl. MAR 2011 4 2 338 353 10.1111/j.1752-4571.2010.00173.x 16 Evolutionary Biology Evolutionary Biology 722RK WOS:000287451800013 25567977 DOAJ Gold, Green Published 2019-02-21 J Weese, DJ; Schwartz, AK; Bentzen, P; Hendry, AP; Kinnison, MT Weese, Dylan J.; Schwartz, Amy K.; Bentzen, Paul; Hendry, Andrew P.; Kinnison, Michael T. Eco-evolutionary effects on population recovery following catastrophic disturbance EVOLUTIONARY APPLICATIONS English Article adaptation; contemporary evolution; evolution; experimental evolution; genetics - empirical; natural selection and contemporary; population; population dynamics; population ecology; sexual selection GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; GENE FLOW; TRINIDADIAN GUPPIES; WILD GUPPIES; QUANTITATIVE TRAITS; CLIMATE-CHANGE; CONSEQUENCES; CONSERVATION Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the 'rescue effect', the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. [Weese, Dylan J.; Kinnison, Michael T.] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA; [Schwartz, Amy K.] Univ Glasgow, Div Ecol & Evolutionary Biol, Glasgow G12 8QQ, Lanark, Scotland; [Bentzen, Paul] Dalhousie Univ, Dept Biol, Halifax, NS, Canada; [Hendry, Andrew P.] McGill Univ, Sch Life Sci, Montreal, PQ, Canada Weese, DJ (reprint author), Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. weese@msu.edu Hendry, Andrew/C-5765-2008 Hendry, Andrew/0000-0002-4807-6667 National Science Foundation; Maine Agricultural and Forestry Experiment Station; Natural Science and Technology Research Council of Quebec; Natural Sciences and Engineering Research Council of Canada Field work was assisted by Sonya Auer, Michael Bailey, Ron Bassar, Craig Blackie, Laura Easty, Cory Gardner, Swanne Gordon, Zaki Jafri, Kevin Lachapelle, Brandon Libby, Nathan Millar, Ian Patterson, David Reznick, and Martin Turcotte. Lynn Anstey assisted with DNA extraction and sequencing. We would like to thank Louis Bernatchez, Robin Waples, and an anonymous reviewer for helpful comments. Funding was provided by the National Science Foundation (MTK and APH), the Maine Agricultural and Forestry Experiment Station (MTK), a doctoral fellowship from the Natural Science and Technology Research Council of Quebec (AKS), and Discovery grants from the Natural Sciences and Engineering Research Council of Canada (APH, PB). Araki H, 2008, EVOL APPL, V1, P342, DOI 10.1111/j.1752-4571.2008.00026.x; Becher SA, 2000, J FISH BIOL, V56, P241, DOI 10.1006/jfbi.1999.1170; Boulding EG, 2001, HEREDITY, V86, P313, DOI 10.1046/j.1365-2540.2001.00829.x; BROWN JH, 1977, ECOLOGY, V58, P445, DOI 10.2307/1935620; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Damschen EI, 2006, SCIENCE, V313, P1284, DOI 10.1126/science.1130098; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hanski I., 1999, METAPOPULATION ECOLO; Hanski I, 2006, PLOS BIOL, V4, P719, DOI 10.1371/journal.pbio.0040129; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 2011, EVOL APPL, V4, P159, DOI 10.1111/j.1752-4571.2010.00165.x; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Holt RD, 2003, P ROY SOC B-BIOL SCI, V270, P215, DOI 10.1098/rspb.2002.2219; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kawecki TJ, 2002, AM NAT, V160, P333, DOI 10.1086/341519; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; LANDE R, 1988, SCIENCE, V241, P1455, DOI 10.1126/science.3420403; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Lindenmayer DB, 2005, J APPL ECOL, V42, P649, DOI 10.1111/j.1365-2664.2005.01054.x; Loarie SR, 2009, NATURE, V462, P1052, DOI 10.1038/nature08649; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; McClelland EK, 2007, CONSERV GENET, V8, P397, DOI 10.1007/s10592-006-9178-x; Millar NP, 2006, OIKOS, V113, P1; Moore JS, 2009, PHILOS T R SOC B, V364, P1533, DOI 10.1098/rstb.2009.0007; Nosil P, 2005, EVOLUTION, V59, P705; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Paterson IG, 2005, MOL ECOL NOTES, V5, P269, DOI 10.1111/j.1471-8286.2005.00895.x; Peakall R, 2006, BIOL CONSERV, V132, P520, DOI 10.1016/j.biocon.2006.05.013; Peery MZ, 2010, P ROY SOC B-BIOL SCI, V277, P697, DOI 10.1098/rspb.2009.1666; Pritchard JK, 2000, GENETICS, V155, P945; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Ronce O, 2001, EVOLUTION, V55, P1520; SCHLUTER D, 2005, ECOLOGY ADAPTIVE RAD; SHAFFER ML, 1981, BIOSCIENCE, V31, P131, DOI 10.2307/1308256; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; Spiller DA, 1998, SCIENCE, V281, P695, DOI 10.1126/science.281.5377.695; Van Doorslaer W, 2009, GLOBAL CHANGE BIOL, V15, P3046, DOI 10.1111/j.1365-2486.2009.01980.x; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Vignieri SN, 2010, AM NAT, V175, P126, DOI 10.1086/648606; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; White GC, 1999, BIRD STUDY, V46, P120; Whitlock MC, 2002, GENETICS, V160, P1191 60 18 18 0 47 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1752-4571 EVOL APPL Evol. Appl. MAR 2011 4 2 354 366 10.1111/j.1752-4571.2010.00169.x 13 Evolutionary Biology Evolutionary Biology 722RK WOS:000287451800014 25567978 DOAJ Gold, Green Published 2019-02-21 J Fogarty, S; Cote, J; Sih, A Fogarty, Sean; Cote, Julien; Sih, Andrew Social Personality Polymorphism and the Spread of Invasive Species: A Model AMERICAN NATURALIST English Article behavioral syndromes; invasion; dispersal; sociability; network DENSITY-DEPENDENT DISPERSAL; SPATIALLY STRUCTURED POPULATIONS; TRANSPORTATION NETWORK; ANTIPREDATOR BEHAVIOR; ANIMAL PERSONALITIES; BIOLOGICAL INVASIONS; FITNESS CONSEQUENCES; NATURAL COMMUNITIES; NATAL DISPERSAL; RANGE EXPANSION Ecological invasions are a major worldwide problem exacting tremendous economic and ecological costs. Efforts to explain variability in invasion speed and impact by searching for combinations of ecological conditions and species traits associated with invasions have met with mixed success. We use a simulation model that integrates insights from life-history theory, animal personalities, network theory, and spatial ecology to derive a new mechanism for explaining variation in animal invasion success. We show that spread occurs most rapidly when (1) a species includes a mix of life-history or personality types that differ in density-dependent performance and dispersal tendencies, (2) the differences between types are of intermediate magnitude, and (3) patch connections are intermediate in number and widely spread. Within-species polymorphism in phenotype (e.g., life-history strategies or personality), a feature not included in previous models, is important for overcoming the fact that different traits are associated with success in different stages of the invasion process. Polymorphism in sociability (a personality type) increases the speed of the invasion front, since asocial individuals colonize empty patches and facilitate the local growth of social types that, in turn, induce faster dispersal by asocials at the invasion edge. The results hold implications for the prediction of invasion impacts and the classification of traits associated with invasiveness. [Fogarty, Sean; Cote, Julien; Sih, Andrew] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA Fogarty, S (reprint author), Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA. spfogarty@ucdavis.edu Cote, Julien/B-7809-2011 Cote, Julien/0000-0002-4453-5969 Fyssen Foundation; University of California-Davis Jastro-Shields; National Science Foundation [IOB-0446276] This research was supported by a Fyssen Foundation fellowship to J.C., a University of California-Davis Jastro-Shields grant to S.F., and funding from National Science Foundation IOB-0446276. We thank R. McElreath and S. Schreiber for helping us clarify the presentation of the model and the Sih lab members and C. Boettiger for comments at all stages of manuscript preparation. We also thank two anonymous reviewers for comments on an earlier version of this manuscript. BARNARD CJ, 1981, ANIM BEHAV, V29, P543, DOI 10.1016/S0003-3472(81)80117-0; Bergmuller R, 2010, PHILOS T R SOC B, V365, P2751, DOI 10.1098/rstb.2010.0124; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Colautti RI, 2004, DIVERS DISTRIB, V10, P135, DOI 10.1111/j.1366-9516.2004.00061.x; Colizza V, 2006, P NATL ACAD SCI USA, V103, P2015, DOI 10.1073/pnas.0510525103; CONNELL JH, 1977, AM NAT, V111, P1119, DOI 10.1086/283241; Cote J, 2008, P ROY SOC B-BIOL SCI, V275, P2851, DOI 10.1098/rspb.2008.0783; Cote J, 2007, P R SOC B, V274, P383, DOI 10.1098/rspb.2006.3734; Cote J, 2010, PHILOS T R SOC B, V365, P4065, DOI 10.1098/rstb.2010.0176; COTE J, 2010, P ROYAL SOC B, DOI DOI 10.1098/RSPB.2010.1892; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; DENNO RF, 1991, AM NAT, V138, P1513, DOI 10.1086/285298; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Duckworth RA, 2008, AM NAT, V172, pS4, DOI 10.1086/588289; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Dyer JRG, 2009, BEHAV ECOL, V20, P165, DOI 10.1093/beheco/arn129; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Enfjall K, 2005, OIKOS, V108, P465, DOI 10.1111/j.0030-1299.2005.13261.x; Enfjall K, 2009, OIKOS, V118, P291, DOI 10.1111/j.1600-0706.2008.16863.x; Floerl O, 2005, BIOL INVASIONS, V7, P589, DOI 10.1007/s10530-004-0952-8; Fonseca DM, 1996, OIKOS, V75, P49, DOI 10.2307/3546320; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Guimera R, 2005, P NATL ACAD SCI USA, V102, P7794, DOI 10.1073/pnas.0407994102; HASTINGS A, 1980, THEOR POPUL BIOL, V18, P363, DOI 10.1016/0040-5809(80)90059-3; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Ioannou CC, 2008, ANIM BEHAV, V75, P1383, DOI 10.1016/j.anbehav.2007.09.012; Ioannou CC, 2009, AM NAT, V173, P499, DOI 10.1086/597219; Jeschke JM, 2005, P NATL ACAD SCI USA, V102, P7198, DOI 10.1073/pnas.0501271102; Johnson JC, 2007, ANIM BEHAV, V74, P1131, DOI 10.1016/j.anbehav.2007.02.006; Jokela M, 2008, PSYCHOL SCI, V19, P831, DOI 10.1111/j.1467-9280.2008.02164.x; Kim SY, 2009, ECOLOGY, V90, P230, DOI 10.1890/08-0133.1; Kolar CS, 2001, TRENDS ECOL EVOL, V16, P199, DOI 10.1016/S0169-5347(01)02101-2; Krause J., 2002, LIVING GROUPS; Kun A, 2006, OIKOS, V115, P308, DOI 10.1111/j.2006.0030-1299.15061.x; Kuperman M, 2001, PHYS REV LETT, V86, P2909, DOI 10.1103/PhysRevLett.86.2909; Kurvers R. H. J. M., 2009, P ROYAL SOC B, V277, P601; LEWIS MA, 1993, THEOR POPUL BIOL, V43, P141, DOI 10.1006/tpbi.1993.1007; LODGE DM, 1993, TRENDS ECOL EVOL, V8, P133, DOI 10.1016/0169-5347(93)90025-K; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; Matthysen E, 2005, ECOGRAPHY, V28, P403, DOI 10.1111/j.0906-7590.2005.04073.x; McNamara JM, 2004, NATURE, V428, P745, DOI 10.1038/nature02432; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P605, DOI 10.1098/rspb.2008.1182; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Moksnes PO, 2004, MAR ECOL PROG SER, V281, P181, DOI 10.3354/meps281181; Moyle PB, 2006, BIOSCIENCE, V56, P515, DOI 10.1641/0006-3568(2006)56[515:PISFFI]2.0.CO;2; Muirhead JR, 2005, J APPL ECOL, V42, P80, DOI 10.1111/j.1365-2664.2004.00988.x; NEE S, 1992, J ANIM ECOL, V61, P37, DOI 10.2307/5506; Newman MEJ, 1999, PHYS REV E, V60, P7332, DOI 10.1103/PhysRevE.60.7332; Newman MEJ, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.208701; Pastor-Satorras R, 2001, PHYS REV LETT, V86, P3200, DOI 10.1103/PhysRevLett.86.3200; Pimentel D, 2005, ECOL ECON, V52, P273, DOI 10.1016/j.ecolecon.2004.10.002; Pruitt JN, 2011, P ROY SOC B-BIOL SCI, V278, P1209, DOI 10.1098/rspb.2010.1700; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Rehage JS, 2005, BEHAV ECOL SOCIOBIOL, V57, P256, DOI 10.1007/s00265-004-0850-1; Rehage JS, 2004, BIOL INVASIONS, V6, P379, DOI 10.1023/B:BINV.0000034618.93140.a5; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sih A, 2005, BEHAVIOUR, V142, P1417, DOI 10.1163/156853905774539454; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; SOUSA WP, 1984, ANNU REV ECOL SYST, V15, P353, DOI 10.1146/annurev.es.15.110184.002033; SOUSA WP, 1979, ECOL MONOGR, V49, P227, DOI 10.2307/1942484; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Suarez AV, 2001, P NATL ACAD SCI USA, V98, P1095, DOI 10.1073/pnas.98.3.1095; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; TOLLRIAN R, 1998, ECOLOGY EVOLUTION IN; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P1837, DOI 10.1098/rspb.1999.0854; Turner MG, 1998, ECOSYSTEMS, V1, P511, DOI 10.1007/s100219900047; van Kleunen M, 2010, ECOL LETT, V13, P947, DOI 10.1111/j.1461-0248.2010.01503.x; van Oers K, 2005, BEHAVIOUR, V142, P1185, DOI 10.1163/156853905774539364; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; Watts DJ, 1998, NATURE, V393, P440, DOI 10.1038/30918; Williamson M, 1996, ECOLOGY, V77, P1661, DOI 10.2307/2265769; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 80 85 85 2 116 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 AM NAT Am. Nat. MAR 2011 177 3 273 287 10.1086/658174 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 730AO WOS:000287996000001 21460537 2019-02-21 J Hendry, AP; Kinnison, MT; Heino, M; Day, T; Smith, TB; Fitt, G; Bergstrom, CT; Oakeshott, J; Jorgensen, PS; Zalucki, MP; Gilchrist, G; Southerton, S; Sih, A; Strauss, S; Denison, RF; Carroll, SP Hendry, Andrew P.; Kinnison, Michael T.; Heino, Mikko; Day, Troy; Smith, Thomas B.; Fitt, Gary; Bergstrom, Carl T.; Oakeshott, John; Jorgensen, Peter S.; Zalucki, Myron P.; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F.; Carroll, Scott P. Evolutionary principles and their practical application EVOLUTIONARY APPLICATIONS English Review adaptation; agriculture; climate change; conservation biology; contemporary evolution; evolutionary medicine; fisheries management; forest management IMMUNODEFICIENCY-VIRUS TYPE-1; BIOLOGICAL-CONTROL AGENTS; NITROGEN-USE EFFICIENCY; MOSQUITO AEDES-AEGYPTI; EVOLVING FISH STOCKS; CLIMATE-CHANGE; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; GENE FLOW; INSECTICIDE RESISTANCE Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. [Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada; [Hendry, Andrew P.] McGill Univ, Dept Biol, Montreal, PQ H3A 2K6, Canada; [Kinnison, Michael T.] Univ Maine, Sch Biol & Ecol, Orono, ME USA; [Heino, Mikko] Univ Bergen, Dept Biol, Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria; [Day, Troy] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada; [Day, Troy] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Smith, Thomas B.] Univ Calif Los Angeles, Inst Environm, Ctr Trop Res, Los Angeles, CA USA; [Smith, Thomas B.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA USA; [Fitt, Gary] CSIRO Entomol & Cotton Catchment Communities CRC, Long Pocket Labs, Indooroopilly, Qld, Australia; [Bergstrom, Carl T.] Univ Washington, Dept Biol, Seattle, WA 98195 USA; [Oakeshott, John] CSIRO Entomol, Canberra, ACT, Australia; [Jorgensen, Peter S.] Univ Copenhagen, Ctr Macroecol Evolut & Climate, Dept Biol, Copenhagen, Denmark; [Zalucki, Myron P.] Univ Queensland, Sch Biol Sci, Brisbane, Qld, Australia; [Gilchrist, George] Natl Sci Fdn, Div Environm Biol, Arlington, VA 22230 USA; [Southerton, Simon] CSIRO Plant Ind, Canberra, ACT, Australia; [Sih, Andrew] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA; [Strauss, Sharon] Univ Calif Davis, Sect Evolut & Ecol, Davis, CA 95616 USA; [Denison, Robert F.] Univ Minnesota, St Paul, MN 55108 USA; [Carroll, Scott P.] Inst Contemporary Evolut, Davis, CA USA; [Carroll, Scott P.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA; [Heino, Mikko] Inst Marine Res, N-5024 Bergen, Norway Hendry, AP (reprint author), McGill Univ, Redpath Museum, 859 Sherbrooke St W, Montreal, PQ H3A 2K6, Canada. andrew.hendry@mcgill.ca Heino, Mikko/C-7241-2009; Zalucki, Myron/G-7983-2012; publicationpage, cmec/B-4405-2017; Fitt, Gary/C-5457-2008; publist, CMEC/C-3010-2012; Oakeshott, John/B-5365-2009; Hendry, Andrew/C-5765-2008; Jorgensen, Peter/B-8530-2008; Strauss, Sharon/J-1827-2012 Heino, Mikko/0000-0003-2928-3940; Zalucki, Myron/0000-0001-9603-7577; Oakeshott, John/0000-0001-8324-7874; Hendry, Andrew/0000-0002-4807-6667; Bergstrom, Carl/0000-0002-2070-385X; Day, Troy/0000-0002-1052-6140; Strauss, Sharon/0000-0002-6117-4085; Jorgensen, Peter Sogaard/0000-0002-2621-378X Aitken SN, 2008, EVOL APPL, V1, P95, DOI 10.1111/j.1752-4571.2007.00013.x; Alphey N, 2007, J ECON ENTOMOL, V100, P1642, DOI 10.1603/0022-0493(2007)100[1642:MIRBMR]2.0.CO;2; Andow DA, 2006, ECOL LETT, V9, P196, DOI 10.1111/j.1461-0248.2005.00846.x; Araki H, 2008, EVOL APPL, V1, P342, DOI 10.1111/j.1752-4571.2008.00026.x; Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Bailey JK, 2009, PHILOS T R SOC B, V364, P1607, DOI 10.1098/rstb.2008.0336; Balter M, 2005, SCIENCE, V309, P234, DOI 10.1126/science.309.5732.234; Barbaro G, 2005, CURR PHARM DESIGN, V11, P1805, DOI 10.2174/1381612053764869; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; BARRETT SCH, 1983, ECON BOT, V37, P255, DOI 10.1007/BF02858881; Baskett ML, 2007, AM NAT, V170, P59, DOI 10.1086/518184; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Beall CM, 2006, INTEGR COMP BIOL, V46, P18, DOI 10.1093/icb/icj004; Beckie HJ, 2003, ECOL APPL, V13, P1276, DOI 10.1890/02-5231; Beckie HJ, 2009, WEED TECHNOL, V23, P363, DOI 10.1614/WT-09-008.1; Bell G, 2008, SELECTION: THE MECHANISM OF EVOLUTION, 2ND EDITION, P1; Bell G, 2003, MICROBIOL-SGM, V149, P1367, DOI 10.1099/mic.0.26265-0; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Benedict MQ, 2003, TRENDS PARASITOL, V19, P349, DOI 10.1016/S1471-4922(03)00144-2; Benton TG, 2000, EVOL ECOL RES, V2, P769; Bergstrom C. T., 2007, EVOLUTION HLTH DIS, P124; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Bonhoeffer S, 1997, P NATL ACAD SCI USA, V94, P12106, DOI 10.1073/pnas.94.22.12106; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Boulding EG, 2001, HEREDITY, V86, P313, DOI 10.1046/j.1365-2540.2001.00829.x; Boyko AR, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000451; Bradshaw WE, 2008, MOL ECOL, V17, P157, DOI 10.1111/j.1365-294X.2007.03509.x; BRODIE ED, 1995, TRENDS ECOL EVOL, V10, P313, DOI 10.1016/S0169-5347(00)89117-X; Brown SP, 2002, TRENDS MICROBIOL, V10, P401, DOI 10.1016/S0966-842X(02)02413-7; Butcher P., 2007, Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish, P283; Carriere Y, 2001, P ROY SOC B-BIOL SCI, V268, P1475, DOI 10.1098/rspb.2001.1689; Carroll SP, 2011, EVOL APPL, V4, P184, DOI 10.1111/j.1752-4571.2010.00180.x; Carroll Scott P., 2008, P181; Carroll SP, 2003, P ROY SOC B-BIOL SCI, V270, pS80, DOI 10.1098/rsbl.2003.0019; Carroll SP, 2005, ECOL LETT, V8, P944, DOI 10.1111/j.1461-0248.2005.00800.x; Cha SJ, 2006, AM J TROP MED HYG, V74, P62, DOI 10.4269/ajtmh.2006.74.62; Chan YF, 2010, SCIENCE, V327, P302, DOI 10.1126/science.1182213; Cheverud JM, 1996, EVOLUTION, V50, P1042, DOI 10.1111/j.1558-5646.1996.tb02345.x; CLUTTONBROCK T, 1999, REPROD SUCCESS; Coker RJ, 2004, TROP MED INT HEALTH, V9, P25, DOI 10.1046/j.1365-3156.2003.01156.x; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Colosimo PF, 2004, PLOS BIOL, V2, P635, DOI 10.1371/journal.pbio.0020109; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cotter D, 2000, AQUACULTURE, V186, P61, DOI 10.1016/S0044-8486(99)00367-1; Cox JG, 2006, TRENDS ECOL EVOL, V21, P674, DOI 10.1016/j.tree.2006.07.011; Crespi BJ, 2011, EVOL APPL, V4, P292, DOI 10.1111/j.1752-4571.2010.00156.x; Crispo E, 2010, EVOL ECOL RES, V12, P47; Crnokrak P, 2002, EVOLUTION, V56, P2347, DOI 10.1111/j.0014-3820.2002.tb00160.x; Dagan T, 2007, P NATL ACAD SCI USA, V104, P870, DOI 10.1073/pnas.0606318104; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Davies AG, 1996, GENETICS, V143, P1321; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; Denison RF, 2011, EVOL APPL, V4, P216, DOI 10.1111/j.1752-4571.2010.00158.x; Denison RF, 2003, Q REV BIOL, V78, P145, DOI 10.1086/374951; DeWitt TJ, 1998, J EVOLUTION BIOL, V11, P465, DOI 10.1046/j.1420-9101.1998.11040465.x; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; DONALD CM, 1968, EUPHYTICA, V17, P385, DOI 10.1007/BF00056241; Downes S, 2010, EVOL APPL, V3, P574, DOI 10.1111/j.1752-4571.2010.00146.x; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; DWYER G, 1990, ECOL MONOGR, V60, P423, DOI 10.2307/1943014; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Elena SF, 2000, IUBMB LIFE, V49, P5, DOI 10.1080/713803585; Ellstrand NC, 2001, PLANT PHYSIOL, V125, P1543, DOI 10.1104/pp.125.4.1543; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Endler A. J., 1986, NATURAL SELECTION WI; Estes S, 2007, AM NAT, V169, P227, DOI 10.1086/510633; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Fahrig L, 2007, FUNCT ECOL, V21, P1003, DOI 10.1111/j.1365-2435.2007.01326.x; FAITH DP, 2010, CURR OPIN ENV SUST, V2, P1; Fitt Gary P., 2008, V5, P303, DOI 10.1007/978-1-4020-8373-0_11; Forest F, 2007, NATURE, V445, P757, DOI 10.1038/nature05587; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; FRANKLIN CE, 1995, J FISH BIOL, V46, P829, DOI 10.1006/jfbi.1995.0075; Frid A, 2002, CONSERV ECOL, V6; Fritts TH, 1998, ANNU REV ECOL SYST, V29, P113, DOI 10.1146/annurev.ecolsys.29.1.113; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; FUTUYMA DJ, 1995, SCIENCE, V267, P41, DOI 10.1126/science.7809608; Galvani AP, 2005, MICROBES INFECT, V7, P302, DOI 10.1016/j.micinf.2004.12.006; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; Gluckman P.D., 2009, PRINCIPLES EVOLUTION; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; Gluckman PD, 2009, LANCET, V373, P1654, DOI 10.1016/S0140-6736(09)60234-8; GOMULKIEWICZ R, 1995, EVOLUTION, V49, P201, DOI 10.1111/j.1558-5646.1995.tb05971.x; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Grether GF, 2005, AM NAT, V166, pE115, DOI 10.1086/432023; Gur A, 2004, PLOS BIOL, V2, P1610, DOI 10.1371/journal.pbio.0020245; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hansen TF, 2003, BIOSYSTEMS, V69, P83, DOI 10.1016/S0303-2647(02)00132-6; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Harper J. L., 1977, POPULATION BIOL PLAN; Harris RB, 2002, WILDLIFE SOC B, V30, P634; Hartley CJ, 2006, P NATL ACAD SCI USA, V103, P8757, DOI 10.1073/pnas.0509590103; Heap IM, 1997, PESTIC SCI, V51, P235, DOI 10.1002/(SICI)1096-9063(199711)51:3<235::AID-PS649>3.0.CO;2-N; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; HEDRICK PW, 1995, CONSERV BIOL, V9, P996, DOI 10.1046/j.1523-1739.1995.9050996.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2001, AM NAT, V157, P495, DOI 10.1086/319927; Hellmann JJ, 2007, BIOL CONSERV, V137, P599, DOI 10.1016/j.biocon.2007.03.018; Hemingway J, 2000, ANNU REV ENTOMOL, V45, P371, DOI 10.1146/annurev.ento.45.1.371; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 2010, EVOLUTION, V64, P1517, DOI 10.1111/j.1558-5646.2010.00947.x; Hendry AP, 2008, BIOL PHILOS, V23, P673, DOI 10.1007/s10539-008-9126-x; Hendry AP, 2004, EVOLUTION, V58, P2319; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Henneman ML, 2001, SCIENCE, V293, P1314, DOI 10.1126/science.1060788; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hersch EI, 2004, EVOLUTION, V58, P479, DOI 10.1111/j.0014-3820.2004.tb01671.x; Hilder VA, 1999, CROP PROT, V18, P177, DOI 10.1016/S0261-2194(99)00028-9; Hindar K, 2006, ICES J MAR SCI, V63, P1234, DOI 10.1016/j.icesjms.2006.04.025; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Hogervorst T, 2009, ACTA ORTHOP, V80, P1, DOI 10.1080/17453690610046620; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; HOULE D, 1992, GENETICS, V130, P195; Houle D, 2010, P NATL ACAD SCI USA, V107, P1793, DOI 10.1073/pnas.0906195106; Huang YX, 2007, INSECT BIOCHEM MOLEC, V37, P1054, DOI 10.1016/j.ibmb.2007.06.002; Ito J, 2002, NATURE, V417, P452, DOI 10.1038/417452a; Jablonski NG, 2004, ANNU REV ANTHROPOL, V33, P585, DOI 10.1146/annurev.anthro.33.070203.143955; Jirtle RL, 2007, NAT REV GENET, V8, P253, DOI 10.1038/nrg2045; Johnson MTJ, 2009, PHILOS T R SOC B, V364, P1593, DOI 10.1098/rstb.2008.0334; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kaeuffer R, 2007, P R SOC B, V274, P527, DOI 10.1098/rspb.2006.3743; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Keller L, 1999, LEVELS SELECTION EVO; Keller LF, 2001, P ROY SOC B-BIOL SCI, V268, P1387, DOI 10.1098/rspb.2001.1607; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kellermann V, 2009, SCIENCE, V325, P1244, DOI 10.1126/science.1175443; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Koella JC, 2009, EVOL APPL, V2, P469, DOI 10.1111/j.1752-4571.2009.00072.x; Kotiaho JS, 2005, P NATL ACAD SCI USA, V102, P1963, DOI 10.1073/pnas.0406718102; KRIEGER RI, 1971, SCIENCE, V172, P579, DOI 10.1126/science.172.3983.579; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; Lal R, 2010, MICROBIOL MOL BIOL R, V74, P58, DOI 10.1128/MMBR.00029-09; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lankau R, 2011, EVOL APPL, V4, P315, DOI 10.1111/j.1752-4571.2010.00171.x; Lankau RA, 2011, EVOL APPL, V4, P338, DOI 10.1111/j.1752-4571.2010.00173.x; Latta RG, 1998, AM NAT, V151, P283, DOI 10.1086/286119; Laurie CC, 2004, GENETICS, V168, P2141, DOI 10.1534/genetics.104.029686; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lerat E, 2005, PLOS BIOL, V3, P807, DOI 10.1371/journal.pbio.0030130; Levin BR, 2000, GENETICS, V154, P985; Little SJ, 2002, NEW ENGL J MED, V347, P385, DOI 10.1056/NEJMoa013552; Long GH, 2011, EVOL APPL, V4, P278, DOI 10.1111/j.1752-4571.2010.00178.x; Louda SM, 1997, SCIENCE, V277, P1088, DOI 10.1126/science.277.5329.1088; LYNCH M, 1995, AM NAT, V146, P489, DOI 10.1086/285812; Mann CC, 1999, SCIENCE, V283, P314, DOI 10.1126/science.283.5400.314; Manolio TA, 2009, NATURE, V461, P747, DOI 10.1038/nature08494; Marnocha E, 2011, EVOL APPL, V4, P388, DOI 10.1111/j.1752-4571.2010.00170.x; MARVIER M, 2008, CONSERVATION BIOL EV, P297; McGuigan K, 2009, TRENDS ECOL EVOL, V24, P305, DOI 10.1016/j.tree.2009.02.001; McMeniman CJ, 2009, SCIENCE, V323, P141, DOI 10.1126/science.1165326; Medawar P, 1952, UNSOLVED PROBLEM BIO; Miller CT, 2007, CELL, V131, P1179, DOI 10.1016/j.cell.2007.10.055; Miralles DJ, 1995, PLANT BREEDING, V114, P392, DOI 10.1111/j.1439-0523.1995.tb00818.x; Moose SP, 2004, TRENDS PLANT SCI, V9, P358, DOI 10.1016/j.tplants.2004.05.005; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; MULLER HJ, 1964, MUTAT RES, V1, P2, DOI 10.1016/0027-5107(64)90047-8; Myles S, 2005, HUM GENET, V117, P34, DOI 10.1007/s00439-005-1266-3; Nesse RM, 1998, SCI AM, V279, P86, DOI 10.1038/scientificamerican1198-86; Neve P, 2009, NEW PHYTOL, V184, P783, DOI 10.1111/j.1469-8137.2009.03034.x; Normark BH, 2002, J INTERN MED, V252, P91, DOI 10.1046/j.1365-2796.2002.01026.x; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Omenn GS, 2010, P NATL ACAD SCI USA, V107, P1702, DOI 10.1073/pnas.0906198106; Orr HA, 2008, AM NAT, V172, P160, DOI 10.1086/589460; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; OrtizMonasterio JI, 1997, CROP SCI, V37, P898, DOI 10.2135/cropsci1997.0011183X003700030033x; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pauw A, 2007, ECOLOGY, V88, P1759, DOI 10.1890/06-1383.1; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Peltonen L, 1999, HUM MOL GENET, V8, P1913, DOI 10.1093/hmg/8.10.1913; Pelz HJ, 2005, GENETICS, V170, P1839, DOI 10.1534/genetics.104.040360; Pepper JW, 2009, EVOL APPL, V2, P62, DOI 10.1111/j.1752-4571.2008.00063.x; Pergams ORW, 2008, MOL ECOL, V17, P450, DOI 10.1111/j.1365-294X.2007.03517.x; Perron GG, 2006, P ROY SOC B-BIOL SCI, V273, P251, DOI 10.1098/rspb.2005.3301; Phillimore AB, 2010, P NATL ACAD SCI USA, V107, P8292, DOI 10.1073/pnas.0913792107; Pimm SL, 2006, ANIM CONSERV, V9, P115, DOI 10.1111/j.1469-1795.2005.00010.x; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Rankin DJ, 2005, OIKOS, V111, P616; Raymond M, 2001, GENETICA, V112, P287, DOI 10.1023/A:1013300108134; Read AF, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000058; Reed DH, 2001, EVOLUTION, V55, P1095; Reznick DN, 2005, INTEGR COMP BIOL, V45, P456, DOI 10.1093/icb/45.3.456; RICCIARDI A, 2006, SCIENCE, V313, pA298, DOI DOI 10.1126/SCIENCE.1128946; Roach JC, 2010, SCIENCE, V328, P636, DOI 10.1126/science.1186802; Roush RT, 1998, PHILOS T ROY SOC B, V353, P1777, DOI 10.1098/rstb.1998.0330; Russell RJ, 2011, EVOL APPL, V4, P225, DOI 10.1111/j.1752-4571.2010.00175.x; Saccheri I, 1998, NATURE, V392, P491, DOI 10.1038/33136; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Sax DF, 2000, GLOBAL ECOL BIOGEOGR, V9, P363, DOI 10.1046/j.1365-2699.2000.00217.x; Schieving F, 1999, NEW PHYTOL, V143, P201, DOI 10.1046/j.1469-8137.1999.00431.x; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schoustra SE, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000250; Sgro CM, 2011, EVOL APPL, V4, P326, DOI 10.1111/j.1752-4571.2010.00157.x; Shankarappa R, 1999, J VIROL, V73, P10489; Shapiro MD, 2004, NATURE, V428, P717, DOI 10.1038/nature02415; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sibly RM, 1997, OIKOS, V78, P323, DOI 10.2307/3546300; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; SIH A, 1995, TRENDS ECOL EVOL, V10, P378, DOI 10.1016/S0169-5347(00)89142-9; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Skelly DK, 2007, CONSERV BIOL, V21, P1353, DOI 10.1111/j.1523-1739.2007.00764.x; Smith T.B., 1993, Biodiversity Letters, V1, P164, DOI 10.2307/2999740; Smith TB, 2008, MOL ECOL, V17, P1, DOI 10.1111/j.1365-294X.2007.03607.x; Southerton SG, 2010, AUST FORESTRY, V73, P259, DOI 10.1080/00049158.2010.10676337; STEADMAN DW, 1995, SCIENCE, V267, P1123, DOI 10.1126/science.267.5201.1123; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Strauss SY, 2006, P NATL ACAD SCI USA, V103, P5841, DOI 10.1073/pnas.0508073103; Tabashnik BE, 2005, P NATL ACAD SCI USA, V102, P15389, DOI 10.1073/pnas.0507857102; Tabashnik BE, 2008, NAT BIOTECHNOL, V26, P199, DOI 10.1038/nbt1382; Tcherkez GGB, 2006, P NATL ACAD SCI USA, V103, P7246, DOI 10.1073/pnas.0600605103; Thomassen HA, 2011, EVOL APPL, V4, P397, DOI 10.1111/j.1752-4571.2010.00172.x; Thrall PH, 2011, EVOL APPL, V4, P200, DOI 10.1111/j.1752-4571.2010.00179.x; Thumma BR, 2010, TREE GENET GENOMES, V6, P305, DOI 10.1007/s11295-009-0250-9; Tishkoff SA, 2007, NAT GENET, V39, P31, DOI 10.1038/ng1946; Tufto J, 2010, EVOLUTION, V64, P180, DOI 10.1111/j.1558-5646.2009.00807.x; Urban MC, 2007, P ROY SOC B-BIOL SCI, V274, P1413, DOI 10.1098/rspb.2007.0114; van Klinken RD, 2002, ECOL LETT, V5, P590, DOI 10.1046/j.1461-0248.2002.00343.x; Visscher PM, 2008, NAT REV GENET, V9, P255, DOI 10.1038/nrg2322; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; WALLACE B, 1975, EVOLUTION, V29, P465, DOI 10.1111/j.1558-5646.1975.tb00836.x; Waples R.S., 1991, MAR FISH REV, V53, P11; Webb C, 2003, AM NAT, V161, P181, DOI 10.1086/345858; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; Weiss KM, 2008, GENETICS, V179, P1741, DOI 10.1534/genetics.108.094128; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westemeier RL, 1998, SCIENCE, V282, P1695, DOI 10.1126/science.282.5394.1695; Whalon ME, 2008, GLOBAL PESTICIDE RESISTANCE IN ARTHROPODS, P1, DOI 10.1079/9781845933531.0000; Whitham TG, 2006, NAT REV GENET, V7, P510, DOI 10.1038/nrg1877; Wilkins JF, 2003, NAT REV GENET, V4, P359, DOI 10.1038/nrg1062; Willi Y, 2006, ANNU REV ECOL EVOL S, V37, P433, DOI 10.1146/annurev.ecolsys.37.091305.110145; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Willis CG, 2008, P NATL ACAD SCI USA, V105, P17029, DOI 10.1073/pnas.0806446105; Witzgall P, 2010, J CHEM ECOL, V36, P80, DOI 10.1007/s10886-009-9737-y; Yang JA, 2010, NAT GENET, V42, P565, DOI 10.1038/ng.608; Yuste E, 1999, J VIROL, V73, P2745; Zasloff M, 2002, NATURE, V415, P389, DOI 10.1038/415389a; Zhang DY, 1999, FIELD CROP RES, V61, P179, DOI 10.1016/S0378-4290(98)00156-7 259 128 129 18 317 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. MAR 2011 4 2 159 183 10.1111/j.1752-4571.2010.00165.x 25 Evolutionary Biology Evolutionary Biology 722RK WOS:000287451800002 25567966 DOAJ Gold, Green Published 2019-02-21 J Kim, SY; Noguera, JC; Morales, J; Velando, A Kim, Sin-Yeon; Noguera, Jose C.; Morales, Judith; Velando, Alberto Quantitative genetic evidence for trade-off between growth and resistance to oxidative stress in a wild bird EVOLUTIONARY ECOLOGY English Article Antagonistic pleiotropy; Heritability; Life-history evolution; Reactive oxygen species; Somatic growth; Trade-off EXTRA-PAIR PATERNITY; LIFE-SPAN; PROTEIN-TURNOVER; METABOLIC-RATE; SOMATIC GROWTH; BODY-SIZE; DAMAGE; CONSEQUENCES; CHICKS; GULLS Why do animals not grow at their maximal rates? It has been recently proposed that fast growth leads to the accumulation of cellular damages due to oxidative stress, influencing subsequent performances and life span. Therefore, the trade-off between fast growth and oxidative stress may potentially function as an important constraint in the evolution of growth trajectories. We test this by examining a potential antagonistic pleiotropy between growth and blood resistance to controlled free radical attack in a wild bird using a cross-fostering design and robust quantitative genetic analyses. In the yellow-legged gull Larus michahellis, decreased resistance to oxidative stress at age 8 days was associated with faster growth in mass, across the first 8 days of life, suggesting a trade-off between mass growth and oxidative-stress-related somatic maintenance. We found a negative genetic correlation between chick growth and resistance to oxidative stress, supporting the presence of the genetic trade-off between the two traits. Therefore, investment of somatic resources in growth could be constrained by resistance to oxidative stress in phenotypic and genetic levels. Our results provide first evidence for a potential genetic trade-off between life-history and underlying physiological traits in a wild vertebrate. Future studies should explore genetic trade-offs between life-history traits and other oxidative-stress-related traits. [Kim, Sin-Yeon; Noguera, Jose C.; Morales, Judith; Velando, Alberto] Univ Vigo, Fac Ciencias, Dept Ecol & Biol Anim, Vigo 36310, Spain Kim, SY (reprint author), Univ Vigo, Fac Ciencias, Dept Ecol & Biol Anim, Campus Lagoas Marcosende, Vigo 36310, Spain. yeonkim@uvigo.es morales, judith/G-3315-2013; Velando, Alberto/B-1701-2009; Kim, Sin-Yeon/K-2770-2014 morales, judith/0000-0002-3134-8937; Velando, Alberto/0000-0001-8909-0724; Kim, Sin-Yeon/0000-0002-5170-8477 Spanish Ministerio de Ciencia e Innovacion [CGL2009-10883-C02-01]; Xunta de Galicia; FPI [MICINN]; Juan de la Cierva Fellowship (MICINN) We are grateful to C. Alonso-Alvarez for very helpful comments on the earlier manuscript. We thank C. Perez for invaluable help during the fieldwork, Ester Ferrero for molecular sexing, M. Lores for advice in preparing for the saline buffer, and J. Dominguez and L. Sampedro for logistic helps. Fieldwork in Salvora Island depended on the generous support and friendship of P. Fernandez Bouzas, M. Caneda, M. Costas, P. Rivadulla, J. Torrado, P. Valverde and P. Vazquez of the Parque Nacional, and los fareros, P. Pertejo and J. Vilches. Finance was provided by the Spanish Ministerio de Ciencia e Innovacion (CGL2009-10883-C02-01). S.-Y. K. is supported by the Isidro Parga Pondal fellowship (Xunta de Galicia), J. C. N. by an FPI grant (MICINN) and J. M. by a Juan de la Cierva Fellowship (MICINN). The study was done under permissions by the Parque Nacional das Illas Atlanticas and Xunta de Galicia, and all the field procedures we performed complied with the current laws of Spain. Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Bukacinska M, 1998, J ORNITHOL, V139, P413, DOI 10.1007/BF01653468; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Crawley M. J., 2007, R BOOK; Dietz MW, 1997, PHYSIOL ZOOL, V70, P493, DOI 10.1086/515858; Dillin A, 2002, SCIENCE, V298, P2398, DOI 10.1126/science.1077780; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; DRENT RH, 1992, ARDEA, V80, P5; Eising CM, 2001, P ROY SOC B-BIOL SCI, V268, P839, DOI 10.1098/rspb.2001.1594; Falconer D. S., 1996, INTRO QUANTITATIVE G; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fridolfsson AK, 1999, J AVIAN BIOL, V30, P116, DOI 10.2307/3677252; GEBHARDTHENRICH SG, 1991, J EVOLUTION BIOL, V4, P341, DOI 10.1046/j.1420-9101.1991.4030341.x; Gilbert L, 1998, MOL ECOL, V7, P1549, DOI 10.1046/j.1365-294x.1998.00488.x; Gilmour A. R., 2006, ASREML USER GUIDE RE; Gotthard K, 2001, EXPTL BIOL REV, P287; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; Grafen A., 1984, BEHAV ECOLOGY EVOLUT, P62; Hadfield JD, 2007, J EVOLUTION BIOL, V20, P549, DOI 10.1111/j.1420-9101.2006.01262.x; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hillstrom L, 2000, BEHAV ECOL SOCIOBIOL, V47, P304, DOI 10.1007/s002650050670; Holzenberger M, 2003, NATURE, V421, P182, DOI 10.1038/nature01298; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Ito K, 2004, NATURE, V431, P997, DOI 10.1038/nature02989; Jennings BJ, 2000, MOL GENET METAB, V71, P32, DOI 10.1006/mgme.2000.3077; Kim SY, 2010, J EVOLUTION BIOL, V23, P769, DOI 10.1111/j.1420-9101.2010.01942.x; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; LOFT S, 1994, FASEB J, V8, P534; Lui JC, 2008, AM J PHYSIOL-REG I, V295, pR189, DOI 10.1152/ajpregu.00182.2008; Lynch M, 1998, GENETICS ANAL QUANTI; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; MCCARTHY ID, 1994, P ROY SOC B-BIOL SCI, V257, P141, DOI 10.1098/rspb.1994.0107; Merry BJ, 2000, ANN NY ACAD SCI, V908, P180; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Moe B, 2004, J EXP BIOL, V207, P4067, DOI 10.1242/jeb.01226; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Morgan IJ, 2000, J FISH BIOL, V56, P637, DOI 10.1006/jfbi.1999.1183; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Olsson M, 2008, BIOL LETTERS, V4, P186, DOI 10.1098/rsbl.2007.0611; Oyan HS, 1996, AUK, V113, P830; Paaby AB, 2009, FLY, V3, P29, DOI 10.4161/fly.3.1.7771; Pitala N, 2007, BIOLOGY LETT, V3, P418, DOI 10.1098/rsbl.2007.0135; R Development Core Team, 2009, R LANG ENV STAT COMP; RICKLEFS RE, 1979, BIOL REV, V54, P269, DOI 10.1111/j.1469-185X.1979.tb01013.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rollo CD, 1996, CAN J ZOOL, V74, P606, DOI 10.1139/z96-070; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Rubolini D, 2006, J EVOLUTION BIOL, V19, P1571, DOI 10.1111/j.1420-9101.2006.01121.x; SAMUELS SE, 1995, J NUTR, V125, P520; SCHEW WA, 1998, AVIAN GROWTH DEV EVO, P288; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; STARCK JM, 1998, AVIAN GROWTH DEV; Stearns S, 1992, EVOLUTION LIFE HIST; STOCKHOFF BA, 1991, OECOLOGIA, V88, P422, DOI 10.1007/BF00317588; Surai P. F., 2007, NATURAL ANTIOXIDANTS; Tatara MR, 2008, EXP PHYSIOL, V93, P763, DOI 10.1113/expphysiol.2007.041145; Tohyama D, 2008, FASEB J, V22, P4327, DOI 10.1096/fj.08-112953; Vezina F, 2009, PHYSIOL BIOCHEM ZOOL, V82, P248, DOI 10.1086/597548; VLECK CM, 1980, AM ZOOL, V20, P405; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Wei YH, 1998, ANN NY ACAD SCI, V854, P155, DOI 10.1111/j.1749-6632.1998.tb09899.x 74 32 32 2 36 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAR 2011 25 2 461 472 10.1007/s10682-010-9426-x 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 724NP WOS:000287583700016 2019-02-21 J Junge, C; Vollestad, LA; Barson, NJ; Haugen, TO; Otero, J; Saetre, GP; Leder, EH; Primmer, CR Junge, C.; Vollestad, L. A.; Barson, N. J.; Haugen, T. O.; Otero, J.; Saetre, G-P; Leder, E. H.; Primmer, C. R. Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus) HEREDITY English Article bottleneck; genetic drift; adaptive divergence; isolation by distance; colonization; non-equilibrium LIFE-HISTORY EVOLUTION; ALLELE FREQUENCY DATA; ADAPTIVE DIVERGENCE; NATURAL-SELECTION; COMPUTER-PROGRAM; COMMON ANCESTORS; F-STATISTICS; EGG SIZE; DISTANCE; PATTERNS Gene flow has the potential to both constrain and facilitate adaptation to local environmental conditions. The early stages of population divergence can be unstable because of fluctuating levels of gene flow. Investigating temporal variation in gene flow during the initial stages of population divergence can therefore provide insights to the role of gene flow in adaptive evolution. Since the recent colonization of Lake Lesjaskogsvatnet in Norway by European grayling (Thymallus thymallus), local populations have been established in over 20 tributaries. Multiple founder events appear to have resulted in reduced neutral variation. Nevertheless, there is evidence for local adaptation in early life-history traits to different temperature regimes. In this study, microsatellite data from almost a decade of sampling were assessed to infer population structuring and its temporal stability. Several alternative analyses indicated that spatial variation explained 2-3 times more of the divergence in the system than temporal variation. Over all samples and years, there was a significant correlation between genetic and geographic distance. However, decomposed pairwise regression analysis revealed differing patterns of genetic structure among local populations and indicated that migration outweighs genetic drift in the majority of populations. In addition, isolation by distance was observable in only three of the six years, and signals of population bottlenecks were observed in the majority of samples. Combined, the results suggest that habitat-specific adaptation in this system has preceded the development of consistent population substructuring in the face of high levels of gene flow from divergent environments. Heredity (2011) 106, 460-471; doi:10.1038/hdy.2010.160; published online 12 January 2011 [Junge, C.; Vollestad, L. A.; Barson, N. J.; Haugen, T. O.; Otero, J.; Saetre, G-P] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, N-0316 Oslo, Norway; [Junge, C.; Leder, E. H.; Primmer, C. R.] Univ Turku, Dept Biol, SF-20500 Turku, Finland; [Haugen, T. O.] Norwegian Inst Water Res, Oslo, Norway; [Haugen, T. O.] Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, Evenstad, Norway Junge, C (reprint author), Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, POB 1066, N-0316 Oslo, Norway. claudia.junge@bio.uio.no Junge, Claudia/H-3534-2013; Primmer, Craig/B-8179-2008; Leder, Erica/A-6446-2013; Otero, Jaime/C-4848-2015; Barson, Nicola/M-4090-2015 Primmer, Craig/0000-0002-3687-8435; Leder, Erica/0000-0002-7160-2290; Otero, Jaime/0000-0001-8020-0157; Barson, Nicola/0000-0002-6257-315X; Vollestad, Leif Asbjorn/0000-0002-9389-7982 Marie Curie PhD fellowship; Norwegian Research Council; Finnish Academy; Marie Curie EST We thank Melanie Stiffel, Nanna Winger Steen and Emelita Rivera Nerli for excellent technical assistance; Kyrre L Kausrud for help with R and helpful discussions; Kim Magnus Baerum, Kai-Rune Batstad, Cristian Correa, Finn Gregersen, Carolyn Knight, Eirik Krogstad and Gaute Thomassen for assistance during the field season; and Hans Skotte for his help with Lesjaskogsvatnet grayling. CJ received support for a Marie Curie PhD fellowship awarded to the CEES. This study was financially supported by the Norwegian Research Council, the Finnish Academy and the Marie Curie EST program under the 6th framework. Alleaume-Benharira M, 2006, J EVOLUTION BIOL, V19, P203, DOI 10.1111/j.1420-9101.2005.00976.x; Barson NJ, 2009, EVOLUTION, V63, P549, DOI 10.1111/j.1558-5646.2008.00554.x; Bjorklund M, 2010, ECOL INFORM, V5, P167, DOI 10.1016/j.ecoinf.2009.12.003; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Castric V, 2003, GENETICS, V163, P983; Chevin LM, 2010, EVOLUTION, V64, P1143, DOI 10.1111/j.1558-5646.2009.00875.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cornuet JM, 1996, GENETICS, V144, P2001; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; DIECKMANN U, 2004, ADAPTIVE SPECIATION; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Fitzpatrick BM, 2008, J EVOLUTION BIOL, V21, P1452, DOI 10.1111/j.1420-9101.2008.01611.x; Fraser DJ, 2011, HEREDITY, V106, P404, DOI 10.1038/hdy.2010.167; Fraser DJ, 2007, MOL ECOL, V16, P3866, DOI 10.1111/j.1365-294X.2007.03453.x; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; GarciaRamos G, 1997, EVOLUTION, V51, P21, DOI 10.1111/j.1558-5646.1997.tb02384.x; Goslee SC, 2007, J STAT SOFTW, V22, P1; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Gregersen F, 2008, ECOL FRESHW FISH, V17, P110, DOI 10.1111/j.1600-0633.2007.00264.x; Hanski I., 2004, ECOLOGY GENETICS EVO; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Haugen TO, 2000, J EVOLUTION BIOL, V13, P897, DOI 10.1046/j.1420-9101.2000.00242.x; Hemmer-Hansen J, 2007, HEREDITY, V99, P592, DOI 10.1038/sj.hdy.6801055; Hendry AP, 2001, GENETICA, V112, P515, DOI 10.1023/A:1013367100865; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Hendry AP, 2004, EVOLUTION ILLUMINATE; Junge C, 2010, CONSERV GENET RESOUR, V2, P219, DOI 10.1007/s12686-009-9147-z; Kavanagh KD, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-350; Kinnison MT, 2001, EVOLUTION, V55, P1656; Koizumi I, 2006, MOL ECOL, V15, P3175, DOI 10.1111/j.1365-294X.2006.03019.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Koskinen MT, 2002, HEREDITY, V88, P391, DOI 10.1038/sj/hdy/6800072; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; Moran MD, 2003, OIKOS, V100, P403, DOI 10.1034/j.1600-0706.2003.12010.x; Nadachowska K, 2009, MOL BIOL EVOL, V26, P829, DOI 10.1093/molbev/msp004; Novembre J, 2009, NAT REV GENET, V10, P745, DOI 10.1038/nrg2632; Nykanen M, 2004, J FISH BIOL, V64, P1386, DOI 10.1111/j.1095-8649.2004.00403.x; O'Malley KG, 2007, MOL ECOL, V16, P4930, DOI 10.1111/j.1365-294X.2007.03565.x; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Pritchard JK, 2000, GENETICS, V155, P945; Pritchard JK, 2010, CURR BIOL, V20, pR208, DOI 10.1016/j.cub.2009.11.055; R Development Core Team, 2008, R LANG ENV STAT COMP; Rasanen K, 2008, ECOL LETT, V11, P624, DOI 10.1111/j.1461-0248.2008.01176.x; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Richter-Boix A, 2010, MOL ECOL, V19, P716, DOI 10.1111/j.1365-294X.2009.04502.x; Ronce O, 2001, EVOLUTION, V55, P1520; Rousset F, 1997, GENETICS, V145, P1219; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Ryman N, 2006, MOL ECOL NOTES, V6, P285, DOI 10.1111/j.1471-8286.2005.01146.x; Ryman N, 2006, MOL ECOL NOTES, V6, P600, DOI 10.1111/j.1365-294X.2006.01378.x; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Wang JL, 2003, GENETICS, V163, P429; Waples RS, 2010, MOL ECOL RESOUR, V10, P785, DOI 10.1111/j.1755-0998.2010.02876.x; WAPLES RS, 2007, GENETICS, V175, P217; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Whitehead A, 2006, P NATL ACAD SCI USA, V103, P5425, DOI 10.1073/pnas.0507648103; Wright S, 1943, GENETICS, V28, P114 58 27 27 1 53 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X HEREDITY Heredity MAR 2011 106 3 SI 460 471 10.1038/hdy.2010.160 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 725HO WOS:000287636000006 21224882 Green Published, Bronze 2019-02-21 J Li, SL; Yu, FH; Werger, MJA; Dong, M; Zuidema, PA Li, Shou-Li; Yu, Fei-Hai; Werger, Marinus J. A.; Dong, Ming; Zuidema, Pieter A. Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub JOURNAL OF ECOLOGY English Article Artemisia ordosica; dune fixation; elasticity; integral projection model; life table response experiment; plant population and community dynamics; shrub demography INTEGRAL PROJECTION MODELS; POPULATION-DYNAMICS; MATRIX ANALYSIS; ENVIRONMENTAL VARIATION; GERMINATION STRATEGIES; ARTEMISIA-ORDOSICA; NORTHERN CHINA; FOREST HERB; GROWTH; VEGETATION 1. Maintaining viable populations in different habitats requires physiological, morphological and demographic adaptations of plants. In sandland environments, plants experience substantial variation in growing conditions during the dune fixation process, with high sand mobility in early stages and denser vegetation cover in later stages. 2. We studied the changes in demography of a dominant shrub, Artemisia ordosica, at three stages of dune fixation: semi-fixed dunes, fixed dunes and fixed dunes covered with microbiotic crust. Demographic data from three annual censuses were used to parameterize integral projection models (IPMs) to conduct comparative demographic analyses. 3. Plant growth and reproduction decreased strongly as dunes became more fixed. Shrinkage in plant height occurred very frequently, particularly in the fixed dunes with microbiotic crust. Population growth rate (lambda) declined substantially with dune fixation: from rapid expansion in semi-fixed dunes (lambda = 1.35-1.09) to moderate decline in fixed dunes with microbiotic crust (lambda = 0.94-0.89). 4. Elasticity analysis revealed that survival was a key vital rate for population growth in all habitats. Growth and fecundity were of higher importance in the semi-fixed habitat than in the other two habitats where shrinkage became an important factor determining lambda. Seedlings and small plants were critical for population growth in semi-fixed dunes, whereas moderate to large-sized plants were most important in the other habitats. 5. Results of life table response experiments showed that the observed strong decrease in lambda during dune fixation was mainly caused by reduction in fecundity, but with additional and considerable contributions from reduced plant growth and increased occurrence of shrinkage. Thus, populations in semi-fixed dunes are able to expand rapidly due to a much higher fecundity compared to those in other habitats. 6. Synthesis. Artemisia ordosica adopts different life history strategies along the dune fixation process. Fast expansion in semi-fixed dunes is enabled by high seed production and effective recruitment, while populations at later dune fixation stages are maintained through frequent plant shrinkage. Integral projection models are highly appropriate tools for analysing such life history changes as they are based on statistical comparisons of vital rates across habitats. [Yu, Fei-Hai] Beijing Forestry Univ, Coll Nat Conservat, Beijing 100083, Peoples R China; [Li, Shou-Li; Dong, Ming] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China; [Li, Shou-Li; Werger, Marinus J. A.; Zuidema, Pieter A.] Univ Utrecht, Inst Environm Biol, Ecol & Biodivers Grp, NL-3584 CH Utrecht, Netherlands; [Li, Shou-Li] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China Yu, FH (reprint author), Beijing Forestry Univ, Coll Nat Conservat, Beijing 100083, Peoples R China. feihaiyu@bjfu.edu.cn; dongming@ibcas.ac.cn Yu, Fei-Hai/O-9395-2016; Zuidema, Pieter/C-8951-2009; Li, Shou-Li/P-5687-2018; Li, Shouli/B-7077-2016 Yu, Fei-Hai/0000-0001-5007-1745; Zuidema, Pieter/0000-0001-8100-1168; Li, Shou-Li/0000-0001-8536-8194; Li, Shouli/0000-0003-4760-965X CAS [kzcx2-yw-431-4]; NSFC [31070371, 30770357, 30521005]; CAS-KNAW; State Key Lab of Vegetation and Environmental Change; ERC [242955] We thank Dr. Feike Schieving and Dr. Heinjo During for help with statistical analysis, Mr. Chang-Yuan Li for assistance with field work and two anonymous reviewers for valuable comments on an early version of the manuscript. This research was supported by a CAS-grant (kzcx2-yw-431-4), NSFC (31070371,30770357,30521005), a CAS-KNAW joint PhD Training Program, and the VEWALNE-project of State Key Lab of Vegetation and Environmental Change. P.A.Z. was supported by an ERC grant (242955). Albert MJ, 2001, ECOLOGY, V82, P1734, DOI 10.1890/0012-9658(2001)082[1734:FRSONE]2.0.CO;2; Angert AL, 2006, ECOLOGY, V87, P2014, DOI 10.1890/0012-9658(2006)87[2014:DOCAMP]2.0.CO;2; Bai YF, 2008, ECOLOGY, V89, P2140, DOI 10.1890/07-0992.1; Brown JF, 1997, J ECOL, V85, P151, DOI 10.2307/2960647; Brys R, 2004, J APPL ECOL, V41, P1080, DOI 10.1111/j.0021-8901.2004.00981.x; Bullock JM, 1996, J ECOL, V84, P733, DOI 10.2307/2261335; Caswell H, 2001, ADV ECOL RES, V32, P1, DOI 10.1016/S0065-2504(01)32010-X; Caswell H., 2001, MATRIX POPULATION MO; Dahlgren JP, 2009, J ECOL, V97, P666, DOI 10.1111/j.1365-2745.2009.01504.x; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; ELDRIDGE DJ, 1994, AUST J SOIL RES, V32, P389, DOI 10.1071/SR9940389; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Guo K., 2000, ACTA PHYTOECOLOGICA, V24, P243; Hesse E, 2008, AM NAT, V172, pE196, DOI 10.1086/591683; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Huang ZY, 2000, ACTA BOT SIN, V42, P71; Jacquemyn H, 2008, ECOLOGY, V89, P3480, DOI 10.1890/07-1908.1; Jacquemyn H, 2010, ECOLOGY, V91, P119, DOI 10.1890/08-2321.1; Jongejans E, 2005, J ECOL, V93, P681, DOI 10.1111/j.1365-2745.2005.01003.x; Jongejans E, 2010, J ECOL, V98, P279, DOI 10.1111/j.1365-2745.2009.01612.x; KADMON R, 1993, ECOLOGY, V74, P816, DOI 10.2307/1940808; KOBAYASHI T, 1995, ECOL RES, V10, P339, DOI 10.1007/BF02347860; Koop AL, 2005, ECOLOGY, V86, P2661, DOI 10.1890/04-1483; Kyncl T, 2006, PLANT ECOL, V186, P97, DOI 10.1007/s11258-006-9115-6; Li SL, 2010, TREES-STRUCT FUNCT, V24, P515, DOI 10.1007/s00468-010-0422-0; Li SL, 2010, ECOL RES, V25, P655, DOI 10.1007/s11284-010-0699-x; Li SZ, 2006, ARID LAND RES MANAG, V20, P61, DOI 10.1080/15324980500369467; Li XR, 2001, J ARID ENVIRON, V47, P271, DOI 10.1006/jare.2000.0707; Maron JL, 2002, ECOLOGY, V83, P3382; Miriti MN, 2001, ECOL MONOGR, V71, P491, DOI 10.1890/0012-9615(2001)071[0491:TEONOT]2.0.CO;2; OLFF H, 1994, J ECOL, V82, P69, DOI 10.2307/2261387; OOSTERMEIJER JGB, 1994, J APPL ECOL, V31, P428, DOI 10.2307/2404440; Parker IM, 2000, ECOL APPL, V10, P726, DOI 10.1890/1051-0761(2000)010[0726:IDOCSA]2.0.CO;2; Pascarella JB, 1998, ECOLOGY, V79, P547, DOI 10.2307/176952; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; R Development Core Team, 2010, R PROJ STAT COMP; Rees M, 2001, SCIENCE, V293, P650, DOI 10.1126/science.1062586; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Salguero-Gomez R, 2010, J ECOL, V98, P250, DOI 10.1111/j.1365-2745.2009.01635.x; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; Schenk HJ, 1999, PLANT ECOL, V141, P41, DOI 10.1023/A:1009895603783; Shi L, 2004, ANN BOT-LONDON, V94, P553, DOI 10.1093/aob/mch174; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Valverde T, 1998, J ECOL, V86, P545, DOI 10.1046/j.1365-2745.1998.00280.x; Watson IW, 1997, J ECOL, V85, P833, DOI 10.2307/2960605; Werger M. J. A., 1986, Hot deserts and arid shrublands, B, P283; Wesselingh RA, 1997, ECOLOGY, V78, P2118, DOI 10.1890/0012-9658(1997)078[2118:TSFFID]2.0.CO;2; Yamada T, 2007, J ECOL, V95, P332, DOI 10.1111/j.1365-2745.2006.01209.x; Zhang X.S., 1994, ACTA PHYTOECOL SIN, V18, P1, DOI DOI 10.1111/1365-2745.12089; Zuidema PA, 2001, J ECOL, V89, P995, DOI 10.1046/j.0022-0477.2001.00621.x; Zuidema PA, 2007, ECOL APPL, V17, P118, DOI 10.1890/1051-0761(2007)017[0118:TSBPAR]2.0.CO;2; Zuidema PA, 2010, J ECOL, V98, P345, DOI 10.1111/j.1365-2745.2009.01626.x; Zuo XA, 2009, PLANT SOIL, V318, P153, DOI 10.1007/s11104-008-9826-7 55 24 26 0 43 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 J ECOL J. Ecol. MAR 2011 99 2 610 620 10.1111/j.1365-2745.2010.01777.x 11 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 727GF WOS:000287785300027 Bronze 2019-02-21 J Riesch, R; Plath, M; Schlupp, I Riesch, R.; Plath, M.; Schlupp, I. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae) JOURNAL OF EVOLUTIONARY BIOLOGY English Article cave fish; divergent natural selection; ecological speciation; extremophile teleosts; life-history evolution; livebearing MALE MATING-BEHAVIOR; IMMIGRANTS MAINTAINS DIFFERENTIATION; ANTARCTIC ICEFISHES CHANNICHTHYIDAE; SEX-BIASED PREDATION; SPERM COMPETITION; FISH POPULATIONS; GENETIC DIFFERENTIATION; XIPHOPHORUS-MACULATUS; EASTERN MOSQUITOFISH; SELECTIVE PREDATION Chronic environmental stress is known to induce evolutionary change. Here, we assessed male life-history trait divergence in the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but reproductively isolated toxic/nontoxic and surface/cave habitats. Examining both field-caught and common garden-reared specimens, we investigated the extent of differentiation and plasticity of life-history strategies employed by male P. mexicana. We found strong site-specific life-history divergence in traits such as fat content, standard length and gonadosomatic index. The majority of site-specific life-history differences were also expressed under common garden-rearing conditions. We propose that apparent conservatism of male life histories is the result of other (genetically based) changes in physiology and behaviour between populations. Together with the results from previous studies, this is strong evidence for local adaptation as a result of ecologically based divergent selection. [Riesch, R.] N Carolina State Univ, Dept Biol, David Clark Labs 127, Raleigh, NC 27695 USA; [Riesch, R.; Schlupp, I.] Univ Oklahoma, Dept Zool, Norman, OK 73019 USA; [Plath, M.] Goethe Univ Frankfurt, Dept Ecol & Evolut, Frankfurt, Germany Riesch, R (reprint author), N Carolina State Univ, Dept Biol, David Clark Labs 127, Raleigh, NC 27695 USA. ruedigerriesch@web.de Riesch, Rudiger/A-5787-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667 NSF [DEB-0813783, DEB-0743406] We thank F. J. Garcia de Leon as well as C. and M. Tobler for their help in the field. R. R. also thanks D. Reznick for his instruction on life-history sampling techniques. The Mexican Government and the Municipal of Tacotalpa kindly provided permits for the work in Mexico. Financial support came from NSF (DEB-0813783 and DEB-0743406). ACHARYA L, 1995, ANIM BEHAV, V49, P1461, DOI 10.1016/0003-3472(95)90067-5; Arellano-Aguilar O, 2008, P ROY SOC B-BIOL SCI, V275, P1343, DOI 10.1098/rspb.2008.0163; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Arias AL, 2000, COPEIA, P792, DOI 10.1643/0045-8511(2000)000[0792:LHOPCA]2.0.CO;2; BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; BRITTON RH, 1982, OECOLOGIA, V53, P146, DOI 10.1007/BF00545657; CALOW P, 1989, BIOL J LINN SOC, V37, P173, DOI 10.1111/j.1095-8312.1989.tb02101.x; CAVANAUGH CM, 1981, SCIENCE, V213, P340, DOI 10.1126/science.213.4505.340; Evans JP, 2003, BEHAV ECOL, V14, P268, DOI 10.1093/beheco/14.2.268; Franssen CM, 2008, AQUAT ECOL, V42, P685, DOI 10.1007/s10452-007-9128-9; GORDON MS, 1962, COPEIA, P360, DOI DOI 10.2307/1440903; Gotelli N. J., 2004, PRIMER ECOLOGICAL ST; GRAY JS, 1989, BIOL J LINN SOC, V37, P19, DOI 10.1111/j.1095-8312.1989.tb02003.x; Grieshaber MK, 1998, ANNU REV PHYSIOL, V60, P33, DOI 10.1146/annurev.physiol.60.1.33; Hair J. F, 1995, MULTIVARIATE DATA AN; HEULETT ST, 1995, COPEIA, P97; Horstkotte Joachim, 2010, Bulletin of the British Arachnological Society, V15, P55; Huppop K, 2000, ECOSY WORLD, V30, P159; JENNINGS DT, 1989, J ARACHNOL, V17, P179; Kallman K.D., 1989, P163; KALLMAN KD, 1973, GEN COMP ENDOCR, V21, P287, DOI 10.1016/0016-6480(73)90061-0; Kock KH, 2005, POLAR BIOL, V28, P897, DOI 10.1007/s00300-005-0020-6; Kock KH, 2005, POLAR BIOL, V28, P862, DOI 10.1007/s00300-005-0019-z; KOHLER A, 2011, BEHAV ECOL IN PRESS; Kolluru GR, 1996, J EVOLUTION BIOL, V9, P695, DOI 10.1046/j.1420-9101.1996.9060695.x; Langecker Thomas G., 1996, Memoires de Biospeologie, V23, P121; Marsh-Matthews E, 2005, OECOLOGIA, V144, P12, DOI 10.1007/s00442-005-0030-7; McMullin E R, 2000, Gravit Space Biol Bull, V13, P13; Parzefall J, 2001, ENVIRON BIOL FISH, V62, P263, DOI 10.1023/A:1011899817764; Pilastro A, 2002, P NATL ACAD SCI USA, V99, P9913, DOI 10.1073/pnas.152133499; Pisarowicz J., 2005, ASS MEXICAN CAVE STU, V28, P27; Plath M, 2007, MOL ECOL, V16, P967, DOI 10.1111/j.1365-294X.2006.03212.x; Plath M, 2004, BEHAV ECOL SOCIOBIOL, V55, P596, DOI 10.1007/s00265-003-0750-9; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M, 2010, SUBTERRANEAN FISHES, P283; Plath Martin, 2004, Subterranean Biology, V2, P59; Plath M, 2008, BEHAVIOUR, V145, P73, DOI 10.1163/156853908782687241; Plath M, 2007, NATURWISSENSCHAFTEN, V94, P991, DOI 10.1007/s00114-007-0279-2; Plath M, 2007, BEHAVIOUR, V144, P1147, DOI 10.1163/156853907781890931; Plath M, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-256; Plath M, 2010, NATURWISSENSCHAFTEN, V97, P769, DOI 10.1007/s00114-010-0691-x; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1993, COPEIA, P103, DOI 10.2307/1446300; Reznick D, 2007, BIOL J LINN SOC, V92, P77, DOI 10.1111/j.1095-8312.2007.00869.x; RIESCH R, 2010, ECOLOGY, V95, P1494; Riesch R, 2010, BIOL J LINN SOC, V101, P417, DOI 10.1111/j.1095-8312.2010.01522.x; Riesch R, 2010, EVOL ECOL, V24, P789, DOI 10.1007/s10682-009-9335-z; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Riesch R, 2009, BEHAV ECOL SOCIOBIOL, V63, P1515, DOI 10.1007/s00265-009-0780-z; Riesch R, 2009, ENVIRON BIOL FISH, V84, P89, DOI 10.1007/s10641-008-9392-0; Rosales-Lagarde L, 2008, GEOCHIM COSMOCHIM AC, V72, pA805; ROSALESLAGARDE L, 2006, ASS MEXICAN CAVE STU, V19, P177; Rosen D. E., 1963, Bulletin of the American Museum of Natural History, V126, P1; Rosenthal GG, 2001, AM NAT, V158, P146, DOI 10.1086/321309; Rothschild LJ, 2001, NATURE, V409, P1092, DOI 10.1038/35059215; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; SCHREIBMAN MP, 1977, J EXP ZOOL, V200, P277, DOI 10.1002/jez.1402000209; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Theissen U, 2008, MICROBIAL SULFUR METABOLISM, P36, DOI 10.1007/978-3-540-72682-1_4; Thomas DN, 2002, SCIENCE, V295, P641, DOI 10.1126/science.1063391; Tobler M, 2008, ENVIRON BIOL FISH, V82, P101, DOI 10.1007/s10641-007-9258-x; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2009, J EVOLUTION BIOL, V22, P2298, DOI 10.1111/j.1420-9101.2009.01844.x; Tobler M, 2008, BIOL J LINN SOC, V95, P517, DOI 10.1111/j.1095-8312.2008.01063.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2008, BIOL LETTERS, V4, P452, DOI 10.1098/rsbl.2008.0259; Tobler M, 2008, NATURWISSENSCHAFTEN, V95, P775, DOI 10.1007/s00114-008-0382-z; Tobler M, 2006, EXTREMOPHILES, V10, P577, DOI 10.1007/s00792-006-0531-2; Tobler M, 2009, EVOL ECOL RES, V11, P935; Tobler M, 2009, BIOL LETTERS, V5, P506, DOI 10.1098/rsbl.2009.0272; Toft G, 2005, ECOTOX ENVIRON SAFE, V60, P15, DOI 10.1016/j.ecoenv.2004.07.010; TRAVIS J, 1989, ENVIRON BIOL FISH, V26, P119, DOI 10.1007/BF00001028; TREXLER JC, 1994, OIKOS, V69, P250, DOI 10.2307/3546145; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; VETTER RD, 1987, PHYSIOL ZOOL, V60, P121, DOI 10.1086/physzool.60.1.30158634 79 22 26 0 19 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. MAR 2011 24 3 596 606 10.1111/j.1420-9101.2010.02194.x 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 723UE WOS:000287531900011 21159007 Bronze 2019-02-21 J Jensen, K; Mayntz, D; Toft, S; Raubenheimer, D; Simpson, SJ Jensen, Kim; Mayntz, David; Toft, Soren; Raubenheimer, David; Simpson, Stephen J. Prey nutrient composition has different effects on Pardosa wolf spiders with dissimilar life histories OECOLOGIA English Article Nutrient balance; Predator; Performance; Phenology; Lycosidae INTRAGUILD PREDATION; EGG-PRODUCTION; BODY SIZE; GROWTH; NUTRITION; NITROGEN; INSECTS; QUALITY The nutritional composition of prey is known to influence predator life histories, but how the life history strategies of predators affect their susceptibility to nutrient imbalance is less investigated. We used two wolf spider species with different life histories as model predators: Pardosa amentata, which have a fixed annual life cycle, and Pardosa prativaga, which reproduce later and can extend development across 2 years. We fed juvenile spiders of the two species ad libitum diets of one of six Drosophila melanogaster fly types varying in lipid:protein composition during three instars, from the start of the second instar until the fifth instar moult. We then tested for interactions between predator species and prey nutrient composition on several life history parameters. P. amentata completed the three instars faster and grew larger carapaces and heavier body masses than P. prativaga, but the two species responded differently to variation in prey lipid:protein ratio. Duration of the instars increased when feeding on protein-poor prey in P. amentata, but was unaffected by diet in P. prativaga. Likewise, the effect of diet on body composition was more pronounced in P. amentata than in P. prativaga. Prey nutrient composition thus affected the two species differently. During macronutrient imbalance P. amentata appear to prioritize high growth rates while experiencing highly variable body compositions, whereas P. prativaga maintain more constant body compositions and have slower growth. These can be seen as different consequences of a fixed annual and a plastic annual-biennial life cycle. [Jensen, Kim] Univ Oxford, Dept Zool, Oxford OX1 3PS, England; [Jensen, Kim; Simpson, Stephen J.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; [Mayntz, David; Toft, Soren] Univ Aarhus, Dept Biol Sci Ecol & Genet, DK-8000 Aarhus C, Denmark; [Mayntz, David] Univ Aarhus, Res Ctr Foulum, Dept Genet & Biotechnol, DK-8830 Tjele, Denmark; [Raubenheimer, David] Massey Univ, Inst Nat Sci, N Shore Mail Ctr, Auckland, New Zealand Jensen, K (reprint author), Univ Oxford, Dept Zool, S Parks Rd, Oxford OX1 3PS, England. kim.jensen@biology.au.dk Jensen, Kim/0000-0003-0261-3831; Simpson, Stephen J./0000-0003-0256-7687; Raubenheimer, David/0000-0001-9050-1447 UK Biotechnology and Biological Sciences Research Council; Danish Research Council; National Research Centre for Growth and Development, New Zealand; Australian Research Council This study was supported by a grant from the UK Biotechnology and Biological Sciences Research Council. DM was in receipt of a grant from the Danish Research Council. DR is part-funded by the National Research Centre for Growth and Development, New Zealand. SJS was in receipt of a Federation Fellowship and currently a Laureate Fellowship from the Australian Research Council. We thank Jerome Casas and two anonymous reviewers for helpful comments on the manuscript. [Anonymous], 2006, OFF METH; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Begon M., 1990, ECOLOGY INDIVIDUALS; Denno RF, 2003, ECOLOGY, V84, P2522, DOI 10.1890/02-0370; Fagan WF, 2002, AM NAT, V160, P784, DOI 10.1086/343879; HANGGI A, 1995, HABITATS CENTRAL EUR; Higgins LE, 1996, EVOLUTION, V50, P573, DOI 10.1111/j.1558-5646.1996.tb03869.x; Higgins LE, 2001, FUNCT ECOL, V15, P24, DOI 10.1046/j.1365-2435.2001.00491.x; JENSEN K, 2010, THESIS U OXFORD DEP; Jensen K, 2010, J INSECT PHYSIOL, V56, P1095, DOI 10.1016/j.jinsphys.2010.03.001; KESSLER A, 1971, OECOLOGIA, V8, P93, DOI 10.1007/BF00345629; KLINGENBERG CP, 1992, J ZOOL, V227, P453, DOI 10.1111/j.1469-7998.1992.tb04406.x; Lee KP, 2004, J INSECT PHYSIOL, V50, P1171, DOI 10.1016/j.jinsphys.2004.10.009; Matsumura M, 2004, ECOLOGY, V85, P2601, DOI 10.1890/03-0629; Mayntz D, 2005, SCIENCE, V307, P111, DOI 10.1126/science.1105493; Mayntz D, 2003, OIKOS, V101, P631, DOI 10.1034/j.1600-0706.2003.12408.x; Mayntz D, 2001, OECOLOGIA, V127, P207, DOI 10.1007/s004420000591; McDonald P., 2002, ANIMAL NUTR; MURAKAMI Y, 1983, OECOLOGIA, V57, P72, DOI 10.1007/BF00379564; NIJHOUT HF, 1981, AM ZOOL, V21, P631; Norgaard E., 1945, Flora og Fauna Kjobenh, V51, P1; Raubenheimer D, 2003, J EXP BIOL, V206, P1669, DOI 10.1242/jeb.00336; Raubenheimer D, 1999, ENTOMOL EXP APPL, V91, P67, DOI 10.1046/j.1570-7458.1999.00467.x; Raubenheimer D, 2007, ECOLOGY, V88, P2598, DOI 10.1890/07-0012.1; Riechert Susan E., 1992, P313, DOI 10.1002/9781444314076.ch13; Roberts M. J., 1996, SPIDERS BRITAIN NO E; Roff Derek A., 1992; Salomon M, 2008, BEHAV ECOL, V19, P605, DOI 10.1093/beheco/arn008; Simpson SJ, 2002, J EXP BIOL, V205, P121; Stearns S, 1992, EVOLUTION LIFE HIST; Stryer L., 1999, BIOCHEMISTRY; TANAKA A, 1981, J INSECT PHYSIOL, V27, P587, DOI 10.1016/0022-1910(81)90105-0; VOLLRATH F, 1983, TAXONOMY BIOL ECOLOG, P277; Wilder SM, 2008, ANIM BEHAV, V76, P439, DOI 10.1016/j.anbehav.2008.01.023; WILSON DS, 1975, AM NAT, V109, P769, DOI 10.1086/283042; Wise D. H, 1993, SPIDERS ECOLOGICAL W; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 38 16 17 0 33 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia MAR 2011 165 3 577 583 10.1007/s00442-010-1811-1 7 Ecology Environmental Sciences & Ecology 721NL WOS:000287361500004 20976606 2019-02-21 J Gyuris, E; Fero, O; Tartally, A; Barta, Z Gyuris, Eniko; Fero, Orsolya; Tartally, Andras; Barta, Zoltan Individual behaviour in firebugs (Pyrrhocoris apterus) PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article animal personality; firebug; wing dimorphism; male-female differences; life history MORPH-RELATED DIFFERENCES; FLIGHTLESS BUG; WING DIMORPHISM; ANIMAL PERSONALITIES; L. HETEROPTERA; EVOLUTION; DISPERSAL; INSECTS; ECOLOGY; POLYMORPHISM The concept of animal personalities has recently become of major interest as researchers began to wonder why animals within a given population show consistent behaviour across situations and contexts, what led to the evolution of such behavioural inflexibility and what mechanisms might underlie the phenomenon. A recent model explains individual differences in a population as the result of trade-off between present and future reproduction. We tested this model on the two wing morphs, i.e. short-winged (brachypterous) and long-winged (macropterous) specimens of the firebug (Pyrrhocoris apterus). Since it has been already demonstrated that the two wing morphs differ in their life-history strategies, this species is an ideal subject to test whether the specimens with different life-history strategies have different personalities as well. The results show that individuals behave consistently over time and across contexts, meaning observed bugs do have personalities. We also have found that in females, the two wing morphs have different personalities supporting the theoretical predictions, i.e. winged ones, which are supposed to have lower future reproductive value, are braver and more exploratory. We found no difference between the morphs in males. Differences in reproductive investment might explain this discrepancy between the sexes. [Gyuris, Eniko; Fero, Orsolya; Tartally, Andras; Barta, Zoltan] Univ Debrecen, Dept Evolutionary Zool, Behav Ecol Res Grp, H-4010 Debrecen, Hungary; [Fero, Orsolya] Hungarian Acad Sci, Inst Nucl Res, Computat Grp, H-4001 Debrecen, Hungary; [Tartally, Andras] Univ Copenhagen, Dept Biol, Ctr Social Evolut, DK-2100 Copenhagen, Denmark Gyuris, E (reprint author), Univ Debrecen, Dept Evolutionary Zool, Behav Ecol Res Grp, H-4010 Debrecen, Hungary. eniko.gyuris@vocs.unideb.hu Barta, Zoltan/0000-0002-7121-9865 European Community; Hungarian Scientific Research Fund (OTKA) [K75696]; TAMOP [4.2.1./B-09/1/KONV-2010-0007]; European Social Fund; European Regional Development Fund We are indebted to K. Bertok, V. Bokony, L. Garamszegi, J. Tokolyi and two anonymous reviewers for their useful comments and suggestions that helped to improve the manuscript. We would like to thank Miklos Ban for providing a lot of technical help. A.T. was supported in part by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme. Our work was partially supported by the Hungarian Scientific Research Fund (OTKA, no. K75696) and by the TAMOP 4.2.1./B-09/1/KONV-2010-0007 project. The project is implemented through the New Hungary Development Plan, co-financed by the European Social Fund and the European Regional Development Fund. Bell W. J., 1991, SEARCHING BEHAV BEHA; BOVET P, 1988, J THEOR BIOL, V131, P419, DOI 10.1016/S0022-5193(88)80038-9; Briffa M, 2008, P R SOC B, V275, P1305, DOI 10.1098/rspb.2008.0025; CANTY A, 2008, BOOT BOOTSTRAP R S P; CLARK AB, 1987, PERSPECTIVES ETHOLOG, P1; CLOBERT J, 2001, DISPERSAL, pR17; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; Davison A. C., 1997, BOOTSTRAP METHODS TH; Gamer M, 2007, IRR VARIOUS COEFFICI; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Hornik K., 2005, J STAT SOFTW, P14; Jansen VAA, 1998, THEOR POPUL BIOL, V54, P195, DOI 10.1006/tpbi.1998.1384; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kortet R, 2007, BIOL J LINN SOC, V91, P475, DOI 10.1111/j.1095-8312.2007.00812.x; Legendre P, 2005, J AGR BIOL ENVIR ST, V10, P226, DOI 10.1198/108571105X46642; Magurran A. E., 1993, BEHAV TELEOST FISHES, P441; Oksanen J., 2009, VEGAN COMMUNITY ECOL; R Development Core Team, 2008, R LANG ENV STAT COMP; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1991, AM ZOOL, V31, P243; ROFF DA, 1994, AM NAT, V144, P772, DOI 10.1086/285706; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Socha R, 2000, J INSECT BEHAV, V13, P741, DOI 10.1023/A:1007800212347; Socha R, 2006, J INSECT PHYSIOL, V52, P231, DOI 10.1016/j.jinsphys.2005.10.009; Socha R, 2004, ETHOL ECOL EVOL, V16, P217; Socha R, 2003, OIKOS, V100, P35, DOI 10.1034/j.1600-0706.2003.12100.x; Socha R, 2000, PHYSIOL ENTOMOL, V25, P383, DOI 10.1046/j.1365-3032.2000.00209.x; Socha R, 2008, EUR J ENTOMOL, V105, P93, DOI 10.14411/eje.2008.013; Wilson DS, 1998, PHILOS T ROY SOC B, V353, P199, DOI 10.1098/rstb.1998.0202; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wratten W. D., 1994, VIDEO TECHNIQUES ANI; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 35 31 31 3 45 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. FEB 22 2011 278 1705 628 633 10.1098/rspb.2010.1326 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 704YT WOS:000286093900022 20826482 Green Published, Bronze 2019-02-21 J de Villemereuil, PB; Lopez-Sepulcre, A de Villemereuil, Pierre B.; Lopez-Sepulcre, Andres Consumer functional responses under intra- and inter-specific interference competition ECOLOGICAL MODELLING English Article Functional response; Response surface experiment; Inter-specific competition; Interference; Trinidadian guppy LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; POPULATION-DYNAMICS; INTERSPECIFIC COMPETITION; TRINIDADIAN GUPPIES; FIELD EXPERIMENTS; GENETIC-BASIS; PREY; PREDATORS; SCRAMBLE Mechanistic models of population, community and ecosystem dynamics require the mathematical description of trophic interactions in the form of functional response equations. There is a wealth of such equations developed to incorporate the effects of multitude forms of foraging behaviour including intra-specific interference competition. However, there has been no attempt to include inter-specific behaviours beyond the obvious consumer-resource relationship, and thus, mechanistic models of communities and ecosystems remain limited in their incorporation of individual behaviour. In this paper we extend existing functional response models to account for both intra- and inter-specific interference behaviours. Together with response surface experiments, these can be used to investigate the role of both types of interference for a given species' resource acquisition efficiency. We illustrate this with data from foraging trials of guppies Poecilia reticulata in the presence and absence of a competitor species. Hart's killifish Rivulus hartii. Our results show that in the studied example, intra-specific interference is important and stronger than inter-specific competition. (C) 2010 Elsevier B.V. All rights reserved. [de Villemereuil, Pierre B.; Lopez-Sepulcre, Andres] Ecole Normale Super, CNRS, UMR 7625, Lab Ecol Evolut, F-75005 Paris, France; [Lopez-Sepulcre, Andres] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Lopez-Sepulcre, A (reprint author), Ecole Normale Super, CNRS, UMR 7625, Lab Ecol Evolut, 46 Rue Ulm, F-75005 Paris, France. alopez@biologie.ens.edu Lopez-Sepulcre, Andres/G-2404-2010 Lopez-Sepulcre, Andres/0000-0001-9708-0788 USA National Science Foundation [EF0623632]; Department of Biology of the Ecole Normale Superieure in Paris; Agence Nationale de la Recherche (ANR, France) We would like to thank Regis Ferriere and David Reznick for helpful discussions; Swanne P. Gordon and Samantha Natividad for lab-training; Kevin Meierbachtol and Justa Heinen for help in the field; Ronnie Hernandez and Ron Bassar for logistic help and Jonathan Jeschke for comments on the manuscript. Research took place at William Beebe Tropical Research Station (Simla). Funding was provided by the USA National Science Foundation's FIBR grant EF0623632, the Department of Biology of the Ecole Normale Superieure in Paris and the EvoRange project of the Agence Nationale de la Recherche (ANR, France). Abrams PA, 2000, TRENDS ECOL EVOL, V15, P337, DOI 10.1016/S0169-5347(00)01908-X; Abrams PA, 2004, POPUL ECOL, V46, P13, DOI 10.1007/s10144-003-0168-2; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; BEDDINGTON JR, 1975, J ANIM ECOL, V44, P331, DOI 10.2307/3866; Begon M, 1996, ECOLOGY INDIVIDUALS; Burnham K. P, 2002, MODEL SELECTION MULT; CONNELL JH, 1983, AM NAT, V122, P661, DOI 10.1086/284165; Coolen I, 2007, OIKOS, V116, P533, DOI 10.1111/j.2006.0030-1299.15213.x; Cosner C, 1999, THEOR POPUL BIOL, V56, P65, DOI 10.1006/tpbi.1999.1414; CROWLEY PH, 1989, J N AM BENTHOL SOC, V8, P211, DOI 10.2307/1467324; DEANGELIS DL, 1975, ECOLOGY, V56, P92; EFRON B, 1986, J AM STAT ASSOC, V81, P709, DOI 10.2307/2289002; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Grether GF, 2009, BIOL REV, V84, P617, DOI 10.1111/j.1469-185X.2009.00089.x; GUREVTICH J, 1992, AM NAT, V140, P593; Holling C. S., 1959, Canadian Entomologist, V91, P385; Huisman G, 1997, J THEOR BIOL, V185, P389, DOI 10.1006/jtbi.1996.0318; Inouye BD, 2001, ECOLOGY, V82, P2696, DOI 10.1890/0012-9658(2001)082[2696:RSEDFI]2.0.CO;2; Ishii Y, 2008, POPUL ECOL, V50, P197, DOI 10.1007/s10144-008-0080-x; Jeschke JM, 2002, ECOL MONOGR, V72, P95, DOI 10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kempf A, 2008, MAR ECOL PROG SER, V367, P295, DOI 10.3354/meps07555; Kratina P, 2009, OECOLOGIA, V159, P425, DOI 10.1007/s00442-008-1225-5; Krivan V, 2008, THEOR POPUL BIOL, V73, P403, DOI 10.1016/j.tpb.2007.12.009; KUANG Y, 2002, J BIOMATH, V17, P129; Lomnicki A, 2009, EVOL ECOL RES, V11, P371; Miller TE, 1996, ECOLOGY, V77, P1329, DOI 10.2307/2265530; Owens D. C., 2010, THESIS U NEBRASKA LI; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R-Development-Core-Team, 2005, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Sarnelle O, 2008, ECOLOGY, V89, P1723, DOI 10.1890/07-0935.1; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Skalski GT, 2001, ECOLOGY, V82, P3083; SOLOMON ME, 1949, J ANIM ECOL, V18, P1, DOI 10.2307/1578; Sutherland WJ, 2006, J APPL ECOL, V43, P599, DOI 10.1111/j.1365-2664.2006.01182.x; Sutherland WJ, 2002, PHILOS T R SOC B, V357, P1273, DOI 10.1098/rstb.2002.1127; SUTHERLAND WJ, 1996, INDIVIDUAL BEHAV POP; TILMAN, 1982, RESOURCE COMPETITION; TOQUENAGA Y, 1993, RES POPUL ECOL, V35, P57, DOI 10.1007/BF02515645; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 49 17 18 4 31 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 ECOL MODEL Ecol. Model. FEB 10 2011 222 3 419 426 10.1016/j.ecolmodel.2010.10.011 8 Ecology Environmental Sciences & Ecology 714BP WOS:000286782200004 2019-02-21 J Plath, M; Riesch, R; Culumber, Z; Streit, B; Tobler, M Plath, Martin; Riesch, Ruediger; Culumber, Zach; Streit, Bruno; Tobler, Michael Giant water bug (Belostoma sp.) predation on a cave fish (Poecilia mexicana): effects of female body size and gestational state EVOLUTIONARY ECOLOGY RESEARCH English Article aquatic surface respiration; cave fish; life-history evolution; Poeciliidae; size-selective predation LIFE-HISTORY EVOLUTION; TOXIC HYDROGEN-SULFIDE; ENVIRONMENTAL GRADIENTS; SWIMMING PERFORMANCE; OXYGEN-CONSUMPTION; EXTREMOPHILE FISH; TRINIDADIAN GUPPY; EXTREME HABITATS; SULFUR CAVE; NEST SITES Background: Predation is an important driver of life-history trait evolution. Fish predators may prey selectively on certain prey size classes, or pregnant females, particularly those of livebearing prey species. This selectivity ought to affect the evolutionary trajectory of the prey population. In sulphidic and hypoxic habitats, Atlantic mollies (Poecilia mexicana) have to spend considerable time engaging in aquatic surface respiration, exposing themselves to predation by giant water bugs (Belostoma sp.). Compared with other females, pregnant P mexicana experience greater oxygen demands leading to more aquatic surface respiration. Questions: Are pregnant P mexicana females more likely to be captured by Belostoma as a result of more aquatic surface respiration and decreased flight abilities (i.e. slower fast-start responses)? Organisms and location: (1) Atlantic mollies (P mexicana: Poeciliidae, Teleostei) inhabiting a sulphidic cave (Cueva del Azufre) in Tabasco, Mexico. (2) A co-existing sit-and-wait predator, the giant water bug Belostoma sp. (Belostomatidae, Hemiptera), which catches surfacing fish at the water's edge. Methods: Predation experiments inside the Cueva del Azufre. In Experiment 1, one randomly selected cave molly female was placed into a perforated bottle with one individual water bug. In Experiment 2, two size-matched females (one pregnant and one non-pregnant) were placed into a perforated bottle with one individual water bug. Results: Capture rates after 24 h in Experiment I were correlated mainly with female body size. But larger females were also more likely to be pregnant, making it difficult to disentangle the effects of size and pregnancy. Experiment 2 isolated the effect of pregnancy, and water bugs clearly preferred pregnant over non-pregnant prey. [Plath, Martin; Streit, Bruno] Goethe Univ Frankfurt, Dept Ecol & Evolut, D-60054 Frankfurt, Germany; [Riesch, Ruediger] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA; [Riesch, Ruediger] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA; [Culumber, Zach] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA; [Tobler, Michael] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA Plath, M (reprint author), Goethe Univ Frankfurt, Dept Ecol & Evolut, Siesmayerstr 70A, D-60054 Frankfurt, Germany. mplath@bio.uni-frankfurt.de TOBLER, Michael/A-9141-2008; Riesch, Rudiger/A-5787-2008 Riesch, Rudiger/0000-0002-0223-1254 DFG [PL 470/1-2]; Herrmann-Willkomm Foundation; Initiative Nachwuchswissenschafter im Fokus of the University of Frankfurt; National Geographic Society We would like to thank the following persons for help with fieldwork: A. Oranth, J. Dzienko, N. Karau, A. Schiessl, S. Stadler, A. Wigh, C. Zimmer, and L. Arias-Rodriguez. M. Ziege kindly provided the drawings in Figures I and 2. M. Kinnison and M. Rosenzweig provided very constructive and helpful comments on a previous draft of the manuscript. Financial support came from the DFG (PL 470/1-2), the Herrmann-Willkomm Foundation, and the Initiative Nachwuchswissenschafter im Fokus of the University of Frankfurt (to M.P.), as well as from the National Geographic Society (to M.T.). BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; BOEHLERT GW, 1991, ENVIRON BIOL FISH, V30, P81, DOI 10.1007/BF02296879; CHEN KY, 1972, ENVIRON SCI TECHNOL, V6, P529, DOI 10.1021/es60065a008; CLINE JD, 1969, ENVIRON SCI TECHNOL, V3, P838, DOI 10.1021/es60032a004; Culver Daniel C., 2005, P346; DEMARCO V, 1992, J EXP ZOOL, V262, P383, DOI 10.1002/jez.1402620404; Einum S, 2004, EVOL ECOL RES, V6, P443; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Futuyma Douglas, 2005, EVOLUTION; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gilchrist HG, 1998, ECOLOGY, V79, P2403, DOI 10.2307/176831; GORDON MS, 1962, COPEIA, P360, DOI DOI 10.2307/1440903; Horstkotte Joachim, 2010, Bulletin of the British Arachnological Society, V15, P55; HOYLE JA, 1987, CAN J ZOOL, V65, P540; HOYLE JA, 1988, CAN J ZOOL, V66, P1972; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Klaus S, 2011, CRUSTACEANA, V84, P411, DOI 10.1163/001121611X560853; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Law R., 1979, AM NAT, V114, P319; Liu H, 2003, J MAMMAL, V84, P1410, DOI 10.1644/BRG-030; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Olsson M, 2000, J EVOLUTION BIOL, V13, P263; Perry G, 1997, TRENDS ECOL EVOL, V12, P360, DOI 10.1016/S0169-5347(97)01097-5; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Plath M, 2007, MOL ECOL, V16, P967, DOI 10.1111/j.1365-294X.2006.03212.x; Plath M, 2003, BEHAV ECOL SOCIOBIOL, V54, P303, DOI 10.1007/s00265-003-0625-0; Plath M., 2010, BIOL SUBTERRANEAN FI, P283; Plath M, 2007, NATURWISSENSCHAFTEN, V94, P991, DOI 10.1007/s00114-007-0279-2; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Poulson TL, 2000, ECOSY WORLD, V30, P231; PYKE GH, 1984, ANNU REV ECOL SYST, V15, P523, DOI 10.1146/annurev.es.15.110184.002515; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Riesch R, 2011, J EVOLUTION BIOL, V24, P596, DOI 10.1111/j.1420-9101.2010.02194.x; Riesch R, 2010, BIOL J LINN SOC, V101, P417, DOI 10.1111/j.1095-8312.2010.01522.x; Riesch R, 2010, EVOL ECOL, V24, P789, DOI 10.1007/s10682-009-9335-z; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Riesch R, 2009, BEHAV ECOL SOCIOBIOL, V63, P1515, DOI 10.1007/s00265-009-0780-z; Riesch R, 2009, ENVIRON BIOL FISH, V84, P89, DOI 10.1007/s10641-008-9392-0; Robb T, 2002, BEHAV ECOL SOCIOBIOL, V52, P25, DOI 10.1007/s00265-002-0474-2; Rogowski DL, 2006, OECOLOGIA, V146, P615, DOI 10.1007/s00442-005-0218-x; Romero A, 2005, J FISH BIOL, V67, P3, DOI 10.1111/j.1095-8649.2005.00776.x; ROMERO A, 1985, AM MIDL NAT, V113, P7, DOI 10.2307/2425342; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Springer YP, 2007, OECOLOGIA, V151, P10, DOI 10.1007/s00442-006-0566-1; Springer YP, 2009, AM J BOT, V96, P2010, DOI 10.3732/ajb.0900047; Tabuki R, 1999, PALAEONTOLOGY, V42, P569, DOI 10.1111/1475-4983.00086; Timmerman CM, 2003, ENVIRON BIOL FISH, V68, P293, DOI 10.1023/A:1027300701599; TOBLER M, AQUAT INSECTS UNPUB; TOBLER M, PARALLEL DIVER UNPUB; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2008, NATURWISSENSCHAFTEN, V95, P775, DOI 10.1007/s00114-008-0382-z; Tobler M, 2007, ECOL ENTOMOL, V32, P492, DOI 10.1111/j.1365-2311.2007.00892.x; Tobler M, 2007, ACTA OECOL, V31, P270, DOI 10.1016/j.actao.2006.12.002; Tobler M, 2006, EXTREMOPHILES, V10, P577, DOI 10.1007/s00792-006-0531-2; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Tobler M, 2009, EVOL ECOL RES, V11, P935; Tobler M, 2009, BIOL LETTERS, V5, P506, DOI 10.1098/rsbl.2009.0272 63 13 14 0 19 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 EVOL ECOL RES Evol. Ecol. Res. FEB 2011 13 2 133 144 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 799SC WOS:000293305400002 2019-02-21 J Styrsky, JN; Brawn, JD Styrsky, Jennifer Nesbitt; Brawn, Jeffrey D. ANNUAL FECUNDITY OF A NEOTROPICAL BIRD DURING YEARS OF HIGH AND LOW RAINFALL CONDOR English Article Annual fecundity; breeding season; ENSO; Hylophylax naevioides; neotropics; rainfall; Spotted Antbird NINO SOUTHERN-OSCILLATION; LIFE-HISTORY EVOLUTION; CENTRAL PANAMA; CLUTCH SIZE; NEST PREDATION; TROPICAL BIRDS; FOREST BIRDS; FOOD; REPRODUCTION; SEASONALITY We investigated how variation in the timing and amount of annual precipitation influenced annual variation in the fecundity of the Spotted Antbird (Hylophylax naevioides) in central Panama from 1998 to 2001. The onset of nesting varied significantly by year and corresponded with a notably strong episode of El Nino-Southern Oscillation that generated variation by year in dry-season precipitation and the onset of wet-season rains. The end of nesting, however, was not influenced by annual variation in rainfall. Fecundity was also similar each year despite pronounced variation in wet-season precipitation. Although breeding pairs attempted an average of almost five nests per year, slightly less than one nest attempt per pair was successful. Annual fecundity was 1.5 fledglings per pair, exceeding the turnover of territorial adults in this population. Extended parental investment in care of fledglings delayed renesting and consequently limited subsequent opportunities to breed within the season. Predation and duration of parental care likely influence annual fecundity more than variation in environmental conditions. [Styrsky, Jennifer Nesbitt] Univ Illinois, Dept Anim Biol, Urbana, IL 61801 USA; [Brawn, Jeffrey D.] Univ Illinois, Dept Nat Resources & Environm Sci, Urbana, IL 61801 USA; [Brawn, Jeffrey D.] Univ Illinois, Program Ecol & Evolutionary Biol, Urbana, IL 61801 USA Styrsky, JN (reprint author), Lynchburg Coll, Dept Biol, Lynchburg, VA 24501 USA. styrsky.jennifer@lynchburg.edu National Science Foundation [DEB-0073152]; American Museum of Natural History; Philanthropic Educational Organization; University of Illinois Many field assistants helped find and monitor Spotted Antbird nests during the years of this study. We are especially grateful to D. Buehler, J. Buler, N. Davros, E.C. Edwards, J. Ortega, R. Peak, and E. Rockwell. Rainfall data were provided courtesy of the Meteorology and Hydrology Branch, Panama Canal Authority, Republic of Panama. The Autoridad Nacional del Ambiente granted us permission to work in the Republic of Panama, and the Smithsonian Tropical Research Institute provided logistical support for this project. C. Augspurger, K. Paige, S. Robinson, and J. D. Styrsky provided thoughtful comments and discussion that helped improve the manuscript. This research was supported by grants from the National Science Foundation (DEB-0073152 and Graduate Fellowship) and grants from the American Museum of Natural History, Philanthropic Educational Organization, and the University of Illinois. ACEITUNO P, 1988, MON WEATHER REV, V116, P505, DOI 10.1175/1520-0493(1988)116<0505:OTFOTS>2.0.CO;2; BOAG PT, 1984, ECOL MONOGR, V54, P463, DOI 10.2307/1942596; BRAWN JD, 2011, J AVIAN BIO IN PRESS; BULMER MG, 1984, J THEOR BIOL, V106, P529, DOI 10.1016/0022-5193(84)90005-5; *CYT SOFTW CORP, 2004, STATXACT VERS 6 2; FOGDEN MPL, 1972, IBIS, V114, P307, DOI 10.1111/j.1474-919X.1972.tb00831.x; FOSTER MS, 1974, EVOLUTION, V28, P182, DOI 10.1111/j.1558-5646.1974.tb00739.x; GRANT PR, 1985, ORNITHOLOGICAL MONOG, V36, P471; Grzybowski JA, 2005, AUK, V122, P280, DOI 10.1642/0004-8038(2005)122[0280:RDSFIS]2.0.CO;2; Hau M, 2000, J EXP ZOOL, V286, P494, DOI 10.1002/(SICI)1097-010X(20000401)286:5<494::AID-JEZ7>3.0.CO;2-3; KARR JR, 1971, ECOL MONOGR, V41, P207, DOI 10.2307/1942366; Kiladis GN, 1989, J CLIMATE, V2, P1069, DOI 10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2; Levings S. C, 1982, ECOLOGY TROPICAL FOR, P355; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; POULIN B, 1992, ECOLOGY, V73, P2295, DOI 10.2307/1941476; Poulin B, 1996, AUK, V113, P277, DOI 10.2307/4088894; RAND AS, 1982, ECOLOGY TROPICAL FOR, P47; RICKLEFS R E, 1969, Living Bird, V8, P165; Robinson TR, 2000, AUK, V117, P345, DOI 10.1642/0004-8038(2000)117[0345:BEANSS]2.0.CO;2; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Robinson WD, 2005, AUK, V122, P843, DOI 10.1642/0004-8038(2005)122[0843:AABNES]2.0.CO;2; ROPELEWSKI CF, 1987, MON WEATHER REV, V115, P1606, DOI 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2; *SAS I, 1999, SAS ONLINEDOC VERS 8; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1950, IBIS, V92, P185, DOI 10.1111/j.1474-919X.1950.tb01749.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; STILES FG, 1992, ECOLOGY, V73, P1375, DOI 10.2307/1940683; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Styrsky JN, 2003, THESIS U ILLINOIS UR; TARWATER CE, 2010, THESIS U ILLINOIS UR; Wang CZ, 2000, J CLIMATE, V13, P488, DOI 10.1175/1520-0442(2000)013<0488:TENOER>2.0.CO;2; Waple AM, 2002, B AM METEOROL SOC, V83, pS1; Wiens J. A., 1989, ECOLOGY BIRD COMMUNI, V2; Wikelski M, 2000, ECOLOGY, V81, P2458, DOI 10.2307/177467; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; WILLIS EO, 1972, ORNITHOLOGICAL MONOG, V10; WOLDA H, 1978, J ANIM ECOL, V47, P369, DOI 10.2307/3789; Wright SJ, 1999, ECOLOGY, V80, P1632, DOI 10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2; WYNDHAM E, 1986, AM NAT, V128, P155, DOI 10.1086/284551 41 14 16 3 16 COOPER ORNITHOLOGICAL SOC LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0010-5422 1938-5129 CONDOR Condor FEB 2011 113 1 194 199 10.1525/cond.2011.100051 6 Ornithology Zoology 739RT WOS:000288736400019 2019-02-21 J Maniatsi, S; Baxevanis, AD; Kappas, I; Deligiannidis, P; Triantafyllidis, A; Papakostas, S; Bougiouklis, D; Abatzopoulos, TJ Maniatsi, Stefania; Baxevanis, Athanasios D.; Kappas, Ilias; Deligiannidis, Panagiotis; Triantafyllidis, Alexander; Papakostas, Spiros; Bougiouklis, Dimitrios; Abatzopoulos, Theodore J. Is polyploidy a persevering accident or an adaptive evolutionary pattern? The case of the brine shrimp Artemia MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Asexuality; Flow cytometry; Geographic parthenogenesis; Life-history strategy; Microsatellites FRESH-WATER CRUSTACEAN; TIMEMA WALKING-STICKS; MITOCHONDRIAL-DNA; DAPHNIA-PULEX; GEOGRAPHICAL PARTHENOGENESIS; MOLECULAR PHYLOGENETICS; BRANCHIOPODA ANOSTRACA; POLYPHYLETIC ORIGINS; ASEXUAL REPRODUCTION; TIBETIANA CRUSTACEA Asexual organisms are confronted with substantial drawbacks, both immediate and delayed, threatening their evolutionary persistence. Yet, genetic associations with asexuality may refresh the gene pool promoting adaptation of clonal lineages; polyploidy is one of them. Parthenogenesis itself and/or polyploidy are responsible for the maintenance and spread of clones in Artemia, a sexual-asexual genus of halophilic anostracans. We applied flow cytometry, microsatellite genotyping, and mtDNA sequencing to 23 asexual populations. Artemia parthenogens have evolved multiple times either through hybridization or spontaneously. Nine out of 23 populations contained clones of mixed ploidy (2n, 3n, 4n). Most clones were diploid (20/31) while two and nine clones were triploid and tetraploid, respectively. Apomictic triploids and tetraploids formed two distinct groups of low genetic diversity compared with the more divergent automictic diploids. Polyploidy is also polyphyletic in Artemia, with triploids and tetraploids having independent origins from different sexual ancestors. We discern a pattern of geographical parthenogenesis with all clonal groups being more widespread than their closest sexuals. In favour of a specialist model, asexual diploids are restricted to single locations and are strikingly segregated from generalist triploids and tetraploids occupying a variety of sites. This is a rare pattern of mixed life-history strategies within an asexual complex. (C) 2010 Elsevier Inc. All rights reserved. [Maniatsi, Stefania; Baxevanis, Athanasios D.; Kappas, Ilias; Triantafyllidis, Alexander; Papakostas, Spiros; Abatzopoulos, Theodore J.] Aristotle Univ Thessaloniki, Sch Biol, Dept Genet Dev & Mol Biol, Thessaloniki 54124, Greece; [Deligiannidis, Panagiotis; Bougiouklis, Dimitrios] Thermi Business Incubator, LIAISON Stem Cell Banking, Thessaloniki, Greece Abatzopoulos, TJ (reprint author), Aristotle Univ Thessaloniki, Sch Biol, Dept Genet Dev & Mol Biol, Thessaloniki 54124, Greece. smaniats@bio.auth.gr; tbaxevan@bio.auth.gr; ikappas@bio.auth.gr; panagiotisdeligiannidis@yahoo.gr; atriant@bio.auth.gr; spiros.papakostas@gmail.-com; dimibougiouklis@yahoo.com; abatzop@-bio.auth.gr Abatzopoulos, Theodore/F-4755-2011; Papakostas, Spiros/J-7452-2012; Baxevanis, Athanasios/H-2586-2012; Kappas, Ilias/H-9973-2013 Papakostas, Spiros/0000-0002-5563-0048; Baxevanis, Athanasios/0000-0002-7057-3213; Triantafyllidis, Alexandros/0000-0003-0469-011X PENED [03ED402]; E.U.; Greek Ministry of Development-GSRT SM acknowledges Dr. Patrick G. Meirmans for help and advice with the GenoDive software. Many thanks to Prof. Teresa Crease for critically reading an earlier version of the manuscript. SM was partially supported by a PENED research Project 03ED402, co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). Two anonymous reviewers are kindly acknowledged for their critical comments. ABATZOPOULOS T, 1993, HYDROBIOLOGIA, V250, P73, DOI 10.1007/BF00008228; Abatzopoulos T. J, 2002, ARTEMIA BASIC APPL B; Abatzopoulos Theodore J., 1998, International Journal of Salt Lake Research, V7, P41, DOI 10.1007/BF02449923; Abatzopoulos TJ, 2009, INT REV HYDROBIOL, V94, P560, DOI 10.1002/iroh.200911147; Abatzopoulos TJ, 2006, J MAR BIOL ASSOC UK, V86, P299, DOI 10.1017/S0025315406013154; Abatzopoulos TJ, 2002, BIOL J LINN SOC, V75, P333, DOI 10.1046/j.1095-8312.2002.00023.x; ABATZOPOULOS TJ, 1986, GENETICA, V71, P3, DOI 10.1007/BF00123227; ABREU-GROBOIS F. A., 1983, THESIS U WALES SWANS; Adolfsson S, 2010, EVOLUTION, V64, P986, DOI 10.1111/j.1558-5646.2009.00872.x; Agh N, 2007, INT REV HYDROBIOL, V92, P48, DOI 10.1002/iroh.200610909; Arashkevich EG, 2009, J MARINE SYST, V76, P359, DOI 10.1016/j.jmarsys.2008.03.015; Arnaud-Haond S, 2007, MOL ECOL, V16, P5115, DOI 10.1111/j.1365-294X.2007.03535.x; Avise J. C., 2004, MOL MARKERS NATURAL; BAKER H. G., 1965, The genetics of colonizing species: Proc. 1st Internat, Union biol Sci., Asilomar, California., P147; Barigozzi C., 1974, EVOLUTIONARY BIOL, V7, P221; Baxevanis A.D., 2006, THESIS ARISTOTLE U T; Baxevanis AD, 2005, J ZOOL SYST EVOL RES, V43, P189, DOI 10.1111/j.1439-0469.2005.00309.189-198; Baxevanis AD, 2004, HYDROBIOLOGIA, V513, P87, DOI 10.1023/B:hydr.0000018174.72317.cf; Baxevanis Athanasios D., 2004, Journal of Biological Research (Thessaloniki), V1, P107; Baxevanis AD, 2006, MOL PHYLOGENET EVOL, V40, P724, DOI 10.1016/j.ympev.2006.04.010; BOWEN ST, 1978, BIOL BULL-US, V155, P273, DOI 10.2307/1540952; BROWNE RA, 1990, EVOLUTION, V44, P1035, DOI 10.1111/j.1558-5646.1990.tb03824.x; BRUGGEMAN E, 1980, BRINE SHRIMP ARTEMIA, V3, P261; Bruvo R, 2004, MOL ECOL, V13, P2101, DOI 10.1111/j.1365-294X.2004.02209.x; BULLINI L, 1990, CAN J ZOOL, V68, P1747, DOI 10.1139/z90-256; Butlin R, 2002, NAT REV GENET, V3, P311, DOI 10.1038/nrg749; Butlin RK, 1999, J EVOLUTION BIOL, V12, P1020; Calinski T., 1974, COMMUNICATIONS STAT, V3, P1, DOI DOI 10.1080/03610927408827101; Chao A, 2003, ENVIRON ECOL STAT, V10, P429, DOI 10.1023/A:1026096204727; Chaplin JA, 1997, MOL ECOL, V6, P155, DOI 10.1046/j.1365-294X.1997.00168.x; Clegg James S., 2002, P129; Comai L, 2005, NAT REV GENET, V6, P836, DOI 10.1038/nrg1711; Cox AJ, 2001, MOL ECOL, V10, P371, DOI 10.1046/j.1365-294x.2001.01188.x; CREASE TJ, 1989, EVOLUTION, V43, P1016, DOI 10.1111/j.1558-5646.1989.tb02547.x; De Meester L, 2002, ACTA OECOL, V23, P121, DOI 10.1016/S1146-609X(02)01145-1; de Meeus T, 2007, CELL MOL LIFE SCI, V64, P1355, DOI 10.1007/s00018-007-6515-2; Delmotte F, 2001, P ROY SOC B-BIOL SCI, V268, P2291, DOI 10.1098/rspb.2001.1778; DeSalle R, 2005, METHOD ENZYMOL, V395, P460, DOI 10.1016/S0076-6879(05)95025-8; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Engelstadter J, 2008, BIOESSAYS, V30, P1138, DOI 10.1002/bies.20833; Estoup A, 1996, MOL MAR BIOL BIOTECH, V5, P295; Figuerola J, 2005, AM NAT, V165, P274, DOI 10.1086/427092; Figuerola J, 2003, GLOBAL ECOL BIOGEOGR, V12, P427, DOI 10.1046/j.1466-822X.2003.00043.x; Gajardo Gonzalo, 2002, P225; Garefalaki ME, 2010, J EVOLUTION BIOL, V23, P966, DOI 10.1111/j.1420-9101.2010.01964.x; Ghiselli F, 2007, MOL ECOL, V16, P4256, DOI 10.1111/j.1365-294X.2007.03471.x; Gomez-Zurita J, 2006, EVOLUTION, V60, P328; Halkett F, 2005, TRENDS ECOL EVOL, V20, P194, DOI 10.1016/j.tree.2005.01.001; HASEGAWA M, 1985, J MOL EVOL, V22, P160, DOI 10.1007/BF02101694; Heethoff M, 2007, J EVOLUTION BIOL, V20, P392, DOI 10.1111/j.1420-9101.2006.01183.x; Horandl E, 2006, NEW PHYTOL, V171, P525, DOI 10.1111/j.1469-8137.2006.01769.x; Husband BC, 2004, BIOL J LINN SOC, V82, P537, DOI 10.1111/j.1095-8312.2004.00339.x; JACKSON RC, 1976, ANNU REV ECOL SYST, V7, P209, DOI 10.1146/annurev.es.07.110176.001233; Johnson SG, 1999, J HERED, V90, P659, DOI 10.1093/jhered/90.6.659; Johnson SG, 1999, EVOLUTION, V53, P1769, DOI 10.1111/j.1558-5646.1999.tb04561.x; Kappas I, 2009, MOL PHYLOGENET EVOL, V52, P192, DOI 10.1016/j.ympev.2009.03.012; Kearney M, 2005, TRENDS ECOL EVOL, V20, P495, DOI 10.1016/j.tree.2005.06.005; KONDRASHOV AS, 1993, J HERED, V84, P372, DOI 10.1093/oxfordjournals.jhered.a111358; Law JH, 2002, MOL ECOL, V11, P1471, DOI 10.1046/j.1365-294X.2002.01547.x; Litvinenko LI, 2007, HYDROBIOLOGIA, V576, P95, DOI 10.1007/s10750-006-0296-8; LUNDMARK M, 2006, HEREDITAS, V143, P24; LYNCH M, 1993, J HERED, V84, P339, DOI 10.1093/oxfordjournals.jhered.a111354; LYNCH M, 1984, Q REV BIOL, V59, P257, DOI 10.1086/413902; Mable BK, 2003, TRENDS PLANT SCI, V8, P582, DOI 10.1016/j.tplants.2003.10.006; MACDONALD GH, 1987, GENETICA, V75, P47, DOI 10.1007/BF00056032; Maniatsi S, 2010, HYDROBIOLOGIA, V651, P317, DOI 10.1007/s10750-010-0306-8; Maniatsi S, 2009, INT J MOL SCI, V10, P5455, DOI 10.3390/ijms10125455; MANTEL N, 1967, CANCER RES, V27, P209; Martens K, 2003, P ROY SOC B-BIOL SCI, V270, P723, DOI 10.1098/rspb.2002.2270; Martens K, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P187, DOI 10.1007/978-90-481-2770-2_9; MAYR E., 2001, WHAT EVOLUTION IS; Meirmans PG, 2006, HEREDITY, V96, P45, DOI 10.1038/sj.hdy.6800750; Meirmans PG, 2004, MOL ECOL NOTES, V4, P792, DOI 10.1111/j.1471-8286.2004.00770.x; MULLER HJ, 1964, MUTAT RES, V1, P2, DOI 10.1016/0027-5107(64)90047-8; Munoz J, 2009, MOL ECOL RESOUR, V9, P547, DOI 10.1111/j.1755-0998.2008.02360.x; Munoz J, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011932; Mura G, 2005, J PLANKTON RES, V27, P895, DOI 10.1093/plankt/fbi063; NEI M, 1978, GENETICS, V89, P583; Nei M., 1987, MOL EVOLUTIONARY GEN; Normark BB, 1996, EVOLUTION, V50, P734, DOI 10.1111/j.1558-5646.1996.tb03883.x; Otto SP, 2000, ANNU REV GENET, V34, P401, DOI 10.1146/annurev.genet.34.1.401; Paland S, 2005, EVOLUTION, V59, P800; Posada D, 1998, BIOINFORMATICS, V14, P817, DOI 10.1093/bioinformatics/14.9.817; Ravi M, 2008, NATURE, V451, P1121, DOI 10.1038/nature06557; Remigio EA, 2000, MOL PHYLOGENET EVOL, V17, P117, DOI 10.1006/mpev.2000.0829; Sandoval C, 1998, P ROY SOC B-BIOL SCI, V265, P589, DOI 10.1098/rspb.1998.0335; Scali V, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P317, DOI 10.1007/978-90-481-2770-2_16; Schon I, 2000, HEREDITY, V84, P161, DOI 10.1046/j.1365-2540.2000.00647.x; Schwander T., 2008, EVOLUTION, V63, P84; Sinclair EA, 2010, EVOLUTION, V64, P1346, DOI 10.1111/j.1558-5646.2009.00893.x; Soltis DE, 1999, TRENDS ECOL EVOL, V14, P348, DOI 10.1016/S0169-5347(99)01638-9; Stebbins G. L., 1971, CHROMOSOMAL EVOLUTIO; Stenberg P, 2003, MOL BIOL EVOL, V20, P1626, DOI 10.1093/molbev/msg180; SUOMALAINEN E, 1987, CYTOLOGY EVOLUTION; Swofford DL, 1998, PAUP PHYLOGENETIC AN; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; Tate Jennifer A., 2005, P371, DOI 10.1016/B978-012301463-4/50009-7; Taylor DJ, 1998, EVOLUTION, V52, P1648, DOI 10.1111/j.1558-5646.1998.tb02245.x; Thompson JD, 1997, NUCLEIC ACIDS RES, V25, P4876, DOI 10.1093/nar/25.24.4876; TRIANTAPHYLLIDI.CV, 1998, J BIOGEOGR, V25, P213; TRIANTAPHYLLIDI.CV, 1996, HYDROBIOLOGIA, V335, P97; Van Doninck K, 2003, FRESHWATER BIOL, V48, P1285, DOI 10.1046/j.1365-2427.2003.01078.x; Van Stappen Gilbert, 2002, P171; VANDEL A., 1928, BULL BIOL FRANCE ET BELGIQUE, V62, P164; Vanhaecke P., 1987, P129; Vergilino R, 2009, BIOL J LINN SOC, V97, P68, DOI 10.1111/j.1095-8312.2008.01185.x; Vrijenhoek R., 1984, POPULATION BIOL EVOL, P217; Vrijenhoek RC, 1997, EVOLUTION, V51, P1593, DOI 10.1111/j.1558-5646.1997.tb01482.x; Vrijenhoek RC, 1998, BIOSCIENCE, V48, P617, DOI 10.2307/1313421; VRIJENHOEK RC, 1979, AM ZOOL, V19, P787; Vrijenhoek RC, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P99, DOI 10.1007/978-90-481-2770-2_6; WALLACE C, 1992, J MOLLUS STUD, V58, P93, DOI 10.1093/mollus/58.2.93; Welch DM, 2000, SCIENCE, V288, P1211, DOI 10.1126/science.288.5469.1211; Wendel JF, 2000, PLANT MOL BIOL, V42, P225, DOI 10.1023/A:1006392424384; White M. J. D., 1978, MODES SPECIATION; Xia X, 2001, J HERED, V92, P371, DOI 10.1093/jhered/92.4.371; XIA X, 2003, MOL PHYLOGENET EVOL, V29, P1; ZHANG L, 1993, OECOLOGIA, V93, P177, DOI 10.1007/BF00317668 119 28 29 2 55 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. FEB 2011 58 2 353 364 10.1016/j.ympev.2010.11.029 12 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 728QL WOS:000287888700019 21145977 2019-02-21 J de Roij, J; Harris, PD; MacColl, ADC de Roij, Job; Harris, Philip D.; MacColl, Andrew D. C. Divergent resistance to a monogenean flatworm among three-spined stickleback populations FUNCTIONAL ECOLOGY English Article Gyrodactylus gasterostei; natural infection; parasite-mediated selection; parasite resistance; parasite tolerance GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; SALMON SALMO-SALAR; FREQUENCY-DEPENDENT SELECTION; GYRODACTYLUS-SALARIS; PARASITE RESISTANCE; GENETIC-VARIATION; ATLANTIC SALMON; THREESPINE STICKLEBACK; ACQUIRED-RESISTANCE P>1. Given their ubiquity, we might expect parasites to play an important role in the adaptive divergence of host populations. Specifically, adaptation to local parasite communities is predicted to influence the evolution of a number of host traits such as parasite resistance. 2. To investigate the possibility that divergent parasite-mediated selection drives population-level variation in parasite resistance, we artificially infected lab-reared three-spined sticklebacks with the monogenean flatworm Gyrodactylus gasterostei. The fish were derived from five populations from North Uist, Scotland, that were chosen because they differed in natural infection levels of Gyrodactylus arcuatus. 3. We found substantial differences in resistance to G. gasterostei among populations. Resistance was defined largely by the ability to limit the size of the worm population rather than by the timing of the host response. 4. Experimental resistance was not significantly correlated with natural infection levels of G. arcuatus. However, in general, populations with greater exposure to G. arcuatus were shown to be more resistant to G. gasterostei. Fish from the only naturally unexposed population showed the highest susceptibility, which may be the result of less selection to maintain resistance. 5. Taken together, these results suggest that the divergent selection mediated by Gyrodactylus may play a role in driving population-level variation in resistance to this parasite. [de Roij, Job; MacColl, Andrew D. C.] Univ Nottingham, Sch Biol, Nottingham NG7 2RD, England; [Harris, Philip D.] Univ Oslo, Nat Hist Museum, Natl Ctr Biosystemat, Oslo, Norway de Roij, J (reprint author), Univ Nottingham, Sch Biol, Univ Pk, Nottingham NG7 2RD, England. plxjd4@nottingham.ac.uk MacColl, Andrew/B-7090-2014 MacColl, Andrew/0000-0003-2102-6130 University of Nottingham; Natural Environment Research Council (NERC); Natural Environment Research Council [NE/C517525/1] Many thanks to Sarah Forbes and Sonia Chapman for assistance with the collection of natural infection data and stickleback crosses, and to Alan Crampton and Ann Lowe for fish husbandry. We are grateful to North Uist estates and the Scottish Executive for access to land. Fish were artificially infected and maintained under UK Home Office Project Licence 40/2886. Comments from Joost Raeymackers and one anonymous reviewer greatly improved the manuscript. This work was funded by a PhD studentship awarded to JdR by the University of Nottingham and a Natural Environment Research Council (NERC) fellowship to ADCM. ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; Baker JA, 2008, BEHAVIOUR, V145, P579, DOI 10.1163/156853908792451539; Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; Bakke T. A., 2000, Acta Parasitologica, V45, P272; Bakke TA, 2004, DIS AQUAT ORGAN, V58, P171, DOI 10.3354/dao058171; Bakke TA, 1999, PARASITOLOGY, V119, P467, DOI 10.1017/S0031182099004990; BAKKE TA, 1990, J FISH BIOL, V37, P577; Barber I, 2000, BEHAVIOUR, V137, P1129, DOI 10.1163/156853900502484; Barber Iain, 2007, P271; Barker DE, 2002, J FISH DIS, V25, P81, DOI 10.1046/j.1365-2761.2002.00341.x; Blanford S, 2003, ECOL LETT, V6, P2, DOI 10.1046/j.1461-0248.2003.00387.x; Boughman JW, 2001, NATURE, V411, P944, DOI 10.1038/35082064; Bryan-Walker K, 2007, MAR BIOL, V152, P687, DOI 10.1007/s00227-007-0725-x; Buchmann K, 1997, DIS AQUAT ORGAN, V28, P201, DOI 10.3354/dao028201; Buchmann K, 1998, DIS AQUAT ORGAN, V32, P195, DOI 10.3354/dao032195; Buchmann K, 2002, INT J PARASITOL, V32, P309, DOI 10.1016/S0020-7519(01)00332-0; Buckling A, 2002, NATURE, V420, P496, DOI 10.1038/nature01164; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Cable J, 2007, BIOL J LINN SOC, V90, P647, DOI 10.1111/j.1095-8312.2006.00755.x; Carius HJ, 2001, EVOLUTION, V55, P1136; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Coltman DW, 2001, EVOLUTION, V55, P2116; Corby-Harris V, 2008, J ANIM ECOL, V77, P768, DOI 10.1111/j.1365-2656.2008.01399.x; Crawley M. J., 2007, R BOOK; Dalgaard MB, 2003, DIS AQUAT ORGAN, V53, P173, DOI 10.3354/dao053173; Ebert D, 1998, P ROY SOC B-BIOL SCI, V265, P2127, DOI 10.1098/rspb.1998.0549; Eizaguirre C, 2009, MOL ECOL, V18, P3316, DOI 10.1111/j.1365-294X.2009.04243.x; Fraser BA, 2010, GENETICA, V138, P273, DOI 10.1007/s10709-009-9402-y; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; Galwey N. W., 2006, INTRO MIXED MODELLIN; Gilbey J, 2006, DIS AQUAT ORGAN, V71, P119, DOI 10.3354/dao071119; GLASER HJ, 1974, ZOOL ANZ, V192, P56; GROSHOLZ ED, 1994, EVOLUTION, V48, P1514, DOI 10.1111/j.1558-5646.1994.tb02193.x; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; HARRIS PD, 1985, J NAT HIST, V19, P791, DOI 10.1080/00222938500770491; Harris PD, 1998, PARASITOLOGY, V117, P137, DOI 10.1017/S003118209800287X; HARRIS PD, 1982, THESIS WESTFIELD COL; Hasu T, 2009, J EVOLUTION BIOL, V22, P699, DOI 10.1111/j.1420-9101.2009.01704.x; Hedrick PW, 2001, ANIM CONSERV, V4, P103, DOI 10.1017/S1367943001001135; HENTER HJ, 1995, EVOLUTION, V49, P427, DOI 10.1111/j.1558-5646.1995.tb02275.x; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; HOULE D, 1992, GENETICS, V130, P195; Jackson JA, 2005, INT J PARASITOL, V35, P29, DOI 10.1016/j.ijpara.2004.10.017; Kalbe M, 2006, PARASITOLOGY, V132, P105, DOI 10.1017/S0031182005008681; Kalbe M, 2002, J FISH BIOL, V60, P1529, DOI 10.1006/jfbi.2002.2013; Karvonen A, 2004, PARASITOL RES, V92, P183, DOI 10.1007/s00436-003-1035-y; Koskella B, 2009, EVOLUTION, V63, P2213, DOI 10.1111/j.1558-5646.2009.00711.x; Laine AL, 2009, J EXP BOT, V60, P2957, DOI 10.1093/jxb/erp168; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; LEBERG PL, 1994, CONSERV BIOL, V8, P419, DOI 10.1046/j.1523-1739.1994.08020419.x; Little TJ, 2000, P ROY SOC B-BIOL SCI, V267, P2037, DOI 10.1098/rspb.2000.1246; Little TJ, 2002, J EVOLUTION BIOL, V15, P1, DOI 10.1046/j.1420-9101.2002.00366.x; Lohse K, 2006, EVOLUTION, V60, P1177; Lopez S, 1998, P ROY SOC B-BIOL SCI, V265, P717, DOI 10.1098/rspb.1998.0352; Lynch M, 1998, GENETICS ANAL QUANTI; MacColl ADC, 2009, ECOGRAPHY, V32, P153, DOI 10.1111/j.1600-0587.2008.05486.x; MacColl ADC, 2009, BIOL J LINN SOC, V96, P425, DOI 10.1111/j.1095-8312.2008.01123.x; MacDougall-Shackleton EA, 2005, BIOL LETTERS, V1, P105, DOI 10.1098/rsbl.2004.0264; MADHAVI R, 1985, PARASITOLOGY, V91, P531, DOI 10.1017/S0031182000062776; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; McKinnon JS, 2002, TRENDS ECOL EVOL, V17, P480, DOI 10.1016/S0169-5347(02)02579-X; Moller Anders Pape, 1997, P105; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Nosil P, 2006, P NATL ACAD SCI USA, V103, P9090, DOI 10.1073/pnas.0601575103; Penn DJ, 1999, AM NAT, V153, P145, DOI 10.1086/303166; Pfennig DW, 2007, EVOLUTION, V61, P257, DOI 10.1111/j.1558-5646.2007.00034.x; Pickering A. D., 1982, Microbial diseases of fish, P271; Poulin R, 2000, J FISH BIOL, V56, P123, DOI 10.1006/jfbi.1999.1146; Raberg L, 2009, PHILOS T R SOC B, V364, P37, DOI 10.1098/rstb.2008.0184; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; Raeymaekers JAM, 2008, FOLIA PARASIT, V55, P187, DOI 10.14411/fp.2008.026; Restif O, 2004, AM NAT, V164, pE90, DOI 10.1086/423713; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Rigby MC, 2002, TRENDS PARASITOL, V18, P116, DOI 10.1016/S1471-4922(01)02203-6; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; SCOTT ME, 1991, PARASITOLOGY, V103, P429, DOI 10.1017/S0031182000059953; SCOTT ME, 1984, PARASITOLOGY, V89, P159, DOI 10.1017/S0031182000001207; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Uller T, 2003, HEREDITY, V91, P112, DOI 10.1038/sj.hdy.6800288; Van Oosterhout C, 2003, BIOL J LINN SOC, V79, P645, DOI 10.1046/j.1095-8312.2003.00203.x; Webster JP, 2004, AM NAT, V164, pS33, DOI 10.1086/424607; Wootton RJ., 1976, BIOL STICKLEBACKS 84 21 21 1 24 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 217 226 10.1111/j.1365-2435.2010.01775.x 10 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500022 2019-02-21 J Walsh, MR; Fraser, DF; Bassar, RD; Reznick, DN Walsh, Matthew R.; Fraser, Douglas F.; Bassar, Ronald D.; Reznick, David N. The direct and indirect effects of guppies: implications for life-history evolution in Rivulus hartii FUNCTIONAL ECOLOGY English Article mark-recapture; killifish; predator-prey interactions; trophic cascade MEDIATED INDIRECT INTERACTIONS; ECOLOGICAL COMMUNITIES; RESOURCE AVAILABILITY; TROPHIC CASCADES; TOP PREDATORS; GROWTH-RATE; SIZE; PREY; MORTALITY; AGE P>1. Ecological factors that alter mortality rates, such as predation, can cause evolutionary change. However, in addition to killing prey, predators can reduce prey abundance and increase food to survivors. Such indirect effects may also cause evolution. Predictions from theory that models how life histories evolve in response to increased mortality rates often change when they include indirect effects. Thus, indirect effects need to be evaluated to couple theory with natural systems. 2. Trinidadian killifish, Rivulus hartii, are found in communities with and without guppies Poecilia reticulata. Rivulus densities decline when guppies are present, which may be due to competitive or predatory interactions with guppies that increase Rivulus mortality rates. We previously showed that Rivulus from sites with guppies begin reproduction earlier and have increased reproductive allotment compared to Rivulus from sites with just Rivulus. Such divergence is inconsistent with theory that considers changes in juvenile mortality alone, but is consistent with theory that incorporates indirect effects. Here, we explored the mechanism of divergence with mark-recapture studies that compared the population biology of Rivulus between communities that are and are not sympatric with guppies. 3. Rivulus were 50% less abundant when guppies were present but guppies were not associated with increased adult mortality rates. Related experiments show that the declines in density are likely due to guppy predation on young Rivulus. Guppies do not appear to negatively impact Rivulus growth via competition. Rivulus with guppies grow > 3x faster than Rivulus from sites upstream, above waterfalls that exclude guppies. If guppies competed with Rivulus for resources, then we would instead expect to see their presence be associated with a decline in Rivulus growth rates. When Rivulus were transplanted from above to below this barrier, their growth accelerated to match the residents. This response instead argues that the differences in growth are mediated by an environmental factor, likely lower population densities, which allow Rivulus from sites with guppies to grow faster. 4. These results imply that an indirect effect of guppy predation on young Rivulus, which is the presumed agent of selection, improves the fit of empirical findings with theoretical predictions. [Walsh, Matthew R.; Bassar, Ronald D.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Fraser, Douglas F.] Siena Coll, Dept Biol, Loudonville, NY 12211 USA Walsh, MR (reprint author), Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA. matthew.walsh@yale.edu reznick, david/0000-0002-1144-0568 Explorers Club Exploration Grant; National Science Foundation [DEB0808039, DEB0416085, EF0623632, DEB0108365] We would like to thank Matthew Schrader, Christopher Oufiero, Jose Rodriguez, Ramon Rodriguez, E. Farfan, and Jeannette Ogren for assistance with field work. We thank Derek Roff, Len Nunney, and three anonymous reviewers for comments that improved the quality and presentation of this paper. This work was supported by an Explorers Club Exploration Grant, a National Science Foundation Doctoral Dissertation Improvement Grant DEB0808039, and National Science Foundation Grants DEB0416085 and EF0623632 to DNR and DEB0108365 to DFF. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ANDERSON DR, 1994, ECOLOGY, V75, P1780, DOI 10.2307/1939637; BASHEY F, 2002, THESIS U CALIFORNIA; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Burnham KP, 2001, WILDLIFE RES, V28, P111, DOI 10.1071/WR99107; Bystrom P, 1998, ECOLOGY, V79, P2153, DOI 10.1890/0012-9658(1998)079[2153:CPAPJB]2.0.CO;2; Charlesworth B., 1980, EVOLUTION AGE STRUCT; De Roos AM, 2002, P NATL ACAD SCI USA, V99, P12907, DOI 10.1073/pnas.192174199; de Roos AM, 2003, P ROY SOC B-BIOL SCI, V270, P611, DOI 10.1098/rspb.2002.2286; de Roos AM, 2007, AM NAT, V170, pE59, DOI 10.1086/520119; FALCONER DS, 1952, J GENET, V51, P67, DOI 10.1007/BF02986705; FRASER DF, 1995, ECOLOGY, V76, P1461, DOI 10.2307/1938148; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hughes AR, 2008, ECOL LETT, V11, P609, DOI 10.1111/j.1461-0248.2008.01179.x; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Johnson MTJ, 2007, TRENDS ECOL EVOL, V22, P250, DOI 10.1016/j.tree.2007.01.014; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MAC ARTHUR ROBERT H., 1967; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; MITTELBACH GG, 1988, ECOLOGY, V69, P614, DOI 10.2307/1941010; Morrison LW, 1999, OECOLOGIA, V121, P113, DOI 10.1007/s004420050912; Pace ML, 1999, TRENDS ECOL EVOL, V14, P483, DOI 10.1016/S0169-5347(99)01723-1; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Peacor SD, 2002, ECOL LETT, V5, P77, DOI 10.1046/j.1461-0248.2002.00287.x; POST JR, 1989, CAN J FISH AQUAT SCI, V46, P1958, DOI 10.1139/f89-246; POWER ME, 1990, SCIENCE, V250, P811, DOI 10.1126/science.250.4982.811; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Schluchter MD, 1990, J STAT COMPUT SIM, V37, P69, DOI DOI 10.1080/00949659008811295; Schmitz OJ, 2004, ECOL LETT, V7, P153, DOI 10.1111/j.1461-0248.2003.00560.x; Schroder A, 2009, P NATL ACAD SCI USA, V106, P2671, DOI 10.1073/pnas.0808279106; SEGHERS BH, 1973, THESIS U BRIT COLUMB; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TAYLOR BE, 1992, AM NAT, V139, P248, DOI 10.1086/285326; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; WILBUR HM, 1983, ECOLOGY, V64, P1423, DOI 10.2307/1937496; Winer B. J., 1971, STAT PRINCIPLES EXPT; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303; WOOTTON JT, 1993, P NATL ACAD SCI USA, V90, P1 54 22 22 1 56 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 227 237 10.1111/j.1365-2435.2010.01786.x 11 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500023 2019-02-21 J Epele, LB; Miserendino, ML Beltran Epele, Luis; Laura Miserendino, Maria Life cycle, production and habitat selection of Notoperla fasciata and N-magnaspina (Plecoptera: Gripopterygidae) in a headwater Patagonian stream FUNDAMENTAL AND APPLIED LIMNOLOGY English Article stonefly; secondary production; seasonal pattern; competition; semivoltine SECONDARY PRODUCTION; EMERGENCE PATTERNS; MOUNTAIN STREAM; ANDEAN STREAM; HISTORY; ARGENTINA; MAYFLIES; FOREST; MACROINVERTEBRATES; STONEFLIES We examined the life history, annual production, diet, habitat preferences and competition of two species of stoneflies Notoperla fasciata and N. magnaspina in a Patagonian mountain headwater stream. Benthic samples and adult collections were taken monthly from July 2004 to June 2005. A habitat selection study was performed concurrently during high and low water periods in five substrate types. Although both species showed long life cycles ( N. fasciata: 20 months and N. magnaspina: 3 years) their life histories and temporal dynamics were different. Growth was rapid during summer and early autumn as a result of warmer temperatures but N. magnaspina had a shorter emergence period ( November to January) than N. fasciata ( January to April). N. fasciata was the dominant Notoperla species with a mean annual density 6 times higher and secondary production 4.5 higher than that of N. magnaspina. While boulders in riffles and pools, and leaf-pack habitats supported significantly more individuals of N. magnaspina in the low water period ( ANOVA, p < 0.02) habitat preferences were not observed in the studied species ( ANOVA, p > 0.26). N. fasciata dominated in the high water period and N. magnaspina during the low water period. Analysis of gut contents revealed that both species were herbivorous grazers, and consumed the same food types. The interspecific overlap in density, biomass and annual production among habitat types was high in the low water period (PS > 0.5). However, N. fasciata were smaller than N. magnaspina. The existence of different life history strategies and the temporal shift of main generations and density peaks were critical to allow species coexistence and to reduce competition. [Beltran Epele, Luis; Laura Miserendino, Maria] Univ Nacl Patagonia, UNPSJB, CONICET, Lab Invest Ecol & Sistemat Anim, RA-9200 Esquel, Chubut, Argentina Epele, LB (reprint author), Univ Nacl Patagonia, UNPSJB, CONICET, Lab Invest Ecol & Sistemat Anim, Sarmiento 849, RA-9200 Esquel, Chubut, Argentina. luisbepele@hotmail.com CONICET This study was partially supported by CONICET. We thank Lic. E. Hollmann and Lic. C. Brand for fieldtrip and laboratory assistance. We also thank Dr. M. Archangelsky for helpful comments on the English style. This is Scientific Contribution no 53 from LIESA. Albarino Ricardo, 2003, P31; Albarino Ricardo Javier, 1997, Revista Brasileira de Biologia, V57, P629; Albarino RJ, 1998, INT REV HYDROBIOL, V83, P397, DOI 10.1002/iroh.19980830507; Angradi TR, 1996, J N AM BENTHOL SOC, V15, P42, DOI 10.2307/1467432; Benke A.C., 1984, P289; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; BENKE AC, 1979, LIMNOL OCEANOGR, V24, P168, DOI 10.4319/lo.1979.24.1.0168; BENKE AC, 1993, VERH INT VEREIN LIMN, V25, P15; BUNN SE, 1988, AUST J MAR FRESH RES, V39, P785; Carabelli F, 2008, PATTERNS AND PROCESSES IN FOREST LANDSCAPES: MULTIPLE USE AND SUSTAINABLE MANAGEMENT, P89, DOI 10.1007/978-1-4020-8504-8_6; Derka T, 2004, INT REV HYDROBIOL, V89, P165, DOI 10.1002/iroh.200310726; DIETERICH M, 1995, FRESHWATER BIOL, V34, P47, DOI 10.1111/j.1365-2427.1995.tb00422.x; Gonser Tom, 1997, P455; Gonzalez JM, 2003, ARCH HYDROBIOL, V158, P303, DOI 10.1127/0003-9136/2003/0158-0303; Gordon ND, 1994, STREAM HYDROLOGY INT, P526; Gotelli N. J., 2004, PRIMER ECOLOGICAL ST; GRIFFITH MB, 1994, J N AM BENTHOL SOC, V13, P345, DOI 10.2307/1467364; Harper P. P., 1991, Revue d'Entomologie du Quebec, V36, P28; HARPER PP, 1973, HYDROBIOLOGIA, V41, P309, DOI 10.1007/BF00016624; HASSAGE RL, 1990, SOUTHWEST NAT, V35, P130, DOI 10.2307/3671533; Hollmann MET, 2008, ANN LIMNOL-INT J LIM, V44, P135, DOI 10.1051/limn:2008014; Hollmann MET, 2006, ANN LIMNOL-INT J LIM, V42, P233, DOI 10.1051/limn/2006024; Huryn AD, 2000, ANNU REV ENTOMOL, V45, P83, DOI 10.1146/annurev.ento.45.1.83; Huryn AD, 2008, INTRO AQUATIC INSECT, P55; HYNES HBN, 1975, AUST MAR FRESHWAT RE, V27, P61; KRZYSZTOF M J, 1987, J N AMER BENTHOL SOC, V6, P26; Leon Rolando J. C., 1998, Ecologia Austral, V8, P125; Mclellan I, 2006, ZOOTAXA, P53; Merritt R.W, 2008, INTRO AQUATIC INSECT, P1158; Miserendino M. Laura, 2000, Revista de la Sociedad Entomologica Argentina, V59, P149; Miserendino ML, 2000, ARCH HYDROBIOL, V150, P55; MISERENDINO ML, 2010, ECOLOGICAL INDICATOR, V10, P313; PALMER C, 1993, FRESHWATER BIOL, V29, P441, DOI 10.1111/j.1365-2427.1993.tb00778.x; Pessacq P, 2008, ZOOTAXA, P27; Pretty JL, 2005, FRESHWATER BIOL, V50, P578, DOI 10.1111/j.1365-2427.2005.01341.x; Richardson JS, 2001, HYDROBIOLOGIA, V455, P87, DOI 10.1023/A:1011943532162; Sanchez-Ortega A., 1991, P493; Scarsbrook Mike R., 2000, P76; Sheldon AL, 1999, GREAT BASIN NAT, V59, P169; SHORT R A., 1980, HYDROBIOLOGIA, V69, P173; SMOCK LA, 1980, FRESHWATER BIOL, V10, P375, DOI 10.1111/j.1365-2427.1980.tb01211.x; SNELLEN RK, 1979, ANN ENTOMOL SOC AM, V72, P659, DOI 10.1093/aesa/72.5.659; STANFORD JA, 1975, THESIS U UTAH UTAH, P238; Stewart K. W, 1988, NYMPHS N AM STONEFLY, V12; STEWART KW, 2002, NYMPHS N AM STONEFLY, P510; Suarez DAA, 2002, J N AM BENTHOL SOC, V21, P414, DOI 10.2307/1468479; SWEENEY BW, 1981, ECOLOGY, V62, P1353, DOI 10.2307/1937299; TEAGUE SA, 1985, HYDROBIOLOGIA, V128, P3, DOI 10.1007/BF00008934; Thomsen AG, 2002, FRESHWATER BIOL, V47, P1159, DOI 10.1046/j.1365-2427.2002.00827.x; Tierno de Figueroa J. M., 2001, ZOOL BAETICA, V12, P49; Velasquez SM, 2003, ARCH HYDROBIOL, V158, P461, DOI 10.1127/0003-9136/2003/0158-0461; Villanueva VD, 1999, HYDROBIOLOGIA, V412, P43, DOI 10.1023/A:1003896115219; WAIS IR, 1987, REV MUSEO ARGENTINO, V6, P15; Ward J.V., 1992, AQUATIC INSECT ECOLO, V1; Whittaker R.H, 1975, COMMUNITIES ECOSYSTE; Winterbourn MJ, 2008, HYDROBIOLOGIA, V603, P211, DOI 10.1007/s10750-007-9273-0; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Yokum Kevin A., 1997, Psyche (Cambridge), V102, P151, DOI 10.1155/1995/61675 58 6 6 0 11 E SCHWEIZERBARTSCHE VERLAGSBUCHHANDLUNG STUTTGART NAEGELE U OBERMILLER, SCIENCE PUBLISHERS, JOHANNESSTRASSE 3A, D 70176 STUTTGART, GERMANY 1863-9135 FUND APPL LIMNOL Fundam. Appl. Limnol. FEB 2011 178 3 219 229 10.1127/1863-9135/2011/0178-0219 11 Limnology; Marine & Freshwater Biology Marine & Freshwater Biology 723OV WOS:000287517500004 2019-02-21 J Jordana, X; Kohler, M Jordana, Xavier; Koehler, Meike Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): Implications for life-history evolution of dwarf mammals in insular ecosystems PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY English Article Insularity; Dwarfism; Life history; Dental Microstructure; Paleohistology; Body size BATE 1909 ARTIODACTYLA; BODY-SIZE; ISLAND RULE; RESOURCE AVAILABILITY; DENTAL DEVELOPMENT; OCEANIC ISLANDS; TEETH; DEER; PALEONTOLOGY; PERIODICITY The causes underlying the evolution of insular dwarfs and giants are a matter of ongoing debate. Because body size is among the principle life history traits, recent works aim to understand the evolution of insular dwarfs in the framework of life history theory. However, the hypotheses put forward so far are conflicting. Early studies, suggested that dwarfing is a consequence of selection for an increased reproduction associated to an accelerated life history (formerly r-selection). Recent work, however, based on the analysis of bone histology of the fossil insular dwarf bovid Myotragus balearicus (Balearic Islands, Spain), concluded that dwarfing on islands results from a decrease in growth rate associated to a slow life history (formerly K-selection) in response to selective forces peculiar to insular conditions. In the present work, we reconstruct the schedule of certain life history traits by estimating the rate of dental development and eruption times in M. balearicus and, for comparisons, in an extant caprine (Ovis aries). We used histological techniques to calculate crown formation time, daily secretion rate and crown extension rate, in the lower molars. Eruption pattern in M. balearicus was analysed through the radiological images of an ontogenetic series of mandibles. Our results show that dental crowns grew at slower rates and the period of crown formation was more extended in the dwarfed fossil bovid than in other extant caprines, resulting in dental development and eruption time that doubles that of extant bovids of similar body size. This suggests an important delay in life history schedules. Concordant with the delayed dental development, the striking hypsodonty of Myotragus is indicative of an extended lifespan. These results, together with previous findings from long bone histology, provide empirical evidence for a shift towards a slow life history in this insular dwarfed mammal. Density-dependent resource limitation is hypothesized as the main trigger of the life history and body size evolution of Myotragus. (C) 2010 Elsevier B.V. All rights reserved. [Jordana, Xavier] Univ Autonoma Barcelona, Dept Paleobiol, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain; [Koehler, Meike] Univ Autonoma Barcelona, Catalan Inst Res & Adv Studies, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain Jordana, X (reprint author), Univ Autonoma Barcelona, Dept Paleobiol, Inst Catala Paleontol ICP, E-08193 Barcelona, Spain. xavier.jordana@icp.cat; meike.kohler@icp.cat Jordana, Xavier/G-7537-2017; Jordana, Xavier/L-9301-2014 Jordana, Xavier/0000-0002-6016-6630; Jordana, Xavier/0000-0001-8990-4388; Kohler, Meike/0000-0001-9228-3164 Spanish Ministry of Science and Innovation [CGL2008-06204/BTE]; ICREA We thank C. Constantino for the access to the collections of the Museu Balear de Ciencies Naturals; A. Nieto for access to the material of the Zooarchaeological Laboratory at Universitat de Lleida; M. Marquez of Banc de Teixits Animals de Catalunya (BTAC) at Universitat Autonoma de Barcelona for provide recent samples; Hospital Mutua de Terrassa for CT-scan study; R. Garcia and J. Fortuny for technical help; and G. Macho, N. Marin and S. Esteban for constructive discussions on the manuscript. We are grateful to Tim Bromage and an anonymous reviewer for their useful comments and suggestions on the manuscript. This work was supported by the Spanish Ministry of Science and Innovation (CGL2008-06204/BTE). Alba DM, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P28; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Alcover JA, 1999, BIOL J LINN SOC, V66, P57, DOI 10.1111/j.1095-8312.1999.tb01917.x; ALCOVER JA, 1981, CHIMERAS PAST; BATE DMA, 1909, GEOLOGICAL MAGA 1205, V543, P385; Beynon AD, 1998, J HUM EVOL, V35, P163, DOI 10.1006/jhev.1998.0230; Bover P, 2008, QUATERN INT, V182, P135, DOI 10.1016/j.quaint.2007.06.039; BOYDE A, 1988, SCANNING MICROSCOPY, V2, P1479; Boyde Alan, 1963, 3 INT M FOR IMM MED, P36; BOYER P, 1999, BIOL J LINN SOC, V68, P401; BROMAGE TG, 1991, AM J PHYS ANTHROPOL, V86, P205, DOI 10.1002/ajpa.1330860209; Bromage TG, 2002, WORLD ISLANDS PREHIS, P420; Bromage TG, 2009, CALCIFIED TISSUE INT, V84, P388, DOI 10.1007/s00223-009-9221-2; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; BROWN JH, 1993, AM NAT, V142, P573, DOI 10.1086/285558; Burness GP, 2001, P NATL ACAD SCI USA, V98, P14518, DOI 10.1073/pnas.251548698; Carranza J, 2004, NATURE, V432, P215, DOI 10.1038/nature03004; Dean M. C., 2001, NATURE, V414, P628, DOI DOI 10.1038/414628A; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Dirks W, 2009, FRONT ORAL BIOL, V13, P3, DOI 10.1159/000242381; Festa-Bianchet M, 2004, BEHAV ECOL, V15, P305, DOI 10.1093/beheco/arh014; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; FOSTER JB, 1964, NATURE, V202, P234, DOI 10.1038/202234a0; Gould S. J., 1977, ONTOGENY PHYLOGENY; Grant Peter R., 1998, P1; HEANEY LR, 1978, EVOLUTION, V32, P29, DOI 10.1111/j.1558-5646.1978.tb01096.x; Hillson S., 2005, TEETH CAMBRIDGE MANU; Hooijer DA, 1951, SCI MON, V72, P3; Iinuma YM, 2004, J VET MED SCI, V66, P665, DOI 10.1292/jvms.66.665; Kohler M, 2003, COUR FOR SEKENBG, V243, P111; Kohler M, 2004, BRAIN BEHAV EVOLUT, V63, P125, DOI 10.1159/000076239; Kohler M., 2010, ISLANDS EVOLUTION, V19, P261; Kohler M, 2010, P NATL ACAD SCI USA, V107, pE28, DOI 10.1073/pnas.0915090107; Kohler M, 2009, P NATL ACAD SCI USA, V106, P20354, DOI 10.1073/pnas.0813385106; LISTER AM, 1993, NATURE, V362, P288, DOI 10.1038/362288a0; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; MAC ARTHUR ROBERT H., 1967; Macho GA, 2002, BIOL J LINN SOC, V75, P271, DOI 10.1046/j.1095-8312.2002.00013.x; McNab B.K., 2002, PHYSL ECOLOGY VERTEB; MCNAB BK, 1994, AM NAT, V144, P643, DOI 10.1086/285698; McNab BK, 2002, ECOL LETT, V5, P693, DOI 10.1046/j.1461-0248.2002.00365.x; McNab BK, 2010, OECOLOGIA, V164, P13, DOI 10.1007/s00442-010-1621-5; Meiri S, 2006, J BIOGEOGR, V33, P1571, DOI 10.1111/j.1365-2699.2006.01523.x; Meiri S, 2010, P NATL ACAD SCI USA, V107, pE27, DOI 10.1073/pnas.0914098107; Moya-Sola S., 1983, Acta Geologica Hispanica, V17, P77; Moya-Sola S., 2007, MONOGRAFIES SOC HIST, V14, P155; Moya-Sola Salvador, 1999, P435; NOWAK RM, 1991, WALKERS MAMMALS WORL; Palkovacs EP, 2003, OIKOS, V103, P37, DOI 10.1034/j.1600-0706.2003.12502.x; Palombo MR, 2008, QUATERN INT, V182, P160, DOI 10.1016/j.quaint.2007.08.037; Palombo M. R., 2001, WORLD ELEPHANTS, P486; PerezBarberia FJ, 1996, ACTA THERIOL, V41, P217, DOI 10.4098/AT.arch.96-22; Raia P, 2003, EVOL ECOL, V17, P293, DOI 10.1023/A:1025577414005; Raia P, 2006, EVOLUTION, V60, P1731; Ramis D, 2001, J ARCHAEOL SCI, V28, P265, DOI 10.1006/jasc.2000.0548; RICKLEFS RE, 2001, EC NATURE, P199; ROFF DA, 2002, LIFE HIST EVOLUTION; SCHWARTZ CT, 2002, P NATL ACAD SCI USA, V99, P6124; Silver I. E., 1969, SCI ARCHAEOL; Sinclair ARE, 2003, NATURE, V425, P288, DOI 10.1038/nature01934; Sisson S., 1975, ANATOMY DOMESTIC ANI; Smith TM, 2008, EVOL ANTHROPOL, V17, P213, DOI 10.1002/evan.20176; Smith TM, 2008, J HUM EVOL, V54, P205, DOI 10.1016/j.jhevol.2007.09.020; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Smith TM, 2006, J ANAT, V208, P99, DOI 10.1111/j.1469-7580.2006.00499.x; Smith TM, 2003, J HUM EVOL, V44, P283, DOI 10.1016/S0047-2484(03)00006-X; Sondaar P. Y., 1977, MAJOR PATTERNS VERTE, P671; Stearns S, 1992, EVOLUTION LIFE HIST; Tafforeau P, 2007, PALAEOGEOGR PALAEOCL, V246, P206, DOI 10.1016/j.palaeo.2006.10.001; Van Valen L, 1973, EVOL THEORY, V1, P31; Veiberg V, 2007, BIOLOGY LETT, V3, P268, DOI 10.1098/rsbl.2006.0610 72 40 40 1 29 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0031-0182 PALAEOGEOGR PALAEOCL Paleogeogr. Paleoclimatol. Paleoecol. FEB 1 2011 300 1-4 59 66 10.1016/j.palaeo.2010.12.008 8 Geography, Physical; Geosciences, Multidisciplinary; Paleontology Physical Geography; Geology; Paleontology 725CI WOS:000287622400006 2019-02-21 J Stewart, J Stewart, John Evidence of age-class truncation in some exploited marine fish populations in New South Wales, Australia FISHERIES RESEARCH English Article Age truncation; Temperate reef; No-take marine reserves SNAPPER PAGRUS-AURATUS; KINGFISH SERIOLA-LALANDI; LIFE-HISTORY PARAMETERS; REPRODUCTIVE-BIOLOGY; FISHERIES MANAGEMENT; EASTERN AUSTRALIA; PROTECTED AREAS; CAPTURE DEPTH; GROWTH; LONGEVITY Exploited reef-associated species in south-eastern Australia have evolved life-history strategies to ensure population persistence through periods that are unsuitable for recruitment. They are characterized by considerable potential longevity (20-50 years), sexual maturation at relatively young ages (2-4 years old) and variable recruitment patterns. The age compositions in landings of the major reef-associated species in this region were used to demonstrate that some species have been subjected to significant age-class truncation. Species with long histories of exploitation had age compositions with relatively few fish greater than 5 years old. It is suggested that the removal of older age classes from the most heavily exploited populations has lowered their resilience to environmental change and that remedial management action may be required to rebuild reserves of older individuals. It is argued that the management options that are most likely to succeed in achieving this objective for populations of offshore reef-associated species include reducing rates of exploitation to very low levels, protecting larger/older fish through regulated maximum length limits and/or changes to gear selectivity and no take marine protected areas. The most appropriate management options will depend on the life-history of the species being considered. (C) 2010 Elsevier B.V. All rights reserved. Cronulla Fisheries Res Ctr Excellence, New S Wales Dept Primary Ind, Cronulla, NSW 2230, Australia Stewart, J (reprint author), Cronulla Fisheries Res Ctr Excellence, New S Wales Dept Primary Ind, POB 21, Cronulla, NSW 2230, Australia. john.Stewart@industry.nsw.gov.au Stewart, John/N-7330-2016 Stewart, John/0000-0002-1435-0082 BARRETT NS, 1995, MAR FRESHWATER RES, V46, P853, DOI 10.1071/MF9950853; Beamish RJ, 2006, PROG OCEANOGR, V68, P289, DOI 10.1016/j.pocean.2006.02.005; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Berkeley SA, 2004, FISHERIES, V29, P23, DOI 10.1577/1548-8446(2004)29[23:FSVPOA]2.0.CO;2; CLARK WG, 1991, CAN J FISH AQUAT SCI, V48, P734, DOI 10.1139/f91-088; DECCW, 2009, NSW STAT ENV 2009; Denny CM, 2004, MAR ECOL PROG SER, V272, P183, DOI 10.3354/meps272183; Gillanders BM, 2001, MAR FRESHWATER RES, V52, P179, DOI 10.1071/MF99153; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Hewitt DA, 2005, FISH B-NOAA, V103, P433; Hughes JM, 2008, MAR FRESHWATER RES, V59, P1111, DOI 10.1071/MF08102; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jones PJS, 2007, REV FISH BIOL FISHER, V17, P31, DOI 10.1007/s11160-006-9016-8; Kaiser MJ, 2005, CAN J FISH AQUAT SCI, V62, P1194, DOI 10.1139/F05-056; LEAMAN BM, 1984, INT N PAC FISH COMM, V42, P85; LOKKEBORG S, 1992, FISH RES, V13, P311, DOI 10.1016/0165-7836(92)90084-7; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; Longhurst A, 1998, FISH RES, V38, P101, DOI 10.1016/S0165-7836(98)00152-0; Longhurst A, 2006, FISH RES, V81, P107, DOI 10.1016/j.fishres.2006.06.022; LOWRY MB, 1997, THESIS NEW S WALES U; *MAR PARKS AUTH, 2008, REV BEN MAR PROT AR; Millar RB, 1999, REV FISH BIOL FISHER, V9, P89, DOI 10.1023/A:1008838220001; Morton J. K., 2007, THESIS U NEWCASTLE N; Morton JK, 2008, MAR FRESHWATER RES, V59, P560, DOI 10.1071/MF07216; OTWAY NM, 1993, MAR ECOL PROG SER, V93, P9, DOI 10.3354/meps093009; Rowling K. R, 2000, NSW FISHERIES FINAL, V24; Rummer JL, 2005, T AM FISH SOC, V134, P1457, DOI 10.1577/T04-235.1; SCANDOL J, 2008, STATUS FISHERIES RES; Silberschneider V, 2009, FISH RES, V95, P220, DOI 10.1016/j.fishres.2008.09.002; SILBERSCHNEIDER V, 2007, J APPL ICHTHYOL, V24, P7; St John J, 2005, FISH RES, V76, P106, DOI 10.1016/j.fishres.2005.05.014; Stewart J, 2005, NEW ZEAL J MAR FRESH, V39, P827, DOI 10.1080/00288330.2005.9517355; Stewart J, 2004, MAR FRESHWATER RES, V55, P489, DOI 10.1071/MF03127; Stewart J, 2003, FISH RES, V59, P379, DOI 10.1016/S0165-7836(02)00024-3; STEWART J, 2008, FISHERIES FINAL REPO, V97; Stewart J, 2008, FISH RES, V90, P289, DOI 10.1016/j.fishres.2007.11.003; Stewart J, 2009, FISH RES, V96, P267, DOI 10.1016/j.fishres.2008.12.005; Tzioumis V, 1999, COPEIA, P348, DOI 10.2307/1447480; Willis TJ, 2003, J APPL ECOL, V40, P214, DOI 10.1046/j.1365-2664.2003.00775.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040 40 19 20 2 16 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. FEB 2011 108 1 209 213 10.1016/j.fishres.2010.11.017 5 Fisheries Fisheries 722JM WOS:000287428500026 2019-02-21 J Edward, DA; Fricke, C; Gerrard, DT; Chapman, T Edward, Dominic A.; Fricke, Claudia; Gerrard, Dave T.; Chapman, Tracey QUANTIFYING THE LIFE-HISTORY RESPONSE TO INCREASED MALE EXPOSURE IN FEMALE DROSOPHILA MELANOGASTER EVOLUTION English Article Accessory gland proteins; fitness; fruit fly; mating costs; sexual conflict; sexual selection ACCESSORY-GLAND PRODUCTS; LABORATORY-MODEL-SYSTEM; SEMINAL FLUID PROTEIN; SEXUAL CONFLICT; EGG SIZE; INDIVIDUAL FITNESS; FRUIT-FLIES; POPULATION-DYNAMICS; INDIRECT BENEFITS; DIRECT COSTS Precise estimates of costs and benefits, the fitness economics, of mating are of key importance in understanding how selection shapes the coevolution of male and female mating traits. However, fitness is difficult to define and quantify. Here, we used a novel application of an established analytical technique to calculate individual- and population-based estimates of fitness-including those sensitive to the timing of reproduction-to measure the effects on females of increased exposure to males. Drosophila melanogaster females were exposed to high and low frequencies of contact with males, and life-history traits for each individual female were recorded. We then compared different fitness estimates to determine which of them best described the changes in life histories. We predicted that rate-sensitive estimates would be more accurate, as mating influences the rate of offspring production in this species. The results supported this prediction. Increased exposure to males led to significantly decreased fitness within declining but not stable or increasing populations. There was a net benefit of increased male exposure in expanding populations, despite a significant decrease in lifespan. The study shows how a more accurate description of fitness, and new insights can be achieved by considering individual life-history strategies within the context of population growth. [Edward, Dominic A.; Fricke, Claudia; Gerrard, Dave T.; Chapman, Tracey] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England Edward, DA (reprint author), Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England. D.Edward@uea.ac.uk; C.Fricke@uea.ac.uk; david.gerrard@manchester.ac.uk; tracey.chapman@uea.ac.uk Edward, Dominic/B-4074-2010; Gerrard, Dave/C-6366-2008; Chapman, Tracey/E-5100-2011; Marion-Poll, Frederic/D-8882-2011; Fricke, Claudia/M-6536-2014 Marion-Poll, Frederic/0000-0001-6824-0180; Fricke, Claudia/0000-0002-0691-6779; Gerrard, Dave/0000-0001-6890-7213 NERC; Biotechnology and Biological Sciences Research Council [BB/H008047/1]; Natural Environment Research Council [NE/C510516/1] We thank J. Brommer, T. Benton, and two anonymous reviewers for constructive comments on the analysis and J. Boone, P. Leftwich, and V. Ng for help with the experiments. Funding was provided by the NERC (research grant to TC). Andersson M., 1994, SEXUAL SELECTION; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Arnqvist G, 2005, SEXUAL CONFLICT; AVELAR T, 1993, J INSECT PHYSIOL, V39, P283, DOI 10.1016/0022-1910(93)90058-Y; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Bakker K., 1961, Archives Neerlandaises de Zoologie Leiden, V14, P200; Benton TG, 2000, EVOL ECOL RES, V2, P769; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Brommer JE, 2004, AM NAT, V163, P505, DOI 10.1086/382547; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Cameron E, 2003, J EVOLUTION BIOL, V16, P1055, DOI 10.1046/j.1420-9101.2003.00584.x; Carey JR, 2002, FUNCT ECOL, V16, P313, DOI 10.1046/j.1365-2435.2002.00633.x; Carey JR, 1998, FUNCT ECOL, V12, P359, DOI 10.1046/j.1365-2435.1998.00197.x; Caswell H., 1989, MATRIX POPULATION MO; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; Chapman T, 2001, P ROY SOC B-BIOL SCI, V268, P1647, DOI 10.1098/rspb.2001.1684; Chapman T, 2001, HEREDITY, V87, P511, DOI 10.1046/j.1365-2540.2001.00961.x; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHARLESWORTH B, 1970, Theoretical Population Biology, V1, P352, DOI 10.1016/0040-5809(70)90051-1; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; Cordero C, 2003, J EVOLUTION BIOL, V16, P1, DOI 10.1046/j.1420-9101.2003.00506.x; Crone EE, 2001, EVOLUTION, V55, P2611; DAWOOD MM, 1969, GENETICS, V63, P213; Eberhard W.G., 1996, FEMALE CONTROL SEXUA; Endler J. A., 1986, NATURAL SELECTION WI; Fisher RA, 1930, GENETICAL THEORY NAT; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Friberg U, 2003, J EVOLUTION BIOL, V16, P797, DOI 10.1046/j.1420-9101.2003.00597.x; Fricke C, 2009, BIOL LETTERS, V5, P671, DOI 10.1098/rsbl.2009.0433; Head ML, 2005, PLOS BIOL, V3, P289, DOI 10.1371/journal.pbio.0030033; HERNDON LA, 1995, P NATL ACAD SCI USA, V92, P10114, DOI 10.1073/pnas.92.22.10114; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; KOZLOWSKI J, 1993, TRENDS ECOL EVOL, V8, P84, DOI 10.1016/0169-5347(93)90056-U; Kuijper B, 2006, J EVOLUTION BIOL, V19, P1795, DOI 10.1111/j.1420-9101.2006.01186.x; Linder JE, 2005, J EVOLUTION BIOL, V18, P568, DOI 10.1111/j.1420-9101.2004.00872.x; Liu HF, 2003, P NATL ACAD SCI USA, V100, P9929, DOI 10.1073/pnas.1631700100; Long TAF, 2010, J EVOLUTION BIOL, V23, P1024, DOI 10.1111/j.1420-9101.2010.01973.x; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Orteiza N, 2005, J EVOLUTION BIOL, V18, P1315, DOI 10.1111/j.1420-9101.2005.00923.x; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1981, NATURE, V294, P580, DOI 10.1038/294580a0; Priest NK, 2008, BIOL LETTERS, V4, P6, DOI 10.1098/rsbl.2007.0473; Priest NK, 2008, AM NAT, V171, P10, DOI 10.1086/523944; PROUT T, 1985, AM NAT, V126, P521, DOI 10.1086/284436; Reinhardt K, 2009, EVOLUTION, V63, P29, DOI 10.1111/j.1558-5646.2008.00502.x; Rice WR, 2006, PHILOS T ROY SOC B, V361, P287, DOI 10.1098/rstb.2005.1787; Roff Derek A., 1992; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Schwarzkopf L, 1999, AM NAT, V154, P333, DOI 10.1086/303242; Simmons LW, 2005, ANNU REV ECOL EVOL S, V36, P125, DOI 10.1146/annurev.ecolsys.36.102403.112501; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tatar M, 1997, EVOLUTION, V51, P1323, DOI 10.1111/j.1558-5646.1997.tb03980.x; Thornhill R., 1983, EVOLUTION INSECT MAT; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; Wigby S, 2005, CURR BIOL, V15, P316, DOI 10.1016/j.cub.2005.01.051; Wolfner MF, 2002, HEREDITY, V88, P85, DOI 10.1038/sj/hdy/6800017; Wolfner MF, 1997, INSECT BIOCHEM MOLEC, V27, P179, DOI 10.1016/S0965-1748(96)00084-7; Yasui Y, 1997, AM NAT, V149, P573, DOI 10.1086/286006; Zeh JA, 2001, ANIM BEHAV, V61, P1051, DOI 10.1006/anbe.2000.1705 69 27 27 1 31 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2011 65 2 564 573 10.1111/j.1558-5646.2010.01151.x 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 711YV WOS:000286629100020 21044054 Bronze 2019-02-21 J Balbontin, J; de Lope, F; Hermosell, IG; Mousseau, TA; Moller, AP Balbontin, J.; de Lope, F.; Hermosell, I. G.; Mousseau, T. A.; Moller, A. P. Determinants of age-dependent change in a secondary sexual character JOURNAL OF EVOLUTIONARY BIOLOGY English Article among-individual component; life-history theory; phenotypic plasticity; selection; senescence; within-individual component SWALLOW HIRUNDO-RUSTICA; BARN SWALLOWS; REPRODUCTIVE EFFORT; NATURAL-SELECTION; MIGRATORY BIRD; TERMINAL INVESTMENT; MONOGAMOUS SWALLOW; MORTALITY-RATES; ORNAMENT SIZE; ARRIVAL DATE Many secondary sexual characters vary in a systematic way with the age of individuals, with young and old individuals displaying at lower levels than individuals of intermediate age. Analyses quantifying the within-individual and among-individual components of phenotypic variation can help partition effects of phenotypic plasticity and selective mortality. We analysed phenotypic variation in the expression of a secondary sexual character, tail length, in male and female barn swallows Hirundo rustica from four European populations studied during 11-26 years, using linear mixed effect models to describe age-related expression. Tail length increased from yearlings to intermediate aged birds with a subsequent decrease at old age. In males, this age-related pattern was because of both within-subject and between-subject effects, with no difference among populations. Males having longer lifespan had shorter tails when young than those having shorter lifespan. Females showed similar patterns of age-related variation as males, with no difference among populations. The major difference between sexes was that the between-subject effects (i.e. disappearance effects or selection) were much more important for males compared to females for which lifetime variation in tail length was mainly because of a within-subject effect (i.e., a plastic response). These findings suggest that whereas males trade greater expression of the secondary sexual character at young age against longevity, that was not the case for females. This is consistent with tail length being more costly in males than in females, with the cost of long tails potentially being offset by elevated mating success, whereas that is not the case in females. [Moller, A. P.] Univ Paris 11, CNRS UMR 8079, Lab Ecol Syst & Evolut, F-91405 Orsay, France; [Balbontin, J.] Fac Biol, Area Zool, Dept Fisiol & Zool, Seville, Spain; [de Lope, F.; Hermosell, I. G.] Univ Extremadura, Dept Anat Biol Celular & Zool, Badajoz, Spain; [Mousseau, T. A.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA Moller, AP (reprint author), Univ Paris 11, CNRS UMR 8079, Lab Ecol Syst & Evolut, Batiment 362, F-91405 Orsay, France. anders.moller@u-psud.fr Garcia Hermosell, Ignacio/H-1800-2012; Balbontin, Javier/H-5932-2015 Garcia Hermosell, Ignacio/0000-0002-5785-2269; Balbontin, Javier/0000-0003-1539-2636 Spanish Ministry of Education and Science [CGL-2009-08976] Thanks to all the people who helped obtain field data, especially A. Barbosa, N. Cadee, J. Cuervo, L. Garamszegi, D. Gil, F. Mateos, S. Merino, J. Moreno, C. Navarro and P. Ninni. Thank you also to Guadalupe M. Nisa for her invaluable help and support. The Spanish Ministry of Education and Science (CGL-2009-08976) supported this research. The Spanish Ministry of Education and Science supported IGH through a predoctoral 'FPI' fellowship. Andersson M., 1994, SEXUAL SELECTION; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Balbontin J, 2009, J ANIM ECOL, V78, P981, DOI 10.1111/j.1365-2656.2009.01573.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Burnham KP, 2002, MODEL SELECTION INFE; Camplani A, 1999, P ROY SOC B-BIOL SCI, V266, P1111, DOI 10.1098/rspb.1999.0751; Catchpole EA, 2004, J AGR BIOL ENVIR ST, V9, P1, DOI 10.1198/1085711043172; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cuervo JJ, 1996, OECOLOGIA, V108, P252, DOI 10.1007/BF00334648; de Lope F., 1983, Donana Acta Vertebrata, V10, P91; DELOPE F, 1993, EVOLUTION, V47, P1152, DOI 10.1111/j.1558-5646.1993.tb02142.x; Ellegren H, 1997, NATURE, V389, P593, DOI 10.1038/39303; Fox CW, 2003, FUNCT ECOL, V17, P619, DOI 10.1046/j.1365-2435.2003.00781.x; Gaillard J.-M., 2004, Animal Biodiversity and Conservation, V27, P47; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hermosell IG, 2007, ARDEOLA, V54, P93; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; MANNING JT, 1985, J THEOR BIOL, V116, P349, DOI 10.1016/S0022-5193(85)80273-3; Marzal A, 2008, J EVOLUTION BIOL, V21, P979, DOI 10.1111/j.1420-9101.2008.01545.x; McCleery RH, 2008, P R SOC B, V275, P963, DOI 10.1098/rspb.2007.1418; Medawar P, 1952, UNSOLVED PROBLEM BIO; MOller A. P., 1994, SEXUAL SELECTION BAR; Moller AP, 2005, AGE, V27, P307, DOI 10.1007/s11357-005-4557-7; MOLLER AP, 1990, ANIM BEHAV, V39, P458, DOI 10.1016/S0003-3472(05)80409-9; MOLLER AP, 1992, J EVOLUTION BIOL, V5, P603, DOI 10.1046/j.1420-9101.1992.5040603.x; MOLLER AP, 1991, EVOLUTION, V45, P1823, DOI 10.1111/j.1558-5646.1991.tb02690.x; MOLLER AP, 1988, NATURE, V332, P640, DOI 10.1038/332640a0; Moller AP, 1999, J ANIM ECOL, V68, P163, DOI 10.1046/j.1365-2656.1999.00274.x; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Moller AP, 2006, EVOLUTION, V60, P856; Moller AP, 2005, J ANIM ECOL, V74, P1102, DOI 10.1111/j.1365-2656.2005.01009.x; Moller AP, 2003, EVOLUTION, V57, P2139, DOI 10.1554/03-051; Moller AP, 2003, BEHAV ECOL, V14, P707, DOI 10.1093/beheco/arg051; Moller AP, 1998, BEHAV ECOL SOCIOBIOL, V43, P345, DOI 10.1007/s002650050501; MOLLER AP, 1995, J EVOLUTION BIOL, V8, P3, DOI 10.1046/j.1420-9101.1995.8010003.x; MOLLER AP, 1994, BEHAV ECOL, V5, P188; Nussey DH, 2009, AM NAT, V174, P342, DOI 10.1086/603615; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; OWENSMITH N, 1993, J ANIM ECOL, V62, P428, DOI 10.2307/5192; PROMISLOW DEL, 1992, P ROY SOC B-BIOL SCI, V247, P203, DOI 10.1098/rspb.1992.0030; *R DEV COR TEAM, 2006, LANG ENV STAT COMP; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Roff Derek A., 1992; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Royall RM, 1997, STAT EVIDENCE LIKELI; Stearns S, 1992, EVOLUTION LIFE HIST; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461 55 12 12 0 37 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2011 24 2 440 448 10.1111/j.1420-9101.2010.02183.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 706HI WOS:000286208400021 21175908 Bronze 2019-02-21 J Stelzer, CP Stelzer, Claus-Peter The Cost of Sex and Competition between Cyclical and Obligate Parthenogenetic Rotifers AMERICAN NATURALIST English Article maintenance of sex; fitness; life-history evolution; cost of males; Brachionus calyciflorus; parthenogenesis BRACHIONUS-PLICATILIS ROTIFERA; DAPHNIA-PULEX; POTAMOPYRGUS-ANTIPODARUM; POPULATION-DYNAMICS; REPRODUCTION; INDUCTION; ASEXUALITY; EVOLUTION; CULTURE; ZOOPLANKTON The ubiquity of sexual reproduction is an evolutionary puzzle because asexuality should have major reproductive advantages. Theoretically, transitions to asexuality should confer substantial benefits in population growth and lead to rapid displacement of all sexual ancestors. So far, there have been few rigorous tests of one of the most basic assumptions of the paradox of sex: that asexuals are competitively superior to sexuals immediately after their origin. Here I examine the fitness consequences of very recent transitions to obligate parthenogenesis in the cyclical parthenogenetic rotifer Brachionus calyciflorus. This experimental system differs from previous animal models, since obligate parthenogens were derived from the same maternal genotype as cyclical parthenogens. Obligate parthenogens had similar fitness compared with cyclical parthenogens in terms of the intrinsic rate of increase (calculated from life tables). However, population growth of cyclical parthenogens was predicted to be much lower: sexual female offspring do not contribute to immediate population growth in Brachionus, since they produce either males or diapausing eggs. Hence, if cyclical parthenogens constantly produce a high proportion of sexual offspring, there is a cost of sex, and obligate parthenogens can invade. This prediction was confirmed in laboratory competition experiments. Austrian Acad Sci, Inst Limnol, A-5310 Mondsee, Austria Stelzer, CP (reprint author), Austrian Acad Sci, Inst Limnol, Mondseestr 9, A-5310 Mondsee, Austria. claus-peter.stelzer@oeaw.ac.at Stelzer, Claus-Peter/F-3789-2018 Stelzer, Claus-Peter/0000-0002-6682-0904 Fonds zur Forderung der wissenschaftlichen Forschung [P20735-B17] I would like to thank J. Schmidt and A. Wiedlroither for technical assistance during the experimental work. D. Lamatsch and S. Riss gave valuable comments on an earlier version the manuscript. Financial support was provided by Fonds zur Forderung der wissenschaftlichen Forschung grant P20735-B17. D. Lamatsch, S. Riss, and two anonymous reviewers gave valuable comments on an earlier version of the manuscript. Agrawal AF, 2006, CURR BIOL, V16, pR696, DOI 10.1016/j.cub.2006.07.063; Barton NH, 1998, SCIENCE, V281, P1986, DOI 10.1126/science.281.5385.1986; Bell G, 2008, SELECTION: THE MECHANISM OF EVOLUTION, 2ND EDITION, P1; BELL G, 1982, MASTERPIECE NATURE; BENNETT WN, 1988, AQUACULTURE, V73, P27, DOI 10.1016/0044-8486(88)90038-5; BENNETT WN, 1989, OIKOS, V55, P365, DOI 10.2307/3565596; BORAAS ME, 1983, LIMNOL OCEANOGR, V28, P546, DOI 10.4319/lo.1983.28.3.0546; BUCHNER H, 1987, ARCH HYDROBIOL, V109, P333; Carmona MJ, 1995, HYDROBIOLOGIA, V313, P365, DOI 10.1007/BF00025971; Caswell H., 2001, MATRIX POPULATION MO; Corley LS, 1999, P ROY SOC B-BIOL SCI, V266, P471, DOI 10.1098/rspb.1999.0661; CREASE TJ, 1989, EVOLUTION, V43, P1016, DOI 10.1111/j.1558-5646.1989.tb02547.x; De Meester L, 2006, ARCH HYDROBIOL, V167, P217, DOI 10.1127/0003-9136/2006/0167-0217; Decaestecker E, 2007, NATURE, V450, P870, DOI 10.1038/nature06291; Delmotte F, 2001, P ROY SOC B-BIOL SCI, V268, P2291, DOI 10.1098/rspb.2001.1778; Downes B. J, 2002, MONITORING ECOLOGICA; Fussmann GF, 2003, P ROY SOC B-BIOL SCI, V270, P1015, DOI 10.1098/rspb.2003.2335; GILBERT JJ, 1995, FRESHWATER BIOL, V34, P263, DOI 10.1111/j.1365-2427.1995.tb00886.x; Gilbert JJ, 2007, FRESHWATER BIOL, V52, P1417, DOI 10.1111/j.1365-2427.2007.01782.x; Goddard MR, 2005, NATURE, V434, P636, DOI 10.1038/nature03405; HEBERT PDN, 1978, BIOL REV, V53, P387, DOI 10.1111/j.1469-185X.1978.tb00860.x; Jokela J, 1997, ECOLOGY, V78, P452; Kearney M, 2005, J EVOLUTION BIOL, V18, P609, DOI 10.1111/j.1420-9101.2004.00866.x; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; KONDRASHOV AS, 1993, J HERED, V84, P372, DOI 10.1093/oxfordjournals.jhered.a111358; Kramer MG, 2001, EVOLUTION, V55, P748, DOI [10.1554/0014-3820(2001)055[0748:LHCTAT]2.0.CO;2, 10.1111/j.0014-3820.2001.tb00811.x]; LAMB RY, 1979, EVOLUTION, V33, P774, DOI 10.1111/j.1558-5646.1979.tb04731.x; Lively CM, 1996, BIOSCIENCE, V46, P107, DOI 10.2307/1312813; Maynard Smith J, 1978, EVOLUTION SEX; MEYER JS, 1986, ECOLOGY, V67, P1156, DOI 10.2307/1938671; Miracle MR, 1995, HYDROBIOLOGIA, V313, P291, DOI 10.1007/BF00025961; Neiman M, 2005, EVOLUTION, V59, P1945; NOGRADY T, 1993, ROTIFERA, V1; Otto SP, 2009, AM NAT, V174, pS1, DOI 10.1086/599084; Paland S, 2005, EVOLUTION, V59, P800; ROTH LM, 1974, ANN ENTOMOL SOC AM, V67, P215, DOI 10.1093/aesa/67.2.215; Schon I, 1998, SEX AND PARTHENOGENESIS, P275; Schroder T, 2005, HYDROBIOLOGIA, V546, P291, DOI 10.1007/s10750-005-4235-x; Serra M, 2009, LOST SEX: THE EVOLUTIONARY BIOLOGY OF PARTHENOGENESIS, P281, DOI 10.1007/978-90-481-2770-2_14; SNELL TW, 1986, MAR BIOL, V92, P157, DOI 10.1007/BF00392832; Snell TW, 2006, MAR BIOL, V149, P763, DOI 10.1007/s00227-006-0251-2; Sokal RR, 1995, BIOMETRY; Stelzer CP, 2008, J EVOLUTION BIOL, V21, P287, DOI 10.1111/j.1420-9101.2007.01437.x; Stelzer CP, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012854; Stelzer CP, 2009, LIMNOL OCEANOGR-METH, V7, P856, DOI 10.4319/lom.2009.7.856; Stelzer CP, 2005, HYDROBIOLOGIA, V546, P335, DOI 10.1007/s10750-005-4243-x; Stelzer CP, 2003, LIMNOL OCEANOGR, V48, P939, DOI 10.4319/lo.2003.48.2.0939; Timmermeyer N, 2006, J PLANKTON RES, V28, P1233, DOI 10.1093/plankt/fbl052; WETHERINGTON JD, 1987, EVOLUTION, V41, P721, DOI 10.1111/j.1558-5646.1987.tb05848.x; Wolinska J, 2008, OIKOS, V117, P1637, DOI 10.1111/j.1600-0706.2008.16760.x 50 27 27 2 32 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 2011 177 2 E43 E53 10.1086/657685 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 758FQ WOS:000290147800001 21460550 2019-02-21 J Diamantidis, AD; Carey, JR; Nakas, CT; Papadopoulos, NT Diamantidis, Alexandros D.; Carey, James R.; Nakas, Christos T.; Papadopoulos, Nikos T. Ancestral populations perform better in a novel environment: domestication of Mediterranean fruit fly populations from five global regions BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Ceratitis capitata; genetic differentiation; invasion; invasive species; life history evolution; Tephritidae LIFE-HISTORY EVOLUTION; STERILE INSECT TECHNIQUE; CERATITIS-CAPITATA; DROSOPHILA-MELANOGASTER; DEMOGRAPHIC PARAMETERS; LABORATORY ADAPTATION; DIPTERA TEPHRITIDAE; BACTROCERA-CUCURBITAE; COLONIZATION PROCESS; STRESS RESISTANCE Geographically isolated populations of a species may differ in several aspects of life history, morphology, behaviour and genetic structure as a result of adaptation in ecologically diverse habitats. We used a global invasive species, the Mediterranean fruit fly (medfly), to investigate whether adaptation to a novel environment differs among geographically isolated populations that vary in major life history components, such as life span and reproduction. We used wild populations from five global regions (Kenya, Hawaii, Guatemala, Portugal and Greece). Adult demographic traits were monitored in the F-2, F-5, F-7 and F-9 generations in captivity. Although domestication in constant laboratory conditions had a different effect on the mortality and reproductive rates of the different populations, a general trend of decreasing life span and age of first reproduction was observed for most medfly populations tested. However, taking into account the longevity of both sexes, age-specific reproductive schedules and average reproductive rates, we found that the ancestral Kenyan population kept the above life history traits stable during domestication compared with the other populations tested. These findings provide important insights into the life history evolution of this model species, and suggest that ancestral medfly populations perform better than the derived, invasive ones in a novel environment. (C) 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 334-345. [Diamantidis, Alexandros D.; Nakas, Christos T.; Papadopoulos, Nikos T.] Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Ionia 38446, Magnisias, Greece; [Diamantidis, Alexandros D.; Carey, James R.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA Papadopoulos, NT (reprint author), Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Phytokou St N, Ionia 38446, Magnisias, Greece. nikopap@uth.gr Nakas, Christos/F-3052-2011 Nakas, Christos/0000-0003-4155-722X National Institute on Ageing [P01-AG022500-01, P01-AG08761-10] This study was supported by the National Institute on Ageing grants P01-AG022500-01 and P01-AG08761-10 awarded to James R. Carey. We thank A. Mavromatis (University of Thessaly, Greece) for constructive comments on an earlier version of the manuscript. The authors are grateful to P. Rendon [Agricultural Research Service, US Department of Agriculture (ARS USDA), Guatemela], D. McInnis and R. Vargas (USDA, Hawaii), L. Dantas (Madeira), C. Caceres (International Atomic Energy Agency, Vienna, Austria) and S. Ekesi (International Centre for Insect Physiology and Ecology, Kenya) for providing wild material. Comments from three anonymous reviewers greatly improved the quality of this paper. Alonzo TA, 2009, J ECON ENTOMOL, V102, P1985, DOI 10.1603/029.102.0532; Boller E.F., 1985, P135; Bonizzoni M, 2001, MOL ECOL, V10, P2515, DOI 10.1046/j.0962-1083.2001.01376.x; Bonizzoni M, 2000, INSECT MOL BIOL, V9, P251, DOI 10.1046/j.1365-2583.2000.00184.x; Carey J. R., 1993, APPL DEMOGRAPHY BIOL; CAREY JR, 1984, ECOL ENTOMOL, V9, P261, DOI 10.1111/j.1365-2311.1984.tb00850.x; Carey JR, 1998, FUNCT ECOL, V12, P359, DOI 10.1046/j.1365-2435.1998.00197.x; CAREY JR, 1991, SCIENCE, V253, P1369; CAREY JR, 2003, LONGEVITY BIOL DEMOG; CARVALHO GR, 1993, J FISH BIOL, V43, P53, DOI 10.1111/j.1095-8649.1993.tb01179.x; Cayol JP, 2000, FRUIT FLIES (TEPHRITIDAE): PHYLOGENY AND EVOLUTION OF BEHAVIOR, P843; Ciosi M, 2008, MOL ECOL, V17, P3614, DOI 10.1111/j.1365-294X.2008.03866.x; Collett D., 2003, MODELING SURVIVAL DA; Diamantidis AD, 2008, J APPL ENTOMOL, V132, P695, DOI 10.1111/j.1439-0418.2008.01325.x; Diamantidis AD, 2008, ENTOMOL EXP APPL, V128, P389, DOI 10.1111/j.1570-7458.2008.00730.x; Diamantidis AD, 2009, BIOL J LINN SOC, V97, P106, DOI 10.1111/j.1095-8312.2009.01178.x; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dyck V. A., 2005, STERILE INSECT TECHN; ECONOMOPOULOS AP, 1992, J ECON ENTOMOL, V85, P753, DOI 10.1093/jee/85.3.753; FIMIANI P, 1989, FRUIT FLIES THEIR BI, P39; Frankham R, 2008, MOL ECOL, V17, P325, DOI 10.1111/j.1365-294X.2007.03399.x; Futuyma Douglas, 2005, EVOLUTION; Gasperi G, 2002, GENETICA, V116, P125, DOI 10.1023/A:1020971911612; Gomulski LM, 1998, MOL ECOL, V7, P1729, DOI 10.1046/j.1365-294x.1998.00509.x; Griffiths JA, 2005, J EVOLUTION BIOL, V18, P213, DOI 10.1111/j.1420-9101.2004.00782.x; HARRIS EJ, 1989, ENVIRON ENTOMOL, V18, P103, DOI 10.1093/ee/18.1.103; HENDRICHS J, 1995, J APPL ENTOMOL, V119, P371, DOI 10.1111/j.1439-0418.1995.tb01303.x; Hendrichs J, 2002, FLA ENTOMOL, V85, P1, DOI 10.1653/0015-4040(2002)085[0001:MASITP]2.0.CO;2; Hernandez E, 2009, J ECON ENTOMOL, V102, P542, DOI 10.1603/029.102.0211; Hoffmann AA, 2001, EVOLUTION, V55, P436; KRAINACKER DA, 1987, OECOLOGIA, V73, P583, DOI 10.1007/BF00379420; LIQUIDO NJ, 1990, J ECON ENTOMOL, V83, P1863, DOI 10.1093/jee/83.5.1863; Malacrida AR, 2007, GENETICA, V131, P1, DOI 10.1007/s10709-006-9117-2; Malacrida AR, 1998, J HERED, V89, P501, DOI 10.1093/jhered/89.6.501; Matos M, 2004, EVOLUTION, V58, P1503; Matos M, 2000, J EVOLUTION BIOL, V13, P9, DOI 10.1046/j.1420-9101.2000.00116.x; Meats A, 2004, B ENTOMOL RES, V94, P517, DOI 10.1079/BER2004332; Miyatake T, 1998, RES POPUL ECOL, V40, P301, DOI 10.1007/BF02763462; Miyatake T, 1999, RES POPUL ECOL, V41, P291, DOI 10.1007/s101440050034; Papadopoulos NT, 2002, ANN ENTOMOL SOC AM, V95, P564, DOI 10.1603/0013-8746(2002)095[0564:DPOTMF]2.0.CO;2; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; ROSSLER Y, 1975, ANN ENTOMOL SOC AM, V68, P987, DOI 10.1093/aesa/68.6.987; Sgro CM, 2001, AM NAT, V158, P657, DOI 10.1086/323592; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Simoes P, 2007, J EVOLUTION BIOL, V20, P758, DOI 10.1111/j.1420-9101.2006.01244.x; Sokal RR, 1995, BIOMETRY; SOUZA H M L D, 1988, Entomologia Experimentalis et Applicata, V49, P195; Vargas RI, 1997, ANN ENTOMOL SOC AM, V90, P162, DOI 10.1093/aesa/90.2.162; VARGAS RI, 1989, ANN ENTOMOL SOC AM, V82, P55, DOI 10.1093/aesa/82.1.55; VARGAS RI, 1984, ANN ENTOMOL SOC AM, V77, P651, DOI 10.1093/aesa/77.6.651; Zayed A, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000868; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x 52 19 19 1 28 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. FEB 2011 102 2 334 345 10.1111/j.1095-8312.2010.01579.x 12 Evolutionary Biology Evolutionary Biology 706NL WOS:000286225000008 21278856 Bronze, Green Accepted 2019-02-21 J Dmitriew, CM Dmitriew, Caitlin M. The evolution of growth trajectories: what limits growth rate? BIOLOGICAL REVIEWS English Review life-history evolution; trade-offs; compensatory growth; time constraints; condition; predation; physiology LIFE-HISTORY TRAITS; YELLOW DUNG FLIES; CATCH-UP GROWTH; CONFLICTING SELECTION PRESSURES; ADAPTIVE PHENOTYPIC PLASTICITY; TROUT ONCORHYNCHUS-MYKISS; ENERGY ACQUISITION RATES; BEETLE HARMONIA-AXYRIDIS; JUVENILE ATLANTIC SALMON; RISK TRADE-OFF The ecological and evolutionary factors influencing growth rate are reviewed, with particular emphasis on how growth might be constrained by direct fitness costs. Costs of accelerating growth might contribute to the variance in fitness that is not attributable to age or size at maturity, as well as to the variation in life-history strategies observed within and among species. Two main approaches have been taken to study the fitness trade-offs relating to growth rate. First, environmental manipulations can be used to produce treatment groups with different rates of growth. Second, common garden experiments can be used to compare fitness correlates among populations with different intrinsic growth rates. Data from these studies reveal a number of potential costs for growth over both the short and long term. In order to acquire the energy needed for faster growth, animals must increase food intake. Accordingly, in many taxa, the major constraint on growth rate appears to arise from the trade-off between predation risk and foraging effort. However, growth rates are also frequently observed to be submaximal in the absence of predation, suggesting that growth trajectories also impact fitness via other channels, such as the reallocation of finite resources between growth and other traits and functions. Despite the prevalence of submaximal growth, even when predators are absent, there is surprisingly little evidence to date demonstrating predator-independent costs of growth acceleration. Evidence that does exist indicates that such costs may be most apparent under stressful conditions. Future studies should examine more closely the link between patterns of resource allocation to traits in the adult organism and lifetime fitness. Changes in body composition at maturation, for example, may determine the outcome of trade-offs between reproduction and survival or between early and late reproduction. A number of design issues for studies investigating costs of growth that are imposed over the long term are discussed, along with suggestions for alternative approaches. Despite these issues, identifying costs of growth acceleration may fill a gap in our understanding of life-history evolution: the relationships between growth rate, the environment, and fitness may contribute substantially to the diversification of life histories in nature. Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Dmitriew, CM (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada. c.dmitriew@utoronto.ca Natural Sciences and Engineering Research Council (NSERC) Thank you to Locke Rowe for many valuable discussions and encouragement, and to P. Abrams, H. Rodd, R. Schilder, N. Metcalfe and W. Blanckenhorn for many helpful comments and suggestions on previous versions of the manuscript. I am grateful to K. Gotthard, A. Laurila, and F. Sundstrom for providing the data used in the figures. This work was supported by a Natural Sciences and Engineering Research Council (NSERC) scholarship. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Altwegg R, 2002, ECOLOGY, V83, P2542, DOI 10.2307/3071813; Alvarez D, 2003, J FISH BIOL, V63, P1565, DOI 10.1111/j.1095-8649.2003.00267.x; Alvarez D, 2005, P ROY SOC B-BIOL SCI, V272, P601, DOI 10.1098/rspb.2004.2991; Alvarez D, 2006, EVOL ECOL, V20, P345, DOI 10.1007/s10682-006-0004-1; Andersson M., 1994, SEXUAL SELECTION; Arendt J, 2001, OIKOS, V93, P95, DOI 10.1034/j.1600-0706.2001.930110.x; Arendt JD, 1997, EVOLUTION, V51, P1946, DOI 10.1111/j.1558-5646.1997.tb05116.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 1999, ECOLOGY, V80, P2793, DOI 10.2307/177259; Arendt JD, 2000, CAN J FISH AQUAT SCI, V57, P351, DOI 10.1139/cjfas-57-2-351; ARENDT JD, 2005, FUNCTIONAL ECOLOGY, V9, P982; Armbruster P, 2006, ANN ENTOMOL SOC AM, V99, P1234, DOI 10.1603/0013-8746(2006)99[1234:GVOLGI]2.0.CO;2; Armitage SAO, 2003, J EVOLUTION BIOL, V16, P1038, DOI 10.1046/j.1420-9101.2003.00551.x; Arnold KE, 2007, J AVIAN BIOL, V38, P356, DOI 10.1111/j.2007.0908-8857.03818.x; Arnott SA, 2006, EVOLUTION, V60, P1269; Atchley WR, 1997, GENETICS, V147, P765; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Badyaev AV, 2006, P NATL ACAD SCI USA, V103, P14406, DOI 10.1073/pnas.0602452103; Bailey NW, 2008, J INSECT PHYSIOL, V54, P96, DOI 10.1016/j.jinsphys.2007.08.009; Barrett ELB, 2009, P ROY SOC B-BIOL SCI, V276, P3257, DOI 10.1098/rspb.2009.0725; Bartke A, 2004, CURR TOP DEV BIOL, V63, P189, DOI 10.1016/S0070-2153(04)63006-7; Bayne BL, 2000, J EXP MAR BIOL ECOL, V251, P185, DOI 10.1016/S0022-0981(00)00211-2; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; Berger D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1655, DOI 10.1007/s00265-008-0594-4; Billerbeck JM, 2000, OECOLOGIA, V122, P210, DOI 10.1007/PL00008848; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2004, CAN J FISH AQUAT SCI, V61, P1513, DOI [10.1139/f04-083, 10.1139/F04-083]; Bize P, 2006, FUNCT ECOL, V20, P857, DOI 10.1111/1365-2435.2006.01157.x; Bjorndal KA, 2003, ECOLOGY, V84, P1237, DOI 10.1890/0012-9658(2003)084[1237:CGIOLS]2.0.CO;2; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; Boujard T, 2000, AQUAT LIVING RESOUR, V13, P129, DOI 10.1016/S0990-7440(00)00149-2; BRAMS PA, 1996, AM NAT, V147, P381; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; BROEKHUIZEN N, 1994, FUNCT ECOL, V8, P770, DOI 10.2307/2390237; Brown GP, 2006, ECOLOGY, V87, P133, DOI 10.1890/04-1882; Campero M, 2008, J ANIM ECOL, V77, P66, DOI 10.1111/j.1365-2656.2007.01308.x; Capellan E, 2007, J ANIM ECOL, V76, P1026, DOI 10.1111/j.1365-2656.2007.01281.x; CARLSON SM, 2004, EVOLUTIONARY ECOLOGY, V6, P966; Chiba S, 2007, OECOLOGIA, V154, P237, DOI 10.1007/s00442-007-0825-9; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; CUSHMAN JH, 1994, ECOLOGY, V75, P1031, DOI 10.2307/1939427; Day T, 2002, EVOLUTION, V56, P877; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2004, OECOLOGIA, V140, P68, DOI 10.1007/s00442-004-1575-6; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; De Block M, 2008, EVOLUTION, V62, P485, DOI 10.1111/j.1558-5646.2007.00283.x; De Block M, 2008, ECOL ENTOMOL, V33, P796, DOI 10.1111/j.1365-2311.2008.01024.x; De Block M, 2008, OIKOS, V117, P908, DOI 10.1111/j.2008.0030-1299.16603.x; De Block M, 2008, ECOGRAPHY, V31, P115, DOI 10.1111/j.2007.0906-7590.05313.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; De Block M, 2008, OIKOS, V117, P245, DOI 10.1111/j.2007.0030-1299.16376.x; de Visser JAGM, 2003, EVOLUTION, V57, P1959, DOI 10.1554/02-750R; Dibattista JD, 2007, J EVOLUTION BIOL, V20, P201, DOI 10.1111/j.1420-9101.2006.01210.x; Dmitriew C, 2007, J EVOLUTION BIOL, V20, P1298, DOI 10.1111/j.1420-9101.2007.01349.x; Dmitriew C, 2007, CAN J ZOOL, V85, P310, DOI 10.1139/Z07-004; Dmitriew C, 2005, OECOLOGIA, V142, P150, DOI 10.1007/s00442-004-1712-2; Dmitriew C, 2009, CAN J ZOOL, V87, P175, DOI 10.1139/Z09-001; DMITRIEW C, AM NATURALI IN PRESS; Dukas R, 2000, P NATL ACAD SCI USA, V97, P2637, DOI 10.1073/pnas.050461497; Ernsting G, 1999, J ANIM ECOL, V68, P741, DOI 10.1046/j.1365-2656.1999.00322.x; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Finstad AG, 2004, CAN J FISH AQUAT SCI, V61, P2358, DOI 10.1139/F04-213; Fisher MO, 2006, PLOS BIOL, V4, P1462, DOI 10.1371/journal.pbio.0040251; Flatt T, 2005, Q REV BIOL, V80, P287, DOI 10.1086/432265; Fraser DF, 2004, ECOLOGY, V85, P312, DOI 10.1890/03-3023; Fraser DJ, 2007, OECOLOGIA, V153, P543, DOI 10.1007/s00442-007-0763-6; Frisch D, 2004, EVOL ECOL RES, V6, P541; GILLESPIE JH, 1989, GENETICS, V121, P129; Gotthard K, 2004, INTEGR COMP BIOL, V44, P471, DOI 10.1093/icb/44.6.471; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; GOTTHARD K, 1994, OECOLOGIA, V99, P281, DOI 10.1007/BF00627740; GRAFEN A, 1990, J THEOR BIOL, V144, P517, DOI 10.1016/S0022-5193(05)80088-8; Gurney WSC, 2003, ECOLOGY, V84, P2777, DOI 10.1890/02-0536; Hakalahti T, 2005, PARASITOLOGY, V131, P647, DOI 10.1017/S0031182005008279; Hauck SJ, 2000, FREE RADICAL BIO MED, V28, P970, DOI 10.1016/S0891-5849(00)00186-6; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Houle D, 1998, GENETICA, V102-3, P241, DOI 10.1023/A:1017034925212; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; Huang G, 2008, J FISH BIOL, V72, P2534, DOI 10.1111/j.1095-8649.2008.01863.x; Hurst TP, 2005, MAR ECOL PROG SER, V293, P233, DOI 10.3354/meps293233; INNESS CLW, 2009, P ROYAL SOC SERIES B, V275, P1703; Johansson F, 1999, ECOLOGY, V80, P1242, DOI 10.2307/177071; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johnsson JI, 2005, OIKOS, V111, P31, DOI 10.1111/j.0030-1299.2005.13972.x; JOHNSSON JI, 2006, P ROYAL SOC SERIES B, V273, P128; JULIANO SA, 1994, OECOLOGIA, V97, P369, DOI 10.1007/BF00317327; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Kirjasniemi M, 1997, ENVIRON BIOL FISH, V50, P451, DOI 10.1023/A:1007302931943; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LARANO M, 2003, OIKOS, V101, P539; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Laurila A, 2006, OECOLOGIA, V147, P585, DOI 10.1007/s00442-005-0301-3; Laurila A, 2002, OECOLOGIA, V132, P524, DOI 10.1007/s00442-002-0984-7; Laurila A, 2008, ECOLOGY, V89, P1399, DOI 10.1890/07-1521.1; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lind MI, 2008, P ROY SOC B-BIOL SCI, V275, P1073, DOI 10.1098/rspb.2007.1737; Lindgren B, 2005, J EVOLUTION BIOL, V18, P820, DOI 10.1111/j.1420-9101.2004.00875.x; Lindgren B, 2009, BIOL J LINN SOC, V98, P217, DOI 10.1111/j.1095-8312.2009.01255.x; Lindstrom J, 2005, FUNCT ECOL, V19, P421, DOI 10.1111/j.1365-2435.2005.00974.x; LUDWIG D, 1990, AM NAT, V135, P686, DOI 10.1086/285069; Maclean A, 2001, J FISH BIOL, V58, P1331, DOI 10.1006/jfbi.2000.1545; MANGEL SB, 2005, AM NAT, V166, pE155; Margraf N, 2003, FUNCT ECOL, V17, P605, DOI 10.1046/j.1365-2435.2003.00775.x; McMillen IC, 2005, PHYSIOL REV, V85, P571, DOI 10.1152/physrev.00053.2003; Medawar P, 1952, UNSOLVED PROBLEM BIO; Merila J, 2004, J EVOLUTION BIOL, V17, P1132, DOI 10.1111/j.1420-9101.2004.00744.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MONTEIRO LS, 1966, ANIM PROD, V8, P179, DOI 10.1017/S0003356100034565; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Mousseau TA, 1997, EVOLUTION, V51, P630, DOI 10.1111/j.1558-5646.1997.tb02453.x; Moya-Larano J, 2008, J ANIM ECOL, V77, P1099, DOI 10.1111/j.1365-2656.2008.01433.x; Mucklow PT, 2004, P ROY SOC B-BIOL SCI, V271, P1175, DOI 10.1098/rspb.2004.2707; Munch SB, 2003, EVOLUTION, V57, P2119, DOI 10.1554/02-711; Munch SB, 2004, EVOLUTION, V58, P661, DOI 10.1111/j.0014-3820.2004.tb01689.x; Myszkowski L, 2006, FOLIA ZOOL, V55, P211; Nicieza AG, 1997, ECOLOGY, V78, P2385; Nicieza AG, 1999, FUNCT ECOL, V13, P793, DOI 10.1046/j.1365-2435.1999.00371.x; Nicieza A, 2009, OECOLOGIA, V159, P27, DOI 10.1007/s00442-008-1194-8; Nikki J, 2004, AQUACULTURE, V235, P285, DOI 10.1016/j.aquaculture.2003.10.017; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Nylin S, 1996, EVOLUTION, V50, P1351, DOI 10.1111/j.1558-5646.1996.tb02377.x; Ozanne SE, 2004, NATURE, V427, P411, DOI 10.1038/427411b; Ozanne SE, 2005, MECH AGEING DEV, V126, P852, DOI 10.1016/j.mad.2005.03.005; Pangle KL, 2004, T AM FISH SOC, V133, P1235, DOI 10.1577/T03-127.1; PARTRIDGE L, 1994, J EVOLUTION BIOL, V7, P645, DOI 10.1046/j.1420-9101.1994.7060645.x; Partridge L, 1999, GENET RES, V74, P43, DOI 10.1017/S0016672399003778; PARTRIDGE L, 1993, EVOLUTION, V47, P213, DOI 10.1111/j.1558-5646.1993.tb01211.x; Peckarsky BL, 2001, ECOLOGY, V82, P740, DOI 10.1890/0012-9658(2001)082[0740:VIMSAM]2.0.CO;2; Peterson CC, 1999, FUNCT ECOL, V13, P500, DOI 10.1046/j.1365-2435.1999.00339.x; Rauter CM, 2002, EVOLUTION, V56, P96; RISKA B, 1984, GENETICS, V107, P79; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff Derek A., 1992; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Roseboom TJ, 2000, HEART, V84, P595, DOI 10.1136/heart.84.6.595; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Royle NJ, 2006, FUNCT ECOL, V20, P662, DOI 10.1111/j.1365-2435.2006.01147.x; Royle NJ, 2006, BIOL LETT-UK, V2, P39, DOI 10.1098/rsbl.2005.0414; Royle NJ, 2005, P ROY SOC B-BIOL SCI, V272, P1917, DOI 10.1098/rspb.2005.3190; Rudolf VHW, 2007, EVOL ECOL, V21, P121, DOI 10.1007/s10682-006-0017-9; Schafer ML, 2006, J VECTOR ECOL, V31, P123, DOI 10.3376/1081-1710(2006)31[123:DROTFM]2.0.CO;2; Scharf I, 2009, OECOLOGIA, V160, P453, DOI 10.1007/s00442-009-1316-y; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Schulte-Hostedde AI, 2005, ECOLOGY, V86, P155, DOI 10.1890/04-0232; Schultz ET, 2002, OECOLOGIA, V133, P501, DOI 10.1007/s00442-002-1076-4; Schwarzenbach GA, 2007, J EVOLUTION BIOL, V20, P2192, DOI 10.1111/j.1420-9101.2007.01430.x; Schwarzenbach GA, 2006, EVOLUTION, V60, P1612, DOI 10.1554/06-090.1; Scott DE, 2007, OECOLOGIA, V153, P521, DOI 10.1007/s00442-007-0755-6; Shama LNS, 2006, EVOL ECOL RES, V8, P169; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SIBLY R, 1985, J THEOR BIOL, V112, P553, DOI 10.1016/S0022-5193(85)80022-9; SIH A, 1982, ECOLOGY, V63, P786, DOI 10.2307/1936799; Siva-Jothy MT, 2002, PHYSIOL ENTOMOL, V27, P206, DOI 10.1046/j.1365-3032.2002.00286.x; Sogard SM, 2002, MAR ECOL PROG SER, V243, P165, DOI 10.3354/meps243165; Sokolovska N, 2000, ECOL ENTOMOL, V25, P239, DOI 10.1046/j.1365-2311.2000.00251.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1992, EVOLUTION LIFE HISTO; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Sundstrom LF, 2005, EVOLUTION, V59, P1560; TAKAGI Y, 2001, ZOOL SCI, V18, P632; Tammaru T, 2004, OIKOS, V107, P352, DOI 10.1111/j.0030-1299.2004.13363.x; Tammaru T, 2007, FUNCT ECOL, V21, P1099, DOI 10.1111/j.1365-2435.2007.01319.x; TANNER JM, 1963, NATURE, V199, P845, DOI 10.1038/199845a0; Teuschl Y, 2007, J EVOLUTION BIOL, V20, P87, DOI 10.1111/j.1420-9101.2006.01225.x; Turelli M, 2004, GENETICS, V166, P1053, DOI 10.1534/genetics.166.2.1053; Urban MC, 2008, OIKOS, V117, P1037, DOI [10.1111/j.0030-1299.2008.16334.x, 10.1111/j.2008.0030-1299.16334.x]; Urban MC, 2007, ECOLOGY, V88, P2587, DOI 10.1890/06-1946.1; Walling CA, 2007, BEHAV ECOL SOCIOBIOL, V61, P1007, DOI 10.1007/s00265-006-0333-7; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WIESER W, 1994, BIOL REV, V69, P1, DOI 10.1111/j.1469-185X.1994.tb01484.x; Wilson AJ, 2007, EVOL ECOL, V21, P337, DOI 10.1007/s10682-006-9106-z; Yamahira K, 2008, POPUL ECOL, V50, P3, DOI 10.1007/s10144-007-0055-3; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x; ZAHAVI A, 1977, J THEOR BIOL, V67, P603, DOI 10.1016/0022-5193(77)90061-3; ZAHAVI A, 1975, J THEOR BIOL, V53, P205, DOI 10.1016/0022-5193(75)90111-3; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2000, J INSECT PHYSIOL, V46, P1207, DOI 10.1016/S0022-1910(00)00041-X 197 241 249 18 271 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. FEB 2011 86 1 97 116 10.1111/j.1469-185X.2010.00136.x 20 Biology Life Sciences & Biomedicine - Other Topics 709WZ WOS:000286473400005 20394607 2019-02-21 J Haag, WR; Rypel, AL Haag, Wendell R.; Rypel, Andrew L. Growth and longevity in freshwater mussels: evolutionary and conservation implications BIOLOGICAL REVIEWS English Review age; life history; growth rate; von Bertalanffy; Unionidae; Margaritiferidae; Unionoida MARGARITIFERA-MARGARITIFERA L.; ELLIPTIO-COMPLANATA BIVALVIA; LIFE-HISTORY TRAITS; PEARL MUSSELS; TRANSPLANT EXPERIMENT; EXTREME LONGEVITY; GLOBAL DIVERSITY; MACOMA-BALTHICA; SOUTHERN LIMIT; METABOLIC-RATE The amount of energy allocated to growth versus other functions is a fundamental feature of an organism's life history. Constraints on energy availability result in characteristic trade-offs among life-history traits and reflect strategies by which organisms adapt to their environments. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems but little is known about their growth and longevity. Generalized depictions of freshwater mussels as 'long-lived and slow-growing' may give an unrealistically narrow view of life-history diversity which is incongruent with the taxonomic diversity of the group and can result in development of inappropriate conservation strategies. We investigated relationships among growth, longevity, and size in 57 species and 146 populations of freshwater mussels using original data and literature sources. In contrast to generalized depictions, longevity spanned nearly two orders of magnitude, ranging from 4 to 190 years, and the von Bertalanffy growth constant, K, spanned a similar range (0.02-1.01). Median longevity and K differed among phylogenetic groups but groups overlapped widely in these traits. Longevity, K, and size also varied among populations; in some cases, longevity and K differed between populations by a factor of two or more. Growth differed between sexes in some species and males typically reached larger sizes than females. In addition, a population of Quadrula asperata exhibited two distinctly different growth trajectories. Most individuals in this population had a low-to-moderate value of K (0.15) and intermediate longevity (27 years) but other individuals showed extremely slow growth (K = 0.05) and reached advanced ages (72 years). Overall, longevity was related negatively to the growth rate, K, and K explained a high percentage of variation in longevity. By contrast, size and relative shell mass (g mm-1 shell length) explained little variation in longevity. These patterns remained when data were corrected for phylogenetic relationships among species. Path analysis supported the conclusion that K was the most important factor influencing longevity both directly and indirectly through its effect on shell mass. The great variability in age and growth among and within species shows that allocation to growth is highly plastic in freshwater mussels. The strong negative relationship between growth and longevity suggests this is an important trade-off describing widely divergent life-history strategies. Although life-history strategies may be constrained somewhat by phylogeny, plasticity in growth among populations indicates that growth characteristics cannot be generalized within a species and management and conservation efforts should be based on data specific to a population of interest. [Haag, Wendell R.; Rypel, Andrew L.] US Forest Serv, Ctr Bottomland Hardwoods Res, Forest Hydrol Lab, Oxford, MS 38655 USA; [Rypel, Andrew L.] Univ Mississippi, Dept Biol, Oxford, MS USA Haag, WR (reprint author), US Forest Serv, Ctr Bottomland Hardwoods Res, Forest Hydrol Lab, 1000 Front St, Oxford, MS 38655 USA. whaag@fs.fed.us Southern Research Station, U.S. Forest Service We thank the following people for their various contributions to this study. Mickey Bland expertly prepared hundreds of shell thin sections and assisted with specimen collection and interpretation of shell rings. Amy Commens-Carson, Gordon McWhirter, Leann Staton, and Angela Greer also assisted with field and laboratory work. David Campbell provided a phylogeny of freshwater mussels. Jeff Garner, Mark Hove, and John Harris provided specimens for age and growth analysis. Mel Warren and Tom Dellmade helpful comments on the manuscript. This study was supported by the Southern Research Station, U.S. Forest Service. Aldridge DC, 1999, J MOLLUS STUD, V65, P47, DOI 10.1093/mollus/65.1.47; Anthony JL, 2001, FRESHWATER BIOL, V46, P1349, DOI 10.1046/j.1365-2427.2001.00755.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BACHELET G, 1980, MAR BIOL, V59, P105, DOI 10.1007/BF00405460; BAILEY RC, 1988, CAN J ZOOL, V66, P1704, DOI 10.1139/z88-246; BAIRD MS, 2000, THESIS SW MISSOURRI; BAUER G, 1992, J ANIM ECOL, V61, P425, DOI 10.2307/5333; BAUER G, 1987, J ANIM ECOL, V56, P691, DOI 10.2307/5077; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bennett PM, 1997, P ROY SOC B-BIOL SCI, V264, P401, DOI 10.1098/rspb.1997.0057; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Black BA, 2005, CAN J FISH AQUAT SCI, V62, P2277, DOI 10.1139/F05-142; BLACK BA, ECOSCIENCE IN PRESS; Bogan AE, 2008, HYDROBIOLOGIA, V595, P139, DOI 10.1007/s10750-007-9011-7; Bonsall MB, 2006, PHILOS T R SOC B, V361, P119, DOI 10.1098/rstb.2005.1738; BRUENDERMAN SA, 1993, AM MALACOL BULL, V10, P83; Calder III WA, 1984, SIZE FUNCTION LIFE H; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/cjfas-58-1-30; Campbell DC, 2005, INVERTEBR BIOL, V124, P131, DOI 10.1111/j.1744-7410.2005.00015.x; Charnov Eric L., 1993, P1; Christian Alan D., 2000, Journal of the Arkansas Academy of Science, V54, P41; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Clark G., 1980, SKELETAL GROWTH AQUA, P603; CLARK HW, 2012, BUREAU FISHERIES, V757, P1; Clarke A.H., 1988, P85; COKER R. E., 1921, B US BUR FISH, V37, P79; Cook E.R., 1984, PROGRAM ARSTAN USERS; DENNIS B, 1991, ECOL MONOGR, V61, P115, DOI 10.2307/1943004; DEVRIES DR, 1996, FISHERIES TECHNIQUES; Dunca E, 2001, AM MALACOL BULL, V16, P239; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FELSENSTEIN J, 2005, PHYLIP VERSION 3 6; FOGARTY MJ, 2009, FISH REPROD BIOL IMP; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; Graf DL, 2007, J MOLLUS STUD, V73, P291, DOI 10.1093/mollus/eym029; Griffiths NA, 2006, CAN J FISH AQUAT SCI, V63, P2137, DOI 10.1139/F06-100; GRIME JP, 1997, PLANT STRATEGIES VEG; Grissino-Mayer H.D., 2001, TREE-RING RES, V57, P205, DOI DOI 10.1016/J.DENDRO.2010.12.002; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; Haag WR, 2008, CAN J FISH AQUAT SCI, V65, P493, DOI 10.1139/F07-182; Haag WR, 2009, FRESHWATER BIOL, V54, P1474, DOI 10.1111/j.1365-2427.2009.02197.x; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Hanlon SD, 2004, SOUTHEAST NAT, V3, P289, DOI 10.1656/1528-7092(2004)003[0289:NOTLHA]2.0.CO;2; HANSON JM, 1988, FRESHWATER BIOL, V19, P345, DOI 10.1111/j.1365-2427.1988.tb00356.x; Hart RA, 2001, AM MIDL NAT, V146, P254, DOI 10.1674/0003-0031(2001)146[0254:EDSROA]2.0.CO;2; Hastie LC, 2000, HYDROBIOLOGIA, V429, P59, DOI 10.1023/A:1004068412666; HAUKIOJA E, 1978, ANN ZOOL FENN, V15, P60; He JX, 2002, CAN J FISH AQUAT SCI, V59, P250, DOI 10.1139/F02-008; Helama S, 2008, HYDROBIOLOGIA, V610, P43, DOI 10.1007/s10750-008-9421-1; HELLER J, 1990, MALACOLOGIA, V31, P259; HINCH SG, 1989, CAN J ZOOL, V67, P1895, DOI 10.1139/z89-271; HINCH SG, 1986, CAN J FISH AQUAT SCI, V43, P548, DOI 10.1139/f86-065; Hochwald S, 2001, ECOL STU AN, V145, P127; HOLLAND DF, 1991, THESIS U TEXAS ARLIN; HOLMES R L, 1983, Tree-Ring Bulletin, V43, P69; HOVE MC, 1994, AM MALACOL BULL, V11, P29; Howard JK, 2006, J N AM BENTHOL SOC, V25, P677, DOI 10.1899/0887-3593(2006)25[677:FCTASO]2.0.CO;2; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; JIRKA KJ, 1992, J FRESHWATER ECOL, V7, P35, DOI 10.1080/02705060.1992.9664668; JIRKA KJ, 1986, THESIS VERGINIA POLY; JOHN ME, 1973, THESIS OHIO STATE U; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Jones JW, 2004, J N AM BENTHOL SOC, V23, P515, DOI 10.1899/0887-3593(2004)023<0515:LHAPOT>2.0.CO;2; Jones JW, 2002, J N AM BENTHOL SOC, V21, P76, DOI 10.2307/1468301; Kesler David H., 2000, Journal of the Tennessee Academy of Science, V75, P71; Kesler DH, 2007, J N AM BENTHOL SOC, V26, P123, DOI 10.1899/0887-3593(2007)26[123:LMOGIT]2.0.CO;2; KIMURA DK, 1980, FISH B-NOAA, V77, P765; Kirkwood TBL, 1990, GENETIC EFFECTS AGIN, P9; LUTZ RA, 1977, SCIENCE, V198, P1222, DOI 10.1126/science.198.4323.1222; Mackie G.L., 1983, FRESHWATER INVERTEBRATE BIOLOGY, V2, P48, DOI 10.2307/1467173; MCMAHON RF, 2001, ECOLOGY CLASSIFICATI, P321; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; MICHAELSON DL, 1995, J N AM BENTHOL SOC, V14, P324, DOI 10.2307/1467784; Moles KR, 2008, J N AM BENTHOL SOC, V27, P212, DOI 10.1899/07-006.1; Morris TJ, 1999, FRESHWATER BIOL, V42, P59, DOI 10.1046/j.1365-2427.1999.00468.x; NDUKU WK, 1976, HYDROBIOLOGIA, V49, P143, DOI 10.1007/BF00772685; Neves Richard J., 1997, P43; NEVES RJ, 1988, AM MALACOL BULL, V6, P179; NICHOLS FH, 1982, ESTUARIES, V5, P110, DOI 10.2307/1352108; Olsson M, 2002, EVOLUTION, V56, P1867; OSTROVSKY I, 1993, HYDROBIOLOGIA, V271, P49, DOI 10.1007/BF00005695; PARMALEE PW, 1980, NAUTILUS, V94, P93; PATERSON C G, 1985, Freshwater Invertebrate Biology, V4, P201, DOI 10.2307/1467162; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Regnier C, 2009, CONSERV BIOL, V23, P1214, DOI 10.1111/j.1523-1739.2009.01245.x; Ricker W. E, 1975, FISHERIES RES BOARD, V191; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Rypel AL, 2008, CAN J FISH AQUAT SCI, V65, P2224, DOI 10.1139/F08-129; Rypel AL, 2009, WETLANDS, V29, P497, DOI 10.1672/08-109.1; San Miguel E, 2004, CAN J ZOOL, V82, P1370, DOI 10.1139/Z04-113; *SAS, 2002, SAS WINDOWS VERSION; SCHEMSKE DW, 1988, ECOLOGY, V69, P1128, DOI 10.2307/1941267; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schone BR, 2004, QUATERNARY SCI REV, V23, P1803, DOI 10.1016/j.quascirev.2004.02.017; Serb JM, 2003, MOL PHYLOGENET EVOL, V28, P1, DOI 10.1016/S1055-7903(03)00026-5; Sokal RR, 1995, BIOMETRY; STANSBERY DH, 1967, AM MALACOLOGICAL UNI, V34, P10; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STOBER Q J, 1972, Malacologia, V11, P343; Strayer DL, 2004, BIOSCIENCE, V54, P429, DOI 10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2; Strayer DL, 1999, BIOSCIENCE, V49, P19, DOI 10.2307/1313490; STRAYER DL, 1981, FRESHWATER BIOL, V11, P435, DOI 10.1111/j.1365-2427.1981.tb01275.x; Thomas JA, 1998, P ROY SOC B-BIOL SCI, V265, P1895, DOI 10.1098/rspb.1998.0517; Valdovinos C, 2007, LIMNOLOGICA, V37, P63, DOI 10.1016/j.limno.2006.08.007; VANNOTE RL, 1982, P NATL ACAD SCI-BIOL, V79, P4103, DOI 10.1073/pnas.79.13.4103; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; Veinott GI, 1996, CAN J FISH AQUAT SCI, V53, P372, DOI 10.1139/cjfas-53-2-372; Vermeij G. J., 1993, NATURAL HIST SHELLS; Villella RF, 2004, AM MIDL NAT, V151, P114, DOI 10.1674/0003-0031(2004)151[0114:ESARIA]2.0.CO;2; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; Wilberg MJ, 2005, N AM J FISH MANAGE, V25, P1130, DOI 10.1577/M04-193.1; Williams JD, 2008, FRESHWATER MUSSELS A; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Ziuganov V, 2000, AMBIO, V29, P102, DOI 10.1639/0044-7447(2000)029[0102:LSVOTF]2.0.CO;2 117 63 66 3 96 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. FEB 2011 86 1 225 247 10.1111/j.1469-185X.2010.00146.x 23 Biology Life Sciences & Biomedicine - Other Topics 709WZ WOS:000286473400010 20608928 2019-02-21 J Hawley, DM; Altizer, SM Hawley, Dana M.; Altizer, Sonia M. Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations FUNCTIONAL ECOLOGY English Review coinfection; defense; immune defence; sickness behaviour; superspreader; seasonality; within-host dynamics BUMBLEBEE BOMBUS-TERRESTRIS; RANGING AFRICAN BUFFALO; HOST-NEMATODE SYSTEM; TRADE-OFFS; HOUSE FINCHES; SICKNESS BEHAVIOR; EVOLUTIONARY ECOLOGY; AMPHIBIAN IMMUNITY; SEASONAL-CHANGES; GLOBAL CLIMATE P>1. Ecological immunology and disease ecology are two relatively young disciplines that apply ecological approaches and principles to traditionally non-ecological fields. In both cases, an ecological perspective has allowed new insights to emerge by focusing attention on variation over space and time, and by emphasizing the role of the environment in shaping individual responses and the outcome of host-pathogen interactions. Here we review the growing conceptual interface between these two rapidly evolving fields. 2. Areas of synergy between ecological immunology and disease ecology aim to translate variation in within-host processes (e.g. immunity) into between-host dynamics (e.g. parasite transmission). Emerging areas of synergy include potential immune mechanisms that underlie host heterogeneity in disease susceptibility, teasing apart the effects of environmental factors such as seasonality and climate on host susceptibility and pathogen dynamics, and predicting the outcome of co-infection by functionally distinct groups of parasites that elicit different immune responses. 3. In some cases, practical limitations have constrained the merging of ideas in ecological immunology and disease ecology. We discuss several logistical challenges, including dissecting the relative roles of host exposure and susceptibility, establishing links between measures of immunity and pathogen resistance in wild populations, and incorporating relevant immune variation into prevailing disease ecology modeling frameworks. 4. Future work at the interface of these two fields should advance understanding of life-history theory, host-pathogen dynamics, and physiological ecology, and will also contribute to targeted approaches for wildlife health and zoonotic disease prevention. [Hawley, Dana M.] Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA; [Altizer, Sonia M.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA Hawley, DM (reprint author), Virginia Tech, Dept Biol, Blacksburg, VA 24061 USA. hawleyd@vt.edu Hawley, Dana/0000-0001-9573-2914 National Science Foundation [DEB-0643831, EF-0622705] We thank L. B. Martin, D.A. Ardia, V. Ezenwa, and two anonymous reviewers for significantly improving this manuscript. Financial support to S. Altizer (DEB-0643831) and D. Hawley (EF-0622705) was provided by the National Science Foundation. Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Adelman JS, 2009, INTEGR COMP BIOL, V49, P202, DOI 10.1093/icb/icp028; ADELMAN JS, 2010, FUNCTIONAL IN PRESS, DOI DOI 10.1111/J.1365-2435.2010.01702.X; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Altizer S, 2004, J ANIM ECOL, V73, P309, DOI 10.1111/j.0021-8790.2004.00807.x; Altizer S, 2003, TRENDS ECOL EVOL, V18, P589, DOI 10.1016/j.tree.2003.08.013; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; ANDERSON RM, 1986, PHILOS T ROY SOC B, V314, P533, DOI 10.1098/rstb.1986.0072; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Arakawa H, 2010, HORM BEHAV, V57, P330, DOI 10.1016/j.yhbeh.2010.01.002; Aubert A, 1997, BRAIN BEHAV IMMUN, V11, P107, DOI 10.1006/brbi.1997.0485; Baer B, 2006, ECOL ENTOMOL, V31, P591, DOI 10.1111/j.1365-2311.2006.00825.x; BAUCOM RS, 2010, FUNCTIONAL IN PRESS; Beechler BR, 2009, J WILDLIFE DIS, V45, P57, DOI 10.7589/0090-3558-45.1.57; Behringer DC, 2006, NATURE, V441, P421, DOI [10.1038/441421a, 10.1038/441421]; Blount JD, 2003, OIKOS, V102, P340, DOI 10.1034/j.1600-0706.2003.12413.x; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Bouwman KM, 2010, BIOL LETTERS, V6, P462, DOI 10.1098/rsbl.2010.0020; Bradley JE, 2008, PARASITOLOGY, V135, P807, DOI 10.1017/S0031182008000322; Buehler DM, 2008, AM NAT, V172, P783, DOI 10.1086/592865; Bundy D, 2000, PARASITOL TODAY, V16, P273, DOI 10.1016/S0169-4758(00)01689-6; Cannell JJ, 2006, EPIDEMIOL INFECT, V134, P1129, DOI 10.1017/S0950268806007175; Cattadori IM, 2008, INT J PARASITOL, V38, P371, DOI 10.1016/j.ijpara.2007.08.004; Cattadori IM, 2005, P ROY SOC B-BIOL SCI, V272, P1163, DOI 10.1098/rspb.2004.3050; Cattadori IM, 2006, MICROMAMMALS AND MACROPARASITES: FROM EVOLUTIONARY ECOLOGY TO MANAGEMENT, P349, DOI 10.1007/978-4-431-36025-4_18; Clay CA, 2009, P R SOC B, V276, P1305, DOI 10.1098/rspb.2008.1693; Cohn DWH, 2006, PHYSIOL BEHAV, V87, P932, DOI 10.1016/j.physbeh.2006.02.011; Collinge S, 2006, DIS ECOLOGY COMMUNIT; Cornell SJ, 2008, P R SOC B, V275, P511, DOI 10.1098/rspb.2007.1415; de Roode JC, 2010, EVOLUTION, V64, P502, DOI 10.1111/j.1558-5646.2009.00845.x; Doums C, 2000, CAN J ZOOL, V78, P1060, DOI 10.1139/cjz-78-6-1060; Dowell SF, 2001, EMERG INFECT DIS, V7, P369; Dwyer G, 1997, AM NAT, V150, P685, DOI 10.1086/286089; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fedorka KM, 2005, CAN J ZOOL, V83, P1012, DOI 10.1139/Z05-095; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; Fisher MC, 2007, ANIM CONSERV, V10, P420, DOI 10.1111/j.1469-1795.2007.00148.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Funk S, 2009, P NATL ACAD SCI USA, V106, P6872, DOI 10.1073/pnas.0810762106; GRAHAM A, 2010, FUNCTIONAL IN PRESS; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Graham AL, 2007, TRENDS PARASITOL, V23, P284, DOI 10.1016/j.pt.2007.04.005; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Guy R, 2009, LANCET INFECT DIS, V9, P747, DOI 10.1016/S1473-3099(09)70300-7; Gylfe A, 2000, NATURE, V403, P724, DOI 10.1038/35001663; HART BL, 1988, NEUROSCI BIOBEHAV R, V12, P123, DOI 10.1016/S0149-7634(88)80004-6; HARVELL CD, 2007, OCEANOGRAPHY, V20, P58; Hawley DM, 2007, CAN J ZOOL, V85, P752, DOI 10.1139/Z07-053; Hawley DM, 2006, HORM BEHAV, V49, P417, DOI 10.1016/j.yhbeh.2005.09.003; Heinze J, 2010, CURR BIOL, V20, P249, DOI 10.1016/j.cub.2009.12.031; Hochachka WM, 2006, ORNITHOLOGICAL MONOG, V60, P30; Honkavaara J, 2009, ENTOMOL EXP APPL, V132, P165, DOI 10.1111/j.1570-7458.2009.00877.x; Hudson PJ, 2002, ECOLOGY WILDLIFE DIS; Hutchings MR, 2007, P R SOC B, V274, P1839, DOI 10.1098/rspb.2007.0398; Jackson JA, 2004, INT J PARASITOL, V34, P1237, DOI 10.1016/j.ijpara.2004.07.009; Jackson JA, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-16; Johnson RW, 2002, VET IMMUNOL IMMUNOP, V87, P443, DOI 10.1016/S0165-2427(02)00069-7; Johnson RW, 1996, AM J PHYSIOL-REG I, V270, pR192; Jolles AE, 2008, ECOLOGY, V89, P2239, DOI 10.1890/07-0995.1; Keil D, 2001, J IMMUNOL, V167, P4543, DOI 10.4049/jimmunol.167.8.4543; Kennedy MW, 2006, TRENDS ECOL EVOL, V21, P653, DOI 10.1016/j.tree.2006.09.017; KENT S, 1992, P NATL ACAD SCI USA, V89, P9117, DOI 10.1073/pnas.89.19.9117; Kiesecker JM, 1999, P NATL ACAD SCI USA, V96, P9165, DOI 10.1073/pnas.96.16.9165; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kourilsky P, 2001, TRENDS IMMUNOL, V22, P502, DOI 10.1016/S1471-4906(01)02012-9; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Li YG, 2004, AM J EPIDEMIOL, V160, P719, DOI 10.1093/aje/kwh273; Lipsitch M, 2009, P NATL ACAD SCI USA, V106, P3645, DOI 10.1073/pnas.0900933106; LLOYD S, 1983, VET IMMUNOL IMMUNOP, V4, P153, DOI 10.1016/0165-2427(83)90057-0; Lloyd-Smith JO, 2005, NATURE, V438, P355, DOI 10.1038/nature04153; Lloyd-Smith JO, 2004, P ROY SOC B-BIOL SCI, V271, P625, DOI 10.1098/rspb.2003.2632; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Maizels RM, 2003, NAT REV IMMUNOL, V3, P733, DOI 10.1038/nri1183; Maniero GD, 1997, J COMP PHYSIOL B, V167, P256, DOI 10.1007/s003600050072; MARTENS WJM, 1995, ENVIRON HEALTH PERSP, V103, P458, DOI 10.2307/3432584; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; MAY RM, 1978, J ANIM ECOL, V47, P249, DOI 10.2307/3934; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; Modjarrad K, 2005, J INFECT DIS, V192, P1277, DOI 10.1086/444543; Moore J, 2002, PARASITES BEHAV ANIM; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Moret Y, 2009, OIKOS, V118, P371, DOI 10.1111/j.1600-0706.2008.17187.x; Mougeot F, 2006, BEHAV ECOL, V17, P117, DOI 10.1093/beheco/arj005; Mougeot F, 2005, AM NAT, V166, P158, DOI 10.1086/431256; Mougeot F, 2005, J ANIM ECOL, V74, P488, DOI 10.1111/j.1365-2656.2005.00947.x; Mougeot F, 2004, BEHAV ECOL, V15, P930, DOI 10.1093/beheco/arh087; Munson L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002545; Mydlarz LD, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001811; Nelson R. J., 2002, SEASONAL PATTERNS ST; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Noden BH, 1995, PARASITOLOGY, V111, P539, DOI 10.1017/S0031182000077003; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Otti O, 2008, ECOL ENTOMOL, V33, P577, DOI 10.1111/j.1365-2311.2008.00998.x; Owen JC, 2008, CAN J ZOOL, V86, P638, DOI [10.1139/Z08-038, 10.1139/7-08-038]; Owen JC, 2006, CONDOR, V108, P389, DOI 10.1650/0010-5422(2006)108[389:SDIICO]2.0.CO;2; Owen J, 2006, ECOHEALTH, V3, P79, DOI 10.1007/s10393-006-0025-9; Owen JC, 2008, J ETHOL, V26, P383, DOI 10.1007/s10164-008-0092-1; Owen-Ashley NT, 2006, J EXP BIOL, V209, P3062, DOI 10.1242/jeb.02371; Owen-Ashley NT, 2006, HORM BEHAV, V49, P15, DOI 10.1016/j.yhbeh.2005.04.009; Parry HE, 2004, AQUAT TOXICOL, V69, P311, DOI 10.1016/j.aquatox.2004.06.003; Pascual M, 2006, P NATL ACAD SCI USA, V103, P5829, DOI 10.1073/pnas.0508929103; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Perkins SE, 2003, INT J PARASITOL, V33, P909, DOI 10.1016/S0020-7519(03)00128-0; Raffel TR, 2006, FUNCT ECOL, V20, P819, DOI 10.1111/j.1365-2435.2006.01159.x; RANTALA MJ, 2000, P ROY SOC LOND B BIO, V269, P1681; Read AF, 2008, PLOS BIOL, V6, P2638, DOI 10.1371/journal.pbio.1000004; Reichert TA, 2004, AM J EPIDEMIOL, V160, P492, DOI 10.1093/aje/kwh227; Riddell C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007621; Rohr JR, 2010, P NATL ACAD SCI USA, V107, P8269, DOI 10.1073/pnas.0912883107; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Sadd BM, 2009, EVOL APPL, V2, P113, DOI 10.1111/j.1752-4571.2008.00057.x; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sandland GJ, 2003, TRENDS PARASITOL, V19, P571, DOI 10.1016/j.pt.2003.10.006; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Seivwright LJ, 2005, P ROY SOC B-BIOL SCI, V272, P2299, DOI 10.1098/rspb.2005.3233; Shaw DJ, 1995, PARASITOLOGY, V111, pS111, DOI 10.1017/S0031182000075855; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SINDERMANN CJ, 1990, PRINCIPAL DIS FISH S; Soper G A, 1939, Bull N Y Acad Med, V15, P698; Suhonen J, 2010, OECOLOGIA, V162, P541, DOI 10.1007/s00442-009-1470-2; Suwanchaichinda C, 1998, J MED ENTOMOL, V35, P157, DOI 10.1093/jmedent/35.2.157; Swinton J., 2002, P83; Temime L, 2009, P NATL ACAD SCI USA, V106, P18420, DOI 10.1073/pnas.0900974106; Tregenza T, 2006, ANIM BEHAV, V72, P809, DOI 10.1016/j.anbehav.2006.01.019; Tripet F, 2008, TRENDS PARASITOL, V24, P219, DOI 10.1016/j.pt.2008.02.008; Viboud C, 2006, PLOS MED, V3, P468, DOI 10.1371/journal.pmed.0030089; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; von Essen MR, 2010, NAT IMMUNOL, V11, P344, DOI 10.1038/ni.1851; Voordouw MJ, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-76; Voordouw MJ, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-103; Walson JL, 2008, AIDS, V22, P1601, DOI 10.1097/QAD.0b013e32830a502e; Walters DR, 2008, PHYSIOL MOL PLANT P, V73, P95, DOI 10.1016/j.pmpp.2009.03.002; Ward JR, 2007, MAR ECOL PROG SER, V329, P115, DOI 10.3354/meps329115; Weber TP, 2007, EMERG INFECT DIS, V13, P1139, DOI 10.3201/eid1308.070319; White ANJ, 2009, BMC INFECT DIS, V9, DOI 10.1186/1471-2334-9-196; WOBESER G, 2006, ESSENTIALS DIS ECOLO; Wolday D, 2002, JAIDS, V31, P56, DOI 10.1097/01.QAI.0000026520.02173.F7; Woolhouse MEJ, 1997, P NATL ACAD SCI USA, V94, P338, DOI 10.1073/pnas.94.1.338; Woolhouse MEJ, 1998, PARASITOL TODAY, V14, P428, DOI 10.1016/S0169-4758(98)01318-0; YATES A, 2009, P ROY SOC LOND B BIO, V273, P3075; Ye YXH, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000385; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 146 153 156 7 219 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 48 60 10.1111/j.1365-2435.2010.01753.x 13 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500006 Bronze 2019-02-21 J Ardia, DR; Parmentier, HK; Vogel, LA Ardia, Daniel R.; Parmentier, Henk K.; Vogel, Laura A. The role of constraints and limitation in driving individual variation in immune response FUNCTIONAL ECOLOGY English Review constraints; ecoimmunology; epigenetics; genetics; individual variation; life history tradeoffs; polarization RED-BLOOD-CELLS; MAJOR HISTOCOMPATIBILITY COMPLEX; PRIMARY ANTIBODY-RESPONSE; QUANTITATIVE TRAIT LOCI; REGULATORY T-CELLS; SHEEP ERYTHROCYTES; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; EVOLUTIONARY ECOLOGY; DIVERGENT SELECTION P>1. Life history theory predicts that immunity should be plastic and reflect environmental contexts. However, individual variation in immune investment may arise not just because of individual adjustment, but because of developmental, physiological, genetic or immunological constraints which lead to non-adaptive responses by limiting or eliminating flexibility in immune investment. Constraints can arise because organisms are single integrated units with interconnected and interacting components, in which physiological and genetic control mechanisms may limit or constrain immunity. We review some of the key underlying genetic and physiological factors that may constrain the occurrence and intensity of immune responses. 2. A major part of individual variability may rest on variation in genetic background. Genetic-based constraints can limit or influence immune responses, particularly through pleiotropy and epistatic interactions. In addition, genetic variation, an important driver of variation in antigen recognition and immune system polarization, can be constrained through linkage disequilibrium and genetic drift. Epigenetic changes can also constrain or limit immune responses in future generations based on individual experience. 3. The immune system itself can influence individual flexibility in immune investment. Throughout development individuals face tradeoffs within the immune system that favour the expression of one trait at the expense of another. Ontogenetic differences can cause juveniles and adults to produce entirely different immune responses to the same pathogen. T-helper 1 (Th1)/T-helper 1 (Th2) polarization during infection also imposes constraints upon an individual's immune responsiveness, with the consequence that hosts cannot simultaneously mount strong responses using both Th1 and Th2 cells. In addition, evidence suggests that flexibility in immune responses becomes constrained with age through accumulation of memory cells at the expense of naive cells, decreased function of cells involved in adaptive and innate immunity, and programming of HPA-immune interactions. 4. In summary, selection on a particular immune trait can have effects on other immune components or phenotypic characters, as revealed by artificial selection studies. In particular selection for increased investment in compartments of the immune system leads to decreased investment in other competing life history functions and/or marked changes in other immune components. The role of past experience, even the past experience of parents, may limit and constrain immune responses through influencing the ontogeny of immunity, as well as through epigenetic influences. [Ardia, Daniel R.] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA; [Parmentier, Henk K.] Wageningen Inst Anim Sci, Dept Anim Sci, Adaptat Physiol Grp, NL-6709 PG Wageningen, Netherlands; [Vogel, Laura A.] Illinois State Univ, Sch Biol Sci, Normal, IL 61790 USA Ardia, DR (reprint author), Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA. daniel.ardia@fandm.edu Vogel, Laura/0000-0002-9305-175X Abbas AK, 1996, NATURE, V383, P787, DOI 10.1038/383787a0; Adamo SA, 2008, J EXP BIOL, V211, pII, DOI 10.1242/jeb.016907; Adamo SA, 2006, ANIM BEHAV, V72, P235, DOI 10.1016/j.anbehav.2006.01.011; Adriaansen-Tennekes R, 2009, POULTRY SCI, V88, P1879, DOI 10.3382/ps.2009-00150; Ahtiainen JJ, 2006, BEHAV ECOL SOCIOBIOL, V60, P826, DOI 10.1007/s00265-006-0226-9; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; ARDIA DR, 2005, OECOLOGIA, V145, P326; Aune TM, 2009, IMMUNOLOGY, V126, P299, DOI 10.1111/j.1365-2567.2008.03026.x; Baelmans R, 2004, TROP ANIM HEALTH PRO, V36, P731, DOI 10.1023/B:TROP.0000045967.45580.ef; Bartolomucci A, 2007, FRONT NEUROENDOCRIN, V28, P28, DOI 10.1016/j.yfrne.2007.02.001; BEACH RS, 1982, SCIENCE, V218, P469, DOI 10.1126/science.7123244; Beadell JS, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000896; Bernatchez L, 2003, J EVOLUTION BIOL, V16, P363, DOI 10.1046/j.1420-9101.2003.00531.x; BETELLI E, 2007, NAT REV IMMUNOL, V8, P345; BIOZZI G, 1979, IMMUNOLOGY, V36, P427; Bossdorf O, 2008, ECOL LETT, V11, P106, DOI 10.1111/j.1461-0248.2007.01130.x; Bowden TJ, 2007, FISH SHELLFISH IMMUN, V22, P695, DOI 10.1016/j.fsi.2006.08.016; Bowden TJ, 2008, FISH SHELLFISH IMMUN, V25, P373, DOI 10.1016/j.fsi.2008.03.017; Caruso C, 2004, ANN NY ACAD SCI, V1028, P1, DOI 10.1196/annals.1322.001; CHANDRA RK, 1980, AM J CLIN NUTR, V33, P736; Cichon M, 2003, J EVOLUTION BIOL, V16, P1205, DOI 10.1046/j.1420-9101.2003.00611.x; Cicin-Sain L, 2007, P NATL ACAD SCI USA, V104, P19960, DOI 10.1073/pnas.0705905104; COHEN IR, 1992, IMMUNOL TODAY, V13, P490, DOI 10.1016/0167-5699(92)90024-2; Cordoba-Aguilar A, 2009, ECOL ENTOMOL, V34, P228, DOI 10.1111/j.1365-2311.2008.01061.x; Cotter PF, 2005, POULTRY SCI, V84, P220, DOI 10.1093/ps/84.2.220; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Cuenco KT, 2009, J INFECT DIS, V200, P1271, DOI 10.1086/605844; Ewerton PD, 2007, IMMUNOGENETICS, V59, P625, DOI 10.1007/s00251-007-0229-3; DAMBROSIO D, 1995, SCIENCE, V268, P293, DOI 10.1126/science.7716523; Darwin C, 1859, ORIGIN SPECIES; de Groot NG, 2008, HUM IMMUNOL, V69, pS117, DOI 10.1016/j.humimm.2008.08.245; Decuypere E, 2007, WORLD POULTRY SCI J, V63, P115, DOI 10.1079/WPS2005133; DEVRIES RG, 1988, PERSPECTIVES AUTOIMM, P1; Dhabhar FS, 1999, P NATL ACAD SCI USA, V96, P1059, DOI 10.1073/pnas.96.3.1059; Doums C, 2002, ECOL ENTOMOL, V27, P138, DOI 10.1046/j.1365-2311.2002.00388.x; Duan SJ, 2007, CELL MOL IMMUNOL, V4, P353; Duchemin MB, 2007, AQUACULTURE, V264, P73, DOI 10.1016/j.aquaculture.2006.12.030; DUNNINGTON EA, 1989, ANIM GENET, V20, P213; EDFORSLILJA I, 1985, Z TIERZ ZUCHTUNGSBIO, V102, P308; EDFORSLILJA I, 1994, VET IMMUNOL IMMUNOP, V40, P1, DOI 10.1016/0165-2427(94)90011-6; FERNANDES G, 1979, P NATL ACAD SCI USA, V76, P457, DOI 10.1073/pnas.76.1.457; Finch CE, 2004, SCIENCE, V305, P1736, DOI 10.1126/science.1092556; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; FRAKER PJ, 1977, J NUTR, V107, P1889; Franceschi C, 2000, ANN NY ACAD SCI, V908, P244; Freitak D, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-56; Fumagalli M, 2009, J EXP MED, V206, P1395, DOI 10.1084/jem.20082779; Gehad AE, 1999, VET IMMUNOL IMMUNOP, V68, P13, DOI 10.1016/S0165-2427(99)00008-2; Globerson A, 2000, IMMUNOL TODAY, V21, P515, DOI 10.1016/S0167-5699(00)01714-X; Graham AL, 2002, Q REV BIOL, V77, P409, DOI 10.1086/344414; Graham AL, 2005, J INFECT DIS, V191, P410, DOI 10.1086/426871; Greene JA, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-50; Grindstaff JL, 2008, J EXP BIOL, V211, pI, DOI 10.1242/jeb.017459; Hansen T. F., 2004, EVOLUTIONARY BIOL CO, p130 150; Haussmann MF, 2005, OECOLOGIA, V145, P270, DOI 10.1007/s00442-005-0123-3; Hawley DM, 2007, FUNCT ECOL, V21, P520, DOI 10.1111/j.1365-2435.2007.01254.x; Hoffmann JA, 2003, NATURE, V426, P33, DOI 10.1038/nature02021; Hughes AL, 1999, CELL MOL LIFE SCI, V56, P94, DOI 10.1007/s000180050010; Hughes AL, 2002, IMMUNOL REV, V190, P161, DOI 10.1034/j.1600-065X.2002.19012.x; Hughes AL, 1998, ANNU REV GENET, V32, P415, DOI 10.1146/annurev.genet.32.1.415; Huntoon KM, 2008, J LEUKOCYTE BIOL, V84, P170, DOI 10.1189/jlb.0208100; Ihle S, 2006, MOL BIOL EVOL, V23, P790, DOI 10.1093/molbev/msj096; Irikura VM, 2002, J IMMUNOL, V169, P393, DOI 10.4049/jimmunol.169.1.393; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI [10.1098/rspb.2004.2919, 10.1098/rspc.2004.2919]; Jirtle RL, 2007, NAT REV GENET, V8, P253, DOI 10.1038/nrg2045; Kachamakova NM, 2006, FISH SHELLFISH IMMUN, V21, P404, DOI 10.1016/j.fsi.2006.01.005; Karell P, 2008, FUNCT ECOL, V22, P682, DOI 10.1111/j.1365-2435.2008.01425.x; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KOENE P, 1997, P 5 EUR S POULTR WEL, P99; Koolhaas JM, 2008, BRAIN BEHAV IMMUN, V22, P662, DOI 10.1016/j.bbi.2007.11.006; KREUKNIET MB, 1995, VET IMMUNOL IMMUNOP, V44, P377, DOI 10.1016/0165-2427(94)05304-B; Kreukniet MB, 1996, VET IMMUNOL IMMUNOP, V51, P157, DOI 10.1016/0165-2427(95)05505-3; KREUKNIET MB, 1994, POULTRY SCI, V73, P336, DOI 10.3382/ps.0730336; Kvell K, 2007, CLIN DEV IMMUNOL, P1, DOI 10.1155/2007/83671; Lan Q, 2007, IMMUNOGENETICS, V59, P839, DOI 10.1007/s00251-007-0253-3; Lazzaro BP, 2004, SCIENCE, V303, P1873, DOI 10.1126/science.1092447; Le Souef PN, 2006, EUR RESPIR J, V28, P1258, DOI 10.1183/09031936.06.00088006; Lee KA, 2005, OECOLOGIA, V145, P244, DOI 10.1007/s00442-005-0113-5; LEHMKE H, 2009, AUTOIMMUN REV, V8, P394; Leshchinsky TV, 2001, DEV COMP IMMUNOL, V25, P629, DOI 10.1016/S0145-305X(01)00023-4; Levi-Acobas F, 2009, GENES IMMUN, V10, P297, DOI 10.1038/gene.2009.22; Lifjeld JT, 2002, OECOLOGIA, V130, P185, DOI 10.1007/s004420100798; Little TJ, 2004, J MOL EVOL, V59, P498, DOI 10.1007/s00239-004-2641-8; LOCHMILLER RL, 1993, AUK, V110, P503, DOI 10.2307/4088414; Love OP, 2008, AM NAT, V172, pE99, DOI 10.1086/589521; Macri S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001015; Maj T, 2007, REPROD DOMEST ANIM, V42, P343, DOI 10.1111/j.1439-0531.2006.00787.x; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Matzinger P, 2002, SCIENCE, V296, P301, DOI 10.1126/science.1071059; McEwen BS, 1997, BRAIN RES REV, V23, P79, DOI 10.1016/S0165-0173(96)00012-4; MITCHISON N A, 1991, Current Biology, V1, P87, DOI 10.1016/0960-9822(91)90286-6; Mocchegiani E, 2006, EXP GERONTOL, V41, P1094, DOI 10.1016/j.exger.2006.08.010; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Morrison ES, 2009, J AVIAN BIOL, V40, P573, DOI 10.1111/j.1600-048X.2009.04910.x; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; NEPOM GT, 1988, CURR OPIN IMMUNOL, V1, P107, DOI 10.1016/0952-7915(88)90061-1; Neuberger MS, 2000, PHILOS T ROY SOC B, V355, P357, DOI 10.1098/rstb.2000.0573; Palacios MG, 2007, P ROY SOC B-BIOL SCI, V274, P951, DOI 10.1098/rspb.2006.0192; Parmentier HK, 2004, POULTRY SCI, V83, P1133, DOI 10.1093/ps/83.7.1133; Parmentier HK, 1996, AVIAN DIS, V40, P634, DOI 10.2307/1592275; PARMENTIER HK, 1995, VET IMMUNOL IMMUNOP, V48, P155, DOI 10.1016/0165-2427(94)05411-K; Parmentier HK, 2004, DEV COMP IMMUNOL, V28, P39, DOI 10.1016/S0145-305X(03)00087-9; Parmentier HK, 2002, VET IMMUNOL IMMUNOP, V90, P91, DOI 10.1016/S0165-2427(02)00231-3; PETTITO JM, 1999, BRAIN BEHAV IMMUN, V13, P175; Picciotto MR, 1998, PHYSIOL REV, V78, P1131; Piersma T, 1997, OIKOS, V80, P623, DOI 10.2307/3546640; Piertney SB, 2006, HEREDITY, V96, P7, DOI 10.1038/sj.hdy.6800724; PINARD MH, 1993, GENET SEL EVOL, V25, P191, DOI 10.1051/gse:19930206; Raberg L, 2003, EVOLUTION, V57, P1670, DOI 10.1554/02-417; Rantala MJ, 2003, FUNCT ECOL, V17, P534, DOI 10.1046/j.1365-2435.2003.00764.x; Reid JM, 2006, BIOL LETTERS, V2, P573, DOI 10.1098/rsbl.2006.0544; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Rubenstein DR, 2008, GEN COMP ENDOCR, V159, P10, DOI 10.1016/j.ygcen.2008.07.013; Saino N, 2007, BEHAV ECOL, V18, P513, DOI 10.1093/beheco/arm004; Sawalha AH, 2008, AUTOIMMUNITY, V41, P245, DOI 10.1080/08916930802024145; Schwarzenbach GA, 2006, EVOLUTION, V60, P1612, DOI 10.1554/06-090.1; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; Siwek M, 2004, POULTRY SCI, V83, P853, DOI 10.1093/ps/83.6.853; Siwek M, 2003, POULTRY SCI, V82, P1845, DOI 10.1093/ps/82.12.1845; SMITH JM, 1985, Q REV BIOL, V60, P265, DOI 10.1086/414425; Spencer SJ, 2006, NEUROPSYCHOPHARMACOL, V31, P1910, DOI 10.1038/sj.npp.1301004; Star L, 2007, POULTRY SCI, V86, P1090; STRACHAN DP, 1989, BRIT MED J, V299, P1259, DOI 10.1136/bmj.299.6710.1259; Tollenaere C, 2008, J EVOLUTION BIOL, V21, P1307, DOI 10.1111/j.1420-9101.2008.01563.x; Travers MA, 2008, FISH SHELLFISH IMMUN, V25, P800, DOI 10.1016/j.fsi.2008.08.003; UBOSI CO, 1985, AVIAN DIS, V29, P347, DOI 10.2307/1590495; Uhrberg M, 2005, MOL IMMUNOL, V42, P471, DOI 10.1016/j.molimm.2004.07.029; UNI Z, 1992, ANIM GENET, V23, P379; van den Brand H, 2004, BRIT POULTRY SCI, V45, P787, DOI 10.1080/00071660400014218; Veiga JP, 1998, OIKOS, V82, P313, DOI 10.2307/3546971; Verhulst S, 1999, P NATL ACAD SCI USA, V96, P4478, DOI 10.1073/pnas.96.8.4478; Vermijlen D, 2007, J IMMUNOL, V178, P4304, DOI 10.4049/jimmunol.178.7.4304; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Vuillermin PJ, 2009, ALLERGY, V64, P348, DOI 10.1111/j.1398-9995.2009.01970.x; Wijga S, 2009, POULTRY SCI, V88, P1805, DOI 10.3382/ps.2009-00064; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williamson SH, 2007, PLOS GENET, V3, P901, DOI 10.1371/journal.pgen.0030090; Wilson CB, 2009, NAT REV IMMUNOL, V9, P91, DOI 10.1038/nri2487; Yonash N, 2000, POULTRY SCI, V79, P1418, DOI 10.1093/ps/79.10.1418; Zerofsky M, 2005, AGING CELL, V4, P103, DOI 10.1111/j.1474-9728.2005.00147.x; Zhao L, 2007, J LEUKOCYTE BIOL, V81, P1386, DOI 10.1189/jlb.0506364; Zimmerman LM, 2010, J EXP BIOL, V213, P1477, DOI 10.1242/jeb.037770; Zuany-Amorim C, 2002, NAT MED, V8, P625, DOI 10.1038/nm0602-625 150 60 62 3 68 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0269-8463 FUNCT ECOL Funct. Ecol. FEB 2011 25 1 61 73 10.1111/j.1365-2435.2010.01759.x 13 Ecology Environmental Sciences & Ecology 709VC WOS:000286468500007 Bronze 2019-02-21 J Felix, PM; Vinagre, C; Cabral, HN Felix, P. M.; Vinagre, C.; Cabral, H. N. Life-history traits of flatfish in the Northeast Atlantic and Mediterranean Sea JOURNAL OF APPLIED ICHTHYOLOGY English Review PLAICE PLEURONECTES-PLATESSA; SOLE SOLEA-SOLEA; TURBOT SCOPHTHALMUS-MAXIMUS; MEGRIM LEPIDORHOMBUS-BOSCII; FLOUNDER PLATICHTHYS-FLESUS; EASTERN ENGLISH-CHANNEL; DAB LIMANDA-LIMANDA; O-GROUP FLATFISH; PORTUGUESE COAST; SEXUAL CYCLES P>Flatfishes are poorly represented in published literature regarding life-history strategies, as opposed to some other taxonomic groups of teleost fish. The present work constitutes an integrated approach to life-history traits of the Order Pleuronectiformes occurring in the Northeast Atlantic and Mediterranean Sea. Data was exhaustively collected for several species of the families Scophthalmidae, Pleuronectidae, Bothidae and Soleidae, namely life-history parameters from the von Bertalanffy growth model (L-infinity and k), absolute fecundity and size at maturity (L-m), as well as ecological and environmental data, with regard to the species and their area of occurrence. An inter-specific ordination analysis based on life-history parameters and environmental factors revealed distinct patterns of life-history strategies, not necessarily grouped by phylogenetic affinities. Species with a more northern range of distribution were distinguishable from those with southern affinities by showing larger sizes, lower growth rates, earlier spawning, shorter spawning periods and higher fecundity. Possible environmental causes for these traits are discussed. Intra-specific analyses were also performed and were generally in agreement with other authors, yet some disagreement was found for the inter-specific analysis. [Felix, P. M.; Cabral, H. N.] Univ Lisbon, Dept Biol Anim, Fac Ciencias, P-1749016 Lisbon, Portugal; [Vinagre, C.; Cabral, H. N.] Univ Lisbon, Ctr Oceanog, Fac Ciencias, P-1749016 Lisbon, Portugal Felix, PM (reprint author), Univ Lisbon, Dept Biol Anim, Fac Ciencias, P-1749016 Lisbon, Portugal. pmfelix@fc.ul.pt Cabral, Henrique/D-5201-2011; Vinagre, Catarina/G-1965-2015 Cabral, Henrique/0000-0002-7646-6208; Vinagre, Catarina/0000-0003-2146-7948; Felix, Pedro/0000-0002-0466-3464 Agulleiro MJ, 2006, AQUACULTURE, V257, P511, DOI 10.1016/j.aquaculture.2006.02.001; ALLAN SM, 1995, B NATL I OCEANOGR FI, V21, P47; Alongi D M, 1998, COASTAL ECOSYSTEM PR; ALPERI J, 1990, G20 ICES CM; Amara R, 2004, HYDROBIOLOGIA, V518, P23, DOI 10.1023/B:HYDR.0000025053.62966.cd; Amara R, 2001, J FISH BIOL, V58, P788, DOI 10.1006/jfbi.2000.1498; Amaral V, 2004, J FISH BIOL, V64, P460, DOI 10.1111/j.0022-1112.2004.00314.x; ANDRADE JPA, 1990, THESIS U ALGARVE FAR; Arneri E, 2001, J APPL ICHTHYOL, V17, P256, DOI 10.1046/j.1439-0426.2001.00293.x; ARNTZ WE, 1981, J6 ICES CM; AUBINOTTENHEIME.G, 1987, REV TRAV I PECHES, V49, P205; BAGENAL TB, 1966, J MAR BIOL ASSOC UK, V46, P161, DOI 10.1017/S0025315400017628; BAGENAL TB, 1971, J FISH BIOL, V3, P207, DOI 10.1111/j.1095-8649.1971.tb03665.x; BAGGE O, 1990, E4 ICES CM; Belghyti D., 1993, Vie et Milieu, V43, P95; BELLO G, 1987, FAO FISH REP, V294, P142; Bergstad OA, 2008, DEEP-SEA RES PT II, V55, P185, DOI 10.1016/j.dsr2.2007.09.005; Billen G, 1999, SCI TOTAL ENVIRON, V243, P43, DOI 10.1016/S0048-9697(99)00327-7; BLANQUER A, 1992, J FISH BIOL, V41, P725, DOI 10.1111/j.1095-8649.1992.tb02702.x; Bohl H., 1957, Bericht der Deutschen Wissenschaftlichen Kommission fuer Meeresforschung, V15, P1; Bouza C, 2002, CAN J FISH AQUAT SCI, V59, P1460, DOI [10.1139/f02-114, 10.1139/F02-114]; Briggs J. C., 1974, MARINE ZOOGEOGRAPHY; Bromley PJ, 2000, J SEA RES, V44, P27, DOI 10.1016/S1385-1101(00)00043-5; Burel C, 1996, J FISH BIOL, V49, P678, DOI 10.1111/j.1095-8649.1996.tb00064.x; Cabral HN, 2007, J SEA RES, V57, P209, DOI 10.1016/j.seares.2006.08.007; Cabral Henrique N., 2002, Thalassas, V18, P31; Cabral HN, 2001, CLIM RES, V18, P119, DOI 10.3354/cr018119; Cabral HN, 2002, SCI MAR, V66, P293, DOI 10.3989/scimar.2002.66n3293; Charnov Eric L., 1993, P1; Chouinard GA, 2002, CAN J FISH AQUAT SCI, V59, P1451, DOI 10.1139/F02-103; Ciloglu E, 2005, TURK J VET ANIM SCI, V29, P43; Costa M. J., 1999, Aquatic Ecology, V33, P287, DOI 10.1023/A:1009904621771; COSTA M J, 1989, Scientia Marina, V53, P561; Cummins K. W., 1971, INT ASS THEORETICAL, V18, P1; CURRYLINDAHL K, 1985, VARA FISKAR HAVSOCH; CUSHING DH, 1969, J CONSEIL, V33, P81; CYRUS DP, 1983, J FISH BIOL, V22, P373, DOI 10.1111/j.1095-8649.1983.tb04760.x; DAWSON W, 1991, 1991 M ICES WORK GRO, P1; DECLERCK R, 1974, F31 ICES CM, P1; DENIEL C, 1983, CAH BIOL MAR, V24, P231; DENIEL C, 1990, J FISH BIOL, V37, P149, DOI 10.1111/j.1095-8649.1990.tb05936.x; DENIEL C, 1984, Cybium, V8, P83; DENIEL C, 1989, J FISH BIOL, V35, P49, DOI 10.1111/j.1095-8649.1989.tb03392.x; DENIEL C, 1984, CAH BIOL MAR, V25, P257; DENIEL C, 1981, THESIS U BRETAGNE OC, P1; DINIS MT, 1986, THESIS U BRETAGNE OC; DODD JM, 1984, MARSHALLS PHYSL REPR, P1; DOREL D, 1986, DRV86001RH IFREMER; DRAGANIK B, 1993, B SEA FISH I, V3, P21; DRAGANIK B, 2005, B SEA FISH I, V1, P23; Dwivedi S. N., 1964, Revues des Travaux Inst Peches Marit, V28, P321; Ekman S, 1953, ZOOGEOGRAPHY SEA; Estoup A, 1998, CAN J FISH AQUAT SCI, V55, P715, DOI 10.1139/cjfas-55-3-715; EVANS DH, 1984, FISH PHYSIOL, V10, P239; *FAO, 2007, FISHST PLUS UN SOFTW; FARRUGIO H, 1986, 14B1852M10P CEE; Fischer W., 1987, MEDITERRANEE MER NOI, V2; *FISHB, 2007, FISHB BIOL DAT FISH; FLORIN AB, 2005, 200514 FINF; FONDS M, 1992, NETH J SEA RES, V29, P127, DOI 10.1016/0077-7579(92)90014-6; Forest A., 1975, Revue Trav Inst Peches Marit, V39, P5; Furnestin J., 1935, Revue des Travaux Peches Maritimes Paris, V8, P203; Gibson RN, 1996, MAR ECOL PROG SER, V130, P1, DOI 10.3354/meps130001; Gibson RN, 2005, FLATFISHES: BIOLOGY AND EXPLOITATION, P1, DOI 10.1002/9780470995259; GIOVANARDI O, 1984, FAO FISHERIES REPORT, V290, P161; Haedrich R.L., 1983, P183; Henderson PA, 1998, J SEA RES, V40, P131, DOI 10.1016/S1385-1101(98)00020-3; Holmes W. N., 1969, FISH PHYSIOL, VI, P1; HORWOOD J, 1993, ADV MAR BIOL, V29, P215, DOI 10.1016/S0065-2881(08)60132-7; HORWOOD JW, 1990, J MAR BIOL ASSOC UK, V70, P803, DOI 10.1017/S0025315400059075; HORWOOD JW, 1990, J MAR BIOL ASSOC UK, V70, P515, DOI 10.1017/S0025315400036559; HUGHES SL, 2006, 280 ICES COOP RES RE, P49; Hunter J.R., 1985, NOAA Technical Report NMFS, V36, P79; *ICES, 1992, STUD GROUP FEC SOL P, P1; Iglesias J, 2003, FISHERIES MANAG ECOL, V10, P51, DOI 10.1046/j.1365-2400.2003.00318.x; Iles TC, 1998, J SEA RES, V39, P41, DOI 10.1016/S1385-1101(97)00022-1; Imsland AK, 2003, AQUACULT INT, V11, P463, DOI 10.1023/B:AQUI.0000004191.43885.b2; JAGER Z, 1993, J FISH BIOL, V43, P31; Jickells TD, 1998, SCIENCE, V281, P217, DOI 10.1126/science.281.5374.217; Jimenez M. P., 2001, Boletin Instituto Espanol de Oceanografia, V17, P279; Jimenez MP, 1998, MAR BIOL, V131, P173, DOI 10.1007/s002270050308; JONES A, 1974, J MAR BIOL ASSOC UK, V54, P109, DOI 10.1017/S0025315400022104; Kennish MJ, 2001, PRACTICAL HDB MARINE; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; King NJ, 2006, MAR ECOL PROG SER, V319, P263, DOI 10.3354/meps319263; KNUST R, 1990, G62 ICES CM; KOSIOR M, 1996, J29 ICES CM; Laane RWPM, 2005, ESTUAR COAST SHELF S, V62, P495, DOI 10.1016/j.ecss.2004.09.013; Landa J, 1996, FISH RES, V26, P279, DOI 10.1016/0165-7836(95)00419-X; Landa J, 2002, FISH RES, V55, P141, DOI 10.1016/S0165-7836(01)00302-2; LEBEC C, 1983, 53 INT COUNC EXPL SE; Link Jason S., 2002, Journal of Northwest Atlantic Fishery Science, V30, P1, DOI 10.2960/J.v30.a1; LLEONART J, 1994, FISHERIES ENV MEDITE; Mannini P, 1990, OEBALIA, V16, P245; MATTHAUS W, 1995, J PHYS OCEANOGR, V25, P280, DOI 10.1175/1520-0485(1995)025<0280:TRSIIT>2.0.CO;2; MILLER JM, 1980, ESTUARINE PERSPECTIV, P437; MILLNER R, 1991, NETH J SEA RES, V27, P433, DOI 10.1016/0077-7579(91)90044-2; Millner R, 2005, FLATFISHES: BIOLOGY AND EXPLOITATION, P240, DOI 10.1002/9780470995259.ch11; Millner RS, 1996, ICES J MAR SCI, V53, P1185, DOI 10.1006/jmsc.1996.0143; MINAMI T, 1992, NETH J SEA RES, V29, P35, DOI 10.1016/0077-7579(92)90006-Z; MOLANDER AR, 1938, RAPP P V REUN CONS I, V14, P90; Munroe TA, 2005, FLATFISHES: BIOLOGY AND EXPLOITATION, P10, DOI 10.1002/9780470995259.ch2; MUUS BJ, 1999, SCANDINAVIAN FISHING; Nash RDM, 2000, J SEA RES, V44, P55, DOI 10.1016/S1385-1101(00)00046-0; NEILSON JD, 1990, ADV MAR BIOL, V26, P115, DOI 10.1016/S0065-2881(08)60200-X; NIELSEN JG, 1986, FISHES NE ATLANTIC M; Nissling A, 2002, ICES J MAR SCI, V59, P93, DOI 10.1006/jmsc.2001.1134; OJAVEER E, 1985, Finnish Fisheries Research, V6, P1; OLIVE PJW, 2002, S01 ICES CM; PAULY D, 1994, NETH J SEA RES, V32, P107, DOI 10.1016/0077-7579(94)90035-3; Person-Le Ruyet J, 2003, AQUAT LIVING RESOUR, V16, P25, DOI 10.1016/S0990-7440(02)00002-5; Pichavant K, 2002, MAR ECOL PROG SER, V225, P275, DOI 10.3354/meps225275; Pichavant K, 2001, J FISH BIOL, V59, P875, DOI 10.1006/jfbi.2001.1702; Quero J.-C., 1986, P1308; RAMOS J, 1982, INVEST PESQ, V46, P15; Ramsay K, 1996, J SEA RES, V36, P275, DOI 10.1016/S1385-1101(96)90796-0; RIJNSDORP AD, 1994, NETH J SEA RES, V32, P255, DOI 10.1016/0077-7579(94)90003-5; RIJNSDORP AD, 1993, CAN J FISH AQUAT SCI, V50, P1617, DOI 10.1139/f93-183; RIJNSDORP AD, 1991, NETH J SEA RES, V27, P441, DOI 10.1016/0077-7579(91)90045-3; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; RIJNSDORP AD, 1990, NETH J SEA RES, V25, P279, DOI 10.1016/0077-7579(90)90027-E; Rijnsdorp AD, 1996, ICES J MAR SCI, V53, P1199, DOI 10.1006/jmsc.1996.0145; RIJNSDORP AD, 1989, J CONSEIL, V46, P35; Rijnsdorp AD, 2005, FLATFISHES: BIOLOGY AND EXPLOITATION, P68, DOI 10.1002/9780470995259.ch4; ROCHARD E, 1994, ETAT CONNAISSANCES E; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; RODRIGUES JL, 1985, G53 ICES CM; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; Roff Derek A., 1992; ROGERS SI, 1994, NETH J SEA RES, V32, P353, DOI 10.1016/0077-7579(94)90012-4; Rousset J., 1983, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V28, P77; RUSSEL FS, 1976, EGGS PLANKTONIC STAG; SANTOS PT, 1994, NETH J SEA RES, V32, P379, DOI 10.1016/0077-7579(94)90015-9; SIBORRO S, 2005, 29 IPIMAR; Smith VH, 2003, ENVIRON SCI POLLUT R, V10, P126, DOI 10.1065/espr2002.12.142; SMITH WG, 1973, FISH B-NOAA, V71, P527; Solmundsson J, 2005, ICES J MAR SCI, V62, P189, DOI 10.1016/j.icesjms.2004.11.012; Stanev EV, 2001, J MARINE SYST, V31, P77, DOI 10.1016/S0924-7963(01)00048-3; Stankus Svajunas, 2003, Acta Zoologica Lituanica, V13, P217; Stankus Svajunas, 2001, Acta Zoologica Lituanica, V11, P357; STERGIOU KI, 1991, THESIS ARISTOTLE U T; Suzuki Naoki, 2001, Turkish Journal of Fisheries and Aquatic Sciences, V1, P43; TERBRAAK CJF, 1988, ADV ECOL RES, V18, P271; TerBraak CJF, 1988, CANOCO FORTRAN PROGR; THOMPSON CM, 1978, J WILDLIFE MANAGE, V42, P391, DOI 10.2307/3800275; Turkmen M, 2003, TURK J VET ANIM SCI, V27, P317; URBAN HJ, 1991, MEERESFORSCHUNG, V33, P330; Vallisneri Maria, 2001, Acta Adriatica, V42, P59; VANBEEK FA, 1989, HELGOLANDER MEERESUN, V43, P461; VANDERLAND MA, 1991, NETH J SEA RES, V27, P277, DOI 10.1016/0077-7579(91)90030-5; Vassilopoulou V, 1999, J MAR BIOL ASSOC UK, V79, P171, DOI 10.1017/S0025315498000198; VIANET R, 1989, Cybium, V13, P247; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Vinagre C, 2009, ESTUAR COAST SHELF S, V81, P375, DOI 10.1016/j.ecss.2008.11.015; Vinagre C, 2008, ESTUAR COAST SHELF S, V78, P521, DOI 10.1016/j.ecss.2008.01.012; Vinagre C, 2008, J APPL ICHTHYOL, V24, P163, DOI 10.1111/j.1439-0426.2007.01048.x; Vinagre C, 2006, FISH RES, V82, P140, DOI 10.1016/j.fishres.2006.07.011; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; WALSH SJ, 1994, NETH J SEA RES, V32, P241, DOI 10.1016/0077-7579(94)90002-7; Weatherley A. H., 1972, GROWTH ECOLOGY FISH; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Witthames PR, 1995, NETH J SEA RES, V34, P45, DOI 10.1016/0077-7579(95)90013-6; WOERLING D, 1993, J RECHERCHE OCEANOGR, V18, P74; Yamashita Y, 2001, J SEA RES, V45, P205, DOI 10.1016/S1385-1101(01)00049-1 166 11 11 2 60 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0175-8659 1439-0426 J APPL ICHTHYOL J. Appl. Ichthyol. FEB 2011 27 1 100 111 10.1111/j.1439-0426.2010.01623.x 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 709YV WOS:000286478200015 2019-02-21 J King, EG; Roff, DA; Fairbairn, DJ King, E. G.; Roff, D. A.; Fairbairn, D. J. Trade-off acquisition and allocation in Gryllus firmus: a test of the Y model JOURNAL OF EVOLUTIONARY BIOLOGY English Article acquisition; allocation; Gryllus firmus; trade-offs; wing dimorphism; Y model LIFE-HISTORY EVOLUTION; WING-POLYMORPHIC CRICKET; POSITIVE GENETIC CORRELATIONS; PHENOTYPIC PLASTICITY; FLIGHT CAPABILITY; OFFSPRING SIZE; RESOURCE-ALLOCATION; VAN-NOORDWIJK; JONG MODEL; INTERMEDIARY METABOLISM Many models of life history evolution assume trade-offs between major life history traits; however, these trade-offs are often not found. The Y model predicts that variation in acquisition can mask underlying allocation trade-offs and is a major hypothesis explaining why negative relationships are not always found between traits that are predicted to trade-off with one another. Despite this model's influence on the field of life history evolution, it has rarely been properly tested. We use a model system, the wing dimorphic cricket, Gryllus firmus as a case study to test the assumptions and predictions of the Y model. By experimentally altering the acquisition regime and by estimating energy acquisition and energy allocation directly in this species, we are able to explicitly test this important model. Overall, we find strong support for the predictions of the Y model. Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; Univ Calif Riverside, Grad Program Evolut Ecol & Organismal Biol, Riverside, CA 92521 USA King, EG (reprint author), Univ Calif Irvine, Dept Ecol & Evolut, Irvine, CA 92697 USA. egking@uci.edu National Science Foundation [DEB-0807657]; SICB; University of California, Riverside This work was supported by National Science Foundation grant DEB-0807657, a SICB Grant-in-Aid-of-Research and the University of California, Riverside. We thank Christopher Caridi for countless hours of data acquisition and laboratory assistance. Dr. Mark A. Chappell provided invaluable assistance with our metabolic equipment and helpful advice regarding our physiological measurements. Two anonymous reviewers provided comments that greatly improved this paper. Angilletta MJ, 2003, TRENDS ECOL EVOL, V18, P234, DOI 10.1016/S0169-5347(03)00087-9; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; BELL G, 1986, OXFORD SURVEYS EVOLU, P326; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Crnokrak P, 1998, ANIM BEHAV, V56, P433, DOI 10.1006/anbe.1998.0741; Crnokrak P, 2002, J EVOLUTION BIOL, V15, P388, DOI 10.1046/j.1420-9101.2002.00401.x; Czesak ME, 2003, EVOLUTION, V57, P1121; DEJONG G, 1993, FUNCT ECOL, V7, P75, DOI 10.2307/2389869; DELAGUERIE P, 1991, EVOL ECOL, V5, P361, DOI 10.1007/BF02214153; Dingle H, 1996, MIGRATION BIOL LIFE; Dudycha JL, 2005, EVOLUTION, V59, P565; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ernande B, 2004, J EVOLUTION BIOL, V17, P342, DOI 10.1046/j.1420-9101.2003.00674.x; FAIRBAIRN DJ, 1990, EVOLUTION, V44, P1787, DOI 10.1111/j.1558-5646.1990.tb05249.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GENOUD M, 1994, J ANIM ECOL, V63, P328, DOI 10.2307/5551; Gillott C., 1995, ENTOMOLOGY; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; HARRISON RG, 1980, ANNU REV ECOL SYST, V11, P95, DOI 10.1146/annurev.es.11.110180.000523; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Hunt J, 2004, TRENDS ECOL EVOL, V19, P329, DOI 10.1016/j.tree.2004.03.035; James J., 1974, AUST J BIOL SCI, V27, P99; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; King EG, 2010, AM NAT, V175, P702, DOI 10.1086/652434; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Miller GE, 1997, COMMUN STAT-THEOR M, V26, P715; Nespolo RF, 2008, FUNCT ECOL, V22, P624, DOI 10.1111/j.1365-2435.2008.01394.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; RICKLEFS RE, 1991, FUNCT ECOL, V5, P174, DOI 10.2307/2389255; RISKA B, 1986, EVOLUTION, V40, P1303, DOI 10.1111/j.1558-5646.1986.tb05753.x; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROFF DA, 1989, J EVOLUTION BIOL, V2, P109, DOI 10.1046/j.1420-9101.1989.2020109.x; ROFF DA, 1994, EVOLUTION, V48, P1650, DOI 10.1111/j.1558-5646.1994.tb02202.x; ROFF DA, 1984, OECOLOGIA, V63, P30, DOI 10.1007/BF00379781; Roff DA, 2003, J EVOLUTION BIOL, V16, P55, DOI 10.1046/j.1420-9101.2003.00480.x; Roff DA, 2002, EVOLUTION, V56, P84; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; SPITZE K, 1991, EVOLUTION, V45, P1081, DOI 10.1111/j.1558-5646.1991.tb04376.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stirling G, 2001, EVOL ECOL RES, V3, P157; Tessier AJ, 2002, ECOL LETT, V5, P685, DOI 10.1046/j.1461-0248.2002.00373.x; Tessier AJ, 2000, ECOLOGY, V81, P826, DOI 10.1890/0012-9658(2000)081[0826:AFTOIR]2.0.CO;2; TUOMI J, 1983, AM ZOOL, V23, P25; Uller T, 2005, J ZOOL, V265, P295, DOI 10.1017/S0952836904006326; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vorburger C, 2005, EVOLUTION, V59, P1006; WEINER J, 1992, TRENDS ECOL EVOL, V7, P384, DOI 10.1016/0169-5347(92)90009-Z; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461; YAMPOLSKY LY, 1994, FUNCT ECOL, V8, P435, DOI 10.2307/2390066; Zar JH, 2010, BIOSTATISTICAL ANAL; Zera AJ, 2005, INTEGR COMP BIOL, V45, P511, DOI 10.1093/icb/45.3.511; Zera AJ, 1997, PHYSIOL ZOOL, V70, P519, DOI 10.1086/515865; ZERA AJ, 1994, J INSECT PHYSIOL, V40, P1037, DOI 10.1016/0022-1910(94)90056-6; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207; Zera AJ, 2001, J INSECT PHYSIOL, V47, P1147, DOI 10.1016/S0022-1910(01)00096-8; Zera AJ, 2000, J INSECT PHYSIOL, V46, P1207, DOI 10.1016/S0022-1910(00)00041-X; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578 72 33 33 0 36 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2011 24 2 256 264 10.1111/j.1420-9101.2010.02160.x 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 706HI WOS:000286208400003 21044204 Bronze 2019-02-21 J Kim, SY; Drummond, H; Torres, R; Velando, A Kim, S-Y; Drummond, H.; Torres, R.; Velando, A. Evolvability of an avian life history trait declines with father's age JOURNAL OF EVOLUTIONARY BIOLOGY English Article animal model; genetic variation; life history evolution; parental age; random regression; recruiting age; Sula nebouxii BLUE-FOOTED BOOBY; STERNOPLEURAL CHAETA NUMBER; EXTRA-PAIR FERTILIZATION; WILD ANIMAL POPULATIONS; QUANTITATIVE GENETICS; PARENTAL AGE; DROSOPHILA-MELANOGASTER; GOOD GENES; OLD MATES; SENESCENCE Studies of laboratory organisms have suggested that parental age affects the genetic variance of offspring traits. This effect can engender age-specific variance in genetic contributions to evolutionary change in heritable traits under directional selection, particularly in age-structured populations. Using long-term population data of the blue-footed booby (Sula nebouxii), we tested whether genetic variance of recruiting age varies with parental age. Using robust quantitative genetic models fitted to pedigree, we found a significant genotype-by-paternal age interaction for recruiting age. Genetic potential for adaptive change in recruiting age was greater in progeny of young (age 1-6 years) fathers (males: CVA = 6.68; females: CVA = 7.59) than those of middle age (7-9 years) fathers (males: CVA = 4.64; females: CVA = 5.08) and old (10-14 years) fathers (CVA = 0 for both sexes). Therefore, parental age dependence of heritable variance, in addition to age-related variation in survival and fecundity, should affect the strength of natural selection for evolutionary changes. Our results provide rare evidence for the influence of parental age on the evolutionary potential of a life history trait in a wild population. [Kim, S-Y; Velando, A.] Univ Vigo, Dept Ecoloxia & Bioloxia Anim, Vigo 36310, Spain; [Drummond, H.; Torres, R.] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Evolutiva, Mexico City 04510, DF, Mexico Velando, A (reprint author), Univ Vigo, Dept Ecoloxia & Bioloxia Anim, Vigo 36310, Spain. avelando@uvigo.es Kim, Sin-Yeon/K-2770-2014; Velando, Alberto/B-1701-2009 Kim, Sin-Yeon/0000-0002-5170-8477; Velando, Alberto/0000-0001-8909-0724 Mexican Consejo Nacional de Ciencia y Tecnologia [81823, 47599, 34500-V, 4722-N9407, D112-903581, PCCNCNA-031528, 31973H]; Spanish Ministerio de Ciencia e Innovacion [CGL2009-10883-C02-01]; Xunta de Galicia We are grateful to A. Wilson who provided very helpful advice on statistical analyses and two anonymous reviewers for very constructive comments. We thank C. Rodriguez, J. L. Osorno and numerous volunteers for dedicated work in the field and on the database. Annual fieldwork on Isla Isabel depended on the generous support of many fishermen, finance from the Mexican Consejo Nacional de Ciencia y Tecnologia (81823, 47599, 34500-V, 4722-N9407, D112-903581, PCCNCNA-031528, 31973H), logistical support and permissions from the Secretaria del Medioambiente y Recursos Naturales and logistical support of the Mexican navy. Finance for this study was provided by the Spanish Ministerio de Ciencia e Innovacion (CGL2009-10883-C02-01). S.-Y. K. is supported by the Isidro Parga Pondal fellowship from the Xunta de Galicia. Anderson DJ, 2006, WILSON J ORNITHOL, V118, P244, DOI 10.1676/05-106.1; Andersson M., 1994, SEXUAL SELECTION; Baiao PC, 2009, WATERBIRDS, V32, P179, DOI 10.1675/063.032.0122; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Beamonte-Barrientos R, 2010, AM NAT, V175, P469, DOI 10.1086/650726; Beardmore J.A., 1976, P3; BEARDMORE JA, 1975, HEREDITY, V34, P71, DOI 10.1038/hdy.1975.7; BEARDMORE JA, 1985, GENETICA, V68, P37, DOI 10.1007/BF02424564; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Brommer JE, 2007, AM NAT, V170, P643, DOI 10.1086/521241; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; CALIGARI PDS, 1981, HEREDITY, V47, P105, DOI 10.1038/hdy.1981.63; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Drummond H, 2003, AM NAT, V161, P794, DOI 10.1086/375170; Drummond H, 2010, BEHAV ECOL SOCIOBIOL, V64, P647, DOI 10.1007/s00265-009-0882-7; Falconer D. S., 1996, INTRO QUANTITATIVE G; GEBHARDTHENRICH SG, 1991, J EVOLUTION BIOL, V4, P341, DOI 10.1046/j.1420-9101.1991.4030341.x; Gilmour A. R., 2006, ASREML USER GUIDE RE; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hansen TF, 1995, J EVOLUTION BIOL, V8, P759, DOI 10.1046/j.1420-9101.1995.8060759.x; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; HOULE D, 1992, GENETICS, V130, P195; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kim SY, 2007, BEHAV ECOL, V18, P1132, DOI 10.1093/beheco/arm091; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Kokko H, 1996, P ROY SOC B-BIOL SCI, V263, P1533, DOI 10.1098/rspb.1996.0224; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Kruuk LEB, 2008, ANNU REV ECOL EVOL S, V39, P525, DOI 10.1146/annurev.ecolsys.39.110707.173542; Lande R, 1996, EVOLUTION, V50, P434, DOI 10.1111/j.1558-5646.1996.tb04504.x; Littell RC, 2006, SAS MIXED MODELS; Lynch M, 1998, GENETICS ANAL QUANTI; Moore PJ, 2003, P ROY SOC B-BIOL SCI, V270, pS192, DOI 10.1098/rsbl.2003.0051; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Oli MK, 2002, EVOL ECOL RES, V4, P563; Oro D, 2010, ECOLOGY, V91, P1205, DOI 10.1890/09-0939.1; Osorio-Beristain M, 1998, BEHAV ECOL SOCIOBIOL, V43, P307, DOI 10.1007/s002650050496; Osorio-Beristain M, 2006, ETHOLOGY, V112, P625, DOI 10.1111/j.1439-0310.2006.01201.x; OSORIOBERISTAIN M, 1993, AUK, V110, P234; Partridge L, 2007, NATURE, V450, P165, DOI 10.1038/450165a; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Priest NK, 2002, EVOLUTION, V56, P927; Richardson DS, 1999, MOL ECOL, V8, P2115, DOI 10.1046/j.1365-294x.1999.00832.x; Roff D. A, 1997, EVOLUTIONARY QUANTIT; ROFF DA, 2002, LIFE HIST EVOLUTION; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Stearns S., 2000, EVOLUTION INTRO; Storfer A, 1996, TRENDS ECOL EVOL, V11, P343, DOI 10.1016/0169-5347(96)20051-5; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Wagner RH, 1996, BEHAV ECOL SOCIOBIOL, V38, P379, DOI 10.1007/s002650050255; WEATHERHEAD PJ, 1995, BEHAV ECOL SOCIOBIOL, V37, P81, DOI 10.1007/BF00164153; Williams C.G., 1966, AM NAT, V100, P687; Wilson AJ, 2008, J EVOLUTION BIOL, V21, P647, DOI 10.1111/j.1420-9101.2008.01500.x; Wilson AJ, 2007, CURR BIOL, V17, P2136, DOI 10.1016/j.cub.2007.11.043; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x 62 11 11 0 21 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2011 24 2 295 302 10.1111/j.1420-9101.2010.02165.x 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 706HI WOS:000286208400007 21044208 Bronze 2019-02-21 J Conrad, JL; Weinersmith, KL; Brodin, T; Saltz, JB; Sih, A Conrad, J. L.; Weinersmith, K. L.; Brodin, T.; Saltz, J. B.; Sih, A. Behavioural syndromes in fishes: a review with implications for ecology and fisheries management JOURNAL OF FISH BIOLOGY English Review animal personality; behavioural correlation; behavioural type; exploration-avoidance; Gasterosteus aculeatus; shyness-boldness ZEBRAFISH DANIO-RERIO; STICKLEBACKS GASTEROSTEUS-ACULEATUS; GUPPIES POECILIA-RETICULATA; JUVENILE ATLANTIC SALMON; RISK-TAKING BEHAVIOR; ALTERNATIVE REPRODUCTIVE TACTICS; CORTICOTROPIN-RELEASING-FACTOR; CHARR SALVELINUS-FONTINALIS; ANIMAL PERSONALITY-TRAITS; LIFE-HISTORY STRATEGIES This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices. [Conrad, J. L.; Weinersmith, K. L.; Saltz, J. B.; Sih, A.] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA; [Brodin, T.] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden; [Saltz, J. B.] Univ So Calif, Dept Mol & Computat Biol, Los Angeles, CA 90089 USA Conrad, JL (reprint author), Univ Calif Davis, Dept Environm Sci & Policy, 1 Shields Ave, Davis, CA 95616 USA. louiseconrad9@gmail.com Brodin, Tomas/0000-0003-1086-7567 Interagency Ecological Program; Graduate Group in Ecology at the University of California, Davis; Swedish Research Council; Department of Defense The authors thank R. Earley and members of his laboratory for their feedback on the section on potential neural mechanisms of behavioural syndromes. Comments from I. Ahnesjo and two anonymous reviewers on previous versions greatly improved the manuscript. J.L.C. and K.L.W. were supported by the Interagency Ecological Program, and K.L.W. also received a block fellowship from the Graduate Group in Ecology at the University of California, Davis. T. B. received support from a postdoctoral fellowship from the Swedish Research Council. J.B.S. was supported by the Department of Defense National Defense Science and Engineering Graduate Fellowship. Alvarez D, 2007, BEHAV PROCESS, V76, P215, DOI 10.1016/j.beproc.2007.05.004; Archard GA, 2010, J ZOOL, V281, P149, DOI 10.1111/j.1469-7998.2010.00714.x; Azuma T, 2005, BEHAV GENET, V35, P463, DOI 10.1007/s10519-004-0863-6; Balment RJ, 2006, GEN COMP ENDOCR, V147, P9, DOI 10.1016/j.ygcen.2005.12.022; Bell AM, 2007, ECOL LETT, V10, P828, DOI 10.1111/j.1461-0248.2007.01081.x; Bell AM, 2007, PHYSIOL BEHAV, V91, P15, DOI 10.1016/j.physbeh.2007.01.012; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; Bell Alison M., 2008, P151; Bell AM, 2010, J COMP PHYSIOL B, V180, P211, DOI 10.1007/s00360-009-0395-8; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; BENUS RF, 1987, BEHAVIOUR, V100, P105, DOI 10.1163/156853987X00099; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bergmuller Ralph, 2007, BMC Ecology, V7, P12, DOI 10.1186/1472-6785-7-12; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Biro PA, 2007, ANIM BEHAV, V73, P891, DOI 10.1016/j.anbehav.2006.10.019; Biro PA, 2010, P ROY SOC B-BIOL SCI, V277, P71, DOI 10.1098/rspb.2009.1346; Biro PA, 2009, HYDROBIOLOGIA, V635, P395, DOI 10.1007/s10750-009-9902-x; Blanchet S, 2007, OECOLOGIA, V152, P569, DOI 10.1007/s00442-007-0668-4; BOISSY A, 1995, Q REV BIOL, V70, P165, DOI 10.1086/418981; Brockmark S, 2010, P ROY SOC B-BIOL SCI, V277, P3035, DOI 10.1098/rspb.2010.0561; Brodin T, 2009, BEHAV ECOL, V20, P30, DOI 10.1093/beheco/arn111; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown C, 2005, ANIM BEHAV, V70, P1003, DOI 10.1016/j.anbehav.2004.12.022; Brown C, 2004, ANIM BEHAV, V68, P1325, DOI 10.1016/j.anbehav.2004.04.004; Brown C, 2007, BEHAV ECOL SOCIOBIOL, V62, P237, DOI 10.1007/s00265-007-0458-3; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Budaev S, 2009, BEHAV BRAIN RES, V200, P91, DOI 10.1016/j.bbr.2008.12.030; Budaev SV, 1999, ANIM BEHAV, V58, P195, DOI 10.1006/anbe.1999.1124; Budaev SV, 1997, J COMP PSYCHOL, V111, P399, DOI 10.1037/0735-7036.111.4.399; Budaev SV, 1999, BEHAV PROCESS, V48, P49, DOI 10.1016/S0376-6357(99)00068-6; Burmeister SS, 2007, HORM BEHAV, V51, P164, DOI 10.1016/j.yhbeh.2006.09.008; BUSS DM, 1991, ANNU REV PSYCHOL, V42, P459, DOI 10.1146/annurev.ps.42.020191.002331; Capitanio JP, 2004, PSYCHONEUROENDOCRINO, V29, P1300, DOI 10.1016/j.psyneuen.2004.04.001; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Carneiro LA, 2003, FISH PHYSIOL BIOCHEM, V28, P241, DOI 10.1023/B:FISH.0000030542.31395.8a; Carpenter RE, 2009, NEUROSCIENCE, V158, P412, DOI 10.1016/j.neuroscience.2008.10.014; Chucholl C, 2008, FUND APPL LIMNOL, V172, P27, DOI 10.1127/1863-9135/2008/0172-0027; CLARKE AS, 1995, AM J PRIMATOL, V37, P103, DOI 10.1002/ajp.1350370205; Coleman K, 1998, ANIM BEHAV, V56, P927, DOI 10.1006/anbe.1998.0852; Conrad JL, 2009, J FISH BIOL, V75, P1410, DOI 10.1111/j.1095-8649.2009.02372.x; Cook CJ, 2002, PHYSIOL BEHAV, V75, P455, DOI 10.1016/S0031-9384(02)00650-9; Cote J., 2007, P ROYAL SOC B, V274, P384; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Croft DP, 2009, BEHAV ECOL SOCIOBIOL, V63, P1495, DOI 10.1007/s00265-009-0802-x; Cutts CJ, 1998, J FISH BIOL, V52, P1026; Cutts CJ, 2001, CAN J FISH AQUAT SCI, V58, P961, DOI 10.1139/cjfas-58-5-961; Dadda M, 2010, BEHAV BRAIN RES, V206, P208, DOI 10.1016/j.bbr.2009.09.019; Desjardins JK, 2008, BEHAV ECOL SOCIOBIOL, V62, P785, DOI 10.1007/s00265-007-0504-1; Dewan AK, 2008, J NEUROENDOCRINOL, V20, P1382, DOI 10.1111/j.1365-2826.2008.01798.x; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2009, P R SOC B, V276, P1285, DOI 10.1098/rspb.2008.1555; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Duckworth RA, 2007, P NATL ACAD SCI USA, V104, P15017, DOI 10.1073/pnas.0706174104; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; DUGATKIN LA, 1991, EVOL ECOL, V5, P300, DOI 10.1007/BF02214234; Dugatkin LA, 2005, ETHOL ECOL EVOL, V17, P77; DUGATKIN LA, 1991, BEHAV ECOL SOCIOBIOL, V29, P127, DOI 10.1007/BF00166487; Dzieweczynski TL, 2010, BEHAVIOUR, V147, P805, DOI 10.1163/000579510X493142; Earley RL, 2008, HORM BEHAV, V53, P442, DOI 10.1016/j.yhbeh.2007.11.017; Ellis T, 2004, J FISH BIOL, V65, P1233, DOI [10.1111/j.0022-1112.2004.00499.x, 10.1111/j.1095-8649.2004.00499.x]; Falconer D. S., 1996, INTRO QUANTITATIVE G; Farwell M, 2009, BEHAV ECOL, V20, P913, DOI 10.1093/beheco/arp059; FERNALD RD, 1977, ANIM BEHAV, V25, P964, DOI 10.1016/0003-3472(77)90048-3; FERNALD RD, 1977, ANIM BEHAV, V25, P643, DOI 10.1016/0003-3472(77)90115-4; Fernald RD, 2002, NOVART FDN SYMP, V244, P169; Ferrari MCO, 2009, ANIM BEHAV, V78, P579, DOI 10.1016/j.anbehav.2009.05.034; Firehammer JA, 2006, T AM FISH SOC, V135, P200, DOI 10.1577/T05-058.1; Fitzpatrick MJ, 2005, TRENDS ECOL EVOL, V20, P96, DOI 10.1016/j.tree.2004.11.017; FRANCIS RC, 1993, P NATL ACAD SCI USA, V90, P7794, DOI 10.1073/pnas.90.16.7794; FRANCIS RC, 1990, ETHOLOGY, V86, P311, DOI 10.1111/j.1439-0310.1990.tb00439.x; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; Frost AJ, 2007, P ROY SOC B-BIOL SCI, V274, P333, DOI 10.1098/rspb.2006.3751; Fuller RC, 2005, INTEGR COMP BIOL, V45, P391, DOI 10.1093/icb/45.3.391; Gerald MS, 2002, BRAIN BEHAV EVOLUT, V60, P117, DOI 10.1159/000065207; Godin JGJ, 1996, P NATL ACAD SCI USA, V93, P10262, DOI 10.1073/pnas.93.19.10262; Godwin J, 2009, SEMIN CELL DEV BIOL, V20, P264, DOI 10.1016/j.semcdb.2008.12.003; Goncalves D, 2007, HORM BEHAV, V51, P534, DOI 10.1016/j.yhbeh.2007.02.003; Goodson JL, 2000, J COMP NEUROL, V422, P363, DOI 10.1002/1096-9861(20000703)422:3<363::AID-CNE4>3.0.CO;2-8; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Greenwood AK, 2008, P ROY SOC B-BIOL SCI, V275, P2393, DOI 10.1098/rspb.2008.0622; Grothues TM, 2007, T AM FISH SOC, V136, P1511, DOI 10.1577/T06-155.1; Harcourt JL, 2009, CURR BIOL, V19, P248, DOI 10.1016/j.cub.2008.12.051; Herczeg G, 2009, J EVOLUTION BIOL, V22, P544, DOI 10.1111/j.1420-9101.2008.01674.x; HESSING MJC, 1994, PHYSIOL BEHAV, V55, P39, DOI 10.1016/0031-9384(94)90007-8; Hofmann HA, 1999, P NATL ACAD SCI USA, V96, P14171, DOI 10.1073/pnas.96.24.14171; Hofmann HA, 2000, J NEUROSCI, V20, P4740, DOI 10.1523/JNEUROSCI.20-12-04740.2000; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Hojesjo J, 2002, BEHAV ECOL SOCIOBIOL, V52, P102, DOI 10.1007/s00265-002-0493-z; Holway DA, 1999, TRENDS ECOL EVOL, V14, P328, DOI 10.1016/S0169-5347(99)01636-5; Huntingford F, 2005, BEHAVIOUR, V142, P1207, DOI 10.1163/156853905774539382; Huntingford FA, 2010, J FISH BIOL, V76, P1576, DOI 10.1111/j.1095-8649.2010.02582.x; Huntingford FA, 2004, J FISH BIOL, V65, P122, DOI 10.1111/j.1095-8649.2004.00562.x; Huntingford FA, 1997, J FISH BIOL, V51, P1009, DOI 10.1006/jfbi.1997.0510; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Ioannou CC, 2008, OECOLOGIA, V157, P177, DOI 10.1007/s00442-008-1058-2; Johnson JC, 2005, BEHAV ECOL SOCIOBIOL, V58, P390, DOI 10.1007/s00265-005-0943-5; Jones KA, 2010, P R SOC B, V277, P625, DOI 10.1098/rspb.2009.1607; Katano O, 1996, CAN J ZOOL, V74, P2170, DOI 10.1139/z96-245; Ketterson ED, 2009, INTEGR COMP BIOL, V49, pE90; Kirkpatrick M, 2006, GENETICS, V173, P419, DOI 10.1534/genetics.105.047985; Knapp R, 2007, BIOLOGY LETT, V3, P628, DOI 10.1098/rsbl.2007.0379; Kobler A, 2009, NATURWISSENSCHAFTEN, V96, P1229, DOI 10.1007/s00114-009-0581-2; Koolhaas JM, 2010, FRONT NEUROENDOCRIN, V31, P307, DOI 10.1016/j.yfrne.2010.04.001; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Korzan WJ, 2008, HORM BEHAV, V54, P463, DOI 10.1016/j.yhbeh.2008.05.006; Krause J, 2000, BIOL REV, V75, P477; Kristiansen TS, 2007, APPL ANIM BEHAV SCI, V104, P236, DOI 10.1016/j.applanim.2006.09.007; Ksiazek A, 2004, PHYSIOL BIOCHEM ZOOL, V77, P890, DOI 10.1086/425190; Laakkonen MVM, 2007, CAN J FISH AQUAT SCI, V64, P665, DOI 10.1139/F07-041; Leblond C, 2006, BEHAVIOUR, V143, P1263, DOI 10.1163/156853906778691603; Lee JSF, 2008, J FISH BIOL, V72, P1736, DOI 10.1111/j.1095-8649.2008.01848.x; Lee JSF, 2008, ENVIRON BIOL FISH, V82, P179, DOI 10.1007/s10641-007-9288-4; Lema SC, 2004, GEN COMP ENDOCR, V135, P300, DOI 10.1016/j.ygcen.2003.10.006; Lema SC, 2006, HORM BEHAV, V50, P183, DOI 10.1016/j.yhbeh.2006.02.010; Lorenzi V, 2009, PHYSIOL BEHAV, V97, P476, DOI 10.1016/j.physbeh.2009.03.026; Lotze HK, 2006, SCIENCE, V312, P1806, DOI 10.1126/science.1128035; Lowry CA, 2006, GEN COMP ENDOCR, V146, P19, DOI 10.1016/j.ygcen.2005.12.006; Luttbeg B, 2010, PHILOS T R SOC B, V365, P3977, DOI 10.1098/rstb.2010.0207; Magnhagen C, 2005, BEHAV ECOL SOCIOBIOL, V57, P295, DOI 10.1007/s00265-004-0834-1; Magnhagen C, 2007, BEHAV ECOL SOCIOBIOL, V61, P525, DOI 10.1007/s00265-006-0280-3; Magnhagen C, 2009, P R SOC B, V276, P3369, DOI 10.1098/rspb.2009.0851; MAGURRAN AE, 1986, BEHAV ECOL SOCIOBIOL, V19, P267, DOI 10.1007/BF00300641; Martins CIM, 2005, AQUAC RES, V36, P1509, DOI 10.1111/j.1365-2109.2005.01372.x; McGhee KE, 2007, BEHAV ECOL, V18, P822, DOI 10.1093/beheco/arm051; McGhee KE, 2010, ANIM BEHAV, V79, P497, DOI 10.1016/j.anbehav.2009.11.037; MCLAUGHLIN RL, 1992, BEHAVIOUR, V120, P286, DOI 10.1163/156853992X00642; MCLAUGHLIN RL, 1994, CANADIAN J FISHERIES, V51, P269; MCPHAIL JD, 1984, CAN J ZOOL, V62, P1402, DOI 10.1139/z84-201; McPhee ME, 2004, BIOL CONSERV, V115, P71, DOI 10.1016/S0006-3207(03)00095-8; McPhee MV, 1998, ENVIRON BIOL FISH, V51, P369, DOI 10.1023/A:1007432928783; METCALFE NB, 1992, J FISH BIOL, V41, P93, DOI 10.1111/j.1095-8649.1992.tb03871.x; METCALFE NB, 1988, J ANIM ECOL, V57, P463, DOI 10.2307/4918; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Millot S, 2009, J FISH BIOL, V75, P1733, DOI 10.1111/j.1095-8649.2009.02425.x; Moretz JA, 2007, BEHAV ECOL, V18, P556, DOI 10.1093/beheco/arm011; Silva PIM, 2010, APPL ANIM BEHAV SCI, V124, P75, DOI 10.1016/j.applanim.2010.01.008; MURPHY KE, 1991, ETHOLOGY, V88, P307; Nespolo RF, 2007, J EXP BIOL, V210, P3877, DOI 10.1242/jeb.013110; NIELSEN J, 1992, T AM FISH SOC, V124, P617; Nomakuchi S, 2009, BEHAV ECOL, V20, P340, DOI 10.1093/beheco/arp001; Oliveira RF, 1996, HORM BEHAV, V30, P2, DOI 10.1006/hbeh.1996.0002; Oliveira RF, 2003, J FISH BIOL, V63, P1615, DOI 10.1111/j.1095-8649.2003.00260.x; Overli O, 2006, PHYSIOL BEHAV, V87, P506, DOI 10.1016/j.physbeh.2005.11.012; Overli O, 2005, INTEGR COMP BIOL, V45, P463, DOI 10.1093/icb/45.3.463; Overli O, 2004, HORM BEHAV, V45, P235, DOI 10.1016/j.yhbeh.2003.12.002; Pellegrini AFA, 2010, BEHAV ECOL SOCIOBIOL, V64, P381, DOI 10.1007/s00265-009-0854-y; Pike TW, 2008, P ROY SOC B-BIOL SCI, V275, P2515, DOI 10.1098/rspb.2008.0744; Pintor LM, 2008, OIKOS, V117, P1629, DOI 10.1111/j.1600-0706.2008.16578.x; Piyapong C, 2010, BEHAV ECOL, V21, P3, DOI 10.1093/beheco/arp142; Pottinger TG, 2006, AQUACULTURE, V256, P140, DOI 10.1016/aquaculture.2006.01.023; PUCKETT KJ, 1985, BEHAVIOUR, V92, P97, DOI 10.1163/156853985X00398; Reale D, 2003, ANIM BEHAV, V65, P463, DOI 10.1006/anbe.2003.2100; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reddon AR, 2009, ANIM BEHAV, V77, P189, DOI 10.1016/j.anbehav.2008.09.026; Rehage JS, 2005, ECOL FRESHW FISH, V14, P352, DOI 10.1111/j.1600-0633.2005.00109.x; Rehage JS, 2005, BEHAV ECOL SOCIOBIOL, V57, P256, DOI 10.1007/s00265-004-0850-1; Rehage JS, 2004, BIOL INVASIONS, V6, P379, DOI 10.1023/B:BINV.0000034618.93140.a5; Renn SCP, 2008, J EXP BIOL, V211, P3041, DOI 10.1242/jeb.018242; RIDGWAY MS, 1988, CAN J ZOOL, V66, P201, DOI 10.1139/z88-028; RIDGWAY MS, 1987, CAN J ZOOL, V65, P1951, DOI 10.1139/z87-297; Robinson GE, 2008, SCIENCE, V322, P896, DOI 10.1126/science.1159277; Rodgers EW, 2006, HORM BEHAV, V49, P610, DOI 10.1016/j.yhbeh.2006.01.008; Ruis MAW, 2000, APPL ANIM BEHAV SCI, V66, P31, DOI 10.1016/S0168-1591(99)00070-2; Salek SJ, 2002, BEHAV BRAIN RES, V133, P177, DOI 10.1016/S0166-4328(02)00003-7; Salonen A, 2006, ANIM BEHAV, V72, P819, DOI 10.1016/j.anbehav.2005.12.012; Salvanes A. G. V., 2006, ICES Journal of Marine Science, V63, P346; Schjolden J, 2005, PHYSIOL BIOCHEM ZOOL, V78, P715, DOI 10.1086/432153; Schjolden J, 2007, BRAIN BEHAV EVOLUT, V70, P227, DOI 10.1159/000105486; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Schurch R, 2010, ETHOLOGY, V116, P257, DOI 10.1111/j.1439-0310.2009.01738.x; Schulkin J, 2005, TRENDS NEUROSCI, V28, P629, DOI 10.1016/j.tins.2005.09.009; Scott AP, 2008, BEHAVIOUR, V145, P1307, DOI 10.1163/156853908785765854; Scott AP, 2007, GEN COMP ENDOCR, V153, P392, DOI 10.1016/j.ygcen.2006.11.006; Scotti MAL, 2007, ETHOLOGY, V113, P190, DOI 10.1111/j.1439-0310.2006.01311.x; Seasholtz AF, 2002, J ENDOCRINOL, V175, P89, DOI 10.1677/joe.0.1750089; Semsar K, 2001, HORM BEHAV, V40, P21, DOI 10.1006/hbeh.2001.1663; Shumway CA, 1999, ENVIRON BIOL FISH, V55, P183, DOI 10.1023/A:1007562023150; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Sih A, 2009, BEHAV ECOL SOCIOBIOL, V63, P975, DOI 10.1007/s00265-009-0725-6; Sinn DL, 2005, J COMP PSYCHOL, V119, P99, DOI 10.1037/0735-7036.119.1.99; Smagin GN, 2001, PEPTIDES, V22, P713, DOI 10.1016/S0196-9781(01)00384-9; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Smith BR, 2010, BEHAV ECOL, V21, P919, DOI 10.1093/beheco/arq084; Smith KL, 2009, BEHAVIOUR, V146, P283, DOI 10.1163/156853909X410784; Sneddon LU, 2003, J FISH BIOL, V62, P971, DOI 10.1046/j.1095-8649.2003.00084.x; Snekser JL, 2009, BEHAV ECOL, V20, P124, DOI 10.1093/beheco/arn123; St-Cyr S, 2009, COMP BIOCHEM PHYS A, V152, P9, DOI 10.1016/j.cbpa.2008.09.003; Staffan F, 2005, J FISH BIOL, V66, P798, DOI 10.1111/j.0022-1112.2005.00649.x; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stern DL, 2000, EVOLUTION, V54, P1079, DOI 10.1554/0014-3820(2000)054[1079:PEDBAT]2.0.CO;2; Stirling DG, 2002, J EVOLUTION BIOL, V15, P277, DOI 10.1046/j.1420-9101.2002.00389.x; Sundstrom LF, 2004, BEHAV ECOL, V15, P192, DOI 10.1093/beheco/arg089; TOMS CN, 2010, INT J COMP PSYCHOL, V25, P1; Tsutsui ND, 2003, P NATL ACAD SCI USA, V100, P1078, DOI 10.1073/pnas.0234412100; Van de Nieuwegiessen PG, 2010, J FISH BIOL, V76, P2486, DOI 10.1111/j.1095-8649.2010.02635.x; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Verbeek P, 2007, ANIM BEHAV, V73, P75, DOI 10.1016/j.anbehav.2006.03.012; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Ward AJW, 2004, BEHAV ECOL SOCIOBIOL, V55, P561, DOI 10.1007/s00265-003-0751-8; Watters JV, 2007, APPL ANIM BEHAV SCI, V102, P364, DOI 10.1016/j.applanim.2006.05.036; Watters JV, 2003, BIOL CONSERV, V112, P435, DOI 10.1016/S0006-3207(02)00343-9; Webster MM, 2007, BEHAVIOUR, V144, P351, DOI 10.1163/156853907780425721; Webster MM, 2009, BEHAV ECOL SOCIOBIOL, V63, P511, DOI 10.1007/s00265-008-0685-2; Westerberg M, 2004, ANIM BEHAV, V67, P273, DOI 10.1016/j.anbehav.2003.06.003; Wilson ADM, 2005, ETHOLOGY, V111, P849, DOI 10.1111/j.1439-0310.2005.01110.x; Wilson ADM, 2007, ANIM BEHAV, V74, P689, DOI 10.1016/j.anbehav.2007.01.009; Wilson ADM, 2010, BEHAV ECOL, V21, P57, DOI 10.1093/beheco/arp157; Wilson ADM, 2010, ETHOLOGY, V116, P96, DOI 10.1111/j.1439-0310.2009.01719.x; Wilson ADM, 2009, BEHAV ECOL, V20, P231, DOI 10.1093/beheco/arp018; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; WINBERG S, 1993, COMP BIOCHEM PHYS C, V106, P597, DOI 10.1016/0742-8413(93)90216-8; Wong SC, 2008, BEHAVIOUR, V145, P1283, DOI 10.1163/156853908785765863; Worm B, 2005, SCIENCE, V309, P1365, DOI 10.1126/science.1113399; Wright D, 2006, BEHAV GENET, V36, P271, DOI 10.1007/s10519-005-9029-4; Wright D, 2003, NATURWISSENSCHAFTEN, V90, P374, DOI 10.1007/s00114-003-0443-2; Wright D, 2006, BEHAV GENET, V36, P914, DOI 10.1007/s10519-006-9080-9; Yamamoto T, 1998, J FISH BIOL, V52, P281, DOI 10.1111/j.1095-8649.1998.tb00799.x; Yokota T, 2007, FISHERIES SCI, V73, P500, DOI 10.1111/j.144-2906.2007.01362.x; Yoshida M, 2005, FISHERIES SCI, V71, P314, DOI 10.1111/j.1444-2906.2005.00966.x 228 223 227 30 377 WILEY-BLACKWELL MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0022-1112 J FISH BIOL J. Fish Biol. FEB 2011 78 2 395 435 10.1111/j.1095-8649.2010.02874.x 41 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 715MH WOS:000286888100002 21284626 2019-02-21 J Griskevicius, V; Delton, AW; Robertson, TE; Tybur, JM Griskevicius, Vladas; Delton, Andrew W.; Robertson, Theresa E.; Tybur, Joshua M. Environmental Contingency in Life History Strategies: The Influence of Mortality and Socioeconomic Status on Reproductive Timing JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY English Article life history theory; reproductive timing; childhood development; socioeconomic status; mortality EVOLUTIONARY-DEVELOPMENTAL THEORY; BIOLOGICAL SENSITIVITY; PUBERTAL MATURATION; TERROR MANAGEMENT; DYING YOUNG; LIVING FAST; HUMANS; PERSPECTIVE; PERSONALITY; MOTIVES Why do some people have children early, whereas others delay reproduction? By considering the trade-offs between using one's resources for reproduction versus other tasks, the evolutionary framework of life history theory predicts that reproductive timing should be influenced by mortality and resource scarcity. A series of experiments examined how mortality cues influenced the desire to have children sooner rather than later. The effects of mortality depended critically on whether people grew up in a relatively resource-scarce or resource-plentiful environment. For individuals growing up relatively poor, mortality cues produced a desire to reproduce sooner-to want children now, even at the cost of furthering one's education or career. Conversely, for individuals growing up relatively wealthy, mortality cues produced a desire to delay reproduction-to further one's education or career before starting a family. Overall, mortality cues appear to shift individuals into different life history strategies as a function of childhood socioeconomic status, suggesting important implications for how environmental factors can influence fertility and family size. [Griskevicius, Vladas] Univ Minnesota, Carlson Sch Management, Dept Mkt, Minneapolis, MN 55455 USA; [Delton, Andrew W.; Robertson, Theresa E.] Univ Calif Santa Barbara, Dept Psychol, Santa Barbara, CA 93106 USA; [Tybur, Joshua M.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Griskevicius, V (reprint author), Univ Minnesota, Carlson Sch Management, Dept Mkt, 321 19th Ave S,Suite 3-150, Minneapolis, MN 55455 USA. vladasg@umn.edu Tybur, Joshua/P-5435-2014 Tybur, Joshua/0000-0002-0462-6508; Robertson, Theresa/0000-0001-8229-2323 NIH HHS [DP1 OD000516-05, DP1 OD000516] Ackerman JM, 2006, PSYCHOL SCI, V17, P836, DOI 10.1111/j.1467-9280.2006.01790.x; Aiken LS, 1991, MULTIPLE REGRESSION; Alexander Richard, 1987, BIOL MORAL SYSTEMS; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2007, OXFORD HDB EVOLUTION, P237; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Buss DM, 1997, PSYCHOL INQ, V8, P22, DOI 10.1207/s15327965pli0801_3; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Charnov Eric L., 1993, P1; Chisholm JS, 1996, HUM NATURE-INT BIOS, V7, P1, DOI 10.1007/BF02733488; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen S, 2004, PSYCHOSOM MED, V66, P553, DOI 10.1097/01.psy.0000126200.05189.d3; DAAN S, 1997, BEHAVIOURAL ECOLOGY; Daly M., 1988, HOMICIDE; Davis J, 2008, HUM NATURE-INT BIOS, V19, P426, DOI 10.1007/s12110-008-9052-2; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eibl-Eibesfeldt I, 1989, HUMAN ETHOLOGY; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fletcher G., 2006, EVOLUTION SOCIAL PSY, P189; Galobardes B, 2004, EPIDEMIOL REV, V26, P7, DOI 10.1093/expirev/mxh008; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GREENBERG J, 1986, SPR S SOC P, P189; GRISKEVICIUS V, 2010, ENV CONTINGENC UNPUB; Griskevicius V, 2007, J PERS SOC PSYCHOL, V93, P85, DOI 10.1037/0022-3514.93.1.85; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P281, DOI 10.1037/0022-3514.91.2.281; Griskevicius V, 2009, J PERS SOC PSYCHOL, V96, P980, DOI 10.1037/a0013907; Haselton MG, 2006, PERS SOC PSYCHOL REV, V10, P47, DOI 10.1207/s15327957pspr1001_3; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Horn H. S., 1984, BEHAV ECOLOGY EVOLUT; HORN HS, 1978, BEHAVIOURAL ECOLOGY, P411; Jain A, 2004, J ETHNOPHARMACOL, V90, P171, DOI 10.1016/j.jep.2003.09.041; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kenrick DT, 2009, SOC COGNITION, V27, P764, DOI 10.1521/soco.2009.27.5.764; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; Kirkpatrick LA, 1999, J PERS, V67, P921, DOI 10.1111/1467-6494.00078; Klein SB, 2010, MEM COGNITION, V38, P13, DOI 10.3758/MC.38.1.13; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; LACK D, 1950, IBIS, V92, P288, DOI 10.1111/j.1474-919X.1950.tb01753.x; Landau Mark J., 2007, EVOLUTIONARY PSYCHOL, V5, P476, DOI DOI 10.1177/147470490700500303; Li NP, 2009, PERS SOC PSYCHOL B, V35, P923, DOI 10.1177/0146167209334786; Low BS, 2008, CROSS-CULT RES, V42, P201, DOI 10.1177/1069397108317669; Low BS, 2002, AM J HUM BIOL, V14, P149, DOI 10.1002/ajhb.10043; LOW BS, 2000, ADAPTATION HUMAN BEH, P323; Lummaa V, 2003, AM J HUM BIOL, V15, P370, DOI 10.1002/ajhb.10155; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Mathews TJ, 2009, NCHS DATA BRIEF, V21; Miller GE, 2009, P NATL ACAD SCI USA, V106, P14716, DOI 10.1073/pnas.0902971106; Navarette C. D., 2005, EVOLUTIONARY PSYCHOL, V3, P297, DOI DOI 10.1177/147470490500300121; Navarrete CD, 2009, PSYCHOL SCI, V20, P155, DOI 10.1111/j.1467-9280.2009.02273.x; Navarrete CD, 2004, GROUP PROCESS INTERG, V7, P370, DOI 10.1177/1368430204046144; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Schaller M, 2003, PERS SOC PSYCHOL B, V29, P637, DOI 10.1177/0146167203251526; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Stearns S, 1992, EVOLUTION LIFE HIST; Suddendorf T, 2007, BEHAV BRAIN SCI, V30, P299, DOI 10.1017/S0140525X07001975; Tinbergen JM, 1999, BEHAV ECOL, V10, P504, DOI 10.1093/beheco/10.5.504; *US CENS, 2000, CENS 2000 SUMM FIL 3; *US CENT DIS CONTR, 2004, BIRTHS TABL; *US FED BUR INV, 2004, UNIFORM CRIME REPORT; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Walker RS, 2008, CURR ANTHROPOL, V49, P115, DOI 10.1086/524763; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096 83 126 133 3 52 AMER PSYCHOLOGICAL ASSOC WASHINGTON 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA 0022-3514 1939-1315 J PERS SOC PSYCHOL J. Pers. Soc. Psychol. FEB 2011 100 2 241 254 10.1037/a0021082 14 Psychology, Social Psychology 716HA WOS:000286958500004 20873933 Green Accepted 2019-02-21 J Pujolar, JM; Bevacqua, D; Andrello, M; Capoccioni, F; Ciccotti, E; De Leo, GA; Zane, L Pujolar, Jose Martin; Bevacqua, Daniele; Andrello, Marco; Capoccioni, Fabrizio; Ciccotti, Eleonora; De Leo, Giulio A.; Zane, Lorenzo Genetic patchiness in European eel adults evidenced by molecular genetics and population dynamics modelling MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Adult eels; Anguilla anguilla; European eel; Genetic patchiness; Population dynamics modelling LINKED MICROSATELLITE LOCI; ANGUILLA-ANGUILLA; SARGASSO SEA; REPRODUCTIVE SUCCESS; CAMARGUE LAGOONS; FRESH-WATER; GLASS EELS; MIGRATION; ATLANTIC; RECRUITMENT Disentangling the demographic processes that determine the genetic structure of a given species is a fundamental question in conservation and management. In the present study, the population structure of the European eel was examined with a multidisciplinary approach combining the fields of molecular genetics and population dynamics modelling. First, we analyzed a total of 346 adult specimens of known age collected in three separate sample sites using a large panel of 22 EST-linked microsatellite loci. Second, we developed a European eel-specific model to unravel the demographic mechanisms that can produce the level of genetic differentiation estimated by molecular markers. This is the first study that reveals a pattern of genetic patchiness in maturing adults of the European eel. A highly significant genetic differentiation was observed among samples that did not follow an Isolation-by-Distance or Isolation-by-Time pattern. The observation of genetic patchiness in adults is likely to result from a limited parental contribution to each spawning event as suggested by our modelling approach. The value of genetic differentiation found is predicted by the model when reproduction occurs in a limited number of spawning events isolated from each other in time or space, with an average of 130-375 breeders in each spawning event. Unpredictability in spawning success may have important consequences for the life-history evolution of the European eel, including a bet-hedging strategy (distributing reproductive efforts over time) which could in turn guarantee successful reproduction of some adults. (C) 2010 Elsevier Inc. All rights reserved. [Pujolar, Jose Martin; Zane, Lorenzo] Univ Padua, Dipartimento Biol, I-35131 Padua, Italy; [Bevacqua, Daniele; De Leo, Giulio A.] Univ Parma, Dipartimento Sci Ambientali, I-43100 Parma, Italy; [Andrello, Marco] CNRS, UMR 5553, Lab Ecol Alpine LECA, F-38041 Grenoble, France; [Capoccioni, Fabrizio; Ciccotti, Eleonora] Univ Roma Tor Vergata, Dipartimento Biol, I-00133 Rome, Italy Pujolar, JM (reprint author), Univ Padua, Dipartimento Biol, Via G Colombo 3, I-35131 Padua, Italy. martipujolar@gmail.com Andrello, Marco/G-4197-2016; Zane, Lorenzo/G-6249-2010; Bevacqua, Daniele/D-9421-2012 Zane, Lorenzo/0000-0002-6963-2132; De Leo, Giulio/0000-0002-4186-3369; capoccioni, fabrizio/0000-0002-4752-6881 Italian Research Program; University of Padova [CPDA 085158/08] This work has been funded by an Italian Research Program grant to LZ and by the University of Padova grant CPDA 085158/08 to LZ. We thank the CNR Lesina, the Parco Nazionale del Circeo and the Tiber fishermen for support in sampling. Acou A, 2008, ECOL FRESHW FISH, V17, P432, DOI 10.1111/j.1600-0633.2008.00295.x; Astrom M, 2007, ICES J MAR SCI, V64, P1491, DOI 10.1093/icesjms/fsm122; Barbin GP, 1997, J FISH BIOL, V51, P840, DOI 10.1006/jfbi.1997.0488; BELKHIR K, 2005, GENETIX 4 05 LOGICIE; Bevacqua D, 2006, J FISH BIOL, V69, P200, DOI 10.1111/j.1095-8649.2006.01265.x; Bevacqua D, 2009, J FISH BIOL, V74, P2178, DOI 10.1111/j.1095-8649.2009.02243.x; Bevacqua D, 2007, ICES J MAR SCI, V64, P1483, DOI 10.1093/icesjms/fsm126; BOETIUS I, 1989, DANA-J FISH MAR RES, V7, P1; Bonhommeau S, 2009, J FISH BIOL, V74, P1891, DOI 10.1111/j.1095-8649.2009.02298.x; Bonhommeau S, 2008, FISH OCEANOGR, V17, P32, DOI 10.1111/j.1365-2419.2007.00453.x; Bonhommeau S, 2010, FISH FISH, V11, P289, DOI 10.1111/j.1467-2979.2010.00362.x; BURTON RS, 1983, MAR BIOL LETT, V4, P193; CAVALLISFORZA LL, 1967, EVOLUTION, V21, P550, DOI 10.1111/j.1558-5646.1967.tb03411.x; Conover DO, 2006, J FISH BIOL, V69, P21, DOI 10.1111/j.1095-8649.2006.01274.x; CROW J F, 1970, P591; Dannewitz J, 2005, P ROY SOC B-BIOL SCI, V272, P1129, DOI 10.1098/rspb.2005.3064; David P, 1997, EVOLUTION, V51, P1318, DOI 10.1111/j.1558-5646.1997.tb03979.x; Dekker W, 2000, ICES J MAR SCI, V57, P938, DOI 10.1006/jmsc.2000.0581; Dekker W, 2003, FISHERIES MANAG ECOL, V10, P365, DOI 10.1111/j.1365-2400.2003.00352.x; Dekker W., 2000, DANA, V12, P25; DEKKER W, 2003, FISHERIES, V28, P28, DOI DOI 10.1577/1548-8446-28-12; DELEO GA, 1995, CAN J FISH AQUAT SCI, V52, P1351; EDMANDS S, 1996, EVOLUTION, V56, P1445; Feunteun E, 2002, ECOL ENG, V18, P575, DOI 10.1016/S0925-8574(02)00021-6; Fillatre EK, 2003, MOL ECOL, V12, P1793, DOI 10.1046/j.1365-294X.2003.01869.x; Flowers JM, 2002, EVOLUTION, V56, P1445; Friedland KD, 2007, ICES J MAR SCI, V64, P519, DOI 10.1093/icesjms/fsm022; Gagnaire PA, 2009, MOL ECOL, V18, P1678, DOI 10.1111/j.1365-294X.2009.04142.x; Goudet J, 2002, FSTAT PROGRAM ESTIMA; HEDGECOCK D, 1994, GENETICS AND EVOLUTION OF AQUATIC ORGANISMS, P122; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; *ICES, 2009, 2009ACFM48 ICES; *ICES, 2008, 2008ACFM15 ICES CM; JOHNSON MS, 1982, MAR BIOL, V70, P157, DOI 10.1007/BF00397680; Kalinowski ST, 2006, MOL ECOL NOTES, V6, P576, DOI 10.1111/j.1471-8286.2006.01256.x; Kettle AJ, 2006, CAN J FISH AQUAT SCI, V63, P90, DOI 10.1139/F05-198; Knights B, 2003, SCI TOTAL ENVIRON, V310, P237, DOI 10.1016/S0048-9697(02)00644-7; La Rota M, 2005, BMC GENOMICS, V6, DOI 10.1186/1471-2164-6-23; Levitan DR, 2008, EVOLUTION, V62, P1305, DOI 10.1111/j.1558-5646.2008.00378.x; Li G, 1998, CAN J FISH AQUAT SCI, V55, P1025, DOI 10.1139/cjfas-55-4-1025; Maes GE, 2006, MOL ECOL, V15, P2095, DOI 10.1111/j.1365-294X.2006.02925.x; MANTEL N, 1967, CANCER RES, V27, P209; Martin J, 2010, ECOL FRESHW FISH, V19, P627, DOI 10.1111/j.1600-0633.2010.00444.x; McCleave JD, 2008, MAR BIOL, V155, P249, DOI 10.1007/s00227-008-1026-8; MCCLEAVE JD, 1993, J FISH BIOL, V43, P243, DOI 10.1111/j.1095-8649.1993.tb01191.x; Melia P, 2006, J FISH BIOL, V68, P876, DOI 10.1111/j.1095-8649.2006.00975.x; Miller Michael J., 2009, Aqua-Bioscience Monographs, V2, P1; Miller MJ, 2009, AM FISH S S, V69, P231; Moberg PE, 2000, MAR BIOL, V136, P773, DOI 10.1007/s002270000281; Palm S, 2009, HEREDITY, V103, P82, DOI 10.1038/hdy.2009.51; Palstra AP, 2006, NATURWISSENSCHAFTEN, V93, P145, DOI 10.1007/s00114-005-0080-z; Planes S, 2002, MOL ECOL, V11, P1515, DOI 10.1046/j.1365-294X.2002.01521.x; Pujolar JM, 2007, B MAR SCI, V81, P297; Pujolar JM, 2009, J FISH BIOL, V74, P2034, DOI 10.1111/j.1095-8649.2009.02267.x; Pujolar JM, 2009, MOL ECOL RESOUR, V9, P233, DOI 10.1111/j.1755-0998.2008.02419.x; Pujolar JM, 2006, MAR ECOL PROG SER, V307, P209, DOI 10.3354/meps307209; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Ruzzante DE, 1996, CAN J FISH AQUAT SCI, V53, P2695, DOI 10.1139/cjfas-53-12-2695; Schneider S., 2000, ARLEQUIN SOFTWARE PO; Sjoberg NB, 2009, J FISH BIOL, V74, P2158, DOI 10.1111/j.1095-8649.2009.02296.x; van den Thillart G., 2009, SPAWNING MIGRATION E; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; VOLLESTAD LA, 1988, J ANIM ECOL, V57, P983, DOI 10.2307/5106; Waples RS, 2006, MOL ECOL, V15, P1419, DOI 10.1111/j.1365-294X.2006.02890.x; WARD RD, 1994, J FISH BIOL, V44, P213, DOI 10.1111/j.1095-8649.1994.tb01200.x; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Wirth T, 2001, NATURE, V409, P1037, DOI 10.1038/35059079 69 19 19 2 28 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. FEB 2011 58 2 198 206 10.1016/j.ympev.2010.11.019 9 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 728QL WOS:000287888700006 21129491 Green Published 2019-02-21 J Bevacqua, D; Melia, P; De Leo, GA; Gatto, M Bevacqua, Daniele; Melia, Paco; De Leo, Giulio A.; Gatto, Marino Intra-specific scaling of natural mortality in fish: the paradigmatic case of the European eel OECOLOGIA English Article Anguilla anguilla; Allometric theory; Density-dependent survival; Life history variation; Temperature scaling of vital rates LIFE-HISTORY EVOLUTION; ANGUILLA-ANGUILLA; METABOLIC-RATE; BODY-SIZE; LATITUDINAL VARIATION; DEPENDENT MORTALITY; POPULATION-GROWTH; TEMPERATURE; ECOLOGY; MODEL Identifying factors and processes influencing natural mortality is fundamental to the understanding of population dynamics. Metabolic theory of ecology and experimental studies at the cross-species level suggest the existence of general patterns linking natural mortality to body mass and temperature. However, there is scant evidence that similar relationships also hold at the intra-specific scale, possibly because of the relatively narrow range of sizes and temperatures experienced by most species and the effect of local adaptation, which can obscure links between temperature and vital rates. In this sense, the European eel Anguilla anguilla, a panmictic species with a wide distribution range, provides a paradigmatic case. We compiled data published in the past 30 years on eel mortality during the continental phase of the life cycle for 15 eel stocks and calibrated a general model for mortality, considering the effects of body mass, temperature, stock density and gender. Estimated activation energy (E = 1.2 eV) was at the upper extreme reported for metabolic reactions. Estimated mortality rates (ranging between 0.02 year(-1) at 8A degrees C, low density and 0.47 year(-1) at 18A degrees C, high density for a body mass of 100 g) were appreciably lower than those of most fishes, most likely due to the exceptionally low energy-consuming metabolism of eel. [Bevacqua, Daniele; De Leo, Giulio A.] Univ Parma, Dipartimento Sci Ambientali, I-43100 Parma, Italy; [Melia, Paco; Gatto, Marino] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy Bevacqua, D (reprint author), Univ Parma, Dipartimento Sci Ambientali, Viale Usberti 11-A, I-43100 Parma, Italy. daniele.bevacqua@unipr.it Gatto, Marino/D-9531-2012; Bevacqua, Daniele/D-9421-2012; Melia, Paco/E-8844-2012 Gatto, Marino/0000-0001-8063-9178; Melia, Paco/0000-0002-7763-9836; De Leo, Giulio/0000-0002-4186-3369 Italian Ministry of Research [2006054928, II04CE49G8] We thank Fiorenza Micheli, David Cairns and two anonymous referees for useful comments on the manuscript draft and Simone Vincenzi for support in the statistical analyses. We are also grateful to Remigio Rossi, Leif Vollestad and Hakan Wickstrom for providing access to unpublished data. This work was supported by Italian Ministry of Research (PRIN project #2006054928 "An Integrated Approach to the Conservation and Management of the European Eel in the Mediterranean Region" and Interlink project #II04CE49G8). ADAM G, 1993, ETUDE FAUNE ICHTYOLO; ADAM G, 1997, THESIS U TOULOUSE 3; Angilletta MJ, 2003, AM NAT, V162, P332; Aoyama J, 2001, MOL PHYLOGENET EVOL, V20, P450, DOI 10.1006/mpev.2001.0959; Aoyama Jun, 2009, Aqua-Bioscience Monographs, V2, P1; Banavar JR, 2003, NATURE, V421, P713, DOI 10.1038/421713b; Bevacqua D, 2007, ICES J MAR SCI, V64, P1483, DOI 10.1093/icesjms/fsm126; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Bystrom P, 2006, OIKOS, V115, P43, DOI 10.1111/j.2006.0030-1299.15014.x; Clarke A, 2003, TRENDS ECOL EVOL, V18, P573, DOI 10.1016/j.tree.2003.08.007; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; DeLeo GA, 1996, ECOL APPL, V6, P1281; Edeline E, 2005, MAR ECOL PROG SER, V304, P191, DOI 10.3354/meps304191; European Council, 2007, OFFICIAL J EUROPEA L, VL 248, P17; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Glazier DS, 2005, BIOL REV, V80, P611, DOI 10.1017/S1464793105006834; GULLAND JA, 1987, MAR ECOL PROG SER, V39, P197, DOI 10.3354/meps039197; Hemmingsen A. M., 1960, REPORTS STENO MEM HO, V13, P1; Jessop BM, 2010, CAN J FISH AQUAT SCI, V67, P326, DOI 10.1139/F09-189; Kozlowski J, 2005, FUNCT ECOL, V19, P739, DOI 10.1111/j.1365-2435.2005.01021.x; Lobon-Cervia J, 1998, T AM FISH SOC, V127, P718, DOI 10.1577/1548-8659(1998)127<0718:FAOTIO>2.0.CO;2; Lobon-Cervia J, 2008, FRESHWATER BIOL, V53, P1832, DOI 10.1111/j.1365-2427.2008.02008.x; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; Lorenzen K, 2008, REV FISH SCI, V16, P10, DOI 10.1080/10641260701790291; Mccoy MW, 2008, ECOL LETT, V11, P710, DOI 10.1111/j.1461-0248.2008.01190.x; McGurk JD, 1986, MAR ECOL-PROG SER, V34, P227; Munch SB, 2003, ECOLOGY, V84, P2168, DOI 10.1890/02-0137; Munch SB, 2009, P NATL ACAD SCI USA, V106, P13860, DOI 10.1073/pnas.0900300106; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; Olivereau M, 1997, FISH PHYSIOL BIOCHEM, V17, P261, DOI 10.1023/A:1007766426512; Post JR, 2001, ECOLOGY, V82, P1040, DOI 10.2307/2679901; Rasmussen G., 1979, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V174, P32; ROBINSON WR, 1983, CAN J ZOOL, V61, P281, DOI 10.1139/z83-037; ROSSI R, 1984, FISH RES, V2, P285, DOI 10.1016/0165-7836(84)90031-6; ROSSI R, 1987, OEBALIA, V14, P1; Savage VM, 2004, FUNCT ECOL, V18, P257, DOI 10.1111/j.0269-8463.2004.00856.x; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; SCHULTZ ET, 1999, OECOLOGIA, V119, P283; Sibly RM, 2002, PHILOS T ROY SOC B, V357, P1153, DOI 10.1098/rstb.2002.1117; Taborsky B, 2003, P ROY SOC B-BIOL SCI, V270, P713, DOI 10.1098/rspb.2002.2255; Tesch F.-W., 2003, EEL; Tilman D, 2004, ECOLOGY, V85, P1797, DOI 10.1890/03-0725; van Ginneken V, 2005, J EXP BIOL, V208, P1329, DOI 10.1242/jeb.01524; VOLLESTAD LA, 1992, J ANIM ECOL, V61, P41, DOI 10.2307/5507; VOLLESTAD LA, 1988, J ANIM ECOL, V57, P983, DOI 10.2307/5106; West GB, 1997, SCIENCE, V276, P122, DOI 10.1126/science.276.5309.122; Wickstrom H., 1996, Ecology of Freshwater Fish, V5, P140, DOI 10.1111/j.1600-0633.1996.tb00046.x; Yamahira K, 2002, ECOLOGY, V83, P1252, DOI 10.1890/0012-9658(2002)083[1252:IVILVI]2.0.CO;2 50 30 30 0 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia FEB 2011 165 2 333 339 10.1007/s00442-010-1727-9 7 Ecology Environmental Sciences & Ecology 706NK WOS:000286224900008 20665048 2019-02-21 J Bugmann, H; Bigler, C Bugmann, Harald; Bigler, Christof Will the CO2 fertilization effect in forests be offset by reduced tree longevity? OECOLOGIA English Article Carbon storage; Climate change mitigation; Growth stimulation; Succession model; ForClim CARBON-DIOXIDE ENRICHMENT; LIFE-HISTORY STRATEGIES; ELEVATED CO2; GAP MODELS; TROPICAL FORESTS; GROWTH-RATES; SECONDARY METABOLITES; SPECIES COMPOSITION; CLIMATE GRADIENTS; DECIDUOUS FOREST Experimental studies suggest that tree growth is stimulated in a greenhouse atmosphere, leading to faster carbon accumulation (i.e., a higher rate of gap filling). However, higher growth may be coupled with reduced longevity, thus leading to faster carbon release (i.e., a higher rate of gap creation). The net effect of these two counteracting processes is not known. We quantify this net effect on aboveground carbon stocks using a novel combination of data sets and modeling. Data on maximum growth rate and maximum longevity of 141 temperate tree species are used to derive a relationship between growth stimulation and changes in longevity. We employ this relationship to modify the respective parameter values of tree species in a forest succession model and study aboveground biomass in a factorial design of growth stimulation x reduced maximum longevity at multiple sites along a climate gradient from the cold to the dry treeline. The results show that (1) any growth stimulation at the tree level leads to a disproportionately small increase of stand biomass due to negative feedback effects, even in the absence of reduced longevity; (2) a reduction of tree longevity tends to offset the growth-related biomass increase; at the most likely value of reduced longevity, the net effect is very close to zero in most multi- and single-species simulations; and (3) when averaging the response across all sites to mimic a "landscape-level" response, the net effect is close to zero. Thus, it is important to consider ecophysiological responses with their linkage to demographic processes in forest trees if one wishes to avoid erroneous inference at the ecosystem level. We conclude that any CO2 fertilization effect is quite likely to be offset by an associated reduction in the longevity of forest trees, thus strongly reducing the carbon mitigation potential of temperate forests. [Bugmann, Harald] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA; [Bugmann, Harald; Bigler, Christof] ETH, Dept Environm Sci, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland Bugmann, H (reprint author), Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA. harald.bugmann@env.ethz.ch Bigler, Christof/C-6271-2009; Bugmann, Harald/A-1252-2008 Bugmann, Harald/0000-0003-4233-0094 Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BACKMAN G, 1943, WACHSTUM ORGANISCHE; Bigler C, 2003, CAN J FOREST RES, V33, P210, DOI [10.1139/x02-180, 10.1139/X02-180]; Bigler C, 2009, OIKOS, V118, P1130, DOI 10.1111/j.1600-0706.2009.17592.x; BOTKIN DB, 1972, J ECOL, V60, P849, DOI 10.2307/2258570; Bugmann H, 2001, FOREST ECOL MANAG, V145, P43, DOI 10.1016/S0378-1127(00)00573-9; Bugmann H, 1998, FOREST ECOL MANAG, V103, P247, DOI 10.1016/S0378-1127(97)00217-X; Bugmann H, 1997, CAN J FOREST RES, V27, P551, DOI 10.1139/cjfr-27-4-551; Bugmann H, 2001, CLIMATIC CHANGE, V51, P259, DOI 10.1023/A:1012525626267; Bugmann HKM, 1995, J BIOGEOGR, V22, P477, DOI 10.2307/2845944; Bugmann HKM, 1996, ECOLOGY, V77, P2055, DOI 10.2307/2265700; Bugmann HKM, 2000, ECOL APPL, V10, P95, DOI 10.1890/1051-0761(2000)010[0095:EFCABA]2.0.CO;2; Bugmann HKM, 2003, MODELS IN ECOSYSTEM SCIENCE, P385; BUGMANN HKM, 1994, THESIS SWISS FEDERAL; Cramer W, 2001, GLOBAL CHANGE BIOL, V7, P357, DOI 10.1046/j.1365-2486.2001.00383.x; Friedlingstein P, 2006, J CLIMATE, V19, P3337, DOI 10.1175/JCLI3800.1; Friend AD, 1997, ECOL MODEL, V95, P249, DOI 10.1016/S0304-3800(96)00034-8; Gayler S, 2008, ANN BOT-LONDON, V101, P1089, DOI 10.1093/aob/mcm169; Granados J, 2002, GLOBAL CHANGE BIOL, V8, P1109, DOI 10.1046/j.1365-2486.2002.00533.x; Handa IT, 2005, ECOLOGY, V86, P1288, DOI 10.1890/04-0711; HARCOMBE PA, 1987, BIOSCIENCE, V37, P557, DOI 10.2307/1310666; JENKINS MA, 1995, CAN J FOREST RES, V25, P1119, DOI 10.1139/x95-124; Kimball BA, 1995, GLOB CHANGE BIOL, V1, P429, DOI 10.1111/j.1365-2486.1995.tb00041.x; Kimball BA, 2007, GLOBAL CHANGE BIOL, V13, P2171, DOI 10.1111/j.1365-2486.2007.01430.x; KIMMINS JP, 2004, FOREST ECOLOGY; Korner C, 2006, NEW PHYTOL, V172, P393, DOI 10.1111/j.1469-8137.2006.01886.x; Korner C, 2009, ANNU REV ECOL EVOL S, V40, P61, DOI 10.1146/annurev.ecolsys.110308.120217; Korner C, 2005, SCIENCE, V309, P1360, DOI 10.1126/science.1113977; Korner C, 2004, PHILOS T ROY SOC B, V359, P493, DOI 10.1098/rstb.2003.1429; Korner C, 2007, TERRESTRIAL ECOSYSTE, P9, DOI DOI 10.1007/978-3-540-32730-1_2; Ladeau SL, 2006, GLOBAL CHANGE BIOL, V12, P822, DOI 10.1111/j.1365-2486.2006.01137.x; Laurance WF, 2004, FOREST ECOL MANAG, V190, P131, DOI 10.1016/j.foreco.2003.09.011; LAVOLA A, 1994, OECOLOGIA, V99, P315, DOI 10.1007/BF00627744; Lexer MJ, 2001, FOREST ECOL MANAG, V144, P43, DOI 10.1016/S0378-1127(00)00386-8; Likens G. E., 1979, PATTERN PROCESS FORE; Litvak ME, 2002, OECOLOGIA, V132, P382, DOI 10.1007/s00442-002-0964-y; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Luo ZB, 2008, PLANT SOIL, V304, P45, DOI 10.1007/s11104-007-9518-8; Malhi Y, 2002, PHILOS T ROY SOC A, V360, P1567, DOI 10.1098/rsta.2002.1020; MOORE AD, 1989, ECOL MODEL, V45, P63, DOI 10.1016/0304-3800(89)90100-2; Moore DJP, 2006, GLOBAL CHANGE BIOL, V12, P1367, DOI 10.1111/j.1365-2486.2006.01189.x; Norby RJ, 2005, P NATL ACAD SCI USA, V102, P18052, DOI 10.1073/pnas.0509478102; Norby RJ, 2004, P NATL ACAD SCI USA, V101, P9689, DOI 10.1073/pnas.0403491101; Norby RJ, 1999, PLANT CELL ENVIRON, V22, P683, DOI 10.1046/j.1365-3040.1999.00391.x; Oren R, 2001, NATURE, V411, P469, DOI 10.1038/35078064; PHILLIPS OL, 1994, SCIENCE, V263, P954, DOI 10.1126/science.263.5149.954; Phillips OL, 2004, PHILOS T ROY SOC B, V359, P381, DOI 10.1098/rstb.2003.1438; Prentice IC, 2007, TERRESTRIAL ECOSYSTE, P175, DOI [DOI 10.1007/978-3-540-32730-1_15, 10.1007/978-3-540-32730-1_15]; Purves DW, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000870; R Development Core Team, 2008, R LANG ENV STAT COMP; Reynolds JF, 2001, CLIMATIC CHANGE, V51, P541, DOI 10.1023/A:1012551728510; Schafer KVR, 2003, GLOBAL CHANGE BIOL, V9, P1378, DOI 10.1046/j.1365-2486.2003.00662.x; SCHULMAN E, 1954, SCIENCE, V119, P396, DOI 10.1126/science.119.3091.396; Shao GF, 2001, CLIMATIC CHANGE, V51, P389, DOI 10.1023/A:1012550300768; Shugart H. H, 1984, THEORY FOREST DYNAMI; SHUGART HH, 1985, PLANT CELL ENVIRON, V8, P381, DOI 10.1111/j.1365-3040.1985.tb01673.x; SHUGART HH, 1998, TERRESTRIAL ECOSYSTE; Vieira S, 2005, P NATL ACAD SCI USA, V102, P18502, DOI 10.1073/pnas.0505966102; WARING RH, 1987, BIOSCIENCE, V37, P569, DOI 10.2307/1310667; Wright SJ, 2004, ECOLOGY, V85, P484, DOI 10.1890/02-0757; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Wyckoff PH, 2002, J ECOL, V90, P604, DOI 10.1046/j.1365-2745.2002.00691.x; Zotz G, 2006, FUNCT ECOL, V20, P763, DOI 10.1111/1365-2435.2006.01156.x 63 48 49 3 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 OECOLOGIA Oecologia FEB 2011 165 2 533 544 10.1007/s00442-010-1837-4 12 Ecology Environmental Sciences & Ecology 706NK WOS:000286224900026 21104278 2019-02-21 J Harvey, JA; Pashalidou, F; Soler, R; Bezemer, TM Harvey, Jeffrey A.; Pashalidou, Foteini; Soler, Roxina; Bezemer, T. Martijn Intrinsic competition between two secondary hyperparasitoids results in temporal trophic switch OIKOS English Article SOLITARY PARASITOID WASP; PHYSIOLOGICAL SUPPRESSION; LEPTOPILINA-HETEROTOMA; INSECT PARASITOIDS; INTERSPECIFIC COMPETITION; INTRAGUILD PREDATION; HOST DISCRIMINATION; APHYTIS-MELINUS; LYSIBIA-NANA; SUPERPARASITISM Interspecific competition amongst parasitoids is important in shaping the evolution of life-history strategies in these insects as well as community structure. Competition for hosts may occur between adult female parasitoids ('extrinsic' competition) or their progeny ('intrinsic' competition). Here, we examined intrinsic competition between two solitary secondary hyperparasitoids, Lysibia nana and Gelis agilis in cocoons of a primary parasitoid, Cotesia glomerata. Each species was allowed to sting hosts previously parasitized by the other at 24 h time intervals over the course of 144 h (6 days). When hosts were attacked simultaneously, neither species was dominant although the species to attack first won most encounters when it had a 24-48 h head start. However, after this time there was dramatic shift in the outcome with G. agilis dominating in all hosts > 72-h old, regardless of which species had parasitized C. glomerata first. G. agilis larvae, which initially had competed with L. nana for control of C. glomerata resources, began attacking the larvae of L. nana, whereas L. nana rejected hosts with older G. agilis larvae or pupae. Effects of multiparasitism also affected the development time and adult mass of the winning parasitoid. Our results reveal a shift in the trophic status of G. agilis from C. glomerata (in younger hosts) to L. nana (in older hosts), the first time such a phenomenon has been reported in parasitoids. [Harvey, Jeffrey A.; Pashalidou, Foteini; Soler, Roxina; Bezemer, T. Martijn] Ctr Terr Ecol, Netherlands Inst Ecol, Dept Terr Ecol, NL-6666 GA Heteren, Netherlands; [Pashalidou, Foteini; Soler, Roxina] Univ Wageningen & Res Ctr, Dept Entomol, NL-6700 EH Wageningen, Netherlands; [Bezemer, T. Martijn] Univ Wageningen & Res Ctr, Dept Nematol, NL-7600 ES Wageningen, Netherlands Harvey, JA (reprint author), Ctr Terr Ecol, Netherlands Inst Ecol, Dept Terr Ecol, Boterhoeksestr 48,POB 40, NL-6666 GA Heteren, Netherlands. j.harvey@nioo.knaw.nlm Harvey, Jeffrey/B-7439-2008; Bezemer, Martijn/A-4068-2009; Soler, Roxina/J-7820-2013 Harvey, Jeffrey/0000-0002-4227-7935; Bezemer, Martijn/0000-0002-2878-3479; BAI B, 1992, FUNCT ECOL, V6, P302, DOI 10.2307/2389521; Bernays EA, 2001, ANNU REV ENTOMOL, V46, P703, DOI 10.1146/annurev.ento.46.1.703; Bezant E. T., 1956, ENTOMOL MONTH MAG, V92, P106; Bogran CE, 2002, ECOLOGY, V83, P653, DOI 10.1890/0012-9658(2002)083[0653:ICAIPF]2.0.CO;2; Clauss M, 2005, MAMMAL REV, V35, P174, DOI 10.1111/j.1365-2907.2005.00062.x; Cobb LM, 2004, CAN FIELD NAT, V118, P122, DOI 10.22621/cfn.v118i1.894; DEMORAES CM, 2005, ECOL ENTOMOL, V30, P1; DEMORAES CM, 1999, ECOL ENTOMOL, V24, P1; DIEHL S, 1993, OIKOS, V68, P151, DOI 10.2307/3545321; Elzinga JA, 2007, J NAT HIST, V41, P101, DOI 10.1080/00222930601121668; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Gols R, 2008, ENTOMOL EXP APPL, V128, P99, DOI 10.1111/j.1570-7458.2008.00681.x; Harvey JA, 2008, EVOL ECOL, V22, P153, DOI 10.1007/s10682-007-9164-x; HARVEY JA, 1993, ECOL ENTOMOL, V18, P203, DOI 10.1111/j.1365-2311.1993.tb01091.x; Harvey JA, 2006, ARCH INSECT BIOCHEM, V61, P170, DOI 10.1002/arch.20080; Harvey JA, 2000, NATURE, V406, P183, DOI 10.1038/35018074; HARVEY JA, 2009, ENTOMOL EXP APPL, V130, P138; Harvey JA, 2009, ENTOMOL EXP APPL, V132, P155, DOI 10.1111/j.1570-7458.2009.00882.x; Harvey JA, 2009, J ANIM ECOL, V78, P686, DOI 10.1111/j.1365-2656.2008.01516.x; JERVIS MA, 1986, BIOL REV, V61, P395, DOI 10.1111/j.1469-185X.1986.tb00660.x; LUCK RF, 1985, ECOLOGY, V66, P904, DOI 10.2307/1940553; Morin P, 1999, ECOLOGY, V80, P752, DOI 10.2307/177014; Nakamatsu Y, 2004, J INSECT PHYSIOL, V50, P267, DOI 10.1016/j.jinsphys.2003.12.005; Oishi M, 2008, ENVIRON ENTOMOL, V37, P1231, DOI 10.1603/0046-225X(2008)37[1231:GSACMI]2.0.CO;2; PETTERS RM, 1983, J EXP ZOOL, V225, P459, DOI 10.1002/jez.1402250314; Pexton JJ, 2004, OECOLOGIA, V141, P179, DOI 10.1007/s00442-004-1659-3; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; PRICE PW, 1972, ECOLOGY, V53, P190, DOI 10.2307/1935729; Reitz SR, 2002, ANNU REV ENTOMOL, V47, P435, DOI 10.1146/annurev.ento.47.091201.145227; ROITBERG BD, 1988, EVOL ECOL, V2, P289, DOI 10.1007/BF02207562; Rosi MC, 2001, J INSECT PHYSIOL, V47, P989, DOI 10.1016/S0022-1910(01)00073-7; Rossbach A, 2008, B ENTOMOL RES, V98, P135, DOI 10.1017/S0007485307005482; Schellhorn NA, 2002, ECOLOGY, V83, P2745; Schwarz M., 2000, Entomologist's Gazette, V51, P147; SCRIBER JM, 1979, ENTOMOL EXP APPL, V25, P203, DOI 10.1111/j.1570-7458.1979.tb02872.x; SILVERS MJ, 1986, J PARASITOL, V72, P405, DOI 10.2307/3281680; Stefanescu C, 2009, J NAT HIST, V43, P553, DOI 10.1080/00222930802610444; Strand MR, 1996, BIOSCIENCE, V46, P422, DOI 10.2307/1312876; STRAND MR, 1995, ANNU REV ENTOMOL, V40, P31, DOI 10.1146/annurev.en.40.010195.000335; TILLMAN PG, 1992, ENTOMOPHAGA, V37, P429, DOI 10.1007/BF02373116; Uka D, 2006, J INSECT PHYSIOL, V52, P1137, DOI 10.1016/j.jinsphys.2006.08.002; van Lenteren JC, 2007, ARTHROPOD STRUCT DEV, V36, P271, DOI 10.1016/j.asd.2007.02.001; VANALPHEN JJM, 1982, NETH J ZOOL, V32, P232, DOI 10.1163/002829682X00157; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; vanBaarlen P, 1996, ENTOMOL EXP APPL, V81, P155; VANSTRIENVANLIEMPT WTFH, 1983, NETH J ZOOL, V33, P125; Vinson SB, 1998, J INSECT PHYSIOL, V44, P703, DOI 10.1016/S0022-1910(98)00003-1; YU DS, 1990, ECOL ENTOMOL, V15, P469, DOI 10.1111/j.1365-2311.1990.tb00830.x; Yu RX, 2008, ANN ENTOMOL SOC AM, V101, P189, DOI 10.1603/0013-8746(2008)101[189:IDOCVH]2.0.CO;2 49 13 13 7 30 WILEY-BLACKWELL PUBLISHING, INC MALDEN COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA 0030-1299 OIKOS Oikos FEB 2011 120 2 226 233 10.1111/j.1600-0706.2010.18744.x 8 Ecology Environmental Sciences & Ecology 708SB WOS:000286383500010 2019-02-21 J Magwene, PM; Kayikci, O; Granek, JA; Reininga, JM; Scholl, Z; Murray, D Magwene, Paul M.; Kayikci, Oemuer; Granek, Joshua A.; Reininga, Jennifer M.; Scholl, Zackary; Murray, Debra Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in Saccharomyces cerevisiae PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article POPULATION-GENETICS; BREEDING SYSTEMS; YEAST; MEIOSIS; DIVERSITY; GROWTH; CYCLE; CELL; HETEROZYGOSITY; FILAMENTATION We carried out a population genomic survey of Saccharomyces cerevisiae diploid isolates and find that many budding yeast strains have high levels of genomic heterozygosity, much of which is likely due to outcrossing. We demonstrate that variation in heterozygosity among strains is correlated with a life-history trade-off that involves how readily yeast switch from asexual to sexual reproduction under nutrient stress. This trade-off is reflected in a negative relationship between sporulation efficiency and pseudohyphal development and correlates with variation in the expression of RME1, a transcription factor with pleiotropic effects on meiosis and filamentous growth. Selection for alternate life-history strategies in natural versus human-associated environments likely contributes to differential maintenance of genomic heterozygosity through its effect on the frequency that yeast lineages experience sexual cycles and hence the opportunity for inbreeding. In addition to elevated levels of heterozygosity, many strains exhibit large genomic regions of loss-of-heterozygosity (LOH), suggesting that mitotic recombination has a significant impact on genetic variation in this species. This study provides new insights into the roles that both outcrossing and mitotic recombination play in shaping the genome architecture of Saccharomyces cerevisiae. This study also provides a unique case where stark differences in the genomic distribution of genetic variation among individuals of the same species can be largely explained by a life-history trade-off. [Magwene, Paul M.] Duke Univ, Dept Biol, Durham, NC 27708 USA; Duke Univ, Inst Genome Sci, Durham, NC 27708 USA; Duke Univ, Policy Ctr Syst Biol, Durham, NC 27708 USA Magwene, PM (reprint author), Duke Univ, Dept Biol, Durham, NC 27708 USA. paul.magwene@duke.edu Magwene, Paul/0000-0002-7659-2589; Granek, Joshua/0000-0003-3908-5016 National Science Foundation [MCB-0614959]; National Institutes of Health [P50GM081883-01] We thank John McCusker, Ann Rouse, and Paul Sniegowski for providing strains. Joseph Heitman, John McCusker, Tom Petes, Greg Wray, and Cliff Zeyl provided feedback and advice. We thank the Duke University Institute for Genome Sciences and Policy Sequencing Facility for the sequencing of genomic libraries. We thank two anonymous reviewers for their insightful comments and suggestions. This research was supported by Grant MCB-0614959 from the National Science Foundation (to P.M.M.) and National Institutes of Health Grant P50GM081883-01 (to Duke Center for Systems Biology). Aa E, 2006, FEMS YEAST RES, V6, P702, DOI 10.1111/j.1567-1364.2006.00059.x; Ausubel F. M., 2002, SHORT PROTOCOLS MOL; Balloux F, 2003, GENETICS, V164, P1635; Butler G, 2009, NATURE, V459, P657, DOI 10.1038/nature08064; Charlesworth D, 2003, PHILOS T R SOC B, V358, P1051, DOI 10.1098/rstb.2003.1296; Charlesworth D, 2001, CURR OPIN GENET DEV, V11, P685, DOI 10.1016/S0959-437X(00)00254-9; Charlesworth D, 2006, CURR BIOL, V16, pR726, DOI 10.1016/j.cub.2006.07.068; Costanzo M, 2010, SCIENCE, V327, P425, DOI 10.1126/science.1180823; Deutschbauer AM, 2005, NAT GENET, V37, P1333, DOI 10.1038/ng1674; Diezmann S, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005317; Diogo D, 2009, FUNGAL GENET BIOL, V46, P159, DOI 10.1016/j.fgb.2008.11.005; Ehrenreich IM, 2010, NATURE, V464, P1039, DOI 10.1038/nature08923; Enjalbert J, 2000, GENETICS, V156, P1973; Forche A, 2009, GENETICS, V182, P799, DOI 10.1534/genetics.109.103325; Gerke J, 2009, SCIENCE, V323, P498, DOI 10.1126/science.1166426; Gerke JP, 2006, GENETICS, V174, P985, DOI 10.1534/genetics.106.058453; GIMENO CJ, 1992, CELL, V68, P1077, DOI 10.1016/0092-8674(92)90079-R; Goddard MR, 2010, ENVIRON MICROBIOL, V12, P63, DOI 10.1111/j.1462-2920.2009.02035.x; Goddard MR, 2005, NATURE, V434, P636, DOI 10.1038/nature03405; Halkett F, 2005, TRENDS ECOL EVOL, V20, P194, DOI 10.1016/j.tree.2005.01.001; Honigberg SM, 2003, J CELL SCI, V116, P2137, DOI 10.1242/jcs.00460; Ide S, 2007, MOL CELL BIOL, V27, P568, DOI 10.1128/MCB.00731-06; James TY, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000458; Johnson LJ, 2004, GENETICS, V166, P43, DOI 10.1534/genetics.166.1.43; KASSIR Y, 1988, CELL, V52, P853, DOI 10.1016/0092-8674(88)90427-8; Lee PS, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000410; Li H, 2008, GENOME RES, V18, P1851, DOI 10.1101/gr.078212.108; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324; Liti G, 2009, NATURE, V458, P337, DOI 10.1038/nature07743; Llorente B, 2008, CELL CYCLE, V7, P859, DOI 10.4161/cc.7.7.5613; Loeb JDJ, 1999, GENETICS, V153, P1535; Mandegar MA, 2007, P R SOC B, V274, P1301, DOI 10.1098/rspb.2007.0056; McMurray MA, 2003, SCIENCE, V301, P1908, DOI 10.1126/science.1087706; MITCHELL AP, 1994, MICROBIOL REV, V58, P56; MITCHELL AP, 1986, NATURE, V319, P738, DOI 10.1038/319738a0; MORTIMER RK, 1986, GENETICS, V113, P35; Muller LAH, 2009, MOL ECOL, V18, P2779, DOI 10.1111/j.1365-294X.2009.04234.x; Murphy HA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010461; NASMYTH K, 1987, SCIENCE, V237, P1162, DOI 10.1126/science.3306917; NEI M, 1977, ANN HUM GENET, V41, P225, DOI 10.1111/j.1469-1809.1977.tb01918.x; Reedy JL, 2009, CURR BIOL, V19, P891, DOI 10.1016/j.cub.2009.04.058; Reuter M, 2007, CURR BIOL, V17, pR81, DOI 10.1016/j.cub.2006.11.059; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruderfer DM, 2006, NAT GENET, V38, P1077, DOI 10.1038/ng1859; Schacherer J, 2009, NATURE, V458, P342, DOI 10.1038/nature07670; Schuller D, 2007, YEAST, V24, P625, DOI 10.1002/yea.1496; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Stearns S, 1992, EVOLUTION LIFE HIST; Tsai IJ, 2008, P NATL ACAD SCI USA, V105, P4957, DOI 10.1073/pnas.0707314105; Van de Velde S, 2008, EUKARYOT CELL, V7, P286, DOI 10.1128/EC.00276-07; van Dyk D, 2003, GENETICS, V165, P1045; Wei W, 2007, P NATL ACAD SCI USA, V104, P12825, DOI 10.1073/pnas.0701291104; Wu W, 2007, MOL MICROBIOL, V64, P1587, DOI 10.1111/j.1365-2958.2007.05759.x 54 76 77 1 27 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. FEB 1 2011 108 5 1987 1992 10.1073/pnas.1012544108 6 Multidisciplinary Sciences Science & Technology - Other Topics 714JA WOS:000286804700046 21245305 Bronze, Green Published 2019-02-21 J Bacelar, FS; White, A; Boots, M Bacelar, Flora S.; White, Andrew; Boots, Mike Life history and mating systems select for male biased parasitism mediated through natural selection and ecological feedbacks JOURNAL OF THEORETICAL BIOLOGY English Article Life-history evolution; Male-biased parasitism; Adaptive dynamics; Evolution of disease resistance POPULATION-DYNAMICS; SEX-DIFFERENCES; REPRODUCTIVE STRATEGIES; BATEMANS PRINCIPLE; EVOLUTION; DISEASE; RESISTANCE; IMMUNITY; HOSTS; IMMUNOCOMPETENCE tlsb-1%Males are often the 'sicker' sex with male biased parasitism found in a taxonomically diverse range of species. There is considerable interest in the processes that could underlie the evolution of sex-biased parasitism. Mating system differences along with differences in lifespan may play a key role. We examine whether these factors are likely to lead to male-biased parasitism through natural selection taking into account the critical role that ecological feedbacks play in the evolution of defence. We use a host-parasite model with two-sexes and the techniques of adaptive dynamics to investigate how mating system and sexual differences in competitive ability and longevity can select for a bias in the rates of parasitism. Male-biased parasitism is selected for when males have a shorter average lifespan or when males are subject to greater competition for resources. Male-biased parasitism evolves as a consequence of sexual differences in life-history that produce a greater proportion of susceptible females than males and therefore reduce the cost of avoiding parasitism in males. Different mating systems such as monogamy, polygyny or polyandry did not produce a bias in parasitism through these ecological feedbacks but may accentuate an existing bias. (C) 2010 Elsevier Ltd. All rights reserved. [Bacelar, Flora S.] IFISC CSIC UIB Inst Fis Interdisicplinar & Sistem, E-07122 Palma de Mallorca, Spain; [White, Andrew] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland; [White, Andrew] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland; [Boots, Mike] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Bacelar, FS (reprint author), IFISC CSIC UIB Inst Fis Interdisicplinar & Sistem, Campus Univ Illes Balears, E-07122 Palma de Mallorca, Spain. florabacelar@ifisc.uib-csic.es; A.R.White@hw.ac.uk; m.boots@shef.ac.uk Souza Bacelar, Flora/H-5665-2015 Souza Bacelar, Flora/0000-0002-1301-3092 Balaric Government [FIS200760327]; Royal Society of Edinburgh; Scottish Government; Leverhulme Trust Fellowship Flora S. Bacelar acknowledges support from the Balaric Government, and from Spanish MICINN and FEDER through project FISICOS (FIS200760327) and to Emilio Hernandez-Garcia for reading the article and useful discussions. Andrew White is supported by a Royal Society of Edinburgh and Scottish Government Support Research Fellowship. Mike Boots is supported by a Leverhulme Trust Fellowship. ALEXANDER J, 1988, PARASITOL TODAY, V4, P189, DOI 10.1016/0169-4758(88)90077-4; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; BUNDY DAP, 1988, PARASITOL TODAY, V4, P186, DOI 10.1016/0169-4758(88)90076-2; CASWELL H, 1986, AM NAT, V128, P707, DOI 10.1086/284598; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Hoyle A, 2011, B MATH BIOL, V73, P1154, DOI 10.1007/s11538-010-9567-7; Lindstrom J, 1998, P ROY SOC B-BIOL SCI, V265, P483, DOI 10.1098/rspb.1998.0320; McCurdy DG, 1998, OIKOS, V82, P303, DOI 10.2307/3546970; McKean KA, 2005, EVOLUTION, V59, P1510; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Miller MR, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000624; Miller MR, 2005, J THEOR BIOL, V236, P198, DOI 10.1016/j.jtbi.2005.03.005; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Perkins SE, 2003, INT J PARASITOL, V33, P909, DOI 10.1016/S0020-7519(03)00128-0; Poulin R, 1996, AM NAT, V147, P287, DOI 10.1086/285851; PROMISLOW, 1992, P BIOL SCI, V247, P203; Restif O, 2003, AM NAT, V161, P827, DOI 10.1086/375171; Restif O, 2010, P ROY SOC B-BIOL SCI, V277, P2247, DOI 10.1098/rspb.2010.0188; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Schalk G, 1997, OIKOS, V78, P67, DOI 10.2307/3545801; Skorping A, 2004, TRENDS ECOL EVOL, V19, P219, DOI 10.1016/j.tree.2004.02.006; Stoehr AM, 2006, BEHAV ECOL, V17, P751, DOI 10.1093/beheco/ark018; White A, 2006, EVOL ECOL RES, V8, P387; Zuk M, 2004, CAN J ZOOL, V82, P627, DOI 10.1139/Z04-032; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000267 30 11 11 0 20 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. JAN 21 2011 269 1 131 137 10.1016/j.jtbi.2010.10.004 7 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 705XC WOS:000286173000014 20946902 2019-02-21 J O'Connor, CM; Yick, CY; Gilmour, KM; Van Der Kraak, G; Cooke, SJ O'Connor, Constance M.; Yick, Claire Y.; Gilmour, Kathleen M.; Van Der Kraak, Glen; Cooke, Steven J. The glucocorticoid stress response is attenuated but unrelated to reproductive investment during parental care in a teleost fish GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Parental care; Parental investment; Cortisol; Androgens; Offspring age; Brood size; Offspring number; Brood manipulation JUVENILE CHINOOK SALMON; BASS MICROPTERUS-DOLOMIEUI; SMALLMOUTH BASS; PHYSIOLOGICAL STRESS; LEPOMIS-MACROCHIRUS; PLASMA-CORTISOL; RAINBOW-TROUT; K-SELECTION; MODULATION; BEHAVIOR We investigated whether circulating glucocorticoids and androgens are correlated with reproductive investment in smallmouth bass (Micropterus dolomieu), a teleost fish with sole paternal care. Circulating cortisol and androgens prior to and 25 min following a standardized 3 min emersion stressor were quantified for non-reproductive and parental fish across the parental care period. To experimentally investigate the influence of reproductive investment on endocrine parameters, we manipulated brood size (reduced, enlarged, sham-treated, or unmanipulated) 24 h prior to sampling parental fish. We predicted that fish guarding offspring would exhibit increased androgens and baseline cortisol levels, and an attenuated cortisol response to the stressor when compared with non-reproductive individuals. We further predicted that these effects would scale with reproductive investment. As predicted, parental care-providing fish exhibited lower post-stress plasma cortisol concentrations than non-reproductive fish. This difference was strongest early during parental care. However, no differences in baseline or post-stress cortisol concentrations were detected among parents guarding offspring with varying brood sizes. There was, however, a trend for parental fish to exhibit an increased cortisol response following brood manipulation, regardless of the direction of change in brood size, a response that likely reflected disturbance. No differences were found in baseline cortisol concentrations. Circulating androgens were found to be highest during early parental care, and no differences were found among parents guarding manipulated broods. Collectively, these findings demonstrate that the endocrine stress response is affected by reproductive status, but the response in this model species does not appear to be scaled according to reproductive investment as predicted by life-history theory. (C) 2010 Elsevier Inc. All rights reserved. [O'Connor, Constance M.; Cooke, Steven J.] Carleton Univ, Ottawa Carleton Inst Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Yick, Claire Y.; Cooke, Steven J.] Carleton Univ, Inst Environm Sci, Ottawa, ON K1S 5B6, Canada; [Gilmour, Kathleen M.] Univ Ottawa, Dept Biol, Ottawa, ON K1N 6N5, Canada; [Van Der Kraak, Glen] Univ Guelph, Coll Biol Sci, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada O'Connor, CM (reprint author), Carleton Univ, Ottawa Carleton Inst Biol, Fish Ecol & Conservat Physiol Lab, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. coconno4@connect.carleton.ca Cooke, Steven/F-4193-2010 Cooke, Steven/0000-0002-5407-0659 NSERC; Carleton University; Ontario Graduate Scholarship All fish were sampled under an Ontario Ministry of Natural Resources Scientific Collection Permit and handled in accordance with the guidelines of the Canadian Council on Animal Care. This research was supported by NSERC Discovery Grants to S.J.C., K.M.G., and G.V.D.K., and a Research Achievement Award from Carleton University to S.J.C. C.Y.Y. was supported by an NSERC Undergraduate Student Research Award. C.M.O. was supported by an Ontario Graduate Scholarship, and by Carleton University. The authors wish to also thank members and friends of the Cooke Lab for assistance with fieldwork, particularly Jake Davis, Cody Dey, Emily Fobert, Eric Fontaine, Marie-Ange Gravel, Kyle Hanson, Sean Landsman, Sarah McConnachie, Rana Sunder, Alex Wilson, and Samantha Wilson. Particular thanks to Jacquie Matsumoto for her assistance with the testosterone assays. BARTON BA, 1987, AQUACULTURE, V62, P299, DOI 10.1016/0044-8486(87)90172-4; BARTON BA, 1986, T AM FISH SOC, V115, P245, DOI 10.1577/1548-8659(1986)115<245:MADECP>2.0.CO;2; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; BROWN JA, 1984, ANIM BEHAV, V32, P113, DOI 10.1016/S0003-3472(84)80329-2; CARMICHAEL GJ, 1983, PROG FISH CULT, V45, P110, DOI 10.1577/1548-8659(1983)45[110:PEOHAH]2.0.CO;2; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cooke SJ, 2006, OECOLOGIA, V148, P235, DOI 10.1007/s00442-006-0375-6; Cooke SJ, 2002, AM FISH S S, V31, P489; Davis KB, 2001, J WORLD AQUACULT SOC, V32, P422, DOI 10.1111/j.1749-7345.2001.tb00469.x; Denver RJ, 2009, INTEGR COMP BIOL, V49, P339, DOI 10.1093/icb/icp082; Dey CJ, 2010, HORM BEHAV, V58, P599, DOI 10.1016/j.yhbeh.2010.06.016; FLOS R, 1988, AQUACULTURE, V71, P99, DOI 10.1016/0044-8486(88)90277-3; Fuzzen MLM, 2011, HORMONES AND REPRODUCTION OF VERTEBRATES, VOL 1: FISHES, P103; GAMPERL AK, 1994, REV FISH BIOL FISHER, V4, P215, DOI 10.1007/BF00044129; Greenberg N, 2002, INTEGR COMP BIOL, V42, P508, DOI 10.1093/icb/42.3.508; Greenberg N, 1987, REPROD ENDOCRINOLOGY, P389; KINDLER PM, 1989, GEN COMP ENDOCR, V75, P446, DOI 10.1016/0016-6480(89)90180-9; King V.W., 2006, AQUAC RES, V37, P1685; Knapp R, 1999, HORM BEHAV, V35, P81, DOI 10.1006/hbeh.1998.1499; Lendvai AZ, 2007, P R SOC B, V274, P391, DOI 10.1098/rspb.2006.3735; Lima LC, 2006, J WORLD AQUACULT SOC, V37, P89, DOI 10.1111/j.1749-7345.2006.00011.x; Lyytikainen T, 2002, ENVIRON BIOL FISH, V64, P195, DOI 10.1023/A:1016017822700; Magee SE, 2006, HORM BEHAV, V49, P598, DOI 10.1016/j.yhbeh.2005.12.003; MAULE AG, 1988, T AM FISH SOC, V117, P245, DOI 10.1577/1548-8659(1988)117<0245:PEOCAT>2.3.CO;2; MCMASTER ME, 1992, CAN TECH REP FISH AQ, P1836; Mommsen TP, 1999, REV FISH BIOL FISHER, V9, P211, DOI 10.1023/A:1008924418720; Moore IT, 2003, HORM BEHAV, V43, P39, DOI 10.1016/S0018-506X(02)00038-7; O'Connor CM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P709, DOI 10.1086/605914; Oliveira RF, 2002, COMP BIOCHEM PHYS B, V132, P203, DOI 10.1016/S1096-4959(01)00523-1; Philipp David P., 1997, North American Journal of Fisheries Management, V17, P557, DOI 10.1577/1548-8675(1997)017<0557:TIOCAR>2.3.CO;2; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 1972, AM NAT, V106, P581, DOI 10.1086/282798; Pottinger TG, 2000, J FISH BIOL, V56, P667, DOI 10.1006/jfbi.1999.1188; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RIDGWAY MS, 1988, CAN J ZOOL, V66, P1722, DOI 10.1139/z88-248; RIDGWAY MS, 1989, ETHOLOGY, V80, P47; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; SARGENT RC, 1985, BEHAV ECOL SOCIOBIOL, V17, P43, DOI 10.1007/BF00299427; Schreck CB, 2001, AQUACULTURE, V197, P3, DOI 10.1016/S0044-8486(01)00580-4; SILVERIN B, 1986, GEN COMP ENDOCR, V64, P67, DOI 10.1016/0016-6480(86)90029-8; SMITH C, 1995, REV FISH BIOL FISHER, V5, P7, DOI 10.1007/BF01103363; Suski CD, 2007, J ANIM ECOL, V76, P730, DOI 10.1111/j.1365-2656.2007.01242.x; Suski CD, 2003, T AM FISH SOC, V132, P210, DOI 10.1577/1548-8659(2003)132<0210:TEOCAR>2.0.CO;2; TRIVERS RL, 1974, AM ZOOL, V14, P249; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wingfield JC, 2003, J NEUROENDOCRINOL, V15, P711, DOI 10.1046/j.1365-2826.2003.01033.x; Wingfield JC, 1998, AM ZOOL, V38, P191; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 54 21 21 1 15 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. JAN 15 2011 170 2 SI 215 221 10.1016/j.ygcen.2010.11.004 7 Endocrinology & Metabolism Endocrinology & Metabolism 708ND WOS:000286367600002 21074532 2019-02-21 J Grant, PR; Grant, BR Grant, Peter R.; Grant, B. Rosemary Causes of lifetime fitness of Darwin's finches in a fluctuating environment PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article El Nino; extrapair offspring; heterozygosity; opportunistic breeding EXTRA-PAIR PATERNITY; SOCIALLY MONOGAMOUS PASSERINE; MATE CHOICE; GENETIC BENEFITS; OFFSPRING VIABILITY; SEYCHELLES WARBLER; HISTORY EVOLUTION; GEOSPIZA-FORTIS; TROPICAL BIRDS; SONG SPARROWS The genetic basis of variation in fitness of many organisms has been studied in the laboratory, but relatively little is known of fitness variation in natural environments or its causes. Lifetime fitness (recruitment) may be determined solely by producing many offspring, modified by stochastic effects on their subsequent survival up to the point of breeding, or by an additional contribution made by the high quality of the offspring owing to non-random mate choice. To investigate the determinants of lifetime fitness, we measured offspring production, longevity, and lifetime number of mates in four cohorts of two long-lived species of socially monogamous Darwin's finch species, Geospiza fortis and G. scandens, on the equatorial Galapagos Island of Daphne Major. Regression analysis showed that the lifetime production of fledglings was predicted by lifetime number of clutches and that recruitment was predicted by lifetime number of fledglings and longevity. There was little support for a hypothesis of selective mating by females. The offspring sired by extrapair mates were no more fit in terms of recruitment than were half-sibs sired by social mates. These findings provide insight into the evolution of life history strategies of tropical birds. Darwin's finches deviate from the standard tropical pattern of a slow pace of life by combining tropical (long lifespan) and temperate (large clutch size) characteristics. Our study of fitness shows why this is so in terms of selective pressures (fledgling production and adult longevity) and ecological opportunities (pulsed food supply and relatively low predation). [Grant, Peter R.; Grant, B. Rosemary] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA Grant, PR (reprint author), Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. prgrant@princeton.edu Charles Darwin Foundation; Galapagos National Parks Service; US National Science Foundation; Princeton University We thank the many field assistants for their help; Lukas Keller, Nat Wheelright, and Jane Reid for discussion; and Michaela Hau, Dick Holmes, and Martin Wikelski for comments on the manuscript. We also thank the Charles Darwin Foundation and the Galapagos National Parks Service for their support of our research. This work was funded by grants from the US National Science Foundation and Class of 1877 funds from Princeton University. Akcay E, 2007, EVOL ECOL RES, V9, P855; Albrecht T, 2009, J EVOLUTION BIOL, V22, P2020, DOI 10.1111/j.1420-9101.2009.01815.x; Augustin J, 2007, J ORNITHOL, V148, P189, DOI 10.1007/s10336-006-0119-8; Bennett P., 2002, EVOLUTIONARY ECOLOGY; BOAG PT, 1984, ECOL MONOGR, V54, P463, DOI 10.2307/1942596; BOUMAN KM, 2007, ANIM BEHAV, V73, P15; Brown JL, 1997, BEHAV ECOL, V8, P60, DOI 10.1093/beheco/8.1.60; Charlesworth B., 1980, EVOLUTION AGE STRUCT; DAVIES NB, 1992, DUNNOCK BEHAV SOCIAL; Dickinson JL, 2001, BEHAV ECOL SOCIOBIOL, V50, P423, DOI 10.1007/s002650100381; Ellegren H, 2008, NATURE, V452, P169, DOI 10.1038/nature06737; Falconer D. S., 1996, INTRO QUANTITATIVE G; Foerster K, 2003, NATURE, V425, P714, DOI 10.1038/nature01969; Fossoy F, 2008, EVOLUTION, V62, P145, DOI 10.1111/j.1558-5646.2007.00284.x; Freeman-Gallant CR, 2006, BEHAV ECOL, V17, P952, DOI 10.1093/beheco/arl031; Garcia-Navas V, 2009, P ROY SOC B-BIOL SCI, V276, P2931, DOI 10.1098/rspb.2009.0417; GIBBS HL, 1989, EVOLUTION, V43, P1273, DOI 10.1111/j.1558-5646.1989.tb02574.x; GIBBS HL, 1987, NATURE, V327, P511, DOI 10.1038/327511a0; Gowaty PA, 2010, P NATL ACAD SCI USA, V107, P13771, DOI 10.1073/pnas.1006174107; Grant P. R., 2008, WHY SPECIES MULTIPLY; Grant PR, 2008, P R SOC B, V275, P661, DOI 10.1098/rspb.2007.0898; Grant PR, 2006, SCIENCE, V313, P224, DOI 10.1126/science.1128374; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; GRANT PR, 1992, ECOLOGY, V73, P766, DOI 10.2307/1940156; Grant PR, 2000, P ROY SOC B-BIOL SCI, V267, P131, DOI 10.1098/rspb.2000.0977; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; Griffith SC, 2002, MOL ECOL, V11, P2195, DOI 10.1046/j.1365-294X.2002.01613.x; Griffith SC, 2009, J AVIAN BIOL, V40, P97, DOI 10.1111/j.1600-048X.2009.04562.x; Hosken DJ, 2003, EVOL BIOL, V33, P173; Huber SK, 2007, P R SOC B, V274, P1709, DOI 10.1098/rspb.2007.0224; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; Keller LF, 2001, HEREDITY, V87, P325, DOI 10.1046/j.1365-2540.2001.00900.x; Kempenaers B, 2007, ADV STUD BEHAV, V37, P189, DOI 10.1016/S0065-3454(07)37005-8; Lehtonen PK, 2009, ANIM BEHAV, V77, P1103, DOI 10.1016/j.anbehav.2009.01.014; Macedo RH, 2008, AUK, V125, P769, DOI 10.1525/auk.2008.11008; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Neff BD, 2009, J EVOLUTION BIOL, V22, P424, DOI 10.1111/j.1420-9101.2008.01646.x; Packer C, 2005, SCIENCE, V307, P390, DOI 10.1126/science.1105122; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Petren K, 1998, MOL ECOL, V7, P1782, DOI 10.1046/j.1365-294x.1998.00518.x; Petren K, 1999, AUK, V116, P252, DOI 10.2307/4089475; Postma E, 2005, NATURE, V433, P65, DOI 10.1038/nature03083; Reid JM, 2008, EVOLUTION, V62, P887, DOI 10.1111/j.1558-5646.2008.00335.x; Reyer HU, 1997, BEHAV ECOL, V8, P534, DOI 10.1093/beheco/8.5.534; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Richardson DS, 2005, P ROY SOC B-BIOL SCI, V272, P759, DOI 10.1098/rspb.2004.3028; Richardson DS, 2001, MOL ECOL, V10, P2263, DOI 10.1046/j.0962-1083.2001.01355.x; Ricklefs RE, 2010, AM NAT, V175, pIII, DOI 10.1086/650355; Robinson WD, 2010, AUK, V127, P253, DOI 10.1525/auk.2010.127.2.253; Schmoll T, 2005, EVOLUTION, V59, P645, DOI 10.1111/j.0014-3820.2005.tb01023.x; Schmoll T, 2007, BEHAV ECOL, V18, P1073, DOI 10.1093/beheco/arm082; Schmoll T, 2009, P R SOC B, V276, P337, DOI 10.1098/rspb.2008.1116; Simmons LW, 2005, ANNU REV ECOL EVOL S, V36, P125, DOI 10.1146/annurev.ecolsys.36.102403.112501; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Suter SM, 2007, P R SOC B, V274, P2865, DOI 10.1098/rspb.2007.0799; van Dongen WFD, 2009, J ORNITHOL, V150, P607, DOI 10.1007/s10336-009-0371-9; Veen T, 2001, NATURE, V411, P45, DOI 10.1038/35075000; Wagner GP, 2010, EVOLUTION, V64, P1358, DOI 10.1111/j.1558-5646.2009.00909.x; Westneat DF, 2003, ANNU REV ECOL EVOL S, V34, P365, DOI 10.1146/annurev.ecolsys.34.011802.132439; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; Yasui Y, 2001, ECOL RES, V16, P605, DOI 10.1046/j.1440-1703.2001.00423.x 63 11 11 9 137 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 11 2011 108 2 674 679 10.1073/pnas.1018080108 6 Multidisciplinary Sciences Science & Technology - Other Topics 704ZU WOS:000286097700047 21199941 Bronze, Green Published 2019-02-21 J Bornhofen, S; Barot, S; Lattaud, C Bornhofen, S.; Barot, S.; Lattaud, C. The evolution of CSR life-history strategies in a plant model with explicit physiology and architecture ECOLOGICAL MODELLING English Article Life-history strategies; Resource availability; Disturbance; Evolution; L-systems ECOSYSTEM ENGINEERS; ADAPTIVE DYNAMICS; GROWTH; TREE; COMMUNITIES; POPULATIONS; COEXISTENCE; EFFICIENCY; DIVERSITY This paper introduces a functional-structural plant model based on artificial life concepts and L-systems. This model takes into account realistic physiological rules, the architecture of the plants and their demography. An original benefit of this approach is that it allows the simulation of plant evolution at both functional and life-history levels implementing mutations to the L-systems and a set of genetic parameter values. The conducted experiments focus on the evolutionary emergence of different life history strategies in an environment with heterogeneous resource availability and disturbance frequency. It is found that, depending on the encountered conditions, the plants develop three major strategies classified as competitors, stress-tolerators and ruderals according to Grime's CSR theory. Most of the evolved characteristics comply with theoretical biology or field observations on natural plants. Besides these results, our modelling framework is highly flexible and many refinements can be readily implemented depending on the issues one intends to address. Moreover, the model can readily be used to address many questions at the interface between evolutionary ecology, plant functional and community ecologies and ecosystem ecology. (C) 2010 Elsevier B.V. All rights reserved. [Bornhofen, S.] EISTI, F-95011 Cergy Pontoise, France; [Barot, S.] Ecole Normale Super, AgroParisTech, IRD, UPMC,CNRS,UMR 7618, F-75230 Paris 05, France; [Lattaud, C.] Univ Paris 05, LIAP5, F-75006 Paris, France Bornhofen, S (reprint author), EISTI, Ave Parc, F-95011 Cergy Pontoise, France. sb@eisti.fr barot, sebastien/A-8447-2012 barot, sebastien/0000-0002-5910-538X Allen MT, 2005, NEW PHYTOL, V166, P869, DOI 10.1111/j.1469-8137.2005.01348.x; Barot S, 2007, FUNCT ECOL, V21, P1, DOI 10.1111/j.1365-2435.2006.01225.x; Bornhofen S, 2007, P 9 INT C VIRT REAL, P172; BORNHOFEN S, 2008, THESIS PARIS SUD PAR; Bornhofen S, 2006, LECT NOTES COMPUT SC, V4193, P808; Bornhofen Stefan, 2009, Natural Computing, V8, P349, DOI 10.1007/s11047-008-9089-5; Boudsocq S, 2009, FUNCT ECOL, V23, P220, DOI 10.1111/j.1365-2435.2008.01476.x; CHAPIN FS, 1993, AM NAT, V142, pS78, DOI 10.1086/285524; Chomsky Noam, 1957, SYNTACTIC STRUCTURES; Cody ML, 1996, J ECOL, V84, P53, DOI 10.2307/2261699; Crawley M. J, 1996, PLANT ECOL, P401, DOI 10.1002/9781444313642.ch13; Daufresne T, 2005, P NATL ACAD SCI USA, V102, P9212, DOI 10.1073/pnas.0406427102; DAVIDSON RL, 1969, ANN BOT-LONDON, V33, P561, DOI 10.1093/oxfordjournals.aob.a084308; Dieckmann U, 1997, TRENDS ECOL EVOL, V12, P128, DOI 10.1016/S0169-5347(97)01004-5; EBNER M, 2002, P 5 EUR C GEN PROGR, P316; Fick A, 1855, ANN PHYS, V170, P59; Fornara DA, 2009, ECOLOGY, V90, P408, DOI 10.1890/08-0325.1; FOSTER SA, 1985, ECOLOGY, V66, P773, DOI 10.2307/1940538; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Geritz SAH, 2005, J EVOLUTION BIOL, V18, P1174, DOI 10.1111/j.1420-9101.2004.00841.x; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; Geritz SAH, 2007, THEOR POPUL BIOL, V71, P424, DOI 10.1016/j.tpb.2007.03.006; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Gurevitch J., 2006, ECOLOGY PLANTS; Hector A, 1999, SCIENCE, V286, P1123, DOI 10.1126/science.286.5442.1123; Jacob C, 1994, LECT NOTES COMPUT SC, V866, P334; Jolliffe I., 1986, PRINCIPAL COMPONENT; JONES CG, 1994, OIKOS, V69, P373, DOI 10.2307/3545850; Kefi S, 2008, AM NAT, V172, pE1, DOI 10.1086/588066; KISDI E, 2000, P ROY SOC LOND B BIO, V267, P1671; LINDENMAYER A, 1968, J THEOR BIOL, V18, P280, DOI 10.1016/0022-5193(68)90079-9; Loeuille N, 2008, THEOR POPUL BIOL, V74, P34, DOI 10.1016/j.tpb.2008.04.004; LOREAU M, 2001, SCIENCE, V294, P894; MAC ARTHUR ROBERT H., 1967; Menge DNL, 2008, P NATL ACAD SCI USA, V105, P1573, DOI 10.1073/pnas.0711411105; Mustard MJ, 2003, EVOL ECOL RES, V5, P1067; OCHOA G, 1998, PARALLEL PROBLEM SOL, V5, P335; Pacala SW, 1996, ECOL MONOGR, V66, P1, DOI 10.2307/2963479; Perttunen J, 1998, ECOL MODEL, V108, P189, DOI 10.1016/S0304-3800(98)00028-3; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Prusinkiewicz P, 1990, ALGORITHMIC BEAUTY P; Room PM, 1996, TRENDS PLANT SCI, V1, P33, DOI 10.1016/S1360-1385(96)80021-5; Schieving F, 1999, NEW PHYTOL, V143, P201, DOI 10.1046/j.1469-8137.1999.00431.x; Shinozaki K., 1964, JAPANESE J ECOL, V14, P97, DOI DOI 10.18960/SEITAI.14.3_97; Sievanen R, 2000, ANN FOREST SCI, V57, P399; Simioni G, 2003, ECOLOGY, V84, P1879, DOI 10.1890/0012-9658(2003)084[1879:TLSSCA]2.0.CO;2; Stanley KO, 2003, ARTIF LIFE, V9, P93, DOI 10.1162/106454603322221487; Stearns S, 1992, EVOLUTION LIFE HIST; TAYLOR T, 2000, P 1 INT C INT GAM SI; Thornley JHM, 1998, ANN BOT-LONDON, V81, P165, DOI 10.1006/anbo.1997.0529; Yan HP, 2004, ANN BOT-LONDON, V93, P591, DOI 10.1093/aob/mch078 51 13 15 3 38 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 ECOL MODEL Ecol. Model. JAN 10 2011 222 1 1 10 10.1016/j.ecolmodel.2010.09.014 10 Ecology Environmental Sciences & Ecology 689YZ WOS:000284968300001 2019-02-21 J Ohlberger, J; Langangen, O; Edeline, E; Olsen, EM; Winfield, IJ; Fletcher, JM; Ben James, J; Stenseth, NC; Vollestad, LA Ohlberger, Jan; Langangen, Oystein; Edeline, Eric; Olsen, Esben Moland; Winfield, Ian J.; Fletcher, Janice M.; Ben James, J.; Stenseth, Nils Christian; Vollestad, Leif Asbjorn Pathogen-induced rapid evolution in a vertebrate life-history trait PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article disease; life-history evolution; maturation reaction norm; pathogen; perch; size at maturation PERCA-FLUVIATILIS L; REACTION NORMS; NATURAL-POPULATION; GENETIC CHANGE; DAPHNIA-MAGNA; GADUS-MORHUA; ATLANTIC COD; MATURATION; WINDERMERE; SIZE Anthropogenic factors, including climate warming, are increasing the incidence and prevalence of infectious diseases worldwide. Infectious diseases caused by pathogenic parasites can have severe impacts on host survival, thereby altering the selection regime and inducing evolutionary responses in their hosts. Knowledge about such evolutionary consequences in natural populations is critical to mitigate potential ecological and economic effects. However, studies on pathogen-induced trait changes are scarce and the pace of evolutionary change is largely unknown, particularly in vertebrates. Here, we use a time series from long-term monitoring of perch to estimate temporal trends in the maturation schedule before and after a severe pathogen outbreak. We show that the disease induced a phenotypic change from a previously increasing to a decreasing size at maturation, the most important life-history transition in animals. Evolutionary rates imposed by the pathogen were high and comparable to those reported for populations exposed to intense human harvesting. Pathogens thus represent highly potent drivers of adaptive phenotypic evolution in vertebrates. [Ohlberger, Jan; Langangen, Oystein; Stenseth, Nils Christian; Vollestad, Leif Asbjorn] Univ Oslo, Dept Biol, CEES, N-0316 Oslo, Norway; [Edeline, Eric] UPMC Paris 6, CNRS, UMR 7618, Lab Biogeochim & Ecol Milieux Continentaux, F-75230 Paris 05, France; [Olsen, Esben Moland] Inst Marine Res, N-4817 Flodevigen, His, Norway; [Winfield, Ian J.; Fletcher, Janice M.; Ben James, J.] Lancaster Environm Ctr, Ctr Ecol & Hydrol, Lancaster LA1 4AP, Lancs, England Ohlberger, J (reprint author), Univ Oslo, Dept Biol, CEES, POB 1066, N-0316 Oslo, Norway. jan.ohlberger@bio.uio.no Stenseth, Nils Chr./G-5212-2016; Olsen, Esben/B-1894-2012; Winfield, Ian/I-6085-2012 Stenseth, Nils Chr./0000-0002-1591-5399; Olsen, Esben/0000-0003-3807-7524; Winfield, Ian/0000-0001-9296-5114; Ohlberger, Jan/0000-0001-6795-240X; Vollestad, Leif Asbjorn/0000-0002-9389-7982 Research Council of Norway; Natural Environment Research Council of the UK; Natural Environment Research Council [CEH010022] We thank Leif Christian Stige and Geir Storvik for helpful statistical advice. Yannis Michalakis and an anonymous reviewer provided helpful comments on an earlier version of the manuscript. We are also grateful to the Freshwater Biological Association for their joint stewardship of the long-term Windermere data. This work was supported by the Research Council of Norway and the Natural Environment Research Council of the UK. Barot S, 2004, EVOL ECOL RES, V6, P659; BODALY RA, 1989, J FISH BIOL, V34, P965, DOI 10.1111/j.1095-8649.1989.tb03380.x; Bucke D., 1979, Journal of Fish Diseases, V2, P297, DOI 10.1111/j.1365-2761.1979.tb00172.x; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Duffy MA, 2007, ECOL LETT, V10, P44, DOI 10.1111/j.1461-0248.2006.00995.x; Duncan AB, 2007, EVOLUTION, V61, P796, DOI 10.1111/j.1558-5646.2007.00072.x; Edeline E, 2008, P NATL ACAD SCI USA, V105, P19792, DOI 10.1073/pnas.0808011105; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; Gandon S, 2002, AM NAT, V160, P374, DOI 10.1086/341525; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Grenfell B. T., 1995, ECOLOGY INFECT DIS N; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Harvell CD, 1999, SCIENCE, V285, P1505, DOI 10.1126/science.285.5433.1505; Harvell CD, 2002, SCIENCE, V296, P2158, DOI 10.1126/science.1063699; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; HOCHBERG ME, 1992, J EVOLUTION BIOL, V5, P491, DOI 10.1046/j.1420-9101.1992.5030491.x; HUTCHINGS JA, 1993, CAN J FISH AQUAT SCI, V50, P2468, DOI 10.1139/f93-271; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; KIPLING C, 1984, J FISH BIOL, V24, P395, DOI 10.1111/j.1095-8649.1984.tb04811.x; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; LECREN ED, 1977, J ANIM ECOL, V46, P281; LECREN ED, 1951, J ANIM ECOL, V20, P201; Manly B. F. J., 2007, RANDOMIZATION BOOTST; Mitchell SE, 2004, ECOL LETT, V7, P848, DOI 10.1111/j.1461-0248.2004.00639.x; Muggeo VMR, 2008, R NEWS, V8, P20, DOI DOI 10.1159/000323281; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Palumbi SR, 2001, SCIENCE, V293, P1786, DOI 10.1126/science.293.5536.1786; Paxton CGM, 1999, ECOL FRESHW FISH, V8, P78, DOI 10.1111/j.1600-0633.1999.tb00057.x; PICKERING AD, 1977, J FISH BIOL, V11, P349, DOI 10.1111/j.1095-8649.1977.tb04128.x; PRICE PW, 1980, EVOLUTIONARY BIOL; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; The R Development Core Team, 2007, R LANG ENV STAT COMP; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Wood CL, 2007, P NATL ACAD SCI USA, V104, P9335, DOI 10.1073/pnas.0700062104; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 44 22 22 1 40 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JAN 7 2011 278 1702 35 41 10.1098/rspb.2010.0960 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 684MU WOS:000284554800006 20667871 Green Published, Bronze 2019-02-21 S Scalera, F Ozsahin, M Scalera, Francesco Peugeot celebrates its 200 years of life. History, strategies, organisation and future prospects of the French car company. A comparison with Fiat Auto. PROCEEDINGS OF 7TH INTERNATIONAL STRATEGIC MANAGEMENT CONFERENCE Procedia Social and Behavioral Sciences English Proceedings Paper 7th International Strategic Management Conference JUN 30-JUL 02, 2011 Paris, FRANCE Peugeot; Strategies; Internationalisation; Production; Fiat The motor industry is suffering more than other sectors from the effects of the current international crisis with a widespread drop in sales affecting almost all the main world producers, due to two factors that can be described as follows. On one side, the shrinkage in family per capita income inducing the consumer to spend less on luxury goods (like cars); on the other one, the high upkeep of cars because of a sharp increase in the cost of fuel, of insurance as well as of road tax, particularly in some European countries (like Italy). In addition to this ruinous economic situation reducing the car producing companies' receipts, the high costs to be borne to renew the industrial plants in compliance with the environmental regulations as well as to design products that are able to meet the consumer's changing needs led motor companies to reorganise their competitive strategies with growing attention, as compared to the past, to a kind of strategy oriented to "innovation and flexibility", allowing the design of new high technology products that are environment-friendly and energy saving with low selling prices compared to the quality offered. In particular, these goals can be achieved by implementing such strategies as those pursued by some producers in recent years: significant mergers with other car companies aimed at combining their individual peculiarities in order to properly widen the range of products offered; production relocation to emerging countries in order to profit from low costs of raw materials and labour to minimise production costs; boosting research and development to design cars that are able to run with alternative energy sources; re-launching neglected brands through creative promotional campaigns that are likely to stir up new emotions in the consumer. As a result, the present work is mainly intended to analyse the strategic evolution of one of the most ancient motor companies on the international scene, namely Peugeot, to weigh up the situation, on the occasion of its bicentenary, about the innovative ideas brought into the market, the kind of organisational structure adopted within the company itself, as well as the future prospects of the transalpine firm. In particular, after a rapid historical survey of the firm, the paper is going to assess whether the strategic choices made are able to meet the above-mentioned successful factors, in order to assume the possible result that the new models suggested are likely to achieve on the consumer market. Afterwards, the most suitable organisational structure to be adopted to support the strategic choices made in the present market conditions will be examined; finally, the dissertation will end by comparing such internationalisation strategies with those implemented by the transalpine competitor, namely Fiat, in order to assume which of the two strategic choices could turn out to be the most performing one in the future. [Scalera, Francesco] Univ Bari Aldo Moro, I-70122 Bari, Italy roby_sca@virgilio.it ANSA, 2011, PSA PEUG CITR IT WIL; Argyris C, 1995, HARVARD BUSINESS REV; Bartezzaghi E., 1994, IMPRESA; Benozzo A., 1995, SVILUPPO ORG; Bernardi G., 1996, SVILUPPO ORG; Bourassi N., 2010, PSA HAVE REACHED TUR; Brusa L., 1986, CORPORATE ORG STRUCT; Butera F., 1994, IMPRESA; Camussone P. F., 1985, INFORM SYSTEM CO; Cusumano Michael, 1985, JAPANESE AUTOMOBILE; De Pascale A., 2010, TERRA NEWS; Di Napoli A., 2010, SOLDIONLINE IT; Donna G, 1992, COMPETITIVE BUSINESS; Dubini P., 1991, SVILUPPO ORG; Fornovo L., 2010, STAMPA IT; Gemelli F., 2010, OMNIAUTO IT; Giorgi F., 2009, MOTORI IT; Golhar D, 1991, INT J PRODUCTION RES, V29; LOUBET J. L., 1995, CITROEN PEUGEOT RENA; Mijalkovic A., 2008, OSSERVATORIO BALCANI; Miolo Vitali P., 1993, CORPORATE DECISION M; Molinengo P., 2011, FIAT GROUPS CONSOLID; Mombelli M. T., 2011, BUSINESS PEOPLE; Montrone D., 2010, FIAT DOES MARCHIONNE; Nelson D., 1988, TAYLOR MANAGERIAL RE; Porter M., 1993, COMPETITIVE ADVANTAG; PRAHALAD CK, 1990, HARVARD BUSINESS REV; Scalera F, 2011, P BOOK 3 INT SCI C E, V2, P67; Sciarra F., 2010, AUTOBLOG IT; Tanca M., 2010, MOTO IT; Taylor W., 1969, SCI ORG WORK; Volpato G, 1996, FIAT CASE STRATEGY R 32 2 2 1 19 ELSEVIER SCIENCE BV AMSTERDAM SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1877-0428 PROCD SOC BEHV 2011 24 10.1016/j.sbspro.2011.09.031 14 Management Business & Economics BYP57 WOS:000299617400105 Other Gold 2019-02-21 J Schummer, ML; Allen, RB; Wang, GM Schummer, Michael L.; Allen, R. Bradford; Wang, Guiming Sizes and Long-term Trends of Duck Broods in Maine, 1955-2007 NORTHEASTERN NATURALIST English Article AMERICAN BLACK DUCKS; RING-NECKED DUCKS; ADAPTIVE MANAGEMENT; WATERFOWL HARVESTS; WETLAND HABITAT; MALLARDS; SURVIVAL; POPULATIONS; UNCERTAINTY; BEAVER Productivity is a primary parameter used in waterfowl population models; however, few long-term metrics of reproductive output exist for eastern North American waterfowl. We used 52 years of brood survey data from throughout Maine to determine mean Class III brood sizes for Lophodytes cucullatus (Hooded Merganser), Anas platyrhynchos (Mallard), Anas rubripes (American Black Duck), Aix sponsa (Wood Duck), Aythya collaris (Ring-necked Duck), and Bucephala clangula (Common Goldeneye). Using model selection with theoretic-information approaches, we also investigated effects of wetland type, mean ambient temperature during nesting and brood rearing, and year (1955-2007) on trends in brood sizes. Brood sizes declined throughout the survey period for American Black Ducks (-0.88 ducklings/brood), Wood Ducks (-0.91), Ring-necked Ducks (-1.75), and Common Goldeneyes (-1.45). Declines in brood sizes in Maine are consistent with that of other metrics of productivity (e.g., age ratios of harvested waterfowl) for breeding ducks in Maine and may be cause for concern, especially given that declines in brood sizes were observed across a range of species with highly disparate life-history strategies. Declines in age ratios of hunter-harvested ducks could be indicative of range-wide declines in productivity resulting from decreased breeding propensity, nest success, clutch size, or duckling survival. Our findings may suggest that declines in productivity observed in age ratios of hunter-harvested ducks are, at least in part, related to conditions during the breeding season. Thus, understanding factors influencing productivity on breeding grounds are of primary concern for long-term conservation of breeding waterfowl populations in Maine. [Allen, R. Bradford] Maine Dept Inland Fisheries & Wildlife, Bangor, ME 04401 USA; [Schummer, Michael L.; Wang, Guiming] Mississippi State Univ, Dept Wildlife & Fisheries, Mississippi State, MS 39762 USA Allen, RB (reprint author), Maine Dept Inland Fisheries & Wildlife, 650 State St, Bangor, ME 04401 USA. brad.allen@maine.gov Wang, Guiming/E-4582-2011 Wang, Guiming/0000-0001-5002-0120 Maine Department of Inland Fisheries and Wildlife (MDIFW) Waterfowl surveys were funded by the Maine Department of Inland Fisheries and Wildlife (MDIFW). We thank MDIFW biologists conducting brood surveys, along with Pat Corr, Skip Spencer, (retired - MDIFW) and Howard Mendall (retired - USGS, now deceased) for their roles in coordinating Maine's survey efforts. We thank P. Corr, J. Longcore, D. McAuley, R. Kaminski, and students of the WF8212 class in the Department of Wildlife and Fisheries at Mississippi State University who provided helpful comments during the development of the manuscript. This paper has been approved for publication as FWRC Journal Article WF-277. ANKNEY CD, 1987, J WILDLIFE MANAGE, V51, P523, DOI 10.2307/3801262; Bates D., 2008, IME4 LINEAR MIXED EF; Bellrose F., 1980, DUCKS GEESE SWANS N; Bolduc F, 2008, WATERBIRDS, V31, P42, DOI 10.1675/1524-4695(2008)31[42:CGBITE]2.0.CO;2; Browne DM, 2007, CONSERVING WATERFOWL; Burnham K. P, 2002, MODEL SELECTION MULT; Conroy M. J., 2002, WILDLIFE MONOGRAPHS, V150; CONROY MJ, 1983, J WILDLIFE MANAGE, V47, P127, DOI 10.2307/3808059; Devries JH, 2008, AUK, V125, P618, DOI 10.1525/auk.2008.07055; DiBona MT, 2007, THESIS U DELAWARE NE; DIEFENBACH DR, 1989, J WILDLIFE MANAGE, V53, P383, DOI 10.2307/3801141; Everitt B. S, 2005, R S PLUS COMPANION M; Faraway J. J., 2006, EXTENDING LINEAR MOD; GEISSLER PH, 1990, J WILDLIFE MANAGE, V54, P201, DOI 10.2307/3809029; Gollop J. B., 1954, GUIDE AGING DUCK BRO; HARAMIS GM, 1985, J WILDLIFE MANAGE, V49, P449, DOI 10.2307/3801550; Hepp G.R., 1995, BIRDS N AM ONLINE; Jacobson G. L., 2009, MAINES CLIMATE FUTUR; Johnson Douglas H., 1992, P446; Longcore JR, 2006, HYDROBIOLOGIA, V567, P143, DOI 10.1007/s10750-006-0055-x; Longcore JR, 1998, J WILDLIFE MANAGE, V62, P142, DOI 10.2307/3802272; Maine Department of Inland Fisheries and Wildlife (MDIFW), 2007, WILDL DIV RES MAN RE; McAuley DG, 2004, WILDLIFE SOC B, V32, P465, DOI 10.2193/0091-7648(2004)32[465:DUOWBB]2.0.CO;2; MCAULEY DG, 1988, J WILDLIFE MANAGE, V52, P169, DOI 10.2307/3801219; McCall C.A., 1972, MANUAL MAINE WETLAND; McCall TC, 1996, WETLANDS, V16, P163, DOI 10.1007/BF03160690; Mendall H.L., 1958, U MAINE B, V16; MERENDINO MT, 1994, CONDOR, V96, P411, DOI 10.2307/1369324; Middleton BA, 1999, WETLAND RESTORATION; NICHOLS JD, 1995, ANNU REV ECOL SYST, V26, P177, DOI 10.1146/annurev.es.26.110195.001141; Nummi P, 2008, ECOGRAPHY, V31, P519, DOI 10.1111/j.0906-7590.2008.05477.x; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Poysa H, 2002, J APPL ECOL, V39, P502, DOI 10.1046/j.1365-2664.2002.00726.x; Quinlan FT, 1987, NDP019 CARB DIOX INF; R Development Team, 2006, R LANG ENV STAT COMP; Reed A, 1970, THESIS U LAVAL QUEBE; Reynolds RE, 2001, J WILDLIFE MANAGE, V65, P765, DOI 10.2307/3803027; RINGELMAN JK, 1982, J WILDLIFE MANAGE, V46, P622, DOI 10.2307/3808552; RINGELMAN JK, 1982, J WILDLIFE MANAGE, V46, P615, DOI 10.2307/3808551; ROTELLA JJ, 1992, J WILDLIFE MANAGE, V56, P499, DOI 10.2307/3808865; Szymanski ML, 2005, WILDLIFE SOC B, V33, P993, DOI 10.2193/0091-7648(2005)33[993:EOSDOF]2.0.CO;2; U. S. Fish and Wildlife Service [USFWS], 2008, WAT POP STAT 2008; US Fish and Wildlife Service (USFWS), 2007, AD HARV MAN 2007 HUN; US North American Bird Conservation Initiative Committee (USNABCIC), 2000, N AM BIRD CONS IN BI; *USFWS, 2007, MIGR BIRD HUNT ACT H; Widoff L., 1988, MAINE WETLANDS CONSE; Wilkins K.A., 2007, TRENDS BREEDING DUCK; WILLIAMS BK, 1995, WILDLIFE SOC B, V23, P430; Williams BK, 1996, J WILDLIFE MANAGE, V60, P223, DOI 10.2307/3802220; Williams Jr. C.N., 2006, ORNLCDIAC118 HCN; Zimpfer NL, 2006, J WILDLIFE MANAGE, V70, P947, DOI 10.2193/0022-541X(2006)70[947:MOPRIA]2.0.CO;2 51 0 0 0 31 HUMBOLDT FIELD RESEARCH INST STEUBEN PO BOX 9, STEUBEN, ME 04680-0009 USA 1092-6194 NORTHEAST NAT Northeast. Nat 2011 18 1 73 86 10.1656/045.018.0107 14 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 926JY WOS:000302828500007 2019-02-21 J Lawler, RR Lawler, Richard R. Demographic Concepts and Research Pertaining to the Study of Wild Primate Populations AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article life cycle; population growth rate; behavioral ecology; life history; population genetics; conservation MONKEYS MACACA-MULATTA; LIFE-HISTORY; GENETIC CONSEQUENCES; CONSERVATION BIOLOGY; NATURAL-SELECTION; SOCIAL-STRUCTURE; INDIVIDUAL FITNESS; RECAPTURE DATA; MATING SYSTEM; EVOLUTION Demography is the study of individuals as members of a population. The dynamics of a population are determined by collectively analyzing individual schedules of survival, growth, and reproduction. Together, these schedules are known as the vital rates of the population. The vital rates, along with dispersal, contribute to population structure, which refers to how the population is organized by age, sex, density, and social groups. I briefly review the history of anthropological demography as it pertains to wild primates and then I discuss basic demographic concepts and approaches for studying wild primate populations. I then turn to demographic studies of wild primate demography. Primates are generally characterized by high adult survival probabilities relative to survival at other age/stage classes and most primate populations have population growth rates near equilibrium. Changes in adult survival have the greatest impact on population growth rate (i.e., fitness) relative to other demographic traits such as juvenile/yearling survival or age at first reproduction. I discuss how these demographic patterns, and others, connect to topics and issues in behavioral ecology, life history theory, population genetics, and conservation biology. These connections help reaffirm the fact that the vital rates are both targets and agents of evolutionary change. In this regard, demographic studies of wild primates provide a critical link between the proximate socioecological processes that operate in a species and the long-term phylogenetic patterns that characterize a species. Yrbk Phys Anthropol 54:63-85, 2011. (C) 2011 Wiley Periodicals, Inc. James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA Lawler, RR (reprint author), James Madison Univ, Dept Sociol & Anthropol, MSC 7501,Sheldon Hall, Harrisonburg, VA 22807 USA. lawler.jmu@gmail.com National Science Foundation [DBI 0305074, DEB 0531988, BCS 0820298]; Boston University Grant sponsor: National Science Foundation; Grant number: DBI 0305074; Grant number: DEB 0531988; Grant number: BCS 0820298. Grant sponsor: Boston University. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Alberts Susan C., 2003, P66; ALLENDORF FW, 2006, CONSERVATION GENETIC; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; ALTMANN SA, 1991, P NATL ACAD SCI USA, V88, P420, DOI 10.1073/pnas.88.2.420; ALTMANN SA, 1979, PRIMATE ECOLOGY HUMA, P47; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Andelman S.J, 1986, P201; AOKI K, 1984, Primates, V25, P171, DOI 10.1007/BF02382389; Arora N, 2010, P NATL ACAD SCI USA, V107, P21376, DOI 10.1073/pnas.1010169107; Arroyo-Rodriguez V, 2008, AM J PRIMATOL, V70, P114, DOI 10.1002/ajp.20463; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beaumont MA, 1999, GENETICS, V153, P2013; Bessinger SR, 2002, POPULATION VIABILITY; Blomquist G.E., 2011, PRIMATES PERSPECTIVE, P418; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Blomquist Gregory E., 2009, P117, DOI 10.1007/978-0-387-78705-3_5; Bonhomme M, 2008, MOL ECOL, V17, P1009, DOI 10.1111/j.1365-294X.2007.03645.x; Bonner JT, 1965, SIZE CYCLE ESSAY STR; BOYCE MS, 1992, ANNU REV ECOL SYST, V23, P481, DOI 10.1146/annurev.es.23.110192.002405; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Bruford Michael W., 2010, Endangered Species Research, V12, P249, DOI 10.3354/esr00295; Buckland ST, 2010, INT J PRIMATOL, V31, P833, DOI 10.1007/s10764-010-9431-5; Buckland ST, 2010, INT J PRIMATOL, V31, P485, DOI 10.1007/s10764-010-9408-4; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Caswell H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020809; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; Caughley G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Charpentier MJE, 2007, AM J PRIMATOL, V69, P1370, DOI 10.1002/ajp.20445; CHESSER RK, 1991, GENETICS, V129, P573; CHESSER RK, 1991, GENETICS, V127, P437; CHESSER RK, 1993, GENETICS, V135, P1221; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conroy M. J., 2009, QUANTITATIVE CONSERV; Cooch EG, J ORNITHOL; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Cowlishaw G., 2000, PRIMATE CONSERVATION; Danchin E, 2008, BEHAV ECOLOGY; Davis D. E., 1957, Journal of Mammalogy, V38, P374, DOI 10.2307/1376235; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; Di Fiore Anthony, 2009, P211, DOI 10.1007/978-0-387-78705-3_9; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; Dittus WPJ, 1979, BEHAVIOUR, V69, P266; DOBSON AP, 1989, CONSERV BIOL, V3, P362, DOI 10.1111/j.1523-1739.1989.tb00242.x; Dugatkin L., 1998, GAME THEORY ANIMAL B; Dunbar R.I.M., 1987, P240; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; DUNBAR RIM, 1976, ANIM BEHAV, V24, P84, DOI 10.1016/S0003-3472(76)80102-9; DUNBAR RIM, 1979, PRIMATE ECOLOGY HUMA, P65; Dunham AE, 2008, BIOL CONSERV, V141, P287, DOI 10.1016/j.biocon.2007.10.006; Fashing PJ, 2000, AM J PRIMATOL, V50, P139, DOI 10.1002/(SICI)1098-2345(200002)50:2<139::AID-AJP4>3.0.CO;2-N; Fisher RA, 1930, GENETICAL THEORY NAT; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Fujiwara M, 2002, ECOLOGY, V83, P3257, DOI 10.2307/3072076; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GAGE TB, 1986, HUM BIOL, V58, P275; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Godfrey Laurie R., 2002, P113; Goossens B, 2006, PLOS BIOL, V4, P285, DOI 10.1371/journal.pbio.0040025; Grimm V, 2005, INDIVIDUAL BASED MOD; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1971, MAN BEAST COMP SOCIA, P57; Hammond RL, 2006, P ROY SOC B-BIOL SCI, V273, P479, DOI 10.1098/rspb.2005.3257; HANSON WR, 1963, WILDLIFE MONOGR, V9, P1; Harcourt AH, 2005, J APPL ECOL, V42, P630, DOI 10.1111/j.1365-2664.2005.01037.x; Hassel-Finnegan HM, 2008, INT J PRIMATOL, V29, P1175, DOI 10.1007/s10764-008-9301-6; Hedrick P. W., 2005, GENETICS POPULATIONS; Hill K., 1996, ACHE LIFE HIST ECOLO; Jack KM, 2009, BEHAVIOUR, V146, P429, DOI 10.1163/156853909X410612; Janson Charles H., 2003, P103; Janson Charles H., 1993, P57; Jenouvrier S, 2010, AM NAT, V175, P379; Johnson-Hanks J, 2007, DEMOGR RES, V16, DOI 10.4054/DemRes.2007.16.1; Jolly A., 1985, EVOLUTION PRIMATE BE; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; JORDE LB, 1974, J ANTHROPOL RES, V30, P199, DOI 10.1086/jar.30.3.3629844; Kappeler PM, 2004, PRIMATE LIFE HIST SO; Kappeler PM, 1999, NATURWISSENSCHAFTEN, V85, P18; KELKER GH, 1947, J WILDLIFE MANAGE, V11, P177, DOI 10.2307/3795562; Kertzer DI, 2005, HDB POPULATION, P525; KIRKLAND SJ, 1994, SIAM J MATRIX ANAL A, V15, P1092, DOI 10.1137/S0895479893249228; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koyama N, 2002, PRIMATES, V43, P291, DOI 10.1007/BF02629604; Koyama N, 2001, PRIMATES, V42, P1, DOI 10.1007/BF02640684; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Krause J., 2002, LIVING GROUPS; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; LANGERGRABER KE, 2007, PLOS ONE, V10, pE973, DOI DOI 10.1371/JOURNAL.PONE.0000973; Lawler RR, 2007, AM J PHYS ANTHROPOL, V132, P267, DOI 10.1002/ajpa.20507; Lawler RR, 2011, POPUL ECOL, V53, P229, DOI 10.1007/s10144-010-0206-9; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; LAWLER RR, 2003, MOL ECOL, V12, P2301; Lawler RR, 2009, AM J PHYS ANTHR S, V48, P262; Lawler RR, 2010, OPEN ANTHR J, V3, P206; LEE PC, 1999, COMP PRIMATE SOCIOEC; LEOPOLD A, 1933, GAME MANAGEMENT; Lewontin R. C., 1965, P77; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Lotterhos KE, 2011, EVOLUTION, V65, P1693, DOI 10.1111/j.1558-5646.2011.01249.x; LYNCH M, 1995, AM NAT, V146, P489, DOI 10.1086/285812; Marshall Andrew J., 2009, P311; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Medawar P, 1952, UNSOLVED PROBLEM BIO; MELNICK DJ, 1984, AM J PHYS ANTHROPOL, V63, P341, DOI 10.1002/ajpa.1330630402; MELNICK DJ, 1987, GENETICA, V73, P117; MELNICK DJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P229, DOI 10.1007/BF00290775; Metcalf CJE, 2007, P ROY SOC B-BIOL SCI, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Miller PS, 2005, VERSION 9 50 USERS M; Moore Jim, 1993, P392; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; Nunney L, 2000, EVOL BIOL, V32, P179; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pereira ME, 2000, PRIMATE MALES, P271; Pereira Michael E., 2003, P149; PERES C A, 1991, Oryx, V25, P89; Pope Theresa R., 1996, P119; Pope TR, 1998, J MAMMAL, V79, P692, DOI 10.2307/1383081; POPE TR, 1992, EVOLUTION, V46, P1112, DOI 10.1111/j.1558-5646.1992.tb00623.x; Quick HF, 1963, WILDLIFE INVESTIGATI, P190; Rankin DJ, 2007, OIKOS, V116, P335, DOI 10.1111/j.2006.0030-1299.15451.x; Rice S. H., 2004, EVOLUTIONARY THEORY; RICHARD AF, 1985, PRIMATES NATURE; Rivkin-Fish M, 2003, AM ANTHROPOL, V105, P289, DOI 10.1525/aa.2003.105.2.289; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Roth E.A., 2004, CULTURE BIOL ANTHR D; Rowell TE, 1967, PRIMATE ETHOLOGY, P283; Rudran R, 2003, INT J PRIMATOL, V24, P924; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; SCHULTZ AH, 1961, SOCIAL LIFE EARLY MA, P58; Severinghaus C, 1955, NEW YORK FISH GAME J, V2, P242; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; SKALSKI J.R., 2005, WILDLIFE DEMOGRAPHY; SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054; Storz JF, 1999, J MAMMAL, V80, P553, DOI 10.2307/1383301; Storz JF, 2002, MOL BIOL EVOL, V19, P1981, DOI 10.1093/oxfordjournals.molbev.a004022; Storz JF, 2002, EVOLUTION, V56, P817; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; STRIER KB, 1993, INT J PRIMATOL, V14, P513, DOI 10.1007/BF02215445; Strier KB, 2002, YEARB PHYS ANTHROPOL, V46, P2; Struhsaker TT, 2008, INT J PRIMATOL, V29, P19, DOI 10.1007/s10764-007-9146-4; Sugg DW, 1996, TRENDS ECOL EVOL, V11, P338, DOI 10.1016/0169-5347(96)20050-3; Sussman RW., 2011, PRIMATES PERSPECTIVE, P6; Teleki GE, 1976, J HUM EVOL, V6, P559; TRIVERS RL, 1974, AM J PHYS ANTHROPOL, V41, P163, DOI 10.1002/ajpa.1330410127; TULJAPURKAR S, 1990, LECT NOTES BIOMATHEM, V85; Tuljapurkar S, 2010, ANN NY ACAD SCI, V1204, P65, DOI 10.1111/j.1749-6632.2010.05519.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Watts DP, 2000, PRIMATE MALES, P169; Whipple GC, 1919, VITAL STAT INTRO SCI; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; Wiederholt R, 2010, ECOL MODEL, V221, P2482, DOI 10.1016/j.ecolmodel.2010.06.026; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wright S, 1931, GENETICS, V16, P0097; Wright S., 1978, EVOLUTION GENETICS P, V4; Wright S., 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Yearsley JM, 2002, MATH BIOSCI, V179, P131, DOI 10.1016/S0025-5564(02)00119-0 183 1 1 0 27 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2011 146 53 63 85 10.1002/ajpa.21611 23 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 908XR WOS:000301526900005 21997178 2019-02-21 J Abrams, ET; Miller, EM Abrams, Elizabeth T.; Miller, Elizabeth M. The Roles of the Immune System in Women's Reproduction: Evolutionary Constraints and Life History Trade-Offs AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article pregnancy; lactation; maternal effects; parent-offspring conflict PREMATURE OVARIAN FAILURE; NATURAL-KILLER-CELLS; INTRAUTERINE GROWTH-RETARDATION; HELICOBACTER-PYLORI INFECTION; ACUTE RESPIRATORY-INFECTION; INFANT-FEEDING PRACTICES; NORMAL MENSTRUAL-CYCLE; NECROSIS-FACTOR-ALPHA; FEMALE GENITAL-TRACT; TOLL-LIKE RECEPTORS Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Yrbk Phys Anthropol 54:134-154, 2011. (C) 2011 Wiley Periodicals, Inc. [Abrams, Elizabeth T.] Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA; [Miller, Elizabeth M.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Abrams, ET (reprint author), Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA. eabrams@uic.edu Miller, Elizabeth/0000-0002-5046-380X Leakey Foundation; National Science Foundation [BCS-0750779]; Wenner-Gren Foundation for Anthropological Research Grant sponsor: The Leakey Foundation (EMM). Grant sponsor: The National Science Foundation Doctoral Dissertation Improvement; Grant number: BCS-0750779. Grant sponsor: Wenner-Gren Foundation for Anthropological Research (ETA). Abrams ET, 2011, AM ANTHROPOL, V113, P417, DOI 10.1111/j.1548-1433.2011.01351.x; Abrams ET, 2009, AM J HUM BIOL, V21, P643, DOI 10.1002/ajhb.20919; Aderem A, 1999, ANNU REV IMMUNOL, V17, P593, DOI 10.1146/annurev.immunol.17.1.593; Adu F D, 1995, Afr J Med Med Sci, V24, P385; Ahima RS, 2000, ANNU REV PHYSIOL, V62, P413, DOI 10.1146/annurev.physiol.62.1.413; Ahlstedt S, 1977, Ciba Found Symp, P115; Akira S, 2001, NAT IMMUNOL, V2, P675, DOI 10.1038/90609; Allen JE, 1997, IMMUNOL TODAY, V18, P387, DOI 10.1016/S0167-5699(97)01102-X; Almqvist C, 2008, ALLERGY, V63, P47, DOI 10.1111/j.1398-9995.2007.01524.x; Aluvihare VR, 2004, NAT IMMUNOL, V5, P266, DOI 10.1038/ni1037; Arifeen S, 2001, PEDIATRICS, V108, DOI 10.1542/peds.108.4.e67; ATHREYA BH, 1993, CLIN IMMUNOL IMMUNOP, V66, P201, DOI 10.1006/clin.1993.1026; Baecher-Lind LE, 2010, OBSTET GYNECOL SURV, V65, P53, DOI 10.1097/OGX.0b013e3181c9e7a1; Bailey MT, 2004, J PEDIATR GASTR NUTR, V38, P414, DOI 10.1097/00005176-200404000-00009; Bainbridge DRJ, 2000, REV REPROD, V5, P67, DOI 10.1530/ror.0.0050067; Beagley KW, 2003, FEMS IMMUNOL MED MIC, V38, P13, DOI 10.1016/S0928-8244(03)00202-5; Beck G, 1996, SCI AM, V275, P60, DOI 10.1038/scientificamerican1196-60; Beisel WR, 1996, J NUTR, V126, pS2611, DOI 10.1093/jn/126.suppl_10.2611S; BELVISI L, 1993, J ENDOCRINOL INVEST, V16, P889, DOI 10.1007/BF03348951; Biron CA, 1999, ANNU REV IMMUNOL, V17, P189, DOI 10.1146/annurev.immunol.17.1.189; Black RE, 2003, LANCET, V361, P2226, DOI 10.1016/S0140-6736(03)13779-8; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bouman A, 2005, HUM REPROD UPDATE, V11, P411, DOI 10.1093/humupd/dmi008; Boyton RJ, 2002, BRIT MED BULL, V61, P1, DOI 10.1093/bmb/61.1.1; BRANDES JM, 1967, OBSTET GYNECOL, V30, P427; Broussard CN, 1998, GASTROENTEROL CLIN N, V27, P123, DOI 10.1016/S0889-8553(05)70350-2; BROWN KH, 1989, PEDIATRICS, V83, P31; BROWN PJ, 1986, HUM ECOL, V14, P311, DOI 10.1007/BF00889033; Brussow H, 1996, CLIN DIAGN LAB IMMUN, V3, P37; BUKOVSKY A, 1995, BIOL REPROD, V53, P1373, DOI 10.1095/biolreprod53.6.1373; Bukovsky A, 2008, AM J REPROD IMMUNOL, V59, P12, DOI 10.1111/j.1600-0897.2007.00562.x; Bukulmez O, 2000, HUM REPROD UPDATE, V6, P1, DOI 10.1093/humupd/6.1.1; CARBO N, 1995, ENDOCRINOLOGY, V136, P3579, DOI 10.1210/en.136.8.3579; Carter AM, 2010, PLACENTAL BED DISORD, P109; Chafetz I, 2007, AM J OBSTET GYNECOL, V197, DOI 10.1016/j.ajog.2007.02.025; Chaline J, 2003, J REPROD IMMUNOL, V59, P137, DOI 10.1016/S0165-0378(03)00043-3; Chernyshov VP, 2001, AM J REPROD IMMUNOL, V46, P220, DOI 10.1034/j.1600-0897.2001.d01-5.x; Chisenga M, 2005, J HUM LACT, V21, P266, DOI 10.1177/0890334405279251; Christodoulakos G, 2007, EUR J CONTRACEP REPR, V12, P194, DOI 10.1080/13625180701387266; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Ciardelli L, 2007, INT J IMMUNOPATH PH, V20, P335, DOI 10.1177/039463200702000213; Clemens JD, 1997, PEDIATRICS, V100, part. no., DOI 10.1542/peds.100.6.e2; Coe CL, 2005, NEUROSCI BIOBEHAV R, V29, P39, DOI 10.1016/j.neubiorev.2004.11.003; Colaco CALS, 1998, CELL MOL BIOL, V44, P883; Cole AM, 2006, CURR TOP MICROBIOL, V306, P199; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Cook IF, 2008, VACCINE, V26, P3551, DOI 10.1016/j.vaccine.2008.04.054; COULAM CB, 1979, AM J OBSTET GYNECOL, V133, P639, DOI 10.1016/0002-9378(79)90011-5; Cowans NJ, 2008, PRENATAL DIAG, V28, P121, DOI 10.1002/pd.1921; CRAMER DW, 1983, AM J OBSTET GYNECOL, V147, P1; Cripps A W, 1987, Adv Exp Med Biol, V216B, P1369; CRUZ JR, 1982, PEDIATR RES, V16, P272, DOI 10.1203/00006450-198204000-00004; Cummins AG, 1997, IMMUNOL CELL BIOL, V75, P419, DOI 10.1038/icb.1997.67; Cutolo M, 2002, ANN NY ACAD SCI, V966, P131, DOI 10.1111/j.1749-6632.2002.tb04210.x; Davis JA, 2006, FEMALE INFIDELITY AND PATERNAL UNCERTAINTY: EVOLUTIONARY PERSPECTIVES ON MALE ANTI-CUCKOLDRY TACTICS, P191, DOI 10.1017/CBO9780511617812.010; Dekel N, 2010, AM J REPROD IMMUNOL, V63, P17, DOI 10.1111/j.1600-0897.2009.00792.x; Delves PJ, 2000, NEW ENGL J MED, V343, P37, DOI 10.1056/NEJM200007063430107; Delves PJ, 2000, NEW ENGL J MED, V343, P108, DOI 10.1056/NEJM200007133430207; DEVEREUX WP, 1970, AM J OBSTET GYNECOL, V108, P78, DOI 10.1016/0002-9378(70)90208-5; Donovan SM, 2006, J PEDIATR-US, V149, pS49, DOI 10.1016/j.jpeds.2006.06.052; Dorman JS, 2001, DIABETES, V50, P1857, DOI 10.2337/diabetes.50.8.1857; Du Pasquier Louis, 1993, P199; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Elenkov IJ, 2004, ANN NY ACAD SCI, V1024, P138, DOI 10.1196/annals.1321.010; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Eschenbach DA, 2000, CLIN INFECT DIS, V30, P901, DOI 10.1086/313818; Fanaro S, 2003, ACTA PAEDIATR, V92, P48; Fantuzzi G, 2005, J ALLERGY CLIN IMMUN, V115, P911, DOI 10.1016/j.jaci.2005.02.023; Fernandez-Riejos P, 2010, MEDIAT INFLAMM, DOI 10.1155/2010/568343; Fessler DMT, 2002, CURR ANTHROPOL, V43, P19, DOI 10.1086/324128; Fisher Susan J, 2004, Reprod Biol Endocrinol, V2, P53, DOI 10.1186/1477-7827-2-53; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; French SS, 2009, P R SOC B, V276, P4003, DOI 10.1098/rspb.2009.1199; Fried M, 1998, J IMMUNOL, V160, P2523; Fruhbeck G, 2001, AM J PHYSIOL-ENDOC M, V280, pE827; GIGLIO T, 1994, LIFE SCI, V54, P1305, DOI 10.1016/0024-3205(94)00508-7; Gillespie B, 2006, INT BREASTFEED J, V1, DOI 10.1186/1746-4358-1-4; Gillgrass AE, 2003, J VIROL, V77, P9845, DOI 10.1128/JVI.77.18.9845-9851.2003; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; GOLDBERG GR, 1991, AM J CLIN NUTR, V54, P788; Goldenberg RL, 2000, NEW ENGL J MED, V342, P1500, DOI 10.1056/NEJM200005183422007; Goldman AS, 2002, J MAMMARY GLAND BIOL, V7, P277, DOI 10.1023/A:1022852700266; Golightly E, 2011, MOL CELL ENDOCRINOL, V335, P52, DOI 10.1016/j.mce.2010.08.005; Gregory RL, 1997, MED SCI SPORT EXER, V29, P1596, DOI 10.1097/00005768-199712000-00008; Grimaldi CM, 2002, J CLIN INVEST, V109, P1625, DOI 10.1172/JCI200214873; Grimble RF, 2002, CURR OPIN CLIN NUTR, V5, P551, DOI 10.1097/00075197-200209000-00015; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Groer M, 2004, J HUM LACT, V20, P153, DOI 10.1177/0890334404264104; Gronlund MM, 1999, J PEDIATR GASTR NUTR, V28, P19, DOI 10.1097/00005176-199901000-00007; GROSSMAN C, 1989, J STEROID BIOCHEM, V34, P241, DOI 10.1016/0022-4731(89)90088-5; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Hanson LA, 2008, NESTLE NUTR WORKS SE, V61, P123, DOI 10.1159/0000113363; HENNART PF, 1991, AM J CLIN NUTR, V53, P32; Hisada M, 1999, J ACQ IMMUN DEF SYND, V22, P302; Hobel CJ, 2004, CLIN OBSTET GYNECOL, V47, P856, DOI 10.1097/01.grf.0000142512.38733.8c; Hoek A, 1997, ENDOCR REV, V18, P107, DOI 10.1210/er.18.1.107; Jabbour HN, 2009, REPRODUCTION, V138, P903, DOI 10.1530/REP-09-0247; Jakobsen MS, 1996, INT J EPIDEMIOL, V25, P115, DOI 10.1093/ije/25.1.115; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JASON JM, 1984, PEDIATRICS, V74, P702; KARJALAINEN J, 1989, NEW ENGL J MED, V320, P881, DOI 10.1056/NEJM198904063201401; Keane FEA, 1997, INT J STD AIDS, V8, P489, DOI 10.1258/0956462971920631; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KING AE, 2003, REPROD BIOL ENDOCRIN, V1, P1; King AE, 2010, J STEROID BIOCHEM, V120, P116, DOI 10.1016/j.jsbmb.2010.01.003; Kleessen B, 2005, BRIT J NUTR, V93, pS35, DOI 10.1079/BJN20041346; Kliman HJ, 2000, AM J PATHOL, V157, P1759, DOI 10.1016/S0002-9440(10)64813-4; Koenig W, 1999, CIRCULATION, V99, P237, DOI 10.1161/01.CIR.99.2.237; KOVAR MG, 1984, PEDIATRICS, V74, P615; Lang TJ, 2004, CLIN IMMUNOL, V113, P224, DOI 10.1016/j.clim.2004.05.011; Larnkjaer A, 2006, PEDIATRICS, V117, P988, DOI 10.1542/peds.2005-2929; LAWRENCE RA, 2005, BREASTFEEDING GUIDE; Liu HY, 2002, J NEUROSCI RES, V70, P238, DOI 10.1002/jnr.10409; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lockshin MD, 2005, HDB SYSTEMIC AUTOIMM, P3; Lonnerdal B, 1996, ACTA PAEDIATR, V85, P537, DOI 10.1111/j.1651-2227.1996.tb14081.x; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; LUNDEQUIST B, 1985, ACTA PAEDIATR SCAND, V74, P45, DOI 10.1111/j.1651-2227.1985.tb10919.x; MacDonald TT, 2005, SCIENCE, V307, P1920, DOI 10.1126/science.1106442; Malhotra I, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000116; Marriott I, 2006, IMMUNOL RES, V34, P177, DOI 10.1385/IR:34:3:177; MARSHALL BR, 1975, JAMA-J AM MED ASSOC, V233, P1377, DOI 10.1001/jama.233.13.1377; Martin JT, 2000, EUR J PHARMACOL, V405, P251, DOI 10.1016/S0014-2999(00)00557-4; Mascart-Lemone F, 1991, Adv Exp Med Biol, V310, P201; Matalka KZ, 2003, NEUROENDOCRINOL LETT, V24, P185; Mayer L, 2003, PEDIATRICS, V111, P1595; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.3.CO;2-6; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MEDAWAR PB, 1953, SYM SOC EXP BIOL, V7, P320; Medzhitov R, 2009, IMMUNITY, V30, P766, DOI 10.1016/j.immuni.2009.06.004; Michalakis KG, 2010, FERTIL STERIL, V94, P1949, DOI 10.1016/j.fertnstert.2010.05.010; Miller AA, 2006, AM J HUM BIOL, V18, P857, DOI 10.1002/ajhb.20566; Miller EM, 2011, BREASTFEEDING IMMUNI; Mitchell M, 2005, REPRODUCTION, V130, P583, DOI 10.1530/rep.1.00521; Mjihdi A, 2002, AM J PATHOL, V161, P673, DOI 10.1016/S0002-9440(10)64223-X; Moffett-King A, 2002, NAT REV IMMUNOL, V2, P656, DOI 10.1038/nri886; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moormann AM, 1999, J INFECT DIS, V180, P1987, DOI 10.1086/315135; Mor G, 2010, AM J REPROD IMMUNOL, V63, P425, DOI 10.1111/j.1600-0897.2010.00836.x; Morrow Ardythe L, 2004, Semin Pediatr Infect Dis, V15, P221, DOI 10.1053/j.spid.2004.07.002; Mosmann TR, 1996, IMMUNOL TODAY, V17, P138, DOI 10.1016/0167-5699(96)80606-2; Moxley G, 2002, ARTHRITIS RHEUM, V46, P250, DOI 10.1002/1529-0131(200201)46:1<250::AID-ART10064>3.0.CO;2-T; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Mundy GR, 2007, NUTR REV, V65, pS147, DOI 10.1301/nr.2007.dec.S147-S151; NAKAGAWA H, 1981, BIOCHEM PHARMACOL, V30, P639; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2007, ANN NY ACAD SCI, V1113, P350, DOI 10.1196/annals.1391.028; Ness RB, 1999, JNCI-J NATL CANCER I, V91, P1459, DOI 10.1093/jnci/91.17.1459; Ness RB, 2004, Q REV BIOL, V79, P383, DOI 10.1086/426089; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Niyonsaba F, 2005, J DERMATOL SCI, V40, P157, DOI 10.1016/j.jdermsci.2005.07.009; Oddy Wendy H, 2002, Breastfeed Rev, V10, P5; Ogra PL, 2006, INFECT DIS FETUS NEW, P211; Ouwehand Arthur, 2002, European Journal of Nutrition, V41, P32; Parracho H, 2007, P NUTR SOC, V66, P405, DOI 10.1017/S0029665107005678; Pate JL, 2001, REPRODUCTION, V122, P665, DOI 10.1530/rep.0.1220665; Paul WE, 2008, FUNDAMENTAL IMMUNOLO; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Penders J, 2006, PEDIATRICS, V118, P511, DOI 10.1542/peds.2005-2824; PITCHERWILMOTT RW, 1980, CLIN EXP IMMUNOL, V41, P303; POPKIN BM, 1990, PEDIATRICS, V86, P874; PRENTICE A, 1984, ACTA PAEDIATR SCAND, V73, P796, DOI 10.1111/j.1651-2227.1984.tb17778.x; PROFET M, 1993, Q REV BIOL, V68, P335, DOI 10.1086/418170; Profet M, 1992, ADAPTED MIND EVOLUTI, P327; Redman CWG, 2010, AM J REPROD IMMUNOL, V63, P534, DOI 10.1111/j.1600-0897.2010.00831.x; Richards JS, 2008, TRENDS ENDOCRIN MET, V19, P191, DOI 10.1016/j.tem.2008.03.001; Richman S, 2006, IMMUNOLOGY PREGNANCY; Rieger L, 2004, J SOC GYNECOL INVEST, V11, P488, DOI 10.1016/j.jsgi.2004.05.007; Rier SE, 1997, SEMIN REPROD ENDOCR, V15, P209, DOI 10.1055/s-2008-1068750; Roberts CW, 2001, CLIN MICROBIOL REV, V14, P476, DOI 10.1128/CMR.14.3.476-488.2001; Robillard PY, 2002, AM J REPROD IMMUNOL, V47, P104, DOI 10.1034/j.1600-0897.2002.1o043.x; Rogerson SJ, 2003, INFECT IMMUN, V71, P267, DOI 10.1128/IAI.71.1.267-270.2003; Romero R, 1998, AM J OBSTET GYNECOL, V179, P186, DOI 10.1016/S0002-9378(98)70271-6; Rosenstock SJ, 1996, AM J PUBLIC HEALTH, V86, P1539, DOI 10.2105/AJPH.86.11.1539; Rosenstock SJ, 2000, SCAND J PUBLIC HEALT, V28, P32, DOI 10.1080/713797374; Safaeian M, 2009, J INFECT DIS, V199, P455, DOI 10.1086/596060; Salamonsen LA, 2000, HUM REPROD UPDATE, V6, P16, DOI 10.1093/humupd/6.1.16; Salminen S, 2004, GUT, V53, P1388, DOI 10.1136/gut.2004.041640; Sanchez-Guerrero J, 2001, AM J MED, V111, P464, DOI 10.1016/S0002-9343(01)00885-3; Sandborg C, 2002, J ADOLESCENT HEALTH, V30, P76, DOI 10.1016/S1054-139X(01)00386-X; Schramm C, 2001, AM J GASTROENTEROL, V96, P1587; Schulke L, 2008, HUM REPROD, V23, P1574, DOI 10.1093/humrep/den030; SEAMAN WE, 1979, J IMMUNOL, V122, P2541; Segal AW, 2005, ANNU REV IMMUNOL, V23, P197, DOI 10.1146/annurev.immunol.23.021704.115653; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; SHAHID NS, 1995, LANCET, V346, P1252, DOI 10.1016/S0140-6736(95)91861-2; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SHELLDUNCAN B, 1995, AM J HUM BIOL, V7, P339, DOI 10.1002/ajhb.1310070310; Shrier LA, 2003, J ADOLESCENT HEALTH, V32, P183, DOI 10.1016/S1054-139X(02)00536-0; Siristatidis C, 2006, J OBSTET GYNAECOL RE, V32, P162, DOI 10.1111/j.1447-0756.2006.00373.x; Sites CK, 2002, FERTIL STERIL, V77, P128, DOI 10.1016/S0015-0282(01)02934-X; Smithson G, 1998, J IMMUNOL, V161, P27; Stearns S, 1992, EVOLUTION LIFE HIST; STIMSON WH, 1988, SCAND J IMMUNOL, V28, P345, DOI 10.1111/j.1365-3083.1988.tb01459.x; Strassmann BI, 1999, J WOMENS HEALTH, V8, P193, DOI 10.1089/jwh.1999.8.193; Strassmann BI, 1996, Q REV BIOL, V71, P181, DOI 10.1086/419369; STYRT B, 1991, REV INFECT DIS, V13, P1139; Sullivan AD, 1999, J INFECT DIS, V179, P1580, DOI 10.1086/314752; Tanriverdi F, 2003, J ENDOCRINOL, V176, P293, DOI 10.1677/joe.0.1760293; Than NG, 2004, EUR J BIOCHEM, V271, P1065, DOI 10.1111/j.1432-1033.2004.04004.x; Thompson MS, 2009, MINERVA MED, V100, P357; TIERSON FD, 1986, AM J OBSTET GYNECOL, V155, P1017, DOI 10.1016/0002-9378(86)90337-6; Trinchieri G, 1995, Semin Immunol, V7, P83, DOI 10.1006/smim.1995.0012; TRIVERS RL, 1974, AM ZOOL, V14, P249; Trowsdale J, 2006, NAT IMMUNOL, V7, P241, DOI 10.1038/ni1317; Verthelyi D, 2001, INT IMMUNOPHARMACOL, V1, P983, DOI 10.1016/S1567-5769(01)00044-3; Vignali DAA, 2008, NAT REV IMMUNOL, V8, P523, DOI 10.1038/nri2343; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Waldorf KMA, 2008, IMMUNOL INVEST, V37, P631, DOI 10.1080/08820130802205886; Weaver LT, 1998, ARCH DIS CHILD, V78, P235, DOI 10.1136/adc.78.3.235; Werner M, 2008, SCAND J GASTROENTERO, V43, P1232, DOI 10.1080/00365520802130183; Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277; White HD, 1997, J IMMUNOL, V158, P3017; Whitten PL, 2009, AM J HUM BIOL, V21, P754, DOI 10.1002/ajhb.20939; Wiesenfeld HC, 2003, CLIN INFECT DIS, V36, P663, DOI 10.1086/367658; WILKS M, 1987, J MED MICROBIOL, V24, P241, DOI 10.1099/00222615-24-3-241; Wira CR, 2010, AM J REPROD IMMUNOL, V63, P544, DOI 10.1111/j.1600-0897.2010.00842.x; Wira CR, 2005, IMMUNOL REV, V206, P306, DOI 10.1111/j.0105-2896.2005.00287.x; Wong P, 2003, ANNU REV IMMUNOL, V21, P29, DOI 10.1146/annurev.immunol.21.120601.141114; Worthman CM, 1999, HORMONES HLTH BEHAV, P47; YOSHIOKA H, 1983, PEDIATRICS, V72, P317; Yu L, 2009, AM J REPROD IMMUNOL, V62, P1, DOI 10.1111/j.1600-0897.2009.00712.x; ZAVALETA N, 1995, AM J CLIN NUTR, V62, P559 232 16 17 0 27 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. 2011 146 53 134 154 10.1002/ajpa.21621 21 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 908XR WOS:000301526900008 22101690 Bronze 2019-02-21 S Lawler, RR Sussman, RW Lawler, Richard R. Demographic Concepts and Research Pertaining to the Study of Wild Primate Populations YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 54 Yearbook of Physical Anthropology English Article; Book Chapter life cycle; population growth rate; behavioral ecology; life history; population genetics; conservation MONKEYS MACACA-MULATTA; LIFE-HISTORY; GENETIC CONSEQUENCES; CONSERVATION BIOLOGY; NATURAL-SELECTION; SOCIAL-STRUCTURE; INDIVIDUAL FITNESS; RECAPTURE DATA; MATING SYSTEM; EVOLUTION Demography is the study of individuals as members of a population. The dynamics of a population are determined by collectively analyzing individual schedules of survival, growth, and reproduction. Together, these schedules are known as the vital rates of the population. The vital rates, along with dispersal, contribute to population structure, which refers to how the population is organized by age, sex, density, and social groups. I briefly review the history of anthropological demography as it pertains to wild primates and then I discuss basic demographic concepts and approaches for studying wild primate populations. I then turn to demographic studies of wild primate demography. Primates are generally characterized by high adult survival probabilities relative to survival at other age/stage classes and most primate populations have population growth rates near equilibrium. Changes in adult survival have the greatest impact on population growth rate (i.e., fitness) relative to other demographic traits such as juvenile/yearling survival or age at first reproduction. I discuss how these demographic patterns, and others, connect to topics and issues in behavioral ecology, life history theory, population genetics, and conservation biology. These connections help reaffirm the fact that the vital rates are both targets and agents of evolutionary change. In this regard, demographic studies of wild primates provide a critical link between the proximate socioecological processes that operate in a species and the long-term phylogenetic patterns that characterize a species. Yrbk Phys Anthropol 54: 63-85, 2011. (C) 2011 Wiley Periodicals, Inc. James Madison Univ, Dept Sociol & Anthropol, Harrisonburg, VA 22807 USA Lawler, RR (reprint author), James Madison Univ, Dept Sociol & Anthropol, MSC 7501,Sheldon Hall, Harrisonburg, VA 22807 USA. lawler.jmu@gmail.com ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ALBERTS SC, 1995, AM NAT, V145, P279, DOI 10.1086/285740; Alberts Susan C., 2003, P66; ALLENDORF FW, 2006, CONSERVATION GENETIC; Altmann J, 2005, BEHAV ECOL SOCIOBIOL, V57, P490, DOI 10.1007/s00265-004-0870-x; ALTMANN SA, 1991, P NATL ACAD SCI USA, V88, P420, DOI 10.1073/pnas.88.2.420; ALTMANN SA, 1979, PRIMATE ECOLOGY HUMA, P47; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Andelman S.J, 1986, P201; AOKI K, 1984, Primates, V25, P171, DOI 10.1007/BF02382389; Arora N, 2010, P NATL ACAD SCI USA, V107, P21376, DOI 10.1073/pnas.1010169107; Arroyo-Rodriguez V, 2008, AM J PRIMATOL, V70, P114, DOI 10.1002/ajp.20463; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beaumont MA, 1999, GENETICS, V153, P2013; Bessinger SR, 2002, POPULATION VIABILITY; Blomquist G.E., 2011, PRIMATES PERSPECTIVE, P418; Blomquist GE, 2009, BIOL LETTERS, V5, P339, DOI 10.1098/rsbl.2009.0009; Blomquist Gregory E., 2009, P117, DOI 10.1007/978-0-387-78705-3_5; Bonhomme M, 2008, MOL ECOL, V17, P1009, DOI 10.1111/j.1365-294X.2007.03645.x; Bonner JT, 1965, SIZE CYCLE ESSAY STR; BOYCE MS, 1992, ANNU REV ECOL SYST, V23, P481, DOI 10.1146/annurev.es.23.110192.002405; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Bronikowski AM, 2011, SCIENCE, V331, P1325, DOI 10.1126/science.1201571; Bruford Michael W., 2010, Endangered Species Research, V12, P249, DOI 10.3354/esr00295; Buckland ST, 2010, INT J PRIMATOL, V31, P833, DOI 10.1007/s10764-010-9431-5; Buckland ST, 2010, INT J PRIMATOL, V31, P485, DOI 10.1007/s10764-010-9408-4; BURGER R, 1995, EVOLUTION, V49, P151, DOI 10.1111/j.1558-5646.1995.tb05967.x; Caswell H, 2000, ECOLOGY, V81, P619, DOI 10.2307/177364; CASWELL H, 1982, AM NAT, V120, P317, DOI 10.1086/283993; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Caswell H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020809; CAUGHLEY G, 1994, J ANIM ECOL, V63, P215, DOI 10.2307/5542; Caughley G, 1977, ANAL VERTEBRATE POPU; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Charpentier MJE, 2007, AM J PRIMATOL, V69, P1370, DOI 10.1002/ajp.20445; CHESSER RK, 1991, GENETICS, V129, P573; CHESSER RK, 1991, GENETICS, V127, P437; CHESSER RK, 1993, GENETICS, V135, P1221; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conroy M. J., 2009, QUANTITATIVE CONSERV; Cooch EG, J ORNITHOL IN PRESS; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Cowlishaw G., 2000, PRIMATE CONSERVATION; Danchin E, 2008, BEHAV ECOLOGY; Davis D. E., 1957, Journal of Mammalogy, V38, P374, DOI 10.2307/1376235; DEEVEY ES, 1947, Q REV BIOL, V22, P283, DOI 10.1086/395888; DELURY DB, 1947, BIOMETRICS, V3, P145, DOI 10.2307/3001390; Di Fiore Anthony, 2009, P211, DOI 10.1007/978-0-387-78705-3_9; Dittus WPJ, 1975, SOCIOECOLOGY PSYCHOL, P125; Dittus WPJ, 1979, BEHAVIOUR, V69, P266; DOBSON AP, 1989, CONSERV BIOL, V3, P362, DOI 10.1111/j.1523-1739.1989.tb00242.x; Dugatkin L., 1998, GAME THEORY ANIMAL B; Dunbar R.I.M., 1987, P240; DUNBAR RIM, 1976, ANIM BEHAV, V24, P84, DOI 10.1016/S0003-3472(76)80102-9; Dunbar RIM, 1988, RIMATE SOCIAL SYSTEM; DUNBAR RIM, 1979, PRIMATE ECOLOGY HUMA, P65; Dunham AE, 2008, BIOL CONSERV, V141, P287, DOI 10.1016/j.biocon.2007.10.006; Fashing PJ, 2000, AM J PRIMATOL, V50, P139, DOI 10.1002/(SICI)1098-2345(200002)50:2<139::AID-AJP4>3.0.CO;2-N; Fisher RA, 1930, GENETICAL THEORY NAT; Frankham R, 1995, ANNU REV GENET, V29, P305, DOI 10.1146/annurev.ge.29.120195.001513; Fujiwara M, 2002, ECOLOGY, V83, P3257, DOI 10.2307/3072076; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gage TB, 1998, ANNU REV ANTHROPOL, V27, P197, DOI 10.1146/annurev.anthro.27.1.197; GAGE TB, 1986, HUM BIOL, V58, P275; GAGE TB, 1988, AM J PHYS ANTHROPOL, V76, P429, DOI 10.1002/ajpa.1330760403; Godfrey Laurie R., 2002, P113; Goossens B, 2006, PLOS BIOL, V4, P285, DOI 10.1371/journal.pbio.0040025; Grimm V, 2005, INDIVIDUAL BASED MOD; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1971, MAN BEAST COMP SOCIA, P57; Hammond RL, 2006, P ROY SOC B-BIOL SCI, V273, P479, DOI 10.1098/rspb.2005.3257; HANSON WR, 1963, WILDLIFE MONOGR, V9, P1; Harcourt AH, 2005, J APPL ECOL, V42, P630, DOI 10.1111/j.1365-2664.2005.01037.x; Hassel-Finnegan HM, 2008, INT J PRIMATOL, V29, P1175, DOI 10.1007/s10764-008-9301-6; Hedrick P. W., 2005, GENETICS POPULATIONS; Hill K., 1996, ACHE LIFE HIST ECOLO; Jack KM, 2009, BEHAVIOUR, V146, P429, DOI 10.1163/156853909X410612; Janson Charles H., 2003, P103; Janson Charles H., 1993, P57; Jenouvrier S, 2010, AM NAT, V175, P379; Johnson-Hanks J, 2007, DEMOGR RES, V16, DOI 10.4054/DemRes.2007.16.1; Jolly A., 1985, EVOLUTION PRIMATE BE; Jones JH, 2010, J ANIM ECOL, V79, P1262, DOI 10.1111/j.1365-2656.2010.01687.x; JORDE LB, 1974, J ANTHROPOL RES, V30, P199, DOI 10.1086/jar.30.3.3629844; Kappeler PM, 2004, PRIMATE LIFE HIST SO; Kappeler PM, 1999, NATURWISSENSCHAFTEN, V85, P18; KELKER GH, 1947, J WILDLIFE MANAGE, V11, P177, DOI 10.2307/3795562; Kertzer DI, 2005, HDB POPULATION, P525; KIRKLAND SJ, 1994, SIAM J MATRIX ANAL A, V15, P1092, DOI 10.1137/S0895479893249228; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Koyama N, 2002, PRIMATES, V43, P291, DOI 10.1007/BF02629604; Koyama N, 2001, PRIMATES, V42, P1, DOI 10.1007/BF02640684; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Krause J., 2002, LIVING GROUPS; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lande R., 2003, STOCHASTIC POPULATIO; LANGERGRABER KE, 2007, PLOS ONE, V10, pE973, DOI DOI 10.1371/JOURNAL.PONE.0000973; Lawler RR, 2007, AM J PHYS ANTHROPOL, V132, P267, DOI 10.1002/ajpa.20507; Lawler RR, 2011, POPUL ECOL, V53, P229, DOI 10.1007/s10144-010-0206-9; Lawler RR, 2009, OECOLOGIA, V161, P491, DOI 10.1007/s00442-009-1382-1; LAWLER RR, 2003, MOL ECOL, V12, P2301; Lawler RR, 2009, AM J PHYS ANTHR S, V48, P262; Lawler RR, 2010, OPEN ANTHR J, V3, P206; LEE PC, 1999, COMP PRIMATE SOCIOEC; LEOPOLD A, 1933, GAME MANAGEMENT; Lewontin R. C., 1965, P77; Link WA, 2002, J APPL STAT, V29, P207, DOI 10.1080/02664760120108700a; Lotterhos KE, 2011, EVOLUTION, V65, P1693, DOI 10.1111/j.1558-5646.2011.01249.x; LYNCH M, 1995, AM NAT, V146, P489, DOI 10.1086/285812; Marshall Andrew J., 2009, P311; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Medawar P, 1952, UNSOLVED PROBLEM BIO; MELNICK DJ, 1984, AM J PHYS ANTHROPOL, V63, P341, DOI 10.1002/ajpa.1330630402; MELNICK DJ, 1987, GENETICA, V73, P117; MELNICK DJ, 1983, BEHAV ECOL SOCIOBIOL, V12, P229, DOI 10.1007/BF00290775; Metcalf CJE, 2007, P ROY SOC B-BIOL SCI, V274, P2153, DOI 10.1098/rspb.2007.0561; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; MILLER PS, 2005, VORTEX STOCHASTIC SI; Moore Jim, 1993, P392; Morris WF, 2011, AM NAT, V177, pE14, DOI 10.1086/657443; Nichols JD, 2002, J APPL STAT, V29, P539, DOI 10.1080/02664760120108809; Nunney L, 2000, EVOL BIOL, V32, P179; NUNNEY L, 1993, EVOLUTION, V47, P1329, DOI 10.1111/j.1558-5646.1993.tb02158.x; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Pereira ME, 2000, PRIMATE MALES, P271; Pereira Michael E., 2003, P149; PERES C A, 1991, Oryx, V25, P89; Pope Theresa R., 1996, P119; Pope TR, 1998, J MAMMAL, V79, P692, DOI 10.2307/1383081; POPE TR, 1992, EVOLUTION, V46, P1112, DOI 10.1111/j.1558-5646.1992.tb00623.x; Quick HF, 1963, WILDLIFE INVESTIGATI, P190; Rankin DJ, 2007, OIKOS, V116, P335, DOI 10.1111/j.2006.0030-1299.15451.x; Rice S. H., 2004, EVOLUTIONARY THEORY; RICHARD AF, 1985, PRIMATES NATURE; Rivkin-Fish M, 2003, AM ANTHROPOL, V105, P289, DOI 10.1525/aa.2003.105.2.289; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Roth E.A., 2004, CULTURE BIOL ANTHR D; Rowell TE, 1967, PRIMATE ETHOLOGY, P283; Rudran R, 2003, INT J PRIMATOL, V24, P924; SADE DS, 1976, YEARB PHYS ANTHROPOL, V20, P253; SCHULTZ AH, 1961, SOCIAL LIFE EARLY MA, P58; Severinghaus C, 1955, NEW YORK FISH GAME J, V2, P242; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; SILER W, 1979, ECOLOGY, V60, P750, DOI 10.2307/1936612; SKALSKI J.R., 2005, WILDLIFE DEMOGRAPHY; SOULE ME, 1985, BIOSCIENCE, V35, P727, DOI 10.2307/1310054; Storz JF, 1999, J MAMMAL, V80, P553, DOI 10.2307/1383301; Storz JF, 2002, MOL BIOL EVOL, V19, P1981, DOI 10.1093/oxfordjournals.molbev.a004022; Storz JF, 2002, EVOLUTION, V56, P817; Strier KB, 2010, METHODS ECOL EVOL, V1, P199, DOI 10.1111/j.2041-210X.2010.00023.x; STRIER KB, 1993, INT J PRIMATOL, V14, P513, DOI 10.1007/BF02215445; Strier KB, 2002, YEARB PHYS ANTHROPOL, V46, P2; Struhsaker TT, 2008, INT J PRIMATOL, V29, P19, DOI 10.1007/s10764-007-9146-4; Sugg DW, 1996, TRENDS ECOL EVOL, V11, P338, DOI 10.1016/0169-5347(96)20050-3; Sussman RW., 2011, PRIMATES PERSPECTIVE, P6; Teleki GE, 1976, J HUM EVOL, V6, P559; TRIVERS RL, 1974, AM J PHYS ANTHROPOL, V41, P163, DOI 10.1002/ajpa.1330410127; TULJAPURKAR S, 1990, LECT NOTES BIOMATHEM, V85; Tuljapurkar S, 2010, ANN NY ACAD SCI, V1204, P65, DOI 10.1111/j.1749-6632.2010.05519.x; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; VANTIENDEREN PH, 1995, ECOLOGY, V76, P2482, DOI 10.2307/2265822; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Watts DP, 2000, PRIMATE MALES, P169; Whipple GC, 1919, VITAL STAT INTRO SCI; Wich SA, 2004, J HUM EVOL, V47, P385, DOI 10.1016/j.jhevol.2004.08.006; Wich SA, 2007, AM J PRIMATOL, V69, P641, DOI 10.1002/ajp.20386; Wiederholt R, 2010, ECOL MODEL, V221, P2482, DOI 10.1016/j.ecolmodel.2010.06.026; Williams B. K., 2002, ANAL MANAGEMENT ANIM; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wright S, 1931, GENETICS, V16, P0097; Wright S., 1978, EVOLUTION GENETICS P, V4; Wright S., 1938, SCIENCE, V87, P430, DOI DOI 10.1126/SCIENCE.87.2263; Yearsley JM, 2002, MATH BIOSCI, V179, P131, DOI 10.1016/S0025-5564(02)00119-0 183 6 6 1 15 WILEY PERIODICALS SAN FRANCISCO 989 MARKET STREET, SAN FRANCISCO, CA 94103-1741 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2011 54 63 85 10.1002/ajpa.21611 23 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BYT51 WOS:000300172400005 2019-02-21 S Abrams, ET; Miller, EM Sussman, RW Abrams, Elizabeth T.; Miller, Elizabeth M. The Roles of the Immune System in Women's Reproduction: Evolutionary Constraints and Life History Trade-Offs YEARBOOK OF PHYSICAL ANTHROPOLOGY, VOL 54 Yearbook of Physical Anthropology English Article; Book Chapter pregnancy; lactation; maternal effects; parent-offspring conflict PREMATURE OVARIAN FAILURE; NATURAL-KILLER-CELLS; INTRAUTERINE GROWTH-RETARDATION; HELICOBACTER-PYLORI INFECTION; ACUTE RESPIRATORY-INFECTION; INFANT-FEEDING PRACTICES; NORMAL MENSTRUAL-CYCLE; NECROSIS-FACTOR-ALPHA; FEMALE GENITAL-TRACT; TOLL-LIKE RECEPTORS Life history theory posits that, as long as survival is assured, finite resources are available for reproduction, maintenance, and growth/storage. To maximize lifetime reproductive success, resources are subject to trade-offs both within individuals and between current and future investment. For women, reproducing is costly and time-consuming; the bulk of available resources must be allocated to reproduction at the expense of more flexible systems like immune function. When reproducing women contract infectious diseases, the resources required for immune activation can fundamentally shift the patterns of resource allocation. Adding to the complexity of the reproductive-immune trade-offs in women are the pleiotropic effects of many immune factors, which were modified to serve key roles in mammalian reproduction. In this review, we explore the complex intersections between immune function and female reproduction to situate proximate immunological processes within a life history framework. After a brief overview of the immune system, we discuss some important physiological roles of immune factors in women's reproduction and the conflicts that may arise when these factors must play dual roles. We then discuss the influence of reproductive-immune trade-offs on the patterning of lifetime reproductive success: (1) the effect of immune activation/infectious disease on the timing of life history events; (2) the role of the immune system, immune activation, and infectious disease on resource allocation within individual reproductive events, particularly pregnancy; and (3) the role of the immune system in shaping the offspring's patterns of future life history trade-offs. We close with a discussion of future directions in reproductive immunology for anthropologists. Yrbk Phys Anthropol 54: 134-154, 2011. (C) 2011 Wiley Periodicals, Inc. [Abrams, Elizabeth T.] Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA; [Miller, Elizabeth M.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA Abrams, ET (reprint author), Univ Illinois, Dept Anthropol, Chicago, IL 60607 USA. eabrams@uic.edu Abrams ET, 2011, AM ANTHROPOL, V113, P417, DOI 10.1111/j.1548-1433.2011.01351.x; Abrams ET, 2009, AM J HUM BIOL, V21, P643, DOI 10.1002/ajhb.20919; Aderem A, 1999, ANNU REV IMMUNOL, V17, P593, DOI 10.1146/annurev.immunol.17.1.593; Adu F D, 1995, Afr J Med Med Sci, V24, P385; Ahima RS, 2000, ANNU REV PHYSIOL, V62, P413, DOI 10.1146/annurev.physiol.62.1.413; Ahlstedt S, 1977, Ciba Found Symp, P115; Akira S, 2001, NAT IMMUNOL, V2, P675, DOI 10.1038/90609; Allen JE, 1997, IMMUNOL TODAY, V18, P387, DOI 10.1016/S0167-5699(97)01102-X; Almqvist C, 2008, ALLERGY, V63, P47, DOI 10.1111/j.1398-9995.2007.01524.x; Aluvihare VR, 2004, NAT IMMUNOL, V5, P266, DOI 10.1038/ni1037; Arifeen S, 2001, PEDIATRICS, V108, DOI 10.1542/peds.108.4.e67; ATHREYA BH, 1993, CLIN IMMUNOL IMMUNOP, V66, P201, DOI 10.1006/clin.1993.1026; Baecher-Lind LE, 2010, OBSTET GYNECOL SURV, V65, P53, DOI 10.1097/OGX.0b013e3181c9e7a1; Bailey MT, 2004, J PEDIATR GASTR NUTR, V38, P414, DOI 10.1097/00005176-200404000-00009; Bainbridge DRJ, 2000, REV REPROD, V5, P67, DOI 10.1530/ror.0.0050067; Beagley KW, 2003, FEMS IMMUNOL MED MIC, V38, P13, DOI 10.1016/S0928-8244(03)00202-5; Beck G, 1996, SCI AM, V275, P60, DOI 10.1038/scientificamerican1196-60; Beisel WR, 1996, J NUTR, V126, pS2611, DOI 10.1093/jn/126.suppl_10.2611S; BELVISI L, 1993, J ENDOCRINOL INVEST, V16, P889, DOI 10.1007/BF03348951; Biron CA, 1999, ANNU REV IMMUNOL, V17, P189, DOI 10.1146/annurev.immunol.17.1.189; Black RE, 2003, LANCET, V361, P2226, DOI 10.1016/S0140-6736(03)13779-8; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bouman A, 2005, HUM REPROD UPDATE, V11, P411, DOI 10.1093/humupd/dmi008; Boyton RJ, 2002, BRIT MED BULL, V61, P1, DOI 10.1093/bmb/61.1.1; BRANDES JM, 1967, OBSTET GYNECOL, V30, P427; Broussard CN, 1998, GASTROENTEROL CLIN N, V27, P123, DOI 10.1016/S0889-8553(05)70350-2; BROWN KH, 1989, PEDIATRICS, V83, P31; BROWN PJ, 1986, HUM ECOL, V14, P311, DOI 10.1007/BF00889033; Brussow H, 1996, CLIN DIAGN LAB IMMUN, V3, P37; BUKOVSKY A, 1995, BIOL REPROD, V53, P1373, DOI 10.1095/biolreprod53.6.1373; Bukovsky A, 2008, AM J REPROD IMMUNOL, V59, P12, DOI 10.1111/j.1600-0897.2007.00562.x; Bukulmez O, 2000, HUM REPROD UPDATE, V6, P1, DOI 10.1093/humupd/6.1.1; CARBO N, 1995, ENDOCRINOLOGY, V136, P3579, DOI 10.1210/en.136.8.3579; Carter AM, 2010, PLACENTAL BED DISORD, P109; Chafetz I, 2007, AM J OBSTET GYNECOL, V197, DOI 10.1016/j.ajog.2007.02.025; Chaline J, 2003, J REPROD IMMUNOL, V59, P137, DOI 10.1016/S0165-0378(03)00043-3; Chernyshov VP, 2001, AM J REPROD IMMUNOL, V46, P220, DOI 10.1034/j.1600-0897.2001.d01-5.x; Chisenga M, 2005, J HUM LACT, V21, P266, DOI 10.1177/0890334405279251; Christodoulakos G, 2007, EUR J CONTRACEP REPR, V12, P194, DOI 10.1080/13625180701387266; CHROUSOS GP, 1995, NEW ENGL J MED, V332, P1351, DOI 10.1056/NEJM199505183322008; Ciardelli L, 2007, INT J IMMUNOPATH PH, V20, P335, DOI 10.1177/039463200702000213; Clemens JD, 1997, PEDIATRICS, V100, part. no., DOI 10.1542/peds.100.6.e2; Coe CL, 2005, NEUROSCI BIOBEHAV R, V29, P39, DOI 10.1016/j.neubiorev.2004.11.003; Colaco CALS, 1998, CELL MOL BIOL, V44, P883; Cole AM, 2006, CURR TOP MICROBIOL, V306, P199; Cole TJ, 2000, P NUTR SOC, V59, P317, DOI 10.1017/S0029665100000355; Cook IF, 2008, VACCINE, V26, P3551, DOI 10.1016/j.vaccine.2008.04.054; COULAM CB, 1979, AM J OBSTET GYNECOL, V133, P639, DOI 10.1016/0002-9378(79)90011-5; Cowans NJ, 2008, PRENATAL DIAG, V28, P121, DOI 10.1002/pd.1921; CRAMER DW, 1983, AM J OBSTET GYNECOL, V147, P1; Cripps A W, 1987, Adv Exp Med Biol, V216B, P1369; CRUZ JR, 1982, PEDIATR RES, V16, P272, DOI 10.1203/00006450-198204000-00004; Cummins AG, 1997, IMMUNOL CELL BIOL, V75, P419, DOI 10.1038/icb.1997.67; Cutolo M, 2002, ANN NY ACAD SCI, V966, P131, DOI 10.1111/j.1749-6632.2002.tb04210.x; Davis JA, 2006, FEMALE INFIDELITY AND PATERNAL UNCERTAINTY: EVOLUTIONARY PERSPECTIVES ON MALE ANTI-CUCKOLDRY TACTICS, P191, DOI 10.1017/CBO9780511617812.010; Dekel N, 2010, AM J REPROD IMMUNOL, V63, P17, DOI 10.1111/j.1600-0897.2009.00792.x; Delves PJ, 2000, NEW ENGL J MED, V343, P37, DOI 10.1056/NEJM200007063430107; Delves PJ, 2000, NEW ENGL J MED, V343, P108, DOI 10.1056/NEJM200007133430207; DEVEREUX WP, 1970, AM J OBSTET GYNECOL, V108, P78, DOI 10.1016/0002-9378(70)90208-5; Donovan SM, 2006, J PEDIATR-US, V149, pS49, DOI 10.1016/j.jpeds.2006.06.052; Dorman JS, 2001, DIABETES, V50, P1857, DOI 10.2337/diabetes.50.8.1857; Du Pasquier Louis, 1993, P199; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Elenkov IJ, 2004, ANN NY ACAD SCI, V1024, P138, DOI 10.1196/annals.1321.010; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Eschenbach DA, 2000, CLIN INFECT DIS, V30, P901, DOI 10.1086/313818; Fanaro S, 2003, ACTA PAEDIATR, V92, P48; Fantuzzi G, 2005, J ALLERGY CLIN IMMUN, V115, P911, DOI 10.1016/j.jaci.2005.02.023; Fernandez-Riejos P, 2010, MEDIAT INFLAMM, DOI 10.1155/2010/568343; Fessler DMT, 2002, CURR ANTHROPOL, V43, P19, DOI 10.1086/324128; Fisher Susan J, 2004, Reprod Biol Endocrinol, V2, P53, DOI 10.1186/1477-7827-2-53; Flaxman SM, 2000, Q REV BIOL, V75, P113, DOI 10.1086/393377; French SS, 2009, P R SOC B, V276, P4003, DOI 10.1098/rspb.2009.1199; Fried M, 1998, J IMMUNOL, V160, P2523; Fruhbeck G, 2001, AM J PHYSIOL-ENDOC M, V280, pE827; GIGLIO T, 1994, LIFE SCI, V54, P1305, DOI 10.1016/0024-3205(94)00508-7; Gillespie B, 2006, INT BREASTFEED J, V1, DOI 10.1186/1746-4358-1-4; Gillgrass AE, 2003, J VIROL, V77, P9845, DOI 10.1128/JVI.77.18.9845-9851.2003; Gleeson M, 2007, J APPL PHYSIOL, V103, P693, DOI 10.1152/japplphysiol.00008.2007; GOLDBERG GR, 1991, AM J CLIN NUTR, V54, P788; Goldenberg RL, 2000, NEW ENGL J MED, V342, P1500, DOI 10.1056/NEJM200005183422007; Goldman AS, 2002, J MAMMARY GLAND BIOL, V7, P277, DOI 10.1023/A:1022852700266; Golightly E, 2011, MOL CELL ENDOCRINOL, V335, P52, DOI 10.1016/j.mce.2010.08.005; Gregory RL, 1997, MED SCI SPORT EXER, V29, P1596, DOI 10.1097/00005768-199712000-00008; Grimaldi CM, 2002, J CLIN INVEST, V109, P1625, DOI 10.1172/JCI200214873; Grimble RF, 2002, CURR OPIN CLIN NUTR, V5, P551, DOI 10.1097/00075197-200209000-00015; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Groer M, 2004, J HUM LACT, V20, P153, DOI 10.1177/0890334404264104; Gronlund MM, 1999, J PEDIATR GASTR NUTR, V28, P19, DOI 10.1097/00005176-199901000-00007; GROSSMAN C, 1989, J STEROID BIOCHEM, V34, P241, DOI 10.1016/0022-4731(89)90088-5; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, EVOLUTION IN HEALTH AND DISEASE, P77; Hanson LA, 2008, NESTLE NUTR WORKS SE, V61, P123, DOI 10.1159/0000113363; HENNART PF, 1991, AM J CLIN NUTR, V53, P32; Hisada M, 1999, J ACQ IMMUN DEF SYND, V22, P302; Hobel CJ, 2004, CLIN OBSTET GYNECOL, V47, P856, DOI 10.1097/01.grf.0000142512.38733.8c; Hoek A, 1997, ENDOCR REV, V18, P107, DOI 10.1210/er.18.1.107; Jabbour HN, 2009, REPRODUCTION, V138, P903, DOI 10.1530/REP-09-0247; Jakobsen MS, 1996, INT J EPIDEMIOL, V25, P115, DOI 10.1093/ije/25.1.115; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JASON JM, 1984, PEDIATRICS, V74, P702; KARJALAINEN J, 1989, NEW ENGL J MED, V320, P881, DOI 10.1056/NEJM198904063201401; Keane FEA, 1997, INT J STD AIDS, V8, P489, DOI 10.1258/0956462971920631; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; King Anne E, 2003, Reprod Biol Endocrinol, V1, P116, DOI 10.1186/1477-7827-1-116; King AE, 2010, J STEROID BIOCHEM, V120, P116, DOI 10.1016/j.jsbmb.2010.01.003; Kleessen B, 2005, BRIT J NUTR, V93, pS35, DOI 10.1079/BJN20041346; Kliman HJ, 2000, AM J PATHOL, V157, P1759, DOI 10.1016/S0002-9440(10)64813-4; Koenig W, 1999, CIRCULATION, V99, P237, DOI 10.1161/01.CIR.99.2.237; KOVAR MG, 1984, PEDIATRICS, V74, P615; Lang TJ, 2004, CLIN IMMUNOL, V113, P224, DOI 10.1016/j.clim.2004.05.011; Larnkjaer A, 2006, PEDIATRICS, V117, P988, DOI 10.1542/peds.2005-2929; LAWRENCE RA, 2005, BREASTFEEDING GUIDE; Liu HY, 2002, J NEUROSCI RES, V70, P238, DOI 10.1002/jnr.10409; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lockshin MD, 2005, HDB SYSTEMIC AUTOIMM, P3; Lonnerdal B, 1996, ACTA PAEDIATR, V85, P537, DOI 10.1111/j.1651-2227.1996.tb14081.x; Lord GM, 1998, NATURE, V394, P897, DOI 10.1038/29795; LUNDEQUIST B, 1985, ACTA PAEDIATR SCAND, V74, P45, DOI 10.1111/j.1651-2227.1985.tb10919.x; MacDonald TT, 2005, SCIENCE, V307, P1920, DOI 10.1126/science.1106442; Malhotra I, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000116; Marriott I, 2006, IMMUNOL RES, V34, P177, DOI 10.1385/IR:34:3:177; MARSHALL BR, 1975, JAMA-J AM MED ASSOC, V233, P1377, DOI 10.1001/jama.233.13.1377; Martin JT, 2000, EUR J PHARMACOL, V405, P251, DOI 10.1016/S0014-2999(00)00557-4; Mascart-Lemone F, 1991, Adv Exp Med Biol, V310, P201; Matalka KZ, 2003, NEUROENDOCRINOL LETT, V24, P185; Mayer L, 2003, PEDIATRICS, V111, P1595; McDade TW, 2000, AM J HUM BIOL, V12, P792, DOI 10.1002/1520-6300(200011/12)12:6<792::AID-AJHB7>3.3.CO;2-6; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 1999, AM J HUM BIOL, V11, P705, DOI 10.1002/(SICI)1520-6300(199911/12)11:6<705::AID-AJHB1>3.0.CO;2-G; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; MEDAWAR PB, 1953, SYM SOC EXP BIOL, V7, P320; Medzhitov R, 2009, IMMUNITY, V30, P766, DOI 10.1016/j.immuni.2009.06.004; Michalakis KG, 2010, FERTIL STERIL, V94, P1949, DOI 10.1016/j.fertnstert.2010.05.010; Miller AA, 2006, AM J HUM BIOL, V18, P857, DOI 10.1002/ajhb.20566; Miller EM, 2011, BREASTFEEDING IMMUNI; Mitchell M, 2005, REPRODUCTION, V130, P583, DOI 10.1530/rep.1.00521; Mjihdi A, 2002, AM J PATHOL, V161, P673, DOI 10.1016/S0002-9440(10)64223-X; Moffett-King A, 2002, NAT REV IMMUNOL, V2, P656, DOI 10.1038/nri886; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moller AP, 1999, Q REV BIOL, V74, P3, DOI 10.1086/392949; Moormann AM, 1999, J INFECT DIS, V180, P1987, DOI 10.1086/315135; Mor G, 2010, AM J REPROD IMMUNOL, V63, P425, DOI 10.1111/j.1600-0897.2010.00836.x; Morrow Ardythe L, 2004, Semin Pediatr Infect Dis, V15, P221, DOI 10.1053/j.spid.2004.07.002; Mosmann TR, 1996, IMMUNOL TODAY, V17, P138, DOI 10.1016/0167-5699(96)80606-2; Moxley G, 2002, ARTHRITIS RHEUM, V46, P250, DOI 10.1002/1529-0131(200201)46:1<250::AID-ART10064>3.0.CO;2-T; Muehlenbein Michael P, 2006, Soc Biol, V53, P13; Muehlenbein MP, 2010, AM J HUM BIOL, V22, P546, DOI 10.1002/ajhb.21045; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; Mundy GR, 2007, NUTR REV, V65, pS147, DOI 10.1301/nr.2007.dec.S147-S151; NAKAGAWA H, 1981, BIOCHEM PHARMACOL, V30, P639; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nepomnaschy PA, 2007, ANN NY ACAD SCI, V1113, P350, DOI 10.1196/annals.1391.028; Ness RB, 1999, JNCI-J NATL CANCER I, V91, P1459, DOI 10.1093/jnci/91.17.1459; Ness RB, 2004, Q REV BIOL, V79, P383, DOI 10.1086/426089; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; Niyonsaba F, 2005, J DERMATOL SCI, V40, P157, DOI 10.1016/j.jdermsci.2005.07.009; Oddy Wendy H, 2002, Breastfeed Rev, V10, P5; Ogra PL, 2006, INFECT DIS FETUS NEW, P211; Ouwehand Arthur, 2002, European Journal of Nutrition, V41, P32; Parracho H, 2007, P NUTR SOC, V66, P405, DOI 10.1017/S0029665107005678; Pate JL, 2001, REPRODUCTION, V122, P665, DOI 10.1530/rep.0.1220665; Paul WE, 2008, FUNDAMENTAL IMMUNOLO; Peacock N, 1991, Hum Nat, V2, P351, DOI 10.1007/BF02692197; Penders J, 2006, PEDIATRICS, V118, P511, DOI 10.1542/peds.2005-2824; PITCHERWILMOTT RW, 1980, CLIN EXP IMMUNOL, V41, P303; POPKIN BM, 1990, PEDIATRICS, V86, P874; PRENTICE A, 1984, ACTA PAEDIATR SCAND, V73, P796, DOI 10.1111/j.1651-2227.1984.tb17778.x; PROFET M, 1993, Q REV BIOL, V68, P335, DOI 10.1086/418170; Profet M, 1992, ADAPTED MIND EVOLUTI, P327; Redman CWG, 2010, AM J REPROD IMMUNOL, V63, P534, DOI 10.1111/j.1600-0897.2010.00831.x; Richards JS, 2008, TRENDS ENDOCRIN MET, V19, P191, DOI 10.1016/j.tem.2008.03.001; Richman S, 2006, IMMUNOLOGY PREGNANCY; Rieger L, 2004, J SOC GYNECOL INVEST, V11, P488, DOI 10.1016/j.jsgi.2004.05.007; Rier SE, 1997, SEMIN REPROD ENDOCR, V15, P209, DOI 10.1055/s-2008-1068750; Roberts CW, 2001, CLIN MICROBIOL REV, V14, P476, DOI 10.1128/CMR.14.3.476-488.2001; Robillard PY, 2002, AM J REPROD IMMUNOL, V47, P104, DOI 10.1034/j.1600-0897.2002.1o043.x; Rogerson SJ, 2003, INFECT IMMUN, V71, P267, DOI 10.1128/IAI.71.1.267-270.2003; Romero R, 1998, AM J OBSTET GYNECOL, V179, P186, DOI 10.1016/S0002-9378(98)70271-6; Rosenstock SJ, 1996, AM J PUBLIC HEALTH, V86, P1539, DOI 10.2105/AJPH.86.11.1539; Rosenstock SJ, 2000, SCAND J PUBLIC HEALT, V28, P32, DOI 10.1080/713797374; Safaeian M, 2009, J INFECT DIS, V199, P455, DOI 10.1086/596060; Salamonsen LA, 2000, HUM REPROD UPDATE, V6, P16, DOI 10.1093/humupd/6.1.16; Salminen S, 2004, GUT, V53, P1388, DOI 10.1136/gut.2004.041640; Sanchez-Guerrero J, 2001, AM J MED, V111, P464, DOI 10.1016/S0002-9343(01)00885-3; Sandborg C, 2002, J ADOLESCENT HEALTH, V30, P76, DOI 10.1016/S1054-139X(01)00386-X; Schramm C, 2001, AM J GASTROENTEROL, V96, P1587; Schulke L, 2008, HUM REPROD, V23, P1574, DOI 10.1093/humrep/den030; SEAMAN WE, 1979, J IMMUNOL, V122, P2541; Segal AW, 2005, ANNU REV IMMUNOL, V23, P197, DOI 10.1146/annurev.immunol.23.021704.115653; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; SHAHID NS, 1995, LANCET, V346, P1252, DOI 10.1016/S0140-6736(95)91861-2; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SHELLDUNCAN B, 1995, AM J HUM BIOL, V7, P339, DOI 10.1002/ajhb.1310070310; Shrier LA, 2003, J ADOLESCENT HEALTH, V32, P183, DOI 10.1016/S1054-139X(02)00536-0; Siristatidis C, 2006, J OBSTET GYNAECOL RE, V32, P162, DOI 10.1111/j.1447-0756.2006.00373.x; Sites CK, 2002, FERTIL STERIL, V77, P128, DOI 10.1016/S0015-0282(01)02934-X; Smithson G, 1998, J IMMUNOL, V161, P27; Stearns S, 1992, EVOLUTION LIFE HIST; STIMSON WH, 1988, SCAND J IMMUNOL, V28, P345, DOI 10.1111/j.1365-3083.1988.tb01459.x; Strassmann BI, 1999, J WOMENS HEALTH, V8, P193, DOI 10.1089/jwh.1999.8.193; Strassmann BI, 1996, Q REV BIOL, V71, P181, DOI 10.1086/419369; STYRT B, 1991, REV INFECT DIS, V13, P1139; Sullivan AD, 1999, J INFECT DIS, V179, P1580, DOI 10.1086/314752; Tanriverdi F, 2003, J ENDOCRINOL, V176, P293, DOI 10.1677/joe.0.1760293; Than NG, 2004, EUR J BIOCHEM, V271, P1065, DOI 10.1111/j.1432-1033.2004.04004.x; Thompson MS, 2009, MINERVA MED, V100, P357; TIERSON FD, 1986, AM J OBSTET GYNECOL, V155, P1017, DOI 10.1016/0002-9378(86)90337-6; Trinchieri G, 1995, Semin Immunol, V7, P83, DOI 10.1006/smim.1995.0012; TRIVERS RL, 1974, AM ZOOL, V14, P249; Verthelyi D, 2001, INT IMMUNOPHARMACOL, V1, P983, DOI 10.1016/S1567-5769(01)00044-3; Vignali DAA, 2008, NAT REV IMMUNOL, V8, P523, DOI 10.1038/nri2343; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; Waldorf KMA, 2008, IMMUNOL INVEST, V37, P631, DOI 10.1080/08820130802205886; Weaver LT, 1998, ARCH DIS CHILD, V78, P235, DOI 10.1136/adc.78.3.235; Werner M, 2008, SCAND J GASTROENTERO, V43, P1232, DOI 10.1080/00365520802130183; Whitacre CC, 1999, SCIENCE, V283, P1277, DOI 10.1126/science.283.5406.1277; White HD, 1997, J IMMUNOL, V158, P3017; Whitten PL, 2009, AM J HUM BIOL, V21, P754, DOI 10.1002/ajhb.20939; Wiesenfeld HC, 2003, CLIN INFECT DIS, V36, P663, DOI 10.1086/367658; WILKS M, 1987, J MED MICROBIOL, V24, P241, DOI 10.1099/00222615-24-3-241; Wira CR, 2010, AM J REPROD IMMUNOL, V63, P544, DOI 10.1111/j.1600-0897.2010.00842.x; Wira CR, 2005, IMMUNOL REV, V206, P306, DOI 10.1111/j.0105-2896.2005.00287.x; Wong P, 2003, ANNU REV IMMUNOL, V21, P29, DOI 10.1146/annurev.immunol.21.120601.141114; Worthman CM, 1999, HORMONES HLTH BEHAV, P47; YOSHIOKA H, 1983, PEDIATRICS, V72, P317; Yu L, 2009, AM J REPROD IMMUNOL, V62, P1, DOI 10.1111/j.1600-0897.2009.00712.x; ZAVALETA N, 1995, AM J CLIN NUTR, V62, P559 231 10 10 0 20 WILEY PERIODICALS SAN FRANCISCO 989 MARKET STREET, SAN FRANCISCO, CA 94103-1741 USA 0096-848X YEARB PHYS ANTHROPOL Yearb. Phys. Anthropol. 2011 54 134 154 10.1002/ajpa.21621 21 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology BYT51 WOS:000300172400008 Bronze 2019-02-21 J Peters, RS Peters, Ralph S. Two ways of finding a host: A specialist and a generalist parasitoid species (Hymenoptera: Chalcidoidea: Pteromalidae) EUROPEAN JOURNAL OF ENTOMOLOGY English Article Hymenoptera; Chalcidoidea; Pteromalidae; Nasonia vitripennis; Dibrachys microgastri; parasitic wasps; specialist; generalist; locomotor activity; laboratory experiments; parasitoid life history traits; host finding; olfactory cues NASONIA-VITRIPENNIS HYMENOPTERA; FALSE DISCOVERY RATE; WASP NASONIA; WALKER; POPULATIONS; VOLATILES; FLIES; DISCRIMINATION; OLFACTOMETER; ATTRACTION Two closely related parasitoid wasp species with different host specificities were used for experimental studies on the biology of host finding, a crucial element of parasitoid life history: The habitat and host specialist Nasonia vitripennis and the habitat and host generalist Dibrachys microgastri (Chalcidoidea: Pteromalidae). The host finding parameters tested included reaction to olfactory cues, aspects of locomotor activity, ability to locate hidden hosts and day-night-activity. The results revealed distinct interspecific differences that match the respective host and habitat ranges of the two species. In N. vitripennis host finding is dominated by olfactory reaction to hosts and host habitat, i.e., fly puparia and birds' nests. In D. microgastri olfactory cues have only a minor role. Its host finding is characterized by rapid searching at random. Both species are able to locate hidden hosts. Although still incomplete, these insights into host finding by two parasitoid species with different life history strategies indicate they can be characterized by specific combinations of behavioural host finding features. Zool Forsch Museum Alexander Koenig, D-53113 Bonn, Germany Peters, RS (reprint author), Zool Forsch Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany. r.peters@zfmk.de 徐, 登兰/H-5357-2011 ABRAHAM R, 1985, ENTOMOL GEN, V10, P121; Abraham Rudolf, 2008, Vogelwarte, V46, P195; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Boone CK, 2008, ENVIRON ENTOMOL, V37, P150, DOI 10.1603/0046-225X(2008)37[150:PADPEV]2.0.CO;2; BOUCHARD Y, 1985, J CHEM ECOL, V11, P801, DOI 10.1007/BF00988307; Chuche J, 2006, J CHEM ECOL, V32, P2721, DOI 10.1007/s10886-006-9195-8; EDWARDS RL, 1954, BEHAVIOUR, V7, P88, DOI 10.1163/156853955X00049; Floate K, 1999, CAN ENTOMOL, V131, P347, DOI 10.4039/Ent131347-3; Gadau J, 1999, GENETICS, V153, P1731; Garcia LV, 2003, TRENDS ECOL EVOL, V18, P553, DOI 10.1016/j.tree.2003.08.011; Geervliet JBF, 2000, OECOLOGIA, V124, P55, DOI 10.1007/s004420050024; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Grassberger M, 2004, J MED ENTOMOL, V41, P511, DOI 10.1603/0022-2585-41.3.511; Grillenberger BK, 2008, MOL ECOL, V17, P2854, DOI 10.1111/j.1365-294X.2008.03800.x; Hedlund K, 1996, OIKOS, V77, P390, DOI 10.2307/3545929; HOEBEKE ER, 1988, ANN ENTOMOL SOC AM, V81, P493, DOI 10.1093/aesa/81.3.493; Hoffmeister TS, 2001, ECOL ENTOMOL, V26, P487, DOI 10.1046/j.1365-2311.2001.00349.x; Jones R.L., 1986, P149; King BH, 2007, CAN ENTOMOL, V139, P678; King BH, 2000, ENVIRON ENTOMOL, V29, P927, DOI 10.1603/0046-225X-29.5.927; LaSalle J., 1991, Redia, V74, P315; Lynch JA, 2010, DEVELOPMENT, V137, P3813, DOI 10.1242/dev.054213; Norusis M, 2008, SPSS 17 0 GUIDE DATA; Noyes J. S., 2009, UNIVERSAL CHALCIDOID; Oliai SE, 2000, J INSECT BEHAV, V13, P55, DOI 10.1023/A:1007763525685; Peters R, 2004, ENTOMOL GEN, V27, P133; PETERS R, 2007, THESIS U HAMBURG; Peters R.S., 2010, J NAT HIST, V44, P613; Peters RS, 2011, ZOOTAXA, P1; Peters RS, 2010, J HYMENOPT RES, V19, P128; Peters Ralph S., 2009, Entomologische Mitteilungen aus dem Zoologischen Museum Hamburg, V15, P127; PETERS RS, 2010, MITT HAMB ZOOL MUS I, V106, P39; Pultz MA, 2003, GENESIS, V35, P185, DOI 10.1002/gene.10189; REZNIK SY, 1992, OIKOS, V65, P81, DOI 10.2307/3544889; SCHLEIN O, 2002, THESIS U HAMBURG; SCHRODER H, 1997, BERICHTE BIOL; Sereno Fabiana T. P. S., 1994, Revista Brasileira de Entomologia, V38, P447; STAFFORD KC, 1984, ENVIRON ENTOMOL, V13, P228, DOI 10.1093/ee/13.1.228; Steidle JLM, 2003, ENTOMOL EXP APPL, V108, P133, DOI 10.1046/j.1570-7458.2003.00080.x; Steidle JLM, 2003, J CHEM ECOL, V29, P131, DOI 10.1023/A:1021932731350; Steiner S, 2009, BEHAV ECOL, V20, P570, DOI 10.1093/beheco/arp033; Sullivan BT, 2000, ENVIRON ENTOMOL, V29, P1138, DOI 10.1603/0046-225X-29.6.1138; VANALPHEN JJM, 1984, NETH J ZOOL, V34, P215; Vet LEM, 1998, ANIM BEHAV, V55, P1271, DOI 10.1006/anbe.1997.0686; Volkl W, 2000, ENTOMOL EXP APPL, V97, P47, DOI 10.1046/j.1570-7458.2000.00715.x; WERREN JH, 2004, PROPOSAL SEQUENCE NA; Werren JH, 2010, SCIENCE, V327, P343, DOI 10.1126/science.1178028; WHITING AR, 1967, Q REV BIOL, V42, P333, DOI 10.1086/405402; WYLIE H. G., 1958, CANADIAN ENT, V90, P597 49 1 1 1 31 CZECH ACAD SCI, INST ENTOMOLOGY CESKE BUDEJOVICE BRANISOVSKA 31, CESKE BUDEJOVICE 370 05, CZECH REPUBLIC 1210-5759 1802-8829 EUR J ENTOMOL Eur. J. Entomol. 2011 108 4 565 573 10.14411/eje.2011.073 9 Entomology Entomology 826FF WOS:000295336700009 Other Gold 2019-02-21 J Lordelo, ED; Seidl-de-Moura, ML; Vieira, ML; Bussab, VSR; Oliva, AD; Tokumaru, RS; Britto, RCS Lordelo, Eulina da Rocha; Seidl-de-Moura, Maria Lucia; Vieira, Mauro Luis; Raad Bussab, Vera Silvia; Oliva, Angela Donato; Tokumaru, Rosana Suemi; Souza Britto, Regina Celia Environment of Development and the Start of Brazilian Women's Reproductive Life PSICOLOGIA-REFLEXAO E CRITICA Portuguese Article Evolutionary Psychology; Life History Theory; Reproductive life; Pubertal Timing/Menarche FATHER ABSENCE; PUBERTAL MATURATION; RACIAL-DIFFERENCES; SEXUAL-MATURATION; LONGITUDINAL TEST; ADOLESCENT GIRLS; EARLY MENARCHE; TWIN FAMILIES; AGE; MODEL Several models inspired by the life history theory have assessed the patterns of human reproduction in developed countries with promising but inconclusive results. Considering the diversity of life conditions in Brazil, we investigated the relationship between the time of main events in female reproductive life, environmental conditions and psychosocial variables related to child-rearing. We interviewed 606 women in six different states in Brazil. Results corroborate the life history theory, showing associations among the investigated factors, especially between life conditions during childhood and the beginning of sexual life and reproduction, but not to sexual maturity. We suggest that landmarks in reproductive life, although related, can be under the influence of several phenomena. Diversity of life conditions in Brazil offers alternative contexts to hypotheses testing. [Lordelo, Eulina da Rocha] Univ Fed Bahia, Fac Filosofia & Ciencias Humanas, Dept Psicol, BR-40210909 Salvador, BA, Brazil; [Seidl-de-Moura, Maria Lucia; Oliva, Angela Donato] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil; [Vieira, Mauro Luis] Univ Fed Santa Catarina, Florianopolis, SC, Brazil; [Raad Bussab, Vera Silvia] Univ Sao Paulo, Sao Paulo, Brazil; [Oliva, Angela Donato] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil; [Tokumaru, Rosana Suemi] Univ Fed Espirito Santo, Vitoria, Brazil; [Souza Britto, Regina Celia] Fed Univ Para, BR-66059 Belem, Para, Brazil Lordelo, ED (reprint author), Univ Fed Bahia, Fac Filosofia & Ciencias Humanas, Dept Psicol, Rua Estr Sao Lazaro 197, BR-40210909 Salvador, BA, Brazil. eulina@ufba.br; mlseidl@gmail.com; maurolvieira@gmail.com; vsbussab@gmail.com; angeladonatoliva@uol.com.br; tokumaru@usp.br; rcsb@uol.com.br Bussab, Vera/0000-0002-3374-2890 Anderson CA, 2007, BEHAV GENET, V37, P668, DOI 10.1007/s10519-007-9163-2; BELSKY J, 1991, CHILD DEV, V62, P682, DOI 10.2307/1131169; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Blell M, 2008, J BIOSOC SCI, V40, P563, DOI 10.1017/S0021932007002696; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; DANKERHOPFE H, 1986, YEARB PHYS ANTHROPOL, V29, P81; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Dunbar J, 2008, AM J PUBLIC HEALTH, V98, P1822, DOI 10.2105/AJPH.2007.120444; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; GAGE TB, 1989, HUMAN POPULATION BIO, P45; GRABER JA, 1994, DEV PSYCHOL, V30, P823, DOI 10.1037/0012-1649.30.6.823; Graham MJ, 1999, J BIOSOC SCI, V31, P257, DOI 10.1017/S0021932099002576; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; *I BRAS GEOGR EST, 2009, PIB CAP 2003; *I BRAS GEOGR EST, 2009, CENS 2000; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kutner M. H., 2005, APPL LINEAR STAT MOD; LAGO MJ, 2002, THESIS U FEDERAL RIO; Lordelo Eulina Rocha, 2006, Estud. psicol. (Natal), V11, P257, DOI 10.1590/S1413-294X2006000300002; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; *NUCL EST VIOL U S, 2007, 3 REL NAC DIR HUM BR; Park SH, 1999, J ADOLESCENT HEALTH, V25, P97; PICANCO MRA, 1995, THESIS I FERNANDES F; Posner RB, 2006, SEX ROLES, V54, P315, DOI 10.1007/s11199-006-9003-5; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROWE DC, 1994, SOC BIOL, V41, P1; Rowe DC, 2002, EVOL HUM BEHAV, V23, P365, DOI 10.1016/S1090-5138(02)00102-2; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Sun SMS, 2002, PEDIATRICS, V110, P911, DOI 10.1542/peds.110.5.911; Tavares C H, 2000, Cad Saude Publica, V16, P709, DOI 10.1590/S0102-311X2000000300019; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; UDRY JR, 1982, DEMOGRAPHY, V19, P53, DOI 10.2307/2061128; van den Berg SM, 2007, BEHAV GENET, V37, P661, DOI 10.1007/s10519-007-9161-4; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Vitalle Maria Sylvia de Souza, 2003, Rev. Assoc. Med. Bras., V49, P429, DOI 10.1590/S0104-42302003000400036; Wu TJ, 2002, PEDIATRICS, V110, P752, DOI 10.1542/peds.110.4.752 44 0 0 0 4 UNIV FEDERAL RIO GRANDE SUL PORTO ALEGRE RS INST PSICOLOGIA, PPG EM PSICOLOGIA DA UFRGS, RUA RAMIRO BARCELOS 2600, PORTO ALEGRE RS, 90035-003, BRAZIL 0102-7972 PSICOL-REFLEX CRIT Psicol.-Reflex. Crit. JAN-MAR 2011 24 1 116 125 10 Psychology, Multidisciplinary Psychology 807EW WOS:000293878900014 DOAJ Gold 2019-02-21 B Gangestad, SW Booth, A; McHale, SM; Landale, NS Gangestad, Steven W. Human Adaptations for Mating: Frameworks for Understanding Patterns of Family Formation and Fertility BIOSOCIAL FOUNDATIONS OF FAMILY PROCESSES National Symposium on Family Issues English Proceedings Paper 17th Annual Penn State Symposium on Family Issues OCT 08-09, 2009 Penn State Univ, Univ Park Campus, PA Populat Res Inst, Children Youth & Families Cnsortium, Prevent Res Ctr, Womens Studies Program, Dept Sociol, Labor Studies & Employment Relat, Dept Human Dev & Family Studies, Dept Anthropology & Psychol, Natl Inst Child Hlth & Human Dev Penn State Univ HISTOCOMPATIBILITY COMPLEX GENES; WOMENS SEXUAL INTERESTS; LIFE-HISTORY EVOLUTION; CROSS-CULTURAL SAMPLE; SALIVARY TESTOSTERONE; PARENTAL INVESTMENT; MATE PREFERENCES; OVULATORY CYCLE; REPRODUCTIVE SUCCESS; BALANCING SELECTION Reproductive and mating systems vary substantially across modern and traditional human societies. A variety of conceptual tools may be required to explain this variation. This chapter discusses an explanatory framework based on the notion of evoked culture. Evoked cultural differences emerge when behavioral expression of an adaptation is contingent on environmental conditions, such that the behavior of groups exposed to different conditions consequently differs. This chapter has a number of components. First, it offers a brief primer of adaptationist concepts and methodologies within evolutionary biology. Second, it discusses how these methodologies have been used to infer particular adaptations underlying human mating. Third, it examines how some adaptations may have been shaped by selection to be expressed contingently, giving rise to variation. Finally, limitations and potentially useful applications of the evoked culture concept (e.g., illustrated by effects of the contraceptive pill on women's mate choice) are discussed. [Gangestad, Steven W.] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA sgangest@unm.edu Gangestad, Steven/0000-0002-8879-4348 Alexander Richard D., 1979, EVOLUTIONARY BIOL HU, P436; ALLEN E, 1923, JAMA-J AM MED ASSOC, V8, P819; Alvergne A., 2009, TRENDS ECOL EVOL, V25, P171, DOI DOI 10.1016/J.TREE.2009.08.003; Anderson KG, 2007, EVOL HUM BEHAV, V28, P1, DOI 10.1016/j.evolhumbehav.2006.06.004; Andrews PW, 2002, BEHAV BRAIN SCI, V25, P489; BARBER N, 2009, AGGRESS VIOLENT BEH, V13, P237; Beach F A, 1974, Adv Behav Biol, V11, P333; Berg SJ, 2001, MAYO CLIN PROC, V76, P582; Black FL, 1997, P NATL ACAD SCI USA, V94, P12452, DOI 10.1073/pnas.94.23.12452; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Brewis A, 2005, CURR ANTHROPOL, V46, P465, DOI 10.1086/430016; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; BURNHAM JC, 2003, HORM BEHAV, V44, P119; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; DeBruine LM, 2004, EVOL HUM BEHAV, V25, P142, DOI 10.1016/j.evolhumbehav.2004.03.003; DUFOUR SL, 2002, AM J HUM BIOL, V14, P584; Dunbar RIM, 1987, PRIMATE SOCIAL SYSTE; Ellison PT, 2003, AM J HUM BIOL, V15, P342, DOI 10.1002/ajhb.10152; Ellison PT, 2002, HUM REPROD, V17, P3251, DOI 10.1093/humrep/17.12.3251; ELLISON PT, 2001, FERTILE GROUND NATUR; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fisher H, 2005, J COMP NEUROL, V493, P58, DOI 10.1002/cne.20772; Fisher Helen, 2004, WHY WE LOVE NATURE C; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Frank R., 1988, PASSIONS REASON STRA; Gangestad SW, 2008, P ROY SOC B-BIOL SCI, V275, P991, DOI 10.1098/rspb.2007.1425; Gangestad SW, 2007, SYD SYM SOC PSYCHOL, P33; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gangestad SW, 2005, P ROY SOC B-BIOL SCI, V272, P2023, DOI 10.1098/rspb.2005.3112; Gangestad SW, 2002, P ROY SOC B-BIOL SCI, V269, P975, DOI 10.1098/rspb.2001.1952; GAREMSZEGI LZ, 2005, HORM BEHAV, V47, P389; Garver-Apgar CE, 2008, EVOL HUM BEHAV, V29, P223, DOI 10.1016/j.evolhumbehav.2007.12.007; Garver-Apgar CE, 2006, PSYCHOL SCI, V17, P830, DOI 10.1111/j.1467-9280.2006.01789.x; GAULIN SJC, 1980, ETHOL SOCIOBIOL, V1, P301, DOI 10.1016/0162-3095(80)90015-1; GEISE AR, 2003, ANIMAL CONSERVATION, V6, P369; GODFREYSMITH P, 1993, PAC PHILOS QUART, V74, P196; GOULD SJ, 1979, PROC R SOC SER B-BIO, V205, P581, DOI 10.1098/rspb.1979.0086; GOULD SJ, 1982, PALEOBIOLOGY, V8, P4, DOI 10.1017/S0094837300004310; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2004, HUM NATURE-INT BIOS, V15, P119, DOI 10.1007/s12110-004-1016-6; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; HART CWM, 1987, TIWI N AUSTR; HARTUNG J, 1985, BEHAV BRAIN SCI, V8, P661, DOI 10.1017/S0140525X00045520; Haselton MG, 2006, HORM BEHAV, V49, P509, DOI 10.1016/j.yhbeh.2005.10.006; HASSEBRAUCK M, 2003, EVOL COGN, V9, P116; Hawkes K, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P443; HAWKES K, 1991, PHILOS T ROY SOC B, V334, P243, DOI 10.1098/rstb.1991.0113; HAWKES K, 1991, ETHOL SOCIOBIOL, V12, P29, DOI 10.1016/0162-3095(91)90011-E; Hawkes K, 2001, CURR ANTHROPOL, V42, P681, DOI 10.1086/322559; Hedrick PW, 1997, HEREDITAS, V127, P51, DOI 10.1111/j.1601-5223.1997.00051.x; Hedrick PW, 1998, GENETICA, V104, P207, DOI 10.1023/A:1026494212540; Hill K., 1996, ACHE LIFE HIST ECOLO; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; HRDY SB, 2009, MOTHERS OTHERS; Hua C., 2001, SOC FATHERS HUSBANDS; Jacob S, 2002, NAT GENET, V30, P175, DOI 10.1038/ng830; JANKOWIAK WR, 1992, ETHNOLOGY, V31, P148; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; KAPLAN H, 1985, CURR ANTHROPOL, V26, P131, DOI 10.1086/203235; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kokko H, 2002, PHILOS T ROY SOC B, V357, P319, DOI 10.1098/rstb.2001.0926; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Lancaster J. B., 1983, PARENTAL CARE MAMMAL, P347; LOVEJOY CO, 1981, SCIENCE, V211, P341, DOI 10.1126/science.211.4480.341; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2001, CURR ANTHROPOL, V42, P755, DOI 10.1086/323820; Marlowe FW, 1999, BEHAV ECOL SOCIOBIOL, V46, P57, DOI 10.1007/s002650050592; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; Mazur A, 1998, BEHAV BRAIN SCI, V21, P353; McIntyre M, 2006, J PERS SOC PSYCHOL, V91, P642, DOI 10.1037/0022-3514.91.4.642; Miller G, 2007, EVOL HUM BEHAV, V28, P375, DOI 10.1016/j.evolhumbehav.2007.06.002; MILLIKAN RG, 1989, PHILOS SCI, V56, P288, DOI 10.1086/289488; Muller MN, 2009, P ROY SOC B-BIOL SCI, V276, P347, DOI 10.1098/rspb.2008.1028; MULLER MN, 2001, REPROD ECOLOGY HUMAN, P397; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; Nunes S, 2001, HORM BEHAV, V39, P70, DOI 10.1006/hbeh.2000.1631; NUNES S, 2000, ANIM BEHAV, V60, P1; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Penn DJ, 1999, AM NAT, V153, P145, DOI 10.1086/303166; Pillsworth EG, 2006, EVOL HUM BEHAV, V27, P247, DOI 10.1016/j.evolhumbehav.2005.10.002; Platek SM, 2005, NEUROIMAGE, V25, P1336, DOI 10.1016/j.neuroimaging.2004.12.037; Platek SM, 2004, EVOL HUM BEHAV, V25, P394, DOI 10.1016/j.evolhumbehav.2004.08.007; Platek SM, 2003, EVOL HUM BEHAV, V24, P81, DOI 10.1016/S1090-5138(02)00117-4; Platek SM, 2002, EVOL HUM BEHAV, V23, P159, DOI 10.1016/S1090-5138(01)00094-0; Pollet TV, 2008, BIOL LETTERS, V4, P31, DOI 10.1098/rsbl.2007.0543; Pollet TV, 2009, P NATL ACAD SCI USA, V106, P2114, DOI 10.1073/pnas.0810016106; Puts DA, 2005, EVOL HUM BEHAV, V26, P388, DOI 10.1016/j.evolhumbehav.2005.03.001; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P1, DOI 10.1016/S1090-5138(02)00104-6; Quinlan RJ, 2008, HUM NATURE-INT BIOS, V19, P87, DOI 10.1007/s12110-007-9026-9; Roney JR, 2008, HORM BEHAV, V53, P14, DOI 10.1016/j.yhbeh.2007.09.008; Salmon W. C, 1984, SCI EXPLANATION CAUS; Santos PSC, 2005, HORM BEHAV, V47, P384, DOI 10.1016/j.yhbeh.2004.11.005; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Singh D, 2001, P ROY SOC B-BIOL SCI, V268, P797, DOI 10.1098/rspb.2001.1589; STERELNY K, 1999, SEX DEATH INTRO PHIL, P8; Storey AE, 2000, EVOL HUM BEHAV, V21, P79, DOI 10.1016/S1090-5138(99)00042-2; Stumpf RM, 2005, BEHAV ECOL SOCIOBIOL, V57, P511, DOI 10.1007/s00265-004-0868-4; Symons D., 1979, EVOLUTION HUMAN SEXU; TAL I, 2009, THESIS U NEW MEXICO; Thornhill R, 2003, BEHAV ECOL, V14, P668, DOI 10.1093/beheco/arg043; Thornhill R, 1997, Ciba Found Symp, V208, P4; Thornhill R., 2008, EVOLUTIONARY BIOL HU; Thursz MR, 1997, NAT GENET, V17, P11, DOI 10.1038/ng0997-11; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; TRIVERS RL, 1972, SEXUAL SELECTION DES, V1881, P136; van Anders SM, 2006, PSYCHONEUROENDOCRINO, V31, P715, DOI 10.1016/j.psyneuen.2006.01.008; Wedekind C, 1997, P ROY SOC B-BIOL SCI, V264, P1471, DOI 10.1098/rspb.1997.0204; WEDEKIND C, 1995, P ROY SOC B-BIOL SCI, V260, P245, DOI 10.1098/rspb.1995.0087; Wegner KM, 2003, J EVOLUTION BIOL, V16, P224, DOI 10.1046/j.1420-9101.2003.00519.x; Welling LLM, 2007, HORM BEHAV, V52, P156, DOI 10.1016/j.yhbeh.2007.01.010; Westermarck E., 1929, MARRIAGE; Williams George C., 1992, NATURAL SELECTION DO; Williams Geroge C, 1966, ADAPTATION NATURAL S 117 1 1 0 9 SPRINGER NEW YORK 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES 978-1-4419-7360-3 NATL SYMP FAM ISS 2011 117 148 10.1007/978-1-4419-7361-0_9 32 Family Studies Family Studies BVX83 WOS:000293099400009 2019-02-21