PT AU BA BE GP AF BF CA TI SO SE BS LA DT CT CY CL SP HO DE ID AB C1 RP EM RI OI FU FX CR NR TC Z9 U1 U2 PU PI PA SN EI BN J9 JI PD PY VL IS PN SU SI MA BP EP AR DI D2 EA EY PG WC SC GA UT PM OA HC HP DA J Speed, JDM; Austrheim, G; Hester, AJ; Meisingset, EL; Mysterud, A; Tremblay, JP; Oien, DI; Solberg, EJ Speed, James D. M.; Austrheim, Gunnar; Hester, Alison J.; Meisingset, Erling L.; Mysterud, Atle; Tremblay, Jean-Pierre; Oien, Dag-Inge; Solberg, Erling J. General and specific responses of understory vegetation to cervid herbivory across a range of boreal forests OIKOS English Article LIFE-HISTORY STRATEGIES; WHITE-TAILED DEER; RED DEER; PRODUCTIVITY GRADIENT; FIELD LAYER; MOOSE; DYNAMICS; IMPACT; GROWTH; FENNOSCANDIA Understanding the responses of ecological communities to perturbation is a key challenge within contemporary ecology research. In this study we seek to separate specific community responses from general community responses of plant communities to exclusion of large cervid herbivores. Cervid herbivory and forestry are the main drivers of vegetation structure and diversity in boreal forests. While many studies focus on the impact of cervids on trees, a high proportion of the biodiversity and ecosystem services in boreal forests is found in the field layer. However, experimental approaches investigating the influence of herbivory on understory vegetation are highly localised. In this study we use a regional-scale design with 51 sites in four boreal forest regions of Norway, to investigate the influence of cervid herbivory on the physical and ecological structure of field layer vegetation. Our study sites cover a range of forest types differing in productivity, management and dominant cervid species, allowing us to identify generic responses and those that are specific to particular conditions. We found that the height of the field layer and the abundances of individual species were most susceptible to change following short-term cervid exclusion across different forest types and cervid species. Total vegetation density and vascular plant diversity did not respond to cervid exclusion on the same time scale. We also found that the field-layer vegetation in clear-cut forests used by moose was more susceptible to change following cervid exclusion than mature forests used by red deer, but no strong evidence that the response of vegetation to herbivore exclusion varied with productivity. Our study suggests that the parameters that respond to cervid exclusion are consistent across forest types, but that the responsiveness of different forest types is idiosyncratic and hard to predict. [Speed, James D. M.; Austrheim, Gunnar; Oien, Dag-Inge] Norwegian Univ Sci & Technol, Univ Museum, NO-7491 Trondheim, Norway; [Hester, Alison J.] James Hutton Inst, Aberdeen AB15 8QH, Scotland; [Meisingset, Erling L.] Norwegian Inst Agr & Environm Res, Food & Farming Div, NO-6630 Tingvoll Gard, Tingvoll, Norway; [Mysterud, Atle] Univ Oslo, Dept Biosci, CEES, NO-0316 Oslo, Norway; [Tremblay, Jean-Pierre] Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada; [Tremblay, Jean-Pierre] Univ Laval, Ctr Northern Studies, Quebec City, PQ G1V 0A6, Canada; [Solberg, Erling J.] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway Speed, JDM (reprint author), Norwegian Univ Sci & Technol, Univ Museum, NO-7491 Trondheim, Norway. james.speed@vm.ntnu.no Speed, James/C-1099-2009 Speed, James/0000-0002-0633-5595 Research Council of Norway [184036]; Norwegian Environment Agency This study was funded by Research Council of Norway Environment 2015 program (project 184036) and the Norwegian Environment Agency. We are grateful to the numerous field assistants who have collected data within this study, and to the land-owners for permission to establish experiments in their forests. Apollonio M, 2010, EUROPEAN UNGULATES T; Augustine DJ, 1998, J WILDLIFE MANAGE, V62, P1165, DOI 10.2307/3801981; Austrheim G., 2011, WILDLIFE BIOL, V17, P1; Austrheim G, 2008, OIKOS, V117, P837, DOI 10.1111/j.2008.0030-1299.16543.x; Bjorneraas K, 2012, OECOLOGIA, V168, P231, DOI 10.1007/s00442-011-2072-3; Cote SD, 2004, ANNU REV ECOL EVOL S, V35, P113, DOI 10.1146/annurev.ecolsys.35.021103.105725; Evju M, 2009, OECOLOGIA, V161, P77, DOI 10.1007/s00442-009-1358-1; Gamfeldt L, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms2328; Godvik IMR, 2009, ECOLOGY, V90, P699, DOI 10.1890/08-0576.1; Gordon I.J., 2008, ECOLOGY BROWSING GRA; Hawkes CV, 2001, ECOLOGY, V82, P2045, DOI 10.1890/0012-9658(2001)082[2045:TIOHOP]2.0.CO;2; Hegland SJ, 2013, FOREST ECOL MANAG, V310, P267, DOI 10.1016/j.foreco.2013.08.031; Hester A. J., 2006, LARGE HERBIVORE ECOL, P97, DOI DOI 10.1017/CB09780511617461.006; Hester AJ, 2000, FORESTRY, V73, P381, DOI 10.1093/forestry/73.4.381; HESTER AJ, 1991, J ECOL, V79, P303, DOI 10.2307/2260714; Hidding B, 2013, ECOLOGY, V94, P2852, DOI 10.1890/12-2015.1; Horsley SB, 2003, ECOL APPL, V13, P98, DOI 10.1890/1051-0761(2003)013[0098:WTDIOT]2.0.CO;2; JONASSON S, 1988, OIKOS, V52, P101, DOI 10.2307/3565988; Kielland K, 1998, OIKOS, V82, P377, DOI 10.2307/3546979; Magurran A. E., 2004, MEASURING BIOL DIVER; MASCHINSKI J, 1989, AM NAT, V134, P1, DOI 10.1086/284962; Mathisen KM, 2010, J VEG SCI, V21, P705, DOI 10.1111/j.1654-1103.2010.01180.x; MILCHUNAS DG, 1988, AM NAT, V132, P87, DOI 10.1086/284839; Moen A, 1999, NATL ATLAS NORWAY VE; Myking T, 2013, EUR J FOREST RES, V132, P399, DOI 10.1007/s10342-013-0684-3; Myking T, 2011, FORESTRY, V84, P61, DOI 10.1093/forestry/cpq044; Mysterud A, 2000, OECOLOGIA, V124, P130, DOI 10.1007/s004420050032; Nuttle T, 2013, ECOL MONOGR, V83, P3, DOI 10.1890/11-2263.1; Pakeman RJ, 2004, J ECOL, V92, P893, DOI 10.1111/j.0022-0477.2004.00928.x; Palmer SCF, 2003, ECOLOGY, V84, P2877, DOI 10.1890/02-0245; Persson IL, 2007, OIKOS, V116, P1639, DOI 10.1111/j.2007.0030-1299.15946.x; Pinheiro J, 2013, NLME LINEAR NONLINEA; Proulx M, 1998, ECOLOGY, V79, P2581, DOI 10.1890/0012-9658(1998)079[2581:ROGIOP]2.0.CO;2; Rooney TP, 2003, FOREST ECOL MANAG, V181, P165, DOI 10.1016/S0378-1127(03)00130-0; Rosvold J, 2013, HOLOCENE, V23, P1143, DOI 10.1177/0959683613483625; Skarpe Christina, 2008, V195, P217, DOI 10.1007/978-3-540-72422-3_9; Speed JDM, 2013, ECOSCIENCE, V20, P311, DOI 10.2980/20-3-3619; Speed JDM, 2013, FOREST ECOL MANAG, V289, P289, DOI 10.1016/j.foreco.2012.10.051; Suominen O, 1999, ECOGRAPHY, V22, P651, DOI 10.1111/j.1600-0587.1999.tb00514.x; Tremblay JP, 2007, J APPL ECOL, V44, P552, DOI 10.1111/j.1365-2664.2007.01290.x; Tremblay JP, 2006, OECOLOGIA, V150, P78, DOI 10.1007/s00442-006-0504-2; Wilson JB, 2011, J VEG SCI, V22, P197, DOI 10.1111/j.1654-1103.2010.01238.x 42 8 8 3 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0030-1299 1600-0706 OIKOS Oikos OCT 2014 123 10 1270 1280 10.1111/oik.01373 11 Ecology Environmental Sciences & Ecology AQ4HJ WOS:000342754100013 2019-02-21 J Bleu, J; Loison, A; Toigo, C Bleu, Josefa; Loison, Anne; Toigo, Carole Is there a trade-off between horn growth and survival in adult female chamois? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article body mass; delayed costs; horn growth; life-history strategies; trade-off; ungulates INDIVIDUAL VARIATION; RUPICAPRA-RUPICAPRA; MARKED ANIMALS; ALPINE CHAMOIS; REPRODUCTION; POPULATIONS; MORTALITY; SELECTION; ECOLOGY; QUALITY Life-history theory predicts trade-offs in energy allocation between different life-history traits when resources are limited, i.e. certain traits should be negatively correlated. However, individuals differ in their ability to acquire resources, which can lead to positive correlations between traits at the population level. Here, we investigated the consequences of the allocation in horn growth and body mass on survival in a bovid (Rupicapra rupicapra) with capture-mark re-sighting data on 161 females. In female ungulates, body mass often covaries positively with demographic performance and the few studies on horn size suggest that this trait could be a signal of individual quality. Thus, we expected to measure positive correlations between the allocation in these traits and female survival. However, body mass was not correlated to female survival and there was only a negative, though marginal, effect of horn growth. Hence, it seems that the allocation in growth is not an indicator of female quality. Future studies could investigate the importance of growth on female reproduction to evaluate its effect on lifetime reproductive success. Moreover, it is important to confirm in other populations our result that suggests a cost of the allocation in horn growth to better understand the presence of horns in female bovids.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113, 516-521. [Bleu, Josefa; Loison, Anne] Univ Savoie, CNRS, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France; [Bleu, Josefa] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, N-7491 Trondheim, Norway; [Toigo, Carole] ONCFS, F-38610 Zi Mayencin, Gieres, France Bleu, J (reprint author), Univ Savoie, CNRS, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France. josefa.bleu@gmail.com Bleu, Josefa/B-2574-2009 Bleu, Josefa/0000-0002-3403-8272 Ministere de l'Enseignement Superieur et de la Recherche; ONCFS; European Research Council Funding sources: Ministere de l'Enseignement Superieur et de la Recherche, ONCFS and European Research Council. Bassano B, 2003, MAMMALIA, V67, P65, DOI 10.1515/mamm.2003.67.1.65; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Burnham K. P., 1998, MODEL SELECTION INFE; Burnham KP, 2011, BEHAV ECOL SOCIOBIOL, V65, P23, DOI 10.1007/s00265-010-1029-6; Chirichella R, 2013, EVOL ECOL, V27, P145, DOI 10.1007/s10682-012-9583-1; Choquet R, 2009, ENVIRON ECOL STAT SE, V3, P845, DOI 10.1007/978-0-387-78151-8_39; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Gaillard J.-M., 2004, Animal Biodiversity and Conservation, V27, P47; Gaillard JM, 2000, P ROY SOC B-BIOL SCI, V267, P471, DOI 10.1098/rspb.2000.1024; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LOCATI M, 1991, AGGRESSIVE BEHAV, V17, P11; Loison A, 1999, J MAMMAL, V80, P620, DOI 10.2307/1383306; LOISON A, 1994, CAN J ZOOL, V72, P591, DOI 10.1139/z94-081; Mangel M, 2001, EVOL ECOL RES, V3, P583; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; PICARD K, 1994, J MAMMAL, V75, P710, DOI 10.2307/1382520; Poissant J, 2008, P R SOC B, V275, P623, DOI 10.1098/rspb.2007.1361; Pradel R, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032666; ROFF DA, 2002, LIFE HIST EVOLUTION; Rughetti M, 2011, J ANIM ECOL, V80, P438, DOI 10.1111/j.1365-2656.2010.01773.x; Schroder W., 1985, P65; Toigo C, 2013, OECOLOGIA, V173, P1261, DOI 10.1007/s00442-013-2700-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 28 2 2 2 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. OCT 2014 113 2 516 521 10.1111/bij.12351 6 Evolutionary Biology Evolutionary Biology AQ2KH WOS:000342613900014 Bronze 2019-02-21 J Chevalier, M; Laffaille, P; Grenouillet, G Chevalier, Mathieu; Laffaille, Pascal; Grenouillet, Gael Spatial synchrony in stream fish populations: influence of species traits ECOGRAPHY English Article LIFE-HISTORY STRATEGIES; EXTINCTION RISK; CLIMATE-CHANGE; FLUCTUATING POPULATIONS; DENSITY-DEPENDENCE; DYNAMICS; PATTERNS; AUTOCORRELATION; VARIABILITY; DISPERSAL Spatial synchrony in population dynamics has been identified in most taxonomic groups. Numerous studies have reported varying levels of spatial synchrony among closely-related species, suggesting that species' characteristics may play a role in determining the level of synchrony. However, few studies have attempted to relate this synchrony to the ecological characteristics and/or life-history traits of species. Yet, as to some extent the extinction risk may be related to synchrony patterns, identifying a link between species' characteristics and spatial synchrony is crucial, and would help us to define effective conservation planning. Here, we investigated whether species attributes and temperature synchrony (i.e. a proxy of the Moran effect) account for the differences in spatial population synchrony observed in 27 stream fish species in France. After measuring and testing the level of synchrony for each species, we performed a comparative analysis to detect the phylogenetic signal of these levels, and to construct various multi-predictor models with species traits and temperature synchrony as covariates, while taking phylogenetic relatedness into account. We then performed model averaging on selected models to take model uncertainty into account in our parameter estimates. Fifteen of the 27 species displayed a significant level of synchrony. Synchrony was weak, but highly variable between species, and was not conserved across the phylogeny. We found that some species' characteristics significantly influenced synchrony levels. Indeed, the average model indicated that species associated with greater dispersal abilities, lower thermal tolerance, and opportunistic strategy displayed a higher degree of synchrony. These findings indicate that phylogeny and spatial temperature synchrony do not provide information pertinent for explaining the variations in species' synchrony levels, whereas the dispersal abilities, the life-history strategies and the upper thermal tolerance limits of species do appear to be quite reliable predictors of synchrony levels. [Chevalier, Mathieu; Grenouillet, Gael] CNRS, UMR 5174, EDB Lab Evolut & Divers Biol, FR-31062 Toulouse, France; [Chevalier, Mathieu; Grenouillet, Gael] Univ Toulouse, UPS, EDB, FR-31062 Toulouse, France; [Chevalier, Mathieu] Univ Toulouse, INP, UPS, EcoLab, FR-31062 Toulouse, France; [Chevalier, Mathieu; Laffaille, Pascal] CNRS, UMR 5245, EcoLab Lab Ecol Fonct & Environm, FR-31062 Toulouse, France; [Laffaille, Pascal] Univ Toulouse, INP, UPS, EcoLab,ENSAT, FR-31326 Castanet Tolosan, France Chevalier, M (reprint author), CNRS, UMR 5174, EDB Lab Evolut & Divers Biol, FR-31062 Toulouse, France. mathieu.chevalier38@gmail.com Fondation de Recherche pour la Biodiversite, Region Nord-Pas-de-Calais; Agence de l'Eau Artois Picardie; Adapt'eau [ANR-11-CEPL-008] We are indebted to the French National Agency for Water and Aquatic Environment (Onema) for providing fish data, and we would like to thank the many fieldworkers who have contributed to the fish records. This study is part of the PRIOFISH projects (funded by the Fondation de Recherche pour la Biodiversite, Region Nord-Pas-de-Calais and Agence de l'Eau Artois Picardie) and Adapt'eau (Projet ANR-11-CEPL-008). EDB is part of the 'Laboratoire d'Excellence' (LABEX) entitled TULIP (ANR-10-LABX-41). We would also like to thank Monika Ghosh, who corrected the English text. Aubry A, 2012, ECOGRAPHY, V35, P749, DOI 10.1111/j.1600-0587.2011.06912.x; Barber CB, 1996, ACM T MATH SOFTWARE, V22, P469, DOI 10.1145/235815.235821; Bjornstad ON, 1999, TRENDS ECOL EVOL, V14, P427, DOI 10.1016/S0169-5347(99)01677-8; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Buisson L, 2009, DIVERS DISTRIB, V15, P613, DOI 10.1111/j.1472-4642.2009.00565.x; Buonaccorsi JP, 2001, ECOLOGY, V82, P1668, DOI 10.1890/0012-9658(2001)082[1668:MATFSS]2.0.CO;2; Burnham K. P, 2002, MODEL SELECTION MULT; Burrows MT, 2002, MAR ECOL PROG SER, V240, P39, DOI 10.3354/meps240039; Caissie D, 2006, FRESHWATER BIOL, V51, P1389, DOI 10.1111/j.1365-2427.2006.01597.x; Cardillo M, 2005, SCIENCE, V309, P1239, DOI 10.1126/science.1116030; Cattadori IM, 2005, NATURE, V433, P737, DOI 10.1038/nature03276; Cattaneo F, 2003, OIKOS, V100, P43, DOI 10.1034/j.1600-0706.2003.11912.x; Daufresne M, 2007, GLOBAL CHANGE BIOL, V13, P2467, DOI 10.1111/j.1365-2486.2007.01449.x; Engen S, 2005, AM NAT, V166, P603, DOI 10.1086/491690; Engen S, 2005, J ANIM ECOL, V74, P601, DOI 10.1111/j.1365-2656.2005.00942.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Forchhammer MC, 2002, POPUL ECOL, V44, P113, DOI 10.1007/s101440200013; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Franzen M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078233; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Gouhier TC, 2010, P NATL ACAD SCI USA, V107, P8281, DOI 10.1073/pnas.0914588107; GOWER JC, 1966, BIOMETRIKA, V53, P325, DOI 10.2307/2333639; GOWER JC, 1971, BIOMETRICS, V27, P857, DOI 10.2307/2528823; Grenfell B., 1998, NATURE, V394, P1993; Grenouillet G, 2001, FRESHWATER BIOL, V46, P11, DOI 10.1046/j.1365-2427.2001.00637.x; Grenouillet G, 2011, ECOGRAPHY, V34, P9, DOI 10.1111/j.1600-0587.2010.06152.x; HANSKI I, 1993, J ANIM ECOL, V62, P656, DOI 10.2307/5386; Heino M, 1997, P ROY SOC B-BIOL SCI, V264, P481, DOI 10.1098/rspb.1997.0069; Jiguet F, 2007, GLOBAL CHANGE BIOL, V13, P1672, DOI 10.1111/j.1365-2486.2007.01386.x; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kamilar JM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0341; Kamilar JM, 2012, AM J PHYS ANTHROPOL, V147, P401, DOI 10.1002/ajpa.22002; Keith P., 2011, POISSONS EAU DOUCE F; Kendall BE, 2000, AM NAT, V155, P628, DOI 10.1086/303350; Koenig WD, 1998, CONSERV BIOL, V12, P612, DOI 10.1046/j.1523-1739.1998.97034.x; Koenig WD, 1999, TRENDS ECOL EVOL, V14, P22, DOI 10.1016/S0169-5347(98)01533-X; Koenig WD, 1998, ECOGRAPHY, V21, P423, DOI 10.1111/j.1600-0587.1998.tb00407.x; Koenig WD, 2002, ECOGRAPHY, V25, P283, DOI 10.1034/j.1600-0587.2002.250304.x; Kutner M. H., 2005, APPL LINEAR STAT MOD; Lande R, 2002, AM NAT, V159, P321, DOI 10.1086/338988; Le Moigne P., 2002, NOTE CENT GMEE; Liebhold A, 2004, ANNU REV ECOL EVOL S, V35, P467, DOI 10.1146/annurev.ecolsys.34.011802.132516; Lillegard M, 2005, OIKOS, V109, P342, DOI 10.1111/j.0030-1299.2005.13816.x; Moisselin J. M., 2002, METEOROLOGIE, V38, P45; MORAN PAP, 1953, AUST J ZOOL, V1, P291, DOI 10.1071/ZO9530291; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P1400, DOI 10.1139/cjfas-54-6-1400; NAGELKERKE NJD, 1991, BIOMETRIKA, V78, P691, DOI 10.1093/biomet/78.3.691; Olden JD, 2008, ECOLOGY, V89, P847, DOI 10.1890/06-1864.1; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 1999, ECOL LETT, V2, P114, DOI 10.1046/j.1461-0248.1999.22060.x; Paradis E, 2000, ECOLOGY, V81, P2112, DOI 10.1890/0012-9658(2000)081[2112:SSIPOB]2.0.CO;2; Peltonen M, 2002, ECOLOGY, V83, P3120, DOI 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poulet N, 2011, J FISH BIOL, V79, P1436, DOI 10.1111/j.1095-8649.2011.03084.x; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; Raimondo S, 2004, ECOL ENTOMOL, V29, P96, DOI 10.1111/j.0307-6946.2004.00579.x; Ranta E, 1998, OIKOS, V83, P376, DOI 10.2307/3546852; Saether BE, 2013, AM NAT, V182, P743, DOI 10.1086/673497; Satake A, 2004, OIKOS, V104, P540, DOI 10.1111/j.0030-1299.2004.12694.x; Sutcliffe OL, 1996, J ANIM ECOL, V65, P85, DOI 10.2307/5702; Tedesco P, 2006, OIKOS, V115, P117, DOI 10.1111/j.2006.0030-1299.14847.x; Tissot L., 2011, HYDROECOL APPL, V17, P17; Willis CG, 2008, P NATL ACAD SCI USA, V105, P17029, DOI 10.1073/pnas.0806446105; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395 64 7 8 2 49 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography OCT 2014 37 10 960 968 10.1111/ecog.00662 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology AQ2KF WOS:000342613600005 2019-02-21 J de Lange, ES; Balmer, D; Mauch-Mani, B; Turlings, TCJ de Lange, Elvira S.; Balmer, Dirk; Mauch-Mani, Brigitte; Turlings, Ted C. J. Insect and pathogen attack and resistance in maize and its wild ancestors, the teosintes NEW PHYTOLOGIST English Review maize herbivores; maize pathogens; plant defense; plant domestication; teosinte; Zea mays RIBOSOME-INACTIVATING PROTEIN; FALL ARMYWORM LEPIDOPTERA; EUROPEAN CORN-BORER; INDIRECT DEFENSE RESPONSES; SPECIALIST ROOT HERBIVORE; INDUCED VOLATILE EMISSION; LIFE-HISTORY EVOLUTION; PLANT IMMUNITY GENES; MAYS SSP PARVIGLUMIS; ZEA-MAYS Maize (Zea mays ssp.mays) is one of the most important crops worldwide and there are many reports in the literature on its constitutive and inducible defenses against pathogens and insects. However, research on its wild ancestors, the teosintes, with respect to resistance against these antagonists is limited. Here, we review what is known about the different arthropods and microbes that are associated with maize and teosintes in Mexico and Central America, the area of origin, and evaluate the plants' mechanisms of resistance against biotic stresses. Teosintes appear to have greater resistance against a number of pests than their cultivated counterpart. We therefore highlight the need to study the teosintes in order to identify resistance traits that can be improved in maize. As teosintes are at risk of becoming extinct, there is a need to protect their germplasm for future generations. [de Lange, Elvira S.; Turlings, Ted C. J.] Univ Neuchatel, Inst Biol, Lab Fundamental & Appl Res Chem Ecol, CH-2000 Neuchatel, Switzerland; [de Lange, Elvira S.] Rutgers State Univ, Philip E Marucci Blueberry & Cranberry Res Ctr, Chatsworth, NJ 08019 USA; [Balmer, Dirk; Mauch-Mani, Brigitte] Univ Neuchatel, Inst Biol, Lab Mol & Cell Biol, CH-2000 Neuchatel, Switzerland Turlings, TCJ (reprint author), Univ Neuchatel, Inst Biol, Lab Fundamental & Appl Res Chem Ecol, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland. elvira.delange@rutgers.edu; ted.turlings@unine.ch Turlings, Ted/E-8671-2012; Mauch-Mani, Brigitte/O-2387-2014 Turlings, Ted/0000-0002-8315-785X; de Lange, Elvira/0000-0002-1940-4684; Mauch-Mani, Brigitte/0000-0002-6743-8520 National Centre of Competence in Research (NCCR) 'Plant Survival' - Swiss National Science Foundation; SNF Grant - Swiss National Science Foundation [31003A-122132] We thank Jorge E. Ibarra, Dawn S. Luthe and Daniel Maag for sharing unpublished data. The authors were supported by the National Centre of Competence in Research (NCCR) 'Plant Survival' and by SNF Grant 31003A-122132, both funded by the Swiss National Science Foundation. Ahmad S, 2011, PLANT PHYSIOL, V157, P317, DOI 10.1104/pp.111.180224; Balmerl D, 2013, FRONT PLANT SCI, V4, DOI 10.3389/fpls.2013.00082; Balmer D, 2013, J EXP BOT, V64, P1249, DOI 10.1093/jxb/ers248; Banuett F, 1995, ANNU REV GENET, V29, P179, DOI 10.1146/annurev.ge.29.120195.001143; Barr KL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011339; BARRY D, 1992, J ECON ENTOMOL, V85, P2492, DOI 10.1093/jee/85.6.2492; Basandrai A. K., 2002, Diseases of field crops, P102; Beadle G. W, 1972, FIELD MUS NAT HIST B, V43, P2; Beadle GW, 1939, J HERED, V30, P245, DOI 10.1093/oxfordjournals.jhered.a104728; BEADLE GW, 1980, SCI AM, V242, P112, DOI 10.1038/scientificamerican0180-112; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; Bennetzen J, 2001, LAT AM ANTIQ, V12, P84, DOI 10.2307/971759; Bennetzen J. L., 2009, HDB MAIZE GENETICS G; BENZ BF, 1990, MAYDICA, V35, P85; Blaringhem L, 1906, CR HEBD ACAD SCI, V143, P245; Borchardt DS, 1998, EUR J PLANT PATHOL, V104, P611, DOI 10.1023/A:1008641920356; BORLAUG NE, 1946, PHYTOPATHOLOGY, V36, P395; BRANSON TF, 1983, J KANSAS ENTOMOL SOC, V56, P97; BRANSON TF, 1982, ENTOMOL EXP APPL, V31, P303, DOI 10.1111/j.1570-7458.1982.tb03149.x; BREWBAKER JL, 1979, ECON BOT, V33, P101, DOI 10.1007/BF02858277; Briggs WH, 2007, GENETICS, V177, P1915, DOI 10.1534/genetics.107.076497; Bruce TJA, 2010, FOOD SECUR, V2, P133, DOI 10.1007/s12571-010-0061-8; BUENDGEN MR, 1990, CROP SCI, V30, P505, DOI 10.2135/cropsci1990.0011183X003000030005x; BUSHING RW, 1974, J ECON ENTOMOL, V67, P656, DOI 10.1093/jee/67.5.656; Caffrey DJ, 1927, USDA B, V1476, P1; Camacho V, 2005, PLANT GENET RES, V3, P373, DOI DOI 10.1079/PGR200591; Casas Salas J F, 2003, REV FITOTEC MEX, V26, P239; Casas Salas J F, 2001, REVISTA FITOTECNIA M, V24, P17; Cassidy ES, 2013, ENVIRON RES LETT, V8, DOI 10.1088/1748-9326/8/3/034015; Chavan S., 2014, IDENTIFICATION NEW S; CHEN YH, 2015, ANN REV ENT IN PRESS, P60, DOI DOI 10.1146/ANNUREV-ENT0-010814-020601; Coors J. G., 1987, Genetic aspects of plant mineral nutrition, 16-20 June, 1985, Madison, USA, P445; Cordova-Campos O, 2012, EUR J PLANT PATHOL, V134, P367, DOI 10.1007/s10658-012-9995-3; D'Alessandro M, 2006, ANALYST, V131, P24, DOI 10.1039/b507589k; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; De lasPaz Gutierrez S, 2010, FOLIA ENTOMOLOGICA M, V48, P1; Degen T, 2004, PLANT PHYSIOL, V135, P1928, DOI 10.1104/pp.104.039891; Degenhardt J, 2009, PLANT PHYSIOL, V149, P96, DOI 10.1104/pp.108.128975; desLange ES, 2014, THESIS U NEUCHATEL N; Doebley J, 2004, ANNU REV GENET, V38, P37, DOI 10.1146/annurev.genet.38.072902.092425; DOEBLEY J, 1993, GENETICS, V134, P559; DOEBLEY J, 1991, GENETICS, V129, P285; Doebley J, 2001, GENETICS, V158, P487; Doebley J, 1997, NATURE, P483; Doebley JF, 2006, CELL, V127, P1309, DOI 10.1016/j.cell.2006.12.006; DORWEILER J, 1993, SCIENCE, V262, P233, DOI 10.1126/science.262.5131.233; Dowd PF, 1998, J AGR FOOD CHEM, V46, P3775, DOI 10.1021/jf980334w; Duvick DN, 2005, ADV AGRON, V86, P83, DOI 10.1016/S0065-2113(05)86002-X; Duvick DN, 2001, NAT REV GENET, V2, P69, DOI 10.1038/35047587; Eddins AH, 1933, J AGRIC RES, V46, P0241; Enneking D, 2000, CURR PLANT SCI BIOT, V34, P671; Erb M, 2009, PLANT SIGNALING BEHA, V4, P636; Erb M, 2011, PLANT CELL ENVIRON, V34, P1088, DOI 10.1111/j.1365-3040.2011.02307.x; Erb M, 2011, J ECOL, V99, P7, DOI 10.1111/j.1365-2745.2010.01757.x; Erb M, 2009, PLANT J, V59, P292, DOI 10.1111/j.1365-313X.2009.03868.x; EUBANKS M, 1995, ECON BOT, V49, P172, DOI 10.1007/BF02862921; FALK BW, 1985, PHYTOPATHOLOGY, V75, P852, DOI 10.1094/Phyto-75-852; FAO, 1995, DIM NEED ATL FOOD AG; FAO, 2012, FOOD AGR COMM PROD; Farias-Rivera LA, 2003, FLA ENTOMOL, V86, P239, DOI 10.1653/0015-4040(2003)086[0239:EOLEOT]2.0.CO;2; FITT GP, 1989, ANNU REV ENTOMOL, V34, P17, DOI 10.1146/annurev.en.34.010189.000313; Flint-Garcia SA, 2013, J AGR FOOD CHEM, V61, P8267, DOI 10.1021/jf305511d; Frey M, 2009, PHYTOCHEMISTRY, V70, P1645, DOI 10.1016/j.phytochem.2009.05.012; FUENTES SF, 1964, PHYTOPATHOLOGY, V54, P379; Gamez R, 1988, PLANT VIRUSES, P213; GARDNER WA, 1980, FLA ENTOMOL, V63, P439, DOI 10.2307/3494527; Gernert WB, 1917, SCIENCE, V46, P390, DOI 10.1126/science.46.1190.390; Glauser G, 2011, PLANT J, V68, P901, DOI 10.1111/j.1365-313X.2011.04740.x; Glazebrook J, 2005, ANNU REV PHYTOPATHOL, V43, P205, DOI 10.1146/annurev.phyto.43.040204.135923; Gols R, 2011, J CHEM ECOL, V37, P795, DOI 10.1007/s10886-011-9993-5; Gouinguene S, 2001, CHEMOECOLOGY, V11, P9, DOI 10.1007/PL00001832; GOUSSAIN MARCIO M., 2002, Neotrop. entomol., V31, P305, DOI 10.1590/S1519-566X2002000200019; GUELDNER RC, 1991, ACS SYM SER, V449, P251; Hedin PA, 1996, J CHEM ECOL, V22, P1655, DOI 10.1007/BF02272405; HESSELTI.CW, 1971, J AGR FOOD CHEM, V19, P707, DOI 10.1021/jf60176a020; Hiura M, 1930, JAPANESE J PLANT PRO, V17, P7; Hoballah ME, 2004, AGR FOREST ENTOMOL, V6, P83, DOI 10.1111/j.1461-9555.2004.00207.x; Huffaker A, 2013, P NATL ACAD SCI USA, V110, P5707, DOI 10.1073/pnas.1214668110; Huffaker A, 2011, PLANT PHYSIOL, V156, P2082, DOI 10.1104/pp.111.179457; Huffaker A, 2011, PLANT PHYSIOL, V155, P1325, DOI 10.1104/pp.110.166710; Hufford MB, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003477; Hufford MB, 2012, NAT GENET, V44, P808, DOI 10.1038/ng.2309; Iltis HH, 2000, NOVON, V10, P382, DOI 10.2307/3392992; Iltis HH, 2000, ECON BOT, V54, P7, DOI 10.1007/BF02866598; Jofre y Garfias AE, 2010, CIENCIA PACIENCIA CA, P41; JOHNS T, 1990, EUPHYTICA, V50, P203, DOI 10.1007/BF00023646; Kenneth R. G., 1981, DOWNY MILDEWS, P367; Kollner TG, 2008, PLANT CELL, V20, P482, DOI 10.1105/tpc.107.051672; Leiss KA, 2013, PHYTOCHEMISTRY, V93, P63, DOI 10.1016/j.phytochem.2013.03.011; Lobell DB, 2003, SCIENCE, V299, P1032, DOI 10.1126/science.1077838; Lopez L, 2007, PLANTA, V226, P517, DOI 10.1007/s00425-007-0501-7; LUGINBILL PHILIP, 1928, U S DEPT AGRIC TECH BULL, V34, P1; Lyons R, 2013, PLANT CELL REP, V32, P815, DOI 10.1007/s00299-013-1400-y; Macfadyen S, 2010, BASIC APPL ECOL, V11, P116, DOI 10.1016/j.baae.2009.11.008; Maddaloni M, 1997, TRANSGENIC RES, V6, P393, DOI 10.1023/A:1018435417740; Mangelsdorf Paul C., 1939, TEXAS AGR EXPTL STAT, V574, P1; Mano Y, 2007, PLANT ROOT, V1, P17, DOI 10.3117/plantroot.1.17; Massey FP, 2009, J ANIM ECOL, V78, P281, DOI 10.1111/j.1365-2656.2008.01472.x; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; Medina RF, 2012, ENTOMOL EXP APPL, V142, P223, DOI 10.1111/j.1570-7458.2012.01220.x; MELHUS IRVING E., 1953, IOWA STATE COLL JOUR SCI, V27, P519; MITHEN RF, 1987, PHYTOCHEMISTRY, V26, P1969, DOI 10.1016/S0031-9422(00)81740-9; Moeller DA, 2005, MOL BIOL EVOL, V22, P2480, DOI 10.1093/molbev/msi247; Moeller DA, 2008, EVOLUTION, V62, P3069, DOI 10.1111/j.1558-5646.2008.00511.x; Molina-Ochoa J, 2004, FLA ENTOMOL, V87, P461, DOI 10.1653/0015-4040(2004)087[0461:NDOHPO]2.0.CO;2; Mondragon-Pichardo J, 2005, MAYDICA, V50, P123; Morris SW, 1998, MOL PLANT MICROBE IN, V11, P643, DOI 10.1094/MPMI.1998.11.7.643; Moya-Raygoza G., 1987, THESIS U GUADALAJARA; MOYARAYGOZA G, 1993, J KANSAS ENTOMOL SOC, V66, P41; MOYARAYGOZA G, 1993, ENTOMOPHAGA, V38, P41, DOI 10.1007/BF02373137; MOYARAYGOZA G, 1994, MAYDICA, V39, P225; MOYARAYGOZA G, 1990, MAYDICA, V35, P177; NAULT LR, 1990, MAYDICA, V35, P165; NAULT LR, 1980, ANN ENTOMOL SOC AM, V73, P349, DOI 10.1093/aesa/73.4.349; NAULT LR, 1980, PHYTOPATHOLOGY, V70, P709, DOI 10.1094/Phyto-70-709; NAULT LR, 1988, PHYTOPATHOLOGY, V78, P991, DOI 10.1094/Phyto-78-991; NAULT LR, 1980, PHYTOPATHOLOGY, V70, P659, DOI 10.1094/Phyto-70-659; NAULT LR, 1985, ECOL ENTOMOL, V10, P57, DOI 10.1111/j.1365-2311.1985.tb00534.x; NAULT LR, 1982, PLANT DIS, V66, P61, DOI 10.1094/PD-66-61; Nee M, 1990, ECON BOT, V44, P56; Nielsen K, 2001, MOL PLANT MICROBE IN, V14, P164, DOI 10.1094/MPMI.2001.14.2.164; Nielsen K, 2001, ANNU REV PLANT PHYS, V52, P785, DOI 10.1146/annurev.arplant.52.1.785; Oerke EC, 2006, J AGR SCI, V144, P31, DOI 10.1017/S0021859605005708; Ortega AC, 1987, INSECT PESTS MAIZE G; Ostrander BM, 1997, CROP SCI, V37, P1741, DOI 10.2135/cropsci1997.0011183X003700060011x; Padilla Garcia JM, 2002, REV FITOTEC MEX, V25, P401; PAINTER RH, 1955, J ECON ENTOMOL, V48, P36, DOI 10.1093/jee/48.1.36; PARIS HS, 1989, ECON BOT, V43, P423, DOI 10.1007/BF02935916; Poppy GM, 2014, PHILOS T R SOC B, V369; Rasmann S, 2005, NATURE, V434, P732, DOI 10.1038/nature03451; Reynolds OL, 2009, ANN APPL BIOL, V155, P171, DOI 10.1111/j.1744-7348.2009.00348.x; Martinez-Soriano JPR, 2009, J CEREAL SCI, V50, P302, DOI 10.1016/j.jcs.2009.06.005; Rich PJ, 2008, PLANT SIGNAL BEHAV, V3, P618, DOI 10.4161/psb.3.9.5750; ROBERT AL, 1962, PHYTOPATHOLOGY, V52, P1010; Robert CAM, 2013, J CHEM ECOL, V39, P507, DOI 10.1007/s10886-013-0264-5; Robert CAM, 2012, ECOL LETT, V15, P55, DOI 10.1111/j.1461-0248.2011.01708.x; Rodriguez-Saona C, 2011, J EXP BOT, V62, P2633, DOI 10.1093/jxb/erq466; RODRIGUEZDELBOSQUE LA, 1988, FLA ENTOMOL, V71, P176, DOI 10.2307/3495365; ROJANARIDPICHED C, 1984, MAYDICA, V29, P305; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; ROSENTHAL JP, 1995, OECOLOGIA, V102, P146, DOI 10.1007/BF00333245; Russel E.W., 1961, SOIL CONDITIONS PLAN; Sanchez GJJ, 2011, AM J BOT, V98, P1537; Sanchez Gonzalez JJ, 1995, P FOR GEN FLOW MAIZ, P18; Santiago R, 2007, J AGR FOOD CHEM, V55, P5186, DOI 10.1021/jf070641e; Schmelz EA, 2003, PHYSIOL PLANTARUM, V117, P403, DOI 10.1034/j.1399-3054.2003.00054.x; Schmelz EA, 2011, P NATL ACAD SCI USA, V108, P5455, DOI 10.1073/pnas.1014714108; Schuman KM, 1904, P ASCHERSON FESTSCHR, P137; Shahid M, 1998, MAIZE GENETICS COOPE, V72, P23; Smith D. R., 1988, AGRONOMY, P687; Sobhy IS, 2012, J CHEM ECOL, V38, P348, DOI 10.1007/s10886-012-0098-6; Spangler LM, 2008, THESIS PENNSYLVANIA; SPIKE BP, 1991, J ECON ENTOMOL, V84, P1585, DOI 10.1093/jee/84.5.1585; Steenkamp ET, 2001, MOL PLANT PATHOL, V2, P215, DOI 10.1046/j.1464-6722.2001.00072.x; STEFFEY KL, 1999, HDB CORN INSECTS; Suma S, 2000, GUIDE SUGARCANE DIS, P90; Swanson-Wagner R, 2012, P NATL ACAD SCI USA, V109, P11878, DOI 10.1073/pnas.1201961109; Swanson-Wagner RA, 2010, GENOME RES, V20, P1689, DOI 10.1101/gr.109165.110; Szczepaniec A, 2013, ENTOMOL EXP APPL, V146, P242, DOI 10.1111/eea.12014; Takahashi CG, 2012, ENTOMOL EXP APPL, V145, P191, DOI 10.1111/eea.12004; Tamiru A, 2011, ECOL LETT, V14, P1075, DOI 10.1111/j.1461-0248.2011.01674.x; The CIMMYT Maize Program, 2004, MAIZ DIS GUID FIELD; Turlings TCJ, 2004, ADVANCES IN INSECT CHEMICAL ECOLOGY, P21, DOI 10.1017/CBO9780511542664.003; TURLINGS TCJ, 1990, SCIENCE, V250, P1251, DOI 10.1126/science.250.4985.1251; VIDAVER AK, 1978, PLANT DIS REP, V62, P213; Vinson A, 1877, B SOC ACCLIMAT, V24, P580; Wang H, 2005, NATURE, V436, P714, DOI 10.1038/nature03863; Wang LZ, 2008, EUPHYTICA, V164, P789, DOI 10.1007/s10681-008-9730-5; Wilkes G, 2007, MAYDICA, V52, P49; WILKES HG, 1977, ECON BOT, V31, P254; Wilkes HG, 1995, P FOR GEN FLOW MAIZ, P10; Wilkes HG, 1967, THESIS HARVARD U CAM; Wright SI, 2005, SCIENCE, V308, P1310, DOI 10.1126/science.1107891; Zhang LQ, 2002, GENETICS, V162, P851; Zhu F, 2014, NEW PHYTOL, V204, P315 175 28 29 2 105 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. OCT 2014 204 2 SI 329 341 10.1111/nph.13005 13 Plant Sciences Plant Sciences AQ2LC WOS:000342616500012 Bronze 2019-02-21 J Sainmont, J; Andersen, KH; Varpe, O; Visser, AW Sainmont, Julie; Andersen, Ken H.; Varpe, Oystein; Visser, Andre W. Capital versus Income Breeding in a Seasonal Environment AMERICAN NATURALIST English Article income breeder; capital breeder; reproductive strategy; feeding season; spring bloom; life-history traits DIEL VERTICAL MIGRATION; SUB-ARCTIC PACIFIC; LIFE-HISTORIES; STOCHASTIC ENVIRONMENTS; CALANUS-FINMARCHICUS; NEOCALANUS-CRISTATUS; THEORETICAL-MODEL; EUCALANUS-BUNGII; CRUSTACEA; REPRODUCTION The allocation of resources between growth, storage, and reproduction is a key trade-off in the life-history strategies of organisms. A central dichotomy is between capital breeders and income breeders. Capital breeders build reserves that allow them to spawn at a later time independently of food availability, while income breeders allocate ingested food directly to reproduction. Motivated by copepod studies, we use an analytical model to compare the fitness of income with capital breeding in a deterministic seasonal environment. We analyze how the fitness of breeding strategies depend on feeding season duration and size at maturity. Small capital breeders perform better in short feeding seasons but fall behind larger individuals when the length of the feeding season increases. Income breeding favors smaller individuals as their short generation time allows for multiple generations within a year and thereby achieve a high annual growth rate, outcompeting capital breeders in long feeding seasons. Therefore, we expect to find a dominance of small income breeders in temperate waters, while large capital breeders should dominate high latitudes where the spring is short and intense. This pattern is evident in nature, particularly in organisms with a generation time of a year or less. [Sainmont, Julie; Andersen, Ken H.; Visser, Andre W.] Tech Univ Denmark, Ctr Ocean Life, DK-2920 Charlottenlund, Denmark; [Sainmont, Julie; Andersen, Ken H.; Visser, Andre W.] Tech Univ Denmark, Natl Inst Aquat Resources, DK-2920 Charlottenlund, Denmark; [Varpe, Oystein] Akvaplan Niva, Fram Ctr, N-9296 Tromso, Norway; [Varpe, Oystein] Univ Ctr Svalbard UNIS, N-9171 Longyearbyen, Norway Visser, AW (reprint author), Tech Univ Denmark, Ctr Ocean Life, Kavalergarden 6, DK-2920 Charlottenlund, Denmark. awv@aqua.dtu.dk Varpe, Oystein/B-9693-2008 Varpe, Oystein/0000-0002-5895-6983; Andersen, Ken Haste/0000-0002-8478-3430; Visser, Andre/0000-0002-1604-7263 Greenland Climate Research Centre; Centre for Ocean Life, a VKR Center of Excellence; Villum Foundation; Research Council of Norway [227046/E10] We wish to thank Associate Editor S. H. Rice and the two anonymous reviewers for their constructive and fruitful comments. Their time and efforts improved the article substantially. This work was supported by the Greenland Climate Research Centre and the Centre for Ocean Life, a VKR Center of Excellence supported by the Villum Foundation. O.V. was supported by the Research Council of Norway through the project Arctic Production-227046/E10. AKSNES DL, 1993, ECOL MODEL, V67, P233, DOI 10.1016/0304-3800(93)90007-F; Andersen KH, 2008, THEOR POPUL BIOL, V73, P490, DOI 10.1016/j.tpb.2008.02.001; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BUHLJENSEN L, 1991, MAR BIOL, V109, P245, DOI 10.1007/BF01319393; Charnov EL, 2001, EVOL ECOL RES, V3, P873; Charnov Eric L., 1993, P1; CONOVER RJ, 1988, HYDROBIOLOGIA, V167, P127, DOI 10.1007/BF00026299; Daase M., 2013, CANADIAN J FISHERIES, V70, P1; DRENT RH, 1980, ARDEA, V68, P225; Eiane K, 2002, LIMNOL OCEANOGR, V47, P636, DOI 10.4319/lo.2002.47.3.0636; Ejsmond MJ, 2010, AM NAT, V175, P551, DOI 10.1086/651589; Falk-Petersen S, 2009, MAR BIOL RES, V5, P18, DOI 10.1080/17451000802512267; Fiksen O, 1998, SARSIA, V83, P129; HIRCHE HJ, 1993, MAR BIOL, V117, P615, DOI 10.1007/BF00349773; Hirst AG, 2002, MAR ECOL PROG SER, V230, P195, DOI 10.3354/meps230195; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jansen T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064744; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Jonsson KI, 1998, OIKOS, V83, P424, DOI 10.2307/3546670; Kaartvedt S, 2000, ICES J MAR SCI, V57, P1819, DOI 10.1006/jmsc.2000.0964; Kiorboe T, 1996, MAR ECOL PROG SER, V143, P65, DOI 10.3354/meps143065; LAMPERT W, 1989, FUNCT ECOL, V3, P21, DOI 10.2307/2389671; Mackas DL, 1999, PROG OCEANOGR, V43, P335, DOI 10.1016/S0079-6611(99)00012-9; MAUCHLINE J, 1971, J MAR BIOL ASSOC UK, V51, P809, DOI 10.1017/S0025315400017999; MAUCHLINE J, 1970, J MAR BIOL ASSOC UK, V50, P381, DOI 10.1017/S0025315400004598; MAUCHLINE J, 1968, J MAR BIOL ASSOC UK, V48, P455, DOI 10.1017/S0025315400034597; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; MCNAMARA JM, 1995, P ROY SOC B-BIOL SCI, V261, P279, DOI 10.1098/rspb.1995.0148; MILLER CB, 1984, PROG OCEANOGR, V13, P201, DOI 10.1016/0079-6611(84)90009-0; Mylius SD, 1995, OIKOS, V74, P218, DOI 10.2307/3545651; OHMAN MD, 1990, ECOL MONOGR, V60, P257, DOI 10.2307/1943058; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; Planque B, 1996, MAR ECOL PROG SER, V134, P101, DOI 10.3354/meps134101; REAL L, 1986, ANNU REV ECOL SYST, V17, P371, DOI 10.1146/annurev.es.17.110186.002103; Sainmont J, 2013, THEOR ECOL-NETH, V6, P241, DOI 10.1007/s12080-012-0174-0; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2014, ECOLOGY, V95, P882, DOI 10.1890/13-1434.1; Swalethorp R, 2011, MAR ECOL PROG SER, V429, P125, DOI 10.3354/meps09065; TATTERSALL OS, 1969, J ZOOL, V158, P63; Tsuda A, 2004, FISH OCEANOGR, V13, P10, DOI 10.1111/j.1365-2419.2004.00315.x; Uriarte A, 2001, FISH RES, V50, P129, DOI 10.1016/S0165-7836(00)00246-0; Varpe O, 2007, OIKOS, V116, P1331, DOI 10.1111/j.2007.0030-1299.15893.x; Varpe O, 2010, ECOLOGY, V91, P311, DOI 10.1890/08-1817.1; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; Visser AW, 2013, MAR ECOL PROG SER, V473, P91, DOI 10.3354/meps10079; YOSHIMURA J, 1991, EVOL ECOL, V5, P173, DOI 10.1007/BF02270833 48 26 26 1 60 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. OCT 2014 184 4 466 476 10.1086/677926 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AP7UB WOS:000342281100007 25226182 2019-02-21 J Ingley, SJ; Billman, EJ; Hancock, C; Johnson, JB Ingley, Spencer J.; Billman, Eric J.; Hancock, Chelsey; Johnson, Jerald B. Repeated geographic divergence in behavior: a case study employing phenotypic trajectory analyses BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Activity; Exploration; Behavior; Brachyrhaphis; Predation; Habitat complexity; Phenotypic trajectory analysis LIFE-HISTORY EVOLUTION; FISH BRACHYRHAPHIS-RHABDOPHORA; POECILIID BRACHYRAPHIS-EPISCOPI; PREDATION PRESSURE; 3-SPINED STICKLEBACKS; RESOURCE AVAILABILITY; TELEOSTEI POECILIIDAE; GAMBUSIA-AFFINIS; UNIQUE FEATURES; POPULATIONS Environmental effects on behavior have long been a focus of behavioral ecologists. Among the important drivers of behavior is predation environment, which can include the presence/absence of predators, differences in resource availability, and variation in individual density. Environments with predators are often more ecologically complex and "risky" than those without predators. Populations from these environments are sometimes more active and explorative than populations from low-risk, less complex environments. To date, most comparative studies of behavior are limited to within-species comparisons of populations from divergent environments, but neglect comparisons between species following speciation, thus limiting our understanding of post-speciation behavioral evolution. Brachyrhaphis fishes provide an ideal system for studying correlations between divergent environments and behavior within and between species. Here, we test for differences in two behavioral traits-activity and exploration -between sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis that occur in divergent predation environments. Species differed in activity and exploration, with higher activity and exploration levels in populations that co-occur with predators. Furthermore, we found drainage-by-species interactions, indicating that the nature of divergence varied geographically. Using the recently developed phenotypic trajectory analysis (PTA), we quantified this difference and found that, while the geographically isolated populations of sister species tended to evolve in parallel, the magnitude of divergence between species differed between drainages. Our results highlight the utility of PTA for multivariate behavioral data and corroborate past predictions that complex and risky environments are correlated with increased activity and exploration levels and that divergence continues post-speciation. [Ingley, Spencer J.; Hancock, Chelsey; Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA; [Billman, Eric J.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Ingley, SJ (reprint author), Brigham Young Univ, Dept Biol, Evolutionary Ecol Labs, Provo, UT 84602 USA. sjingley@gmail.com Ingley, Spencer/0000-0002-2414-9892 Monte L. Bean Life Science Museum; BYU MEG grant; US National Science Foundation [OISE 0539267, IOS-1045226]; US National Science Foundation (NSF Graduate Research Fellowship) This work was supported by the Monte L. Bean Life Science Museum, a BYU MEG grant to JBJ, and the US National Science Foundation (OISE 0539267, IOS-1045226 to JBJ, NSF Graduate Research Fellowship to SJI). We thank P. Johnson and M. McEntire for help in the field. Specimens were collected under ANAM permit no. SC/A-26-11 and exported under ANAM permit no. SEX/A-60-11. We thank the Smithsonian Tropical Research Institute for help with obtaining collecting and export permits in Panama. ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; ANGERMEIER PL, 1983, ENVIRON BIOL FISH, V9, P117, DOI 10.1007/BF00690857; Archard GA, 2011, J FISH BIOL, V78, P593, DOI 10.1111/j.1095-8649.2010.02880.x; Basolo AL, 2004, ANIM BEHAV, V68, P75, DOI 10.1016/j.anbehav.2003.07.019; Brown C, 2005, J COMP PHYSIOL B, V175, P305, DOI 10.1007/s00360-005-0486-0; Brown C, 2005, BEHAV ECOL, V16, P482, DOI 10.1093/beheco/ari016; Brown C, 2004, P ROY SOC B-BIOL SCI, V271, pS455, DOI 10.1098/rsbl.2004.0222; Brown C, 2004, ANIM BEHAV, V68, P1325, DOI 10.1016/j.anbehav.2004.04.004; Brydges NM, 2008, J ANIM ECOL, V77, P229, DOI 10.1111/j.1365-2656.2007.01343.x; Bussing W. A., 1998, PECES AGUAS CONTINEN; Butler D., 2007, ANAL MIXED MODELS S; Butler DG, 2009, ANAL MIXED MODELS S; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; Dennis SR, 2011, P ROY SOC B-BIOL SCI, V278, P1687, DOI 10.1098/rspb.2010.1989; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Foster SA, 1999, TRENDS ECOL EVOL, V14, P190, DOI 10.1016/S0169-5347(98)01577-8; Foster SA, 1999, GEOGRAPHIC VARIATION; Foster SA, 2013, EVOL ECOL RES, V15, P705; Godin JGJ, 1996, ANIM BEHAV, V51, P117, DOI 10.1006/anbe.1996.0010; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hassell EMA, 2012, ECOL EVOL, V2, P1738, DOI 10.1002/ece3.278; HUNTINGFORD FA, 1994, EVOLUTIONARY BIOL TH, P345; Ingley S. J., 2014, PLOS ONE, V9; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Jennions MD, 2006, ENVIRON BIOL FISH, V76, P211, DOI 10.1007/s10641-006-9022-7; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, BIOL J LINN SOC, V72, P519, DOI 10.1006/bijl.2000.0513; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Jones CP, 2009, MOL ECOL, V18, P1640, DOI 10.1111/j.1365-294X.2009.04129.x; Kobler A, 2009, NATURWISSENSCHAFTEN, V96, P1229, DOI 10.1007/s00114-009-0581-2; Krause J, 2000, BEHAVIOUR, V137, P1113, DOI 10.1163/156853900502466; Kruuk LEB, 1997, P ROY SOC B-BIOL SCI, V264, P105, DOI 10.1098/rspb.1997.0016; Lammers JH, 2009, J CRUSTACEAN BIOL, V29, P175, DOI 10.1651/08-3043.1; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MAGURRAN AE, 1990, ANIM BEHAV, V39, P834, DOI 10.1016/S0003-3472(05)80947-9; Mateos M, 2005, J BIOGEOGR, V32, P775, DOI 10.1111/j.1365-2699.2005.01236.x; Millot S, 2009, APPL ANIM BEHAV SCI, V119, P108, DOI 10.1016/j.applanim.2009.03.009; Nannini MA, 2012, T AM FISH SOC, V141, P26, DOI 10.1080/00028487.2011.639268; Nomakuchi S, 2009, BEHAV ECOL, V20, P340, DOI 10.1093/beheco/arp001; Ottoni EB, 2000, BEHAV RES METH INS C, V32, P446, DOI 10.3758/BF03200814; R Development Core Team, 2010, R LANG ENV STAT COMP; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 1996, NETH J ZOOL, V46, P172; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Riechert S. E., 1999, GEOGRAPHIC VARIATION; Riechert SE, 2000, J EVOLUTION BIOL, V13, P541, DOI 10.1046/j.1420-9101.2000.00176.x; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Urban MC, 2007, P NATL ACAD SCI USA, V104, P14377, DOI 10.1073/pnas.0704645104; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WALSH RN, 1976, PSYCHOL BULL, V83, P482, DOI 10.1037//0033-2909.83.3.482; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson ADM, 2010, BEHAV ECOL SOCIOBIOL, V64, P703, DOI 10.1007/s00265-009-0888-1; Wilson ADM, 2009, BEHAV ECOL, V20, P231, DOI 10.1093/beheco/arp018; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 69 9 9 1 34 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. OCT 2014 68 10 1577 1587 10.1007/s00265-014-1767-y 11 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology AP6ZC WOS:000342226200004 2019-02-21 J Schneider, NA; Griesser, M Schneider, Nicole A.; Griesser, Michael The alarm call system of breeding Brown Thornbills (Acanthiza pusilla): self-defence or nest defence? JOURNAL OF ORNITHOLOGY English Article Antipredator calls; Predation risk; Vocal system; Nestling begging TREE SWALLOWS; PREDATION RISK; SIGNAL; BIRD; RESPONSES; URGENCY; COMMUNICATION; EVOLUTION; DECISIONS; SURVIVAL Many species produce alarm calls during predator encounters that are directed at either conspecifics or the predator. Although many studies have investigated alarm calls in foraging individuals, antipredator communication during reproduction is rarely studied. In birds, where nest predation is a key cause of reproductive failure, some species have evolved sophisticated alarm calls to inform nestlings of danger from nest predators. However, different predator species differ in their primary prey type (brood predators, predators of adults), and accordingly, birds could have evolved different alarm calls depending on who is in danger. We experimentally investigated parental antipredator communication in Brown Thornbills (Acanthiza pusilla), where more than 50 % of all nests are depredated. We presented breeding pairs the models of a brood predator, a predator of adult birds and a harmless control species. Parents gave two different alarm calls (short and intense tzzt calls), which were not predator-specific, but responded to the predator of adults with more alarm calls than for the brood predator. Parental alarm calls did not affect nestling begging levels, which were influenced only by parental feeding rate. Our results suggest that alarm calls of breeding Brown Thornbills are mainly used as a form of self-defence by the individuals of the breeding pair rather than being directed at the nestlings. This fits with the predictions of life-history theory that parents in long-lived species are more concerned about their own survival. [Schneider, Nicole A.; Griesser, Michael] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden; [Schneider, Nicole A.] Univ Tasmania, Sch Zool, Hobart, Tas 7001, Australia; [Griesser, Michael] Univ Zurich, Anthropol Inst & Museum, CH-8057 Zurich, Switzerland Schneider, NA (reprint author), Swedish Univ Agr Sci, Dept Ecol, POB 7044, S-75007 Uppsala, Sweden. nicole.schnei@gmail.com Griesser, Michael/J-4542-2012 Griesser, Michael/0000-0002-2220-2637 Swedish Research Council [621-2008-5349]; Stiftelsen Lars Hiertas Minne [FO2010-0041] We thank Branislav Igic, Grzegorz Mikusinski and Andy Radford and two anonymous reviewers for valuable comments on previous versions of the manuscript. We also thank Cathrine Young, Naoko Takeuchi and Costantino Marullo for help in the field, Erik Wapstra for his general support, Parks Tasmania for our being able to use Trevallyn Nature Recreation Area as a study site, the Western Australian Museum and the Tasmanian Museum and Art Gallery for lending the models, and Rod Bradbury for correcting our English. This work was funded by the Swedish Research Council (Grant No. 621-2008-5349 to M. G.) and Stiftelsen Lars Hiertas Minne (Grant No. FO2010-0041 to N.A.S.). BARKER R.D., 1990, FOOD AUSTR BIRDS; Barker RD, 1989, FOOD AUSTR BIRDS, VI; Blumstein DT, 1997, ANIM BEHAV, V53, P143, DOI 10.1006/anbe.1996.0285; Caro TM, 2005, ANTIPREDATOR DEFENCE; CRESSWELL W, 1994, BEHAV ECOL SOCIOBIOL, V34, P217, DOI 10.1007/s002650050036; CURIO E, 1978, Z TIERPSYCHOL, V48, P175; EVANS CS, 1993, ANIM BEHAV, V46, P1, DOI 10.1006/anbe.1993.1156; Fallow PM, 2011, BEHAV ECOL, V22, P401, DOI 10.1093/beheco/arq221; Fasanella M, 2009, J ORNITHOL, V150, P853, DOI 10.1007/s10336-009-0406-2; Furrer RD, 2009, AM NAT, V173, P400, DOI 10.1086/596541; Ghalambor CK, 2002, BEHAV ECOL, V13, P101, DOI 10.1093/beheco/13.1.101; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GODFRAY HCJ, 1995, AM NAT, V146, P1, DOI 10.1086/285784; Green DJ, 1999, AUST J ZOOL, V47, P633, DOI 10.1071/ZO99052; Griesser M, 2008, CURR BIOL, V18, P69, DOI 10.1016/j.cub.2007.11.069; Griesser M, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-49; Griesser M, 2009, P R SOC B, V276, P2887, DOI 10.1098/rspb.2009.0551; Haff TM, 2010, ANIM BEHAV, V79, P487, DOI 10.1016/j.anbehav.2009.11.036; Haff TM, 2011, BIOL LETTERS, V7, P493, DOI 10.1098/rsbl.2010.1125; Higgins PJ, 2002, HDB AUSTR NZ ANTARCT, V6; Higgins PJ, 2006, HDB AUSTR NZ ANTARCT, V7; Hollen LI, 2008, CURR BIOL, V18, P576, DOI 10.1016/j.cub.2008.02.078; Igic B, 2013, ANIM BEHAV, V85, P593, DOI 10.1016/j.anbehav.2012.12.022; KLUMP GM, 1984, Z TIERPSYCHOL, V66, P189; Krama T, 2005, BEHAV ECOL, V16, P37, DOI 10.1093/beheco/arh116; Krams I, 2009, ANIM BEHAV, V77, P513, DOI 10.1016/j.anbehav.2008.11.007; Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676; Leavesley AJ, 2005, ANIM BEHAV, V70, P365, DOI 10.1016/j.anbehav.2004.10.017; Lemasson A, 2010, NATURWISSENSCHAFTEN, V97, P1023, DOI 10.1007/s00114-010-0715-6; Leonard ML, 2001, ANIM BEHAV, V61, P87, DOI 10.1006/anbe.2000.1575; Leonard ML, 2001, BEHAV ECOL SOCIOBIOL, V49, P170, DOI 10.1007/s002650000290; Leonard ML, 1998, BEHAV ECOL SOCIOBIOL, V42, P431, DOI 10.1007/s002650050457; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Magrath RD, 2007, ANIM BEHAV, V74, P1117, DOI 10.1016/j.anbehav.2007.01.025; Magrath RD, 2010, ADV STUD BEHAV, V41, P187, DOI 10.1016/S0065-3454(10)41006-2; Manser MB, 2002, TRENDS COGN SCI, V6, P55, DOI 10.1016/S1364-6613(00)01840-4; Manser MB, 2001, P ROY SOC B-BIOL SCI, V268, P2315, DOI 10.1098/rspb.2001.1773; Marchant S., 1993, HDB AUSTR NZ ANTARCT, V2; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Platzen D, 2004, P ROY SOC B-BIOL SCI, V271, P1271, DOI 10.1098/rspb.2004.2716; R Core Team, 2012, R LANG ENV STAT COMP; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Roff Derek A., 1992; Schneider NA, 2013, BEHAV ECOL, V24, P47, DOI 10.1093/beheco/ars134; SEYFARTH RM, 1980, SCIENCE, V210, P801, DOI 10.1126/science.7433999; Suzuki TN, 2014, ANIM BEHAV, V87, P59, DOI 10.1016/j.anbehav.2013.10.009; Suzuki TN, 2011, CURR BIOL, V21, pR15, DOI 10.1016/j.cub.2010.11.027; Templeton CN, 2005, SCIENCE, V308, P1934, DOI 10.1126/science.1108841; Wright J, 2010, ANIM BEHAV, V80, P517, DOI 10.1016/j.anbehav.2010.06.015; Zuberbuhler K, 1999, ETHOLOGY, V105, P477, DOI 10.1046/j.1439-0310.1999.00396.x; Zuberbuhler K, 2001, BEHAV ECOL SOCIOBIOL, V50, P414, DOI 10.1007/s002650100383 53 2 3 0 23 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. OCT 2014 155 4 987 996 10.1007/s10336-014-1085-1 10 Ornithology Zoology AP9PR WOS:000342412200014 2019-02-21 J Perez-Mendoza, HA; Zuniga-Vega, JJ; Martorell, C; Zurita-Gutierrez, YH; Solano-Zavaleta, I; Hernandez-Rosas, AL; Molina-Moctezuma, A Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J.; Martorell, Carlos; Zurita-Gutierrez, Yazmin H.; Solano-Zavaleta, Israel; Hernandez-Rosas, Ana L.; Molina-Moctezuma, Alejandro Patterns of spatio-temporal variation in the survival rates of a viviparous lizard: the interacting effects of sex, reproductive trade-offs, aridity, and human-induced disturbance POPULATION ECOLOGY English Article Differential survival; Life-history evolution; Local selective pressures; Reproductive costs; Sceloporus grammicus GRAMMICUS COMPLEX PHRYNOSOMATIDAE; LIFE-HISTORY EVOLUTION; SCELOPORUS-GRAMMICUS; LACERTA-VIVIPARA; EASTERN AUSTRALIA; FOOD AVAILABILITY; CHROMOSOME RACES; MODEL SELECTION; OFFSPRING SIZE; MARKED ANIMALS Examination of the spatial and temporal variation in survival rates provides insight on how the action of natural selection varies among populations of single species. In this study, we used mark-recapture data from seven populations of the viviparous lizard Sceloporus grammicus in Central Mexico and a multi-model inference framework to examine interpopulation variation in the survival of adult males and females. We aimed to analyze the potential effects of aridity, human-induced disturbance, and reproductive costs on the survival rates of these lizards. For females in particular, we also searched for a negative relationship between litter size (adjusted for female size) and female survival. Our results demonstrate seasonal changes in survival for males and females. In three out of our seven study sites female survival decreased during the birthing season. In contrast, male survival did not appear to decrease during the mating season. We found an interaction between site-specific aridity and reproductive season affecting female survival. A decrease in female survival during the birthing season was observed in relatively arid sites. In one of these arid sites we found a negative effect of size-adjusted litter size on female survival: females producing more offspring than those expected for their size were more likely to die. This result represents evidence of a physiological trade-off for gravid females occurring in at least one of the studied populations. Interpopulation variation in the degree of human-induced disturbance could not explain the observed patterns of spatial variation in survival rates. Our results demonstrate wide variation in sex-specific survival patterns of this viviparous lizard and provide evidence that negative associations between reproduction and survival are highly dependent on the local environmental conditions. [Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J.; Martorell, Carlos; Zurita-Gutierrez, Yazmin H.; Hernandez-Rosas, Ana L.; Molina-Moctezuma, Alejandro] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Solano-Zavaleta, Israel] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Biol Evolut, Mexico City 04510, DF, Mexico Perez-Mendoza, HA (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. hibraimperez@ciencias.unam.mx Martorell, Carlos/A-2265-2008 Consejo Nacional de Ciencia y Tecnologia [210458]; Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico [PAPIIT IN206309-3] We would like to thank the Posgrado en Ciencias Biologicas of Universidad Nacional Autonoma de Mexico for the formation recibed. We would like to thank the Consejo Nacional de Ciencia y Tecnologia 210458 and Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (project PAPIIT IN206309-3) for financial support. Also, we are grateful to Juan Fornoni for his helpful comments. We would like to thank Carolyn Brown and Sylvia Welke for assistance with the structure of the manuscript and English grammar and vocabulary. Four anonymous reviewers provided helpful comments. Finally, we would like to thank Pedro Mendoza-Hernandez, Jonathan Maceda-Cruz, Leticia Moyers-Arevalo, Mariana Romano-Garcia, Claudia Molina-Zuluaga, Claudia Olivera-Tlahuel and Fernanda Rodriguez-Reyes for field assistance. Abell AJ, 2000, OIKOS, V88, P630, DOI 10.1034/j.1600-0706.2000.880320.x; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Amo L, 2007, BIOL CONSERV, V135, P77, DOI 10.1016/j.biocon.2006.09.020; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Anguilleta Jr MJ, 2000, FUNC ECOL, V14, P39; AREVALO E, 1993, COPEIA, P352; AREVALO E, 1994, SYST BIOL, V43, P387, DOI 10.2307/2413675; AREVALO E, 1991, HERPETOL MONOGR, V5, P79; Attum O, 2006, BIOL CONSERV, V133, P52, DOI 10.1016/j.biocon.2006.05.017; Bleu J, 2013, OECOLOGIA, V171, P141, DOI 10.1007/s00442-012-2401-1; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; Brown GW, 2001, BIODIVERS CONSERV, V10, P161, DOI 10.1023/A:1008919521638; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Canseco-Marquez L., 2010, ANFIBIOS REPTILES VA; Clobert J, 2000, FUNCT ECOL, V14, P675, DOI 10.1046/j.1365-2435.2000.00477.x; Cooper Jr WE, 1999, BEHAV ECOL SOCIOBIOL, V47, P49; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; De Martonne EE, 1926, METEOROLOGIE, P449; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Ditchkoff Stephen S., 2006, Urban Ecosystems, V9, P5, DOI 10.1007/s11252-006-3262-3; Doughty P, 1998, ECOLOGY, V79, P1073, DOI 10.2307/176602; Doughty P, 1997, OECOLOGIA, V110, P508, DOI 10.1007/s004420050187; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fleming PA, 2004, AFR ZOOL, V39, P123; Gaillard JM, 1997, OECOLOGIA, V112, P502, DOI 10.1007/s004420050338; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Golet GH, 2004, ECOL MONOGR, V74, P353, DOI 10.1890/02-4029; GUILLETTE L J JR, 1986, Transactions of the Kansas Academy of Science, V89, P31, DOI 10.2307/3627729; GUILLETTE LJ, 1980, J HERPETOL, V14, P143, DOI 10.2307/1563845; Hadley LG, 2007, OIKOS, V116, P601; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Hoffman CL, 2008, BEHAV ECOL SOCIOBIOL, V62, P1711, DOI 10.1007/s00265-008-0599-z; Hoogland JL, 2006, AM NAT, V168, P546, DOI 10.1086/507714; HUNSAKER D, 1962, EVOLUTION, V16, P62, DOI 10.1111/j.1558-5646.1962.tb03198.x; Itonaga K, 2012, ETHOL ECOL EVOL, V24, P367, DOI 10.1080/03949370.2012.702686; Zuniga-Vega JJ, 2011, HERPETOL J, V21, P117; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Jimenez-Cruz E, 2005, SOUTHWEST NAT, V50, P178, DOI 10.1894/0038-4909(2005)050[0178:RCOSGS]2.0.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Jordan MA, 2002, OECOLOGIA, V130, P44, DOI 10.1007/s004420100776; Kelso EC, 2008, ANIM BEHAV, V75, P639, DOI 10.1016/j.anbehav.2007.07.017; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Koga T, 2001, ANIM BEHAV, V62, P201, DOI 10.1006/anbe.2001.1740; Kutt AS, 2011, AUST J ZOOL, V59, P86, DOI 10.1071/ZO11036; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LEROI AM, 1994, AM NAT, V143, P381, DOI 10.1086/285609; Lewis DB, 2001, ECOLOGY, V82, P758; Lourdais O, 2004, J COMP PHYSIOL B, V174, P383, DOI 10.1007/s00360-004-0424-6; LUNNEY D, 1991, AUST J ECOL, V16, P33, DOI 10.1111/j.1442-9993.1991.tb01479.x; Mabille G, 2012, OECOLOGIA, V170, P965, DOI 10.1007/s00442-012-2382-0; MARLER CA, 1988, BEHAV ECOL SOCIOBIOL, V23, P21, DOI 10.1007/BF00303053; Miles DB, 2000, EVOLUTION, V54, P1386; Ogutu JO, 2005, AFR J ECOL, V43, P332, DOI 10.1111/j.1365-2028.2005.00587.x; Olsson M, 2001, OIKOS, V93, P121, DOI 10.1034/j.1600-0706.2001.930113.x; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; ORTEGA A, 1984, J HERPETOL, V18, P168, DOI 10.2307/1563745; Pavlova V, 2010, J THEOR BIOL, V264, P787, DOI 10.1016/j.jtbi.2010.03.009; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Perez-Mendoza HA, 2013, HERPETOLOGICA, V69, P411; Persson J, 2005, CAN J ZOOL, V83, P1453, DOI 10.1139/Z05-143; Qualls FJ, 1997, FUNCT ECOL, V11, P757, DOI 10.1046/j.1365-2435.1997.00150.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Ramirez-Bautista Aurelio, 2005, Acta Zoologica Sinica, V51, P998; Ramirez-Bautista A, 2011, WEST N AM NATURALIST, V71, P215, DOI 10.3398/064.071.0208; Reichel E, 1928, TATIGKEITSBERICHT PR, V362, P84; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rothblum J, 1978, ANIM BEHAV, V26, P130; Schubert M, 2009, BEHAV ECOL SOCIOBIOL, V64, P257, DOI 10.1007/s00265-009-0842-2; SCHWARZKOPF L, 1993, ECOLOGY, V74, P1970, DOI 10.2307/1940840; Shaffer LR, 1996, ANIM BEHAV, V51, P1017, DOI 10.1006/anbe.1996.0104; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; Siriwardena GM, 1999, IBIS, V141, P621, DOI 10.1111/j.1474-919X.1999.tb07370.x; SITES JW, 1983, EVOLUTION, V37, P54, DOI 10.1111/j.1558-5646.1983.tb05513.x; Stearns S, 1992, EVOLUTION LIFE HIST; Teixeira RL, 2005, J HERPETOL, V39, P504, DOI 10.1670/9-05N.1; TUOMI J, 1983, AM ZOOL, V23, P25; Uller T, 2005, J ZOOL, V265, P295, DOI 10.1017/S0952836904006326; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDAMME R, 1989, J HERPETOL, V23, P459; Veasey JS, 2001, J ANIM ECOL, V70, P20, DOI 10.1046/j.1365-2656.2001.00476.x; WAICHMAN A V, 1992, Herpetological Review, V23, P19; Wapstra E, 2001, AUSTRAL ECOL, V26, P179, DOI 10.1046/j.1442-9993.2001.01104.x; Webb JK, 2004, COPEIA, P357, DOI 10.1643/CH-03-171R1; White GC, 1999, BIRD STUDY, V46, P120; Winne CT, 2006, FUNCT ECOL, V20, P1054, DOI 10.1111/j.1365-2435.2006.01180.x 94 3 3 2 29 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. OCT 2014 56 4 605 618 10.1007/s10144-014-0447-0 14 Ecology Environmental Sciences & Ecology AP9WZ WOS:000342433500005 2019-02-21 J Jovanovic, DS; Dordevic, M; Savkovic, U; Lazarevic, J Jovanovic, Darka Seslija; Dordevic, Mirko; Savkovic, Uros; Lazarevic, Jelica The effect of mitochondrial complex I inhibitor on longevity of short-lived and long-lived seed beetles and its mitonuclear hybrids BIOGERONTOLOGY English Article Acanthoscelides obtectus; Ageing; Longevity; Age-specific selection; Complex I inhibitor; Mitonuclear hybrids LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; EXTENDED LONGEVITY; ACANTHOSCELIDES-OBTECTUS; HEART-MITOCHONDRIA; STRESS HYPOTHESIS; ENERGY-METABOLISM; OXIDATIVE STRESS; SPAN EXTENSION; MTDNA Mitochondria are suggested to play a central role in ageing and evolution of longevity. Gradual decline in mitochondrial function during ageing and concomitant increase in production of reactive oxygen species (ROS) leads to oxidative damage of macromolecules and impairment of ATP synthesis. To assess relationship between ageing and oxidative stress resistance we exposed different longevity lines of the seed beetle (Acanthoscelides obtectus) to four concentrations of tebufenpyrad, mitochondrial complex I inhibitor. Complex I is one of main sites of ROS production during normal respiration and its inhibition elevates oxidative stress. Our results showed that 24 h of exposure to tebufenpyrad decreased survival and post-stress longevity due to increased baseline mortality. Higher resistance was recorded in beetles from lines selected for late reproduction and extended longevity (L) than in early reproducing beetles (E). Also, females were more resistant than males. Since complex I is under dual genetic control, our second aim was to disentangle relative contribution of nuclear and mitochondrial genes to the variation in longevity. We used crossed combinations of distinct mitochondrial and nuclear genotypes (E x L, L x E) and compared them to control hybrids where mitochondrial genome was "transplanted" onto the original background (E x E, L x L). Our study revealed significant effect of nucleus, i.e. higher survival and post-stress longevity in beetles harbouring L nucleus. Mitochondrion effect was significant only within L nuclear background where E mitochondrion gave advantage. [Jovanovic, Darka Seslija; Dordevic, Mirko; Savkovic, Uros] Univ Belgrade, Dept Evolutionary Biol, Inst Biol Res Sinisa Stankovic, Belgrade 11060, Serbia; [Lazarevic, Jelica] Univ Belgrade, Dept Insect Physiol & Biochem, Inst Biol Res Sinisa Stankovic, Belgrade 11060, Serbia Jovanovic, DS (reprint author), Univ Belgrade, Dept Evolutionary Biol, Inst Biol Res Sinisa Stankovic, Despota Stefana Blvd 142, Belgrade 11060, Serbia. darka.seslija@ibiss.bg.ac.rs Dordevic, Mirko/C-6294-2016; Seslija Jovanovic, Darka/D-1204-2016; Savkovic, Uros/C-6292-2016 Dordevic, Mirko/0000-0002-5768-0081; Seslija Jovanovic, Darka/0000-0003-3031-8426; Savkovic, Uros/0000-0001-9430-4619; Lazarevic, Jelica/0000-0002-7026-9385 Ministry of Education, Science and Technological Development [173007] We thank the Editor and an anonymous referee for constructive comments and helpful suggestions. This work was supported by Ministry of Education, Science and Technological Development, Grant No. 173007. Andreyev AI, 2005, BIOCHEMISTRY-MOSCOW+, V70, P200, DOI 10.1007/s10541-005-0102-7; Arking R, 2002, AGEING RES REV, V1, P209, DOI 10.1016/S1568-1637(01)00010-1; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Ballard JWO, 2004, MOL ECOL, V13, P729, DOI 10.1046/j.1365-294X.2003.02063.x; Blier PU, 2001, TRENDS GENET, V17, P400, DOI 10.1016/S0168-9525(01)02338-1; Bokov A, 2004, MECH AGEING DEV, V125, P811, DOI 10.1016/j.mad.2004.07.009; Brand MD, 2004, FREE RADICAL BIO MED, V37, P755, DOI 10.1016/j.freeradbiomed.2004.05.034; Bratic I, 2010, BBA-BIOENERGETICS, V1797, P961, DOI 10.1016/j.bbabio.2010.01.004; Budovsky A, 2007, MECH AGEING DEV, V128, P117, DOI 10.1016/j.mad.2006.11.018; Camus MF, 2012, CURR BIOL, V22, P1717, DOI 10.1016/j.cub.2012.07.018; Copeland JM, 2009, CURR BIOL, V19, P1591, DOI 10.1016/j.cub.2009.08.016; Curtis C, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-12-r262; Das J, 2006, BIOESSAYS, V28, P890, DOI 10.1002/bies.20463; Djawdan M, 1996, PHYSIOL ZOOL, V69, P1176, DOI 10.1086/physzool.69.5.30164252; Dowling DK, 2008, TRENDS ECOL EVOL, V23, P546, DOI 10.1016/j.tree.2008.05.011; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Ellison CK, 2006, EVOLUTION, V60, P1382, DOI 10.1111/j.0014-3820.2006.tb01217.x; Esposti MD, 1998, BBA-BIOENERGETICS, V1364, P222, DOI 10.1016/S0005-2728(98)00029-2; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Gemmell NJ, 2004, TRENDS ECOL EVOL, V19, P238, DOI 10.1016/j.tree.2004.02.002; HARMAN D, 1972, J AM GERIATR SOC, V20, P145, DOI 10.1111/j.1532-5415.1972.tb00787.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Hirst J, 2003, BBA-BIOENERGETICS, V1604, P135, DOI 10.1016/S0005-2728(03)00059-8; Innocenti P, 2011, SCIENCE, V332, P845, DOI 10.1126/science.1201157; Jacobs HT, 2003, AGING CELL, V2, P11, DOI 10.1046/j.1474-9728.2003.00032.x; James AC, 2003, GENETICS, V164, P187; Katewa SD, 2007, INSECT BIOCHEM MOLEC, V37, P923, DOI 10.1016/j.ibmb.2007.04.008; Kim HJ, 2010, EXP GERONTOL, V45, P611, DOI 10.1016/j.exger.2009.12.012; Kirkwood TBL, 2012, BIOESSAYS, V34, P692, DOI 10.1002/bies.201200014; Krementsova AV, 2012, BIOGERONTOLOGY, V13, P595, DOI 10.1007/s10522-012-9404-5; Kuang JJ, 2012, MITOCHONDRION, V12, P280, DOI 10.1016/j.mito.2011.10.003; Kuether K, 1999, AGE, V22, P175, DOI 10.1007/s11357-999-0020-5; Lambert AJ, 2010, AGING CELL, V9, P78, DOI 10.1111/j.1474-9726.2009.00538.x; Lane N, 2011, BIOESSAYS, V33, P860, DOI 10.1002/bies.201100051; Lazarevic J, 2013, SEXUAL SELECTION EVO, P1; Lazarevic J, 2013, BIOGERONTOLOGY, V14, P141, DOI 10.1007/s10522-013-9417-8; Lazarevic J, 2012, INSECT SCI, V19, P303, DOI 10.1111/j.1744-7917.2011.01457.x; Le Bourg E, 2009, BBA-GEN SUBJECTS, V1790, P1030, DOI 10.1016/j.bbagen.2009.01.004; Min KJ, 2006, MECH AGEING DEV, V127, P643, DOI 10.1016/j.mad.2006.02.005; MIQUEL J, 1980, EXP GERONTOL, V15, P575, DOI 10.1016/0531-5565(80)90010-8; Mohammadi-Bardbori A, 2008, ENVIRON TOXICOL PHAR, V26, P1, DOI 10.1016/j.etap.2008.02.009; Morrow Genevieve, 2008, Biotechnology Journal, V3, P728, DOI 10.1002/biot.200800015; Nikola T, 2004, EVOL ECOL, V18, P187, DOI 10.1023/B:EVEC.0000021090.51851.bd; ONEILL SL, 1992, P NATL ACAD SCI USA, V89, P2699, DOI 10.1073/pnas.89.7.2699; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Pletcher SD, 1999, J EVOLUTION BIOL, V12, P430; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Pujol C, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059493; Rand DM, 2004, TRENDS ECOL EVOL, V19, P645, DOI 10.1016/j.tree.2004.10.003; Rand DM, 2006, GENETICS, V172, P329, DOI 10.1534/genetics.105.046698; Rattan SIS, 2012, BIOGERONTOLOGY, V13, P83, DOI 10.1007/s10522-011-9354-3; Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014; Sanz A, 2010, AGING-US, V2, P200, DOI 10.18632/aging.100137; SAS Institute Inc., 2010, SAS SYST WIND REL 9; Schuler F, 2001, PEST MANAG SCI, V57, P932, DOI 10.1002/ps.364; Sherer TB, 2007, J NEUROCHEM, V100, P1469, DOI 10.1111/j.1471-4159.2006.04333.x; Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P573, DOI 10.1016/S0891-5849(02)00885-7; Soti C, 2007, EXP GERONTOL, V42, P113, DOI 10.1016/j.exger.2006.05.017; Sriram A, 2012, THESIS TAMPERE U TEC; St-Pierre J, 2002, J BIOL CHEM, V277, P44784, DOI 10.1074/jbc.M207217200; Stojkovic B, 2011, ARCH BIOL SCI, V63, P129, DOI 10.2298/ABS1101129S; Tower J, 2009, TRENDS ENDOCRIN MET, V20, P216, DOI 10.1016/j.tem.2008.12.005; Tucic N, 1996, J EVOLUTION BIOL, V9, P485, DOI 10.1046/j.1420-9101.1996.9040485.x; Van Pottelberge S, 2009, B ENTOMOL RES, V99, P23, DOI 10.1017/S0007485308006081; Vermeulen CJ, 2007, EXP GERONTOL, V42, P153, DOI 10.1016/j.exger.2006.09.014; Vettraino J, 2001, J GERONTOL A-BIOL, V56, pB415, DOI 10.1093/gerona/56.10.B415; Willett CS, 2003, EVOLUTION, V57, P2286; Yashin AI, 2002, J GERONTOL A-BIOL, V57, pB83, DOI 10.1093/gerona/57.3.B83; Zera AJ, 2010, EXPT EVOLUTION CONCE, P217; Zid BM, 2009, CELL, V139, P149, DOI 10.1016/j.cell.2009.07.034 71 2 2 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1389-5729 1573-6768 BIOGERONTOLOGY Biogerontology OCT 2014 15 5 487 501 10.1007/s10522-014-9520-5 15 Geriatrics & Gerontology Geriatrics & Gerontology AP4WM WOS:000342080300007 25078074 2019-02-21 J Shipway, JR; Borges, LMS; Muller, J; Cragg, SM Shipway, J. Reuben; Borges, Luisa M. S.; Mueller, Johann; Cragg, Simon M. The broadcast spawning Caribbean shipworm, Teredothyra dominicensis (Bivalvia, Teredinidae), has invaded and become established in the eastern Mediterranean Sea BIOLOGICAL INVASIONS English Article Distribution; Invasive; Teredinid; Shipworm; Life History strategies; COI-5P and 18S sequences CLIMATE-CHANGE; BANKIA-GOULDI; NAVALIS; MARINE; MOLLUSCA; MODEL; CONSEQUENCES; MORPHOLOGY; ORGANISMS; INVASIONS Teredinids, commonly referred to as shipworms, are wood-boring bivalves estimated to cause over one billion dollars' worth of damage to submerged wooden structures per annum. This paper reports the detection and establishment of the Caribbean shipworm Teredothyra dominicensis (Bivalvia, Teredinidae) in the eastern Mediterranean Sea. Identification was confirmed using an integrative taxonomical approach combining morphology, morphometry and molecular markers (COI-5P and 18S), thus improving both the taxonomic resolution and tractability of this invasive species. Sequence comparisons between indigenous Caribbean and Mediterranean specimens were at least 99 % identical. Wooden panels placed at the site of discovery were infested exclusively by T. dominicensis with specimens of varying size and age, indicating multiple settlement events and the presence of breeding populations in the region. Anatomical and behavioural observations confirm the species as a broadcast spawner with larvae undergoing planktotrophic development, thus distribution range is potentially extensive. Of the possible introduction vectors, transport via ballast water is proposed as the most likely. The establishment of breeding populations of a tropical teredinid in the Mediterranean is of considerable concern as tropical species are particularly destructive and degrade wood more rapidly than the species currently found in the region. This threat is likely to increase in severity due to global warming, as increases in temperature and salinity may lead to an increase in the distribution range, development rate and boring activity of teredinids. [Shipway, J. Reuben; Cragg, Simon M.] Univ Portsmouth, Inst Marine Sci, Portsmouth PO4 9LY, Hants, England; [Borges, Luisa M. S.] Helmholtz Zentrum Geesthacht, Ctr Mat & Coastal Res, Geesthacht, Germany; [Mueller, Johann] Independent Consultant, Dorpen, Germany Shipway, JR (reprint author), Univ Portsmouth, Inst Marine Sci, Portsmouth PO4 9LY, Hants, England. reuben.shipway@gmail.com Cragg, Simon/C-8463-2011; Krammel, Vera/N-4826-2014 Cragg, Simon/0000-0003-1082-7653; Krammel, Vera/0000-0002-8273-8396 Malacological Society of London; Biotechnology and Biological Sciences Research Council [BB/H531543/1] We would like to express our gratitude to the Malacological Society of London for providing a research grant which supported the travel and fieldwork. We are also indebted to Archipelagos and Jenny Shepperson for their assistance during surveying in the Aegean. Drs S. Streeter and S. Short, University of Portsmouth, kindly discussed the content of this paper and provided many valuable criticisms and suggestions. Finally, we would like to thank M. Crockett for providing samples of T. dominicensis from the Caribbean. [Anonymous], 1952, WOODS HOLE OCEANOGRA; Bartsch P., 1921, Proceedings of the Biological Society of Washington, V34, P25; Blaxter ML, 1998, NATURE, V392, P71, DOI 10.1038/32160; Borges LMS, 2012, INVERTEBR SYST, V26, P572, DOI 10.1071/IS12028; Borges LMS, 2010, MARINE BIODIVERSITY, V3, P1; Calloway C.B., 1983, Journal of Shellfish Research, V3, P65; Calloway C.B., 1988, P215; Carlton JT, 1999, MALACOLOGIA, V41, P439; Castagna M, 1961, SHIPWORMS OTHER MARI; COHEN AN, 1995, BIOL STUDY NONINDIGE; Coma R, 2009, P NATL ACAD SCI USA, V106, P6176, DOI 10.1073/pnas.0805801106; Cragg SM, 2009, J EXP MAR BIOL ECOL, V375, P99, DOI 10.1016/j.jembe.2009.05.014; CULLINEY JL, 1975, MAR BIOL, V29, P245, DOI 10.1007/BF00391850; Distel DL, 2011, MOL PHYLOGENET EVOL, V61, P245, DOI 10.1016/j.ympev.2011.05.019; Donlan CJ, 2003, B MAR SCI, V72, P231; ECKELBARGER K J, 1972, Bulletin Southern California Academy of Sciences, V71, P48; Edmondson CH, 1962, OCCASIONAL PAPERS BP, V23; Edmondson Charles Howard, 1942, OCCAS PAPERS BERNICE P BISHOP MUS, V17, P97; Filho CS, 2008, IHERINGIA SER ZOOL, V98, P17, DOI 10.1590/S0073-47212008000100002; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Giannakopoulos C, 2009, GLOBAL PLANET CHANGE, V68, P209, DOI 10.1016/j.gloplacha.2009.06.001; Gibelin AL, 2003, CLIM DYNAM, V20, P327, DOI 10.1007/s00382-002-0277-1; Giorgi F, 2008, GLOBAL PLANET CHANGE, V63, P90, DOI 10.1016/j.gloplacha.2007.09.005; Gollasch S, 2002, BIOFOULING, V18, P105, DOI 10.1080/08927010290011361; Grave BH, 1928, BIOL BULL-US, V55, P260, DOI 10.2307/1537080; HOAGLAND KE, 1986, AM MALACOL BULL, V4, P89; IBRAHIM JVM, 1981, AUST J MAR FRESH RES, V32, P591; MacIntosh H, 2012, MAR ECOL PROG SER, V461, P95, DOI 10.3354/meps09823; NAIR NB, 1971, ADV MAR BIOL, V9, P335, DOI 10.1016/S0065-2881(08)60345-4; Paalvast P, 2011, MAR POLLUT BULL, V62, P1822, DOI 10.1016/j.marpolbul.2011.05.009; POPHAM J D, 1979, Malacological Review, V12, P1; POPHAM JD, 1974, CELL TISSUE RES, V150, P291; Raskoff KA, 2003, BIOL BULL-US, V204, P68, DOI 10.2307/1543497; RAYNER S M, 1983, Records of the Australian Museum, V35, P61; Roch F, 1940, TEREDINIDEN MITTELME; Ruiz GM, 1997, AM ZOOL, V37, P621; Sanchez E, 2004, GLOBAL PLANET CHANGE, V44, P163, DOI 10.1016/j.gloplacha.2004.06.010; Santos SML, 2005, GENET MOL BIOL, V28, P175, DOI 10.1590/S1415-47572005000100031; SCHELTEMA RS, 1971, MAR BIOL, V11, P5, DOI 10.1007/BF00348015; Sen S, 2010, AFR J BIOTECHNOL, V9, P2566; Sigerfoos CP, 1908, B BUR FISHERIES WASH, V27, P191; Southwell C. R, 1971, Biotropica, V3, P81, DOI 10.2307/2989709; Strathmann RR, 2002, B MAR SCI, V70, P377; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; TAN AS, 1993, NAUTILUS, V107, P63; Thiel M, 2005, OCEANOGR MAR BIOL, V43, P279; Turner R. D., 1971, P17; Turner Ruth D, 1966, SURVEY ILLUSTRATED C 48 12 12 0 25 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions OCT 2014 16 10 2037 2048 10.1007/s10530-014-0646-9 12 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology AP0VC WOS:000341782600003 2019-02-21 J Baker, LL; Wiff, R; Quiroz, JC; Flores, A; Cespedes, R; Barrientos, MA; Ojeda, V; Gatica, C Baker, Laurie L.; Wiff, Rodrigo; Quiroz, J. C.; Flores, Andres; Cespedes, Renato; Barrientos, Mauricio A.; Ojeda, Vilma; Gatica, Claudio Reproductive ecology of the female pink cusk-eel (Genypterus blacodes): evaluating differences between fishery management zones in the Chilean austral zone ENVIRONMENTAL BIOLOGY OF FISHES English Article L-50%; Genypterus blacodes; Fisheries; Chile; Reproduction; Maturity NORTH-SEA PLAICE; COD GADUS-MORHUA; POPULATION-STRUCTURE; COMMERCIAL CATCH; MATURITY OGIVES; SOUTHERN CHILE; REACTION NORMS; LIFE-HISTORY; MATURATION; GROWTH The pink cusk-eel (Genypterus blacodes), a benthic-demersal fish confined to the southern hemisphere, supports an important commercial fishery in Chile where it is exploited over an extensive geographic area. Although the fishery was originally divided into a northern (41A(0)28'aEuro"47A(0)00'S) and southern (47A(0)00'aEuro"57A(0)00'S) zone for the purposes of fisheries management, recent studies have reported significant differences in life history parameters between these zones. Individuals from the southern zone reached larger asymptotic sizes and possessed higher survival rates compared to the northern zone. We estimate and compare the gonadosomatic index (GSI), shape of the maturity ogive, and length at 50 % maturity (L (50%)) of female G. blacodes between management zones and across time using biological data collected from the industrial fleet between 1985 and 2009. Females in the northern zone had higher monthly mean GSI than females in the southern zone. Our analyses also revealed L (50%) to be significantly higher in the southern zone than in the northern zone from 1985 to 2009. The significant differences in life-history traits between fishery management zones agree with the trade-offs predicted by Charnov's life history theory. Together these results provide additional support for the hypothesis that two separate stocks exist and suggest that females from the northern zone have developed a life-history strategy, which favours early maturation and a proportionally greater investment in reproduction than females from the southern zone. [Quiroz, J. C.; Flores, Andres; Cespedes, Renato; Ojeda, Vilma] Inst Fomento Pesquero IFOP, Div Invest Pesquera, Valparaiso, Chile; [Wiff, Rodrigo] Univ Concepcion, Dept Oceanog, COPAS Sur Austral, Concepcion, Chile; [Barrientos, Mauricio A.] Pontificia Univ Catolica Chile, Inst Matemat, Valparaiso, Chile; [Gatica, Claudio] Inst Invest Pesquera, Talcahuano, Chile Baker, LL (reprint author), Dalhousie Univ, Dept Biol, Ocean Tracking Network, 1459 Oxford St, Halifax, NS B3H 4R2, Canada. laurie.baker@dal.ca Quiroz, Juan Carlos/N-7937-2015 Quiroz, Juan Carlos/0000-0002-2831-7689 British Ecological Society (BES); Instituto de Investigacion Pesquera (INPESCA); CONICYT/FONDECYT [3130425] This work was funded by grants awarded to Laurie Baker from the British Ecological Society (BES) and from the Instituto de Investigacion Pesquera (INPESCA). This project was made possible by the Instituto de Fomento Pesquero (IFOP-Chile), who developed the 2012 sampling programme and stock assessment projects of G. blacodes. During the course of writing this manuscript R. Wiff was funded by CONICYT/FONDECYT post doctoral project number 3130425. We would like to also thank Aurora Guerrero from the Undersecretariat of fisheries (SUBPESCA) for her comments and logistical advice in the early stages of this work. We are also grateful to two anonymous reviewers for their valuable comments and constructive criticism. Aguayo M, 2001, 9915 FIP; BAGENAL TB, 1957, J MAR BIOL ASSOC UK, V36, P377, DOI 10.1017/S0025315400016866; Baker LL, 2011, THESIS U ST ANDREWS; Balbontin F., 1981, Revista de Biologia Marina, V17, P285; Brito CG, 2008, NUEVAS APROXIMACIONE, P73; Bromley PJ, 2000, J SEA RES, V44, P27, DOI 10.1016/S1385-1101(00)00043-5; Canales-Aguirre CB, 2010, FISH RES, V106, P102, DOI 10.1016/j.fishres.2010.06.010; Charnov Eric L., 1993, P1; Chong J, 1993, ESTIMACION FECUNDIDA; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Fredrich F, 2003, J FISH BIOL, V63, P710, DOI 10.1046/j.1095-8649.2003.00184.x; Froese R, 2012, GENYPTERUS BLACODES; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HORN PL, 1993, NEW ZEAL J MAR FRESH, V27, P385, DOI 10.1080/00288330.1993.9516580; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Jorgensen C, 2004, ICES PAL 2 4 DK 1261; Kenchington E, 2003, ICES J MAR SCI, V60, P1172, DOI 10.1016/S1054-3139(03)00136-X; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Lowerre-Barbieri SK, 2011, MAR COAST FISH, V3, P71, DOI 10.1080/19425120.2011.556932; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Murdie RE, 2000, REV GEOL CHILE, V27, P49; Nikolsky G. W., 1963, ECOLOGY FISHES; Paredes F, 2005, NEW ZEAL J MAR FRESH, V39, P1085, DOI 10.1080/00288330.2005.9517377; Pelletier D, 2000, CAN J FISH AQUAT SCI, V57, P51, DOI 10.1139/cjfas-57-1-51; Pena-Torres J, 1997, MARINE RESOURCE EC, V12, P253; R Development Core Team, 2009, R LANG ENV STAT COMP; Ramsay K, 1996, J SEA RES, V36, P50; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; Roa R, 1999, FISH B-NOAA, V97, P570; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Smith JM, 2005, AQUAT LIVING RESOUR, V18, P341, DOI 10.1051/alr:2005038; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Vitale F, 2006, ICES J MAR SCI, V63, P485, DOI 10.1016/j.icesjms.2005.09.001; Ward RD, 2001, MAR FRESHWATER RES, V52, P965, DOI 10.1071/MF01014; Wiff R, 2007, J APPL ICHTHYOL, V23, P270, DOI 10.1111/j.1439-0426.2007.00854.x; Wiff R, 2012, ESTATUS POSIBILIDADE; Wiff R, 2006, EVALUACION STOCKS CU; Wiff R, 2011, LAT AM J AQUAT RES, V39, P316, DOI 10.3856/vol39-issue2-fulltext-13 41 3 4 2 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes OCT 2014 97 10 1083 1093 10.1007/s10641-013-0199-2 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AO6XQ WOS:000341496600001 2019-02-21 J Weigel, DE; Connolly, PJ; Powell, MS Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S. Fluvial rainbow trout contribute to the colonization of steelhead (Oncorhynchus mykiss) in a small stream ENVIRONMENTAL BIOLOGY OF FISHES English Article Colonization; Parentage; Barrier removal; Fitness; Life history polymorphism POPULATION-STRUCTURE; REPRODUCTIVE SUCCESS; HATCHERY PROGRAMS; SALMONIDS; WILD; STRATEGIES; COLUMBIA; PARENTS; FITNESS; SYSTEM Life history polymorphisms provide ecological and genetic diversity important to the long term persistence of species responding to stochastic environments. Oncorhynchus mykiss have complex and overlapping life history strategies that are also sympatric with hatchery populations. Passive integrated transponder (PIT) tags and parentage analysis were used to identify the life history, origin (hatchery or wild) and reproductive success of migratory rainbow/steelhead for two brood years after barriers were removed from a small stream. The fluvial rainbow trout provided a source of wild genotypes to the colonizing population boosting the number of successful spawners. Significantly more parr offspring were produced by anadromous parents than expected in brood year 2005, whereas significantly more parr offspring were produced by fluvial parents than expected in brood year 2006. Although hatchery steelhead were prevalent in the Methow Basin, they produced only 2 parr and no returning adults in Beaver Creek. On average, individual wild steelhead produced more parr offspring than the fluvial or hatchery groups. Yet, the offspring that returned as adult steelhead were from parents that produced few parr offspring, indicating that high production of parr offspring may not be related to greater returns of adult offspring. These data in combination with other studies of sympatric life histories of O. mykiss indicate that fluvial rainbow trout are important to the conservation and recovery of steelhead and should be included in the management and recovery efforts. [Weigel, Dana E.] Snake River Area Off, Bur Reclamat, Moscow, ID 83843 USA; [Connolly, Patrick J.] US Geol Survey, Western Fisheries Res Ctr, Columbia River Res Lab, Cook, WA 98605 USA; [Powell, Madison S.] Univ Idaho, Inst Aquaculture Res, Hagerman, ID 83332 USA Weigel, DE (reprint author), Snake River Area Off, Bur Reclamat, 220 5th St,Suite 105, Moscow, ID 83843 USA. danaw099@hotmail.com U.S. Bureau of Reclamation Funding and materials were provided by the U.S. Bureau of Reclamation. We are grateful to the local landowners, G. Ott and V. Stokes, who allowed access to sites on Beaver Creek. M. Newsom provided valuable scientific direction to the project. G. Knott and M. Notaro provided support with local coordination and permitting. K. Martens, B. Fisher, W. Tibbits and N. Glasser assisted in data collection and operation of the weir and tag readers. J. Faler conducted the genetic analysis. Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. All animal capture and care for this study was permitted under Endangered Species Act permits from the National Marine Fisheries Service (no. 1480), U.S. Fish and Wildlife Service (no. TE-043875) and Washington State collection permit (no. 05-61-4539A and 06-453). Allendorf FW, 2007, CONSERVATION GENETIC; Araki H, 2008, EVOL APPL, V1, P342, DOI 10.1111/j.1752-4571.2008.00026.x; Araki H, 2007, MOL ECOL, V16, P953, DOI 10.1111/j.1365-294X.2006.03206.x; Araki H, 2007, CONSERV BIOL, V21, P181, DOI 10.1111/j.1523-1739.2006.00564.x; BEACHAM TD, 1993, J FISH BIOL, V42, P485; Behnke R. J., 1992, AM FISHERIES SOC MON, V6; Chapman D, 1994, STATUS SUMMER STEELH, V1994; Christie MR, 2011, MOL ECOL, V20, P1263, DOI 10.1111/j.1365-294X.2010.04994.x; Connolly PJ, 2008, N AM J FISH MANAGE, V28, P402, DOI 10.1577/M07-008.1; Docker MF, 2003, CONSERV GENET, V4, P227, DOI 10.1023/A:1023355114612; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Hendry AP, 2004, EVOLUTION ILLUMINATE; Kalinowski ST, 2005, MOL ECOL NOTES, V5, P187, DOI 10.1111/j.1471-8286.2004.00845.x; LEIDER SA, 1989, ENVIRON BIOL FISH, V24, P219, DOI 10.1007/BF00001225; Marshall TC, 1998, MOL ECOL, V7, P639, DOI 10.1046/j.1365-294x.1998.00374.x; Martens KD, 2010, N AM J FISH MANAGE, V30, P1544, DOI 10.1577/M10-025.1; McClure MM, 2003, ECOL APPL, V13, P964, DOI 10.1890/1051-0761(2003)13[964:ALMSAA]2.0.CO;2; McPhee MV, 2007, ECOL FRESHW FISH, V16, P539, DOI 10.1111/j.1600-0633.2007.00248.x; Miller LM, 2004, MOL ECOL, V13, P3379, DOI 10.1111/j.1365-294X.2004.02347.x; Olsen JB, 2000, MOL ECOL, V9, P2185, DOI 10.1046/j.1365-294X.2000.105317.x; Parker HH, 2001, J ANIM ECOL, V70, P260, DOI 10.1046/j.1365-2656.2001.00488.x; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Rexroad CE, 2002, MAR BIOTECHNOL, V4, P12, DOI 10.1007/s10126-001-0058-6; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Ruttenberg DA, 2007, THESIS U IDAHO MOSCO; Seamons TR, 2004, ENVIRON BIOL FISH, V69, P333, DOI 10.1023/B:EBFI.0000022893.88086.8f; Snow C, 2010, MONITORING EVALUATIO; Stephenson JJ, 2009, CONSERV GENET, V10, P1145, DOI 10.1007/s10592-008-9729-4; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Thrower FP, 2004, J FISH BIOL, V65, P286, DOI 10.1111/j.1095-8649.2004.00551.x; Wang SZ, 2002, REV FISH BIOL FISHER, V11, P301; Weigel DE, 2013, CONSERV GENET, V14, P1255, DOI 10.1007/s10592-013-0513-8; Weigel DE, 2013, T AM FISH SOC, V142, P920, DOI 10.1080/00028487.2013.788560; Weigel DE, 2013, THESIS U IDAHO MOSCO; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152 36 3 3 0 12 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes OCT 2014 97 10 1149 1159 10.1007/s10641-013-0204-9 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AO6XQ WOS:000341496600006 2019-02-21 J Catford, JA; Jansson, R Catford, Jane A.; Jansson, Roland Drowned, buried and carried away: effects of plant traits on the distribution of native and alien species in riparian ecosystems NEW PHYTOLOGIST English Review community assembly; disturbance; exotic species; flooding regime; functional traits; hydrochory; inundation; non-native species MACROPHYTE SPARGANIUM-EMERSUM; SEED DISPERSAL; FLOW REGIMES; ASSEMBLY RULES; ENVIRONMENTAL FLOWS; RIVER FRAGMENTATION; COMMUNITY RESPONSES; PROPAGULE PRESSURE; GENETIC DIVERSITY; FLOWERING PLANTS Riparian vegetation is exposed to stress from inundation and hydraulic disturbance, and is often rich in native and alien plant species. We describe 35 traits that enable plants to cope with riparian conditions. These include traits for tolerating or avoiding anoxia and enabling underwater photosynthesis, traits that confer resistance and resilience to hydraulic disturbance, and attributes that facilitate dispersal, such as floating propagules. This diversity of life-history strategies illustrates that there are many ways of sustaining life in riparian zones, which helps to explain high riparian biodiversity. Using community assembly theory, we examine how adaptations to inundation, disturbance and dispersal shape plant community composition along key environmental gradients, and how human actions have modified communities. Dispersal-related processes seem to explain many patterns, highlighting the influence of regional processes on local species assemblages. Using alien plant invasions like an (uncontrolled) experiment in community assembly, we use an Australian and a global dataset to examine possible causes of high degrees of riparian invasion. We found that high proportions of alien species in the regional species pools have invaded riparian zones, despite not being riparian specialists, and that riparian invaders disperse in more ways, including by water and humans, than species invading other ecosystems. [Catford, Jane A.] Univ Melbourne, Sch Bot, Melbourne, Vic 3010, Australia; [Catford, Jane A.] Australian Natl Univ, Fenner Sch Environm & Soc, Canberra, ACT 0200, Australia; [Catford, Jane A.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA; [Jansson, Roland] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden Jansson, R (reprint author), Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden. roland.jansson@emg.umu.se Jansson, Roland/B-7972-2013; Catford, Jane/B-9578-2012 Jansson, Roland/0000-0003-1767-7010; Catford, Jane/0000-0003-0582-5960 Swedish Research Council Formas; Australian Research Council [DE120102221] We thank Alistair Hetherington for encouraging us to write this review, Samantha Dawson for comments on an earlier draft, Shyama Pagad and the IUCN SSC Invasive Species Specialist Group who gave us access to some of the data in the GISD, Matt White and the Victorian Department of Environment and Primary Industries for permission to use their data, Mary Gardner for helping process the GISD data and Estibaliz Palma for helping to analyse the Victorian data. We are grateful for feedback provided by the editor and three anonymous reviewers. This work was supported by grants from the Swedish Research Council Formas (to R.J.) and the Australian Research Council (DE120102221 to J.A.C.). Andersson E, 2000, J BIOGEOGR, V27, P1095, DOI 10.1046/j.1365-2699.2000.00481.x; Andersson E, 2000, REGUL RIVER, V16, P83, DOI 10.1002/(SICI)1099-1646(200001/02)16:1<83::AID-RRR567>3.3.CO;2-K; [Anonymous], 2014, NEW PHYTOLOGIST, V204, P19; ARMSTRONG W, 1994, ACTA BOT NEERL, V43, P307; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Bagstad KJ, 2005, WETLANDS, V25, P210, DOI 10.1672/0277-5212(2005)025[0210:ROHRPT]2.0.CO;2; Bailey-Serres J, 2008, ANNU REV PLANT BIOL, V59, P313, DOI 10.1146/annurev.arplant.59.032607.092752; Barrat-Segretain MH, 1999, ARCH HYDROBIOL, V145, P111; BARTON D R, 1985, North American Journal of Fisheries Management, V5, P364, DOI 10.1577/1548-8659(1985)5<364:DORBSR>2.0.CO;2; Beismann H, 2000, J EXP BOT, V51, P617, DOI 10.1093/jexbot/51.344.617; Belyea LR, 1999, OIKOS, V86, P402, DOI 10.2307/3546646; Bernhardt ES, 2005, SCIENCE, V308, P636, DOI 10.1126/science.1109769; Blom CWPM, 1996, TRENDS ECOL EVOL, V11, P290, DOI 10.1016/0169-5347(96)10034-3; BLOM CWPM, 1994, ANN BOT-LONDON, V74, P253, DOI 10.1006/anbo.1994.1116; Boedeltje G, 2004, J ECOL, V92, P786, DOI 10.1111/j.0022-0477.2004.00906.x; Boeger MRT, 2003, AQUAT BOT, V75, P123, DOI 10.1016/S0304-3770(02)00174-2; Bornette G, 2008, FRESHWATER BIOL, V53, P1692, DOI 10.1111/j.1365-2427.2008.01994.x; Bossuyt B, 2008, J VEG SCI, V19, P875, DOI 10.3170/2008-8-18462; Bremer B, 2003, BOT J LINN SOC, V141, P399; Bremer B, 2009, BOT J LINN SOC, V161, P105; Brown RL, 2003, ECOLOGY, V84, P32, DOI 10.1890/0012-9658(2003)084[0032:DAIOSA]2.0.CO;2; Bunn SE, 1998, FRESHWATER BIOL, V39, P171, DOI 10.1046/j.1365-2427.1998.00264.x; Capon SJ, 2003, RIVER RES APPL, V19, P509, DOI 10.1002/rra.730; Catford JA, 2014, DIVERS DISTRIB, V20, P1084, DOI 10.1111/ddi.12225; Catford JA, 2012, PERSPECT PLANT ECOL, V14, P231, DOI 10.1016/j.ppees.2011.12.002; Catford JA, 2012, GLOBAL CHANGE BIOL, V18, P44, DOI 10.1111/j.1365-2486.2011.02549.x; Catford JA, 2011, J APPL ECOL, V48, P432, DOI 10.1111/j.1365-2664.2010.01945.x; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; Colmer TD, 2009, FUNCT PLANT BIOL, V36, P665, DOI 10.1071/FP09144; Cook Christopher D.K., 1999, Perspectives in Plant Ecology Evolution and Systematics, V2, P79, DOI 10.1078/1433-8319-00066; CRAWFORD RMM, 1987, PLANT LIFE AQUATIC A; Dahlskog S, 1966, GEOGR ANN A, V48, P86; de Bello F, 2012, GLOBAL ECOL BIOGEOGR, V21, P312, DOI 10.1111/j.1466-8238.2011.00682.x; DECAMPS H, 1995, REGUL RIVER, V11, P23, DOI 10.1002/rrr.3450110104; Decamps H., 1994, Aquatic ecology: scale, pattern and process. The 34th Symposium of the British Ecological Society with the American Society of Limnology and Oceanography, University College, Cork, 1992., P1; Dehnen-Schmutz K, 2011, J APPL ECOL, V48, P1374, DOI 10.1111/j.1365-2664.2011.02061.x; Deiller AF, 2001, REGUL RIVER, V17, P393, DOI 10.1002/rrr.649.abs; Dynesius M, 2004, ECOL APPL, V14, P173, DOI 10.1890/02-5127; Elderd BD, 2003, ECOL APPL, V13, P1610, DOI 10.1890/02-5371; Engstrom J, 2011, FRESHWATER BIOL, V56, P1095, DOI 10.1111/j.1365-2427.2010.02553.x; Eschtruth AK, 2011, ECOLOGY, V92, P1314, DOI 10.1890/10-0857.1; Evangelista PH, 2008, DIVERS DISTRIB, V14, P808, DOI 10.1111/j.1472-4642.2008.00486.x; Flory SL, 2009, J APPL ECOL, V46, P434, DOI 10.1111/j.1365-2664.2009.01610.x; Geigenberger P, 2003, CURR OPIN PLANT BIOL, V6, P247, DOI 10.1016/S1369-5266(03)00038-4; Goodson JM, 2003, RIVER RES APPL, V19, P317, DOI 10.1002/rra.707; Gotzenberger L, 2012, BIOL REV, V87, P111, DOI 10.1111/j.1469-185X.2011.00187.x; GRACE JB, 1988, AQUAT BOT, V31, P83, DOI 10.1016/0304-3770(88)90040-X; Grant EHC, 2007, ECOL LETT, V10, P165, DOI 10.1111/j.1461-0248.2006.01007.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; Gurnell A, 2008, J ECOL, V96, P553, DOI 10.1111/j.1365-2745.2008.01358.x; He JB, 1999, OECOLOGIA, V118, P1, DOI 10.1007/s004420050696; Hodkinson DJ, 1997, J APPL ECOL, V34, P1484, DOI 10.2307/2405264; Horandl E, 2012, PERSPECT PLANT ECOL, V14, P310, DOI 10.1016/j.ppees.2012.04.001; Horn MH, 2011, ACTA OECOL, V37, P561, DOI 10.1016/j.actao.2011.06.004; Howell J, 2000, AUSTRAL ECOL, V25, P463, DOI 10.1046/j.1442-9993.2000.01084.x; Hubble TCT, 2010, ECOL ENG, V36, P292, DOI 10.1016/j.ecoleng.2009.04.006; Hulme PE, 2008, J APPL ECOL, V45, P403, DOI 10.1111/j.1365-2664.2007.01442.x; HUPP CR, 1985, ECOLOGY, V66, P670, DOI 10.2307/1940528; Ikeda H, 2001, ECOL RES, V16, P99, DOI 10.1046/j.1440-1703.2001.00375.x; ISSG, 2013, GLOB INV SPEC DAT GI; Jackson M. B., 1984, Flooding and plant growth, P47; Jackson MB, 2009, ANN BOT-LONDON, V103, P137, DOI 10.1093/aob/mcn242; Jansson R, 2005, J ECOL, V93, P1094, DOI 10.1111/j.1365-2745.2005.01057.x; Jansson R, 2000, ECOLOGY, V81, P899, DOI 10.2307/177165; Johansson ME, 1996, J VEG SCI, V7, P593, DOI 10.2307/3236309; Jungwirth M, 2002, FRESHWATER BIOL, V47, P867, DOI 10.1046/j.1365-2427.2002.00914.x; KALLIOLA R, 1988, J BIOGEOGR, V15, P703, DOI 10.2307/2845334; Karrenberg S, 2002, FRESHWATER BIOL, V47, P733, DOI 10.1046/j.1365-2427.2002.00894.x; Keeley JE, 1998, BOT REV, V64, P121, DOI 10.1007/BF02856581; Kozlowski T.T., 1997, TREE PHYSL MONOGR, V17, P490, DOI DOI 10.1093/TREEPHYS/17.7.490; KOZLOWSKI TT, 1984, FLOODING PLANT GROWT; KUBITZKI K, 1994, BIOTROPICA, V26, P30, DOI 10.2307/2389108; KURZWEIL H, 1993, PLANT SYST EVOL, V185, P229, DOI 10.1007/BF00937660; Kyle G, 2009, RIVER RES APPL, V25, P892, DOI 10.1002/rra.1192; LAAN P, 1989, J ECOL, V77, P693, DOI 10.2307/2260979; Lind L, 2014, BIOL REV, V89, P791, DOI 10.1111/brv.12077; Lockwood JL, 2009, DIVERS DISTRIB, V15, P904, DOI 10.1111/j.1472-4642.2009.00594.x; LOWRANCE R, 1984, BIOSCIENCE, V34, P374, DOI 10.2307/1309729; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; MADSEN TV, 1991, AQUAT BOT, V41, P5, DOI 10.1016/0304-3770(91)90037-6; Mahoney JM, 1998, WETLANDS, V18, P634, DOI 10.1007/BF03161678; Melbourne BA, 2007, ECOL LETT, V10, P77, DOI 10.1111/j.1461-0248.2006.00987.x; Merritt DM, 2010, ECOL MONOGR, V80, P609, DOI 10.1890/09-1533.1; Merritt DM, 2010, FRESHWATER BIOL, V55, P206, DOI 10.1111/j.1365-2427.2009.02206.x; Merritt DM, 2006, RIVER RES APPL, V22, P1, DOI 10.1002/rra.890; Middleton B, 2000, PLANT ECOL, V146, P169; Moles AT, 2005, P NATL ACAD SCI USA, V102, P10540, DOI 10.1073/pnas.0501473102; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Mommer L, 2005, PLANT PHYSIOL, V139, P497, DOI 10.1104/pp.105.064725; Mommer L, 2005, ANN BOT-LONDON, V96, P581, DOI 10.1093/aob/mci212; Mouw JEB, 2003, J BIOGEOGR, V30, P87, DOI 10.1046/j.1365-2699.2003.00775.x; Niggemann M, 2009, ECOL MODEL, V220, P1339, DOI 10.1016/j.ecolmodel.2009.02.018; Nilsson C, 2002, ECOLOGY, V83, P2878, DOI 10.2307/3072023; NILSSON C, 1989, ECOLOGY, V70, P77, DOI 10.2307/1938414; NILSSON C, 1994, J ECOL, V82, P281, DOI 10.2307/2261296; Nilsson C, 2010, BIOL REV, V85, P837, DOI 10.1111/j.1469-185X.2010.00129.x; PACALA SW, 1994, AM NAT, V143, P222, DOI 10.1086/285602; Palmer MA, 2005, J APPL ECOL, V42, P208, DOI 10.1111/j.1365-2664.2005.01004.x; Parolin P, 2006, FLORA, V201, P511, DOI 10.1016/j.flora.2005.11.003; Pettit NE, 2001, AUST J BOT, V49, P515, DOI 10.1071/BT00059; Pickering C, 2010, J SUSTAIN TOUR, V18, P239, DOI 10.1080/09669580903406613; PlantyTabacchi AM, 1996, CONSERV BIOL, V10, P598, DOI 10.1046/j.1523-1739.1996.10020598.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Pollock MM, 1998, ECOLOGY, V79, P94; Pollux BJA, 2007, MOL ECOL, V16, P313, DOI 10.1111/j.1365-294X.2006.03146.x; Pollux BJA, 2009, FRESHWATER BIOL, V54, P64, DOI 10.1111/j.1365-2427.2008.02100.x; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; Puijalon S, 2004, NEW PHYTOL, V163, P651, DOI 10.1111/j.1469-8137.2004.01135.x; Rea N, 1999, WETLANDS ECOLOGY MAN, V7, P47, DOI DOI 10.1023/A:1008425109473; Renofalt BM, 2005, J BIOGEOGR, V32, P2025, DOI 10.1111/j.1365-2699.2005.01328.x; Richardson DM, 2007, DIVERS DISTRIB, V13, P126, DOI 10.1111/j.1472-4642.2006.00314.x; Richardson David M., 2000, Diversity and Distributions, V6, P93, DOI 10.1046/j.1472-4642.2000.00083.x; Ridge I., 1987, Plant life in aquatic and amphibious habitats., P53; Riis T, 2006, FRESHWATER BIOL, V51, P274, DOI 10.1111/j.1365-2427.2005.01496.x; Rivadavia F, 2009, ECOTROPICA, V15, P13; Rood SB, 2003, BIOSCIENCE, V53, P647, DOI 10.1641/0006-3568(2003)053[0647:FFFFAS]2.0.CO;2; ROOD SB, 1990, ENVIRON MANAGE, V14, P451, DOI 10.1007/BF02394134; Rood Stewart B., 1999, Rivers, V7, P33; Sabo JL, 2005, ECOLOGY, V86, P56, DOI 10.1890/04-0668; Saumel I, 2013, PLANT ECOL, V214, P1257, DOI 10.1007/s11258-013-0249-z; SCHNEIDER RL, 1988, ECOLOGY, V69, P1055, DOI 10.2307/1941261; Sculthorpe CD, 1967, BIOL SQUATIC VASCULA; Seago JL, 2005, ANN BOT-LONDON, V96, P565, DOI 10.1093/aob/mci211; Silvertown J, 1999, NATURE, V400, P61, DOI 10.1038/21877; Simberloff D, 2009, ANNU REV ECOL EVOL S, V40, P81, DOI 10.1146/annurev.ecolsys.110308.120304; Stohlgren TJ, 1998, PLANT ECOL, V138, P113, DOI 10.1023/A:1009764909413; Stohlgren TJ, 1999, ECOL MONOGR, V69, P25, DOI 10.1890/0012-9615(1999)069[0025:EPSIHS]2.0.CO;2; Stokes K, 2010, PLANT ECOL, V211, P219, DOI 10.1007/s11258-010-9833-7; Strom L, 2012, FRESHWATER BIOL, V57, P49, DOI 10.1111/j.1365-2427.2011.02694.x; Stromberg JC, 2007, GLOBAL ECOL BIOGEOGR, V16, P381, DOI 10.1111/j.1466-8238.2007.00297.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; van der Pijl L., 1972, PRINCIPLES DISPERSAL; van Eck WHJM, 2006, HYDROBIOLOGIA, V565, P59, DOI 10.1007/s10750-005-1905-7; VANDERVALK AG, 1981, ECOLOGY, V62, P688, DOI 10.2307/1937737; Vartapetian BB, 1997, ANN BOT-LONDON, V79, P3, DOI 10.1006/anbo.1996.0295; Vervuren PJA, 2003, J ECOL, V91, P135, DOI 10.1046/j.1365-2745.2003.00749.x; Vila M, 2007, J VEG SCI, V18, P35, DOI 10.1111/j.1654-1103.2007.tb02513.x; Visser EJW, 2003, ANN BOT-LONDON, V91, P107, DOI 10.1093/aob/mcg014; Voesenek LACJ, 2006, NEW PHYTOL, V170, P213, DOI 10.1111/j.1469-8137.2006.01692.x; Voesenek LACJ, 2004, ECOLOGY, V85, P16, DOI 10.1890/02-740; von der Lippe M, 2012, PERSPECT PLANT ECOL, V14, P123, DOI 10.1016/j.ppees.2011.09.006; Wallace JB, 1997, SCIENCE, V277, P102, DOI 10.1126/science.277.5322.102; Washitani I, 1997, BIOL CONSERV, V82, P67, DOI 10.1016/S0006-3207(97)00014-1; Weiher E, 1998, OIKOS, V81, P309, DOI 10.2307/3547051; WEIHER E, 1995, OIKOS, V74, P159, DOI 10.2307/3545686; WEIHER E, 1995, OIKOS, V73, P323, DOI 10.2307/3545956; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Whitney KD, 2008, DIVERS DISTRIB, V14, P569, DOI 10.1111/j.1472-4642.2008.00473.x; Wilson JRU, 2009, TRENDS ECOL EVOL, V24, P136, DOI 10.1016/j.tree.2008.10.007; Xiong SJ, 2001, J VEG SCI, V12, P481, DOI 10.2307/3237000 151 33 34 6 163 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0028-646X 1469-8137 NEW PHYTOL New Phytol. OCT 2014 204 1 19 36 10.1111/nph.12951 18 Plant Sciences Plant Sciences AO2YG WOS:000341193500006 25130059 Bronze 2019-02-21 J Alford, JB Alford, J. Brian Multi-scale assessment of habitats and stressors influencing stream fish assemblages in the Lake Pontchartrain Basin, USA HYDROBIOLOGIA English Article Landscape; Spatial hierarchy; Variance decomposition; Redundancy analysis; Coastal plain; Life history SPATIAL SCALES; LAND-USE; ENVIRONMENT RELATIONSHIPS; INSTREAM HABITAT; PHYSICAL HABITAT; RESTORATION; LANDSCAPES; CATCHMENT; HISTORY; GEOMORPHOLOGY This study determined if a spatial hierarchy existed with respect to reach-scale habitat, subwatershed-scale, and watershed-scale geomorphology and land use stressors on fish assemblages in southeastern U.S. coastal plain streams. During May-October 2009-2012, fishes were sampled by seine, and habitat was assessed at 50 reaches in the Lake Pontchartrain Basin (USA). Using partial redundancy analysis (pRDA) a variance decomposition procedure was used to partial out influences of confounding covariables at each spatial scale. Reach-scale habitat had the strongest association with the assemblage. Stream width, depth, aquatic vegetation and human debris cover, rapid habitat assessment score, and large woody debris volume were the most important variables. At subwatershed and watershed scales, natural and anthropogenic characteristics were important, including elevation, gradient, watershed area, wetland cover, stream density, road, dam and oil/gas well densities. Six species were associated most strongly with the watershed variables, compared to reach- and subwatershed-scale variables. These species had more "r-selected" life-history strategies (e.g., smaller eggs, shorter life spans, multiple broods, longer spawning season, and trophic generalists). In contrast, most species that were associated strongest with reach-scale variables exhibited more "k-selected" life-history traits (e.g., larger eggs, longer life spans, shorter spawning season, single brood, and trophic specialists). [Alford, J. Brian] Louisiana Dept Wildlife & Fisheries, Fisheries Management Sect, Baton Rouge, LA 70808 USA; [Alford, J. Brian] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Inst Agr, Knoxville, TN 37966 USA Alford, JB (reprint author), Univ Tennessee, Dept Forestry Wildlife & Fisheries, Inst Agr, 2431 Joe Johnson Dr, Knoxville, TN 37966 USA. jalfor12@utk.edu U.S. Fish and Wildlife Service; Louisiana Department of Wildlife and Fisheries (LDWF) through the State Wildlife Grants Program This research was funded by the U.S. Fish and Wildlife Service and the Louisiana Department of Wildlife and Fisheries (LDWF) through the State Wildlife Grants Program. Landowners Isis Longo and Jeff Thompson graciously allowed access to their property. Thank you to Melissa Kaintz and Rachel Walley (LDWF) for providing equipment and personnel. Dedicated biologists from LDWF that helped with field work were Brac Salyers, Joe West, Isis Longo, Zane LeBlanc, Blake LeBlanc, Melissa Kaintz, Tim Ruth, Matt Duplesis, Jeff Thompson, and Heather David. Thank you to Ronald Lachica (LDWF) for help with the GIS analysis. Three anonymous reviewers greatly assisted in improving this manuscript. Alford JB, 2010, N AM J FISH MANAGE, V30, P112, DOI 10.1577/M09-020.1; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Anderson MJ, 1998, AUST J ECOL, V23, P158, DOI 10.1111/j.1442-9993.1998.tb00713.x; Barbour MT, 1999, RAPID BIOASSESSMENT; Bernhardt ES, 2011, ECOL APPL, V21, P1926, DOI 10.1890/10-1574.1; BORCARD D, 1992, ECOLOGY, V73, P1045, DOI 10.2307/1940179; Boschung Jr H. T., 2004, FISHES ALABAMA; Brazner JC, 2004, ENVIRON MANAGE, V33, P855, DOI 10.1007/s00267-004-3031-0; Budy P, 2007, ECOL APPL, V17, P1068, DOI 10.1890/06-0022; CHAO A, 1987, BIOMETRICS, V43, P783, DOI 10.2307/2531532; COLWELL RK, 1994, PHILOS T ROY SOC B, V345, P101, DOI 10.1098/rstb.1994.0091; Cooperman AS, 2007, FISHERIES, V32, P278; Durance I, 2006, RIVER RES APPL, V22, P1143, DOI 10.1002/rra.965; FAUSCH KD, 1992, CAN J FISH AQUAT SCI, V49, P682, DOI 10.1139/f92-077; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; FRISSELL C A, 1992, North American Journal of Fisheries Management, V12, P182, DOI 10.1577/1548-8675(1992)012<0182:IACOPF>2.3.CO;2; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; Geheber AD, 2012, ECOL FRESHW FISH, V21, P627, DOI 10.1111/j.1600-0633.2012.00584.x; Gido KB, 2006, AM FISH S S, V48, P265; Godinho Francisco Nunes, 2000, Biological Invasions, V2, P231, DOI 10.1023/A:1010022123669; Gotelli Nicholas J., 2011, P39; Grand J, 2003, BIOL CONSERV, V112, P307, DOI 10.1016/S0006-3207(02)00323-3; Hendrickson D. A., 2012, FISHES TEXAS PROJECT; Hershkovitz Y, 2013, HYDROBIOLOGIA, V719, P59, DOI 10.1007/s10750-012-1387-3; Hitt NP, 2012, OIKOS, V121, P127, DOI 10.1111/j.1600-0706.2011.19482.x; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; Hubbs Clark, 1997, Texas Journal of Science, V49, P67; Hynes H. B. N., 1970, ECOLOGY RUNNING WATE; Imhof JG, 1996, CAN J FISH AQUAT SCI, V53, P312, DOI 10.1139/cjfas-53-S1-312; Infante DM, 2010, AM FISH S S, V73, P371; Jackson D.C., 2000, P242, DOI 10.1002/9780470696026.ch17; Jones NE, 2013, ECOHYDROLOGY, V6, P826, DOI 10.1002/eco.1305; Kaller MD, 2013, T AM FISH SOC, V142, P767, DOI 10.1080/00028487.2013.768547; Keck BP, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0093237; LANKA RP, 1987, T AM FISH SOC, V116, P21, DOI 10.1577/1548-8659(1987)116<21:ROGTSH>2.0.CO;2; Lopez JA, 2009, J COASTAL RES, P1, DOI 10.2112/SI54-021.1; Martinez LA, 2009, J COASTAL RES, P37, DOI 10.2112/SI54-016.1; Marzin A, 2013, HYDROBIOLOGIA, V704, P375, DOI 10.1007/s10750-012-1254-2; Matono P, 2013, ENVIRON MANAGE, V52, P1213, DOI 10.1007/s00267-013-0152-3; McCargo JW, 2010, T AM FISH SOC, V139, P29, DOI 10.1577/T09-036.1; NELSON RL, 1992, T AM FISH SOC, V121, P405, DOI 10.1577/1548-8659(1992)121<0405:TDAHIR>2.3.CO;2; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Peterson JT, 1999, ECOL APPL, V9, P1391, DOI 10.1890/1051-0761(1999)009[1391:MTEOLU]2.0.CO;2; Pires AM, 1999, J FISH BIOL, V54, P235; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; RABENI CF, 1993, FRESHWATER BIOL, V29, P211, DOI 10.1111/j.1365-2427.1993.tb00758.x; Roni P, 2002, N AM J FISH MANAGE, V22, P1, DOI 10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2; ROSS S.T., 2001, INLAND FISHES MISSIS; Ross S. T., 2013, ECOLOGY N AM FRESHWA; Roth NE, 1996, LANDSCAPE ECOL, V11, P141, DOI 10.1007/BF02447513; Rowe DC, 2009, N AM J FISH MANAGE, V29, P1333, DOI 10.1577/M08-193.1; Sawyer James A., 2004, Aquatic Ecosystem Health & Management, V7, P85, DOI 10.1080/14634980490281353; Schweizer PE, 2005, AM MIDL NAT, V153, P293, DOI 10.1674/0003-0031(2005)153[0293:AVIFAO]2.0.CO;2; Shephard S, 2006, T AM FISH SOC, V135, P1224, DOI 10.1577/T05-183.1; Shields FD, 2003, ECOL ENG, V20, P441, DOI 10.1016/j.ecoleng.2003.08.005; Smiley PC, 2005, HYDROBIOLOGIA, V548, P279, DOI 10.1007/s10750-005-5447-9; SOWA SP, 1995, T AM FISH SOC, V124, P240, DOI 10.1577/1548-8659(1995)124<0240:REOTRO>2.3.CO;2; Stewart JG, 2005, SOUTHEAST NAT, V4, P261, DOI 10.1656/1528-7092(2005)004[0261:LTITBC]2.0.CO;2; Stewart-Koster B, 2007, MAR FRESHWATER RES, V58, P675, DOI 10.1071/MF06183; Strayer DL, 2003, ECOSYSTEMS, V6, P407, DOI 10.1007/s10021-002-0170-0; Talmage PJ, 2002, N AM J FISH MANAGE, V22, P825, DOI 10.1577/1548-8675(2002)022<0825:ROIHAP>2.0.CO;2; Taylor CM, 2001, ECOLOGY, V82, P2320, DOI 10.1890/0012-9658(2001)082[2320:DISCOS]2.0.CO;2; Ter Braak C. J. F., 1998, CANOCO REFERENCE MAN; Thompson DM, 2006, ECOL APPL, V16, P784, DOI 10.1890/1051-0761(2006)016[0784:DTPUOI]2.0.CO;2; Utz RM, 2010, BIOL CONSERV, V143, P688, DOI 10.1016/j.biocon.2009.12.006; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Wang LZ, 2006, AM FISH S S, V48, P199; Wiens JA, 2002, FRESHWATER BIOL, V47, P501, DOI 10.1046/j.1365-2427.2002.00887.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolman M. G., 1954, T AM GEOPHYS UNION, V35, P951, DOI DOI 10.1029/TR035I006P00951; Zorn TG, 2006, AM FISH S S, V48, P375 73 0 0 1 48 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia OCT 2014 738 1 129 146 10.1007/s10750-014-1925-2 18 Marine & Freshwater Biology Marine & Freshwater Biology AN3IB WOS:000340479400010 2019-02-21 J MacIntosh, H; de Nys, R; Whalan, S MacIntosh, Hugh; de Nys, Rocky; Whalan, Steve Contrasting life histories in shipworms: Growth, reproductive development and fecundity JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Broadcast spawning; Brooding; Competition; Fecundity; Life history strategies; Teredinidae BIVALVIA-TEREDINIDAE; MARINE-INVERTEBRATES; TEREDO-NAVALIS; SEXUAL PHASES; BODY-SIZE; ECOLOGY; DISPERSAL; CYCLE; WOOD; SEA Trade-offs are implicit in life history strategies, and contribute to the coexistence of competing species. Shipworms, a family of obligate wood-feeding marine bivalves (Teredinidae), form communities where larval-brooding species are ten-fold more abundant than free-spawning species. Shipworm metacommunities are shaped solely by interactions between and amongst shipworm species, making this group ideal for examining the follow-on effects of life history on recruitment success and community structure. Using timber recruitment panels, tropical Australian shipworms were collected over a 12 month period, and the growth, reproductive development and fecundities of brooding and spawning species were quantified. Life histories of both brooding and spawning species reflected the ephemeral nature of wood habitats, with rapid growth, precocious development and high reproductive output. Spawning species (23.13 +/- 0.63 mm average length) were significantly larger than brooding species (11.94 +/- 0.09 mm). Both species reached sexual maturity within 2 months, at body lengths of 2-4 mm. Fecundities were similar for both species in individuals under 40 mm in length, after which spawners were more fecund by over a factor of ten, reaching a clutch size of 3 x 10(6) eggs by 100 mm in length. Results show that growth, reproductive development and fecundity are not sufficient to explain patterns of recruitment success for tropical shipworms, and rather that the brooding of larvae conveys the most substantive advantage in colonizing new habitat and defining population structure. (C) 2014 Elsevier B.V. All rights reserved. [MacIntosh, Hugh; de Nys, Rocky; Whalan, Steve] James Cook Univ, Ctr Sustainable Trop Fisheries & Aquaculture, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia; [Whalan, Steve] So Cross Univ, Marine Ecol Res Ctr, Sch Environm Sci & Engn, Lismore, NSW 2480, Australia MacIntosh, H (reprint author), James Cook Univ, Ctr Sustainable Trop Fisheries & Aquaculture, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia. hugh.macintosh@my.jcu.edu.au CSTFA, ResearcherID/P-1067-2014; TropWATER, Research ID/P-1401-2014; de Nys, Rocky/D-6741-2012 de Nys, Rocky/0000-0003-3869-4928; Whalan, Steve/0000-0001-6786-8945 JCU Postgraduate Research and Endeavour International Postgraduate Research Scholarships; Linnaean Society of New South Wales We wish to thank Dr. L Cookson for intellectual and material contribution that enabled this research and Sue Reilly for her expertise with histological sectioning and staining. A. Tyldsley, E. Janson and N. Watts provided much-needed assistance in collecting the large volume of data this research produced. Credit for the map in Fig. 1 goes to T. Simmonds of the Australian Institute of Marine Science. HM was supported by JCU Postgraduate Research and Endeavour International Postgraduate Research Scholarships, and a grant from the Linnaean Society of New South Wales. [SS] Alix C, 2005, GLOBAL PLANET CHANGE, V47, P83, DOI 10.1016/j.gloplacha.2004.10.004; Benton TG, 1999, EVOLUTION, V53, P677, DOI 10.1111/j.1558-5646.1999.tb05363.x; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; BLUEWEISS L, 1978, OECOLOGIA, V37, P257, DOI 10.1007/BF00344996; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Calloway C.B., 1988, P215; Clapp W.F., 1925, T ACAD SCI ST LOUIS, V25, P81; CLARKE KR, 2006, PRIMER V6; Coe WR, 1933, BIOL BULL-US, V65, P283, DOI 10.2307/1537180; Cookson L., 1999, 10 INT C MAR CORR FO, P172; Cookson L.J., 1996, 9610145 IRGWP; Cookson L.J., 1990, 4159 IRGWP; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Cragg SM, 2009, J EXP MAR BIOL ECOL, V375, P99, DOI 10.1016/j.jembe.2009.05.014; Cragg Simon M., 2007, P539; CULLINEY JL, 1975, MAR BIOL, V29, P245, DOI 10.1007/BF00391850; Eckman JE, 1996, J EXP MAR BIOL ECOL, V200, P207, DOI 10.1016/S0022-0981(96)02644-5; Foggo A, 2007, J ANIM ECOL, V76, P695, DOI 10.1111/j.1365-2656.2007.01245.x; GIANGRANDE A, 1994, OCEANOGR MAR BIOL, V32, P305; GIESEL JT, 1976, ANNU REV ECOL SYST, V7, P57, DOI 10.1146/annurev.es.07.110176.000421; GRASSLE JF, 1974, J MAR RES, V32, P253; Grave BH, 1942, BIOL BULL-US, V82, P438, DOI 10.2307/1537989; HADERLIE E C, 1973, Veliger, V15, P265; HADERLIE EC, 1983, VELIGER, V25, P182; Hinojosa IA, 2011, CONT SHELF RES, V31, P172, DOI 10.1016/j.csr.2010.04.013; Hughes TP, 2000, ECOLOGY, V81, P2241, DOI 10.2307/177111; KARANDE AA, 1969, P INDIAN ACAD SCI B, V70, P223; Klimek P., 2010, PHYS REV E, V82; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Levitan Don R., 1995, P123; Lord JP, 2012, MAR BIOL, V159, P1417, DOI 10.1007/s00227-012-1918-5; MacIntosh H, 2012, MAR ECOL PROG SER, V461, P95, DOI 10.3354/meps09823; Macintosh H, 2012, MOLLUSCAN RES, V32, P36; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; MCKOY JL, 1980, NEW ZEAL J MAR FRESH, V14, P277, DOI 10.1080/00288330.1980.9515870; McMahon RF, 2002, CAN J FISH AQUAT SCI, V59, P1235, DOI 10.1139/F02-105; NAIR NB, 1971, ADV MAR BIOL, V9, P335, DOI 10.1016/S0065-2881(08)60345-4; RAMIREZLLODRA E, 2002, ADV MAR BIOL, V43, P87, DOI DOI 10.1016/S0065-2881(02)43004-0; Ripley BJ, 2008, POPUL ECOL, V50, P207, DOI 10.1007/s10144-008-0075-7; SCHELTEMA RS, 1971, MAR BIOL, V11, P5, DOI 10.1007/BF00348015; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; Strathmann RR, 2002, B MAR SCI, V70, P377; Turner R.D, 1971, MARINE BORERS FUNGI, P367; Turner Ruth D, 1966, SURVEY ILLUSTRATED C; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; Woodward G, 2005, TRENDS ECOL EVOL, V20, P402, DOI 10.1016/j.tree.2005.04.005; Yund PO, 2000, TRENDS ECOL EVOL, V15, P10, DOI 10.1016/S0169-5347(99)01744-9 51 8 8 1 49 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. OCT 2014 459 80 86 10.1016/j.jembe.2014.05.015 7 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AL4TU WOS:000339128500011 2019-02-21 J Beall, AT; Schaller, M Beall, Alec T.; Schaller, Mark Affective implications of the mating/parenting trade-off: Short-term mating motives and desirability as a short-term mate predict less intense tenderness responses to infants PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history theory; Mating; Relationships; Tenderness INDIVIDUAL-DIFFERENCES; TESTOSTERONE; SOCIOSEXUALITY; MODEL; MENS Drawing on life-history theory, it is predicted that individuals' attitudinal orientation toward unrestricted short-term mating behavior, as well as their ability to engage in such behavior, are inversely related to nurturant emotional responses (tenderness) to infants. To test these hypotheses, participants (N = 305) completed measures assessing individual differences in short-term mating orientation, self-perceived physical attractiveness, dispositional tendency to experience tenderness, and their affective responses to photographs of human infants. Results revealed that (when controlling for other relevant individual difference variables) men's short-term mating orientation and self-perceived attractiveness were inversely associated with dispositional tenderness. Also, among men only, short-term mating orientation and self-perceived attractiveness predicted less intense tenderness responses to infants. (C) 2014 Elsevier Ltd. All rights reserved. [Beall, Alec T.; Schaller, Mark] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada Beall, AT (reprint author), Univ British Columbia, Dept Psychol, 2136 W Mall, Vancouver, BC V6T 1Z4, Canada. alec@psych.ubc.ca Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; BELSKY J, 1984, CHILD DEV, V55, P83, DOI 10.1111/j.1467-8624.1984.tb00275.x; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Gray PB, 2002, EVOL HUM BEHAV, V23, P193, DOI 10.1016/S1090-5138(01)00101-5; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Holtzman NS, 2011, J RES PERS, V45, P687, DOI 10.1016/j.jrp.2011.08.003; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Kalawski JP, 2010, MOTIV EMOTION, V34, P158, DOI 10.1007/s11031-010-9164-y; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kuzawa CW, 2010, HORM BEHAV, V57, P441, DOI 10.1016/j.yhbeh.2010.01.014; McDougall W, 1908, INTRO SOCIAL PSYCHOL; Okabe S, 2013, PHYSIOL BEHAV, V118, P159, DOI 10.1016/j.physbeh.2013.05.017; Rodrigues SM, 2009, P NATL ACAD SCI USA, V106, P21437, DOI 10.1073/pnas.0909579106; Sherman GD, 2009, EMOTION, V9, P282, DOI 10.1037/a0014904; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Taniguchi H, 2006, NONPROF VOLUNT SEC Q, V35, P83, DOI 10.1177/0899764005282481; van Anders SM, 2007, HORM BEHAV, V51, P454, DOI 10.1016/j.yhbeh.2007.01.002 21 8 8 1 6 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2014 68 112 117 10.1016/j.paid.2014.03.049 6 Psychology, Social Psychology AK8OU WOS:000338688200022 2019-02-21 J Despland, E Despland, Emma Butterflies of the high-altitude Atacama Desert: habitat use and conservation FRONTIERS IN GENETICS English Article NORTHERN CHILE; ANTOFAGASTA REGION; SPECIES RICHNESS; DISTRIBUTION PATTERNS; VASCULAR FLORA; LIFE-HISTORY; LEPIDOPTERA; PIERIDAE; DIVERSITY; WAGENKNECHTI The butterfly fauna of the high-altitude desert of Northern Chile, though depauperate, shows high endemism, is poorly known and is of considerable conservation concern. This study surveys butterflies along the Andean slope between 2400 and 5000 m asl (prepuna, puna and Andean steppe habitats) as well as in high and low-altitude wetlands and in the neoriparian vegetation of agricultural sites. We also include historical sightings from museum records. We compare abundances between altitudes, between natural and impacted sites, as well as between two sampling years with different precipitation regimes. The results confirm high altitudinal turnover and show greatest similarity between wetland and slope faunas at similar altitudes. Results also underscore vulnerability to weather fluctuations, particularly in the more arid low-altitude sites, where abundances were much lower in the low precipitation sampling season and several species were not observed at all. Finally, we show that some species have shifted to the neoriparian vegetation of the agricultural landscape, whereas others were only observed in less impacted habitats dominated by native plants. These results suggest that acclimation to novel habitats depends on larval host plant use. The traditional agricultural environment can provide habitat for many, but not all, native butterfly species, but an estimation of the value of these habitats requires better understanding of butterfly life history strategies and relationships with host plants. Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada Despland, E (reprint author), Concordia Univ, Dept Biol, 7141 Sherbrooke West, Montreal, PQ H4B 1R6, Canada. emma.despland@concordia.ca Barros A., 2009, 1 MILL C WAT EC SERV, P1; Beccaloni G. W., 2008, CATALOGO PLANTAS HUE; Benyamini D., 1995, SPECIAL COMPILATION, P1; Brehm G, 2003, ECOGRAPHY, V26, P456, DOI 10.1034/j.1600-0587.2003.03498.x; Cavieres LA, 2002, BIODIVERS CONSERV, V11, P1301, DOI 10.1023/A:1016001714358; COURTNEY SP, 1986, STUD NEOTROP FAUNA E, V21, P169, DOI 10.1080/01650528609360703; COURTNEY SP, 1986, J NEW YORK ENTOMOL S, V94, P531; Despland E, 2012, ARCT ANTARCT ALP RES, V44, P423, DOI 10.1657/1938-4246-44.4.423; Forister ML, 2009, OECOLOGIA, V160, P551, DOI 10.1007/s00442-009-1310-4; Graves SD, 2003, BIOL CONSERV, V110, P413, DOI 10.1016/S0006-3207(02)00233-1; Grieshuber Josef, 2007, Mitteilungen Muenchener Entomologischen Gesellschaft, V97, P131; Gutierrez JR, 1998, J ARID ENVIRON, V40, P383, DOI 10.1006/jare.1998.0462; Jahner JP, 2011, EVOLUTION, V65, P2719, DOI 10.1111/j.1558-5646.2011.01310.x; Jaksic FM, 1999, J ARID ENVIRON, V42, P129, DOI 10.1006/jare.1999.0512; Jerez V, 2000, REV CHIL HIST NAT, V73, P79; Johnson K., 1999, NABOKOVS BLUES SCI O; Johnson K., 2000, NABOKOVS ENDANGERED; Johnson Kurt, 1999, Lepidoptera News, V3, P4, DOI 10.1191/136216899669191698; Marquet PA, 1998, REV CHIL HIST NAT, V71, P593; NEW TR, 1995, ANNU REV ENTOMOL, V40, P57, DOI 10.1146/annurev.ento.40.1.57; Nunez L., 2007, VIDA CULTURA OASIS S; PDMAT, 2008, PRIOR INV CONS MAR A; Pena L., 1959, NOT MENS MUS NAC HIS, V39, P1; Pena L., 1964, NOT MENS MUS NAC HIS, V94, P2; Pena L., 1961, PEABODY MUS REP, V56, P1; Pena L.E., 1996, MARIPOSAS CHILE; Powell J.A., 1987, Journal of Research on the Lepidoptera, V25, P83; Pyrcz TW, 2009, NEOTROP ENTOMOL, V38, P716, DOI 10.1590/S1519-566X2009000600003; RAMSAR, 1981, ANN RAMSAR LIST CHIL; RIDES, 2003, BIEN HUM MAN SUST SA; Samaniego H, 2009, REV CHIL HIST NAT, V82, P135, DOI 10.4067/S0716-078X2009000100009; Sanders NJ, 2003, GLOBAL ECOL BIOGEOGR, V12, P93, DOI 10.1046/j.1466-822X.2003.00324.x; Schmidt D., 1999, THESIS TECHNISCHE U; SHAPIRO A M, 1989, Journal of Research on the Lepidoptera, V28, P14; Shapiro A. M., 1992, J RES LEPIDOPTERA, V31, P35; Shapiro A. M., 2002, J RES LEPIDOPTERA, V41, P24; SHAPIRO AM, 1986, J NEW YORK ENTOMOL S, V94, P536; Squeo F, 2006, GEOECOLOGIA ANDES DE, P69; Squeo FA, 1998, REV CHIL HIST NAT, V71, P571; Squeo FA, 2006, REV CHIL HIST NAT, V79, P245, DOI 10.4067/S0716-078X2006000200010; VILLAGRAN C, 1981, VEGETATIO, V48, P3, DOI 10.1007/BF00117356; Villagran C., 2003, CIENCIA INDIGENA AND 42 5 5 1 9 FRONTIERS MEDIA SA LAUSANNE PO BOX 110, EPFL INNOVATION PARK, BUILDING I, LAUSANNE, 1015, SWITZERLAND 1664-8021 FRONT GENET Front. Genet. SEP 24 2014 5 334 10.3389/fgene.2014.00334 8 Genetics & Heredity Genetics & Heredity AY6LO WOS:000347677900001 25309583 DOAJ Gold, Green Published 2019-02-21 J Dolfi, L; Ripa, R; Cellerino, A Dolfi, Luca; Ripa, Roberto; Cellerino, Alessandro Transition to annual life history coincides with reduction in cell cycle speed during early cleavage in three independent clades of annual killifish EVODEVO English Article Nothobranchius; Early development; Segmentation; Life history evolution; Midblastula transition; Imaging; Diapause FISH NOTHOBRANCHIUS-FURZERI; AUSTROFUNDULUS-LIMNAEUS; EMBRYONIC DIAPAUSE; ZEBRAFISH; MODEL; CYPRINODONTIFORMES; ATHERINOMORPHA; TEMPERATURE; PROGRESSION; MORTALITY Background: Annual killifishes inhabit temporary ponds and their embryos survive the dry season encased in the mud by entering diapause, a process that arrests embryonic development during hostile conditions. Annual killifishes are present within three clades distributed in Africa (one East and one West of the Dahomey gap) and South America. Within each of these phylogenetic clades, a non-annual clade is sister taxon to a annual clade and therefore represent an example of convergent evolution. Early cleavage of teleost embryos is characterized by a very fast cell cycle (15-30 minutes) and lack of G(1) and G(2) phases. Here, we decided to investigate rates of early cleavage in annual killifishes. In addition, we specifically tested whether also annual killifish embryos lack G(1) and G(2) phases. Results: We used time lapse brightfield microscopy to investigate cell division kinetics during the first developmental stages of annual- and non-annual species belonging to the three different phylogenetic clades. Annual killifishes of all three clades showed cleavage times significantly longer when compared to their non-annual sister taxa (average 35 min vs. average 75 min). Using FUCCI fluorescent imaging of the cell cycle after microinjection in the annual species Nothobranchius furzeri, we demonstrate that the first 5 division are synchronous and do not show a G(1) phase. Cell cycle synchronization is lost after the 5th cleavage division. Conclusions: Our results show, for the first time, that cell cycle rate during cleavage, a trait thought to be rather evolutionary conserved can undergo convergent evolutionary change in response to variations in life-history. [Dolfi, Luca; Ripa, Roberto; Cellerino, Alessandro] Scuola Normale Super Pisa, Pisa, Italy; [Cellerino, Alessandro] Leibniz Inst, Fritz Lipmann Inst Age Res, Leibniz, Germany Cellerino, A (reprint author), Scuola Normale Super Pisa, Pisa, Italy. alessandro.cellerino@sns.it Cellerino, Alessandro/M-9380-2013 Cellerino, Alessandro/0000-0003-3834-0097 SNS We wish to thank Roberto Barbuti for hospitality in the Museo di Storia Naturale e del Territorio di Calci and A Miyawaki for providing the FUCCI plasmids. This work was partially supported by internal grant of SNS. Blazek R, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-24; Di Cicco E, 2011, EXP GERONTOL, V46, P249, DOI 10.1016/j.exger.2010.10.011; Genade T, 2005, AGING CELL, V4, P223, DOI 10.1111/j.1474-9726.2005.00165.x; Genade T, 2013, EXP GERONTOL, V48, P202, DOI 10.1016/j.exger.2012.11.013; Gilbert S., 2000, DEV BIOL; GRAHAM CF, 1966, DEV BIOL, V14, P439, DOI 10.1016/0012-1606(66)90024-8; Hartmann N, 2009, MECH AGEING DEV, V130, P290, DOI 10.1016/j.mad.2009.01.003; Herrera M, 2004, J GERONTOL A-BIOL, V59, P101; Hrbek T, 1999, EVOLUTION, V53, P1200, DOI 10.1111/j.1558-5646.1999.tb04533.x; Hsu CY, 2009, AGING CELL, V8, P726, DOI 10.1111/j.1474-9726.2009.00525.x; Iwamatsu T, 2004, MECH DEVELOP, V121, P605, DOI 10.1016/j.mod.2004.03.012; KANE DA, 1993, DEVELOPMENT, V119, P447; KIMMEL CB, 1995, DEV DYNAM, V203, P253, DOI 10.1002/aja.1002030302; Kirschner J, 2012, AGING CELL, V11, P252, DOI 10.1111/j.1474-9726.2011.00780.x; Kraeussling M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021741; LESSEPS RJ, 1975, J EXP ZOOL, V193, P137, DOI 10.1002/jez.1401930203; Lucas-Sanchez A, 2011, EXP GERONTOL, V46, P970, DOI 10.1016/j.exger.2011.08.009; Mathavan S, 2005, PLOS GENET, V1, P260, DOI 10.1371/journal.pgen.0010029; Murphy WJ, 1997, MOL BIOL EVOL, V14, P790, DOI 10.1093/oxfordjournals.molbev.a025819; Myers G. S., 1952, Aquarium J, V23, P125; NEWPORT J, 1982, CELL, V30, P675, DOI 10.1016/0092-8674(82)90272-0; Oppenheimer JM, 1937, ANAT REC, V68, P1, DOI 10.1002/ar.1090680102; Podrabsky JE, 2012, CELL CYCLE, V11, P1697, DOI 10.4161/cc.19881; Podrabsky JE, 2010, J EXP BIOL, V213, P3280, DOI 10.1242/jeb.045906; Podrabsky JE, 1999, J EXP BIOL, V202, P2567; Podrabsky JE, 2001, AM J PHYSIOL-REG I, V280, P123; Polacik M, 2014, J EVOLUTION BIOL, V27, P854, DOI 10.1111/jeb.12359; Polacik M, 2014, EVOL BIOL, V27, P854; Sakaue-Sawano A, 2008, CELL, V132, P487, DOI 10.1016/j.cell.2007.12.033; Sugiyama M, 2009, P NATL ACAD SCI USA, V106, P20812, DOI 10.1073/pnas.0906464106; SWARUP H, 1958, J EMBRYOL EXP MORPH, V6, P373; Terzibasi E, 2009, AGING CELL, V8, P88, DOI 10.1111/j.1474-9726.2009.00455.x; Tozzini ET, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-77; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310 34 12 12 1 8 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2041-9139 EVODEVO EvoDevo SEP 22 2014 5 32 10.1186/2041-9139-5-32 9 Evolutionary Biology; Developmental Biology Evolutionary Biology; Developmental Biology AS3PR WOS:000344191400001 25276337 DOAJ Gold, Green Published 2019-02-21 J Hamalainen, A; Dammhahn, M; Aujard, F; Eberle, M; Hardy, I; Kappeler, PM; Perret, M; Schliehe-Diecks, S; Kraus, C Haemaelaeinen, Anni; Dammhahn, Melanie; Aujard, Fabienne; Eberle, Manfred; Hardy, Isabelle; Kappeler, Peter M.; Perret, Martine; Schliehe-Diecks, Susanne; Kraus, Cornelia Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article functional senescence; body mass; condition-dependent mortality; life-history evolution; lifespan; sex difference LEMUR MICROCEBUS-MURINUS; LIFE-SPAN; MOUSE LEMUR; SEX-DIFFERENCES; EVOLUTIONARY-THEORIES; TERMINAL INVESTMENT; NATURAL-POPULATIONS; REPRODUCTIVE EFFORT; NONHUMAN PRIMATE; HISTORIES Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals. [Haemaelaeinen, Anni; Kappeler, Peter M.; Kraus, Cornelia] Univ Gottingen, Dept Sociobiol Anthropol, D-37077 Gottingen, Germany; [Haemaelaeinen, Anni; Dammhahn, Melanie; Eberle, Manfred; Kappeler, Peter M.; Schliehe-Diecks, Susanne; Kraus, Cornelia] German Primate Ctr, Behav Ecol & Sociobiol Unit, D-37077 Gottingen, Germany; [Dammhahn, Melanie] Univ Potsdam, Dept Anim Ecol, D-14469 Potsdam, Germany; [Aujard, Fabienne; Hardy, Isabelle; Perret, Martine] CNRS, UMR 7179, F-91800 Brunoy, France; [Aujard, Fabienne; Hardy, Isabelle; Perret, Martine] Museum Natl Hist Nat, F-91800 Brunoy, France Hamalainen, A (reprint author), Univ Gottingen, Dept Sociobiol Anthropol, Kellnerweg 6, D-37077 Gottingen, Germany. anni.m.hamalainen@gmail.com Hamalainen, Anni/E-1890-2018; Hamalainen, Anni/L-9894-2018 Hamalainen, Anni/0000-0001-9260-8299; DFG [CK: KR3834/1-1, PK: Ka 1082/10-12]; Margot-Marsh Biodiversity Foundation; Christian-Vogel-Fonds; German Primate Center, Gottingen Funding was provided by DFG (CK: KR3834/1-1, PK: Ka 1082/10-1&2), Margot-Marsh Biodiversity Foundation (M. D.), Christian-Vogel-Fonds (M. D.) and German Primate Center, Gottingen. Alonso-Alvarez C, 2007, P R SOC B, V274, P819, DOI 10.1098/rspb.2006.3764; Altmann J, 2010, ANN NY ACAD SCI, V1204, P127, DOI 10.1111/j.1749-6632.2010.05531.x; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Barton K. A., 2013, MUMIN MULTIMODEL INF; Bates D., 2013, LME4 LINEAR MIXED EF; Baumgartner RN, 2000, ANN NY ACAD SCI, V904, P437; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bouwhuis S, 2009, P R SOC B, V276, P2769, DOI 10.1098/rspb.2009.0457; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Bronikowski AM, 2002, P NATL ACAD SCI USA, V99, P9591, DOI 10.1073/pnas.142675599; Burnham K. P, 2002, MODEL SELECTION MULT; Canale CI, 2011, J EXP BIOL, V214, P551, DOI 10.1242/jeb.046987; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Coop RL, 1999, VET PARASITOL, V84, P187, DOI 10.1016/S0304-4017(99)00070-9; Dammhahn M, 2008, INT J PRIMATOL, V29, P1567, DOI 10.1007/s10764-008-9312-3; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; Dowling DK, 2012, CURR BIOL, V22, pR947, DOI 10.1016/j.cub.2012.09.029; Eberle M, 2004, BEHAV ECOL SOCIOBIOL, V57, P77, DOI 10.1007/s00265-004-0826-1; Eberle M, 2004, BEHAV ECOL SOCIOBIOL, V57, P91, DOI 10.1007/s00265-004-0823-4; Eberle M, 2007, INT J PRIMATOL, V28, P1267, DOI 10.1007/s10764-007-9220-y; Fredsted T, 2005, MOL ECOL, V14, P2363, DOI 10.1111/j.1365-294X.2005.02596.x; GAILLARD JM, 1994, EVOLUTION, V48, P509, DOI 10.1111/j.1558-5646.1994.tb01329.x; GOODMAN SM, 1993, LEMUR SOCIAL SYSTEMS AND THEIR ECOLOGICAL BASIS, P51; Greiner S, 2014, ETHOLOGY, V120, P197, DOI 10.1111/eth.12193; Grueber CE, 2011, J EVOLUTION BIOL, V24, P699, DOI 10.1111/j.1420-9101.2010.02210.x; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hayflick L, 2000, NATURE, V408, P267, DOI 10.1038/35041709; Hayward AD, 2013, FUNCT ECOL, V27, P184, DOI 10.1111/1365-2435.12029; Hindle AG, 2009, J EXP BIOL, V212, P790, DOI 10.1242/jeb.025387; Hoffman CL, 2010, BEHAV ECOL, V21, P972, DOI 10.1093/beheco/arq098; Huchard E, 2012, P ROY SOC B-BIOL SCI, V279, P1371, DOI 10.1098/rspb.2011.1326; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Karkach AS, 2006, DEMOGR RES, V15, P348; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Klein SL, 2000, BEHAV PROCESS, V51, P149, DOI 10.1016/S0376-6357(00)00125-X; Kraus C, 2008, P ROY SOC B-BIOL SCI, V275, P1635, DOI 10.1098/rspb.2008.0200; Lahann P, 2006, INT J PRIMATOL, V27, P983, DOI 10.1007/s10764-006-9055-y; Languille S, 2012, AGEING RES REV, V11, P150, DOI 10.1016/j.arr.2011.07.001; Lemaitre JF, 2013, EXP GERONTOL, V48, P162, DOI 10.1016/j.exger.2012.12.004; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; Maklakov AA, 2009, AGING CELL, V8, P324, DOI 10.1111/j.1474-9726.2009.00479.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Murray DL, 2002, J ANIM ECOL, V71, P614, DOI 10.1046/j.1365-2656.2002.00632.x; Nemoz-Bertolet F, 2003, EXP GERONTOL, V38, P407, DOI 10.1016/S0531-5565(02)00244-9; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Perret M, 1997, J BIOL RHYTHM, V12, P136, DOI 10.1177/074873049701200205; Perret M, 2001, INT J PRIMATOL, V22, P5, DOI 10.1023/A:1026457813626; PERRET M, 1992, FOLIA PRIMATOL, V59, P1; PROMISLOW DEL, 1991, EVOLUTION, V45, P1869, DOI 10.1111/j.1558-5646.1991.tb02693.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; Schmid J, 1998, BEHAV ECOL SOCIOBIOL, V43, P125, DOI 10.1007/s002650050474; Schmid J, 1999, J MAMMAL, V80, P749, DOI 10.2307/1383244; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Tafani M, 2013, OECOLOGIA, V172, P427, DOI 10.1007/s00442-012-2499-1; Toigo C, 2006, ECOGRAPHY, V29, P301, DOI 10.1111/j.2006.0906-7590.04394.x; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Vuarin P, 2013, FUNCT ECOL, V27, P793, DOI 10.1111/1365-2435.12069; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williams PD, 2003, EVOLUTION, V57, P1478; Wood SN., 2006, GEN ADDITIVE MODELS 75 26 26 0 6 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 2014 281 1791 20140830 10.1098/rspb.2014.0830 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AO1SQ WOS:000341094800005 25100693 Bronze, Green Published 2019-02-21 J Ye, XP; Skidmore, AK; Wang, TJ Ye, Xinping; Skidmore, Andrew K.; Wang, Tiejun Joint Effects of Habitat Heterogeneity and Species' Life-History Traits on Population Dynamics in Spatially Structured Landscapes PLOS ONE English Article Both habitat heterogeneity and species' life-history traits play important roles in driving population dynamics, yet there is little scientific consensus around the combined effect of these two factors on populations in complex landscapes. Using a spatially explicit agent-based model, we explored how interactions between habitat spatial structure (defined here as the scale of spatial autocorrelation in habitat quality) and species life-history strategies (defined here by species environmental tolerance and movement capacity) affect population dynamics in spatially heterogeneous landscapes. We compared the responses of four hypothetical species with different life-history traits to four landscape scenarios differing in the scale of spatial autocorrelation in habitat quality. The results showed that the population size of all hypothetical species exhibited a substantial increase as the scale of spatial autocorrelation in habitat quality increased, yet the pattern of population increase was shaped by species' movement capacity. The increasing scale of spatial autocorrelation in habitat quality promoted the resource share of individuals, but had little effect on the mean mortality rate of individuals. Species' movement capacity also determined the proportion of individuals in high-quality cells as well as the proportion of individuals experiencing competition in response to increased spatial autocorrelation in habitat quality. Positive correlations between the resource share of individuals and the proportion of individuals experiencing competition indicate that large-scale spatial autocorrelation in habitat quality may mask the density-dependent effect on populations through increasing the resource share of individuals, especially for species with low mobility. These findings suggest that low-mobility species may be more sensitive to habitat spatial heterogeneity in spatially structured landscapes. In addition, localized movement in combination with spatial autocorrelation may increase the population size, despite increased density effects. [Ye, Xinping; Skidmore, Andrew K.; Wang, Tiejun] Univ Twente, Dept Nat Resources, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands; [Ye, Xinping] Foping Natl Nat Reserve, Jinan, Jiangxi, Peoples R China Ye, XP; Wang, TJ (reprint author), Univ Twente, Dept Nat Resources, Fac Geoinformat Sci & Earth Observat ITC, POB 217, NL-7500 AE Enschede, Netherlands. ye17188@itc.nl; t.wang@utwente.nl Skidmore, Andrew/C-7441-2011; Wang, Tiejun/A-4671-2010 Skidmore, Andrew/0000-0002-7446-8429; Wang, Tiejun/0000-0002-1138-8464 EU Erasmus Mundus External Co-operation Window Programme [L14a0900029]; ITC Research Fund [RC201003/PD] This work was supported by the following grants: EU Erasmus Mundus External Co-operation Window Programme (L14a0900029 XY) and ITC Research Fund (RC201003/PD XY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Armsworth PR, 2009, THEOR ECOL-NETH, V2, P105, DOI 10.1007/s12080-008-0032-2; Bakeman R, 2005, BEHAV RES METHODS, V37, P379, DOI 10.3758/BF03192707; Boeye J, 2014, LANDSCAPE ECOL, V29, P593, DOI 10.1007/s10980-014-0010-6; Bolker BM, 2003, THEOR POPUL BIOL, V64, P255, DOI 10.1016/S0040-5809(03)00090-X; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Brachet S, 1999, J THEOR BIOL, V198, P479, DOI 10.1006/jtbi.1999.0926; Burgess MD, 2011, J ANIM ECOL, V80, P688, DOI 10.1111/j.1365-2656.2011.01816.x; Chipperfield JD, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017040; Clarke RT, 1997, P ROY SOC B-BIOL SCI, V264, P347, DOI 10.1098/rspb.1997.0050; Cohen J, 1988, STAT POWER ANAL BEHA; DHONDT AA, 1992, J ANIM ECOL, V61, P643, DOI 10.2307/5619; DUTILLEUL P, 1993, OIKOS, V66, P152, DOI 10.2307/3545210; Fahrig L, 1998, ECOL MODEL, V105, P273, DOI 10.1016/S0304-3800(97)00163-4; Fleishman E, 2002, CONSERV BIOL, V16, P706, DOI 10.1046/j.1523-1739.2002.00539.x; Getz WM, 2008, P NATL ACAD SCI USA, V105, P19066, DOI 10.1073/pnas.0801732105; Gilbert B, 2004, P NATL ACAD SCI USA, V101, P7651, DOI 10.1073/pnas.0400814101; Gonzalez A, 2002, P NATL ACAD SCI USA, V99, P14872, DOI 10.1073/pnas.232589299; Grimm V, 2006, ECOL MODEL, V198, P115, DOI 10.1016/j.ecolmodel.2006.04.023; Grimm V, 2010, ECOL MODEL, V221, P2760, DOI 10.1016/j.ecolmodel.2010.08.019; HAEFNER JW, 1991, ECOL MODEL, V56, P221, DOI 10.1016/0304-3800(91)90201-B; Harrison S, 1999, ECOGRAPHY, V22, P225, DOI 10.1111/j.1600-0587.1999.tb00496.x; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; Hiebeler D, 2004, THEOR POPUL BIOL, V66, P205, DOI 10.1016/j.tpb.2004.06.004; Hobbs J. R., 2007, KEY TOPICS LANDSCAPE; Humphries NE, 2013, METHODS ECOL EVOL, V4, P930, DOI 10.1111/2041-210X.12096; Itakura J, 2010, BIOSYSTEMS, V99, P70, DOI 10.1016/j.biosystems.2009.09.001; Jacobson B, 2010, LANDSCAPE ECOL, V25, P495, DOI 10.1007/s10980-009-9442-9; Jager HI, 2001, ECOL MODEL, V144, P61, DOI 10.1016/S0304-3800(01)00362-3; Jonsen ID, 1997, LANDSCAPE ECOL, V12, P185, DOI 10.1023/A:1007961006232; Kendall BE, 1998, THEOR POPUL BIOL, V54, P11, DOI 10.1006/tpbi.1998.1365; Kolasa J, 2003, P ROY SOC B-BIOL SCI, V270, pS198, DOI 10.1098/rsbl.2003.0059; Lawrence M. A., 2011, EZ EASY ANAL VISUALI; LEGENDRE P, 1993, ECOLOGY, V74, P1659, DOI 10.2307/1939924; Lou Y, 2006, J DIFFER EQUATIONS, V223, P400, DOI 10.1016/j.jde.2005.05.010; Lovett GM, 2005, Ecosystem Function in Heterogeneous Landscapes, P1, DOI 10.1007/0-387-24091-8_1; Mortelliti A, 2010, OECOLOGIA, V163, P535, DOI 10.1007/s00442-010-1623-3; Nevoux M, 2010, P ROYAL SOC B, V278, P2173; Olejnik S, 2003, PSYCHOL METHODS, V8, P434, DOI 10.1037/1082-989X.8.4.434; Parrott L, 2000, COMPLEXITY INT, P7; Pearson SM, 2011, SOURCES SINKS SUSTAI; Petchey OL, 1997, P ROY SOC B-BIOL SCI, V264, P1841, DOI 10.1098/rspb.1997.0254; Pigliucci M, 2001, ENV HETEROGENEITY TE; Pike N, 2004, P ROY SOC B-BIOL SCI, V271, P2143, DOI 10.1098/rspb.2004.2834; Pinto SM, 2010, AM NAT, V175, P675, DOI 10.1086/652467; PULLIAM HR, 1988, AM NAT, V132, P652, DOI 10.1086/284880; PULLIAM HR, 1991, AM NAT, V137, pS50, DOI 10.1086/285139; PULLIAM HR, 1992, ECOL APPL, V2, P165, DOI 10.2307/1941773; R Development Core Team, 2011, R LANG ENV STAT COMP; Ries L, 2004, ANNU REV ECOL EVOL S, V35, P491, DOI 10.1146/annurev.ecolsys.35.112202.130148; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; Schiegg K, 2003, TRENDS ECOL EVOL, V18, P212, DOI 10.1016/S0169-5347(03)00074-0; Schooley RL, 2007, ECOSYSTEMS, V10, P846, DOI 10.1007/s10021-007-9062-7; Skelsey P, 2013, THEOR ECOL-NETH, V6, P203, DOI 10.1007/s12080-012-0171-3; Snyder RE, 2003, ECOL LETT, V6, P301, DOI 10.1046/j.1461-0248.2003.00434.x; Stoddard ST, 2010, ECOL MODEL, V221, P2409, DOI 10.1016/j.ecolmodel.2010.06.024; White JW, 2014, OIKOS, V123, P385, DOI 10.1111/j.1600-0706.2013.01073.x; Wiegand T, 1999, AM NAT, V154, P605, DOI 10.1086/303272; WIENS JA, 1993, OIKOS, V66, P369, DOI 10.2307/3544931; With KA, 1999, CONSERV BIOL, V13, P314, DOI 10.1046/j.1523-1739.1999.013002314.x; Wu JG, 2002, LANDSCAPE ECOL, V17, P355, DOI 10.1023/A:1020561630963; Ye XP, 2013, ECOL RES, V28, P949, DOI 10.1007/s11284-013-1077-2; Zajac T, 2008, J AVIAN BIOL, V39, P206 63 29 31 1 6 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 18 2014 9 9 e107742 10.1371/journal.pone.0107742 10 Multidisciplinary Sciences Science & Technology - Other Topics V43LR WOS:000209683400001 25232739 DOAJ Gold, Green Published 2019-02-21 J Kuzawa, CW; Chugani, HT; Grossman, LI; Lipovich, L; Muzik, O; Hof, PR; Wildman, DE; Sherwood, CC; Leonard, WR; Lange, N Kuzawa, Christopher W.; Chugani, Harry T.; Grossman, Lawrence I.; Lipovich, Leonard; Muzik, Otto; Hof, Patrick R.; Wildman, Derek E.; Sherwood, Chet C.; Leonard, William R.; Lange, Nicholas Metabolic costs and evolutionary implications of human brain development PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article neuroimaging; diabetes; human evolution; neuronal plasticity; anthropology HUMAN LIFE-HISTORY; POSITRON EMISSION TOMOGRAPHY; AEROBIC GLYCOLYSIS; ENERGY ALLOCATION; POSTNATAL-GROWTH; GENUS HOMO; SIZE; CHILDHOOD; PRIMATE; INFANCY The high energetic costs of human brain development have been hypothesized to explain distinctive human traits, including exceptionally slow and protracted preadult growth. Although widely assumed to constrain life-history evolution, the metabolic requirements of the growing human brain are unknown. We combined previously collected PET and MRI data to calculate the human brain's glucose use from birth to adulthood, which we compare with body growth rate. We evaluate the strength of brain-body metabolic trade-offs using the ratios of brain glucose uptake to the body's resting metabolic rate (RMR) and daily energy requirements (DER) expressed in glucose-gram equivalents (glucose(rmr%) and glucose(der%)). We find that glucose(rmr%) and glucose(der%) do not peak at birth (52.5% and 59.8% of RMR, or 35.4% and 38.7% of DER, for males and females, respectively), when relative brain size is largest, but rather in childhood (66.3% and 65.0% of RMR and 43.3% and 43.8% of DER). Body-weight growth (dw/dt) and both glucose(rmr%) and glucose(der%) are strongly, inversely related: soon after birth, increases in brain glucose demand are accompanied by proportionate decreases in dw/dt. Ages of peak brain glucose demand and lowest dw/dt co-occur and subsequent developmental declines in brain metabolism are matched by proportionate increases in dw/dt until puberty. The finding that human brain glucose demands peak during childhood, and evidence that brain metabolism and body growth rate covary inversely across development, support the hypothesis that the high costs of human brain development require compensatory slowing of body growth rate. [Kuzawa, Christopher W.; Leonard, William R.] Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA; [Kuzawa, Christopher W.] Northwestern Univ, Inst Policy Res, Evanston, IL 60208 USA; [Chugani, Harry T.] Childrens Hosp Michigan, Positron Emiss Tomog Ctr, Detroit, MI 48201 USA; [Chugani, Harry T.; Muzik, Otto] Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA; [Chugani, Harry T.; Lipovich, Leonard] Wayne State Univ, Sch Med, Dept Neurol, Detroit, MI 48201 USA; [Grossman, Lawrence I.; Lipovich, Leonard; Wildman, Derek E.] Wayne State Univ, Sch Med, Ctr Mol Med & Genet, Detroit, MI 48201 USA; [Hof, Patrick R.] Icahn Sch Med Mt Sinai, Fishberg Dept Neurosci, New York, NY 10029 USA; [Hof, Patrick R.] Icahn Sch Med Mt Sinai, Friedman Brain Inst, New York, NY 10029 USA; [Wildman, Derek E.] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA; [Wildman, Derek E.] Univ Illinois, Dept Mol & Integrat Physiol, Urbana, IL 61801 USA; [Sherwood, Chet C.] George Washington Univ, Dept Anthropol, Washington, DC 20052 USA; [Lange, Nicholas] Harvard Univ, Dept Psychiat, Cambridge, MA 02138 USA; [Lange, Nicholas] Harvard Univ, Dept Biostat, Cambridge, MA 02138 USA; [Lange, Nicholas] McLean Hosp, Cambridge, MA 02138 USA Kuzawa, CW (reprint author), Northwestern Univ, Dept Anthropol, Evanston, IL 60208 USA. kuzawa@northwestern.edu Lipovich, Leonard/B-2355-2019 Lipovich, Leonard/0000-0002-0531-3570; Leonard, William/0000-0002-6233-604X National Science Foundation [BCS-0827546, BCS-0827531]; James S. McDonnell Foundation [220020293]; National Institutes of Health Brain Development Cooperative Group [N01 HD023343, N01 MH090002, N01 NS092314-NS002320, NS034783] We thank William Johnson for providing statistical advice on cubic spline curve fitting; Kim Hill for providing critical feedback Yarrow Axford for providing manuscript comments; Paul Aljabar and the Centre for the Developing Brain (Kings College, London) for providing unpublished brain volume data for healthy newborns; and three anonymous reviewers for providing critical feedback that strengthened the manuscript. This study was funded in part by National Science Foundation Grant BCS-0827546 (to D.E.W.); National Science Foundation Grant BCS-0827531 (to C.C.S.); James S. McDonnell Foundation Grant 220020293 (to C.C.S.); and National Institutes of Health Brain Development Cooperative Group Grants N01 HD023343, N01 MH090002, N01 NS092314-NS002320 and NS034783. Aiello LC, 2002, ANNU REV ANTHROPOL, V31, P323, DOI 10.1146/annurev.anthro.31.040402.085403; AIELLO LC, 1995, CURR ANTHROPOL, V36, P199, DOI 10.1086/204350; Ball WS, 2012, CEREB CORTEX, V22, P1, DOI 10.1093/cercor/bhr018; Bauernfeind AL, 2014, BRAIN STRUCT FUNCT, V219, P1149, DOI 10.1007/s00429-013-0662-z; BAUMGARTNER RN, 1986, AM J CLIN NUTR, V43, P711, DOI 10.1093/ajcn/43.5.711; Bianchi S, 2013, P NATL ACAD SCI USA, V110, P10395, DOI 10.1073/pnas.1301224110; BIER DM, 1977, DIABETES, V26, P1016, DOI 10.2337/diabetes.26.11.1016; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Bogin B, 1999, PATTERNS HUMAN GROWT; Bogin B, 2014, ANN HUM BIOL, V41, P368, DOI 10.3109/03014460.2014.923938; Boyd R, 2011, P NATL ACAD SCI USA, V108, P10918, DOI 10.1073/pnas.1100290108; Bufill E, 2011, AM J HUM BIOL, V23, P729, DOI 10.1002/ajhb.21225; Bunn H, 2006, EVOLUTION HUMAN DIET, P191; Butte NF, 2014, AM J CLIN NUTR, V100, P161, DOI 10.3945/ajcn.113.081703; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; CHUGANI HT, 1987, ANN NEUROL, V22, P487, DOI 10.1002/ana.410220408; CHUGANI HT, 1986, SCIENCE, V231, P840, DOI 10.1126/science.3945811; CHUGANI HT, 1996, DEV NEUROIMAGING MAP, P187; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean MC, 2009, ANN HUM BIOL, V36, P545, DOI 10.1080/03014460902956725; Degos V, 2006, ANESTH ANALG, V103, P1229, DOI 10.1213/01.ane.0000237401.22688.22; DEKABAN AS, 1978, ANN NEUROL, V4, P345, DOI 10.1002/ana.410040410; DURNIN JVG, 1981, BASAL METABOLIC RATE; *FAO, 2004, HUM EN REQ REP JOINT; FOLEY RA, 1991, PHILOS T ROY SOC B, V334, P223, DOI 10.1098/rstb.1991.0111; Fonseca-Azevedo K, 2012, P NATL ACAD SCI USA, V109, P18571, DOI 10.1073/pnas.1206390109; Goyal MS, 2014, CELL METAB, V19, P49, DOI 10.1016/j.cmet.2013.11.020; Gurven M, 2006, P ROY SOC B-BIOL SCI, V273, P835, DOI 10.1098/rspb.2005.3380; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hill K, 2009, EVOL ANTHROPOL, V18, P187, DOI 10.1002/evan.20224; HOLLIDAY MA, 1971, PEDIATRICS, V47, P169; Holliday MA, 1986, HUMAN GROWTH COMPREH, V2, P117; HUTTENLOCHER PR, 1979, BRAIN RES, V163, P195; Institute of Medicine Panel on Macronutrients Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, 2005, DIET REF INT EN CARB; Isler K, 2012, CURR ANTHROPOL, V53, pS453, DOI 10.1086/667623; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; KENNEDY C, 1957, J CLIN INVEST, V36, P1130, DOI 10.1172/JCI103509; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; Kubera B, 2013, AM J HUM BIOL, V25, P725, DOI 10.1002/ajhb.22439; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 1998, YEARB PHYS ANTHROPOL, V41, P177; KUZAWA CW, 2010, HUMAN EVOLUTIONARY B; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; Leigh SR, 1996, AM J PHYS ANTHROPOL, V101, P455, DOI 10.1002/(SICI)1096-8644(199612)101:4<455::AID-AJPA2>3.0.CO;2-V; Leonard WR, 2003, COMP BIOCHEM PHYS A, V136, P5, DOI 10.1016/S1095-6433(03)00132-6; LEONARD WR, 1992, AM J HUM BIOL, V4, P179, DOI 10.1002/ajhb.1310040204; Levy-Marchal C, 2010, J CLIN ENDOCR METAB, V95, P5189, DOI 10.1210/jc.2010-1047; Lunt SY, 2011, ANNU REV CELL DEV BI, V27, P441, DOI 10.1146/annurev-cellbio-092910-154237; Miller DJ, 2012, P NATL ACAD SCI USA, V109, P16480, DOI 10.1073/pnas.1117943109; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Norris SA, 2012, DIABETES CARE, V35, P72, DOI 10.2337/dc11-0456; Ong KK, 2006, HORM RES, V65, P65, DOI 10.1159/000091508; Petanjek Z, 2011, P NATL ACAD SCI USA, V108, P13281, DOI 10.1073/pnas.1105108108; Peters A, 2004, NEUROSCI BIOBEHAV R, V28, P143, DOI 10.1016/j.neubiorev.2004.03.002; Plummer T, 2004, YEARB PHYS ANTHROPOL, V47, P118, DOI 10.1002/ajpa.20157; Pobiner BL, 2008, J HUM EVOL, V55, P103, DOI 10.1016/j.jhevol.2008.02.001; Pontzer H, 2014, P NATL ACAD SCI USA, V111, P1433, DOI 10.1073/pnas.1316940111; Schultz A. H, 1969, THE LIFE OF PRIMATES; Schuppli C, 2012, J HUM EVOL, V63, P843, DOI 10.1016/j.jhevol.2012.08.009; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Silverwood RJ, 2009, INT J OBESITY, V33, P929, DOI 10.1038/ijo.2009.108; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Smith TM, 2010, P NATL ACAD SCI USA, V107, P20923, DOI 10.1073/pnas.1010906107; TANNER JM, 1976, ARCH DIS CHILD, V51, P170, DOI 10.1136/adc.51.3.170; Vaishnavi SN, 2010, P NATL ACAD SCI USA, V107, P17757, DOI 10.1073/pnas.1010459107; Walker R, 2006, AM J PHYS ANTHROPOL, V129, P577, DOI 10.1002/ajpa.20306 69 106 106 1 85 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 9 2014 111 36 13010 13015 10.1073/pnas.1323099111 6 Multidisciplinary Sciences Science & Technology - Other Topics AO8SV WOS:000341625600023 25157149 Bronze, Green Published 2019-02-21 J Tokolyi, J; Rosa, ME; Bradacs, F; Barta, Z Toekoelyi, Jacint; Rosa, Marta E.; Bradacs, Flra; Barta, Zoltan Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density ECOLOGICAL RESEARCH English Article Asexual reproduction; Density dependence; Somatic maintenance; Life-history evolution; Oxidative stress OXIDATIVE STRESS; DROSOPHILA-MELANOGASTER; ASEXUAL REPRODUCTION; CAENORHABDITIS-ELEGANS; STATIONARY-PHASE; MODEL SYSTEM; GROWTH; FEMALE; COST; REGENERATION Clonally reproducing animals, such as freshwater hydra, can achieve very quick population growth, potentially resulting in high density when dispersal is limited. The reproductive value of any offspring produced clonally in such a high density population is low because of the strong competition for food. Therefore, animals experiencing such conditions should allocate their resources to self-maintenance, to increase survival chances. Increased allocation to self-maintenance in turn should enable animals to withstand higher levels of genotoxic stress. To test this prediction, we exposed green hydra (Hydra viridissima Pallas 1766) to a perceived high density (by keeping them in crowded culture medium) or low density (fresh culture medium) without altering food availability. We also manipulated nutritional status (by starving animals for different time periods) and previous exposure to mild stress in a full factorial experimental design. At the end of the experiment we exposed animals to a high concentration of hydrogen-peroxide and scored stress tolerance. We found that stress tolerance is greatly elevated in animals perceiving high density, confirming our prediction. Stress tolerance decreased in animals starved for a few days, suggesting that the ability to maintain an elevated stress tolerance function has nutritional costs and is possible only when resource availability is high. On the other hand, previous exposure to mild stress had a small effect on the ability to tolerate subsequent exposure to stress, and only in the low density treatment group. Thus, stress tolerance in hydra is dynamically modulated in response to social, environmental and nutritional cues. [Toekoelyi, Jacint; Rosa, Marta E.; Bradacs, Flra; Barta, Zoltan] Univ Debrecen, Dept Evolutionary Zool, MTA DE Lendulet Behav Ecol Res Grp, H-4032 Debrecen, Hungary Tokolyi, J (reprint author), Univ Debrecen, Dept Evolutionary Zool, MTA DE Lendulet Behav Ecol Res Grp, Egyet Ter 1, H-4032 Debrecen, Hungary. jtokolyi@vocs.unideb.hu European Union; State of Hungary - European Social Fund [TAMOP-4.2.4.A/2-11/1-2012-0001]; European Social Fund; European Regional Development Fund; Hungarian Research Fund grant (OTKA) [K75696]; [TAMOP-4.2.2/B-10/1-2010-0024]; [TAMOP-4.2.1/B-09/1/KONV-2010-0007]; [TAMOP 4.2.2.C-11/1/KONV-2012-0010] We thank Diane Bridge and several anonymous referees for helpful comments on a previous version of this manuscript. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TAMOP-4.2.4.A/2-11/1-2012-0001 'National Excellence Program'. Further support was provided by the TAMOP-4.2.2/B-10/1-2010-0024, TAMOP-4.2.1/B-09/1/KONV-2010-0007 and TAMOP 4.2.2.C-11/1/KONV-2012-0010 projects. The projects are co-financed by the European Social Fund and the European Regional Development Fund. ZB was supported by a Hungarian Research Fund grant (OTKA K75696). Our experiments with hydra fully comply with Hungarian national regulations on experiments with animals. ALLAN JD, 1976, AM NAT, V110, P165, DOI 10.1086/283056; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Bates D. M., 2012, LME4 LINEAR MIXED EF; BELL G, 1985, CAN J ZOOL, V63, P851, DOI 10.1139/z85-126; BIRKY CW, 1971, AM ZOOL, V11, P245; BOSCH TCG, 1984, DEV BIOL, V104, P161, DOI 10.1016/0012-1606(84)90045-9; Bridge D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011686; BRYDEN RR, 1952, ECOL MONOGR, V22, P45, DOI 10.2307/1948528; Burns CW, 2000, FRESHWATER BIOL, V43, P19, DOI 10.1046/j.1365-2427.2000.00510.x; Buzgariu W, 2008, METHOD ENZYMOL, V451, P409, DOI 10.1016/S0076-6879(08)03226-6; CALOW P, 1991, COMP BIOCHEM PHYS C, V100, P3, DOI 10.1016/0742-8413(91)90110-F; Carmona MJ, 1993, ROT S 6, P145; Chera S, 2009, BBA-MOL CELL RES, V1793, P1432, DOI 10.1016/j.bbamcr.2009.03.010; Christensen RHB, 2013, ORDINAL REGRESSION M; COOK CB, 1982, J EXP ZOOL, V222, P1, DOI 10.1002/jez.1402220102; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Costantini D, 2010, COMP BIOCHEM PHYS A, V156, P294, DOI 10.1016/j.cbpa.2010.02.021; Dantzer B, 2012, BIOL REV, V87, P414, DOI 10.1111/j.1469-185X.2011.00204.x; DAVID CN, 1972, J CELL SCI, V11, P557; Davies KJA, 1999, IUBMB LIFE, V48, P41, DOI 10.1080/152165499307404; DAVIS LV, 1966, NATURE, V212, P1215, DOI 10.1038/2121215a0; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Elliott JK, 1997, LIMNOL OCEANOGR, V42, P1416, DOI 10.4319/lo.1997.42.6.1416; Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050; Finkel SE, 2006, NAT REV MICROBIOL, V4, P113, DOI 10.1038/nrmicro1340; Flatt T, 2013, Q REV BIOL, V88, P185, DOI 10.1086/671484; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HASSELL MP, 1975, J ANIM ECOL, V44, P283, DOI 10.2307/3863; HEBERT PDN, 1978, BIOL REV, V53, P387, DOI 10.1111/j.1469-185X.1978.tb00860.x; Henke JM, 2004, TRENDS CELL BIOL, V14, P648, DOI 10.1016/j.tcb.2004.09.012; Henry LA, 2005, INT REV HYDROBIOL, V90, P125, DOI 10.1002/iroh.200410759; HERSHEY AE, 1987, ECOLOGY, V68, P913, DOI 10.2307/1938362; Ishihama A, 1997, CURR OPIN GENET DEV, V7, P582, DOI 10.1016/S0959-437X(97)80003-2; Jankowski T, 2008, HYDROBIOLOGIA, V595, P35, DOI 10.1007/s10750-007-9001-9; Kaliszewicz A, 2013, ACTA ZOOL-STOCKHOLM, V94, P177, DOI 10.1111/j.1463-6395.2011.00536.x; Kaliszewicz A, 2011, ECOL RES, V26, P147, DOI 10.1007/s11284-010-0771-6; Kapahi P, 1999, FREE RADICAL BIO MED, V26, P495, DOI 10.1016/S0891-5849(98)00323-2; Kovacevic G, 2012, INT J DEV BIOL, V56, P627, DOI 10.1387/ijdb.123510gk; Lehtonen J, 2012, TRENDS ECOL EVOL, V27, P172, DOI 10.1016/j.tree.2011.09.016; Lenhoff H. M., 1983, HYDRA RES METHODS; LOCHHEAD G, 1983, HYDROBIOLOGIA, V98, P107, DOI 10.1007/BF02185627; Martinez DE, 1997, DEV BIOL, V192, P523, DOI 10.1006/dbio.1997.8715; Mattson MP, 2008, AGEING RES REV, V7, P1, DOI 10.1016/j.arr.2007.08.007; Merino S, 2006, J ANIM ECOL, V75, P1147, DOI 10.1111/j.1365-2656.2006.01135.x; Miller D. E., 1936, Transactions of the American Microscopical Society, V55, P123, DOI 10.2307/3222610; MINASIAN LL, 1982, J EXP MAR BIOL ECOL, V58, P151, DOI 10.1016/0022-0981(82)90126-5; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; MULLERPARKER G, 1987, BIOL BULL, V172, P46, DOI 10.2307/1541605; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Pap PL, 2003, J AVIAN BIOL, V34, P428, DOI 10.1111/j.0908-8857.2003.03002.x; PARTRIDGE L, 1987, J INSECT PHYSIOL, V33, P745, DOI 10.1016/0022-1910(87)90060-6; Pickering AM, 2013, J EXP BIOL, V216, P543, DOI 10.1242/jeb.074757; Quinn B, 2012, INT J DEV BIOL, V56, P613, DOI 10.1387/ijdb.113469bq; R Core Team, 2013, R LANG ENV STAT COMP; Rahat M., 1980, P465; RIBI G, 1985, SCHWEIZ Z HYDROL, V47, P45, DOI 10.1007/BF02538183; ROFF DA, 2002, LIFE HIST EVOLUTION; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Sarma SSS, 2005, HYDROBIOLOGIA, V542, P315, DOI 10.1007/s10750-004-3247-2; Schaible R, 2011, EXP GERONTOL, V46, P794, DOI 10.1016/j.exger.2011.06.004; Schroder T, 2004, FUNCT ECOL, V18, P458, DOI 10.1111/j.0269-8463.2004.00854.x; Serra M, 1993, ROT S 6, P117; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Stearns S, 1992, EVOLUTION LIFE HIST; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Throp JH, 1975, ECOLOGY, V56, P206, DOI [10.2307/1935313, DOI 10.2307/1935313]; Verhulst P. F., 1838, CORRES MATH PHYSIQUE, V10, P113; Walker G, 2005, MECH AGEING DEV, V126, P929, DOI 10.1016/j.mad.2005.03.014; Welch P. S., 1924, Transactions of the American Microscopical Society, V43, P203, DOI 10.2307/3221738; WILBY 0. K, 1988, P WORKSH ORG ASS FRA, P108; Williams G., 1975, SEX EVOLUTION; Yoshinaga T, 2003, COMP BIOCHEM PHYS B, V136, P715, DOI 10.1016/S1096-4959(03)00286-0 75 5 5 2 20 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 0912-3814 1440-1703 ECOL RES Ecol. Res. SEP 2014 29 5 867 876 10.1007/s11284-014-1176-8 10 Ecology Environmental Sciences & Ecology AP6WO WOS:000342219200009 2019-02-21 J Sohn, K Sohn, Kitae Age and Size at Maturity in Indonesian Women: A Norm of Reaction? AMERICAN JOURNAL OF HUMAN BIOLOGY English Article Objectives: We test (McIntyre and Kacerosky's [2011]: Am J Hum Biol 23: 305-312) prediction that the relationship between age at menarche and height switches from negative to positive, in a unidirectional and smooth manner, as the society industrializes. According to this prediction, a mid-level industrial country should exhibit a weak relationship between the two variables. Methods: The 8,013 observations are extracted from the Indonesian Family Life Survey, a nationally representative survey. Indonesia is an intermediate case that exists between the small-scale agrarian societies and industrialized societies examined by McIntyre and Kacerosky. While age at menarche is a recalled and self-reported variable, height is a measured one. The relationship is informally provided in a figure and formally estimated using ordinary least squares (OLS). Results: The informal finding clearly shows no relationship between age at menarche and height. The OLS results also agree that the relationship is very weak. Specifically, despite the large sample size, the relationship is not statistically significant in a linear manner, regardless of whether the outlier group (age at menarche 10) is included or excluded. Various robustness checks are performed to confirm this finding. Conclusions: Our results lend support to McIntyre and Kacerosky's explanation as to why the relationship between age at menarche and height switches from negative to positive as the society industrializes. Furthermore, our results imply that the model (the Day and Rowe model) and theory (life history theory) on which this explanation is based are plausible. (C) 2014 Wiley Periodicals, Inc. Kookmin Univ, Dept Econ, Seoul 136702, South Korea Sohn, K (reprint author), Kookmin Univ, Dept Econ, 77 Jeongneung Ro, Seoul 136702, South Korea. ksohn@kookmin.ac.kr Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Baten J, 2012, ECON HIST DEV REG, V27, pS66, DOI 10.1080/20780389.2012.657489; Cairns BJ, 2011, BMC MED RES METHODOL, V11, DOI 10.1186/1471-2288-11-7; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; LIVSON N, 1962, HUM BIOL, V34, P218; McIntyre MH, 2011, AM J HUM BIOL, V23, P305, DOI 10.1002/ajhb.21122; Sohn K, EC HUM BIOL IN PRESS; Sterns SC, 1989, FUNCT ECOL, V3, P259; Tanner J. M., 1978, GROWTH ADOLESCENCE; van der Eng P, 2010, EXPLOR ECON HIST, V47, P294, DOI 10.1016/j.eeh.2009.08.004; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510 11 22 22 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1042-0533 1520-6300 AM J HUM BIOL Am. J. Hum. Biol. SEP-OCT 2014 26 5 713 715 10.1002/ajhb.22571 3 Anthropology; Biology Anthropology; Life Sciences & Biomedicine - Other Topics AS6HA WOS:000344363700020 24898522 2019-02-21 J Seo, JY; Lim, HS; Choi, JW Seo, Jin-Young; Lim, Hyun-Sig; Choi, Jin-Woo Threshold value of Benthic Pollution Index (BPI) for a muddy healthy benthic faunal community and its application to Jinhae Bay in the southern coast of Korea OCEAN SCIENCE JOURNAL English Article Benthic Pollution Index(BPI); functional group; reference site; threshold value; Deukryang Bay; Jinhae Bay; South Korea COUNTRY NORTHERN SPAIN; MACROBENTHIC COMMUNITIES; CHESAPEAKE BAY; QUALITY; INTEGRITY; ESTUARINE; SEDIMENTS For the determination of benthic community health criteria of a biotic index, Benthic Pollution Index (BPI), the faunal data on macrobenthic community of Deukryang Bay collected in 2012 were used. Each macrobenthic fauna was classified into 4 functional groups according to their feeding and life history strategies and BPI was calculated using the abundance of fauna for these functional groups. Amphipods were the dominant faunal group belonging to Functional Group (FG) II in Deukryang Bay during all seasons. The BPI value fluctuated seasonally from 55 to 61, and the overall mean value of BPI in the reference area was 60, which was estimated as the threshold value for healthy communities. We tried to use BPI as an assessment tool for macrofaunal community health status by categorizing the BPI values into 5 grades. If the BPI value of the community is more than 60, the health status of a macrobenthic community will be assessed as 'Excellent' (Grade 1) and as 'Good' (Grade 2), if between 40 and 60, as 'Fair' (Grade 3), if between 30 and 40, as 'Poor' (Grade 4), if between 20 and 30, and finally the health status of a community will be assessed as 'Very Poor' (Grade 5), if the BPI value is less than 20. This assessment tool using BPI was applied to macrobenthic communities in Jinhae Bay including the Special Management Area of South Korea. In Jinhae Bay, the FG IV containing a spionid species, Paraprionospio patiens was the most dominant group. The values of BPI in Jinhae Bay were very low and ranged from 11 to 23. The ecological health status of macrobenthic communities in Jinhae Bay was 'Very Poor' at more than 50% of sites, especially in summer. [Seo, Jin-Young; Choi, Jin-Woo] KIOST, South Sea Environm Res Div, South Sea Res Inst, Geoje 656834, South Korea; [Lim, Hyun-Sig] Mokpo Natl Univ, Dept Marine Resources, Coll Nat Sci, Muan 534729, South Korea Choi, JW (reprint author), KIOST, South Sea Environm Res Div, South Sea Res Inst, Geoje 656834, South Korea. jwchoi@kiost.ac KIOST [PE 99191] This study was conducted by the support of the research project of KIOST (PE 99191). The authors appreciate the kind comments from anonymous reviewers. Bald J, 2005, MAR POLLUT BULL, V50, P1508, DOI 10.1016/j.marpolbul.2005.06.019; BERGE JA, 1990, MAR ECOL PROG SER, V66, P103, DOI 10.3354/meps066103; Borja A, 2004, MAR POLLUT BULL, V48, P209, DOI 10.1016/j.marpolbul.2003.12.001; Borja A, 2000, MAR POLLUT BULL, V40, P1100, DOI 10.1016/S0025-326X(00)00061-8; Borja A, 2009, HYDROBIOLOGIA, V633, P181, DOI 10.1007/s10750-009-9881-y; Choi J.W., 2007, OCEAN POLAR RES, V29, P339; CHOI JW, 2003, KOREAN J ENV BIOL, V21, P101; Dauer DM, 1995, MAR POLLUT BULL, V30, P840, DOI 10.1016/0025-326X(95)00091-Z; Fauchald K., 1979, Oceanography and Marine Biology an Annual Review, V17, P193; GRAY JS, 1981, MAR POLLUT BULL, V12, P173, DOI 10.1016/0025-326X(81)90230-7; Kim DW, 2011, THESIS CHONNAM NATL; KORDI (Korea Ocean Research and Development Institute, 1995, MAR ENV ASS BAS BENT; LAMBSHEAD PJD, 1983, J NAT HIST, V17, P859, DOI 10.1080/00222938300770671; Lee Jae-Hac, 2003, Ocean and Polar Research, V25, P183; Lee Jae-Hac, 1997, Journal of the Korean Fisheries Society, V30, P771; Lim DI, 2013, MAR POLLUT BULL, V73, P362, DOI 10.1016/j.marpolbul.2013.05.037; LIM Kyeong Hun, 2007, [JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY, 바다], V12, P9; Muxika I, 2007, MAR POLLUT BULL, V55, P16, DOI 10.1016/j.marpolbul.2006.05.025; Pearson T.H., 1978, Oceanography and Marine Biology an Annual Review, V16, P229; Seo JY, 2014, OCEAN SCI J, V49, P97, DOI 10.1007/s12601-014-0011-z; Seo JY, 2012, OCEAN SCI J, V47, P27, DOI 10.1007/s12601-012-0003-9; Simboura N., 2002, Mediterranean Marine Science, V3, P77; Van Dolah RF, 1999, MAR ENVIRON RES, V48, P269, DOI 10.1016/S0141-1136(99)00056-2; WARWICK RM, 1986, MAR BIOL, V92, P557, DOI 10.1007/BF00392515; Weisberg SB, 1997, ESTUARIES, V20, P149, DOI 10.2307/1352728; Word J. Q., 1978, COASTAL WATER RES PR, P19 26 2 2 0 2 KOREA OCEAN RESEARCH DEVELOPMENT INST SEOUL P O BOX 29, SEOUL, 425-600, SOUTH KOREA 1738-5261 2005-7172 OCEAN SCI J Ocean Sci. J. SEP 2014 49 3 313 328 10.1007/s12601-014-0030-9 16 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography AR8KQ WOS:000343824400014 2019-02-21 J Rokka, K; Pihlaja, M; Siitari, H; Soulsbury, CD Rokka, Kaisa; Pihlaja, Marjo; Siitari, Heli; Soulsbury, Carl D. Sex-specific differences in offspring personalities across the laying order in magpies Pica pica BEHAVIOURAL PROCESSES English Article Pica pica; Personality; Exploration behaviour; Maternal effects; Hormones; Hatching asynchrony ZEBRA FINCH EGGS; TITS PARUS-MAJOR; HATCHING ASYNCHRONY; YOLK TESTOSTERONE; GREAT TITS; MATERNAL TESTOSTERONE; EXPLORATORY-BEHAVIOR; TAENIOPYGIA-GUTTATA; NATAL DISPERSAL; BIRDS Maternal effects provide an important mechanism for mothers to create variation in offspring personality, and to potentially influence offspring life history strategies e.g. creating more/less dispersive phenotypes. However, within-clutch maternal effects often vary and hence there is potential for within-clutch variation in personality. We studied the effects of hatching order on explorative and neophobic behaviour of the magpies Pica pica in relation to sex using novel environment and novel object experiments. Hatching order did affect explorative behaviour in magpie, but did so in opposite directions for either sex. First-hatched females were more explorative and had a tendency to be less neophobic, whereas in males, the reverse was true. Our results suggest that hormonal as well as post-natal environmental mechanisms could be underpinning this pattern. Future research is needed to fully understand the importance of both in creating different offspring personalities. This article is part of a Special Issue entitled: insert SI title. (C) 2014 Elsevier B.V. All rights reserved. [Rokka, Kaisa; Pihlaja, Marjo; Siitari, Heli] Univ Jyvaskyla, Dept Biol & Environm Sci, Jyvaskyla, Finland; [Soulsbury, Carl D.] Lincoln Univ, Sch Life Sci, Lincoln LN2 4LG, England Soulsbury, CD (reprint author), Lincoln Univ, Sch Life Sci, Lincoln LN2 4LG, England. csoulsbury@lincoln.ac.uk Soulsbury, Carl/F-3137-2010 Soulsbury, Carl/0000-0001-8808-5210 Finnish Centre of Excellence in Evolutionary Research; Academy of Finland We thank Katja Rauhala for helping with the experiments and the Konnevesi research station staff for bird husbandry. Funding was provided by the Finnish Centre of Excellence in Evolutionary Research and the Academy of Finland for funding. This study was conducted with permission from the Animal Care Committee of South Finland's County Administrative Board (permit no. ESLH-2007-03378/Ym-23) and from the Finnish Ministry of Agriculture and Forestry (permit no. 1397/722/2007). Baayen R. H., 2008, ANAL LINGUISTIC DATA; Birkhead T.R., 1991, MAGPIES; Bolker B, 2012, R PACKAGE VERSION 0; Carere C, 2005, BEHAVIOUR, V142, P1329, DOI 10.1163/156853905774539328; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; CLARK MM, 1995, TRENDS ECOL EVOL, V10, P151, DOI 10.1016/S0169-5347(00)89025-4; Cote J, 2010, P ROY SOC B-BIOL SCI, V277, P1571, DOI 10.1098/rspb.2009.2128; Daisley JN, 2005, HORM BEHAV, V47, P185, DOI 10.1016/j.yhbeh.2004.09.006; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2003, P ROY SOC B-BIOL SCI, V270, P741, DOI 10.1098/rspb.2002.2300; EDEN SF, 1987, IBIS, V129, P477, DOI 10.1111/j.1474-919X.1987.tb08235.x; EDEN SF, 1987, ANIM BEHAV, V35, P764, DOI 10.1016/S0003-3472(87)80113-6; Eising CM, 2006, BIOL LETTERS, V2, P20, DOI 10.1098/rsbl.2005.0391; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Gilby AJ, 2011, ANIM BEHAV, V82, P479, DOI 10.1016/j.anbehav.2011.05.022; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P329, DOI 10.1016/j.neubiorev.2004.12.002; Groothuis TGG, 2008, BIOL LETTERS, V4, P465, DOI 10.1098/rsbl.2008.0258; Guibert F, 2011, APPL ANIM BEHAV SCI, V132, P51, DOI 10.1016/j.applanim.2011.03.012; Guibert F, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014069; Hudson R, 2011, DEV PSYCHOBIOL, V53, P564, DOI 10.1002/dev.20535; Krause ET, 2011, ANIM BEHAV, V81, P1295, DOI 10.1016/j.anbehav.2011.03.021; Laaksonen T, 2004, OIKOS, V104, P616, DOI 10.1111/j.0030-1299.2004.12858.x; Love OP, 2008, HORM BEHAV, V53, P104, DOI 10.1016/j.yhbeh.2007.09.007; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; Mainwaring MC, 2013, ANIM BEHAV, V85, P77, DOI 10.1016/j.anbehav.2012.10.009; Mazuc J, 2003, BEHAV ECOL, V14, P340, DOI 10.1093/beheco/14.3.340; Mock D, 1997, EVOLUTION SIBLING RI; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Muller MS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047763; Muller W., 2004, BEHAV ECOL, V15, P397; Naguib M, 2011, DEV PSYCHOBIOL, V53, P592, DOI 10.1002/dev.20533; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; O'Hara RB, 2010, METHODS ECOL EVOL, V1, P118, DOI 10.1111/j.2041-210X.2010.00021.x; Partecke J, 2008, DEV NEUROBIOL, V68, P1538, DOI 10.1002/dneu.20676; Pilz KM, 2003, ANIM BEHAV, V65, P841, DOI 10.1006/anbe.2003.2094; Quinn J. L., 2005, BEHAVIOUR, V142, P9; R Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reddon AR, 2012, BEHAV ECOL, V23, P242, DOI 10.1093/beheco/arr210; Royle NJ, 2003, FUNCT ECOL, V17, P472, DOI 10.1046/j.1365-2435.2003.00752.x; Royle NJ, 2001, BEHAV ECOL, V12, P381, DOI 10.1093/beheco/12.4.381; Rubinow DR, 1996, AM J PSYCHIAT, V153, P974; Rutkowska J, 2005, HORM BEHAV, V47, P585, DOI 10.1016/j.yhbeh.2004.12.006; Ruuskanen S, 2012, FUNCT ECOL, V26, P884, DOI 10.1111/j.1365-2435.2012.01994.x; Ruuskanen S, 2010, HORM BEHAV, V57, P119, DOI 10.1016/j.yhbeh.2009.09.017; SCHWABL H, 1993, P NATL ACAD SCI USA, V90, P11446, DOI 10.1073/pnas.90.24.11446; Schwabl H, 2007, AM NAT, V170, P196, DOI 10.1086/519397; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Siitari H, 1999, P ROY SOC B-BIOL SCI, V266, P2125, DOI 10.1098/rspb.1999.0897; Sockman KW, 2000, P ROY SOC B-BIOL SCI, V267, P1451, DOI 10.1098/rspb.2000.1163; Spencer KA, 2007, HORM BEHAV, V51, P273, DOI 10.1016/j.yhbeh.2006.11.001; Stowe M, 2010, HORM BEHAV, V58, P864, DOI 10.1016/j.yhbeh.2010.08.011; Tobler M, 2007, HORM BEHAV, V52, P640, DOI 10.1016/j.yhbeh.2007.07.016; Tschirren B, 2007, AM NAT, V169, P87, DOI 10.1086/509945; Uller T, 2007, FUNCT ECOL, V21, P544, DOI 10.1111/j.1365-2435.2007.01264.x; Van Noordwijk A.J., 2004, P R SOC B, V271, P65; van Oers K, 2004, HEREDITY, V93, P496, DOI 10.1038/sj.hdy.6800530; WALSH PS, 1991, BIOTECHNIQUES, V10, P506; Zimmer C, 2013, HORM BEHAV, V64, P494, DOI 10.1016/j.yhbeh.2013.07.002; Zuur AF, 2010, METHODS ECOL EVOL, V1, P3, DOI 10.1111/j.2041-210X.2009.00001.x 62 6 6 2 41 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes SEP 2014 107 79 87 10.1016/j.beproc.2014.07.019 9 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology AR5MJ WOS:000343628400009 25111085 2019-02-21 J Haug, T; Aschan, M; Hoel, AH; Johansen, T; Sundet, JH Haug, Tore; Aschan, Michaela; Hoel, Alf Hakon; Johansen, Torild; Sundet, Jan H. Contribution to the Themed Section: 'Marine Harvesting in the Arctic' Introduction: Marine Harvesting in the Arctic ICES JOURNAL OF MARINE SCIENCE English Article climate change; ice retention; introduced species; life-history strategies; pole-ward expansion; resource extraction In a warmer Arctic, living conditions will change at all trophic levels of the marine ecosystem. Increased air and water temperatures will likely substantially reduce ice coverage. Trophic interactions might change and increased competition between resident Arctic species and invasive species seems likely. A theme session on "Marine harvesting in the Arctic" was held at the international Arctic Frontiers Conference in Tromso, Norway, in January 2013. The theme session partitioned the topic into two sub-sessions: (i) introduced species, immigration and fate of resident species and (ii) prospective harvesting of marine biological resources in the Arctic. The four articles that follow this introduction are based on presentations made at the Arctic Frontiers theme session. These articles cover topics such as: how ice breeding seals (Pagophilus groenlandicus) can cope with ice retention in the Northwest Atlantic, how planktonic stages of the resident polar cod (Boreogadus saida) and the pole-ward expanding Pacific sand lance (Ammodytes hexapterus) may compete for food in the warming Beaufort Sea, and how the introduced red king crab (Paralithodes camtschaticus) disperse in the Barents Sea. The fourth article shows how differences in the life-history strategies of keystone zooplankton species will likely affect future productivity of commercial fisheries in polar regions. [Haug, Tore; Hoel, Alf Hakon; Johansen, Torild; Sundet, Jan H.] Inst Marine Res, NO-9294 Tromso, Norway; [Haug, Tore; Aschan, Michaela] Univ Tromso, Fac Biosci Fisheries & Econ, NO-9294 Tromso, Norway Haug, T (reprint author), Inst Marine Res, POB 6404, NO-9294 Tromso, Norway. toreha@imr.no Falardeau M, 2014, ICES J MAR SCI, V71, P1956, DOI 10.1093/icesjms/fst221; McBride MM, 2014, ICES J MAR SCI, V71, P1934, DOI 10.1093/icesjms/fsu002; Stenson GB, 2014, ICES J MAR SCI, V71, P1977, DOI 10.1093/icesjms/fsu074; Windsland K, 2014, ICES J MAR SCI, V71, P1966, DOI 10.1093/icesjms/fst241 4 1 1 0 29 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. SEP-OCT 2014 71 7 1932 1933 10.1093/icesjms/fsu072 2 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography AR1BT WOS:000343315900038 Bronze 2019-02-21 J McBride, MM; Dalpadado, P; Drinkwater, KF; Godo, OR; Hobday, AJ; Hollowed, AB; Kristiansen, T; Murphy, EJ; Ressler, PH; Subbey, S; Hofmann, EE; Loeng, H McBride, Margaret M.; Dalpadado, Padmini; Drinkwater, Kenneth F.; Godo, Olav Rune; Hobday, Alistair J.; Hollowed, Anne B.; Kristiansen, Trond; Murphy, Eugene J.; Ressler, Patrick H.; Subbey, Sam; Hofmann, Eileen E.; Loeng, Harald Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries ICES JOURNAL OF MARINE SCIENCE English Article climate change; fish; fisheries; foodwebs; Polar Regions; zooplankton SOUTHEASTERN BERING-SEA; OSCILLATING CONTROL HYPOTHESIS; BOWHEAD WHALE DISTRIBUTION; SOUTHERN-OCEAN ECOSYSTEMS; LIFE-HISTORY STRATEGIES; EUPHAUSIA-SUPERBA; BARENTS SEA; FOOD-WEB; MARINE ECOSYSTEMS; CALANUS-GLACIALIS Arctic and Antarcticmarine systems have incommon high latitudes, large seasonal changes in light levels, cold air and sea temperatures, and sea ice. In other ways, however, they are strikingly different, including their: age, extent, geological structure, ice stability, and foodweb structure. Both regions contain very rapidly warming areas and climate impacts have been reported, as have dramatic future projections. However, the combined effects of a changing climate on oceanographic processes and foodweb dynamics are likely to influence their future fisheries in very different ways. Differences in the life-history strategies of the key zooplankton species (Antarctic krill in the Southern Ocean and Calanus copepods in the Arctic) will likely affect future productivity of fishery species and fisheries. To explore future scenarios for each region, this paper: (i) considers differing characteristics (including geographic, physical, and biological) that define polar marine ecosystems and reviews known and projected impacts of climate change on key zooplankton species that may impact fished species; (ii) summarizes existing fishery resources; (iii) synthesizes this information to generate future scenarios for fisheries; and (iv) considers the implications for future fisheries management. Published studies suggest that if an increase in open water during summer in Arctic and Subarctic seas results in increased primary and secondary production, biomass may increase for some important commercial fish stocks and new mixes of species may become targeted. In contrast, published studies suggest that in the Southern Ocean the potential for existing species to adapt is mixed and that the potential for the invasion of large and highly productive pelagic finfish species appears low. Thus, future Southern Ocean fisheries may largely be dependent on existing species. It is clear from this review that new management approaches will be needed that account for the changing dynamics in these regions under climate change. [McBride, Margaret M.; Dalpadado, Padmini; Drinkwater, Kenneth F.; Godo, Olav Rune; Kristiansen, Trond; Subbey, Sam; Loeng, Harald] Inst Marine Res, N-5024 Bergen, Norway; [Hobday, Alistair J.] CSIRO Climate Adaptat Flagship, Hobart, Tas 7000, Australia; [Murphy, Eugene J.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England; [Hofmann, Eileen E.] Old Dominion Univ, Ctr Coastal Phys Oceanog, Norfolk, VA USA; [Hollowed, Anne B.; Ressler, Patrick H.] NOAA, Natl Marine Fisheries Serv, Alaska Fisheries Sci Ctr, Seattle, WA 98115 USA McBride, MM (reprint author), Inst Marine Res, POB 1870, N-5024 Bergen, Norway. margaret.mcbride@imr.no Hobday, Alistair/A-1460-2012 Hobday, Alistair/0000-0002-3194-8326; Godo, Olav Rune/0000-0001-8826-8068 Ecosystem Studies of Sub-Arctic Seas (ESSAS) project; NOAA (US National Oceanic and Atmospheric Administration); Arctic Council/Arctic Climate Impact Assessment/Cambridge University Press; Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR); British Antarctic Survey Many thanks to the Ecosystem Studies of Sub-Arctic Seas (ESSAS) project for having funded travel and work hours needed to complete this review. We sincerely thank the authors of papers (and their publishers), and sponsoring organizations of websites used in our review, for allowing us to include their figures, tables, and diagrams to illustrate points and support discussions, i.e. NOAA (US National Oceanic and Atmospheric Administration) www.climate.gov, the Arctic Council/Arctic Climate Impact Assessment/Cambridge University Press, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR/David Ramm), the British Antarctic Survey, Joseph Eastman, Hauke Flores, and Edda Johannesen. Technical assistance from Aleksander Sandvik (IMR) to the enhance quality of all figures before publication is greatly appreciated. Thanks also to Drs Michael Fogarty, Jeff Napp, and Elizabeth Logerwell (NOAA Fisheries, USA) for having conducted early reviews of the manuscript. Adams P. B., 1980, FISHERY B, V78; Ainley D. G., 2008, FISH FISH, V9, P1; Allison EH, 2009, FISH FISH, V10, P173, DOI 10.1111/j.1467-2979.2008.00310.x; Alonzo SH, 2003, J APPL ECOL, V40, P692, DOI 10.1046/j.1365-2664.2003.00830.x; Anisimov O. A., 2007, CLIMATE CHANGE 2007, P653; Arndt CE, 2006, ADV MAR BIOL, V51, P197, DOI 10.1016/S0065-2881(06)51004-1; Aronson RB, 2007, ANNU REV ECOL EVOL S, V38, P129, DOI 10.1146/annurev.ecolsys.38.091206.095525; Ashjian CJ, 2010, ARCTIC, V63, P179; Atkinson A, 2008, MAR ECOL PROG SER, V362, P1, DOI 10.3354/meps07498; Atkinson A, 2004, NATURE, V432, P100, DOI 10.1038/nature02950; Atkinson A, 2009, DEEP-SEA RES PT I, V56, P727, DOI 10.1016/j.dsr.2008.12.007; Aydin K, 2007, DEEP-SEA RES PT II, V54, P2501, DOI 10.1016/j.dsr2.2007.08.022; Baier CT, 2003, J PLANKTON RES, V25, P771, DOI 10.1093/plankt/25.7.771; Baker A. C., 1990, PRACTICAL GUIDE EUPH; Bakun A, 2006, PROG OCEANOGR, V68, P271, DOI 10.1016/j.pocean.2006.02.004; Barbraud C, 2012, MAR ECOL PROG SER, V454, P285, DOI 10.3354/meps09616; Barker PF, 2004, EARTH-SCI REV, V66, P143, DOI 10.1016/j.earscirev.2003.10.003; Barker S, 2007, P NATL ACAD SCI USA, V104, P17278, DOI 10.1073/pnas.0708494104; Becker P, 1996, J GEOPHYS RES-OCEANS, V101, P28377, DOI 10.1029/96JC02641; Berge J, 2012, J PLANKTON RES, V34, P191, DOI 10.1093/plankt/fbr103; Berline L, 2008, MAR ECOL PROG SER, V360, P163, DOI 10.3354/meps07387; Bluhm BA, 2011, OCEANOGRAPHY, V24, P232, DOI 10.5670/oceanog.2011.75; Bracegirdle T. J., 2008, J GEOPHYS RES, V113; BRANDER K, 2010, J MARINE SYST, V79, P389, DOI DOI 10.1016/J.JMARSYS.2008.12.015; Brander KM, 2007, P NATL ACAD SCI USA, V104, P19709, DOI 10.1073/pnas.0702059104; Brander K, 2013, CLIMATIC CHANGE, V119, P9, DOI 10.1007/s10584-012-0541-2; Brinton E., 2000, WORLD BIODIVERSITY D; Brown ZW, 2012, ICES J MAR SCI, V69, P1180, DOI 10.1093/icesjms/fss113; Brueggeman P., 1998, UNDERWATER FIELD GUI; Burrows MT, 2011, SCIENCE, V334, P652, DOI 10.1126/science.1210288; Byrkjedal I, 2008, J FISH BIOL, V73, P1183, DOI 10.1111/j.1095-8649.2008.01958.x; CAFF (Conservation of Arctic Flora and Fauna), 2013, SYNTHESIS; Campbell RG, 2009, DEEP-SEA RES PT II, V56, P1274, DOI 10.1016/j.dsr2.2008.10.027; Carstensen A., 2012, J PLANKTON RES, V34, P951; Cavalieri DJ, 1997, SCIENCE, V278, P1104, DOI 10.1126/science.278.5340.1104; CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources, 2011, STAT B, V23; CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources, 2011, 30 M SCI COMM; CCAMLR (Convention on the Conservation of Antarctic Marine Living Resources), 2013, STAT B, V25; CCAMLR (Convention on the Conservation of Antarctic Marine Living Resources, 2010, 29 M SCI COMM; Cheung WWL, 2013, NATURE, V497, P365, DOI 10.1038/nature12156; Cheung WWL, 2010, GLOBAL CHANGE BIOL, V16, P24, DOI 10.1111/j.1365-2486.2009.01995.x; Cheung WWL, 2009, FISH FISH, V10, P235, DOI 10.1111/j.1467-2979.2008.00315.x; CLARKE A, 1991, POLAR RES, V10, P355, DOI 10.1111/j.1751-8369.1991.tb00659.x; Clarke A, 2008, CURR BIOL, V18, P282, DOI 10.1016/j.cub.2008.01.059; Cleveland C., 2009, SO OC FOOD WEB; Collins MA, 2006, ADV MAR BIOL, V50, P191, DOI 10.1016/S0065-2881(05)50003-8; Comiso JC, 2008, J GEOPHYS RES OCEANS, V113; Coyle KO, 2011, FISH OCEANOGR, V20, P139, DOI 10.1111/j.1365-2419.2011.00574.x; Coyle KO, 2002, DEEP-SEA RES PT II, V49, P6009, DOI 10.1016/S0967-0645(02)00331-4; Cullins TL, 2011, DEEP-SEA RES PT II, V58, P1690, DOI 10.1016/j.dsr2.2009.05.034; Dalpadado P, 2001, ICES J MAR SCI, V58, P876, DOI 10.1006/jmsc.2001.1078; Dalpadado P, 2012, ICES J MAR SCI, V69, P1303, DOI 10.1093/icesjms/fss063; DAYTON PK, 1994, AM ZOOL, V34, P90; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Donnelly J, 2008, DEEP-SEA RES PT II, V55, P523, DOI 10.1016/j.dsr2.2007.11.015; Doyle MJ, 2012, CAN J FISH AQUAT SCI, V69, P2112, DOI 10.1139/cjfas-2012-0171; Drinkwater K., 2012, POL COMP SUMM 2012 Y, V20, P21; Ducklow HW, 2007, PHILOS T R SOC B, V362, P67, DOI 10.1098/rstb.2006.1955; Eastman Joseph T., 1997, Cybium, V21, P335; Eastman JT, 2005, POLAR BIOL, V28, P93, DOI 10.1007/s00300-004-0667-4; Fabra A., 2008, International Journal of Marine and Coastal Law, V23, P567, DOI 10.1163/092735208X331854; Fabry VJ, 2009, OCEANOGRAPHY, V22, P160, DOI 10.5670/oceanog.2009.105; FAO, 2013, SPEC FACT SHEET MALL; FAO (Food and Agriculture Organization), 1997, FAO FISHERIES TECHNI; FAO species catalogue, 1990, FAO FISHERIES SYNOPS, V10; Feely RA, 2009, OCEANOGRAPHY, V22, P36, DOI 10.5670/oceanog.2009.95; Fischer W., 1985, FAO SPECIES IDENTIFI; Flores H, 2012, MAR ECOL PROG SER, V458, P1, DOI 10.3354/meps09831; Fox D, 2012, NATURE, V492, P170, DOI 10.1038/492170a; Foxton P., 1956, Discovery Reports, V28, P191; Frey K. E., 2012, ARCTIC REPORT CARD 2; Friedland KD, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028945; Ghiglione JF, 2012, P NATL ACAD SCI USA, V109, P17633, DOI 10.1073/pnas.1208160109; GIFFORD D J, 1991, Marine Microbial Food Webs, V5, P161; GIFFORD DJ, 1991, J PROTOZOOL, V38, P81, DOI 10.1111/j.1550-7408.1991.tb04806.x; GIFFORD DJ, 1988, MAR ECOL PROG SER, V47, P249, DOI 10.3354/meps047249; GIFFORD DJ, 1988, B MAR SCI, V43, P458; GRADINGER R, 1995, PHILOS T R SOC A, V352, P277, DOI 10.1098/rsta.1995.0070; Grant SM, 2013, CCAMLR SCI, V20, P1; Grebmeier J.M., 1991, Journal of Marine Systems, V2, P495, DOI 10.1016/0924-7963(91)90049-Z; Griffiths HJ, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066981; Griffiths HJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011683; Grimaldo E., 2012, ENV SCI, DOI [10.5772/36099, DOI 10.5772/36099]; GUTT J, 1994, DEEP-SEA RES PT I, V41, P169, DOI 10.1016/0967-0637(94)90031-0; Hagen J. O., 2007, POLAR REGIONS ARCTIC; Hanson NN, 2009, MAR ECOL PROG SER, V388, P263, DOI 10.3354/meps08158; Hare JA, 2010, ECOL APPL, V20, P452, DOI 10.1890/08-1863.1; Hare WL, 2011, REG ENVIRON CHANGE, V11, pS1, DOI 10.1007/s10113-010-0195-4; Hays GC, 2005, TRENDS ECOL EVOL, V20, P337, DOI 10.1016/j.tree.2005.03.004; Hill SL, 2012, DEEP-SEA RES PT II, V59, P237, DOI 10.1016/j.dsr2.2011.09.001; Hoel A. H., 2010, ARCTIC REV LAW POLIT, V1, P186; Hoel A. H., 2009, NORWEGIAN POLAR I RE, V129; Hofmann EE, 2004, ANTARCT SCI, V16, P487, DOI 10.1017/S0954102004002275; Hogg OT, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019795; Hollowed A., 2012, FISH FISHERIES CHUCK; Hollowed AB, 2013, ICES J MAR SCI, V70, P1023, DOI 10.1093/icesjms/fst081; Hollowed AB, 2013, FISH OCEANOGR, V22, P355, DOI 10.1111/fog.12027; Hopcroft R., 2008, ARCTICE OCEAN SYNTHE; Hopcroft R., 2009, WATER COLUMN DIVERSI; Hopcroft R. R., 2005, POLAR BIOL, V28, P197, DOI DOI 10.1007/S00300-004-0680-7; Hopcroft RR, 2010, DEEP-SEA RES PT II, V57, P27, DOI 10.1016/j.dsr2.2009.08.003; Hopcroft RR, 2010, DEEP-SEA RES PT II, V57, P49, DOI 10.1016/j.dsr2.2009.08.004; Hunt GL, 2013, J MARINE SYST, V109, P43, DOI 10.1016/j.jmarsys.2012.08.003; Hunt GL, 2011, ICES J MAR SCI, V68, P1230, DOI 10.1093/icesjms/fsr036; Huntington H., 2005, ARCTIC CLIMATE IMPAC; ICHII T, 2000, FISH AQUATIC RESOURC, V6, P228; IPCC, 2007, 4 IPCC; Ji RB, 2012, PROG OCEANOGR, V96, P40, DOI 10.1016/j.pocean.2011.10.001; Johannesen E, 2012, ICES J MAR SCI, V69, P880, DOI 10.1093/icesjms/fss046; Johannessen OM, 1999, SCIENCE, V286, P1937, DOI 10.1126/science.286.5446.1937; Kawaguchi S, 2013, NAT CLIM CHANGE, V3, DOI 10.1038/NCLIMATE1937; Kawaguchi S, 2011, J PLANKTON RES, V33, P1134, DOI 10.1093/plankt/fbr006; Kawaguchi S, 2011, BIOL LETTERS, V7, P288, DOI 10.1098/rsbl.2010.0777; Kenny AJ, 2009, PROG OCEANOGR, V81, P132, DOI 10.1016/j.pocean.2009.04.007; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; Kirkwood J. M., 1984, ANARE RES NOTES; Kortsch S, 2012, P NATL ACAD SCI USA, V109, P14052, DOI 10.1073/pnas.1207509109; Kotwicki S, 2013, DEEP-SEA RES PT II, V94, P231, DOI 10.1016/j.dsr2.2013.03.017; Kristiansen T, 2014, GLOBAL CHANGE BIOL, V20, P1559, DOI 10.1111/gcb.12489; Kristiansen T, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017456; Leaper R, 2011, ANTARCT SCI, V23, P503, DOI 10.1017/S0954102011000708; Lee SH, 2012, J GEOPHYS RES-OCEANS, V117, DOI 10.1029/2011JC007717; Lee SH, 2011, OCEANOGRAPHY, V24, P302, DOI 10.5670/oceanog.2011.81; Li WKW, 2009, SCIENCE, V326, P539, DOI 10.1126/science.1179798; Livingston Patricia A., 2011, P113; Loeb V, 1997, NATURE, V387, P897, DOI 10.1038/43174; Loeb VJ, 2012, PROG OCEANOGR, V96, P93, DOI 10.1016/j.pocean.2011.11.001; Loeb VJ, 2009, ANTARCT SCI, V21, P135, DOI 10.1017/S0954102008001636; Loeng H., 2005, ARCTIC CLIMATE IMPAC, P451; Loeng H, 2007, DEEP-SEA RES PT II, V54, P2478, DOI 10.1016/j.dsr2.2007.08.013; Mackey AP, 2012, DEEP-SEA RES PT II, V59, P130, DOI 10.1016/j.dsr2.2011.08.011; Matsuno K, 2011, POLAR BIOL, V34, P1349, DOI 10.1007/s00300-011-0988-z; McNeil BI, 2008, P NATL ACAD SCI USA, V105, P18860, DOI 10.1073/pnas.0806318105; Mecklenburg Catherine W., 2011, Marine Biodiversity, V41, P109, DOI 10.1007/s12526-010-0070-z; Mecklenburg Catherine W., 2007, Northwestern Naturalist, V88, P168, DOI 10.1898/1051-1733(2007)88[168:RLCOTA]2.0.CO;2; Mecklenburg K., 2009, CENSUS MARINE LIFE; Meehl GA, 2012, NAT CLIM CHANGE, V2, P576, DOI 10.1038/NCLIMATE1529; Melle W, 1998, MAR ECOL PROG SER, V169, P211, DOI 10.3354/meps169211; Melnikov I. A, 1997, ARCTIC SEA ICE ECOSY; Meyer B, 2009, LIMNOL OCEANOGR, V54, P1595, DOI 10.1594/PANGAEA.707193; Moore SE, 2010, ARCTIC, V63, P195; Mueter FJ, 2008, ECOL APPL, V18, P309, DOI 10.1890/07-0564.1; Murphy EJ, 2007, PHILOS T R SOC B, V362, P113, DOI 10.1098/rstb.2006.1957; Murphy EJ, 2013, J MARINE SYST, V109, P22, DOI 10.1016/j.jmarsys.2012.03.011; Murphy EJ, 2012, PROG OCEANOGR, V102, P74, DOI 10.1016/j.pocean.2012.03.006; Murphy EJ, 2007, P ROY SOC B-BIOL SCI, V274, P3057, DOI 10.1098/rspb.2007.1180; Murphy EJ, 2012, CURR OPIN ENV SUST, V4, P264, DOI 10.1016/j.cosust.2012.05.005; Nicol S, 2006, BIOSCIENCE, V56, P111, DOI 10.1641/0006-3568(2006)056[0111:KCASIE]2.0.CO;2; Nicol S, 2003, AQUAT LIVING RESOUR, V16, P42, DOI 10.1016/S0990-7440(03)00004-4; Nicol S, 1999, AQUAT LIVING RESOUR, V12, P105, DOI 10.1016/S0990-7440(99)80020-5; Nicol S, 2008, MAR FRESHWATER RES, V59, P361, DOI 10.1071/MF07161; Nicol S, 2012, FISH FISH, V13, P30, DOI 10.1111/j.1467-2979.2011.00406.x; Orr JC, 2009, IOP C SERIES EARTH E, V6, DOI [10.1088/1755-1307/6/46/462009, DOI 10.1088/1755-1307/6/46/462009]; *OSPAR COMM, 2000, QUAL STAT REP 2000 R; Osterblom H, 2013, ECOL SOC, V18, DOI 10.5751/ES-05373-180204; Overland J., 2008, EOS T AM GEOPHYS UN, V89, P177, DOI DOI 10.1029/2008E0190001; Pakhomov EA, 2002, DEEP-SEA RES PT II, V49, P1881, DOI 10.1016/S0967-0645(02)00017-6; Palumbi SR, 2009, FRONT ECOL ENVIRON, V7, P204, DOI 10.1890/070135; Parent GJ, 2012, LIMNOL OCEANOGR, V57, P1057, DOI 10.4319/lo.2012.57.4.1057; Peck LS, 2010, GLOBAL CHANGE BIOL, V16, P2614, DOI 10.1111/j.1365-2486.2009.02071.x; Perissinotto R, 1997, MAR ECOL PROG SER, V160, P77, DOI 10.3354/meps160077; Pinchuk AI, 2013, ICES J MAR SCI, V70, P1244, DOI 10.1093/icesjms/fst031; Poloczanska ES, 2013, NAT CLIM CHANGE, V3, P919, DOI [10.1038/NCLIMATE1958, 10.1038/nclimate1958]; Quetin LB, 2003, MAR BIOL, V143, P833, DOI 10.1007/s00227-003-1130-8; Raskoff KA, 2005, POLAR BIOL, V28, P207, DOI 10.1007/s00300-004-0677-2; Renaud PE, 2008, DEEP-SEA RES PT II, V55, P2372, DOI 10.1016/j.dsr2.2008.05.017; Ressler PH, 2012, DEEP-SEA RES PT II, V65-70, P184, DOI 10.1016/j.dsr2.2012.02.015; Richardson AJ, 2008, ICES J MAR SCI, V65, P279, DOI 10.1093/icesjms/fsn028; Rintoul S., 2012, SO OCEAN OBSERVING S; Rockliffe W., 2002, KRILL MAGICIANS SO O; Rogers A. D., 2012, ANTARCTIC ECOSYSTEMS, DOI [10.1002/9781444347241, DOI 10.1002/9781444347241]; Schmidt K, 2011, LIMNOL OCEANOGR, V56, P1411, DOI 10.4319/lo.2011.56.4.1411; Schnack-Schiel SB, 2005, SCI MAR, V69, P39, DOI 10.3989/scimar.2005.69s239; Sherr EB, 2009, DEEP-SEA RES PT II, V56, P1264, DOI 10.1016/j.dsr2.2008.10.036; Shotton R., 2011, 569 FAO; Shreeve RS, 2005, MAR ECOL PROG SER, V298, P229, DOI 10.3354/meps298229; Slagstad D, 2011, PROG OCEANOGR, V90, P117, DOI 10.1016/j.pocean.2011.02.009; Smetacek V, 2005, NATURE, V437, P362, DOI 10.1038/nature04161; SMITH SL, 1991, POLAR RES, V10, P461, DOI 10.1111/j.1751-8369.1991.tb00666.x; Sokolov S, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005248; Sokolov S, 2009, J GEOPHYS RES-OCEANS, V114, DOI 10.1029/2008JC005108; Soreide JE, 2008, DEEP-SEA RES PT II, V55, P2225, DOI 10.1016/j.dsr2.2008.05.024; Soreide JE, 2010, GLOBAL CHANGE BIOL, V16, P3154, DOI 10.1111/j.1365-2486.2010.02175.x; Stabeno PJ, 2012, DEEP-SEA RES PT II, V65-70, P14, DOI 10.1016/j.dsr2.2012.02.019; Steinacher M, 2010, BIOGEOSCIENCES, V7, P979, DOI 10.5194/bg-7-979-2010; Steinberg D. K., 2012, OCEANOGRAPHY, V23, P56; Stock CA, 2011, PROG OCEANOGR, V88, P1, DOI 10.1016/j.pocean.2010.09.001; Stram DL, 2009, ICES J MAR SCI, V66, P1633, DOI 10.1093/icesjms/fsp138; Takahashi A, 2003, MAR ECOL PROG SER, V250, P279, DOI 10.3354/meps250279; Thorpe SE, 2007, DEEP-SEA RES PT I, V54, P792, DOI 10.1016/j.dsr.2007.01.008; TREMBLAY C, 1989, MAR ECOL PROG SER, V56, P291, DOI 10.3354/meps056291; Turner J., 2009, ANTARCTIC CLIMATE CH; Turner J, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037524; Turner J, 2009, POLAR RES, V28, P146, DOI 10.1111/j.1751-8369.2009.00128.x; Usher M. B., 2007, ARCTIC CLIMATE IMPAC, P539; VIDAL J, 1986, DEEP-SEA RES, V33, P523, DOI 10.1016/0198-0149(86)90129-9; Vilhalmsson Hjalmar, 2005, P691; Wassmann P, 2006, PROG OCEANOGR, V71, P123, DOI 10.1016/j.pocean.2006.09.008; Wassmann P, 2011, OCEANOGRAPHY, V24, P220, DOI 10.5670/oceanog.2011.74; Wassmann P, 2011, GLOBAL CHANGE BIOL, V17, P1235, DOI 10.1111/j.1365-2486.2010.02311.x; Wassmann P, 2010, POLAR BIOL, V33, P1641, DOI 10.1007/s00300-010-0839-3; Wegner C., 2010, ARCTIC RAPID TRANSIT; Weydmann A, 2012, J EXP MAR BIOL ECOL, V428, P39, DOI 10.1016/j.jembe.2012.06.002; White C, 2012, P NATL ACAD SCI USA, V109, P4696, DOI 10.1073/pnas.1114215109; Whitehouse MJ, 2008, DEEP-SEA RES PT I, V55, P1218, DOI 10.1016/j.dsr.2008.06.002; Wickham SA, 2007, AQUAT MICROB ECOL, V46, P1, DOI 10.3354/ame046001; Wiedenmann J, 2008, MAR ECOL PROG SER, V358, P191, DOI 10.3354/meps07350; Winsor P, 2004, J GEOPHYS RES-OCEANS, V109, DOI 10.1029/2003JC001962; Zeller D, 2011, POLAR BIOL, V34, P955, DOI 10.1007/s00300-010-0952-3; Zhukova NG, 2009, DEEP-SEA RES PT II, V56, P1959, DOI 10.1016/j.dsr2.2008.11.007 210 26 28 5 181 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. SEP-OCT 2014 71 7 1934 1955 10.1093/icesjms/fsu002 22 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography AR1BT WOS:000343315900039 Bronze 2019-02-21 J Sargent, LW; Lodge, DM Sargent, Lindsey W.; Lodge, David M. Evolution of invasive traits in nonindigenous species: increased survival and faster growth in invasive populations of rusty crayfish (Orconectes rusticus) EVOLUTIONARY APPLICATIONS English Article adaptation; antipredator behavior; fish; food quality; growth rate; invasive species; mortality; predator LIFE-HISTORY EVOLUTION; COMPETITIVE ABILITY; OMNIVOROUS CRAYFISH; FEMALE SIZE; PREDATION; BIODIVERSITY; REPLACEMENT; PLANT; FISH; HYBRIDIZATION The importance of evolution in enhancing the invasiveness of species is not well understood, especially in animals. To evaluate evolution in crayfish invasions, we tested for differences in growth rate, survival, and response to predators between native and invaded range populations of rusty crayfish (Orconectes rusticus). We hypothesized that low conspecific densities during introductions into lakes would select for increased investment in growth and reproduction in invasive populations. We reared crayfish from both ranges in common garden experiments in lakes and mesocosms, the latter in which we also included treatments of predatory fish presence and food quality. In both lake and mesocosm experiments, O.rusticus from invasive populations had significantly faster growth rates and higher survival than individuals from the native range, especially in mesocosms where fish were present. There was no influence of within-range collection location on growth rate. Egg size was similar between ranges and did not affect crayfish growth. Our results, therefore, suggest that growth rate, which previous work has shown contributes to strong community-level impacts of this invasive species, has diverged since O.rusticus was introduced to the invaded range. This result highlights the need to consider evolutionary dynamics in invasive species mitigation strategies. [Sargent, Lindsey W.; Lodge, David M.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA; [Lodge, David M.] Univ Notre Dame, Environm Change Initiat, Notre Dame, IN 46556 USA Sargent, LW (reprint author), Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA. lsargen1@nd.edu Reisinger, Lindsey/F-8030-2016 Reisinger, Lindsey/0000-0001-6685-5958 University of Notre Dame Environmental Research Center; NSF IGERT grant award [0504495] We thank Ashley Baldridge and Jill Deines for assistance with crayfish collection. We also greatly appreciate the efforts of Joshua Morse, Bradley Wells, June Shrestha, and Iris Petersen in assisting with field and mesocosm experiments. Andy Deines and Erin Grey provided helpful feedback on the manuscript and statistical approaches. We also appreciate helpful comments on the manuscript from two anonymous reviewers. We are grateful to the University of Wisconsin's Trout Lake Research Station for providing the location for mesocosm experiments and laboratory space for hatching crayfish. Funding for this research was provided by the University of Notre Dame Environmental Research Center and NSF IGERT grant award #0504495 to the GLOBES graduate training program at the University of Notre Dame. This is a publication of the Notre Dame Environmental Change Initiative. BOSCHUNG HT, 1983, AUDUBON SOC FIELD GU; Bossdorf O, 2004, ECOL LETT, V7, P346, DOI 10.1111/j.1461-0248.2004.00583.x; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512; CAPELLI GM, 1982, LIMNOL OCEANOGR, V27, P741, DOI 10.4319/lo.1982.27.4.0741; Catford JA, 2009, DIVERS DISTRIB, V15, P22, DOI 10.1111/j.1472-4642.2008.00521.x; Cripps MG, 2009, BASIC APPL ECOL, V10, P103, DOI 10.1016/j.baae.2008.03.001; Cronin G, 2002, J CRUSTACEAN BIOL, V22, P708, DOI 10.1651/0278-0372(2002)022[0708:CFPFFM]2.0.CO;2; Dresser C, 2013, BIOL INVASIONS, V15, P1049, DOI 10.1007/s10530-012-0349-z; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Flory SL, 2011, ECOLOGY, V92, P2248, DOI 10.1890/11-0363.1; GARVEY JE, 1994, ECOLOGY, V75, P532, DOI 10.2307/1939556; Handley LJL, 2011, BIOCONTROL, V56, P409, DOI 10.1007/s10526-011-9386-2; HILL AM, 1995, J N AM BENTHOL SOC, V14, P306, DOI 10.2307/1467782; Hill AM, 1999, ECOL APPL, V9, P678, DOI 10.1890/1051-0761(1999)009[0678:RORCBA]2.0.CO;2; HILL AM, 1994, ECOLOGY, V75, P2118, DOI 10.2307/1941615; HILL AM, 1993, OECOLOGIA, V94, P303, DOI 10.1007/BF00317102; Inderjit, 2010, TRENDS ECOL EVOL, V25, P512, DOI 10.1016/j.tree.2010.06.006; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Keller R. P, 2009, BIOECONOMICS INVASIV; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lamarque LJ, 2011, BIOL INVASIONS, V13, P1969, DOI 10.1007/s10530-011-0015-x; Lee CE, 2003, INTEGR COMP BIOL, V43, P439, DOI 10.1093/icb/43.3.439; LEWONTIN RC, 1965, GENETICS COLONIZING, P79; Lodge D, 2000, TLS-TIMES LIT SUPPL, P25; Lodge DM, 2012, ANNU REV ECOL EVOL S, V43, P449, DOI 10.1146/annurev-ecolsys-111511-103919; LODGE DM, 1994, ECOLOGY, V75, P1265, DOI 10.2307/1937452; LORMAN JG, 1980, THESIS U WISCONSIN M; MUNDAHL ND, 1990, OECOLOGIA, V82, P210, DOI 10.1007/BF00323537; Olden JD, 2006, BIOL INVASIONS, V8, P1621, DOI 10.1007/s10530-005-7854-2; Perry WL, 2001, EVOLUTION, V55, P1153; Perry WL, 2002, SYST BIOL, V51, P255, DOI 10.1080/10635150252899761; Peters JA, 2014, J GREAT LAKES RES, V40, P35, DOI 10.1016/j.jglr.2014.01.003; Peters JA, 2009, FISHERIES, V34, P373, DOI 10.1577/1548-8446-34.8.373; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Pintor LM, 2009, BIOL INVASIONS, V11, P1895, DOI 10.1007/s10530-008-9367-2; PRINS R, 1968, Internationale Revue der Gesamten Hydrobiologie, V53, P667, DOI 10.1002/iroh.19680530502; Ricciardi A, 2008, DIVERS DISTRIB, V14, P374, DOI 10.1111/j.1472-4642.2007.00451.x; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; Roesler C., 2009, DISTRIBUTION CRAYFIS; Roth BM, 2007, ECOSYSTEMS, V10, P74, DOI 10.1007/s10021-006-9004-9; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Sato T, 2010, J CRUSTACEAN BIOL, V30, P624, DOI 10.1651/10-3279.1; Savolainen R., 1997, Freshwater Crayfish, V11, P319; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; Skurdal J, 2011, FRESHWATER BIOL, V56, P335, DOI 10.1111/j.1365-2427.2010.02501.x; STEIN RA, 1977, ECOLOGY, V58, P1237, DOI 10.2307/1935078; STEIN RA, 1976, ECOLOGY, V57, P751, DOI 10.2307/1936188; Swiney KM, 2013, J CRUSTACEAN BIOL, V33, P470, DOI 10.1163/1937240X-00002162; Tropea C, 2012, J CRUSTACEAN BIOL, V32, P883, DOI 10.1163/1937240X-00002103; vansKleunen M., 2010, ECOL LETT, V13, P235, DOI DOI 10.1111/J.1461-0248.2009.01418.X; Whitney KD, 2008, DIVERS DISTRIB, V14, P569, DOI 10.1111/j.1472-4642.2008.00473.x; Wilson KA, 2004, CAN J FISH AQUAT SCI, V61, P2255, DOI 10.1139/F04-170 56 12 12 2 108 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. SEP 2014 7 8 949 961 10.1111/eva.12198 13 Evolutionary Biology Evolutionary Biology AQ4IA WOS:000342756300009 25469173 DOAJ Gold, Green Published 2019-02-21 J Hutchings, JA; Kuparinen, A Hutchings, Jeffrey A.; Kuparinen, Anna Ghosts of fisheries-induced depletions: do they haunt us still? ICES JOURNAL OF MARINE SCIENCE English Article Allee effect; fisheries-induced evolution; per capita population growth rate; rebuilding; recovery; uncertainty COD GADUS-MORHUA; ELEVATED NATURAL MORTALITY; LIFE-HISTORY EVOLUTION; MARINE FISHES; ATLANTIC COD; EXTINCTION RISK; POPULATION-DYNAMICS; NORTHERN COD; RECOVERY; STOCKS The depletion of several North Atlantic gadoids in the 1980s and 1990s stimulated an unprecedented amount of research on the recovery of marine fish. Some of this work addressed long-standing questions of teleost population dynamics: (i) Does per capita population growth rate (r) always increase as abundance declines? (ii) Do teleost fish possess greater intrinsic recovery abilities (as reflected by r(max)) than terrestrial vertebrates? (iii) Does the magnitude of population reduction influence the probability of recovery? (iv) If fish evolve in response to fishing, changing average fitness and thus r(max), are the population-dynamic consequences likely to be negative, positive, or neutral? Challenging some long-standing perceptions and beliefs, recent meta-analyses and empirically based model simulations on marine teleost fish support theoretically based postulates that: (i) r(max) does not differ from that of terrestrial mammals; (ii) high fecundity has no influence on recovery potential; (iii) Allee effects can be manifest in some depleted populations; (iv) the greater the magnitude of population reduction, the greater the uncertainty of recovery; and (v) the consequences of fisheries-induced evolution for recovery need not always be negative. An emerging imperative of the work examined here is the need to more fully embrace and comprehensively examine the links that exist between fitness and per capita population growth, given that what happens at the level of the individual will have consequences for how populations respond to natural and anthropogenic environment change. [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada; [Hutchings, Jeffrey A.] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, Oslo, Norway; [Kuparinen, Anna] Univ Helsinki, Dept Environm Sci, Helsinki, Finland Hutchings, JA (reprint author), Dalhousie Univ, Dept Biol, Halifax, NS, Canada. jhutch@dal.ca Natural Sciences and Engineering Research Council of Canada; Academy of Finland We thank Ed Trippel and Doug Swain for the invitation to present this research at the 2013 ICES/NAFO Gadoid Symposium in St Andrews, Canada, and for the opportunity to write this manuscript. Four anonymous referees provided very helpful comments and criticism on an earlier version of the manuscript. Richard Law proffered insightful and enlightened discussion. The work was supported by research undertaken under the auspices of the Natural Sciences and Engineering Research Council of Canada (JAH) and the Academy of Finland (AK). Ilmoilan Vajatoimisto provided logistical support. Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; Benoit HP, 2011, MAR ECOL PROG SER, V442, P149, DOI 10.3354/meps09454; BRANDER K, 1981, NATURE, V290, P48, DOI 10.1038/290048a0; Brander KM, 2005, ICES J MAR SCI, V62, P339, DOI 10.1016/j.icesjms.2004.07.029; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; COSEWIC, 2004, COSEWIC STAT ASS REP; COSEWIC, 2005, COSEWIC STAT ASS REP; COSEWIC, 2013, COSEWIC STAT ASS REP; Courchamp F, 2008, ALLEE EFFECTS IN ECOLOGY AND CONSERVATION, P1; De Roos AM, 2002, P NATL ACAD SCI USA, V99, P12907, DOI 10.1073/pnas.192174199; DeMaster D., 2004, NMFSFSPO67 NAT OC AT; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dulvy NK, 2003, FISH FISH, V4, P25, DOI 10.1046/j.1467-2979.2003.00105.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; FAO (Food and Agriculture Organization of the UN), 2000, FAO FISHERIES CIRCUL, V954; FAO (Food and Agriculture Organization of the UN), 2002, FAO FISHERIES REPORT, P667; Fowler C. W., 1991, REPORT INT WHALING C, V41, P545; FOWLER CW, 1988, EVOL ECOL, V2, P197, DOI 10.1007/BF02214283; Goodman D., 1987, P11, DOI 10.1017/CBO9780511623400.003; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2013, ICES J MAR SCI, V70, P707, DOI 10.1093/icesjms/fst077; HILBORN R, 1997, DEV SUSTAINING WORLD, P36; Hilborn R, 2006, FISHERIES, V31, P554; Hilborn R, 2010, FISHERIES, V35, P113, DOI 10.1577/1548-8446-35.3.113; Hudson E., 1996, WORKSH HELD COLL WOR; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2001, J FISH BIOL, V59, P306, DOI 10.1006/jfbi.2001.1756; Hutchings JA, 2000, MAR ECOL PROG SER, V208, P299; Hutchings JA, 2001, CAN J FISH AQUAT SCI, V58, P108, DOI 10.1139/cjfas-58-1-108; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; HUTCHINGS JA, 1997, EARLY LIFE HIST RECR, P139; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2014, ICES J MAR SCI, V71, P2152, DOI 10.1093/icesjms/fst179; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; Hutchings JA, 2011, CAN J ZOOL, V89, P386, DOI [10.1139/Z11-022, 10.1139/z11-022]; Hutchings JA, 2010, CAN J FISH AQUAT SCI, V67, P1205, DOI 10.1139/F10-081; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2014, CONSERV BIOL, V28, P790, DOI 10.1111/cobi.12216; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/cjfas-54-9-1976; Liermann M, 2001, FISH FISH, V2, P33, DOI 10.1046/j.1467-2979.2001.00029.x; LUDWIG D, 1993, SCIENCE, V260, P17, DOI 10.1126/science.260.5104.17; Mace P, 2004, MARINE ECOLOGY PROGR, V274, P263; Mace P. M., 2002, NMFSFSPO58 NOAA US D; Murawski SA, 2010, ICES J MAR SCI, V67, P1830, DOI 10.1093/icesjms/fsq125; Musick JA, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; MYERS RA, 1995, SCIENCE, V269, P1106, DOI 10.1126/science.269.5227.1106; MYERS RA, 1995, CAN J FISH AQUAT SCI, V52, P1274, DOI 10.1139/f95-124; Myers RA, 1997, FISH B-NOAA, V95, P762; Neubauer P, 2013, SCIENCE, V340, P347, DOI 10.1126/science.1230441; NMFS, 2001, REP NMFS CITES CRIT; Olsen M. E., 2004, NATURE, V428, P932; Patrick WS, 2010, FISH B-NOAA, V108, P305; Powles H, 2000, ICES J MAR SCI, V57, P669, DOI 10.1006/jmsc.2000.0711; Prugh LR, 2010, CONSERV LETT, V3, P267, DOI 10.1111/j.1755-263X.2010.00111.x; Reynolds JD, 2005, P ROY SOC B-BIOL SCI, V272, P2337, DOI 10.1098/rspb.2005.3281; ROFF DA, 2002, LIFE HIST EVOLUTION; SADOVY Y, 2001, J FISH BIOL, V59, P90, DOI [DOI 10.1006/JFBI.2001.1760, DOI 10.1006/jfbi.2001.1760]; Saether BE, 1996, OIKOS, V77, P217, DOI 10.2307/3546060; Shelton PA, 1999, CAN J FISH AQUAT SCI, V56, P1521, DOI 10.1139/cjfas-56-9-1521; SMITH TD, 1994, SCALING FISHERIES SC; Stokes T. M., 1993, EXPLOITATION EVOLVIN; Sugeno M, 2013, ECOLOGY, V94, P1196, DOI 10.1890/12-0454.1; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Van Leeuwen A, 2008, J SEA RES, V60, P89, DOI 10.1016/j.seares.2008.02.008; Venter O, 2006, BIOSCIENCE, V56, P903, DOI 10.1641/0006-3568(2006)56[903:TTESIC]2.0.CO;2; Worm B, 2009, SCIENCE, V325, P578, DOI 10.1126/science.1173146 76 6 6 2 37 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. SEP 2014 71 6 1467 1473 10.1093/icesjms/fsu041 7 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography AQ7FS WOS:000342978600014 Bronze 2019-02-21 J Cornet, S; Nicot, A; Rivero, A; Gandon, S Cornet, Stephane; Nicot, Antoine; Rivero, Ana; Gandon, Sylvain Evolution of Plastic Transmission Strategies in Avian Malaria PLOS PATHOGENS English Article PLASMODIUM-FALCIPARUM GAMETOCYTES; PHENOTYPIC PLASTICITY; VIVAX MALARIA; REPRODUCTIVE RESTRAINT; ANOPHELES MOSQUITOS; CULEX-PIPIENS; SEX-RATIO; PARASITES; INFECTIONS; RELAPSE Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences-marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively-are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (similar to 34 days post infection), early chronic (similar to 122 dpi) and late chronic (similar to 291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors. [Cornet, Stephane; Nicot, Antoine; Gandon, Sylvain] Univ Paul Valery Montpellier, Univ Montpellier, UMR CNRS 5175, CEFE,EPHE, Montpellier, France; [Cornet, Stephane; Nicot, Antoine; Rivero, Ana] UMR CNRS 5290 IRD 224 UM1 UM2, Montpellier, France Gandon, S (reprint author), Univ Paul Valery Montpellier, Univ Montpellier, UMR CNRS 5175, CEFE,EPHE, Montpellier, France. sylvain.gandon@cefe.cnrs.fr Cornet, Stephane/I-5351-2013 Cornet, Stephane/0000-0002-0328-5967; Gandon, Sylvain/0000-0003-2624-7856; Rivero, Ana/0000-0002-7056-5846 CNRS; ERC [243054] The work was funded by the CNRS and the ERC Starting Grant 243054 EVOLEPID to SG. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abdel-Wahab A, 2002, J INFECT DIS, V185, P1838, DOI 10.1086/340638; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; ALLAN RA, 1989, AM MIDL NAT, V121, P341, DOI 10.2307/2426038; Appelgate JE, 1970, J WILDLIFE DIS, V6, P443; APPLEGATE JE, 1970, J PARASITOL, V56, P439, DOI 10.2307/3277599; Babayan SA, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000525; Babiker HA, 2008, TRENDS PARASITOL, V24, P525, DOI 10.1016/j.pt.2008.08.001; Balaban NQ, 2004, SCIENCE, V305, P1622, DOI 10.1126/science.1099390; Battle KE, 2014, MALARIA J, V13, DOI 10.1186/1475-2875-13-144; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x; Billingsley PF, 2005, BIOL LETT-UK, V1, P185, DOI 10.1098/rsbl.2004.0260; Bousema T, 2012, PLOS MED, V9, DOI 10.1371/journal.pmed.1001165; Cameron A, 2013, EVOL APPL, V6, P365, DOI 10.1111/eva.12005; Cardona PJ, 2004, EUR RESPIR J, V24, P1044, DOI 10.1183/09031936.04.00072604; Carter Lucy M., 2013, Evolution Medicine and Public Health, P135, DOI 10.1093/emph/eot011; Cellier-Holzem E, 2010, INT J PARASITOL, V40, P1447, DOI 10.1016/j.ijpara.2010.04.014; Chen NH, 2007, J INFECT DIS, V195, P934, DOI 10.1086/512242; COATNEY GR, 1976, J PARASITOL, V62, P3; COGSWELL FB, 1992, CLIN MICROBIOL REV, V5, P26; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; Cornet S, 2013, ECOL LETT, V16, P323, DOI 10.1111/ele.12041; Crawley M. J., 2007, R BOOK; Donnelly R, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2464; Drew DR, 2007, MOL BIOCHEM PARASIT, V156, P199, DOI 10.1016/j.molbiopara.2007.08.004; Duneau D, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001271; Fontaine A, 2011, PARASITE VECTOR, V4, DOI 10.1186/1756-3305-4-187; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; Gautret P, 1997, ACTA PARASITOL, V42, P65; GAVRILETS S, 1993, J EVOLUTION BIOL, V6, P31, DOI 10.1046/j.1420-9101.1993.6010031.x; Gilden D, 2011, NEUROPATH APPL NEURO, V37, P441, DOI 10.1111/j.1365-2990.2011.01167.x; Greischar MA, 2014, AM NAT, V183, pE36, DOI 10.1086/674357; Griffing SM, 2007, VECTOR-BORNE ZOONOT, V7, P437, DOI 10.1089/vbz.2006.0560; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; HAWKING F, 1966, LANCET, V2, P422; Huff CG, 1935, J INFECT DIS, V57, P315, DOI 10.1093/infdis/57.3.315; HUFF CG, 1947, ANNU REV MICROBIOL, V1, P43, DOI 10.1146/annurev.mi.01.100147.000355; Hulden L, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-90; Hulden L, 2008, MALARIA J, V7, DOI 10.1186/1475-2875-7-64; Imwong M, 2007, J INFECT DIS, V195, P927, DOI 10.1086/512241; James S. P., 1937, Nature London, V139, P545, DOI 10.1038/139545a0; Kamo M, 2005, ECOL LETT, V8, P378, DOI 10.1111/j.1461-0248.2005.00734.x; Killick-Kendrick R, 1978, RODENT MALARIA, P1; Kimura M, 2010, J PARASITOL, V96, P144, DOI 10.1645/GE-2060.1; Koelle K, 2005, P ROY SOC B-BIOL SCI, V272, P971, DOI 10.1098/rspb.2004.3043; Lalubin F, 2013, PARASITE VECTOR, V6, DOI 10.1186/1756-3305-6-307; Landau I, 1994, ADV PARASIT, V33, P50; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lawaly R, 2012, INFECT IMMUN, V80, P2240, DOI 10.1128/IAI.06414-11; Leggett HC, 2013, CURR BIOL, V23, P139, DOI 10.1016/j.cub.2012.11.045; Lieberman PM, 2013, NAT REV MICROBIOL, V11, P863, DOI 10.1038/nrmicro3135; Manwell RD, 1929, AM J HYG, V9, P308, DOI 10.1093/oxfordjournals.aje.a121651; Marcello A, 2006, RETROVIROLOGY, V3, DOI 10.1186/1742-4690-3-7; Martiniere A, 2013, ELIFE, V2, DOI 10.7554/eLife.00183; Massey RC, 2001, CURR BIOL, V11, P1810, DOI 10.1016/S0960-9822(01)00507-3; Mayxay M, 2004, TRENDS PARASITOL, V20, P233, DOI 10.1016/j.pt.2004.03.006; Mbogo CM, 2003, AM J TROP MED HYG, V68, P734; MCLEAN SA, 1982, EXP PARASITOL, V54, P213, DOI 10.1016/0014-4894(82)90129-1; Meyers LA, 2002, TRENDS ECOL EVOL, V17, P551, DOI 10.1016/S0169-5347(02)02633-2; Mideo N, 2013, TRENDS PARASITOL, V29, P10, DOI 10.1016/j.pt.2012.10.006; Mideo N, 2012, FUTURE MICROBIOL, V7, P17, DOI [10.2217/FMB.11.134, 10.2217/fmb.11.134]; O'Donnell AJ, 2011, P ROY SOC B-BIOL SCI, V278, P2429, DOI 10.1098/rspb.2010.2457; Oesterholt MJAM, 2006, MALARIA J, V5, DOI 10.1186/1475-2875-5-98; Okech BA, 2004, J INSECT SCI, V4, DOI 10.1093/jis/4.1.33; Paul REL, 2004, MALARIA J, V3, DOI 10.1186/1475-2875-3-39; Paul REL, 2000, SCIENCE, V287, P128, DOI 10.1126/science.287.5450.128; Pearson RD, 2002, CAN J ZOOL, V80, P1313, DOI 10.1139/Z02-121; Perng Guey-Chuen, 2010, Interdiscip Perspect Infect Dis, V2010, P262415, DOI 10.1155/2010/262415; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Pollitt LC, 2011, AM NAT, V177, P358, DOI 10.1086/658175; Poncon N, 2007, MED VET ENTOMOL, V21, P350, DOI 10.1111/j.1365-2915.2007.00701.x; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2010, P ROY SOC B-BIOL SCI, V277, P3123, DOI 10.1098/rspb.2010.0564; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; Reece SE, 2005, P ROY SOC B-BIOL SCI, V272, P511, DOI 10.1098/rspb.2004.2972; Roca-Feltrer A, 2009, MALARIA J, V8, DOI 10.1186/1475-2875-8-276; Rogers DJ, 2002, NATURE, V415, P710, DOI 10.1038/415710a; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schneider P, 2004, MOL BIOCHEM PARASIT, V137, P35, DOI 10.1016/j.molbiopara.2004.03.018; Schneider P, 2007, AM J TROP MED HYG, V76, P470, DOI 10.4269/ajtmh.2007.76.470; Shanks GD, 2013, LANCET INFECT DIS, V13, P900, DOI 10.1016/S1473-3099(13)70095-1; SHORTT HE, 1948, BRIT MED J, V1, P547, DOI 10.1136/bmj.1.4550.547; Shutler D, 2005, P ROY SOC B-BIOL SCI, V272, P2397, DOI 10.1098/rspb.2005.3232; Spina CA, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003834; STEWART FM, 1984, THEOR POPUL BIOL, V26, P93, DOI 10.1016/0040-5809(84)90026-1; Stumpf MPH, 2002, P NATL ACAD SCI USA, V99, P15234, DOI 10.1073/pnas.232546899; TELFORD SR, 1989, INT J PARASITOL, V19, P597, DOI 10.1016/0020-7519(89)90038-6; TERZIAN LA, 1956, J IMMUNOL, V76, P308; Thompson PE, 1944, J INFECT DIS, V74, P48, DOI 10.1093/infdis/74.1.48; TITUS RG, 1988, SCIENCE, V239, P1306, DOI 10.1126/science.3344436; TRAPE JF, 1992, AM J TROP MED HYG, V47, P181, DOI 10.4269/ajtmh.1992.47.181; Valkiunas G, 2006, J PARASITOL, V92, P418, DOI 10.1645/GE-3547RN.1; Valkiunas G, 2004, PARASITOL RES, V93, P218, DOI 10.1007/s00436-004-1071-2; Valkiunas G, 2005, AVIAN MALARIA PARASI; van den Berg F, 2011, EVOL ECOL, V25, P121, DOI 10.1007/s10682-010-9387-0; Vezilier J, 2010, MALARIA J, V9, DOI 10.1186/1475-2875-9-379; Waldenstrom J, 2004, J PARASITOL, V90, P191, DOI 10.1645/GE-3221RN; White NJ, 2011, MALARIA J, V10, DOI 10.1186/1475-2875-10-297; Wilson AC, 2012, TRENDS MICROBIOL, V20, P604, DOI 10.1016/j.tim.2012.08.005; WLotmf Thayer, 1897, LECT MALARIAL FEVERS, P326 100 23 23 2 60 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1553-7366 1553-7374 PLOS PATHOG PLoS Pathog. SEP 2014 10 9 e1004308 10.1371/journal.ppat.1004308 14 Microbiology; Parasitology; Virology Microbiology; Parasitology; Virology AQ7QP WOS:000343014600003 25210974 DOAJ Gold, Green Published 2019-02-21 J Ma, L; Sun, BJ; Li, SR; Sha, W; Du, WG Ma, Liang; Sun, Bao-Jun; Li, Shu-Ran; Sha, Wei; Du, Wei-Guo Maternal Thermal Environment Induces Plastic Responses in the Reproductive Life History of Oviparous Lizards PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article PHENOTYPIC PLASTICITY; EGG SIZE; INCUBATION TEMPERATURES; GENETIC ASSIMILATION; GEOGRAPHIC-VARIATION; OFFSPRING SIZE; EVOLUTION; ADAPTATION; VIVIPARITY; RETENTION Adaptive plasticity may shift phenotypic traits close to a new optimum for directional selection and probably facilitates adaptive evolution in new environments. However, such plasticity has rarely been reported in life-history evolution, despite overwhelming evidence of life-history variation both among and within species. In this study, the temperatures experienced by gravid females of Scincella modesta were manipulated to identify maternally induced plasticity in reproductive traits and the significance of such changes in the evolution of life history. Consistent with the geographic pattern of life history, the study demonstrated that low temperatures delayed egg oviposition, resulting in a more advanced embryonic developmental stage at oviposition and shorter incubation periods compared with warm temperatures. In addition, females maintained at low temperatures produced larger eggs and hence heavier hatchlings than those at warm temperatures. This study demonstrated that environmental temperatures can induce plastic responses in egg retention and offspring size, and these maternally mediated changes in reproductive life history seem to be adaptive in the light of latitudinal clines of these traits in natural populations. [Ma, Liang; Sun, Bao-Jun; Li, Shu-Ran; Sha, Wei; Du, Wei-Guo] Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China; [Ma, Liang; Li, Shu-Ran] Univ Chinese Acad Sci, Beijing 100049, Peoples R China Du, WG (reprint author), Chinese Acad Sci, Inst Zool, Key Lab Anim Ecol & Conservat Biol, Beijing 100101, Peoples R China. duweiguo@ioz.ac.cn Sun, Bao-jun/0000-0002-7318-6059 Chinese Academy of Sciences; National Natural Sciences Foundation of China [31372203] We thank Yu-Ze Zhao and Tian-Long Cai for their assistance in the field and laboratory. We are grateful to the anonymous reviewers for their suggestions and comments. This work was supported by grants from the One Hundred Talents Program of the Chinese Academy of Sciences and National Natural Sciences Foundation of China (31372203). Angilletta MJ, 2003, AM NAT, V162, P332; Atkinson D, 2001, EXPTL BIOL REV, P269; Bernardo J, 1996, AM ZOOL, V36, P216; Breuner C, 2008, HORM BEHAV, V54, P485, DOI 10.1016/j.yhbeh.2008.05.013; Calderon-Espinosa ML, 2006, HERPETOL MONOGR, V20, P147, DOI 10.1655/0733-1347(2007)20[147:EOERIT]2.0.CO;2; DENNO RF, 1981, INSECT LIFE HIST PAT; Du WG, 2010, BIOL J LINN SOC, V101, P59, DOI 10.1111/j.1095-8312.2010.01492.x; DUFAURE JP, 1961, ARCH ANAT MICROSC MO, V50, P309; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Fielding CA, 1999, FUNCT ECOL, V13, P65, DOI 10.1046/j.1365-2435.1999.00009.x; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; GRANT V, 1977, ORGANISMIC EVOLUTION; Ji X, 2005, BIOL J LINN SOC, V85, P27, DOI 10.1111/j.1095-8312.2005.00470.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Lu HL, 2013, INTEGR ZOOL, V8, P175, DOI 10.1111/1749-4877.12025; Luo Lai-Gao, 2012, Chinese Journal of Zoology, V47, P23; Morita K, 2009, J FISH BIOL, V74, P699, DOI 10.1111/j.1095-8649.2008.02150.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Niewiarowski Peter H., 1994, P31; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Pigliucci M, 2006, J EXP BIOL, V209, P2362, DOI 10.1242/jeb.02070; Qualls CP, 1999, BIOL J LINN SOC, V67, P353, DOI 10.1111/j.1095-8312.1999.tb01939.x; Radder RS, 2008, FUNCT ECOL, V22, P332, DOI 10.1111/j.1365-2435.2007.01380.x; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rodriguez-Diaz T, 2012, J EVOLUTION BIOL, V25, P1877, DOI 10.1111/j.1420-9101.2012.02575.x; Rodriguez-Diaz T, 2010, ZOOLOGY, V113, P33, DOI 10.1016/j.zool.2009.05.001; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Schlichting CD, 2002, EVOL ECOL, V16, P189, DOI 10.1023/A:1019624425971; Sheriff MJ, 2013, ECOL LETT, V16, P271, DOI 10.1111/ele.12042; Shine R, 2002, AM NAT, V160, P582, DOI 10.1086/342815; Shine R, 2002, BIOL J LINN SOC, V76, P71; Shine R., 1985, Biology of Reptilia, V15, P605; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Stearns S, 1992, EVOLUTION LIFE HIST; Sun BJ, 2013, OECOLOGIA, V172, P645, DOI 10.1007/s00442-012-2524-4; Telemeco RS, 2010, BIOL J LINN SOC, V100, P642, DOI 10.1111/j.1095-8312.2010.01439.x; Tieleman BI, 2009, J ANIM ECOL, V78, P293, DOI 10.1111/j.1365-2656.2008.01522.x; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; Yampolsky LY, 1996, AM NAT, V147, P86, DOI 10.1086/285841 42 11 11 2 33 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. SEP-OCT 2014 87 5 677 683 10.1086/678050 7 Physiology; Zoology Physiology; Zoology AQ3DS WOS:000342670000009 25244379 2019-02-21 J Hogan, JD; Blum, MJ; Gilliam, JF; Bickford, N; McIntyre, PB Hogan, J. Derek; Blum, Michael J.; Gilliam, James F.; Bickford, Nate; McIntyre, Peter B. Consequences of alternative dispersal strategies in a putatively amphidromous fish ECOLOGY English Article amphidromy; Awaous stamineus; complex life cycle; connectivity; cost-benefit; dispersal strategy; fitness; growth; Hawaii; larvae; metapopulation; stream fish CORAL-REEF FISH; ELEMENTAL COMPOSITION; HAWAIIAN STREAMS; SPATIAL DYNAMICS; ESTUARINE FISH; POPULATIONS; CONNECTIVITY; LIFE; EVOLUTION; OTOLITHS Successful dispersal can enhance both individual fitness and population persistence, but the process of dispersal is often inherently risky. The interplay between the costs and benefits of dispersal are poorly documented for species with complex life histories due to the difficulty of tracking dispersing individuals. Here we investigate variability in dispersal histories of a freshwater fish, Awaous stamineus, across the species' entire geographic range in the Hawaiian archipelago. Like many animals endemic to tropical island streams, these gobies have an amphidromous life cycle in which a brief marine larval phase enables dispersal among isolated freshwater habitats. Using otolith microchemistry, we document three distinct marine dispersal pathways, all of which are observed on every island. Surprisingly, we also find that 62% of individuals complete their life cycle entirely within freshwater, in contrast to the assumption that amphidromy is obligate in Hawaiian stream gobies. Comparing early life history outcomes based on daily otolith growth rings, we find that individuals with marine dispersal have shorter larval durations and faster larval growth, and their growth advantage over purely freshwater counterparts continues to some degree into adult life. These individual benefits of maintaining a marine dispersal phase presumably balance against the challenge of finding and reentering an island stream from the ocean. The facultative nature of amphidromy in this species highlights the selective balance between costs and benefits of dispersal in life history evolution. Accounting for alternative dispersal strategies will be essential for conservation of the amphidromous species that often dominate tropical island streams, many of which are at risk of extinction. [Hogan, J. Derek; McIntyre, Peter B.] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA; [Blum, Michael J.] Tulane Univ, Dept Ecol & Evolutionary Biol, New Orleans, LA 70118 USA; [Gilliam, James F.] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA; [Bickford, Nate] Univ Great Falls, Sci & Humanities Div, Great Falls, MT 59405 USA Hogan, JD (reprint author), Texas A&M Univ, Dept Life Sci, 6300 Ocean Dr, Corpus Christi, TX 78412 USA. james.hogan@tamucc.edu U.S. Department of Defense Strategic Environmental Research and Development Program [RC-1646] Thanks to E. Hain, B. Lamphere, R. Walter, and R. Gagne for field assistance; to R. Hannigan, P. Gopon, J. Fournelle for laboratory assistance; and to S. Januchowski-Hartley, B. Pracheil, and B. Peckarsky for feedback on the manuscript. Funding was provided by the U.S. Department of Defense Strategic Environmental Research and Development Program under project RC-1646. Almany GR, 2007, SCIENCE, V316, P742, DOI 10.1126/science.1140597; Bonte D, 2009, J EVOLUTION BIOL, V22, P1242, DOI 10.1111/j.1420-9101.2009.01737.x; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Botsford LW, 2009, CORAL REEFS, V28, P327, DOI 10.1007/s00338-009-0466-z; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradbury IR, 2008, MOL ECOL, V17, P1438, DOI 10.1111/j.1365-294X.2008.03694.x; Brasher AMD, 2003, BIOSCIENCE, V53, P1052, DOI 10.1641/0006-3568(2003)053[1052:IOHDOB]2.0.CO;2; Campana Steven E., 1992, Canadian Special Publication of Fisheries and Aquatic Sciences, V117, P73; Chubb AL, 1998, J HERED, V89, P8, DOI 10.1093/jhered/89.1.8; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cowen RK, 2007, OCEANOGRAPHY, V20, P14, DOI 10.5670/oceanog.2007.26; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; FOWLER AJ, 1995, CAN J FISH AQUAT SCI, V52, P1431, DOI 10.1139/f95-138; GIAMBELLUCA TW, 1986, RAINFALL ATLAS HAWAI; Gillanders BM, 2002, CAN J FISH AQUAT SCI, V59, P669, DOI 10.1139/F02-040; GOATER CP, 1994, ECOLOGY, V75, P2264, DOI 10.2307/1940882; Ha PY, 1996, ENVIRON BIOL FISH, V45, P383, DOI 10.1007/BF00002531; Hale R, 2008, MAR ECOL PROG SER, V354, P229, DOI 10.3354/meps07251; Hamilton SL, 2008, P NATL ACAD SCI USA, V105, P1561, DOI 10.1073/pnas.0707676105; Hastings A, 2006, P NATL ACAD SCI USA, V103, P6067, DOI 10.1073/pnas.0506651103; Hogan JD, 2012, OECOLOGIA, V168, P61, DOI 10.1007/s00442-011-2058-1; Holland MD, 2008, NATURE, V456, P792, DOI 10.1038/nature07395; Iida M, 2010, J EXP MAR BIOL ECOL, V383, P17, DOI 10.1016/j.jembe.2009.11.006; Keith P, 2003, J FISH BIOL, V63, P831, DOI 10.1046/j.1095-8649.2003.00197.x; Kerr LA, 2010, ECOL APPL, V20, P497, DOI 10.1890/08-1382.1; Krug PJ, 2009, BIOL BULL-US, V216, P355; Leibold MA, 2004, ECOL LETT, V7, P601, DOI 10.1111/j.1461-0248.2004.00608.x; Lindstrom DP, 2012, COPEIA, P293, DOI 10.1643/CI-11-027; Luton Corene D., 2005, Micronesica, V38, P1; Mathias A, 2001, EVOLUTION, V55, P246; McDowall RM, 2010, REV FISH BIOL FISHER, V20, P87, DOI 10.1007/s11160-009-9125-2; Michel C, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-49; Miller MB, 2006, J EXP MAR BIOL ECOL, V329, P135, DOI 10.1016/j.jembe.2005.08.016; Milton DA, 2001, J EXP MAR BIOL ECOL, V264, P47, DOI 10.1016/S0022-0981(01)00301-X; RADTKE RL, 1988, ENVIRON BIOL FISH, V23, P205, DOI 10.1007/BF00004911; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Searcy SP, 2001, ECOLOGY, V82, P2452; Shima JS, 2010, J ANIM ECOL, V79, P1308, DOI 10.1111/j.1365-2656.2010.01733.x; Shima JS, 2009, ECOLOGY, V90, P1255, DOI 10.1890/08-0029.1; Sorensen PW, 2005, ENVIRON BIOL FISH, V74, P31, DOI 10.1007/s10641-005-3212-6; Sponaugle S, 2006, MAR ECOL PROG SER, V308, P1, DOI 10.3354/meps308001; Stauber JL, 2005, MAR POLLUT BULL, V50, P1363, DOI 10.1016/j.marpolbul.2005.05.008; Taylor BW, 1998, OECOLOGIA, V114, P494, DOI 10.1007/s004420050473; TOONEN RJ, 2011, J MARINE BIOL; Walter R. P., 2012, Endangered Species Research, V16, P261, DOI 10.3354/esr00404; Walter RP, 2009, CAN J FISH AQUAT SCI, V66, P167, DOI 10.1139/F08-201; WEISS SB, 1987, OIKOS, V50, P161, DOI 10.2307/3565996 47 25 25 3 66 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology SEP 2014 95 9 2397 2408 10.1890/13-0576.1 12 Ecology Environmental Sciences & Ecology AP8PF WOS:000342340200004 2019-02-21 J Rumbold, CE; Obenat, SM; Spivak, ED Rumbold, Carlos E.; Obenat, Sandra M.; Spivak, Eduardo D. MORPHOMETRY AND RELATIVE GROWTH OF POPULATIONS OF TANAIS DULONGII (AUDOIN, 1826) (TANAIDACEA: TANAIDAE) IN PRISTINE AND IMPACTED MARINE ENVIRONMENTS OF THE SOUTHWESTERN ATLANTIC JOURNAL OF CRUSTACEAN BIOLOGY English Article impacted environment; morphometric analysis; pristine environment; relative growth; Tanais dulongii MILNE-EDWARDS; POSTMARSUPIAL DEVELOPMENT; KALLIAPSEUDES-SCHUBARTII; DEL-PLATA; CRUSTACEA; PERACARIDA; BRAZIL; CRAB; PALAEMONIDAE; REPRODUCTION Life history strategies are closely related to environmental conditions and biotic and abiotic factors play a major role conditioning several traits as growth rates, sexual maturity, size and morphometric differences. We compare body dimensions, relative growth patterns, and size of sexual differentiation between populations of Tanais dulongii (Audoin, 1826) that live in two contrasting habitats in order to determine if they differ in life history traits. Some 900 individuals were collected (150 males, 150 females and 150 juveniles from each site) in a rocky shore with a lower anthropic impact (La Estafeta) and a polluted area (Mar del Plata Harbor) and thirteen body dimensions between sexes and environments were compared. Relative growth rates were determined establishing the relationship between total length (TL) and the rest of body dimensions with reduced major axis method (RMA). Regression slopes were employed to test the degree of isometry or allometry. MDS and SIMPER analyses were used to plot and identify morphometric differences between sexes and populations. TL and the rest of body dimensions were longer in La Estafeta than in Mar del Plata, and degree of sexual differentiation was larger in La Estafeta (ca. 3.5 mm) than in Mar del Plata (1.75 mm). RMA showed differences among sites: in Mar del Plata growth of most dimensions was positively allometric in adults, but in La Estafeta half of the measured dimensions had positive allometric growth for both sexes and half had isometric or negative allometric growth. Juveniles of both sites showed a positively allometric growth. MDS established a clear separation between sites and sexes. SIMPER showed that TL, cheliped length, cheliped width, and antennule peduncle length contributed most to differences between sexes, and TL (mainly) and the rest of variables (in minor degree) in the dissimilarities between sites. We believe that the differences observed between populations of T dulongii are due to phenotypic plasticity in this species in response to environmental differences. [Rumbold, Carlos E.] Univ Nacl Mar del Plata, CONICET, Fac Ciencias Exactas & Nat, Dept Biol, RA-7600 Mar Del Plata, Argentina; Univ Nacl Mar del Plata, CONICET, Fac Ciencias Exactas & Nat, Inst Invest Marinas & Costeras IIMyC, RA-7600 Mar Del Plata, Argentina Rumbold, CE (reprint author), Univ Nacl Mar del Plata, CONICET, Fac Ciencias Exactas & Nat, Dept Biol, Casilla Correo 1245, RA-7600 Mar Del Plata, Argentina. c_rumbold@hotmail.com Consejo Nacional de Investigaciones Cientificas y Tecnicas [CONICET: PIP 112-201101-00830]; Universidad Nacional de Mar del Plata [UNMdP: EXA 610/12] This work is part of the doctoral thesis of C.E.R. and was supported by a Ph.D. fellowship from Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET: PIP 112-201101-00830) and Universidad Nacional de Mar del Plata (UNMdP: EXA 610/12). We thank the editor and two anonymous reviewers for their constructive comments, which helped us to improve the manuscript. Albano MJ, 2013, MAR POLLUT BULL, V73, P102, DOI 10.1016/j.marpolbul.2013.05.032; Albano MJ, 2009, J MAR BIOL ASSOC UK, V89, P1099, DOI 10.1017/S0025315409000472; Anastasiadou C, 2009, LIMNOLOGICA, V39, P244, DOI 10.1016/j.limno.2008.07.006; ANDERSSON A, 1978, ACTA ZOOL-STOCKHOLM, V59, P49, DOI 10.1111/j.1463-6395.1978.tb00110.x; Audouin V., 1826, HIST NATURELLE, V1, P77; Baeza JA, 2010, J EXP MAR BIOL ECOL, V389, P85, DOI 10.1016/j.jembe.2010.03.014; Benetti Aline Staskowian, 2004, Iheringia, Sér. Zool., V94, P67, DOI 10.1590/S0073-47212004000100012; Blake J. A., 1997, TAXONOMIC ATLAS BENT; Blazewicz-Paszkowycz M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033068; Borrowsky B., 1983, MAR BIOL, V77, P257; Chintiroglou CC, 2004, HELGOLAND MAR RES, V58, P54, DOI 10.1007/s10152-003-0168-9; Clarke K. R, 1994, CHANGE MARINE COMMUN; CLAYTON DA, 1990, CRUSTACEANA, V58, P270, DOI 10.1163/156854090X00183; de-la-Ossa-Carretero JA, 2010, MAR ENVIRON RES, V69, P309, DOI 10.1016/j.marenvres.2009.12.005; FELDER DL, 1989, J CRUSTACEAN BIOL, V9, P540, DOI 10.2307/1548586; Fonseca DB, 2003, J MAR BIOL ASSOC UK, V83, P931, DOI 10.1017/S0025315403008087h; Fransozo A, 2003, J NAT HIST, V37, P297, DOI 10.1080/00222930110067926; Gergs R, 2008, FRESHWATER BIOL, V53, P2494, DOI 10.1111/j.1365-2427.2008.02077.x; Guerra-Garcia J.M., 2009, Zoologica Baetica, V20, P35; Hamers C, 2000, SARSIA, V85, P403; HARRISON R. J., 1940, JOUR MARINE BIOL ASSOC, V24, P483; Hartnoll R.G., 1982, P111; HARTNOLL RG, 1978, CRUSTACEANA, V34, P281, DOI 10.1163/156854078X00844; HOLDICH DM, 1983, J NAT HIST, V17, P157, DOI 10.1080/00222938300770141; Hutchings P. A., 1993, Transactions of the Royal Society of South Australia, V117, P1; Isla FI, 2004, VIDA ENTRE MAREAS VE, P19; JOHNSON SB, 1982, MAR BIOL, V71, P11, DOI 10.1007/BF00396987; KNEIB RT, 1992, MAR BIOL, V113, P437, DOI 10.1007/BF00349169; Larsen K, 2003, J CRUSTACEAN BIOL, V23, P644, DOI 10.1651/C-2363; Legendre P, 2008, LMODEL2 MODEL 2 REGR; Leite F. P. P., 2003, Braz. J. Biol., V63, P469, DOI 10.1590/S1519-69842003000300013; MANE-GARZ6N FERNANDO, 1949, COMUN ZOOL MUS HIST NAT MONTEVIDEO, V3, P1; Mariappan P, 2004, BRAZ ARCH BIOL TECHN, V47, P441, DOI 10.1590/S1516-89132004000300015; MASUNARI S, 1983, CRUSTACEANA, V44, P151, DOI 10.1163/156854083X00776; MENDOZA JA, 1982, CRUSTACEANA, V43, P225, DOI 10.1163/156854082X00164; MODLIN RF, 1989, J CRUSTACEAN BIOL, V9, P578, DOI 10.2307/1548589; Orensanz Jose Maria (Lobo), 2002, Biological Invasions, V4, P115; Pelletier MC, 2010, ECOL INDIC, V10, P1037, DOI 10.1016/j.ecolind.2010.03.005; Pennafirme S., 2005, 3 C BRAS PESQ DES PE, P1; Pennafirme S, 2009, CRUSTACEANA, V82, P1509, DOI 10.1163/001121609X12487811051589; Perez-Ruzafa Angel, 1993, Publicaciones Especiales Instituto Espanol de Oceanografia, V11, P159; R Development Core Team, 2011, R LANG ENV STAT COMP; Remerie T, 2005, HYDROBIOLOGIA, V549, P239, DOI 10.1007/s10750-005-5438-x; Rivero Ma. Silvia, 2005, Rev. biol. mar. oceanogr., V40, P101, DOI 10.4067/S0718-19572005000200002; Rumbold CE, 2012, J CRUSTACEAN BIOL, V32, P891, DOI 10.1163/1937240X-00002094; Sanvicente-Anorve L, 2008, CRUSTACEANA, V81, P329, DOI 10.1163/156854008783564046; SCHRAM FR, 1986, CRUSTACEA; SIEG J, 1980, Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, V537, P1; Stearns S, 1992, EVOLUTION LIFE HIST; STONER AW, 1983, J CRUSTACEAN BIOL, V3, P505, DOI 10.2307/1547947; TARARAM A S, 1990, Boletim do Instituto Oceanografico, V38, P11; Thiel M, 2003, REV CHIL HIST NAT, V76, P205, DOI 10.4067/S0716-078X2003000200007; Tsoi KH, 2005, ZOOL STUD, V44, P382; Zar J. H., 1999, BIOSTATISTICAL ANAL 54 4 4 0 6 CRUSTACEAN SOC SAN ANTONIO 840 EAST MULBERRY, SAN ANTONIO, TX 78212 USA 0278-0372 1937-240X J CRUSTACEAN BIOL J. Crustac. Biol. SEP 2014 34 5 581 592 10.1163/1937240X-00002265 12 Marine & Freshwater Biology; Zoology Marine & Freshwater Biology; Zoology AP9IH WOS:000342393000006 Bronze 2019-02-21 J Tretter, ED; Johnson, EM; Benny, GL; Lichtwardt, RW; Wang, Y; Kandel, P; Novak, SJ; Smith, JF; White, MM Tretter, Eric D.; Johnson, Eric M.; Benny, Gerald L.; Lichtwardt, Robert W.; Wang, Yan; Kandel, Prasanna; Novak, Stephen J.; Smith, James F.; White, Merlin M. An eight-gene molecular phylogeny of the Kickxellomycotina, including the first phylogenetic placement of Asellariales MYCOLOGIA English Article arthropod symbiosis; clades; molecular phylogenies; mycophyletic; zoopagomycotina SUBUNIT RIBOSOMAL DNA; POLYMERASE-II SUBUNIT; EVOLUTIONARY IMPLICATIONS; ELECTRON-MICROSCOPY; MAXIMUM-LIKELIHOOD; TREE SELECTION; SEQUENCE DATA; MIXED MODELS; FUNGI; HARPELLALES Kickxellomycotina is a recently described subphylum encompassing four zygomycete orders (Asellariales, Dimargaritales, Harpellales, Kickxellales). These fungi are united by the formation of disciform septal pores containing lenticular plugs. Morphological diversification and life history evolution has made the relationships within and among the four orders difficult to resolve on those grounds alone. Here we infer the phylogeny of the Kickxellomycotina based on an eight-gene supermatrix including both ribosomal rDNA (18S, 28S, 5.8S) and protein sequences (MCM7, TSR1, RPB1, RPB2, beta-tubulin). The results of this study demonstrate that Kickxellomycotina is monophyletic and related to members of the Zoopagomycotina. Eight unique clades are distinguished in the Kickxellomycotina, including the four defined orders (Asellariales, Dimargaritales, Harpellales, Kickxellales) as well as four genera previously placed within two of these orders (Barbatospora, Orphella, Ramicandelaber, Spiromyces). Dimargaritales and Ramicandelaber are the earliest diverging members of the subphylum, although the relationship between these taxa remains uncertain. The remaining six clades form a monophyletic group, with Barbatospora diverging first. The next split divides the remaining members of the subphylum into two subclades: (i) Asellariales and Harpellales and (ii) Kickxellales, Orphella and Spiromyces. Estimation of ancestral states for four potentially informative morphological and ecological characters reveals that arthropod endosymbiosis might have been an important factor in the early evolution of the Kickxellomycotina. [Tretter, Eric D.; Johnson, Eric M.; Wang, Yan; Kandel, Prasanna; Novak, Stephen J.; Smith, James F.; White, Merlin M.] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA; [Benny, Gerald L.] Univ Florida, Dept Plant Pathol, Gainesville, FL 32611 USA; [Lichtwardt, Robert W.] Univ Kansas, Dept Ecol & Evolutionary Biol, Lawrence, KS 66045 USA White, MM (reprint author), Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. merlinwhite@boisestate.edu Wang, Yan/L-9376-2018 Wang, Yan/0000-0002-5950-8904 NSF REVSYS Awards [DEB-0918182, DEB-0918169]; Mycological Society of America Financial support from NSF REVSYS Awards DEB-0918182 (to MMW) and DEB-0918169 (to RWL) are gratefully acknowledged for this and ongoing studies toward a molecular-based reclassification of the Kickxellomycotina. MMW received financial support for some earlier sequences in a Martin-Baker Award from the Mycological Society of America. We acknowledge the use of the Willi Hennig Society edition of TNT software. This study made use of sequences from projects from the JGI and Broad Institute, and we thank the teams involved. We thank M Berbee and J Spatafora for permission to use sequences from the Coemansia reversa genome sequencing project for our tree. We especially thank all who have contributed samples to our efforts, without which they would have never been able to proceed. In particular, we thank A Gryganskyi (and the laboratory of R Vilgalys) as well R Humber for contributing samples for many related taxa such as the Zoopagomycotina and Entomophthoromycotina. We acknowledge the particularly significant contribution to this manuscript of the work of MJ Cafaro and LG Valle on the Asellariales and Orphella, Y Degawa and Y Kurihara on Ramicandelaber and Spiromyces, and RK Benjamin on the Dimargaritales and Kickxellales. T James provided kind research support during earlier (AFTOL) training sessions to MMW and more recently. Thanks to I Robertson for significant contributions to the editing and review of this manuscript, and for overall guidance during ET's graduate program. Abascal F, 2005, BIOINFORMATICS, V21, P2104, DOI 10.1093/bioinformatics/bti263; Altekar G, 2004, BIOINFORMATICS, V20, P407, DOI 10.1093/bioinformatics/btg427; Baker RH, 1997, SYST BIOL, V46, P654, DOI 10.2307/2413499; Benjamin P.R., 1961, ALISO, V5, P11; Benjamin P.R., 1979, WHOLE FUNGUS, V2, P573; BENJAMIN R. K., 1959, ALISO, V4, P321; BENNY GL, 2005, ZYGOMYCETES; Bollback JP, 2006, BMC BIOINFORMATICS, V7, DOI 10.1186/1471-2105-7-88; BRAIN APR, 1982, MYCOLOGIA, V74, P173, DOI 10.2307/3792883; Cafaro MJ, 1999, MYCOLOGIA, V91, P517, DOI 10.2307/3761352; Chuang SC, 2013, MYCOLOGIA, V105, P320, DOI 10.3852/11-219; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; FARR DF, 1967, MYCOLOGIA, V59, P172, DOI 10.2307/3756952; FELSENSTEIN J, 1974, GENETICS, V78, P737; GARDES M, 1993, MOL ECOL, V2, P113, DOI 10.1111/j.1365-294X.1993.tb00005.x; Goloboff PA, 2003, CLADISTICS, V19, P324, DOI 10.1016/S0748-3007(03)00060-4; Goloboff PA, 2008, CLADISTICS, V24, P774, DOI 10.1111/j.1096-0031.2008.00217.x; Gottlieb AM, 2001, MYCOLOGIA, V93, P66, DOI 10.2307/3761606; Gruber AR, 2008, NUCLEIC ACIDS RES, V36, pW70, DOI 10.1093/nar/gkn188; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Hibbett DS, 2007, MYCOL RES, V111, P509, DOI 10.1016/j.mycres.2007.03.004; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Humber RA, 2012, MYCOTAXON, V120, P477, DOI 10.5248/120.477; James TY, 2006, NATURE, V443, P818, DOI 10.1038/nature05110; JEFFRIES P, 1979, J GEN MICROBIOL, V111, P303, DOI 10.1099/00221287-111-2-303; Keeling PJ, 2003, FUNGAL GENET BIOL, V38, P298, DOI 10.1016/S1087-1845(02)00537-6; Keeling PJ, 2000, MOL BIOL EVOL, V17, P23, DOI 10.1093/oxfordjournals.molbev.a026235; Kurihara Y, 2004, MYCOL RES, V108, P1143, DOI 10.1017/S0953756204000930; LICHTWARDT RW, 2001, TRICHOMYCETES FUNGAL; Liu YJJ, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-74; Liu YJJ, 1999, MOL BIOL EVOL, V16, P1799, DOI 10.1093/oxfordjournals.molbev.a026092; Maddison WP, 2011, MESQUITE 2 75 MODULA; Mattern D, 2001, MOL PHYLOGENET EVOL, V18, P54, DOI 10.1006/mpev.2000.0861; MOSS ST, 1978, MYCOLOGIA, V70, P944, DOI 10.2307/3759130; MOSS ST, 1977, CAN J BOT, V55, P3099, DOI 10.1139/b77-351; MOSS ST, 1975, T BRIT MYCOL SOC, V65, P115, DOI 10.1016/S0007-1536(75)80187-2; MULLER HJ, 1964, MUTAT RES, V1, P2, DOI 10.1016/0027-5107(64)90047-8; O'Donnell K, 1998, MYCOLOGIA, V90, P624, DOI 10.2307/3761222; ODONNELL K, 1993, FUNGAL HOLOMORPH : MITOTIC, MEIOTIC AND PLEOMORPHIC SPECIATION IN FUNGAL SYSTEMATICS, P225; Ogawa Y, 2005, NIPPON KINGAK KAIHO, V46; Ogawa Yoshio, 2001, Mycoscience, V42, P193, DOI 10.1007/BF02464137; Oman SJ, 2012, MYCOLOGIA, V104, P313, DOI 10.3852/11-204; Ott M, 2007, P 2007 ACM IEEE C SU; Pena C, 2006, MOL PHYLOGENET EVOL, V40, P29, DOI 10.1016/j.ympev.2006.02.007; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Saikawa M, 1997, CAN J BOT, V75, P762, DOI 10.1139/b97-086; SAIKAWA M, 1989, CAN J BOT, V67, P2484, DOI 10.1139/b89-318; Saikawa M, 1997, CAN J BOT, V75, P1479, DOI 10.1139/b97-862; Schmitt I, 2009, PERSOONIA, V23, P35, DOI 10.3767/003158509X470602; Schoch CL, 2012, P NATL ACAD SCI USA, V109, P6241, DOI 10.1073/pnas.1117018109; Shimodaira H, 2001, BIOINFORMATICS, V17, P1246, DOI 10.1093/bioinformatics/17.12.1246; Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201; Shimodaira H, 2002, SYST BIOL, V51, P492, DOI 10.1080/10635150290069913; Sorenson MD, 2007, TREEROT 3; Stamatakis A, 2006, PAR DISTR PROC S 200; Stamatakis A, 2008, SYST BIOL, V57, P758, DOI 10.1080/10635150802429642; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Stover BC, 2010, BMC BIOINFORMATICS, V11, DOI 10.1186/1471-2105-11-7; Swofford DL, 2003, PAUP 4 PHYLOGENETIC; Tanabe Y, 2004, MOL PHYLOGENET EVOL, V30, P438, DOI 10.1016/S1055-7903(03)00185-4; Tanabe Y, 2000, MOL PHYLOGENET EVOL, V16, P253, DOI 10.1006/mpev.2000.0775; Tretter ED, 2013, PERSOONIA, V30, P106, DOI 10.3767/003158513X666394; Valle LG, 2005, MYCOLOGIA, V97, P1335, DOI 10.3852/mycologia.97.6.1335; Valle LG, 2008, MYCOLOGIA, V100, P122, DOI 10.3852/mycologia.100.1.122; VILGALYS R, 1990, J BACTERIOL, V172, P4238, DOI 10.1128/jb.172.8.4238-4246.1990; WALKER WF, 1984, SYST APPL MICROBIOL, V5, P448, DOI 10.1016/S0723-2020(84)80002-8; Wang Y, 2013, MYCOLOGIA, V105, P90, DOI 10.3852/11-311; WHISLER HOWARD C., 1963, CANADIAN JOUR BOT, V41, P887; White MM, 2006, MYCOLOGIA, V98, P872, DOI 10.3852/mycologia.98.6.872; White MM, 2006, MYCOL RES, V110, P1011, DOI 10.1016/j.mycres.2006.06.006; White MM, 2006, MYCOLOGIA, V98, P333, DOI 10.3852/mycologia.98.2.333; White MM, 1999, MYCOLOGIA, V91, P1021, DOI 10.2307/3761634; White MM, 2002, THESIS U KANSAS LAWR; WHITE TJ, 1990, PCR PROTOCOLS GUIDE, V18, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1; WILGENBUSCH J.C., 2004, AWTY SYSTEM GRAPHICA; William RT, 2012, BOTANY, V90, P101, DOI 10.1139/B11-086; YOUNG TWK, 1969, ANN BOT-LONDON, V33, P211, DOI 10.1093/oxfordjournals.aob.a084276 78 9 10 0 25 ALLEN PRESS INC LAWRENCE 810 E 10TH ST, LAWRENCE, KS 66044 USA 0027-5514 1557-2536 MYCOLOGIA Mycologia SEP-OCT 2014 106 5 912 935 10.3852/13-253 24 Mycology Mycology AP8NL WOS:000342335600005 24891422 2019-02-21 J Lloyd, P; Abadi, F; Altwegg, R; Martin, TE Lloyd, Penn; Abadi, Fitsum; Altwegg, Res; Martin, Thomas E. South temperate birds have higher apparent adult survival than tropical birds in Africa JOURNAL OF AVIAN BIOLOGY English Article LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; GEOGRAPHIC-VARIATION; BREEDING BIOLOGY; MARKED ANIMALS; NEST PREDATION; RATES; TERRITORIALITY; POPULATIONS; HYPOTHESES Life history theory predicts an inverse relationship between annual adult survival and fecundity. Globally, clutch size shows a latitudinal gradient among birds, with south temperate species laying smaller clutches than north temperate species, but larger clutches than tropical species. Tropical birds often have higher adult survival than north temperate birds associated with their smaller clutches. However, the prediction that tropical birds should also have higher adult survival than south temperate birds because of smaller clutch sizes remains largely untested. We measured clutch size and apparent annual breeding adult survival for 17 south temperate African species to test two main predictions. First, we found strong support for a predicted inverse relationship between adult survival and clutch size among the south temperate species, consistent with life-history theory. Second, we compared our clutch size and survival estimates with published estimates for congeneric tropical African species to test the prediction of larger clutch size and lower adult survival among south temperate than related tropical species. We found that south-temperate species laid larger clutches, as predicted, but had higher, rather than lower, apparent adult survival than related tropical species. The latter result may be an artefact of different approaches to measuring survival, but the results suggest that adult survival is generally high in the south temperate region and raises questions about the importance of the cost of reproduction to adult survival. [Lloyd, Penn] Univ Cape Town, Percy FitzPatrick Inst, DST NRF Ctr Excellence, ZA-7701 Rondebosch, South Africa; [Lloyd, Penn] Biodiversity Assessment & Management Pty Ltd, Cleveland, Qld 4163, Australia; [Abadi, Fitsum; Altwegg, Res] South African Natl Biodivers Inst, ZA-7735 Claremont, South Africa; [Abadi, Fitsum] Univ Witwatersrand, Sch Stat & Actuarial Sci, ZA-2050 Johannesburg, South Africa; [Altwegg, Res] Univ Cape Town, African Climate & Dev Initiat, ZA-7701 Rondebosch, South Africa; [Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, ZA-7701 Rondebosch, South Africa; [Martin, Thomas E.] Univ Montana, US Geol Survey, Cooperat Wildlife Res Unit, Missoula, MT 59812 USA Lloyd, P (reprint author), Univ Cape Town, Percy FitzPatrick Inst, DST NRF Ctr Excellence, P Bag X3, ZA-7701 Rondebosch, South Africa. penn@baamecology.com Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 National Science Foundation [INT-9906030, DEB-0841764, DEB-1241041]; National Research Foundation; Claude Leon Foundation We thank volunteer banders from the Tygerberg Bird Club for extensive assistance with colour-banding birds, particularly Margaret McCall, Bob Ellis, Lee Silks, and Bridget de Kok. Many field assistants and co-workers helped locate and monitor nests and resight the colour-band combinations of breeding adults each year, particularly Sonya Auer and Ron Bassar, Simon Davies, Andrew Taylor, Corine Eising, David Nkosi, Joseph Fontaine, Davide Gaglio, Pierre-Yves Perroi, Justin Shew, Anna Chalfoun, Riccardo Ton, Adams Chaskda, Alexander Neu, Julia Taubman, and Bettina Christ. We thank Gert Greef and Hilton Westman for permission to work at ESKOM's Koeberg Nature Reserve, and Wes Hochachka for comments that improved the manuscript. This work was supported in part through National Science Foundation grants (INT-9906030, DEB-0841764, DEB-1241041 to TEM), National Research Foundation grants (to PL and RA) and a Claude Leon Foundation fellowship (to FA). Capture and banding activities were licensed by Cape Nature and SAFRING, the South African bird-banding scheme that issued the numbered metal bands, and approved by the Animal Ethics Committee, Univ. of Cape Town and IACUC #059-10TMMCWRU at the Univ. of Montana. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U. S. Government. Although the WinBUGS program has been used by the U. S. Geological Survey (USGS), no warranty, expressed or implied, is made by the USGS or the U.S. Government as to the accuracy and functioning of the program and related program material nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. Ahumada JA, 2001, AUK, V118, P191, DOI 10.1642/0004-8038(2001)118[0191:COTRBO]2.0.CO;2; Altwegg R, 2006, OECOLOGIA, V149, P44, DOI 10.1007/s00442-006-0430-3; Armstrong DP, 2005, J ANIM ECOL, V74, P160, DOI 10.1111/j.1365-2656.2004.00908.x; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Bonan G.B., 2002, ECOLOGICAL CLIMATOLO; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Burton Kenneth A., 2004, Studies in Avian Biology, P7; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; CAWTHORNE RA, 1980, BIRD STUDY, V27, P163, DOI 10.1080/00063658009476675; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Chown SL, 2004, PLOS BIOL, V2, P1701, DOI 10.1371/journal.pbio.0020406; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; Cooch E.G., 2012, PROGRAM MARK GENTLE; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; Doerr ED, 2006, ANIM BEHAV, V72, P147, DOI 10.1016/j.anbehav.2005.10.017; Dowsett R. J., 2008, BIRDS ZAMBIA; Evans KL, 2005, FUNCT ECOL, V19, P616, DOI 10.1111/j.1365-2435.2005.01016.x; Faaborg J, 1995, AUK, V112, P503, DOI 10.2307/4088741; Faaborg John, 2004, Studies in Avian Biology, P144; Francis CM, 2002, J APPL STAT, V29, P637, DOI 10.1080/02664760120108584; Francis CM, 2003, PASOH: ECOLOGY OF A LOWLAND RAIN FOREST IN SOUTHEAST ASIA, P375; Fry CH, 1988, BIRDS AFRICA, V3; Gardner J. L., 2003, ANIM BEHAV, V66, pS21; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; HOCKEY P. A. R, 2005, ROBERTS BIRDS SO AFR; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; Jullien M, 1998, J ANIM ECOL, V67, P227, DOI 10.1046/j.1365-2656.1998.00171.x; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Lahoz-Monfort JJ, 2011, METHODS ECOL EVOL, V2, P116, DOI 10.1111/j.2041-210X.2010.00050.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Low A. B, 1996, VEGETATION S AFRICA; Magrath RD, 1997, J ANIM ECOL, V66, P658, DOI 10.2307/5919; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 1995, J APPL STAT, V22, P863, DOI 10.1080/02664769524676; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McCarthy MA, 2005, J APPL ECOL, V42, P1012, DOI 10.1111/j.1365-2664.2005.01101.x; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Nalwanga D, 2004, OSTRICH, V75, P250, DOI 10.2989/00306520409485452; Nur Nadav, 2004, Studies in Avian Biology, V29, P63; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; Radford JQ, 2004, EMU, V104, P305, DOI 10.1071/MU04002; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs RE, 2011, J ORNITHOL, V152, P481, DOI 10.1007/s10336-010-0614-9; ROBINSON D, 1990, IBIS, V132, P78, DOI 10.1111/j.1474-919X.1990.tb01018.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Royle JA, 2008, BIOMETRICS, V64, P364, DOI 10.1111/j.1541-0420.2007.00891.x; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Spiegelhalter D, 2003, WINBUGS USER MANUAL; Sturtz S, 2005, J STAT SOFTW, V12, P1; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; White GC, 1999, BIRD STUDY, V46, P120; Williams J. B., 1966, ADAPTATION NATURAL S; YOUNG BE, 1994, AUK, V111, P545 62 19 20 0 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2014 45 5 493 500 10.1111/jav.00454 8 Ornithology Zoology AO9VH WOS:000341706400010 2019-02-21 J Sun, N; Elias, RJ; Lee, DJ Sun, Ning; Elias, Robert J.; Lee, Dong-Jin THE BIOLOGICAL AFFINITY OF AMSASSIA: NEW EVIDENCE FROM THE ORDOVICIAN OF NORTH CHINA PALAEONTOLOGY English Article Amsassia shaanxiensis sp; nov; North China Platform; morphology; biological affinity; Lichenaria; Ordovician reefs LIFE-HISTORY STRATEGIES; CORAL STAURIA-FAVOSA; SOUTHERN MANITOBA; TETRADIUM DANA; CHAETETID SPONGE; PALEOZOIC CORALS; PALEOECOLOGY; TABULATA; GROWTH; CATENIPORA Amsassia shaanxiensis sp. nov. occurs in the Middle Ordovician part of the Jinghe Formation in Yongshou and the lower part of the Upper Ordovician Beiguoshan Formation in Longxian, Shaanxi Province, north-central China. In addition to module increase by bipartite longitudinal fission, which is also known in other species of Amsassia, tripartite and rare quadripartite fission are recognized in A.shaanxiensis. All species previously assigned to Lichenaria from the Middle to Upper Ordovician of Shaanxi probably belong to Amsassia. Therefore, Amsassia, rather than the tabulate coral Lichenaria, should be credited as an important contributor to reef-building in this area. Reports of Lichenaria from elsewhere in the North China Platform require confirmation in the light of the present study. Some morphological characteristics of Amsassia are comparable to those of tabulate corals, tetradiids and chaetetid sponges. Consequently, various authors have assigned Amsassia to the Lichenariida, Tetradiida (now Prismostylales; florideophycean rhodophyte algae) and Chaetetida. Other important characters, however, seem to exclude Amsassia from those taxonomic groups. The phacelocerioid organization of modules having separate walls would not be expected in sponges. The basic symmetry of individuals may have been radial, unlike the tetramerous symmetry of tetradiids. Module increase by longitudinal fission, involving infoldings of the wall, is fundamentally different from modes of increase in corals, tetradiids and chaetetids. The skeleton was probably aragonitic, whereas that of tabulates was calcitic. The affinity of Amsassia remains unresolved, but it is unlikely to have been a coral, tetradiid or sponge. Perhaps, like the tetradiids, Amsassia was an alga. [Sun, Ning] China Univ Geosci, Sch Earth Sci & Resources, Beijing 100083, Peoples R China; [Elias, Robert J.] Univ Manitoba, Dept Geol Sci, Winnipeg, MB R3T 2N2, Canada; [Lee, Dong-Jin] Andong Natl Univ, Dept Earth & Environm Sci, Andong 760749, South Korea; [Lee, Dong-Jin] Jilin Univ, Coll Earth Sci, Changchun 130061, Peoples R China Lee, DJ (reprint author), Andong Natl Univ, Dept Earth & Environm Sci, Andong 760749, South Korea. nsun@cugb.edu.cn; eliasrj@cc.umanitoba.ca; djlee@andong.ac.kr National Research Foundation of Korea (NRF) - Korea Government (MEST) [2012-005612]; Natural Sciences and Engineering Research Council of Canada This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea Government (MEST) to DJL (2012-005612) and grants from the Natural Sciences and Engineering Research Council of Canada to RJE (2008, 2009). The assistance provided by X. Yuan (China Petroleum Changqing Oilfield Branch) during field work is greatly appreciated. We are indebted to Y. Q. Zhang (NIGP) for taking photomicrographs of type specimens in NIGP. We thank the reviewers (M. Aretz and anonymous) and the editors (J. Alvaro, A. Smith and S. Thomas) for their comments, which helped us to improve the manuscript. Bae BY, 2006, LETHAIA, V39, P141, DOI 10.1080/00241160600623723; Bae BY, 2013, LETHAIA, V46, P98, DOI 10.1111/j.1502-3931.2012.00326.x; Bae BY, 2008, LETHAIA, V41, P367, DOI 10.1111/j.1502-3931.2008.00121.x; BASSLER R. S., 1950, GEOLOGICAL SOC AM ME, V44; BELL P, 2000, GREEN PLANTS THEIR O; BOLTON T. E., 2000, GEOLOGICAL SURVEY CA, V557, P39; Bondarenko OB, 2009, PALEONTOL J+, V43, P1439, DOI 10.1134/S0031030109110094; COPPER P, 1978, CAN J EARTH SCI, V15, P2006, DOI 10.1139/e78-210; Deng Z. Q, 1984, B NANJING I GEOLOGY, V8, P305; Elias R. J., 2004, GREAT ORDOVICIAN BIO, P133; Elias R. J., 2008, J PALEONTOL, V82, P408; Elias R. J., 1998, PALAIOS, V13, P95; Ezaki Y, 2005, LETHAIA, V38, P297, DOI 10.1080/00241160500208344; Ezaki Y, 2004, PALAEONTOLOGY, V47, P1075, DOI 10.1111/j.0031-0239.2004.00401.x; Fu K., 1985, ATLAS PALAEOGEOGRAPH, P45; Fu L. P., 1993, NW GEOSCIENCES, V14, P6; Gudo Michael, 2001, Bulletin of the Tohoku University Museum, V1, P41; HARTMAN WD, 1972, T CONNECTICUT ACAD A, V44, P133; He Z.X., 2004, ATLAS GEOLOGY PROFIL; Hill D., 1981, TREATISE INVERT F S1, V2, p[F430, F379]; Kirkpatrick R, 1912, NATURE, V89, P607, DOI 10.1038/089607b0; Kwon SW, 2012, SEDIMENT GEOL, V267, P15, DOI 10.1016/j.sedgeo.2012.04.001; Laub R. S., 1984, PALAEONTOGRAPHICA AM, V54, P159; Lee D.-J., 2007, SCHRIFTENREIHE ERDWI, V17, P31; Lee DJ, 2000, J PALEONTOL, V74, P404, DOI 10.1666/0022-3360(2000)074<0404:PAESOC>2.0.CO;2; Lee DJ, 2004, J PALEONTOL, V78, P1056, DOI 10.1666/0022-3360(2004)078<1056:PFOTMT>2.0.CO;2; Li Rihui, 1993, Acta Sedimentologica Sinica, V11, P27; Li Y. X., 1982, ATLAS FOSSILS NW CHI, P50; Lin B. Y, 1984, PALAEONTOGRAPHICA AM, V54, P444; Lin B. Y., 1983, ACTA PALAEONTOLOGICA, V5, P487; Lin B. Y., 1980, CHINESE ACAD GEOLOGI, V1, P28; Lin B. Y., 1988, MONOGRAPH PALAEOZOIC, V1, P51; Meng XH, 1997, SEDIMENT GEOL, V114, P189, DOI 10.1016/S0037-0738(97)00073-0; Radugin K. V, 1936, MAT GEOLOGII ZAPADNO, V35, P89; Reitner J, 1996, FACIES, V34, P193, DOI 10.1007/BF02546164; Riding R, 2004, PALAEONTOLOGY, V47, P117, DOI 10.1111/j.0031-0239.2004.00351.x; Scrutton C. T, 1984, PALAEONTOGRAPHICA AM, V54, P110; SCRUTTON CT, 1981, J PALEONTOL, V55, P687; SCRUTTON CT, 1987, PALAEONTOLOGY, V30, P485; Scrutton CT, 1998, P YORKS GEOL SOC, V52, P1, DOI 10.1144/pygs.52.1.1; Scrutton CT, 1997, P YORKS GEOL SOC, V51, P177, DOI 10.1144/pygs.51.3.177; SEMENIUK V, 1971, J SEDIMENT PETROL, V41, P939; Sokolov B. S., 1962, OSNOVY PALEONTOLOGII, V2, P259; SOKOLOV BS, 1959, DOKL AKAD NAUK SSSR+, V129, P1150; Steele-Petrovich HM, 2011, J PALEONTOL, V85, P802, DOI 10.1666/10-137.1; Steele-Petrovich HM, 2009, LETHAIA, V42, P383, DOI 10.1111/j.1502-3931.2009.00151.x; Steele-Petrovich HM, 2009, LETHAIA, V42, P297, DOI 10.1111/j.1502-3931.2008.00146.x; Wang B.Y., 1993, CHINESE SCI BULL, V38, P1974; WEBBY B D, 1971, Proceedings of the Linnean Society of New South Wales, V95, P246; Webby B.D., 1990, Palaeontologische Zeitschrift, V64, P379; Webby B. D., 2002, SPECIAL PUBLICATION, V72; Webby BD, 2004, CRIT MOM PERSP EARTH, P124; WENDT J, 1989, Palaeontologische Zeitschrift, V63, P177; Wendt J, 1990, SKELETAL BIOMINERALI, VI, P45; West R. R., 1983, STUDIES GEOLOGY, V7, P130; West R. R., 1984, PALAEONTOGRAPHICA AM, V54, P110; Yang H, 2008, MAR PETROL GEOL, V25, P387, DOI 10.1016/j.marpetgeo.2008.01.007; YANG L, 1990, J PALEONTOL, V64, P881, DOI 10.1017/S0022336000019971; Yang L., 1989, THESIS MCGILL U MONT; Yang S. W., 1978, ATLAS FOSSILS SW CHI, V1, P161; Yang Y. Z., 1997, REGIONAL GEOLOGY CHI, V16, P137; Ye J., 1995, ORDOVICIAN REEFS S W; Young Graham A., 1995, Bulletins of American Paleontology, V108, P1; Yu C. M., 1961, Acta Palaeontologica Sinica, V9, P329; Yu C. M., 1962, GEOLOGY QILIAN MOUNT, V4; YU C.M., 1963, FOSSIL CORALS CHINA, P214; Zhao F. Y., 1978, ACTA GEOL SINICA, V2, P135; Zhao F.Y., 1979, J LANZHOU U, V9, P129 68 8 8 0 6 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0031-0239 1475-4983 PALAEONTOLOGY Paleontology SEP 2014 57 5 1067 1089 10.1111/pala.12106 23 Paleontology Paleontology AP6DJ WOS:000342167400011 2019-02-21 J Cotto, O; Ronce, O Cotto, Olivier; Ronce, Ophelie MALADAPTATION AS A SOURCE OF SENESCENCE IN HABITATS VARIABLE IN SPACE AND TIME EVOLUTION English Article Adaptation; age-structured population; quantitative genetics; senescence MUTATION-ACCUMULATION THEORY; QUANTITATIVE GENETIC MODELS; LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; DROSOPHILA-MELANOGASTER; STRUCTURED POPULATIONS; STABILIZING SELECTION; AGE; MORTALITY; MIGRATION In this study, we use a quantitative genetics model of structured populations to investigate the evolution of senescence in a variable environment. Adaptation to local environments depends on phenotypic traits whose optimal values vary with age and with environmental conditions. We study different scenarios of environmental heterogeneity, where the environment changes abruptly, gradually, or cyclically with time and where the environment is heterogeneous in space with different populations connected by migration. The strength of selection decreases with age, which predicts slower adaptation of traits expressed late in the life cycle, potentially generating stronger senescence in habitats where selection changes in space or in time. This prediction is however complicated by the fact that the genetic variance also increases with age. Using numerical calculations, we found that the rate of senescence is generally increased when the environment varies. In particular, migration between different habitats is a source of senescence in heterogeneous landscapes. We also show that the rate of senescence can vary transiently when the population is not at equilibrium, with possible implications for experimental evolution and the study of invasive species. Our results highlight the need to study age-specific adaptation, as a changing environment can have a different impact on different age classes. [Cotto, Olivier; Ronce, Ophelie] Univ Montpellier 2, CNRS, Inst Sci Evolut, F-34095 Montpellier 5, France Cotto, O (reprint author), Univ Montpellier 2, CNRS, Inst Sci Evolut, CC65,Pl Eugene Bataillon, F-34095 Montpellier 5, France. ophelie.ronce@univ-montp2.fr Ministry of Research; Agence Nationale de la Recherche [ANR-09-PEXT-011, 2010 BLAN 1715]; Agropolis Fondation (Montpellier, France) ["BIOFIS" 1001-001] We thank Patrice David, Daniel Promislow, Richard Gomulkiewicz, Rees Kassen, Isabelle Olivieri, Jean Clobert, Jarle Tufto, Francois Rousset and Francois Blanquart for discussions, helpful comments and help with technical issues. OC acknowledges support from the Ministry of Research through a Ph.D. scholarship. This is publication ISEM 2014-075 from the Institut des Sciences de l'Evolution, Montpellier. This work was supported by the Agence Nationale de la Recherche, programme "6th extinction", through the projects EVORANGE (ANR-09-PEXT-011) and GENEVOLSPE (2010 BLAN 1715) and by Agropolis Fondation (Montpellier, France) under the reference ID "BIOFIS" 1001-001." ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; [Anonymous], 2011, P R SOC BIOL SCI B, V278, P144; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Blanquart F, 2012, J EVOLUTION BIOL, V25, P1351, DOI 10.1111/j.1420-9101.2012.02524.x; Bolnick DI, 2008, BIOL J LINN SOC, V94, P273, DOI 10.1111/j.1095-8312.2008.00978.x; BULMER MG, 1980, MATH THEORY QUANTITA; Charlesworth B, 1996, P NATL ACAD SCI USA, V93, P6140, DOI 10.1073/pnas.93.12.6140; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Cotto O, 2013, J EVOLUTION BIOL, V26, P944, DOI 10.1111/jeb.12100; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; Engen S, 2011, EVOLUTION, V65, P2893, DOI 10.1111/j.1558-5646.2011.01342.x; Escobar JS, 2008, CURR BIOL, V18, P906, DOI 10.1016/j.cub.2008.04.070; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; Gomulkiewicz R, 2009, AM NAT, V174, pE218, DOI 10.1086/645086; HALDANE JBS, 1941, NEW PATHS GENETICS; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Holt RD, 1996, EVOL ECOL, V10, P1, DOI 10.1007/BF01239342; Huisman J, 2012, EVOLUTION, V66, P3444, DOI 10.1111/j.1558-5646.2012.01707.x; Lande R, 1996, EVOLUTION, V50, P434, DOI 10.1111/j.1558-5646.1996.tb04504.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Lenormand T, 2002, TRENDS ECOL EVOL, V17, P183, DOI 10.1016/S0169-5347(02)02497-7; LYNCH M, 1991, LIMNOL OCEANOGR, V36, P1301, DOI 10.4319/lo.1991.36.7.1301; Mack PD, 2000, GENETICA, V110, P31, DOI 10.1023/A:1017538505627; Magalhaes S, 2007, J EVOLUTION BIOL, V20, P2016, DOI 10.1111/j.1420-9101.2007.01365.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Moorad JA, 2008, GENETICS, V179, P2061, DOI 10.1534/genetics.108.088526; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; Pletcher SD, 1998, GENETICS, V148, P287; Promislow DEL, 1996, GENETICS, V143, P839; ROFF A.D, 2001, LIFE HIST EVOLUTION; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Shpak M, 2007, GENETICS, V177, P2181, DOI 10.1534/genetics.107.080747; Tissenbaum HA, 2012, J GERONTOL A-BIOL, V67, P503, DOI 10.1093/gerona/gls088; Tufto J, 2000, GENET RES, V76, P285, DOI 10.1017/S0016672300004742; TULJAPURKAR SD, 1980, THEOR POPUL BIOL, V18, P314, DOI 10.1016/0040-5809(80)90057-X; TURELLI M, 1994, GENETICS, V138, P913; Wachter KW, 2013, P NATL ACAD SCI USA, V110, P10141, DOI 10.1073/pnas.1306656110; Westley PAH, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2327; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williams PD, 2003, EVOLUTION, V57, P1478 54 6 6 0 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2014 68 9 2481 2493 10.1111/evo.12462 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AP1JC WOS:000341824100003 24909756 Bronze 2019-02-21 J Lucek, K; Sivasundar, A; Seehausen, O Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole DISENTANGLING THE ROLE OF PHENOTYPIC PLASTICITY AND GENETIC DIVERGENCE IN CONTEMPORARY ECOTYPE FORMATION DURING A BIOLOGICAL INVASION EVOLUTION English Article Adaptive divergence; ecotype formation; heritability; invasion biology; plasticity LAKE-STREAM STICKLEBACK; QUEEN-CHARLOTTE-ISLANDS; LIFE-HISTORY EVOLUTION; THREESPINE STICKLEBACK; ADAPTIVE EVOLUTION; REPRODUCTIVE ISOLATION; PARALLEL EVOLUTION; MORPHOLOGICAL DIVERGENCE; GASTEROSTEUS-ACULEATUS; ECOLOGICAL SPECIATION The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full-sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case. [Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole] Univ Bern, Inst Ecol & Evolut, Dept Aquat Ecol & Evolut, CH-3012 Bern, Switzerland; [Lucek, Kay; Sivasundar, Arjun; Seehausen, Ole] EAWAG Swiss Fed Inst Aquat Sci & Technol, Dept Fish Ecol & Evolut, Ctr Ecol Evolut & Biogeochem, CH-6047 Kastanienbaum, Switzerland; [Sivasundar, Arjun] Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India Lucek, K (reprint author), Univ Bern, Inst Ecol & Evolut, Dept Aquat Ecol & Evolut, Baltzerstr 6, CH-3012 Bern, Switzerland. kay.lucek@eawag.ch Lucek, Kay/0000-0002-2253-2556 EAWAG Action field grant "AquaDiverse" We thank J. Boughman, M. Lemoine, A. Hendry, B. Lundsgaard-Hansen, D. Marques, O. Selz, C. E. Wagner, and five anonymous reviewers for valuable comments on earlier versions of the manuscript. M. Lemoine provided valuable statistical assistance for linear models. M. P. Haesler and M. Zeller helped capturing the wild fish in 2010 as well as feeding the experimental fish. This study was supported by an EAWAG Action field grant "AquaDiverse." Abramoff MD, 2004, J BIOPHOTONICS INT, V11, P36; Adams CE, 2004, BIOL J LINN SOC, V81, P611, DOI 10.1111/j.1095-8312.2004.00314.x; ANKER G C, 1974, Transactions of the Zoological Society of London, V32, P311; BAREL CDN, 1983, NETH J ZOOL, V33, P357; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Berner D, 2008, J EVOLUTION BIOL, V21, P1653, DOI 10.1111/j.1420-9101.2008.01583.x; Berner D, 2011, J EVOLUTION BIOL, V24, P1975, DOI 10.1111/j.1420-9101.2011.02330.x; Berner D, 2010, MOL ECOL, V19, P4963, DOI 10.1111/j.1365-294X.2010.04858.x; Berner D, 2009, EVOLUTION, V63, P1740, DOI 10.1111/j.1558-5646.2009.00665.x; Blake RW, 2005, J FISH BIOL, V67, P834, DOI 10.1111/j.1095-8649.2005.00788.x; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Caldecutt WJ, 1998, COPEIA, P827; Calsbeek B, 2011, EVOL APPL, V4, P726, DOI 10.1111/j.1752-4571.2011.00195.x; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Carroll SP, 1999, GEOGRAPHIC VARIATION IN BEHAVIOR, P52; Carroll SP, 2001, GENETICA, V112, P257, DOI 10.1023/A:1013354830907; CARROLL SP, 1995, BEHAV ECOL, V6, P46, DOI 10.1093/beheco/6.1.46; Collyer ML, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022310; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; DAY T, 1994, EVOLUTION, V48, P1723, DOI 10.1111/j.1558-5646.1994.tb02208.x; Facon B, 2006, TRENDS ECOL EVOL, V21, P130, DOI 10.1016/j.tree.2005.10.012; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Hatfield T, 1997, AM NAT, V149, P1009, DOI 10.1086/286036; Hendry AP, 2011, J EVOLUTION BIOL, V24, P23, DOI 10.1111/j.1420-9101.2010.02155.x; Hendry AP, 2002, EVOLUTION, V56, P1199; Hendry AP, 2000, SCIENCE, V290, P516, DOI 10.1126/science.290.5491.516; Hendry AP, 2004, EVOLUTION, V58, P2319; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Keller SR, 2008, ECOL LETT, V11, P852, DOI 10.1111/j.1461-0248.2008.01188.x; Klingenberg CP, 2011, MOL ECOL RESOUR, V11, P353, DOI 10.1111/j.1755-0998.2010.02924.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; LAVIN PA, 1993, CAN J ZOOL, V71, P11, DOI 10.1139/z93-003; Lee CE, 2007, GENETICA, V129, P179, DOI 10.1007/s10709-006-9013-9; Lee CE, 2011, EVOLUTION, V65, P2229, DOI 10.1111/j.1558-5646.2011.01308.x; Lee CE, 2003, INTEGR COMP BIOL, V43, P439, DOI 10.1093/icb/43.3.439; Lemoine M, 2012, AM NAT, V179, P270, DOI 10.1086/663699; Lucek K, 2013, J EVOLUTION BIOL, V26, P2691, DOI 10.1111/jeb.12267; Lucek K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049377; Lucek K, 2010, MOL ECOL, V19, P3995, DOI 10.1111/j.1365-294X.2010.04781.x; Matesanz S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0044955; McGee MD, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-277; MCPHAIL JD, 1984, CAN J ZOOL, V62, P1402, DOI 10.1139/z84-201; MOODIE GEE, 1976, SYST ZOOL, V25, P49, DOI 10.2307/2412778; Moser D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050620; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Peichel CL, 2001, NATURE, V414, P901, DOI 10.1038/414901a; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Phillips BL, 2006, OIKOS, V112, P122, DOI 10.1111/j.0030-1299.2006.13795.x; Prentis PJ, 2008, TRENDS PLANT SCI, V13, P288, DOI 10.1016/j.tplants.2008.03.004; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Proulx R, 2004, EVOL ECOL RES, V6, P503; Ravinet M, 2013, J EVOLUTION BIOL, V26, P186, DOI 10.1111/jeb.12049; REIMCHEN TE, 1985, CAN J ZOOL, V63, P2944, DOI 10.1139/z85-441; Reyjol Y, 2005, CAN J FISH AQUAT SCI, V62, P2294, DOI 10.1139/F05-097; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Robinson BW, 1996, EVOL ECOL, V10, P631, DOI 10.1007/BF01237711; Robinson BW, 2000, BEHAVIOUR, V137, P865, DOI 10.1163/156853900502501; Roy D., 2010, LECT NOTES EARTH SCI, V124, P233; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Sharpe DMT, 2008, EVOL ECOL RES, V10, P849; Shine R, 2012, EVOL APPL, V5, P107, DOI 10.1111/j.1752-4571.2011.00201.x; Simpson GG., 1953, MAJOR FEATURES EVOLU; STRONG DR, 1973, ECOLOGY, V54, P1383; Sultan SE, 2013, EVOL APPL, V6, P266, DOI 10.1111/j.1752-4571.2012.00287.x; Svanback R, 2012, AM NAT, V180, P50, DOI 10.1086/666000; Thibert-Plante X, 2011, J EVOLUTION BIOL, V24, P326, DOI 10.1111/j.1420-9101.2010.02169.x; Thompson CE, 1997, EVOLUTION, V51, P1955, DOI 10.1111/j.1558-5646.1997.tb05117.x; Vellend M, 2007, TRENDS ECOL EVOL, V22, P481, DOI 10.1016/j.tree.2007.02.0171; Venables WN, 2002, MODERN APPL STAT S; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; Wark AR, 2010, J EXP BIOL, V213, P108, DOI 10.1242/jeb.031625; Weinig C, 2000, EVOLUTION, V54, P441; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westley PAH, 2011, AM NAT, V177, P496, DOI 10.1086/658902; Willacker JJ, 2010, BIOL J LINN SOC, V101, P595, DOI 10.1111/j.1095-8312.2010.01531.x; Wund MA, 2008, AM NAT, V172, P449, DOI 10.1086/590966; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825; Yoder JB, 2010, J EVOLUTION BIOL, V23, P1581, DOI 10.1111/j.1420-9101.2010.02029.x 88 30 30 3 97 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2014 68 9 2619 2632 10.1111/evo.12443 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AP1JC WOS:000341824100013 24766190 Bronze 2019-02-21 J Takata, M; Hayashi, S; Thomas, CE; Koyama, S; Satoh, T; Fugo, H Takata, M.; Hayashi, S.; Thomas, C. E.; Koyama, S.; Satoh, T.; Fugo, H. Asynchronous hatching in the burying beetle, Nicrophorus quadripunctatus, maxmizes parental fitness JOURNAL OF EVOLUTIONARY BIOLOGY English Article allocation of parental investment; asynchronous hatching; burying beetle; Nicrophorus; Parent-offspring conflict BROOD REDUCTION; VESPILLOIDES; EVOLUTION; BIRDS; SIZE; FAMILIES; GROWTH Life history theory predicts that natural selection favours parents who balance investment across offspring to maximize fitness. Theoretical studies have shown that the optimal level of parental investment from the offspring's perspective exceeds that of its parents, and the disparity between the two generates evolutionary conflict for the allocation of parental investment. In various species, the offspring hatch asynchronously. The age hierarchy of the offspring usually establishes competitive asymmetries within the brood and determines the allocation of parental investment among offspring. However, it is not clear whether the allocation of parental investment determined by hatching pattern is optimal for parent or offspring. Here, we manipulated the hatching pattern of the burying beetle Nicrophorus quadripunctatus to demonstrate the influence of hatching pattern on the allocation of parental investment. We found that the total weight of a brood was largest in the group that mimicked the natural hatching pattern, with the offspring skewed towards early hatchers. This increases parental fitness. However, hatching patterns with more later hatchers had heavier individual offspring weights, which increases offspring fitness, but this hatching pattern is not observed in the wild. Thus, our study suggests that the natural hatching pattern optimizes parental fitness, rather than offspring fitness. [Takata, M.; Fugo, H.] Tokyo Univ Agr & Technol, United Grad Sch Agr Sci, Fuchu, Tokyo, Japan; [Hayashi, S.; Koyama, S.; Satoh, T.] Tokyo Univ Agr & Technol, Grad Sch Agr, Fuchu, Tokyo, Japan; [Thomas, C. E.] Int Ctr Life, LIFElab, Newcastle Upon Tyne, Tyne & Wear, England Koyama, S (reprint author), Tokyo Univ Agr & Technol, Grad Sch Agr, 3-5-8 Saiwai, Fuchu, Tokyo, Japan. skoyama@cc.tuat.ac.jp Koyama, Satoshi/C-8369-2013; Satoh, Toshiyuki/C-8374-2013 Satoh, Toshiyuki/0000-0002-7475-6746 Ministry of Education, Culture, Sports, Science and Technology (MEXT) [B:23300281] This study was supported by a Grant-in-Aid for Scientific Research (B:23300281) from The Ministry of Education, Culture, Sports, Science and Technology (MEXT) to HF. BARTLETT J, 1988, BEHAV ECOL SOCIOBIOL, V22, P429, DOI 10.1007/BF00294981; Bates D. M., 2010, LME4 LINEAR MIXED EF; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Forbes S, 1997, NATURE, V390, P351, DOI 10.1038/37025; Forbes S, 2000, BEHAV ECOL SOCIOBIOL, V48, P413, DOI 10.1007/s002650000239; Godfray HCJ, 2000, PHILOS T ROY SOC B, V355, P1581, DOI 10.1098/rstb.2000.0719; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; LAZARUS J, 1986, ANIM BEHAV, V34, P1791, DOI 10.1016/S0003-3472(86)80265-2; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; MAYNARDSMITH J, 1977, ANIM BEHAV, V25, P1, DOI DOI 10.1016/0003-3472(77)90062-8); Mock D, 1997, EVOLUTION SIBLING RI; MOCK DW, 1995, TRENDS ECOL EVOL, V10, P130, DOI 10.1016/S0169-5347(00)89014-X; MULLER JK, 1990, BEHAV ECOL SOCIOBIOL, V27, P11; NALEPA CA, 1988, ANN ENTOMOL SOC AM, V81, P637, DOI 10.1093/aesa/81.4.637; OTRONEN M, 1988, ANN ZOOL FENN, V25, P191; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Royle NJ, 2012, P ROY SOC B-BIOL SCI, V279, P4914, DOI 10.1098/rspb.2012.1701; Ryan TJ, 2004, OECOLOGIA, V140, P46, DOI 10.1007/s00442-004-1563-x; Smiseth PT, 2008, OIKOS, V117, P899, DOI 10.1111/j.2008.0030-1299.16473.x; Smiseth PT, 2007, ECOLOGY, V88, P3174, DOI 10.1890/06-1992.1; Smiseth PT, 2009, ANIM BEHAV, V77, P519, DOI 10.1016/j.anbehav.2008.11.011; Smiseth PT, 2006, FUNCT ECOL, V20, P151, DOI 10.1111/j.1365-2435.2006.01072.x; Smiseth PT, 2005, ANIM BEHAV, V69, P551, DOI 10.1016/j.anbehav.2004.06.004; Smiseth PT, 2003, P ROY SOC B-BIOL SCI, V270, P1773, DOI 10.1098/rspb.2003.2444; Smiseth PT, 2002, ANIM BEHAV, V63, P577, DOI 10.1006/anbe.2001.1944; Stenning MJ, 1996, TRENDS ECOL EVOL, V11, P243, DOI 10.1016/0169-5347(96)10030-6; Stoleson Scott H., 1995, Current Ornithology, V12, P191; Takata M, 2013, J ETHOL, V31, P249, DOI 10.1007/s10164-013-0373-1; Trivers R. L., 1974, INTEGR COMP BIOL, V14, P249, DOI DOI 10.1093/ICB/14.1.249; Westneat David F., 1996, Trends in Ecology and Evolution, V11, P87, DOI 10.1016/0169-5347(96)81049-4; While GM, 2007, FUNCT ECOL, V21, P513, DOI 10.1111/j.1365-2435.2007.01272.x; Williams G., 1966, AM NAT, V100, P678; WILSON DS, 1984, ECOL ENTOMOL, V9, P195, DOI 10.1111/j.1365-2311.1984.tb00715.x 33 3 3 0 15 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2014 27 9 1830 1836 10.1111/jeb.12433 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AO8BL WOS:000341577300007 24898472 2019-02-21 J Losdat, S; Helfenstein, F; Blount, JD; Richner, H Losdat, S.; Helfenstein, F.; Blount, J. D.; Richner, H. Resistance to oxidative stress shows low heritability and high common environmental variance in a wild bird JOURNAL OF EVOLUTIONARY BIOLOGY English Review additive genetic variance; common environment; cross-sex genetic correlation; heritability; oxidative stress; Parus major NESTLING GREAT TITS; LIFETIME REPRODUCTIVE SUCCESS; HISTORY TRADE-OFFS; PARUS-MAJOR; GENETIC-VARIATION; SEXUAL SELECTION; IMMUNE-RESPONSE; MATE CHOICE; BROOD SIZE; COST Oxidative stress was recently demonstrated to affect several fitness-related traits and is now well recognized to shape animal life-history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross-sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free-living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross-sex genetic correlation in offspring resistance to oxidative stress by performing a split-nest cross-fostering experiment where 155 broods were split, and all siblings (n=791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free-radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross-sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life. [Losdat, S.] Univ Aberdeen, Sch Biol Sci, Aberdeen AB24 2TZ, Scotland; [Losdat, S.; Helfenstein, F.; Richner, H.] Univ Bern, Inst Ecol & Evolut, Evolutionary Ecol Lab, Bern, Switzerland; [Helfenstein, F.] Univ Neuchatel, Inst Biol, CH-2000 Neuchatel, Switzerland; [Blount, J. D.] Univ Exeter, Ctr Ecol & Conservat, Coll Life & Environm Sci, Penryn, Cornwall, England Losdat, S (reprint author), Univ Aberdeen, Sch Biol Sci, Zool Bldg,Tillydrone Ave, Aberdeen AB24 2TZ, Scotland. sylvain_losdat@yahoo.fr Helfenstein, Fabrice/I-5634-2013; Richner, Heinz/B-1659-2008 Helfenstein, Fabrice/0000-0001-8412-0461; Richner, Heinz/0000-0001-7390-0526 Swiss National Science Foundation; Swiss NSF; Marie Curie IEF Post-Doctoral Fellowships; Royal Society This work was conducted under licence of the Ethical Committee of the Agricultural Office of the Canton Bern. Ringing permits were provided by the Swiss Federal Agency for Environment, Forests and Landscapes. The authors thank Julien Martin and Matthew Wolak for helpful advice and David Costantini and two anonymous reviewers for constructive comments on previous versions of the manuscript. The study was financially supported by the Swiss National Science Foundation. SL was supported by a Swiss NSF and a Marie Curie IEF Post-Doctoral Fellowships. JDB was supported by a Royal Society Research Fellowship. The authors have declared no conflict of interest. Aitken RJ, 1999, J REPROD FERTIL, V115, P1; Aitken RJ, 2006, MOL CELL ENDOCRINOL, V250, P66, DOI 10.1016/j.mce.2005.12.026; ALATALO RV, 1986, EVOLUTION, V40, P574, DOI 10.1111/j.1558-5646.1986.tb00508.x; Almbro M, 2011, ECOL LETT, V14, P891, DOI 10.1111/j.1461-0248.2011.01653.x; Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Archer CR, 2013, EVOLUTION, V67, P620, DOI 10.1111/j.1558-5646.2012.01805.x; Berthouly A, 2008, FUNCT ECOL, V22, P854, DOI 10.1111/j.1365-2435.2008.01439.x; Berthouly A, 2007, FUNCT ECOL, V21, P335, DOI 10.1111/j.1365-2435.2006.01236.x; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Blount JD, 2002, FUNCT ECOL, V16, P445, DOI 10.1046/j.1365-2435.2002.00648.x; Boncoraglio G, 2012, BEHAV ECOL SOCIOBIOL, V66, P539, DOI 10.1007/s00265-011-1302-3; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Bonduriansky Russell, 2007, P176; Bonisoli-Alquati A, 2011, P ROY SOC B-BIOL SCI, V278, P1273, DOI 10.1098/rspb.2010.1741; Brinkhof MWG, 1999, P ROY SOC B-BIOL SCI, V266, P2315, DOI 10.1098/rspb.1999.0925; Broedbaek K, 2011, FREE RADICAL BIO MED, V50, P1488, DOI 10.1016/j.freeradbiomed.2011.02.017; Brzezinska-Slebodzinska E, 2001, ACTA VET HUNG, V49, P413, DOI 10.1556/AVet.49.2001.4.5; Butler D., 2007, ASREML S REF MAN; Catoni C, 2008, ANIM BEHAV, V76, P1107, DOI 10.1016/j.anbehav.2008.05.027; Charmantier A, 2006, P ROY SOC B-BIOL SCI, V273, P225, DOI 10.1098/rspb.2005.3294; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Norte A, 2009, J AVIAN BIOL, V40, P157, DOI 10.1111/j.1600-048X.2009.04461.x; Costantini D, 2014, OXIDATIVE STRESS HOR; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2006, J COMP PHYSIOL B, V176, P575, DOI 10.1007/s00360-006-0080-0; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Danchin E, 2011, NAT REV GENET, V12, P475, DOI 10.1038/nrg3028; Danchin E, 2010, OIKOS, V119, P210, DOI 10.1111/j.1600-0706.2009.17640.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Drobniak SM, 2010, J EVOLUTION BIOL, V23, P1286, DOI 10.1111/j.1420-9101.2010.01993.x; Drobniak SM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0069786; Ellegren H, 1996, P ROY SOC B-BIOL SCI, V263, P1635, DOI 10.1098/rspb.1996.0239; Esterbauer H, 1996, REV PHYSIOL BIOCH P, V127, P31, DOI 10.1007/BFb0048264; Falconer D. S., 1996, INTRO QUANTITATIVE G; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fisher RA, 1930, GENETICAL THEORY NAT; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; GEBHARDTHENRICH SG, 1991, J EVOLUTION BIOL, V4, P341, DOI 10.1046/j.1420-9101.1991.4030341.x; Geens A, 2009, COMP BIOCHEM PHYS C, V150, P155, DOI 10.1016/j.cbpc.2009.04.007; GUSTAFSSON L, 1986, AM NAT, V128, P761, DOI 10.1086/284601; Hadfield JD, 2006, P R SOC B, V273, P1347, DOI 10.1098/rspb.2005.3459; Hall ME, 2010, FUNCT ECOL, V24, P365, DOI 10.1111/j.1365-2435.2009.01635.x; HALLIWELL B, 1993, AM J CLIN NUTR, V57, P715; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Hinde CA, 2010, SCIENCE, V327, P1373, DOI 10.1126/science.1186056; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Ito K, 2004, NATURE, V431, P997, DOI 10.1038/nature02989; Jensen H, 2003, J EVOLUTION BIOL, V16, P1296, DOI 10.1046/j.1420-9101.2003.00614.x; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kim SY, 2010, J EVOLUTION BIOL, V23, P769, DOI 10.1111/j.1420-9101.2010.01942.x; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905; Losdat S, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0888; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Losdat S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022221; Lynch M, 1998, GENETICS ANAL QUANTI; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; McCleery RH, 2004, AM NAT, V164, pE62, DOI 10.1086/422660; Merila J, 2001, CURR ORNITHOL, V16, P179; Merila J, 2000, AM NAT, V155, P301, DOI 10.1086/303330; Merila J, 1999, HEREDITY, V83, P103, DOI 10.1046/j.1365-2540.1999.00585.x; Merila J, 1997, EVOLUTION, V51, P526, DOI 10.1111/j.1558-5646.1997.tb02440.x; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Migliaccio E, 1999, NATURE, V402, P309, DOI 10.1038/46311; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Morrow G, 2004, FASEB J, V18, P598, DOI 10.1096/fj.03-0860fje; Mougeot F, 2009, P R SOC B, V276, P1093, DOI 10.1098/rspb.2008.1570; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Neuenschwander S, 2003, BEHAV ECOL, V14, P457, DOI 10.1093/beheco/arg025; Noguera JC, 2010, BEHAV ECOL, V21, P479, DOI 10.1093/beheco/arq005; Noordwijk A.J., 1988, GENET RES, V51, P149; Olsson M, 2008, J EXP BIOL, V211, P1257, DOI 10.1242/jeb.015065; Pamplona R, 2011, AM J PHYSIOL-REG I, V301, pR843, DOI 10.1152/ajpregu.00034.2011; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; Pike TW, 2010, BIOL LETTERS, V6, P191, DOI 10.1098/rsbl.2009.0815; Pizzari T, 2009, SPERM BIOLOGY: AN EVOLUTIONARY PERSPECTIVE, P207, DOI 10.1016/B978-0-12-372568-4.00006-9; Poissant J, 2010, EVOLUTION, V64, P97, DOI 10.1111/j.1558-5646.2009.00793.x; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; R Core Team, 2013, R LANG ENV STAT COMP; Roff D. A, 1997, EVOLUTIONARY QUANTIT; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Saladin V, 2003, MOL ECOL NOTES, V3, P520, DOI 10.1046/j.1471-8286.2003.00498.x; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Sies H., 1991, OXIDATIVE STRESS OXI; Tothova Z, 2007, CELL, V128, P325, DOI 10.1016/j.cell.2007.01.003; Tremellen K, 2008, HUM REPROD UPDATE, V14, P243, DOI 10.1093/humupd/dmn004; van de Crommenacker J, 2011, J ANIM ECOL, V80, P668, DOI 10.1111/j.1365-2656.2010.01792.x; Velando A, 2008, BIOESSAYS, V30, P1212, DOI 10.1002/bies.20838; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Visscher PM, 2008, NAT REV GENET, V9, P255, DOI 10.1038/nrg2322; Wahl R. U. R., 1998, J CHEM SOC P2, V9, P2009; Wiersma P, 2004, BIOL LETT, V271, P360; Wilson AJ, 2008, J EVOLUTION BIOL, V21, P647, DOI 10.1111/j.1420-9101.2008.01500.x; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Zou CG, 2001, LIFE SCI, V69, P75, DOI 10.1016/S0024-3205(01)01112-2 101 16 16 0 61 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. SEP 2014 27 9 1990 2000 10.1111/jeb.12454 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AO8BL WOS:000341577300023 25040169 Bronze 2019-02-21 J Tison, JL; Edmark, VN; Sandoval-Castellanos, E; Van Dyck, H; Tammaru, T; Valimaki, P; Dalen, L; Gotthard, K Tison, Jean-Luc; Edmark, Veronica Nystrom; Sandoval-Castellanos, Edson; Van Dyck, Hans; Tammaru, Toomas; Valimaki, Panu; Dalen, Love; Gotthard, Karl Signature of post-glacial expansion and genetic structure at the northern range limit of the speckled wood butterfly BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article Bayesian analyses; coalescent simulations; demographic inference; microsatellites; Pararge aegeria; population structure; post-glacial recolonisation APPROXIMATE BAYESIAN COMPUTATION; POPULATION-STRUCTURE; PARARGE-AEGERIA; CLIMATE-CHANGE; MICROSATELLITE ANALYSIS; GEOGRAPHICAL RANGES; LIFE-CYCLE; PLASTICITY; SHIFTS; DIVERSITY The post-glacial recolonisation of northern Europe has left distinct signatures in the genomes of many organisms, both due to random demographic processes and divergent natural selection. However, information on differences in genetic variation in conjunction with patterns of local adaptations along latitudinal gradients is often lacking. In this study, we examine genetic diversity and population structure in the speckled wood butterfly Pararge aegeria in northern Europe to investigate the species post-glacial recolonisation history and discuss how this may have affected its life-history evolution. We collected 209 samples and analysed genetic variation in nine microsatellite loci. The results demonstrated a more pronounced population structure in northern Europe compared with populations further south, as well as an overall decrease in genetic diversity with latitude, likely due to founder effects during the recolonisation process. Coalescent simulations coupled with approximate Bayesian computation suggested that central Scandinavia was colonised from the south, rather than from the east. In contrast to further south, populations at the northern range margin are univoltine expressing only one generation per year. This suggests either that univoltinism evolved independently on each side of the Baltic Sea, or that bivoltinism evolved in the south after northern Europe was recolonised. (C) 2014 The Linnean Society of London, [Tison, Jean-Luc] Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, S-10691 Stockholm, Sweden; [Tison, Jean-Luc; Edmark, Veronica Nystrom; Sandoval-Castellanos, Edson; Dalen, Love] Swedish Museum Nat Hist, Dept Bioinformat & Genet, SE-10405 Stockholm, Sweden; [Sandoval-Castellanos, Edson; Gotthard, Karl] Stockholm Univ, Dept Zool, SE-10691 Stockholm, Sweden; [Van Dyck, Hans] UCL, Earth & Life Inst, Biodivers Res Ctr, Behav Ecol & Conservat Grp, B-1348 Louvain La Neuve, Belgium; [Tammaru, Toomas] Univ Tartu, Inst Ecol & Earth Sci, Dept Zool, EE-51014 Tartu, Estonia; [Valimaki, Panu] Univ Oulu, Dept Biol, FI-90014 Oulu, Finland Tison, JL (reprint author), Stockholm Univ, Wenner Gren Inst, Dept Mol Biosci, S-10691 Stockholm, Sweden. jean-luc.tison@nrm.se Dalen, Love/A-6686-2008; Gotthard, Karl/F-1163-2011 Dalen, Love/0000-0001-8270-7613; Sandoval-Castellanos, Edson/0000-0002-0840-8225; Gotthard, Karl/0000-0002-4560-6271 Swedish Research Council; strategic research programme EKOKLIM at Stockholm University; ARC-grant of the Academie Louvain; Estonian Research Council [IUT20-33]; European Union through the European Regional Development Fund (Center of Excellence FIBIR) This work was supported by grants from the Swedish Research Council to KG and LD, as well as the strategic research programme EKOKLIM at Stockholm University, and by a research grant (ARC-grant 10/15-031 of the Academie Louvain) to HVD. TT was supported by the Estonian Research Council (IUT20-33) and by the European Union through the European Regional Development Fund (Center of Excellence FIBIR). We thank M. Olofsson, S. Vandewoestijne and several Finnish entomologists for help in collecting butterflies and three anonymous reviewers for constructive comments on a previous version of the manuscript. The authors have no conflicts of interest to declare. Aalberg Haugen IM, 2012, J EVOLUTION BIOL, V25, P1377, DOI 10.1111/j.1420-9101.2012.02525.x; Abdoullaye D, 2010, MOL ECOL RESOUR, V10, P232, DOI 10.1111/j.1755-0998.2009.02796.x; Aeschbacher S, 2013, MOL ECOL, V22, P987, DOI 10.1111/mec.12165; Arenas M, 2012, MOL BIOL EVOL, V29, P207, DOI 10.1093/molbev/msr187; Beaumont MA, 2002, GENETICS, V162, P2025; Beaumont MA, 2010, ANNU REV ECOL EVOL S, V41, P379, DOI 10.1146/annurev-ecolsys-102209-144621; BOTSTEIN D, 1980, AM J HUM GENET, V32, P314; Buckley J, 2012, MOL ECOL, V21, P267, DOI 10.1111/j.1365-294X.2011.05388.x; Carter DJ, 1986, FIELD GUIDE CATERPIL; Cornuet JM, 2014, BIOINFORMATICS, V30, P1187, DOI 10.1093/bioinformatics/btt763; Csillery K, 2010, TRENDS ECOL EVOL, V25, P410, DOI 10.1016/j.tree.2010.04.001; Dapporto L, 2011, J BIOGEOGR, V38, P854, DOI 10.1111/j.1365-2699.2010.02452.x; Earl DA, 2011, CONSERV GENET RESOUR, V4, P359, DOI DOI 10.1007/S12686-011-9548-7; Eckert CG, 2008, MOL ECOL, V17, P1170, DOI 10.1111/j.1365-294X.2007.03659.x; Eliasson C, 2005, NATIONALNYCKELN SVER; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2008, TRENDS ECOL EVOL, V23, P347, DOI 10.1016/j.tree.2008.04.004; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Excoffier L, 2009, ANNU REV ECOL EVOL S, V40, P481, DOI 10.1146/annurev.ecolsys.39.110707.173414; Fagundes NJR, 2007, P NATL ACAD SCI USA, V104, P17614, DOI 10.1073/pnas.0708280104; Garza JC, 2001, MOL ECOL, V10, P305, DOI 10.1046/j.1365-294x.2001.01190.x; GOLDSTEIN DB, 1995, GENETICS, V139, P463; Gotthard K, 2004, INTEGR COMP BIOL, V44, P471, DOI 10.1093/icb/44.6.471; Gotthard K, 2010, J EVOLUTION BIOL, V23, P1129, DOI 10.1111/j.1420-9101.2010.01994.x; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Guo QF, 2012, MOL ECOL, V21, P5396, DOI 10.1111/mec.12012; Habel JC, 2013, J HERED, V104, P234, DOI 10.1093/jhered/ess092; Hellmann JJ, 2008, OECOLOGIA, V157, P583, DOI 10.1007/s00442-008-1112-0; HENRIKSEN HJ, 1982, SKANDINAVIENS DAGSOM; Hewitt GM, 2004, PHILOS T ROY SOC B, V359, P183, DOI 10.1098/rstb.2003.1388; Hewitt GM, 1999, BIOL J LINN SOC, V68, P87, DOI 10.1006/bijl.1999.0332; Hewitt GM, 2001, MOL ECOL, V10, P537, DOI 10.1046/j.1365-294x.2001.01202.x; Hill JK, 2006, BIOL LETTERS, V2, P152, DOI 10.1098/rsbl.2005.0401; Hill JK, 2011, ANNU REV ENTOMOL, V56, P143, DOI 10.1146/annurev-ento-120709-144746; Hill JK, 1999, P ROY SOC B-BIOL SCI, V266, P1197, DOI 10.1098/rspb.1999.0763; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Jakobsson M, 2007, BIOINFORMATICS, V23, P1801, DOI 10.1093/bioinformatics/btm233; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Kivela SM, 2013, EVOLUTION, V67, P3145, DOI 10.1111/evo.12181; Klopfstein S, 2006, MOL BIOL EVOL, V23, P482, DOI 10.1093/molbev/msj057; Lessa EP, 2003, P NATL ACAD SCI USA, V100, P10331, DOI 10.1073/pnas.1730921100; Nordstrom F., 1955, DISTRIBUTION FENNOSC; NYLIN S, 1989, BIOL J LINN SOC, V38, P155, DOI 10.1111/j.1095-8312.1989.tb01571.x; NYLIN S, 1995, BIOL J LINN SOC, V55, P143, DOI 10.1006/bijl.1995.0033; PAETKAU D, 1994, MOL ECOL, V3, P489, DOI 10.1111/j.1365-294X.1994.tb00127.x; Parmesan C, 1999, NATURE, V399, P579, DOI 10.1038/21181; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Poyry J, 2009, GLOBAL CHANGE BIOL, V15, P732, DOI 10.1111/j.1365-2486.2008.01789.x; Pritchard JK, 2000, GENETICS, V155, P945; Ramachandran S, 2005, P NATL ACAD SCI USA, V102, P15942, DOI 10.1073/pnas.0507611102; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Seppanen E., 1969, ANN ENTOMOLOGICA FEN, V35, P129; SHREEVE TG, 1986, ECOL ENTOMOL, V11, P325, DOI 10.1111/j.1365-2311.1986.tb00309.x; Slatkin M, 2012, GENETICS, V191, P171, DOI 10.1534/genetics.112.139022; Sousa VC, 2012, HEREDITY, V108, P521, DOI 10.1038/hdy.2011.116; Stewart JR, 2010, P ROY SOC B-BIOL SCI, V277, P661, DOI 10.1098/rspb.2009.1272; Storz JF, 2002, EVOLUTION, V56, P154; Taberlet P, 1999, BIOL J LINN SOC, V68, P41, DOI 10.1111/j.1095-8312.1999.tb01157.x; Taberlet P, 1998, MOL ECOL, V7, P453, DOI 10.1046/j.1365-294x.1998.00289.x; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Vandewoestijne S, 2011, ECOGRAPHY, V34, P876, DOI 10.1111/j.1600-0587.2010.06458.x; Vandewoestijne S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013810; Waits L, 2000, MOL ECOL, V9, P421, DOI 10.1046/j.1365-294x.2000.00892.x; Weingartner E, 2006, SYST ENTOMOL, V31, P621, DOI 10.1111/j.1365-3113.2006.00333.x; Wiklund C, 2011, BIOL J LINN SOC, V102, P635, DOI 10.1111/j.1095-8312.2010.01581.x 67 7 7 1 63 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. SEP 2014 113 1 136 148 10.1111/bij.12327 13 Evolutionary Biology Evolutionary Biology AN4VC WOS:000340585700011 Bronze 2019-02-21 J Del Giudice, M; Klimczuk, ACE; Traficonte, DM; Maestripieri, D Del Giudice, Marco; Klimczuk, Amanda C. E.; Traficonte, Daniel M.; Maestripieri, Dario Autistic-like and schizotypal traits in a life history perspective: diametrical associations with impulsivity, sensation seeking, and sociosexual behavior EVOLUTION AND HUMAN BEHAVIOR English Article Autistic-like traits; Diametrical model; Impulsivity; Life history strategy; Schizotypal traits; Sexual selection; Sociosexuality SPECTRUM QUOTIENT AQ; MALE BRAIN THEORY; PHENOTYPIC PLASTICITY; GENERAL-POPULATION; GENETIC-VARIATION; SEX-DIFFERENCES; PERSONALITY; SCHIZOPHRENIA; DISORDER; CREATIVITY According to recent theoretical models, autistic-like and schizotypal traits can be regarded as opposite sides of a single continuum of variation in personality and cognition, and may be diametrically associated with individual differences in life history strategies. In this view, schizotypy is a psychological phenotype oriented toward high mating effort and reduced parenting, consistent with a fast life history strategy, whereas autistic-like traits contribute to a slow strategy characterized by reduced mating effort and high parental investment. In this study, we tested the hypothesis that autistic-like and schizotypal traits would be diametrically associated with unrestricted sociosexuality, impulsivity, and sensation seeking (three key behavioral correlates of fast life history strategies in humans) in a sample of 152 young adults (18-38 years). The results were consistent with a diametrical autism-schizotypy axis of individual variation. In line with our hypotheses, autism-schizotypy scores were uniquely associated with individual differences in impulsivity, sensation seeking, and sociosexual behavior, even after controlling for variation in Big Five personality traits. However, we found no significant associations with sociosexual attitude in the present sample. Our findings provide additional support for a life history model of autistic-like and schizotypal traits and demonstrate the heuristic value of this approach in the study of personality and psychopathology. (C) 2014 Elsevier Inc. All rights reserved. [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA; [Klimczuk, Amanda C. E.; Maestripieri, Dario] Univ Chicago, Inst Mind & Biol, Chicago, IL 60637 USA; [Traficonte, Daniel M.] Univ Chicago, Ctr Global Hlth, Chicago, IL 60637 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Aleman A, 2003, ARCH GEN PSYCHIAT, V60, P565, DOI 10.1001/archpsyc.60.6.565; Archer J, 2003, REV GEN PSYCHOL, V7, P219, DOI 10.1037/1089-2680.7.3.219; Baron-Cohen S, 2001, J AUTISM DEV DISORD, V31, P5, DOI 10.1023/A:1005653411471; Baron-Cohen S, 2002, TRENDS COGN SCI, V6, P248, DOI 10.1016/S1364-6613(02)01904-6; Baron-Cohen S, 2009, PHILOS T R SOC B, V364, P1377, DOI 10.1098/rstb.2008.0337; Bejerot S, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0087961; Brosnan M, 2010, J AUTISM DEV DISORD, V40, P1, DOI 10.1007/s10803-009-0815-3; Carroll LS, 2009, GENOME MED, V1, DOI 10.1186/gm102; Claridge G., 1997, SCHIZOTYPY IMPLICATI; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-119; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; Crespi BJ, 2011, HANDBOOK OF SCHIZOPHRENIA SPECTRUM DISORDERS, VOL 1, P163, DOI 10.1007/978-94-007-0837-2_7; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; DARTON RA, 1980, STATISTICIAN, V29, P167, DOI 10.2307/2988040; Del Giudice M., BIOBEHAVIORAL FDN SE; Del Giudice M., PSYCHOL INQ IN PRESS; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Del Giudice M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0016040; DeYoung C. G., 2011, HDB SELF REGULATION, P485; Dinsdale NL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063316; Draghi JA, 2012, EVOLUTION, V66, P2891, DOI 10.1111/j.1558-5646.2012.01649.x; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Ericson M, 2011, BEHAV GENET, V41, P499, DOI 10.1007/s10519-010-9401-x; EYSENCK SBG, 1978, PSYCHOL REP, V43, P1247, DOI 10.2466/pr0.1978.43.3f.1247; Fletcher-Watson S, 2012, BRIT J DEV PSYCHOL, V30, P446, DOI 10.1111/j.2044-835X.2011.02054.x; Gilman SR, 2012, NAT NEUROSCI, V15, P1723, DOI 10.1038/nn.3261; Handcock MS, 1998, SOCIOL METHODOL, V28, P53, DOI 10.1111/0081-1750.00042; Happe F, 2009, PHILOS T R SOC B, V364, P1369, DOI 10.1098/rstb.2008.0332; Haselton MG, 2006, HUM NATURE-INT BIOS, V17, P50, DOI 10.1007/s12110-006-1020-0; Hellemans H, 2007, J AUTISM DEV DISORD, V37, P260, DOI 10.1007/s10803-006-0159-1; Hoekstra RA, 2008, J AUTISM DEV DISORD, V38, P1555, DOI 10.1007/s10803-008-0538-x; Hoekstra RA, 2007, ARCH PEDIAT ADOL MED, V161, P372, DOI 10.1001/archpedi.161.4.372; Hurst RM, 2007, PERS INDIV DIFFER, V43, P1938, DOI 10.1016/j.paid.2007.06.012; Jackson JJ, 2007, EVOL HUM BEHAV, V28, P382, DOI 10.1016/j.evolhumbehav.2007.04.005; Jobe LE, 2007, PERS INDIV DIFFER, V42, P1479, DOI 10.1016/j.paid.2006.10.021; John O. P., 1991, BIG 5 INVENTORY VERS; Kalkman HO, 2012, NEUROSCI BIOBEHAV R, V36, P2206, DOI 10.1016/j.neubiorev.2012.07.008; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Kinney D. K., 2001, CREATIVITY RES J, V13, P17, DOI [10.1207/S15326934CRJ1301_3, DOI 10.1207/S15326934CRJ1301_3]; Kyaga S, 2011, BRIT J PSYCHIAT, V199, P373, DOI 10.1192/bjp.bp.110.085316; Lalasz CB, 2011, PERS INDIV DIFFER, V50, P1079, DOI 10.1016/j.paid.2011.01.029; Lee HJ, 2003, BEHAV RES THER, V41, P11, DOI 10.1016/S0005-7967(01)00101-2; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; MEEHL PE, 1962, AM PSYCHOL, V17, P827, DOI 10.1037/h0041029; Miller GF, 2007, SCHIZOPHR RES, V93, P317, DOI 10.1016/j.schres.2007.02.007; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D., 2001, STRONG IMAGINATION M; Nettle D, 2006, BEHAV BRAIN SCI, V29, P418, DOI 10.1017/S0140525X06359092; Nettle D, 2006, J RES PERS, V40, P876, DOI 10.1016/j.jrp.2005.09.004; Penke L, 2008, J PERS SOC PSYCHOL, V95, P1113, DOI 10.1037/0022-3514.95.5.1113; Pollmann M. M. H., 2009, J AUTISM DEV DISORD, V40, P470; R Core Team, 2012, R LANG ENV STAT COMP; RAINE A, 1991, SCHIZOPHRENIA BULL, V17, P555, DOI 10.1093/schbul/17.4.555; Rawlings D, 2008, J RES PERS, V42, P465, DOI 10.1016/j.jrp.2007.06.005; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ronald A, 2011, MOL PSYCHIATR, V16, P1039, DOI 10.1038/mp.2010.82; Russell DW, 2002, PERS SOC PSYCHOL B, V28, P1629, DOI 10.1177/014616702237645; Russell-Smith SN, 2013, J AUTISM DEV DISORD, V43, P695, DOI 10.1007/s10803-012-1614-9; Russell-Smith SN, 2011, PERS INDIV DIFFER, V51, P128, DOI 10.1016/j.paid.2011.03.027; Russell-Smith SN, 2010, J AUTISM DEV DISORD, V40, P968, DOI 10.1007/s10803-010-0945-7; Shaner A, 2004, SCHIZOPHR RES, V70, P101, DOI 10.1016/j.schres.2003.09.014; Stearns S, 1992, EVOLUTION LIFE HIST; Stevenson JL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059329; Stokes M, 2007, J AUTISM DEV DISORD, V37, P1969, DOI 10.1007/s10803-006-0344-2; Svanback R, 2009, AM NAT, V174, P176, DOI 10.1086/600112; van Os J, 2009, PSYCHOL MED, V39, P179, DOI 10.1017/S0033291708003814; Wakabayashi A, 2012, RES AUTISM SPECT DIS, V6, P717, DOI 10.1016/j.rasd.2011.09.008; Westen D, 2001, AM J PSYCHIAT, V158, P547, DOI 10.1176/appi.ajp.158.4.547; Whiteside SP, 2001, PERS INDIV DIFFER, V30, P669, DOI 10.1016/S0191-8869(00)00064-7; Wing L., 1988, ASPECTS AUTISM BIOL; Zhai JG, 2011, BEHAV BRAIN RES, V217, P363, DOI 10.1016/j.bbr.2010.11.004; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037/0022-3514.77.6.1271 77 13 13 4 38 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. SEP 2014 35 5 415 424 10.1016/j.evolhumbehav.2014.05.007 10 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences AN6EG WOS:000340687100009 2019-02-21 J Moss, JH; Maner, JK Moss, Justin H.; Maner, Jon K. The Clock Is Ticking The Sound of a Ticking Clock Speeds Up Women's Attitudes on Reproductive Timing HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Life History Theory; Reproductive timing; Mate preferences; Sex differences; Priming; Evolutionary psychology CHILDHOOD; UNPREDICTABILITY; PREFERENCES; EMBODIMENT; EVOLUTION; STRATEGY; WARMTH; STRESS; SEX The "biological clock" serves as a powerful metaphor that reflects the constraints posed by female reproductive biology. The biological clock refers to the progression of time from puberty to menopause, marking the period during which women can conceive children. Findings from two experiments suggest that priming the passage of time through the sound of a ticking clock influenced various aspects of women's (but not men's) reproductive timing. Moreover, consistent with recent research from the domain of life history theory, those effects depended on women's childhood socioeconomic status (SES). The subtle sound of a ticking clock led low (but not high) SES women to reduce the age at which they sought to get married and have their first child (Study 1), as well as the priority they placed on the social status and long-term earning potential of potential romantic partners (Study 2). Findings suggest that early developmental sensitization processes can interact with subtle environmental stimuli to affect reproductive timing during adulthood. [Moss, Justin H.; Maner, Jon K.] Florida State Univ, Tallahassee, FL 32306 USA Moss, JH (reprint author), Florida State Univ, 1107 W Call St, Tallahassee, FL 32306 USA. moss@psy.fsu.edu Ackerman JM, 2010, SCIENCE, V328, P1712, DOI 10.1126/science.1189993; Balcetis E, 2010, PSYCHOL SCI, V21, P147, DOI 10.1177/0956797609356283; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; CARETTA CM, 1995, PHYSIOL BEHAV, V57, P901, DOI 10.1016/0031-9384(94)00344-5; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Fay AJ, 2012, J EXP SOC PSYCHOL, V48, P1369, DOI 10.1016/j.jesp.2012.05.017; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Haselton MG, 2006, HORM BEHAV, V49, P509, DOI 10.1016/j.yhbeh.2005.10.006; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaschak MP, 2009, EUR J SOC PSYCHOL, V39, P1236, DOI 10.1002/ejsp.664; Lee SWS, 2012, J PERS SOC PSYCHOL, V103, P737, DOI 10.1037/a0029708; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Schroder T, 2013, PSYCHOL REV, V120, P255, DOI 10.1037/a0030972; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Williams LE, 2008, SCIENCE, V322, P606, DOI 10.1126/science.1162548 21 1 1 1 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. SEP 2014 25 3 328 341 10.1007/s12110-014-9210-7 14 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AO1OZ WOS:000341084200002 25120171 2019-02-21 J Moore, JW; Yeakel, JD; Peard, D; Lough, J; Beere, M Moore, Jonathan W.; Yeakel, Justin D.; Peard, Dean; Lough, Jeff; Beere, Mark Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds JOURNAL OF ANIMAL ECOLOGY English Article biocomplexity; climate change; diversity-stability; iteroparity; marine survival; portfolio effect; rainbow trout ONCORHYNCHUS-MYKISS POPULATIONS; BRITISH-COLUMBIA; PACIFIC SALMON; VARIABLE ENVIRONMENTS; STATISTICAL INEVITABILITY; GENETIC-STRUCTURE; MARINE SURVIVAL; RIVER; EVOLUTION; CONSERVATION 1. Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. 2. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. 3. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7.6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. 4. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was >20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2.5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. 5. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability. [Moore, Jonathan W.; Yeakel, Justin D.] Simon Fraser Univ, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada; [Peard, Dean] Minist Environm, Smithers, BC V0J 2N0, Canada; [Lough, Jeff; Beere, Mark] British Columbia Minist Forests Lands & Nat Resou, Smithers, BC V0J 2N0, Canada Moore, JW (reprint author), Simon Fraser Univ, Earth Ocean Res Grp, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada. jwmoore@sfu.ca Yeakel, Justin/0000-0002-6597-3511 Simon Fraser University; Liber Ero Foundation; Natural Sciences and Engineering Research Council of Canada This study was only possible because of the hard work of numerous people who collected and analysed the samples. We thank the numerous field crews from the Nisga'a Lisim Government (Fisheries and Wildlife Program) and the British Columbia Fish and Wildlife Branch that collected these scales. We also highlight the critical contributions from the scale readers, in particular Carol Lidstone from Birkenhead Scale Analyses and Ron Tetreau from Ministry of Environment. Scale reading was supported in part by the Living Rivers Trust Foundation and the Habitat Conservation Trust Foundation. Samantha Wilson and Will Atlas provided key assistance in preparing the manuscript, and Allen Gottesfeld provided insightful feedback on an earlier manuscript draft. J.W. Moore and J.D. Yeakel were supported by Simon Fraser University, the Liber Ero Foundation and the Natural Sciences and Engineering Research Council of Canada. Alexander R.F., 2013, SK30; Araki H, 2007, MOL ECOL, V16, P953, DOI 10.1111/j.1365-294X.2006.03206.x; Beacham TD, 2012, N AM J FISH MANAGE, V32, P262, DOI 10.1080/02755947.2012.675953; Beamish RJ, 2000, FISH OCEANOGR, V9, P114; Beechie T, 2006, BIOL CONSERV, V130, P560, DOI 10.1016/j.biocon.2006.01.019; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; Doak DF, 1998, AM NAT, V151, P264, DOI 10.1086/286117; Earn DJD, 2000, SCIENCE, V290, P1360, DOI 10.1126/science.290.5495.1360; Eldridge WH, 2007, MOL ECOL, V16, P2407, DOI 10.1111/j.1365-294X.2007.03271.x; Fisheries Nisga'a, 2013, NF1201 NISG FISH WIL; Goslee SC, 2007, J STAT SOFTW, V22, P1; Gottesfeld A. S., 2008, SKEENA RIVER FISH TH; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; Gremer JR, 2012, AM NAT, V179, P315, DOI 10.1086/664459; Gustafson RG, 2007, CONSERV BIOL, V21, P1009, DOI 10.1111/j.1523-1739.2007.00693.x; Healey MC, 2009, ECOL SOC, V14; Heath DD, 2001, HEREDITY, V86, P618, DOI 10.1046/j.1365-2540.2001.00867.x; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hill MF, 2003, J ANIM ECOL, V72, P736, DOI 10.1046/j.1365-2656.2003.00745.x; Hooton R. S., 2011, SKEENA STEELHEAD UNK; Hughes JB, 1997, SCIENCE, V278, P689, DOI 10.1126/science.278.5338.689; Hughes R.A., 2004, P NATL ACAD SCI USA, V101, P8998; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; Ives AR, 2007, SCIENCE, V317, P58, DOI 10.1126/science.1133258; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Loreau M, 2013, ECOL LETT, V16, P106, DOI 10.1111/ele.12073; Mantua N., 2004, AM FISH SOC S, V43, P121; Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2; McCann KS, 2000, NATURE, V405, P228, DOI 10.1038/35012234; McPhee MV, 2007, ECOL FRESHW FISH, V16, P539, DOI 10.1111/j.1600-0633.2007.00248.x; Mills JS, 2012, ENVIRON BIOL FISH, V93, P505, DOI 10.1007/s10641-011-9946-4; Moore J.W., 2014, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.q7vk2, DOI 10.5061/DRYAD.Q7VK2]; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Mueter FJ, 2005, T AM FISH SOC, V134, P105, DOI 10.1577/T-04-033.1; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Pake CE, 1996, ECOLOGY, V77, P1427, DOI 10.2307/2265540; Pavlov DS, 2008, J ICHTHYOL, V48, P37, DOI DOI 10.1134/S0032945208010049; Payne LX, 2006, OIKOS, V115, P69; Pearse DE, 2011, CONSERV GENET, V12, P691, DOI 10.1007/s10592-010-0175-8; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Development Core Team, 2012, R LANG ENV STAT COMP; Rogers LA, 2008, OIKOS, V117, P1578, DOI 10.1111/j.2008.0030-1299.16758.x; Ruff CP, 2011, ECOLOGY, V92, P2073, DOI 10.1890/10-1762.1; Satterthwaite WH, 2012, T AM FISH SOC, V141, P781, DOI 10.1080/00028487.2012.675912; Satterthwaite WH, 2010, EVOL APPL, V3, P221, DOI 10.1111/j.1752-4571.2009.00103.x; Scheuerell MD, 2009, J APPL ECOL, V46, P983, DOI 10.1111/j.1365-2664.2009.01693.x; Schindler DE, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0048; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2008, FISHERIES, V33, P502, DOI 10.1577/1548-8446-33.10.502; Schtickzelle N, 2007, FISH FISH, V8, P297, DOI 10.1111/j.1467-2979.2007.00256.x; Seamons TR, 2010, BEHAV ECOL SOCIOBIOL, V64, P505, DOI 10.1007/s00265-009-0866-7; Seamons TR, 2004, ENVIRON BIOL FISH, V69, P333, DOI 10.1023/B:EBFI.0000022893.88086.8f; Smith BD, 2000, CAN J FISH AQUAT SCI, V57, P271, DOI 10.1139/cjfas-57-2-271; Smith BD, 2000, CAN J FISH AQUAT SCI, V57, P285, DOI 10.1139/cjfas-57-2-285; Solomon S, 2007, CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P19; Stearns S, 1992, EVOLUTION LIFE HIST; Thibaut LM, 2013, ECOL LETT, V16, P140, DOI 10.1111/ele.12019; Thorpe JE, 1998, B MAR SCI, V62, P465; Tilman D, 1998, AM NAT, V151, P277, DOI 10.1086/286118; Tilman D, 1996, NATURE, V379, P718, DOI 10.1038/379718a0; TIPPING J M, 1991, North American Journal of Fisheries Management, V11, P105, DOI 10.1577/1548-8675(1991)011<0105:MBHOAA>2.3.CO;2; WALTERS CJ, 2008, REPORT SKEENA INDEPE; Waples RS, 2008, EVOL APPL, V1, P189, DOI 10.1111/j.1752-4571.2008.00023.x; Ward BR, 2000, CAN J FISH AQUAT SCI, V57, P298, DOI 10.1139/cjfas-57-2-298; Welch DW, 2000, FISH OCEANOGR, V9, P17; Wellband KW, 2012, T AM FISH SOC, V141, P392, DOI 10.1080/00028487.2012.667040; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Yeakel JD, 2014, ECOL LETT, V17, P273, DOI 10.1111/ele.12228; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152 72 50 50 6 102 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. SEP 2014 83 5 1035 1046 10.1111/1365-2656.12212 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology AN8TP WOS:000340877700005 24673479 Bronze 2019-02-21 J Handa, J; Chandrashekara, KT; Kashyap, K; Sageena, G; Shakarad, MN Handa, Jaya; Chandrashekara, K. T.; Kashyap, Khushboo; Sageena, Geetanjali; Shakarad, Mallikarjun N. Gender based disruptive selection maintains body size polymorphism in Drosophila melanogaster JOURNAL OF BIOSCIENCES English Article Body size; disruptive selection; Drosophila; fitness LIFE-HISTORY EVOLUTION; MALE MATING SUCCESS; COPULATION DURATION; ACCESSORY-GLAND; SEXUAL CONFLICT; LABORATORY EVOLUTION; CORRELATED RESPONSES; GENETIC CORRELATIONS; STRESS RESISTANCE; FRUIT-FLIES Darwinian fitness in holometabolous insects like the fruit fly Drosophila melanogaster is reported to be positively correlated with body size. If large individuals in a population have higher fitness, then one would expect directional selection to operate leading to uniformly large individuals. However, size polymorphism persists in nature and needs further probing. We assessed the effect of body size on some of the fitness and fitness-related traits in replicate populations of genotypically large, genotypically small and phenotypically small D. melanogaster flies. In this study, the time taken to attain reproductive maturity and copulation duration were independent of fly size. Fecundity and longevity of large females were significantly higher when they partnered genotypically small males than when they were with genotypically larger or phenotypically small males. The increased female longevity when in association with genotypically small males was not due to selective early death of males that would release the female partner from presumed cost of persistent courtship. On the contrary, the genotypically as well as phenotypically small males had significantly higher longevity than large males. The virility of the genotypically small males was not significantly different from that of genotypically large males. Our results clearly show that selection on body size operates in the opposite direction (disruptive selection) for the two genders, thus explaining the persistence of size polymorphisms in the holometabolous insect, Drosophila melanogaster. [Handa, Jaya; Chandrashekara, K. T.; Kashyap, Khushboo; Sageena, Geetanjali; Shakarad, Mallikarjun N.] Univ Delhi, Dept Zool, Delhi 110007, India Shakarad, MN (reprint author), Univ Delhi, Dept Zool, Delhi 110007, India. beelab.ms@gmail.com Council of Scientific and Industrial Research; Government of India EMR grant; University of Delhi R and D grant; University Grants Commission; Department of Zoology, University of Delhi We thank two anonymous reviewers for their critical comments that helped in improving the quality of presentation. This research was supported by Council of Scientific and Industrial Research, Government of India EMR grant and University of Delhi R and D grant to MS. KTC and KK thank the Council of Scientific and Industrial Research for Post-doctoral and Junior Research Fellowships respectively. GS thanks University Grants Commission for Junior Research Fellowship. JH thanks Department of Zoology, University of Delhi, for Non-NET Fellowship. Abbott JK, 2010, J EVOLUTION BIOL, V23, P1989, DOI 10.1111/j.1420-9101.2010.02064.x; Ackermann M, 2001, J EVOLUTION BIOL, V14, P199, DOI 10.1046/j.1420-9101.2001.00281.x; Archer MA, 2003, EVOLUTION, V57, P536; ASPI J, 1995, J INSECT BEHAV, V8, P67, DOI 10.1007/BF01990970; Baker RH, 2003, BEHAV ECOL, V14, P607, DOI 10.1093/beheco/arg053; Bangham J, 2002, ANIM BEHAV, V64, P915, DOI 10.1006/anbe.2002.1976; Barnes AI, 2008, P ROY SOC B-BIOL SCI, V275, P1675, DOI 10.1098/rspb.2008.0139; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bretman A, 2013, EVOLUTION, V67, P2413, DOI 10.1111/evo.12125; Chandrashekara KT, 2011, J GERONTOL A-BIOL, V66, P965, DOI 10.1093/gerona/glr103; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Chippindale AK, 2003, J GENET, V82, P133, DOI 10.1007/BF02715814; Chippindale AK, 1997, EVOLUTION, V51, P1536, DOI 10.1111/j.1558-5646.1997.tb01477.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; Fisher LD, 1993, BIOSTATISTICS, P786; Friberg U, 2006, ANIM BEHAV, V72, P1259, DOI 10.1016/j.anbehav.2006.03.021; Gilchrist AS, 2000, EVOLUTION, V54, P534; Heifetz Y, 2000, CURR BIOL, V10, P99, DOI 10.1016/S0960-9822(00)00288-8; Imroze K, 2011, J GENET, V90, P427; Kraaijeveld K, 2008, BIOL J LINN SOC, V94, P505, DOI 10.1111/j.1095-8312.2008.01030.x; Lefranc A, 2000, HEREDITAS, V132, P243, DOI 10.1111/j.1601-5223.2000.00243.x; MACBEAN IT, 1967, GENETICS, V56, P233; MARKOW TA, 1992, HEREDITY, V69, P122, DOI 10.1038/hdy.1992.104; Nunney L, 1996, EVOLUTION, V50, P1193, DOI 10.1111/j.1558-5646.1996.tb02360.x; Parker G.A., 1979, P123; PARTRIDGE L, 1987, ANIM BEHAV, V35, P555, DOI 10.1016/S0003-3472(87)80281-6; PARTRIDGE L, 1990, J INSECT PHYSIOL, V36, P419, DOI 10.1016/0022-1910(90)90059-O; PARTRIDGE L, 1983, ANIM BEHAV, V31, P871, DOI 10.1016/S0003-3472(83)80242-5; Pavkovic-Lucic S, 2013, EUR J ENTOMOL, V110, P31, DOI 10.14411/eje.2013.004; Peng J, 2005, CURR BIOL, V15, P207, DOI 10.1016/j.cub.2005.01.034; Phelan JP, 2003, EVOLUTION, V57, P527; PITNICK S, 1995, NATURE, V375, P109, DOI 10.1038/375109a0; Pitnick S, 1996, AM NAT, V148, P57, DOI 10.1086/285911; PITNICK S, 1991, ANIM BEHAV, V41, P735, DOI 10.1016/S0003-3472(05)80340-9; Pitnick S, 2002, P ROY SOC B-BIOL SCI, V269, P1821, DOI 10.1098/rspb.2002.2090; Prasad NG, 2004, J GENET, V83, P3, DOI 10.1007/BF02715821; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; Prasad NG, 2000, GENET RES, V76, P249, DOI 10.1017/S0016672300004754; Prasad NG, 2001, EVOLUTION, V55, P1363; ROFF D, 1981, AM NAT, V118, P405, DOI 10.1086/283832; Roff Derek A., 1992; Rush B, 2007, AGING CELL, V6, P723, DOI 10.1111/j.1474-9726.2007.00322.x; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; SCOTT D, 1987, ANIM BEHAV, V35, P142, DOI 10.1016/S0003-3472(87)80219-1; Sirot LK, 2009, BEHAV ECOL SOCIOBIOL, V63, P1505, DOI 10.1007/s00265-009-0806-6; Sisodia S, 2004, GENETICA, V121, P207, DOI 10.1023/B:GENE.0000040390.90003.7f; Sokal R.R., 1995, BIOMETRY PRINCIPLES; Tregenza T, 2006, PHILOS T R SOC B, V361, P229, DOI 10.1098/rstb.2005.1796; Wolfner MF, 2002, HEREDITY, V88, P85, DOI 10.1038/sj/hdy/6800017; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 51 3 3 1 31 INDIAN ACAD SCIENCES BANGALORE C V RAMAN AVENUE, SADASHIVANAGAR, P B #8005, BANGALORE 560 080, INDIA 0250-5991 0973-7138 J BIOSCIENCES J. Biosci. SEP 2014 39 4 609 620 10.1007/s12038-014-9452-x 12 Biology Life Sciences & Biomedicine - Other Topics AN6FK WOS:000340690100010 25116616 2019-02-21 J Dittmar, EL; Oakley, CG; Agren, J; Schemske, DW Dittmar, Emily L.; Oakley, Christopher G.; Agren, Jon; Schemske, Douglas W. Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value MOLECULAR ECOLOGY English Article adaptation; ecological genetics; life history evolution; phenotypic plasticity; quantitative genetics QUANTITATIVE TRAIT LOCI; GENETIC ARCHITECTURE; EXPERIMENTAL CROSSES; LATITUDINAL CLINE; AVENA-BARBATA; NATIVE RANGE; ADAPTATION; SELECTION; EVOLUTION; FRIGIDA The genetic basis of phenotypic traits is of great interest to evolutionary biologists, but their contribution to adaptation in nature is often unknown. To determine the genetic architecture of flowering time in ecologically relevant conditions, we used a recombinant inbred line population created from two locally adapted populations of Arabidopsis thaliana from Sweden and Italy. Using these RILs, we identified flowering time QTL in growth chambers that mimicked the natural temperature and photoperiod variation across the growing season in each native environment. We also compared the genomic locations of flowering time QTL to those of fitness (total fruit number) QTL from a previous three-year field study. Ten total flowering time QTL were found, and in all cases, the Italy genotype caused early flowering regardless of the conditions. Two QTL were consistent across chamber environments, and these had the largest effects on flowering time. Five of the fitness QTL colocalized with flowering time QTL found in the Italy conditions, and in each case, the local genotype was favoured. In contrast, just two flowering time QTL found in the Sweden conditions colocalized with fitness QTL and in only one case was the local genotype favoured. This implies that flowering time may be more important for adaptation in Italy than Sweden. Two candidate genes (FLC and VIN3) underlying the major flowering time QTL found in the current study are implicated in local adaptation. [Dittmar, Emily L.; Oakley, Christopher G.; Schemske, Douglas W.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA; [Dittmar, Emily L.; Schemske, Douglas W.] Michigan State Univ, WK Kellogg Biol Stn, E Lansing, MI 48824 USA; [Agren, Jon] Uppsala Univ, Dept Plant Ecol & Evolut, Evolutionary Biol Ctr, SE-75236 Uppsala, Sweden Dittmar, EL (reprint author), Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. dittmare@msu.edu Dittmar, Emily/P-4774-2018; Agren, Jon/E-6093-2011; Oakley, Christopher/U-3659-2017 Dittmar, Emily/0000-0002-3085-6796; Agren, Jon/0000-0001-9573-2463; Oakley, Christopher/0000-0002-8082-5621 Swedish Research Council; US National Science Foundation [1022202]; Wenner-Gren Foundation This work was made possible with the assistance of N. Batora, M. Hammond and J. Spoelhof. We would also like to thank R. Atchison, R. Champney, D. Hart, A. Lane, J. Rilko and L. R. Rilko for technical assistance, J. Klug and his team for support with the growth chambers, M. Cameron for assistance with figure development, and C. Baskett, M. Grillo, N.C. Habecker and three anonymous reviewers for helpful comments on the manuscript. Funding was provided by the Swedish Research Council (J.A), the US National Science Foundation (award 1022202 to D. W. S.) and the Wenner-Gren Foundation (J.A). Agren J, 2013, P NATL ACAD SCI USA, V110, P21077, DOI 10.1073/pnas.1316773110; Agren J, 2012, NEW PHYTOL, V194, P1112, DOI 10.1111/j.1469-8137.2012.04112.x; Alonso-Blanco C, 2014, CURR OPIN PLANT BIOL, V18, P37, DOI 10.1016/j.pbi.2014.01.002; Anderson JT, 2014, HEREDITY, V112, P4, DOI 10.1038/hdy.2013.33; Anderson JT, 2013, MOL ECOL, V22, P699, DOI 10.1111/j.1365-294X.2012.05522.x; Atwell S, 2010, NATURE, V465, P627, DOI 10.1038/nature08800; Barrett RDH, 2011, NAT REV GENET, V12, P767, DOI 10.1038/nrg3015; Beavis W. B., 1998, MOL DISSECTION COMPL; Brachi B, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000940; Broman KW, 2009, STAT BIOL HEALTH, P1, DOI 10.1007/978-0-387-92125-9_1; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Caicedo AL, 2004, P NATL ACAD SCI USA, V101, P15670, DOI 10.1073/pnas.0406232101; FEDER ME, 2003, NAT REV GENET, V4, P649, DOI DOI 10.1038/NRG1128; Fisher RA, 1930, GENETICAL THEORY NAT; Fournier-Level A, 2013, MOL ECOL, V22, P3552, DOI 10.1111/mec.12285; Franks SJ, 2011, NEW PHYTOL, V190, P249, DOI 10.1111/j.1469-8137.2010.03603.x; Grillo MA, 2013, NEW PHYTOL, V197, P1321, DOI 10.1111/nph.12109; Hall MC, 2006, EVOLUTION, V60, P2466, DOI 10.1554/05-688.1; Haselhorst MSH, 2011, MOL ECOL, V20, P4042, DOI 10.1111/j.1365-294X.2011.05227.x; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Inouye DW, 2008, ECOLOGY, V89, P353, DOI 10.1890/06-2128.1; Johanson U, 2000, SCIENCE, V290, P344, DOI 10.1126/science.290.5490.344; Koornneef M, 2004, ANNU REV PLANT BIOL, V55, P141, DOI 10.1146/annurev.arplant.55.031903.141605; Korves TM, 2007, AM NAT, V169, pE141, DOI 10.1086/513111; Kover PX, 2009, NEW PHYTOL, V183, P816, DOI 10.1111/j.1469-8137.2009.02943.x; Kullman L, 2001, AMBIO, V30, P72, DOI 10.1639/0044-7447(2001)030[0072:CCWATL]2.0.CO;2; Latta RG, 2009, EVOLUTION, V63, P2153, DOI 10.1111/j.1558-5646.2009.00701.x; Leinonen PH, 2013, MOL ECOL, V22, P709, DOI 10.1111/j.1365-294X.2012.05678.x; Li Y, 2006, PLOS ONE, V105, P1; Li Y, 2010, P NATL ACAD SCI USA, V107, P21199, DOI 10.1073/pnas.1007431107; Lovell JT, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1043; Lowry DB, 2012, NEW PHYTOL, V194, P888, DOI 10.1111/j.1469-8137.2012.04146.x; Mackay TFC, 2009, NAT REV GENET, V10, P565, DOI 10.1038/nrg2612; Manichaikul A, 2009, GENETICS, V181, P1077, DOI 10.1534/genetics.108.094565; Mendez-Vigo B, 2011, PLANT PHYSIOL, V157, P1942, DOI 10.1104/pp.111.183426; Michaels SD, 1999, PLANT CELL, V11, P949, DOI 10.1105/tpc.11.5.949; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; Orr HA, 1998, EVOLUTION, V52, P935, DOI 10.1111/j.1558-5646.1998.tb01823.x; Rockman MV, 2012, EVOLUTION, V66, P1, DOI 10.1111/j.1558-5646.2011.01486.x; Salome PA, 2011, GENETICS, V188, P421, DOI 10.1534/genetics.111.126607; Sanchez-Bermejo E, 2012, PLANT CELL ENVIRON, V35, P1672, DOI 10.1111/j.1365-3040.2012.02518.x; Scarcelli N, 2007, P NATL ACAD SCI USA, V104, P16986, DOI 10.1073/pnas.0708209104; Sherrard ME, 2006, EVOLUTION, V60, P2478, DOI 10.1554/06-150.1; Simpson GG, 2002, SCIENCE, V296, P285, DOI 10.1126/science.296.5566.285; Srikanth A, 2011, CELL MOL LIFE SCI, V68, P2013, DOI 10.1007/s00018-011-0673-y; Stinchcombe JR, 2004, P NATL ACAD SCI USA, V101, P4712, DOI 10.1073/pnas.0306401101; Strange A, 2011, PLOS ONE, V6, P1; Sung SB, 2004, NATURE, V427, P159, DOI 10.1038/nature02195; Weinig C, 2002, GENETICS, V162, P1875; ZHAO K, 2007, PLOS GENET, V3, P71, DOI DOI 10.1371/JOURNAL.PGEN.0030004; Zuellig MP, 2014, CURR OPIN PLANT BIOL, V18, P44, DOI 10.1016/j.pbi.2014.01.001 51 38 39 3 70 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. SEP 2014 23 17 4291 4303 10.1111/mec.12857 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology AO2SN WOS:000341176200011 25039363 2019-02-21 J Charron, G; Leducq, JB; Landry, CR Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R. Chromosomal variation segregates within incipient species and correlates with reproductive isolation MOLECULAR ECOLOGY English Article chromosomal rearrangements; genetic incompatibilities; reproductive isolation; Saccharomyces paradoxus; speciation DOBZHANSKY-MULLER INCOMPATIBILITIES; SACCHAROMYCES-CEREVISIAE; POSTZYGOTIC ISOLATION; SPECIATION GENETICS; POPULATION GENOMICS; EVOLUTION; REARRANGEMENTS; INVERSIONS; YEAST; GENES Reproductive isolation is a critical step in the process of speciation. Among the most important factors driving reproductive isolation are genetic incompatibilities. Whether these incompatibilities are already present before extrinsic factors prevent gene flow between incipient species remains largely unresolved in natural systems. This question is particularly challenging because it requires that we catch speciating populations in the act before they reach the full-fledged species status. We measured the extent of intrinsic postzygotic isolation within and between phenotypically and genetically divergent lineages of the wild yeast Saccharomyces paradoxus that have partially overlapping geographical distributions. We find that hybrid viability between lineages progressively decreases with genetic divergence. A large proportion of postzygotic inviability within lineages is associated with chromosomal rearrangements, suggesting that chromosomal differences substantially contribute to the early steps of reproductive isolation within lineages before reaching fixation. Our observations show that polymorphic intrinsic factors may segregate within incipient species before they contribute to their full reproductive isolation and highlight the role of chromosomal rearrangements in speciation. We propose different hypotheses based on adaptation, biogeographical events and life history evolution that could explain these observations. [Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R.] Univ Laval, PROTEO, Inst Biol Integrat & Syst, Dept Biol, Quebec City, PQ G1V 0A6, Canada Leducq, JB (reprint author), Univ Laval, PROTEO, Inst Biol Integrat & Syst, Dept Biol, Quebec City, PQ G1V 0A6, Canada. jean-baptiste.leducq.1@ulaval.ca; Christian.Landry@bio.ulaval.ca Charron, Guillaume/0000-0001-5971-3337 NSERC discovery grant; HFSP grant; FRQS fellowship; PROTEO fellowship We thank Emilie Bernatchez, Marie Filteau, Anne-Marie Dion-Cote, Nadia Aubin-Horth, Guillaume Diss and Alexandre K. Dube for comments on the manuscript. We thank Roger C. Levesque and Irena Kukavica-Ibrulj for the use of their CHEF-PFGE apparatus. We thank Raghav Nuwal for help in performing crosses during the review process. This work was funded by a NSERC discovery grant to CRL and partially by a HFSP grant to CRL. JBL was supported by a FRQS fellowship and GC by a PROTEO fellowship. CRL is a CIHR's new investigator. Amberg DC, 2005, METHODS YEAST GENETI, P119; Andersen B. G., 1997, ICE AGE WORLD INTRO; April J, 2013, MOL ECOL, V22, P409, DOI 10.1111/mec.12116; Baker B, 1998, INTERNET WORLD, V9, P14; Butlin R, 2012, TRENDS ECOL EVOL, V27, P27, DOI 10.1016/j.tree.2011.09.002; Chang SL, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003232; Charron G, 2014, FEMS YEAST RES, V14, P281, DOI 10.1111/1567-1364.12100; Chou JY, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000432; Corbett-Detig RB, 2013, NATURE, V504, P135, DOI 10.1038/nature12678; Coyle S, 2008, MOL BIOL EVOL, V25, P310, DOI 10.1093/molbev/msm256; Coyne J. A., 2004, SPECIATION; Cubillos FA, 2009, FEMS YEAST RES, V9, P1217, DOI 10.1111/j.1567-1364.2009.00583.x; Cutter AD, 2012, TRENDS ECOL EVOL, V27, P209, DOI 10.1016/j.tree.2011.11.004; DAVISSON MT, 1993, GENETICS, V133, P649; Delneri D, 2003, NATURE, V422, P68, DOI 10.1038/nature01418; Dobzhansky T., 1937, GENETICS ORIGIN SPEC; Dunham MJ, 2002, P NATL ACAD SCI USA, V99, P16144, DOI 10.1073/pnas.242624799; Dunn B, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003366; Feder JL, 2009, EVOLUTION, V63, P3061, DOI 10.1111/j.1558-5646.2009.00786.x; Ford MJ, 1996, GENETICS, V144, P689; Gallagher JEG, 2009, GENETICS, V181, P1477, DOI 10.1534/genetics.108.099663; Giraud T, 2012, HEREDITY, V109, P204, DOI 10.1038/hdy.2012.30; Gordon JL, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000485; Greig D, 2003, J EVOLUTION BIOL, V16, P429, DOI 10.1046/j.1420-9101.2003.00546.x; Greig D, 2009, HEREDITY, V102, P39, DOI 10.1038/hdy.2008.73; Hoffmann AA, 2008, ANNU REV ECOL EVOL S, V39, P21, DOI 10.1146/annurev.ecolsys.39.110707.173532; Hong JE, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004041; Hou J, 2014, CURR BIOL, V24, P1153, DOI 10.1016/j.cub.2014.03.063; Jackson ST, 2000, QUATERNARY SCI REV, V19, P489, DOI 10.1016/S0277-3791(99)00093-1; Johnson NA, 2010, TRENDS GENET, V26, P317, DOI 10.1016/j.tig.2010.04.005; Kirkpatrick M, 2006, GENETICS, V173, P419, DOI 10.1534/genetics.105.047985; Kroll E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0066414; Kuehne HA, 2007, CURR BIOL, V17, P407, DOI 10.1016/j.cub.2006.12.047; LANDE R, 1985, HEREDITY, V54, P323, DOI 10.1038/hdy.1985.43; Landry CR, 2006, MOL ECOL, V15, P575, DOI 10.1111/j.1365-294X.2006.02778.x; Leducq JB, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2472; Leducq JB, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1003161; Liti G, 2006, GENETICS, V174, P839, DOI 10.1534/genetics.106.062166; Liti G, 2009, NATURE, V458, P337, DOI 10.1038/nature07743; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; Maringele Laura, 2006, Methods Mol Biol, V313, P65; Mihola O, 2009, SCIENCE, V323, P373, DOI 10.1126/science.1163601; Muller HJ, 1942, BIOL S, V6, P71; NAUMOV G I, 1987, Studies in Mycology, P469; Navarro A, 2003, EVOLUTION, V57, P447, DOI 10.1554/0014-3820(2003)057[0447:APIGIP]2.0.CO;2; Noor MAF, 2001, P NATL ACAD SCI USA, V98, P12084, DOI 10.1073/pnas.221274498; Noor MAF, 2006, NAT REV GENET, V7, P851, DOI 10.1038/nrg1968; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Orr HA, 2001, EVOLUTION, V55, P1085; Otto SP, 2000, ANNU REV GENET, V34, P401, DOI 10.1146/annurev.genet.34.1.401; Phadnis N, 2009, SCIENCE, V323, P376, DOI 10.1126/science.1163934; Presgraves DC, 2010, NAT REV GENET, V11, P175, DOI 10.1038/nrg2718; R Development Core Team, 2010, R LANG ENV STAT COMP; Ramaswamy NT, 1998, GENETICS, V149, P57; Replansky T, 2008, TRENDS ECOL EVOL, V23, P494, DOI 10.1016/j.tree.2008.05.005; Rieseberg LH, 2001, TRENDS ECOL EVOL, V16, P351, DOI 10.1016/S0169-5347(01)02187-5; Seward AC, 1910, MOL GEN GENET, V3, P109; Sniegowski Paul D., 2002, FEMS Yeast Research, V1, P299, DOI 10.1111/j.1567-1364.2002.tb00048.x; Sturtevant AH, 1936, GENETICS, V21, P554; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Tsai IJ, 2008, P NATL ACAD SCI USA, V105, P4957, DOI 10.1073/pnas.0707314105; Via S, 2009, P NATL ACAD SCI USA, V106, P9939, DOI 10.1073/pnas.0901397106; WALSH JB, 1982, AM NAT, V120, P510, DOI 10.1086/284008; WHITE MJD, 1978, SYST ZOOL, V27, P285, DOI 10.2307/2412880; Widmer A, 2009, HEREDITY, V102, P31, DOI 10.1038/hdy.2008.69; Wolf JBW, 2010, PHILOS T R SOC B, V365, P1717, DOI 10.1098/rstb.2010.0023; Wood TE, 2009, P NATL ACAD SCI USA, V106, P13875, DOI 10.1073/pnas.0811575106; Zanders SE, 2014, ELIFE, V3, DOI 10.7554/eLife.02630; Zeyl C, 2014, CURR BIOL, V24, pR394, DOI 10.1016/j.cub.2014.03.052 69 28 28 0 42 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. SEP 2014 23 17 4362 4372 10.1111/mec.12864 11 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology AO2SN WOS:000341176200016 25039979 2019-02-21 J Whatley, MH; van Loon, EE; Vonk, JA; van der Geest, HG; Admiraal, W Whatley, Merrin H.; van Loon, E. Emiel; Vonk, J. Arie; van der Geest, Harm G.; Admiraal, Wim The role of emergent vegetation in structuring aquatic insect communities in peatland drainage ditches AQUATIC ECOLOGY English Article Aquatic insects; Emergent vegetation; Eutrophication; Habitat filters; Life history strategies BENTHIC INVERTEBRATES; SPECIES TRAITS; BIOTIC INDEX; NETHERLANDS; WETLANDS; HABITAT; MACROPHYTE; STRATEGIES; MANAGEMENT; ABUNDANCE Availability of macrophyte habitat is recognized as an important driver of aquatic insect communities in peatland drainage ditches; however, eutrophication can lead to the decline of submerged vegetation. While emergent vegetation is able to persist in eutrophicated ditches, vegetation removal, carried out during ditch maintenance, can reduce the availability of this habitat. In this study, we applied the landscape filtering approach to determine whether the absence of emergent vegetation is a habitat filter which structures aquatic insect communities in peatland drainage ditches under different trophic conditions. To this end, a field study was carried out in one mesotrophic (Naardermeer) and one eutrophic (Wormer and Jisperveld) peatland in the province of North Holland, The Netherlands. We assigned life history strategies to insect species and applied linear mixed models and redundancy analyses to taxonomic and functional aquatic insect community data. Our results indicate that while differences between peatlands primarily determine the species pool within each wetland, emergent vegetation acted as a secondary filter by structuring functional community composition within ditches. The eutrophic peatland was dominated by insects adapted to abiotic extremes, while species with good dispersal abilities were strongly related to emergent vegetation cover. This study demonstrates the applicability of life history strategies to provide insight into the filtering of species due to availability of emergent macrophyte habitat. To ensure greater diversity of insect communities in ditch habitats, it is recommended that some vegetation be spared during maintenance to leave patches from which insect recolonization can occur. [Whatley, Merrin H.; Vonk, J. Arie; van der Geest, Harm G.; Admiraal, Wim] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam IBED, NL-1090 GE Amsterdam, Netherlands; [van Loon, E. Emiel] Univ Amsterdam, Computat Geoecol Grp, IBED, NL-1090 GE Amsterdam, Netherlands Whatley, MH (reprint author), Univ Amsterdam, Inst Biodivers & Ecosyst Dynam IBED, POB 94248, NL-1090 GE Amsterdam, Netherlands. m.h.whatley@uva.nl Vonk, Jan Arie/B-1105-2009 Vonk, Jan Arie/0000-0002-8803-1148; van Loon, E. Emiel/0000-0002-8895-0427 Stichting Waterproef; Hoogheemraadschap Hollands Noorderkwartier We thank Gert van Ee, Emile Nat, Ron van Leuken and Herman van Dam for their help throughout this project, and Pim Koelma, Coen Wagner and Alejandra Goldenberg for their assistance during fieldwork, Nigel Upchurch for the insect illustrations, Wilco Verberk for his comments on this paper, two anonymous reviewers for their constructive criticism of this paper and Annemieke Ouwehand, Andre Timmer and Ed Zijp of Natuurmonumenten for allowing us to access the Wormer and Jisperveld and Naardermeer reserves. This research was funded by Stichting Waterproef and Hoogheemraadschap Hollands Noorderkwartier. Armitage PD, 2003, AQUAT CONSERV, V13, P165, DOI 10.1002/aqc.549; Batzer DP, 1996, ANNU REV ENTOMOL, V41, P75, DOI 10.1146/annurev.en.41.010196.000451; Beltman B., 1983, WAL SLOOT TYPOLOGISC; Bootsma MC, 1999, BIOL CONSERV, V90, P193, DOI 10.1016/S0006-3207(99)00027-0; Braak CJF ter, 2002, CANOCO REFERENCE MAN; Burnham K. P, 2002, MODEL SELECTION MULT; de Szalay FA, 2000, FRESHWATER BIOL, V45, P295, DOI 10.1046/j.1365-2427.2000.00623.x; Edington JM, 1995, REVISED KEY CASELESS; Elliott J. M, 2010, MAYFLY LARVAE EPHEME; Foote AL, 2005, ECOL ENTOMOL, V30, P273, DOI 10.1111/j.0307-6946.2005.00701.x; GILLER PS, 1981, J ANIM ECOL, V50, P789, DOI 10.2307/4137; Herzon I, 2008, BIOL CONSERV, V141, P1171, DOI 10.1016/j.biocon.2008.03.005; Hinojosa-Garro D, 2010, FUND APPL LIMNOL, V177, P19, DOI 10.1127/1863-9135/2010/0177-0019; Janse JH, 1998, ENVIRON POLLUT, V102, P547, DOI 10.1016/S0269-7491(98)80082-1; Janssen R, 2005, ENVIRON MODELL SOFTW, V20, P215, DOI 10.1016/j.envsoft.2003.12.020; KEAST A, 1984, CAN J ZOOL, V62, P1289, DOI 10.1139/z84-186; Lamers LPM, 2002, HYDROBIOLOGIA, V478, P107, DOI 10.1023/A:1021022529475; LENAT DR, 1993, J N AM BENTHOL SOC, V12, P279, DOI 10.2307/1467463; Lucena-Moya P, 2011, AQUAT ECOL, V45, P279, DOI 10.1007/s10452-011-9353-0; Lunde KB, 2012, ENVIRON MONIT ASSESS, V184, P3653, DOI 10.1007/s10661-011-2214-4; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; MURKIN EJ, 1992, WETLANDS, V12, P45, DOI 10.1007/BF03160543; Nilsson A.N., 2005, AQUATIC INSECTS N EU; O'Toole C, 2008, AQUAT ECOL, V42, P277, DOI 10.1007/s10452-008-9185-8; Orendt C, 2010, BESTIMMUNGSSCHLUSSEL; Painter D, 1999, J APPL ECOL, V36, P33, DOI 10.1046/j.1365-2664.1999.00376.x; Pillot H.K.M.M, 2009, CHIRONOMIDAE LARVAE, P144; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; R Development Core Team, 2012, R LANG ENV STAT COMP; Radomski P, 2001, N AM J FISH MANAGE, V21, P46, DOI 10.1577/1548-8675(2001)021<0046:COHLDO>2.0.CO;2; Savage A. A, 1989, ADULTS BRIT AQUATIC; SINKE AJC, 1990, FRESHWATER BIOL, V23, P587, DOI 10.1111/j.1365-2427.1990.tb00297.x; Smith AJ, 2007, ECOL INDIC, V7, P371, DOI 10.1016/j.ecolind.2006.03.001; Smolders AJP, 2006, CHEM ECOL, V22, P93, DOI 10.1080/02757540600579730; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOWA, 2010, STOWA HDB HYDR; Suren AM, 2008, FRESHWATER BIOL, V53, P727, DOI 10.1111/j.1365-2427.2007.01931.x; TACHET H, 2002, INVERTEBRES EAU DOUC; Twisk W, 2003, AQUAT ECOL, V37, P191, DOI 10.1023/A:1023944028022; Twisk W., 2000, Aquatic Ecology, V34, P397, DOI 10.1023/A:1011430831180; Van der Hammen H., 1992, MACROFAUNA NOORD HOL; Varga I, 2003, HYDROBIOLOGIA, V506, P413, DOI 10.1023/B:HYDR.0000008619.84133.9f; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk W.C.E.P., 2007, Proceedings of the Netherlands Entomological Society Meeting, V18, P115; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Verdonschot R.C.M., 2012, DRAINAGE DITCHES BIO; Verdonschot RCM, 2011, AQUAT CONSERV, V21, P715, DOI 10.1002/aqc.1220; Wallace I. D., 2003, KEYS CASE BEARING CA; Warfe DM, 2004, OECOLOGIA, V141, P171, DOI 10.1007/s00442-004-1644-x; WASSEN MJ, 1989, VEGETATIO, V79, P117; Whatley MH, 2014, FRESHWATER BIOL, V59, P114, DOI 10.1111/fwb.12252; Yuan LL, 2004, FRESHWATER BIOL, V49, P662, DOI 10.1111/j.1365-2427.2004.01206.x 54 3 3 4 38 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1386-2588 1573-5125 AQUAT ECOL Aquat. Ecol. SEP 2014 48 3 267 283 10.1007/s10452-014-9482-3 17 Ecology; Limnology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AN3NG WOS:000340494400003 2019-02-21 J Bjorklund, DF; Ellis, BJ Bjorklund, David F.; Ellis, Bruce J. Children, childhood, and development in evolutionary perspective DEVELOPMENTAL REVIEW English Article Evolutionary-developmental psychology; Developmental systems theory; Life history theory; Differential susceptibility; Ontogenetic adaptations; Deferred adaptations; Folk psychology; Folk physics CHIMPANZEES PAN-TROGLODYTES; EARLY FAMILY RELATIONSHIPS; HUMAN LIFE-HISTORY; HUMAN INFANTS; SEX-DIFFERENCES; MATERNAL-CARE; TOOL-USE; DIFFERENTIAL SUSCEPTIBILITY; PUBERTAL MATURATION; DEFERRED IMITATION We examine children, childhood, and development from an evolutionary perspective. We begin by reviewing major assumptions of evolutionary-developmental psychology, including the integration of "soft" developmental systems theory with ideas from mainstream evolutionary psychology. We then discuss the concept of adaptive developmental plasticity and describe the core evolutionary concept of developmental programming and some of its applications to human development, as instantiated in life history theory and the theory of differential susceptibility to environmental influence. We then discuss the concept of adaptation from an evolutionary-developmental perspective, including ontogenetic and deferred adaptations, and examine the development of some adaptations of infancy and childhood from the domains of folk psychology and folk physics. We conclude that evolutionary theory can serve as a metatheory for developmental science. (c) 2014 Elsevier Inc. All rights reserved. [Bjorklund, David F.] Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA; [Ellis, Bruce J.] Univ Arizona, John & Doris Norton Sch Family & Consumer Sci, Tucson, AZ 85721 USA Bjorklund, DF (reprint author), Florida Atlantic Univ, Dept Psychol, Boca Raton, FL 33431 USA. dbjorklu@fau.edu; bjellis@email.arizona.edu ABRAVANEL E, 1984, CHILD DEV, V55, P381, DOI 10.2307/1129950; Aguiar A, 1999, COGNITIVE PSYCHOL, V39, P116, DOI 10.1006/cogp.1999.0717; ALEXANDER RD, 1989, HUMAN REVOLUTION, P455; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; ARCHER J, 1992, ETHOLOGY HUMAN DEV; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BAILLARGEON R, 1991, CHILD DEV, V62, P1227, DOI 10.2307/1130803; BAILLARGEON R, 1987, DEV PSYCHOL, V23, P655, DOI 10.1037/0012-1649.23.5.655; Baillargeon R, 2008, PERSPECT PSYCHOL SCI, V3, P2, DOI 10.1111/j.1745-6916.2008.00056.x; BAKEMAN R, 1990, CHILD DEV, V61, P794, DOI 10.2307/1130964; Banaji M. R., 2013, NAVIGATING SOCIAL WO, P395; Bandura A., 1997, SELF EFFICACY EXERCI; Bandura A, 2006, PERSPECT PSYCHOL SCI, V1, P164, DOI 10.1111/j.1745-6916.2006.00011.x; Bardi L, 2014, DEV PSYCHOL, V50, P986, DOI 10.1037/a0034678; Barrett TM, 2007, DEV PSYCHOL, V43, P352, DOI 10.1037/0012-1649.43.2.352; Bateson P, 2002, SCIENCE, V297, P2212; Bateson P. P. G., 1976, GROWING POINTS ETHOL, P401; Beier JS, 2012, CHILD DEV, V83, P486, DOI 10.1111/j.1467-8624.2011.01702.x; Belsky J, 1997, CHILD DEV, V68, P598, DOI 10.1111/j.1467-8624.1997.tb04221.x; BELSKY J, 1981, DEV PSYCHOL, V17, P630, DOI 10.1037//0012-1649.17.5.630; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bering J. M., 2003, PRIMATE PSYCHOL; Bering JM, 2000, DEV PSYCHOBIOL, V36, P218, DOI 10.1002/(SICI)1098-2302(200004)36:3<218::AID-DEV5>3.0.CO;2-K; Bjorklund D.F., 2005, ORIGINS SOCIAL MIND, P3; Bjorklund D. F., 2011, OXFORD HDB PLAY, P153; Bjorklund D. F., 1993, EMERGING THEMES COGN, V1, P79; Bjorklund D. F., 2007, WHY YOUTH NOT WASTED; Bjorklund DF, 2007, ADV CHILD DEV BEHAV, V35, P1; Bjorklund DF, 2006, DEV REV, V26, P213, DOI 10.1016/j.dr.2006.02.007; Bjorklund DF, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P351, DOI 10.1007/978-3-642-02725-3_17; Bjorklund DF, 1997, PSYCHOL BULL, V122, P153, DOI 10.1037/0033-2909.122.2.153; Bjorklund DF, 2003, PSYCHOL BULL, V129, P836, DOI 10.1037/0033-2909.129.6.836; Bjorklund DF, 2002, ANIM COGN, V5, P49, DOI 10.1007/s10071-001-0124-5; BJORKLUND DF, 1992, AM PSYCHOL, V47, P46, DOI 10.1037/0003-066X.47.1.46; BJORKLUND DF, 1987, DEV REV, V7, P86, DOI 10.1016/0273-2297(87)90006-2; Bjorklund DF, 2014, EVOLUTION VIOLENCE, P159; BJORKLUND DF, 2003, SOCIAL BRAIN EVOLUTI, P133; BJORKLUND DF, 2005, ORIGINS SOCIAL MIND, P45; BJORKLUND DF, 2002, ORIGINS HUMAN NATURE; Blasi CH, 2003, HUM DEV, V46, P259, DOI 10.1159/000071935; Bloom P, 1998, TRENDS COGN SCI, V2, P67, DOI 10.1016/S1364-6613(98)01121-8; Boas D. A., 2002, NEUROIMAGE, V16, P120; Bock John, 2005, NATURE PLAY GREAT AP, P254; BOESCH C, 1991, ANIM BEHAV, V41, P530, DOI 10.1016/S0003-3472(05)80857-7; Boesch C, 1998, CURR ANTHROPOL, V39, P591, DOI 10.1086/204785; Bornstein MH, 1996, CHILD DEV, V67, P2910, DOI 10.1111/j.1467-8624.1996.tb01895.x; BOROWSKY RL, 1987, COPEIA, P792, DOI 10.2307/1445679; BOROWSKY RL, 1987, COPEIA, P782, DOI 10.2307/1445674; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Brauer J, 2005, J COMP PSYCHOL, V119, P145, DOI 10.1037/0735-7036.119.2.145; Brooks R, 2002, DEV PSYCHOL, V38, P958, DOI 10.1037//0012-1649.38.6.958; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; BRUNER JS, 1972, AM PSYCHOL, V27, P687, DOI 10.1037/h0033144; Buss D., EVOLUTIONAR IN PRESS, V2; Buttelmann D, 2008, CHILD DEV, V79, P609, DOI 10.1111/j.1467-8624.2008.01146.x; Buttelmann D, 2007, DEVELOPMENTAL SCI, V10, pF31, DOI 10.1111/j.1467-7687.2007.00630.x; Byrne R. W., 2005, CURR BIOL, V15, pR489; Byrnes JP, 1999, PSYCHOL BULL, V125, P367, DOI 10.1037/0033-2909.125.3.367; CALDERA YM, 1989, CHILD DEV, V60, P70, DOI 10.2307/1131072; Call Josep, 1996, P371; Callaghan T. C., 2011, MONOGRAPHS SOC RES C, V76; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Carey S, 2011, BEHAV BRAIN SCI, V34, P113, DOI 10.1017/S0140525X10000919; Carpenter M, 1998, INFANT BEHAV DEV, V21, P315, DOI 10.1016/S0163-6383(98)90009-1; Carrasco L, 2009, J COMP PSYCHOL, V123, P385, DOI 10.1037/a0016275; Carvalho S, 2009, ANIM COGN, V12, pS103, DOI 10.1007/s10071-009-0271-7; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; Clearfield MW, 2006, J COGN DEV, V7, P27, DOI 10.1207/s15327647jcd0701_2; Clearfield MW, 1999, PSYCHOL SCI, V10, P408, DOI 10.1111/1467-9280.00177; COOK M, 1989, J ABNORM PSYCHOL, V98, P448, DOI 10.1037//0021-843X.98.4.448; Costello EJ, 2007, DRUG ALCOHOL DEPEN, V88, pS50, DOI 10.1016/j.drugalcdep.2006.12.009; Craske M., 1999, ANXIETY DISORDERS PS; CRICK NR, 1995, CHILD DEV, V66, P710, DOI 10.2307/1131945; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Csibra G, 2008, COGNITION, V107, P705, DOI 10.1016/j.cognition.2007.08.001; Csibra G, 2011, PHILOS T R SOC B, V366, P1149, DOI 10.1098/rstb.2010.0319; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; Darwin C., 1871, DESCENT MAN; Davis E. P., 2013, PSYCHOL SCI, V23, P93; de Schonen S., 1994, NEUROREPORL LEARNING, V5, P14; de Schonen S., 2008, DEVELOPMENTAL SCI, V11, P563; Deak GO, 2008, INFANT BEHAV DEV, V31, P34, DOI 10.1016/j.infbeh.2007.06.004; DECASPER AJ, 1980, SCIENCE, V208, P1174, DOI 10.1126/science.7375928; DeLoache JS, 2009, DEVELOPMENTAL SCI, V12, P201, DOI 10.1111/j.1467-7687.2008.00753.x; Di Giorgio E, 2012, DEV PSYCHOL, V48, P1083, DOI 10.1037/a0026521; DIAMOND A, 1985, CHILD DEV, V56, P868, DOI 10.2307/1130099; Dias B.G., 2013, NATURE NEUROSCIENCE; DOBZHANSKY T, 1973, AM BIOL TEACH, V35, P125, DOI 10.2307/4444260; DORE FY, 1987, PSYCHOL BULL, V102, P219; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; DUBOWITZ LMS, 1986, LANCET, V1, P1139, DOI 10.1016/S0140-6736(86)91847-7; Dunbar RIM, 2003, ANNU REV ANTHROPOL, V32, P163, DOI 10.1146/annurev.anthro.32.061002.093158; Ellis B. J., DEV PSYCHOP IN PRESS, V1; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P85, DOI 10.1017/S0954579410000660; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Erlich N, 2013, DEVELOPMENTAL SCI, V16, P894, DOI 10.1111/desc.12091; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Fivush, 2014, WILEY BLACKWELL HDB, P126; FLINN MV, 1988, ETHOL SOCIOBIOL, V9, P1, DOI 10.1016/0162-3095(88)90002-7; Flynn E., 2006, P NATL ACAD SCI USA, V103, P13878; Foley MA, 2010, J COGN DEV, V11, P217, DOI 10.1080/15248371003699928; Frankenhuis WE, 2013, DEVELOPMENTAL SCI, V16, P584, DOI 10.1111/desc.12053; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Furlow FB, 1997, EVOL HUM BEHAV, V18, P175, DOI 10.1016/S1090-5138(97)00006-8; Garcia J., 1966, PSYCHON SCI, V4, P123, DOI [DOI 10.3758/BF03342209, 10.3758/BF03342209]; Gardiner AK, 2014, J EXP CHILD PSYCHOL, V119, P54, DOI 10.1016/j.jecp.2013.10.008; Gardiner AK, 2012, COGNITIVE DEV, V27, P240, DOI 10.1016/j.cogdev.2012.05.001; Gardiner AK, 2011, J COGN DEV, V12, P355, DOI 10.1080/15248372.2010.542216; Geary D., 2005, ORIGIN MIND EVOLUTIO; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geary D. C., 2007, ACTA PSYCHOL SINICA, V39, P469; Geary D. C., 2005, HDB EVOLUTIONARY PSY, P483; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geary DC, 2002, PSYCHOL BULL, V128, P667, DOI 10.1037//0033-2909.128.5.667; GEARY DC, 1995, AM PSYCHOL, V50, P24, DOI 10.1037/0003-066X.50.1.24; Geary DC, 2000, CHILD DEV, V71, P57, DOI 10.1111/1467-8624.00118; Gelman R., 1998, COGNITION PERCEPTION, V2, P575; Gergely G., 2005, INTERACTION STUDIES, V6, P463, DOI DOI 10.1075/IS.6.3.10GER; German TP, 2002, J COGN DEV, V3, P279, DOI 10.1207/S15327647JCD0303_2; Glover V, 2011, J CHILD PSYCHOL PSYC, V52, P356, DOI 10.1111/j.1469-7610.2011.02371.x; Gluckman PD, 2005, FETAL MATRIX EVOLUTI; Goldhaber D, 2012, NATURE-NURTURE DEBATES: BRIDGING THE GAP, P1, DOI 10.1017/CBO9781139022583; Goldsmith DF, 1997, DEV PSYCHOL, V33, P113; Gottlieb G., 1971, BIOPSYCHOLOGY DEV, P67; Gottlieb G., 2006, HDB CHILD PSYCHOL, V1, P210; Gottlieb G., 1976, NEURAL BEHAV SPECIFI, P25; Gottlieb G, 2007, DEVELOPMENTAL SCI, V10, P1, DOI 10.1111/j.1467-7687.2007.00556.x; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Gredlein JM, 2005, HUM NATURE-INT BIOS, V16, P211, DOI 10.1007/s12110-005-1004-5; Greenfield PM, 2000, SCH AM RES, P237; Groos Karl, 1898, PLAY ANIMALS; Guilamo-Ramos V, 2012, PEDIATRICS, V130, pE1313, DOI 10.1542/peds.2011-2066; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hammer MF, 2008, PLOS GENET, V4, DOI 10.1371/journal.pgen.1000202; Hare B, 2001, ANIM BEHAV, V61, P139, DOI 10.1006/anbe.2000.1518; Hare B, 2011, ANNU REV ANTHROPOL, V40, P293, DOI 10.1146/annurev-anthro-081309-145726; Hauser M. D, 2000, WILD MINDS WHAT ANIM; Hawley P. H., 2007, AGGRESSION ADAPTATIO; Hawley P. H, 2007, AGGRESSION ADAPTATIO, P1; Hawley PH, 2012, J EXP CHILD PSYCHOL, V112, P18, DOI 10.1016/j.jecp.2011.10.004; Hawley PH, 2003, J EXP CHILD PSYCHOL, V85, P213, DOI 10.1016/S0022-0965(03)00073-0; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; HEIMANN M, 1989, INFANT BEHAV DEV, V12, P495, DOI 10.1016/0163-6383(89)90029-5; Herrmann E, 2007, SCIENCE, V317, P1360, DOI 10.1126/science.1146282; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HINDE RA, 1976, MAN, V11, P1, DOI 10.2307/2800384; Holmboe K, 2008, J EXP CHILD PSYCHOL, V100, P89, DOI 10.1016/j.jecp.2007.09.004; Homik R., 1987, CHILD DEV, V58, P937; Hood BM, 2004, DEVELOPMENTAL SCI, V7, P415, DOI 10.1111/j.1467-7687.2004.00358.x; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Humle T, 2009, ANIM COGN, V12, pS37, DOI 10.1007/s10071-009-0272-6; Hutt C., 1966, S ZOOLOGICAL SOC LON, V18, P61; Jablonka E, 2005, EVOLUTION 4 DIMENSIO; JACOBSON SW, 1979, CHILD DEV, V50, P425, DOI 10.2307/1129418; James J., 2013, OXFORD HDB CLOSE REL, P771; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Joffe TH, 1997, J HUM EVOL, V32, P593, DOI 10.1006/jhev.1997.0140; JOHNSON SP, 1995, DEV PSYCHOL, V31, P739, DOI 10.1037/0012-1649.31.5.739; Jones SS, 2006, INFANT BEHAV DEV, V29, P126, DOI 10.1016/j.infbeh.2005.08.004; Jones SS, 2009, PHILOS T R SOC B, V364, P2325, DOI 10.1098/rstb.2009.0045; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Keeley Lawrence H, 1996, WAR CIVILIZATION MYT; Kelly DJ, 2009, J EXP CHILD PSYCHOL, V104, P105, DOI 10.1016/j.jecp.2009.01.006; KENNY PA, 1986, DEV PSYCHOBIOL, V19, P57, DOI 10.1002/dev.420190107; Kenward B, 2012, J EXP CHILD PSYCHOL, V112, P195, DOI 10.1016/j.jecp.2012.02.006; Ketelaar T, 2000, PSYCHOL INQ, V11, P1, DOI 10.1207/S15327965PLI1101_01; Keupp S, 2013, J EXP CHILD PSYCHOL, V116, P392, DOI 10.1016/j.jecp.2013.07.002; KOTOVSKY L, 1994, COGNITION, V51, P107, DOI 10.1016/0010-0277(94)90012-4; Kotovsky L, 2000, DEVELOPMENTAL SCI, V3, P344, DOI 10.1111/1467-7687.00129; Kovacs AM, 2010, SCIENCE, V330, P1830, DOI 10.1126/science.1190792; Kuhl PK, 2006, DEVELOPMENTAL SCI, V9, pF13, DOI 10.1111/j.1467-7687.2006.00468.x; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Lancy D. F., 2010, ANTHR LEARNING CHILD, P145; Learmonth AE, 2004, J EXP CHILD PSYCHOL, V88, P297, DOI 10.1016/j.jecp.2004.04.004; Leavens DA, 2005, CURR DIR PSYCHOL SCI, V14, P185, DOI 10.1111/j.0963-7214.2005.00361.x; LEGERSTEE M, 1991, J EXP CHILD PSYCHOL, V51, P423, DOI 10.1016/0022-0965(91)90086-8; Lerner R. M., 2006, HDB CHILD PSYCHOL, V1, P1, DOI DOI 10.1002/9780470147658; Lewkowicz D. L., 2011, INFANCY, V16, P1; Lewkowicz DJ, 2009, TRENDS COGN SCI, V13, P470, DOI 10.1016/j.tics.2009.08.004; LICKLITER R, 1990, DEV PSYCHOBIOL, V23, P15, DOI 10.1002/dev.420230103; Lickliter R, 2003, PSYCHOL BULL, V129, P819, DOI 10.1037/0033-2909.129.6.819; Liszkowski U, 2006, J COGN DEV, V7, P173, DOI 10.1207/s15327647jcd0702_2; Liszkowski U, 2007, DEVELOPMENTAL SCI, V10, P1, DOI 10.1111/j.1467-7687.2006.00552.x; LoBue V, 2010, J EXP CHILD PSYCHOL, V107, P59, DOI 10.1016/j.jecp.2010.04.005; LoBue V, 2010, DEVELOPMENTAL SCI, V13, P221, DOI 10.1111/j.1467-7687.2009.00872.x; Lockhart KL, 2002, CHILD DEV, V73, P1408, DOI 10.1111/1467-8624.00480; Lonsdorf EV, 2006, ANIM COGN, V9, P36, DOI 10.1007/s10071-005-0002-7; LORD CG, 1980, J PERS SOC PSYCHOL, V38, P257, DOI 10.1037/0022-3514.38.2.257; LORENZ KONRAD Z., 1937, AUK, V54, P245; Lyons DE, 2007, P NATL ACAD SCI USA, V104, P19751, DOI 10.1073/pnas.0704452104; Macfarlane A., 1975, CIBA FDN S 33 PAR IN; MACKEY WC, 2000, J MENS STUDIES, V8, P349, DOI DOI 10.3149/JMS.0803.349; Maestripieri D, 2002, HUM NATURE-INT BIOS, V13, P327, DOI 10.1007/s12110-002-1018-1; Maestripieri D, 2006, DEV REV, V26, P120, DOI 10.1016/j.dr.2006.02.006; Mandler JM, 2000, J COGN DEV, V1, P3, DOI 10.1207/S15327647JCD0101N_2; Manner M., 2010, EVOLUTION CHILDHOOD; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; Martin H., 1974, ADV PEDIATR, V21, P119; McGuigan N, 2011, BRIT J PSYCHOL, V102, P1, DOI 10.1348/000712610X493115; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Melis AP, 2006, J COMP PSYCHOL, V120, P154, DOI 10.1037/0735-7036.120.2.154; MELTZOFF AN, 1977, SCIENCE, V198, P75, DOI 10.1126/science.198.4312.75; Menard JL, 2007, BEHAV BRAIN RES, V176, P302, DOI 10.1016/j.bbr.2006.10.014; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; Mitchell-Olds T, 2007, NAT REV GENET, V8, P845, DOI 10.1038/nrg2207; Mix KS, 2002, PSYCHOL BULL, V128, P278, DOI 10.1037//0033-2909.128.2.278; Mondloch CJ, 1999, PSYCHOL SCI, V10, P419, DOI 10.1111/1467-9280.00179; Moore K. L., 2003, DEV HUMAN CLIN ORIEN; Morss J. R., 1990, BIOL CHILDHOOD DEV P; NAGELL K, 1993, J COMP PSYCHOL, V107, P174, DOI 10.1037/0735-7036.107.2.174; Nagy E, 2006, INFANT CHILD DEV, V15, P223, DOI 10.1002/icd.460; NELSON K, 2005, ORIGINS SOCIAL MIND, P354; Nettle D, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012690; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nielsen M., 2010, PSYCHOL SCI, V5, P729; Nielsen M, 2006, DEV PSYCHOL, V42, P555, DOI 10.1037/0012-1649.42.3.555; Nielsen M, 2012, J COMP PSYCHOL, V126, P170, DOI 10.1037/a0025168; Ohman A, 2001, J EXP PSYCHOL GEN, V130, P466, DOI 10.1037/0096-3445.130.3.466; Okami P, 2001, Annu Rev Sex Res, V12, P186; OPPENHEIM RW, 1981, MATURATION DEV BIOL, P73; Oyama Susan, 2000, EVOLUTIONS EYE SYSTE; Parent CI, 2008, DEV PSYCHOBIOL, V50, P767, DOI 10.1002/dev.20342; Pascalis O, 2005, P NATL ACAD SCI USA, V102, P5297, DOI 10.1073/pnas.0406627102; Pascalis O, 2002, SCIENCE, V296, P1321, DOI 10.1126/science.1070223; Pellegrini AD, 1998, CHILD DEV, V69, P577, DOI 10.2307/1132187; Pellegrini AD, 2000, AM EDUC RES J, V37, P699, DOI 10.2307/1163486; Penn DC, 2008, BEHAV BRAIN SCI, V31, P109, DOI 10.1017/S0140525X08003543; Piaget J., 1954, CONSTRUCTION REALITY; Piaget J., 1955, LANGUAGE THOUGHT CHI; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pluess M, 2011, DEV PSYCHOPATHOL, V23, P29, DOI 10.1017/S0954579410000623; POVINELLI DJ, 1996, MONOGRAPH SOC RES CH, V61; Pradeu Thomas, 2010, Biology Theory, V5, P216; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Quinn PC, 2002, PERCEPTION, V31, P1109, DOI 10.1068/p3331; Ramsey Jacklyn K., 2005, P89; Rhen T, 2002, J NEUROENDOCRINOL, V14, P517, DOI 10.1046/j.1365-2826.2002.00820.x; Rice F, 2010, PSYCHOL MED, V40, P335, DOI 10.1017/S0033291709005911; Robert JS, 2001, BIOESSAYS, V23, P954, DOI 10.1002/bies.1136; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rogoff B., 2003, CULTURAL NATURE HUMA; Ross J., 2011, MONOGRAPHS SOC RES C, V76; Rovee-Collier C, 2009, STUD DEV PSYCHOL, P11; ROVEECOLLIER C, 1992, DEV PSYCHOL, V28, P307, DOI 10.1037/0012-1649.28.2.307; ROVEECOLLIER C, 1992, DEV LONG TERM RETENT, P3; RUSSELL J, 1991, BRIT J DEV PSYCHOL, V9, P331, DOI 10.1111/j.2044-835X.1991.tb00881.x; RYAN MJ, 1992, AM NAT, V139, P21, DOI 10.1086/285311; RYAN MJ, 1989, BEHAV ECOL SOCIOBIOL, V24, P341, DOI 10.1007/BF00293262; Sakhai SA, 2011, PSYCHONEUROENDOCRINO, V36, P1217, DOI 10.1016/j.psyneuen.2011.02.016; SAVINWILLIAMS RC, 1979, CHILD DEV, V50, P923, DOI 10.2307/1129316; Saxbe DE, 2009, J ADOLESCENCE, V32, P415, DOI 10.1016/j.adolescence.2008.06.009; Schulz LE, 2008, CHILD DEV, V79, P395, DOI 10.1111/j.1467-8624.2007.01132.x; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SELIGMAN ME, 1971, BEHAV THER, V2, P307, DOI 10.1016/S0005-7894(71)80064-3; Sellers II P. D., 2014, WHATS ADAPTIVE ADAPT, P286; Sentse M, 2009, DEV PSYCHOL, V45, P419, DOI 10.1037/a0014072; Shahaeian A, 2014, J CROSS CULT PSYCHOL, V45, P555, DOI 10.1177/0022022113513921; SHERROD KB, 1984, CHILD DEV, V55, P1174, DOI 10.2307/1129986; Shin H, 2007, COGNITIVE DEV, V22, P197, DOI 10.1016/j.cogdev.2006.10.001; SIGMAN M, 1988, CHILD DEV, V59, P1251, DOI 10.1111/j.1467-8624.1988.tb01494.x; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SLATER A, 1990, J EXP CHILD PSYCHOL, V49, P314, DOI 10.1016/0022-0965(90)90061-C; Smith JM, 1998, NATURE, V393, P639; Smith P. G., 2005, PLAY HUMANS GREAT AP, P173; Smith P. K., 1980, ECOLOGY PRESCHOOL BE; SMITH PK, 1982, BEHAV BRAIN SCI, V5, P139, DOI 10.1017/S0140525X0001092X; Spelke ES, 2007, DEVELOPMENTAL SCI, V10, P89, DOI 10.1111/j.1467-7687.2007.00569.x; Spencer JP, 2009, CHILD DEV PERSPECT, V3, P79, DOI 10.1111/j.1750-8606.2009.00081.x; Stearns S, 1992, EVOLUTION LIFE HIST; Taniike M., 2014, DEV PSYCHOL, V50, P979; Thompson R. A., 2006, HDB CHILD PSYCHOL, V3, P24, DOI DOI 10.1002/9780470147658.CHPSY0302; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Tomasello M, 2009, WHY WE COOPERATE, P1; Tomasello M, 2000, CURR DIR PSYCHOL SCI, V9, P37, DOI 10.1111/1467-8721.00056; TOMASELLO M, 2005, MONOGRAPHS SOC RES C, V70; Tomasello M, 2007, DEVELOPMENTAL SCI, V10, P121, DOI 10.1111/j.1467-7687.2007.00573.x; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Trickett PK, 2011, DEV PSYCHOPATHOL, V23, P453, DOI 10.1017/S0954579411000174; TURKEWITZ G, 1982, DEV PSYCHOBIOL, V15, P357, DOI 10.1002/dev.420150408; Uller C, 1999, COGNITIVE DEV, V14, P1, DOI 10.1016/S0885-2014(99)80016-1; Vaish A, 2004, DEVELOPMENTAL SCI, V7, P261, DOI 10.1111/j.1467-7687.2004.00344.x; Vigil JM, 2006, J FAM PSYCHOL, V20, P597, DOI 10.1037/0893-3200.20.4.597; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; Vygotsky L. S., 1978, MIND SOC DEV HIGHER; Vygotsky L. S., 1962, THOUGHT LANGUAGE; WALTON GE, 1992, INFANT BEHAV DEV, V15, P265, DOI 10.1016/0163-6383(92)80027-R; Wang SH, 2003, INFANT BEHAV DEV, V26, P529, DOI 10.1016/j.infbeh.2003.08.002; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wellman HM, 2006, PSYCHOL SCI, V17, P1075, DOI 10.1111/j.1467-9280.2006.01830.x; WEST MJ, 1987, DEV PSYCHOBIOL, V20, P549, DOI 10.1002/dev.420200508; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whiten A, 1999, NATURE, V399, P682, DOI 10.1038/21415; Whiten A., 2005, ANIMAL COGNITION, V8, P164, DOI DOI 10.1007/S10071-004-0239-6; Whiten A, 2010, MIND THE GAP: TRACING THE ORIGINS OF HUMAN UNIVERSALS, P429, DOI 10.1007/978-3-642-02725-3_20; Whiten A, 2010, DEV PSYCHOL, V46, P1694, DOI 10.1037/a0020786; Whiten A, 2009, PHILOS T R SOC B, V364, P2417, DOI 10.1098/rstb.2009.0069; Williams Geroge C, 1966, ADAPTATION NATURAL S; Williamson RA, 2008, DEV PSYCHOL, V44, P275, DOI 10.1037/0012-1649.44.1.275; Williamson RA, 2006, DEV PSYCHOL, V42, P723, DOI 10.1037/0012-1649.42.4.723; WILSON DS, 1994, AM NAT, V144, P692, DOI 10.1086/285702; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wu SL, 2007, PSYCHOL SCI, V18, P600, DOI 10.1111/j.1467-9280.2007.01946.x; WYNN K, 1992, NATURE, V358, P749, DOI 10.1038/358749a0; Zelazo P., 2013, OXFORD HDB DEV PSYCH, P276 321 25 26 2 88 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0273-2297 1090-2406 DEV REV Dev. Rev. SEP 2014 34 3 225 264 10.1016/j.dr.2014.05.005 40 Psychology, Developmental Psychology AM6OU WOS:000339985300003 2019-02-21 J Palkovacs, EP; Mandeville, EG; Post, DM Palkovacs, Eric P.; Mandeville, Elizabeth G.; Post, David M. Contemporary trait change in a classic ecological experiment: rapid decrease in alewife gill-raker spacing following introduction to an inland lake FRESHWATER BIOLOGY English Article eco-evolutionary feedbacks; invasion; niche construction; predation; rapid evolution GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; POPULATIONS; ADAPTATION; PREDATORS; DIVERSITY; TRINIDAD; RATES; PREY; WILD 1. Ecological experiments showing large effects are predicted to drive contemporary trait changes resulting from evolution and phenotypic plasticity. However, few classic ecological experiments conducted in the wild have been investigated for evidence of contemporary trait change. 2. We examined a classic experiment in trophic ecology, the introduction of alewife (Alosa pseudoharengus) to Crystal Lake, Connecticut, U.S.A. (Brooks & Dodson, 1965), for the presence of contemporary trait change. 3. Alewife were introduced to Crystal Lake, an inland lake isolated from the coastal ocean, from an anadromous (migratory sea-run) source population. We utilised museum specimens collected soon after introduction and modern samples to measure changes in gill-raker morphology for the Crystal Lake alewife population since its introduction. We compared the gill-rakers of the Crystal Lake population to those of other nearby anadromous and landlocked (freshwater resident) alewife populations. 4. At introduction, the Crystal Lake population showed gill-raker spacing (GRS) similar to that of anadromous populations. Following introduction, we found evidence for a rapid decrease in GRS, an important trait for size-selective prey capture in fishes. This decrease occurred alongside a dramatic decline in zooplankton size, shown by Brooks and Dodson (1965) to be caused by the onset of alewife predation. After 45 years of isolation in freshwater, the Crystal Lake population showed GRS typical of landlocked populations. 5. Brooks and Dodson's study is a classic example of the strong effects predators can have on prey communities. Our study shows that such community effects of predators may feed back to shape predator trophic morphology. The rate of trait change observed for the Crystal Lake alewife population is comparable to rates observed from evolutionary experiments conducted explicitly to examine trait changes over contemporary time scales. 6. We conclude that strong ecological effects of introduced populations may be important drivers of contemporary trait change. We propose that classic ecological experiments represent underutilised resources for examining interactions between contemporary trait change and ecological effects in the wild. [Palkovacs, Eric P.] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95060 USA; [Mandeville, Elizabeth G.] Univ Wyoming, Program Ecol, Laramie, WY 82071 USA; [Mandeville, Elizabeth G.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA; [Post, David M.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA Palkovacs, EP (reprint author), Univ Calif Santa Cruz, Long Marine Lab, 100 Shaffer Rd, Santa Cruz, CA 95060 USA. epalkova@ucsc.edu Post, David/A-6987-2009 Post, David/0000-0003-1434-7729 EPA STAR; NSF DEB [0717265] Eric Schultz (Connecticut State Museum of Natural History) granted permission to sample museum specimens. Eileen O'Donnell and Steve Gephard (Connecticut Department of Energy and Environmental Protection) provided historical fish survey data. Collection of specimens was conducted under Yale University IACUC Protocol #2003-10734 and Connecticut Scientific Collector Permit #SC-04016. Funding was provided by EPA STAR and NSF DEB #0717265. Bassar RD, 2012, AM NAT, V180, P167, DOI 10.1086/666611; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CARPENTER SR, 1987, ECOLOGY, V68, P1863, DOI 10.2307/1939878; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; HJORLEIFSSON E, 1992, MAR ECOL PROG SER, V82, P13; HURLBERT SH, 1972, SCIENCE, V175, P639, DOI 10.1126/science.175.4022.639; Irschick DJ, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P173; JACOBS RP, 2002, FISHERIES GUIDE LAKE; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; MAGURRAN AE, 1995, ADV STUD BEHAV, V24, P155, DOI 10.1016/S0065-3454(08)60394-0; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Peet R.K., 1991, FDN ECOLOGY CLASSIC, P605; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Strauss SY, 2008, ECOL LETT, V11, P199, DOI 10.1111/j.1461-0248.2007.01128.x 28 7 7 0 41 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. SEP 2014 59 9 1897 1901 10.1111/fwb.12392 5 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AL9SG WOS:000339480500009 2019-02-21 J Baughman, HM; Jonason, PK; Veselka, L; Vernon, PA Baughman, Holly M.; Jonason, Peter K.; Veselka, Livia; Vernon, Philip A. Four shades of sexual fantasies linked to the Dark Triad PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Narcissism; Psychopathy; Machiavellianism; Sexual fantasy; Sex differences; Evolutionary psychology LIFE-HISTORY THEORY; DIRTY DOZEN; PERSONALITY-TRAITS; GENDER-DIFFERENCES; HEXACO MODEL; NARCISSISM; MACHIAVELLIANISM; PSYCHOPATHY; EMPATHY; SOCIOSEXUALITY The present study explored the links between the Dark Triad traits (i.e., narcissism, Machiavellianism, and psychopathy) and sexual fantasies in a sample of Canadian undergraduates (N = 643). Among the Dark Triad traits, psychopathy was the most strongly correlated with overall sex drive as well as fantasies containing exploratory, impersonal, and sadomasochistic themes. Further, individuals who scored high on narcissism reported engaging in intimate sexual fantasies more frequently. The Dark Triad, psychopathy in particular, facilitated overall sexual desire in men. Overall, these findings were consistent with the view that the Dark Triad facilitates an exploitative, short-term mating strategy. Implications are discussed in the context of an evolutionary framework. (C) 2014 Elsevier Ltd. All rights reserved. [Baughman, Holly M.; Veselka, Livia; Vernon, Philip A.] Univ Western Ontario, London, ON, Canada; [Jonason, Peter K.] Univ Western Sydney, Penrith, NSW 1797, Australia Baughman, HM (reprint author), Univ Western Ontario, London, ON, Canada. hbaughma@uwo.ca Ajzen I., 1985, ACTION CONTROL COGNI, P11, DOI DOI 10.1007/978-3-642-69746-3_2; BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173; Baumgartner Jerome V, 2002, Sex Abuse, V14, P19, DOI 10.1023/A:1013025410090; Bogart LA, 2004, BASIC APPL SOC PSYCH, V26, P35, DOI 10.1207/s15324834basp2601_4; Campbell WK, 2002, PERS SOC PSYCHOL B, V28, P484, DOI 10.1177/0146167202287006; Clark R. D., 1989, J PSYCHOL HUMAN SEXU, V2, P39, DOI DOI 10.1300/J056V02N01_; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Foster JD, 2006, J SOC PERS RELAT, V23, P367, DOI 10.1177/0265407506064204; Hare R. D., 2003, HARE PSYCHOPATHY CHE; Jonason P. K., 2010, J SEX RES, V47, P1; Jonason PK, 2013, EUR J PERSONALITY, V27, P458, DOI 10.1002/per.1881; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V53, P935, DOI 10.1016/j.paid.2012.07.010; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, PERS INDIV DIFFER, V53, P180, DOI 10.1016/j.paid.2012.03.007; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2007, INT J SEX HEALTH, V19, P41, DOI DOI 10.1300/J514V19N04_05; Jones D. N., 2014, ASSESSMENT; Jones DN, 2013, J APPL SOC PSYCHOL, V43, pE367, DOI 10.1111/jasp.12035; Kosson DS, 1997, J INTERPERS VIOLENCE, V12, P241, DOI 10.1177/088626097012002006; Kowalski RM, 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; LEITENBERG H, 1995, PSYCHOL BULL, V117, P469, DOI 10.1037/0033-2909.117.3.469; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037/0022-3514.74.1.192; McHoskey JW, 2001, PERS INDIV DIFFER, V31, P779, DOI 10.1016/S0191-8869(00)00180-X; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Petersen JL, 2010, PSYCHOL BULL, V136, P21, DOI 10.1037/a0017504; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Raskin R. N., 1979, PSYCHOL REP, V45, P365; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Reise SP, 1996, J RES PERS, V30, P128, DOI 10.1006/jrpe.1996.0009; Rushton J. Philippe, 1995, RACE EVOLUTION BEHAV; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; WATSON PJ, 1994, SEX ROLES, V30, P701, DOI 10.1007/BF01544671; Webster GD, 2013, PERS INDIV DIFFER, V54, P302, DOI 10.1016/j.paid.2012.08.027; Williams KM, 2009, CRIM JUSTICE BEHAV, V36, P198, DOI 10.1177/0093854808327277; Wilson E.O., 1975, P1; Wilson G., 1978, SECRETS SEXUAL FANTA; Wilson G. D., 1988, SEXUAL MARITAL THERA, V3, P45, DOI DOI 10.1080/02674658808407692; WILSON GD, 1980, PERS INDIV DIFFER, V1, P289, DOI 10.1016/0191-8869(80)90061-6; WILSON GD, 1981, PERS INDIV DIFFER, V2, P343, DOI 10.1016/0191-8869(81)90093-3; Wilson GD, 1997, PERS INDIV DIFFER, V22, P27, DOI 10.1016/S0191-8869(96)00180-8; Wilson GD, 2010, SEX RELATSH THER, V25, P57, DOI 10.1080/14681990903550134 54 19 19 2 43 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2014 67 47 51 10.1016/j.paid.2014.01.034 5 Psychology, Social Psychology AJ8XM WOS:000337991400010 2019-02-21 J Bermond, G; Cavigliasso, F; Mallez, S; Spencer, J; Guillemaud, T Bermond, Gerald; Cavigliasso, Fanny; Mallez, Sophie; Spencer, Joseph; Guillemaud, Thomas No Clear Effect of Admixture between Two European Invading Outbreaks of Diabrotica virgifera virgifera in Natura PLOS ONE English Article WESTERN CORN-ROOTWORM; MULTIPLE TRANSATLANTIC INTRODUCTIONS; MULTILOCUS GENOTYPE DATA; LIFE-HISTORY STRATEGIES; POPULATION-STRUCTURE; OUTBREEDING DEPRESSION; INBREEDING DEPRESSION; GENETIC-VARIATION; COLEOPTERA-CHRYSOMELIDAE; BIOLOGICAL INVASIONS In this study, we challenged the hypothesis that admixture may have had a positive impact in the context of the European invasion of the western corn rootworm (WCR), Diabrotica virgifera virgifera, LeConte. This beetle was introduced in Europe from the USA several times since the 1980's. The multiple introductions of this major pest of cultivated corn led to the formation of two major outbreaks in North Western (NW) Italy and in Central and South Eastern (CSE) Europe that eventually merged into a secondary contact zone where insects from both outbreaks interbreed. We collected about 600 insects from this contact zone and genotyped them using 13 microsatellite markers. Three types of information were obtained from the collected individuals: (i) their survival under starvation; (ii) their admixed status, determined through a Bayesian method of genetic clustering and (iii) their mating probability, studied via the detection, isolation and genotyping of sperm in female spermathecae. Twenty six % and 12% of the individuals were assigned to the NW Italy or the CSE Europe parental types, respectively, and 23% and 39% to the F1 and backcross hybrid types, respectively. Globally, our results do not reveal any significant impact of the admixed status on the mating probability and on the choice of mating partners. However the admixed status had a sex-and sampling site-dependent effect on survival in adults under starvation. In addition sex had an effect on survival, with mortality hazard about 3 times larger in males than in females. The consequences of these findings for the evolution of the admixture zone of northern Italy are discussed. [Bermond, Gerald; Cavigliasso, Fanny; Mallez, Sophie; Guillemaud, Thomas] INRA, Inst Sophia Agrobiotech, UMR 1355, Sophia Antipolis, France; [Bermond, Gerald; Cavigliasso, Fanny; Mallez, Sophie; Guillemaud, Thomas] Univ Nice Sophia Antipolis, UMR Inst Sophia Agrobiotech, Sophia Antipolis, France; [Bermond, Gerald; Cavigliasso, Fanny; Mallez, Sophie; Guillemaud, Thomas] CNRS, Inst Sophia Agrobiotech, UMR 7254, Sophia Antipolis, France; [Spencer, Joseph] Univ Illinois, Illinois Nat Hist Survey, Champaign, IL 61820 USA Bermond, G (reprint author), INRA, Inst Sophia Agrobiotech, UMR 1355, Sophia Antipolis, France. geraldbermond@gmail.com guillemaud, thomas/B-4899-2012; Spencer, Joseph/B-6876-2012 guillemaud, thomas/0000-0003-0451-1644; Spencer, Joseph/0000-0003-4757-563X; Mallez, Sophie/0000-0002-3312-2376 Agence Nationale de la Recherche [ANR-06-BDIV-008-01, ANR-09-BLAN-0145-01]; Agropolis Foundation (RTRA-Montpellier, BIOFIS) [1001-001] This work was supported by a grant from the Agence Nationale de la Recherche (ANR-06-BDIV-008-01 and ANR-09-BLAN-0145-01) and from the Agropolis Foundation (RTRA-Montpellier, BIOFIS project number 1001-001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Allee W. C, 1949, PRINCIPLES ANIMAL EC; Anderson EC, 2002, GENETICS, V160, P1217; Anderson EC, 2003, TECHNICAL REPORT; Arnaud Ludovic, 1999, Biotechnologie Agronomie Societe et Environnement, V3, P86; BARTON NH, 1985, ANNU REV ECOL SYST, V16, P113, DOI 10.1146/annurev.es.16.110185.000553; BARTON NH, 1993, HYBRID ZONES AND THE EVOLUTIONARY PROCESS, P13; Benvenuto C, 2012, EVOL ECOL, V26, P1311, DOI 10.1007/s10682-011-9553-z; Bermond G, 2013, MOL ECOL, V22, P5368, DOI 10.1111/mec.12489; Bermond G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050129; BRANSON TF, 1981, ENVIRON ENTOMOL, V10, P826, DOI 10.1093/ee/10.6.826; Chapple DG, 2013, DIVERS DISTRIB, V19, P134, DOI 10.1111/j.1472-4642.2012.00919.x; CHIANG HC, 1973, ANNU REV ENTOMOL, V18, P47, DOI 10.1146/annurev.en.18.010173.000403; Ciosi M, 2008, MOL ECOL, V17, P3614, DOI 10.1111/j.1365-294X.2008.03866.x; COX DR, 1972, J R STAT SOC B, V34, P187; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dobzhansky T., 1952, Heterosis., P218; Drake JM, 2006, BIOL LETTERS, V2, P304, DOI 10.1098/rsbl.2006.0459; Edmands S, 1999, EVOLUTION, V53, P1757, DOI 10.1111/j.1558-5646.1999.tb04560.x; Edmands S, 2002, TRENDS ECOL EVOL, V17, P520, DOI 10.1016/S0169-5347(02)02585-5; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Elton C. S, 1958, ECOLOGY INVASIONS AN; Escobar JS, 2008, GENETICS, V180, P1593, DOI 10.1534/genetics.108.092718; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Facon B, 2005, J EVOLUTION BIOL, V18, P524, DOI 10.1111/j.1420-9101.2005.00887.x; Facon B, 2008, CURR BIOL, V18, P363, DOI 10.1016/j.cub.2008.01.063; Falush D, 2003, GENETICS, V164, P1567; Fauvergue X, 2012, EVOL APPL, V5, P424, DOI 10.1111/j.1752-4571.2012.00272.x; Fitzpatrick BM, 2008, AM NAT, V171, P491, DOI 10.1086/528991; Genton BJ, 2005, MOL ECOL, V14, P4275, DOI 10.1111/j.1365-294X.2005.02750.x; Glemin S, 2011, GENETICS, V187, P217, DOI 10.1534/genetics.110.120808; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Gurevitch J, 2011, ECOL LETT, V14, P407, DOI 10.1111/j.1461-0248.2011.01594.x; HILL RE, 1975, J ECON ENTOMOL, V68, P311, DOI 10.1093/jee/68.3.311; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; Jakobsson M, 2007, BIOINFORMATICS, V23, P1801, DOI 10.1093/bioinformatics/btm233; Jiggins CD, 2000, TRENDS ECOL EVOL, V15, P250, DOI 10.1016/S0169-5347(00)01873-5; Keller SR, 2010, J EVOLUTION BIOL, V23, P1720, DOI 10.1111/j.1420-9101.2010.02037.x; Kolbe JJ, 2008, BIOL LETTERS, V4, P434, DOI 10.1098/rsbl.2008.0205; Kolbe JJ, 2007, CONSERV BIOL, V21, P1612, DOI 10.1111/j.1523-1739.2007.00826.x; LANDE R, 1993, AM NAT, V142, P911, DOI 10.1086/285580; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Li H, 2010, J APPL ENTOMOL, V134, P449, DOI 10.1111/j.1439-0418.2009.01489.x; LUDWIG KA, 1975, ENVIRON ENTOMOL, V4, P435, DOI 10.1093/ee/4.3.435; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; Marlay S. K., 2011, 1009 PMR IOW STAT U; Miller N, 2005, SCIENCE, V310, P992, DOI 10.1126/science.1115871; Miller NJ, 2007, J APPL ENTOMOL, V131, P378, DOI 10.1111/j.1439-0418.2007.01190.x; Moeser J, 2005, ENTOMOL EXP APPL, V114, P55, DOI 10.1111/j.0013-8703.2005.00228.x; Moody ML, 2002, P NATL ACAD SCI USA, V99, P14867, DOI 10.1073/pnas.172391499; Moyle PB, 1996, ECOLOGY, V77, P1666, DOI 10.2307/2265770; Murphy AF, 2011, ENVIRON ENTOMOL, V40, P1585, DOI 10.1603/EN11137; Nei M., 1987, MOL EVOLUTIONARY GEN; Orians CM, 2000, AM J BOT, V87, P1749, DOI 10.2307/2656824; Orr HA, 2001, EVOLUTION, V55, P1085; Petit RJ, 1998, CONSERV BIOL, V12, P844, DOI 10.1046/j.1523-1739.1998.96489.x; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; Pritchard JK, 2000, GENETICS, V155, P945; QUIRING DT, 1990, J APPL ECOL, V27, P965, DOI 10.2307/2404390; R Development Core Team, 2012, R LANG ENV STAT COMP; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reif JC, 2003, CROP SCI, V43, P1275, DOI 10.2135/cropsci2003.1275; Rieux A, 2013, ECOL LETT, V16, P721, DOI 10.1111/ele.12090; Roman J, 2006, P R SOC B, V273, P2453, DOI 10.1098/rspb.2006.3597; Rosenberg NA, 2004, MOL ECOL NOTES, V4, P137, DOI 10.1046/j.1471-8286.2003.00566.x; Rosenthal DM, 2008, MOL ECOL, V17, P4657, DOI 10.1111/j.1365-294X.2008.03844.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Schierup MH, 1996, HEREDITY, V77, P461, DOI 10.1038/hdy.1996.172; Shull GH, 1914, MOL GEN GENET, V12, P97; SMITH RAY F., 1966, BULL ENTOMOL SOC AMER, V12, P108; Spencer JL, 2009, AGR FOREST ENTOMOL, V11, P9, DOI 10.1111/j.1461-9563.2008.00399.x; Tallmon DA, 2004, GENETICS, V167, P977, DOI 10.1534/genetics.103.026146; Taylor DR, 2007, EVOLUTION, V61, P334, DOI 10.1111/j.1558-5646.2007.00037.x; Turelli M, 2000, GENETICS, V154, P1663; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; Verhoeven KJF, 2011, P ROY SOC B-BIOL SCI, V278, P2, DOI 10.1098/rspb.2010.1272; Wares JP, 2005, SPECIES INVASIONS: INSIGHTS INTO ECOLOGY, EVOLUTION, AND BIOGEORGRAPHY, P229; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Willi Y, 2005, HEREDITY, V95, P437, DOI 10.1038/sj.hdy.6800732; Willi Y, 2006, ANNU REV ECOL EVOL S, V37, P433, DOI 10.1146/annurev.ecolsys.37.091305.110145; Williamson M, 1996, ECOLOGY, V77, P1661, DOI 10.2307/2265769 82 0 0 1 32 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One AUG 29 2014 9 8 e106139 10.1371/journal.pone.0106139 13 Multidisciplinary Sciences Science & Technology - Other Topics AO2EE WOS:000341127500114 25170837 DOAJ Gold, Green Published 2019-02-21 J Bingham, BL; Dimond, JL; Muller-Parker, G Bingham, Brian L.; Dimond, James L.; Muller-Parker, Gisele Symbiotic state influences life-history strategy of a clonal cnidarian PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article Anthopleura elegantissima; Symbiodinium; fitness; life history; symbiosis; reproduction ANEMONE ANTHOPLEURA-ELEGANTISSIMA; TIDAL SEA-ANEMONES; 2 ALGAL SYMBIONTS; PHOTOSYNTHETIC CARBON; MYCORRHIZAL SYMBIOSIS; XANTHOGRAMMICA BRANDT; SEXUAL REPRODUCTION; POPULATION-DYNAMICS; BODY SIZE; ZOOXANTHELLAE Along the North American Pacific coast, the common intertidal sea anemone Anthopleura elegantissima engages in facultative, flexible symbioses with Symbiodinium muscatinei (a dinoflagellate) and Elliptochloris marina (a chlorophyte). Determining how symbiotic state affects host fitness is essential to understanding the ecological significance of engaging in such flexible relationships with diverse symbionts. Fitness consequences of hosting S. muscatinei, E. marina or negligible numbers of either symbiont (aposymbiosis) were investigated by measuring growth, cloning by fission and gonad development after 8.5-11 months of sustained exposure to high, moderate or low irradiance under seasonal environmental conditions. Both symbiotic state and irradiance affected host fitness, leading to divergent life-history strategies. Moderate and high irradiances led to a greater level of gonad development in individuals hosting E. marina, while high irradiance and high summer temperature promoted cloning in individuals hosting S. muscatinei and reduced fitness of aposymbiotic anemones. Associating with S. muscatinei may contribute to the success of A. elegantissima as a spatial competitor on the high shore: (i) by offsetting the costs of living under high temperature and irradiance conditions, and (ii) by promoting a high fission rate and clonal expansion. Our results suggest that basic life-history characteristics of a clonal cnidarian can be affected by the identity of the endosymbionts it hosts. [Bingham, Brian L.] Western Washington Univ, Dept Environm Sci, Bellingham, WA 98225 USA; [Dimond, James L.] Western Washington Univ, Shannon Point Marine Ctr, Anacortes, WA 98221 USA; [Muller-Parker, Gisele] Natl Sci Fdn, Div Grad Educ, Arlington, VA 22230 USA Bingham, BL (reprint author), Western Washington Univ, Dept Environm Sci, 516 High St, Bellingham, WA 98225 USA. brian.bingham@wwu.edu NSF [IOS-0822179, OCE-0741372, OCE-0551898] The work was funded by NSF grant nos. IOS-0822179, OCE-0741372 and OCE-0551898. Agresti A, 2007, INVERTEBR BIOL, DOI DOI 10.1111/J.1744-7410.2001.TB00115.X); Bergschneider H, 2008, BIOL BULL-US, V215, P73, DOI 10.2307/25470685; Bingham BL, 2011, INVERTEBR BIOL, V130, P291, DOI 10.1111/j.1744-7410.2011.00241.x; BROOKS MA, 1955, BIOL BULL, V109, P22, DOI 10.2307/1538656; Buchsbaum VM, 1968, THESIS STANFORD U ST; Davy SK, 1996, MAR BIOL, V126, P773, DOI 10.1007/BF00351344; Davy SK, 1997, P 8 INT COR REEF S, V2, P1307; Dimond JL, 2011, LIMNOL OCEANOGR, V56, P2233, DOI 10.4319/lo.2011.56.6.2233; Dimond JL, 2013, J PHYCOL, V49, P1074, DOI 10.1111/jpy.12112; Dingman HC, 1998, THESIS W WASHINGTON, P92; Engebretson HP, 1999, BIOL BULL, V197, P72, DOI 10.2307/1542998; FITT WK, 1982, J EXP MAR BIOL ECOL, V61, P213, DOI 10.1016/0022-0981(82)90070-3; FRANCIS L, 1979, AM ZOOL, V19, P669; Habetha M, 2003, ZOOLOGY, V106, P101, DOI 10.1078/0944-2006-00104; HAND CADET, 1955, WASMANN JOUR BIOL, V13, P37; Hoogenboom M, 2010, CORAL REEFS, V29, P21, DOI 10.1007/s00338-009-0558-9; Jones Alison M., 2011, Journal of Marine Biology, V2011, P1; Keppel G, 2004, DESIGN ANAL RES HDB; LaJeunesse TC, 2000, BIOL BULL, V199, P126, DOI 10.2307/1542872; Letsch MR, 2009, J PHYCOL, V45, P1127, DOI 10.1111/j.1529-8817.2009.00727.x; LOWRY OH, 1951, J BIOL CHEM, V193, P265; Michalek-Wagner K, 2001, CORAL REEFS, V19, P231, DOI 10.1007/s003380170003; Muller-Parker G, 2007, J PHYCOL, V43, P25, DOI 10.1111/j.1529-8817.2006.00302.x; NORRIS DM, 1967, SCIENCE, V156, P1120, DOI 10.1126/science.156.3778.1120; Nuortila C, 2004, NEW PHYTOL, V164, P543, DOI 10.1111/j.1469-8137.2004.01195.x; Pais R, 2008, APPL ENVIRON MICROB, V74, P5965, DOI 10.1128/AEM.00741-08; Partida-Martinez LP, 2007, CURR BIOL, V17, P773, DOI 10.1016/j.cub.2007.03.039; Sachs JL, 2006, P ROY SOC B-BIOL SCI, V273, P425, DOI 10.1098/rspb.2005.3346; Sanders JG, 2011, BIOL BULL-US, V220, P199, DOI 10.1086/BBLv220n3p199; SEBENS KP, 1983, ECOL MONOGR, V53, P405, DOI 10.2307/1942646; SEBENS KP, 1981, J EXP MAR BIOL ECOL, V54, P225, DOI 10.1016/0022-0981(81)90159-3; SEBENS KP, 1981, BIOL BULL, V161, P152, DOI 10.2307/1541115; SEBENS KP, 1982, J EXP MAR BIOL ECOL, V59, P103, DOI 10.1016/0022-0981(82)90110-1; Secord D, 2005, LIMNOL OCEANOGR, V50, P272, DOI 10.4319/lo.2005.50.1.0272; SHICK JM, 1977, BIOL BULL, V153, P604, DOI 10.2307/1540609; Simon JC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021831; STANLEY MR, 1993, OECOLOGIA, V94, P30, DOI 10.1007/BF00317297; Starzak DE, 2014, MAR BIOL, V161, P711, DOI 10.1007/s00227-013-2372-8; STEEN RG, 1986, BIOL BULL, V170, P267, DOI 10.2307/1541808; Streitwolf-Engel R, 2001, ECOLOGY, V82, P2846; SZMANT AM, 1990, CORAL REEFS, V8, P217, DOI 10.1007/BF00265014; Verde EA, 2007, MAR BIOL, V152, P775, DOI 10.1007/s00227-007-0737-6; Verde EA, 2002, MAR BIOL, V141, P225, DOI 10.1007/s00227-002-0824-7; Verde EA, 2001, MAR BIOL, V138, P477, DOI 10.1007/s002270000490; Werren JH, 2008, NAT REV MICROBIOL, V6, P741, DOI 10.1038/nrmicro1969 45 5 5 2 47 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 22 2014 281 1789 20140548 10.1098/rspb.2014.0548 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AL5HM WOS:000339164400010 25009060 Green Published, Bronze 2019-02-21 J Bonett, RM; Steffen, MA; Robison, GA Bonett, Ronald M.; Steffen, Michael A.; Robison, Grant A. Heterochrony repolarized: a phylogenetic analysis of developmental timing in plethodontid salamanders EVODEVO English Article Ancestral state reconstruction; Caudata; Evolution; Life history; Neoteny; Paedomorphosis; Progenesis LIFE-HISTORY EVOLUTION; COMPLETE MITOCHONDRIAL GENOMES; NORTH-AMERICAN SALAMANDERS; BODY-SIZE EVOLUTION; AMPHIBIAN METAMORPHOSIS; DESMOGNATHUS-QUADRAMACULATUS; GYRINOPHILUS-PORPHYRITICUS; PAEDOMORPHIC SALAMANDER; FAMILY PLETHODONTIDAE; RAPID DIVERSIFICATION Background: Disentangling evolutionary shifts in developmental timing (heterochony) is dependent upon accurate estimates of ancestral patterns. However, many classic assessments of heterochronic patterns predate robust phylogenetic hypotheses and methods for trait reconstruction, and therefore may have been polarized with untested 'primitive' conditions. Here we revisit the heterochronic modes of development that underlie the evolution of metamorphosis, maturation, and paedomorphosis in plethodontid salamanders. We focus on the tribe Spelerpini, which is a diverse clade that exhibits tremendous variation in timing of metamorphosis and maturation, as well as multiple independent instances of larval form paedomorphosis. Based on morphology and biogeography, early investigators concluded that the most recent common ancestors of plethodontids, and also spelerpines, were large salamanders, with very long larval periods and late maturation times. This prevailing assumption influenced subsequent heterochronic assessments, which concluded that most modern spelerpines (with shorter larval periods) were derived through multiple independent accelerations in larval development. It was also concluded that most occurrences of larval form paedomorphosis in this clade resulted from progenesis (acceleration of gonadal development relative to metamorphosis). Results: By reconstructing the time to metamorphosis on a molecular-based phylogeny of plethodontids, we find that ancestral spelerpines likely had relatively shorter larval periods than previously proposed. Taken together with the credibility interval from our ancestral state estimation we show that very long larval periods are likely derived decelerations, only a few lineages have undergone appreciable accelerations in metamorphic timing, and the remaining taxa have lower probabilities of being different than the ancestral condition (possibly due to stasis). Reconstructing maturation age across nodes concomitant with the evolution of larval form paedomorphosis in one large radiation does not show clear evidence of progenesis, but more likely indicates a case of neoteny (delayed metamorphosis). Conclusions: This study demonstrates cases in plethodontid salamanders where phylogenetic-based character reconstructions reject previously hypothesized ancestral life history conditions. As a result, several prior hypotheses of heterochronic evolution in this family are reversed. [Bonett, Ronald M.; Steffen, Michael A.; Robison, Grant A.] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA Bonett, RM (reprint author), Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA. ron-bonett@utulsa.edu National Science Foundation [DEB 1050322, DEB1210859] We thank N. Bendik, D. Chamberlain, L. Dries, J. Fries, A. Gluesenkamp, and S. Trauth for information on developmental timing of several species of Eurycea, and C. Brown, A. Trujano, D. Wake, and two anonymous reviewers for comments on the study and manuscript. Specimens were handled in accordance with Institutional Animal Care and Use Committee (IACUC) protocols at the University of Tulsa (TU-0029). This study was in part funded by the National Science Foundation (DEB 1050322 to RMB; DEB1210859 to RMB and MAS). ALBERCH P, 1979, PALEOBIOLOGY, V5, P296; AmphibiaWeb, 2014, INF AMPH BIOL CONS; Andrews RM, 2013, EVOL DEV, V15, P326, DOI 10.1111/ede.12042; Bahret R, 1996, J HERPETOL, V30, P399, DOI 10.2307/1565177; BEACHY CK, 1995, J HERPETOL, V29, P375, DOI 10.2307/1564987; BEACHY CK, 1992, AM NAT, V139, P839, DOI 10.1086/285360; Boardman GS, 2011, PALAEONTOL ELECTRON, V14; Bonett RM, 2014, EVOLUTION, V68, P466, DOI 10.1111/evo.12274; BRUCE R C, 1972, Herpetologica, V28, P230; BRUCE RC, 1990, COPEIA, P1; BRUCE RC, 1978, HERPETOLOGICA, V34, P53; Bruce RC, 2005, HERPETOL MONOGR, V19, P180, DOI 10.1655/0733-1347(2005)019[0180:TOCLCA]2.0.CO;2; BRUCE RC, 1979, EVOLUTION, V33, P998, DOI 10.1111/j.1558-5646.1979.tb04753.x; BRUCE RC, 1976, COPEIA, P242; Buckley D, 2007, EVOL DEV, V9, P105, DOI 10.1111/j.1525-142X.2006.00141.x; Burnham K. P, 2002, MODEL SELECTION MULT; Camp CD, 2000, CAN J ZOOL, V78, P1712, DOI 10.1139/cjz-78-10-1712; Chippindale PT, 2004, EVOLUTION, V58, P2809; COLLAZO A, 1994, J EXP ZOOL, V268, P239, DOI 10.1002/jez.1402680309; Deban SM, 2002, ZOOL J LINN SOC-LOND, V134, P375, DOI 10.1046/j.1096-3642.2002.00004.x; Denoel M, 2000, P ROY SOC B-BIOL SCI, V267, P1481, DOI 10.1098/rspb.2000.1168; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Duellman W. E., 1986, BIOL AMPHIBIANS; DUNN ER, 1926, SALAMANDERS FAMILY P; Elliot MG, 2013, ARXIV13025104; FINK WL, 1982, PALEOBIOLOGY, V8, P254; Freeman SL, 2001, AM MIDL NAT, V145, P194, DOI 10.1674/0003-0031(2001)145[0194:LPAMOT]2.0.CO;2; Geiger M, 2013, J EVOLUTION BIOL, V27, P98; Germain D, 2009, EVOL DEV, V11, P170, DOI 10.1111/j.1525-142X.2009.00318.x; Gould S. J., 1977, ONTOGENY PHYLOGENY; HANKEN J, 1992, J EVOLUTION BIOL, V5, P549, DOI 10.1046/j.1420-9101.1992.5040549.x; Hanken J, 2014, CONCEPTUAL CHANGE BI; Hickerson CM, 2005, SOUTHEAST NAT, V4, P33, DOI 10.1656/1528-7092(2005)004[0033:DOMTIT]2.0.CO;2; HOLMAN JA, 2006, FOSSIL SALAMANDERS N; Jeffery JE, 2005, SYST BIOL, V54, P230, DOI 10.1080/10635150590923227; Kerney RR, 2012, EVOLUTION, V66, P252, DOI 10.1111/j.1558-5646.2011.01426.x; KLINGENBERG CP, 1993, EVOLUTION, V47, P1834, DOI 10.1111/j.1558-5646.1993.tb01273.x; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Lamb T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037544; Marks SB, 1998, COPEIA, P637, DOI 10.2307/1447793; Marks SB, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P261; Maxwell EE, 2009, EVOL DEV, V11, P109, DOI 10.1111/j.1525-142X.2008.00307.x; McKinney ML, 1991, HETEROCHRONY EVOLUTI; Min MS, 2005, NATURE, V435, P87, DOI 10.1038/nature03474; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Newman RA, 1998, OECOLOGIA, V115, P9, DOI 10.1007/s004420050485; Nunn CL, 1998, AM NAT, V152, P82, DOI 10.1086/286151; Nylander JA, 2004, MRMODELTEST V 2 2; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; Pagel M, 2013, BAYESTRAITS V 2 0; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; RAFF RA, 1989, J EVOLUTION BIOL, V2, P409, DOI 10.1046/j.1420-9101.1989.2060409.x; Rambaut A, 2007, TRACER V 1 5; Reilly SM, 1997, BIOL J LINN SOC, V60, P119; Revell L. J., 2012, PHYTOOLS PHYLOGENETI; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Rose C. S., 2003, AMPHIBIAN BIOL, V5, P1686; Ryan TJ, 1998, P NATL ACAD SCI USA, V95, P5643, DOI 10.1073/pnas.95.10.5643; Ryan TJ, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P303; SEMLITSCH RD, 1988, COPEIA, P978; Slater GJ, 2013, METHODS ECOL EVOL, V4, P734, DOI 10.1111/2041-210X.12084; Slater GJ, 2012, EVOLUTION, V66, P3931, DOI 10.1111/j.1558-5646.2012.01723.x; Smith KK, 2001, BIOL J LINN SOC, V73, P169, DOI 10.1006/bijl.2001.0535; Smith KK, 2003, INT J DEV BIOL, V47, P613; Steffen MA, 2014, ZOOTAXA, V3786, P423, DOI 10.11646/zootaxa.3786.4.2; SWEET SS, 1977, HERPETOLOGICA, V33, P364; TILLEY SG, 1980, COPEIA, P806, DOI 10.2307/1444460; Trapido H, 1940, COPEIA, V1940, P244; Velhagen WA, 1997, SYST BIOL, V46, P204, DOI 10.2307/2413644; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; VOSS SR, 1993, COPEIA, P736; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Wake DB, 1996, INT J DEV BIOL, V40, P859; WAKE DB, 1987, SCIENCE, V238, P42, DOI 10.1126/science.238.4823.42; WAKE MH, 1982, J MORPHOL, V173, P203, DOI 10.1002/jmor.1051730208; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, EVOLUTION, V60, P2585; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; WILDER IW, 1920, COPEIA, V84, P63; Zelditch ML, 1996, PALEOBIOLOGY, V22, P241; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010 84 13 13 0 36 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2041-9139 EVODEVO EvoDevo AUG 18 2014 5 27 10.1186/2041-9139-5-27 18 Evolutionary Biology; Developmental Biology Evolutionary Biology; Developmental Biology AP3ZA WOS:000342015300001 25243058 DOAJ Gold, Green Published 2019-02-21 J Pinzon, JHC; Beach-Letendre, J; Weil, E; Mydlarz, LD Pinzon, Jorge H.; Beach-Letendre, Joshuah; Weil, Ernesto; Mydlarz, Laura D. Relationship between Phylogeny and Immunity Suggests Older Caribbean Coral Lineages Are More Resistant to Disease PLOS ONE English Article REEF-BUILDING CORALS; WHITE PLAGUE DISEASE; LIFE-HISTORY STRATEGIES; ROQUES-NATIONAL-PARK; SCLERACTINIAN CORALS; CLIMATE-CHANGE; ECOLOGICAL IMMUNOLOGY; INNATE IMMUNITY; ELEVATED-TEMPERATURE; SIDERASTREA-SIDEREA Diseases affect coral species fitness and contribute significantly to the deterioration of coral reefs. The increase in frequency and severity of disease outbreaks has made evaluating and determining coral resistance a priority. Phylogenetic patterns in immunity and disease can provide important insight to how corals may respond to current and future environmental and/or biologically induced diseases. The purpose of this study was to determine if immunity, number of diseases and disease prevalence show a phylogenetic signal among Caribbean corals. We characterized the constitutive levels of six distinct innate immune traits in 14 Caribbean coral species and tested for the presence of a phylogenetic signal on each trait. Results indicate that constitutive levels of some individual immune related processes (i.e. melanin concentration, peroxidase and inhibition of bacterial growth), as well as their combination show a phylogenetic signal. Additionally, both the number of diseases affecting each species and disease prevalence (as measures of disease burden) show a significant phylogenetic signal. The phylogenetic signal of immune related processes, combined with estimates of species divergence times, indicates that among the studied species, those belonging to older lineages tend to resist/fight infections better than more recently diverged coral lineages. This result, combined with the increasing stressful conditions on corals in the Caribbean, suggest that future reefs in the region will likely be dominated by older lineages while modern species may face local population declines and/or geographic extinction. [Pinzon, Jorge H.; Beach-Letendre, Joshuah; Mydlarz, Laura D.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Weil, Ernesto] Univ Puerto Rico, Dept Marine Sci, Mayaguez, PR 00709 USA Pinzon, JHC (reprint author), Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. pinzon@uta.edu NSF grant IOS [1017458, 1017510]; NSF [OCE -1105143]; NSF grant OCE-PRF [1225163] Funding was provided by NSF grant IOS # 1017458 to L. D. M., NSF grant IOS # 1017510 and OCE -1105143 to E. W., and NSF grant OCE-PRF # 1225163 to J.H.P.C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abouheif E, 1999, EVOL ECOL RES, V1, P895; Ardia DR, 2012, FUNCT ECOL, V26, P732, DOI 10.1111/j.1365-2435.2012.01989.x; Aronson RB, 2001, HYDROBIOLOGIA, V460, P25, DOI 10.1023/A:1013103928980; Baker AC, 2008, ESTUAR COAST SHELF S, V80, P435, DOI 10.1016/j.ecss.2008.09.003; Barbeitos M, 2007, BIOLOGY, P125; Baums IB, 2006, ECOL MONOGR, V76, P503, DOI 10.1890/0012-9615(2006)076[0503:GVICSI]2.0.CO;2; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Bogdan C, 2000, CURR OPIN IMMUNOL, V12, P64, DOI 10.1016/S0952-7915(99)00052-7; Boughton RK, 2011, FUNCT ECOL, V25, P81, DOI 10.1111/j.1365-2435.2010.01817.x; Budd AF, 2012, ZOOL J LINN SOC-LOND, V166, P465, DOI 10.1111/j.1096-3642.2012.00855.x; Bulmer MS, 2004, MOL BIOL EVOL, V21, P2256, DOI 10.1093/molbev/msh236; Cairns Stephen D., 1999, Atoll Research Bulletin, V459, P1; Carpenter KE, 2008, SCIENCE, V321, P560, DOI 10.1126/science.1159196; Cervino JM, 2008, J APPL MICROBIOL, V105, P1658, DOI 10.1111/j.1365-2672.2008.03871.x; Cervino JM, 2004, APPL ENVIRON MICROB, V70, P6855, DOI 10.1128/AEM.70.11.6855-6864.2004; Christensen BM, 2005, TRENDS PARASITOL, V21, P192, DOI 10.1016/j.pt.2005.02.007; Croquer A, 2005, CARIBB J SCI, V41, P815; Croquer A, 2003, REV BIOL TROP, V51, P167; Croquer A, 2003, REV BIOL TROP, V51, P39; Croquer A, 2009, DIS AQUAT ORGAN, V87, P33, DOI 10.3354/dao02164; Darling ES, 2012, ECOL LETT, V15, P1378, DOI 10.1111/j.1461-0248.2012.01861.x; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Diaz M, 2011, CORAL REEFS, V30, P73, DOI 10.1007/s00338-010-0668-4; Drummond AJ, 2012, BEAST IS CROSS PLATF; Drummond AJ, 2009, GENEIOUS V4 8; Finney JC, 2010, MICROB ECOL, P1; Fukami H, 2004, NATURE, V427, P832, DOI 10.1038/nature02339; Fukami H, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003222; Garcia A, 2003, REV BIOL TROP, V51, P173; Garzon-Ferreira J, 2001, HYDROBIOLOGIA, V460, P65, DOI 10.1023/A:1013133818360; Ghosh J, 2011, DEV COMP IMMUNOL, V35, P959, DOI 10.1016/j.dci.2010.12.009; Gil-Agudelo DL, 2010, B INVEST MAR COST, V38, P1; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; GITTLEMAN JL, 1990, SYST ZOOL, V39, P227, DOI 10.2307/2992183; GLADFELTER WB, 1982, B MAR SCI, V32, P639; Gochfeld DJ, 2008, MAR ECOL PROG SER, V362, P119, DOI 10.3354/meps07418; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; Harrison PL, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P59, DOI 10.1007/978-94-007-0114-4_6; Harvell D, 2007, OCEANOGRAPHY, V20, P172, DOI 10.5670/oceanog.2007.91; Harvell D, 2009, ECOLOGY, V90, P912, DOI 10.1890/08-0616.1; Hawley DM, 2011, FUNCT ECOL, V25, P48, DOI 10.1111/j.1365-2435.2010.01753.x; Hemmrich G, 2007, TRENDS IMMUNOL, V28, P449, DOI 10.1016/j.it.2007.08.003; Hoi-Leitner M, 2001, BEHAV ECOL SOCIOBIOL, V49, P333, DOI 10.1007/s002650000310; Huang DW, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-37; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; Hughes TP, 2000, ECOLOGY, V81, P2250, DOI 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2; Kaczmarsky LT, 2005, CARIBB J SCI, V41, P124; Krasnov BR, 2011, ECOGRAPHY, V34, P114, DOI 10.1111/j.1600-0587.2010.06502.x; LaJeunesse TC, 2003, LIMNOL OCEANOGR, V48, P2046, DOI 10.4319/lo.2003.48.5.2046; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lewis JB, 1997, MAR POLLUT BULL, V34, P622, DOI 10.1016/S0025-326X(96)00184-1; Loker ES, 2004, IMMUNOL REV, V198, P10, DOI 10.1111/j.0105-2896.2004.0117.x; Ma ZP, 2010, FISH SHELLFISH IMMUN, V28, P187, DOI 10.1016/j.fsi.2009.10.019; Magor BG, 2001, DEV COMP IMMUNOL, V25, P651, DOI 10.1016/S0145-305X(01)00029-5; McClanahan T. R., 2009, V205, P121; McGinty ES, 2012, MICROB ECOL, V64, P1000, DOI 10.1007/s00248-012-0085-z; Medzhitov R, 1997, CELL, V91, P295, DOI 10.1016/S0092-8674(00)80412-2; Miller J, 2009, CORAL REEFS, V28, P925, DOI 10.1007/s00338-009-0531-7; Millet S, 2007, DEV COMP IMMUNOL, V31, P188, DOI 10.1016/j.dci.2006.05.013; MURPHY PM, 1993, CELL, V72, P823, DOI 10.1016/0092-8674(93)90571-7; MUTHIGA NA, 1987, BIOL BULL, V173, P539, DOI 10.2307/1541699; Mydlarz LD, 2011, COMP BIOCHEM PHYS A, V159, P372, DOI 10.1016/j.cbpa.2011.03.029; Mydlarz LD, 2010, J EXP BIOL, V213, P934, DOI 10.1242/jeb.037580; Mydlarz LD, 2009, DIS AQUAT ORGAN, V87, P67, DOI 10.3354/dao02088; Navas-Camacho R, 2010, REV BIOL TROP, V58, P95; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Palmer CV, 2012, P ROY SOC B-BIOL SCI, V279, P4106, DOI 10.1098/rspb.2012.1477; Palmer CV, 2011, J EXP BIOL, V214, P4240, DOI 10.1242/jeb.061267; Palmer CV, 2010, FASEB J, V24, P1935, DOI 10.1096/fj.09-152447; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Reusch TBH, 2005, P NATL ACAD SCI USA, V102, P2826, DOI 10.1073/pnas.0500008102; Richards MH, 2000, MOL BIOL EVOL, V17, P146, DOI 10.1093/oxfordjournals.molbev.a026227; Roder C, 2014, MOL ECOL, V23, P965, DOI 10.1111/mec.12638; Roder C, 2014, ISME J, V8, P31, DOI 10.1038/ismej.2013.127; Romano SL, 1997, J MOL EVOL, V45, P397, DOI 10.1007/PL00006245; Romano SL, 2000, B MAR SCI, V67, P1043; Romano SL, 1996, SCIENCE, V271, P640, DOI 10.1126/science.271.5249.640; Santavy DL, 2001, HYDROBIOLOGIA, V460, P39, DOI 10.1023/A:1013194422440; Satake H, 2012, FRONT IMMUNOL, V3, DOI 10.3389/fimmu.2012.00034; Schulenburg H, 2009, PHILOS T R SOC B, V364, P3, DOI 10.1098/rstb.2008.0249; Stolarski J, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-316; Sutherland KP, 2004, MAR ECOL PROG SER, V266, P273, DOI 10.3354/meps266273; Tella JL, 2002, P ROY SOC B-BIOL SCI, V269, P1059, DOI 10.1098/rspb.2001.1951; THOMPSON JD, 1994, NUCLEIC ACIDS RES, V22, P4673, DOI 10.1093/nar/22.22.4673; Tieleman BI, 2005, P ROY SOC B-BIOL SCI, V272, P1715, DOI 10.1098/rspb.2005.3155; Veizer J, 2000, NATURE, V408, P698, DOI 10.1038/35047044; Verde Arregoitia LD, 2013, P R SOC B, V280; Vidal-Dupiol J, 2011, J BIOL CHEM, V286, P22688, DOI 10.1074/jbc.M110.216358; Vidal-Dupiol J, 2011, J EXP BIOL, V214, P1533, DOI 10.1242/jeb.053165; Voss JD, 2006, DIS AQUAT ORGAN, V69, P33, DOI 10.3354/dao069033; Wang DD, 2012, CELL STRESS CHAPERON, V17, P423, DOI 10.1007/s12192-011-0317-z; Ward JR, 2006, DIS AQUAT ORGAN, V69, P23, DOI 10.3354/dao069023; Weil E, 2006, DIS AQUAT ORGAN, V69, P1, DOI 10.3354/dao069001; Weil E, 2004, CORAL HEALTH AND DISEASE, P35; Weil E, 2005, CARIBBEAN MARINE BIO, P85; Weil E, 2009, CARIBB J SCI, V45, P221; Weil E, 2011, CORAL REEFS: AN ECOSYSTEM IN TRANSITION, P465, DOI 10.1007/978-94-007-0114-4_27 98 7 7 0 30 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One AUG 18 2014 9 8 e104787 10.1371/journal.pone.0104787 13 Multidisciplinary Sciences Science & Technology - Other Topics AO4JF WOS:000341302700042 25133685 DOAJ Gold, Green Published 2019-02-21 J Moya, C; Sear, R Moya, Cristina; Sear, Rebecca Intergenerational conflicts may help explain parental absence effects on reproductive timing: a model of age at first birth in humans PEERJ English Article Cooperative breeding; Life history theory; Intergenerational conflict; Father absence; Helpers at the nest; Mother absence; Reproductive decision-making; Kin competition; Parental investment; Senescence LIFE-HISTORY THEORY; FATHER ABSENCE; INBREEDING AVOIDANCE; PUBERTAL MATURATION; EVOLUTIONARY-THEORY; OFFSPRING CONFLICT; PREDICTS AGE; MATERNAL AGE; SKEW THEORY; STRATEGIES Background. Parental absences in childhood are often associated with accelerated reproductive maturity in humans. These results are counterintuitive for evolutionary social scientists because reductions in parental investment should be detrimental for offspring, but earlier reproduction is generally associated with higher fitness. In this paper we discuss a neglected hypothesis that early reproduction is often associated with parental absence because it decreases the average relatedness of a developing child to her future siblings. Family members often help each other reproduce, meaning that parents and offspring may find themselves in competition over reproductive opportunities. In these intergenerational negotiations offspring will have less incentive to help the remaining parent rear future half-siblings relative to beginning reproduction themselves. Method. We illustrate this "intergenerational conflict hypothesis" with a formal game-theoretic model. Results. We show that when resources constrain reproductive opportunities within the family, parents will generally win reproductive conflicts with their offspring, i.e., they will produce more children of their own and therefore delay existing offsprings' reproduction. This is due to the asymmetric relatedness between grandparents and grandchildren (r = .25), compared to siblings (r = 0.5), resulting in greater incentives for older siblings to help rear younger siblings than for grandparents to help rear grandchildren. However, if a parent loses or replaces their partner, the conflict between the parent and offspring becomes symmetric since half siblings are as related to one another as grandparents are to grandchildren. This means that the offspring stand to gain more from earlier reproduction when their remaining parent would produce half, rather than full, siblings. We further show that if parents senesce in a way that decreases the quality of their infant relative to their offspring's infant, the intergenerational conflict can shift to favor the younger generation. [Moya, Cristina; Sear, Rebecca] London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England Moya, C (reprint author), London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1, England. cristina.moya@lshtm.ac.uk European Research Council Authors were funded by the European Research Council. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Apostolou M, 2012, PERS INDIV DIFFER, V52, P733, DOI 10.1016/j.paid.2011.12.032; Bell AV, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083667; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Birdthistle IJ, 2008, AIDS, V22, P759, DOI 10.1097/QAD.0b013e3282f4cac7; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Cant MA, 2006, P ROY SOC B-BIOL SCI, V273, P171, DOI 10.1098/rspb.2005.3132; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Cas AG, 2014, DEMOGRAPHY, V51, P437, DOI 10.1007/s13524-014-0279-8; Chen XK, 2008, HUM REPROD, V23, P1290, DOI 10.1093/humrep/dem403; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutterbuck S, 2015, J BIOSOC SCI, V47, P188, DOI 10.1017/S0021932014000157; Cooney R, 2000, P ROY SOC B-BIOL SCI, V267, P801, DOI 10.1098/rspb.2000.1074; Crognier E, 2001, AM J HUM BIOL, V13, P365, DOI 10.1002/ajhb.1060.abs; Cyrus CCY, 2013, J THEOR BIOL, V332, P171, DOI 10.1016/j.jtbi.2013.04.031; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; Ermisch J, 2004, J R STAT SOC A STAT, V167, P69, DOI 10.1111/j.1467-985X.2004.00292.x; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; FRASER AM, 1995, NEW ENGL J MED, V332, P1113, DOI 10.1056/NEJM199504273321701; FRETTS RC, 1995, NEW ENGL J MED, V333, P953, DOI 10.1056/NEJM199510123331501; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 1999, SOC SCI MED, V49, P1623, DOI 10.1016/S0277-9536(99)00246-4; Harris JR, 1998, NURTURE ASSUMPTION W; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2013, EVOL ANTHROPOL, V22, P294, DOI 10.1002/evan.21382; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; HOBCRAFT JN, 1985, POP STUD-J DEMOG, V39, P363, DOI 10.1080/0032472031000141576; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; JENNIONS MD, 1994, TRENDS ECOL EVOL, V9, P89, DOI 10.1016/0169-5347(94)90202-X; Ji T, 2014, HUM NATURE-INT BIOS, V25, P66, DOI 10.1007/s12110-013-9188-6; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KIERNAN KE, 1992, POP STUD-J DEMOG, V46, P213, DOI 10.1080/0032472031000146206; KOENIG WD, 1992, Q REV BIOL, V67, P111, DOI 10.1086/417552; KOMDEUR J, 1994, P ROY SOC B-BIOL SCI, V256, P47, DOI 10.1098/rspb.1994.0047; Kramer KL, 2005, EVOL ANTHROPOL, V14, P224, DOI 10.1002/evan.20082; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Leonetti DL, 2009, AM J HUM BIOL, V21, P438, DOI 10.1002/ajhb.20929; Mace R, 2008, SCIENCE, V319, P764, DOI 10.1126/science.1153960; Mace R, 2012, P ROY SOC B-BIOL SCI, V279, P2219, DOI 10.1098/rspb.2011.2424; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; MICHAEL RT, 1985, DEMOGRAPHY, V22, P515, DOI 10.2307/2061586; Muniz L, 2006, CURR BIOL, V16, pR156, DOI 10.1016/j.cub.2006.02.055; Nettle D, 2012, DEV PSYCHOL, V48, P718, DOI 10.1037/a0027507; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Palermo T, 2009, STUD FAMILY PLANN, V40, P101, DOI 10.1111/j.1728-4465.2009.00193.x; Pasinelli G, 2002, ECOLOGY, V83, P2229, DOI 10.1890/0012-9658(2002)083[2229:SAEFAN]2.0.CO;2; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Plas E, 2000, EXP GERONTOL, V35, P543, DOI 10.1016/S0531-5565(00)00120-0; Reeve HK, 2006, P NATL ACAD SCI USA, V103, P8430, DOI 10.1073/pnas.0603005103; REEVE HK, 1995, AM NAT, V145, P119, DOI 10.1086/285731; Reeve HK, 1998, BEHAV ECOL, V9, P267, DOI 10.1093/beheco/9.3.267; Rickard IJ, 2014, PERSPECT PSYCHOL SCI, V9, P3, DOI 10.1177/1745691613513467; Robson SL, 2006, SCH AM RES, P17; Sear R, 2014, WORKING PAPER, P24; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Sheppard P, 2014, HUM NATURE-INT BIOS, V25, P213, DOI 10.1007/s12110-014-9195-2; Sheppard P, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0089539; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Skjservo GR, 2013, EXPT GERONTOLOGY, V48, P408, DOI [10.1016/j.exger.2013.02.001, DOI 10.1016/J.EXGER.2013.02.001]; Snopkowski K, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0580; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Teilmann G, 2006, PEDIATRICS, V118, pE391, DOI 10.1542/peds.2005-2939; Thomas F, 2001, HUM BIOL, V73, P271, DOI 10.1353/hub.2001.0029; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; van den Berg P, 2013, EVOL HUM BEHAV, V34, P405, DOI 10.1016/j.evolhumbehav.2013.07.004; VEHRENCAMP SL, 1983, AM ZOOL, V23, P327; Vikat A, 2002, J EPIDEMIOL COMMUN H, V56, P659, DOI 10.1136/jech.56.9.659; Waynforth D, 1998, EVOL HUM BEHAV, V19, P369, DOI 10.1016/S1090-5138(98)00031-2; Waynforth D, 2002, HDB FATHER INVOLVEME, P337; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Webster GD, 2014, EVOL PSYCHOL-US, V12, P273, DOI 10.1177/147470491401200202; Wells JCK, 2007, TRENDS ENDOCRIN MET, V18, P331, DOI 10.1016/j.tem.2007.07.006; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 86 8 8 3 20 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ AUG 12 2014 2 e512 10.7717/peerj.512 30 Multidisciplinary Sciences Science & Technology - Other Topics AY5MU WOS:000347617300003 25165627 DOAJ Gold, Green Published 2019-02-21 J Aguirre, JD; Blows, MW; Marshall, DJ Aguirre, J. David; Blows, Mark W.; Marshall, Dustin J. The genetic covariance between life cycle stages separated by metamorphosis PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article life-history evolution; adaptive decoupling; genetic variance-covariance matrix; Ciona; target matrix rotation MARINE INVERTEBRATE; TRADE-OFFS; SEA-URCHIN; VIABILITY SELECTION; JUVENILE GROWTH; LARVAL TRAITS; EVOLUTION; EXPRESSION; COMPLEX; CONSTRAINTS Metamorphosis is common in animals, yet the genetic associations between life cycle stages are poorly understood. Given the radical changes that occur at metamorphosis, selection may differ before and after metamorphosis, and the extent that genetic associations between pre- and post-metamorphic traits constrain evolutionary change is a subject of considerable interest. In some instances, metamorphosis may allow the genetic decoupling of life cycle stages, whereas in others, metamorphosis could allow complementary responses to selection across the life cycle. Using a diallel breeding design, we measured viability at four ontogenetic stages (embryo, larval, juvenile and adult viability), in the ascidian Ciona intestinalis and examined the orientation of additive genetic variation with respect to the metamorphic boundary. We found support for one eigenvector of G (gobs(max)), which contrasted larval viability against embryo viability and juvenile viability. Target matrix rotation confirmed that while gobs(max) shows genetic associations can extend beyond metamorphosis, there is still considerable scope for decoupled phenotypic evolution. Therefore, although genetic associations across metamorphosis could limit that range of phenotypes that are attainable, traits on either side of the metamorphic boundary are capable of some independent evolutionary change in response to the divergent conditions encountered during each life cycle stage. [Aguirre, J. David; Blows, Mark W.; Marshall, Dustin J.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Marine Evolutionary Ecol Grp, Clayton, Vic 3800, Australia Aguirre, JD (reprint author), Massey Univ, Inst Nat & Math Sci, Auckland, New Zealand. j.d.aguirre@massey.ac.nz Marshall, Dustin/C-3450-2016; Blows, Mark/B-6195-2008 Blows, Mark/0000-0002-1065-5524; Aguirre, David/0000-0001-7520-441X Australian Research Council; University of Queensland; Te Kotahitanga o Te Arawa Fisheries; Ngati Whakawe Education Trust This work was funded by an Australian Research Council grant to D.J.M. J.D.A. was supported in part by a University of Queensland Research Scholarship, Te Kotahitanga o Te Arawa Fisheries and the Ngati Whakawe Education Trust. Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Aguirre JD, 2014, HEREDITY, V112, P21, DOI 10.1038/hdy.2013.12; Arenas-Mena C, 1998, P NATL ACAD SCI USA, V95, P13062, DOI 10.1073/pnas.95.22.13062; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Azumi K, 2007, DEV BIOL, V308, P572, DOI 10.1016/j.ydbio.2007.05.022; Burgess SC, 2009, BIOL BULL-US, V216, P344; Chenoweth SF, 2010, AM NAT, V175, P186, DOI 10.1086/649594; CHEVERUD JM, 1983, EVOLUTION, V37, P895, DOI 10.1111/j.1558-5646.1983.tb05619.x; Chippindale AK, 1998, EVOLUTION, V52, P1342, DOI 10.1111/j.1558-5646.1998.tb02016.x; CONNELL JH, 1961, ECOL MONOGR, V31, P61, DOI 10.2307/1950746; Crean AJ, 2011, EVOLUTION, V65, P3079, DOI 10.1111/j.1558-5646.2011.01372.x; EBENMAN B, 1992, AM NAT, V139, P990, DOI 10.1086/285370; Ernande B, 2003, J EVOLUTION BIOL, V16, P399, DOI 10.1046/j.1420-9101.2003.00543.x; Evans JP, 2007, EVOLUTION, V61, P2832, DOI 10.1111/j.1558-5646.2007.00227.x; Fry JD, 1996, AM NAT, V148, pS84, DOI 10.1086/285904; Galletly BC, 2007, ECOL APPL, V17, P2290, DOI 10.1890/06-2079.1; Gelman A, 2006, BAYESIAN ANAL, V1, P515, DOI 10.1214/06-BA117A; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield MG, 2001, AM ZOOL, V41, P1123, DOI 10.1668/0003-1569(2001)041[1123:MCAMAC]2.0.CO;2; Haldane JBS, 1932, AM NAT, V66, P5, DOI 10.1086/280406; Hilbish TJ, 1999, J EXP MAR BIOL ECOL, V239, P183, DOI 10.1016/S0022-0981(99)00009-X; HILBISH TJ, 1993, MAR BIOL, V115, P97, DOI 10.1007/BF00349390; Hunt HL, 1997, MAR ECOL PROG SER, V155, P269, DOI 10.3354/meps155269; Jacobs MW, 2008, INVERTEBR BIOL, V127, P217, DOI 10.1111/j.1744-7410.2008.00125.x; Jacobs MW, 2006, INTEGR COMP BIOL, V46, P760, DOI 10.1093/icb/icl015; Jarrett JN, 2000, MAR ECOL PROG SER, V204, P305, DOI 10.3354/meps204305; Johnson DW, 2011, EVOL APPL, V4, P621, DOI 10.1111/j.1752-4571.2011.00185.x; Kelly MW, 2013, INTEGR COMP BIOL, V53, pE108; Kirkpatrick M, 2009, GENETICA, V136, P271, DOI 10.1007/s10709-008-9302-6; Kruschke JK, 2011, PERSPECT PSYCHOL SCI, V6, P299, DOI 10.1177/1745691611406925; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; Lynch M, 1998, GENETICS ANAL QUANTI; Marshall DJ, 2002, ECOL LETT, V5, P173, DOI 10.1046/j.1461-0248.2002.00257.x; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; Mojica JP, 2010, P ROY SOC B-BIOL SCI, V277, P2945, DOI 10.1098/rspb.2010.0568; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Morgan Steven G., 1995, P157; Parichy DM, 1998, J MORPHOL, V237, P53, DOI 10.1002/(SICI)1097-4687(199807)237:1<53::AID-JMOR5>3.0.CO;2-P; Pechenik JA, 1998, BIOSCIENCE, V48, P901, DOI 10.2307/1313294; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Peterson KJ, 2000, P NATL ACAD SCI USA, V97, P4487, DOI 10.1073/pnas.97.9.4487; Phillips PC, 1998, J EVOLUTION BIOL, V11, P453, DOI 10.1007/s000360050099; Quigley AK, 2004, DEVELOPMENT, V131, P6053, DOI 10.1242/dev.01526; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Shaw RG, 2008, AM NAT, V172, pE35, DOI 10.1086/588063; SPIEGELHALTER DJ, 1994, J R STAT SOC A STAT, V157, P357, DOI 10.2307/2983527; Steinsland I, 2014, EVOLUTION, V68, P1735, DOI 10.1111/evo.12380; Toonen RJ, 2001, EVOLUTION, V55, P2439; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Watkins TB, 2001, EVOLUTION, V55, P1668; Werner E.E., 1988, P60 55 16 16 2 56 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 7 2014 281 1788 20141091 10.1098/rspb.2014.1091 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AK7WE WOS:000338637600029 24966319 Green Published, Bronze 2019-02-21 J Araya, M; Niklitschek, EJ; Secor, DH; Piccoli, PM Araya, Miguel; Niklitschek, Edwin J.; Secor, Dave H.; Piccoli, Philip M. Partial migration in introduced wild chinook salmon (Oncorhynchus tshawytscha) of southern Chile ESTUARINE COASTAL AND SHELF SCIENCE English Article introduced species; life-history variation; otoliths microchemistry; partial migration; Sr:Ca Chile; Aysen region; Aysen watershed LIFE-HISTORY VARIATION; OTOLITH MICROCHEMISTRY; ANADROMOUS SALMONIDS; ESTUARINE FISH; STRIPED BASS; NEW-ZEALAND; RIVER; POPULATION; PATAGONIA; CHEMISTRY Partial migration, the incidence of opposing migration behaviors within the same population, has been a key factor in the invasive ecology of Pacific salmon within South America. Here, we examined such life-cycle variation in of an introduced chinook salmon population in the Aysen watershed, one of the largest fjord systems in NW Patagonia. The chinook salmon is the most successful invasive salmonid species in Patagonia and has recently colonized numerous Patagonian watersheds of the Pacific and Atlantic Oceans. Using analyses of fish scales and otolith strontium:calcium ratios, our results suggest the presence of two distinct ecotypes in the chinook population, an ocean type and a stream type, in a 3:2 ratio. The distribution of back-calculated length at the time of emigration from river to marine habitats showed a mode of 14 cm for the ocean ecotype and 30 cm for the stream ecotype. River residence time for the ocean ecotype ranged from 1 to 10 months, while that of the stream ecotype varied between 14 and 20 months. Returning adults reproduced in riverine habitats between August and March, but reproduction by the stream ecotype was limited to the period between October and February. Our results show that exotic chinook salmon populations established in NW Patagonia present a diversity of life-history strategies, which seems to be as large as the ones exhibited by the species in its native distribution range and in other invaded ecosystems. Chinook salmon have successfully invaded most major rivers in Patagonia, placing priority on science and conservation related to their ecological impact. (C) 2014 Elsevier Ltd. All rights reserved. [Araya, Miguel] Univ Antofagasta, Doctorate Program Appl Sci, Antofagasta, Chile; [Niklitschek, Edwin J.] Univ Los Lagos, I Mar Res Ctr, Puerto Montt, Chile; [Secor, Dave H.] Univ Maryland, Ctr Environm Sci, Chesapeake Biol Lab, Solomons, MD 20688 USA; [Piccoli, Philip M.] Univ Maryland, Dept Geol, College Pk, MD 20742 USA Araya, M (reprint author), Arturo Prat Univ, Fac Renewable Nat Resources, Iquique, Chile. maraya@unap.cl; edwin.niklitschek@ulagos.cl; secor@umces.edu; piccoli@umd.edu Niklitschek, Edwin/A-7066-2008; Secor, D/D-4367-2012 Niklitschek, Edwin/0000-0001-5561-3494; Secor, D/0000-0001-6007-4827 CONICYT; Chilean Fisheries Research Fund (FIP) grant [2008-30]; University of Antofagasta; Arturo Prat University; Regional Government of Tarapaca This work was supported by a grant to M. Araya of CONICYT. Additional funds were provided by Chilean Fisheries Research Fund (FIP) grant No 2008-30, University of Antofagasta, Arturo Prat University and the Regional Government of Tarapaca. Laboratories and specialized equipment was contributed by universities Austral of Chile, Los Lagos (Chile) and Maryland (USA). The authors thank Chris Conroy for help with the preparation of otoliths for Sr:Ca analysis. Fernandez DA, 2010, BIOL INVASIONS, V12, P2991, DOI 10.1007/s10530-010-9731-x; Altukhov Y.P., 2000, SALMONID FISHES POPU, P354; Arismendi I, 2012, KNOWL MANAG AQUAT EC, DOI 10.1051/kmae/2012009; Arismendi I., 2014, REV FISH BI IN PRESS; Beamish RJ, 2001, PROG OCEANOGR, V49, P423, DOI 10.1016/S0079-6611(01)00034-9; Becker LA, 2007, CONSERV BIOL, V21, P1347, DOI 10.1111/j.1523-1739.2007.00761.x; BILLARD R, 1996, DEV AQUAC FISH SCI, V29, P291; Buschmann AH, 2006, ICES J MAR SCI, V63, P1338, DOI 10.1016/j.icesjms.2006.04.021; CAMPANA SE, 1990, CAN J FISH AQUAT SCI, V47, P2219, DOI 10.1139/f90-246; Chapman BB, 2012, J FISH BIOL, V81, P456, DOI 10.1111/j.1095-8649.2012.03342.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Ciancio JE, 2005, ENVIRON BIOL FISH, V74, P219, DOI 10.1007/s10641-005-0208-1; Correa C, 2008, BIOL INVASIONS, V10, P615, DOI 10.1007/s10530-007-9157-2; CURY P, 1994, CAN J FISH AQUAT SCI, V51, P1664, DOI 10.1139/f94-167; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; Di Prinzio CY, 2008, ANN LIMNOL-INT J LIM, V44, P25, DOI 10.1051/limn:2008020; Elsdon TS, 2008, OCEANOGR MAR BIOL, V46, P297, DOI 10.1201/9781420065756.ch7; FLAIN M, 1988, NEW ZEAL J MAR FRESH, V22, P497, DOI 10.1080/00288330.1988.9516319; FOWLER AJ, 1995, CAN J FISH AQUAT SCI, V52, P1431, DOI 10.1139/f95-138; Gilbert C. H., 1912, B US BUR FISH, V32, P1; Gillanders BM, 2005, ESTUAR COAST SHELF S, V64, P47, DOI 10.1016/j.ecss.2005.02.005; Healey M.C., 1991, P311; HEALEY MC, 1983, CAN FIELD NAT, V97, P427; Hendry Andrew P., 2004, P52; Jessop BM, 2008, AQUAT BIOL, V1, P205, DOI 10.3354/ab00018; KALISH JM, 1991, MAR ECOL PROG SER, V74, P137, DOI 10.3354/meps074137; KALISH JM, 1990, FISH B-NOAA, V88, P657; Kerr LA, 2010, ECOL APPL, V20, P497, DOI 10.1890/08-1382.1; Kerr LA, 2009, CAN J FISH AQUAT SCI, V66, P602, DOI 10.1139/F09-027; KIMURA DK, 1980, FISH B-NOAA, V77, P765; Koo T. S. Y., 1967, FISH B, V66, P165; Kraus RT, 2004, J EXP MAR BIOL ECOL, V302, P85, DOI 10.1016/j.jembe.2003.10.004; Liss W. J., 2006, RETURN RIVER RESTORI, P51; McDowall RM, 2003, T AM FISH SOC, V132, P229, DOI 10.1577/1548-8659(2003)132<0229:IOISON>2.0.CO;2; Miller JA, 2009, FISH RES, V95, P373, DOI 10.1016/j.fishres.2008.09.030; Miller JA, 2011, CAN J FISH AQUAT SCI, V68, P603, DOI [10.1139/f2011-002, 10.1139/F11-002]; Miller JA, 2010, MAR ECOL PROG SER, V408, P227, DOI 10.3354/meps08613; Niklitschek E., 2002, ESTUDIO CICLO REPROD, P68; Niklitschek EJ, 2014, ICES J MAR SCI, V71, P374, DOI 10.1093/icesjms/fst129; Niklitschek EJ, 2013, REV AQUACULT, V5, P172, DOI 10.1111/raq.12012; O'Neal SL, 2011, T AM FISH SOC, V140, P623, DOI 10.1080/00028487.2011.585577; O'Ryan R, 2010, VULNERABLE PLACES, VULNERABLE PEOPLE: TRADE LIBERALIZATION, RURAL POVERTY AND THE ENVIRONMENT, P14; Pascual M, 2007, ECOLOGICAL GENETIC I; Pizarro R., 2003, SERIE APP, V22; RICKER WE, 1979, FISH PHYSIOL, V8, P677, DOI DOI 10.1016/S1546-5098(08)60034-5; Rossi CMR, 2012, GENETICA, V140, P439, DOI 10.1007/s10709-012-9692-3; Secor D.H., 2014, MIGRATION E IN PRESS; Secor DH, 2007, FISH B-NOAA, V105, P62; Secor DH, 2009, ICES J MAR SCI, V66, P1726, DOI 10.1093/icesjms/fsp154; Secor DH, 1996, ESTUARIES, V19, P778, DOI 10.2307/1352297; SERNAPESCA, 2013, SERV NAC PESC AN EST; Soto D, 2006, REV CHIL HIST NAT, V79, P97, DOI 10.4067/S0716-078X2006000100009; Soto D, 2001, ECOL APPL, V11, P1750, DOI 10.1890/1051-0761(2001)011[1750:ESITIS]2.0.CO;2; Soto D, 2007, REV CHIL HIST NAT, V80, P81, DOI 10.4067/S0716-078X2007000100007; TAYLOR EB, 1990, J FISH BIOL, V37, P1, DOI 10.1111/j.1095-8649.1990.tb05922.x; UNWIN MJ, 1993, CAN J FISH AQUAT SCI, V50, P2475, DOI 10.1139/f93-272; Volk EC, 2010, T AM FISH SOC, V139, P535, DOI 10.1577/T08-163.1; Walther BD, 2012, J FISH BIOL, V81, P796, DOI 10.1111/j.1095-8649.2012.03371.x; Zabel RW, 2010, ENVIRON BIOL FISH, V89, P267, DOI 10.1007/s10641-010-9678-x; Zimmerman CE, 2003, FISH B-NOAA, V101, P712 60 7 7 1 28 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. AUG 5 2014 149 87 95 10.1016/j.ecss.2014.07.011 9 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography AW3ZF WOS:000346220800009 2019-02-21 J Vasilieva, NA; Tchabovsky, AV Vasilieva, N. A.; Tchabovsky, A. V. Timing is the only thing: reproduction in female yellow ground squirrels (Spermophilus fulvus) CANADIAN JOURNAL OF ZOOLOGY English Article timing of reproduction; reproductive costs; reproductive decisions; survival; yellow ground squirrel; Spermophilus fulvus LIFE-HISTORY EVOLUTION; LITTER SIZE; INDIVIDUAL-DIFFERENCES; OVERWINTER SURVIVAL; SEXUAL DIFFERENCES; MOUNTAIN GOATS; BODY-WEIGHT; TRADE-OFFS; COSTS; AGE Based on 4-year field observations of yellow ground squirrels (Spermophilus fulvus (Lichtenstein, 1823)), we determined whether female reproductive effort, annual reproductive success, and survival were dependent on age, body condition, time of emergence from hibernation, and previous reproduction. The probability of weaning a litter did not vary with female age, body condition, time of emergence, or previous reproduction. Litter size, litter mass, and offspring survival did not vary with age, whereas individual offspring mass was lower in yearlings than in older females. Body condition upon emergence had no effect on litter size, litter mass, offspring mass, and survival. Reproduction did not influence female survival, physical condition upon emergence next spring, or subsequent reproductive efforts. The only factor that affected the extent of reproductive effort and offspring survival was the date of emergence: the later a female emerged, the lower the total and mean offspring mass, and fewer offspring survived. The modulation of reproduction in female S. fulvus by only the timing of vernal emergence and independent of other individual characteristics can be explained by the high costs of missed reproductive opportunity because of short longevity combined with low costs of reproduction when resources are abundant enough to meet both somatic and reproductive needs. [Vasilieva, N. A.; Tchabovsky, A. V.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia Vasilieva, NA (reprint author), Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, 33 Leninskii Pr, Moscow 119071, Russia. ninavasilieva@gmail.com Tchabovsky, Andrey/B-2678-2008 Tchabovsky, Andrey/0000-0003-2227-1525; Vasilieva, Nina/0000-0002-5802-9733 Russian Foundation for Basic Research [10-04-01304a, 12-04-31279] We are grateful to S. A. Shilova who encouraged and supported the study. We thank L. E. Savinetskaya, V. S. Popov, N.S. Vasiliev, I. A. Volodin, E. V. Volodina, V. A. Matrosova, A. A. Kochetkova, and other members of our field team. G. A. Bazykin and Y. Chabovskaya read the earlier draft of the manuscript and helped to improve the text and clarify statements. Comments and criticism from anonymous reviewers and P. Neuhaus were very useful. The text of the manuscript has been edited by Elsevier Language Editing Services. The study was financially supported by the Russian Foundation for Basic Research (grants 10-04-01304a and 12-04-31279). All work conforms to the "Guidelines for the treatment of animals in behavioural research and teaching" (Anim. Behav. 71(1):245-253, doi:10.1016/j.anbehav.2005.10.001) and to the laws of Russian Federation, the country where the research was conducted. Ahmad S.U., 2008, P PAKISTAN ACAD SCI, V45, P191; Armitage KB, 1998, J MAMMAL, V79, P385, DOI 10.2307/1382969; Babitsky A. F., 2006, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V111, P80; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bieber C, 2012, OECOLOGIA, V169, P155, DOI 10.1007/s00442-011-2194-7; Bieber Claudia, 2004, Biological Papers of the University of Alaska, V27, P113; Boggs Carol L., 1994, P25; BOKSHTEIN FM, 1989, RUSS J ECOL, V20, P45; Broussard DR, 2003, J ANIM ECOL, V72, P212, DOI 10.1046/j.1365-2656.2003.00691.x; Broussard DR, 2006, J ZOOL, V268, P389, DOI 10.1111/j.1469-7998.2006.00071.x; Broussard DR, 2005, OIKOS, V108, P591, DOI 10.1111/j.0030-1299.2005.13382.x; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1983, J ANIM ECOL, V52, P367, DOI 10.2307/4560; Cohen J, 1988, STAT POWER ANAL BEHA; DEROCHER AE, 1994, J ZOOL, V234, P527, DOI 10.1111/j.1469-7998.1994.tb04863.x; Dobson FS, 1999, J ANIM ECOL, V68, P73, DOI 10.1046/j.1365-2656.1999.00268.x; DOBSON FS, 1995, ECOLOGY, V76, P851, DOI 10.2307/1939350; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2003, POPUL DEV REV, V29, P39; Glazier D.D., 2009, RESOURCE ALLOCATION, P44, DOI DOI 10.1079/9781845933944.0044); GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hacklander K, 1999, BEHAV ECOL, V10, P592, DOI 10.1093/beheco/10.5.592; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Hoffmann IE, 2003, J MAMMAL, V84, P615, DOI 10.1644/1545-1542(2003)084<0615:PDOEGS>2.0.CO;2; HOLMES WG, 1986, HORM BEHAV, V20, P243, DOI 10.1016/0018-506X(86)90022-X; Hoogland J. L., 1995, BLACK TAILED PRAIRIE; Huber S, 1999, OECOLOGIA, V121, P19, DOI 10.1007/s004420050902; Huber S, 2001, ECOGRAPHY, V24, P205, DOI 10.1034/j.1600-0587.2001.240211.x; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P165, DOI 10.1086/367950; Hurlburt R.T., 2003, CONPREHENDING BEHAV; Karels TJ, 2000, J ANIM ECOL, V69, P235, DOI 10.1046/j.1365-2656.2000.00387.x; Karels TJ, 2004, OIKOS, V105, P575, DOI 10.1111/j.0030-1299.2004.12732.x; KING WJ, 1991, OECOLOGIA, V86, P528, DOI 10.1007/BF00318319; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; KUESTER J, 1995, PRIMATES, V36, P461, DOI 10.1007/BF02382869; Kunz TH, 1998, ECOSCIENCE, V5, P8, DOI 10.1080/11956860.1998.11682443; Lacey EA, 1997, ANIM BEHAV, V53, P767, DOI 10.1006/anbe.1996.0342; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; Mainguy J, 2008, BEHAV ECOL SOCIOBIOL, V62, P935, DOI 10.1007/s00265-007-0517-9; MCGRAW KO, 1992, PSYCHOL BULL, V111, P361, DOI 10.1037//0033-2909.111.2.361; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Michener G. R., 1984, BIOL GROUND DWELLING, P79; Michener G. R., 1983, AM SOC MAMMAL SPEC P, V7, P528; MICHENER GR, 1980, J MAMMAL, V61, P531, DOI 10.2307/1379847; Michener GR, 1998, J MAMMAL, V79, P1, DOI 10.2307/1382838; MICHENER GR, 1989, CAN J ZOOL, V67, P1827, DOI 10.1139/z89-260; Millesi E, 1999, ETHOLOGY, V105, P163, DOI 10.1046/j.1439-0310.1999.00379.x; Millesi E, 2000, HORM BEHAV, V37, P190, DOI 10.1006/hbeh.2000.1574; Moller AP, 2002, ECOLOGY, V83, P2220, DOI 10.2307/3072053; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; Morrow G, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006070; MURIE JO, 1987, OECOLOGIA, V73, P1, DOI 10.1007/BF00376969; MURIE JO, 1984, J MAMMAL, V65, P688, DOI 10.2307/1380854; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Neuhaus P, 2000, BEHAV ECOL SOCIOBIOL, V48, P75, DOI 10.1007/s002650000209; Neuhaus P, 2004, J ANIM ECOL, V73, P36, DOI 10.1111/j.1365-2656.2004.00793.x; Neuhaus P, 2001, CAN J ZOOL, V79, P465, DOI 10.1139/cjz-79-3-465; Parks DH, 2010, BIOINFORMATICS, V26, P715, DOI 10.1093/bioinformatics/btq041; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Proaktor G, 2007, BIOLOGY LETT, V3, P674, DOI 10.1098/rsbl.2007.0376; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Rieger JF, 1996, OECOLOGIA, V107, P463, DOI 10.1007/BF00333936; Ruf Thomas, 2012, P123; Shilova S. A., 2006, Byulleten' Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii, V111, P71; Shubin I.G., 1973, Trudy Inst Zool Alma Ata, V34, P172; Skibiel AL, 2009, ECOL MONOGR, V79, P325, DOI 10.1890/08-0718.1; Sokal R.R., 1995, BIOMETRY PRINCIPLES; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TUOMI J, 1983, AM ZOOL, V23, P25; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vasilieva NA, 2009, ZOOL ZH, V88, P588; Vasilieva NA, 2009, ZOOL ZH, V88, P339; WAUTERS L, 1989, J ANIM ECOL, V58, P637, DOI 10.2307/4853; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zar JH, 2010, BIOSTATISTICAL ANAL; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 82 5 5 1 16 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool. AUG 2014 92 8 737 747 10.1139/cjz-2014-0084 11 Zoology Zoology AT5AB WOS:000344954800011 2019-02-21 J Dinh Van, K; Janssens, L; Debecker, S; Stoks, R Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby Temperature- and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide JOURNAL OF APPLIED ECOLOGY English Article chlorpyrifos; ecological risk assessment; global warming; latitudinal gradient; space-for-time substitution; thermal adaptation; voltinism ECOLOGICAL RISK-ASSESSMENT; FRESH-WATER INVERTEBRATES; LIFE-HISTORY; CLIMATE-CHANGE; ENALLAGMA-CYATHIGERUM; STRESS; CHLORPYRIFOS; EVOLUTIONARY; COMMUNITIES; RESPONSES 1. Freshwater ecosystems are especially vulnerable to climate change and pollution. One key challenge for aquatic toxicology is to determine and manage the combined effects of temperature increase and contaminants across species' ranges. 2. We tested how thermal adaptation and life-history evolution along a natural temperature gradient influence the vulnerability of an aquatic insect to a pesticide under global warming. We applied a space-for-time substitution approach to study the effect of warming on the vulnerability of Ischnura elegans damselfly larvae to the pesticide chlorpyrifos in a common garden warming experiment (20 and 24 degrees C) with replicated populations from three latitudes spanning >1500 km in Europe. 3. Chlorpyrifos was more toxic to damselfly larvae at the higher temperature: mortality only occurred at 24 degrees C and the reductions in growth rate were stronger at 24 degrees C. This could partly be explained by parallel reductions in food intake but not by the activities of two widespread enzymatic biomarkers, glutathione S-transferase (GST) and acetylcholinesterase (AChE). 4. There was some evidence that the increased toxicity of the high chlorpyrifos concentration at 24 degrees C was stronger in terms of growth reduction in the faster-growing larvae from the low-latitude populations. This is consistent with energy allocation trade-offs between growth rate and pesticide tolerance, but suggests that local thermal adaptation does not play a role in coping with pesticide stress. 5. Synthesis and applications. Damselfly larvae from populations in lower latitudes were more vulnerable to a common pesticide at higher temperatures and pesticide concentrations, whereas evidence for the influence of local thermal adaptation on the vulnerability of larvae was weak. These results emphasize the need for spatially explicit bioassessment and conservation tools. Management practices aimed at mitigating pesticide run-off into aquatic ecosystems are particularly important in agricultural areas at low latitudes. [Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; Stoks, Robby] Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Leuven, Belgium; [Dinh Van, Khuong] Nha Trang Univ, Inst Aquaculture, Nha Trang, Vietnam Dinh Van, K (reprint author), Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Charles Deberiotstr 32, Leuven, Belgium. Khuong.DinhVan@bio.kuleuven.be Dinh, Khuong Van/0000-0003-0766-9148; Debecker, Sara/0000-0002-6097-5307 FWO; KU Leuven Research Fund (Excellence Center Financing) [PF/2010/07]; Interuniversity Attraction Pole (IAP) project Speedy We thank P. Lambret and V. Nilsson-Ortman for collecting eggs and the associate editor, David Angeler and three anonymous reviewers for their constructive comments. K.D.V. is a PhD fellow of VOSP and benefited an IRO Supplement, L.J. is a PhD fellow of IWT-Flanders and S.D. is a PhD fellow of the Research Foundation-Flanders (FWO). Financial support for this research came from grants of FWO, the KU Leuven Research Fund (Excellence Center Financing PF/2010/07) and the Interuniversity Attraction Pole (IAP) project Speedy. Babut M, 2013, ENVIRON SCI POLLUT R, V20, P8298, DOI 10.1007/s11356-013-2004-3; Barnthouse LW, 2004, ENVIRON TOXICOL CHEM, V23, P500, DOI 10.1897/02-521; Bednarska AJ, 2013, INTEGR ENVIRON ASSES, V9, pE39, DOI 10.1002/ieam.1444; Beketov MA, 2013, P NATL ACAD SCI USA, V110, P11039, DOI 10.1073/pnas.1305618110; Bronmark C, 2002, ENVIRON CONSERV, V29, P290, DOI 10.1017/S0376892902000218; Broomhall SD, 2004, J APPL ECOL, V41, P105, DOI 10.1111/j.1365-2664.2004.00883.x; Buchwalter DB, 2004, AQUAT TOXICOL, V66, P149, DOI 10.1016/j.aquatox.2003.08.004; Buchwalter DB, 2003, ENVIRON TOXICOL CHEM, V22, P2806, DOI 10.1897/02-350; Campero M, 2007, ECOL APPL, V17, P2111, DOI 10.1890/07-0442.1; Christen B, 2013, BIOMASS BIOENERG, V55, P53, DOI 10.1016/j.biombioe.2012.09.053; Clements WH, 2012, ENVIRON TOXICOL CHEM, V31, P1932, DOI 10.1002/etc.1937; Congdon JD, 2001, ENVIRON TOXICOL CHEM, V20, P1698, DOI 10.1897/1551-5028(2001)020<1698:RABLHA>2.0.CO;2; Coors A, 2009, AQUAT TOXICOL, V95, P71, DOI 10.1016/j.aquatox.2009.08.004; Corbet Philip S., 2006, International Journal of Odonatology, V9, P1; De Block M, 2004, OIKOS, V106, P587; De Block M, 2013, GLOBAL CHANGE BIOL, V19, P689, DOI 10.1111/gcb.12089; De Frenne P, 2013, J ECOL, V101, P784, DOI 10.1111/1365-2745.12074; De Silva PMCS, 2009, CHEMOSPHERE, V76, P1410, DOI 10.1016/j.chemosphere.2009.06.006; Dinh Van K, 2013, GLOBAL CHANGE BIOL, V19, P2625, DOI 10.1111/gcb.12243; Domingues I, 2010, ENVIRON TOXICOL CHEM, V29, P5, DOI 10.1002/etc.23; Eaton DL, 2008, CRIT REV TOXICOL, V38, P1, DOI [10.1080/10408440802272158, 10.1080/10408440802272158 ]; Fukami T, 2005, P ROY SOC B-BIOL SCI, V272, P2105, DOI 10.1098/rspb.2005.3277; Fulton MH, 2001, ENVIRON TOXICOL CHEM, V20, P37, DOI 10.1897/1551-5028(2001)020<0037:AIIEFA>2.0.CO;2; Gosden TP, 2011, BIOL J LINN SOC, V102, P775, DOI 10.1111/j.1095-8312.2011.01619.x; Harwood AD, 2009, ENVIRON TOXICOL CHEM, V28, P1051, DOI 10.1897/08-291.1; Hassall C, 2008, INT J ODONATOL, V11, P131, DOI 10.1080/13887890.2008.9748319; IPCC, 2007, CLIMATE CHANGE 2007; Janssens L, 2013, AQUAT TOXICOL, V132, P92, DOI 10.1016/j.aquatox.2013.02.003; Janssens L, 2013, ENVIRON POLLUT, V177, P143, DOI 10.1016/j.envpol.2013.02.016; Johansson H, 2013, ECOGRAPHY, V36, P744, DOI 10.1111/j.1600-0587.2012.00064.x; Jokanovic M, 1996, ARCH TOXICOL, V70, P444, DOI 10.1007/s002040050297; Kamo M, 2011, ECOL APPL, V21, P3191, DOI 10.1890/11-0234.1; Kattwinkel M, 2011, ECOL APPL, V21, P2068, DOI 10.1890/10-1993.1; Liess M, 2005, ENVIRON TOXICOL CHEM, V24, P954, DOI 10.1897/03-652.1; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING BI; Moe SJ, 2013, ENVIRON TOXICOL CHEM, V32, P49, DOI 10.1002/etc.2045; Noyes PD, 2009, ENVIRON INT, V35, P971, DOI 10.1016/j.envint.2009.02.006; Nygren Georg H., 2008, Journal of Insect Science (Tucson), V8, P1, DOI 10.1673/031.008.4701; Pestana JLT, 2009, AQUAT TOXICOL, V93, P138, DOI 10.1016/j.aquatox.2009.04.008; Ragland GJ, 2007, J EVOLUTION BIOL, V20, P2144, DOI 10.1111/j.1420-9101.2007.01428.x; Rakotondravelo ML, 2006, ARCH ENVIRON CON TOX, V51, P360, DOI 10.1007/s00244-005-0227-0; Rasmussen JJ, 2011, ECOL ENG, V37, P1990, DOI 10.1016/j.ecoleng.2011.08.016; Rubach MN, 2012, ECOTOXICOLOGY, V21, P2088, DOI 10.1007/s10646-012-0962-8; Shama LNS, 2011, MOL ECOL, V20, P2929, DOI 10.1111/j.1365-294X.2011.05156.x; SIBLY RM, 1989, BIOL J LINN SOC, V37, P101, DOI 10.1111/j.1095-8312.1989.tb02007.x; Sridhar V, 2004, J AM WATER RESOUR AS, V40, P197, DOI 10.1111/j.1752-1688.2004.tb01019.x; Stehle S, 2011, J ENVIRON QUAL, V40, P1068, DOI 10.2134/jeq2010.0510; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Stoks R, 2012, J ANIM ECOL, V81, P1034, DOI 10.1111/j.1365-2656.2012.01987.x; Stoks R, 2012, ANNU REV ENTOMOL, V57, P249, DOI 10.1146/annurev-ento-120710-100557; Stoks R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016935; Sutherland WJ, 2006, J APPL ECOL, V43, P617, DOI 10.1111/j.1365-2664.2006.01188.x; Tassou KT, 2012, ENVIRON TOXICOL CHEM, V31, P2384, DOI 10.1002/etc.1969; Van den Brink PJ, 2008, ENVIRON SCI TECHNOL, V42, P8999, DOI 10.1021/es801991c; WALKER CH, 2006, PRINCIPLES ECOTOXICO; Woodward G, 2010, PHILOS T R SOC B, V365, P2093, DOI 10.1098/rstb.2010.0055 57 25 25 0 64 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. AUG 2014 51 4 919 928 10.1111/1365-2664.12269 10 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology AQ5LP WOS:000342851000010 Bronze 2019-02-21 J Behringer, V; Deschner, T; Deimel, C; Stevens, JMG; Hohmann, G Behringer, V.; Deschner, T.; Deimel, C.; Stevens, J. M. G.; Hohmann, G. Age-related changes in urinary testosterone levels suggest differences in puberty onset and divergent life history strategies in bonobos and chimpanzees HORMONES AND BEHAVIOR English Article Development; Steroid; Testosterone; Chimpanzee; Bonobo; LC-MS; Dispersal; Aggression; Maturation; Puberty PAN-TROGLODYTES-SCHWEINFURTHII; FOLLICLE-STIMULATING-HORMONE; TANDEM MASS-SPECTROMETRY; SALIVARY TESTOSTERONE; FEMALE CHIMPANZEES; WILD CHIMPANZEES; STEROID-HORMONES; REPRODUCTIVE ECOLOGY; LUTEINIZING-HORMONE; PLASMA TESTOSTERONE Research on age-related changes in morphology, social behavior, and cognition suggests that the development of bonobos (Pan paniscus) is delayed in comparison to chimpanzees (Pan troglodytes). However, there is also evidence for earlier reproductive maturation in bonobos. Since developmental changes such as reproductive maturation are induced by a number of endocrine processes, changes in hormone levels are indicators of different developmental stages. Age-related changes in testosterone excretion are an indirect marker for the onset of puberty in human and non-human primates. In this study we investigated patterns of urinary testosterone levels in male and female bonobos and chimpanzees to determine the onset of puberty. In contrast to other studies, we found that both species experience age-related changes in urinary testosterone levels. Older individuals of both sexes had significantly higher urinary testosterone levels than younger individuals, indicating that bonobos and chimpanzees experience juvenile pause. The males of both species showed a similar pattern of age-related changes in urinary testosterone levels, with a sharp increase in levels around the age of eight years. This suggests that species-differences in aggression and male mate competition evolved independently of developmental changes in testosterone levels. Females showed a similar pattern of age-related urinary testosterone increase. However, in female bonobos the onset was about three years earlier than in female chimpanzees. The earlier rise of urinary testosterone levels in female bonobos is in line with reports of their younger age of dispersal, and suggests that female bonobos experience puberty at a younger age than female chimpanzees. (C) 2014 Elsevier Inc. All rights reserved. [Behringer, V.; Deschner, T.; Hohmann, G.] Max Planck Inst Evolutionary Anthropol, Dept Primatol, D-04103 Leipzig, Germany; [Deimel, C.] Indiana Univ, Dept Anthropol, Bloomington, IN 47405 USA; [Stevens, J. M. G.] Royal Zool Soc Antwerp, Ctr Res & Conservat, B-2018 Antwerp, Belgium Behringer, V (reprint author), Max Planck Inst Evolutionary Anthropol, Dept Primatol, Deutsch Pl 6, D-04103 Leipzig, Germany. verena_behringer@eva.mpg.de Max Planck Society Sincere thanks go to the directors and curators of the facilities in Aalborg, Amsterdam, Apenheul, Arnhem, Augsburg, Badoca Safari Park, Belfast, Berlin, Boras, Bremerhaven, Dudley West Midland, Cologne, Frankfurt, Fuengirola, Furuviksparken, Gdansk, Gelsenkirchen, Givskud, Halle, Heidelberg, Jerusalem, Kristiansand, Leipzig, Ljubljana, Madrid, Milwaukee, Muenster, Munich, Planckendael, Romagne, San Diego wild animal park, San Diego zoo, Stuttgart, Twycross, Verona, Veszprem, Warsaw, and Wuppertal. Special thanks go to the caregivers of the facilities for collecting urine samples of bonobos and chimpanzees. Thanks to the EEP coordinators Frands Carlsen, Tom de Jongh, and Zjef Pereboom for their support. The statistical help by Roger Mundry and Colleen R. Stephens is gratefully acknowledged. The authors are also grateful to Roisin Murtagh for sample measurement, to Barbara Fruth and Pamela Heidi Douglas for valuable comments on earlier drafts, and Mimi Arandjelovic for editing the manuscript. This project was funded by the Max Planck Society. Anestis SF, 2006, AM J PHYS ANTHROPOL, V130, P536, DOI 10.1002/ajpa.20387; Arslanian S, 1997, J CLIN ENDOCR METAB, V82, P3213, DOI 10.1210/jc.82.10.3213; AUGUST GP, 1972, J CLIN ENDOCR METAB, V34, P319, DOI 10.1210/jcem-34-2-319; Baayen R. H., 2008, ANAL LINGUISTIC DATA; Barr DJ, 2013, J MEM LANG, V68, P255, DOI 10.1016/j.jml.2012.11.001; Bates D., 2013, LME4 LINEAR MIXED EF; Behringer V, 2014, J HUM EVOL, V66, P83, DOI 10.1016/j.jhevol.2013.09.008; Behringer V, 2012, J ENDOCRINOL, V214, P55, DOI 10.1530/JOE-12-0103; Bercovitch FB, 2002, ANNU REV ANTHROPOL, V31, P45, DOI 10.1146/annurev.anthro.31.040202.105553; Bernstein I.S., 1983, P535; Bock J, 2002, HUM NATURE-INT BIOS, V13, P153, DOI 10.1007/s12110-002-1006-5; Boesch C, 2000, CHIMPANZEES TAI FORE; Bogin B, 1997, YEARB PHYS ANTHROPOL, V40, P63; Bogin B, 1996, AM J HUM BIOL, V8, P703, DOI 10.1002/(SICI)1520-6300(1996)8:6<703::AID-AJHB2>3.0.CO;2-U; Bogin B, 2009, AM J HUM BIOL, V21, P567, DOI 10.1002/ajhb.20895; Boughner J, 2008, EVOL BIOL, V35, P296, DOI 10.1007/s11692-008-9043-6; BRAKKE KE, 1991, INFANT BEHAV DEV, V14, P265, DOI 10.1016/0163-6383(91)90022-K; Bribiescas RG, 2001, YEARB PHYS ANTHROPOL, V44, P148, DOI 10.1002/ajpa.10025; Bribiescas RG, 2006, EVOL ANTHROPOL, V15, P132, DOI 10.1002/evan.20087; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brown DD, 1997, P NATL ACAD SCI USA, V94, P13011, DOI 10.1073/pnas.94.24.13011; Byrd W, 1998, J CLIN ENDOCR METAB, V83, P2849, DOI 10.1210/jc.83.8.2849; CHAMOV EL, 1991, P NATL ACAD SCI USA, V88, P1134; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; COPELAND KC, 1985, J CLIN ENDOCR METAB, V60, P1154, DOI 10.1210/jcem-60-6-1154; Core Team R, 2013, R LANG ENV STAT COMP; CRILLY RG, 1981, CLIN ENDOCRINOL META, V10, P115, DOI 10.1016/S0300-595X(81)80041-2; Crockford S. J., 2006, RHYTHMS LIFE THYROID; Crockford SJ, 2002, HUMAN EVOLUTION THROUGH DEVELOPMENTAL CHANGE, P122; DABBS JM, 1991, PHYSIOL BEHAV, V49, P815, DOI 10.1016/0031-9384(91)90323-G; De Lathouwers M, 2005, INT J PRIMATOL, V26, P55, DOI 10.1007/s10764-005-0723-0; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dobson AJ, 2008, CH CRC TEXT STAT SCI, V77, P1; Doran DM, 2002, BEHAVIOURAL DIVERSITY IN CHIMPANZEES AND BONOBOS, P14, DOI 10.1017/CBO9780511606397.004; Dorn LD, 2011, J RES ADOLESCENCE, V21, P180, DOI 10.1111/j.1532-7795.2010.00722.x; DUCHARME JR, 1976, J CLIN ENDOCR METAB, V42, P468, DOI 10.1210/jcem-42-3-468; Durrleman S, 2012, J HUM EVOL, V62, P74, DOI 10.1016/j.jhevol.2011.10.004; Elmlinger MW, 2005, CLIN LAB, V51, P625; Finch CE, 2004, Q REV BIOL, V79, P3, DOI 10.1086/381662; Forstmeier W, 2011, BEHAV ECOL SOCIOBIOL, V65, P47, DOI 10.1007/s00265-010-1038-5; FRASIER SD, 1966, STEROIDS, V8, P777, DOI 10.1016/0039-128X(66)90017-1; FRASIER SD, 1969, J CLIN ENDOCR METAB, V29, P1404, DOI 10.1210/jcem-29-11-1404; FURUICHI T, 1989, INT J PRIMATOL, V10, P173, DOI 10.1007/BF02735199; Furuichi Takeshi, 2012, P413; Furuichi T, 2011, EVOL ANTHROPOL, V20, P131, DOI 10.1002/evan.20308; Gesquiere LR, 2005, AM J PRIMATOL, V67, P83, DOI 10.1002/ajp.20171; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; Granger DA, 1999, HORM BEHAV, V35, P18, DOI 10.1006/hbeh.1998.1492; Granger DA, 2004, PSYCHONEUROENDOCRINO, V29, P1229, DOI 10.1016/j.psyneuen.2004.02.005; Hadley ME, 1988, ENDOCRINOLOGY; Harding C.F., 1981, INTEGR COMP BIOL, V21, P223; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Hashimoto C, 1997, INT J PRIMATOL, V18, P1, DOI 10.1023/A:1026384922066; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Hauser B, 2008, GEN COMP ENDOCR, V158, P77, DOI 10.1016/j.ygcen.2008.05.006; Hauser B, 2008, J CHROMATOGR B, V862, P100, DOI 10.1016/j.jchromb.2007.11.009; Hauser B, 2011, GEN COMP ENDOCR, V170, P92, DOI 10.1016/j.ygcen.2010.09.012; Hobson W.C., 1981, P83; Hochberg Z, 2012, EVO DEVO CHILD GROWT; Hohmann G, 1999, BEHAVIOUR, V136, P1219, DOI 10.1163/156853999501739; Hohmann G, 2000, ANIM BEHAV, V60, P107, DOI 10.1006/anbe.2000.1451; IDANI G, 1991, FOLIA PRIMATOL, V57, P83, DOI 10.1159/000156568; Jensen SA, 2009, J WILDLIFE DIS, V45, P542, DOI 10.7589/0090-3558-45.2.542; Kahlenberg SM, 2008, ANIM BEHAV, V76, P1497, DOI 10.1016/j.anbehav.2008.05.029; Kano T., 1992, LAST APE PYGMY CHIMP; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kappeler P. M., 2003, PRIMATE LIFE HIST SO; Karlberg J, 2002, HORM RES, V57, P19, DOI 10.1159/000058096; Kondo M, 2000, ENDOCR J, V47, P707, DOI 10.1507/endocrj.47.707; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KRAEMER H C, 1982, Primates, V23, P393, DOI 10.1007/BF02381322; KULIN HE, 1976, J CLIN ENDOCR METAB, V42, P770, DOI 10.1210/jcem-42-4-770; Kuroda S., 1989, P184; Kutsukake N, 2009, AM J PRIMATOL, V71, P696, DOI 10.1002/ajp.20708; Lalwani S, 2003, OBSTET GYN CLIN N AM, V30, P279, DOI 10.1016/S0889-8545(03)00025-1; LEIGH SR, 1992, J HUM EVOL, V23, P27, DOI 10.1016/0047-2484(92)90042-8; Lieberman DE, 2007, J HUM EVOL, V52, P647, DOI 10.1016/j.jhevol.2006.12.005; Maggioncalda AN, 1999, AM J PHYS ANTHROPOL, V109, P19, DOI 10.1002/(SICI)1096-8644(199905)109:1<19::AID-AJPA3>3.0.CO;2-3; MARSON J, 1991, BIOL REPROD, V44, P456, DOI 10.1095/biolreprod44.3.456; MARTIN DE, 1977, STEROIDS, V29, P471, DOI 10.1016/0039-128X(77)90067-8; MCCORMACK SA, 1971, ENDOCRINOLOGY, V89, P1171, DOI 10.1210/endo-89-5-1171; MCNATTY KP, 1976, J ENDOCRINOL, V71, P77, DOI 10.1677/joe.0.0710077; Miller RC, 2004, CLIN CHEM, V50, P924, DOI 10.1373/clinchem.2004.032292; Mitamura R, 2000, J CLIN ENDOCR METAB, V85, P1074, DOI 10.1210/jc.85.3.1074; Mitteroecker P, 2005, EVOL DEV, V7, P244, DOI 10.1111/j.1525-142X.2005.05027.x; Muehlenbein MP, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P153; Muller Martin N., 2009, P184; Muller MN, 2004, ANIM BEHAV, V67, P113, DOI 10.1016/j.anbehav.2003.03.013; Murtagh R, 2013, WIEN TIERARZTL MONAT, V100, P247; NADLER RD, 1987, HORM BEHAV, V21, P118, DOI 10.1016/0018-506X(87)90037-7; Oyama S, 2000, PHILOS SCI, V67, pS332, DOI 10.1086/392830; Parish AR, 1996, HUM NATURE-INT BIOS, V7, P61, DOI 10.1007/BF02733490; Pinyerd Belinda, 2005, J Pediatr Nurs, V20, P75, DOI 10.1016/j.pedn.2004.12.011; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PUSEY AE, 1990, BEHAVIOUR, V115, P203, DOI 10.1163/156853990X00581; Rosati AG, 2012, DEVELOPMENTAL SCI, V15, P840, DOI 10.1111/j.1467-7687.2012.01182.x; Sannen A, 2004, FOLIA PRIMATOL, V75, P107, DOI 10.1159/000076271; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; Schielzeth H, 2009, BEHAV ECOL, V20, P416, DOI 10.1093/beheco/arn145; Schultz A. H., 1963, CLASSIFICATION HUMAN; Seraphin SB, 2008, AM J PRIMATOL, V70, P661, DOI 10.1002/ajp.20541; SHEA BT, 1983, AM J PHYS ANTHROPOL, V62, P275, DOI 10.1002/ajpa.1330620307; Shirtcliff EA, 2001, PSYCHONEUROENDOCRINO, V26, P165, DOI 10.1016/S0306-4530(00)00042-1; Sinha-Hikim I, 1998, J CLIN ENDOCR METAB, V83, P1312, DOI 10.1210/jc.83.4.1312; SIZONENKO PC, 1975, J CLIN ENDOCR METAB, V41, P894, DOI 10.1210/jcem-41-5-894; SIZONENKO PC, 1978, ARCH PEDIAT ADOLESC, V132; SMAIL PJ, 1982, ENDOCRINOLOGY, V111, P844, DOI 10.1210/endo-111-3-844; Smith KK, 2001, BIOL J LINN SOC, V73, P169, DOI 10.1006/bijl.2001.0535; Staub NL, 1997, GEN COMP ENDOCR, V108, P1, DOI 10.1006/gcen.1997.6962; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STYNE DM, 1994, HORM RES, V41, P3, DOI 10.1159/000183949; Surbeck M, 2012, ANIM BEHAV, V83, P659, DOI 10.1016/j.anbehav.2011.12.010; Surbeck M, 2011, P ROY SOC B-BIOL SCI, V278, P590, DOI 10.1098/rspb.2010.1572; Takahata Yukio, 1999, Human Evolution, V14, P159, DOI 10.1007/BF02440153; Thompson ME, 2013, AM J PRIMATOL, V75, P222, DOI 10.1002/ajp.22084; Thompson ME, 2012, AM J PHYS ANTHROPOL, V149, P622, DOI 10.1002/ajpa.22157; Wallen K, 2004, J SEX RES, V41, P101, DOI 10.1080/00224490409552218; Williams JM, 2002, BEHAVIOURAL DIVERSITY IN CHIMPANZEES AND BONOBOS, P192, DOI 10.1017/CBO9780511606397.019; Williams JM, 2002, ANIM BEHAV, V63, P347, DOI 10.1006/anbe.2001.1916; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; WINTER JSD, 1972, PEDIATR RES, V6, P126, DOI 10.1203/00006450-197202000-00006; Wobber V, 2013, PHYSIOL BEHAV, V116, P44, DOI 10.1016/j.physbeh.2013.03.003; Wobber Victoria, 2010, Communicative & Integrative Biology, V3, P337; Wobber V, 2010, CURR BIOL, V20, P226, DOI 10.1016/j.cub.2009.11.070; Wrangham R., 1996, DEMONIC MALES APES O; WRANGHAM RW, 1993, HUM NATURE-INT BIOS, V4, P47, DOI 10.1007/BF02734089; WRANGHAM RW, 1986, ECOLOGY SOCIAL EVOLU, P333; YOUNG LG, 1993, AM J PRIMATOL, V31, P287, DOI 10.1002/ajp.1350310405 129 16 18 0 51 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. AUG 2014 66 3 525 533 10.1016/j.yhbeh.2014.07.011 9 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism AP3EW WOS:000341959400008 25086337 2019-02-21 J Hughes, PW; Simons, AM Hughes, P. William; Simons, Andrew M. CHANGING REPRODUCTIVE EFFORT WITHIN A SEMELPAROUS REPRODUCTIVE EPISODE AMERICAN JOURNAL OF BOTANY English Article Campanulaceae; iteroparity; life history evolution; Lobelia inflata; monocarpy; reproductive effort; semelparity HYDROPHYLLUM-APPENDICULATUM HYDROPHYLLACEAE; FLORAL SEX ALLOCATION; SEED MASS VARIATION; TERMINAL INVESTMENT; INDIVIDUAL VARIATION; LOBELIA-INFLATA; POPULATION-DYNAMICS; RESOURCE LIMITATION; TEMPORAL VARIATION; NATURAL-SELECTION Premise of the study: Life-history theory predicts a trade-off between current and future reproduction for iteroparous organisms-as individuals age, the expected value of future reproduction declines, and thus reproductive effort is expected to be higher in later clutches than in earlier. In contrast, models explaining the evolution of semelparity treat semelparous reproduction as instantaneous, with no scope for intraindividual variation. However, semelparous reproduction is also extended, but over shorter time scales; whether there are similar age-or stage-specific changes in reproductive effort within a semelparous episode is unclear. In this study, we assessed whether semelparous individuals increase reproductive effort as residual reproductive value declines by comparing the reproductive phenotype of flowers at five different floral positions along a main inflorescence. Methods: Using the herbaceous monocarp Lobelia inflata, we conducted a longitudinal study of 409 individuals including both laboratory and field populations over three seasons. We recorded six reproductive traits-including the length of three phenological intervals as well as fruit size, seed size, and seed number-for all plants across floral positions produced throughout the reproductive episode. Key results: We found that while the rate of flower initiation did not change, flowers at distal (late) floral positions developed more quickly and contained larger seed than flowers at basal (early) floral positions did. Conclusions: Our results were consistent with the hypothesis that, like iteroparous organisms, L. inflata increases reproductive effort in response to low residual reproductive value. [Hughes, P. William; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Hughes, PW (reprint author), Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada. william.hughes@carleton.ca Simons, Andrew/A-7751-2012; Hughes, P. William/G-9119-2018 Simons, Andrew/0000-0002-0198-465X; Hughes, P. William/0000-0003-4142-2579 NSERC CGS; NSERC Discovery Grant The authors thank Mary Compton, Jake Graham, Howard Rundle, Tom Sherratt, and Root Gorelick for their ideas and helpful contributions to the design of this research project and Peter Arbour and the staff of the Petawawa Research Forest for access to long-term field sites. This work was supported through an NSERC CGS to P.W.H. and an NSERC Discovery Grant to A.M.S. AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; ASHMAN TL, 1992, OECOLOGIA, V92, P266, DOI 10.1007/BF00317374; Bercovitch FB, 2009, J MAMMAL, V90, P40, DOI 10.1644/08-MAMM-A-124.1; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Billing AM, 2007, BEHAV ECOL, V18, P535, DOI 10.1093/beheco/arm007; Bonfil C, 1998, AM J BOT, V85, P79, DOI 10.2307/2446557; Brunet J, 1996, ECOLOGY, V77, P2458, DOI 10.2307/2265746; BRUNET J, 1995, EVOLUTION, V49, P70, DOI 10.1111/j.1558-5646.1995.tb05959.x; Caruso CM, 2006, AM J BOT, V93, P531, DOI 10.3732/ajb.93.4.531; Caruso CM, 2003, AM J BOT, V90, P1333, DOI 10.3732/ajb.90.9.1333; CASPER BB, 1984, EVOLUTION, V38, P1337, DOI 10.1111/j.1558-5646.1984.tb05655.x; CAVERS PB, 1984, AM NAT, V124, P324, DOI 10.1086/284276; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; Edmunds Jr GF, 1976, MAYFLIES N CENTRAL A; Elliott J.M., 1980, Freshwater Biological Association Annual Report, P41; Fisher DO, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0015226; Fisher RA, 1930, GENETICAL THEORY NAT; FLOOD RG, 1982, ANN BOT-LONDON, V49, P469, DOI 10.1093/oxfordjournals.aob.a086271; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; Gallardo CS, 2006, J MAR BIOL ASSOC UK, V86, P757, DOI 10.1017/S0025315406013671; Gonzalez-Tokman DM, 2013, FUNCT ECOL, V27, P739, DOI 10.1111/1365-2435.12072; GROSBERG RK, 1988, EVOLUTION, V42, P900, DOI 10.1111/j.1558-5646.1988.tb02510.x; Guitian J, 1996, CAN J BOT, V74, P1482, DOI 10.1139/b96-178; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2006, ECOLOGY, V87, P2440, DOI 10.1890/0012-9658(2006)87[2440:COAICA]2.0.CO;2; Heinze J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035201; Herrera C, 2009, MULTIPLICITY UNITY P; HERRERA CM, 1992, ECOLOGY, V73, P1832, DOI 10.2307/1940034; HERRERA CM, 1988, ECOLOGY, V69, P233, DOI 10.2307/1943179; HERRERA CM, 1991, ECOLOGY, V72, P1436, DOI 10.2307/1941116; HERRERA J, 1991, AM J BOT, V78, P789, DOI 10.2307/2445069; Hughes PW, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-90; Hughes PW, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1300096; Imaizumi T, 2006, TRENDS PLANT SCI, V11, P550, DOI 10.1016/j.tplants.2006.09.004; Isaac JL, 2005, BIOL LETT-UK, V1, P271, DOI 10.1098/rsbl.2005.0326; Javois J, 2013, THEOR BIOSCI, V132, P123, DOI 10.1007/s12064-013-0176-5; Kaitala V, 2002, EVOL ECOL RES, V4, P169; KANG H, 1991, AM J BOT, V78, P711, DOI 10.2307/2445092; Kim E, 2012, FUNCT ECOL, V26, P294, DOI 10.1111/j.1365-2435.2011.01936.x; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; Kliber A, 2004, ECOLOGY, V85, P1675, DOI 10.1890/03-0477; Langley PA, 1998, FUNCT ECOL, V12, P866, DOI 10.1046/j.1365-2435.1998.00262.x; LEVY F, 1988, AM MIDL NAT, V119, P193, DOI 10.2307/2426068; Lloret F, 1999, FUNCT ECOL, V13, P210, DOI 10.1046/j.1365-2435.1999.00309.x; MACNAIR MR, 1990, P ROY SOC B-BIOL SCI, V242, P101, DOI 10.1098/rspb.1990.0111; MAZER SJ, 1992, AM J BOT, V79, P1185, DOI 10.2307/2445218; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; Moles AT, 2004, J ECOL, V92, P372, DOI 10.1111/j.0022-0477.2004.00884.x; Moravcova L, 2005, ACTA OECOL, V28, P1, DOI 10.1016/j.actao.2005.01.004; Navarro L, 1996, PLANT SYST EVOL, V201, P139, DOI 10.1007/BF00989057; OBESO JR, 1993, OECOLOGIA, V93, P571, DOI 10.1007/BF00328967; Olejnik S, 2000, CONTEMP EDUC PSYCHOL, V25, P241, DOI 10.1006/ceps.2000.1040; Omielan J, 1991, THESIS U BRIT COLUMB; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Roach DA, 2003, ECOLOGY, V84, P749, DOI 10.1890/0012-9658(2003)084[0749:ASDIPV]2.0.CO;2; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; ROFF D, 2001, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Schneider JM, 2003, EVOL ECOL RES, V5, P731; Searle I, 2004, EMBO J, V23, P1217, DOI 10.1038/sj.emboj.7600117; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SIEPEL H, 1994, BIOL FERT SOILS, V18, P263, DOI 10.1007/BF00570628; Simons AM, 1999, AM NAT, V153, P683, DOI 10.1086/303206; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; SOLOMON BP, 1988, AM J BOT, V75, P1074, DOI 10.2307/2443775; Stearns S, 1992, EVOLUTION LIFE HIST; Stelzer CP, 2001, ECOLOGY, V82, P2521; STEPHENSON AG, 1981, ANNU REV ECOL SYST, V12, P253, DOI 10.1146/annurev.es.12.110181.001345; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Valimaki P, 2008, J EVOLUTION BIOL, V21, P1711, DOI 10.1111/j.1420-9101.2008.01597.x; Vallius E, 2000, FUNCT ECOL, V14, P573, DOI 10.1046/j.1365-2435.2000.t01-1-00450.x; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Vaughton G, 1997, INT J PLANT SCI, V158, P424, DOI 10.1086/297452; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Williams Geroge C, 1966, ADAPTATION NATURAL S; WINN AA, 1991, AM J BOT, V78, P838, DOI 10.2307/2445075; WOLFE LM, 1995, OECOLOGIA, V101, P343, DOI 10.1007/BF00328821; WOLFE LM, 1992, AM J BOT, V79, P1286, DOI 10.2307/2445057; Wolfe LM, 2001, AM J BOT, V88, P1419, DOI 10.2307/3558448; Wolfe LM, 2001, INT J PLANT SCI, V162, P1313, DOI 10.1086/322945; WYATT R, 1982, AM J BOT, V69, P585, DOI 10.2307/2443068; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x; Zeng YF, 2009, J INTEGR PLANT BIOL, V51, P299, DOI 10.1111/j.1744-7909.2008.00724.x 101 3 3 5 50 BOTANICAL SOC AMER INC ST LOUIS PO BOX 299, ST LOUIS, MO 63166-0299 USA 0002-9122 1537-2197 AM J BOT Am. J. Bot. AUG 1 2014 101 8 1323 1331 10.3732/ajb.1400283 9 Plant Sciences Plant Sciences AO6BN WOS:000341433400009 25156981 2019-02-21 J Muir, AM; Arts, MT; Koops, MA; Johnson, TB; Krueger, CC; Sutton, TM Muir, Andrew M.; Arts, Michael T.; Koops, Marten A.; Johnson, Timothy B.; Krueger, Charles C.; Sutton, Trent M. Reproductive life-history strategies in lake whitefish (Coregonus clupeaformis) from the Laurentian Great Lakes CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article FATTY-ACID-COMPOSITION; DOCOSAHEXAENOIC ACID; BODY-SIZE; FOOD-WEB; MYSIS-DILUVIANA; LARVAL SURVIVAL; LIPID-CONTENT; TELEOST FISH; STRIPED BASS; MICHIGAN Recent food-web changes in the Laurentian Great Lakes are affecting energy and nutrient allocation to lake whitefish (Coregonus clupeaformis) with potential downstream effects on egg condition and recruitment. We tested whether egg condition was conserved or varied with maternal condition in eight stocks from Lakes Erie, Michigan, and Superior. Egg condition was conserved across stocks based on (i) a lack of correlation between females and eggs for total lipid, DHA, and other essential fatty acids; (ii) higher levels of energy and long-chain polyunsaturated fatty acids (LC-PUFA) in eggs compared with females; and (iii) no among-stock differences for those same variables in eggs. Females from northern Lake Michigan generally made the greatest trade-offs between egg size and fecundity. Highly fecund females provisioned less lipid, but more n-3 LC-PUFA to their eggs. A lack of stock-level patterns in energy and nutrient allocation suggests that trade-offs occur at the level of individual females and that females in poor condition make greater trade-offs among egg size and fecundity, total lipids, and n-3 LC-PUFA than females in good condition. [Muir, Andrew M.; Sutton, Trent M.] Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA; [Arts, Michael T.] Environm Canada, Burlington, ON L7R 4A6, Canada; [Koops, Marten A.] Fisheries & Oceans Canada, Great Lakes Lab Fisheries & Aquat Sci, Burlington, ON L7R 4A6, Canada; [Johnson, Timothy B.] Ontario Minist Nat Resources, Glenora Fisheries Stn, Picton, ON K0K 2T0, Canada; [Muir, Andrew M.; Krueger, Charles C.] Great Lakes Fishery Commiss, Ann Arbor, MI 48105 USA Muir, AM (reprint author), Great Lakes Fishery Commiss, 2100 Commonwealth Blvd,Suite 100, Ann Arbor, MI 48105 USA. amuir@glfc.org Koops, Marten/A-4534-2010 Koops, Marten/0000-0002-3676-7946; Arts, Michael/0000-0002-2335-4317 Great Lakes Fishery Trust [2004.570]; Department of Forestry and Natural Resources at Purdue University, Environment Canada; Fisheries and Oceans Canada We thank E. Volkman, A. Bedford, C. Benoit, A. Charlton, R. Cripe, G. Fodor, J. Hoffmeister, V. Lee, A. McAlexander, R. Mollenhauer, S. Shaw, D. Rajchel, M. Rudy (formerly Drebenstedt), J. Willis, B. Williston, and W. Zak for their assistance in the field and laboratory. Thanks to D. Tagerson for assistance with the Lake Superior samples, to C. Krause on Lake Erie, and to L. Barbeau, D. Frazier, D. Hickey, K. King, T. King, R. Kinnunen, P. Jensen, P. Peeters, B. Peterson, and J. Peterson for lake whitefish collections in Lake Michigan. We also thank H. Ahman, J. Chao, M. Rudy, and S. Wolfaardt (Environment Canada) for their help with the lipid analyses. We appreciated thorough reviews and constructive feedback from two reviewers and the Associate Editor. Support for this research was provided by the Great Lakes Fishery Trust, project No. 2004.570, the Department of Forestry and Natural Resources at Purdue University, Environment Canada (MTA), and Fisheries and Oceans Canada (MAK). Adams S. M., 1999, LIPIDS FRESHWATER EC, P132; Arts MT, 2012, LIPIDS, V47, P1181, DOI 10.1007/s11745-012-3719-5; Arts MT, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P237, DOI 10.1007/978-0-387-89366-2_10; Barbiero RP, 2012, J GREAT LAKES RES, V38, P368, DOI 10.1016/j.jglr.2012.03.009; Bell MV, 1996, MAR ECOL PROG SER, V134, P315, DOI 10.3354/meps134315; BELL MV, 1995, LIPIDS, V30, P443, DOI 10.1007/BF02536303; BLAXTER JHS, 1967, J MAR BIOL ASSOC UK, V47, P677, DOI 10.1017/S002531540003527X; BROWN RW, 1992, J FISH BIOL, V40, P381, DOI 10.1111/j.1095-8649.1992.tb02585.x; BROWN RW, 1993, J GREAT LAKES RES, V19, P418, DOI 10.1016/S0380-1330(93)71229-0; CHRISTIE WJ, 1963, J FISH RES BOARD CAN, V20, P597, DOI 10.1139/f63-043; Cook A.H., 2005, P WORKSH DYN LAK WHI, P87; Cushing D. H., 1982, CLIMATE FISHERIES; DABROWSKI KR, 1983, ARCH HYDROBIOL, V97, P406; DABROWSKI KR, 1982, HYDROBIOLOGIA, V87, P121, DOI 10.1007/BF00015194; DeBruyne RL, 2008, J GREAT LAKES RES, V34, P235, DOI 10.3394/0380-1330(2008)34[235:LWRALA]2.0.CO;2; Dermott R, 1997, CAN J FISH AQUAT SCI, V54, P922, DOI 10.1139/cjfas-54-4-922; Ebener MP, 2010, J GREAT LAKES RES, V36, P38, DOI 10.1016/j.jglr.2010.02.002; Environment Canada U.S. Environmental Protection Agency, 2009, STAT GREAT LAK 2009; Fagan KA, 2012, ADV LIMNOL, V63, P399; FREEBERG MH, 1990, T AM FISH SOC, V119, P92, DOI 10.1577/1548-8659(1990)119<0092:EOEALS>2.3.CO;2; Glencross BD, 2009, REV AQUACULT, V1, P71, DOI 10.1111/j.1753-5131.2009.01006.x; GUTREUTER SJ, 1985, T AM FISH SOC, V114, P317, DOI 10.1577/1548-8659(1985)114<317:IOBSTT>2.0.CO;2; Helrich K, 1990, OFFICIAL METHODS ANA; Hinderer JLM, 2012, J GREAT LAKES RES, V38, P93, DOI 10.1016/j.jglr.2011.07.001; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Hurst TP, 1998, CAN J FISH AQUAT SCI, V55, P1122, DOI 10.1139/cjfas-55-5-1122; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Kamler E., 1992, CHAPMAN HALL FISH FI, V4; Kamler E, 2005, REV FISH BIOL FISHER, V15, P399, DOI 10.1007/s11160-006-0002-y; Keckeis H, 2000, CAN J FISH AQUAT SCI, V57, P789, DOI 10.1139/cjfas-57-4-789; Kelly AM, 1999, N AM J AQUACULT, V61, P278, DOI 10.1577/1548-8454(1999)061<0278:CTAFAC>2.0.CO;2; Koops MA, 2004, FISH FISH, V5, P120, DOI 10.1111/j.1467-2979.2004.00149.x; KRATZER JF, 2006, THESIS MICHIGAN STAT; Kratzer JF, 2007, J GREAT LAKES RES, V33, P922, DOI 10.3394/0380-1330(2007)33[922:CIFAEL]2.0.CO;2; Kuusipalo L, 2000, LIMNOL OCEANOGR, V45, P996, DOI 10.4319/lo.2000.45.4.0996; LABBE C, 1993, COLLOQ INRA, V61, P49; LABBE C, 1995, LIPIDS, V30, P23, DOI 10.1007/BF02537038; Lane RL, 2007, N AM J AQUACULT, V69, P11, DOI 10.1577/A06-014.1; Lavens P, 1999, AQUACULT INT, V7, P225, DOI 10.1023/A:1009225028889; LAWLER GH, 1965, J FISH RES BOARD CAN, V22, P1197, DOI 10.1139/f65-106; LECREN ED, 1951, J ANIM ECOL, V20, P201; Lumb CE, 2007, J GREAT LAKES RES, V33, P314, DOI 10.3394/0380-1330(2007)33[314:COLWCC]2.0.CO;2; Madenjian CP, 2002, CAN J FISH AQUAT SCI, V59, P736, DOI 10.1139/F02-044; Marshall CT, 1999, NATURE, V402, P288, DOI 10.1038/46272; Masuda R, 1999, BRAIN BEHAV EVOLUT, V53, P173, DOI 10.1159/000006592; McNickle GG, 2006, J GREAT LAKES RES, V32, P180, DOI 10.3394/0380-1330(2006)32[180:CIBICO]2.0.CO;2; MILLER TJ, 1988, CAN J FISH AQUAT SCI, V45, P1657, DOI 10.1139/f88-197; Muir AM, 2010, J GREAT LAKES RES, V36, P92, DOI 10.1016/j.jglr.2009.07.006; NALEPA TF, 2005, P WORKSH DYN LAK WHI, P157; Nalepa TF, 2009, FRESHWATER BIOL, V54, P466, DOI 10.1111/j.1365-2427.2008.02123.x; Newton TJ, 2013, J SHELLFISH RES, V32, P497, DOI 10.2983/035.032.0229; OLSEN Y, 1999, LIPIDS FRESHWATER EC, P161; Pangle KL, 2004, T AM FISH SOC, V133, P1235, DOI 10.1577/T03-127.1; Parrish CC, 2009, LIPIDS IN AQUATIC ECOSYSTEMS, P309, DOI 10.1007/978-0-387-89366-2_13; Pothoven SA, 2001, N AM J FISH MANAGE, V21, P876, DOI 10.1577/1548-8675(2001)021<0876:CIDABC>2.0.CO;2; POTHOVEN SA, 2005, P WORKSH DYN LAK WHI, P127; Pothoven SA, 2012, J GREAT LAKES RES, V38, P561, DOI 10.1016/j.jglr.2012.05.003; Rennie MD, 2008, N AM J FISH MANAGE, V28, P1270, DOI 10.1577/M06-258.1; Rennie MD, 2009, OECOLOGIA, V159, P789, DOI 10.1007/s00442-008-1271-z; RICE JA, 1987, CAN J FISH AQUAT SCI, V44, P467, DOI 10.1139/f87-055; RICE JA, 1987, T AM FISH SOC, V116, P703, DOI 10.1577/1548-8659(1987)116<703:EOMRLS>2.0.CO;2; Sargent J, 1999, AQUACULTURE, V177, P191, DOI 10.1016/S0044-8486(99)00083-6; Stearns S, 1992, EVOLUTION LIFE HIST; Stott W, 2010, J GREAT LAKES RES, V36, P59, DOI 10.1016/j.jglr.2010.01.004; TESKA JD, 1981, T AM FISH SOC, V110, P459, DOI 10.1577/1548-8659(1981)110<459:ZPOLLW>2.0.CO;2; Tocher DR, 2010, AQUAC RES, V41, P717, DOI 10.1111/j.1365-2109.2008.02150.x; TOCHER DR, 1990, LIPIDS, V25, P435, DOI 10.1007/BF02538085; TOCHER DR, 1989, COMP BIOCHEM PHYS B, V94, P367, DOI 10.1016/0305-0491(89)90357-X; Tocher DR, 2003, REV FISH SCI, V11, P107, DOI 10.1080/713610925; TRIPPEL EA, 1997, EARLY LIFE HIST RECR, P31; Vandehey JA, 2009, CAN J FISH AQUAT SCI, V66, P382, DOI 10.1139/F08-213; Wagner T, 2010, J GREAT LAKES RES, V36, P121, DOI 10.1016/j.jglr.2009.07.004; Wilson R, 2009, AQUAC RES, V40, P1400, DOI 10.1111/j.1365-2109.2009.02238.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559; Wirth M, 1997, FETT-LIPID, V99, P251, DOI 10.1002/lipi.19970990706; WOOTTON RJ, 1979, S ZOOL SOC LOND, V44, P133; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zellmer ID, 2004, ARCT ANTARCT ALP RES, V36, P370, DOI 10.1657/1523-0430(2004)036[0370:EOSDID]2.0.CO;2; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 81 10 10 3 37 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. AUG 2014 71 8 1256 1269 10.1139/cjfas-2013-0254 14 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AO7FN WOS:000341517800012 2019-02-21 J Shryock, DF; DeFalco, LA; Esque, TC Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C. Life-history traits predict perennial species response to fire in a desert ecosystem ECOLOGY AND EVOLUTION English Article Fire; Mojave Desert; plant functional types; trait analysis PLANT FUNCTIONAL TYPES; CREOSOTE BUSH SCRUB; MOJAVE DESERT; SEED BANKS; PERSISTENCE TRAITS; YUCCA-BREVIFOLIA; PRONE ECOSYSTEMS; SONORAN DESERT; GLOBAL CHANGE; CROWN-FIRE The Mojave Desert of North America has become fire-prone in recent decades due to invasive annual grasses that fuel wildfires following years of high rainfall. Perennial species are poorly adapted to fire in this system, and post-fire shifts in species composition have been substantial but variable across community types. To generalize across a range of conditions, we investigated whether simple life-history traits could predict how species responded to fire. Further, we classified species into plant functional types (PFTs) based on combinations of life-history traits and evaluated whether these groups exhibited a consistent fire-response. Six life-history traits varied significantly between burned and unburned areas in short (up to 4 years) or long-term (up to 52 years) post-fire datasets, including growth form, lifespan, seed size, seed dispersal, height, and leaf longevity. Forbs and grasses consistently increased in abundance after fire, while cacti were reduced and woody species exhibited a variable response. Woody species were classified into three PFTs based on combinations of life-history traits. Species in Group 1 increased in abundance after fire and were characterized by short lifespans, small, wind-dispersed seeds, low height, and deciduous leaves. Species in Group 2 were reduced by fire and distinguished from Group 1 by longer lifespans and evergreen leaves. Group 3 species, which also decreased after fire, were characterized by long lifespans, large non-wind dispersed seeds, and taller heights. Our results show that PFTs based on life-history traits can reliably predict the responses of most species to fire in the Mojave Desert. Dominant, long-lived species of this region possess a combination of traits limiting their ability to recover, presenting a clear example of how a novel disturbance regime may shift selective environmental pressures to favor alternative life-history strategies. [Shryock, Daniel F.; DeFalco, Lesley A.; Esque, Todd C.] US Geol Survey, Western Ecol Res Ctr, Henderson, NV 89074 USA Shryock, DF (reprint author), US Geol Survey, Western Ecol Res Ctr, 160 N Stephanie St, Henderson, NV 89074 USA. dshryock@usgs.gov Shryock, Daniel/0000-0003-0330-9815 U.S. Geological Survey, Priority Ecosystem Science Program We thank Fred Edwards (Bureau of Land Management (BLM), Las Vegas Field Office), Christina Lund (BLM, California State Office), and Kathleen Harcksen and Jennifer Fox (BLM, Arizona Strip Field Office) for generously providing funding for this study. Additional funding support was provided by the U.S. Geological Survey, Priority Ecosystem Science Program. The manuscript was significantly improved by the reviews from Seth Munson and 3 anonymous reviewers. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U. S. government. The experiment described here complies with all rules and regulations pertaining to the land and resources where they were performed. Abella SR, 2009, J ARID ENVIRON, V73, P699, DOI 10.1016/j.jaridenv.2009.03.003; Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Allen HD, 2008, PROG PHYS GEOG, V32, P421, DOI 10.1177/0309133308096754; Allen R. P., 2008, SCIENCE, V321, P1481, DOI DOI 10.1126/SCIENCE.1160787; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Baldwin B. G., 2012, JEPSON MANUAL VASCUL; Barbour MG, 1999, TERRESTRIAL PLANT EC; Bond WJ, 2005, TRENDS ECOL EVOL, V20, P387, DOI 10.1016/j.tree.2005.04.025; Bond WJ, 1996, FIRE PLANTS; BOWERS JE, 1995, J VEG SCI, V6, P551, DOI 10.2307/3236354; Brooks ML, 2006, J ARID ENVIRON, V67, P148, DOI 10.1016/j.jaridenv.2006.09.027; Brooks ML, 2006, FIRE IN CALIFORNIA'S ECOSYSTEMS, P391; Brooks Matthew L., 2002, Chelonian Conservation and Biology, V4, P330; Brooks ML, 2012, INT J WILDLAND FIRE, V21, P61, DOI 10.1071/WF10140; Brooks ML, 2004, BIOSCIENCE, V54, P677, DOI 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2; Brooks ML, 2002, ECOL APPL, V12, P1088, DOI 10.1890/1051-0761(2002)012[1088:PFTAEO]2.0.CO;2; BROWN DE, 1986, AM MIDL NAT, V116, P411, DOI 10.2307/2425750; Bryant M, 2012, AM J BOT, V99, P1647, DOI 10.3732/ajb.1200099; CALLISON J, 1985, J RANGE MANAGE, V38, P535, DOI 10.2307/3899747; Chesson P, 2004, OECOLOGIA, V141, P236, DOI 10.1007/s00442-004-1551-1; Clarke PJ, 2005, J ECOL, V93, P544, DOI 10.1111/j.1365-2745.2005.00971.x; Cody ML, 2000, J VEG SCI, V11, P351, DOI 10.2307/3236627; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Dantas V., 2012, OECOLOGIA, V171, P487; DANTONIO CM, 1992, ANNU REV ECOL SYST, V23, P63, DOI 10.1146/annurev.es.23.110192.000431; De Bello F, 2005, J APPL ECOL, V42, P824, DOI 10.1111/j.1365-2664.2005.01079.x; DeFalco LA, 2009, J ARID ENVIRON, V73, P885, DOI 10.1016/j.jaridenv.2009.04.017; DeFalco LA, 2012, RESTOR ECOL, V20, P85, DOI 10.1111/j.1526-100X.2010.00739.x; DeFalco LA, 2010, AM J BOT, V97, P243, DOI 10.3732/ajb.0900032; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Diaz S, 1997, J VEG SCI, V8, P463, DOI 10.2307/3237198; Doledec S, 2000, ECOLOGY, V81, P2914, DOI 10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2; Dray S, 2007, J STAT SOFTW, V22, P1; Egler F, 1954, VEGETATIO, P412, DOI DOI 10.1007/BF00275587; Engel C. E., 2011, J APPL ECOL, V48, P1401; Esque TC, 2003, SOUTHWEST NAT, V48, P103, DOI 10.1894/0038-4909(2003)048<0103:EODWOD>2.0.CO;2; Esque TC, 2010, J ARID ENVIRON, V74, P1302, DOI 10.1016/j.jaridenv.2010.04.011; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Fukami T, 2005, ECOL LETT, V8, P1283, DOI 10.1111/j.1461-0248.2005.00829.x; Godinez-Alvarez H, 2003, BOT REV, V69, P173, DOI 10.1663/0006-8101(2003)069[0173:DTITC]2.0.CO;2; GOLDBERG DE, 1986, ECOLOGY, V67, P695, DOI 10.2307/1937693; Gosper CR, 2012, J VEG SCI, V23, P1071, DOI 10.1111/j.1654-1103.2012.01434.x; GOWER JC, 1971, BIOMETRICS, V27, P857, DOI 10.2307/2528823; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Guo QF, 1999, J ARID ENVIRON, V42, P1, DOI 10.1006/jare.1999.0502; Guo QF, 1998, J ARID ENVIRON, V38, P465, DOI 10.1006/jare.1997.0353; GUTTERMAN Y, 1994, BOT REV, V60, P373, DOI 10.1007/BF02857924; Hulme Philip E., 1998, Perspectives in Plant Ecology Evolution and Systematics, V1, P32, DOI 10.1078/1433-8319-00050; Kaufman L., 1990, FINDING GROUPS INTRO; KEDDY PA, 1992, J VEG SCI, V3, P157, DOI 10.2307/3235676; Keeley JE, 2006, ECOL MONOGR, V76, P235, DOI 10.1890/0012-9615(2006)076[0235:DPOPRI]2.0.CO;2; Keith DA, 2007, J ECOL, V95, P1324, DOI 10.1111/j.1365-2745.2007.01302.x; Kleyer M, 2012, J VEG SCI, V23, P805, DOI 10.1111/j.1654-1103.2012.01402.x; Lavorel S, 1997, TRENDS ECOL EVOL, V12, P474, DOI 10.1016/S0169-5347(97)01219-6; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Lavorel S., 2007, IGBP SERIES; Mack RN, 2000, ECOL APPL, V10, P689, DOI 10.1890/1051-0761(2000)010[0689:BICEGC]2.0.CO;2; MACMAHON JA, 2000, N AM TERRESTRIAL VEG, P285; McCabe GJ, 2004, P NATL ACAD SCI USA, V101, P4136, DOI 10.1073/pnas.0306738101; McIntyre S, 1999, J VEG SCI, V10, P621, DOI 10.2307/3237077; McIntyre S, 2001, J ECOL, V89, P209, DOI 10.1046/j.1365-2745.2001.00535.x; Minnich R. A., 1995, MUS ASS Q, V4, P99; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Moretti M, 2009, ECOGRAPHY, V32, P299, DOI 10.1111/j.1600-0587.2008.05524.x; Murov M.B., 2003, 03336 US GEOL SURV; Nano CEM, 2011, PLANT ECOL, V212, P2095, DOI 10.1007/s11258-011-9988-x; NOBLE IR, 1980, VEGETATIO, V43, P5, DOI 10.1007/BF00121013; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; Pausas JG, 2006, J ECOL, V94, P31, DOI 10.1111/j.1365-2745.2005.01092.x; Pausas JG, 2003, J VEG SCI, V14, P409, DOI 10.1658/1100-9233(2003)014[0409:AHDAFF]2.0.CO;2; Pausas JG, 2008, ECOLOGY, V89, P2181, DOI 10.1890/07-1737.1; Pausas JG, 2007, GLOBAL ECOL BIOGEOGR, V16, P330, DOI 10.1111/j.1466-8238.2006.00283.x; Price MV, 1997, ECOLOGY, V78, P764; R Development Core Team, 2013, R LANG ENV STAT COMP; Redmond KT, 2009, MOJAVE DESERT, P11; REICH PB, 1992, ECOL MONOGR, V62, P365, DOI 10.2307/2937116; Schwalbe C.R., 2004, DESERT PLANTS, V20, P49; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Smart SM, 2006, P ROY SOC B-BIOL SCI, V273, P2659, DOI 10.1098/rspb.2006.3630; STEERS RJ, 2008, THESIS U CALIFORNIA; Vamstad MS, 2010, J ARID ENVIRON, V74, P1309, DOI 10.1016/j.jaridenv.2010.04.002; Vesk PA, 2004, OIKOS, V107, P72, DOI 10.1111/j.0030-1299.2004.13122.x; Webb R. H., 1988, BULLETIN, V1793; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; West N. A., 2000, N AM TERRESTRIAL VEG, P285; WILSON JB, 1992, OIKOS, V64, P591, DOI 10.2307/3545179 86 12 12 4 88 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2014 4 15 3046 3059 10.1002/ece3.1159 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AN4RI WOS:000340575000007 25247062 DOAJ Gold, Green Published 2019-02-21 J Araujo, MS; Langerhans, RB; Giery, ST; Layman, CA Araujo, Marcio S.; Langerhans, R. Brian; Giery, Sean T.; Layman, Craig A. Ecosystem fragmentation drives increased diet variation in an endemic livebearing fish of the Bahamas ECOLOGY AND EVOLUTION English Article Bahamas mosquitofish; food webs; individual specialization; niche variation; predation; RNA/DNA ratios; stable isotopes MOSQUITOFISH GAMBUSIA-HUBBSI; LIFE-HISTORY EVOLUTION; HABITAT FRAGMENTATION; TIDAL CREEKS; INDIVIDUAL SPECIALIZATION; HYDROLOGIC CONNECTIVITY; POSTPLEISTOCENE RADIATION; SECONDARY PRODUCTION; ASSEMBLAGE STRUCTURE; PREDATION RISK One consequence of human-driven habitat degradation in general, and habitat fragmentation in particular, is loss of biodiversity. An often-underappreciated aspect of habitat fragmentation relates to changes in the ecology of species that persist in altered habitats. In Bahamian wetlands, ecosystem fragmentation causes disruption of hydrological connectivity between inland fragmented wetlands and adjacent marine areas, with the consequent loss of marine piscivores from fragmented sections. We took advantage of this environmental gradient to investigate effects of ecosystem fragmentation on patterns of resource use in the livebearing fish Gambusia hubbsi (Family Poeciliidae), using both population- and individual-level perspectives. We show that fragmentation-induced release from predation led to increased G. hubbsi population densities, which consequently led to lower mean growth rates, likely as a result of higher intraspecific competition for food. This was accompanied by a broadening of dietary niches via increased interindividual diet variation, suggesting a negative effect of predation and a positive effect of intraspecific competition on the degree of diet variation in natural populations. Our results therefore indicate that habitat fragmentation can greatly impact the ecology of resilient populations, with potentially important ecological and evolutionary implications. [Araujo, Marcio S.] Univ Estadual Paulista, Dept Ecol, Inst Biociencias, BR-13506900 Rio Claro, SP, Brazil; [Langerhans, R. Brian] N Carolina State Univ, Dept Biol Sci, Raleigh, NC 27695 USA; [Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA; [Giery, Sean T.; Layman, Craig A.] Florida Int Univ, Marine Sci Program, Dept Biol Sci, North Miami, FL 33181 USA Araujo, MS (reprint author), Univ Estadual Paulista, Dept Ecol, Inst Biociencias, BR-13506900 Rio Claro, SP, Brazil. msaraujo@rc.unesp.br Araujo, Marcio/G-9485-2011 Araujo, Marcio/0000-0003-3533-744X CAPES [BEX 4496/08-6]; FAPESP [2010/15567-8]; National Science Foundation [OCE 0746164, DEB 0842196] We thank the Bahamas Department of Fisheries for collecting permits and Friends of the Environment for logistical support. C. Hammerschlag-Peyer, Z. Jud, F. Tobias, C. Villegas, and L. Yeager provided help during laboratory processing. Jacob Allgeier assisted with Bayesian niche ellipse analysis. We thank the Associate Editor and three anonymous reviewers for their useful comments. Funding was provided by CAPES (BEX 4496/08-6), FAPESP (2010/15567-8), and National Science Foundation (OCE 0746164 and DEB 0842196). Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; Ali M, 2003, ECOL FRESHW FISH, V12, P87, DOI 10.1034/j.1600-0633.2003.00003.x; Araujo MS, 2007, OECOLOGIA, V152, P643, DOI 10.1007/s00442-007-0687-1; Araujo MS, 2011, ECOL LETT, V14, P948, DOI 10.1111/j.1461-0248.2011.01662.x; Arbuckle J. L., 2003, AMOS 5 0 COMPUTER SO; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Bollen K. A., 1990, SOCIOL METHODOL, V20, P115, DOI DOI 10.2307/271084; Bolnick DI, 2008, AM NAT, V172, P1, DOI 10.1086/587805; Bolnick DI, 2007, P NATL ACAD SCI USA, V104, P10075, DOI 10.1073/pnas.0703743104; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bolnick DI, 2010, P ROY SOC B-BIOL SCI, V277, P1789, DOI 10.1098/rspb.2010.0018; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bolnick DI, 2002, ECOLOGY, V83, P2936, DOI 10.2307/3072028; Burnham K. P, 2002, MODEL SELECTION MULT; Caldarone E. M, 2001, PROTOCOL GUIDE ESTIM, P1; Dahlhoff EP, 2004, ANNU REV PHYSIOL, V66, P183, DOI 10.1146/annurev.physiol.66.032102.114509; Debinski DM, 2000, CONSERV BIOL, V14, P342, DOI 10.1046/j.1523-1739.2000.98081.x; Dirzo R, 2003, ANNU REV ENV RESOUR, V28, P137, DOI 10.1146/annurev.energy.28.050302.105532; Eklov P, 2006, AM NAT, V167, P440, DOI 10.1086/499544; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Fahrig L, 2003, ANNU REV ECOL EVOL S, V34, P487, DOI 10.1146/annurev.ecolsys.34.011802.132419; De Leon LF, 2011, EVOLUTION, V65, P2258, DOI 10.1111/j.1558-5646.2011.01297.x; Fischer J, 2007, GLOBAL ECOL BIOGEOGR, V16, P265, DOI 10.1111/j.1466-8238.2007.00287; Foley JA, 2005, SCIENCE, V309, P570, DOI 10.1126/science.1111772; Franssen NR, 2011, EVOL APPL, V4, P791, DOI 10.1111/j.1752-4571.2011.00200.x; Harrison S, 1999, ECOGRAPHY, V22, P225, DOI 10.1111/j.1600-0587.1999.tb00496.x; Heinen JL, 2013, EVOL ECOL, V27, P971, DOI 10.1007/s10682-012-9627-6; Jackson AL, 2011, J ANIM ECOL, V80, P595, DOI 10.1111/j.1365-2656.2011.01806.x; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Kline R., 2005, PRINCIPLES PRACTICE, P123; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Layman CA, 2004, CARIBB J SCI, V40, P232; Layman CA, 2007, ECOL LETT, V10, P937, DOI 10.1111/j.1461-0248.2007.01087.x; Layman CA, 2012, BIOL REV, V87, P545, DOI 10.1111/j.1469-185X.2011.00208.x; Layman CA, 2010, CARIBB J SCI, V46, P12; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; MacKinnon DP, 2004, MULTIVAR BEHAV RES, V39, P99, DOI 10.1207/s15327906mbr3901_4; Marshall MC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045230; Martin CH, 2013, SCIENCE, V339, P208, DOI 10.1126/science.1227710; Martin CH, 2011, EVOLUTION, V65, P2197, DOI 10.1111/j.1558-5646.2011.01294.x; Martin RA, 2014, EVOLUTION, V68, P397, DOI 10.1111/evo.12277; Myers R, 1990, CLASSICAL MODERN REG; Nagelkerken I, 2000, MAR ECOL PROG SER, V202, P175, DOI 10.3354/meps202175; Nilsson C, 2005, SCIENCE, V308, P405, DOI 10.1126/science.1107887; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Pringle C, 2003, AQUAT CONSERV, V13, P467, DOI 10.1002/aqc.603; Pringle C, 2003, HYDROL PROCESS, V17, P2685, DOI 10.1002/hyp.5145; Pringle C, 2006, CONNECTIVITY CONSERV, P233; Pringle CM, 2001, ECOL APPL, V11, P981, DOI 10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 2008, MOL ECOL, V17, P97, DOI 10.1111/j.1365-294X.2007.03474.x; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Roughgarden J., 1979, THEORY POPULATION GE; Rypel AL, 2008, CAN J FISH AQUAT SCI, V65, P335, DOI 10.1139/F07-192; SAUNDERS DA, 1991, CONSERV BIOL, V5, P18, DOI 10.1111/j.1523-1739.1991.tb00384.x; Sih A, 2011, EVOL APPL, V4, P367, DOI 10.1111/j.1752-4571.2010.00166.x; Smith TB, 2008, MOL ECOL, V17, P1, DOI 10.1111/j.1365-294X.2007.03607.x; Stephens D. W, 1986, FORAGING THEORY; Svanback R, 2005, EVOL ECOL RES, V7, P993; Svanback R, 2007, P ROY SOC B-BIOL SCI, V274, P839, DOI 10.1098/rspb.2006.0198; Turner IM, 1996, J APPL ECOL, V33, P200, DOI 10.2307/2404743; Valentine-Rose L, 2007, B MAR SCI, V80, P863; Valentine-Rose L, 2007, WETLANDS, V27, P702, DOI 10.1672/0277-5212(2007)27[702:FAFDBF]2.0.CO;2; Valentine-Rose L, 2011, B MAR SCI, V87, P913, DOI 10.5343/bms.2010.1043; Valentine-Rose L, 2011, RESTOR ECOL, V19, P205, DOI 10.1111/j.1526-100X.2009.00553.x; Van Valen L., 1965, AM NAT, V99, P377, DOI DOI 10.1086/282379; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508 70 17 17 2 76 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2014 4 16 3298 3308 10.1002/ece3.1140 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AO2WS WOS:000341188300014 25473482 DOAJ Gold, Green Published 2019-02-21 J Bassar, RD; Auer, SK; Reznick, DN Bassar, Ronald D.; Auer, Sonya K.; Reznick, David N. Why do placentas evolve? A test of the life-history facilitation hypothesis in two clades in the genus Poeciliopsis representing two independent origins of placentas FUNCTIONAL ECOLOGY English Article life-history evolution; live-bearing fish; matrotrophy; placenta PARENT-OFFSPRING CONFLICT; HETERANDRIA-FORMOSA; CYPRINODONTIFORMES POECILIIDAE; POPULATION DIFFERENCES; SWIMMING PERFORMANCE; VIVIPAROUS COCKROACH; FOLLICULAR PLACENTA; GAMBUSIA-AFFINIS; GENETIC-BASIS; EVOLUTION 1. Most of what we know about placentas comes from mammals, yet little can be learned from them about the adaptive significance of the placental mode of reproduction because they all derived their placenta from a single common ancestor that lived over 100 million years ago. We can make inferences about the adaptive significance of placentation from fish in the family Poeciliidae because there have been multiple, recent origins of placentation, affording an opportunity to compare close relatives with and without placentas and to seek properties that are common to each origin of placentation. 2. Here, we used field collections and a common garden study to quantify the degree of placentation and related it to aspects of the life history in two clades of live-bearing fish from the genus Poeciliopsis that each contains an independent origin of placentation. Doing so enables us to test the 'life history facilitation hypothesis', or the proposal that the placenta evolved to facilitate the evolution of some other feature of the life history. 3. We found that the evolution of placentation in each clade is tightly correlated with the evolution of other components of the life history, but that the nature of the association is radically different across the two clades. In the Northern Clade the magnitude of post-fertilization maternal provisioning is negatively correlated with age at maturity, mass at maturity, offspring dry mass and interlitter interval. In contrast, degree of matrotrophy in the Southern Clade is positively correlated with age at maturity, mass at maturity, offspring dry mass and inter-litter interval. 4. There is thus no consistent relationship between the evolution of placentas and other features of the life history, which negates those proposals that the placenta evolved to facilitate the evolution of other features of the life history. However, there is a negative correlation between degree of placentation and ovary dry mass and reproductive allocation common to both clades, suggesting that placentation may be an adaptation that facilitates a reduction in reproductive allocation. [Bassar, Ronald D.; Auer, Sonya K.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Bassar, RD (reprint author), Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA. rdbassar@yahoo.com reznick, david/0000-0002-1144-0568 US National Science Foundation [DEB-0416085] We wish to thank Yuridia Reynoso, who performed or oversaw all of the dissections used to characterize the life histories. We would also like to thank Alex Mamaril and Samantha Natividad for their help in the care and maintenance of the laboratory fish populations. Doug Nelson, from the University of Michigan Museum of Zoology, Lynn Parenti from the U.S. National Museum, John Lundberg from the Academy of Natural Sciences in Philadelphia and Bob Vrijenhoek generously gave us access to their collections of wild-caught fishes for use in dissection and life-history characterization. Mariana Mateos arranged for permits to work and collect in Mexico. This work was supported by a grant from the US National Science Foundation (DEB-0416085). Banet AI, 2008, FUNCT ECOL, V22, P323, DOI 10.1111/j.1365-2435.2007.01367.x; Banet AI, 2010, EVOLUTION, V64, P3172, DOI 10.1111/j.1558-5646.2010.01059.x; Bashey F, 2006, EVOLUTION, V60, P348, DOI 10.1554/05-087.1; BAUR B, 1994, EXPERIENTIA, V50, P5, DOI 10.1007/BF01992042; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; Blackburn DG, 2000, HERPETOL MONOGR, V14, P371, DOI 10.2307/1467051; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Greven H, 1998, J EXP ZOOL, V282, P507; GROVE BD, 1991, J MORPHOL, V209, P265, DOI 10.1002/jmor.1052090304; GROVE BD, 1994, J MORPHOL, V220, P167, DOI 10.1002/jmor.1052200206; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Hamlett WC, 1998, J EXP ZOOL, V282, P438, DOI 10.1002/(SICI)1097-010X(199811/12)282:4/5<438::AID-JEZ4>3.3.CO;2-Y; HAYNES JL, 1995, COPEIA, P147; Holbrook GL, 2004, P NATL ACAD SCI USA, V101, P5595, DOI 10.1073/pnas.0400209101; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Korniushin AV, 2003, ACTA ZOOL-STOCKHOLM, V84, P293, DOI 10.1046/j.1463-6395.2003.00150.x; Makioka T., 1968, Science Reports Tokyo Kyoiku Daigaku, V13B, P207; Mateos M, 2002, EVOLUTION, V56, P972; Meier R, 1999, BIOL REV, V74, P199, DOI 10.1017/S0006323199005320; Meredith RW, 2011, MOL PHYLOGENET EVOL, V59, P148, DOI 10.1016/j.ympev.2011.01.014; Miller R.R., 1975, Occasional Papers of the Museum of Zoology University of Michigan, VNo. 672, P1; Mossmann H. W., 1937, Contributions to Embryology [Carnegie Institution Publ no 479], V26, P129; O'Neill MJ, 2007, P NATL ACAD SCI USA, V104, P12404, DOI 10.1073/pnas.0705048104; PAGEL MD, 1992, J THEOR BIOL, V156, P431, DOI 10.1016/S0022-5193(05)80637-X; Pires MN, 2007, J EXP ZOOL PART A, V307A, P113, DOI 10.1002/jez.a.356; Pires MN, 2011, FUNCT ECOL, V25, P757, DOI 10.1111/j.1365-2435.2011.01842.x; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Pollux BJA, 2011, FUNCT ECOL, V25, P747, DOI 10.1111/j.1365-2435.2011.01831.x; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 1996, AM ZOOL, V36, P147; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1981, EVOLUTION, V35, P941, DOI 10.1111/j.1558-5646.1981.tb04960.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, EVOLUTION, V61, P2570, DOI 10.1111/j.1558-5646.2007.00207.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Roff Derek A., 1992; Schrader M, 2005, COPEIA, P649; Schrader M, 2009, EVOLUTION, V63, P2805, DOI 10.1111/j.1558-5646.2009.00763.x; Schrader M, 2008, AM NAT, V172, P806, DOI 10.1086/592999; Scrimshaw Nevin S., 1944, COPEIA, V1944, P180, DOI 10.2307/1437814; Stearns S, 1992, EVOLUTION LIFE HIST; Stewart JR, 2003, J EXP ZOOL PART A, V299A, P13, DOI 10.1002/jez.a.10288; STEWART JR, 1992, AM ZOOL, V32, P303; THIBAULT RE, 1978, EVOLUTION, V32, P320, DOI 10.1111/j.1558-5646.1978.tb00648.x; Thompson MB, 2006, J COMP PHYSIOL B, V176, P179, DOI 10.1007/s00360-005-0048-5; Trexler JC, 1997, ECOLOGY, V78, P1370; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TRIVERS RL, 1974, AM ZOOL, V14, P249; Turner CL, 1947, SCI MON, V65, P508; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Turner CL, 1937, BIOL BULL-US, V72, P145, DOI 10.2307/1537249; Turner CL, 1940, J MORPHOL, V67, P59, DOI 10.1002/jmor.1050670103; Turner CL, 1939, SCIENCE, V90, P42, DOI 10.1126/science.90.2324.42; Von Rintelen T, 2005, BIOL J LINN SOC, V85, P513, DOI 10.1111/j.1095-8312.2005.00515.x; WAKE MH, 1993, J EXP ZOOL, V266, P394, DOI 10.1002/jez.1402660507; Warburg MR, 1996, INVERTEBR REPROD DEV, V29, P213, DOI 10.1080/07924259.1996.9672515; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103; Williford A, 2004, EVOL DEV, V6, P67, DOI 10.1111/j.1525-142X.2004.04012.x; WOURMS JP, 1992, AM ZOOL, V32, P276; WOURMS JP, 1993, ENVIRON BIOL FISH, V38, P269, DOI 10.1007/BF00842922; Wourms JP, 1988, FISH PHYSIOL, VXI, P1 66 4 4 0 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2014 28 4 999 1010 10.1111/1365-2435.12233 12 Ecology Environmental Sciences & Ecology AN5ZY WOS:000340673900023 2019-02-21 J Billman, EJ; Rasmussen, JE; Creighton, JC; Johnson, JB; Belk, MC Billman, Eric J.; Rasmussen, Josh E.; Creighton, J. Curtis; Johnson, Jerald B.; Belk, Mark C. A multivariate approach to the analysis of within lifetime variation in life history METHODS IN ECOLOGY AND EVOLUTION English Article Life-history evolution; phenotypic plasticity; Nicrophorus; Poeciliidae; multivariate trajectory FISH BRACHYRHAPHIS-RHABDOPHORA; TERMINAL INVESTMENT; REPRODUCTIVE EFFORT; NATURAL-SELECTION; POECILIA-RETICULATA; EL-NINO; EVOLUTION; POPULATIONS; PREDATION; COSTS 1. Ecological and environmental gradients create varying selective pressures on organisms that result in differences in optimal life history tactics. Moreover, life histories are inherently multivariate, consisting of a coordinated suite of life history traits that vary over an organism's lifetime. Such variation can be described as a trajectory of phenotypic change through time inmultivariate space defined by a set of life history traits. 2. We demonstrate the use of phenotypic trajectory analysis as a multivariate analytical approach for quantifying and comparing phenotypic change in life history throughout an organism's life. Life history trajectories have attributes - magnitude, direction, and shape - that can be quantified and statistically compared. We demonstrate the construction of trajectories using levels characterized by individuals with the same age or similar state, and we show how this approach can be used to evaluate the evolution of life history strategies given predictions from life history theory. 3. We demonstrate the utility of phenotypic trajectory analysis for life histories using two examples. We compare life history trajectories of burying beetles and show that females balance costs of reproduction differently based on resource availability. We also characterize life history trajectories of livebearing fish in different predation environments. We show that females in non-predator environments, but not predator environments, exhibit trajectories consistent with the terminal investment hypothesis. 4. While analysing life history variation in a multivariate framework is not novel, we show that phenotypic trajectory analysis provides a method to statistically test age-and state-based predictions of life history theory. [Billman, Eric J.; Johnson, Jerald B.; Belk, Mark C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Rasmussen, Josh E.] US Fish & Wildlife Serv, Klamath Falls Off, Klamath Falls, OR USA; [Creighton, J. Curtis] Purdue Univ Calumet, Dept Biol Sci, Hammond, IN 46323 USA Billman, EJ (reprint author), Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. ericbillman@gmail.com Adams DC, 2007, EVOLUTION, V61, P510, DOI 10.1111/j.1558-5646.2007.00063.x; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Butler D. G, 2009, ASREML R REFERENCE M; Charnov E. L., 2002, EVOL ECOL RES, V4, P1; Chun YJ, 2007, ECOLOGY, V88, P1499, DOI 10.1890/06-0856; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Dennis SR, 2011, P ROY SOC B-BIOL SCI, V278, P1687, DOI 10.1098/rspb.2010.1989; Dobson FS, 2008, CURR SCI INDIA, V95, P862; Fisher RA, 1930, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hassell EMA, 2012, ECOL EVOL, V2, P1738, DOI 10.1002/ece3.278; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; JOHNSEN I, 1994, OIKOS, V71, P273, DOI 10.2307/3546276; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Lu X, 2011, ANIM BEHAV, V82, P861, DOI 10.1016/j.anbehav.2011.07.024; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; R Core Development Team, 2010, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 2002, LIFE HIST EVOLUTION; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; Schlupp I., 2010, NATURWISSENSCHAFTEN, V97, P133; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; Wikelski M, 2000, NATURE, V403, P37, DOI 10.1038/47396; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 52 3 3 3 50 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2041-210X 2041-2096 METHODS ECOL EVOL Methods Ecol. Evol. AUG 2014 5 8 797 805 10.1111/2041-210X.12211 9 Ecology Environmental Sciences & Ecology AN5AC WOS:000340600400009 2019-02-21 J McClure, CD; Zhong, WH; Hunt, VL; Chapman, FM; Hill, FV; Priest, NK McClure, Colin D.; Zhong, Weihao; Hunt, Vicky L.; Chapman, Fiona M.; Hill, Fiona V.; Priest, Nicholas K. HORMESIS RESULTS IN TRADE-OFFS WITH IMMUNITY EVOLUTION English Article Drosophila melanogaster; ecological immunity; fitness; hormesis; life-history evolution; trade-offs NF-KAPPA-B; MILD HEAT-STRESS; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; LIFE-HISTORY; YOUNG AGE; TERMINAL INVESTMENT; DIETARY RESTRICTION; REPRODUCTIVE EFFORT; HOST-DEFENSE Many have argued that we may be able to extend life and improve human health through hormesis, the beneficial effects of low-level toxins and other stressors. But, studies of hormesis in model systems have not yet established whether stress-induced benefits are cost free, artifacts of inbreeding, or come with deleterious side effects. Here, we provide evidence that hormesis results in trade-offs with immunity. We find that a single topical dose of dead spores of the entomopathogenic fungus, Metarhizium robertsii, increases the longevity of the fruit fly, Drosophila melanogaster, without significant decreases in fecundity. We find that hormetic benefits of pathogen challenge are greater in lines that lack key components of antifungal immunity (Dif and Turandot M). And, in outbred fly lines, we find that topical pathogen challenge enhances both survival and fecundity, but reduces ability to fight off live infections. The results provide evidence that hormesis is manifested by stress-induced trade-offs with immunity, not cost-free benefits or artifacts of inbreeding. Our findings illuminate mechanisms underlying pathogen-induced life-history trade-offs, and indicate that reduced immune function may be an ironic side effect of the elixirs of life. [McClure, Colin D.; Zhong, Weihao; Hunt, Vicky L.; Chapman, Fiona M.; Hill, Fiona V.; Priest, Nicholas K.] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England McClure, CD (reprint author), Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England. c.d.mcclure@bath.ac.uk Hunt, Vicky/0000-0002-7094-044X; Priest, Nicholas/0000-0002-8253-2697 BBSRC; University of Bath URS studentship; Defra; NERC; Scottish Government; Wellcome Trust [BB/I000836/1]; Biotechnology and Biological Sciences Research Council [BB/I000836/1, BB/I000801/1] We thank C. Clark, S. Duxbury, F. Prentice, M. Turner, and O. Williams for their assistance with running the project. We also extend our thanks to Prof. M. Ritchie and Dr. M. Tinsley who supplied the UAS knockdown lines. This work was financially supported by BBSRC studentships to CDM and WZ, a University of Bath URS studentship to VLH, and by a BBSRC, Defra, NERC, Scottish Government, and Wellcome Trust grant, BB/I000836/1, to NKP. Brun S, 2006, GENES CELLS, V11, P397, DOI 10.1111/j.1365-2443.2006.00953.x; Brzek P, 2007, J EXP BIOL, V210, P2361, DOI 10.1242/jeb.003517; Calabrese EJ, 2005, CRIT REV TOXICOL, V35, P89, DOI 10.1080/10408440590917044; Calabrese V, 2012, BBA-MOL BASIS DIS, V1822, P753, DOI 10.1016/j.bbadis.2011.11.002; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; Chen TY, 2010, EUR J IMMUNOL, V40, P1541, DOI 10.1002/eji.201040616; Chirumbolo S, 2012, BIOGERONTOLOGY, V13, P637, DOI 10.1007/s10522-012-9402-7; Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x; Cypser JR, 2002, J GERONTOL A-BIOL, V57, pB109, DOI 10.1093/gerona/57.3.B109; Dietzl G, 2007, NATURE, V448, P151, DOI 10.1038/nature05954; Eisenberg T, 2009, NAT CELL BIOL, V11, P1305, DOI 10.1038/ncb1975; Ekengren S, 2001, BIOCHEM BIOPH RES CO, V284, P998, DOI 10.1006/bbrc.2001.5067; Ermolaeva MA, 2013, NATURE, V501, P416, DOI 10.1038/nature12452; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Forbes VE, 2000, FUNCT ECOL, V14, P12, DOI 10.1046/j.1365-2435.2000.00392.x; Gao QA, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1001264; Gartner A, 2013, CURR BIOL, V23, pR1012, DOI 10.1016/j.cub.2013.09.036; Gems D, 2008, CELL METAB, V7, P200, DOI 10.1016/j.cmet.2008.01.001; Gosselin K, 2003, EXP GERONTOL, V38, P1271, DOI 10.1016/j.exger.2003.09.007; Hercus MJ, 2003, BIOGERONTOLOGY, V4, P149, DOI 10.1023/A:1024197806855; Hunt PR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021922; Hurd H, 2001, TRENDS PARASITOL, V17, P363, DOI 10.1016/S1471-4922(01)01927-4; Hutchings JA, 2006, FUNCT ECOL, V20, P347, DOI 10.1111/j.1365-2435.2006.01092.x; Ikeda T, 2007, APPL ENVIRON MICROB, V73, P6404, DOI 10.1128/AEM.00704-07; Kahn A, 2010, DOSE-RESPONSE, V8, P48, DOI 10.2203/dose-response.09-031.Olsen; Kenyon C, 2011, PHILOS T R SOC B, V366, P9, DOI 10.1098/rstb.2010.0276; Khazaeli AA, 1997, J GERONTOL A-BIOL, V52, pB48, DOI 10.1093/gerona/52A.1.B48; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Koenig WD, 2009, AM NAT, V173, P682, DOI 10.1086/597605; Kohler R. E., 1994, LORD FLIES DROSOPHIL; KREBS RA, 1994, FUNCT ECOL, V8, P730, DOI 10.2307/2390232; Kristensen TN, 2003, J GENET, V82, P89, DOI 10.1007/BF02715811; Lane MA, 1996, P NATL ACAD SCI USA, V93, P4159, DOI 10.1073/pnas.93.9.4159; Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012; Le Bourg E, 2000, BIOGERONTOLOGY, V1, P145; Le Bourg E, 2007, BIOGERONTOLOGY, V8, P431, DOI 10.1007/s10522-007-9086-6; Le Bourg E, 2012, BIOGERONTOLOGY, V13, P445, DOI 10.1007/s10522-012-9389-0; LeBourg E, 1997, CR ACAD SCI III-VIE, V320, P215, DOI 10.1016/S0764-4469(97)86929-6; LEHMANN T, 1993, PARASITOL TODAY, V9, P8, DOI 10.1016/0169-4758(93)90153-7; Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615; Leroy M, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-187; Liao CY, 2010, AGING CELL, V9, P92, DOI 10.1111/j.1474-9726.2009.00533.x; Markowska AL, 1999, NEUROBIOL AGING, V20, P177, DOI 10.1016/S0197-4580(99)00031-7; Mattson M. P., 2010, FUNDAMENTAL ROLE HOR; Mattson MP, 2006, CELL DEATH DIFFER, V13, P852, DOI 10.1038/sj.cdd.4401837; Merker K, 2001, MECH AGEING DEV, V122, P595, DOI 10.1016/S0047-6374(01)00219-6; MILKMAN RD, 1966, GENETICS, V53, P863; Minois N, 2000, BIOGERONTOLOGY, V1, P15, DOI 10.1023/A:1010085823990; Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x; Papp D, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002673; Pham LN, 2007, PLOS PATHOG, V3, DOI 10.1371/journal.ppat.0030026; Polak M, 1998, P ROY SOC B-BIOL SCI, V265, P2197, DOI 10.1098/rspb.1998.0559; Priest NK, 2002, EVOLUTION, V56, P927; Pursall ER, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019972; Qin W, 2005, INSECT MOL BIOL, V14, P607, DOI 10.1111/j.1365-2583.2005.00589.x; R Core Team, 2012, R LANG ENV STAT COMP; Rattan SIS, 2008, AGEING RES REV, V7, P63, DOI 10.1016/j.arr.2007.03.002; Rattan SIS, 2009, DOSE-RESPONSE, V7, P90, DOI [10.2203/dose-response.08-014.Rattan, 10.2203/dose-response.09-041.Rattan]; Rea SL, 2005, NAT GENET, V37, P894, DOI 10.1038/ng1608; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; ROFF DA, 2002, LIFE HIST EVOLUTION; Roth O, 2009, P R SOC B, V276, P145, DOI 10.1098/rspb.2008.1157; Salminen A, 2008, BIOESSAYS, V30, P939, DOI 10.1002/bies.20799; Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44; SMITH JM, 1958, J EXP BIOL, V35, P832; Sorensen JG, 2007, EXP GERONTOL, V42, P1123, DOI 10.1016/j.exger.2007.09.001; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237; Vaiserman AM, 2010, DOSE-RESPONSE, V8, P16, DOI 10.2203/dose-response.09-014.Vaiserman; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Weil ZM, 2006, BIOL LETT-UK, V2, P393, DOI 10.1098/rsbl.2006.0475; Wu DQ, 2008, J GERONTOL A-BIOL, V63, P660, DOI 10.1093/gerona/63.7.660; Xia YX, 2001, ARCH MICROBIOL, V176, P427, DOI 10.1007/s002030100342; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhong W., 2013, P R SOC B, V280, P1; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 79 23 23 0 64 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2014 68 8 2225 2233 10.1111/evo.12453 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AN3FL WOS:000340470600006 24862588 Green Published, Other Gold 2019-02-21 J Lim, JN; Senior, AM; Nakagawa, S Lim, Jiahui N.; Senior, Alistair M.; Nakagawa, Shinichi HETEROGENEITY IN INDIVIDUAL QUALITY AND REPRODUCTIVE TRADE-OFFS WITHIN SPECIES EVOLUTION English Article Clutch size; life-history theory; litter size; optimum offspring size; resource acquisition; resource allocation OFFSPRING SIZE; EGG SIZE; MATERNAL INVESTMENT; VAN NOORDWIJK; CLUTCH SIZE; JONG MODEL; NUMBER; EVOLUTION; COSTS; METAANALYSES Interspecifically, a reasonable body of evidence supports a trade-off between offspring size and number. However, at the intraspecific level, a whole manner of phenotypic correlations between offspring size and number are observed. These correlations may be predicted when heterogeneity in resource availability, or quality, is considered. Making the assumption that maternal size is a proxy for resource availability, we meta-analytically quantified four phenotypic reproductive correlations within numerous species: (1) maternal size and offspring size, (2) maternal size and offspring number, (3) offspring number and offspring size, and (4) offspring number and offspring size after controlling for maternal size. Within species, maternal size showed a positive correlation with both offspring size and number. Despite this consistency, no correlation between offspring size and number was found. After controlling for maternal size, however, offspring size and number showed a significant negative correlation. A phylogenetic component of our analysis accounted for little heterogeneity in the data, suggesting that our findings show remarkable consistency across taxa. Overall, our results support an observable phenotypic trade-off between offspring size and number. However, this analysis also highlights the importance of considering quality when examining trade-offs, a task that is not always straightforward as quality is context dependant. [Lim, Jiahui N.; Senior, Alistair M.; Nakagawa, Shinichi] Univ Otago, Dept Zool, Dunedin 9054, New Zealand; [Senior, Alistair M.] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Senior, Alistair M.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Lim, JN (reprint author), Univ Otago, Dept Zool, 340 Great King St, Dunedin 9054, New Zealand. alistair.senior1985@gmail.com Nakagawa, Shinichi/B-5571-2011 Nakagawa, Shinichi/0000-0002-7765-5182 University of Otago; Marsden Fund, NewZealand [UOO0812]; Rutherford Discovery Fellowship We would like to thank the University of Otago and the Marsden Fund, NewZealand (UOO0812) for providing research funding. SN is supported by a Rutherford Discovery Fellowship. We thank L. Lagisz for help in constructing a phylogenetic tree. We would also like to thank R. Poulin, I. Winney, M. Jennions, an anonymous reviewer and the editorial team at Evolution for comments and thoughts on this research. Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Bergeron P, 2011, J ANIM ECOL, V80, P361, DOI 10.1111/j.1365-2656.2010.01770.x; Brown CA, 2003, EVOLUTION, V57, P2184, DOI 10.1111/j.0014-3820.2003.tb00397.x; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; Buoro M, 2010, EVOLUTION, V64, P2629, DOI 10.1111/j.1558-5646.2010.01029.x; Cam E, 2000, OIKOS, V90, P560, DOI 10.1034/j.1600-0706.2000.900314.x; Cam E, 2013, OIKOS, V122, P739, DOI 10.1111/j.1600-0706.2012.20532.x; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; Cohen J, 1988, STAT POWER ANAL BEHA; Duval S, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P127, DOI 10.1002/0470870168.ch8; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Falster DS, 2008, AM NAT, V172, P299, DOI 10.1086/589889; Ford NB, 2006, J ZOOL, V268, P171, DOI 10.1111/j.1469-7998.2005.00006; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Hansen TF, 2005, EVOLUTION, V59, P2063; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Higgins J. P., 2008, COCHRANE HDB SYSTEMA; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Higgins JPT, 2002, STAT MED, V21, P1539, DOI 10.1002/sim.1186; Housworth EA, 2004, AM NAT, V163, P84, DOI 10.1086/380570; Jennions M. D., 2012, HDB META ANAL ECOLOG, P207; Kim S., 2012, PPCOR PARTIAL SEMI P; Kindsvater HK, 2011, J EVOLUTION BIOL, V24, P2230, DOI 10.1111/j.1420-9101.2011.02351.x; Kindsvater H. K., 2014, P ROY SOC LOND B BIO, V281, P1471; Kindsvater HK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048473; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lajeunesse M. J., 2013, HDB METAANALYSIS ECO, P284; Langford E, 2001, AM STAT, V55, P322, DOI 10.1198/000313001753272286; Liberati A, 2009, PLOS MED, V6, DOI 10.1371/journal.pmed.1000100; Lipsey M. W., 2001, PRACTICAL METAANALYS; LYNCH M, 1991, EVOLUTION, V45, P1065, DOI 10.1111/j.1558-5646.1991.tb04375.x; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; Mengersen K, 2013, HDB METAANALYSIS ECO, P89; Messina Frank J., 2001, P113; Moller AP, 2002, OECOLOGIA, V132, P492, DOI 10.1007/s00442-002-0952-2; Moyes K, 2009, J ANIM ECOL, V78, P406, DOI 10.1111/j.1365-2656.2008.01497.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Nakagawa S, 2012, EVOL ECOL, V26, P1085, DOI 10.1007/s10682-012-9593-z; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Roff Derek A., 1992; Schroderus E, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-44; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TUOMI J, 1980, OECOLOGIA, V45, P39, DOI 10.1007/BF00346705; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Visman V, 1996, ECOSCIENCE, V3, P173, DOI 10.1080/11956860.1996.11682328; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x 64 35 35 0 56 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2014 68 8 2306 2318 10.1111/evo.12446 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AN3FL WOS:000340470600013 24820133 Bronze 2019-02-21 J Arendt, JD; Reznick, DN; Lopez-Sepulcre, A Arendt, Jeffrey D.; Reznick, David N.; Lopez-Sepulcre, Andres REPLICATED ORIGIN OF FEMALE-BIASED ADULT SEX RATIO IN INTRODUCED POPULATIONS OF THE TRINIDADIAN GUPPY (POECILIA RETICULATA) EVOLUTION English Article Life span; mark-recapture; population structure; sex-biased mortality; sex-biased recruitment; sex-ratio LIFE-HISTORY EVOLUTION; NATURAL-POPULATIONS; GEOGRAPHIC-VARIATION; MATING OPPORTUNITY; OFFSPRING SIZE; PARENTAL CARE; CICHLID FISH; PARUS-MAJOR; SOAY SHEEP; RED DEER There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female-biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark-recapture approach to examine the origin and consistency of female-biased sex ratio in four replicated introductions. We show that female-biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark-recapture techniques. Together with other long-term mark-recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio. [Arendt, Jeffrey D.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Lopez-Sepulcre, Andres] CNRS UMR 7618, Inst Ecol & Environm Sci Paris iEEES, Paris, France; [Lopez-Sepulcre, Andres] Univ Jyvaskyla, Dept Biol & Environm Sci, Ctr Excellence Biol Interact, Jyvaskyla, Finland Arendt, JD (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. Jarendt@ucr.edu reznick, david/0000-0002-1144-0568; Lopez-Sepulcre, Andres/0000-0001-9708-0788 National Science Foundation (NSF) [EF0623632] The authors thank all the interns, volunteers, and graduate students who caught and marked tens of thousands of fish. They also thank, especially, R. Bassar and K. Morrison who commented on early drafts of this article. J. Dudycha, L. Pettersson, and an anonymous reviewer also made suggestions that greatly clarified our presentation. This work was supported by National Science Foundation (NSF) grant no. EF0623632. Alho JS, 2008, J ZOOL, V275, P57, DOI 10.1111/j.1469-7998.2007.00409.x; Awkerman JA, 2007, AUK, V124, P1336, DOI 10.1642/0004-8038(2007)124[1336:FSRAAP]2.0.CO;2; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Becher SA, 2004, P ROY SOC B-BIOL SCI, V271, P1009, DOI 10.1098/rspb.2004.2701; BRITTON RH, 1982, OECOLOGIA, V53, P146, DOI 10.1007/BF00545657; Brooks R, 2001, EVOLUTION, V55, P1644; BROWN LP, 1982, AM NAT, V120, P694, DOI 10.1086/284023; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; Burns JG, 2009, J FISH BIOL, V75, P1144, DOI 10.1111/j.1095-8649.2009.02314.x; CHARNOV E L, 1982; CLOBERT J, 1988, J ANIM ECOL, V57, P287, DOI 10.2307/4779; Clutton-Brock TH, 2002, PHILOS T ROY SOC B, V357, P1285, DOI 10.1098/rstb.2002.1128; Clutton-Brock T, 2007, SCIENCE, V318, P1882, DOI 10.1126/science.1133311; CLUTTONBROCK TH, 1986, Q REV BIOL, V61, P339, DOI 10.1086/415033; CLUTTONBROCK TH, 1994, J APPL ECOL, V31, P521, DOI 10.2307/2404447; CLUTTONBROCK TH, 1991, J ANIM ECOL, V60, P593, DOI 10.2307/5300; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; FARR JA, 1981, HEREDITY, V47, P237, DOI 10.1038/hdy.1981.79; Fisher R.A., 1999, GENETICAL THEORY NAT; GEODAKYAN VA, 1967, GENETIKA, V3, P152; Gibbons J. W., 1990, SEX RATIOS THEIR SIG, P171; Godfray H. C. J., 1996, Trends in Ecology and Evolution, V11, P59, DOI 10.1016/0169-5347(96)81043-3; Gotthard K, 2000, OECOLOGIA, V122, P36, DOI 10.1007/PL00008833; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HAILEY A, 1990, CAN J ZOOL, V68, P547, DOI 10.1139/z90-080; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Horak P, 1998, IBIS, V140, P205, DOI 10.1111/j.1474-919X.1998.tb04380.x; Jirotkul M, 1999, ANIM BEHAV, V58, P287, DOI 10.1006/anbe.1999.1149; Karino K, 2006, ETHOLOGY, V112, P1050, DOI 10.1111/j.1439-0310.2006.01261.X; Kocher TD, 2004, NAT REV GENET, V5, P288, DOI 10.1038/nrg1316; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; KRUPA JJ, 1993, BEHAV ECOL SOCIOBIOL, V33, P107; Kruuk LEB, 1999, NATURE, V399, P459, DOI 10.1038/20917; Kvarnemo C, 1996, TRENDS ECOL EVOL, V11, P404, DOI 10.1016/0169-5347(96)10056-2; Lande R, 2001, GENETICA, V112, P435, DOI 10.1023/A:1013379521338; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Lindholm A, 2002, AM NAT, V160, pS214, DOI 10.1086/342898; Lindstrom J, 2002, BEHAV ECOL SOCIOBIOL, V53, P25, DOI 10.1007/s00265-002-0545-4; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; LOVICH JE, 1990, OIKOS, V59, P126, DOI 10.2307/3545132; LUYTEN PH, 1985, BEHAVIOUR, V95, P164, DOI 10.1163/156853985X00109; MAGURRAN AE, 1990, BEHAVIOUR, V112, P194, DOI 10.1163/156853990X00194; Maness TJ, 2007, WATERBIRDS, V30, P10, DOI 10.1675/1524-4695(2007)030[0010:OSRVIN]2.0.CO;2; McKellar AE, 2011, J FISH BIOL, V79, P937, DOI 10.1111/j.1095-8649.2011.03065.x; McKellar AE, 2009, OECOLOGIA, V159, P735, DOI 10.1007/s00442-008-1257-x; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; PROMISLOW D, 1994, EVOLUTION, V48, P2045, DOI 10.1111/j.1558-5646.1994.tb02232.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rodd FH, 1997, ECOLOGY, V78, P405; Sato A, 2010, ETHOLOGY, V116, P524, DOI 10.1111/j.1439-0310.2010.01767.x; SCHMUTZ SM, 1979, CAN J ZOOL, V57, P1849, DOI 10.1139/z79-245; Seghers B. H., 1973, THESIS U BRIT COLOMB; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Stenzel LE, 2011, IBIS, V153, P312, DOI 10.1111/j.1474-919X.2011.01118.x; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Watt PJ, 2001, J FISH BIOL, V59, P843, DOI 10.1006/jfbi.2001.1699; West SA, 2002, HEREDITY, V88, P117, DOI 10.1038/sj/hdy/6800018; West SA, 2002, SCIENCE, V295, P1685, DOI 10.1126/science.1069043; White GC, 1999, BIRD STUDY, V46, P120; Wrensch D. L., 1993, EVOLUTION DIVERSITY; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 74 28 28 2 53 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution AUG 2014 68 8 2343 2356 10.1111/evo.12445 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AN3FL WOS:000340470600016 24816221 2019-02-21 J Cronin, JP; Rua, MA; Mitchell, CE Cronin, James P.; Rua, Megan A.; Mitchell, Charles E. Why Is Living Fast Dangerous? Disentangling the Roles of Resistance and Tolerance of Disease AMERICAN NATURALIST English Article pathogen reservoir; pathogen transmission; disease tolerance; disease resistance; host developmental tempo; structural equation modeling EMERGING INFECTIOUS-DISEASES; BARLEY YELLOW DWARF; LEAF ECONOMICS SPECTRUM; LIFE-HISTORY EVOLUTION; PLANT TOLERANCE; TRADE-OFF; ECOLOGICAL IMMUNOLOGY; APHID TRANSMISSION; SPECIES-DIVERSITY; IMMUNE DEFENSES Primary axes of host developmental tempo (HDT; e.g., slow-quick return continuum) represent latent biological processes and are increasingly used to a priori identify hosts that contribute disproportionately more to pathogen transmission. The influence of HDT on host contributions to transmission depends on how HDT influences both resistance and tolerance of disease. Here, we use structural equation modeling to address known limitations of conventional measures of resistance and tolerance. We first provide a general resistance-tolerance metamodel from which system-specific models can be derived. We then develop a model specific to a group of vector-transmitted viruses that infect hundreds of grass species worldwide. We tested the model using experimental inoculations of six phylogenetically paired grass species. We found that (1) host traits covaried according to a prominent HDT axis, the slow-quick continuum; (2) infection caused a greater reduction in the performance of quick returns, with >80% of that greater impact explained by lesser resistance; (3) resistance-tolerance trade-off did not occur; and (4) phylogenetic control was necessary to measure the slow-quick continuum, resistance, and tolerance. These results support the conclusion that HDT's main influence on host contributions to transmission is via resistance. More broadly, this study provides a framework for quantifying HDT's influence on host contributions to transmission. [Cronin, James P.; Mitchell, Charles E.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA; [Rua, Megan A.; Mitchell, Charles E.] Univ N Carolina, Curriculum Environm & Ecol, Chapel Hill, NC 27599 USA Cronin, JP (reprint author), Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA. jpatrickrconin@gmail.com Mitchell, Charles/I-3709-2014 Mitchell, Charles/0000-0002-1633-1993; Rua, Megan A./0000-0002-2883-2795; Cronin, James Patrick/0000-0001-6791-5828 National Science Foundation (NSF) [DEB-0923671, DEB-1015909]; NSF Graduate Research Fellowship; NSF Postdoctoral Research Fellowship in Biology [DBI-1202676] J.P.C. proposed and designed the models, designed and conducted the experiment, conducted the analyses, and wrote the manuscript. M.A.R. commented on the experimental design and manuscript, and conducted the experiment. C.E.M. designed the experiment and commented on the manuscript. We are grateful to F. Halliday and T. Pendergast for feedback on the SEMMs; to J. Grace, D. Schoolmaster, and C. Zimmer for advice on SEM specifications; and to the anonymous reviewers and C. Zimmer for critiques of the manuscript. M. Dekkers helped design and conduct the ELISAs. S. Power, J. Umbanhowar, and especially M. Welsh provided feedback on the experimental design. This research was funded by grants to C.E.M. from the National Science Foundation (NSF; DEB-0923671 and DEB-1015909). M.A.R. was supported by an NSF Graduate Research Fellowship and an NSF Postdoctoral Research Fellowship in Biology (DBI-1202676). Anderson PK, 2004, TRENDS ECOL EVOL, V19, P535, DOI 10.1016/j.tree.2004.07.021; Baucom RS, 2011, FUNCT ECOL, V25, P18, DOI 10.1111/j.1365-2435.2010.01742.x; BOLLEN KA, 1989, STRUCTURAL EQUATIONS; Bollen KA, 2012, ANNU REV SOCIOL, V38, P37, DOI 10.1146/annurev-soc-081309-150141; Borer ET, 2007, P NATL ACAD SCI USA, V104, P5473, DOI 10.1073/pnas.0608573104; Borer ET, 2010, ECOL LETT, V13, P810, DOI 10.1111/j.1461-0248.2010.01475.x; Brown JH, 2006, P NATL ACAD SCI USA, V103, P17595, DOI 10.1073/pnas.0608522103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Cable JM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001130; Chase JM, 2000, EVOL ECOL, V14, P289, DOI 10.1023/A:1010983611618; Chase JM, 2000, ECOLOGY, V81, P2485, DOI 10.1890/0012-9658(2000)081[2485:TEOPHA]2.0.CO;2; Cobb RC, 2010, ECOLOGY, V91, P327, DOI 10.1890/09-0680.1; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cronin J. P., 2014, AM NATURALIST DRYAD; Cronin JP, 2010, ECOL LETT, V13, P1221, DOI 10.1111/j.1461-0248.2010.01513.x; Cronin JP, 2010, ECOL LETT, V13, P202, DOI 10.1111/j.1461-0248.2009.01420.x; D'Arcy C. J, 1995, BARLEY YELLOW DWARF, P9; Daszak P, 2000, SCIENCE, V287, P443, DOI 10.1126/science.287.5452.443; DeLeo GA, 1996, NATURE, V379, P720, DOI 10.1038/379720a0; Dobson A, 2004, AM NAT, V164, pS64, DOI 10.1086/424681; Dobson FS, 2007, P NATL ACAD SCI USA, V104, P17565, DOI 10.1073/pnas.0708868104; Duffy MA, 2012, SCIENCE, V335, P1636, DOI 10.1126/science.1215429; DUKES JS, 2007, ECOLOGY MANAGEMENT C, P218; Enquist BJ, 2007, NATURE, V449, P218, DOI 10.1038/nature06061; Gilbert GS, 2007, P NATL ACAD SCI USA, V104, P4979, DOI 10.1073/pnas.0607968104; Grace J. B, 2006, STRUCTURAL EQUATION; Grace J. B., 2012, ECOSPHERE, V3, P1, DOI DOI 10.1890/ES12-00048.1; Grace JB, 2007, ECOL LETT, V10, P680, DOI 10.1111/j.1461-0248.2007.01058.x; Grace JB, 2010, ECOL MONOGR, V80, P67, DOI 10.1890/09-0464.1; Gray S, 2003, ANNU REV PHYTOPATHOL, V41, P539, DOI 10.1146/annurev.phyto.41.012203.105815; GRAY SM, 1991, PHYTOPATHOLOGY, V81, P539, DOI 10.1094/Phyto-81-539; Haber Steve, 1995, P145; Hall SR, 2009, AM NAT, V174, P149, DOI 10.1086/600086; HALL SR, 2008, RECIPROCAL INTERACTI, P223; Haydon DT, 2002, EMERG INFECT DIS, V8, P1468; Hayduk LA, 2006, QUAL QUANT, V40, P629, DOI 10.1007/s11135-005-1095-4; Huang ZYX, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054341; Imaji A, 2010, OECOLOGIA, V162, P273, DOI 10.1007/s00442-009-1453-3; IRWIN ME, 1990, ANNU REV PHYTOPATHOL, V28, P393, DOI 10.1146/annurev.py.28.090190.002141; Jensen Stanley G., 1995, P55; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Jones KE, 2008, NATURE, V451, P990, DOI 10.1038/nature06536; Keesing F, 2006, ECOL LETT, V9, P485, DOI 10.1111/j.1461-0248.2006.00885.x; Keesing F, 2010, NATURE, V468, P647, DOI 10.1038/nature09575; Kilpatrick AM, 2006, P R SOC B, V273, P2327, DOI 10.1098/rspb.2006.3575; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lind EM, 2013, ECOL LETT, V16, P513, DOI 10.1111/ele.12078; Lloyd-Smith JO, 2005, NATURE, V438, P355, DOI 10.1038/nature04153; LoGiudice K, 2003, P NATL ACAD SCI USA, V100, P567, DOI 10.1073/pnas.0233733100; Malmstrom CM, 2005, NEW PHYTOL, V168, P217, DOI 10.1111/j.1469-8137.2005.01479.x; Malmstrom CM, 1997, PLANT CELL ENVIRON, V20, P178, DOI 10.1046/j.1365-3040.1997.d01-63.x; Medzhitov R, 2012, SCIENCE, V335, P936, DOI 10.1126/science.1214935; Miller MR, 2007, EVOLUTION, V61, P2, DOI 10.1111/j.1558-5646.2007.00001.x; Molnar PK, 2013, ECOL LETT, V16, P9, DOI 10.1111/ele.12022; Myers JA, 2007, J ECOL, V95, P383, DOI 10.1111/j.1365-2745.2006.01207.x; Nunn CL, 2003, P ROY SOC B-BIOL SCI, V270, P347, DOI 10.1098/rspb.2002.2249; Paull SH, 2012, FRONT ECOL ENVIRON, V10, P75, DOI 10.1890/110111; Poorter L, 1995, BIOTIC INTERACTIONS, P35; POWER AG, 1991, PHYTOPATHOLOGY, V81, P545, DOI 10.1094/Phyto-81-545; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; Reich PB, 2001, TRENDS ECOL EVOL, V16, P674, DOI 10.1016/S0169-5347(01)02306-0; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rose KE, 2009, ECOL LETT, V12, P1379, DOI 10.1111/j.1461-0248.2009.01394.x; Rosseel Y, 2012, J STAT SOFTW, V48, P1; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Rua MA, 2013, NEW PHYTOL, V199, P541, DOI 10.1111/nph.12273; Seabloom EW, 2009, J ECOL, V97, P1264, DOI 10.1111/j.1365-2745.2009.01550.x; Seabloom EW, 2003, P NATL ACAD SCI USA, V100, P13384, DOI 10.1073/pnas.1835728100; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shipley B, 2006, ECOLOGY, V87, P535, DOI 10.1890/05-1051; Shipley B, 2000, CAUSE CORRELATION BI; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Stearns S, 1992, EVOLUTION LIFE HIST; Stowe KA, 2000, ANNU REV ECOL SYST, V31, P565, DOI 10.1146/annurev.ecolsys.31.1.565; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Streicker DG, 2013, ECOL LETT, V16, P975, DOI 10.1111/ele.12122; Todesco M, 2010, NATURE, V465, P632, DOI 10.1038/nature09083; van der Most PJ, 2011, FUNCT ECOL, V25, P74, DOI 10.1111/j.1365-2435.2010.01800.x; Wise MJ, 2005, OIKOS, V109, P417, DOI 10.1111/j.0030-1299.2005.13878.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 83 18 18 2 70 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 2014 184 2 172 187 10.1086/676854 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AN0BK WOS:000340246400006 25058278 Green Published 2019-02-21 J Van Dyke, JU; Griffith, OW; Thompson, MB Van Dyke, James U.; Griffith, Oliver W.; Thompson, Michael B. High Food Abundance Permits the Evolution of Placentotrophy: Evidence from a Placental Lizard, Pseudemoia entrecasteauxii AMERICAN NATURALIST English Article life-history evolution; viviparity; matrotrophy; reproduction; cannibalism; parent-offspring conflict TREXLER-DEANGELIS MODEL; PARENT-OFFSPRING CONFLICT; EPICRATES-CENCHRIA-MAURUS; VIVIPAROUS LIZARD; FACULTATIVE PLACENTOTROPHY; REPRODUCTIVE TRAITS; SQUAMATE REPTILES; LIFE-HISTORY; PREGNANCY; SCINCIDAE Mechanisms of reproductive allocation are major determinants of fitness because embryos cannot complete development without receiving sufficient nutrition from their parents. The nourishment of offspring via placentas (placentotrophy) has evolved repeatedly in vertebrates, including multiple times in squamate reptiles (lizards and snakes). Placentotrophy has been suggested to evolve only if food is sufficiently abundant throughout gestation to allow successful embryogenesis. If scarcity of food prevents successful embryogenesis, females should recoup nutrients allocated to embryos via abortion, reabsorption, and/or cannibalism. We tested these hypotheses in the placentotrophic southern grass skink Pseudemoia entrecasteauxii. We fed females one of four diets (high constant, high variable, low constant, and low variable) during gestation and tested the effects of both food amount and schedule of feeding on developmental success, cannibalism rate, placental nutrient transport, offspring size, and maternal growth and body condition. Low food availability reduced developmental success, placental nutrient transport, offspring size, and maternal growth and body condition. Cannibalism of offspring also increased when food was scarce. Schedule of feeding did not affect offspring or mothers. We suggest that high food abundance and ability to abort and cannibalize poor-quality offspring are permissive factors necessary for placentotrophy to be a viable strategy of reproductive allocation. [Van Dyke, James U.; Griffith, Oliver W.; Thompson, Michael B.] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Van Dyke, JU (reprint author), Univ Sydney, Sch Biol Sci, A08 Heydon Laurence Bldg, Sydney, NSW 2006, Australia. james.vandyke@sydney.edu.au Griffith, Oliver/A-6459-2014; Griffith, Oliver/M-3297-2015 Griffith, Oliver/0000-0001-9703-7800; Griffith, Oliver/0000-0001-9703-7800; Van Dyke, James/0000-0002-3933-111X National Science Foundation [1064803]; Australian Research Council We thank M. Brandley, J. Herbert, F. Horswell, G. Manning, J. McKenna, and M. Vo Hoang for logistical support. We thank C. Keitel for performing all mass spectrometry. Early drafts of the manuscript were considerably improved by comments from M. Brandley, C. Friesen, J. Herbert, M. Laird, F. van den Berg, and C. Whittington, and we thank two anonymous reviewers and J.-M. Gaillard for additional critical comments. J.U.V. was supported by an international fellowship from the National Science Foundation's International Research Fellowship Program (grant 1064803), and some of the work was supported by an Australian Research Council Discovery grant to M.B.T. All animals were collected under NSW Scientific Licence number SL100401, and all procedures were approved by the University of Sydney Animal Ethics Committee. Adams SM, 2005, J MORPHOL, V264, P264, DOI 10.1002/jmor.10314; Banet AI, 2008, FUNCT ECOL, V22, P323, DOI 10.1111/j.1365-2435.2007.01367.x; Banet AI, 2010, EVOLUTION, V64, P3172, DOI 10.1111/j.1558-5646.2010.01059.x; Bassar RD, 2014, FUNCT ECOL, V28, P999, DOI 10.1111/1365-2435.12233; BAUWENS D, 1981, J ANIM ECOL, V50, P733, DOI 10.2307/4133; Biazik JM, 2009, J EXP ZOOL PART B, V312B, P817, DOI 10.1002/jez.b.21297; Blackburn DG, 2015, J MORPHOL, V276, P961, DOI 10.1002/jmor.20272; Blackburn DG, 2012, J MORPHOL, V273, P137, DOI 10.1002/jmor.11011; BLACKBURN DG, 1994, COPEIA, P925; Blackburn DG, 2003, J MORPHOL, V256, P219, DOI 10.1002/jmor.10094; BLACKBURN DG, 1992, AM ZOOL, V32, P313; Bonnet X, 2002, ECOLOGY, V83, P2124, DOI 10.1890/0012-9658(2002)083[2124:RIATCB]2.0.CO;2; BROWN G, 1988, AUST WILDLIFE RES, V15, P605, DOI 10.1071/WR9880605; CLARK DR, 1971, J EXP ZOOL, V176, P295, DOI 10.1002/jez.1401760305; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; Dulvy NK, 1997, P ROY SOC B-BIOL SCI, V264, P1309, DOI 10.1098/rspb.1997.0181; DUNHAM AE, 1989, PHYSIOL ZOOL, V62, P335, DOI 10.1086/physzool.62.2.30156174; Flemming AF, 2003, J EXP ZOOL PART A, V299A, P33, DOI 10.1002/jez.a.10289; Gignac A, 2005, ECOSCIENCE, V12, P236, DOI 10.2980/i1195-6860-12-2-236.1; Gregory PT, 1999, J ZOOL, V248, P231, DOI 10.1111/j.1469-7998.1999.tb01199.x; Gregory PT, 1998, AM NAT, V151, P477, DOI 10.1086/286134; Griffith OW, 2013, PLACENTA, V34, P510, DOI 10.1016/j.placenta.2013.03.002; Griffith OW, 2013, J EXP ZOOL PART B, V320, P465, DOI 10.1002/jez.b.22526; Hare KM, 2010, REPROD FERT DEVELOP, V22, P761, DOI 10.1071/RD09195; Itonaga K, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041835; Itonaga K, 2012, PHYSIOL BIOCHEM ZOOL, V85, P231, DOI 10.1086/665567; Jung S, 2003, J AM OIL CHEM SOC, V80, P1169, DOI 10.1007/s11746-003-0837-3; Lourdais O, 2005, BIOL J LINN SOC, V84, P767, DOI 10.1111/j.1095-8312.2005.00436.x; Lourdais O, 2004, J COMP PHYSIOL B, V174, P383, DOI 10.1007/s00360-004-0424-6; Lourdais O, 2002, J EXP ZOOL, V292, P487, DOI 10.1002/jez.10065; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; Moore T, 2012, PLACENTA, V33, pS33, DOI 10.1016/j.placenta.2011.11.016; Murphy K, 2006, J HERPETOL, V40, P454, DOI 10.1670/0022-1511(2006)40[454:RSOTCV]2.0.CO;2; Pires MN, 2010, BIOL J LINN SOC, V99, P784, DOI 10.1111/j.1095-8312.2010.01391.x; Pollux BJA, 2011, FUNCT ECOL, V25, P747, DOI 10.1111/j.1365-2435.2011.01831.x; Ramirez-Pinilla MP, 2006, HERPETOL MONOGR, V20, P194, DOI 10.1655/0733-1347(2007)20[194:PTONDG]2.0.CO;2; Ramirez-Pinilla MP, 2002, J HERPETOL, V36, P667, DOI 10.1670/0022-1511(2002)036[0667:ARAOMM]2.0.CO;2; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Robert KA, 2000, COMP BIOCHEM PHYS A, V127, P481, DOI 10.1016/S1095-6433(00)00278-6; Scheiner S.M, 2001, DESIGN ANAL ECOLOGIC, P99; Shine R, 1999, OECOLOGIA, V119, P1, DOI 10.1007/s004420050754; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Stapley J, 2003, MOL ECOL NOTES, V3, P291, DOI 10.1046/j.1471-8286.2003.00429.x; Stewart JR, 2009, J EXP ZOOL PART B, V312B, P590, DOI 10.1002/jez.b.21245; STEWART JR, 1993, J EXP BIOL, V174, P97; Stewart JR, 1996, J MORPHOL, V227, P349, DOI 10.1002/(SICI)1097-4687(199603)227:3<349::AID-JMOR6>3.0.CO;2-0; STEWART JR, 1989, AM NAT, V133, P111, DOI 10.1086/284904; Swain R, 2000, COMP BIOCHEM PHYS A, V127, P441, DOI 10.1016/S1095-6433(00)00275-0; Thompson MB, 1999, J EXP BIOL, V202, P2985; Thompson MB, 2006, J COMP PHYSIOL B, V176, P179, DOI 10.1007/s00360-005-0048-5; Thompson MB, 2002, COMP BIOCHEM PHYS A, V133, P529, DOI 10.1016/S1095-6433(02)00188-5; Thompson MB, 1999, J COMP PHYSIOL B, V169, P319, DOI 10.1007/s003600050227; Thompson MB, 1999, J ZOOL, V248, P295, DOI 10.1017/S0952836999007037; Thompson MB, 2001, J COMP PHYSIOL B, V171, P155, DOI 10.1007/s003600000166; Thompson MB, 2000, COMP BIOCHEM PHYS A, V127, P469, DOI 10.1016/S1095-6433(00)00277-4; Tinkle D. W., 1977, MISCELLANEOUS PUBLIC, V154; Trexler JC, 2003, AM NAT, V162, P574, DOI 10.1086/378822; TREXLER JC, 1985, COPEIA, P999, DOI 10.2307/1445254; Van Dyke JU, 2014, REPRODUCTION, V147, pR15, DOI 10.1530/REP-13-0309; Van Dyke JU, 2012, BIOL J LINN SOC, V106, P390, DOI 10.1111/j.1095-8312.2012.01880.x; Van Dyke JU, 2012, J EXP BIOL, V215, P760, DOI 10.1242/jeb.058644; Van Dyke JU, 2011, COMP BIOCHEM PHYS A, V160, P504, DOI 10.1016/j.cbpa.2011.08.011; VanDyke J. U., 2014, AM NATURALIST DRYAD; VITT LJ, 1983, CAN J ZOOL, V61, P2798, DOI 10.1139/z83-367; VITT LJ, 1991, COPEIA, P916, DOI 10.2307/1446087; Wake MH, 2015, J MORPHOL, V276, P941, DOI 10.1002/jmor.20271; Wallace R A, 1985, Dev Biol (N Y 1985), V1, P127; Wheatley KE, 2008, OECOLOGIA, V155, P11, DOI 10.1007/s00442-007-0888-7; WOURMS JP, 1981, AM ZOOL, V21, P473 71 16 16 1 37 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. AUG 2014 184 2 198 210 10.1086/677138 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AN0BK WOS:000340246400008 25058280 2019-02-21 J Carvajal-Vallejos, FM; Duponchelle, F; Desmarais, E; Cerqueira, F; Querouil, S; Nunez, J; Garcia, C; Renno, JF Carvajal-Vallejos, F. M.; Duponchelle, F.; Desmarais, E.; Cerqueira, F.; Querouil, S.; Nunez, J.; Garcia, C.; Renno, J. -F. Genetic structure in the Amazonian catfish Brachyplatystoma rousseauxii: influence of life history strategies GENETICA English Article Bolivia; Madera River; Population structure; Microsatellites; Siluriformes; Pimelodidae MULTILOCUS GENOTYPE DATA; MITOCHONDRIAL-DNA ANALYSES; POPULATION-STRUCTURE; LINKAGE DISEQUILIBRIUM; MIGRATORY CATFISH; ALLELE FREQUENCIES; ISLAND MODEL; BLUEFIN TUNA; ATLANTIC COD; MICROSATELLITE The Dorado or Plateado (Gilded catfish) Brachyplatystoma rousseauxii (Pimelodidae, Siluriformes) is a commercially valuable migratory catfish performing the largest migration in freshwaters: from the Amazonian headwaters in the Andean foothills (breeding area) to the Amazon estuary (nursery area). In spite of its importance to inform management and conservation efforts, the genetic variability of this species has only recently begun to be studied. The aim of the present work was to determine the population genetic structure of B. rousseauxii in two regions: the Upper Madera Basin (five locations in the Bolivian Amazon) and the Western Amazon Basin (one regional sample from the Uyucali-Napo-Maraon-Amazon basin, Peru). Length polymorphism at nine microsatellite loci (284 individuals) was used to determine genetic variability and to identify the most probable panmictic units (using a Bayesian approach), after a significant departure from Hardy-Weinberg equilibrium was observed in the overall dataset (Western Amazon + Upper Madera). Bayesian analyses revealed at least three clusters in admixture in the five locations sampled in the Bolivian Amazon, whereas only two of these clusters were observed in the Western Amazon. Considering the migratory behaviour of B. rousseauxii, different life history strategies, including homing, are proposed to explain the cluster distribution. Our results are discussed in the light of the numerous threats to the species survival in the Madera basin, in particular dam and reservoir construction. [Carvajal-Vallejos, F. M.; Duponchelle, F.; Desmarais, E.; Querouil, S.; Nunez, J.; Garcia, C.; Renno, J. -F.] Ctr Invest Quistococha, LMI EDIA, Iquitos Loreto, Peru; [Carvajal-Vallejos, F. M.] FAUNAGUA Inst Appl Res Aquat Resources, Cochabamba, Plurinational S, Bolivia; [Carvajal-Vallejos, F. M.] UMSS, ULRA, Fac Ciencias & Tecnol FCyT, Cochabamba, Plurinational S, Bolivia; [Duponchelle, F.; Querouil, S.; Nunez, J.; Renno, J. -F.] IRD, UMR BOREA, F-34394 Montpellier, France; [Desmarais, E.; Cerqueira, F.] Univ Montpellier 2, CNRS, UMR ISEM Inst Sci Evolut Montpellier, F-34095 Montpellier 5, France; [Garcia, C.] IIAP, Quistococha, Iquitos, Peru Carvajal-Vallejos, FM (reprint author), UMSS, ULRA, Fac Ciencias & Tecnol FCyT, Calle Sucre Frente Parque La Torre S-N, Cochabamba, Plurinational S, Bolivia. fmcvalle@yahoo.com Duponchelle, Fabrice/K-1998-2016; Querouil, Sophie/A-8268-2008; Renno, Jean-Francois/L-1082-2017; Nunez, Jesus/J-4015-2016 Nunez, Jesus/0000-0003-3668-5446; Garcia-Davila, Carmen/0000-0003-4125-5563; DUPONCHELLE, Fabrice/0000-0003-0497-2264 Institute de Recherche pour le Development (IRD); World Wildlife Foundation (WWF) We gratefully acknowledge the support of the Institute de Recherche pour le Development (IRD) and the World Wildlife Foundation (WWF-Russell E. Train Education for Nature Program) for the scholarships granted to conduct this study. We extend our sincere thanks to all of the fishermen, government representatives and academic authorities in the Bolivian Amazon who kindly helped with the sampling and permits and shared their knowledge during the years of fieldwork in the Madera, Beni, Madre de Dios, Mamore and Ichilo rivers. B. Lehner, at the Conservation Science Program, World Wildlife Fund US, generously provided the base map used in Fig. 1. Data used in this work were partly produced through the technical facilities of the labex "Centre Mediterraneen de l'Environnement et de la Biodiversite". Cordoba EA, 2013, NEOTROP ICHTHYOL, V11, P637, DOI 10.1590/S1679-62252013000300017; Agudelo E, 2000, BAGRES AMAZONIA COLO, P252; Alonso JC, 2002, THESIS I NACL PESQUI; Alonso JC, 2005, MANEJO PESCA GRANDES, P21; Angelini R, 2006, AFR J AGRIC RES, V1, P151; Araujo-Lima C., 1997, SO FRUITFUL FISH ECO; Araujo-Lima Carlos A.R.M., 2003, P233; Balloux F, 2002, MOL ECOL, V11, P771, DOI 10.1046/j.1365-294X.2002.01474.x; Barluenga M, 2004, MOL ECOL, V13, P2061, DOI 10.1111/j.1365-294X.2004.02211.x; Barthem R, 2003, ECOLOGIA ACUATICA RI; Barthem R. B., 2007, ECOSISTEMA INESPERAD; BARTHEM RB, 1991, BIOL CONSERV, V55, P339, DOI 10.1016/0006-3207(91)90037-A; Batista J, 2010, THESIS I NACL PESQUI; Batista JS, 2006, GENET MOL RES, V5, P723; Belkhir K., 1996, GENETIX 4 05 LOGICIE; BLACK WC, 1985, THEOR APPL GENET, V70, P491, DOI 10.1007/BF00305981; Brodersen J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0090294; Calcagnotto D, 2009, NEOTROP ICHTHYOL, V7, P607, DOI 10.1590/S1679-62252009000400008; Canas CM, 2011, RIVER RES APPL, V27, P602, DOI 10.1002/rra.1377; Canas CM, 2012, HYDROL PROCESS, V26, P996, DOI 10.1002/hyp.8192; Carlsson J, 2004, MOL ECOL, V13, P3345, DOI 10.1111/j.1365-294X.2004.02336.x; Carlsson J, 2007, J HERED, V98, P23, DOI 10.1093/jhered/esl046; CARVAJALVALLEJO.FM, 2011, PECES DELFINES AMAZO, P101; Castello L, 2013, CONSERV LETT, V6, P217, DOI 10.1111/conl.12008; Chapman BB, 2012, J FISH BIOL, V81, P479, DOI 10.1111/j.1095-8649.2012.03349.x; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Corander J, 2003, GENETICS, V163, P367; Corander J, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-539; Coronel JS, 2004, J FISH BIOL, V65, P859, DOI 10.1111/j.1095-8649.2004.00498.x; de Abreu MM, 2009, GENET MOL BIOL, V32, P868, DOI 10.1590/S1415-47572009005000075; Telles MPD, 2011, GENETICA, V139, P243, DOI 10.1007/s10709-010-9541-1; Doyle J. J., 1987, PHYTOCHEMISTRY B, V19, P11, DOI DOI 10.2307/4119796; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Falush D, 2003, GENETICS, V164, P1567; Falush D, 2007, MOL ECOL NOTES, V7, P574, DOI 10.1111/j.1471-8286.2007.01758.x; Farias IP, 2010, MOL PHYLOGENET EVOL, V56, P1129, DOI 10.1016/j.ympev.2010.03.028; Finer M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035126; Garcia A, 2009, FISH PHYSIOL BIOCHEM, V35, P53, DOI 10.1007/s10695-008-9212-7; Vasquez AG, 2009, J FISH BIOL, V75, P2527, DOI 10.1111/j.1095-8649.2009.02444.x; Goulding M, 1997, CATFISH CONNECTION; Goulding M, 1980, FISHES FOREST; GOULDING M, 2003, SMITHSONIAN ATLAS AM; Goulding M., 1979, ECOLOGIA PESCA RIO M; Hartl DL, 1997, PRINCIPLES POPULATIO; Junk WJ, 2007, AQUAT ECOSYST HEALTH, V10, P153, DOI 10.1080/14634980701351023; Kaplinski L, 2005, BIOINFORMATICS, V21, P1701, DOI 10.1093/bioinformatics/bti219; Keeney DB, 2005, MOL ECOL, V14, P1911, DOI 10.1111/j.1365-294X.2005.02549.x; Knutsen H, 2011, MOL ECOL, V20, P768, DOI 10.1111/j.1365-294X.2010.04979.x; Knutsen H, 2003, MOL ECOL, V12, P385, DOI 10.1046/j.1365-294X.2003.01750.x; Latch EK, 2006, CONSERV GENET, V7, P295, DOI 10.1007/s10592-005-9098-1; LAUZANNE L, 1990, INTERCIENCIA, V15, P452; Lewontin RC, 1974, GENETIC BASIS EVOLUT, P273; McConnell SKJ, 1997, MOL ECOL, V6, P1075, DOI 10.1046/j.1365-294X.1997.00282.x; Molines J., 2011, PECES DELFINES AMAZO, P29; Navarro G, 2002, BIOGRAFIA ECOLOGICA; NEI M, 1978, GENETICS, V89, P583; Neophytou C, 2014, TREE GENET GENOMES, V10, P273, DOI 10.1007/s11295-013-0680-2; OHTA T, 1982, P NATL ACAD SCI-BIOL, V79, P1940, DOI 10.1073/pnas.79.6.1940; OHTA T, 1982, GENETICS, V101, P139; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Pereira LHG, 2009, ECOL FRESHW FISH, V18, P215, DOI 10.1111/j.1600-0633.2008.00338.x; Petrere M, 2004, REV FISH BIOL FISHER, V14, P403, DOI 10.1007/s11160-004-8362-7; Pritchard JK, 2000, GENETICS, V155, P945; Pujolar JM, 2011, MOL PHYLOGENET EVOL, V58, P198, DOI 10.1016/j.ympev.2010.11.019; Rochet MJ, 2003, CAN J FISH AQUAT SCI, V60, P86, DOI 10.1139/F02-164; Rodrigues FC, 2009, CONSERV GENET RESOUR, V1, P365, DOI 10.1007/s12686-009-9084-x; SLATKIN M, 1995, GENETICS, V139, P457; Tavera G, 2011, PECES DELFINES AMAZO, P53; Torrente-Vilara G, 2011, ECOL FRESHW FISH, V20, P588, DOI 10.1111/j.1600-0633.2011.00508.x; Van Damme PA, 2011, PECES DELFINES AMAZO, P149; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Waples R, 2011, 460 US DEP COMM; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Wilkinson MJ, 2010, AMAZONIA: LANDSCAPE AND SPECIES EVOLUTION: A LOOK INTO THE PAST, P162; Wilkinson S, 2011, HEREDITY, V106, P261, DOI 10.1038/hdy.2010.80; Wood CC, 1996, EVOLUTION, V50, P1265, DOI 10.1111/j.1558-5646.1996.tb02367.x; Wright S., 1978, EVOLUTION GENETICS P, V4; Zhang FT, 2010, GENES GENET SYST, V85, P351, DOI 10.1266/ggs.85.351 79 10 10 1 29 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0016-6707 1573-6857 GENETICA Genetica AUG 2014 142 4 323 336 10.1007/s10709-014-9777-2 14 Genetics & Heredity Genetics & Heredity AM5ET WOS:000339879800005 25038864 2019-02-21 J Joannes, A; Lagrue, C; Poulin, R; Beltran-Bech, S Joannes, A.; Lagrue, C.; Poulin, R.; Beltran-Bech, S. Effects of genetic similarity on the life-history strategy of co-infecting trematodes: are parasites capable of intrahost kin recognition? JOURNAL OF EVOLUTIONARY BIOLOGY English Article Coitocaecum parvum; genetic dissimilarity; host-parasite interaction; kin recognition; matching genotypes; microsatellite markers; Paracalliope fluviatilis; Paracorophium excavatum COITOCAECUM-PARVUM; PROGENETIC TREMATODE; MULTIPLE INFECTIONS; HOST; SELECTION; TRANSMISSION; COOPERATION; COMPETITION; VIRULENCE; SIZE For conspecific parasites sharing the same host, kin recognition can be advantageous when the fitness of one individual depends on what another does; yet, evidence of kin recognition among parasites remains limited. Some trematodes, like Coitocaecum parvum, have plastic life cycles including two alternative life-history strategies. The parasite can wait for its intermediate host to be eaten by a fish definitive host, thus completing the classical three-host life cycle, or mature precociously and produce eggs while still inside its intermediate host as a facultative shortcut. Two different amphipod species are used as intermediate hosts by C. parvum, one small and highly mobile and the other larger, sedentary, and burrow dwelling. Amphipods often harbour two or more C. parvum individuals, all capable of using one or the other developmental strategy, thus creating potential conflicts or cooperation opportunities over transmission routes. This model was used to test the kin recognition hypothesis according to which cooperation between two conspecific individuals relies on the individuals' ability to evaluate their degree of genetic similarity. First, data showed that levels of intrahost genetic similarity between co-infecting C. parvum individuals differed between host species. Second, genetic similarity between parasites sharing the same host was strongly linked to their likelihood of adopting identical developmental strategies. Two nonexclusive hypotheses that could explain this pattern are discussed: kin recognition and cooperation between genetically similar parasites and/or matching genotypes involving parasite genotype-host compatibility filters. [Joannes, A.; Beltran-Bech, S.] Univ Poitiers, Lab EBI Ecol & Biol Interact, Poitiers, France; [Lagrue, C.; Poulin, R.] Univ Otago, Dept Zool, Dunedin 9054, New Zealand Lagrue, C (reprint author), Univ Otago, Dept Zool, 340 Great King St,POB 56, Dunedin 9054, New Zealand. clement.lagrue@gmail.com BELTRAN-BECH, Sophie/A-9070-2010; Poulin, Robert/C-3117-2008 BELTRAN-BECH, Sophie/0000-0003-4379-0463; Poulin, Robert/0000-0003-1390-1206; Lagrue, Clement/0000-0003-3347-6497 Benabentos R, 2009, CURR BIOL, V19, P567, DOI 10.1016/j.cub.2009.02.037; Brown J. L., 1987, HELPING COMMUNAL BRE; Dezfuli BS, 2001, J HELMINTHOL, V75, P331; Foster KR, 2006, TRENDS ECOL EVOL, V21, P57, DOI 10.1016/j.tree.2005.11.020; Gardner A, 2011, J EVOLUTION BIOL, V24, P1020, DOI 10.1111/j.1420-9101.2011.02236.x; Gerlach G, 2006, ANIM BEHAV, V71, P1371, DOI 10.1016/j.anbehav.2005.10.010; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HOLTON A L, 1984, Mauri Ora, V11, P63; HOLTON AL, 1984, NEW ZEAL J ZOOL, V11, P1; Kuris M.A., 2007, J PARASITOL, V37, P539; Lagrue C, 2009, PARASITOLOGY, V136, P231, DOI 10.1017/S0031182008005325; Lagrue C, 2008, PARASITOLOGY, V135, P1243, DOI 10.1017/S0031182008004782; Lagrue C, 2007, J EVOLUTION BIOL, V20, P1189, DOI 10.1111/j.1420-9101.2006.01277.x; Lagrue C, 2008, INT J PARASITOL, V38, P1435, DOI 10.1016/j.ijpara.2008.04.006; Lagrue C, 2007, MOL ECOL NOTES, V7, P694, DOI 10.1111/j.1471-8286.2007.01680.x; Lagrue C, 2009, EVOLUTION, V63, P1417, DOI 10.1111/j.1558-5646.2009.00619.x; Lefebvre F, 2005, J PARASITOL, V91, P93, DOI 10.1645/GE-335R; Lize A, 2012, ANIM BEHAV, V83, P793, DOI 10.1016/j.anbehav.2012.01.001; Lopez-Villavicencio M, 2011, EVOLUTION, V65, P1357, DOI 10.1111/j.1558-5646.2010.01207.x; Luque JL, 2010, FOLIA PARASIT, V57, P223, DOI 10.14411/fp.2010.029; Marshall JAR, 2011, TRENDS ECOL EVOL, V26, P325, DOI 10.1016/j.tree.2011.04.008; Poulin R, 2002, TRENDS PARASITOL, V18, P176, DOI 10.1016/S1471-4922(02)02262-6; Poulin R, 2001, PARASITOLOGY, V123, P623, DOI 10.1017/S0031182001008794; Poulin R, 2010, ADV STUD BEHAV, V41, P151, DOI 10.1016/S0065-3454(10)41005-0; Reece E.S., 2008, NATURE, V453, P609; Rousset F, 1996, GENETICS, V142, P1357; Ruiz-Daniels R, 2013, PARASITOLOGY, V140, P275, DOI 10.1017/S0031182012001564; Schjorring S, 2007, EVOLUTION, V61, P423, DOI 10.1111/j.1558-5646.2007.00028.x; Theron A, 2005, J HELMINTHOL, V79, P187, DOI 10.1079/JOH2005299; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004 31 1 1 0 34 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. AUG 2014 27 8 1623 1630 10.1111/jeb.12413 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AM2WZ WOS:000339713100012 24836164 Bronze 2019-02-21 J Park, AW; Vandekerkhove, J; Michalakis, Y Park, A. W.; Vandekerkhove, J.; Michalakis, Y. Sex in an uncertain world: environmental stochasticity helps restore competitive balance between sexually and asexually reproducing populations JOURNAL OF EVOLUTIONARY BIOLOGY English Article bet hedging; environmental stochasticity; life-history evolution; maintenance of sex; ostracods; simulation EUCYPRIS-VIRENS CRUSTACEA; DELETERIOUS MUTATIONS; OSTRACODA; EVOLUTION; PARTHENOGENESIS; RECOMBINATION; MAINTENANCE; PHOTOPERIOD; STABILITY; MODE Like many organisms, individuals of the freshwater ostracod species Eucypris virens exhibit either obligate sexual or asexual reproductive modes. Both types of individual routinely co-occur, including in the same temporary freshwater pond (their natural habitat in which they undergo seasonal diapause). Given the well-known two-fold cost of sex, this begs the question of how sexually reproducing individuals are able to coexist with their asexual counterparts in spite of such overwhelming costs. Environmental stochasticity in the form of 'false dawn' inundations (where the first hydration is ephemeral and causes loss of early hatching individuals) may provide an advantage to the sexual subpopulation, which shows greater variation in hatching times following inundation. We explore the potential role of environmental stochasticity in this system using life-history data analysis, climate data, and matrix projection models. In the absence of environmental stochasticity, the population growth rate is significantly lower in sexual subpopulations. Climate data reveal that 'false dawn' inundations are common. Using matrix projection modelling with and without environmental stochasticity, we demonstrate that this phenomenon can restore appreciable balance to the system, in terms of population growth rates. This provides support for the role of environmental stochasticity in helping to explain the maintenance of sex and the occurrence of geographical parthenogenesis. [Park, A. W.] Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA; [Park, A. W.] Univ Georgia, Coll Vet Med, Dept Infect Dis, Athens, GA USA; [Vandekerkhove, J.] Univ Valencia, Dept Microbiol & Ecol, E-46100 Burjassot, Spain; [Vandekerkhove, J.] Univ Parma, Dept Environm Sci, I-43100 Parma, Italy; [Vandekerkhove, J.] Univ Gdansk, Lab Limnozool, Dept Genet, PL-80952 Gdansk, Poland; [Michalakis, Y.] IRD, UMR CNRS IRD 5290, Malad Infect & Vecteurs Ecol Genet Evolut & Vecte, Montpellier 5, France Park, AW (reprint author), Univ Georgia, Odum Sch Ecol, Athens, GA 30602 USA. awpark@uga.edu Michalakis, Yannis/0000-0003-1929-0848 Marie Curie Research Training Grant [MRTN-CT-2004-512492]; James S. McDonnell Foundation; CNRS; IRD AWP and JV were supported by postdoctoral fellowships from the Marie Curie Research & Training GrantMRTN-CT-2004-512492. AWP additionally acknowledges funding from the James S. McDonnell Foundation. YM acknowledges support from CNRS and IRD. Adolfsson S, 2010, EVOLUTION, V64, P986, DOI 10.1111/j.1558-5646.2009.00872.x; Bode SNS, 2010, MOL PHYLOGENET EVOL, V54, P542, DOI 10.1016/j.ympev.2009.08.022; Caswell H, 2000, MATRIX POPULATION MO; CHAPLIN JA, 1994, TRENDS ECOL EVOL, V9, P435, DOI 10.1016/0169-5347(94)90127-9; Donaldson-Matasci MC, 2013, AM NAT, V182, P313, DOI 10.1086/671161; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Martins MJF, 2008, OIKOS, V117, P829, DOI 10.1111/j.2008.0030-1299.16557.x; Getz WM, 2001, ANN ZOOL FENN, V38, P315; Horne DJ, 1998, SEX AND PARTHENOGENESIS, P77; Horne DJ, 1998, HYDROBIOLOGIA, V391, P1, DOI 10.1023/A:1003508210166; HOWARD RS, 1994, NATURE, V367, P554, DOI 10.1038/367554a0; Hurst Laurence D., 1996, Trends in Ecology and Evolution, V11, P46, DOI 10.1016/0169-5347(96)81041-X; KLEIVEN OT, 1992, OIKOS, V65, P197, DOI 10.2307/3545010; Kouyos RD, 2007, TRENDS ECOL EVOL, V22, P308, DOI 10.1016/j.tree.2007.02.014; Martens K, 2008, HYDROBIOLOGIA, V595, P185, DOI 10.1007/s10750-007-9245-4; Maynard Smith J., 1978, EVOLUTION SEX, P236; McKenzie K.G., 1971, PALEOECOLOGIE OSTR S, V5, P207; Nambu Z, 2004, J EXP ZOOL PART A, V301A, P542, DOI 10.1002/jez.a.80; Park AW, 2010, J EVOLUTION BIOL, V23, P1013, DOI 10.1111/j.1420-9101.2010.01972.x; SCHIERWATER B, 1990, BIOL BULL, V178, P111, DOI 10.2307/1541969; Schmit O, 2007, HYDROBIOLOGIA, V585, P135, DOI 10.1007/s10750-007-0634-5; Schmit O, 2013, CAN J ZOOL, V91, P660, DOI 10.1139/cjz-2012-0236; Schmit O, 2013, J BIOGEOGR, V40, P2396, DOI 10.1111/jbi.12174; Schmit O, 2013, ANIM BEHAV, V85, P977, DOI 10.1016/j.anbehav.2013.02.021; Schon I, 2000, HEREDITY, V84, P161, DOI 10.1046/j.1365-2540.2000.00647.x; Simon JC, 2002, TRENDS ECOL EVOL, V17, P34, DOI 10.1016/S0169-5347(01)02331-X; Tojo K, 2006, LIMNOLOGY, V7, P31, DOI 10.1007/s10201-006-0163-3; Vandekerkhove J, 2007, FRESHWATER BIOL, V52, P1058, DOI 10.1111/j.1365-2427.2007.01753.x; West SA, 1999, J EVOLUTION BIOL, V12, P1003; Zierold T, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-161 30 5 5 0 44 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. AUG 2014 27 8 1650 1661 10.1111/jeb.12419 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AM2WZ WOS:000339713100015 24836646 2019-02-21 J Runemark, A; Brydegaard, M; Svensson, EI Runemark, A.; Brydegaard, M.; Svensson, E. I. Does relaxed predation drive phenotypic divergence among insular populations? JOURNAL OF EVOLUTIONARY BIOLOGY English Article antipredator defence; body size; coloration; crypsis; lizards; Podarcis; population divergence; variance GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; BODY-SIZE EVOLUTION; ISLAND RULE; GENE FLOW; LIZARD POPULATIONS; MORPHOLOGICAL DIVERGENCE; NATURAL-SELECTION; LOCAL ADAPTATION; LACERTA-AGILIS The evolution of striking phenotypes on islands is a well-known phenomenon, and there has been a long-standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small-bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between-population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands. [Runemark, A.; Svensson, E. I.] Lund Univ, Dept Biol, Evolutionary Ecol Unit, Lund, Sweden; [Brydegaard, M.] Lund Univ, Dept Phys, Atom Phys Div, S-22362 Lund, Sweden Runemark, A (reprint author), Dept Biol, Solvegatan 37, SE-22362 Lund, Sweden. Anna.Runemark@biol.lu.se Svensson, Erik/E-8324-2010 Svensson, Erik/0000-0001-9006-016X; Runemark, Anna/0000-0002-8976-5530 Lennanders Stiftelse; Royal Physiographic Society; Helge Ax: son Johnsons Foundation; Lars Hiertas Memory; Langmanska kulturfonden; Royal Swedish Academy of Sciences; Swedish Research Council We thank Jonathan Losos and Charlie Cornwallis and two anonymous referees for constructive comments on the manuscript; Steffi Weinhold, Kostas Sagonas, Panagiotis Pafilis and Efstratios Valakos for assistance in the field; Emma Bjork for help with image analysis; and Cassandra Trier for language editing. We also thank all helpful captains on Skyros for transportation to the islets. Funding was provided from Lennanders Stiftelse (AR), the Royal Physiographic Society (AR), Helge Ax: son Johnsons Foundation (AR), Lars Hiertas Memory (AR), Langmanska kulturfonden (AR), the Royal Swedish Academy of Sciences (AR) and the Swedish Research Council (EIS). All experimental procedures were in full compliance with Greek academic institution rules, as well as Greek national legislation on the scientific use and protection of wildlife. Ab Ghani NI, 2013, J EVOLUTION BIOL, V26, P775; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Aikio S, 2013, J FISH BIOL, V82, P318, DOI 10.1111/jfb.12006; Arnold N, 2002, FIELD GUIDE REPTILES; Aubret F, 2012, AM NAT, V179, P756, DOI 10.1086/665653; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; BRO R, 1998, THESIS U AMSTERDAM A; Brydegaard M, 2012, J CHEMOMETR, V26, P246, DOI 10.1002/cem.2444; CASE TJ, 1978, ECOLOGY, V59, P1, DOI 10.2307/1936628; Clegg SM, 2002, EVOLUTION, V56, P2090; Cooper WE, 2004, J ZOOL, V262, P243, DOI 10.1017/S095283690300462X; Cooper WE, 2012, BIOL J LINN SOC, V107, P254, DOI 10.1111/j.1095-8312.2012.01933.x; Des Roches S, 2011, ECOL EVOL, V1, DOI 10.1002/ece3.50; Doucet SM, 2004, P ROY SOC B-BIOL SCI, V271, P1663, DOI 10.1098/rspb.2004.2779; Drew MS, 2003, IMAGE VISION COMPUT, V21, P705, DOI 10.1016/S0262-8856(03)00065-9; ENDLER JA, 1984, BIOL J LINN SOC, V22, P187, DOI 10.1111/j.1095-8312.1984.tb01677.x; Fitze PS, 2010, OECOLOGIA, V162, P331, DOI 10.1007/s00442-009-1463-1; Foster B., 1964, NATURE, V202, P234, DOI DOI 10.1038/202234A0; Frentiu FD, 2007, J EVOLUTION BIOL, V20, P639, DOI 10.1111/j.1420-9101.2006.01242.x; Galan P., 2009, ANIM BIOL, V58, P173; GarciaRamos G, 1997, EVOLUTION, V51, P21, DOI 10.1111/j.1558-5646.1997.tb02384.x; Goudet J, 2001, FSTAT PROGRAM ESTIMA; Grant P. R., 2008, WHY SPECIES MULTIPLY; Gruber U., 1986, P65; GRUBER U F, 1971, Bonner Zoologische Beitraege, V22, P101; Hayashi M, 2004, BIOL J LINN SOC, V81, P417, DOI 10.1111/j.1095-8312.2003.00292.x; Herczeg G, 2010, J ANIM ECOL, V79, P581, DOI 10.1111/j.1365-2656.2010.01665.x; Herczeg G, 2009, EVOLUTION, V63, P3190, DOI 10.1111/j.1558-5646.2009.00781.x; Herrel A, 1999, FUNCT ECOL, V13, P289, DOI 10.1046/j.1365-2435.1999.00305.x; Johannesson K, 2001, TRENDS ECOL EVOL, V16, P148, DOI 10.1016/S0169-5347(00)02078-4; Lathi D.P., 2009, TRENDS ECOL EVOL, V24, P487; LAWLOR TE, 1982, AM NAT, V119, P54, DOI 10.1086/283890; Lomolino MV, 2005, J BIOGEOGR, V32, P1683, DOI 10.1111/j.1365-2699.2005.01314.x; LOMOLINO MV, 1985, AM NAT, V125, P310, DOI 10.1086/284343; Losos JB, 1998, SCIENCE, V279, P2115, DOI 10.1126/science.279.5359.2115; Losos JB, 2004, NATURE, V432, P505, DOI 10.1038/nature03039; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; MAC ARTHUR ROBERT H., 1967; Mayr E., 1963, ANIMAL SPECIES EVOLU; MCNAB BK, 1994, AM NAT, V144, P628, DOI 10.1086/285697; Meiri S, 2008, P ROY SOC B-BIOL SCI, V275, P141, DOI 10.1098/rspb.2007.1056; Meiri S, 2007, GLOBAL ECOL BIOGEOGR, V16, P702, DOI 10.1111/j.1466-8238.2007.00327.x; Meiri S, 2006, J BIOGEOGR, V33, P1571, DOI 10.1111/j.1365-2699.2006.01523.x; Novosolov M, 2013, GLOBAL ECOL BIOGEOGR, V22, P184, DOI 10.1111/j.1466-8238.2012.00791.x; OLSSON M, 1994, BEHAV ECOL SOCIOBIOL, V35, P169, DOI 10.1007/s002650050084; OLSSON M, 1994, ANIM BEHAV, V48, P607, DOI 10.1006/anbe.1994.1280; Pafilis P, 2008, NATURWISSENSCHAFTEN, V95, P217, DOI 10.1007/s00114-007-0320-5; Pafilis P, 2011, COPEIA, P545, DOI 10.1643/CE-10-041; Pafilis P, 2009, NATURWISSENSCHAFTEN, V96, P1107, DOI 10.1007/s00114-009-0564-3; Pafilis P, 2009, EVOLUTION, V63, P1262, DOI 10.1111/j.1558-5646.2009.00635.x; Palmer M, 2002, ACTA OECOL, V23, P103, DOI 10.1016/S1146-609X(02)01140-2; PerezMellado V, 1997, J ZOOL, V243, P533, DOI 10.1111/j.1469-7998.1997.tb02799.x; Quinn TP, 1999, OECOLOGIA, V121, P273, DOI 10.1007/s004420050929; R Core Team, 2012, R LANG ENV STAT COMP; Rasanen K, 2008, ECOL LETT, V11, P624, DOI 10.1111/j.1461-0248.2008.01176.x; Raia P, 2006, EVOLUTION, V60, P1731; Raia P, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-289; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick David, 1996, P243; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Robinson MH, 1997, SMITHSONIAN, V28, P16; Rodd FH, 1997, ECOLOGY, V78, P405; Rosenblum E.B., 2004, EVOLUTION, V58, P734; Rosenblum EB, 2006, AM NAT, V167, P1, DOI 10.1086/498397; Rosenblum EB, 2010, P NATL ACAD SCI USA, V107, P2113, DOI 10.1073/pnas.0911042107; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Rudh A, 2013, EVOL ECOL, V27, P755, DOI 10.1007/s10682-013-9649-8; Runemark A, 2011, J EVOLUTION BIOL, V24, P795, DOI 10.1111/j.1420-9101.2010.02214.x; Runemark A., 2012, THESIS LUND U LUND; Runemark A, 2013, MOL ECOL, V22, P1310, DOI 10.1111/mec.12178; Runemark A, 2012, BIOL J LINN SOC, V106, P374, DOI 10.1111/j.1095-8312.2012.01866.x; Runemark A, 2012, MOL ECOL, V21, P117, DOI 10.1111/j.1365-294X.2011.05377.x; Runemark A, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-269; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Simberloff D, 2000, ECOLOGY, V81, P2086, DOI 10.2307/177098; *STATS INC, 2004, STATISTICA DAT AN SO; Stearns S, 1992, EVOLUTION LIFE HIST; Storfer A, 1999, EVOLUTION, V53, P889, DOI 10.1111/j.1558-5646.1999.tb05383.x; Stuart-Fox DM, 2004, EVOLUTION, V58, P1549; Svensson EI, 2007, FUNCT ECOL, V21, P422, DOI 10.1111/j.1365-2435.2007.01265.x; Svensson EI, 2009, EVOLUTION, V63, P3124, DOI 10.1111/j.1558-5646.2009.00782.x; Uyeda JC, 2009, EVOLUTION, V63, P583, DOI 10.1111/j.1558-5646.2008.00589.x; Valakos E. D., 2008, AMPHIBIANS REPTILES; van Valen L., 1973, EVOL THEORY, V1, P1, DOI DOI 10.1017/CBO9781139173179; Vervust B, 2007, OIKOS, V116, P1343, DOI 10.1111/j.2007.0030-1299.15989.x; Whittaker R. J, 2007, ISLAND BIOGEOGRAPHY 89 8 8 2 55 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. AUG 2014 27 8 1676 1690 10.1111/jeb.12421 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AM2WZ WOS:000339713100017 24890841 Bronze 2019-02-21 J Le Cunff, Y; Baudisch, A; Pakdaman, K Le Cunff, Y.; Baudisch, A.; Pakdaman, K. Evolution of aging: individual life history trade-offs and population heterogeneity account for mortality patterns across species JOURNAL OF EVOLUTIONARY BIOLOGY English Article evolution of ageing; life history evolution; natural selection; population genetics; simulation; trade-offs AGE-SPECIFIC MORTALITY; GENE REGULATORY CIRCUITS; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; RATES; CANALIZATION; ROBUSTNESS; SENESCENCE; LONGEVITY; NETWORKS A broad range of mortality patterns has been documented across species, some even including decreasing mortality over age. Whether there exist a common denominator to explain both similarities and differences in these mortality patterns remains an open question. The disposable soma theory, an evolutionary theory of aging, proposes that universal intracellular trade-offs between maintenance/lifespan and reproduction would drive aging across species. The disposable soma theory has provided numerous insights concerning aging processes in single individuals. Yet, which specific population mortality patterns it can lead to is still largely unexplored. In this article, we propose a model exploring the mortality patterns which emerge from an evolutionary process including only the disposable soma theory core principles. We adapt a well-known model of genomic evolution to show that mortality curves producing a kink or mid-life plateaus derive from a common minimal evolutionary framework. These mortality shapes qualitatively correspond to those of Drosophila melanogaster, Caenorhabditis elegans, medflies, yeasts and humans. Species evolved in silico especially differ in their population diversity of maintenance strategies, which itself emerges as an adaptation to the environment over generations. Based on this integrative framework, we also derive predictions and interpretations concerning the effects of diet changes and heat-shock treatments on mortality patterns. [Le Cunff, Y.; Pakdaman, K.] Univ Paris Diderot, CNRS, UMR 7592, Inst Jacques Monod, F-750205 Paris, France; [Le Cunff, Y.; Baudisch, A.] Max Planck Inst Demog Res, Max Planck Res Grp Modelling Evolut Aging, Rostock, Germany Le Cunff, Y (reprint author), Univ Paris Diderot, CNRS, UMR 7592, Sorbonne Paris Cite,Inst Jacques Monod, F-750205 Paris, France. yann.lecunff@gmail.com Le Cunff, Yann/0000-0002-3068-5675 AXA Research Fund The authors would like to thank the editor and the two anonymous reviewers for their comments and suggestions, as well as Thomas Kirkwood, James Vaupel and Francois Taddei for helpful discussions. The authors also gratefully acknowledge the AXA Research Fund (http://www.axa-research.org/) for their support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Azevedo RBR, 2006, NATURE, V440, P87, DOI 10.1038/nature04488; Baeriswyl S, 2010, BIOGERONTOLOGY, V11, P53, DOI 10.1007/s10522-009-9228-0; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Bergman A, 2003, NATURE, V424, P549, DOI 10.1038/nature01834; BROOKS A, 1994, SCIENCE, V263, P668, DOI 10.1126/science.8303273; Carey JR, 2008, AGING CELL, V7, P426, DOI 10.1111/j.1474-9726.2008.00390.x; CAREY JR, 1992, SCIENCE, V258, P457; Carey JR, 1995, EXP GERONTOL, V30, P605, DOI 10.1016/0531-5565(95)00013-5; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Ciliberti S, 2007, P NATL ACAD SCI USA, V104, P13591, DOI 10.1073/pnas.0705396104; Ciliberti S, 2007, PLOS COMPUT BIOL, V3, P164, DOI 10.1371/journal.pcbi.0030015; Collerton J, 2009, BRIT MED J, V339, DOI 10.1136/bmj.b4904; CURTSINGER JW, 1992, SCIENCE, V258, P461, DOI 10.1126/science.1411541; Draghi J, 2009, J EVOLUTION BIOL, V22, P599, DOI 10.1111/j.1420-9101.2008.01663.x; Drapeau MD, 2000, EXP GERONTOL, V35, P71, DOI 10.1016/S0531-5565(99)00082-0; Espinosa-Soto C, 2011, J EVOLUTION BIOL, V24, P1284, DOI 10.1111/j.1420-9101.2011.02261.x; Espinosa-Soto C, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-5; Fabrizio P, 2001, SCIENCE, V292, P288, DOI 10.1126/science.1059497; Finkelstein M, 2006, ADV APPL PROBAB, V38, P244, DOI 10.1239/aap/1143936149; Finkelstein MS, 2005, INT J RELIAB QUAL SA, V12, P337, DOI 10.1142/S0218539305001860; Jacobson J, 2010, AGING CELL, V9, P466, DOI 10.1111/j.1474-9726.2010.00573.x; Johnson TE, 2001, J GERONTOL A-BIOL, V56, pB331, DOI 10.1093/gerona/56.8.B331; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Khazaeli AA, 1998, MECH AGEING DEV, V105, P301, DOI 10.1016/S0047-6374(98)00102-X; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Le Cunff Y, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1002825; Le Cunff Y, 2012, J THEOR BIOL, V314, P69, DOI 10.1016/j.jtbi.2012.08.020; Lindner AB, 2009, BBA-GEN SUBJECTS, V1790, P980, DOI 10.1016/j.bbagen.2009.06.005; Ljubuncic P, 2009, GERONTOLOGY, V55, P205, DOI 10.1159/000200772; MacCarthy T, 2007, P NATL ACAD SCI USA, V104, P12801, DOI 10.1073/pnas.0705455104; Martin OC, 2009, GENETICS, V183, P673, DOI 10.1534/genetics.109.104174; Masel J, 2004, J EVOLUTION BIOL, V17, P1106, DOI 10.1111/j.1420-9101.2004.00739.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Missov TI, 2011, THEOR POPUL BIOL, V80, P64, DOI 10.1016/j.tpb.2011.05.001; Moorad JA, 2008, GENETICS, V179, P2061, DOI 10.1534/genetics.108.088526; Moorad JA, 2011, P ROY SOC B-BIOL SCI, V278, P144, DOI 10.1098/rspb.2010.0992; Mueller LD, 1996, P NATL ACAD SCI USA, V93, P15249, DOI 10.1073/pnas.93.26.15249; Pletcher SD, 1999, GENETICS, V153, P813; ROACH DA, 1993, GENETICA, V91, P53, DOI 10.1007/BF01435987; Robert L, 2010, MOL SYST BIOL, V6, DOI 10.1038/msb.2010.12; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Siegal ML, 2002, P NATL ACAD SCI USA, V99, P10528, DOI 10.1073/pnas.102303999; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Townsend Colin R., 1981, PHYSL ECOLOGY EVOLUT; Vaupel JW, 2010, NATURE, V464, P536, DOI 10.1038/nature08984; VAUPEL JW, 1979, DEMOGRAPHY, V16, P439, DOI 10.2307/2061224; VAUPEL JW, 1994, SCIENCE, V266, P826, DOI 10.1126/science.7973641; VAUPEL JW, 1993, SCIENCE, V260, P1666, DOI 10.1126/science.8503016; Vaupel JW, 1998, SCIENCE, V280, P855, DOI 10.1126/science.280.5365.855; Waddington CH, 1942, NATURE, V150, P563, DOI 10.1038/150563a0; WAGNER A, 1994, P NATL ACAD SCI USA, V91, P4387, DOI 10.1073/pnas.91.10.4387; Wagner A, 1996, EVOLUTION, V50, P1008, DOI 10.1111/j.1558-5646.1996.tb02342.x; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wu DQ, 2009, EXP GERONTOL, V44, P607, DOI 10.1016/j.exger.2009.06.007; Wu DQ, 2006, EXP GERONTOL, V41, P261, DOI 10.1016/j.exger.2006.01.003; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 57 3 3 1 55 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. AUG 2014 27 8 1706 1720 10.1111/jeb.12423 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AM2WZ WOS:000339713100019 24925106 Bronze 2019-02-21 J Shrestha, S; Bjornstad, ON; King, AA Shrestha, Sourya; Bjornstad, Ottar N.; King, Aaron A. Evolution of acuteness in pathogen metapopulations: conflicts between "classical" and invasion-persistence trade-offs THEORETICAL ECOLOGY English Article Evolution of infectious pathogens; Invasion-persistence trade-off; Metapopulation model; Acute infections; Individual-based model; Bordetellae STRUCTURED POPULATIONS; WITHIN-HOST; VIRULENCE; SELECTION; EPIDEMICS; DYNAMICS; MODEL; TIME; MICROPARASITES; TRANSMISSION Classical life-history theory predicts that acute, immunizing pathogens should maximize between-host transmission. When such pathogens induce violent epidemic outbreaks, however, a pathogen's short-term advantage at invasion may come at the expense of its ability to persist in the population over the long term. Here, we seek to understand how the classical and invasion-persistence trade-offs interact to shape pathogen life-history evolution as a function of the size and structure of the host population. We develop an individual-based infection model at three distinct levels of organization: within an individual host, among hosts within a local population, and among local populations within a metapopulation. We find a continuum of evolutionarily stable pathogen strategies. At one end of the spectrum-in large well-mixed populations-pathogens evolve to greater acuteness to maximize between-host transmission: the classical trade-off theory applies in this regime. At the other end of the spectrum-when the host population is broken into many small patches-selection favors less acute pathogens, which persist longer within a patch and thereby achieve enhanced between-patch transmission: the invasion-persistence trade-off dominates in this regime. Between these extremes, we explore the effects of the size and structure of the host population in determining pathogen strategy. In general, pathogen strategies respond to evolutionary pressures arising at both scales. [Shrestha, Sourya; King, Aaron A.] Univ Michigan, Dept Ecol & Evolutionary Biol, Ann Arbor, MI 48109 USA; [Shrestha, Sourya; King, Aaron A.] Univ Michigan, Ctr Study Complex Syst, Ann Arbor, MI 48109 USA; [Bjornstad, Ottar N.] Penn State Univ, Dept Entomol & Biol, University Pk, PA 16802 USA; [King, Aaron A.] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA; [Bjornstad, Ottar N.; King, Aaron A.] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA Shrestha, S (reprint author), Johns Hopkins Sch Publ Hlth, Baltimore, MD 21205 USA. sourya@umich.edu King, Aaron/B-8092-2012 King, Aaron/0000-0001-6159-3207; Shrestha, Sourya/0000-0002-6106-6834 Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate, US Department of Homeland Security; Fogarty International Center, US National Institutes of Health; National Institutes of Health [1-R01-AI-101155] Financial support was provided by the Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate, US Department of Homeland Security, and the Fogarty International Center, US National Institutes of Health. AAK acknowledges the support of the National Institutes of Health (grant # 1-R01-AI-101155). Alizon S, 2005, AM NAT, V165, pE155, DOI 10.1086/430053; ANTIA R, 1994, AM NAT, V144, P457, DOI 10.1086/285686; Ball F, 2002, MATH BIOSCI, V180, P73, DOI 10.1016/S0025-5564(02)00125-6; Ball F, 1997, ANN APPL PROBAB, V7, P46; Bjornstad ON, 2005, TRENDS MICROBIOL, V13, P355, DOI 10.1016/j.tim.2005.06.007; Bjornstad ON, 2002, ECOL MONOGR, V72, P169, DOI 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2; BLACK FL, 1975, SCIENCE, V187, P515, DOI 10.1126/science.163483; BLACK FL, 1974, AM J EPIDEMIOL, V100, P230, DOI 10.1093/oxfordjournals.aje.a112032; Boldin B, 2008, J MATH BIOL, V56, P635, DOI 10.1007/s00285-007-0135-1; Boots M, 1999, P ROY SOC B-BIOL SCI, V266, P1933, DOI 10.1098/rspb.1999.0869; Boots M, 2004, SCIENCE, V303, P842, DOI 10.1126/science.1088542; Coombs D, 2007, THEOR POPUL BIOL, V72, P576, DOI 10.1016/j.tpb.2007.08.005; Cross PC, 2007, J R SOC INTERFACE, V4, P315, DOI 10.1098/rsif.2006.0185; Cross PC, 2005, ECOL LETT, V8, P587, DOI 10.1111/j.1461-0248.2005.00760.x; Ewald PW, 1993, SCI AM, V268, P8; Ferrari Matthew J, 2011, Interdiscip Perspect Infect Dis, V2011, P267049, DOI 10.1155/2011/267049; Ganusov VV, 2003, THEOR POPUL BIOL, V64, P211, DOI 10.1016/S0040-5809(03)00063-7; Gilchrist MA, 2006, THEOR POPUL BIOL, V69, P145, DOI 10.1016/j.tpb.2005.07.002; Gilchrist MA, 2002, J THEOR BIOL, V218, P289, DOI 10.1006/yjtbi.3076; Grenfell BT, 2001, SYMP SOC GEN MICROBI, V60, P33, DOI 10.1017/CBO9780511754883.003; Higham DJ, 2008, SIAM REV, V50, P347, DOI 10.1137/060666457; Keeling M, 2000, P ROY SOC B-BIOL SCI, V267, P385, DOI 10.1098/rspb.2000.1013; King AA, 2009, AM NAT, V173, P446, DOI 10.1086/597217; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; May R. M., 1983, COEVOLUTION; Mira A, 2006, TRENDS MICROBIOL, V14, P200, DOI 10.1016/j.tim.2006.03.001; Morozov A, 2012, J THEOR BIOL, V307, P29, DOI 10.1016/j.jtbi.2012.04.023; Pilyugin SS, 2000, B MATH BIOL, V62, P869, DOI 10.1006/bulm.2000.0181; RAND DA, 1995, P ROY SOC B-BIOL SCI, V259, P55, DOI 10.1098/rspb.1995.0009; Svennungsen TO, 2009, J THEOR BIOL, V257, P408, DOI 10.1016/j.jtbi.2008.11.014; van Ballegooijen WM, 2004, P NATL ACAD SCI USA, V101, P18246, DOI 10.1073/pnas.0405682101 31 3 3 2 10 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 1874-1738 1874-1746 THEOR ECOL-NETH Theor. Ecol. AUG 2014 7 3 299 311 10.1007/s12080-014-0219-7 13 Ecology Environmental Sciences & Ecology AM4JN WOS:000339820000007 25214895 Green Accepted 2019-02-21 J Madin, JS; Baird, AH; Dornelas, M; Connolly, SR Madin, Joshua S.; Baird, Andrew H.; Dornelas, Maria; Connolly, Sean R. Mechanical vulnerability explains size-dependent mortality of reef corals ECOLOGY LETTERS English Article Biomechanics; colonial; demography; disturbance; life history; mortality; reef coral GREAT-BARRIER-REEF; CLIMATE-CHANGE; HYDRODYNAMIC DISTURBANCES; OCEAN ACIDIFICATION; COMMUNITY ECOLOGY; FUNCTIONAL TRAITS; BUILDING CORALS; POPULATION; AGE; CONSEQUENCES Understanding life history and demographic variation among species within communities is a central ecological goal. Mortality schedules are especially important in ecosystems where disturbance plays a major role in structuring communities, such as coral reefs. Here, we test whether a trait-based, mechanistic model of mechanical vulnerability in corals can explain mortality schedules. Specifically, we ask whether species that become increasingly vulnerable to hydrodynamic dislodgment as they grow have bathtub-shaped mortality curves, whereas species that remain mechanically stable have decreasing mortality rates with size, as predicted by classical life history theory for reef corals. We find that size-dependent mortality is highly consistent between species with the same growth form and that the shape of size-dependent mortality for each growth form can be explained by mechanical vulnerability. Our findings highlight the feasibility of predicting assemblage-scale mortality patterns on coral reefs with trait-based approaches. [Madin, Joshua S.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia; [Baird, Andrew H.; Connolly, Sean R.] James Cook Univ, ARC Ctr Excellence Coral Reef Studies, Townsville, Qld 4811, Australia; [Dornelas, Maria] Univ St Andrews, Ctr Biol Divers, Scottish Oceans Inst, St Andrews KY16 9TH, Fife, Scotland; [Connolly, Sean R.] James Cook Univ, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia Madin, JS (reprint author), Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. joshua.madin@mq.edu.au Baird, Andrew/C-8449-2009; Dornelas, Maria/E-3595-2010 Baird, Andrew/0000-0001-8504-4077; Dornelas, Maria/0000-0003-2077-7055; Connolly, Sean/0000-0003-1537-0859; Madin, Joshua/0000-0002-5005-6227 Australian Research Council [FT110100609, FT0990652, DP0880544]; ERC [BioTIME 250189]; Scottish Funding Council [MASTS - HR09011] We thank M. Barbosa, S. Blowes, V. Cumbo, M. Diaz, M. Hisano, D. McCowan and S. Pennafirme for assistance in the field and P. Cetina, E. Graham and M. Hisano for outlining the coral images. We thank the Lizard Island Research Station staff for their support, especially A. Hogget and L. Vail. JM, AB and SC were supported by fellowships from the Australian Research Council (FT110100609, FT0990652 and DP0880544 respectively). MD was supported by the ERC (BioTIME 250189) and the Scottish Funding Council (MASTS - HR09011). Adler PB, 2013, ECOL LETT, V16, P1294, DOI 10.1111/ele.12157; BABCOCK RC, 1991, ECOL MONOGR, V61, P225, DOI 10.2307/2937107; Baird AH, 2002, MAR ECOL PROG SER, V237, P133, DOI 10.3354/meps237133; Baird AH, 2009, TRENDS ECOL EVOL, V24, P16, DOI 10.1016/j.tree.2008.09.005; Baria MVB, 2012, B MAR SCI, V88, P61, DOI 10.5343/bms.2011.1075; Carpenter KE, 2008, SCIENCE, V321, P560, DOI 10.1126/science.1159196; Connell J.H., 1973, P205; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; De'ath G, 2012, P NATL ACAD SCI USA, V109, P17995, DOI 10.1073/pnas.1208909109; Done T.J., 1983, Australian Institute of Marine Science Contribution, P107; Dornelas M, 2008, ECOL LETT, V11, P1008, DOI 10.1111/j.1461-0248.2008.01208.x; GARRETT P, 1975, NATURE, V253, P349, DOI 10.1038/253349a0; GLYNN PW, 1993, CORAL REEFS, V12, P1, DOI 10.1007/BF00303779; Hall VR, 1996, ECOLOGY, V77, P950, DOI 10.2307/2265514; Hoegh-Guldberg O, 2007, SCIENCE, V318, P1737, DOI 10.1126/science.1152509; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; Hughes TP, 1999, MAR GEOL, V157, P1, DOI 10.1016/S0025-3227(98)00187-X; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; Hughes TP, 1999, LIMNOL OCEANOGR, V44, P932, DOI 10.4319/lo.1999.44.3_part_2.0932; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; HUGHES TP, 1980, SCIENCE, V209, P713, DOI 10.1126/science.209.4457.713; Jackson J.B.C., 1979, Systematics Association Special Volume Series, P499; KNOWLTON N, 1981, NATURE, V294, P251, DOI 10.1038/294251a0; Lenihan HS, 2011, ECOLOGY, V92, P1959, DOI 10.1890/11-0108.1; Litchman E, 2008, ANNU REV ECOL EVOL S, V39, P615, DOI 10.1146/annurev.ecolsys.39.110707.173549; LITTLER MM, 1983, J PHYCOL, V19, P229, DOI 10.1111/j.0022-3646.1983.00229.x; Madin JS, 2006, NATURE, V444, P477, DOI 10.1038/nature05328; Madin JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0046637; Madin JS, 2005, CORAL REEFS, V24, P630, DOI 10.1007/s00338-005-0042-0; MARTIN AP, 1993, P NATL ACAD SCI USA, V90, P4087, DOI 10.1073/pnas.90.9.4087; MASSEL SR, 1993, CORAL REEFS, V12, P153, DOI 10.1007/BF00334475; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; MORAN PJ, 1986, OCEANOGR MAR BIOL, V24, P379; Pandolfi JM, 2011, SCIENCE, V333, P418, DOI 10.1126/science.1204794; PARANJPE S, 1986, ECOLOGY, V67, P1693, DOI 10.2307/1939102; Pereira HM, 2010, SCIENCE, V330, P1496, DOI 10.1126/science.1196624; PORTER JW, 1981, NATURE, V294, P249, DOI 10.1038/294249a0; R Core Team, 2013, R LANG ENV STAT COMP; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; ROUGHGARDEN J, 1985, ECOLOGY, V66, P54, DOI 10.2307/1941306; Shipley B., 2010, PLANT TRAITS VEGETAT; Smith LD, 1999, J EXP MAR BIOL ECOL, V235, P147, DOI 10.1016/S0022-0981(98)00178-6; STIMSON J, 1985, ECOLOGY, V66, P40, DOI 10.2307/1941305; TUNNICLIFFE V, 1981, P NATL ACAD SCI-BIOL, V78, P2427, DOI 10.1073/pnas.78.4.2427; van Mantgem PJ, 2007, ECOL LETT, V10, P909, DOI 10.1111/j.1461-0248.2007.01080.x; Veron J. E. N, 2000, CORALS WORLD; Wallace C. C., 1999, STAGHORN CORALS WORL; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; Westoby M, 2006, TRENDS ECOL EVOL, V21, P261, DOI 10.1016/j.tree.2006.02.004; Wolstenholme JK, 2003, CORAL REEFS, V22, P155, DOI 10.1007/s00338-003-0299-0; Wood SN, 2011, J R STAT SOC B, V73, P3, DOI 10.1111/j.1467-9868.2010.00749.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 53 49 49 3 61 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2014 17 8 1008 1015 10.1111/ele.12306 8 Ecology Environmental Sciences & Ecology AL4KF WOS:000339101100013 24894390 Green Published, Other Gold 2019-02-21 J de Valpine, P; Scranton, K; Knape, J; Ram, K; Mills, NJ de Valpine, Perry; Scranton, Katherine; Knape, Jonas; Ram, Karthik; Mills, Nicholas J. The importance of individual developmental variation in stage-structured population models ECOLOGY LETTERS English Review Cohort model; matrix population model; delay-differential equation model; life-history theory; stage-structured phenology; stage-structured development; individual heterogeneity; population growth rate; sensitivity and elasticity analysis; autocorrelated growth LIFE-HISTORY TRAITS; FREQUENCY DATA; MATRIX MODELS; PROJECTION MATRIX; TRANSIENT DYNAMICS; CAPTURE-RECAPTURE; DEVELOPMENT TIMES; INSECT PHENOLOGY; GROWTH; PARAMETERS Population stage structure is fundamental to ecology, and models of this structure have proven useful in many different systems. Many ecological variables other than stage, such as habitat type, site occupancy and metapopulation status are also modelled using transitions among discrete states. Transitions among life stages can be characterised by the distribution of time spent in each stage, including the mean and variance of each stage duration and within-individual correlations among multiple stage durations. Three modelling traditions represent stage durations differently. Matrix models can be derived as a long-run approximation from any distribution of stage durations, but they are often interpreted directly as a Markov model for stage transitions. Statistical stage-duration distribution models accommodate the variation typical of cohort development data, but such realism has rarely been incorporated in population theory or statistical population models. Delay-differential equation models include lags but no variation, except in limited cases. We synthesise these models in one framework and illustrate how individual variation and correlations in development can impact population growth. Furthermore, different development models can yield the same long-term matrix transition rates but different sensitivities and elasticities. Finally, we discuss future directions for estimating realistic stage duration models from data. [de Valpine, Perry; Scranton, Katherine; Knape, Jonas; Ram, Karthik; Mills, Nicholas J.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Scranton, Katherine] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT USA; [Knape, Jonas] Swedish Univ Agr Sci, Dept Ecol, S-75007 Uppsala, Sweden de Valpine, P (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. pdevalpine@berkeley.edu Mills, Nicholas/0000-0001-8885-8674; Knape, Jonas/0000-0002-8012-5131 NSF [DEB-1021553] We thank E. Crone, B. Kendall, S. Tuljapurkar, three anonymous reviewers and the Associate Editor for comments. This work was partially funded by NSF grant DEB-1021553. Acker P, 2014, FUNCT ECOL, V28, P458, DOI 10.1111/1365-2435.12187; ASHFORD JR, 1970, J ANIM ECOL, V39, P29, DOI 10.2307/2888; Aubry A, 2010, POPUL ECOL, V52, P437, DOI 10.1007/s10144-010-0194-9; Barfield M, 2011, AM NAT, V177, P397, DOI 10.1086/658903; Beckerman AP, 2003, AM NAT, V162, P754, DOI 10.1086/381056; BELLOWS TS, 1986, RES POPUL ECOL, V28, P53, DOI 10.1007/BF02515535; BELLOWS TS, 1981, RES POPUL ECOL, V23, P232, DOI 10.1007/BF02515628; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Biek R, 2002, CONSERV BIOL, V16, P728, DOI 10.1046/j.1523-1739.2002.00433.x; Bierzychudek P, 1999, ECOL APPL, V9, P1278, DOI 10.2307/2641396; Birt A, 2009, ECOLOGY, V90, P57, DOI 10.1890/08-0757.1; Blackwell BF, 2007, J WILDLIFE MANAGE, V71, P1976, DOI 10.2193/2006-146; BLYTHE SP, 1984, THEOR POPUL BIOL, V25, P289, DOI 10.1016/0040-5809(84)90011-X; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Boucher DH, 1997, J ECOL, V85, P235, DOI 10.2307/2960654; Braner M., 1989, LECT NOTES STAT, P81; BRETELER WCM, 1994, J PLANKTON RES, V16, P1039, DOI 10.1093/plankt/16.8.1039; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; CASWELL H, 1983, AM ZOOL, V23, P35; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Chu CJ, 2014, J ECOL, V102, P531, DOI 10.1111/1365-2745.12212; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; Crone EE, 2011, ECOL LETT, V14, P1, DOI 10.1111/j.1461-0248.2010.01540.x; CROUSE DT, 1987, ECOLOGY, V68, P1412, DOI 10.2307/1939225; David O, 2010, BIOMETRICS, V66, P875, DOI 10.1111/j.1541-0420.2009.01360.x; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Valpine P, 2008, ECOLOGY, V89, P532, DOI 10.1890/06-1996.1; de Valpine P, 2009, ECOLOGY, V90, P2889, DOI 10.1890/08-0703.1; DENNIS B, 1986, ENVIRON ENTOMOL, V15, P540, DOI 10.1093/ee/15.3.540; Ehrlen J, 2000, ECOLOGY, V81, P1675, DOI 10.1890/0012-9658(2000)081[1675:TDOPPD]2.0.CO;2; Ellner SP, 1997, PHYSICA D, V110, P182, DOI 10.1016/S0167-2789(97)00123-1; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ennola K, 1998, ECOL MODEL, V110, P135, DOI 10.1016/S0304-3800(98)00057-X; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; Fieberg J, 2001, ECOL LETT, V4, P244, DOI 10.1046/j.1461-0248.2001.00202.x; Fox GA, 2000, AM NAT, V156, P242, DOI 10.1086/303387; Fujiwara M, 2005, ECOLOGY, V86, P1441, DOI 10.1890/04-1351; Fujiwara M, 2001, NATURE, V414, P537, DOI 10.1038/35107054; Gilioli G, 2007, ECOL MODEL, V200, P109, DOI 10.1016/j.ecolmodel.2006.07.017; Gonzalez-Suarez M, 2011, AM NAT, V178, P525, DOI 10.1086/661906; Gonzalez-Suarez M, 2008, CONSERV BIOL, V22, P1608, DOI 10.1111/j.1523-1739.2008.00995.x; Gouno E, 2011, COMPUT STAT DATA AN, V55, P615, DOI 10.1016/j.csda.2010.06.003; Gremer JR, 2012, AM NAT, V179, P315, DOI 10.1086/664459; Gross K, 2002, ECOLOGY, V83, P3285, DOI 10.2307/3072079; HAIRSTON NG, 1985, LIMNOL OCEANOGR, V30, P886, DOI 10.4319/lo.1985.30.4.0886; Haridas CV, 2007, ECOL LETT, V10, P1143, DOI 10.1111/j.1461-0248.2007.01108.x; Hoeting JA, 2003, J AM STAT ASSOC, V98, P503, DOI 10.1198/01621450300000028; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Horvitz CC, 2005, ECOLOGY, V86, P3312, DOI 10.1890/04-1187; Hougaard P., 2000, ANAL MULTIVARIATE SU; Hunter CM, 2005, ECOL MODEL, V188, P15, DOI 10.1016/j.ecolmodel.2005.05.002; JELLISON R, 1995, J PLANKTON RES, V17, P2093, DOI 10.1093/plankt/17.11.2093; Kempton R. A., 1979, STATISTICAL DISTRIBU, P401; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; Kimmerer W, 2010, LIMNOL OCEANOGR-METH, V8, P118, DOI 10.4319/lom.2010.8.118; Knape J, 2014, BIOMETRICS, V70, P346, DOI 10.1111/biom.12138; Knape J, 2011, ECOLOGY, V92, P813, DOI 10.1890/10-0183.1; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Lawless J. F, 2003, STAT MODELS METHODS; LEWIS ER, 1977, ECOLOGY, V58, P738, DOI 10.2307/1936210; LO NCH, 1995, MAR ECOL PROG SER, V127, P15, DOI 10.3354/meps127015; Manly BFJ, 1997, RES POPUL ECOL, V39, P101, DOI 10.1007/BF02765255; MANLY BFJ, 1990, STAGE STRUCTURED POP; McCauley E, 1996, ECOL MONOGR, V66, P479, DOI 10.2307/2963491; Moe SJ, 2005, P ROY SOC B-BIOL SCI, V272, P2133, DOI 10.1098/rspb.2005.3184; Morris WF, 2002, QUANTITATIVE CONSERV; Murtaugh PA, 2012, ENVIRON ENTOMOL, V41, P355, DOI 10.1603/EN11260; Nelson WA, 2004, ECOLOGY, V85, P889, DOI 10.1890/02-8019; Nisbet R., 1997, STRUCTURED POPULATIO, P89; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Ohman MD, 2012, J MARINE SYST, V93, P4, DOI 10.1016/j.jmarsys.2011.05.008; Ohman MD, 2001, NATURE, V412, P638, DOI 10.1038/35088068; Ozgul A, 2009, AM NAT, V173, P517, DOI 10.1086/597225; Pascarella JB, 1998, ECOLOGY, V79, P547, DOI 10.2307/176952; Peacor SD, 2007, THEOR POPUL BIOL, V71, P80, DOI 10.1016/j.tpb.2006.08.005; Pfister CA, 2003, ECOLOGY, V84, P496, DOI 10.1890/0012-9658(2003)084[0496:IVAESI]2.0.CO;2; PLANT RE, 1986, J MATH BIOL, V23, P247, DOI 10.1007/BF00276960; Pradel R, 2005, BIOMETRICS, V61, P442, DOI 10.1111/j.1541-0420.2005.00318.x; READ KLQ, 1968, BIOMETRIKA, V55, P211, DOI 10.1093/biomet/55.1.211; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SCHAALJE GB, 1989, J MATH BIOL, V27, P399, DOI 10.1007/BF00290637; Scranton K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072980; Severini M, 2003, ECOL MODEL, V167, P233, DOI 10.1016/S0304-3800(03)00188-1; Stott I, 2011, ECOL LETT, V14, P959, DOI 10.1111/j.1461-0248.2011.01659.x; Stover JP, 2012, THEOR ECOL-NETH, V5, P297, DOI 10.1007/s12080-011-0129-x; Tenhumberg B, 2009, ECOLOGY, V90, P1878, DOI 10.1890/08-1665.1; Tuljapurkar S, 2006, ECOL LETT, V9, P324, DOI 10.1111/j.1461-0248.2006.00881.x; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x; Twombly S, 2007, ECOLOGY, V88, P658, DOI 10.1890/06-0423; VANDERMEER J, 1978, OECOLOGIA, V32, P79, DOI 10.1007/BF00344691; VANDERMEER JH, 1975, BIOMETRICS, V31, P239, DOI 10.2307/2529726; Viallefont A, 2012, J ORNITHOL, V152, pS381, DOI 10.1007/s10336-010-0588-7; Wearing HJ, 2004, AM NAT, V164, P543, DOI 10.1086/424040; Wood S.N., 1991, ESTIMATION MORTALITY; Wood SN, 2010, NATURE, V466, P1102, DOI 10.1038/nature09319; WOOD SN, 1994, ECOL MONOGR, V64, P23, DOI 10.2307/2937054; WOODWARD IO, 1982, AUST J ECOL, V7, P389, DOI 10.1111/j.1442-9993.1982.tb01313.x; Yamamura K, 1998, RES POPUL ECOL, V40, P335, DOI 10.1007/BF02763465; Zuidema PA, 2009, AM NAT, V174, P709, DOI 10.1086/605981 100 19 19 4 84 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2014 17 8 1026 1038 10.1111/ele.12290 13 Ecology Environmental Sciences & Ecology AL4KF WOS:000339101100015 24811267 Bronze 2019-02-21 J Stevens, VM; Whitmee, S; Le Galliard, JF; Clobert, J; Bohning-Gaese, K; Bonte, D; Brandle, M; Dehling, DM; Hof, C; Trochet, A; Baguette, M Stevens, Virginie M.; Whitmee, Sarah; Le Galliard, Jean-Francois; Clobert, Jean; Boehning-Gaese, Katrin; Bonte, Dries; Braendle, Martin; Dehling, D. Matthias; Hof, Christian; Trochet, Audrey; Baguette, Michel A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals ECOLOGY LETTERS English Review Age at maturity; dispersal costs; dispersal phenotypes; fecundity; global change; life-history trade-offs; phylogenetic signal; survival; thermoregulation; trophic levels LIFE-HISTORY; LANDSCAPE CONNECTIVITY; INDIVIDUAL DISPERSAL; PHYLOGENETIC SIGNAL; DEMOGRAPHIC TACTICS; EVOLUTION; BIRDS; BUTTERFLIES; PATTERNS; BEHAVIOR Dispersal, the behaviour ensuring gene flow, tends to covary with a number of morphological, ecological and behavioural traits. While species-specific dispersal behaviours are the product of each species' unique evolutionary history, there may be distinct interspecific patterns of covariation between dispersal and other traits ('dispersal syndromes') due to their shared evolutionary history or shared environments. Using dispersal, phylogeny and trait data for 15 terrestrial and semi-terrestrial animal Orders (> 700 species), we tested for the existence and consistency of dispersal syndromes across species. At this taxonomic scale, dispersal increased linearly with body size in omnivores, but decreased above a critical length in herbivores and carnivores. Species life history and ecology significantly influenced patterns of covariation, with higher phylogenetic signal of dispersal in aerial dispersers compared with ground dwellers and stronger evidence for dispersal syndromes in aerial dispersers and ectotherms, compared with ground dwellers and endotherms. Our results highlight the complex role of dispersal in the evolution of species life-history strategies: good dispersal ability was consistently associated with high fecundity and survival, and in aerial dispersers it was associated with early maturation. We discuss the consequences of these findings for species evolution and range shifts in response to future climate change. [Stevens, Virginie M.; Clobert, Jean; Trochet, Audrey; Baguette, Michel] CNRS, USR 2936, Stn Ecol Expt Moulis, F-09200 Moulis, France; [Whitmee, Sarah] Univ London Imperial Coll Sci Technol & Med, Div Biol, Ascot SL5 7PY, Berks, England; [Whitmee, Sarah] Int Union Conservat Nat, Protected Areas Programme, Cambridge, England; [Whitmee, Sarah] Zool Soc London, Inst Zool, London NW1 4RY, England; [Le Galliard, Jean-Francois] Univ Paris 06, IEES Paris, CNRS, UMR 7618, F-75005 Paris, France; [Le Galliard, Jean-Francois] Ecole Normale Super, CEREEP Ecotron Ile De France, ENS, CNRS,UMS 3194, F-77140 St Pierre Les Nemours, France; [Boehning-Gaese, Katrin; Dehling, D. Matthias; Hof, Christian] Biodivers & Climate Res Ctr BiK F, Frankfurt, Germany; [Boehning-Gaese, Katrin; Dehling, D. Matthias; Hof, Christian] Senckenberg Gesell Nat Forsch, Frankfurt, Germany; [Boehning-Gaese, Katrin] Goethe Univ Frankfurt, Dept Biol Sci, D-60438 Frankfurt, Germany; [Bonte, Dries] Univ Ghent, Dept Biol, Terr Ecol Unit, B-9000 Ghent, Belgium; [Braendle, Martin] Univ Marburg, Fac Biol, Dept Ecol Anim Ecol, Marburg, Germany; [Baguette, Michel] Museum Natl Hist Nat, UMR 7205, Inst Systemat Evolut & Biodivers, F-75005 Paris, France Stevens, VM (reprint author), CNRS, USR 2936, Stn Ecol Expt Moulis, Route CNRS, F-09200 Moulis, France. virginie.stevens@ecoex-moulis.cnrs.fr Le Galliard, Jean-Francois/E-8702-2011; Hof, Christian/J-8888-2014 Le Galliard, Jean-Francois/0000-0002-5965-9868; Hof, Christian/0000-0002-7763-1885; Bonte, Dries/0000-0002-3320-7505; Whitmee, Sarah/0000-0001-9161-868X French National Research Agency (ANR) [ANR-13-JSV7-0010-01]; SCALES project (Securing the Conservation of biodiversity across Administrative Levels and spatial, temporal, and Ecological Scales) - European Commission [226 852]; BelSpo (IAPproject SPEEDY); FWO Research Network EVENET; Hesse's Ministry of Higher Education, Research, and the Arts The authors thank Jonathan Chase and five anonymous reviewers for their helpful comments that deeply improved this manuscript. We also thank David Orme for his help with analyses and the construction of the mammal data set, Ally Philimore for giving access to the bird data set and for his encouragements. VMS, JC, MB and JFLG acknowledge financial support from the French National Research Agency (ANR) programs open call INDHET, 6th extinction MOBI-GEN and young researcher GEMS (ANR-13-JSV7-0010-01) and DESTRESS. AT, JC and MB are also supported by the SCALES project (Securing the Conservation of biodiversity across Administrative Levels and spatial, temporal, and Ecological Scales) funded by the European Commission as a Large-scale Integrating Project within FP 7 under grant 226 852. VMS, JC and MB are parts of the 'Laboratoire d'Excellence' (LABEX) entitled TULIP (ANR-10-LABX-41). DB is funded by BelSpo (IAPproject SPEEDY) and FWO Research Network EVENET. KBG, DMD and CH are supported by the research funding program 'LOEWE - Landes-Offensive zur Entwicklung Wissenschaftlich-okonomischer Exzellenz' of Hesse's Ministry of Higher Education, Research, and the Arts. Baguette M, 2007, LANDSCAPE ECOL, V22, P1117, DOI 10.1007/s10980-007-9108-4; Baguette M, 2013, BIOL REV, V88, P310, DOI 10.1111/brv.12000; Baker H. G., 1965, GENETICS COLONIZING; Barton K. A., 2013, MUMIN MULTIMODEL INF; Benard MF, 2008, AM NAT, V171, P553, DOI 10.1086/587072; Berg MP, 2010, GLOBAL CHANGE BIOL, V16, P587, DOI 10.1111/j.1365-2486.2009.02014.x; BERKEY CS, 1995, STAT MED, V14, P395, DOI 10.1002/sim.4780140406; BETTS CR, 1988, J EXP BIOL, V138, P271; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Bohning-Gaese K, 1998, EVOL ECOL, V12, P767, DOI 10.1023/A:1006538414645; Bonte D, 2003, P ROY SOC B-BIOL SCI, V270, P1601, DOI 10.1098/rspb.2003.2432; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bradbury IR, 2008, P ROY SOC B-BIOL SCI, V275, P1803, DOI 10.1098/rspb.2008.0216; BROWN JS, 1992, EVOL ECOL, V6, P360, DOI 10.1007/BF02270698; Buoro M, 2014, ECOL LETT, V17, P756, DOI 10.1111/ele.12275; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Clobert Jean, 2004, P307, DOI 10.1016/B978-012323448-3/50015-5; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Dawideit BA, 2009, J ANIM ECOL, V78, P388, DOI 10.1111/j.1365-2656.2008.01504.x; Ducatez S, 2012, ECOL ENTOMOL, V37, P377, DOI 10.1111/j.1365-2311.2012.01375.x; EMERSON SB, 1978, EVOLUTION, V32, P551, DOI 10.1111/j.1558-5646.1978.tb04598.x; Entling MH, 2011, OIKOS, V120, P1099, DOI 10.1111/j.1600-0706.2010.19186.x; Feder ME, 2010, ANNU REV PHYSIOL, V72, P167, DOI 10.1146/annurev-physiol-021909-135804; Fjerdingstad EJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-133; Gaillard JM, 2005, AM NAT, V166, P119, DOI 10.1086/430330; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Geary R.C., 1954, INCORPORATED STATIST, V5, P115, DOI DOI 10.2307/2986645; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; Grewe Y, 2013, GLOBAL ECOL BIOGEOGR, V22, P403, DOI 10.1111/geb.12004; Hainsworth F.W., 1981, ANIMAL PHYSL ADAPTAT, P259; HAMILTON WD, 1977, NATURE, V269, P578, DOI 10.1038/269578a0; Harabis F, 2011, ODONATOLOGICA, V40, P17; Hein AM, 2012, ECOL LETT, V15, P104, DOI 10.1111/j.1461-0248.2011.01714.x; Janin A, 2012, CONSERV BIOL, V26, P923, DOI 10.1111/j.1523-1739.2012.01910.x; Johnson C. G., 1969, MIGRATION DISPERSAL; Kembel SW, 2010, BIOINFORMATICS, V26, P1463, DOI 10.1093/bioinformatics/btq166; Kisdi E, 2002, AM NAT, V159, P579, DOI 10.1086/339989; Kisdi E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P139; Kokko H, 2006, SCIENCE, V313, P789, DOI 10.1126/science.1128566; Le Galliard JF, 2012, MOL ECOL, V21, P505, DOI 10.1111/j.1365-294X.2011.05410.x; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Maddison D. R., 2007, TREE LIFE WEB PROJEC; Maina JN, 2000, J EXP BIOL, V203, P3045; MARDEN JH, 1994, AM J PHYSIOL, V266, pR1077, DOI 10.1152/ajpregu.1994.266.4.R1077; Munkemuller T, 2012, METHODS ECOL EVOL, V3, P743, DOI 10.1111/j.2041-210X.2012.00196.x; Nurmi T, 2008, THEOR POPUL BIOL, V73, P222, DOI 10.1016/j.tpb.2007.12.002; OLIVIERI I, 1995, AM NAT, V146, P202, DOI 10.1086/285795; Orme D., 2012, CAPER COMP ANAL PHYL; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; Paradis E, 1998, J ANIM ECOL, V67, P518, DOI 10.1046/j.1365-2656.1998.00215.x; Perkins A., 2013, ECOL LETT, V16, P1079, DOI DOI 10.1111/ELE.12136); Peters R.H., 1983, P1; Poisot T, 2011, ECOL LETT, V14, P841, DOI 10.1111/j.1461-0248.2011.01645.x; RAYNER JMV, 1981, S ZOOL SOC LONDON, V48, P137; Roff D.A., 2001, DISPERSAL ECOLOGY EV; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Ronce O, 2001, EVOLUTION, V55, P1520; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; SCHMIDTNIELSEN K, 1972, SCIENCE, V177, P222, DOI 10.1126/science.177.4045.222; Schtickzelle N, 2006, ECOLOGY, V87, P1057, DOI 10.1890/0012-9658(2006)87[1057:DDWHFI]2.0.CO;2; Sekar S, 2012, J ANIM ECOL, V81, P174, DOI 10.1111/j.1365-2656.2011.01909.x; Shapiro A.M., 1975, P181; Sinervo B, 2006, AM NAT, V168, P88, DOI 10.1086/505765; Smith MA, 2005, ECOGRAPHY, V28, P110; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stevens VM, 2013, EVOL APPL, V6, P630, DOI 10.1111/eva.12049; Stevens VM, 2012, ECOL LETT, V15, P74, DOI 10.1111/j.1461-0248.2011.01709.x; Stevens VM, 2010, BIOL REV, V85, P625, DOI 10.1111/j.1469-185X.2009.00119.x; Stevens VM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011123; Sutherland GD, 2000, CONSERV ECOL, V4; Travis JMJ, 2013, OIKOS, V122, P1532, DOI 10.1111/j.1600-0706.2013.00399.x; TUCKER VA, 1970, COMP BIOCHEM PHYSIOL, V34, P841, DOI 10.1016/0010-406X(70)91006-6; Turin H., 1999, NEDERLANDSE LOOPKEVE; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; Whitmee S, 2013, J ANIM ECOL, V82, P211, DOI 10.1111/j.1365-2656.2012.02030.x; Zera AJ, 2009, EXPERIMENTAL EVOLUTION: CONCEPTS, METHODS, AND APPLICATIONS OF SELECTION EXPERIMENTS, P217 80 73 73 5 171 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. AUG 2014 17 8 1039 1052 10.1111/ele.12303 14 Ecology Environmental Sciences & Ecology AL4KF WOS:000339101100016 24915998 Bronze 2019-02-21 J Clark, TR; Zhao, JX; Roff, G; Feng, YX; Done, TJ; Nothdurft, LD; Pandolfi, JM Clark, Tara R.; Zhao, Jian-xin; Roff, George; Feng, Yue-Xing; Done, Terence J.; Nothdurft, Luke D.; Pandolfi, John M. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef GEOCHIMICA ET COSMOCHIMICA ACTA English Article SEA-SURFACE TEMPERATURE; SOUTH CHINA SEA; PAPUA-NEW-GUINEA; MASSIVE PORITES; CORAL COMMUNITIES; INITIAL TH-230/TH-232; ACANTHASTER-PLANCI; BLEACHING EVENT; CLIMATE-CHANGE; INDIAN-OCEAN The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium-Thorium (U-Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 +/- 4.1 to 2001.4 +/- 4.1, and from 2006.4 +/- 1.8 to 2008.4 2.2 A. D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 +/- 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 +/- 3.0 and 2008.3 +/- 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been responsible for mortality. Our results show that a combination of U-Th and elemental ratio geochemistry can potentially be used to precisely and accurately determine the timing and season of mortality in modern massive Porites corals. For reefs where long-term monitoring data are absent, the ability to reconstruct historical events in coral communities may prove useful to reef managers by providing some baseline knowledge on disturbance history and associated drivers. (C) 2014 Elsevier Ltd. All rights reserved. [Clark, Tara R.; Zhao, Jian-xin; Feng, Yue-Xing] Univ Queensland, Radiogen Isotope Facil, Sch Earth Sci, Brisbane, Qld 4072, Australia; [Roff, George] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Done, Terence J.] Australian Inst Marine Sci, Townsville, Qld 4810, Australia; [Nothdurft, Luke D.] Queensland Univ Technol, Brisbane, Qld 4000, Australia; [Pandolfi, John M.] Univ Queensland, Sch Biol Sci, Australian Res Council, Ctr Excellence Coral Reef Studies,Ctr Marine Sci, Brisbane, Qld 4072, Australia Clark, TR (reprint author), Univ Queensland, Radiogen Isotope Facil, Sch Earth Sci, Brisbane, Qld 4072, Australia. t.clark1@uq.edu.au; j.zhao@uq.edu.au Clark, Tara/A-2745-2017; Nothdurft, Luke/B-4299-2011; Pandolfi, John/A-3121-2009; Roff, George/C-8766-2015; Zhao, Jian-xin/A-5938-2008 Clark, Tara/0000-0002-9648-0867; Nothdurft, Luke/0000-0001-9646-9070; Pandolfi, John/0000-0003-3047-6694; Roff, George/0000-0002-2823-0575; Zhao, Jian-xin/0000-0002-2413-6178; Feng, Yue-Xing/0000-0002-2944-9632 Marine and Tropical Sciences Research Facility (MTSRF) Project 1.1.4 'Dating and mapping historical changes in Great Barrier Reef coral communities'; NERP Tropical Ecosystems Hub Project 1.3 'Characterising the cumulative impacts of global, regional and local stressors on the present and past bio-diversity of the GBR'; Great Barrier Reef Marine Park Authority Science for Management Award; Australian Postgraduate Award; Australian Research Council LIEF grant [LE0989067]; NERP project; Australian Research Council grant [DP1096184] This study was partially funded by the Marine and Tropical Sciences Research Facility (MTSRF) Project 1.1.4 'Dating and mapping historical changes in Great Barrier Reef coral communities' to J.-x. Zhao, J.M. Pandolfi and T. Done, the NERP Tropical Ecosystems Hub Project 1.3 'Characterising the cumulative impacts of global, regional and local stressors on the present and past bio-diversity of the GBR' to J.-x. Zhao, J.M. Pandolfi, G. Roff, Y.-x. Feng, T. Done and T. Clark, a 2009 Great Barrier Reef Marine Park Authority Science for Management Award and an Australian Postgraduate Award to T. Clark. The majority of the U-Th dates were determined on the Nu Plasma MC-ICP-MS, which was funded by an Australian Research Council LIEF grant (LE0989067) to J.-x. Zhao, J.M. Pandolfi, Y.-x. Feng and others. The manuscript was completed while T. Clark was holding a Research Officer position funded by the NERP project. SEM work completed at QUT was funded by Australian Research Council grant DP1096184 to L. Nothdurft. For field assistance, the authors would like to gratefully acknowledge P. Rachello-Dolmen, C. Reymond, B. Beck, E. Mollee, N. Englebert and management staff of Orpheus Island Research Station (OIRS). Special thanks also to A. Ngyuen for help with trace element analysis. Abram NJ, 2003, SCIENCE, V301, P952, DOI 10.1126/science.1083841; Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Amelin Y, 2010, EARTH PLANET SC LETT, V300, P343, DOI 10.1016/j.epsl.2010.10.015; Andersen MB, 2010, GEOCHEM GEOPHY GEOSY, V11, DOI 10.1029/2010GC003318; Australian Institute of Marine Science, 2014, HAVSL1 WAT TEMP 5M R; Baird AH, 1998, CORAL REEFS, V17, P376, DOI 10.1007/s003380050142; BECK JW, 1992, SCIENCE, V257, P644, DOI 10.1126/science.257.5070.644; Bellwood DR, 2004, NATURE, V429, P827, DOI 10.1038/nature02691; Berkelmans R, 1999, CORAL REEFS, V18, P55, DOI 10.1007/s003380050154; Bonaldo RM, 2012, CORAL REEFS, V31, P263, DOI 10.1007/s00338-011-0846-z; BYTHELL JC, 1993, CORAL REEFS, V12, P143, DOI 10.1007/BF00334474; Carilli JE, 2010, GLOBAL CHANGE BIOL, V16, P1247, DOI 10.1111/j.1365-2486.2009.02043.x; Cheal AJ, 2010, CORAL REEFS, V29, P1005, DOI 10.1007/s00338-010-0661-y; Cheng H, 2000, CHEM GEOL, V169, P17, DOI 10.1016/S0009-2541(99)00157-6; Clark T. R., QUAT GEO UNPUB; Clark TR, 2012, GEOCHIM COSMOCHIM AC, V78, P99, DOI 10.1016/j.gca.2011.11.032; Cobb KM, 2003, EARTH PLANET SC LETT, V210, P91, DOI 10.1016/S0012-821X(03)00138-9; Cooper M, 2006, GEOCHIM COSMOCHIM AC, V70, pA112, DOI 10.1016/j.gca.2006.06.137; Department of Natural Resources and Water (DNRW), 2007, S E QUEENSL DROUGHT; DeVantier L.M., 1997, Great Barrier Reef Marine Park Authority Workshop Series, V22, P65; DeVantier Lyndon M., 2007, V192, P85; DEVILLIERS S, 1994, GEOCHIM COSMOCHIM AC, V58, P197, DOI 10.1016/0016-7037(94)90457-X; DEVLIN M, 2001, RES PUBLICATION, V68; Devlin M., 2010, TERRESTRIAL RUNOFF G, P87; Devlin M, 2009, MAR FRESHWATER RES, V60, P1109, DOI 10.1071/MF08343; DONE T, 1992, AM ZOOL, V32, P655; Done T, 2007, CORAL REEFS, V26, P789, DOI 10.1007/s00338-007-0265-3; DONE TJ, 1992, MAR BIOL, V114, P479, DOI 10.1007/BF00350040; DONE TJ, 1987, CORAL REEFS, V6, P75, DOI 10.1007/BF00301377; DONE TJ, 1988, MAR BIOL, V100, P51, DOI 10.1007/BF00392954; EDWARDS RL, 1987, EARTH PLANET SC LETT, V81, P175, DOI 10.1016/0012-821X(87)90154-3; Endean R., 1985, P 5 INT COR REEF C T, P309; Fabricius KE, 2005, MAR POLLUT BULL, V50, P125, DOI 10.1016/j.marpolbul.2004.11.028; Fallon SJ, 2003, CORAL REEFS, V22, P389, DOI 10.1007/s00338-003-0322-5; Ferguson CA, 2008, J COASTAL RES, V24, P250, DOI 10.2112/06-0650.1; Fine M, 2002, P ROY SOC B-BIOL SCI, V269, P1205, DOI 10.1098/rspb.2002.1983; Furnas M., 2003, CATCHMENTS CORALS TE; Gagan MK, 2000, QUATERNARY SCI REV, V19, P45, DOI 10.1016/S0277-3791(99)00054-2; Gagan MK, 1998, SCIENCE, V279, P1014, DOI 10.1126/science.279.5353.1014; GLYNN PW, 1983, ENVIRON CONSERV, V10, P149, DOI 10.1017/S0376892900012248; Hellstrom J, 2003, J ANAL ATOM SPECTROM, V18, P1346, DOI 10.1039/b308781f; Hendy EJ, 2007, PALEOCEANOGRAPHY, V22, DOI 10.1029/2007PA001462; Hendy EJ, 2003, CORAL REEFS, V22, P207, DOI 10.1007/s00338-003-0304-7; Hendy EJ, 2003, HOLOCENE, V13, P187, DOI 10.1191/0959683603hl606rp; HIGHSMITH RC, 1981, J EXP MAR BIOL ECOL, V55, P267, DOI 10.1016/0022-0981(81)90117-9; HOPLEY D, 1985, P 5 INT COR REEF C T, V3, P141; Hughes TP, 2003, SCIENCE, V301, P929, DOI 10.1126/science.1085046; HUGHES TP, 1985, ECOL MONOGR, V55, P141, DOI 10.2307/1942555; Inoue M, 2004, ENVIRON POLLUT, V129, P399, DOI 10.1016/j.envpol.2003.11.009; JOHNSON DP, 1987, SEDIMENTOLOGY, V34, P275, DOI 10.1111/j.1365-3091.1987.tb00777.x; Johnson J. E., 2010, REEF RESCUE MARINE M, P160; Jompa J, 2003, MAR ECOL PROG SER, V258, P79, DOI 10.3354/meps258079; KNUTSON DW, 1972, SCIENCE, V177, P270, DOI 10.1126/science.177.4045.270; Larcombe P, 1999, AUST J EARTH SCI, V46, P141, DOI 10.1046/j.1440-0952.1999.00694.x; LEA DW, 1989, NATURE, V340, P373, DOI 10.1038/340373a0; LEA DW, 1993, CHEM GEOL, V103, P73, DOI 10.1016/0009-2541(93)90292-Q; Linsley BK, 2000, SCIENCE, V290, P1145, DOI 10.1126/science.290.5494.1145; LOUGH JM, 1990, J EXP MAR BIOL ECOL, V135, P35, DOI 10.1016/0022-0981(90)90197-K; Ludwig K. R., 2003, BERKELEY GEOCHRONOLO, V3; Mallela J, 2011, CORAL REEFS, V30, P813, DOI 10.1007/s00338-011-0757-z; Marshall JF, 2002, GEOCHIM COSMOCHIM AC, V66, P3263, DOI 10.1016/S0016-7037(02)00926-2; Marshall PA, 2000, CORAL REEFS, V19, P155, DOI 10.1007/s003380000086; McClanahan TR, 2009, GLOBAL CHANGE BIOL, V15, P1804, DOI 10.1111/j.1365-2486.2008.01799.x; McCulloch M, 2003, NATURE, V421, P727, DOI 10.1038/nature01361; McCulloch MT, 2008, AUST J EARTH SCI, V55, P955, DOI 10.1080/08120090802097435; MCCULLOCH MT, 1994, GEOCHIM COSMOCHIM AC, V58, P2747, DOI 10.1016/0016-7037(94)90142-2; McGregor HV, 2003, GEOCHIM COSMOCHIM AC, V67, P2147, DOI 10.1016/S0016-7037(02)01050-5; Meibom A, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2002GL016864; Mitsuguchi T, 2003, CORAL REEFS, V22, P381, DOI 10.1007/s00338-003-0326-1; Mumby PJ, 2001, MAR BIOL, V139, P183; Nothdurft LD, 2009, CORAL REEFS, V28, P143, DOI 10.1007/s00338-008-0439-7; Nothdurft LD, 2007, GEOCHIM COSMOCHIM AC, V71, P5423, DOI 10.1016/j.gca.2007.09.025; Nothdurft LD, 2009, FACIES, V55, P161, DOI 10.1007/s10347-008-0167-z; Okai T, 2002, GEOSTANDARD NEWSLETT, V26, P95, DOI 10.1111/j.1751-908X.2002.tb00627.x; Pandolfi JM, 1997, LIMNOL OCEANOGR, V42, P1505, DOI 10.4319/lo.1997.42.7.1505; Pandolfi JM, 2003, SCIENCE, V301, P955, DOI 10.1126/science.1085706; Pandolfi JM, 2011, SCIENCE, V333, P418, DOI 10.1126/science.1204794; Quinn TM, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL024972; R Core Team, 2013, R LANG ENV STAT COMP; Roff G., 2013, P R SOC B, V280, P1750, DOI DOI 10.1098/RSPB.2012.2100; ROFF G, 2010, THESIS U QUEENSLAND; Rotjan RD, 2005, MAR ECOL PROG SER, V305, P193, DOI 10.3354/meps305193; Scholz D, 2007, GEOCHIM COSMOCHIM AC, V71, P1935, DOI 10.1016/j.gca.2007.01.016; Shashar N., 1997, Pacific Science, V51, P167; Shen CC, 2008, GEOCHIM COSMOCHIM AC, V72, P4201, DOI 10.1016/j.gca.2008.06.011; Shen CC, 2007, CHEM GEOL, V236, P339, DOI 10.1016/j.chemgeo,2006.10.010; Smithers SG, 2001, EARTH PLANET SC LETT, V191, P173, DOI 10.1016/S0012-821X(01)00417-4; STIRLING CH, 1995, EARTH PLANET SC LETT, V135, P115, DOI 10.1016/0012-821X(95)00152-3; Stirling CH, 2007, EARTH PLANET SC LETT, V264, P208, DOI 10.1016/j.epsl.2007.09.019; Suzuki A, 2003, CORAL REEFS, V22, P357, DOI 10.1007/s00338-003-0323-4; Sweatman H, 2011, CORAL REEFS, V30, P521, DOI 10.1007/s00338-010-0715-1; SWEATMAN H, 2008, 8 AUSTR I MAR SCI; THOMPSON A, 2010, REEF RESCUE MARINE M; Thompson A., 1999, BENTHIC FISH MONITOR; Thompson AA, 2010, CORAL REEFS, V29, P637, DOI 10.1007/s00338-009-0562-0; Tribollet A, 2005, CORAL REEFS, V24, P422, DOI 10.1007/s00338-005-0003-7; vanWoesik R, 1997, CORAL REEFS, V16, P103, DOI 10.1007/s003380050064; Vermeesch P, 2012, CHEM GEOL, V312, P190, DOI 10.1016/j.chemgeo.2012.04.021; Wakeford M, 2008, CORAL REEFS, V27, P1, DOI 10.1007/s00338-007-0284-0; Wesseling I, 1999, MAR ECOL PROG SER, V176, P11, DOI 10.3354/meps176011; Whelan KRT, 2007, CORAL REEFS, V26, P689, DOI 10.1007/s00338-007-0241-y; Wilkinson C., 2008, STATUS CORAL REEFS W; Wooldridge SA, 2009, ECOL APPL, V19, P1492, DOI 10.1890/08-0963.1; Yu KF, 2006, QUAT GEOCHRONOL, V1, P129, DOI 10.1016/j.quageo.2006.06.005; Yu KF, 2010, J QUATERNARY SCI, V25, P1284, DOI 10.1002/jqs.1410; Yu KF, 2012, CHEM GEOL, V320, P54, DOI 10.1016/j.chemgeo.2012.05.028; Yu KF, 2012, PALAEOGEOGR PALAEOCL, V337, P23, DOI 10.1016/j.palaeo.2012.03.023; Yu KF, 2004, EARTH PLANET SC LETT, V224, P143, DOI 10.1016/j.epsl.2004.04.036; Zhao JX, 2009, QUAT GEOCHRONOL, V4, P423, DOI 10.1016/j.quageo.2009.01.012; Zhao JX, 2001, GEOLOGY, V29, P27, DOI 10.1130/0091-7613(2001)029<0027:TIMSUS>2.0.CO;2; Zhou HY, 2011, J QUATERNARY SCI, V26, P781, DOI 10.1002/jqs.1506 111 45 45 2 66 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0016-7037 1872-9533 GEOCHIM COSMOCHIM AC Geochim. Cosmochim. Acta AUG 1 2014 138 57 80 10.1016/j.gca.2014.04.022 24 Geochemistry & Geophysics Geochemistry & Geophysics AL5LN WOS:000339175300004 2019-02-21 J Wan, WWN; Luk, CL; Chow, CWC Wan, Wendy W. N.; Luk, Chung-Leung; Chow, Cheris W. C. Consumer responses to sexual advertising: The intersection of modernization, evolution, and international marketing JOURNAL OF INTERNATIONAL BUSINESS STUDIES English Article evolutionary psychology; modernization; advertising; strategic pluralism theory; cross-cultural experiments; China GENDER-DIFFERENCES; CONSPICUOUS CONSUMPTION; BEHAVIOR; CHINA; WOMEN; SATISFACTION; REVOLUTION; ORIGINS; APPEALS; CULTURE Drawing on insights from evolutionary psychology and sociology, this research seeks to explain the gender differences and within-sex variations in consumer responses to nudity in advertisements. Specifically, we argue that the abundant resources that come with modernization emancipate women from the dependency on a long-term relationship with a male partner for child bearing and rearing. Therefore, women in modern societies are more likely to use fast reproductive strategies (e.g., short-term mating) to enhance the chances of getting good genes from their mates for their offspring. Their physiological arousals activated by and attitudes toward male or female nudity in ads will change accordingly. In contrast, men's responses to nudity in ads are less affected by modernization. We conducted an experiment in six Chinese cities and obtained supportive evidence to illustrate these differences. There was also evidence indicating that the socialization of high socio-economic status may offset the force of evolution. This study highlights the usefulness of an interdisciplinary approach in answering important questions in international business. The findings are discussed with a focus on the integration of strategic pluralism theory, life history theory, parental investment theory, and socialization theory. [Wan, Wendy W. N.] Tunghai Univ, Dept Int Business, Taichung 40704, Taiwan; [Luk, Chung-Leung] City Univ Hong Kong, Dept Mkt, Kowloon Tong, Hong Kong, Peoples R China; [Chow, Cheris W. C.] Univ Macau, Dept Management & Mkt, Taipa, Peoples R China Wan, WWN (reprint author), Tunghai Univ, Dept Int Business, 181 Sect 3,Taichung Port Rd, Taichung 40704, Taiwan. wendywan@live.com Luk, Chung Leung/0000-0002-1173-9420 Abdolsalehi-Najafi E, 2013, ARCH SEX BEHAV, V42, P1063, DOI 10.1007/s10508-013-0084-2; Baumeister RF, 2000, PSYCHOL BULL, V126, P347, DOI 10.1037/0033-2909.126.3.347; Bello D. C., 1983, J ADVERTISING, V12, P32, DOI DOI 10.1080/00913367.1983.10672846; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Blair J. D., 2006, J LEGAL ETHICAL REGU, V9, P109; Brown D., 1991, HUMAN UNIVERSALS; BUSS DM, 1984, AM PSYCHOL, V39, P1135, DOI 10.1037/0003-066X.39.10.1135; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Buss DM, 2001, J PERS, V69, P955, DOI 10.1111/1467-6494.696171; Cashdan E, 2012, HUM NATURE-INT BIOS, V23, P1, DOI 10.1007/s12110-012-9133-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cotter D, 2011, AM J SOCIOL, V117, P259, DOI 10.1086/658853; Craig C. S., 1975, ADV CONSUM RES, V2, P555; Crawford M, 2003, J SEX RES, V40, P13, DOI 10.1080/00224490309552163; Dahl DW, 2009, J CONSUM RES, V36, P215, DOI 10.1086/597158; Daly M, 1990, Hum Nat, V1, P81, DOI 10.1007/BF02692147; DAVIS JA, 1992, PUBLIC OPIN QUART, V56, P261, DOI 10.1086/269322; Dawkins R., 2006, SELFISH GENE; Durante KM, 2012, J PERS SOC PSYCHOL, V103, P121, DOI 10.1037/a0027949; Eagly AH, 1999, AM PSYCHOL, V54, P408, DOI 10.1037//0003-066X.54.6.408; EASTERLIN RA, 1995, J ECON BEHAV ORGAN, V27, P35, DOI 10.1016/0167-2681(95)00003-B; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FISHER HE, 1992, ANATOMY LOVE NATURAL; Freud Sigmund, 1913, TOTEM TABOO; Galperin A, 2013, ARCH SEX BEHAV, V42, P1145, DOI 10.1007/s10508-012-0019-3; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gill R, 2012, SEX ROLES, V66, P736, DOI 10.1007/s11199-011-0107-1; Griffith DA, 2003, J INT MARKETING, V11, P30, DOI 10.1509/jimk.11.3.30.20160; Griskevicius V., 2011, J PERS SOC PSYCHOL, V100, P214; Griskevicius V, 2006, J PERS SOC PSYCHOL, V91, P63, DOI 10.1037/0022-3514.91.1.63; Griskevicius V, 2013, J CONSUM PSYCHOL, V23, P372, DOI 10.1016/j.jcps.2013.03.003; Griskevicius V, 2012, J PERS SOC PSYCHOL, V102, P69, DOI 10.1037/a0024761; Haavio-Mannila E, 2003, J SEX RES, V40, P36, DOI 10.1080/00224490309552165; HATFIELD E, 1996, LOVE SEX CROSS CULTU; Herold E. S., 1993, J SEX RES, V7, P583; Hess E. H., 1972, HDB PSYCHOPHYSIOLOGY, P491, DOI DOI 10.3758/BF03204445; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Horesh N., 2012, PROVINCIAL CHINA, V4, P116; Hrdy Sarah Blaffer, 2000, MOTHER NATURE MATERN; Hung KH, 2007, J INT BUS STUD, V38, P1034, DOI 10.1057/palgrave.jibs.8400303; Inglehart Ronald, 2003, RISING TIDE GENDER E; Inglehart Ronald, 2005, MODERNIZATION CULTUR; Jacques Martin, 2012, CHINA RULES WORLD; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jeffreys E, 2006, ROUT STUD CHINA TRAN, P159; Jones MY, 1998, J ADVERTISING, V27, P33, DOI 10.1080/00913367.1998.10673551; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Krupp DB, 2012, ARCH SEX BEHAV, V41, P1409, DOI 10.1007/s10508-012-9949-z; LaTour M. S., 1990, PSYCHOL MARKET, V7, P65; LATOUR MS, 1990, J ADVERTISING, V19, P51, DOI 10.1080/00913367.1990.10673200; LaTour MS, 2003, LEA COMMUN SER, P91; Lau CM, 2002, J INT BUS STUD, V33, P533, DOI 10.1057/palgrave.jibs.8491030; LEIGH BC, 1989, J SEX RES, V26, P199, DOI 10.1080/00224498909551506; Li C., 1998, CHINA CONSUMER REVOL; Li YJ, 2012, J PERS SOC PSYCHOL, V102, P550, DOI 10.1037/a0025844; Li YH, 2006, ROUT STUD CHINA TRAN, P82; Liu F, 2009, INT MARKET REV, V26, P501, DOI 10.1108/02651330910972002; Luk C. L., 2010, 2010 AMA SUMM MARK E; Luk CL, 2008, J INT BUS STUD, V39, P589, DOI 10.1057/palgrave.jibs.8400373; Machalek R, 2004, SOCIOL THEOR, V22, P455, DOI 10.1111/j.0735-2751.2004.00229.x; Maciejewski Jeffrey J., 2004, J CURRENT ISSUES RES, V26, P97, DOI DOI 10.1080/10641734.2004.10505167; MACKINNON A, 2008, CHINA CALLING FOOT G; Maner JK, 2009, J PERS SOC PSYCHOL, V97, P74, DOI 10.1037/a0014055; Manning K. C., 1995, J CONSUM PSYCHOL, V4, P329, DOI [DOI 10.1207/S15327663JCP0404_, DOI 10.1016/0167-4870(95)00024-I]; MORRISON BJ, 1972, J ADVERTISING RES, V12, P15; Morton H, 2013, ARCH SEX BEHAV, V42, P1615, DOI 10.1007/s10508-013-0180-3; Muller D, 2005, J PERS SOC PSYCHOL, V89, P852, DOI 10.1037/0022-3514.89.6.852; National Bureau of Statistics of China, 2011, CHIN STAT YB 2011; Naughton B, 2007, CHINESE EC TRANSITIO; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Ni P. F., 2006, ANN REPORT URBAN COM; Pan SM, 2006, ROUT STUD CHINA TRAN, P21; Parish WL, 2007, POPUL DEV REV, V33, P729, DOI 10.1111/j.1728-4457.2007.00195.x; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Petersen JL, 2010, PSYCHOL BULL, V136, P21, DOI 10.1037/a0017504; PETERSON RA, 1977, J MARKETING, V41, P59, DOI 10.2307/1250235; Pierce BD, 1999, ACAD MANAGE REV, V24, P843, DOI 10.2307/259358; Plavcan JM, 2012, HUM NATURE-INT BIOS, V23, P45, DOI 10.1007/s12110-012-9130-3; Przeworski A, 1997, WORLD POLIT, V49, P155, DOI 10.1353/wp.1997.0004; Reichert T, 2001, J ADVERTISING, V30, P13, DOI 10.1080/00913367.2001.10673628; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rutter V., 2011, GENDER SEXUALITY EXP; Saad G, 2013, J CONSUM PSYCHOL, V23, P351, DOI 10.1016/j.jcps.2013.03.002; Saad G, 2009, ORGAN BEHAV HUM DEC, V110, P80, DOI 10.1016/j.obhdp.2009.06.001; Schmitt D. P., 2001, PSYCHOL EVOLUTION GE, V3, P211, DOI DOI 10.1080/14616660110119331; Schmitt DP, 2004, J PERS SOC PSYCHOL, V86, P560, DOI 10.1037/0022-3514.86.4.560; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Sell A, 2012, HUM NATURE-INT BIOS, V23, P30, DOI 10.1007/s12110-012-9131-2; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SIMPSON PM, 1996, J ACAD MARKET SCI, V24, P257, DOI DOI 10.1177/0092070396243006; SMUTS B, 1991, HUMAN NATURE, V3, P1; Stephenson MT, 2003, DRUG ALCOHOL DEPEN, V72, P279, DOI 10.1016/j.drugalcdep.2003.08.003; Stewart DN, 2012, SEX ROLES, V67, P257, DOI 10.1007/s11199-012-0164-0; Sundie JM, 2011, J PERS SOC PSYCHOL, V100, P664, DOI 10.1037/a0021669; Tai S. H. C., 1999, TEACHING BUSINESS ET, V3, P87; THAYER RE, 1987, J PERS SOC PSYCHOL, V52, P119, DOI 10.1037/0022-3514.52.1.119; THAYER RE, 1967, PSYCHOL REP, V20, P663, DOI 10.2466/pr0.1967.20.2.663; THAYER RE, 1978, PSYCHOL REP, V42, P747, DOI 10.2466/pr0.1978.42.3.747; TSE DK, 1989, J CONSUM RES, V15, P457, DOI 10.1086/209185; Wang YJ, 2014, J CONSUM RES, V40, P834, DOI 10.1086/673256; Wilson D.S., 1975, SOCIOBIOLOGY NEW SYN; Wilson D. S., 1978, HUMAN NATURE; Wood W, 2002, PSYCHOL BULL, V128, P699, DOI 10.1037//0033-2909.128.5.699; Yik MSM, 1999, J PERS SOC PSYCHOL, V77, P600, DOI 10.1037//0022-3514.77.3.600; Zhang N, 2012, ARCH SEX BEHAV, V41, P861, DOI 10.1007/s10508-012-9930-x; Zhou N, 2004, J ADVERTISING, V33, P63, DOI 10.1080/00913367.2004.10639169 109 10 10 7 123 PALGRAVE MACMILLAN LTD BASINGSTOKE BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND 0047-2506 1478-6990 J INT BUS STUD J. Int. Bus. Stud. AUG 2014 45 6 SI 751 782 10.1057/jibs.2014.18 32 Business; Management Business & Economics AL6FS WOS:000339228600006 2019-02-21 J Roitberg, BD; Gillespie, DR Roitberg, Bernard D.; Gillespie, David R. Natural enemies on the landscape - Integrating life-history theory and landscapes BIOLOGICAL CONTROL English Article Model; State dependent life history; Patch exploitation; Theory; Structure function PATCH EXPLOITATION; FORAGING BEHAVIOR; MULTIMODAL SIGNALS; BIOLOGICAL-CONTROL; TIME ALLOCATION; EGG MATURATION; SEX-RATIOS; INSECT; PARASITOIDS; STRATEGY The relationship between patch exploitation by individual parasitoids and landscape levels of control by such parasitoids is complex and not well understood. Here we build on a classic concept of the structure function as a way of describing the landscape of a biological control agent from the agent's perspective. We include such structure functions into patch exploitation theory as way of connecting the two aforementioned levels. An important feature is that for any given focal individual, its resource-specific structure functions can differ dramatically in the environment; we explain how one might employ multivariate functions into our theory. Further, rather than employ these functions in a strictly descriptive manner we embed them in state-dependent life history. Parasitoid states include, eggload, energy state, mass and their impacts on the Darwinian fitness from patch exploitation. When taken together, our approach allows us to determine optimal exploitation decisions for agents across various landscapes and more importantly, to predict response of biocontrol agents to changes in landscape as a function of changes in agricultural practices. Finally, we show how these optimal decisions can be used to calculate pest-killing rates for biological control agents, and ultimately to facilitate the selection and management of agents. (C) 2014 Elsevier Inc. All rights reserved. [Roitberg, Bernard D.] Simon Fraser Univ, Evolutionary & Behav Ecol Res Grp, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Gillespie, David R.] Agr & Agri Food Canada, Res Ctr, Agassiz, BC V0M 1A0, Canada Gillespie, DR (reprint author), Agr & Agri Food Canada, Res Ctr, POB 1000, Agassiz, BC V0M 1A0, Canada. roitberg@sfu.ca; Dave.Gillespie@agr.gc.ca NSERC Discovery grant; Agriculture and Agri-Food Canada, A-Base project [2529] Support for this work was from NSERC Discovery grant (BDR) and from Agriculture and Agri-Food Canada, A-Base project 2529 (DRG). We thank Marc Mangel for his pioneering work on structure functions, James Harwood and Dave Crowder for the invitation to participate in this special issue and their insightful comments on the manuscript, and two anonymous reviewers for comments that greatly improved the work. Alford D.V., 2003, BIOCONTROL OILSEED R, P1; Arrignon F, 2007, ECOL MODEL, V205, P423, DOI 10.1016/j.ecolmodel.2007.03.006; Bannerman JA, 2011, ECOL ENTOMOL, V36, P490, DOI 10.1111/j.1365-2311.2011.01292.x; Barrette M, 2009, OECOLOGIA, V158, P757, DOI 10.1007/s00442-008-1175-y; BEIRNE BP, 1985, CAN J ZOOL, V63, P743, DOI 10.1139/z85-108; Boivin G, 2004, OECOLOGIA, V138, P640, DOI 10.1007/s00442-003-1469-z; Burkman CE, 2014, BIOL CONTROL, V75, P58, DOI 10.1016/j.biocontrol.2014.02.015; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Chaplin-Kramer R, 2011, ECOL LETT, V14, P922, DOI 10.1111/j.1461-0248.2011.01642.x; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Chisholm PJ, 2014, BIOL CONTROL, V75, P48, DOI 10.1016/j.biocontrol.2014.02.003; Crowder DW, 2014, BIOL CONTROL, V75, P8, DOI 10.1016/j.biocontrol.2013.10.010; Dauphin G, 2009, ECOL ENTOMOL, V34, P193, DOI 10.1111/j.1365-2311.2008.01056.x; Dosdall LM, 2010, BIOCONTROL-BASED INTEGRATED MANAGEMENT OF OILSEED RAPE PESTS, P167, DOI 10.1007/978-90-481-3983-5_6; Gardner SM, 2007, BULL INSECTOLOGY, V60, P23; Gillespie D. R, 2013, BIOL CONTROL PROGRAM; Gillespie DR, 2012, OIKOS, V121, P149, DOI 10.1111/j.1600-0706.2011.19512.x; Goubault M, 2005, BEHAV ECOL, V16, P693, DOI 10.1093/beheco/ari043; Gustafson EJ, 1998, ECOSYSTEMS, V1, P143, DOI 10.1007/s100219900011; Hance T, 2007, ANNU REV ENTOMOL, V52, P107, DOI 10.1146/annurev.ento.52.110405.091333; Henry LM, 2009, OECOLOGIA, V161, P433, DOI 10.1007/s00442-009-1381-2; Hilker Monika, 2008, P92, DOI 10.1002/9780470696200.ch5; Holldobler B, 1999, J COMP PHYSIOL A, V184, P129, DOI 10.1007/s003590050313; Holling CS, 1966, MEM ENTOMOL SOC CAN, V98, P5, DOI [DOI 10.4039/ENTM9848FV, 10.4039/entm9848fv]; HOUSTON A, 1988, NATURE, V332, P29, DOI 10.1038/332029a0; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Jenner WH, 2009, J INSECT BEHAV, V22, P257, DOI 10.1007/s10905-008-9171-y; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Kulahci IG, 2008, P R SOC B, V275, P797, DOI 10.1098/rspb.2007.1176; Legrand A, 2011, AGRON SUSTAIN DEV, V31, P515, DOI 10.1007/s13593-011-0007-3; Liu YQ, 2009, BEHAV ECOL SOCIOBIOL, V63, P1459, DOI 10.1007/s00265-009-0800-z; Louapre P, 2011, BEHAV ECOL, V22, P1064, DOI 10.1093/beheco/arr090; Lucchetta P, 2007, BEHAV ECOL SOCIOBIOL, V61, P1409, DOI 10.1007/s00265-007-0372-8; Ma BO, 2009, ECOL MODEL, V220, P3271, DOI 10.1016/j.ecolmodel.2009.08.022; MANGEL M, 1994, ECOLOGY, V75, P1289, DOI 10.2307/1937454; Mangel M, 1988, DYNAMIC MODELING BEH; Mason P.G., 2002, BIOL CONTROL PROGRAM; Miller J. R., 1984, CHEM ECOLOGY INSECTS; MINKENBERG OPJM, 1992, OIKOS, V65, P134, DOI 10.2307/3544896; Murchie AK, 1999, BIOCONTROL, V44, P379, DOI 10.1023/A:1009997917947; Nilsson Christer, 2003, P73, DOI 10.1002/9780470750988.ch4; Ode PJ, 2002, BIOL CONTROL, V24, P31, DOI 10.1016/S1049-9644(02)00003-8; Olden JD, 2004, J ANIM ECOL, V73, P1190, DOI 10.1111/j.0021-8790.2004.00889.x; Peterson JH, 2010, EVOL ECOL RES, V12, P347; Roff Derek A., 1992; Roitberg BD, 2004, CAN ENTOMOL, V136, P289; ROITBERG BD, 1992, BEHAV ECOL, V3, P156, DOI 10.1093/beheco/3.2.156; Roitberg BD, 1997, OIKOS, V80, P234, DOI 10.2307/3546591; Roitberg BD, 2000, PARASITOID POPULATION BIOLOGY, P254; ROITBERG BD, 1982, ECOL ENTOMOL, V7, P437, DOI 10.1111/j.1365-2311.1982.tb00685.x; Roitberg BD, 2010, ISR J ECOL EVOL, V56, P297, DOI 10.1560/IJEE.56.3-4.297; Roitberg BD, 2010, BEHAV ECOL SOCIOBIOL, V64, P627, DOI 10.1007/s00265-009-0880-9; Rosenheim JA, 1999, EVOLUTION, V53, P376, DOI 10.1111/j.1558-5646.1999.tb03773.x; Rosenheim JA, 1996, AM NAT, V148, P501, DOI 10.1086/285937; Rosenheim JA, 2010, AM NAT, V175, P662, DOI 10.1086/652468; SABELIS MW, 1994, EXP APPL ACAROL, V18, P711; Schroeder R, 2008, BIOSCIENCE, V58, P308, DOI 10.1641/B580406; Simberloff D, 1996, ECOLOGY, V77, P1965, DOI 10.2307/2265693; Stearns S, 1992, EVOLUTION LIFE HIST; Thiel A, 2011, ANIM COGN, V14, P73, DOI 10.1007/s10071-010-0344-7; Ulber B, 2010, BIOCONTROL-BASED INTEGRATED MANAGEMENT OF OILSEED RAPE PESTS, P45, DOI 10.1007/978-90-481-3983-5_2; van Alpen JJM, 2003, TRENDS ECOL EVOL, V18, P81, DOI 10.1016/S0169-5347(02)00035-6; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; Veres A, 2013, AGR ECOSYST ENVIRON, V166, P110, DOI 10.1016/j.agee.2011.05.027; Vollhardt IMG, 2010, BIOL CONTROL, V53, P204, DOI 10.1016/j.biocontrol.2009.12.011; Wajnberg E., 2008, BEHAV ECOLOGY INSECT; Wajnberg E, 2006, BEHAV ECOL SOCIOBIOL, V60, P589, DOI 10.1007/s00265-006-0198-9; Welch KD, 2014, BIOL CONTROL, V75, P18, DOI 10.1016/j.biocontrol.2014.01.004; WELLINGTON WG, 1977, ENVIRON ENTOMOL, V6, P1 71 11 11 4 58 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 1090-2112 BIOL CONTROL Biol. Control AUG 2014 75 39 47 10.1016/j.biocontrol.2014.02.002 9 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology AJ8ZI WOS:000337996200005 2019-02-21 J Del Giudice, M Del Giudice, M. Early stress and human behavioral development: emerging evolutionary perspectives JOURNAL OF DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE English Review developmental plasticity; early stress; life history; parent-offspring conflict; prenatal stress PARENT-OFFSPRING CONFLICT; LIFE-HISTORY THEORY; MATERNAL STRESS; ALLOSTATIC LOAD; REPRODUCTIVE STRATEGIES; BIOLOGICAL SENSITIVITY; INDIVIDUAL-DIFFERENCES; PHENOTYPIC PLASTICITY; PRENATAL CORTISOL; POPULATION-LEVEL Stress experienced early in life exerts a powerful, lasting influence on development. Converging empirical findings show that stressful experiences become deeply embedded in the child's neurobiology, with an astonishing range of long-term effects on cognition, emotion, and behavior. In contrast with the prevailing view that such effects are the maladaptive outcomes of 'toxic' stress, adaptive models regard them as manifestations of evolved developmental plasticity. In this paper, I offer a brief introduction to adaptive models of early stress and human behavioral development, with emphasis on recent theoretical contributions and emerging concepts in the field. I begin by contrasting dysregulation models of early stress with their adaptive counterparts; I then introduce life history theory as a unifying framework, and review recent work on predictive adaptive responses (PARs) in human life history development. In particular, I discuss the distinction between forecasting the future state of the environment (external prediction) and forecasting the future state of the organism (internal prediction). Next, I present the adaptive calibration model, an integrative model of individual differences in stress responsivity based on life history concepts. I conclude by examining how maternal-fetal conflict may shape the physiology of prenatal stress and its adaptive and maladaptive effects on postnatal development. In total, I aim to show how theoretical work from evolutionary biology is reshaping the way we think about the role of stress in human development, and provide researchers with an up-to-date conceptual map of this fascinating and rapidly evolving field. Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Dept Psychol, Logan Hall, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 ADAM EK, 2007, HUMAN BEHAV LEARNING, P264; Baibazarova E, 2013, PSYCHONEUROENDOCRINO, V38, P907, DOI 10.1016/j.psyneuen.2012.09.015; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PERSPECT PSYCHOL SCI, V4, P345, DOI 10.1111/j.1745-6924.2009.01136.x; Benros ME, 2012, ANN NY ACAD SCI, V1262, P56, DOI 10.1111/j.1749-6632.2012.06638.x; Bourke AFG, 2011, P ROY SOC B-BIOL SCI, V278, P3313, DOI 10.1098/rspb.2011.1465; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brunton PJ, 2011, PROG NEURO-PSYCHOPH, V35, P1178, DOI 10.1016/j.pnpbp.2010.12.023; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; Carr CP, 2013, J NERV MENT DIS, V201, P1007, DOI 10.1097/NMD.0000000000000049; Champagne FA, 2010, PERSPECT PSYCHOL SCI, V5, P564, DOI 10.1177/1745691610383494; Class QA, 2014, PSYCHOL MED, V44, P71, DOI 10.1017/S0033291713000780; Cole SW, 2012, OXFORD HDB PSYCHONEU, P254, DOI DOI 10.1093/OXFORDHB/9780195394399.013.0014; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Del Giudice M, BIOBEHAVIOR IN PRESS; Del Giudice M, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2013.2222; Del Giudice M, 2012, PSYCHONEUROENDOCRINO, V37, P1614, DOI 10.1016/j.psyneuen.2012.05.014; Del Giudice M, 2012, DEV PSYCHOL, V48, P775, DOI 10.1037/a0026519; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2008, CURR DIR PSYCHOL SCI, V17, P183, DOI 10.1111/j.1467-8721.2008.00571.x; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2014, DEV PSYCHOPATHOL, V26, P1, DOI 10.1017/S0954579413000849; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Ellison PT, 2010, INFANT CHILD DEV, V19, P6, DOI 10.1002/icd.649; Erni Katja, 2012, Front Psychiatry, V3, P104, DOI 10.3389/fpsyt.2012.00104; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fischer B, 2014, AM NAT, V183, P108, DOI 10.1086/674008; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gangestad SW, 2012, BIOL REV, V87, P856, DOI 10.1111/j.1469-185X.2012.00226.x; Ganzel BL, 2010, PSYCHOL REV, V117, P134, DOI 10.1037/a0017773; Glasheen C, 2013, DEV PSYCHOPATHOL, V25, P1045, DOI 10.1017/S0954579413000369; Glover V, 2011, J CHILD PSYCHOL PSYC, V52, P356, DOI 10.1111/j.1469-7610.2011.02371.x; Gluckman PD, 2005, TRENDS ECOL EVOL, V20, P527, DOI 10.1016/j.tree.2005.08.001; Gluckman PD, 2007, AM J HUM BIOL, V19, P1, DOI 10.1002/ajhb.20590; GUNNAR M, 2006, DEV PSYCHOPATHOL, V2, P533, DOI DOI 10.1210/JC.82.2.536; Gunnar MR, 2012, MONOGR SOC RES CHILD, V77, P109, DOI 10.1111/j.1540-5834.2011.00669.x; Habib KE, 2001, ENDOCRIN METAB CLIN, V30, P695, DOI 10.1016/S0889-8529(05)70208-5; Haig D, 2004, ANNU REV GENET, V38, P553, DOI 10.1146/annurev.genet.37.110801.142741; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D., 2007, ENDOTHELIAL BIOMEDIC, P135; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Heijmans BT, 2008, P NATL ACAD SCI USA, V105, P17046, DOI 10.1073/pnas.0806560105; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Howerton CL, 2012, HORM BEHAV, V62, P237, DOI 10.1016/j.yhbeh.2012.03.007; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kaiser S, 2009, CURR DIR PSYCHOL SCI, V18, P118, DOI 10.1111/j.1467-8721.2009.01620.x; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kapoor A, 2006, J PHYSIOL-LONDON, V572, P31, DOI 10.1113/jphysiol.2006.105254; Koolhaas JM, 2011, NEUROSCI BIOBEHAV R, V35, P1291, DOI 10.1016/j.neubiorev.2011.02.003; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lopez HH, 2009, HORM BEHAV, V56, P84, DOI 10.1016/j.yhbeh.2009.03.004; Lupein SJ, 2006, DEV PSYCHOPATHOL, P578, DOI DOI 10.1002/9780470939390.CH14; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; McEwen BS, 2007, PHYSIOL REV, V87, P873, DOI 10.1152/physrev.00041.2006; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Murphy MLM, 2013, CLIN PSYCHOL SCI, V1, P30, DOI [10.1177/2167702612455743, 10.1177/2167702613478594]; Nepomnaschy PA, 2006, P NATL ACAD SCI USA, V103, P3938, DOI 10.1073/pnas.0511183103; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2011, EVOL APPL, V4, P264, DOI 10.1111/j.1752-4571.2010.00181.x; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; O'Connor TG, 2013, DEV PSYCHOBIOL, V55, P145, DOI 10.1002/dev.21007; Patterson PH, 2011, INFECT BEHAV BRAIN I; Pechtel P, 2011, PSYCHOPHARMACOLOGY, V214, P55, DOI 10.1007/s00213-010-2009-2; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pluess M, 2011, DEV PSYCHOPATHOL, V23, P29, DOI 10.1017/S0954579410000623; Raison CL, 2013, MOL PSYCHIATR, V18, P15, DOI 10.1038/mp.2012.2; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rutter M., 1993, J ADOLESCENT HEALTH, V14, P690; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Sandman CA, 2012, PSYCHOL SCI, V23, P93, DOI 10.1177/0956797611422073; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Schwabe L, 2013, TRENDS COGN SCI, V17, P60, DOI 10.1016/j.tics.2012.12.001; Schwabe L, 2012, HIPPOCAMPUS, V22, P2136, DOI 10.1002/hipo.22034; Seery MD, 2013, PSYCHOL SCI, V24, P1181, DOI 10.1177/0956797612469210; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S, 1992, EVOLUTION LIFE HIST; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; Talge NM, 2007, J CHILD PSYCHOL PSYC, V48, P245, DOI 10.1111/j.1469-7610.2007.01714.x; TRIVERS RL, 1974, AM ZOOL, V14, P249; Ubeda F, 2010, EVOLUTION, V64, P2587, DOI 10.1111/j.1558-5646.2010.01015.x; Uller T, 2011, EVOLUTION, V65, P2075, DOI 10.1111/j.1558-5646.2011.01282.x; Van den Bergh BRH, 2005, NEUROSCI BIOBEHAV R, V29, P237, DOI 10.1016/j.neubiorev.2004.10.007; Weinstock M, 2005, BRAIN BEHAV IMMUN, V19, P296, DOI 10.1016/j.bbi.2004.09.006; Wells JCK, 2006, TRENDS ECOL EVOL, V21, P424, DOI 10.1016/j.tree.2006.05.006; Werner E, 2013, DEV PSYCHOBIOL, V55, P707, DOI 10.1002/dev.21066; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004; Wilkins JF, 2008, ADV EXP MED BIOL, P626 108 16 17 2 78 CAMBRIDGE UNIV PRESS CAMBRIDGE EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND 2040-1744 2040-1752 J DEV ORIG HLTH DIS J. Dev. Orig. Health Dis. AUG 2014 5 4 270 280 10.1017/S2040174414000257 11 Public, Environmental & Occupational Health Public, Environmental & Occupational Health AJ5VN WOS:000337758200001 24965133 2019-02-21 J Macho, GA; Lee-Thorp, JA Macho, Gabriele A.; Lee-Thorp, Julia A. Niche Partitioning in Sympatric Gorilla and Pan from Cameroon: Implications for Life History Strategies and for Reconstructing the Evolution of Hominin Life History PLOS ONE English Article LOANGO NATIONAL-PARK; NEONATAL BRAIN SIZE; DENTAL DEVELOPMENT; LOWLAND GORILLAS; TOOTH CALCIFICATION; ISOTOPE ANALYSIS; LOPE RESERVE; RAIN-FORESTS; GREAT APES; EARLY HOMO Factors influencing the hominoid life histories are poorly understood, and little is known about how ecological conditions modulate the pace of their development. Yet our limited understanding of these interactions underpins life history interpretations in extinct hominins. Here we determined the synchronisation of dental mineralization/eruption with brain size in a 20th century museum collection of sympatric Gorilla gorilla and Pan troglodytes from Central Cameroon. Using delta C-13 and delta N-15 of individuals' hair, we assessed whether and how differences in diet and habitat use may have impacted on ape development. The results show that, overall, gorilla hair delta C-13 and delta N-15 values are more variable than those of chimpanzees, and that gorillas are consistently lower in delta C-13 and delta N-15 compared to chimpanzees. Within a restricted, isotopically-constrained area, gorilla brain development appears delayed relative to dental mineralization/eruption [or dental development is accelerated relative to brains]: only about 87.8% of adult brain size is attained by the time first permanent molars come into occlusion, whereas it is 92.3% in chimpanzees. Even when M1s are already in full functional occlusion, gorilla brains lag behind those of chimpanzee (91% versus 96.4%), relative to tooth development. Both bootstrap analyses and stable isotope results confirm that these results are unlikely due to sampling error. Rather, delta N-15 values imply that gorillas are not fully weaned (physiologically mature) until well after M1 are in full functional occlusion. In chimpanzees the transition from infant to adult feeding appears (a) more gradual and (b) earlier relative to somatic development. Taken together, the findings are consistent with life history theory that predicts delayed development when non-density dependent mortality is low, i.e. in closed habitats, and with the "risk aversion'' hypothesis for frugivorous species as a means to avert starvation. Furthermore, the results highlight the complexity and plasticity of hominoid/hominin development. [Macho, Gabriele A.; Lee-Thorp, Julia A.] Res Lab Archaeol, Oxford, England Macho, GA (reprint author), Res Lab Archaeol, Oxford, England. Gabriele.Macho@rlaha.ox.ac.uk Ministerio de Ciencia e Innovacion [CGL2010-20868]; Leakey Foundation Funding was provided by the Ministerio de Ciencia e Innovacion (CGL2010-20868) and the Leakey Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Altmann S. A., 1998, FORAGING SURVIVAL; ASHTON E. H., 1958, PROC ZOOL SOC LONDON, V130, P169; ASHTON EH, 1976, J ZOOL, V180, P355; Barrickman NL, 2008, J HUM EVOL, V54, P568, DOI 10.1016/j.jhevol.2007.08.012; Breuer T, 2009, AM J PRIMATOL, V71, P106, DOI 10.1002/ajp.20628; Cerling TE, 2004, OECOLOGIA, V138, P5, DOI 10.1007/s00442-003-1375-4; Cerling TE, 2011, NATURE, V476, P51, DOI 10.1038/nature10306; Cerling TE, 2009, P NATL ACAD SCI USA, V106, P8093, DOI 10.1073/pnas.0902192106; Cernusak LA, 2009, FUNCT PLANT BIOL, V36, P199, DOI 10.1071/FP08216; Charnov Eric L., 1993, P1; Coquerelle M, 2010, J ANTHROPOL SCI, V88, P129; Deblauwe I, 2008, AM J PHYS ANTHROPOL, V135, P42, DOI 10.1002/ajpa.20703; Deblauwe I, 2009, INT J PRIMATOL, V30, P229, DOI 10.1007/s10764-009-9337-2; DEMIRJIAN A, 1973, HUM BIOL, V45, P211; DeSilva J, 2006, J HUM EVOL, V51, P207, DOI 10.1016/j.jhevol.2006.05.006; DeSilva JM, 2008, J HUM EVOL, V55, P1064, DOI 10.1016/j.jhevol.2008.07.008; Doran DM, 2002, AM J PRIMATOL, V58, P91, DOI 10.1002/ajp.10053; Doran DM, 1998, EVOL ANTHROPOL, V6, P120; Doran-Sheehy D, 2009, AM J PHYS ANTHROPOL, V140, P727, DOI 10.1002/ajpa.21118; Fahy GE, 2014, AM J PHYS ANTHROPOL, V153, P635, DOI 10.1002/ajpa.22464; Fahy GE, 2013, P NATL ACAD SCI USA, V110, P5829, DOI 10.1073/pnas.1221991110; FOGEL ML, 1989, NITROGEN ISOTOPE TRA, P111; FRIEDLI H, 1986, NATURE, V324, P237, DOI 10.1038/324237a0; Fuller BT, 2006, AM J PHYS ANTHROPOL, V129, P279, DOI 10.1002/ajpa.20249; Godfrey LR, 2001, AM J PHYS ANTHROPOL, V114, P192, DOI 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q; Gordon AD, 2013, AM J PHYS ANTHROPOL, V152, P2, DOI 10.1002/ajpa.22391; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Hart D, 2010, DEV PRIMATOLOGY PROG, V36, P19; HARVEY PH, 1985, EVOLUTION, V39, P559, DOI 10.1111/j.1558-5646.1985.tb00395.x; Head JS, 2012, J TROP ECOL, V28, P571, DOI 10.1017/S0266467412000612; Head JS, 2011, INT J PRIMATOL, V32, P755, DOI 10.1007/s10764-011-9499-6; Hohmann G, 2010, AM J PHYS ANTHROPOL, V141, P476, DOI 10.1002/ajpa.21168; HUTCHINSON GE, 1959, AM NAT, V93, P145, DOI 10.1086/282070; Isler K, 2012, CURR ANTHROPOL, V53, pS453, DOI 10.1086/667623; Isler K, 2009, J HUM EVOL, V57, P392, DOI 10.1016/j.jhevol.2009.04.009; Janson Charles H., 1993, P57; Kaur T, 2004, J MED PRIMATOL, V33, P187, DOI 10.1111/j.1600-0684.2004.00070.x; Kelley J, 2010, P NATL ACAD SCI USA, V107, P1035, DOI 10.1073/pnas.0906206107; Klailova M, 2012, FOLIA PRIMATOL, V83, P312, DOI 10.1159/000342143; Krigbaum J, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0466; Kuykendall KL, 1996, AM J PHYS ANTHROPOL, V99, P135, DOI 10.1002/(SICI)1096-8644(199601)99:1<135::AID-AJPA8>3.0.CO;2-#; KUYKENDALL KL, 1992, AM J PHYS ANTHROPOL, V89, P379, DOI 10.1002/ajpa.1330890310; Kuykendall KL, 1996, AM J PHYS ANTHROPOL, V99, P159, DOI 10.1002/(SICI)1096-8644(199601)99:1<159::AID-AJPA9>3.0.CO;2-W; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; Lambert JE, 1998, EVOL ANTHROPOL, V7, P8, DOI 10.1002/(SICI)1520-6505(1998)7:1<8::AID-EVAN3>3.0.CO;2-C; Lee P. C., 1996, Evolutionary Anthropology, V5, P87, DOI 10.1002/(SICI)1520-6505(1996)5:3<87::AID-EVAN4>3.0.CO;2-T; Lee PC, 2012, INT J PRIMATOL, V33, P1309, DOI 10.1007/s10764-011-9536-5; Lehmann J, 2009, OIKOS, V118, P379, DOI 10.1111/j.1600-0706.2008.16382.x; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; LEIGH SR, 1994, AM J PHYS ANTHROPOL, V94, P499, DOI 10.1002/ajpa.1330940406; Leigh SR, 2012, EVOL BIOL, V39, P587, DOI 10.1007/s11692-012-9168-5; Leonard WR, 1997, AM J PHYS ANTHROPOL, V102, P265, DOI 10.1002/(SICI)1096-8644(199702)102:2<265::AID-AJPA8>3.0.CO;2-X; Macho GA, 2001, AM J PRIMATOL, V55, P189, DOI 10.1002/ajp.1054; Macho Gabriele A., 1995, Evolutionary Anthropology, V4, P17, DOI 10.1002/evan.1360040105; MARTIN RD, 1981, NATURE, V293, P57, DOI 10.1038/293057a0; Masi S, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049805; Masi S, 2009, AM J PRIMATOL, V71, P91, DOI 10.1002/ajp.20629; McFarlin SC, 2013, AM J PRIMATOL, V75, P450, DOI 10.1002/ajp.22100; Moeller AH, 2013, GENOME RES, V23, P1715, DOI 10.1101/gr.154773.113; N'guessan AK, 2009, INT J PRIMATOL, V30, P481, DOI 10.1007/s10764-009-9354-1; Nakashima Y, 2013, AM J PRIMATOL, V75, P1220, DOI 10.1002/ajp.22185; Navarrete A, 2011, NATURE, V480, P91, DOI 10.1038/nature10629; Neubauer S, 2012, EVOL BIOL, V39, P568, DOI 10.1007/s11692-011-9156-1; Neubauer S, 2012, AM J PHYS ANTHROPOL, V147, P319, DOI 10.1002/ajpa.21641; Neubauer S, 2009, J ANAT, V215, P240, DOI 10.1111/j.1469-7580.2009.01106.x; Nowell AA, 2007, INT J PRIMATOL, V28, P441, DOI 10.1007/s10764-007-9128-6; Oelze VM, 2014, J HUM EVOL, V66, P95, DOI [10.1016/j.jhevol.2013.10.003, 10.1016/j.Thevol.2013.10.003]; Oelze VM, 2011, P NATL ACAD SCI USA, V108, P9792, DOI 10.1073/pnas.1018502108; Psoter W, 2008, COMMUNITY DENT ORAL, V36, P179, DOI 10.1111/j.1600-0528.2007.00386.x; Remis MJ, 2002, INT J PRIMATOL, V23, P231, DOI 10.1023/A:1013837426426; Remis MJ, 1997, AM J PRIMATOL, V43, P87; Remis MJ, 2001, INT J PRIMATOL, V22, P807, DOI 10.1023/A:1012021617737; Robbins MM, 2004, AM J PRIMATOL, V64, P145, DOI 10.1002/ajp.20069; Rogers ME, 2004, AM J PRIMATOL, V64, P173, DOI 10.1002/ajp.20071; Ross C, 1998, EVOL ANTHROPOL, V6, P54, DOI 10.1002/(SICI)1520-6505(1998)6:2<54::AID-EVAN3>3.3.CO;2-D; ROSS C, 1992, OECOLOGIA, V90, P383, DOI 10.1007/BF00317695; ROSS C, 1992, PRIMATES, V33, P207, DOI 10.1007/BF02382750; Rothman JM, 2008, AM J PRIMATOL, V70, P690, DOI 10.1002/ajp.20540; Rothman JM, 2008, OECOLOGIA, V155, P111, DOI 10.1007/s00442-007-0901-1; Rothman JM, 2011, BIOL LETTERS, V7, P847, DOI 10.1098/rsbl.2011.0321; Rothman JM, 2009, AM J PRIMATOL, V71, P70, DOI 10.1002/ajp.20623; Sardi ML, 2007, J ANAT, V210, P406, DOI 10.1111/j.1469-7580.2007.00701.x; Schmidt S, 2003, OECOLOGIA, V134, P569, DOI 10.1007/s00442-002-1150-y; Smith B. Holly, 1994, Yearbook of Physical Anthropology, V37, P177; Smith BH, 2011, J HUM EVOL, V60, P34, DOI 10.1016/j.jhevol.2010.08.006; SMITH BH, 1994, AM J PHYS ANTHROPOL, V94, P307, DOI 10.1002/ajpa.1330940303; SMITH BH, 1989, EVOLUTION, V43, P683, DOI 10.1111/j.1558-5646.1989.tb04266.x; SMITH RJ, 1995, J HUM EVOL, V29, P155, DOI 10.1006/jhev.1995.1051; Smith TM, 2007, P NATL ACAD SCI USA, V104, P20220, DOI 10.1073/pnas.0707051104; Stanford CB, 2003, INT J PRIMATOL, V24, P901, DOI 10.1023/A:1024689008159; STEWART KJ, 1988, J REPROD FERTIL, V83, P627; Stoinski TS, 2013, AM J PHYS ANTHROPOL, V152, P165, DOI 10.1002/ajpa.22301; Suri L, 2004, AM J ORTHOD DENTOFAC, V126, P432, DOI 10.1016/j.ajodo.2003.10.031; Taylor AB, 1997, AM J PRIMATOL, V43, P1, DOI 10.1002/(SICI)1098-2345(1997)43:1<1::AID-AJP1>3.0.CO;2-0; Thompson ME, 2013, AM J PRIMATOL, V75, P222, DOI 10.1002/ajp.22084; TUTIN CEG, 1991, PHILOS T ROY SOC B, V334, P179, DOI 10.1098/rstb.1991.0107; TUTIN CEG, 1992, AM J PRIMATOL, V28, P29, DOI 10.1002/ajp.1350280103; UEHARA S, 1987, AM J PHYS ANTHROPOL, V72, P315, DOI 10.1002/ajpa.1330720305; VANDERMERWE NJ, 1989, GEOCHIM COSMOCHIM AC, V53, P1091, DOI 10.1016/0016-7037(89)90213-5; Vrba ES, 1998, J THEOR BIOL, V190, P227, DOI 10.1006/jtbi.1997.0549; WATTS DP, 1985, AM J PRIMATOL, V8, P1, DOI 10.1002/ajp.1350080102; Wrangham R. W., 1977, P503; WRANGHAM RW, 1991, PHILOS T ROY SOC B, V334, P171, DOI 10.1098/rstb.1991.0106; Yamagiwa J, 2006, PRIMATES, V47, P74, DOI 10.1007/s10329-005-0147-7; Yamagiwa J, 2009, AM J PHYS ANTHROPOL, V140, P739, DOI 10.1002/ajpa.21102; Zihlman A, 2004, P NATL ACAD SCI USA, V101, P10541, DOI 10.1073/pnas.0402635101 107 14 14 1 37 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUL 23 2014 9 7 e102794 10.1371/journal.pone.0102794 11 Multidisciplinary Sciences Science & Technology - Other Topics AM1NT WOS:000339614100057 25054380 DOAJ Gold, Green Published 2019-02-21 J Graham, JK; Smith, ML; Simons, AM Graham, Jeffrey K.; Smith, Myron L.; Simons, Andrew M. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article bet hedging; dormancy; geometric-mean fitness; life-history evolution; spore germination; stochasticity RANDOMLY VARYING ENVIRONMENT; NATURAL-SELECTION; DESERT ANNUALS; GERMINATION; MACROEVOLUTION; POPULATIONS; PLANTS All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments. [Graham, Jeffrey K.; Smith, Myron L.; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada; [Smith, Myron L.] Carleton Univ, Inst Biochem, Ottawa, ON K1S 5B6, Canada Simons, AM (reprint author), Carleton Univ, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. andrew.simons@carleton.ca Simons, Andrew/A-7751-2012 Simons, Andrew/0000-0002-0198-465X; Smith, Myron/0000-0001-6274-0053 NSERC This work was supported by NSERC Discovery grants to A. M. S. and M.L.S. Beaumont HJE, 2009, NATURE, V462, P90, DOI 10.1038/nature08504; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Byrne PG, 2009, P R SOC B, V276, P115, DOI 10.1098/rspb.2008.0794; Clauss MJ, 2000, AM NAT, V155, P168, DOI 10.1086/303314; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; DEMPSTER ER, 1955, COLD SPRING HARB SYM, V20, P25, DOI 10.1101/SQB.1955.020.01.005; GILLESPIE JH, 1974, GENETICS, V76, P601; GILLESPIE JH, 1977, AM NAT, V111, P1010, DOI 10.1086/283230; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Lee MSY, 2003, TRENDS ECOL EVOL, V18, P263, DOI 10.1016/S0169-5347(03)00103-4; Levy SF, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001325; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; LINDEGREN CARL C., 1932, BULL TORREY BOT CLUB, V59, P85, DOI 10.2307/2480556; LYNCH M, 1993, BIOTIC INTERACTIONS AND GLOBAL CHANGE, P234; Orr HA, 2007, EVOLUTION, V61, P2997, DOI 10.1111/j.1558-5646.2007.00237.x; PERKINS DD, 1988, EXP MYCOL, V12, P91, DOI 10.1016/0147-5975(88)90001-1; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; PHILIPPI T, 1993, AM NAT, V142, P488, DOI 10.1086/285551; Philippi TE, 2001, ISRAEL J ZOOL, V47, P387, DOI 10.1560/LU8G-9HVP-YR80-XCL0; Ratcliff WC, 2010, CURR BIOL, V20, P1740, DOI 10.1016/j.cub.2010.08.036; Rees M, 2006, AM NAT, V168, pE53, DOI 10.1086/505762; Rovira-Graells N, 2012, GENOME RES, V22, P925, DOI 10.1101/gr.129692.111; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simons AM, 2002, J EVOLUTION BIOL, V15, P688, DOI 10.1046/j.1420-9101.2002.00437.x; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Simons AM, 2009, P ROY SOC B-BIOL SCI, V276, P1987, DOI 10.1098/rspb.2008.1920; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Stearns SC, 2000, J BIOSCIENCE, V25, P221, DOI 10.1007/BF02703928; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; VOGEL HJ, 1964, AM NAT, V98, P435, DOI 10.1086/282338; WESTERGAARD M, 1947, AM J BOT, V34, P573, DOI 10.2307/2437339 32 15 15 2 35 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 22 2014 281 1787 20140706 10.1098/rspb.2014.0706 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AK3PC WOS:000338335800023 24870047 Green Published, Bronze 2019-02-21 J Kribs-Zaleta, CM Kribs-Zaleta, Christopher M. Graphical analysis of evolutionary trade-off in sylvatic Trypanosoma cruzi transmission modes JOURNAL OF THEORETICAL BIOLOGY English Article Vector-borne disease; Vertical transmission; Oral transmission; Stercorarian transmission CONTACT PROCESS SATURATION; VIRULENCE EVOLUTION; VECTOR MIGRATION; UNITED-STATES; HOST; PATHOGENS; DYNAMICS; PARASITE; DISEASES; BIOLOGY The notion of evolutionary trade-off (one attribute increasing at the expense of another) is central to the evolution of traits, well-studied especially in life-history theory, where a framework first developed by Levins illustrates how internal (genetics) and external (fitness landscapes) forces interact to shape an organism's ongoing adaptation. This manuscript extends this framework to the context of vector-borne pathogens, with the example of Trypanosoma cruzi (the etiological agent of Chagas' disease) adapting via trade-off among three different infection routes to hosts-stercorarian, vertical, and oral in response to an epidemiological landscape that involves both hosts and vectors (where, in particular, parasite evolution depends not on parasite density but on relative host and vector densities). Using a fitness measure derived from an invasion reproductive number, this study analyzes several different trade-off scenarios in cycles involving raccoons or woodrats, including a proper three-way trade-off (two independent parameters). Results indicate that selection favors oral transmission to raccoons but classical stercorarian transmission to woodrats even under the same predation rate, with vertical (congenital) transmission favored only when aligned with dominant oral transmission or (at trace levels) under a weak (convex) trade-off. (C) 2014 Elsevier Ltd. All rights reserved. Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA Kribs-Zaleta, CM (reprint author), Univ Texas Arlington, Dept Math, Box 19408, Arlington, TX 76019 USA. kribs@uta.edu Kribs, Christopher/A-5431-2015 Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; Alizon S, 2008, THEOR POPUL BIOL, V74, P6, DOI 10.1016/j.tpb.2008.04.003; ANDERSON RM, 1979, NATURE, V280, P361, DOI 10.1038/280361a0; Best A, 2013, INTERFACE FOCUS, V3, DOI 10.1098/rsfs.2013.0024; Boldin B, 2012, EVOLUTION, V66, P2514, DOI 10.1111/j.1558-5646.2012.01613.x; Boldin B, 2009, EVOL ECOL RES, V11, P153; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Bowers RG, 2005, J THEOR BIOL, V233, P363, DOI 10.1016/j.jtbi.2004.10.017; Charles RA, 2013, VECTOR-BORNE ZOONOT, V13, P22, DOI 10.1089/vbz.2011.0817; Crawford B.A., 2014, MATH BIOSCI ENG, V11; Crawford BA, 2013, B MATH BIOL, V75, P1051, DOI 10.1007/s11538-013-9840-7; Crawford BA, 2013, ECOL COMPLEX, V14, P145, DOI 10.1016/j.ecocom.2012.11.003; Day T, 2002, ECOL LETT, V5, P471, DOI 10.1046/j.1461-0248.2002.00342.x; de Mazancourt C, 2004, AM NAT, V164, P765, DOI 10.1086/424762; de Roode JC, 2008, P NATL ACAD SCI USA, V105, P7489, DOI 10.1073/pnas.0710909105; Fisher RA, 1930, GENETICAL THEORY NAT; Froissart R, 2010, PHILOS T R SOC B, V365, P1907, DOI 10.1098/rstb.2010.0068; Hall CA, 2010, J PARASITOL, V96, P371, DOI 10.1645/GE-2296.1; Kribs-Zaleta C.M., 2010, MATH BIOSCI ENG, V7, P661; Kribs-Zaleta C, 2006, MATH POPUL STUD, V13, P135, DOI 10.1080/08898480600788576; Kribs-Zaleta C, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000656; Kribs-Zaleta CM, 2012, J BIOL DYNAM, V6, P813, DOI 10.1080/17513758.2012.710339; Lauria Pires L., 1997, J COMP PATHOL, V117, P119; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; MAY RM, 1983, PROC R SOC SER B-BIO, V219, P281, DOI 10.1098/rspb.1983.0075; NORMAN L, 1959, J PARASITOL, V45, P457, DOI 10.2307/3274400; Pelosse P, 2012, J THEOR BIOL, V312, P133, DOI 10.1016/j.jtbi.2012.07.028; PIPPIN WF, 1970, J MED ENTOMOL, V7, P30, DOI 10.1093/jmedent/7.1.30; Roche B, 2011, ECOL LETT, V14, P569, DOI 10.1111/j.1461-0248.2011.01619.x; Roellig DM, 2008, EMERG INFECT DIS, V14, P1123, DOI 10.3201/eid1407.080175; Roellig DM, 2009, INT J PARASITOL, V39, P1603, DOI 10.1016/j.ijpara.2009.06.007; Rueffler C, 2006, AM NAT, V167, P81, DOI 10.1086/498275; Rueffler C, 2004, THEOR POPUL BIOL, V65, P165, DOI 10.1016/j.tpb.2003.10.001; Svennungsen TO, 2009, J THEOR BIOL, V257, P408, DOI 10.1016/j.jtbi.2008.11.014; Turner PE, 1998, EVOLUTION, V52, P315, DOI 10.1111/j.1558-5646.1998.tb01634.x 35 6 6 3 19 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. JUL 21 2014 353 34 43 10.1016/j.jtbi.2014.03.002 10 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology AH7WY WOS:000336347300005 24632446 2019-02-21 J Macho, GA Macho, Gabriele A. An ecological and behavioural approach to hominin evolution during the Pliocene QUATERNARY SCIENCE REVIEWS English Article Australopithecus anamensis; Australopithecus afarensis; Papio; Panthera leo; Mid-Pliocene mammalian turnover; Hominin sociality; Dietary flexibility; Sexual dimorphism; Brain size NORTHEAST AFRICAN VEGETATION; BRAIN-SIZE EVOLUTION; MILLE CENTRAL AFAR; EASTERN AFRICA; AUSTRALOPITHECUS-ANAMENSIS; CLIMATE-CHANGE; TURKANA BASIN; LIFE-HISTORY; FOSSIL RECORD; ALLIA BAY The study considers the turnover in hominins, together with carnivorans and other primates, at 3.5 Ma against an environmental backdrop. Communalities are identified between evolving guilds that may directly inform hominin evolution. These are the evolution of (a) dietary generalists and (b) evidence for sociality in carnivores, baboons and hominins. Sociality and behavioural flexibility are regarded advantageous for the procurement of resources while, at the same time, reducing intraspecific competition; in primates it may initially also have served to reduce predation risk. Behavioural flexibility explains the evolutionary success of Panthera leo, Papio and Homo. Viewed within a wider palaeoecological and environmental context, it is possible that sociality in hominins, including allocare, were triggered by abiotic changes at about 3.5 Ma. If confirmed in future studies, this would mark the beginning of hominin life history evolution. (C) 2013 Elsevier Ltd. All rights reserved. Res Lab Archaeol RLAHA, Oxford OX1 3QY, England Macho, GA (reprint author), Res Lab Archaeol RLAHA, Dyson Perrins Bldg,South Parks Rd, Oxford OX1 3QY, England. Gabriele.Macho@rlaha.ox.ac.uk Ministerio de Ciencia e Innovacion [CGL2010-20868] I thank Hannah O'Regan, Sarah Elton and Danielle Schreve for inviting me to contribute to the memorial volume for Alan Turner. Raymonde Bonnefille kindly gave permission to reproduce her compilation of environmental changes shown in Fig. 2. I am grateful to Meave Leakey and Lars Werdelin for discussion on issues discussed here and for valuable comments. In part, this work was funded by the Ministerio de Ciencia e Innovacion (CGL2010-20868). The constructive comments of two anonymous reviewers are much appreciated and helped to clarify some to the issues raised in this ms. Alberts SC, 2005, CAM S BIO EVOL ANTHR, V44, P157, DOI 10.1017/CBO9780511542343.007; Alemseged Z, 2006, NATURE, V443, P296, DOI 10.1038/nature05047; Altmann S. A., 1998, FORAGING SURVIVAL; Juarez EIAY, 2012, TRENDS ECOL EVOL, V27, P272, DOI 10.1016/j.tree.2011.11.005; Andersson K, 2005, PALEOBIOLOGY, V31, P56, DOI 10.1666/0094-8373(2005)031<0056:WTPCIT>2.0.CO;2; Anton M, 2005, QUATERNARY SCI REV, V24, P1287, DOI 10.1016/j.quascirev.2004.09.008; ASFAW B, 1987, J HUM EVOL, V16, P611, DOI 10.1016/0047-2484(87)90016-9; Barry J.C., 1987, P235; Behrensmeyer AK, 2007, VERTEBR PALEOBIOL PA, P1; Behrensmeyer AK, 1997, SCIENCE, V278, P1589, DOI 10.1126/science.278.5343.1589; Behrensmeyer AK, 2006, SCIENCE, V311, P476, DOI 10.1126/science.1116051; Behrensmeyer Anna K., 2013, P41; Bobe R, 2007, VERTEBR PALEOBIOL PA, P129, DOI 10.1007/978-1-4020-3098-7_6; Bobe R, 2006, J ARID ENVIRON, V66, P564, DOI 10.1016/j.jaridenv.2006.01.010; Bobe R, 2004, PALAEOGEOGR PALAEOCL, V207, P399, DOI 10.1016/j.palaeo.2003.09.033; Bobe R, 2011, EVOL ANTHROPOL, V20, P254, DOI 10.1002/evan.20330; Bonnefille R, 2004, P NATL ACAD SCI USA, V101, P12125, DOI 10.1073/pnas.0401709101; Bonnefille R, 2010, GLOBAL PLANET CHANGE, V72, P390, DOI 10.1016/j.gloplacha.2010.01.015; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brown Francis H., 2013, P7; BRUNET M, 1995, NATURE, V378, P273, DOI 10.1038/378273a0; Brunet M, 2010, PHILOS T R SOC B, V365, P3315, DOI 10.1098/rstb.2010.0069; Canale CI, 2010, CLIM RES, V43, P135, DOI 10.3354/cr00897; Cerling TE, 1997, NATURE, V389, P153, DOI 10.1038/38229; Cerling TE, 2013, P NATL ACAD SCI USA, V110, P10507, DOI 10.1073/pnas.1222571110; Cerling TE, 2013, P NATL ACAD SCI USA, V110, P10501, DOI 10.1073/pnas.1222568110; Cerling TE, 2011, NATURE, V476, P51, DOI 10.1038/nature10306; Cerling TE, 2010, SCIENCE, V328, DOI 10.1126/science.1185274; Charnov Eric L., 1993, P1; Cowlishaw G, 1999, CONSERV BIOL, V13, P1183, DOI 10.1046/j.1523-1739.1999.98433.x; Dalerum F, 2007, J ZOOL, V273, P90, DOI 10.1111/j.1469-7998.2007.00303.x; DeMenocal PB, 2004, EARTH PLANET SC LETT, V220, P3, DOI 10.1016/S0012-821X(04)00003-2; Dennell R, 2006, PALAEOGEOGR PALAEOCL, V234, P168, DOI 10.1016/j.palaeo.2005.10.008; DeSilva JM, 2011, P NATL ACAD SCI USA, V108, P1022, DOI 10.1073/pnas.1003865108; DeSilva JM, 2008, J HUM EVOL, V55, P1064, DOI 10.1016/j.jhevol.2008.07.008; Donges JF, 2011, P NATL ACAD SCI USA, V108, P20422, DOI 10.1073/pnas.1117052108; Drake R., 1987, LAETOLI PLIOCENE SIT, P48; Elton S, 2002, FOLIA PRIMATOL, V73, P252, DOI 10.1159/000067457; Elton S, 2001, J HUM EVOL, V41, P1, DOI 10.1006/jhev.2001.0475; Feakins SJ, 2007, ORG GEOCHEM, V38, P1607, DOI 10.1016/j.orggeochem.2007.06.008; Feakins SJ, 2013, GEOLOGY, V41, P295, DOI 10.1130/G33845.1; Feakins SJ, 2005, GEOLOGY, V33, P977, DOI 10.1130/G21814.1; Finarelli JA, 2009, P NATL ACAD SCI USA, V106, P9345, DOI 10.1073/pnas.0901780106; FLEAGLE JG, 1991, J HUM EVOL, V21, P145, DOI 10.1016/0047-2484(91)90005-G; Frost SR, 2007, VERTEBR PALEOBIOL PA, P51, DOI 10.1007/978-1-4020-3098-7_3; GITTLEMAN JL, 1986, J MAMMAL, V67, P23, DOI 10.2307/1380998; Haile-Selassie Y, 2010, PHILOS T R SOC B, V365, P3323, DOI 10.1098/rstb.2010.0064; Haile-Selassie Y, 2010, AM J PHYS ANTHROPOL, V141, P406, DOI 10.1002/ajpa.21159; HARRIS J, 1995, GEOLOGY, V23, P593, DOI 10.1130/0091-7613(1995)023<0593:MAATPO>2.3.CO;2; Harrison T., FOSSIL HOMININS ASS, V2; Hylander K, 2013, TRENDS ECOL EVOL, V28, P341, DOI 10.1016/j.tree.2013.01.010; Isbell Lynne A., 1994, Evolutionary Anthropology, V3, P61, DOI 10.1002/evan.1360030207; Isler K, 2012, CURR ANTHROPOL, V53, pS453, DOI 10.1086/667623; Isler K, 2012, J HUM EVOL, V63, P52, DOI 10.1016/j.jhevol.2012.03.009; JABLONSKI NG, 1993, THEROPITHECUS RISE F; JABLONSKI NG, 2008, KOOBI FORA RES PROJE, V6; Jackson ST, 2010, TRENDS ECOL EVOL, V25, P153, DOI 10.1016/j.tree.2009.10.001; Janis Christine M., 1993, Journal of Mammalian Evolution, V1, P103, DOI 10.1007/BF01041590; JOHANSON DC, 1982, AM J PHYS ANTHROPOL, V57, P373, DOI 10.1002/ajpa.1330570402; Jolly CJ, 2001, YEARB PHYS ANTHROPOL, V44, P177, DOI 10.1002/ajpa.10021; Kappelman J, 1996, J HUM EVOL, V30, P139, DOI 10.1006/jhev.1996.0010; Kimbel WH, 2006, J HUM EVOL, V51, P134, DOI 10.1016/j.jhevol.2006.02.003; Kingston JD, 2007, YEARB PHYS ANTHROPOL, V50, P20, DOI 10.1002/ajpa.20733; LEAKEY MD, 1976, NATURE, V262, P460, DOI 10.1038/262460a0; Leakey M, 2010, VERTEBR PALEOBIOL PA, P3, DOI 10.1007/978-90-481-9036-2_1; Leakey MG, 1998, NATURE, V393, P62, DOI 10.1038/29972; LEAKEY MG, 1995, NATURE, V376, P565, DOI 10.1038/376565a0; Leakey MG, 2001, NATURE, V410, P433, DOI 10.1038/35068500; Lee-Thorp J, 2012, P NATL ACAD SCI USA, V109, P20369, DOI 10.1073/pnas.1204209109; Lewis ME, 2007, VERTEBR PALEOBIOL PA, P77, DOI 10.1007/978-1-4020-3098-7_4; Lewis ME, 1997, J HUM EVOL, V32, P257, DOI 10.1006/jhev.1996.0103; Lockwood CA, 2000, J HUM EVOL, V39, P23, DOI 10.1006/jhev.2000.0401; Macchiarelli R, 2004, COLLEGIUM ANTROPOL, V28, P65; Macho G.A., 2013, CURR ANTHR IN PRESS; Macho GA, 2005, ANAT REC PART A, V283A, P310, DOI 10.1002/ar.a.20175; Macho GA, 2003, PALAEOGEOGR PALAEOCL, V199, P17, DOI 10.1016/S0031-0182(03)00483-8; Macho GA, 2002, BIOL J LINN SOC, V75, P271, DOI 10.1046/j.1095-8312.2002.00013.x; Macho GA, 1996, J HUM EVOL, V30, P57, DOI 10.1006/jhev.1996.0004; Macho GA, 2010, FOLIA PRIMATOL, V81, P292, DOI 10.1159/000322631; Macho GA, 2010, J HUM EVOL, V58, P23, DOI 10.1016/j.jhevol.2009.07.004; Macho GA, 2009, QUATERN INT, V204, P95, DOI 10.1016/j.quaint.2009.03.003; McPherron SP, 2010, NATURE, V466, P857, DOI 10.1038/nature09248; Mosser A, 2009, ANIM BEHAV, V78, P359, DOI 10.1016/j.anbehav.2009.04.024; Newman TK, 2004, AM J PHYS ANTHROPOL, V124, P17, DOI 10.1002/ajpa.10340; O'Regan HJ, 2002, J QUATERNARY SCI, V17, P789, DOI 10.1002/jqs.693; Owen-Smith N, 1999, HUMAN EVOLUT SER, P138; Owen-Smith N., 1992, ONGULES, V91, P75; Paul MJ, 2008, PHILOS T R SOC B, V363, P341, DOI 10.1098/rstb.2007.2143; Perez-Barberia FJ, 2007, EVOLUTION, V61, P2811, DOI 10.1111/j.1558-5646.2007.00229.x; Peters C.R., 2007, SERENGETI, P47; Potts R, 1998, YEARB PHYS ANTHROPOL, V41, P93; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; Potts R, 2012, CURR ANTHROPOL, V53, pS299, DOI 10.1086/667704; Price SA, 2012, P NATL ACAD SCI USA, V109, P7008, DOI 10.1073/pnas.1117133109; Reed Kaye E., 2013, PALEOBIOLOGY AUSTRAL; Robson SL, 2008, J ANAT, V212, P394, DOI 10.1111/j.1469-7580.2008.00867.x; Semaw S, 1997, NATURE, V385, P333, DOI 10.1038/385333a0; Sepulchre P, 2006, SCIENCE, V313, P1419, DOI 10.1126/science.1129158; Smith JE, 2012, CURR ANTHROPOL, V53, pS436, DOI 10.1086/667653; Spoor F, 2010, PHILOS T R SOC B, V365, P3377, DOI 10.1098/rstb.2010.0042; Stearns S, 1992, EVOLUTION LIFE HIST; Teaford MF, 2000, P NATL ACAD SCI USA, V97, P13506, DOI 10.1073/pnas.260368897; TIEDEMANN R, 1994, PALEOCEANOGRAPHY, V9, P619, DOI 10.1029/94PA00208; TILMAN D, 1994, NATURE, V371, P65, DOI 10.1038/371065a0; Trauth MH, 2007, J HUM EVOL, V53, P475, DOI 10.1016/j.jhevol.2006.12.009; Trauth MH, 2010, QUATERNARY SCI REV, V29, P2981, DOI 10.1016/j.quascirev.2010.07.007; Trauth MH, 2009, QUATERNARY SCI REV, V28, P399, DOI 10.1016/j.quascirev.2008.11.003; Trauth MH, 2005, SCIENCE, V309, P2051, DOI 10.1126/science.1112964; Turner A, 1996, GEOBIOS-LYON, V29, P455, DOI 10.1016/S0016-6995(96)80005-2; TURNER A, 1990, GEOBIOS-LYON, V23, P349, DOI 10.1016/0016-6995(90)80006-2; TURNER A, 1988, J ARCHAEOL SCI, V15, P327, DOI 10.1016/0305-4403(88)90068-4; Turner A., 1998, Estudios Geologicos (Madrid), V54, P209; TURNER A, 1993, J HUM EVOL, V24, P147, DOI 10.1006/jhev.1993.1011; Turner A, 1999, ANTIQUITY, V73, P563; TURNER A, 1991, GEOBIOS-LYON, V24, P761, DOI 10.1016/S0016-6995(06)80304-9; TURNER A, 1992, J HUM EVOL, V22, P109, DOI 10.1016/0047-2484(92)90033-6; Turner A., 2004, EVOLVING EDEN ILLUST; Turner A, 1997, BIG CATS THEIR FOSSI; Turner A., 1999, AFRICAN BIOGEOGRAPHY, P78; Turner A, 2008, GEOBIOS-LYON, V41, P677, DOI 10.1016/j.geobios.2008.01.001; Turner A, 2009, J QUATERNARY SCI, V24, P991, DOI 10.1002/jqs.1278; Turner Alan, 2007, P421, DOI 10.1007/978-3-540-33761-4_15; Turner Alan, 1995, Acta Zoologica Cracoviensia, V38, P45; van Schaik CP, 1999, J HUM EVOL, V36, P719, DOI 10.1006/jhev.1999.0304; van Woerden JT, 2012, EVOLUTION, V66, P191, DOI 10.1111/j.1558-5646.2011.01434.x; VRBA ES, 1985, S AFR J SCI, V81, P263; Vrba ES, 1995, PALEOCLIMATE AND EVOLUTION, WITH EMPHASIS ON HUMAN ORIGINS, P24; VRBA ES, 1985, S AFR J SCI, V81, P229; Ward C, 1999, EVOL ANTHROPOL, V7, P197, DOI 10.1002/(SICI)1520-6505(1999)7:6<197::AID-EVAN4>3.0.CO;2-T; Ward CV, 1999, J HUM EVOL, V36, P69, DOI 10.1006/jhev.1998.0262; Ward CV, 2001, J HUM EVOL, V41, P255, DOI 10.1006/jhev.2001.0507; Werdelin L, 2005, ZOOL J LINN SOC-LOND, V144, P121, DOI 10.1111/j.1096-3642.2005.00165.x; Werdelin L, 2000, J PALEONTOL, V74, P1173, DOI 10.1666/0022-3360(2000)074<1173:CFTSTH>2.0.CO;2; WERDELIN L, 1994, ZOOL J LINN SOC-LOND, V111, P197, DOI 10.1006/zjls.1994.1022; Werdelin Lars, 1996, Acta Zoologica Cracoviensia, V39, P585; Werdelin L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057944; Werdelin L, 2011, VERTEBR PALEOBIOL PA, P189, DOI 10.1007/978-90-481-9962-4_8; Werdelin L, 2008, J VERTEBR PALEONTOL, V28, P1162, DOI 10.1671/0272-4634-28.4.1162; Werdelin L, 2008, CR PALEVOL, V7, P645, DOI 10.1016/j.crpv.2008.09.014; White TD, 2006, NATURE, V440, P883, DOI 10.1038/nature04629; White TD, 2009, SCIENCE, V326, P75, DOI 10.1126/science.1175802; Wood B, 2008, J ANAT, V212, P354, DOI 10.1111/j.1469-7580.2008.00871.x; Wynn JG, 2004, AM J PHYS ANTHROPOL, V123, P106, DOI 10.1002/ajpa.10317; Wynn JG, 2000, J HUM EVOL, V39, P411, DOI 10.1006/jhev.2000.0431; Wynn JG, 2013, P NATL ACAD SCI USA, V110, P10495, DOI 10.1073/pnas.1222559110; Yamaguchi N, 2004, J ZOOL, V263, P329, DOI 10.1017/S0952836904005242; YOUNG TP, 1994, CONSERV BIOL, V8, P410, DOI 10.1046/j.1523-1739.1994.08020410.x 147 5 6 2 56 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0277-3791 QUATERNARY SCI REV Quat. Sci. Rev. JUL 15 2014 96 23 31 10.1016/j.quascirev.2013.12.008 9 Geography, Physical; Geosciences, Multidisciplinary Physical Geography; Geology AM3TB WOS:000339774600004 2019-02-21 J Adler, PB; Salguero-Gomez, R; Compagnoni, A; Hsu, JS; Ray-Mukherjee, J; Mbeau-Ache, C; Franco, M Adler, Peter B.; Salguero-Gomez, Roberto; Compagnoni, Aldo; Hsu, Joanna S.; Ray-Mukherjee, Jayanti; Mbeau-Ache, Cyril; Franco, Miguel Functional traits explain variation in plant life history strategies (vol 111, pg 740, 2014) PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Correction Salguero-Gomez, Roberto/N-6016-2016 Salguero-Gomez, Roberto/0000-0002-6085-4433; Compagnoni, Aldo/0000-0001-8302-7492 Adler PB, 2014, P NATL ACAD SCI USA, V111, P740, DOI 10.1073/pnas.1315179111; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.2307/2679872 2 2 2 3 62 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JUL 8 2014 111 27 10019 10019 10.1073/pnas.1410430111 1 Multidisciplinary Sciences Science & Technology - Other Topics AK6CH WOS:000338514800069 Green Published, Bronze 2019-02-21 J Kotlik, P; Markova, S; Vojtek, L; Stratil, A; Slechta, V; Hyrsl, P; Searle, JB Kotlik, Petr; Markova, Silvia; Vojtek, Libor; Stratil, Antonin; Slechta, Vlastimil; Hyrsl, Pavel; Searle, Jeremy B. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article adaptation; antioxidative capacity; climate change; cysteine; oxidative stress; redox LIFE-HISTORY EVOLUTION; OXIDATIVE STRESS; GENE CONVERSION; HYBRID ZONE; CLETHRIONOMYS-GLAREOLUS; MITOCHONDRIAL-DNA; CELTIC FRINGE; POLYMORPHISM; ADAPTATION; MICE Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming. This allows us to examine their adaptive divergence and hence a possible role of selection in the replacement. We determine the amino acid substitution Ser52Cys in the major expressed beta-globin gene as the allelic difference. We use structural modelling to reveal that the protein environment renders the 52Cys thiol a highly reactive functional group and we show its reactivity in vitro. We demonstrate that possessing the reactive thiol in haemoglobin increases the resistance of bank vole erythrocytes to oxidative stress. Our study thus provides striking evidence for physiological differences between products of genic variants that spread at the expense of one another during colonization of an area from different glacial refugia. [Kotlik, Petr; Markova, Silvia; Stratil, Antonin] Acad Sci Czech Republ, Inst Anim Physiol & Genet, Lab Mol Ecol, Libechov 27721, Czech Republic; [Slechta, Vlastimil] Acad Sci Czech Republ, Inst Anim Physiol & Genet, Lab Fish Genet, Libechov 27721, Czech Republic; [Vojtek, Libor; Hyrsl, Pavel] Masaryk Univ, Fac Sci, Inst Expt Biol, Dept Anim Physiol & Immunol, CS-61137 Brno, Czech Republic; [Searle, Jeremy B.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA Kotlik, P (reprint author), Acad Sci Czech Republ, Inst Anim Physiol & Genet, Lab Mol Ecol, Libechov 27721, Czech Republic. kotlik@iapg.cas.cz Stratil, Antonin/G-7194-2014; Hyrsl, Pavel/N-3371-2017; Markova, Silvia/G-3875-2014; Kotlik, Petr/B-4633-2009; Slechta, Vlastimil/G-7189-2014 Hyrsl, Pavel/0000-0002-4266-5727; Kotlik, Petr/0000-0001-9429-0667; Searle, Jeremy/0000-0001-7710-5204 Grant Agency of the Academy of Sciences of the Czech Republic [IAA600450901]; Czech Science Foundation [P506-11-1872] The study was carried out with the financial support from the Grant Agency of the Academy of Sciences of the Czech Republic (grant no. IAA600450901) and the Czech Science Foundation (grant no. P506-11-1872) and with the institutional support RVO: 67985904. Arnold K, 2006, BIOINFORMATICS, V22, P195, DOI 10.1093/bioinformatics/bti770; AVISE JC, 1987, ANNU REV ECOL SYST, V18, P489, DOI 10.1146/annurev.ecolsys.18.1.489; Barnes I, 2002, SCIENCE, V295, P2267, DOI 10.1126/science.1067814; Bartelik A, 2013, GEN COMP ENDOCR, V183, P69, DOI 10.1016/j.ygcen.2012.12.006; BARTON NH, 1983, EVOLUTION, V37, P454, DOI 10.1111/j.1558-5646.1983.tb05563.x; Belkhir K, 2004, GENETIX 4 05 LOGICIE; Betran E, 1997, GENETICS, V146, P89; Brito PH, 2009, GENETICA, V135, P439, DOI 10.1007/s10709-008-9293-3; BRODSKY I, 1966, CANCER RES, V26, P198; Bulgarella M, 2012, MOL ECOL, V21, P350, DOI 10.1111/j.1365-294X.2011.05400.x; Clement M, 2000, MOL ECOL, V9, P1657, DOI 10.1046/j.1365-294x.2000.01020.x; COOK A, 1975, BIRD STUDY, V22, P165, DOI 10.1080/00063657509476460; Deagle BE, 2013, MOL ECOL, V22, P1917, DOI 10.1111/mec.12215; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; FERRAND N, 1989, BIOCHEM GENET, V27, P673, DOI 10.1007/BF02396059; Filipovska Aleksandra, 2006, Curr Protoc Toxicol, VChapter 6, DOI 10.1002/0471140856.tx0610s28; Franks SJ, 2012, ANNU REV GENET, V46, P185, DOI 10.1146/annurev-genet-110711-155511; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Giustarini D, 2006, BIOCHEM PHARMACOL, V71, P1753, DOI 10.1016/j.bcp.2006.03.015; Goudet J, 1996, GENETICS, V144, P1933; GUO SW, 1992, BIOMETRICS, V48, P361, DOI 10.2307/2532296; HALL SJG, 1979, J ZOOL, V187, P153, DOI 10.1111/j.1469-7998.1979.tb03939.x; Herman JS, 2011, P ROY SOC B-BIOL SCI, V278, P3601, DOI 10.1098/rspb.2011.0321; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hewitt GM, 1999, BIOL J LINN SOC, V68, P87, DOI 10.1006/bijl.1999.0332; Hofreiter M, 2007, CURR BIOL, V17, pR122, DOI 10.1016/j.cub.2007.01.026; Hyrsl P, 2004, FOLIA MICROBIOL, V49, P315, DOI 10.1007/BF02931049; Isaksson C, 2013, BMC ECOL, V13, DOI 10.1186/1472-6785-13-15; Jacob MH, 2005, BIOCHEMISTRY-US, V44, P13664, DOI 10.1021/bi051205t; Kal AJ, 1999, MOL BIOL CELL, V10, P1859, DOI 10.1091/mbc.10.6.1859; Karbowiak G, 2005, ACTA THERIOL, V50, P31, DOI 10.1007/BF03192616; KOSOWER NS, 1995, METHOD ENZYMOL, V251, P123, DOI 10.1016/0076-6879(95)51116-4; Li H, 2005, PROTEINS, V61, P704, DOI 10.1002/prot.20660; Librado P, 2009, BIOINFORMATICS, V25, P1451, DOI 10.1093/bioinformatics/btp187; Marino SM, 2010, J MOL BIOL, V404, P902, DOI 10.1016/j.jmb.2010.09.027; Markova S, 2014, HEREDITY, V113, P64, DOI 10.1038/hdy.2014.12; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Miranda JJ, 2000, BIOCHEM BIOPH RES CO, V275, P517, DOI 10.1006/bbrc.2000.3326; Niklasson B, 2003, ANN NY ACAD SCI, V1005, P170, DOI 10.1196/annals.1288.020; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; PICCININI M, 1991, BIOL CHEM H-S, V372, P975, DOI 10.1515/bchm3.1991.372.2.975; Piertney SB, 2005, MOL ECOL, V14, P1435, DOI 10.1111/j.1365-294X.2005.02496.x; Porter AH, 1997, EVOLUTION, V51, P1561, DOI 10.1111/j.1558-5646.1997.tb01479.x; Portner HO, 2002, COMP BIOCHEM PHYS A, V132, P739, DOI 10.1016/S1095-6433(02)00045-4; Reischl E, 2007, COMP BIOCHEM PHYS C, V146, P22, DOI 10.1016/j.cbpc.2006.07.015; RIGGS A, 1965, SCIENCE, V147, P621, DOI 10.1126/science.147.3658.621-a; Rossi R, 1998, J BIOL CHEM, V273, P19198, DOI 10.1074/jbc.273.30.19198; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Runck AM, 2009, MOL BIOL EVOL, V26, P2521, DOI 10.1093/molbev/msp165; Salzburger W, 2011, MOL ECOL, V20, P1952, DOI 10.1111/j.1365-294X.2011.05066.x; SAWYER S, 1989, MOL BIOL EVOL, V6, P526; Schonecker B, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022893; SEARLE JB, 1987, HEREDITY, V59, P345, DOI 10.1038/hdy.1987.141; Searle JB, 2009, P ROY SOC B-BIOL SCI, V276, P4287, DOI 10.1098/rspb.2009.1422; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Slavikova H, 1998, FREE RADICAL BIO MED, V25, P9, DOI 10.1016/S0891-5849(98)00030-6; Soltis DE, 2006, MOL ECOL, V15, P4261, DOI 10.1111/j.1365-294X.2006.03061.x; Sommer RS, 2008, QUATERNARY SCI REV, V27, P714, DOI 10.1016/j.quascirev.2007.11.016; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Storz JF, 2007, PLOS GENET, V3, P448, DOI 10.1371/journal.pgen.0030045; Storz JF, 2007, GENETICS, V177, P481, DOI 10.1534/genetics.107.078550; Storz JF, 2012, COMP BIOCHEM PHYS A, V161, P265, DOI 10.1016/j.cbpa.2011.11.004; Storz JF, 2009, P NATL ACAD SCI USA, V106, P14450, DOI 10.1073/pnas.0905224106; Styskal J, 2012, FREE RADICAL BIO MED, V52, P46, DOI 10.1016/j.freeradbiomed.2011.10.441; SZYMURA JM, 1986, EVOLUTION, V40, P1141, DOI 10.1111/j.1558-5646.1986.tb05740.x; Taberlet P, 1998, MOL ECOL, V7, P453, DOI 10.1046/j.1365-294x.1998.00289.x; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; WEIR BS, 1979, BIOMETRICS, V35, P235, DOI 10.2307/2529947; Yang YZ, 2007, J BIOCHEM MOL BIOL, V40, P426 69 9 9 0 57 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 7 2014 281 1786 20140021 10.1098/rspb.2014.0021 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AI3TA WOS:000336784500010 24827438 Green Published, Bronze 2019-02-21 J Sanchez-Macouzet, O; Rodriguez, C; Drummond, H Sanchez-Macouzet, Oscar; Rodriguez, Cristina; Drummond, Hugh Better stay together: pair bond duration increases individual fitness independent of age-related variation PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article social monogamy; pair bonds; mate familiarity; cooperation; remating; age-independent BLUE-FOOTED BOOBY; SEXUAL SIZE DIMORPHISM; MATE CHOICE; REPRODUCTIVE SUCCESS; HAEMATOPUS-OSTRALEGUS; SOCIAL MONOGAMY; NAZCA BOOBIES; ZEBRA FINCH; DIVORCE; BIRDS Prolonged pair bonds have the potential to improve reproductive performance of socially monogamous animals by increasing pair familiarity and enhancing coordination and cooperation between pair members. However, this has proved very difficult to test robustly because of important confounds such as age and reproductive experience. Here, we address limitations of previous studies and provide a rigorous test of the mate familiarity effect in the socially monogamous blue-footed booby, Sula nebouxii, a long-lived marine bird with a high divorce rate. Taking advantage of a natural disassociation between age and pair bond duration in this species, and applying a novel analytical approach to a 24 year database, we found that those pairs which have been together for longer establish their clutches five weeks earlier in the season, hatch more of their eggs and produce 35% more fledglings, regardless of age and reproductive experience. Our results demonstrate that pair bond duration increases individual fitness and further suggest that synergistic effects between a male and female's behaviour are likely to be involved in generating a mate familiarity effect. These findings help to explain the age-and experience-independent benefits of remating and their role in life-history evolution. [Sanchez-Macouzet, Oscar; Rodriguez, Cristina; Drummond, Hugh] Univ Nacl Autonoma Mexico, Dept Ecol Evolut, Inst Ecol, Mexico City 04510, DF, Mexico Sanchez-Macouzet, O (reprint author), Univ Nacl Autonoma Mexico, Dept Ecol Evolut, Inst Ecol, AP 70-275, Mexico City 04510, DF, Mexico. o.sanchezmacouzet@gmail.com CONACYT [1986-88, 4722-N9407, C01-47599, D112-903581, PCCNCNA-031528, 31973-H, 34500V, 104313]; UNAM (PAPIIT) [1991-93, IN211491, IN-200702-3, IN206610, IN205313]; National Geographic Society This work was supported by the CONACYT (1986-88, 4722-N9407, C01-47599, D112-903581, PCCNCNA-031528, 31973-H, 34500V, 104313), the UNAM (PAPIIT, 1991-93, IN211491, IN-200702-3, IN206610, IN205313) and the National Geographic Society. Adkins-Regan E, 2007, BIOL LETTERS, V3, P617, DOI 10.1098/rsbl.2007.0388; Ancona S, 2011, J ANIM ECOL, V80, P799, DOI 10.1111/j.1365-2656.2011.01821.x; Beamonte-Barrientos R, 2010, AM NAT, V175, P469, DOI 10.1086/650726; Black J. M., 1996, PARTNERSHIPS BIRDS S; Black JM, 2001, BEHAV ECOL, V12, P640, DOI 10.1093/beheco/12.5.640; BLACK JM, 1996, PARTNERSHIPS BIRDS S, P3; Botero CA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032311; CHOUDHURY S, 1995, ANIM BEHAV, V50, P413, DOI 10.1006/anbe.1995.0256; Cockburn A, 2004, COOPERATIVE BREEDING, P81, DOI DOI 10.1017/CB09780511606816.006; Crawley M. J., 2007, R BOOK; D'Alba L, 2007, AUK, V124, P643, DOI 10.1642/0004-8038(2007)124[643:SEVALS]2.0.CO;2; DESROCHERS A, 1996, PARTNERSHIPS BIRDS S, P177; Dhondt AA, 2002, TRENDS ECOL EVOL, V17, P55, DOI 10.1016/S0169-5347(01)02407-7; DHONDT AA, 1994, J ANIM ECOL, V63, P979, DOI 10.2307/5274; DRUMMOND H, 1991, AM NAT, V138, P623, DOI 10.1086/285238; Drummond H, 2003, AM NAT, V161, P794, DOI 10.1086/375170; Elie JE, 2010, ANIM BEHAV, V80, P597, DOI 10.1016/j.anbehav.2010.06.003; Emery NJ, 2007, PHILOS T R SOC B, V362, P489, DOI 10.1098/rstb.2006.1991; Ens BJ, 1996, PARTNERSHIPS BIRDS S, P344; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; FOWLER GS, 1995, AM ZOOL, V35, P318; Froy H, 2013, ECOL LETT, V16, P642, DOI 10.1111/ele.12092; Gabriel PO, 2013, ETHOLOGY, V119, P178, DOI 10.1111/eth.12051; Gilby AJ, 2013, ANIM BEHAV, V85, P1329, DOI 10.1016/j.anbehav.2013.03.023; Graham MH, 2003, ECOLOGY, V84, P2809, DOI 10.1890/02-3114; Griffith SC, 2011, P ROY SOC B-BIOL SCI, V278, P2798, DOI 10.1098/rspb.2010.2672; Griggio M, 2011, ANIM BEHAV, V82, P1329, DOI 10.1016/j.anbehav.2011.09.016; GUERRA M, 1995, BEHAVIOUR, V132, P479, DOI 10.1163/156853995X00162; Gunnarsson TG, 2004, NATURE, V431, P646, DOI 10.1038/431646a; Heg D, 2003, ANIM BEHAV, V66, P175, DOI 10.1006/anbe.2003.2188; Hirschenhauser K, 2012, ETHOLOGY, V118, P799, DOI 10.1111/j.1439-0310.2012.02087.x; Jeschke JM, 2008, BEHAV ECOL SOCIOBIOL, V63, P1, DOI 10.1007/s00265-008-0646-9; Kim SY, 2007, BEHAV ECOL, V18, P1132, DOI 10.1093/beheco/arm091; Kim SY, 2011, OECOLOGIA, V166, P615, DOI 10.1007/s00442-011-1914-3; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lopez-Rull MI, 2001, THESIS U NACL AUTONO; Lukas D, 2013, SCIENCE, V341, P526, DOI 10.1126/science.1238677; Mainwaring MC, 2013, PEERJ, V1, DOI 10.7717/peerj.83; Maness TJ, 2008, ANIM BEHAV, V76, P1267, DOI 10.1016/j.anbehav.2008.04.020; Maness TJ, 2007, P ROY SOC B-BIOL SCI, V274, P2047, DOI 10.1098/rspb.2007.0578; Mariette MM, 2012, J AVIAN BIOL, V43, P131, DOI 10.1111/j.1600-048X.2012.05555.x; McNamara JM, 2010, PHILOS T R SOC B, V365, P2627, DOI 10.1098/rstb.2010.0159; Naves LC, 2007, ANIM BEHAV, V73, P433, DOI 10.1016/j.anbehav.2006.10.004; Nelson J. B., 1978, SULIDAE GANNETS BOOB; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; Oro D, 2010, ECOLOGY, V91, P1205, DOI 10.1890/09-0939.1; Osorio-Beristain M, 1998, BEHAV ECOL SOCIOBIOL, V43, P307, DOI 10.1007/s002650050496; Pena B, 2009, THESIS U NACL AUTONO; Perez-Staples D, 2013, BEHAVIOUR, V150, P337, DOI 10.1163/1568539X-00003055; Perfito N, 2007, FUNCT ECOL, V21, P291, DOI 10.1111/j.1365-2435.2006.01237.x; Perrins CM, 1970, IBIS, V112, P224, DOI 10.1111/j.1474-919X.1970.tb00096.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Ramos AG, HABITAT STRUCT UNPUB; REAL L, 1990, AM NAT, V136, P376, DOI 10.1086/285103; Reichard UH, 2003, MONOGAMY MATING STRA; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rowley I., 1983, P331; Rubenstein DR, 2007, P R SOC B, V274, P1895, DOI 10.1098/rspb.2007.0424; Sanchez-Macouzet O, 2011, BIOL LETTERS, V7, P869, DOI 10.1098/rsbl.2011.0461; Servedio MR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.3020; Shreiber EA, 2001, BIOL MARINE BIRDS; Song Z, 2013, J EVOLUTION BIOL, V26, P963, DOI 10.1111/jeb.12111; Spoon TR, 2006, ANIM BEHAV, V71, P315, DOI 10.1016/j.anbehav.2005.03.034; Stamps J, 2002, BEHAVIOUR, V139, P1383, DOI 10.1163/15685390260514672; Taborsky B, 1999, J AVIAN BIOL, V30, P143, DOI 10.2307/3677123; Tregenza T, 2000, MOL ECOL, V9, P1013, DOI 10.1046/j.1365-294x.2000.00964.x; van de Pol M, 2006, BEHAV ECOL, V17, P982, DOI 10.1093/beheco/arl036; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Westneat D.F., 1990, Current Ornithology, V7, P331 69 30 30 8 118 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUL 7 2014 281 1786 20132843 10.1098/rspb.2013.2843 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AI3TA WOS:000336784500004 24827435 Green Published 2019-02-21 J Miller, PB; Obrik-Uloho, OT; Phan, MH; Medrano, CL; Renier, JS; Thayer, JL; Wiessner, G; Qazi, MCB Miller, Paige B.; Obrik-Uloho, Oghenemine T.; Phan, Mai H.; Medrano, Christian L.; Renier, Joseph S.; Thayer, Joseph L.; Wiessner, Gregory; Qazi, Margaret C. Bloch The song of the old mother: Reproductive senescence in female drosophila FLY English Review fecundity; fertility; maternal condition; reproductive senescence; trade-offs OXIDATIVE STRESS RESISTANCE; SEMINAL FLUID PROTEINS; LIFE-HISTORY EVOLUTION; HEAT-SHOCK PROTEINS; TRADE-OFFS; SPERM COMPETITION; EXTENDED LIFE; MATING STATUS; CUTICULAR HYDROCARBONS; FUNCTIONAL SENESCENCE Among animals with multiple reproductive episodes, changes in adult condition over time can have profound effects on lifetime reproductive fitness and offspring performance. The changes in condition associated with senescence can be particularly acute for females who support reproductive processes from oogenesis through fertilization. The pomace fly Drosophila melanogaster is a well-established model system for exploring the physiology of reproduction and senescence. In this review, we describe how increasing maternal age in Drosophila affects reproductive fitness and offspring performance as well as the genetic foundation of these effects. Describing the processes underlying female reproductive senescence helps us understand diverse phenomena including population demographics, condition-dependent selection, sexual conflict, and transgenerational effects of maternal condition on offspring fitness. Understanding the genetic basis of reproductive senescence clarifies the nature of life-history trade-offs as well as potential ways to augment and/or limit female fertility in a variety of organisms. [Miller, Paige B.; Obrik-Uloho, Oghenemine T.; Phan, Mai H.; Medrano, Christian L.; Renier, Joseph S.; Thayer, Joseph L.; Wiessner, Gregory; Qazi, Margaret C. Bloch] Gustavus Adolphus Coll, Dept Biol, St Peter, MN 56082 USA Qazi, MCB (reprint author), Gustavus Adolphus Coll, Dept Biol, St Peter, MN 56082 USA. mqazi@gustavus.edu Gustavus Adolphus College The authors were supported by Gustavus Adolphus College. Adams EM, 2007, J INSECT PHYSIOL, V53, P319, DOI 10.1016/j.jinsphys.2006.12.003; AIGAKI T, 1984, EXP GERONTOL, V19, P13, DOI 10.1016/0531-5565(84)90027-5; Anderson WW, 1997, P NATL ACAD SCI USA, V94, P7742, DOI 10.1073/pnas.94.15.7742; [Anonymous], 2014, FERTIL STERIL, V101, P633; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Azevedo RBR, 1997, AM NAT, V150, P250, DOI 10.1086/286065; Barnes AI, 2008, P ROY SOC B-BIOL SCI, V275, P1675, DOI 10.1098/rspb.2008.0139; Bastock R, 2008, CURR BIOL, V18, pR1082, DOI 10.1016/j.cub.2008.09.011; Bohni R, 1999, CELL, V97, P865, DOI 10.1016/S0092-8674(00)80799-0; Bross TG, 2005, AGING CELL, V4, P309, DOI 10.1111/j.1474-9726.2005.00181.x; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; Buszczak M, 1999, DEVELOPMENT, V126, P4581; Carlson KA, 1999, J GERONTOL A-BIOL, V54, pB432, DOI 10.1093/gerona/54.10.B432; Carney GE, 2000, GENETICS, V154, P1203; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Cheng J, 2008, NATURE, V456, P599, DOI 10.1038/nature07386; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; CLARE MJ, 1985, HEREDITY, V55, P19, DOI 10.1038/hdy.1985.67; Clark AG, 1998, GENETICS, V149, P1487; COOK R, 1975, ANIM BEHAV, V23, P521, DOI 10.1016/0003-3472(75)90129-3; Cook-Wiens E, 2002, EXP GERONTOL, V37, P1347, DOI 10.1016/S0531-5565(02)00096-7; CUMMINGS MR, 1969, J MORPHOL, V128, P427, DOI 10.1002/jmor.1051280404; DAVID J, 1975, EXP GERONTOL, V10, P17, DOI 10.1016/0531-5565(75)90011-X; Dick KB, 2011, GENET RES, V93, P265, DOI 10.1017/S001667231100019X; Doronkin S, 2008, PROG NUCLEIC ACID RE, V82, P1, DOI [10.1016/S0079-6603(0S)00001-9, 10.1016/S0079-6603(08)00001-9]; Doroszuk A, 2012, BMC GENOMICS, V13, DOI 10.1186/1471-2164-13-167; Drummond-Barbosa D, 2001, DEV BIOL, V231, P265, DOI 10.1006/dbio.2000.0135; Ehrman E, 1983, AM MIDL NAT, V109, P202; ENGSTROM G, 1989, THEOR APPL GENET, V77, P119, DOI 10.1007/BF00292325; Everaerts C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009607; Ferveur JF, 2005, BEHAV GENET, V35, P279, DOI 10.1007/s10519-005-3220-5; Finch C.E, 1990, LONGEVITY SENESCENCE; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fredriksson A, 2012, AGING CELL, V11, P634, DOI 10.1111/j.1474-9726.2012.00823.x; Fricke C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0428; Gargano JW, 2005, EXP GERONTOL, V40, P386, DOI 10.1016/j.exger.2005.02.005; Gates J, 2012, FLY, V6, P213, DOI 10.4161/fly.21969; Gimenez LED, 2013, AGING CELL, V12, P121, DOI 10.1111/acel.12027; Grandison RC, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004067; Greenspan RJ, 2000, ANNU REV GENET, V34, P205, DOI 10.1146/annurev.genet.34.1.205; GROMKO MH, 1978, EVOLUTION, V32, P588, DOI 10.1111/j.1558-5646.1978.tb04601.x; Grotewiel MS, 2005, AGEING RES REV, V4, P372, DOI 10.1016/j.arr.2005.04.001; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAQUE R, 1988, Pakistan Journal of Zoology, V20, P55; Helfand SL, 2003, ANNU REV GENET, V37, P329, DOI 10.1146/annurev.genet.37.040103.095211; Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256; Iliadi KG, 2010, ANN NY ACAD SCI, V1197, P9, DOI 10.1111/j.1749-6632.2009.05372.x; Kann LM, 1998, P NATL ACAD SCI USA, V95, P2372, DOI 10.1073/pnas.95.5.2372; KELLY TJ, 1994, PERSPECTIVES IN COMPARATIVE ENDOCRINOLOGY, P282; Kern S, 2001, EVOLUTION, V55, P1822; Klepsatel P, 2013, J EVOLUTION BIOL, V26, P1508, DOI 10.1111/jeb.12155; Koref-Santibanez S, 2001, BEHAV GENET, V31, P287, DOI 10.1023/A:1012279325621; Kubli E, 2003, CELL MOL LIFE SCI, V60, P1689, DOI 10.1007/s00018-003-3052; Kuo TH, 2012, J EXP BIOL, V215, P814, DOI 10.1242/jeb.064980; Landis GN, 2004, P NATL ACAD SCI USA, V101, P7663, DOI 10.1073/pnas.0307605101; Le Bourg E, 1983, Arch Gerontol Geriatr, V2, P299, DOI 10.1016/0167-4943(83)90003-1; Leamy LJ, 2005, ANNU REV ECOL EVOL S, V36, P1, DOI 10.1146/annurev.ecolsys.36.102003.152640; Leiblich A, 2012, P NATL ACAD SCI USA, V109, P19292, DOI 10.1073/pnas.1214517109; Leips J, 2006, GENETICS, V172, P1595, DOI 10.1534/genetics.105.048520; Leroi AM, 2005, MECH AGEING DEV, V126, P421, DOI 10.1016/j.mad.2004.07.012; LETSINGER JT, 1985, GENETICA, V66, P195, DOI 10.1007/BF00128040; Li YS, 2009, MOL GENET GENOMICS, V281, P147, DOI 10.1007/s00438-008-0400-z; Lin YJ, 1998, SCIENCE, V282, P943, DOI 10.1126/science.282.5390.943; LINDQUIST S, 1988, ANNU REV GENET, V22, P631, DOI 10.1146/annurev.ge.22.120188.003215; LINDQUIST S, 1986, ANNU REV BIOCHEM, V55, P1151, DOI 10.1146/annurev.bi.55.070186.005443; Linnen C, 2001, EVOL ECOL RES, V3, P877; Lupold S, 2011, BEHAV ECOL, V22, P184, DOI 10.1093/beheco/arq193; Mack PD, 2003, P ROY SOC B-BIOL SCI, V270, P159, DOI 10.1098/rspb.2002.2214; Manier MK, 2010, SCIENCE, V328, P354, DOI 10.1126/science.1187096; MANNING A, 1967, ANIM BEHAV, V15, P239, DOI 10.1016/0003-3472(67)90006-1; Marden JH, 2003, P NATL ACAD SCI USA, V100, P3369, DOI 10.1073/pnas.0634985100; MARINKOVIC D, 1988, GENETICA, V77, P113, DOI 10.1007/BF00057761; Markovich D, 2004, PFLUG ARCH EUR J PHY, V447, P594, DOI 10.1007/s00424-003-1128-6; Medawar P, 1952, UNSOLVED PROBLEM BIO; MIRAULT ME, 1982, EMBO J, V1, P1279, DOI 10.1002/j.1460-2075.1982.tb00025.x; Mockett RJ, 2006, EXP GERONTOL, V41, P566, DOI 10.1016/j.exger.2006.03.015; Neckameyer WS, 2000, NEUROBIOL AGING, V21, P145, DOI 10.1016/S0197-4580(99)00109-8; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; O'BRIAN DENNIS M., 1961, ANN ENT SOC AMER, V54, P412; Pajor AM, 2006, PFLUG ARCH EUR J PHY, V451, P597, DOI 10.1007/s00424-005-1487-2; Pan L, 2007, CELL STEM CELL, V1, P458, DOI 10.1016/j.stem.2007.09.010; PARSONS PA, 1962, J EXP BIOL, V39, P251; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1986, J INSECT PHYSIOL, V32, P925, DOI 10.1016/0022-1910(86)90140-X; PARTRIDGE L, 1992, EVOLUTION, V46, P76, DOI 10.1111/j.1558-5646.1992.tb01986.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Petrosyan A, 2007, BEHAV GENET, V37, P585, DOI 10.1007/s10519-007-9159-y; PITNICK S, 1995, P NATL ACAD SCI USA, V92, P10614, DOI 10.1073/pnas.92.23.10614; Pitnick S, 2009, SPERM BIOLOGY: AN EVOLUTIONARY PERSPECTIVE, P247, DOI 10.1016/B978-0-12-372568-4.00007-0; Prathibha M, 2010, ZOOL STUD, V49, P806; Priest NK, 2002, EVOLUTION, V56, P927; Promislow DEL, 1998, GENETICA, V102-3, P299, DOI 10.1023/A:1017047212008; Promislow DEL, 2001, J HERED, V92, P30, DOI 10.1093/jhered/92.1.30; Qazi MCB, 2010, J INSECT PHYSIOL, V56, P1332, DOI 10.1016/j.jinsphys.2010.04.014; Qazi MCB, 2003, DEV BIOL, V256, P195, DOI 10.1016/S0012-1606(02)00125-2; Radhakrishnan P, 2011, J INSECT PHYSIOL, V57, P778, DOI 10.1016/j.jinsphys.2011.02.017; Rauser CL, 2006, J EVOLUTION BIOL, V19, P289, DOI 10.1111/j.1420-9101.2005.00966.x; Rauser CL, 2005, EXP GERONTOL, V40, P660, DOI 10.1016/j.exger.2005.06.006; Richard DS, 2005, J INSECT PHYSIOL, V51, P455, DOI 10.1016/j.jinsphys.2004.12.013; Rocnik EF, 2006, J BIOL CHEM, V281, P22855, DOI 10.1074/jbc.M513463200; Rogilds A, 2005, BIOGERONTOLOGY, V6, P61, DOI 10.1007/s10522-004-7385-8; Rogina B, 2000, SCIENCE, V290, P2137, DOI 10.1126/science.290.5499.2137; Rose MR, 2002, EVOLUTION, V56, P1982; ROSE MR, 1981, GENETICS, V97, P187; Sarup P, 2014, EXP GERONTOL, V50, P34, DOI 10.1016/j.exger.2013.11.017; Schnakenberg Sandra L, 2012, Spermatogenesis, V2, P224; SCHNEBEL EM, 1983, EXP GERONTOL, V18, P325, DOI 10.1016/0531-5565(83)90011-6; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; Sgro CM, 2000, AM NAT, V156, P341, DOI 10.1086/303394; Shaw P, 2008, EXP GERONTOL, V43, P5, DOI 10.1016/j.exger.2007.10.008; Silbermann R, 2000, EVOLUTION, V54, P2038; Simon AF, 2003, SCIENCE, V299, P1407, DOI 10.1126/science.1080539; Sirot LK, 2011, P NATL ACAD SCI USA, V108, P9922, DOI 10.1073/pnas.1100905108; Sirot LK, 2009, ADV GENET, V68, P23, DOI 10.1016/S0065-2660(09)68002-0; Somashekar K., 2011, Journal of Insect Science (Tucson), V11, P1; Song W, 2002, NEURON, V36, P105, DOI 10.1016/S0896-6273(02)00932-7; Spencer CC, 2003, AGING CELL, V2, P123, DOI 10.1046/j.1474-9728.2003.00044.x; SPRADLING AC, 1993, DEV DROSOPHILA MELAN, V1, P1; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Taguchi A, 2008, ANNU REV PHYSIOL, V70, P191, DOI 10.1146/annurev.physiol.70.113006.100533; Tan CKW, 2013, EVOLUTION, V67, P3043, DOI 10.1111/evo.12131; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 1996, GENETICS, V143, P849; Tatar M, 1997, NATURE, V390, P30, DOI 10.1038/36237; Tatar M, 2010, ANN NY ACAD SCI, V1204, P149, DOI 10.1111/j.1749-6632.2010.05522.x; Toivonen JM, 2007, PLOS GENET, V3, P973, DOI 10.1371/journal.pgen.0030095; Toivonen JM, 2009, MOL CELL ENDOCRINOL, V299, P39, DOI 10.1016/j.mce.2008.07.005; Toivonen JM, 2009, NATL ACAD SCI US, V106, pE53; TOMPKINS L, 1982, BEHAV GENET, V12, P295, DOI 10.1007/BF01067849; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Tu MP, 2002, AGING CELL, V1, P158, DOI 10.1046/j.1474-9728.2002.00016.x; Van Voorhies WA, 2006, EXP GERONTOL, V41, P1055, DOI 10.1016/j.exger.2006.05.006; Wallenfang MR, 2006, AGING CELL, V5, P297, DOI 10.1111/j.1474-9726.2006.0221.x; Wang PY, 2009, P NATL ACAD SCI USA, V106, P9262, DOI 10.1073/pnas.0904115106; Waskar M, 2005, AGE, V27, P201, DOI 10.1007/s11357-005-2914-1; Wigby S, 2011, P ROY SOC B-BIOL SCI, V278, P424, DOI 10.1098/rspb.2010.1390; Wigby S, 2009, CURR BIOL, V19, P751, DOI 10.1016/j.cub.2009.03.036; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wit J, 2013, EXP GERONTOL, V48, P349, DOI 10.1016/j.exger.2013.01.008; Wolfner MF, 2009, J HERED, V100, P399, DOI 10.1093/jhered/esp013; Xie T, 2000, SCIENCE, V290, P328, DOI 10.1126/science.290.5490.328; Yamamoto R, 2013, BMC BIOL, V11, DOI 10.1186/1741-7007-11-85; Yenush L, 1996, MOL CELL BIOL, V16, P2509; Zhao R, 2008, AGING CELL, V7, P344, DOI 10.1111/j.1474-9726.2008.00379.x; Zheng Q, 2011, DEV BIOL, V357, P202, DOI 10.1016/j.ydbio.2011.06.022; Zhu CT, 2014, PLOS GENET, V10, DOI 10.1371/journal.pgen.1004354; Zhu CT, 2014, AGING-US, V6, P58, DOI 10.18632/aging.100634 151 5 6 1 37 LANDES BIOSCIENCE AUSTIN 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA 1933-6934 1933-6942 FLY Fly JUL-SEP 2014 8 3 127 139 10.4161/19336934.2014.969144 13 Biochemistry & Molecular Biology Biochemistry & Molecular Biology AZ7EK WOS:000348381500001 25523082 Green Published 2019-02-21 J Billman, EJ; Creighton, JC; Belk, MC Billman, Eric J.; Creighton, J. Curtis; Belk, Mark C. Prior experience affects allocation to current reproduction in a burying beetle BEHAVIORAL ECOLOGY English Article life-history evolution; Nicrophorus; reproductive restraint; resource availability; terminal investment TERMINAL INVESTMENT; LIFE-HISTORY; RESOURCE AVAILABILITY; BROOD SIZE; NICROPHORUS; QUALITY; POPULATION; PLASTICITY; EVOLUTION; SELECTION The cost of reproduction hypothesis predicts that the level of reproductive investment to current reproduction is constrained by an individual's future reproductive potential or residual reproductive value. Therefore, age, or differences between young and old individuals in residual reproductive value, is expected to influence reproductive investment. However, recent theoretical work suggests that residual reproductive value is also influenced by an individual's state or condition which may in part be determined by prior reproductive experience. We evaluated the reproductive investment of same-aged female burying beetles (Nicrophorus orbicollis) to determine how prior reproductive experience affects current reproduction. Consistent with previous research, females reproducing on low-quality carcasses allocated more to future reproduction by producing smaller offspring and gaining more mass than females on high-quality carcasses. When prior experience was manipulated, females that initially reproduced on a low-quality resource exhibited an accentuated response to a high-quality carcass by producing significantly larger broods of offspring compared with control females reproducing on high-quality carcasses. Conversely, females that initially reproduced on a high-quality carcass and were subsequently presented a low-quality carcass exhibited a decrease in offspring size and an increase in female mass change, indicative of a switch in allocation from current to future reproduction. The change in carcass quality resulted either in terminal investment or reproductive restraint, dependent on prior experience. Our results combined with those of previous papers demonstrate that the level of reproductive investment in burying beetles is influenced by both age and prior reproductive experience. [Billman, Eric J.; Belk, Mark C.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Creighton, J. Curtis] Purdue Univ Calumet, Dept Biol Sci, Hammond, IN 46323 USA; Oregon State Univ, Dept Fisheries Wildlife, Corvallis, OR 97331 USA Billman, EJ (reprint author), Oregon State Univ, Dept Fisheries Wildlife, 104 Nash Hall, Corvallis, OR 97331 USA. eric.billman@oregonstate.edu Brigham Young University Funding was provided to M.C.B. through a Mentoring Environment Grant from Brigham Young University. Andrade MCB, 2003, BEHAV ECOL, V14, P531, DOI 10.1093/beheco/arg015; Barry KL, 2010, ANIM BEHAV, V80, P163, DOI 10.1016/j.anbehav.2010.04.020; Beauplet G, 2007, P R SOC B, V274, P1877, DOI 10.1098/rspb.2007.0454; Bonneaud C, 2004, EVOLUTION, V58, P2823, DOI 10.1111/j.0014-3820.2004.tb01633.x; Christman BJ, 2002, AUK, V119, P1149, DOI 10.1642/0004-8038(2002)119[1149:EBYVIP]2.0.CO;2; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cotter SC, 2011, FUNCT ECOL, V25, P652, DOI 10.1111/j.1365-2435.2010.01819.x; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Creighton JC, 2005, BEHAV ECOL, V16, P1031, DOI 10.1093/beheco/ari084; Fisher RA, 1930, GENETICAL THEORY NAT; Grant PR, 2000, ECOLOGY, V81, P2442, DOI 10.2307/177466; Hamel S, 2009, J ANIM ECOL, V78, P143, DOI 10.1111/j.1365-2656.2008.01459.x; Heimpel GE, 1996, BIOL REV, V71, P373, DOI 10.1111/j.1469-185X.1996.tb01279.x; HEIMPEL GE, 1995, J ANIM ECOL, V64, P153, DOI 10.2307/5751; Lescroel A, 2010, ECOLOGY, V91, P2044, DOI 10.1890/09-0766.1; Marsh-Matthews E, 2006, ECOLOGY, V87, P3014, DOI 10.1890/0012-9658(2006)87[3014:RAOPAT]2.0.CO;2; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; MULLER JK, 1990, J INSECT BEHAV, V3, P265, DOI 10.1007/BF01417917; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Preston KL, 2006, ECOLOGY, V87, P160, DOI 10.1890/05-0344; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; ROFF DA, 2002, LIFE HIST EVOLUTION; SAS Institute Inc, 2008, SAS 9 2 HELP DOC; Scott MP, 1998, ANNU REV ENTOMOL, V43, P595, DOI 10.1146/annurev.ento.43.1.595; SCOTT MP, 1990, ANIM BEHAV, V39, P274, DOI 10.1016/S0003-3472(05)80871-1; Smith RJ, 2001, ECOL ENTOMOL, V26, P173, DOI 10.1046/j.1365-2311.2001.00307.x; Toda MJ, 1997, J ANIM ECOL, V66, P154, DOI 10.2307/6018; Trexler JC, 1997, ECOLOGY, V78, P1370; TRUMBO ST, 1990, ECOL ENTOMOL, V15, P347, DOI 10.1111/j.1365-2311.1990.tb00816.x; Trumbo ST, 1995, ETHOL ECOL EVOL, V7, P313, DOI 10.1080/08927014.1995.9522939; Trumbo ST, 2006, ANIM BEHAV, V72, P1159, DOI 10.1016/j.anbehav.2006.05.004; Trumbo ST, 2012, BEHAV ECOL SOCIOBIOL, V66, P1511, DOI 10.1007/s00265-012-1406-4; Trumbo ST, 2009, BEHAV ECOL, V20, P951, DOI 10.1093/beheco/arp082; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Wendeln H, 1999, J ANIM ECOL, V68, P205, DOI 10.1046/j.1365-2656.1999.00276.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002 40 12 12 0 31 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JUL-AUG 2014 25 4 813 818 10.1093/beheco/aru051 6 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology AM7LH WOS:000340048200020 Bronze 2019-02-21 J Cook, JL Cook, Jerry L. Review of the Biology of Parasitic Insects in the Order Strepsiptera COMPARATIVE PARASITOLOGY English Review Insecta; Strepsiptera; life cycle; host association; parasitoid CAENOCHOLAX-FENYESI STREPSIPTERA; SOLENOPSIS-INVICTA HYMENOPTERA; ELENCHUS-TENUICORNIS KIRBY; PAPUA-NEW-GUINEA; PIERCE STREPSIPTERA; SEX-PHEROMONE; LIFE-HISTORY; OIL PALM; HOST; MYRMECOLACIDAE The order Strepsiptera comprises an enigmatic group of insects with a complex life cycle that includes a long, obligate endoparasitic phase. Due to the unusual characteristics of the strepsipteran life cycle, its natural history and classification have long been a source of confusion. Unique life-history strategies and extreme morphological modifications within this group have promoted many philosophical discussions between systematists and entomologists. Although this situation had left the relationship of strepsipterans with other insect groups continually in question for many years, the current general consensus is that Strepsiptera is a sister group to Coleoptera. Members of the Strepsiptera exhibit pronounced sexual dimorphism, 2 distinct larval forms, a pupal stage, host manipulation, and morphological characteristics that include many unusual differences from other insects. [Cook, Jerry L.] Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77341 USA; [Cook, Jerry L.] Sam Houston State Univ, Texas Res Inst Environm Studies, Huntsville, TX 77341 USA Cook, JL (reprint author), Sam Houston State Univ, Dept Biol Sci, Huntsville, TX 77341 USA. jcook@shsu.edu ARNETT RH, 1960, BEETLES US MANUAL ID; Baumert D., 1958, Zoologische Beitraege Berlin (NS), V3, P365; Baumert D., 1959, ZOOL BEITR, V4, P343; Beani L, 2005, J MORPHOL, V265, P291, DOI 10.1002/jmor.10359; Beani Laura, 2007, Redia, V90, P161; BOHART RICHARD M., 1941, UNIV CALIFORNIA PUBL ENT, V7, P91; BORCHERT H.-M., 1963, ZOOL BEITR, V8, P331; Bravo F, 2009, CLADISTICS, V25, P614, DOI 10.1111/j.1096-0031.2009.00264.x; Brues C. T., 1903, ZOOL JB ABTH ANAT, V18, P241; Brues CT, 1905, BIOL BULL-US, V8, P290, DOI 10.2307/1535804; Buning J., 1998, INT J INSECT MORPHOL, V27, P3; Buschbeck E, 1999, SCIENCE, V286, P1178, DOI 10.1126/science.286.5442.1178; Buschbeck EK, 2005, ARTHROPOD STRUCT DEV, V34, P315, DOI 10.1016/j.asd.2005.04.002; Buschbeck EK, 2003, J COMP PHYSIOL A, V189, P617, DOI 10.1007/s00359-003-0443-x; Carcupino M, 1998, INT J INSECT MORPHOL, V27, P9, DOI 10.1016/S0020-7322(97)00029-9; Chitty A. J., 1902, ENTOMOLOGISTS MONTHL, V13, P182; Cook JL, 2013, ANN ENTOMOL SOC AM, V106, P313, DOI 10.1603/AN10118; Cook JL, 2007, P ENTOMOL SOC WASH, V109, P223; Cook JL, 2013, ZOOTAXA, V3620, P569; Cook JL, 2009, P ENTOMOL SOC WASH, V111, P370, DOI 10.4289/0013-8797-111.2.370; Cook JL, 2000, TEX J SCI, V52, P145; Cook JL, 2004, ENTOMOL NEWS, V115, P61; Cook JL, 1997, ENTOMOL NEWS, V108, P245; Cook JL, 1998, INT J INSECT MORPHOL, V27, P21, DOI 10.1016/S0020-7322(97)00030-5; Cooper B., 1938, Proceedings of the Royal Entomological Society of London (A), V13, P31; Crowson R. A., 1954, Entomologist's Monthly Magazine, V90, P57; CROWSON RA, 1960, ANNU REV ENTOMOL, V5, P111, DOI 10.1146/annurev.en.05.010160.000551; Cvacka J, 2012, J CHEM ECOL, V38, P1483, DOI 10.1007/s10886-012-0214-7; de Peyerimhoff P., 1919, B SOC ENTOMOLOGIQUE, P162; Derr DP, 2005, P ENTOMOL SOC WASH, V107, P762; Dolfuss R. F., 1951, ANAIS FACULDADE CIEN, V35, P270; Dubitzky Andreas, 2001, Mitteilungen Muenchener Entomologischen Gesellschaft, V91, P71; Dufour L., 1828, ANN SCI NAT ZOOL, V13, P62; EGGLETON P, 1992, PHILOS T R SOC B, V337, P1, DOI 10.1098/rstb.1992.0079; Esaki T., 1940, SITZUNGSBERICHTE GES, V25, P72; Friese H., 1883, ENTOMOLOGISCHE NACHR, V9, P64; GREATHEAD DJ, 1968, P ROY ENTOMOL SOC B, V37, P91; Gu Xiu-Hui, 1994, Acta Entomologica Sinica, V37, P317; Guisti F., 2007, ARTHROPOD STRUCT DEV, V36, P183; Hassan A. L., 1939, Transactions of the Royal Entomological Society of London, V89, P345; HINTON HE, 1946, P ZOOL SOC LOND, V116, P282; Hirashima Y., 1956, KONTYU, V21, P22; HOFENEDER K, 1910, BERICHTE NATURWISSEN, V32, P33; Hofeneder K., 1930, ABZUG SOC ENTOMOLOGI, V45, P13; HONDA M, 1977, Kontyu, V45, P526; Hubbard HG., 1892, CAN ENTOMOL, V24, P257; Hughes DP, 2005, BEHAV PROCESS, V68, P263, DOI 10.1016/j.beproc.2004.09.006; Hughes DP, 2004, BEHAV ECOL, V15, P1037, DOI 10.1093/beheco/arh111; Hughes DP, 2003, INSECT SOC, V50, P62, DOI 10.1007/s000400300010; HUGHESSCHARDER S, 1924, J MORPHOL PHYSIOL, V39, P157, DOI DOI 10.1002/JM0R.1050390106; Hunefeld F, 2005, J ZOOL SYST EVOL RES, V43, P297, DOI 10.1111/j.1439-0469.2005.00327.297-306; Ishiwata K, 2011, MOL PHYLOGENET EVOL, V58, P169, DOI 10.1016/j.ympev.2010.11.001; Kathirithamby J, 2000, ZOOL J LINN SOC-LOND, V128, P269, DOI 10.1006/zjls.1999.0230; KATHIRITHAMBY J, 1992, ANN ENTOMOL SOC AM, V85, P293, DOI 10.1093/aesa/85.3.293; KATHIRITHAMBY J, 1983, ZOOL J LINN SOC-LOND, V77, P97, DOI 10.1111/j.1096-3642.1983.tb01722a.x; Kathirithamby J., 1992, Frustula Entomologica, V13, P1; KATHIRITHAMBY J, 1978, Malaysian Agricultural Journal, V51, P273; KATHIRITHAMBY J, 1979, J ZOOL, V187, P393; Kathirithamby J, 2003, P NATL ACAD SCI USA, V100, P7655, DOI 10.1073/pnas.1131999100; KATHIRITHAMBY J, 1990, ZOOL J LINN SOC-LOND, V98, P229, DOI 10.1111/j.1096-3642.1990.tb01208.x; KATHIRITHAMBY J, 1993, ENTOMOL SCAND, V24, P31; KATHIRITHAMBY J, 1989, SYST ENTOMOL, V14, P41, DOI 10.1111/j.1365-3113.1989.tb00265.x; KATHIRITHAMBY J, 1978, BIOL J LINN SOC, V10, P163, DOI 10.1111/j.1095-8312.1978.tb00011.x; Kathirithamby J., 1982, Proceedings of the International Conference on Plant Protection in the Tropics. 1-4 March, 1982, Kuala Lumpur, Malaysia, P349; Kathirithamby J., 1978, Entomologist's Monthly Magazine, V113, P89; KATHIRITHAMBY J, 1984, ZOOL J LINN SOC-LOND, V82, P335, DOI 10.1111/j.1096-3642.1984.tb00647.x; KATHIRITHAMBY J, 1992, TRENDS ECOL EVOL, V7, P349, DOI 10.1016/0169-5347(92)90129-Y; Kathirithamby J, 1998, INT J PEST MANAGE, V44, P127, DOI 10.1080/096708798228211; Kathirithamby J, 1998, INT J INSECT MORPHOL, V27, P39, DOI 10.1016/S0020-7322(97)00031-7; Kathirithamby J, 2009, ANNU REV ENTOMOL, V54, P227, DOI 10.1146/annurev.ento.54.110807.090525; Kathirithamby J, 2012, P ENTOMOL SOC WASH, V114, P464, DOI 10.4289/0013-8797.114.4.464; Kifune T., 1984, Bulletin of the National Science Museum Series A (Zoology), V10, P87; KIFUNE T, 1983, Kontyu, V51, P83; KIFUNE T, 1978, Kontyu, V46, P416; KIFUNE T, 1975, Kontyu, V43, P446; Kinzelbach R., 1967, Zoologische Jahrbuecher, V84, P559; KINZELBACH R, 1990, AM ENTOMOLOGIST, V35, P292; Kinzelbach R., 1971, B LAB ENTOMOLOGIA AG, V28, P190; Kinzelbach R.K., 1978, Tierwelt Deutschlands, V65, P1; Kinzelbach R.K., 1971, ZOOLOGICA, V41, P1; Kirby W, 1802, MONOGRAPHIA APUM ANG, V2; Kirby W., 1815, T LINN SOC LOND, V11, P86; Kirkpatrick T. W., 1937, Transactions of the Royal Entomological Society of London, V86, P247; KUKALOVAPECK J, 1993, CAN ENTOMOL, V125, P181, DOI 10.4039/Ent125181-2; Lagoutte R, 2013, CHEM-EUR J, V19, P8515, DOI 10.1002/chem.201204196; Lamarck J. B., 1817, REV GERMARS MAGAZIN, V3, P356; Lamarck J. B., 1817, REV GERMARS MAGAZIN, V3, P359; Lamarck J. B., 1817, HIST NATURELLE ANIMA, V3, P348; Lameere A., 1900, ANN SOC ENTOMOLOGIQU, V44, P355; Latreille P. A., 1817, REV GER MAG ENTOMOL, V3, P356; Latreille P. A, 1809, GENERA CRUSTACEORUM, V4; Lauterbach G., 1954, Zeitschrift fuer Parasitenkunde, V16, P255; Lindberg H., 1949, ACTA ZOOL FENN, V57, P5; LINDBERG HAKAN, 1939, ACTA ZOOL FENNICA, V22, P1; Linsley EG, 1957, U CALIF PUBL ENTOMOL, V11, P395; Luna de Carvalho E., 1959, PUBLICACOES CULTURAI, V29, P11; Maeta Y., 1963, Kontyu Tokyo, V31, P1; Maeta Y, 1998, INT J INSECT MORPHOL, V27, P27, DOI 10.1016/S0020-7322(97)00033-0; Maeta Y., 1999, KONTYU, V67, P1; Maeta Yasuo, 2007, Japanese Journal of Entomology (New Series), V10, P33; Meinert F. V. A., 1896, B ACAD ROYAL SCI LET, P1; MIYAMOTO S, 1984, Kontyu, V52, P137; Nakase Y, 2011, J NAT HIST, V45, P1089, DOI 10.1080/00222933.2011.552799; Nassonov N. V., 1910, BER NATURWISS MED VE, V33, P1; Newport G., 1851, T LINN SOC LOND, V20, P321, DOI DOI 10.1111/J.1096-3642.1846.TB00425.X; Newport G., 1847, T LINNAEAN SOC LONDO, V20, P297; Niehuis O, 2012, CURR BIOL, V22, P1309, DOI 10.1016/j.cub.2012.05.018; Noskiewicz J., 1935, Zoologica Poloniae, V1, P53; O'CONNOR B. A., 1959, Papua New Guinea Agricultural Journal, V11, P121; Ogloblin A. A., 1939, P INT C ENT, V2, P1277; OTAKE A, 1976, APPL ENTOMOL ZOOL, V11, P284, DOI 10.1303/aez.11.284; PARKER H. L., 1933, ANN ENT SOC AMER, V26, P217; Perez J., 1886, ACTES SOC LINNEENNE, V40, P21; Perkins R. C. L., 1918, Entomologist's Monthly Magazine, V54; Pierce W. D., 1918, Proceedings of the United States National Museum, V54; PIERCE W. DWIGHT, 1936, ENT NEWS, V47, P257; PIERCE W. DWIGHT, 1964, ANN ENTOMOL SOC AMER, V57, P603; PIERCE WD, 1909, US NATL MUSEUM B, V66, P1; PIX W, 1993, NATURWISSENSCHAFTEN, V80, P371, DOI 10.1007/BF01138795; Pohl H, 2004, ARTHROPOD STRUCT DEV, V33, P31, DOI 10.1016/j.asd.2003.10.001; Pohl H, 2002, ZOOL SCR, V31, P123, DOI 10.1046/j.0300-3256.2001.00078.x; Pohl H., 1996, P INT C ENT, V20, P41; Pohl H, 2008, ZOOLOGY, V111, P318, DOI 10.1016/j.zool.2007.06.008; Pohl H, 2012, ZOOKEYS, P79, DOI 10.3897/zookeys.198.2334; Pohl Hans, 2000, Kaupia Darmstaedter Beitraege zur Naturgeschichte, V10, P1; RAATIKAINEN MIKKO, 1966, ANN ENTOMOL FENN, V32, P138; Richter S., 1956, Zoologische Beitraege Berlin, V2, P481; Riek E. F., 1970, CSIRO INSECTS AUSTR, P622; Rosch Paul, 1913, Jenaische Zeitschrift fuer Naturwissenschaft, V50; ROSSI P, 1793, B SOC PHILOMATHIQUE, V1, P49; Salt G, 1927, J EXP ZOOL, V48, P223, DOI 10.1002/jez.1400480107; Saunders S. S., 1850, T ENTOMOLOGICAL SOC, V1, P43; Selander RB, 1991, IMMATURE INSECTS, V2, P509; Serini G. B., 1996, Bollettino di Zoologia Agraria e di Bachicoltura, V28, P209; Shuckard WE, 1840, HIST NATURAL ARRANGE; Siebold C. T. E., 1843, ARCH NATURGESCH, V9, P137; Silvestri F., 1933, Bollettino del Laboratorio di Zoologia in Portici, V28, P1; SILVESTRI F., 1941, ACTA PONTIFICIA ACAD SCI, V5, P57; SILVESTRI F., 1942, ACTA PONTIFICIA ACAD SCI, V6, P95; Silvestri F., 1943, B LAB ZOOLOGIA GEN A, V32, P197; Silvestri F, 1941, B LAB ZOOLOGIA GEN A, V32, P11; Silvestri F., 1941, ATTI REALE ACCADEM S, V7, P553; Silvettri F., 1941, Bollettino del Laboratorio di Zoologia in Portici, V31, P311; SLIFER EH, 1977, ANN ENTOMOL SOC AM, V70, P509, DOI 10.1093/aesa/70.4.509; SMITH DS, 1984, TISSUE CELL, V16, P929, DOI 10.1016/0040-8166(84)90072-7; Smith G, 1914, Q J MICROSC SCI, V60, P435; Solulu TM, 1998, PHYSIOL ENTOMOL, V23, P388, DOI 10.1046/j.1365-3032.1998.234095.x; Stehr F., 1991, IMMATURE INSECTS, V2, P659; STRAMBI A, 1973, ARCH ANAT MICROSC MO, V62, P39; SZEKESSY V., 1960, ACTA ZOOL ACAD SCI HUNGARICAE, V6, P177; Tolasch T, 2012, J CHEM ECOL, V38, P1493, DOI 10.1007/s10886-012-0215-6; Ulrich W., 1956, Zoologische Beitraege Berlin, V2, P177; Vannini L, 2008, PARASITOLOGY, V135, P705, DOI 10.1017/S0031182008004320; WALOFF N, 1981, SYST ENTOMOL, V6, P103, DOI 10.1111/j.1365-3113.1981.tb00020.x; Wheeler WM, 1910, J EXP ZOOL, V8, P377, DOI 10.1002/jez.1400080403; WHITING MF, 1994, NATURE, V368, P696, DOI 10.1038/368696a0; Whiting MF, 1997, SYST BIOL, V46, P1, DOI 10.1093/sysbio/46.1.1; Wiegmann Brian M., 2009, BMC Biology, V7, P1; WILLIAMS J. R., 1957, TRANS ROY ENT SOC LONDON, V109, P65; Young G.R., 1987, General and Applied Entomology, V19, P57; YOUNG GR, 1987, B ENTOMOL RES, V77, P515, DOI 10.1017/S0007485300012001 161 8 8 1 36 HELMINTHOLOGICAL SOC WASHINGTON LAWRENCE C/O ALLEN PRESS INC, 1041 NEW HAMPSHIRE ST, ACCT# 141866, LAWRENCE, KS 66044 USA 1525-2647 1938-2952 COMP PARASITOL Comp. Parasitol. JUL 2014 81 2 134 151 10.1654/4723.1 18 Parasitology; Zoology Parasitology; Zoology AM9WC WOS:000340230700002 2019-02-21 J Chu, CJ; Havstad, KM; Kaplan, N; Lauenroth, WK; McClaran, MP; Peters, DP; Vermeire, LT; Adler, PB Chu, Chengjin; Havstad, Kris M.; Kaplan, Nicole; Lauenroth, William K.; McClaran, Mitchel P.; Peters, Debra P.; Vermeire, Lance T.; Adler, Peter B. Life forminfluences survivorship patterns for 109 herbaceous perennials from six semi- arid ecosystems JOURNAL OF VEGETATION SCIENCE English Article Age-specific mortality; Demographic parameters; Forb; Grass; Senescence; Weibull survivorship curves; Weighted Cox's proportional hazard model AGE-SPECIFIC DEMOGRAPHY; POPULATION-DYNAMICS; SPECIES DISTRIBUTIONS; PLANT DEMOGRAPHY; SENESCENCE; EVOLUTION; MONKEYFLOWERS; MODELS; SPAN Questions: What factors explain the variation in plant survival parameters across species and ecosystems? Location: Western North America. Methods: We compiled six long-term data sets from western North America to test for ecosystem-dependent demographic responses for forbs and grasses. Based on these data, we characterized 123 survivorship curves for 109 species. Three demographic parameters were extracted from these survivorship curves: survival rate at age 1, life expectancy at age 1, and a parameter describing the shape of the survivorship curve. We used a mixed effects model to compare the differences in demographic parameters between life forms (forbs or grasses) and among ecosystems, incorporating 'ecosystem' as a random factor, with life form treated as a categorical factor, and mean annual precipitation and mean annual temperature treated as continuous variables. Results: Grasses had higher survival and longer life expectancy than forbs at 1 yr of age. Both forbs and grasses followed Type III survivorship curves, although forbs were closer to Type II compared to the grasses. Averaging across species, hazard ratios for whole survivorship curves differed amongmost ecosystems. While mean annual precipitation had no effect on any demographic parameter, mean annual temperature had a significantly negative effect on both first year survival rates and life expectancy for forbs. Conclusions: Our results demonstrate that life form exerts a strong influence on demographic parameters and their response to temperature variation among ecosystems. This unprecedented information on the age-specific demography of herbaceous plants has implications for population modelling and research on life-history evolution and senescence. [Chu, Chengjin; Adler, Peter B.] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Chu, Chengjin; Adler, Peter B.] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Havstad, Kris M.; Peters, Debra P.] New Mexico State Univ, USDA, ARS, Jornada Expt Range, Las Cruces, NM 88003 USA; [Havstad, Kris M.; Peters, Debra P.] New Mexico State Univ, Jornada Basin Long Term Ecol Res, Las Cruces, NM 88003 USA; [Kaplan, Nicole] Colorado State Univ, Shortgrass Steppe LTER, Ft Collins, CO 80523 USA; [Lauenroth, William K.] Univ Wyoming, Dept Bot, Laramie, WY 82070 USA; [McClaran, Mitchel P.] Univ Arizona, Sch Nat Resources & Environm, Tucson, AZ 85721 USA; [Vermeire, Lance T.] ARS, Ft Keogh Livestock & Range Res Lab, USDA, Miles City, MT 59301 USA Chu, CJ (reprint author), Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA. chengjin.chu@usu.edu; Kris.Havstad@ars.usda.gov; Nicole.Kaplan@colostate.edu; wlauenro@uwyo.edu; mcclaran@email.arizona.edu; debpeter@ad.nmsu.edu; lance.vermeire@ars.usda.gov; peter.adler@usu.edu Adler, Peter/D-3781-2009 Vermeire, Lance/0000-0001-9147-0099 National Science Foundation [DEB-1054040, DEB-0618210]; Utah Agricultural Experiment Station, Utah State University [8477] We thank Dave Koons and Roberto Salguero-Gomez for ideas and advice. We also thank Gillian Rapson and two anonymous reviewers for valuable comments on earlier versions of the manuscript. This study was funded by the National Science Foundation through grants to PBA (DEB-1054040) and to New Mexico State University as part of the Jornada Basin LTER (DEB-0618210). This work was also supported by the Utah Agricultural Experiment Station, Utah State University, and approved as journal paper number 8477. Adler P. B., 2007, Ecology, V88, P2673, DOI 10.1890/0012-9658(2007)88[2673:LMQFKP]2.0.CO;2; Adler PB, 2004, ECOLOGY, V85, P1265, DOI 10.1890/03-0602; Anderson J., 2011, ECOLOGY, V92, P1703, DOI DOI 10.1016/J.ATH0RACSUR.2011.05.086; Anderson J., 2012, ECOLOGY, V93, P1492; Angert AL, 2009, P NATL ACAD SCI USA, V106, P19693, DOI 10.1073/pnas.0901652106; Angert AL, 2006, ECOLOGY, V87, P2014, DOI 10.1890/0012-9658(2006)87[2014:DOCAMP]2.0.CO;2; BASTRENTA B, 1995, J ECOL, V83, P603, DOI 10.2307/2261628; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Baudisch A, 2008, DEMOGR RES MONOGR, P1, DOI 10.1007/978-3-540-76656-8; Baudisch A, 2011, METHODS ECOL EVOL, V2, P375, DOI 10.1111/j.2041-210X.2010.00087.x; Canfield R.H., 1957, J RANGE MANAGE, V10, P199; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Cheplick G P, 1998, POPULATION BIOL GRAS; Childs DZ, 2003, P ROY SOC B-BIOL SCI, V270, P1829, DOI 10.1098/rspb.2003.2399; Chu C. J., 2013, Ecology, V94, P1435, DOI 10.1890/13-0121.1; Clements F. E., 1907, PLANT PHYSL ECOLOGY; Fair J, 1999, J ECOL, V87, P233, DOI 10.1046/j.1365-2745.1999.00344.x; Firn J, 2011, ECOL LETT, V14, P274, DOI 10.1111/j.1461-0248.2010.01584.x; Garcia MB, 2008, AM J BOT, V95, P258, DOI 10.3732/ajb.95.2.258; Garcia MB, 2011, J ECOL, V99, P1424, DOI 10.1111/j.1365-2745.2011.01871.x; GROSS KL, 1993, OECOLOGIA, V95, P61, DOI 10.1007/BF00649507; Hill RR, 1920, ECOLOGY, V1, P270, DOI 10.2307/1929561; Jongejans E, 2005, J ECOL, V93, P681, DOI 10.1111/j.1365-2745.2005.01003.x; Jongejans E, 2010, J ECOL, V98, P279, DOI 10.1111/j.1365-2745.2009.01612.x; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Lauenroth WK, 2008, J ECOL, V96, P1023, DOI 10.1111/j.1365-2745.2008.01415.x; Mandle L, 2012, J ECOL, V100, P997, DOI 10.1111/j.1365-2745.2012.01982.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PINDER JE, 1978, ECOLOGY, V59, P175; Roach DA, 2004, AM NAT, V164, P60, DOI 10.1086/421301; Roach DA, 2003, ECOLOGY, V84, P749, DOI 10.1890/0012-9658(2003)084[0749:ASDIPV]2.0.CO;2; Russo SE, 2008, J ECOL, V96, P192, DOI 10.1111/j.1365-2745.2007.01330.x; Salguero-Gomez R, 2010, J ECOL, V98, P250, DOI 10.1111/j.1365-2745.2009.01635.x; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; SARUKHAN J, 1973, J ECOL, V61, P675, DOI 10.2307/2258643; Schemper M, 2009, STAT MED, V28, P2473, DOI 10.1002/sim.3623; Silvertown J, 2001, EVOL ECOL RES, V3, P393; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Thuiller W, 2008, PERSPECT PLANT ECOL, V9, P137, DOI 10.1016/j.ppees.2007.09.004; THUROW TL, 1989, AFR J ECOL, V27, P201; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Weiher E, 1999, J VEG SCI, V10, P609, DOI 10.2307/3237076; WRIGHT R G, 1976, Southwestern Naturalist, V21, P259, DOI 10.2307/3669712; Zachmann L., 2010, Ecology, V91, P3427, DOI 10.1890/10-0404.1 45 9 10 1 35 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1100-9233 1654-1103 J VEG SCI J. Veg. Sci. JUL 2014 25 4 947 954 10.1111/jvs.12106 8 Plant Sciences; Ecology; Forestry Plant Sciences; Environmental Sciences & Ecology; Forestry AN4QF WOS:000340572000006 2019-02-21 J Durham, MF; Magwire, MM; Stone, EA; Leips, J Durham, Mary F.; Magwire, Michael M.; Stone, Eric A.; Leips, Jeff Genome-wide analysis in Drosophila reveals age-specific effects of SNPs on fitness traits NATURE COMMUNICATIONS English Article LIFE-HISTORY EVOLUTION; IMMUNE-RESPONSE; GENETIC VARIANCE; ACTIVE ZONE; MELANOGASTER; SPAN; SENESCENCE; SELECTION; LOCI; LONGEVITY Most organisms exhibit senescence; a decline in physiological function with age. In nature, rates of senescence vary extensively among individuals and this variation has a significant genetic component; however, we know little about the genes underlying senescence. Here we show the first evidence that individual alleles influence fecundity in an age-specific manner and so the genetic basis of natural variation in fecundity changes dramatically with age. We complete a genome-wide association to identify single-nucleotide polymorphisms (SNPs) affecting lifespan and age-specific fecundity using the Drosophila melanogaster Genetic Reference Panel. We identify 1,031 SNPs affecting fecundity and 52 influencing lifespan. Only one SNP is associated with both early- and late-age fecundity. The age-specific effect of candidate genes on fecundity is validated using RNA interference. In addition, there is a dramatic increase in the number of SNPs influencing fecundity with age. This result provides support for the mutation accumulation theory of aging. [Durham, Mary F.; Leips, Jeff] Univ Maryland, Dept Biol Sci, Baltimore, MD 21250 USA; [Magwire, Michael M.; Stone, Eric A.] N Carolina State Univ, Dept Biol Sci, Raleigh, NC 27695 USA Leips, J (reprint author), Univ Maryland, Dept Biol Sci, 1000 Hilltop Circle, Baltimore, MD 21250 USA. leips@umbc.edu Stone, Eric/Q-7840-2016 Durham, Mary/0000-0002-9378-1795 TRiP at Harvard Medical School (NIH/NIGMS) [R01-GM084947]; National Institutes of Health [R01 DK 084219] We thank P. Daya, W. Ochieng, X. Ma, P. Patil, P. Gaddam, G. Sarin, L. Horn and S. Sidikou for help with experiments. We thank T. Ford for formatting figures and we thank K. A. Hughes, M. De Luca, M. Starz-Gaiano, F. Hanson and two anonymous reviewers for insight and helpful suggestions on the manuscript. We thank the TRiP at Harvard Medical School (NIH/NIGMS R01-GM084947) for providing RNAi fly stocks to the Bloomington Drosophila Stock Center. This work was supported by National Institutes of Health grant R01 DK 084219 to J.L. Alcedo J., 2013, FRONT GENET, V4, P1; Ayroles JF, 2009, NAT GENET, V41, P299, DOI 10.1038/ng.332; Bergland AO, 2012, PLOS GENET, V8, P215, DOI 10.1371/journal.pgen.1002631; Burke MK, 2014, GENOME BIOL EVOL, V6, P1, DOI 10.1093/gbe/evt180; Carbone MA, 2006, CURR BIOL, V16, P912, DOI 10.1016/j.cub.2006.03.051; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Charlesworth B, 1996, P NATL ACAD SCI USA, V93, P6140, DOI 10.1073/pnas.93.12.6140; Chelvarajan RL, 2006, J LEUKOCYTE BIOL, V79, P1314, DOI 10.1189/jlb.0106024; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Cho I, 2010, DNA CELL BIOL, V29, P473, DOI 10.1089/dna.2009.0997; De Luca M, 2003, NAT GENET, V34, P429, DOI 10.1038/ng1218; DUNNETT C. W., 1955, Journal of the American Statistical Association, V50, P1096, DOI 10.2307/2281208; Fedorka KM, 2007, P R SOC B, V274, P1211, DOI 10.1098/rspb.2006.0394; Felix TM, 2012, GENETICS, V191, P989, DOI 10.1534/genetics.112.140640; Finch C.E, 1990, LONGEVITY SENESCENCE; Fraga MF, 2005, P NATL ACAD SCI USA, V102, P10604, DOI 10.1073/pnas.0500398102; HOFFMANN AA, 1986, EVOLUTION, V40, P692, DOI 10.1111/j.1558-5646.1986.tb00531.x; HOULE D, 1992, GENETICS, V130, P195; Hsu HC, 2003, GENES IMMUN, V4, P402, DOI 10.1038/sj.gene.6363982; Huang JK, 2013, NEUROBIOL DIS, V51, P161, DOI 10.1016/j.nbd.2012.11.006; Hughes KA, 2002, P NATL ACAD SCI USA, V99, P14286, DOI 10.1073/pnas.222326199; HUGHES KA, 1995, EVOLUTION, V49, P521, DOI 10.1111/j.1558-5646.1995.tb02284.x; Hughes KA, 2010, PHILOS T R SOC B, V365, P1273, DOI 10.1098/rstb.2009.0265; Kawasaki F, 2004, J NEUROSCI, V24, P282, DOI 10.1523/JNEUROSCI.3553-03.2004; Lai CQ, 2007, MECH AGEING DEV, V128, P237, DOI 10.1016/j.mad.2006.12.003; Lee JH, 2010, SCIENCE, V327, P1223, DOI 10.1126/science.1182228; Leips J, 2000, GENETICS, V155, P1773; Leips J, 2006, GENETICS, V172, P1595, DOI 10.1534/genetics.105.048520; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Lyne R, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-7-r129; Mackay TFC, 2012, NATURE, V482, P173, DOI 10.1038/nature10811; Magwire MM, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1001037; McQuilton P, 2012, NUCLEIC ACIDS RES, V40, pD706, DOI 10.1093/nar/gkr1030; Moorad JA, 2009, P R SOC B, V276, P2271, DOI 10.1098/rspb.2009.0183; Nuzhdin SV, 1997, P NATL ACAD SCI USA, V94, P9734, DOI 10.1073/pnas.94.18.9734; ODONNELL KH, 1994, MOL CELL BIOL, V14, P6398, DOI 10.1128/MCB.14.9.6398; Paaby AB, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001987; Paaby AB, 2010, MOL ECOL, V19, P760, DOI 10.1111/j.1365-294X.2009.04508.x; Partridge L, 2011, EXP GERONTOL, V46, P376, DOI 10.1016/j.exger.2010.09.003; Pasyukova EG, 2004, AGING CELL, V3, P297, DOI 10.1111/j.1474-9728.2004.00114.x; Remolina SC, 2012, EVOLUTION, V66, P3390, DOI 10.1111/j.1558-5646.2012.01710.x; Rose M. R, 1991, EVOLUTIONARY BIOL AG; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSE MR, 1981, GENETICS, V97, P187; Ruiz M, 2011, EXP GERONTOL, V46, P579, DOI 10.1016/j.exger.2011.02.014; Sgro CM, 1998, EVOLUTION, V52, P134, DOI 10.1111/j.1558-5646.1998.tb05146.x; Skorupa DA, 2008, AGING CELL, V7, P478, DOI 10.1111/j.1474-9726.2008.00400.x; Tatar M, 1996, GENETICS, V143, P849; Teixeira L, 2008, PLOS BIOL, V6, P2753, DOI 10.1371/journal.pbio.1000002; Vieira C, 2000, GENETICS, V154, P213; Zhan M, 2007, GENOME RES, V17, P1236, DOI 10.1101/gr.6216607 52 32 32 1 41 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 2041-1723 NAT COMMUN Nat. Commun. JUL 2014 5 4338 10.1038/ncomms5338 8 Multidisciplinary Sciences Science & Technology - Other Topics AN5FI WOS:000340615500029 25000897 DOAJ Gold 2019-02-21 J Oostra, V; Brakefield, PM; Hiltemann, Y; Zwaan, BJ; Brattstrom, O Oostra, Vicencio; Brakefield, Paul M.; Hiltemann, Yvonne; Zwaan, Bas J.; Brattstrom, Oskar On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection ECOLOGY AND EVOLUTION English Article Bicyclus anynana; Bicyclus martius; Bicyclus sanaos; constraints; life-history evolution; phenotypic plasticity; reproductive investment; seasonality SEXUAL SIZE DIMORPHISM; BICYCLUS-ANYNANA; PHENOTYPIC PLASTICITY; REACTION NORMS; LIFE-HISTORY; EVOLUTIONARY SIGNIFICANCE; ARTIFICIAL SELECTION; GEOGRAPHIC-VARIATION; RESOURCE-ALLOCATION; THERMAL PLASTICITY Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life-history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well-studied phenomenon, little is known about the evolutionary fate of plastic responses if natural selection on plasticity is relaxed. Here, we study whether the presumed ancestral seasonal plasticity of the rainforest butterfly Bicyclus sanaos (Fabricius, 1793) is still retained despite the fact that this species inhabits an environmentally stable habitat. Being exposed to an atypical range of temperatures in the laboratory revealed hidden reaction norms for several traits, including wing pattern. In contrast, reproductive body allocation has lost the plastic response. In the savannah butterfly, B. anynana (Butler, 1879), these traits show strong developmental plasticity as an adaptation to the contrasting environments of its seasonal habitat and they are coordinated via a common developmental hormonal system. Our results for B. sanaos indicate that such integration of plastic traits - as a result of past selection on expressing a coordinated environmental response - can be broken when the optimal reaction norms for those traits diverge in a new environment. [Oostra, Vicencio; Brakefield, Paul M.; Hiltemann, Yvonne; Zwaan, Bas J.; Brattstrom, Oskar] Leiden Univ, Inst Biol, NL-2300 RA Leiden, Netherlands; [Oostra, Vicencio; Zwaan, Bas J.] Univ Wageningen & Res Ctr, Genet Lab, NL-6700 AH Wageningen, Netherlands; [Oostra, Vicencio; Brakefield, Paul M.; Brattstrom, Oskar] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England Brattstrom, O (reprint author), Univ Cambridge, Dept Zool, Downing St, Cambridge CB2 3EJ, England. ob269@cam.ac.uk Zwaan, Bas/D-8721-2015 Zwaan, Bas/0000-0002-8221-4998; Brattstrom, Oskar/0000-0002-2266-0304 European Union's FP6 (Network of Excellence LifeSpan) [FP6/036894]; European Union [IDEAL FP7/2007-2011/259679]; ERC [250325]; Wenner-Gren Foundation; Helge Ax:son Johnson's Foundation VO and BJZ were financially supported by the European Union's FP6 (Network of Excellence LifeSpan FP6/036894) and FP7 Programme (IDEAL FP7/2007-2011/259679 to BJZ). PB and OB were financially supported by an ERC grant no 250325 (EMARES) to PB. The butterflies were initially brought to Leiden through grants to OB from the Wenner-Gren Foundation and the Helge Ax:son Johnson's Foundation. Aalberg Haugen IM, 2012, J EVOLUTION BIOL, V25, P1377, DOI 10.1111/j.1420-9101.2012.02525.x; Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Allen CE, 2011, ANNU REV ENTOMOL, V56, P445, DOI 10.1146/annurev-ento-120709-144828; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Auld JR, 2010, P ROY SOC B-BIOL SCI, V277, P503, DOI 10.1098/rspb.2009.1355; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; Berrigan D, 1997, J THERM BIOL, V22, P213, DOI 10.1016/S0306-4565(97)00015-6; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; BOGGS CL, 1981, AM NAT, V117, P692, DOI 10.1086/283753; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; BRABY MF, 1994, J AUST ENTOMOL SOC, V33, P327; Brakefield P. M., 2009, PHENOTYPIC PLASTICIT, P121; Brakefield Paul M, 2009, Cold Spring Harb Protoc, V2009, DOI 10.1101/pdb.emo122; Brakefield PM, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P243; Brakefield PM, 2001, J EVOLUTION BIOL, V14, P148, DOI 10.1046/j.1420-9101.2001.00248.x; BRAKEFIELD PM, 1991, ECOL ENTOMOL, V16, P291, DOI 10.1111/j.1365-2311.1991.tb00220.x; BRAKEFIELD PM, 1984, BIOL J LINN SOC, V22, P1, DOI 10.1111/j.1095-8312.1984.tb00795.x; Brakefield PM, 1998, AM NAT, V152, P853, DOI 10.1086/286213; Callahan HS, 2008, ANN NY ACAD SCI, V1133, P44, DOI 10.1196/annals.1438.008; Condamin M., 1973, MONOGRAPHIE GENRE BI; Davidowitz G, 2004, INTEGR COMP BIOL, V44, P443, DOI 10.1093/icb/44.6.443; de Jong MA, 2010, CLIM RES, V43, P91, DOI 10.3354/cr00881; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Edgar BA, 2006, NAT REV GENET, V7, P907, DOI 10.1038/nrg1989; Ellers J, 2012, ECOL LETT, V15, P1071, DOI 10.1111/j.1461-0248.2012.01830.x; Fischer K, 2003, P ROY SOC B-BIOL SCI, V270, P2051, DOI 10.1098/rspb.2003.2470; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kivela SM, 2012, NATURWISSENSCHAFTEN, V99, P607, DOI 10.1007/s00114-012-0940-2; Koch PB, 1996, J INSECT PHYSIOL, V42, P223, DOI 10.1016/0022-1910(95)00103-4; Kooi RE, 1996, ENTOMOL EXP APPL, V80, P149, DOI 10.1111/j.1570-7458.1996.tb00906.x; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; Larsen Torben B., 2003, Entomologist's Record and Journal of Variation, V115, P95; Le Lann C, 2011, FUNCT ECOL, V25, P641, DOI 10.1111/j.1365-2435.2010.01813.x; Lyytinen A, 2004, P ROY SOC B-BIOL SCI, V271, P279, DOI 10.1098/rspb.2003.2571; Lyytinen A, 2003, OIKOS, V100, P373, DOI 10.1034/j.1600-0706.2003.11935.x; Monteiro A, 2001, MOL PHYLOGENET EVOL, V18, P264, DOI 10.1006/mpev.2000.0872; Niitepold K, 2009, ECOLOGY, V90, P2223, DOI 10.1890/08-1498.1; NYLIN S, 1993, ECOLOGY, V74, P1414, DOI 10.2307/1940071; Oostra V., 2014, EVOL ECOL, DOI [10.5061/dryad.pt109., DOI 10.5061/DRYAD.PT109]; Oostra V., 2014, AM NAT IN PRESS; Oostra V, 2011, P ROY SOC B-BIOL SCI, V278, P789, DOI 10.1098/rspb.2010.1560; Pigliucci M, 2003, ECOL LETT, V6, P265, DOI 10.1046/j.1461-0248.2003.00428.x; Pijpe J, 2007, EVOL ECOL, V21, P589, DOI 10.1007/s10682-006-9137-5; R Development Core Team, 2010, R LANG ENV STAT COMP; Roskam JC, 1996, EVOLUTION, V50, P2360, DOI 10.1111/j.1558-5646.1996.tb03624.x; Roskam JC, 1999, BIOL J LINN SOC, V66, P345, DOI 10.1006/bijl.1998.0268; ROUNTREE DB, 1995, J INSECT PHYSIOL, V41, P987, DOI 10.1016/0022-1910(95)00046-W; Saastamoinen M, 2010, AM NAT, V176, P686, DOI 10.1086/657038; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schwander T, 2011, TRENDS ECOL EVOL, V26, P143, DOI 10.1016/j.tree.2010.12.010; Shapiro A. M., 1976, EVOL BIOL, V9, P259; Simpson SJ, 2011, CURR BIOL, V21, pR738, DOI 10.1016/j.cub.2011.06.006; Snell-Rood EC, 2010, BIOESSAYS, V32, P71, DOI 10.1002/bies.200900132; SRYGLEY RB, 1990, OECOLOGIA, V84, P491, DOI 10.1007/BF00328165; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Stillwell RC, 2010, ANNU REV ENTOMOL, V55, P227, DOI 10.1146/annurev-ento-112408-085500; Van Buskirk J, 2009, J EVOLUTION BIOL, V22, P852, DOI 10.1111/j.1420-9101.2009.01685.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wijngaarden PJ, 2002, J EVOLUTION BIOL, V15, P290, DOI 10.1046/j.1420-9101.2002.00380.x; Wijngaarden PJ, 2001, HEREDITY, V87, P410, DOI 10.1046/j.1365-2540.2001.00933.x; Windig JJ, 1999, EVOL ECOL RES, V1, P875; Zijlstra WG, 2004, AM NAT, V163, pE76, DOI 10.1086/383595; Zijlstra WG, 2003, EVOLUTION, V57, P1852; Zwaan BJ, 2008, J GENET, V87, P395, DOI 10.1007/s12041-008-0062-y 65 7 7 0 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2014 4 13 2654 2667 10.1002/ece3.1114 14 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AL9WT WOS:000339494900004 25077017 DOAJ Gold, Green Published 2019-02-21 J Sternecker, K; Denic, M; Geist, J Sternecker, Katharina; Denic, Marco; Geist, Juergen Timing matters: species-specific interactions between spawning time, substrate quality, and recruitment success in three salmonid species ECOLOGY AND EVOLUTION English Article Colmation; evolution; habitat quality; Hucho hucho; interstitial water; life-history strategy; reproduction; Salmo trutta; spawning season; stream substratum MUSSEL MARGARITIFERA-MARGARITIFERA; SURFACE WATER INTERACTIONS; TO-FRY SURVIVAL; ATLANTIC SALMON; BROWN-TROUT; FRESH-WATER; CLIMATE-CHANGE; FINE SEDIMENT; SEA-TROUT; DISSOLVED-OXYGEN Substratum quality and oxygen supply to the interstitial zone are crucial for the reproductive success of salmonid fishes. At present, degradation of spawning grounds due to fine sediment deposition and colmation are recognized as main factors for reproductive failure. In addition, changes in water temperatures due to climate change, damming, and cooling water inlets are predicted to reduce hatching success. We tested the hypothesis that the biological effects of habitat degradation depend strongly on the species-specific spawning seasons and life-history strategies (e. g., fall-vs. spring-spawners, migratory vs. resident species) and assessed temperature as an important species-specific factor for hatching success within river substratum. We studied the species-specific differences in their responses to such disturbances using egg-to-fry survival of Danube Salmon (Hucho hucho), resident brown trout (Salmo trutta fario), and migratory brown trout (Salmo trutta lacustris) as biological endpoint. The egg incubation and hatching success of the salmonids and their dependence on temperature and stream substratum quality were compared. Hatching rates of Danube salmon were lower than of brown trout, probably due to higher oxygen demands and increased interstitial respiration in spring. Increases in maximum water temperature reduced hatching rates of resident and migratory brown trout (both fall-spawners) but were positively correlated with hatching rates of Danube salmon (a spring-spawner). Significantly longer incubation periods of resident and migratory brown trout coincided with relatively low stream substratum quality at the end of the egg incubation. Danube salmon seem to avoid low oxygen concentrations in the hyporheic zone by faster egg development favored by higher water temperatures. Consequently, the prediction of effects of temperature changes and altered stream substratum properties on gravel-spawning fishes and biological communities should consider the observed species-specific variances in life-history strategies to increase conservation success. [Sternecker, Katharina; Denic, Marco; Geist, Juergen] Tech Univ Munich, Aquat Syst Biol Unit, Dept Ecol & Ecosyst Management, D-85350 Freising Weihenstephan, Germany; [Sternecker, Katharina] Univ Munich, Dept Anat, D-80336 Munich, Germany Geist, J (reprint author), Tech Univ Munich, Aquat Syst Biol Unit, Dept Ecol & Ecosyst Management, D-85350 Freising Weihenstephan, Germany. geist@wzw.tum.de Sternecker, Katharina/H-6950-2013; Geist, Juergen/C-4933-2008 Geist, Juergen/0000-0001-7698-3443 Landesfischereiverband Bayern e.V.; German Research Foundation (DFG); Technische Universitat Munchen This study was financially supported by the "Landesfischereiverband Bayern e.V.", the German Research Foundation (DFG) and the Technische Universitat Munchen within the funding program Open Access Publishing. Acornley RM, 1999, HYDROL PROCESS, V13, P447, DOI 10.1002/(SICI)1099-1085(19990228)13:3<447::AID-HYP749>3.0.CO;2-G; Batschelet E., 1979, INTRO MATH LIFE SCI; Battin J, 2007, P NATL ACAD SCI USA, V104, P6720, DOI 10.1073/pnas.0701685104; Braun A., 2012, PLOS ONE, V7; Buss S., 2009, HYPORHEIC HDB HDB GR; Crisp DT, 1996, HYDROBIOLOGIA, V323, P201, DOI 10.1007/BF00007847; CRISP DT, 1989, J FISH BIOL, V34, P119, DOI 10.1111/j.1095-8649.1989.tb02962.x; Crozier L, 2006, J ANIM ECOL, V75, P1100, DOI 10.1111/j.1365-2656.2006.01130.x; de Leaniz CG, 2008, HYDROBIOLOGIA, V609, P83, DOI 10.1007/s10750-008-9397-x; Denic M, 2010, AQUAT CONSERV, V20, P9, DOI 10.1002/aqc.1058; DeVries P, 1997, CAN J FISH AQUAT SCI, V54, P1685, DOI 10.1139/cjfas-54-8-1685; FISHER FW, 1994, CONSERV BIOL, V8, P870, DOI 10.1046/j.1523-1739.1994.08030863-5.x; Franssen J, 2012, CAN J FISH AQUAT SCI, V69, P587, DOI [10.1139/F2011-168, 10.1139/f2011-168]; Geist J, 2009, J FISH BIOL, V75, P1063, DOI 10.1111/j.1095-8649.2009.02377.x; Geist J, 2007, FRESHWATER BIOL, V52, P2299, DOI 10.1111/j.1365-2427.2007.01812.x; Geist J, 2006, AQUAT CONSERV, V16, P251, DOI 10.1002/aqc.721; Geist J, 2011, ECOL INDIC, V11, P1507, DOI 10.1016/j.ecolind.2011.04.002; Goode JR, 2013, HYDROL PROCESS, V27, P750, DOI 10.1002/hyp.9728; Gosset C, 2006, ECOL FRESHW FISH, V15, P247, DOI 10.1111/j.1600-0633.2006.00144.x; Greig S, 2007, HYDROL PROCESS, V21, P3087, DOI 10.1002/hyp.6635; Hendry AP, 2003, EVOL ECOL RES, V5, P421; Herringshaw CJ, 2011, AM MIDL NAT, V165, P274, DOI 10.1674/0003-0031-165.2.274; Ingendahl D, 2001, J FISH BIOL, V58, P325, DOI 10.1006/jfbi.2000.1447; IUCN-International Union for Conservation of Nature, 2013, IUCN RED LIST THREAT; Jensen DW, 2009, REV FISH SCI, V17, P348, DOI 10.1080/10641260902716954; Jonsson B, 2009, J FISH BIOL, V75, P2381, DOI 10.1111/j.1095-8649.2009.02380.x; Julien HP, 2006, HYDROBIOLOGIA, V563, P61, DOI 10.1007/s10750-005-1035-2; JUNGWIRTH M, 1978, Environmental Biology of Fishes, V3, P231, DOI 10.1007/BF00691947; Jungwirth M, 2003, ANGEW FISCHOKOLOGIE; Kemp P, 2011, HYDROL PROCESS, V25, P1800, DOI 10.1002/hyp.7940; KONDOLF GM, 1993, WATER RESOUR RES, V29, P2275, DOI 10.1029/93WR00402; Kondolf GM, 1997, ENVIRON MANAGE, V21, P533, DOI 10.1007/s002679900048; Kondolf GM, 2000, T AM FISH SOC, V129, P262, DOI 10.1577/1548-8659(2000)129<0262:ASSGQ>2.0.CO;2; Kottelat M., 2007, HDB EUROPEAN FRESHWA; Lake PS, 2000, BIOSCIENCE, V50, P1099, DOI 10.1641/0006-3568(2000)050[1099:GCATBO]2.0.CO;2; Lelek A., 1987, FRESHWATER FISHES EU; Levasseur M, 2006, CAN J FISH AQUAT SCI, V63, P1450, DOI 10.1139/F06-050; Louhi P, 2008, RIVER RES APPL, V24, P330, DOI 10.1002/rra.1072; Malcolm IA, 2009, HYDROGEOL J, V17, P161, DOI 10.1007/s10040-008-0339-5; Malcolm IA, 2003, RIVER RES APPL, V19, P303, DOI 10.1002/rra.706; Mauser W, 2008, IOP Confererence Series: Earth and Environmental Science, V4, DOI 10.1088/1755-1307/4/1/012027; Milot E, 2013, EVOL APPL, V6, P472, DOI 10.1111/eva.12028; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; Mueller M, 2014, ECOL ENG, V62, P129, DOI 10.1016/j.ecoleng.2013.10.030; Ovidio M, 2002, HYDROBIOLOGIA, V483, P55, DOI 10.1023/A:1021398605520; Pander J, 2009, J FISH BIOL, V74, P683, DOI 10.1111/j.1095-8649.2008.02145.x; Pander J, 2013, ECOL INDIC, V30, P106, DOI 10.1016/j.ecolind.2013.01.039; Parrish DL, 1998, CAN J FISH AQUAT SCI, V55, P281, DOI 10.1139/cjfas-55-S1-281; Peterson NP, 1996, ENVIRON BIOL FISH, V46, P243, DOI 10.1007/BF00004999; Peterson NP, 1996, J FISH BIOL, V48, P131, DOI 10.1006/jfbi.1996.0011; Pulg U, 2013, RIVER RES APPL, V29, P172, DOI 10.1002/rra.1594; Rubin JF, 2004, FISHERIES MANAG ECOL, V11, P15, DOI 10.1111/j.1365-2400.2004.00349.x; Rubin JF, 1996, J FISH BIOL, V48, P585, DOI 10.1006/jfbi.1996.0059; Shackle VJ, 1999, HYDROL PROCESS, V13, P477, DOI 10.1002/(SICI)1099-1085(19990228)13:3<477::AID-HYP751>3.0.CO;2-#; Skoglund H, 2011, J ANIM ECOL, V80, P365, DOI 10.1111/j.1365-2656.2010.01783.x; Soulsby C, 2001, SCI TOTAL ENVIRON, V265, P295, DOI 10.1016/S0048-9697(00)00672-0; Sternecker K, 2010, ECOL FRESHW FISH, V19, P537, DOI 10.1111/j.1600-0633.2010.00432.x; Sternecker K, 2013, ENVIRON BIOL FISH, V96, P1341, DOI 10.1007/s10641-013-0111-0; Sternecker K, 2013, ECOL FRESHW FISH, V22, P322, DOI 10.1111/eff.12020; Taeubert JE, 2010, AQUAT CONSERV, V20, P728, DOI 10.1002/aqc.1147; Thorson JT, 2014, J ANIM ECOL, V83, P157, DOI 10.1111/1365-2656.12117; Thorstad EB, 2008, REV FISH BIOL FISHER, V18, P345, DOI 10.1007/s11160-007-9076-4; Wedekind C, 2010, CONSERV BIOL, V24, P1418, DOI 10.1111/j.1523-1739.2010.01534.x; YOUNG M, 1984, ARCH HYDROBIOL, V99, P405; ZEH M, 1994, AQUAT SCI, V56, P59, DOI 10.1007/BF00877435 65 14 14 4 91 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUL 2014 4 13 2749 2758 10.1002/ece3.1128 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AL9WT WOS:000339494900011 25077024 DOAJ Gold, Green Published 2019-02-21 J Johnston, SE; Orell, P; Pritchard, VL; Kent, MP; Lien, S; Niemela, E; Erkinaro, J; Primmer, CR Johnston, Susan E.; Orell, Panu; Pritchard, Victoria L.; Kent, Matthew P.; Lien, Sigbjorn; Niemela, Eero; Erkinaro, Jaakko; Primmer, Craig R. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a wild population of Atlantic salmon (Salmo salar) MOLECULAR ECOLOGY English Article F-ST outlier analysis; genome-wide association; life history variation; sea age; sexual maturity; trade-off MAJOR HISTOCOMPATIBILITY COMPLEX; SUB-ARCTIC RIVER; ALTERNATIVE REPRODUCTIVE TACTICS; QUANTITATIVE TRAIT LOCI; POST-SMOLT GROWTH; LIFE-HISTORY; SEXUAL MATURITY; MATE CHOICE; PHENOTYPIC PLASTICITY; ADAPTIVE DIVERGENCE Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade-offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their 'sea age'). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual-based genome-wide association studies (GWAS) and population-based F-ST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome-wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context. [Johnston, Susan E.; Pritchard, Victoria L.; Primmer, Craig R.] Univ Turku, Div Genet & Physiol, Dept Biol, FIN-20520 Turku, Finland; [Orell, Panu; Niemela, Eero; Erkinaro, Jaakko] Finnish Game & Fisheries Res Inst, FIN-99980 Utsjoki, Finland; [Kent, Matthew P.; Lien, Sigbjorn] Norwegian Univ Life Sci, Ctr Integrat Genet CIGENE, N-1432 As, Norway; [Kent, Matthew P.; Lien, Sigbjorn] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, N-1432 As, Norway Primmer, CR (reprint author), Univ Turku, Div Genet & Physiol, Dept Biol, Itainen Pitkakatu 4, FIN-20520 Turku, Finland. craig.primmer@utu.fi Primmer, Craig/B-8179-2008 Primmer, Craig/0000-0002-3687-8435; Johnston, Susan/0000-0002-5623-8902 Academy of Finland This work would not have been possible without the help and cooperation of the fishermen on the Teno River who contributed scales and phenotypic information to the Finnish Game and Fisheries Research Institute. Scale age measurements were carried out by Jari Haantie. The samples were prepared for SNP genotyping by Katja Salminen, Karin Sostar and Terhi Pajula with guidance from Meri Lindqvist. Data analysis was greatly improved by discussion and feedback from Jarrod Hadfield, Jisca Huisman, Konrad Lohse, Lewis Spurgin, Graham Stone, Silva Uusi-Heikkila, Shihab Hasan, Hannu Makinen and participants of the ERC Wild Animal Genomics workshop at The Burn (Eskdale, Scotland). The comments provided by three anonymous reviewers are also acknowledged. This study was funded by an Academy of Finland professorship awarded to C.R.P. ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999; Amaral IPG, 2011, J EXP BIOL, V214, P2125, DOI 10.1242/jeb.053298; Aubin-Horth N, 2009, MOL ECOL, V18, P3763, DOI 10.1111/j.1365-294X.2009.04313.x; Aulchenko YS, 2007, BIOINFORMATICS, V23, P1294, DOI 10.1093/bioinformatics/btm108; Balding DJ, 2006, NAT REV GENET, V7, P781, DOI 10.1038/nrg1916; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; Bierne N, 2013, MOL ECOL, V22, P2061, DOI 10.1111/mec.12241; Bierne N, 2011, MOL ECOL, V20, P2044, DOI 10.1111/j.1365-294X.2011.05080.x; Bourret V, 2013, MOL ECOL, V22, P532, DOI 10.1111/mec.12003; Braceland M, 2013, J PROTEOMICS, V94, P423, DOI 10.1016/j.jprot.2013.10.016; Bruneaux M, 2013, MOL ECOL, V22, P565, DOI 10.1111/j.1365-294X.2012.05749.x; Chadwick E.M.P., 1986, Canadian Special Publication of Fisheries and Aquatic Sciences, V89, P15; Chaput G, 2012, ICES J MAR SCI, V69, P1538, DOI 10.1093/icesjms/fss013; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Dionne M, 2007, EVOLUTION, V61, P2154, DOI 10.1111/j.1558-5646.2007.00178.x; DIRIENZO A, 1994, P NATL ACAD SCI USA, V91, P3166, DOI 10.1073/pnas.91.8.3166; Do C, 2014, MOL ECOL RESOUR, V14, P209, DOI 10.1111/1755-0998.12157; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Eisbrenner WS, 2014, HEREDITY, V113, P86, DOI 10.1038/hdy.2013.55; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Evans ML, 2012, P ROY SOC B-BIOL SCI, V279, P379, DOI 10.1098/rspb.2011.0909; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Falconer DS, 1996, INTRO QUANTITATIVE G, P299; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; Fourcade Y, 2013, MOL ECOL, V22, P2065, DOI 10.1111/mec.12158; Fraley C, 2002, J AM STAT ASSOC, V97, P611, DOI 10.1198/016214502760047131; Friedland KD, 1996, J FISH BIOL, V48, P1, DOI 10.1111/j.1095-8649.1996.tb01414.x; Friedland KD, 2000, ICES J MAR SCI, V57, P419, DOI 10.1006/jmsc.1999.0639; Friedland KD, 2009, ICES J MAR SCI, V66, P289, DOI 10.1093/icesjms/fsn210; Garant D, 2003, EVOLUTION, V57, P1133; Gilad Y, 2009, TRENDS GENET, V25, P463, DOI 10.1016/j.tig.2009.09.003; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GJERDE B, 1984, AQUACULTURE, V36, P97, DOI 10.1016/0044-8486(84)90057-7; GJERDE B, 1994, LIVEST PROD SCI, V38, P133, DOI 10.1016/0301-6226(94)90057-4; Glover KA, 2007, DIS AQUAT ORGAN, V76, P57, DOI 10.3354/dao076057; Gorjanc Gregor, 2012, GENETICS POPULATION; Gosset CC, 2013, J EVOLUTION BIOL, V26, P14, DOI 10.1111/jeb.12046; Grimholt U, 2003, IMMUNOGENETICS, V55, P210, DOI 10.1007/s00251-003-0567-8; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Gurney WSC, 2012, B MATH BIOL, V74, P615, DOI 10.1007/s11538-011-9679-8; Gutierrez AP, 2014, MAR BIOTECHNOL, V16, P103, DOI 10.1007/s10126-013-9530-3; Hale MC, 2013, G3-GENES GENOM GENET, V3, P1273, DOI 10.1534/g3.113.006817; Hansen LP, 1998, CAN J FISH AQUAT SCI, V55, P104, DOI 10.1139/d98-010; Heinimaa S, 2004, BOREAL ENVIRON RES, V9, P55; Helyar SJ, 2011, MOL ECOL RESOUR, V11, P123, DOI 10.1111/j.1755-0998.2010.02943.x; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Huizinga TWJ, 2004, ARTHRITIS RHEUM, V50, P2066, DOI 10.1002/art.20360; Hutchings JA, 1998, CAN J FISH AQUAT SCI, V55, P22, DOI 10.1139/cjfas-55-S1-22; ICES, 2011, 2011ACOM44 ICES CM; ICES, 2013, 2013ACOM09 ICES CM; Jennings S, 1998, ADV MAR BIOL, V34, P201, DOI 10.1016/S0065-2881(08)60212-6; Johnston SE, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-439; Johnston SE, 2011, MOL ECOL, V20, P2555, DOI 10.1111/j.1365-294X.2011.05076.x; Jonsson B, 2011, FISH FISH SER, V33, P247, DOI 10.1007/978-94-007-1189-1_6; Jonsson N, 2007, J FISH BIOL, V71, P245, DOI 10.1111/j.1095-8649.2007.01488.x; Kalinowski ST, 2006, MOL ECOL NOTES, V6, P576, DOI 10.1111/j.1471-8286.2006.01256.x; Kallio-Nyberg I, 2006, FISH RES, V80, P295, DOI 10.1016/j.fishres.2006.03.026; Karppinen P, 2009, ECOL FRESHW FISH, V18, P177, DOI 10.1111/j.1600-0633.2008.00346.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LANDER ES, 1989, GENETICS, V121, P185; Landry C, 2001, MOL ECOL, V10, P2525, DOI 10.1046/j.1365-294X.2001.01383.x; Landry C, 2001, P ROY SOC B-BIOL SCI, V268, P1279, DOI 10.1098/rspb.2001.1659; Lewis Cathryn M, 2002, Brief Bioinform, V3, P146, DOI 10.1093/bib/3.2.146; Li DL, 2011, GENET EPIDEMIOL, V35, P790, DOI 10.1002/gepi.20628; Lien S, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-615; Mank JE, 2006, EVOLUTION, V60, P1311; Manolio TA, 2009, NATURE, V461, P747, DOI 10.1038/nature08494; Mather ME, 1998, CAN J FISH AQUAT SCI, V55, P232, DOI 10.1139/d98-002; McCarthy MI, 2008, NAT REV GENET, V9, P356, DOI 10.1038/nrg2344; Milinski M, 2006, ANNU REV ECOL EVOL S, V37, P159, DOI 10.1146/annurev.ecolsys.37.091305.110242; Moskvina V, 2008, GENET EPIDEMIOL, V32, P567, DOI 10.1002/gepi.20331; Namroud MC, 2008, MOL ECOL, V17, P3599, DOI 10.1111/j.1365-294X.2008.03840.x; Niemela E, 2006, J FISH BIOL, V69, P1151, DOI 10.1111/j.1095-8649.2006.01193.x; Niemela E, 2006, J FISH BIOL, V68, P1222, DOI 10.1111/j.1095-8649.2006.01012.x; Niemela E, 2000, J FISH BIOL, V56, P974, DOI 10.1006/jfbi.1999.1223; Otero J, 2012, ECOL EVOL, V2, P2192, DOI 10.1002/ece3.337; Otero J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024005; Parchman TL, 2012, MOL ECOL, V21, P2991, DOI 10.1111/j.1365-294X.2012.05513.x; Pedersen S, 2013, AQUACULTURE, V410, P164, DOI 10.1016/j.aquaculture.2013.06.039; Piry S, 2004, J HERED, V95, P536, DOI 10.1093/jhered/esh074; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; Platt A, 2010, GENETICS, V186, P1045, DOI 10.1534/genetics.110.121665; Price AL, 2006, NAT GENET, V38, P904, DOI 10.1038/ng1847; Price AL, 2010, NAT REV GENET, V11, P459, DOI 10.1038/nrg2813; Purcell S, 2007, AM J HUM GENET, V81, P559, DOI 10.1086/519795; R Core Team, 2013, R LANG ENV STAT COMP; Rajakaruna RS, 2006, MOL ECOL, V15, P4569, DOI 10.1111/j.1365-294X.2006.03113.x; Rannala B, 1997, P NATL ACAD SCI USA, V94, P9197, DOI 10.1073/pnas.94.17.9197; RODGER HD, 1991, DIS AQUAT ORGAN, V12, P17, DOI 10.3354/dao012017; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Roff DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P11; Roff Derek A., 1992; Salminen M., 1995, Fisheries Management and Ecology, V2, P171, DOI 10.1111/j.1365-2400.1995.tb00110.x; Salminen M, 1997, J APPL ICHTHYOL, V13, P121, DOI 10.1111/j.1439-0426.1997.tb00111.x; Santure AW, 2013, MOL ECOL, V22, P3949, DOI 10.1111/mec.12376; SAUNDERS RL, 1985, CAN J FISH AQUAT SCI, V42, P615, DOI 10.1139/f85-080; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; SKILBREI OT, 1989, AQUACULTURE, V83, P95, DOI 10.1016/0044-8486(89)90064-1; Slate J, 2010, TRENDS GENET, V26, P275, DOI 10.1016/j.tig.2010.03.005; Spencer CCA, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000477; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Storz JF, 2005, MOL ECOL, V14, P671, DOI 10.1111/j.1365-294X.2005.02437.x; TABORSKY M, 1994, ADV STUD BEHAV, V23, P1, DOI 10.1016/S0065-3454(08)60351-4; Tonteri A, 2010, MOL ECOL, V19, P1273, DOI 10.1111/j.1365-294X.2010.04573.x; Vaha JP, 2008, EVOL APPL, V1, P137, DOI 10.1111/j.1752-4571.2007.00007.x; Vaha JP, 2007, MOL ECOL, V16, P2638, DOI 10.1111/j.1365-294X.2007.03329.x; Vasemagi A, 2005, MOL ECOL, V14, P3623, DOI 10.1111/j.1365-294X.2005.02690.x; Visscher PM, 2012, AM J HUM GENET, V90, P7, DOI 10.1016/j.ajhg.2011.11.029; WILD V, 1994, AQUACULTURE, V128, P51, DOI 10.1016/0044-8486(94)90101-5; Wu CL, 2011, TRANSGENIC RES, V20, P1217, DOI 10.1007/s11248-011-9488-8; Yano A, 2013, EVOL APPL, V6, P486, DOI 10.1111/eva.12032; Yousaf MN, 2012, SCI WORLD J, DOI 10.1100/2012/741302 116 47 48 3 135 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. JUL 2014 23 14 3452 3468 10.1111/mec.12832 17 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology AL8LB WOS:000339389000007 24931807 2019-02-21 J Lewis, SM; Vahed, K; Koene, JM; Engqvist, L; Bussiere, LF; Perry, JC; Gwynne, D; Lehmann, GUC Lewis, Sara M.; Vahed, Karim; Koene, Joris M.; Engqvist, Leif; Bussiere, Luc F.; Perry, Jennifer C.; Gwynne, Darryl; Lehmann, Gerlind U. C. Emerging issues in the evolution of animal nuptial gifts BIOLOGY LETTERS English Article sexual conflict; spermatophore; simultaneous hermaphrodite SEMINAL FLUID PROTEINS; FREE AMINO-ACIDS; SEXUAL CONFLICT; PATERNAL INVESTMENT; INSECTS; EJACULATE; SELECTION; CRICKETS; FOOD; IDENTIFICATION Uniquely positioned at the intersection of sexual selection, nutritional ecology and life-history theory, nuptial gifts are widespread and diverse. Despite extensive empirical study, we still have only a rudimentary understanding of gift evolution becausewe lack a unified conceptual framew(o)rk for considering these traits. In this opinion piece, we tackle several issues that we believe have substantively hindered progress in this area. Here, we: (i) present a comprehensive definition and classification scheme for nuptial gifts (including those transferred by simultaneous hermaphrodites), (ii) outline evolutionary predictions for different gift types, and (iii) highlight some research directions to help facilitate progress in this field. [Lewis, Sara M.] Tufts Univ, Dept Biol, Medford, MA 02155 USA; [Vahed, Karim] Univ Derby, Dept Biol Sci, Derby DE22 1GB, England; [Koene, Joris M.] Vrije Univ Amsterdam, Dept Ecol Sci, NL-1081 HV Amsterdam, Netherlands; [Engqvist, Leif] Univ Bielefeld, D-33615 Bielefeld, Germany; [Engqvist, Leif] Univ Bern, Dept Behav Ecol, CH-3032 Hinterkappelen, Switzerland; [Bussiere, Luc F.] Univ Stirling, Stirling FK9 4LA, Scotland; [Perry, Jennifer C.] Univ Oxford, Edward Grey Inst, Dept Zool, Oxford OX1 3PS, England; [Perry, Jennifer C.] Univ Oxford Jesus Coll, Oxford OX1 3DW, England; [Gwynne, Darryl] Univ Toronto, Dept Zool, Mississauga, ON L5L 1C6, Canada; [Lehmann, Gerlind U. C.] Humboldt Univ, Dept Biol, D-10115 Berlin, Germany Lewis, SM (reprint author), Tufts Univ, Dept Biol, Medford, MA 02155 USA. sara.lewis@tufts.edu Bussiere, Luc/T-2134-2018; Lehmann, Gerlind/D-5464-2013; Engqvist, Leif/C-3595-2009; Koene, Joris M./B-4502-2009 Bussiere, Luc/0000-0001-8937-8381; Lehmann, Gerlind/0000-0003-0559-6002; Engqvist, Leif/0000-0002-9434-7130; Koene, Joris M./0000-0001-8188-3439 Albo MJ, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-329; Alonzo SH, 2010, AM NAT, V175, P174, DOI 10.1086/649596; Arnqvist G, 2003, NATURE, V424, P387, DOI 10.1038/424387a; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Boggs Carol L., 1995, P215; BOGGS CL, 1990, AM NAT, V136, P598, DOI 10.1086/285118; Chapman T, 2008, PLOS BIOL, V6, P1379, DOI 10.1371/journal.pbio.0060179; CHARNOV EL, 1979, P NATL ACAD SCI USA, V76, P2480, DOI 10.1073/pnas.76.5.2480; EISNER T, 1995, P NATL ACAD SCI USA, V92, P50, DOI 10.1073/pnas.92.1.50; Fricke C, 2009, BIOL LETTERS, V5, P671, DOI 10.1098/rsbl.2009.0433; Gershman SN, 2013, J EVOLUTION BIOL, V26, P693, DOI 10.1111/jeb.12078; Gwynne D.T, 2001, KATYDIDS BUSHCRICKET; Gwynne DT, 2008, ANNU REV ENTOMOL, V53, P83, DOI 10.1146/annurev.ento.53.103106.093423; GWYNNE DT, 1990, NATURE, V346, P172, DOI 10.1038/346172a0; Koene JM, 2005, BMC EVOL BIOL, V5, DOI 10.1186/1471-2148-5-25; Lange R, 2013, BIOL REV, V88, P585, DOI 10.1111/brv.12018; Lehmann GUC, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-19; LEIMAR O, 1994, P ROY SOC B-BIOL SCI, V258, P121, DOI 10.1098/rspb.1994.0151; Lewis S, 2012, ADV STUD BEHAV, V44, P53, DOI 10.1016/B978-0-12-394288-3.00002-2; PARKER GA, 1989, ETHOLOGY, V82, P3; Perry JC, 2013, TRENDS ECOL EVOL, V28, P414, DOI 10.1016/j.tree.2013.03.005; Poiani A, 2006, BEHAV ECOL SOCIOBIOL, V60, P289, DOI 10.1007/s00265-006-0178-0; Reinhardt K, 2009, P NATL ACAD SCI USA, V106, P21743, DOI 10.1073/pnas.0905347106; Simmons LW, 2013, INSECT MOL BIOL, V22, P115, DOI 10.1111/imb.12007; SIMMONS LW, 1989, ETHOLOGY, V81, P332; South A, 2011, EVOLUTION, V65, P1099, DOI 10.1111/j.1558-5646.2010.01199.x; THORNHILL R, 1976, AM NAT, V110, P153, DOI 10.1086/283055; Thornhill R., 1983, EVOLUTION INSECT MAT; Vahed K, 1998, BIOL REV, V73, P43, DOI 10.1017/S0006323197005112; Vahed K, 2007, ETHOLOGY, V113, P105, DOI 10.1111/j.1439-0310.2006.01312.x; Vahed K, 2014, EVOLUTION, V68, P2052, DOI 10.1111/evo.12421; Voigt CC, 2008, BIOL LETTERS, V4, P476, DOI 10.1098/rsbl.2008.0282; Warwick S, 2009, BIOL LETTERS, V5, P194, DOI 10.1098/rsbl.2008.0731; Zizzari ZV, 2014, FRONT ZOOL, V11, DOI 10.1186/1742-9994-11-32 35 22 23 1 47 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUL 2014 10 7 20140336 10.1098/rsbl.2014.0336 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AL5JW WOS:000339170900005 25030043 Bronze, Green Published 2019-02-21 J Thorson, JT; Jensen, OP; Zipkin, EF Thorson, James T.; Jensen, Olaf P.; Zipkin, Elise F. How variable is recruitment for exploited marine fishes? A hierarchical model for testing life history theory CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article STOCK ASSESSMENT MODEL; TIME-SERIES BIAS; POPULATION-DYNAMICS; REGIME SHIFTS; METAANALYSIS; MANAGEMENT; HYPOTHESIS; STRATEGIES; MORTALITY; SABLEFISH Recruitment often varies substantially in fish populations, and residual variability may have serial autocorrelation due to environmental effects even after accounting for a stock-recruitment relationship. However, the likely magnitude of variability and autocorrelation in recruitment has yet to be formally estimated. We therefore developed a hierarchical model for recruitment variability and autocorrelation and applied it to data for 154 fish populations. Results were similar when using either the Ricker or Beverton-Holt stock-recruitment model, and showed that autocorrelated recruitment has a marginal standard deviation of 0.74 (SD = 0.35) and a mean autocorrelation of 0.43 (SD = 0.28) when predicting for an unobserved taxonomic order. Estimates differed somewhat among taxonomic orders and stocks, and also supported a hypothesized positive relationship between age at maturity and autocorrelation in recruitment. Our results can be used as a Bayesian prior for recruitment variability in models for data-poor stocks and to distinguish recruitment from other process errors in models for data-rich stocks. Estimates can also be used in the design of future simulation models and management strategy evaluations and in theoretical research regarding life history variation. [Thorson, James T.] NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Seattle, WA 98112 USA; [Jensen, Olaf P.] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA; [Zipkin, Elise F.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Thorson, JT (reprint author), NOAA, Fisheries Resource Assessment & Monitoring Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, 2725 Montlake Blvd East, Seattle, WA 98112 USA. Jimthor@u.washington.edu Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 New Jersey Sea Grant Consortium (NJSGC); NOAA Office of Sea Grant; US Department of Commerce, under NOAA grant [NA10OAR4170075]; NJSGC We continue to be grateful for the dedication and foresight demonstrated by R. Myers when developing this stock-recruitment respository and the many scientists whose work is represented therein. We also thank C. Minto for his hard work in maintaining the original Myers repository and S. Munch for helpful comments on an earlier draft. We thank L. Brooks, C. Legault, an anonymous reviewer, and the associate editor for helpful comments that improved the quality of analysis and writing. O.P.J. was supported by the New Jersey Sea Grant Consortium (NJSGC) with funds from the NOAA Office of Sea Grant, US Department of Commerce, under NOAA grant No. NA10OAR4170075 and the NJSGC. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the NJSGC or the US Department of Commerce, NJSG-14-858. Bailey KM, 2005, PROG OCEANOGR, V67, P24, DOI 10.1016/j.pocean.2005.06.001; Brodziak JKT, 2001, CAN J FISH AQUAT SCI, V58, P306, DOI 10.1139/cjfas-58-2-306; Brooks E.N., 2010, ICES J MAR SCI, V67, P413; Brunel T, 2010, ICES J MAR SCI, V67, P1921, DOI 10.1093/icesjms/fsq032; CAPUTI N, 1988, CAN J FISH AQUAT SCI, V45, P178, DOI 10.1139/f88-019; Cope JM, 2013, FISH RES, V142, P3, DOI 10.1016/j.fishres.2012.03.006; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Davidson R., 2003, ECONOMETRIC THEORY M; Deriso RB, 2007, CAN J FISH AQUAT SCI, V64, P187, DOI 10.1139/F06-178; Draper N., 1998, APPL REGRESSION ANAL; Efron B, 1977, STEINS PARADOX STAT; Fiksen O, 2002, CAN J FISH AQUAT SCI, V59, P211, DOI 10.1139/F02-002; Gelman A, 2003, BAYESIAN DATA ANAL; Gelman A., 2007, DATA ANAL USING REGR; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Hjort J., 1926, ICES J MAR SCI, V1, P5, DOI DOI 10.1093/ICESJMS/1.1.5; Hoffman M.D., J MAR LEARN IN PRESS; Holmes EE, 2001, P NATL ACAD SCI USA, V98, P5072, DOI 10.1073/pnas.081055898; Hutchings JA, 2000, NATURE, V406, P882, DOI 10.1038/35022565; Jensen OP, 2010, PROG OCEANOGR, V86, P176, DOI 10.1016/j.pocean.2010.04.020; Keith DM, 2012, CAN J FISH AQUAT SCI, V69, P1150, DOI 10.1139/F2012-055; Mantyniemi S, 2013, CAN J FISH AQUAT SCI, V70, P1317, DOI 10.1139/cjfas-2012-0315; Mertz G., 1994, Fisheries Oceanography, V3, P236, DOI 10.1111/j.1365-2419.1994.tb00101.x; Mertz G, 1996, CAN J FISH AQUAT SCI, V53, P1618, DOI 10.1139/cjfas-53-7-1618; Minto C, 2014, CAN J FISH AQUAT SCI, V71, P203, DOI 10.1139/cjfas-2013-0161; Morgan MJ, 2011, CAN J FISH AQUAT SCI, V68, P1361, DOI [10.1139/F2011-049, 10.1139/f2011-049]; Mueter FJ, 2002, FISH OCEANOGR, V11, P205, DOI 10.1046/j.1365-2419.2002.00192.x; Myers R. A., 1995, SUMMARY WORLDWIDE SP; Myers RA, 1999, CAN J FISH AQUAT SCI, V56, P2404, DOI 10.1139/cjfas-56-12-2404; Myers RA, 1998, REV FISH BIOL FISHER, V8, P285, DOI 10.1023/A:1008828730759; MYERS RA, 1995, CAN J FISH AQUAT SCI, V52, P223, DOI 10.1139/f95-022; MYERS RA, 1993, CAN J FISH AQUAT SCI, V50, P1576, DOI 10.1139/f93-179; Neubauer P, 2013, SCIENCE, V340, P347, DOI 10.1126/science.1230441; Ono K, 2012, FISH RES, V125, P173, DOI 10.1016/j.fishres.2012.02.022; Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; Punt AE, 2003, CAN J FISH AQUAT SCI, V60, P1217, DOI 10.1139/F03-105; R Development Core Team, 2013, R LANG ENV STAT COMP; R Development Core Team, 2012, R LANG ENV STAT COMP; Ricard D, 2012, FISH FISH, V13, P380, DOI 10.1111/j.1467-2979.2011.00435.x; Rickman SJ, 2000, CAN J FISH AQUAT SCI, V57, P116, DOI 10.1139/cjfas-57-1-116; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sainsbury KJ, 2000, ICES J MAR SCI, V57, P731, DOI 10.1006/jmsc.2000.0737; Schirripa MJ, 2009, ICES J MAR SCI, V66, P1605, DOI 10.1093/icesjms/fsp043; Schirripa MJ, 2006, FISH OCEANOGR, V15, P25, DOI 10.1111/j.1365-2419.2005.00352.x; SCHNUTE JT, 1991, FISH RES, V11, P197, DOI 10.1016/0165-7836(91)90002-W; SHAMAN P, 1988, J AM STAT ASSOC, V83, P842, DOI 10.2307/2289315; Smith T. D., 2007, SCALING FISHERIES SC; Stan Development Team, 2013, STAN C LIB PROB SAMP; Stewart I.J., 2013, INT PAC HAL COMM 89; Stewart I.J., 2012, INT PAC HAL COMM 89; Szuwalski C, 2013, FISH OCEANOGR, V22, P345, DOI 10.1111/fog.12026; Thorson JT, 2015, ICES J MAR SCI, V72, P178, DOI 10.1093/icesjms/fst211; Thorson JT, 2015, FISH FISH, V16, P342, DOI 10.1111/faf.12061; Thorson JT, 2014, ECOL APPL, V24, P315, DOI 10.1890/12-1803.1; Thorson JT, 2013, MAR ECOL PROG SER, V483, P245, DOI 10.3354/meps10295; Trautmann H., 2012, TRUNCNORM TRUNCATED; Vert-pre KA, 2013, P NATL ACAD SCI USA, V110, P1779, DOI 10.1073/pnas.1214879110; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; Walters C. J, 1992, QUANTITATIVE FISHERI; WALTERS CJ, 1985, CAN J FISH AQUAT SCI, V42, P147, DOI 10.1139/f85-018; Wayte SE, 2013, FISH RES, V142, P47, DOI 10.1016/j.fishres.2012.07.009; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 63 33 33 2 32 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JUL 2014 71 7 973 983 10.1139/cjfas-2013-0645 11 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AL3BI WOS:000338999600002 2019-02-21 J Folkvord, A; Jorgensen, C; Korsbrekke, K; Nash, RDM; Nilsen, T; Skjaeraasen, JE Folkvord, Arild; Jorgensen, Christian; Korsbrekke, Knut; Nash, Richard D. M.; Nilsen, Trygve; Skjaeraasen, Jon Egil Trade-offs between growth and reproduction in wild Atlantic cod CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY EVOLUTION; NORTHEAST ARCTIC COD; GUPPIES POECILIA-RETICULATA; GADUS-MORHUA; TRINIDADIAN GUPPIES; INDETERMINATE GROWTH; NATURAL MORTALITY; BACK-CALCULATION; REACTION NORMS; OTOLITH SIZE Animals partition and trade off their resources between competing needs such as growth, maintenance, and reproduction. Over a lifetime, allocation strategies should result in distinct trajectories for growth, survival, and reproduction, but such longitudinal individual data are difficult to reconstruct for wild animals and especially marine fish. We were able to reconstruct two of these trajectories in wild-caught Northeast Arctic cod (Gadus morhua) females: size-at-age was back-calculated from otolith growth increments, and recent spawning history was reconstructed from postovulatory follicles and present oocyte development. Our findings indicate distinct trade-offs between length growth and reproduction. Fish that sexually matured early had attained a larger size at age 3 than immatures, but onset of reproduction caused slower growth compared with immatures. We found that 6-and 7-year-old females skipping spawning grew significantly more in the year of missed spawning than females spawning for the second consecutive year. The latter tentatively supports the hypothesis that skipped spawning may occur as an adaptive life-history strategy, given the potential future fecundity gain with increased size. [Folkvord, Arild] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Folkvord, Arild] Univ Bergen, Hjort Ctr Marine Ecosyst Dynam, N-5020 Bergen, Norway; [Folkvord, Arild; Korsbrekke, Knut; Nash, Richard D. M.; Skjaeraasen, Jon Egil] Inst Marine Res, N-5817 Bergen, Norway; [Folkvord, Arild; Nash, Richard D. M.; Skjaeraasen, Jon Egil] Hjort Ctr Marine Ecosyst Dynam, N-5817 Bergen, Norway; [Jorgensen, Christian] Uni Res & Hjort Ctr Marine Ecosyst Dynam, N-5020 Bergen, Norway; [Nilsen, Trygve] Univ Bergen, Dept Math, N-5020 Bergen, Norway Folkvord, A (reprint author), Univ Bergen, Dept Biol, N-5020 Bergen, Norway. arild.folkvord@bio.uib.no Jorgensen, Christian/B-4453-2009 Jorgensen, Christian/0000-0001-7087-4625; Folkvord, Arild/0000-0002-4763-0590 Research Council of Norway [190228] The authors thank Hans Hoie, Hildegunn Mjanger, and Stale Kolbeinson for highly skilled contributions in the preparation and analysis of otolith data and the Research Council of Norway (project No. 190228) for funding. Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; BERGSTAD OA, 1987, FISH RES, V5, P119, DOI 10.1016/0165-7836(87)90037-3; CHARNOV E L, 1982; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Fablet R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027055; Fisher RA, 1930, GENETICAL THEORY NAT; Francis RICC, 2004, CAN J FISH AQUAT SCI, V61, P1269, DOI [10.1139/f04-063, 10.1139/F04-063]; Godo O.R., 1983, S REPR RECR COD LEN, P289; HARE JA, 1995, CAN J FISH AQUAT SCI, V52, P1909, DOI 10.1139/f95-783; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Heino M., 2002, ICES CM Y, V2002 Y, P14; Hoie H, 2009, FISH RES, V96, P319, DOI 10.1016/j.fishres.2008.12.007; ICES, 2013, 2013ACOM05 ICES CM; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kjesbu OS, 2014, ICES J MAR SCI, V71, P2053, DOI 10.1093/icesjms/fsu030; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Koedijk RM, 2010, J FISH BIOL, V77, P1, DOI 10.1111/j.1095-8649.2010.02652.x; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kristoffersen JB, 2007, J FISH BIOL, V71, P1317, DOI 10.1111/j.1095-8649.2007.01593.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEA E, 1910, PUBLICATIONS CIRCONS, V53, P7, DOI DOI 10.1093/ICESJMS/S1.53.7; Li L, 2008, CAN J FISH AQUAT SCI, V65, P2496, DOI 10.1139/F08-157; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Panfili J, 2002, MANUAL FISH SCLEROCH; PARKER GA, 1992, J FISH BIOL, V41, P1, DOI 10.1111/j.1095-8649.1992.tb03864.x; PEDERSEN T, 1989, AQUACULTURE, V81, P161, DOI 10.1016/0044-8486(89)90242-1; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Development Team, 2012, R LANG ENV STAT COMP; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; Rideout RM, 2000, J FISH BIOL, V57, P1429, DOI 10.1006/jfbi.2000.1405; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Roff Derek A., 1992; ROLLEFSEN G., 1933, FISKERIDIREK SKR SER HAVUNDERS REP NORWEGIAN FISH AND MAR INVEST, V4, P1; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Skjaeraasen JE, 2010, MAR ECOL PROG SER, V404, P173, DOI 10.3354/meps08486; Skjaeraasen JE, 2009, CAN J FISH AQUAT SCI, V66, P1582, DOI 10.1139/F09-102; StatSoft Inc, 2012, STATISTICA DAT AN SO; Sundby S, 2000, SARSIA, V85, P277, DOI 10.1080/00364827.2000.10414580; Thorsen A, 2001, J SEA RES, V46, P295, DOI 10.1016/S1385-1101(01)00090-9; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Witthames PR, 2010, FISH RES, V104, P27, DOI 10.1016/j.fishres.2009.11.008; Yaragina N. A., 2011, BARENTS SEA ECOSYSTE, P225; Yaragina NA, 2010, ICES J MAR SCI, V67, P2033, DOI 10.1093/icesjms/fsq059; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 63 23 24 0 68 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JUL 2014 71 7 1106 1112 10.1139/cjfas-2013-0600 7 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AL3BI WOS:000338999600015 Other Gold 2019-02-21 J Winkler, DW; Ringelman, KM; Dunn, PO; Whittingham, L; Hussell, DJT; Clark, RG; Dawson, RD; Johnson, LS; Rose, A; Austin, SH; Robinson, WD; Lombardo, MP; Thorpe, PA; Shutler, D; Robertson, RJ; Stager, M; Leonard, M; Horn, AG; Dickinson, J; Ferretti, V; Massoni, V; Bulit, F; Reboreda, JC; Liljesthrom, M; Quiroga, M; Rakhimberdiev, E; Ardia, DR Winkler, David W.; Ringelman, Kevin M.; Dunn, Peter O.; Whittingham, Linda; Hussell, David J. T.; Clark, Robert G.; Dawson, Russell D.; Johnson, L. Scott; Rose, Alexandra; Austin, Suzanne H.; Robinson, W. Douglas; Lombardo, Michael P.; Thorpe, Patrick A.; Shutler, Dave; Robertson, Raleigh J.; Stager, Maria; Leonard, Marty; Horn, Andrew G.; Dickinson, Janis; Ferretti, Valentina; Massoni, Viviana; Bulit, Florencia; Reboreda, Juan C.; Liljesthroem, Marcela; Quiroga, Martin; Rakhimberdiev, Eldar; Ardia, Daniel R. Latitudinal variation in clutch size-lay date regressions in Tachycineta swallows: effects of food supply or demography? ECOGRAPHY English Article LIFE-HISTORY EVOLUTION; TREE SWALLOWS; CLIMATE-CHANGE; SEASONAL DECLINE; REPRODUCTIVE SUCCESS; SONG SPARROWS; PARENTAL CARE; BICOLOR; BIRDS; GENUS In a study of almost 16 000 nest records from seven swallow species across the entire Western Hemisphere, clutch sizes decline with relative laying date in each population, but the slope of this decline grows steeper with increasing distance from the equator. Late-laying birds at all latitudes lay clutches of similar sizes, suggesting that latitudinal differences may be driven primarily by earlier-laying birds. Focused comparisons of site-years in North America with qualitatively different food availability indicate that food supply significantly affects mean clutch size but not the clutch size-lay date regression. Other studies on the seasonality of swallow food also indicate that steeper clutch size-lay date declines in the North are not caused by steeper earlier food peaks there. The distribution of lay dates grows increasingly right-skewed with increasing latitude. This variation in lay-date distributions could be due to the predominance of higher quality, early-laying (and large-clutched) individuals among populations at higher latitudes, resulting from latitudinal variation in mortality rates and the intensity of sexual selection. Our results underscore the importance of studying clutch size and lay date in tandem and suggest new research into the causes of their joint geographic variation. [Winkler, David W.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Winkler, David W.] Cornell Univ, Ornithol Lab, Ithaca, NY 14853 USA; [Ringelman, Kevin M.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Dunn, Peter O.; Whittingham, Linda] Univ Wisconsin, Dept Biol Sci, Milwaukee, WI 53201 USA; [Hussell, David J. T.] Ontario Minist Nat Resources, Peterborough, ON K9J 7B8, Canada; [Clark, Robert G.] Environm Canada, Saskatoon, SK S7N OX4, Canada; [Dawson, Russell D.] Univ No British Columbia, Ecosyst Sci & Management Program, Prince George, BC V2N 4Z9, Canada; [Johnson, L. Scott] Towson Univ, Dept Biol Sci, Towson, MD 21252 USA; [Rose, Alexandra] Univ Colorado, Museum Nat Hist, Boulder, CO 80309 USA; [Austin, Suzanne H.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Robinson, W. Douglas] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Lombardo, Michael P.] Grand Valley State Univ, Dept Biol, Allendale, MI 49401 USA; [Thorpe, Patrick A.] Grand Valley State Univ, Dept Biol, Allendale, MI 49401 USA; [Shutler, Dave] Acadia Univ, Dept Biol, Wolfville, NS B4P 2R6, Canada; [Robertson, Raleigh J.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Stager, Maria] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Leonard, Marty] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Horn, Andrew G.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Dickinson, Janis] Cornell Lab Ornithol, Ithaca, NY 14850 USA; [Ferretti, Valentina] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Ferretti, Valentina] Cornell Lab Ornithol, Fuller Evolutionary Biol Program, Ithaca, NY 14850 USA; [Massoni, Viviana; Bulit, Florencia; Reboreda, Juan C.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, RA-2160 Buenos Aires, DF, Argentina; [Liljesthroem, Marcela] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol & Evolut, RA-2160 Buenos Aires, DF, Argentina; [Quiroga, Martin] INALI CONICET UNL UADER, Aquat Birds Lab, RA-3000 Santa Fe, Argentina; [Rakhimberdiev, Eldar] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Rakhimberdiev, Eldar] Royal Netherlands Inst Sea Res NIOZ, Dept Marine Ecol, NL-1790 AB Den Burg, Texel, Netherlands; [Rakhimberdiev, Eldar] Moscow MV Lomonosov State Univ, Fac Biol, Dept Vertebrate Zool, RU-119991 Moscow, Russia; [Ardia, Daniel R.] Franklin & Marshall Coll, Dept Biol, Lancaster, PA 17604 USA Winkler, DW (reprint author), Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA. dww4@cornell.edu Dunn, Peter/A-9784-2008; Rakhimberdiev, Eldar/V-6325-2018 Dunn, Peter/0000-0002-7450-4194; Rakhimberdiev, Eldar/0000-0001-6357-6187; Ferretti, Valentina/0000-0003-0623-2577 NSF [PIRE OISE-0730180, LTREB DEB-0717021, IOS-0744753, IBN-0212587]; PRG - NSERC of Canada; BC Knowledge Development Fund; Canada Foundation for Innovation; UNBC; CHA - Ubacyt; CONICET; TOB - American Museum of Natural History, Rutgers Univ.; Sigma Xi; ESG - U. Michigan; Grand Valley State Univ.; McNair Scholars Program; LAV - Lewis and Clark Fund for Exploration and Field Research; AOU; Cornell Univ.; Cornell Lab of Ornithology; Organization of American States (Argentina); LPT; ONT; SLN - Long Point Bird Observatory (Bird Studies Canada) We thank dozens of student interns with the Golondrinas project for their dedicated work studying little-known swallows, and C. Burney, C. Cooper, N. DeWitt, E. Eldermire, N. Hamm, H. Haylock, E. I. Elias, I. Lovette, J. Moh, T. Robinson, E. Romero,S. Sharbaugh, L. Sonken, D. Tzul, and P. Wrege for support in the field and laboratory. The research was supported by the following NSF grants: PIRE OISE-0730180 to DWW and DRA; LTREB DEB-0717021 to DWW; IOS-0744753 to CV and DWW; IBN-0212587 to WDR. Site-specific funding: site PRG - NSERC of Canada, BC Knowledge Development Fund, Canada Foundation for Innovation and UNBC grants to RDD; site CHA - Ubacyt and CONICET grants to VM and JCR; site TOB - American Museum of Natural History, Rutgers Univ., and Sigma Xi grants to MPL; site ESG - U. Michigan grants to MPL; site GVS - grants from Grand Valley State Univ. and the McNair Scholars Program to MPL and PAT; site LAV - Lewis and Clark Fund for Exploration and Field Research, Sigma Xi, AOU, Cornell Univ., Cornell Lab of Ornithology, Organization of American States (Argentina); sites LPT, ONT, and SLN - Long Point Bird Observatory (Bird Studies Canada). Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; BATES D, 2007, IME4 LINEAR MIXED EF; Both C, 2005, GLOBAL CHANGE BIOL, V11, P1606, DOI 10.1111/j.1365-2486.2005.01038.x; Both C, 2006, NATURE, V441, P81, DOI 10.1038/nature04539; Both Christiaan, 2010, P129; Bowlin MS, 2004, AUK, V121, P345, DOI 10.1642/0004-8038(2004)121[0345:NVIFPI]2.0.CO;2; Brown JL, 1999, P NATL ACAD SCI USA, V96, P5565, DOI 10.1073/pnas.96.10.5565; Cerasale DJ, 2012, MOL PHYLOGENET EVOL, V63, P64, DOI 10.1016/j.ympev.2011.12.014; Christians JK, 2001, J ANIM ECOL, V70, P1080, DOI 10.1046/j.0021-8790.2001.00566.x; Cooper CB, 2005, ECOLOGY, V86, P2018, DOI 10.1890/03-8028; Daan S., 1990, BEHAVIOUR, V114, P1; Dor R, 2012, MOL PHYLOGENET EVOL, V65, P317, DOI 10.1016/j.ympev.2012.06.020; Dunn P. O., 1999, P R SOC B, V266, P1287; Dunn PO, 2011, ECOLOGY, V92, P450, DOI 10.1890/10-0478.1; Dunn Peter O., 2010, P113; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; DUNN PO, 1992, AUK, V109, P488; Ferretti V., 2010, VARIATION EXTRA PAIR; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Hussell DJT, 2003, AUK, V120, P607, DOI 10.1642/0004-8038(2003)120[0607:CCSTAT]2.0.CO;2; HUSSELL DJT, 1987, IBIS, V129, P243, DOI 10.1111/j.1474-919X.1987.tb03204.x; Lack D., 1965, Oiseau et la Revue Francaise d'Ornithologie, V35, P76; Liljesthrom M, 2012, CONDOR, V114, P377, DOI 10.1525/cond.2012.110142; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Massoni V, 2007, IBIS, V149, P10; MURRAY BG, 1989, EVOLUTION, V43, P1699, DOI 10.1111/j.1558-5646.1989.tb02619.x; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; RICKLEFS R E, 1969, Living Bird, V8, P165; RICKLEFS RE, 1980, AUK, V97, P38; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SMITH JNM, 1981, EVOLUTION, V35, P1142, DOI 10.1111/j.1558-5646.1981.tb04985.x; Stager M, 2012, ORNITOL NEOTROP, V23, P95; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Whittingham LA, 2002, MOL PHYLOGENET EVOL, V22, P430, DOI 10.1006/mpev.2001.1073; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Winkler DW, 1995, AUK, V112, P737; Winkler DW, 2002, P NATL ACAD SCI USA, V99, P13595, DOI 10.1073/pnas.212251999; YOUNG BE, 1994, AUK, V111, P545 42 10 11 5 60 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography JUL 2014 37 7 670 678 10.1111/j.1600-0587.2013.00458.x 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology AL6KJ WOS:000339241000006 2019-02-21 J Jones, KK; Cornwell, TJ; Bottom, DL; Campbell, LA; Stein, S Jones, K. K.; Cornwell, T. J.; Bottom, D. L.; Campbell, L. A.; Stein, S. The contribution of estuary-resident life histories to the return of adult Oncorhynchus kisutch JOURNAL OF FISH BIOLOGY English Article life-history diversity; Oregon; otolith microchemistry; Salmon River; survival; winter habitat JUVENILE COHO SALMON; RIVER ESTUARY; OTOLITH MICROCHEMISTRY; HABITAT USE; OREGON; RESILIENCE; WASHINGTON; MOVEMENTS; MIGRATION; STREAMS This study evaluated estuarine habitat use, life-history composition, growth and survival of four successive broods of coho salmon Oncoryhnchus kisutch in Salmon River, Oregon, U. S. A. Subyearling and yearling O. kisutch used restored and natural estuarine wetlands, particularly in the spring and winter. Stream-reared yearling smolts spent an average of 2 weeks in the estuary growing rapidly before entering the ocean. Emergent fry also entered the estuary in the spring, and some resided in a tidal marsh throughout the summer, even as salinities increased to >20. A significant portion of the summer stream-resident population of juvenile O. kisutch migrated out of the catchment in the autumn and winter and used estuary wetlands and adjacent streams as alternative winter-rearing habitats until the spring when they entered the ocean as yearling smolts. Passive integrated transponder (PIT) tag returns and juvenile life-history reconstructions from otoliths of returning adults revealed that four juvenile life-history types contributed to the adult population. Estuarine-associated life-history strategies accounted for 20-35% of the adults returning to spawn in the four brood years, indicating that a sizable proportion of the total O. kisutch production is ignored by conventional estimates based on stream habitat capacity. Juvenile O. kisutch responses to the reconnection of previously unavailable estuarine habitats have led to greater life-history diversity in the population and reflect greater phenotypic plasticity of the species in the U. S. Pacific Northwest than previously recognized. (C) 2014 The Fisheries Society of the British Isles [Jones, K. K.; Cornwell, T. J.; Stein, S.] Oregon Dept Fish & Wildlife, Corvallis, OR 97333 USA; [Bottom, D. L.] NOAA, Fish Ecol Div, NW Fisheries Sci Ctr, Natl Marine Fisheries Serv, Newport, OR 97365 USA; [Campbell, L. A.] Washington Dept Fish & Wildlife, Olympia, WA 98501 USA Jones, KK (reprint author), Oregon Dept Fish & Wildlife, Corvallis, OR 97333 USA. kim.jones@oregonstate.edu Oregon Watershed Enhancement Board (OWEB); Oregon Department of Fish and Wildlife; NOAA Fisheries We appreciate the research funding provided through the Oregon Watershed Enhancement Board (OWEB) and support from Oregon Department of Fish and Wildlife and NOAA Fisheries. The USFS has been responsible for extensive estuarine restoration within the Cascade Head Scenic Research Area, with assistance from OWEB. D. Welch and other personnel at the ODFW Salmon River hatchery and staff from Miami Corporation provided logistical support and access. L. Borgerson analysed the adult O. kisutch scales. J. Peterson of Oregon State University graciously evaluated the survival rates. Special thanks to L. Nguyen, S. Orlaineta and A. Claiborne from the Washington Department of Fish and Wildlife, Fish Ageing and Otolith Laboratories for otolith sample preparation. We gratefully acknowledge the contributions of field staff that operated the screw trap, conducted field surveys and collected otoliths. Thorough reviews provided by three anonymous referees improved the manuscript immensely. Bennett TR, 2011, NORTHWEST SCI, V85, P562, DOI 10.3955/046.085.0406; Bieber A.J., 2005, THESIS U WASHINGTON; Bottom DL, 2009, ECOL SOC, V14; Bottom DL, 2005, ESTUAR COAST SHELF S, V64, P79, DOI 10.1016/j.ecss.2005.02.008; Brenkman SJ, 2007, T AM FISH SOC, V136, P1, DOI 10.1577/T05-285.1; Campbell L.A., 2010, THESIS OREGON STATE; CHAPMAN DW, 1962, J FISH RES BOARD CAN, V19, P1047, DOI 10.1139/f62-069; CHAPMAN DW, 1966, AM NAT, V100, P345, DOI 10.1086/282427; Cornwell TJ, 2001, REARING JUVENILE SAL; CRONE RA, 1976, FISH B-NOAA, V74, P897; Dambacher JM, 2009, N AM J FISH MANAGE, V29, P1091, DOI 10.1577/M08-077.1; Eaton C. D., 2010, THESIS U WASHINGTON; Elmqvist T, 2003, FRONT ECOL ENVIRON, V1, P488, DOI 10.1890/1540-9295(2003)001[0488:RDECAR]2.0.CO;2; GILBERT CH, 1913, US BUREAU FISHERIES, V32, P1; Gray A, 2002, RESTOR ECOL, V10, P514, DOI 10.1046/j.1526-100X.2002.01039.x; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; HARTMAN GF, 1982, CAN J FISH AQUAT SCI, V39, P588, DOI 10.1139/f82-083; Healey M.C., 1991, P311; Hering DK, 2010, CAN J FISH AQUAT SCI, V67, P524, DOI 10.1139/F10-003; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Jacobs S., 2002, OPSWODFW20023; Johnson D. H., 2001, INVENTORY MONITORING; Koski KV, 2009, ECOL SOC, V14; LEVY DA, 1982, CAN J FISH AQUAT SCI, V39, P270, DOI 10.1139/f82-038; MASON JC, 1965, J FISH RES BOARD CAN, V22, P173, DOI 10.1139/f65-015; MCMAHON TE, 1992, CAN J FISH AQUAT SCI, V49, P1478, DOI 10.1139/f92-163; Miller BA, 2003, T AM FISH SOC, V132, P546, DOI 10.1577/1548-8659(2003)132<0546:RTASMO>2.0.CO;2; Miller JA, 2011, J EXP MAR BIOL ECOL, V405, P42, DOI 10.1016/j.jembe.2011.05.017; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; Mullen R. E., 1979, FEDERAL AID PROGR RE; Murphy ML, 1997, CAN J FISH AQUAT SCI, V54, P2837, DOI 10.1139/cjfas-54-12-2837; Nickelson T. E., 1993, P COH WORKSH 26 28 M, P251; Nickelson T. E., 1998, HABITAT BASED ASSESS; Nickelson TE, 1998, CAN J FISH AQUAT SCI, V55, P2383, DOI 10.1139/cjfas-55-11-2383; NICKELSON TE, 1992, CAN J FISH AQUAT SCI, V49, P783, DOI 10.1139/f92-088; PEARCY WG, 1989, FISH B-NOAA, V87, P553; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; REIMERS PE, 1973, RES REPORTS FISH COM, V4, P1; Rich W. H., 1920, B US BUR FISH, V37, P1; RODGERS J D, 1992, North American Journal of Fisheries Management, V12, P79, DOI 10.1577/1548-8675(1992)012<0079:COTTTE>2.3.CO;2; Rodgers J. D., 2005, OREGON PLAN SALMON W; Roni P, 2012, T AM FISH SOC, V141, P890, DOI 10.1080/00028487.2012.675895; Sandercock F.K., 1991, P395; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Shapovalov L, 1954, CALIFORNIA DEP FISH, V98, P1; Solazzi MF, 2000, CAN J FISH AQUAT SCI, V57, P906, DOI 10.1139/cjfas-57-5-906; Stevens DL, 2004, J AM STAT ASSOC, V99, P262, DOI 10.1198/016214504000000250; Stevens DL, 2003, ENVIRONMETRICS, V14, P593, DOI 10.1002/env.606; Thorson J. T., 2013, J ANIM ECOL, V83, P157, DOI doi/10.1111/1365-2656.12117/pdf; Tschaplinski P. J., 1987, THESIS U VICTORIA BR; Volk EC, 2000, FISH RES, V46, P251, DOI 10.1016/S0165-7836(00)00150-8; Volk EC, 2010, T AM FISH SOC, V139, P535, DOI 10.1577/T08-163.1; WHITE G. C., 2000, PROGRAM MARK VERSION; White GC, 1996, WILDLIFE SOC B, V24, P50; WHITE GC, 1982, LOS ALAMOS NATL LAB; Zimmerman CE, 2005, CAN J FISH AQUAT SCI, V62, P88, DOI 10.1139/F04-182; Zimmerman CE, 2002, T AM FISH SOC, V131, P986, DOI 10.1577/1548-8659(2002)131<0986:IOSARR>2.0.CO;2; ZIPPIN CALVIN, 1958, JOUR WILDLIFE MANAGEMENT, V22, P82, DOI 10.2307/3797301 58 31 31 1 41 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. JUL 2014 85 1 SI 52 80 10.1111/jfb.12380 29 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AL2HE WOS:000338945800004 24766645 2019-02-21 J Costantini, D; Bonisoli-Alquati, A; Rubolini, D; Caprioli, M; Ambrosini, R; Romano, M; Saino, N Costantini, David; Bonisoli-Alquati, Andrea; Rubolini, Diego; Caprioli, Manuela; Ambrosini, Roberto; Romano, Maria; Saino, Nicola Nestling rearing is antioxidant demanding in female barn swallows (Hirundo rustica) NATURWISSENSCHAFTEN English Article Antioxidants; Life history; Oxidative damage; Oxidative stress; Parental effort; Trade-off OXIDATIVE STRESS; EGG-PRODUCTION; DROSOPHILA-MELANOGASTER; REPRODUCTIVE EFFORT; PARENTAL EFFORT; TRADE-OFF; COST; BIRD; RESISTANCE; SUSCEPTIBILITY Reproduction is a demanding activity, since organisms must produce and, in some cases, protect and provision their progeny. Hence, a central tenet of life-history theory predicts that parents have to trade parental care against body maintenance. One physiological cost thought to be particularly important as a modulator of such trade-offs is oxidative stress. However, evidence in favour of the hypothesis of an oxidative cost of reproduction is contradictory. In this study, we manipulated the brood size of wild barn swallows Hirundo rustica soon after hatching of their nestlings to test whether an increase in nestling rearing effort translates into an increased oxidative damage and a decreased antioxidant protection at the end of the nestling rearing period. We found that, while plasma oxidative damage was unaffected by brood size enlargement, females rearing enlarged broods showed a decrease in plasma non-enzymatic antioxidants during the nestling rearing period. This was not the case among females rearing reduced broods and among males assigned to either treatment. Moreover, individuals with higher plasma oxidative damage soon after the brood size manipulation had lower plasma non-enzymatic antioxidants at the end of the nestling rearing period, suggesting that non-enzymatic antioxidants were depleted to buffer the negative effects of high oxidative damage. Our findings point to antioxidant depletion as a potential mechanism mediating the cost of reproduction among female birds. [Costantini, David] Univ Antwerp, Dept Biol, B-2610 Antwerp, Belgium; [Costantini, David] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland; [Bonisoli-Alquati, Andrea] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA; [Rubolini, Diego; Caprioli, Manuela; Romano, Maria; Saino, Nicola] Univ Milan, Dipartimento Biosci, Milan, Italy; [Ambrosini, Roberto] Univ Milano Bicocca, Dipartimento Biotecnol & Biosci, Milan, Italy Costantini, D (reprint author), Univ Antwerp, Dept Biol, Univ Pl 1, B-2610 Antwerp, Belgium. davidcostantini@libero.it Rubolini, Diego/F-2851-2011; Bonisoli-Alquati, Andrea/S-2082-2017; Ambrosini, Roberto/F-3188-2012 Rubolini, Diego/0000-0003-2703-5783; Bonisoli-Alquati, Andrea/0000-0002-9255-7556; Ambrosini, Roberto/0000-0002-7148-1468; Costantini, David/0000-0002-8140-8790; Saino, Nicola/0000-0002-0230-3967 International Observatory for Oxidative Stress (Salerno, Italy); MIUR PhD grant We thankfully acknowledge P. Bize and an anonymous reviewer for providing comments that helped us to improve the presentation of the article. We thank C. Girardo, R. Grossi, T. Noyere, D. Patelli, V. Pignataro, and M. Prinzivalli for help during fieldwork, the International Observatory for Oxidative Stress (Salerno, Italy) for advice and support, G. Brambilla and E. Vignolo for technical and logistical support at the ISS, Rome. ABA was funded by a MIUR PhD grant. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Beaulieu M, 2013, CONSERV PHYSIOL, V1, DOI 10.1093/conphys/cot004; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Boonekamp JJ, 2014, ECOL LETT IN PRESS; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Costantini D, 2006, J COMP PHYSIOL B, V176, P329, DOI 10.1007/s00360-005-0055-6; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, ECOL LETT, V13, P1435, DOI 10.1111/j.1461-0248.2010.01531.x; Costantini D, 2009, FUNCT ECOL, V23, P506, DOI 10.1111/j.1365-2435.2009.01546.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Halliwell B, 2007, FREE RADICALS BIOL M; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; Helfenstein F, 2010, ECOL LETT, V13, P213, DOI 10.1111/j.1461-0248.2009.01419.x; Kim SY, 2010, EVOLUTION, V64, P852, DOI 10.1111/j.1558-5646.2009.00862.x; Losdat S, 2011, BEHAV ECOL, V22, P1218, DOI 10.1093/beheco/arr116; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; MOller A. P., 1994, SEXUAL SELECTION BAR; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Pike TW, 2007, P ROY SOC B-BIOL SCI, V274, P1591, DOI 10.1098/rspb.2007.0317; Rands SA, 2006, THEOR BIOL MED MODEL, V3, DOI 10.1186/1742-4682-3-20; Rubolini D, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048955; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 1999, J ANIM ECOL, V68, P999, DOI 10.1046/j.1365-2656.1999.00350.x; Saino N CaprioliM, 2011, PLOS ONE, V6; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Speakman JR, 2014, BIOESSAYS, V36, P93, DOI 10.1002/bies.201300108; Stearns S, 1992, EVOLUTION LIFE HIST; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Travers M, 2010, ECOL LETT, V13, P980, DOI 10.1111/j.1461-0248.2010.01488.x; van de Crommenacker J, 2011, THESIS U GRONINGEN; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; Weinert BT, 2003, J APPL PHYSIOL, V95, P1706, DOI 10.1152/japplphysiol.00288.2003; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049 40 14 14 1 31 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0028-1042 1432-1904 NATURWISSENSCHAFTEN Naturwissenschaften JUL 2014 101 7 541 548 10.1007/s00114-014-1190-2 8 Multidisciplinary Sciences Science & Technology - Other Topics AL3BC WOS:000338998900003 24890700 2019-02-21 J Stier, A; Delestrade, A; Zahn, S; Arrive, M; Criscuolo, F; Massemin-Challet, S Stier, Antoine; Delestrade, Anne; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie Elevation impacts the balance between growth and oxidative stress in coal tits OECOLOGIA English Article Elevation; Altitude; Oxidative stress; Metabolism; Life history trade-off; Ageing OXYGEN SPECIES PRODUCTION; KING PENGUIN CHICKS; HISTORY TRADE-OFFS; SEASONAL ENVIRONMENT; ENERGY-EXPENDITURE; TELOMERE LENGTH; METABOLIC-RATE; ZEBRA FINCHES; PARUS-MAJOR; BODY-SIZE The short favorable period of time available for the growth in seasonal environments could constrain the resources allocation between growth and other life-history traits, and the short-term fitness benefits of increased growth rate may prevail over other functions. Accelerated growth rates have been associated with long-term deleterious consequences (e.g., decreased lifespan), and recently oxidative stress (the imbalance between pro-oxidants generation and antioxidant defenses) has been suggested as a mediator of these effects. Here, we examined the impact of elevation on growth rate and self-maintenance parameters (resting metabolism, oxidative damage, and antioxidant defenses) of coal tit chicks (Periparus ater). We predicted that the shorter favorable season at the higher-elevation site could lead to a reallocation of resources towards growth at the expense of self-maintenance processes. We found that chicks at high elevation grew significantly faster in terms of body mass and body size. Chicks from the high-elevation site presented higher resting metabolism, higher oxidative damage level, but similar antioxidant defenses, compared to low-elevation chicks. Interestingly, the chicks exhibiting the better antioxidant defenses at 7 days were also those with the highest resting metabolic rate, and the chicks that grew at the faster rate within the high-elevation site were those with the highest levels of oxidative damage on DNA. Our study supports the idea that increasing elevation leads to a higher growth rate in coal tit chicks, possibly in response to a shorter favorable season. In accordance with life-history theory, a bigger investment in growth was done at the expense of body maintenance, at least in terms of oxidative stress. [Stier, Antoine; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie] Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France; [Stier, Antoine; Zahn, Sandrine; Arrive, Mathilde; Criscuolo, Francois; Massemin-Challet, Sylvie] CNRS, UMR7178, DEPE, F-67087 Strasbourg, France; [Delestrade, Anne] Observ Mont Blanc, CREA, F-74400 Chamonix Mt Blanc, France; [Delestrade, Anne] Univ Savoie, UMR 5553, Lab Ecol Alpine, F-73376 Le Bourget Du Lac, France Stier, A (reprint author), Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. antoine.stier@gmail.com Stier, Antoine/0000-0002-5445-5524 CNRS; University of Strasbourg; CREA We are grateful to G. Chagneau and O. Scholly for help with fieldwork, to Antoine Duparc for assistance with the statistical analysis of temperature data, and to the CNRS, The University of Strasbourg, and The CREA for funding. We are especially grateful to two anonymous reviewers and the handling editor for providing interesting and constructive comments on a previous draft of the paper. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; [Anonymous], EVOL ECOL, V25, P461; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Badyaev AV, 2001, ECOLOGY, V82, P2948, DOI 10.2307/2679973; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Beckman KB, 1998, PHYSIOL REV, V78, P547; BETTS MM, 1955, J ANIM ECOL, V24, P282, DOI 10.2307/1715; Bize P, 2006, FUNCT ECOL, V20, P857, DOI 10.1111/1365-2435.2006.01157.x; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; CALOW P, 1982, AM NAT, V120, P416, DOI 10.1086/284001; Careau V, 2013, OECOLOGIA, V171, P11, DOI 10.1007/s00442-012-2385-x; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Conway CJ, 2000, BEHAV ECOL, V11, P178, DOI 10.1093/beheco/11.2.178; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Criscuolo F, 2008, P ROY SOC B-BIOL SCI, V275, P1565, DOI 10.1098/rspb.2008.0148; Criscuolo F, 2011, OECOLOGIA, V167, P315, DOI 10.1007/s00442-011-1986-0; Dittmar C, 2006, EUR J FOREST RES, V125, P181, DOI 10.1007/s10342-005-0099-x; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; FREEMAN S, 1990, AUK, V107, P69; Geiger S, 2012, PHYSIOL BIOCHEM ZOOL, V85, P415, DOI DOI 10.1086/666364; Geiger S, 2012, MOL ECOL, V21, P1500, DOI 10.1111/j.1365-294X.2011.05331.x; Gotthard K, 2008, BIOSCIENCE, V58, P222, DOI 10.1641/B580308; Griffiths R, 1998, MOL ECOL, V7, P1071, DOI 10.1046/j.1365-294x.1998.00389.x; Halliwell B, 2007, FREE RADICALS BIOL M; HAYES JP, 1989, J COMP PHYSIOL B, V159, P453, DOI 10.1007/BF00692417; Heidinger BJ, 2012, P NATL ACAD SCI USA, V109, P1743, DOI 10.1073/pnas.1113306109; Jefferson JA, 2004, HIGH ALT MED BIOL, V5, P61, DOI 10.1089/152702904322963690; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; McVicar TR, 2012, OECOLOGIA, V171, P335; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Monros JS, 1998, ARDEA, V86, P213; Naef Daenzer B, 1999, J ANIM ECOL, V68, P708; Naef-Daenzer B, 2012, CLIM PAST, V8, P1527, DOI 10.5194/cp-8-1527-2012; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Naef-Daenzer L, 2004, ARDEA, V92, P229; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Pellerin M, 2012, EUR J FOREST RES, V131, P1957, DOI 10.1007/s10342-012-0646-1; Quinlivan EP, 2008, ANAL BIOCHEM, V373, P383, DOI 10.1016/j.ab.2007.09.031; Reeve, 2000, J EVOLUTION BIOL, V13, P836; RICHNER H, 1989, J ANIM ECOL, V58, P427, DOI 10.2307/4840; RICKLEFS RE, 1979, AUK, V96, P10; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Rosa CE, 2008, COMP BIOCHEM PHYS B, V149, P209, DOI 10.1016/j.cbpb.2007.09.010; Salin K, 2012, J EXP BIOL, V215, P863, DOI 10.1242/jeb.062745; Stearns S, 1992, EVOLUTION LIFE HIST; Stier A, 2014, FUNCT ECOL, V28, P601, DOI 10.1111/1365-2435.12204; Stier A, 2014, J EXP BIOL, V217, P624, DOI 10.1242/jeb.092700; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Tarry-Adkins JL, 2008, FASEB J, V22, P2037, DOI 10.1096/fj.07-099523; Tarry-Adkins JL, 2009, FASEB J, V23, P1521, DOI 10.1096/fj.08-122796; Tsuchiya Y, 2012, J EVOLUTION BIOL, V25, P1835, DOI 10.1111/j.1420-9101.2012.02568.x; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Weathers WW, 2002, J EXP BIOL, V205, P2915; Wood SN., 2006, GEN ADDITIVE MODELS; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhong YC, 2011, ZHONGHUA YU FANG YI, V42, P502 65 12 12 2 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2014 175 3 791 800 10.1007/s00442-014-2946-2 10 Ecology Environmental Sciences & Ecology AK1UO WOS:000338202600005 24805201 2019-02-21 J Ireland, KB; Moore, MM; Fule, PZ; Zegler, TJ; Keane, RE Ireland, Kathryn B.; Moore, Margaret M.; Fule, Peter Z.; Zegler, Thomas J.; Keane, Robert E. Slow lifelong growth predisposes Populus tremuloides trees to mortality OECOLOGIA English Article Quaking aspen; Populus tremuloides; Tree mortality; Growth pattern; Decline; Dendroecology WESTERN UNITED-STATES; CLIMATE-CHANGE; ASPEN DIEBACK; MODELS; DROUGHT; FORESTS; DEATH; RATES; LIKELIHOOD; PATTERNS Widespread dieback of aspen forests, sometimes called sudden aspen decline, has been observed throughout much of western North America, with the highest mortality rates in the southwestern United States. Recent aspen mortality has been linked to drought stress and elevated temperatures characteristic of conditions expected under climate change, but the role of individual aspen tree growth patterns in contributing to recent tree mortality is less well known. We used tree-ring data to investigate the relationship between an individual aspen tree's lifetime growth patterns and mortality. Surviving aspen trees had consistently higher average growth rates for at least 100 years than dead trees. Contrary to observations from late successional species, slow initial growth rates were not associated with a longer lifespan in aspen. Aspen trees that died had slower lifetime growth and slower growth at various stages of their lives than those that survived. Differences in average diameter growth between live and dead trees were significant (alpha = 0.05) across all time periods tested. Our best logistical model of aspen mortality indicates that younger aspen trees with lower recent growth rates and higher frequencies of abrupt growth declines had an increased risk of mortality. Our findings highlight the need for species-specific mortality functions in forest succession models. Size-dependent mortality functions suitable for late successional species may not be appropriate for species with different life history strategies. For some early successional species, like aspen, slow growth at various stages of the tree's life is associated with increased mortality risk. [Ireland, Kathryn B.] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA; [Moore, Margaret M.; Fule, Peter Z.; Zegler, Thomas J.] Univ Arizona, Sch Forestry, Flagstaff, AZ 86011 USA; [Keane, Robert E.] US Forest Serv, Fire Sci Lab, Rocky Mt Res Stn, USDA, Missoula, MT 59807 USA Ireland, KB (reprint author), Montana State Univ, Dept Ecol, POB 173460, Bozeman, MT 59717 USA. kathryn.ireland@montana.edu Northern Arizona University's School of Forestry Mission Research program; Science Foundation Arizona, USDA Forest Service, Rocky Mountain Research Station [08-JV-11221633-244]; USDA Forest Service, Forest Health Monitoring Program [INT-EM-B-10-04]; Lucking Family Foundation We thank staff and students at the Ecological Restoration Institute at Northern Arizona University, especially Don Normandin and Scott Curran. The US Forest Service (USFS) Williams Ranger District of the Kaibab National Forest provided logistical assistance. We benefited from statistical advice from Roy St. Laurent with Northern Arizona University's Statistical Consulting Lab. We thank Larissa Yocom and Amanda Stan for editorial assistance and Signe Leirfallom USFS Missoula Fire Sciences Laboratory for lab assistance. Mary Lou Fairweather with the USFS Arizona Zone of Forest Health Protection and Carolyn Sieg with the USFS Rocky Mountain Research Station provided logistical assistance. This work was supported by Northern Arizona University's School of Forestry Mission Research program (McIntire-Stennis), a fellowship through Science Foundation Arizona, USDA Forest Service, Rocky Mountain Research Station Award #08-JV-11221633-244 and USDA Forest Service, Forest Health Monitoring Program, Award #INT-EM-B-10-04, and the Lucking Family Foundation. We also thank three anonymous reviewers for their thoughtful comments, which improved the quality of this manuscript. The sampling and all research complies with the current laws of the country (United States) in which the study was performed. Allen CD, 2010, FOREST ECOL MANAG, V259, P660, DOI 10.1016/j.foreco.2009.09.001; Anderegg WRL, 2012, NAT CLIM CHANG, V635, P1; APPLEQUIST M. B., 1958, JOUR FOREST, V56, P141; Bigler C, 2004, ECOL APPL, V14, P902, DOI 10.1890/03-5011; Bigler C, 2004, ECOL MODEL, V174, P225, DOI 10.1016/j.ecolmodel.2003.09.025; Bigler C, 2003, CAN J FOREST RES, V33, P210, DOI [10.1139/x02-180, 10.1139/X02-180]; Bigler C, 2009, OIKOS, V118, P1130, DOI 10.1111/j.1600-0706.2009.17592.x; Biondi F, 2008, TREE-RING RES, V64, P81, DOI 10.3959/2008-6.1; Black BA, 2008, ECOSCIENCE, V15, P349, DOI 10.2980/15-3-3149; Breshears DD, 2008, P NATL ACAD SCI USA, V105, P11591, DOI 10.1073/pnas.0806579105; Bunn AG, 2008, DENDROCHRONOLOGIA, V26, P115, DOI 10.1016/j.dendro.2008.01.002; Burnham K. P., 1998, MODEL SELECTION INFE; Calcagno V, 2010, J STAT SOFTW, V34, P1; Cook ER, 2004, SCIENCE, V306, P1015, DOI 10.1126/science.1102586; Das AJ, 2007, CAN J FOREST RES, V37, P580, DOI 10.1139/X06-262; FAIRWEATHER ML, 2008, P 55 W INT FOR DIS W, P53; Frey BR, 2004, CAN J FOREST RES, V34, P1379, DOI [10.1139/x04-062, 10.1139/X04-062]; Ganey JL, 2011, FOREST ECOL MANAG, V261, P162, DOI 10.1016/j.foreco.2010.09.048; Hanna P, 2012, FOREST ECOL MANAG, V274, P91, DOI 10.1016/j.foreco.2012.02.009; HOLMES R L, 1983, Tree-Ring Bulletin, V43, P69; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Huang H-, 2012, GLOBAL CHANGE BIOL, V18, P1016; Institute SAS, 2011, SAS SYST WIND REL 9; Johnson SE, 2009, TREE PHYSIOL, V29, P1317, DOI 10.1093/treephys/tpp068; Kane JM, 2012, THESIS NO ARIZONA U; Keane RE, 2001, CLIMATIC CHANGE, V51, P509, DOI 10.1023/A:1012539409854; Kuhn M., 2013, CARET CLASSIFICATION; LOEHLE C, 1988, CAN J FOREST RES, V18, P209, DOI 10.1139/x88-032; Manusch C, 2012, ECOL MODEL, V243, P101, DOI 10.1016/j.ecolmodel.2012.06.008; Mazerolle MJ, 2012, AICCMODAVG MODEL SEL; Neter J., 1996, APPL LINEAR STAT MOD; Ogle K, 2000, ECOLOGY, V81, P3237; Pedersen BS, 1998, ECOLOGY, V79, P79, DOI 10.1890/0012-9658(1998)079[0079:TROSIT]2.0.CO;2; R Development Core Team, 2012, R LANG ENV STAT COMP; Rehfeldt GE, 2006, INT J PLANT SCI, V167, P1123, DOI 10.1086/507711; Rehfeldt GE, 2009, FOREST ECOL MANAG, V258, P2353, DOI 10.1016/j.foreco.2009.06.005; ROMME WH, 1995, ECOLOGY, V76, P2097, DOI 10.2307/1941684; Sing T., 2012, ROCR VISUALIZING PER; Stokes M. A, 1968, INTRO TREE RING DATI; van Mantgem PJ, 2009, SCIENCE, V323, P521, DOI 10.1126/science.1165000; Worrall JJ, 2008, FOREST ECOL MANAG, V255, P686, DOI 10.1016/j.foreco.2007.09.071; Worrall JJ, 2013, FOREST ECOL MANAG, V299, P35, DOI 10.1016/j.foreco.2012.12.033; Worrall JJ, 2010, FOREST ECOL MANAG, V260, P638, DOI 10.1016/j.foreco.2010.05.020; WRC, 2012, COOP CLIM DAT SUMM N; Zegler TJ, 2012, FOREST ECOL MANAG, V282, P196, DOI 10.1016/j.foreco.2012.07.004 45 12 12 3 34 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2014 175 3 847 859 10.1007/s00442-014-2951-5 13 Ecology Environmental Sciences & Ecology AK1UO WOS:000338202600010 24817158 2019-02-21 J Gutierrez, D; Wilson, RJ Gutierrez, David; Wilson, Robert J. Climate conditions and resource availability drive return elevational migrations in a single-brooded insect OECOLOGIA English Article Climate change; Elevational distribution; Gonepteryx rhamni; Lepidoptera; Seasonal movements BUTTERFLY VANESSA-ATALANTA; EXPLAIN ALTITUDINAL MIGRATION; GONEPTERYX-RHAMNI; ECOLOGY; LEPIDOPTERA; ABUNDANCE; RANGE; NYMPHALIDAE; POPULATION; INFERENCE Seasonal elevational migrations have important implications for life-history evolution and ecological responses to environmental change. However, for most species, particularly invertebrates, evidence is still scarce for the existence of such migrations, as well as for the potential causes. We tested the extent to which seasonal abundance patterns in central Spain for overwintering (breeding) and summer (non-breeding) individuals of the butterfly Gonepteryx rhamni were consistent with three hypotheses explaining elevational migration: resource limitation (host plant and flower availability), physiological constraints of weather (maximum temperatures) and habitat limitation (forest cover for overwintering). For overwintering adults, abundance was positively associated with host plant density during two intensive survey seasons (2007-2008), and the elevational distribution was relatively stable over a 7-year period (2006-2012). The elevational distribution of summer adults was highly variable, apparently related both to temperature and habitat type. Sites occupied by adults in the summer were on average 3 A degrees C cooler than their breeding sites, and abundance showed negative associations with summer temperature, and positive associations with forest cover and host plant density in 2007 and 2008. The results suggest that the extent of uphill migration in summer could be driven by different factors, depending on the year, and are mostly consistent with the physiological constraint and habitat limitation hypotheses. In contrast, the patterns for overwintering adults suggest that downhill migration can be explained by resource availability. Climate change could generate bottlenecks in the populations of elevational migrant species by constraining the area of specific seasonal habitat networks or by reducing the proximity of environments used at different times of year. [Gutierrez, David] Univ Rey Juan Carlos, Area Biodiversidad & Conservac, Escuela Super Ciencias Expt & Tecnol, Madrid 28933, Spain; [Wilson, Robert J.] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4PS, Devon, England Gutierrez, D (reprint author), Univ Rey Juan Carlos, Area Biodiversidad & Conservac, Escuela Super Ciencias Expt & Tecnol, Tulipan S-N, Madrid 28933, Spain. david.gutierrez@urjc.es Wilson, Robert/I-8726-2014; Gutierrez, David/P-4712-2014 Wilson, Robert/0000-0003-4477-7068; Gutierrez, David/0000-0002-8059-1239 Universidad Rey Juan Carlos/Comunidad de Madrid [URJC-CM-2006-CET-0592]; Spanish Ministry of Economy and Competitiveness [REN2002-12853-E/GLO, CGL2005-06820/BOS, CGL2008-04950/BOS, CGL2011-30259]; British Ecological Society; Royal Society J. Gutierrez Illan and S. B. Diez assisted with fieldwork and S. Nieto-Sanchez and T. Izquierdo helped with climate data. The research was funded by Universidad Rey Juan Carlos/Comunidad de Madrid (URJC-CM-2006-CET-0592), the Spanish Ministry of Economy and Competitiveness (REN2002-12853-E/GLO, CGL2005-06820/BOS, CGL2008-04950/BOS and CGL2011-30259), the British Ecological Society and the Royal Society. Access and research permits were provided by Comunidad de Madrid, Parque Natural de Penalara, Parque Regional de la Cuenca Alta del Manzanares, Parque Regional del Curso Medio del Rio Guadarrama, Patrimonio Nacional and Ayuntamiento de Cercedilla. Barton K., 2017, MUMIN MULTIMODEL INF; Boyle WA, 2010, CAN J ZOOL, V88, P204, DOI 10.1139/Z09-133; Boyle WA, 2008, OECOLOGIA, V155, P397, DOI 10.1007/s00442-007-0897-6; Boyle WA, 2010, P ROY SOC B-BIOL SCI, V277, P2511, DOI 10.1098/rspb.2010.0344; Brambilla M, 2012, ANIM CONSERV, V15, P638, DOI 10.1111/j.1469-1795.2012.00561.x; Brattstrom O, 2010, ECOGRAPHY, V33, P720, DOI 10.1111/j.1600-0587.2009.05748.x; Burnham K. P, 2002, MODEL SELECTION MULT; Chapman JW, 2012, P NATL ACAD SCI USA, V109, P14924, DOI 10.1073/pnas.1207255109; CHEVAN A, 1991, AM STAT, V45, P90, DOI 10.2307/2684366; Dingle H, 2007, BIOSCIENCE, V57, P113, DOI 10.1641/B570206; Diniz JAF, 2008, GLOBAL ECOL BIOGEOGR, V17, P479, DOI 10.1111/j.1466-8238.2008.00395.x; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Environmental Systems Research Institute Inc. (ESRI), 2001, ARCGIS 8 1; Farr TG, 2007, REV GEOPHYS, V45, DOI 10.1029/2005RG000183; Flockhart DTT, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1087; Garcia-Barros E., 2013, FAUNA IBERICA, V37; GARCIABARROS E, 2004, ATLAS BUTTERFLIES IB; Gutierrez D, 2000, ECOL ENTOMOL, V25, P165, DOI 10.1046/j.1365-2311.2000.00241.x; Illan JG, 2010, GLOBAL ECOL BIOGEOGR, V19, P159, DOI 10.1111/j.1466-8238.2009.00507.x; Holland RA, 2006, SCIENCE, V313, P794, DOI 10.1126/science.1127272; Hunt JH, 1999, BIOTROPICA, V31, P192; Inouye DW, 2000, P NATL ACAD SCI USA, V97, P1630, DOI 10.1073/pnas.97.4.1630; LARSEN T B, 1976, Notulae Entomologicae, V56, P73; LARSEN T B, 1982, Atalanta (Marktleuthen), V13, P248; Legendre P, 1998, NUMERICAL ECOLOGY; Mac Nally R, 2002, BIODIVERS CONSERV, V11, P1397, DOI 10.1023/A:1016250716679; Mac Nally R, 1996, AUST J ECOL, V21, P224; Mac Nally R, 2004, BIODIVERS CONSERV, V13, P659; Marini MA, 2013, J ORNITHOL, V154, P393, DOI 10.1007/s10336-012-0903-6; McCullagh P., 1989, GEN LINEAR MODELS; McGuire LP, 2013, BIOL REV, V88, P767, DOI 10.1111/brv.12024; Merrill RM, 2008, J ANIM ECOL, V77, P145, DOI 10.1111/j.1365-2656.2007.01303.x; Mikkola K, 2003, EUR J ENTOMOL, V100, P625, DOI 10.14411/eje.2003.091; Norbu N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0060979; Osborne J, 2002, DISPERSAL ECOLOGY, P24; Pollard E, 1998, ECOL LETT, V1, P77; Pollard E, 1993, MONITORING BUTTERFLI; PRUESS KP, 1967, ANN ENTOMOL SOC AM, V60, P910, DOI 10.1093/aesa/60.5.910; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramenofsky M, 2007, BIOSCIENCE, V57, P135, DOI 10.1641/B570208; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; Richards SA, 2008, J APPL ECOL, V45, P218, DOI 10.1111/j.1365-2664.2007.01377.x; Samraoui B., 1998, International Journal of Odonatology, V1, P119; SAWADA M, 1999, B ECOL SOC AM, V80, P231, DOI DOI 10.1890/0012-9623(1999)080[0231:TT]2.0.CO;2; Shapiro A.M., 1974, Journal Lepid Soc, V28, P75; SHAPIRO A M, 1974, Journal of Research on the Lepidoptera, V13, P157; Shapiro A.M., 1973, Journal Res Lepid, V12, P231; SHAPIRO A M, 1975, Journal of Research on the Lepidoptera, V14, P93; Shapiro AM, 1980, ATALANTA, V11, P161; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Stefanescu C, 2001, ECOL ENTOMOL, V26, P525, DOI 10.1046/j.1365-2311.2001.00347.x; Stefanescu C, 2007, J ANIM ECOL, V76, P888, DOI 10.1111/j.1365-2656.2007.01262.x; Stefanescu C, 2013, ECOGRAPHY, V36, P474, DOI 10.1111/j.1600-0587.2012.07738.x; Stefanescu C, 2012, EUR J ENTOMOL, V109, P85, DOI 10.14411/eje.2012.011; Stefanescu C, 2009, OIKOS, V118, P1109, DOI 10.1111/j.1600-0706.2009.17274.x; Tolman T., 1997, BUTTERFLIES BRITAIN; URQUHART FA, 1978, CAN J ZOOL, V56, P1759, DOI 10.1139/z78-240; Wikelski M, 2006, BIOL LETTERS, V2, P325, DOI 10.1098/rsbl.2006.0487; Wiklund C, 1996, OIKOS, V75, P227, DOI 10.2307/3546246; WILLIAMS CB, 1930, MIGRATION BUTTERFLIE; Zuur AF, 2007, STAT BIOL HEALTH, P1 61 8 8 1 64 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2014 175 3 861 873 10.1007/s00442-014-2952-4 13 Ecology Environmental Sciences & Ecology AK1UO WOS:000338202600011 24817198 2019-02-21 J Sagerman, J; Enge, S; Pavia, H; Wikstrom, SA Sagerman, Josefin; Enge, Swantje; Pavia, Henrik; Wikstrom, Sofia A. Divergent ecological strategies determine different impacts on community production by two successful non-native seaweeds OECOLOGIA English Article Plant invasion; Primary production; Ecosystem function; Heterosiphonia japonica; Bonnemaisonia hamifera EXOTIC PLANT INVASIONS; INCREASED COMPETITIVE ABILITY; KELP SACCHARINA-LATISSIMA; INTRODUCED RED ALGA; BIOLOGICAL INVASIONS; BONNEMAISONIA-HAMIFERA; CAULERPA-TAXIFOLIA; SPECIES IDENTITY; CHEMICAL WEAPON; RHODOPHYTA The consequences of plant introductions into ecosystems are frequently reported from terrestrial environments, but little is known about the effects on ecosystem functioning caused by non-native primary producers in marine systems. In this study we explored the effects of the invasion by the two filamentous red algae Heterosiphonia japonica and Bonnemaisonia hamifera on the primary production of seaweed communities by using single and mixed cultures of non-native and native red algae. The experiments were conducted both in the presence and absence of herbivores. Biomass production of the invaded community increased more than four times in mixed cultures with H. japonica, while introduction by B. hamifera had no significant effect. The different impact on community production could be explained by differences in life history strategies between the invaders; H. japonica grew considerably faster than the native seaweeds which directly increased the community production, while B. hamifera showed a relatively slow growth rate and therefore had no effect. From previous studies it is known that B. hamifera produces a highly deterrent, but also costly, chemical defence. The assessment of survival and growth of a native generalist herbivore further corroborated that the biomass produced by B. hamifera constitutes a very low-quality food, whereas the performance of herbivores on a diet of H. japonica was comparable to that on native algal diets. In summary, this study demonstrates that successful invaders belonging to the same functional group (filamentous red algae) may have distinctly different impacts on productivity in the recipient community, depending on their specific life history traits. [Sagerman, Josefin; Wikstrom, Sofia A.] Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden; [Enge, Swantje; Pavia, Henrik] Univ Gothenburg, Dept Biol & Environm Sci Tjarno, S-45296 Stromstad, Sweden; [Wikstrom, Sofia A.] AquaBiota Water Res, S-11550 Stockholm, Sweden Sagerman, J (reprint author), Stockholm Univ, Dept Ecol Environm & Plant Sci, S-10691 Stockholm, Sweden. josefin.sagerman@su.se Swedish Research Council Formas [217-2007-534]; Linnaeus grant from the Swedish Research Council VR [621-2011-5630] We thank G. Cervin, R. Svensson and F. Baumgartner for field assistance and P. Jonsson for advice on analysis of diversity effects. We also want to thank the staff at the Tjarno Laboratory (Sven Loven Centre for Marine Sciences) for practical assistance and two anonymous reviewers for comments that improved the manuscript. The work was performed within the Linnaeus Centre for Marine Evolutionary Biology (http://www.cemeb.science.gu.se/), and the Centre for Marine Chemical Ecology (http://www.cemace.science.gu.se/), at the University of Gothenburg and funded by the Swedish Research Council Formas (contract no. 217-2007-534 to S. A. W.) and a Linnaeus grant from the Swedish Research Council VR (contract no. 621-2011-5630 to H. P.). Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Bekkby T, 2011, ESTUAR COAST SHELF S, V95, P477, DOI 10.1016/j.ecss.2011.10.029; Bjaerke MR, 2004, BOT MAR, V47, P373, DOI 10.1515/BOT.2004.055; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Boudouresque CF, 1996, AQUAT BOT, V53, P245, DOI 10.1016/0304-3770(96)01021-2; BREEMAN AM, 1988, HELGOLANDER MEERESUN, V42, P535, DOI 10.1007/BF02365625; Bruno JF, 2005, ECOL LETT, V8, P1165, DOI 10.1111/j.1461-0248.2005.00823.x; Bruno JF, 2006, OIKOS, V115, P170, DOI 10.1111/j.2006.0030-1299.14927.x; Callaway RM, 2004, FRONT ECOL ENVIRON, V2, P436, DOI 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2; Cappuccino N, 2005, BIOL LETTERS, V1, P435, DOI 10.1098/rsbl.2005.0341; Cardinale BJ, 2006, NATURE, V443, P989, DOI 10.1038/nature05202; DANTONIO CM, 1992, ANNU REV ECOL SYST, V23, P63, DOI 10.1146/annurev.es.23.110192.000431; Ehrenfeld JG, 2003, ECOSYSTEMS, V6, P503, DOI 10.1007/s10021-002-0151-3; Ehrenfeld JG, 2010, ANNU REV ECOL EVOL S, V41, P59, DOI 10.1146/annurev-ecolsys-102209-144650; Eklund B, 2005, ESTUAR COAST SHELF S, V62, P621, DOI 10.1016/j.ecss.2004.09.030; Enge S, 2013, ECOL LETT, V16, P487, DOI 10.1111/ele.12072; Enge S, 2012, ECOLOGY, V93, P2736, DOI 10.1890/12-0143.1; Forslund H, 2010, OECOLOGIA, V164, P833, DOI 10.1007/s00442-010-1767-1; FRANCOUR P, 1995, HYDROBIOLOGIA, V300, P345, DOI 10.1007/BF00024475; Griffin JN, 2009, OIKOS, V118, P37, DOI 10.1111/j.1600-0706.2008.16960.x; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Herberich E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009788; Hladyz S, 2011, J APPL ECOL, V48, P443, DOI 10.1111/j.1365-2664.2010.01924.x; Hothorn T, 2008, BIOMETRICAL J, V50, P346, DOI 10.1002/bimj.200810425; Hulme PE, 2008, J APPL ECOL, V45, P403, DOI 10.1111/j.1365-2664.2007.01442.x; Husa V, 2004, SARSIA, V89, P211, DOI 10.1080/00364820410006600; Husa V, 2006, BOT MAR, V49, P191, DOI 10.1515/BOT.2006.024; Karlsson J, 2007, OVERVAKNING VEGETATI; Keane RM, 2002, TRENDS ECOL EVOL, V17, P164, DOI 10.1016/S0169-5347(02)02499-0; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Levine JM, 2003, P ROY SOC B-BIOL SCI, V270, P775, DOI [10.1098/rspb.2003.2327, 10.1098/rspb.2002.2299]; Liao CZ, 2008, NEW PHYTOL, V177, P706, DOI 10.1111/j.1469-8137.2007.02290.x; Loreau M, 1998, OIKOS, V82, P600, DOI 10.2307/3546381; Maggs CA, 1998, HELGOLANDER MEERESUN, V52, P243, DOI 10.1007/BF02908900; Moy FE, 2012, MAR BIOL RES, V8, P309, DOI 10.1080/17451000.2011.637561; Nash R, 2005, BOT MAR, V48, P257, DOI 10.1515/BOT.2005.035; Nyberg CD, 2005, BIOL INVASIONS, V7, P265, DOI 10.1007/s10530-004-0738-z; Paul VJ, 2007, BIOL BULL-US, V213, P226, DOI 10.2307/25066642; Pavia H, 1999, J EXP MAR BIOL ECOL, V236, P15, DOI 10.1016/S0022-0981(98)00191-9; Pavia H, 2012, CHEMICAL ECOLOGY IN AQUATIC SYSTEMS, P210; Petchey OL, 2003, OIKOS, V101, P323, DOI 10.1034/j.1600-0706.2003.11828.x; Poore AGB, 2012, ECOL LETT, V15, P912, DOI 10.1111/j.1461-0248.2012.01804.x; Purrington CB, 2000, CURR OPIN PLANT BIOL, V3, P305, DOI 10.1016/S1369-5266(00)00085-6; R Core Team, 2012, R LANG ENV STAT COMP; RUSSELL DJ, 1992, ICES MAR SC, V194, P110; Schaffelke B, 2007, BOT MAR, V50, P397, DOI 10.1515/BOT.2007.044; Sjotun K., 2008, Aquatic Invasions, V3, P377; Stachowicz JJ, 2008, ECOLOGY, V89, P3008, DOI 10.1890/07-1873.1; Svensson JR, 2013, J ECOL, V101, P140, DOI 10.1111/1365-2745.12028; Thomsen MS, 2007, MAR BIOL RES, V3, P61, DOI 10.1080/17451000701213413; van Kleunen M, 2010, ECOL LETT, V13, P235, DOI 10.1111/j.1461-0248.2009.01418.x; Verhoeven KJF, 2009, ECOL LETT, V12, P107, DOI 10.1111/j.1461-0248.2008.01248.x; Vila M, 2004, OIKOS, V105, P229, DOI 10.1111/j.0030-1299.2004.12682.x; Vila M, 2011, ECOL LETT, V14, P702, DOI 10.1111/j.1461-0248.2011.01628.x; White LF, 2011, J EXP MAR BIOL ECOL, V405, P111, DOI 10.1016/j.jembe.2011.05.024; Wikstrom SA, 2006, OECOLOGIA, V148, P593, DOI 10.1007/s00442-006-0407-2; Wilsey BJ, 2006, OECOLOGIA, V150, P300, DOI 10.1007/s00442-006-0515-z; Wilsey BJ, 2009, ECOL LETT, V12, P432, DOI 10.1111/j.1461-0248.2009.01298.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 59 4 4 1 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JUL 2014 175 3 937 946 10.1007/s00442-014-2938-2 10 Ecology Environmental Sciences & Ecology AK1UO WOS:000338202600017 24728943 2019-02-21 J Barraquand, F; Husek, J Barraquand, Frederic; Husek, Jan Covariation between mean vole density and variability drives the numerical response of storks to vole prey POPULATION ECOLOGY English Editorial Material Coefficient of variation (CV); Jensen's inequality; Life history; Population cycles; Taylor's law STOCHASTIC ENVIRONMENTS; CICONIA-CICONIA; POWER-LAW; POPULATION; DYNAMICS; PRODUCTIVITY; PREDATOR; RATES Huek et al. (Popul Ecol 55:363-375, 2013) showed that the numerical response of storks to vole prey was stronger in regions where variability in vole density was higher. This finding is, at first sight, in contradiction with the predictions of life-history theory in stochastic environments. Since the stork productivity-vole density relationship is concave, theory predicts a negative association between the temporal variability in vole density and stork productivity. Here, we illustrate this negative effect of vole variability on stork productivity with a simple mathematical model relating expected stork productivity to vole dynamics. When comparing model simulations to the observed mean density and variability of thirteen Czech and Polish vole populations, we find that the observed positive effect of vole variability on stork numerical response is most likely due to an unusual positive correlation between mean and variability of vole density. [Barraquand, Frederic] Univ Tromso, Dept Arctic & Marine Biol, Northern Populat & Ecosyst Grp, N-9037 Tromso, Norway; [Husek, Jan] Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, N-2480 Koppang, Norway Barraquand, F (reprint author), Univ Tromso, Dept Arctic & Marine Biol, Northern Populat & Ecosyst Grp, Dramsveien 201, N-9037 Tromso, Norway. frederic.barraquand@uit.no; jan.husek@hihm.no Barraquand, Frederic/G-1599-2011 Barraquand, Frederic/0000-0002-4759-0269 Barraquand F, 2014, J ANIM ECOL, V83, P375, DOI 10.1111/1365-2656.12140; Barraquand F, 2013, THEOR POPUL BIOL, V89, P1, DOI 10.1016/j.tpb.2013.07.002; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Garcia-Carreras B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063974; Henden JA, 2008, J APPL ECOL, V45, P1086, DOI 10.1111/j.1365-2664.2008.01515.x; Husek J, 2013, POPUL ECOL, V55, P363, DOI 10.1007/s10144-013-0366-5; Kilpatrick AM, 2003, NATURE, V422, P65, DOI 10.1038/nature01471; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Krebs C. J., 2013, POPULATION FLUCTUATI; Linnerud M, 2013, OIKOS, V122, P1207, DOI 10.1111/j.1600-0706.2012.20517.x; MCARDLE BH, 1995, OIKOS, V74, P165, DOI 10.2307/3545687; Pasztor L, 2000, TRENDS ECOL EVOL, V15, P117, DOI 10.1016/S0169-5347(99)01801-7; Schaub M, 2005, J ANIM ECOL, V74, P656, DOI 10.1111/j.1365-2656.2005.00961.x; Schaub M, 2004, BIOL CONSERV, V119, P105, DOI 10.1016/j.biocon.2003.11.002; Tkadlec E, 2006, CLIM RES, V32, P99, DOI 10.3354/cr032099 15 2 2 0 19 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JUL 2014 56 3 551 553 10.1007/s10144-014-0440-7 3 Ecology Environmental Sciences & Ecology AK2YL WOS:000338286400011 2019-02-21 J Robertsen, G; Armstrong, JD; Nislow, KH; Herfindal, I; McKelvey, S; Einum, S Robertsen, Grethe; Armstrong, John D.; Nislow, Keith H.; Herfindal, Ivar; McKelvey, Simon; Einum, Sigurd Spatial variation in the relationship between performance and metabolic rate in wild juvenile Atlantic salmon JOURNAL OF ANIMAL ECOLOGY English Article dispersal; energetics; intraspecific variation; natural selection; standard metabolic rate LIFE-HISTORY STRATEGIES; OVER-WINTER SURVIVAL; BROWN TROUT; GENETIC-VARIATION; ENERGY-METABOLISM; BODY-MASS; QUANTITATIVE GENETICS; OXYGEN-CONSUMPTION; NATURAL-SELECTION; SOCIAL-STATUS Maintenance of metabolic rate (MR, the energy cost of self-maintenance) is linked to behavioural traits and fitness and varies substantially within populations. Despite having received much attention, the causes and consequences of this variation remain obscure. Theoretically, such within-population variation in fitness-related traits can be maintained by environmental heterogeneity in selection patterns, but for MR, this has rarely been tested in nature. Here, we experimentally test whether the relationship between MR and performance can vary spatially by assessing survival, growth rate and movement of Atlantic salmon (Salmo salar L.) juveniles from 10 family groups differing in MR (measured as egg metabolism) that were stocked in parallel across 10 tributaries of a single watershed. The relationship between MR and relative survival and growth rate varied significantly among tributaries. Specifically, the effect of MR ranged from negative to positive for relative survival, whereas it was negative for growth rate. The association between MR and movement was positive and did not vary significantly among tributaries. These results are consistent with a fitness cost of traits associated with behavioural dominance that varies across relatively small spatial scales (within a single watershed). More generally, our results support the hypothesis that spatial heterogeneity in environmental conditions contributes to maintain within-population variation in fitness-related traits, such as MR. [Robertsen, Grethe; Herfindal, Ivar; Einum, Sigurd] Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, Dept Biol, NO-7491 Trondheim, Norway; [Robertsen, Grethe] Norwegian Inst Nat Res, NO-7034 Trondheim, Norway; [Armstrong, John D.] Marine Scotland Sci Freshwater Lab, Pitlochry PH16 5LB, Perth, Scotland; [Nislow, Keith H.] US Forest Serv, USDA, No Res Stn, Amherst, MA 01003 USA; [McKelvey, Simon] CKD Galbraith, Cromarty Firth Dist Salmon Fisheries Board, Inverness IV2 3HF, Scotland Robertsen, G (reprint author), Norwegian Univ Sci & Technol, Ctr Biodivers Dynam, Dept Biol, NO-7491 Trondheim, Norway. grethe.robertsen@nina.no Herfindal, Ivar/A-4609-2015 Herfindal, Ivar/0000-0002-5860-9252; Armstrong, John/0000-0003-2015-0500; Einum, Sigurd/0000-0002-3788-7800 Research Council of Norway; Norwegian University of Science and Technology We thank A. Foldvik, J. Henry, R. Kaspersson and R. Knudsen for assistance in the field, Matis-Prokaria, Iceland, for performing genotyping and parentage analyses, and two anonymous reviewers and the assistant editor for helpful comments. Financial support was provided by the Research Council of Norway and the Norwegian University of Science and Technology. This study was conducted in accordance with national animal care guidelines. Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Armstrong JD, 2011, ECOL FRESHW FISH, V20, P371, DOI 10.1111/j.1600-0633.2011.00486.x; Arnekleiv JV, 2006, J FISH BIOL, V68, P1062, DOI 10.1111/j.1095-8649.2006.00986.x; Artacho P, 2009, EVOLUTION, V63, P1044, DOI 10.1111/j.1558-5646.2008.00603.x; Baayen R. H., 2010, LANGUAGER DATA SETS; Bacigalupe LD, 2004, EVOLUTION, V58, P421, DOI 10.1111/j.0014-3820.2004.tb01657.x; Bates D. M., 2010, LME4 LINEAR MIXED EF; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bochdansky AB, 2005, MAR BIOL, V147, P1413, DOI 10.1007/s00227-005-0036-z; Boratynski Z, 2010, J EVOLUTION BIOL, V23, P1969, DOI 10.1111/j.1420-9101.2010.02059.x; Boratynski Z, 2013, EVOL ECOL, V27, P301, DOI 10.1007/s10682-012-9590-2; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; Boratynski Z, 2009, FUNCT ECOL, V23, P330, DOI 10.1111/j.1365-2435.2008.01505.x; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; BRYANT DM, 1994, ANIM BEHAV, V48, P447, DOI 10.1006/anbe.1994.1258; BULMER MG, 1971, HEREDITY, V27, P321, DOI 10.1038/hdy.1971.97; Burness GP, 1998, PHYSIOL ZOOL, V71, P247, DOI 10.1086/515917; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; CRISP DT, 1981, FRESHWATER BIOL, V11, P361, DOI 10.1111/j.1365-2427.1981.tb01267.x; CRISP DT, 1988, FRESHWATER BIOL, V19, P41, DOI 10.1111/j.1365-2427.1988.tb00325.x; Cutts CJ, 2001, CAN J FISH AQUAT SCI, V58, P961, DOI 10.1139/cjfas-58-5-961; Duchesne P, 2002, MOL ECOL NOTES, V2, P191, DOI 10.1046/j.1471-8286.2002.00164.x; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 2012, POPUL ECOL, V54, P285, DOI 10.1007/s10144-011-0296-z; Einum S, 2011, OECOLOGIA, V165, P959, DOI 10.1007/s00442-010-1794-y; ELLNER S, 1994, AM NAT, V143, P403, DOI 10.1086/285610; Finstad AG, 2009, J ANIM ECOL, V78, P226, DOI 10.1111/j.1365-2656.2008.01476.x; Gilbey J, 2004, ANIM GENET, V35, P98, DOI 10.1111/j.1365-2052.2004.01091.x; Harshman LG, 1999, J EVOLUTION BIOL, V12, P370, DOI 10.1046/j.1420-9101.1999.00024.x; Hojesjo J, 2004, BEHAV ECOL SOCIOBIOL, V56, P286, DOI 10.1007/s00265-004-0784-7; Huntingford FA, 2010, J FISH BIOL, V76, P1576, DOI 10.1111/j.1095-8649.2010.02582.x; Jackson DM, 2001, J ANIM ECOL, V70, P633, DOI 10.1046/j.1365-2656.2001.00518.x; Kaseloo PA, 2012, CAN J ZOOL, V90, P602, DOI 10.1139/Z2012-026; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; King TL, 2005, MOL ECOL NOTES, V5, P130, DOI 10.1111/j.1471-8286.2005.00860.x; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; Lans L, 2011, ECOL FRESHW FISH, V20, P548, DOI 10.1111/j.1600-0633.2011.00503.x; LARDIES MA, 2006, EVOLUTIONARY ECOLOGY, V8, P1; Lardies MA, 2008, EVOL ECOL RES, V10, P747; Larivee ML, 2010, FUNCT ECOL, V24, P597, DOI 10.1111/j.1365-2435.2009.01680.x; Mathot KJ, 2009, OIKOS, V118, P545, DOI 10.1111/j.1600-0706.2009.17357.x; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1111/j.1095-8649.2001.tb00167.x; MCNAB BK, 1988, Q REV BIOL, V63, P25, DOI 10.1086/415715; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; METCALFE NB, 1989, PROC R SOC SER B-BIO, V236, P7, DOI 10.1098/rspb.1989.0009; Millidine KJ, 2009, P ROY SOC B-BIOL SCI, V276, P2103, DOI 10.1098/rspb.2009.0080; Mueller P., 2001, P NATL ACAD SCI USA, V98, P550; Nespolo RF, 2003, J EXP BIOL, V206, P4309, DOI 10.1242/jeb.00687; Nespolo RF, 2003, EVOLUTION, V57, P1679; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; Nilsson JA, 2009, J EVOLUTION BIOL, V22, P1867, DOI 10.1111/j.1420-9101.2009.01798.x; OReilly PT, 1996, CAN J FISH AQUAT SCI, V53, P2292, DOI 10.1139/cjfas-53-10-2292; Pakkasmaa S, 2006, J COMP PHYSIOL B, V176, P387, DOI 10.1007/s00360-005-0057-4; Paterson S, 2004, MOL ECOL NOTES, V4, P160, DOI 10.1111/j.1471-8286.2004.00598.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Regnier T, 2010, J COMP PHYSIOL B, V180, P25, DOI 10.1007/s00360-009-0385-x; Reid D, 2012, J ANIM ECOL, V81, P868, DOI 10.1111/j.1365-2656.2012.01969.x; Reid D, 2011, FUNCT ECOL, V25, P1360, DOI 10.1111/j.1365-2435.2011.01894.x; Robertsen G., 2014, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.f260s, DOI 10.5061/DRYAD.F260S]; Robertsen G, 2013, CAN J FISH AQUAT SCI, V70, P5, DOI 10.1139/cjfas-2012-0152; Rossignol O, 2010, PHYSIOL BIOCHEM ZOOL, V83, P424, DOI 10.1086/649561; Sadowska ET, 2005, EVOLUTION, V59, P672; Seppanen E, 2010, COMP BIOCHEM PHYS A, V156, P278, DOI 10.1016/j.cbpa.2010.02.014; Skoglund H, 2011, J ANIM ECOL, V80, P365, DOI 10.1111/j.1365-2656.2010.01783.x; Sloman KA, 2010, HORM BEHAV, V58, P433, DOI 10.1016/j.yhbeh.2010.05.010; Teichert MAK, 2011, CAN J FISH AQUAT SCI, V68, P43, DOI 10.1139/F10-141; Tieleman BI, 2009, P R SOC B, V276, P1685, DOI 10.1098/rspb.2008.1946; Vollestad LA, 2000, ECOL FRESHW FISH, V9, P242, DOI 10.1111/j.1600-0633.2000.eff090407.x; WALSH PS, 1991, BIOTECHNIQUES, V10, P506; Withler RE, 2005, ANIM GENET, V36, P43, DOI 10.1111/j.1365-2052.2004.01220.x; Zub K, 2012, MOL ECOL, V21, P1283, DOI 10.1111/j.1365-294X.2011.05436.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 73 10 10 1 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JUL 2014 83 4 791 799 10.1111/1365-2656.12182 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology AJ4CO WOS:000337618100006 24245740 Bronze 2019-02-21 J Westneat, DF; Bokony, V; Burke, T; Chastel, O; Jensen, H; Kvalnes, T; Lendvai, AZ; Liker, A; Mock, D; Schroeder, J; Schwagmeyer, PL; Sorci, G; Stewart, IRK Westneat, David F.; Bokony, Veronika; Burke, Terry; Chastel, Olivier; Jensen, Henrik; Kvalnes, Thomas; Lendvai, Adam Z.; Liker, Andras; Mock, Douglas; Schroeder, Julia; Schwagmeyer, P. L.; Sorci, Gabriele; Stewart, Ian R. K. Multiple aspects of plasticity in clutch size vary among populations of a globally distributed songbird JOURNAL OF ANIMAL ECOLOGY English Article adaptation; clutch size; life history; phenology of breeding; phenotypic plasticity; trade-offs; within-individual variance SPARROW PASSER-DOMESTICUS; WILD BIRD POPULATION; HOUSE SPARROW; PHENOTYPIC PLASTICITY; REACTION NORMS; GENETIC-VARIATION; SEASONAL DECLINE; QUANTITATIVE GENETICS; LIFE-HISTORY; PARUS-MAJOR Plasticity in life-history characteristics can influence many ecological and evolutionary phenomena, including how invading organisms cope with novel conditions in new locations or how environmental change affects organisms in native locations. Variation in reaction norm attributes is a critical element to understanding plasticity in life history, yet we know relatively little about the ways in which reaction norms vary within and among populations. We amassed data on clutch size from marked females in eight populations of house sparrows (Passer domesticus) from North America and Europe. We exploited repeated measures of clutch size to assess both the extent of within-individual phenotypic plasticity and among-individual variation and to test alternative hypotheses about the underlying causes of reaction norm shape, particularly the decline in clutch size with date. Across all populations, females of this multibrooded species altered their clutch size with respect to date, attempt order, and the interaction of date and order, producing a reaction norm in multidimensional environmental space. The reaction norm fits that predicted by a model in which optimal clutch size is driven by a decline with date hatched in the ability of offspring to recruit. Our results do not fit those predicted for other proposed causes of a seasonal decline in clutch size. We also found significant differences between populations in response to date and the date by attempt order interaction. We tested the prediction that the relationship with date should be increasingly negative as breeding season becomes shorter but found steeper declines in clutch size with date in populations with longer seasons, contrary to the prediction. Populations also differed in the level of among-individual variation in reaction norm intercept, but we found no evidence of among-individual variation in reaction norm slope. We show that complex reaction norms in life-history characters exhibit within- and among-population variance. The nature of this variance is only partially consistent with current life-history theory and stimulates expansions of such theory to accommodate complexities in adaptive life history. [Westneat, David F.; Stewart, Ian R. K.] Univ Kentucky, Dept Biol, Lexington, KY 40506 USA; [Westneat, David F.; Stewart, Ian R. K.] Univ Kentucky, Ctr Ecol Evolut & Behav, Lexington, KY 40506 USA; [Bokony, Veronika; Liker, Andras] Univ Pannonia, Dept Limnol, H-8201 Veszprem, Hungary; [Burke, Terry] Univ Nottingham, Dept Genet, Nottingham NG7 2RD, England; [Burke, Terry; Liker, Andras; Schroeder, Julia] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Chastel, Olivier; Lendvai, Adam Z.] CNRS, Ctr Etud Biol Chiz, F-79360 Villiers En Bois, Beauvoir Sur Ni, France; [Jensen, Henrik; Kvalnes, Thomas] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway; [Lendvai, Adam Z.] Virginia Tech, Dept Biol, Blacksburg, VA 24060 USA; [Mock, Douglas; Schwagmeyer, P. L.] Dept Biol, Norman, OK 73019 USA; [Sorci, Gabriele] Univ Bourgogne, CNRS UMR 6282, F-21000 Dijon, France Westneat, DF (reprint author), Univ Kentucky, Dept Biol, 101 Morgan Bldg, Lexington, KY 40506 USA. biodfw@uky.edu Schroeder, Julia/B-1436-2010; Burke, Terry/B-3196-2011; Lendvai, Adam/B-8546-2008; Jensen, Henrik/B-5085-2011 Schroeder, Julia/0000-0002-4136-843X; Burke, Terry/0000-0003-3848-1244; Lendvai, Adam/0000-0002-8953-920X; Jensen, Henrik/0000-0001-7804-1564; Bokony, Veronika/0000-0002-2136-5346; Westneat, David/0000-0001-5163-8096 U.S. National Science Foundation; Norwegian Research Council; NERC; Hungarian Scientific Research Fund [T047256, K72827, K84132, PD76862]; Hungarian Scholarship Board (CRBPA); French ANR; University of Kentucky; Hungarian Scholarship Board; Natural Environment Research Council [NE/F006071/1] We thank the large number of field personnel across eight studies who helped contribute to this data set. We also thank the multiple agencies that supported this work, including the U.S. National Science Foundation (AZL, DFW, DM, IRKS and PLS), the Norwegian Research Council (HJ and TK), NERC (TB and JS), Hungarian Scientific Research Fund (Grants no. T047256, K72827, K84132, PD76862; AL, AZL and VB), Hungarian Scholarship Board [AZL, the CRBPA (OC)] and the French ANR (GS). The lead author also thanks the University of Kentucky for support during preparation of this manuscript and the Norwegian University of Science and Technology for hosting him during a sabbatical when plans for this paper took shape. We also appreciate the useful suggestions on the manuscript provided by three anonymous reviewers. Anderson TR, 2006, UBIQUITOUS HOUSE SPA; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Bokony V, 2008, IBIS, V150, P139; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brommer JE, 2005, EVOLUTION, V59, P1362; Brommer JE, 2002, P ROY SOC B-BIOL SCI, V269, P647, DOI 10.1098/rspb.2001.1929; Brommer JE, 2008, P ROY SOC B-BIOL SCI, V275, P687, DOI 10.1098/rspb.2007.0951; Burke T., 1984, THESIS U NOTTINGHAM; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chastel O, 2002, IBIS, V144, P284, DOI 10.1046/j.1474-919X.2002.00062.x; Cleasby IR, 2010, BIOL J LINN SOC, V101, P680, DOI 10.1111/j.1095-8312.2010.01515.x; Clifford LD, 2001, J ANIM ECOL, V70, P539, DOI 10.1046/j.1365-2656.2001.00521.x; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Decker KL, 2012, EVOL ECOL, V26, P683, DOI 10.1007/s10682-011-9521-7; Dingemanse NJ, 2013, ANIM BEHAV, V85, P1031, DOI 10.1016/j.anbehav.2012.12.032; DRENT RH, 1980, ARDEA, V68, P225; Frankham R, 1997, HEREDITY, V78, P311, DOI 10.1038/hdy.1997.46; Ghalambor Cameron K., 2010, P90; GOMULKIEWICZ R, 1992, EVOLUTION, V46, P390, DOI 10.1111/j.1558-5646.1992.tb02047.x; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Husby A, 2010, EVOLUTION, V64, P2221, DOI 10.1111/j.1558-5646.2010.00991.x; Husby A, 2006, J ANIM ECOL, V75, P1128, DOI 10.1111/j.1365-2656.2006.01132.x; Jensen H, 2008, EVOLUTION, V62, P1275, DOI 10.1111/j.1558-5646.2008.00395.x; KLOMP H, 1970, ARDEA, V58, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lendvai AZ, 2010, HORM BEHAV, V58, P936, DOI 10.1016/j.yhbeh.2010.09.004; LOMAN J, 1982, OECOLOGIA, V52, P253, DOI 10.1007/BF00363845; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MURPHY MT, 1986, ECOLOGY, V67, P1483, DOI 10.2307/1939079; Nager RG, 1997, J ANIM ECOL, V66, P495, DOI 10.2307/5944; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; Pigliucci M, 2003, ECOL LETT, V6, P265, DOI 10.1046/j.1461-0248.2003.00428.x; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Postma E, 2005, ECOLOGY, V86, P2344, DOI 10.1890/04-0348; Ringsby TH, 2002, ECOLOGY, V83, P561, DOI 10.1890/0012-9658(2002)083[0561:ASDOAH]2.0.CO;2; ROWE L, 1994, AM NAT, V143, P698, DOI 10.1086/285627; SAS Institute, 2008, SAS US GUID STAT; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schrey AW, 2011, MOL ECOL, V20, P1133, DOI 10.1111/j.1365-294X.2011.05001.x; Schwagmeyer PL, 2008, ANIM BEHAV, V75, P291, DOI 10.1016/j.anbehav.2007.05.023; Schwagmeyer PL, 2003, ETHOLOGY, V109, P303, DOI 10.1046/j.1439-0310.2003.00868.x; SIIKAMAKI P, 1994, FUNCT ECOL, V8, P587, DOI 10.2307/2389919; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; van de Pol M., 2009, ANIM BEHAV, V77, P253; van de Pol M, 2012, METHODS ECOL EVOL, V3, P268, DOI 10.1111/j.2041-210X.2011.00160.x; VANNOORDWIJK AJ, 1989, BIOSCIENCE, V39, P453, DOI 10.2307/1311137; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Westneat DF, 2009, ECOLOGY, V90, P1162, DOI 10.1890/08-0698.1; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WOLTERECK R, 1909, VERH DTSCH ZOOL GES, V19, P110 55 7 8 1 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JUL 2014 83 4 876 887 10.1111/1365-2656.12191 12 Ecology; Zoology Environmental Sciences & Ecology; Zoology AJ4CO WOS:000337618100014 24286484 Bronze 2019-02-21 J Papachristos, DP; Papadopoulos, NT; Maglaras, E; Michaelakis, A; Antonatos, SA Papachristos, D. P.; Papadopoulos, N. T.; Maglaras, E.; Michaelakis, A.; Antonatos, S. A. Susceptibility of kiwifruit (Actinidia spp.) cultivars to Ceratitis capitata (Diptera: Tephritidae) infestation JOURNAL OF APPLIED ENTOMOLOGY English Article development; fruit susceptibility; fruit surface hairs; host fruit status; medfly; oviposition FRUIT-FLY DIPTERA; ANASTREPHA-FRATERCULUS DIPTERA; LIFE-HISTORY EVOLUTION; CYSTEINE PROTEASE; NONHOST STATUS; HOST STATUS; SURVIVAL; HAWAII Laboratory no-choice tests were conducted to determine whether the kiwifruit cultivars Hayward, Tsechelidis (Actinidia deliciosa) and Soreli (A. chinensis) are hosts of the Mediterranean fruit fly, Ceratitis capitata. Kiwifruits were exposed to gravid females for 24 h, and the number of eggs laid as well as larval developmental rates and survival rates of immatures' was determined. Moreover, oviposition and survival rates were recorded for adults obtained from the above three cultivars. Similar experimental procedures were followed using nectarines (Prunus persica), a favourable host for C. capitata. Furthermore, using McPhail-type traps loaded with food attractants, we compared adult population densities in four kiwifruits and adjacent citrus orchards. Infestation rates were also determined in kiwifruits collected from the above kiwifruit orchards. The results demonstrate that C. capitata, under laboratory conditions, oviposit on all three kiwifruit cultivars tested. The numbers of eggs laid and survival rates of immatures were significantly lower for the two cultivars of A. deliciosa compared with nectarines. On the other hand, oviposition rates were much higher in the cultivar Soreli (A. chinensis) compared with nectarines; however, none of the immatures reached adulthood. Adults obtained from the Hayward and Tsechelidis cultivars had shorter longevity and females were less fecund than those obtained from nectarines. Adult Mediterranean fruit flies were captured in all four kiwifruit orchards, but at significantly lower numbers compared with citrus orchards. Fruit sampling from the Hayward and Tsechelidis cultivars indicated a minimal infestation of the Hayward fruits only (0.41%), which, however, resulted in no adult emergence. Removal of the fruit surface hairs of Hayward cultivar increased dramatically the oviposition rates of C. capitata in laboratory conditions, suggesting significant oviposition-deterrent properties. The importance of our findings for determining a non-host status for kiwifruits is discussed. [Papachristos, D. P.; Maglaras, E.; Michaelakis, A.; Antonatos, S. A.] Benaki Phytopathol Inst, Dept Entomol & Agr Zool, Lab Agr Entomol, Athens 14561, Greece; [Papadopoulos, N. T.] Univ Thessaly, Dept Agr Crop Prod & Rural Environm, Lab Entomol & Agr Zool, N Ionia Magnesia, Greece Papachristos, DP (reprint author), Benaki Phytopathol Inst, Dept Entomol & Agr Zool, 8 St Delta Str, Athens 14561, Greece. d.papachristos@bpi.gr Aluja M, 2004, J ECON ENTOMOL, V97, P293; Aluja M, 2008, ANNU REV ENTOMOL, V53, P473, DOI 10.1146/annurev.ento.53.103106.093350; Caroli L., 1991, Informatore Fitopatologico, V41, P13; CASTALDO D, 1992, J AGR FOOD CHEM, V40, P594, DOI 10.1021/jf00016a013; Copeland RS, 2002, DOCUMENTATION ZOOLOG, V27; COWLEY JM, 1992, J ECON ENTOMOL, V85, P312, DOI 10.1093/jee/85.2.312; Dembitsky VM, 2011, FOOD RES INT, V44, P1671, DOI 10.1016/j.foodres.2011.03.003; Diamantidis AD, 2008, J APPL ENTOMOL, V132, P695, DOI 10.1111/j.1439-0418.2008.01325.x; Diamantidis AD, 2009, BIOL J LINN SOC, V97, P106, DOI 10.1111/j.1095-8312.2009.01178.x; EPPO PQR (Plant Quarantine data Retrieval system), 2012, PQR EPPO DAT QUAR PE; Ferguson AR, 2004, NEW ZEAL J CROP HORT, V32, P3, DOI 10.1080/01140671.2004.9514276; Follett PA, 2007, J ECON ENTOMOL, V100, P251, DOI 10.1603/0022-0493(2007)100[251:CLASSF]2.0.CO;2; Gasperi G, 2002, GENETICA, V116, P125, DOI 10.1023/A:1020971911612; Howe GA, 2008, ANNU REV PLANT BIOL, V59, P41, DOI 10.1146/annurev.arplant.59.032607.092825; Katsaros GI, 2009, J FOOD ENG, V94, P40, DOI 10.1016/j.jfoodeng.2009.02.026; Kaur L, 2010, J AGR FOOD CHEM, V58, P5068, DOI 10.1021/jf903332a; Konno K, 2011, PHYTOCHEMISTRY, V72, P1510, DOI 10.1016/j.phytochem.2011.02.016; KRAINACKER DA, 1987, OECOLOGIA, V73, P583, DOI 10.1007/BF00379420; LIQUIDO NJ, 1990, J ECON ENTOMOL, V83, P1863, DOI 10.1093/jee/83.5.1863; Lorscheiter R, 2012, REV BRAS FRUTIC, V34, P67, DOI 10.1590/S0100-29452012000100011; Malacrida AR, 2007, GENETICA, V131, P1, DOI 10.1007/s10709-006-9117-2; Malone LA, 2005, NEW ZEAL J CROP HORT, V33, P99, DOI 10.1080/01140671.2005.9514337; Mavromatis AG, 2010, SCI HORTIC-AMSTERDAM, V125, P277, DOI 10.1016/j.scienta.2010.03.010; Mohan S, 2006, J INSECT PHYSIOL, V52, P21, DOI 10.1016/j.jinsphys.2005.08.011; Nishiyama I, 2007, ADV FOOD NUTR RES, V52, P293, DOI 10.1016/S1043-4526(06)52006-6; Orono L. E., 2008, Fruit Flies of Economic Importance to Applied Knowledge. Proceedings of the 7th International Symposium on Fruit Flies of Economic Importance, 10-15 September 2006, Salvador, Brazil, P207; Papachristos DP, 2008, J ECON ENTOMOL, V101, P866, DOI 10.1603/0022-0493(2008)101[866:SADOIS]2.0.CO;2; Papadopoulos N. T., 2004, Proceedings of the 6th International Symposium on fruit flies of economic importance, Stellenbosch, South Africa, 6-10 May 2002, P19; Papadopoulos NT, 2001, ANN ENTOMOL SOC AM, V94, P41, DOI 10.1603/0013-8746(2001)094[0041:SAAOOT]2.0.CO;2; Papadopoulos NT, 2012, Georgia-Ktinotrofia, V7, P38, Patent No. [20090313732, 2009/0313,732.PP21,552]; Park YS, 2011, J FOOD COMPOS ANAL, V24, P963, DOI 10.1016/j.jfca.2010.08.010; Segura DF, 2006, ANN ENTOMOL SOC AM, V99, P70, DOI 10.1603/0013-8746(2006)099[0070:RAOCCA]2.0.CO;2; Smith IM, 1997, QUARANTINE PESTS EUR, P146; SPSS, 2004, SPSS 14 WIND US GUID; Testolin R, 2009, NEW ZEAL J CROP HORT, V37, P1, DOI 10.1080/01140670909510246; Testolin R, 2009, US Patent, Patent No. [PP21, 030, 21030, 2009/0313,732.PP21,552]; VARGAS RI, 1984, J ENVIRON SCI HEAL A, V19, P621, DOI 10.1080/10934528409375181; White I.M., 1992, FRUIT FLIES EC SIGNI 38 1 1 2 18 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0931-2048 1439-0418 J APPL ENTOMOL J. Appl. Entomol. JUL 2014 138 6 SI 433 440 10.1111/jen.12043 8 Entomology Entomology AJ5BP WOS:000337695900007 2019-02-21 J Archie, EA; Altmann, J; Alberts, SC Archie, Elizabeth A.; Altmann, Jeanne; Alberts, Susan C. Costs of reproduction in a long-lived female primate: injury risk and wound healing BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Aging; Social status; Ecoimmunology; Lactation; Reproductive effort BABOONS PAPIO-CYNOCEPHALUS; WHITE-FOOTED MICE; TRADE-OFFS; IMMUNE FUNCTION; WILD BABOONS; NATURAL-POPULATIONS; LIFE-HISTORY; PEROMYSCUS-LEUCOPUS; FUTURE REPRODUCTION; UROSAURUS-ORNATUS Reproduction is a notoriously costly phase of life, exposing individuals to injury, infectious disease, and energetic trade-offs. The strength of these costs should be influenced by life history strategies, and in long-lived species, females may be selected to mitigate costs of reproduction because life span is such an important component of their reproductive success. Here, we report evidence for two costs of reproduction that may influence survival in wild female baboons-injury risk and delayed wound healing. Based on 29 years of observations in the Amboseli ecosystem, Kenya, we found that wild female baboons experienced the highest risk of injury on days when they were most likely to be ovulating. In addition, lactating females healed from wounds more slowly than pregnant or cycling females, indicating a possible trade-off between lactation and immune function. We also found variation in injury risk and wound healing with dominance rank and age: Older and low-status females were more likely to be injured than younger or high-status females, and older females exhibited slower healing than younger females. Our results support the idea that wild nonhuman primates experience energetic and immune costs of reproduction and they help illuminate life history trade-offs in long-lived species. [Archie, Elizabeth A.] Univ Notre Dame, Dept Biol Sci, Notre Dame, IN 46556 USA; [Archie, Elizabeth A.; Altmann, Jeanne; Alberts, Susan C.] Natl Museums Kenya, Inst Primate Res, Nairobi, Kenya; [Altmann, Jeanne] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA; [Altmann, Jeanne] Univ Nairobi, Dept Vet Anat & Physiol, Nairobi 00100, Kenya; [Alberts, Susan C.] Duke Univ, Dept Biol, Durham, NC 27708 USA Archie, EA (reprint author), Univ Notre Dame, Dept Biol Sci, 137 Gavin Hall, Notre Dame, IN 46556 USA. earchie@nd.edu National Science Foundation [IOS 1053461, IBN 9985910, IBN 0322613, IBN 0322781, BCS 0323553, BCS 0323596, DEB 0846286, DEB 0846532, IOS 0919200] We gratefully acknowledge the support of the National Science Foundation for the majority of the data represented here, most recently through IOS 1053461, IBN 9985910, IBN 0322613, IBN 0322781, BCS 0323553, BCS 0323596, DEB 0846286, DEB 0846286, DEB 0846532, and IOS 0919200. We are also grateful to the National Institute of Aging (R01AG034513-01 and P01AG031719) and the Princeton Center for the Demography of Aging (P30AG024361). We also thank the Chicago Zoological Society, the L. S. B. Leakey Foundation, the Max Planck Institute for Demography, and the National Geographic Society. We thank the Office of the President of the Republic of Kenya, the Kenya Wildlife Service, its Amboseli staff and Wardens, the members of the Amboseli-Longido pastoralist communities, and the Institute for Primate Research in Nairobi for their cooperation and assistance. We are also grateful to the Amboseli Baboon Project long-term field team (R. S. Mututua, S. Sayialel, and J.K. Warutere) and to V. Somen and T. Wango for their assistance in Nairobi. Several people contributed to long-term data collection, especially the late G. Hausfater, who established the protocol for this data set, and N. Learn, L. Opkala, and K. Pinc, who prepared the database for analyses. Alberts SC, 1996, ANIM BEHAV, V51, P1269, DOI 10.1006/anbe.1996.0131; Alberts Susan C., 2012, P261; Allison P. D, 2010, SURVIVAL ANAL USING; ALTMANN J, 1978, SCIENCE, V201, P1028, DOI 10.1126/science.98844; Altmann J., 1983, P67; Altmann J, 2004, AM J PRIMATOL, V64, P95, DOI 10.1002/ajp.20064; Altmann J, 2003, OFFSPRING, P140; ALTMANN J, 1992, BEHAV ECOL SOCIOBIOL, V29, P391; Altmann J., 1980, BABOON MOTHERS INFAN; Altmann J, 2010, ANN NY ACAD SCI, V1204, P127, DOI 10.1111/j.1749-6632.2010.05531.x; Altmann S.A., 1973, Journal Zool Anim Med, V4, P8, DOI 10.2307/20094180; Archie EA, 2013, PARASITE IMMUNOL, V35, P374, DOI 10.1111/pim.12048; Archie EA, 2012, P NATL ACAD SCI USA, V109, P9017, DOI 10.1073/pnas.1206391109; Ardia DR, 2005, J ANIM ECOL, V74, P517, DOI 10.1111/j.1365-2656.2005.00950.x; Ashcroft GS, 2002, BIOGERONTOLOGY, V3, P337, DOI 10.1023/A:1021399228395; BARTON RA, 1993, ANIM BEHAV, V46, P791, DOI 10.1006/anbe.1993.1256; Beehner JC, 2006, HORM BEHAV, V49, P688, DOI 10.1016/j.yhbeh.2005.12.016; BERCOVITCH FB, 1987, AM J PRIMATOL, V12, P189; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Bowen WD, 2001, FUNCT ECOL, V15, P325, DOI 10.1046/j.1365-2435.2001.00530.x; BULGER J, 1987, INT J PRIMATOL, V8, P635, DOI 10.1007/BF02735781; Charpentier MJE, 2008, MOL ECOL, V17, P2026, DOI 10.1111/j.1365-294X.2008.03724.x; Cheney DL, 2004, INT J PRIMATOL, V25, P401, DOI 10.1023/B:IJOP.0000019159.75573.13; Cheney DL, 2012, ANIM BEHAV, V84, P21, DOI 10.1016/j.anbehav.2012.03.010; Chilvers BL, 2005, CAN J ZOOL, V83, P642, DOI 10.1139/Z05-048; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COHEN BJ, 1987, J GERONTOL, V42, P302, DOI 10.1093/geronj/42.3.302; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; de Groot J, 2002, PHYSIOL BEHAV, V75, P277, DOI 10.1016/S0031-9384(01)00677-1; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Emmerson E, 2012, BIOGERONTOLOGY, V13, P3, DOI 10.1007/s10522-011-9322-y; FESTABIANCHET M, 1989, J ANIM ECOL, V58, P785, DOI 10.2307/5124; French SS, 2007, FUNCT ECOL, V21, P1115, DOI 10.1111/j.1365-2435.2007.01311.x; French SS, 2008, GEN COMP ENDOCR, V155, P148, DOI 10.1016/j.ygcen.2007.04.007; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; French SS, 2011, INTEGR COMP BIOL, V51, P505, DOI 10.1093/icb/icr019; French SS, 2009, INTEGR COMP BIOL, V49, P246, DOI 10.1093/icb/icp032; Gesquiere LR, 2008, HORM BEHAV, V54, P410, DOI 10.1016/j.yhbeh.2008.04.007; Gesquiere LR, 2007, HORM BEHAV, V51, P114, DOI 10.1016/j.yhbeh.2006.08.010; Gesquiere LR, 2011, SCIENCE, V333, P357, DOI 10.1126/science.1207120; Gesquiere LR, 2010, AM J PHYS ANTHROPOL, V144, P169; GITTLEMAN JL, 1988, AM ZOOL, V28, P863; Glasper ER, 2005, BRAIN BEHAV IMMUN, V19, P61, DOI 10.1016/j.bbi.2004.03.002; GLASS GE, 1988, EPIDEMIOL INFECT, V101, P459, DOI 10.1017/S0950268800054418; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; HART BL, 1990, PHYSIOL BEHAV, V48, P383, DOI 10.1016/0031-9384(90)90332-X; Hausfater G., 1975, DOMINANCE REPROD BAB; Houdijk JGM, 2008, PARASITE IMMUNOL, V30, P113, DOI 10.1111/j.1365-3024.2008.00992.x; Huchard E, 2011, BEHAV ECOL, V22, P1003, DOI 10.1093/beheco/arr083; Jones LA, 2011, INT J PARASITOL, V41, P711, DOI 10.1016/j.ijpara.2011.01.011; KIECOLTGLASER JK, 1995, LANCET, V346, P1194, DOI 10.1016/S0140-6736(95)92899-5; KONIG B, 1988, J ZOOL, V216, P195; MacCormick HA, 2012, BEHAV ECOL, V24, P683; Martin LB, 2006, FUNCT ECOL, V20, P630, DOI 10.1111/j.1365-2435.2006.01138.x; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Martin LB, 2007, ECOLOGY, V88, P2516, DOI 10.1890/07-0060.1; Martin LB, 2006, PHYSIOL BEHAV, V87, P837, DOI 10.1016/j.physbeh.2006.01.035; Martin P, 1997, SCIENCE, V276, P75, DOI 10.1126/science.276.5309.75; Marucha PT, 1998, PSYCHOSOM MED, V60, P362, DOI 10.1097/00006842-199805000-00025; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; MURUTHI P, 1991, OECOLOGIA, V87, P467, DOI 10.1007/BF00320408; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2012, AGING CELL, V11, P178, DOI 10.1111/j.1474-9726.2011.00771.x; Ots I, 1996, P ROY SOC B-BIOL SCI, V263, P1443, DOI 10.1098/rspb.1996.0210; Padgett DA, 1998, BRAIN BEHAV IMMUN, V12, P64, DOI 10.1006/brbi.1997.0512; POST DG, 1980, FOLIA PRIMATOL, V34, P170, DOI 10.1159/000155954; ROBERTS SB, 1985, AM J CLIN NUTR, V41, P1270; Rojas IG, 2002, BRAIN BEHAV IMMUN, V16, P74, DOI 10.1006/brbi.2000.0619; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rosetta L, 2011, AM J PHYS ANTHROPOL, V144, P661, DOI 10.1002/ajpa.21475; Routley CE, 2009, WOUND REPAIR REGEN, V17, P42, DOI 10.1111/j.1524-475X.2008.00440.x; Sakkas P, 2011, BRIT J NUTR, V106, P1207, DOI 10.1017/S0007114511001565; Seno H, 2009, P NATL ACAD SCI USA, V106, P256, DOI 10.1073/pnas.0803343106; SEYFARTH RM, 1976, ANIM BEHAV, V24, P917, DOI 10.1016/S0003-3472(76)80022-X; SHAIKH A A, 1982, Primates, V23, P444, DOI 10.1007/BF02381326; Silk JB, 2003, ETHOLOGY, V109, P627, DOI 10.1046/j.1439-0310.2003.00907.x; SILK JB, 1986, INT J PRIMATOL, V7, P583, DOI 10.1007/BF02736663; SILK JB, 1987, INT J PRIMATOL, V8, P593, DOI 10.1007/BF02735779; Singer AJ, 1999, NEW ENGL J MED, V341, P738, DOI 10.1056/NEJM199909023411006; Stearns S, 1992, EVOLUTION LIFE HIST; Stockley P, 2011, BIOL REV, V86, P341, DOI 10.1111/j.1469-185X.2010.00149.x; Van Horn RC, 2007, BEHAV ECOL SOCIOBIOL, V61, P1823, DOI 10.1007/s00265-007-0415-1; WASSER SK, 1988, AM J PRIMATOL, V16, P97, DOI 10.1002/ajp.1350160202; WILDT D E, 1977, Primates, V18, P261, DOI 10.1007/BF02383104; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON BS, 1992, OECOLOGIA, V92, P145, DOI 10.1007/BF00317275; Wynn TA, 2004, NAT REV IMMUNOL, V4, P583, DOI 10.1038/nri1412; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 95 20 20 0 43 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. JUL 2014 68 7 1183 1193 10.1007/s00265-014-1729-4 11 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology AI9EU WOS:000337233500013 25045201 Green Accepted 2019-02-21 J Parra, I; Nicola, GG; Vollestad, LA; Elvira, B; Almodovar, A Parra, Irene; Nicola, Graciela G.; Vollestad, L. Asbjorn; Elvira, Benigno; Almodovar, Ana Latitude and altitude differentially shape life history trajectories between the sexes in non-anadromous brown trout EVOLUTIONARY ECOLOGY English Article Maturity; Reproduction; Life-history strategies; Europe; Salmonids SALMON SALMO-SALAR; INTRASPECIFIC VARIATION; REPRODUCTIVE TRAITS; SEXUAL-MATURATION; GROWTH-PATTERNS; REACTION NORMS; BODY-SIZE; SEA-TROUT; EVOLUTION; TRUTTA We used two different approaches involving two organizational levels and spatial scales to explore altitudinal and latitudinal variation in life histories of non-anadromous brown trout Salmo trutta. First, we studied the factors influencing the maturation of individuals from populations in northern Spain. Second, we explored the effects of altitude (range 40-1,340 m) and latitude (range 40.6-61.7A degrees N) on longevity, maximum length, length and age at maturity, and fecundity, comparing Spanish and Norwegian populations. Individual maturation was determined by length, age, and sex, and at a given size and age individuals were more likely to mature at higher altitudes. Brown trout lived longer but attained smaller sizes at higher latitudes. Both males and females matured at an older age with increasing latitude, but latitude affected their life-history strategies differentially. Males matured at smaller sizes with increasing latitude and altitude, which may indicate that their maturation threshold depends on the growth potentiality of the river since they compete with other males from the same population. The opposite effects were detected in females. Since female fecundity increases strongly with size there may be a size below which maturation has strong fitness costs. Brown trout are extraordinarily plastic, allowing persistence in a wide variety of environments. In the context of climate change, latitudinally based studies are important to predict potential effects of climate change, especially at the southern edge of species distribution. [Parra, Irene; Elvira, Benigno; Almodovar, Ana] Univ Complutense Madrid, Fac Biol, Dept Zool, E-28040 Madrid, Spain; [Nicola, Graciela G.] Univ Castilla La Mancha, Dept Environm Sci, Toledo 45071, Spain; [Vollestad, L. Asbjorn] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth CEES, N-0316 Oslo, Norway Almodovar, A (reprint author), Univ Complutense Madrid, Fac Biol, Dept Zool, Jose Antonio Novais 2, E-28040 Madrid, Spain. aalmodovar@bio.ucm.es Elvira, Benigno/A-9273-2009; Almodovar, Ana/L-5400-2014; G. NICOLA, GRACIELA/R-8768-2017 Elvira, Benigno/0000-0002-6127-5302; Almodovar, Ana/0000-0003-1465-3857; G. NICOLA, GRACIELA/0000-0002-6898-307X; Vollestad, Leif Asbjorn/0000-0002-9389-7982 Government of Navarre; Spanish Government [CGL 2008-04257/BOS]; Government of Madrid; European Social Fund (ESF) This study was supported by the Government of Navarre. This study was also supported by the Spanish Government through research project CGL 2008-04257/BOS. I. P. was funded by a postgraduate contract from the Government of Madrid and the European Social Fund (ESF). All field procedures complied with the current laws of Spain. We appreciate the constructive comments provided by the Associate Editor and three anonymous reviewers, which considerably improved the quality of the manuscript. Almodovar A, 2012, GLOBAL CHANGE BIOL, V18, P1549, DOI 10.1111/j.1365-2486.2011.02608.x; Angilletta MJ, 2002, J THERM BIOL, V27, P249, DOI 10.1016/S0306-4565(01)00094-8; ARAK A, 1988, EVOLUTION, V42, P820, DOI 10.1111/j.1558-5646.1988.tb02501.x; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Aubin-Horth N, 2006, CAN J FISH AQUAT SCI, V63, P2067, DOI 10.1139/F06-103; Ayllon D, 2010, ECOL FRESHW FISH, V19, P420, DOI 10.1111/j.1600-0633.2010.00426.x; Barrett K, 2010, FRESHWATER BIOL, V55, P1628, DOI 10.1111/j.1365-2427.2009.02393.x; Barton K. A., 2013, MUMIN MULTIMODEL INF; Bates D. M., 2012, LME4 LINEAR MIXED EF; Baum D, 2005, J FISH BIOL, V67, P1370, DOI 10.1111/j.1095-8649.2005.00832.x; Baum D, 2004, J ANIM ECOL, V73, P253, DOI 10.1111/j.0021-8790.2004.00803.x; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; Burnham K. P, 2002, MODEL SELECTION MULT; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; CRISP DT, 1989, J FISH BIOL, V34, P119, DOI 10.1111/j.1095-8649.1989.tb02962.x; Cucherousset J, 2005, CAN J FISH AQUAT SCI, V62, P1600, DOI 10.1139/F05-057; Dahl K, 1910, AGE GROWTH SALMON TR, P141; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Elliott JM, 2000, J FISH BIOL, V56, P208, DOI 10.1111/j.1095-8649.2000.tb02096.x; ELLIOTT JM, 1995, J FISH BIOL, V47, P893, DOI 10.1111/j.1095-8649.1995.tb06010.x; English S, 2012, OECOLOGIA, V169, P143, DOI 10.1007/s00442-011-2192-9; Esteve M, 2005, REV FISH BIOL FISHER, V15, P1, DOI 10.1007/s11160-005-7434-7; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Fleming Ian A., 2004, P264; FOLMAR LC, 1980, AQUACULTURE, V21, P1, DOI 10.1016/0044-8486(80)90123-4; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Heibo E, 2005, ECOLOGY, V86, P3377, DOI 10.1890/04-1620; Hendry Andrew P., 2004, P92; Hjernquist MB, 2012, OECOLOGIA, V170, P641, DOI 10.1007/s00442-012-2338-4; HUTCHINGS JA, 1994, EVOL ECOL, V8, P256, DOI 10.1007/BF01238277; JENNINGS S, 1991, ICES J MAR SCI, V48, P117, DOI 10.1093/icesjms/48.1.117; JONSSON B, 1984, OECOLOGIA, V61, P319, DOI 10.1007/BF00379628; JONSSON B, 1993, REV FISH BIOL FISHER, V3, P348, DOI 10.1007/BF00043384; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; JONSSON B, 1993, J FISH BIOL, V43, P1; Keefer ML, 2014, REV FISH BIOL FISHER, V24, P333, DOI 10.1007/s11160-013-9334-6; Klemetsen A, 2003, ECOL FRESHW FISH, V12, P1, DOI 10.1034/j.1600-0633.2003.00010.x; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; LABEELUND JH, 1989, J ANIM ECOL, V58, P525, DOI 10.2307/4846; Laver RJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0045398; Le Henanff M, 2013, BIOL J LINN SOC, V108, P384, DOI 10.1111/j.1095-8312.2012.02005.x; LEA E, 1910, PUBLICATIONS CIRCONS, V53, P7, DOI DOI 10.1093/ICESJMS/S1.53.7; Mann R.H.K., 1984, P171; Mcadam AG, 2007, ECOSCIENCE, V14, P362, DOI 10.2980/1195-6860(2007)14[362:LHOFRS]2.0.CO;2; MILLS CA, 1988, J FISH BIOL, V33, P545, DOI 10.1111/j.1095-8649.1988.tb05498.x; Morita K, 2002, J FISH BIOL, V61, P1230, DOI 10.1006/jfbi.2002.2138; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Nelson JS, 2006, FISHES WORLD; Nicola GG, 2002, FRESHWATER BIOL, V47, P1353, DOI 10.1046/j.1365-2427.2002.00866.x; Nikolsky G. W., 1963, ECOLOGY FISHES; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Parra I, 2009, J FISH BIOL, V74, P2355, DOI 10.1111/j.1095-8649.2009.02249.x; Parra I, 2011, FRESHWATER BIOL, V56, P530, DOI 10.1111/j.1365-2427.2010.02520.x; POLICANSKY D, 1983, AM ZOOL, V23, P57; Power M, 2005, J FISH BIOL, V67, P255, DOI 10.1111/j.1095-8649.2005.00734.x; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Rochet MJ, 1998, ICES J MAR SCI, V55, P371, DOI 10.1006/jmsc.1997.0324; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Roff Derek A., 1992; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Serbezov D, 2010, MOL ECOL, V19, P3193, DOI 10.1111/j.1365-294X.2010.04744.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; THORPE J E, 1990, Polskie Archiwum Hydrobiologii, V37, P3; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wootton R. J., 1998, FISH FISHERIES SERIE, V24; Zhang LX, 2013, CURR ZOOL, V59, P142, DOI 10.1093/czoolo/59.1.142 69 7 8 1 36 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JUL 2014 28 4 707 720 10.1007/s10682-014-9702-2 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AI6JG WOS:000336978700008 2019-02-21 J Johnson, EC; Braco, JT; Whitmill, MA Johnson, Erik C.; Braco, Jason T.; Whitmill, Matthew A. Connecting nutrient sensing and the endocrine control of metabolic allocation in insects CURRENT OPINION IN INSECT SCIENCE English Article It is clear that specific hormones control an organism's energy use and regulate the differential allocations of energy to activity, growth and maintenance of specific tissues, and reproduction. Appropriate metabolic allocations require an assessment of the nutrient state of the animal, and nutrient sensing must be tied to appropriate signals in order to coordinate the repertoire of behaviors and physiologies accompanying a particular metabolic investment. Here, we review the known and speculated connections between nutrient sensing and the endocrine control of energy allocation in insects. Insects, being speciose and diverse in life history strategies, offer a unique perspective into the general architecture of the signaling mechanisms of energetic allocation and also into unique elements that correlate with specific life histories. [Johnson, Erik C.; Braco, Jason T.; Whitmill, Matthew A.] Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA Johnson, EC (reprint author), Wake Forest Univ, Dept Biol, Winston Salem, NC 27109 USA. johnsoec@wfu.edu National Science Foundation [IOS1355097] Work in the Johnson lab is supported by the National Science Foundation. (grant number IOS1355097) We thank Michael Rizzo for technical assistance. Aslam AFM, 2011, ZOOL SCI, V28, P609, DOI 10.2108/zsj.28.609; Belgacem YH, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000187; Bharucha KN, 2008, J EXP BIOL, V211, P3103, DOI 10.1242/jeb.016451; Bharucha KN, 2009, PEDIATR RES, V65, P132, DOI 10.1203/PDR.0b013e318191fc68; Bohni R, 1999, CELL, V97, P865, DOI 10.1016/S0092-8674(00)80799-0; Braco JT, 2012, GENETICS, V192, P457, DOI 10.1534/genetics.112.143610; Brogiolo W, 2001, CURR BIOL, V11, P213, DOI 10.1016/S0960-9822(01)00068-9; Broughton SJ, 2005, P NATL ACAD SCI USA, V102, P3105, DOI 10.1073/pnas.0405775102; Caers J, 2012, GEN COMP ENDOCR, V177, P332, DOI 10.1016/j.ygcen.2012.04.025; Cao C, 2001, CELL TISSUE RES, V304, P317, DOI 10.1007/s004410100367; Charles JP, 2011, P NATL ACAD SCI USA, V108, P21128, DOI 10.1073/pnas.1116123109; CHEESEMAN P, 1979, GEN COMP ENDOCR, V37, P35, DOI 10.1016/0016-6480(79)90043-1; CHERBAS L, 1991, GENE DEV, V5, P120, DOI 10.1101/gad.5.1.120; Claeys I, 2002, PEPTIDES, V23, P807, DOI 10.1016/S0196-9781(01)00666-0; Clark L, 2006, PEPTIDES, V27, P559, DOI 10.1016/j.peptides.2005.06.028; Clynen E, 2003, ENDOCRINOLOGY, V144, P3441, DOI 10.1210/en.2002-0107; Colombani J, 2012, SCIENCE, V336, P582, DOI 10.1126/science.1216689; Corona M, 2007, P NATL ACAD SCI USA, V104, P7128, DOI 10.1073/pnas.0701909104; Drummond-Barbosa D, 2001, DEV BIOL, V231, P265, DOI 10.1006/dbio.2000.0135; FERNANDEZ R, 1995, EMBO J, V14, P3373, DOI 10.1002/j.1460-2075.1995.tb07343.x; Fischman BJ, 2011, P NATL ACAD SCI USA, V108, P10847, DOI 10.1073/pnas.1100301108; Gade G, 2003, GEN COMP ENDOCR, V132, P10, DOI 10.1016/S0016-6480(03)00159-X; Garofalo RS, 2002, TRENDS ENDOCRIN MET, V13, P156, DOI 10.1016/S1043-2760(01)00548-3; Gilbert LI, 2004, MOL CELL ENDOCRINOL, V215, P1, DOI 10.1016/j.mce.2003.11.003; GOLTZENE F, 1992, CELL TISSUE RES, V269, P133, DOI 10.1007/BF00384733; Gronke S, 2007, PLOS BIOL, V5, P1248, DOI 10.1371/journal.pbio.0050137; Gronke S, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000857; Gronke S, 2005, CELL METAB, V1, P323, DOI 10.1016/j.cmet.2005.04.003; HAGEDORN HH, 1975, P NATL ACAD SCI USA, V72, P3255, DOI 10.1073/pnas.72.8.3255; Hauser F, 1998, BIOCHEM BIOPH RES CO, V249, P822, DOI 10.1006/bbrc.1998.9230; HETRU C, 1991, EUR J BIOCHEM, V201, P495, DOI 10.1111/j.1432-1033.1991.tb16308.x; ICHIKAWA T, 1991, J EXP BIOL, V161, P217; Iwami M, 1996, EXPERIENTIA, V52, P882, DOI 10.1007/BF01938875; Jindra M, 2013, ANNU REV ENTOMOL, V58, P181, DOI 10.1146/annurev-ento-120811-153700; Kapan N, 2012, CELL MOL LIFE SCI, V25, P25; Kim SK, 2004, NATURE, V431, P316, DOI 10.1038/nature02897; Kodrik D, 2008, PHYSIOL ENTOMOL, V33, P171, DOI 10.1111/j.1365-3032.2008.00625.x; Kondo H, 1996, J MOL BIOL, V259, P926, DOI 10.1006/jmbi.1996.0370; Kreneisz O, 2010, NEUROREPORT, V21, P1116, DOI 10.1097/WNR.0b013e3283409200; KROMERMETZGER E, 1994, EUR J BIOCHEM, V221, P427, DOI 10.1111/j.1432-1033.1994.tb18755.x; LaFever L, 2005, SCIENCE, V309, P1071, DOI 10.1126/science.1111410; Lee GH, 2004, GENETICS, V167, P311, DOI 10.1534/genetics.167.1.311; Miyamoto T, 2013, FLY, V8, P7; Miyamoto T, 2012, CELL, V151, P1113, DOI 10.1016/j.cell.2012.10.024; NASSEL DR, 1995, REGUL PEPTIDES, V57, P297, DOI 10.1016/0167-0115(95)00043-B; Nassel DR, 2013, FRONT PHYSL, V4; Nijhout HF, 2002, P NATL ACAD SCI USA, V99, P15446, DOI 10.1073/pnas.242548399; Okamoto N, 2009, DEV CELL, V17, P885, DOI 10.1016/j.devcel.2009.10.008; PANNABECKER T, 1986, MOL CELL ENDOCRINOL, V48, P153, DOI 10.1016/0303-7207(86)90037-7; Parthasarathy R, 2010, INSECT BIOCHEM MOLEC, V40, P405, DOI 10.1016/j.ibmb.2010.03.006; Perez-Hedo M, 2013, INSECT BIOCHEM MOLEC, V43, P495, DOI 10.1016/j.ibmb.2013.03.008; RANKIN MA, 1992, ANNU REV ENTOMOL, V37, P533; REAGAN JD, 1994, J BIOL CHEM, V269, P9; Richard DS, 2005, J INSECT PHYSIOL, V51, P455, DOI 10.1016/j.jinsphys.2004.12.013; Riddiford LM, 2008, J INSECT PHYSIOL, V54, P895, DOI 10.1016/j.jinsphys.2008.01.014; Riddiford LM, 2012, GEN COMP ENDOCR, V179, P477, DOI 10.1016/j.ygcen.2012.06.001; Rulifson EJ, 2002, SCIENCE, V296, P1118, DOI 10.1126/science.1070058; Satake S, 1997, COMP BIOCHEM PHYS B, V118, P349, DOI 10.1016/S0305-0491(97)00166-1; Schwedes CC, 2012, J INSECT PHYSIOL, V58, P293, DOI 10.1016/j.jinsphys.2012.01.013; Soderberg JAE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019866; Srivastava DP, 2005, J NEUROSCI, V25, P6145, DOI 10.1523/JNEUROSCI.1005-05.2005; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Van der Horst DJ, 2003, COMP BIOCHEM PHYS B, V136, P217, DOI 10.1016/S1096-4959(03)00151-9; Veelaert D, 1997, ENDOCRINOLOGY, V138, P138, DOI 10.1210/en.138.1.138; Veenstra JA, 2012, PEPTIDES, V35, P122, DOI 10.1016/j.peptides.2012.02.019; Wu Q, 2006, ANNU REV ENTOMOL, V51, P1, DOI 10.1146/annurev.ento.51.110104.151011; Yamanaka N, 2013, ANNU REV ENTOMOL, V58, P497, DOI 10.1146/annurev-ento-120811-153608; YAO TP, 1992, CELL, V71, P63, DOI 10.1016/0092-8674(92)90266-F; Zhang H, 2009, P NATL ACAD SCI USA, V106, P19617, DOI 10.1073/pnas.0905083106; Zou Z, 2013, P NATL ACAD SCI USA, V110, pE2173, DOI 10.1073/pnas.1305293110 71 7 7 2 5 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 2214-5745 2214-5753 CURR OPIN INSECT SCI Curr. Opin. Insect Sci. JUL 2014 1 66 72 10.1016/j.cois.2014.05.005 7 Biology; Ecology; Entomology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Entomology V41XI WOS:000209578500012 2019-02-21 J White, SM; Giannico, G; Li, H White, Seth M.; Giannico, Guillermo; Li, Hiram A 'behaviorscape' perspective on stream fish ecology and conservation: linking fish behavior to riverscapes WILEY INTERDISCIPLINARY REVIEWS-WATER English Review Landscape ecology (and its application to rivers and streams: riverine landscapes or riverscapes) provides an expansive depiction of patterns of physical and biological phenomena, yet mechanisms driving those patterns are rarely identified. Behavioral ecology aims to elucidate mechanisms of organisms' response to their environment, but often lacks the context of natural conditions and the surrounding landscape or riverscape. Bringing together the relative strengths of these two fields-context in the case of riverscapes and mechanism in the case of behavioral ecology-can provide fisheries managers and conservation biologists with improved predictions of fish response to anthropogenic impacts such as habitat degradation, landscape fragmentation, and climate change. Existing research on fish behavior incorporating a riverscape perspective includes the study of fishmigration and dispersal, habitat selection, and reproduction and life history strategies. The merging of these disciplines is termed 'behaviorscapes' and a program of research would adhere to four principles: (1) study fish populations or communities in a natural setting, (2) account for landscape and riverscape context, (3) incorporate a refined understanding of fish behavior, and (4) forge linkages between individual behavior and population or community demographics. Several potential directions for future research exist, including developing or improving technologies to map internal heterogeneity of rivers; making explicit links between that heterogeneity and fish behavior through observations or experiments; and employing an iterative approach to using ecological knowledge, a priori hypotheses, and precise spatial analysis to bridge the pattern-process divide. (C) 2014 Wiley Periodicals, Inc. [White, Seth M.] Columbia River Intertribal Fish Commiss, Dept Fish Sci, Portland, OR 97232 USA; [Giannico, Guillermo; Li, Hiram] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA White, SM (reprint author), Columbia River Intertribal Fish Commiss, Dept Fish Sci, Portland, OR 97232 USA. whis@critfc.org Adriaenssens B, 2011, BEHAV ECOL, V22, P135, DOI 10.1093/beheco/arq185; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; ALTMANN J, 1974, BEHAVIOUR, V49, P227, DOI 10.1163/156853974X00534; Angeloni L, 2008, ANIM BEHAV, V75, P731, DOI 10.1016/j/anbehav.2007.08.007; Anthony LL, 2000, BIOL CONSERV, V95, P303, DOI 10.1016/S0006-3207(00)00037-9; Bakian AV, 2012, ECOL MODEL, V232, P119, DOI 10.1016/j.ecolmodel.2012.02.013; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Bateman DS, 2005, J FRESHWATER ECOL, V20, P335, DOI 10.1080/02705060.2005.9664974; Baxter C. V., 2002, THESIS; Belisle M, 2005, ECOLOGY, V86, P1988, DOI 10.1890/04-0923; Benda L, 2004, WATER RESOUR RES, V40, DOI 10.1029/2003WR002583; Berec M, 2006, EVOL ECOL RES, V8, P929; Bjerklie DM, 2005, J HYDROL, V309, P191, DOI 10.1016/j.jhydrol.2004.11.022; Bowen G.W., 1981, QUANTITATIVE ANAL FO; Boxall GD, 2008, ENVIRON BIOL FISH, V82, P71, DOI 10.1007/s10641-007-9254-1; Brierley G, 2013, PROG PHYS GEOG, V37, P601, DOI 10.1177/0309133313490007; Brierley GJ, 2005, GEOMORPHOLOGY AND RIVER MANAGEMENT: APPLICATIONS OF THE RIVER STYLES FRAMEWORK, P1; Brierley GJ, 2000, ENVIRON MANAGE, V25, P661, DOI 10.1007/s002670010052; Buchholz R, 2007, TRENDS ECOL EVOL, V22, P401, DOI 10.1016/j.tree.2007.06.002; Buffington JM, TREATISE GEOMORPHOLO, V9, P730; Caro T, 1999, TRENDS ECOL EVOL, V14, P366, DOI 10.1016/S0169-5347(99)01663-8; Caro T, 2007, TRENDS ECOL EVOL, V22, P394, DOI 10.1016/j.tree.2007.06.003; Caro T, 2012, CONSERV LETT, V5, P159, DOI 10.1111/j.1755-263X.2012.00224.x; Chessman BC, 2006, AQUAT CONSERV, V16, P267, DOI 10.1002/aqc.724; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Cutts CJ, 2002, J FISH BIOL, V61, P1540, DOI 10.1006/jfbi.2002.2173; Darwin C., 1859, ORIGIN SPECIES MEANS; Davies N. B., 2012, INTRO BEHAV ECOLOGY; de Ruiter PC, 2005, SCIENCE, V309, P68, DOI 10.1126/science.1096112; DIFFENDORFER JE, 1995, ECOLOGY, V76, P827, DOI 10.2307/1939348; Doligez B, 2003, ANIM BEHAV, V66, P973, DOI 10.1006/anbe.2002.2270; Dovciak AL, 2002, ENVIRON MANAGE, V30, P365, DOI 10.1007/s00267-002-2529-6; Eros T, 2012, LANDSCAPE ECOL, V27, P303, DOI 10.1007/s10980-011-9659-2; Fagan WF, 2013, ECOL LETT, V16, P1316, DOI 10.1111/ele.12165; Falke JA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0079232; Fausch KD, 2002, TRENDS ECOL EVOL, V17, P429, DOI 10.1016/S0169-5347(02)02572-7; Fausch KD, 2002, BIOSCIENCE, V52, P483, DOI 10.1641/0006-3568(2002)052[0483:LTRBTG]2.0.CO;2; Feist BE, 2003, ANIM CONSERV, V6, P271, DOI 10.1017/S1367943003003330; Feldhaus JW, 2010, ENVIRON BIOL FISH, V87, P277, DOI 10.1007/s10641-010-9580-6; Feldhaus JW, 2006, THESIS; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; FINGER TR, 1982, COPEIA, P680; Fisher SG, 1997, J N AM BENTHOL SOC, V16, P305, DOI 10.2307/1468020; Fonstad MA, 2005, GEOMORPHOLOGY, V72, P320, DOI 10.1016/j.geomorph.2005.06.005; Forman R. T. T., 1986, LANDSCAPE ECOLOGY; Fretwell DS, 1972, POPULATIONS SEASONAL; Fretwell SD, 1969, ACTA BIOTHEOR, V19, P16, DOI [DOI 10.1007/BF01601953, 10.1007/BF01601953]; Frisch K. von, 1962, Scientific American, V207, P78; FRISSELL CA, 1986, ENVIRON MANAGE, V10, P199, DOI 10.1007/BF01867358; Giannico GR, 1999, CAN J FISH AQUAT SCI, V56, P2362, DOI 10.1139/cjfas-56-12-2362; Giske J, 1998, REV FISH BIOL FISHER, V8, P57, DOI 10.1023/A:1008864517488; Godin Jean-Guy J., 1997, P1; Goldstein RM, 2005, N AM J FISH MANAGE, V25, P180, DOI 10.1577/M04-042.1; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Gowan C, 2002, ENVIRON BIOL FISH, V64, P139, DOI 10.1023/A:1016010723609; GREGORY SV, 1991, BIOSCIENCE, V41, P540, DOI 10.2307/1311607; Haeckel E, 1866, GEN MORPHOLOGIE ORG; HANKIN DG, 1988, CAN J FISH AQUAT SCI, V45, P834, DOI 10.1139/f88-101; Harding JS, 1998, P NATL ACAD SCI USA, V95, P14843, DOI 10.1073/pnas.95.25.14843; Hayes JW, 2007, ECOL MODEL, V207, P171, DOI 10.1016/j.ecolmodel.2007.04.032; Hobbs R, 1997, LANDSCAPE URBAN PLAN, V37, P1, DOI 10.1016/S0169-2046(96)00364-7; Hughes NF, 2000, ENVIRON BIOL FISH, V59, P285, DOI 10.1023/A:1007608720672; Hynes H. B. N., 1975, VERH INT VEREIN LIMN, V19, P1; Isaak DJ, 2007, ECOL APPL, V17, P352, DOI 10.1890/05-1949; Isaak DJ, 2014, WIRES WATER, V1, P277, DOI 10.1002/wat2.1023; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jaeger J. A. G., 2011, Landscape fragmentation in Europe; Jokimaki J, 2011, LANDSCAPE URBAN PLAN, V100, P383, DOI 10.1016/j.landurbplan.2011.02.001; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Jurajda P, 2010, HYDROBIOLOGIA, V644, P89, DOI 10.1007/s10750-010-0111-4; Keenleyside M. H. A., 1979, DIVERSITY ADAPTATION; Knowlton JL, 2010, BIOL CONSERV, V143, P1342, DOI 10.1016/j.biocon.2010.03.011; Krebs J. R, 1997, BEHAV ECOLOGY EVOLUT; KREBS JR, 1984, BEHAVIOURAL ECOLOGY, P91; Lakoff George, 1980, METAPHORS WE LIVE BY; Laundre JW, 2001, CAN J ZOOL, V79, P1401, DOI 10.1139/cjz-79-8-1401; Leduc AOHC, 2008, WATER AIR SOIL POLL, V189, P179, DOI 10.1007/s11270-007-9566-y; Legendre P, 1997, ECOLOGY, V78, P547; Leunda PM, 2013, FISHERIES MANAG ECOL, V20, P460, DOI 10.1111/fme.12029; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; LEVINS R, 1969, Bulletin of the Entomological Society of America, V15, P237; LI H, 1995, OIKOS, V73, P280, DOI 10.2307/3545921; Li HW, 1996, METHODS STREAM ECOLO; Lima SL, 1996, TRENDS ECOL EVOL, V11, P131, DOI 10.1016/0169-5347(96)81094-9; Lorenz K., 1952, KING SOLOMONS RING N; MAC ARTHUR ROBERT H., 1967; Madrinan LF, 2008, THESIS; Mandelbrot B. B., 1983, FRACTAL GEOMETRY NAT; Manel S, 2003, TRENDS ECOL EVOL, V18, P189, DOI 10.1016/S0169-5347(03)00008-9; McGarvey DJ, 2008, FRESHWATER BIOL, V53, P2206, DOI 10.1111/j.1365-2427.2008.02046.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; McIntire EJB, 2009, ECOLOGY, V90, P46, DOI 10.1890/07-2096.1; Merigoux S, 2001, FRESHWATER BIOL, V46, P1251, DOI 10.1046/j.1365-2427.2001.00744.x; Milne B, 1993, EASTSIDE FOREST ECOS, VII; Molles MCJ, 2005, ECOLOGY; Monroe JB, 2009, FISHERIES, V34, P581, DOI 10.1577/1548-8446-34.12.581; Moore JA, 2008, BIOSCIENCE, V58, P454, DOI 10.1641/B580513; Morita K, 2004, J APPL ECOL, V41, P962, DOI 10.1111/j.0021-8901.2004.00927.x; Mullner Scott A., 1998, North American Journal of Fisheries Management, V18, P947, DOI 10.1577/1548-8675(1998)018<0947:SAAATD>2.0.CO;2; Nams VO, 2006, BIOL CONSERV, V128, P109, DOI 10.1016/j.biocon.2005.09.020; Nathan R, 2008, P NATL ACAD SCI USA, V105, P19052, DOI 10.1073/pnas.0800375105; Parker G. A., 2006, ESSAYS ANIMAL BEHAV, P23; Parrish JK, 1999, SCIENCE, V284, P99, DOI 10.1126/science.284.5411.99; Patinir J, 1515, LANDSCAPE CHARON CRO; Peckarsky BL, 1981, STREAM ECOLOGY APPL, P399; PERSAT H, 1994, FRESHWATER BIOL, V31, P439, DOI 10.1111/j.1365-2427.1994.tb01750.x; Pijanowski BC, 2011, BIOSCIENCE, V61, P203, DOI 10.1525/bio.2011.61.3.6; PIMM SL, 1985, ECOLOGY, V66, P798, DOI 10.2307/1940541; Pitcher T. J., 1993, BEHAV TELEOST FISHES; Pittman SJ, 2011, MAR ECOL PROG SER, V427, P187, DOI 10.3354/meps09139; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Polis GA, 1997, ANNU REV ECOL SYST, V28, P289, DOI 10.1146/annurev.ecolsys.28.1.289; POWER ME, 1984, J ANIM ECOL, V53, P357, DOI 10.2307/4521; POWER ME, 1988, J N AM BENTHOL SOC, V7, P456, DOI 10.2307/1467301; PRINGLE CM, 1988, J N AM BENTHOL SOC, V7, P503, DOI 10.2307/1467303; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Raeymaekers JAM, 2008, EVOL APPL, V1, P475, DOI 10.1111/j.1752-4571.2008.00019.x; Ray C, 1996, J ANIM ECOL, V65, P556, DOI 10.2307/5736; Reader SM, 2003, ANIM BEHAV, V66, P729, DOI 10.1006/anbe.2003.2252; ROSENZWEIG ML, 1979, FORTS ZOOL, V25, P283; ROSENZWEIG ML, 1981, ECOLOGY, V62, P327, DOI 10.2307/1936707; Rubenstein DR, 2004, TRENDS ECOL EVOL, V19, P256, DOI 10.1016/j.tree.2004.03.017; Schaefer JA, 2007, ECOL MODEL, V209, P401, DOI 10.1016/j.ecolmodel.2007.06.009; Schlosser IJ, 1995, AM FISH S S, V17, P392; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SCHLOSSER IJ, 1995, HYDROBIOLOGIA, V303, P71, DOI 10.1007/BF00034045; SCHLOSSER IJ, 1995, ECOLOGY, V76, P908, DOI 10.2307/1939356; Schlosser IJ, 2000, ECOLOGY, V81, P1371, DOI 10.1890/0012-9658(2000)081[1371:SVIFAA]2.0.CO;2; Schneider KN, 2008, HYDROBIOLOGIA, V610, P235, DOI 10.1007/s10750-008-9438-5; Shumway CA, 1999, ENVIRON BIOL FISH, V55, P183, DOI 10.1023/A:1007562023150; Stanford JA, 2001, REGUL RIVER, V17, P303, DOI 10.1002/rrr.659.abs; Steel EA, 2010, LIVING REV LANDSCAPE, V4, P1; Sugg DW, 1996, TRENDS ECOL EVOL, V11, P338, DOI 10.1016/0169-5347(96)20050-3; Sutherland WJ, 1998, ANIM BEHAV, V56, P801, DOI 10.1006/anbe.1998.0896; Tattam IA, 2013, T AM FISH SOC, V142, P1406, DOI 10.1080/00028487.2013.815661; Taylor SG, 2008, GLOBAL CHANGE BIOL, V14, P229, DOI 10.1111/j.1365-2486.2007.01494.x; TINBERGEN N, 1967, BEHAVIOUR, V28, P307, DOI 10.1163/156853967X00064; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Tinus CA, 2001, CAN J FISH AQUAT SCI, V58, P319, DOI 10.1139/cjfas-58-2-319; Tonolla D, 2011, LIMNOL OCEANOGR, V56, P2319, DOI 10.4319/lo.2011.56.6.2319; Torgersen CE, 2001, REMOTE SENS ENVIRON, V76, P386, DOI 10.1016/S0034-4257(01)00186-9; Torgersen CE, 1999, ECOL APPL, V9, P301, DOI 10.2307/2641187; Torgersen CE, 2006, AM FISH S S, V48, P473; TOWNSEND CR, 1989, J N AM BENTHOL SOC, V8, P36, DOI 10.2307/1467400; Turgeon K, 2010, ECOLOGY, V91, P3332, DOI 10.1890/09-2015.1; UTNE ACW, 1993, J EXP MAR BIOL ECOL, V166, P203, DOI 10.1016/0022-0981(93)90219-E; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Vuilleumier S, 2006, ECOL MODEL, V190, P159, DOI 10.1016/j.ecolmodel.2005.04.017; Ward AJW, 2006, FISH FISH, V7, P231, DOI 10.1111/j.1467-2979.2006.00224.x; WARD JV, 1995, REGUL RIVER, V10, P159, DOI 10.1002/rrr.3450100211; Ward JV, 1983, DYNAMICS LOTIC ECOSY, P29; Werner EE, 2003, ECOLOGY, V84, P1083, DOI 10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2; White S.C., 2008, THESIS; White SM, 2008, T AM FISH SOC, V137, P881, DOI 10.1577/T06-207.1; White SM, 2012, BIOTROPICA, V44, P521, DOI 10.1111/j.1744-7429.2011.00840.x; Wiens JA, 2002, FRESHWATER BIOL, V47, P501, DOI 10.1046/j.1365-2427.2002.00887.x; Wilson ADM, 2005, ETHOLOGY, V111, P849, DOI 10.1111/j.1439-0310.2005.01110.x; Winemiller KO, 2001, AM NAT, V158, P193, DOI 10.1086/321315; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Woodward G, 2002, FRESHWATER BIOL, V47, P777, DOI 10.1046/j.1365-2427.2002.00908.x; WRIGHT S, 1932, P 6 INT C GEN, P355; Wu J. J., 2013, ECOLOGICAL SYSTEMS, P179; Xi G, LOFTY MESSAGE FOREST; Young KA, 2003, BEHAV ECOL, V14, P127, DOI 10.1093/beheco/14.1.127 167 8 8 1 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2049-1948 WIRES WATER Wiley Interdiscip. Rev.-Water JUL-AUG 2014 1 4 385 400 10.1002/wat2.1033 16 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources VF8KA WOS:000443719700006 2019-02-21 J Espinola, LA; Amsler, ML; Paira, AR; Drago, EE; Blettler, MCM; Agostinho, AA Espinola, Luis A.; Amsler, Mario L.; Paira, Aldo R.; Drago, Edmundo E.; Blettler, Martin C. M.; Agostinho, Angelo A. Effects of decadal changes in the hydrological regime of the middle reach of the Parana River (Argentina) on fish densities ENVIRONMENTAL BIOLOGY OF FISHES English Article Climate fluctuations; Flood pulse; Fish density; Scour holes; Echo sounding AQUATIC HABITATS; FLOOD REGIME; ASSEMBLAGES; COMMUNITY; REPRODUCTION; FLOODPLAINS; MANAGEMENT; DIVERSITY; FISHERIES; ECOLOGY Changes in fish densities recorded over 14 years (1996-2009) were studied for effects of long-term variation of the hydrologic regime. We collected field data with an echo sounder in scour holes of minor channels draining an area of floodplain in the middle reach of the Parana River. Fish densities in 2000-2009 were significantly lower than in the previous decade. The decrease was associated with a marked reduction of water levels, flood magnitudes and connectivity of channels with the nearby floodplain lakes. This distortion of the flood pulse likely had an effect on the life history strategies of the fishes. The effects of damming in the upstream basin and other man-made perturbations are minor in the middle reach. However, the decadal alterations of regime are intimately linked to climate fluctuations in the Parana River basin during the past century. Tendencies of observed fish densities are similar to results reported in literature on the influence on fishes for similar long-term alterations of the flood regime in river flood plain systems. [Espinola, Luis A.; Amsler, Mario L.; Paira, Aldo R.; Drago, Edmundo E.; Blettler, Martin C. M.] UNL, CONICET, Inst Nacl Limnol INALI, Santa Fe, Argentina; [Agostinho, Angelo A.] Univ Estadual Maringa, Maringa, Parana, Brazil Espinola, LA (reprint author), UNL, CONICET, Inst Nacl Limnol INALI, Ciudad Univ, Santa Fe, Argentina. laespn@gmail.com Agostinho, Angelo Antonio/D-5888-2013 Agostinho, Angelo Antonio/0000-0002-4707-9444; Blettler, Martin/0000-0001-5837-5241 Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina) The authors thank Ambrosio Regner, Esteban Creus, Eduardo Lordi and Chichipio Wilson for field and laboratory assistance and the Instituto Nacional de Limnologia (INALI) for the logistic support. They are also grateful to the anonymous reviewers whose suggestions undoubtedly improved the final manuscript. We are particularly grateful to Patricia Torres for statistical support. The authors declare that the present study does not contain any studies with human or animal subjects. Consequently, there are no ethical issues or conflicts. This investigation was financially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET, Argentina). Agostinho AA, 2007, AQUAT ECOSYST HEALTH, V10, P174, DOI 10.1080/14634980701341719; Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; AGOSTINHO AA, 1994, REHABILITATION OF FRESHWATER FISHERIES, P171; Agostinho AA, 2007, ECOLOGY MANAGEMENT F; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Arrington DA, 2006, J N AM BENTHOL SOC, V25, P126, DOI 10.1899/0887-3593(2006)25[126:HATSFP]2.0.CO;2; Baigun C, 2003, ENV PROTECTION LA PL, P1; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; BAYLEY PB, 1995, BIOSCIENCE, V45, P153, DOI 10.2307/1312554; Bechara JA, 2007, FISHING BIOL EC IMPO; Bonetto AA, 1964, REPORTS NATL I LIMNO; BONETTO AA, 1971, PHYSIS, V30, P505; Burczynski J, 1982, 191 FAO; Cacik P, 2000, PARANA RIVER ITS MID, P11; CARU-INAPE-INIDEP, 1990, FISH RES ASS UR RIV; Drago E.C., 1980, ECOLOGIA, V4, P45; Drago EC, 2003, AMAZONIANA, V17, P291; DRAGO EC, 1980, ECOLOGIA, V5, P31; Drago EC, 1999, INT S HYDR GEOCH PRO, P24; Drago Edmundo C., 2007, P83, DOI 10.1007/978-3-540-70624-3_4; Espinola LA, 2005, REPROD STRATEGIES CO, P23; Fernandes R, 2009, BRAZ J BIOL, V69, P669, DOI 10.1590/S1519-69842009000300021; Forbes T, 1972, FAO MAN FISH SCI, V5, P144; Garcia NO, 1998, CLIMATIC CHANGE, V38, P359, DOI 10.1023/A:1005386530866; Geheber AD, 2012, ECOL FRESHW FISH, V21, P627, DOI 10.1111/j.1600-0633.2012.00584.x; Gehrke PC, 2011, VULNERABILITY TROPIC, V10, P577; Giacosa R. H., 2000, PARANA RIVER ITS MID, P69; Godoy MP, 1975, FISH BRAZIL SUBORDER; Gomes L. C., 1997, Fisheries Management and Ecology, V4, P263, DOI 10.1046/j.1365-2400.1997.00119.x; Gorski K, 2012, RIVER RES APPL, V28, P1121, DOI 10.1002/rra.1499; Hammerly JA, 2011, RIO PARANA, P203; Ikeda S, 1989, WATER RESOURCES MONO; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Junk WJ, 2004, P 2 INT S MAN LARG R, V2, P117; Kabacoff R. I, 2011, R ACTION DATA ANAL G; Lae Raymond, 1994, International Journal of Ecology and Environmental Sciences, V20, P119; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; LEVIN SA, 1992, ECOLOGY, V73, P1943, DOI 10.2307/1941447; Lowe McConnell RH, 1987, ECOLOGICAL STUDIES T; Manly BFJ, 1997, RANDOMIZATION BOOTST; Mathisen OA, 1980, EIFAC TECH PAP, V33, P115; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; McPeek Mark A., 1993, P232; Moreno-Amich R, 1990, SCI GERUND, V16, P9; Neiff J.J., 2003, PULSO SOFTWARE ANAL; OECD, 2010, EC AD FISH CLIM CHAN; OLDANI NO, 1985, STUD NEOTROP FAUNA E, V20, P49, DOI 10.1080/01650528509360670; Paira Alio R., 2007, P53, DOI 10.1007/978-3-540-70624-3_3; Paira AR, 2003, THESIS U NACL LITORA; Paoli C, 2011, RIO PARANA 173 184 B, P173; Paoli C, 2000, PARANA RIVER MIDDLE, V1, P105; PILLAR VD, 2004, MULTIV MULTIVARIATE; Quinn JW, 2003, T AM FISH SOC, V132, P110, DOI 10.1577/1548-8659(2003)132<0110:FACIAO>2.0.CO;2; Quiros R., 2004, P 2 INT S MAN LARG R, VI, P253; Quiros R, 2007, AQUAT ECOSYST HEALTH, V10, P1; Ramonell CG, 2007, IAG REG C GEOM 6 BRA; Richards K, 2002, FRESHWATER BIOL, V47, P559, DOI 10.1046/j.1365-2427.2002.00920.x; Richards KS, 1982, RIVERS FORM PROCESS; Rodrigues L, 2005, BIOCOENOSIS RESERVOI; RODRIGUEZ MA, 1994, OECOLOGIA, V99, P166, DOI 10.1007/BF00317098; Rossi Liliana, 2007, P305, DOI 10.1007/978-3-540-70624-3_12; Saint-Paul U, 2000, ENVIRON BIOL FISH, V57, P235, DOI 10.1023/A:1007699130333; Saurral Ramiro, 2009, Meteorologica, V34, P05; StatSoft Inc, 2005, STATISTICA DAT AN SO; Suzuki HI, 2004, BIO INL WAT, P271; TABLADO A, 1988, Revue d'Hydrobiologie Tropicale, V21, P335; Thomaz SM, 2007, HYDROBIOLOGIA, V579, P1, DOI 10.1007/s10750-006-0285-y; Vazzoler Anna Emilia A. De M., 1992, Revista Brasileira de Biologia, V52, P627; Welcomme R. L, 1979, FISHERIES ECOLOGY FL; Wetzel R. G., 1991, LIMNOLOGICAL ANAL; Winemiller KO, 2004, RAP PUBLICATION, V2; World Bank, 1996, 15354AR WORLD BANK 73 7 8 0 29 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JUL 2014 97 7 757 771 10.1007/s10641-013-0177-8 15 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AH9EV WOS:000336445200002 2019-02-21 J Monteith, KL; Bleich, VC; Stephenson, TR; Pierce, BM; Conner, MM; Kie, JG; Bowyer, RT Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Becky M.; Conner, Mary M.; Kie, John G.; Bowyer, R. Terry Life-history characteristics of mule deer: Effects of nutrition in a variable environmentCaracteristicas de historia de vida del ciervo mulo: el Efecto de la nutricion en presencia de un medio ambiente variableTraits Biodemographiques chez le Cerf Mulet: Effets de la Nutrition dans un Environnement Variable WILDLIFE MONOGRAPHS English Review compensatory mortality; California; migration; density dependence; predation; Sierra Nevada; nutritional condition; environmental stochasticity; additive mortality; Odocoileus hemionus; carrying capacity WHITE-TAILED DEER; CAUSE-SPECIFIC MORTALITY; VAGINAL-IMPLANT TRANSMITTERS; MOOSE ALCES-ALCES; SENSITIVE REPRODUCTIVE ALLOCATION; UNGULATE POPULATION-DYNAMICS; CARIBOU RANGIFER-TARANDUS; AGE-SPECIFIC SURVIVAL; NORTH-AMERICAN ELK; RED DEER ABSTRACT Vital rates of large herbivores normally respond to increased resource limitation by following a progressive sequence of effects on life-history characteristics from survival of young, age at first reproduction, reproduction of adults, to adult survival. Expected changes in life-history characteristics, however, should operate through changes in nutritional condition, which is the integrator of nutritional intake and demands represented primarily by the deposition and catabolism of body fat. Elucidating seasonal patterns of nutritional condition and its relative influence on individual and population performance should improve our understanding of life-history strategies and population regulation of ungulates, provide insight into the capacity of available habitat to support population growth, and allow assessment of the underlying consequences of mortality on population dynamics. We acquired longitudinal data on individual female mule deer (Odocoileus hemionus), and linked those data with environmental and population characteristics. Our goal was to provide a nutritional basis for understanding life-history strategies of these large mammals, and to aid in the conservation and management of large herbivores in general. We studied a migratory population of mule deer that overwintered in Round Valley on the east side of the Sierra Nevada, California, USA, and was subject to a highly variable climate and predation from a suite of large carnivores. We intensively monitored nutritional and life-history characteristics of this population during 1997-2009 as it recovered from a population crash, which occurred during 1985-1991. Deer in Round Valley migrated to high-elevation summer ranges on both sides of the crest of the Sierra Nevada (Sierra crest), where a rain shadow resulted in a mesic and more forested range on the west side compared with xeric conditions east of the Sierra crest. Average survival of neonatal mule deer to 140 days of age during 2006-2008 was 0.33 (SE = 0.091), but was lower for neonates on the west side (0.13, SE = 0.092) compared with those on the east side (0.44, SE = 0.11) of the Sierra crest. Birth mass and nutritional condition of mothers had a positive effect on survival of young; however, those effects were evident only for neonates born east of the crest where predation pressure was less intense compared with the west side. Black bear (Ursus americanus) predation was the main cause of mortality for west-side young (mortality rate = 0.63, SE = 0.97) compared with canid and felid predation for east-side young (0.29, SE = 0.076). Mean autumn recruitment of young during 1997-2008 was lower for females on the west side (0.42, SE = 0.037) than for females on the east side (0.70, SE = 0.041) of the crest, and was affected positively by March ingesta-free body fat (IFBFat) of individual females. At the level of the population, ratios of young-to-adult females (1991-2009) were highly variable and strongly related to March IFBFat of adult females during the current and preceding year. Reproduction by yearling females was sensitive to per capita availability of forage during summer (as 1-yr-old individuals), thereby influencing whether a sufficient body mass for ovulation was obtained. Litter size remained high (1.69, SE = 0.027) during the study, but was influenced positively by forage availability, negatively by summer temperature, and was greater for females that resided on the west side of the Sierra crest during summer than those on the east side. In contrast, pregnancy rates remained unchanged across years of study (0. 98, SE = 0.005). Survival of prime-age (2- to 9-yr-old) females was 0.90 (SE = 0.021) in summer, 0.94 (SE = 0.012) in winter, and 0.87 (SE = 0.025) annually. Although relatively stable across years, both winter and summer survival were influenced positively by the preceding April snowpack relative to the density of the population. Mean IFBFat of adult females was 7.2% (SE = 0.077) in March 1997-2009 and 9.7% (SE = 0.23) in November 2002-2008. Nutritional condition offered a mechanistic link between factors that influence resource limitation and population performance, because condition of adult females in autumn and late winter was sensitive to the nutritional history of individual animals as related to forage growth, population density, migratory tactic, reproductive costs, and nutritional carryover. Nutritional condition of adult females in March also was the most parsimonious predictor of finite rate of population growth (lambda) during the forthcoming year. The relative magnitude of effect of nutritional condition on survival and reproduction was mostly in accordance with the predicted changes of vital rates in response to resource limitation for populations of large herbivores. Our results indicate that management and conservation of large herbivore populations could be improved by integrating indices of nutritional condition into current monitoring and research programs. We offer a method to estimate the proximity of a population to nutritional carrying capacity (NCC) that is based on nutritional status of the population relative to population performance (termed animal-indicated NCC). The proximity of the population to animal-indicated NCC represents the short-term capacity of the environment to support population growth. A nutritional approach to monitor and manage populations offers a direct link to the capacity of the habitat, and reduces the need to estimate population abundance or set goals according to population size. We also propose that the consequences of mortality (degree of additive or compensatory mortality) on population dynamics can be assessed by comparing the estimated nutritional capacity for survival and recruitment of young to that measured empirically, because more young are produced than what the habitat can support when nutrition is limiting. Our approach is useful for quantifying effects of predation, and provides a basis for determining the efficacy of predator control to enhance ungulate populations. (c) 2014 The Wildlife Society. [Monteith, Kevin L.; Kie, John G.; Bowyer, R. Terry] Idaho State Univ, Dept Biol Sci, Pocatello, ID 83209 USA; [Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Becky M.; Conner, Mary M.] Calif Dept Fish & Wildlife, Sierra Nevada Bighorn Sheep Recovery Program, Bishop, CA 93514 USA Monteith, KL (reprint author), Univ Wyoming, Dept Zool & Physiol, Wyoming Cooperat Fish & Wildlife Res Unit, Dept 3166,1000 E Univ Ave, Laramie, WY 82071 USA. kmonteit@uwyo.edu CDFW Deer Herd Management Plan Implementation Program; California Deer Association; Mule Deer Foundation; Granite Bay Chapter of Safari Club International; Fish and Game Advisory Committee of Inyo Mono Counties; Idaho State University We appreciate fixed-wing pilots R. Anthes, T. Evans, and G. Schales of the California Department of Fish and Wildlife (CDFW), G. Pope (Black Mountain Air Service), and R. Nixon for their dedication and interest in this project. Landells Aviation was primarily responsible for the helicopter capture and survey work, especially S. deJesus and C. Pickrell, who worked closely with CDFW capture specialists R. Teagle and T. Glenner to ensure safe and efficient handling of hundreds of mule deer. We were also privileged to have worked with numerous dedicated field assistants including, P. McGrath, J. Augustine, D. Spitz, A. Howell, T. Swearingen, W. Allsup, A. Stephenson, M. Kiner, T. Branston, C. Schroeder, H. Johnson, M. Leonard-Cahn, K. Monteith, R. Long, S. Monteith and, especially, P. Partridge, who committed much of his own time and resources to the Round Valley deer project. C. Baker, R. Noles, N. Partridge, and D. deJesus volunteered and expressed selfless dedication to mule deer research in Round Valley. We also thank D. German, L. Konde, K. Knox, and M. Hayes for their assistance. Support for deer captures was provided by countless individuals including, J. Villepique, J. McKeever, T. Taylor, B. Clark, and B. Adams. Capture support also was provided by personnel from the CDFW Wildlife Investigations Laboratory including S. Torres, K. Jones, A. Hunter, B. Gonzales, P. Swift, J. Schultz, and H. Zurawka; we also thank the many other CDFG employees and volunteers who made this long-term research project possible. We acknowledge C. Bishop for assistance with sibling-dependence analysis, and A. Middleton, M. Kauffman, K. B. Monteith, R. Long, and members of the Large Ungulate Study Team at Idaho State University for insightful discussions and comments on the manuscript. We thank A. M. Perez and the Advanced Translation class (SPAN4095) for Spanish translation of our abstract, and J. Taillon for the French translation. We thank T. Glenner for provision of the cover photograph. We are grateful to J.-M. Gaillard, M. Festa-Bianchet, and L. Shipley for constructive comments that greatly improved the manuscript. We also thank E. C. Hellgren for enhancing the quality of the manuscript for publication. The bulk of the funding and logistical support for this long-term investigation was provided by the CDFW Deer Herd Management Plan Implementation Program through the efforts of E. Loft, S. Mastrup, K. Mayer, R. Mohr, and C. Stowers; supplemental funding was provided by the California Deer Association, Mule Deer Foundation, Granite Bay Chapter of Safari Club International, Fish and Game Advisory Committee of Inyo and Mono Counties, and Idaho State University. We dedicate this paper to the memory of our friends and colleagues Clu Cotter, Mike Donovan, Kevin O'Connor, and Tom Stolberg who died in a tragic helicopter accident while conducting an aerial survey on summer range used by mule deer from Round Valley. This is a contribution from the CDFW Deer Herd Management Plan Implementation Program, and is Professional Paper 095 from the Eastern Sierra Center for Applied Population Ecology. Adamczewski JZ, 1997, J ZOOL, V241, P245, DOI 10.1111/j.1469-7998.1997.tb01956.x; Adams LG, 2005, J MAMMAL, V86, P506, DOI 10.1644/1545-1542(2005)86[506:EOMCAC]2.0.CO;2; Adams LG, 1998, J WILDLIFE MANAGE, V62, P1184, DOI 10.2307/3801982; ALBON SD, 1983, J ZOOL, V200, P295; ALBON SD, 1987, J ANIM ECOL, V56, P69, DOI 10.2307/4800; ALBON SD, 1983, J ANIM ECOL, V52, P969, DOI 10.2307/4467; Amstrup S, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P22; Andelt WF, 2004, J WILDLIFE MANAGE, V68, P542, DOI 10.2193/0022-541X(2004)068[0542:LTIMDP]2.0.CO;2; Andersen R, 1997, OECOLOGIA, V109, P74, DOI 10.1007/s004420050060; Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Anderson DR, 1976, US FISH WILDLIFE SER, V128, P1; [Anonymous], 1985, WILDLIFE SOC B, V13, P403; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Asher GW, 2005, ANIM REPROD SCI, V86, P261, DOI 10.1016/j.anireprosci.2004.07.012; BALLARD WB, 1991, WILDLIFE MONOGR, P1; Ballard WB, 2001, WILDLIFE SOC B, V29, P99; Bangs EE, 1998, WILDLIFE SOC B, V26, P785; Barber-Meyer SM, 2008, WILDLIFE MONOGR, P1, DOI 10.2193/2008-004; Barboza PS, 2008, PHYSIOL BIOCHEM ZOOL, V81, P835, DOI 10.1086/590414; Bardsen BJ, 2008, ECOLOGY, V89, P829, DOI 10.1890/07-0414.1; Bardsen BJ, 2010, OECOLOGIA, V162, P627, DOI 10.1007/s00442-009-1537-0; Barnett TP, 2008, SCIENCE, V319, P1080, DOI 10.1126/science.1152538; BARRETT M W, 1982, Wildlife Society Bulletin, V10, P108; BARRETT MW, 1982, J WILDLIFE MANAGE, V46, P991, DOI 10.2307/3808232; BARTMANN RM, 1992, WILDLIFE MONOGR, P1; Beck JL, 2006, J WILDLIFE MANAGE, V70, P283, DOI 10.2193/0022-541X(2006)70[283:EOESRN]2.0.CO;2; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Beckmann JP, 2003, J ZOOL, V261, P207, DOI 10.1017/S0952836903004126; Bender LC, 2008, WILDLIFE BIOL, V14, P70, DOI 10.2981/0909-6396(2008)14[70:RBNCAS]2.0.CO;2; Bender LC, 2007, J WILDLIFE MANAGE, V71, P1118, DOI 10.2193/2006-226; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; BERGER J, 1992, ECOLOGY, V73, P323, DOI 10.2307/1938743; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Bishop CJ, 2008, J WILDLIFE MANAGE, V72, P1085, DOI 10.2193/2007-423; Bishop CJ, 2007, J WILDLIFE MANAGE, V71, P945, DOI 10.2193/2006-123; Bishop CJ, 2009, WILDLIFE MONOGR, P1, DOI 10.2193/2008-107; Bishop CJ, 2005, J WILDLIFE MANAGE, V69, P311, DOI 10.2193/0022-541X(2005)069<0311:MDSAAP>2.0.CO;2; Bleich VC, 1997, WILDLIFE MONOGR, P1; Bleich VC, 2006, CALIF FISH GAME, V92, P24; Bleich VC, 1999, J MAMMAL, V80, P283, DOI 10.2307/1383228; Bleich VC, 2003, WILDLIFE SOC B, V31, P233; Bleich VC, 1998, GREAT BASIN NAT, V58, P265; Boertje RD, 2007, J WILDLIFE MANAGE, V71, P1494, DOI 10.2193/2006-159; Boertje RD, 2009, J WILDLIFE MANAGE, V73, P314, DOI 10.2193/2007-591; Bonenfant C, 2005, J APPL ECOL, V42, P361, DOI 10.1111/j.1365-2664.2005.01008.x; Bonenfant C, 2002, ECOGRAPHY, V25, P446, DOI 10.1034/j.1600-0587.2002.250407.x; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; BOUTIN S, 1992, J WILDLIFE MANAGE, V56, P116, DOI 10.2307/3808799; BOWDEN DC, 1984, J WILDLIFE MANAGE, V48, P500, DOI 10.2307/3801182; Bowyer R. Terry, 2005, P342; Bowyer RT, 2013, ACTA THERIOL, V58, P329, DOI 10.1007/s13364-013-0133-1; BOWYER RT, 1991, J MAMMAL, V72, P138, DOI 10.2307/1381988; BOWYER RT, 1984, J MAMMAL, V65, P410, DOI 10.2307/1381087; Bowyer RT, 2004, J MAMMAL, V85, P1039, DOI 10.1644/BBL-002.1; Bowyer RT, 1998, J MAMMAL, V79, P1332, DOI 10.2307/1383025; Bowyer RT, 1998, J MAMMAL, V79, P415, DOI 10.2307/1382972; Boyce MS, 1999, OIKOS, V87, P419, DOI 10.2307/3546808; BOYCE MS, 1989, JACKSON ELK HERD INT; BRAY RO, 1991, J CHEM ECOL, V17, P2053, DOI 10.1007/BF00987991; Brinkman Todd J., 2004, Prairie Naturalist, V36, P75; Brodie J, 2013, J APPL ECOL, V50, P295, DOI 10.1111/1365-2664.12044; Brown GS, 2007, OECOLOGIA, V154, P485, DOI 10.1007/s00442-007-0855-3; Brown SK, 2009, J MAMMAL, V90, P1066, DOI 10.1644/08-MAMM-A-193.1; Burnham K. P, 2002, MODEL SELECTION MULT; BURNHAM KP, 1984, ECOLOGY, V65, P105; California Department of Fish and Game, 2010, BLACK BEAR POP EST 1; CAMERON RD, 1993, CAN J ZOOL, V71, P480, DOI 10.1139/z93-069; CAMERON RD, 1994, J WILDLIFE MANAGE, V58, P674, DOI 10.2307/3809681; CAMERON RD, 1994, J MAMMAL, V75, P10, DOI 10.2307/1382230; Carroll C, 2006, BIOSCIENCE, V56, P25, DOI 10.1641/0006-3568(2006)056[0025:DRGASF]2.0.CO;2; Carstensen M, 2003, WILDLIFE SOC B, V31, P634; Carstensen M, 2009, J WILDLIFE MANAGE, V73, P175, DOI 10.2193/2006-107; CAUGHLEY G, 1993, OIKOS, V67, P47, DOI 10.2307/3545094; Caughley G., 1979, P2; CAUGHLEY G, 1974, J WILDLIFE MANAGE, V38, P557, DOI 10.2307/3800890; Caughley G, 1977, ANAL VERTEBRATE POPU; Chan-McLeod AC, 1999, CAN J ZOOL, V77, P1901, DOI 10.1139/cjz-77-12-1901; Chapman D. G., 1951, U CALIFORNIA PUBL ST, V1, P131; Christianson D, 2008, BEHAV ECOL, V19, P1258, DOI 10.1093/beheco/arn079; Christianson D, 2010, ECOLOGY, V91, P1184, DOI 10.1890/09-0221.1; Church D. C., 1988, RUMINANT ANIMAL; Clancy T. F., 1999, Australian Zoologist, V31, P267; Clark F, 2010, METHODS ECOL EVOL, V1, P253, DOI 10.1111/j.2041-210X.2010.00029.x; Clements MN, 2011, FUNCT ECOL, V25, P691, DOI 10.1111/j.1365-2435.2010.01812.x; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CLUTTONBROCK TH, 1987, J ANIM ECOL, V56, P53, DOI 10.2307/4799; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Connelly J. W., 2012, WILDLIFE TECHNIQUES, V2, P202; Cook JG, 2004, WILDLIFE MONOGR, P1; Cook RC, 2007, J WILDLIFE MANAGE, V71, P1934, DOI 10.2193/2006-262; Cook RC, 2013, WILDLIFE MONOGR, V184, DOI 10.1002/wmon.1008; Cook RC, 2010, J WILDLIFE MANAGE, V74, P880, DOI 10.2193/2009-031; Cote SD, 2001, OECOLOGIA, V127, P230, DOI 10.1007/s004420000584; Coulson T, 2000, P ROY SOC B-BIOL SCI, V267, P1771, DOI 10.1098/rspb.2000.1209; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Couturier S, 2009, CAN J ZOOL, V87, P367, DOI 10.1139/Z09-020; Creel S, 2005, ANIM BEHAV, V69, P1181, DOI 10.1016/j.anbehav.2004.07.022; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; CRETE M, 1993, CAN J ZOOL, V71, P2291, DOI 10.1139/z93-321; Dale Virginia H., 2001, Ecological Indicators, V1, P3, DOI 10.1016/S1470-160X(01)00003-6; Delgiudice GD, 2006, J WILDLIFE MANAGE, V70, P1556, DOI 10.2193/0022-541X(2006)70[1556:ALASAO]2.0.CO;2; DelGiudice GD, 2007, J MAMMAL, V88, P427, DOI 10.1644/06-MAMM-A-164R.1; DEPPERSCHMIDT JD, 1987, J WILDLIFE MANAGE, V51, P675, DOI 10.2307/3801287; deVos J. C., 2003, MULE DEER CONSERVATI; DeYoung RW, 2000, RESTOR ECOL, V8, P57, DOI 10.1046/j.1526-100x.2000.80066.x; Doherty PF, 2012, J ORNITHOL, V152, pS317, DOI 10.1007/s10336-010-0598-5; Eberhardt LL, 2002, ECOLOGY, V83, P2841, DOI 10.2307/3072020; Elbroch M, 2003, MAMMAL TRACKS SIGN; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Errington P. L., 1967, PREDATION LIFE; ERRINGTON PL, 1946, Q REV BIOL, V21, P144, DOI 10.1086/395220; ERRINGTON PL, 1956, SCIENCE, V124, P304, DOI 10.1126/science.124.3216.304; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Feder C, 2008, OECOLOGIA, V156, P773, DOI 10.1007/s00442-008-1035-9; Ferron J, 2002, MULTIVAR BEHAV RES, V37, P379, DOI 10.1207/S15327906MBR3703_4; Festa-Bianchet M, 2003, J ANIM ECOL, V72, P640, DOI 10.1046/j.1365-2656.2003.00735.x; Festa-Bianchet M, 1998, ECOL LETT, V1, P91; Festa-Bianchet M, 1998, BEHAV ECOL, V9, P144, DOI 10.1093/beheco/9.2.144; Festa-Bianchet M, 2007, ECOSCIENCE, V14, P318, DOI 10.2980/1195-6860(2007)14[318:AREIBS]2.0.CO;2; FESTABIANCHET M, 1995, ECOLOGY, V76, P871, DOI 10.2307/1939352; FESTABIANCHET M, 1994, CAN J ZOOL, V72, P22, DOI 10.1139/z94-004; Fischhoff IR, 2007, BEHAV ECOL, V18, P725, DOI 10.1093/beheco/arm036; FITZGIBBON CD, 1989, J ZOOL, V218, P99, DOI 10.1111/j.1469-7998.1989.tb02528.x; Flydal K, 2002, WILDLIFE BIOL, V8, P145; Forsyth DM, 2006, ECOLOGY, V87, P297, DOI 10.1890/05-0709; Franzmann A. W., 1985, ASSESSMENT NUTR STAT; Freckleton RP, 2006, J ANIM ECOL, V75, P837, DOI 10.1111/j.1365-2656.2006.01121.x; FRYXELL JM, 1988, AM NAT, V131, P781, DOI 10.1086/284822; FRYXELL JM, 1991, AM NAT, V138, P478, DOI 10.1086/285227; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; Gannon WL, 2007, J MAMMAL, V88, P809, DOI 10.1644/06-MAMM-F-185R1.1; Garel M, 2009, AM NAT, V173, P89, DOI 10.1086/593359; Garrott RA, 2003, CAN J ZOOL, V81, P33, DOI 10.1139/Z02-218; Garrott RA, 2009, TERR ECOL SER, V3, P489, DOI 10.1016/S1936-7961(08)00223-6; GASAWAY WC, 1983, WILDLIFE MONOGR, P1; GASAWAY WC, 1992, WILDLIFE MONOGR, P1; Gilbert BA, 2004, J WILDLIFE MANAGE, V68, P120, DOI 10.2193/0022-541X(2004)068[0120:RDOBDI]2.0.CO;2; Gill R. B., 2001, 77DOWRS7701; GREEN WCH, 1991, OECOLOGIA, V86, P521, DOI 10.1007/BF00318318; Griffin KA, 2011, J ANIM ECOL, V80, P1246, DOI 10.1111/j.1365-2656.2011.01856.x; Grovenburg TW, 2012, J WILDLIFE MANAGE, V76, P944, DOI 10.1002/jwmg.339; Grovenburg TW, 2012, ANIM BEHAV, V84, P59, DOI 10.1016/j.anbehav.2012.04.005; GULLAND FMD, 1992, PARASITOLOGY, V105, P493, DOI 10.1017/S0031182000074679; Gunn A, 2003, WILDLIFE SOC B, V31, P117; HAIRSTON NG, 1960, AM NAT, V94, P421, DOI 10.1086/282146; Hamel S, 2010, ECOLOGY, V91, P2034, DOI 10.1890/09-1311.1; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; HAMLIN KL, 1984, J WILDLIFE MANAGE, V48, P489, DOI 10.2307/3801181; Harris NC, 2008, J WILDLIFE MANAGE, V72, P1143, DOI 10.2193/2007-277; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Haskell SP, 2007, J MAMMAL, V88, P1482, DOI 10.1644/07-MAMM-A-004R.1; Haskell SP, 2010, J WILDLIFE MANAGE, V74, P1686, DOI 10.2193/2009-497; HAUGEN ARNOLD O., 1958, JOUR WILDLIFE MANAGEMENT, V22, P319, DOI 10.2307/3796471; Hebblewhite M, 2008, ECOL MONOGR, V78, P141, DOI 10.1890/06-1708.1; Hebblewhite M, 2007, OECOLOGIA, V152, P377, DOI 10.1007/s00442-007-0661-y; Hebblewhite M, 2011, OIKOS, V120, P1860, DOI 10.1111/j.1600-0706.2011.19436.x; Hebblewhite M, 2009, ECOLOGY, V90, P3445, DOI 10.1890/08-2090.1; Hegel TM, 2010, OIKOS, V119, P1453, DOI 10.1111/j.1600-0706.2010.18358.x; Hegel TM, 2010, J ANIM ECOL, V79, P471, DOI 10.1111/j.1365-2656.2009.01647.x; HOBBS NT, 1985, J WILDLIFE MANAGE, V49, P814, DOI 10.2307/3801716; HOBBS NT, 1982, J WILDLIFE MANAGE, V46, P12, DOI 10.2307/3808403; HOLMES JC, 1995, WILDLIFE RES, V22, P11, DOI 10.1071/WR9950011; HUEGEL CN, 1985, WILDLIFE SOC B, V13, P287; Hume I. D., 2009, INTEGRATIVE WILDLIFE; Hurley MA, 2011, WILDLIFE MONOGR, P1, DOI 10.1002/wmon.4; Husseman JS, 2003, OIKOS, V101, P591, DOI 10.1034/j.1600-0706.2003.12230.x; Jachmann H, 2002, J APPL ECOL, V39, P841, DOI 10.1046/j.1365-2664.2002.00752.x; Johnson HE, 2013, OECOLOGIA, V171, P295, DOI 10.1007/s00442-012-2397-6; Johnson HE, 2010, J APPL ECOL, V47, P1083, DOI 10.1111/j.1365-2664.2010.01846.x; Johnstone-Yellin TL, 2006, WILDLIFE SOC B, V34, P338, DOI 10.2193/0091-7648(2006)34[338:EOVITF]2.0.CO;2; Johnstone-Yellin TL, 2009, J MAMMAL, V90, P453, DOI 10.1644/08-MAMM-A-030.1; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; JORGENSON JT, 1993, CAN J ZOOL, V71, P2509, DOI 10.1139/z93-344; JULANDER ODELL, 1961, JOUR WILD LIFE MANAGEMENT, V25, P54, DOI 10.2307/3796991; Kaeuffer R, 2010, ECOGRAPHY, V33, P435, DOI 10.1111/j.1600-0587.2009.05604.x; KAITALA A, 1993, AM NAT, V142, P59, DOI 10.1086/285529; KAPLAN EL, 1958, J AM STAT ASSOC, V53, P457, DOI 10.2307/2281868; Kauffman MJ, 2010, ECOLOGY, V91, P2742, DOI 10.1890/09-1949.1; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; Keyser PD, 2005, WILDLIFE SOC B, V33, P222, DOI 10.2193/0091-7648(2005)33[222:DRPIWD]2.0.CO;2; Kie JG, 1999, J MAMMAL, V80, P1004, DOI 10.2307/1383271; KIE JG, 1985, SOUTHWEST NAT, V30, P105, DOI 10.2307/3670664; Kie John G., 2003, P296, DOI 10.1017/CBO9780511615757.010; Knape J, 2011, P ROY SOC B-BIOL SCI, V278, P985, DOI 10.1098/rspb.2010.1333; Knowles N, 2006, J CLIMATE, V19, P4545, DOI 10.1175/JCLI3850.1; KRAUSMAN PR, 1985, WILDLIFE SOC B, V13, P71; Kucera T. E., 1988, THESIS U CALIFORNIA; KUCERA TE, 1991, J MAMMAL, V72, P745, DOI 10.2307/1381837; KUCERA TE, 1992, GREAT BASIN NAT, V52, P122; Kucera TE, 1997, J WILDLIFE MANAGE, V61, P550, DOI 10.2307/3802614; Kunkel KE, 1999, J WILDLIFE MANAGE, V63, P901, DOI 10.2307/3802804; Lack D., 1954, NATURAL REGULATION A; Landete-Castillejos T, 2003, WILDLIFE BIOL, V9, P131; Langvatn R, 1996, J ANIM ECOL, V65, P653, DOI 10.2307/5744; Lawrence RK, 2004, J WILDLIFE MANAGE, V68, P561, DOI 10.2193/0022-541X(2004)068[0561:DMDSIS]2.0.CO;2; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lendrum P. E., 2013, PLOS ONE, V8; LEOPOLD A, 1933, GAME MANAGEMENT; Lima SL, 2002, TRENDS ECOL EVOL, V17, P70, DOI 10.1016/S0169-5347(01)02393-X; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Linnell JDC, 1995, WILDLIFE BIOL, V1, P209; Littell RC, 1996, SAS SYSTEM MIXED MOD; LIVEZEY KB, 1990, WILDLIFE SOC B, V18, P193; Loe LE, 2006, OECOLOGIA, V147, P24, DOI 10.1007/s00442-005-0172-7; Loison A, 1998, OECOLOGIA, V116, P489, DOI 10.1007/s004420050614; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; Lomas LA, 2007, J WILDLIFE MANAGE, V71, P884, DOI 10.2193/2006-203; Lutz D. W., 2003, MULE DEER CONSERVATI, P13; Mansson L, 2007, POPUL ECOL, V49, P287, DOI 10.1007/s10144-007-0053-5; Marshal JP, 2009, CAN J ZOOL, V87, P103, DOI 10.1139/Z08-142; Marshal JP, 2005, RANGELAND ECOL MANAG, V58, P360, DOI 10.2111/1551-5028(2005)058[0360:RTAFDA]2.0.CO;2; Marshal JP, 2005, J ARID ENVIRON, V60, P593, DOI 10.1016/j.jaridenv.2004.07.002; Martin JGA, 2010, AM NAT, V176, P414, DOI 10.1086/656267; MAYR E, 1961, SCIENCE, V134, P1501, DOI 10.1126/science.134.3489.1501; McClure MF, 2005, EUR J WILDLIFE RES, V51, P170, DOI 10.1007/s10344-005-0086-z; MCCULLOUGH D R, 1990, Transactions of the North American Wildlife and Natural Resources Conference, P534; McCullough D. R., 1979, GEORGE RESERVE DEER; McCullough DR, 1999, J MAMMAL, V80, P1130, DOI 10.2307/1383164; MCCULLOUGH DR, 1994, WILDLIFE SOC B, V22, P295; McCullough DR, 2001, J WILDLIFE MANAGE, V65, P46, DOI 10.2307/3803276; McDonald TL, 2010, J WILDLIFE MANAGE, V74, P514, DOI 10.2193/2009-270; McLeod SR, 1997, OIKOS, V79, P529, DOI 10.2307/3546897; McLoughlin PD, 2008, ECOLOGY, V89, P3317, DOI 10.1890/07-1044.1; Mech LD, 2008, CAN FIELD NAT, V122, P273, DOI 10.22621/cfn.v122i3.615; MECH LD, 1991, J MAMMAL, V72, P146, DOI 10.2307/1381989; MESSIER F, 1994, ECOLOGY, V75, P478, DOI 10.2307/1939551; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Middleton AD, 2013, ECOL LETT, V16, P1023, DOI 10.1111/ele.12133; Middleton AD, 2013, ECOLOGY, V94, P1245, DOI 10.1890/11-2298.1; Middleton AD, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0870; MOEN AN, 1978, J WILDLIFE MANAGE, V42, P715, DOI 10.2307/3800763; Monteith K. B., 2014, J MAMMALOGY IN PRESS, V95; Monteith KL, 2007, J WILDLIFE MANAGE, V71, P1712, DOI 10.2193/2005-763; Monteith KL, 2013, J ANIM ECOL, V82, P377, DOI 10.1111/1365-2656.12016; Monteith KL, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00096.1; Monteith KL, 2009, J MAMMAL, V90, P651, DOI 10.1644/08-MAMM-A-191R1.1; Moore T. D., 1997, IDENTIFICATION DORSA; Morales JM, 2010, PHILOS T R SOC B, V365, P2289, DOI 10.1098/rstb.2010.0082; Morellet N, 2007, J APPL ECOL, V44, P634, DOI 10.1111/j.1365-2664.2007.01307.x; Musante AR, 2010, WILDLIFE BIOL, V16, P185, DOI 10.2981/09-014; Mysterud A, 2009, J ANIM ECOL, V78, P1002, DOI 10.1111/j.1365-2656.2009.01553.x; NEILAND KA, 1970, J WILDLIFE MANAGE, V34, P904, DOI 10.2307/3799158; NELSON ME, 1990, J MAMMAL, V71, P689, DOI 10.2307/1381809; Neter J., 1996, APPL LINEAR STAT MOD; Norris DR, 2005, OIKOS, V109, P178, DOI 10.1111/j.0030-1299.2005.13671.x; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; OZOGA JJ, 1988, J WILDLIFE MANAGE, V52, P549, DOI 10.2307/3801608; Page BD, 2006, WILDLIFE SOC B, V34, P716, DOI 10.2193/0091-7648(2006)34[716:CPAESO]2.0.CO;2; Parker KL, 2009, FUNCT ECOL, V23, P57, DOI 10.1111/j.1365-2435.2009.01528.x; Parker KL, 2005, J MAMMAL, V86, P610, DOI 10.1644/1545-1542(2005)86[610:PCIFCR]2.0.CO;2; PARKER KL, 1993, CAN J ZOOL, V71, P1397, DOI 10.1139/z93-193; Pekins PJ, 1998, CAN J ZOOL, V76, P1091, DOI 10.1139/cjz-76-6-1091; Pettorelli N, 2003, OECOLOGIA, V137, P363, DOI 10.1007/s00442-003-1364-7; Pettorelli N, 2002, P ROY SOC B-BIOL SCI, V269, P747, DOI 10.1098/rspb.2001.1791; Pettorelli N, 2007, ECOLOGY, V88, P381, DOI 10.1890/06-0875; Pettorelli N, 2011, OECOLOGIA, V167, P305, DOI 10.1007/s00442-011-2069-y; Piasecke JR, 2009, RANGELAND ECOL MANAG, V62, P145, DOI 10.2111/07-020.1; Pierce BM, 2012, J MAMMAL, V93, P977, DOI 10.1644/12-MAMM-A-014.1; Pierce BM, 2004, J WILDLIFE MANAGE, V68, P533, DOI 10.2193/0022-541X(2004)068[0533:HSBMDF]2.0.CO;2; Pierce BM, 1999, J MAMMAL, V80, P986, DOI 10.2307/1383269; Pierce BM, 2000, J MAMMAL, V81, P462, DOI 10.1644/1545-1542(2000)081<0462:SOMDBM>2.0.CO;2; Pojar TM, 2004, J WILDLIFE MANAGE, V68, P550, DOI 10.2193/0022-541X(2004)068[0550:NMDFSI]2.0.CO;2; POLLOCK KH, 1989, BIOMETRICS, V45, P99, DOI 10.2307/2532037; Post E, 1997, P ROY SOC B-BIOL SCI, V264, P1317, DOI 10.1098/rspb.1997.0182; Post E, 2008, P ROY SOC B-BIOL SCI, V275, P2005, DOI 10.1098/rspb.2008.0463; Powell Roger A., 2001, Endangered Species Update, V18, P98; Proaktor G, 2008, ECOLOGY, V89, P2604, DOI 10.1890/07-0833.1; Pyare S, 2004, ANIM CONSERV, V7, P71, DOI 10.1017/S1367943003001203; RACHLOW JL, 1994, J MAMMAL, V75, P328, DOI 10.2307/1382551; RACHLOW JL, 1991, J MAMMAL, V72, P487, DOI 10.2307/1382131; Raithel JD, 2007, J WILDLIFE MANAGE, V71, P795, DOI 10.2193/2005-608; RATCLIFFE PR, 1980, ACTA THERIOL, V25, P333, DOI 10.4098/AT.arch.80-30; Raubenheimer D, 2009, FUNCT ECOL, V23, P1, DOI 10.1111/j.1365-2435.2009.01530.x; ROBBINS CT, 1979, AM NAT, V114, P101, DOI 10.1086/283456; ROBINETTE WL, 1950, J WILDLIFE MANAGE, V14, P457, DOI 10.2307/3797276; ROBINETTE WL, 1973, J WILDLIFE MANAGE, V37, P312, DOI 10.2307/3800121; Rowell JE, 2009, THERIOGENOLOGY, V72, P190, DOI 10.1016/j.theriogenology.2009.01.022; SADLEIR RMFS, 1980, J WILDLIFE MANAGE, V44, P472, DOI 10.2307/3807980; SADLEIR RMFS, 1982, CAN J ZOOL, V60, P382, DOI 10.1139/z82-051; Saether BE, 2002, ECOLOGY, V83, P3457, DOI 10.2307/3072094; SALWASSER H, 1978, CALIF FISH GAME, V64, P38; Sams MG, 1995, CAN J ZOOL, V73, P1928, DOI 10.1139/z95-226; Sams MG, 1996, J MAMMAL, V77, P179, DOI 10.2307/1382719; Sams MG, 1998, J WILDLIFE DIS, V34, P110, DOI 10.7589/0090-3558-34.1.110; Sand H, 1996, OECOLOGIA, V106, P212, DOI 10.1007/BF00328601; Sand H, 1996, CAN J ZOOL, V74, P954, DOI 10.1139/z96-108; Sawyer H, 2011, J ANIM ECOL, V80, P1078, DOI 10.1111/j.1365-2656.2011.01845.x; Sawyer H, 2009, J WILDLIFE MANAGE, V73, P1052, DOI 10.2193/2008-478; Schaub M., 2004, Animal Biodiversity and Conservation, V27, P73; Schroeder CA, 2010, ARCT ANTARCT ALP RES, V42, P476, DOI 10.1657/1938.4246.42.4.476; SCHWARTZ CC, 1993, J WILDLIFE MANAGE, V57, P454, DOI 10.2307/3809270; Scott IC, 2008, ANIM REPROD SCI, V109, P206, DOI 10.1016/j.anireprosci.2007.11.025; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; Servanty S, 2010, ECOLOGY, V91, P1916, DOI 10.1890/09-1931.1; Shuman B, 2012, CLIMATIC CHANGE, V112, P429, DOI 10.1007/s10584-011-0223-5; Sinclair A.R.E., 1983, P240; SINCLAIR ARE, 1985, OECOLOGIA, V65, P266, DOI 10.1007/BF00379227; Sinclair ARE, 2003, NATURE, V425, P288, DOI 10.1038/nature01934; SINCLAIR ARE, 1991, J WILDLIFE MANAGE, V55, P767, DOI 10.2307/3809530; Sinclair ARE, 2002, PHILOS T ROY SOC B, V357, P1221, DOI 10.1098/rstb.2002.1123; Singer FJ, 1997, J WILDLIFE MANAGE, V61, P12, DOI 10.2307/3802410; SKOGLAND T, 1985, J ANIM ECOL, V54, P359, DOI 10.2307/4484; SKOGLAND T, 1991, OIKOS, V61, P401, DOI 10.2307/3545248; Smith DW, 2010, J WILDLIFE MANAGE, V74, P620, DOI 10.2193/2008-584; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Stephenson TR, 1995, ALCES N AM, V31, P167; Stephenson TR, 2002, WILDLIFE SOC B, V30, P557; Stephenson TR, 1998, CAN J ZOOL, V76, P717, DOI 10.1139/cjz-76-4-717; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Storer T. I., 1955, CALIFORNIA GRIZZLY; Storer T. I., 2004, SIERRA NEVADA NATURA; Strickland BK, 2008, WILDLIFE BIOL, V14, P263, DOI 10.2981/0909-6396(2008)14[263:VIMALA]2.0.CO;2; Swift PK, 2002, WILDLIFE SOC B, V30, P253; Swihart RK, 1998, CAN J ZOOL, V76, P1932, DOI 10.1139/cjz-76-10-1932; Taillon J, 2012, CAN J ZOOL, V90, P393, DOI 10.1139/Z2012-001; Taillon J, 2006, ANIM BEHAV, V72, P1103, DOI 10.1016/j.anbehav.2006.03.016; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; Testa JW, 1998, J MAMMAL, V79, P1345, DOI 10.2307/1383026; Testa JW, 2002, J MAMMAL, V83, P699, DOI 10.1644/1545-1542(2002)083<0699:DPONIS>2.0.CO;2; Tollefson TN, 2011, J WILDLIFE MANAGE, V75, P919, DOI 10.1002/jwmg.113; Tollefson TN, 2010, J WILDLIFE MANAGE, V74, P974, DOI 10.2193/2008-529; TORBIT SC, 1985, J WILDLIFE MANAGE, V49, P80, DOI 10.2307/3801849; Tveraa T, 2003, OECOLOGIA, V137, P370, DOI 10.1007/s00442-003-1373-6; Unsworth JW, 1999, J WILDLIFE MANAGE, V63, P315, DOI 10.2307/3802515; VANBALLENBERGHE V, 1994, CAN J ZOOL, V72, P2071; VANVUREN D, 1986, J MAMMAL, V67, P503, DOI 10.2307/1381282; VERBEKE G, 2000, LINEAR MIXED MODELS; Verme L. J., 1984, PHYSL NUTR; Verme L. J., 1962, P NATL DEER DISEASE, P15; VERME LJ, 1969, J WILDLIFE MANAGE, V33, P881, DOI 10.2307/3799320; VERME LOUIS J., 1965, J WILDLIFE MANAGE, V29, P74, DOI 10.2307/3798633; Villepique JT, 2011, SOUTHWEST NAT, V56, P187, DOI 10.1894/F07-TAL.1; Wasley T., 2004, NEVADA DEP WILDLIFE, V14; Wasser SK, 2011, FRONT ECOL ENVIRON, V9, P546, DOI 10.1890/100071; White CG, 2010, J WILDLIFE MANAGE, V74, P355, DOI 10.2193/2007-506; White Gary C., 2001, P329, DOI 10.1016/B978-012497781-5/50014-1; White GC, 1998, J WILDLIFE MANAGE, V62, P214, DOI 10.2307/3802281; White GC, 1999, BIRD STUDY, V46, P120; White GC, 2002, J WILDLIFE MANAGE, V66, P300, DOI 10.2307/3803162; White PJ, 2011, ECOL APPL, V21, P3, DOI 10.1890/09-2123.1; Whiting J. C., 2009, EUROPEAN J WILDLIFE, V56, P349; Whiting JC, 2011, J MAMMAL, V92, P213, DOI 10.1644/10-MAMM-A-145.1; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Yoccoz NG, 2001, TRENDS ECOL EVOL, V16, P446, DOI 10.1016/S0169-5347(01)02205-4; Zager P, 2006, URSUS, V17, P95, DOI 10.2192/1537-6176(2006)17[95:TROABB]2.0.CO;2 351 49 49 8 218 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0084-0173 1938-5455 WILDLIFE MONOGR Wildl. Monogr. JUL 2014 186 1 1 62 10.1002/wmon.1011 62 Ecology; Zoology Environmental Sciences & Ecology; Zoology AE0GW WOS:000333642700001 2019-02-21 J Mone, Y; Monnin, D; Kremer, N Mone, Yves; Monnin, David; Kremer, Natacha The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review symbiotic interactions; oxidative environment; specificity; extended phenotype; coevolution; resistance/tolerance SQUID-VIBRIO SYMBIOSIS; LIFE-HISTORY EVOLUTION; NITRIC-OXIDE; REACTIVE OXYGEN; MOLECULAR-MECHANISMS; MEDICAGO-TRUNCATULA; SCHISTOSOMA-MANSONI; CELL-DEATH; BIOMPHALARIA-GLABRATA; OPTIMAL ESTABLISHMENT Symbiotic interactions are ubiquitous in nature and play a major role in driving the evolution of life. Interactions between partners are often mediated by shared signalling pathways, which strongly influence both partners' biology and the evolution of the association in various environments. As an example of 'common language', the regulation of the oxidative environment plays an important role in driving the evolution of symbiotic associations. Such processes have been occurring for billions of years, including the increase in Earth's atmospheric oxygen and the subsequent evolution of mitochondria. The effect of reactive oxygen species and reactive nitrogen species (RONS) has been characterized functionally, but the molecular dialogue between partners has not been integrated within a broader evolutionary context yet. Given the pleiotropic role of RONS in cell-cell communication, development and immunity, but also their associated physiological costs, we discuss here how their regulation can influence the establishment, the maintenance and the breakdown of various symbiotic associations. By synthesizing recent developments in redox biology, we aim to provide an interdisciplinary understanding of the influence of such mediators of interspecies communication on the evolution and stability of symbioses, which in turn can shape ecosystems and play a role in health and disease. [Mone, Yves; Monnin, David; Kremer, Natacha] Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France; [Mone, Yves] Univ Lyon, INSA Lyon, INRA, UMR 203, Villeurbanne, France; [Kremer, Natacha] Univ Wisconsin, Madison, WI USA Kremer, N (reprint author), Univ Lyon 1, CNRS, UMR 5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France. natacha.kremer@normalesup.org Mone, Yves/A-6805-2010 Kremer, Natacha/0000-0001-5678-9416 Agence Nationale de la Recherche [ANR-2010-BLAN-170101/ImmunSymbArt]; Marie Curie Actions [FP7-PEOPLE-2010-IOF/272684/SymbiOx] Y.M. and D.M. are supported by the Agence Nationale de la Recherche (ANR-2010-BLAN-170101/ImmunSymbArt) and N.K. by the Marie Curie Actions FP7-PEOPLE-2010-IOF/272684/SymbiOx. Aanen DK, 2007, TRENDS ECOL EVOL, V22, P506, DOI 10.1016/j.tree.2007.08.007; Altura MA, 2011, CELL MICROBIOL, V13, P527, DOI 10.1111/j.1462-5822.2010.01552.x; Andrews ES, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1003075; Blackstone N, 2009, SEMIN CELL DEV BIOL, V20, P330, DOI 10.1016/j.semcdb.2008.12.006; Brennan LJ, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002083; Brown GC, 2010, NITRIC OXIDE-BIOL CH, V23, P153, DOI 10.1016/j.niox.2010.06.001; Buchon N, 2009, GENE DEV, V23, P2333, DOI 10.1101/gad.1827009; Cap M, 2012, OXID MED CELL LONGEV, DOI 10.1155/2012/976753; Cardenas L, 2008, PLANT J, V56, P802, DOI 10.1111/j.1365-313X.2008.03644.x; Correa-Aragunde N, 2004, PLANTA, V218, P900, DOI 10.1007/s00425-003-1172-7; Davidson SK, 2004, CELL MICROBIOL, V6, P1139, DOI 10.1111/j.1462-5822.2004.00429.x; Dawkins R., 1982, EXTENDED PHENOTYPE L; De Bary A., 1879, ERSCHEINUNG SYMBIOSE; Dedeine F, 2001, P NATL ACAD SCI USA, V98, P6247, DOI 10.1073/pnas.101304298; DeJong RJ, 2007, P NATL ACAD SCI USA, V104, P2121, DOI 10.1073/pnas.0608407104; del Giudice J, 2011, NEW PHYTOL, V191, P405, DOI 10.1111/j.1469-8137.2011.03693.x; Desalvo MK, 2008, MOL ECOL, V17, P3952, DOI 10.1111/j.1365-294X.2008.03879.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Droge W, 2002, PHYSIOL REV, V82, P47; Dunn SR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039024; Engel P, 2013, FEMS MICROBIOL REV, V37, P699, DOI 10.1111/1574-6976.12025; Fang FC, 2004, NAT REV MICROBIOL, V2, P820, DOI 10.1038/nrmicro1004; FEELISCH M, 1995, TRENDS ECOL EVOL, V10, P496, DOI 10.1016/S0169-5347(00)89206-X; Guillou F, 2007, MOL BIOCHEM PARASIT, V155, P45, DOI 10.1016/j.molbiopara.2007.05.009; Ha EM, 2005, SCIENCE, V310, P847, DOI 10.1126/science.1117311; Ha EM, 2005, DEV CELL, V8, P125, DOI 10.1016/j.devcel.2004.11.007; Ha EM, 2009, NAT IMMUNOL, V10, P949, DOI 10.1038/ni.1765; Hahn UK, 2001, J PARASITOL, V87, P292, DOI 10.1645/0022-3395(2001)087[0292:KOSMSB]2.0.CO;2; Hawkins TD, 2013, J EXP BIOL, V216, P3185, DOI 10.1242/jeb.087510; Hentschel U, 2000, TRENDS MICROBIOL, V8, P226, DOI 10.1016/S0966-842X(00)01758-3; Imlay JA, 2013, NAT REV MICROBIOL, V11, P443, DOI 10.1038/nrmicro3032; Jamet A, 2003, MOL PLANT MICROBE IN, V16, P217, DOI 10.1094/MPMI.2003.16.3.217; Jamet A, 2007, J BACTERIOL, V189, P8741, DOI 10.1128/JB.01130-07; Kremer N, 2014, P ROY SOC B-BIOL SCI, V281, DOI 10.1098/rspb.2014.0504; Kremer N, 2012, BMC MICROBIOL, V12, DOI 10.1186/1471-2180-12-S1-S7; Kremer N, 2010, EVOLUTION, V64, P2969, DOI 10.1111/j.1558-5646.2010.01034.x; Kremer N, 2009, PLOS PATHOG, V5, DOI 10.1371/journal.ppat.1000630; Kumar S., 2003, P NATL ACAD SCI USA, V100, P139, DOI DOI 10.1073/PNAS.2036262100); Lohar DP, 2007, NEW PHYTOL, V173, P39, DOI 10.1111/j.1469-8137.2006.01901.x; Margulis L, 1970, ORIGIN EUKARYOTIC CE; Martinez MC, 2009, ANTIOXID REDOX SIGN, V11, P669, DOI 10.1089/ars.2007.1993; McCall K, 2004, DEV BIOL, V274, P3, DOI 10.1016/j.ydbio.2004.07.017; McFall-Ngai M, 2013, P NATL ACAD SCI USA, V110, P3229, DOI 10.1073/pnas.1218525110; Mittler R, 2011, TRENDS PLANT SCI, V16, P300, DOI 10.1016/j.tplants.2011.03.007; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Mone Y, 2011, INT J PARASITOL, V41, P721, DOI 10.1016/j.ijpara.2011.01.007; Mourao MD, 2009, PLOS NEGLECT TROP D, V3, DOI 10.1371/journal.pntd.0000550; Nagata M, 2008, CLIN TRANSPLANT, V22, P1, DOI 10.1111/j.1399-0012.2008.00859.x; Nathan C, 2013, NAT REV IMMUNOL, V13, P349, DOI 10.1038/nri3423; Nyholm SV, 2004, NAT REV MICROBIOL, V2, P632, DOI 10.1038/nrmicro957; Oldroyd GED, 2008, ANNU REV PLANT BIOL, V59, P519, DOI 10.1146/annurev.arplant.59.032607.092839; Oliveira JHM, 2011, PLOS PATHOG, V7, DOI 10.1371/journal.ppat.1001320; Pan X., 2011, P NATL ACAD SCI USA, V109, pE23, DOI DOI 10.1073/PNAS.1116932108; Pannebakker BA, 2007, P NATL ACAD SCI USA, V104, P213, DOI 10.1073/pnas.0607845104; Paxton CW, 2013, J EXP BIOL, V216, P2813, DOI 10.1242/jeb.087858; Peleg-Grossman S, 2007, J EXP BOT, V58, P1637, DOI 10.1093/jxb/erm013; Peleg-Grossman S, 2012, PLANT SIGNAL BEHAV, V7, P409, DOI 10.4161/psb.19217; Perez S, 2006, J EXP BIOL, V209, P2804, DOI 10.1242/jeb.02309; Puppo A, 2013, ANTIOXID REDOX SIGN, V18, P2202, DOI 10.1089/ars.2012.5136; Qiao Y, 2013, APPL MICROBIOL BIOT, V97, P1689, DOI 10.1007/s00253-012-4323-6; Ramu SK, 2002, MOL PLANT MICROBE IN, V15, P522, DOI 10.1094/MPMI.2002.15.6.522; Ray PD, 2012, CELL SIGNAL, V24, P981, DOI 10.1016/j.cellsig.2012.01.008; Rook GAW, 2012, CLIN REV ALLERG IMMU, V42, P5, DOI 10.1007/s12016-011-8285-8; Rosenberg E, 2011, BIRTH DEFECTS RES C, V93, P56, DOI 10.1002/bdrc.20196; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Schippers JHM, 2012, CELL MOL LIFE SCI, V69, P3245, DOI 10.1007/s00018-012-1092-4; Shaw SL, 2003, PLANT PHYSIOL, V132, P2196, DOI 10.1104/pp.103.021113; Snyder CM, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007059; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stuart-Smith K, 2002, J CLIN PATHOL-MOL PA, V55, P360, DOI 10.1136/mp.55.6.360; Svensson EI, 2010, TRENDS ECOL EVOL, V25, P267, DOI 10.1016/j.tree.2009.12.005; Vidal-Dupiol Jeremie, 2009, BMC Physiology, V9, P14, DOI 10.1186/1472-6793-9-14; Wang D, 2012, CELL MICROBIOL, V14, P334, DOI 10.1111/j.1462-5822.2011.01736.x; Wang YL, 2010, MOL MICROBIOL, V78, P903, DOI 10.1111/j.1365-2958.2010.07376.x; Wang YL, 2010, P NATL ACAD SCI USA, V107, P8375, DOI 10.1073/pnas.1003571107; Wang Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024767; Weis VM, 2008, J EXP BIOL, V211, P3059, DOI 10.1242/jeb.009597; Werren JH, 2008, NAT REV MICROBIOL, V6, P741, DOI 10.1038/nrmicro1969; Wu GD, 2011, SCIENCE, V334, P105, DOI 10.1126/science.1208344; Wu XJ, 2009, MOL BIOCHEM PARASIT, V164, P32, DOI 10.1016/j.molbiopara.2008.11.005 80 19 19 0 42 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 22 2014 281 1785 20133112 10.1098/rspb.2013.3112 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AH0LT WOS:000335812100003 24807248 Bronze, Green Published 2019-02-21 J Pascoal, S; Cezard, T; Eik-Nes, A; Gharbi, K; Majewska, J; Payne, E; Ritchie, MG; Zuk, M; Bailey, NW Pascoal, Sonia; Cezard, Timothee; Eik-Nes, Aasta; Gharbi, Karim; Majewska, Jagoda; Payne, Elizabeth; Ritchie, Michael G.; Zuk, Marlene; Bailey, Nathan W. Rapid Convergent Evolution in Wild Crickets CURRENT BIOLOGY English Article LIFE-HISTORY EVOLUTION; FIELD CRICKETS; SEXUAL SIGNAL; ADAPTATION; HOMOPLASY; PARALLELISM; MORPHOLOGY; SELECTION; INSECTS; MICE The earliest stages of convergent evolution are difficult to observe in the wild, limiting our understanding of the incipient genomic architecture underlying convergent phenotypes [1, 2]. To address this, we capitalized on a novel trait, flatwing, that arose and proliferated at the start of the 21st century in a population of field crickets (Teleogryllus oceanicus) on the Hawaiian island of Kauai [3]. Flatwing erases sound-producing structures on male forewings. Mutant males cannot sing to attract females, but they are protected from fatal attack by an acoustically orienting parasitoid fly (Ormia ochracea). Two years later, the silent morph appeared on the neighboring island of Oahu. We tested two hypotheses for the evolutionary origin of flatwings in Hawaii: (1) that the silent morph originated on Kauai and subsequently introgressed into Oahu and (2) that flatwing originated independently on each island. Morphometric analysis of male wings revealed that Kauai flatwings almost completely lack typical derived structures, whereas Oahu flatwings retain noticeably more wild-type wing venation. Using standard genetic crosses, we confirmed that the mutation segregates as a single-locus, sex-linked Mendelian trait on both islands. However, genome-wide scans using RAD-seq recovered almost completely distinct markers linked with flatwing on each island. The patterns of allelic association with flatwing on either island reveal different genomic architectures consistent with the timing of two mutational events on the X chromosome. Divergent wing morphologies linked to different loci thus cause identical behavioral outcomes-silence-illustrating the power of selection to rapidly shape convergent adaptations from distinct genomic starting points. [Pascoal, Sonia; Eik-Nes, Aasta; Ritchie, Michael G.; Bailey, Nathan W.] Univ St Andrews, Ctr Biol Divers, St Andrews KY16 9TH, Fife, Scotland; [Cezard, Timothee; Gharbi, Karim] Univ Edinburgh, Edinburgh EH9 3JT, Midlothian, Scotland; [Majewska, Jagoda] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland; [Payne, Elizabeth; Zuk, Marlene] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Zuk, Marlene] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA Bailey, NW (reprint author), Univ St Andrews, Ctr Biol Divers, St Andrews KY16 9TH, Fife, Scotland. nwb3@st-andrews.ac.uk Ritchie, Michael/F-7055-2013 Ritchie, Michael/0000-0001-7913-8675; Gharbi, Karim/0000-0003-1092-4488; Bailey, Nathan/0000-0003-3531-7756 Natural Environment Research Council [NE/G014906/1, NE/I027800/1]; National Science Foundation; NERC Biomolecular Analysis Facility at the University of Edinburgh [NBAF655]; Natural Environment Research Council [NE/I027800/1, NBAF010003] We are grateful to David Forbes for helping to maintain crickets in the lab and Catherine Eland for RAD library preparation. Kirsten Klappert generously helped to estimate genome size of the crickets, and John Rotenberry provided helpful feedback on the manuscript. This research was funded Natural Environment Research Council grants (NE/G014906/1 to N.W.B. and NE/I027800/1 to N.W.B. and M.G.R.) and by National Science Foundation grants to M.Z. Sequencing and bioinformatics work was supported by the NERC Biomolecular Analysis Facility at the University of Edinburgh (NBAF655). Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Ashburner J, 1998, HUM BRAIN MAPP, V6, P348, DOI 10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P; Baird NA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003376; Bethoux O, 2010, EUR J ENTOMOL, V107, P133, DOI 10.14411/eje.2010.018; Chan YF, 2012, CURR BIOL, V22, P794, DOI 10.1016/j.cub.2012.03.011; Dasmahapatra KK, 2012, NATURE, V487, P94, DOI 10.1038/nature11041; DUGATKIN LA, 2008, PRINCIPLES ANIMAL BE; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Faria R, 2014, MOL ECOL, V23, P513, DOI 10.1111/mec.12616; Hall BK, 2003, BIOL REV, V78, P409, DOI 10.1017/S1464793102006097; Hartley CJ, 2006, P NATL ACAD SCI USA, V103, P8757, DOI 10.1073/pnas.0509590103; Johnson JB, 2001, EVOLUTION, V55, P1486; Kim M, 2008, SCIENCE, V322, P1116, DOI 10.1126/science.1164371; Kowalko JE, 2013, CURR BIOL, V23, P1874, DOI 10.1016/j.cub.2013.07.056; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Parker J, 2013, NATURE, V502, P228, DOI 10.1038/nature12511; Payseur BA, 2004, EVOLUTION, V58, P2064; RITCHIE MG, 1987, ECOL ENTOMOL, V12, P209, DOI 10.1111/j.1365-2311.1987.tb00999.x; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; Rohlf FJ, 2012, TPSDIG DIGITIZE LAND; Sokal R. R, 1981, BIOMETRY; Stern DL, 2013, NAT REV GENET, V14, P751, DOI 10.1038/nrg3483; Stern DL, 2009, SCIENCE, V323, P746, DOI 10.1126/science.1158997; Tinghitella RM, 2008, HEREDITY, V100, P261, DOI 10.1038/sj.hdy.6801069; Tinghitella RM, 2011, J EVOLUTION BIOL, V24, P1199, DOI 10.1111/j.1420-9101.2011.02255.x; Tishkoff SA, 2007, NAT GENET, V39, P31, DOI 10.1038/ng1946; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; Whiting MF, 2003, NATURE, V421, P264, DOI 10.1038/nature01313; Zelditch M. L., 2012, MORPHOMETRICS SOFTWA; Zuk M, 2006, BIOL LETT-UK, V2, P521, DOI 10.1098/rsbl.2006.0539 31 32 33 2 135 CELL PRESS CAMBRIDGE 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. JUN 16 2014 24 12 1369 1374 10.1016/j.cub.2014.04.053 6 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology AJ4LQ WOS:000337648200027 24881880 Bronze 2019-02-21 J Carbonetto, B; Rascovan, N; Alvarez, R; Mentaberry, A; Vazquez, MP Carbonetto, Belen; Rascovan, Nicolas; Alvarez, Roberto; Mentaberry, Alejandro; Vazquez, Martin P. Structure, Composition and Metagenomic Profile of Soil Microbiomes Associated to Agricultural Land Use and Tillage Systems in Argentine Pampas PLOS ONE English Article ORGANIC-MATTER; RIBOSOMAL-RNA; NO-TILLAGE; NITROGEN-FERTILIZATION; BACTERIAL COMMUNITIES; REVEALS DIFFERENCES; CARBON; DIVERSITY; PATTERNS; SUSTAINABILITY Agriculture is facing a major challenge nowadays: to increase crop production for food and energy while preserving ecosystem functioning and soil quality. Argentine Pampas is one of the main world producers of crops and one of the main adopters of conservation agriculture. Changes in soil chemical and physical properties of Pampas soils due to different tillage systems have been deeply studied. Still, not much evidence has been reported on the effects of agricultural practices on Pampas soil microbiomes. The aim of our study was to investigate the effects of agricultural land use on community structure, composition and metabolic profiles on soil microbiomes of Argentine Pampas. We also compared the effects associated to conventional practices with the effects of no-tillage systems. Our results confirmed the impact on microbiome structure and composition due to agricultural practices. The phyla Verrucomicrobia, Plactomycetes, Actinobacteria, and Chloroflexi were more abundant in non cultivated soils while Gemmatimonadetes, Nitrospirae and WS3 were more abundant in cultivated soils. Effects on metabolic metagenomic profiles were also observed. The relative abundance of genes assigned to transcription, protein modification, nucleotide transport and metabolism, wall and membrane biogenesis and intracellular trafficking and secretion were higher in cultivated fertilized soils than in non cultivated soils. We also observed significant differences in microbiome structure and taxonomic composition between soils under conventional and no-tillage systems. Overall, our results suggest that agronomical land use and the type of tillage system have induced microbiomes to shift their life-history strategies. Microbiomes of cultivated fertilized soils (i.e. higher nutrient amendment) presented tendencies to copiotrophy while microbiomes of non cultivated homogenous soils appeared to have a more oligotrophic life-style. Additionally, we propose that conventional tillage systems may promote copiotrophy more than no-tillage systems by decreasing soil organic matter stability and therefore increasing nutrient availability. [Carbonetto, Belen; Rascovan, Nicolas; Vazquez, Martin P.] Predio CCT Rosario, Inst Agrobiotecnol Rosario INDEAR, Santa Fe, Argentina; [Alvarez, Roberto] Univ Buenos Aires, Fac Agron, Buenos Aires, DF, Argentina; [Mentaberry, Alejandro] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fisiol & Biol Mol & Celular, Buenos Aires, DF, Argentina Carbonetto, B (reprint author), Predio CCT Rosario, Inst Agrobiotecnol Rosario INDEAR, Santa Fe, Argentina. belen.carbonetto@indear.com; martin.vazquez@indear.com Rascovan, Nicolas/Q-4531-2018 Rascovan, Nicolas/0000-0002-2129-5878; Carbonetto, Maria Belen/0000-0002-2784-5324 Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PAE 37164] Funding for this work was provided by Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina-PAE 37164. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Agaras B, 2012, APPL SOIL ECOL, V61, P305, DOI 10.1016/j.apsoil.2011.11.016; ALVAREZ R, 1995, SOIL TILL RES, V33, P17, DOI 10.1016/0167-1987(94)00432-E; Alvarez R, 2009, SOIL TILL RES, V104, P1, DOI 10.1016/j.still.2009.02.005; Alvarez R, 2001, SOIL USE MANAGE, V17, P62, DOI 10.1111/j.1475-2743.2001.tb00010.x; Aon MA, 2001, APPL SOIL ECOL, V18, P239, DOI 10.1016/S0929-1393(01)00153-6; Apple JK, 2007, ISME J, V1, P729, DOI 10.1038/ismej.2007.86; Attard E, 2010, ENVIRON MICROBIOL, V12, P315, DOI 10.1111/j.1462-2920.2009.02070.x; Balmford A, 2005, GLOBAL CHANGE BIOL, V11, P1594, DOI 10.1111/j.1365-2486.2005.01035.x; Barabote RD, 2009, GENOME RES, V19, P1033, DOI 10.1101/gr.084848.108; Bayer C, 2000, SOIL TILL RES, V54, P101, DOI 10.1016/S0167-1987(00)00090-8; Bennett EM, 2001, BIOSCIENCE, V51, P227, DOI 10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2; Berhongaray G, 2013, GEODERMA, V192, P97, DOI 10.1016/j.geoderma.2012.07.016; Bernardos JN, 2001, AGR SYST, V69, P215, DOI 10.1016/S0308-521X(01)00027-0; Bongiovanni MD, 2006, GEODERMA, V136, P660, DOI 10.1016/j.geoderma.2006.05.002; BREMNER JM, 1996, METHODS SOIL ANAL, V5, P1085, DOI DOI 10.2136/SSSAB00KSER5.3.C37; Cai L, 2011, Cold Spring Harb Symp Quant Biol, V76, P195, DOI 10.1101/sqb.2011.76.010769; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Caporaso JG, 2010, BIOINFORMATICS, V26, P266, DOI 10.1093/bioinformatics/btp636; COLE JR, 2009, NUCLEIC ACIDS RES, V37, P141, DOI DOI 10.1093/NAR/GKN879; DeBruyn JM, 2011, APPL ENVIRON MICROB, V77, P6295, DOI 10.1128/AEM.05005-11; Delmont TO, 2012, ISME J, V6, P1677, DOI 10.1038/ismej.2011.197; Deng WD, 2008, MOL BIOL REP, V35, P265, DOI 10.1007/s11033-007-9079-1; DeSantis TZ, 2006, APPL ENVIRON MICROB, V72, P5069, DOI 10.1128/AEM.03006-05; Dion P, 2008, MICROBIOLOGY EXTREME; Dixon P, 2003, J VEG SCI, V14, P927, DOI 10.1658/1100-9233(2003)014[0927:VAPORF]2.0.CO;2; Dong L, 2009, SOIL BIOL BIOCHEM, V41, P1612, DOI 10.1016/j.soilbio.2009.04.023; Doucette CD, 2011, NAT CHEM BIOL, V7, P894, DOI [10.1038/NCHEMBIO.685, 10.1038/nchembio.685]; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Edwards AL, 2010, RNA, V16, P2144, DOI 10.1261/rna.2341610; ELBEIN AD, 2003, GLYCOBIOLOGY, V13, P17; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; Fierer N, 2013, SCIENCE, V342, P621, DOI 10.1126/science.1243768; Fierer N, 2012, P NATL ACAD SCI USA, V109, P21390, DOI 10.1073/pnas.1215210110; Fierer N, 2012, ISME J, V6, P1007, DOI 10.1038/ismej.2011.159; Figuerola ELM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0051075; Foley JA, 2005, SCIENCE, V309, P570, DOI 10.1126/science.1111772; Foley JA, 2011, NATURE, V478, P337, DOI 10.1038/nature10452; Fortunato CS, 2012, ISME J, V6, P554, DOI 10.1038/ismej.2011.135; Galantini J, 2006, SOIL TILL RES, V87, P72, DOI 10.1016/j.still.2005.02.032; GEE GW, 1986, AGRONOMY, V9, P383, DOI DOI 10.2136/SSSAB00KSER5.1.2ED.C15; Gomez E, 2000, APPL SOIL ECOL, V15, P273, DOI 10.1016/S0929-1393(00)00078-0; HALL AJ, 1992, FIELD CROP ECOSYSTEM, P413; Hevia GG, 2003, GEODERMA, V116, P265, DOI 10.1016/S0016-7061(03)00104-6; Jiao Y, 2006, GEODERMA, V134, P24, DOI 10.1016//j.geoderma.2005.08.012; Kassam A, 2009, INT J AGR SUSTAIN, V7, P292, DOI 10.3763/ijas.2009.0477; Kim HJ, 2008, P NATL ACAD SCI USA, V105, P18188, DOI 10.1073/pnas.0807935105; Kindt R., 2005, TREE DIVERSITY ANAL; Kuo S, 1996, SSSA BOOK SERIES, P869; LANGDALE GW, 1992, SOIL TECHNOL, V5, P81, DOI 10.1016/0933-3630(92)90009-P; Lauber CL, 2013, ISME J, V7, P1641, DOI 10.1038/ismej.2013.50; Lauro FM, 2009, P NATL ACAD SCI USA, V106, P15527, DOI 10.1073/pnas.0903507106; Lavado RS, 2008, MATERIA ORGANICA VAL, P1; Leonardi R, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011107; Loenen WAM, 2006, BIOCHEM SOC T, V34, P330, DOI 10.1042/BST0340330; LOPEZ MF, 1984, CAN J MICROBIOL, V30, P746, DOI 10.1139/m84-114; Lozupone C, 2005, APPL ENVIRON MICROB, V71, P8228, DOI 10.1128/AEM.71.12.8228-8235.2005; Maixner F, 2006, ENVIRON MICROBIOL, V8, P1487, DOI 10.1111/j.1462-2920.2006.01033.x; McInerney MJ, 2009, CURR OPIN BIOTECH, V20, P623, DOI 10.1016/j.copbio.2009.10.001; Meyer F, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-386; Nelson DW, 1996, BOOK SERIES SOIL SCI, V5, P961, DOI DOI 10.2136/SSSAB00KSER5.3.C34; Nemergut DR, 2008, ENVIRON MICROBIOL, V10, P3093, DOI 10.1111/j.1462-2920.2008.01735.x; Nievas F, 2012, APPL SOIL ECOL, V53, P74, DOI 10.1016/j.apsoil.2011.11.010; Nudler E, 2004, TRENDS BIOCHEM SCI, V29, P11, DOI 10.1016/j.tibs.2003.11.004; Plaza-Bonilla D, 2013, GEODERMA, V193, P76, DOI 10.1016/j.geoderma.2012.10.022; Power AG, 2010, PHILOS T R SOC B, V365, P2959, DOI 10.1098/rstb.2010.0143; Price MN, 2009, MOL BIOL EVOL, V26, P1641, DOI 10.1093/molbev/msp077; Quiroga AR, 1996, SOIL SCI, V161; Ramirez KS, 2012, GLOBAL CHANGE BIOL, V18, P1918, DOI 10.1111/j.1365-2486.2012.02639.x; Ramirez KS, 2010, ECOLOGY, V91, P3463, DOI 10.1890/10-0426.1; Rascovan N, 2013, MICROBIOME, V1, DOI 10.1186/2049-2618-1-21; Rhoades JD, 1996, SSSA BOOK SER, P417, DOI DOI 10.2136/SSSAB00KSER5.3.C14; Pontes DS, 2007, J IND MICROBIOL BIOT, V34, P463, DOI 10.1007/s10295-007-0219-3; Sanudo-Wilhelmy S. A., 2012, P NATL ACAD SCI; Satorre E.H., 1999, WHEAT ECOLOGY PHYSL; Scholes MC, 2013, SCIENCE, V342, P565, DOI 10.1126/science.1244579; Sieber JR, 2012, ANNU REV MICROBIOL, V66, P429, DOI 10.1146/annurev-micro-090110-102844; Slepetiene A, 2005, GEODERMA, V127, P207, DOI 10.1016/j.geoderma.2004.12.001; Sogin ML, 2006, P NATL ACAD SCI USA, V103, P12115, DOI 10.1073/pnas.0605127103; Souza RC, 2013, APPL SOIL ECOL, V72, P49, DOI 10.1016/j.apsoil.2013.05.021; Taylor PG, 2010, NATURE, V464, P1178, DOI 10.1038/nature08985; Tilman D, 2002, NATURE, V418, P671, DOI 10.1038/nature01014; Tilman D, 2011, P NATL ACAD SCI USA, V108, P20260, DOI 10.1073/pnas.1116437108; Tivet F, 2013, GEODERMA, V209, P214, DOI 10.1016/j.geoderma.2013.06.008; Tropis M, 2005, J BIOL CHEM, V280, P26573, DOI 10.1074/jbc.M502104200; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; Winkler WC, 2005, ANNU REV MICROBIOL, V59, P487, DOI 10.1146/annurev.micro.59.030804.121336; Yan DL, 2007, P NATL ACAD SCI USA, V104, P9475, DOI 10.1073/pnas.0703360104; Zabaloy MC, 2008, APPL SOIL ECOL, V40, P1, DOI 10.1016/j.apsoil.2008.02.004; Zabaloy MC, 2012, APPL SOIL ECOL, V61, P333, DOI 10.1016/j.apsoil.2011.12.004; Zhang H, 2003, INT J SYST EVOL MICR, V53, P1155, DOI 10.1099/ijs.0.02520-0 90 42 44 6 68 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JUN 12 2014 9 6 e99949 10.1371/journal.pone.0099949 11 Multidisciplinary Sciences Science & Technology - Other Topics AK8TP WOS:000338701300109 24923965 DOAJ Gold, Green Published 2019-02-21 J Healy, K; Guillerme, T; Finlay, S; Kane, A; Kelly, SBA; McClean, D; Kelly, DJ; Donohue, I; Jackson, AL; Cooper, N Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie Ecology and mode-of-life explain lifespan variation in birds and mammals PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article longevity; extrinsic mortality; MCMCglmm; volant; non-volant LONGEVITY; EVOLUTION; HISTORY; METABOLISM; MORTALITY; INSIGHTS; ANIMALS; CANCER; SIZE; TIME Maximum lifespan in birds and mammals varies strongly with body mass such that large species tend to live longer than smaller species. However, many species live far longer than expected given their body mass. This may reflect interspecific variation in extrinsic mortality, as life-history theory predicts investment in long-term survival is under positive selection when extrinsic mortality is reduced. Here, we investigate how multiple ecological and mode-of-life traits that should reduce extrinsic mortality (including volancy (flight capability), activity period, foraging environment and fossoriality), simultaneously influence lifespan across endotherms. Using novel phylogenetic comparative analyses and to our knowledge, the most species analysed to date (n = 1368), we show that, over and above the effect of body mass, the most important factor enabling longer lifespan is the ability to fly. Within volant species, lifespan depended upon when (day, night, dusk or dawn), but not where (in the air, in trees or on the ground), species are active. However, the opposite was true for non-volant species, where lifespan correlated positively with both arboreality and fossoriality. Our results highlight that when studying the molecular basis behind cellular processes such as those underlying lifespan, it is important to consider the ecological selection pressures that shaped them over evolutionary time. [Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie] Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland; [Healy, Kevin; Guillerme, Thomas; Finlay, Sive; Kane, Adam; Kelly, Sean B. A.; McClean, Deirdre; Kelly, David J.; Donohue, Ian; Jackson, Andrew L.; Cooper, Natalie] Trinity Coll Dublin, Trinity Ctr Biodivers Res, Dublin 2, Ireland Healy, K (reprint author), Trinity Coll Dublin, Sch Nat Sci, Dublin 2, Ireland. healyke@tcd.ie Guillerme, Thomas/G-9833-2014; Donohue, Ian/A-7270-2010; Cooper, Natalie/I-7976-2012; Healy, Kevin/H-6512-2013; Finlay, Sive/K-2932-2014; Jackson, Andrew/D-3441-2009; Kane, Adam/H-6449-2013 Guillerme, Thomas/0000-0003-4325-1275; Donohue, Ian/0000-0002-4698-6448; Cooper, Natalie/0000-0003-4919-8655; Healy, Kevin/0000-0002-3548-6253; Finlay, Sive/0000-0001-5100-4819; Jackson, Andrew/0000-0001-7334-0434; Kane, Adam/0000-0002-2830-5338; Kelly, David/0000-0002-5880-4162; Kelly, Sean/0000-0002-3078-8404 Earth and Natural Sciences (ENS) Doctoral Studies Programme; Higher Education Authority (HEA) through the Programme for Research at Third Level Institutions [PRTLI-5]; European Regional Development Fund (ERDF); IRC Embark Initiative Postgraduate Scholarship; Trinity College Dublin; EU INTERREG IVA Cross-border Programme [002862]; European Commission CORDIS [321696]; Science Foundation Ireland Funding was provided by the Earth and Natural Sciences (ENS) Doctoral Studies Programme, funded by the Higher Education Authority (HEA) through the Programme for Research at Third Level Institutions, Cycle 5 (PRTLI-5), co-funded by the European Regional Development Fund (ERDF) (K. H.); IRC Embark Initiative Postgraduate Scholarship (S. F.); Trinity College Dublin (T. G., A. K., S. K.), the EU INTERREG IVA Cross-border Programme-funded DOLMANT Project (ref. no: 002862; D. M.) and European Commission CORDIS Seventh Framework Programme (FP7) Marie Curie CIG grant (proposal no: 321696; N.C.). All calculations were performed on the Lonsdale cluster maintained by the Trinity Centre for High Performance Computing. This cluster was funded through grants from Science Foundation Ireland. AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Buffenstein Rochelle, 2002, Sci Aging Knowledge Environ, V2002, ppe7, DOI 10.1126/sageke.2002.21.pe7; Byrnes G, 2011, INTEGR COMP BIOL, V51, P991, DOI 10.1093/icb/icr069; Cramp S, 1977, HDB BIRDS EUROPE MID, V1; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; de Magalhaes JP, 2007, J GERONTOL A-BIOL, V62, P149; DELHOYO J. D, 1992, HDB BIRDS WORLD, V1; Depczynski M, 2005, CURR BIOL, V15, pR288, DOI 10.1016/j.cub.2005.04.016; Fry HC, 2010, KINGFISHERS BEE EATE; Gelman A, 1992, STAT SCI, V7, P457, DOI DOI 10.1214/SS/1177011136; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Holmes DJ, 2003, EXP GERONTOL, V38, P1365, DOI 10.1016/j.exger.2003.10.018; HOLMES DJ, 1994, J MAMMAL, V75, P224, DOI 10.2307/1382255; Hulbert AJ, 2007, PHYSIOL REV, V87, P1175, DOI 10.1152/physrev.00047.2006; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Juniper T., 2003, PARROTS GUIDE PARROT; Kuhn TS, 2011, METHODS ECOL EVOL, V2, P427, DOI 10.1111/j.2041-210X.2011.00103.x; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; Nowak RM, 1999, WALKERS MAMMALS WORL; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PETO R, 1975, BRIT J CANCER, V32, P411, DOI 10.1038/bjc.1975.242; Plummer M., 2006, R NEWS, V6, P7, DOI DOI 10.1159/000323281; POMEROY D, 1990, BIOL J LINN SOC, V40, P53, DOI 10.1111/j.1095-8312.1990.tb00534.x; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; PROMISLOW DEL, 1993, J GERONTOL, V48, pB115, DOI 10.1093/geronj/48.4.B115; R Development Core Team, 2012, R LANG ENV STAT COMP; Reisz RR, 2004, TRENDS GENET, V20, P237, DOI 10.1016/j.tig.2004.03.007; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Shattuck MR, 2010, P NATL ACAD SCI USA, V107, P4635, DOI 10.1073/pnas.0911439107; Stearns S, 1992, EVOLUTION LIFE HIST; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tian X, 2013, NATURE, V499, P346, DOI 10.1038/nature12234; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams TD, 1995, PENGUINS SPHENISCIDA; Wilson DE, 2005, MAMMAL SPECIES WORLD; Zhang GJ, 2013, SCIENCE, V339, P456, DOI 10.1126/science.1230835 41 57 58 5 124 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. JUN 7 2014 281 1784 20140298 10.1098/rspb.2014.0298 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AG4IJ WOS:000335382700020 24741018 Bronze, Green Published 2019-02-21 J Niederhauser, JM; Bowman, R Niederhauser, Joseph M.; Bowman, Reed Testing sources of variation in nestling-stage nest success of Florida Scrub-Jays in suburban and wildland habitats JOURNAL OF FIELD ORNITHOLOGY English Article Aphelocoma coerulescens; food supplementation; human modification; nest survival; nestling begging; parental care; predation risk ANNUAL REPRODUCTIVE SUCCESS; LIFE-HISTORY EVOLUTION; FOOD SUPPLEMENTATION; PREDATION RISK; URBAN GRADIENT; SONG SPARROWS; APHELOCOMA COERULESCENS; INVESTMENT STRATEGIES; BEGGING BEHAVIOR; PARENTAL CARE Human modification of habitats can reduce reproductive success by providing novel cues to which birds may respond with behaviors that are actually maladaptive in those environments. Ad libitum human-provided foods may provide the perception that urban habitats are food-rich even as natural food availability decreases. Similarly, human activity may increase the perception that predation risk is high even as natural predators may decrease in abundance. In response, birds may reduce parental care with a subsequent cost to successful reproduction. Florida Scrub-Jays (Aphelocoma coerulescens) in suburban areas have lower nest success during the nestling period than do wildland jays, possibly the result of such maladaptive responses, but maybe because of ecological differences with wildlands. We manipulated adult perception of predation risk and the availability of nestling foods in suburban and wildland areas to determine if these factors influenced parental care and nestling begging, and if the behavioral responses of adults influence nest survival during the nestling stage. Experimentally increasing perception of predation risk reduced parental care by both suburban and wildland females, but did not influence care by males. Increasing food availability, but not predation risk, had little influence on parental care, but resulted in decreased nestling begging rates and an increase in the frequency (pitch) of begging calls in both habitats. However, neither parental care nor food availability influenced nest survival during the nestling stage. Instead, the presence of helpers was the most important variable in nest survival analyses, suggesting that habitat-specific differences in nest survival during the nestling stage were not simply the result of maladaptive parental behavior or shortage of nestling food resources in the suburban habitat. The lack of helpers combined with ecological differences, such as the abundance of nest predators, may be why fewer nests of Florida Scrub-Jays survive during this stage in suburban areas. [Niederhauser, Joseph M.] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA; [Bowman, Reed] Archbold Biol Stn, Venus, FL 33960 USA Niederhauser, JM (reprint author), 3056 New Bern Cove, Oviedo, FL 32765 USA. jmniederhauser@hotmail.com American Ornithologists' Union We thank A. Tringali, M. S. Pruett, and all of the interns from the Avian Ecology Lab at Archbold Biological Station for assistance in finding and monitoring nests. Special thanks to M. S. Pruett for assistance in using Program MARK to model nest survival. The experiment in this study followed both federal and institutional requirements for the use of animals in research. This research was funded by the American Ornithologists' Union. Aldredge RA, 2012, J AVIAN BIOL, V43, P369, DOI 10.1111/j.1600-048X.2012.05665.x; [Anonymous], 1992, EVOLUTION LIFE HIST; Birkhead TR, 1999, P ROY SOC B-BIOL SCI, V266, P385, DOI 10.1098/rspb.1999.0649; Blair RB, 1996, ECOL APPL, V6, P506, DOI 10.2307/2269387; Blair RB, 1997, BIOL CONSERV, V80, P113, DOI 10.1016/S0006-3207(96)00056-0; Bonnington C, 2013, J APPL ECOL, V50, P15, DOI 10.1111/1365-2664.12025; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Bowman R., 1998, POPULATION DYNAMICS; Bowman Reed, 2001, P383; Briskie JV, 1999, P ROY SOC B-BIOL SCI, V266, P2153, DOI 10.1098/rspb.1999.0902; Burnham K. P, 2002, MODEL SELECTION MULT; Chace JF, 2006, LANDSCAPE URBAN PLAN, V74, P46, DOI 10.1016/j.landurbplan.2004.08.007; Chamberlain DE, 2009, IBIS, V151, P1, DOI 10.1111/j.1474-919X.2008.00899.x; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Clinchy M, 2011, FRONT BEHAV NEUROSCI, V5, DOI 10.3389/fnbeh.2011.00021; Clinchy M, 2011, OECOLOGIA, V166, P607, DOI 10.1007/s00442-011-1915-2; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Conway CJ, 2000, EVOLUTION, V54, P670; Crooks KR, 1999, NATURE, V400, P563, DOI 10.1038/23028; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; Denys C, 1998, OECOLOGIA, V113, P269, DOI 10.1007/s004420050378; DHINDSA MS, 1990, IBIS, V132, P595, DOI 10.1111/j.1474-919X.1990.tb00283.x; Ibanez-Alamo JD, 2012, J ORNITHOL, V153, P801, DOI 10.1007/s10336-011-0797-8; Ibanez-Alamo JD, 2010, BIOL J LINN SOC, V101, P759, DOI 10.1111/j.1095-8312.2010.01543.x; DINSMORE S. J, 2007, MODELING AVAIN NEST, V34, P73; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Eggers S, 2008, BEHAV ECOL, V19, P1056, DOI 10.1093/beheco/arn063; Estramil N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070463; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fleischer AL, 2003, CONDOR, V105, P515, DOI 10.1650/7224; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Frid A, 2002, CONSERV ECOL, V6; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gilby AJ, 2012, BEHAV ECOL SOCIOBIOL, V66, P1519, DOI 10.1007/s00265-012-1407-3; HASKELL D, 1994, P ROY SOC B-BIOL SCI, V257, P161, DOI 10.1098/rspb.1994.0110; HASKELL D, 2001, AVIAN ECOLOGY CONSER; Hatchwell BJ, 1999, AM NAT, V154, P205, DOI 10.1086/303227; Leonard ML, 2000, BEHAV ECOL, V11, P196, DOI 10.1093/beheco/11.2.196; Leonard ML, 2005, P ROY SOC B-BIOL SCI, V272, P651, DOI 10.1098/rspb.2004.3021; Leonard ML, 2001, ANIM BEHAV, V61, P87, DOI 10.1006/anbe.2000.1575; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; Marzluff John M., 2001, P331; McIntyre NE, 2000, ANN ENTOMOL SOC AM, V93, P825, DOI 10.1603/0013-8746(2000)093[0825:EOUAAR]2.0.CO;2; MUMME RL, 1992, BEHAV ECOL SOCIOBIOL, V31, P319; Newhouse MJ, 2008, WILSON J ORNITHOL, V120, P99, DOI 10.1676/06-156.1; Peroni P. A., 1985, PALMETTO, V5, P6; Rastogi AD, 2006, ANIM BEHAV, V72, P933, DOI 10.1016/j.anbehav.2006.03.006; Rensel MA, 2010, HORM BEHAV, V57, P162, DOI 10.1016/j.yhbeh.2009.10.009; Rodewald AD, 2011, ECOL APPL, V21, P936, DOI 10.1890/10-0863.1; Ryder TB, 2010, ECOL APPL, V20, P419, DOI 10.1890/09-0040.1; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; SAUTER A., 2005, THESIS U ZURICH ZURI; Sauter A, 2006, BEHAV ECOL SOCIOBIOL, V60, P465, DOI 10.1007/s00265-006-0187-z; SCHAUB R, 1992, AUK, V109, P585; Schlaepfer MA, 2002, TRENDS ECOL EVOL, V17, P474, DOI 10.1016/S0169-5347(02)02580-6; Schoech SJ, 2008, BIOL CONSERV, V141, P162, DOI 10.1016/j.biocon.2007.09.009; Shawkey MD, 2004, CAN J ZOOL, V82, P1427, DOI 10.1139/Z04-123; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; Sol D, 2013, ANIM BEHAV, V85, P1101, DOI 10.1016/j.anbehav.2013.01.023; Sorace A, 2009, LANDSCAPE URBAN PLAN, V90, P111, DOI 10.1016/j.landurbplan.2008.10.019; STALLCUP JA, 1978, ANIM BEHAV, V26, P1144, DOI 10.1016/0003-3472(78)90104-5; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stith Bradley M., 1996, P187; Stracey CM, 2011, BIOL CONSERV, V144, P1545, DOI 10.1016/j.biocon.2011.01.022; TILGAR V., 2010, BEHAV ECOL, V22, P23, DOI DOI 10.1093/BEHECO/ARQ164; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Woods M, 2003, MAMMAL REV, V33, P174, DOI 10.1046/j.1365-2907.2003.00017.x; Woolfenden GE, 1996, BIRDS N AM, V228; Woolfenden GE, 1984, FLORIDA SCRUB JAY DE; Zanette L, 2006, OECOLOGIA, V147, P632, DOI 10.1007/s00442-005-0330-y; Zanette L, 2003, P ROY SOC B-BIOL SCI, V270, P799, DOI 10.1098/rspb.2002.2311; Zanette L, 2006, ECOLOGY, V87, P2459, DOI 10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2 77 3 3 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0273-8570 1557-9263 J FIELD ORNITHOL J. Field Ornithol. JUN 2014 85 2 180 195 10.1111/jofo.12059 16 Ornithology Zoology AN5EJ WOS:000340612600005 2019-02-21 J Altesor, P; Garcia, A; Font, E; Rodriguez-Haralambides, A; Vilaro, F; Oesterheld, M; Soler, R; Gonzalez, A Altesor, Paula; Garcia, Alvaro; Font, Elizabeth; Rodriguez-Haralambides, Alejandra; Vilaro, Francisco; Oesterheld, Martin; Soler, Roxina; Gonzalez, Andres Glycoalkaloids of Wild and Cultivated Solanum Effects on Specialist and Generalist Insect Herbivores JOURNAL OF CHEMICAL ECOLOGY English Article Plant defense; Solanum; Glycoalkaloids; Herbivore specialization; Plant domestication COLORADO POTATO BEETLE; SAWFLY RHADINOCERAEA-NODICORNIS; LEPTINOTARSA-DECEMLINEATA SAY; LARVAE HYMENOPTERA-PERGIDAE; LIFE-HISTORY EVOLUTION; MACROSIPHUM-EUPHORBIA; MYZUS-PERSICAE; LEPTINE GLYCOALKALOIDS; HOST-SPECIFICITY; PLANT DEFENSE Plant domestication by selective breeding may reduce plant chemical defense in favor of growth. However, few studies have simultaneously studied the defensive chemistry of cultivated plants and their wild congeners in connection to herbivore susceptibility. We compared the constitutive glycoalkaloids (GAs) of cultivated potato, Solanum tuberosum, and a wild congener, S. commersonii, by liquid chromatography coupled to mass spectrometry. We also determined the major herbivores present on the two species in field plots, and tested their preference for the plants and their isolated GAs in two-choice bioassays. Solanum commersonii had a different GA profile and higher concentrations than S. tuberosum. In the field, S. tuberosum was mostly attacked by the generalist aphids Myzus persicae and Macrosiphum euphorbiae, and by the specialist flea beetle Epitrix argentinensis. In contrast, the most common herbivore on S. commersonii was the specialist sawfly Tequus sp. Defoliation levels were higher on the wild species, probably due to the chewing feeding behavior of Tequus sp. As seen in the field, M. persicae and E. argentinensis preferred leaf disks of the cultivated plant, while Tequus sp. preferred those of the wild one. Congruently, GAs from S. commersonii were avoided by M. persicae and preferred by Tequus sp. The potato aphid performed well on both species and was not deterred by S. commersonii GAs. These observations suggest that different GA profiles explain the feeding preferences of the different herbivores, and that domestication has altered the defensive capacity of S. tuberosum. However, the wild relative is still subject to severe defoliation by a specialist herbivore that may cue on the GAs. [Altesor, Paula; Garcia, Alvaro; Font, Elizabeth; Rodriguez-Haralambides, Alejandra; Gonzalez, Andres] Univ Republica, Fac Quim, Montevideo, Uruguay; [Vilaro, Francisco] Inst Nacl Invest Agr INIA Las Brujas, Canelones, Uruguay; [Oesterheld, Martin] Univ Buenos Aires, Fac Agron, CONICET, Ifeva, Buenos Aires, DF, Argentina; [Soler, Roxina] Netherlands Inst Ecol NIOO KNAW, Dept Terr Ecol, Wageningen, Netherlands Gonzalez, A (reprint author), Univ Republica, Fac Quim, Montevideo, Uruguay. agonzal@fq.edu.uy Library, Library/A-4320-2012 Library, Library/0000-0002-3835-159X; Rodriguez-Haralambides, Alejandra/0000-0001-8587-3297; Gonzalez Ritzel, Andres/0000-0003-2527-2400 European Union [EU-URY 2003-5906]; National Agency for Research and Innovation (ANII); graduate program in Biological Sciences PEDECIBA The authors acknowledge technical assistance by personnel of the National Institute for Agricultural Research (INIA) for processing germplasm material, and for field and greenhouse support. Glycoalkaloid standards were kindly provided by Prof. Fernando Ferreira of Universidad de la Repulica, Uruguay. Dr. Nora Cabrera of Universidad Nacional de la Plata, Argentina, identified Epitrix argentinensis. Prof. Jeremy McNeil of Western University, Canada, provided helpful suggestions for the manuscript. Mass spectrometry facilities were funded by the European Union Grant EU-URY 2003-5906. The National Agency for Research and Innovation (ANII) granted fellowships to P. Altesor and A. Garcia. Support by the graduate program in Biological Sciences PEDECIBA is also acknowledged. Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006; Barker A, 2002, ENTOMOL EXP APPL, V104, P61, DOI 10.1023/A:1021298504917; Bautista-Lozada A, 2012, TEMAS SELECTOS ECOLO, P253; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Bellota E, 2013, ENTOMOL EXP APPL, V149, P185, DOI 10.1111/eea.12122; BERNAYS E, 1988, ECOLOGY, V69, P886, DOI 10.2307/1941237; BOWERS MD, 1993, J CHEM ECOL, V19, P815, DOI 10.1007/BF00985011; CARNE P. B., 1962, AUSTRALIAN JOUR ZOOL, V10, P1; Cole RA, 1997, ENTOMOL EXP APPL, V85, P121, DOI 10.1046/j.1570-7458.1997.00242.x; Crockett SL, 2011, J CHEM ECOL, V37, P943, DOI 10.1007/s10886-011-0001-x; Davila-Flores AM, 2013, OECOLOGIA, V173, P1425, DOI 10.1007/s00442-013-2728-2; Distl M, 2009, POTATO RES, V52, P79, DOI 10.1007/s11540-008-9123-0; Eich E, 2008, SOLANACEAE CONVOLVUL; EISNER T, 1974, SCIENCE, V184, P996, DOI 10.1126/science.184.4140.996; FERREIRA F, 1993, J CHROMATOGR A, V653, P380, DOI 10.1016/0021-9673(93)83200-C; Flanders KL, 1997, EUPHYTICA, V93, P201, DOI 10.1023/A:1002921315283; FLANDERS KL, 1992, EUPHYTICA, V61, P83, DOI 10.1007/BF00026800; Fragoyiannis DA, 1998, ENTOMOL EXP APPL, V88, P59, DOI 10.1046/j.1570-7458.1998.00346.x; Frechette B, 2010, J INSECT SCI, V10, P1, DOI [10.1673/031.010.14121, DOI 10.1673/031.010.14121]; Friedman M, 2002, J AGR FOOD CHEM, V50, P5751, DOI 10.1021/jf020560c; Friedman M, 1997, CRIT REV PLANT SCI, V16, P55, DOI 10.1080/713608144; Gepts P., 2004, Plant Breeding Reviews, V24, P1, DOI 10.1002/9780470650288.ch1; Gols R, 2008, ECOLOGY, V89, P1616, DOI 10.1890/07-0873.1; Gols R, 2008, J CHEM ECOL, V34, P132, DOI 10.1007/s10886-008-9429-z; GREGORY P, 1981, J AGR FOOD CHEM, V29, P1212, DOI 10.1021/jf00108a028; Guntner C, 1997, J CHEM ECOL, V23, P1651, DOI 10.1023/B:JOEC.0000006429.14373.91; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Jansky SH, 2009, J ECON ENTOMOL, V102, P422, DOI 10.1603/029.102.0155; Kowalski SP, 1999, AM J POTATO RES, V76, P305, DOI 10.1007/BF02853629; Le Roux V, 2007, ANN APPL BIOL, V151, P83, DOI 10.1111/j.1744-7348.2007.00155.x; Lorenzen JH, 2001, J ECON ENTOMOL, V94, P1260, DOI 10.1603/0022-0493-94.5.1260; MORROW PA, 1976, OECOLOGIA, V24, P193, DOI 10.1007/BF00345473; Mulatu B, 2006, B ENTOMOL RES, V96, P173, DOI 10.1079/BER2005412; Muller C, 2001, J CHEM ECOL, V27, P2505, DOI 10.1023/A:1013631616141; MURASHIGE T, 1962, PHYSIOL PLANTARUM, V15, P473, DOI 10.1111/j.1399-3054.1962.tb08052.x; Nenaah G, 2011, J PEST SCI, V84, P77, DOI 10.1007/s10340-010-0329-y; Nenaah GE, 2011, J STORED PROD RES, V47, P185, DOI 10.1016/j.jspr.2010.11.003; Opitz SEW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0033649; Opitz SEW, 2010, J CHEM ECOL, V36, P148, DOI 10.1007/s10886-010-9740-3; Pelletier Y, 2010, ANN APPL BIOL, V156, P329, DOI 10.1111/j.1744-7348.2010.00389.x; Pianzzola MJ, 2005, BIOCHEM SYST ECOL, V33, P67, DOI 10.1016/j.bse.2004.05.012; Poelman EH, 2008, ENTOMOL EXP APPL, V127, P218, DOI 10.1111/j.1570-7458.2008.00700.x; Pompon J, 2010, CROP PROT, V29, P891, DOI 10.1016/j.cropro.2010.03.005; Prieto JM, 2007, J CHEM ECOL, V33, P513, DOI 10.1007/s10886-006-9232-7; Rangarajan A, 2000, J AM SOC HORTIC SCI, V125, P689; RODDICK JG, 1992, PHYTOCHEMISTRY, V31, P1951, DOI 10.1016/0031-9422(92)80339-G; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; Schaffner U, 1996, ENTOMOL EXP APPL, V80, P283, DOI 10.1111/j.1570-7458.1996.tb00936.x; SCHAFFNER U, 1994, J CHEM ECOL, V20, P3233, DOI 10.1007/BF02033723; Schmidt S, 2000, BIOL J LINN SOC, V70, P15, DOI 10.1006/bijl.1999.0364; Schmidt S, 2010, J INSECT PHYSIOL, V56, P1770, DOI 10.1016/j.jinsphys.2010.07.006; Schmidt Stefan, 2006, Contributions of the American Entomological Institute, V34, P1; Schoonhoven L. M., 2005, INSECT PLANT BIOL; SCHOWALTER T. D., 2006, INSECT ECOLOGY ECOSY; Small E, 1996, CAN J BOT, V74, P807, DOI 10.1139/b96-102; Staba JE, 1969, RECENT ADV PHYTOCHEM, V2, P80; TAIT N. N., 1962, AUSTRALIAN JOUR ZOOL, V10, P652, DOI 10.1071/ZO9620652; TINGEY WM, 1984, AM POTATO J, V61, P157, DOI 10.1007/BF02854036; TINGEY WM, 1982, AM POTATO J, V59, P95, DOI 10.1007/BF02866364; van Gelder WMJ, 1988, EUPHYTICA, V158, P147; Vazquez A, 1997, EUPHYTICA, V95, P195, DOI 10.1023/A:1002997616784; Wise IL, 2001, CAN ENTOMOL, V133, P255, DOI 10.4039/Ent133255-2; Yencho GC, 2000, AM J POTATO RES, V77, P167, DOI 10.1007/BF02853941 63 12 13 3 46 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0098-0331 1573-1561 J CHEM ECOL J. Chem. Ecol. JUN 2014 40 6 599 608 10.1007/s10886-014-0447-8 10 Biochemistry & Molecular Biology; Ecology Biochemistry & Molecular Biology; Environmental Sciences & Ecology AL7WL WOS:000339347300013 24863489 2019-02-21 J Proches, S; Polgar, G; Marshall, DJ Proches, Serban; Polgar, Gianluca; Marshall, David J. K-Pg events facilitated lineage transitions between terrestrial and aquatic ecosystems BIOLOGY LETTERS English Article realm transitions; K-Pg extinctions; tetrapod vertebrates LIFE-HISTORY EVOLUTION; MARINE; DIVERSIFICATION; EXTINCTIONS; HABITATS; SEA We use dated phylogenetic trees for tetrapod vertebrates to identify lineages that shifted between terrestrial and aquatic ecosystems in terms of feeding or development, and to assess the timing of such events. Both stem and crown lineage ages indicate a peak in transition events in correspondence with the K-Pg mass extinction. This meets the prediction that changes in competitive pressure and resource availability following mass extinction events should facilitate such transitions. [Proches, Serban] Univ KwaZulu Natal, Discipline Geog, ZA-4000 Durban, South Africa; [Proches, Serban; Polgar, Gianluca; Marshall, David J.] Univ Brunei Darussalam, Environm & Life Sci Programme, Jalan Tungku Link 1410, Brunei Proches, S (reprint author), Univ KwaZulu Natal, Discipline Geog, Westville Campus,POB X54001, ZA-4000 Durban, South Africa. setapion@gmail.com Proches, Serban/A-2044-2008 Proches, Serban/0000-0002-3415-6930; Polgar, Gianluca/0000-0002-4901-6287 UBD; UKZN; National Research Foundation (South Africa) We are grateful to UBD, UKZN and the National Research Foundation (South Africa) for support. Arabi J, 2012, J MOL EVOL, V74, P81, DOI 10.1007/s00239-012-9490-7; Ashley-Ross MA, 2013, INTEGR COMP BIOL, V53, P192, DOI 10.1093/icb/ict048; Betancur-R R, 2012, ECOL LETT, V15, P822, DOI 10.1111/j.1461-0248.2012.01802.x; BRASIER M D, 1975, Palaeontology (Oxford), V18, P681; Chippindale PT, 2004, EVOLUTION, V58, P2809; Clack JA, 2007, INTEGR COMP BIOL, V47, P510, DOI 10.1093/icb/icm055; Codron D, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0077110; Del Hoyo J., 1992, HDB BIRDS WORLD; EAMES FE, 1970, PALAEOGEOGR PALAEOCL, V8, P37, DOI 10.1016/0031-0182(70)90078-7; Ellison AM, 1999, GLOBAL ECOL BIOGEOGR, V8, P95, DOI 10.1046/j.1466-822X.1999.00126.x; Ericson PGP, 2006, BIOL LETT-UK, V2, P543, DOI 10.1098/rsbl.2006.0523; Harnik PG, 2012, TRENDS ECOL EVOL, V27, P608, DOI 10.1016/j.tree.2012.07.010; Jablonski D, 2002, P NATL ACAD SCI USA, V99, P8139, DOI 10.1073/pnas.102163299; MACDONALD DW, 2009, PRINCETON ENCY MAMMA; Maddison W.P., 2011, MESQUITE MODULAR SYS; Polgar G, 2010, J FISH BIOL, V77, P1645, DOI 10.1111/j.1095-8649.2010.02807.x; Proches S, 2001, BIOL J LINN SOC, V74, P197, DOI 10.1006/bijl.2001.0565; Robertson D. S., 2013, J GEOPHYS RES-BIOGEO, V118, P1, DOI [10.1002/jgrg.20018, DOI 10.1002/JGRG.20018]; Rosindell J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001406; San Mauro D, 2014, MOL PHYLOGENET EVOL, V73, P177, DOI [10.1016/Lympev.2014.01.009, 10.1016/j.ympev.2014.01.009]; Shubin N, 2008, YOUR INNER FISH JOUR; Vermeij GJ, 2010, INTEGR COMP BIOL, V50, P675, DOI 10.1093/icb/icq078; Vermeij GJ, 2002, INTEGR COMP BIOL, V42, P935, DOI 10.1093/icb/42.5.935; Vermeij GJ, 2000, BIOL J LINN SOC, V70, P541; Vitt L. J., 2013, HERPETOLOGY INTRO BI; Wagner PJ, 2006, SCIENCE, V314, P1289, DOI 10.1126/science.1133795; Webb TJ, 2012, TRENDS ECOL EVOL, V27, P535, DOI 10.1016/j.tree.2012.06.002 27 5 5 3 14 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. JUN 2014 10 6 20140010 10.1098/rsbl.2014.0010 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AK3UZ WOS:000338351500001 24919699 Green Published, Bronze 2019-02-21 J Hussell, DJT; Bairlein, F; Dunn, EH Hussell, David J. T.; Bairlein, Franz; Dunn, Erica H. Double Brooding by the Northern Wheatear on Baffin Island ARCTIC English Article second brood; Northern Wheatear; Oenanthe oenanthe; Arctic passerine; life-history theory Most Arctic-breeding passerines raise a single brood in a season, presumably because the short Arctic summer does not provide sufficient time to raise a second brood. Here we document the first cases of two broods being raised or attempted, after successful fledging of a first brood, in an Arctic-breeding population of Northern Wheatears Oenanthe oenanthe, at Iqaluit, Nunavut, Canada, in 2010 and 2011. In one case, the same pair was involved in raising both broods. In a second case, the female that raised the first brood was mated to a different male for her second brood. In a third case, it was not known whether the same male was involved in a female's attempt to raise two broods. The three females that attempted to raise two broods started their first clutches four to six days earlier than the estimated median date of laying first eggs and represented about 6% of all female g in the study population. Potential constraints on raising two broods include not only the shortness of the summer season but also the nature and abundance of the food supply, trade-offs between the success of the first brood and that of the second brood, and effects of the one- and two-brood strategies on the survival and future reproductive output of the adults. [Hussell, David J. T.] Ontario Minist Nalural Resources, Wildlife Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Bairlein, Franz] Inst Avian Res Vogelwarte Helgoland, D-26386 Wilhelmshaven, Germany; [Dunn, Erica H.] Carleton Univ, Environm Canada, Natl Wildlife Res Ctr, Ottawa, ON K1A 0H3, Canada Hussell, DJT (reprint author), Ontario Minist Nalural Resources, Wildlife Res & Dev Sect, 2140 East Bank Dr, Peterborough, ON K9J 7B8, Canada. david.hussell@ontario.ca Deutsche Forschungsgemeinschaft [BA 816/15-4]; Bird Studies Canada Thanks to M. Bulte, J. Hussell, R. Nagel, D.R Norris, D. Strickland, and M.T. Ravers for assistance with fieldwork, particularly finding some of the nests reported here and trapping adults. R. Armstrong and M.E. Thomas, Nunavut Research Institute, and M. Mallory, Canadian Wildlife Service, contributed in various ways to facilitating our research in Iqaluit. F. Bairlein was supported by a Deutsche Forschungsgemeinschaft (BA 816/15-4) grant, and E.H. Dunn and D.J.T. Hussell were partially supported by Bird Studies Canada. Alekseeva N. S., 1986, ORNITOLOGIYA, V21, P145; [Anonymous], TITLE ERROR; Bairlein F, 2012, BIOL LETTERS, V8, P505, DOI 10.1098/rsbl.2011.1223; Beason R. C, 1995, BIRDS N AM ONLINE; Buchmann Martin, 2001, Vogelwarte, V41, P1; Conder P., 1989, THE WHEATEAR; Cramp S., 1988, BIRDS W PALEARCTIC, V5; CUSTER TW, 1977, AUK, V94, P505; Hemborg C, 1998, BEHAV ECOL SOCIOBIOL, V43, P19, DOI 10.1007/s002650050462; Hendricks P, 2012, BIRDS N AM ONLINE, DOI [10.2173/bna.95, DOI 10.2173/BNA.95]; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Hussell DJT, 2002, BIRDS N AM ONLINE; Knox A. G., 2000, BIRDS N AM ONLINE; KREN J, 1997, BIRDS N AM ONLINE; LYNGS P, 2003, DANSK ORNITOLOGISK F, V97; Montgomerie RD, 2011, BIRDS N AM ONLINE; MORENO J, 1989, J ORNITHOL, V130, P321, DOI 10.1007/BF01644745; Murphy Mary E., 1996, P158; NICHOLSON E. M., 1930, IBIS, V6, P280; TROY DM, 1979, CONDOR, V81, P96, DOI 10.2307/1367868 20 2 3 1 16 ARCTIC INST N AMER CALGARY UNIV OF CALGARY 2500 UNIVERSITY DRIVE NW 11TH FLOOR LIBRARY TOWER, CALGARY, ALBERTA T2N 1N4, CANADA 0004-0843 1923-1245 ARCTIC Arctic JUN 2014 67 2 167 172 10.14430/arctic4387 6 Environmental Sciences; Geography, Physical Environmental Sciences & Ecology; Physical Geography AK2SK WOS:000338269600005 Bronze 2019-02-21 J Grether, GF Grether, Gregory F. Redesigning the genetic architecture of phenotypically plastic traits in a changing environment BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Review behavioural plasticity; climate change; endocrine disruption; genetic accommodation; genetic compensation; phenotypic plasticity; sex determination ENDOCRINE-DISRUPTING CHEMICALS; GUPPIES POECILIA-RETICULATA; DEPENDENT SEX DETERMINATION; MALE 3-SPINED STICKLEBACK; LIFE-HISTORY EVOLUTION; COUNTERGRADIENT VARIATION; CLIMATE-CHANGE; GASTEROSTEUS-ACULEATUS; SYNTHETIC ESTROGEN; FATHEAD MINNOWS Normal development depends on specific genetic and environmental inputs. When environments change, entire populations of organisms may simultaneously express maladaptive phenotypes. Selection in the new environment may gradually restore the ancestral phenotype by favouring alleles that counteract the environmental perturbation. This evolutionary process is called genetic compensation, and its effect on the fate of novel phenotypes is opposite to that of genetic assimilation. When genetic compensation occurs along a spatial environmental gradient, it results in the geographic pattern known as countergradient variation. Another place to look for genetic compensation is where human activities are causing environmental changes that affect how traits develop. For example, pollutants with endocrine-disrupting effects are altering the reproductive behaviour of natural populations of animals. If such pollutants persist long enough for genetic compensation to occur, the animals may come to depend on the presence of these chemicals for normal development. Taking genetic compensation into account could enhance our understanding of the role of behaviour in evolution in at least three ways: first, behavioural interactions are often the source of selection against environmentally induced phenotypes; second, behavioural traits themselves may often be targets of genetic compensation; and third, behavioural plasticity can delay or prevent genetic compensation. I present examples to illustrate each of these points, and further explore the ramifications of this understudied and underappreciated evolutionary process.(c) 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 276-286. Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA Grether, GF (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, 621 Charles E Young Dr South, Los Angeles, CA 90095 USA. ggrether@ucla.edu National Science Foundation [IBN-0001309, IBN-0130893] This review article is based on a presentation made at the symposium 'The Role of Behaviour in Evolution - organisms can be proud to have been their own designers', made possible by the Linnean Society of London, the British Ecological Society, the Royal Entomological Society, and the Natural History Museum, London. I thank two anonymous reviewers for helpful comments on the article. My research on Poecilia reticulata was supported by grants from the National Science Foundation (IBN-0001309, IBN-0130893). An W, 2009, ENVIRON SCI TECHNOL, V43, P7895, DOI 10.1021/es900857u; Baldwin JM, 1896, AM NAT, V30, P441, DOI DOI 10.1086/276408; Bateson P, 2005, J BIOSCIENCES, V30, P31, DOI 10.1007/BF02705148; Baumann H, 2011, P ROY SOC B-BIOL SCI, V278, P2265, DOI 10.1098/rspb.2010.2479; Behera N, 2004, J THEOR BIOL, V226, P177, DOI 10.1016/j.jtbi.2003.08.011; Bell AM, 2001, ANIM BEHAV, V62, P775, DOI 10.1006/anbe.2001.1824; Carere C, 2010, ANN I SUPER SANITA, V46, P81, DOI 10.4415/ANN_10_01_10; Carroll SP, 1998, EVOL ECOL, V12, P955, DOI 10.1023/A:1006568206413; Carroll SP, 1997, EVOLUTION, V51, P1182, DOI 10.1111/j.1558-5646.1997.tb03966.x; Clotfelter ED, 2004, ANIM BEHAV, V68, P665, DOI 10.1016/j.anbehav.2004.05.004; COLBORN T, 1993, ENVIRON HEALTH PERSP, V101, P378, DOI 10.2307/3431890; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cotton S, 2009, CONSERV BIOL, V23, P196, DOI 10.1111/j.1523-1739.2008.01053.x; Craig JK, 2005, BIOL J LINN SOC, V84, P287, DOI 10.1111/j.1095-8312.2005.00430.x; Crews D, 2000, Q REV BIOL, V75, P243, DOI 10.1086/393498; Crews D, 2006, ENDOCRINOLOGY, V147, pS4, DOI 10.1210/en.2005-1122; Crispo E, 2007, EVOLUTION, V61, P2469, DOI 10.1111/j.1558-5646.2007.00203.x; Deere KA, 2012, P ROY SOC B-BIOL SCI, V279, P1684, DOI 10.1098/rspb.2011.2132; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Fierst JL, 2011, J EVOLUTION BIOL, V24, P1992, DOI 10.1111/j.1420-9101.2011.02333.x; Frederick P, 2011, P ROY SOC B-BIOL SCI, V278, P1851, DOI 10.1098/rspb.2010.2189; FRY DM, 1981, SCIENCE, V213, P922, DOI 10.1126/science.7256288; Garcia-Reyero N, 2009, BMC BIOINFORMATICS, V10, DOI 10.1186/1471-2105-10-S11-S11; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Grether GF, 2005, AM NAT, V166, pE115, DOI 10.1086/432023; Grether GF, 2005, EVOLUTION, V59, P175; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Hale Marie L., 2000, Australian Mammalogy, V22, P9; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Hayes T, 2003, ENVIRON HEALTH PERSP, V111, P568, DOI 10.1289/ehp.5932; Hayes TB, 2002, P NATL ACAD SCI USA, V99, P5476, DOI 10.1073/pnas.082121499; Hayes TB, 2011, J STEROID BIOCHEM, V127, P64, DOI 10.1016/j.jsbmb.2011.03.015; Hudon J, 2003, PHYSIOL BIOCHEM ZOOL, V76, P776, DOI 10.1086/378138; JANZEN FJ, 1994, P NATL ACAD SCI USA, V91, P7487, DOI 10.1073/pnas.91.16.7487; Johnson MS, 1998, HYDROBIOLOGIA, V378, P95, DOI 10.1023/A:1003241722328; Kidd KA, 2007, P NATL ACAD SCI USA, V104, P8897, DOI 10.1073/pnas.0609568104; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Lange A, 2011, ENVIRON SCI TECHNOL, V45, P1673, DOI 10.1021/es103232q; Levins R., 1968, EVOLUTION CHANGING E; LEVINTON JS, 1983, BIOL BULL, V165, P686, DOI 10.2307/1541471; Magellan K, 2007, J FISH BIOL, V71, P1864, DOI 10.1111/j.1095-8649.2007.01640.x; MANI GS, 1990, PROC R SOC SER B-BIO, V240, P29, DOI 10.1098/rspb.1990.0025; Martinovic D, 2007, ENVIRON TOXICOL CHEM, V26, P271, DOI 10.1897/06-065R.1; McGaugh SE, 2011, EVOL ECOL RES, V13, P75; McLachlan JA, 2001, ENDOCR REV, V22, P319, DOI 10.1210/er.22.3.319; Mitchell NJ, 2010, SEX DEV, V4, P129, DOI 10.1159/000282494; Moczek AP, 2011, P ROY SOC B-BIOL SCI, V278, P2705, DOI 10.1098/rspb.2011.0971; Palace VP, 2009, CAN J FISH AQUAT SCI, V66, P1920, DOI 10.1139/F09-125; Palacio-Lopez K, 2011, OIKOS, V120, P1393, DOI 10.1111/j.1600-0706.2010.19114.x; Palanza P, 1999, NEUROSCI BIOBEHAV R, V23, P1011, DOI 10.1016/S0149-7634(99)00033-0; Partridge C, 2010, HORM BEHAV, V58, P800, DOI 10.1016/j.yhbeh.2010.08.002; Patisaul HB, 2009, FRONT BEHAV NEUROSCI, V3, DOI 10.3389/neuro.08.010.2009; Pen I, 2010, NATURE, V468, P436, DOI 10.1038/nature09512; Pigliucci M, 2003, EVOLUTION, V57, P1455; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; Reed TE, 2011, CONSERV BIOL, V25, P56, DOI 10.1111/j.1523-1739.2010.01552.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rhen T, 2011, HEREDITY, V106, P649, DOI 10.1038/hdy.2010.102; Russell ST, 2006, J EVOLUTION BIOL, V19, P1294, DOI 10.1111/j.1420-9101.2005.01069.x; Saaristo M, 2010, AQUAT TOXICOL, V97, P285, DOI 10.1016/j.aquatox.2009.12.015; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Scholz S, 2008, MOL CELL ENDOCRINOL, V293, P57, DOI 10.1016/j.mce.2008.06.008; Sebire M, 2009, ECOTOXICOLOGY, V18, P122, DOI 10.1007/s10646-008-0265-2; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Shenoy K, 2011, FUNCT ECOL, V25, P433, DOI 10.1111/j.1365-2435.2010.01787.x; Sievers C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0038404; Sol D, 2000, OIKOS, V90, P599, DOI 10.1034/j.1600-0706.2000.900317.x; Sumpter JP, 2005, ENVIRON SCI TECHNOL, V39, P4321, DOI 10.1021/es048504a; Telemeco RS, 2009, ECOLOGY, V90, P17, DOI 10.1890/08-1452.1; Tuomainen U, 2011, BIOL REV, V86, P640, DOI 10.1111/j.1469-185X.2010.00164.x; WADDINGTON C, 1961, ADV GENET, V10, P257, DOI 10.1016/S0065-2660(08)60119-4; Waddington CH, 1942, NATURE, V150, P563, DOI 10.1038/150563a0; WADDINGTON CH, 1953, EVOLUTION, V7, P118, DOI 10.2307/2405747; Wapstra E, 2009, J ANIM ECOL, V78, P84, DOI 10.1111/j.1365-2656.2008.01470.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wingfield JC, 2009, GEN COMP ENDOCR, V163, P92, DOI 10.1016/j.ygcen.2009.04.030; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825 81 6 6 1 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. JUN 2014 112 2 SI 276 286 10.1111/bij.12064 11 Evolutionary Biology Evolutionary Biology AJ2SL WOS:000337511800005 Bronze, Green Published 2019-02-21 J Burdfield-Steel, ER; Shuker, DM Burdfield-Steel, Emily R.; Shuker, David M. The evolutionary ecology of the Lygaeidae ECOLOGY AND EVOLUTION English Review Ecology; entomology; evolution; life history; Lygaeidae; sexual selection MILKWEED BUGS ONCOPELTUS; LYGAEUS-EQUESTRIS HETEROPTERA; METATHORACIC SCENT GLAND; LIFE-HISTORY TRAITS; HYALINIPENNIS COSTA HETEROPTERA; HUTTONI WHITE HETEROPTERA; BICRUCIS SAY HETEROPTERA; APOSEMATIC SEED BUGS; HEMIPTERA-LYGAEIDAE; SEXUAL SELECTION The Lygaeidae (sensu lato) are a highly successful family of true bugs found worldwide, yet many aspects of their ecology and evolution remain obscure or unknown. While a few species have attracted considerable attention as model species for the study of insect physiology, it is only relatively recently that biologists have begun to explore aspects of their behavior, life history evolution, and patterns of intra- and interspecific ecological interactions across more species. As a result though, a range of new phenotypes and opportunities for addressing current questions in evolutionary ecology has been uncovered. For example, researchers have revealed hitherto unexpectedly rich patterns of bacterial symbiosis, begun to explore the evolutionary function of the family's complex genitalia, and also found evidence of parthenogenesis. Here we review our current understanding of the biology and ecology of the group as a whole, focusing on several of the best-studied characteristics of the group, including aposematism (i.e., the evolution of warning coloration), chemical communication, sexual selection (especially, postcopulatory sexual selection), sexual conflict, and patterns of host-endosymbiont coevolution. Importantly, many of these aspects of lygaeid biology are likely to interact, offering new avenues for research, for instance into how the evolution of aposematism influences sexual selection. With the growing availability of genomic tools for previously non-model organisms, combined with the relative ease of keeping many of the polyphagous species in the laboratory, we argue that these bugs offer many opportunities for behavioral and evolutionary ecologists. [Burdfield-Steel, Emily R.; Shuker, David M.] Univ St Andrews, Sch Biol, Ctr Biol Divers, St Andrews KY16 9TH, Fife, Scotland Burdfield-Steel, ER (reprint author), Univ St Andrews, Sch Biol, Ctr Biol Divers, Harold Mitchell Bldg, St Andrews KY16 9TH, Fife, Scotland. erb28@st-andrews.ac.uk Burdfield-Steel, Emily/0000-0002-8428-5431 Natural Environmental Research Council PhD studentship Emily Burdfield-Steel is supported by a Natural Environmental Research Council PhD studentship. Aldrich JR, 1999, CHEMOECOLOGY, V9, P63, DOI 10.1007/s000490050035; Aldrich JR, 1997, ENTOMOL EXP APPL, V84, P127, DOI 10.1046/j.1570-7458.1997.00207.x; ALDRICH JR, 1988, ANNU REV ENTOMOL, V33, P211, DOI 10.1146/annurev.en.33.010188.001235; ALLER T, 1979, PHYSIOL ENTOMOL, V4, P287, DOI 10.1111/j.1365-3032.1979.tb00619.x; ANDERSON DB, 1992, OIKOS, V63, P459, DOI 10.2307/3544973; Angelini DR, 2005, DEV BIOL, V287, P440, DOI 10.1016/j.ydbio.2005.08.010; Angelini DR, 2005, DEV BIOL, V283, P409, DOI 10.1016/j.ydbio.2005.04.034; Angelini DR, 2004, DEV BIOL, V271, P306, DOI 10.1016/j.ydbio.2004.04.005; Arnqvist G, 2005, SEXUAL CONFLICT; Aspiras AC, 2011, DEV BIOL, V360, P369, DOI 10.1016/j.ydbio.2011.09.026; Aspiras AC, 2011, DEV BIOL, V356, P244, DOI 10.1016/j.ydbio.2011.05.534; Attisano A, 2012, J EVOLUTION BIOL, V25, P873, DOI 10.1111/j.1420-9101.2012.02476.x; Attisano A, 2013, ANIM BEHAV, V86, P651, DOI 10.1016/j.anbehav.2013.07.013; BALDWIN JD, 1986, OECOLOGIA, V69, P64, DOI 10.1007/BF00399039; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BERENBAUM MR, 1984, AM MIDL NAT, V111, P64, DOI 10.2307/2425543; BLAKLEY N, 1981, ECOLOGY, V62, P57, DOI 10.2307/1936668; BLAKLEY N, 1978, BIOL BULL, V155, P499, DOI 10.2307/1540786; Bocher J, 2011, ENTOMOL EXP APPL, V140, P196, DOI 10.1111/j.1570-7458.2011.01153.x; Bocher J, 2010, ENTOMOL EXP APPL, V134, P122, DOI 10.1111/j.1570-7458.2009.00944.x; BONHAG PF, 1953, J MORPHOL, V93, P177, DOI 10.1002/jmor.1050930202; Bressa MJ, 2002, CARYOLOGIA, V55, P15, DOI 10.1080/00087114.2002.10589253; Burdfield-Steel ER, 2013, BEHAV PROCESS, V99, P52, DOI 10.1016/j.beproc.2013.06.006; Burdfield-Steel ER, 2011, CURR BIOL, V21, pR450, DOI 10.1016/j.cub.2011.03.063; Cardenas E, 2001, MEM I OSWALDO CRUZ, V96, P127, DOI 10.1590/S0074-02762001000100015; Carstens JD, 2008, J KANSAS ENTOMOL SOC, V81, P328, DOI 10.2317/JKES803.18.1; CHAPLIN SB, 1981, J ANIM ECOL, V50, P407, DOI 10.2307/4063; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Chiang RG, 2010, PHYSIOL ENTOMOL, V35, P87, DOI 10.1111/j.1365-3032.2009.00707.x; Coyne J. A., 2004, SPECIATION; DALLAI R, 1980, J MORPHOL, V164, P301, DOI 10.1002/jmor.1051640306; Demirel N, 2006, CROP PROT, V25, P1062, DOI 10.1016/j.cropro.2006.01.009; DINGLE H, 1974, OECOLOGIA, V17, P1, DOI 10.1007/BF00345090; DINGLE H, 1980, EVOLUTION, V34, P371, DOI 10.1111/j.1558-5646.1980.tb04825.x; DINGLE H, 1980, EVOLUTION, V34, P356, DOI 10.1111/j.1558-5646.1980.tb04824.x; DINGLE H, 1988, EVOLUTION, V42, P79, DOI 10.1111/j.1558-5646.1988.tb04109.x; DINGLE H, 1972, SCIENCE, V175, P1327, DOI 10.1126/science.175.4028.1327; DINGLE H, 1987, ENTOMOL EXP APPL, V45, P289, DOI 10.1111/j.1570-7458.1987.tb01097.x; Dougherty LR, 2014, ANIM BEHAV, V89, P207, DOI 10.1016/j.anbehav.2014.01.005; DUFFEY SS, 1972, J INSECT PHYSIOL, V18, P63, DOI 10.1016/0022-1910(72)90065-0; Durkee CA, 2011, ENVIRON ENTOMOL, V40, P1223, DOI 10.1603/EN11057; Eberhard W.G., 1996, FEMALE CONTROL SEXUA; ECONOMOPOULOS AP, 1972, ENTOMOL EXP APPL, V15, P1, DOI 10.1111/j.1570-7458.1972.tb02079.x; Elbanna S. M., 2004, THESIS; Elbanna Shereen M., 2009, Egyptian Journal of Biology, V11, P58; Erezyilmaz DF, 2006, P NATL ACAD SCI USA, V103, P6925, DOI 10.1073/pnas.0509983103; Eslie J. F., 1990, EVOLUTION, V44, P295; Esperk T, 2007, J ECON ENTOMOL, V100, P627, DOI 10.1603/0022-0493(2007)100[627:IVINOL]2.0.CO;2; Evans G., 2011, SEXUAL CONFLICT MATI; Everaerts C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009607; FEIR D, 1974, ANNU REV ENTOMOL, V19, P81, DOI 10.1146/annurev.en.19.010174.000501; Gamberale-Stille G, 1999, EVOL ECOL, V13, P579, DOI 10.1023/A:1006741626575; GAMES DE, 1973, EXPERIENTIA, V29, P532, DOI 10.1007/BF01926646; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; GRAHAM JDP, 1974, J ENTOMOL SER A, V48, P177; Groning J, 2008, Q REV BIOL, V83, P257, DOI 10.1086/590510; GROETERS FR, 1988, J EVOLUTION BIOL, V1, P317, DOI 10.1046/j.1420-9101.1988.1040317.x; GROETERS FR, 1987, AM NAT, V129, P332, DOI 10.1086/284640; Groeters FR, 1996, HEREDITY, V77, P201, DOI 10.1038/hdy.1996.125; Gschwentner R, 2000, EUR J ENTOMOL, V97, P305, DOI 10.14411/eje.2000.047; Gullan P J, 2005, INSECTS OUTLINE ENTO; Harrington B. J., 1990, DETECTING EVIDENCE H; HARRINGTON BJ, 1983, J NEW YORK ENTOMOL S, V91, P63; Henry Thomas J., 2009, P223, DOI 10.1002/9781444308211.ch10; Hewitt GM, 1999, BIOL J LINN SOC, V68, P87, DOI 10.1006/bijl.1999.0332; Hewitt GM, 2001, MOL ECOL, V10, P537, DOI 10.1046/j.1365-294x.2001.01202.x; Higgins S. L., 2009, SEXUAL SELECTION INS; Higgins SL, 2009, BIOL J LINN SOC, V98, P400, DOI 10.1111/j.1095-8312.2009.01292.x; Himuro C, 2008, J INSECT PHYSIOL, V54, P1538, DOI 10.1016/j.jinsphys.2008.09.002; Himuro C, 2010, PHYSIOL ENTOMOL, V35, P128, DOI 10.1111/j.1365-3032.2009.00719.x; Horvath Z., 2004, Helia, V27, P181; Horvath Z, 2002, CEREAL RES COMMUN, V30, P351; JACKSON LL, 1983, INSECT BIOCHEM, V13, P19, DOI 10.1016/0020-1790(83)90060-4; Jin L, 2010, INTEGR COMP BIOL, V50, pE247; Kanuch P., 2013, J INSECT SCI, V13; Kather R, 2012, PHYSIOL ENTOMOL, V37, P25, DOI 10.1111/j.1365-3032.2011.00826.x; Kaur H, 2009, COMP CYTOGENET, V3, P43, DOI 10.3897/compcytogen.v3i1.7; Kelly CD, 2011, BIOL REV, V86, P863, DOI 10.1111/j.1469-185X.2011.00175.x; Kikuchi Y, 2003, APPL ENVIRON MICROB, V69, P6082, DOI 10.1128/AEM.69.10.6082-6090.2003; KNIGHT DW, 1984, J CHEM ECOL, V10, P641, DOI 10.1007/BF00994225; Kuechler S. M., 2010, FEMS MICROBIOL ECOL, V73, P408; Kuechler SM, 2012, APPL ENVIRON MICROB, V78, P2648, DOI 10.1128/AEM.07191-11; Kuechler SM, 2011, APPL ENVIRON MICROB, V77, P2869, DOI 10.1128/AEM.02983-10; KUGELBERG O, 1977, OIKOS, V29, P398, DOI 10.2307/3543579; KUGELBERG O, 1974, Entomologica Scandinavica, V5, P49; KUGELBERG O, 1973, ENTOMOL EXP APPL, V16, P165, DOI 10.1111/j.1570-7458.1973.tb00262.x; LAMPMAN R L, 1978, Virginia Journal of Science, V29, P63; Laukkanen L, 2013, J EVOLUTION BIOL, V26, P141, DOI 10.1111/jeb.12037; LESLIE JF, 1983, EVOLUTION, V37, P583, DOI 10.1111/j.1558-5646.1983.tb05575.x; LESLIE JF, 1984, J HERED, V75, P260, DOI 10.1093/oxfordjournals.jhered.a109928; Li HM, 2005, MOL PHYLOGENET EVOL, V37, P313, DOI 10.1016/j.ympev.2005.07.013; Liu PZ, 2005, DEVELOPMENT, V132, P2081, DOI 10.1242/dev.01807; Lundgren JG, 2011, BIOL CONTROL, V59, P37, DOI 10.1016/j.biocontrol.2011.02.009; MAJERUS MEN, 2003, SEX WARS GENES BACTE; Mappes J, 2005, TRENDS ECOL EVOL, V20, P598, DOI 10.1016/j.tree.2005.07.011; Marques FD, 2000, J CHEM ECOL, V26, P2843; Matsuura Y, 2012, ISME J, V6, P397, DOI 10.1038/ismej.2011.103; MCIVER JD, 1993, ANNU REV ENTOMOL, V38, P351; McLain DK, 1999, BEHAV ECOL SOCIOBIOL, V46, P164, DOI 10.1007/s002650050606; MCLAIN DK, 1992, BEHAV ECOL SOCIOBIOL, V30, P347; MCLAIN DK, 1987, OIKOS, V49, P291, DOI 10.2307/3565763; MCLAIN DK, 1991, BEHAV ECOL SOCIOBIOL, V29, P121, DOI 10.1007/BF00166486; MCLAIN DK, 1989, ANIM BEHAV, V38, P659, DOI 10.1016/S0003-3472(89)80011-9; Millar JG, 2005, TOP CURR CHEM, V240, P37, DOI 10.1007/b98315; Moore PJ, 2011, ECOL EVOL, V1, P37, DOI 10.1002/ece3.4; Moran NA, 2008, ANNU REV GENET, V42, P165, DOI 10.1146/annurev.genet.41.110306.130119; MULLER CB, 1993, J INSECT BEHAV, V6, P265, DOI 10.1007/BF01051509; Muller CB, 2002, BIOL CONTROL, V25, P216, DOI 10.1016/S1049-9644(02)00102-0; Newcombe D. I. R., 2013, EVOLUTIONARY CONSEQU; Newcombe D, 2013, ENTOMOL EXP APPL, V149, P197, DOI 10.1111/eea.12128; NILSSON JA, 1995, J AVIAN BIOL, V26, P255, DOI 10.2307/3677327; OLAGBEMIRO TO, 1983, J CHEM ECOL, V9, P1397, DOI 10.1007/BF00990746; OROURKE FA, 1979, EVOLUTION, V33, P1098, DOI 10.1111/j.1558-5646.1979.tb04765.x; PALMER JO, 1989, EVOLUTION, V43, P1805, DOI 10.1111/j.1558-5646.1989.tb02629.x; Panfilio KA, 2006, DEV BIOL, V292, P226, DOI 10.1016/j.ydbio.2005.12.028; Parker G.A., 1984, P1; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; Perry JC, 2006, OIKOS, V112, P706; PHELAN JP, 1991, EVOL ECOL, V5, P160, DOI 10.1007/BF02270832; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; RALPH CP, 1976, OECOLOGIA, V26, P157, DOI 10.1007/BF00582894; Rodriguez RL, 1998, J INSECT BEHAV, V11, P725, DOI 10.1023/A:1022303010790; Rodriguez S. R. L., 2000, J KANSAS ENTOMOL SOC, V73, P6; ROFF DA, 1986, EVOLUTION, V40, P1009, DOI 10.1111/j.1558-5646.1986.tb00568.x; ROOT RB, 1976, ECOLOGY, V57, P132, DOI 10.2307/1936404; Ross L, 2012, ECOL EVOL, V2, P1071, DOI 10.1002/ece3.222; Salavert V, 2011, ECOL ENTOMOL, V36, P389, DOI 10.1111/j.1365-2311.2011.01279.x; Samuels RI, 2002, BIOL CONTROL, V23, P269, DOI 10.1006/bcom.2001.1009; SAUER D, 1973, AM MIDL NAT, V90, P13, DOI 10.2307/2424263; Schausberger P, 2008, J ANIM ECOL, V77, P1109, DOI 10.1111/j.1365-2656.2008.01440.x; Schuh R. T., 1995, TRUE BUGS WORLD HEMI; Shuker DM, 2006, ANIM BEHAV, V72, P313, DOI 10.1016/j.anbehav.2005.10.020; Sillen-Tullberg B., 2000, ECOL ENTOMOL, V25, P220; SILLENTULLBERG B, 1983, HEREDITAS, V99, P153, DOI 10.1111/j.1601-5223.1983.tb00741.x; SILLENTULLBERG B, 1981, BEHAV ECOL SOCIOBIOL, V9, P283, DOI 10.1007/BF00299884; SILLENTULLBERG B, 1982, OIKOS, V39, P131, DOI 10.2307/3544476; SILLENTULLBERG B, 1984, ENTOMOL EXP APPL, V36, P261, DOI 10.1111/j.1570-7458.1984.tb03437.x; SILLENTULLBERG B, 1985, OECOLOGIA, V67, P411, DOI 10.1007/BF00384948; SILLENTULLBERG B, 1988, EVOLUTION, V42, P293, DOI 10.1111/j.1558-5646.1988.tb04133.x; SILLENTULLBERG B, 1990, OIKOS, V58, P210, DOI 10.2307/3545428; Simmons L. W., 2001, SPERM COMPETITION IT; SLATER J A, 1973, Caribbean Journal of Science, V13, P183; SLATER JA, 1977, BIOTROPICA, V9, P217, DOI 10.2307/2388139; SOLBRECK C, 1989, OIKOS, V55, P387, DOI 10.2307/3565599; SOLBRECK C, 1989, HEREDITAS, V111, P1, DOI 10.1111/j.1601-5223.1989.tb00368.x; Solbreck C., 1990, P197; SOLBRECK C, 1981, OIKOS, V36, P68, DOI 10.2307/3544381; SOLBRECK C, 1990, OIKOS, V58, P199, DOI 10.2307/3545427; SOLBRECK C, 1979, OECOLOGIA, V43, P51, DOI 10.1007/BF00346672; SOLBRECK C, 1976, OIKOS, V27, P134, DOI 10.2307/3543443; SOLBRECK C, 1979, OECOLOGIA, V43, P41, DOI 10.1007/BF00346671; Souza HV, 2007, GENET MOL RES, V6, P33; Speed M. P., 2004, AVOIDING ATTACK EVOL; Speed MP, 2012, BIOL REV, V87, P874, DOI 10.1111/j.1469-185X.2012.00228.x; STADDON BW, 1985, COMP BIOCHEM PHYS B, V80, P235, DOI 10.1016/0305-0491(85)90202-0; Summers CG, 2010, CROP PROT, V29, P249, DOI 10.1016/j.cropro.2009.11.012; Svadova KH, 2010, EUR J ENTOMOL, V107, P349, DOI 10.14411/eje.2010.044; Sweet MH, 2000, HETEROPTERA OF ECONOMIC IMPORTANCE, P143; SWEET MH, 1979, ANN ENTOMOL SOC AM, V72, P575, DOI 10.1093/aesa/72.5.575; Tadler A, 1999, P ROY SOC B-BIOL SCI, V266, P1773, DOI 10.1098/rspb.1999.0845; Tallamy D.W., 1997, EVOLUTION SOCIAL BEH; Thomas ML, 2010, J EVOLUTION BIOL, V23, P707, DOI 10.1111/j.1420-9101.2010.01943.x; Thorpe K.W., 1979, Psyche (Cambridge), V86, P399, DOI 10.1155/1979/73878; TIESZEN KL, 1986, PARASITOLOGY, V92, P1, DOI 10.1017/S003118200006340X; Tillman PG, 2011, ENVIRON ENTOMOL, V40, P1159, DOI 10.1603/EN10243; Torres M, 2000, MEM I OSWALDO CRUZ, V95, P131, DOI 10.1590/S0074-02762000000100022; VONEUW J, 1971, INSECT BIOCHEM, V1, P373, DOI 10.1016/0020-1790(71)90002-3; WALKER WF, 1979, PHYSIOL ENTOMOL, V4, P275, DOI 10.1111/j.1365-3032.1979.tb00204.x; Wang Q, 2009, NATURWISSENSCHAFTEN, V96, P87, DOI 10.1007/s00114-008-0455-z; Wang Q, 2008, J INSECT BEHAV, V21, P89, DOI 10.1007/s10905-007-9110-3; Wang Q, 2006, J INSECT BEHAV, V19, P337, DOI 10.1007/s10905-006-9027-2; Weddle CB, 2012, J EVOLUTION BIOL, V25, P2112, DOI 10.1111/j.1420-9101.2012.02593.x; Weeks AR, 2003, P ROY SOC B-BIOL SCI, V270, P1857, DOI 10.1098/rspb.2003.2425; Wei YJ, 2011, NEW ZEAL J ZOOL, V38, P1, DOI 10.1080/03014223.2010.532860; Wei YJ, 2010, NEW ZEAL J ZOOL, V37, P285, DOI 10.1080/03014223.2010.513396; Weirauch C, 2011, ANNU REV ENTOMOL, V56, P487, DOI 10.1146/annurev-ento-120709-144833; WHEELER AG, 1983, J NEW YORK ENTOMOL S, V91, P57; Yamashita T., 1979, NOGAKU KENKYU, V58, P13; Yang LH, 2004, J INSECT BEHAV, V17, P695, DOI 10.1023/B:JOIR.0000042550.02623.72; Zhang QH, 2003, J CHEM ECOL, V29, P1835, DOI 10.1023/A:1024850211619; Zhen Y, 2012, SCIENCE, V337, P1634, DOI 10.1126/science.1226630 181 8 8 0 71 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. JUN 2014 4 11 2278 2301 10.1002/ece3.1093 24 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AJ2VL WOS:000337522200022 25360267 DOAJ Gold, Green Published 2019-02-21 J Latimer, CAL; McGuigan, K; Wilson, RS; Blows, MW; Chenoweth, SF Latimer, Camille A. L.; McGuigan, Katrina; Wilson, Robbie S.; Blows, Mark W.; Chenoweth, Stephen F. THE CONTRIBUTION OF SPONTANEOUS MUTATIONS TO THERMAL SENSITIVITY CURVE VARIATION IN DROSOPHILA SERRATA EVOLUTION English Review Function-valued traits; G-matrix; genetic principal components; locomotor activity; M-matrix; mutational bias GENOTYPE-ENVIRONMENT INTERACTION; LIFE-HISTORY EVOLUTION; FUNCTION-VALUED TRAITS; QUANTITATIVE GENETIC-ANALYSIS; COSTLY MATE PREFERENCES; P-ELEMENT INSERTIONS; BODY-SIZE; REACTION NORMS; LOCOMOTOR PERFORMANCE; ARABIDOPSIS-THALIANA Many traits studied in ecology and evolutionary biology change their expression in response to a continuously varying environmental factor. One well-studied example are thermal performance curves (TPCs); continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding the trade-offs involved in thermal adaptation. We characterized curves describing the thermal sensitivity of voluntary locomotor activity in a set of 66 spontaneous mutation accumulation lines in the fly Drosophila serrata. Factor-analytic modeling of the mutational variance-covariance matrix, M, revealed support for three axes of mutational variation in males and two in females. These independent axes of mutational variance corresponded well to the major axes of TPC variation required for different types of thermal adaptation; faster-slower representing changes in performance largely independent of temperature, and the hotter-colder and generalist-specialist axes, representing trade-offs. In contrast to its near-absence from standing variance in this species, a faster-slower axis, accounted for most mutational variance (75% in males and 66% in females) suggesting selection may easily fix or remove these types of mutations in outbred populations. Axes resembling the hotter-colder and generalist-specialist modes of variation contributed less mutational variance but nonetheless point to an appreciable input of new mutations that may contribute to thermal adaptation. [Latimer, Camille A. L.; McGuigan, Katrina; Wilson, Robbie S.; Blows, Mark W.; Chenoweth, Stephen F.] Univ Queensland, Sch Biol Sci, St Lucia, Qld 4072, Australia Latimer, CAL (reprint author), Univ Queensland, Sch Biol Sci, St Lucia, Qld 4072, Australia. s.chenoweth@uq.edu.au McGuigan, Katrina/B-4197-2008; Blows, Mark/B-6195-2008; Chenoweth, Stephen/A-7211-2012 McGuigan, Katrina/0000-0002-0525-2202; Blows, Mark/0000-0002-1065-5524; Chenoweth, Stephen/0000-0002-8303-9159 Australian Postgraduate Award; Australian ARC Research Fellowship; University of Queensland We thank J. Thompson, C. Oesch-Lawson for maintaining the MA lines and D. Petfield, S. Allen, B. Rusuwa, and members of the Chenoweth laboratory for assistance during data collection and for their useful discussion and support. This research was funded through Australian Postgraduate Award to CALL and Australian ARC Research Fellowship to SFC. Additional funding was provided by The University of Queensland. Ahnesjo J, 2006, EVOL ECOL, V20, P235, DOI 10.1007/s10682-006-6178-8; Angilletta MJ, 2010, PHYSIOL BIOCHEM ZOOL, V83, P197, DOI 10.1086/648567; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Ayers DY, 1997, FUNCT ECOL, V11, P342, DOI 10.1046/j.1365-2435.1997.00093.x; Baer CF, 2008, AM NAT, V172, P272, DOI 10.1086/589455; Baer CF, 2006, GENETICS, V174, P1387, DOI 10.1534/genetics.106-061200; BELL G, 1992, EVOLUTION, V46, P561, DOI 10.1111/j.1558-5646.1992.tb02060.x; BENNETT AF, 1980, ANIM BEHAV, V28, P752, DOI 10.1016/S0003-3472(80)80135-7; BURNET B, 1988, HEREDITY, V61, P111, DOI 10.1038/hdy.1988.96; Camara MD, 2000, EVOL ECOL RES, V2, P1009; Chang SM, 2003, EVOLUTION, V57, P984; Chenoweth SF, 2010, AM NAT, V175, P186, DOI 10.1086/649594; Cooper VS, 2001, EVOLUTION, V55, P889, DOI 10.1554/0014-3820(2001)055[0889:EOTDOG]2.0.CO;2; Crill WD, 1996, EVOLUTION, V50, P1205, DOI 10.1111/j.1558-5646.1996.tb02361.x; DOMENICI P, 1993, J EXP BIOL, V177, P253; EPPLEY RW, 1972, FISH B-NOAA, V70, P1063; Estes S, 2006, EVOLUTION, V60, P2655, DOI 10.1554/05-653.1; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fernandez J, 1997, EVOLUTION, V51, P856, DOI 10.1111/j.1558-5646.1997.tb03667.x; Frazier MR, 2006, AM NAT, V168, P512, DOI 10.1086/506977; FRY JD, 1992, EVOLUTION, V46, P540, DOI 10.1111/j.1558-5646.1992.tb02057.x; Fry JD, 1996, EVOLUTION, V50, P2316, DOI 10.1111/j.1558-5646.1996.tb03619.x; FUTUYMA DJ, 1987, EVOLUTION, V41, P269, DOI 10.1111/j.1558-5646.1987.tb05796.x; GEBHARDT MD, 1988, J EVOLUTION BIOL, V1, P335, DOI 10.1046/j.1420-9101.1988.1040335.x; GILCHRIST GW, 1995, AM NAT, V146, P252, DOI 10.1086/285797; Gilchrist GW, 1997, PHYSIOL ZOOL, V70, P403, DOI 10.1086/515853; Gilchrist GW, 1996, EVOLUTION, V50, P1560, DOI 10.1111/j.1558-5646.1996.tb03928.x; Gillooly JF, 2001, SCIENCE, V293, P2248, DOI 10.1126/science.1061967; Gillooly JF, 2002, NATURE, V417, P70, DOI 10.1038/417070a; GREENWALD OE, 1974, COPEIA, P141, DOI 10.2307/1443016; Griswold CK, 2008, EVOLUTION, V62, P1229, DOI 10.1111/j.1558-5646.2008.00340.x; Hallas R, 2002, GENET RES, V79, P141, DOI 10.1017/S0016672301005523; Halligan DL, 2009, ANNU REV ECOL EVOL S, V40, P151, DOI 10.1146/annurev.ecolsys.39.110707.173437; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hine E, 2006, GENETICS, V173, P1135, DOI 10.1534/genetics.105.054627; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Houle D, 1996, GENETICS, V143, P1467; HOULE D, 1994, GENETICS, V138, P773; Houle D, 2013, EVOLUTION, V67, P1116, DOI 10.1111/j.1558-5646.2012.01838.x; HUEY RB, 1979, AM ZOOL, V19, P357; Huey RB, 2003, INTEGR COMP BIOL, V43, P387, DOI 10.1093/icb/43.3.387; HUEY RB, 1993, AM NAT, V142, pS21, DOI 10.1086/285521; HUEY RB, 1989, TRENDS ECOL EVOL, V4, P131, DOI 10.1016/0169-5347(89)90211-5; IWASA Y, 1991, EVOLUTION, V45, P1431, DOI 10.1111/j.1558-5646.1991.tb02646.x; Izem R, 2005, AM NAT, V166, P277, DOI 10.1086/431314; Izem R, 2004, THESIS U N CAROLINA; Kavanaugh CM, 2005, EVOLUTION, V59, P266; Kawecki TJ, 1997, J EVOLUTION BIOL, V10, P407, DOI 10.1007/s000360050032; KAWECKI TJ, 1995, HEREDITY, V75, P70, DOI 10.1038/hdy.1995.105; Keightley PD, 2003, EVOLUTION, V57, P683; Keightley PD, 1998, GENETICS, V148, P753; Kingsolver JG, 2000, PHYSIOL BIOCHEM ZOOL, V73, P621, DOI 10.1086/317758; Kingsolver JG, 2001, GENETICA, V112, P87, DOI 10.1023/A:1013323318612; KIRKPATRICK M, 1990, GENETICS, V124, P979; KIRKPATRICK M, 1992, EVOLUTION, V46, P954, DOI 10.1111/j.1558-5646.1992.tb00612.x; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; Knies JL, 2006, PLOS BIOL, V4, P1257, DOI 10.1371/journal.pbio.0040201; Knies JL, 2009, AM NAT, V173, P419, DOI 10.1086/597224; KONDRASHOV AS, 1994, P ROY SOC B-BIOL SCI, V258, P221, DOI 10.1098/rspb.1994.0166; Lachenicht MW, 2010, J INSECT PHYSIOL, V56, P822, DOI 10.1016/j.jinsphys.2010.02.010; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1975, GENET RES, V26, P221, DOI 10.1017/S0016672300016037; LANDE R, 1980, GENETICS, V94, P203; Latimer CAL, 2011, J EVOLUTION BIOL, V24, P965, DOI 10.1111/j.1420-9101.2011.02227.x; Levins R., 1968, EVOLUTION CHANGING E; Long TAF, 2007, P ROY SOC B-BIOL SCI, V274, P3105, DOI 10.1098/rspb.2007.1140; Lyman RF, 1996, GENETICS, V143, P277; Lynch M, 1999, EVOLUTION, V53, P645, DOI 10.1111/j.1558-5646.1999.tb05361.x; Lynch M, 1998, GENETICS ANAL QUANTI; Lyon JP, 2008, ECOL FRESHW FISH, V17, P184, DOI 10.1111/j.1600-0633.2007.00244.x; MACKAY TFC, 1992, GENETICS, V130, P315; Mackay TFC, 1998, GENETICA, V102-3, P199, DOI 10.1023/A:1017041900138; McGuigan K, 2007, EVOLUTION, V61, P902, DOI 10.1111/j.1558-5646.2007.00078.x; McGuigan K, 2013, EVOLUTION, V67, P1131, DOI 10.1111/j.1558-5646.2012.01833.x; McGuigan K, 2011, EVOLUTION, V65, P2816, DOI 10.1111/j.1558-5646.2011.01346.x; Meyer K, 2005, GENET SEL EVOL, V37, P1, DOI [10.1051/gse:2004034, 10.1051/gse:2004030]; Ostrow D, 2007, GENETICS, V176, P1653, DOI 10.1534/genetics.107.074666; PARTRIDGE L, 1987, ANIM BEHAV, V35, P555, DOI 10.1016/S0003-3472(87)80281-6; Phillips Patrick C., 2006, P310; Pletcher SD, 1999, GENETICS, V153, P825; POMIANKOWSKI A, 1991, EVOLUTION, V45, P1422, DOI 10.1111/j.1558-5646.1991.tb02645.x; Roberts SP, 2003, PHYSIOL BIOCHEM ZOOL, V76, P615, DOI 10.1086/376922; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; SANTIAGO E, 1992, GENETICS, V132, P771; Savage VM, 2004, AM NAT, V163, P429, DOI 10.1086/381872; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; SHAW RG, 1995, GENETICS, V139, P397; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stinchcombe JR, 2012, TRENDS ECOL EVOL, V27, P637, DOI 10.1016/j.tree.2012.07.002; Vassilieva LL, 2000, EVOLUTION, V54, P1234; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Waxman D, 2003, GENETICS, V164, P1615; Wayne ML, 1998, GENETICS, V148, P201; Weinstein RB, 1998, AM ZOOL, V38, P518; Wilson RS, 2001, J EXP BIOL, V204, P4227; Xu JP, 2004, GENETICS, V168, P1177, DOI 10.1534/genetics.104.030031; Yamahira K, 2007, EVOLUTION, V61, P1577, DOI 10.1111/j.1558-5646.2007.00130.x; Yang HP, 2001, GENETICS, V157, P1257 103 10 10 2 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JUN 2014 68 6 1824 1837 10.1111/evo.12392 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ3IE WOS:000337558900022 24576006 Bronze 2019-02-21 J Chagnon, PL Chagnon, Pierre-Luc Ecological and evolutionary implications of hyphal anastomosis in arbuscular mycorrhizal fungi FEMS MICROBIOLOGY ECOLOGY English Review anastomosis; mycoviruses; heterokaryosis; hyphal fusion; life-history strategies; deleterious cytoplasmic elements DOUBLE-STRANDED-RNA; VEGETATIVE INCOMPATIBILITY; HETEROKARYON INCOMPATIBILITY; NEUROSPORA-CRASSA; FILAMENTOUS FUNGI; ASCOMYCETE FUNGI; GENETIC EXCHANGE; HORIZONTAL GENE; GLOMUS-MOSSEAE; LIFE-HISTORY Arbuscular mycorrhizal (AM) fungi are important plant symbionts widespread worldwide. Like other fungi, they have the ability to perform hyphal anastomosis, that is, the fusion of encountering vegetative hyphae. Research in other fungal phyla has evidenced numerous potential functional and evolutionary consequences of anastomosis. Yet, in AM fungal research, anastomosis has almost strictly been discussed in the context of fungal response to disturbance and interindividual genetic exchange. Here, I review more broadly the implications of anastomosis for AM fungal ecology and evolution. I also identify major knowledge gaps and research prospects to better ground hyphal anastomosis strategies of AM fungi in their general life-history strategies. Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada Chagnon, PL (reprint author), Univ Sherbrooke, Dept Biol, 2500 Boul Univ, Sherbrooke, PQ J1K 2R1, Canada. Pierre-Luc.Chagnon@usherbrooke.ca Angelard C, 2011, NEW PHYTOL, V189, P652, DOI 10.1111/j.1469-8137.2010.03602.x; Angelard C, 2010, CURR BIOL, V20, P1216, DOI 10.1016/j.cub.2010.05.031; Avio L, 2006, NEW PHYTOL, V172, P347, DOI 10.1111/j.1469-8137.2006.01839.x; Beiler KJ, 2010, NEW PHYTOL, V185, P543, DOI 10.1111/j.1469-8137.2009.03069.x; Bell G, 1982, MASTERPIECE NATURE E; Bever JD, 2005, NATURE, V433, pE3, DOI 10.1038/nature03294; Brusini J, 2011, ECOL LETT, V14, P444, DOI 10.1111/j.1461-0248.2011.01602.x; CATEN CE, 1972, J GEN MICROBIOL, V72, P221, DOI 10.1099/00221287-72-2-221; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Croll D, 2009, NEW PHYTOL, V181, P924, DOI 10.1111/j.1469-8137.2008.02726.x; Dalzoto PR, 2006, MYCOL RES, V110, P1475, DOI 10.1016/j.mycres.2006.08.009; Daniell TJ, 2001, FEMS MICROBIOL ECOL, V36, P203, DOI 10.1016/S0168-6496(01)00134-9; de la Providencia IE, 2005, NEW PHYTOL, V165, P261, DOI 10.1111/j.1469-8137.2004.01236.x; Fitter AH, 2000, NEW PHYTOL, V147, P179, DOI 10.1046/j.1469-8137.2000.00680.x; Fitter AH, 2005, J ECOL, V93, P231, DOI 10.1111/j.0022-0477.2005.00990.x; Fu C, 2011, EUKARYOT CELL, V10, P1100, DOI 10.1128/EC.05003-11; Ghabrial SA, 1998, VIRUS GENES, V16, P119, DOI 10.1023/A:1007966229595; Giovannetti M, 2004, NEW PHYTOL, V164, P175, DOI 10.1111/j.1469-8137.2004.01145.x; Giovannetti M, 2003, APPL ENVIRON MICROB, V69, P616, DOI 10.1128/AEM.69.1.616-624.2003; Giovannetti M, 1999, APPL ENVIRON MICROB, V65, P5571; Glass NL, 2003, EUKARYOT CELL, V2, P1, DOI 10.1128/EC.2.11.1-8.2003; Glass NL, 2000, ANNU REV GENET, V34, P165, DOI 10.1146/annurev.genet.34.1.165; Grant BR, 2008, PHILOS T R SOC B, V363, P2821, DOI 10.1098/rstb.2008.0051; GREGORY PH, 1984, T BRIT MYCOL SOC, V82, P1, DOI 10.1016/S0007-1536(84)80206-5; Halary S, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080729; Halary Sebastien, 2011, Genome Biol Evol, V3, P950, DOI 10.1093/gbe/evr089; Hickey PC, 2002, FUNGAL GENET BIOL, V37, P109, DOI 10.1016/S1087-1845(02)00035-X; Ihrmark K, 2002, FUNGAL GENET BIOL, V36, P147, DOI 10.1016/S1087-1845(02)00011-7; Ikeda Y, 2012, MOL PLANT MICROBE IN, V25, P1005, DOI 10.1094/MPMI-11-11-0288; Jansa J, 2002, MYCORRHIZA, V12, P225, DOI [10.1007/s00572-002-0163-z, 10.1007/s005572-002-0163-z]; Jansa J, 2003, ECOL APPL, V13, P1164, DOI 10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2; Jany JL, 2010, AM NAT, V175, P424, DOI 10.1086/650725; Jedd G, 2000, NAT CELL BIOL, V2, P226; Juhas M, 2009, FEMS MICROBIOL REV, V33, P376, DOI 10.1111/j.1574-6976.2008.00136.x; Leake JR, 2004, CAN J BOT, V82, P1016, DOI [10.1139/B04-060, 10.1139/b04-060]; Leeder AC, 2011, NAT REV MICROBIOL, V9, P440, DOI 10.1038/nrmicro2580; McLean MA, 2006, BIOL INVASIONS, V8, P1257, DOI 10.1007/s10530-006-9020-x; Mehrabi R, 2011, FEMS MICROBIOL REV, V35, P542, DOI 10.1111/j.1574-6976.2010.00263.x; Milgroom MG, 1999, P NATL ACAD SCI USA, V96, P10518, DOI 10.1073/pnas.96.18.10518; MOSSE BARBARA, 1959, TRANS BRIT MYCOL SOC, V42, P273; Muller HJ, 1932, AM NAT, V66, P118, DOI 10.1086/280418; Oehl F, 2003, APPL ENVIRON MICROB, V69, P2816, DOI 10.1128/AEM.69.5.2816-2824.2003; Papazova-Anakieva I, 2008, EUR J PLANT PATHOL, V120, P35, DOI 10.1007/s10658-007-9191-z; Park YJ, 2006, MYCOL RES, V110, P697, DOI 10.1016/j.mycres.2006.03.007; Pawlowska TE, 2005, FEMS MICROBIOL LETT, V251, P185, DOI 10.1016/j.femsle.2005.08.007; Pawlowska TE, 2004, NATURE, V427, P733, DOI 10.1038/nature02290; Pearson MN, 2009, MOL PLANT PATHOL, V10, P115, DOI 10.1111/j.1364-3703.2008.00503.x; PONTECORVO G, 1946, COLD SPRING HARB SYM, V11, P193; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Purin S, 2008, FEMS MICROBIOL LETT, V279, P8, DOI 10.1111/j.1574-6968.2007.01007.x; Purin S, 2011, MYCORRHIZA, V21, P505, DOI 10.1007/s00572-010-0356-9; RAYNER ADM, 1991, MYCOLOGIA, V83, P48, DOI 10.2307/3759832; Read ND, 2009, CURR OPIN MICROBIOL, V12, P608, DOI 10.1016/j.mib.2009.09.008; Roper M, 2011, CURR BIOL, V21, pR786, DOI 10.1016/j.cub.2011.06.042; Sanders IR, 2010, ANNU REV GENET, V44, P271, DOI 10.1146/annurev-genet-102108-134239; Saupe SJ, 2000, MICROBIOL MOL BIOL R, V64, P489, DOI 10.1128/MMBR.64.3.489-502.2000; Sbrana C, 2005, MYCORRHIZA, V15, P539, DOI 10.1007/s00572-005-0362-5; SMITH ML, 1992, NATURE, V356, P428, DOI 10.1038/356428a0; van Diepeningen AD, 1998, FUNGAL GENET BIOL, V25, P171, DOI 10.1006/fgbi.1998.1096; VANDERMEIJDEN E, 1988, OIKOS, V51, P355, DOI 10.2307/3565318; Voets L, 2006, NEW PHYTOL, V172, P185, DOI 10.1111/j.1469-8137.2006.01873.x; Wang XB, 2009, PHYTOPATHOLOGY, V99, P1355, DOI 10.1094/PHYTO-99-12-1355; Wu MD, 2007, PHYTOPATHOLOGY, V97, P1590, DOI 10.1094/PHYTO-97-12-1590; Young JPW, 2009, NEW PHYTOL, V181, P751, DOI 10.1111/j.1469-8137.2009.02765.x 64 6 6 0 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0168-6496 1574-6941 FEMS MICROBIOL ECOL FEMS Microbiol. Ecol. JUN 2014 88 3 437 444 10.1111/1574-6941.12321 8 Microbiology Microbiology AJ3TN WOS:000337590500001 24646134 Bronze 2019-02-21 J Sheppard, P; Snopkowski, K; Sear, R Sheppard, Paula; Snopkowski, Kristin; Sear, Rebecca Father Absence and Reproduction-Related Outcomes in Malaysia, a Transitional Fertility Population HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Father absence; Life history strategy; Menarche; Reproduction; Demographic transition LIFE-HISTORY; 1ST BIRTH; CHILDHOOD EXPERIENCE; PATERNAL INVESTMENT; PUBERTAL MATURATION; EVOLUTIONARY MODEL; LONGITUDINAL TEST; PREDICTS AGE; FAMILY; MENARCHE Father absence is consistently associated with children's reproductive outcomes in industrialized countries. It has been suggested that father absence acts as a cue to particular environmental conditions that influence life history strategies. Much less is known, however, about the effects of father absence on such outcomes in lower-income countries. Using data from the 1988 Malaysian Family Life Survey (n = 567), we tested the effect of father absence on daughters' age at menarche, first marriage, and first birth; parity progression rates; and desired completed family size in Malaysia, a country undergoing an economic and fertility transition. Father absence during later childhood (ages 8 to 15), although not during earlier childhood, was associated with earlier progressions to first marriage and first birth, after controlling for other confounders. Father absence does not affect age at menarche, desired family size, or progression from first to second birth. The patterns found in this transitional population partly mirror those in developed societies, where father absence accelerates reproductive events. There is, however, a notable contrast between the acceleration in menarche for father-absent girls consistently found in developed societies and the lack of any association in our findings. The mechanisms through which father absence affects reproduction may differ in different ecological contexts. In lower-income contexts, direct paternal investment or influence may be of more importance in determining reproductive behavior than whether fathers act as a cue to environmental conditions. [Sheppard, Paula; Snopkowski, Kristin; Sear, Rebecca] Univ London London Sch Hyg & Trop Med, Dept Populat Hlth, London WC1E 7HT, England Sheppard, P (reprint author), Univ London London Sch Hyg & Trop Med, Dept Populat Hlth, Keppel St, London WC1E 7HT, England. paula.sheppard@lshtm.ac.uk Allal N, 2004, P ROY SOC B-BIOL SCI, V271, P465, DOI 10.1098/rspb.2003.2623; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; Amato PR, 2011, J FAM ISSUES, V32, P1073, DOI 10.1177/0192513X11404363; AMATO PR, 1993, J MARRIAGE FAM, V55, P23, DOI 10.2307/352954; Bankole A, 1998, J BIOSOC SCI, V30, P439, DOI 10.1017/S0021932098004398; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Biblarz TJ, 2000, J MARRIAGE FAM, V62, P533, DOI 10.1111/j.1741-3737.2000.00533.x; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; BRIEN MJ, 1994, J HUM RESOUR, V29, P1167, DOI 10.2307/146137; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; BUMPASS LL, 1978, DEMOGRAPHY, V15, P75, DOI 10.2307/2060491; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; Daly M, 1998, TRUTH CINDERELLA DAR; DaVanzo J., 2003, WELL DESIRED FERTILI; DESILVA WI, 1991, STUD FAMILY PLANN, V22, P188; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; ELLISON PT, 2001, FERTILE GROUND NATUR; Eltigani EE, 2000, INT FAM PLAN PERSPEC, V26, P73, DOI 10.2307/2648270; Flinn M. V., 1988, HUMAN REPROD BEHAV D, P189; FLINN MV, 1986, HUM ECOL, V14, P225, DOI 10.1007/BF00889239; FREEDMAN R, 1975, DEMOGRAPHY, V12, P407, DOI 10.2307/2060824; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; GOVINDASAMY P, 1992, POPUL DEV REV, V18, P243, DOI 10.2307/1973679; Henrich J, 2010, NATURE, V466, P29, DOI 10.1038/466029a; Hill K., 1996, ACHE LIFE HIST ECOLO; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; James-Todd T, 2010, ANN EPIDEMIOL, V20, P836, DOI 10.1016/j.annepidem.2010.08.006; Khalipah Mohd T, 1993, P SEM 2 MAL FAM LIF, P7; Khan AD, 1996, AM J HUM BIOL, V8, P717, DOI 10.1002/(SICI)1520-6300(1996)8:6<717::AID-AJHB3>3.0.CO;2-Q; KIERNAN KE, 1992, POP STUD-J DEMOG, V46, P213, DOI 10.1080/0032472031000146206; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Lahdenpera M, 2007, P ROY SOC B-BIOL SCI, V274, P2437, DOI 10.1098/rspb.2007.0688; Lawson DW, 2008, INT J EPIDEMIOL, V37, P1408, DOI 10.1093/ije/dyn116; Leete R., 1989, International Family Planning Perspectives, V15, P58, DOI 10.2307/2133483; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; MULDER MB, 1989, BEHAV ECOL SOCIOBIOL, V24, P145, DOI 10.1007/BF00292097; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Padez C, 2003, AM J HUM BIOL, V15, P415, DOI 10.1002/ajhb.10159; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; RAND, 2012, RAND MAL FAM LIF SUR; Scelza BA, 2010, CURR ANTHROPOL, V51, P295, DOI 10.1086/651051; Sear R, 2002, DEMOGRAPHY, V39, P43, DOI 10.1353/dem.2002.0010; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sear R, 2011, POPUL DEV REV, V37, P81, DOI 10.1111/j.1728-4457.2011.00379.x; Shenk MK, 2013, HUM NATURE-INT BIOS, V24, P76, DOI 10.1007/s12110-013-9160-5; Shenk MK, 2012, J BIOSOC SCI, V44, P549, DOI 10.1017/S0021932012000053; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; Simondon KB, 1998, EUR J CLIN NUTR, V52, P412, DOI 10.1038/sj.ejcn.1600577; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Tavares C H, 2000, Cad Saude Publica, V16, P709, DOI 10.1590/S0102-311X2000000300019; The World Bank, 2012, DATA; Thomas D., 1997, J HUM RESOUR, V33, P805; United Nations, 2013, UN HUM DEV REP; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Waynforth D, 1998, EVOL HUM BEHAV, V19, P369, DOI 10.1016/S1090-5138(98)00031-2; WESTOFF CF, 1957, AM J SOCIOL, V62, P491, DOI 10.1086/222079; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002; Winking J, 2009, AM J PHYS ANTHROPOL, V139, P295, DOI 10.1002/ajpa.20981 72 16 17 1 18 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. JUN 2014 25 2 213 234 10.1007/s12110-014-9195-2 22 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AJ3YD WOS:000337603000003 24610662 Other Gold, Green Published 2019-02-21 J Simons, AM Simons, A. M. Playing smart vs. playing safe: the joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments JOURNAL OF EVOLUTIONARY BIOLOGY English Article bet hedging; developmental reaction norms; diversification; dormancy; geometric mean fitness; life-history evolution; Lobelia; phenotypic plasticity; seed germination; thermal performance curves RANDOMLY VARYING ENVIRONMENT; SEED-GERMINATION; DESERT ANNUALS; CLIMATE-CHANGE; OPTIMIZING REPRODUCTION; PLANTAGO-LANCEOLATA; EVOLUTIONARY BETS; ADAPTATION; SELECTION; TRAITS Adaptive phenotypic plasticity evolves when cues reliably predict fitness consequences of life-history decisions, whereas bet hedging evolves when environments are unpredictable. These modes of response should be jointly expressed, because environmental variance is composed of both predictable and unpredictable components. However, little attention has been paid to the joint expression of plasticity and bet hedging. Here, I examine the simultaneous expression of plasticity in germination rate and two potential bet-hedging traits - germination fraction and within-season diversification in timing of germination - in seeds from multiple seed families of five geographically distant populations of Lobelia inflata (L.) subjected to a thermal gradient. Populations differ in germination plasticity to temperature, in total germination fraction and in the expression of potential diversification in the timing of germination. The observation of a negative partial correlation between the expression of plasticity and germination variance (potential diversification), and a positive correlation between plasticity and germination fraction is suggestive of a trade-off between modes of response to environmental variance. If the observed correlations are indicative of those between adaptive plasticity and bet hedging, we expect an optimal balance to exist and differ among populations. I discuss the challenges involved in testing whether the balance between plasticity and bet hedging depends on the relative predictability of environmental variance. Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Simons, AM (reprint author), Carleton Univ, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. andrew.simons@carleton.ca Simons, Andrew/A-7751-2012 Simons, Andrew/0000-0002-0198-465X Natural Sciences and Engineering Research Council (NSERC) of Canada I thank J. Moffatt and A. Kingdon for technical assistance; P. W. Hughes, J. Wagner and M. Compton for discussion; W. Blanckenhorn and an anonymous reviewer for constructive comment; and P. Arbour and the Petawawa Research Forest for use of long-term research sites. This work was supported by a Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Grant to A.M.S. Alberto F, 2011, J EVOLUTION BIOL, V24, P1442, DOI 10.1111/j.1420-9101.2011.02277.x; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Bonduriansky R, 2012, EVOL APPL, V5, P192, DOI 10.1111/j.1752-4571.2011.00213.x; BRADSHAW AD, 1984, CC/AGR BIOL ENVIRON, P20; Caruso CM, 2006, EVOLUTION, V60, P980, DOI 10.1554/06-050.1; Castellanos MC, 2008, BOTANY, V86, P1125, DOI 10.1139/B08-078; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chown SL, 2007, P R SOC B, V274, P2531, DOI 10.1098/rspb.2007.0772; Clauss MJ, 2000, AM NAT, V155, P168, DOI 10.1086/303314; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; COHEN D, 1967, J THEOR BIOL, V16, P1, DOI 10.1016/0022-5193(67)90050-1; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; Donaldson-Matasci MC, 2013, AM NAT, V182, P313, DOI 10.1086/671161; Donohue K, 2005, EVOLUTION, V59, P740; Fehrmann S, 2013, MOL SYST BIOL, V9, DOI 10.1038/msb.2013.53; Gremer JR, 2014, ECOL LETT, V17, P380, DOI 10.1111/ele.12241; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hoyle GL, 2013, GLOBAL CHANGE BIOL, V19, P1549, DOI 10.1111/gcb.12135; Imbert E, 2002, PERSPECT PLANT ECOL, V5, P13, DOI 10.1078/1433-8319-00021; Kingsolver JG, 2004, INTEGR COMP BIOL, V44, P450, DOI 10.1093/icb/44.6.450; Lacey EP, 1996, EVOLUTION, V50, P865, DOI 10.1111/j.1558-5646.1996.tb03895.x; McNair JN, 2012, SEED SCI RES, V22, P77, DOI 10.1017/S0960258511000547; Mercer KL, 2011, AM J BOT, V98, P975, DOI 10.3732/ajb.1000408; Morrison D. F., 1976, MULTIVARIATE STAT ME; Pake CE, 1996, ECOLOGY, V77, P1427, DOI 10.2307/2265540; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Ratcliff WC, 2010, CURR BIOL, V20, P1740, DOI 10.1016/j.cub.2010.08.036; Rovira-Graells N, 2012, GENOME RES, V22, P925, DOI 10.1101/gr.129692.111; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schmalhausen II, 1949, FACTORS EVOLUTION TH; SCHMITT J, 1992, AM NAT, V139, P451, DOI 10.1086/285338; Seger J., 1987, Oxford Surveys in Evolutionary Biology, V4, P182; Simons AM, 2007, J EVOLUTION BIOL, V20, P813, DOI 10.1111/j.1420-9101.2006.01270.x; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 1997, OIKOS, V80, P401, DOI 10.2307/3546608; Simons AM, 2002, J EVOLUTION BIOL, V15, P688, DOI 10.1046/j.1420-9101.2002.00437.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simons AM, 2007, OIKOS, V116, P986, DOI 10.1111/j.2007.0030-1299.15814.x; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Simons AM, 2009, P ROY SOC B-BIOL SCI, V276, P1987, DOI 10.1098/rspb.2008.1920; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Starrfelt J, 2012, BIOL REV, V87, P742, DOI 10.1111/j.1469-185X.2012.00225.x; van Kleunen M, 2005, NEW PHYTOL, V166, P49, DOI 10.1111/j.1469-8137.2004.01296.x; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Wagmann K, 2010, GENETICA, V138, P763, DOI 10.1007/s10709-010-9457-9 48 27 27 2 76 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JUN 2014 27 6 1047 1056 10.1111/jeb.12378 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ2VP WOS:000337522700005 24739081 2019-02-21 J Liao, WB; Lu, X; Jehle, R Liao, W. B.; Lu, X.; Jehle, R. Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andrew's toad JOURNAL OF ZOOLOGY English Article Bufo andrewsi; differentiation; reproductive output; trade-offs LIFE-HISTORY TRAITS; FROG BOMBINA-ORIENTALIS; GEOGRAPHIC-VARIATION; RANA-TEMPORARIA; NATURAL-SELECTION; BERGMANNS RULE; BODY-SIZE; ENVIRONMENTAL-QUALITY; LATITUDINAL VARIATION; REPRODUCTIVE OUTPUT Environmental variation along altitudinal gradients can promote life-history trait differentiation in ectothermic animals. Life-history theory predicts that increased environmental stress results in a shift in reproductive allocation from offspring quantity to quality and a stronger trade-off between egg size and clutch size. To test this prediction, we investigated patterns of variation in life-history traits (i.e. age, body size, clutch size and egg size) among four populations of Bufo andrewsi from Baoxing County, western China, at different altitudes. We found that body size, age, egg size and total reproductive output, but not clutch size, differed between populations. Clutch size and total reproductive output increased with female size and age. However, egg size decreased with female size and did not change with female age. The egg size and clutch size trade-off was evident for all populations except at lowest altitude, and the strength of trade-off between egg size and clutch size increased with altitude. Our findings suggest that environmental constraints at high altitude select for investment in larger eggs at a cost of offspring number. [Liao, W. B.] China West Normal Univ, Inst Rare Anim & Plants, Nanchong 637000, Peoples R China; [Liao, W. B.] Univ Helsinki, Dept Biol & Environm Sci, Ecol Genet Res Unit, Helsinki, Finland; [Lu, X.] Wuhan Univ, Dept Zool, Coll Life Sci, Wuhan 430072, Peoples R China; [Jehle, R.] Univ Salford, Sch Environm & Life Sci, Salford M5 4WT, Lancs, England Liao, WB (reprint author), China West Normal Univ, Inst Rare Anim & Plants, 1 Shida Rd, Nanchong 637000, Peoples R China. liaobo_0_0@126.com National Natural Science Foundation of China [31101633]; Sichuan Province Outstanding Youth Academic Technology Leaders Program [2013JQ0016]; Innovative Team Foundation of China West Normal University We are thankful to Professor Juha Merila from University of Helsinki and Dr Jun Hua Hu from Chengdu Institute of Biology, Chinese Academic of Science for the helpful comments in the paper. Financial support was provided by the National Natural Science Foundation of China (31101633), Sichuan Province Outstanding Youth Academic Technology Leaders Program (2013JQ0016) and the Innovative Team Foundation of China West Normal University. All animals used in the study were treated humanely and ethically following all animal care guidelines applicable in China. Altwegg R, 2003, EVOLUTION, V57, P872; Armbruster P, 2001, EVOLUTION, V55, P439; Ashton KG, 2000, AM NAT, V156, P390, DOI 10.1086/303400; Ashton KG, 2002, GLOBAL ECOL BIOGEOGR, V11, P505, DOI 10.1046/j.1466-822X.2002.00313.x; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; BERVEN KA, 1983, AM ZOOL, V23, P85; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Czarnoleski M, 1998, ECOL LETT, V1, P5, DOI 10.1046/j.1461-0248.1998.0007b.x; Duellman W. E., 1986, BIOL AMPHIBIANS; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; ELMBERG J, 1991, FUNCT ECOL, V5, P340, DOI 10.2307/2389805; Fei L., 2001, COLOUR HDB AMPHIBIAN; FLEMING IA, 1990, ECOLOGY, V71, P1, DOI 10.2307/1940241; Frost DR, 2013, AMPHIBIAN SPECIES WO; HOWARD JH, 1985, AM MIDL NAT, V113, P361, DOI 10.2307/2425582; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jorgensen C. Barker, 1992, P439; Kaplan RH, 2006, EVOLUTION, V60, P142; Kaplan RH, 1997, HERPETOLOGICA, V53, P149; Komoroski MJ, 1998, PHYSIOL ZOOL, V71, P633, DOI 10.1086/515989; Kozowska M., 1971, ACTA BIOL CRACOV Z, V14, P17; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Liao WB, 2011, BEHAVIOUR, V148, P1087, DOI 10.1163/000579511X589848; Liao WB, 2011, ANIM BIOL, V61, P263, DOI 10.1163/157075511X584218; Liao WB, 2010, HERPETOL J, V20, P77; Liao WB, 2010, ZOOL ANZ, V248, P255, DOI 10.1016/j.jcz.2009.10.002; Liao WB, 2009, BEHAV PROCESS, V82, P100, DOI 10.1016/j.beproc.2009.04.005; Liao WB, 2012, EVOL ECOL, V26, P579, DOI 10.1007/s10682-011-9501-y; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Lu X, 2004, HERPETOL J, V14, P9; Lu X, 2006, CAN J ZOOL, V84, P1789, DOI 10.1139/Z06-180; Luddecke H, 2002, OECOLOGIA, V130, P403, DOI 10.1007/s00442-001-0820-5; Ma X, 2009, J ZOOL, V279, P364, DOI 10.1111/j.1469-7998.2009.00627.x; Macey JR, 1998, MOL PHYLOGENET EVOL, V9, P80, DOI 10.1006/mpev.1997.0440; Merila J, 2000, ECOSCIENCE, V7, P18, DOI 10.1080/11956860.2000.11682566; Miaud C, 1999, J ZOOL, V249, P61, DOI 10.1111/j.1469-7998.1999.tb01060.x; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Oromi N, 2012, ZOOLOGY, V115, P30, DOI 10.1016/j.zool.2011.08.003; PARICHY DM, 1992, OECOLOGIA, V91, P579, DOI 10.1007/BF00650334; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Rasanen K, 2005, OECOLOGIA, V142, P546, DOI 10.1007/s00442-004-1762-5; Rasanen K, 2008, ECOLOGY, V89, P2553, DOI 10.1890/07-0168.1; Rensch B., 1950, Bonner Zoologische Beitraege, V1, P58; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; RIHA VF, 1991, COPEIA, P209, DOI 10.2307/1446264; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Sacchi R, 2007, AMPHIBIA-REPTILIA, V28, P43, DOI 10.1163/156853807779799117; SEIGEL RA, 1992, FUNCT ECOL, V6, P382, DOI 10.2307/2389275; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stearns S, 1992, EVOLUTION LIFE HIST; TEJEDO M, 1992, OECOLOGIA, V90, P294, DOI 10.1007/BF00317189; Wang YJ, 2011, ASIAN HERPETOL RES, V2, P97, DOI 10.3724/SP.J.1245.2011.00097; WELLS KD, 1977, ANIM BEHAV, V25, P666, DOI 10.1016/0003-3472(77)90118-X; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILLIAMSON I, 1995, COPEIA, P105 61 21 23 0 39 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. JUN 2014 293 2 84 91 10.1111/jzo.12122 8 Zoology Zoology AJ2WP WOS:000337525500003 2019-02-21 J Kopf, SM; Humphries, P; Watts, RJ Kopf, S. M.; Humphries, P.; Watts, R. J. Ontogeny of critical and prolonged swimming performance for the larvae of six Australian freshwater fish species JOURNAL OF FISH BIOLOGY English Article 0+year fishes; dispersal; larval development; life-history strategy; rivers CORAL-REEF FISHES; DARLING RIVER SYSTEM; LIFE-HISTORY; SOCKEYE-SALMON; POPULATION REGULATION; ECOLOGICAL RELEVANCE; REGULATED RIVERS; MICROHABITAT USE; MARINE FISHES; FLOW REGIMES Critical (<30min) and prolonged (>60min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46 center dot 4cms-1 and 44 center dot 6 relative body lengths (LB) s-1] and prolonged (maximum 15 center dot 4cms-1, 15 center dot 6 LB s-1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0 center dot 1cms-1, 0 center dot 3 LB s-1) and prolonged swimming speeds (minimum 1 center dot 1cms-1, 1 center dot 0 LB s-1). Prolonged swimming trials determined that the larvae of some species could not swim for 60min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60min at 44% of the critical speed. The swimming performance of species with precocial life-history strategies, with well-developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life-history strategies, with poorly developed larvae at hatch. (C) 2014 The Fisheries Society of the British Isles [Kopf, S. M.; Humphries, P.; Watts, R. J.] Charles Sturt Univ, Inst Land Water & Soc, Albury, NSW 2640, Australia Kopf, SM (reprint author), Charles Sturt Univ, Inst Land Water & Soc, Albury, NSW 2640, Australia. skopf@csu.edu.au Inland Fisheries Department of Primary Industries (DPI) Narrandera, New South Wales; Water for Rivers as part of a PhD scholarship The authors thank J. Leis from the Australian Museum for use of a flume, invaluable advice throughout this study and comments on previous versions of this manuscript. They also thank the Inland Fisheries Department of Primary Industries (DPI) Narrandera, New South Wales, especially M. McLellan for support, larvae and laboratory space. They convey many thanks to N. McCasker for help with analysing data. This research was funded by Water for Rivers as part of a PhD scholarship for S. M. K. and approved by Animal Care and Ethics Committee (Reference No. 08/102). Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; BAIN MB, 1988, ECOLOGY, V69, P382, DOI 10.2307/1940436; Balcombe SR, 2006, MAR FRESHWATER RES, V57, P619, DOI 10.1071/MF06025; BALON EK, 1981, AM ZOOL, V21, P573; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BALON EK, 1986, ENVIRON BIOL FISH, V16, P11, DOI 10.1007/BF00005156; BARLOW GW, 1981, ENVIRON BIOL FISH, V6, P65, DOI 10.1007/BF00001801; Beamish F. W. H., 1978, FISH PHYSIOL, P101, DOI [DOI 10.1016/S1546-5098(08)60164-8, 10.1016/S1546-5098(08)60164-8]; Borja A, 2002, FISH OCEANOGR, V11, P116, DOI 10.1046/j.1365-2419.2002.00190.x; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Cadwallader P.L., 1979, Australian Fisheries, V38, P9; Clark DL, 2005, MAR ECOL PROG SER, V292, P287, DOI 10.3354/meps292287; COPP GH, 1992, ENVIRON BIOL FISH, V33, P181, DOI 10.1007/BF00002563; Cowx I. G., 1998, REHABILITATION RIVER; Domenici P, 2001, COMP BIOCHEM PHYS A, V131, P169, DOI 10.1016/S1095-6433(01)00465-2; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Fisher R, 2000, MAR ECOL PROG SER, V202, P163, DOI 10.3354/meps202163; FLOYD KB, 1984, T AM FISH SOC, V113, P217, DOI 10.1577/1548-8659(1984)113<217:COAAHP>2.0.CO;2; FUIMAN LA, 2002, FISHERY SCI UNIQUE C; Garner P, 1999, ECOL FRESHW FISH, V8, P55, DOI 10.1111/j.1600-0633.1999.tb00053.x; Gehrke PC, 1995, REGUL RIVER, V11, P363, DOI 10.1002/rrr.3450110310; HAMMER C, 1995, COMP BIOCHEM PHYS A, V112, P1, DOI 10.1016/0300-9629(95)00060-K; Harris J. H., 1994, AGR SYSTEMS INFORMAT, V6, P28; Harris J. H., 1996, FRESHWATER FISHES SE, P150; Hauer FR, 2004, AQUAT SCI, V66, P388, DOI 10.1007/s00027-004-0724-7; Hickford MJH, 2003, MAR ECOL PROG SER, V252, P255, DOI 10.3354/meps252255; HOUDE ED, 1969, J FISH RES BOARD CAN, V26, P1647, DOI 10.1139/f69-148; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Humphries P, 2006, RIVER RES APPL, V22, P525, DOI 10.1002/rra.920; Humphries P, 2005, ENVIRON BIOL FISH, V72, P393, DOI 10.1007/s10641-004-2596-z; Humphries P, 2002, FRESHWATER BIOL, V47, P1307, DOI 10.1046/j.1365-2427.2002.00871.x; Ingram B. A., 1992, AQUACULTURE FISHERIE, V24, P7; Jones GP, 2005, CURR BIOL, V15, P1314, DOI 10.1016/j.cub.2005.06.061; Kamler E, 2002, REV FISH BIOL FISHER, V12, P79, DOI 10.1023/A:1022603204337; Kelso William E., 1996, P255; Kieffer JD, 2000, COMP BIOCHEM PHYS A, V126, P161, DOI 10.1016/S1095-6433(00)00202-6; King AJ, 2009, RIVER RES APPL, V25, P1205, DOI 10.1002/rra.1209; King AJ, 2004, J FISH BIOL, V65, P1582, DOI 10.1111/j.1095-8649.2004.00567.x; Koehn JD, 2006, RIVER RES APPL, V22, P327, DOI 10.1002/rra.897; Korman J, 2004, RIVER RES APPL, V20, P379, DOI 10.1002/rra.749; LAKE JS, 1967, AUST J MAR FRESH RES, V18, P137, DOI 10.1071/MF9670137; LASKER R, 1981, MARINE FISH LARVAE M, P80; Lechner A, 2014, ECOHYDROLOGY, V7, P648, DOI 10.1002/eco.1386; Leis JM, 2007, MAR ECOL PROG SER, V349, P255, DOI 10.3354/meps07107; Leis JM, 1997, MAR ECOL PROG SER, V159, P165, DOI 10.3354/meps159165; Leis JM, 1999, PROCEEDINGS OF THE 5TH INDO-PACIFIC FISH CONFERENCE, P575; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; Mallen-Cooper M, 2003, RIVER RES APPL, V19, P697, DOI 10.1002/rra.714; Muller UK, 2001, J EXP BIOL, V204, P2751; Murchie KJ, 2008, RIVER RES APPL, V24, P197, DOI 10.1002/rra.1058; Ojanguren AF, 2000, J FISH BIOL, V56, P1342, DOI 10.1006/jfbi.2000.1253; Patterson DA, 2004, CAN J FISH AQUAT SCI, V61, P1225, DOI 10.1139/F04-076; PAVLOV DS, 1994, FOLIA ZOOL, V43, P193; Plaut I, 2001, COMP BIOCHEM PHYS A, V131, P41, DOI 10.1016/S1095-6433(01)00462-7; Reichard M, 2004, J FRESHWATER ECOL, V19, P465, DOI 10.1080/02705060.2004.9664921; SCHEIDEGGER KJ, 1995, COPEIA, P125; Schiller CB, 2001, RIVERS ECOLOGICAL SY, P229; Schludermann E, 2012, CAN J FISH AQUAT SCI, V69, P1302, DOI 10.1139/F2012-061; SECOR DH, 1992, PROG FISH CULT, V54, P202, DOI 10.1577/1548-8640(1992)054<0202:TNMOTQ>2.3.CO;2; Stobutzki IC, 1998, CORAL REEFS, V17, P111, DOI 10.1007/s003380050104; Stobutzki IC, 1997, MAR ECOL PROG SER, V149, P35, DOI 10.3354/meps149035; WALKER KF, 1993, REGUL RIVER, V8, P103, DOI 10.1002/rrr.3450080114; Webb P.W., 1984, Scientific American, V251, P58; Webb PW, 1975, B FISH RES BOARD CAN, V190, P1; Wieser W, 1998, J EXP BIOL, V201, P1369; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wolter C, 2003, REV FISH BIOL FISHER, V13, P63, DOI 10.1023/A:1026350223459; Wolter C, 2008, RIVER RES APPL, V24, P661, DOI 10.1002/rra.1146; Wootton R. J., 1990, ECOLOGY TELEOST FISH; Zitek A, 2004, J FISH BIOL, V65, P1319, DOI 10.1111/j.1095-8649.2004.00533.x 72 8 8 1 29 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. JUN 2014 84 6 1820 1841 10.1111/jfb.12399 22 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AJ3VM WOS:000337596000012 24814314 2019-02-21 J Kovach, RP; Joyce, JE; Vulstek, SC; Barrientos, EM; Tallmon, DA Kovach, Ryan P.; Joyce, John E.; Vulstek, Scott C.; Barrientos, Evan M.; Tallmon, David A. Variable effects of climate and density on the juvenile ecology of two salmonids in an Alaskan lake CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY VARIATION; SOCKEYE-SALMON; FRESH-WATER; ONCORHYNCHUS-NERKA; ATLANTIC SALMON; CHINOOK SALMON; MARINE SURVIVAL; BETA REGRESSION; PINK SALMON; BODY-SIZE Despite concerns over rapidly warming temperatures, an empirical understanding of climatic impacts on wild salmonid populations is limited. We tested how temperature and density affected juvenile coho (Oncorhynchus kisutch) and sockeye salmon (Oncorhynchus nerka) using a 31 year census from an Alaskan lake. There were positive effects of temperature on overall salmon biomass, sockeye biomass, and the length of age 2 sockeye smolts. There was, however, little evidence for relationships between temperature or length of growing season and coho biomass, coho length, smolts per spawner (both species), and age structure (both species). In some cases there were temporal changes contrary to what is generally expected in a warming Alaskan lake with longer growing seasons (e. g., increasing proportions of age 2 smolts). Intraspecific density was negatively related to sockeye length at out-migration, but there was no evidence for relationships between density and other response variables. Overall, patterns observed here and in other studies emphasize that responses to climatic variation can vary substantially across locations, between similar species occupying the same habitats, and among alternative life history strategies within populations. [Kovach, Ryan P.; Tallmon, David A.] Univ Alaska Fairbanks, Inst Arctic Biol, Dept Biol & Wildlife, Fairbanks, AK 99775 USA; [Joyce, John E.; Vulstek, Scott C.] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Juneau, AK 99801 USA; [Barrientos, Evan M.; Tallmon, David A.] Univ Alaska Southeast, Biol & Marine Biol Program, Juneau, AK 99801 USA; [Barrientos, Evan M.] Cornell Univ, Dept Nat Resources, Coll Agr & Life Sci, Ithaca, NY 14853 USA Kovach, RP (reprint author), Univ Montana, Flathead Biol Stn, 32111 BioStn Lane, Polson, MT 59860 USA. rpkovach@gmail.com North Pacific Research Board [1110]; National Oceanic and Atmospheric Administration, U.S. Department of Commerce [45965]; Alaska NSF EPSCoR Graduate Research Fellowship; NSF REU program We thank S. Taylor, J. Echave, and the Alaska Department of Fish and Game for collecting much of these data and three anonymous reviewers for their helpful comments. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of the National Oceanic and Atmospheric Administration, the U.S. Department of Commerce, or the Alaska Department of Fish and Game. This research was prepared by R.P.K. and D.A.T. under North Pacific Research Board project 1110 (publication number 472) and award 45965 from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, administered by the Alaska Department of Fish and Game. R. P. K. was also supported by an Alaska NSF EPSCoR Graduate Research Fellowship, and E. M. B. was supported by the NSF REU program. Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Almodovar A, 2012, GLOBAL CHANGE BIOL, V18, P1549, DOI 10.1111/j.1365-2486.2011.02608.x; Armstrong JB, 2013, ECOLOGY, V94, P2066, DOI 10.1890/12-1200.1; BRETT JR, 1969, J FISH RES BOARD CAN, V26, P2363, DOI 10.1139/f69-230; BRETT JR, 1971, AM ZOOL, V11, P99; Bucurla G.P., 1968, THESIS OREGON STATE; Burnham K. P, 2002, MODEL SELECTION MULT; Carlson SM, 2011, CAN J FISH AQUAT SCI, V68, P1579, DOI 10.1139/F2011-084; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Chen Z, 2013, CAN J ZOOL, V91, P265, DOI 10.1139/cjz-2012-0300; Cribari-Neto F, 2010, J STAT SOFTW, V34, P1; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Crozier L, 2006, J ANIM ECOL, V75, P1100, DOI 10.1111/j.1365-2656.2006.01130.x; Crozier LG, 2010, J ANIM ECOL, V79, P342, DOI 10.1111/j.1365-2656.2009.01641.x; Deutsch CA, 2008, P NATL ACAD SCI USA, V105, P6668, DOI 10.1073/pnas.0709472105; Ebersole JL, 2006, T AM FISH SOC, V135, P1681, DOI 10.1577/T05-144.1; Edmundson A.J., 2001, T AM FISH SOC, V130, P644, DOI [10.1577/1548-8659(2001)130<0644:LGOJSS>2.0.CO;2, DOI 10.1577/1548-8659(2001)130<0644:LGOJSS>2.0.CO;2]; Eliason EJ, 2011, SCIENCE, V332, P109, DOI 10.1126/science.1199158; Ferrari SLP, 2004, J APPL STAT, V31, P799, DOI 10.1080/0266476042000214501; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Finstad AG, 2012, MAR ECOL PROG SER, V454, P75, DOI 10.3354/meps09643; Fukushima M, 1998, CAN J FISH AQUAT SCI, V55, P618, DOI 10.1139/cjfas-55-3-618; Fukushima M, 1998, T AM FISH SOC, V127, P253, DOI 10.1577/1548-8659(1998)127<0253:SHSOSS>2.0.CO;2; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; Griffiths JR, 2012, ECOL FRESHW FISH, V21, P349, DOI 10.1111/j.1600-0633.2012.00555.x; Groot C., 1991, PACIFIC SALMON LIFE; Heino J, 2009, BIOL REV, V84, P39, DOI 10.1111/j.1469-185X.2008.00060.x; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; HOLTBY LB, 1990, CAN J FISH AQUAT SCI, V47, P2181, DOI 10.1139/f90-243; Isaak DJ, 2003, CAN J FISH AQUAT SCI, V60, P840, DOI 10.1139/F03-073; Jackson JK, 2006, FRESHWATER BIOL, V51, P591, DOI 10.1111/j.1365-2427.2006.01503.x; Kovach RP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053807; Mangel M, 2008, B MAR SCI, V83, P107; Martins EG, 2012, REV FISH BIOL FISHER, V22, P887, DOI 10.1007/s11160-012-9271-9; Mcphee MV, 2012, CURR ZOOL, V58, P21, DOI 10.1093/czoolo/58.1.21; Moore JW, 2010, CONSERV LETT, V3, P340, DOI 10.1111/j.1755-263X.2010.00119.x; Morita K, 2010, OIKOS, V119, P1265, DOI 10.1111/j.1600-0706.2009.18125.x; Otero J, 2012, ECOL EVOL, V2, P2192, DOI 10.1002/ece3.337; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Pinheiro J, 2010, NLME LINEAR NONLINEA; Post E, 2009, BIOSCIENCE, V59, P489, DOI 10.1525/bio.2009.59.6.7; Quinn TP, 1996, CAN J FISH AQUAT SCI, V53, P1555, DOI 10.1139/cjfas-53-7-1555; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Core Team, 2010, R LANG ENV STAT COMP; Reed TE, 2013, SCIENCE, V340, P488, DOI 10.1126/science.1232870; Rich HB, 2009, CAN J FISH AQUAT SCI, V66, P238, DOI 10.1139/F08-210; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Rogers LA, 2011, GLOBAL CHANGE BIOL, V17, P2546, DOI 10.1111/j.1365-2486.2011.02415.x; Russell IC, 2012, ICES J MAR SCI, V69, P1563, DOI 10.1093/icesjms/fsr208; Scheuerell MD, 2003, ECOLOGY, V84, P1713, DOI 10.1890/0012-9658(2003)084[1713:DVMBJS]2.0.CO;2; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2005, ECOLOGY, V86, P198, DOI 10.1890/03-0408; Sheridan JA, 2011, NAT CLIM CHANGE, V1, P401, DOI 10.1038/NCLIMATE1259; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Vincenzi S, 2012, REV FISH BIOL FISHER, V22, P813, DOI 10.1007/s11160-011-9247-1; Williams JG, 2008, EVOL APPL, V1, P271, DOI 10.1111/j.1752-4571.2008.00027.x; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151; Xu CL, 2010, FRESHWATER BIOL, V55, P2253, DOI 10.1111/j.1365-2427.2010.02430.x; Zabel RW, 2004, ECOLOGY, V85, P795, DOI 10.1890/02-0719 60 4 5 1 39 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JUN 2014 71 6 799 807 10.1139/cjfas-2013-0577 9 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology AI7UT WOS:000337106500002 2019-02-21 J Krams, I; Vrublevska, J; Koosa, K; Krama, T; Mierauskas, P; Rantala, MJ; Tilgar, V Krams, Indrikis; Vrublevska, Jolanta; Koosa, Kaarin; Krama, Tatjana; Mierauskas, Pranas; Rantala, Markus J.; Tilgar, Vallo Hissing calls improve survival in incubating female great tits (Parus major) ACTA ETHOLOGICA English Article Hissing call; Nest defense; Female mortality; Antipredator behavior; Great tit LIFE-HISTORY EVOLUTION; CAVITY-NESTING BIRDS; PARENT BIRDS; REALIZED HERITABILITY; EXPLORATORY-BEHAVIOR; AVIAN PERSONALITIES; PIED FLYCATCHER; PREDATION RISK; STRATEGIES; REPEATABILITY Nest predation is among the most important selective pressure shaping nest-site selection and nest defense behavior in many avian species. In this study, we tested whether the production of one such nest defense behavior-hissing calls-may improve survival of incubating female great tits (Parus major). We found that 72.5 % of incubating females gave hissing calls when they were exposed to a stuffed woodpecker in their nest boxes. The repeatability of the number of hissing calls given was high, as was the latency to give the call. Additionally, natural nest predators attacked hissing and nonhissing females equally often. However, hissing females survived better than silent females. We tested responses of feral cats to playbacks of hissing call during their attacks of nest boxes and found that hissing calls prevented the predator attacks. Taken together, our findings indicate that hissing calls can deter predator attacks and potentially increase survival rates of nesting great tits or their offspring, or both. The propensity to give hissing calls may be related to personality type of incubating female great tits, which needs to be tested experimentally. [Krams, Indrikis; Vrublevska, Jolanta; Krama, Tatjana] Univ Daugavpils, Inst Systemat Biol, LV-5401 Daugavpils, Latvia; [Krams, Indrikis; Koosa, Kaarin; Tilgar, Vallo] Univ Tartu, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia; [Mierauskas, Pranas] Mykolas Romeris Univ, Ctr Environm Management, LT-08303 Vilnius, Lithuania; [Rantala, Markus J.] Univ Turku, Dept Biol, Turku 20024, Finland Krams, I (reprint author), Univ Daugavpils, Inst Systemat Biol, LV-5401 Daugavpils, Latvia. indrikis.krams@ut.ee Latvian Council of Science [09.11.86]; Daugavpils University [2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015]; Estonian Ministry of Education and Science [0180004 s09]; European Union through the European Regional Development Fund (Center of Excellence FIBIR) This work was supported by research grant 09.11.86 of Latvian Council of Science T. K. and I. K. Social Fund within the project "Support for the implementation of doctoral studies at Daugavpils University" Nr.2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015 supported J.V. V. T. was supported by the Estonian Ministry of Education and Science (target-financing project number 0180004 s09) and the European Union through the European Regional Development Fund (Center of Excellence FIBIR). The experiments comply with the current laws of the Republic of Latvia and Estonia. We thank Todd M. Freeberg for comments on the manuscript and the sonogram. Allander K, 1997, FUNCT ECOL, V11, P358, DOI 10.1046/j.1365-2435.1997.00095.x; APEL KM, 1986, WILSON BULL, V98, P320; Beauchamp G, 2003, BEHAV PROCESS, V63, P141, DOI 10.1016/S0376-6357(03)00011-1; Branch CL, 2012, BEHAV ECOL, V23, P854, DOI 10.1093/beheco/ars041; Caro T., 2005, ANTIPREDATOR DEFENSE; CRAMP S, 1994, BIRDS W PALEARCTIC; Czeszczewik D, 2008, CAN J ZOOL, V86, P286, DOI 10.1139/Z07-139; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; Ellison K, 2012, 252 USGS NO PRAIR WI; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Haff TM, 2013, ANIM BEHAV, V85, P411, DOI 10.1016/j.anbehav.2012.11.016; Haff TM, 2011, BIOL LETTERS, V7, P493, DOI 10.1098/rsbl.2010.1125; Hartke KM, 2006, CONDOR, V108, P201, DOI 10.1650/0010-5422(2006)108[0201:SOVISO]2.0.CO;2; Igaune K, 2008, J AVIAN BIOL, V39, P229, DOI 10.1111/j.2008.0908-8857.04180.x; Kelley LA, 2008, ANIM BEHAV, V76, P521, DOI 10.1016/j.anbehav.2008.04.012; Krama T, 2005, BEHAV ECOL, V16, P37, DOI 10.1093/beheco/arh116; Krams I, 1998, J AVIAN BIOL, V29, P55, DOI 10.2307/3677341; Krams I, 2007, BEHAV ECOL, V18, P1082, DOI 10.1093/beheco/arm079; Krams I, 2013, OECOLOGIA, V172, P339, DOI 10.1007/s00442-012-2505-7; Krams I, 2013, ETHOLOGY, V119, P397, DOI 10.1111/eth.12075; Krams I, 2011, J ORNITHOL, V152, P889, DOI 10.1007/s10336-011-0672-7; Krams I, 2010, FUNCT ECOL, V24, P172, DOI 10.1111/j.1365-2435.2009.01628.x; Krause J., 2002, LIVING GROUPS; Labra A, 2007, COPEIA, P1019, DOI 10.1643/0045-8511(2007)7[1019:HSBTLP]2.0.CO;2; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lohrl H, 1964, J ORNITHOL, V105, P151; Low M, 2010, J ANIM ECOL, V79, P214, DOI 10.1111/j.1365-2656.2009.01595.x; Lundberg A., 1992, PIED FLYCATCHER; Magrath RD, 2010, ADV STUD BEHAV, V41, P187, DOI 10.1016/S0065-3454(10)41006-2; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Moe B, 2002, J AVIAN BIOL, V33, P225, DOI 10.1034/j.1600-048X.2002.330304.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; NILSSON SG, 1984, ORNIS SCAND, V15, P167, DOI 10.2307/3675958; ORELL M, 1989, IBIS, V131, P112, DOI 10.1111/j.1474-919X.1989.tb02750.x; Owings DH, 2002, J COMP PSYCHOL, V116, P197, DOI 10.1037//0735-7036.116.2.197; Perrins CM, 1979, BRIT TITS; Quinn JL, 2005, BEHAVIOUR, V142, P1377, DOI 10.1163/156853905774539391; Rainey MM, 2007, ECOLOGY, V88, P2440, DOI 10.1890/06-1717.1; Ricklefs R. E., 1969, ANAL NESTING MORTALI; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rytkonen S, 2003, J AVIAN BIOL, V34, P288, DOI 10.1034/j.1600-048X.2003.03041.x; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; SIBLEY CHARLES G., 1955, WILSON BULL, V67, P128; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; SOLHEIM R, 1984, ANN ZOOL FENN, V21, P301; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TRIVERS RL, 1974, AM ZOOL, V14, P249; van den Brink V, 2012, BEHAV ECOL, V23, P473, DOI 10.1093/beheco/arr213; van Oers K, 2004, P ROY SOC B-BIOL SCI, V271, P65, DOI 10.1098/rspb.2003.2518; VEHRENCAMP SL, 1978, BEHAV ECOL SOCIOBIOL, V4, P1, DOI 10.1007/BF00302558; Verbeek MEM, 1996, BEHAVIOUR, V133, P945, DOI 10.1163/156853996X00314; VERBEEK MEM, 1994, ANIM BEHAV, V48, P1113, DOI 10.1006/anbe.1994.1344; Wesolowski T, 2002, IBIS, V144, P593, DOI 10.1046/j.1474-919X.2002.00087.x 59 9 9 3 56 SPRINGER HEIDELBERG HEIDELBERG TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY 0873-9749 1437-9546 ACTA ETHOL Acta Ethol. JUN 2014 17 2 83 88 10.1007/s10211-013-0163-3 6 Behavioral Sciences; Zoology Behavioral Sciences; Zoology AH6UW WOS:000336268200004 2019-02-21 J Steiner, UK; Tuljapurkar, S; Coulson, T Steiner, Ulrich K.; Tuljapurkar, Shripad; Coulson, Tim Generation Time, Net Reproductive Rate, and Growth in Stage-Age-Structured Populations AMERICAN NATURALIST English Article survival; life-history evolution; population projection; biodemography; age-stage structure; multistate models INTEGRAL PROJECTION MODELS; LIFE-HISTORY; QUANTITATIVE GENETICS; DYNAMIC HETEROGENEITY; VARIABLE ENVIRONMENT; BODY-SIZE; EVOLUTION; DEMOGRAPHY; CONTINUUM Major insights into the relationship between life-history features and fitness have come from Lotka's proof that population growth rate is determined by the level (expected amount) of reproduction and the average timing of reproduction of an individual. But this classical result is limited to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (T-c) that, along with net reproductive rate (R-0), has a direct mathematical relationship to and approximates growth rate (r). We use simple examples to show how reproductive timing T-c and level R-0 are shaped by stage dynamics (individual trait changes), selection on the trait, and parent-offspring phenotypic correlation. We also show how population structure can affect dispersion in reproduction among ages and stages. These macroscopic features of the life history determine population growth rate r and reveal a complex interplay of trait dynamics, timing, and level of reproduction. Our results contribute to a new framework of population and evolutionary dynamics in stage-and-age-structured populations. [Steiner, Ulrich K.] Univ Southern Denmark, Dept Biol, Max Planck Odense Ctr Biodemog Aging, DK-5230 Odense, Denmark; [Steiner, Ulrich K.] INSERM, U1001, F-75014 Paris, France; [Steiner, Ulrich K.; Tuljapurkar, Shripad] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Coulson, Tim] Univ Oxford, Dept Zool, Oxford OX1 3PS, England Steiner, UK (reprint author), Univ Southern Denmark, Dept Biol, Max Planck Odense Ctr Biodemog Aging, 55 Campusvej, DK-5230 Odense, Denmark. usteiner@biology.sdu.dk Steiner, Ulrich/C-7099-2015 Steiner, Ulrich/0000-0002-1778-5989; Coulson, Tim/0000-0001-9371-9003 National Institute on Aging [P01-AG0225000-01]; Max Planck Society; Marie-Curie Intra-European Fellowship [PIEF-GA-2009-235205]; Natural Environment Research Council [NE/E015921/1, NE/K014218/1, NE/I023791/1, NE/G004390/1, NE/I023791/2, NE/H007148/2, NE/I023783/2, NE/I023783/1, NE/G004390/2, NE/H007148/1, 1221700, 1136795] We were supported by the National Institute on Aging (grant P01-AG0225000-01), the Max Planck Society, and a Marie-Curie Intra-European Fellowship (PIEF-GA-2009-235205). We thank J.-M. Gaillard, C. Horvitz, W. F. Morris, and two anonymous referees for valuable discussion and comments. Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blanckenhorn W. U., 2005, EVOL ECOL, V18, P385, DOI DOI 10.1007/S10682-004-2680-Z; Blanckenhorn WU, 2000, Q REV BIOL, V75, P385, DOI 10.1086/393620; BRAULT S, 1993, ECOLOGY, V74, P1444, DOI 10.2307/1940073; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2012, THEOR ECOL-NETH, V5, P403, DOI 10.1007/s12080-011-0132-2; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Childs DZ, 2004, P ROY SOC B-BIOL SCI, V271, P425, DOI 10.1098/rspb.2003.2597; COALE AI, 1972, GROWTH STRUCTURE HUM; COCHRAN ME, 1992, ECOL MONOGR, V62, P345, DOI 10.2307/2937115; COHEN JE, 1979, SIAM J APPL MATH, V36, P169, DOI 10.1137/0136015; Cooper N, 2010, AM NAT, V175, P727, DOI 10.1086/652466; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; De-Camino-Beck T, 2008, AM NAT, V172, P128, DOI 10.1086/588060; Diekmann O., 2000, MATH EPIDEMIOLOGY IN, V5; DOAK D, 1994, ECOL APPL, V4, P446, DOI 10.2307/1941949; Dublin LI, 1925, J AM STAT ASSOC, V20, P305, DOI 10.2307/2965517; Ellner SP, 2006, AM NAT, V167, P410, DOI 10.1086/499438; Ellner SP, 2007, J MATH BIOL, V54, P227, DOI 10.1007/s00285-006-0044-8; Endler J. A., 1986, NATURAL SELECTION WI; Evans AR, 2012, P NATL ACAD SCI USA, V109, P4187, DOI 10.1073/pnas.1120774109; Fisher RA, 1927, EUGEN REV, V19, P103; Fisher RA, 1930, GENETICAL THEORY NAT; Hernandez-Suarez CM, 2011, OIKOS, V120, P159, DOI 10.1111/j.1600-0706.2010.18789.x; Hoffmann WA, 1999, ECOLOGY, V80, P1354, DOI 10.1890/0012-9658(1999)080[1354:FAPDOW]2.0.CO;2; Horvitz CC, 2008, AM NAT, V172, P203, DOI 10.1086/589453; HU SXS, 1995, ECOLOGY, V76, P2278, DOI 10.2307/1941702; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; Keyfitz N, 1977, INTRO MATH POPULATIO; Le Bras H, 1971, Theor Popul Biol, V2, P100, DOI 10.1016/0040-5809(71)90008-6; Lebreton JD, 1996, THEOR POPUL BIOL, V49, P291, DOI 10.1006/tpbi.1996.0015; Lebreton JD, 2005, ECOL MODEL, V188, P22, DOI 10.1016/j.ecolmodel.2005.05.003; MAY RM, 1976, AM NAT, V110, P496, DOI 10.1086/283085; Preston S. H., 2012, 18407 NAT BUR EC RES; Roff Derek A., 1992; Rogers A, 1975, INTRO MULTIREGIONAL; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stearns S, 1992, EVOLUTION LIFE HIST; Steiner U. K., 2014, AM NATURALIST; Steiner UK, 2012, EXP GERONTOL, V47, P773, DOI 10.1016/j.exger.2012.05.015; Steiner UK, 2010, J ANIM ECOL, V79, P436, DOI 10.1111/j.1365-2656.2009.01653.x; Tuljapurkar S, 2012, THEOR POPUL BIOL, V82, P241, DOI 10.1016/j.tpb.2012.10.007; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Tuljapurkar S, 2009, ECOL LETT, V12, P93, DOI 10.1111/j.1461-0248.2008.01262.x 46 15 15 1 68 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1 2014 183 6 771 783 10.1086/675894 13 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AG9EH WOS:000335721700005 24823821 2019-02-21 J Monro, K; Marshall, DJ Monro, Keyne; Marshall, Dustin J. Faster Is Not Always Better: Selection on Growth Rate Fluctuates across Life History and Environments AMERICAN NATURALIST English Article succession; individual fitness; life-history evolution; competition; age-specific growth PHENOTYPIC SELECTION; TRADE-OFFS; COLONIAL INVERTEBRATES; NONGENETIC INHERITANCE; ADAPTIVE SIGNIFICANCE; INDIVIDUAL VARIATION; GENETIC CORRELATIONS; EVOLUTION; SIZE; POPULATION Growth rate is increasingly recognized as a key life-history trait that may affect fitness directly rather than evolve as a by-product of selection on size or age. An ongoing challenge is to explain the abundant levels of phenotypic and genetic variation in growth rates often seen in natural populations, despite what is expected to be consistently strong selection on this trait. Such a paradox suggests limits to how contemporary growth rates evolve. We explored limits arising from variation in selection, based on selection differentials for age-specific growth rates expressed under different ecological conditions. We present results from a field experiment that measured growth rates and reproductive output in wild individuals of a colonial marine invertebrate (Hippopodina iririkiensis), replicated within and across the natural range of succession in its local community. Colony growth rates varied phenotypically throughout this range, but not all such variation was available for selection, nor was it always targeted by selection as expected. While the maintenance of both phenotypic and genetic variation in growth rate is often attributed to costs of growing rapidly, our study highlights the potential for fluctuating selection pressures throughout the life history and across environments to play an important role in this process. [Monro, Keyne] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Monro, K (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. keyne.monro@monash.edu Marshall, Dustin/C-3450-2016 Australian Research Council We thank East Coast Marina and its residents for generous access to Manly Boat Harbour and for patience while the study was conducted, G. Dias and T. Sinclair-Taylor for help with laboratory and fieldwork, and K. Tilbrook for identifying the study organism. We also thank R. Bonduriansky and several anonymous reviewers for advice and comments that greatly improved the manuscript. K. M. and D.J.M. were supported by fellowships and grants awarded under the Australian Research Council's Discovery Projects funding scheme. Aarssen LW, 2002, OIKOS, V96, P531, DOI 10.1034/j.1600-0706.2002.960314.x; Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Badyaev AV, 2000, J EVOLUTION BIOL, V13, P290; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barton N, 2000, BIOESSAYS, V22, P1075, DOI 10.1002/1521-1878(200012)22:12<1075::AID-BIES5>3.0.CO;2-M; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Bonduriansky R, 2012, TRENDS ECOL EVOL, V27, P330, DOI 10.1016/j.tree.2012.02.003; Bonduriansky R, 2012, EVOL APPL, V5, P192, DOI 10.1111/j.1752-4571.2011.00213.x; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CHAYES F, 1949, J GEOL, V57, P239, DOI 10.1086/625606; CHRISTIANSEN FB, 1975, AM NAT, V109, P11, DOI 10.1086/282970; Connell J.H., 1985, P125; Crow J. F., 1958, HUM BIOL, V61, P763; Day T, 2011, AM NAT, V178, pE18, DOI 10.1086/660911; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Ebenman B., 1988, SIZE STRUCTURED POPU, P3; EITAN G, 1972, Journal of Experimental Marine Biology and Ecology, V8, P27, DOI 10.1016/0022-0981(72)90053-6; Falconer D. S., 1996, INTRO QUANTITATIVE G; Ferguson N, 2013, ECOLOGY, V94, P126, DOI 10.1890/12-0795.1; Fry J. D., 2004, GENETIC ANAL COMPLEX, P11; Garant D, 2007, FUNCT ECOL, V21, P434, DOI 10.1111/j.1365-2435.2006.01228.x; GRIME JP, 1975, J ECOL, V63, P393, DOI 10.2307/2258728; HANZAWA FM, 1993, AM J BOT, V80, P405, DOI 10.2307/2445387; Hart SP, 2009, ECOLOGY, V90, P1670, DOI 10.1890/08-1745.1; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Hine E, 2006, GENETICS, V173, P1135, DOI 10.1534/genetics.105.054627; Hoffmann WA, 2002, ANN BOT-LONDON, V90, P37, DOI 10.1093/aob/mcf140; Houle D, 1998, GENETICA, V102-3, P241, DOI 10.1023/A:1017034925212; Hughes RN, 2005, SCI MAR, V69, P169, DOI 10.3989/scimar.2005.69s1169; HUGHES TP, 1987, AM NAT, V129, P818, DOI 10.1086/284677; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; Kimball S, 2013, AM NAT, V182, P191, DOI 10.1086/671058; Kingsolver JG, 2012, FUNCT ECOL, V26, P598, DOI 10.1111/j.1365-2435.2012.01972.x; KIRKPATRICK M, 1992, EVOLUTION, V46, P954, DOI 10.1111/j.1558-5646.1992.tb00612.x; KIRKPATRICK M, 1989, J MATH BIOL, V27, P429, DOI 10.1007/BF00290638; Kuparinen A, 2011, ECOL MODEL, V222, P2027, DOI 10.1016/j.ecolmodel.2011.03.041; Littell RC, 2006, SAS MIXED MODELS; Mangel M, 2005, AM NAT, V166, pE155, DOI 10.1086/444439; Mangel M, 2001, EVOL ECOL RES, V3, P583; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Meyer K, 2009, GENET SEL EVOL, V41, DOI 10.1186/1297-9686-41-21; Monro K., 2014, AM NATURALIST; Monro K, 2013, EVOLUTION, V67, P3636, DOI 10.1111/evo.12220; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Ostrovsky AN, 2013, EVOLUTION, V67, P1368, DOI 10.1111/evo.12039; Paine CET, 2012, METHODS ECOL EVOL, V3, P245, DOI 10.1111/j.2041-210X.2011.00155.x; PEASE CM, 1988, J EVOLUTION BIOL, V1, P293, DOI 10.1046/j.1420-9101.1988.1040293.x; PETRAITIS PS, 1995, ECOLOGY, V76, P1337, DOI 10.2307/1940940; Roff Derek A., 1992; Rose KE, 2009, ECOL LETT, V12, P1379, DOI 10.1111/j.1461-0248.2009.01394.x; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; SEBENS KP, 1982, AM NAT, V120, P189, DOI 10.1086/283982; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Smith A, 2001, BIOMETRICS, V57, P1138, DOI 10.1111/j.0006-341X.2001.01138.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stinchcombe JR, 2012, TRENDS ECOL EVOL, V27, P637, DOI 10.1016/j.tree.2012.07.002; Stinchcombe JR, 2010, EVOLUTION, V64, P2887, DOI 10.1111/j.1558-5646.2010.01060.x; Strom R., 1977, BIOL BRYOZOANS, P23; SUTHERLAND JP, 1977, ECOL MONOGR, V47, P425, DOI 10.2307/1942176; Tilbrook KJ, 1999, J ZOOL, V247, P449; Turelli M, 2004, GENETICS, V166, P1053, DOI 10.1534/genetics.166.2.1053; Walsh B, 2009, ANNU REV ECOL EVOL S, V40, P41, DOI 10.1146/annurev.ecolsys.110308.120232; Weis AE, 2000, EVOL ECOL, V14, P331, DOI 10.1023/A:1010950932468; WERNER PA, 1977, ECOLOGY, V58, P1103, DOI 10.2307/1936930; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076 72 12 12 1 55 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1 2014 183 6 798 809 10.1086/676006 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AG9EH WOS:000335721700007 24823823 Green Published 2019-02-21 J Duthie, AB; Abbott, KC; Nason, JD Duthie, A. Bradley; Abbott, Karen C.; Nason, John D. Trade-Offs and Coexistence: A Lottery Model Applied to Fig Wasp Communities AMERICAN NATURALIST English Article fig wasp; coexistence; competition; storage effect; trade-offs EGG MATURATION STRATEGY; LIFE-HISTORY EVOLUTION; SPECIES RICHNESS; PHENOLOGICAL PATTERNS; FLOWERING ASYNCHRONY; PATCHY ENVIRONMENTS; RELATIVE ABUNDANCE; EPHEMERAL RESOURCE; COMPETITION; DYNAMICS Ecological communities in which organisms complete their life cycles on discrete ephemeral patches are common and often support an unusually large number of species. Explaining this diversity is challenging for communities of ecologically similar species undergoing preemptive competition, where classic coexistence mechanisms may not readily apply. We use nonpollinating fig wasps as a model community characterized by high diversity and preemptive competition to show how subadditive population growth and a trade-off between competitor fecundity and dispersal ability can lead to coexistence. Because nonpollinator species are often closely related, have similar life histories, and compete for the same discrete resources, understanding their coexistence is challenging given competitive exclusion is expected. Empirical observations suggest that nonpollinating fig wasp species may face a trade-off between egg loads and dispersal abilities. We model a lottery in which a species' competitive ability is determined by a trade-off between fecundity and dispersal ability. Variation in interpatch distance between figs generates temporal variability in the relative benefit of fecundity versus dispersal. We show that the temporal storage effect leads to coexistence for a range of biologically realistic parameter values. We further use individual-based modeling to show that when species' traits evolve, coexistence is less likely but trait divergence can result. We discuss the implications of this coexistence mechanism for ephemeral patch systems wherein competition is strongly preemptive. [Duthie, A. Bradley; Nason, John D.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA; [Abbott, Karen C.] Case Western Reserve Univ, Dept Biol, Cleveland, OH 44106 USA Duthie, AB (reprint author), Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA 50011 USA. aduthie@abdn.ac.uk Duthie, Alexander/0000-0001-8343-4995 National Science Foundation (NSF) [DEB-0543102]; NSF Doctoral Dissertation Improvement Grant [DEB-1011277] We are very grateful for the helpful comments of J. L. Bronstein, W. F. Morris, and two anonymous reviewers. This work was supported in part by National Science Foundation (NSF) grant DEB-0543102 to J.D.N. (Iowa State University) and R. J. Dyer. (Virginia Commonwealth University) and by NSF Doctoral Dissertation Improvement Grant DEB-1011277 to J.D.N. and A.B.D. Abrams PA, 2012, EVOLUTION, V66, P3130, DOI 10.1111/j.1558-5646.2012.01659.x; Ahmed S, 2009, P NATL ACAD SCI USA, V106, P20342, DOI 10.1073/pnas.0902213106; Angert AL, 2009, P NATL ACAD SCI USA, V106, P11641, DOI 10.1073/pnas.0904512106; ATKINSON WD, 1981, J ANIM ECOL, V50, P461, DOI 10.2307/4067; ATKINSON WD, 1985, J ANIM ECOL, V54, P507, DOI 10.2307/4495; BEAVER RA, 1977, J ANIM ECOL, V46, P783, DOI 10.2307/3640; Bell G, 2011, SCIENCE, V332, P1327, DOI 10.1126/science.1203105; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; BOGLER DJ, 1995, P NATL ACAD SCI USA, V92, P6864, DOI 10.1073/pnas.92.15.6864; Boix D, 2001, WETLANDS, V21, P577, DOI 10.1672/0277-5212(2001)021[0577:TFCOEP]2.0.CO;2; BRONSTEIN JL, 1989, EXPERIENTIA, V45, P622, DOI 10.1007/BF01975679; BRONSTEIN JL, 1992, AM J BOT, V79, P41, DOI 10.2307/2445195; Bruno MC, 2001, HYDROBIOLOGIA, V453, P295, DOI 10.1023/A:1013161210836; Caceres CE, 1997, P NATL ACAD SCI USA, V94, P9171, DOI 10.1073/pnas.94.17.9171; Calcagno V, 2006, ECOL LETT, V9, P897, DOI 10.1111/j.1461-0248.2006.00930.x; Chesson P, 1997, AM NAT, V150, P519, DOI 10.1086/286080; CHESSON P, 1989, TRENDS ECOL EVOL, V4, P293, DOI 10.1016/0169-5347(89)90024-4; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Chesson P. L., 2000, THEORETICAL POPULATI, V237, P211; CHESSON PL, 1982, J MATH BIOL, V15, P1, DOI 10.1007/BF00275786; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; CHESSON PL, 1990, PHILOS T ROY SOC B, V330, P165, DOI 10.1098/rstb.1990.0190; Claessen D, 2007, EVOL ECOL RES, V9, P51; Collinge SK, 2009, ECOLOGY, V90, P3313, DOI 10.1890/08-2155.1; COMPTON SG, 1992, OECOLOGIA, V91, P68, DOI 10.1007/BF00317243; Compton Stephen G., 1994, P343; Cook JM, 1996, J BIOGEOGR, V23, P487, DOI 10.1111/j.1365-2699.1996.tb00010.x; de Mazancourt C, 2008, ECOL LETT, V11, P380, DOI 10.1111/j.1461-0248.2008.01152.x; Dieckmann U, 1999, NATURE, V400, P354, DOI 10.1038/22521; Dunn DW, 2008, J ANIM ECOL, V77, P927, DOI 10.1111/j.1365-2656.2008.01416.x; Duthie A. B., 2013, THESIS IOWA STATE U; Duyck PF, 2004, ECOL ENTOMOL, V29, P511, DOI 10.1111/j.0307-6946.2004.00638.x; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ferriere R, 2002, P ROY SOC B-BIOL SCI, V269, P773, DOI 10.1098/rspb.2001.1900; Fox JW, 2013, TRENDS ECOL EVOL, V28, P86, DOI 10.1016/j.tree.2012.08.014; Friedrich BM, 2008, PHYS BIOL, V5, DOI 10.1088/1478-3975/5/2/026007; Gates DJ, 2012, AM J BOT, V99, P757, DOI 10.3732/ajb.1100472; Ghara M, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023642; Ghara M, 2010, ECOL ENTOMOL, V35, P139, DOI 10.1111/j.1365-2311.2010.01176.x; Greeff JM, 1999, ANIM BEHAV, V57, P215, DOI 10.1006/anbe.1998.0954; Grenfell B., 2008, THEORETICAL ECOLOGY, P132; Grison-Pige L, 2002, J CHEM ECOL, V28, P283, DOI 10.1023/A:1017930023741; HANSKI I, 1977, Annales Entomologici Fennici, V43, P108; Hanski I., 1990, P127; HANSKI I, 1983, J ANIM ECOL, V52, P263, DOI 10.2307/4599; HANSKI I, 1987, COLONIZATION SUCCESS, P155; Hartley S, 2002, J ANIM ECOL, V71, P651, DOI 10.1046/j.1365-2656.2002.00628.x; HASSELL MP, 1973, J ANIM ECOL, V42, P693, DOI 10.2307/3133; HASSELL MP, 1991, AM NAT, V138, P568, DOI 10.1086/285235; HAWKINS BA, 1992, J ANIM ECOL, V61, P361, DOI 10.2307/5328; Heed W. B., 1968, U TEXAS PUBL, V6818, P387; Hunter M.L., 2008, SCI CONSERVATION VER, P1; IVES AR, 1988, J THEOR BIOL, V133, P345, DOI 10.1016/S0022-5193(88)80326-6; IVES AR, 1991, ECOL MONOGR, V61, P75, DOI 10.2307/1943000; JAENIKE J, 1991, J ANIM ECOL, V60, P913, DOI 10.2307/5421; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; Jervis MA, 2005, ECOL ENTOMOL, V30, P359, DOI 10.1111/j.0307-6946.2005.00712.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Jervis MA, 2007, BIOL J LINN SOC, V90, P293, DOI 10.1111/j.1095-8312.2007.00721.x; KAITALA A, 1991, FUNCT ECOL, V5, P12, DOI 10.2307/2389551; KAITALA A, 1988, OIKOS, V53, P222, DOI 10.2307/3566066; Kelly CK, 2002, NATURE, V417, P437, DOI 10.1038/417437a; Kerdelhue C, 2000, ECOLOGY, V81, P2832, DOI 10.1890/0012-9658(2000)081[2832:CCESOO]2.0.CO;2; King JL, 1996, HYDROBIOLOGIA, V328, P85, DOI 10.1007/BF00018707; KJELLBERG F, 1988, P K NED AKAD C BIOL, V91, P117; KJELLBERG F, 1989, EXPERIENTIA, V45, P653, DOI 10.1007/BF01975682; KNEIDEL KA, 1983, ECOL ENTOMOL, V8, P163, DOI 10.1111/j.1365-2311.1983.tb00495.x; Lankau RA, 2011, ANNU REV ECOL EVOL S, V42, P335, DOI 10.1146/annurev-ecolsys-102710-145100; Lei GC, 1998, J ANIM ECOL, V67, P422, DOI 10.1046/j.1365-2656.1998.00204.x; Levine JM, 2002, AM NAT, V160, P452, DOI 10.1086/342073; MARINO PC, 1991, J ECOL, V79, P1047, DOI 10.2307/2261097; Martinez Florentino Garcia, 1998, DJD, V23, P79; Marussich WA, 2007, MOL ECOL, V16, P1925, DOI 10.1111/j.1365-294X.2007.03278.x; MAY RM, 1981, AM NAT, V117, P234, DOI 10.1086/283704; MAY RM, 1978, J ANIM ECOL, V47, P833, DOI 10.2307/3674; McPherson JR, 2005, GEOGR RES-AUST, V43, P297, DOI 10.1111/j.1745-5871.2005.00329.x; MP Hassell, 2000, SPATIAL TEMPORAL DYN; Nason JD, 1998, NATURE, V5504, P1996; NEE S, 1992, J ANIM ECOL, V61, P37, DOI 10.2307/5506; Osmond MM, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0085; PACALA SW, 1994, AM NAT, V143, P222, DOI 10.1086/285602; PAKE CE, 1995, ECOLOGY, V76, P246, DOI 10.2307/1940646; PELLMYR O, 1992, P NATL ACAD SCI USA, V89, P2927, DOI 10.1073/pnas.89.7.2927; Pellmyr O, 2003, ANN MO BOT GARD, V90, P35, DOI 10.2307/3298524; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; Proffit M, 2007, J ANIM ECOL, V76, P296, DOI 10.1111/j.1365-2656.2007.01213.x; RAMIREZ W, 1970, Evolution, V24, P680; Ranganathan Y, 2010, ENTOMOL EXP APPL, V137, P50, DOI 10.1111/j.1570-7458.2010.01038.x; Reed S. K., 2008, SCI CONSERVATION VER, P105; Ripley BJ, 2009, HYDROBIOLOGIA, V617, P181, DOI 10.1007/s10750-008-9548-0; Ronsted N, 2008, SYMBIOSIS, V45, P45; Ronsted N, 2005, P ROY SOC B-BIOL SCI, V272, P2593, DOI 10.1098/rspb.2005.3249; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; SALE P F, 1978, Environmental Biology of Fishes, V3, P85, DOI 10.1007/BF00006310; Santer B, 1998, J MARINE SYST, V15, P327, DOI 10.1016/S0924-7963(97)00084-5; Sattler K., 1991, Bulletin of the British Museum (Natural History) Entomology, V60, P243; Sevenster JG, 1996, J ANIM ECOL, V65, P297, DOI 10.2307/5876; SHORROCKS B, 1994, J ANIM ECOL, V63, P799, DOI 10.2307/5257; SHORROCKS B, 1979, J ANIM ECOL, V48, P899, DOI 10.2307/4202; Snyder RE, 2011, AM NAT, V178, pE76, DOI 10.1086/661905; Svardal H, 2011, EVOLUTION, V65, P2492, DOI 10.1111/j.1558-5646.2011.01318.x; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; TILMAN D, 1994, ECOLOGY, V75, P2, DOI 10.2307/1939377; TURELLI M, 1978, P NATL ACAD SCI USA, V75, P5085, DOI 10.1073/pnas.75.10.5085; Vasseur DA, 2011, AM NAT, V178, pE96, DOI 10.1086/662161; Wakano JY, 2013, GENETICS, V193, P229, DOI 10.1534/genetics.112.144980; WARE AB, 1993, PLANT SYST EVOL, V186, P147, DOI 10.1007/BF00940794; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Weiblen GD, 2002, ANNU REV ENTOMOL, V47, P299, DOI 10.1146/annurev.ento.47.091201.145213; Wertheim B, 2000, J ANIM ECOL, V69, P335, DOI 10.1046/j.1365-2656.2000.00396.x; WINDSOR DM, 1989, EXPERIENTIA, V45, P647, DOI 10.1007/BF01975681; Wood AJ, 2007, P R SOC B, V274, P1637, DOI 10.1098/rspb.2007.0306; Woodcock BA, 2002, J ANIM ECOL, V71, P131, DOI 10.1046/j.0021-8790.2001.00584.x; Yu DW, 2001, AM NAT, V158, P49, DOI 10.1086/320865; Yu H, 2010, MOL ECOL, V19, P4441, DOI 10.1111/j.1365-294X.2010.04777.x 115 5 5 2 53 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. JUN 1 2014 183 6 826 841 10.1086/675897 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AG9EH WOS:000335721700009 24823825 Green Published 2019-02-21 J Pickering, M; Caira, JN Pickering, Maria; Caira, Janine N. Seasonal dynamics of the cestode fauna in spiny dogfish, Squalus acanthias (Squaliformes: Squalidae) PARASITOLOGY English Article Trilocularia; tapeworms; Squalus; Gilquinia; sharks; Rhode Island; Irish Sea; Phyllobothrium; seasonality FABRICIUS 1794; SCOTIAN SHELF; NEW-ZEALAND; TETRAPHYLLIDEA; TRYPANORHYNCHA; REDESCRIPTION; ASSOCIATIONS; PARASITES; STOMACH; COAST This study furthers understanding of cestode infections in a marine environment through time and space by following seasonal fluctuations in infection parameters of three cestode species (Gilquinia squali, Trilocularia gracilis and Phyllobothrium squali) parasitizing spiny dogfish (Squalus acanthias) in the northwest Atlantic and comparing them to work previously published from the northeast Atlantic on T. gracilis. For each cestode species, host size, season and presence of the other cestode species were analysed using generalized linear models to determine if they were good predictors of prevalence and intensity. Infection parameters differed across season for the three cestode species. However, within T. gracilis seasonal trends were found to be remarkably similar on both sides of the Atlantic, differing only in a somewhat delayed decline in prevalence in the northwest Atlantic. The differences seen in infection measures across cestode species likely reflect the unique life history strategies of different parasite species. While general trends appear to be maintained across disparate localities, variation seen is likely due to differences in accessibility to intermediate hosts and host diet across sites. The knowledge gained from understanding cestode infections in the vast ocean environment allows us to speculate about the factors driving fluctuations in parasite infections in elasmobranchs. [Pickering, Maria; Caira, Janine N.] Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT 06269 USA Pickering, M (reprint author), Univ Connecticut, Dept Ecol & Evolutionary Biol, 75 N Eagleville Rd,Unit 3043, Storrs, CT 06269 USA. maria.pickering@uconn.edu National Science Foundation [0818696, 0818823]; Judith H. Shaw Parasitology Fund This material is based upon work supported by the National Science Foundation under Grant numbers 0818696 and 0818823, and in part by funding from the Judith H. Shaw Parasitology Fund. Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; Compagno L, 2005, SHARKS WORLD; Ebert DA, 2010, ZOOTAXA, P22; Gallucci VF, 2009, BIOL MANAGEMENT DOGF; Gonzalez MT, 2005, INT J PARASITOL, V35, P1369, DOI 10.1016/j.ijpara.2005.07.016; HANCHET S, 1991, J FISH BIOL, V39, P313, DOI 10.1111/j.1095-8649.1991.tb04365.x; Henderson AC, 2002, J NAT HIST, V36, P1747, DOI 10.1080/00222930110066431; Jensen K, 2010, INT J PARASITOL, V40, P889, DOI 10.1016/j.ijpara.2009.11.015; Kent ML, 2000, INT J PARASITOL, V30, P321, DOI 10.1016/S0020-7519(00)00018-7; Kuitunen-Ekbaum E., 1933, Contributions to Canadian Biology (NS), V8, P99; MACKENZIE K, 1975, J FISH BIOL, V7, P321, DOI 10.1111/j.1095-8649.1975.tb04606.x; MACKENZIE K, 1965, PARASITOLOGY, V55, P607; MCCULLOUGH JS, 1984, Z PARASITENKD, V70, P797, DOI 10.1007/BF00927132; MCCULLOUGH JS, 1986, PARASITOLOGY, V93, P153, DOI 10.1017/S0031182000049908; MCCULLOUGH JS, 1983, PARASITOL RES, V69, P655; OWEN SF, 1993, J FISH BIOL, V42, P803; Palm H. W., 2004, TRYPANORHYNCHA DIESI, P710; Palm HW, 2008, INT J PARASITOL, V38, P381, DOI 10.1016/j.ijpara.2007.08.011; Pawson MG, 2009, BIOLOGY AND MANAGEMENT OF DOGFISH SHARKS, P373; Pickering M, 2008, COMP PARASITOL, V75, P174, DOI 10.1654/4334.1; Pickering M, 2013, J PARASITOL, V99, P1099, DOI 10.1645/13-291.1; R Development Core Team, 2011, R LANG ENV STAT COMP; SAKANARI JA, 1989, J PARASITOL, V75, P806, DOI 10.2307/3283069; SAMEOTO D, 1994, J PLANKTON RES, V16, P1003, DOI 10.1093/plankt/16.8.1003; Shepherd T, 2002, FISH OCEANOGR, V11, P78, DOI 10.1046/j.1365-2419.2002.00191.x; Stehlik L. L., 2007, NMFSNE203 NOAA; Vasileva GP, 2002, SYST PARASITOL, V53, P49, DOI 10.1023/A:1019981504305 27 3 3 0 23 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0031-1820 1469-8161 PARASITOLOGY Parasitology JUN 2014 141 7 940 947 10.1017/S0031182013002229 8 Parasitology Parasitology AF6UG WOS:000334849500011 24569058 2019-02-21 J Manzoni, S; Schaeffer, SM; Katul, G; Porporato, A; Schimel, JP Manzoni, S.; Schaeffer, S. M.; Katul, G.; Porporato, A.; Schimel, J. P. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils SOIL BIOLOGY & BIOCHEMISTRY English Article Soil moisture; Heterotrophic respiration; Decomposition; Microbial biomass; Dormancy; Osmoregulation; Water stress HETEROTROPHIC RESPIRATION; ORGANIC-MATTER; INTRACELLULAR SOLUTES; GASEOUS PHASES; SALT STRESS; MOISTURE; MODEL; DECOMPOSITION; WATER; DROUGHT Soil microbes face highly variable moisture conditions that force them to develop adaptations to tolerate or avoid drought. Drought conditions also limit the supply of vital substrates by inhibiting diffusion in dry conditions. How these biological and physical factors affect carbon (C) cycling in soils is addressed here by means of a novel process-based model. The model accounts for different microbial response strategies, including different modes of osmoregulation, drought avoidance through dormancy, and extra-cellular enzyme production. Diffusion limitations induced by low moisture levels for both extracellular enzymes and solutes are also described and coupled to the biological responses. Alternative microbial life-history strategies, each encoded in a set of model parameters, are considered and their effects on C cycling assessed both in the long term (steady state ahalysis) and in the short term (transient analysis during soil drying and rewetting). Drought resistance achieved by active osmoregulation requiring large C investment is not useful in soils where growth in dry conditions is limited by C supply. In contrast, dormancy followed by rapid reactivation upon rewetting seems to be a better strategy in such conditions. Synthesizing more enzymes may also be advantageous because it causes larger accumulation of depolymerized products during dry periods that can be used upon rewetting. Based on key model parameters, a spectrum of life-history strategies thus emerges, providing a possible classification of microbial responses to drought. (C) 2014 Elsevier Ltd. All rights reserved. [Manzoni, S.] Swedish Univ Agr Sci, Dept Crop Prod Ecol, Uppsala, Sweden; [Manzoni, S.] Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden; [Manzoni, S.] Stockholm Univ, Dept Phys Geog & Quaternary Geol, Stockholm, Sweden; [Schaeffer, S. M.] Univ Tennessee, Dept Biosyst Engn & Soil Sci, Knoxville, TN USA; [Katul, G.; Porporato, A.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA; [Katul, G.; Porporato, A.] Duke Univ, Dept Civil & Environm Engn, Durham, NC 27706 USA; [Schimel, J. P.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA Manzoni, S (reprint author), Swedish Univ Agr Sci, Dept Crop Prod Ecol, Box 7043,Ulls Vag 16, Uppsala, Sweden. stefano.manzoni@slu.se Katul, Gabriel/A-7210-2008; Schaeffer, Sean/G-5071-2012; Manzoni, Stefano/C-5330-2009 Katul, Gabriel/0000-0001-9768-3693; Manzoni, Stefano/0000-0002-5960-5712; Schaeffer, Sean/0000-0002-9684-2952 Faculty of Natural Resources and Agricultural Sciences; vice-chancellor of the Swedish University of Agricultural Sciences; US National Science Foundation [DEB-1145875/1145649, CBET 1033467, EAR 1331846, EAR 1316258]; US Department of Energy (DOE) through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes (TCP) program [DE-SC0006967]; Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture [2011-67003-30222] We would like to thank two anonymous reviewers for their constructive criticism. S.M. acknowledges financial support through an excellence grant from the Faculty of Natural Resources and Agricultural Sciences, and the vice-chancellor of the Swedish University of Agricultural Sciences. This work was supported in part by the US National Science Foundation (DEB-1145875/1145649, CBET 1033467, EAR 1331846, EAR 1316258), the US Department of Energy (DOE) through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes (TCP) program (DE-SC0006967) and the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (2011-67003-30222). Agren GI, 2007, SOIL BIOL BIOCHEM, V39, P1794, DOI 10.1016/j.soilbio.2007.02.007; Allison SD, 2012, ECOL LETT, V15, P1058, DOI 10.1111/j.1461-0248.2012.01807.x; Allison SD, 2005, ECOL LETT, V8, P626, DOI 10.1111/j.1461-0248.2005.00756.x; Allison SD, 2010, NAT GEOSCI, V3, P336, DOI 10.1038/NGEO846; Austin AT, 2004, OECOLOGIA, V141, P221, DOI 10.1007/s00442-004-1519-1; Bar M, 2002, P ROY SOC B-BIOL SCI, V269, P937, DOI 10.1098/rspb.2002.1958; Bauer J, 2008, GEODERMA, V145, P17, DOI 10.1016/j.geoderma.2008.01.026; Bengtson P, 2007, ECOL LETT, V10, P783, DOI 10.1111/j.1461-0248.2007.01072.x; Blagodatsky SA, 1998, SOIL BIOL BIOCHEM, V30, P1743, DOI 10.1016/S0038-0717(98)00028-5; Boot CM, 2013, SOIL BIOL BIOCHEM, V57, P356, DOI 10.1016/j.soilbio.2012.09.005; Borken W, 2009, GLOBAL CHANGE BIOL, V15, P808, DOI 10.1111/j.1365-2486.2008.01681.x; Bouskill N.J., 2014, MICROBIAL FUNC UNPUB; BRATBAK G, 1984, APPL ENVIRON MICROB, V48, P755; CAMPBELL GS, 1974, SOIL SCI, V117, P311, DOI 10.1097/00010694-197406000-00001; Carbone MS, 2011, OECOLOGIA, V167, P265, DOI 10.1007/s00442-011-1975-3; Cleveland CC, 2007, BIOGEOCHEMISTRY, V85, P235, DOI 10.1007/s10533-007-9132-0; Davidson EA, 2012, GLOBAL CHANGE BIOL, V18, P371, DOI 10.1111/j.1365-2486.2011.02546.x; Dotsch A, 2008, MICROBIOL-SGM, V154, P2956, DOI 10.1099/mic.0.2007/012237-0; Evans S.E., 2013, ECOL LETT, V17, P155, DOI DOI 10.1111/ELE.12206; Fierer N, 2003, SOIL SCI SOC AM J, V67, P798, DOI 10.2136/sssaj2003.0798; Freckman D. W., 1986, MEMBRANES METABOLISM; Ginovart M, 2005, NONLINEAR ANAL-REAL, V6, P773, DOI 10.1016/j.nonrwa.2004.12.005; Goransson H, 2013, SOIL BIOL BIOCHEM, V57, P477, DOI [10.1016/j.soilbio2012.08.031, 10.1016/j.soilbio.2012.08.031]; GRIFFIN DM, 1981, ADV MICROB ECOL, V5, P91; Halverson LJ, 2000, SOIL SCI SOC AM J, V64, P1630, DOI 10.2136/sssaj2000.6451630x; Hamamoto S., 2010, WATER RESOURCES RES, P46; Jones DL, 2005, SOIL BIOL BIOCHEM, V37, P413, DOI 10.1016/j.soilbio.2004.08.008; Jones SE, 2010, P NATL ACAD SCI USA, V107, P5881, DOI 10.1073/pnas.0912765107; Kakumanu ML, 2013, SOIL BIOL BIOCHEM, V57, P644, DOI 10.1016/j.soilbio.2012.08.014; Kayingo G, 2001, ARCH MICROBIOL, V177, P29, DOI 10.1007/s00203-001-0358-2; KILLHAM K, 1984, APPL ENVIRON MICROB, V47, P301; Lawrence CR, 2009, SOIL BIOL BIOCHEM, V41, P1923, DOI 10.1016/j.soilbio.2009.06.016; Lennon JT, 2012, ECOLOGY, V93, P1867, DOI 10.1890/11-1745.1; Loferer-Krossbacher M, 1998, APPL ENVIRON MICROB, V64, P688; Manzoni S, 2007, SOIL BIOL BIOCHEM, V39, P1542, DOI 10.1016/j.soilbio.2007.01.006; Manzoni S, 2013, ADV WATER RESOUR, V51, P292, DOI 10.1016/j.advwatres.2012.03.016; Manzoni S, 2012, ECOLOGY, V93, P930, DOI 10.1890/11-0026.1; Manzoni S, 2009, SOIL BIOL BIOCHEM, V41, P1355, DOI 10.1016/j.soilbio.2009.02.031; Meisner A, 2013, SOIL BIOL BIOCHEM, V66, P188, DOI 10.1016/j.soilbio.2013.07.014; Miller AE, 2005, SOIL BIOL BIOCHEM, V37, P2195, DOI 10.1016/j.soilbio.2005.03.021; Moldrup P, 2001, SOIL SCI SOC AM J, V65, P613, DOI 10.2136/sssaj2001.653613x; Moorhead DL, 2012, SOIL BIOL BIOCHEM, V53, P133, DOI 10.1016/j.soilbio.2012.05.011; Moorhead DL, 2006, ECOL MONOGR, V76, P151, DOI 10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2; Moyano FE, 2012, BIOGEOSCIENCES, V9, P1173, DOI 10.5194/bg-9-1173-2012; Moyano FE, 2013, SOIL BIOL BIOCHEM, V59, P72, DOI 10.1016/j.soilbio.2013.01.002; Muhr J., 2010, SOIL BIOL BIOCH; Nunan N, 2002, MICROBIAL ECOL, V44, P296, DOI 10.1007/s00248-002-2021-0; Nunan N, 2003, FEMS MICROBIOL ECOL, V44, P203, DOI 10.1016/S0168-6496(03)00027-8; Olesen T, 2001, SOIL SCI SOC AM J, V65, P1585, DOI 10.2136/sssaj2001.1585; Olesen T, 2001, SOIL SCI, V166, P89, DOI 10.1097/00010694-200102000-00002; Oliver JD, 2005, J MICROBIOL, V43, P93; Or D, 2007, ADV WATER RESOUR, V30, P1505, DOI 10.1016/j.advwatres.2006.05.025; Placella SA, 2012, P NATL ACAD SCI USA, V109, P10931, DOI 10.1073/pnas.1204306109; POTTS M, 1994, MICROBIOL REV, V58, P755; Raab TK, 1999, ECOLOGY, V80, P2408, DOI 10.2307/176920; Reichstein M, 2002, GLOBAL CHANGE BIOL, V8, P999, DOI 10.1046/j.1365-2486.2002.00530.x; Resat H, 2012, MICROB ECOL, V63, P883, DOI 10.1007/s00248-011-9965-x; Rodrigo A, 1997, ECOL MODEL, V102, P325, DOI 10.1016/S0304-3800(97)00067-7; RodriguezIturbe I, 2004, ECOHYDROLOGY WATER C; Schimel J.P., 2012, FRONTIERS MICROBIOLO, V3; Schimel J, 2007, ECOLOGY, V88, P1386, DOI 10.1890/06-0219; Schimel JP, 2003, SOIL BIOL BIOCHEM, V35, P549, DOI 10.1016/S0038-0717(03)00015-4; SCHIMEL JP, 1989, APPL ENVIRON MICROB, V55, P1635; Schjonning P, 2003, SOIL SCI SOC AM J, V67, P156; SKOPP J, 1990, SOIL SCI SOC AM J, V54, P1619, DOI 10.2136/sssaj1990.03615995005400060018x; Steinweg JM, 2012, SOIL BIOL BIOCHEM, V55, P85, DOI 10.1016/j.soilbio.2012.06.015; Stolpovsky K, 2011, ECOL MODEL, V222, P3092, DOI 10.1016/j.ecolmodel.2011.07.006; Tiemann LK, 2012, SOIL BIOL BIOCHEM, V49, P11, DOI 10.1016/j.soilbio.2012.01.030; Tiemann LK, 2011, SOIL BIOL BIOCHEM, V43, P1837, DOI 10.1016/j.soilbio.2011.04.020; Toberman H, 2008, SOIL BIOL BIOCHEM, V40, P1519, DOI 10.1016/j.soilbio.2008.01.004; Vetter YA, 1998, MICROBIAL ECOL, V36, P75, DOI 10.1007/s002489900095; Wallenstein MD, 2012, BIOGEOCHEMISTRY, V109, P35, DOI 10.1007/s10533-011-9641-8; Warren CR, 2014, SOIL BIOL BIOCHEM, V70, P22, DOI 10.1016/j.soilbio.2013.12.008; Welsh DT, 2000, FEMS MICROBIOL REV, V24, P263, DOI 10.1111/j.1574-6976.2000.tb00542.x; Williams MA, 2009, SOIL BIOL BIOCHEM, V41, P21, DOI 10.1016/j.soilbio.2008.08.013; Zeglin LH, 2013, ECOLOGY, V94, P2334, DOI 10.1890/12-2018.1 76 73 75 7 191 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0038-0717 SOIL BIOL BIOCHEM Soil Biol. Biochem. JUN 2014 73 69 83 10.1016/j.soilbio.2014.02.008 15 Soil Science Agriculture AH3GQ WOS:000336012100008 2019-02-21 J Lopez-Garcia, A; Palenzuela, J; Barea, JM; Azcon-Aguilar, C Lopez-Garcia, Alvaro; Palenzuela, Javier; Miguel Barea, Jose; Azcon-Aguilar, Concepcion Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems PLANT AND SOIL English Article Arbuscular mycorrhizal fungi; Life-history strategies; Mycorrhizal propagules; Rosmarinus officinalis (rosemary); Succession; TRFLP FUNCTIONAL DIVERSITY; COMMUNITY STRUCTURE; COLONIZING ROOTS; SOIL DISTURBANCE; POLYMORPHISM; GRASSLAND; COLONIZATION; PRODUCTIVITY; BIODIVERSITY; ASSEMBLAGES Few studies have analyzed life-history strategies of arbuscular mycorrhizal fungi (AMF), in terms of the different propagule types they produce, and their ability to colonize new seedlings. The aim was to assess whether life-history strategies influence AMF successional dynamics and assemblages. Rosemary (Rosmarinus officinalis L.) seedlings, grown in a mesocosm system, were colonized by either the AMF hyphae coming from a living rosemary plant, or from spores germinating in soil. The AMF community established in the plantlets was monitored every 3 months during 2 years, using terminal restriction fragment length polymorphism of genes coding for rDNA. The two different sources of AMF propagules resulted in a different initial community colonizing rosemary roots. AMF propagating from hyphae attached to living mycorrhizal-roots seemed to colonize faster and were season-dependent. AMF taxa originating from soil-borne propagules were most frequent over time and exhibit the dominant colonization strategy in this system. The evolution of the AMF community also revealed different strategies in succession. AMF associated with rosemary evidenced contrasting life-history strategies in terms of source of inoculum for new colonization and hence survival. The observed successional dynamics of AMF have implications for understanding the ecological processes in Mediterranean environments and seasonality of colonization processes. [Lopez-Garcia, Alvaro; Palenzuela, Javier; Miguel Barea, Jose; Azcon-Aguilar, Concepcion] CSIC, Estn Expt Zaidin, Soil Microbiol & Symbiot Syst Dept, E-18008 Granada, Spain Lopez-Garcia, A (reprint author), CSIC, Estn Expt Zaidin, Soil Microbiol & Symbiot Syst Dept, C Prof Albareda 1, E-18008 Granada, Spain. lopez.garcia.alvaro@gmail.com Azcon, Concepcion/H-5873-2015; Barea, Jose Miguel/H-5893-2015; Lopez-Garcia, Alvaro/J-9190-2014 Azcon, Concepcion/0000-0003-3041-8566; Barea, Jose Miguel/0000-0001-5021-4718; Lopez-Garcia, Alvaro/0000-0001-8267-3572 Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion, Spain); Spanish Government under the Plan Nacional de I+D+I [CGL-2009-08825] A. Lopez-Garcia thanks the Formacion de Personal Investigador Programme (Ministerio de Ciencia e Innovacion, Spain) for financial support. This research was supported by the Spanish Government under the Plan Nacional de I+D+I (project CGL-2009-08825). We sincerely thank Professor Peter Jeffries (Univ. of Kent) for editing comments and grammatical corrections to the manuscript, Dr. Nuria Ferrol for helpful discussions, Dr. Soren Rosendahl and Dr. Alicia Barroso for advices on optimizing the SSCP and TRFLP protocols. Additionally, we would like to thank the two anonymous reviewers and the Section Editor for their valuable comments and suggestions to improve the manuscript. We also thank the Consejer a de Medio Ambiente, Junta de Andalucia (Spain) for permission to work in Sierra de Baza Natural Park. Allen MF, 2013, NEW PHYTOL, V200, P222, DOI 10.1111/nph.12363; Avio L, 2006, NEW PHYTOL, V172, P347, DOI 10.1111/j.1469-8137.2006.01839.x; Barea JM, 2011, J ARID ENVIRON, V75, P1292, DOI 10.1016/j.jaridenv.2011.06.001; Barea J.M., 2013, SYMBIOSIS EVOLUTION, P1; Bever JD, 2009, ECOL LETT, V12, P13, DOI 10.1111/j.1461-0248.2008.01254.x; Boddington CL, 1999, NEW PHYTOL, V142, P531, DOI 10.1046/j.1469-8137.1999.00422.x; Chagnon PL, 2013, TRENDS PLANT SCI, V18, P484, DOI 10.1016/j.tplants.2013.05.001; Collins RE, 2007, NUCLEIC ACIDS RES, V35, pW58, DOI 10.1093/nar/gkm384; Cornejo P, 2004, FEMS MICROBIOL LETT, V241, P265, DOI 10.1016/j.femsle.2004.10.030; Davison J, 2011, FEMS MICROBIOL ECOL, V78, P103, DOI 10.1111/j.1574-6941.2011.01103.x; Denison RF, 2011, CURR BIOL, V21, P775; Dickie IA, 2007, MYCORRHIZA, V17, P259, DOI 10.1007/s00572-007-0129-2; Dufrene M, 1997, ECOL MONOGR, V67, P345, DOI 10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2; Dumbrell AJ, 2011, NEW PHYTOL, V190, P794, DOI 10.1111/j.1469-8137.2010.03636.x; Fitzjohn RG, 2007, MOL ECOL NOTES, V7, P583, DOI 10.1111/j.1471-8286.2007.01744.x; FRANSON RL, 1989, SOIL SCI SOC AM J, V53, P754, DOI 10.2136/sssaj1989.03615995005300030020x; Grman E, 2012, ECOLOGY, V93, P711, DOI 10.1890/11-1358.1; Hart MM, 2005, PEDOBIOLOGIA, V49, P269, DOI 10.1016/j.pedobi.2004.12.001; Hart MM, 2002, NEW PHYTOL, V153, P335, DOI 10.1046/j.0028-646X.2001.00312.x; Hart MM, 2001, MYCOLOGIA, V93, P1186, DOI 10.2307/3761678; Helgason T, 2009, J EXP BOT, V60, P2465, DOI 10.1093/jxb/erp144; Hempel S, 2007, ENVIRON MICROBIOL, V9, P1930, DOI 10.1111/j.1462-2920.2007.01309.x; Holland SM, 2008, ANAL RAREFACTION 1 3; Husband R, 2002, MOL ECOL, V11, P2669, DOI 10.1046/j.1365-294X.2002.01647.x; IJdo M, 2010, FEMS MICROBIOL ECOL, V72, P114, DOI 10.1111/j.1574-6941.2009.00829.x; Jansa J, 2003, ECOL APPL, V13, P1164, DOI 10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2; JASPER DA, 1989, NEW PHYTOL, V112, P93, DOI 10.1111/j.1469-8137.1989.tb00313.x; Kjoller R, 2000, PLANT SOIL, V226, P189, DOI 10.1023/A:1026499923717; Koide RT, 2004, MYCORRHIZA, V14, P145, DOI 10.1007/s00572-004-0307-4; Kruger M, 2012, NEW PHYTOL, V193, P970, DOI 10.1111/j.1469-8137.2011.03962.x; Lee J, 2008, FEMS MICROBIOL ECOL, V65, P339, DOI 10.1111/j.1574-6941.2008.00531.x; LOPEZBERMUDEZ F, 1990, DEGRADACION REGENERA, P15; Maherali H, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0036695; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; MCGONIGLE TP, 1990, NEW PHYTOL, V115, P495, DOI 10.1111/j.1469-8137.1990.tb00476.x; Medail F, 1997, ANN MO BOT GARD, V84, P112, DOI 10.2307/2399957; Merryweather J, 1998, NEW PHYTOL, V138, P131, DOI 10.1046/j.1469-8137.1998.00889.x; Munkvold L, 2004, NEW PHYTOL, V164, P357, DOI 10.1111/j.1469-8137.2004.01169.x; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Oehl F, 2011, IMA FUNGUS, V2, P191, DOI 10.5598/imafungus.2011.02.02.10; Oksanen J, 2011, VEGAN COMMUNITY ECOL; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Peay KG, 2011, FUNGAL ECOL, V4, P233, DOI 10.1016/j.funeco.2010.09.010; PHILLIPS JM, 1970, T BRIT MYCOL SOC, V55, P158, DOI 10.1016/S0007-1536(70)80110-3; Powell JR, 2009, P ROY SOC B-BIOL SCI, V276, P4237, DOI 10.1098/rspb.2009.1015; Pringle A, 2002, AM J BOT, V89, P1439, DOI 10.3732/ajb.89.9.1439; R Development Core Team, 2010, R LANG ENV STAT COMP; Rillig MC, 2004, ECOL LETT, V7, P740, DOI 10.1111/j.1461-0248.2004.00620.x; Roberts D. W., 2010, LABDSV ORDINATION MU; Rosendahl S, 2004, MOL ECOL, V13, P3179, DOI 10.1111/j.1365-294.2004.02295.x; Sanchez-Castro I, 2012, J ARID ENVIRON, V80, P1, DOI 10.1016/j.jaridenv.2011.12.010; Sanchez-Castro I, 2012, MYCORRHIZA, V22, P449, DOI 10.1007/s00572-011-0421-z; Schnoor TK, 2011, MYCORRHIZA, V21, P211, DOI 10.1007/s00572-010-0325-3; SIMON L, 1992, APPL ENVIRON MICROB, V58, P291; Sykorova Z, 2007, MYCORRHIZA, V18, P1, DOI 10.1007/s00572-007-0147-0; Tamura K, 2007, MOL BIOL EVOL, V24, P1596, DOI 10.1093/molbev/msm092; TOMMERUP IC, 1981, SOIL BIOL BIOCHEM, V13, P431, DOI 10.1016/0038-0717(81)90090-0; Vallejo V, 1999, ADV ECOLOGICAL SCI, P301; van der Heijden MGA, 2007, NEW PHYTOL, V174, P244, DOI 10.1111/j.1469-8137.2007.02041.x; van der Heijden MGA, 2006, NEW PHYTOL, V172, P739, DOI 10.1111/j.1469-8137.2006.01862.x; van der Heijden MGA, 1998, NATURE, V396, P69, DOI 10.1038/23932; Vogelsang KM, 2006, NEW PHYTOL, V172, P554, DOI 10.1111/j.1469-8137.2006.01854.x 62 10 10 3 57 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X 1573-5036 PLANT SOIL Plant Soil JUN 2014 379 1-2 247 260 10.1007/s11104-014-2060-6 14 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences AG1HQ WOS:000335166300018 2019-02-21 J Reguera, S; Zamora-Camacho, FJ; Trenzado, CE; Sanz, A; Moreno-Rueda, G Reguera, Senda; Zamora-Camacho, Francisco J.; Trenzado, Cristina E.; Sanz, Ana; Moreno-Rueda, Gregorio Oxidative stress decreases with elevation in the lizard Psammodromus algirus COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY English Article Antioxidant enzymes; Antioxidant protection; Elevation gradient; Lipid peroxidation; Lizards; Ultraviolet radiation ULTRAVIOLET-B RADIATION; RANA-TEMPORARIA EMBRYOS; LIFE-HISTORY EVOLUTION; ANTIOXIDANT DEFENSES; ALTITUDINAL GRADIENT; ZEBRA FINCHES; UV-RADIATION; DNA-DAMAGE; RESPONSES; GROWTH Oxidative stress is considered one of the main ecological and evolutionary forces. Several environmental stressors vary geographically and thus organisms inhabiting different sites face different oxidant environments. Nevertheless, there is scarce information about how oxidative damage and antioxidant defences vary geographically in animals. Here we study how oxidative stress varies from lowlands (300-700 m asl) to highlands (2200-2500 m asl) in the lizard Psammodromus algirus. To accomplish this, antioxidant enzymatic activity (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, DT-diaphorase) and lipid peroxidation were assayed in tissue samples from the lizards' tail. Lipid peroxidation was higher in individuals from lowlands than from highlands, indicating higher oxidative stress in lowland lizards. These results suggest that environmental conditions are less oxidant at high elevations with respect to low ones. Therefore, our study shows that oxidative stress varies geographically, which should have important consequences for our understanding of geographic variation in physiology and life-history of organisms. (C) 2014 Elsevier Inc. All rights reserved. [Reguera, Senda; Zamora-Camacho, Francisco J.; Trenzado, Cristina E.; Sanz, Ana; Moreno-Rueda, Gregorio] Univ Granada, Dept Zool, E-18071 Granada, Spain; [Trenzado, Cristina E.] Univ Granada, Dept Cell Biol, E-18071 Granada, Spain Reguera, S (reprint author), Univ Granada, Dept Zool, Avda Fuentenueva S-N, E-18071 Granada, Spain. sreguera@ugr.es; zamcam@ugr.es; ctrenzad@ugr.es; anasanz@ugr.es; gmr@ugr.es Moreno-Rueda, Gregorio/K-7068-2014 Moreno-Rueda, Gregorio/0000-0002-6726-7215; REGUERA PANIZO, SENDA/0000-0002-3867-9210; Trenzado Romero, Cristina Elena/0000-0003-4347-6108 Ministerio de Ciencia e Innovacion [CGL2009-13185]; Consejeria de Ciencia y Tecnologia de la Junta de Andalucia (Spain) [AGR-6193]; Ministerio de Educacion (Ministry of Education) [AP2009-3505, AP2009-1325] Field work was economically supported by the Ministerio de Ciencia e Innovacion (project CGL2009-13185) and laboratory work was supported by the Consejeria de Ciencia y Tecnologia de la Junta de Andalucia (Spain) AGR-6193. Two pre-doctoral grants (FPU programme) from the Ministerio de Educacion (Ministry of Education) supported FJZC (ref: AP2009-3505) and SR (ref: AP2009-1325). We thank the personnel from the Espacio Natural de Sierra Nevada for their constant support. Thanks to Juan Manuel Pleguezuelos for the comments and counselling especially in the field work, and thanks to Belen Sanchez for improving the English. Comments by anonymous referees improved the manuscript. Research was conducted in accordance with both Junta de Andalucia and National Park of Sierra Nevada research permits (references GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF) issued to the authors. AEBI H, 1984, METHOD ENZYMOL, V105, P121; Alonso-Alvarez C, 2007, FUNCT ECOL, V21, P873, DOI 10.1111/j.1365-2435.2007.01300.x; Amaral MJ, 2012, CHEMOSPHERE, V87, P757, DOI 10.1016/j.chemosphere.2011.12.075; Askew EW, 2002, TOXICOLOGY, V180, P107, DOI 10.1016/S0300-483X(02)00385-2; Beamonte-Barrientos R, 2013, J COMP PHYSIOL B, V183, P675, DOI 10.1007/s00360-013-0745-4; Blaustein AR, 1998, AM ZOOL, V38, P799; Blokhina O, 2003, ANN BOT-LONDON, V91, P179, DOI 10.1093/aob/mcf118; Blumthaler M, 1997, J PHOTOCH PHOTOBIO B, V39, P130, DOI 10.1016/S1011-1344(96)00018-8; Buege J A, 1978, Methods Enzymol, V52, P302; Buttemer WA, 2010, FUNCT ECOL, V24, P971, DOI 10.1111/j.1365-2435.2010.01740.x; CARLBERG I, 1975, J BIOL CHEM, V250, P5475; Chang C, 2003, J PHOTOCH PHOTOBIO B, V72, P79, DOI 10.1016/j.jphotobiol.2003.06.001; Chuang SC, 2013, COMP BIOCHEM PHYS A, V164, P429, DOI 10.1016/j.cbpa.2012.11.006; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, FUNCT ECOL, V24, P950, DOI 10.1111/j.1365-2435.2010.01746.x; Dahms HU, 2011, COMP BIOCHEM PHYS C, V153, P363, DOI 10.1016/j.cbpc.2011.01.004; Dahms HU, 2010, AQUAT TOXICOL, V97, P3, DOI 10.1016/j.aquatox.2009.12.002; Del Rio D, 2005, NUTR METAB CARDIOVAS, V15, P316, DOI 10.1016/j.numecd.2005.05.003; Diaz JA, 1997, FUNCT ECOL, V11, P79, DOI 10.1046/j.1365-2435.1997.00058.x; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; FLOHE L, 1984, METHOD ENZYMOL, V105, P114; Graae BJ, 2012, OIKOS, V121, P3, DOI 10.1111/j.1600-0706.2011.19694.x; Gutteridge J M, 1983, J Appl Biochem, V5, P293; HABIG WH, 1974, J BIOL CHEM, V249, P7130; HALLIWELL B, 1995, FREE RADICAL BIO MED, V18, P125, DOI 10.1016/0891-5849(95)91457-3; Halliwell B, 2007, FREE RADICALS BIOL M; Hermes-Lima M, 2002, COMP BIOCHEM PHYS C, V133, P537, DOI 10.1016/S1532-0456(02)00080-7; Hermes-Lima M, 2012, COMP BIOCHEM PHYS A, V163, P189, DOI 10.1016/j.cbpa.2012.06.006; HERMESLIMA M, 1993, AM J PHYSIOL, V265, P646; Horak P, 2010, FUNCT ECOL, V24, P960, DOI 10.1111/j.1365-2435.2010.01755.x; Hylander S, 2014, FUNCT ECOL, V28, P149, DOI 10.1111/1365-2435.12159; Iraeta P, 2006, FUNCT ECOL, V20, P865, DOI 10.1111/j.1365-2435.2006.01162.x; Jena K, 2013, J THERM BIOL, V38, P199, DOI 10.1016/j.jtherbio.2013.02.008; Jones D.P, 2008, AM J PHYSIOL-CELL PH, V295, P849; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Labrada-Martagon V, 2011, COMP BIOCHEM PHYS C, V154, P65, DOI 10.1016/j.cbpc.2011.02.006; Marquis O, 2008, POPUL ECOL, V50, P123, DOI 10.1007/s10144-007-0071-3; MCCORD JM, 1969, J BIOL CHEM, V244, P6049; Merila J, 2000, ANN ZOOL FENN, V37, P129; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moreno-Rueda G, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040367; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Niewiarowski PH, 1997, CAN J ZOOL, V75, P542, DOI 10.1139/z97-067; Noguera JC, 2011, FUNCT ECOL, V25, P1144, DOI 10.1111/j.1365-2435.2011.01856.x; Olsson M, 2012, OECOLOGIA, V170, P917, DOI 10.1007/s00442-012-2383-z; Ortonne JP, 2002, BRIT J DERMATOL, V146, P7, DOI 10.1046/j.1365-2133.146.s61.3.x; Pahkala M, 2002, OECOLOGIA, V133, P458, DOI 10.1007/s00442-002-1058-6; Perez-Campo R, 1998, J COMP PHYSIOL B, V168, P149, DOI 10.1007/s003600050131; Prevodnik A, 2007, AQUAT TOXICOL, V82, P63, DOI 10.1016/j.aquatox.2007.01.006; R Development Core Team, 2012, R LANG ENV STAT COMP; Regoli F, 2000, AQUAT TOXICOL, V50, P351, DOI 10.1016/S0166-445X(00)00091-6; Reguera S., 2014, BIOL J LINN SOC; Salvador A., 2011, ENCICLOPEDIA VIRTUAL; Sanz A, 2013, COMP BIOCHEM PHYS A, V165, P358, DOI 10.1016/j.cbpa.2013.04.019; Sanz A, 2010, ZOOL SCI, V27, P952, DOI 10.2108/zsj.27.952; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SIES H, 1986, ANGEW CHEM INT EDIT, V25, P1058, DOI 10.1042/BST0351147; Sies H, 1997, EXP PHYSIOL, V82, P291, DOI 10.1113/expphysiol.1997.sp004024; SNYDER GK, 1977, J COMP PHYSIOL, V117, P291, DOI 10.1007/BF00691555; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Sola Y., 2008, J GEOPHYS RES, V113, P1; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Storey KB, 1996, BRAZ J MED BIOL RES, V29, P1715; STURVE J, 2005, COMP HEPATOL, V4, P4, DOI DOI 10.1186/1476-5926-4-4; Voituron Y, 2006, CRYOBIOLOGY, V52, P74, DOI 10.1016/j.cryobiol.2005.09.006; von Schantz T, 1999, P ROY SOC B-BIOL SCI, V266, P1; Zamora-Camacho FJ, 2013, J THERM BIOL, V38, P64, DOI 10.1016/j.jtherbio.2012.11.002; Zhang LX, 2012, BIOL J LINN SOC, V106, P623, DOI 10.1111/j.1095-8312.2012.01876.x 70 4 6 1 25 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1095-6433 1531-4332 COMP BIOCHEM PHYS A Comp. Biochem. Physiol. A-Mol. Integr. Physiol. JUN 2014 172 52 56 10.1016/j.cbpa.2014.02.018 5 Biochemistry & Molecular Biology; Physiology; Zoology Biochemistry & Molecular Biology; Physiology; Zoology AG0HF WOS:000335095800006 24603098 2019-02-21 J Therry, L; Lefevre, E; Bonte, D; Stoks, R Therry, Lieven; Lefevre, Evelien; Bonte, Dries; Stoks, Robby Increased activity and growth rate in the non-dispersive aquatic larval stage of a damselfly at an expanding range edge FRESHWATER BIOLOGY English Article Odonata; range expansion; behavioural coupling; life-history evolution; global change RISK TRADE-OFF; LIFE-HISTORY; COENAGRION-SCITULUM; RAPID EVOLUTION; ODONATE LARVAE; REACTION NORMS; CLIMATE-CHANGE; PREDATION; BEHAVIOR; SHAPE While evolutionary changes in adult traits during range expansion have been recorded in many species, similar changes in the non-dispersive larval stage have only rarely been documented. Increased activity in the non-dispersive larval stage is an important ecologically relevant trait in aquatic communities that may be expected to evolve in the edge populations (i) as a result of the combination of spatial sorting in dispersal-related adult activity and a coupling between adult and larval behaviour and (ii) to meet higher energy demands to allow higher growth rates and a higher investment in costly dispersal-related traits. We specifically address whether activity is higher in the larval non-dispersive aquatic stage at an expanding range front by comparing larvae of replicated core and edge populations of the damselfly Coenagrion scitulum in three common garden experiments where larvae were reared from the egg stage. As expected, activity in the non-dispersive larval stage was consistently higher in the edge populations. Although changes in larval activity probably have consequences for ecological interactions, the higher activity was not associated with increased predation rates by dragonfly larvae, potentially because of associated compensatory changes in other antipredator mechanisms. We documented one of the few cases of a positive coupling of activity in the larval and adult stages. Yet, contrary to larval activity, adult activity did not differ between core and edge populations. This indicates that the higher larval activity we documented is not shaped by a coupling with adult activity. Instead, our results are consistent with the hypothesis that a higher energy need in edge populations shaped the higher larval activity. Edge larvae showed a higher growth rate which is expected to evolve at the initial low population densities in newly founded edge populations. Moreover, higher growth rate showed the expected positive covariation with larval activity. Increases in activity in the non-dispersive stage in edge populations at an expansion front should be included in the ongoing debate whether evolutionary changes at invasion fronts are driven by adaptive versus non-adaptive evolution. Moreover, they may have the potential to affect ecological interactions at expanding range fronts. [Therry, Lieven; Lefevre, Evelien; Stoks, Robby] Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, B-3000 Louvain, Belgium; [Bonte, Dries] Univ Ghent, Dept Biol, Terr Ecol Unit, Fac Sci, B-9000 Ghent, Belgium Therry, L (reprint author), Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Charles Deberiotstr 32, B-3000 Louvain, Belgium. Lieven.Therry@bio.kuleuven.be Bonte, Dries/0000-0002-3320-7505 Fund for Scientific Research Flanders; KU Leuven Research Fund We thank the 'Office National des Forets' for access at the 'RBD de la cote d'Opale' and Geert De Knijf, Cedric Vanappelghem, Jochen Rodenkirchen, Bernd Trockur, Andreas German, Martin Lemke, Klaus-Jurgen Conze, Dietmar Glitz and Frantz Veille for guiding us to populations. Steven Ormerod and two anonymous reviewers provided useful comments. Financial support came from the Fund for Scientific Research Flanders and the KU Leuven Research Fund. Alford RA, 2009, WILDLIFE RES, V36, P23, DOI 10.1071/WR08021; Beckerman AP, 2010, FUNCT ECOL, V24, P1, DOI 10.1111/j.1365-2435.2009.01673.x; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Brodin T, 2006, OECOLOGIA, V148, P162, DOI 10.1007/s00442-005-0334-7; Brodin T, 2004, ECOLOGY, V85, P2927, DOI 10.1890/03-3120; Brodin T, 2009, BEHAV ECOL, V20, P30, DOI 10.1093/beheco/arn111; Brodin T, 2013, BEHAV ECOL SOCIOBIOL, V67, P135, DOI 10.1007/s00265-012-1433-1; Burks RL, 2001, J N AM BENTHOL SOC, V20, P615, DOI 10.2307/1468092; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Chiba S, 2007, OECOLOGIA, V154, P237, DOI 10.1007/s00442-007-0825-9; DeWitt TJ, 1999, ANIM BEHAV, V58, P397, DOI 10.1006/anbe.1999.1158; DIJKSTRA K.-D.B, 2006, FIELD GUIDE DRAGONFL; Grill CP, 1996, J ANIM ECOL, V65, P63, DOI 10.2307/5700; Gyuris E, 2012, ANIM BEHAV, V84, P103, DOI 10.1016/j.anbehav.2012.04.014; HANSKI I, 2012, ANN NY ACAD SCI, V1249, P1; Hickling R, 2006, GLOBAL CHANGE BIOL, V12, P450, DOI 10.1111/j.1365-2486.2006.01116.x; Hill JK, 2011, ANNU REV ENTOMOL, V56, P143, DOI 10.1146/annurev-ento-120709-144746; Hunt RJ, 2010, J FRESHWATER ECOL, V25, P345, DOI 10.1080/02705060.2010.9664377; Janssens L, 2012, AQUAT TOXICOL, V110, P91, DOI 10.1016/j.aquatox.2011.12.019; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johansson F, 2000, FRESHWATER BIOL, V43, P149, DOI 10.1046/j.1365-2427.2000.00532.x; Knight TM, 2005, NATURE, V437, P880, DOI 10.1038/nature03962; Laurila A, 2000, FRESHWATER BIOL, V43, P161, DOI 10.1046/j.1365-2427.2000.00533.x; Littell RC, 1996, SAS SYSTEM MIXED MOD; MAC ARTHUR ROBERT H., 1967; Male-Malherbe E, 2010, ODONATES BRENNE RECU, P67; Matthews B, 2011, ECOL LETT, V14, P690, DOI 10.1111/j.1461-0248.2011.01627.x; McCauley SJ, 2010, AM NAT, V175, pE66, DOI 10.1086/650444; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2; Mikolajewski DJ, 2005, OIKOS, V110, P91, DOI 10.1111/j.0030-1299.2005.13766.x; Moran N. A., 1994, ANNU REV ECOL SYST, V25, P273; Mortensen L, 2008, J INSECT BEHAV, V21, P285, DOI 10.1007/s10905-008-9125-4; Nilsson-Ortman V, 2012, ECOLOGY, V93, P1340; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; RICE WR, 1994, TRENDS ECOL EVOL, V9, P235, DOI 10.1016/0169-5347(94)90258-5; Shama LNS, 2011, MOL ECOL, V20, P2929, DOI 10.1111/j.1365-294X.2011.05156.x; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; Sokal R.R., 1995, BIOMETRY PRINCIPLES; Stoks R, 2005, ECOL LETT, V8, P1307, DOI 10.1111/j.1461-0248.2005.00840.x; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2003, EVOLUTION, V57, P574; Stoks R, 2000, OIKOS, V91, P559, DOI 10.1034/j.1600-0706.2000.910318.x; Stoks R, 2001, OECOLOGIA, V127, P222, DOI 10.1007/s004420000595; Stoks R, 2001, ECOL ENTOMOL, V26, P188, DOI 10.1046/j.1365-2311.2001.00303.x; Stoks R, 1998, OECOLOGIA, V117, P443, DOI 10.1007/s004420050679; Stoks R, 2012, ANNU REV ENTOMOL, V57, P249, DOI 10.1146/annurev-ento-120710-100557; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Strobbe F, 2011, BEHAV ECOL SOCIOBIOL, V65, P241, DOI 10.1007/s00265-010-1032-y; Suhling F, 2001, ARCH HYDROBIOL, V151, P1; Sundt-Hansen L, 2009, FUNCT ECOL, V23, P551, DOI 10.1111/j.1365-2435.2008.01532.x; Swaegers J, 2013, HEREDITY, V111, P422, DOI 10.1038/hdy.2013.64; Therry L, 2014, J EVOLUTION BIOL, V27, P141, DOI 10.1111/jeb.12281; Thomas CD, 2010, DIVERS DISTRIB, V16, P488, DOI 10.1111/j.1472-4642.2010.00642.x; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Van Doorslaer W, 2005, OIKOS, V111, P599, DOI 10.1111/j.1600-0706.2005.14335.x; Wasscher M., 2010, Brachytron, V13, P19; Watkins TB, 2001, EVOLUTION, V55, P1668; Weihrauch Florian, 2011, Libellula, V30, P33; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Witt JW, 2013, FRESHWATER BIOL, V58, P2380, DOI 10.1111/fwb.12217; Wohlfahrt B, 2006, FRESHWATER BIOL, V51, P76, DOI 10.1111/j.1365-2427.2005.01475.x 64 15 15 2 56 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. JUN 2014 59 6 1266 1277 10.1111/fwb.12346 12 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AE4PK WOS:000333964700013 2019-02-21 J Nahrgang, J; Varpe, O; Korshunova, E; Murzina, S; Hallanger, IG; Vieweg, I; Berge, J Nahrgang, Jasmine; Varpe, Oystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jorgen Gender Specific Reproductive Strategies of an Arctic Key Species (Boreogadus saida) and Implications of Climate Change PLOS ONE English Article CAPELIN MALLOTUS-VILLOSUS; LIFE-HISTORY STRATEGIES; POLAR COD; BARENTS SEA; CALANUS-FINMARCHICUS; COASTAL WATERS; NORTH-ATLANTIC; MARINE FISHES; ICE; LEPECHIN The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain. [Nahrgang, Jasmine; Korshunova, Ekaterina; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jorgen] UiT Arctic Univ Norway, Dept Arctic & Marine Biol, Tromso, Norway; [Nahrgang, Jasmine; Varpe, Oystein; Berge, Jorgen] Univ Ctr Svalbard, Longyearbyen, Norway; [Varpe, Oystein; Korshunova, Ekaterina] Akvaplan Niva, Fram Ctr, Tromso, Norway; [Murzina, Svetlana] Russian Acad Sci, Karelian Res Ctr, Inst Biol, Petrozavodsk, Russia Nahrgang, J (reprint author), UiT Arctic Univ Norway, Dept Arctic & Marine Biol, Tromso, Norway. jasmine.m.nahrgang@uit.no Berge, Jorgen/E-7544-2015; Varpe, Oystein/B-9693-2008; Murzina, Svetlana/A-7624-2014 Berge, Jorgen/0000-0003-0900-5679; Varpe, Oystein/0000-0002-5895-6983; Murzina, Svetlana/0000-0002-9705-2741; Nahrgang, Jasmine/0000-0002-4202-5922 Norwegian Research Council through the EWMA [195160]; Polarisation [nr 214184/F20]; UiT - The Arctic University of Norway (Tromso); Svalbard Science Forum [RiS 5148]; Barents secretariat; Akvaplan-niva; President of the Russian Federation [NSh-1410.2014.4]; NFR - project CircA [214271/F20] The work is partly financed by the Norwegian Research Council through the EWMA (nr 195160) and Polarisation (nr 214184/F20) projects, UiT - The Arctic University of Norway (Tromso), Arctic Field Grant (RiS 5148, Svalbard Science Forum), Barents secretariat, Akvaplan-niva and the President of the Russian Federation (Grant NSh-1410.2014.4). Fieldwork and the time allocated for JB and OV was supported by the NFR funded project CircA (nr 214271/F20). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Alvain S, 2013, REMOTE SENS ENVIRON, V132, P195, DOI 10.1016/j.rse.2013.01.014; Andriashev A. P., 1954, FISHES NO SEAS USSR; Anisimov O. A., 2007, CLIMATE CHANGE 2007, P653; Arnkvaern G, 2005, POLAR BIOL, V28, P528, DOI 10.1007/s00300-005-0715-8; Beaugrand G, 2002, SCIENCE, V296, P1692, DOI 10.1126/science.1071329; Benoit D, 2008, J GEOPHYS RES, V113; Bjorge A, 2010, NAMMCO SCI PUBLICATI, V8, P7; Bluhm BA, 2011, OCEANOGRAPHY, V24, P232, DOI 10.5670/oceanog.2011.75; Bouchard C, 2011, PROG OCEANOGR, V90, P105, DOI 10.1016/j.pocean.2011.02.008; BRADSTREET MSW, 1982, ARCTIC, V35, P28; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; Christiansen JS, 2012, POLAR BIOL, V35, P1247, DOI 10.1007/s00300-012-1170-y; Cottier F, 2005, J GEOPHYS RES-OCEANS, V110, DOI 10.1029/2004JC002757; CRAIG PC, 1982, CAN J FISH AQUAT SCI, V39, P395, DOI 10.1139/f82-057; Crawley MJ, 2007, R LANG ENV STAT COMP; Dalpadado P, 2012, ICES J MAR SCI, V69, P1303, DOI 10.1093/icesjms/fss063; Dolgov AV, 2011, BARENTS SEA ECOSYSTE, P193; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; FALKPETERSEN IB, 1986, SARSIA, V71, P235, DOI 10.1080/00364827.1986.10419693; Ferguson Steven H, 2012, Aquat Biosyst, V8, P3, DOI 10.1186/2046-9063-8-3; Fevolden SE, 1999, SARSIA, V84, P99, DOI 10.1080/00364827.1999.10420437; FORTIER L, 1995, MAR ECOL PROG SER, V120, P11, DOI 10.3354/meps120011; Gillispie J.G., 1997, American Fisheries Society Symposium, V19, P81; Gjertz I, 2001, POLAR BIOL, V24, P209, DOI 10.1007/s003000000197; GJOSAETER H, 1994, ICES J MAR SCI, V51, P115, DOI 10.1006/jmsc.1994.1011; Grebmeier JM, 2006, SCIENCE, V311, P1461, DOI 10.1126/science.1121365; Hansen BB, 2013, SCIENCE, V339, P313, DOI 10.1126/science.1226766; HOP H, 1995, CAN J FISH AQUAT SCI, V52, P541, DOI 10.1139/f95-055; Hop H, 2013, MAR BIOL RES, V9, P878, DOI 10.1080/17451000.2013.775458; Huntley B, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001439; Huse G, 1998, CAN J FISH AQUAT SCI, V55, P631, DOI 10.1139/cjfas-55-3-631; Jonsson H, 2010, MAR POLLUT BULL, V60, P390, DOI 10.1016/j.marpolbul.2009.10.014; Kjellerup S, 2012, MAR ECOL PROG SER, V447, P87, DOI 10.3354/meps09551; Kortsch S, 2012, P NATL ACAD SCI USA, V109, P14052, DOI 10.1073/pnas.1207509109; Kovacs KM, 2012, MAR MAMMAL SCI, V28, P414, DOI 10.1111/j.1748-7692.2011.00479.x; Lear WH, 1979, CAFSAC RES DOC, V79, P17; LEGGETT WC, 1978, J FISH RES BOARD CAN, V35, P1469, DOI 10.1139/f78-230; LONNE OJ, 1989, POLAR BIOL, V9, P187, DOI 10.1007/BF00297174; Marshall CT, 1999, NATURE, V402, P288, DOI 10.1038/46272; Nahrgang J, 2010, MAR POLLUT BULL, V60, P1336, DOI 10.1016/j.marpolbul.2010.03.004; Nilsen F, 2008, CONT SHELF RES, V28, P1838, DOI 10.1016/j.csr.2008.04.015; Olsen E, 2010, ICES J MAR SCI, V67, P87, DOI 10.1093/icesjms/fsp229; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Renaud PE, 2012, POLAR BIOL, V35, P401, DOI 10.1007/s00300-011-1085-z; REZNICK DN, 1987, OECOLOGIA, V73, P401, DOI 10.1007/BF00385257; Sameoto DD, 1984, REV CURRENT INFORM A; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Slagstad D, 2011, PROG OCEANOGR, V90, P117, DOI 10.1016/j.pocean.2011.02.009; Stearns S, 1992, EVOLUTION LIFE HIST; Wallace MI, 2010, LIMNOL OCEANOGR, V55, P831, DOI 10.4319/lo.2009.55.2.0831; Wang MY, 2009, GEOPHYS RES LETT, V36, DOI 10.1029/2009GL037820; Wassmann P, 2011, GLOBAL CHANGE BIOL, V17, P1235, DOI 10.1111/j.1365-2486.2010.02311.x; Wienerroither R., 2011, IMR PINRO JOINT REPO, V1; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798 56 26 26 2 66 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 28 2014 9 5 e98452 10.1371/journal.pone.0098452 11 Multidisciplinary Sciences Science & Technology - Other Topics AI4TS WOS:000336858300046 24871481 DOAJ Gold, Green Published 2019-02-21 J Dulvy, NK; Pardo, SA; Simpfendorfer, CA; Carlson, JK Dulvy, Nicholas K.; Pardo, Sebastian A.; Simpfendorfer, Colin A.; Carlson, John K. Diagnosing the dangerous demography of manta rays using life history theory PEERJ English Article CITES; Data-poor fisheries; Life history invariant; Wildlife trade; Euler-Lotka; Population growth rate; Accounting for uncertainty; Von Bertalanffy growth function; Ocean ivory; Chinese medicine EXTINCTION RISK; MARINE FISHES; GROWTH; CONSERVATION; ECOLOGY; SHARKS; REPRODUCTION; UNCERTAINTY; MORTALITY; SURVIVAL Background. The directed harvest and global trade in the gill plates of mantas, and devil rays, has led to increased fishing pressure and steep population declines in some locations. The slow life history, particularly of the manta rays, is cited as a key reason why such species have little capacity to withstand directed fisheries. Here, we place their life history and demography within the context of other sharks and rays. Methods. Despite the limited availability of data, we use life history theory and comparative analysis to estimate the intrinsic risk of extinction (as indexed by the maximum intrinsic rate of population increase r(max)) for a typical generic manta ray using a variant of the classic Euler-Lotka demographic model. This model requires only three traits to calculate the maximum intrinsic population growth rate r(max): von Bertalanffy growth rate, annual pup production and age at maturity. To account for the uncertainty in life history parameters, we created plausible parameter ranges and propagate these uncertainties through the model to calculate a distribution of the plausible range of rmax values. Results. The maximum population growth rate rmax of manta ray is most sensitive to the length of the reproductive cycle, and the median rmax of 0.116 year(-1) 95th percentile [0.089-0.139] is one of the lowest known of the 106 sharks and rays for which we have comparable demographic information. Discussion. In common with other unprotected, unmanaged, high-value largebodied sharks and rays the combination of very low population growth rates of manta rays, combined with the high value of their gill rakers and the international nature of trade, is highly likely to lead to rapid depletion and potential local extinction unless a rapid conservation management response occurs worldwide. Furthermore, we show that it is possible to derive important insights into the demography extinction risk of data-poor species using well-established life history theory. [Dulvy, Nicholas K.; Pardo, Sebastian A.] Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada; [Simpfendorfer, Colin A.] James Cook Univ, Ctr Sustainable Trop Fisheries & Aquaculture, Townsville, Qld 4811, Australia; [Simpfendorfer, Colin A.] James Cook Univ, Sch Earth & Environm Sci, Townsville, Qld 4811, Australia; [Carlson, John K.] NOAA, Natl Marine Fisheries Serv, Southeast Fisheries Sci Ctr, Panama City, FL USA Dulvy, NK (reprint author), Simon Fraser Univ, Dept Biol Sci, Earth Ocean Res Grp, Burnaby, BC V5A 1S6, Canada. dulvy@sfu.ca Simpfendorfer, Colin/G-9681-2011; CSTFA, ResearcherID/P-1067-2014 Simpfendorfer, Colin/0000-0002-0295-2238; Dulvy, Nicholas/0000-0002-4295-9725; Pardo, Sebastian A./0000-0002-4147-5796 Natural Science and Engineering Research Council, Canada; Canada Research Chairs program; Save Our Seas Foundation [235]; US State Department We thank the Natural Science and Engineering Research Council, Canada (NKD, SAP), the Canada Research Chairs program (NKD), Save Our Seas Foundation project #235 (NKD) and the US State Department contribution to IUCN (NKD) for funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Opinions expressed herein are of the authors only and do not imply endorsement by any agency or institution associated with the authors. Anderson SC, 2011, FISH FISH, V12, P317, DOI 10.1111/j.1467-2979.2010.00397.x; Baker CS, 2004, TRENDS ECOL EVOL, V19, P365, DOI 10.1016/j.tree.2004.05.005; Beddington JR, 2005, PHILOS T R SOC B, V360, P163, DOI 10.1098/rstb.2004.1582; Bennett M., 2014, PEERJ, DOI [10.7287/peerj.400v0.1/reviews/1, DOI 10.7287/PEERJ.400V0.1/REVIEWS/1]; Berkes F, 2006, SCIENCE, V311, P1557, DOI 10.1126/science.1122804; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; Charnov E.L., 2012, FISH FISH, V14, P213, DOI DOI 10.1111/J.1467-2979.2012.00467.X; CHARNOV EL, 1993, AM NAT, V142, P707, DOI 10.1086/285565; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Charnov EL, 2011, EVOL ECOL RES, V13, P431; CITES, 2007, INT IMPL CNV SPEC TR, P62; CITES, 2013, AM APP 1 2 CONV AD C, P8; Clark T. B., 2010, THESIS U HAWAII MANO; Clarke S, 2004, FISH FISH, V5, P53, DOI 10.1111/j.1467-2960.2004.00137.x; Clarke SC, 2006, ECOL LETT, V9, P1115, DOI 10.1111/j.1461-0248.2006.00968.x; Cortes E, 2002, CONSERV BIOL, V16, P1048, DOI 10.1046/j.1523-1739.2002.00423.x; Cortes Enric, 2000, Reviews in Fisheries Science, V8, P299, DOI 10.1080/10408340308951115; Couturier LIE, 2012, J FISH BIOL, V80, P1075, DOI 10.1111/j.1095-8649.2012.03264.x; Cuevas-Zimbron E, 2013, ENVIRON BIOL FISH, V96, P907, DOI 10.1007/s10641-012-0086-2; Dulvy N, 2010, SHARKS THEIR RELATIV, P635; Dulvy NK, 2014, ELIFE, V3, DOI 10.7554/eLife.00590; Dulvy NK, 2004, FISH FISH, V5, P255, DOI 10.1111/j.1467-2679.2004.00158.x; FAO, 2013, 4 FAO EXP ADV PAN AS, P169; Foster SJ, 2004, J FISH BIOL, V65, P1, DOI 10.1111/j.1095-8649.2004.00429.x; Frisk MG, 2001, CAN J FISH AQUAT SCI, V58, P969, DOI 10.1139/cjfas-58-5-969; Garcia VB, 2008, P R SOC B, V275, P83, DOI 10.1098/rspb.2007.1295; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Goodwin NB, 2002, PHILOS T R SOC B, V357, P259, DOI 10.1098/rstb.2001.0958; Heinrichs S, 2011, MANTA RAY HOPE GLOBA; Heppell SS, 1999, AM FISH S S, V23, P137; HOENIG JM, 1983, FISH B US, V82, P898, DOI DOI 10.1890/04-0594; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; Hutchings JA, 2012, ECOL APPL, V22, P1061, DOI 10.1890/11-1313.1; IUCN/TRAFFIC, 2013, IUCN TRAFFIC AN PROP; Jennings S, 2008, P ROY SOC B-BIOL SCI, V275, P1375, DOI 10.1098/rspb.2008.0192; Jennings S, 2008, ADVANCES IN FISHERIES SCIENCE: 50 YEARS ON FROM BEVERTON AND HOLT, P434, DOI 10.1002/9781444302653.ch18; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Law R, 1979, POPULATION DYNAMICS, P81; Lenzen M, 2012, NATURE, V486, P109, DOI 10.1038/nature11145; LUDWIG D, 1993, SCIENCE, V260, P17, DOI 10.1126/science.260.5104.17; Magnusson A, 2013, FISH FISH, V14, P325, DOI 10.1111/j.1467-2979.2012.00473.x; Marshall A, 2011, MANTA BIROSTRIS; Marshall AD, 2011, MAR BIOL, V158, P1111, DOI 10.1007/s00227-011-1634-6; Marshall AD, 2010, J FISH BIOL, V77, P169, DOI 10.1111/j.1095-8649.2010.02669.x; Marshall AD, 2011, MANTA ALFREDI; Marshall AD, 2009, ZOOTAXA, P1; MARTIN LK, 1988, COPEIA, P754; MUNDYTAYLOR V, 2013, DEEP IMPLEMENTING CI, P106; Musick JA, 1998, FISHERIES, V23, P28; Musick JA, 1999, FISHERIES, V24, P6, DOI 10.1577/1548-8446(1999)024<0006:CTDERI>2.0.CO;2; Myers RA, 1998, ECOL APPL, V8, pS165, DOI 10.2307/2641375; Neer JA, 2005, ENVIRON BIOL FISH, V73, P321, DOI 10.1007/s10641-005-2136-5; O'Malley MP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065051; Pardo S, 2012, CRITICAL REV ANAL EX; Pardo SA, 2013, METHODS ECOL EVOL, V4, P353, DOI 10.1111/2041-210x.12020; Pauly D, 2002, P INT SEM WORKSH JUL, P199; Peterman RM, 2004, ICES J MAR SCI, V61, P1331, DOI 10.1016/j.icesjms.2004.08.017; Phillis CC, 2013, CONSERV LETT, V6, P98, DOI 10.1111/j.1755-263X.2012.00294.x; POPE JG, 1994, PHILOS T ROY SOC B, V343, P41, DOI 10.1098/rstb.1994.0006; Pope JG, 2000, ICES J MAR SCI, V57, P689, DOI 10.1006/jmsc.2000.0729; R Core Team, 2013, R LANG ENV STAT COMP; Sadovy Y, 2003, FISH FISH, V4, P86, DOI 10.1046/j.1467-2979.2003.00104.x; Sadovy Yvonne J., 2002, P391, DOI 10.1016/B978-012615185-5/50023-2; Simpfendorfer C. A., 2005, ELASMOBRANCH FISHERI, P187; Simpfendorfer CA, 2009, ENVIRON CONSERV, V36, P97, DOI 10.1017/S0376892909990191; Smart JJ, 2013, AQUAT CONSERV, V23, P124, DOI 10.1002/aqc.2274; Smith SE, 1998, MAR FRESHWATER RES, V49, P663, DOI 10.1071/MF97135; Thorson JT, 2009, FISH RES, V98, P75, DOI 10.1016/j.fishres.2009.03.016; Town C, 2013, ECOL EVOL, V3, P1902, DOI 10.1002/ece3.587; Vincent ACJ, 2014, FISH FISH, V15, P563, DOI 10.1111/faf.12035; Ward-Paige CA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0074835; Wintner SP, 2000, ENVIRON BIOL FISH, V59, P441, DOI 10.1023/A:1026564707027; Yamaguchi A, 2005, ENVIRON BIOL FISH, V74, P229, DOI 10.1007/s10641-005-0217-0 73 35 36 1 45 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ MAY 27 2014 2 e400 10.7717/peerj.400 19 Multidisciplinary Sciences Science & Technology - Other Topics AY5JL WOS:000347608300003 24918029 DOAJ Gold, Green Published 2019-02-21 J Pearse, DE; Miller, MR; Abadia-Cardoso, A; Garza, JC Pearse, Devon E.; Miller, Michael R.; Abadia-Cardoso, Alicia; Garza, John Carlos Rapid parallel evolution of standing variation in a single, complex, genomic region is associated with life history in steelhead/rainbow trout PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article anadromy; salmonid; polymorphism; phenotypic plasticity; adaptation QUANTITATIVE TRAIT LOCI; ONCORHYNCHUS-MYKISS; RAINBOW-TROUT; POPULATION-STRUCTURE; GENETIC-BASIS; THREESPINE STICKLEBACK; LINKAGE DISEQUILIBRIUM; ADAPTIVE DIVERGENCE; PARTIAL ANADROMY; REDBAND TROUT Rapid adaptation to novel environments may drive changes in genomic regions through natural selection. Such changes may be population-specific or, alternatively, may involve parallel evolution of the same genomic region in multiple populations, if that region contains genes or co-adapted gene complexes affecting the selected trait(s). Both quantitative and population genetic approaches have identified associations between specific genomic regions and the anadromous (steelhead) and resident (rainbow trout) life-history strategies of Oncorhynchus mykiss. Here, we use genotype data from 95 single nucleotide polymorphisms and show that the distribution of variation in a large region of one chromosome, Omy5, is strongly associated with life-history differentiation in multiple above-barrier populations of rainbow trout and their anadromous steelhead ancestors. The associated loci are in strong linkage disequilibrium, suggesting the presence of a chromosomal inversion or other rearrangement limiting recombination. These results provide the first evidence of a common genomic basis for life-history variation in O. mykiss in a geographically diverse set of populations and extend our knowledge of the heritable basis of rapid adaptation of complex traits in novel habitats. [Pearse, Devon E.; Abadia-Cardoso, Alicia; Garza, John Carlos] Natl Marine Fisheries Serv, Southwest Fisheries Sci Ctr, Fisheries Ecol Div, Santa Cruz, CA 95060 USA; [Pearse, Devon E.; Abadia-Cardoso, Alicia; Garza, John Carlos] Univ Calif Santa Cruz, Inst Marine Sci, Santa Cruz, CA 95060 USA; [Miller, Michael R.] Univ Oregon, Inst Mol Biol, Eugene, OR 97403 USA; [Miller, Michael R.] Univ Calif Davis, Dept Anim Sci, Davis, CA 95616 USA Pearse, DE (reprint author), Natl Marine Fisheries Serv, Southwest Fisheries Sci Ctr, Fisheries Ecol Div, 110 Shaffer Rd, Santa Cruz, CA 95060 USA. devon.pearse@noaa.gov Abadia-Cardoso, Alicia/0000-0003-0691-0358 Abadia-Cardoso A, 2011, MOL ECOL RESOUR, V11, P31, DOI 10.1111/j.1755-0998.2010.02971.x; Allendorf FW, 2010, NAT REV GENET, V11, P697, DOI 10.1038/nrg2844; Anderson EC, 2007, EVOLUTION, V61, P972, DOI 10.1111/j.1558-5646.2007.00080.x; Ashley MV, 2003, BIOL CONSERV, V111, P115, DOI 10.1016/S0006-3207(02)00279-3; Aubin-Horth N, 2005, P ROY SOC B-BIOL SCI, V272, P1655, DOI 10.1098/rspb.2005.3125; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barrett RDH, 2011, NAT REV GENET, V12, P767, DOI 10.1038/nrg3015; Barrett RDH, 2009, BIOL LETTERS, V5, P788, DOI 10.1098/rsbl.2009.0416; Brown CR, 2013, CURR BIOL, V23, pR233, DOI 10.1016/j.cub.2013.02.023; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; CASTANOSANCHEZ C, 2009, BMC GENOMICS, V10, P559, DOI DOI 10.1186/1471-2164-10-559; Chan YF, 2012, CURR BIOL, V22, P794, DOI 10.1016/j.cub.2012.03.011; Clemento AJ, 2006, THESIS HUMBOLDT STAT; Clemento AJ, 2009, CONSERV GENET, V10, P1321, DOI 10.1007/s10592-008-9712-0; Colihueque N, 2010, GENET MOL BIOL, V33, P578, DOI 10.1590/S1415-47572010000300032; Colosimo PF, 2005, SCIENCE, V307, P1928, DOI 10.1126/science.1107239; Cowx I, 2005, CULTURED AQUATIC SPE; Cresko WA, 2004, P NATL ACAD SCI USA, V101, P6050, DOI 10.1073/pnas.0308479101; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Deiner K, 2007, CONSERV GENET, V8, P437, DOI 10.1007/s10592-006-9183-0; Dobzhansky T., 1937, GENETICS ORIGIN SPEC; Dodson JJ, 2013, BIOL REV, V88, P602, DOI 10.1111/brv.12019; Easton AA, 2011, J FISH BIOL, V78, P602, DOI 10.1111/j.1095-8649.2010.02881.x; Feder JL, 2009, EVOLUTION, V63, P3061, DOI 10.1111/j.1558-5646.2009.00786.x; Felsenstein J, 2008, POPG V 3 3; Funk WC, 2012, TRENDS ECOL EVOL, V27, P489, DOI 10.1016/j.tree.2012.05.012; Garza JC, 2014, T AM FISH SOC, V143, P134, DOI 10.1080/00028487.2013.822420; Haidle L, 2008, MAR BIOTECHNOL, V10, P579, DOI 10.1007/s10126-008-9098-5; Hale MC, 2013, G3-GENES GENOM GENET, V3, P1273, DOI 10.1534/g3.113.006817; Hayes SA, 2012, N AM J FISH MANAGE, V32, P772, DOI 10.1080/02755947.2012.686953; Heath DD, 2008, T AM FISH SOC, V137, P1268, DOI 10.1577/T05-278.1; Hecht BC, 2013, MOL ECOL, V22, P3061, DOI 10.1111/mec.12082; Hecht BC, 2012, G3-GENES GENOM GENET, V2, P1113, DOI 10.1534/g3.112.003137; HILL W G, 1968, Theoretical and Applied Genetics, V38, P226, DOI 10.1007/BF01245622; Hoekstra HE, 2003, MOL ECOL, V12, P1185, DOI 10.1046/j.1365-294X.2003.01788.x; Hohenlohe PA, 2012, PHILOS T R SOC B, V367, P395, DOI 10.1098/rstb.2011.0245; Holecek DE, 2012, T AM FISH SOC, V141, P68, DOI 10.1080/00028487.2011.651550; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Kirkpatrick M, 2012, GENETICS, V190, P1153, DOI 10.1534/genetics.112.139899; Le Bras Y, 2011, BMC GENET, V12, DOI 10.1186/1471-2156-12-46; Leder EH, 2006, J HERED, V97, P74, DOI 10.1093/jhered/esj004; Liedvogel M, 2011, TRENDS ECOL EVOL, V26, P561, DOI 10.1016/j.tree.2011.07.009; Limborg MT, 2012, ECOL EVOL, V2, P1, DOI 10.1002/ece3.59; Lowry DB, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000500; Manceau M, 2010, PHILOS T R SOC B, V365, P2439, DOI 10.1098/rstb.2010.0104; Martinez A, 2011, T AM FISH SOC, V140, P829, DOI 10.1080/00028487.2011.588094; McPhee MV, 2007, ECOL FRESHW FISH, V16, P539, DOI 10.1111/j.1600-0633.2007.00248.x; Miller MR, 2012, MOL ECOL, V21, P237, DOI 10.1111/j.1365-294X.2011.05305.x; Mueller JC, 2011, P ROY SOC B-BIOL SCI, V278, P2848, DOI 10.1098/rspb.2010.2567; Mundy NI, 2004, SCIENCE, V303, P1870, DOI 10.1126/science.1093834; Narum SR, 2011, T AM FISH SOC, V140, P843, DOI 10.1080/00028487.2011.588131; National Marine Fisheries Service (NMFS), 2012, SO CAL STEELH REC PL; Neave Ferris, 1944, JOUR FISH RES BD CANADA, V6, P245; Nichols KM, 2008, GENETICS, V179, P1559, DOI 10.1534/genetics.107.084251; Nichols KM, 2007, GENETICS, V175, P335, DOI 10.1534/genetics.106.064311; [NOAA NOAA], 2006, END THREAT SPEC FIN, P833; O'Malley KG, 2010, P ROY SOC B-BIOL SCI, V277, P3703, DOI 10.1098/rspb.2010.0762; O'Malley KG, 2003, J HERED, V94, P273, DOI 10.1093/jhered/esg067; Olsen JB, 2006, CONSERV GENET, V7, P613, DOI 10.1007/s10592-005-9099-0; Paibomesai Marion I, 2010, BMC Res Notes, V3, P215, DOI 10.1186/1756-0500-3-215; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Pearse DE, 2000, EVOLUTION, V54, P1041; Pearse DE, 2007, ENVIRON BIOL FISH, V80, P377, DOI 10.1007/s10641-006-9135-z; Pearse DE, 2011, T AM FISH SOC, V140, P587, DOI 10.1080/00028487.2011.583538; Pearse DE, 2011, CONSERV GENET, V12, P691, DOI 10.1007/s10592-010-0175-8; Pearse DE, 2009, J HERED, V100, P515, DOI 10.1093/jhered/esp040; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Phillips RB, 2006, GENETICS, V174, P1661, DOI 10.1534/genetics.105.055269; Phillis C, 2013, ONCORHYNCHUS B UNPUB; Pritchard JK, 2001, AM J HUM GENET, V69, P1, DOI 10.1086/321275; Pulido F, 2011, OIKOS, V120, P1776, DOI 10.1111/j.1600-0706.2011.19844.x; R Development Core Team., 2011, LANG ENV STAT COMP; Ramstad KM, 2010, EVOL ECOL, V24, P391, DOI 10.1007/s10682-009-9313-5; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Rexroad CE, 2008, BMC GENET, V9, DOI 10.1186/1471-2156-9-74; Robison BD, 2001, J HERED, V92, P16, DOI 10.1093/jhered/92.1.16; Rosenblum EB, 2011, EVOLUTION, V65, P946, DOI 10.1111/j.1558-5646.2010.01190.x; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Shin J-H, 2006, J STAT SOFTW, V16, P1, DOI DOI 10.18637/JSS.V016.C03; Stapley J, 2010, TRENDS ECOL EVOL, V25, P705, DOI 10.1016/j.tree.2010.09.002; Steiner CC, 2009, MOL BIOL EVOL, V26, P35, DOI 10.1093/molbev/msn218; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Thrower FP, 2004, J FISH BIOL, V65, P286, DOI 10.1111/j.1095-8649.2004.00551.x; Thrower FP, 2008, AM FISH S S, V62, P309; Wall JD, 2003, NAT REV GENET, V4, P587, DOI 10.1038/nrg1123; Waples RS, 2004, EVOLUTION, V58, P386, DOI 10.1111/j.0014-3820.2004.tb01654.x; WARNES G, 2005, GENETICS POPULATION; Westley PAH, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2327; Whitehead A, 2012, P ROY SOC B-BIOL SCI, V279, P427, DOI 10.1098/rspb.2011.0847; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152 90 49 50 1 77 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAY 22 2014 281 1783 20140012 10.1098/rspb.2014.0012 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AF0NP WOS:000334411600019 24671976 Green Published, Bronze 2019-02-21 J Hughes, PW; Simons, AM Hughes, Patrick William; Simons, Andrew M. Secondary reproduction in the herbaceous monocarp Lobelia inflata: time-constrained primary reproduction does not result in increased deferral of reproductive effort BMC ECOLOGY English Article Life-history evolution; Semelparity; Iteroparity; Facultative iteroparity; Lobelia inflata STEGODYPHUS-LINEATUS ERESIDAE; ITEROPAROUS LIFE-HISTORIES; PHENOTYPIC PLASTICITY; FITNESS CONSEQUENCES; IPOMOPSIS-AGGREGATA; ARABIS-FECUNDA; CRAB SPIDER; MOUNT KENYA; SEMELPARITY; EVOLUTION Background: Although semelparity is a life history characterized by a single reproductive episode within a single reproductive season, some semelparous organisms facultatively express a second bout of reproduction, either in a subsequent season ("facultative iteroparity") or later within the same season as the primary bout ("secondary reproduction"). Secondary reproduction has been explained as the adaptive deferral of reproductive potential under circumstances in which some fraction of reproductive success would otherwise have been lost (due, for example, to inopportune timing). This deferral hypothesis predicts a positive relationship between constraints on primary reproduction and expression of secondary reproduction. The herbaceous monocarp Lobelia inflata has been observed occasionally to express a secondary reproductive episode in the field. However, it is unknown whether secondary reproduction is an example of adaptive reproductive deferral, or is more parsimoniously explained as the vestigial expression of iteroparity after a recent transition to semelparity. Here, we experimentally manipulate effective season length in each of three years to test whether secondary reproduction is a form of adaptive plasticity consistent with the deferral hypothesis. Results: Our results were found to be inconsistent with the adaptive deferral explanation: first, plants whose primary reproduction was time-constrained exhibited decreased (not increased) allocation to subsequent secondary reproduction, a result that was consistent across all three years; second, secondary offspring-although viable in the laboratory-would not have the opportunity for expression under field conditions, and would thus not contribute to reproductive success. Conclusions: Although alternative adaptive explanations for secondary reproduction cannot be precluded, we conclude that the characteristics of secondary reproduction found in L. inflata are consistent with predictions of incomplete or transitional evolution to annual semelparity. [Hughes, Patrick William; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Hughes, PW (reprint author), Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada. william.hughes@carleton.ca Hughes, P. William/G-9119-2018; Simons, Andrew/A-7751-2012 Hughes, P. William/0000-0003-4142-2579; Simons, Andrew/0000-0002-0198-465X NSERC CGS; NSERC Discovery Grant We thank M. Compton, S. Aitken, H. Rundle and T. Sherratt for discussion, and Peter Arbour and the Petawawa Research Forest for access to research sites. Lobelia inflata is a common weed of disturbed habitats and is not cited under Canada's List of Wildlife Species at Risk, nor is it protected under CITES. All fieldwork and specimen collection in the Petawawa Research Forest was undertaken with the permission of the Operations Managers of the Canadian Wood Fibre Centre. This study was supported by an NSERC CGS to PWH and an NSERC Discovery Grant to AMS. BAIRD DJ, 1986, J ANIM ECOL, V55, P295, DOI 10.2307/4709; Baurle I, 2006, CELL, V125, P655, DOI 10.1016/j.cell.2006.05.005; Bernier G, 2005, PLANT BIOTECHNOL J, V3, P3, DOI 10.1111/j.1467-7652.2004.00114.x; BOWDEN WRAY M., 1959, BULL TORREY BOT CLUB, V86, P94, DOI 10.2307/2482990; BRADSHAW WE, 1986, EVOLUTION, V40, P471, DOI 10.1111/j.1558-5646.1986.tb00500.x; Caruso CM, 2003, AM J BOT, V90, P1333, DOI 10.3732/ajb.90.9.1333; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crespi BJ, 2002, EVOLUTION, V56, P1008; Davies RW, 1996, ARCH HYDROBIOL, V138, P45; FLOOD RG, 1982, ANN BOT-LONDON, V49, P469, DOI 10.1093/oxfordjournals.aob.a086271; Freeman RS, 2003, OECOLOGIA, V136, P394, DOI 10.1007/s00442-003-1276-6; FRITZ RS, 1982, AM NAT, V120, P264, DOI 10.1086/283987; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; Harris GP, 1968, ANN BOT, V125, P187; HARVILLE DA, 1977, J AM STAT ASSOC, V72, P320, DOI 10.2307/2286796; Hautekeete NC, 2001, J EVOLUTION BIOL, V14, P795, DOI 10.1046/j.1420-9101.2001.00322.x; Hughes PW, 2014, BMC EVOL BIOL, V14, DOI 10.1186/1471-2148-14-90; Hughes PW, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1300096; Hughes PW, 2014, DATA DESCRIBING SECO; Imaizumi T, 2006, TRENDS PLANT SCI, V11, P550, DOI 10.1016/j.tplants.2006.09.004; Johnson PG, 1997, CROP SCI, V37, P1543, DOI 10.2135/cropsci1997.0011183X003700050022x; Juenger T, 1997, ECOLOGY, V78, P1684; Karban R, 1999, TRENDS ECOL EVOL, V14, P443, DOI 10.1016/S0169-5347(99)01678-X; Karban R, 2008, ECOL LETT, V11, P727, DOI 10.1111/j.1461-0248.2008.01183.x; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Kraaijeveld K, 2003, P ROY SOC B-BIOL SCI, V270, pS251, DOI 10.1098/rsbl.2003.0082; Lammers TG, 2011, ANN MO BOT GARD, V98, P37, DOI 10.3417/2007150; LANE HC, 1965, AM J BOT, V52, P1006, DOI 10.2307/2440130; Lesica P, 2005, FUNCT ECOL, V19, P471, DOI 10.1111/j.1365-2435.2005.00972.x; LESICA P, 1995, AM J BOT, V82, P752, DOI 10.2307/2445615; MALTBY L, 1986, J ANIM ECOL, V55, P739, DOI 10.2307/4751; Martins EG, 2006, J MAMMAL, V87, P915, DOI 10.1644/05-MAMM-A-403R1.1; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; MORSE DH, 1994, J ARACHNOL, V22, P195; Murphy EJ, 1999, EVOL ECOL, V13, P517, DOI 10.1023/A:1006783902331; ORZACK SH, 1989, AM NAT, V133, P901, DOI 10.1086/284959; PAIGE KN, 1987, AM NAT, V129, P407, DOI 10.1086/284645; Piepho HP, 2003, J AGRON CROP SCI, V189, P310, DOI 10.1046/j.1439-037X.2003.00049.x; Pilson D, 2002, ECOLOGY, V83, P3097, DOI 10.2307/3071845; Preston KA, 1998, OIKOS, V81, P279, DOI 10.2307/3547048; Ranta E, 2001, EVOL ECOL RES, V3, P759; Ratcliff WC, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006055; Roff DA, 2001, LIFE HIST EVOLUTION, P527; Roff Derek A., 1992; SALISBURY F, 1961, ANNU REV PLANT PHYS, V12, P293, DOI 10.1146/annurev.pp.12.060161.001453; Schmitt J, 1999, AM NAT, V154, pS43, DOI 10.1086/303282; Schneider JM, 1997, OIKOS, V79, P92, DOI 10.2307/3546094; Schneider JM, 2003, EVOL ECOL RES, V5, P731; Searle I, 2004, EMBO J, V23, P1217, DOI 10.1038/sj.emboj.7600117; Simons AM, 1999, AM NAT, V153, P683, DOI 10.1086/303206; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simons AM, 2010, OIKOS, V119, P1685, DOI 10.1111/j.1600-0706.2010.18515.x; Stearns S, 1976, Q REV BIOL; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stegmann UE, 2002, ETHOLOGY, V108, P857, DOI 10.1046/j.1439-0310.2002.00818.x; Su ZM, 2012, ECOL MODEL, V224, P76, DOI 10.1016/j.ecolmodel.2011.11.001; Tallamy DW, 1999, ANIM BEHAV, V57, P727, DOI 10.1006/anbe.1998.1008; TRUMBLE JT, 1993, ANNU REV ENTOMOL, V38, P93, DOI 10.1146/annurev.en.38.010193.000521; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Verkaar H, 2006, NEW PHYTOL, V98, P673; Wolfe LM, 2005, INT J PLANT SCI, V166, P631, DOI 10.1086/430194; YOUNG JO, 1982, ARCH HYDROBIOL, V94, P218; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1984, J ECOL, V72, P637, DOI 10.2307/2260073; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; YOUNG TP, 1990, EVOL ECOL, V4, P157, DOI 10.1007/BF02270913 72 1 1 2 19 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1472-6785 BMC ECOL BMC Ecol. MAY 20 2014 14 15 10.1186/1472-6785-14-15 10 Ecology Environmental Sciences & Ecology AI1XB WOS:000336647400001 24886288 DOAJ Gold, Green Published 2019-02-21 J Zeng, C; Gomez-Mestre, I; Wiens, JJ Zeng, Cen; Gomez-Mestre, Ivan; Wiens, John J. Evolution of Rapid Development in Spadefoot Toads Is Unrelated to Arid Environments PLOS ONE English Article GLOBAL PATTERNS; PLETHODONTID SALAMANDERS; LARVAL DEVELOPMENT; SCAPHIOPUS-COUCHI; CLIMATE-CHANGE; DESERT PONDS; RE-EVOLUTION; GENOME SIZE; GREAT TITS; C-VALUE The extent to which species' life histories evolve to match climatic conditions is a critical question in evolutionary biology and ecology and as human activities rapidly modify global climate. GIS-based climatic data offer new opportunities to rigorously test this question. Superficially, the spadefoot toads of North America (Scaphiopodidae) seem to offer a classic example of adaptive life-history evolution: some species occur in extremely dry deserts and have evolved the shortest aquatic larval periods known among anurans. However, the relationships between the climatic conditions where spadefoots occur and the relevant life-history traits have not been explicitly tested. Here, we analyzed these relationships using GISbased climatic data, published life-history data, and a time-calibrated phylogeny for pelobatoid frogs. Surprisingly, we find no significant relationships between life-history variables and precipitation or aridity levels where these species occur. Instead, rapid development in pelobatoids is strongly related to their small genome sizes and to phylogeny. [Zeng, Cen] Univ Munich, Dept Biol 2, Munich, Germany; [Gomez-Mestre, Ivan] CSIC, Ecol Evolut & Dev Grp, Donana Biol Stn, Seville, Spain; [Wiens, John J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA Wiens, JJ (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. wiensj@email.arizona.edu CSIC, EBD Donana/C-4157-2011; Gomez-Mestre, Ivan/F-8226-2014 CSIC, EBD Donana/0000-0003-4318-6602; Gomez-Mestre, Ivan/0000-0003-0094-8195; Wiens, John/0000-0003-4243-1127 Elite Researcher Training Program of the Ministry of Education of China The authors thank the Elite Researcher Training Program of the Ministry of Education of China for funds allowing C. Zeng to visit J.J.W. and work on this project. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. BACHMANN K, 1972, Quarterly Journal of the Florida Academy of Sciences, V35, P225; Bazazi S, 2012, BEHAV ECOL SOCIOBIOL, V66, P8; Bonett RM, 2014, EVOLUTION, V68, P466, DOI 10.1111/evo.12274; Buchholz DR, 2002, COPEIA, P180, DOI 10.1643/0045-8511(2002)002[0180:EPODIS]2.0.CO;2; Buckley LB, 2007, P ROY SOC B-BIOL SCI, V274, P1167, DOI [10.1098/rspb.2006.0436, 10.1098//rspb.2006.0436]; Burnham K. P, 2002, MODEL SELECTION MULT; Camper JD, 1993, GENET LIFE SCI ADV, V12, P79; CONANT R, 1998, REPTILES AMPHIBIANS; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Garcia-Paris M, 2003, MOL PHYLOGENET EVOL, V28, P12, DOI 10.1016/S1055-7903(03)00036-8; GOIN OB, 1968, COPEIA, P532, DOI 10.2307/1442021; Gomez-Mestre I, 2006, P NATL ACAD SCI USA, V103, P19021, DOI 10.1073/pnas.0603562103; Gomez-Mestre I, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0084266; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Gregory TR, 2002, GENETICA, V115, P131, DOI 10.1023/A:1016032400147; Hansen TF, 1997, EVOLUTION, V51, P1341, DOI 10.1111/j.1558-5646.1997.tb01457.x; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; HORNER HA, 1983, J CELL SCI, V63, P135; Husby A, 2009, P R SOC B, V276, P1845, DOI 10.1098/rspb.2008.1937; IUCN, 2012, IUCN RED LIST THREAT; Jockusch EL, 1997, P ROY SOC B-BIOL SCI, V264, P597, DOI 10.1098/rspb.1997.0085; Kulkarni SS, 2011, J EVOLUTION BIOL, V24, P2445, DOI 10.1111/j.1420-9101.2011.02370.x; Lambert SM, 2013, EVOLUTION, V67, P1715; Lane JE, 2012, NATURE, V489, P554, DOI 10.1038/nature11335; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MAYHEW WW, 1965, AM MIDL NAT, V74, P95, DOI 10.2307/2423123; Morey S, 2000, ECOLOGY, V81, P1736, DOI 10.2307/177320; Morey SR, 2004, OIKOS, V104, P172, DOI 10.1111/j.0030-1299.2004.12623.x; NEWMAN RA, 1987, OECOLOGIA, V71, P301, DOI 10.1007/BF00377299; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; OELDORF E, 1978, Z ZOOL SYST EVOL, V16, P216; Orme D., 2012, CAPER COMP ANAL PHYL; Oufiero CE, 2011, EVOLUTION, V65, P3590, DOI 10.1111/j.1558-5646.2011.01405.x; Pagel M, 1999, NATURE, V401, P877, DOI 10.1038/44766; PAGEL M, 1992, P ROY SOC B-BIOL SCI, V249, P119, DOI 10.1098/rspb.1992.0093; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pfennig DW, 2010, EVOLUTION, V64, P2331, DOI 10.1111/j.1558-5646.2010.01005.x; Pfennig KS, 2007, SCIENCE, V318, P965, DOI 10.1126/science.1146035; Pyron RA, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1622; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Rocek Z, 2000, AMPHIBIAN BIOL, V4, P1333; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; ROFF DA, 2002, LIFE HIST EVOLUTION; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; Stearns S, 1992, EVOLUTION LIFE HIST; Stebbins R. C, 2003, FIELD GUIDE W REPTIL; Tieleman BI, 2002, P ROY SOC LOND B BIO, P207; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Vitt LJ, 2009, HERPETOLOGY INTRO BI; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2011, SYST BIOL, V60, P719, DOI 10.1093/sysbio/syr025; Wiens JJ, 2011, EVOLUTION, V65, P1283, DOI 10.1111/j.1558-5646.2011.01221.x; Wright A. H., 1949, HDB FROGS TOADS US C; Yuan W, 2000, NATURWISSENSCHAFTEN, V87, P417, DOI 10.1007/s001140050753 57 7 7 1 21 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAY 6 2014 9 5 e96637 10.1371/journal.pone.0096637 8 Multidisciplinary Sciences Science & Technology - Other Topics AJ9KS WOS:000338029800099 24800832 DOAJ Gold, Green Published 2019-02-21 J Cole, EF; Quinn, JL Cole, Ella F.; Quinn, John L. Shy birds play it safe: personality in captivity predicts risk responsiveness during reproduction in the wild BIOLOGY LETTERS English Article personality; exploration; neophobia; great tit; Parus major; life-history strategies TIT PARUS-MAJOR; ANIMAL PERSONALITIES; BEHAVIORAL SYNDROMES; POPULATION; EVOLUTIONARY Despite a growing body of evidence linking personality to life-history variation and fitness, the behavioural mechanisms underlying these relationships remain poorly understood. One mechanism thought to play a key role is how individuals respond to risk. Relatively reactive and proactive (or shy and bold) personality types are expected to differ in how they manage the inherent trade-off between productivity and survival, with bold individuals being more risk-prone with lower survival probability, and shy individuals adopting a more risk-averse strategy. In the great tit (Parus major), the shy-bold personality axis has been well characterized in captivity and linked to fitness. Here, we tested whether 'exploration behaviour', a captive assay of the shy-bold axis, can predict risk responsiveness during reproduction in wild great tits. Relatively slow-exploring (shy) females took longer than fast-exploring (bold) birds to resume incubation after a novel object, representing an unknown threat, was attached to their nest-box, with some shy individuals not returning within the 40 min trial period. Risk responsiveness was consistent within individuals over days. These findings provide rare, field-based experimental evidence that shy individuals prioritize survival over reproductive investment, supporting the hypothesis that personality reflects life-history variation through links with risk responsiveness. [Cole, Ella F.; Quinn, John L.] Univ Oxford, Edward Grey Inst, Oxford OX1 3PS, England; [Quinn, John L.] Natl Univ Ireland Univ Coll Cork, Sch Biol Earth & Environm Sci, Cork, Ireland Cole, EF (reprint author), Univ Oxford, Edward Grey Inst, Oxford OX1 3PS, England. eleanor.cole@zoo.ox.ac.uk Biotechnological and Biological Sciences Research Council studentship; Royal Society This work was supported by a Biotechnological and Biological Sciences Research Council studentship to E.F.C. and a Royal Society research grant to J.L.Q. Aplin LM, 2013, ECOL LETT, V16, P1365, DOI 10.1111/ele.12181; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Cole EF, 2014, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.58142, DOI 10.5061/DRYAD.58142]; Cole EF, 2012, P ROY SOC B-BIOL SCI, V279, P1168, DOI 10.1098/rspb.2011.1539; Gosler A. G., 1993, GREAT TIT; Groothuis TGG, 2005, NEUROSCI BIOBEHAV R, V29, P137, DOI 10.1016/j.neubiorev.2004.06.010; Hollander FA, 2008, ETHOLOGY, V114, P405, DOI 10.1111/j.1439-0310.2008.01488.x; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Patrick SC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026383; Perrins CM, 1979, BRIT TITS; Quinn JL, 2012, P ROY SOC B-BIOL SCI, V279, P1919, DOI 10.1098/rspb.2011.2227; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Richard S, 2008, BEHAV PROCESS, V77, P313, DOI 10.1016/j.beproc.2007.07.005; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2011, DEV PRIMATOL-PROG PR, P313, DOI 10.1007/978-1-4614-0176-6_12; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stuber EF, 2013, BEHAV ECOL, V24, P1092, DOI 10.1093/beheco/art035; Szekely Tamas, 1996, Current Ornithology, V13, P271; VANNOORDWIJK AJ, 1988, GENET RES, V51, P149; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 24 36 37 2 116 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. MAY 1 2014 10 5 20140178 10.1098/rsbl.2014.0178 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AI3SW WOS:000336783500009 24829251 Bronze, Green Published 2019-02-21 J Hua, FY; Sieving, KE; Fletcher, RJ; Wright, CA Hua, Fangyuan; Sieving, Kathryn E.; Fletcher, Robert J., Jr.; Wright, Chloe A. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance BEHAVIORAL ECOLOGY English Article adult; avian reproduction; life-history theory; offspring; perceived predation risk LIFE-HISTORY EVOLUTION; NEST PREDATION; CLUTCH SIZE; PREY INTERACTIONS; COLLARED FLYCATCHER; HABITAT SELECTION; PHENOTYPIC PLASTICITY; POECILIA-RETICULATA; DECISION-MAKING; AMERICAN BIRDS Predation risk can inflict profound effects on prey by influencing prey behavior and other traits. Prey are often subjected to a diversity of predators, which can exert differential predation pressures on prey life-history strategies. In birds, breeding adults and offspring (as eggs, nestlings, and fledglings) are susceptible to different types of predators, and life-history theory predicts that breeding birds can adjust to adult versus offspring predation risk differentially via allocation of breeding investment. Here, we experimentally tested for the effects of perceived adult versus offspring predation risk on breeding birds' reproductive strategy and performance. On study plots with nest boxes used by the cavity-nesting Eastern bluebird Sialia sialis, we manipulated vocal cues of 3 avian predators that preferentially prey on either bluebird adults, or offspring, or both. We found that 1) increased perception of predation risk by all predator treatments reduced bluebird parental investment in egg production and/or post-egg nesting performance, and 2) increased perception of adult and offspring predation risks affected bluebirds differentially, with bluebirds exhibiting shorter nestling rearing periods under offspring, but not adult, predation risk. Our results provide experimental evidence for the nonconsumptive effects of predation risk on avian breeding behavior that can influence demographic vital rates and highlight the mechanisms by which breeding birds can adjust reproductive strategies under different predation risk situations. [Hua, Fangyuan; Sieving, Kathryn E.; Fletcher, Robert J., Jr.; Wright, Chloe A.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; [Hua, Fangyuan] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA Hua, FY (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Program Sci Technol & Environm Policy, Princeton, NJ 08544 USA. slcyane@gmail.com Sieving, Kathryn/0000-0002-0849-8101; Fletcher, Robert/0000-0003-1717-5707 School of Natural Resources and Environment (University of Florida); University of Florida; Department of Wildlife Ecology and Conservation (University of Florida) This study is supported by the Department of Wildlife Ecology and Conservation (University of Florida; field expenses to R.J.F. Jr. and K. E. S.), Ordway-Swisher Biological Station (logistical support), and School of Natural Resources and Environment (University of Florida; PhD Program Fellowship to F.H.).; We thank S. Coates and the Ordway-Swisher Biological Station for use of field sites and logistic support and the University of Florida for financial support. We thank S. K. Robinson for helpful discussion on research design. Special thanks go to I. Skinner and J. Yuan for arduous field assistance. We thank J. Colee for insights on statistical analysis. We thank D. J. Levey, J. Mappes, D. Blumstein, and 1 anonymous reviewer for critical comments that greatly improved the manuscript. Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; ALATALO RV, 1984, BEHAV ECOL SOCIOBIOL, V14, P253, DOI 10.1007/BF00299496; Blaustein L, 2004, OECOLOGIA, V138, P300, DOI 10.1007/s00442-003-1398-x; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Creel S, 2008, TRENDS ECOL EVOL, V23, P194, DOI 10.1016/j.tree.2007.12.004; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Creel S, 2009, P NATL ACAD SCI USA, V106, P12388, DOI 10.1073/pnas.0902235106; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Curtis E, 2006, BIRDS N AM ONLINE; DeLuca J, 2008, THESIS U FLORIDA GAI, P17; Doligez B, 2003, ECOLOGY, V84, P2582, DOI 10.1890/02-3116; DRENT RH, 1980, ARDEA, V68, P225; DRILLING NE, 1991, AUK, V108, P60; Eggers S, 2006, P ROY SOC B-BIOL SCI, V273, P701, DOI 10.1098/rspb.2005.3373; Endler J.A., 1991, P169; Fletcher RJ, 2007, J ANIM ECOL, V76, P598, DOI 10.1111/j.1365-2656.2007.01230.x; Fletcher RJ, 2009, OIKOS, V118, P1139, DOI 10.1111/j.1600-0706.2009.17342.x; Florida Natural Areas Inventory, 2010, GUID NAT COMM FLOR; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Fretwell SD, 1972, POPULATIONS SEASONAL; Gauthreaux S.A. Jr, 1978, Perspectives in Ethology, V3, P17; Gehlbach FR, 1995, BIRDS N AM ONLINE; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; GOWATY PA, 1998, BIRDS N AM ONLINE; Greenwood JL, 2011, J RAPTOR RES, V45, P15, DOI 10.3356/JRR-10-26.1; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; HOYT DF, 1979, AUK, V96, P73; Hua FY, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0762; Kluyver H.N., 1977, P153; KOSKELA E, 1995, BEHAV ECOL, V6, P311, DOI 10.1093/beheco/6.3.311; Lasley-Rasher RS, 2012, LIMNOL OCEANOGR, V57, P433, DOI 10.4319/lo.2012.57.2.0433; LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.2307/2336267; LIMA SL, 1993, WILSON BULL, V105, P1; LIMA SL, 1987, ECOLOGY, V68, P1062, DOI 10.2307/1938378; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Lima SL, 1998, ADV STUD BEHAV, V27, P215; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Maier TJ, 2000, CONDOR, V102, P325, DOI 10.1650/0010-5422(2000)102[0325:POJQVH]2.0.CO;2; Maron JL, 2010, ECOLOGY, V91, P3719, DOI 10.1890/10-0160.1; Martin T.E., 1992, Current Ornithology, V9, P163; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Martin TE, 2009, ANN NY ACAD SCI, V1168, P201, DOI 10.1111/j.1749-6632.2009.04577.x; McCallum CA, 2001, CONDOR, V103, P192, DOI 10.1650/0010-5422(2001)103[0192:APOARN]2.0.CO;2; McLennan JA, 1996, NEW ZEAL J ECOL, V20, P27; Monkkonen M, 2009, BIOL LETTERS, V5, P176, DOI 10.1098/rsbl.2008.0631; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Nest Box Resource Center, 2013, NEST BOX PLAC; Nocera JJ, 2008, BEHAV ECOL SOCIOBIOL, V62, P1769, DOI 10.1007/s00265-008-0605-5; Orrock JL, 2013, ECOLOGY, V94, P573, DOI 10.1890/12-0502.1; Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x; PART T, 1991, AM NAT, V138, P790, DOI 10.1086/285252; PART T, 1994, ANIM BEHAV, V48, P401, DOI 10.1006/anbe.1994.1254; Peckarsky BL, 2008, ECOLOGY, V89, P2416, DOI 10.1890/07-1131.1; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Preisser EL, 2005, ECOLOGY, V86, P501, DOI 10.1890/04-0719; Preisser EL, 2007, ECOLOGY, V88, P2744, DOI 10.1890/07-0260.1; R Core Team, 2013, R LANG ENV STAT COMP; REED JM, 1993, TRENDS ECOL EVOL, V8, P253, DOI 10.1016/0169-5347(93)90201-Y; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; RODENHOUSE NL, 1992, ECOLOGY, V73, P357, DOI 10.2307/1938747; SAFRIEL UN, 1975, ECOLOGY, V56, P703, DOI 10.2307/1935505; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Schmitz OJ, 1997, ECOLOGY, V78, P1388; Schneider NA, 2013, BEHAV ECOL, V24, P47, DOI 10.1093/beheco/ars134; SIEGEL HS, 1980, BIOSCIENCE, V30, P529, DOI 10.2307/1307973; Sih A., 1987, P203; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SMITH HG, 1987, AUK, V104, P700; Stanback MT, 2003, AUK, V120, P1029, DOI 10.1642/0004-8038(2003)120[1029:NFIEBS]2.0.CO;2; Stout RL, 2002, RECENT DEV ALCOHOL, V16, P39, DOI 10.1007/0-306-47939-7_5; Stracey CM., 2010, THESIS U FLORIDA GAI, P62; STUTCHBURY BJ, 1987, CONDOR, V89, P587, DOI 10.2307/1368647; Tarvin KA, 1999, BIRDS N AM ONLINE; Templeton CN, 2004, BEHAV ECOL, V15, P673, DOI 10.1093/beheco/arh065; Thomson DL, 1998, BIOL REV, V73, P293, DOI 10.1017/S0006323198005180; Thomson RL, 2006, ECOGRAPHY, V29, P507; Thomson RL, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0052226; USDA Natural Resources Conservation Service, 1999, FISH WILDL HAB MAN L, P12; VANHORNE B, 1983, J WILDLIFE MANAGE, V47, P893; WARKENTIN KM, 1995, P NATL ACAD SCI USA, V92, P3507, DOI 10.1073/pnas.92.8.3507; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WINGFIELD JC, 1986, HORM BEHAV, V20, P405, DOI 10.1016/0018-506X(86)90003-6; Wisenden BD, 1993, CAN J ZOOL, V71, P251; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 93 26 28 1 100 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. MAY-JUN 2014 25 3 509 519 10.1093/beheco/aru017 11 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology AH9TQ WOS:000336486100015 Bronze 2019-02-21 J Galvez, D; Chapuisat, M Galvez, Dumas; Chapuisat, Michel Immune priming and pathogen resistance in ant queens ECOLOGY AND EVOLUTION English Article formicine ants; immune priming; immunity; life-history; life span; mating SOCIALLY POLYMORPHIC ANT; IMPORTED FIRE ANT; TRADE-OFF; INSECT; INVERTEBRATES; DROSOPHILA; DIFFERENTIATION; REPRODUCTION; PROPHYLAXIS; HYMENOPTERA Growing empirical evidence indicates that invertebrates become more resistant to a pathogen following initial exposure to a nonlethal dose; yet the generality, mechanisms, and adaptive value of such immune priming are still under debate. Because life-history theory predicts that immune priming and large investment in immunity should be more frequent in long-lived species, we here tested for immune priming and pathogen resistance in ant queens, which have extraordinarily long life span. We exposed virgin and mated queens of Lasius niger and Formica selysi to a low dose of the entomopathogenic fungus Beauveria bassiana, before challenging them with a high dose of the same pathogen. We found evidence for immune priming in naturally mated queens of L.niger. In contrast, we found no sign of priming in virgin queens of L.niger, nor in virgin or experimentally mated queens of F.selysi, which indicates that immune priming in ant queens varies according to mating status and mating conditions or species. In both ant species, mated queens showed higher pathogen resistance than virgin queens, which suggests that mating triggers an up-regulation of the immune system. Overall, mated ant queens combine high reproductive output, very long life span, and elevated investment in immune defense. Hence, ant queens are able to invest heavily in both reproduction and maintenance, which can be explained by the fact that mature queens will be protected and nourished by their worker offspring. [Galvez, Dumas; Chapuisat, Michel] Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, CH-1015 Lausanne, Switzerland Chapuisat, M (reprint author), Univ Lausanne, Dept Ecol & Evolut, UNIL Sorge, CH-1015 Lausanne, Switzerland. Michel.Chapuisat@unil.ch Chapuisat, Michel/T-8686-2017 Chapuisat, Michel/0000-0001-7207-199X Swiss National Science Foundation; Societe Academique Vaudoise; University of Lausanne Swiss National Science Foundation; Societe Academique Vaudoise; University of Lausanne. Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Baer B, 2006, NATURE, V441, P872, DOI 10.1038/nature04698; Best A, 2013, J R SOC INTERFACE, V10, DOI 10.1098/rsif.2012.0887; Castella G, 2009, J EVOLUTION BIOL, V22, P564, DOI 10.1111/j.1420-9101.2008.01664.x; Chapuisat M, 2004, EVOLUTION, V58, P1064; Cronin AL, 2013, ANNU REV ENTOMOL, V58, P37, DOI 10.1146/annurev-ento-120811-153643; De Loof A, 2011, J INSECT PHYSIOL, V57, P1, DOI 10.1016/j.jinsphys.2010.08.018; Garnier R, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0017; Gonzalez-Tokman DM, 2010, PHYSIOL ENTOMOL, V35, P364, DOI 10.1111/j.1365-3032.2010.00752.x; Hamilton C, 2011, BIOL LETTERS, V7, P89, DOI 10.1098/rsbl.2010.0466; Hauton C, 2007, BIOESSAYS, V29, P1138, DOI 10.1002/bies.20650; Heinze J, 2013, BEHAV ECOL SOCIOBIOL, V67, P1555, DOI 10.1007/s00265-013-1567-9; Holldobler B., 1990, ANTS; HOLM S, 1979, SCAND J STAT, V6, P65; Jemielity S, 2005, AGE, V27, P241, DOI 10.1007/s11357-005-2916-z; Kafle L, 2011, PEST MANAG SCI, V67, P1434, DOI 10.1002/ps.2192; Kamimura Y, 2007, INSECT SOC, V55, P51; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 1998, INSECT SOC, V45, P235, DOI 10.1007/s000400050084; Konrad M, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001300; Lawniczak MKN, 2007, TRENDS ECOL EVOL, V22, P48, DOI 10.1016/j.tree.2006.09.012; Little TJ, 2004, TRENDS ECOL EVOL, V19, P58, DOI 10.1016/j.tree.2003.11.011; Peng J, 2005, CURR BIOL, V15, P1690, DOI 10.1016/j.cub.2005.08.048; Pham LN, 2007, PLOS PATHOG, V3, DOI 10.1371/journal.ppat.0030026; Purcell J, 2013, EVOLUTION, V67, P1169, DOI 10.1111/evo.12010; R Development Core Team, 2013, R LANG ENV STAT COMP; Reber A, 2012, INSECT SOC, V59, P231, DOI 10.1007/s00040-011-0209-3; Reber A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0035372; Reber A, 2010, ANIM BEHAV, V79, P467, DOI 10.1016/j.anbehav.2009.11.030; Rodrigues J, 2010, SCIENCE, V329, P1353, DOI 10.1126/science.1190689; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Rolff J, 2009, INSECT INFECT IMMUNI; Rosengaus RB, 1999, NATURWISSENSCHAFTEN, V86, P588, DOI 10.1007/s001140050679; Rosengaus RB, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0563; Rosset H, 2007, EVOL ECOL, V21, P577, DOI 10.1007/s10682-006-9139-3; Roth O, 2010, J ANIM ECOL, V79, P403, DOI 10.1111/j.1365-2656.2009.01617.x; Rowley AF, 2007, J IMMUNOL, V179, P7209, DOI 10.4049/jimmunol.179.11.7209; Rus F, 2013, EMBO J, V32, P1626, DOI 10.1038/emboj.2013.100; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sadd BM, 2006, CURR BIOL, V16, P1206, DOI 10.1016/j.cub.2006.04.047; Sanjayan KP, 1996, J BIOSCIENCE, V21, P781, DOI 10.1007/BF02704719; Schmid-Hempel P, 2009, PHILOS T R SOC B, V364, P85, DOI 10.1098/rstb.2008.0157; Schneider SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0014601; Shoemaker KL, 2006, ANIM BEHAV, V71, P371, DOI 10.1016/j.anbehav.2005.05.007; Stahlschmidt ZR, 2013, FUNCT ECOL, V27, P800, DOI 10.1111/1365-2435.12071; SZATHMARY E, 1995, NATURE, V374, P227, DOI 10.1038/374227a0; ter Braak B, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073600; Tian HS, 2004, INSECT BIOCHEM MOLEC, V34, P937, DOI 10.1016/j.ibmb.2004.06.004; Tidbury HJ, 2011, P ROY SOC B-BIOL SCI, V278, P871, DOI 10.1098/rspb.2010.1517; Traniello JFA, 2002, P NATL ACAD SCI USA, V99, P6838, DOI 10.1073/pnas.102176599; Ugelvig LV, 2007, CURR BIOL, V17, P1967, DOI 10.1016/j.cub.2007.10.029; Valtonen TM, 2010, PARASITOLOGY, V137, P985, DOI 10.1017/S0031182009992009; Zanchi C, 2012, P ROY SOC B-BIOL SCI, V279, P3223, DOI 10.1098/rspb.2012.0493; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 54 15 15 0 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2014 4 10 1761 1767 10.1002/ece3.1070 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AH9VC WOS:000336491600004 24963375 DOAJ Gold, Green Published 2019-02-21 J Wensink, M; Westendorp, RGJ; Baudisch, A Wensink, Maarten; Westendorp, Rudi G. J.; Baudisch, Annette The causal pie model: an epidemiological method applied to evolutionary biology and ecology ECOLOGY AND EVOLUTION English Article Agents of selection; aging; causation; causes of mortality; correlated traits; natural selection; semi-neutral mutations; trade-offs LIFE-HISTORY EVOLUTION; NATURAL-SELECTION; SENESCENCE; MORTALITY A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a causal pie of component causes. Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. [Wensink, Maarten; Baudisch, Annette] Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, D-18057 Rostock, Germany; [Wensink, Maarten; Westendorp, Rudi G. J.] Poortgebouw LUMC, Leyden Acad Vital & Ageing, NL-2333 AA Leiden, Netherlands; [Westendorp, Rudi G. J.] Leiden Univ, Med Ctr, Dept Gerontol & Geriatr, NL-2300 RC Leiden, Netherlands Wensink, M (reprint author), Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, Konrad Str 1, D-18057 Rostock, Germany. wensink@demogr.mpg.de Andersen, Mette Adalheidur/D-5608-2017 Max Planck Digital Library, part of the Max Planck Society The publication fee was generously covered by the Max Planck Digital Library, part of the Max Planck Society. ARNOLD SJ, 1984, EVOLUTION, V38, P709, DOI 10.1111/j.1558-5646.1984.tb00344.x; Carnes BA, 2006, BIOGERONTOLOGY, V7, P183, DOI 10.1007/s10522-006-9020-3; Caswell H, 2007, TRENDS ECOL EVOL, V22, P173, DOI 10.1016/j.tree.2007.01.006; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Dawkins R., 2006, SELFISH GENE; Endler J. A., 1986, NATURAL SELECTION WI; Grace J. B, 2006, STRUCTURAL EQUATION; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Izaks Gerbrand J, 2003, BMC Geriatr, V3, P7, DOI 10.1186/1471-2318-3-7; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2010, ANN NY ACAD SCI, V1204, P21, DOI 10.1111/j.1749-6632.2010.05520.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; Medawar P. B., 1952, UNIQUENESS INDIVIDUA; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; Pearl Judea, 2009, CAUSALITY; Rothman K, 2012, EPIDEMIOLOGY INTRO; ROTHMAN KJ, 1976, AM J EPIDEMIOL, V104, P587, DOI 10.1093/oxfordjournals.aje.a112335; Shipley B, 2000, CAUSE CORRELATION BI; Sober E., 1984, NATURE SELECTION PHI; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; VAUPEL JW, 1985, AM STAT, V39, P176, DOI 10.2307/2683925; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; Wagner A, 2011, TRENDS GENET, V27, P397, DOI 10.1016/j.tig.2011.06.002; Wensink M, 2013, BIOGERONTOLOGY, V14, P99, DOI 10.1007/s10522-012-9410-7; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 28 3 3 1 17 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2014 4 10 1924 1930 10.1002/ece3.1074 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AH9VC WOS:000336491600015 24963386 DOAJ Gold, Green Published 2019-02-21 J Jorgensen, C; Opdal, AF; Fiksen, O Jorgensen, Christian; Opdal, Anders Frugard; Fiksen, Oyvind Can behavioural ecology unite hypotheses for fish recruitment? ICES JOURNAL OF MARINE SCIENCE English Article adaptations; larval fish behaviour; life history theory; recruitment success; trade-offs NORTHEAST ARCTIC COD; ANCHOVY ENGRAULIS-JAPONICUS; ENERGY ACQUISITION RATES; TRADE-OFFS; INTRINSIC GROWTH; MENIDIA-MENIDIA; GADUS-MORHUA; SWIMMING PERFORMANCE; SELECTIVE PREDATION; PELAGIC ECOSYSTEM Since the classical works by Hjort linked the survival of early life stages of fish to year-class strength and recruitment, fisheries science has struggled to understand the fate of fish eggs and larvae. Here we discuss how food availability will influence growth and survival of larvae when foraging behaviour is flexible and involves predation risk. We use theory to show that small larval fish with a high risk of predation should nevertheless forage intensely and maintain high growth rates. The implication of this is that food availability is more important to recruitment success than is often assumed from studies of growth rate, since the main effect of low food availability appears as increased predation rates. As larvae develop and grow bigger, they are expected to tailor their behaviour to balance food intake and predation risk, which makes it more probable that environmental fluctuations will cause growth differences. A theoretical framework including larval behaviour thus illustrates how several existing hypotheses, i.e. "bigger is better", "stage duration", and "growth-selective predation", emphasize different aspects of larval success but can be understood more generally and coherently when interpreted in the light of behavioural trade-offs. This may lead to more consistent consideration of larval behaviour in biophysical models of fish recruitment. [Jorgensen, Christian; Opdal, Anders Frugard; Fiksen, Oyvind] Uni Res, N-5020 Bergen, Norway; [Fiksen, Oyvind] Univ Bergen, Dept Biol, N-5020 Bergen, Norway Jorgensen, C (reprint author), Uni Res, POB 7810, N-5020 Bergen, Norway. Christian.Jorgensen@uni.no Jorgensen, Christian/B-4453-2009; Fiksen, Oyvind/F-1771-2011 Jorgensen, Christian/0000-0001-7087-4625; Fiksen, Oyvind/0000-0002-9687-5842 Reseach Council of Norway We thank the Reseach Council of Norway for funding. Aksnes DL, 1997, SARSIA, V82, P137, DOI 10.1080/00364827.1997.10413647; Andersen KH, 2006, AM NAT, V168, P54, DOI 10.1086/504849; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arnott SA, 2006, EVOLUTION, V60, P1269; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Castellani M, 2013, ECOL MODEL, V251, P54, DOI 10.1016/j.ecolmodel.2012.12.007; Clark C, 2000, DYNAMIC STATE VARIAB; CLARK CW, 1988, AM NAT, V131, P271, DOI 10.1086/284789; Clark DL, 2005, MAR ECOL PROG SER, V292, P287, DOI 10.3354/meps292287; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; CUSHING DH, 1973, J FISH RES BOARD CAN, V30, P1965, DOI 10.1139/f73-320; DRAGESUND O, 1970, Fiskeridirektoratets Skrifter Serie Havundersokelser, V15, P381; EMLEN JM, 1966, AM NAT, V100, P611, DOI 10.1086/282455; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Fiksen O, 2007, MAR ECOL PROG SER, V347, P195, DOI 10.3354/meps06978; Fiksen O, 2011, MAR ECOL PROG SER, V432, P207, DOI 10.3354/meps09148; Folkvord A, 2005, CAN J FISH AQUAT SCI, V62, P1037, DOI 10.1139/F05-008; FUIMAN LA, 1989, MAR ECOL PROG SER, V51, P291, DOI 10.3354/meps051291; Hjort J., 1926, ICES J MAR SCI, V1, P5, DOI DOI 10.1093/ICESJMS/1.1.5; HJORT J, 1914, PROC VERB REUN CONS, V20, P1; HOLLING CS, 1965, MEM ENTOMOL SOC CAN, V45, P3; HOUDE ED, 1989, FISH B-NOAA, V87, P471; HOUDE ED, 1997, EARLY LIFE HIST RECR, P173; HOUDE ED, 1987, AM FISH SOC S, V2, P17; Houston A.l, 1999, MODELS ADAPTIVE BEHA; Huse G, 2010, PROG OCEANOGR, V84, P93, DOI 10.1016/j.pocean.2009.09.011; Huwer B, 2011, PROG OCEANOGR, V91, P382, DOI 10.1016/j.pocean.2011.04.001; IWASA Y, 1982, AM NAT, V120, P171, DOI 10.1086/283980; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Kiorboe T, 2011, BIOL REV, V86, P311, DOI 10.1111/j.1469-185X.2010.00148.x; Krebs J.R., 1991, P105; Kristiansen T, 2009, BEHAV ECOL, V20, P490, DOI 10.1093/beheco/arp023; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Leis JM, 2007, MAR ECOL PROG SER, V347, P185, DOI 10.3354/meps06977; LETCHER BH, 1993, J EXP MAR BIOL ECOL, V167, P197, DOI 10.1016/0022-0981(93)90031-I; Letcher BH, 1996, CAN J FISH AQUAT SCI, V53, P787, DOI 10.1139/cjfas-53-4-787; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; LITVAK MK, 1992, MAR ECOL PROG SER, V81, P13, DOI 10.3354/meps081013; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCNAMARA JM, 1987, ECOLOGY, V68, P1515, DOI 10.2307/1939235; Opdal A.F., 2009, Journal of Northwest Atlantic Fishery Science, V41, P13; Opdal AF, 2011, MAR ECOL PROG SER, V439, P255, DOI 10.3354/meps09335; Otterlei E, 1999, CAN J FISH AQUAT SCI, V56, P2099, DOI 10.1139/cjfas-56-11-2099; Peacor SD, 2013, OECOLOGIA, V171, P1, DOI 10.1007/s00442-012-2394-9; Peck MA, 2012, J MARINE SYST, V93, P77, DOI 10.1016/j.jmarsys.2011.08.005; PETERSON I, 1984, CAN J FISH AQUAT SCI, V41, P1117, DOI 10.1139/f84-131; POPE JG, 1994, PHILOS T ROY SOC B, V343, P41, DOI 10.1098/rstb.1994.0006; Reznick D, 2006, OIKOS, V114, P135, DOI 10.1111/j.2006.0030-1299.14446.x; SHELDON RW, 1972, LIMNOL OCEANOGR, V17, P327, DOI 10.4319/lo.1972.17.3.0327; SHINE R, 1978, J THEOR BIOL, V75, P417, DOI 10.1016/0022-5193(78)90353-3; Siegel DA, 2008, P NATL ACAD SCI USA, V105, P8974, DOI 10.1073/pnas.0802544105; Sinclair M, 1988, AQUAT LIVING RESOUR, V1, P189, DOI 10.1051/alr:1988020; Skajaa K, 2003, BIG FISH BANG, P105; Skajaa K, 2004, J EXP MAR BIOL ECOL, V312, P253, DOI 10.1016/j.jembe.2004.06.012; Skajaa K, 2007, J EXP MAR BIOL ECOL, V353, P135, DOI 10.1016/j.jembe.2007.01.014; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Takasuka A, 2006, FISH OCEANOGR, V15, P139, DOI 10.1111/j.1365-2419.2005.00385.x; Takasuka A, 2003, MAR ECOL PROG SER, V252, P223, DOI 10.3354/meps252223; Vikebo F, 2007, MAR ECOL PROG SER, V347, P207, DOI 10.3354/meps06979; Visser AW, 2013, MAR ECOL PROG SER, V473, P91, DOI 10.3354/meps10079; Visser AW, 2006, OECOLOGIA, V148, P538, DOI 10.1007/s00442-006-0385-4; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; WINEMILLER KO, 1993, AM NAT, V142, P585, DOI 10.1086/285559 66 9 9 0 37 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 1054-3139 1095-9289 ICES J MAR SCI ICES J. Mar. Sci. MAY-JUN 2014 71 4 909 917 10.1093/icesjms/fst083 9 Fisheries; Marine & Freshwater Biology; Oceanography Fisheries; Marine & Freshwater Biology; Oceanography AH9AH WOS:000336430200017 Bronze 2019-02-21 J Bulit, F; Barrionuevo, M; Massoni, V Bulit, Florencia; Barrionuevo, Melina; Massoni, Viviana Insights into life history theory: a brood size manipulation on a southern hemisphere species, Tachycineta leucorrhoa, reveals a fast pace of life JOURNAL OF AVIAN BIOLOGY English Article MITOCHONDRIAL-DNA SEQUENCES; FEMALE TREE SWALLOWS; CLUTCH SIZE; BREEDING BIOLOGY; HATCHING ASYNCHRONY; REPRODUCTIVE EFFORT; FOOD LIMITATION; PARENTAL CARE; HOUSE WRENS; IMMUNE FUNCTION Life history traits exhibit substantial geographical variation associated with the pace of life. Species with a slow pace are expected to invest more in their future/residual reproductive value and are more common at tropical latitudes, whereas species from high latitudes, with a faster pace, are expected to prioritize the current reproductive effort. Most evidence supporting this pattern comes from studies conducted in tropical and north temperate species; very little is known about patterns in southern South American species. Here, we describe the life history of a southern swallow Tachycineta leucorrhoa and use an experimental approach to test their breeding strategy over four breeding seasons. We manipulated brood size for 105 nests of white-rumped swallows to measure whether costs of reproduction were borne by adults or nestlings as alternative selection strategies towards maintaining residual or current reproductive value. Adults increased their feeding effort in enlarged broods, at least enough to maintain nestlings' development/growth. In addition, adults decreased the number of visits to the nest (without having a negative effect on nestlings) in reduced broods. We did not detect differences in fledging success among treatments, suggesting there were no differences in nestlings' survival. However, enlarged broods more frequently incurred in complete nest failure, suggesting only some adults were able to cope with increased costs of reproduction. We conclude this species is characterized by a fast pace of life similar to their northern congeners and less like its tropical ones. This is one of the first studies to use an experimental approach to test a life history hypothesis of pace of life using data from a southern South American species. We encourage researches to include southern species when evaluating latitudinal variations as we still do not have enough evidence to assume all southern subtropical species are indeed similar to tropical ones. [Bulit, Florencia; Massoni, Viviana] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires IEGEBA CONICET UBA, RA-1053 Buenos Aires, DF, Argentina; [Barrionuevo, Melina] Univ Nacl Patagonia Austral, Ctr Invest Puerto Deseado, RA-9050 Puerto Deseado, Argentina Bulit, F (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Ecol Genet & Evoluc, Buenos Aires IEGEBA CONICET UBA, Pabellon 2 Ciudad Univ,C1428EGA, RA-1053 Buenos Aires, DF, Argentina. florbulit@ege.fcen.uba.ar Univ. of Buenos Aires [UBACyT X-140, X-462]; CONICET [PIP-5875]; national research council, CONICET We thank INTECH - CONICET for their logistical support, and to R. Garcia and N. Zald a for their field assistance. We thank the editor for comments and suggestions. This study was supported by grants from the Univ. of Buenos Aires (UBACyT X-140 and X-462) and from CONICET (PIP-5875) to VM. VM is a Researcher Fellow of CONICET Argentina. MB is a doctoral candidate and during this research FB was supported by a doctoral fellowship, both from the national research council, CONICET. Ardia DR, 2007, BEHAV ECOL, V18, P259, DOI 10.1093/beheco/arl078; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arnold TW, 2011, AUK, V128, P737, DOI 10.1525/auk.2011.11050; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; Baayen RH, 2008, J MEM LANG, V59, P390, DOI 10.1016/j.jml.2007.12.005; Babura J., 2008, ACTA ORNITHOL, V43, P129; Barker RJ, 2005, J WILDLIFE MANAGE, V69, P1508, DOI 10.2193/0022-541X(2005)69[1508:SROASD]2.0.CO;2; BEISSINGER SR, 1990, AM NAT, V136, P20, DOI 10.1086/285080; Biancucci L, 2010, J ANIM ECOL, V79, P1086, DOI 10.1111/j.1365-2656.2010.01720.x; Bitton PP, 2007, ANIM BEHAV, V74, P1777, DOI 10.1016/j.anbehav.2007.03.018; Brawn JD, 1999, INT ORN C, V22, P297; Bulit F, 2008, EMU, V108, P181, DOI 10.1071/MU07068; Bulit F, 2011, IBIS, V153, P190, DOI 10.1111/j.1474-919X.2010.01079.x; Burness GP, 2000, J EXP BIOL, V203, P3513; Cardillo M, 2002, J ANIM ECOL, V71, P79, DOI 10.1046/j.0021-8790.2001.00577.x; Cerasale DJ, 2012, MOL PHYLOGENET EVOL, V63, P64, DOI 10.1016/j.ympev.2011.12.014; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Clark RG, 1999, ECOLOGY, V80, P272, DOI 10.2307/176996; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; Cooper CB, 2011, FUNCT ECOL, V25, P769, DOI 10.1111/j.1365-2435.2011.01847.x; Crawley M. J., 2007, R BOOK; DESTEVEN D, 1980, EVOLUTION, V34, P278, DOI 10.1111/j.1558-5646.1980.tb04816.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Dor R, 2012, MOL PHYLOGENET EVOL, V65, P317, DOI 10.1016/j.ympev.2012.06.020; Dunn PO, 2000, AUK, V117, P215, DOI 10.1642/0004-8038(2000)117[0215:GAEVIC]2.0.CO;2; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fontaine JJ, 2006, ECOL LETT, V9, P428, DOI 10.1111/j.1461-0248.2006.00892.x; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Hainstock MH, 2010, BEHAVIOUR, V147, P441, DOI 10.1163/000579509X12580070671323; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; HUSSELL DJT, 1983, J FIELD ORNITHOL, V54, P312; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liljesthrom M, 2012, CONDOR, V114, P377, DOI 10.1525/cond.2012.110142; Liljesthrom M, 2012, EMU, V112, P157, DOI 10.1071/MU11047; Llambias PE, 2009, IBIS, V151, P113, DOI 10.1111/j.1474-919X.2008.00868.x; Magrath RD, 2000, AUK, V117, P479, DOI 10.1642/0004-8038(2000)117[0479:LITSLR]2.0.CO;2; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2008, P NATL ACAD SCI USA, V105, P9268, DOI 10.1073/pnas.0709366105; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; Massoni V, 2007, IBIS, V149, P10; McCarty JP, 2002, J FIELD ORNITHOL, V73, P9, DOI 10.1648/0273-8570-73.1.9; McCarty JP, 1999, CONDOR, V101, P246, DOI 10.2307/1369987; Mcgregor R, 2007, IBIS, V149, P615, DOI 10.1111/j.1474-919X.2007.00670.x; Moreno J, 2005, CONDOR, V107, P69, DOI 10.1650/7602; Moreno J, 2004, ARDEOLA, V51, P51; Murphy MT, 2000, AUK, V117, P902, DOI 10.1642/0004-8038(2000)117[0902:IRBTSC]2.0.CO;2; Nielsen JT, 2003, IBIS, V145, P1; Parejo D, 2006, BEHAV ECOL SOCIOBIOL, V60, P184, DOI 10.1007/s00265-005-0155-z; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; Pettifor RA, 2001, J ANIM ECOL, V70, P62, DOI 10.1046/j.1365-2656.2001.00465.x; QUINNEY TE, 1986, WILSON BULL, V98, P147; Ramstack JM, 1998, WILSON BULL, V110, P233; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Riechert J, 2012, GEN COMP ENDOCR, V178, P391, DOI 10.1016/j.ygcen.2012.06.022; Roff Derek A., 1992; Ruuskanen S, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0025360; Saino N, 2003, BEHAV ECOL, V14, P16, DOI 10.1093/beheco/14.1.16; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Sanz-Aguilar A, 2008, ECOLOGY, V89, P3195, DOI 10.1890/08-0431.1; Sheldon FH, 2005, MOL PHYLOGENET EVOL, V35, P254, DOI 10.1016/j.ympev.2004.11.008; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Shutler D, 2006, ECOLOGY, V87, P2938, DOI 10.1890/0012-9658(2006)87[2938:TARCAC]2.0.CO;2; Soriano O., 1991, INTRO W HEMISPHERE, P367; Sousa NOM, 2013, EMU, V113, P8, DOI 10.1071/MU11102; Stager M, 2012, ORNITOL NEOTROP, V23, P95; Stearns S, 1992, EVOLUTION LIFE HIST; Stevens M. C., 2011, THESIS U ST ANDREWS; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; STUTCHBURY BJ, 1988, CAN J ZOOL, V66, P827, DOI 10.1139/z88-122; Styrsky JD, 1999, P ROY SOC B-BIOL SCI, V266, P1253, DOI 10.1098/rspb.1999.0771; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Townsend JM, 2008, WILSON J ORNITHOL, V120, P867, DOI 10.1676/08-001.1; Velando A, 2006, P ROY SOC B-BIOL SCI, V273, P1443, DOI 10.1098/rspb.2006.3480; Warner DA, 2013, BEHAV ECOL SOCIOBIOL, V67, P973, DOI 10.1007/s00265-013-1523-8; WHEELWRIGHT NT, 1991, CAN J ZOOL, V69, P2540, DOI 10.1139/z91-358; Whittingham LA, 2002, MOL PHYLOGENET EVOL, V22, P430, DOI 10.1006/mpev.2001.1073; WIGGINS DA, 1990, CONDOR, V92, P534, DOI 10.2307/1368257; Wikelski M, 2003, P ROY SOC B-BIOL SCI, V270, P2383, DOI 10.1098/rspb.2003.2500; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Winkler DW, 1996, ECOLOGY, V77, P922, DOI 10.2307/2265512; Winkler DW, 2004, CONDOR, V106, P768, DOI 10.1650/7634; Young BE, 1996, ECOLOGY, V77, P472, DOI 10.2307/2265623; ZACH R, 1982, AUK, V99, P695 92 3 3 3 33 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. MAY 2014 45 3 225 234 10.1111/j.1600-048X.2013.00266.x 10 Ornithology Zoology AG4PB WOS:000335401300003 2019-02-21 J Vogelweith, F; Thiery, D; Moret, Y; Colin, E; Motreuil, S; Moreau, J Vogelweith, Fanny; Thiery, Denis; Moret, Yannick; Colin, Eloise; Motreuil, Sebastien; Moreau, Jerome Defense strategies used by two sympatric vineyard moth pests JOURNAL OF INSECT PHYSIOLOGY English Article Behavioral defense; Eupoecilia ambiguella; Immunological defense; Lobesia botrana; Parasitism; Physical defense TRADE-OFFS; BEHAVIORAL DEFENSES; PREDATOR AVOIDANCE; NATURAL ENEMIES; LOBESIA-BOTRANA; ASOBARA-TABIDA; IMMUNE DEFENSE; PEA APHID; HOST; PARASITOIDS Natural enemies including parasitoids are the major biological cause of mortality among phytophagous insects. In response to parasitism, these insects have evolved a set of defenses to protect themselves, including behavioral, morphological, physiological and immunological barriers. According to life history theory, resources are partitioned to various functions including defense, implying trade-offs among defense mechanisms. In this study we characterized the relative investment in behavioral, physical and immunological defense systems in two sympatric species of Tortricidae (Eupoecilia ambiguella, Lobesia botrana) which are important grapevine moth pests. We also estimated the parasitism by parasitoids in natural populations of both species, to infer the relative success of the investment strategies used by each moth. We demonstrated that larvae invest differently in defense systems according to the species. Relative to L. botrana, E. ambiguella larvae invested more into morphological defenses and less into behavioral defenses, and exhibited lower basal levels of immune defense but strongly responded to immune challenge. L. botrana larvae in a natural population were more heavily parasitized by various parasitoid species than E. ambiguella, suggesting that the efficacy of defense strategies against parasitoids is not equal among species. These results have implications for understanding of regulation in communities, and in the development of biological control strategies for these two grapevine pests. (C) 2014 Elsevier Ltd. All rights reserved. [Vogelweith, Fanny; Moret, Yannick; Colin, Eloise; Motreuil, Sebastien; Moreau, Jerome] Univ Bourgogne, Equipe Ecol Evolut, UMR Biogeosci 6282, F-21000 Dijon, France; [Vogelweith, Fanny; Thiery, Denis] INRA UMR 1065 Sante & Agroecol Vignoble, Inst Sci Vigne & Vin, F-33883 Villenave Dornon, France; [Thiery, Denis] Univ Bordeaux, INRA UMR 1065, Bordeaux Sci Agro, F-33883 Villenave Dornon, France Vogelweith, F (reprint author), INRA UMR 1065 Sante & Agroecol Vignoble, Inst Sci Vigne & Vin, Ave E Bourleaux, F-33883 Villenave Dornon, France. fanny.vogelweith@gmail.com Moret, Yannick/I-9282-2012 Vogelweith, Fanny/0000-0002-3595-6702 CNRS; ANR [ANR-07-JCJC-0134, ANR-08-JCJC-0006] We thank Lionel Delbac, Morgane Dourneau, Geoffrey Melot, Karen Muller and Alicia Munoz. This study was supported by the CNRS and Grants from the ANR (ANR-07-JCJC-0134 and ANR-08-JCJC-0006). We also thank the Conseils Regionaux of Aquitaine and Bourgogne. Second author DT belongs to the Labex exelence cluster COTE. Barbosa P, 2007, ENVIRON ENTOMOL, V36, P329, DOI 10.1603/0046-225X(2007)36[329:DLOSIM]2.0.CO;2; BECKAGE NE, 1978, ENTOMOL EXP APPL, V23, P139, DOI 10.1111/j.1570-7458.1978.tb03016.x; Cerenius L, 2004, IMMUNOL REV, V198, P116, DOI 10.1111/j.0105-2896.2004.00116.x; Chuche J, 2006, J CHEM ECOL, V32, P2721, DOI 10.1007/s10886-006-9195-8; Cole L. R., 1959, Journal of the Lepidopterist's Society, V13, P1; Cressler CE, 2010, AM NAT, V176, P276, DOI 10.1086/655425; Delbac L, 2010, CROP PROT, V29, P623, DOI 10.1016/j.cropro.2010.01.009; DeWitt TJ, 2003, J SEA RES, V49, P143, DOI 10.1016/S1385-1101(02)00220-4; DeWitt TJ, 2000, EVOL ECOL RES, V2, P129; Dyer LA, 1999, ECOL APPL, V9, P402, DOI 10.1890/1051-0761(1999)009[0402:PNERTH]2.0.CO;2; Eslin P, 1998, J INSECT PHYSIOL, V44, P807, DOI 10.1016/S0022-1910(98)00013-4; Eslin P, 1996, J INSECT PHYSIOL, V42, P549, DOI 10.1016/0022-1910(95)00134-4; Flenner I, 2009, ECOL ENTOMOL, V34, P735, DOI 10.1111/j.1365-2311.2009.01129.x; Gentry GL, 2002, ECOLOGY, V83, P3108; Gonzalez-Santoyo I., 2011, ENT EXP APPL, V142; Greeney HF, 2012, ISJ-INVERT SURVIV J, V9, P7; GROSS P, 1993, ANNU REV ENTOMOL, V38, P251, DOI 10.1146/annurev.en.38.010193.001343; Gwynn DM, 2005, P ROY SOC B-BIOL SCI, V272, P1803, DOI 10.1098/rspb.2005.3089; Haine ER, 2008, SCIENCE, V322, P1257, DOI 10.1126/science.1165265; Hammill E, 2010, AM NAT, V176, P723, DOI 10.1086/657040; Hawkins BA, 1997, ECOLOGY, V78, P2145, DOI 10.1890/0012-9658(1997)078[2145:PPAPAM]2.0.CO;2; Jiang H, 2010, ADV EXP MED BIOL, V708, P181; KaIka M. B., 2008, SCIENCE, V320, P71; Kraaijeveld AR, 2002, PARASITOLOGY, V125, pS71, DOI 10.1017/S0031182002001750; Lavine MD, 2002, INSECT BIOCHEM MOLEC, V32, P1295, DOI 10.1016/S0965-1748(02)00092-9; Lefevre T, 2012, BIOL LETTERS, V8, P230, DOI 10.1098/rsbl.2011.0725; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Marmaras VJ, 2009, CELL SIGNAL, V21, P186, DOI 10.1016/j.cellsig.2008.08.014; MATTIACCI L, 1995, ENTOMOL EXP APPL, V76, P37, DOI 10.1111/j.1570-7458.1995.tb01944.x; Mikolajewski DJ, 2004, BEHAV ECOL, V15, P614, DOI 10.1093/beheco/arh061; Nelson EH, 2007, OECOLOGIA, V151, P22, DOI 10.1007/s00442-006-0573-2; Parker BJ, 2011, TRENDS ECOL EVOL, V26, P242, DOI 10.1016/j.tree.2011.02.005; Potting RPJ, 1999, ENTOMOL EXP APPL, V91, P143, DOI 10.1046/j.1570-7458.1999.00476.x; Rigby MC, 2000, P ROY SOC B-BIOL SCI, V267, P171, DOI 10.1098/rspb.2000.0983; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Smilanich AM, 2009, ECOL LETT, V12, P612, DOI 10.1111/j.1461-0248.2009.01309.x; Steiner UK, 2007, AM NAT, V169, P118, DOI 10.1086/509939; Thiery D, 2005, OECOLOGIA, V143, P548, DOI 10.1007/s00442-005-0022-7; Thiery D., 2011, IOBC/WPRS Bulletin, V67, P189; THIERY D, 1993, EXPERIENTIA, V49, P998, DOI 10.1007/BF02125648; Thiery D., 2008, RAVAGEURS VIGNE; Thiery D., 2001, IOBC WPRS B, V27, P135; Van Buskirk J, 2000, J EXP BIOL, V203, P2149; VINSON SB, 1976, ANNU REV ENTOMOL, V21, P109, DOI 10.1146/annurev.en.21.010176.000545; Vogelweith F, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072568; Vogelweith F, 2011, FUNCT ECOL, V25, P1241, DOI 10.1111/j.1365-2435.2011.01911.x; Wilson K, 2013, ADV STUD BEHAV, V45, P81, DOI 10.1016/B978-0-12-407186-5.00003-3; Xuereb A, 2006, B ENTOMOL RES, V96, P105, DOI 10.1079/BER2005393; Zylberberg M., 2013, BIOL LETT, V9 49 11 11 3 66 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0022-1910 1879-1611 J INSECT PHYSIOL J. Insect Physiol. MAY 2014 64 54 61 10.1016/j.jinsphys.2014.03.009 8 Entomology; Physiology; Zoology Entomology; Physiology; Zoology AH9NB WOS:000336468000008 24662468 2019-02-21 J Rafferty, AR; Scheelings, TF; Foley, LJ; Johnstone, CP; Reina, RD Rafferty, Anthony R.; Scheelings, T. Franciscus; Foley, Laura J.; Johnstone, Christopher P.; Reina, Richard D. Reproductive Investment Compromises Maternal Health in Three Species of Freshwater Turtle PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article HEMATOLOGICAL PARAMETERS; BODY CONDITION; BIOCHEMICAL VALUES; EGG-PRODUCTION; SERUM ENZYMES; GREAT TITS; STRESS; BLOOD; BIRDS; SIZE Life-history theory predicts that a trade-off in the allocation of resources between different physiological systems exists because resources are finite. As a result, females investing heavily in reproduction may compromise their future health. We used hematology, serum biochemistry, mass, and morphometric measurements as indicators of physiological health state to investigate whether reproductive investment altered subsequent maternal health in three Australian freshwater turtles: the oblong turtle (Chelodina oblonga; n = 12), the Macquarie turtle (Emydura macquarii; n = 9), and the eastern long-necked turtle (Chelodina longicollis; n = 8). Maternal health was impaired in turtles that produced larger and heavier eggs and clutches. In C. oblonga and E. macquarii, increased reproductive investment generally resulted in negative changes to the hematology and serum biochemistry profile of maternal blood. Generally, increases in heterophil/lymphocyte ratio, aspartate transaminase, creatine kinase, calcium/phosphorus ratio, and albumin/globulin ratio were observed following reproduction, in addition to a decrease in glucose and total protein. These findings agree with the physiological constraint hypothesis and highlight the connection between life-history evolution and animal physiology by documenting, for the first time, how measures of physiological health state relate to reproductive investment in Australian freshwater turtles. Additionally, our findings suggest that body condition, a readily used morphological biomarker, is a poor predictor of health in turtles. Our results emphasize the need to investigate how maternal health is influenced by the reproductive process in different species. [Rafferty, Anthony R.; Johnstone, Christopher P.; Reina, Richard D.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3004, Australia; [Scheelings, T. Franciscus] Healesville Sanctuary, Australian Wildlife Hlth Ctr, Healesville, Australia; [Foley, Laura J.] Univ Dublin Trinity Coll, Sch Nat Sci, Biogeochem Res Grp, Dublin 2, Ireland Rafferty, AR (reprint author), Monash Univ, Sch Biol Sci, Melbourne, Vic 3004, Australia. tony.rafferty@monash.edu Holsworth Wildlife Foundation; Monash University We thank the Holsworth Wildlife Foundation and Monash University for financial support in addition to the ABAXIS Company for generously donating the biochemistry rotors. This study was made possible with help from Bryan Tormey, Jason Van Rijn, Roger Evans, Zoos Victoria, and the staff of the Healesville Sanctuary Wildlife Health Centre. Abdi H., 2010, COMPUT STAT, V2, P433, DOI [DOI 10.1002/WICS.101, 10.1002/wics.101]; Apanius V, 2008, ORNITHOL MONOGR, V65, P1; Artacho P, 2007, COMP BIOCHEM PHYS A, V147, P1060, DOI 10.1016/j.cbpa.2007.03.017; Artacho P, 2007, COMP BIOCHEM PHYS A, V146, P283, DOI 10.1016/j.cbpa.2006.10.031; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bowden RM, 2004, FUNCT ECOL, V18, P522, DOI 10.1111/j.0269-8463.2004.00861.x; BOYD JW, 1988, J COMP PATHOL, V98, P381, DOI 10.1016/0021-9975(88)90088-6; Campbell T, 2006, REPTILE MED SURG, P453; Campbell T. W., 1995, AVIAN HEMATOLOGY CYT; Cann J, 1998, AUSTR FRESHWATER TUR; CHESSMAN BC, 1986, AUST WILDLIFE RES, V13, P65, DOI 10.1071/WR9860065; Clarke KR, 2006, PRIMER V6 USER MANUA; Cockburn A, 2006, P R SOC B, V273, P1375, DOI 10.1098/rspb.2005.3458; DABBERT CB, 1993, J WILDLIFE DIS, V29, P304, DOI 10.7589/0090-3558-29.2.304; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Dein J, 1986, HEMATOLOGY CLIN AVIA, P174; DESSAUER HC, 1970, BIOLOGY REPTILIA, V3, P1; Diethelm G, 2006, REPTILE MED SURG, P1103; Dunbar MR, 2005, J ZOO WILDLIFE MED, V36, P422, DOI 10.1638/04-065.1; EWERT MA, 1978, HERPETOLOGICA, V34, P314; Fair J, 2007, IBIS, V149, P535, DOI 10.1111/j.1474-919X.2007.00680.x; George Robert H., 1997, P363; GROSS WB, 1983, AVIAN DIS, V27, P972, DOI 10.2307/1590198; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Harr KE, 2002, VET CLIN PATH, V31, P140, DOI 10.1111/j.1939-165X.2002.tb00295.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HO SM, 1982, HERPETOLOGICA, V38, P40; Johnstone CP, 2012, J COMP PHYSIOL B, V182, P861, DOI 10.1007/s00360-012-0656-9; KAWAI T, 1973, CLIN ASPECTS PLASMA; Kennett R., 2009, CHELONIAN RES MONOGR, V5; Kilgas P, 2006, COMP BIOCHEM PHYS A, V144, P224, DOI 10.1016/j.cbpa.2006.02.038; KUCHLING G, 1988, Records of the Western Australian Museum, V14, P189; KUCHLING G, 1989, HERPETOLOGICA, V45, P89; Madsen T, 2005, OECOLOGIA, V142, P407, DOI 10.1007/s00442-004-1742-9; Masello JF, 2004, J AVIAN BIOL, V35, P445, DOI 10.1111/j.0908-8857.2004.03278.x; MAXWELL MH, 1993, WORLD POULTRY SCI J, V49, P34, DOI 10.1079/WPS19930004; Moreno J, 2002, ETHOL ECOL EVOL, V14, P19; Norte AC, 2010, CONDOR, V112, P79, DOI 10.1525/cond.2010.080071; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Perrault JR, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031841; Polo-Cavia N, 2010, ANIM CONSERV, V13, P256, DOI 10.1111/j.1469-1795.2009.00329.x; R Development Core Team, 2013, R LANG ENV STAT COMP; Rasmussen ML, 2010, ECOSCIENCE, V17, P47, DOI 10.2980/17-1-3298; Rodriguez P, 2005, COMP BIOCHEM PHYS A, V140, P157, DOI 10.1016/j.cbpb.2004.11.014; Roff Derek A., 1992; Rowe JW, 1997, AM MIDL NAT, V138, P174, DOI 10.2307/2426664; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; Scheelings TF, 2012, J WILDLIFE DIS, V48, P314, DOI 10.7589/0090-3558-48.2.314; Spencer R.J., 2001, THESIS SYDNEY U; Stamper MA, 2005, J ZOO WILDLIFE MED, V36, P635, DOI 10.1638/04-074.1; Stein Geoff, 1996, P473; Totzke U, 1999, PHYSIOL BIOCHEM ZOOL, V72, P426, DOI 10.1086/316675; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; Van Rijn JA, 2010, FISH SHELLFISH IMMUN, V29, P534, DOI 10.1016/j.fsi.2010.04.016; Wagner EC, 2008, J EXP BIOL, V211, P2960, DOI 10.1242/jeb.017897; Wallace BP, 2007, OECOLOGIA, V152, P37, DOI 10.1007/s00442-006-0641-7; Wilkinson LR, 2005, COPEIA, P868, DOI 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2; Williams TD, 2004, FUNCT ECOL, V18, P330, DOI 10.1111/j.0269-8463.2004.00829.x 59 0 0 0 23 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. MAY 1 2014 87 3 411 419 10.1086/675310 9 Physiology; Zoology Physiology; Zoology AF7OL WOS:000334904300005 24769705 2019-02-21 J El-Sabaawi, RW; Travis, J; Zandona, E; McIntyre, PB; Reznick, DN; Flecker, A El-Sabaawi, Rana W.; Travis, Joseph; Zandona, Eugenia; McIntyre, Peter B.; Reznick, David N.; Flecker, Alexander Intraspecific variability modulates interspecific variability in animal organismal stoichiometry ECOLOGY AND EVOLUTION English Article Carbon; guppies; Hart's killifish; life history; nitrogen; phosphorus; predation; Trinidad LIFE-HISTORY EVOLUTION; FRESH-WATER FISHES; ELEMENTAL STOICHIOMETRY; POECILIA-RETICULATA; TRINIDADIAN GUPPIES; ECOSYSTEM PROCESSES; PHOSPHORUS-CONTENT; TROPICAL STREAM; PREDATION; HERBIVORE Interspecific differences in organismal stoichiometry (OS) have been documented in a wide range of animal taxa and are of significant interest for understanding evolutionary patterns in OS. In contrast, intraspecific variation in animal OS has generally been treated as analytical noise or random variation, even though available data suggest intraspecific variability in OS is widespread. Here, we assess how intraspecific variation in OS affects inferences about interspecific OS differences using two co-occurring Neotropical fishes: Poecilia reticulata and Rivulus hartii. A wide range of OS has been observed within both species and has been attributed to environmental differences among stream systems. We assess the contributions of species identity, stream system, and the interactions between stream and species to variability in N:P, C:P, and C:N. Because predation pressure can impact the foraging ecology and life-history traits of fishes, we compare predictors of OS between communities that include predators, and communities where predators are absent. We find that species identity is the strongest predictor of N:P, while stream or the interaction of stream and species contribute more to the overall variation in C:P and C:N. Interspecific differences in N:P, C:P, and C:N are therefore not consistent among streams. The relative contribution of stream or species to OS qualitatively changes between the two predation communities, but these differences do not have appreciable effects in interspecific patterns. We conclude that although species identity is a significant predictor of OS, intraspecific OS is sometimes sufficient to overwhelm or obfuscate interspecific differences in OS. [El-Sabaawi, Rana W.; Flecker, Alexander] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Travis, Joseph] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Zandona, Eugenia] Drexel Univ, Dept Biol, Philadelphia, PA 19104 USA; [McIntyre, Peter B.] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA El-Sabaawi, RW (reprint author), Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. rana@uvic.ca Zandona, Eugenia/B-3449-2013 Zandona, Eugenia/0000-0003-4754-5326; reznick, david/0000-0002-1144-0568 National Science Foundation Frontiers in Integrative Biological Research Grant (NSF-FIBR) [DEB-0623632] National Science Foundation Frontiers in Integrative Biological Research Grant (NSF-FIBR, DEB-0623632). Anderson TR, 2004, ECOLOGY, V85, P1193, DOI 10.1890/02-0252; Bertram SM, 2008, J INSECT SCI, V8, DOI 10.1673/031.008.2601; Cross WF, 2003, ECOL LETT, V6, P721, DOI 10.1046/j.1461-0248.2003.00481.x; Dantas MC, 2007, J FISH BIOL, V70, P100, DOI 10.1111/j.1095-8649.2006.01277.x; Dickman EM, 2008, P NATL ACAD SCI USA, V105, P18408, DOI 10.1073/pnas.0805566105; El-Sabaawi RW, 2012, FUNCT ECOL, V26, P666, DOI 10.1111/j.1365-2435.2012.01974.x; El-Sabaawi RW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032713; Elser JJ, 1999, ECOLOGY, V80, P735, DOI 10.2307/177013; Elser JJ, 2000, J EVOLUTION BIOL, V13, P845; Fagan WF, 2002, AM NAT, V160, P784, DOI 10.1086/343879; Fink P, 2006, OIKOS, V115, P484, DOI 10.1111/j.2006.0030-1299.14951.x; FRASER DF, 1995, ECOLOGY, V76, P1461, DOI 10.2307/1938148; Frost PC, 2006, ECOL LETT, V9, P774, DOI 10.1111/j.1461-0248.2006.00919.x; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; GNAIGER E, 1984, OECOLOGIA, V62, P289, DOI 10.1007/BF00384259; Gonzalez AL, 2011, OIKOS, V120, P1247, DOI 10.1111/j.1600-0706.2010.19151.x; Hamback PA, 2009, OIKOS, V118, P615, DOI 10.1111/j.1600-0706.2009.17177.x; Hawlena D, 2010, P NATL ACAD SCI USA, V107, P15503, DOI 10.1073/pnas.1009300107; Hendrixson HA, 2007, J FISH BIOL, V70, P121, DOI 10.1111/j.1095-8649.2006.01280.x; Hessen DO, 2004, ECOLOGY, V85, P1179, DOI 10.1890/02-0251; Karimi R, 2006, ECOL LETT, V9, P1273, DOI 10.1111/j.1461-0248.2006.00979.x; Kay AD, 2005, OIKOS, V109, P6, DOI 10.1111/j.0030-1299.2005.14048.x; Kohler T. J., 2010, INFLUENCE CANOPY COV; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; McIntyre PB, 2010, AM FISH S S, V73, P539; McManamay RA, 2011, J N AM BENTHOL SOC, V30, P84, DOI 10.1899/09-152.1; Nakazawa T, 2011, ECOL RES, V26, P209, DOI 10.1007/s11284-010-0752-9; Parsons T. R, 1984, MANUAL CHEM BIOL MET; Persson J, 2010, OIKOS, V119, P741, DOI 10.1111/j.1600-0706.2009.18545.x; Petraitis Peter S., 1998, P183; Pilati A, 2007, OIKOS, V116, P1663, DOI 10.1111/j.2007.0030-1299.15970.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Schade JD, 2003, ECOL LETT, V6, P96, DOI 10.1046/j.1461-0248.2003.00409.x; Small GE, 2010, OECOLOGIA, V162, P581, DOI 10.1007/s00442-009-1489-4; Sterner R. W., 2002, ECOLOGICAL STOICHIOM; STRAUSS RE, 1990, ENVIRON BIOL FISH, V27, P121, DOI 10.1007/BF00001941; Tanner DK, 2000, CAN J FISH AQUAT SCI, V57, P1243, DOI 10.1139/cjfas-57-6-1243; Vanni MJ, 2002, ECOL LETT, V5, P285, DOI 10.1046/j.1461-0248.2002.00314.x; Vrede T, 2011, OIKOS, V120, P886, DOI 10.1111/j.1600-0706.2010.18939.x; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; Wetzel R. G., 2001, LIMNOLOGY LAKE RIVER; Witten PE, 2009, BIOL REV, V84, P315, DOI 10.1111/j.1469-185X.2009.00077.x; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 46 11 11 1 83 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2014 4 9 1505 1515 10.1002/ece3.981 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AG2SQ WOS:000335267000001 24967071 DOAJ Gold, Green Published 2019-02-21 J Olsen, EM; Serbezov, D; Vollestad, LA Olsen, Esben M.; Serbezov, Dimitar; Vollestad, Leif A. Probabilistic maturation reaction norms assessed from mark- recaptures of wild fish in their natural habitat ECOLOGY AND EVOLUTION English Article Age and size at maturation; growth; life-history evolution; phenotypic plasticity; Salmo trutta; Survival TROUT SALMO-TRUTTA; COD GADUS-MORHUA; LIFE-HISTORY EVOLUTION; BROWN TROUT; ATLANTIC COD; GROWTH HISTORY; SIZE; AGE; POPULATION; FISHERIES Reaction norms are a valuable tool in evolutionary biology. Lately, the probabilistic maturation reaction norm approach, describing probabilities of maturing at combinations of age and body size, has been much applied for testing whether phenotypic changes in exploited populations of fish are mainly plastic or involving an evolutionary component. However, due to typical field data limitations, with imperfect knowledge about individual life histories, this demographic method still needs to be assessed. Using 13years of direct mark-recapture observations on individual growth and maturation in an intensively sampled population of brown trout (Salmo trutta), we show that the probabilistic maturation reaction norm approach may perform well even if the assumption of equal survival of juvenile and maturing fish does not hold. Earlier studies have pointed out that growth effects may confound the interpretation of shifts in maturation reaction norms, because this method in its basic form deals with body size rather than growth. In our case, however, we found that juvenile body size, rather than annual growth, was more strongly associated with maturation. Viewed against earlier studies, our results also underscore the challenges of generalizing life-history patterns among species and populations. [Olsen, Esben M.] Inst Marine Res Flodevigen, N-4817 His, Norway; [Olsen, Esben M.; Serbezov, Dimitar; Vollestad, Leif A.] Univ Oslo, Dept Biosci, CEES, N-0316 Oslo, Norway; [Olsen, Esben M.] Univ Agder, Dept Nat Sci, N-4604 Kristiansand, Norway Olsen, EM (reprint author), Inst Marine Res Flodevigen, N-4817 His, Norway. esben.moland.olsen@imr.no Olsen, Esben/B-1894-2012 Olsen, Esben/0000-0003-3807-7524; Vollestad, Leif Asbjorn/0000-0002-9389-7982 Norwegian Research Council through the FRIPRO programme [201917] This study was funded by the Norwegian Research Council through the FRIPRO programme, project 201917. Baerum KM, 2013, FRESHWATER BIOL, V58, P1329, DOI 10.1111/fwb.12130; Barot S, 2005, ICES J MAR SCI, V62, P56, DOI 10.1016/j.icesjms.2004.10.004; Barot S, 2004, EVOL ECOL RES, V6, P659; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Budy P, 2013, ECOLOGY, V94, P356, DOI 10.1890/12-0628.1; Burnham K. P., 1998, MODEL SELECTION INFE; Carlson SM, 2008, FUNCT ECOL, V22, P663, DOI 10.1111/j.1365-2435.2008.01416.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Descamps S, 2009, P ROY SOC B-BIOL SCI, V276, P1129, DOI 10.1098/rspb.2008.1401; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Diaz Pauli B, 2013, J EVOLUTION BIOL, V26, P2184, DOI 10.1111/jeb.12215; DiBattista JD, 2011, EVOL APPL, V4, P1, DOI 10.1111/j.1752-4571.2010.00125.x; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Eikeset AM, 2013, P NATL ACAD SCI USA, V110, P12259, DOI 10.1073/pnas.1212593110; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Ergon T., 2014, METHODS ECO IN PRESS; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Gamelon M, 2011, EVOLUTION, V65, P3100, DOI 10.1111/j.1558-5646.2011.01366.x; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Hamel S, 2014, OIKOS, V123, P151, DOI 10.1111/j.1600-0706.2013.00819.x; Harney E, 2013, EVOLUTION, V67, P525, DOI 10.1111/j.1558-5646.2012.01758.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 1994, OIKOS, V70, P12, DOI 10.2307/3545693; Jonsson B, 2011, FISH FISH SER, V33, P1, DOI 10.1007/978-94-007-1189-1; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; KJESBU OS, 1994, J FISH BIOL, V45, P719, DOI 10.1006/jfbi.1994.1172; Knutsen H, 2011, MOL ECOL, V20, P768, DOI 10.1111/j.1365-294X.2010.04979.x; Kuparinen A, 2008, FISH FISH, V9, P201, DOI 10.1111/j.1467-2979.2008.00284.x; Kuparinen A, 2012, EVOL APPL, V5, P245, DOI 10.1111/j.1752-4571.2011.00215.x; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; McCullagh P., 1989, GEN LINEAR MODELS; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2005, ECOL FRESHW FISH, V14, P202, DOI 10.1111/j.1600-0633.2005.00094.x; Olsen EM, 2001, N AM J FISH MANAGE, V21, P967, DOI 10.1577/1548-8675(2001)021<0967:AEOVIE>2.0.CO;2; Olsen EM, 2011, EVOL ECOL, V25, P695, DOI 10.1007/s10682-010-9427-9; Perez-Rodriguez A, 2009, EVOL APPL, V2, P291, DOI 10.1111/j.1752-4571.2009.00084.x; PRENTICE EF, 1990, AM FISHERIES SOC S, V7, P317; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roff DA, 2006, J EVOLUTION BIOL, V19, P1920, DOI 10.1111/j.1420-9101.2006.01155.x; Serbezov D, 2012, EVOL APPL, V5, P607, DOI 10.1111/j.1752-4571.2012.00239.x; Serbezov D, 2010, MOL ECOL, V19, P3193, DOI 10.1111/j.1365-294X.2010.04744.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Trippel EA, 1998, T AM FISH SOC, V127, P339, DOI 10.1577/1548-8659(1998)127<0339:ESAVAS>2.0.CO;2; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Tyler CR, 1996, REV FISH BIOL FISHER, V6, P287, DOI 10.1007/BF00122584; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Van Dooren TJM, 2005, EVOLUTION, V59, P500, DOI 10.1554/04-356; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vollestad LA, 2012, CAN J FISH AQUAT SCI, V69, P1513, DOI 10.1139/F2012-073; WARNER RR, 1984, EVOLUTION, V38, P148, DOI 10.1111/j.1558-5646.1984.tb00268.x 65 3 3 0 31 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAY 2014 4 9 1601 1610 10.1002/ece3.1044 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AG2SQ WOS:000335267000008 24967078 DOAJ Gold, Green Published 2019-02-21 J Gotanda, KM; Hendry, AP Gotanda, Kiyoko M.; Hendry, Andrew P. Using adaptive traits to consider potential consequences of temporal variation in selection: male guppy colour through time and space BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article adaptation; Poecilia reticulata; spatial variation; selection LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; TRINIDADIAN GUPPIES; NATURAL-POPULATIONS; PHENOTYPIC SELECTION; FEMALE PREFERENCE; SEXUAL COLORATION; WILD GUPPIES; SPATIOTEMPORAL VARIATION; FLUCTUATING SELECTION Temporal variation in selection is typically evaluated by estimating and comparing selection coefficients in natural populations. Meta-analyses of these coefficients have yielded important insights, but selection coefficients are limited in several respects, including low statistical power, imperfect fitness surrogates, and uncertainty regarding consequences for trait change. A complementary approach without these limitations is to examine temporal variation in adaptive traits themselves, which is mechanistically easier and more directly relevant to evolutionary consequences. We illustrate this approach by analyzing the colour patterns of male guppies, Poecilia reticulata, from each of six sites in Trinidad in each of 6 years. This system is particularly appropriate for our study because key aspects of colour variation are genetically-based and responsive to selection. However, although spatial patterns of colour variation have been extensively considered in this system, no study has yet formally assessed annual temporal variation in non-manipulated populations. Matching previous conclusions for the guppy system, we find that guppies from different sites manifest different colour patterns in association with different predation regimes. We here add the new finding that, although some temporal variation is present, spatial patterns of colour variation are generally consistent across years. These results suggest that, when considering adaptive traits, spatial variation is more important than temporal variation, although our study system might be exceptional in this regard. Additional studies examining spatiotemporal variation in adaptive traits could help to improve our understanding of the role that spatiotemporal variation in selection plays in the evolutionary process. (c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 108-122. [Gotanda, Kiyoko M.; Hendry, Andrew P.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada; [Gotanda, Kiyoko M.; Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 0C4, Canada Gotanda, KM (reprint author), McGill Univ, Dept Biol, 1205 Docteur Penfield Ave, Montreal, PQ H3A 1B1, Canada. kiyoko.gotanda@mail.mcgill.ca Natural Science and Engineering Research Council of Canada (NSERC); Vanier Canada Graduate Scholarship; NSERC CGS-M; Le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) We thank Stephanie Carlson, Ben Haller, Adam Siepielski, and three anonymous reviewers for comments that improved the manuscript. We also thank the numerous field assistants who helped with collecting and photographing guppies (L. Baillie, P. Bentzen, M. Boisjoly, F. Dargent, L. Delaire, S. Gordon, D. Hoops, F. Perez-Jvostev, A. McKeller, N. Millar, S. Muttalib, I. Paterson, A. Schwartz, and M. Turcotte), as well as Gregor Rolshausen for assisting with the statistical analysis. All procedures regarding handling of animals were in accordance with McGill Animal Care Protocol number 4067. Funding was provided by the Natural Science and Engineering Research Council of Canada (NSERC) in the form of Discovery and Special Research Opportunity grants to APH and a Vanier Canada Graduate Scholarship and an NSERC CGS-M to KMG. Additional funding was provided by the Le Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) in the form of a scholarship to KMG. Aguirre WE, 2012, BIOL J LINN SOC, V105, P817, DOI 10.1111/j.1095-8312.2011.01825.x; ARCHER SN, 1990, VISION RES, V30, P225, DOI 10.1016/0042-6989(90)90038-M; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Blanckenhorn WU, 1999, J EVOLUTION BIOL, V12, P563, DOI 10.1046/j.1420-9101.1999.00050.x; Blows MW, 2003, EVOLUTION, V57, P1622; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Carlson SM, 2007, ECOLOGY, V88, P2620, DOI 10.1890/06-1171.1; Carvalho GR, 1996, BIOL J LINN SOC, V57, P219, DOI 10.1111/j.1095-8312.1996.tb00310.x; Cox CL, 2013, AM NAT, V182, pE40, DOI 10.1086/670988; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1995, EVOLUTION, V49, P456, DOI 10.1111/j.1558-5646.1995.tb02278.x; ENDLER JA, 1991, VISION RES, V31, P587, DOI 10.1016/0042-6989(91)90109-I; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Endler JA, 2005, BIOL J LINN SOC, V86, P405, DOI 10.1111/j.1095-8312.2005.00540.x; Fraser BA, 2010, EVOLUTION, V64, P286; Godin JGJ, 2003, BEHAV ECOL, V14, P194, DOI 10.1093/beheco/14.2.194; Gordon SP, 2012, EVOLUTION, V66, P912, DOI 10.1111/j.1558-5646.2011.01495.x; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Gotanda KM, 2014, DRYAD DIGITAL REPOSI, DOI [10.5061/dryad.pj02h, DOI 10.5061/DRYAD.PJ02H]; Grant PR, 2002, SCIENCE, V296, P707, DOI 10.1126/science.1070315; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 2005, EVOLUTION, V59, P175; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Grether GF, 2001, P ROY SOC B-BIOL SCI, V268, P1245, DOI 10.1098/rspb.2001.1624; Griffith SC, 2006, ANIM BEHAV, V71, P749, DOI 10.1016/j.anbehav.2005.07.016; Haller BC, 2014, EVOLUTION, V68, P483, DOI 10.1111/evo.12275; HEARING VJ, 1993, AM J HUM GENET, V52, P1; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hereford J, 2004, EVOLUTION, V58, P2133; Hersch EI, 2004, EVOLUTION, V58, P479, DOI 10.1111/j.0014-3820.2004.tb01671.x; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, HEREDITY, V69, P229, DOI 10.1038/hdy.1992.120; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; HOUDE AE, 1992, BEHAV ECOL, V3, P346, DOI 10.1093/beheco/3.4.346; Hughes KA, 2005, J EVOLUTION BIOL, V18, P35, DOI 10.1111/j.1420-9101.2004.00806.x; Hughes KA, 2013, NATURE, V503, P108, DOI 10.1038/nature12717; Karim N, 2007, J EVOLUTION BIOL, V20, P1339, DOI 10.1111/j.1420-9101.2007.01350.x; Karino K, 2001, J ETHOL, V19, P33, DOI 10.1007/s101640170015; Kelly CD, 1999, P ROY SOC B-BIOL SCI, V266, P2403, DOI 10.1098/rspb.1999.0938; Kemp DJ, 2009, P R SOC B, V276, P4335, DOI 10.1098/rspb.2009.1226; Kemp DJ, 2008, BIOL J LINN SOC, V95, P734, DOI 10.1111/j.1095-8312.2008.01112.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Klepaker T, 2012, EVOL ECOL RES, V14, P169; KODRICBROWN A, 1985, BEHAV ECOL SOCIOBIOL, V17, P199, DOI 10.1007/BF00300137; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kroger RHH, 1999, VISION RES, V39, P2441, DOI 10.1016/S0042-6989(98)00256-9; Kudo H, 2013, BEHAV ECOL SOCIOBIOL, V67, P1931, DOI 10.1007/s00265-013-1600-z; Kudo H, 2012, ICHTHYOL RES, V59, P1, DOI 10.1007/s10228-011-0239-x; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; LONG KD, 1989, ETHOLOGY, V82, P316; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1992, P ROY SOC B-BIOL SCI, V248, P117, DOI 10.1098/rspb.1992.0050; Martin CH, 2007, BEHAV ECOL SOCIOBIOL, V61, P1897, DOI 10.1007/s00265-007-0430-2; McGraw KJ, 2002, J EXP BIOL, V205, P3747; McKellar AE, 2009, OECOLOGIA, V159, P735, DOI 10.1007/s00442-008-1257-x; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Millar NP, 2012, ENVIRON BIOL FISH, V94, P513, DOI 10.1007/s10641-011-9801-7; Millar NP, 2006, OIKOS, V113, P1; Miller LK, 2005, EVOLUTION, V59, P2414; Morrissey MB, 2010, J EVOLUTION BIOL, V23, P2277, DOI 10.1111/j.1420-9101.2010.02084.x; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Pergams ORW, 1999, EVOLUTION, V53, P1573, DOI 10.1111/j.1558-5646.1999.tb05420.x; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; Pfennig DW, 2010, TRENDS ECOL EVOL, V25, P459, DOI 10.1016/j.tree.2010.05.006; Pilastro A, 2004, EVOLUTION, V58, P665, DOI 10.1111/j.0014-3820.2004.tb01690.x; Pitcher TE, 2007, J FISH BIOL, V70, P165, DOI 10.1111/j.1095-8649.2006.01292.x; R Core Team, 2012, R LANG ENV STAT COMP; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Rodd FH, 1997, ECOLOGY, V78, P405; Ruell EW, 2013, P ROY SOC LOND B BIO, V280, P1471; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schwartz AK, 2007, EVOL ECOL RES, V9, P71; Schwartz AK, 2010, FUNCT ECOL, V24, P354, DOI 10.1111/j.1365-2435.2009.01652.x; Siepielski AM, 2013, ECOL LETT, V16, P1382, DOI 10.1111/ele.12174; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Silvertown J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018927; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Sternalski A, 2012, BIOL J LINN SOC, V107, P799, DOI 10.1111/j.1095-8312.2012.01981.x; Stevens M, 2007, BIOL J LINN SOC, V90, P211, DOI 10.1111/j.1095-8312.2007.00725.x; Tripathi N, 2009, P ROY SOC B-BIOL SCI, V276, P2195, DOI 10.1098/rspb.2008.1930; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; WEIS AE, 1992, EVOLUTION, V46, P1674, DOI 10.1111/j.1558-5646.1992.tb01161.x 91 10 10 3 66 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAY 2014 112 1 108 122 10.1111/bij.12261 15 Evolutionary Biology Evolutionary Biology AF1HA WOS:000334463800009 Bronze 2019-02-21 J Carter, AJ; English, S; Clutton-Brock, TH Carter, A. J.; English, S.; Clutton-Brock, T. H. Cooperative personalities and social niche specialization in female meerkats JOURNAL OF EVOLUTIONARY BIOLOGY English Article animal personality; life history; cooperation; social niche specialization; Suricata suricatta ANIMAL PERSONALITY; BEHAVIORAL SYNDROMES; LIFE-HISTORY; INFORMATION CRITERION; MODEL SELECTION; TRADE-OFFS; PLASTICITY; EVOLUTION; HELPERS; ECOLOGY The social niche specialization hypothesis predicts that group-living animals should specialize in particular social roles to avoid social conflict, resulting in alternative life-history strategies for different roles. Social niche specialization, coupled with role-specific life-history trade-offs, should thus generate between-individual differences in behaviour that persist through time, or distinct personalities, as individuals specialize in particular nonoverlapping social roles. We tested for support for the social niche specialization hypothesis in cooperative personality traits in wild female meerkats (Suricata suricatta) that compete for access to dominant social roles. As cooperation is costly and dominance is acquired by heavier females, we predicted that females that ultimately acquired dominant roles would show noncooperative personality types early in life and before and after role acquisition. Although we found large individual differences in repeatable cooperative behaviours, there was no indication that individuals that ultimately acquired dominance differed from unsuccessful individuals in their cooperative behaviour. Early-life behaviour did not predict social role acquisition later in life, nor was cooperative behaviour before and after role acquisition correlated in the same individuals. We suggest that female meerkats do not show social niche specialization resulting in cooperative personalities, but that they exhibit an adaptive response in personality at role acquisition. [Carter, A. J.; English, S.; Clutton-Brock, T. H.] Univ Cambridge, Dept Zool, Cambridge CB2 3EJ, England; [English, S.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England Carter, AJ (reprint author), Univ Cambridge, Dept Zool, Large Anim Res Grp, Downing St, Cambridge CB2 3EJ, England. ac854@cam.ac.uk English, Sinead/N-6348-2014 English, Sinead/0000-0003-2898-2301; Carter, Alecia/0000-0001-5550-9312 NERC; Natural Environment Research Council [NE/H004912/1] We thank Drandrew Bateman for stats help and reading an earlier version of the draft and Dieter Lukas and the rest of LARG for ongoing discussions of life-history theory (and how to plot it). We are grateful to Marta Manser at Universitat Zurich for her role in maintaining the Kalahari Meerkat Project. We are grateful to Northern Cape Conservation and the Kotze family for permission to conduct work in the Kalahari and to the many volunteers, PhD students, post doctoral researchers and field staff members who have contributed to the long-term database of the Kalahari Meerkat Project. AJC was supported by funding from NERC. Anderson DR, 1998, J APPL STAT, V25, P263, DOI 10.1080/02664769823250; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bergmuller R, 2010, TRENDS ECOL EVOL, V25, P504, DOI 10.1016/j.tree.2010.06.012; Bergmuller Ralph, 2007, BMC Ecology, V7, P12, DOI 10.1186/1472-6785-7-12; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Bremner-Harrison S, 2004, ANIM CONSERV, V7, P313, DOI 10.1017/S1367943004001490; Cant MA, 2001, P ROY SOC B-BIOL SCI, V268, P1959, DOI 10.1098/rspb.2001.1754; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Careau V, 2011, J EVOLUTION BIOL, V24, P2153, DOI 10.1111/j.1420-9101.2011.02344.x; Careau V, 2010, AM NAT, V175, P753, DOI 10.1086/652435; Carter AJ, 2010, BEHAV ECOL, V21, P655, DOI 10.1093/beheco/arq036; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Clutton-Brock TH, 2003, ANIM BEHAV, V66, P531, DOI 10.1006/anbe.2003.2209; Clutton-Brock TH, 2002, SCIENCE, V297, P253, DOI 10.1126/science.1071412; Clutton-Brock TH, 2004, ANIM BEHAV, V68, P1029, DOI 10.1016/j.anbehav.2003.10.024; Clutton-Brock TH, 2010, AM NAT, V176, P664, DOI 10.1086/656492; Development Core Team, 2011, R LANG ENV STAT COMP; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; English S, 2010, J EVOLUTION BIOL, V23, P1597, DOI 10.1111/j.1420-9101.2010.02025.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hadfield JD, 2010, AM NAT, V175, P116, DOI 10.1086/648604; Hodge SJ, 2008, J ANIM ECOL, V77, P92, DOI 10.1111/j.1365-2656.2007.01318.x; Montiglio PO, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0343; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pruitt JN, 2008, ANIM BEHAV, V76, P871, DOI 10.1016/j.anbehav.2008.05.009; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Russell AF, 2007, P R SOC B, V274, P513, DOI 10.1098/rspb.2006.3698; Russell AF, 2003, P NATL ACAD SCI USA, V100, P3333, DOI 10.1073/pnas.0636503100; Sanderson J, 2012, THESIS U EXETER; Sarkar D., 2007, LME4 LINEAR MIXED EF; Schurch R, 2010, BEHAV ECOL, V21, P588, DOI 10.1093/beheco/arq024; Sharp SP, 2011, J EVOLUTION BIOL, V24, P1756, DOI 10.1111/j.1420-9101.2011.02304.x; Sharp SP, 2011, BEHAV ECOL, V22, P1337, DOI 10.1093/beheco/arr138; Short KH, 2008, ANIM BEHAV, V76, P429, DOI 10.1016/j.anbehav.2008.04.008; Stamps J, 2010, BIOL REV, V85, P301, DOI 10.1111/j.1469-185X.2009.00103.x; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Westneat DF, 2011, AM NAT, V178, P652, DOI 10.1086/662173; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215; Young AJ, 2005, ANIM BEHAV, V70, P829, DOI 10.1016/j.anbehav.2005.01.019; Zottl M., 2013, BIOL LETT, V9 48 23 24 3 119 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 815 825 10.1111/jeb.12358 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800002 24666630 Bronze 2019-02-21 J Polacik, M; Blazek, R; Rezucha, R; Vrtilek, M; Tozzini, ET; Reichard, M Polacik, M.; Blazek, R.; Rezucha, R.; Vrtilek, M.; Tozzini, E. Terzibasi; Reichard, M. Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish JOURNAL OF EVOLUTIONARY BIOLOGY English Article phenotypic plasticity; periodic habitat; senescence rate; polyphenism; lifespan; alternative embryonic pathway SPADEFOOT TOAD TADPOLES; ANNUAL CYPRINODONT FISH; NOTHOBRANCHIUS-GUENTHERI; METABOLIC-RATE; PHENOTYPIC PLASTICITY; ADAPTIVE SIGNIFICANCE; EVOLUTIONARY ECOLOGY; REACTION NORMS; GROWTH; SPAN In ephemeral habitats, the same genotypes cope with unpredictable environmental conditions, favouring the evolution of developmental plasticity and alternative life-history strategies (ALHS). We tested the existence of intrapopulation ALHS in an annual killifish, Nothobranchius furzeri, inhabiting temporary pools. The pools are either primary (persisting throughout the whole rainy season) or secondary (refilled after desiccation of the initial pool), representing alternative niches. The unpredictable conditions led to the evolution of reproductive bet-hedging with asynchronous embryonic development. We used a common garden experiment to test whether the duration of embryonic period is associated with post-embryonic life-history traits. Fish with rapid embryonic development (secondary pool strategy, high risk of desiccation) produced phenotypes with more rapid life-history traits than fish with slow embryonic development (primary pool strategy). The fast fish were smaller at hatching but had larger yolk sac reserves. Their post-hatching growth was more rapid, and they matured earlier. Further, fast fish grew to a smaller body size and died earlier than slow fish. No differences in fecundity, propensity to mate or physiological ageing were found, demonstrating a combination of plastic responses and constraints. Such developmentally related within-population plasticity in life history is exceptional among vertebrates. [Polacik, M.; Blazek, R.; Rezucha, R.; Vrtilek, M.; Reichard, M.] Acad Sci Czech Republic, Inst Vertebrate Biol, CS-60365 Brno, Czech Republic; [Rezucha, R.; Vrtilek, M.] Masaryk Univ, Dept Bot & Zool, Brno, Czech Republic; [Tozzini, E. Terzibasi] Scuola Normale Super Pisa, Pisa, Italy Polacik, M (reprint author), Acad Sci Czech Republic, Inst Vertebrate Biol, Kvetna 8, CS-60365 Brno, Czech Republic. polacik@ivb.cz Blazek, Radim/L-9163-2013; Reichard, Martin/C-6563-2009; TERZIBASI TOZZINI, Eva/J-9466-2016; Vrtilek, Milan/C-8725-2016; Polacik, Matej/A-8260-2010 Blazek, Radim/0000-0003-1150-0273; TERZIBASI TOZZINI, Eva/0000-0003-3317-1538; CSF [P505/11/P646] This work was supported by CSF grant P505/11/P646. The authors would like to thank C. Smith and A. Romney for English corrections of the MS. Almroth BC, 2012, FREE RADICAL RES, V46, P1183, DOI 10.3109/10715762.2012.698009; Alvarez D, 2005, CAN J FISH AQUAT SCI, V62, P643, DOI 10.1139/F04-223; Arendt JD, 2000, CAN J FISH AQUAT SCI, V57, P351, DOI 10.1139/cjfas-57-2-351; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; Blaek R, 2013, EVODEVO, V4, P24; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bosley KM, 2011, MAR ECOL PROG SER, V428, P161, DOI 10.3354/meps09055; Brakefield PM, 1999, BIOESSAYS, V21, P391, DOI 10.1002/(SICI)1521-1878(199905)21:5<391::AID-BIES6>3.0.CO;2-Q; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Castro M, 2002, J EXP MAR BIOL ECOL, V269, P53, DOI 10.1016/S0022-0981(01)00388-4; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Cullen DA, 2012, ANIM BEHAV, V84, P771, DOI 10.1016/j.anbehav.2012.06.031; Denoel M, 2005, BIOL REV, V80, P663, DOI 10.1017/S1464793105006858; Denver RJ, 1998, ECOLOGY, V79, P1859, DOI 10.1890/0012-9658(1998)079[1859:APIAMR]2.0.CO;2; Ding LL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013287; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; ENGEN S, 1994, THEOR POPUL BIOL, V46, P232, DOI 10.1006/tpbi.1994.1026; Genade T, 2005, AGING CELL, V4, P223, DOI 10.1111/j.1474-9726.2005.00165.x; Genade T., 2005, LAB MANUAL CULTURING; Graf M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011958; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; Hazel WN, 2002, EVOLUTION, V56, P342; Johansson F, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011680; Kotrschal A, 2012, BEHAV ECOL SOCIOBIOL, V66, P1485, DOI 10.1007/s00265-012-1403-7; Lane SJ, 2002, J ANIM ECOL, V71, P780, DOI 10.1046/j.1365-2656.2002.00644.x; Larsdotter Mellstrom H, 2010, BEHAV ECOL SOCIOBIOL, V64, P1377, DOI 10.1007/s00265-010-0952-x; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lindholm A. K., 2006, BIOL LETT, V2, P86; Marcus V, 1997, HYDROBIOLOGIA, V359, P213, DOI 10.1023/A:1003171126347; MARKOFSKY J, 1973, EXP GERONTOL, V8, P65, DOI 10.1016/0531-5565(73)90016-8; MARKOFSKY J, 1972, EXP GERONTOL, V7, P131, DOI 10.1016/0531-5565(72)90007-1; Mazuze F. M., 2007, ANAL ADOPTION ORANGE; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; MOODIE GEE, 1989, CAN J FISH AQUAT SCI, V46, P516, DOI 10.1139/f89-069; Oostra V, 2011, P ROY SOC B-BIOL SCI, V278, P789, DOI 10.1098/rspb.2010.1560; Orizaola G, 2010, OIKOS, V119, P980, DOI 10.1111/j.1600-0706.2009.17956.x; Pfennig DW, 2010, PHILOS T R SOC B, V365, P577, DOI 10.1098/rstb.2009.0244; PFENNIG DW, 1992, EVOLUTION, V46, P1408, DOI 10.1111/j.1558-5646.1992.tb01133.x; Piersma T, 2011, FLEXIBLE PHENOTYPE; Podrabsky J. E., 2010, DORMANCY RESISTANCE, P283; Podrabsky JE, 2010, J EXP BIOL, V213, P3280, DOI 10.1242/jeb.045906; Polacik M, 2009, BEHAV ECOL SOCIOBIOL, V63, P1427, DOI 10.1007/s00265-009-0798-2; Polaik M., 2011, PLOS ONE, V6, pe2268; Reichard M, 2009, J FISH BIOL, V74, P198, DOI 10.1111/j.1095-8649.2008.02129.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ripley BJ, 2004, FRESHWATER BIOL, V49, P221, DOI 10.1111/j.1365-2427.2004.01179.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rollo CD, 2002, EVOL DEV, V4, P55, DOI 10.1046/j.1525-142x.2002.01053.x; Sacramento A., 2012, CLIMATE CHANGE IMPAC; Sherrard ME, 2006, EVOLUTION, V60, P2478, DOI 10.1554/06-150.1; Simpson SJ, 2011, CURR BIOL, V21, pR738, DOI 10.1016/j.cub.2011.06.006; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Storz BL, 2011, OECOLOGIA, V165, P55, DOI 10.1007/s00442-010-1766-2; Terzibasi E, 2009, AGING CELL, V8, P88, DOI 10.1111/j.1474-9726.2009.00455.x; Terzibasi E, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003866; Terzibasi-Tozzini E., 2013, BMC EVOL BIOL, V13, P77; VALDESALICI S, 2003, P ROY SOC LOND B BIO, V270, P189, DOI DOI 10.1098/RSBL.2003.0048; Valenzano DR, 2006, CURR BIOL, V16, P296, DOI 10.1016/j.cub.2005.12.038; Van Dyck H, 2002, J EVOLUTION BIOL, V15, P216, DOI 10.1046/j.1420-9101.2002.00384.x; Wafters B. R., 2009, J AM KILLIFISH ASS, V42, P37; Wanschoenwinkel B., 2010, J N AMER BENTHOL SOC, V29, P1267; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WILDEKAMP RH, 2004, WORLD KILLIES ATLAS, V4; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; Yu X, 2012, EXP GERONTOL, V47, P940, DOI 10.1016/j.exger.2012.08.009 70 46 46 0 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 854 865 10.1111/jeb.12359 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800005 24666645 2019-02-21 J Nystrand, M; Dowling, DK Nystrand, M.; Dowling, D. K. Dose-dependent effects of an immune challenge at both ultimate and proximate levels in Drosophila melanogaster JOURNAL OF EVOLUTIONARY BIOLOGY English Review sperm competition; life history; trade-off; immune elicitor; eco-immunology; lipopolysaccharide; disease; dose dependence IN-FIELD CRICKETS; TRADE-OFFS; SYSTEM ACTIVATION; SEX-DIFFERENCES; REPRODUCTIVE STRATEGIES; TERMINAL INVESTMENT; BATEMANS PRINCIPLE; INNATE IMMUNITY; LIFE-HISTORY; HOST-DEFENSE Immune responses are highly dynamic. The magnitude and efficiency of an immune response to a pathogen can change markedly across individuals, and such changes may be influenced by variance in a range of intrinsic (e.g. age, genotype, sex) and external (e.g. abiotic stress, pathogen identity, strain) factors. Life history theory predicts that up-regulation of the immune system will come at a physiological cost, and studies have confirmed that increased investment in immunity can reduce reproductive output and survival. Furthermore, males and females often have divergent reproductive strategies, and this might drive the evolution of sex-specific life history trade-offs involving immunity, and sexual dimorphism in immune responses per se. Here, we employ an experiment design to elucidate dose-dependent and sex-specific responses to exposure to a nonpathogenic immune elicitor at two scales - the 'ultimate' life history and the underlying 'proximate' immune level in Drosophila melanogaster. We found dose-dependent effects of immune challenges on both male and female components of reproductive success, but not on survival, as well as a response in antimicrobial activity. These results indicate that even in the absence of the direct pathogenic effects that are associated with actual disease, individual life histories respond to a perceived immune challenge - but with the magnitude of this response being contingent on the initial dose of exposure. Furthermore, the results indicate that immune responses at the ultimate life history level may indeed reflect underlying processes that occur at the proximate level. [Nystrand, M.; Dowling, D. K.] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia Nystrand, M (reprint author), Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia. magdalena.nystrand@monash.edu Dowling, Damian/C-9016-2009 Dowling, Damian/0000-0003-2209-3458; Nystrand, Magdalena/0000-0002-8854-3928 Australian Research Council [DP110104965]; Monash University Margaret Clayton - Women in Research Postdoctoral Fellowship We thank Katherine Sutton for laboratory work. We also thank Florencia Camus and Travis Johnson for advice and assistance during development of immunological assays. The study was funded by the Australian Research Council (Australian Postdoctoral Fellowship and Discovery Project, DP110104965) and Monash University Margaret Clayton - Women in Research Postdoctoral Fellowship, both to MN. Adamo SA, 2001, ANIM BEHAV, V62, P417, DOI 10.1006/anbe.2001.1786; Agudelo-Romero P, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002397; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Altizer SM, 1999, J INVERTEBR PATHOL, V74, P76, DOI 10.1006/jipa.1999.4853; Anand P, 2012, ELIFE, V1, DOI 10.7554/eLife.00003; Andersson M., 1994, SEXUAL SELECTION; Ayres JS, 2012, ANNU REV IMMUNOL, V30, P271, DOI 10.1146/annurev-immunol-020711-075030; Ayres JS, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000150; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bates D., 2013, LME4 LINEAR MIXED EF; Bates DM, 2009, LME4 LINEAR MIXED EF; Ben-Ami F, 2010, AM NAT, V175, P106, DOI 10.1086/648672; Bhavsar AP, 2007, NATURE, V449, P827, DOI 10.1038/nature06247; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Bolker B. M, 2008, ECOLOGICAL MODELS DA; Brennan CA, 2004, ANNU REV IMMUNOL, V22, P457, DOI 10.1146/annurev.immunol.22.012703.104626; Burger JMS, 2007, AGING CELL, V6, P63, DOI 10.1111/j.1474-9726.2006.00261.x; Cermelli S, 2006, CURR BIOL, V16, P1783, DOI 10.1016/j.cub.2006.07.062; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Cotter SC, 2004, J EVOLUTION BIOL, V17, P421, DOI 10.1046/j.1420-9101.2003.00655.x; Crozatier M, 2007, CELL MICROBIOL, V9, P1117, DOI 10.1111/j.1462-5822.2007.00930.x; Downs CJ, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2636; Esko J., 2009, ESSENTIAL GLYCOBIOLO; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fellowes MDE, 2000, HEREDITY, V84, P1, DOI 10.1046/j.1365-2540.2000.00685.x; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fournier DA, 2012, OPTIM METHOD SOFTW, V27, P233, DOI 10.1080/10556788.2011.597854; Freitak D, 2007, BMC BIOL, V5, DOI 10.1186/1741-7007-5-56; Freitak D, 2009, P ROY SOC B-BIOL SCI, V276, P2617, DOI 10.1098/rspb.2009.0323; Friberg U, 2008, J EVOLUTION BIOL, V21, P1798, DOI 10.1111/j.1420-9101.2008.01581.x; Gray DA, 1998, J INVERTEBR PATHOL, V71, P288, DOI 10.1006/jipa.1997.4742; Grigorian M, 2011, DEV GENES EVOL, V221, P121, DOI 10.1007/s00427-011-0364-6; Grindstaff JL, 2012, HORM BEHAV, V62, P337, DOI 10.1016/j.yhbeh.2012.04.005; HAMILTON WD, 1982, SCIENCE, V218, P384, DOI 10.1126/science.7123238; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Haq IU, 2012, VIROL J, V9, DOI 10.1186/1743-422X-9-9; Hedengren M, 1999, MOL CELL, V4, P827, DOI 10.1016/S1097-2765(00)80392-5; Hoffmann JA, 2002, NAT IMMUNOL, V3, P121, DOI 10.1038/ni0202-121; Hoffmann JA, 2003, NATURE, V426, P33, DOI 10.1038/nature02021; Imler JL, 2000, J ENDOTOXIN RES, V6, P459, DOI 10.1179/096805100101532423; Jacot A, 2004, EVOLUTION, V58, P2280; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI [10.1098/rspb.2004.2919, 10.1098/rspc.2004.2919]; Janeway C. A, 2001, IMMUNOBIOLOGY IMMUNE; Kaneko T, 2004, IMMUNITY, V20, P637, DOI 10.1016/S1074-7613(04)00104-9; Kim T, 2005, NAT IMMUNOL, V6, P211, DOI 10.1038/ni1159; Kounatidis I, 2012, OPEN BIOL, V2, DOI 10.1098/rsob.120075; Kurtz J, 2005, TRENDS IMMUNOL, V26, P186, DOI 10.1016/j.it.2005.02.001; Kurtz J, 2000, DEV COMP IMMUNOL, V24, P1, DOI 10.1016/S0145-305X(99)00057-9; Lazzaro BP, 2009, PHILOS T R SOC B, V364, P15, DOI 10.1098/rstb.2008.0141; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lefevre T., 2010, P ROY SOC LOND B BIO, V278, P751; Leggett HC, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002512; Lemaitre B, 1997, P NATL ACAD SCI USA, V94, P14614, DOI 10.1073/pnas.94.26.14614; Lemaitre B, 2007, ANNU REV IMMUNOL, V25, P697, DOI 10.1146/annurev.immunol.25.022106.141615; Little TJ, 2004, TRENDS ECOL EVOL, V19, P58, DOI 10.1016/j.tree.2003.11.011; Male D, 2012, IMMUNOLOGY; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-76; McKean KA, 2008, EVOLUTION, V62, P386, DOI 10.1111/j.1558-5646.2007.00286.x; McNamara KB, 2013, J ANIM ECOL, V82, P235, DOI 10.1111/j.1365-2656.2012.02018.x; Meister M, 2003, CELL MICROBIOL, V5, P573, DOI 10.1046/j.1462-5822.2003.00302.x; Meng JM, 2010, J BIOL CHEM, V285, P8695, DOI 10.1074/jbc.M109.075127; MOHRIG W, 1968, Biologisches Zentralblatt, V87, P439; Moret Y, 2001, NATURE, V414, P506, DOI 10.1038/35107138; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; Paschos K, 2010, TRENDS MICROBIOL, V18, P439, DOI 10.1016/j.tim.2010.07.003; Paulo AC, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011655; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramsden S, 2008, AGING CELL, V7, P225, DOI 10.1111/j.1474-9726.2008.00370.x; Rice WR, 2005, P NATL ACAD SCI USA, V102, P6527, DOI 10.1073/pnas.0501889102; Robb Tonia, 2006, BMC Ecology, V6, P15, DOI 10.1186/1472-6785-6-15; ROFF DA, 2002, LIFE HIST EVOLUTION; Rolff J, 2005, EVOLUTION, V59, P1844; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; Roth O, 2009, DEV COMP IMMUNOL, V33, P1151, DOI 10.1016/j.dci.2009.04.005; Sadd B, 2006, J EVOLUTION BIOL, V19, P321, DOI 10.1111/j.1420-9101.2005.01062.x; Sadd BM, 2007, CURR BIOL, V17, pR1046, DOI 10.1016/j.cub.2007.11.007; Sadd BM, 2006, P R SOC B, V273, P2571, DOI 10.1098/rspb.2006.3574; Sadd BM, 2005, BIOL LETT-UK, V1, P386, DOI 10.1098/rsbl.2005.0369; Sano Y, 2005, MOL BIOL CELL, V16, P2934, DOI 10.1091/mbc.E04-01-1108; Serra L, 2012, BEHAV ECOL SOCIOBIOL, V66, P697, DOI 10.1007/s00265-012-1318-3; Shi XZ, 2012, INSECT BIOCHEM MOLEC, V42, P545, DOI 10.1016/j.ibmb.2012.04.002; Simmons L. W., 2001, SPERM COMPETITION IT; Simmons LW, 2012, BEHAV ECOL, V23, P168, DOI 10.1093/beheco/arr170; Skaug H. J., 2012, PACKAGE GLMMADMB GEN; Stoehr AM, 2007, ECOL ENTOMOL, V32, P188, DOI 10.1111/j.1365-2311.2007.00855.x; Sullivan JT, 2014, DEV COMP IMMUNOL, V42, P256, DOI 10.1016/j.dci.2013.09.016; Tapio S, 2008, COXME MIXED EFFECTS, V84, P930, DOI 10.1080/09553000802460214; Vale PF, 2011, AM NAT, V177, P510, DOI 10.1086/659002; Wiesner Andreas, 1998, P11; Winterhalter WE, 2009, P ROY SOC B-BIOL SCI, V276, P1109, DOI 10.1098/rspb.2008.1559; Yee WKW, 2013, CURR BIOL, V23, pR55, DOI 10.1016/j.cub.2012.12.002; Zanchi C, 2011, J ANIM ECOL, V80, P1174, DOI 10.1111/j.1365-2656.2011.01872.x; Zhong YX, 2012, VIRUSES-BASEL, V4, P980, DOI 10.3390/v4060980; Zhu F, 2013, SCI REP-UK, V3, DOI 10.1038/srep02069; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 101 10 10 0 26 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 876 888 10.1111/jeb.12364 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800007 24731072 Bronze 2019-02-21 J Deas, JB; Hunter, MS Deas, J. B.; Hunter, M. S. Egg and time limitation mediate an egg protection strategy JOURNAL OF EVOLUTIONARY BIOLOGY English Article time limitation; parasitoid; seed beetles; life history; egg protection; Mimosestes amicus; oviposition behaviour; egg limitation CLUTCH SIZE; EVOLUTIONARY ARGUMENT; OVIPOSITION BEHAVIOR; RESOURCE-ALLOCATION; PARASITOID WASPS; BATTUS-PHILENOR; LIFE EXPECTANCY; BODY-SIZE; LOAD; INSECTS The number of mature eggs remaining in the ovaries and the time left for oviposition determine the reproductive decisions of the hyperdiverse guild of insects that require discrete and potentially limiting resources for oviposition (such as seeds, fruits or other insects). A female may run out of eggs before all available oviposition sites are used (egg limitation), or die before using all of her eggs (time limitation). Females are predicted to change clutch size depending on whether eggs or time is the limiting resource. We extend this framework and ask whether the same constraints influence a strategy in which females modify eggs into protective shields. In response to egg parasitism cues, female seed beetles (Mimosestes amicus) lay eggs in vertical groups of 2-4, modifying the top 1-3 eggs into shields in order to protect the bottom egg from attack by parasitoids. We made contrasting predictions of how egg and time limitation would influence egg size and the incidence and level of egg protection. By varying access to seed pods, we manipulated the number of remaining eggs a female had at the time she received a parasitism cue. Although egg size was not affected, our results confirm that egg-limited females protected fewer eggs and time-limited females protected more eggs. Female body size explained the number of eggs in a stack rather than host deprivation or the timing of parasitoid exposure. Our results clearly show that host availability relative to female age influences the incidence of egg protection in M.amicus. Furthermore, our study represents a novel use of life history theory to explain patterns in an unusual but compelling defensive behaviour. [Deas, J. B.] Univ Arizona, Grad Interdisciplinary Program Entomol & Insect S, Tucson, AZ USA; [Hunter, M. S.] Univ Arizona, Dept Entomol, Tucson, AZ 85721 USA Deas, JB (reprint author), Univ Kentucky, Dept Entomol, Agr Sci Ctr North S225, Lexington, KY 40546 USA. joe.deas@uky.edu Hunter, Martha/0000-0002-6342-675X Marshall Foundation Fellowship through the University of Arizona; Ford Foundation Dissertation Fellowship; NSF [DEB-1110557] We thank Judie Bronstein, Goggy Davidowitz, Dan Papaj, Charles W. Fox, Bernard Roitberg and Jay Rosenheim for their helpful comments on how to improve this manuscript. We thank Aryn Cunningham for assisting with experiments and for maintaining beetle laboratory populations. This research was in part supported by a Marshall Foundation Fellowship through the University of Arizona, a Ford Foundation Dissertation Fellowship and an NSF Doctoral Dissertation Improvement Grant (DEB-1110557) to J.B.D. Asplen MK, 2006, J MORPHOL, V267, P1066, DOI 10.1002/jmor.10459; Babendreier D, 2002, ENTOMOL EXP APPL, V105, P63, DOI 10.1046/j.1570-7458.2002.01034.x; BEGON M, 1986, OIKOS, V47, P293, DOI 10.2307/3565440; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Casas J, 2000, J ANIM ECOL, V69, P185, DOI 10.1046/j.1365-2656.2000.00376.x; Crawley M. J., 2007, R BOOK; Deas JB, 2013, ANIM BEHAV, V86, P933, DOI 10.1016/j.anbehav.2013.08.010; Deas JB, 2012, P ROY SOC B-BIOL SCI, V279, P847, DOI 10.1098/rspb.2011.1585; Diaz-Fleischer F, 2003, OIKOS, V100, P125, DOI 10.1034/j.1600-0706.2003.12134.x; DRIESSEN G, 1992, ECOL ENTOMOL, V17, P17, DOI 10.1111/j.1365-2311.1992.tb01034.x; DROST YC, 1992, PHYSIOL ENTOMOL, V17, P230, DOI 10.1111/j.1365-3032.1992.tb01015.x; Ellers J, 2000, AM NAT, V156, P650, DOI 10.1086/316990; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Flanders Stanley E., 1942, ANN ENT SOC AMERICA, V35, P251; FLETCHER JP, 1994, P ROY SOC B-BIOL SCI, V258, P163, DOI 10.1098/rspb.1994.0157; Fox CW, 2006, ANN ZOOL FENN, V43, P239; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Fursov V., 1995, Colloques de l'INRA, V73, P15; Geister TL, 2008, J INSECT PHYSIOL, V54, P1253, DOI 10.1016/j.jinsphys.2008.06.002; Giron D, 2003, ECOL LETT, V6, P273, DOI 10.1046/j.1461-0248.2003.00429.x; Harvey JA, 2001, J INSECT BEHAV, V14, P573, DOI 10.1023/A:1012219116341; HONEK A, 1993, OIKOS, V66, P483, DOI 10.2307/3544943; IWASA Y, 1984, THEOR POPUL BIOL, V26, P205, DOI 10.1016/0040-5809(84)90030-3; Javois J, 2004, ANIM BEHAV, V68, P249, DOI 10.1016/j.anbehav.2003.10.022; Jervis MA, 2004, OIKOS, V107, P449, DOI 10.1111/j.0030-1299.2004.13453.x; Jervis MA, 2001, J ANIM ECOL, V70, P442, DOI 10.1046/j.1365-2656.2001.00507.x; Karl I, 2007, BIOL J LINN SOC, V91, P403, DOI 10.1111/j.1095-8312.2007.00806.x; Kingsolver J. M., 1978, TECHNICAL B USDA; LALONDE RG, 1994, J ANIM ECOL, V63, P583, DOI 10.2307/5224; Mangel M, 1998, EVOL ECOL, V12, P871, DOI 10.1023/A:1006502901441; ODENDAAL FJ, 1990, J INSECT BEHAV, V3, P183, DOI 10.1007/BF01417911; PARKER GA, 1984, THEOR POPUL BIOL, V26, P27, DOI 10.1016/0040-5809(84)90022-4; Pianka E.R., 1981, P300; Pianka E. R., 1988, EVOLUTIONARY ECOLOGY, P70; Potter KA, 2012, P ROY SOC B-BIOL SCI, V279, P3572, DOI 10.1098/rspb.2012.1050; Poykko H, 2012, ECOL ENTOMOL, V37, P330, DOI 10.1111/j.1365-2311.2012.01369.x; Rosenheim JA, 2000, P ROY SOC B-BIOL SCI, V267, P1565, DOI 10.1098/rspb.2000.1179; Rosenheim JA, 1996, EVOLUTION, V50, P2089, DOI 10.1111/j.1558-5646.1996.tb03595.x; Rosenheim JA, 2011, EVOLUTION, V65, P2300, DOI 10.1111/j.1558-5646.2011.01305.x; Savalli UM, 2002, ANN ENTOMOL SOC AM, V95, P724, DOI 10.1603/0013-8746(2002)095[0724:PMIESP]2.0.CO;2; Sevenster JG, 1998, EVOLUTION, V52, P1241, DOI 10.1111/j.1558-5646.1998.tb01853.x; Sloggett JJ, 2008, PHYSIOL ENTOMOL, V33, P200, DOI 10.1111/.j.1365-3032.2008.00622.x; SOUTHGATE BJ, 1979, ANNU REV ENTOMOL, V24, P449, DOI 10.1146/annurev.en.24.010179.002313; TATAR M, 1991, BEHAV ECOL SOCIOBIOL, V28, P337, DOI 10.1007/BF00164383; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; WIKLUND C, 1984, OIKOS, V43, P391, DOI 10.2307/3544158; Xu LL, 2012, ECOL ENTOMOL, V37, P446, DOI 10.1111/j.1365-2311.2012.01383.x 47 4 4 0 22 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. MAY 2014 27 5 920 928 10.1111/jeb.12363 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AF8LF WOS:000334966800011 24735410 Bronze 2019-02-21 J Rueppell, O Rueppell, Olav The architecture of the pollen hoarding syndrome in honey bees: implications for understanding social evolution, behavioral syndromes, and selective breeding APIDOLOGIE English Review Apis mellifera; pleiotropy; behavioral syndrome; honey bee health; social behavior; correlated evolution; artificial selection; ovary APIS-MELLIFERA-L.; REPRODUCTIVE GROUND-PLAN; COLONY-LEVEL SELECTION; LIFE-HISTORY EVOLUTION; FORAGING BEHAVIOR; HYGIENIC BEHAVIOR; GENETIC ARCHITECTURE; SUCROSE RESPONSIVENESS; VARROA-DESTRUCTOR; AMERICAN FOULBROOD Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been co-opted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic quantitative trait loci (QTL). Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: if these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker-assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection. Univ N Carolina, Dept Biol, Greensboro, NC 27403 USA Rueppell, O (reprint author), Univ N Carolina, Dept Biol, 312 Eberhart Bldg,321 McIver St, Greensboro, NC 27403 USA. olav_rueppell@uncg.edu Rueppell, Olav/G-2679-2010 Rueppell, Olav/0000-0001-5370-4229 National Institutes of Health [R15GM102753]; United States Department of Agriculture [2010-65104-20533]; North American Pollinator Protection Campaign I thank David Tarpy and Stan Schneider for the invitation to write this review. I am greatly indebted to Robert Page for introducing me to many fascinating problems that relate to pollen hoarding behavior in honey bees. I would also like to acknowledge the financial support of the National Institutes of Health grant (R15GM102753), the United States Department of Agriculture (2010-65104-20533), and the North American Pollinator Protection Campaign. Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Amdam GV, 2007, AM NAT, V170, P37, DOI 10.1086/518183; Amdam GV, 2010, EVOL DEV, V12, P428, DOI 10.1111/j.1525-142X.2010.00429.x; Amdam GV, 2010, ANIM BEHAV, V79, P973, DOI 10.1016/j.anbehav.2010.02.007; Amdam GV, 2006, BEHAV BRAIN RES, V169, P201, DOI 10.1016/j.bbr.2006.01.006; Amdam GV, 2006, NATURE, V439, P76, DOI 10.1038/nature04340; Amdam GV, 2004, P NATL ACAD SCI USA, V101, P11350, DOI 10.1073/pnas.0403073101; Amdam GV, 2003, P NATL ACAD SCI USA, V100, P1799, DOI 10.1073/pnas.0333979100; Arechavaleta-Velasco ME, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047269; Arias MC, 2005, MOL PHYLOGENET EVOL, V37, P25, DOI 10.1016/j.ympev.2005.02.017; BAILEY L., 1991, HONEY BEE PATHOLOGY; Behrens D, 2011, ECOL EVOL, V1, DOI 10.1002/ece3.17; Bourgeois AL, 2009, J ECON ENTOMOL, V102, P1233, DOI 10.1603/029.102.0349; CAMAZINE S, 1986, ANN ENTOMOL SOC AM, V79, P801, DOI 10.1093/aesa/79.5.801; Conner JK, 2003, ECOLOGY, V84, P1650, DOI 10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2; Delph LF, 2010, EVOLUTION, V64, P2873, DOI 10.1111/j.1558-5646.2010.01048.x; Dixon LR, 2012, EXP GERONTOL, V47, P631, DOI 10.1016/j.exger.2012.05.017; Dreller C, 2000, ANIM BEHAV, V59, P91, DOI 10.1006/anbe.1999.1303; Dreller C, 1999, BEHAV ECOL SOCIOBIOL, V45, P227, DOI 10.1007/s002650050557; Engel MS, 1998, APIDOLOGIE, V29, P265, DOI 10.1051/apido:19980306; Fewell JH, 1996, BEHAV ECOL, V7, P286, DOI 10.1093/beheco/7.3.286; FEWELL JH, 1992, BEHAV ECOL SOCIOBIOL, V30, P387; FEWELL JH, 1993, EXPERIENTIA, V49, P1106, DOI 10.1007/BF01929923; Gadagkar R, 1997, J GENET, V76, P167, DOI 10.1007/BF02932215; Goode K, 2006, HORM BEHAV, V49, P391, DOI 10.1016/j.yhbeh.2005.08.007; Graham AM, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-95; Harris JW, 2007, J APICULT RES, V46, P134, DOI 10.1080/00218839.2007.11101383; HELLMICH RL, 1985, J HERED, V76, P155, DOI 10.1093/oxfordjournals.jhered.a110056; Holloway B, 2012, J APICULT RES, V51, P154, DOI 10.3896/IBRA.1.51.2.02; Huang Q, 2012, J INVERTEBR PATHOL, V109, P297, DOI 10.1016/j.jip.2012.01.004; Humann FC, 2011, INSECT BIOCHEM MOLEC, V41, P602, DOI 10.1016/j.ibmb.2011.03.013; Humphries MA, 2005, J COMP PHYSIOL A, V191, P669, DOI 10.1007/s00359-005-0624-x; Humphries MA, 2003, J COMP PHYSIOL A, V189, P555, DOI 10.1007/s00359-003-0433-z; HUNT GJ, 1995, GENETICS, V141, P1537; Hunt GJ, 2007, NATURWISSENSCHAFTEN, V94, P247, DOI 10.1007/s00114-006-0183-1; Ihle KE, 2010, ANIM BEHAV, V79, P1001, DOI 10.1016/j.anbehav.2010.02.009; Jandt J.M., 2013, BIOL REV ON IN PRESS; KULINCEVIC JM, 1975, J INVERTEBR PATHOL, V25, P289, DOI 10.1016/0022-2011(75)90084-1; Laidlaw Jr HH, 1997, QUEEN REARING BEE BR; LANDE R, 1982, ECOLOGY, V63, P607, DOI 10.2307/1936778; LANDE R, 1984, GENET RES, V44, P309, DOI 10.1017/S0016672300026549; Lapidge KL, 2002, NATURWISSENSCHAFTEN, V89, P565, DOI 10.1007/s00114-002-0371-6; Le Conte Y, 2011, INSECT MOL BIOL, V20, P399, DOI 10.1111/j.1365-2583.2011.01074.x; Linksvayer TA, 2009, GENETICS, V183, P693, DOI 10.1534/genetics.109.105452; Linksvayer TA, 2009, AM NAT, V173, pE99, DOI 10.1086/596527; Mutti NS, 2011, J EXP BIOL, V214, P3977, DOI 10.1242/jeb.061499; Nelson CM, 2007, PLOS BIOL, V5, P673, DOI 10.1371/journal.pbio.0050062; Nilsen KA, 2011, J EXP BIOL, V214, P1488, DOI 10.1242/jeb.050393; O'Hagan S.J., 2012, PLOS ONE IN PRESS, V7; Oxley PR, 2010, MOL ECOL, V19, P1452, DOI 10.1111/j.1365-294X.2010.04569.x; PAGE RE, 1995, BEHAV ECOL SOCIOBIOL, V36, P135, DOI 10.1007/s002650050133; Page RE, 2002, NATURWISSENSCHAFTEN, V89, P91, DOI 10.1007/s00114-002-0299-x; Page RE, 2000, J HERED, V91, P474, DOI 10.1093/jhered/91.6.474; Page RE, 2007, BIOESSAYS, V29, P334, DOI 10.1002/bies.20549; Page RE, 2012, BEHAV ECOL SOCIOBIOL, V66, P1459, DOI 10.1007/s00265-012-1400-x; Page RE, 2012, ANNU REV GENET, V46, P97, DOI 10.1146/annurev-genet-110711-155610; Palmer KA, 2003, NATURWISSENSCHAFTEN, V90, P265, DOI 10.1007/s00114-003-0418-3; Pankiw T, 2003, BEHAV ECOL SOCIOBIOL, V54, P458, DOI 10.1007/s00265-003-0640-1; Pankiw T, 2001, BEHAV ECOL SOCIOBIOL, V51, P87, DOI 10.1007/s002650100408; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRICE T, 1992, TRENDS ECOL EVOL, V7, P307, DOI 10.1016/0169-5347(92)90229-5; Rinderer TE, 2010, APIDOLOGIE, V41, P409, DOI 10.1051/apido/2010015; Roff DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P11; Rueppell O, 2008, J INSECT BEHAV, V21, P317, DOI 10.1007/s10905-008-9135-2; Rueppell O, 2006, ANIM BEHAV, V71, P227, DOI 10.1016/j.anbehav.2005.05.008; Rueppell O, 2006, GENETICS, V172, P243, DOI 10.1534/genectics.105.046490; Rueppell O, 2004, GENETICS, V167, P1767, DOI 10.1534/genetics.103.021949; Rueppell O, 2011, HEREDITY, V106, P894, DOI 10.1038/hdy.2010.138; Rueppell O, 2007, EXP GERONTOL, V42, P1020, DOI 10.1016/j.exger.2007.06.002; Rueppell O, 2009, BEHAV GENET, V39, P541, DOI 10.1007/s10519-009-9278-8; Ruppell O, 2004, J HERED, V95, P481, DOI 10.1093/jhered/esh072; Scheiner R, 2001, NEUROBIOL LEARN MEM, V76, P138, DOI 10.1006/nlme.2000.3996; Schmid-Hempel P., 1998, PARASITES SOCIAL INS; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Spivak M, 1998, BEE WORLD, V79, P124, DOI 10.1080/0005772X.1998.11099394; Spivak M, 2009, AM BEE J, V149, P965; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Toth AL, 2007, TRENDS GENET, V23, P334, DOI 10.1016/j.tig.2007.05.001; Tsuruda J.M., 2012, PLOS ONE, V7; Tsuruda JM, 2009, BEHAV BRAIN RES, V205, P132, DOI 10.1016/j.bbr.2009.07.022; vanEngelsdorp D, 2010, J INVERTEBR PATHOL, V103, pS80, DOI 10.1016/j.jip.2009.06.011; vanEngelsdorp D, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006481; Waddington KD, 1998, ANIM BEHAV, V56, P35, DOI 10.1006/anbe.1998.0736; Wang Y, 2012, J EXP BIOL, V215, P124, DOI 10.1242/jeb.060889; Wang Y, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000896; Wang Y, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004899; Whitfield CW, 2006, P NATL ACAD SCI USA, V103, P16068, DOI 10.1073/pnas.0606909103; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Garamszegi LZ, 2012, EVOL ECOL, V26, P1213, DOI 10.1007/s10682-012-9589-8 89 6 6 0 31 SPRINGER FRANCE PARIS 22 RUE DE PALESTRO, PARIS, 75002, FRANCE 0044-8435 1297-9678 APIDOLOGIE Apidologie MAY 2014 45 3 364 374 10.1007/s13592-013-0244-3 11 Entomology Entomology AF0NU WOS:000334412100006 25506100 Green Accepted 2019-02-21 J Montiglio, PO; Garant, D; Bergeron, P; Messier, GD; Reale, D Montiglio, Pierre-Olivier; Garant, Dany; Bergeron, Patrick; Messier, Gabrielle Dubuc; Reale, Denis Pulsed resources and the coupling between life-history strategies and exploration patterns in eastern chipmunks (Tamias striatus) JOURNAL OF ANIMAL ECOLOGY English Article lifetime reproductive success; state-dependency; coping style; pace of life; behavioural syndromes AMERICAN RED SQUIRRELS; PERSONALITY-DIFFERENCES; BEHAVIORAL SYNDROMES; HABITAT HETEROGENEITY; FITNESS CONSEQUENCES; POPULATION; WILD; SELECTION; TRAITS; SIZE Understanding the causes of animal personality (i.e. consistent behavioural differences) is a major aim of evolutionary studies. Recent theoretical work suggests that major personality traits may contribute to evolutionary trade-offs. However, such associations have only been investigated in a few study systems, and even less so in free ranging animal populations. Eastern chipmunks exhibit consistent individual differences in exploration, ranging from slow to fast. Birth cohorts also experience dramatic differences in age at first breeding opportunity due to annual differences in beech mast. Individuals may breed for the first time at 24, 33 or 50% of their average life span, depending on year of birth. Here, we used data from a long-term survey on a wild population to investigate the relationship between reproductive life history and consistent individual differences in exploration. We determined whether predictable differences in age at first breeding opportunity among birth cohorts were associated with exploration differences and favoured individuals with different exploration. Birth cohorts with a predictably earlier age at first breeding opportunity were faster explorers on average. Slower explorers displayed their highest fecundity (females) or highest fertilization success (males) later in their life compared with faster explorers. Overall, slow explorers attained a higher lifetime reproductive success than fast explorers when given an opportunity to reproduce later in their life. Our results suggest that the timing of mating seasons, associated with fluctuating food abundance, may favour individual variation in exploration and maintain population variation through its effects on reproductive life history. Together, our result shed light on how fluctuation in ecological conditions may maintain personality differences and on the nature of the relationships between animal personality and life history. [Montiglio, Pierre-Olivier; Messier, Gabrielle Dubuc; Reale, Denis] Univ Quebec, Dept Sci Biol, Chaire Rech Canada Ecol Comportementale, Montreal, PQ H3C 3P8, Canada; [Garant, Dany; Bergeron, Patrick] Univ Sherbrooke, Fac Sci, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada Montiglio, PO (reprint author), Univ Quebec, Dept Sci Biol, Chaire Rech Canada Ecol Comportementale, CP 8888 Succursale Ctr Ville, Montreal, PQ H3C 3P8, Canada. montiglio.pierre-olivier@courrier.uqam.ca Montiglio, Pierre-Olivier/N-6625-2017 Garant, Dany/0000-0002-8091-1044; Montiglio, Pierre-Olivier/0000-0002-1313-9410 Fonds Quebecois Recherche Nature et Technologie (FQRNT) scholarships; NSERC scholarship; National Science and Engineering Research Council (NSERC) discovery grants; FQRNT The authors thank all researchers, students and assistants that exchanged ideas, provided logistical support and collected data in the field over the course of this study. We also thank anonymous reviewers and Tina Wey for helpful comments on a previous version of this manuscript. We thank the Ruiter Valley Land Trust for access to the study site. POM, GDM and PB were supported by Fonds Quebecois Recherche Nature et Technologie (FQRNT) scholarships. PB was also supported by a NSERC scholarship. The project was funded by National Science and Engineering Research Council (NSERC) discovery grants to DR and DG as well as by a team research project grant from the FQRNT to DR, DG, Murray Humphries, Don Kramer and the late Don Thomas. The authors declare no conflict of interest. Adriaenssens B, 2009, TRENDS ECOL EVOL, V24, P179, DOI 10.1016/j.tree.2008.12.003; Bates D. M., 2012, LME4 LINEAR MIXED EF; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bergeron P, 2011, J EVOLUTION BIOL, V24, P1685, DOI 10.1111/j.1420-9101.2011.02294.x; Bergeron P, 2011, ECOLOGY, V92, P2027, DOI 10.1890/11-0766.1; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blondel J, 2007, J ORNITHOL, V148, pS3, DOI 10.1007/s10336-007-0161-1; Boon AK, 2008, OIKOS, V117, P1321, DOI 10.1111/j.2008.0030-1299.16567.x; Boon AK, 2007, ECOL LETT, V10, P1094, DOI 10.1111/j.1461-0248.2007.01106.x; Both C, 1998, J ANIM ECOL, V67, P659, DOI 10.1046/j.1365-2656.1998.00227.x; Both C, 2000, J ANIM ECOL, V69, P1021, DOI 10.1046/j.1365-2656.2000.00458.x; Boyer N, 2010, J ANIM ECOL, V79, P538, DOI 10.1111/j.1365-2656.2010.01659.x; Chambers JL, 2010, J HERED, V101, P413, DOI 10.1093/jhered/esq029; CLARK CW, 1994, BEHAV ECOL, V5, P159, DOI 10.1093/beheco/5.2.159; Crawley M. J., 2007, R BOOK; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Dingemanse NJ, 2004, P ROY SOC B-BIOL SCI, V271, P847, DOI 10.1098/rspb.2004.2680; Elliott L, 1978, SMITHSONIAN CONTRIB, V265, P1, DOI DOI 10.5479/SI.00810282.265; Hall CL, 2007, CAN J ZOOL, V85, P536, DOI 10.1139/Z07-030; Hutt C, 1969, PSYCHOL FORSCH, V33, P1, DOI 10.1007/BF00424612; Kalinowski ST, 2007, MOL ECOL, V16, P1099, DOI 10.1111/j.1365-294X.2007.03089.x; Landry-Cuerrier M, 2008, ECOLOGY, V89, P3306, DOI 10.1890/08-0121.1; Montiglio PO, 2012, ANIM BEHAV, V84, P1071, DOI 10.1016/j.anbehav.2012.08.010; Montiglio PO, 2010, ANIM BEHAV, V80, P905, DOI 10.1016/j.anbehav.2010.08.014; Nicolaus M, 2012, P ROY SOC B-BIOL SCI, V279, P4885, DOI 10.1098/rspb.2012.1936; Niemela PT, 2013, BEHAV ECOL, V24, P935, DOI 10.1093/beheco/art014; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Patterson LD, 2011, ANIM BEHAV, V81, P1129, DOI 10.1016/j.anbehav.2011.02.016; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Schulte-Hostedde AI, 2004, BEHAV ECOL, V15, P351, DOI 10.1093/beheco/arh021; Sheriff MJ, 2010, ECOLOGY, V91, P2983, DOI 10.1890/09-1108.1; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2008, ADV STUD BEHAV, V38, P227, DOI 10.1016/S0065-3454(08)00005-3; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Snyder D. P., 1982, MAMM SPECIES, V168, P1; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 47 22 22 1 66 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAY 2014 83 3 720 728 10.1111/1365-2656.12174 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology AE8YR WOS:000334289500020 24180283 2019-02-21 J Konishi, S; Parajuli, RP; Takane, E; Maharjan, M; Tachibana, K; Jiang, HW; Pahari, K; Inoue, Y; Umezaki, M; Watanabe, C Konishi, Shoko; Parajuli, Rajendra Prasad; Takane, Erica; Maharjan, Makhan; Tachibana, Ken'ichi; Jiang, Hong-Wei; Pahari, Krishna; Inoue, Yosuke; Umezaki, Masahiro; Watanabe, Chiho Significant sex difference in the association between C-reactive protein concentration and anthropometry among 13- to 19-year olds, but not 6- to 12-year olds in Nepal AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article inflammation; height; dried blood spot; BMI ACUTE-PHASE PROTEIN; PAPUA-NEW-GUINEA; NUTRITIONAL-STATUS; ELECTIVE SURGERY; IMMUNE FUNCTION; LIFE-HISTORY; DISEASE RISK; BODY-FAT; CHILDREN; INFLAMMATION Life history theory predicts a trade-off between immunostimulation and growth. Using a cross-sectional study design, this study aims to test the hypothesis that C-reactive protein (CRP) is negatively associated with height-for-age z-scores (HAZ scores) and BMI-for-age z-scores (BAZ scores) among 6- to 19-year olds (N = 426) residing in five Nepalese communities. Dried blood spot (DBS) samples were collected and assayed for CRP using an in-house enzyme immunoassay (EIA). Sex- and age-group-specific CRP quartiles were used to examine its association with growth in linear mixed-effects (LME) models. A significant difference was found in the proportion of elevated CRP (>2 mg/L, equivalent to similar to 3.2 mg/L serum CRP) between 13- and 19-year-old boys (12%) and girls (4%). Concentrations of CRP were positively associated with HAZ score among adolescent (13-19 years) boys, which may indicate that individuals with greater energy resources have better growth and a better response to infections, thus eliminating the expected trade-off between body maintenance (immunostimulation) and growth. Adolescent boys with low BAZ and HAZ scores had low CRP values, suggesting that those who do not have enough energy for growth cannot increase their CRP level even when infected with pathogens. Among adolescent girls a positive association was observed between CRP and BAZ scores suggesting the possible effects of chronic low-grade inflammation due to body fat rather than infection. The association between CRP and growth was less evident among children (6-12 years) compared with adolescents, indicating that the elevated energy requirement needed for the adolescent growth spurt and puberty may play some role. Am J Phys Anthropol 154:42-51, 2014. (c) 2014 Wiley Periodicals, Inc. [Konishi, Shoko; Parajuli, Rajendra Prasad; Takane, Erica; Inoue, Yosuke; Umezaki, Masahiro; Watanabe, Chiho] Univ Tokyo, Grad Sch Med, Dept Human Ecol, Tokyo 1130033, Japan; [Konishi, Shoko] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Maharjan, Makhan] Environm & Publ Hlth Org ENPHO, Kathmandu, Nepal; [Tachibana, Ken'ichi] Ritsumeikan Univ, Coll Social Sci, Kyoto 6038577, Japan; [Jiang, Hong-Wei] Res Inst Humanity & Nat, Kyoto 6038047, Japan; [Pahari, Krishna] Nepal Dev Res Inst, Kathmandu, Nepal Konishi, S (reprint author), Univ Tokyo, Dept Human Ecol, Grad Sch Med, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan. moe@humeco.m.u-tokyo.ac.jp Parajuli, Rajendra/0000-0002-4899-7212 Global Environment Research Fund, Ministry of Environment, Japan [H-063]; KAKENHI [21406021] Grant sponsor: Global Environment Research Fund, Ministry of Environment, Japan; Grant number: H-063; Grant sponsor: KAKENHI; Grant number: 21406021. Albert MA, 2004, AM J CARDIOL, V93, P221, DOI 10.1016/j.amjcard.2003.09.046; Aziz N, 2003, CLIN DIAGN LAB IMMUN, V10, P652, DOI 10.1128/CDLI.10.4.652-657.2003; BALLOU SP, 1992, ADV INTERNAL MED, V37, P313; Blackwell AD, 2010, AM J HUM BIOL, V22, P836, DOI 10.1002/ajhb.21092; Brindle E, 2010, J IMMUNOL METHODS, V362, P112, DOI 10.1016/j.jim.2010.09.014; Brown DE, 2010, AM J HUM BIOL, V22, P675, DOI 10.1002/ajhb.21064; CALVIN J, 1988, ANN CLIN BIOCHEM, V25, P60, DOI 10.1177/000456328802500108; Campbell DI, 2003, J NUTR, V133, P1332; Chambers JC, 2001, CIRCULATION, V104, P145, DOI 10.1161/01.CIR.104.2.145; Cook DG, 2000, ATHEROSCLEROSIS, V149, P139, DOI 10.1016/S0021-9150(99)00312-3; CRUICKSHANK AM, 1989, BRIT J SURG, V76, P165, DOI 10.1002/bjs.1800760220; CURTIS GE, 1995, CYTOKINE, V7, P380, DOI 10.1006/cyto.1995.0048; Decaro JA, 2010, AM J HUM BIOL, V22, P657, DOI 10.1002/ajhb.21062; DOHERTY JF, 1993, CLIN SCI, V84, P169, DOI 10.1042/cs0840169; Dowd JB, 2010, AM J PREV MED, V39, P314, DOI 10.1016/j.amepre.2010.05.014; FILTEAU SM, 1995, AM J CLIN NUTR, V62, P434; Ford ES, 2003, CIRCULATION, V108, P1053, DOI 10.1161/01.CIR.0000080913.81393.B8; Goto R, 2009, BRIT J NUTR, V101, P1509, DOI 10.1017/S0007114508083554; Gurung H., 2006, NEPAL ATLAS STAT; Hayashi S, 2001, VET RES COMMUN, V25, P117, DOI 10.1023/A:1006404902214; Hiura M, 2003, HYPERTENS RES, V26, P541, DOI 10.1291/hypres.26.541; Imrie H, 2007, AM J TROP MED HYG, V76, P280, DOI 10.4269/ajtmh.2007.76.280; Informal Sector Research and Study Center, 2002, DISTR DEM PROF NEP D; Kelishadi R, 2007, EPIDEMIOL REV, V29, P62, DOI 10.1093/epirev/mxm003; Konishi S, 2011, Nepal Med Coll J, V13, P1; Lim S, 2006, ATHEROSCLEROSIS, V184, P171, DOI 10.1016/j.atherosclerosis.2005.04.003; McDade TW, 2008, AM J PHYS ANTHROPOL, V136, P478, DOI 10.1002/ajpa.20831; McDade TW, 2012, AM J HUM BIOL, V24, P675, DOI 10.1002/ajhb.22296; McDade TW, 2005, ANNU REV ANTHROPOL, V34, P495, DOI 10.1146/annurev.anthro.34.081804.120348; McDade TW, 2003, YEARB PHYS ANTHROPOL, V46, P100, DOI 10.1002/ajpa.10398; Pagana KD, 2010, MOSBYS MANUAL DIAGNO; Panter-Brick C, 2001, BRIT J NUTR, V85, P125, DOI 10.1079/BJN2000225; Panter-Brick C, 2009, BRIT J NUTR, V101, P558, DOI 10.1017/S000711450802744X; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; R Development Core Team, 2011, R LANG ENV STAT COMP; Shea S, 2003, OBES RES, V11, P95, DOI 10.1038/oby.2003.15; Sorensen MV, 2006, AM J HUM BIOL, V18, P766, DOI 10.1002/ajhb.20547; THOMPSON D, 1992, ANN CLIN BIOCHEM, V29, P123, DOI 10.1177/000456329202900201; Vikram NK, 2003, ATHEROSCLEROSIS, V168, P305, DOI 10.1016/S0021-9150(03)00096-0; Wander K, 2008, AM J PHYS ANTHROPOL, V136, P138, DOI 10.1002/ajpa.20785; WHO Multicentre Growth Reference Study Group, 2006, WHO CHILD GROWTH STA, P301; World Health Organization, 1997, WHO GLOB DAT CHILD G; Yamanaka M, 2002, AM J HUM BIOL, V14, P356, DOI 10.1002/ajhb.10030 43 5 5 0 4 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. MAY 2014 154 1 42 51 10.1002/ajpa.22470 10 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology AE4PN WOS:000333965100004 24431160 2019-02-21 J Tonkin, Z; Ramsey, DSL; Macdonald, J; Crook, D; King, AJ; Kaus, A Tonkin, Zeb; Ramsey, David S. L.; Macdonald, Jed; Crook, David; King, Alison J.; Kaus, Andrew Does localized control of invasive eastern gambusia (Poeciliidae: Gambusia holbrooki) increase population growth of generalist wetland fishes? AUSTRAL ECOLOGY English Article Alien species impact; state-space modelling; aquatic pest management; Murray-Darling Basin FRESH-WATER FISH; CARP CYPRINUS-CARPIO; EXPERIMENTAL MANIPULATIONS; INTRODUCED MOSQUITOFISH; AFFINIS-HOLBROOKI; ALIEN FISH; RIVER; AUSTRALIA; IMPACTS; PREDATION While invasive fish management is heavily focussed on containment measures when introductions occur, examples from invasive species management in terrestrial systems suggest that there may also be considerable conservation benefits in implementing localized control programmes. We conducted a field-based experiment to assess the effectiveness of removing a globally significant invasive fish, eastern gambusia Gambusia holbrooki, from natural wetland habitats of south-eastern Australia. With recent work suggesting the impacts of eastern gambusia may be minimal for species with generalist life-history strategies, we hypothesized that the removal of eastern gambusia will reduce localized population growth of the invasive species, but will have little influence on the population growth of more generalist sympatric wetland fish species. We used a predictive modelling approach to investigate changes in eastern gambusia populations following removal activities, and how sympatric fish species responded to such changes. Although eastern gambusia rapidly populated habitats, we demonstrated that control actions substantially reduced the rate of population increase over the four-month study period. This suggests that control may be an effective localized strategy to suppress eastern gambusia densities. There was however, no evidence of any response to the removal actions by any of the three sympatric fish species investigated - carp gudgeon (Hypseleotris spp.), Australian smelt (Retropinna semoni) and the invasive common carp (Cyprinus carpio). These results support previous work which suggests that the flexible life-history strategies and behavioural traits of all three species allow co-existence with eastern gambusia. The study highlights the importance of understanding the potential outcomes of control options which is particularly pertinent for established aquatic invasive species where information on control effectiveness, population dynamics and/or ecosystem response is currently lacking. [Tonkin, Zeb; Ramsey, David S. L.; Macdonald, Jed; Crook, David; King, Alison J.; Kaus, Andrew] Arthur Rylah Inst Environm Res, Dept Environm & Primary Ind, Heidelberg, Vic 3084, Australia Tonkin, Z (reprint author), Arthur Rylah Inst Environm Res, Dept Environm & Primary Ind, 123 Brown St, Heidelberg, Vic 3084, Australia. zeb.tonkin@depi.vic.gov.au Crook, David/0000-0003-4035-050X Native Fish Strategy section of the Murray-Darling Basin Authority We thank the members of the Murray-Darling Basin Authority Alien fish project steering committee; numerous staff from the Justin O'Mahoney, Scott Raymond, Dean Hartwell, Jason Lieschke and Joanne Kearns from the Arthur Rylah Institute for contribution to field work. Thanks also to Mathew Jones and Paul Maloney for internal review of this document. This work was funded by the Native Fish Strategy section of the Murray-Darling Basin Authority, and carried out under DSE Animal Care and Ethics Approval (Permit No. AEC 08/07). Amundsen PA, 1999, BIOL CONSERV, V88, P405, DOI 10.1016/S0006-3207(98)00110-4; Angeler DG, 2007, ENVIRON MONIT ASSESS, V125, P9, DOI 10.1007/s10661-006-9234-5; Arthington A.H., 1999, Asian Fisheries Science, V12, P1; ARTHINGTON AH, 1983, AUST J ECOL, V8, P87, DOI 10.1111/j.1442-9993.1983.tb01597.x; Ayres R, 2010, NATL EMERGENCY RESPO; Bertozzi T, 2000, MAR FRESHWATER RES, V51, P805, DOI 10.1071/MF00039; BRAYSHER M, 1993, MANAGING VERTEBRATE; Brookhouse Nicola, 2010, Ecological Management & Restoration, V11, P226, DOI 10.1111/j.1442-8903.2010.00556.x; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; CADWALLADER PL, 1983, GUIDE FRESHWATER FIS; Caiola N, 2005, J APPL ICHTHYOL, V21, P358, DOI 10.1111/j.1439-0426.2005.00684.x; Choquenot D, 2004, NEW ZEAL J MAR FRESH, V38, P419, DOI 10.1080/00288330.2004.9517249; Costelloe JF, 2010, MAR FRESHWATER RES, V61, P857, DOI 10.1071/MF09090; Dennis B, 2006, ECOL MONOGR, V76, P323, DOI 10.1890/0012-9615(2006)76[323:EDDPNA]2.0.CO;2; Gillespie G., 1999, DECLINES DISAPPEARAN, P131; Gozlan RE, 2010, J FISH BIOL, V76, P751, DOI 10.1111/j.1095-8649.2010.02566.x; Gozlan RE, 2008, FISH FISH, V9, P106, DOI 10.1111/j.1467-2979.2007.00267.x; Harris J. H., 1997, CONTROLLING CARP EXP, P21; Ho SS, 2013, FRESHWATER BIOL, V58, P159, DOI 10.1111/fwb.12047; HONE J, 1995, J APPL ECOL, V32, P311, DOI 10.2307/2405098; Howe E, 1997, MAR FRESHWATER RES, V48, P425, DOI 10.1071/MF96114; Humphries P, 2002, FRESHWATER BIOL, V47, P1307, DOI 10.1046/j.1365-2427.2002.00871.x; HURLBERT SH, 1972, SCIENCE, V175, P639, DOI 10.1126/science.175.4022.639; Irons KS, 2007, J FISH BIOL, V71, P258, DOI 10.1111/j.1095-8649.2007.01670.x; Ivantsoff W, 1999, MAR FRESHWATER RES, V50, P467, DOI 10.1071/MF98106; Ives AR, 2003, ECOL MONOGR, V73, P301, DOI 10.1890/0012-9615(2003)073[0301:ECSAEI]2.0.CO;2; Kennard MJ, 2005, FRESHWATER BIOL, V50, P174, DOI 10.1111/j.1365-2427.2004.01293.x; King AJ, 1997, MAR FRESHWATER RES, V48, P435, DOI 10.1071/MF97031; King AJ, 2002, HYDROBIOLOGIA, V472, P223, DOI 10.1023/A:1016307602735; King R, 2010, INTERD STAT, P1; Koehn J, 2007, P WORKSH HELD BRISB, P54; Koehn JD, 2004, NEW ZEAL J MAR FRESH, V38, P457, DOI 10.1080/00288330.2004.9517253; Komak S, 2000, WILDLIFE RES, V27, P185, DOI 10.1071/WR99028; Kulhanek SA, 2011, ECOL APPL, V21, P203, DOI 10.1890/09-1639.1; Laha M, 2007, ENVIRON BIOL FISH, V78, P1, DOI 10.1007/s10641-006-9040-5; Ling N, 2004, NEW ZEAL J MAR FRESH, V38, P473, DOI 10.1080/00288330.2004.9517254; Lintermans M, 2000, MAR FRESHWATER RES, V51, P799, DOI 10.1071/MF00019; Lloyd L. N., 1986, ECOLOGY EXOTIC ANIMA; Lloyd LN, 1990, INTRO TRANSLOCATED F, P94; Lodge DM, 2003, CONSERV BIOL, V17, P31, DOI 10.1046/j.1523-1739.2003.02366.x; Lowe S, 2000, 100 WORLDS WORST INV; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; LYDEARD C, 1993, SOUTHWEST NAT, V38, P370, DOI 10.2307/3671617; Macdonald J., 2008, MURRAY DARLING BASIN; Macdonald JI, 2012, MAR FRESHWATER RES, V63, P659, DOI 10.1071/MF12019; Maglio V. J., 1969, AM MUS NOVIT, V2397, P1; Marchetti MP, 2004, FRESHWATER BIOL, V49, P646, DOI 10.1111/j.1365-2427.2004.01202.x; Margaritora Fiorenza G., 2001, Journal of Limnology, V60, P189; MEFFE GK, 1985, SOUTHWEST NAT, V30, P173, DOI 10.2307/3670732; Mills MD, 2004, OECOLOGIA, V141, P713, DOI 10.1007/s00442-004-1695-z; MILTON DA, 1983, J FISH BIOL, V23, P23, DOI 10.1111/j.1095-8649.1983.tb02879.x; Morgan DL, 2004, NEW ZEAL J MAR FRESH, V38, P511, DOI 10.1080/00288330.2004.9517257; Moyle PB, 1996, BIOL CONSERV, V78, P149, DOI 10.1016/0006-3207(96)00024-9; Parker I.M., 1999, Biological Invasions, V1, P3, DOI 10.1023/A:1010034312781; PEN LJ, 1991, AQUAT CONSERV, V1, P159, DOI 10.1002/aqc.3270010205; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; Ramsey DSL, 2000, INT BIODETER BIODEGR, V45, P183, DOI 10.1016/S0964-8305(00)00059-7; Roberts J, 1995, MAR FRESHWATER RES, V46, P1171, DOI 10.1071/MF9951171; Robertson AI, 1997, MAR FRESHWATER RES, V48, P445, DOI 10.1071/MF97032; Rowe D. K., 2008, REV IMPACTS IN PRESS; Stoffels RJ, 2003, ENVIRON BIOL FISH, V66, P293, DOI 10.1023/A:1023918420927; Thresher RE, 2008, FISHERIES, V33, P114, DOI 10.1577/1548-8446-33.3.114; Tonkin Z., 2012, A RYLAH I ENV RES TE, V232; Tonkin Zeb, 2008, Ecological Management & Restoration, V9, P196, DOI 10.1111/j.1442-8903.2008.00418.x; Tonkin ZD, 2011, FRESHWATER BIOL, V56, P1769, DOI 10.1111/j.1365-2427.2011.02612.x; Vander Zanden MJ, 2004, ECOL APPL, V14, P132; Webb Cameron, 1997, Australian Zoologist, V30, P316; Zavaleta ES, 2001, TRENDS ECOL EVOL, V16, P454, DOI 10.1016/S0169-5347(01)02194-2 68 2 2 3 51 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1442-9985 1442-9993 AUSTRAL ECOL Austral Ecol. MAY 2014 39 3 355 366 10.1111/aec.12088 12 Ecology Environmental Sciences & Ecology AE5HX WOS:000334019500010 2019-02-21 J Zamin, TJ; Bret-Harte, MS; Grogan, P Zamin, Tara J.; Bret-Harte, M. Syndonia; Grogan, Paul Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low arctic tundra JOURNAL OF ECOLOGY English Article greenhouses; nutrient addition; phosphorus; tundra vegetation; shrub growth; climate change; nitrogen; life-history strategy; soil fertility; determinants of plant community diversity and structure SIMULATED ENVIRONMENTAL-CHANGE; PLANT COMMUNITY RESPONSES; CARBON-DIOXIDE EXCHANGE; ALASKAN TUNDRA; CLIMATE-CHANGE; NITROGEN MINERALIZATION; MICROBIAL BIOMASS; SOIL-NITROGEN; PHOSPHORUS FERTILIZATION; LITTER DECOMPOSITION Climate change in arctic tundra is projected to increase soil fertility, which may alter plant community composition and ecosystem processes by shifting niche space to favour particular species' life-history strategies. The rate and magnitude of change in soil fertility may be critical to determining plant community responses, and so effects of slow increases in nutrient availability due to climate warming may differ substantially from those of chronic high-level fertilizer additions. We investigated above- and below-ground plant biomass responses to experimental summer warming and above-ground responses to nutrient additions (low-level N and factorial N and P) in a mesic birch hummock tundra community in the central Canadian Low Arctic after eight years of experimental treatment. Plant community biomass responses to experimental warming were fundamentally different from those of high-level N and/or P additions, mainly due to opposing effects on the evergreen shrubs. Evergreen shrub above-ground biomass increased 66% with greenhouse warming, but decreased on average 70% with high-level N and/or P additions, driven by the strong responses of Rhododendron subarcticum. Because of this evergreen response, greenhouse-warming increased total above-ground biomass by 32% and total below-ground biomass by 70%, but did not significantly change the total above-ground/below-ground biomass ratio. However, warming increased the shoot/root ratio of Betula glandulosa threefold. Increased soil fertility created interactions between N and P availability, whereby increased P availability led to a substantial increase in inorganic N availability. Meanwhile, the growth of several species that span a range of different functional groups was stimulated by the separate N and P additions. These factorial fertilization results highlight the importance of understanding climate warming impacts on availability of both of these nutrients in order to predict plant community responses. Synthesis. Our results strongly suggest that the trajectory of mesic tundra vegetation change with warming depends critically on the rate of increase in soil fertility. The relatively large greenhouse-induced biomass increase in evergreen compared to deciduous shrubs suggests that carbon balance and albedo feedbacks to warming will be restricted in mesic tundra ecosystems, at least in their early responses to climate change. [Zamin, Tara J.; Grogan, Paul] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Bret-Harte, M. Syndonia] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA Zamin, TJ (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. tjzamin@gmail.com Zamin, Tara/0000-0002-0991-6651 NSERC; AANDC-NSTP; Ontario Provincial Government; NSF PLR [1107892] We thank Tomo Nishizawa, Carolyn Churchland, Yvette Chirinian and Linda Cameron for field and laboratory assistance, our many laboratory volunteers at Queen's, Mike Treberg, Robbie Hember, Peter Lafleur and Greg Henry for support in establishing the experimental manipulations, Steve Matthews (GNWT), Lukas Madsen (GNWT) and the Aurora Research Institute for logistics, Hugh Henry for statistical advice, and NSERC (T.J.Z and P.G.), AANDC-NSTP (T.J.Z.), the Ontario Provincial Government (T.J.Z. and P.G.) and NSF PLR Grant 1107892 (M.S.B.H.) for financial support. Aerts R, 2000, ADV ECOL RES, V30, P1; AKRITAS MG, 1990, J AM STAT ASSOC, V85, P73, DOI 10.2307/2289527; Arctic Council, 2013, ARCT RES INT REP 201; BEAN D, 2003, CANTTEX FIELD MANU A; Benner JW, 2007, ECOL LETT, V10, P628, DOI 10.1111/j.1461-0248.2007.01054.x; Benner JW, 2007, BIOTROPICA, V39, P400, DOI 10.1111/j.1744-7429.2007.00267.x; Biasi C, 2008, PLANT SOIL, V307, P191, DOI 10.1007/s11104-008-9596-2; Blok D, 2011, BIOGEOSCIENCES, V8, P1169, DOI 10.5194/bg-8-1169-2011; Bret-Harte MS, 2008, J ECOL, V96, P713, DOI 10.1111/j.1365-2745.2008.01378.x; Bret-Harte MS, 2001, ECOLOGY, V82, P18, DOI 10.1890/0012-9658(2001)082[0018:DPABNT]2.0.CO;2; Brodo IM, 2001, LICHENS N AM; BROOKES PC, 1985, SOIL BIOL BIOCHEM, V17, P837, DOI 10.1016/0038-0717(85)90144-0; Brzostek ER, 2012, GLOBAL CHANGE BIOL, V18, P2617, DOI 10.1111/j.1365-2486.2012.02685.x; Bubier JL, 2011, OECOLOGIA, V167, P355, DOI 10.1007/s00442-011-1998-9; Buckeridge KM, 2010, BIOGEOCHEMISTRY, V101, P105, DOI 10.1007/s10533-010-9426-5; Buckeridge KM, 2010, PLANT SOIL, V330, P407, DOI 10.1007/s11104-009-0214-8; Callaghan TV, 2004, AMBIO, V33, P418, DOI 10.1639/0044-7447(2004)033[0418:RTPCIC]2.0.CO;2; Campioli M, 2013, PLANT ECOL, V214, P1049, DOI 10.1007/s11258-013-0230-x; Campioli M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034842; CAVM, 2003, CIRC ARCT VEG MAP; CHAPIN FS, 1995, ECOLOGY, V76, P694, DOI 10.2307/1939337; Chapin FS, 1996, ECOLOGY, V77, P822, DOI 10.2307/2265504; CHAPIN FS, 1980, J ECOL, V68, P189; CHAPIN FS, 1980, ANNU REV ECOL SYST, V11, P233, DOI 10.1146/annurev.es.11.110180.001313; Chu HY, 2010, PLANT SOIL, V329, P411, DOI 10.1007/s11104-009-0167-y; Churchland C, 2010, PLANT SOIL, V334, P409, DOI 10.1007/s11104-010-0392-4; Cleveland CC, 2007, BIOGEOCHEMISTRY, V85, P235, DOI 10.1007/s10533-007-9132-0; Cornelissen JHC, 2001, J ECOL, V89, P984, DOI 10.1046/j.1365-2745.2001.00625.x; Cornwell WK, 2008, ECOL LETT, V11, P1065, DOI 10.1111/j.1461-0248.2008.01219.x; CREWS TE, 1993, BIOGEOCHEMISTRY, V21, P141; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Dormann CF, 2002, FUNCT ECOL, V16, P4, DOI 10.1046/j.0269-8463.2001.00596.x; Dredge L, 1999, CAN J EARTH SCI, V36, P1227, DOI 10.1139/e98-087; Elmendorf SC, 2012, NAT CLIM CHANGE, V2, P453, DOI 10.1038/NCLIMATE1465; Elmendorf SC, 2012, ECOL LETT, V15, P164, DOI 10.1111/j.1461-0248.2011.01716.x; Epstein HE, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/1/015506; Farnsworth A., 2007, THESIS TRENT U; FORBES BC, 2010, GLOBAL CHANGE BIOL, V16, P1542, DOI DOI 10.1111/J.1365-2486.2009.02047.X; GARNIER E, 1991, TRENDS ECOL EVOL, V6, P126, DOI 10.1016/0169-5347(91)90091-B; Giesler R, 2012, BIOGEOCHEMISTRY, V108, P429, DOI 10.1007/s10533-011-9609-8; GLEESON SK, 1992, AM NAT, V139, P1322, DOI 10.1086/285389; Goetz SJ, 2005, P NATL ACAD SCI USA, V102, P13521, DOI 10.1073/pnas.0506179102; Gough L, 2003, OIKOS, V103, P204, DOI 10.1034/j.1600-0706.2003.12363.x; Gough L, 2002, ARCT ANTARCT ALP RES, V34, P211, DOI 10.2307/1552473; Gough L, 2008, ARCT ANTARCT ALP RES, V40, P65, DOI 10.1657/1523-0430(06-087)[GOUGH]2.0.CO;2; Gough L, 2012, ECOLOGY, V93, P1683, DOI 10.1890/11-1631.1; Grellmann D, 2002, OIKOS, V98, P190, DOI 10.1034/j.1600-0706.2002.980202.x; Grime J. P, 1979, PLANT STRATEGIES VEG; Harpole WS, 2011, ECOL LETT, V14, P852, DOI 10.1111/j.1461-0248.2011.01651.x; Hartley AE, 1999, OIKOS, V86, P331, DOI 10.2307/3546450; Heskel MA, 2012, AM J BOT, V99, P1702, DOI 10.3732/ajb.1200251; Hobbie SE, 1998, ECOLOGY, V79, P1526; Hobbie SE, 2002, PLANT SOIL, V242, P163, DOI 10.1023/A:1019670731128; HOBBIE SE, 1992, TRENDS ECOL EVOL, V7, P336, DOI 10.1016/0169-5347(92)90126-V; Hollister RD, 2005, GLOBAL CHANGE BIOL, V11, P525, DOI 10.1111/j.1365-2486.2005.00926.x; Hudson JMG, 2011, GLOBAL CHANGE BIOL, V17, P1013, DOI 10.1111/j.1365-2486.2010.02294.x; Hudson JMG, 2009, ECOLOGY, V90, P2657, DOI 10.1890/09-0102.1; Hudson JMG, 2010, J ECOL, V98, P1035, DOI 10.1111/j.1365-2745.2010.01690.x; Jeffries MO, 2013, PHYS TODAY, V66, P35, DOI 10.1063/PT.3.2147; Jia GSJ, 2009, J ENVIRON MONITOR, V11, P2231, DOI 10.1039/b911677j; Jonasson S, 1999, ECOLOGY, V80, P1828, DOI 10.1890/0012-9658(1999)080[1828:RIMAPT]2.0.CO;2; Jonasson S, 1996, OECOLOGIA, V106, P507, DOI 10.1007/BF00329709; JONASSON S, 1988, OIKOS, V52, P101, DOI 10.2307/3565988; Kuo S, 1996, METHODS SOIL ANAL CH, P869, DOI DOI 10.2136/SSSAB00KSER5.3.C32; Lafleur PM, 2008, GLOBAL CHANGE BIOL, V14, P740, DOI 10.1111/j.1365-2486.2007.01529.x; Lamb EG, 2011, GLOBAL CHANGE BIOL, V17, P3187, DOI 10.1111/j.1365-2486.2011.02431.x; Lang SI, 2012, GLOBAL CHANGE BIOL, V18, P1096, DOI 10.1111/j.1365-2486.2011.02570.x; Larsen KS, 2012, ECOSYSTEMS, V15, P927, DOI 10.1007/s10021-012-9555-x; Legendre P., 2012, TRACKING ENV CHANGE, V5; Loranty MM, 2011, ENVIRON RES LETT, V6, DOI 10.1088/1748-9326/6/2/024014; Martin M, 2010, GLOBAL CHANGE BIOL, V16, P1057, DOI 10.1111/j.1365-2486.2009.01987.x; McKane RB, 2002, NATURE, V415, P68, DOI 10.1038/415068a; Michelsen A, 2012, AMBIO, V41, P218, DOI 10.1007/s13280-012-0303-4; Molau U, 1998, AMBIO, V27, P322; Molau U, 2010, PLANT ECOL DIVERS, V3, P29, DOI 10.1080/17550874.2010.487548; Mulvaney R., 1996, NITROGEN INORGANIC F; NADELHOFFER KJ, 1991, ECOLOGY, V72, P242, DOI 10.2307/1938918; Natali SM, 2011, GLOBAL CHANGE BIOL, V17, P1394, DOI 10.1111/j.1365-2486.2010.02303.x; Nobrega S, 2008, ECOSYSTEMS, V11, P377, DOI 10.1007/s10021-008-9128-1; PARSONS AN, 1994, J ECOL, V82, P307, DOI 10.2307/2261298; Press MC, 1998, J ECOL, V86, P315, DOI 10.1046/j.1365-2745.1998.00261.x; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Core Team, 2012, R LANG ENV STAT COMP; READ DJ, 1991, EXPERIENTIA, V47, P376, DOI 10.1007/BF01972080; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Rixen C, 2012, OIKOS, V121, P1532, DOI 10.1111/j.1600-0706.2011.20031.x; Robinson CH, 1998, ECOLOGY, V79, P856, DOI 10.2307/176585; Robinson CH, 1995, OIKOS, V74, P503, DOI 10.2307/3545996; Ropars P, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/1/015501; Rustad LE, 2001, OECOLOGIA, V126, P543, DOI 10.1007/s004420000544; SAS Institute Inc, 2010, JMP VERS 9; Schlesinger W, 1997, BIOGEOCHEMISTRY ANAL; Shaver GR, 2006, J ECOL, V94, P740, DOI 10.1111/j.1365-2745.2006.01139.x; SHAVER GR, 1980, ECOLOGY, V61, P662, DOI 10.2307/1937432; Shaver GR, 1999, POLAR RES, V18, P245, DOI 10.1111/j.1751-8369.1999.tb00300.x; Sistla SA, 2013, NATURE, V497, P615, DOI 10.1038/nature12129; SMITH VH, 1992, BIOGEOCHEMISTRY, V18, P19, DOI 10.1007/BF00000424; Sorensen PL, 2008, SOIL BIOL BIOCHEM, V40, P2344, DOI 10.1016/j.soilbio.2008.05.013; Stewart KJ, 2011, ARCT ANTARCT ALP RES, V43, P267, DOI 10.1657/1938-4246-43.2.267; Stewart KJ, 2011, SOIL BIOL BIOCHEM, V43, P133, DOI 10.1016/j.soilbio.2010.09.023; Sturm M, 2005, BIOSCIENCE, V55, P17, DOI 10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2; Tape K, 2006, GLOBAL CHANGE BIOL, V12, P686, DOI 10.1111/j.1365-2486.2006.01128.x; Taulavuori K, 2001, OECOLOGIA, V127, P321, DOI 10.1007/s004420100661; Tremblay B, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/3/035501; van Wijk MT, 2004, GLOBAL CHANGE BIOL, V10, P105, DOI 10.1111/j.1365-2486.2003.00719.x; van Wijk MT, 2003, J ECOL, V91, P664, DOI 10.1046/j.1365-2745.2003.00788.x; Vankoughnett M., 2010, THESIS QUEENS U; Wahren CHA, 2005, GLOBAL CHANGE BIOL, V11, P537, DOI 10.1111/j.1365-2486.2005.00927.x; Walker MD, 2006, P NATL ACAD SCI USA, V103, P1342, DOI 10.1073/pnas.0503198103; Weintraub MN, 2005, BIOSCIENCE, V55, P408, DOI 10.1641/0006-3568(2005)055[0408:NCATSO]2.0.CO;2; Weiss M, 2005, ARCT ANTARCT ALP RES, V37, P396, DOI 10.1657/1523-0430(2005)037[0396:CRONIA]2.0.CO;2; Welker JM, 1995, PALEOCLIMATE RES, V15, P105; WOOKEY PA, 1993, OIKOS, V67, P490, DOI 10.2307/3545361; Zamin TJ, 2012, ENVIRON RES LETT, V7, DOI 10.1088/1748-9326/7/3/034027 114 30 32 0 135 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. MAY 2014 102 3 749 766 10.1111/1365-2745.12237 18 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology AF3CE WOS:000334588300021 Bronze 2019-02-21 J Bradley, RJ; Safran, RJ Bradley, Rachel J.; Safran, Rebecca J. Conceptual Revision and Synthesis of Proximate Factors Associated with Age-Related Improvement in Reproduction ETHOLOGY English Review SHEARWATERS PUFFINUS-TENUIROSTRIS; LONG-LIVED SEABIRD; PAIR-BOND DURATION; BREEDING PERFORMANCE; SEYCHELLES WARBLER; MATE RETENTION; HAEMATOPUS-OSTRALEGUS; FERTILIZATION SUCCESS; FOOD AVAILABILITY; SEXUAL SELECTION Improvement in reproductive performance with age, up to the point of senescence, is a predominant pattern among vertebrates. Predictions from life-history theory provide a powerful framework for understanding the evolutionary basis of these patterns. However, based on the growing number of publications on this topic, there is increased interest in understanding the proximate causes of age-related improvements in reproductive performance (ARIRP). A formal conceptual framework through which factors related to ARIRP can be examined is lacking. Here, we establish hypotheses with testable predictions for social and ecological factors, including resource quality, mate fidelity, site fidelity, prior breeding experience, and changes in ability to attract mates. We use this conceptual framework to review 55 empirical studies published (between 1900 through 2013) on avian species as birds have the greatest representation in empirical studies of ARIRP. Our synthesis revealed that tests of the breeding experience hypothesis are most prevalent in the literature, whereas tests of the site fidelity hypothesis are least prevalent. Overall, the role of increased mate attraction with age seems to be an important predictor of ARIRP, whereas changes in resource quality with age show the least support among published studies. Because many studies suffered from small sample sizes and did not control for confounding variables, we suggest experimental methodologies for teasing apart hypotheses in empirical investigations and offer statistical approaches for longitudinal datasets. From an ultimate perspective, we also highlight the role of life-history variation, in shaping within-individual improvements. Future work should employ a standardized framework to study patterns of ARIRP, as set forward here, to allow for more quantitative comparison of results across studies. [Bradley, Rachel J.; Safran, Rebecca J.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA Bradley, RJ (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. rbradley810@gmail.com University of Colorado; Phi Beta Kappa Crisp fellowship; Department of Ecology and Evolutionary Biology research grants; NSF [IOS 0717421, DEB-CAREER 1149942] We thank the Safran Lab Group at the University of Colorado for extensive comments on ideas during manuscript development, and Samuel Flaxman, Michael Breed, Cait Dmitriew, and reviewers for comments on this manuscript. RJB was funded by the University of Colorado Graduate School Sheryl R. Young fellowship, the Phi Beta Kappa Crisp fellowship and Department of Ecology and Evolutionary Biology research grants. RJS was supported by the NSF (IOS 0717421 and DEB-CAREER 1149942) and the University of Colorado. Alonso JC, 2010, BEHAV ECOL SOCIOBIOL, V64, P1589, DOI 10.1007/s00265-010-0972-6; AUSTAD SN, 1991, J GERONTOL, V46, pB47, DOI 10.1093/geronj/46.2.B47; Bai ML, 2012, ANIM BEHAV, V84, P251, DOI 10.1016/j.anbehav.2012.05.004; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Bell CB, 2012, WEST N AM NATURALIST, V72, P369, DOI 10.3398/064.072.0311; Bertram SM, 2011, ETHOLOGY, V117, P1050, DOI 10.1111/j.1439-0310.2011.01958.x; Blas J, 2009, ECOGRAPHY, V32, P647, DOI 10.1111/j.1600-0587.2008.05700.x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; BRADLEY JS, 1995, J ANIM ECOL, V64, P31, DOI 10.2307/5825; BRADLEY JS, 1990, J ANIM ECOL, V59, P487, DOI 10.2307/4876; Brown WP, 2009, ECOLOGY, V90, P218, DOI 10.1890/07-2061.1; Budden AE, 2009, J AVIAN BIOL, V40, P18, DOI 10.1111/j.1600-048X.2008.04344.x; Bunce A, 2005, J ZOOL, V266, P163, DOI 10.1017/S0952836905006734; Cichon M, 2003, OECOLOGIA, V134, P78, DOI 10.1007/s00442-002-1099-x; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Cox RM, 2009, J EVOLUTION BIOL, V22, P1586, DOI 10.1111/j.1420-9101.2009.01772.x; Crawley M. J, 2012, R BOOK; Daunt F, 1999, P ROY SOC B-BIOL SCI, V266, P1489, DOI 10.1098/rspb.1999.0805; Desprez M, 2011, P ROY SOC B-BIOL SCI, V278, P3060, DOI 10.1098/rspb.2011.0189; Dubois F, 2002, BEHAV ECOL SOCIOBIOL, V52, P357, DOI 10.1007/s00265-002-0521-z; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; ENS BJ, 1993, ANIM BEHAV, V45, P1199, DOI 10.1006/anbe.1993.1142; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Ferrer M, 2003, AUK, V120, P180, DOI 10.1642/0004-8038(2003)120[0180:AATEOF]2.0.CO;2; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Freeman-Gallant CR, 2010, EVOLUTION, V64, P1007, DOI 10.1111/j.1558-5646.2009.00873.x; Gonzalez-Solis J, 2004, J ORNITHOL, V145, P129, DOI 10.1007/s10336-004-0023-z; GOWATY PA, 1998, BIRDS N AM ONLINE; Guinan J. A., 2008, BIRDS N AM ONLINE; Hollister-Smith JA, 2007, ANIM BEHAV, V74, P287, DOI 10.1016/j.anbehav.2006.12.008; Horie S, 2012, IBIS, V154, P285, DOI 10.1111/j.1474-919X.2011.01204.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Kery M, 2010, INTRO WINBUGS ECOLOG; Komdeur J, 2005, BEHAV ECOL, V16, P805, DOI 10.1093/beheco/ari059; Komdeur J, 1996, BEHAV ECOL, V7, P326; Komdeur J, 2007, ADV STUD BEHAV, V37, P147, DOI 10.1016/S0065-3454(07)37004-6; Laaksonen T, 2002, J ANIM ECOL, V71, P23, DOI 10.1046/j.0021-8790.2001.00570.x; Laskemoen T, 2008, J AVIAN BIOL, V39, P322, DOI 10.1111/j.0908-8857.2008.04178.x; Lifjeld JT, 2011, BEHAV ECOL SOCIOBIOL, V65, P1687, DOI 10.1007/s00265-011-1176-4; Limmer B, 2010, OIKOS, V119, P500, DOI 10.1111/j.1600-0706.2009.16673.x; Llambias PE, 2008, J AVIAN BIOL, V39, P493, DOI 10.1111/j.0908-8857.2008.04274.x; Lombardo MP, 2010, J FIELD ORNITHOL, V81, P294, DOI 10.1111/j.1557-9263.2010.00285.x; Lozano GA, 1999, WILSON BULL, V111, P381; Michl G, 2002, P NATL ACAD SCI USA, V99, P5466, DOI 10.1073/pnas.082036699; Milonas PG, 2011, BEHAV ECOL SOCIOBIOL, V65, P1249, DOI 10.1007/s00265-011-1138-x; Moller AP, 2006, J EVOLUTION BIOL, V19, P682, DOI 10.1111/j.1420-9101.2005.01065.x; Naves LC, 2007, ANIM BEHAV, V73, P433, DOI 10.1016/j.anbehav.2006.10.004; Nisbet ICT, 2009, J AVIAN BIOL, V40, P296, DOI 10.1111/j.1600-048X.2008.04563.x; OLLASON JC, 1978, J ANIM ECOL, V47, P961, DOI 10.2307/3681; PACKER C, 1979, ANIM BEHAV, V27, P37, DOI 10.1016/0003-3472(79)90127-1; Part T, 2001, P ROY SOC B-BIOL SCI, V268, P2267, DOI 10.1098/rspb.2001.1803; Penteriani V, 2003, IBIS, V145, pE77, DOI 10.1046/j.1474-919X.2003.00159.x; Poesel A, 2006, ANIM BEHAV, V72, P531, DOI 10.1016/j.anbehav.2005.10.022; Pyle P, 2001, J ANIM ECOL, V70, P1088, DOI 10.1046/j.0021-8790.2001.00567.x; Ratcliffe N, 1998, J ANIM ECOL, V67, P853, DOI 10.1046/j.1365-2656.1998.6760853.x; REID WV, 1988, ECOLOGY, V69, P1454, DOI 10.2307/1941642; Richardson DS, 2007, EVOLUTION, V61, P2790, DOI 10.1111/j.1558-5646.2007.00222.x; ROCKWELL RF, 1993, J ANIM ECOL, V62, P323, DOI 10.2307/5363; Roff Derek A., 1992; Safran RJ, 2006, CAN J ZOOL, V84, P1533, DOI 10.1139/Z06-176; Safran RJ, 2005, SCIENCE, V309, P2210, DOI 10.1126/science.1115090; Schmoll T, 2009, P R SOC B, V276, P337, DOI 10.1098/rspb.2008.1116; Slater GL, 2013, BIRDS N AM ONLINE; Sloane S. A., 2001, BIRDS N AM ONLINE; SYDEMAN WJ, 1991, J ANIM ECOL, V60, P135, DOI 10.2307/5450; Takagi M, 2003, J ETHOL, V21, P9, DOI 10.1007/s10164-002-0068-5; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol M, 2006, BEHAV ECOL, V17, P982, DOI 10.1093/beheco/arl036; Wasser DE, 2010, J ZOOL, V280, P103, DOI 10.1111/j.1469-7998.2009.00671.x; White J, 2008, P NATL ACAD SCI USA, V105, P13947, DOI 10.1073/pnas.0803067105; Williams TD, 2003, J AVIAN BIOL, V34, P379, DOI 10.1111/j.0908-8857.2003.03080.x; ZANN RA, 1996, ZEBRA FINCH; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6; Zuur A. F., 2012, ZERO INFLATED MODELS 77 9 9 0 40 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0179-1613 1439-0310 ETHOLOGY Ethology MAY 2014 120 5 411 426 10.1111/eth.12220 16 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology AE0ZY WOS:000333696100001 2019-02-21 J De Baca, TC; Sotomayor-Peterson, M; Smith-Castro, V; Figueredo, AJ De Baca, Tomas Cabeza; Sotomayor-Peterson, Marcela; Smith-Castro, Vanessa; Figueredo, Aurelio Jose Contributions of Matrilineal and Patrilineal Kin Alloparental Effort to the Development of Life History Strategies and Patriarchal Values: A Cross-Cultural Life History Approach JOURNAL OF CROSS-CULTURAL PSYCHOLOGY English Article evolutionary psychology; family emotional climate; parenting; familism; Mexico; life history theory; patriarchal values; Costa Rica PARENT CHARACTERISTICS; REPRODUCTIVE STRATEGY; FAMILY; EVOLUTION; SOCIALIZATION; CHILD; SELF; PERSONALITY; INVESTMENT; MODELS Childrearing behaviors are often shaped by familial and cultural principles that function as guides for socialization goals and effective childrearing practices. For an increasing number of Latino families, the extended kin often acts as a source of childcare support. Due to a scarcity of research on the familial support configurations of Latin American families, the current study utilizes a cross-cultural retrospective approach to explore the associations between matrilineal/patrilineal kin and life history strategies in relation to childrearing. Applying a family system and life history framework, the present model tested 200 university students from Mexico and Costa Rica on measures of family emotional environment and traditional social values (e.g., familismo/simpatia and patriarchal values). Results found that childcare assistance from patrilineal and matrilineal kin was associated with positive family emotional environment, which weakly mediated the association between kin care and slow life history. Positive associations were also found between matrilineal kin childcare and traditional Latin social values. However, patriarchal values were only predicted by higher levels of patrilineal kin aid. The results are consistent with the general theoretical literature of life history theory and family systems theory, suggesting that high levels of childcare produce positively emotional family climates, which in turn perpetuate the development of prosocial individuals with slow life history strategies. Implications for further research are discussed. [De Baca, Tomas Cabeza; Figueredo, Aurelio Jose] Univ Arizona, Tucson, AZ 85721 USA; [Sotomayor-Peterson, Marcela] Univ Sonora, Hermosillo 83000, Sonora, Mexico; [Smith-Castro, Vanessa] Univ Costa Rica, San Pedro, Costa Rica De Baca, TC (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, Div Family Studies & Human Dev, 650 N Pk Ave, Tucson, AZ 85721 USA. tdebaca@email.arizona.edu Smith-Castro, Vanessa/D-8173-2015 Smith-Castro, Vanessa/0000-0001-6348-4223; Cabeza de Baca, Tomas/0000-0003-3322-2163 Allen SM, 1999, J MARRIAGE FAM, V61, P199, DOI 10.2307/353894; Barnett MA, 2008, CLIN CHILD FAM PSYCH, V11, P145, DOI 10.1007/s10567-008-0034-z; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BEST DL, 1994, J CROSS CULT PSYCHOL, V25, P181, DOI 10.1177/0022022194252002; BETZIG L, 1989, CURR ANTHROPOL, V30, P654, DOI 10.1086/203798; Bobko P, 2007, ORGAN RES METHODS, V10, P689, DOI 10.1177/1094428106294734; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV EX; Burton L M, 1990, Hum Nat, V1, P123, DOI 10.1007/BF02692149; Cannon EA, 2008, FAM PROCESS, V47, P501, DOI 10.1111/j.1545-5300.2008.00268.x; Carlo G, 2001, J APPL DEV PSYCHOL, V22, P559, DOI 10.1016/S0193-3973(01)00094-6; Cavalli-Sforza LL, 1981, CULTURAL TRANSMISSIO; COHEN J, 1990, AM PSYCHOL, V45, P1304, DOI 10.1037//0003-066X.45.12.1304; Cox MJ, 2003, CURR DIR PSYCHOL SCI, V12, P193, DOI 10.1111/1467-8721.01259; Cromwell R E, 1979, Hisp J Behav Sci, V1, P355, DOI 10.1177/073998637900100404; Darwin C, 1871, DESCENT MAN SELECTIO; Davis Melinda F., 2007, Journal of the Arizona-Nevada Academy of Science, V39, P65; De Baca TC, 2012, PARENT-SCI PRACT, V12, P94, DOI 10.1080/15295192.2012.680396; EINHORN HJ, 1975, ORGAN BEHAV HUM PERF, V13, P171, DOI 10.1016/0030-5073(75)90044-6; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FELDMAN MW, 1976, THEOR POPUL BIOL, V9, P238, DOI 10.1016/0040-5809(76)90047-2; Figueredo A. J., 2013, J METHODS MEASUREMEN, V4, P1; Figueredo A. J., 2001, VIRGINIA J SOCIAL PO, V8, P219; Figueredo A. J., 2009, J SOCIAL EVOLUTIONAR, V3, P29; Figueredo AJ, 2004, EVOL HUM BEHAV, V25, P336, DOI 10.1016/j.evolhumbehav.2004.05.005; FIGUEREDO AJ, 1993, ETHOL SOCIOBIOL, V14, P353, DOI 10.1016/0162-3095(93)90024-C; Figueredo AJ, 2001, EVOL HUM BEHAV, V22, P295, DOI 10.1016/S1090-5138(01)00067-8; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; Figueredo Aurelio Jose, 2007, Journal of the Arizona-Nevada Academy of Science, V39, P59; Flere S, 2008, FIELD METHOD, V20, P399, DOI 10.1177/1525822X08322703; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Frias-Armenta M, 1998, J ABNORM CHILD PSYCH, V26, P129, DOI 10.1023/A:1022621922331; Frias-Armenta M., 2004, REV INTERAMERICANA P, V38, P61; Gaxiola Romero J., 2011, REV MEXICANA INVESTI, V1, P28; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Giosan C, 2006, EVOLUTIONARY PSYCHOL, V41, P394; Gorsuch R. L., 1991, ANN AM EV ASS C CHIC; Gorsuch R. L., 1983, FACTOR ANAL; Gosling SD, 2003, J RES PERS, V37, P504, DOI 10.1016/S0092-6566(03)00046-1; Green EGT, 2005, J CROSS CULT PSYCHOL, V36, P321, DOI 10.1177/0022022104273654; Greenfield PM, 2009, DEV PSYCHOL, V45, P401, DOI 10.1037/a0014726; Griffith JD, 1998, HISPANIC J BEHAV SCI, V20, P468, DOI 10.1177/07399863980204004; HALBERSTADT AG, 1986, J PERS SOC PSYCHOL, V51, P827, DOI 10.1037/0022-3514.51.4.827; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARRISON AO, 1990, CHILD DEV, V61, P347, DOI 10.2307/1131097; Hausmann R., 2010, GLOBAL GENDER GAP RE; Henrich J, 2010, BEHAV BRAIN SCI, V33, P61, DOI 10.1017/S0140525X0999152X; Hofstede G, 2003, ACCOUNT ORG SOC, V28, P811, DOI 10.1016/S0361-3682(03)00018-7; Hofstede G., 2001, CULTURES CONSEQUENCE; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Johnson W, 2009, CURR DIR PSYCHOL SCI, V18, P217, DOI 10.1111/j.1467-8721.2009.01639.x; JONES DJ, 2007, J CHILD FAM STUD, V16, P671, DOI DOI 10.1007/S10826-006-9115-0; Jouriles EN, 1997, J CONSULT CLIN PSYCH, V65, P309, DOI 10.1037/0022-006X.65.2.309; Kartner J, 2011, J COGN EDUC PSYCHOL, V10, P96, DOI 10.1891/1945-8959.10.1.96; Kagitcibasi C, 2005, J CROSS CULT PSYCHOL, V36, P403, DOI 10.1177/0022022105275959; Keller H, 2003, HUM DEV, V46, P288, DOI 10.1159/000071937; Keller H, 2006, J CROSS CULT PSYCHOL, V37, P155, DOI 10.1177/0022022105284494; Keller H, 2004, CHILD DEV, V75, P1745, DOI 10.1111/j.1467-8624.2004.00814.x; Keller H., 2011, KINDERALLTAG KULTURE; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Lumsden C. J., 1981, GENES MIND CULTURE C; Mayo Y., 1997, CHALLENGE PERMANENCY, P49; McFarland C, 1998, J PERS SOC PSYCHOL, V75, P1424, DOI 10.1037//0022-3514.75.6.1424; Michalski RL, 2005, HUM NATURE-INT BIOS, V16, P293, DOI 10.1007/s12110-005-1012-5; Miranda D, 1997, PATRONES SOCIALIZACI; Mirande A., 2004, MENS LIVES, P28; Nesse Randolph, 2009, EVOLUTION CULTURE HU, P137; Olderbak S, 2009, PERS INDIV DIFFER, V46, P604, DOI 10.1016/j.paid.2008.12.019; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Organization for Economic Co-Operation and Development, 2012, 2012 SOC I GEND IND; Oyserman D, 2002, PSYCHOL BULL, V128, P3, DOI 10.1037/0033-2909.128.1.3; Pashos A, 2008, HUM NATURE-INT BIOS, V19, P311, DOI 10.1007/s12110-008-9046-0; Pollet T. V., 2007, EVOLUTIONARY PSYCHOL, V5, P832; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rosabal-Coto M., 2009, REV DIGITAL MAESTRIA, V1, P389; Rosabal-Coto M., 2013, REV ACTUALIDADES PSI, V27, P87; Rosabal-Coto M, 2012, REV COSTARRIC PSICOL, V31, P65; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Sarkisian N, 2007, J MARRIAGE FAM, V69, P40, DOI 10.1111/j.1741-3737.2006.00342.x; Schwartz SJ, 2007, J SOC PSYCHOL, V147, P101, DOI 10.3200/SOCP.147.2.101-118; Shackelford TK, 2000, PERS INDIV DIFFER, V28, P917, DOI 10.1016/S0191-8869(99)00150-6; Sotomayor-Peterson M, 2013, J CROSS CULT PSYCHOL, V44, P620, DOI 10.1177/0022022112455456; Sotomayor-Peterson M, 2012, FAM PROCESS, V51, P218, DOI 10.1111/j.1545-5300.2012.01396.x; Steinmetz S. K., 1993, SOURCEBOOK FAMILY TH; STRAUS MA, 1979, J MARRIAGE FAM, V41, P75, DOI 10.2307/351733; Stright AD, 2003, FAM RELAT, V52, P232, DOI 10.1111/j.1741-3729.2003.00232.x; Teubert D, 2010, PARENT-SCI PRACT, V10, P286, DOI 10.1080/15295192.2010.492040; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Torres JB, 2002, AM J ORTHOPSYCHIAT, V72, P163, DOI 10.1037/0002-9432.72.2.163; Ulbricht JA, 2010, HANDBOOK OF BEHAVIOR GENETICS, P209, DOI 10.1007/978-0-387-76727-7_15; United Nations Development Program, 2008, GEN IN IND GII; Ware J, 1994, SF 36 PHYS MENTAL HL; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTEBERHARD MJ, 1979, P AM PHILOS SOC, V123, P222; White J. M., 2002, FAMILY THEORIES, P117; Wilson Margo, 1992, P289; Wolf PSA, 2011, BIODEMOGR SOC BIOL, V57, P171, DOI 10.1080/19485565.2011.614569; World Bank, 2012, LITTL DAT BOOK 2012; Wozniak R., 1996, RELATIONAL FAM UNPUB 105 2 2 0 10 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 0022-0221 1552-5422 J CROSS CULT PSYCHOL J. Cross-Cult. Psychol. MAY 2014 45 4 534 554 10.1177/0022022113513068 21 Psychology, Social Psychology AE3OS WOS:000333886400002 2019-02-21 J Hughes, PW; Simons, AM Hughes, P. William; Simons, Andrew M. The continuum between semelparity and iteroparity: plastic expression of parity in response to season length manipulation in Lobelia inflata BMC EVOLUTIONARY BIOLOGY English Article Semelparity; Iteroparity; Life-history theory; Reproductive effort; Phenotypic plasticity REPRODUCTIVE LIFE-SPAN; PHENOTYPIC PLASTICITY; NATURAL-SELECTION; ANNUAL PLANTS; CRAB SPIDER; SEED MASS; EVOLUTION; TIME; ALLOCATION; HISTORY Background: Semelparity and iteroparity are considered to be distinct and alternative life-history strategies, where semelparity is characterized by a single, fatal reproductive episode, and iteroparity by repeated reproduction throughout life. However, semelparous organisms do not reproduce instantaneously; typically reproduction occurs over an extended time period. If variation in reproductive allocation exists within such a prolonged reproductive episode, semelparity may be considered iteroparity over a shorter time scale. This continuity hypothesis predicts that "semelparous" organisms with relatively low probability of survival after age at first reproduction will exhibit more extreme semelparity than those with high probability of adult survival. This contrasts with the conception of semelparity as a distinct reproductive strategy expressing a discrete, single, bout of reproduction, where reproductive phenotype is expected to be relatively invariant. Here, we manipulate expected season length-and thus expected adult survival-to ask whether Lobelia inflata, a classic "semelparous" plant, exhibits plasticity along a semelparous-iteroparous continuum. Results: Groups of replicated genotypes were manipulated to initiate reproduction at different points in the growing season in each of three years. In lab and field populations alike, the norm of reaction in parity across a season was as predicted by the continuity hypothesis: as individuals bolted later, they showed shorter time to, and smaller size at first reproduction, and multiplied their reproductive organs through branching, thus producing offspring more simultaneously. Conclusions: This work demonstrates that reproductive effort occurs along a semelparous-iteroparous continuum within a "semelparous" organism, and that variation in parity occurs within populations as a result of phenotypic plasticity. [Hughes, P. William; Simons, Andrew M.] Carleton Univ, Dept Biol, Ottawa, ON K1S 5B6, Canada Hughes, PW (reprint author), Carleton Univ, Dept Biol, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. william.hughes@carleton.ca Hughes, P. William/G-9119-2018; Simons, Andrew/A-7751-2012 Hughes, P. William/0000-0003-4142-2579; Simons, Andrew/0000-0002-0198-465X NSERC CGS; NSERC Discovery Grant We thank M. Compton, J. Graham, H. Rundle, T. Sherratt and R. Gorelick for their contributions to experimental design, and Peter Arbour for access to long-term field sites. Lobelia inflata is a common weed of disturbed habitats and is not cited under Canada's List of Wildlife Species at Risk, nor is it protected under CITES. All fieldwork and specimen collection in the Petawawa Research Forest was undertaken with the permission of the Operations Managers of the Canadian Wood Fibre Centre. This work was supported through an NSERC CGS to PWH and an NSERC Discovery Grant to AMS. AMIR S, 1990, J THEOR BIOL, V147, P17, DOI 10.1016/S0022-5193(05)80250-4; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Bolmgren K, 2008, OIKOS, V117, P424, DOI 10.1111/j.2007.0030-1299.16142.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christiansen JS, 2008, J EXP MAR BIOL ECOL, V360, P47, DOI 10.1016/j.jembe.2008.04.003; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Crespi BJ, 2002, EVOLUTION, V56, P1008; DIGGLE PK, 1995, ANNU REV ECOL SYST, V26, P531, DOI 10.1146/annurev.es.26.110195.002531; FRITZ RS, 1982, AM NAT, V120, P264, DOI 10.1086/283987; Futami K, 2005, ETHOLOGY, V111, P1126, DOI 10.1111/j.1439-0310.2005.01126.x; GOLDING DW, 1994, P NATL ACAD SCI USA, V91, P11777, DOI 10.1073/pnas.91.25.11777; Harper J. L., 1977, POPULATION BIOL PLAN; Hendry AP, 2004, P ROY SOC B-BIOL SCI, V271, P259, DOI 10.1098/rspb.2003.2600; Hughes PW, 2014, APPL PLANT SCI, V2, DOI 10.3732/apps.1300096; Hughes PW, 2014, REPROD TRAITS LOBELI; KING D, 1983, ECOLOGY, V64, P16, DOI 10.2307/1937324; KING D, 1982, THEOR POPUL BIOL, V22, P1, DOI 10.1016/0040-5809(82)90032-6; KIRKENDALL LR, 1985, AM NAT, V125, P189, DOI 10.1086/284337; Larsen SU, 2004, CROP SCI, V44, P1710, DOI 10.2135/cropsci2004.1710; Meunier J, 2012, EVOL ECOL, V26, P669, DOI 10.1007/s10682-011-9510-x; Montti L, 2011, ACTA OECOL, V37, P361, DOI 10.1016/j.actao.2011.04.004; Morbey YE, 2004, J EVOLUTION BIOL, V17, P768, DOI 10.1111/j.1420-9101.2004.00731.x; MORSE DH, 1994, J ARACHNOL, V22, P195; Ollerton J, 1998, PLANT ECOL, V139, P35, DOI 10.1023/A:1009798320049; Pinheiro J, 2000, MIXED EFFECTS MODELS, P548; Rocha F, 2001, BIOL REV, V76, P291, DOI 10.1017/S1464793101005681; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; Roff DA, 2001, LIFE HIST EVOLUTION, P527; Roff Derek A., 1992; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Simons AM, 2007, J EVOLUTION BIOL, V20, P813, DOI 10.1111/j.1420-9101.2006.01270.x; Simons AM, 2000, AM J BOT, V87, P124, DOI 10.2307/2656690; Simons AM, 2003, J EVOLUTION BIOL, V16, P233, DOI 10.1046/j.1420-9101.2003.00530.x; Simons AM, 2000, HEREDITY, V85, P356, DOI 10.1046/j.1365-2540.2000.00760.x; Simons AM, 2006, EVOLUTION, V60, P2280, DOI 10.1554/05-396.1; Simons AM, 2009, P ROY SOC B-BIOL SCI, V276, P1987, DOI 10.1098/rspb.2008.1920; STANTON ML, 1985, OECOLOGIA, V67, P524, DOI 10.1007/BF00790024; Stearns S.C., 1992, EVOLUTION LIFE HIST, P262; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Thomson FJ, 2011, J ECOL, V99, P1299, DOI 10.1111/j.1365-2745.2011.01867.x; Unwin MJ, 1999, CAN J FISH AQUAT SCI, V56, P1172, DOI 10.1139/cjfas-56-7-1172; Venables WN, 2004, FISH RES, V70, P319, DOI 10.1016/j.fishres.2004.08.011; Young T. P., 2010, NATURE ED KNOWLEDGE, V3, P2; YOUNG TP, 1991, TRENDS ECOL EVOL, V6, P285, DOI 10.1016/0169-5347(91)90006-J; YOUNG TP, 1981, AM NAT, V118, P27, DOI 10.1086/283798; Zeineddine M, 2009, EVOLUTION, V63, P1498, DOI 10.1111/j.1558-5646.2009.00630.x 49 8 8 3 55 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. APR 26 2014 14 90 10.1186/1471-2148-14-90 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity AG1KB WOS:000335172800001 24766909 DOAJ Gold, Green Published 2019-02-21 J Moreau, DTR; Gamperl, AK; Fletcher, GL; Fleming, IA Moreau, Darek T. R.; Gamperl, A. Kurt; Fletcher, Garth L.; Fleming, Ian A. Delayed Phenotypic Expression of Growth Hormone Transgenesis during Early Ontogeny in Atlantic Salmon (Salmo salar)? PLOS ONE English Article LIFE-HISTORY STRATEGIES; JUVENILE RAINBOW-TROUT; METABOLIC-RATE; COHO SALMON; PRIOR RESIDENCE; EGG-SIZE; RESPIRATORY METABOLISM; TERRITORIAL CONTESTS; SWIMMING PERFORMANCE; COMPETITIVE ABILITY Should growth hormone (GH) transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are discussed in light of the ecological risk assessment of genetically modified animals. [Moreau, Darek T. R.; Gamperl, A. Kurt; Fletcher, Garth L.; Fleming, Ian A.] Mem Univ Newfoundland, Dept Ocean Sci, St John, NF, Canada; [Moreau, Darek T. R.; Fleming, Ian A.] Mem Univ Newfoundland, Cognit & Behav Ecol Programme, St John, NF, Canada Moreau, DTR (reprint author), Govt Newfoundland & Labrador, Dept Fisheries & Aquaculture, St John, NF, Canada. dmoreau@mun.ca Fleming, Ian/I-7217-2012 USDA Biotechnology Risk Assessment Research Grants Program; NSERC Discovery grants Principal funding for this project was held by IAF and was part of a collaborative grant led by Dr. Eric M. Hallerman and funded by the USDA Biotechnology Risk Assessment Research Grants Program. Supplementary funding came from NSERC Discovery grants awarded to IAF, AKG and GLF. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abrahams MV, 1999, ANIM BEHAV, V58, P933, DOI 10.1006/anbe.1999.1229; ALDERDICE DF, 1958, J FISH RES BOARD CAN, V15, P229, DOI 10.1139/f58-013; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; BRANNAS E, 1995, EVOL ECOL, V9, P411, DOI 10.1007/BF01237763; Brannon E.L., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P120; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; CHANDLER GL, 1988, T AM FISH SOC, V117, P432, DOI 10.1577/1548-8659(1988)117<0432:AGAIOJ>2.3.CO;2; CHAPMAN DW, 1988, T AM FISH SOC, V117, P1, DOI 10.1577/1548-8659(1988)117<0001:CROVUT>2.3.CO;2; Cook JT, 2000, AQUACULTURE, V188, P33, DOI 10.1016/S0044-8486(00)00332-X; Cutts CJ, 1998, J FISH BIOL, V52, P1026; Cutts CJ, 2002, FUNCT ECOL, V16, P73, DOI 10.1046/j.0269-8463.2001.00603.x; Cutts CJ, 2001, CAN J FISH AQUAT SCI, V58, P961, DOI 10.1139/cjfas-58-5-961; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; De Leaniz CG, 2000, FISHERIES MANAG ECOL, V7, P489; Deitch EJ, 2006, J EXP BIOL, V209, P1310, DOI 10.1242/jeb.02105; Devlin RH, 2006, TRENDS BIOTECHNOL, V24, P89, DOI 10.1016/j.tibtech.2005.12.008; Devlin RH, 2004, P NATL ACAD SCI USA, V101, P9303, DOI 10.1073/pnas.0400023101; Devlin RH, 2004, AQUACULTURE, V236, P607, DOI 10.1016/j.aquaculture.2004.02.026; DEVLIN RH, 1994, NATURE, V371, P209, DOI 10.1038/371209a0; DU SJ, 1992, BIO-TECHNOL, V10, P176, DOI 10.1038/nbt0292-176; Einum S, 2002, P ROY SOC B-BIOL SCI, V269, P2325, DOI 10.1098/rspb.2002.2150; Einum S, 2005, OECOLOGIA, V143, P203, DOI 10.1007/s00442-004-1793-y; Einum S, 2000, EVOLUTION, V54, P628, DOI 10.1111/j.0014-3820.2000.tb00064.x; Einum S, 2008, J ANIM ECOL, V77, P167, DOI 10.1111/j.1365-2656.2007.01326.x; Elliott J. M., 1994, QUANTITATIVE ECOLOGY; Ferguson A., 2007, ATLANTIC SALMON GENE, P367; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; HEGGBERGET TG, 1988, CAN J FISH AQUAT SCI, V45, P845, DOI 10.1139/f88-102; Jensen AJ, 1999, FUNCT ECOL, V13, P778, DOI 10.1046/j.1365-2435.1999.00358.x; Jobling M, 1994, FISH BIOENERGETICS, P61; Johnsson JI, 1999, FUNCT ECOL, V13, P514, DOI 10.1046/j.1365-2435.1999.00341.x; JOHNSSON JI, 1993, ANIM BEHAV, V45, P1219, DOI 10.1006/anbe.1993.1143; Johnsson JI, 2002, BEHAV ECOL SOCIOBIOL, V51, P282, DOI 10.1007/S00265-001-0430-6; KAPUSCINSKI AR, 1991, CAN J FISH AQUAT SCI, V48, P99, DOI 10.1139/f91-308; Killen SS, 2007, MAR BIOL, V152, P1249, DOI 10.1007/s00227-007-0772-3; LACROIX GL, 1985, CAN J FISH AQUAT SCI, V42, P292, DOI 10.1139/f85-037; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; Leggatt RA, 2003, J FISH BIOL, V62, P1053, DOI 10.1046/j.1095-8649.2003.00096.x; Lehner B, 2011, TRENDS GENET, V27, P323, DOI 10.1016/j.tig.2011.05.007; Lohmus M, 2010, PLOS ONE, V5, P1; McCarthy ID, 2001, J FISH BIOL, V59, P1002, DOI 10.1111/j.1095-8649.2001.tb00167.x; Metcalfe NB, 2003, J APPL ECOL, V40, P535, DOI 10.1046/j.1365-2664.2003.00815.x; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Moreau DTR, 2011, J FISH BIOL, V78, P726, DOI 10.1111/j.1095-8649.2010.02888.x; Moreau DTR, 2014, ANNU REV ANIM BIOSCI, V2, P515, DOI 10.1146/annurev-animal-022513-114231; Morris MRJ, 2008, CAN J FISH AQUAT SCI, V65, P2807, DOI 10.1139/F08-181; Muir WM, 2002, TRANSGENIC RES, V11, P101, DOI 10.1023/A:1015203812200; Nam YK, 2007, ENV RISK ASSESS GENE, V3, P61; Nislow KH, 2000, T AM FISH SOC, V129, P1067, DOI 10.1577/1548-8659(2000)129<1067:SEBAOH>2.0.CO;2; Nislow KH, 2004, J FISH BIOL, V65, P188, DOI 10.1111/j.1095-8649.2004.00561.x; O'Connell MF, 2003, CHI TRIB 1218, P1; O'Connor KI, 2000, BEHAV ECOL, V11, P13, DOI 10.1093/beheco/11.1.13; Pakkasmaa S, 2006, J COMP PHYSIOL B, V176, P387, DOI 10.1007/s00360-005-0057-4; Peterson NP, 1996, J FISH BIOL, V48, P131, DOI 10.1006/jfbi.1996.0011; Rhodes JS, 1998, J FISH BIOL, V53, P1220; Rollinson N, 2011, CAN J FISH AQUAT SCI, V68, P1307, DOI [10.1139/F2011-069, 10.1139/f2011-069]; Rollinson N, 2010, EVOL ECOL RES, V12, P949; Rubin JF, 1996, J FISH BIOL, V48, P585, DOI 10.1006/jfbi.1996.0059; Shears MA, 1992, TRANSGENIC FISH, P44; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Skoglund H, 2006, J FISH BIOL, V68, P507, DOI [10.1111/j.0022-1112.2006.00938.x, 10.1111/j.1095-8649.2006.00938.x]; Skoglund H, 2011, J ANIM ECOL, V80, P365, DOI 10.1111/j.1365-2656.2010.01783.x; Stevens ED, 1998, CAN J FISH AQUAT SCI, V55, P2028, DOI 10.1139/cjfas-55-9-2028; Sundstrom FL, 2003, ETHOLOGY, V109, P701; Sundstrom LF, 2004, P ROY SOC B-BIOL SCI, V271, pS350, DOI 10.1098/rsbl.2004.0189; Sundstrom LF, 2005, EVOLUTION, V59, P1560; Sundt-Hansen L, 2007, BIOL LETTERS, V3, P165, DOI 10.1098/rsbl.2006.0598; Symonds MRE, 1999, J ZOOL, V249, P315; Thorstad E, 2008, 36 NINA; Tymchuk WEV, 2005, T AM FISH SOC, V134, P381, DOI 10.1577/T04-084.1; Yamamoto T, 1998, J FISH BIOL, V52, P281, DOI 10.1111/j.1095-8649.1998.tb00799.x; Yaskowiak ES, 2006, TRANSGENIC RES, V15, P465, DOI 10.1007/s11248-006-0020-5 75 4 4 2 18 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One APR 24 2014 9 4 e95853 10.1371/journal.pone.0095853 10 Multidisciplinary Sciences Science & Technology - Other Topics AG6CB WOS:000335505000039 24763675 DOAJ Gold, Green Published 2019-02-21 J Han, ZQ; Liu, T; Sun, QM; Li, R; Xie, JB; Li, BL Han, Zhi-Quan; Liu, Tong; Sun, QinMing; Li, Ru; Xie, Jiang-Bo; Li, Bai-Lian Application of compound interest laws in biology: Reunification of existing models to develop seed bank dynamics model of annual plants ECOLOGICAL MODELLING English Article Compound interest; Seed bank dynamics; Density dependence; Unified model; Power law GERMINATION STRATEGIES; DELAYED GERMINATION; CROP YIELD; GROWTH; REPRODUCTION; DENSITY; COMPETITION; POPULATION; ENVIRONMENTS; COEXISTENCE Reunification of widely-usedclassic models in ecology is a very important step for the field to grow. In this study, classic models based on compound interest law, which exists in many natural phenomena, were reunified, and a seed bank dynamics model of annual plants was developed. We found an intrinsic relationship between the compound interest of unit period and density dependence, and the relationship was interpreted using evolutionary stability strategies of a single seed. Based on the relationship, a seed bank dynamic model of annual plants was constructed, and compound interest of the unit period and discrete-time dynamic processes, by which a new density-dependence based on the benefit balance of storage and investment (defined as the compound interest law) was derived. Our model not only can be used to reunify the three classic models (Cohen's, Goldberg's, and Fulmer's) but can also support different levels of density dependence in the seed bank dynamics of annual plants. Our study has shown that the compound interest law interprets seed bank dynamics more clearly than the traditional power law, not only because there are close relationships between the compound interest law and the power laws in numerical simulations but also because the compound interest law can be directly interpreted by the evolutionary stability theory. Our study provides new insight into the bet hedging theory and the life-history evolution of plants with seed banks by adding a compound interest term to the fitness function of annual plants. We suggest that if the interest rate of delaying growth can be defined by compensating for delayed growth, compound interest of the unit period will play an important role in biology and ecology. (C) 2014 The Authors. Published by Elsevier B.V. All rights reserved. [Han, Zhi-Quan] Shihezi Univ, Coll Sci, Shihezi 832000, Xinjiang, Peoples R China; [Liu, Tong; Sun, QinMing] Shihezi Univ, Coll Life Sci, Shihezi 832000, Xinjiang, Peoples R China; [Li, Bai-Lian] Univ Calif Riverside, Dept Bot & Plant Sci, Ecol Complex & Modeling Lab, Riverside, CA 92521 USA; [Li, Ru] Shihezi Univ, Coll Foreign Languages, Shihezi 832000, Xinjiang, Peoples R China; [Xie, Jiang-Bo] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, State Key Lab Desert & Oasis Ecol, Urumqi 830011, Xinjiang, Peoples R China; [Xie, Jiang-Bo] Univ Chinese Acad Sci, Beijing 100039, Peoples R China Liu, T (reprint author), Shihezi Univ, Coll Life Sci, Shihezi 832000, Xinjiang, Peoples R China. betula@126.com ye, zhaoxia/E-3594-2015 NSFC-Xinjiang [U1130304]; National Science Foundation of China [41061004]; Key Technology R D Program [2014BAC14B02]; University of California Agricultural Experiment Station The research presented in this paper is supported by Joint Fund of NSFC-Xinjiang (Grant No. U1130304), the National Science Foundation of China (Grant No. 41061004), the Key Technology R & D Program (Grant No. 2014BAC14B02), and the University of California Agricultural Experiment Station. The authors would like to thank "Advanced Ecology Lectures: Biodiversity and Global Change (Fudan University)" for ideological inspiration and two anonymous referees for helpful comments on the manuscript. Almenberg J, 2012, APPL ECON LETT, V19, P1693, DOI 10.1080/13504851.2011.652772; Andrea M., 2002, P ROYAL SOC B, V269, P151; ANTONOVICS J, 1980, ANNU REV ECOL SYST, V11, P411, DOI 10.1146/annurev.es.11.110180.002211; Blackman VH, 1919, ANN BOT-LONDON, V33, P353, DOI 10.1093/oxfordjournals.aob.a089727; Broom M, 1997, B MATH BIOL, V59, P931; BULMER MG, 1984, THEOR POPUL BIOL, V26, P367, DOI 10.1016/0040-5809(84)90040-6; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Connolly J, 2001, AM NAT, V157, P107, DOI 10.1086/318631; Deng JM, 2012, P NATL ACAD SCI USA, V109, P15823, DOI 10.1073/pnas.1210955109; ELLNER S, 1985, THEOR POPUL BIOL, V28, P50, DOI 10.1016/0040-5809(85)90022-X; ERICKSON RO, 1976, ANNU REV PLANT PHYS, V27, P407, DOI 10.1146/annurev.pp.27.060176.002203; FARAZDAGHI H, 1968, NATURE, V217, P289, DOI 10.1038/217289a0; FIRBANK LG, 1985, J APPL ECOL, V22, P503, DOI 10.2307/2403181; Fischer K, 2002, EVOL ECOL, V16, P333, DOI 10.1023/A:1020271600025; Goldberg D. E., 1990, Perspectives on plant competition., P27; Gutterman Y., 2002, SURVIVAL STRATEGIES; Hassell MP, 2000, J ANIM ECOL, V69, P543, DOI 10.1046/j.1365-2656.2000.00445.x; Hember RA, 2012, GLOBAL CHANGE BIOL, V18, P2026, DOI 10.1111/j.1365-2486.2012.02669.x; HOLLIDAY R, 1960, NATURE, V186, P22, DOI 10.1038/186022b0; Koons DN, 2008, AM NAT, V172, P797, DOI 10.1086/592867; Kuang JJ, 2009, ECOLOGY, V90, P170, DOI 10.1890/08-0207.1; Li BL, 2000, ECOL MODEL, V132, P167, DOI 10.1016/S0304-3800(00)00313-6; Mathias A, 2013, THEOR POPUL BIOL, V84, P56, DOI 10.1016/j.tpb.2012.11.009; McGill BJ, 2007, ECOL LETT, V10, P995, DOI 10.1111/j.1461-0248.2007.01094.x; Peterson RKD, 2000, BIOTIC STRESS YIELD; REEKIE EG, 1992, OECOLOGIA, V90, P21, DOI 10.1007/BF00317804; Reekie EG, 2002, CAN J BOT, V80, P140, DOI [10.1139/B01-146, 10.1139/b01-146]; REES M, 1994, AM NAT, V144, P43, DOI 10.1086/285660; REES M, 1993, NATURE, V366, P150, DOI 10.1038/366150a0; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; Shimojo M, 2010, J FAC AGR KYUSHU U, V55, P259; SHINOZAKI KICHIRO, 1956, JOUR INST POLYTECH OSAKA CITY UNIV SER D BIOL, V7, P35; Stumpf MPH, 2012, SCIENCE, V335, P665, DOI 10.1126/science.1216142; Thomas P., 1993, AM NAT, V142, P474; Tielborger K, 2005, OIKOS, V111, P235, DOI 10.1111/j.0030-1299.2005.14041.x; Valleriani A, 2005, THEOR POPUL BIOL, V68, P197, DOI 10.1016/j.tpb.2005.01.006; WATKINSON AR, 1980, J THEOR BIOL, V83, P345, DOI 10.1016/0022-5193(80)90297-0; Weis AE, 2000, EVOL ECOL, V14, P331, DOI 10.1023/A:1010950932468; Willey R. W., 1969, ADV AGRON, V21, P281; Yoda K., 1963, J BIOL OSAKA CY U, V14, P197 40 1 1 0 22 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0304-3800 1872-7026 ECOL MODEL Ecol. Model. APR 24 2014 278 67 73 10.1016/j.ecolmodel.2014.01.024 7 Ecology Environmental Sciences & Ecology AE6YF WOS:000334143200006 Other Gold 2019-02-21 J Wensink, MJ; Wrycza, TF; Baudisch, A Wensink, Maarten J.; Wrycza, Tomasz F.; Baudisch, Annette No senescence despite declining selection pressure: Hamilton's result in broader perspective JOURNAL OF THEORETICAL BIOLOGY English Article Evolution of aging; Life history theory; Trade-offs; Force of natural selection; Fitness differential OXIDATIVE DAMAGE THEORY; POPULATION-GROWTH RATE; NATURAL-SELECTION; EVOLUTION; LIFE; AGE; MUTATION; REPRODUCTION; ELEGANS; MODELS Theory predicts that senescence should inevitably evolve because selection pressure declines with age. Yet, data show that senescence is not a universal phenomenon. How can these observations peacefully coexist? Evolution of any trait hinges on its impact on fitness. A complete mathematical description of change in fitness, the total fitness differential, involves selection pressure along with a perturbation function that describes how the vital rates, mortality and fecundity, are affected across ages. We propose that the perturbation function can be used to model trade-offs when vital rates are perturbed in different directions and magnitude at different ages. We find that for every trade-off we can identify parameter values for which senescence does evolve and others for which it does not. We argue that this reconciles the apparent contradiction between data and theory. The total fitness differential is also instrumental in deriving mathematical relationships between alternative indicators of selection pressure. We show examples and highlight that any indicator combined with the right perturbation function can be used to parameterize a specific biological change. Biological considerations should motivate what perturbation functions are used. We interpret the relevance of Hamilton's finding that selection pressure declines for the evolution of senescence: declining selection pressure is a necessary but not a sufficient condition. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. [Wensink, Maarten J.; Wrycza, Tomasz F.; Baudisch, Annette] Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, D-18057 Rostock, Germany; [Wensink, Maarten J.] Leyden Acad Vital & Ageing, NL-2333 AA Leiden, Netherlands Wensink, MJ (reprint author), Max Planck Inst Demog Res, Max Planck Res Grp Modeling Evolut Aging, Konrad Zuse Str 1, D-18057 Rostock, Germany. wensink@demogr.mpg.de Andersen, Mette Adalheidur/D-5608-2017 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; ABRAMS PA, 1991, EVOL ECOL, V5, P343, DOI 10.1007/BF02214152; ARTHUR WB, 1984, DEMOGRAPHY, V21, P109, DOI 10.2307/2061031; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Baudisch A., 2008, CONTRIBUTIONS EVOLUT; Baudisch A, 2012, GERONTOLOGY, V58, P481, DOI 10.1159/000341861; Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; Baudisch A, 2010, DEMOGR RES, V23, P655, DOI 10.4054/DemRes.2010.23.23; Caswell H, 1996, ECOLOGY, V77, P870, DOI 10.2307/2265507; CASWELL H, 1982, J THEOR BIOL, V98, P519, DOI 10.1016/0022-5193(82)90134-5; Caswell H., 2001, MATRIX POPULATION MO; Caswell H, 2010, DEMOGR RES, V23, P531, DOI 10.4054/DemRes.2010.23.19; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charlesworth B, 2001, J THEOR BIOL, V210, P47, DOI 10.1006/jtbi.2001.2296; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Danko MJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034146; Doonan R, 2008, GENE DEV, V22, P3236, DOI 10.1101/gad.504808; Falconer D. S., 1996, INTRO QUANTITATIVE G; Gems D, 2009, CELL CYCLE, V8, P1681, DOI 10.4161/cc.8.11.8595; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Kirkwood TBL, 2011, CURR BIOL, V21, pR701, DOI 10.1016/j.cub.2011.07.020; Kirkwood TBL, 2010, ANN NY ACAD SCI, V1204, P21, DOI 10.1111/j.1749-6632.2010.05520.x; Kriete A, 2013, BIOSYSTEMS, V112, P37, DOI 10.1016/j.biosystems.2013.03.014; Lotka AJ, 1924, ELEMENTS MATH BIOL; Martin GM, 2007, ANN NY ACAD SCI, V1100, P14, DOI 10.1196/annals.1395.002; Medawar P. B., 1952, UNSOLVED PROBLEM BIO, P3; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Shahrestani P, 2012, REJUV RES, V15, P49, DOI 10.1089/rej.2011.1201; Sozou PD, 2004, P ROY SOC B-BIOL SCI, V271, P457, DOI 10.1098/rspb.2003.2614; Stearns S, 1992, EVOLUTION LIFE HIST; Steinsaltz D, 2005, ADV APPL MATH, V35, P16, DOI 10.1016/j.aam.2004.09.003; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Wachter KW, 2013, P NATL ACAD SCI USA, V110, P10141, DOI 10.1073/pnas.1306656110; Wensink M, 2013, BIOGERONTOLOGY, V14, P99, DOI 10.1007/s10522-012-9410-7; Wensink MJ, 2012, BIOGERONTOLOGY, V13, P197, DOI 10.1007/s10522-011-9362-3; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 42 8 8 1 27 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. APR 21 2014 347 176 181 10.1016/j.jtbi.2013.11.016 6 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology AF8PE WOS:000334977300017 24316386 Other Gold 2019-02-21 J Steffen, MA; Irwin, KJ; Blair, AL; Bonett, RM Steffen, Michael A.; Irwin, Kelly J.; Blair, Andrea L.; Bonett, Ronald M. Larval masquerade: a new species of paedomorphic salamander (Caudata: Plethodontidae: Eurycea) from the Ouachita Mountains of North America ZOOTAXA English Article endemic species; Eurycea; life history LIFE-HISTORY EVOLUTION; PHYLOGENETIC-RELATIONSHIPS; INDUCED METAMORPHOSIS; SYSTEMATIC REVISION; MAXIMUM-LIKELIHOOD; DIVERSIFICATION; COMPLEX; PHYLOGEOGRAPHY; DIVERGENCE; DIVERSITY Species with truncated developmental patterns may go undetected if they resemble the juveniles of their close relatives. Herein we present an example of this phenomenon with the description of a highly divergent, relict species of stream-dwelling plethodontid salamander from the Ouachita Mountains of North America. Both mitochondrial and nuclear sequence data show that this new species is most closely related to its syntopic relative, Eurycea multiplicata. Interestingly, E. multiplicata exhibits the ancestral biphasic (metamorphic) life cycle, whereas the new species maintains an aquatic larval form throughout life (paedomorphic) and superficially resembles larval E. multiplicata. The new species is the first known paedomorphic plethodontid from the Ouachita Mountains, and the most divergent paedomorphic salamander discovered in over seventy years. This species represents an independent instance of the evolution of paedomorphosis associated with a porous streambed, which may facilitate vertical seasonal movements. This new species currently has an extremely limited known distribution and is of immediate conservation concern. [Steffen, Michael A.; Blair, Andrea L.; Bonett, Ronald M.] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA; [Irwin, Kelly J.] Arkansas Game & Fish Commiss, Benton, AR 72015 USA Steffen, MA (reprint author), Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA. michael-steffen@utulsa.edu University of Tulsa; American Museum of Natural History Theodore Roosevelt Memorial Grant; ASIH Gaige Fund Award; National Science Foundation [DEB1050322, DEB1210859] We are grateful to G. Butts, Director, Arkansas State Parks for granting permission to collect specimens in the state park system. Special thanks to R. Boyes, Superintendent, Lake Catherine State Park and staff for their interest and support of this research, and assistance in streambed remediation work. We thank: A. Trujano-Alvarez, D. Filipek, and G. Grimes for field assistance; L. Irwin for hospitality and logistic support; D. Hanson, Arkansas Geological Survey, for field interpretation and information; S. Filipek, S. O'Neal, J. Miller, and D. Smith, Arkansas Game and Fish Commission, for streambed remediation work; T. Clay and M. Gifford for E. multiplicata samples; M. Zelditch for comments on geometric morphometrics; K. Keane, T. LaDuke, S. Martin, J. Phillips, M. Vences and D. Wake for helpful comments on the manuscript. We also thank D. Wake and C. Spencer at the Museum of Vertebrate Zoology (UC Berkeley), and D. Frost and D. Kizirian at the American Museum of Natural History for handling the deposition of the type series. This work was funded by the University of Tulsa, the American Museum of Natural History Theodore Roosevelt Memorial Grant and ASIH Gaige Fund Award, awarded to MAS, as well as the National Science Foundation DEB1050322 to RMB and DEB1210859 to RMB and MAS. Collections were made under Arkansas Game and Fish Commission scientific collecting permit 030620131 and Oklahoma Department of Wildlife Conservation collecting permit 5547. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Adams DC, 2009, P ROY SOC B-BIOL SCI, V276, P2729, DOI 10.1098/rspb.2009.0543; ALBERCH P, 1985, J EMBRYOL EXP MORPH, V88, P71; AmphibiaWeb, 2013, INF AMPH BIOL CONS; AREVALO E, 1994, SYST BIOL, V43, P387, DOI 10.2307/2413675; Barber P, 2006, P R SOC B, V273, P2053, DOI 10.1098/rspb.2006.3540; Bonett RM, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-6; Bonett RM, 2004, MOL ECOL, V13, P1189, DOI 10.1111/j.1365-294X.2004.02130.x; Bonett RM, 2014, EVOLUTION, V68, P466, DOI 10.1111/evo.12274; Bonett RM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0200; BRANDON R A, 1976, Herpetologica, V32, P429; Camp CD, 2009, J ZOOL, V279, P86, DOI 10.1111/j.1469-7998.2009.00593.x; Camp CD, 2002, HERPETOLOGICA, V58, P471, DOI 10.1655/0018-0831(2002)058[0471:ANSOBS]2.0.CO;2; CARR AF, 1939, OCCASIONAL PAPERS BO, V8, P333; Chippindale PT, 2004, EVOLUTION, V58, P2809; Chippindale PT, 2000, HERPETOL MONOGR, V14, P1, DOI 10.2307/1467045; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; De Queiroz K, 2007, SYST BIOL, V56, P879, DOI 10.1080/10635150701701083; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Duellman W. E., 1986, BIOL AMPHIBIANS; DUNDEE HA, 1962, SCIENCE, V135, P1060, DOI 10.1126/science.135.3508.1060; DUNDEE HAROLD A., 1957, COPEIA, V1957, P52, DOI 10.2307/1440522; DUNN ER, 1926, SALAMANDERS FAMILY P; Garcia-Paris M, 2000, P NATL ACAD SCI USA, V97, P1640, DOI 10.1073/pnas.97.4.1640; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Hanken J., 1981, Functional Photography, V16, P22; Heled J, 2010, MOL BIOL EVOL, V27, P570, DOI 10.1093/molbev/msp274; Highton R., 1989, ILLINOIS BIOL MONOGR, V57, P243; Hillis DM, 2001, HERPETOLOGICA, V57, P266; Hoegg S, 2004, MOL BIOL EVOL, V21, P1188, DOI 10.1093/molbev/msh081; Hubert N, 2010, MOL PHYLOGENET EVOL, V55, P1195, DOI 10.1016/j.ympev.2010.02.023; Jockusch EL, 2002, BIOL J LINN SOC, V76, P361, DOI 10.1046/j.1095-8312.2002.00071.x; Ko HL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053451; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; MOORE GEORGE A., 1939, AMER MIDLAND NAT, V22, P696, DOI 10.2307/2420347; MORITZ C, 1992, SYST BIOL, V41, P273, DOI 10.2307/2992567; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; NEILL WILFRED T., 1964, HERPETOLOGICA, V20, P62; Netting M. G., 1942, Annals of the Carnegie Museum, V29, P175; Niemiller ML, 2008, MOL ECOL, V17, P2258, DOI 10.1111/j.1365-294X.2008.03750.x; NORRIS DO, 1973, GEN COMP ENDOCR, V20, P467, DOI 10.1016/0016-6480(73)90078-6; Petranka J. W, 1998, SALAMANDERS US CANAD; Rambaut A., 2007, TRACER V1 5; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Ryan TJ, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P303; SEVER D M, 1974, Herpetologica, V30, P187; SHEETS HD, 2003, IMP INTEGRATED MORPH; Shubin Neil H., 2003, Amphibian Biology, V5, P1782; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Thomas M, 2005, COPEIA, P174; Timpe EK, 2009, MOL PHYLOGENET EVOL, V52, P368, DOI 10.1016/j.ympev.2009.03.023; Vences M, 2005, PHILOS T ROY SOC B, V360, P1859, DOI 10.1098/rstb.2005.1717; Vences Miguel, 2007, Amphibian Biology, V7, P2613; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Wilder IW, 1925, MORPHOLOGY AMPHIBIAN 56 7 7 1 18 MAGNOLIA PRESS AUCKLAND PO BOX 41383, AUCKLAND, ST LUKES 1030, NEW ZEALAND 1175-5326 1175-5334 ZOOTAXA Zootaxa APR 9 2014 3786 4 423 442 10.11646/zootaxa.3786.4.2 20 Zoology Zoology AE9UU WOS:000334357000002 24869544 Bronze 2019-02-21 J Spanhove, T; Callens, T; Hallmann, CA; Pellikka, P; Lens, L Spanhove, Toon; Callens, Tom; Hallmann, Caspar A.; Pellikka, Petri; Lens, Luc Nest predation in Afrotropical forest fragments shaped by inverse edge effects, timing of nest initiation and vegetation structure JOURNAL OF ORNITHOLOGY English Article Tropical birds; Habitat fragmentation; Nest success; Taita Hills; Phyllastrephus cabanisi placidus LIFE-HISTORY EVOLUTION; TROPICAL FOREST; HABITAT FRAGMENTATION; ARTIFICIAL NESTS; SITE SELECTION; SUCCESS; LANDSCAPE; BIRDS; SURVIVAL; CONCEALMENT High levels of nest predation influence the population dynamics of many tropical birds, especially when deforestation alters nest predator communities. The consequences of tropical forest fragmentation on nest predation, however, remain poorly understood, as natural predation patterns have only been well documented in a handful of tropical forests. Here, we show the results of an extensive study of predation on natural nests of Cabanis's Greenbul (Phyllastrephus cabanisi) during 3 years in a highly fragmented cloud forest in SE Kenya. Overall predation rates derived from 228 scrub nests averaged 69 %, matching the typical high predation level on tropical bird species. However, predation rates strongly varied in space and time, and a model that combined timing effects of fragment, edge, concealment, year and nest was best supported by our data. Nest predation rates consistently increased from forest edge to interior, opposing the classic edge effect on nest predation, and supporting the idea that classic edge effects are much rarer in Afrotropical forests than elsewhere. Nest concealment also affected predation rates, but the strength and direction of the relationship varied across breeding seasons and fragments. Apart from spatial variation, predation rates declined during the breeding season, although the strength of this pattern varied among breeding seasons. Complex and variable relationships with nest predation, such as those demonstrated here, suggest that several underlying mechanisms interact and imply that fixed nesting strategies may have variable-even opposing-fitness effects between years, sites and habitats. [Spanhove, Toon; Callens, Tom; Lens, Luc] Univ Ghent, Terr Ecol Unit, B-9000 Ghent, Belgium; [Spanhove, Toon; Callens, Tom] Natl Museums Kenya, Ornithol Sect, Nairobi, Kenya; [Hallmann, Caspar A.] Dutch Ctr Field Ornithol, SOVON, Nijmegen, Netherlands; [Pellikka, Petri] Univ Helsinki, Dept Geosci & Geog, Helsinki, Finland Spanhove, T (reprint author), Res Inst Nat & Forest, Kliniekstr 25, B-1070 Brussels, Belgium. toonspanhove@hotmail.com Spanhove, Toon/0000-0001-9194-0193 Flemish Agency for Innovation by Science and Technology; Research Foundation-Flanders [G.0055.08, G.0149.09, WO.037.10 N]; Leopold III Foundation; Foundation for Scientific Research in Africa We thank A. Callens, M. Chovu, L. Chovu, P. Kafusi, N. Mkombola, A. Mwakumba, I. Mwashighadi, S. Piirainen and L. Wagura for field assistance, H. Matheve for GIS mapping and C. Vangestel for statistical assistance, A. Cox and three anonymous reviewers commented on earlier versions of this manuscript. T.S. was a research assistant of the Research Foundation-Flanders and T.C. got a doctoral grant from the Flemish Agency for Innovation by Science and Technology. Fieldwork was funded by research grants G.0055.08 (to L.L.), G.0149.09 (to S. Van Dongen) and WO.037.10 N (to F. Volckaert) of the Research Foundation-Flanders and by small grants of the Leopold III Foundation and the Foundation for Scientific Research in Africa (to T.C.). The research was approved by the Kenyan government (MOEST Ref. No. 13/001/36) and comply with the current laws in Kenya. Aerts R, 2011, PLANT ECOL, V212, P639, DOI 10.1007/s11258-010-9853-3; Barton K, 2012, MUMIN R PACKAGE MODE; Batary P, 2004, CONSERV BIOL, V18, P389, DOI 10.1111/j.1523-1739.2004.00184.x; Beentje H.J., 1988, Utafiti, V1, P23; Bennun Leon, 1998, Journal of East African Natural History, V85, P23, DOI 10.2982/0012-8317(1996)85[23:TFBOKA]2.0.CO;2; Brawn JD, 2011, J AVIAN BIOL, V42, P61, DOI 10.1111/j.1600-048X.2010.04897.x; Burnham K. P, 2002, MODEL SELECTION MULT; Callens T, 2012, THESIS GHENT U ZELZA; Callens T, 2011, MOL ECOL, V20, P1829, DOI 10.1111/j.1365-294X.2011.05028.x; Carlson A, 2001, BIODIVERS CONSERV, V10, P1077, DOI 10.1023/A:1016649731062; Caro T., 2005, ANTIPREDATOR DEFENSE; Chalfoun AD, 2002, CONSERV BIOL, V16, P306, DOI 10.1046/j.1523-1739.2002.00308.x; CHEGE J, 2005, J E AFR NAT HIST, V94, P231; Clark BJF, 2009, ISPRS BOOK SERIES, V8, P323; Colombelli-Negrel D, 2009, ECOL RES, V24, P921, DOI 10.1007/s11284-008-0569-y; Cox WA, 2012, LANDSCAPE ECOL, V27, P659, DOI 10.1007/s10980-012-9711-x; Cox WA, 2012, AUK, V129, P147, DOI 10.1525/auk.2012.11169; Crooks KR, 1999, NATURE, V400, P563, DOI 10.1038/23028; Ibanez-Alamo JD, 2012, J ORNITHOL, V153, P801, DOI 10.1007/s10336-011-0797-8; GATES JE, 1978, ECOLOGY, V59, P871, DOI 10.2307/1938540; Githiru M, 2005, BIOL CONSERV, V123, P189, DOI 10.1016/j.biocon.2004.11.006; Grant TA, 2005, AUK, V122, P661, DOI 10.1642/0004-8038(2005)122[0661:TVIPNS]2.0.CO;2; Hanson TR, 2007, AFR J ECOL, V45, P499, DOI 10.1111/j.1365-2028.2007.00760.x; Keith S, 1992, BIRDS AFRICA, V4; Kvarnback J, 2008, ORNITOL NEOTROP, V19, P347; Lahti DC, 2001, BIOL CONSERV, V99, P365, DOI 10.1016/S0006-3207(00)00222-6; Lambert S, 2006, EMU, V106, P63, DOI 10.1071/MU05006; Lee M, 2002, OIKOS, V96, P110, DOI 10.1034/j.1600-0706.2002.960112.x; Lehouck V, 2009, ECOGRAPHY, V32, P789, DOI 10.1111/j.1600-0587.2009.05666.x; Lovett J.C, 1993, BIOGEOGRAPHY ECOLOGY; LOVETT JC, 1985, SWARA, V8, P8; Low M, 2009, J ANIM ECOL, V78, P761, DOI 10.1111/j.1365-2656.2009.01543.x; Maina GG, 2003, BIOL CONSERV, V111, P161, DOI 10.1016/S0006-3207(02)00259-8; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; MARTIN TE, 1988, CONDOR, V90, P51, DOI 10.2307/1368432; MARTIN TE, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P455; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MAYFIELD HAROLD, 1961, WILSON BULL, V73, P255; Mezquida ET, 2001, J AVIAN BIOL, V32, P287, DOI 10.1111/j.0908-8857.2001.320401.x; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Newmark WD, 2011, P NATL ACAD SCI USA, V108, P11488, DOI 10.1073/pnas.1104955108; NOUR N, 1993, ECOGRAPHY, V16, P111, DOI 10.1111/j.1600-0587.1993.tb00063.x; Odhiambo RO, 2000, THESIS KENYATTA U; Oguge N, 2004, MAMM BIOL, V69, P289, DOI 10.1078/1616-5047-00148; Peak RG, 2004, AUK, V121, P726, DOI 10.1642/0004-8038(2004)121[0726:FASNSI]2.0.CO;2; Peak RG, 2003, WILSON BULL, V115, P403, DOI 10.1676/03-024; Pellikka PKE, 2009, INT J APPL EARTH OBS, V11, P221, DOI 10.1016/j.jag.2009.02.002; Pfeifer M, 2011, REMOTE SENS ENVIRON, V118, P103; Powell LA, 2007, CONDOR, V109, P949, DOI 10.1650/0010-5422(2007)109[949:AVODPU]2.0.CO;2; REDONDO T, 1992, IBIS, V134, P180, DOI 10.1111/j.1474-919X.1992.tb08395.x; ROBINSON SK, 1995, SCIENCE, V267, P1987, DOI 10.1126/science.267.5206.1987; Robinson WD, 2012, J ORNITHOL, V153, pS141, DOI 10.1007/s10336-011-0806-y; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Ryder TB, 2008, J AVIAN BIOL, V39, P355, DOI 10.1111/j.2008.0908-8857.04290.x; Shaffer TL, 2004, AUK, V121, P526, DOI 10.1642/0004-8038(2004)121[0526:AUATAN]2.0.CO;2; Shustack DP, 2011, J AVIAN BIOL, V42, P204, DOI 10.1111/j.1600-048X.2011.05231.x; SMALL MF, 1988, OECOLOGIA, V76, P62, DOI 10.1007/BF00379601; Spanhove T, 2009, ANIM CONSERV, V12, P284, DOI 10.1111/j.1469-1795.2009.00293.x; Spanhove T, 2009, ANIM CONSERV, V12, P267, DOI 10.1111/j.1469-1795.2009.00249.x; Spanhove T, 2009, BIRD CONSERV INT, V19, P367, DOI 10.1017/S0959270909008752; Stratford JA, 2005, FRONT ECOL ENVIRON, V3, P91, DOI 10.2307/3868515; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; Tewksbury JJ, 2006, ECOLOGY, V87, P759, DOI 10.1890/04-1790; Thompson HS, 2004, IBIS, V146, P615, DOI 10.1111/j.1474-919x.2004.00287.x; Vetter D, 2013, BIOL CONSERV, V159, P382, DOI 10.1016/j.biocon.2012.12.023; WILCOVE DS, 1985, ECOLOGY, V66, P1211, DOI 10.2307/1939174; WILDER CM, 2000, J E AFRICAN NATURAL, V87, P181 68 7 7 1 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. APR 2014 155 2 411 420 10.1007/s10336-013-1021-9 10 Ornithology Zoology AJ6HM WOS:000337792000009 2019-02-21 J Shaw, P; Cresswell, W Shaw, Phil; Cresswell, Will Latitudinal variation in day length and working day length has a confounding effect when comparing nest attentiveness in tropical and temperate species JOURNAL OF ORNITHOLOGY English Article Nest attentiveness; Latitudinal variation; Day length; Working day; Stripe-breasted Tit Parus fasciiventer; Great Tit Parus major TITS PARUS-MAJOR; DAILY ENERGY-EXPENDITURE; LONG INCUBATION PERIODS; GREAT TIT; CLUTCH SIZE; GEOGRAPHIC-VARIATION; BREEDING ECOLOGY; NORTHERN FINLAND; LIFE-HISTORY; BEHAVIOR During incubation, tropical passerines have been shown to have lower levels of nest attentiveness than their counterparts at north temperate latitudes, spending a higher percentage of daylight time off the nest. This difference has been interpreted as evidence of parental restraint; tropical birds allocate more time to daily self-maintenance, perhaps preserving their higher annual survival rates and future breeding potential. But such comparisons are susceptible to the confounding effects of day length variation, because a given amount of time spent off the nest will account for a greater percentage of daylight time near to the equator than at high latitudes during spring and summer. Based on a pattern of increasing day length between 0 degrees and 70 degrees N, we show that the impact of this bias is likely to be small where sites are separated by less than 30 degrees-40 degrees of latitude, but should increase substantially both with latitudinal span and distance from the equator. To illustrate this effect, we compared nest attentiveness in two congeners breeding at 1 degrees S and 52 degrees N. During incubation, Stripe-breasted Tits Parus fasciiventer in Uganda had a shorter working day (time from emerging to retiring) than north temperate Great Tits P. major, and spent a higher percentage of daylight time off the nest (32 %) than Great Tits in the UK (24 %). However, this difference was almost wholly explained by the latitudinal difference in day length; the amount of time spent off the nest differed by just 10 min day(-1) (<1 % of the 24-h cycle). We show that this effect may be moderated by the change in working day length, which increased less rapidly (in relation to latitude) than day length. Although these effects can thus confound latitudinal comparisons of nest attentiveness, accentuating a pattern predicted by life-history theory, they are avoidable if attentiveness is expressed as the percentage of time or the number of minutes spent incubating per 24 h. [Shaw, Phil; Cresswell, Will] Univ St Andrews, Sch Biol, St Andrews KY16 9TS, Fife, Scotland; [Shaw, Phil] Mbarara Univ Sci & Technol, Inst Trop Forest Conservat, Kabale, Uganda Shaw, P (reprint author), Univ St Andrews, Sch Biol, Harold Mitchell Bldg, St Andrews KY16 9TS, Fife, Scotland. ps61@st-andrews.ac.uk British Ornithologists' Union; African Bird Club; Uganda Wildlife Authority We thank Narsensius Owoyesigire, Savio Ngabirano, Lawrence Tumugabirwe, Margaret Kobusingye and David Ebbutt for assisting with fieldwork, and Alastair McNeilage, Martha Robbins, Miriam van Heist and Douglas Sheil for their hospitality and their support for the Stripe-breasted Tit study at Bwindi. We gratefully acknowledge the financial support provided by the British Ornithologists' Union and the African Bird Club, and the Uganda Wildlife Authority and Uganda National Council for Science and Technology for granting permission for P.S. to participate in the study. Auer SK, 2007, J AVIAN BIOL, V38, P278, DOI 10.1111/j.2007.0908-8857.04092.x; Auer SK, 2007, CONDOR, V109, P321, DOI 10.1650/0010-5422(2007)109[321:BBOPIA]2.0.CO;2; BALAT F, 1970, Zoologicke Listy, V19, P321; Bryan SM, 1999, P ROY SOC B-BIOL SCI, V266, P157, DOI 10.1098/rspb.1999.0616; Busse P, 1962, ACTA ORNITHOL, V7, P1; Camfield AF, 2009, BEHAVIOUR, V146, P1615, DOI 10.1163/156853909X463335; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Conway CJ, 2000, EVOLUTION, V54, P670; Cox WA, 2009, WILSON J ORNITHOL, V121, P667, DOI 10.1676/08-133.1; CRAMP S, 1993, BIRDS W PALEARCTIC; Cresswell W, 2004, BEHAV ECOL, V15, P498, DOI 10.1093/beheco/arh042; Cresswell W, 2003, J ANIM ECOL, V72, P356, DOI 10.1046/j.1365-2656.2003.00701.x; de Heij ME, 2008, J AVIAN BIOL, V39, P121, DOI 10.1111/j.2008.0908-8857.04286.x; DUNN E K, 1976, British Birds, V69, P45; EGUCHI K, 1980, RES POPUL ECOL, V22, P284, DOI 10.1007/BF02530852; Fierro-Calderon K, 2007, CONDOR, V109, P680, DOI 10.1650/8305.1; Fontaine JJ, 2006, ECOL LETT, V9, P429; Frederiksen K.S., 1972, Dansk Ornithologisk Forenings Tidsskrift, V66, P73; HOWELL THOMAS R., 1954, CONDOR, V56, P93, DOI 10.2307/1364665; Kirkham CBS, 2013, J ORNITHOL, V154, P795, DOI 10.1007/s10336-013-0945-4; Kluijver H. N., 1951, Ardea, V39, P1; Kluijver HN, 1950, ARDEA, V38, P99; LACK D, 1966, POPULATION STUDIES B; Likhachev G. N., 1967, Ornitologiya, V8, P165; Lloyd P, 2009, J AVIAN BIOL, V40, P400, DOI 10.1111/j.1600-048X.2008.04642.x; Londono GA, 2008, ANIM BEHAV, V76, P669, DOI 10.1016/j.anbehav.2008.05.002; LYON BE, 1985, BEHAV ECOL SOCIOBIOL, V17, P279, DOI 10.1007/BF00300147; MACE R, 1989, J ANIM ECOL, V58, P143, DOI 10.2307/4991; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1999, AM NAT, V153, P131, DOI 10.1086/303153; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2007, EVOLUTION, V61, P2558, DOI 10.1111/j.1558-5646.2007.00204.x; Matysiokova B, 2010, ETHOLOGY, V116, P596, DOI 10.1111/j.1439-0310.2010.01776.x; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; ORELL M, 1983, ARDEA, V71, P183; Pearse AT, 2004, WILSON BULL, V116, P23, DOI 10.1676/0043-5643(2004)116[0023:EOFSOF]2.0.CO;2; Ricklefs RE, 2013, J ORNITHOL, V154, P145, DOI 10.1007/s10336-012-0880-9; Rompre Ghislain, 2008, Ecotropica-Bonn, V14, P81; Sanz JJ, 1998, ARDEA, V86, P101; Sanz JJ, 2000, OECOLOGIA, V122, P149, DOI 10.1007/PL00008842; Sanz JJ, 1999, IBIS, V141, P100; Tieleman BI, 2004, FUNCT ECOL, V18, P571, DOI 10.1111/j.0269-8463.2004.00882.x; TINBERGEN JM, 1994, FUNCT ECOL, V8, P563, DOI 10.2307/2389916; Tombre IM, 2012, POLAR BIOL, V35, P985, DOI 10.1007/s00300-011-1145-4; Tulp I, 2006, J AVIAN BIOL, V37, P207, DOI 10.1111/j.2006.0908-8857.03519.x; USNO, 2012, US NAV OC PORT; VANBALEN JH, 1973, ARDEA, V61, P1; VANNOORDWIJK AJ, 1981, OECOLOGIA, V49, P158, DOI 10.1007/BF00349183; Verhulst S, 1997, ARDEA, V85, P111; VONHAARTMAN L, 1969, COMMENTAT BIOL SOC S, V32, P1; Wilkin TA, 2009, J AVIAN BIOL, V40, P135, DOI 10.1111/j.1600-048X.2009.04362.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Zink G, 1959, VOGELWARTE, V20, P128 53 4 4 1 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0021-8375 1439-0361 J ORNITHOL J. Ornithol. APR 2014 155 2 481 489 10.1007/s10336-013-1029-1 9 Ornithology Zoology AJ6HM WOS:000337792000016 2019-02-21 J Perlut, NG; Travis, SE; Dunbar, CA; Strong, AM; Wright, DM Perlut, Noah G.; Travis, Steven E.; Dunbar, Catherine A.; Strong, Allan M.; Wright, Derek M. Nestling sex ratios do not support long-term parity in two species with different life-history strategies AUK English Article Bobolink; Dolichonyx oryzivorus; Fisher's hypothesis; homeostasis hypothesis; nestling sex ratio adjustment; Passerculus sandwichensis; Savannah Sparrow; Vermont SPARROWS PASSERCULUS-SANDWICHENSIS; SAVANNA SPARROWS; MICROSATELLITE LOCI; PARENTAL CARE; POPULATION; SELECTION; QUALITY; BIRD; RECRUITMENT; ADJUSTMENT To maximize fitness, breeding adults may respond to environmental processes by adjusting their progeny's sex ratios. R. A. Fisher in 1930 hypothesized that frequency-dependent selection would result in equal investment in sons and daughters over the long term, yielding a balanced sex ratio if the costs of raising a son and daughter are equal. Diverse hypotheses have tried to explain population and brood-by-brood deviations from this mean as well as annual variation by focusing on adult sex ratios, resources, abiotic conditions, and female and male quality. We collected data in 20022010 to explore population-level variation in nestling sex ratios in 2 migratory grassland songbird species: the Bobolink (Dolichonyx oryzivorus) and Savannah Sparrow (Passerculus sandwichensis). These species differ in migratory strategy (long-distance vs. short-distance), and morphological dimorphism. Fisher's hypothesis was rejected for Savannah Sparrows (n = 684 nestlings; 39% male) but not rejected for Bobolinks (n=390 nestlings; 53.8% male). No relationship was found between nestling and adult sex ratios measured in the same year. In descriptive analyses at the brood level, male and female body size and age, and ecological conditions (temperature and precipitation) failed to predict nestling sex ratios. Although male nestlings were heavier than female nestlings and resource availability changed through the season, these factors did not influence sex ratios relative to female body size or seasonality. For Savannah Sparrows, larger broods tended to be male-biased. While we were otherwise not able to explain deviation in offspring sex ratio for Savannah Sparrows, our results suggest that the ecological and evolutionary pressures that affect sex ratios may be both species- and population-specific. [Perlut, Noah G.; Dunbar, Catherine A.; Wright, Derek M.] Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA; [Travis, Steven E.] Univ New England, Dept Biol, Biddeford, ME USA; [Strong, Allan M.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT USA Perlut, NG (reprint author), Univ New England, Dept Environm Studies, Biddeford, ME 04005 USA. nperlut@une.edu University of New England, Initiative for Future Agricultural and Food Systems; National Research Initiative of the USDA Cooperative State Research; Education and Extension Service [2001-52103-11351, 03-35101-13817] This project was supported by the University of New England as well as the Initiative for Future Agricultural and Food Systems and the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant numbers 2001-52103-11351 and 03-35101-13817, respectively. Additional funding was provided by the Natural Resource Conservation Service's Wildlife Habitat Management Institute. We thank Shelburne Farms, the Galipeau, Ross, Maile, and Stern families for generous access to their land. We thank the Galipeau family for additional financial support. C. Freeman-Gallant and Skidmore College provided invaluable training and support. J. Hill, D. Dearborn, M. Murphy, and one anonymous reviewer provided helpful comments on the manuscript. Thanks to each summer's army of research assistants for their excellent work. Alonso-Alvarez C, 2003, IBIS, V145, P220, DOI 10.1046/j.1474-919X.2003.00149.x; Arnbom T., 1994, BEHAV ECOL SOCIOBIOL, V35, P73; Bensch S, 1999, J EVOLUTION BIOL, V12, P1104; Clout MN, 2002, BIOL CONSERV, V107, P13, DOI 10.1016/S0006-3207(01)00267-1; CLUTTONBROCK TH, 1986, ANIM BEHAV, V34, P460, DOI 10.1016/S0003-3472(86)80115-4; Cockburn A, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P266, DOI 10.1017/CBO9780511542053.014; CONOVER DO, 1990, SCIENCE, V250, P1556, DOI 10.1126/science.250.4987.1556; Creel S, 1997, AFR J ECOL, V35, P83, DOI 10.1111/j.1365-2028.1997.062-89062.x; Dolan AC, 2009, BEHAV ECOL SOCIOBIOL, V63, P1527, DOI 10.1007/s00265-009-0787-5; Donald PF, 2007, IBIS, V149, P671, DOI 10.1111/j.1474-919X.2007.00724.x; Dowling DK, 2006, J EVOLUTION BIOL, V19, P440, DOI 10.1111/j.1420-9101.2005.01017.x; Dyrcz A, 2004, IBIS, V146, P269, DOI 10.1046/j.1474-919X.2004.00256.x; Eraud C, 2006, BIRD STUDY, V53, P319, DOI 10.1080/00063650609461448; Fajardo N, 2009, AUK, V126, P310, DOI 10.1525/auk.2009.07097; Fisher RA, 1930, GENETICAL THEORY NAT; Freeman-Gallant C. R., 2005, EVOLUTION, V59, P432; GAVIN TA, 1985, AUK, V102, P550; Graham EB, 2011, J FIELD ORNITHOL, V82, P44, DOI 10.1111/j.1557-9263.2010.00306.x; Han JI, 2009, AUK, V126, P779, DOI 10.1525/auk.2009.08203; HANOTTE O, 1994, MOL ECOL, V3, P529, DOI 10.1111/j.1365-294X.1994.tb00133.x; Hartley IR, 1999, J AVIAN BIOL, V30, P7, DOI 10.2307/3677237; Hasselquist D, 2002, PHILOS T ROY SOC B, V357, P363, DOI 10.1098/rstb.2001.0924; HERRE EA, 1987, NATURE, V329, P627, DOI 10.1038/329627a0; HERRE EA, 1985, SCIENCE, V228, P896, DOI 10.1126/science.228.4701.896; Husby A, 2006, J ANIM ECOL, V75, P1128, DOI 10.1111/j.1365-2656.2006.01132.x; JAMES WH, 1975, GENET RES, V26, P45, DOI 10.1017/S0016672300015834; Jeffery KJ, 2001, MOL ECOL NOTES, V1, P11, DOI 10.1046/j.1471-8278 .2000.00005.x; Kempenaers B., 1993, ORNIS SCAND, V24, P1; Kingma SA, 2011, BEHAV ECOL SOCIOBIOL, V65, P1203, DOI 10.1007/s00265-010-1133-7; Krackow S, 2002, SEX RATIOS: CONCEPTS AND RESEARCH METHODS, P112, DOI 10.1017/CBO9780511542053.006; Martin S. G., 1995, BIRDS N AM; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Neto JM, 2011, BEHAV ECOL SOCIOBIOL, V65, P297, DOI 10.1007/s00265-010-1046-5; Neuhauser M, 2004, ENVIRON ECOL STAT, V11, P295, DOI 10.1023/B:EEST.0000038017.58293.c0; Oigarden T, 2013, J ORNITHOL, V154, P91, DOI 10.1007/s10336-012-0874-7; Perkins DG, 2013, AUK, V130, P512, DOI 10.1525/auk.2013.12163; Perlut NG, 2008, ECOLOGY, V89, P1941, DOI 10.1890/07-0900.1; Perlut NG, 2008, MOL ECOL, V17, P1248, DOI 10.1111/j.1365-294X.2008.03695.x; Perlut NG, 2006, ECOL APPL, V16, P2235, DOI 10.1890/1051-0761(2006)016[2235:GSIADM]2.0.CO;2; Perlut NG, 2012, NORTHEAST NAT, V19, P335, DOI 10.1656/045.019.0214; Postma E, 2011, P ROY SOC B-BIOL SCI, V278, P2996, DOI 10.1098/rspb.2010.2763; Potti J, 2002, MOL ECOL, V11, P1317, DOI 10.1046/j.1365-294X.2002.01545.x; Pyle P, 1997, IDENTIFICATION GUI 1; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Development Core Team, 2010, R LANG ENV STAT COMP; Rutkowska J, 2008, PHILOS T R SOC B, V363, P1675, DOI 10.1098/rstb.2007.0006; Saino N, 2008, EVOL ECOL, V22, P659, DOI 10.1007/s10682-007-9189-1; Shustack D. P., 2004, THESIS U VERMONT US; Stauss M, 2005, OIKOS, V109, P367, DOI 10.1111/j.0030-1299.2005.13333.x; Taff CC, 2011, ANIM BEHAV, V81, P619, DOI 10.1016/j.anbehav.2010.12.009; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Wheelwright NT, 1998, ECOLOGY, V79, P755, DOI 10.1890/0012-9658(1998)079[0755:PNDAIA]2.0.CO;2; Wheelwright NT, 2003, AUK, V120, P171, DOI 10.1642/0004-8038(2003)120[0171:FOSRIS]2.0.CO;2; Wheelwright NT, 2008, BIRDS N AM; Wilson K, 2002, SEX RATIOS CONCEPTS, P49; Yamaguchi N, 2004, IBIS, V146, P108, DOI 10.1111/j.1474-919X.2004.00220.x; Zalik NJ, 2008, AUK, V125, P700, DOI 10.1525/auk.2008.07106 57 6 6 2 20 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK APR 2014 131 2 224 234 10.1642/AUK-13-183.1 11 Ornithology Zoology AH9QQ WOS:000336477300011 2019-02-21 J Becker, DV; Kenrick, DT Becker, D. Vaughn; Kenrick, Douglas T. Selfish goals serve more fundamental social and biological goals BEHAVIORAL AND BRAIN SCIENCES English Editorial Material Proximate selfish goals reflect the machinations of more fundamental goals such as self-protection and reproduction. Evolutionary life history theory allows us to make predictions about which goals are prioritized over others, which stimuli release which goals, and how the stages of cognitive processing are selectively influenced to better achieve the aims of those goals. [Becker, D. Vaughn] Arizona State Univ, Cognit Sci & Engn Unit, Tempe, AZ 85201 USA; [Kenrick, Douglas T.] Arizona State Univ, Dept Psychol, Tempe, AZ 85201 USA Becker, DV (reprint author), Arizona State Univ, Cognit Sci & Engn Unit, Tempe, AZ 85201 USA. vaughn.becker@asu.edu; douglas.kenrick@asu.edu 0 1 2 0 2 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0140-525X 1469-1825 BEHAV BRAIN SCI Behav. Brain Sci. APR 2014 37 2 137 138 10.1017/S0140525X13001957 2 Psychology, Biological; Behavioral Sciences; Neurosciences Psychology; Behavioral Sciences; Neurosciences & Neurology AH0QV WOS:000335826100004 24775123 2019-02-21 J Geange, SW Geange, Shane W. Growth and reproductive consequences of photosynthetic tissue loss in the surface canopies of Macrocystis pyrifera (L.) C. Agardh JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Growth; Harvesting; Reproduction; Sporophyll; Tolerance GIANT-KELP FOREST; MACROALGAL SPORE DISPERSAL; NEW-ZEALAND; SOUTHERN-CALIFORNIA; NUTRIENT AVAILABILITY; POPULATION-DYNAMICS; COASTAL FORESTS; BROWN ALGA; LAMINARIALES; TRANSLOCATION Macrocystis pyrifera (L) C. Agardh provides biogenic habitat for species of significant commercial, cultural and recreational value; however, the floating surface canopies of M. pyrifera are particularly vulnerable to physical and biological disturbance (e.g., herbivory, storm events and harvesting). Given the key ecological roles of M. pyrifera, it is important to identify the impacts of photosynthetic tissue loss on growth and reproduction. I hypothesized that canopy removal would result in compensatory regeneration of the surface canopy. As life history theory posits a tradeoff between growth and reproduction, I also hypothesized that canopy removal would involve a reduction in reproductive investment, as either: (i) reduced production of reproductive structures; or (ii) changes in reproductive condition from fertile to sterile. To evaluate these hypothesizes I conducted two field experiments. In the first experiment, there was no significant difference in the generation of vegetative fronds or reproductive blades between controls (no loss of photosynthetic tissue from surface canopies) and treatments where photosynthetic tissue in surface canopies was thinned by either 30% or 70%. Relative to controls, the removal of entire surface canopies to a depth of 1.2 m (i.e., simulated commercial harvesting) did not affect the generation of new vegetative fronds; however, the generation of reproductive blades was reduced by an average of 86%, suggesting that without the organic production supplied by the canopy, reproduction, but not growth, suffers. Further, the lack of evidence for compensatory growth despite reductions in reproduction suggests that M pyrifera has little tolerance to canopy loss. The second experiment, which examined the effect of removing surface canopies on rate and longevity of changes in reproductive condition, found that although no control algae became sterile, 89% of algae with their surface canopies removed became sterile 50 d after canopy removal, with effects persisting for up to 83 d. As the supply of M. pyrifera propagules in the center of kelp forests can be tightly coupled to local reproductive output, induced sterility via the loss of photosynthetic tissue could affect the long-term stability of M. pyrifera beds. Further investigation into the scalability of these results and implications for long-term stability of M. pyrifera beds is warranted. (c) 2014 Elsevier B.V. All rights reserved. Victoria Univ Wellington, Sch Biol Sci, Wellington, New Zealand Geange, SW (reprint author), Victoria Univ Wellington, Sch Biol Sci, POB 600, Wellington, New Zealand. shane.geange@vuw.ac.nz Geange, Shane/0000-0002-0679-0272 Ministry of Fisheries [468]; Ministry of Science and Innovation [E1667]; Victoria University of Wellington Faculty of Science Small Research grants [103450, 112084] This study was approved by the Ministry of Fisheries under special permit 468; was conducted outside protected marine areas; and did not involve any protected species. C.A. Cardenas, PJ. Mensink, D. Nelson, J. Oliver, S. Journee, D. McNaughtan, I. Geeson, D.K. Lekan and S. Jenkins provided invaluable support for field and laboratory work. Waverider data was provided courtesy of C. Stevens and J. McGregor at the National Institute of Water and Atmospheric Research. J.S. Shima, R.B. Ford and two anonymous reviewers provided helpful comments on this manuscript. This project was possible with financial support from the Ministry of Science and Innovation (grant number E1667) and two Victoria University of Wellington Faculty of Science Small Research grants (grant numbers 103450 and 112084). [SS] Anten NPR, 2003, ECOLOGY, V84, P2905, DOI 10.1890/02-0454; BARILOTTI DC, 1990, HYDROBIOLOGIA, V204, P35, DOI 10.1007/BF00040212; Brown MT, 1997, MAR BIOL, V129, P417, DOI 10.1007/s002270050182; Carney LT, 2010, J PHYCOL, V46, P987, DOI 10.1111/j.1529-8817.2010.00882.x; Cerda O, 2009, J EXP MAR BIOL ECOL, V377, P61, DOI 10.1016/j.jembe.2009.06.011; COHEN D, 1971, J THEOR BIOL, V33, P299, DOI 10.1016/0022-5193(71)90068-3; Dayton PK, 1998, ECOL APPL, V8, P309, DOI 10.1890/1051-0761(1998)008[0309:SBGARE]2.0.CO;2; DAYTON PK, 1984, ECOL MONOGR, V54, P253, DOI 10.2307/1942498; DAYTON PK, 1984, SCIENCE, V224, P283, DOI 10.1126/science.224.4646.283; Denny M. W., 1988, BIOL MECH WAVE SWEPT; DEYSHER LE, 1986, J EXP MAR BIOL ECOL, V103, P41, DOI 10.1016/0022-0981(86)90131-0; Foster M. S., 1985, ECOLOGY GIANT KELP F; Fyfe J., 1999, GEOCARTO INT, V14, P17; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gao X., 2014, J APPL PHYCOL, V25, P1331; Gao X, 2013, J APPL PHYCOL, V25, P1171, DOI 10.1007/s10811-012-9925-y; Gardner JPA, 2000, MAR ECOL PROG SER, V194, P123, DOI 10.3354/meps194123; Gaylord B, 2002, ECOLOGY, V83, P1239, DOI 10.1890/0012-9658(2002)083[1239:APBMOM]2.0.CO;2; Gaylord B, 2004, J MARINE SYST, V49, P19, DOI 10.1016/j.jmarsys.2003.05.003; Gaylord B, 2006, ECOL MONOGR, V76, P481, DOI 10.1890/0012-9615(2006)076[0481:MSDICE]2.0.CO;2; GERARD VA, 1982, J EXP MAR BIOL ECOL, V62, P211, DOI 10.1016/0022-0981(82)90202-7; Graham M.H., 2000, PLANTONIC PATTERNS P; Graham MH, 2002, MAR BIOL, V140, P901, DOI 10.1007/s00227-001-0761-x; Graham MH, 2003, ECOLOGY, V84, P1250, DOI 10.1890/0012-9658(2003)084[1250:CPOTSA]2.0.CO;2; Graham MH, 1997, MAR ECOL PROG SER, V148, P269, DOI 10.3354/meps148269; Graham MH, 2004, ECOSYSTEMS, V7, P341, DOI 10.1007/s10021-003-0245-6; Graham Michael, 2008, P103; HAY CH, 1990, J ROY SOC NEW ZEAL, V20, P313, DOI 10.1080/03036758.1990.10426716; Hay KB, 2011, J ECOL, V99, P1540, DOI 10.1111/j.1365-2745.2011.01874.x; Hemmi A., 2005, AQUAT ECOL, V39, P210; Hepburn CD, 2007, MAR ECOL PROG SER, V339, P99, DOI 10.3354/meps339099; Honkanen T, 2002, INT J PLANT SCI, V163, P815, DOI 10.1086/342081; JACKSON GA, 1983, CONT SHELF RES, V2, P75, DOI 10.1016/0278-4343(83)90023-7; Jackson GA, 1997, CONT SHELF RES, V17, P1913, DOI 10.1016/S0278-4343(97)00054-X; JAMESON DA, 1963, BOT REV, V29, P532, DOI 10.1007/BF02860815; KARBAN R, 1993, ECOLOGY, V74, P9, DOI 10.2307/1939496; KIMURA RS, 1984, HYDROBIOLOGIA, V116, P425, DOI 10.1007/BF00027714; KULMAN HM, 1971, ANNU REV ENTOMOL, V16, P289, DOI 10.1146/annurev.en.16.010171.001445; LOBBAN CS, 1978, PLANT PHYSIOL, V61, P585, DOI 10.1104/pp.61.4.585; MANLEY SL, 1984, J PHYCOL, V20, P192, DOI 10.1111/j.0022-3646.1984.00192.x; MCCLENEGHAN K, 1985, CALIF FISH GAME, V71, P21; MCNAUGHTON SJ, 1979, AM NAT, V113, P691, DOI 10.1086/283426; Miller D.J., 1973, CALIFORNIA DEP FISH, V137; Ministry for Primary Industries, 2013, FISH ASS PLEN MAY 20; MORRIS AW, 1963, ANAL CHIM ACTA, V29, P272, DOI 10.1016/S0003-2670(00)88614-6; North W.J., 1986, FAO FISH TECH PAP, V281, P265; North WJ, 1994, BIOL EC ALGAE; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Parnell PE, 2010, LIMNOL OCEANOGR, V55, P2686, DOI 10.4319/lo.2010.55.6.2686; Perea-Blazquez A, 2012, HYDROBIOLOGIA, V687, P237, DOI 10.1007/s10750-011-0798-x; Phillips JC, 2003, MAR ECOL PROG SER, V264, P31, DOI 10.3354/meps264031; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Pirker J.J., 2002, DEMOGRAPHY BIOMASS P, P244; R Development Core Team, 2010, R LANG ENV STAT COMP; REED DC, 1987, J EXP MAR BIOL ECOL, V113, P61, DOI 10.1016/0022-0981(87)90082-7; REED DC, 1988, ECOL MONOGR, V58, P321, DOI 10.2307/1942543; Rhode S., 2004, J ECOL, V92, P1011; Sanderson J., 1987, SURVERY MACRIOCYSTIC; SANTELICES B, 1984, MAR ECOL PROG SER, V14, P175, DOI 10.3354/meps014175; SANTELICES B, 1984, MAR ECOL PROG SER, V14, P165, DOI 10.3354/meps014165; SCHIEL DR, 1995, MAR BIOL, V123, P355, DOI 10.1007/BF00353627; SCHMITZ K, 1976, MAR BIOL, V36, P207, DOI 10.1007/BF00389281; SEYMOUR RJ, 1989, ESTUAR COAST SHELF S, V28, P277, DOI 10.1016/0272-7714(89)90018-8; Shears NT, 2007, SCI CONSERVATION, V280; Strauss SY, 1999, TRENDS ECOL EVOL, V14, P179, DOI 10.1016/S0169-5347(98)01576-6; Taylor RB, 2002, OECOLOGIA, V132, P68, DOI [10.1007/s00442-002-0944-2, 10.1007/s00442-002-0644-2]; Tiffin P, 2000, EVOL ECOL, V14, P523, DOI 10.1023/A:1010881317261; TOWLE DW, 1973, LIMNOL OCEANOGR, V18, P155, DOI 10.4319/lo.1973.18.1.0155; TUGWELL S, 1989, J EXP MAR BIOL ECOL, V129, P219, DOI 10.1016/0022-0981(89)90104-4; Wai TC, 2005, J EXP MAR BIOL ECOL, V324, P141, DOI 10.1016/j.jembe.2005.04.010; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; ZIMMERMAN RC, 1986, MAR ECOL PROG SER, V27, P277, DOI 10.3354/meps027277 72 3 3 0 33 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. APR 2014 453 70 75 10.1016/j.jembe.2014.01.004 6 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AF1MB WOS:000334476900009 2019-02-21 J Jansen, DYM; Abadi, F; Harebottle, D; Altwegg, R Jansen, Dorine Y. M.; Abadi, Fitsum; Harebottle, Doug; Altwegg, Res Does seasonality drive spatial patterns in demography? Variation in survival in African reed warblers Acrocephalus baeticatus across southern Africa does not reflect global patterns ECOLOGY AND EVOLUTION English Article Avian life history; capture-mark-recapture; JAGS; multistate state-space; seasonality; spatial variation LIFE-HISTORY EVOLUTION; CLUTCH-SIZE; FAMILY ACROCEPHALIDAE; TRADE-OFFS; BIRDS; RATES; SCIRPACEUS; PASSERINES; FOREST; CARE Among birds, northern temperate species generally have larger clutches, shorter development periods and lower adult survival than similarly-sized southern and tropical species. Even though this global pattern is well accepted, the driving mechanism is still not fully understood. The main theories are founded on the differing environmental seasonality of these zones (higher seasonality in the North). These patterns arise in cross-species comparisons, but we hypothesized that the same patterns should arise among populations within a species if different types of seasonality select for different life histories. Few studies have examined this. We estimated survival of an azonal habitat specialist, the African reed warbler, across the environmentally diverse African subcontinent, and related survival to latitude and to the seasonality of the different environments of their breeding habitats. Data (1998-2010) collected through a public ringing scheme were analyzed with hierarchical capture-mark-recapture models to determine resident adult survival and its spatial variance across sixteen vegetation units spread across four biomes. The models were defined as state-space multi-state models to account for transience and implemented in a Bayesian framework. We did not find a latitudinal trend in survival or a clear link between seasonality and survival. Spatial variation in survival was substantial across the sixteen sites (spatial standard deviation of the logit mean survival: 0.70, 95% credible interval (CRI): 0.33-1.27). Mean site survival ranged from 0.49 (95% CRI: 0.18-0.80) to 0.83 (95% CRI: 0.62-0.97) with an overall mean of 0.67 (95% CRI: 0.47-0.85). A hierarchical modeling approach enabled us to estimate spatial variation in survival of the African reed warbler across the African subcontinent from sparse data. Although we could not confirm the global pattern of higher survival in less seasonal environments, our findings from a poorly studied region contribute to the study of life-history strategies. [Jansen, Dorine Y. M.; Abadi, Fitsum; Harebottle, Doug; Altwegg, Res] Univ Cape Town, Dept Biol Sci, Anim Demog Unit, ZA-7701 Rondebosch, South Africa; [Jansen, Dorine Y. M.; Abadi, Fitsum; Altwegg, Res] Univ Cape Town, Dept Stat Sci, Ctr Stat Ecol Environm & Conservat, ZA-7701 Rondebosch, South Africa; [Jansen, Dorine Y. M.; Abadi, Fitsum; Altwegg, Res] South African Natl Biodivers Inst, ZA-7735 Claremont, South Africa Jansen, DYM (reprint author), Univ Cape Town, Dept Biol Sci, Anim Demog Unit, ZA-7701 Cape Town, South Africa. dymjansen@hotmail.com National Research Foundation of South Africa [85802]; Claude Leon Foundation R.A. was supported by the National Research Foundation of South Africa (Grant 85802). F.A. was supported by a fellowship from the Claude Leon Foundation. ALERSTAM T, 1982, ORNIS SCAND, V13, P25, DOI 10.2307/3675970; Alerstam T., 1993, BIRD MIGRATION; Allan D. G., 1997, ATLAS SO AFRICAN BIR, V1, plxv; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Baillie Stephen R., 2009, Ringing & Migration, V24, P189; Blake JG, 2008, BIOTROPICA, V40, P485, DOI 10.1111/j.1744-7429.2007.00395.x; BRAWN JD, 1995, ECOLOGY, V76, P41, DOI 10.2307/1940630; Brawn JD, 1999, INT ORN C, V22, P297; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; BUCKLAND S T, 1987, Acta Ornithologica (Warsaw), V23, P89; Choquet R, 2009, ECOGRAPHY, V32, P1071, DOI 10.1111/j.1600-0587.2009.05968.x; Coehoorn P., 2011, 201101 VOG; De Beer S. J, 2001, SAFRING BIRD RINGING; Dean W. R. J., 2005, ROBERTS BIRDS SO AFR, P797; Dhondt AA, 2001, ARDEA, V89, P155; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; Dobson A., 1990, Current Ornithology, V7, P115; Dunn J. L., 2008, NATL GEOGRAPHIC FIEL; Eising CM, 2001, IBIS, V143, P482, DOI 10.1111/j.1474-919X.2001.tb04950.x; Ferretti V, 2005, P ROY SOC B-BIOL SCI, V272, P769, DOI 10.1098/rspb.2004.3039; Fitzsimmon M. J., 2013, OIKOS, V122, P1350; Francis C. M. J., 1999, P 22 INT ORN C DURB, P297; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Fregin S, 2012, MOL PHYLOGENET EVOL, V62, P319, DOI 10.1016/j.ympev.2011.10.003; Fregin S, 2009, MOL PHYLOGENET EVOL, V52, P866, DOI 10.1016/j.ympev.2009.04.006; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gimenez O, 2007, ECOL MODEL, V206, P431, DOI 10.1016/j.ecolmodel.2007.03.040; Halupka K, 2009, J AVIAN BIOL, V40, P658, DOI 10.1111/j.1600-048X.2009.04772.x; Halupka L, 2008, J AVIAN BIOL, V39, P95, DOI 10.1111/j.2008.0908-8857.04047.x; Harrison J. A., 1997, BIRDLIFE S AFRICA, V2, P234; Helbig AJ, 1999, MOL PHYLOGENET EVOL, V11, P246, DOI 10.1006/mpev.1998.0571; Herremans M. L. J., 2005, ROBERTS BIRDS SO AFR, P796; Honza M, 1998, BIRD STUDY, V45, P104, DOI 10.1080/00063659809461083; Johnston JP, 1997, AM NAT, V150, P771, DOI 10.1086/286093; KARR JR, 1990, AM NAT, V136, P277, DOI 10.1086/285098; Kennerley P, 2010, REED BUSH WARBLERS; Kery M, 2012, BAYESIAN POPULATION ANALYSIS USING WINBUGS: A HIERARCHICAL PERSPECTIVE, P1; Kew A., 2013, RAS NEWS, V13, P4; King R, 2010, INTERD STAT, P1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Leisler B., 2011, REED WARBLERS DIVERS; Martin TE, 1996, J AVIAN BIOL, V27, P263, DOI 10.2307/3677257; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Mendelsohn J., 2003, ATLAS NAMIBIA; MOREAU R. E., 1944, IBIS, V86, P286, DOI 10.1111/j.1474-919X.1944.tb04093.x; Mucina L, 2006, STRELITZIA, V19; Nel J. L., 2012, CSIRNREECOIR20120022, V2; Newton I, 2006, J ORNITHOL, V147, P146, DOI 10.1007/s10336-006-0058-4; Newton I, 2004, IBIS, V146, P197, DOI 10.1111/j.1474-919X.2004.00293.x; Peach W.J., 1990, Ring International Ornithological Bulletin, V13, P87; Peach WJ, 2001, OIKOS, V93, P235, DOI 10.1034/j.1600-0706.2001.930207.x; PLUMMER M, 2003, P 3 INT WORKSH DISTR, P20, DOI DOI 10.1.1.13.3406; Pradel R, 1997, BIOMETRICS, V53, P60, DOI 10.2307/2533097; RICKLEFS RE, 1980, AUK, V97, P38; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Ricklefs RE, 2007, ECOLOGY, V88, P1408, DOI 10.1890/06-1035; Ricklefs RE, 2011, J ORNITHOL, V152, P481, DOI 10.1007/s10336-010-0614-9; Riehl C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2245; Rose AP, 2013, ECOLOGY, V94, P1327, DOI 10.1890/12-0953.1; ROWLEY I, 1991, BIRD POPULATION STUD, P22; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; Saracco JF, 2012, J ORNITHOL, V152, pS469, DOI 10.1007/s10336-010-0565-1; Schaefer HC, 2004, IBIS, V146, P427, DOI 10.1111/j.1474-919X.2004.00276.x; SchulzeHagen K, 1996, J ORNITHOL, V137, P181, DOI 10.1007/BF01653633; Simms E., 1985, BRIT WARBLERS; Sinclair I., 2009, COMPLETE PHOTOGRAPHI; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Stevens MC, 2013, OSTRICH, V84, P11, DOI 10.2989/00306525.2013.772544; Stokke G., 2007, OIKOS, V116, P913; Su Yu-Sung, 2012, PACKAGE RUNNING JAGS; Tarwater CE, 2010, J AVIAN BIOL, V41, P479, DOI 10.1111/j.1600-048X.2010.05006.x; Thaxter Chris B., 2006, Ringing & Migration, V23, P65; Urban EK, 1997, BIRDS AFRICA, V5; Welbergen JA, 2009, CURR BIOL, V19, P235, DOI 10.1016/j.cub.2008.12.041; YOMTOV Y, 1994, CONDOR, V96, P170, DOI 10.2307/1369074; YOMTOV Y, 1992, IBIS, V134, P374, DOI 10.1111/j.1474-919X.1992.tb08017.x; YOUNG BE, 1994, AUK, V111, P545 83 7 7 2 37 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. APR 2014 4 7 889 898 10.1002/ece3.958 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AE2ND WOS:000333809000002 24772268 DOAJ Gold, Green Published 2019-02-21 J Savory, FR; Benton, TG; Varma, V; Hope, IA; Sait, SM Savory, Fiona R.; Benton, Timothy G.; Varma, Varun; Hope, Ian A.; Sait, Steven M. Stressful environments can indirectly select for increased longevity ECOLOGY AND EVOLUTION English Article Caenorhabditis elegans; fitness; longevity; stress resistance; trade-offs NEMATODE CAENORHABDITIS-ELEGANS; POSTREPRODUCTIVE LIFE-SPAN; LONG-LIVED MUTANT; DROSOPHILA-MELANOGASTER; NATURAL-POPULATIONS; C-ELEGANS; THERMAL TOLERANCE; GENETIC-VARIATION; DAUER FORMATION; TRADE-OFFS Longevity is modulated by a range of conserved genes in eukaryotes, but it is unclear how variation in these genes contributes to the evolution of longevity in nature. Mutations that increase life span in model organisms typically induce trade-offs which lead to a net reduction in fitness, suggesting that such mutations are unlikely to become established in natural populations. However, the fitness consequences of manipulating longevity have rarely been assessed in heterogeneous environments, in which stressful conditions are encountered. Using laboratory selection experiments, we demonstrate that long-lived, stress-resistant Caenorhabditis elegans age-1(hx546) mutants have higher fitness than the wild-type genotype if mixed genotype populations are periodically exposed to high temperatures when food is not limited. We further establish, using stochastic population projection models, that the age-1(hx546) mutant allele can confer a selective advantage if temperature stress is encountered when food availability also varies over time. Our results indicate that heterogeneity in environmental stress may lead to altered allele frequencies over ecological timescales and indirectly drive the evolution of longevity. This has important implications for understanding the evolution of life-history strategies. [Savory, Fiona R.; Benton, Timothy G.; Varma, Varun; Hope, Ian A.; Sait, Steven M.] Univ Leeds, Sch Biol, Fac Biol Sci, Leeds LS2 9JT, W Yorkshire, England; [Savory, Fiona R.; Varma, Varun] Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India Savory, FR (reprint author), Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India. fionars@ncbs.res.in Benton, Tim/C-6493-2009; Hope, Ian/M-4186-2018 Benton, Tim/0000-0002-7448-1973; Hope, Ian/0000-0002-8990-3163; Varma, Varun/0000-0002-0289-6125 White Rose University Consortium studentship; Natural Environment Research Council [NE/C510467/1] This work was supported by a White Rose University Consortium studentship. Ailion M, 2000, GENETICS, V156, P1047; Barriere A, 2005, CURR BIOL, V15, P1176, DOI 10.1016/j.cub.2005.06.022; Benton TG, 1996, AM NAT, V147, P115, DOI 10.1086/285843; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; Delaney JR, 2011, CELL CYCLE, V10, P156, DOI 10.4161/cc.10.1.14457; Fangue NA, 2006, J EXP BIOL, V209, P2859, DOI 10.1242/jeb.02260; Foster EA, 2012, SCIENCE, V337, P1313, DOI 10.1126/science.1224198; FRIEDMAN DB, 1988, GENETICS, V118, P75; Garsin DA, 2003, SCIENCE, V300, P1921, DOI 10.1126/science.1080147; Geiger-Thornsberry GL, 2004, MECH AGEING DEV, V125, P179, DOI 10.1016/j.mad.2003.12.008; Gems D, 1998, GENETICS, V150, P129; GOLDEN JW, 1982, SCIENCE, V218, P578, DOI 10.1126/science.6896933; Grewal PS, 2002, INT J PARASITOL, V32, P717, DOI 10.1016/S0020-7519(02)00029-2; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Harshman LG, 1999, NEUROBIOL AGING, V20, P521, DOI 10.1016/S0197-4580(99)00091-3; Hoffmann A. A., 1991, EVOLUTIONARY GENETIC; HOFFMANN AA, 1993, BIOL J LINN SOC, V48, P43, DOI 10.1006/bijl.1993.1004; Hoffmann AA, 2000, BIOSCIENCE, V50, P217, DOI 10.1641/0006-3568(2000)050[0217:ESAAEF]2.3.CO;2; Jenkins NL, 2004, P ROY SOC B-BIOL SCI, V271, P2523, DOI 10.1098/rspb.2004.2897; Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2006.02.002; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lazarevic J, 2007, EUR J ENTOMOL, V104, P211, DOI 10.14411/eje.2007.033; LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540; LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270; Malone EA, 1996, GENETICS, V143, P1193; Marden JH, 2003, P NATL ACAD SCI USA, V100, P3369, DOI 10.1073/pnas.0634985100; Morris JZ, 1996, NATURE, V382, P536, DOI 10.1038/382536a0; Nevo E, 1998, HEREDITY, V80, P9, DOI 10.1038/sj.hdy.6882740; Nevo E, 2001, P NATL ACAD SCI USA, V98, P6233, DOI 10.1073/pnas.101109298; Ogg S, 1997, NATURE, V389, P994, DOI 10.1038/40194; Paaby AB, 2010, MOL ECOL, V19, P760, DOI 10.1111/j.1365-294X.2009.04508.x; PARSONS PA, 1995, HEREDITY, V75, P216, DOI 10.1038/hdy.1995.126; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; PARTRIDGE L, 1995, EVOLUTION, V49, P538, DOI 10.1111/j.1558-5646.1995.tb02285.x; Pijpe J, 2008, AM NAT, V171, P81, DOI 10.1086/524200; R Core Team, 2013, R LANG ENV STAT COMP; ROSE MR, 1992, EXP GERONTOL, V27, P241, DOI 10.1016/0531-5565(92)90048-5; Savory FR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024550; Schmidt PS, 2006, EVOLUTION, V60, P1602, DOI 10.1554/05-430.1; Schmidt PS, 2000, P NATL ACAD SCI USA, V97, P10861, DOI 10.1073/pnas.190338897; Sgr C. M., 2004, HEREDITY, V93, P241, DOI DOI 10.1038/SJ.HDY.6800532.PUBMED:15280897; Shirley MDF, 1999, EVOLUTION, V53, P826, DOI 10.1111/j.1558-5646.1999.tb05376.x; Sorensen JG, 2001, FUNCT ECOL, V15, P289, DOI 10.1046/j.1365-2435.2001.00525.x; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Tissenbaum HA, 1998, GENETICS, V148, P703; Van Voorhies WA, 2005, BIOL LETTERS, V1, P247, DOI 10.1098/rsbl.2004.0278; Van Voorhies WA, 2006, EXP GERONTOL, V41, P1055, DOI 10.1016/j.exger.2006.05.006; Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693; WHITE EB, 1970, HILGARDIA, V40, P161, DOI 10.3733/hilg.v40n06p161; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams KD, 2006, P NATL ACAD SCI USA, V103, P15911, DOI 10.1073/pnas.0604592103; Wright BE, 2004, MOL MICROBIOL, V52, P643, DOI 10.1111/j.1365-2958.2004.04012.x; Yu B. P., 2004, GERIATR GERONTOL INT, V4, P81, DOI [10.1111/j.1447-0594.2004.00158.x, DOI 10.1111/J.1447-0594.2004.00158.X] 56 8 8 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. APR 2014 4 7 1176 1185 10.1002/ece3.1013 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AE2ND WOS:000333809000026 24772292 DOAJ Gold, Green Published 2019-02-21 J Garratt, M; Brooks, RC; Lemaitre, JF; Gaillard, JM Garratt, Michael; Brooks, Robert C.; Lemaitre, Jean-Francois; Gaillard, Jean-Michel FEMALE PROMISCUITY AND MATERNALLY DEPENDENT OFFSPRING GROWTH RATES IN MAMMALS EVOLUTION English Article mating systems; sexual conflict; Fecundity; placenta; life-history evolution SPERM COMPETITION; LIFE-HISTORY; PHYLOGENETIC ANALYSIS; SIBLING COMPETITION; PARENTAL INVESTMENT; IMPRINTED GENE; MATING SYSTEM; TESTES SIZE; BODY-SIZE; EVOLUTION Conflicts between family members are expected to influence the duration and intensity of parental care. In mammals, the majority of this care occurs as resource transfer from mothers to offspring during gestation and lactation. Mating systems can have a strong influence on the severity of familial conflict-where female promiscuity is prevalent, conflict is expected to be higher between family members, causing offspring to demand more resources. If offspring are capable of manipulating their mothers and receive resources in proportion to their demands, resource transfer should increase with elevated promiscuity. We tested this prediction, unexplored across mammals, using a comparative approach. The total durations of gestation and lactation were not related to testes mass, a reliable proxy of female promiscuity across taxa. Offspring growth during gestation, however, and weaning mass, were positively correlated with testes mass, suggesting that offspring gain resources from their mothers at faster rates when familial conflict is greater. During gestation, the relationship between offspring growth and testes mass was also related to placenta morphology, with a stronger relationship between testes mass and growth observed in species with a less invasive placenta. Familial conflict could have a pervasive influence on patterns of parental care in mammals. [Garratt, Michael; Brooks, Robert C.] Univ New S Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Lemaitre, Jean-Francois; Gaillard, Jean-Michel] Univ Lyon 1, Lab Biometr & Biol Evolut, UMR 5558, F-69622 Villeurbanne, France Garratt, M (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. Michael.Garratt@unsw.edu.au Brooks, Robert/A-1251-2008 Brooks, Robert/0000-0001-6926-0781; Gaillard, Jean-Michel/0000-0003-0174-8451 Fyssen Foundation; Australian Research Council JFL is supported by a grant from the Fyssen Foundation, Paris. RB is supported by a grant and Professorial Fellowship from the Australian Research Council. We are grateful to three anonymous referees for insightful comments on previous drafts of this work. Arnqvist G, 2005, SEXUAL CONFLICT; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; Bossan B, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2637; Capellini I, 2011, AM NAT, V177, P86, DOI 10.1086/657435; Crespi B, 2004, AM NAT, V163, P635, DOI 10.1086/382734; DECHIARA TM, 1991, CELL, V64, P849, DOI 10.1016/0092-8674(91)90513-X; Dormann CF, 2013, ECOGRAPHY, V36, P27, DOI 10.1111/j.1600-0587.2012.07348.x; Ernest SKM, 2003, ECOLOGY, V84, P3402, DOI 10.1890/02-9002; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fisher RA, 1930, GENETICAL THEORY NAT; Freckleton RP, 2009, J EVOLUTION BIOL, V22, P1367, DOI 10.1111/j.1420-9101.2009.01757.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Frost J. M., 2010, PLOS GENET, V6; Garratt M, 2013, P NATL ACAD SCI USA, V110, P7760, DOI 10.1073/pnas.1305018110; HAIG D, 1993, Q REV BIOL, V68, P495, DOI 10.1086/418300; Haig D, 1999, GENETICS, V151, P1229; Haig D, 2002, GENOMIC IMPRINTING K; Haig D, 2010, P NATL ACAD SCI USA, V107, P1731, DOI 10.1073/pnas.0904111106; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; HARCOURT AH, 1995, FUNCT ECOL, V9, P468, DOI 10.2307/2390011; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Itier JM, 1998, NATURE, V393, P125, DOI 10.1038/30120; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; KENAGY GJ, 1986, J MAMMAL, V67, P1, DOI 10.2307/1380997; LEE PC, 1991, J ZOOL, V225, P99, DOI 10.1111/j.1469-7998.1991.tb03804.x; Lefebvre L, 1998, NAT GENET, V20, P163, DOI 10.1038/2464; LEIGHTON PA, 1995, NATURE, V375, P34, DOI 10.1038/375034a0; Lemaitre JF, 2009, J EVOLUTION BIOL, V22, P2215, DOI 10.1111/j.1420-9101.2009.01837.x; Lessells CM, 2012, P ROY SOC B-BIOL SCI, V279, P1506, DOI 10.1098/rspb.2011.1690; LINDSTEDT SL, 1981, Q REV BIOL, V56, P1, DOI 10.1086/412080; Lloyd JD, 2003, P ROY SOC B-BIOL SCI, V270, P735, DOI 10.1098/rspb.2002.2289; Long TAF, 2005, J EVOLUTION BIOL, V18, P509, DOI 10.1111/j.1420-9101.2005.00888.x; Martin RD, 2008, EVOL BIOL, V35, P125, DOI 10.1007/s11692-008-9016-9; Martins EP, 1997, AM NAT, V149, P646, DOI 10.1086/286013; MOSSMAN HW, 1987, VERTEBRATE FETAL MEM; PARKER GA, 1985, ANIM BEHAV, V33, P519, DOI 10.1016/S0003-3472(85)80075-0; Ramm SA, 2010, BIOL LETTERS, V6, P219, DOI 10.1098/rsbl.2009.0635; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Royle NJ, 2004, POPUL ECOL, V46, P231, DOI 10.1007/s10144-004-0196-6; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Slatyer RA, 2012, BIOL REV, V87, P1, DOI 10.1111/j.1469-185X.2011.00182.x; Soulsbury CD, 2010, PLOS ONE, V5, pA152, DOI 10.1371/journal.pone.0009581; Stearns S, 1992, EVOLUTION LIFE HIST; Stockley P, 2002, P NATL ACAD SCI USA, V99, P12932, DOI 10.1073/pnas.192125999; Tourmente M, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-12; TRIVERS RL, 1974, AM ZOOL, V14, P249; WANG ZQ, 1994, NATURE, V372, P464, DOI 10.1038/372464a0; Wildman DE, 2006, P NATL ACAD SCI USA, V103, P3203, DOI 10.1073/pnas.0511344103 48 3 3 0 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution APR 2014 68 4 1207 1215 10.1111/evo.12333 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AD8ZF WOS:000333553500023 24325284 Bronze 2019-02-21 J Sutherland, BJG; Hanson, KC; Jantzen, JR; Koop, BF; Smith, CT Sutherland, Ben J. G.; Hanson, Kyle C.; Jantzen, Johanna R.; Koop, Ben F.; Smith, Christian T. Divergent immunity and energetic programs in the gills of migratory and resident Oncorhynchus mykiss MOLECULAR ECOLOGY English Article migration; ecological genomics; transcriptomics; immunity; steelhead; smoltification SALMON SALMO-SALAR; PARR-SMOLT TRANSFORMATION; LICE LEPEOPHTHEIRUS-SALMONIS; CHARR SALVELINUS-FONTINALIS; CALCIUM-BINDING PROTEINS; EARLY SEXUAL-MATURATION; K+ ATPASE ACTIVITY; ATLANTIC SALMON; CHINOOK SALMON; STEELHEAD TROUT Divergent life history strategies occur in steelhead or rainbow trout Oncorhynchus mykiss, and many populations produce both migrant (anadromous fish that move to the ocean after rearing) and resident (do not migrate and remain in fresh water) individuals. Mechanisms leading to each type are only partially understood; while the general tendency of a population is heritable, individual tendency may be plastic, influenced by local environment. Steelhead hatchery programmes aim to mitigate losses in wild stocks by producing trout that will migrate to the ocean and not compete with wild trout for limited freshwater resources. To increase our understanding of gill function in these migratory or resident phenotypes, here we compare gill transcriptome profiles of hatchery-released fish either at the release site (residents) or five river kilometres downstream while still in full fresh water (migrants). To test whether any of these genes can be used as predictive markers for smoltification, we compared these genes between migrant-like and undifferentiated trout while still in the hatchery in a common environment (prerelease). Results confirmed the gradual process of smoltification, and the importance of energetics, gill remodelling and ion transport capacity for migrants. Additionally, residents overexpressed transcripts involved in antiviral defences, potentially for immune surveillance via dendritic cells in the gills. The best smoltification marker candidate was protein s100a4, expression of which was highly correlated with Na+, K+ ATPase (NKA) activity and smolt-like morphology in pre- and postrelease trout gills. [Sutherland, Ben J. G.; Jantzen, Johanna R.; Koop, Ben F.] Univ Victoria, Dept Biol, Ctr Biomed Res, Victoria, BC V8W 3N5, Canada; [Hanson, Kyle C.; Smith, Christian T.] US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, Longview, WA 98632 USA Smith, CT (reprint author), US Fish & Wildlife Serv, Abernathy Fish Technol Ctr, 1440 Abernathy Creek Rd, Longview, WA 98632 USA. christian_smith@fws.gov Koop, Ben/A-8151-2008 Koop, Ben/0000-0003-0045-5200; Sutherland, Ben/0000-0002-2029-9893 U.S. Fish and Wildlife Service Pacific Region; NSERC CGS fellowship Steelhead were raised at Abernathy Fish Technology Center by John Holmes and Jeff McLaren. The rotary screwtrap at the mouth of Abernathy Creek was operated by the Washington Department of Fish and Wildlife. Brittany Balbag, Richard Glenn, Ben Kennedy and Will Simpson assisted with sample collection. DNA extraction and OmyY1 genotyping were performed by Jennifer VonBargen. Denise Hawkins provided helpful suggestions regarding study design. This work was funded by the U.S. Fish and Wildlife Service Pacific Region. BJGS was funded by an NSERC CGS fellowship. The authors are grateful to Patricia Crandell and four anonymous reviewers for helpful comments on earlier drafts of this manuscript. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the U.S. Fish and Wildlife Service. Banchereau J, 1998, NATURE, V392, P245, DOI 10.1038/32588; Bassity E, 2012, PLOS ONE, V7; Berejikian BA, 2013, CAN J FISH AQUAT SCI, V70, P756, DOI 10.1139/cjfas-2012-0491; Bieniasz PD, 2004, NAT IMMUNOL, V5, P1109, DOI 10.1038/ni1125; Birrer SC, 2012, FISH SHELLFISH IMMUN, V33, P1238, DOI 10.1016/j.fsi.2012.08.028; Bjornsson BT, 1997, FISH PHYSIOL BIOCHEM, V17, P9, DOI 10.1023/A:1007712413908; Boulet M, 2012, CURR ZOOL, V58, P158, DOI 10.1093/czoolo/58.1.158; Brunelli JP, 2008, GENOME, V51, P739, DOI 10.1139/G08-060; Churchill GA, 2002, NAT GENET, V32, P490, DOI 10.1038/ng1031; Demirel O, 2007, J BIOL CHEM, V282, P37836, DOI 10.1074/jbc.M708139200; EVANS DH, 1984, FISH PHYSIOL, V10, P239; Evans TG, 2011, MOL ECOL, V20, P4472, DOI 10.1111/j.1365-294X.2011.05276.x; FOLMAR LC, 1980, AQUACULTURE, V21, P1, DOI 10.1016/0044-8486(80)90123-4; Gale WL, 2009, N AM J AQUACULT, V71, P97, DOI 10.1577/A08-001.1; GIBSON R J, 1983, Naturaliste Canadien (Quebec), V110, P143; Graff IE, 2004, AQUACULTURE, V240, P617, DOI 10.1016/j.aquaculture.2004.06.025; Hale MC, 2013, G3-GENES GENOM GENET, V3, P1273, DOI 10.1534/g3.113.006817; Hanson KC, 2011, J FISH WILDL MANAG, V2, P61, DOI 10.3996/092010-JFWM-032; Hayes SA, 2012, N AM J FISH MANAGE, V32, P772, DOI 10.1080/02755947.2012.686953; Hecht BC, 2013, MOL ECOL, V22, P3061, DOI 10.1111/mec.12082; Hecht BC, 2012, G3-GENES GENOM GENET, V2, P1113, DOI 10.1534/g3.112.003137; Hellemans J, 2007, GENOME BIOL, V8, DOI 10.1186/gb-2007-8-2-r19; Hermann A, 2012, FRONT PHARMACOL, V3, DOI 10.3389/fphar.2012.00067; Hoar W.S., 1988, P275; Huang DW, 2009, NAT PROTOC, V4, P44, DOI 10.1038/nprot.2008.211; Jantzen Stuart G, 2011, BMC Res Notes, V4, P267, DOI 10.1186/1756-0500-4-267; Jantzen Stuart G, 2011, BMC Res Notes, V4, P88, DOI 10.1186/1756-0500-4-88; JOHNSON SC, 1992, DIS AQUAT ORGAN, V14, P179, DOI 10.3354/dao014179; Jones SRM, 2001, DEV COMP IMMUNOL, V25, P841, DOI 10.1016/S0145-305X(01)00039-8; Kennedy BM, 2007, CAN J FISH AQUAT SCI, V64, P1506, DOI 10.1139/F07-117; Klingelhofer J, 2009, FEBS J, V276, P5936, DOI 10.1111/j.1742-4658.2009.07274.x; Koop BF, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-545; Kraemer AM, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-48; Larsen DA, 2004, T AM FISH SOC, V133, P98, DOI 10.1577/T03-031; Lechmann M, 2002, TRENDS IMMUNOL, V23, P273, DOI 10.1016/S1471-4906(02)02214-7; Lemmetyinen J, 2013, ANN ZOOL FENN, V50, P16, DOI 10.5735/086.050.0102; Lin C.J., 2012, PLOS ONE, V7; Lock EJ, 2007, J ENDOCRINOL, V193, P459, DOI 10.1677/JOE-06-0198; Martinez A, 2011, T AM FISH SOC, V140, P829, DOI 10.1080/00028487.2011.588094; Mavarez J, 2009, J EVOLUTION BIOL, V22, P1708, DOI 10.1111/j.1420-9101.2009.01785.x; McCormick SD, 2002, J EXP BIOL, V205, P3553; MCCORMICK SD, 1993, CAN J FISH AQUAT SCI, V50, P656, DOI 10.1139/f93-075; McCormick SD, 1987, COMMON STRATEGIES AN, P211; Nichols KM, 2008, GENETICS, V179, P1559, DOI 10.1534/genetics.107.084251; Nickum J, 2004, GUIDELINES USE FISHE; Nilsen TO, 2007, J EXP BIOL, V210, P2885, DOI 10.1242/jeb.002873; Olsen JB, 2006, CONSERV GENET, V7, P613, DOI 10.1007/s10592-005-9099-0; Pavey SA, 2012, TRENDS ECOL EVOL, V27, P673, DOI 10.1016/j.tree.2012.07.014; Primmer CR, 2013, MOL ECOL, V22, P3216, DOI 10.1111/mec.12309; Purcell MK, 2011, FISH SHELLFISH IMMUN, V30, P84, DOI 10.1016/j.fsi.2010.09.007; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Development Core Team, 2012, R LANG ENV STAT COMP; Rivard CJ, 2007, J BIOL CHEM, V282, P6644, DOI 10.1074/jbc.M609432200; Robertson LS, 2012, COMP BIOCHEM PHYS D, V7, P351, DOI 10.1016/j.cbd.2012.07.003; Rozen S, 2000, Methods Mol Biol, V132, P365; Seear PJ, 2010, MAR BIOTECHNOL, V12, P126, DOI 10.1007/s10126-009-9218-x; Shearer K, 2006, AQUACULTURE, V252, P545, DOI 10.1016/j.aquaculture.2005.06.027; Shearer KD, 2000, AQUACULTURE, V190, P343, DOI 10.1016/S0044-8486(00)00406-3; Singer TD, 2002, CAN J FISH AQUAT SCI, V59, P125, DOI [10.1139/f01-205, 10.1139/F01-205]; Stefansson SO, 2007, AQUACULTURE, V273, P235, DOI 10.1016/j.aquaculture.2007.10.005; Stein MF, 2013, MOL CELL BIOL, V33, P1331, DOI 10.1128/MCB.01051-12; Sutherland BJG, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-200; Sutherland BJG, 2011, COMP BIOCHEM PHYS D, V6, P213, DOI 10.1016/j.cbd.2011.04.001; SWEETING RM, 1985, AQUACULTURE, V45, P185, DOI 10.1016/0044-8486(85)90269-8; Thorpe JE, 1998, AQUACULTURE, V168, P95, DOI 10.1016/S0044-8486(98)00342-1; THORPE JE, 1994, AQUACULTURE, V121, P105, DOI 10.1016/0044-8486(94)90012-4; THORPE JE, 1978, J FISH BIOL, V12, P541, DOI 10.1111/j.1095-8649.1978.tb04200.x; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thrower FP, 2004, J FISH BIOL, V65, P286, DOI 10.1111/j.1095-8649.2004.00551.x; Vandesompele J, 2002, GENOME BIOL, V3, DOI 10.1186/gb-2002-3-7-research0034; Yang YH, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.4.e15 71 10 10 0 33 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. APR 2014 23 8 1952 1964 10.1111/mec.12713 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology AE3DW WOS:000333858200006 24612010 2019-02-21 J San Mauro, D; Gower, DJ; Muller, H; Loader, SP; Zardoya, R; Nussbaum, RA; Wilkinson, M San Mauro, Diego; Gower, David J.; Mueller, Hendrik; Loader, Simon P.; Zardoya, Rafael; Nussbaum, Ronald A.; Wilkinson, Mark Life-history evolution and mitogenomic phylogeny of caecilian amphibians MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Gymnophiona; Larval re-evolution; Maternal dermatophagy; Mitochondrial genome; Reproduction; Viviparity MAXIMUM-LIKELIHOOD; MITOCHONDRIAL GENOME; LIVING AMPHIBIANS; GYMNOPHIONA CAECILIIDAE; MOLECULAR SYSTEMATICS; EXPERIMENTAL-DESIGN; GENUS ICHTHYOPHIS; TAYLOR AMPHIBIA; AMNIOTE ORIGINS; TREE SELECTION We analyze mitochondrial genomes to reconstruct a robust phylogenetic framework for caecilian amphibians and use this to investigate life-history evolution within the group. Our study comprises 45 caecilian mitochondrial genomes (19 of them newly reported), representing all families and 27 of 32 currently recognized genera, including some for which molecular data had never been reported. Support for all relationships in the inferred phylogenetic tree is high to maximal, and topology tests reject all investigated alternatives, indicating an exceptionally robust molecular phylogenetic framework of caecilian evolution consistent with current morphology-based supraspecific classification. We used the mitogenomic phylogenetic framework to infer ancestral character states and to assess correlation among three life-history traits (free-living larvae, viviparity, specialized pre-adult or vernal teeth), each of which occurs only in some caecilian species. Our results provide evidence that an ancestor of the Seychelles caecilians abandoned direct development and re-evolved a free-living larval stage. This study yields insights into the concurrent evolution of direct development and of vernal teeth in an ancestor of Teresomata that likely gave rise to skin-feeding (maternal dermatophagy) behavior and subsequently enabled evolution of viviparity, with skin feeding possibly a homologous precursor of oviduct feeding in viviparous caecilians. (c) 2014 Elsevier Inc. All rights reserved. [San Mauro, Diego; Gower, David J.; Wilkinson, Mark] Nat Hist Museum, Dept Life Sci, London SW7 5BD, England; [Mueller, Hendrik] Univ Jena, Inst Spezielle Zool & Evolut Biol, Phylet Museum, D-07743 Jena, Germany; [Loader, Simon P.] Univ Basel, Biogeog Res Grp, Dept Environm Sci, CH-4056 Basel, Switzerland; [Zardoya, Rafael] CSIC, Museo Nacl Ciencias Nat, Dept Biodiversidad & Biol Evolut, E-28006 Madrid, Spain; [Nussbaum, Ronald A.] Univ Michigan, Museum Zool, Ann Arbor, MI 48109 USA San Mauro, D (reprint author), Univ Barcelona, Dept Biol Anim, Av Diagonal 643, E-08028 Barcelona, Spain. dsanmauro@ub.edu San Mauro, Diego/E-7996-2012; Evolution and Conservation Biology, UCM Group/K-9382-2014; Mueller, Hendrik/B-4979-2010; Wilkinson, Mark/J-2026-2014 San Mauro, Diego/0000-0002-2214-1125; Mueller, Hendrik/0000-0001-6764-7376; Wilkinson, Mark/0000-0002-9459-8976; Zardoya, Rafael/0000-0001-6212-9502 European Union [PIEF-GA-2009-237658]; Department of Life Sciences of The Natural History Museum; Ministry of Science and Innovation of Spain [RYC-2011-09321, CGL2007-60954, CGL2010-18216]; Royal Society and Indian DST joint grant [IJP-2007/R4]; Volkswagen Foundation; German Science Foundation [DFG OL134/8-1]; Swiss National Science Foundation [31003A-133067]; US Fish & Wildlife Service's Wildlife Without Borders - Amphibians in Decline scheme For the provision of tissue loans, we thank the Museum of Vertebrate Zoology (University of California, Berkeley, USA), Museu de Ciencias da Pontificia Universidade Catolica do Rio Grande do Sul (Brazil), and Zoological Reference Collection (National University of Singapore, Singapore). We are grateful to many people and agencies for facilitating fieldwork and the collection of life-history data as well as of samples for molecular phylogenetic analyses, especially the Direction Regionale de l'Environnement (Cayenne) and the people cited for personal communications in the Supplementary data. Ralf Britz provided help with literature translations. This work was supported by the European Union FP7 Marie Curie Mobility and Training Programme (PIEF-GA-2009-237658 to D.S.M.), the Department of Life Sciences of The Natural History Museum (FTE research funding to D.J.G. and M.W.), the Ministry of Science and Innovation of Spain (Ramon y Cajal Programme RYC-2011-09321 to D.S.M. and CGL2007-60954 and CGL2010-18216 to R.Z.), Royal Society and Indian DST joint grant (IJP-2007/R4 to D.J.G. and Sathyabhama Das Biju), Volkswagen Foundation (postdoctoral fellowship to H.M.), the German Science Foundation (DFG OL134/8-1 to H.M. and Lennart Olsson), the Swiss National Science Foundation (31003A-133067 to S.P.L.), and the US Fish & Wildlife Service's Wildlife Without Borders - Amphibians in Decline scheme (to D.J.G. and M.W.). Abascal F, 2010, NUCLEIC ACIDS RES, V38, pW7, DOI 10.1093/nar/gkq291; Ahlberg PE, 1998, NATURE, V395, P792, DOI 10.1038/27421; Akaike H., 1973, 2 INT S INF THEOR AK; Amemiya CT, 2013, NATURE, V496, P311, DOI 10.1038/nature12027; AmphibiaWeb, 2014, AMPH INF AMPH BIOL C; Bei YJ, 2012, J NAT HIST, V46, P859, DOI 10.1080/00222933.2011.652985; Benton MJ, 2007, MOL BIOL EVOL, V24, P26, DOI 10.1093/molbev/msl150; Bernt M, 2013, MOL PHYLOGENET EVOL, V69, P313, DOI 10.1016/j.ympev.2012.08.023; Boore JL, 1999, NUCLEIC ACIDS RES, V27, P1767, DOI 10.1093/nar/27.8.1767; BRAUER A, 1899, ZOOL JB ANAT, V12, P477; Briggs JC, 2003, J BIOGEOGR, V30, P381, DOI 10.1046/j.1365-2699.2003.00809.x; Brinkmann H, 2004, P NATL ACAD SCI USA, V101, P4900, DOI 10.1073/pnas.0400609101; Bruce Richard C., 2005, Herpetological Review, V36, P107; Burnham K. P, 2002, MODEL SELECTION MULT; Castresana J, 2000, MOL BIOL EVOL, V17, P540, DOI 10.1093/oxfordjournals.molbev.a026334; Chippindale Paul T., 2005, Herpetological Review, V36, P113; Chippindale PT, 2004, EVOLUTION, V58, P2809; Husken T.-C., 1997, Acta Universitatis Carolinae Geologica, V40, P445, DOI 10.1016/B978-012670950-6/50018-7; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Doherty-Bone TM, 2011, J NAT HIST, V45, P827, DOI 10.1080/00222933.2010.535921; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Duellman W. E., 1986, BIOL AMPHIBIANS; Evans SE, 1998, ACTA PALAEONTOL POL, V43, P573; EVANS SE, 1990, PALAEONTOLOGY, V33, P299; Exbrayat J-M., 2006, REPROD BIOL PHYLOGEN; EXBRAYAT JM, 1988, B SOC HERP FR, V45, P27; Feller AE, 1998, MOL PHYLOGENET EVOL, V9, P509, DOI 10.1006/mpev.1998.0500; FELSENSTEIN J, 1981, J MOL EVOL, V17, P368, DOI 10.1007/BF01734359; Fong JJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048990; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Frost DR, 2013, AMPHIBIAN SPECIES WO; Gao KQ, 2003, NATURE, V422, P424, DOI 10.1038/nature01491; Gomes Aline D., 2012, South American Journal of Herpetology, V7, P191; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Gower DJ, 2008, J EVOLUTION BIOL, V21, P1220, DOI 10.1111/j.1420-9101.2008.01577.x; Gower DJ, 2011, ZOOTAXA, P14, DOI 10.11646/zootaxa.2767.1.2; Gower DJ, 2011, MOL PHYLOGENET EVOL, V59, P698, DOI 10.1016/j.ympev.2011.03.002; Gower DJ, 2002, P ROY SOC B-BIOL SCI, V269, P1563, DOI 10.1098/rspb.2002.2050; Gower DJ, 2008, THREATENED AMPHIBIAN, P19; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Hanken J., 1999, ORIGIN EVOLUTION LAR, P62; Hedges S. Blair, 1993, Herpetological Monographs, V7, P64, DOI 10.2307/1466952; HEDGES SB, 1993, NATURE, V363, P501, DOI 10.1038/363501b0; HOLM S, 1979, SCAND J STAT, V6, P65; Hoogmoed Marinus Steven, 2011, Boletim do Museu Paraense Emilio Goeldi Ciencias Naturais, V6, P241; Huelsenbeck JP, 2001, SCIENCE, V294, P2310, DOI 10.1126/science.1065889; Hugall AF, 2007, SYST BIOL, V56, P543, DOI 10.1080/10635150701477825; Irisarri I, 2010, MITOCHONDR DNA, V21, P173, DOI 10.3109/19401736.2010.513973; Jared C, 1999, COMP BIOCHEM PHYS A, V123, P313, DOI 10.1016/S1095-6433(99)00076-8; Kamei RG, 2012, P ROY SOC B-BIOL SCI, V279, P2396, DOI 10.1098/rspb.2012.0150; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Katoh K, 2008, BRIEF BIOINFORM, V9, P286, DOI 10.1093/bib/bbn013; Kerney RR, 2012, EVOLUTION, V66, P252, DOI 10.1111/j.1558-5646.2011.01426.x; KISHINO H, 1989, J MOL EVOL, V29, P170, DOI 10.1007/BF02100115; Kouete T.M., 2012, ISRN ZOOL, V7; Kuehnel S., 2012, ACTA ZOOLOGICA, V93, P222; Kupfer A, 2006, NATURE, V440, P926, DOI 10.1038/nature04403; Kupfer A, 2005, J ZOOL, V266, P237, DOI 10.1017/S0952836905006849; Kupfer A, 2004, BIOL J LINN SOC, V83, P207, DOI 10.1111/j.1095-8312.2004.00382.x; Kupfer A, 2009, ZOOLOGY, V112, P362, DOI 10.1016/j.zool.2008.12.001; LARGEN M J, 1972, Monitore Zoologico Italiano Supplemento, V4, P185; Loader SP, 2007, BIOLOGY LETT, V3, P505, DOI 10.1098/rsbl.2007.0266; Loader SP, 2011, HERPETOL J, V21, P5; Loader SP, 2003, J ZOOL, V259, P93, DOI 10.1017/S0952836902003060; Lupi R, 2010, MITOCHONDRION, V10, P192, DOI 10.1016/j.mito.2010.01.004; Maddin HC, 2012, ZOOL J LINN SOC-LOND, V166, P160, DOI 10.1111/j.1096-3642.2012.00838.x; Maddison W.P., 2011, MESQUITE MODULAR SYS; MEYER A, 1992, J MOL EVOL, V35, P102; Miller M. A., 2010, GAT COMP ENV WORKSH, P1, DOI DOI 10.1109/GCE.2010.5676129; Muller H, 2006, J MORPHOL, V267, P968, DOI 10.1002/jmor.10454; Muller H, 2009, BIOL J LINN SOC, V96, P491, DOI 10.1111/j.1095-8312.2008.01152.x; Muller H, 2005, ZOOMORPHOLOGY, V124, P171, DOI 10.1007/s00435-005-0005-6; Nishikawa K, 2012, MOL PHYLOGENET EVOL, V63, P714, DOI 10.1016/j.ympev.2012.02.017; Nussbaum R.A., 2004, IUCN CONSERVATION IN; NUSSBAUM RA, 1984, BIOGEOGRAPHY ECOLOGY, P379; Nussbaum RA, 1979, OCCAS PAP MUS ZOOL U, V687, P1; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; PARKER H. W., 1958, COPEIA, V1958, P71, DOI 10.2307/1440543; PARKER H. W., 1941, ANN AND MAG NAT HIST, V7, P1; Parker H.W., 1964, COPEIA, V1964, P75; PARKER HW, 1956, NATURE, V178, P250, DOI 10.1038/178250a0; PITMAN WC, 1993, BIOLOGICAL RELATIONSHIPS BETWEEN AFRICA AND SOUTH AMERICA, P15; Pough F. H., 2012, VERTEBRATE LIFE; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; RAGE J-C, 1989, Palaeontographica Abteilung A Palaeozoologie-Stratigraphie, V206, P1; REEVES JH, 1992, J MOL EVOL, V35, P17, DOI 10.1007/BF00160257; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; San Mauro D, 2006, MOL BIOL EVOL, V23, P227, DOI 10.1093/molbev/msj025; San Mauro D, 2005, AM NAT, V165, P590, DOI 10.1086/429523; San Mauro D, 2004, MOL PHYLOGENET EVOL, V33, P413, DOI 10.1016/j.ympev.2004.05.014; San Mauro D, 2012, SYST BIOL, V61, P661, DOI 10.1093/sysbio/sys028; San Mauro D, 2010, MOL PHYLOGENET EVOL, V56, P554, DOI 10.1016/j.ympev.2010.04.019; San Mauro D, 2010, CELL MOL BIOL LETT, V15, P311, DOI 10.2478/s11658-010-0010-8; San Mauro D, 2009, SYST BIOL, V58, P425, DOI 10.1093/sysbio/syp043; Sarasin P., 1887, ERGEBNISSE NATURWISS, VII; Shimodaira H, 2001, BIOINFORMATICS, V17, P1246, DOI 10.1093/bioinformatics/17.12.1246; Shimodaira H, 1999, MOL BIOL EVOL, V16, P1114, DOI 10.1093/oxfordjournals.molbev.a026201; Shimodaira H, 2002, SYST BIOL, V51, P492, DOI 10.1080/10635150290069913; Sigurdsen T, 2011, ZOOL J LINN SOC-LOND, V162, P457, DOI 10.1111/j.1096-3642.2010.00683.x; Stamatakis A, 2007, J VLSI SIG PROC SYST, V48, P271, DOI 10.1007/s11265-007-0067-4; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Talavera G, 2007, SYST BIOL, V56, P564, DOI 10.1080/10635150701472164; Tavare S, 1986, LECT MATH LIFE SCI, V17, P57; Taylor EH, 1968, CAECILIANS WORLD TAX; Tohyama Y, 2000, MOL BRAIN RES, V80, P256, DOI 10.1016/S0169-328X(00)00143-1; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Wake M.H., 1977, P73; Wake M.H., 1992, P112; Wake M.H., 2007, ECOLOGY EVOLUTION TR, P48; WAKE MH, 1970, ACTA ANAT, V75, P321; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Wiens JJ, 2007, EVOLUTION, V61, P1886, DOI 10.1111/j.1558-5646.2007.00159.x; WILKINSON M, 1992, J NAT HIST, V26, P675, DOI 10.1080/00222939200770421; Wilkinson M, 1998, J NAT HIST, V32, P1403, DOI 10.1080/00222939800770701; Wilkinson M, 2002, J NAT HIST, V36, P2185, DOI 10.1080/00222930110071714; Wilkinson M, 2002, MOL PHYLOGENET EVOL, V23, P401, DOI 10.1016/S1055-7903(02)00031-3; Wilkinson M, 1996, COPEIA, P550, DOI 10.2307/1447519; WILKINSON M, 1989, HERPETOLOGICA, V45, P23; Wilkinson M, 1997, BIOL J LINN SOC, V62, P39; Wilkinson M, 1999, ZOOL J LINN SOC-LOND, V126, P191, DOI 10.1006/zjls.1998.0172; Wilkinson M, 1997, BIOL REV, V72, P423, DOI 10.1017/S0006323197005069; Wilkinson M., 2012, CURR BIOL, V22, P668; Wilkinson M, 2008, BIOL LETTERS, V4, P358, DOI 10.1098/rsbl.2008.0217; Wilkinson M, 2006, REPROD BIOL PHYLOGEN, V5, P39; Wilkinson Mark, 2003, African Journal of Herpetology, V52, P83; Wilkinson M, 2010, ZOOTAXA, P63; Wilkinson M, 2011, ZOOTAXA, P41; Wilkinson M, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057756; Yang ZH, 2006, MOL BIOL EVOL, V23, P212, DOI 10.1093/molbev/msj024; YANG ZH, 1994, J MOL EVOL, V39, P306, DOI 10.1007/BF00160154; Zardoya R, 1998, MOL BIOL EVOL, V15, P506, DOI 10.1093/oxfordjournals.molbev.a025950; Zardoya R, 1997, GENETICS, V146, P995; Zardoya R, 2001, P NATL ACAD SCI USA, V98, P7380, DOI 10.1073/pnas.111455498; Zardoya R, 2000, GENETICS, V155, P765; Zhang P, 2005, SYST BIOL, V54, P391, DOI 10.1080/10635150590945278; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P479, DOI 10.1016/j.ympev.2009.06.018 138 38 38 0 46 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. APR 2014 73 177 189 10.1016/Lympev.2014.01.009 13 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity AD6OD WOS:000333379500018 24480323 2019-02-21 J Gonzalez-Pisani, X; Greco, LL Gonzalez-Pisani, Ximena; Lopez Greco, Laura Comparative Reproductive Effort and Fecundity in the Spider Crabs, Leurocyclus tuberculosus and Libinia spinosa (Majoidea, Brachyura) ZOOLOGICAL SCIENCE English Article reproductive effort; fecundity; Majoidea; Leurocyclus; Libinia H. MILNE EDWARDS; CHIONOECETES-BAIRDI DECAPODA; BRAZILIAN COAST; EGG-PRODUCTION; SNOW CRAB; SIZE; MAJIDAE; OPILIO; OUTPUT; VARIABILITY A comparative analysis of reproductive effort, fecundity, and egg weight was conducted in two species of spider crabs, Leurocyclus tuberculosus and Libinia spinosa, during one-year period. Ovigerous females were collected from Patagonia-Argentina (42 degrees 56'S, 64 degrees 21'W) and were measured (CW = carapace width). Each egg brood was weighed, dried and the number of eggs (F = fecundity) counted. Scatterplots of relative fecundity (RF = F/CW) were submitted to regression analyses. Mean F and RF was calculated for each season to assess seasonal variation of reproductive intensity. Mean F was 35,000 eggs in L. tuberculosus and 30,000 eggs in L. spinosa, with these values being intermediate in comparison with other Majoidea. The RF was approximately 18% higher in L. tuberculosus that presented an average dry weight egg 45% less than L. spinosa. Although in both species F showed a positive correlation with CW, less than the 20% of the variation in the number of eggs could be explained by female's size, suggesting there are other factors that influence F. The proportion of body energy devoted to reproduction (reproductive effort), exhibited significant differences between species. In Leurocyclus tuberculosus reproductive activity is significantly different along the 12-month suggesting that the conditions for 'optimal' egg production change-throughout the year. In Libinia spinosa mean fecundity did not reveal significant differences over seasons. These results are central in studies of life-history theory and in the development of life-history models, as it is directly related to energy allocation and partitioning. [Gonzalez-Pisani, Ximena] Natl Patagonian Ctr CENPAT CONICET, Puerto Madryn, Chubut, Argentina; [Lopez Greco, Laura] Univ Buenos Aires, FCEyN, Dept Biodivers & Expt Biol, Buenos Aires, DF, Argentina; [Lopez Greco, Laura] CONICET UBA, IBBEA, Buenos Aires, DF, Argentina Gonzalez-Pisani, X (reprint author), Natl Patagonian Ctr CENPAT CONICET, Puerto Madryn, Chubut, Argentina. xgpisani@gmail.com CONICET [PIP 5835-]; Agencia Nacional de Promocion Cientifica y Tecnologica (PICT) [953, 01187]; UBACYT [X143, X458] This study is part of X. Gonzalez-Pisani postgraduate scholarship (CONICET) and PhD Thesis (University of Buenos Aires, Argentina) and mainly funded by CONICET (PIP 5835- Dr. P.J. Baron). L. S. Lopez-Greco is grateful to Agencia Nacional de Promocion Cientifica y Tecnologica (PICT 2004, project 953 and PICT 2007 project 01187) and UBACYT (projects (projects X143 and X458) for partial supporting. Baron PJ, 2009, CRUSTACEANA, V82, P267, DOI 10.1163/156854008X390407; Bas CC, 2007, HELGOLAND MAR RES, V61, P225, DOI 10.1007/s10152-007-0070-y; Brante A, 2004, REV CHIL HIST NAT, V77, P15, DOI 10.4067/S0716-078X2004000100003; Brillon S, 2005, MAR BIOL, V147, P895, DOI 10.1007/s00227-005-1633-6; BRYANT AD, 1995, J EXP MAR BIOL ECOL, V188, P261, DOI 10.1016/0022-0981(94)00169-E; Carmona-Suarez CA, 2003, SCI MAR, V67, P75, DOI 10.3989/scimar.2003.67n175; Cobo VJ, 2009, INVERTEBR REPROD DEV, V53, P53, DOI 10.1080/07924259.2009.9652289; Cobo VJ, 2008, IHERINGIA, V98, P1; Comeau M, 1999, CAN J FISH AQUAT SCI, V56, P1088, DOI 10.1139/cjfas-56-6-1088; Dellatorre FG, 2009, THESIS NATL U COMAHU; DIESEL R, 1988, J CRUSTACEAN BIOL, V8, P63, DOI 10.2307/1548431; Diez MJ, 2009, POLAR BIOL, V33, P389; Dunnington M. J., 1999, THESIS U CANTERBURY; Gardner C, 1997, MAR FRESHWATER RES, V48, P581, DOI 10.1071/MF97023; Gayoso AM, 2006, HARMFUL ALGAE, V5, P233, DOI 10.1016/j.hal.2004.12.010; Gonzalez-Pisani X, 2011, THESIS U BUENOS AIRE; Graham DJ, 2012, J CRUSTACEAN BIOL, V32, P49, DOI 10.1163/193724011X615325; Hartnoll RG, 2006, HYDROBIOLOGIA, V557, P31, DOI 10.1007/s10750-005-9305-6; HAYNES E, 1976, J FISH RES BOARD CAN, V33, P2592, DOI 10.1139/f76-304; Henmi Y, 2003, J CRUSTACEAN BIOL, V23, P46, DOI 10.1651/0278-0372(2003)023[0046:TOBBSA]2.0.CO;2; HINES AH, 1992, AM ZOOL, V32, P503; HINES AH, 1982, MAR BIOL, V69, P309, DOI 10.1007/BF00397496; Lardies MA, 1997, OPHELIA, V46, P165, DOI 10.1080/00785326.1997.10432582; Lopez Greco L. S., 2000, Hydrobiologia, V439, P151, DOI 10.1023/A:1004130621093; Mantelatto FLM, 2002, J CRUSTACEAN BIOL, V22, P390, DOI 10.1651/0278-0372(2002)022[0390:EPSOTT]2.0.CO;2; Melo G. A. S, 1996, MANUAL IDENTIFICACAO; Negreiros-Fransozo Maria Lucia, 1992, Revista Brasileira de Biologia, V52, P547; Ng Peter K.L., 2008, Raffles Bulletin of Zoology Supplement, V17, P1; Okamori CM, 2003, J MAR BIOL ASSOC UK, V83, P979, DOI 10.1017/S0025315403008178h; Ouellet P, 2004, J CRUSTACEAN BIOL, V24, P481, DOI 10.1651/C-2467; PAUL AJ, 1984, J CRUSTACEAN BIOL, V4, P375, DOI 10.2307/1548037; PAUL AJ, 1984, J CRUSTACEAN BIOL, V4, P589, DOI 10.2307/1548073; Pinheiro N, 2000, CRUSTAC INT J CRUSTA, V73, P1121; RAMIREZLLODRA E, 2002, ADV MAR BIOL, V43, P87, DOI DOI 10.1016/S0065-2881(02)43004-0; SAINTE-MARIE B, 1993, CAN J FISH AQUAT SCI, V50, P2147, DOI 10.1139/f93-240; Sainte-Marie B, 2002, CAN J FISH AQUAT SCI, V59, P1932, DOI [10.1139/f02-162, 10.1139/F02-162]; Sastry A.N., 1983, P179; Schejter L, 2005, J MAR BIOL ASSOC UK, V85, P1; Sokal R.R., 1995, BIOMETRY PRINCIPLES; SOMERTON DA, 1983, J CRUSTACEAN BIOL, V3, P183, DOI 10.2307/1548254; Tavares M, 2012, ZOOLOGIA-CURITIBA, V29, P577, DOI 10.1590/S1984-46702012000600009; Tuck ID, 2000, ICES J MAR SCI, V57, P1227, DOI 10.1006/jmsc.2000.0809; Van den Brink AM, 2006, THESIS U CANTERBURY; Varisco M, 2011, LAT AM J AQUAT RES, V39, P471, DOI [10.4067/S0718-560X2011000300008, 10.3856/vol39-issue3-fulltext-8]; Verisimo P, 2011, ICES J MAR SCI, V68, P472, DOI 10.1093/icesjms/fsq164; Villalejo-Fuerte M, 1998, J SHELLFISH RES, V17, P299; Villalejo-Fuerte Marcial, 1999, Journal of Shellfish Research, V18, P181; Webb JB, 2009, ATL FISH SCI, V41, P163; Wenner A, 1991, CRUSTACEAN ISSUES, V7 49 5 7 1 14 ZOOLOGICAL SOC JAPAN TOKYO HONGO MT BUILDING 4F, HONGO 7-2-2, BUNKYO-KU, TOKYO, 113-0033, JAPAN 0289-0003 ZOOL SCI Zool. Sci. APR 2014 31 4 244 250 10.2108/zs130089 7 Zoology Zoology AE0AG WOS:000333625300008 24694227 2019-02-21 J Ernst, UR; De Haes, W; Cardoen, D; Schoofs, L Ernst, Ulrich R.; De Haes, Wouter; Cardoen, Dries; Schoofs, Liliane Life-prolonging measures for a dead theory? AGE English Article Oxidative stress theory of aging (OSTA); Aging theories; Model species; Life history; Mitohormesis; Invertebrates AGING RESEARCH; LONGEVITY; EVOLUTION; INSIGHTS; MODELS; FISH In a recent review article, Selman and colleagues (Trends Ecol Evol 27:570-577, 2012) discuss the status quo of the oxidative stress theory of aging (OSTA) and how it links to life history evolution. They suggest that the OSTA should be tested in wild populations which might show effects masked in laboratory settings. We disagree with their propositions for several reasons. We argue that there is increasing evidence that reactive oxygen species (ROS) are not causally linked with aging and that ROS do not play a straightforward role in shaping life history evolution. We propose that laboratory animals and semi-wild populations rather than wild animals are suited best to test any hypothesized effect of reactive oxygen species. This is because data from controlled manipulative experiments rather than observational correlations are preferred to solve this issue. In addition, nonconventional model organisms will be useful in answering the question how relevant the OSTA could be for life history evolution. [Ernst, Ulrich R.; De Haes, Wouter; Schoofs, Liliane] Katholieke Univ Leuven, Dept Biol, Res Grp Funct Genom & Prote, B-3000 Louvain, Belgium; [Ernst, Ulrich R.; Cardoen, Dries] Katholieke Univ Leuven, Dept Biol, Lab Socioecol & Social Evolut, B-3000 Louvain, Belgium Ernst, UR (reprint author), Katholieke Univ Leuven, Dept Biol, Res Grp Funct Genom & Prote, Naamsestr 59, B-3000 Louvain, Belgium. Uli.Ernst@bio.kuleuven.be Ernst, Ulrich/C-2575-2011 Ernst, Ulrich/0000-0002-6330-5341; De Haes, Wouter/0000-0002-3840-2502; Schoofs, Liliane/0000-0002-1673-432X IWT (Agency for Innovation by Science and Technology in Flanders) UE is funded by the IWT (Agency for Innovation by Science and Technology in Flanders). WDH is an FWO (Research Foundation Flanders) fellow. We thank R. Verdonck and A. De Loof for their valuable comments and encouragement. Baudisch A, 2012, SCIENCE, V338, P618, DOI 10.1126/science.1226467; Buffenstein R, 2008, AGE, V30, P99, DOI 10.1007/s11357-008-9058-z; Buffenstein R, 2008, J COMP PHYSIOL B, V178, P439, DOI 10.1007/s00360-007-0237-5; Fujii M, 2005, BIOSCI BIOTECH BIOCH, V69, P2015, DOI 10.1271/bbb.69.2015; Gerhard GS, 2007, AGEING RES REV, V6, P64, DOI 10.1016/j.arr.2007.02.007; Harper JM, 2008, AGE, V30, P135, DOI 10.1007/s11357-008-9057-0; Holmes DJ, 2004, ANN NY ACAD SCI, V1019, P483, DOI 10.1196/annals.1297.088; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; Ristow M, 2010, EXP GERONTOL, V45, P410, DOI 10.1016/j.exger.2010.03.014; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Voituron Y, 2011, BIOL LETTERS, V7, P105, DOI 10.1098/rsbl.2010.0539 12 1 1 0 9 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0161-9152 1574-4647 AGE Age APR 2014 36 2 533 534 10.1007/s11357-013-9581-4 2 Geriatrics & Gerontology Geriatrics & Gerontology AD2FG WOS:000333048600003 23955247 Green Published 2019-02-21 J Xu, YC; Yang, DB; Speakman, JR; Wang, DH Xu, Yan-Chao; Yang, Deng-Bao; Speakman, John R.; Wang, De-Hua Oxidative stress in response to natural and experimentally elevated reproductive effort is tissue dependent FUNCTIONAL ECOLOGY English Article Brandt's vole (Lasiopodomys brandtii); lactation; life-history trade-offs; litter size; oxidative damage VOLES LASIOPODOMYS-BRANDTII; LIFE-HISTORY EVOLUTION; ENERGY-INTAKE; DROSOPHILA-MELANOGASTER; COLD-EXPOSURE; MUS MUSCULUS; DAMAGE; COST; MICE; SUSCEPTIBILITY 1. Oxidative stress is a potential proximal physiological cost of reproduction. Detecting this cost may be performed in several different ways - manipulating reproductive status, correlating natural variations in effort to oxidative stress or manipulating reproductive effort. Here, we manipulated reproductive status and studied oxidative stress due to natural and experimental variation in reproductive effort in Brandt's voles (Lasiopodomys brandtii), using a variety of markers and tissues. 2. We measured markers of oxidative stress in lactating (raising 6 to 8 offspring) and nonreproductive voles (Experiment I) and found that a marker of oxidative protection [serum total-superoxide dismutase (SOD) activity] was reduced, and a marker of oxidative damage (protein carbonyls) was increased, in the serum, in lactating compared with non-reproductive voles. However, protein carbonyls in the liver were lower in lactating compared with nonreproductive voles, consistent with increased liver SOD activity. Lipid damage [malonaldehyde (MDA)] in both serum and liver was unrelated to reproductive status. 3. We compared these markers of oxidative stress between natural large (n >= 9) and small litter sizes (n <= 5; Experiment II), and between manipulated large (11-13) and small litter sizes (2-3; Experiment III) and found that liver MDA and SOD activity was higher in voles with natural large compared with natural small litter sizes, but there were no differences in other markers. There was no effect of litter size on all measures when it was experimentally manipulated. 4. The effects of reproductive status on oxidative stress were critically dependent on the exact markers and tissues used. The effects of natural variation in reproductive effort suggested that there might be an oxidative stress cost associated with large litter sizes, but this effect was not replicated in the experimentally manipulated litters. [Xu, Yan-Chao; Yang, Deng-Bao; Wang, De-Hua] Chinese Acad Sci, Inst Zool, State Key Lab Integrated Management Pest Insects, Beijing 100101, Peoples R China; [Xu, Yan-Chao; Yang, Deng-Bao] Univ Chinese Acad Sci, Beijing 100049, Peoples R China; [Speakman, John R.] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing 100101, Peoples R China; [Speakman, John R.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland Speakman, JR (reprint author), Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing 100101, Peoples R China. j.speakman@abdn.ac.uk; wangdh@ioz.ac.cn John, Speakman/A-9494-2008 John, Speakman/0000-0002-2457-1823 National Natural Science Foundation of China [31272312, 31071930]; Chinese Academy of Sciences [KSCX2-EW-N-005]; Chinese Academy of Sciences - Novo-Nordisk Foundation We thank all the members of Animal Physiological Ecology Group for their assistance. This study was supported by Grants from National Natural Science Foundation of China (31272312 and 31071930) and Chinese Academy of Sciences (KSCX2-EW-N-005) to DHW. J.R.S. was supported by a "1000 talents' professorship and a "Great wall' professorship from the Chinese Academy of Sciences - Novo-Nordisk Foundation. We thank two anonymous referees and the associate editor for their helpful and constructive comments which improved the manuscript. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Arguelles S, 2004, BBA-GEN SUBJECTS, V1674, P251, DOI 10.1016/j.bbagen.2004.06.023; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Bertrand S, 2006, FUNCT ECOL, V20, P1022, DOI 10.1111/j.1365-2435.2006.01191.x; Christe P., 2011, P ROY SOC LOND B BIO, V279, P1142; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Del Rio D, 2005, NUTR METAB CARDIOVAS, V15, P316, DOI 10.1016/j.numecd.2005.05.003; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Duah OA, 2013, J EXP BIOL, V216, P2339, DOI 10.1242/jeb.078428; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; HAMMOND KA, 1992, PHYSIOL ZOOL, V65, P952, DOI 10.1086/physzool.65.5.30158552; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; Johnson MS, 2001, J EXP BIOL, V204, P1967; Johnson MS, 2001, J EXP BIOL, V204, P1925; Kristan DM, 2000, J EXP BIOL, V203, P3495; Loudon A.S.I., 1987, REPR EN MAMM P S HEL; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Mateos R, 2007, J SEP SCI, V30, P175, DOI 10.1002/jssc.200600314; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; MILLAR JS, 1977, EVOLUTION, V31, P370, DOI 10.1111/j.1558-5646.1977.tb01019.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moore K, 1998, FREE RADICAL RES, V28, P659, DOI 10.3109/10715769809065821; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Piersma T, 2011, FLEXIBLE PHENOTYPE B; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Salmon AB, 2001, EVOLUTION, V55, P1600, DOI 10.1111/j.0014-3820.2001.tb00679.x; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; SOHAL RS, 1995, MECH AGEING DEV, V81, P15, DOI 10.1016/0047-6374(94)01578-A; Speakman J.R., MEASURING O IN PRESS; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S, 1992, EVOLUTION LIFE HIST; Veskoukis AS, 2009, FREE RADICAL BIO MED, V47, P1371, DOI 10.1016/j.freeradbiomed.2009.07.014; Wang Y, 2001, EXP GERONTOL, V36, P1349, DOI 10.1016/S0531-5565(01)00095-X; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wu SH, 2009, J EXP BIOL, V212, P3455, DOI 10.1242/jeb.030338; Xu YC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037182; Zhang XY, 2008, J COMP PHYSIOL B, V178, P637, DOI 10.1007/s00360-008-0255-y; ZHANG ZB, 1998, ECOLOGY MANAGEMENT R 47 31 37 1 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2014 28 2 SI 402 410 10.1111/1365-2435.12168 9 Ecology Environmental Sciences & Ecology AC8IU WOS:000332777500012 Bronze 2019-02-21 J Foray, V; Desouhant, E; Gibert, P Foray, Vincent; Desouhant, Emmanuel; Gibert, Patricia The impact of thermal fluctuations on reaction norms in specialist and generalist parasitic wasps FUNCTIONAL ECOLOGY English Article environmental variability; Jensen's Inequality; parasitoid; performance curves; phenotypic plasticity; Venturia canescens ENDOPARASITOID VENTURIA-CANESCENS; LIFE-HISTORY EVOLUTION; CLIMATE-CHANGE; JENSENS INEQUALITY; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; DIFFERENT HABITATS; STOCHASTIC ENVIRONMENT; RAPID-DETERMINATION; ENERGY ALLOCATION 1. Reaction norms depict the environmental effects on phenotypic traits and are used to predict the global change consequences on species distributions. However, studies performed at constant temperatures have limited ecological significance because expressed phenotypes depend on the range and frequency of environmental states. 2. Using Jensen's inequality (i.e. a mathematical property of nonlinear functions), we predicted that the effect of thermal fluctuations on the phenotype depends on the shape of the reaction norm. Thermal fluctuations around the optimal temperature are expected to reduce the phenotypic trait values, especially for specialists because of their narrower reaction norms. 3. This study measured the effects of diel fluctuations in developmental temperature on phenotypic expression of traits related to fitness and energetic resources in two strains of the parasitoid wasp Venturia canescens from different habitats: a thermal generalist strain and a specialist one. In a first experiment, we compared the effect of constant thermal regimes versus fluctuating ones having the same means (20, 25 and 30 degrees C) on reaction norms of life-history traits and of energetic reserves. In a second experiment, we examined the effects of a natural thermoperiod in the field on these traits. 4. Our results show that the shape of the reaction norm defines the phenotypic changes induced by the development under fluctuating thermal conditions. These results match the predictions of the Jensen's inequality. Moreover, our results emphasize the significance of taking into account several phenotypic life-history traits to study the adaptive value of phenotypic plasticity. We also show that the level of energetic resources depends on the mean developmental temperature and not on the thermal regime. Finally, the field experiment confirms that the phenotype of these parasitoids depends on the temperature variation. 5. Our study highlights the relevance of the Jensen's inequality to predict the effect of thermal fluctuations on fitness of parasitoids with contrasted thermal sensitivities. [Foray, Vincent; Desouhant, Emmanuel; Gibert, Patricia] Univ Lyon, F-69000 Lyon, France; [Foray, Vincent; Desouhant, Emmanuel; Gibert, Patricia] Univ Lyon 1, F-69622 Villeurbanne, France; [Foray, Vincent; Desouhant, Emmanuel; Gibert, Patricia] CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France Foray, V (reprint author), Catholic Univ Louvain, Earth & Life Inst, Biodivers Res Ctr, Croix Sud 4-5 Bte L7-07-04, B-1348 Louvain, Belgium. vincent.foray@uclouvain.be DESOUHANT, Emmanuel/A-9537-2013 Gibert, Patricia/0000-0002-9461-6820; DESOUHANT, Emmanuel/0000-0003-0317-4463 Ministere de l'Enseignement Superieur et de la Recherche We are grateful to Sandrine Sauzet and Francois Debias for their help in rearing. Isabelle Amat, Carlos Bernstein, Hans van Dyck, Marianne Renoz, Raymond Huey and two anonymous reviewers are thanked for their helpful comments on an earlier version of this manuscript. Research was supported by a grant to Vincent Foray from the Ministere de l'Enseignement Superieur et de la Recherche. This article is number BRC 301 of the Biodiversity Research Centre. Addo-Bediako A, 2002, FUNCT ECOL, V16, P332, DOI 10.1046/j.1365-2435.2002.00634.x; Amat I, 2006, OECOLOGIA, V148, P153, DOI 10.1007/s00442-005-0332-9; AMAT I, 2004, THESIS U CLAUDE BERN; Amat I, 2009, BEHAV ECOL SOCIOBIOL, V63, P563, DOI 10.1007/s00265-008-0691-4; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; BEUKEBOOM LW, 1999, P 8 M EXP APPL ENT N, V10, P23; Blackburn HB, 2011, ECOLOGY, V92, P98, DOI 10.1890/10-0637.1; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bozinovic F, 2011, PHYSIOL BIOCHEM ZOOL, V84, P543, DOI 10.1086/662551; Brakefield PM, 1997, P ROY SOC B-BIOL SCI, V264, P717, DOI 10.1098/rspb.1997.0102; Brommer JE, 2008, P ROY SOC B-BIOL SCI, V275, P687, DOI 10.1098/rspb.2007.0951; CARACO T, 1980, ECOLOGY, V61, P119, DOI 10.2307/1937162; Castelo MK, 2003, J INSECT BEHAV, V16, P307, DOI 10.1023/A:1023928204793; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Chown SL, 2007, P R SOC B, V274, P2531, DOI 10.1098/rspb.2007.0772; Chown SL, 2010, CLIM RES, V43, P3, DOI 10.3354/cr00879; CLARKE A, 1993, FUNCT ECOL, V7, P139, DOI 10.2307/2389880; Clusella-Trullas S, 2011, AM NAT, V177, P738, DOI 10.1086/660021; Colinet H, 2007, COMP BIOCHEM PHYS A, V147, P484, DOI 10.1016/j.cbpa.2007.01.030; Desouhant E, 2005, ANIM BEHAV, V70, P145, DOI 10.1016/j.anbehav.2004.10.015; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Eliopoulos PA, 2003, ENVIRON ENTOMOL, V32, P1049, DOI 10.1603/0046-225X-32.5.1049; Eliopoulos PA, 2003, PHYSIOL ENTOMOL, V28, P268, DOI 10.1111/j.1365-3032.2003.00341.x; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Fischer B, 2011, EVOLUTION, V65, P1221, DOI 10.1111/j.1558-5646.2010.01198.x; Fischer B, 2009, AM NAT, V173, pE108, DOI 10.1086/596536; Fischer K, 2011, OECOLOGIA, V166, P23, DOI 10.1007/s00442-011-1917-0; Folguera G, 2011, COMP BIOCHEM PHYS A, V159, P242, DOI 10.1016/j.cbpa.2011.03.002; Foray V, 2013, EUR J ENTOMOL, V110, P103, DOI 10.14411/eje.2013.014; Foray V, 2013, COMP BIOCHEM PHYS A, V164, P77, DOI 10.1016/j.cbpa.2012.10.018; Foray V, 2012, PHYSIOL ENTOMOL, V37, P295, DOI 10.1111/j.1365-3032.2012.00831.x; Foray V, 2011, NATURWISSENSCHAFTEN, V98, P683, DOI 10.1007/s00114-011-0818-8; GILCHRIST GW, 1995, AM NAT, V146, P252, DOI 10.1086/285797; Hance T, 2007, ANNU REV ENTOMOL, V52, P107, DOI 10.1146/annurev.ento.52.110405.091333; HUEY RB, 1979, AM ZOOL, V19, P357; Jensen JLWV, 1906, ACTA MATH-DJURSHOLM, V30, P175, DOI 10.1007/BF02418571; Kingsolver JG, 2009, EVOLUTION, V63, P537, DOI 10.1111/j.1558-5646.2008.00568.x; Kjaersgaard A, 2012, EVOL ECOL RES, V14, P803; Kostal V, 2007, COMP BIOCHEM PHYS A, V147, P231, DOI 10.1016/j.cbpa.2006.12.033; Leach IM, 2009, INSECT MOL BIOL, V18, P477, DOI 10.1111/j.1365-2583.2009.00890.x; LI HB, 1993, LANDSCAPE ECOL, V8, P155, DOI 10.1007/BF00125347; Liu YQ, 2009, BEHAV ECOL SOCIOBIOL, V63, P1459, DOI 10.1007/s00265-009-0800-z; Liu YQ, 2009, ENTOMOL EXP APPL, V132, P110, DOI 10.1111/j.1570-7458.2009.00878.x; Lucchetta P, 2007, BEHAV ECOL SOCIOBIOL, V61, P1409, DOI 10.1007/s00265-007-0372-8; LYNCH M, 1987, AM NAT, V129, P283, DOI 10.1086/284635; Marshall KE, 2010, P R SOC B, V277, P963, DOI 10.1098/rspb.2009.1807; Martin TL, 2008, AM NAT, V171, pE102, DOI 10.1086/527502; Merakova E, 2009, FUNCT ECOL, V23, P989, DOI 10.1111/j.1365-2435.2009.01588.x; Metzger M, 2008, ECOL ENTOMOL, V33, P167, DOI 10.1111/j.1365-2311.2007.00953.x; Miner BG, 2004, ECOL LETT, V7, P794, DOI 10.1111/j.1461-0248.2004.00637.x; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; NELDER JA, 1972, J R STAT SOC SER A-G, V135, P370, DOI 10.2307/2344614; Niehaus AC, 2012, J EXP BIOL, V215, P694, DOI 10.1242/jeb.058032; Pasztor L, 2000, TRENDS ECOL EVOL, V15, P117, DOI 10.1016/S0169-5347(99)01801-7; Pelosse P, 2007, EVOL ECOL, V21, P669, DOI 10.1007/s10682-006-9145-5; Pelosse P, 2011, BIOL J LINN SOC, V104, P621, DOI 10.1111/j.1095-8312.2011.01741.x; Pelosse P, 2010, ENTOMOL EXP APPL, V135, P68, DOI 10.1111/j.1570-7458.2009.00965.x; Petavy G, 2004, EVOL ECOL RES, V6, P873; Petavy G, 2001, J THERM BIOL, V26, P29, DOI 10.1016/S0306-4565(00)00022-X; Podrabsky JE, 2004, J EXP BIOL, V207, P2237, DOI 10.1242/jeb.01016; R Development Core Team, 2010, R LANG ENV STAT COMP; Ragland GJ, 2008, EVOL ECOL RES, V10, P29; Richards SA, 2009, AM NAT, V174, P382, DOI 10.1086/603626; Rohr JR, 2011, TRENDS ECOL EVOL, V26, P270, DOI 10.1016/j.tree.2011.03.002; Ruel JJ, 1999, TRENDS ECOL EVOL, V14, P361, DOI 10.1016/S0169-5347(99)01664-X; SALT G, 1976, ECOL ENTOMOL, V1, P63, DOI 10.1111/j.1365-2311.1976.tb01205.x; Schneider M. V., 2003, THESIS LEIDEN U NETH; Smallwood PD, 1996, AM ZOOL, V36, P392; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Tebaldi C, 2006, CLIMATIC CHANGE, V79, P185, DOI 10.1007/s10584-006-9051-4; Terblanche JS, 2010, ENTOMOL EXP APPL, V137, P304, DOI 10.1111/j.1570-7458.2010.01067.x; Thiel A, 2006, BEHAV ECOL SOCIOBIOL, V59, P614, DOI 10.1007/s00265-005-0088-6; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P299; VANHANDEL E, 1985, J AM MOSQUITO CONTR, V1, P302; VANTIENDEREN PH, 1991, EVOLUTION, V45, P1317, DOI 10.1111/j.1558-5646.1991.tb02638.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williams CM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034470; Wolf M, 2012, TRENDS ECOL EVOL, V27, P452, DOI 10.1016/j.tree.2012.05.001; Zhou LM, 2009, CLIM DYNAM, V32, P429, DOI 10.1007/s00382-008-0387-5 83 14 14 1 62 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. APR 2014 28 2 SI 411 423 10.1111/1365-2435.12171 13 Ecology Environmental Sciences & Ecology AC8IU WOS:000332777500013 Bronze 2019-02-21 J Ziermann, JM; Diogo, R Ziermann, Janine M.; Diogo, Rui Cranial Muscle Development in Frogs with Different Developmental Modes: Direct Development versus Biphasic Development JOURNAL OF MORPHOLOGY English Article direct development; evolution; cranial muscles; amphibian; anura ELEUTHERODACTYLUS-COQUI ANURA; LIFE-HISTORY EVOLUTION; THYROID-HORMONE; AMPHIBIAN METAMORPHOSIS; XENOPUS-LAEVIS; MECHANISTIC BASIS; GENE-EXPRESSION; JAW MUSCLES; ONTOGENY; LEPTODACTYLIDAE Normal development in anurans includes a free swimming larva that goes through metamorphosis to develop into the adult frog. We have investigated cranial muscle development and adult cranial muscle morphology in three different anuran species. Xenopus laevis is obligate aquatic throughout lifetime, Rana (Lithobates) pipiens has an aquatic larvae and a terrestrial adult form, and Eleutherodactylus coqui has direct developing juveniles that hatch from eggs deposited on leaves (terrestrial). The adult morphology shows hardly any differences between the investigated species. Cranial muscle development of E. coqui shows many similarities and only few differences to the development of Rana (Lithobates) and Xenopus. The differences are missing muscles of the branchial arches (which disappear during metamorphosis of biphasic anurans) and a few heterochronic changes. The development of the mandibular arch (adductor mandibulae) and hyoid arch (depressor mandibulae) muscles is similar to that observed in Xenopus and Rana (Lithobates), although the first appearance of these muscles displays a midmetamorphic pattern in E. coqui. We show that the mix of characters observed in E. coqui indicates that the larval stage is not completely lost even without a free swimming larval stage. Cryptic metamorphosis is the process in which morphological changes in the larva/embryo take place that are not as obvious as in normal metamorphosing anurans with a clear biphasic lifestyle. During cryptic metamorphosis, a normal adult frog develops, indicating that the majority of developmental mechanisms towards the functional adult cranial muscles are preserved. J. Morphol. 275:398-413, 2014. (c) 2013 Wiley Periodicals, Inc. [Ziermann, Janine M.; Diogo, Rui] Howard Univ, Coll Med, Dept Anat, Washington, DC 20059 USA Ziermann, JM (reprint author), Howard Univ, Coll Med, Dept Anat, 520 W St NW,Room 1111, Washington, DC 20059 USA. jziermann@yahoo.de Ziermann, Janine/C-7155-2014 Ziermann, Janine/0000-0002-1264-9240; Diogo, Rui/0000-0002-9008-1910 Howard University College of Medicine Contract grant sponsor: Howard University College of Medicine (Rui Diogo's start-up package). ALLEY KE, 1989, AM J ANAT, V184, P1, DOI 10.1002/aja.1001840102; Alley KE, 1998, CELL TISSUES ORGANS, V164, P46; Altic R, 2006, HERPETOLOGICA, V62, P1, DOI 10.1655/05-23.1; [Anonymous], 2013, ENCY BRITANNICA; Brown DD, 2007, DEV BIOL, V306, P20, DOI 10.1016/j.ydbio.2007.03.021; Buchholz DR, 2007, DEV DYNAM, V236, P1259, DOI 10.1002/dvdy.21153; Callery EM, 2000, DEV GENES EVOL, V210, P377, DOI 10.1007/s004270000070; Callery EM, 2001, BIOESSAYS, V23, P233, DOI 10.1002/1521-1878(200103)23:3<233::AID-BIES1033>3.0.CO;2-Q; Callery EM, 2000, P NATL ACAD SCI USA, V97, P2615, DOI 10.1073/pnas.050501097; CARROLL RL, 1980, ZOOL J LINN SOC-LOND, V68, P1, DOI 10.1111/j.1096-3642.1980.tb01916.x; Carroll RL, 2007, ZOOL J LINN SOC-LOND, V150, P1, DOI 10.1111/j.1096-3642.2007.00246.x; Chanoine C, 2003, DEV DYNAM, V226, P12, DOI 10.1002/dvdy.10206; DEJONGH HJ, 1968, NETH J ZOOL, V18, P1; DELPINO EM, 1983, NATURE, V306, P589, DOI 10.1038/306589a0; DENT JA, 1989, DEVELOPMENT, V105, P61; DENVER RJ, 2002, HORMONES BRAIN BEHAV, V2, P469; Denver RJ, 2013, CURR TOP DEV BIOL, V103, P195, DOI 10.1016/B978-0-12-385979-2.00007-1; Denver RJ, 2009, GEN COMP ENDOCR, V164, P20, DOI 10.1016/j.ygcen.2009.04.016; Denver RJ, 2009, DEV BIOL, V326, P155, DOI 10.1016/j.ydbio.2008.11.005; Desnitskiy A. G., 2004, RUSSIAN J DEV BIOL, V35, P125; Diogo R., 2010, MUSCLES VERTEBRATES; Duellman W. E., 1994, BIOL AMPHIBIANS; Ecker A., 1864, ANATOMIE FROSCHES; Edgeworth F. H., 1935, CRANIAL MUSCLES VERT; Edgeworth FH, 1930, J ANAT, V64, P184; Elinson RP, 2007, DEV DYNAM, V236, P2444, DOI 10.1002/dvdy.21220; Elinson RP, 2013, CURR TOP DEV BIOL, V103, P259, DOI 10.1016/B978-0-12-385979-2.00009-5; Elinson RP, 2012, WIRES DEV BIOL, V1, P345, DOI 10.1002/wdev.23; Elinson RP, 1998, DEV GENES EVOL, V208, P457, DOI 10.1007/s004270050203; Elinson RP, 2002, ZOOLOGY, V105, P105, DOI 10.1078/0944-2006-00060; Elinson RP, 1999, DEV BIOL, V215, P243, DOI 10.1006/dbio.1999.9481; ELINSON RP, 1990, BIOL BULL, V179, P163, DOI 10.2307/1541765; ELINSON RP, 1985, J EMBRYOL EXP MORPH, V90, P223; ELINSON RP, 1987, J MORPHOL, V193, P217, DOI 10.1002/jmor.1051930208; ERICSSON R, 2003, COMP STUDY HEAD DEV; Fang H, 1999, DEV BIOL, V205, P233, DOI 10.1006/dbio.1998.9078; Fang H, 1996, DEV BIOL, V179, P160, DOI 10.1006/dbio.1996.0248; Frost DR, 2006, B AM MUS NAT HIST, P8, DOI 10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2; Gaupp E, 1896, ANATOMIE FORSCHES, P1; Haas A, 2003, CLADISTICS, V19, P23, DOI 10.1016/S0748-3007(03)00006-9; Haas A, 2001, J MORPHOL, V247, P1, DOI 10.1002/1097-4687(200101)247:1<1::AID-JMOR1000>3.0.CO;2-3; Hanken J, 1997, P ROY SOC B-BIOL SCI, V264, P1349, DOI 10.1098/rspb.1997.0187; Hanken J, 1997, AM ZOOL, V37, P160; HANKEN J, 1992, J MORPHOL, V211, P95, DOI 10.1002/jmor.1052110111; Hanken J, 2001, J EXP ZOOL, V291, P375, DOI 10.1002/jez.1136; HANKEN J, 1992, J EVOLUTION BIOL, V5, P549, DOI 10.1046/j.1420-9101.1992.5040549.x; Hanken James, 1999, P61, DOI 10.1016/B978-012730935-4/50004-3; Heimeier RA, 2010, GEN COMP ENDOCR, V168, P181, DOI 10.1016/j.ygcen.2010.02.016; HORTON P, 1982, COPEIA, P595, DOI 10.2307/1444659; Iordansky N.N., 1992, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V122, P225; Iordansky Nikolai N., 1996, Advances in Amphibian Research in the Former Soviet Union, V1, P3; Jennings DH, 1998, GEN COMP ENDOCR, V111, P225, DOI 10.1006/gcen.1998.7111; Johnston P, 2011, J MORPHOL, V272, P1492, DOI 10.1002/jmor.10998; Kerney R, 2011, EVOLUTION, V66, P252; Kerney R, 2007, J MORPHOL, V268, P715, DOI 10.1002/jmor.10545; Kerney R, 2010, EVOL DEV, V12, P373, DOI 10.1111/j.1525-142X.2010.00424.x; KIKUYAMA S, 1993, INT REV CYTOL, V145, P105, DOI 10.1016/S0074-7696(08)60426-X; KINTNER CR, 1985, J EMBRYOL EXP MORPH, V89, P37; Kulkarni SS, 2010, GEN COMP ENDOCR, V169, P225, DOI 10.1016/j.ygcen.2010.09.009; Meza-Joya FL, 2013, ANAT REC, V296, P1019, DOI 10.1002/ar.22705; Luther A, 1914, ACTA SOC SCI FENN, V7, P1; LUTZ B, 1948, EVOLUTION, V2, P29, DOI 10.2307/2405613; MCCLEARN D, 1988, AM J ANAT, V183, P277, DOI 10.1002/aja.1001830402; Nieuwkoop P. D., 1967, NORMAL TABLE XENOPUS; Ninomiya H, 2001, DEV BIOL, V236, P109, DOI 10.1006/dbio.2001.0310; Olsson L, 2002, ZOOLOGY, V105, P3, DOI 10.1078/0944-2006-00051; Paterson NF, 1939, Q J MICROSC SCI, V81, P161; Schilling TF, 1997, DEVELOPMENT, V124, P2945; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P94, DOI 10.1159/000113325; Schlosser G, 2003, ANAT EMBRYOL, V206, P215, DOI 10.1007/s00429-002-0291-4; Schlosser G, 2002, ZOOLOGY, V105, P119, DOI 10.1078/0944-2006-00058; Schlosser G, 1997, BRAIN BEHAV EVOLUT, V50, P62; Sedra SN, 1957, DEV SKULL VISCERAL A, P5; Shi Y-B., 2013, ANIMAL METAMORPHOSIS, V103, P456; Shumway W, 1940, ANAT REC, V78, P139, DOI 10.1002/ar.1090780202; Singamsetty S, 2010, EVOL DEV, V12, P437, DOI 10.1111/j.1525-142X.2010.00430.x; Tata JR, 2006, MOL CELL ENDOCRINOL, V246, P10, DOI 10.1016/j.mce.2005.11.024; TATA JR, 1991, DEV BIOL, V146, P72, DOI 10.1016/0012-1606(91)90447-B; TOWNSEND DS, 1981, SCIENCE, V212, P469, DOI 10.1126/science.6894203; TOWNSEND DS, 1984, ANIM BEHAV, V32, P421, DOI 10.1016/S0003-3472(84)80278-X; TOWNSEND DS, 1985, COPEIA, P423, DOI 10.2307/1444854; Wake DB, 1996, INT J DEV BIOL, V40, P859; WEISZ PB, 1945, J MORPHOL, V77, P163, DOI 10.1002/jmor.1050770204; Ziermann JM, 2007, J MORPHOL, V268, P791, DOI 10.1002/jmor.10552; Ziermann JM, 2013, ANAT REC, V296, P1031, DOI 10.1002/ar.22713; Ziermann JM., 2008, EVOLUTIONARE ENTWICK 86 16 17 0 16 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0362-2525 1097-4687 J MORPHOL J. Morphol. APR 2014 275 4 398 413 10.1002/jmor.20223 16 Anatomy & Morphology Anatomy & Morphology AC1EV WOS:000332237900004 24877162 2019-02-21 J Bize, P; Cotting, S; Devevey, G; van Rooyen, J; Lalubin, F; Glaizot, O; Christe, P Bize, Pierre; Cotting, Sophie; Devevey, Godefroy; van Rooyen, Juan; Lalubin, Fabrice; Glaizot, Olivier; Christe, Philippe Senescence in cell oxidative status in two bird species with contrasting life expectancy OECOLOGIA English Article Ageing; Antioxidant defences; Free radical theory of ageing; Life history theory; Oxidative stress LONG-LIVED BIRD; FREE-RADICALS; REPRODUCTIVE-PERFORMANCE; HISTORY EVOLUTION; ALPINE SWIFT; PARUS-MAJOR; STRESS; AGE; ERYTHROCYTES; RESISTANCE Oxidative stress occurs when the production of reactive oxygen species (ROS) by an organism exceeds its capacity to mitigate the damaging effects of the ROS. Consequently, oxidative stress hypotheses of ageing argue that a decline in fecundity and an increase in the likelihood of death with advancing age reported at the organism level are driven by gradual disruption of the oxidative balance at the cellular level. Here, we measured erythrocyte resistance to oxidative stress in the same individuals over several years in two free-living bird species with contrasting life expectancy, the great tit (known maximum life expectancy is 15.4 years) and the Alpine swift (26 years). In both species, we found evidence for senescence in cell resistance to oxidative stress, with patterns of senescence becoming apparent as subjects get older. In the Alpine swift, there was also evidence for positive selection on cell resistance to oxidative stress, the more resistant subjects being longer lived. The present findings of inter-individual selection and intra-individual deterioration in cell oxidative status at old age in free-living animals support a role for oxidative stress in the ageing of wild animals. [Bize, Pierre; Cotting, Sophie; van Rooyen, Juan; Lalubin, Fabrice; Glaizot, Olivier; Christe, Philippe] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Devevey, Godefroy] Univ Edinburgh, Inst Evolutionary Biol, Edinburgh EH9 3JT, Midlothian, Scotland; [Glaizot, Olivier] Museum Zool, CH-1014 Lausanne, Switzerland Bize, P (reprint author), Univ Aberdeen, Inst Biol & Environmental Sci, Zool Bldg,Tillydrone Ave, Aberdeen AB24 2TZ, Scotland. pierre.bize@unil.ch Glaizot, Olivier/B-8627-2012 Glaizot, Olivier/0000-0001-9116-3355; Christe, Philippe/0000-0002-8605-7002 Swiss National Science Foundation [31003A_124988, 31003A_138187] We are grateful to numerous students for their help in the field, to two anonymous reviewers for helpful comments, and to the Swiss National Science Foundation for financial support (grant no. 31003A_124988 to P. B. and 31003A_138187 to P.C.). Alonso-Alvarez C, 2006, EVOLUTION, V60, P1913, DOI 10.1111/j.0014-3820.2006.tb00534.x; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Bize P, 2006, EVOLUTION, V60, P2370; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; Brzezinska-Slebodzinska E, 2001, ACTA VET HUNG, V49, P413, DOI 10.1556/AVet.49.2001.4.5; Cadenas E, 2000, FREE RADICAL BIO MED, V29, P222, DOI 10.1016/S0891-5849(00)00317-8; Noguera JC, 2012, BIOL LETTERS, V8, P61, DOI 10.1098/rsbl.2011.0756; Christe P, 2012, P ROY SOC B-BIOL SCI, V279, P1142, DOI 10.1098/rspb.2011.1546; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Devevey G, 2010, J ORNITHOL, V151, P251, DOI 10.1007/s10336-009-0456-5; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Hamanaka RB, 2010, TRENDS BIOCHEM SCI, V35, P505, DOI 10.1016/j.tibs.2010.04.002; Harman D., 1956, J GERONTOL, V11, P208; HARVEY PH, 1979, IBIS, V121, P216, DOI 10.1111/j.1474-919X.1979.tb04967.x; Hattangadi SM, 2007, J CLIN INVEST, V117, P2075, DOI 10.1172/JCI32559; Helle S, 2004, P NATL ACAD SCI USA, V101, P12391, DOI 10.1073/pnas.0402215101; Hulbert AJ, 2008, COMP BIOCHEM PHYS A, V150, P196, DOI 10.1016/j.cbpa.2006.05.014; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Kiefer CR, 2000, CURR OPIN HEMATOL, V7, P113, DOI 10.1097/00062752-200003000-00007; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lesgards JF, 2002, ENVIRON HEALTH PERSP, V110, P479, DOI 10.1289/ehp.02110479; Losdat S, 2013, BIOL LETT, V13, P1; Marinkovic D, 2007, J CLIN INVEST, V117, P2133, DOI 10.1172/JC131807; Masoro E.J., 2006, HDB BIOL AGING; Moe B, 2009, BIOL LETTERS, V5, P86, DOI 10.1098/rsbl.2008.0481; Monaghan P, 2008, ECOL LETT, V12, P75; Partridge L, 2002, NAT REV GENET, V3, P165, DOI 10.1038/nrg753; Patel KV, 2010, J GERONTOL A-BIOL, V65, P258, DOI 10.1093/gerona/glp163; Payevsky VA, 2006, RUSS J ECOL+, V37, P180, DOI 10.1134/S1067413606030064; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Richards RS, 1998, MED HYPOTHESES, V50, P363, DOI 10.1016/S0306-9877(98)90206-7; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Ristow M, 2011, FREE RADICAL BIO MED, V51, P327, DOI 10.1016/j.freeradbiomed.2011.05.010; Rizzo AM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032361; ROHME D, 1981, P NATL ACAD SCI-BIOL, V78, P5009, DOI 10.1073/pnas.78.8.5009; Saino N, 2011, PLOS ONE, V6; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sohal RS, 2012, FREE RADICAL BIO MED, V52, P539, DOI 10.1016/j.freeradbiomed.2011.10.445; Stier A, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-33; Tacutu R, 2013, NUCLEIC ACIDS RES, V41, pD1027, DOI 10.1093/nar/gks1155; Tettamanti F, 2012, IBIS, V154, P338, DOI 10.1111/j.1474-919X.2012.01215.x; Tsantes AE, 2006, ANTIOXID REDOX SIGN, V8, P1205, DOI 10.1089/ars.2006.8.1205; Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001; van de Pol M, 2006, AM NAT, V167, P766; Yu BP, 2005, MECH AGEING DEV, V126, P1003, DOI 10.1016/j.mad.2005.03.020 50 15 15 1 43 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia APR 2014 174 4 1097 1105 10.1007/s00442-013-2840-3 9 Ecology Environmental Sciences & Ecology AD3UJ WOS:000333171400003 24292795 2019-02-21 J Dunkel, CS; De Baca, TC; Woodley, MA; Fernandes, HBF Dunkel, Curtis S.; De Baca, Tomas Cabeza; Woodley, Michael A.; Fernandes, Heitor B. F. The General Factor of Personality and general intelligence: Testing hypotheses from Differential-K, Life History Theory, and strategic differentiation-integration effort PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life History Theory; Strategic differentiation-integration effort; Differential-K; General Factor of Personality; General intelligence COVITALITY; VALIDITY; SAMPLE Life history as applied to human psychology has progressed on different levels of analysis including between racial groups (Differential-K) and between individuals (Life History Theory). While the approaches at each level have garnered significant research support, some findings at the level of individual differences are inconsistent with findings from the level of group differences. The association between the General Factor of Personality and general intelligence was examined across and within racial groups to investigate the inconsistency. The results were in line with predictions derived from strategic differentiation-integration effort (SD-IE), the proposition that aggregation amongst variables decreases as life history strategy slows. The results suggest SD-IE may be a useful tool in reconciling the apparent contradictions across the levels of analysis. (C) 2013 Elsevier Ltd. All rights reserved. [Dunkel, Curtis S.] Western Illinois Univ, Macomb, IL 61455 USA; [De Baca, Tomas Cabeza] Univ Arizona, Tucson, AZ 85721 USA; [Woodley, Michael A.] Umea Univ, Dept Psychol, S-90187 Umea, Sweden; [Woodley, Michael A.] Vrije Univ Brussel, Ctr Leo Apostel Interdisciplinary Studies, Brussels, Belgium; [Fernandes, Heitor B. F.] Univ Fed Rio Grande do Sul, Inst Psychol, BR-90046900 Porto Alegre, RS, Brazil Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA. c-dunkel@wiu.edu Barcellos Ferreira Fernandes, Heitor/0000-0002-1147-571X; Cabeza de Baca, Tomas/0000-0003-3322-2163 American Institutes for Research. Project Talent Base Year Data, 1960, ICPSR33341V2 INT CON; BAYER AE, 1972, PUBLIC OPINION Q, V0036; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2013, INTELLIGENCE, V41, P423, DOI 10.1016/j.intell.2013.06.010; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P759, DOI 10.1016/j.paid.2011.12.035; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fernandes HBF, 2013, PERS INDIV DIFFER, V55, P1000, DOI 10.1016/j.paid.2013.07.463; Figueredo A. J., 2013, J SOCIAL EVOLUTIONAR, V7, P361, DOI DOI 10.1037/H0099182; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Flanagan J. C., 1962, DESIGN STUDY AM YOUT; Gottfredson L. S., 2006, INTRO PSICOLOGIA DIF, P433; Lesson P., 2012, INTELLIGENCE, V40, P213; Loehlin JC, 2012, PERS INDIV DIFFER, V53, P463, DOI 10.1016/j.paid.2012.04.013; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Meisenberg G, 2013, PERS INDIV DIFFER, V55, P273, DOI 10.1016/j.paid.2012.04.016; Miller G. F., 2010, EVOLUTION PERSONALIT, P376; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; Rushton J. P., 2000, RACE EVOLUTION BEHAV; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; Rushton JP, 2005, PSYCHOL PUBLIC POL L, V11, P235, DOI 10.1037/1076-8971.11.2.235; Rushton JP, 2003, SCIENTIFIC STUDY OF GENERAL INTELLIGENCE: TRIBUTE TO ARTHUR R. J ENSEN, P147, DOI 10.1016/B978-008043793-4/50046-5; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; US Bureau of the Census, 1963, US CENS POP 1960 SUB; van der Linden D, 2013, PERS INDIV DIFFER, V54, P367, DOI 10.1016/j.paid.2012.10.002; Van der Linden D, 2012, PERS INDIV DIFFER, V53, P175, DOI 10.1016/j.paid.2012.03.001; van der Linden D, 2010, J RES PERS, V44, P669, DOI 10.1016/j.jrp.2010.08.007; Wilson E. O., 1998, CONSILIENCE UNITY KN; Wong Morrison G., 1983, CULTURE ETHNICITY ID, P381; Woodley M. A, USING PRISO IN PRESS; Woodley MA, 2014, PERS INDIV DIFFER, V57, P3, DOI 10.1016/j.paid.2013.09.010; Woodley MA, 2013, INTELLIGENCE, V41, P832, DOI 10.1016/j.intell.2013.02.002; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348 42 12 13 1 16 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR-MAY 2014 61-62 13 17 10.1016/j.paid.2013.12.017 5 Psychology, Social Psychology AD8CV WOS:000333495000003 2019-02-21 J Lyons, M; Rice, H Lyons, Minna; Rice, Holly Thieves of time? Procrastination and the Dark Triad of personality PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Narcissism; Machiavellianism; Psychopathy; Avoidance procrastination; Arousal procrastination; Life History theory TRAIT PROCRASTINATION; ACADEMIC PROCRASTINATION; PSYCHOPATHY; CONSCIENTIOUSNESS; MACHIAVELLIANISM; TEMPTATION; INVENTORY; STRATEGY; BEHAVIOR; MEN Procrastination shares many features with the Dark Triad of personality, such as high impulsivity and low conscientiousness. We investigated the Dark Triad of personality (i.e., narcissism. Machiavellianism and psychopathy) in relation to two types of procrastination styles (i.e., arousal and avoidance procrastination) in an on-line survey with 369 participants. We found that avoidance procrastination had a positive relationship with secondary psychopathy and the Entitlement/Exploitativeness facet of the Narcissistic Personality Inventory. Arousal procrastination, in turn, had a negative relationship with the Leadership/Authority facet. Possible reasons for the findings are discussed with a reference to fast and slow Life History strategies. (C) 2014 Elsevier Ltd. All rights reserved. [Lyons, Minna] Univ Liverpool, Sch Psychol, Liverpool L69 7ZA, Merseyside, England; [Rice, Holly] Liverpool Hope Univ, Liverpool L16 9JD, Merseyside, England Lyons, M (reprint author), Univ Liverpool, Sch Psychol, Eleanor Rathbone Bldg Bedford St South, Liverpool L69 7ZA, Merseyside, England. m.lyons@liverpool.ac.uk Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Belsky J, 2010, EVOLUTION PERSONALIT; Christie R, 1970, STUDIES MACHIAVELLIA; Chu AHC, 2005, J SOC PSYCHOL, V145, P245; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Deniz ME, 2009, KURAM UYGULAMA EGI, V9, P623; Ferrari J., 1995, PROCRASTINATION TASK; Ferrari JR, 2007, J RES PERS, V41, P707, DOI 10.1016/j.jrp.2006.06.006; FERRARI JR, 1994, PERS INDIV DIFFER, V17, P673, DOI 10.1016/0191-8869(94)90140-6; Ferrari JR, 2000, J RES PERS, V34, P73, DOI 10.1006/jrpe.1999.2261; Freeman E, 2011, CURR PSYCHOL, V30, P375, DOI 10.1007/s12144-011-9123-0; Furnham A, 2013, SOC PERSONAL PSYCHOL, V7, P199, DOI 10.1111/spc3.12018; Furtner M. R., 2011, SOC BEHAV PERSONAL, V39, P369; Gendolla G. H. E., 2014, BIOBEHAVIORAL FDN SE; Jakobwitz S, 2006, PERS INDIV DIFFER, V40, P331, DOI 10.1016/j.paid.2005.07.006; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones DN, 2013, J RES PERS, V47, P563, DOI 10.1016/j.jrp.2013.04.005; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; LAY CH, 1986, J RES PERS, V20, P474, DOI 10.1016/0092-6566(86)90127-3; Lay CH, 1997, EUR J PERSONALITY, V11, P267, DOI 10.1002/(SICI)1099-0984(199711)11:4<267::AID-PER281>3.0.CO;2-P; Lee DG, 2006, PERS INDIV DIFFER, V40, P27, DOI 10.1016/j.paid.2005.05.010; Lyons M, 2013, PERS INDIV DIFFER, V55, P676, DOI 10.1016/j.paid.2013.05.018; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; McHoskey JW, 1998, J PERS SOC PSYCHOL, V74, P192, DOI 10.1037/0022-3514.74.1.192; Nguyen B, 2013, INT J SELECT ASSESS, V21, P388, DOI 10.1111/ijsa.12048; Paulhus D. L., 2009, MANUAL SELF REPORT P; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Rabin LA, 2011, J CLIN EXP NEUROPSYC, V33, P344, DOI 10.1080/13803395.2010.518597; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Schouwenburg HC, 2001, PERS INDIV DIFFER, V30, P229, DOI 10.1016/S0191-8869(00)00034-9; Steel P, 2007, PSYCHOL BULL, V133, P65, DOI 10.1037/0033-2909.133.1.65; Stolarski M, 2013, BIOL RHYTHM RES, V44, P181, DOI 10.1080/09291016.2012.656248; Thomas J, 2013, PERSONAL MENT HEALTH, V7, P160, DOI 10.1002/pmh.1219; Tsukayama E, 2012, EUR J PERSONALITY, V26, P318, DOI 10.1002/per.841; Watson DC, 2001, PERS INDIV DIFFER, V30, P149, DOI 10.1016/S0191-8869(00)00019-2 39 7 7 4 70 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. APR-MAY 2014 61-62 34 37 10.1016/j.paid.2014.01.002 4 Psychology, Social Psychology AD8CV WOS:000333495000007 2019-02-21 J Sanderson, CE; Jobbins, SE; Alexander, KA Sanderson, Claire Elizabeth; Jobbins, Sarah Elizabeth; Alexander, Kathleen Ann With Allee effects, life for the social carnivore is complicated POPULATION ECOLOGY English Article African wild dog; Anthropogenic change; Cooperative breeders; Group size; Infectious disease AFRICAN WILD DOGS; FACIAL-TUMOR DISEASE; LYCAON-PICTUS; PACK SIZE; POPULATION PERSISTENCE; CONSERVATION BIOLOGY; INFECTIOUS-DISEASES; ROCKY-MOUNTAINS; EXTINCTION; DYNAMICS Anthropogenic modification of the landscape, resultant habitat loss, and decades of persecution have resulted in severe decline and fragmentation of large carnivore populations worldwide. Infectious disease is also identified as a primary threat to many carnivores. In wildlife species, population demography and group persistence are strongly influenced by group or population size. This is referred to as the Allee effect, in which a population or group is at an increased risk of extinction when the number or density of individuals falls below some threshold due to ecological and/or genetic factors. However, in social mammalian species, the relationship between the number of individuals and the risk of extinction is complicated because aggregation may enhance pathogen exposure and transmission. Although theoretical studies of the interaction between infectious disease transmission and Allee effects reveal important implications for carnivore management and population extinction risk, information about the interaction has yet to be synthesized. In this paper, we assess life history strategies of medium to large carnivore species (a parts per thousand yen2.4 kg) and their influence on population dynamics, with a special focus on infectious disease. While declining population trends are observed in 73 % of all carnivores (both social and solitary species), infectious disease is identified as a significant cause of population decline in 45 % of social carnivores and 3 % of solitary carnivores. Furthermore, where carnivores suffer a combination of rapid population decline and infectious disease, Allee effects may be more likely to impact social as compared to solitary carnivore populations. These potentially additive interactions may strongly influence disease transmission dynamics and population persistence potential. Understanding the mechanisms that can result in Allee effects in endangered carnivore populations and the manner in which infectious disease interfaces at this nexus may define the outcome of developed conservation strategies. [Sanderson, Claire Elizabeth; Jobbins, Sarah Elizabeth; Alexander, Kathleen Ann] Virginia Polytech Inst & State Univ, Dept Fish & Wildlife Conservat, Fralin Life Sci Inst, Blacksburg, VA 24061 USA; [Sanderson, Claire Elizabeth; Jobbins, Sarah Elizabeth; Alexander, Kathleen Ann] Communities & Land Use CARACAL, Ctr African Resources Anim, Kasane, Botswana Sanderson, CE (reprint author), Virginia Polytech Inst & State Univ, Dept Fish & Wildlife Conservat, Fralin Life Sci Inst, Blacksburg, VA 24061 USA. clairees@vt.edu Fralin Life Science Institute at Virginia Tech; National Science Foundation [CNH 1114953] C.E. Sanderson and S. E. Jobbins were supported in part by the Fralin Life Science Institute at Virginia Tech and the National Science Foundation (CNH 1114953). We are grateful to J. Walters (Virginia Tech) for invaluable feedback on our manuscript. Alexander KA, 2010, COMP IMMUNOL MICROB, V33, P249, DOI 10.1016/j.cimid.2008.10.005; Alexander KA, 1996, J ZOO WILDLIFE MED, V27, P426; Alexander R.D., 1974, Annual Rev Ecol Syst, V5, P325, DOI 10.1146/annurev.es.05.110174.001545; Altizer S, 2003, ANNU REV ECOL EVOL S, V34, P517, DOI 10.1146/annurev.ecolsys.34.030102.151725; Anderson RM, 1991, INFECT DIS HUMANS DY; Angulo E, 2013, FRONT ZOOL, V10, DOI 10.1186/1742-9994-10-11; Beaumont M, 2001, MOL ECOL, V10, P319, DOI 10.1046/j.1365-294x.2001.01196.x; Berec L, 2007, TRENDS ECOL EVOL, V22, P185, DOI 10.1016/j.tree.2006.12.002; Berec Ludek, 2008, Biophysical Reviews and Letters, V3, P157, DOI 10.1142/S1793048008000678; Brooks TM, 2002, CONSERV BIOL, V16, P909, DOI 10.1046/j.1523-1739.2002.00530.x; Caillaud D, 2006, CURR BIOL, V16, pR489, DOI 10.1016/j.cub.2006.06.017; Caro TM, 1999, CONSERV BIOL, V13, P805, DOI 10.1046/j.1523-1739.1999.98338.x; Courchamp F, 2002, BEHAV ECOL, V13, P20, DOI 10.1093/beheco/13.1.20; Courchamp F, 1999, P ROY SOC B-BIOL SCI, V266, P557, DOI 10.1098/rspb.1999.0672; Courchamp F, 1999, TRENDS ECOL EVOL, V14, P405, DOI 10.1016/S0169-5347(99)01683-3; Courchamp F, 2001, ANIM CONSERV, V4, P169, DOI 10.1017/S1367943001001196; CREEL S, 1995, ANIM BEHAV, V50, P1325, DOI 10.1016/0003-3472(95)80048-4; Daszak P, 2001, ACTA TROP, V78, P103, DOI 10.1016/S0001-706X(00)00179-0; de Castro F, 2005, ECOL LETT, V8, P117, DOI 10.1111/j.1461-0248.2004.00693.x; Deredec A, 2006, OIKOS, V112, P667, DOI 10.1111/j.0030-1299.2006.14243.x; DIEKMANN O, 1990, J MATH BIOL, V28, P365; Frankham R, 2002, INTRO CONSERVATION G; Friedman A, 2012, J BIOL DYNAM, V6, P495, DOI 10.1080/17513758.2011.630489; Gittleman J. L., 1989, CARNIVORE BEHAV ECOL, V1, P183; Goller KV, 2010, VET MICROBIOL, V146, P245, DOI 10.1016/j.vetmic.2010.05.018; Goltsman M., 1996, Oryx, V30, P251; GUSSET M, 2010, ANIM BEHAV, V79, P425, DOI DOI 10.1016/J.ANBEHAV.2009.11.021; Hawkins CE, 2006, BIOL CONSERV, V131, P307, DOI 10.1016/j.biocon.2006.04.010; Herfindal I, 2010, ECOGRAPHY, V33, P932, DOI 10.1111/j.1600-0587.2009.05971.x; Hilker Frank M., 2010, Journal of Biological Dynamics, V4, P86, DOI 10.1080/17513750903026429; Honer OP, 2011, J ANIM ECOL, V81, P36; Hurford A, 2006, THEOR POPUL BIOL, V70, P244, DOI 10.1016/j.tpb.2006.06.009; Inskip C, 2009, ORYX, V43, P18, DOI 10.1017/S003060530899030X; IUCN, 2011, IUCN 2011 IUCN RED L, V2011; JENNIONS MD, 1994, TRENDS ECOL EVOL, V9, P89, DOI 10.1016/0169-5347(94)90202-X; Jones ME, 2008, P NATL ACAD SCI USA, V105, P10023, DOI 10.1073/pnas.0711236105; Kat PW, 1996, J VET DIAGN INVEST, V8, P420, DOI 10.1177/104063879600800403; Kramer AM, 2009, POPUL ECOL, V51, P341, DOI 10.1007/s10144-009-0152-6; MACDONALD DW, 1983, NATURE, V301, P379, DOI 10.1038/301379a0; McCallum H, 2007, ECOHEALTH, V4, P318, DOI 10.1007/s10393-007-0118-0; Molnar PK, 2008, P R SOC B, V275, P217, DOI 10.1098/rspb.2007.1307; Munoz-Duran J, 2002, EVOL ECOL RES, V4, P963; Munoz-Fuentes V, 2010, CONSERV GENET, V11, P547, DOI 10.1007/s10592-009-9974-1; Munson L, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002545; Murchison E P, 2008, Oncogene, V27 Suppl 2, pS19, DOI 10.1038/onc.2009.350; Murray DL, 1999, ANIM CONSERV, V2, P241, DOI 10.1111/j.1469-1795.1999.tb00070.x; Noss RF, 1996, CONSERV BIOL, V10, P949, DOI 10.1046/j.1523-1739.1996.10040949.x; Pearse AM, 2006, NATURE, V439, P549, DOI 10.1038/439549a; Purvis A, 2000, P ROY SOC B-BIOL SCI, V267, P1947, DOI 10.1098/rspb.2000.1234; RoelkeParker ME, 1996, NATURE, V379, P441, DOI 10.1038/379441a0; Rosenzweig C, 2008, NATURE, V453, P353, DOI 10.1038/nature06937; Schmid-Hempel P, 1999, PHILOS T R SOC B, V354, P507, DOI 10.1098/rstb.1999.0401; Sergio F, 2005, NATURE, V436, P192, DOI 10.1038/436192a; SilleroZubiri C, 1996, J WILDLIFE DIS, V32, P80, DOI 10.7589/0090-3558-32.1.80; Smith JE, 2008, ANIM BEHAV, V76, P619, DOI 10.1016/j.anbehav.2008.05.001; Stephens PA, 1999, OIKOS, V87, P185, DOI 10.2307/3547011; Stephens PA, 1999, TRENDS ECOL EVOL, V14, P401, DOI 10.1016/S0169-5347(99)01684-5; Thieme Horst R., 2009, Journal of Biological Dynamics, V3, P305, DOI 10.1080/17513750802376313; Vitousek PM, 1997, NEW ZEAL J ECOL, V21, P1; Weaver JL, 1996, CONSERV BIOL, V10, P964, DOI 10.1046/j.1523-1739.1996.10040964.x; WHO, 2011, HUM HLTH RIO CONV BI; Winterbach HEK, 2013, MAMMAL REV, V43, P89, DOI 10.1111/j.1365-2907.2011.00209.x; Woodroffe R, 1998, SCIENCE, V280, P2126, DOI 10.1126/science.280.5372.2126; Woodroffe R., 1997, AFRICAN WILD DOG STA; Yakubu AA, 2007, J DIFFER EQU APPL, V13, P341, DOI 10.1080/102361906010790796 65 7 7 2 41 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. APR 2014 56 2 417 425 10.1007/s10144-013-0410-5 9 Ecology Environmental Sciences & Ecology AD6FT WOS:000333352500014 2019-02-21 J Johnstone, RA; Kuijper, B Johnstone, Rufus A.; Kuijper, Bram Kin Competition and the Evolution of Sex Differences in Development Time and Body Size AMERICAN NATURALIST English Article age at maturity; trade-off; size at maturity; kin selection; life history LIFE-HISTORY TRAITS; VISCOUS POPULATIONS; INCLUSIVE FITNESS; OVERLAPPING GENERATIONS; REPRODUCTIVE EFFORT; MALE BUTTERFLIES; GROWTH-RATES; SELECTION; AGE; PROTANDRY One key trade-off underlying life-history evolution is the one between age and size at maturity, with earlier maturation leading to greater chances of juvenile survival at the cost of reduced fecundity as an adult. Here we model the impact of limited dispersal and kin competition on the stable resolution of this trade-off. We show that if mating is at least occasionally nonlocal, then limited dispersal favors juvenile survival over adult fecundity in females, promoting earlier female maturation at the population level; at the same time, it favors adult fecundity over juvenile survival in males, promoting later male maturation. Limited dispersal and local competition can thus drive the evolution of sexual dimorphism in the timing of maturation and consequent dimorphism in body size. At the individual level, if maturation can be flexibly adjusted in response to dispersal status, then both males and females who disperse as offspring should mature earlier than those who remain on their natal patch. [Johnstone, Rufus A.; Kuijper, Bram] Univ Cambridge, Dept Zool, Behav & Evolut Grp, Cambridge CB2 3EJ, England; [Kuijper, Bram] Univ Exeter, Environm & Sustainabil Inst, Penryn TR10 9FE, Cornwall, England; [Kuijper, Bram] UCL, Ctr Math & Phys Life Sci & Expt Biol, CoMPLEX, London WC1E 6BT, England Kuijper, B (reprint author), Univ Cambridge, Dept Zool, Behav & Evolut Grp, Downing St, Cambridge CB2 3EJ, England. a.kuijper@ucl.ac.uk Kuijper, Bram/E-9409-2013 Kuijper, Bram/0000-0002-7263-2846 Engineering and Physical Sciences Research Council (EPSRC) [EP/H031928/1]; Engineering and Physical Sciences Research Council [EP/H031928/1, EP/I017909/1] We thank T. Ezard, R. Hoyle, S. Townley, and J. Wells for valuable discussions within the Transgen group. This work was supported by Engineering and Physical Sciences Research Council (EPSRC) grant EP/H031928/1. ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Bell AM, 2011, J EVOLUTION BIOL, V24, P943, DOI 10.1111/j.1420-9101.2011.02247.x; Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Blanckenhorn WU, 2007, AM NAT, V169, P245, DOI 10.1086/510597; BULMER MG, 1983, THEOR POPUL BIOL, V23, P314, DOI 10.1016/0040-5809(83)90021-7; Day T, 1997, AM NAT, V149, P381, DOI 10.1086/285995; Day T, 1997, P ROY SOC B-BIOL SCI, V264, P639, DOI 10.1098/rspb.1997.0090; Day T, 2000, THEOR POPUL BIOL, V57, P339, DOI 10.1006/tpbi.2000.1459; Day T, 1996, P ROY SOC B-BIOL SCI, V263, P333, DOI 10.1098/rspb.1996.0051; de Jong TJ, 2000, EVOL ECOL, V14, P213, DOI 10.1023/A:1011063625087; Debarre F, 2012, AM NAT, V179, P52, DOI 10.1086/663199; Dercole F, 2008, PRINC SER THEOR COMP, P1; El Mouden C, 2008, J EVOLUTION BIOL, V21, P1480, DOI 10.1111/j.1420-9101.2008.01614.x; Gardner A, 2006, J EVOLUTION BIOL, V19, P1707, DOI 10.1111/j.1420-9101.2006.01104.x; Gardner A, 2010, J THEOR BIOL, V262, P339, DOI 10.1016/j.jtbi.2009.09.028; Geritz SAH, 1998, EVOL ECOL, V12, P35, DOI 10.1023/A:1006554906681; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Honek Alois, 1997, Acta Societatis Zoologicae Bohemicae, V61, P113; Irwin AJ, 2001, THEOR POPUL BIOL, V60, P315, DOI 10.1006/tpbi.2001.1533; IWASA Y, 1983, THEOR POPUL BIOL, V23, P363, DOI 10.1016/0040-5809(83)90024-2; Jarosik Vojtech, 2007, P205; John-Alder Henry B., 2007, P195; Johnstone RA, 2008, AM NAT, V172, P318, DOI 10.1086/589899; Johnstone RA, 2010, P ROY SOC B-BIOL SCI, V277, P3765, DOI 10.1098/rspb.2010.0988; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kranz BD, 2001, INSECT SOC, V48, P315, DOI 10.1007/PL00001783; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; Lehmann L, 2006, EVOLUTION, V60, P1137; LIBERTINI G, 1988, J THEOR BIOL, V132, P145, DOI 10.1016/S0022-5193(88)80153-X; Lion S, 2010, J EVOLUTION BIOL, V23, P866, DOI 10.1111/j.1420-9101.2010.01952.x; Lion S, 2011, TRENDS ECOL EVOL, V26, P193, DOI 10.1016/j.tree.2011.01.006; McGill BJ, 2007, ANNU REV ECOL EVOL S, V38, P403, DOI 10.1146/annurev.ecolsys.36.091704.175517; MIRMIRANI M, 1978, THEOR POPUL BIOL, V13, P304, DOI 10.1016/0040-5809(78)90049-7; Mitteldorf J, 2006, EVOL ECOL RES, V8, P561; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; PARKER GA, 1983, J THEOR BIOL, V105, P147, DOI 10.1016/0022-5193(83)90430-7; Pen I, 2000, EVOLUTION, V54, P293, DOI 10.1111/j.0014-3820.2000.tb00030.x; QUELLER DC, 1992, TRENDS ECOL EVOL, V7, P322, DOI 10.1016/0169-5347(92)90120-Z; Reeve JP, 2001, J EVOLUTION BIOL, V14, P244, DOI 10.1046/j.1420-9101.2001.00276.x; Rhainds M, 2010, ENTOMOL EXP APPL, V136, P211, DOI 10.1111/j.1570-7458.2010.01032.x; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; Ronce O, 2010, P ROY SOC B-BIOL SCI, V277, P3659, DOI 10.1098/rspb.2010.1095; Rousset F, 2004, GENETIC STRUCTURE SU; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Taylor PD, 2007, J EVOLUTION BIOL, V20, P301, DOI 10.1111/j.1420-9101.2006.01196.x; Taylor PD, 1996, J THEOR BIOL, V180, P27, DOI 10.1006/jtbi.1996.0075; TAYLOR PD, 1992, P ROY SOC B-BIOL SCI, V249, P299, DOI 10.1098/rspb.1992.0118; TAYLOR PD, 1992, EVOL ECOL, V6, P352, DOI 10.1007/BF02270971; Taylor PD, 2000, EVOLUTION, V54, P1135; WEDELL N, 1992, BEHAV ECOL SOCIOBIOL, V31, P301; West SA, 2002, SCIENCE, V296, P72, DOI 10.1126/science.1065507; WIKLUND C, 1991, OIKOS, V60, P241, DOI 10.2307/3544871; WIKLUND C, 1977, OECOLOGIA, V31, P153, DOI 10.1007/BF00346917; ZONNEVELD C, 1991, THEOR POPUL BIOL, V40, P308, DOI 10.1016/0040-5809(91)90058-N; Zonneveld C, 1996, AM NAT, V147, P946, DOI 10.1086/285887 63 1 1 0 24 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. APR 1 2014 183 4 537 546 10.1086/675392 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AD0KQ WOS:000332923300009 24642497 2019-02-21 J Hayward, AD; Mar, KU; Lahdenpera, M; Lummaa, V Hayward, A. D.; Mar, K. U.; Lahdenpera, M.; Lummaa, V. Early reproductive investment, senescence and lifetime reproductive success in female Asian elephants JOURNAL OF EVOLUTIONARY BIOLOGY English Article reproductive costs, senescence; antagonistic pleiotropy; trade-off; ageing; disposable soma AGE-SPECIFIC SURVIVAL; WILD BIRD POPULATION; LONG-LIVED BIRD; RED DEER; INDIVIDUAL QUALITY; TRADE-OFFS; PERFORMANCE; EVOLUTION; HISTORY; COSTS The evolutionary theory of senescence posits that as the probability of extrinsic mortality increases with age, selection should favour early-life over late-life reproduction. Studies on natural vertebrate populations show early reproduction may impair later-life performance, but the consequences for lifetime fitness have rarely been determined, and little is known of whether similar patterns apply to mammals which typically live for several decades. We used a longitudinal dataset on Asian elephants (Elephas maximus) to investigate associations between early-life reproduction and female age-specific survival, fecundity and offspring survival to independence, as well as lifetime breeding success (lifetime number of calves produced). Females showed low fecundity following sexual maturity, followed by a rapid increase to a peak at age 19 and a subsequent decline. High early life reproductive output (before the peak of performance) was positively associated with subsequent age-specific fecundity and offspring survival, but significantly impaired a female's own later-life survival. Despite the negative effects of early reproduction on late-life survival, early reproduction is under positive selection through a positive association with lifetime breeding success. Our results suggest a trade-off between early reproduction and later survival which is maintained by strong selection for high early fecundity, and thus support the prediction from life history theory that high investment in reproductive success in early life is favoured by selection through lifetime fitness despite costs to later-life survival. That maternal survival in elephants depends on previous reproductive investment also has implications for the success of (semi-)captive breeding programmes of this endangered species. [Hayward, A. D.; Mar, K. U.; Lummaa, V.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Lahdenpera, M.] Univ Turku, Dept Biol, Sect Ecol, SF-20500 Turku, Finland Hayward, AD (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. a.hayward@sheffield.ac.uk Hayward, Adam/B-7659-2016 Hayward, Adam/0000-0001-6953-7509 National Environmental Research Council (NERC); Royal Society; European Research Council; Nando Peretti Foundation; Rufford Small Grant for Nature; International Foundation for Science; Academy of Finland We thank Matthew Robinson, Mirre Simons, Jelle Boonekamp and Tom Cameron for discussion about statistical analyses and Andy Russell for helpful comments. This work was funded by grants from the National Environmental Research Council (NERC) (VL, KUM), the Royal Society Fellowship Scheme (VL), the European Research Council (VL, ADH), Nando Peretti Foundation (VL), Rufford Small Grant for Nature (KUM), International Foundation for Science (KUM) and the Academy of Finland (ML). Bates D. M., 2012, LME4 LINEAR MIXED EF; Beauplet G, 2006, OIKOS, V112, P430, DOI 10.1111/j.0030-1299.2006.14412.x; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Bowen WD, 2006, J ANIM ECOL, V75, P1340, DOI 10.1111/j.1365-2656.2006.01157.x; Brommer JE, 2007, AM NAT, V170, P643, DOI 10.1086/521241; Burnham K. P, 2002, MODEL SELECTION MULT; Cam E, 2002, AM NAT, V159, P96, DOI 10.1086/324126; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Clubb R, 2008, SCIENCE, V322, P1649, DOI 10.1126/science.1164298; Coulson JC, 2001, J AVIAN BIOL, V32, P146, DOI 10.1034/j.1600-048X.2001.320207.x; Descamps S, 2006, P R SOC B, V273, P2369, DOI 10.1098/rspb.2006.3588; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Hermes R, 2008, THERIOGENOLOGY, V70, P131, DOI 10.1016/j.theriogenology.2008.04.003; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Lahdenpera M, 2011, EVOLUTION, V65, P476, DOI 10.1111/j.1558-5646.2010.01142.x; Leimgruber P, 2008, ANIM CONSERV, V11, P198, DOI 10.1111/j.1469-1795.2008.00172.x; Mar K. U., 2007, DEMOGRAPHY LIFE HIST; Mar K. U., 2012, PLOS ONE, V7; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Moss C. J, 2011, AMBOSELI ELEPHANTS L; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Mumby HS, 2013, ECOL EVOL, V3, P3794, DOI 10.1002/ece3.746; Mumby HS, 2013, ECOLOGY, V94, P1131, DOI 10.1890/12-0834.1; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2008, P ROY SOC B-BIOL SCI, V275, P745, DOI 10.1098/rspb.2007.0986; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Partridge L, 2006, TRENDS ECOL EVOL, V21, P334, DOI 10.1016/j.tree.2006.02.008; Peron G, 2010, P ROY SOC B-BIOL SCI, V277, P2849, DOI 10.1098/rspb.2010.0530; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Rattiste K, 2004, P ROY SOC B-BIOL SCI, V271, P2059, DOI 10.1098/rspb.2004.2832; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reid JM, 2003, J ANIM ECOL, V72, P765, DOI 10.1046/j.1365-2656.2003.00750.x; Ricklefs RE, 2001, EXP GERONTOL, V36, P845, DOI 10.1016/S0531-5565(00)00245-X; Robinson MR, 2012, ECOL LETT, V15, P260, DOI 10.1111/j.1461-0248.2011.01735.x; Sukumar R, 2003, LIVING ELEPHANTS EVO; Sukumar R., 1989, ASIAN ELEPHANT ECOLO; Toke Gale U., 1971, BURMESE TIMBER ELEPH; Turbill C., 2010, PLOS ONE, V5; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; van de Pol MV, 2009, ANIM BEHAV, V77, P753, DOI 10.1016/j.anbehav.2008.11.006; Ward EJ, 2009, J APPL ECOL, V46, P632, DOI 10.1111/j.1365-2664.2009.01647.x; Weladji RB, 2008, OECOLOGIA, V156, P237, DOI 10.1007/s00442-008-0961-x; Wiese RJ, 2000, ZOO BIOL, V19, P299, DOI 10.1002/1098-2361(2000)19:5<299::AID-ZOO2>3.0.CO;2-Z; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson AJ, 2008, FUNCT ECOL, V22, P431, DOI 10.1111/j.1365-2435.2008.01412.x; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 58 30 31 6 148 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. APR 2014 27 4 772 783 10.1111/jeb.12350 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AD0KP WOS:000332923200010 24580655 Green Published 2019-02-21 J Warnock, WG; Rasmussen, JB Warnock, Will G.; Rasmussen, Joseph B. Comparing competitive ability and associated metabolic traits between a resident and migratory population of bull trout against a non-native species ENVIRONMENTAL BIOLOGY OF FISHES English Article Life history; Char; Behavior; Physiology; Competition; Laboratory streams LIFE-HISTORY STRATEGIES; SALMON SALMO-SALAR; BROOK TROUT; SALVELINUS-FONTINALIS; CUTTHROAT TROUT; ATLANTIC SALMON; BROWN TROUT; WATER TEMPERATURE; STREAM; CONFLUENTUS Juvenile bull trout Salvelinus confluentus from two geographically and ecologically distinct populations were compared with regard to their ability to compete with non-native brook trout Salvelinus fontinalis in an artificial stream, and with respect to their rates of oxygen consumption. Bull trout collected from a migratory population foraged more successfully against brook trout competitors than those from a resident population, capturing more of a limited amount of food items presented. The migratory population was also more aggressive (measured by the number of nips, chases and lateral threat displays) against brook trout competitors than the resident population. Bull trout from the migratory population had a higher oxygen consumption rate (203 mg O-2 kg center dot hr(-1)) in the field than similar sized fish from the resident population (183 mg O-2 kg center dot hr(-1)). These results suggest native bull trout have population-level variation in competitive ability against a non-native species and such competitive ability is positively associated with metabolism and migratory life history. [Warnock, Will G.; Rasmussen, Joseph B.] Univ Lethbridge, Dept Biol Sci, Lethbridge, AB T1K 3M4, Canada Warnock, WG (reprint author), Univ Lethbridge, Dept Biol Sci, Water & Environm Sci Bldg,4401 Univ Dr W, Lethbridge, AB T1K 3M4, Canada. will.warnock@uleth.ca Alberta Conservation Association Grant Eligible Conservation Fund; Trout Unlimited Canada's Coldwater Conservation Fund; Natural Sciences and Engineering Research Council of Canada's (NSERC) Discovery Grant; NSERC Industrial Postgraduate Scholarship We thank R. Gresswell, D. Wig, M. Coombs, M. Rodtka, R. Laird, A. Hurly, T. Burg, C. Goater, C. Goodman, C. Adrian, K. Kuchapski, R. Annett, R. Royer, L. Miller, A. Hontela, M. Lalumiere for their discussion, technical assistance and comments. We also thank the anonymous reviewers that provided comments on this manuscript. Operational costs of this research were supported by an Alberta Conservation Association Grant Eligible Conservation Fund, Trout Unlimited Canada's Coldwater Conservation Fund, and the Natural Sciences and Engineering Research Council of Canada's (NSERC) Discovery Grant to J.B.R. Graduate fellowships were provided to W. G. W. by an NSERC Industrial Postgraduate Scholarship. Fish were cared for in accordance with the guidelines of the Canadian Council on Animal Care and the study was reviewed and approved by the University of Lethbridge Animal Welfare Committee. Biro PA, 2004, P ROY SOC B-BIOL SCI, V271, P2233, DOI 10.1098/rspb.2004.2861; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Cutts CJ, 2001, CAN J FISH AQUAT SCI, V58, P961, DOI 10.1139/cjfas-58-5-961; Cutts CJ, 1999, J FISH BIOL, V55, P784, DOI 10.1111/j.1095-8649.1999.tb00717.x; DESTASO J, 1994, T AM FISH SOC, V123, P289, DOI 10.1577/1548-8659(1994)123<0289:IOWTOI>2.3.CO;2; Dunbrack RL, 1996, J FISH BIOL, V48, P615, DOI 10.1006/jfbi.1996.0061; Dunham J, 2008, FISHERIES, V33, P537, DOI 10.1577/1548-8446-33.11.537; Dunham JB, 2002, REV FISH BIOL FISHER, V12, P373, DOI 10.1023/A:1025338203702; Forseth T, 1999, J ANIM ECOL, V68, P783, DOI 10.1046/j.1365-2656.1999.00329.x; GOWAN C, 1994, CAN J FISH AQUAT SCI, V51, P2626, DOI 10.1139/f94-262; Gunckel SL, 2002, T AM FISH SOC, V131, P1119, DOI 10.1577/1548-8659(2002)131<1119:EOBTAB>2.0.CO;2; Guy CS, 2011, J FISH WILDL MANAG, V2, P183, DOI 10.3996/012011-JFWM-004; Homel K, 2008, ECOL FRESHW FISH, V17, P465, DOI 10.1111/j.1600-0633.2008.00299.x; Hutchison MJ, 1997, ENVIRON BIOL FISH, V50, P209, DOI 10.1023/A:1007327400284; Lahti K, 2002, FUNCT ECOL, V16, P167, DOI 10.1046/j.1365-2435.2002.00618.x; Lahti K, 2001, ANIM BEHAV, V62, P935, DOI 10.1006/anbe.2001.1821; Leisnham PT, 2010, OECOLOGIA, V164, P221, DOI 10.1007/s00442-010-1624-2; Macneale KH, 2010, ECOL FRESHW FISH, V19, P139, DOI 10.1111/j.1600-0633.2009.00398.x; McMahon TE, 2007, T AM FISH SOC, V136, P1313, DOI 10.1577/T06-217.1; McPhail JD, 1996, 104 U BRIT COL, P31; Metcalfe NB, 1998, CAN J FISH AQUAT SCI, V55, P93, DOI 10.1139/cjfas-55-S1-93; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Morinville GR, 2006, J ANIM ECOL, V75, P693, DOI 10.1111/j.1365-2656.2006.01090.x; Morinville GR, 2003, CAN J FISH AQUAT SCI, V60, P401, DOI [10.1139/f03-036, 10.1139/F03-036]; Nakano S, 1998, ENVIRON BIOL FISH, V52, P345, DOI 10.1023/A:1007359826470; Nelson ML, 2002, ENVIRON BIOL FISH, V64, P321, DOI 10.1023/A:1016062708588; NORTHCOTE T. G., 1992, NORD J FRESHWATER RE, V67, P5; Paul AJ, 2001, T AM FISH SOC, V130, P417, DOI 10.1577/1548-8659(2001)130<0417:SDONAN>2.0.CO;2; Peterson DP, 2004, ECOL APPL, V14, P754, DOI 10.1890/02-5395; Rasmussen JB, 2012, BIOL J LINN SOC, V105, P56, DOI 10.1111/j.1095-8312.2011.01768.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Rich CF, 2003, T AM FISH SOC, V132, P1053, DOI 10.1577/T02-109; Ridgway MS, 2008, T AM FISH SOC, V137, P1179, DOI 10.1577/T05-268.1; Rieman BE, 2006, CAN J FISH AQUAT SCI, V63, P63, DOI 10.1139/F05-206; Rodtka MC, 2009, STATUS BULL TROUT SA, P48; Rodtka MC, 2007, T AM FISH SOC, V136, P1714, DOI 10.1577/T05-311.1; Rossong MA, 2012, BIOL INVASIONS, V14, P659, DOI 10.1007/s10530-011-0107-7; Warnock W.G., 2012, THESIS U LETHBRIDGE; Warnock WG, 2013, CAN J ZOOL, V91, P619, DOI 10.1139/cjz-2013-0044; Warnock WG, 2013, CAN J FISH AQUAT SCI, V70, P905, DOI 10.1139/cjfas-2012-0387; Warnock WG, 2011, T AM FISH SOC, V140, P345, DOI 10.1080/00028487.2011.567868; Warnock WG, 2010, CONSERV GENET, V11, P1421, DOI 10.1007/s10592-009-9969-y; Warren CE, 1980, FISHERIES MANAGMENT 44 4 4 2 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes APR 2014 97 4 415 423 10.1007/s10641-013-0161-3 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AB9XY WOS:000332150200007 2019-02-21 J Keck, BP; Marion, ZH; Martin, DJ; Kaufman, JC; Harden, CP; Schwartz, JS; Strange, RJ Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J. Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot PLOS ONE English Article MULTIPLE SPATIAL SCALES; FRESH-WATER FISHES; DARTERS PERCIDAE ETHEOSTOMATINAE; LIFE-HISTORY STRATEGIES; STREAM FISH; LAND-USE; PHYLOGENETIC-RELATIONSHIPS; TELEOSTEI PERCIDAE; 4TH-CORNER PROBLEM; BIOTIC INTEGRITY The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner analysis, our results support the broad application potential for trait-based methods and indicate trait-based methods can detect environmental filtering by riparian zone land cover. [Keck, Benjamin P.; Strange, Richard J.] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA; [Marion, Zachary H.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA; [Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.] Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA; [Schwartz, John S.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA Keck, BP (reprint author), Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. bkeck@utk.edu Marion, Zachary/I-9102-2016 Marion, Zachary/0000-0002-7351-1819 University of Tennessee Institute for a Secure and Sustainable Environment; University of Tennessee AgResearch The University of Tennessee Institute for a Secure and Sustainable Environment (http://isse.utk.edu/) and University of Tennessee AgResearch (http://agresearch.tennessee.edu/) provided funding for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Allan JD, 1997, FRESHWATER BIOL, V37, P149, DOI 10.1046/j.1365-2427.1997.d01-546.x; Anderson J.R., 1976, GEOLOGICAL SURVEY PR; Angermeier PL, 1999, ECOL APPL, V9, P335, DOI 10.2307/2641189; Aubin I, 2013, BIODIVERS CONSERV, V22, P2957, DOI 10.1007/s10531-013-0565-6; Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Berendzen PB, 2008, MOL PHYLOGENET EVOL, V46, P721, DOI 10.1016/j.ympev.2007.07.008; Blanton RE, 2013, MOL PHYLOGENET EVOL, V66, P679, DOI 10.1016/j.ympev.2012.10.022; Blanton RE, 2008, ZOOTAXA, P1; Brind'Amour A, 2011, ECOL APPL, V21, P363, DOI 10.1890/09-2178.1; Butchart SHM, 2010, SCIENCE, V328, P1164, DOI 10.1126/science.1187512; Clements MD, 2012, MOL PHYLOGENET EVOL, V63, P159, DOI 10.1016/j.ympev.2012.01.001; Deyton EB, 2009, WATER AIR SOIL POLL, V196, P3, DOI 10.1007/s11270-008-9753-5; Doledec S, 1996, ENVIRON ECOL STAT, V3, P143, DOI 10.1007/BF02427859; Douglas M, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0672; Dray S, 2008, ECOLOGY, V89, P3400, DOI 10.1890/08-0349.1; Dray S, 2007, J STAT SOFTW, V22, P1; Dudgeon D, 2010, CURR OPIN ENV SUST, V2, P422, DOI 10.1016/j.cosust.2010.09.001; ETNIER D A, 1991, Journal of the Tennessee Academy of Science, V66, P129; Etnier D. A., 1993, FISHES TENNESSEE; ETNIER DA, 1997, SPECIAL PUBLICATION, V1, P87; Fischer JR, 2010, T AM FISH SOC, V139, P185, DOI 10.1577/T09-050.1; Foden WB, 2013, PLOS ONE, V8; Frimpong EA, 2009, FISHERIES, V34, P487, DOI 10.1577/1548-8446-34.10.487; Frimpong EA, 2010, AM FISH S S, V73, P109; George AL, 2009, FISHERIES, V34, P529, DOI 10.1577/1548-8446-34.11.529; Gillson L, 2013, TRENDS ECOL EVOL, V28, P135, DOI 10.1016/j.tree.2012.10.008; Goldsworthy CA, 2006, AM MIDL NAT, V156, P331, DOI 10.1674/0003-0031(2006)156[331:GBCRAS]2.0.CO;2; Helms BS, 2011, J N AM BENTHOL SOC, V30, P1095, DOI 10.1899/10-093.1; Hocutt C. H., 1986, ZOOGEOGRAPHY N AM FR; Hollingsworth PR, 2009, EVOLUTION, V63, P228, DOI 10.1111/j.1558-5646.2008.00531.x; Hollingsworth PR, 2013, BMC EVOLUTIONARY BIO, V13, P272; HOLM S, 1979, SCAND J STAT, V6, P65; Institute ESR, 2011, ARCGIS DESKT REL 10; Jaramillo-Villa U, 2010, J FISH BIOL, V76, P2401, DOI 10.1111/j.1095-8649.2010.02629.x; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Keck BP, 2013, B PEABODY MUS NAT HI, V54, P3, DOI 10.3374/014.054.0101; Keck BP, 2010, MOL ECOL, V19, P5030, DOI 10.1111/j.1365-294X.2010.04866.x; Kottelat M., 2007, HDB EUROPEAN FRESHWA; Krober W., 2012, PLOS ONE, V7; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Larson ER, 2012, GLOBAL ECOL BIOGEOGR, V21, P1114, DOI 10.1111/j.1466-8238.2012.00758.x; Layman S. R., 2012, B ALABAMA MUSEUM NAT, V30, P1; Legendre P, 1997, ECOLOGY, V78, P547; Leidy Robert A., 1998, P187; Leveque C, 2008, HYDROBIOLOGIA, V595, P545, DOI 10.1007/s10750-007-9034-0; Logez M, 2013, ECOGRAPHY, V36, P80, DOI 10.1111/j.1600-0587.2012.07447.x; Lujan NK, 2013, J BIOGEOGR, V40, P1715, DOI 10.1111/jbi.12131; Luther ET, 1977, OUR RESTLES EARTH GE; Marzin A, 2013, HYDROBIOLOGIA, V704, P375, DOI 10.1007/s10750-012-1254-2; Matono P, 2013, ENVIRON MANAGE, V52, P1213, DOI 10.1007/s00267-013-0152-3; McDonald RI, 2012, PLOS ONE, V7; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2013, FRESHWATER BIOL, V58, P50, DOI 10.1111/fwb.12037; Moodley D, 2013, PLOS ONE, V8; Naiman RJ, 2011, ECOL RES, V26, P865, DOI 10.1007/s11284-010-0693-3; Near TJ, 2011, SYST BIOL, V60, P565, DOI 10.1093/sysbio/syr052; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Oliveira JM, 2012, PLOS ONE, V7; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; Piller KR, 2008, MOL PHYLOGENET EVOL, V46, P974, DOI 10.1016/j.ympev.2007.11.023; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Rakes PL, 1999, ENVIRON BIOL FISH, V55, P31, DOI 10.1023/A:1007531927209; Rashleigh B, 2004, SOUTHEAST NAT, V3, P621, DOI 10.1656/1528-7092(2004)003[0621:FAGITU]2.0.CO;2; Ricciardi A, 1999, CONSERV BIOL, V13, P1220, DOI 10.1046/j.1523-1739.1999.98380.x; Robbins CR, 1961, COPEIA, V1961, P305; Roth NE, 1996, LANDSCAPE ECOL, V11, P141, DOI 10.1007/BF02447513; Roy AH, 2007, LANDSCAPE ECOL, V22, P385, DOI 10.1007/s10980-006-9034-x; Schloss CA, 2011, PLOS ONE, V6; Schuldt A, 2012, ECOL LETT, V15, P732, DOI 10.1111/j.1461-0248.2012.01792.x; Schwartz JS, 2008, AQUAT CONSERV, V18, P852, DOI 10.1002/aqc.905; Schwartz JS, 2011, ENVIRON MONIT ASSESS, V179, P347, DOI 10.1007/s10661-010-1741-8; Shute JR, 2005, SOUTHEAST NAT, V4, P93, DOI 10.1656/1528-7092(2005)004[0093:ROFIFI]2.0.CO;2; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Team R. D. C., 2008, R LANG ENV STAT COMP, V1; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; Thornbury W.D., 1965, REGIONAL GEOMORPHOLO; Wang LZ, 1997, FISHERIES, V22, P6, DOI 10.1577/1548-8446(1997)022<0006:IOWLUO>2.0.CO;2; Wiescher PT, 2012, OECOLOGIA, V169, P1063, DOI 10.1007/s00442-012-2262-7; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 81 12 12 4 71 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One MAR 27 2014 9 3 e93237 10.1371/journal.pone.0093237 9 Multidisciplinary Sciences Science & Technology - Other Topics AE0SW WOS:000333677500097 24676053 DOAJ Gold, Green Published 2019-02-21 J Dechaine, JM; Brock, MT; Weinig, C Dechaine, Jennifer M.; Brock, Marcus T.; Weinig, Cynthia QTL architecture of reproductive fitness characters in Brassica rapa BMC PLANT BIOLOGY English Article Fitness components; Life-history traits; Phenotypic plasticity; Transgenerational effects; Yield; Brassica rapa QUANTITATIVE TRAIT LOCI; GENOTYPE-ENVIRONMENT INTERACTION; LIFE-HISTORY CHARACTERS; FLOWERING TIME GENE; ARABIDOPSIS-THALIANA; SEED COLOR; TRANSGENERATIONAL PLASTICITY; DROSOPHILA-MELANOGASTER; HEADING DATE; NAPUS L Background: Reproductive output is critical to both agronomists seeking to increase seed yield and to evolutionary biologists interested in understanding natural selection. We examine the genetic architecture of diverse reproductive fitness traits in recombinant inbred lines (RILs) developed from a crop (seed oil) x wild-like (rapid cycling) genotype of Brassica rapa in field and greenhouse environments. Results: Several fitness traits showed strong correlations and QTL-colocalization across environments (days to bolting, fruit length and seed color). Total fruit number was uncorrelated across environments and most QTL affecting this trait were correspondingly environment-specific. Most fitness components were positively correlated, consistent with life-history theory that genotypic variation in resource acquisition masks tradeoffs. Finally, we detected evidence of transgenerational pleiotropy, that is, maternal days to bolting was negatively correlated with days to offspring germination. A QTL for this transgenerational correlation was mapped to a genomic region harboring one copy of FLOWERING LOCUS C, a genetic locus known to affect both days to flowering as well as germination phenotypes. Conclusions: This study characterizes the genetic structure of important fitness/yield traits within and between generations in B. rapa. Several identified QTL are suitable candidates for fine-mapping for the improvement of yield in crop Brassicas. Specifically, brFLC1, warrants further investigation as a potential regulator of phenology between generations. [Dechaine, Jennifer M.] Cent Washington Univ, Dept Biol Sci, Ellensburg, WA 98926 USA; [Brock, Marcus T.; Weinig, Cynthia] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA Dechaine, JM (reprint author), Cent Washington Univ, Dept Biol Sci, Ellensburg, WA 98926 USA. dechaine@cwu.edu National Science Foundation [20091702] We are grateful to T.C.Osborn and F.L.Iniguez-Luy for development and characterization of the B.rapa RILs used in this study.We also thank J.Johnston, L.Demink, Z.German, C.Willis, A.Hansen, and B.Meyer for their contributions to experimental management and data collection.This work was supported by a grant from the National Science Foundation (20091702) to CW. Allainguillaume J, 2006, MOL ECOL, V15, P1175, DOI 10.1111/j.1365-294X.2006.02856.x; Alonso-Blanco C, 1999, P NATL ACAD SCI USA, V96, P4710, DOI 10.1073/pnas.96.8.4710; Asins MJ, 2002, PLANT BREEDING, V121, P281, DOI 10.1046/j.1439-0523.2002.730285.x; Bastow R, 2004, NATURE, V427, P164, DOI 10.1038/nature02269; Bettey M, 2000, NEW PHYTOL, V148, P277, DOI 10.1046/j.1469-8137.2000.00760.x; Bisht NC, 2009, THEOR APPL GENET, V118, P413, DOI 10.1007/s00122-008-0907-z; BOX GEP, 1964, J ROY STAT SOC B, V26, P211; Brock MT, 2010, GENETICS, V186, P1451, DOI 10.1534/genetics.110.119982; Burstin J, 2007, PLANT PHYSIOL, V144, P768, DOI 10.1104/pp.107.096966; Cai HY, 2012, EUPHYTICA, V184, P109, DOI 10.1007/s10681-011-0581-0; Cai HW, 2002, THEOR APPL GENET, V104, P1217, DOI 10.1007/s00122-001-0819-7; CHEN BY, 1992, EUPHYTICA, V59, P157, DOI 10.1007/BF00041268; Chen L, 2012, PLOS ONE, V7; Chiang GCK, 2009, P NATL ACAD SCI USA, V106, P11661, DOI 10.1073/pnas.0901367106; CHURCHILL GA, 1994, GENETICS, V138, P963; Clark CJ, 2007, AM NAT, V170, P128, DOI 10.1086/518565; Collard BCY, 2008, PHILOS T R SOC B, V363, P557, DOI 10.1098/rstb.2007.2170; Contreras S, 2008, HORTSCIENCE, V43, P845; Cooper M, 2009, CURR OPIN PLANT BIOL, V12, P231, DOI 10.1016/j.pbi.2009.01.006; Cummings CL, 2002, ECOL APPL, V12, P1661, DOI 10.1890/1051-0761(2002)012[1661:FSIASC]2.0.CO;2; Dechaine JM, 2007, NEW PHYTOL, V176, P874, DOI 10.1111/j.1469-8137.2007.02210.x; Dechaine JM, 2009, NEW PHYTOL, V184, P828, DOI 10.1111/j.1469-8137.2009.02964.x; Dechaine JM, 2009, PLANT CELL ENVIRON, V32, P1297, DOI 10.1111/j.1365-3040.2009.01998.x; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; Donohue K, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P137; Donohue K, 2005, SEED SCI RES, V15, P175, DOI 10.1079/SSR2005208; Donohue K, 2002, ECOLOGY, V83, P1006; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; DORN LA, 1991, EVOLUTION, V45, P371, DOI 10.1111/j.1558-5646.1991.tb04411.x; Flury B, 1998, COMMON PRINCIPAL COM; Fry JD, 1998, GENET RES, V71, P133, DOI 10.1017/S0016672398003176; Galloway LF, 2007, SCIENCE, V318, P1134, DOI 10.1126/science.1148766; Galloway LF, 2009, NEW PHYTOL, V183, P826, DOI 10.1111/j.1469-8137.2009.02939.x; Galloway LF, 2009, ECOLOGY, V90, P2139, DOI 10.1890/08-0948.1; Gurganus MC, 1998, GENETICS, V149, P1883; Gutterman Y, 2000, SEEDS ECOLOGY REGENE, P59; Herman JJ, 2012, INTEGR COMP BIOL, V52, P77, DOI 10.1093/icb/ics041; HINATA K, 1984, Indian Journal of Genetics and Plant Breeding, V44, P102; Huang XH, 2012, NAT GENET, V44, P32, DOI 10.1038/ng.1018; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; Huang Z, 2012, GENOME, V55, P8, DOI [10.1139/G11-072, 10.1139/g11-072]; Kebede B, 2012, GENOME, V55, P813, DOI 10.1139/g2012-066; Khavkin E, 1997, THEOR APPL GENET, V95, P343, DOI 10.1007/s001220050569; Lou P, 2011, THEOR APPL GENET, V123, P397, DOI 10.1007/s00122-011-1592-x; Lou P, 2007, J EXP BOT, V58, P4005, DOI 10.1093/jxb/erm255; Iniguez-Luy FL, 2009, THEOR APPL GENET, V120, P31, DOI 10.1007/s00122-009-1157-4; Lynch M, 1998, GENETICS ANAL QUANTI; Maccaferri M, 2008, GENETICS, V178, P489, DOI 10.1534/genetics.107.077297; Mahmood T, 2006, THEOR APPL GENET, V113, P1211, DOI 10.1007/s00122-006-0376-1; Malmberg RL, 2005, GENETICS, V171, P2015; Mezey JG, 2003, GENETICS, V165, P411; MitchellOlds T, 1996, EVOLUTION, V50, P1849, DOI 10.1111/j.1558-5646.1996.tb03571.x; Phillips PC, 1999, EVOLUTION, V53, P1506, DOI [10.1111/j.1558-5646.1999.tb05414.x, 10.2307/2640896]; Prakash S, 1980, OPERA BOT, V55, P180; Quarrie SA, 2006, J EXP BOT, V57, P2627, DOI 10.1093/jxb/erl026; Ramchiary N, 2007, THEOR APPL GENET, V115, P807, DOI 10.1007/s00122-007-0610-5; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; ROBERTSON A, 1959, BIOMETRICS, V15, P469, DOI 10.2307/2527750; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Schranz ME, 2002, GENETICS, V162, P1457; Sheldon CC, 2008, P NATL ACAD SCI USA, V105, P2214, DOI 10.1073/pnas.0711453105; Shi JQ, 2009, GENETICS, V182, P851, DOI 10.1534/genetics.109.101642; SHIRZADEGAN M, 1985, FETT WISS TECHNOL, V87, P235, DOI 10.1002/lipi.19850870605; STAMP NE, 1990, AM J BOT, V77, P874, DOI 10.2307/2444503; Susko DJ, 2000, AM J BOT, V87, P56, DOI 10.2307/2656685; Turnbull LA, 2000, OIKOS, V88, P225, DOI 10.1034/j.1600-0706.2000.880201.x; Van Molken T, 2005, AM J BOT, V92, P432, DOI 10.3732/ajb.92.3.432; VANOOIJEN JW, 1992, THEOR APPL GENET, V84, P803, DOI 10.1007/BF00227388; WANG S, 2007, WINDOWS QTL CARTOGRA; Wang XW, 2011, NAT GENET, V43, P1035, DOI 10.1038/ng.919; Weinig C, 2002, GENETICS, V162, P1875; WILLIAMS PH, 1986, SCIENCE, V232, P1385, DOI 10.1126/science.232.4756.1385; Xiao L, 2012, THEOR APPL GENET, V124, P903, DOI 10.1007/s00122-011-1754-x; Xie XB, 2008, THEOR APPL GENET, V116, P613, DOI 10.1007/s00122-007-0695-x; Xing YZ, 2010, ANNU REV PLANT BIOL, V61, P421, DOI 10.1146/annurev-arplant-042809-112209; Xue WY, 2008, NAT GENET, V40, P761, DOI 10.1038/ng.143; Yang P, 2012, THEOR APPL GENET, V125, P285, DOI 10.1007/s00122-012-1833-7; ZHANG JH, 1993, CAN J BOT, V71, P1231, DOI 10.1139/b93-145; Zhang JF, 2009, PLANT MOL BIOL, V69, P553, DOI 10.1007/s11103-008-9437-y; Zhang LW, 2012, THEOR APPL GENET, V125, P695, DOI 10.1007/s00122-012-1861-3 80 12 12 1 34 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2229 BMC PLANT BIOL BMC Plant Biol. MAR 18 2014 14 66 10.1186/1471-2229-14-66 12 Plant Sciences Plant Sciences AF9YS WOS:000335071200001 24641198 DOAJ Gold, Green Published 2019-02-21 J Gray, JC; Cutter, AD Gray, Jeremy C.; Cutter, Asher D. Mainstreaming Caenorhabditis elegans in experimental evolution PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Review experimental evolution; Caenorhabditis; evolution HOST-PARASITE COEVOLUTION; MICROPARASITE BACILLUS-THURINGIENSIS; BASE-SUBSTITUTION MUTATION; GENETIC DIVERSITY; SEX-DETERMINATION; LIFE-SPAN; C-ELEGANS; EXPERIMENTAL POPULATIONS; OUTBREEDING DEPRESSION; SPERM COMPETITION Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery. [Gray, Jeremy C.; Cutter, Asher D.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Cutter, AD (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Willcocks St, Toronto, ON M5S 3B2, Canada. asher.cutter@utoronto.ca Cutter, Asher/A-5647-2009 Natural Sciences and Engineering Research Council of Canada; United States' National Institutes of Health; Canada Research Chair A.D.C. is supported by funds from the Natural Sciences and Engineering Research Council of Canada, the United States' National Institutes of Health, and a Canada Research Chair. Agrawal AF, 2006, CURR BIOL, V16, pR696, DOI 10.1016/j.cub.2006.07.063; Ajie BC, 2005, GENETICS, V170, P655, DOI 10.1534/genetics.104.040014; Andersen EC, 2012, NAT GENET, V44, P285, DOI 10.1038/ng.1050; Anderson J, 2010, DANCING TIMES, V100, P62; Anderson JL, 2011, J GERONTOL A-BIOL, V66, P1300, DOI 10.1093/gerona/glr143; Antebi A, 2007, PLOS GENET, V3, P1565, DOI 10.1371/journal.pgen.0030129; Azevedo RBR, 2002, GENETICS, V162, P755; Baer CF, 2005, P NATL ACAD SCI USA, V102, P5785, DOI 10.1073/pnas.0406056102; Baer CF, 2007, NAT REV GENET, V8, P619, DOI 10.1038/nrg2158; Baer CF, 2006, GENETICS, V174, P1387, DOI 10.1534/genetics.106-061200; Baer CF, 2010, EVOLUTION, V64, P3242, DOI 10.1111/j.1558-5646.2010.01061.x; Barriere A, 2005, CURR BIOL, V15, P1176, DOI 10.1016/j.cub.2005.06.022; Barriere A, 2007, GENETICS, V176, P999, DOI 10.1534/genetics.106.067223; Bell G, 2008, SELECTION: THE MECHANISM OF EVOLUTION, 2ND EDITION, P1; Bell G, 1982, MASTERPIECE NATURE E; Bendesky A, 2011, NAT REV GENET, V12, P809, DOI 10.1038/nrg3065; BRENNER S, 1974, GENETICS, V77, P71; BRUN J, 1965, SCIENCE, V150, P1467, DOI 10.1126/science.150.3702.1467; Buckling A, 2009, NATURE, V457, P824, DOI 10.1038/nature07892; *CEL SEQ CONS, 1998, SCIENCE, V282, P2012, DOI DOI 10.1126/SCIENCE.282.5396.2012; CHALFIE M, 1994, SCIENCE, V263, P802, DOI 10.1126/science.8303295; Chandler CH, 2012, EVOLUTION, V66, P82, DOI 10.1111/j.1558-5646.2011.01420.x; Chasnov JR, 2002, GENETICS, V160, P983; Chelo IM, 2013, EVOLUTION, V67, P142, DOI 10.1111/j.1558-5646.2012.01744.x; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Cutter A. D., 2011, EVOLUTION, V66, P1180, DOI DOI 10.1111/J.1558-5646.2011.01514.X); Cutter AD, 2005, J EVOLUTION BIOL, V18, P27, DOI 10.1111/j.1420-9101.2004.00804.x; Cutter AD, 2004, EVOLUTION, V58, P651, DOI 10.1111/j.0014-3820.2004.tb01687.x; Cutter AD, 2003, GENET RES, V81, P91, DOI 10.1017/S001667230300613X; Cutter AD, 2013, MOL ECOL, V22, P2074, DOI 10.1111/mec.12281; DALLINGER WH, 1978, P R SOC LOND, V27, P332, DOI DOI 10.1098/RSPL.1878.0055; Dennehy JJ, 2006, APPL ENVIRON MICROB, V72, P1974, DOI 10.1128/AEM.72.3.1974-1979.2006; Denver DR, 2012, GENOME BIOL EVOL, V4, P513, DOI 10.1093/gbe/evs028; Denver DR, 2010, GENOME RES, V20, P1663, DOI 10.1101/gr.108191.110; Denver DR, 2009, P NATL ACAD SCI USA, V106, P16310, DOI 10.1073/pnas.0904895106; Denver DR, 2004, NATURE, V430, P679, DOI 10.1038/nature02697; Dey A, 2012, GENETICS, V191, P1257, DOI 10.1534/genetics.112.140418; Dolgin ES, 2007, EVOLUTION, V61, P1339, DOI 10.1111/j.1558-5646.2007.00118.x; Duveau F, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001230; Ellis RE, 2008, CURR TOP DEV BIOL, V83, P41, DOI 10.1016/S0070-2153(08)00402-X; Elvin M, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-510; Estes S, 2005, GENETICS, V170, P645, DOI 10.1534/genetics.104.040022; Estes S, 2004, GENETICS, V166, P1269, DOI 10.1534/genetics.166.3.1269; Estes S, 2003, EVOLUTION, V57, P1022; Felix MA, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-10; Felix MA, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000586; Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050; Flibotte S, 2010, GENETICS, V185, P431, DOI 10.1534/genetics.110.116616; Friedenberg NA, 2003, AM NAT, V162, P586, DOI 10.1086/378782; Friedenberg NA, 2003, ECOL LETT, V6, P953, DOI 10.1046/j.1461-0248.2003.00524.x; Frokjaer-Jensen C, 2013, GENETICS, V195, P635, DOI 10.1534/genetics.113.156521; Garcia LR, 2007, GENETICS, V175, P1761, DOI 10.1534/genetics.106.068304; Garland T.G., 2009, EXPT EVOLUTION CONCE; Gimond C, 2013, EVOLUTION, V67, P3087, DOI 10.1111/evo.12203; Gloria-Soria A, 2008, CURR BIOL, V18, P1694, DOI 10.1016/j.cub.2008.09.043; Goddard MR, 2007, SEX IN FUNGI: MOLECULAR DETERMINATION AND EVOLUTIONARY IMPLICATIONS, P489; Herron MD, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001490; Hodgkin J, 2002, GENETICS, V162, P1501; Husson SJ, 2012, WORMBOOK, DOI [10.1895/wormbook.1.156.1, DOI 10.1895/WORMBOOK.1.156.1]; Janzen FJ, 2006, J EVOLUTION BIOL, V19, P1775, DOI 10.1111/j.1420-9101.2006.01138.x; Jarrell TA, 2012, SCIENCE, V337, P437, DOI 10.1126/science.1221762; Joyner-Matos J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0065604; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; Keightley PD, 1997, P NATL ACAD SCI USA, V94, P3823, DOI 10.1073/pnas.94.8.3823; Kiontke KC, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-339; LaMunyon CW, 2007, J HERED, V98, P67, DOI 10.1093/jhered/esl052; LaMunyon CW, 2002, P ROY SOC B-BIOL SCI, V269, P1125, DOI 10.1098/rspb.2002.1996; LaMunyon CW, 1999, P ROY SOC B-BIOL SCI, V266, P263, DOI 10.1098/rspb.1999.0631; LENSKI RE, 1991, AM NAT, V138, P1315, DOI 10.1086/285289; Lockery SR, 2008, J NEUROPHYSIOL, V99, P3136, DOI 10.1152/jn.91327.2007; Lopes PC, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003741; Manoel D, 2007, P ROY SOC B-BIOL SCI, V274, P417, DOI 10.1098/rspb.2006.3739; Masri L, 2013, ECOL LETT, V16, P461, DOI 10.1111/ele.12068; Matsuba C, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.0334; Morran LT, 2013, EVOLUTION, V67, P1860, DOI 10.1111/evo.12007; Morran LT, 2011, SCIENCE, V333, P216, DOI 10.1126/science.1206360; Morran LT, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014473; Morran LT, 2009, NATURE, V462, P350, DOI 10.1038/nature08496; Morran LT, 2009, EVOLUTION, V63, P1473, DOI 10.1111/j.1558-5646.2009.00652.x; Murray RL, 2011, J EXP BIOL, V214, P1740, DOI 10.1242/jeb.053181; Pothof J, 2003, GENE DEV, V17, P443, DOI 10.1101/gad.1060703; Ramani AK, 2012, CELL, V148, P792, DOI 10.1016/j.cell.2012.01.019; Schulenburg H, 2004, BMC EVOL BIOL, V4, DOI 10.1186/1471-2148-4-49; Schulte RD, 2013, J EVOLUTION BIOL, V26, P1836, DOI 10.1111/jeb.12174; Schulte RD, 2012, BIOL LETTERS, V8, P234, DOI 10.1098/rsbl.2011.0684; Schulte RD, 2011, P ROY SOC B-BIOL SCI, V278, P2832, DOI 10.1098/rspb.2011.0019; Schulte RD, 2010, P NATL ACAD SCI USA, V107, P7359, DOI 10.1073/pnas.1003113107; Shi WW, 2011, TOP CURR CHEM, V304, P323, DOI 10.1007/128_2011_145; Sicard M, 2007, ENVIRON MICROBIOL, V9, P12, DOI 10.1111/j.1462-2920.2006.01099.x; Smith JR, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002375; Stewart AD, 2002, GENETICS, V160, P975; Stiernagle T, 2006, WORMBOOK 0211, DOI [10.1895/wormbook.1.101.1, DOI 10.1895/WORMBOOK.1.101.1]; SULSTON JE, 1977, DEV BIOL, V56, P110, DOI 10.1016/0012-1606(77)90158-0; Teotonio H, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0035811, DOI 10.1371/JOURNAL.PONE.0035811]; Teotonio H, 2006, EVOLUTION, V60, P1300; Thompson O, 2013, GENOME RES, V23, P1749, DOI 10.1101/gr.157651.113; Timmons L, 1998, NATURE, V395, P854, DOI 10.1038/27579; Vassilieva LL, 1999, GENETICS, V151, P119; Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693; WARD S, 1979, DEV BIOL, V73, P304, DOI 10.1016/0012-1606(79)90069-1; Wegewitz Viktoria, 2008, BMC Ecology, V8, P12, DOI 10.1186/1472-6785-8-12; WHITE JG, 1986, PHILOS T R SOC B, V314, P1, DOI 10.1098/rstb.1986.0056; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wood WB, 1988, NEMATODE CAENORHABDI; Woodruff GC, 2010, GENETICS, V186, P997, DOI 10.1534/genetics.110.120550; Yan C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0043770 107 26 27 1 40 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. MAR 7 2014 281 1778 20133055 10.1098/rspb.2013.3055 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AC2YN WOS:000332382300020 24430852 Green Published, Bronze 2019-02-21 J Rawlinson, KA Rawlinson, Kate A. The diversity, development and evolution of polyclad flatworm larvae EVODEVO English Review Polyclads; Platyhelminthes; Larvae; Meroplankton; Lobes; Ciliary band; Sucker POLYCHAETE CAPITELLA-TELETA; MARITIGRELLA-CROZIERI; LIFE-HISTORY; HOPLOPLANA-INQUILINA; MARINE-INVERTEBRATES; PSEUDOCEROS-CANADENSIS; EMBRYONIC-DEVELOPMENT; MUSCLE DEVELOPMENT; NERVOUS-SYSTEM; MULLERS LARVA Polyclad flatworms offer an excellent system with which to explore the evolution of larval structures and the ecological and developmental mechanisms driving flatworm and marine invertebrate life history evolution. Although the most common mode of development in polyclads might be direct development (where the embryo develops directly into a form resembling the young adult), there are many species that develop indirectly, through a planktonic phase with transient larval features, before settling to the sea floor. In this review, I introduce polyclad life history strategies, larval diversity and larval anatomical features (presenting previously unpublished micrographs of a diversity of polyclad larvae). I summarize what is known about polyclad larval development during the planktonic phase and the transition to the benthic juvenile. Finally, I discuss evolutionary and developmental scenarios on the origin of polyclad larval characters. The most prominent characters that are found exclusively in the larval stages are lobes that protrude from the body and a ciliary band, or ciliary tufts, at the peripheral margins of the lobes. Larvae with 4-8 and 10 lobes have been described, with most indirect developing species hatching with 8 lobes. A ventral sucker develops in late stage larvae, and I put forward the hypothesis that this is an organ for larval settlement for species belonging to the Cotylea. Historically, the biphasic life cycle of polyclads was thought to be a shared primitive feature of marine invertebrates, with similarities in larval features among phyla resulting from evolutionary conservation. However, our current understanding of animal phylogeny suggests that indirect development in polyclads has evolved independently of similar life cycles found in parasitic flatworms and some other spiralian taxa, and that morphological similarities between the larvae of polyclads and other spiralians are likely a result of convergent evolution. Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada Rawlinson, KA (reprint author), Dalhousie Univ, Dept Biol, 1355 Oxford St, Halifax, NS B3H 4R2, Canada. k.rawlinson@dal.ca NSERC grant Most of these images of larvae were taken at the Smithsonian Marine Station at Fort Pierce, USA, while I was a Smithsonian Marine Science Network Postdoctoral Fellow. I thank Drs Mary Rice, Jon Norenburg and Allen Collins and all the staff of the Smithsonian Marine Station for their support during my fellowship. I also thank Professors Brian Hall, Max Telford, Elaine Seaver, Mark Martindale and Dr Andrew Gillis for their support and for discussion of ideas. Finally, I wish to thank two anonymous reviewers for their helpful comments. The author is funded by an NSERC grant awarded to Professor Brian Hall. Smithsonian Marine Station at Fort Pierce, Contribution No. 939. Anderson D, 1977, MARINE FRESHWATER RE, V28, P303, DOI 10.1071/MF9770303; ANDERSON D. T., 1966, ACTA ZOOL STOCKHOLM, V47, P1; Arenas-Mena C, 2007, EVOL DEV, V9, P231, DOI 10.1111/j.1525-142X.2007.00155.x; Bolanos DM, 2009, EVOL DEV, V11, P290, DOI 10.1111/j.1525-142X.2009.00331.x; Bonar DB, 1974, J EXP MAR BIOL ECOL, V16, P1; Boyer BC, 1996, DEV BIOL, V179, P329, DOI 10.1006/dbio.1996.0264; Byrne M, 2006, INTEGR COMP BIOL, V46, P243, DOI 10.1093/icb/icj033; CAIRA JN, 2001, ENCY BIODIVERSITY, V5, P863; CHING HL, 1977, CAN J ZOOL, V55, P338, DOI 10.1139/z77-045; Collin R, 2004, EVOLUTION, V58, P1488; Collins JJ, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001009; Dalyell C, 1853, THE POWERS OF THE CR, P95; Dawydoff C, 1940, B BIOL FRANCE BELGIQ, V74, P1; EMLET RB, 1991, AM ZOOL, V31, P707; FAUBEL A, 1983, Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, V80, P17; Galleni L, 1976, B ZOOL, V43, P139; Gammoudi M, 2012, INVERTEBR REPROD DEV, V56, P272, DOI 10.1080/07924259.2011.611825; Girard C, 1854, RESEARCHES UPON NEME; Giribet Gonzalo, 2009, P52; Gline SE, 2011, DEV BIOL, V353, P120, DOI 10.1016/j.ydbio.2011.01.031; Gotte A, 1882, ABHANDLUNGEN ZUR ENT, P1; Hadfield MG, 2001, AM ZOOL, V41, P1123, DOI 10.1668/0003-1569(2001)041[1123:MCAMAC]2.0.CO;2; HAECKEL E, 1874, Q J MICROSC SCI, V14, P142; Hallez P, 1879, BULL SCI DEPART NORD, V1, P264; Hatschek B, 1878, ARBEITEN ZOOLOGISCHE, V1, P277; Heath H, 1928, J MORPHOL PHYSIOL, V45, P187, DOI 10.1002/jmor.1050450106; Hofker J, 1930, Z MORPHOL OKOL TIERE, V18, P202; Jagersten G, 1972, EVOLUTION OF THE MET; Jennings JB, 1997, INT J PARASITOL, V27, P679, DOI 10.1016/S0020-7519(97)00010-6; Jennings KA, 1996, RAFFLES B ZOOL, V44, P493; Johnson KB, 2003, J EXP MAR BIOL ECOL, V282, P103, DOI 10.1016/S0022-0981(02)00448-3; JOKIEL PL, 1974, PAC SCI, V28, P361; Kato K., 1940, Japanese Journal of Zoology, V8, P537; Kato K, 1957, INVERTEBRATE EMBRYOL, P125; KNIGHTJONES EW, 1954, Q J MICROSC SCI, V95, P503; LACALLI TC, 1988, CAN J ZOOL, V66, P1893, DOI 10.1139/z88-273; LACALLI TC, 1982, PROC R SOC SER B-BIO, V217, P37, DOI 10.1098/rspb.1982.0093; LACALLI TC, 1983, CAN J ZOOL, V61, P39, DOI 10.1139/z83-004; LANFRANCHI A, 1981, HYDROBIOLOGIA, V84, P267, DOI 10.1007/BF00026189; Lang A, 1884, DIE POLYCLADEN SEEPL; Lapraz F, 2013, EVODEVO, V4, DOI 10.1186/2041-9139-4-29; Larsson K, 2008, ORG DIVERS EVOL, V8, P378, DOI 10.1016/j.ode.2008.09.002; LEE KM, 2006, J NAT HIST, V39, P3987, DOI DOI 10.1080/00222930500485263; Littlewood DTJ, 2008, PARASITE, V15, P333, DOI 10.1051/parasite/2008153333; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; Martin-Duran JM, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-7; Merory M, 2005, J NAT HIST, V39, P2581, DOI 10.1080/0022930500082045; Meyer NP, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-8; Muller J, 1854, ARCH ANAT PHYSL, P69; MURINA GV, 1995, HYDROBIOLOGIA, V305, P101, DOI 10.1007/BF00036369; Newman LJ, 2000, J NAT HIST, V34, P799, DOI 10.1080/002229300299264; Nielsen C, 2005, J EXP ZOOL PART B, V304B, P401, DOI 10.1002/jez.b.21050; Page LR, 2009, BIOL BULL-US, V216, P216; Park JK, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-11; PEARSE A. S., 1938, PROC U S NATION MUS, V86, P67; POULTER JL, 1975, PAC SCI, V29, P317; Prudhoe S., 1985, MONOGRAPH POLYCLAD T; Rawlinson KA, 2011, CORAL REEFS, V30, P693, DOI 10.1007/s00338-011-0745-3; Rawlinson KA, 2008, J NAT HIST, V42, P2173, DOI 10.1080/00222930802262758; Rawlinson KA, 2008, INVERTEBR BIOL, V127, P121, DOI 10.1111/j.1744-7410.2007.00119.x; Rawlinson KA, 2008, MAR BIOL, V153, P769, DOI 10.1007/s00227-007-0845-3; Rawlinson KA, 2010, FRONT ZOOL, V7, DOI 10.1186/1742-9994-7-12; Reisinger E., 1974, J ZOOLOG SYST EVOL R, V12, P161, DOI [10.1111/j.1439-0469.1974.tb00164.x, DOI 10.1111/J.1439-0469.1974.TB00164.X]; Reiter D, 1996, ROUX ARCH DEV BIOL, V205, P410, DOI 10.1007/BF00377221; Rho S, 1976, B FISH RES DEV AGENC, V15, P123; ROONEY LM, 1984, BIOL BULL, V167, P519; Ruppert E.E., 1978, P65; Scarpa J, 1996, AM ZOOL, V36, P107; Selenka E, 1881, ZOOLOGISCHE STUDIEN; Semmler H, 2010, EVOL DEV, V12, P210, DOI 10.1111/j.1525-142X.2010.00405.x; Smith Nancy F., 2002, P123; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Surface F. M., 1907, P ACAD NAT SCI PHILA, V59, P514; Teshirogi W, 1981, REP FAKUARA MAR BIOL, V9, P2; VandenBiggelaar J, 1996, NETH J ZOOL, V46, P8; Whittington ID, 2000, ADV PARASIT, V44, P139; Yamaguchi E, 2013, INVERTEBR BIOL, V132, P352, DOI 10.1111/ivb.12034; Younossi-Hartenstein A, 2000, DEV GENES EVOL, V210, P383, DOI 10.1007/s004270000086 78 13 13 1 20 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 2041-9139 EVODEVO EvoDevo MAR 6 2014 5 9 10.1186/2041-9139-5-9 12 Evolutionary Biology; Developmental Biology Evolutionary Biology; Developmental Biology AF3WC WOS:000334642100001 24602223 DOAJ Gold, Green Published 2019-02-21 J Diaz Pauli, B; Heino, M Diaz Pauli, Beatriz; Heino, Mikko What can selection experiments teach us about fisheries-induced evolution? BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Review genetic change; fisheries; fishing selectivity; phenotypic change GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; PROBABILISTIC REACTION NORMS; MATURATION REACTION NORMS; RECENT COMMON ANCESTORS; EXPLOITED FISH STOCKS; PIKE ESOX-LUCIUS; PHENOTYPIC PLASTICITY; ARTIFICIAL SELECTION; TELEOST FISH There is evidence that fisheries are altering the phenotypic composition of fish populations, often in ways that may reduce the value of fish stocks for the exploiters. Despite the increasing number of theoretical and field studies, there is still debate as to whether these changes are genetic, can be reversed, and are occurring rapidly enough to be considered in fisheries management. We review the contribution that selection experiments have already provided with respect to the study of the evolutionary effect of fisheries, identify issues that still require more study, and outline future directions for doing so. Selection experiments have already been crucial in showing that harvesting can lead to phenotypic and genetic evolution over relatively short time frames. Furthermore, the experiments have shown the changes involve many other traits than those under direct selection, and that these changes tend to have population-level consequences, including a decreasing fisheries yield. However, experiments focused on fisheries-induced evolution that fulfil all our requirements are still lacking. Future studies should have more controlled and realistic set-ups and assess genetic changes in maturation and growth (i.e. traits most often reported to change) to be more relevant to exploited populations in the wild. (c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 485-503. [Diaz Pauli, Beatriz; Heino, Mikko] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Heino, Mikko] Inst Marine Res, N-5817 Bergen, Norway; [Heino, Mikko] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria Diaz Pauli, B (reprint author), Univ Bergen, Dept Biol, Box 7803, N-5020 Bergen, Norway. beatriz.diaz-pauli@bio.uib.no; mikko@imr.no Heino, Mikko/C-7241-2009 Heino, Mikko/0000-0003-2928-3940; Diaz Pauli, Beatriz/0000-0002-9421-7758 Bergen Research Foundation; Research Council of Norway [214189/F20] We are grateful to Christian Jorgensen for valuable discussions and very helpful comments on earlier versions of the manuscript, as well as four anonymous reviewers for their constructive comments. The Bergen Research Foundation and the Research Council of Norway (214189/F20) contributed to the funding of this research. Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Badyaev AV, 2009, PHILOS T R SOC B, V364, P1169, DOI 10.1098/rstb.2008.0302; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Bisazza A, 2007, BEHAV BRAIN RES, V178, P29, DOI 10.1016/j.bbr.2006.11.043; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Brown CJ, 2008, MAR ECOL PROG SER, V369, P257, DOI 10.3354/meps07601; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Conover DO, 2009, EVOL APPL, V2, P276, DOI 10.1111/j.1752-4571.2009.00079.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conover DO, 2000, MAR ECOL PROG SER, V208, P303; Cooke SJ, 2007, PHYSIOL BIOCHEM ZOOL, V80, P480, DOI 10.1086/520618; Dam HG., 2012, ANNU REV MAR SCI, V5; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Diaz Pauli B, 2013, J EVOLUTION BIOL, V26, P2184, DOI 10.1111/jeb.12215; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Drake Melissa T., 1997, North American Journal of Fisheries Management, V17, P496, DOI 10.1577/1548-8675(1997)017<0496:ACOBRS>2.3.CO;2; Dunlop ES, 2009, EVOL APPL, V2, P246, DOI 10.1111/j.1752-4571.2009.00087.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; EDLEY MT, 1988, BIOL J LINN SOC, V34, P309, DOI 10.1111/j.1095-8312.1988.tb01966.x; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; EU Directive, 2010, OFFICIAL J EUROPEA L, V276, P33; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fjalestad KT, 2003, AQUAC RES, V34, P397, DOI 10.1046/j.1365-2109.2003.00823.x; Fuller RC, 2005, INTEGR COMP BIOL, V45, P391, DOI 10.1093/icb/45.3.391; Garland T, 2003, EXPTL BIOL REV, P23; Gjedrem T, 2012, AQUACULTURE, V350, P117, DOI 10.1016/j.aquaculture.2012.04.008; Gui JF, 2012, CHINESE SCI BULL, V57, P1751, DOI 10.1007/s11434-012-5213-0; Hansen MM, 2012, MOL ECOL, V21, P1311, DOI 10.1111/j.1365-294X.2011.05463.x; Haugen TO, 2000, OIKOS, V90, P107, DOI 10.1034/j.1600-0706.2000.900111.x; Haugen TO, 2001, GENETICA, V112, P475, DOI 10.1023/A:1013315116795; Haugen TO, 2000, J EVOLUTION BIOL, V13, P897, DOI 10.1046/j.1420-9101.2000.00242.x; Haugen TO, 2000, J FISH BIOL, V56, P1173, DOI 10.1006/jfbi.2000.1238; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2002, B MAR SCI, V70, P639; Heino M, 2008, B MAR SCI, V83, P69; Heinrich M. P., 2012, PRAGMATIC EVOLUTION, P81; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Henkel CV, 2012, GENE, V511, P195, DOI 10.1016/j.gene.2012.09.064; Hilborn R, 2006, FISHERIES, V31, P554; HURLBERT SH, 1984, ECOL MONOGR, V54, P187, DOI 10.2307/1942661; Hutchings JA, 2005, PHILOS T ROY SOC B, V360, P315, DOI 10.1098/rstb.2004.1586; Jakobsdottir KB, 2011, EVOL APPL, V4, P562, DOI 10.1111/j.1752-4571.2010.00176.x; JOrgensen C, 2008, SCIENCE, V320, P47; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Kasperski Wlodzimierz, 1993, Acta Hydrobiologica, V35, P65; Kendall NW, 2012, ECOL APPL, V22, P804, DOI 10.1890/11-1189.1; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2008, SCIENCE, V320, P47; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R., 1993, EXPLOITATION EVOLVIN, P155; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Meek TH, 2009, J EXP BIOL, V212, P2908, DOI 10.1242/jeb.028886; MILLER RB, 1957, J FISH RES BOARD CAN, V14, P797, DOI 10.1139/f57-034; MOAV R, 1975, HEREDITY, V34, P323, DOI 10.1038/hdy.1975.42; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Morita K, 2005, CAN J FISH AQUAT SCI, V62, P2752, DOI 10.1139/F05-182; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Munch SB, 2005, CAN J FISH AQUAT SCI, V62, P802, DOI 10.1139/F05-078; Nannini MA, 2011, J FISH BIOL, V79, P1017, DOI 10.1111/j.1095-8649.2011.03079.x; Ng SHS, 2005, GENOMICS, V86, P396, DOI 10.1016/j.ygeno.2005.06.001; Nielsen EE, 2009, MOL ECOL, V18, P3128, DOI 10.1111/j.1365-294X.2009.04272.x; Pascoal S, 2012, PLOS ONE, V7; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Pigliucci M, 2005, TRENDS ECOL EVOL, V20, P481, DOI 10.1016/j.tree.2005.06.001; Pottinger TG, 1999, GEN COMP ENDOCR, V116, P122, DOI 10.1006/gcen.1999.7355; Quinn TP, 2007, ECOL APPL, V17, P731, DOI 10.1890/06-0771; Rankin DJ, 2005, OIKOS, V111, P616; Redpath TD, 2010, CAN J FISH AQUAT SCI, V67, P1983, DOI 10.1139/F10-120; Redpath TD, 2009, EVOL APPL, V2, P312, DOI 10.1111/j.1752-4571.2009.00078.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; ROSENBAUM PR, 1995, OBSERVATIONAL STUDIE; Salinas S, 2012, EVOL APPL, V5, P657, DOI 10.1111/j.1752-4571.2012.00243.x; Schroder A, 2009, P NATL ACAD SCI USA, V106, P2671, DOI 10.1073/pnas.0808279106; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; SILLIMAN RP, 1975, FISH B-NOAA, V73, P495; Silliman RP, 1958, FISHERY B FISH WILDL, V58, P215; Star B, 2011, NATURE, V477, P207, DOI 10.1038/nature10342; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Sutter DAH, 2012, P NATL ACAD SCI USA, V109, P20960, DOI 10.1073/pnas.1212536109; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Tuomainen U, 2011, BIOL REV, V86, P640, DOI 10.1111/j.1469-185X.2010.00164.x; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Urban MC, 2008, ENCY LIFE SCI; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; WOHLFARTH G, 1975, HEREDITY, V34, P341, DOI 10.1038/hdy.1975.43; Wolf JB, 2009, PHILOS T R SOC B, V364, P1107, DOI 10.1098/rstb.2008.0238; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279; Zimmermann F, 2013, ICES J MAR SCI, V70, P1389, DOI 10.1093/icesjms/fst121; ZWAAN B, 1995, EVOLUTION, V49, P635, DOI 10.1111/j.1558-5646.1995.tb02300.x 107 10 10 0 46 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 2014 111 3 485 503 10.1111/bij.12241 19 Evolutionary Biology Evolutionary Biology AB6CO WOS:000331875400001 Bronze 2019-02-21 J Schalk, CM; Montana, CG; Libson, ME Schalk, Christopher M.; Montana, Carmen G.; Libson, Monika E. Reproductive strategies of two Neotropical killifish, Austrolebias vandenbergi and Neofundulus ornatipinnis (Cyprinodontiformes: Rivulidae) in the Bolivian Gran Chaco REVISTA DE BIOLOGIA TROPICAL English Article annual fish; ephemeral ponds; fecundity; life history; sexual dimorphism; tropical dry forest LIFE-HISTORY STRATEGIES; PHYLOGENETIC-RELATIONSHIPS; POPULATION REGULATION; ANNUAL FISHES; TELEOSTEI; MORPHOLOGY; PATTERNS; BEHAVIOR; BRAZIL; WATER The dry Chaco, a semiarid thorn forest, is experiencing some of the highest deforestation rates globally, coupled with the fact that small-bodied fish are at the highest risk of extinction, the killifish inhabiting this region may be some of the most threatened taxa. Yet, aspects of ecology and life history for Neotropical killifishes in the Bolivian Gran Chaco region are completely lacking, and basic life-history data is of critical importance for the design and implementation of conservation measures. Collections were conducted during the early (January 2011) and late (March-April 2011) rainy season using an area-based sampler and dip net surveys. Fish standard length and body depth were measured as well as the number of oocytes per size class, mean oocyte diameter per size class, and total fecundity for the females of each species. A total of 490 specimens of rivulids were captured; Austrolebias vandenbergi: 85 females, 105 males and 39 juveniles, and N. ornatipinnis: 62 females, 113 males, 86 juveniles. Sexual size dimorphism, absolute fecundity, oocyte developmental stages, oocyte diameter, and population sex ratios were determined for each species. Both species exhibited sexual size dimorphism. Male A. vandenbergi exhibited longer standard length (mean +/- SD; males: 27.07 +/- 3.89mm, females: 23.6 +/- 2.02mm) and body depth (males: 8.9 +/- 1.7mm, females: 7.2 +/- 1.1mm) as compared to females. Male N. ornatipinnis had a similar pattern for both standard length (males: 26.0 +/- 7.1mm, females: 19.1 +/- 5.83mm) and body depth (males: 5.6 +/- 1.9mm, females: 4.7 +/- 1.0mm). Austrolebias vandenbergi had fewer and smaller oocytes per female (47 +/- 31.6) than N. ornatipinnis (206 +/- 131.2). There was a positive relationship between fecundity and female body size in both species. The presence of multiple developmental stages of oocytes (immature, maturing, and mature) suggest that both species of rivulids exhibit fractional spawning, a reproductive strategy that enhances reproductive success in these extreme habitats. Neofundulus ornatipinnis exhibited a higher mean oocyte diameter for all three developmental stages (immature, maturing, and mature) as compared to A. vandenbergi. Austrolebias vandenbergi exhibited an equal adult sex ratio (males:females, 1:1), but there was a slight female biased ratio for N. ornatipinnis (males:females, 1:1.8). These results provide fundamental and valuable information for ensuring rivulid conservation in tropical regions, and also improve the knowledge on the biology and ecology of these poorly known species. To our knowledge, this study represents the first contribution on the reproductive biology of two Neotropical annual rivulid fishes (Austrolebias vandenbergi and Neofundulus ornatipinnis) inhabiting semi-permanent and ephemeral ponds in the Gran Chaco of Southeastern Bolivia. [Schalk, Christopher M.; Montana, Carmen G.; Libson, Monika E.] Texas A&M Univ, Dept Wildlife & Fisheries Sci & Biodivers Res & T, Ecol & Evolutionary Biol Program, College Stn, TX 77843 USA Schalk, CM (reprint author), Texas A&M Univ, Dept Wildlife & Fisheries Sci & Biodivers Res & T, Ecol & Evolutionary Biol Program, 210 Nagle Hall, College Stn, TX 77843 USA. cschalk@tamu.edu; car1607@tamu.edu; monikaeloisa@hotmail.com National Science Foundation's Graduate Research Fellowship Program; Applied Biodiversity Science NSF-IGERT Program at Texas A&M University (NSF-IGERT Award) [0654377] We thank Florencio Mendoza and Doris Ticona for their assistance with the field work. We thank the Capitania del Alto y Bajo Isoso (CABI) for permission to conduct research in Isoso and Kathia Rivero at the Museo de Historia Natural de Noel Kempff Mercado for permit support. Rosa Leny Cuellar assisted with the logistic support while conducting research in Bolivia. Donald Taphorn, Wade A. Ryberg, and three anonymous reviewers provided constructive comments on the manuscript. Support was provided by the National Science Foundation's Graduate Research Fellowship Program and the Applied Biodiversity Science NSF-IGERT Program at Texas A&M University (NSF-IGERT Award # 0654377). This is publication number 1455 of the Biodiversity Research and Teaching Collections at Texas A&M University. Arenzon A, 1999, HYDROBIOLOGIA, V411, P65, DOI 10.1023/A:1003868711295; Belote Drausio F., 2004, Boletim do Museu Nacional Rio de Janeiro Zoologia, V514, P1; Calvino P., 2005, REV MUSEO ARGENTINO, V7, P188; COSTA W J E M, 1988, Revista Brasileira de Biologia, V48, P103; Costa W. J. E. M., 2012, BIODIVERS CONSERV, V21, P1; Costa WJEM, 2011, ICHTHYOL EXPLOR FRES, V22, P233; Costa WJEM, 2006, ZOOTAXA, P1; Costa Wilson J. E. M., 2009, Vertebrate Zoology, V59, P25; Costa Wilson J.E.M., 1998, Journal of Comparative Biology, V3, P33; Costa WJEM, 2002, COPEIA, P916, DOI 10.1643/0045-8511(2002)002[0916:MAPROT]2.0.CO;2; Endler J. A., 1986, NATURAL SELECTION WI; Fava D, 2007, J FISH BIOL, V71, P889, DOI 10.1111/j.1095-8649.2007.01572.x; Garcia D, 2008, NEOTROP ICHTHYOL, V6, P243, DOI 10.1590/S1679-62252008000200012; Goncalves CD, 2011, NEOTROP ICHTHYOL, V9, P191, DOI 10.1590/S1679-62252011000100019; Huber Jean H., 1995, Killi-Contact, V23, P1; Huber Jean H., 1995, Freshwater and Marine Aquarium, V18, P104; Laufer G, 2009, NEOTROP ICHTHYOL, V7, P77, DOI 10.1590/S1679-62252009000100010; Loureiro M, 2011, NEOTROP ICHTHYOL, V9, P335, DOI 10.1590/S1679-62252011000200010; Lowe-McConnell R., 1975, FISH COMMUNITIES TRO; Montana Carmen G., 2012, Check List, V8, P589; Navarro G., 2002, GEOGRAFIA ECOLOGICA; Olden JD, 2007, GLOBAL ECOL BIOGEOGR, V16, P694, DOI 10.1111/j.1466-8238.2007.00337.x; Osinaga R. Karina, 2006, Kempffiana, V2, P60; Reznick R. N., 1989, EVOLUTION ECOLOGY PO, P125; Rosa R., 2008, LIVRO VERMELHO FAUNA, P8; Schalk Christopher M., 2012, Herpetological Review, V43, P148; Schalk Christopher M., 2010, Herpetological Review, V41, P202; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Sparre P., 1997, INTRO AVALIACAO MA 1; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Volcan M. V., 2010, Biotemas, V23, P51; Volcan M. V, 2011, J THREATENED TAXA, V3, P1868; Werner EE, 2007, OIKOS, V116, P1697, DOI 10.1111/j.2007.0030-1299.15935.x; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wootton J. R., 1990, ECOLOGY TELEOST FISH; WOURMS JP, 1972, J EXP ZOOL, V182, P389, DOI 10.1002/jez.1401820310; Zak MR, 2004, BIOL CONSERV, V120, P589, DOI 10.1016/j.biocon.2004.03.034 39 7 9 1 9 REVISTA DE BIOLOGIA TROPICAL SAN JOSE UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA RICA 0034-7744 2215-2075 REV BIOL TROP Rev. Biol. Trop. MAR 2014 62 1 109 117 10.15517/rbt.v62i1.6567 9 Biology Life Sciences & Biomedicine - Other Topics AH8UX WOS:000336414800010 24912347 DOAJ Gold 2019-02-21 J Spor, A; Kvitek, DJ; Nidelet, T; Martin, J; Legrand, J; Dillmann, C; Bourgais, A; de Vienne, D; Sherlock, G; Sicard, D Spor, Ayme; Kvitek, Daniel J.; Nidelet, Thibault; Martin, Juliette; Legrand, Judith; Dillmann, Christine; Bourgais, Aurelie; de Vienne, Dominique; Sherlock, Gavin; Sicard, Delphine PHENOTYPIC AND GENOTYPIC CONVERGENCES ARE INFLUENCED BY HISTORICAL CONTINGENCY AND ENVIRONMENT IN YEAST EVOLUTION English Article pleiotropy; experimental evolution; Adaptive landscape; 14-3-3 protein; life-history evolution SACCHAROMYCES-CEREVISIAE; PARALLEL EVOLUTION; ADAPTIVE EVOLUTION; ESCHERICHIA-COLI; GENOME-WIDE; MOLECULAR EVOLUTION; CLONAL INTERFERENCE; VIRAL ADAPTATION; MUTATIONAL PATHS; GENE-EXPRESSION Different organisms have independently and recurrently evolved similar phenotypic traits at different points throughout history. This phenotypic convergence may be caused by genotypic convergence and in addition, constrained by historical contingency. To investigate how convergence may be driven by selection in a particular environment and constrained by history, we analyzed nine life-history traits and four metabolic traits during an experimental evolution of six yeast strains in four different environments. In each of the environments, the population converged toward a different multivariate phenotype. However, the evolution of most traits, including fitness components, was constrained by history. Phenotypic convergence was partly associated with the selection of mutations in genes involved in the same pathway. By further investigating the convergence in one gene, BMH1, mutated in 20% of the evolved populations, we show that both the history and the environment influenced the types of mutations (missense/nonsense), their location within the gene itself, as well as their effects on multiple traits. However, these effects could not be easily predicted from ancestors' phylogeny or past selection. Combined, our data highlight the role of pleiotropy and epistasis in shaping a rugged fitness landscape. [Spor, Ayme] INRA, UMR 1347, Agroecol, F-21065 Dijon, France; [Kvitek, Daniel J.; Sherlock, Gavin] Stanford Univ, Dept Genet, Stanford, CA 94305 USA; [Nidelet, Thibault] INRA, UMR 1083, Sci Oenol, F-34060 Montpellier, France; [Nidelet, Thibault; Bourgais, Aurelie] CNRS, Genet Vegetale UMR0320 UMR8120, F-91190 Gif Sur Yvette, France; [Martin, Juliette] Univ Lyon 1, F-69622 Villeurbanne, France; [Martin, Juliette] CNRS, UMR 5086, F-75700 Paris, France; [Martin, Juliette] IBCP 7, Bases Mol & Struct Syst Infect, F-69367 Passage Du Vercors, France; [Spor, Ayme; Legrand, Judith; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine] Univ Paris 11, Genet Vegetale UMR0320 UMR8120, F-91190 Gif Sur Yvette, France Spor, A (reprint author), INRA, UMR 1347, Agroecol, F-21065 Dijon, France. sicard@moulon.inra.fr Martin, Juliette/N-5545-2016; Spor, Ayme/A-6271-2012 Martin, Juliette/0000-0002-4787-0885; Spor, Ayme/0000-0002-4707-9559; Sherlock, Gavin/0000-0002-1692-4983 CNRS The authors would like to thank G. Liti for kindly providing strains and the reviewers for critical reading of the manuscript. We are also grateful to M. Brockhurst, the GQF team, and F. Rosenzweig for fruitful discussions. Part of this work was supported by the CNRS. Aitken A, 2006, SEMIN CANCER BIOL, V16, P162, DOI 10.1016/j.semcancer.2006.03.005; Albertin W, 2011, APPL ENVIRON MICROB, V77, P2772, DOI 10.1128/AEM.02547-10; Araya CL, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-88; Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Arnold SJ, 2001, GENETICA, V112, P9, DOI 10.1023/A:1013373907708; Auesukaree C, 2009, J APPL GENET, V50, P301, DOI 10.1007/BF03195688; Bedhomme S, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-46; Bedhomme S, 2012, MOL BIOL EVOL, V29, P1481, DOI 10.1093/molbev/msr314; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bertram PG, 1998, CURR BIOL, V8, P1259, DOI 10.1016/S0960-9822(07)00535-0; Blount ZD, 2008, P NATL ACAD SCI USA, V105, P7899, DOI 10.1073/pnas.0803151105; Boyle EI, 2004, BIOINFORMATICS, V20, P3710, DOI 10.1093/bioinformatics/bth456; BROEK D, 1987, CELL, V48, P789, DOI 10.1016/0092-8674(87)90076-6; Brooklyn N.Y, 1987, CURRENT PROTOCOLS MO; Bruckmann A, 2007, J PROTEOME RES, V6, P1689, DOI 10.1021/pr0605522; Bull JJ, 1997, GENETICS, V147, P1497; BURBELO PD, 1995, CURR BIOL, V5, P95, DOI 10.1016/S0960-9822(95)00022-4; Chevin LM, 2010, EVOLUTION, V64, P3213, DOI 10.1111/j.1558-5646.2010.01058.x; Chou HH, 2012, CELL REP, V1, P133, DOI 10.1016/j.celrep.2011.12.003; Christin PA, 2007, CURR BIOL, V17, P1241, DOI 10.1016/j.cub.2007.06.036; Clapp C, 2012, CELL DEATH DIS, V3, DOI 10.1038/cddis.2012.90; Cunningham CW, 1997, MOL BIOL EVOL, V14, P113, DOI 10.1093/oxfordjournals.molbev.a025697; David L, 2013, MOL BIOL EVOL, V30, P1514, DOI 10.1093/molbev/mst071; DePristo MA, 2005, NAT REV GENET, V6, P678, DOI 10.1038/nrg1672; Dunn B, 2012, GENOME RES, V22, P908, DOI 10.1101/gr.130310.111; Elias M, 2012, J BIOL CHEM, V287, P11, DOI 10.1074/jbc.R111.257329; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Feldman CR, 2012, P NATL ACAD SCI USA, V109, P4556, DOI 10.1073/pnas.1113468109; Fong SS, 2005, GENOME RES, V15, P1365, DOI 10.1101/gr.3832305; Gerstein AC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0026599; Gompel N, 2009, DEV BIOL, V332, P36, DOI 10.1016/j.ydbio.2009.04.040; Granek JA, 2011, CURR OPIN MICROBIOL, V14, P676, DOI 10.1016/j.mib.2011.09.004; Gresham D, 2008, PLOS GENET, V4; Herron MD, 2013, PLOS BIOL, V11, DOI 10.1371/journal.pbio.1001490; Hoebeeck Jasmien, 2007, Methods Mol Biol, V353, P205; Jorgensen P, 2002, SCIENCE, V297, P395, DOI 10.1126/science.1070850; Joshi A, 2003, J GENET, V82, P147, DOI 10.1007/BF02715815; Kakiuchi K, 2007, BIOCHEMISTRY-US, V46, P7781, DOI 10.1021/bi700501t; Kao KC, 2008, NAT GENET, V40, P1499, DOI 10.1038/ng.280; Kolbe JJ, 2011, EVOLUTION, V65, P3608, DOI 10.1111/j.1558-5646.2011.01416.x; Kumar P, 2009, NAT PROTOC, V4, P1073, DOI 10.1038/nprot.2009.86; Kvitek DJ, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002056; Lang GI, 2013, NATURE, V500, P571, DOI 10.1038/nature12344; Li H, 2009, BIOINFORMATICS, V26, P589, DOI DOI 10.1093/BIOINFORMATICS/BTP698; Li H, 2009, BIOINFORMATICS, V25, P2078, DOI 10.1093/bioinformatics/btp352; Liti G, 2009, NATURE, V458, P337, DOI 10.1038/nature07743; Lozovsky ER, 2009, P NATL ACAD SCI USA, V106, P12025, DOI 10.1073/pnas.0905922106; Magwene PM, 2011, P NATL ACAD SCI USA, V108, P1987, DOI 10.1073/pnas.1012544108; Manceau M, 2010, PHILOS T R SOC B, V365, P2439, DOI 10.1098/rstb.2010.0104; Martinez-Picado J, 2000, P NATL ACAD SCI USA, V97, P10948, DOI 10.1073/pnas.97.20.10948; McKenna A, 2010, GENOME RES, V20, P1297, DOI 10.1101/gr.107524.110; Nguyen AH, 2012, EVOLUTION, V66, P363, DOI 10.1111/j.1558-5646.2011.01433.x; Orr HA, 2009, NAT REV GENET, V10, P531, DOI 10.1038/nrg2603; Ostrowski EA, 2008, P R SOC B, V275, P277, DOI 10.1098/rspb.2007.1244; Parker J, 2013, NATURE, V502, P228, DOI 10.1038/nature12511; Paul G, 2009, GENOMICS, V94, P287, DOI 10.1016/j.ygeno.2009.07.004; Plata ER, 2011, MOL PHYLOGENET EVOL, V61, P45, DOI 10.1016/j.ympev.2011.04.025; Remold SK, 2008, MOL BIOL EVOL, V25, P1138, DOI 10.1093/molbev/msn059; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P11; Rosenblum EB, 2010, P NATL ACAD SCI USA, V107, P2113, DOI 10.1073/pnas.0911042107; Rozpedowska E, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1305; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Spor A, 2009, BMC EVOL BIOL, V9, DOI 10.1186/1471-2148-9-296; Spor A, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001579; Srithayakumar V, 2012, IMMUNOGENETICS, V64, P289, DOI 10.1007/s00251-011-0588-7; Steiner CC, 2009, MOL BIOL EVOL, V26, P35, DOI 10.1093/molbev/msn218; Tenaillon O, 2012, SCIENCE, V335, P457, DOI 10.1126/science.1212986; Teotonio H, 2009, NAT GENET, V41, P251, DOI 10.1038/ng.289; TRAVISANO M, 1995, SCIENCE, V267, P87, DOI 10.1126/science.7809610; True JR, 2001, EVOL DEV, V3, P109, DOI 10.1046/j.1525-142x.2001.003002109.x; van Heusden GPH, 2006, YEAST, V23, P159, DOI 10.1002/yea.1338; VANZYL W, 1992, MOL CELL BIOL, V12, P4946, DOI 10.1128/MCB.12.11.4946; Veisova D, 2012, BIOCHEM J, V443, P663, DOI 10.1042/BJ20111615; Venkatraman ES, 2007, BIOINFORMATICS, V23, P657, DOI 10.1093/bioinformatics/btl646; Wang C, 2009, GENETICS, V183, P1373, DOI 10.1534/genetics.109.107797; Wang SX, 2011, APPL ENVIRON MICROB, V77, P452, DOI 10.1128/AEM.00808-10; Weinreich DM, 2006, SCIENCE, V312, P111, DOI 10.1126/science.1123539; Wenger JW, 2011, PLOS GENET, V7, DOI 10.1371/journal.pgen.1002202; Wichman HA, 2005, GENETICS, V170, P19, DOI 10.1534/genetics.104.034488; Wichman HA, 1999, SCIENCE, V285, P422, DOI 10.1126/science.285.5426.422; Wong A, 2012, PLOS GENET, V8, DOI 10.1371/journal.pgen.1002928; Wood TE, 2005, GENETICA, V123, P157, DOI 10.1007/s10709-003-2738-9; Yang XW, 2006, P NATL ACAD SCI USA, V103, P17237, DOI 10.1073/pnas.0605779103; Zhang JZ, 1997, MOL BIOL EVOL, V14, P527, DOI 10.1093/oxfordjournals.molbev.a025789 85 26 26 1 35 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAR 2014 68 3 772 790 10.1111/evo.12302 19 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AB8NG WOS:000332046700014 24164389 Green Accepted, Bronze 2019-02-21 J Gillespie, DOS; Trotter, MV; Krishna-Kumar, S; Tuljapurkar, SD Gillespie, Duncan O. S.; Trotter, Meredith V.; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad D. BIRTH-ORDER DIFFERENCES CAN DRIVE NATURAL SELECTION ON AGING EVOLUTION English Article inequality; evolution; inheritance; life history; Ecology; demography LIFE-HISTORY EVOLUTION; OFFSPRING SURVIVAL; SENESCENCE; FITNESS; AGE; REPRODUCTION; POPULATIONS; INHERITANCE; ENVIRONMENT; COMPETITION Senescence-the deterioration of survival and reproductive capacity with increasing age-is generally held to be an evolutionary consequence of the declining strength of natural selection with increasing age. The diversity in rates of aging observed in nature suggests that the rate at which age-specific selection weakens is determined by species-specific ecological factors. We propose that, in iteroparous species, relationships between parental age, offspring birth order, and environment may affect selection on senescence. Later-born siblings have, on average, older parents than do first borns. Offspring born to older parents may experience different environments in terms of family support or inherited resources, factors often mediated by competition from siblings. Thus, age-specific selection on parents may change if the environment produces birth-order related gradients in reproductive success. We use an age-and-stage structured population model to investigate the impact of sibling environmental inequality on the expected evolution of senescence. We show that accelerated senescence evolves when later-born siblings are likely to experience an environment detrimental to lifetime reproduction. In general, sibling inequality is likely to be of particular importance for the evolution of senescence in species such as humans, where family interactions and resource inheritance have important roles in determining lifetime reproduction. [Gillespie, Duncan O. S.; Trotter, Meredith V.; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad D.] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Gillespie, Duncan O. S.] Univ Liverpool, Dept Publ Hlth & Policy, Liverpool L69 3GB, Merseyside, England Gillespie, DOS (reprint author), Stanford Univ, Dept Biol, Stanford, CA 94305 USA. d.gillespie@liverpool.ac.uk Gillespie, Duncan/G-1401-2013 Gillespie, Duncan/0000-0003-3450-5747 National Institutes of Health [AG22500, AG039345]; Morrison Institute for Population and Resources; Center for Population Research at Stanford This project is funded by the National Institutes of Health grants AG22500 and AG039345 to S. T. and by the Morrison Institute for Population and Resources and the Center for Population Research at Stanford. We thank Tim Coulson and Ben Hatchwell for comments on earlier versions of the manuscript. The authors declare no conflict of interest. ANDERTON DL, 1987, DEMOGRAPHY, V24, P467, DOI 10.2307/2061386; Caswell H., 2001, MATRIX POPULATION MO; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Forbes S, 2011, BIOL LETTERS, V7, P346, DOI 10.1098/rsbl.2010.1064; Fox CW, 2011, EVOL BIOL, V38, P182, DOI 10.1007/s11692-011-9116-9; Gibson MA, 2011, P NATL ACAD SCI USA, V108, P2200, DOI 10.1073/pnas.1010241108; Gillespie DOS, 2013, EVOLUTION, V67, P1964, DOI 10.1111/evo.12078; GOODMAN D, 1982, AM NAT, V119, P803, DOI 10.1086/283956; Greer EL, 2011, NATURE, V479, P365, DOI 10.1038/nature10572; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hercus MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2105, DOI 10.1098/rspb.2000.1256; Kaar P, 1998, P ROY SOC B-BIOL SCI, V265, P2415, DOI 10.1098/rspb.1998.0592; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Mulder MB, 2011, PHILOS T R SOC B, V366, P344, DOI 10.1098/rstb.2010.0231; Mulder MB, 2009, SCIENCE, V326, P682, DOI 10.1126/science.1178336; Nassar AH, 2009, AM J PERINAT, V26, P107, DOI 10.1055/s-0028-1090593; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Pavard S, 2012, THEOR POPUL BIOL, V82, P364, DOI 10.1016/j.tpb.2012.01.007; Rees M, 2009, ECOL MONOGR, V79, P575, DOI 10.1890/08-1474.1; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ridley AR, 2007, J ANIM ECOL, V76, P750, DOI 10.1111/j.1365-2656.2007.01248.x; Ridley J, 2002, P ROY SOC B-BIOL SCI, V269, P2559, DOI 10.1098/rspb.2002.2208; Rogers DS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024683; Rose MR, 2007, EVOLUTION, V61, P1265, DOI 10.1111/j.1558-5646.2007.00120.x; Silvertown J, 2001, EVOL ECOL RES, V3, P393; Steiner U. K., 2013, AM NAT IN PRESS; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x 30 1 1 1 16 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution MAR 2014 68 3 886 892 10.1111/evo.12319 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AB8NG WOS:000332046700022 24274174 Green Accepted 2019-02-21 J Thorson, JT; Taylor, IG; Stewart, IJ; Punt, AE Thorson, James T.; Taylor, Ian G.; Stewart, Ian J.; Punt, Andre E. Rigorous meta-analysis of life history correlations by simultaneously analyzing multiple population dynamics models ECOLOGICAL APPLICATIONS English Article Brody individual growth coefficient; integrated model; life history correlations; life history theory; likelihood profile; meta-analysis; mixed-effects models; natural mortality; Pacific rockfishes; population dynamics database; Sebastes; stock assessment STOCK-RECRUITMENT RELATIONSHIP; TIME-VARYING CATCHABILITY; NATURAL MORTALITY; REFERENCE POINTS; ASSEMBLY RULES; FISH; FISHERIES; PARAMETERS; GROWTH; UNCERTAINTY Correlations among life history parameters have been discussed in the ecological literature for over 50 years, but are often estimated while treating model estimates of demographic rates such as natural mortality (M) or individual growth (k) as data. This approach fails to propagate uncertainty appropriately because it ignores correlations in estimation errors between parameters within a species and differences in estimation error among species. An improved alternative is multi-species mixed-effects modeling, which we approximate using multivariate likelihood profiles in an approach that synthesizes information from several population dynamics models. Simulation modeling demonstrates that this approach has minimal bias, and that precision improves with increased number of species. As a case study, we demonstrate this approach by estimating M/k for 11 groundfish species off the U.S. West Coast using the data and functional forms on which pre-existing, peer-reviewed, population dynamics models are based. M/k is estimated to be 1.26 for Pacific rockfishes (Sebastes spp.), with a coefficient of variation of 76% for M given k. This represents the first-ever estimate of correlations among life history parameters for marine fishes using several age-structured population dynamics models, and it serves as a standard for future life history correlation studies. This approach can be modified to provide robust estimates of other life history parameters and correlations, and requires few changes to existing population dynamics models and software input files for both marine and terrestrial species. Specific results for Pacific rockfishes can be used as a Bayesian prior for estimating natural mortality in future fisheries management efforts. We therefore recommend that fish population dynamics models be compiled in a global database that can be used to simultaneously analyze observation-level data for many species in life history meta-analyses. [Thorson, James T.; Taylor, Ian G.; Stewart, Ian J.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, Seattle, WA 98112 USA; [Punt, Andre E.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA Thorson, JT (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Fisheries Resource Anal & Monitoring Div, 2725 Montlake Blvd East, Seattle, WA 98112 USA. James.Thorson@noaa.gov Thorson, James/O-7937-2014 Thorson, James/0000-0001-7415-1010 National Research Council Research Associate Program J. T. Thorson acknowledges financial support from the National Research Council Research Associate Program and supervision by E. Holmes, E. Ward, and M. Scheuerell at the NMFS Northwest Fisheries Science Center. This research was improved through discussion with J. Cope, I. Spies, and E. Ward. The profile likelihood approximation to maximum marginal likelihood has been previously explored by M. Dorn, A. Punt, and M. Wu. The manuscript was also improved through comments from J. Hastie, M. McClure, and two anonymous reviewers. To the many research scientists and assessment authors who collected, compiled, and analyzed the data in the stock assessments used herein, thank you! BEVERTON R. J. H., 1965, INT COMP NORTHWEST ATLANTIC FISH RES BULL, V2, P59; Beverton R.J.H., 1959, CIBA FDN C AGEING, P142, DOI DOI 10.1002/9780470715253.CH10; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; CHARNOV EL, 1991, PHILOS T ROY SOC B, V332, P41, DOI 10.1098/rstb.1991.0031; Charnov EL, 2013, FISH FISH, V14, P213, DOI 10.1111/j.1467-2979.2012.00467.x; Charnov Eric L., 1993, P1; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Dick E. J., 2011, STATUS GREENSPOTTED; Draper N., 1998, APPL REGRESSION ANAL; *FAO, 2010, FISHSTAT PLUS UN SOF; Field J., 2011, STATUS BOCACCIO SEBA; Field J. C., 2011, STATUS BLACKGILL ROC; Froese R, 2010, FISHBASE; Garrison TM, 2011, CAN J FISH AQUAT SCI, V68, P1761, DOI 10.1139/F2011-073; Gelman A., 2007, DATA ANAL USING REGR; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Haltuch M. A., 2011, STATUS US PETRALE SO; Hamel O. S., 2011, STOCK ASSESSMENT PAC; He X., 2011, STATUS WIDOW ROCKFIS; Hicks A. C., 2011, STATUS DOVER SOLE MI; Hilborn R, 1998, REV FISH BIOL FISHER, V8, P273, DOI 10.1023/A:1008877912528; Jensen AL, 1996, CAN J FISH AQUAT SCI, V53, P820, DOI 10.1139/cjfas-53-4-820; Lee HH, 2012, FISH RES, V125, P254, DOI 10.1016/j.fishres.2012.03.001; Lee HH, 2011, FISH RES, V109, P89, DOI 10.1016/j.fishres.2011.01.021; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lorenzen K, 1996, J FISH BIOL, V49, P627, DOI 10.1006/jfbi.1996.0192; LUDWIG D, 1981, CAN J FISH AQUAT SCI, V38, P711, DOI 10.1139/f81-094; MacCall A.D., 1990, DYNAMIC GEOGRAPHY MA; MacKenzie D. I., 2005, OCCUPANCY ESTIMATION; Maunder Mark N., 2003, Natural Resource Modeling, V16, P465; Maunder MN, 2013, FISH RES, V142, P61, DOI 10.1016/j.fishres.2012.07.025; METHOT RD, 1990, INPFC B, V50, P259; Methot RD, 2013, FISH RES, V142, P86, DOI 10.1016/j.fishres.2012.10.012; Methot RD, 2011, CAN J FISH AQUAT SCI, V68, P1744, DOI 10.1139/F2011-092; Methot RD, 2009, FISH FISHERIES SERIE, V31, P137, DOI 10.1007/978-1-4020-9210-7_9; Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; PAULY D, 1980, J CONSEIL, V39, P175; Punt AE, 2008, CAN J FISH AQUAT SCI, V65, P1991, DOI 10.1139/F08-111; Punt AE, 2011, ICES J MAR SCI, V68, P972, DOI 10.1093/icesjms/fsr039; Quinn T. J., 1999, QUANTITATIVE FISH DY; Ricard D, 2012, FISH FISH, V13, P380, DOI 10.1111/j.1467-2979.2011.00435.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; Royle J. A., 2008, HIERARCHICAL MODELIN; Stephens A., 2011, STATUS FUTURE PROSPE; Stewart I. J., 2011, STATUS US SABLEFISH; Stewart IJ, 2013, FISH RES, V142, P37, DOI 10.1016/j.fishres.2012.07.003; Stewart IJ, 2009, STATUS US CANARY ROC; Taylor IG, 2013, FISH RES, V142, P15, DOI 10.1016/j.fishres.2012.04.018; Taylor IG, 2011, STATUS US YELLOWEYE; Thomson DL, 2009, ENVIRON ECOL STAT SE, V3, P1, DOI 10.1007/978-0-387-78151-8; Thorson JT, 2012, CAN J FISH AQUAT SCI, V69, P1556, DOI 10.1139/F2012-077; Thorson JT, 2011, CAN J FISH AQUAT SCI, V68, P1681, DOI 10.1139/F2011-086; Thorson JT, 2011, ICES J MAR SCI, V68, P2264, DOI 10.1093/icesjms/fsr160; Thorson JT, 2010, FISH RES, V101, P38, DOI 10.1016/j.fishres.2009.09.005; Wilberg MJ, 2010, REV FISH SCI, V18, P7, DOI 10.1080/10641260903294647; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zhou SJ, 2012, CAN J FISH AQUAT SCI, V69, P1292, DOI 10.1139/F2012-060 59 10 10 2 34 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1051-0761 1939-5582 ECOL APPL Ecol. Appl. MAR 2014 24 2 315 326 10.1890/12-1803.1 12 Ecology; Environmental Sciences Environmental Sciences & Ecology AA9HZ WOS:000331405700007 24689143 2019-02-21 J Jonason, PK; Wee, S; Li, NP Jonason, Peter K.; Wee, Serena; Li, Norman P. Thinking Bigger and Better About "Bad Apples": Evolutionary Industrial-Organizational Psychology and the Dark Triad INDUSTRIAL AND ORGANIZATIONAL PSYCHOLOGY-PERSPECTIVES ON SCIENCE AND PRACTICE English Article NARCISSISTIC PERSONALITY-INVENTORY; TERM MATING STRATEGY; LIFE-HISTORY THEORY; MACHIAVELLIANISM; LEADERSHIP; WORK; BEHAVIOR; TRAITS; MODEL; PSYCHOPATHY [Jonason, Peter K.] Univ Western Sydney, Milperra, NSW 2214, Australia; [Wee, Serena; Li, Norman P.] Singapore Management Univ, Singapore 178902, Singapore Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au Wee, Serena/F-9090-2010; LI, Norman/F-9075-2010 LI, Norman/0000-0002-0318-1359 Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Amernic JH, 2010, J BUS ETHICS, V96, P79, DOI 10.1007/s10551-010-0450-0; Benet-Martinez V, 1998, J PERS SOC PSYCHOL, V75, P729, DOI 10.1037//0022-3514.75.3.729; Boddy CRP, 2010, J PUBLIC AFF, V10, P300, DOI 10.1002/pa.365; Brunell AB, 2008, PERS SOC PSYCHOL B, V34, P1663, DOI 10.1177/0146167208324101; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell W. K., 2011, HDB NARCISSISM NARCI; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Galperin B. L., 2010, J BUS ETHICS, V98, P407; Guenole N, 2014, IND ORGAN PSYCHOL-US, V7, P85, DOI 10.1111/iops.12114; Hogan R, 2005, REV GEN PSYCHOL, V9, P169, DOI 10.1037/1089-2680.9.2.169; Hogan R, 2001, INT J SELECT ASSESS, V9, P40, DOI 10.1111/1468-2389.00162; Jonason PK, 2013, PERS INDIV DIFFER, V55, P538, DOI 10.1016/j.paid.2013.05.001; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones D. N., 2013, J APPL SOC PSYCHOL, V43, P367; Kenrick DT, 2003, PSYCHOL REV, V110, P3, DOI 10.1037/0033-295X.110.1.3; Kessler SR, 2010, J APPL SOC PSYCHOL, V40, P1868, DOI 10.1111/j.1559-1816.2010.00643.x; Kiazad K, 2010, J RES PERS, V44, P512, DOI 10.1016/j.jrp.2010.06.004; Kowalski RM, 2001, BEHAV BADLY AVERSIVE; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penney LM, 2002, INT J SELECT ASSESS, V10, P126, DOI 10.1111/1468-2389.00199; PERVIN LA, 1968, PSYCHOL BULL, V69, P56, DOI 10.1037/h0025271; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Robinson SL, 1998, ACAD MANAGE J, V41, P658, DOI 10.2307/256963; Rosenthal SA, 2006, LEADERSHIP QUART, V17, P617, DOI 10.1016/j.leaqua.2006.10.005; Tett RP, 2003, J APPL PSYCHOL, V88, P500, DOI 10.1037/0021-9010.88.3.500; Van Vugt M, 2008, AM PSYCHOL, V63, P182, DOI 10.1037/0003-066X.63.3.182; Van Vugt M, 2007, PSYCHOL SCI, V18, P19, DOI 10.1111/j.1467-9280.2007.01842.x; Zettler I, 2011, CAREER DEV INT, V16, P20, DOI 10.1108/13620431111107793 39 0 0 0 32 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1754-9426 1754-9434 IND ORGAN PSYCHOL-US Ind. Organ. Psychol. MAR 2014 7 1 5 Psychology, Applied Psychology AB1CT WOS:000331529600025 2019-02-21 J Wyatt, T Wyatt, Timothy Margalef's mandala and phytoplankton bloom strategies DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY English Article Phytoplankton mandala; Fitness; Life-history strategies; Population dynamics; Red tides HARMFUL ALGAL BLOOMS; COCHLODINIUM-POLYKRIKOIDES BLOOMS; NORTH-ATLANTIC OSCILLATION; RED TIDE; MARINE-PHYTOPLANKTON; POPULATION-DYNAMICS; PHAEOCYSTIS-GLOBOSA; CLIMATE-CHANGE; HETEROSIGMA-AKASHIWO; PARALYTIC SHELLFISH Margalef's mandala maps phytoplankton species into a phase space defined by turbulence (A) and nutrient concentrations (NO; these are the hard axes. The permutations of high and low A and high and low N-i divide the space into four domains. Soft axes indicate some ecological dynamics. A main sequence shows the normal course of phytoplankton succession; the r-K axis of MacArthur and Wilson runs parallel to it. An alternative successional sequence leads to the low A-high N-i domain into which many red tide species are mapped. Astronomical and biological time are implicit. A mathematical transformation of the mandala (rotation) links it to the classical bloom models of Sverdrup (time) and Kierstead and Slobodkin (space). Both rarity and the propensity to form red tides are considered to be species characters, meaning that maximum population abundance can be a target of natural selection. Equally, both the unpredictable appearance of bloom species and their short-lived appearances may be species characters. There may be a correlation too between these features and long-lived dormant stages in the life-cycle; then the vegetative planktonic phase is the 'weak link' in the life-cycle. Red tides are thus due to species which have evolved suites of traits which result in specific demographic strategies. (C) 2012 Elsevier Ltd. All rights reserved. Inst Invest Marinas Punta Betin, Vigo 36208, Spain Wyatt, T (reprint author), Inst Invest Marinas Punta Betin, Vigo 36208, Spain. twyatt@iim.csic.es ALLDREDGE AL, 1988, PROG OCEANOGR, V20, P41, DOI 10.1016/0079-6611(88)90053-5; Azam F, 1998, SCIENCE, V280, P694, DOI 10.1126/science.280.5364.694; AZAM F, 1993, MICROB ECOL, V28, P167; Bakun A, 2006, PROG OCEANOGR, V68, P271, DOI 10.1016/j.pocean.2006.02.004; Bakun A, 2001, PROG OCEANOGR, V49, P485, DOI 10.1016/S0079-6611(01)00037-4; Bakun A, 1996, PATTERNS OCEAN OCEAN; Barber R.T., 1981, P31; Barber R.T., 1983, SCIENCE, V222; Behrenfeld MJ, 2010, ECOLOGY, V91, P977, DOI 10.1890/09-1207.1; Belgrano A, 1999, P ROY SOC B-BIOL SCI, V266, P425, DOI 10.1098/rspb.1999.0655; BIDDANDA BA, 1988, MAR ECOL PROG SER, V42, P79, DOI 10.3354/meps042079; BONEY AD, 1981, BRIT PHYCOL J, V16, P115, DOI 10.1080/00071618100650101; Bongiorni L, 2007, AQUAT MICROB ECOL, V49, P15, DOI 10.3354/ame01126; Boyce DG, 2010, NATURE, V466, P591, DOI 10.1038/nature09268; Brandt K., 1905, RAPP PROC VERB, V3, P12; Bratbak C., 1993, MAR ECOL PROG SER, V93, P39; Brussaard CPD, 2005, HARMFUL ALGAE, V4, P859, DOI 10.1016/j.hal.2004.12.015; Carpenter EJ, 2008, NITROGEN IN THE MARINE ENVIRONMENT, 2ND EDITION, P141, DOI 10.1016/B978-0-12-372522-6.00004-9; CARPENTER EJ, 1977, LIMNOL OCEANOGR, V22, P60, DOI 10.4319/lo.1977.22.1.0060; CAVALIERSMITH T, 1978, J CELL SCI, V34, P247; CAVALIERSMITH T, 1980, BIOSYSTEMS, V12, P43, DOI 10.1016/0303-2647(80)90037-4; Cembella AD, 2003, PHYCOLOGIA, V42, P420, DOI 10.2216/i0031-8884-42-4-420.1; CHISHOLM SW, 1992, ENVIR SCI R, V43, P213; Cianelli D, 2009, ECOL MODEL, V220, P2380, DOI 10.1016/j.ecolmodel.2009.06.016; Clasen JL, 2008, FRESHWATER BIOL, V53, P1090, DOI 10.1111/j.1365-2427.2008.01992.x; CLEMONS MJ, 1984, DEEP-SEA RES, V31, P85, DOI 10.1016/0198-0149(84)90076-1; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Crawford D.W., 1997, ESTUARINE COASTAL SH, V45, P791; CULLEN JJ, 2002, SEA, V12, P297; Cullen JJ, 2007, OCEANOGRAPHY, V20, P34, DOI 10.5670/oceanog.2007.46; CURY P, 1989, CAN J FISH AQUAT SCI, V46, P670, DOI 10.1139/f89-086; D'Alelio D, 2009, HARMFUL ALGAE, V8, P225, DOI 10.1016/j.hal.2008.05.004; Dalling JW, 2011, J ECOL, V99, P89, DOI 10.1111/j.1365-2745.2010.01739.x; Dandonneau Y, 2008, J MARINE SYST, V69, P226, DOI 10.1016/j.jmarsys.2006.02.016; Darwin C, 1859, ORIGIN SPECIES; DAVEY MC, 1986, J PHYCOL, V22, P144, DOI 10.1111/j.1529-8817.1986.tb00006.x; Dobzhansky T., 1950, American Scientist, V38, P209; Edwards M, 2006, LIMNOL OCEANOGR, V51, P820, DOI 10.4319/lo.2006.51.2.0820; Eilertsen H.C., 2006, J PLANKTON RES, V29, P87; Eilertsen HC, 2000, S AFR J MARINE SCI, V22, P323, DOI 10.2989/025776100784125717; Ellner SP, 1998, ERGEB LIMNOL, V52, P297; Escalera L, 2011, PROTIST, V162, P304, DOI 10.1016/j.protis.2010.07.003; Estrada M, 2010, DEEP-SEA RES PT II, V57, P308, DOI 10.1016/j.dsr2.2009.09.007; Feifel KM, 2012, J PHYCOL, V48, P550, DOI 10.1111/j.1529-8817.2012.01175.x; FENCHEL T, 1974, OECOLOGIA, V14, P317, DOI 10.1007/BF00384576; Fisher R. A., 1958, GENETICAL THEORY NAT; Flos J., 1984, ECOLOGIA ENTRE MAGIA, P120; FOGG GE, 1991, NEW PHYTOL, V118, P191, DOI 10.1111/j.1469-8137.1991.tb00974.x; Frada M, 2008, P NATL ACAD SCI USA, V105, P15944, DOI 10.1073/pnas.0807707105; FRONTIER S, 1985, OCEANOGR MAR BIOL, V23, P253; Fuhrman JA, 1995, LIMNOL OCEANOGR, V40, P1236, DOI 10.4319/lo.1995.40.7.1236; Gallegos CL, 2010, ESTUAR COAST, V33, P471, DOI 10.1007/s12237-009-9172-x; Garces E, 2002, J PLANKTON RES, V24, P681, DOI 10.1093/plankt/24.7.681; Gibson DM, 2000, J PLANKTON RES, V22, P1485, DOI 10.1093/plankt/22.8.1485; Gobler CJ, 2008, HARMFUL ALGAE, V7, P293, DOI 10.1016/j.hal.2007.12.006; Gomez F, 2007, BIOGEOSCIENCES, V4, P1101, DOI 10.5194/bg-4-1101-2007; Gomez Fernando, 2005, Acta Botanica Croatica, V64, P263; GOULD RW, 1990, LIMNOL OCEANOGR, V35, P211, DOI 10.4319/lo.1990.35.1.0211; Gran H.H., 1902, REPORT NORWEGIAN F 3, P222; GRAN HH, 1912, DEPTHS OCEAN, P307; Grime J. P, 1979, PLANT STRATEGIES VEG; Grime JP, 2006, J VEG SCI, V17, P255, DOI 10.1658/1100-9233(2006)17[255:TCATDI]2.0.CO;2; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; GRIME JP, 1982, J ECOL, V70, P863, DOI 10.2307/2260109; Grime JP, 2002, PLANT STRATEGIES VEG; Gunter G., 1948, ECOL MONOGR, V18, P310; HAIRSTON NG, 1984, AM NAT, V123, P733, DOI 10.1086/284236; HALLEGRAEFF GM, 1993, PHYCOLOGIA, V32, P79, DOI 10.2216/i0031-8884-32-2-79.1; Hallegraeff GM, 1998, MAR FRESHWATER RES, V49, P415, DOI 10.1071/MF97264; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hamm CE, 1999, MAR ECOL PROG SER, V187, P101, DOI 10.3354/meps187101; Hamm Christian, 2007, P311, DOI 10.1016/B978-012370518-1/50015-1; Hardy A. C., 1935, Discovery Reports Cambridge, V11, P1; HASLE G R, 1990, Blyttia, V48, P33; Hensen V., 1911, Ergebnisse der Plankton-Expedition der Humboldt-Stiftung Bd, V5; HESSEN DO, 1993, ARCH HYDROBIOL, V127, P129; HOLLING CS, 1992, ECOL MONOGR, V62, P447, DOI 10.2307/2937313; HUTCHINSON GE, 1961, AM NAT, V95, P137, DOI 10.1086/282171; Jakobsen HH, 2002, AQUAT MICROB ECOL, V27, P261, DOI 10.3354/ame027261; JENKINSON IR, 1992, J PLANKTON RES, V14, P1697, DOI 10.1093/plankt/14.12.1697; Jeong HJ, 2011, J EUKARYOT MICROBIOL, V58, P215, DOI 10.1111/j.1550-7408.2011.00550.x; Johnson MD, 2007, NATURE, V445, P426, DOI 10.1038/nature05496; Jonsson PR, 2009, P NATL ACAD SCI USA, V106, P11177, DOI 10.1073/pnas.0900964106; Jumars P.A., 2004, LIMNOL OCEANOGR B, V13, P67; Jumars PA, 2009, MAR ECOL-EVOL PERSP, V30, P133, DOI 10.1111/j.1439-0485.2009.00288.x; KIERSTEAD H, 1953, J MAR RES, V12, P141; Kim HJ, 2009, PROG OCEANOGR, V82, P137, DOI 10.1016/j.pocean.2009.05.002; KIORBOE T, 1993, ADV MAR BIOL, V29, P1, DOI 10.1016/S0065-2881(08)60129-7; Kiorboe T, 2008, MECH APPROACH PLANKT; KUWATA A, 1990, MAR BIOL, V107, P503, DOI 10.1007/BF01313435; LAMPERT W, 1994, LIMNOL OCEANOGR, V39, P1543, DOI 10.4319/lo.1994.39.7.1543; LASKER R, 1975, FISH B-NOAA, V73, P453; Lawton JH, 1999, OIKOS, V84, P177, DOI 10.2307/3546712; LAZIER JRN, 1989, DEEP-SEA RES, V36, P1721, DOI 10.1016/0198-0149(89)90068-X; Lee DK, 2008, HARMFUL ALGAE, V7, P318, DOI 10.1016/j.hal.2007.12.014; Legendre L., 1986, Elsevier Oceanography Series, V42, P1; Legendre L., 1981, ECOHYDRODYNAMICS, V32, P191; Levins R., 1968, EVOLUTION CHANGING E; Lewis NI, 2006, PHYCOLOGIA, V45, P61, DOI 10.2216/04-59.1; LEWIS WM, 1976, SCIENCE, V192, P885, DOI 10.1126/science.192.4242.885; LEWIS WM, 1977, ECOLOGY, V58, P850, DOI 10.2307/1936220; Litchman E, 2007, ECOL LETT, V10, P1170, DOI 10.1111/j.1461-0248.2007.01117.x; Lohmann Hans, 1912, Verhandlungen der Deutschen Zoologischen Gesellschaft Leipzig, V22; Long JD, 2007, P NATL ACAD SCI USA, V104, P10512, DOI 10.1073/pnas.0611600104; MAC ARTHUR ROBERT H., 1967; MacArthur R., 1972, GEOGRAPHICAL ECOLOGY; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MacArthur RH, 1968, POPULATION BIOL EVOL, P159; MADDOCK L, 1989, J MAR BIOL ASSOC UK, V69, P229, DOI 10.1017/S0025315400049201; Margalef R., 1979, P89; MARGALEF R, 1969, INVEST PESQ, V33, P287; MARGALEF R., 1955, INVEST PESQ, V2, P85; MARGALEF R, 1978, OCEANOL ACTA, V1, P493; Margalef R., 1968, P111; MARGALEF R., 1951, PUBL INST BIOL APLICADA, V9, P83; MARGALEF R., 1966, INVEST PESQUERA, V30, P429; MARGALEF R, 1961, LIMNOL OCEANOGR, V6, P124, DOI 10.4319/lo.1961.6.2.0124; Margalef R., 1947, MONOGR CI MODERNA, V10, P1; Margalef R., 1982, C SOC CATALANA BIOL, V13, P53; MARGALEF R, 1948, MONOGR I EST PIRENAI, V11, P1; Margalef R., 1982, C SOC CATALANA BIOL, V13, P17; Margalef R., 1997, OUR BIOSPHERE, P176; Margalef R, 1963, ADVAN FRONTIERS PLAN, V2, P137; Margalef R., 1944, DATOS FLORA ALGOLOGI, V4, P1; Margalef R., 1977, ETUDE GESTION SYSTEM, P58; Margalef R, 1959, P 15 INT C ZOOL, P787; MARGALEF RAMON, 1956, INVEST PESQ, V5, P113; Matsuoka K, 2010, HARMFUL ALGAE, V9, P548, DOI 10.1016/j.hal.2010.04.003; Mayr E, 1982, GROWTH BIOL THOUGHT; McGillicuddy DJ, 2011, LIMNOL OCEANOGR, V56, P2411, DOI 10.4319/lo.2011.56.6.2411; Mendoza E, 2009, AM J BOT, V96, P1255, DOI 10.3732/ajb.0800297; Menge DNL, 2009, J THEOR BIOL, V257, P104, DOI 10.1016/j.jtbi.2008.10.032; MESSIER F, 1994, ECOLOGY, V75, P478, DOI 10.2307/1939551; Mills EL, 1989, BIOL OCEANOGRAPHY EA, P378; Moita MT, 2003, ACTA OECOL, V24, pS125, DOI 10.1016/S1146-609X(03)00011-0; Moore LR, 1998, NATURE, V393, P464; Moore SK, 2010, LIMNOL OCEANOGR, V55, P2262, DOI 10.4319/lo.2010.55.6.2262; MORIN JG, 1986, FLA ENTOMOL, V69, P105, DOI 10.2307/3494749; Motegi C, 2009, LIMNOL OCEANOGR, V54, P1901, DOI 10.4319/lo.2009.54.6.1901; Muhlstein HI, 2007, J PHYCOL, V43, P1223, DOI 10.1111/j.1529-8817.2007.00412.x; MUNK WH, 1952, J MAR RES, V11, P215; MURRAY AG, 1995, J PLANKTON RES, V17, P1079, DOI 10.1093/plankt/17.5.1079; Musielak MM, 2009, J FLUID MECH, V638, P401, DOI 10.1017/S0022112009991108; NAGASAKI K, 1994, J PLANKTON RES, V16, P1595, DOI 10.1093/plankt/16.11.1595; Nathansohn A., 1908, INT REV GESAMTEN HYD, V1, P38; Nguyen H, 2011, LIMNOL OCEANOGR FLUI, V1, P110, DOI DOI 10.1215/21573698-1303444; Nielsen SL, 2006, J PLANKTON RES, V28, P489, DOI 10.1093/plankt/fbi134; Niklas KJ, 2000, ANN BOT-LONDON, V85, P411, DOI 10.1006/anbo.1999.1100; Pahlow M, 1997, LIMNOL OCEANOGR, V42, P1660, DOI 10.4319/lo.1997.42.8.1660; Partensky F, 1999, MICROBIOL MOL BIOL R, V63, P106; Pecseli HL, 2010, PROG OCEANOGR, V85, P171, DOI 10.1016/j.pocean.2010.01.002; Peperzak L, 2003, ACTA OECOL, V24, pS139, DOI 10.1016/S1146-609X(03)00009-2; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PINGREE RD, 1978, DEEP-SEA RES, V25, P1011, DOI 10.1016/0146-6291(78)90584-2; PLATT T, 1978, SPATIAL PATTERN PLAN, P73; Powell T. M., 1995, ECOLOGICAL TIME SERI; Raunkiaer C, 1934, LIFE FORMS PLANTS ST, P632; Reguera B., 2002, RES ENCLOSED SEAS SE, V12, P60; Reguera B, 2012, HARMFUL ALGAE, V14, P87, DOI 10.1016/j.hal.2011.10.016; Reid PC, 1998, NATURE, V391, P546, DOI 10.1038/35290; Reynolds C.S., 1988, P388; Reynolds C. S, 1984, ECOLOGY FRESHWATER P; Reynolds Colin S., 1999, Marine Biological Association of the United Kingdom Occasional Publication, V6, P15; Reynolds CS, 2002, J PLANKTON RES, V24, P417, DOI 10.1093/plankt/24.5.417; REYNOLDS CS, 1980, HOLARCTIC ECOL, V3, P141; REYNOLDS CS, 1984, FRESHWATER BIOL, V14, P111, DOI 10.1111/j.1365-2427.1984.tb00027.x; Ribera dAlcala M., 2006, CIESM WORKSHOP MONOG, V28, P13; Richlen ML, 2010, HARMFUL ALGAE, V9, P163, DOI 10.1016/j.hal.2009.08.013; Riley G. A., 1949, Bulletin of the Bingham Oceanographic Collection, V12, P1; Ross R, 1916, P R SOC LOND A-CONTA, V92, P204, DOI 10.1098/rspa.1916.0007; ROTHSCHILD BJ, 1988, J PLANKTON RES, V10, P465, DOI 10.1093/plankt/10.3.465; Saetre R., 2003, ICES MAR SCI S, V219, P150; Sanders R.W., 2007, J EUKARYOT MICROBIOL, V38, P76; Sandgren C.D., 1988, P9; Sato MS, 1998, EXP CELL RES, V245, P290, DOI 10.1006/excr.1998.4247; Schutt F., 1892; Selander E, 2011, P NATL ACAD SCI USA, V108, P4030, DOI 10.1073/pnas.1011870108; Simek K, 2003, AQUAT MICROB ECOL, V31, P123, DOI 10.3354/ame031123; Simons AM, 2011, P ROY SOC B-BIOL SCI, V278, P1601, DOI 10.1098/rspb.2011.0176; Slobodkin L.B., 1989, NOVEL PHYTOPLANKTON, P341; SLOBODKIN LB, 1953, J MAR RES, V12, P148; Smayda TJ, 2010, PROG OCEANOGR, V85, P53, DOI 10.1016/j.pocean.2010.02.004; Smayda TJ, 2003, J SEA RES, V49, P95, DOI 10.1016/S1385-1101(02)00219-8; Smayda TJ, 2001, J PLANKTON RES, V23, P447, DOI 10.1093/plankt/23.5.447; Smetacek V, 2004, ANTARCT SCI, V16, P541, DOI 10.1017/S0954102004002317; SMETACEK V, 1990, LIMNOL OCEANOGR, V35, P228, DOI 10.4319/lo.1990.35.1.0228; Smetacek V, 2001, NATURE, V411, P745, DOI 10.1038/35081210; SMETACEK V, 1985, ESTUARIES, V8, P145, DOI 10.2307/1351864; Sohn MH, 2011, MAR BIOL, V158, P561, DOI 10.1007/s00227-010-1581-7; Sommer U, 1995, LIMNOL OCEANOGR, V40, P1271, DOI 10.4319/lo.1995.40.7.1271; SOURNIA A, 1982, BIOL REV, V57, P347, DOI 10.1111/j.1469-185X.1982.tb00702.x; Sournia Alain, 1995, P103; Southwood T.R.E., 1976, P26; Squires H. J., 1996, Journal of Northwest Atlantic Fishery Science, V18, P57; Srajer J, 2009, ACTA BOT CROAT, V68, P431; Stearns S. C., 1992, EVOLUTION LIFE HIST, P249; Steidinger K.A., 1998, PHYSL ECOLOGY HARMFU; Stoecker DK, 2009, AQUAT MICROB ECOL, V57, P279, DOI 10.3354/ame01340; Stomp M, 2004, NATURE, V432, P104, DOI 10.1038/nature03044; Straile D, 2000, GLOB CHANGE BIOL, V6, P663, DOI 10.1046/j.1365-2486.2000.00350.x; Suttle CA, 2005, NATURE, V437, P356, DOI 10.1038/nature04160; Suttle CA, 2007, NAT REV MICROBIOL, V5, P801, DOI 10.1038/nrmicro1750; Sverdrup H. U, 1953, J CONS CONS PERM INT, V18, P237, DOI [10.1093/icesjms/18.3.287, DOI 10.1093/ICESJMS/18.3.287]; Sweeney B.M., 1979, P37; Sweeney B.M., 1975, TOXIC DINOFLAGELLATE, p[541, 225]; Takabayashi M, 2006, J PLANKTON RES, V28, P831, DOI 10.1093/plankt/fbl018; Tarutani K, 2000, APPL ENVIRON MICROB, V66, P4916, DOI 10.1128/AEM.66.11.4916-4920.2000; TAYLOR FJR, 1971, J PHYCOL, V7, P249, DOI 10.1111/j.0022-3646.1971.00249.x; Thingstad T., 1997, PROGR MICROBIAL ECOL; Thingstad TF, 2000, LIMNOL OCEANOGR, V45, P1320, DOI 10.4319/lo.2000.45.6.1320; Tomitani A, 2006, P NATL ACAD SCI USA, V103, P5442, DOI 10.1073/pnas.0600999103; TONT SA, 1981, J MAR RES, V39, P191; Tozzi S, 2004, MAR ECOL PROG SER, V274, P123, DOI 10.3354/meps274123; Trainer VL, 2003, J SHELLFISH RES, V22, P213; Truscott JE, 1995, J PLANKTON RES, V17, P2207, DOI 10.1093/plankt/17.12.2207; TRUSCOTT JE, 1994, PHILOS T R SOC A, V347, P703, DOI 10.1098/rsta.1994.0076; TYLER MA, 1978, LIMNOL OCEANOGR, V23, P227, DOI 10.4319/lo.1978.23.2.0227; TYLER MA, 1981, LIMNOL OCEANOGR, V26, P310, DOI 10.4319/lo.1981.26.2.0310; Uchida T, 1999, J EXP MAR BIOL ECOL, V241, P285, DOI 10.1016/S0022-0981(99)00088-X; UKELES R, 1969, LIMNOL OCEANOGR, V14, P403, DOI 10.4319/lo.1969.14.3.0403; Verdugo P, 2004, MAR CHEM, V92, P67, DOI 10.1016/j.marchem.2004.06.017; Vila M, 2005, SCI MAR, V69, P31, DOI 10.3989/scimar.2005.69n131; VILLAREAL TA, 1994, B MAR SCI, V54, P1; VILLAREAL TA, 1988, DEEP-SEA RES, V35, P1037, DOI 10.1016/0198-0149(88)90075-1; Wall D., 1975, TOXIC DINOFLAGELLATE, p[541, 249]; WALSBY AE, 1978, BRIT PHYCOL J, V13, P103, DOI 10.1080/00071617800650121; WALSBY AE, 1980, PHYSL ECOLOGY PHYTOP, P371; Warming Eugenius, 1909, OECOLOGY PLANTS INTR; Wehde H., 2000, Nonlinear Analysis: Real World Application, V1, P3, DOI 10.1016/S0362-546X(99)00390-9; Whipple G. C., 1899, MICROSCOPY DRINKING; Wilhelm SW, 1999, BIOSCIENCE, V49, P781, DOI 10.2307/1313569; WYATT T, 1973, NATURE, V244, P238, DOI 10.1038/244238a0; Wyatt T, 1997, J PLANKTON RES, V19, P551, DOI 10.1093/plankt/19.5.551; WYATT T, 1993, DEV MAR BIO, V3, P73; WYATT T, 1993, FISH OCEANOGR, V2, P231; Wyatt T., 2002, LIFEHAB LIFE HIST MI, P112; Wyatt Timothy, 1995, P755; WYNNEEDWARDS VC, 1962, ANIMAL DISPERSION RE, P653; Xavier JB, 2007, P NATL ACAD SCI USA, V104, P876, DOI 10.1073/pnas.0607651104; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zingone A., 2005, THE SEA; Zingone A, 2010, ESTUAR COAST, V33, P224, DOI 10.1007/s12237-009-9261-x; Zirbel MJ, 2000, J PHYCOL, V36, P46, DOI 10.1046/j.1529-8817.2000.98088.x 243 25 26 4 51 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0967-0645 1879-0100 DEEP-SEA RES PT II Deep-Sea Res. Part II-Top. Stud. Oceanogr. MAR 2014 101 SI 32 49 10.1016/j.dsr2.2012.12.006 18 Oceanography Oceanography AE6XQ WOS:000334141700004 2019-02-21 J Lemaitre, JF; Vanpe, C; Plard, F; Gaillard, JM Lemaitre, J. F.; Vanpe, C.; Plard, F.; Gaillard, J. M. The allometry between secondary sexual traits and body size is nonlinear among cervids BIOLOGY LETTERS English Article life-history theory; ornaments; sexual selection; ungulates; weapons IRISH ELK; MEGALOCEROS-GIGANTEUS; TESTES MASS; COMPETITION; EXTINCTION; INTENSITY; SELECTION; WEAPONRY; ANTLERS Allometric relationships between sexually selected traits and body size have been extensively studied in recent decades. While sexually selected traits generally display positive allometry, a few recent reports have suggested that allometric relationships are not always linear. In male cervids, having both long antlers and large size provides benefits in terms of increased mating success. However, such attributes are costly to grow and maintain, and these costs might constrain antler length from increasing at the same rate as body mass in larger species if the quantity of energy that males can extract from their environment is limiting. We tested for possible nonlinearity in the relationship between antler size and body mass (on a log-log scale) among 31 cervids and found clear deviation from linearity in the allometry of antler length. Antler length increased linearly until a male body mass threshold at approximately 110 kg. Beyond this threshold, antler length did not change with increasing mass. We discuss this evidence of nonlinear allometry in the light of life-history theory and stress the importance of testing for nonlinearity when studying allometric relationships. [Lemaitre, J. F.] Univ Lyon, F-69000 Lyon, France; Univ Lyon 1, F-69622 Villeurbanne, France; Univ Lyon 1, CNRS, UMR5558, Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France Lemaitre, JF (reprint author), Univ Lyon, F-69000 Lyon, France. jeff.lemaitre@gmail.com Vanpe, Cecile/0000-0001-8136-1657 PATCH RPDOC ANR project from the French National Research Agency [ANR-12-PDOC-0017-01]; French Ministry of Higher Education and Research J.F.L. and C. V. are financially supported by the PATCH RPDOC ANR project (ANR-12-PDOC-0017-01) attributed to C. V. from the French National Research Agency. F. P. is funded by a PhD scholarship from the French Ministry of Higher Education and Research. BARNOSKY AD, 1986, QUATERNARY RES, V25, P128, DOI 10.1016/0033-5894(86)90049-9; Bro-Jorgensen J, 2007, EVOLUTION, V61, P1316, DOI 10.1111/j.1558-5646.2007.00111.x; Burnham K. P, 2002, MODEL SELECTION MULT; CLUTTONBROCK TH, 1980, NATURE, V285, P565, DOI 10.1038/285565a0; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fernandez MH, 2005, BIOL REV, V80, P269, DOI 10.1017/S1464793104006670; Fitzpatrick JL, 2012, EVOLUTION, V66, P3595, DOI 10.1111/j.1558-5646.2012.01713.x; GOULD SJ, 1974, EVOLUTION, V28, P191, DOI 10.1111/j.1558-5646.1974.tb00740.x; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Houle D, 2011, Q REV BIOL, V86, P3, DOI 10.1086/658408; Kolokotrones T, 2010, NATURE, V464, P753, DOI 10.1038/nature08920; Lemaitre JF, 2013, BEHAV ECOL, V24, P421, DOI 10.1093/beheco/ars179; Lindenfors Patrik, 2007, P16; MacLeod CD, 2010, METHODS ECOL EVOL, V1, P359, DOI 10.1111/j.2041-210X.2010.00037.x; MacLeod CD, 2010, MAR MAMMAL SCI, V26, P370, DOI 10.1111/j.1748-7692.2009.00348.x; Moen RA, 1999, EVOL ECOL RES, V1, P235; Pitnick S, 2006, P ROY SOC B-BIOL SCI, V273, P719, DOI 10.1098/rspb.2005.3367; Plard F, 2011, OIKOS, V120, P601, DOI 10.1111/j.1600-0706.2010.18934.x; Preston BT, 2003, P ROY SOC B-BIOL SCI, V270, P633, DOI 10.1098/rspb.2002.2268; Stearns S, 1992, EVOLUTION LIFE HIST; ULM K, 1989, BIOMETRICS, V45, P1324; Vanpe C, 2010, OIKOS, V119, P1484, DOI 10.1111/j.1600-0706.2010.18312.x 22 14 15 2 44 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. MAR 1 2014 10 3 20130869 10.1098/rsbl.2013.0869 3 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology AE3TZ WOS:000333902400002 24598105 Other Gold, Green Published 2019-02-21 J Hanberry, BB; Kabrick, JM; He, HS Hanberry, Brice B.; Kabrick, John M.; He, Hong S. Changing tree composition by life history strategy in a grassland-forest landscape ECOSPHERE English Article fire; fire suppression; functional; historical forests; land use; regime shift EASTERN UNITED-STATES; NORTH-AMERICA; SPECIES COMPOSITION; NEW-ENGLAND; DYNAMICS; FIRE; CLASSIFICATION; VEGETATION; USA; DISTRIBUTIONS After rapid deforestation in the eastern United States, which generally occurred during the period of 1850-1920, forests did not return to historical composition and structure. We examined forest compositional change and then considered how historical land use and current land use may influence forests in a grassland-forest landscape, the Missouri Plains, where frequent surface fire was the historical land use and intensive agricultural is the current land use. We compared composition, distribution, and environmental relationships during historical (1813-1860) and current (2004-2008) forest surveys. We also examined changing composition of life history strategies of (1) stress tolerators based on fire tolerance, (2) colonizers based on shade intolerance, and (3) competitors based on shade tolerance. Open forest ecosystems of fire-tolerant oaks have been replaced by forests of fire-sensitive species, such as ashes, hackberry, and maples that expanded from riparian firebreaks and osage-orange and eastern redcedar that expanded from planted windbreaks and rocky firebreaks. Colonizing species increased from 7% to 32% of total composition, with assisted tree migration from planting; we expect continued expansion particularly by eastern redcedar into areas unoccupied by trees. Competitive species have increased slightly to 38% of total composition although the trajectory of current forests suggested competitors may increase to 56% of total composition by replacing oaks in forest ecosystems. Changed success of life history strategies in an agricultural landscape without fire resulted in increased composition and extent of fire-sensitive colonizers compared to fire-tolerant oaks. We suggest that patterns of loss of fire-tolerant oaks and increased distribution of fire-sensitive species reflect suppression of fire, the historical land use. In addition, we suggest that subsequent land use dictates the success of either shade-intolerant colonizers or shade-tolerant competitors in current forests. Forests will be composed of shade-intolerant colonizers where land use disturbance is frequent, such as in agricultural landscapes, and forests will be composed of species with greater shade tolerance where land use disturbance is less frequent. [Hanberry, Brice B.; He, Hong S.] Univ Missouri, Sch Nat Resources, Columbia, MO 65211 USA; [Kabrick, John M.] US Forest Serv, USDA, No Res Stn, Columbia, MO 65211 USA Hanberry, BB (reprint author), Univ Missouri, Sch Nat Resources, Columbia, MO 65211 USA. hanberryb@missouri.edu National Fire Plan, USDA Forest Service We thank anonymous reviewers for their comments. We received help from Richard McCullough at the USDA Forest Service FIA program, and funding from the National Fire Plan, USDA Forest Service. AUCLAIR AN, 1971, ECOL MONOGR, V41, P153, DOI 10.2307/1942389; BEERS TW, 1966, J FOREST, V64, P691; Bekker MF, 2010, ECOSCIENCE, V17, P59, DOI 10.2980/17-1-3247; Belden AC, 2009, PLANT ECOL, V204, P305, DOI 10.1007/s11258-009-9593-4; Biau G, 2012, J MACH LEARN RES, V13, P1063; Blewett T. J., 1986, P 9 N AM PRAIR C, V9, P122; Breiman L, 2001, MACH LEARN, V45, P5, DOI 10.1023/A:1010933404324; Briggs JM, 2002, AM MIDL NAT, V147, P287, DOI 10.1674/0003-0031(2002)147[0287:EOWPIT]2.0.CO;2; Brooker RW, 1998, OIKOS, V81, P196, DOI 10.2307/3546481; Burns R. M., 1990, SILVICS N AM, V2, P654; Cogbill CV, 2002, J BIOGEOGR, V29, P1279, DOI 10.1046/j.1365-2699.2002.00757.x; COTTAM G, 1949, ECOLOGY, V30, P271, DOI 10.2307/1932609; CROW TR, 1988, FOREST SCI, V34, P19; Cutler DR, 2007, ECOLOGY, V88, P2783, DOI 10.1890/07-0539.1; Fei S, 2008, TREE PHYSIOL, V28, P1111, DOI 10.1093/treephys/28.7.1111; Fei SL, 2007, FOREST SCI, V53, P473; Foster DR, 1998, ECOSYSTEMS, V1, P96, DOI 10.1007/s100219900008; Fry J. A., 2011, PE&RS, Photogrammetric Engineering & Remote Sensing, V77, P858; Fuller Janice L., 1998, Ecosystems, V1, P76, DOI 10.1007/s100219900007; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; HANBERRY BB, 2013, WEB ECOL, V13, P13, DOI DOI 10.5194/we-13-13-2013; Hanberry BB, 2014, ECOSYSTEMS, V17, P66, DOI 10.1007/s10021-013-9707-7; Hanberry BB, 2012, LANDSCAPE ECOL, V27, P1495, DOI 10.1007/s10980-012-9805-5; Hanberry BB, 2012, AM MIDL NAT, V168, P443; Hanberry BB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041337; Jackson ST, 2013, J VEG SCI, V24, P772, DOI 10.1111/jvs.12004; Kabrick JM, 2011, SOIL SCI SOC AM J, V75, P164, DOI 10.2136/sssaj2009.0382; Kaye MW, 2010, J BIOGEOGR, V37, P1668, DOI 10.1111/j.1365-2699.2010.02327.x; Liaw A., 2012, R NEWS, V2, P18, DOI DOI 10.1016/J.MEMSCI.2010.02.036; Martinez-Meyer E, 2006, J BIOGEOGR, V33, P1779, DOI 10.1111/j.1365-2699.2006.01612.x; MCCUNE B, 1985, ECOLOGY, V66, P1270, DOI 10.2307/1939180; McEwan RW, 2011, ECOGRAPHY, V34, P244, DOI 10.1111/j.1600-0587.2010.06390.x; Morrissey RC, 2010, PLANT ECOL, V208, P21, DOI 10.1007/s11258-009-9683-3; Nigh T, 2002, ATLAS MISSOURI ECORE; Niinemets U, 2006, ECOL MONOGR, V76, P521, DOI 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2; Nowacki GJ, 2008, BIOSCIENCE, V58, P123, DOI 10.1641/B580207; OVERPECK JT, 1992, GEOLOGY, V20, P1071, DOI 10.1130/0091-7613(1992)020<1071:MENAVC>2.3.CO;2; Ozier TB, 2006, AM MIDL NAT, V155, P253, DOI 10.1674/0003-0031(2006)155[253:CCASCI]2.0.CO;2; PRENTICE IC, 1991, ECOLOGY, V72, P2038, DOI 10.2307/1941558; R Development Core Team, 2010, R LANG ENV STAT COMP; Sappington JM, 2007, J WILDLIFE MANAGE, V71, P1419, DOI 10.2193/2005-723; Schoennagel T, 2011, ECOL APPL, V21, P2210, DOI 10.1890/10-1222.1; Sing T, 2005, BIOINFORMATICS, V21, P3940, DOI 10.1093/bioinformatics/bti623; Stage AR, 2007, FOREST SCI, V53, P486; Stambaugh MC, 2008, FOREST ECOL MANAG, V254, P463, DOI 10.1016/j.foreco.2007.08.029; Thompson JR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0072540; vanBreemen N, 1997, CAN J FOREST RES, V27, P1110, DOI 10.1139/cjfr-27-7-1110; Wang YC, 2010, PLANT ECOL, V208, P245, DOI 10.1007/s11258-009-9702-4; WESTIN S, 1992, WILDFIRE MISSOURI; White C. A., 1983, HIST RECTANGULAR SUR 50 6 7 1 27 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere MAR 2014 5 3 34 10.1890/ES13-00345.1 16 Ecology Environmental Sciences & Ecology AE2IX WOS:000333797600011 DOAJ Gold 2019-02-21 J O'Connor, CM; Norris, DR; Crossin, GT; Cooke, SJ O'Connor, Constance M.; Norris, D. Ryan; Crossin, Glenn T.; Cooke, Steven J. Biological carryover effects: linking common concepts and mechanisms in ecology and evolution ECOSPHERE English Article carry over effect; delayed effect; latent effect; life-history trade-off; maternal effect; reproductive trade-off LIFE-HISTORY EVOLUTION; REPRODUCTIVE SUCCESS; TRADE-OFFS; PHYSIOLOGICAL ECOLOGY; MIGRATORY POPULATIONS; SEASONAL INTERACTIONS; CORTISOL ELEVATION; HABITAT QUALITY; COSTS; GROWTH The term 'carryover effect' originally arose from repeated measures clinical experiments. However, the term has more recently been applied to ecological and evolutionary studies, often in migratory systems, which has led to an emphasis on non-lethal effects across seasons. In this article, we suggest that ecological carryover effects can also occur between life-history stages, developmental stages, physiological states, or social situations, and each will be associated with a discrete time-scale. Therefore, we propose the working definition: In an ecological context, carryover effects occur in any situation in which an individual's previous history and experience explains their current performance in a given situation. This concept of carryover effects provides an explicit but highly flexible context for examining the mechanisms that drive non-lethal interactions between distinct periods of an organism's lifetime, and unites the currently disparate fields investigating these effects in ecological systems. Greater communication among research fields and identifying mechanisms of carryover effects at different time scales will ultimately lead to a better understanding of the factors influencing variation in individual fitness. [O'Connor, Constance M.; Cooke, Steven J.] Carleton Univ, Dept Biol, Fish Ecol & Conservat Physiol Lab, Ottawa, ON K1S 5B6, Canada; [Norris, D. Ryan] Univ Guelph, Dept Integrat Biol, Guelph, ON N1G 2W1, Canada; [Crossin, Glenn T.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada O'Connor, CM (reprint author), McMaster Univ, Dept Psychol Neurosci & Behav, Aquat Behav Ecol Lab, 1280 Main St West, Hamilton, ON L8S 4K1, Canada. coconn@mcmaster.ca Cooke, Steven/F-4193-2010 Cooke, Steven/0000-0002-5407-0659 Ontario Graduate Scholarship; Carleton University; NSERC; Canada Research Chairs program; University of Guelph Research Chair program Support was provided by an Ontario Graduate Scholarship (C. M. O'Connor), Carleton University (C. M. O'Connor), NSERC (S. J. Cooke, D. R. Norris), the Canada Research Chairs program (S. J. Cooke), and the University of Guelph Research Chair program (D. R. Norris). Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Betini G. S., 2013, P ROYAL SOC B, V280, P1759; Betini GS, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2013.0582; Blem C.R., 1990, Current Ornithology, V7, P59; Block BA, 2005, INTEGR COMP BIOL, V45, P305, DOI 10.1093/icb/45.2.305; Bolger DT, 2008, ECOL LETT, V11, P63; Champagne FA, 2009, NEUROSCI BIOBEHAV R, V33, P593, DOI 10.1016/j.neubiorev.2007.10.009; Cook RC, 2004, J MAMMAL, V85, P714, DOI 10.1644/BRG-131; COOKE SJ, 2013, CONSERV PHYSL, V1, P1, DOI DOI 10.1093/C0NPHYS/C0T001; Cooke SJ, 2010, CONSERV LETT, V3, P159, DOI 10.1111/j.1755-263X.2010.00109.x; Crossin GT, 2013, PHYSIOL BIOCHEM ZOOL, V86, P761, DOI 10.1086/673755; Crossin GT, 2012, GEN COMP ENDOCR, V176, P151, DOI 10.1016/j.ygcen.2012.01.006; Crossin GT, 2010, AM NAT, V176, P357, DOI 10.1086/655223; Dawson A, 2000, P ROY SOC B-BIOL SCI, V267, P2093, DOI 10.1098/rspb.2000.1254; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; FEDER ME, 1991, FUNCT ECOL, V5, P136, DOI 10.2307/2389251; Festa-Bianchet M, 1998, AM NAT, V152, P367, DOI 10.1086/286175; Gill JA, 2001, NATURE, V412, P436, DOI 10.1038/35086568; Gratton C, 2003, ECOLOGY, V84, P2692, DOI 10.1890/02-0666; Greenland S, 1996, EPIDEMIOLOGY, V7, P231, DOI 10.1097/00001648-199605000-00003; Harrison XA, 2011, J ANIM ECOL, V80, P4, DOI 10.1111/j.1365-2656.2010.01740.x; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Inger R, 2010, J ANIM ECOL, V79, P974, DOI 10.1111/j.1365-2656.2010.01712.x; Johnson DW, 2008, OECOLOGIA, V155, P43, DOI 10.1007/s00442-007-0882-0; Johnsson JI, 2006, P R SOC B, V273, P1281, DOI 10.1098/rspb.2005.3437; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Legagneux P, 2012, P ROY SOC B-BIOL SCI, V279, P876, DOI 10.1098/rspb.2011.1351; Marra PP, 1998, SCIENCE, V282, P1884, DOI 10.1126/science.282.5395.1884; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; McConnachie SH, 2012, J EXP ZOOL PART A, V317A, P321, DOI 10.1002/jez.1726; McDonald DB, 2007, P NATL ACAD SCI USA, V104, P10910, DOI 10.1073/pnas.0701159104; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Moreno JM, 2013, J VEG SCI, V24, P395, DOI 10.1111/j.1654-1103.2012.01466.x; Morgan IJ, 2001, P ROY SOC B-BIOL SCI, V268, P295, DOI 10.1098/rspb.2000.1365; Mousseau TA, 1998, MATERNAL EFFECTS ADA; MYERS JP, 1981, BEHAV ECOL SOCIOBIOL, V8, P195, DOI 10.1007/BF00299830; Nix D. E., 2001, DRUG INTERACTIONS IN, P483; Norris DR, 2007, CONDOR, V109, P535; Norris DR, 2006, BIOL LETT-UK, V2, P148, DOI 10.1098/rsbl.2005.0397; Norris DR, 2005, OIKOS, V109, P178, DOI 10.1111/j.0030-1299.2005.13671.x; Norris DR, 2004, P ROY SOC B-BIOL SCI, V271, P59, DOI 10.1098/rspb.2003.2569; O'Connor CM, 2011, CAN J FISH AQUAT SCI, V68, P693, DOI [10.1139/F11-009, 10.1139/f2011-009]; O'Connor CM, 2010, PHYSIOL BIOCHEM ZOOL, V83, P950, DOI 10.1086/656286; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Pechenik JA, 2006, INTEGR COMP BIOL, V46, P323, DOI 10.1093/icb/icj028; Phillips NE, 2002, ECOLOGY, V83, P2562, DOI 10.2307/3071815; POUGH FH, 1989, PHYSIOL ZOOL, V62, P199, DOI 10.1086/physzool.62.2.30156169; Ratikainen II, 2008, ECOL LETT, V11, P184, DOI 10.1111/j.1461-0248.2007.01122.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robb GN, 2008, BIOL LETTERS, V4, P220, DOI 10.1098/rsbl.2007.0622; ROFF DA, 2002, LIFE HIST EVOLUTION; Rubenstein DR, 2004, TRENDS ECOL EVOL, V19, P256, DOI 10.1016/j.tree.2004.03.017; Runge Michael C., 2005, P375; Sedinger JS, 2011, AM NAT, V178, P110, DOI 10.1086/662165; Sorensen MC, 2009, J ANIM ECOL, V78, P460, DOI 10.1111/j.1365-2656.2008.01492.x; SPICER J. I., 1999, PHYSL DIVERSITY ITS; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Touchon JC, 2013, ECOLOGY, V94, P850, DOI 10.1890/12-0194.1; Vonesh JR, 2005, OECOLOGIA, V143, P280, DOI 10.1007/s00442-004-1806-x; WALLENSTEIN S, 1977, BIOMETRICS, V33, P261, DOI 10.2307/2529321; Weaver ICG, 2004, NAT NEUROSCI, V7, P847, DOI 10.1038/nn1276; Webster Michael S., 2005, P199; Webster MS, 2002, TRENDS ECOL EVOL, V17, P76, DOI 10.1016/S0169-5347(01)02380-1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams T. D., 2012, PHYSL ADAPTATIONS BR; Williams TD, 2005, BIOSCIENCE, V55, P39, DOI 10.1641/0006-3568(2005)055[0039:MUTCOE]2.0.CO;2; WITTER MS, 1993, PHILOS T R SOC B, V340, P73, DOI 10.1098/rstb.1993.0050; Wolf JB, 2009, PHILOS T R SOC B, V364, P1107, DOI 10.1098/rstb.2008.0238; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 73 95 96 5 72 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere MAR 2014 5 3 28 10.1890/ES13-00388.1 11 Ecology Environmental Sciences & Ecology AE2IX WOS:000333797600005 DOAJ Gold 2019-02-21 J Cavaleiro, FI; Santos, MJ Cavaleiro, Francisca I.; Santos, Maria J. Egg number-egg size: an important trade-off in parasite life history strategies INTERNATIONAL JOURNAL FOR PARASITOLOGY English Article Parasite species; r- and K-strategy; Trade-off egg number-egg size; Multilevel approach; Natural selection; Adaptive phenotypic plasticity LEPEOPHTHEIRUS-SALMONIS COPEPODA; REPRODUCTIVE SUCCESS; PSEUDODIPLORCHIS-AMERICANUS; SALMINCOLA-SALMONEUS; OSTERTAGIA-OSTERTAGI; BODY PROPORTIONS; FECUNDITY; EVOLUTION; CALIGIDAE; TRAITS Parasites produce from just a few to many eggs of variable size, but our understanding of the factors driving variation in these two life history traits at the intraspecific level is still very fragmentary. This study evaluates the importance of performing multilevel analyses on egg number and egg size, while characterising parasite life history strategies. A total of 120 ovigerous females of Octopicola superba (Copepoda: Octopicolidae) (one sample (n = 30) per season) were characterised with respect to different body dimensions (total length; genital somite length) and measures of reproductive effort (fecundity; mean egg diameter; total reproductive effort; mean egg sac length). While endoparasites are suggested to follow both an r- and K-strategy simultaneously, the evidence found in this and other studies suggests that environmental conditions force ectoparasites into one of the two alternatives. The positive and negative skewness of the distributions of fecundity and mean egg diameter, respectively, suggest that O. superba is mainly a K-strategist (i.e. produces a relatively small number of large, well provisioned eggs). Significant sample differences were recorded concomitantly for all body dimensions and measures of reproductive effort, while a general linear model detected a significant influence of season*parasite total length in both egg number and size. This evidence suggests adaptive phenotypic plasticity in body dimensions and size-mediated changes in egg production. Seasonal changes in partitioning of resources between egg number and size resulted in significant differences in egg sac length but not in total reproductive effort. Evidence for a trade-off between egg number and size was found while controlling for a potential confounding effect of parasite total length. However, this trade-off became apparent only at high fecundity levels, suggesting a state of physiological exhaustion. (C) 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved. [Cavaleiro, Francisca I.] Univ Porto, Fac Ciencias, Dept Biol, P-4169007 Oporto, Portugal; Univ Porto, CIIMAR CIMAR Ctr Interdisciplinar Invest Marinha, P-4050123 Oporto, Portugal Cavaleiro, FI (reprint author), Univ Porto, Fac Ciencias, Dept Biol, Rua Campo Alegre S-N,Edificio FC4, P-4169007 Oporto, Portugal. francisca.cavaleiro@gmail.com Scientific Productivity, CIIMAR/N-6498-2017; Scientific output, CIIMAR/E-5122-2012; Santos, MJ/B-5764-2009 Scientific Productivity, CIIMAR/0000-0002-3703-4402; Scientific output, CIIMAR/0000-0001-6270-2153; Santos, MJ/0000-0001-6655-491X; Cavaleiro, Francisca/0000-0001-9978-3401 Portuguese Foundation for Science and Technology; European Social Fund [SFRH/BD/65258/2009]; Project AQUAIMPROV [NORTE-07-0124-FEDER-000038]; North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme; FCT - Foundation for Science and Technology [PEst-C/MAR/LA0015/2013, DIRDAMyx FCOMP-01-0124-FEDER-020726, FCT - PTDC/MAR/116838/2010] The authors would like to thank the Portuguese Foundation for Science and Technology and the European Social Fund for the grant to Francisca I. Cavaleiro (SFRH/BD/65258/2009). This work was partially funded by the Project AQUAIMPROV (reference NORTE-07-0124-FEDER-000038), co-financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF); and the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Programme and national funds through FCT - Foundation for Science and Technology, under the projects PEst-C/MAR/LA0015/2013 and DIRDAMyx FCOMP-01-0124-FEDER-020726 (FCT - PTDC/MAR/116838/2010). Gratitude is also due to three anonymous reviewers for their valuable comments on a previous version of the manuscript and to Professor Vitor Silva for his assistance during field collection of octopuses. Anderson R, 1982, POPULATION DYNAMICS; Bocquet C, 1960, ARCH ZOOLOGIE EXPT G, V99, P1; Bravo S, 2009, J FISH DIS, V32, P107, DOI 10.1111/j.1365-2761.2008.01012.x; Bravo S, 2010, EXP PARASITOL, V125, P51, DOI 10.1016/j.exppara.2009.12.001; Bush AO, 1997, J PARASITOL, V83, P575, DOI 10.2307/3284227; CABLE J, 1991, PARASITOLOGY, V103, P253, DOI 10.1017/S0031182000059539; Caley MJ, 2001, EVOLUTION, V55, P1245; CALOW P, 1983, PARASITOLOGY, V86, P197, DOI 10.1017/S0031182000050897; Castro G.A., 1991, P356; Cavaleiro FI, 2013, SYST PARASITOL, V86, P77, DOI 10.1007/s11230-013-9431-x; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Combes C., 1991, P62; COMBES C, 1995, INTERACTIONS DURABLE; Crompton D.W.T., 1991, P228; Deboutteville M.M.C.D., 1957, CR HEBD ACAD SCI, V244, P504; DOBSON AP, 1986, PARASITOLOGY, V92, P675, DOI 10.1017/S0031182000065537; Faust EC, 1949, HUMAN HELMINTHOLOGY; Gotto R.V., 1962, J NAT HIST 13, V5, P97; Heins DC, 2002, J PARASITOL, V88, P302, DOI 10.1645/0022-3395(2002)088[0302:TCEITC]2.0.CO;2; Herreras MV, 2007, OIKOS, V116, P1737, DOI 10.1111/j.2007.0030-1299.16016.x; Heuch PA, 2000, AQUAC RES, V31, P805, DOI 10.1046/j.1365-2109.2000.00512.x; HONZAKOVA E, 1975, Folia Parasitologica (Ceske Budejovice), V22, P37; HUMES ARTHUR G., 1957, VIE ET MILIEU, V8, P1; IWUALA M O E, 1977, Folia Parasitologica (Ceske Budejovice), V24, P162; JENNINGS JB, 1975, OECOLOGIA, V21, P109, DOI 10.1007/BF00345553; JOHNSON SC, 1991, J MAR BIOL ASSOC UK, V71, P425, DOI 10.1017/S0025315400051687; JOHNSTON CE, 1987, CAN J ZOOL, V65, P415, DOI 10.1139/z87-062; JONES JT, 1989, INT J PARASITOL, V19, P769, DOI 10.1016/0020-7519(89)90065-9; KEARN GC, 1985, INT J PARASITOL, V15, P187, DOI 10.1016/0020-7519(85)90086-4; Kennedy C.R., 1976, P143; KENNEDY CR, 1983, BIOL EUCESTODA, V1, P27; KEYMER A, 1983, INT J PARASITOL, V13, P561, DOI 10.1016/S0020-7519(83)80028-9; KHAMBOONRUANG C, 1971, J PARASITOL, V57, P289, DOI 10.2307/3278028; KRUPP IM, 1961, J PARASITOL, V47, P957, DOI 10.2307/3275030; Loot G, 2011, PARASITOLOGY, V138, P848, DOI 10.1017/S003118201100014X; MCGLADDERY SE, 1988, AQUACULTURE, V68, P193, DOI 10.1016/0044-8486(88)90352-3; Mehlhorn H, 1988, PARASITOLOGY FOCUS F; MICHEL JF, 1978, INT J PARASITOL, V8, P437, DOI 10.1016/0020-7519(78)90060-7; MICHEL JF, 1971, J PARASITOL, V57, P1185, DOI 10.2307/3277964; MOSSINGER J, 1986, Z PARASITENKD, V72, P121, DOI 10.1007/BF00927743; Nordhagen JR, 2000, CONTRIB ZOOL, V69, P99; OLSEN OW, 1974, ANIMAL PARASITES THE; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; POULIN R, 1995, EVOLUTION, V49, P325, DOI 10.1111/j.1558-5646.1995.tb02245.x; Poulin R, 1997, PARASITOLOGY, V114, P195, DOI 10.1017/S0031182096008372; Poulin R, 1996, ADV PARASIT, V37, P107, DOI 10.1016/S0065-308X(08)60220-1; Poulin R., 2007, EVOLUTIONARY ECOLOGY; PRICE PW, 1974, EVOLUTION, V28, P76, DOI 10.1111/j.1558-5646.1974.tb00728.x; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; READ CP, 1951, J PARASITOL, V37, P174, DOI 10.2307/3273449; Ritchie G., 1993, P153; Roff Derek A., 1992; ROHDE K, 1984, HELGOLANDER MEERESUN, V37, P5, DOI 10.1007/BF01989293; Rossin MS, 2005, PARASITOL RES, V96, P335, DOI 10.1007/s00436-005-1400-0; ROUBAL FR, 1994, FOLIA PARASIT, V41, P220; Ruiz-Daniels R, 2013, PARASITOLOGY, V140, P275, DOI 10.1017/S0031182012001564; SHOSTAK AW, 1987, CAN J ZOOL, V65, P2878, DOI 10.1139/z87-437; SINNIAH B, 1991, J HELMINTHOL, V65, P141, DOI 10.1017/S0022149X00010609; Smith F. E., 1954, DYNAMICS GROWTH PROC, P277; Stearns S, 1992, EVOLUTION LIFE HIST; STUNKARD HW, 1975, SYST ZOOL, V24, P378, DOI 10.2307/2412724; SZALAI AJ, 1989, PARASITOLOGY, V98, P489, DOI 10.1017/S0031182000061588; TEDLA S, 1970, Crustaceana (Leiden), V19, P1, DOI 10.1163/156854070X00581; Gonzalez MT, 2012, AQUAC RES, V43, P853, DOI 10.1111/j.1365-2109.2011.02900.x; Timi JT, 2010, PARASITOLOGY, V137, P1687, DOI 10.1017/S0031182010000594; Timi JT, 2005, PARASITOL RES, V95, P1, DOI 10.1007/s00436-004-1242-1; TOCQUE K, 1991, PARASITOLOGY, V102, P213, DOI 10.1017/S003118200006251X; Trouve S, 1998, OECOLOGIA, V115, P370, DOI 10.1007/s004420050530; TULLY O, 1993, FISH RES, V17, P187, DOI 10.1016/0165-7836(93)90018-3; VANDAMME PA, 1993, J FISH BIOL, V42, P395, DOI 10.1006/jfbi.1993.1042; WENNER EL, 1979, CRUSTACEANA, V37, P293, DOI 10.1163/156854079X01176 71 6 6 1 32 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0020-7519 1879-0135 INT J PARASITOL Int. J. Parasit. MAR 2014 44 3-4 173 182 10.1016/j.ijpara.2013.10.009 10 Parasitology Parasitology AE2FS WOS:000333789300003 24462500 2019-02-21 J Betuel, A; Tuttle, EM; Gonser, RA Betuel, Adam; Tuttle, Elaina M.; Gonser, Rusty A. Predation by a Sharp-shinned Hawk on a Ground-nesting Bird, the White-throated Sparrow WILSON JOURNAL OF ORNITHOLOGY English Article nestling; predation; Sharp-shinned Hawk; temperature-logger; video; White-throated Sparrow ALTERNATIVE REPRODUCTIVE STRATEGIES; LIFE-HISTORY EVOLUTION; FOREST; FOOD; ACCIPITER; SUCCESS; PATTERNS; SITES; VIDEO Predation at the nest is the largest source of reproductive failure for many species of passerine birds, and so it is important that we understand the details surrounding such predation events. With the advent of small video and temperature recorders, nests can now be monitored remotely and predator identity can be assigned. Using remote data collection techniques, we report the unusual observation of a White-throated Sparrow nestling being taken by a juvenile Sharp-shinned Hawk. Normally, Sharp-shinned Hawks focus their efforts on fledgling birds; however, if they do take nestlings, they tend to be from arboreal-nesting species. Since the White-throated Sparrow is a ground-nesting passerine, we suspect that a combination of nest location, nest structure, vegetation structure within the territory, and age of the nestlings made this nest an ideal target for an opportunistic young Sharp-shinned Hawk. [Betuel, Adam; Tuttle, Elaina M.; Gonser, Rusty A.] Indiana State Univ, Dept Biol, Terre Haute, IN 47809 USA Betuel, A (reprint author), Indiana State Univ, Dept Biol, 600 Chestnut St, Terre Haute, IN 47809 USA. abetuel@sycamores.indstate.edu Tuttle, Elaina/A-1485-2016 Tuttle, Elaina/0000-0002-2465-918X School of Graduate and Professional Studies at ISU; Northern New York Audubon Society; [NSF DUE-0934648]; [NIH 1R01GM084229] We would like to thank the two anonymous reviewers who offered such useful comments. Additionally, we want to acknowledge the many field assistants who have helped on the White-throated Sparrow project throughout the years. Our thanks also goes to the Cranberry Lake Biological Station (CLBS), The Center for Genomic Advocacy (TCGA) at Indiana State University (ISU), C. A. T. Gonser, M. A. Betuel, and Zonotrichia Zeke. Funding sources included the School of Graduate and Professional Studies at ISU, the Northern New York Audubon Society, as well as NSF DUE-0934648 and NIH 1R01GM084229 grants (to E. M. Tuttle and R. A. Gonser). Ball J. R., 2009, P 4 INT PARTN FLIGHT, P37; Blumstein D. T., 2007, QUANTIFYING BEHAV JW; Coates PS, 2008, J FIELD ORNITHOL, V79, P421, DOI 10.1111/j.1557-9263.2008.00189.x; Craighead J. J., 1956, HAWKS OWLS WILDLIFE; DeLong JP, 2013, CONDOR, V115, P40, DOI 10.1525/cond.2012.120016; Dunn EH, 2010, BIRDS N AM; Formica VA, 2004, ECOLOGY, V85, P1125, DOI 10.1890/03-0029; GRANFORS D. A., 2000, J WILDLIFE MANAGE, V64, P71; Haftorn Svein, 1994, Fauna Norvegica Series C Cinclus, V17, P55; HARTSHORNE JAMES M., 1962, LIVING BIRD, V1, P131; JOY SM, 1994, CONDOR, V96, P455, DOI 10.2307/1369328; King DI, 2006, J FIELD ORNITHOL, V77, P239, DOI 10.1111/j.1557-9263.2006.00048.x; LOWTHER J. K, 1968, US NATL MUSEUM B, P1364; Major RE, 1996, IBIS, V138, P298, DOI 10.1111/j.1474-919X.1996.tb04342.x; Marini MA, 1998, CONDOR, V100, P395, DOI 10.2307/1370284; Martin TE, 2000, P ROY SOC B-BIOL SCI, V267, P2287, DOI 10.1098/rspb.2000.1281; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; McCallum CA, 2001, CONDOR, V103, P192, DOI 10.1650/0010-5422(2001)103[0192:APOARN]2.0.CO;2; QUINN M S, 1991, Journal of Raptor Research, V25, P18; REYNOLDS RT, 1984, AUK, V101, P761, DOI 10.2307/4086903; REYNOLDS RT, 1978, WILSON BULL, V90, P182; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; ROBINSON SK, 1995, SCIENCE, V267, P1987, DOI 10.1126/science.267.5206.1987; Sloan SS, 1998, J WILDLIFE MANAGE, V62, P529, DOI 10.2307/3802326; SONG SJ, 1998, THESIS U ALBERTA EDM; Stake MM, 2003, CONDOR, V105, P348, DOI 10.1650/0010-5422(2003)105[0348:UVTMPA]2.0.CO;2; STORER RW, 1966, AUK, V83, P423, DOI 10.2307/4083053; Tuttle EM, 2003, BEHAV ECOL, V14, P425, DOI 10.1093/beheco/14.3.425; Weatherhead PJ, 2004, J AVIAN BIOL, V35, P185, DOI 10.1111/j.0908-8857.2004.03336.x; WHELAN CJ, 1994, AUK, V111, P945, DOI 10.2307/4088826; WIGGERS EP, 1991, WILSON BULL, V103, P568; WILLEBRAND T, 1988, AUK, V105, P378, DOI 10.2307/4087508; Zanette L, 2000, AUK, V117, P445, DOI 10.1642/0004-8038(2000)117[0445:NSANPI]2.0.CO;2 36 0 0 0 23 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. MAR 2014 126 1 161 165 10.1676/13-094.1 5 Ornithology Zoology AD9GN WOS:000333573100025 2019-02-21 J Gruebler, MU; Korner-Nievergelt, F; Naef-Daenzer, B Grueebler, Martin U.; Korner-Nievergelt, Fraenzi; Naef-Daenzer, Beat Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird ECOLOGY AND EVOLUTION English Article Avian demography; bird migration; Hirundo rustica; life-history stages; population ecology; postfledging survival SWALLOWS HIRUNDO-RUSTICA; LIFE-HISTORY EVOLUTION; POPULATION-GROWTH RATE; POSTFLEDGING SURVIVAL; BARN SWALLOWS; FITNESS CONSEQUENCES; BREEDING DISPERSAL; MIGRATORY SONGBIRD; MARKED ANIMALS; PASSERINE In migrant birds, survival estimates for the different life-history stages between fledging and first breeding are scarce. First-year survival is shown to be strongly reduced compared with annual survival of adult birds. However, it remains unclear whether the main bottleneck in juvenile long-distant migrants occurs in the postfledging period within the breeding ranges or en route. Quantifying survival rates during different life-history stages and during different periods of the migration cycle is crucial to understand forces driving the evolution of optimal life histories in migrant birds. Here, we estimate survival rates of adult and juvenile barn swallows (Hirundo rustica L.) in the breeding and nonbreeding areas using a population model integrating survival estimates in the breeding ranges based on a large radio-telemetry data set and published estimates of demographic parameters from large-scale population-monitoring projects across Switzerland. Input parameters included the country-wide population trend, annual productivity estimates of the double-brooded species, and year-to-year survival corrected for breeding dispersal. Juvenile survival in the 3-week postfledging period was low (S=0.32; SE=0.05), whereas in the rest of the annual cycle survival estimates of adults and juveniles were similarly high (S>0.957). Thus, the postfledging period was the main survival bottleneck, revealing the striking result that nonbreeding period mortality (including migration) is not higher for juveniles than for adult birds. Therefore, focusing future research on sources of variation in postfledging mortality can provide new insights into determinants of population dynamics and life-history evolution of migrant birds. [Grueebler, Martin U.; Korner-Nievergelt, Fraenzi; Naef-Daenzer, Beat] Swiss Ornithol Inst, CH-6204 Sempach, Switzerland; [Korner-Nievergelt, Fraenzi] Oikostat GmbH, Stat Anal & Consulting, CH-6218 Ettiswil, Switzerland Gruebler, MU (reprint author), Swiss Ornithol Inst, Seerose 1, CH-6204 Sempach, Switzerland. martin.gruebler@vogelwarte.ch Swiss National Science Foundation [3100-65382.01] This research was funded by the Swiss National Science Foundation (Grant 3100-65382.01 to B. Naef-Daenzer). Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Alves JA, 2013, ECOLOGY, V94, P11, DOI 10.1890/12-0737.1; Anders AD, 2005, CONSERV BIOL, V19, P66, DOI 10.1111/j.1523-1739.2005.00543.x; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Berkeley LI, 2007, AUK, V124, P396, DOI 10.1642/0004-8038(2007)124[396:PSAMID]2.0.CO;2; Botsch Y, 2012, AUK, V129, P283, DOI 10.1525/auk.2012.11079; Brooks SP, 1998, J COMPUT GRAPH STAT, V7, P434, DOI 10.2307/1390675; Calvert AM, 2009, AVIAN CONSERV ECOL, V4; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Clark ME, 2007, ECOL MODEL, V209, P110, DOI 10.1016/j.ecolmodel.2007.06.008; Faaborg J, 2010, ECOL MONOGR, V80, P3, DOI 10.1890/09-0395.1; Gelman A., 2007, DATA ANAL USING REGR; Gruebler MU, 2008, ECOLOGY, V89, P2736, DOI 10.1890/07-0786.1; Gruebler MU, 2008, ANIM BEHAV, V75, P1877, DOI 10.1016/j.anbehav.2007.12.002; Gruebler MU, 2010, J APPL ECOL, V47, P1340, DOI 10.1111/j.1365-2664.2010.01873.x; Gruebler MU, 2010, J AVIAN BIOL, V41, P282, DOI 10.1111/j.1600-048X.2009.04865.x; Gruebler MU, 2010, J ANIM ECOL, V79, P334, DOI 10.1111/j.1365-2656.2009.01650.x; Guillemain M, 2010, J ORNITHOL, V151, P51, DOI 10.1007/s10336-009-0425-z; Holmes RT, 2007, IBIS, V149, P2, DOI 10.1111/j.1474-919X.2007.00685.x; Hovick TJ, 2011, CONDOR, V113, P429, DOI 10.1525/cond.2011.100135; Jones J, 2004, AUK, V121, P15, DOI 10.1642/0004-8038(2004)121[0015:MEOSAP]2.0.CO;2; kesson S., 2007, BIOSCIENCE, V57, P123; KETTERSON ED, 1982, AUK, V99, P243; Klaassen M, 2012, PHILOS T R SOC B, V367, P1719, DOI 10.1098/rstb.2012.0008; Klaassen RHG, 2014, J ANIM ECOL, V83, P176, DOI 10.1111/1365-2656.12135; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; LESLIE PH, 1945, BIOMETRIKA, V33, P183, DOI 10.2307/2332297; Lindstrom, 1989, AUK, V106, P225; Low M, 2009, J ANIM ECOL, V78, P761, DOI 10.1111/j.1365-2656.2009.01543.x; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; McKim-Louder M. I., 2013, PLOS ONE, V8; Menu S, 2005, AUK, V122, P479, DOI 10.1642/0004-8038(2005)122[0479:SOYGSG]2.0.CO;2; Mitchell G. W., 2011, PLOS ONE, V6; MOLLER AP, 1989, J ANIM ECOL, V58, P1051, DOI 10.2307/5141; Naef-Daenzer B, 2005, J EXP BIOL, V208, P4063, DOI 10.1242/jeb.01870; Naef-Daenzer B, 2001, J ANIM ECOL, V70, P730, DOI 10.1046/j.0021-8790.2001.00533.x; Naef-Daenzer B., 2014, ANIMAL BIOTELEMETRY, V2, P2; Naef-Daenzer L, 2011, IBIS, V153, P27, DOI 10.1111/j.1474-919X.2010.01066.x; Newton I, 2007, IBIS, V149, P453, DOI 10.1111/j.1474-919X.2007.00704.x; Newton I, 2006, J ORNITHOL, V147, P146, DOI 10.1007/s10336-006-0058-4; Norman D, 2013, IBIS, V155, P284, DOI 10.1111/ibi.12036; OWEN M, 1989, J ANIM ECOL, V58, P603, DOI 10.2307/4851; Pasinelli G., 2011, Sources, sinks and sustainability, P216; R Development Core Team, 2012, LANG ENV STAT COMP; Radchuk V, 2013, J ANIM ECOL, V82, P275, DOI 10.1111/j.1365-2656.2012.02029.x; Redmond LJ, 2012, J FIELD ORNITHOL, V83, P247, DOI 10.1111/j.1557-9263.2012.00373.x; Reid JM, 2011, J APPL ECOL, V48, P797, DOI 10.1111/j.1365-2664.2011.01973.x; Rivers JW, 2012, FUNCT ECOL, V26, P1127, DOI 10.1111/j.1365-2435.2012.02025.x; Robinson RA, 2004, J ANIM ECOL, V73, P670, DOI 10.1111/j.0021-8790.2004.00841.x; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Schaub M, 2012, OECOLOGIA, V168, P97, DOI 10.1007/s00442-011-2070-5; Schaub M, 2011, OECOLOGIA, V167, P445, DOI 10.1007/s00442-011-1999-8; Schaub M, 2009, J ANIM ECOL, V78, P625, DOI 10.1111/j.1365-2656.2008.01508.x; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Sim IMW, 2011, J ANIM ECOL, V80, P159, DOI 10.1111/j.1365-2656.2010.01750.x; Stokke BG, 2005, AUK, V122, P637, DOI 10.1642/0004-8038(2005)122[0637:WITBAA]2.0.CO;2; Sturtz S, 2005, J STAT SOFTW, V12, P1; Tarof SA, 2011, AUK, V128, P716, DOI 10.1525/auk.2011.11087; Thorup K, 2003, P ROY SOC B-BIOL SCI, V270, pS8, DOI 10.1098/rsbl.2003.0014; Turner A, 2006, BARN SWALLOW; White GC, 1999, BIRD STUDY, V46, P120; Wiltschko R, 2003, AVIAN MIGRATION, P433; Zbinden Niklaus, 2005, Ornithologische Beobachter, V102, P283 65 22 22 1 77 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. MAR 2014 4 6 756 765 10.1002/ece3.984 10 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AD0CW WOS:000332902900008 24683458 DOAJ Gold, Green Published 2019-02-21 J Betzig, L Betzig, Laura Eusociality: From the First Foragers to the First States Introduction to the Special Issue HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Eusociality; Cooperative breeding; Human evolution; Reproductive variance LIFE-HISTORY EVOLUTION; GRANDMOTHER HYPOTHESIS; WILD CHIMPANZEES; PATTERNS; LONGEVITY; MENOPAUSE; SOCIETIES; CONSTRAINTS; REVOLUTION; SURVIVAL People have always been social. Ethnographic evidence suggests that transfers of food and labor are common among contemporary hunter-gatherers, and they probably were common in Paleolithic groups. Archaeological evidence suggests that cooperative breeding went up as we settled down: as territory defenders became more successful breeders, their helpers' fertility would have been delayed or depressed. And written evidence from the Neolithic suggests that the first civilizations were often eusocial; emperors fathered hundreds of children, who were provided for and protected by workers in sterile castes. Papers in this issue of Human Nature look at helpers and workers across the eusociality continuum-from hardworking grandmothers and grandfathers, to celibate sisters and brothers, to castrated civil servants-from the first foragers to the first states. lbetzig@gmail.com Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Austin C, 2013, NATURE, V498, P216, DOI 10.1038/nature12169; Bar-Yosef O, 2002, ANNU REV ANTHROPOL, V31, P363, DOI 10.1146/annurev.anthro.31.040402.085416; Barham L., 2008, 1 AFRICANS; Batra S. W. T., 1966, Indian Journal of Entomology, V28, P375; Betzig L., 2013, HUMAN SOCIAL EVOLUTI, P365; Betzig L, 2014, HUM NATURE-INT BIOS, V25, P80, DOI 10.1007/s12110-013-9186-8; Betzig L, 2012, EVOL HUM BEHAV, V33, P309, DOI 10.1016/j.evolhumbehav.2011.10.008; Brown J. L., 1987, HELPING COMMUNAL BRE; Childe V. G., 1936, MAN MAKES HIMSELF; Crespi B, 2014, HUM NATURE-INT BIOS, V25, P6, DOI 10.1007/s12110-013-9185-9; Crespi BJ, 2005, ANN ZOOL FENN, V42, P569; EMLEN ST, 1995, P NATL ACAD SCI USA, V92, P8092, DOI 10.1073/pnas.92.18.8092; EMLEN ST, 1982, AM NAT, V119, P29, DOI 10.1086/283888; Foster KR, 2005, TRENDS ECOL EVOL, V20, P363, DOI 10.1016/j.tree.2005.05.005; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Halpern B, 1988, 1 HIST HEBREW BIBLE; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; Hawkes K, 2014, HUM NATURE-INT BIOS, V25, P28, DOI 10.1007/s12110-013-9184-x; Hill KR, 2011, SCIENCE, V331, P1286, DOI 10.1126/science.1199071; Holldobler B., 2009, SUPERORGANISM; HRDY SB, 2009, MOTHERS OTHERS; Ji T, 2014, HUM NATURE-INT BIOS, V25, P66, DOI 10.1007/s12110-013-9188-6; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 2010, ANN NY ACAD SCI, V1204, P30, DOI [10.1111/j.1749-6632.2010.05528.x, 10.1111/J.1749-6632.2010.05528.x]; KEELEY LH, 1988, J ANTHROPOL ARCHAEOL, V7, P373, DOI 10.1016/0278-4165(88)90003-7; Keen I, 2006, CURR ANTHROPOL, V47, P7, DOI 10.1086/497672; Kelly R, 2013, FORAGING SPECTRUM; Kim PS, 2012, P ROY SOC B-BIOL SCI, V279, P4880, DOI 10.1098/rspb.2012.1751; Kramer KL, 2014, HUM NATURE-INT BIOS, V25, P49, DOI 10.1007/s12110-013-9189-5; Kramer KL, 2011, TRENDS ECOL EVOL, V26, P533, DOI 10.1016/j.tree.2011.06.002; Kramer KL, 2010, ANNU REV ANTHROPOL, V39, P417, DOI 10.1146/annurev.anthro.012809.105054; Langergraber KE, 2012, P NATL ACAD SCI USA, V109, P15716, DOI 10.1073/pnas.1211740109; Lee PC, 2012, INT J PRIMATOL, V33, P1309, DOI 10.1007/s10764-011-9536-5; LEE RB, 1979, KUNG SAN; McBrearty S, 2000, J HUM EVOL, V39, P453, DOI 10.1006/jhev.2000.0435; Mulder MB, 2009, SCIENCE, V326, P682, DOI 10.1126/science.1178336; Schmandt-Besserat Denise, 1996, WRITING CAME; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; SHERMAN PW, 1995, BEHAV ECOL, V6, P102, DOI 10.1093/beheco/6.1.102; SKUTCH ALEXANDER F., 1935, AUK, V52, P257; Smith T. M., 2013, ANN REV ANT IN PRESS, V42; Strassmann BI, 2011, HUM NATURE-INT BIOS, V22, P201, DOI 10.1007/s12110-011-9114-8; Stringer C., 2007, RETHINKING HUMAN REV; Thompson ME, 2007, CURR BIOL, V17, P2150, DOI 10.1016/j.cub.2007.11.033; Tuljapurkar SD, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000785; Turke P. W., 1988, HUMAN REPROD BEHAV D, P173; VEHRENCAMP SL, 1983, ANIM BEHAV, V31, P667, DOI 10.1016/S0003-3472(83)80222-X; Wilson E.O., 1975, P1; Wilson E. O., 1971, INSECT SOC 50 2 2 0 22 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. MAR 2014 25 1 1 5 10.1007/s12110-013-9187-7 5 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AD0YJ WOS:000332960200001 24293196 2019-02-21 J Shaver, JH; Sosis, R Shaver, John H.; Sosis, Richard How Does Male Ritual Behavior Vary Across the Lifespan? An Examination of Fijian Kava Ceremonies HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE English Article Ritual; Life history theory; Fiji; Kava PARENTAL INVESTMENT; TIME ALLOCATION; OKAVANGO DELTA; EVOLUTION; RELIGION; HISTORY; FERTILITY; HUMANS; MEN; PROSOCIALITY Ritual behaviors of some form exist in every society known to anthropologists. Despite this universality, we have little understanding of how ritual behavior varies within populations or across the lifespan, nor the determinants of this variation. Here we test hypotheses derived from life history theory by using behavioral observations and oral interview data concerning participant variation in Fijian kava-drinking ceremonies. We predicted that substantial variation in the frequency and duration of participation would result from (1) trade-offs with reproduction and (2) the intrinsic status differences between ritual participants. We demonstrate that when controlling for household composition, men with young offspring participated less frequently and exhibited greater variance in their time spent at ceremonies than men without young children. However, men with a larger number of total dependents in their household participated more frequently than those with fewer. Moreover, we found that men's ascribed rank, level of education, and reliance on wage labor all significantly predict their frequency of attendance. We also found that the number of dependents a man has in his household is positively correlated with total food production, and the amount of kava he cultivates. In general, these results suggest that ritual participation is part of an important strategy employed by Fijian men for both achieving status and developing social alliances. Variation in participation in kava ceremonies by Fijian men therefore reflects the constraints of their current life history condition and their inherited rank. [Shaver, John H.] Masaryk Univ, Lab Expt Res Relig, Brno, Czech Republic; [Sosis, Richard] Univ Connecticut, Dept Anthropol, Storrs, CT 06269 USA Shaver, JH (reprint author), Masaryk Univ, Lab Expt Res Relig, Jaselska 199-16, Brno, Czech Republic. jhshaver@hotmail.com; richard.sosis@uconn.edu Shaver, John/0000-0002-9522-4765 Economic and Social Research Council [ES/I005455/1] Alcorta CS, 2005, HUM NATURE-INT BIOS, V16, P323, DOI 10.1007/s12110-005-1014-3; Atkinson QD, 2011, EVOL HUM BEHAV, V32, P50, DOI 10.1016/j.evolhumbehav.2010.09.002; Barker John, 1992, HIST TRADITION MELAN, P144; Bock J, 2004, HUM NATURE-INT BIOS, V15, P63, DOI 10.1007/s12110-004-1004-x; Bock J, 2002, HUM NATURE-INT BIOS, V13, P161, DOI 10.1007/s12110-002-1007-4; BREWSTER A, 1922, HILL TRIBES FIJI; Brison K. J., 2007, OUR WEALTH IS LOVING; Brown D., 1991, HUMAN UNIVERSALS; Brunton Ron, 1989, ABANDONED NARCOTIC K; Burt Ben, 1994, TRADITION CHRISTIANI; Cairney S, 2003, NEUROPSYCHOPHARMACOL, V28, P389, DOI 10.1038/sj.npp.1300052; Cairney S, 2002, AUST NZ J PSYCHIAT, V36, P657, DOI 10.1046/j.1440-1614.2002.01027.x; CAWTE J, 1986, AUST NZ J PSYCHIAT, V20, P70, DOI 10.3109/00048678609158867; Charnov Eric L., 1993, P1; CRONK L, 1994, ZYGON, V29, P81, DOI 10.1111/j.1467-9744.1994.tb00651.x; de Aguiar R, 2011, RELIG BRAIN BEHAV, V1, P73, DOI 10.1080/2153599X.2011.558710; France P., 1969, CHARTER LAND CUSTOM; GALDIKAS BMF, 1990, AM J PHYS ANTHROPOL, V83, P185, DOI 10.1002/ajpa.1330830207; Ginges J, 2009, PSYCHOL SCI, V20, P224, DOI 10.1111/j.1467-9280.2009.02270.x; Guo Pei-yi, 2009, RELIG RITUAL CHANGE, P69; Gurven M, 2006, J HUM EVOL, V51, P454, DOI 10.1016/j.jhevol.2006.05.003; Gurven M, 2006, HUM NATURE-INT BIOS, V17, P1, DOI 10.1007/s12110-006-1019-6; Hames R. B., 1992, EVOLUTIONARY ECOLOGY, P203; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hocart A. M., 1929, BULLETIN, V62; Irons W., 1979, EVOLUTIONARY BIOL HU, P257; IRONS W, 2001, EVOLUTION CAPACITY C, P292; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan Hillard S., 2001, INT ENCY SOCIAL BEHA, P5561; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Kaplan M., 1995, NEITHER CARGO NOR CU; Kaplan Martha, 1990, CHRISTIANITY OCEANIA, P127; Kirch PV, 1984, EVOLUTION POLYNESIAN; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Lebot V., 1995, CANBERRA ANTHR, V18, P20; Lebot V., 1992, KAVA PACIFIC ELIXIR; Leinard P., 2011, NEUROSCI BIOBEHAV R, V35, P1067; Levins R., 1968, EVOLUTION CHANGING E; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; McKay R, 2013, RELIG BRAIN BEHAV, V3, P201, DOI 10.1080/2153599X.2012.739410; McNamara P., 2006, GOD SCI MEET BRAIN E, V1, P55; Nayacakalou R. R., 1955, J POLYNESIAN SOC, V64, P44; Norenzayan A, 2008, SCIENCE, V322, P58, DOI 10.1126/science.1158757; NORTON SA, 1994, J AM ACAD DERMATOL, V31, P89, DOI 10.1016/S0190-9622(94)70142-3; Raven-Hart R., 1956, J POLYNESIAN SOC, V65, P95; Roff Derek A., 1992; Ruffle BJ, 2007, BE J ECON ANAL POLI, V7; Ryle Jacqueline, 2010, MY GOD MY LAND INTER; Sahlins Marshal, 1987, ISLANDS HIST; Shaver J. H., 2012, THESIS U CONNECTICUT; Singh YN, 2002, CNS DRUGS, V16, P731, DOI 10.2165/00023210-200216110-00002; Soler M, 2012, EVOL HUM BEHAV, V33, P346, DOI 10.1016/j.evolhumbehav.2011.11.004; Sosis R, 2003, EVOL ANTHROPOL, V12, P264, DOI 10.1002/evan.10120; Sosis R, 2003, CROSS-CULT RES, V37, P211, DOI 10.1177/1069397103251426; Sosis R., 2005, INTERDISCIPLINARY J, V1; Sosis R., 2006, GOD SCI MEET BRAIN E, VI, P61; Sosis R, 2011, RELIGION, V41, P341, DOI 10.1080/0048721X.2011.604514; Stearns S, 1992, EVOLUTION LIFE HIST; Strathern P., 2009, RELIG RITUAL CHANGE; Swanson Guy E., 1960, BIRTH GODS ORIGIN PR; Thomson B., 1908, FIJIANS STUDY DECAY; Thornley A. W., 2005, KO WILIAME KOROSI KE; Tomlinson M, 2007, ANTHROPOL QUART, V80, P1065, DOI 10.1353/anq.2007.0054; Tomlinson M, 2006, OCEANIA, V76, P173, DOI 10.1002/j.1834-4461.2006.tb03043.x; Tomlinson Matt, 2009, GODS IMAGE METACULTU; Toren C., 1990, MAKING SENSE HIERARC; Toren C., 1994, GENDER DRINK DRUGS, P153; Turner J., 1995, CANBERRA ANTHR, V18, P87; TURNER JW, 1986, ETHNOLOGY, V25, P203, DOI 10.2307/3773584; TURNER JW, 1992, ETHNOLOGY, V31, P291, DOI 10.2307/3773421; Van Gennep Arnold, 2004, RITES PASSAGE; von Rueden C, 2011, P ROY SOC B-BIOL SCI, V278, P2223, DOI 10.1098/rspb.2010.2145; Walker R, 2002, J HUM EVOL, V42, P639, DOI 10.1006/jhev.2001.0541; Walker RS, 2008, P ROY SOC B-BIOL SCI, V275, P827, DOI 10.1098/rspb.2007.1511; Waterhouse J., 1997, KING PEOPLE FIJI; Weisfeld G., 1997, CROSS CULTURAL RES J, V31, P27; Wrangham R., 1996, DEMONIC MALES APES O; Xygalatas D, 2013, RELIG BRAIN BEHAV, V3, P91, DOI 10.1080/2153599X.2012.724547; Xygalatas D, 2013, PSYCHOL SCI, V24, P1602, DOI 10.1177/0956797612472910 82 9 10 0 14 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1045-6767 1936-4776 HUM NATURE-INT BIOS Hum. Nat.-Interdiscip. Biosoc. Perspect. MAR 2014 25 1 136 160 10.1007/s12110-014-9191-6 25 Anthropology; Social Sciences, Biomedical Anthropology; Biomedical Social Sciences AD0YJ WOS:000332960200009 24522974 2019-02-21 J Moeller, HV; Peay, KG; Fukami, T Moeller, Holly V.; Peay, Kabir G.; Fukami, Tadashi Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient FEMS MICROBIOLOGY ECOLOGY English Article ectomycorrhizae; environmental gradients; exploration types; foraging traits; mutualisms; Pinus muricata PYGMY FOREST REGION; NORTHERN CALIFORNIA; ENHANCED SPECIFICITY; CARBON ALLOCATION; EXPLORATION TYPES; ROOT DISTRIBUTION; ENZYME-ACTIVITIES; HOST-SPECIFICITY; PINUS-CONTORTA; SOIL Multispecies mutualisms, such as the association between trees and ectomycorrhizal fungi, are often shaped by environmental context. Here, we explored the functional mechanisms underlying this environmental filtering. Using a single population of Pinus muricata (Bishop pine) growing along a strong edaphic gradient, we examined how environmental stress affected ectomycorrhizal fungi. The gradient spans c.400000years of soil age, and reduced nutrient availability and increased water stress dwarf trees on older sites. Fungal community composition shifted with nutrient and water availability and with the stature of the P.muricata host trees. Not only did pygmy trees host a taxonomically different fungal subset as compared to nonpygmy trees, but associated fungal communities also differed in life history strategies: trees in more stressful conditions hosted fungi with more carbon-intensive foraging strategies. Our results indicate a link between environmental controls of host nutritional status and turnover in the ectomycorrhizal fungal community. The transition to more energy-intensive strategies under nutrient stress may allow for close recycling of recalcitrant nutrient pools within the root zone and facilitate transport of nutrients and water over long distances. These results highlight the value of life history data to understanding the mechanistic underpinnings of species distributions. [Moeller, Holly V.; Peay, Kabir G.; Fukami, Tadashi] Stanford Univ, Dept Biol, Stanford, CA 94305 USA Moeller, HV (reprint author), Stanford Univ, Dept Biol, 371 Serra Mall,Gilbert Room 109, Stanford, CA 94305 USA. hollyvm@stanford.edu Fukami, Tadashi/A-2934-2010 Fukami, Tadashi/0000-0001-5654-4785; Moeller, Holly/0000-0002-9335-0039; Peay, Kabir/0000-0002-7998-7412 NSF; ARCS; Department of Biology; Terman Fellowship of Stanford University We thank Luke Frishkoff and Eric Slessarev for invaluable field assistance; Noa Lincoln, Jennifer Talbot, and Doug Turner for laboratory support; and Luke Frishkoff, Daniel Karp, Caroline Tucker, Rachel Vannette, Peter Vitousek, and the members of the Arrigo, Fukami, Peay, and Vitousek laboratories for helpful discussion. We are also grateful for helpful comments from Leho Tedersoo and five anonymous reviewers on previous versions of this manuscript. H.V.M. acknowledges funding from NSF Graduate Research and ARCS Fellowships. Financial support was provided by the Department of Biology and the Terman Fellowship of Stanford University. Agerer R, 2001, MYCORRHIZA, V11, P107, DOI 10.1007/s005720100108; Agerer R, 2006, MYCOL PROG, V5, P67, DOI 10.1007/s11557-006-0505-x; AITKEN SN, 1994, EVOLUTION, V48, P1009, DOI 10.1111/j.1558-5646.1994.tb05289.x; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Bergemann SE, 2002, NEW PHYTOL, V156, P313, DOI 10.1046/j.1469-8137.2002.00507.x; Branco S, 2010, PLOS ONE, V5; Branco S, 2010, MOL ECOL, V19, P5566, DOI 10.1111/j.1365-294X.2010.04913.x; BRUNS TD, 1995, PLANT SOIL, V170, P63, DOI 10.1007/BF02183055; Courty PE, 2006, SOIL BIOL BIOCHEM, V38, P1219, DOI 10.1016/j.soilbio.2005.10.005; Courty PE, 2010, SOIL BIOL BIOCHEM, V42, P2022, DOI 10.1016/j.soilbio.2010.07.014; Cowden CC, 2009, ECOL MODEL, V220, P1522, DOI 10.1016/j.ecolmodel.2009.03.028; DAHLBERG A, 1990, NEW PHYTOL, V115, P487, DOI 10.1111/j.1469-8137.1990.tb00475.x; DUDDRIDGE JA, 1980, NATURE, V287, P834, DOI 10.1038/287834a0; Eckert AJ, 2012, AM J BOT, V99, P1323, DOI 10.3732/ajb.1200055; Ehrenfeld JG, 2005, ANNU REV ENV RESOUR, V30, P75, DOI 10.1146/annurev.energy.30.050504.144212; FOGEL R, 1983, PLANT SOIL, V71, P75, DOI 10.1007/BF02182643; GARDES M, 1993, MOL ECOL, V2, P113, DOI 10.1111/j.1365-294X.1993.tb00005.x; Hobbie EA, 2006, ECOLOGY, V87, P563, DOI 10.1890/05-0755; Hobbie EA, 2010, PLANT SOIL, V327, P71, DOI 10.1007/s11104-009-0032-z; JACKSON RB, 1993, ECOLOGY, V74, P612, DOI 10.2307/1939320; Kaiser C, 2011, ECOLOGY, V92, P1036, DOI 10.1890/i0012-9658-92-5-1036; Kaiser C, 2010, NEW PHYTOL, V187, P843, DOI 10.1111/j.1469-8137.2010.03321.x; Kennedy PG, 2007, PLANT SOIL, V291, P155, DOI 10.1007/s11104-006-9183-3; Kohout P, 2011, MYCORRHIZA, V21, P403, DOI 10.1007/s00572-010-0350-2; Larena I, 1999, J BIOTECHNOL, V75, P187, DOI 10.1016/S0168-1656(99)00154-6; MERRITTS DJ, 1991, GEODERMA, V51, P241, DOI 10.1016/0016-7061(91)90073-3; MEXAL J, 1973, CAN J BOT, V51, P1579, DOI 10.1139/b73-201; Newton AC, 1998, NEW PHYTOL, V138, P619, DOI 10.1046/j.1469-8137.1998.00143.x; NORTHUP RR, 1995, PLANT SOIL, V171, P255, DOI 10.1007/BF00010279; NORTHUP RR, 1995, NATURE, V377, P227, DOI 10.1038/377227a0; Oksanen J, 2012, VEGAN COMMUNITY ECOL; Parker MM, 1996, SOIL SCI SOC AM J, V60, P1920, DOI 10.2136/sssaj1996.03615995006000060043x; Peay KG, 2010, ECOLOGY, V91, P3631, DOI 10.1890/09-2237.1; Peay KG, 2010, NEW PHYTOL, V185, P529, DOI 10.1111/j.1469-8137.2009.03075.x; R Core Team, 2012, R LANG ENV STAT COMP; Robertson SJ, 2006, CAN J FOREST RES, V36, P972, DOI 10.1139/X06-001; Schechter SP, 2008, MOL ECOL, V17, P3198, DOI 10.1111/j.1365-294X.2008.03828.x; Smith ME, 2007, MYCORRHIZA, V18, P15, DOI 10.1007/s00572-007-0148-z; Soil Survey Laboratory Staff, 1992, 42 USDA NAT SOIL SUR; Sudmeyer RA, 2004, TREE PHYSIOL, V24, P1333, DOI 10.1093/treephys/24.12.1333; Swaty RL, 1998, NEW PHYTOL, V139, P733, DOI 10.1046/j.1469-8137.1998.00234.x; Tedersoo L, 2009, NEW PHYTOL, V182, P727, DOI 10.1111/j.1469-8137.2009.02792.x; Toljander JF, 2006, NEW PHYTOL, V170, P873, DOI 10.1111/j.1469-8137.2006.01718.x; WESTMAN WE, 1978, VEGETATIO, V36, P1, DOI 10.1007/BF01324767; WESTMAN WE, 1975, ECOL MONOGR, V45, P109, DOI 10.2307/1942403; WESTMAN WE, 1975, J ECOL, V63, P493, DOI 10.2307/2258732; WHITE TJ, 1990, PCR PROTOCOLS GUIDE, V18, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1; Wurzburger N, 2004, MYCORRHIZA, V14, P383, DOI 10.1007/s00572-004-0301-x 48 20 20 3 66 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0168-6496 1574-6941 FEMS MICROBIOL ECOL FEMS Microbiol. Ecol. MAR 2014 87 3 797 806 10.1111/1574-6941.12265 10 Microbiology Microbiology AC0TG WOS:000332207200020 24289145 Other Gold 2019-02-21 J Hagen, EM; Sabo, JL Hagen, Elizabeth M.; Sabo, John L. Temporal variability in insectivorous bat activity along two desert streams with contrasting patterns of prey availability JOURNAL OF ARID ENVIRONMENTS English Article Bats; Hydrologic regime; Insects; Riparian vegetation; Stream productivity LENGTH-MASS RELATIONSHIPS; LIFE-HISTORY EVOLUTION; AQUATIC INSECTS; UNITED-STATES; HABITAT USE; SECONDARY PRODUCTION; RIPARIAN VEGETATION; TERRESTRIAL PREY; FLASH FLOODS; FOOD WEBS Emergent aquatic insects provide significant resources for terrestrial consumers. The availability and consumption of aquatic insects by terrestrial consumers may be influenced by characteristics of the river and riparian area. We measured temporal variability in bat activity and insect availability along two desert streams of contrasting productivity, hydrology, and riparian vegetation in Arizona, USA. Sycamore Creek is very productive, winter storm dominated, and supports sparse riparian vegetation. San Pedro River productivity is low, most floods occur during the summer monsoon, and it has extensive riparian vegetation. Bat activity and insect availability were measured monthly directly above the stream and in the floodplain for one year. At Sycamore Creek, emergent aquatic-insect biomass peaked in spring, while terrestrial-insect biomass was highest in the summer. Aquatic and terrestrial insect availability at the San Pedro River were similar or dominated by terrestrial insects throughout the spring and summer. Interactions between bats and insects differed between these two streams and this variation appears to be due to differences in insect availability in the airspace above the stream. Insect-prey availability is linked to stream productivity, timing of flooding, and the extent of riparian vegetation, and these factors can have strong effects on terrestrial food webs. (C) 2013 Elsevier Ltd. All rights reserved. [Hagen, Elizabeth M.; Sabo, John L.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA Hagen, EM (reprint author), Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. Elizabeth.M.Hagen@asu.edu; John.L.Sabo@asu.edu Lisa Dent Memorial Fellowship; Arizona State University Graduate Fellowship; Scion Natural Science Association We would like to thank The Nature Conservancy and the US Forest Service for providing permission and access to field sites. We thank M. Beversdorf, J. Nellsch, S. Nalley, and J. Winston for assistance in the field and laboratory. This work was supported by a Lisa Dent Memorial Fellowship, an Arizona State University Graduate Fellowship, and a Scion Natural Science Association research grant awarded to E.M.H. Akasaka T, 2009, BIOL CONSERV, V142, P1302, DOI 10.1016/j.biocon.2009.01.028; Barclay RMR, 1999, CAN J ZOOL, V77, P530, DOI 10.1139/cjz-77-4-530; Baxter CV, 2005, FRESHWATER BIOL, V50, P201, DOI 10.1111/j.1365-2427.2004.01328.x; BELWOOD JJ, 1976, CAN J ZOOL, V54, P1674, DOI 10.1139/z76-194; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; Borror D.J., 1989, INTRO STUDY INSECTS; BRIGHAM RM, 1992, J MAMMAL, V73, P640, DOI 10.2307/1382036; Collier KJ, 2002, FRESHWATER BIOL, V47, P1651, DOI 10.1046/j.1365-2427.2002.00903.x; CORBET PS, 1964, CAN ENTOMOL, V96, P264, DOI 10.4039/Ent96264-1; FISHER SG, 1982, ECOL MONOGR, V52, P93, DOI 10.2307/2937346; FISHER SG, 1983, ECOLOGY, V64, P1217, DOI 10.2307/1937830; Fukui D, 2006, J ANIM ECOL, V75, P1252, DOI 10.1111/j.1365-2656.2006.01146.x; GRAY LJ, 1981, AM MIDL NAT, V106, P229, DOI 10.2307/2425159; GRAY LJ, 1981, AM MIDL NAT, V106, P249, DOI 10.2307/2425161; GRIMM NB, 1989, J N AM BENTHOL SOC, V8, P293, DOI 10.2307/1467493; Hagen EM, 2012, J ARID ENVIRON, V84, P1, DOI 10.1016/j.jaridenv.2012.03.007; Hagen EM, 2011, OECOLOGIA, V166, P751, DOI 10.1007/s00442-011-1913-4; Hayes JP, 1997, J MAMMAL, V78, P514, DOI 10.2307/1382902; Hirschboeck K. K., 2009, ECOLOGY CONSERVATION, P300; HOLM S, 1979, SCAND J STAT, V6, P65; Iwata T, 2003, ECOGRAPHY, V26, P325, DOI 10.1034/j.1600-0587.2003.03355.x; Iwata T, 2007, ECOL RES, V22, P619, DOI 10.1007/s11284-006-0060-6; JACKSON JK, 1986, ECOLOGY, V67, P629, DOI 10.2307/1937686; Konrad CP, 2008, FRESHWATER BIOL, V53, P1983, DOI 10.1111/j.1365-2427.2008.02024.x; Kuenzi AJ, 2003, J WILDLIFE MANAGE, V67, P52, DOI 10.2307/3803061; Laeser SR, 2005, ECOL RES, V20, P646, DOI 10.1007/s11284-005-0084-3; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2000, ARCH HYDROBIOL, V150, P85; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Malison RL, 2010, CAN J FISH AQUAT SCI, V67, P570, DOI 10.1139/F10-006; Mccluney KE, 2012, FRESHWATER BIOL, V57, P91, DOI 10.1111/j.1365-2427.2011.02698.x; Merritt R. W, 2008, INTRO AQUATIC INSECT; Nakano S, 1999, ECOLOGY, V80, P2435; Nakano S, 2001, P NATL ACAD SCI USA, V98, P166, DOI 10.1073/pnas.98.1.166; OBRIST MK, 1995, BEHAV ECOL SOCIOBIOL, V36, P207, DOI 10.1007/BF00177798; Paetzold A, 2005, ECOSYSTEMS, V8, P748, DOI 10.1007/s10021-005-0004-y; Paetzold A, 2008, J APPL ECOL, V45, P894, DOI 10.1111/j.1365-2664.2008.01463.x; Peckarsky BL, 2000, OECOLOGIA, V125, P186, DOI 10.1007/s004420000446; Rainho A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019227; Rainho A, 2010, J APPL ECOL, V47, P850, DOI 10.1111/j.1365-2664.2010.01820.x; Rogers DS, 2006, SOUTHWEST NAT, V51, P52, DOI 10.1894/0038-4909(2006)51[52:POHUBB]2.0.CO;2; Sabo JL, 2002, J N AM BENTHOL SOC, V21, P336, DOI 10.2307/1468420; Sabo JL, 2002, ECOLOGY, V83, P3023, DOI 10.1890/0012-9658(2002)083[3023:NROLTA]2.0.CO;2; Sabo JL, 2002, ECOLOGY, V83, P1860, DOI 10.2307/3071770; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Sanzone DM, 2003, OECOLOGIA, V134, P238, DOI 10.1007/s00442-002-1113-3; SEDELL JR, 1990, ENVIRON MANAGE, V14, P711, DOI 10.1007/BF02394720; Sponseller RA, 2010, GLOBAL CHANGE BIOL, V16, P2891, DOI 10.1111/j.1365-2486.2010.02200.x; Webb RH, 2006, J HYDROL, V320, P302, DOI 10.1016/j.jhydrol.2005.07.022; Whiles MR, 1999, J N AM BENTHOL SOC, V18, P533, DOI 10.2307/1468385; Williams JA, 2006, J MAMMAL, V87, P1145, DOI 10.1644/06-MAMM-A-085R2.1 51 12 12 4 50 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0140-1963 1095-922X J ARID ENVIRON J. Arid. Environ. MAR 2014 102 104 112 10.1016/j.jaridenv.2013.11.016 9 Ecology; Environmental Sciences Environmental Sciences & Ecology AC3RB WOS:000332437800015 2019-02-21 J Martin, TE Martin, Thomas E. A Conceptual Framework for Clutch-Size Evolution in Songbirds AMERICAN NATURALIST English Article nest predation; developmental strategy; parental care; reproductive effort; fledgling mortality; age-specific mortality LIFE-HISTORY EVOLUTION; POSTFLEDGING PARENTAL CARE; AGE-SPECIFIC MORTALITY; NEST PREDATION; ENERGY-EXPENDITURE; BROOD DIVISION; DEVELOPMENTAL RATES; FLEDGLING OVENBIRDS; JUVENILE SURVIVAL; WILSONIA-CITRINA Causes of evolved differences in clutch size among songbird species remain debated. I propose a new conceptual framework that integrates aspects of traditional life-history theory while including novel elements to explain evolution of clutch size among songbirds. I review evidence that selection by nest predation on length of time that offspring develop in the nest creates a gradient in offspring characteristics at nest leaving (fledging), including flight mobility, spatial dispersion, and self-feeding rate. I postulate that this gradient has consequences for offspring mortality rates and parental energy expenditure per offspring. These consequences then determine how reproductive effort is partitioned among offspring, while reproductive effort evolves from age-specific mortality effects. Using data from a long-term site in Arizona, as well as from the literature, I provide support for hypothesized relationships. Nestling development period consistently explains fledgling mortality, energy expenditure per offspring, and clutch size while accounting for reproductive effort (i.e., total energy expenditure) to thereby support the framework. Tests in this article are not definitive, but they document previously unrecognized relationships and address diverse traits (developmental strategies, parental care strategies, energy requirements per offspring, evolution of reproductive effort, clutch size) that justify further investigations of hypotheses proposed here. Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA Martin, TE (reprint author), Univ Montana, Montana Cooperat Wildlife Res Unit, US Geol Survey, Missoula, MT 59812 USA. tom.martin@umontana.edu Martin, Thomas/F-6016-2011 Martin, Thomas/0000-0002-4028-4867 National Science Foundation [DEB-0841764, DEB-1241041]; US Geological Survey Climate Change Research Program I am grateful to K. P. Dial for helpful discussions and to R. J. Fletcher, J. LaManna, J. C. Oteyza, S. Sillett, R. Ton, and two anonymous reviewers for helpful comments on the manuscript. I thank W. A. Cox for sharing independent discovery of a relationship between nestling period and fledgling mortality and for providing additional comments. This work was supported by the National Science Foundation (grants DEB-0841764 and DEB-1241041) and the US Geological Survey Climate Change Research Program. Work in Arizona was conducted under University of Montana Institutional Animal Care and Use Committee (IACUC) protocol 059-10TMMCWRU. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US government. Adams AAY, 2006, ECOLOGY, V87, P178, DOI 10.1890/04-1922; Anders AD, 1997, CONSERV BIOL, V11, P698, DOI 10.1046/j.1523-1739.1997.95526.x; Anthonisen K, 1997, AUK, V114, P553; Ashmole N. P., 1961, THESIS OXFORD U OXFO; BOSQUE C, 1995, AM NAT, V145, P234, DOI 10.1086/285738; BROWN CR, 1978, WILSON BULL, V90, P376; BRYANT DM, 1988, IBIS, V130, P17, DOI 10.1111/j.1474-919X.1988.tb00952.x; Bryant DM, 1997, P NUTR SOC, V56, P1025, DOI 10.1079/PNS19970107; BRYANT DM, 1984, AUK, V101, P25; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; DRENT RH, 1980, ARDEA, V68, P225; EDWARDS PJ, 1985, IBIS, V127, P42, DOI 10.1111/j.1474-919X.1985.tb05036.x; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; Jackson AK, 2011, J WILDLIFE MANAGE, V75, P1082, DOI 10.1002/jwmg.154; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; Kershner EL, 2004, AUK, V121, P1146, DOI 10.1642/0004-8038(2004)121[1146:PMASOJ]2.0.CO;2; King DI, 2006, J ZOOL, V269, P414, DOI 10.1111/j.1469-7998.2006.00158.x; KOPACHENA JG, 1993, CAN J ZOOL, V71, P227, DOI 10.1139/z93-032; LACK D, 1948, IBIS, V90, P25, DOI 10.1111/j.1474-919X.1948.tb01399.x; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; MAC ARTHUR ROBERT H., 1967; Maddison W.P., 2011, MESQUITE MODULAR SYS; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Martin TE, 2006, EVOLUTION, V60, P390; Martin TE, 1996, AM NAT, V147, P1028, DOI 10.1086/285891; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2000, SCIENCE, V287, P1482, DOI 10.1126/science.287.5457.1482; Martin TE, 2002, P ROY SOC B-BIOL SCI, V269, P309, DOI 10.1098/rspb.2001.1879; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; Martin TE, 2007, ECOLOGY, V88, P367, DOI 10.1890/0012-9658(2007)88[367:CCOYOT]2.0.CO;2; Martin TE, 2014, AM NAT, V183, P313, DOI 10.1086/674966; Martin TE, 2011, EVOLUTION, V65, P1607, DOI 10.1111/j.1558-5646.2011.01227.x; MCLAUGHLIN RL, 1989, BEHAV ECOL SOCIOBIOL, V25, P207, DOI 10.1007/BF00302920; MCLAUGHLIN RL, 1985, AUK, V102, P687; MCLAUGHLIN RL, 1989, AUK, V106, P738; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Midford PET, 2002, PDAP PDTREE PACKAGE; Moore LC, 2010, AUK, V127, P185, DOI 10.1525/auk.2009.09134; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Ogden LJE, 1997, CAN J ZOOL, V75, P576, DOI 10.1139/z97-071; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Raihani NJ, 2007, ANIM BEHAV, V74, P1303, DOI 10.1016/j.anbehav.2007.02.025; Remes V, 2002, EVOLUTION, V56, P2505; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Ricklefs RE, 2010, AM NAT, V175, P350, DOI 10.1086/650371; Roff DA, 2005, J EVOLUTION BIOL, V18, P1425, DOI 10.1111/j.1420-9101.2005.00958.x; ROFF DA, 2002, LIFE HIST EVOLUTION; ROYAMA T, 1966, IBIS, V108, P313, DOI 10.1111/j.1474-919X.1966.tb07348.x; Rush SA, 2008, AUK, V125, P183, DOI 10.1525/auk.2008.125.1.183; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SKUTCH AF, 1967, IBIS, V109, P579, DOI 10.1111/j.1474-919X.1967.tb00027.x; SLAGSVOLD T, 1984, J ANIM ECOL, V53, P945, DOI 10.2307/4669; SMITH SM, 1967, CONDOR, V69, P344, DOI 10.2307/1366198; Steiger SS, 2009, PHYSIOL BIOCHEM ZOOL, V82, P580, DOI 10.1086/605336; Streby HM, 2013, FOREST ECOL MANAG, V287, P9, DOI 10.1016/j.foreco.2012.08.046; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; SULLIVAN KA, 1989, J ANIM ECOL, V58, P275, DOI 10.2307/5000; Verhulst S, 1997, ARDEA, V85, P111; WEATHERS WW, 1989, ECOL MONOGR, V59, P223, DOI 10.2307/1942600; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; Welcker J, 2009, FUNCT ECOL, V23, P1081, DOI 10.1111/j.1365-2435.2009.01585.x; Wells KMS, 2007, CONDOR, V109, P781, DOI 10.1650/0010-5422(2007)109[781:SOPGBI]2.0.CO;2; Wheelwright NT, 2003, ANIM BEHAV, V65, P435, DOI 10.1006/anbe.2003.2086; White JD, 2008, WILSON J ORNITHOL, V120, P62, DOI 10.1676/06-142.1; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams Joseph B., 1996, P375; WITH KA, 1990, CAN J ZOOL, V68, P733, DOI 10.1139/z90-106; WOLF L, 1988, ANIM BEHAV, V36, P1601, DOI 10.1016/S0003-3472(88)80102-7; Wright J, 1998, J ANIM ECOL, V67, P620; Zanette L, 2006, ECOLOGY, V87, P2459, DOI 10.1890/0012-9658(2006)87[2459:FAPAEP]2.0.CO;2 79 24 25 2 40 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. MAR 1 2014 183 3 313 324 10.1086/674966 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology AB2BY WOS:000331599200004 24561596 2019-02-21 J Reeve, A; Ojanguren, AF; Deacon, AE; Shimadzu, H; Ramnarine, IW; Magurran, AE Reeve, Al J.; Ojanguren, Alfredo F.; Deacon, Amy E.; Shimadzu, Hideyasu; Ramnarine, Indar W.; Magurran, Anne E. Interplay of temperature and light influences wild guppy (Poecilia reticulata) daily reproductive activity BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article invasion biology; tropical freshwaters; temporal patterns; reproductive behaviour; environmental variability; daily activity DIEL VERTICAL MIGRATION; LIFE-HISTORY EVOLUTION; TRINIDADIAN GUPPIES; WATER TEMPERATURE; MATING-BEHAVIOR; PREDATION; FISHES; THERMOREGULATION; POPULATIONS; ADAPTATION In this study we investigated the environmental regulation of daily reproductive activity of guppies (Poecilia reticulata). We observed male guppy reproductive behaviour for 17 days over three time periods (dawn, noon, and dusk) while recording natural variation in water temperature and light level. Water temperatures recorded during the experiments were highly variable (up to 7 degrees C per day), and there was a recurring pattern in daily variation for both light and temperature. Levels of activity were highest at dawn and similarly low during noon and dusk, but reproductive behaviour was recorded throughout the day. Mixed-effects models indicate that light and temperature affect reproductive behaviour differently at different times of the day, and can also have opposing effects. We suggest that the environmental heterogeneity of streams in Trinidad has led to a broad thermal tolerance, and has contributed to the high level of phenotypic plasticity in the guppy and its success as an invasive species. Furthermore, our results show that daily variation in temperature and its interaction with light should be considered in future studies of guppy reproductive behaviour. (c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 511-520. [Reeve, Al J.; Ojanguren, Alfredo F.; Deacon, Amy E.; Shimadzu, Hideyasu; Magurran, Anne E.] Univ St Andrews, Scottish Oceans Inst, St Andrews KY16 8LB, Fife, Scotland; [Shimadzu, Hideyasu] Keio Univ, Dept Math, Yokohama, Kanagawa 223, Japan; [Ramnarine, Indar W.] Univ W Indies, St Augustine, Trinid & Tobago Reeve, A (reprint author), Univ St Andrews, Scottish Oceans Inst, St Andrews KY16 8LB, Fife, Scotland. ajr20@st-andrews.ac.uk Ojanguren, Alfredo/F-1672-2011; Shimadzu, Hideyasu/E-5649-2010 Shimadzu, Hideyasu/0000-0003-0919-8829; Magurran, Anne/0000-0002-0036-2795 Biotechnology and Biological Sciences Research Council; University of St Andrews; Royal Society; European Research Council [BioTIME 250189]; Natural Environment Research Council [1108884] The authors would like to thank the technical staff at the University of West Indies, particularly Kharran Deonarinesingh and Raj Mahabir for help and advice with fieldwork. Members of the St Andrews Fish Lunch discussion group provided helpful discussion and feedback. A.R. would like to especially thank Morelia Camacho Cervantes and Meriem Kayoueche for their support and advice. This work was supported by the Biotechnology and Biological Sciences Research Council, the University of St Andrews, the Royal Society, and the European Research Council (project BioTIME 250189). We are grateful to Dr Ben Chapman and the anonymous reviewers for their comments, which greatly improved the article. Akaike H., 1973, P 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15; Andres F, 2012, NAT REV GENET, V13, P627, DOI 10.1038/nrg3291; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Archard GA, 2009, BEHAV ECOL SOCIOBIOL, V64, P169, DOI 10.1007/s00265-009-0834-2; Bates D. M., 2012, LME4 LINEAR MIXED EF; Bicego KC, 2007, COMP BIOCHEM PHYS A, V147, P616, DOI 10.1016/j.cbpa.2006.06.032; Both C, 2010, CURR BIOL, V20, P243, DOI 10.1016/j.cub.2009.11.074; Breckels RD, 2013, EVOLUTIONARY ECOLOGY, V28, P141; Burnham KP, 2001, WILDLIFE RES, V28, P111, DOI 10.1071/WR99107; Chapman BB, 2009, BEHAV ECOL SOCIOBIOL, V63, P1757, DOI 10.1007/s00265-009-0796-4; Cox D.R., 1984, ANAL SURVIVAL DATA; Crawley M. J., 2007, R BOOK; Deacon AE, 2011, PLOS ONE, V6; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Engel Katharina, 2011, Communicative & Integrative Biology, V4, P247, DOI 10.4161/cib.4.3.14885; Fournier DA, 2012, OPTIM METHOD SOFTW, V27, P233, DOI 10.1080/10556788.2011.597854; Gamble S, 2003, ECOL LETT, V6, P463, DOI 10.1046/j.1461-0248.2003.00449.x; Goehring L, 2002, ECOL ENTOMOL, V27, P674, DOI 10.1046/j.1365-2311.2002.00454.x; Greenwood MFD, 1998, J FISH BIOL, V53, P25, DOI 10.1111/j.1095-8649.1998.tb00105.x; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Houde A., 1997, SEX COLOR MATE CHOIC; Iacarella JC, 2012, J THERM BIOL, V37, P15, DOI 10.1016/j.jtherbio.2011.10.003; JOHANSEN PH, 1985, CAN J ZOOL, V63, P1211, DOI 10.1139/z85-181; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnston P, 2004, J FISH BIOL, V65, P1305, DOI 10.1111/j.1095-8649.00532.x; Kenny J. S., 1995, VIEWS BRIDGE MEMOIR; Kiefer MC, 2007, ACTA ZOOL-STOCKHOLM, V88, P81, DOI 10.1111/j.1463-6395.2007.00254.x; Kohler HR, 2013, BIOL J LINN SOC, V109, P241, DOI 10.1111/bij.12035; Long KD, 1998, BEHAV ECOL SOCIOBIOL, V44, P77, DOI 10.1007/s002650050518; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; Mehner T, 2012, FRESHWATER BIOL, V57, P1342, DOI 10.1111/j.1365-2427.2012.02811.x; Munoz NJ, 2012, J EXP BIOL, V215, P3436, DOI 10.1242/jeb.070391; NEVERMAN D, 1994, OECOLOGIA, V98, P247, DOI 10.1007/BF00324211; Ohlberger J, 2008, EVOL ECOL RES, V10, P1173; Ojanguren AF, 2004, P ROY SOC B-BIOL SCI, V271, pS427, DOI 10.1098/rsbl.2004.0207; Pankhurst NW, 2003, FISH PHYSIOL BIOCHEM, V28, P385, DOI 10.1023/B:FISH.0000030602.51939.50; Railsback SF, 2005, ECOLOGY, V86, P947, DOI 10.1890/04-1178; Reebs SG, 2002, REV FISH BIOL FISHER, V12, P349, DOI 10.1023/A:1025371804611; REYNOLDS JD, 1993, ANIM BEHAV, V45, P145, DOI 10.1006/anbe.1993.1013; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Speed CW, 2012, MAR ECOL PROG SER, V463, P231, DOI 10.3354/meps09864; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; Valencak TG, 2009, J EXP BIOL, V212, P231, DOI 10.1242/jeb.022640; Valero A, 2008, BIOL LETTERS, V4, P149, DOI 10.1098/rsbl.2007.0604; Vidal MA, 2011, J ARID ENVIRON, V75, P802, DOI 10.1016/j.jaridenv.2011.04.012; Ware JV, 2012, AM J PHYSIOL-REG I, V303, pR890, DOI 10.1152/ajpregu.00313.2012; Weetman D, 1999, ANIM BEHAV, V58, P735, DOI 10.1006/anbe.1999.1191; Weetman D, 1998, ANIM BEHAV, V55, P1361, DOI 10.1006/anbe.1997.0666; WURTSBAUGH WA, 1988, NATURE, V333, P846, DOI 10.1038/333846a0; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 51 6 6 0 57 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. MAR 2014 111 3 511 520 10.1111/bij.12217 10 Evolutionary Biology Evolutionary Biology AB6CO WOS:000331875400003 Bronze 2019-02-21 J Davis, K; Marshall, DJ Davis, Kurt; Marshall, Dustin J. Offspring size in a resident species affects community assembly JOURNAL OF ANIMAL ECOLOGY English Article maternal effect; egg size; phenotypic plasticity; seed size; life-history theory AFFECT POPULATION-DYNAMICS; EGG SIZE; MATERNAL INVESTMENT; SEED SIZE; INTRASPECIFIC COMPETITION; EVOLUTIONARY ECOLOGY; MARINE-INVERTEBRATES; LIFE-HISTORIES; LARVAL SIZE; PHENOTYPE Offspring size is a trait of fundamental importance that affects the ecology and evolution of a range of organisms. Despite the pervasive impact of offspring size for those offspring, the influence of offspring size on other species in the broader community remains unexplored. Such community-wide effects of offspring size are likely, but they have not been anticipated by theory or explored empirically. For a marine invertebrate community, we manipulated the size and density of offspring of a resident species (Watersipora subtorquata) in the field and examined subsequent community assembly around that resident species. Communities that assembled around larger offspring were denser and less diverse than communities that assembled around smaller offspring. Differences in niche usage by colonies from smaller and larger offspring may be driving these community-level effects. Our results suggest that offspring size is an important but unexplored source of ecological variation and that life-history theory must accommodate the effects of offspring size on community assembly. Life-history theory often assumes that environmental variation drives intraspecific variation in offspring size, and our results show that the converse can also occur. [Davis, Kurt; Marshall, Dustin J.] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Marshall, Dustin J.] Monash Univ, Sch Biol Sci, Melbourne, Vic 3800, Australia Marshall, DJ (reprint author), Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia. dustin.marshall@monash.edu Marshall, Dustin/C-3450-2016 ARC Thanks to Tracey Price and the MEEG members for help with the data collection in this study. DJM was supported by grants from the ARC. We thank Martin Thiel and anonymous reviewers for providing very helpful comments on earlier versions of this manuscript. The authors declare no conflict of interest. Allen RM, 2008, AM NAT, V171, P225, DOI 10.1086/524952; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Burgess SC, 2011, MAR ECOL PROG SER, V440, P151, DOI 10.3354/meps09374; Burgess SC, 2011, J ANIM ECOL, V80, P681, DOI 10.1111/j.1365-2656.2010.01802.x; BUSS LW, 1990, TRENDS ECOL EVOL, V5, P352, DOI 10.1016/0169-5347(90)90093-S; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Crutsinger GM, 2010, ECOLOGY, V91, P1237, DOI 10.1890/09-0613.1; Fox CW, 2000, ECOLOGY, V81, P3029, DOI 10.1890/0012-9658(2000)081[3029:NSOSBE]2.0.CO;2; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Gosselin LA, 2000, MAR ECOL PROG SER, V192, P163, DOI 10.3354/meps192163; Johnson MTJ, 2009, PHILOS T R SOC B, V364, P1593, DOI 10.1098/rstb.2008.0334; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KAPLAN RH, 1992, ECOLOGY, V73, P280, DOI 10.2307/1938739; KEOUGH MJ, 1984, ECOLOGY, V65, P423, DOI 10.2307/1941405; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Leblanc CAL, 2011, ETHOLOGY, V117, P664, DOI 10.1111/j.1439-0310.2011.01920.x; Marshall DJ, 2004, MAR ECOL PROG SER, V279, P73, DOI 10.3354/meps279073; Marshall DJ, 2003, MAR ECOL PROG SER, V255, P145, DOI 10.3354/meps255145; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; Marshall DJ, 2008, AM NAT, V171, P214, DOI 10.1086/524954; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; Marshall DJ, 2013, EVOLUTION, V67, P328, DOI 10.1111/j.1558-5646.2012.01749.x; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; MARSHALL PA, 1994, J EXP MAR BIOL ECOL, V177, P121, DOI 10.1016/0022-0981(94)90147-3; Martin RA, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009117; McGhee KE, 2012, FUNCT ECOL, V26, P932, DOI 10.1111/j.1365-2435.2012.02008.x; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moles AT, 2005, SCIENCE, V307, P576, DOI 10.1126/science.1104863; MOUSSEAU TA, 1991, ANNU REV ENTOMOL, V36, P511, DOI 10.1146/annurev.en.36.010191.002455; OKAMURA B, 1984, J EXP MAR BIOL ECOL, V83, P179, DOI 10.1016/0022-0981(84)90044-3; PALMER AR, 1990, ECOLOGY, V71, P759, DOI 10.2307/1940328; PARKER GA, 1986, AM NAT, V128, P573, DOI 10.1086/284589; Pfennig DW, 2009, EVOLUTION, V63, P898, DOI 10.1111/j.1558-5646.2008.00544.x; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Quinn G. P., 2002, EXPT DESIGN DATA ANA; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Segers FHID, 2011, FUNCT ECOL, V25, P166, DOI 10.1111/j.1365-2435.2010.01790.x; Sellheim K, 2010, MAR ECOL PROG SER, V398, P69, DOI 10.3354/meps08341; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STANTON ML, 1984, ECOLOGY, V65, P1105, DOI 10.2307/1938318; SUTHERLAND JP, 1974, AM NAT, V108, P859, DOI 10.1086/282961; Thorson G., 1936, Meddelelser om Gronland, V100, P1; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Wade MJ, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P5; Whitham TG, 2003, ECOLOGY, V84, P559, DOI 10.1890/0012-9658(2003)084[0559:CAEGAC]2.0.CO;2; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x 52 6 6 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAR 2014 83 2 322 331 10.1111/1365-2656.12136 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology AB0GF WOS:000331469200002 26046291 2019-02-21 J Barraquand, F; Hoye, TT; Henden, JA; Yoccoz, NG; Gilg, O; Schmidt, NM; Sittler, B; Ims, RA Barraquand, Frederic; Hoye, Toke T.; Henden, John-Andre; Yoccoz, Nigel G.; Gilg, Olivier; Schmidt, Niels M.; Sittler, Benoit; Ims, Rolf A. Demographic responses of a site-faithful and territorial predator to its fluctuating prey: long-tailed skuas and arctic lemmings JOURNAL OF ANIMAL ECOLOGY English Article territoriality; population cycles; environmental variance; demographic buffering; floaters POPULATION-DYNAMICS; CLIMATE-CHANGE; STERCORARIUS-LONGICAUDUS; DENSITY-DEPENDENCE; QUEUING STRATEGIES; REPRODUCTIVE TACTICS; CYCLES; CONSEQUENCES; ENVIRONMENTS; PATTERNS Environmental variability, through interannual variation in food availability or climatic variables, is usually detrimental to population growth. It can even select for constancy in key life-history traits, though some exceptions are known. Changes in the level of environmental variability are therefore important to predict population growth or life-history evolution. Recently, several cyclic vole and lemming populations have shown large dynamical changes that might affect the demography or life-histories of rodent predators. Skuas constitute an important case study among rodent predators, because of their strongly saturating breeding productivity (they lay only two eggs) and high degree of site fidelity, in which they differ from nomadic predators raising large broods in good rodent years. This suggests that they cannot capitalize on lemming peaks to the same extent as nomadic predators and might be more vulnerable to collapses of rodent cycles. We develop a model for the population dynamics of long-tailed skuas feeding on lemmings to assess the demographic consequences of such variable and non-stationary prey dynamics, based on data collected in NE Greenland. The model shows that populations of long-tailed skua sustain well changes in lemming dynamics, including temporary collapses (e.g. 10years). A high floater-to-breeder ratio emerges from rigid territorial behaviour and a long-life expectancy, which buffers the impact of adult abundance's decrease on the population reproductive output. The size of the floater compartment is affected by changes in both mean and coefficient of variation of lemming densities (but not cycle amplitude and periodicity per se). In Greenland, the average lemming density is below the threshold density required for successful breeding (including during normally cyclic periods). Due to Jensen's inequality, skuas therefore benefit from lemming variability; a positive effect of environmental variation. Long-tailed skua populations are strongly adapted to fluctuating lemming populations, an instance of demographic lability in the reproduction rate. They are also little affected by poor lemming periods, if there are enough floaters, or juveniles disperse to neighbouring populations. The status of Greenland skua populations therefore strongly depends upon floater numbers and juvenile movements, which are not known. This reveals a need to intensify colour-ringing efforts on the long-tailed skua at a circumpolar scale. [Barraquand, Frederic; Henden, John-Andre; Yoccoz, Nigel G.; Ims, Rolf A.] Univ Tromso, Dept Arctic & Marine Biol, N-9037 Tromso, Norway; [Hoye, Toke T.; Schmidt, Niels M.] Aarhus Univ, Arctic Res Ctr, DK-8000 Aarhus, Denmark; [Hoye, Toke T.] Aarhus Univ, Dept Biosci, DK-8410 Ronde, Denmark; [Gilg, Olivier] Univ Bourgogne, CNRS, UMR 5561, Lab Biogeosci, F-21000 Dijon, France; [Gilg, Olivier; Sittler, Benoit] Grp Rech Ecol Arctique, F-21440 Francheville, France; [Schmidt, Niels M.] Aarhus Univ, Dept Biosci, DK-4000 Roskilde, Denmark; [Sittler, Benoit] Univ Freiburg, Inst Landespflege, D-79106 Freiburg, Germany Barraquand, F (reprint author), Univ Tromso, Dept Arctic & Marine Biol, N-9037 Tromso, Norway. frederic.barraquand@uit.no GILG, Olivier/C-2588-2008; Barraquand, Frederic/G-1599-2011; Hoye, Toke T./A-7701-2008; Schmidt, Niels Martin/G-3843-2011 GILG, Olivier/0000-0002-9083-4492; Barraquand, Frederic/0000-0002-4759-0269; Hoye, Toke T./0000-0001-5387-3284; Schmidt, Niels Martin/0000-0002-4166-6218; Henden, John-Andre/0000-0002-8825-1167; Yoccoz, Nigel/0000-0003-2192-1039 Danish Environmental Protection Agency; GREA (Groupe de Recherche en Ecologie Arctique at Karupelv valley, Traill island; Biodiversa ECOCYCLES program; French Polar Institute (IPEV; 'Interactions' program) [1036] The research presented here owes much to two long-term monitoring programs: Zackenberg BioBasis program (http://www.zackenberg.dk/monitoring/biobasis/), funded by the Danish Environmental Protection Agency, and that of the GREA (Groupe de Recherche en Ecologie Arctique, http://grearctique.free.fr/) at Karupelv valley, Traill island. FB was funded by the Biodiversa ECOCYCLES program. OG was supported by the French Polar Institute (IPEV; 'Interactions' program 1036). We thank X. Lambin, T. Cornulier, and A. Millon for comments on a previous version of the manuscript. We also thank two anonymous reviewers and the associate editor for constructive suggestions on the presentation of results and their evolutionary implications. ANDERSSON M, 1980, J ANIM ECOL, V49, P175, DOI 10.2307/4282; ANDERSSON M, 1976, J ANIM ECOL, V45, P537, DOI 10.2307/3890; ANDERSSON M, 1981, OIKOS, V37, P287, DOI 10.2307/3544119; ANDERSSON M, 1977, OIKOS, V29, P591, DOI 10.2307/3543597; Angerbjorn A, 2001, ECOGRAPHY, V24, P298, DOI 10.1034/j.1600-0587.2001.240307.x; Barraquand F, 2013, THEOR POPUL BIOL, V89, P1, DOI 10.1016/j.tpb.2013.07.002; Boyce MS, 2006, TRENDS ECOL EVOL, V21, P141, DOI 10.1016/j.tree.2005.11.018; Brommer J, 2000, AM NAT, V155, P454, DOI 10.1086/303335; Brommer JE, 2010, GLOBAL CHANGE BIOL, V16, P577, DOI 10.1111/j.1365-2486.2009.02012.x; Cornulier T, 2013, SCIENCE, V340, P63, DOI 10.1126/science.1228992; Drake JM, 2005, P ROY SOC B-BIOL SCI, V272, P1823, DOI 10.1098/rspb.2005.3148; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Garcia-Carreras B, 2011, J ANIM ECOL, V80, P1042, DOI 10.1111/j.1365-2656.2011.01833.x; Getz WM, 1996, ECOLOGY, V77, P2014, DOI 10.2307/2265697; Gilg O, 2003, SCIENCE, V302, P866, DOI 10.1126/science.1087509; Gilg O, 2006, OIKOS, V113, P193, DOI 10.1111/j.2006.0030-1299.14125.x; Gilg O, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0064614; Gilg O, 2009, GLOBAL CHANGE BIOL, V15, P2634, DOI 10.1111/j.1365-2486.2009.01927.x; GRENFELL BT, 1992, NATURE, V355, P823, DOI 10.1038/355823a0; Hanski I, 1996, J ANIM ECOL, V65, P220, DOI 10.2307/5725; HANSKI I, 1991, J ANIM ECOL, V60, P353, DOI 10.2307/5465; Henden JA, 2008, J APPL ECOL, V45, P1086, DOI 10.1111/j.1365-2664.2008.01515.x; Henden JA, 2009, J ANIM ECOL, V78, P636, DOI 10.1111/j.1365-2656.2008.01510.x; Hunt WG, 1998, OIKOS, V82, P191, DOI 10.2307/3546929; Ims RA, 2008, TRENDS ECOL EVOL, V23, P79, DOI 10.1016/j.tree.2007.10.010; Jensen JLWV, 1906, ACTA MATH-DJURSHOLM, V30, P175, DOI 10.1007/BF02418571; Jonzen N, 2010, J ANIM ECOL, V79, P109, DOI 10.1111/j.1365-2656.2009.01601.x; Katzner TE, 2011, ANIM CONSERV, V14, P328, DOI 10.1111/j.1469-1795.2011.00444.x; Kausrud KL, 2008, NATURE, V456, P93, DOI 10.1038/nature07442; Kokko H, 1998, AM NAT, V152, P354, DOI 10.1086/286174; Koons DN, 2009, OIKOS, V118, P972, DOI 10.1111/j.1600-0706.2009.16399.x; Laakso J, 2003, ECOL MODEL, V162, P247, DOI 10.1016/S0304-3800(02)00385-X; Laakso J, 2001, OIKOS, V92, P119, DOI 10.1034/j.1600-0706.2001.920114.x; LEWONTIN RC, 1969, P NATL ACAD SCI USA, V62, P1056, DOI 10.1073/pnas.62.4.1056; Maynard Smith J., 1974, MODELS ECOLOGY; MCNAMARA JM, 1992, B MATH BIOL, V54, P355; Meijer T., 2013, OECOLOGIA, DOI 10.1007/s00442-013-2641-8; Meltofte Hans, 2007, Dansk Ornitologisk Forenings Tidsskrift, V101, P109; Pen I, 2000, AM NAT, V155, P512, DOI 10.1086/303338; Penteriani V, 2011, ANIM CONSERV, V14, P233, DOI 10.1111/j.1469-1795.2010.00433.x; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Rohner C, 1996, J ANIM ECOL, V65, P359, DOI 10.2307/5882; Royama T., 1992, ANAL POPULATION DYNA; Schmidt NM, 2008, ADV ECOL RES, V40, P345, DOI 10.1016/S0065-2504(07)00015-3; Schmidt NM, 2012, P ROY SOC B-BIOL SCI, V279, P4417, DOI 10.1098/rspb.2012.1490; Sittler B, 2011, J ORNITHOL, V152, P375, DOI 10.1007/s10336-010-0597-6; SMITH JM, 1973, ECOLOGY, V54, P384, DOI 10.2307/1934346; STEARNS SC, 1994, EVOLUTION, V48, P1438, DOI 10.1111/j.1558-5646.1994.tb02186.x; STEEN H, 1990, OIKOS, V59, P115, DOI 10.2307/3545130; Stenseth NC, 1999, OIKOS, V87, P427, DOI 10.2307/3546809; Sundell J, 2008, INTEGR ZOOL, V3, P51, DOI 10.1111/j.1749-4877.2008.00077.x; Tuljapurkar Shripad, 2006, Ecol Lett, V9, P327, DOI 10.1111/j.1461-0248.2006.00881.x; UGLAND KI, 1985, MATH BIOSCI, V74, P59, DOI 10.1016/0025-5564(85)90025-2; van de Pol M, 2011, P ROY SOC B-BIOL SCI, V278, P3713, DOI 10.1098/rspb.2011.0487; van de Pol M, 2010, ECOLOGY, V91, P1192; van de Pol M, 2007, AM NAT, V170, P530, DOI 10.1086/521237; Wilbur HM, 2006, AM NAT, V168, P398, DOI 10.1086/506258; Wiley R. H., 1998, BIRDS N AM, V365, P24 58 17 18 2 62 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. MAR 2014 83 2 375 387 10.1111/1365-2656.12140 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology AB0GF WOS:000331469200007 24128282 2019-02-21 J Hill, SE; Delpriore, DJ; Rodeheffer, CD; Butterfield, ME Hill, Sarah E.; Delpriore, Danielle J.; Rodeheffer, Christopher D.; Butterfield, Max E. The effect of ecological harshness on perceptions of the ideal female body size: an experimental life history approach EVOLUTION AND HUMAN BEHAVIOR English Article Life history theory; Mortality; Socioeconomic differences; Body fat; Pubertal timing; Ideal body size REPRODUCTIVE STRATEGY; SOCIOECONOMIC-STATUS; RESOURCE SCARCITY; ENVIRONMENTS; CHILDHOOD; RESPONSES; MENARCHE; BEHAVIOR; FATNESS; OBESITY Why do researchers regularly observe a relationship between ecological conditions and the heaviness of female body weight ideals? The current research uses insights from life history theory and female reproductive physiology to examine whether variability in female body ideals might emerge from the different life history strategies typically adopted by individuals living in harsh versus benign ecologies. Across three experiments, we demonstrate that women who were sensitized to faster life history strategies during childhood - as indexed by earlier menarche or lower childhood SES - respond to cues of ecological harshness by shifting away from the thin body weight typically favored by Western women toward a heavier female body ideal. Additionally, although men's perceptions of the ideal male body size did not shift in response to these cues, their perceptions of the ideal female body size did, with developmentally sensitized men also preferring a heavier female body size in the context of harsh ecologies. (C) 2014 Elsevier Inc. All rights reserved. [Hill, Sarah E.; Delpriore, Danielle J.; Rodeheffer, Christopher D.] Texas Christian Univ, Ft Worth, TX 76129 USA; [Butterfield, Max E.] Point Loma Univ, San Diego, CA USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu Anthony M. Marchionne Foundation This research was conducted with grant funding from the Anthony M. Marchionne Foundation. Aiken LS, 1991, MULTIPLE REGRESSION; ANDERSON JL, 1992, ETHOL SOCIOBIOL, V13, P197, DOI 10.1016/0162-3095(92)90033-Z; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; BROWN PJ, 1987, ANN NY ACAD SCI, V499, P29, DOI 10.1111/j.1749-6632.1987.tb36195.x; Calogero R. M., 2007, BODY BEAUTIFUL EVOLU, P259; Charnov Eric L., 1993, P1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Ember C. R., 2005, EVOL HUM BEHAV, V28, P48; FRISCH RE, 1985, PERSPECT BIOL MED, V28, P611; FRISCH RE, 1976, HUM BIOL, V48, P353; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill SE, 2013, J EXP SOC PSYCHOL, V49, P888, DOI 10.1016/j.jesp.2013.03.016; Hill SE, 2012, J PERS SOC PSYCHOL, V103, P275, DOI 10.1037/a0028657; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; KUZAWA CW, 2008, EVOLUTIONARY MED HLT, P325; Marlowe FW, 2001, PERS INDIV DIFFER, V30, P481, DOI 10.1016/S0191-8869(00)00039-8; Miller SL, 2010, PSYCHOL SCI, V21, P276, DOI 10.1177/0956797609357733; Nasser M., 1997, CULTURE WEIGHT CONSC; Navarrete CD, 2009, PSYCHOL SCI, V20, P661, DOI 10.1111/j.1467-9280.2009.02352.x; Nelson LD, 2005, PSYCHOL SCI, V16, P167, DOI 10.1111/j.0956-7976.2005.00798.x; Roff Derek A., 1992; ROSENTHAL R, 1985, CONTRAST ANAL; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SOBAL J, 1989, PSYCHOL BULL, V105, P260, DOI 10.1037//0033-2909.105.2.260; Stearns S, 1992, EVOLUTION LIFE HIST; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Swami V, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042593; Swami V, 2010, PERS SOC PSYCHOL B, V36, P309, DOI 10.1177/0146167209359702; THOMPSON MA, 1995, J PERS ASSESS, V64, P258, DOI 10.1207/s15327752jpa6402_6; Tovee MJ, 2000, P ROY SOC B-BIOL SCI, V267, P1987, DOI 10.1098/rspb.2000.1240; Trevathan W., 2010, ANCIENT BODIES MODER; University of North Carolina at Chapel Hill, 2008, SCIENCEDAILY; Voracek M, 2002, BRIT MED J, V325, P1447, DOI 10.1136/bmj.325.7378.1447; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; [ WHO] World Health Organization, 2013, OB OV 44 7 7 1 22 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. MAR 2014 35 2 148 154 10.1016/j.evolhumbehav.2013.12.005 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences AB5UN WOS:000331854300011 2019-02-21 J Walsh, MR; La Pierre, KJ; Post, DM Walsh, Matthew R.; La Pierre, Kimberly J.; Post, David M. Phytoplankton composition modifies predator-driven life history evolution in Daphnia EVOLUTIONARY ECOLOGY English Article Phenotypic plasticity; Predator-prey; Cyanobacteria; Local adaptation FRESH-WATER ZOOPLANKTON; DROSOPHILA-MELANOGASTER; PHENOTYPIC PLASTICITY; TOXIC CYANOBACTERIA; HERBIVORE DAPHNIA; FOOD QUALITY; TRADE-OFF; INTRASPECIFIC VARIATION; MICROCYSTIS-AERUGINOSA; ARTIFICIAL SELECTION Organisms experience competing selective pressures, which can obscure the mechanisms driving evolution. Daphnia ambigua is found in lakes where a predator, the alewife (Alosa pseudoharengus) either does (anadromous) or does not (landlocked) migrate between marine and freshwater. We previously reported an association between alewife variation and life history evolution in Daphnia. However, differences in alewife migration indirectly influence phytoplankton composition for Daphnia. In 'anadromous lakes', Daphnia are present in the spring and experience abundant high-quality green algae. Intense predation by young-of-the-year anadromous alewife quickly eliminates these Daphnia populations by early summer. Daphnia from 'landlocked lakes' and lakes without alewife ('no alewife lakes') are present during the spring and summer and are more likely to experience high concentrations of sub-optimal cyanobacteria during the summer. To explore links between predation, resources, and prey evolution, we reared third-generation laboratory-born Daphnia from all lake types on increasing cyanobacteria concentrations. We observed several significant 'lake type x resource' interactions whereby the differences among lake types depended upon cyanobacteria concentrations. Daphnia from anadromous lakes developed faster, were larger at maturation, produced more offspring, and had higher intrinsic rates of increase in the absence of cyanobacteria. Such trends disappeared or reversed as cyanobacteria concentration was increased because Daphnia from anadromous lakes were more strongly influenced by the presence of cyanobacteria. Our results argue that alewife migration and phytoplankton composition both play a role in Daphnia evolution. [Walsh, Matthew R.; La Pierre, Kimberly J.; Post, David M.] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA; [Walsh, Matthew R.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA Walsh, MR (reprint author), Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA. matthew.walsh@uta.edu Post, David/A-6987-2009 Post, David/0000-0003-1434-7729; La Pierre, Kimberly/0000-0001-7056-4547 Yale Insititute for Biospheric Studies; National Science Foundation We thank Linda Puth, Melissa Walsh, and Monica Ague for assistance in the lab. Three anonymous reviewers provided helpful comments. We also thank the Yale Insititute for Biospheric Studies and the National Science Foundation for funding. ARNOLD DE, 1971, LIMNOL OCEANOGR, V16, P906, DOI 10.4319/lo.1971.16.6.0906; Barrett RDH, 2005, AM NAT, V166, P470, DOI 10.1086/444440; BIERBAUM TJ, 1989, EVOLUTION, V43, P382, DOI 10.1111/j.1558-5646.1989.tb04234.x; Blom JF, 2006, ARCH HYDROBIOL, V167, P547, DOI 10.1127/0003-9136/2006/0167-0547; Bochdanovits Z, 2003, EVOLUTION, V57, P1829; Boing WJ, 1998, HYDROBIOLOGIA, V389, P101, DOI 10.1023/A:1003531732222; Brett MT, 2009, P NATL ACAD SCI USA, V106, P21197, DOI 10.1073/pnas.0904129106; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; BROOKS JL, 1965, SCIENCE, V150, P28, DOI 10.1126/science.150.3692.28; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; DeMott W.R., 1989, P195; DEMOTT WR, 1986, OECOLOGIA, V69, P334, DOI 10.1007/BF00377053; DeMott WR, 1997, FRESHWATER BIOL, V38, P649, DOI 10.1046/j.1365-2427.1997.00222.x; DEMOTT WR, 1991, LIMNOL OCEANOGR, V36, P1346, DOI 10.4319/lo.1991.36.7.1346; Desmarais KH, 1999, OECOLOGIA, V120, P137, DOI 10.1007/s004420050842; Diamond SE, 2012, OECOLOGIA, V169, P353, DOI 10.1007/s00442-011-2206-7; FALCONER DS, 1952, J GENET, V51, P67, DOI 10.1007/BF02986705; Fox CW, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P159; Ghadouani A, 2004, LIMNOL OCEANOGR, V49, P666, DOI 10.4319/lo.2004.49.3.0666; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GILBERT JJ, 1990, ECOLOGY, V71, P1727, DOI 10.2307/1937581; Gotelli NJ, 1998, PRIMER ECOLOGY; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Hairston NG, 2001, EVOLUTION, V55, P2203; Hassall M, 2005, OECOLOGIA, V143, P51, DOI 10.1007/s00442-004-1772-3; HILLESHEIM E, 1992, EVOLUTION, V46, P745, DOI 10.1111/j.1558-5646.1992.tb02080.x; HILLESHEIM E, 1991, EVOLUTION, V45, P1909, DOI 10.1111/j.1558-5646.1991.tb02696.x; Hilton C, 2002, OIKOS, V99, P368, DOI 10.1034/j.1600-0706.2002.990219.x; Johnson JB, 2001, EVOLUTION, V55, P1486; Kilham SS, 1998, HYDROBIOLOGIA, V377, P147, DOI 10.1023/A:1003231628456; LAMPERT W, 1987, NEW ZEAL J MAR FRESH, V21, P483, DOI 10.1080/00288330.1987.9516244; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Lau JA, 2012, OECOLOGIA, V170, P171, DOI 10.1007/s00442-012-2288-x; Lemaire V, 2012, EVOL APPL, V5, P168, DOI 10.1111/j.1752-4571.2011.00225.x; Lurling L., 2003, LIMNOL OCEANOGR, V48, P2214; Lurling M, 2000, OIKOS, V88, P111, DOI 10.1034/j.1600-0706.2000.880113.x; Lurling M, 1996, OECOLOGIA, V108, P432, DOI 10.1007/BF00333718; LYNCH M, 1980, Q REV BIOL, V55, P23, DOI 10.1086/411614; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Martin-Creuzburg D, 2005, OECOLOGIA, V144, P362, DOI 10.1007/s00442-005-0090-8; Mayntz D, 2003, OIKOS, V101, P631, DOI 10.1034/j.1600-0706.2003.12408.x; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MUELLER LD, 1981, P NATL ACAD SCI-BIOL, V78, P1303, DOI 10.1073/pnas.78.2.1303; Palkovacs EP, 2008, EVOL ECOL RES, V10, P699; Palkovacs EP, 2008, MOL ECOL, V17, P582, DOI 10.1111/j.1365-294X.2007.03593.x; PORTER KG, 1984, LIMNOL OCEANOGR, V29, P365, DOI 10.4319/lo.1984.29.2.0365; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick David, 1996, P243; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Rohrlack T, 2001, APPL ENVIRON MICROB, V67, P3523, DOI 10.1128/AEM.67.8.3523-3529.2001; Rohrlack T, 1999, J PLANKTON RES, V21, P1489, DOI 10.1093/plankt/21.8.1489; Rohrlack TK, 2003, LIMNOL OCEANOGR, V53, P1279; Sarnelle O, 2005, LIMNOL OCEANOGR, V50, P1565, DOI 10.4319/lo.2005.50.5.1565; Sarnelle O, 2010, J PLANKTON RES, V32, P471, DOI 10.1093/plankt/fbp151; Schatz GS, 2007, OECOLOGIA, V153, P1021, DOI 10.1007/s00442-007-0793-0; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Sparkes TC, 1996, OECOLOGIA, V106, P85, DOI 10.1007/BF00334410; Terhorst CP, 2010, AM NAT, V176, P675, DOI 10.1086/657047; Tillmanns AR, 2008, FUND APPL LIMNOL, V171, P285, DOI 10.1127/1863-9135/2008/0171-0285; Twombly S, 1998, ECOLOGY, V79, P1711; VIJVERBERG J, 1989, FRESHWATER BIOL, V21, P317, DOI 10.1111/j.1365-2427.1989.tb01369.x; von Elert E, 2003, P ROY SOC B-BIOL SCI, V270, P1209, DOI 10.1098/rspb.2003.2357; Von Elert E, 2001, LIMNOL OCEANOGR, V46, P1552, DOI 10.4319/lo.2001.46.6.1552; Walsh MR, 2012, J EVOLUTION BIOL, V25, P80, DOI 10.1111/j.1420-9101.2011.02403.x; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2012, P ROY SOC B-BIOL SCI, V279, P3184, DOI 10.1098/rspb.2012.0496; Walsh MR, 2011, P ROY SOC B-BIOL SCI, V278, P2628, DOI 10.1098/rspb.2010.2634; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Weider LJ, 2005, OECOLOGIA, V143; WELLBORN GA, 1994, ECOLOGY, V75, P2104, DOI 10.2307/1941614; Wilson AE, 2006, LIMNOL OCEANOGR, V51, P1915, DOI 10.4319/lo.2006.51.4.1915; Winer B. J., 1971, STAT PRINCIPLES EXPT; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303 75 8 8 0 57 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. MAR 2014 28 2 397 411 10.1007/s10682-013-9666-7 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AB3SX WOS:000331711600012 2019-02-21 J van Oers, K; Santure, AW; De Cauwer, I; van Bers, NEM; Crooijmans, RPMA; Sheldon, BC; Visser, ME; Slate, J; Groenen, MAM van Oers, K.; Santure, A. W.; De Cauwer, I.; van Bers, N. E. M.; Crooijmans, R. P. M. A.; Sheldon, B. C.; Visser, M. E.; Slate, J.; Groenen, M. A. M. Replicated high-density genetic maps of two great tit populations reveal fine-scale genomic departures from sex-equal recombination rates HEREDITY English Article passerine; linkage map; heterochiasmy; chromosomal rearrangements; population comparison WILD BIRD POPULATION; LINKAGE MAP; ZEBRA FINCH; PARUS-MAJOR; SYNTENY CONSERVATION; FICEDULA-ALBICOLLIS; PERSONALITY-TRAITS; TURKEY GENOME; EVOLUTION; CHICKEN Linking variation in quantitative traits to variation in the genome is an important, but challenging task in the study of life-history evolution. Linkage maps provide a valuable tool for the unravelling of such trait-gene associations. Moreover, they give insight into recombination landscapes and between-species karyotype evolution. Here we used genotype data, generated from a 10k single-nucleotide polymorphism (SNP) chip, of over 2000 individuals to produce high-density linkage maps of the great tit (Parus major), a passerine bird that serves as a model species for ecological and evolutionary questions. We created independent maps from two distinct populations: a captive F2-cross from The Netherlands (NL) and a wild population from the United Kingdom (UK). The two maps contained 6554 SNPs in 32 linkage groups, spanning 2010 cM and 1917 cM for the NL and UK populations, respectively, and were similar in size and marker order. Subtle levels of heterochiasmy within and between chromosomes were remarkably consistent between the populations, suggesting that the local departures from sex-equal recombination rates have evolved. This key and surprising result would have been impossible to detect if only one population was mapped. A comparison with zebra finch Taeniopygia guttata, chicken Gallus gallus and the green anole lizard Anolis carolinensis genomes provided further insight into the evolution of avian karyotypes. [van Oers, K.; van Bers, N. E. M.; Visser, M. E.] Netherlands Inst Ecol NIOO KNAW, Dept Anim Ecol, NL-6700 AB Wageningen, Netherlands; [Santure, A. W.; De Cauwer, I.; Slate, J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [De Cauwer, I.] Univ Sci & Technol Lille Lille 1, UMR CNRS 8198, Lab Genet & Evolut Populat Vegetales, Villeneuve Dascq, France; [van Bers, N. E. M.; Crooijmans, R. P. M. A.; Groenen, M. A. M.] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AP Wageningen, Netherlands; [Sheldon, B. C.] Univ Oxford, Dept Zool, Edward Grey Inst, Oxford OX1 3PS, England van Oers, K (reprint author), Netherlands Inst Ecol NIOO KNAW, Dept Anim Ecol, POB 50, NL-6700 AB Wageningen, Netherlands. k.vanoers@nioo.knaw.nl Crooijmans, Richard/E-2492-2012; Visser, Marcel/A-9151-2009; Library, Library/A-4320-2012; De Cauwer, Isabelle/M-4810-2015; Groenen, Martien/D-8408-2012; van Oers, Kees/B-2562-2009; Slate, Jon/D-2925-2012; Sheldon, Ben/A-8056-2010 Visser, Marcel/0000-0002-1456-1939; Library, Library/0000-0002-3835-159X; De Cauwer, Isabelle/0000-0001-8871-8938; Groenen, Martien/0000-0003-0484-4545; van Oers, Kees/0000-0001-6984-906X; Slate, Jon/0000-0003-3356-5123; Sheldon, Ben/0000-0002-5240-7828; Santure, Anna/0000-0001-8965-1042 European Research Council (ERC) [GA202487-Avian EGG]; Netherlands Genomics Initiative (NGI-HORIZON); NWO-VICI grant We thank the many people who have collected data and blood samples from the great tit populations used in this study over the past decades. Matt Robinson extracted DNA of a substantial number of the UK samples and Christa Mateman and Bert Dibbits extracted DNA from the NL samples and contributed to SNP genotyping in the NL population. Our thanks to Christa Mateman, Martin Elferink and Winnie Raey for their help in building the NL map. This work was funded by the European Research Council (ERC Starting Grant GA202487-Avian EGG to JS), by the Netherlands Genomics Initiative (NGI-HORIZON) and by an NWO-VICI grant to MEV. Akesson M, 2007, MOL ECOL, V16, P2189, DOI 10.1111/j.1365-294X.2007.03290.x; Alfoldi J, 2011, NATURE, V477, P587, DOI 10.1038/nature10390; Andrews CB, 2009, P ROY SOC B-BIOL SCI, V276, P55, DOI 10.1098/rspb.2008.1012; Aslam ML, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-647; BACHMANN K, 1972, CHROMOSOMA, V37, P405; Backstrom N, 2008, GENETICS, V179, P1479, DOI 10.1534/genetics.108.088195; Backstrom N, 2006, GENETICS, V174, P377, DOI 10.1534/genetics.106.058917; Backstrom N, 2010, GENOME RES, V20, P485, DOI 10.1101/gr.101410.109; Ball AD, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-218; Barker FK, 2004, P NATL ACAD SCI USA, V101, P11040, DOI 10.1073/pnas.0401892101; Bennett P., 2002, EVOLUTIONARY ECOLOGY; Broman KW, 1998, AM J HUM GENET, V63, P861, DOI 10.1086/302011; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Dingemanse NJ, 2002, ANIM BEHAV, V64, P929, DOI 10.1006/anbe.2002.2006; Drent PJ, 2003, P ROY SOC B-BIOL SCI, V270, P45, DOI 10.1098/rspb.2002.2168; DUNN LC, 1967, GENET RES, V9, P211, DOI 10.1017/S0016672300010491; Ellegren H, 2007, P ROY SOC B-BIOL SCI, V274, P1, DOI 10.1098/rspb.2006.3720; Ellegren H, 2010, TRENDS ECOL EVOL, V25, P283, DOI 10.1016/j.tree.2009.12.004; Evans SR, 2012, AM NAT, V179, P79, DOI 10.1086/663198; Garant D, 2005, NATURE, V433, P60, DOI 10.1038/nature03051; GREEN P, 1990, DOCUMENTATION CRI MA; Griffin DK, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-168; Groenen MAM, 2000, GENOME RES, V10, P137; Groenen MAM, 2009, GENOME RES, V19, P510, DOI 10.1101/gr.086538.108; Haldane JBS, 1922, J GENET, V12, P101, DOI 10.1007/BF02983075; Hansson B, 2010, HEREDITY, V104, P67, DOI 10.1038/hdy.2009.107; Hansson B, 2005, P ROY SOC B-BIOL SCI, V272, P2289, DOI 10.1098/rspb.2005.3228; Heeb P, 1999, NATURE, V400, P63, DOI 10.1038/21881; HOAGLIN DC, 1986, J AM STAT ASSOC, V81, P991, DOI 10.2307/2289073; Huang YH, 2006, GENETICS, V173, P287, DOI 10.1534/genetics.105.053256; Huxley JS, 1928, J GENET, V20, P145, DOI 10.1007/BF02983136; Itoh Y, 2005, CHROMOSOME RES, V13, P47, DOI 10.1007/s10577-005-6602-x; Jaari S, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-1; Kayang BB, 2006, BMC GENOMICS, V7, DOI 10.1186/1471-2164-7-101; LOVICH JE, 1992, GROWTH DEVELOP AGING, V56, P269; Naguib M., 2013, ANIMAL PERSONALITIES, P66, DOI DOI 10.7208/CHICAG0/9780226922065.001.0001; Naguib M, 2010, ETHOLOGY, V116, P763, DOI 10.1111/j.1439-0310.2010.01791.x; Nanda I, 2011, CYTOGENET GENOME RES, V132, P165, DOI 10.1159/000322358; Noor MAF, 2001, P NATL ACAD SCI USA, V98, P12084, DOI 10.1073/pnas.221274498; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Otto SP, 2002, NAT REV GENET, V3, P252, DOI 10.1038/nrg761; Poissant J, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-524; Popa A, 2012, GENOME BIOL EVOL, V4, P412, DOI 10.1093/gbe/evs023; Postma E, 2005, NATURE, V433, P65, DOI 10.1038/nature03083; Quinn JL, 2009, J ANIM ECOL, V78, P1203, DOI 10.1111/j.1365-2656.2009.01585.x; Reed KM, 2007, CYTOGENET GENOME RES, V119, P113, DOI 10.1159/000109627; ROBERTSON DS, 1984, GENETICS, V107, P117; Robertson MR, 2013, MOL ECOL, V22, P3963; Santure AW, 2013, MOL ECOL, V22, P3949, DOI 10.1111/mec.12376; Santure AW, 2011, BMC GENOMICS, V12, DOI 10.1186/1471-2164-12-283; Slabbekoorn H, 2003, NATURE, V424, P267, DOI 10.1038/424267a; Slate J, 2005, MOL ECOL, V14, P363, DOI 10.1111/j.1365-294X.2004.02378.x; Stapley J, 2008, GENETICS, V179, P651, DOI 10.1534/genetics.107.086264; Stapley J, 2010, GENOME RES, V20, P496, DOI 10.1101/gr.102095.109; Team RDC, 2011, R FDN STAT COMP; Trivers RL, 1988, EVOLUTION SEX, P270; Van Bers NEM, 2012, MOL ECOL RESOUR, V12, P753, DOI 10.1111/j.1755-0998.2012.03141.x; Van Bers NEM, 2010, MOL ECOL, V19, P89, DOI 10.1111/j.1365-294X.2009.04486.x; van Oers K, 2004, HEREDITY, V93, P496, DOI 10.1038/sj.hdy.6800530; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514 60 21 21 0 31 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity MAR 2014 112 3 307 316 10.1038/hdy.2013.107 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AB2MJ WOS:000331626500011 24149651 Green Published, Other Gold 2019-02-21 J Hume, BCC; D'Angelo, C; Cunnington, A; Smith, EG; Wiedenmann, J Hume, Benjamin C. C.; D'Angelo, Cecilia; Cunnington, Anna; Smith, Edward G.; Wiedenmann, Joerg The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs? CORAL REEFS English Article Acropora-eating flatworms; Amakusaplana acroporae; Invasive species; GFP-like fluorescent proteins; Corallivory; Photoprotection; Green fluorescent protein; Biomarker ACOELOMORPH WORMS; BUILDING CORALS; HOST; SEA; SYMBIODINIUM; POLYCLADIDA; TEMPERATURE; PIGMENTS; AQUARIUM Fatal infestations of land-based Acropora cultures with so-called Acropora-eating flatworms (AEFWs) are a global phenomenon. We evaluate the hypothesis that AEFWs represent a risk to coral reefs by studying the biology and the invasive potential of an AEFW strain from the UK. Molecular analyses identified this strain as Amakusaplana acroporae, a new species described from two US aquaria and one natural location in Australia. Our molecular data together with life history strategies described here suggest that this species accounts for most reported cases of AEFW infestations. We show that local parasitic activity impairs the light-acclimation capacity of the whole host colony. A. acroporae acquires excellent camouflage by harbouring photosynthetically competent, host-derived zooxanthellae and pigments of the green-fluorescent protein family. It shows a preference for Acropora valida but accepts a broad host range. Parasite survival in isolation (5-7 d) potentially allows for an invasion when introduced as non-native species in coral reefs. [Hume, Benjamin C. C.; D'Angelo, Cecilia; Cunnington, Anna; Smith, Edward G.; Wiedenmann, Joerg] Univ Southampton, NOCS, Southampton SO14 3ZH, Hants, England Wiedenmann, J (reprint author), Univ Southampton, NOCS, European Way, Southampton SO14 3ZH, Hants, England. joerg.wiedenmann@noc.soton.ac.uk NERC [NE/K00641X/1]; European Union/ERC [311179]; Natural Environment Research Council [NE/I01683X/1, NE/H012303/1, NE/K00641X/1] We thank the reviewers of this manuscript for their helpful suggestions. Funding: NERC (NE/K00641X/1 to JW; studentship to BCCH/JW), the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 311179 to JW. Barneah O, 2007, MAR BIOL, V151, P1215, DOI 10.1007/s00227-006-0563-2; Betancur-R R, 2011, J BIOGEOGR, V38, P1281, DOI 10.1111/j.1365-2699.2011.02496.x; CHINTALA MM, 1993, BIOL BULL, V185, P373, DOI 10.2307/1542478; D'Angelo C, 2012, CORAL REEFS, V31, P1045, DOI 10.1007/s00338-012-0926-8; D'Angelo C, 2008, MAR ECOL PROG SER, V364, P97, DOI 10.3354/meps07588; D'angelo C, 2012, J MAR BIOL ASSOC UK, V92, P769, DOI 10.1017/S0025315411001883; Haapkyla J, 2009, MAR BIOL, V156, P1021, DOI 10.1007/s00227-009-1145-x; Hughes TP, 2007, CURR BIOL, V17, P360, DOI 10.1016/j.cub.2006.12.049; Hume B, 2013, MAR POLLUT BULL, V72, P313, DOI 10.1016/j.marpolbul.2012.11.032; Hyman L. H., 1951, INVERTEBRATES PLATYH, VII; Leutenegger A, 2007, FEBS J, V274, P2496, DOI 10.1111/j.1742-4658.2007.05785.x; Matsushima Kanae, 2010, Galaxea - Tokyo, V12, P51; Naumann MS, 2010, MAR BIOL, V157, P2521, DOI 10.1007/s00227-010-1516-3; Nosratpour F, 2008, PUBLIC HUSBANDRY SER, V2, P37; Oswald F, 2007, FEBS J, V274, P1102, DOI 10.1111/j.1742-4658.2007.05661.x; Padilla DK, 2004, FRONT ECOL ENVIRON, V2, P131; Rawlinson KA, 2011, CORAL REEFS, V30, P693, DOI 10.1007/s00338-011-0745-3; Rawlinson KA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0042240; Rotjan RD, 2008, MAR ECOL PROG SER, V367, P73, DOI 10.3354/meps07531; Savage AM, 2002, MAR ECOL PROG SER, V244, P17, DOI 10.3354/meps244017; Smith EG, 2013, CORAL REEFS, V32, P463, DOI 10.1007/s00338-012-0994-9; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Wiedenmann J, 2001, MAR BIOL, V138, P229, DOI 10.1007/s002270000456; Wiedenmann J, 2013, NAT CLIM CHANGE, V3, P160, DOI 10.1038/NCLIMATE1661 24 4 4 1 42 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4028 1432-0975 CORAL REEFS Coral Reefs MAR 2014 33 1 267 272 10.1007/s00338-013-1101-6 6 Marine & Freshwater Biology Marine & Freshwater Biology AA3AJ WOS:000330965000031 Other Gold 2019-02-21 J Orlofske, JM; Baird, DJ Orlofske, Jessica M.; Baird, Donald J. Incorporating continuous trait variation into biomonitoring assessments by measuring and assigning trait values to individuals or taxa FRESHWATER BIOLOGY English Article aquatic insects; body size; intra-taxon trait variation; phenotypic plasticity; traits-based biomonitoring FRESH-WATER MACROINVERTEBRATES; THEORETICAL HABITAT TEMPLETS; LIFE-HISTORY STRATEGIES; LARGE EUROPEAN RIVERS; UPPER RHONE RIVER; BODY-SIZE; SPECIES TRAITS; INVERTEBRATE TRAITS; FUNCTIONAL TRAITS; BIOLOGICAL TRAITS Traits-based analyses of insect assemblages support biomonitoring programme objectives. To date, however, few traits-based metrics have demonstrated the degree of sensitivity or discriminatory power required by biomonitoring programmes. Trait information used for analyses is typically based on static descriptions of dynamic communities and is attributed only to taxonomic units. Given that traits can vary even among specimens from the same species, quantifying trait variation and its consequences could be essential for successful traits-based biomonitoring. Here, we study the consequences of measuring trait expression among individual specimens versus assigning trait states from published databases at the taxon level (genus or family) for the interpretation of trait patterns within aquatic insect assemblages. Specifically, do database body size trait states accurately reflect measured body size values of aquatic insects collected in biomonitoring samples and should body size data be aggregated at the taxon level or assessed at the specimen level to detect differences among sites? We assessed body size, a continuous trait linked to fundamental organism properties and ecological function, for four orders of aquatic insects: Ephemeroptera, Plecoptera, Trichoptera and Odonata. Invertebrate samples were collected from the Miramichi River basin (New Brunswick, Canada) according to the Canadian Aquatic Biomonitoring Network method. Concordance between measured specimen sizes and published trait states was poor; 55% of taxa expressed body sizes considerably smaller or larger than assigned database states. Recalibration of size classes based on specimen measurements yielded three size classes that facilitated detection of assemblage-aggregated size differences among reference sites. Measured body size trait values were able to distinguish these differences in community structure, while values derived from databases yielded erroneous patterns in the size structure among sites. Gaining accurate ecological insights from traits-based biomonitoring may require assessing trait properties at the scale of individual specimens. The benefits of this approach, however, should be balanced against additional effort required in the context of specific study or programme objectives. [Orlofske, Jessica M.] Univ New Brunswick, Canadian Rivers Inst, Fredericton, NB E3B 5A3, Canada; [Orlofske, Jessica M.; Baird, Donald J.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada; [Baird, Donald J.] Univ New Brunswick, Environm Canada, Canadian Rivers Inst, Fredericton, NB E3B 5A3, Canada Orlofske, JM (reprint author), Univ New Brunswick, Dept Biol, POB 4400,10 Bailey Dr, Fredericton, NB E3B 5A3, Canada. j.orlofske@unb.ca Baird, Donald/A-5267-2009 New Brunswick Museum Florence M. Christie Research Grant in the Natural Sciences; National Sciences and Engineering Research Council of Canada; Environment Canada program funds We thank Colin Curry for supplying the invertebrate samples, Kristie Heard and Adam Bliss for assistance with taxonomic identifications and photography, Dr. Wendy Monk for producing site maps, Christopher Tyrrell for R programming assistance and Sarah Orlofske for reviewing earlier drafts of the manuscript. We appreciate the effort of reviewers and editorial staff to improve the quality of this manuscript. We acknowledge funding support from the New Brunswick Museum Florence M. Christie Research Grant in the Natural Sciences to J.M.O., National Sciences and Engineering Research Council of Canada Discovery Grant to D.J.B and Environment Canada program funds. The authors declare no conflict of interest. ADAMS SM, 1993, T AM FISH SOC, V122, P63, DOI 10.1577/1548-8659(1993)122<0063:AQHAIF>2.3.CO;2; Aho K, 2011, ASBIO COLLECTION STA; Allan JD, 2004, ANNU REV ECOL EVOL S, V35, P257, DOI 10.1146/annurev.ecolsys.35.120202.110122; Armanini DG, 2013, ENVIRON MONIT ASSESS, V185, P6247, DOI 10.1007/s10661-012-3021-2; Back JA, 2013, FRESHW SCI, V32, P837, DOI 10.1899/12-181.1; Bailey RC, 2001, J N AM BENTHOL SOC, V20, P280, DOI 10.2307/1468322; Baird Donald J., 2011, Integrated Environmental Assessment and Management, V7, P209, DOI 10.1002/ieam.129; BIRCH LC, 1948, J ANIM ECOL, V17, P15, DOI 10.2307/1605; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Braune E, 2008, GLOBAL CHANGE BIOL, V14, P470, DOI 10.1111/j.1365-2486.2007.01525.x; Brooks AJ, 2011, J N AM BENTHOL SOC, V30, P419, DOI 10.1899/10-074.1; Brown JH, 1995, MACROECOLOGY; Carlson P. E., 2012, HYDROBIOLOGIA, V704, P363; Carter JL, 2001, J N AM BENTHOL SOC, V20, P658, DOI 10.2307/1468095; CHEVENET F, 1994, FRESHWATER BIOL, V31, P295, DOI 10.1111/j.1365-2427.1994.tb01742.x; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Clarke RT, 2006, HYDROBIOLOGIA, V566, P477, DOI 10.1007/s10750-006-0076-5; Clarke RT, 2003, ECOL MODEL, V160, P219, DOI 10.1016/S0304-3800(02)00255-7; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Culp Joseph M., 2011, Integrated Environmental Assessment and Management, V7, P187, DOI 10.1002/ieam.128; Davies Peter E., 2000, P113; DOLEDEC S, 1994, FRESHWATER BIOL, V31, P523, DOI 10.1111/j.1365-2427.1994.tb01755.x; Doledec S, 1999, FRESHWATER BIOL, V42, P737, DOI 10.1046/j.1365-2427.1999.00509.x; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Doledec S, 2011, FRESHWATER BIOL, V56, P1670, DOI 10.1111/j.1365-2427.2011.02597.x; Environment Canada, 2012, CAN AQ BIOM NETW FIE; Feio MJ, 2012, ECOL INDIC, V15, P236, DOI 10.1016/j.ecolind.2011.09.039; Finn DS, 2005, FRESHWATER BIOL, V50, P243, DOI 10.1111/j.1365-2427.2004.01320.x; Fitzsimmons JM, 2013, OIKOS, V122, P1350, DOI 10.1111/j.1600-0706.2013.00207.x; Forster J, 2012, P NATL ACAD SCI USA, V109, P19310, DOI 10.1073/pnas.1210460109; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Hanquet D, 2004, ARCH HYDROBIOL, V160, P329, DOI 10.1127/0003-9136/2004/0160-0329; Harper MP, 2006, ECOL APPL, V16, P612, DOI 10.1890/1051-0761(2006)016[0612:ECOAMI]2.0.CO;2; Hildrew A. G, 2007, BODY SIZE STRUCTURE; Horrigan N, 2008, CAN J FISH AQUAT SCI, V65, P670, DOI 10.1139/F07-191; Huryn AD, 2000, ANNU REV ENTOMOL, V45, P83, DOI 10.1146/annurev.ento.45.1.83; HYNES HBN, 1976, ANNU REV ENTOMOL, V21, P135, DOI 10.1146/annurev.en.21.010176.001031; Lamouroux N, 2004, J N AM BENTHOL SOC, V23, P449, DOI 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2; Larsen S, 2010, BIOL CONSERV, V143, P2638, DOI 10.1016/j.biocon.2010.07.006; Lenat DR, 2001, J N AM BENTHOL SOC, V20, P287, DOI 10.2307/1468323; Leuven R. S. E. W., 1985, HYDROBIOLOGIA, V159, P151; Maechler M, 2012, CLUSTER CLUSTER ANAL; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Merritt R. W, 2008, INTRO AQUATIC INSECT; Monaghan K. A., 2013, CANADIAN J FISHERIES, V10, P1; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; MOREIRA GRP, 1994, J N AM BENTHOL SOC, V13, P19, DOI 10.2307/1467262; MOSS D, 1987, FRESHWATER BIOL, V17, P41, DOI 10.1111/j.1365-2427.1987.tb01027.x; Mueller M, 2013, FRESHW SCI, V32, P762, DOI 10.1899/12-212.1; Orlofske JM, 2013, AQUAT ECOL, V47, P481, DOI 10.1007/s10452-013-9460-1; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; PECKARSKY BL, 1982, BIOSCIENCE, V32, P261, DOI 10.2307/1308532; PINDER JE, 1978, ECOLOGY, V59, P175; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Pollard AI, 2010, FRESHWATER BIOL, V55, P1420, DOI 10.1111/j.1365-2427.2009.02235.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramsay PM, 1997, CAN J FISH AQUAT SCI, V54, P1716, DOI 10.1139/f97-081; Reich P, 2004, FRESHWATER BIOL, V49, P1423, DOI 10.1111/j.1365-2427.2004.01278.x; Resh V. H., 1993, FRESHWATER BIOMONITO; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Robson BJ, 2005, MAR FRESHWATER RES, V56, P1, DOI 10.1071/MF04210; Ruaro R, 2013, ECOL INDIC, V29, P105, DOI 10.1016/j.ecolind.2012.12.016; Rubach MN, 2012, ECOTOXICOLOGY, V21, P2088, DOI 10.1007/s10646-012-0962-8; Sagnes P, 2008, LIMNOLOGICA, V38, P23, DOI 10.1016/j.limno.2007.09.002; Smith MJ, 1999, FRESHWATER BIOL, V41, P269, DOI 10.1046/j.1365-2427.1999.00430.x; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Stoffels RJ, 2003, NEW ZEAL J MAR FRESH, V37, P449, DOI 10.1080/00288330.2003.9517179; Studio R, 2012, STUD INT DEV ENV R V; Swansburg E, 2004, N AM J FISH MANAGE, V24, P561, DOI 10.1577/M02-181.1; Tachet H., 1991, INTRO ETUDE MACROINV; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; Tullos DD, 2009, J N AM BENTHOL SOC, V28, P80, DOI 10.1899/07-122.1; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Usseglio-Polatera P, 2000, HYDROBIOLOGIA, V422, P153, DOI 10.1023/A:1017042921298; Verberk WCEP, 2013, FRESHW SCI, V32, P531, DOI 10.1899/12-092.1; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Verdonschot PFM, 2006, HYDROBIOLOGIA, V566, P299, DOI 10.1007/s10750-006-0088-1; Vieira N. K. M., 2006, US GEOLOGICAL SURVEY, V187; Vorosmarty CJ, 2010, NATURE, V467, P555, DOI 10.1038/nature09440; Ward J. V., 1992, AQUATIC INSECT ECOLO; Woods H.A., 2013, FUNCTIONAL ECOLOGY, DOI 10.1111/1365-2435.12124; Woodward G, 2005, TRENDS ECOL EVOL, V20, P402, DOI 10.1016/j.tree.2005.04.005; Woodward G, 2002, J ANIM ECOL, V71, P1063, DOI 10.1046/j.1365-2656.2002.00669.x; Wright JF, 1998, AQUAT CONSERV, V8, P617, DOI 10.1002/(SICI)1099-0755(199807/08)8:4<617::AID-AQC255>3.0.CO;2-#; Zuellig RE, 2012, FRESHW SCI, V31, P1042, DOI 10.1899/11-150.1 91 9 9 2 53 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. MAR 2014 59 3 477 490 10.1111/fwb.12279 14 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AA0IU WOS:000330779600005 2019-02-21 J Ibanez, CM; Pena, F; Pardo-Gandarillas, MC; Mendez, MA; Hernandez, CE; Poulin, E Ibanez, C. M.; Pena, F.; Pardo-Gandarillas, M. C.; Mendez, M. A.; Hernandez, C. E.; Poulin, E. Evolution of development type in benthic octopuses: holobenthic or pelago-benthic ancestor? HYDROBIOLOGIA English Article Life history evolution; Phylogenetics; Octopodidae; Comparative method; Dollo's law LIFE-HISTORY EVOLUTION; COLEOID CEPHALOPODS; CHARACTER STATES; LARVAE; PHYLOGENY; MODE; SEA; OCTOPODIDAE; SYSTEMATICS; MORPHOLOGY Octopuses of the family Octopodidae are singular among cephalopods in their reproductive behavior, showing two major reproductive strategies: the first is the production of few and large eggs resulting in well-developed benthic hatchlings (holobenthic life history); the second strategy is the production of numerous small eggs resulting in free-swimming planktonic hatchlings (pelago-benthic life history). Here, we utilize a Bayesian-based phylogenetic comparative method using a robust molecular phylogeny of 59 octopus species to reconstruct the ancestral states of development type in benthic octopuses, through the estimation of the most recent common ancestors and the rate of gain and loss in complexity (i.e., planktonic larvae) during the evolution. We found a high probability that a free-swimming hatchling was the ancestral state in benthic octopuses, and a similar rate of gain and loss of planktonic larvae through evolution. These results suggest that in benthic octopuses the holobenthic strategy has evolved from an ancestral pelago-benthic life history. During evolution, the paralarval stage was reduced to well-developed benthic hatchlings, which supports a "larva-first" hypothesis. We propose that the origin of the holobenthic life history in benthic octopuses is associated with colonization of cold and deep sea waters. [Ibanez, C. M.; Pena, F.; Pardo-Gandarillas, M. C.; Poulin, E.] Univ Chile, Lab Ecol Mol, Dept Ciencias Ecol, Fac Ciencias,Inst Ecol & Biodiversidad, Santiago, Chile; [Ibanez, C. M.; Mendez, M. A.] Univ Chile, Lab Genet & Evoluc, Dept Ciencias Ecol, Fac Ciencias, Santiago, Chile; [Hernandez, C. E.] Univ Concepcion, Lab Ecol Evolut & Filoinformat, Dept Zool, Fac Ciencias Nat & Oceanog, Concepcion, Chile Ibanez, CM (reprint author), Univ Chile, Lab Ecol Mol, Dept Ciencias Ecol, Fac Ciencias,Inst Ecol & Biodiversidad, Las Palmeras 3425, Santiago, Chile. ibanez.christian@gmail.com Ibanez, Christian/B-9700-2009; Mendez, Marco/N-1919-2017; Pardo-Gandarillas, Maria/L-3790-2017; Poulin, Elie/C-2654-2012 Mendez, Marco/0000-0001-6041-4617; Pardo-Gandarillas, Maria/0000-0003-2626-8243; Poulin, Elie/0000-0001-7736-0969; Ibanez, Christian/0000-0002-7390-2617 FONDECYT [3110152]; ICM [P05-002, PFB-23]; MECESUP-Chile Doctoral Fellowship; CONICYT Master's Fellowship This work was partially funded by grants to C.I. FONDECYT 3110152 and to E.P. ICM P05-002 and PFB-23. Support to M. C. Pardo-Gandarillas by a MECESUP-Chile Doctoral Fellowship is also acknowledged. Finally, F. Pena acknowledges a CONICYT Master's Fellowship. Aljanabi SM, 1997, NUCLEIC ACIDS RES, V25, P4692, DOI 10.1093/nar/25.22.4692; Allcock AL, 2008, BIOL J LINN SOC, V95, P205, DOI 10.1111/j.1095-8312.2008.01031.x; Avaria-Llautureo J, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034654; Belcari P, 2002, SCI MAR, V66, P143, DOI 10.3989/scimar.2002.66s2143; Boletzky S.v., 1992, Revue Suisse de Zoologie, V99, P755; Boyle PR, 1996, PHILOS T ROY SOC B, V351, P985, DOI 10.1098/rstb.1996.0089; Byrne M, 2006, INTEGR COMP BIOL, V46, P243, DOI 10.1093/icb/icj033; Carlini D. B., 2001, MOL PHYLOGENET EVOL, V21, P338; Collin R, 2007, BIOL BULL-US, V212, P83, DOI 10.2307/25066586; Collins MA, 2002, B MAR SCI, V71, P239; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Duda TF, 1999, P NATL ACAD SCI USA, V96, P10272, DOI 10.1073/pnas.96.18.10272; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Gleadall Ian G., 2004, Interdisciplinary Information Sciences, V10, P99, DOI 10.4036/iis.2004.99; Goldberg EE, 2008, EVOLUTION, V62, P2727, DOI 10.1111/j.1558-5646.2008.00505.x; GOULD S J, 1970, Journal of the History of Biology, V3, P189, DOI 10.1007/BF00137351; Hanlon RT, 1996, CEPHALOPOD BEHAV; Hart M, 2000, SEMIN CELL DEV BIOL, V11, P411, DOI 10.1006/scdb.2000.0194; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Hernandez CE, 2013, METHODS ECOL EVOL, V4, P401, DOI 10.1111/2041-210X.12033; Huelsenbeck JP, 2004, SYST BIOL, V53, P904, DOI 10.1080/1063515049522629; Jeffery CH, 2003, MOL PHYLOGENET EVOL, V28, P99, DOI 10.1016/S1055-7903(03)00030-7; Kaneko N, 2011, MALACOLOGIA, V54, P97, DOI 10.4002/040.054.0102; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; Keever CC, 2008, EVOL DEV, V10, P62, DOI 10.1111/j.1525-142X.2008.00214.x; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; Lindgren AR, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-129; MCEDWARD LR, 1992, BIOL BULL, V182, P177, DOI 10.2307/1542111; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; Meade A., 2011, BAYESTREES V 1 3; Nesis K.N., 2003, Berliner Palaeobiologische Abhandlungen, V3, P199; Nielsen C, 2009, BIOL BULL-US, V216, P203; NORMAN M, 2000, CEPHALOPODS WORLD GU; Norman M.D., 2005, Phuket Marine Biological Center Research Bulletin, V66, P127; Page LR, 2009, BIOL BULL-US, V216, P216; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; Pearse J. S., 2007, SMITHSONIAN POLES CO, P181; Poulin E, 1996, EVOLUTION, V50, P820, DOI 10.1111/j.1558-5646.1996.tb03891.x; Rambaut A, 2009, TRACER V1 5; ROFF DA, 2002, LIFE HIST EVOLUTION; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; Roura A., 2013, THESIS U VIGO; Sly BJ, 2003, INT J DEV BIOL, V47, P623; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS S. C., 2005, EVOLUTION INTRO; STRATHMANN RR, 1993, ANNU REV ECOL SYST, V24, P89, DOI 10.1146/annurev.es.24.110193.000513; Strugnell J, 2005, MOL PHYLOGENET EVOL, V37, P426, DOI 10.1016/j.ympev.2005.03.020; Strugnell JM, 2011, DEEP-SEA RES PT II, V58, P196, DOI 10.1016/j.dsr2.2010.05.015; Strugnell JM, 2008, CLADISTICS, V24, P853, DOI 10.1111/j.1096-0031.2008.00234.x; Sweeney M. J, 1992, SMITHSON CONTR ZOOL, DOI [DOI 10.5479/SI.00810282.513, 10.5479/si.00810282.513]; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Villanueva R, 2008, OCEANOGR MAR BIOL, V46, P105; Voight JR, 2009, MALACOLOGIA, V51, P143, DOI 10.4002/040.051.0110; Wodinsky J, 2008, MAR BIOL, V155, P91, DOI 10.1007/s00227-008-1010-3; Yang Z, 2005, SYST BIOL, V54, P455, DOI 10.1080/10635150590945313; YOUNG RE, 1988, MALACOLOGIA, V29, P201; Young RE, 1998, S AFR J MARINE SCI, V20, P393; Young RE, 1996, AM MALACOL BULL, V12, P91 59 5 5 3 32 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia MAR 2014 725 1 205 214 10.1007/s10750-013-1518-5 10 Marine & Freshwater Biology Marine & Freshwater Biology 302ZQ WOS:000330644400017 2019-02-21 J Nonacs, P; Tolley, SJ Nonacs, Peter; Tolley, Sarah J. Certainty versus stochasticity: cell replication biases DNA movement from endosymbionts and organelles into nuclei EVOLUTIONARY ECOLOGY RESEARCH English Article endosymbiont; horizontal gene transfer; intergenomic conflict; mitochondria; Wolbachia HORIZONTAL GENE-TRANSFER; WOLBACHIA; EVOLUTION; BACTERIA; GENOMES Background: Endosymbiotic bacteria such as Wolbachia spend their entire life histories within other organisms' cells. This close proximity of endosymbiont and host genomes allows for transfers of DNA between them. Such events are observed to be strongly biased, however, with overall DNA migration from cytoplasmic elements to host nuclei. Question: Are DNA transfers from cytoplasmic to nuclear genomes more likely to be retained than those in the opposite direction based on how mitotic and meiotic cell division disperses nuclear and cytoplasmic DNA to daughter cells? Mathematical model: Simulations track the survival of individual DNA intergenomic transfers in populations across 100 non-overlapping generations. Reproduction is separately modelled as either asexual in a haploid species or sexual in a diploid species. Key assumptions: Transfers can either have no effect or increase chances of host reproduction by up to 20%. The distribution of genomes into offspring is stochastic (i.e. a given modified genome is as likely to be transmitted as an unmodified one). Conclusions: Even when DNA transfers are equally bidirectional, transfers into host nuclei are retained more often than ones into cytoplasmic genomes. Consequently, biased migration has potential consequences for life-history evolution, whereby genes that exchange locations also switch 'sides' for intergenomic conflict. Thus, biased migration of genes is a long-term evolutionary process favouring host interests over that of their endosymbionts and organelles. [Nonacs, Peter; Tolley, Sarah J.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA Nonacs, P (reprint author), Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. pnonacs@biology.ucla.edu Adams KL, 2003, MOL PHYLOGENET EVOL, V29, P380, DOI 10.1016/S1055-7903(03)00194-5; Berg OG, 2000, MOL BIOL EVOL, V17, P951, DOI 10.1093/oxfordjournals.molbev.a026376; Brandvain Y, 2007, SCIENCE, V315, P1685, DOI 10.1126/science.1134789; Brandvain Y, 2009, GENETICS, V182, P1129, DOI 10.1534/genetics.108.100024; Burt A., 2006, GENES CONFLICT BIOL; Doolittle WE, 1998, TRENDS GENET, V14, P307; Duplouy A, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-20; Hotopp JCD, 2011, TRENDS GENET, V27, P157, DOI 10.1016/j.tig.2011.01.005; Husnik F, 2013, CELL, V153, P1567, DOI 10.1016/j.cell.2013.05.040; Ioannidis P, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-639; Klasson L, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-33; KURLAND CG, 1992, BIOESSAYS, V14, P709, DOI 10.1002/bies.950141013; McCutcheon JP, 2012, NAT REV MICROBIOL, V10, P13, DOI 10.1038/nrmicro2670; McNulty SN, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011029; Nikoh N, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000827; Russell JA, 2012, MYRMECOL NEWS, V16, P7; Saridaki A, 2010, CURR OPIN MICROBIOL, V13, P67, DOI 10.1016/j.mib.2009.11.005; Toft C, 2010, NAT REV GENET, V11, P465, DOI 10.1038/nrg2798; Woolfit M, 2009, MOL BIOL EVOL, V26, P367, DOI 10.1093/molbev/msn253 19 0 0 0 4 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2014 16 3 195 202 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CC2XX WOS:000350209600001 2019-02-21 J Perez-Mendoza, HA; Zuniga-Vega, JJ Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J. A test of the fast-slow continuum model of life-history variation in the lizard Sceloporus grammicus EVOLUTIONARY ECOLOGY RESEARCH English Article age at maturity; body growth; life-history evolution; litter size; size at maturity; stage-specific mortality COMPLEX PHRYNOSOMATIDAE; POPULATION-DYNAMICS; VIVIPAROUS LIZARD; CONDITION INDEXES; CHROMOSOME RACES; CENTRAL MEXICO; BODY-SIZE; EVOLUTION; GROWTH; ECOLOGY Background: The fast-slow continuum hypothesis (Promislow and Harvey, 1990) suggests that mortality rates are a strong selective factor that shapes inter-and intraspecific variation in life-history traits. At the fast end of the continuum, we expect higher mortality rates, faster growth rates, small size and/or early age at maturity, short lifespan, and large litters with smaller offspring. At the slow end, we expect the opposite. Question: Is intraspecific (spatial) variation in life-history traits associated with spatial differences in mortality rates, as the fast-slow continuum hypothesis suggests? Organism: The viviparous lizard Sceloporus grammicus (Sauria: Phrynosomatidae). Study system: Eight different populations of S. grammicus in central Mexico (latitudinal range: 19 degrees 11'N to 20 degrees 47'N). Methods: We used likelihood methods to calculate mortality rates from mark-recapture data. We also measured rates of body growth, size and age at maturity, litter size, offspring size, and offspring body condition from marked animals, preserved specimens, and females kept in captivity. We used a multi-model inference framework to examine inter-population variation in life-history traits and their potential association with mortality. Each model represented a different hypothesis about variation in life-history traits, and the relative fit of each was determined using AICc (adjusted Akaike Information Criterion). Conclusions: Life-history traits differed widely among populations, but litter size was the only trait that varied with site-specific mortality rates. Larger litters were associated with higher mortality, consistent with the fast-slow continuum hypothesis. Other life-history traits showed no clear evidence of influence of mortality rates. [Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico Perez-Mendoza, HA (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. hibraimperez@ciencias.unam.mx Consejo Nacional de Ciencia y Tecnologia [210458]; Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica from Universidad Nacional Autonoma de Mexico [PAPIIT-IN206309-3] This paper is a requisite to fulfil the requirements to obtain a doctorate degree in the Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico. We would like to thank the Consejo Nacional de Ciencia y Tecnologia 210458 and the Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (project PAPIIT-IN206309-3) from Universidad Nacional Autonoma de Mexico for financial support of this research. We also thank C. Martorell and J. Fornoni for comments that improved the manuscript. Finally, we thank I. Solano-Zavaleta, P. Mendoza-Hernandez, A. Hernandez-Rosas, A. Molina-Moctezuma, Y. Zurita-Gutierrez, J. Maceda-Cruz, L. Moyers-Arevalo, M. Romano-Garcia, C. Molina-Zuluaga, C. Olivera-Tlahuel, and F. Rodriguez-Reyes for field assistance. Adolph SC, 1996, OIKOS, V77, P267, DOI 10.2307/3546065; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Angilletta MJ, 2001, ECOLOGY, V82, P3044, DOI 10.2307/2679833; AREVALO E, 1993, COPEIA, P352; AREVALO E, 1994, SYST BIOL, V43, P387, DOI 10.2307/2413675; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bastiaans E, 2013, SOUTHWEST NAT, V58, P335, DOI 10.1894/0038-4909-58.3.335; Bastiaans E, 2013, BEHAV ECOL, V24, P968, DOI 10.1093/beheco/art010; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Calsbeek R, 2002, P NATL ACAD SCI USA, V99, P14897, DOI 10.1073/pnas.242645199; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Cooper WE, 1999, BEHAV ECOL SOCIOBIOL, V47, P54, DOI 10.1007/s002650050649; Cooper William E. Jr, 2002, Acta Ethologica, V5, P19, DOI 10.1007/s10211-002-0058-1; De Queiroz K, 2007, SYST BIOL, V56, P879, DOI 10.1080/10635150701701083; Den Boer P. J., 1968, Acta Biotheoretica, V18, P165; Dobson FS, 2008, CURR SCI INDIA, V95, P862; Du WG, 2005, BIOL J LINN SOC, V85, P443, DOI 10.1111/j.1095-8312.2005.00508.x; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Gasser M, 2000, EVOLUTION, V54, P1260; Goodman RM, 2010, POPUL ECOL, V52, P113, DOI 10.1007/s10144-009-0167-z; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; GUILLETTE L J JR, 1986, Transactions of the Kansas Academy of Science, V89, P31, DOI 10.2307/3627729; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; Hurvich C. M., 2008, J TIME SER ANAL, V14, P271, DOI DOI 10.1111/J.1467-9892.1993.TB00144.X; Jimenez-Cruz E, 2005, SOUTHWEST NAT, V50, P178, DOI 10.1894/0038-4909(2005)050[0178:RCOSGS]2.0.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lourdais O, 2004, OIKOS, V104, P551, DOI 10.1111/j.0030-1299.2004.12961.x; MAC ARTHUR ROBERT H., 1967; Moreno-Arias RA, 2013, BIOTROPICA, V45, P253, DOI 10.1111/j.1744-7429.2012.00903.x; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Nielsen E.B., 2009, J ANIM ECOL, V78, P585; Ortega-Rubio A, 1999, SOUTHWEST NAT, V44, P64; ORTEGARUBIO A, 1990, REV BIOL TROP, V38, P491; Perez-Mendoza HA, 2014, POPUL ECOL, V56, P605, DOI 10.1007/s10144-014-0447-0; Perez-Mendoza HA, 2013, HERPETOLOGICA, V69, P411; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; R Development Core Team, 2008, R LANG ENV STAT COMP; Ramirez-Bautista A, 2004, WEST N AM NATURALIST, V64, P175; Ramirez-Bautista A, 2011, WEST N AM NATURALIST, V71, P215, DOI 10.3398/064.071.0208; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rojas-Gonzalez RI, 2008, AMPHIBIA-REPTILIA, V29, P245; Rosier RL, 2013, ETHOLOGY, V119, P624, DOI 10.1111/eth.12101; Saether B.-E., 2000, ECOLOGY, V81, P642, DOI DOI 10.1890/0012-9658(2000)081[; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHOENER TW, 1978, COPEIA, P390, DOI 10.2307/1443602; Seiter S, 2013, J EVOLUTION BIOL, V26, P1634, DOI 10.1111/jeb.12159; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SINERVO B, 1994, ECOLOGY, V75, P776, DOI 10.2307/1941734; SITES JW, 1992, B AM MUS NAT HIST, P1; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stevenson I.R., 1995, P ROY SOC LOND B BIO, V246, P11; Stevenson RD, 2006, INTEGR COMP BIOL, V46, P1169, DOI 10.1093/icb/icl052; TINKLE DW, 1970, EVOLUTION, V24, P55, DOI 10.1111/j.1558-5646.1970.tb01740.x; VANDEVENDER RW, 1978, ECOLOGY, V59, P1031, DOI 10.2307/1938555; Vervust B, 2008, ACTA OECOL, V34, P244, DOI 10.1016/j.actao.2008.05.012; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Wapstra E, 2000, FUNCT ECOL, V14, P345, DOI 10.1046/j.1365-2435.2000.00428.x; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; White GC, 1999, BIRD STUDY, V46, P120; Zuniga-Vega JJ, 2008, CAN J ZOOL, V86, P1397, DOI 10.1139/Z08-124; Zuniga-Vega JJ, 2008, AMPHIBIA-REPTILIA, V29, P127, DOI 10.1163/156853808783431550 76 3 3 4 14 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2014 16 3 235 248 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CC2XX WOS:000350209600004 2019-02-21 J Furness, AI; Reznick, DN Furness, Andrew I.; Reznick, David N. The comparative ecology of a killifish (Rivulus hartii) across aquatic communities differing in predation intensity EVOLUTIONARY ECOLOGY RESEARCH English Article density; growth rate; guppy; indirect effects; killifish; life history; mark-recapture; mortality; Poecilia reticulata; Rivulus hartii LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; FISH BRACHYRHAPHIS-RHABDOPHORA; SNAKE THAMNOPHIS-ELEGANS; CAPTURE-RECAPTURE MODELS; STREAM FISH; RESOURCE AVAILABILITY; NATURAL-SELECTION; MARKED ANIMALS; GENETIC-BASIS Background: Life-history theory predicts that populations experiencing different patterns of age-or size-specific mortality will evolve divergent life histories. Higher mortality can also cause indirect effects by reducing population density and increasing resources for survivors. How life histories evolve can ultimately be shaped by the interactions between the direct impact of predators on mortality, their indirect effects on resource availability, and the age specificity of these combined effects. Prior research on the killifish, Rivulus hartii, suggests differences among aquatic communities in both predation risk and resource availability but has failed to characterize the age specificity of these effects. Study organism and site: We studied Rivulus hartii in Ramdeen stream, a second-order tributary of the Arima River, on the south slope of the Northern Range Mountains in Trinidad. We used four sites near each other: in the two Rivulus-only sites, killifish were found alone; in the Rivulus/guppy site, guppies (a potential predator of juvenile Rivulus) also occurred; and in the high-predation site, Rivulus occurred with predators. Hypotheses: (1) If guppies shape the evolution of Rivulus life histories by increasing juvenile mortality rates and indirectly increasing food availability to the survivors, then juvenile mortality and growth rates should be higher when guppies are present than when they are absent. (2) If larger predators shape Rivulus life histories by selectively preying on adult Rivulus, then the added mortality associated with predators should be greater in the larger size classes. Methods: We performed mark-recapture studies on juvenile and adult Rivulus in the field (>12 mm total length), which allowed us to estimate size-specific mortality, growth rate, and density. Results: Rivulus experienced the highest mortality in the high predation site, but predation was not selectively focused on adults. Furthermore, the higher mortality was coupled with reduced population density and increased adult growth rates. In Rivulus/guppy and Rivulus-only sites, all size classes had the same survival rate. Laboratory study confirmed that adult guppies can prey upon hatchling Rivulus (<7 mm) and are restricted to preying on this size class. Lastly, juvenile Rivulus from Rivulus/guppy localities had higher growth rates than those from Rivulus-only localities, as predicted, but such an effect disappeared in the adult stage. [Furness, Andrew I.; Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Furness, AI (reprint author), Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA. andrew.furness@email.ucr.edu reznick, david/0000-0002-1144-0568 US National Science Foundation FIBR grant [EF 0623632] We thank the Ramdeen family for permission to use their land and Doug Fraser, Jim Gilliam, Andres Lopez-Sepulcre, and Matt Walsh for helpful advice and suggestions. Ron Bassar and Joe Travis provided helpful statistical guidance and advice regarding the implementation of mark-recapture models. Lila Sultan assisted with the Rivulus and guppy laboratory predation trials. Lastly, we thank Stephanie George, Jim Nunnally, and Emily Josephs for help with processing Rivulus during the course of the mark-recapture. This research was funded by a US National Science Foundation FIBR grant (EF 0623632). Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; Bassar RD, 2010, ANN NY ACAD SCI, V1206, P17, DOI 10.1111/j.1749-6632.2010.05706.x; Brommer JE, 2000, BIOL REV, V75, P377, DOI 10.1017/S000632310000551X; Bronikowski AM, 1999, ECOLOGY, V80, P2314, DOI 10.2307/176912; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Charlesworth B., 1980, EVOLUTION AGE STRUCT; Dudycha JL, 1999, EVOLUTION, V53, P1744, DOI 10.1111/j.1558-5646.1999.tb04559.x; FRASER DF, 1995, ECOLOGY, V76, P1461, DOI 10.2307/1938148; Fraser DF, 2001, AM NAT, V158, P124, DOI 10.1086/321307; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Fraser DF, 1999, ECOLOGY, V80, P597, DOI 10.1890/0012-9658(1999)080[0597:HQIAHR]2.0.CO;2; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; Fraser DF, 2006, ENVIRON BIOL FISH, V76, P25, DOI 10.1007/s10641-006-9004-9; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; Furness A. I., 2011, EVOLUTION, V66, P1240; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2003, EVOL ECOL RES, V5, P239; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gilliam JF, 2001, ECOLOGY, V82, P258, DOI 10.2307/2680101; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kozlowski J, 1987, EVOL ECOL, V1, P214, DOI 10.1007/BF02067552; Lack D., 1954, NATURAL REGULATION A; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; Morrison KR, 2014, J EVOLUTION BIOL, V27, P1192, DOI 10.1111/jeb.12393; NICHOLS JD, 1992, BIOSCIENCE, V42, P94, DOI 10.2307/1311650; Nichols JD, 1995, J APPL STAT, V22, P835, DOI 10.1080/02664769524658; Owens D. C., 2010, THESIS U NEBRASKA LI; Pace ML, 1999, TRENDS ECOL EVOL, V14, P483, DOI 10.1016/S0169-5347(99)01723-1; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick David, 1996, P243; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; ROFF DA, 2002, LIFE HIST EVOLUTION; SCHWARZ CJ, 1993, BIOMETRICS, V49, P177, DOI 10.2307/2532612; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stearns SC, 2000, P NATL ACAD SCI USA, V97, P3309, DOI 10.1073/pnas.060289597; Tatar M, 1997, OECOLOGIA, V111, P357, DOI 10.1007/s004420050246; TAYLOR HM, 1974, THEOR POPUL BIOL, V5, P104, DOI 10.1016/0040-5809(74)90053-7; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2013, TRENDS ECOL EVOL, V28, P23, DOI 10.1016/j.tree.2012.08.006; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; White GC, 1999, BIRD STUDY, V46, P120; Williams PD, 2003, EVOLUTION, V57, P1478; WOOTTON JT, 1994, ANNU REV ECOL SYST, V25, P443, DOI 10.1146/annurev.es.25.110194.002303 59 4 4 1 27 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. MAR 2014 16 3 249 265 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CC2XX WOS:000350209600005 2019-02-21 J Gillette, MT; Gudmunson, CG Gillette, Meghan T.; Gudmunson, Clinton G. Utilizing Evolutionary Life History Theories in Family Studies JOURNAL OF FAMILY THEORY & REVIEW English Article differential susceptibility; life history; parent-offspring conflict; paternal investment; psychosocial acceleration; sexual development PARENT-OFFSPRING CONFLICT; REPRODUCTIVE STRATEGY; FATHER ABSENCE; PUBERTAL MATURATION; CHILD ADJUSTMENT; GIRLS; MENARCHE; AGE; STRESS; MODELS To provide a more holistic view of the family, scholars seek theoretical principles that can bridge and enhance existing paradigms. In this article, we introduce evolutionary life history theory and describe 4 midlevel life history theories (psychosocial acceleration, paternal investment, differential susceptibility, and parent-offspring conflict). These theories will enable family scholars to expand their understanding of contemporary human families from an evolutionary perspective by creating novel research questions that will lead to innovative, interdisciplinary research. [Gillette, Meghan T.; Gudmunson, Clinton G.] Iowa State Univ, Dept Human Dev & Family Studies, Ames, IA 50011 USA Gillette, MT (reprint author), Iowa State Univ, Dept Human Dev & Family Studies, 2330 Palmer, Ames, IA 50011 USA. meghang@iastate.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J., 2005, ORIGINS SOCIAL MIND, P139; Belsky J, 2007, CURR DIR PSYCHOL SCI, V16, P300, DOI 10.1111/j.1467-8721.2007.00525.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; Booth A, 2000, J MARRIAGE FAM, V62, P1018, DOI 10.1111/j.1741-3737.2000.01018.x; Bralic I, 2012, J PEDIATR ENDOCR MET, V25, P57, DOI 10.1515/jpem-2011-0277; Buss D. M., 2012, EVOLUTIONARY PSYCHOL; Calkins SD, 2011, J MARRIAGE FAM, V73, P817, DOI 10.1111/j.1741-3737.2011.00847.x; Cheng G, 2012, NUTR REV, V70, P133, DOI 10.1111/j.1753-4887.2011.00461.x; Cherlin AJ, 2010, J MARRIAGE FAM, V72, P403, DOI 10.1111/j.1741-3737.2010.00710.x; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Claeys G, 2000, J HIST IDEAS, V61, P223; Degler Carl N., 1991, SEARCH HUMAN NATURE; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Fuller RC, 2006, J HIST BEHAV SCI, V42, P221, DOI 10.1002/jhbs.20170; Geary DC, 2000, PSYCHOL BULL, V126, P55, DOI 10.1037/0033-2909.126.1.55; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gluckman PD, 2006, TRENDS ENDOCRIN MET, V17, P7, DOI 10.1016/j.tem.2005.11.006; Hamilton BE, 2011, NATL VITAL STAT REPO, V60, pS; Haviland William A., 2008, EVOLUTION PREHISTORY; Hawkins Mike, 1997, SOCIAL DARWINISM EUR; Heath KM, 1998, CURR ANTHROPOL, V39, P369, DOI 10.1086/204748; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Horwitz BN, 2011, J MARRIAGE FAM, V73, P804, DOI 10.1111/j.1741-3737.2011.00846.x; Knight K. E., 2011, J FAMILY THEORY REV, V3, P198, DOI DOI 10.1111/J.1756-2589.2011.00095.X; Kuhl AJ, 2005, J STEROID BIOCHEM, V96, P67, DOI 10.1016/j.jsbmb.2005.01.029; Lancaster J. B., 2008, SCH AGE PREGNANCY PA, P17; Maestripieri D, 2004, DEVELOPMENTAL SCI, V7, P560, DOI 10.1111/j.1467-7687.2004.00380.x; Matchock RL, 2006, AM J HUM BIOL, V18, P481, DOI 10.1002/ajhb.20508; Ridley M., 2004, EVOLUTION; Ritz B, 1999, ENVIRON HEALTH PERSP, V107, P17, DOI 10.2307/3434285; Roff Derek A., 1992; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Seeman TE, 1996, PSYCHOSOM MED, V58, P459, DOI 10.1097/00006842-199609000-00008; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Steingraber S., 2007, FALLING PUBERTY US G; Strassmann BI, 2003, AM J HUM BIOL, V15, P361, DOI 10.1002/ajhb.10154; Susman E. J., 2009, HDB ADOLESCENT PSYCH, V1, P116; TRIVERS RL, 1974, AM ZOOL, V14, P249; U.S. Bureau of the Census, 2004, EST MED AG 1 MARR SE; U.S. Bureau of the Census, 2011, CHILD CAR ARR PRESCH; Winking J, 2011, EVOL HUM BEHAV, V32, P79, DOI 10.1016/j.evolhumbehav.2010.08.002 49 0 0 1 2 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1756-2570 1756-2589 J FAM THEOR REV J. Fam. Theory. Rev. MAR 2014 6 1 SI 5 17 10.1111/jftr.12025 13 Family Studies Family Studies CX5BP WOS:000365716000002 2019-02-21 J Johnson, GE; Sather, NK; Skalski, JR; Teel, DJ Johnson, G. E.; Sather, N. K.; Skalski, J. R.; Teel, D. J. Application of diversity indices to quantify early life-history diversity for Chinook salmon ECOLOGICAL INDICATORS English Article Species diversity; Diversity index; Life history diversity; Chinook salmon; Juvenile salmon SHANNON-WIENER INDEX; LOWER COLUMBIA RIVER; SPECIES-DIVERSITY; PACIFIC SALMON; CONSISTENT TERMINOLOGY; ONCORHYNCHUS-TSHAWYTSCHA; PARTITIONING DIVERSITY; BRITISH-COLUMBIA; ESTUARY; RICHNESS We developed an approach to quantify early life history diversity for Chinook salmon (Oncorhynchus tshawytscha). Early life history diversity (ELHD) is the variation in morphological and behavioral traits expressed within and among populations by individual juvenile salmon during downstream migration. A standard quantitative method does not exist for this prominent concept in salmon biology. For Chinook salmon, ELHD reflects the multitude of possible strategies undertaken during the juvenile (fry through smolt) phases of their life cycle, where a life history strategy (or pattern) describes the combination of traits exhibited by an organism throughout its life cycle. Increasing life history diversity to improve resilience and aid recovery of diminished salmon and steelhead populations is a common objective in fish population recovery efforts. In this paper, we characterized early life history traits and prioritize timing and fish size as two appropriate, measurable dimensions for an ELHD index. We studied diversity index literature, identified an indexing approach based on the effective number of time-size trait combinations, and tested several candidate indices for performance and usefulness in case studies using juvenile salmon catch data from the lower Columbia River and estuary. The recommended ELHD index is diversity expressed as the effective number of time-size trait combinations for the Shannon Index, modified to include an adjustment for missing time-size trait combinations and a sample coverage factor. This index applies to multiple life history strategies of juvenile salmonids; incorporates fish abundance, richness, and evenness; and produces readily interpretable values. The ELHD index can support comparisons across like locales and examinations of trends through time at a given locale. It has application as a high-level indicator to track trends in the status of the recovery of salmon and steelhead populations in the Columbia River basin and elsewhere where salmon recovery efforts are under way. (C) 2013 Elsevier Ltd. All rights reserved. [Johnson, G. E.; Sather, N. K.] Pacific NW Natl Lab, Sequim, WA 98382 USA; [Skalski, J. R.] Univ Washington, Seattle, WA 98101 USA; [Teel, D. J.] NW Fisheries Sci Ctr, NOAA Fisheries, Manchester, WA 98353 USA Johnson, GE (reprint author), Pacific NW Natl Lab, 1529 West Sequim Bay Rd, Sequim, WA 98382 USA. gary.johnson@pnnl.gov; nichole.sather@pnnl.gov; jrs@cbr.washington.edu; david.teel@noaa.gov Skalski, John/0000-0002-7070-2505 U.S. Army Corps of Engineers through the Columbia River Fish Mitigation Project; Heida Diefenderfer; Anadromous Fish Evaluation Program This research was funded by the U.S. Army Corps of Engineers through the Columbia River Fish Mitigation Project, as instituted under the Anadromous Fish Evaluation Program. We appreciate: oversight from Blaine Ebberts and Cynthia Studebaker, technical leads for the funding agency; reviews of early reports in this effort by Billy Connor; Earl Dawley, Tracy Hillman, and Roy Kropp; compilation of literature by Erin Donley; maps by Amy Borde; genetic stock identifications by David Kuligowski; technical reviews by Heida Diefenderfer, Curtis Roegner, Nick Tolimieri, and Eric Ward; technical editing by Susan Ennor; project management, editing, and support from Heida Diefenderfer; and peer-reviews by two anonymous reviewers. Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Beamer E., 2005, APPENDIX D SKAGIT CH; Beechie T, 2006, BIOL CONSERV, V130, P560, DOI 10.1016/j.biocon.2006.01.019; Bottom D.L., 2005, NMFSNWFSC68 NAT OC A; Bottom DL, 2009, ECOL SOC, V14; Bottom DL, 2005, ESTUAR COAST SHELF S, V64, P79, DOI 10.1016/j.ecss.2005.02.008; Burke J. L., 2004, THESIS OREGON STATE; Campbell L.A., 2010, THESIS OREGON STATE; CARL LM, 1984, CAN J FISH AQUAT SCI, V41, P1070, DOI 10.1139/f84-125; Chao A, 2003, ENVIRON ECOL STAT, V10, P429, DOI 10.1023/A:1026096204727; Claiborne AM, 2011, T AM FISH SOC, V140, P1135, DOI 10.1080/00028487.2011.607050; Connor WP, 2005, T AM FISH SOC, V134, P291, DOI 10.1577/T03-131.1; DAWLEY EM, 1986, MIGRATIONAL CHARACTE; Durkin J.T., 1981, STUDY MANAGED COLUMB; Ellison AM, 2010, ECOLOGY, V91, P1962, DOI 10.1890/09-1692.1; Fresh K.L., 2005, NMFSNWFSC69 NOAA FIS; Frosini BV, 2004, ENCY LIFE SUPPORT SY; Green R, 2011, MAR POLLUT BULL, V62, P1377, DOI 10.1016/j.marpolbul.2011.02.016; Groot C., 1991, PACIFIC SALMON LIFE; Gustafson RG, 2007, CONSERV BIOL, V21, P1009, DOI 10.1111/j.1523-1739.2007.00693.x; Hayes S.A., 2008, T AM FISH SOC, V137, P1114; Healey M. C., 1991, PACIFIC SALMON LIFE, P312; Hess JE, 2011, MOL ECOL RESOUR, V11, P137, DOI 10.1111/j.1755-0998.2010.02958.x; HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352; Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245; HORVITZ DG, 1952, J AM STAT ASSOC, V47, P663, DOI 10.2307/2280784; HURLBERT SH, 1971, ECOLOGY, V52, P577, DOI 10.2307/1934145; ISAB (Independent Scientific Advisory Board), 2012, 20124 ISAB; Jost L, 2006, OIKOS, V113, P363, DOI 10.1111/j.2006.0030-1299.14714.x; Jost L, 2007, ECOLOGY, V88, P2427, DOI 10.1890/06-1736.1; Jurasinski G, 2011, OECOLOGIA, V167, P893, DOI 10.1007/s00442-011-2126-6; Jurasinski G, 2009, OECOLOGIA, V159, P15, DOI 10.1007/s00442-008-1190-z; Keefer M.L., 2011, 20112 U ID US ARM CO; Keylock CJ, 2005, OIKOS, V109, P203, DOI 10.1111/j.0030-1299.2005.13735.x; Koleff M., 2003, J ANIM ECOL, V72, P367; Levings C.D., 1982, CANADIAN TECHNICAL R; LEVINGS CD, 1986, CAN J FISH AQUAT SCI, V43, P1386, DOI 10.1139/f86-172; Lichatowich J, 1999, ICES J MAR SCI, V56, P467, DOI 10.1006/jmsc.1999.0457; LICHATOWICH J, 1995, FISHERIES, V20, P10, DOI 10.1577/1548-8446(1995)020<0010:AATTDA>2.0.CO;2; MACARTHUR RH, 1965, BIOL REV, V40, P510, DOI 10.1111/j.1469-185X.1965.tb00815.x; Magurran A. E., 2004, MEASURING BIOL DIVER; Martinson R., 2006, DOEBP000220852 BPA; National Research Council (NRC), 1996, UPSTR SALM SOC PAC N; NEHLSEN W, 1991, FISHERIES, V16, P4, DOI 10.1577/1548-8446(1991)016<0004:PSATCS>2.0.CO;2; Nicholas J.W., 1989, 8402 EM OR DEP FISH; NMFS (National Marine Fisheries Service), 2011, COL RIV EST ESA REC; NMFS (National Marine Fisheries Service), 2007, UPP COL SALM REC PLA; NMFS (National Marine Fisheries Service), 2008, BIOL OP CONS REM OP; Olszewski TD, 2004, OIKOS, V104, P377, DOI 10.1111/j.0030-1299.2004.12519.x; PATIL GP, 1979, ECOLOGICAL DIVERSITY; PEARCY WG, 1989, FISH B-NOAA, V87, P553; PIELOU EC, 1966, J THEOR BIOL, V13, P131, DOI 10.1016/0022-5193(66)90013-0; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Reimers P. E., 1967, Research Briefs Fish Commission of Oregon, V13, P5; Reimers P.E., 1973, OREGON FISH COMMISSI, V4, P43; Rich W. H., 1920, US BUREAU FISHERIES, V37, P2; Roegner GC, 2012, MAR COAST FISH, V4, P450, DOI 10.1080/19425120.2012.675982; Roegner GC, 2008, ESTUARINE HABITAT JU; Ruckelshaus MH, 2002, ANNU REV ECOL SYST, V33, P665, DOI 10.1146/annurev.ecolysis.33.010802.150504; Sather N., 2011, ECOLOGY JUVENILE SAL, P21; Sather N.K., 2012, PNNL21194 US ARM COR; Scheuerell MD, 2009, J APPL ECOL, V46, P983, DOI 10.1111/j.1365-2664.2009.01693.x; Skalski J.R., 2011, PNNL20083 PAC NW NAT, pH1; Soininen J, 2012, OECOLOGIA, V169, P803, DOI 10.1007/s00442-011-2236-1; Spellerberg IF, 2003, GLOBAL ECOL BIOGEOGR, V12, P177, DOI 10.1046/j.1466-822X.2003.00015.x; Tuomisto H, 2012, OIKOS, V121, P1203, DOI 10.1111/j.1600-0706.2011.19897.x; Tuomisto H, 2011, OECOLOGIA, V167, P903, DOI 10.1007/s00442-011-2128-4; Tuomisto H, 2010, OECOLOGIA, V164, P853, DOI 10.1007/s00442-010-1812-0; Veech JA, 2010, ECOLOGY, V91, P1964, DOI 10.1890/08-1727.1; Weitkamp LA, 2012, FISH B-NOAA, V110, P426; Williams R, 2006, RETURN RIVER RESTORI; Wilsey BJ, 2005, ECOLOGY, V86, P1178, DOI 10.1890/04-0394 72 3 3 0 35 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1470-160X 1872-7034 ECOL INDIC Ecol. Indic. MAR 2014 38 170 180 10.1016/j.ecolind.2013.11.005 11 Biodiversity Conservation; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 300XP WOS:000330497600019 2019-02-21 J Yong, L; Grober, MS Yong, Lengxob; Grober, Matthew S. Sex differences in the energetic content of reproductive tissues in the Blackeye Goby, Rhinogobiops nicholsii ENVIRONMENTAL BIOLOGY OF FISHES English Article Blackeye Goby; Sexual dimorphism; Reproduction; Energetics; Mating systems; Calorimetry SPERM COMPETITION; PARENTAL CARE; TESTIS SIZE; MATE CHOICE; FISH; EVOLUTION; COST; ORGANIZATION; ALLOCATION; GOBIIDAE Differential energetic investment in reproduction between the sexes has been a driving a force of life history theory and sexual selection. However, reproductive costs between the sexes have often been based on morphology, such as gonad mass and gonadosomatic indices (GSI), and few have directly measured the energy content of gonadal tissues in relation to GSI. Using the blackeye goby, Rhinogobiops nicholsii, we measured the energetic content of whole gonadal tissues, specifically testes, ovaries and associated reproductive tissues using oxygen bomb calorimetry. The energy content per gram unit of gonadal tissues was generally predictive of GSI, indicating that GSI is a reasonable measure of energetic costs. Interestingly, although females had greater gonadal mass, GSI and energy content per gram than males, the sex difference in energy content per mass unit was only 13 %, suggesting that gross indices such as gonadal mass or GSI may overestimate energetic costs where instead the cost difference in a unit gram of gonadal tissues between the sexes is smaller than often predicted. This study also demonstrates that although the cost of ovaries is greater than testes, males' investment in reproductive tissue can be considerable, which is consistent with the often inflated reproductive success for males in haremic mating systems. [Yong, Lengxob] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA; [Grober, Matthew S.] Georgia State Univ, Dept Biol, Atlanta, GA 30303 USA Yong, L (reprint author), E Carolina Univ, Dept Biol, Howell Sci Complex N409, Greenville, NC 27858 USA. yongl09@students.ecu.edu Center for Behavioral Neuroscience; STC Program of the NSF [IBN-9876754]; National Science Foundation [IBO-0548567] We thank Mark Hay for allowing us to use his calorimeter, Tammy Devries for teaching us how to use it, and Tim Mahanes for assistance in collecting the fish. We also thank Jeffrey McKinnon for helpful comments on the manuscript and the staff at USC Wrigley Institute for Environmental Studies for logistical assistance. All procedures were in compliance with Georgia State University IACUC regulations (approved protocol #A02011). This work was supported by the Center for Behavioral Neuroscience, an STC Program of the NSF under Agreement No. IBN-9876754 (to MSG), and a National Science Foundation grant IBO-0548567 (to MSG). Amundsen T, 2003, J FISH BIOL, V63, P17, DOI 10.1111/j.1095-8649.2003.00219.x; Amundsen T, 2001, P NATL ACAD SCI USA, V98, P13155, DOI 10.1073/pnas.211439298; Andersson M., 1994, SEXUAL SELECTION; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Chowdhury I, 2007, FISH PHYSIOL BIOCHEM, V33, P383, DOI 10.1007/s10695-007-9162-5; COLE KS, 1983, COPEIA, P809; CRAIG JF, 1978, FRESHWATER BIOL, V8, P585, DOI 10.1111/j.1365-2427.1978.tb01480.x; Dewsbury DA, 2005, INTEGR COMP BIOL, V45, P831, DOI 10.1093/icb/45.5.831; DEWSBURY DA, 1982, AM NAT, V119, P601, DOI 10.1086/283938; Drilling CC, 2005, ENVIRON BIOL FISH, V72, P361, DOI 10.1007/s10641-004-2590-5; Encina L, 1997, J FISH BIOL, V50, P511; FISHELSON L, 1991, JPN J ICHTHYOL, V38, P17; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Hosken DJ, 2001, ECOL LETT, V4, P10, DOI 10.1046/j.1461-0248.2001.00198.x; Jakob EM, 1996, OIKOS, V77, P61, DOI 10.2307/3545585; Jonsson N, 1997, FUNCT ECOL, V11, P310, DOI 10.1046/j.1365-2435.1997.00083.x; JONSSON N, 1991, J FISH BIOL, V39, P739, DOI 10.1111/j.1095-8649.1991.tb04403.x; Kraak SBM, 1998, ANIM BEHAV, V56, P859, DOI 10.1006/anbe.1998.0822; Kroon FJ, 2000, ENVIRON BIOL FISH, V57, P401, DOI 10.1023/A:1007600728267; Miller P.J., 1984, P119; NAKATSURU K, 1982, SCIENCE, V216, P753, DOI 10.1126/science.216.4547.753; Olsson M, 1997, P ROY SOC B-BIOL SCI, V264, P455, DOI 10.1098/rspb.1997.0065; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; Steinhart GB, 2005, BEHAV ECOL, V16, P427, DOI 10.1093/beheco/ari006; Stockley P, 1997, AM NAT, V149, P933, DOI 10.1086/286031; Svensson PA, 2009, J FISH BIOL, V75, P2777, DOI 10.1111/j.1095-8649.2009.02478.x; Taborsky M, 1998, TRENDS ECOL EVOL, V13, P222, DOI 10.1016/S0169-5347(97)01318-9; Thomsen R, 2007, PRIMATES, V47, P272; Ursin E, 1979, FISH PHENOLOGY ANABO, P63; Warner RR, 1997, BIOSCIENCE, V47, P561, DOI 10.2307/1313162; WATT WB, 1986, AM NAT, V127, P629, DOI 10.1086/284510; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; WILEY J W, 1973, Transactions of the San Diego Society of Natural History, V17, P187; Williams Geroge C, 1966, ADAPTATION NATURAL S; WOOTTON RJ, 1973, J FISH BIOL, V5, P683, DOI 10.1111/j.1095-8649.1973.tb04504.x 35 3 4 2 37 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes MAR 2014 97 3 321 328 10.1007/s10641-013-0142-6 8 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 298UQ WOS:000330350400010 2019-02-21 J Laugen, AT; Engelhard, GH; Whitlock, R; Arlinghaus, R; Dankel, DJ; Dunlop, ES; Eikeset, AM; Enberg, K; Jorgensen, C; Matsumura, S; Nussle, S; Urbach, D; Baulier, L; Boukal, DS; Ernande, B; Johnston, FD; Mollet, F; Pardoe, H; Therkildsen, NO; Uusi-Heikkila, S; Vainikka, A; Heino, M; Rijnsdorp, AD; Dieckmann, U Laugen, Ane T.; Engelhard, Georg H.; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J.; Dunlop, Erin S.; Eikeset, Anne M.; Enberg, Katja; Jorgensen, Christian; Matsumura, Shuichi; Nussle, Sebastien; Urbach, Davnah; Baulier, Loic; Boukal, David S.; Ernande, Bruno; Johnston, Fiona D.; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O.; Uusi-Heikkilae, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D.; Dieckmann, Ulf Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management FISH AND FISHERIES English Article Ecosystem approach to fisheries; ecosystem services; fisheries yield; fisheries-induced evolution; impact assessment; sustainable fisheries COD GADUS-MORHUA; MATURATION REACTION NORMS; EFFECTIVE POPULATION-SIZE; LIFE-HISTORY EVOLUTION; NORTH-SEA PLAICE; PIKE ESOX-LUCIUS; HERRING CLUPEA-HARENGUS; ECO-GENETIC MODEL; ATLANTIC COD; MARINE FISH Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries. [Laugen, Ane T.] Swedish Univ Agr Sci, Dept Ecol, SE-75643 Uppsala, Sweden; [Laugen, Ane T.] IFREMER, Lab Ressources Halieut, F-14520 Port En Bessin, France; [Engelhard, Georg H.] Cefas, Lowestoft NR33 0HT, Suffolk, England; [Whitlock, Rebecca; Matsumura, Shuichi; Urbach, Davnah; Ernande, Bruno; Johnston, Fiona D.; Mollet, Fabian; Heino, Mikko; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria; [Whitlock, Rebecca] Stanford Univ, Hopkins Marine Stn, Pacific Grove, CA 93950 USA; [Whitlock, Rebecca] Finnish Game & Fisheries Res Inst, FI-20520 Turku, Finland; [Arlinghaus, Robert; Matsumura, Shuichi; Johnston, Fiona D.; Uusi-Heikkilae, Silva] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Biol & Ecol Fishes, D-12587 Berlin, Germany; [Arlinghaus, Robert; Johnston, Fiona D.] Humboldt Univ, Dept Crop & Anim Sci, Fac Agr & Hort, D-10115 Berlin, Germany; [Dankel, Dorothy J.; Dunlop, Erin S.; Enberg, Katja; Baulier, Loic; Boukal, David S.; Heino, Mikko] Inst Marine Res, NO-5817 Bergen, Norway; [Dunlop, Erin S.; Enberg, Katja; Jorgensen, Christian; Baulier, Loic; Boukal, David S.; Heino, Mikko] Univ Bergen, EvoFish Res Grp, Dept Biol, NO-5020 Bergen, Norway; [Dunlop, Erin S.] Ontario Minist Nat Resources, Aquat Res & Dev Sect, Peterborough, ON K9J 8M5, Canada; [Eikeset, Anne M.] Univ Oslo, CEES, Dept Biol, NO-0316 Oslo, Norway; [Jorgensen, Christian] Uni Res, Computat Ecol Unit, NO-5020 Bergen, Norway; [Matsumura, Shuichi] Gifu Univ, Fac Appl Biol Sci, Gifu 5011193, Japan; [Nussle, Sebastien] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Nussle, Sebastien] Univ Bern, CH-3012 Bern, Switzerland; [Urbach, Davnah] Dartmouth Coll, Dept Biol Sci, Class Life Sci Ctr 1978, Hanover, NH 03755 USA; [Baulier, Loic] Agrocampus Ouest Ctr Rennes, Fisheries & Aquat Sci Ctr, F-35042 Rennes, France; [Boukal, David S.] Univ South Bohemia, Fac Sci, Dept Ecosyst Biol, CZ-37005 Ceske Budejovice, Czech Republic; [Ernande, Bruno] IFREMER, Lab Ressources Halieut, F-62321 Boulogne Sur Mer, France; [Mollet, Fabian; Rijnsdorp, Adriaan D.] Wageningen IMARES, NL-1970 AB Ijmuiden, Netherlands; [Pardoe, Heidi] Univ Iceland, Fac Life & Environm Sci, MARICE, IS-101 Reykjavik, Iceland; [Therkildsen, Nina O.] Tech Univ Denmark, Natl Inst Aquat Resources, Sect Populat Ecol & Genet, DK-8600 Silkeborg, Denmark; [Uusi-Heikkilae, Silva] Univ Turku, Dept Biol, Div Genet & Physiol, FI-20014 Turku, Finland; [Vainikka, Anssi] Univ Oulu, Dept Biol, FI-90014 Oulu, Finland; [Vainikka, Anssi] Swedish Board Fisheries, Inst Coastal Res, SE-74222 Oregrund, Sweden; [Rijnsdorp, Adriaan D.] Wageningen Univ & Res Ctr, Dept Anim Sci, Aquaculture & Fisheries Grp, NL-6700 Wageningen, Netherlands Laugen, AT (reprint author), Swedish Univ Agr Sci, Dept Ecol, Box 7044, SE-75007 Uppsala, Sweden. ane.laugen@slu.se Heino, Mikko/C-7241-2009; Boukal, David/H-4762-2014; Laugen, Ane/C-6225-2008; Jorgensen, Christian/B-4453-2009; Rijnsdorp, Adriaan/A-4217-2008; Matsumura, Shuichi/C-7986-2013; Ernande, Bruno/C-1182-2008; Enberg, Katja/C-8630-2009 Heino, Mikko/0000-0003-2928-3940; Boukal, David/0000-0001-8181-7458; Laugen, Ane/0000-0001-6196-8304; Jorgensen, Christian/0000-0001-7087-4625; Rijnsdorp, Adriaan/0000-0003-0785-9662; Matsumura, Shuichi/0000-0002-0368-006X; Ernande, Bruno/0000-0002-0727-5774; Enberg, Katja/0000-0002-0045-7604; Dieckmann, Ulf/0000-0001-7089-0393; Dankel, Dorothy *Jane/0000-0002-8839-3333; Vainikka, Anssi/0000-0002-0172-5615; Arlinghaus, Robert/0000-0003-2861-527X; Nussle, Sebastien/0000-0001-7070-380X European Marie Curie Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE) [MRTN-CT-2004-005578]; European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE) [SSP-2006-044276]; European Community; Adaptfish Programme; Leibniz-Community; Austrian Ministry of Science and Research (BMBF); Bergen Research Foundation; Defra project on Risk Analysis for Fisheries [M1201]; European Science Foundation; Austrian Science Fund; Research Council of Norway; Strategic Research Programme on Sustainable Spatial Development of Ecosystems, Landscapes, Seas and Regions; Dutch Ministry of Agriculture, Nature Conservation and Food Quality; Vienna Science and Technology Fund (WWTF); Young Research Group on Social-Ecological Fisheries Research; German Ministry on Education and Research [01UU0907] This article has been prepared jointly by participants of the Study Group on Fisheries-Induced Adaptive Change (SGFIAC) of the International Council for the Exploration of the Sea (ICES). ATL, GHE, RW, and UD coordinated preparations and integrated the writing. RA, DD, UD, ESD, AME, KE, GHE, CJ, ATL, SM, SN, DU, and RW wrote and reviewed sections. LB, DSB, BE, MH, FJ, FM, HP, ADR, NOT, SUH, and AV contributed suggestions and comments. In the meanwhile, SGFIAC has become the Working Group on Fisheries-Induced Evolution (WGEVO). For further information about the working group, please contact the WGEVO chairs UD, MH, or ADR. The authors would like to thank additional members of SGFIAC and WGEVO for comments on earlier versions of the manuscript, as well as G. Carvalho and three anonymous reviewers for their insightful and constructive comments that substantially improved the manuscript. Preparation of this article was supported by the European Marie Curie Research Training Network on Fisheries-induced Adaptive Changes in Exploited Stocks (FishACE; contract MRTN-CT-2004-005578) and by the European Specific Targeted Research Programme on Fisheries-induced Evolution (FinE; contract SSP-2006-044276), funded through the European Community's Sixth Framework Programme (LB, DSB, DD, UD, ESD, BE, ATL, FM, MH, HP, ADR, DU, AV, RW). Naturally, the exposition here does not necessarily reflect the views of the European Commission and does not anticipate the Commission's future policy in this area. The authors gratefully acknowledge additional financial support by the Adaptfish Programme funded by the Leibniz-Community (RA, UD, FJ, SM, SUH), the Austrian Ministry of Science and Research (BMWF; UD), the Bergen Research Foundation (LB, KE, MH, CJ), the Defra project on Risk Analysis for Fisheries (contract M1201; GHE), the European Science Foundation (ESF; UD), the Austrian Science Fund (FWF; UD), the Research Council of Norway (DJD, ESD, MH, CJ), the Strategic Research Programme on Sustainable Spatial Development of Ecosystems, Landscapes, Seas and Regions funded by the Dutch Ministry of Agriculture, Nature Conservation and Food Quality (AR), the Vienna Science and Technology Fund (WWTF; UD) and the Young Research Group on Social-Ecological Fisheries Research funded by the German Ministry on Education and Research (grant number 01UU0907, RA). Aas Oystein, 2000, North American Journal of Fisheries Management, V20, P940, DOI 10.1577/1548-8675(2000)020<0940:ARTPHR>2.0.CO;2; Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Arlinghaus R, 2010, BIOL CONSERV, V143, P1444, DOI 10.1016/j.biocon.2010.03.020; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; Arndt H. W., 1993, EC DEV CULTURAL CHAN, V41, P651; Askey PJ, 2006, N AM J FISH MANAGE, V26, P1020, DOI 10.1577/M06-035.1; Balmford A, 2002, SCIENCE, V297, P950, DOI 10.1126/science.1073947; Bannock G., 2003, DICT EC; Baskett ML, 2005, ECOL APPL, V15, P882, DOI 10.1890/04-0723; Baulier L., 2009, THESIS U BERGEN NORW; BenDor T, 2009, ECOL ECON, V68, P1061, DOI 10.1016/j.ecolecon.2008.07.014; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Beverton R.J.H., 1957, FISH INVEST 2, V19, P5; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Boukal D.S., 2008, CM2008F07 ICES; Bradshaw CJA, 2007, J ANIM ECOL, V76, P480, DOI 10.1111/j.1365-2656.2006.01201.x; Branch TA, 2006, CAN J FISH AQUAT SCI, V63, P1647, DOI 10.1139/F06-072; Bunnefeld N, 2011, TRENDS ECOL EVOL, V26, P441, DOI 10.1016/j.tree.2011.05.003; Cadrin SX, 2008, FISH RES, V94, P367, DOI 10.1016/j.fishres.2008.06.004; Calhoun Craig, 2002, DICT SOCIAL SCI; Carlson SM, 2011, HEREDITY, V106, P438, DOI 10.1038/hdy.2010.163; Carlson SM, 2007, ECOL LETT, V10, P512, DOI 10.1111/j.1461-0248.2007.01046.x; Carpenter SR, 2007, ECOL RES, V22, P10, DOI 10.1007/s11284-006-0072-2; Charles A.T., 2001, SUSTAINABLE FISHERY; Choi JS, 2004, CAN J FISH AQUAT SCI, V61, P505, DOI 10.1139/F04-079; Christensen A, 2011, B MATH BIOL, V73, P1004, DOI 10.1007/s11538-010-9550-3; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conrad M., 1983, ADAPTABILITY SIGNIFI; Costanza R, 1997, NATURE, V387, P253, DOI 10.1038/387253a0; Costanza R, 2008, BIOL CONSERV, V141, P350, DOI 10.1016/j.biocon.2007.12.020; Daily G., 1997, NATURES SERVICES SOC; Dankel D. J., 2007, 2007O17 ICES ASC CM; DANKEL DJ, 2009, THESIS U BERGEN NORW; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Daskalov GM, 2007, P NATL ACAD SCI USA, V104, P10518, DOI 10.1073/pnas.0701100104; de Roos AM, 2006, P ROY SOC B-BIOL SCI, V273, P1873, DOI 10.1098/rspb.2006.3518; Dichmont CM, 2008, FISH RES, V94, P238, DOI 10.1016/j.fishres.2008.05.007; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dorow M, 2010, FISHERIES MANAG ECOL, V17, P106, DOI 10.1111/j.1365-2400.2009.00674.x; Dunlop ES, 2007, T AM FISH SOC, V136, P749, DOI 10.1577/T06-126.1; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Eikeset A. M., 2010, THESIS U OSLO NORWAY; Eldridge W. H., 2007, THESIS U WASHINGTON; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Enberg K, 2010, CAN J FISH AQUAT SCI, V67, P1708, DOI 10.1139/F10-090; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; FAO Fisheries Department, 2003, FAO TECHN GUID FI S2, V4; Francis RC, 2007, FISHERIES, V32, P217, DOI 10.1577/1548-8446(2007)32[217:TCFBFS]2.0.CO;2; Frank KT, 2011, NATURE, V477, P86, DOI 10.1038/nature10285; Frank KT, 2005, SCIENCE, V308, P1621, DOI 10.1126/science.1113075; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Garcia SM, 2005, ICES J MAR SCI, V62, P311, DOI 10.1016/j.icesjms.2004.12.003; Gardmark A, 2003, EVOL ECOL RES, V5, P239; Goldsworthy SD, 2001, MAR ECOL PROG SER, V218, P283, DOI 10.3354/meps218283; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Guttormsen AG, 2008, J ENVIRON ECON MANAG, V56, P167, DOI 10.1016/j.jeem.2007.11.005; Hard JJ, 2008, EVOL APPL, V1, P388, DOI 10.1111/j.1752-4571.2008.00020.x; Hauser L, 2002, P NATL ACAD SCI USA, V99, P11742, DOI 10.1073/pnas.172242899; Hein L, 2006, ECOL ECON, V57, P209, DOI 10.1016/j.ecolecon.2005.04.005; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; Heino M., 2002, 2002Y14 ICES ASC CM; Hensher David, 2005, APPL CHOICE ANAL PRI; Hiddink JG, 2006, CAN J FISH AQUAT SCI, V63, P721, DOI 10.1139/F05-266; Hilborn R, 2008, B MAR SCI, V83, P95; Hilborn R, 2007, MAR POLICY, V31, P153, DOI 10.1016/j.marpol.2006.05.014; Holmes SJ, 2008, ICES J MAR SCI, V65, P206, DOI 10.1093/icesjms/fsn192; Hsieh CH, 2010, AQUAT SCI, V72, P165, DOI 10.1007/s00027-009-0122-2; Huse G, 2002, J FISH BIOL, V60, P571, DOI 10.1006/jfbi.2002.1874; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; Hutchinson WF, 2003, P ROY SOC B-BIOL SCI, V270, P2125, DOI 10.1098/rspb.2003.2493; Hutchinson WF, 2008, BIOL LETTERS, V4, P693, DOI 10.1098/rsbl.2008.0443; ICES, 2009, 2009RMC03 ICES CM; ICES, 2007, 2007RMC03 ICES CM; Jackson JBC, 2001, SCIENCE, V293, P629, DOI 10.1126/science.292.5517.629; Johnson DW, 2011, EVOL APPL, V4, P621, DOI 10.1111/j.1752-4571.2011.00185.x; Johnston FD, 2010, CAN J FISH AQUAT SCI, V67, P1507, DOI 10.1139/F10-046; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kaiser MJ, 2006, CONSERV BIOL, V20, P392, DOI 10.1111/j.1523-1739.2006.00319.x; Kell LT, 2006, ICES J MAR SCI, V63, P12, DOI 10.1016/j.icesjms.2005.09.003; Kell LT, 2005, ICES J MAR SCI, V62, P1483, DOI 10.1016/j.icesjms.2005.05.006; Kendall NW, 2009, EVOL APPL, V2, P523, DOI 10.1111/j.1752-4571.2009.00086.x; Kinnison MT, 2011, HEREDITY, V106, P448, DOI 10.1038/hdy.2010.162; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Kuparinen A, 2009, EVOL APPL, V2, P234, DOI 10.1111/j.1752-4571.2009.00070.x; LARKIN PA, 1977, T AM FISH SOC, V106, P1, DOI 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R., 1993, EXPLOITATION EVOLVIN, P155; Mackenzie BR, 2007, GLOBAL CHANGE BIOL, V13, P1348, DOI 10.1111/j.1365-2486.2007.01369.x; Marty L, 2011, AM NAT, V177, pE98, DOI 10.1086/658988; Matsuda H, 2004, CAN J FISH AQUAT SCI, V61, P175, DOI 10.1139/F03-147; Matsumura S, 2011, EVOL ECOL, V25, P711, DOI 10.1007/s10682-010-9444-8; MCALLISTER MK, 1992, CAN J FISH AQUAT SCI, V49, P1305, DOI 10.1139/f92-146; McFadden D, 1974, FRONTIERS ECONOMETRI, P105; Millennium Ecosystem Assessment, 2003, EC HUM WELL BEING FR; Mollet F. M., 2010, THESIS WAGENINGEN U, P161; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mollet FM, 2010, THESIS WAGENINGEN U; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Naish KA, 2008, FISH FISH, V9, P396, DOI 10.1111/j.1467-2979.2008.00302.x; Nielsen EE, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms1845; Nussle S., 2008, EVOLUTIONARY APPL, V2, P200; Okamoto KW, 2009, EVOL APPL, V2, P415, DOI 10.1111/j.1752-4571.2009.00095.x; Olsen EM, 2011, EVOL ECOL, V25, P695, DOI 10.1007/s10682-010-9427-9; Overholtz WJ, 2002, FISH RES, V57, P237, DOI 10.1016/S0165-7836(01)00359-9; Palkovacs E. P., 2011, PLOS ONE, V6; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Parsons DM, 2011, CAN J FISH AQUAT SCI, V68, P953, DOI 10.1139/F2011-005; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Persson L, 2007, SCIENCE, V316, P1743, DOI 10.1126/science.1141412; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Poulsen NA, 2006, MOL ECOL, V15, P321, DOI 10.1111/j.1365-294X.2005.02777.x; PRODANOV K, 1995, ECOLOGICAL PROBLEMS, P167; RAAT A J P, 1985, Aquaculture and Fisheries Management, V16, P171, DOI 10.1111/j.1365-2109.1985.tb00305.x; Restrepo V.R., 1999, P 5 NAT NMFS STOCK A; Reznick DN, 2005, CAN J FISH AQUAT SCI, V62, P791, DOI 10.1139/F05-079; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P72; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; Rijnsdorp AD, 2008, J SEA RES, V60, P126, DOI 10.1016/j.seares.2008.03.003; Rijnsdorp AD, 2012, MAR ECOL PROG SER, V447, P179, DOI 10.3354/meps09519; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Ruzzante DE, 2006, J FISH BIOL, V69, P236; Salas S, 2004, FISH FISH, V5, P153, DOI 10.1111/j.1467-2979.2004.00146.x; Sattar SA, 2008, B MAR SCI, V83, P235; Saura M, 2010, FRESHWATER BIOL, V55, P923, DOI 10.1111/j.1365-2427.2009.02346.x; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Shackell NL, 2010, P ROY SOC B-BIOL SCI, V277, P1353, DOI 10.1098/rspb.2009.1020; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P361, DOI 10.1139/F02-015; Smith ADM, 2007, ICES J MAR SCI, V64, P633, DOI 10.1093/icesjms/fsm041; Smith A. D. M., 1993, 1993D18 ICES ASC CM; Smith ADM, 1999, ICES J MAR SCI, V56, P967, DOI 10.1006/jmsc.1999.0540; Star B, 2011, NATURE, V477, P207, DOI 10.1038/nature10342; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Symes D, 2009, FISH RES, V95, P1, DOI 10.1016/j.fishres.2008.08.001; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Therkildsen NO, 2010, CAN J FISH AQUAT SCI, V67, P1585, DOI 10.1139/F10-084; Toresen R, 2000, FISH FISH, V1, P231, DOI 10.1111/j.1467-2979.2000.00022.x; United Nations, 1992, UN C ENV DEV RIO DE; Urbach D, 2008, EVOL APPL, V1, P645, DOI 10.1111/j.1752-4571.2008.00041.x; Uusi-Heikkila S, 2008, TRENDS ECOL EVOL, V23, P419, DOI 10.1016/j.tree.2008.04.006; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vainikka A, 2012, FISH RES, V113, P8, DOI 10.1016/j.fishres.2011.09.004; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; van Kooten T, 2010, CAN J FISH AQUAT SCI, V67, P401, DOI 10.1139/F09-157; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Wallace KJ, 2007, BIOL CONSERV, V139, P235, DOI 10.1016/j.biocon.2007.07.015; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C. J., 2004, FISHERIES ECOLOGY MA; Wang HY, 2009, EVOL APPL, V2, P438, DOI 10.1111/j.1752-4571.2009.00088.x; Watling L, 1998, CONSERV BIOL, V12, P1180, DOI 10.1046/j.1523-1739.1998.0120061180.x; Wattage P, 2005, ECOL ECON, V55, P85, DOI 10.1016/j.ecolecon.2004.10.016; WOHLFARTH G, 1975, AQUACULTURE, V5, P375, DOI 10.1016/0044-8486(75)90057-5; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 170 65 66 10 193 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1467-2960 1467-2979 FISH FISH Fish. Fish. MAR 2014 15 1 65 96 10.1111/faf.12007 32 Fisheries Fisheries 284EW WOS:000329299900004 Green Published, Bronze 2019-02-21 J Ingley, SJ; Billman, EJ; Belk, MC; Johnson, JB Ingley, Spencer J.; Billman, Eric J.; Belk, Mark C.; Johnson, Jerald B. Morphological Divergence Driven by Predation Environment within and between Species of Brachyrhaphis Fishes PLOS ONE English Article LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; ECOLOGICAL SPECIATION; SWIMMING PERFORMANCE; GASTEROSTEUS-ACULEATUS; XIPHOPHORUS-NIGRENSIS; TELEOSTEI POECILIIDAE; EPISCOPI POECILIIDAE; ANTIPREDATOR DEFENSE; AQUATIC VERTEBRATES Natural selection often results in profound differences in body shape among populations from divergent selective environments. Predation is a well-studied driver of divergence, with predators having a strong effect on the evolution of prey body shape, especially for traits related to escape behavior. Comparative studies, both at the population level and between species, show that the presence or absence of predators can alter prey morphology. Although this pattern is well documented in various species or population pairs, few studies have tested for similar patterns of body shape evolution at multiple stages of divergence within a taxonomic group. Here, we examine morphological divergence associated with predation environment in the livebearing fish genus Brachyrhaphis. We compare differences in body shape between populations of B. rhabdophora from different predation environments to differences in body shape between B. roseni and B. terrabensis (sister species) from predator and predator free habitats, respectively. We found that in each lineage, shape differed between predation environments, consistent with the hypothesis that locomotor function is optimized for either steady swimming (predator free) or escape behavior (predator). Although differences in body shape were greatest between B. roseni and B. terrabensis, we found that much of the total morphological diversification between these species had already been achieved within B. rhabdophora (29% in females and 47% in males). Interestingly, at both levels of divergence we found that early in ontogenetic development, females differed in shape between predation environments; however, as females matured, their body shapes converged on a similar phenotype, likely due to the constraints of pregnancy. Finally, we found that body shape varies with body size in a similar way, regardless of predation environment, in each lineage. Our findings are important because they provide evidence that the same source of selection can drive similar phenotypic divergence independently at multiple divergence levels. [Ingley, Spencer J.; Billman, Eric J.; Belk, Mark C.; Johnson, Jerald B.] Brigham Young Univ, Dept Biol, Provo, UT 84602 USA; [Johnson, Jerald B.] Brigham Young Univ, Monte L Bean Life Sci Museum, Provo, UT 84602 USA Ingley, SJ (reprint author), Brigham Young Univ, Dept Biol, Provo, UT 84602 USA. sjingley@byu.edu Ingley, Spencer/0000-0002-2414-9892 U.S. National Science Foundation PIRE program [OISE 0539267]; Monte L. Bean Life Science Museum at Brigham Young University This work was funded by a grant to Jerald B. Johnson from the U.S. National Science Foundation PIRE program (OISE 0539267) and museum collecting funds from the Monte L. Bean Life Science Museum at Brigham Young University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Adams DC, 2007, EVOLUTION, V61, P510, DOI 10.1111/j.1558-5646.2007.00063.x; Adams DC, 2009, EVOLUTION, V63, P1143, DOI 10.1111/j.1558-5646.2009.00649.x; Archard GA, 2011, J FISH BIOL, V78, P593, DOI 10.1111/j.1095-8649.2010.02880.x; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Barros M, 2008, REV NEUROSCIENCE, V19, P157; Basolo AL, 2004, ANIM BEHAV, V68, P75, DOI 10.1016/j.anbehav.2003.07.019; Berner D, 2010, MOL ECOL, V19, P4963, DOI 10.1111/j.1365-294X.2010.04858.x; Berner D, 2009, EVOLUTION, V63, P1740, DOI 10.1111/j.1558-5646.2009.00665.x; Biro PA, 2009, HYDROBIOLOGIA, V635, P395, DOI 10.1007/s10750-009-9902-x; BISAZZA A, 1993, MAR BEHAV PHYSIOL, V23, P257, DOI 10.1080/10236249309378869; Blake R., 1983, FISH LOCOMOTION; Blake RW, 2006, J FISH BIOL, V69, P1824, DOI 10.1111/j.1095-8649.2006.01251.x; Blake RW, 2004, J FISH BIOL, V65, P1193, DOI 10.1111/j.1095-8949.2004.00568.x; Brown C, 2007, J FISH BIOL, V71, P1590, DOI 10.1111/j.1095-8649.2007.01627.x; Brown C, 2005, BEHAV ECOL, V16, P482, DOI 10.1093/beheco/ari016; Burnham K. P, 2002, MODEL SELECTION MULT; Burns JG, 2009, J FISH BIOL, V75, P1144, DOI 10.1111/j.1095-8649.2009.02314.x; Bussing W. A., 1998, PECES AGUAS CONTINEN; Butler D, 2007, FISHERIES; Collyer ML, 2007, ECOLOGY, V88, P683, DOI 10.1890/06-0727; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Darwin C., 1859, ORIGIN SPECIES MEANS; DODSON S, 1989, BIOSCIENCE, V39, P447, DOI 10.2307/1311136; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1987, ANIM BEHAV, V35, P1376, DOI 10.1016/S0003-3472(87)80010-6; Garza-Mourino G, 2005, HYDROBIOLOGIA, V546, P169, DOI 10.1007/s10750-005-4114-5; Ge DY, 2011, P ROY SOC B-BIOL SCI, V278, P2133, DOI 10.1098/rspb.2010.1500; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; GODIN JGJ, 1995, OECOLOGIA, V103, P224, DOI 10.1007/BF00329084; Hendry AP, 2009, J FISH BIOL, V75, P2000, DOI 10.1111/j.1095-8649.2009.02419.x; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Hossie TJ, 2010, ECOSCIENCE, V17, P100, DOI 10.2980/17-1-3312; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; Husak JF, 2006, HERPETOLOGICA, V62, P156, DOI 10.1655/05-62.1; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Jennions MD, 2002, OIKOS, V97, P79, DOI 10.1034/j.1600-0706.2002.970108.x; Jennions MD, 2006, ENVIRON BIOL FISH, V76, P211, DOI 10.1007/s10641-006-9022-7; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2001, BIOL J LINN SOC, V72, P519, DOI 10.1006/bijl.2000.0513; Johnson JB, 2001, EVOLUTION, V55, P1486; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2011, ECOLOGY EVOLUTION PO; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Jones CP, 2009, MOL ECOL, V18, P1640, DOI 10.1111/j.1365-294X.2009.04129.x; Jones KA, 2010, P R SOC B, V277, P625, DOI 10.1098/rspb.2009.1607; Kearse M, 2012, BIOINFORMATICS, V28, P1647, DOI 10.1093/bioinformatics/bts199; KORPIMAKI E, 1994, EVOL ECOL, V8, P357, DOI 10.1007/BF01238188; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P2231, DOI 10.1111/j.1420-9101.2009.01839.x; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58; Lee JB, 2009, MOL ECOL, V18, P4088, DOI 10.1111/j.1365-294X.2009.04339.x; Maddison W. P, 2010, MESQUITE MODULAR SYS; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; Magurran AE, 1990, RISK SENSITIVE COURT, P194; Mateos M, 2005, J BIOGEOGR, V32, P775, DOI 10.1111/j.1365-2699.2005.01236.x; Mikolajewski DJ, 2010, EVOLUTION, V64, P3327, DOI 10.1111/j.1558-5646.2010.01078.x; Mojica CL, 1997, COPEIA, P298, DOI 10.2307/1447750; Nosil P, 2007, GENETICA, V129, P309, DOI 10.1007/s10709-006-0013-6; Nosil P, 2007, AM NAT, V169, P151, DOI 10.1086/510634; Nosil P, 2009, EVOLUTION, V63, P1902, DOI 10.1111/j.1558-5646.2009.00671.x; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Relyea RA, 2002, ECOLOGY, V83, P1953, DOI 10.1890/0012-9658(2002)083[1953:TMFOPH]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Rohlf F, 2011, TPSREGR MULTIVARIATE; Rohlf F. J., 2005, TPSDIG DIGITIZE LAND; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 2003, TPSRELW RELATIVE WAR; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; RYAN MJ, 1990, BEHAV ECOL SOCIOBIOL, V26, P231; Schmidt TR, 1998, COPEIA, P14, DOI 10.2307/1447697; Scott LE, 2010, BIOL J LINN SOC, V100, P608, DOI 10.1111/j.1095-8312.2010.01452.x; Taborsky M, 1997, BEHAV ECOL SOCIOBIOL, V41, P361, DOI 10.1007/s002650050396; TAMURA K, 1993, MOL BIOL EVOL, V10, P512; Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121; Unmack PJ, 2009, BIOL J LINN SOC, V97, P876, DOI 10.1111/j.1095-8312.2009.01224.x; Urban MC, 2007, P NATL ACAD SCI USA, V104, P14377, DOI 10.1073/pnas.0704645104; Via S, 2009, P NATL ACAD SCI USA, V106, P9939, DOI 10.1073/pnas.0901397106; Walker JA, 1997, BIOL J LINN SOC, V61, P3, DOI 10.1006/bijl.1996.9999; WEBB PW, 1984, AM ZOOL, V24, P107; Wesner JS, 2011, BIOL J LINN SOC, V104, P386, DOI 10.1111/j.1095-8312.2011.01715.x; Wirsing AJ, 2003, EVOL ECOL RES, V5, P315; ZIMMERER EJ, 1989, EVOLUTION, V43, P1298, DOI 10.1111/j.1558-5646.1989.tb02576.x 91 22 24 0 40 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 26 2014 9 2 e90274 10.1371/journal.pone.0090274 11 Multidisciplinary Sciences Science & Technology - Other Topics AC3BC WOS:000332389000147 24587309 DOAJ Gold, Green Published 2019-02-21 J Ferrari, M; Lindholm, AK; Konig, B Ferrari, Manuela; Lindholm, Anna K.; Koenig, Barbara A genetic tool to manipulate litter size FRONTIERS IN ZOOLOGY English Article Litter size manipulation; House mouse; t haplotype; Optimal litter size WILD HOUSE MICE; T-HAPLOTYPES; CLUTCH SIZE; MAMMARY DEVELOPMENT; PLACENTAL-LACTOGEN; REPRODUCTIVE SUCCESS; NATURAL-SELECTION; FETAL NUMBER; BANK VOLE; PREGNANCY Introduction: Experimental litter size manipulations are often not problem free. Typically conducted shortly after birth or oviposition, they do not account for the energy already invested into the production of the offspring. Such effects make it difficult to interpret the results from experimental litter size manipulations and therefore to study optimality of litter or clutch size, a long debated topic in evolutionary biology. Results: We propose the use of a mating design based on a selfish genetic element, the t haplotype, to reduce litter size in an eutherian mammal, the house mouse. Most t haplotypes are recessive lethal and therefore lead to the death of all homozygous embryos. Litter sizes can be reduced by up to 50% by pairing a +/t female with a +/t male instead of a +/t male. Conclusion: This method allows litter size manipulation before birth without the use of invasive techniques, therefore providing an excellent tool for studying optimal litter size and ultimately helping to understand life history strategies. [Ferrari, Manuela; Lindholm, Anna K.; Koenig, Barbara] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland Ferrari, M (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. manuela.ferrari@ieu.uzh.ch Lindholm, Anna/E-5207-2012 Lindholm, Anna/0000-0001-8460-9769; Konig, Barbara/0000-0001-7696-4736; Ferrari, Manuela/0000-0003-4610-2806 SNSF [3100A0 - 120444] We thank Jari Garbely for laboratory work and Gabriele Stichel for taking care of the breeding colony. Yannick Auclair, Andreas Sutter and Patricia Lopes kindly commented on the manuscript. This study was funded by SNSF grant 3100A0 - 120444. Aubret F, 2003, BIOL J LINN SOC, V78, P263, DOI 10.1046/j.1095-8312.2003.00169.x; Burt A., 2006, GENES CONFLICT BIOL; Duah OA, 2013, J EXP BIOL, V216, P2339, DOI 10.1242/jeb.078428; FLEMING TH, 1978, EVOLUTION, V32, P45, DOI 10.1111/j.1558-5646.1978.tb01097.x; FUCHS S, 1982, BEHAV ECOL SOCIOBIOL, V10, P39, DOI 10.1007/BF00296394; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; HAMMER MF, 1989, P NATL ACAD SCI USA, V86, P3261, DOI 10.1073/pnas.86.9.3261; HARDY ICW, 1992, J ANIM ECOL, V61, P121, DOI 10.2307/5515; HARE JF, 1992, J MAMMAL, V73, P449, DOI 10.2307/1382083; HAYDEN TJ, 1980, J ENDOCRINOL, V86, P279, DOI 10.1677/joe.0.0860279; HAYDEN TJ, 1979, J DAIRY SCI, V62, P53, DOI 10.3168/jds.S0022-0302(79)83201-4; Jameson EW, 1998, OECOLOGIA, V114, P288, DOI 10.1007/s004420050448; KENSINGER RS, 1986, DOMEST ANIM ENDOCRIN, V3, P237, DOI 10.1016/0739-7240(86)90021-4; KNIGHT CH, 1982, J PHYSIOL-LONDON, V327, P17, DOI 10.1113/jphysiol.1982.sp014216; KONIG B, 1988, J ZOOL, V216, P195; Konig B, 2012, EVOLUTION HOUSE MOUS, P114; Koskela E, 1998, OECOLOGIA, V115, P379, DOI 10.1007/s004420050531; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LENINGTON S, 1994, AM NAT, V143, P766, DOI 10.1086/285632; LENINGTON S, 1992, AM ZOOL, V32, P40; Lindholm AK, 2013, ECOL EVOL, V3, P1231, DOI 10.1002/ece3.534; Manalu W, 1997, SMALL RUMINANT RES, V23, P117, DOI 10.1016/S0921-4488(96)00921-2; MAPPES T, 1995, P ROY SOC B-BIOL SCI, V261, P19, DOI 10.1098/rspb.1995.0111; Migula P., 1969, Acta Theriologica, V14, P167; Monaghan P, 1998, P ROY SOC B-BIOL SCI, V265, P1731, DOI 10.1098/rspb.1998.0495; NAGASAWA H, 1971, ENDOCRINOL JAPON, V18, P507; NEWTON JE, 1970, J AGR SCI, V75, P355, DOI 10.1017/S0021859600017056; Oksanen TA, 2002, EVOLUTION, V56, P1530; PIANKA ER, 1976, AM ZOOL, V16, P775; R Core Team, 2012, R LANG ENV STAT COMP; RATTRAY PV, 1974, J ANIM SCI, V38, P613; ROSKAFT E, 1985, J ANIM ECOL, V54, P255, DOI 10.2307/4635; Russell WMS, 1959, PRINCIPLES HUMANE EX; Safronova LD, 2009, RUSS J DEV BIOL, V40, P23, DOI 10.1134/S1062360409010032; Sikes RS, 1998, OIKOS, V83, P452, DOI 10.2307/3546673; Sikes RS, 1998, J MAMMAL, V79, P1143, DOI 10.2307/1383005; SILVER LM, 1993, TRENDS GENET, V9, P250, DOI 10.1016/0168-9525(93)90090-5; SOARES MJ, 1983, BIOL REPROD, V29, P165, DOI 10.1095/biolreprod29.1.165; Speakman JR, 1996, PHYSL ZOOL, V69; Stearns S, 1992, EVOLUTION LIFE HIST; Styrsky JN, 2005, ECOLOGY, V86, P3238, DOI 10.1890/04-1613; Theiler K, 1989, HOUSE MOUSE ATLAS EM; Werf E. V., 1992, ECOLOGY, V73, P1699; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON ED, 1963, J REPROD FERTIL, V5, P179 45 3 3 1 3 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. FEB 24 2014 11 18 10.1186/1742-9994-11-18 5 Zoology Zoology AC8NN WOS:000332790100001 24564853 DOAJ Gold, Green Published 2019-02-21 J Dhole, S; Pfennig, KS Dhole, Sumit; Pfennig, Karin S. Age-Dependent Male Mating Investment in Drosophila pseudoobscura PLOS ONE English Article SEMINAL FLUID PROTEINS; CRYPTIC MALE CHOICE; SPERM COMPETITION; COPULATION DURATION; FERTILIZATION SUCCESS; REPRODUCTIVE STATUS; PLASTIC RESPONSES; SOLDIER FLY; MATE CHOICE; FRUIT-FLY Male mating investment can strongly influence fitness gained from a mating. Yet, male mating investment often changes with age. Life history theory predicts that mating investment should increase with age, and males should become less discriminatory about their mate as they age. Understanding age-dependent changes in male behavior and their effects on fitness is important for understanding how selection acts in age-structured populations. Although the independent effects of male or female age have been studied in many species, how these interact to influence male mating investment and fitness is less well understood. We mated Drosophila pseudoobscura males of five different age classes (4-, 8-, 11-, 15-, 19-day old) to either young (4-day) or old (11-day) females, and measured copulation duration and early post-mating fecundity. Along with their independent effects, we found a strong interaction between the effects of male and female ages on male mating investment and fitness from individual matings. Male mating investment increased with male age, but this increase was more prominent in matings with young females. Male D. pseudoobscura made smaller investments when mating with old females. The level of such discrimination based on female age, however, also changed with male age. Intermediate aged males were most discriminatory, while the youngest and the oldest males did not discriminate between females of different ages. We also found that larger male mating investments resulted in higher fitness payoffs. Our results show that male and female ages interact to form a complex pattern of age-specific male mating investment and fitness. [Dhole, Sumit; Pfennig, Karin S.] Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA Dhole, S (reprint author), Univ N Carolina, Dept Biol, Chapel Hill, NC 27515 USA. sumit@live.unc.edu Sigma Xi; Office of The Director, National Institutes of Health [1 DP2 OD004436-01] This work was supported by a Sigma Xi grants-in-aid of research award to SD and a New Innovator Award from the Office of The Director, National Institutes of Health (1 DP2 OD004436-01) to KSP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Amundsen T, 2000, TRENDS ECOL EVOL, V15, P149, DOI 10.1016/S0169-5347(99)01800-5; Andersson M., 1994, SEXUAL SELECTION; Avent TD, 2008, ANIM BEHAV, V75, P1413, DOI 10.1016/j.anbehav.2007.09.015; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Barbosa F, 2012, BEHAV ECOL, V23, P815, DOI 10.1093/beheco/ars035; Barbosa F, 2011, BEHAV ECOL, V22, P1332, DOI 10.1093/beheco/arr137; Barron AB, 2000, J INSECT PHYSIOL, V46, P439, DOI 10.1016/S0022-1910(99)00129-8; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; Bretman A, 2011, TRENDS ECOL EVOL, V26, P467, DOI 10.1016/j.tree.2011.05.002; Bretman A, 2010, BEHAV ECOL, V21, P317, DOI 10.1093/beheco/arp189; Bretman A, 2009, P ROY SOC B-BIOL SCI, V276, P1705, DOI 10.1098/rspb.2008.1878; Burnham K. P, 2002, MODEL SELECTION MULT; Chapman T, 2004, PEPTIDES, V25, P1477, DOI 10.1016/j.peptides.2003.10.023; Chapman T, 2001, HEREDITY, V87, P511, DOI 10.1046/j.1365-2540.2001.00961.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Cornwallis CK, 2007, AM NAT, V170, P758, DOI 10.1086/521955; DICKINSON JL, 1986, BEHAV ECOL SOCIOBIOL, V18, P331, DOI 10.1007/BF00299664; Dobzhansky T, 1943, GENETICS, V28, P304; Engqvist L, 2003, J EVOLUTION BIOL, V16, P1196, DOI 10.1046/j.1420-9101.2003.00613.x; Engqvist L, 2002, BEHAV ECOL, V13, P632, DOI 10.1093/beheco/13.5.632; Friberg U, 2006, ANIM BEHAV, V72, P1259, DOI 10.1016/j.anbehav.2006.03.021; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Galvani A, 1998, BEHAV ECOL SOCIOBIOL, V44, P161, DOI 10.1007/s002650050528; Gilchrist AS, 2000, EVOLUTION, V54, P534; Goshima S, 1996, J EXP MAR BIOL ECOL, V196, P131, DOI 10.1016/0022-0981(95)00127-1; HALL JC, 1978, BEHAV GENET, V8, P125, DOI 10.1007/BF01066870; Ingleby FC, 2010, ANIM BEHAV, V80, P37, DOI 10.1016/j.anbehav.2010.03.022; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; LEWIS SM, 1995, ANIM BEHAV, V50, P1157, DOI 10.1016/0003-3472(95)80031-X; Lupold S, 2011, BEHAV ECOL, V22, P184, DOI 10.1093/beheco/arq193; Martin OY, 2002, ANIM BEHAV, V63, P541, DOI 10.1006/anbe.2001.1929; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Moller A. P, 1998, SPERM COMPETITION SE; Monaghan P, 2008, FUNCT ECOL, V22, P371, DOI 10.1111/j.1365-2435.2008.01418.x; Noor MAF, 1997, J INSECT BEHAV, V10, P305, DOI 10.1007/BF02765563; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; Price TAR, 2008, EVOLUTION, V62, P1644, DOI 10.1111/j.1558-5646.2008.00386.x; Price TAR, 2012, J INSECT PHYSIOL, V58, P1669, DOI 10.1016/j.jinsphys.2012.10.008; R Development Core Team, 2012, R LANG ENV STAT COMP; Ram KR, 2007, INTEGR COMP BIOL, V47, P427, DOI 10.1093/icb/icm046; Reinhold K, 2002, J EVOLUTION BIOL, V15, P201, DOI 10.1046/j.1420-9101.2002.00390.x; Simmons L. W., 2001, SPERM COMPETITION IT; Simmons LW, 1998, SEXUAL SELECTION SPE, P503; Sirot LK, 2011, P NATL ACAD SCI USA, V108, P9922, DOI 10.1073/pnas.1100905108; Sirot LK, 2009, BEHAV ECOL SOCIOBIOL, V63, P1505, DOI 10.1007/s00265-009-0806-6; Siva-Jothy MT, 2003, P ROY SOC B-BIOL SCI, V270, P649, DOI 10.1098/rspb.2002.2260; Snook RR, 2001, J INSECT PHYSIOL, V47, P957, DOI 10.1016/S0022-1910(01)00070-1; Snook RR, 1998, ANIM BEHAV, V56, P1497, DOI 10.1006/anbe.1998.0930; Stasinopoulos DM, 2012, R PACKAGE GEN ADDITI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Thomas ML, 2007, AM NAT, V170, P190, DOI 10.1086/519404; Thornhill R., 1983, EVOLUTION INSECT MAT; Wedell N, 2002, TRENDS ECOL EVOL, V17, P313, DOI 10.1016/S0169-5347(02)02533-8; Wigby S, 2009, CURR BIOL, V19, P751, DOI 10.1016/j.cub.2009.03.036; Wolfner MF, 1997, INSECT BIOCHEM MOLEC, V27, P179, DOI 10.1016/S0965-1748(96)00084-7; Xu J, 2009, BEHAV ECOL SOCIOBIOL, V63, P801, DOI 10.1007/s00265-009-0713-x; Yasui Y, 1996, J INSECT BEHAV, V9, P517, DOI 10.1007/BF02214027 60 6 6 0 36 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 19 2014 9 2 e88700 10.1371/journal.pone.0088700 6 Multidisciplinary Sciences Science & Technology - Other Topics AB3TA WOS:000331711900040 24586373 DOAJ Gold, Green Published 2019-02-21 J Holstein, TW; Laudet, V Holstein, Thomas W.; Laudet, Vincent Life-History Evolution: At the Origins of Metamorphosis CURRENT BIOLOGY English Editorial Material RETINOID-X-RECEPTOR; TRIPEDALIA-CYSTOPHORA; AURELIA; ACID Metamorphosis is a widespread life history strategy of animals but apart from some model organisms it is poorly characterized. A recent study of moon jellies highlights the similarities and differences between the various types of metamorphosis and illuminates its molecular determinants. [Holstein, Thomas W.] COS, D-69120 Heidelberg, Germany; [Laudet, Vincent] Univ Lyon 1, Inst Genom Fonct Lyon, CNRS, Ecole Normale Super Lyon,INRA, F-69364 Lyon 07, France Holstein, TW (reprint author), COS, Neuenheimer Feld 329, D-69120 Heidelberg, Germany. holstein@uni-hd.de; vincent.laudet@ens-lyon.fr Bouton D, 2005, J MOL ENDOCRINOL, V34, P567, DOI 10.1677/jme.1.01766; DAVIDSON EH, 1995, SCIENCE, V270, P1319, DOI 10.1126/science.270.5240.1319; de Urquiza AM, 2000, SCIENCE, V290, P2140; Fuchs B, 2014, CURR BIOL, V24, P263, DOI 10.1016/j.cub.2013.12.003; Goffin J, 2002, ANN ONCOL, V13, P1699, DOI 10.1093/annonc/mdf314; Grasso LC, 2011, DEV BIOL, V353, P411, DOI 10.1016/j.ydbio.2011.02.010; Jagersten G., 1972, EVOLUTION METAZOAN L; Johnson GD, 2009, BIOL LETTERS, V5, P235, DOI 10.1098/rsbl.2008.0722; Kane MA, 2012, BBA-MOL CELL BIOL L, V1821, P10, DOI 10.1016/j.bbalip.2011.09.012; Kostrouch Z, 1998, P NATL ACAD SCI USA, V95, P13442, DOI 10.1073/pnas.95.23.13442; Laudet V, 2011, CURR BIOL, V21, pR726, DOI 10.1016/j.cub.2011.07.030; Law JA, 2010, NAT REV GENET, V11, P204, DOI 10.1038/nrg2719; MULLER WA, 1984, J EMBRYOL EXP MORPH, V81, P253; NIELSEN C, 1985, BIOL J LINN SOC, V25, P243, DOI 10.1111/j.1095-8312.1985.tb00396.x; Shi Y.-B., 2013, CURR TOP DEV BIOL, V103, P2; SPANGENBERG DB, 1971, J EXP ZOOL, V178, P183, DOI 10.1002/jez.1401780205; SPANGENBERG DB, 1967, J EXP ZOOL, V165, P441, DOI 10.1002/jez.1401650312; WERNER B, 1971, NATURE, V232, P582, DOI 10.1038/232582a0; Wolpert L, 1999, EVOL DEV, V1, P3, DOI 10.1046/j.1525-142x.1999.00111.x 19 11 11 2 30 CELL PRESS CAMBRIDGE 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA 0960-9822 1879-0445 CURR BIOL Curr. Biol. FEB 17 2014 24 4 R159 R161 10.1016/j.cub.2014.01.003 4 Biochemistry & Molecular Biology; Cell Biology Biochemistry & Molecular Biology; Cell Biology AB3VS WOS:000331718900012 24556439 Bronze 2019-02-21 J Frago, E; Bauce, E Frago, Enric; Bauce, Eric Life-History Consequences of Chronic Nutritional Stress in an Outbreaking Insect Defoliator PLOS ONE English Article SPRUCE BUDWORM GROWTH; CHORISTONEURA-FUMIFERANA LEPIDOPTERA; BALSAM FIR TREES; RESOURCE-ALLOCATION; POPULATION-DYNAMICS; DROSOPHILA-MELANOGASTER; CHRONIC MALNUTRITION; FOOD UTILIZATION; ANIMAL-MODEL; CARRY-OVER Food shortage is a common situation in nature but little is known about the strategies animals use to overcome it. This lack of knowledge is especially true for outbreaking insects, which commonly experience nutritional stress for several successive generations when they reach high population densities. The aim of this study is to evaluate the life history consequences of chronic nutritional stress in the outbreaking moth Choristoneura fumiferana. Larvae were reared on two different artificial diets that emulate nutritional conditions larvae face during their natural population density cycle (low and medium quality artificial diets). After four generations, a subset of larvae was fed on the same diet as their parents, and another on the opposite diet. We explored larval life-history strategies to cope with nutritional stress, its associated costs and the influence of nutritional conditions experienced in the parental generation. We found no evidence of nutritional stress in the parental generation increasing offspring ability to feed on low quality diet, but the contrary: compared to offspring from parents that were fed a medium quality diet, larvae from parents fed a low quality diet had increased mortality, reduced growth rate and reduced female reproductive output. Our results support a simple stress hypothesis because the negative effects of malnutrition accumulated over successive generations. Density-dependent deterioration in plant quality is thought to be an important factor governing the population dynamics of outbreaking insects and we hypothesize that chronic nutritional stress can be a driver of outbreak declines of C. fumiferana, and of forest insects in general. [Frago, Enric; Bauce, Eric] Univ Laval, Fac Foresterie & Geomat, Quebec City, PQ G1K 7P4, Canada Frago, E (reprint author), Univ Laval, Fac Foresterie & Geomat, Quebec City, PQ G1K 7P4, Canada. enric.frago@wur.nl Natural Sciences and Engineering Research Council of Canada (NSERC); iFor research consortium; Ministerio de Educacion y Ciencia de Espana [I+D BOS2002-03820] Financial support was provided by a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant to EB and by the iFor research consortium. The authors would like to thank the iFor research consortium partners: NSERC, the Ministere des Ressources Naturelles et de la Faune du Quebec, the Conseil de l'Industrie Forestiere du Quebec, the Canadian Forest Service and the Societe de Protection des Forets contre les Insectes et les Maladies du Quebec. EF visit to the Universite Laval was funded by the "Ministerio de Educacion y Ciencia de Espana" (project I+D BOS2002-03820 with an associate 4-year grant FPI). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Abbott Karen C., 2012, P30; Akaike H, 1974, P 2 INT S INF THEOR, P267; Awmack CS, 2002, ANNU REV ENTOMOL, V47, P817, DOI 10.1146/annurev.ento.47.091201.145300; Badyaev AV, 2009, PHILOS T R SOC B, V364, P1169, DOI 10.1098/rstb.2008.0302; BAUCE E, 1994, OECOLOGIA, V97, P499, DOI 10.1007/BF00325888; BAUCE E, 1988, ENVIRON ENTOMOL, V17, P671, DOI 10.1093/ee/17.4.671; Bauce E, 1996, OECOLOGIA, V105, P126, DOI 10.1007/BF00328800; Benrey B, 1997, ECOLOGY, V78, P987, DOI 10.2307/2265852; Benz G, 1974, J APPL ECOL, V76, P196; Bidon Y, 1993, THESIS U LAVAL SAINT; BLAIS JR, 1983, CAN J FOREST RES, V13, P539, DOI 10.1139/x83-079; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Boggs CL, 2005, OECOLOGIA, V144, P353, DOI 10.1007/s00442-005-0076-6; BOGGS CL, 1992, FUNCT ECOL, V6, P508, DOI 10.2307/2390047; Burnham K. P, 2002, MODEL SELECTION MULT; Carisey N, 1997, J CHEM ECOL, V23, P1963, DOI 10.1023/B:JOEC.0000006483.52480.c4; Carisey N, 1997, CAN J FOREST RES, V27, P257, DOI 10.1139/cjfr-27-2-257; Carisey N, 2002, B ENTOMOL RES, V92, P101, DOI [10.1079/BER2001148, 10.1070/BER2001148]; CLANCY KM, 1987, ECOLOGY, V68, P733, DOI 10.2307/1938479; Colasurdo N, 2009, J EXP BIOL, V212, P1794, DOI 10.1242/jeb.027417; Delisle J, 1997, FUNCT ECOL, V11, P451, DOI 10.1046/j.1365-2435.1997.00114.x; Delvas N, 2011, ENTOMOL EXP APPL, V141, P35, DOI 10.1111/j.1570-7458.2011.01161.x; Fuentealba A, 2012, B ENTOMOL RES, V102, P275, DOI 10.1017/S0007485311000617; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Han Er-Ning, 2000, Recent Research Developments in Entomology, V3, P43; HAUKIOJA E, 1983, OIKOS, V40, P419, DOI 10.2307/3544314; HAUKIOJA E, 1991, ANNU REV ENTOMOL, V36, P25; Haynes KJ, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2373; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Karban R, 2011, FUNCT ECOL, V25, P339, DOI 10.1111/j.1365-2435.2010.01789.x; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; Kessler Andre, 2012, P91; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Marshall DJ, 2007, OIKOS, V116, P1957, DOI 10.1111/j.2007.0030-1299.16203.x; MCMORRAN A, 1965, CAN ENTOMOL, V97, P58, DOI 10.4039/Ent9758-1; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Peltonen M, 2002, ECOLOGY, V83, P3120, DOI 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2; Postma E, 2007, J ORNITHOL, V148, pS633, DOI 10.1007/s10336-007-0191-8; RANTA E, 1995, P ROY SOC B-BIOL SCI, V262, P113, DOI 10.1098/rspb.1995.0184; RHOADES DF, 1985, AM NAT, V125, P205, DOI 10.1086/284338; Rion S, 2007, J EVOLUTION BIOL, V20, P1655, DOI 10.1111/j.1420-9101.2007.01405.x; Roff Derek A., 1992; ROYAMA T, 1984, ECOL MONOGR, V54, P429, DOI 10.2307/1942595; Saastamoinen M, 2010, AM NAT, V176, P686, DOI 10.1086/657038; Sanders CJ, 1991, TORTRICID PESTS THEI, P579; Schoonhoven L. M., 2005, INSECT PLANT BIOL; Stearns S, 1992, EVOLUTION LIFE HIST; Triggs AM, 2012, FUNCT ECOL, V26, P1409, DOI 10.1111/j.1365-2435.2012.02051.x; Veenstra JA, 2009, INSECT BIOCHEM MOLEC, V39, P755, DOI 10.1016/j.ibmb.2009.09.008; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Vijendravarma RK, 2012, J EVOLUTION BIOL, V25, P288, DOI 10.1111/j.1420-9101.2011.02419.x; Vijendravarma RK, 2012, P ROY SOC B-BIOL SCI, V279, P3540, DOI 10.1098/rspb.2012.0966; Vijendravarma RK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030650; Vijendravarma RK, 2010, BIOL LETTERS, V6, P238, DOI 10.1098/rsbl.2009.0754; White TCR, 2005, WHY DOES THE WORLD STAY GREEN: NUTRITION AND SURVIVAL OF PLANT-EATERS, P1; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x 58 9 10 0 27 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 5 2014 9 2 e88039 10.1371/journal.pone.0088039 9 Multidisciplinary Sciences Science & Technology - Other Topics AA1AT WOS:000330829200103 24505368 DOAJ Gold, Green Published 2019-02-21 J Zhu, FY; Rypel, AL; Murphy, BR; Li, ZJ; Zhang, TL; Yuan, J; Guo, ZQ; Tang, JF; Liu, JS Zhu, Fengyue; Rypel, Andrew L.; Murphy, Brian R.; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Guo, Zhiqiang; Tang, Jianfeng; Liu, Jiashou Rapid Life-History Diversification of an Introduced Fish Species across a Localized Thermal Gradient PLOS ONE English Article POPULATION-DYNAMIC CONSEQUENCES; GUPPIES POECILIA-RETICULATA; CLIMATE-CHANGE; BODY-SIZE; TRADE-OFFS; MICROGEOGRAPHICAL VARIATION; PHENOTYPIC PLASTICITY; LATITUDINAL VARIATION; REPRODUCTIVE-BIOLOGY; ADAPTIVE EVOLUTION Climatic variations are known to engender life-history diversification of species and populations at large spatial scales. However, the extent to which microgeographic variations in climate (e.g., those occurring within a single large ecosystem) can also drive life-history divergence is generally poorly documented. We exploited a spatial gradient in water temperatures at three sites across a large montane lake in southwest China (Lake Erhai) to examine the extent to which life histories of a short-lived fish species (icefish, Neosalanx taihuensis) diversified in response to thermal regime following introduction 25 y prior. In general, warmwater icefish variants grew faster, had larger adult body size and higher condition and fecundity, but matured at smaller sizes. Conversely, coldwater variants had smaller adult body size and lower condition, but matured at larger sizes and had larger eggs. These life-history differences strongly suggest that key ecological trade-offs exist for icefish populations exposed to different thermal regimes, and these trade-offs have driven relatively rapid diversification in the life histories of icefish within Lake Erhai. Results are surprisingly concordant with current knowledge on life-history evolution at macroecological scales, and suggest that improved conservation management might be possible by focusing on patterns operating at microgeographical, including, within-ecosystem scales. [Zhu, Fengyue; Li, Zhongjie; Zhang, Tanglin; Yuan, Jing; Guo, Zhiqiang; Tang, Jianfeng; Liu, Jiashou] Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan, Peoples R China; [Zhu, Fengyue; Guo, Zhiqiang; Tang, Jianfeng] Univ Chinese Acad Sci, Beijing, Peoples R China; [Rypel, Andrew L.] Univ Wisconsin, Ctr Limnol, Madison, WI 53706 USA; [Rypel, Andrew L.] Wisconsin Dept Nat Resources, Madison, WI USA; [Rypel, Andrew L.; Murphy, Brian R.] Virginia Polytech Inst & State Univ, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA Liu, JS (reprint author), Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan, Peoples R China. jsliu@ihb.ac.cn project of the Special Fund for Agro-Scientific Research in the Public Interest of China [201303056]; National Natural Science Foundation of China [31172387]; National Science and Technology Supporting Program [2012BAD25B08]; Major Science and Technology Program for Water Pollution Control and Treatment of China [2012ZX07105-004]; Fund of the State Key Laboratory of Freshwater Ecology and Biotechnology; Acorn Alcinda Foundation; Virginia Tech University, Department of Fish and Wildlife Conservation; University of Wisconsin, Center for Limnology; Wisconsin Department of Natural Resources The research was financially supported by the project of the Special Fund for Agro-Scientific Research in the Public Interest of China (201303056), the National Natural Science Foundation of China (No. 31172387), the National Science and Technology Supporting Program (No. 2012BAD25B08), the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2012ZX07105-004) and the Fund of the State Key Laboratory of Freshwater Ecology and Biotechnology. B. R. Murphy and A. L. Rypel were supported by the Acorn Alcinda Foundation and the Virginia Tech University, Department of Fish and Wildlife Conservation. Additional support for AR was provided through the University of Wisconsin, Center for Limnology and the Wisconsin Department of Natural Resources. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. ADAMS PB, 1980, FISH B-NOAA, V78, P1; Allan JD, 2013, P NATL ACAD SCI USA, V110, P372, DOI 10.1073/pnas.1213841110; ALLENDORF FW, 1986, ZOO BIOL, V5, P181, DOI 10.1002/zoo.1430050212; ALLENDORF FW, 1980, T AM FISH SOC, V109, P537, DOI 10.1577/1548-8659(1980)109<537:LOGVIA>2.0.CO;2; Angilletta MJ, 2003, AM NAT, V162, P332; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; ANGILLETTA MJ, 2004, AM NAT, V164, P168, DOI DOI 10.1086/425222; Arendt JD, 2005, P ROY SOC B-BIOL SCI, V272, P333, DOI 10.1098/rspb.2004.2899; Arscott DB, 2001, CAN J FISH AQUAT SCI, V58, P2359, DOI 10.1139/cjfas-58-12-2359; BAUR B, 1988, BIOL J LINN SOC, V35, P247, DOI 10.1111/j.1095-8312.1988.tb00469.x; Beck J, 2012, ECOGRAPHY, V35, P673, DOI 10.1111/j.1600-0587.2012.07364.x; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Berke SK, 2012, GLOBAL ECOL BIOGEOGR, DOI [10.1111/j.1466-8238.2012.00775.x, DOI 10.1111/J.1466-8238.2012.00775.X]; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Braaten PJ, 2002, T AM FISH SOC, V131, P931, DOI 10.1577/1548-8659(2002)131<0931:LHAOFA>2.0.CO;2; Bronikowski AM, 2002, ECOLOGY, V83, P2194, DOI 10.2307/3072051; Brown JH, 1995, MACROECOLOGY; CHARNOV, 1993, LIFE HIST INVARIANTS; Chavarie L, 2010, HYDROBIOLOGIA, V650, P161, DOI 10.1007/s10750-009-0043-z; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; Chen Y. R., 1998, CHINESE BIODIVERSITY, V06, P272; Chown SL, 2003, ECOGRAPHY, V26, P445, DOI 10.1034/j.1600-0587.2003.03479.x; Chown SL, 2010, BIOL REV, V85, P139, DOI 10.1111/j.1469-185X.2009.00097.x; Ciotti BJ, 2013, CAN J FISH AQUAT SCI, V70, P720, DOI 10.1139/cjfas-2012-0331; CLARK WG, 1991, CAN J FISH AQUAT SCI, V48, P734, DOI 10.1139/f91-088; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Colonello JC, 2011, J FISH BIOL, V78, P287, DOI 10.1111/j.1095-8649.2010.02864.x; CONGDON JD, 1993, CONSERV BIOL, V7, P826, DOI 10.1046/j.1523-1739.1993.740826.x; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; COUTANT CC, 1985, T AM FISH SOC, V114, P31, DOI 10.1577/1548-8659(1985)114<31:SBTADO>2.0.CO;2; Crandall KA, 2000, TRENDS ECOL EVOL, V15, P290, DOI 10.1016/S0169-5347(00)01876-0; da Mata RA, 2010, BIOL INVASIONS, V12, P1231, DOI 10.1007/s10530-009-9542-0; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; DU B, 2001, RES ENV SCI, V14, P43; Fang X, 2012, T AM FISH SOC, V141, P1608, DOI 10.1080/00028487.2012.713888; FLEMING IA, 1990, ECOLOGY, P2; Freidenburg LK, 2004, ECOL LETT, V7, P369, DOI 10.1111/j.1461-0248.2004.00587.x; Gause G.F., 1934, STRUGGLE EXISTENCE; Gienapp P, 2008, MOL ECOL, V17, P167, DOI 10.1111/j.1365-294X.2007.03413.x; Gong WB, 2009, J FRESHWATER ECOL, V24, P529, DOI 10.1080/02705060.2009.9664329; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Guo ZQ, 2013, HYDROBIOLOGIA, V709, P89, DOI 10.1007/s10750-012-1439-8; Hamilton WJ, 2001, ECOL FRESHW FISH, V10, P105, DOI 10.1034/j.1600-0633.2001.100205.x; Heino M, 2008, B MAR SCI, V83, P69; Henery ML, 2010, J ECOL, V98, P800, DOI 10.1111/j.1365-2745.2010.01672.x; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; HOLT RD, 1990, TRENDS ECOL EVOL, V5, P311, DOI 10.1016/0169-5347(90)90088-U; HUTCHINSON GE, 1959, AM NAT, V93, P117, DOI 10.1086/282063; Jansen T, 2011, CONT SHELF RES, V31, P64, DOI 10.1016/j.csr.2010.11.003; Johannesson K, 2006, MOL ECOL, V15, P2013, DOI 10.1111/j.1365-294X.2006.02919.x; Jones G, 2002, BEHAV ECOL, V13, P375, DOI 10.1093/beheco/13.3.375; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kocher TD, 2004, NAT REV GENET, V5, P288, DOI 10.1038/nrg1316; KORPELAINEN H, 1986, FRESHWATER BIOL, V16, P615, DOI 10.1111/j.1365-2427.1986.tb01004.x; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LANDE R, 1976, EVOLUTION, V30, P314, DOI 10.1111/j.1558-5646.1976.tb00911.x; Liu J., 2009, TECHNICAL REPORT; Losos JB, 2006, SCIENCE, V314, P1111, DOI 10.1126/science.1133584; MACINTYRE S, 2013, CLIMATIC CH IN PRESS; MacNamara R, 2012, ICES J MAR SCI, V69, P1333, DOI 10.1093/icesjms/fss123; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Munch SB, 2009, P NATL ACAD SCI USA, V106, P13860, DOI 10.1073/pnas.0900300106; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2003, OIKOS, V100, P483, DOI 10.1034/j.1600-0706.2003.11900.x; Orizaola G, 2009, EVOL ECOL, V23, P979, DOI 10.1007/s10682-008-9285-x; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Passy SI, 2012, ECOL LETT, V15, P923, DOI 10.1111/j.1461-0248.2012.01809.x; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pincheira-Donoso D, 2010, THEOR BIOSCI, V129, P247, DOI 10.1007/s12064-010-0101-0; Potts R, 1996, SCIENCE, V273, P922, DOI 10.1126/science.273.5277.922; RAY CARLETON, 1960, JOUR MORPHOL, V106, P85, DOI 10.1002/jmor.1051060104; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Rypel A. L., 2011, CONSERV ECOL, P661; RYPEL AL, 2013, AM NATURALI IN PRESS; RYPEL AL, 2013, OIKOS IN PRESS; Rypel AL, 2012, ECOL FRESHW FISH, V21, P521, DOI 10.1111/j.1600-0633.2012.00570.x; Rypel AL, 2012, ECOSYSTEMS, V15, P555, DOI 10.1007/s10021-012-9528-0; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; Sheridan JA, 2011, NAT CLIM CHANGE, V1, P401, DOI 10.1038/NCLIMATE1259; Shuter B.J., 1992, Geojournal, V28, P7, DOI 10.1007/BF00216402; Sih A, 2004, TRENDS ECOL EVOL, V19, P372, DOI 10.1016/j.tree.2004.04.009; Sih A, 2010, OIKOS, V119, P610, DOI 10.1111/j.1600-0706.2009.18039.x; Skelly DK, 2000, ECOL LETT, V3, P483, DOI 10.1046/j.1461-0248.2000.00186.x; SKELLY DK, 2001, EVOLUTIONARY RESPONS; Smith BB, 2004, J FISH BIOL, V64, P336, DOI 10.1111/j.0022-1112.2004.00293.x; SMITH FA, 1995, SCIENCE, V270, P2012, DOI 10.1126/science.270.5244.2012; Soranno PA, 1999, ECOSYSTEMS, V2, P395, DOI 10.1007/s100219900089; Soranno PA, 1997, CAN J FISH AQUAT SCI, V54, P1883, DOI 10.1139/cjfas-54-8-1883; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stillman JH, 2002, INTEGR COMP BIOL, V42, P790, DOI 10.1093/icb/42.4.790; Stillwell RC, 2005, ECOLOGY, V86, P924, DOI 10.1890/04-0547; TANG JF, 2013, J APPL ICHT IN PRESS; Vitousek PM, 1997, SCIENCE, V277, P494, DOI 10.1126/science.277.5325.494; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Watt C, 2010, OIKOS, V119, P89, DOI 10.1111/j.1600-0706.2009.17959.x; Whitney KD, 2008, DIVERS DISTRIB, V14, P569, DOI 10.1111/j.1472-4642.2008.00473.x; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; YDENBERG RC, 1989, ECOLOGY, V70, P1494, DOI 10.2307/1938208; YU HT, 1995, BIOL J LINN SOC, V55, P69, DOI 10.1016/0024-4066(95)90029-2; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; ZHANG C, 2000, 9 ACPEU FISH RES IN; ZHU F, 2014, J APPL ICHT IN PRESS 113 4 4 2 45 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One FEB 4 2014 9 2 e88033 10.1371/journal.pone.0088033 10 Multidisciplinary Sciences Science & Technology - Other Topics AI6GY WOS:000336971300042 24505366 DOAJ Gold, Green Published 2019-02-21 J Bonett, RM; Steffen, MA; Lambert, SM; Wiens, JJ; Chippindale, PT Bonett, Ronald M.; Steffen, Michael A.; Lambert, Shea M.; Wiens, John J.; Chippindale, Paul T. EVOLUTION OF PAEDOMORPHOSIS IN PLETHODONTID SALAMANDERS: ECOLOGICAL CORRELATES AND RE-EVOLUTION OF METAMORPHOSIS EVOLUTION English Article Amphibians; biogeography; climate; development; life history; phylogeny LIFE-HISTORY EVOLUTION; MEXICAN AMBYSTOMATID SALAMANDERS; COMPLETE MITOCHONDRIAL GENOMES; NORTH-AMERICAN SALAMANDERS; EURYCEA-NEOTENES; THYROID-HORMONE; CENTRAL TEXAS; DOLLOS LAW; FACULTATIVE PEDOMORPHOSIS; SPECIES DIVERSIFICATION Life-history modes can profoundly impact the biology of a species, and a classic example is the dichotomy between metamorphic (biphasic) and paedomorphic (permanently aquatic) life-history strategies in salamanders. However, despite centuries of research on this system, several basic questions about the evolution of paedomorphosis in salamanders have not been addressed. Here, we use a nearly comprehensive, time-calibrated phylogeny of spelerpine plethodontids to reconstruct the evolution of paedomorphosis and to test if paedomorphosis is (1) reversible; (2) associated with living in caves; (3) associated with relatively dry climatic conditions on the surface; and (4) correlated with limited range size and geographic dispersal. We find that paedomorphosis arose multiple times in spelerpines. We also find evidence for re-evolution of metamorphosis after several million years of paedomorphosis in a lineage of Eurycea from the Edwards Plateau region of Texas. We also show for the first time using phylogenetic comparative methods that paedomorphosis is highly correlated with cave-dwelling, arid surface environments, and small geographic range sizes, providing insights into both the causes and consequences of this major life history transition. [Bonett, Ronald M.; Steffen, Michael A.] Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA; [Lambert, Shea M.; Wiens, John J.] Univ Arizona, Dept Ecol & Evolut Biol, Tucson, AZ 85721 USA; [Chippindale, Paul T.] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA Bonett, RM (reprint author), Univ Tulsa, Dept Biol Sci, Tulsa, OK 74104 USA. ron-bonett@utulsa.edu Wiens, John/0000-0003-4243-1127 University of Tulsa; Austin Community Foundation; Texas Parks & Wildlife Department/U.S. Fish & Wildlife Service; National Science Foundation [DEB 1050322, DEB 0331747, DEB 0129242] The authors thank A. Baldwin, N. Bendik, J. Bernardo, C. Camp, D. A. Chamberlain, J. Corser, L. Dries, O. Dolgova, J. Fries, A. Gluesenkamp, R. Highton, D. Hillis, K. Irwin, K. Kozak, P. Moler, M. Niemiller, A. Price, A. Trujano, and R. W. Van Devender for providing samples or accompanying us in the field. Additional samples were obtained from the Museum of Vertebrate Zoology (University of California, Berkeley), Louisiana State University Museum of Zoology, and the Texas Natural History Collection (University of Texas at Austin) tissue collections. The authors thank T. Linton for help compiling locality data. Funding for this research was provided by the University of Tulsa, an Austin Community Foundation grant and Texas Parks & Wildlife Department/U.S. Fish & Wildlife Service Section 6 grants to PTC, and National Science Foundation grants (DEB 1050322 to RMB, DEB 0331747 to JJW, and DEB 0129242 to PTC). AmphibiaWeb, 2013, INF AMPH BIOL CONS; Bendik NF, 2013, J ZOOL, V290, P35, DOI 10.1111/jzo.12009; Bendik NF, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-201; Birand A, 2012, AM NAT, V179, P1, DOI 10.1086/663202; Boardman GS, 2011, PALAEONTOL ELECTRON, V14; Bonett RM, 2006, BMC BIOL, V4, DOI 10.1186/1741-7007-4-6; Bonett RM, 2004, MOL ECOL, V13, P1189, DOI 10.1111/j.1365-294X.2004.02130.x; Bonett RM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0200; Bonett RM, 2010, GEN COMP ENDOCR, V168, P209, DOI 10.1016/j.ygcen.2010.03.014; Brandley MC, 2008, EVOLUTION, V62, P2042, DOI 10.1111/j.1558-5646.2008.00430.x; Brown JM, 2010, SYST BIOL, V59, P145, DOI 10.1093/sysbio/syp081; BRUCE RC, 1976, COPEIA, P242; Burnham K. P, 2002, MODEL SELECTION MULT; Camp CD, 2009, J ZOOL, V279, P86, DOI 10.1111/j.1469-7998.2009.00593.x; Chippindale PT, 2004, EVOLUTION, V58, P2809; Chippindale PT, 2000, HERPETOL MONOGR, V14, P1, DOI 10.2307/1467045; Cooper N, 2008, GLOBAL ECOL BIOGEOGR, V17, P211, DOI 10.1111/j.1466-8238.2007.00355.x; Davis MP, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-38; Denoel M, 2005, BIOL REV, V80, P663, DOI 10.1017/S1464793105006858; DENT JN, 1968, METAMORPHOSIS PROBLE, P271; Denver RJ, 2009, GEN COMP ENDOCR, V164, P20, DOI 10.1016/j.ygcen.2009.04.016; Dollo L., 1893, LOIS EVOLUTION B SOC, V7, P164; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Duellman W. E., 1986, BIOL AMPHIBIANS; DUNDEE HAROLD A., 1957, COPEIA, V1957, P52, DOI 10.2307/1440522; Eastman JM, 2011, SYST BIOL, V60, P503, DOI 10.1093/sysbio/syr020; Emel SL, 2011, CONSERV GENET, V12, P1243, DOI 10.1007/s10592-011-0226-9; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Goldberg EE, 2008, EVOLUTION, V62, P2727, DOI 10.1111/j.1558-5646.2008.00505.x; Goricki S, 2006, GENE, V378, P31, DOI 10.1016/j.gene.2006.04.016; Gould S. J., 1977, ONTOGENY PHYLOGENY; Heled J, 2010, MOL BIOL EVOL, V27, P570, DOI 10.1093/molbev/msp274; Hijmans R. J, 2005, WORLDCLIM INTERPOLAT; Hillis D. M., 2001, HERPETOLOGICA, V57, P247; HOLMAN JA, 2006, FOSSIL SALAMANDERS N; Huelsenbeck JP, 2001, BIOINFORMATICS, V17, P754, DOI 10.1093/bioinformatics/17.8.754; IUCN, 2011, IUCN RED LIST THREAT; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; Jablonski D, 2008, P NATL ACAD SCI USA, V105, P11528, DOI 10.1073/pnas.0801919105; KEZER J, 1952, COPEIA, P234, DOI 10.2307/1439269; Kohlsdorf T, 2010, EVOLUTION, V64, P2477, DOI 10.1111/j.1558-5646.2010.01042.x; Kozak KH, 2010, ECOL LETT, V13, P1378, DOI 10.1111/j.1461-0248.2010.01530.x; Kozak KH, 2009, EVOLUTION, V63, P1769, DOI 10.1111/j.1558-5646.2009.00680.x; Kozak KH, 2006, MOL ECOL, V15, P191, DOI 10.1111/j.1365-294X.2005.02757.x; Krenz JD, 1995, HERPETOLOGICA, V51, P387; Lamb T, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037544; Lynch VJ, 2010, EVOLUTION, V64, P207, DOI 10.1111/j.1558-5646.2009.00790.x; Maddison WP, 2007, SYSTEMATIC BIOL, V56, P701, DOI 10.1080/10635150701607033; Maddison WP, 2008, MESQUITE MODULAR SYS; MARSHALL CR, 1994, P NATL ACAD SCI USA, V91, P12283, DOI 10.1073/pnas.91.25.12283; MILNER AR, 1983, EVOLUTION TIME SPACE, P431; MORAN NA, 1994, ANNU REV ECOL SYST, V25, P573, DOI 10.1146/annurev.es.25.110194.003041; Mueller RL, 2006, SYST BIOL, V55, P289, DOI 10.1080/10635150500541672; Mueller RL, 2004, P NATL ACAD SCI USA, V101, P13820, DOI 10.1073/pnas.0405785101; Niemiller ML, 2008, MOL ECOL, V17, P2258, DOI 10.1111/j.1365-294X.2008.03750.x; Nylander J. A. A, 2004, MRMODELTEST V2 PROGR; PAGEL M, 1994, P ROY SOC B-BIOL SCI, V255, P37, DOI 10.1098/rspb.1994.0006; Pagel M, 2004, SYST BIOL, V53, P673, DOI 10.1080/10635150490522232; Pagel M, 2006, AM NAT, V167, P808, DOI 10.1086/503444; Petranka J. W, 1998, SALAMANDERS US CANAD; Potter F. E., 1960, ZOOL SER AM COLLEGE, V1, P1; Pyron RA, 2011, MOL PHYLOGENET EVOL, V61, P543, DOI 10.1016/j.ympev.2011.06.012; Rambaut A., 2007, TRACER V1 5; Ree RH, 2005, EVOLUTION, V59, P2299; Ree RH, 2008, SYSTEMATIC BIOL, V57, P4, DOI 10.1080/10635150701883881; Revell L. J., 2012, PHYTOOLS PHYLOGENETI; Roelants K, 2007, P NATL ACAD SCI USA, V104, P887, DOI 10.1073/pnas.0608378104; Ronquist F, 2003, BIOINFORMATICS, V19, P1572, DOI 10.1093/bioinformatics/btg180; Rose CS, 1996, J ZOOL, V239, P253, DOI 10.1111/j.1469-7998.1996.tb05451.x; Ryan TJ, 1998, P NATL ACAD SCI USA, V95, P5643, DOI 10.1073/pnas.95.10.5643; Ryan TJ, 2000, BIOLOGY OF PLETHODONTID SALAMANDERS, P303; Safi R, 2006, EVOL DEV, V8, P284, DOI 10.1111/j.1525-142X.2006.00099.x; SEMLITSCH RD, 1987, ECOLOGY, V68, P994, DOI 10.2307/1938370; SEMLITSCH RD, 1990, EVOLUTION, V44, P1604, DOI 10.1111/j.1558-5646.1990.tb03849.x; Shaffer HB, 1996, AM ZOOL, V36, P24; SHAFFER HB, 1984, EVOLUTION, V38, P1194, DOI 10.1111/j.1558-5646.1984.tb05643.x; SKET B, 1994, BIJDR DIERKD, V64, P33; SPRULES WG, 1974, CAN J ZOOL, V52, P393, DOI 10.1139/z74-047; STANLEY SM, 1986, PALEOBIOLOGY, V12, P89; Stearns S, 1992, EVOLUTION LIFE HIST; SWEET SS, 1977, HERPETOLOGICA, V33, P364; Syme AE, 2012, SYST BIOL, V61, P314, DOI 10.1093/sysbio/syr085; Timpe EK, 2009, MOL PHYLOGENET EVOL, V52, P368, DOI 10.1016/j.ympev.2009.03.023; Valenzuela N, 2011, EVOLUTION, V65, P1808, DOI 10.1111/j.1558-5646.2011.01258.x; VANAUKEN OW, 1981, AM J BOT, V68, P1249; Vieites DR, 2007, P NATL ACAD SCI USA, V104, P19903, DOI 10.1073/pnas.0705056104; Voss SR, 2012, HEREDITY, V109, P293, DOI 10.1038/hdy.2012.41; WAKE DAVID B., 1966, MEM S CALIF ACAD SCI, V4, P1; Weisrock DW, 2006, MOL ECOL, V15, P2489, DOI 10.1111/j.1365-294X.2006.02961.x; WHITEMAN HH, 1994, Q REV BIOL, V69, P205, DOI 10.1086/418540; Wiens JJ, 2005, SYST BIOL, V54, P91, DOI 10.1080/10635150590906037; Wiens JJ, 2003, SYST BIOL, V52, P501, DOI 10.1080/10635150390218222; Wiens JJ, 2007, AM NAT, V170, pS86, DOI 10.1086/519396; Wiens JJ, 2006, EVOLUTION, V60, P2585; Wiens JJ, 2011, EVOLUTION, V65, P1283, DOI 10.1111/j.1558-5646.2011.01221.x; WILBUR HM, 1973, SCIENCE, V182, P1305, DOI 10.1126/science.182.4119.1305; Zhang P, 2009, MOL PHYLOGENET EVOL, V53, P492, DOI 10.1016/j.ympev.2009.07.010 97 26 26 3 67 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 466 482 10.1111/evo.12274 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600013 24102140 2019-02-21 J Burkli, A; Postma, E Buerkli, Anja; Postma, Erik GENETIC CONSTRAINTS UNDERLYING HUMAN REPRODUCTIVE TIMING IN A PREMODERN SWISS VILLAGE EVOLUTION English Article Genetic correlation; humans; life-history evolution; menopause; natural selection; reproductive scheduling LIFE-HISTORY TRAITS; CONTEMPORARY HUMAN-POPULATION; NATURAL-SELECTION; QUANTITATIVE GENETICS; ANIMAL-MODEL; TRADE-OFF; RED DEER; AGE; SENESCENCE; EVOLUTION The trade-off between reproductive investment in early versus late life is central to life-history theory. Despite abundant empirical evidence supporting different versions of this trade-off, the specific trade-off between age at first reproduction (AFR) and age at last reproduction (ALR) has received little attention, especially in long-lived species with a pronounced reproductive senescence such as humans. Using genealogical data for a 19th-century Swiss village, we (i) quantify natural selection acting on reproductive timing, (ii) estimate the underlying additive genetic (co)variances, and (iii) use these to predict evolutionary responses. Selection gradients were computed using multiple linear regression, and the additive genetic variance-covariance matrix was estimated using a restricted maximum-likelihood animal model. We found strong selection for both an early AFR and a late ALR, which resulted from selection for an earlier and longer reproductive period (RP, i.e., ALR-AFR). Furthermore, postponing AFR shortened RP in both sexes, but twice as much in women. Finally, AFR and ALR were strongly and positively genetically correlated, which led to a considerable reduction in the predicted responses to selection, or even rendered them maladaptive. These results provide evidence for strong genetic constraints underlying reproductive timing in humans, which may have contributed to the evolution of menopause. [Buerkli, Anja; Postma, Erik] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Buerkli, Anja] Swiss Fed Inst Aquat Sci & Technol, EAWAG, CH-8600 Dubendorf, Switzerland; [Buerkli, Anja] Swiss Fed Inst Technol, Inst Integrat Biol, Zurich, Switzerland Burkli, A (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. anjabuerkli@hotmail.com Postma, Erik/B-7258-2008 Postma, Erik/0000-0003-0856-1294; Felmy, Anja/0000-0002-2913-6994 Agrawal AF, 2009, P ROY SOC B-BIOL SCI, V276, P1183, DOI 10.1098/rspb.2008.1671; Andersen AMN, 2000, BRIT MED J, V320, P1708, DOI 10.1136/bmj.320.7251.1708; Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Blomquist GE, 2009, BEHAV ECOL SOCIOBIOL, V63, P1345, DOI 10.1007/s00265-009-0792-8; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Charmantier A, 2005, MOL ECOL, V14, P2839, DOI 10.1111/j.1365-294X.2005.02619.x; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; CONNER J, 1992, HEREDITY, V69, P73, DOI 10.1038/hdy.1992.96; Coulson T, 2003, EVOLUTION, V57, P2879; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Danchin E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061254; Dribe M, 2004, POP STUD-J DEMOG, V58, P297, DOI 10.1080/0032472042000272357; Falconer D. S., 1996, INTRO QUANTITATIVE G; Gibson MA, 2005, EVOL HUM BEHAV, V26, P469, DOI 10.1016/j.evolhumbehav.2005.03.004; Gilmour AR, 2009, ASREML USER GUIDE RE; Gosden R.G., 1985, BIOL MENOPAUSE CAUSE; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helle S, 2005, P ROY SOC B-BIOL SCI, V272, P29, DOI 10.1098/rspb.2004.2944; Helle S, 2008, EVOL HUM BEHAV, V29, P189, DOI 10.1016/j.evolhumbehav.2007.11.009; Johnson KJ, 2009, EPIDEMIOLOGY, V20, P475, DOI 10.1097/EDE.0b013e3181a5a332; Kaar P, 1996, P ROY SOC B-BIOL SCI, V263, P1475, DOI 10.1098/rspb.1996.0215; Kachel AF, 2012, EVOL BIOL, V39, P638, DOI 10.1007/s11692-012-9169-4; KAWECKI TJ, 1993, OIKOS, V66, P309, DOI 10.2307/3544819; Kirk KM, 2001, EVOLUTION, V55, P423; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Kruuk LEB, 2000, P NATL ACAD SCI USA, V97, P698, DOI 10.1073/pnas.97.2.698; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Martin JGA, 2012, OIKOS, V121, P752, DOI 10.1111/j.1600-0706.2011.19962.x; Medawar P, 1952, UNSOLVED PROBLEM BIO; Melby MK, 2011, ANNU REV ANTHROPOL, V40, P53, DOI 10.1146/annurev-anthro-081309-145641; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; MINCHELLA DJ, 1981, AM NAT, V118, P876, DOI 10.1086/283879; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; Morrissey MB, 2012, AM NAT, V179, pE97, DOI 10.1086/664686; Nettle D, 2011, PHILOS T R SOC B, V366, P357, DOI 10.1098/rstb.2010.0073; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Postma E, 2010, J EVOLUTION BIOL, V23, P1468, DOI 10.1111/j.1420-9101.2010.02013.x; Postma E, 2007, J ORNITHOL, V148, pS633, DOI 10.1007/s10336-007-0191-8; Postma E, 2011, EVOLUTION, V65, P2145, DOI 10.1111/j.1558-5646.2011.01314.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2000, HEREDITY, V85, P593, DOI 10.1046/j.1365-2540.2000.00795.x; Reed TE, 2008, AM NAT, V171, pE89, DOI 10.1086/524957; Richner H, 1999, OIKOS, V86, P535, DOI 10.2307/3546657; Rousseau T, 2010, J GYNECOL OBST BIO R, V39, P284, DOI 10.1016/j.jgyn.2010.03.001; Rutkowska J, 2011, P ROY SOC B-BIOL SCI, V278, P2962, DOI 10.1098/rspb.2010.2654; Sartorius GA, 2010, HUM REPROD UPDATE, V16, P65, DOI 10.1093/humupd/dmp027; Schmid TE, 2007, HUM REPROD, V22, P180, DOI 10.1093/humrep/del338; SELF SG, 1987, J AM STAT ASSOC, V82, P605, DOI 10.2307/2289471; Skjaervo GR, 2011, EVOL HUM BEHAV, V32, P305, DOI 10.1016/j.evolhumbehav.2010.11.006; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Teplitsky C, 2009, EVOLUTION, V63, P716, DOI 10.1111/j.1558-5646.2008.00581.x; Tettamanti F, 2012, IBIS, V154, P338, DOI 10.1111/j.1474-919X.2012.01215.x; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Zampieri F, 2009, Q REV BIOL, V84, P333, DOI 10.1086/648122 64 1 1 0 20 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 526 537 10.1111/evo.12287 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600017 24117466 2019-02-21 J Cogni, R; Kuczynski, C; Koury, S; Lavington, E; Behrman, EL; O'Brien, KR; Schmidt, PS; Eanes, WF Cogni, Rodrigo; Kuczynski, Caitlin; Koury, Spencer; Lavington, Erik; Behrman, Emily L.; O'Brien, Katherine R.; Schmidt, Paul S.; Eanes, Walter F. THE INTENSITY OF SELECTION ACTING ON THE COUCH POTATO GENE-SPATIAL-TEMPORAL VARIATION IN A DIAPAUSE CLINE EVOLUTION English Article Adaptation; gene flow; life-history evolution; physiology; population genetics; population structure ALLELE FREQUENCY ESTIMATION; LIFE-HISTORY TRAITS; DROSOPHILA-MELANOGASTER; NATURAL-POPULATIONS; NORTH-AMERICAN; REPRODUCTIVE DIAPAUSE; CLIMATIC ADAPTATION; OVARIAN DORMANCY; POLYMORPHISM; PATTERNS Cosmopolitan populations of Drosophila melanogaster have co-opted a form of reproductive diapause to overwinter in northern populations. Polymorphism in the couch potato gene has been implicated in genetic variation for this diapause trait. Using a collection of 20 populations from Florida to Canada and 11 collections from 3 years in a Pennsylvania orchard, we estimated the allele frequencies for 15 single nucleotide polymorphisms (SNPs) in the couch potato gene. These include the specific polymorphism associated with diapause inducability. We find that the SNP polymorphism, 48034(A/T), is correlated with latitude and its frequencies are predicted by the incidence of diapause trait. We find that the clinal patterns for cpo SNPs sampled in 1997 are similar to the same SNPs sampled in 2009-2010. SNPs that show apparent associations with cpo expression are also clinal with the low-expression allele increasing in frequency, as would be predicted from functional knockout studies of cpo. Finally, we see a significant pattern where the frequency of the diapause-causing allele drops in frequency during the summer season, consistent with the drop in the incidence of the diapause trait. The selection required to drive this response is large, roughly 24% to 59% per generation depending on the degree of dominance. [Cogni, Rodrigo; Kuczynski, Caitlin; Koury, Spencer; Lavington, Erik; Eanes, Walter F.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA; [Behrman, Emily L.; O'Brien, Katherine R.; Schmidt, Paul S.] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA Cogni, R (reprint author), Univ Cambridge, Dept Genet, Downing St, Cambridge CB2 3EH, England. walter.eanes@stonybrook.edu Kuczynski, Caitlin/H-1682-2015; Cogni, Rodrigo/C-3962-2016 Kuczynski, Caitlin/0000-0002-0625-1017; Cogni, Rodrigo/0000-0001-9907-9297; Lavington, Erik/0000-0003-1933-9023 National Science Foundation [DEB0543050, DEB0921372, DEB0542859, DEB0921307] The authors thank T. Merritt for supplying the lines from Sudbury, ON, and J. True and J. Lachance for additional collections from New York. This study was funded by Collaborative National Science Foundation grants DEB0543050 and DEB0921372 to WFE and DEB0542859 and DEB0921307 to PSS. Ayroles JF, 2009, NAT GENET, V41, P299, DOI 10.1038/ng.332; Balanya J, 2006, SCIENCE, V313, P1773, DOI 10.1126/science.1131002; BAND HT, 1963, EVOLUTION, V17, P198, DOI 10.2307/2406466; Barnard H, 2011, J ARCHAEOL SCI, V38, P977, DOI 10.1016/j.jas.2010.11.012; Beaumont MA, 2002, GENETICS, V162, P2025; BELLEN HJ, 1992, GENETICS, V131, P365; Benovoy D, 2008, NUCLEIC ACIDS RES, V36, P4417, DOI 10.1093/nar/gkn409; BERRY A, 1993, GENETICS, V134, P869; Bradshaw WE, 2006, SCIENCE, V312, P1477, DOI 10.1126/science.1127000; Chen L, 2009, GENOMICS, V93, P501, DOI 10.1016/j.ygeno.2009.01.011; Cook LM, 2008, HEREDITY, V101, P483, DOI 10.1038/hdy.2008.105; CROW J F, 1970, P591; Csillery K, 2010, TRENDS ECOL EVOL, V25, P410, DOI 10.1016/j.tree.2010.04.001; DAVID JR, 1988, TRENDS GENET, V4, P106, DOI 10.1016/0168-9525(88)90098-4; Denlinger DL, 2002, ANNU REV ENTOMOL, V47, P93, DOI 10.1146/annurev.ento.47.091201.145137; Doostzadeh J, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002693; Duchen P, 2013, GENETICS, V193, P291, DOI 10.1534/genetics.112.145912; Emerson KJ, 2009, J COMP PHYSIOL A, V195, P825, DOI 10.1007/s00359-009-0460-5; Emerson KJ, 2009, TRENDS GENET, V25, P217, DOI 10.1016/j.tig.2009.03.009; Fabian DK, 2012, MOL ECOL, V21, P4748, DOI 10.1111/j.1365-294X.2012.05731.x; Grant BS, 1996, J HERED, V87, P351, DOI 10.1093/oxfordjournals.jhered.a023013; Graveley BR, 2011, NATURE, V471, P473, DOI 10.1038/nature09715; Haldane J. B. S., 1924, Trans Phil Soc Cambridge U K, V23, P19; IVES PT, 1945, GENETICS, V30, P167; IVES PT, 1954, P NATL ACAD SCI USA, V40, P87, DOI 10.1073/pnas.40.2.87; IVES PT, 1986, EVOLUTION, V40, P1289, DOI 10.1111/j.1558-5646.1986.tb05752.x; Kankare M, 2012, J INSECT PHYSIOL, V58, P256, DOI 10.1016/j.jinsphys.2011.11.016; Keller A, 2007, CURR BIOL, V17, pR77, DOI 10.1016/j.cub.2006.12.031; Laurent SJY, 2011, MOL BIOL EVOL, V28, P2041, DOI 10.1093/molbev/msr031; Lavebratt C, 2006, NAT PROTOC, V1, P2573, DOI 10.1038/nprot.2006.442; Lee SF, 2011, MOL ECOL, V20, P2973, DOI 10.1111/j.1365-294X.2011.05155.x; Levitan M, 2003, EVOL ECOL RES, V5, P597; Li HP, 2006, PLOS GENET, V2, P1580, DOI 10.1371/journal.pgen.0020166; Mackay TFC, 2012, NATURE, V482, P173, DOI 10.1038/nature10811; MUKAI T, 1974, GENETICS, V76, P339; Mullen LM, 2008, EVOLUTION, V62, P1555, DOI 10.1111/j.1558-5646.2008.00425.x; Reaume CJ, 2006, CURR BIOL, V16, pR623, DOI 10.1016/j.cub.2006.07.042; SAUNDERS DS, 1987, SCI PROG, V71, P51; SAUNDERS DS, 1989, P NATL ACAD SCI USA, V86, P3748, DOI 10.1073/pnas.86.10.3748; Schmidt PS, 2008, P NATL ACAD SCI USA, V105, P16207, DOI 10.1073/pnas.0805485105; Schmidt PS, 2008, EVOLUTION, V62, P1204, DOI 10.1111/j.1558-5646.2008.00351.x; Schmidt PS, 2006, EVOLUTION, V60, P1602, DOI 10.1554/05-430.1; Schmidt PS, 2005, EVOLUTION, V59, P1721; Sezgin E, 2004, GENETICS, V168, P923, DOI 10.1534/genetics.104.027649; Shpak M, 2010, EVOLUTION, V64, P1395, DOI 10.1111/j.1558-5646.2009.00891.x; Sokal R. R, 1981, BIOMETRY; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Thornton K, 2006, GENETICS, V172, P1607, DOI 10.1534/genetics.105.048223; Umina PA, 2005, SCIENCE, V308, P691, DOI 10.1126/science.1109523; Vasemagi A, 2006, GENETICS, V173, P2411, DOI 10.1534/genetics.106.059881; WILLIAMS KD, 1993, HEREDITY, V71, P312, DOI 10.1038/hdy.1993.141; Yukilevich R, 2010, GENETICS, V186, P219, DOI 10.1534/genetics.110.117366; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhang QR, 2011, J INSECT PHYSIOL, V57, P620, DOI 10.1016/j.jinsphys.2011.02.003; Zhu C. - T, 2009, THESIS STONY BROOK U 55 21 21 2 32 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 538 548 10.1111/evo.12291 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600018 24303812 2019-02-21 J McGlothlin, JW; Galloway, LF McGlothlin, Joel W.; Galloway, Laura F. THE CONTRIBUTION OF MATERNAL EFFECTS TO SELECTION RESPONSE: AN EMPIRICAL TEST OF COMPETING MODELS EVOLUTION English Article Artificial selection; breeder's equation; life-history evolution; natural selection; parental effects; quantitative genetics QUANTITATIVE GENETIC-ANALYSIS; EVOLUTION; CHARACTERS; MICE; CONSEQUENCES; INHERITANCE; POPULATION; COVARIANCE; EXPANSION; TRAITS Maternal effects can dramatically influence the evolutionary process, in some cases facilitating and in others hindering adaptive evolution. Maternal effects have been incorporated into quantitative genetic models using two theoretical frameworks: the variance-components approach, which partitions variance into direct and maternal components, and the trait-based approach, which assumes that maternal effects are mediated by specific maternal traits. Here, we demonstrate parallels between these models and test their ability to predict evolutionary change. First, we show that the two approaches predict equivalent responses to selection in the absence of maternal effects mediated by traits that are themselves maternally influenced. We also introduce a correction factor that may be applied when such cascading maternal effects are present. Second, we use several maternal effect models, as well as the standard breeder's equation, to predict evolution in response to artificial selection on flowering time in American bellflower, Campanulastrum americanum. Models that included maternal effects made much more accurate predictions of selection response than the breeder's equation. Maternal effect models differed somewhat in their fit, with a version of the trait-based model providing the best fit. We recommend fitting such trait-based models when possible and appropriate to make the most accurate evolutionary predictions. [McGlothlin, Joel W.] Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA; [Galloway, Laura F.] Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA McGlothlin, JW (reprint author), Virginia Tech, Dept Biol Sci, Blacksburg, VA 24061 USA. joelmcg@vt.edu McGlothlin, Joel/B-8222-2008 McGlothlin, Joel/0000-0003-3645-6264 National Science Foundation [NSF] [DEB-0922216] The reviewers and editors of a previous version of this manuscript provided excellent insights that significantly improved the article. The authors thank J. Etterson and K. Burgess for their work on the original experiments that are reanalyzed here. The authors also thank E. Brodie III for financial support to JWM (National Science Foundation [NSF] DEB-0922216), helpful discussions, and access to software. Data collection were supported by NSF DEB-9974126 and DEB-0316298 to LFG. Badyaev AV, 2002, SCIENCE, V295, P316, DOI 10.1126/science.1066651; Bernardo J, 1996, AM ZOOL, V36, P83; Bijma P, 2014, HEREDITY, V112, P61, DOI 10.1038/hdy.2013.15; Burgess KS, 2007, HEREDITY, V99, P641, DOI 10.1038/sj.hdy.6801043; Burnham K. P, 2002, MODEL SELECTION MULT; Byers DL, 1997, EVOLUTION, V51, P1445, DOI 10.1111/j.1558-5646.1997.tb01468.x; CHEVERUD JM, 1984, EVOLUTION, V38, P766, DOI 10.1111/j.1558-5646.1984.tb00349.x; DICKERSON GE, 1947, RES B IOWA AGR EXP S, V354, P489; Donohue K, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P137; Donohue K, 1999, AM NAT, V154, P674, DOI 10.1086/303273; Duckworth RA, 2009, PHILOS T R SOC B, V364, P1075, DOI 10.1098/rstb.2008.0294; FALCONER D. S., 1965, PROC INT CONGR GENET, V3, P763; FALCONER DS, 1960, J CELL COMPAR PHYSL, V56, P153, DOI 10.1002/jcp.1030560414; Fox CW, 2000, ECOLOGY, V81, P3, DOI 10.2307/177128; Fox CW, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P159; Galloway LF, 2007, SCIENCE, V318, P1134, DOI 10.1126/science.1148766; Galloway LF, 2009, NEW PHYTOL, V183, P826, DOI 10.1111/j.1469-8137.2009.02939.x; Galloway LF, 2005, NEW PHYTOL, V166, P93, DOI 10.1111/j.1469-8137.2004.01314.x; Gilmour AR, 2009, ASREML USER GUIDE RE; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Grindstaff JL, 2003, P ROY SOC B-BIOL SCI, V270, P2309, DOI 10.1098/rspb.2003.2485; Hadfield J, 2012, EVOLUTION OF PARENTAL CARE, P267; Hoyle RB, 2012, J R SOC INTERFACE, V9, P2403, DOI 10.1098/rsif.2012.0183; KIRKPATRICK M, 1989, EVOLUTION, V43, P485, DOI 10.1111/j.1558-5646.1989.tb04247.x; Lacey EP, 1998, MATERNAL EFFECTS AS ADAPTATIONS, P54; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; LANDE R, 1989, GENETICS, V122, P915; LANDE R, 1990, GENET RES, V55, P189, DOI 10.1017/S0016672300025520; Mateo J. M., 2009, MATERNAL EFFECTS MAM; McGlothlin JW, 2010, EVOLUTION, V64, P2558, DOI 10.1111/j.1558-5646.2010.01012.x; McGlothlin JW, 2009, EVOLUTION, V63, P1785, DOI 10.1111/j.1558-5646.2009.00676.x; Mousseau TA, 1998, MATERNAL EFFECTS ADA; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; RISKA B, 1985, GENET RES, V45, P287, DOI 10.1017/S0016672300022278; ROACH DA, 1987, ANNU REV ECOL SYST, V18, P209, DOI 10.1146/annurev.es.18.110187.001233; Robinson DL, 1996, LIVEST PROD SCI, V45, P111, DOI 10.1016/0301-6226(96)00002-4; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Schwabl H, 1996, COMP BIOCHEM PHYS A, V114, P271, DOI 10.1016/0300-9629(96)00009-6; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; TELFORD NA, 1990, MOL REPROD DEV, V26, P90, DOI 10.1002/mrd.1080260113; Thiede DA, 1998, EVOLUTION, V52, P998, DOI 10.1111/j.1558-5646.1998.tb01829.x; WILLHAM RL, 1972, J ANIM SCI, V35, P1288; WILLHAM RL, 1963, BIOMETRICS, V19, P18, DOI 10.2307/2527570; Wilson AJ, 2006, AM NAT, V167, pE23, DOI 10.1086/498138; Wolf JB, 2009, PHILOS T R SOC B, V364, P1107, DOI 10.1098/rstb.2008.0238; Wolf JB, 1998, TRENDS ECOL EVOL, V13, P64, DOI 10.1016/S0169-5347(97)01233-0 47 11 11 1 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 549 558 10.1111/evo.12235 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600019 24099096 2019-02-21 J Bonduriansky, R Bonduriansky, Russell THE ECOLOGY OF SEXUAL CONFLICT: BACKGROUND MORTALITY CAN MODULATE THE EFFECTS OF MALE MANIPULATION ON FEMALE FITNESS EVOLUTION English Article Extrinsic mortality; life span; parental conflict; predation; senescence; sexually antagonistic selection LIFE-HISTORY EVOLUTION; DROSOPHILA-MELANOGASTER; PREDATION RISK; MATE CHOICE; CALLOSOBRUCHUS-MACULATUS; POECILIA-RETICULATA; POPULATION-DYNAMICS; TEMPORAL VARIATION; SEED BEETLES; SENESCENCE Sexual and parental conflicts can arise because males benefit by inducing elevated reproductive effort in their mates. For females, the costs of such manipulation are often manifested later in life, and may therefore covary with female life expectancy. Here, I outline a simple female life-history model where female life expectancy reflects extrinsic mortality rate, and elevated reproductive effort causes accelerated senescence. Using this model, I show that variation in extrinsic mortality rate can modulate the magnitude and sign of fitness effects that male manipulation has on females. This result has several interesting implications. First, it suggests that the fitness effects of sexual interactions can depend on ecological factors, such as predation, that influence life expectancy. Second, if mortality risk is condition-dependent but reproductive effort is not fully optimized in relation to individual condition, then sexual conflict intensity may increase with individual condition, selecting for condition-dependent reproductive strategies. Third, if males vary in manipulativeness, then the fitness effects of mating with a given male phenotype may depend on both female condition and extrinsic mortality rate. Fourth, life span extension in the laboratory can lead to overestimation of sexual and parental conflicts. Life expectancy may therefore be a key factor in sexual coevolution. [Bonduriansky, Russell] Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Bonduriansky, Russell] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Bonduriansky, R (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. r.bonduriansky@unsw.edu.au Bonduriansky, Russell/0000-0002-5786-6951 Australian Research Council The author is grateful to the members of the lab for helpful discussions. Funding was provided by the Australian Research Council through a Fellowship and Discovery Grant. Arnqvist G, 2000, P NATL ACAD SCI USA, V97, P10460, DOI 10.1073/pnas.97.19.10460; Arnqvist G, 2000, ANIM BEHAV, V60, P145, DOI 10.1006/anbe.2000.1446; Arnqvist G, 2005, SEXUAL CONFLICT; Baker JD, 2007, P ROY SOC B-BIOL SCI, V274, P407, DOI 10.1098/rspb.2006.3737; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bonduriansky R, 2005, ANIM BEHAV, V69, P489, DOI 10.1016/j.anbehav.2004.03.018; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Boughman JW, 2001, NATURE, V411, P944, DOI 10.1038/35082064; BROOKS RJ, 1991, CAN J ZOOL, V69, P1314, DOI 10.1139/z91-185; Bunzel R, 1998, MOL BRAIN RES, V59, P90, DOI 10.1016/S0169-328X(98)00146-6; Candolin U, 1998, P ROY SOC B-BIOL SCI, V265, P1171, DOI 10.1098/rspb.1998.0415; Carlson SM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001286; Chapman T, 1998, P ROY SOC B-BIOL SCI, V265, P1879, DOI 10.1098/rspb.1998.0516; CHAPMAN T, 1995, NATURE, V373, P241, DOI 10.1038/373241a0; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Comfort A., 1979, BIOL SENESCENCE; Cotton S, 2006, CURR BIOL, V16, pR755, DOI 10.1016/j.cub.2006.08.022; Edward DA, 2011, EVOLUTION, V65, P564, DOI 10.1111/j.1558-5646.2010.01151.x; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; Eraly D, 2009, BEHAV ECOL, V20, P856, DOI 10.1093/beheco/arp072; Fedorka KM, 2005, J EVOLUTION BIOL, V18, P1515, DOI 10.1111/j.1420-9101.2005.00942.x; Finch C.E, 1990, LONGEVITY SENESCENCE; Fisher RA, 1930, GENETICAL THEORY NAT; Fricke C, 2010, J EVOLUTION BIOL, V23, P157, DOI 10.1111/j.1420-9101.2009.01882.x; Fricke C, 2009, J EVOLUTION BIOL, V22, P275, DOI 10.1111/j.1420-9101.2008.01638.x; Fricke C, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0428; Fricke C, 2009, BIOL LETTERS, V5, P671, DOI 10.1098/rsbl.2009.0433; Gaillard JM, 2003, ECOLOGY, V84, P3294, DOI 10.1890/02-0409; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Garcia C. M., 2011, P ROY SOC LOND B BIO, V279, P2262; Gavrilets S, 2006, PHILOS T ROY SOC B, V361, P345, DOI 10.1098/rstb.2005.1792; Gavrilets S, 2001, P ROY SOC B-BIOL SCI, V268, P531, DOI 10.1098/rspb.2000.1382; Gavrilets S, 2000, NATURE, V403, P886, DOI 10.1038/35002564; Gay L, 2011, J EVOLUTION BIOL, V24, P449, DOI 10.1111/j.1420-9101.2010.02182.x; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; GUSTAFSSON L, 1990, NATURE, V347, P279, DOI 10.1038/347279a0; Haig D, 2000, ANNU REV ECOL SYST, V31, P9, DOI 10.1146/annurev.ecolsys.31.1.9; Han CS, 2010, NAT COMMUN, V1, DOI 10.1038/ncomms1051; Hardling R, 2005, J EVOLUTION BIOL, V18, P106, DOI 10.1111/j.1420-9101.2004.00795.x; Holland B, 1998, EVOLUTION, V52, P1, DOI 10.1111/j.1558-5646.1998.tb05132.x; Holveck MJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023974; Hostetter NJ, 2012, T AM FISH SOC, V141, P1586, DOI 10.1080/00028487.2012.716011; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; IWASA Y, 1995, NATURE, V377, P420, DOI 10.1038/377420a0; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jochym M, 2012, OECOLOGIA, V170, P943, DOI 10.1007/s00442-012-2372-2; Kawasaki N, 2008, AM NAT, V172, P346, DOI 10.1086/589519; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Lupold S, 2011, BEHAV ECOL, V22, P184, DOI 10.1093/beheco/arq193; MAGNHAGEN C, 1990, BEHAV ECOL SOCIOBIOL, V26, P331; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; Maklakov AA, 2005, P ROY SOC B-BIOL SCI, V272, P2485, DOI 10.1098/rspb.2005.3240; Maklakov AA, 2004, EVOLUTION, V58, P1135; Maklakov AA, 2006, BIOL LETT-UK, V2, P62, DOI 10.1098/rsbl.2005.0398; Mappes T, 1998, OIKOS, V82, P365, DOI 10.2307/3546977; McCullough EL, 2012, BEHAV ECOL, V23, P1042, DOI 10.1093/beheco/ars069; McLean CA, 2010, BEHAV ECOL, V21, P861, DOI 10.1093/beheco/arq072; McNamara JM, 2004, THEOR POPUL BIOL, V65, P361, DOI 10.1016/j.tpb.2003.10.006; Moore AJ, 2003, J EVOLUTION BIOL, V16, P523, DOI 10.1046/j.1420-9101.2003.00527.x; MOORE T, 1991, TRENDS GENET, V7, P45, DOI 10.1016/0168-9525(91)90230-N; Moore T, 2001, REPRODUCTION, V122, P185, DOI 10.1530/rep.0.1220185; Naumova AK, 2004, CURR GENOMICS, V5, P417, DOI 10.2174/1389202043349183; Nussey DH, 2006, ECOL LETT, V9, P1342, DOI 10.1111/j.1461-0248.2006.00989.x; Orell M, 2002, J ANIM ECOL, V71, P55, DOI 10.1046/j.0021-8790.2001.00575.x; Parker G.A., 1979, P123; Parker G.A., 1983, P141; Perry JC, 2008, ANIM BEHAV, V76, P993, DOI 10.1016/j.anbehav.2008.05.017; Pitnick S, 2002, P ROY SOC B-BIOL SCI, V269, P1821, DOI 10.1098/rspb.2002.2090; Promislow D, 2003, BEHAV GENET, V33, P191, DOI 10.1023/A:1022562103669; Rantala MJ, 2011, P ROY SOC B-BIOL SCI, V278, P1231, DOI 10.1098/rspb.2010.1680; Reale D, 1996, CAN J ZOOL, V74, P1812, DOI 10.1139/z96-202; Reinhardt K, 2009, P NATL ACAD SCI USA, V106, P21743, DOI 10.1073/pnas.0905347106; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Rogina B, 2007, MECH AGEING DEV, V128, P477, DOI 10.1016/j.mad.2007.06.004; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; ROWE L, 1994, ANIM BEHAV, V48, P1049, DOI 10.1006/anbe.1994.1338; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; TATAR M, 1993, EVOLUTION, V47, P1302, DOI 10.1111/j.1558-5646.1993.tb02156.x; Trebaticka L, 2012, WILDLIFE RES, V39, P463, DOI 10.1071/WR12012; van de Pol M, 2010, ECOLOGY, V91, P1192; Wagner WE, 2001, EVOLUTION, V55, P994, DOI 10.1554/0014-3820(2001)055[0994:FRALSB]2.0.CO;2; Wagner WE, 2003, EVOLUTION, V57, P2054, DOI 10.1554/02-548; Wedell N, 2006, ANIM BEHAV, V71, P999, DOI 10.1016/j.anbehav.2005.06.023; Wedell N, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-204; Wigby S, 2005, CURR BIOL, V15, P316, DOI 10.1016/j.cub.2005.01.051; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; XU YQ, 1993, BIOCHEM BIOPH RES CO, V197, P747, DOI 10.1006/bbrc.1993.2542 92 10 10 0 20 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution FEB 2014 68 2 595 604 10.1111/evo.12272 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AJ8FR WOS:000337938600024 24102073 Bronze 2019-02-21 J Ellis, BJ; Del Giudice, M Ellis, Bruce J.; Del Giudice, Marco Beyond allostatic load: Rethinking the role of stress in regulating human development DEVELOPMENT AND PSYCHOPATHOLOGY English Article CUMULATIVE RISK EXPOSURE; LIFE-HISTORY STRATEGY; MATERNAL-CARE; REPRODUCTIVE STRATEGIES; INDIVIDUAL-DIFFERENCES; MALTREATED CHILDREN; SALIVARY CORTISOL; CHILDHOOD POVERTY; DIFFERENTIAL SUSCEPTIBILITY; EXPERIENTIAL-CANALIZATION How do exposures to stress affect biobehavioral development and, through it, psychiatric and biomedical disorder? In the health sciences, the allostatic load model provides a widely accepted answer to this question: stress responses, while essential for survival, have negative long-term effects that promote illness. Thus, the benefits of mounting repeated biological responses to threat are traded off against costs to mental and physical health. The adaptive calibration model, an evolutionary-developmental theory of stress-health relations, extends this logic by conceptualizing these trade-offs as decision nodes in allocation of resources. Each decision node influences the next in a chain of resource allocations that become instantiated in the regulatory parameters of stress response systems. Over development, these parameters filter and embed information about key dimensions of environmental stress and support, mediating the organism's openness to environmental inputs, and function to regulate life history strategies to match those dimensions. Drawing on the adaptive calibration model, we propose that consideration of biological fitness trade-offs, as delineated by life history theory, is needed to more fully explain the complex relations between developmental exposures to stress, stress responsivity, behavioral strategies, and health. We conclude that the adaptive calibration model and allostatic load model are only partially complementary and, in some cases, support different approaches to intervention. In the long run, the field may be better served by a model informed by life history theory that addresses the adaptive role of stress response systems in regulating alternative developmental pathways. [Ellis, Bruce J.] Univ Arizona, Tucson, AZ 85721 USA; [Del Giudice, Marco] Univ New Mexico, Albuquerque, NM 87131 USA Ellis, BJ (reprint author), Univ Arizona, Norton Sch Family & Consumer Sci, 650 North Pk Ave,POB 210078, Tucson, AZ 85721 USA. bjellis@email.arizona.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Adam EK, 2012, MONOGR SOC RES CHILD, V77, P17, DOI 10.1111/j.1540-5834.2012.00657.x; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Allsworth JE, 2005, ANN EPIDEMIOL, V15, P438, DOI 10.1016/j.annepidem.2004.12.010; Ayoub C, 2009, EARLY CHILD RES Q, V24, P289, DOI 10.1016/j.ecresq.2009.04.001; Badanes LS, 2011, DEV PSYCHOPATHOL, V23, P881, DOI 10.1017/S095457941100037X; Bagot RC, 2009, NEUROBIOL LEARN MEM, V92, P292, DOI 10.1016/j.nlm.2009.03.004; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; Belsky J, 1995, ATTACHMENT THEORY, P153; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 1996, PSYCHOL SCI, V7, P111, DOI 10.1111/j.1467-9280.1996.tb00339.x; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; BIERMAN KL, 1996, BANF INT BEHAV SER, V3, P65; Bilbo SD, 2012, FRONT NEUROENDOCRIN, V33, P267, DOI 10.1016/j.yfrne.2012.08.006; Bingham B, 2011, NEUROPSYCHOPHARMACOL, V36, P896, DOI 10.1038/npp.2010.229; Blair C, 2005, CHILD DEV, V76, P554, DOI 10.1111/j.1467-8624.2005.00863.x; Blair C, 2012, AM PSYCHOL, V67, P309, DOI 10.1037/a0027493; Blair C, 2012, DEV PSYCHOL, V48, P647, DOI 10.1037/a0026472; Blair C, 2011, CHILD DEV, V82, P1970, DOI 10.1111/j.1467-8624.2011.01643.x; Bleil ME, 2012, HUM REPROD, V27, P2720, DOI 10.1093/humrep/des214; Bleil ME, 2013, BIOL PSYCHOL, V93, P213, DOI 10.1016/j.biopsycho.2013.02.005; Boutwell BB, 2013, J THEOR BIOL, V322, P72, DOI 10.1016/j.jtbi.2013.01.005; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Bredy TW, 2003, NEUROSCIENCE, V118, P571, DOI 10.1016/S0306-4522(02)00918-1; Brody S, 2002, PSYCHONEUROENDOCRINO, V27, P933, DOI 10.1016/S0306-4530(02)00007-0; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Buwalda B, 2013, NEUROSCIENCE, V249, P258, DOI 10.1016/j.neuroscience.2012.12.050; Cabib S, 2012, NEUROSCI BIOBEHAV R, V36, P79, DOI 10.1016/j.neubiorev.2011.04.012; Cameron NM, 2008, J NEUROENDOCRINOL, V20, P795, DOI 10.1111/j.1365-2826.2008.01725.x; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Campbell SB, 2010, DEV PSYCHOPATHOL, V22, P133, DOI 10.1017/S0954579409990319; Champagne DL, 2008, J NEUROSCI, V28, P6037, DOI 10.1523/JNEUROSCI.0526-08.2008; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Clancy KBH, 2013, AM J HUM BIOL, V25, P389, DOI 10.1002/ajhb.22386; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Cribbet MR, 2011, EMOTION, V11, P188, DOI 10.1037/a0021789; Daly M, 2005, Q REV BIOL, V80, P55, DOI 10.1086/431025; Danese A, 2012, PHYSIOL BEHAV, V106, P29, DOI 10.1016/j.physbeh.2011.08.019; Decker SA, 2013, EVOL HUM BEHAV, V34, P55, DOI 10.1016/j.evolhumbehav.2012.09.003; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; del Giudice Marco, 2011, EVOLUTION PERSONALIT, P154; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; Dickerson SS, 2008, HEALTH PSYCHOL, V27, P116, DOI 10.1037/0278-6133.27.1.116; Dickerson SS, 2004, PSYCHOL BULL, V130, P355, DOI 10.1037/0033-2909.130.3.355; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Dobrova-Krol NA, 2010, CHILD DEV, V81, P237, DOI 10.1111/j.1467-8624.2009.01392.x; DODGE KA, 1995, J ABNORM PSYCHOL, V104, P632, DOI 10.1037/0021-843X.104.4.632; DODGE KA, 1980, CHILD DEV, V51, P162, DOI 10.2307/1129603; Eaton SB, 2003, COMP BIOCHEM PHYS A, V136, P153, DOI 10.1016/S1095-6433(03)00208-3; Eisen ML, 2007, DEV PSYCHOL, V43, P1275, DOI 10.1037/0012-1649.43.6.1275; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; ELLIS BJ, 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Essex MJ, 2011, DEV PSYCHOPATHOL, V23, P1039, DOI 10.1017/S0954579411000484; Evans GW, 2007, PSYCHOL SCI, V18, P953, DOI 10.1111/j.1467-9280.2007.02008.x; Evans GW, 2012, PSYCHOL SCI, V23, P979, DOI 10.1177/0956797612441218; Evans GW, 2009, P NATL ACAD SCI USA, V106, P6545, DOI 10.1073/pnas.0811910106; Evans GW, 2003, DEV PSYCHOL, V39, P924, DOI 10.1037/0012-1649.39.5.924; Evans GW, 2002, CHILD DEV, V73, P1238, DOI 10.1111/1467-8624.00469; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Francis DD, 2008, PHARMACOL BIOCHEM BE, V90, P497, DOI 10.1016/j.pbb.2008.04.012; Frankenhuis WE, 2013, CURR DIR PSYCHOL SCI, V22, P407, DOI 10.1177/0963721413484324; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Gallup AC, 2011, AGGRESSIVE BEHAV, V37, P258, DOI 10.1002/ab.20384; Gatzke-Kopp LM, 2011, NEUROSCI BIOBEHAV R, V35, P794, DOI 10.1016/j.neubiorev.2010.09.013; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Geronimus AT, 2010, HUM NATURE-INT BIOS, V21, P19, DOI 10.1007/s12110-010-9078-0; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P207; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Gettler LT, 2011, AM J HUM BIOL, V23, P609, DOI 10.1002/ajhb.21187; Gilbert P., 2002, J COGNITIVE PSYCHOTH, V16, P263, DOI DOI 10.1891/JCOP.16.3.263.52515; Goldstein David S, 2008, Endocr Regul, V42, P111; Golub MS, 2008, PEDIATRICS, V121, pS218, DOI 10.1542/peds.2007-1813G; Gotlib IH, 2008, BIOL PSYCHIAT, V63, P847, DOI 10.1016/j.biopsych.2007.10.008; GUNNAR M, 2006, DEV PSYCHOPATHOL, V2, P533, DOI DOI 10.1210/JC.82.2.536; Gunnar MR, 2009, PSYCHONEUROENDOCRINO, V34, P953, DOI 10.1016/j.psyneuen.2009.02.010; Gunnar MR, 2009, DEV PSYCHOPATHOL, V21, P69, DOI 10.1017/S0954579409000054; Hastings PD, 2011, DEV PSYCHOPATHOL, V23, P1149, DOI 10.1017/S0954579411000538; He CY, 2010, AM J EPIDEMIOL, V171, P334, DOI 10.1093/aje/kwp372; Hertzman C, 1999, ANN NY ACAD SCI, V896, P85, DOI 10.1111/j.1749-6632.1999.tb08107.x; Hertzman C, 1996, SOC SCI MED, V43, P1083, DOI 10.1016/0277-9536(96)00028-7; Hill JO, 2006, ENDOCR REV, V27, P750, DOI 10.1210/er.2006-0032; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Joels M, 2011, TRENDS COGN SCI, V15, P280, DOI 10.1016/j.tics.2011.04.004; Joels M, 2009, NAT REV NEUROSCI, V10, P459, DOI 10.1038/nrn2632; Johns S. E., 2011, J EVOLUTIONARY PSYCH, V9, P3, DOI DOI 10.1556/JEP.9.2011.37.1; Juster RP, 2011, DEV PSYCHOPATHOL, V23, P725, DOI 10.1017/S0954579411000289; Juster RP, 2010, NEUROSCI BIOBEHAV R, V35, P2, DOI 10.1016/j.neubiorev.2009.10.002; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kaplan HS, 2003, OFFSPRING, P170; Konner M, 2010, NUTR CLIN PRACT, V25, P594, DOI 10.1177/0884533610385702; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kuo LE, 2007, NAT MED, V13, P803, DOI 10.1038/nm1611; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Lakshman R, 2009, J CLIN ENDOCR METAB, V94, P4953, DOI 10.1210/jc.2009-1789; Lass-Hennemann J, 2010, P ROY SOC B-BIOL SCI, V277, P2175, DOI 10.1098/rspb.2010.0258; Laurent H, 2007, BIOL PSYCHOL, V76, P61, DOI 10.1016/j.biopsycho.2007.06.002; Liu D, 2000, NAT NEUROSCI, V3, P799; Lopez HH, 2009, HORM BEHAV, V56, P84, DOI 10.1016/j.yhbeh.2009.03.004; Lovallo W.R., 2007, ENCY STRESS, P282; Lupein SJ, 2006, DEV PSYCHOPATHOL, P578, DOI DOI 10.1002/9780470939390.CH14; Martorell GA, 2006, J FAM PSYCHOL, V20, P641, DOI 10.1037/0893-3200.20.4.641; Masten CL, 2008, CHILD ABUSE NEGLECT, V32, P139, DOI 10.1016/j.chiabu.2007.09.006; Mather M, 2012, CURR DIR PSYCHOL SCI, V21, P36, DOI 10.1177/0963721411429452; McCullough ME, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2104; McEwen BS, 2012, P NATL ACAD SCI USA, V109, P17180, DOI 10.1073/pnas.1121254109; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; MCEWEN BS, 1993, ARCH INTERN MED, V153, P2093, DOI 10.1001/archinte.153.18.2093; Mead HK, 2010, DEV PSYCHOPATHOL, V22, P1, DOI 10.1017/S0954579409990228; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Menard JL, 2007, BEHAV BRAIN RES, V176, P302, DOI 10.1016/j.bbr.2006.10.014; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; Miller GE, 2010, PSYCHOL SCI, V21, P848, DOI 10.1177/0956797610370161; Mills-Koonce WR, 2009, DEV PSYCHOBIOL, V51, P650, DOI 10.1002/dev.20400; Moller AP, 1997, ASYMMETRY DEV STABIL; Morgan CA, 2000, BIOL PSYCHIAT, V47, P902, DOI 10.1016/S0006-3223(99)00239-5; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Muehlenbein MP, 2005, AM J HUM BIOL, V17, P527, DOI 10.1002/ajhb.20419; MUNCK A, 1984, ENDOCR REV, V5, P25, DOI 10.1210/edrv-5-1-25; Nederhof E., PSYCHOL SCI IN PRESS; Nederhof E, 2012, PHYSIOL BEHAV, V106, P691, DOI 10.1016/j.physbeh.2011.12.008; Nelson CA, 2007, SCIENCE, V318, P1937, DOI 10.1126/science.1143921; Nelson R. J., 2013, HDB PSYCHOL, V3, P26; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Netherton C, 2004, PSYCHONEUROENDOCRINO, V29, P125, DOI 10.1016/S0306-4530(03)00150-6; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, AM J HUM BIOL, V22, P172, DOI 10.1002/ajhb.20970; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; Nyberg CH, 2012, AM J HUM BIOL, V24, P730, DOI 10.1002/ajhb.22304; Painter RC, 2008, HUM REPROD, V23, P2591, DOI 10.1093/humrep/den274; PALMER CT, 1995, J SEX RES, V32, P213, DOI 10.1080/00224499509551792; Parent CI, 2008, DEV PSYCHOBIOL, V50, P767, DOI 10.1002/dev.20342; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Pollak SD, 2005, CHILD DEV, V76, P968, DOI 10.1111/j.1467-8624.2005.00890.x; Pollak SD, 2003, J ABNORM PSYCHOL, V112, P323, DOI 10.1037/0021-843X.112.3.323; Pollak SD, 2008, CURR DIR PSYCHOL SCI, V17, P370, DOI 10.1111/j.1467-8721.2008.00608.x; Pollak SD, 2009, COGNITION, V110, P242, DOI 10.1016/j.cognition.2008.10.010; Porges SW, 2007, BIOL PSYCHOL, V74, P116, DOI 10.1016/j.biopsycho.2006.06.009; Porges SW, 2001, INT J PSYCHOPHYSIOL, V42, P123, DOI 10.1016/S0167-8760(01)00162-3; Quirin M, 2008, PSYCHONEUROENDOCRINO, V33, P581, DOI 10.1016/j.psyneuen.2008.01.013; Ramos D, 2013, J RES ADOLESCENCE, V23, P95, DOI 10.1111/j.1532-7795.2012.00796.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; RIEDER C, 1989, DEV PSYCHOL, V25, P382, DOI 10.1037//0012-1649.25.3.382; Rogosch FA, 2011, DEV PSYCHOPATHOL, V23, P1107, DOI 10.1017/S0954579411000587; Roney JR, 2007, HORM BEHAV, V52, P326, DOI 10.1016/j.yhbeh.2007.05.008; Rosmalen JGM, 2011, PLOS MED, V8, DOI 10.1371/journal.pmed.1001143; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sakhai SA, 2011, PSYCHONEUROENDOCRINO, V36, P1217, DOI 10.1016/j.psyneuen.2011.02.016; Sandman CA, 2012, PSYCHOL SCI, V23, P93, DOI 10.1177/0956797611422073; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schwabe L, 2013, TRENDS COGN SCI, V17, P60, DOI 10.1016/j.tics.2012.12.001; Sefcek JA, 2010, BIODEMOGR SOC BIOL, V56, P42, DOI 10.1080/19485561003709214; Shirtcliff EA, 2005, DEV PSYCHOPATHOL, V17, P167, DOI 10.1017/S0954579405050091; Shonkoff JP, 2012, PEDIATRICS, V129, pE232, DOI 10.1542/peds.2011-2663; Simpson JA, 2008, HDB ATTACHMENT THEOR, P131; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Smallwood PD, 1996, AM ZOOL, V36, P392; Starcke K, 2012, NEUROSCI BIOBEHAV R, V36, P1228, DOI 10.1016/j.neubiorev.2012.02.003; Staton Lori, 2009, Dev Psychobiol, V51, P249, DOI 10.1002/dev.20361; Stearns S, 1992, EVOLUTION LIFE HIST; Sterling P., 1988, HDB LIFE STRESS COGN, P629, DOI DOI 10.1016/0005-7967(90)90076-U; Stout DM, 2013, FRONT HUM NEUROSCI, V7, DOI 10.3389/fnhum.2013.00058; Sturge-Apple ML, 2009, J FAM PSYCHOL, V23, P215, DOI 10.1037/a0014198; Sylwester K, 2011, SEX ROLES, V64, P695, DOI 10.1007/s11199-010-9790-6; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Van Buskirk J, 1998, BIOL J LINN SOC, V65, P301, DOI 10.1006/bijl.1998.0249; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Marle HJF, 2009, BIOL PSYCHIAT, V66, P649, DOI 10.1016/j.biopsych.2009.05.014; Volk AA, 2013, EVOL HUM BEHAV, V34, P182, DOI 10.1016/j.evolhumbehav.2012.11.007; Wells JCK, 2012, AM J HUM BIOL, V24, P261, DOI 10.1002/ajhb.22253; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wingfield JC, 1998, AM ZOOL, V38, P191; Winterhalder Bruce, 2007, OXFORD HDB EVOLUTION, P433; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966 199 69 70 4 61 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-5794 1469-2198 DEV PSYCHOPATHOL Dev. Psychopathol. FEB 2014 26 1 1 20 10.1017/S0954579413000849 20 Psychology, Developmental Psychology AD0UV WOS:000332950500001 24280315 2019-02-21 J Fischer, EK; Harris, RM; Hofmann, HA; Hoke, KL Fischer, Eva K.; Harris, Rayna M.; Hofmann, Hans A.; Hoke, Kim L. Predator exposure alters stress physiology in guppies across timescales HORMONES AND BEHAVIOR English Article Poecilia reticulata; Cortisol; Glucocorticoids; Adaptive evolution; Predation; Stress LIFE-HISTORY EVOLUTION; POECILIA-RETICULATA; ANTIPREDATOR BEHAVIOR; TRINIDADIAN GUPPIES; NONINVASIVE MEASUREMENT; PHENOTYPIC PLASTICITY; 3-SPINED STICKLEBACK; SCHOOLING BEHAVIOR; FISH; POPULATION In vertebrates, glucocorticoids mediate a wide-range of responses to stressors. For this reason, they are implicated in adaptation to changes in predation pressure. Trinidadian guppies (Poecilia reticulata) from high-predation environments have repeatedly and independently colonized and adapted to low-predation environments, resulting in parallel changes in life history, morphology, and behavior. We validated methods for non-invasive waterborne hormone sample collection in this species, and used this technique to examine genetic and environmental effects of predation on basal glucocorticoid (cortisol) levels. To examine genetic differences, we compared waterborne cortisol levels in high- and low-predation fish from two distinct population pairs. We found that fish from high-predation localities had lower cortisol levels than their low-predation counterparts. To isolate environmental influences, we compared waterborne cortisol levels in genetically similar fish reared with and without exposure to predator chemical cues. We found that fish reared with predator chemical cues had lower waterborne cortisol levels than those reared without. Comparisons of waterbome and whole-body cortisol levels demonstrated that populations differed in overall cortisol levels in the body, whereas rearing conditions altered the release of cortisol from the body into the water. Thus, evolutionary history with predators and lifetime exposure to predator cues were both associated with lower cortisol release, but depended on distinct physiological mechanisms. (C) 2013 Elsevier Inc. All rights reserved. [Fischer, Eva K.; Hoke, Kim L.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Harris, Rayna M.; Hofmann, Hans A.] Univ Texas Austin, Inst Cellular & Mol Biol, Dept Integrat Biol, Austin, TX 78712 USA; [Hofmann, Hans A.] Univ Texas Austin, Inst Neurosci, Austin, TX 78712 USA Fischer, EK (reprint author), Colorado State Univ, Dept Biol, 1878 Campus Delivery,200 West Lake St, Ft Collins, CO 80523 USA. eva.fischer@colostate.edu Harris, Rayna/B-7091-2015 Harris, Rayna/0000-0002-7943-5650; Fischer, Eva K/0000-0002-2916-0900 Sigma Xi-The Scientific Research Society; Sigma Delta Epsilon-Graduate Women in Science; NSF [DEB-0846175]; Alfred P. Sloan Foundation We thank the members of the Hoke-Funk lab for discussion, comments on previous versions of the manuscript, and help with data collection, and members of the Ghalambor lab for fish care. We thank R.L. Earley and one anonymous reviewer for suggestions that improved the manuscript. We gratefully acknowledge support from Sigma Xi-The Scientific Research Society (to EKF), Sigma Delta Epsilon-Graduate Women in Science (to EKF), NSF DEB-0846175 (to CK Ghalambor), and the Alfred P. Sloan Foundation (to HAH). Adkins-Regan E., 2005, HORMONES ANIMAL SOCI; Alexander HJ, 2004, J EVOLUTION BIOL, V17, P1238, DOI 10.1111/j.1420.9101.2004.00788.x; Archard GA, 2012, FUNCT ECOL, V26, P637, DOI 10.1111/j.1365-2435.2012.01968.x; Barson NJ, 2009, J EVOLUTION BIOL, V22, P485, DOI 10.1111/j.1420-9101.2008.01675.x; Berger S, 2007, HORM BEHAV, V52, P653, DOI 10.1016/j.yhbeh.2007.08.004; Bertotto D., 2009, AQUAC RES, V41, P1261; Blanchard RJ, 1998, PHYSIOL BEHAV, V63, P561, DOI 10.1016/S0031-9384(97)00508-8; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Botham MS, 2006, NATURWISSENSCHAFTEN, V93, P431, DOI 10.1007/s00114-006-0131-0; BREDEN F, 1987, ANIM BEHAV, V35, P618, DOI 10.1016/S0003-3472(87)80297-X; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Brown C, 2005, J COMP PHYSIOL B, V175, P305, DOI 10.1007/s00360-005-0486-0; Clinchy M, 2004, P ROY SOC B-BIOL SCI, V271, P2473, DOI 10.1098/rspb.2004.2913; Clinchy M, 2011, OECOLOGIA, V166, P607, DOI 10.1007/s00442-011-1915-2; Cook KV, 2011, J COMP PHYSIOL A, V197, P1189, DOI 10.1007/s00359-011-0680-3; Creel S, 2009, P NATL ACAD SCI USA, V106, P12388, DOI 10.1073/pnas.0902235106; Dzikowski R, 2004, J EXP ZOOL PART A, V301A, P776, DOI 10.1002/jez.a.61; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Evans A.K., 2006, J EVOLUTION BIOL, V19, P343; Federenko IS, 2004, J CLIN ENDOCR METAB, V89, P6244, DOI 10.1210/jc.2004-0981; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gosline AK, 2008, AQUAT ECOL, V42, P693, DOI 10.1007/s10452-007-9138-7; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Gursoy E, 2001, EXP BIOL MED, V226, P97; Hofmann HA, 2010, HORM BEHAV, V58, P555, DOI 10.1016/j.yhbeh.2010.06.012; Huizinga M, 2009, J EVOLUTION BIOL, V22, P1860, DOI 10.1111/j.1420-9101.2009.01799.x; Johansson A, 2008, PEPTIDES, V29, P1588, DOI 10.1016/j.peptides.2008.04.018; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; Kidd CE, 2010, GEN COMP ENDOCR, V165, P277, DOI 10.1016/j.ygcen.2009.07.008; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; McGlothlin JW, 2008, PHILOS T R SOC B, V363, P1611, DOI 10.1098/rstb.2007.0002; Miguel-Queralt S., 2008, ENDOCRINOLOGY, V149, P469; Nordell SE, 1998, ENVIRON BIOL FISH, V51, P331, DOI 10.1023/A:1007464731444; Peterson BC, 2009, FISH PHYSIOL BIOCHEM, V36, P661; Pottinger T.G., 2009, EDCAT CONSORTIUM, V64; Pottinger TG, 2002, J FISH BIOL, V61, P207, DOI 10.1006/jfbi.2002.2034; Pravosudov VV, 2003, P ROY SOC B-BIOL SCI, V270, P2599, DOI 10.1098/rspb.2003.2551; Ramsay JM, 2006, AQUACULTURE, V258, P565, DOI 10.1016/j.aquaculture.2006.04.020; Ramsay JM, 2009, AQUACULTURE, V297, P157, DOI 10.1016/j.aquaculture.2009.08.035; Relyea RA, 2001, ECOLOGY, V82, P523, DOI 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1982, AM NAT, V120, P181, DOI 10.1086/283981; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Robertson JM, 2011, BIOL J LINN SOC, V103, P657, DOI 10.1111/j.1095-8312.2011.01644.x; Ruell E.W., 2013, P R SOC B, V280; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Scheuerlein A, 2001, P ROY SOC B-BIOL SCI, V268, P1575, DOI 10.1098/rspb.2001.1691; Scott AP, 2008, BEHAVIOUR, V145, P1307, DOI 10.1163/156853908785765854; Scott AP, 2007, GEN COMP ENDOCR, V153, P392, DOI 10.1016/j.ygcen.2006.11.006; Sebire M, 2007, GEN COMP ENDOCR, V152, P30, DOI 10.1016/j.ygcen.2007.02.009; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1995, CAN J ZOOL, V73, P1100, DOI 10.1139/z95-131; Sorensen P. W., 1999, ADV CHEM SIGNALS VER; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; Willing EM, 2010, MOL ECOL, V19, P968, DOI 10.1111/j.1365-294X.2010.04528.x; Wong SC, 2008, BEHAVIOUR, V145, P1283, DOI 10.1163/156853908785765863; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 63 32 32 2 75 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0018-506X 1095-6867 HORM BEHAV Horm. Behav. FEB 2014 65 2 165 172 10.1016/j.yhbeh.2013.12.010 8 Behavioral Sciences; Endocrinology & Metabolism Behavioral Sciences; Endocrinology & Metabolism AB8RD WOS:000332056800011 24370688 2019-02-21 J Tiippel, EA; Butts, IAE; Babin, A; Neil, SRE; Feindel, NJ; Benfey, TJ Tiippel, Edward A.; Butts, Ian A. E.; Babin, Amanda; Neil, Steven R. E.; Feindel, Nathaniel J.; Benfey, Tillmann J. Effects of reproduction on growth and survival in Atlantic cod, Gadus morhua, assessed by comparison to triploids JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Compensatory growth; Gonad; Maturation; Soma; Triploidy NORTHEAST ARCTIC COD; SALMO-SALAR L; GONADAL DEVELOPMENT; MATURATION COHORTS; SEXUAL-MATURATION; FEEDING-BEHAVIOR; FOOD-CONSUMPTION; COST; FISH; MATURITY Despite increasing interest in optimal life history theory and the associated physiological, ecological and evolutionary processes, little information exists on gonad-soma tradeoffs and longevity of individuals over long time periods. We examined somatic and survival costs of reproduction in captive iteroparous, batch-spawning Atlantic cod (Gadus morhua), utilizing diploids and triploids, knowing that triploid females invest little to no energy into gametogenesis. Based on annual specific growth rate, there was no evidence for a somatic cost of reproduction at ages 2 (virgin year) and 4 years, but there was at age 3 years. At age 2 years, low investment in reproduction likely accounted for the lack of a somatic cost of reproduction, whereas at age 4 the absence was associated with heightened growth post-spawning enabling mature fish to catch up to immature fish. At age 3, compensatory growth during post-spawning was below that of immature fish. Survival represented a significant component of the cost of reproduction. Laboratory experiments examining the cost of reproduction have traditionally focused on shorter time periods, commonly spanning several months, whereas ours spanned nearly four years. Although previously done for bivalves, to our knowledge, this is the first time the cost of reproduction has been evaluated using triploid fish as a comparator. (C) 2013 Elsevier B.V. All rights reserved. [Tiippel, Edward A.; Neil, Steven R. E.; Feindel, Nathaniel J.] Fisheries & Oceans Canada, Biol Stn, St Andrews, NB E5B 2L9, Canada; [Butts, Ian A. E.] Tech Univ Denmark, Natl Inst Aquat Resources, Sect Marine Ecol, DTU Aqua, DK-2920 Charlottenlund, Denmark; [Babin, Amanda] Univ New Brunswick, Dept Biol, St John, NB E2L 4L5, Canada; [Babin, Amanda] Univ New Brunswick, Ctr Coastal Studies & Aquaculture, St John, NB E2L 4L5, Canada; [Feindel, Nathaniel J.; Benfey, Tillmann J.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada Tiippel, EA (reprint author), Fisheries & Oceans Canada, Biol Stn, 531 Brandy Cove Rd, St Andrews, NB E5B 2L9, Canada. edward.trippel@dfo-mpo.ga.ca Butts, Ian/0000-0001-8447-1392 Fisheries and Oceans Canada Aquaculture Collaborative Research Development Program [MG-04-09-001/MG-07-01-003]; Natural Sciences and Engineering Research Council of Canada This work was supported by the Fisheries and Oceans Canada Aquaculture Collaborative Research Development Program (MG-04-09-001/MG-07-01-003) and the Natural Sciences and Engineering Research Council of Canada. The handling of fish was approved by DFO's Animal Care Committee, adhering to guidelines established by the Canadian Council on Animal Care. The authors greatly appreciate the technical support of the St. Andrews Biological Station for their help with data collection over the course of these experiments. [RH] Ajiad Adnan, 1999, Journal of Northwest Atlantic Fishery Science, V25, P1, DOI 10.2960/J.v25.a1; Armstrong MJ, 2004, ICES J MAR SCI, V61, P98, DOI 10.1016/j.icesjms.2003.10.005; Arnason T, 2012, AQUAC RES, V43, P292, DOI 10.1111/j.1365-2109.2011.02829.x; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Benfey Tillmann J., 1999, Reviews in Fisheries Science, V7, P39, DOI 10.1080/10641269991319162; Beverton RJH, 2004, ICES J MAR SCI, V61, P165, DOI 10.1016/j.icesjms.2004.01.001; BEVERTON RJH, 1994, ICES MAR SC, V198, P482; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; BRAWN VIVIEN M., 1961, BEHAVIOUR, V18, P177, DOI 10.1163/156853961X00114; Brown JA, 2003, AQUACULTURE, V227, P357, DOI 10.1016/S0044-8486(03)00514-3; Busacker G.P., 1990, P363; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; CARTER CG, 1994, CAN J ZOOL, V72, P609, DOI 10.1139/z94-083; DAMBERGS N, 1964, J FISH RES BOARD CAN, V21, P703, DOI 10.1139/f64-063; Derayat A, 2013, FISH PHYSIOL BIOCHEM, V39, P1195, DOI 10.1007/s10695-013-9775-9; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Dutil JD, 2000, CAN J FISH AQUAT SCI, V57, P826, DOI 10.1139/cjfas-57-4-826; Feindel NJ, 2011, J FISH BIOL, V78, P1900, DOI 10.1111/j.1095-8649.2011.02955.x; Feindel NJ, 2010, AQUACULT ENV INTERAC, V1, P47, DOI 10.3354/aei00006; Felip A, 2001, J FISH BIOL, V58, P76, DOI 10.1006/jfbi.2000.1427; Fordham SE, 1999, J APPL ICHTHYOL, V15, P1, DOI 10.1046/j.1439-0426.1999.00098.x; Garner SR, 2008, J FISH BIOL, V73, P169, DOI 10.1111/j.1095-8649.2008.01923.x; GJERDE B, 1984, AQUACULTURE, V38, P229, DOI 10.1016/0044-8486(84)90147-9; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Honkoop PJC, 2003, OECOLOGIA, V135, P176, DOI 10.1007/s00442-002-1172-5; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P1612, DOI 10.1139/cjfas-56-9-1612; Iles T.D., 1984, P331; Kadri S, 1996, AQUACULTURE, V142, P245, DOI 10.1016/0044-8486(96)01258-6; KARLSEN O, 1995, AQUACULTURE, V133, P159, DOI 10.1016/0044-8486(94)00399-9; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Koster FW, 2013, FISH RES, V138, P52, DOI 10.1016/j.fishres.2012.07.002; Kotiaho JS, 2003, J INSECT PHYSIOL, V49, P817, DOI 10.1016/S0022-1910(03)00117-3; Lambert Y, 2000, CAN J FISH AQUAT SCI, V57, P815, DOI 10.1139/cjfas-57-4-815; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LINCOLN RF, 1981, AQUACULTURE, V25, P259, DOI 10.1016/0044-8486(81)90187-3; Meager JJ, 2010, CAN J FISH AQUAT SCI, V67, P1221, DOI 10.1139/F10-066; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; Michalsen K, 2008, ICES J MAR SCI, V65, P571, DOI 10.1093/icesjms/fsn019; Morgan M. J., 2005, Journal of Northwest Atlantic Fishery Science, V37, P81, DOI 10.2960/J.v37.m560; Morgan MJ, 1996, ICES J MAR SCI, V53, P820, DOI 10.1006/jmsc.1996.0103; Nash Richard D.M., 2009, Journal of Northwest Atlantic Fishery Science, V41, P71; O'Keefe RA, 1999, AQUACULTURE, V175, P111, DOI 10.1016/S0044-8486(99)00038-1; PAGE FH, 1989, CAN J FISH AQUAT SCI, V46, P68; Piferrer F, 2009, AQUACULTURE, V293, P125, DOI 10.1016/j.aquaculture.2009.04.036; Poizat G, 1999, P ROY SOC B-BIOL SCI, V266, P1543, DOI 10.1098/rspb.1999.0813; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Rideout RM, 2011, MAR COAST FISH, V3, P176, DOI 10.1080/19425120.2011.556943; ROWE DK, 1990, J FISH BIOL, V36, P643, DOI 10.1111/j.1095-8649.1990.tb04319.x; Rowe S, 2004, CAN J ZOOL, V82, P1391, DOI [10.1139/z04-119, 10.1139/Z04-119]; Schwalme K, 1999, ICES J MAR SCI, V56, P303, DOI 10.1006/jmsc.1999.0458; Skjaeraasen JE, 2010, CAN J ZOOL, V88, P595, DOI 10.1139/Z10-033; Spilke J, 2005, J AGRON CROP SCI, V191, P47, DOI 10.1111/j.1439-037X.2004.00120.x; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Tomkiewicz J, 1998, FISH OCEANOGR, V7, P48, DOI 10.1046/j.1365-2419.1998.00051.x; Tomkiewicz J., 2002, DIFRES REPORT SERIES; Trippel EA, 1995, BEL BAR LIB, P599; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Trippel EA, 2008, CYBIUM, V32, P136; Volkoff H, 2009, COMP BIOCHEM PHYS A, V153, P8, DOI 10.1016/j.cbpa.2008.12.001; WARNER K, 1971, J FISH RES BOARD CAN, V28, P537, DOI 10.1139/f71-076; Weeks SC, 1996, OIKOS, V75, P345, DOI 10.2307/3546263; Wright PJ, 2009, FISH FISH, V10, P283, DOI 10.1111/j.1467-2979.2008.00322.x; Yaragina NA, 2010, ICES J MAR SCI, V67, P2033, DOI 10.1093/icesjms/fsq059; Yoneda M, 2005, J FISH BIOL, V67, P1225, DOI 10.1111/j.1095-8649.2005.00819.x 66 2 2 2 36 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. FEB 2014 451 35 43 10.1016/j.jembe.2013.10.030 9 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AB3AN WOS:000331663800005 2019-02-21 J Bieber, C; Lebl, K; Stalder, G; Geiser, F; Ruf, T Bieber, Claudia; Lebl, Karin; Stalder, Gabrielle; Geiser, Fritz; Ruf, Thomas Body mass dependent use of hibernation: why not prolong the active season, if they can? FUNCTIONAL ECOLOGY English Article body fat reserves; edible dormouse; hypothermia; life-history strategy; predation EDIBLE DORMOUSE GLIS; POLYUNSATURATED FATTY-ACIDS; BELDINGS GROUND-SQUIRRELS; LIFE-HISTORY TACTICS; DAILY TORPOR; MAMMALIAN HIBERNATION; ENERGY AVAILABILITY; ALPINE MARMOTS; METABOLIC-RATE; HIGH SURVIVAL 1. Hibernation is the most effective means for energy conservation during winter in mammals. The drawbacks of deep and prolonged torpor include reduced immunocompetence, and consequently, hibernators should be selected to minimize torpor expression when climatic conditions or energy availability (e.g. food or fat stores) permit. Therefore, it seems surprising that some hibernators employ extraordinary long hibernation seasons, lasting well beyond periods with unfavourable conditions. 2. Because of their extended use of torpor, edible dormice (Glis glis) provide an ideal model for scrutinizing interactions between energy reserves (i.e. body fat stores) and thermoregulatory patterns. We used a multimodel inference approach to analyse body temperature data (i.e. use of torpor) from 42 entire hibernation seasons over 4 years in females in relation to body mass. 3. Body mass prior to hibernation did not affect the duration of the hibernation season, but animals hibernated for c. 8 months, that is, 2 months longer than required by environmental conditions. Fatter individuals aroused significantly more often, had a higher mean minimum body temperature during torpor and remained euthermic for longer periods than leaner animals. 4. Surplus energy was therefore not used to shorten the hibernation season, but to rewarm more frequently, and to allow shallower torpor bouts. These adjustments apparently serve to avoid negative effects of torpor and, perhaps equally importantly, to minimize the time active above-ground. We argue that maintaining a short active season, despite surplus energy reserves, may be explained by known beneficial effects of hibernation on survival rates (via predator avoidance). 5. Our data provide quantitative evidence that hibernation is a flexible tool within life-history strategies. We conclude that, apart from energetic necessities due to harsh environmental conditions, predator avoidance may be an important factor influencing patterns of hibernation and torpor in mammals. Thus, our study indicates that climatic conditions alone are not a good predictor of hibernation patterns or survival in hibernating species during global climate change. [Bieber, Claudia; Lebl, Karin; Stalder, Gabrielle; Ruf, Thomas] Univ Vet Med, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria; [Bieber, Claudia; Geiser, Fritz; Ruf, Thomas] Univ New England, Ctr Behav & Physiol Ecol, Armidale, NSW 2351, Australia Bieber, C (reprint author), Univ Vet Med, Dept Integrat Biol & Evolut, Savoyenstr 1, A-1160 Vienna, Austria. claudia.bieber@vetmeduni.ac.at Lebl, Karin/B-8519-2014; Geiser, Fritz/O-4175-2018 Lebl, Karin/0000-0001-8818-2483; Geiser, Fritz/0000-0001-7621-5049; Bieber, Claudia/0000-0001-8919-3117; Ruf, Thomas/0000-0002-9235-7079 province of lower Austria; city of Vienna; Austrian Science Fund (FWF) [20534, 25023] We thank P. Steiger, K. Ausserlechner, C. Skerget and K. Kurbisch, for their help with data collection and W. Zenker and F. Balfanz for implanting iButtons subcutaneously. This project was supported by the province of lower Austria, the city of Vienna, and the Austrian Science Fund (FWF, Projects 20534 and 25023). We declare that all experiments in this study comply with the current laws of Austria in which the study was performed (GZ 68.205/167-BrGT/2004, GZ 68.205/198-BrGT/2004, GZ 68.205/0041/II/10b/2008). We thank Mark Brigham and two anonymous reviewers for their useful comments. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Arnold W, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018641; Barton K, 2012, MUMIN MULTIMODEL INF; Bates D., 2011, LME4 LINEAR MIXED EF; Bieber C, 1998, J ZOOL, V244, P223, DOI 10.1111/j.1469-7998.1998.tb00027.x; Bieber C, 2009, NATURWISSENSCHAFTEN, V96, P165, DOI 10.1007/s00114-008-0471-z; Bieber Claudia, 2012, P133; Bieber C, 2012, OECOLOGIA, V169, P155, DOI 10.1007/s00442-011-2194-7; Bieber C, 2011, EUR J WILDLIFE RES, V57, P657, DOI 10.1007/s10344-010-0476-8; Bieber C, 2009, POPUL ECOL, V51, P481, DOI 10.1007/s10144-009-0140-x; Boon AK, 2008, OIKOS, V117, P1321, DOI 10.1111/j.2008.0030-1299.16567.x; Brown JCL, 2012, AM J PHYSIOL-REG I, V302, pR15, DOI 10.1152/ajpregu.00230.2011; BROWN LN, 1970, J MAMMAL, V51, P651, DOI 10.2307/1378291; Bryant AA, 2005, CAN J ZOOL, V83, P674, DOI 10.1139/Z05-055; Buck CL, 1999, J MAMMAL, V80, P430, DOI 10.2307/1383291; Burnham K. P, 2002, MODEL SELECTION MULT; Burton RS, 1999, FUNCT ECOL, V13, P232, DOI 10.1046/j.1365-2435.1999.00302.x; BUZADZIC B, 1990, FREE RADICAL BIO MED, V9, P407, DOI 10.1016/0891-5849(90)90017-D; Canale CI, 2011, FUNCT ECOL, V25, P557, DOI 10.1111/j.1365-2435.2010.01815.x; Carey HV, 2000, J COMP PHYSIOL B, V170, P551, DOI 10.1007/s003600000135; Christe P, 2006, OIKOS, V114, P381, DOI 10.1111/j.2006.0030-1299.15130.x; Clemens LE, 2009, PHYSIOL BEHAV, V98, P78, DOI 10.1016/j.physbeh.2009.04.013; Darwin C, 1839, J REMARKS 1832 1836; Fietz J, 2005, J COMP PHYSIOL B, V175, P45, DOI 10.1007/s00360-004-0461-1; Fietz J, 2012, POPUL ECOL, V54, P313, DOI 10.1007/s10144-012-0310-0; Fisher K. C., 1964, MECH PERIODIC AROUSA; Florant GL, 1998, AM ZOOL, V38, P331; FLORANT GL, 1993, AM J PHYSIOL, V264, pR747; FRANK CL, 1995, J COMP PHYSIOL B, V164, P536; FRENCH AR, 1985, J COMP PHYSIOL B, V156, P13, DOI 10.1007/BF00692921; FRENCH AR, 1990, OECOLOGIA, V82, P93, DOI 10.1007/BF00318538; FRENCH AR, 1982, J APPL PHYSIOL, V52, P216; GARCES R, 1993, ANAL BIOCHEM, V211, P139, DOI 10.1006/abio.1993.1244; GEISER F, 1991, J COMP PHYSIOL B, V161, P590, DOI 10.1007/BF00260749; GEISER F, 1995, PHYSIOL ZOOL, V68, P935, DOI 10.1086/physzool.68.6.30163788; GEISER F, 1987, AM J PHYSIOL, V252, pR897; Geiser F, 2004, ANNU REV PHYSIOL, V66, P239, DOI 10.1146/annurev.physiol.66.032102.115105; GEISER F, 1988, J COMP PHYSIOL B, V158, P25, DOI 10.1007/BF00692726; Hacklander K, 1999, BEHAV ECOL, V10, P592, DOI 10.1093/beheco/10.5.592; HALL M, 1832, PHILOS T ROY SOC LON, V122, P335; Harlow HJ, 2001, J COMP PHYSIOL B, V171, P77, DOI 10.1007/s003600000148; HELDMAIER G, 1992, J COMP PHYSIOL B, V162, P696, DOI 10.1007/BF00301619; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P165, DOI 10.1086/367950; Humphries MM, 2003, PHYSIOL BIOCHEM ZOOL, V76, P180, DOI 10.1086/367949; Karels TJ, 2000, J ANIM ECOL, V69, P235, DOI 10.1046/j.1365-2656.2000.00387.x; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Lebl K, 2011, J MAMMAL, V92, P926, DOI 10.1644/10-MAMM-A-225.1; Lebl K, 2011, ECOGRAPHY, V34, P683, DOI 10.1111/j.1600-0587.2010.06691.x; Lebl K, 2010, J COMP PHYSIOL B, V180, P447, DOI 10.1007/s00360-009-0425-6; Lima SL, 1998, BIOSCIENCE, V48, P25, DOI 10.2307/1313225; Malan A, 2010, J BIOL RHYTHM, V25, P166, DOI 10.1177/0748730410368621; Michener GR, 2004, J MAMMAL, V85, P1019, DOI 10.1644/BNS-102; MICHENER GR, 1978, CAN J ZOOL, V56, P2573, DOI 10.1139/z78-345; Millesi E, 1999, ETHOLOGY, V105, P163, DOI 10.1046/j.1439-0310.1999.00379.x; Millesi E, 2001, J BIOL RHYTHM, V16, P264, DOI 10.1177/074873001129001971; Nunes S, 2002, CAN J ZOOL, V80, P366, DOI [10.1139/z01-222, 10.1139/Z01-222]; PILASTRO A, 1994, J ZOOL, V234, P13, DOI 10.1111/j.1469-7998.1994.tb06053.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Porschmann U, 2011, ENTOMOL SCI, V14, P31, DOI 10.1111/j.1479-8298.2010.00414.x; Popescu FD, 2011, J COMP PHYSIOL B, V181, P681, DOI 10.1007/s00360-011-0559-1; Prendergast BJ, 2002, AM J PHYSIOL-REG I, V282, pR1054, DOI 10.1152/ajpregu.00562.2001; R Development Core Team, 2011, R LANG ENV STAT COMP; Ricklefs RE, 2010, AGING CELL, V9, P273, DOI 10.1111/j.1474-9726.2009.00542.x; Ruf T, 2006, ECOLOGY, V87, P372, DOI 10.1890/05-0672; Ruf T, 2008, AM J PHYSIOL-REG I, V294, pR1044, DOI 10.1152/ajpregu.00688.2007; SCHAEFER A, 1976, COMP BIOCHEM PHYS A, V55, P115, DOI 10.1016/0300-9629(76)90077-3; Schaub M, 2001, J ZOOL, V255, P89, DOI 10.1017/S0952836901001133; Schlund W, 2002, MAMM BIOL, V67, P219, DOI 10.1078/1616-5047-00033; TROMBULAK SC, 1989, J MAMMAL, V70, P194, DOI 10.2307/1381688; Turbill C, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1095; Turbill C, 2012, BIOL LETTERS, V8, P304, DOI 10.1098/rsbl.2011.0758; Turbill C, 2011, P ROY SOC B-BIOL SCI, V278, P3355, DOI 10.1098/rspb.2011.0190; Valencak TG, 2003, J COMP PHYSIOL B, V173, P695, DOI 10.1007/s00360-003-0382-4; Vietinghoff-Riesch A. F. V., 1960, SIEBENSCHLAFER, P1; Wyss OAM, 1932, PFLUG ARCH GES PHYS, V229, P599, DOI 10.1007/BF01754494 75 47 48 6 95 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2014 28 1 SI 167 177 10.1111/1365-2435.12173 11 Ecology Environmental Sciences & Ecology AA4RN WOS:000331083900017 Other Gold 2019-02-21 J Poorter, L; McNeil, A; Hurtado, VH; Prins, HHT; Putz, FE Poorter, Lourens; McNeil, Adam; Hurtado, Victor-Hugo; Prins, Herbert H. T.; Putz, Francis E. Bark traits and life-history strategies of tropical dry- and moist forest trees FUNCTIONAL ECOLOGY English Article adult stature; allocation; bark thickness; defence; fire; shade tolerance; tropical forest; water storage; wood density SHADE-TOLERANCE; RAIN-FOREST; INTERSPECIFIC VARIATION; CARBOHYDRATE STORAGE; EVOLUTIONARY ECOLOGY; STRUCTURAL TRAITS; COLORADO-ISLAND; LOWLAND BOLIVIA; WOOD DENSITY; FIRE 1Bark is crucial to trees because it protects their stems against fire and other hazards and because of its importance for assimilate transport, water relationships and repair. We evaluate size-dependent changes in bark thickness for 50 woody species from a moist forest and 50 species from a dry forest in Bolivia and relate bark thickness to their other bark characteristics, species life-history strategies and wood properties. For 71% of the evaluated species, the allometric coefficient describing the relationship between bark thickness and stem diameter was significantly <1 (average 0 center dot 74; range 0 center dot 38-1 center dot 20), indicating that species attain an absolute increase in bark thickness with increasing stem diameter but invest relatively less in bark thickness at larger diameters. We hypothesized that in response to more frequent fires, dry-forest species should have thicker barked trees. Contrary to this prediction, dry- and moist-forest tree species were similar in allometric bark coefficients and bark thickness. In both forest types, about 50% of the species never developed bark thick enough to avoid fire damage to their vascular cambia. Recent increases in fire frequency and extent may therefore have potentially large effects on the composition of these forests. Within each forest, coexisting species displayed a diversity of bark investment strategies, and bark thickness of trees 40cm stem diameter varied up to 15-fold across species (ranging from 1 center dot 7 to 25 center dot 7mm). In both forests, sapling bark thickness was positively related to adult stature (maximum height) of the species, possibly because trees of long-lived species are more likely to experience fire during their life span, whereas for species that are characteristically small or short-lived, it may not pay off to invest heavily in bark and they may follow a resprouter strategy instead. Sapling bark thickness was not related to species' shade tolerance. Bark and wood traits were closely associated, showing a trade-off between species with tough tissues (high densities of bark and wood) on the one hand vs. species with watery tissues (high water contents of bark and wood) and thick bark on the other hand. Species with different bark investment strategies coexist in both the moist and the dry tropical forest studied. Bark and wood fulfil many functions, and the observed trade-offs may reflect different plant strategies to deal with fire, avoidance and repair of stem damage, avoidance and resistance of drought stress, and mechanical stability. [Poorter, Lourens] Wageningen Univ, Forest Ecol & Forest Management Grp, NL-6700 AA Wageningen, Netherlands; [Poorter, Lourens; McNeil, Adam; Hurtado, Victor-Hugo] Inst Boliviano Invest Forestal, Santa Cruz, Bolivia; [Poorter, Lourens; Prins, Herbert H. T.] Wageningen Univ, Resource Ecol Grp, NL-6700 AA Wageningen, Netherlands; [McNeil, Adam] Ferrum Coll, Sch Nat Sci & Math, Ferrum, VA 24088 USA; [Prins, Herbert H. T.] Univ KwaZulu Natal, Sch Biol & Conservat Sci, ZA-3209 Scottsville, South Africa; [Putz, Francis E.] Univ Florida, Dept Biol, Gainesville, FL 32611 USA Poorter, L (reprint author), Wageningen Univ, Forest Ecol & Forest Management Grp, POB 47, NL-6700 AA Wageningen, Netherlands. lourens.poorter@wur.nl Poorter, Lourens/0000-0003-1391-4875 Wageningen Graduate School Production Ecology and Resource Conservation We thank the staff of the Instituto Boliviano de Investigacion Forestal (IBIF) for logistic support, the timber companies La Chonta Ltda and Inpa Parket Ltda. for permission to work in their forests and Timothy Paine and an anonymous reviewer for their very helpful comments on the manuscript. This research was funded by a grant from the Wageningen Graduate School Production Ecology and Resource Conservation to LP. Alencar A, 2011, ECOL APPL, V21, P2397, DOI 10.1890/10-1168.1; Aragao LEOC, 2010, SCIENCE, V328, P1275, DOI 10.1126/science.1186925; Baraloto C, 2010, ECOL LETT, V13, P1338, DOI 10.1111/j.1461-0248.2010.01517.x; Barlow J, 2003, J TROP ECOL, V19, P291, DOI 10.1017/S0266467403003328; Bond WJ, 2005, NEW PHYTOL, V165, P525, DOI 10.1111/j.1469-8137.2004.01252.x; Bond WJ, 2003, INT J PLANT SCI, V164, pS103, DOI 10.1086/374191; BORCHERT R, 1994, ECOLOGY, V75, P1437, DOI 10.2307/1937467; Brando PM, 2012, GLOBAL CHANGE BIOL, V18, P630, DOI 10.1111/j.1365-2486.2011.02533.x; Cochrane MA, 1999, SCIENCE, V284, P1832, DOI 10.1126/science.284.5421.1832; COLEY PD, 1987, NEW PHYTOL, V106, P251; Dauber E, 2005, FOREST ECOL MANAG, V214, P294, DOI 10.1016/j.foreco.2005.04.019; DICKINSON KJM, 1985, J BIOGEOGR, V12, P121, DOI 10.2307/2844836; Gould KA, 2002, FOREST ECOL MANAG, V165, P225, DOI 10.1016/S0378-1127(01)00620-X; Hawthorne W. D., 1996, Proceedings of the Royal Society of Edinburgh Section B (Biological Sciences), V104, P75; Hoffmann WA, 2003, FUNCT ECOL, V17, P720, DOI 10.1111/j.1365-2435.2003.00796.x; Hoffmann WA, 2009, ECOLOGY, V90, P1326, DOI 10.1890/08-0741.1; Iida Y, 2012, FUNCT ECOL, V26, P274, DOI 10.1111/j.1365-2435.2011.01921.x; Jackson JF, 1999, AM NAT, V153, P614, DOI 10.1086/303201; Keeley JE, 2011, FIRE MEDITERRANEAN E; Killeen TJ, 2006, SYST ASSOC SPEC VOL, P213; Kitajima K, 2008, TROPICAL FOREST COMM, P160; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Lawes MJ, 2013, J ECOL, V101, P517, DOI 10.1111/1365-2745.12035; Markesteijn L, 2009, J ECOL, V97, P311, DOI 10.1111/j.1365-2745.2008.01466.x; Markesteijn L, 2011, NEW PHYTOL, V191, P480, DOI 10.1111/j.1469-8137.2011.03708.x; Markesteijn L, 2011, PLANT CELL ENVIRON, V34, P137, DOI 10.1111/j.1365-3040.2010.02231.x; Mendez-Alonzo R, 2012, ECOLOGY, V93, P2397, DOI 10.1890/11-1213.1; Muller-Landau HC, 2008, J ECOL, V96, P653, DOI 10.1111/j.1365-2745.2008.01399.x; Paine CET, 2010, FUNCT ECOL, V24, P1202, DOI 10.1111/j.1365-2435.2010.01736.x; PATE JS, 1990, ANN BOT-LONDON, V65, P585, DOI 10.1093/oxfordjournals.aob.a087976; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; Pena-Claros M, 2012, BIOTROPICA, V44, P276, DOI 10.1111/j.1744-7429.2011.00813.x; Pinard MA, 1997, J TROP ECOL, V13, P727, DOI 10.1017/S0266467400010890; Poorter L, 2008, ANN BOT-LONDON, V102, P367, DOI 10.1093/aob/mcn103; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; Poorter L, 2006, ECOLOGY, V87, P1289, DOI 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2; Poorter L, 2010, ECOLOGY, V91, P2613, DOI 10.1890/09-0862.1; PUTZ FE, 1989, ECOLOGY, V70, P508, DOI 10.2307/1937555; PUTZ FE, 1983, ECOLOGY, V64, P1069, DOI 10.2307/1937815; Reifsnyder WE, 1967, BULLETIN, V70; Rodriguez Montellano A., 2012, ECOLOGIA BOLIVIA, V47, P53; Romero C., 2013, ADV EC BOT, V17, P5; Romero C, 2008, CAN J FOREST RES, V38, P611, DOI 10.1139/X07-205; Romero C, 2009, NEW PHYTOL, V182, P261, DOI 10.1111/j.1469-8137.2008.02733.x; Roth I., 1981, STRUCTURAL PATTERNS; RYAN KC, 1988, FOREST SCI, V34, P190; Scholz FG, 2007, PLANT CELL ENVIRON, V30, P236, DOI 10.1111/j.1365-3040.2006.01623.x; Siegert F, 2001, NATURE, V414, P437, DOI 10.1038/35106547; Slik JWF, 2010, OECOLOGIA, V164, P841, DOI 10.1007/s00442-010-1764-4; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Toledo M, 2011, J ECOL, V99, P254, DOI 10.1111/j.1365-2745.2010.01741.x; UHL C, 1990, ECOLOGY, V71, P437, DOI 10.2307/1940299; Van Nieuwstadt MGL, 2005, J ECOL, V93, P191, DOI 10.1111/j.1365-2745.2004.00954.x; VINES RG, 1968, AUST J BOT, V16, P499, DOI 10.1071/BT9680499; Warton DI, 2006, BIOL REV, V81, P259, DOI 10.1017/S1464793106007007 57 21 21 1 52 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. FEB 2014 28 1 SI 232 242 10.1111/1365-2435.12158 11 Ecology Environmental Sciences & Ecology AA4RN WOS:000331083900023 Bronze 2019-02-21 J Zhou, XB; Zhang, YM; Niklas, KJ Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China ANNALS OF BOTANY English Article Biomass allocation; allometric relationship; nitrogen availability; optimal partitioning; ephemerals; annuals; Erodium oxyrrhynchum; Hyalea pulchella; Alyssum linifolium; Ceratocarpus arenarius; Salsola ruthenica; Horaninowia ulicina ANNUAL PLANTS; ELEVATED CO2; SHOOT RATIOS; ROOT; RESPONSES; OPTIMIZATION; GRASSLANDS; ALLOMETRY; WATER; AVAILABILITY Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 05, 10, 30, 60 and 240 g N m(2) year(1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric. [Zhou, Xiaobing; Zhang, Yuanming] Chinese Acad Sci, Key Lab Biogeog & Bioresource Arid Land, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China; [Niklas, Karl J.] Cornell Univ, Dept Plant Biol, Ithaca, NY 14853 USA Zhang, YM (reprint author), Chinese Acad Sci, Key Lab Biogeog & Bioresource Arid Land, Xinjiang Inst Ecol & Geog, Urumqi 830011, Peoples R China. zhangym@ms.xjb.ac.cn National Natural Science Foundation of China [41001181, U1203301]; College of Agriculture and Life Sciences, Cornell University We thank Ye Tao, Lin Wu, Guodong Li, Zhibin Zhou and Yaobin Liu for their help with the plant sampling and analysis. Two anonymous reviewers provided helpful suggestions to improve the manuscript. This work is supported by the National Natural Science Foundation of China (41001181, U1203301) and the College of Agriculture and Life Sciences, Cornell University. Allen AP, 2008, FUNCT ECOL, V22, P197, DOI 10.1111/j.1365-2435.2007.01376.x; Andrews M, 2006, ANN BOT-LONDON, V97, P3, DOI 10.1093/aob/mcj009; Bai YF, 2010, GLOBAL CHANGE BIOL, V16, P358, DOI 10.1111/j.1365-2486.2009.01950.x; BARBOUR MG, 1973, AM MIDL NAT, V89, P41, DOI 10.2307/2424134; Bernacchi CJ, 2000, GLOBAL CHANGE BIOL, V6, P855, DOI 10.1046/j.1365-2486.2000.00370.x; BLOOM AJ, 1985, ANNU REV ECOL SYST, V16, P363, DOI 10.1146/annurev.es.16.110185.002051; Brooks ML, 2003, J APPL ECOL, V40, P344, DOI 10.1046/j.1365-2664.2003.00789.x; Chen BM, 2009, PLANT ECOL, V201, P401, DOI 10.1007/s11258-008-9526-7; Chen YN, 2007, ENVIRON GEOL, V52, P691, DOI 10.1007/s00254-006-0505-9; Cheng DL, 2007, ANN BOT-LONDON, V99, P95, DOI 10.1093/aob/mcl206; COLEMAN JS, 1994, TRENDS ECOL EVOL, V9, P187, DOI 10.1016/0169-5347(94)90087-6; Fenn ME, 2003, BIOSCIENCE, V53, P404, DOI 10.1641/0006-3568(2003)053[0404:EEONDI]2.0.CO;2; Gebauer RLE, 1996, NEW PHYTOL, V134, P85, DOI 10.1111/j.1469-8137.1996.tb01148.x; GLEESON SK, 1993, ANN BOT-LONDON, V71, P23, DOI 10.1006/anbo.1993.1003; GREEN TH, 1994, NEW PHYTOL, V128, P145, DOI 10.1111/j.1469-8137.1994.tb03997.x; HILBERT DW, 1990, ANN BOT-LONDON, V66, P91, DOI 10.1093/oxfordjournals.aob.a088005; HUNT R, 1973, ANN BOT-LONDON, V37, P519, DOI 10.1093/oxfordjournals.aob.a084718; Iwasa Y, 2000, EVOL ECOL RES, V2, P437; Ladwig LM, 2012, OECOLOGIA, V169, P177, DOI 10.1007/s00442-011-2173-z; McCarthy MC, 2007, FUNCT ECOL, V21, P713, DOI 10.1111/j.1365-2435.2007.01276.x; McConnaughay KDM, 1999, ECOLOGY, V80, P2581, DOI 10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2; McCrackin ML, 2008, BIOGEOCHEMISTRY, V87, P143, DOI 10.1007/s10533-007-9173-4; MEIR IN, 1973, ANNU REV ECOL SYST, V4, P25; Muller Ivo, 2000, Perspectives in Plant Ecology Evolution and Systematics, V3, P115, DOI 10.1078/1433-8319-00007; Niklas KJ, 2004, BIOL REV, V79, P871, DOI 10.1017/S1464793104006499; Niklas KJ, 2005, ANN BOT-LONDON, V95, P315, DOI 10.1093/aob/mci028; Niklas KJ, 2002, AM J BOT, V89, P812, DOI 10.3732/ajb.89.5.812; Niu SL, 2008, J EXP BOT, V59, P1431, DOI 10.1093/jxb/ern051; OLFF H, 1990, FUNCT ECOL, V4, P193, DOI 10.2307/2389338; Padgett PE, 1999, PLANT ECOL, V144, P93, DOI 10.1023/A:1009895720067; POORTER H, 1990, PLANT PHYSIOL, V94, P621, DOI 10.1104/pp.94.2.621; Poorter H, 1999, INT C ASS TRANSP PAR; POTVIN C, 1990, ECOLOGY, V71, P1389, DOI 10.2307/1938276; Song L, 2011, BIOGEOSCIENCES, V8, P2341, DOI 10.5194/bg-8-2341-2011; Su JQ, 2013, ECOL RES, V28, P21, DOI 10.1007/s11284-012-0994-9; THORNLEY JH, 1972, ANN BOT-LONDON, V36, P431, DOI 10.1093/oxfordjournals.aob.a084602; Wang LA, 2010, SCI CHINA LIFE SCI, V53, P851, DOI 10.1007/s11427-010-4027-z; Wang XQ, 2006, CHINESE SCI BULL, V51, P110, DOI 10.1007/s11434-006-8214-z; WEINER J, 1992, ECOLOGY, V73, P648, DOI 10.2307/1940771; Wu FZ, 2008, ENVIRON EXP BOT, V63, P248, DOI 10.1016/j.envexpbot.2007.11.002; Yang YH, 2011, J ECOL, V99, P431, DOI 10.1111/j.1365-2745.2010.01774.x; Yang YH, 2009, J VEG SCI, V20, P177, DOI 10.1111/j.1654-1103.2009.05566.x; Yuan X.M., 1997, ARID ZONE RES, V14, P52; Zhang W., 2011, ARID ZONE RES, V28, P771; Zhang Y, 2008, ATMOS ENVIRON, V42, P1035, DOI 10.1016/j.atmosenv.2007.12.015; Zhou XB, 2011, ENVIRON EXP BOT, V74, P1, DOI 10.1016/j.envexpbot.2010.12.005 46 10 19 3 69 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 1095-8290 ANN BOT-LONDON Ann. Bot. FEB 2014 113 3 501 511 10.1093/aob/mct275 11 Plant Sciences Plant Sciences AA7GI WOS:000331265200010 24287812 Green Published, Bronze 2019-02-21 J Li, Y; Cheng, RY; Spokas, KA; Palmer, AA; Borevitz, JO Li, Yan; Cheng, Riyan; Spokas, Kurt A.; Palmer, Abraham A.; Borevitz, Justin O. Genetic Variation for Life History Sensitivity to Seasonal Warming in Arabidopsis thaliana GENETICS English Article Arabidopsis; genome-wide association studies (GWAS); flowering time; growing season; climate change ANTHROPOGENIC CLIMATE-CHANGE; QUANTITATIVE TRAIT LOCI; FLOWERING TIME; RANGE SHIFTS; PHENOTYPIC PLASTICITY; NATURAL VARIATION; AIR-TEMPERATURE; ADAPTATION; RESPONSES; EVOLUTIONARY Climate change has altered life history events in many plant species; however, little is known about genetic variation underlying seasonal thermal response. In this study, we simulated current and three future warming climates and measured flowering time across a globally diverse set of Arabidopsis thaliana accessions. We found that increased diurnal and seasonal temperature (1 degrees-3 degrees) decreased flowering time in two fall cohorts. The early fall cohort was unique in that both rapid cycling and overwintering life history strategies were revealed; the proportion of rapid cycling plants increased by 3-7% for each 1 degrees temperature increase. We performed genome-wide association studies (GWAS) to identify the underlying genetic basis of thermal sensitivity. GWAS identified five main-effect quantitative trait loci (QTL) controlling flowering time and another five QTL with thermal sensitivity. Candidate genes include known flowering loci; a cochaperone that interacts with heat-shock protein 90; and a flowering hormone, gibberellic acid, a biosynthetic enzyme. The identified genetic architecture allowed accurate prediction of flowering phenotypes (R-2 > 0.95) that has application for genomic selection of adaptive genotypes for future environments. This work may serve as a reference for breeding and conservation genetic studies under changing environments. [Li, Yan; Borevitz, Justin O.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA; [Cheng, Riyan; Palmer, Abraham A.] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA; [Palmer, Abraham A.] Univ Chicago, Dept Psychiat & Behav Neurosci, Chicago, IL 60637 USA; [Li, Yan] Nanjing Agr Univ, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China; [Li, Yan] Minist Agr, Key Lab Soybean Biol & Genet Improvement, Nanjing, Jiangsu, Peoples R China; [Cheng, Riyan; Borevitz, Justin O.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia; [Spokas, Kurt A.] USDA ARS, St Paul, MN 55108 USA Borevitz, JO (reprint author), Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. justin.borevitz@anu.edu.au Spokas, Kurt/F-4839-2016; Palmer, Abraham/L-2158-2014; Borevitz, Justin/B-5423-2012 Spokas, Kurt/0000-0002-5049-5959; Palmer, Abraham/0000-0003-3634-0747; Borevitz, Justin/0000-0001-8408-3699; Li, Yan/0000-0002-1627-7763 National Institutes of Health (NIH) [R01GM073822]; NIH [R01DA021336, R01MH079103, R21DA024845]; Australian National University We thank John Zdenek and Sandra A. M. Suwanski at the University of Chicago greenhouse for help in preparing soils and watering plants, Eleni Boikoglou for collaborating on preparing the simulated weather files, and Nina Noah and Yi Ren for their help in scanning barcodes. This work was funded by National Institutes of Health (NIH) grant R01GM073822 (to J.O.B. and Y.L.) and NIH grants R01DA021336, R01MH079103, and R21DA024845 (to A.A.P. and R.C.) and Australian National University startup funds (to J.O.B. and R.C.). Anderson JT, 2012, PLANT PHYSIOL, V160, P1728, DOI 10.1104/pp.112.206219; Angert AL, 2011, INTEGR COMP BIOL, V51, P733, DOI 10.1093/icb/icr048; Blazquez MA, 2003, NAT GENET, V33, P168, DOI 10.1038/ng1085; Botto JF, 2007, PLANT CELL ENVIRON, V30, P1465, DOI 10.1111/j.1365-3040.2007.01722.x; Cheng RY, 2013, GENETICS, V193, P1015, DOI 10.1534/genetics.112.146332; Cheng R, 2011, BMC GENET, V12, DOI 10.1186/1471-2156-12-66; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Christians MJ, 2012, PLANT PHYSIOL, V160, P118, DOI 10.1104/pp.112.199109; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; Duputie A, 2012, ECOL LETT, V15, P251, DOI 10.1111/j.1461-0248.2011.01734.x; Fournier-Level A, 2011, SCIENCE, V334, P86, DOI 10.1126/science.1209271; Franks SJ, 2012, ANNU REV GENET, V46, P185, DOI 10.1146/annurev-genet-110711-155511; Hancock AM, 2011, SCIENCE, V334, P83, DOI 10.1126/science.1209244; Henderson IR, 2004, DEVELOPMENT, V131, P3829, DOI 10.1242/dev.01294; Hoffmann AA, 2008, NAT REV GENET, V9, P421, DOI 10.1038/nrg2339; Horton MW, 2012, NAT GENET, V44, P212, DOI 10.1038/ng.1042; Johanson U, 2000, SCIENCE, V290, P344, DOI 10.1126/science.290.5490.344; Kang HM, 2008, GENETICS, V178, P1709, DOI 10.1534/genetics.107.080101; LEGATES DR, 1990, INT J CLIMATOL, V10, P111, DOI 10.1002/joc.3370100202; LEGATES DR, 1990, THEOR APPL CLIMATOL, V41, P11, DOI 10.1007/BF00866198; Li Y, 2010, P NATL ACAD SCI USA, V107, P21199, DOI 10.1073/pnas.1007431107; Meiri D, 2009, PLANT J, V59, P387, DOI 10.1111/j.1365-313X.2009.03878.x; Mendez-Vigo B, 2011, PLANT PHYSIOL, V157, P1942, DOI 10.1104/pp.111.183426; Mitchell-Olds T, 2006, NATURE, V441, P947, DOI 10.1038/nature04878; New M, 1999, J CLIMATE, V12, P829, DOI 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2; Nicotra AB, 2010, TRENDS PLANT SCI, V15, P684, DOI 10.1016/j.tplants.2010.09.008; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Platt A, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000843; Queitsch C, 2002, NATURE, V417, P618, DOI 10.1038/nature749; Rosenzweig C, 2008, NATURE, V453, P353, DOI 10.1038/nature06937; Sangster TA, 2008, P NATL ACAD SCI USA, V105, P2969, DOI 10.1073/pnas.0712210105; Sangster TA, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000648; Schwartz MW, 2012, BIOSCIENCE, V62, P732, DOI 10.1525/bio.2012.62.8.6; Shaw RG, 2012, NEW PHYTOL, V195, P752, DOI 10.1111/j.1469-8137.2012.04230.x; Simpson GG, 2002, SCIENCE, V296, P285, DOI 10.1126/science.296.5566.285; Spokas K, 2006, WEED SCI, V54, P182, DOI 10.1614/WS-05-098R.1; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; Willis CG, 2008, P NATL ACAD SCI USA, V105, P17029, DOI 10.1073/pnas.0806446105; WILLMOTT CJ, 1995, J APPL METEOROL, V34, P2577, DOI 10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2 40 32 32 2 62 GENETICS SOCIETY AMERICA BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 0016-6731 1943-2631 GENETICS Genetics FEB 2014 196 2 569 + 10.1534/genetics.113.157628 18 Genetics & Heredity Genetics & Heredity AA7KX WOS:000331277400018 24281156 Green Published, Bronze 2019-02-21 J Matesanz, S; Horgan-Kobelski, T; Sultan, SE Matesanz, Silvia; Horgan-Kobelski, Tim; Sultan, Sonia E. Contrasting levels of evolutionary potential in populations of the invasive plant Polygonum cespitosum BIOLOGICAL INVASIONS English Article Evolutionary potential; Quantitative variation; Invasion; Genotype x environment interaction; Reproductive traits LIFE-HISTORY EVOLUTION; PHENOTYPIC PLASTICITY; GENETIC-VARIATION; ADAPTIVE EVOLUTION; ECOLOGICAL BREADTH; HETEROGENEOUS ENVIRONMENTS; MULTIPLE INTRODUCTIONS; ELECTRICITY PYLONS; ZINC CONTAMINATION; SPECIES INVASIONS The amount of quantitative genetic variation within an invasive species influences its ability to adapt to conditions in the new range and its long-term persistence. Consequently, this aspect of genetic diversity (or evolutionary potential) can be a key factor in the success of species invasions. Previous studies have compared the evolutionary potential of populations in introduced versus native ranges of invasive species, but to date no study has examined differences among introduced-range populations of such species in levels of quantitative genetic variation expressed in ecologically relevant environments. We assessed quantitative variation of fitness, life-history, and functional traits in six geographically separate introduced-range populations of the invasive annual Polygonum cespitosum, by comparing norms of reaction for a large sample of genotypes (16-19 per population) expressed in response to two glasshouse environments simulating contrasting habitats in this new range. Patterns of reaction norm diversity varied considerably among the 6 populations studied. Two populations showed very little quantitative genetic variation in both environments. In contrast, two other populations contained significant genetic variation for fitness and life-history traits in the form of genotypes with low performance in both habitats. Finally, two populations showed significant norm of reaction diversity in the form of cross-over interaction: genotypes that performed relatively well in one environment did poorly in the other. Differences among populations in potential selective response are likely to affect the dynamics and future spread of P. cespitosum, since specific populations will likely contribute differently to the invasion process. More generally, our results suggest that the evolutionary component of long-term invasion success may depend on population rather than on species-level processes. [Matesanz, Silvia] Univ Rey Juan Carlos, Dept Biol & Geol, Area Biodiversidad & Conservac, Mostoles 28933, Spain; [Horgan-Kobelski, Tim; Sultan, Sonia E.] Wesleyan Univ, Dept Biol, Middletown, CT 06459 USA Matesanz, S (reprint author), Univ Rey Juan Carlos, Dept Biol & Geol, Area Biodiversidad & Conservac, C Tulipan S-N, Mostoles 28933, Spain. silvia.matesanzgarcia@gmail.com Matesanz, Silvia/L-5153-2014 Matesanz, Silvia/0000-0003-0060-6136 Marie Curie IOF Fellowship (European Commission FP7); Wesleyan University We thank Sophie Ackoff, Lizzie Greenwald, Caleb Corliss, Nora Vogel, Peri Mason and Sara Rood-Ojalvo for their inestimable help during data collection. The authors are especially grateful to Jacob Herman for valuable discussion and to Prof. Dr. Txema Iriondo for kindly revising the manuscript. The study was funded by a Marie Curie IOF Fellowship (European Commission FP7) awarded to Silvia Matesanz, and by a Wesleyan University Project Grant to Sonia E. Sultan. ALHIYALY SA, 1988, NEW PHYTOL, V110, P571, DOI 10.1111/j.1469-8137.1988.tb00297.x; ALHIYALY SAK, 1993, HEREDITY, V70, P22, DOI 10.1038/hdy.1993.4; Baguley T., 2012, SERIOUS STATS GUIDE; BAKER RJ, 1988, CAN J PLANT SCI, V68, P405, DOI 10.4141/cjps88-051; BlackSamuelsson S, 1997, HEREDITY, V79, P268; Blake S.F., 1932, RHODORA J N ENGL BOT, V34, P146; Blows MW, 2005, ECOLOGY, V86, P1371, DOI 10.1890/04-1209; Byers DL, 2005, GENETICA, V123, P107, DOI 10.1007/s10709-003-2721-5; CHAZDON RL, 1991, BIOSCIENCE, V41, P760, DOI 10.2307/1311725; CHEN JM, 1991, AGR FOREST METEOROL, V56, P129, DOI 10.1016/0168-1923(91)90108-3; Chen YH, 2006, OECOLOGIA, V149, P656, DOI 10.1007/s00442-006-0482-4; Colautti RI, 2010, P ROY SOC B-BIOL SCI, V277, P1799, DOI 10.1098/rspb.2009.2231; Conner JK, 2003, ECOLOGY, V84, P1650, DOI 10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2; DeWalt SJ, 2011, AM J BOT, V98, P1128, DOI 10.3732/ajb.1000297; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Donohue K, 2001, EVOLUTION, V55, P692, DOI 10.1554/0014-3820(2001)055[0692:ADIPIN]2.0.CO;2; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Facon B, 2008, CURR BIOL, V18, P363, DOI 10.1016/j.cub.2008.01.063; Falconer D. S., 1996, INTRO QUANTITATIVE G; Fisher R. A., 1958, GENETICAL THEORY NAT; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; GILLESPIE JH, 1989, GENETICS, V121, P129; Gomez-Mestre I, 2004, EVOLUTION, V58, P2343; Griffith T, 2012, ECOL EVOL, V2, P778, DOI 10.1002/ece3.202; Griffith TM, 2005, NEW PHYTOL, V166, P141, DOI 10.1111/j.1469-8137.2004.01277.x; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hardesty BD, 2012, DIVERS DISTRIB, V18, P147, DOI 10.1111/j.1472-4642.2011.00832.x; HILL T, 2005, STAT METHODS APPL; Holland J. B., 2003, PLANT BREEDING REV, V22; Huey R. B., 2005, SPECIES INVASIONS IN; Karl T., 2009, GLOBAL CLIMATE CHANG; Kaufman SR, 2001, OECOLOGIA, V127, P487, DOI 10.1007/s004420000621; Kim ST, 2008, SYST BOT, V33, P77, DOI 10.1600/036364408783887302; Kingsolver JG, 2007, AM NAT, V169, P163, DOI 10.1086/510631; Knopp T, 2007, CONSERV GENET, V8, P45, DOI 10.1007/s10592-006-9147-4; Kolbe JJ, 2004, NATURE, V431, P177, DOI 10.1038/nature02807; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Le Roux JJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000590; Lee CE, 2008, EVOL APPL, V1, P427, DOI 10.1111/j.1752-4571.2008.00039.x; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Lockwood JL, 2005, TRENDS ECOL EVOL, V20, P223, DOI 10.1016/j.tree.2005.02.004; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Matesanz S, 2012, PLOS ONE, V12; Matesanz S, 2010, ANN NY ACAD SCI, V1206, P35, DOI 10.1111/j.1749-6632.2010.05704.x; MEHRHOFF LJ, 2003, IPANE INVASIVE PLANT; MIEHLS ALJ, 2011, EVOLUTIONARY APPL, V0005; Mooney HA, 2001, P NATL ACAD SCI USA, V98, P5446, DOI 10.1073/pnas.091093398; Novak SJ, 2007, P NATL ACAD SCI USA, V104, P3671, DOI 10.1073/pnas.0700224104; Parker IM, 2003, CONSERV BIOL, V17, P59, DOI 10.1046/j.1523-1739.2003.02019.x; Paterson AK, 2000, BARTONIA, V60, P57; Pinheiro J, 2012, NLME LINEAR NONLINEA, V3, P1; Prentis PJ, 2008, TRENDS PLANT SCI, V13, P288, DOI 10.1016/j.tplants.2008.03.004; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Stanton ML, 2005, NEW PHYTOL, V166, P319, DOI 10.1111/j.1469-8137.2004.01311.x; SULTAN SE, 1993, EVOLUTION, V47, P1009, DOI 10.1111/j.1558-5646.1993.tb02132.x; SULTAN SE, 1993, EVOLUTION, V47, P1032, DOI 10.1111/j.1558-5646.1993.tb02133.x; Sultan SE, 2001, ECOLOGY, V82, P328, DOI 10.2307/2679863; Sultan SE, 1998, J ECOL, V86, P363, DOI 10.1046/j.1365-2745.1998.00265.x; Sultan SE, 2012, EVOLUTIONARY APPL, V6, P266, DOI DOI 10.1111/0752-4571.2012.00287.X); Sultan SE, 2007, TRENDS ECOL EVOL, V22, P575, DOI 10.1016/j.tree.2007.06.014; Valladares F, 1997, OECOLOGIA, V111, P505, DOI 10.1007/s004420050264; van Kleunen M, 2002, EVOLUTION, V56, P2168, DOI 10.1554/0014-3820(2002)056[2168:ELHESO]2.0.CO;2; van Kleunen M, 2008, BASIC APPL ECOL, V9, P213, DOI 10.1016/j.baae.2007.03.006; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Zar J. H., 1999, BIOSTATISTICAL ANAL 67 11 11 0 38 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 1387-3547 1573-1464 BIOL INVASIONS Biol. Invasions FEB 2014 16 2 455 468 10.1007/s10530-013-0533-9 14 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 302PZ WOS:000330618700018 2019-02-21 J Soler, JJ; De Neve, L; Martin-Galvez, D; Molina-Morales, M; Perez-Contreras, T; Ruiz-Rodriguez, M Soler, Juan J.; De Neve, Liesbeth; Martin-Galvez, David; Molina-Morales, Mercedes; Perez-Contreras, Tomas; Ruiz-Rodriguez, Magdalena Do climatic conditions affect host and parasite phenotypes differentially? A case study of magpies and great spotted cuckoos OECOLOGIA English Article Brood parasitism; Carnus hemapterus; Immunity; Laying date; Nestling growth CELL-MEDIATED-IMMUNITY; PICA-PICA; LOCAL RECRUITMENT; BROOD-PARASITE; ACROCEPHALUS-SCIRPACEUS; CUCULUS-CANORUS; PARENTAL-CARE; AVIAN HOST; NESTLINGS; IMMUNOCOMPETENCE Climatic conditions, through their effects on resource availability, may affect important life history strategies and trade-offs in animals, as well as their interactions with other organisms such as parasites. This impact may depend on species-specific pathways of development that differ even among species with similar resource requirements (e.g., avian brood parasites and their hosts). Here we explore the degree of covariation between environmental-climatic conditions and nestling phenotypes (i.e., tarsus length, body mass, immune response to phytohemagglutinin injection) and ectoparasite loads of great spotted cuckoos (Clamator glandarius) and those of their magpie (Pica pica) hosts, both within and among 11 study years (1997-2011). Our main results were that (1) nestling phenotypes differed among years, but differently for great spotted cuckoos and magpies; (2) nestling phenotypes showed significant among-year covariation with breeding climatic conditions (temperature and precipitation); and (3) these associations differed for cuckoos and magpies for some phenotypic traits. As the average temperature at the beginning of the breeding season (April) increased, body mass and tarsus length increased only for cuckoos, but not for magpie hosts, while immune response decreased in both species. Finally, (4) the strength of the within-year relationships between the probability of ectoparasitism by Carnus hemapterus flies and laying date (used as an estimate of the within-year variation in climatic conditions) was negatively affected by the annual accumulated precipitation in April. These results strongly suggest that variation in climatic conditions would result in asymmetric effects on different species with respect to the probability of ectoparasitism, immunity and body size. Such asymmetric effects may affect animal interactions in general and those of brood parasites and their hosts in particular. [Soler, Juan J.; Martin-Galvez, David; Ruiz-Rodriguez, Magdalena] CSIC, Dept Ecol Func & Evolut, Estn Expt Zonas Aridas, Almeria 4120, Spain; [Soler, Juan J.; Ruiz-Rodriguez, Magdalena] Univ Granada, CSIC, Grp Coevoluc, Unidad Asociada, Granada, Spain; [De Neve, Liesbeth] Univ Ghent, Dept Biol, Terr Ecol Unit, B-9000 Ghent, Belgium; [Molina-Morales, Mercedes; Perez-Contreras, Tomas] Univ Granada, Fac Ciencias, Dept Zool, E-18071 Granada, Spain Soler, JJ (reprint author), CSIC, Dept Ecol Func & Evolut, Estn Expt Zonas Aridas, Almeria 4120, Spain. jsoler@eeza.csic.es De Neve, Liesbeth/F-7896-2011; Ruiz-Rodriguez, Magdalena/D-4226-2014; Perez-Contreras, Tomas/M-8065-2014; Soler, Juan/H-2363-2011; Evolution and Conservation Biology, UCM Group/K-9382-2014; Martin-Galvez, David/H-3707-2011 De Neve, Liesbeth/0000-0003-0041-9824; Ruiz-Rodriguez, Magdalena/0000-0002-4202-5180; Perez-Contreras, Tomas/0000-0002-2271-1706; Soler, Juan/0000-0003-2990-1489; Martin-Galvez, David/0000-0002-1501-9578; Molina Morales, Mercedes/0000-0001-8669-6624 Spanish Ministerio de Ciencia e Innovacion and European funds (FEDER) [CGL2010-19233-C03-01] We thank Anders Pape Moller, Manuel Soler, Gustavo Tomas and three anonymous reviewers for comments on previous versions of the manuscript that greatly improved the quality and clarity of the final version. Juan Manuel Peralta, Juan Gabriel Martinez and Gustavo Tomas helped at different stages of the field work. Funding was provided by the Spanish Ministerio de Ciencia e Innovacion and European funds (FEDER) (CGL2010-19233-C03-01). Permission for sampling magpie nests and nestlings was obtained from the Junta de Andalucia (Spanish regional government of Andalucia). Aviles JM, 2007, BEHAV ECOL SOCIOBIOL, V61, P475, DOI 10.1007/s00265-006-0275-0; Birkhead T, 1991, MAGPIES ECOLOGY BEHA; Boggs CL, 2012, ECOL LETT, V15, P502, DOI 10.1111/j.1461-0248.2012.01766.x; Calero-Torralbo MA, 2013, OIKOS, V122, P274, DOI 10.1111/j.1600-0706.2012.20374.x; Chen WH, 2002, GEN COMP ENDOCR, V126, P90, DOI 10.1006/gcen.2001.7772; Cichon M, 2005, J EVOLUTION BIOL, V18, P962, DOI 10.1111/j.1420-9101.2005.00910.x; Davies N. B., 2000, CUCKOOS COWBIRDS OTH; De Neve L, 2004, J AVIAN BIOL, V35, P237, DOI 10.1111/j.0908-8857.2004.03161.x; de Neve L, 2007, IBIS, V149, P763, DOI 10.1111/j.1474-919X.2007.00708.x; Del Grosso S, 2008, ECOLOGY, V89, P2117, DOI 10.1890/07-0850.1; Douglas DJT, 2010, OIKOS, V119, P1834, DOI 10.1111/j.1600-0706.2010.18388.x; Gordo O, 2006, GLOBAL CHANGE BIOL, V12, P1993, DOI 10.1111/j.1365-2486.2006.01178.x; Grim T, 1997, FOLIA ZOOL, V46, P135; Kruger O, 2002, P ROY SOC B-BIOL SCI, V269, P375, DOI 10.1098/rspb.2001.1887; Kutz SJ, 2005, P ROY SOC B-BIOL SCI, V272, P2571, DOI 10.1098/rspb.2005.3285; Martin-Galvez D, 2007, EVOLUTION, V61, P2340, DOI 10.1111/j.1558-5646.2007.00194.x; Martin-Galvez D, 2012, J AVIAN BIOL, V43, P531, DOI 10.1111/j.1600-048X.2012.05597.x; Martinez J, 2011, CURR ZOOL, V57, P390, DOI 10.1093/czoolo/57.3.390; Martinez Juan Gabriel, 1992, Ardeola, V39, P35; Merino S, 2000, OIKOS, V90, P327, DOI 10.1034/j.1600-0706.2000.900213.x; Merino S, 2010, BIRDS CLIMATE CHANGE, P213; Moller AP, 2009, BIOL REV, V84, P567, DOI 10.1111/j.1469-185X.2009.00087.x; Moller AP, 2010, P ROY SOC LOND B BIO, V278, P733; Moreno J, 2005, J AVIAN BIOL, V36, P251, DOI 10.1111/j.0908-8857.2005.03413.x; Ndong D, 2007, FISH SHELLFISH IMMUN, V22, P686, DOI 10.1016/j.fsi.2006.08.015; Ots I, 2001, P ROY SOC B-BIOL SCI, V268, P1175, DOI 10.1098/rspb.2001.1636; PAYNE RB, 1973, CONDOR, V75, P414, DOI 10.2307/1366563; Price P. W., 1980, EVOLUTIONARY BIOL PA; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Roldan M, 2011, BEHAV ECOL, V22, P679, DOI 10.1093/beheco/arr041; Saino N, 1998, OIKOS, V81, P217, DOI 10.2307/3547043; Saino N, 2009, BIOL LETTERS, V5, P539, DOI 10.1098/rsbl.2009.0312; Sala OE, 2012, PHILOS T R SOC B, V367, P3135, DOI 10.1098/rstb.2011.0347; Sinclair JA, 2000, CAN J ZOOL, V78, P254, DOI 10.1139/cjz-78-2-254; Soler JJ, 2001, ECOL LETT, V4, P470, DOI 10.1046/j.1461-0248.2001.00247.x; Soler JJ, 2000, OECOLOGIA, V125, P309, DOI 10.1007/s004420000487; Soler JJ, 1999, EVOL ECOL RES, V1, P189; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; Soler JJ, 1999, P 22 INT ORN C DURB, P3098; SOLER M, 1995, BEHAV ECOL SOCIOBIOL, V37, P7, DOI 10.1007/BF00173893; SOLER M, 1991, CONDOR, V93, P49, DOI 10.2307/1368605; Soler Manuel, 1996, Ardeola, V43, P87; Sorci G, 1997, P ROY SOC B-BIOL SCI, V264, P1593, DOI 10.1098/rspb.1997.0222; Statsoft Inc., 2011, STAT DAT AN SOFTW SY; Studds CE, 2011, P ROY SOC B-BIOL SCI, V278, P3437, DOI 10.1098/rspb.2011.0332; Svensson E, 1997, EVOLUTION, V51, P1276, DOI 10.1111/j.1558-5646.1997.tb03974.x; Vaclav R, 2008, BIOL J LINN SOC, V94, P463, DOI 10.1111/j.1095-8312.2008.00985.x; Valera F, 2006, PARASITOLOGY, V133, P179, DOI 10.1017/S0031182006009899; Verboven N, 1998, OIKOS, V81, P511, DOI 10.2307/3546771; White TCR, 2008, BIOL REV, V83, P227, DOI 10.1111/j.1469-185X.2008.00041.x; Yang CC, 2013, J AVIAN BIOL, V44, P216, DOI 10.1111/j.1600-048X.2013.00123.x; Zahraa H., 2008, INT J POULTRY SCI, V7, P964 52 3 4 5 36 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia FEB 2014 174 2 327 338 10.1007/s00442-013-2772-y 12 Ecology Environmental Sciences & Ecology 304GC WOS:000330734100002 24078079 2019-02-21 J Su, H; Li, YG; Liu, W; Xu, H; Sun, OJ Su, Hua; Li, Yonggeng; Liu, Wei; Xu, Hong; Sun, Osbert Jianxin Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China TREES-STRUCTURE AND FUNCTION English Article Arid; Gas exchange; Stable isotope; Water source; Water-use efficiency CARBON-ISOTOPE DISCRIMINATION; GAS-EXCHANGE CHARACTERISTICS; USE EFFICIENCY; INNER-MONGOLIA; HUNSHANDAK SANDLAND; DROUGHT STRESS; CLIMATE-CHANGE; LOESS PLATEAU; LEAF; TREES Ulmus pumila vary its water use strategy from seedling to maturity in a water-limited sandy land by adopting different photosynthetical capacities, water use efficiencies and morphological traits. Regeneration failure of natural Ulmus pumila populations has become a growing concern related to vegetation conservation and prediction of environmental change in the sandy lands of northern China. To better understand the life-history strategies of U. pumila and its adaptation to drought in semiarid environments, we studied ecophysiological and morphological traits related to water use in an age sequence of U. pumila representing four age classes: current-year seedlings (Uc), age 2- to 5-year-old saplings (Us), juveniles (Uj), and mature trees (Um). A comparison of hydrogen isotope data in xylem sap, soil water in different layers and groundwater showed that Uc relied on the soil water in the topsoil (0-40 cm), Us and Uj absorbed soil water from deeper soil (> 40 cm), while Um mainly used stable groundwater with very deep (> 2 m) taproots. Significantly lower predawn leaf water potentials were observed in Uc than in Uj or Um, suggesting that Uc experienced more severe water stress and had a weaker capacity to recovery. Moreover, Uc had the highest daily maximum net assimilation rate, daily maximum transpiration rate and daily maximum stomatal conductance, all of which decreased remarkably at midday. A "go for broke" strategy is probably practiced by Uc which try to provide the growth they need to become established, but with a great risk of mortality. Um used a more conservative strategy by effectively regulating the instantaneous water-use efficiency, and maintaining both stable gas exchange levels and significantly higher long-term water-use efficiency. Uj endured and adapted to drought conditions by developing steeper leaf angles, denser leaf pubescence and more stomata than differently aged plants. Our findings illustrate that significantly different water-use strategies were developed by U. pumila trees as they grew from seedlings to maturity, which were based on different water sources. [Su, Hua; Sun, Osbert Jianxin] Beijing Forestry Univ, MOE Key Lab Silviculture & Conservat, Beijing 100083, Peoples R China; [Su, Hua; Li, Yonggeng; Liu, Wei; Xu, Hong] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China Sun, OJ (reprint author), Beijing Forestry Univ, MOE Key Lab Silviculture & Conservat, Beijing 100083, Peoples R China. sunjianx@bjfu.edu.cn Su, Hua/H-4780-2012 Su, Hua/0000-0002-8088-3397; Li, Yonggeng/0000-0003-0374-8703 State Forestry Administration of China [2008-4-27]; Chinese Academy of Sciences [XDA05070102]; Postdoctoral Science Foundation of China [20100480214] This research was jointly supported by the State Forestry Administration of China (Grant No. 2008-4-27), the Strategic Priority Program of Chinese Academy of Sciences (Grant No. XDA05070102) and the Postdoctoral Science Foundation of China (Grant No. 20100480214). We thank Mr. Nasen Wuritu, Mr. Huhe Tuga, Mr. Zhenjiang Lan and Mr. Benfu Li for a considerable amount of helps during field work. Abdulrahaman A. A., 2011, INSIGHT BOT, V1, P15, DOI DOI 10.5567/B0TANY-IK.2011.15.21; BELSKY AJ, 1994, ECOLOGY, V75, P922, DOI 10.2307/1939416; Chimner RA, 2004, PLANT SOIL, V260, P225, DOI 10.1023/B:PLSO.0000030190.70085.e9; Dawson TE, 1996, TREE PHYSIOL, V16, P263; DELUCIA EH, 1989, PLANT CELL ENVIRON, V12, P935, DOI 10.1111/j.1365-3040.1989.tb01973.x; Ding YH, 2007, ADV ATMOS SCI, V24, P954, DOI 10.1007/s00376-007-0954-4; DONOVAN LA, 1992, FUNCT ECOL, V6, P482, DOI 10.2307/2389287; Dulamsuren C, 2009, ENVIRON EXP BOT, V66, P18, DOI 10.1016/j.envexpbot.2008.12.020; Ebdon JS, 2004, CROP SCI, V44, P1754, DOI 10.2135/cropsci2004.1754; EHLERINGER J, 1983, OECOLOGIA, V57, P107, DOI 10.1007/BF00379568; Ehleringer J. R., 1989, Plant physiological ecology: field methods and instrumentation., P281; EHLERINGER JR, 1992, PLANT CELL ENVIRON, V15, P1073, DOI 10.1111/j.1365-3040.1992.tb01657.x; Falster DS, 2003, NEW PHYTOL, V158, P509, DOI 10.1046/j.1469-8137.2003.00765.x; Fang J., 2012, ACTA ECOL SINICA, V32, P195, DOI [10. 1016/ j. chnaes. 2012. 05. 001, DOI 10.1016/J.CHNAES.2012.05.001]; FARQUHAR GD, 1989, ANNU REV PLANT PHYS, V40, P503, DOI 10.1146/annurev.pp.40.060189.002443; Flexas J, 2002, ANN BOT-LONDON, V89, P183, DOI 10.1093/aob/mcf027; FRANKS PJ, 1995, PLANT CELL ENVIRON, V18, P795, DOI 10.1111/j.1365-3040.1995.tb00583.x; Galmes J, 2007, ENVIRON EXP BOT, V60, P105, DOI 10.1016/j.envexpbot.2006.08.001; Glover BJ, 2000, J EXP BOT, V51, P497, DOI 10.1093/jexbot/51.344.497; Gonzalez-Rodriguez AM, 2002, J PLANT PHYSIOL, V159, P695, DOI 10.1078/0176-1617-0710; Gonzalez-Rodriguez AM, 2001, TREE PHYSIOL, V21, P1039, DOI 10.1093/treephys/21.14.1039; GRUBB PJ, 1977, BIOL REV, V52, P107, DOI 10.1111/j.1469-185X.1977.tb01347.x; [郭柯 Guo Ke], 2004, [生态学报, Acta Ecologica Sinica], V24, P2024; Hilbig W., 1995, VEGETATION MONGOLIA; Hoch G, 2003, PLANT CELL ENVIRON, V26, P1067, DOI 10.1046/j.0016-8025.2003.01032.x; Jackson PC, 1999, TREE PHYSIOL, V19, P717; Jin HM, 2009, ECOL RES, V24, P731, DOI 10.1007/s11284-008-0544-7; JOHNSON DA, 1990, CROP SCI, V30, P338, DOI 10.2135/cropsci1990.0011183X003000020019x; King DA, 1997, AUST J BOT, V45, P619, DOI 10.1071/BT96063; Li SG, 2006, TREES-STRUCT FUNCT, V20, P122, DOI 10.1007/s00468-005-0019-1; Li XR, 2007, PLANT SOIL, V300, P221, DOI 10.1007/s11104-007-9407-1; Li YG, 2007, PHOTOSYNTHETICA, V45, P133, DOI 10.1007/s11099-007-0021-5; Li YG, 2003, PHOTOSYNTHETICA, V41, P227, DOI 10.1023/B:PHOT.0000011955.12025.dc; Maherali H, 2002, PLANT CELL ENVIRON, V25, P557, DOI 10.1046/j.1365-3040.2002.00832.x; Markesteijn L, 2011, PLANT CELL ENVIRON, V34, P137, DOI 10.1111/j.1365-3040.2010.02231.x; Martinez JP, 2007, EUR J AGRON, V26, P30, DOI 10.1016/j.eja.2006.08.003; MCBURNEY T, 1992, J EXP BOT, V43, P327, DOI 10.1093/jxb/43.3.327; Nilson SE, 2007, PLANT PHYSIOL, V143, P19, DOI 10.1104/pp.106.093161; PARKHURST DF, 1994, NEW PHYTOL, V126, P449, DOI 10.1111/j.1469-8137.1994.tb04244.x; Ragab R, 2002, BIOSYST ENG, V81, P3, DOI 10.1006/bioe.2001.0013; Romero P, 2006, ENVIRON EXP BOT, V56, P158, DOI 10.1016/j.envexpbot.2005.01.012; Save R, 2000, BIOL PLANTARUM, V43, P239, DOI 10.1023/A:1002704327076; Su H, 2009, J PLANT RES, V122, P611, DOI 10.1007/s10265-009-0249-1; Tanaka-Oda A, 2010, J ARID ENVIRON, V74, P43, DOI 10.1016/j.jaridenv.2009.07.013; Tanaka-Oda A, 2010, FOREST ECOL MANAG, V259, P953, DOI 10.1016/j.foreco.2009.11.037; Valiente-Banuet A, 2011, OECOLOGIA, V163, P25; [王雪 WANG Xue], 2011, [干旱区研究, Arid Zone Research], V28, P542; Wesche K, 2011, FLORA, V206, P91, DOI 10.1016/j.flora.2010.01.012; Woodruff DR, 2009, TREE PHYSIOL, V29, P261, DOI 10.1093/treephys/tpn024; Xu Z, 2008, J EXP BOT, V59, P3317, DOI 10.1093/jxb/ern185; Yang H, 2011, PLANT SOIL, V340, P303, DOI 10.1007/s11104-010-0307-4; Yang X, 2007, CATENA, V71, P2, DOI 10.1016/j.catena.2006.10.002; Yue P, 2009, 2009 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY, VOL III, PROCEEDINGS,, P617, DOI 10.1109/ESIAT.2009.165; Zhang JW, 1997, TREE PHYSIOL, V17, P461; Zhang YJ, 2013, PLANT CELL ENVIRON, V36, P149, DOI 10.1111/j.1365-3040.2012.02563.x; Zheng SX, 2007, ECOL RES, V22, P342, DOI 10.1007/s11284-006-0024-x; Zheng YR, 2006, J ARID ENVIRON, V64, P523, DOI 10.1016/jjaridenv.2005.06.007 57 16 21 2 65 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0931-1890 1432-2285 TREES-STRUCT FUNCT Trees-Struct. Funct. FEB 2014 28 1 41 52 10.1007/s00468-013-0928-3 12 Forestry Forestry 302SC WOS:000330624200004 2019-02-21 J Emaresi, G; Bize, P; Altwegg, R; Henry, I; van den Brink, V; Gasparini, J; Roulin, A Emaresi, Guillaume; Bize, Pierre; Altwegg, Res; Henry, Isabelle; van den Brink, Valentijn; Gasparini, Julien; Roulin, Alexandre Melanin-Specific Life-History Strategies AMERICAN NATURALIST English Article life-history strategies; melanin; color polymorphism; genetic variation; melanin-based coloration OWL STRIX-ALUCO; COLOR POLYMORPHISM; PHENOTYPIC PLASTICITY; TAWNY OWL; REPRODUCTIVE STRATEGIES; TRADE-OFFS; ANIMAL PERSONALITIES; GENETIC-POLYMORPHISM; BEHAVIORAL SYNDROMES; MELANOCORTIN SYSTEM The maintenance of genetic variation is a long-standing issue because the adaptive value of life-history strategies associated with each genetic variant is usually unknown. However, evidence for the coexistence of alternative evolutionary fixed strategies at the population level remains scarce. Because in the tawny owl (Strix aluco) heritable melanin-based coloration shows different physiological and behavioral norms of reaction, we investigated whether coloration is associated with investment in maintenance and reproduction. Light melanic owls had lower adult survival compared to dark melanic conspecifics, and color variation was related to the trade-off between offspring number and quality. When we experimentally enlarged brood size, light melanic males produced more fledglings but in poorer condition, and they were less often recruited in the local breeding population than those of darker melanic conspecifics. Our results also suggest that dark melanic males allocate a constant effort to raise their brood independently of environmental conditions, whereas lighter melanic males finely adjust reproductive effort in relation to changes in environmental conditions. Color traits can therefore be associated with life-history strategies, and stochastic environmental perturbation can temporarily favor one phenotype over others. The existence of fixed strategies implies that some phenotypes can sometimes display a "maladapted" strategy. Long-term population monitoring is therefore vital for a full understanding of how different genotypes deal with trade-offs. [Emaresi, Guillaume; Bize, Pierre; Henry, Isabelle; van den Brink, Valentijn; Roulin, Alexandre] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland; [Bize, Pierre] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen AB24 2TZ, Scotland; [Altwegg, Res] South African Natl Biodivers Inst, ZA-7735 Claremont, South Africa; [Altwegg, Res] Univ Cape Town, Dept Biol Sci, Anim Demog Unit, ZA-7701 Rondebosch, South Africa; [Altwegg, Res] Univ Cape Town, Dept Stat Sci, ZA-7701 Rondebosch, South Africa; [Gasparini, Julien] Univ Paris 06, CNRS Unite Mixte Rech 7625, Lab Ecol & Evolut, F-75252 Paris, France Roulin, A (reprint author), Univ Lausanne, Dept Ecol & Evolut, Biophore Bldg, CH-1015 Lausanne, Switzerland. alexandre.roulin@unil.ch Gasparini, Julien/J-9263-2012 National Research Foundation of South Africa; Swiss National Science Foundation [PPOA-102913, 3100AO_120517, PPOOA-109009, 31003A_129488] We are grateful to O. Arevalo, S. Cotting, A. Da Silva, A. Dreiss, A.-L. Ducrest, E. Gonzalez, S. Joye, E. Luzio, Y. Menetrey, M. Noll, R. Piault, P.-A. Ravussin, C. Ruppli, and D. Vuillen for assistance in the field and J. Bronstein, T. Broquet, P. Fontanillas, T. Williams, and two anonymous reviewers for useful comments on previous versions of the manuscript. This study was financially supported by the National Research Foundation of South Africa and by the Swiss National Science Foundation (PPOA-102913 and 3100AO_120517 to A. R. and PPOOA-109009 and 31003A_129488 to P. B.). The study was approved by the Service veterinaire du canton de Vaud. Bell AM, 2007, NATURE, V447, P539, DOI 10.1038/447539a; Bell G, 2010, PHILOS T R SOC B, V365, P87, DOI 10.1098/rstb.2009.0150; Brommer JE, 2005, P ROY SOC B-BIOL SCI, V272, P935, DOI 10.1098/rspb.2005.3052; Da Silva A, 2013, BEHAV ECOL SOCIOBIOL, V67, P1041, DOI 10.1007/s00265-013-1529-2; De Jong G, 2000, GENET RES, V76, P295, DOI 10.1017/S0016672300004729; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dobzhansky T., 1950, American Scientist, V38, P209; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Egas M, 2004, AM NAT, V163, P518, DOI 10.1086/382599; Emaresi G, 2013, MOL ECOL, V22, P4915, DOI 10.1111/mec.12438; Emaresi Guillaume, 2011, P242; Ernande B, 2004, J EVOLUTION BIOL, V17, P613, DOI 10.1111/j.1420-9101.2004.00691.x; Galeotti P, 2003, J EVOLUTION BIOL, V16, P635, DOI 10.1046/j.1420-9101.2003.00569.x; Galeotti Paolo, 2001, BWP Update, V3, P43; Gasparini J, 2009, J EVOLUTION BIOL, V22, P2348, DOI 10.1111/j.1420-9101.2009.01831.x; Gasparini J, 2009, J ANIM ECOL, V78, P608, DOI 10.1111/j.1365-2656.2008.01521.x; Gigord LDB, 2001, P NATL ACAD SCI USA, V98, P6253, DOI 10.1073/pnas.111162598; Glutz von Blotzheim UN, 1980, HDB VOGEL MITTELEURO, V9; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; HEDRICK PW, 1986, ANNU REV ECOL SYST, V17, P535; Hutchings JA, 2007, P R SOC B, V274, P1693, DOI 10.1098/rspb.2007.0263; Karell P, 2011, J EVOLUTION BIOL, V24, P1783, DOI 10.1111/j.1420-9101.2011.02308.x; Karell P, 2011, NAT COMMUN, V2, DOI 10.1038/ncomms1213; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; Kruger O, 2001, EVOLUTION, V55, P1207; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Losey JE, 1997, NATURE, V388, P269, DOI 10.1038/40849; LYNCH M, 2007, ORIGIN GENOME ARCHIT; MAC ARTHUR ROBERT H., 1967; Mann M. E., 2013, SEMINARS CELL DEV BI, V24, P516; McElreath R, 2006, ANIM BEHAV, V72, P1135, DOI 10.1016/j.anbehav.2006.04.001; McKinnon JS, 2010, MOL ECOL, V19, P5101, DOI 10.1111/j.1365-294X.2010.04846.x; MCLEOD MJ, 1981, AM NAT, V118, P129, DOI 10.1086/283808; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Piault R, 2009, AM NAT, V174, P548, DOI 10.1086/605374; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Roulin A, 2008, BEHAV ECOL SOCIOBIOL, V62, P507, DOI 10.1007/s00265-007-0475-2; Roulin A, 2004, BIOL REV, V79, P815, DOI 10.1017/S1464793104006487; Roulin A, 2005, J ORNITHOL, V146, P390, DOI 10.1007/s10336-005-0096-3; Roulin A, 2004, EVOL ECOL RES, V6, P1253; Roulin A, 2003, J AVIAN BIOL, V34, P393, DOI 10.1111/j.0908-8857.2003.03139.x; Roulin A, 2013, SEMIN CELL DEV BIOL, V24, P594, DOI 10.1016/j.semcdb.2013.05.005; Roulin A, 2011, OECOLOGIA, V166, P913, DOI 10.1007/s00442-011-1955-7; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Rushton JP, 2004, INTELLIGENCE, V32, P321, DOI 10.1016/j.intell.2004.06.003; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sinervo B, 1996, NATURE, V380, P240, DOI 10.1038/380240a0; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Svanback R, 2012, AM NAT, V180, P50, DOI 10.1086/666000; van de Pol M, 2012, METHODS ECOL EVOL, V3, P268, DOI 10.1111/j.2041-210X.2011.00160.x; Vercken E, 2008, J EVOLUTION BIOL, V21, P1160, DOI 10.1111/j.1420-9101.2008.01535.x; Vercken E, 2007, J EVOLUTION BIOL, V20, P221, DOI 10.1111/j.1420-9101.2006.01208.x; White GC, 1999, BIRD STUDY, V46, P120; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 62 24 24 3 62 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 1 2014 183 2 269 280 10.1086/674444 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 295AG WOS:000330088400011 24464200 Green Published 2019-02-21 J Fitzpatrick, SW; Torres-Dowdall, J; Reznick, DN; Ghalambor, CK; Funk, WC Fitzpatrick, Sarah W.; Torres-Dowdall, Julian; Reznick, David N.; Ghalambor, Cameron K.; Funk, W. Chris Parallelism Isn't Perfect: Could Disease and Flooding Drive a Life-History Anomaly in Trinidadian Guppies? AMERICAN NATURALIST English Article parallel evolution; multistate mark-recapture; life-history evolution; Poecilia reticulata POECILIA-RETICULATA; RAPID EVOLUTION; NATURAL-POPULATIONS; COLOR PATTERNS; DAPHNIA-MAGNA; GENETIC-BASIS; PREDATION; SELECTION; SIZE; RECAPTURE Nonparallel evolution, where independent populations occupy similar environments but show phenotypic differences, can uncover previously ignored selective factors. We investigated a nonparallelism in the life-history strategy of a Trinidadian guppy population, a system famous for parallel adaptation to differences in predation risk. We tested the hypothesis that high mortality drives an observed fast life-history pattern (i.e., earlier maturation and more frequent reproductive events) that is atypical for a low-predation environment. Using mark-recapture techniques, we compared neighboring low-predation populations, finding significantly higher mortality rates in the population with atypical life-history traits. Mortality was elevated during the wet season, when flooding was common. Moreover, individuals from the anomalous population were more likely to transition from healthy to infected disease states. Our results stand out against previous patterns observed in this system, indicating that higher mortality caused by disease and flooding may have selected for a faster life history. Thus, we highlight that even in systems famous for parallel adaptation, variation in selective pressures can result in nonparallel phenotypic evolution. [Fitzpatrick, Sarah W.; Ghalambor, Cameron K.; Funk, W. Chris] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Torres-Dowdall, Julian] Univ Konstanz, Dept Biol, Lehrstuhl Zool & Evolut Biol, Constance, Germany; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Fitzpatrick, SW (reprint author), Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. sarah.fitzpatrick@colostate.edu Torres-Dowdall, Julian/0000-0003-2729-6246; reznick, david/0000-0002-1144-0568 National Science Foundation [DEB-1146489, DEB-0846175]; National Science Foundation Frontiers in Integrative Biological Research grant [EF-0623632]; Colorado State University; Society for the Study of Evolution Rosemary Grant Student Research Award We are grateful to the many field assistants who helped with guppy mark-recapture in Trinidad. We thank the Colorado State University Guppy Group and the joint Funk-Hoke Lab for helpful feedback on the manuscript. We also thank L. Bailey for feedback on our multistate mark-recapture modeling approach. This project was supported by a National Science Foundation grant to W. C. F. (DEB-1146489), a National Science Foundation Faculty Early Career Development grant (DEB-0846175) to C. K. G., and a National Science Foundation Frontiers in Integrative Biological Research grant (EF-0623632) to D.N.R., as well as Colorado State University (start-up funds to W. C. F.) and a National Science Foundation Graduate Research Fellowship and Society for the Study of Evolution Rosemary Grant Student Research Award to S.W.F. Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; ALLAN J. D., 2007, STREAM ECOLOGY STRUC; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Bryant MJ, 2004, AM NAT, V163, P55, DOI 10.1086/380650; CARRIERE Y, 1994, P ROY SOC B-BIOL SCI, V258, P35, DOI 10.1098/rspb.1994.0138; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Charlesworth B., 1994, EVOLUTION AGE STRUCT; COHEN D, 1966, J THEOR BIOL, V12, P119, DOI 10.1016/0022-5193(66)90188-3; Ellis T., 2008, FISH WELFARE, P121; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1983, ENVIRON BIOL FISH, V9, P173, DOI 10.1007/BF00690861; Fitzpatrick S. W., 2014, AM NATURALIST DRYAD, DOI DOI 10.5061/DRYAD.88DJ4; Fredensborg BL, 2006, J ANIM ECOL, V75, P44, DOI 10.1111/j.1365-2656.2005.01021.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gee H., 2009, NATURE, DOI DOI 10.1038/NATURE07740; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gordon SP, 2009, AM NAT, V174, P34, DOI 10.1086/599300; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; HOUDE AE, 1990, SCIENCE, V248, P1405, DOI 10.1126/science.248.4961.1405; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; JONES R, 1992, EVOLUTION, V46, P353, DOI 10.1111/j.1558-5646.1992.tb02043.x; KAEUFFER R, 2011, EVOLUTION, V0066; LAFFERTY KD, 1993, OIKOS, V68, P3, DOI 10.2307/3545303; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; Latremouille DN, 2003, REV FISH SCI, V11, P315, DOI 10.1080/10641260390255745; Lebreton JD, 2002, J APPL STAT, V29, P353, DOI 10.1080/02664760120108638; Lopez-Sepulcre A, 2013, P ROYAL SOC B, V280, P1763; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; MCPHAIL JD, 1993, CAN J ZOOL, V71, P515, DOI 10.1139/z93-072; Mitchell SE, 2004, ECOL LETT, V7, P848, DOI 10.1111/j.1461-0248.2004.00639.x; Ohlberger J, 2011, P ROY SOC B-BIOL SCI, V278, P35, DOI 10.1098/rspb.2010.0960; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Schluter D, 2004, AM NAT, V163, P809, DOI 10.1086/383621; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Stearns S, 1992, EVOLUTION LIFE HIST; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; Webster JP, 1999, P ROY SOC B-BIOL SCI, V266, P391, DOI 10.1098/rspb.1999.0650; Weese DJ, 2010, EVOLUTION, V64, P1802, DOI 10.1111/j.1558-5646.2010.00945.x; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 59 15 15 2 27 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. FEB 1 2014 183 2 290 300 10.1086/674611 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 295AG WOS:000330088400013 24464202 2019-02-21 J Ransom, JI; Powers, JG; Hobbs, NT; Baker, DL Ransom, Jason I.; Powers, Jenny G.; Hobbs, N. Thompson; Baker, Dan L. Ecological feedbacks can reduce population-level efficacy of wildlife fertility control JOURNAL OF APPLIED ECOLOGY English Review behaviour; demography; ecological process; fertility control; fitness; immunocontraception; population dynamics; population ecology; wildlife contraception; wildlife management WHITE-TAILED DEER; MOUNTAIN GOAT POPULATION; COMPENSATORY REPRODUCTION; LEVONORGESTREL IMPLANTS; CONTRACEPTIVE TREATMENT; MAMMALIAN WILDLIFE; IMPOSED STERILITY; BRUSHTAIL POSSUMS; HORMONE AGONIST; BODY CONDITION Anthropogenic stress on natural systems, particularly the fragmentation of landscapes and the extirpation of predators from food webs, has intensified the need to regulate abundance of wildlife populations with management. Controlling population growth using fertility control has been considered for almost four decades, but nearly all research has focused on understanding effects of fertility control agents on individual animals. Questions about the efficacy of fertility control as a way to control populations remain largely unanswered. Collateral consequences of contraception can produce unexpected changes in birth rates, survival, immigration and emigration that may reduce the effectiveness of regulating animal abundance. The magnitude and frequency of such effects vary with species-specific social and reproductive systems, as well as connectivity of populations. Developing models that incorporate static demographic parameters from populations not controlled by contraception may bias predictions of fertility control efficacy. Many population-level studies demonstrate that changes in survival and immigration induced by fertility control can compensate for the reduction in births caused by contraception. The most successful cases of regulating populations using fertility control come from applications of contraceptives to small, closed populations of gregarious and easily accessed species. Fertility control can result in artificial selection pressures on the population and may lead to long-term unintentional genetic consequences. The magnitude of such selection is dependent on individual heritability and behavioural traits, as well as environmental variation.Synthesis and applications. Understanding species' life-history strategies, biology, behavioural ecology and ecological context is critical to developing realistic expectations of regulating populations using fertility control. Before time, effort and funding are invested in wildlife contraception, managers may need to consider the possibility that many species and populations can compensate for reduction in fecundity, and this could minimize any reduction in population growth rate. Upland land use is associated with curlew declines, with predation a likely mechanism, and this may apply to other breeding waders. The removal of isolated woodland plantations from otherwise unafforested landscapes may help reduce predation pressure across a range of systems including moorland. However, direct predator control may also be important to conserve ground-nesting birds in these landscapes, for example, where moorland management and forestry coexist as major land uses. Predator control may also mitigate climate change effects by enhancing wader productivity, particularly where climate effects coincide with changing land use. Emerging land uses in open landscapes, including native woodland restoration and wind farms, require careful siting to minimize further impacts on open-area breeding birds. [Ransom, Jason I.] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA; [Powers, Jenny G.] Natl Pk Serv, Biol Resource Management Div, Ft Collins, CO 80525 USA; [Hobbs, N. Thompson] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA; [Baker, Dan L.] Colorado State Univ, Dept Biomed Sci, Ft Collins, CO 80523 USA Ransom, JI (reprint author), US Geol Survey, Ft Collins Sci Ctr, 2150 Ctr Ave,Bldg C, Ft Collins, CO 80526 USA. jason_i_ransom@nps.gov Hobbs, Tom/C-5263-2016 U.S. Geological Survey Wildlife Program A special thank you to the late Francis Singer for pursuing the fertility control research that ultimately led to this manuscript. Preparation of this manuscript was funded by the U.S. Geological Survey Wildlife Program. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. Asa C. S., 2005, WILDLIFE CONTRACEPTI, pxxv; Asa Cheryl S., 2005, P29; Baker DL, 2004, J WILDLIFE DIS, V40, P713, DOI 10.7589/0090-3558-40.4.713; Baker DL, 2002, REPRODUCTION, P155; Barlow ND, 1997, WILDLIFE RES, V24, P129, DOI 10.1071/WR95027; Bell R. L., 1975, WILDLIFE SOC B, V28, P152; Bertrand MR, 1996, J WILDLIFE MANAGE, V60, P899, DOI 10.2307/3802391; Boyce MS, 1999, OIKOS, V87, P419, DOI 10.2307/3546808; Bromley C, 2001, CAN J ZOOL, V79, P386, DOI 10.1139/cjz-79-3-386; Buchholz R, 2007, TRENDS ECOL EVOL, V22, P401, DOI 10.1016/j.tree.2007.06.002; Budke CM, 2009, J APPL ANIM WELF SCI, V12, P277, DOI 10.1080/10888700903163419; Caley P, 2001, J APPL ECOL, V38, P1362, DOI 10.1046/j.0021-8901.2001.00676.x; CAUGHLEY G, 1992, WILDLIFE RES, V19, P623, DOI 10.1071/WR9920623; Caughley G., 1981, OVERPOPULATION PROBL, P7; Chambers LK, 1999, WILDLIFE RES, V26, P579, DOI 10.1071/WR98093; Conner MM, 2007, J WILDLIFE MANAGE, V71, P2346, DOI 10.2193/2006-463; Cook JG, 2004, WILDLIFE MONOGR, P1; Cooper D. W., 2004, Australian Mammalogy, V26, P61; Cooper DW, 2006, REPRODUCTION, V132, P821, DOI 10.1530/REP-06-0037; Cooper DW, 2001, REPROD FERT DEVELOP, V13, P451, DOI 10.1071/RD01072; Crawford J. C., 2010, P ROYAL SOC B, V278, P122; Creel S, 2001, TRENDS ECOL EVOL, V16, P491, DOI 10.1016/S0169-5347(01)02227-3; Davis SA, 2002, REPRODUCTION, P89; Delsink AK, 2006, S AFR J SCI, V102, P403; der Laan MHP, 2002, VET IMMUNOL IMMUNOP, V87, P199, DOI 10.1016/S0165-2427(02)00075-2; Diamond J, 2002, NATURE, V418, P700, DOI 10.1038/nature01019; Dublin H.T., 1983, P291; Fayrer-Hosken RA, 2000, NATURE, V407, P149, DOI 10.1038/35025136; Feh C., 2012, INT WILD EQ C, P69; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GARROTT RA, 1995, WILDLIFE SOC B, V23, P445; Gilman RT, 2010, J WILDLIFE MANAGE, V74, P1484, DOI 10.2193/2009-365; Gray ME, 2010, REPRODUCTION, V139, P45, DOI 10.1530/REP-08-0456; Hadidian J., 2009, WILDLIFE SOC SCI HUM, P202; Harrenstien LA, 2004, J ZOO WILDLIFE MED, V35, P271, DOI 10.1638/03-082; Heilmann TJ, 1998, J WILDLIFE MANAGE, V62, P243, DOI 10.2307/3802284; Hobbs NT, 2000, J WILDLIFE MANAGE, V64, P473, DOI 10.2307/3803245; Hoffmann AA, 1999, TRENDS ECOL EVOL, V14, P96, DOI 10.1016/S0169-5347(99)01595-5; Hone J, 2007, WILDLIFE DAMAGE CONTROL, P1; HONE J, 1992, J APPL ECOL, V29, P695, DOI 10.2307/2404478; Hynes EF, 2011, APPL ANIM BEHAV SCI, V134, P209, DOI 10.1016/j.applanim.2011.06.019; Jacob J, 2004, J WILDLIFE MANAGE, V68, P1138, DOI 10.2193/0022-541X(2004)068[1138:EOISOM]2.0.CO;2; Jacob J, 2008, WILDLIFE RES, V35, P487, DOI 10.1071/WR07129; Ji WH, 2000, J APPL ECOL, V37, P926, DOI 10.1046/j.1365-2664.2000.00546.x; Kirkpatrick J. F., 1995, BIOL REPROD MONOGRAP, V1, P411; Kirkpatrick JF, 2008, WILDLIFE RES, V35, P513, DOI 10.1071/WR07106; Kirkpatrick JF, 2007, ZOO BIOL, V26, P237, DOI 10.1002/zoo.20109; Kirkpatrick JF, 2011, AM J REPROD IMMUNOL, V66, P40, DOI 10.1111/j.1600-0897.2011.01003.x; KIRKPATRICK JF, 1991, J WILDLIFE MANAGE, V55, P649, DOI 10.2307/3809514; Knuth Barbara A., 2001, HUMAN DIMENSIONS WIL, P219; Lauber TB, 2007, SOC NATUR RESOUR, V20, P119, DOI 10.1080/08941920601052362; Lauber TB, 2004, WILDLIFE SOC B, V32, P322, DOI 10.2193/0091-7648(2004)32[322:EOIOAT]2.0.CO;2; Leffhalm JE, 2009, HORSES BIOL DOMESTIC; Leong KM, 2010, SOC NATUR RESOUR, V23, P111, DOI 10.1080/08941920802438642; LINN GS, 1990, PHYSIOL BEHAV, V47, P403, DOI 10.1016/0031-9384(90)90100-I; Liu M, 2012, BEHAV PROCESS, V89, P278, DOI 10.1016/j.beproc.2011.12.009; Madosky JM, 2010, APPL ANIM BEHAV SCI, V128, P50, DOI 10.1016/j.applanim.2010.09.013; Magiafoglou A, 2003, IMMUNOL CELL BIOL, V81, P152, DOI 10.1046/j.0818-9641.2002.01146.x; McShea WJ, 1997, J WILDLIFE MANAGE, V61, P560, DOI 10.2307/3802615; Mendes-de-Almeida F, 2011, J FELINE MED SURG, V13, P436, DOI 10.1016/j.jfms.2011.02.001; Merrill JA, 2006, J WILDLIFE MANAGE, V70, P268, DOI 10.2193/0022-541X(2006)70[268:MAODPB]2.0.CO;2; Merrill JA, 2003, J WILDLIFE MANAGE, V67, P267, DOI 10.2307/3802768; MOUTON D, 1988, LIVEST PROD SCI, V20, P277, DOI 10.1016/0301-6226(88)90023-1; Nettles VF, 1997, REPROD FERT DEVELOP, V9, P137, DOI 10.1071/R96054; Nielsen CK, 1997, WILDLIFE SOC B, V25, P470; Nunez CMV, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013635; Nunez CMV, 2009, APPL ANIM BEHAV SCI, V117, P74, DOI 10.1016/j.applanim.2008.12.001; Penfold Linda M., 2005, P184; Poiani A, 2002, J WILDLIFE MANAGE, V66, P59, DOI 10.2307/3802871; Porton Ingrid J., 2005, P3; PORTUGAL MM, 1995, ZOO BIOL, V14, P251, DOI 10.1002/zoo.1430140306; Powell D. M., 2001, Journal of Applied Animal Welfare Science, V4, P271, DOI 10.1207/S15327604JAWS0404_04; Powers JG, 2011, BIOL REPROD, V85, P1152, DOI 10.1095/biolreprod.110.088237; Ramsey D, 2005, J APPL ECOL, V42, P348, DOI 10.1111/j.1365-2664.2005.01006.x; Ransom J. I., 2012, POPULATION ECOLOGY F; Ransom JI, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054972; Ransom JI, 2010, APPL ANIM BEHAV SCI, V124, P51, DOI 10.1016/j.applanim.2010.01.015; Rhind SM, 2004, ANIM REPROD SCI, V82-3, P169, DOI 10.1016/j.anireprosci.2004.04.003; Rudolph BA, 2000, J WILDLIFE MANAGE, V64, P463, DOI 10.2307/3803244; Rutberg AT, 2008, WILDLIFE RES, V35, P494, DOI 10.1071/WR07128; Sarker N, 1999, POULTRY SCI, V78, P1; Saunders G, 2002, J APPL ECOL, V39, P56, DOI 10.1046/j.1365-2664.2002.00696.x; Schulte BA, 2000, PHYSIOL BEHAV, V71, P123, DOI 10.1016/S0031-9384(00)00316-4; Seagle SW, 1996, BIOL CONSERV, V76, P87, DOI 10.1016/0006-3207(95)00089-5; Sebastian-Gonzalez E, 2011, BIOL CONSERV, V144, P2354, DOI 10.1016/j.biocon.2011.06.015; Shumake S. A., 1995, COMP EFFECTS 4 IMMUN, P9; Sibly RM, 2002, PHILOS T ROY SOC B, V357, P1153, DOI 10.1098/rstb.2002.1117; Sinclair ARE, 1997, REPROD FERT DEVELOP, V9, P1, DOI 10.1071/R96057; Singleton GR, 2002, REPRODUCTION, P31; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Snape M. A., 2011, 8 EUR VERT PEST MAN, P114; Stoops MA, 2006, REPROD FERT DEVELOP, V18, P667, DOI 10.1071/RD05045; Sutherland WJ, 1998, ANIM BEHAV, V56, P801, DOI 10.1006/anbe.1998.0896; SWENSON JE, 1985, J WILDLIFE MANAGE, V49, P837, DOI 10.2307/3801355; Teel TL, 2010, CONSERV BIOL, V24, P128, DOI 10.1111/j.1523-1739.2009.01374.x; Turner A, 2002, REPRODUCTION, P187; Twigg LE, 2000, J APPL ECOL, V37, P16, DOI 10.1046/j.1365-2664.2000.00471.x; WHITE LM, 1994, J WILDLIFE DIS, V30, P241, DOI 10.7589/0090-3558-30.2.241; Whyte I, 1998, ANIM CONSERV, V1, P77, DOI 10.1111/j.1469-1795.1998.tb00014.x; Wilkie B, 1999, VET IMMUNOL IMMUNOP, V72, P231, DOI 10.1016/S0165-2427(99)00136-1; Williams CK, 2007, J APPL ECOL, V44, P291, DOI 10.1111/j.1365-2664.2006.01264.x; Williams JS, 1999, WILDLIFE SOC B, V27, P1019 102 12 13 6 87 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8901 1365-2664 J APPL ECOL J. Appl. Ecol. FEB 2014 51 1 259 269 10.1111/1365-2664.12166 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 291RJ WOS:000329846500028 Green Published 2019-02-21 J Kelly, CD; Neyer, AA; Gress, BE Kelly, C. D.; Neyer, A. A.; Gress, B. E. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket JOURNAL OF EVOLUTIONARY BIOLOGY English Article Host-parasite interaction; Insects; Life history evolution; Natural selection; Trade-offs EARLY GROWTH-CONDITIONS; GRYLLUS-CAMPESTRIS; DROSOPHILA-MELANOGASTER; SYSTEM ACTIVATION; TRADE-OFFS; CONDITION DEPENDENCE; PHYSIOLOGICAL COSTS; COMPENSATORY GROWTH; CALORIE RESTRICTION; TIME CONSTRAINTS Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. [Kelly, C. D.; Neyer, A. A.; Gress, B. E.] Iowa State Univ, Dept Ecol Evolut & Organismal Biol, Ames, IA USA; [Kelly, C. D.] Univ Quebec, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada; [Neyer, A. A.] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA; [Gress, B. E.] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA Kelly, CD (reprint author), Univ Quebec, Dept Sci Biol, Ctr Ville, CP 8888 Succ, Montreal, PQ H3C 3P8, Canada. clintdkelly@icloud.com Kelly, Clint/0000-0002-0693-7211 Iowa State University Faculty Start-up Award Funding was provided by Iowa State University Faculty Start-up Award to CDK. We thank two anonymous referees for improving the article. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Adamo SA, 1999, ANIM BEHAV, V57, P117, DOI 10.1006/anbe.1998.0999; Adler MI, 2013, EXP GERONTOL, V48, P539, DOI 10.1016/j.exger.2013.03.007; Ahmed AM, 2002, OIKOS, V97, P371, DOI 10.1034/j.1600-0706.2002.970307.x; Barrett ELB, 2009, P ROY SOC B-BIOL SCI, V276, P3257, DOI 10.1098/rspb.2009.0725; Barto K., 2013, MUMIN MULTIMODAL INF; Boggs CL, 2009, FUNCT ECOL, V23, P27, DOI 10.1111/j.1365-2435.2009.01527.x; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; De Block M, 2005, ECOLOGY, V86, P185, DOI 10.1890/04-0116; De Block M, 2008, ECOL ENTOMOL, V33, P796, DOI 10.1111/j.1365-2311.2008.01024.x; Dmitriew C, 2007, CAN J ZOOL, V85, P310, DOI 10.1139/Z07-004; Dmitriew C, 2009, CAN J ZOOL, V87, P175, DOI 10.1139/Z09-001; Dmitriew C, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017399; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; FAIRBAIRN DJ, 2007, SEX SIZE GENDER ROLE; Fanson BG, 2012, P ROY SOC B-BIOL SCI, V279, P4893, DOI 10.1098/rspb.2012.2033; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fellous S, 2010, MOL ECOL, V19, P1462, DOI 10.1111/j.1365-294X.2010.04567.x; Grandison RC, 2009, NATURE, V462, P1061, DOI 10.1038/nature08619; Gray DA, 2001, ANIM BEHAV, V62, P871, DOI 10.1006/anbe.2001.1825; Harrison S. J., 2013, PLOS ONE, V8; Hebets EA, 2008, ANIM BEHAV, V76, P355, DOI 10.1016/j.anbehav.2007.12.021; Hedrick A, 2005, ANIM BEHAV, V70, P1121, DOI [10.1016/j.anbehav.2005.02.011, 10.1016/j.anbehav.2005.02.01]; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; Holzer B, 2003, BEHAV ECOL, V14, P353, DOI 10.1093/beheco/14.3.353; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Jacot A, 2005, J EVOLUTION BIOL, V18, P1060, DOI 10.1111/j.1420-9101.2005.00899.x; Jacot A, 2004, EVOLUTION, V58, P2280; Jacot A, 2005, P ROY SOC B-BIOL SCI, V272, P63, DOI [10.1098/rspb.2004.2919, 10.1098/rspc.2004.2919]; Joy TK, 2010, EXP GERONTOL, V45, P685, DOI 10.1016/j.exger.2010.04.009; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kelly CD, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061301; Kelly CD, 2011, BIOL J LINN SOC, V104, P38, DOI 10.1111/j.10958312.2011.01714.x; KLASS MR, 1977, MECH AGEING DEV, V6, P413, DOI 10.1016/0047-6374(77)90043-4; Leman JC, 2009, J EVOLUTION BIOL, V22, P163, DOI 10.1111/j.1420-9101.2008.01636.x; Lin SJ, 2002, NATURE, V418, P344, DOI 10.1038/nature00829; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lyn JC, 2011, AGE, V33, P509, DOI 10.1007/s11357-010-9195-z; Mair W, 2004, EXP GERONTOL, V39, P1011, DOI 10.1016/j.exger.2004.03.018; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; McNamara KB, 2013, J ANIM ECOL, V82, P235, DOI 10.1111/j.1365-2656.2012.02018.x; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Monaghan P, 2008, PHILOS T R SOC B, V363, P1635, DOI 10.1098/rstb.2007.0011; Morbey YE, 2001, ECOL LETT, V4, P663, DOI 10.1046/j.1461-0248.2001.00265.x; Moret Y, 2000, SCIENCE, V290, P1166, DOI 10.1126/science.290.5494.1166; Muturi EJ, 2011, TROP MED INT HEALTH, V16, P955, DOI 10.1111/j.1365-3156.2011.02796.x; Nakagawa S, 2012, AGING CELL, V11, P401, DOI 10.1111/j.1474-9726.2012.00798.x; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; Peig J, 2010, FUNCT ECOL, V24, P1323, DOI 10.1111/j.1365-2435.2010.01751.x; Peig J, 2009, OIKOS, V118, P1883, DOI 10.1111/j.1600-0706.2009.17643.x; Bascunan-Garcia AP, 2010, J INSECT PHYSIOL, V56, P204, DOI 10.1016/j.jinsphys.2009.10.005; R Development Core Team, 2013, R LANG ENV STAT COMP; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Rolff J, 2004, AM NAT, V164, P559, DOI 10.1086/423715; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Scheuber H, 2003, ANIM BEHAV, V65, P721, DOI 10.1006/anbe.2003.2083; Selesniemi K, 2008, AGING CELL, V7, P622, DOI 10.1111/j.1474-9726.2008.00409.x; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Shoemaker KL, 2007, PHYSIOL ENTOMOL, V32, P113, DOI 10.1111/j.1365-3032.2006.00552.x; Simmons LW, 2012, BEHAV ECOL, V23, P168, DOI 10.1093/beheco/arr170; SIMMONS LW, 1988, ANIM BEHAV, V36, P372, DOI 10.1016/S0003-3472(88)80008-3; SIMMONS LW, 1992, ANIM BEHAV, V44, P1145, DOI 10.1016/S0003-3472(05)80326-4; Simmons LW, 1995, BEHAV ECOL, V6, P376, DOI 10.1093/beheco/6.4.376; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Stahlschmidt ZR, 2013, FUNCT ECOL, V27, P800, DOI 10.1111/1365-2435.12071; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stoks R, 2006, ECOLOGY, V87, P1566, DOI 10.1890/0012-9658(2006)87[1566:PCOCGI]2.0.CO;2; Tu MP, 2003, AGING CELL, V2, P327, DOI 10.1046/j.1474-9728.2003.00064.x; Valtonen TM, 2010, EVOL BIOL, V37, P49, DOI 10.1007/s11692-009-9078-3; Wagner WE, 2003, EVOLUTION, V57, P2054, DOI 10.1554/02-548; Warton DI, 2012, METHODS ECOL EVOL, V3, P257, DOI 10.1111/j.2041-210X.2011.00153.x; Wickham H, 2009, USE R, P1, DOI 10.1007/978-0-387-98141-3_1; Woodgate JL, 2010, ANIM BEHAV, V79, P1381, DOI 10.1016/j.anbehav.2010.03.018; Zajitschek F, 2009, FUNCT ECOL, V23, P602, DOI 10.1111/j.1365-2435.2008.01520.x; ZUK M, 1988, EVOLUTION, V42, P969, DOI 10.1111/j.1558-5646.1988.tb02515.x; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 82 13 13 2 55 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. FEB 2014 27 2 381 390 10.1111/jeb.12304 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 294BC WOS:000330016400013 24372962 2019-02-21 J Duarte, RC; Re, A; Flores, AAV; Queiroga, H Duarte, Rafael C.; Re, Ana; Flores, Augusto A. V.; Queiroga, Henrique Conspecific cues affect stage-specific molting frequency, survival, and claw morphology of early juvenile stages of the shore crab Carcinus maenas HYDROBIOLOGIA English Article Phenotypic plasticity; Chemical cues; Juvenile development; Geometric morphometrics; Compensatory survival LOBSTER HOMARUS-AMERICANUS; CHASMAGNATHUS-GRANULATA; EMBRYONIC-DEVELOPMENT; MARINE INVERTEBRATE; HABITAT SELECTION; BRACHYURAN CRABS; CANCER-MAGISTER; PREDATION RISK; LARVAL BIOMASS; LIFE-HISTORY Benthic conspecific cues are used by competent larvae of many marine invertebrates to locate and settle on suitable habitat. However, aggregations of conspecifics can generate strong intraspecific competition and inter-cohort cannibalism. We investigated the effects of adult conspecific cues on general fitness parameters of juvenile Carcinus maenas (stages J1-J5), and used geometric morphometrics to investigate patterns of allometric growth indicative of life-history strategies and resource use potential. Cues induced faster metamorphosis and slightly shortened intermolt time in J2 individuals, at the expense of acute mortality in J1 crabs. These effects are cumulative but compensatory processes nullify differences by the end of the experiment. Allometric carapace change toward the adult standard remained unchanged, but conspecific cues induced first a change in size (J1) and then in shape (J5) of claws. In both control and cued juveniles, heterochely was incipient but apparent in J5 crabs. Independently of body side, conspecific cues triggered a very marked increase of the propodus posterior margin, presumably enhancing general strength. Therefore, early benthic stages may grow slightly faster to a size refuge, and develop stronger claws providing competitive advantage for the use of high-value food items when population density-dependent processes are more probable. [Duarte, Rafael C.; Flores, Augusto A. V.] Univ Sao Paulo, Ctr Biol Marinha, BR-11600000 Sao Paulo, Brazil; [Re, Ana; Queiroga, Henrique] Univ Aveiro, Ctr Estudos Ambiente & Mar CESAM, Dept Biol, P-3810193 Aveiro, Portugal Duarte, RC (reprint author), Univ Sao Paulo, Ctr Biol Marinha, Rod Manoel Hipolito Rego,Km 131-5, BR-11600000 Sao Paulo, Brazil. rafaduarte87@usp.br Queiroga, Henrique/C-5134-2008; CESAM, UA/M-3762-2015; Flores, Augusto/B-7092-2011; Duarte, Rafael/S-2636-2016 Queiroga, Henrique/0000-0002-2338-0013; Flores, Augusto/0000-0001-9347-8860; Duarte, Rafael/0000-0001-7059-3129; Re, Ana/0000-0002-9965-1887 State University of Sao Paulo (UNESP), Brazil; University of Aveiro (UA), Portugal This study was supported by the State University of Sao Paulo (UNESP), Brazil, and the University of Aveiro (UA), Portugal, through a graduate interchange agreement between these institutions. We are grateful to Pedro Vieira for his help in laboratory procedures. We finally thank Rodrigo E. Barreto (UNESP, Botucatu) and two anonymous referees for their comments and criticism on an early version of this paper. This is a contribution of the Research Centre for Marine Biodiversity of the University of Sao Paulo (NP-Biomar/USP). ABBYKALIO NJ, 1989, ZOOL J LINN SOC-LOND, V96, P19, DOI 10.1111/j.1096-3642.1989.tb01819.x; Abrams PA, 1996, EVOLUTION, V50, P1052, DOI 10.1111/j.1558-5646.1996.tb02346.x; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Adams DC, 2004, ITAL J ZOOL, V71, P5, DOI 10.1080/11250000409356545; Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Alexander R. M, 1983, ANIMAL MECH; Allen BJ, 2007, FUNCT ECOL, V21, P154, DOI 10.1111/j.1365-2435.2006.01219.x; Almeida MJ, 2011, J EXP MAR BIOL ECOL, V410, P72, DOI 10.1016/j.jembe.2011.10.011; Bayne BL, 2000, J EXP MAR BIOL ECOL, V251, P185, DOI 10.1016/S0022-0981(00)00211-2; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; BOCK WJ, 1980, AM ZOOL, V20, P217; Bookstein FL., 1991, MORPHOMETRIC TOOLS L; Braendle C, 2006, HEREDITY, V97, P192, DOI 10.1038/sj.hdy.6800863; BURKE RD, 1986, B MAR SCI, V39, P323; COSTELLO WJ, 1979, BIOL BULL-US, V156, P179, DOI 10.2307/1541042; Crothers J. H., 1968, Field Studies, V2, P579; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Doake S, 2010, ANIM BEHAV, V80, P637, DOI 10.1016/j.anbehav.2010.06.023; Donahue MJ, 2006, OECOLOGIA, V149, P33, DOI 10.1007/s00442-006-0419-y; FERNANDEZ M, 1993, MAR ECOL PROG SER, V92, P171, DOI 10.3354/meps092171; Fitzgerald TP, 1998, MAR ECOL PROG SER, V165, P217, DOI 10.3354/meps165217; Flores AAV, 2000, J NAT HIST, V34, P2123, DOI 10.1080/002229300750022367; Forward RB, 2001, AM ZOOL, V41, P1108, DOI 10.1668/0003-1569(2001)041[1108:CFMOBC]2.0.CO;2; Gebauer P, 2003, REV CHIL HIST NAT, V76, P169, DOI 10.4067/S0716-078X2003000200004; Gimenez L, 2002, MAR BIOL, V141, P877, DOI 10.1007/s00227-002-0887-5; Gimenez L, 2001, J EXP MAR BIOL ECOL, V260, P241, DOI 10.1016/S0022-0981(01)00258-1; Gimenez L, 2010, ECOLOGY, V91, P1401, DOI 10.1890/09-1028.1; Guerao G, 2012, ZOOTAXA, P36; Guerao G, 2009, SCI MAR, V73, P797, DOI 10.3989/scimar.2009.73n4797; HOUSTON AI, 1993, PHILOS T ROY SOC B, V341, P375, DOI 10.1098/rstb.1993.0123; HUGHES RN, 1979, J ANIM ECOL, V48, P65, DOI 10.2307/4100; IRIBARNE O, 1994, J EXP MAR BIOL ECOL, V183, P259, DOI 10.1016/0022-0981(94)90091-4; Juanes F., 2007, MAR BIOL, V153, P523; Klein Breteler W.C.M., 1975, New Zealand J Zool, V9, P255, DOI 10.1016/0077-7579(75)90002-2; Lewis DB, 2001, ECOLOGY, V82, P758; LIVELY CM, 1986, EVOLUTION, V40, P232, DOI 10.1111/j.1558-5646.1986.tb00466.x; MANGEL M, 2005, AM NAT, V166, P155, DOI DOI 10.1086/444439; Mariappan P, 2000, J BIOSCIENCES, V25, P301, DOI 10.1007/BF02703939; Mascaro M, 2001, MAR BIOL, V139, P1135; Miner BG, 2007, J EXP MAR BIOL ECOL, V343, P158, DOI 10.1016/j.jembe.2006.11.001; MOHAMEDEEN H, 1989, J EXP MAR BIOL ECOL, V134, P1, DOI 10.1016/0022-0981(90)90053-F; Mohamedeen H., 1989, P 21 EUR MAR BIOL S, P115; Moksnes PO, 1998, MAR ECOL PROG SER, V166, P211, DOI 10.3354/meps166211; Moksnes PO, 2004, ECOLOGY, V85, P1343, DOI 10.1890/02-0750; Moksnes PO, 2003, MAR ECOL PROG SER, V250, P215, DOI 10.3354/meps250215; Moksnes PO, 2002, J EXP MAR BIOL ECOL, V271, P41, DOI 10.1016/S0022-0981(02)00041-2; Neufeld CJ, 2011, J EXP ZOOL PART B, V316B, P254, DOI 10.1002/jez.b.21395; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Olsson O, 2002, ANIM BEHAV, V63, P981, DOI 10.1006/anbe.2001.1985; Pineda J, 2010, J EXP MAR BIOL ECOL, V392, P9, DOI 10.1016/j.jembe.2010.04.008; RANGELEY RW, 1987, J EXP MAR BIOL ECOL, V108, P191, DOI 10.1016/S0022-0981(87)80023-0; Ray-Culp M, 1999, J EXP MAR BIOL ECOL, V240, P303, DOI 10.1016/S0022-0981(99)00065-9; Relyea RA, 2000, ECOLOGY, V81, P2278, DOI 10.2307/177114; Rohlf F. J., 2008, TPSRELW RELATIVE WAR; Rohlf F. J., 2009, TPSDIG DIGITIZE LAND; ROHLF FJ, 1990, SYST ZOOL, V39, P40, DOI 10.2307/2992207; ROHLF FJ, 1990, ANNU REV ECOL SYST, V21, P299, DOI 10.1146/annurev.ecolsys.21.1.299; ROHLF FJ, 1993, CONTRIBUTIONS MORPHO, V8, P131; Schenk SC, 2001, J ZOOL, V255, P105, DOI 10.1017/S0952836901001157; Shen C.J., 1935, P ZOOL SOC LOND, V1, P1; Simith DJB, 2008, J EXP MAR BIOL ECOL, V362, P101, DOI 10.1016/j.jembe.2008.06.005; SMITH AT, 1990, CONSERV BIOL, V4, P320, DOI 10.1111/j.1523-1739.1990.tb00294.x; SNEATH PHA, 1967, J ZOOL, V151, P65; Trussell GC, 2000, EVOL ECOL RES, V2, P803; Tyler JA, 1997, J ANIM ECOL, V66, P122, DOI 10.2307/5970; Vieira S, 2010, BIOL J LINN SOC, V100, P439, DOI 10.1111/j.1095-8312.2010.01428.x; WERNER EE, 1991, ECOLOGY, V72, P1709, DOI 10.2307/1940970; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; YOUNGLAI WW, 1991, MAR BIOL, V110, P293, DOI 10.1007/BF01313716; Zar J. H., 1999, BIOSTATISTICAL ANAL; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR 71 3 3 0 60 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 1573-5117 HYDROBIOLOGIA Hydrobiologia FEB 2014 724 1 55 66 10.1007/s10750-013-1712-5 12 Marine & Freshwater Biology Marine & Freshwater Biology 268YK WOS:000328206600004 2019-02-21 J Jimenez, AG; Van Brocklyn, J; Wortman, M; Williams, JB Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds PLOS ONE English Article PLURIPOTENT STEM-CELLS; MITOCHONDRIAL PROTON LEAK; SKIN FIBROBLASTS; OXIDATIVE STRESS; SKELETAL-MUSCLE; HEXAVALENT CHROMIUM; MULTIPLE FORMS; TRADE-OFFS; SLOW PACE; EVOLUTION In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O-2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. [Jimenez, Ana Gabriela; Van Brocklyn, James; Williams, Joseph B.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA; [Wortman, Matthew] Univ Cincinnati, Inst Canc, Cincinnati, OH USA Jimenez, AG (reprint author), Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA. jimenez.102@osu.edu Wortman, Matthew/0000-0002-1263-4145 NSF IBN [0212587]; Smithsonian Tropical Research Institute This study was funded by NSF IBN 0212587 (JBW), and a Smithsonian Tropical Research Institute post-doctoral fellowship (AGJ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Agutter Paul S, 2004, Theor Biol Med Model, V1, P13, DOI 10.1186/1742-4682-1-13; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Bartholomew GA, 1972, ANIMAL PHYSL PRINCIP, P63; Boyd J. H., 2011, AVES TAXONOMY FLUX V; Brand MD, 2011, BIOCHEM J, V435, P297, DOI 10.1042/BJ20110162; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Brawn JD, 1999, INT ORN C, V22, P297; BROWN GC, 1986, BIOCHEM J, V234, P75, DOI 10.1042/bj2340075; BROWN GC, 1990, EUR J BIOCHEM, V192, P355, DOI 10.1111/j.1432-1033.1990.tb19234.x; Brown MF, 2007, AM J PHYSIOL-REG I, V292, pR2115, DOI 10.1152/ajpregu.00568.2006; Calder III WA, 1984, SIZE FUNCTION LIFE H; Calhoon EA, 2013, PHYS BIOCH IN PRESS; Charnov Eric L., 1993, P1; Chen TL, 2009, ENVIRON MOL MUTAGEN, V50, P387, DOI 10.1002/em.20471; Cheng YR, 2012, AM NAT, V180, P285, DOI 10.1086/667214; COULSON RA, 1977, COMP BIOCHEM PHYS A, V56, P251, DOI 10.1016/0300-9629(77)90232-8; Csiszar A, 2012, J GERONTOL A-BIOL, V67, P841, DOI 10.1093/gerona/glr216; Demetrius L, 2006, J THEOR BIOL, V243, P455, DOI 10.1016/j.jtbi.2006.05.031; Doi A, 2009, NAT GENET, V41, P1350, DOI 10.1038/ng.471; Erez N, 2010, CANCER CELL, V17, P135, DOI 10.1016/j.ccr.2009.12.041; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Feng B, 2009, NAT CELL BIOL, V11, P197, DOI 10.1038/ncb1827; Field A, 2009, DISCOVERING STAT USI; Finkel T, 2000, NATURE, V408, P239, DOI 10.1038/35041687; Fisher RA, 1930, GENETICAL THEORY NAT, pxiv; Francis C. M., 1999, INT ORNITHOL C, V22, P326; Garland T, 2005, J EXP BIOL, V208, P3015, DOI 10.1242/jeb.01745; GARLAND T, 1994, PHYSIOL ZOOL, V67, P797, DOI 10.1086/physzool.67.4.30163866; Gerencser AA, 2009, ANAL CHEM, V81, P6868, DOI 10.1021/ac900881z; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gonda TA, 2010, SEMIN CELL DEV BIOL, V21, P2, DOI 10.1016/j.semcdb.2009.10.001; Han DW, 2012, CELL STEM CELL, V10, P465, DOI 10.1016/j.stem.2012.02.021; Harper JM, 2011, J EXP BIOL, V214, P1902, DOI 10.1242/jeb.054643; Harvey P.H., 1991, COMP METHOD EVOLUTIO; Hill BG, 2012, BIOL CHEM, V393, P1485, DOI 10.1515/hsz-2012-0198; Holmes DJ, 2001, EXP GERONTOL, V36, P869, DOI 10.1016/S0531-5565(00)00247-3; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Jimenez AG, 2013, J EXP BIOL, V216, P1373, DOI 10.1242/jeb.079889; Johnson KP, 1999, AUK, V116, P792, DOI 10.2307/4089339; Joshi AS, 2009, BBA-MOL CELL RES, V1793, P212, DOI 10.1016/j.bbamcr.2008.07.024; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Klicka J, 2000, AUK, V117, P321, DOI 10.1642/0004-8038(2000)117[0321:NWNPOR]2.0.CO;2; KREBS HA, 1950, BIOCHIM BIOPHYS ACTA, V4, P249, DOI 10.1016/0006-3002(50)90032-1; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lima CF, 2011, MOL NUTR FOOD RES, V55, P430, DOI 10.1002/mnfr.201000221; Lopez-Lluch G, 2006, P NATL ACAD SCI USA, V103, P1768, DOI 10.1073/pnas.0510452103; Marsh T., 2012, BIOCHIM BIOPHYS ACTA, V1832, P1070; Mueller P, 2001, P NATL ACAD SCI USA, V98, P12550, DOI 10.1073/pnas.221456698; Nicholls David G, 2010, J Vis Exp, DOI 10.3791/2511; ONIKI Y, 1981, IBIS, V123, P349, DOI 10.1111/j.1474-919X.1981.tb04038.x; Petrosillo G, 2008, NEUROCHEM INT, V53, P126, DOI 10.1016/j.neuint.2008.07.001; PORTER RK, 1995, AM J PHYSIOL-REG I, V269, pR226; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Ricklefs RE, 1997, ECOL MONOGR, V67, P23, DOI 10.1890/0012-9615(1997)067[0023:CDONWP]2.0.CO;2; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Roff Derek A., 1992; Rogers GW, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021746; Rolfe DFS, 1996, AM J PHYSIOL-CELL PH, V271, pC1380; Rolfe DFS, 1999, AM J PHYSIOL-CELL PH, V276, pC692; Rubner M., 1908, PROBLEM LEBENSDAUER; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Salmon AB, 2008, J GERONTOL A-BIOL, V63, P232, DOI 10.1093/gerona/63.3.232; Sansbury BE, 2011, CHEM-BIOL INTERACT, V191, P288, DOI 10.1016/j.cbi.2010.12.002; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Selvaraj V, 2011, NAT METHODS, V8, P805, DOI 10.1038/nmeth.1715; Semenza GL, 2012, CELL, V148, P399, DOI 10.1016/j.cell.2012.01.021; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sorrell JM, 2004, J CELL SCI, V117, P667, DOI 10.1242/jcs.01005; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Stearns S, 1992, EVOLUTION LIFE HIST; Turner N, 2010, NAT REV CANCER, V10, P116, DOI 10.1038/nrc2780; Ungvari Z, 2011, J GERONTOL A-BIOL, V66, P501, DOI 10.1093/gerona/glr004; VANVOORHIES WA, 1992, NATURE, V360, P456, DOI 10.1038/360456a0; Walker DW, 2004, P NATL ACAD SCI USA, V101, P10290, DOI 10.1073/pnas.0403767101; West GB, 2002, P NATL ACAD SCI USA, V99, P2473, DOI 10.1073/pnas.012579799; Wheatley DN, 2007, AM J PHYSIOL-REG I, V292, pR2113, DOI 10.1152/ajpregu.00102.2007; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P20866, DOI 10.1073/pnas.0707683104; Wiersma P, 2007, P NATL ACAD SCI USA, V104, P9340, DOI 10.1073/pnas.0702212104; Wiersma P, 2012, J EXP BIOL, V215, P1662, DOI 10.1242/jeb.065144; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Wise JP, 2010, COMP BIOCHEM PHYS C, V152, P91, DOI 10.1016/j.cbpc.2010.03.001; Yuri T, 2002, MOL PHYLOGENET EVOL, V23, P229, DOI 10.1016/S1055-7903(02)00012-X; ZURLO F, 1990, J CLIN INVEST, V86, P1423, DOI 10.1172/JCI114857 86 11 11 4 46 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 30 2014 9 1 e87349 10.1371/journal.pone.0087349 9 Multidisciplinary Sciences Science & Technology - Other Topics 302PJ WOS:000330617100076 24498080 DOAJ Gold, Green Published 2019-02-21 J Horton, BM; Hudson, WH; Ortlund, EA; Shirk, S; Thomas, JW; Young, ER; Zinzow-Kramer, WM; Maney, DL Horton, Brent M.; Hudson, William H.; Ortlund, Eric A.; Shirk, Sandra; Thomas, James W.; Young, Emily R.; Zinzow-Kramer, Wendy M.; Maney, Donna L. Estrogen receptor alpha polymorphism in a species with alternative behavioral phenotypes PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article estradiol; testosterone; morph; reproductive tactics WHITE-THROATED SPARROW; HISTORY TRADE-OFFS; ZONOTRICHIA-ALBICOLLIS; SOCIAL-BEHAVIOR; CHROMOSOMAL-POLYMORPHISM; ELECTRICAL STIMULATION; INDIVIDUAL-DIFFERENCES; SOCIOSEXUAL BEHAVIOR; SEXUAL-BEHAVIOR; BREAST-CANCER The evolution of behavior relies on changes at the level of the genome; yet the ability to attribute a behavioral change to a specific, naturally occurring genetic change is rare in vertebrates. In the white-throated sparrow (Zonotrichia albicollis), a chromosomal polymorphism (ZAL2/2(m)) is known to segregate with a behavioral phenotype. Individuals with the ZAL2(m) haplotype engage in more territorial aggression and less parental behavior than individuals without it. These behaviors are thought to be mediated by sensitivity to sex steroids, and the chromosomal rearrangement underlying the polymorphism has captured a prime candidate gene: estrogen receptor 1 (ESR1), which encodes estrogen receptor alpha (ER alpha). We therefore hypothesized that the behavioral effects of the ZAL2(m) rearrangement are mediated by polymorphism in ESR1. We report here that (i) the ESR1 promoter region contains fixed polymorphisms distinguishing the ZAL2(m) and ZAL2 alleles; (ii); those polymorphisms regulate transcription efficiency in vitro and therefore potentially do the same in vivo (iii); the local expression of ERa in the brain depends strongly on genotype in a free-living population; and (iv) ER alpha expression in the medial amygdala and medial preoptic area may fully mediate the effects of genotype on territorial aggression and parenting, respectively. Thus, our study provides a rare glimpse of how a chromosomal polymorphism has affected the brain and social behavior in a vertebrate. Our results suggest that in this species, differentiation of ESR1 has played a causal role in the evolution of phenotypes with alternative life- history strategies. [Horton, Brent M.; Shirk, Sandra; Zinzow-Kramer, Wendy M.; Maney, Donna L.] Emory Univ, Dept Psychol, Atlanta, GA 30322 USA; [Hudson, William H.; Ortlund, Eric A.] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA; [Thomas, James W.] NHGRI, NIH Intramural Sequencing Ctr, NIH, Rockville, MD 20852 USA; [Young, Emily R.] Georgia Inst Technol, Dept Biol, Atlanta, GA 30332 USA Maney, DL (reprint author), Emory Univ, Dept Psychol, Atlanta, GA 30322 USA. dmaney@emory.edu Hudson, William/E-6622-2012; Ortlund, Eric/F-4672-2014; Maney, Donna/G-3706-2011 Hudson, William/0000-0002-2513-1213; Maney, Donna/0000-0002-1006-2358; Ortlund, Eric/0000-0001-8855-3029 National Institutes of Health (NIH) [1R01MH082833]; National Science Foundation (NSF) [IOS- 0723805]; NIH [1R01DK095750, R21MH090418, 5T32GM008602]; American Heart Association [13PRE16920012]; NSF [SMA-1306132]; National Human Genome Research Institute Intramural Research program at the NIH We thank D. Abebe, G. Bhat, J. Davis, C. Horoszko, O. Laur (Emory University Custom Cloning Core Facility), C. Leung, J. Liang, and C. MacDowell for technical assistance in Atlanta; A. Annis, E. Burns, J. Cava, A. Cornell, C. Gurguis, J. Michaud, and C. McKee for field assistance in Maine; C. Henry for access to freezer space and other resources at the University of Maine; the Forest Society of Maine and J. Metzler for permission to conduct our field study at the Hemlock Stream Forest; P. Wolff and I. Waldman for advice on statistical methods; I. Moore for the use of radioimmunoassay facilities; and the Departments of Biology at Emory University and University of Maine for the use of shared resources. This research was funded by National Institutes of Health (NIH) Grant 1R01MH082833 and National Science Foundation (NSF) Grant IOS- 0723805 (to D.L.M.), NIH Grant 1R01DK095750 (to E.A.O.), NIH Grant R21MH090418 (to J.W.T.), NIH Grant 5T32GM008602 and American Heart Association Grant 13PRE16920012 (to W.H.H.), and NSF Grant SMA-1306132 (to W.M.Z.-K.). J.W.T. was supported by the National Human Genome Research Institute Intramural Research program at the NIH. Ball GF, 2008, PHILOS T R SOC B, V363, P1699, DOI 10.1098/rstb.2007.0010; Balthazart J, 1996, J NEUROBIOL, V31, P129, DOI 10.1002/(SICI)1097-4695(199610)31:2<129::AID-NEU1>3.0.CO;2-D; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; Cheng MF, 1999, BRAIN BEHAV EVOLUT, V53, P243, DOI 10.1159/000006597; Cheung CL, 2009, HUM MOL GENET, V18, P679, DOI 10.1093/hmg/ddn397; Cushing BS, 2008, J NEUROSCI, V28, P10399, DOI 10.1523/JNEUROSCI.1928-08.2008; Cushing BS, 2004, BRAIN RES, V1016, P247, DOI 10.1016/j.brainres.2004.05.010; Davis JK, 2011, J HERED, V102, P380, DOI 10.1093/jhered/esr043; Eeckhoute J, 2007, CANCER RES, V67, P6477, DOI 10.1158/0008-5472.CAN-07-0746; *ENCODE PROJ CONS, 2011, PLOS BIOL, V0009; Falls JB, 2010, BIRDS N AM; Heinemeyer T, 1998, NUCLEIC ACIDS RES, V26, P362, DOI 10.1093/nar/26.1.362; Horton BM, 2013, BEHAV GENET, V43, P60, DOI 10.1007/s10519-012-9574-6; Horton BM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0048705; Horton BM, 2010, AUK, V127, P540, DOI 10.1525/auk.2010.09096; Horton BM, 2009, HORM BEHAV, V56, P510, DOI 10.1016/j.yhbeh.2009.09.001; Hosey AM, 2007, J NATL CANCER I, V99, P1683, DOI 10.1093/jnci/djm207; Ikebuchi M, 2009, BRAIN BEHAV EVOLUT, V74, P250, DOI 10.1159/000264660; KETTERSON ED, 1992, AM NAT, V140, P980, DOI 10.1086/285451; Ketterson ED, 2009, INTEGR COMP BIOL, V49, P365, DOI 10.1093/icb/icp057; KOPACHENA JG, 1993, WILSON BULL, V105, P48; Leung CH, 2011, ENDOCRINOLOGY, V152, P4865, DOI 10.1210/en.2011-1394; Lynn SE, 2009, PHYSIOL BIOCHEM ZOOL, V82, P699, DOI 10.1086/605915; MacKinnon DP, 2004, MULTIVAR BEHAV RES, V39, P99, DOI 10.1207/s15327906mbr3901_4; MALEY MJ, 1969, BEHAVIOUR, V34, P138, DOI 10.1163/156853969X00035; Maney DL, 2008, J COMP NEUROL, V511, P173, DOI 10.1002/cne.21830; Maney DL, 2008, GEN COMP ENDOCR, V157, P275, DOI 10.1016/j.ygcen.2008.03.023; Maney DL, 2011, ADV GENET, V75, P83, DOI 10.1016/B978-0-12-380858-5.00002-2; Maney DL, 2009, HORM BEHAV, V55, P113, DOI 10.1016/j.yhbeh.2008.09.002; Meyer LR, 2013, NUCLEIC ACIDS RES, V41, pD64, DOI 10.1093/nar/gks1048; Michopoulos V, 2007, AUK, V124, P1330, DOI 10.1642/0004-8038(2007)124[1330:AGATDP]2.0.CO;2; Murakami G, 2011, EUR J NEUROSCI, V34, P469, DOI 10.1111/j.1460-9568.2011.07761.x; Newman SW, 1999, ANN NY ACAD SCI, V877, P242, DOI 10.1111/j.1749-6632.1999.tb09271.x; PHILLIPS RE, 1971, ANIM BEHAV, V19, P757, DOI 10.1016/S0003-3472(71)80180-X; Preacher KJ, 2004, BEHAV RES METH INS C, V36, P717, DOI 10.3758/BF03206553; Rosvall KA, 2012, P ROY SOC B-BIOL SCI, V279, P3547, DOI 10.1098/rspb.2012.0442; Rosvall KA, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0054120; SLAWSKI BA, 1995, HORM BEHAV, V29, P248, DOI 10.1006/hbeh.1995.1018; Spinney LH, 2006, HORM BEHAV, V50, P762, DOI 10.1016/j.yhbeh.2006.06.034; Stevenson TJ, 2012, GEN COMP ENDOCR, V178, P1, DOI 10.1016/j.ygcen.2012.03.013; Swett MB, 2009, PHYSIOL BIOCHEM ZOOL, V82, P572, DOI 10.1086/605392; Thomas JW, 2008, GENETICS, V179, P1455, DOI 10.1534/genetics.108.088229; Thompson RR, 1998, BRAIN BEHAV EVOLUT, V51, P215; THORNEYCROFT HB, 1975, EVOLUTION, V29, P611, DOI 10.1111/j.1558-5646.1975.tb00855.x; Trainor BC, 2006, HORM BEHAV, V50, P338, DOI 10.1016/j.yhbeh.2006.04.002; WINGFIELD JC, 1984, AUK, V101, P665, DOI 10.2307/4086893; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wood RI, 1997, NEUROSCIENCE, V78, P1027, DOI 10.1016/S0306-4522(96)00629-X 48 34 34 0 40 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 28 2014 111 4 1443 1448 10.1073/pnas.1317165111 6 Multidisciplinary Sciences Science & Technology - Other Topics 297BV WOS:000330231100057 24474771 Green Published, Bronze 2019-02-21 J Kulma, K; Low, M; Bensch, S; Qvarnstrom, A Kulma, Katarzyna; Low, Matthew; Bensch, Staffan; Qvarnstrom, Anna Malaria-Infected Female Collared Flycatchers (Ficedula albicollis) Do Not Pay the Cost of Late Breeding PLOS ONE English Article AVIAN BLOOD PARASITES; WILD BIRD POPULATION; HISTORY TRADE-OFF; REPRODUCTIVE EFFORT; FOOD ABUNDANCE; BLUE TITS; TERMINAL INVESTMENT; IMMUNE-RESPONSE; PARENTAL EFFORT; PLASMODIUM Life-history theory predicts that the trade-off between parasite defense and other costly traits such as reproduction may be most evident when resources are scarce. The strength of selection that parasites inflict on their host may therefore vary across environmental conditions. Collared flycatchers (Ficedula albicollis) breeding on the Swedish island Oland experience a seasonal decline in their preferred food resource, which opens the possibility to test the strength of life-history trade-offs across environmental conditions. We used nested-PCR and quantitative-PCR protocols to investigate the association of Haemosporidia infection with reproductive performance of collared flycatcher females in relation to a seasonal change in the external environment. We show that despite no difference in mean onset of breeding, infected females produced relatively more of their fledglings late in the season. This pattern was also upheld when considering only the most common malaria lineage (hPHSIB1), however there was no apparent link between the reproductive output and the intensity of infection. Infected females produced heavier-than-average fledglings with higher-than-expected recruitment success late in the season. This reversal of the typical seasonal trend in reproductive output compensated them for lower fledging and recruitment rates compared to uninfected birds earlier in the season. Thus, despite different seasonal patterns of reproductive performance the overall number of recruits was the same for infected versus uninfected birds. A possible explanation for our results is that infected females breed in a different microhabitat where food availability is higher late in the season but also is the risk of infection. Thus, our results suggest that another trade-off than the one we aimed to test is more important for explaining variation in reproductive performance in this natural population: female flycatchers appear to face a trade-off between the risk of infection and reproductive success late in the season. [Kulma, Katarzyna; Qvarnstrom, Anna] Uppsala Univ, Dept Ecol & Genet, Uppsala, Sweden; [Low, Matthew] Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden; [Bensch, Staffan] Lund Univ, Dept Biol, Lund, Sweden Kulma, K (reprint author), Uppsala Univ, Dept Ecol & Genet, Uppsala, Sweden. katarzyna.kulma@ebc.uu.se Qvarnstrom, Anna/0000-0002-1178-4053; Low, Matthew/0000-0002-7345-6063 Swedish Research Council; Swedish Research Council for Environment, Agricultural and Spatial Planning; European Research Foundation Our work is funded by the Swedish Research Council (VR to AQ) and the Swedish Research Council for Environment, Agricultural and Spatial Planning (Formas to ML) and the European Research Foundation (AQ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Albon SD, 2002, P ROY SOC B-BIOL SCI, V269, P1625, DOI 10.1098/rspb.2002.2064; Asghar M, 2011, J AVIAN BIOL, V42, P530, DOI 10.1111/j.1600-048X.2011.05281.x; Atkinson CT, 2009, PARASITIC DIS WILD B; Barton K, 2012, MUMIN MULTIMODEL INF; Bates D, 2011, LME4 LINEAR MIXED EF; Bensch S, 2000, P ROY SOC B-BIOL SCI, V267, P1583, DOI 10.1098/rspb.2000.1181; Bensch S, 2009, MOL ECOL RESOUR, V9, P1353, DOI 10.1111/j.1755-0998.2009.02692.x; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Burnham K. P, 2002, MODEL SELECTION MULT; Christe P, 2001, OECOLOGIA, V126, P333, DOI 10.1007/s004420000527; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; Coltman DW, 1999, EVOLUTION, V53, P1259, DOI 10.1111/j.1558-5646.1999.tb04538.x; DOBSON A, 1994, TRENDS ECOL EVOL, V9, P393, DOI 10.1016/0169-5347(94)90062-0; Ebert Dieter, 1996, Trends in Ecology and Evolution, V11, P79, DOI 10.1016/0169-5347(96)81047-0; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Ilmonen P, 1999, OIKOS, V86, P79, DOI 10.2307/3546571; Knowles SCL, 2010, J EVOLUTION BIOL, V23, P557, DOI 10.1111/j.1420-9101.2009.01920.x; Knowles SCL, 2011, MOL ECOL, V20, P1062, DOI 10.1111/j.1365-294X.2010.04909.x; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Kulma K, 2013, MOL ECOL, V22, P4591, DOI 10.1111/mec.12409; LOYE JE, 1991, BIRD PARASITE INTERA; Lundberg A., 1992, PIED FLYCATCHER; Marzal A, 2005, OECOLOGIA, V142, P541, DOI 10.1007/s00442-004-1757-2; Marzal A, 2012, RECENT ADV STUDIES A, P350; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Messina FJ, 1999, PHYSIOL ENTOMOL, V24, P358, DOI 10.1046/j.1365-3032.1999.00151.x; Messina FJ, 2003, J EVOLUTION BIOL, V16, P501, DOI 10.1046/j.1420-9101.2003.00535.x; Mullarney K, 2000, BIRDS EUROPE; Palinauskas V, 2008, EXP PARASITOL, V120, P372, DOI 10.1016/j.exppara.2008.09.001; PART T, 1992, AM NAT, V140, P868, DOI 10.1086/285445; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Qvarnstrom A, 2005, BIOL LETTERS, V1, P68, DOI 10.1098/rsbl.2004.0265; Qvarnstrom A, 2010, PHILOS T R SOC B, V365, P1841, DOI 10.1098/rstb.2009.0306; Qvarnstrom A, 2009, ECOLOGY, V90, P1948, DOI 10.1890/08-0494.1; R Development Core Team, 2012, R LANG ENV STAT COMP; Raberg L, 2000, ECOL LETT, V3, P382, DOI 10.1046/j.1461-0248.2000.00154.x; Rice AM, 2013, HORM BEHAV, V63, P813, DOI 10.1016/j.yhbeh.2013.03.019; Sambrook J., 1989, MOL CLONING LAB MANU; Santiago-Alarcon D, 2012, BIOL REV, V87, P928, DOI 10.1111/j.1469-185X.2012.00234.x; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; Stearns S, 1992, EVOLUTION LIFE HIST; Symonds MRE, 2011, BEHAV ECOL SOCIOBIOL, V65, P13, DOI 10.1007/s00265-010-1037-6; Thomas DW, 2007, FUNCT ECOL, V21, P947, DOI 10.1111/j.1365-2435.2007.01301.x; Valkiunas G, 2005, AVIAN MALARIA PARASI; Veen T, 2010, OECOLOGIA, V162, P873, DOI 10.1007/s00442-009-1544-1; Waldenstrom J, 2004, J PARASITOL, V90, P191, DOI 10.1645/GE-3221RN; Wood MJ, 2007, MOL ECOL, V16, P3263, DOI 10.1111/j.1365-294X.2007.03362.x 49 6 7 0 38 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 23 2014 9 1 e85822 10.1371/journal.pone.0085822 9 Multidisciplinary Sciences Science & Technology - Other Topics 297XI WOS:000330288000027 24465726 DOAJ Gold, Green Published 2019-02-21 J Adler, PB; Salguero-Gomez, R; Compagnoni, A; Hsu, JS; Ray-Mukherjee, J; Mbeau-Ache, C; Franco, M Adler, Peter B.; Salguero-Gomez, Roberto; Compagnoni, Aldo; Hsu, Joanna S.; Ray-Mukherjee, Jayanti; Mbeau-Ache, Cyril; Franco, Miguel Functional traits explain variation in plant life history strategies PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article elasticity; seed size; specific leaf area; vital rates; wood intensity LEAF ECONOMICS SPECTRUM; POPULATION-GROWTH RATE; SEED-SIZE; ECOSYSTEM PROCESSES; COMMUNITY ECOLOGY; DEMOGRAPHIC RATES; WOOD DENSITY; TREE; ELASTICITY; EVOLUTION Ecologists seek general explanations for the dramatic variation in species abundances in space and time. An increasingly popular solution is to predict species distributions, dynamics, and responses to environmental change based on easily measured anatomical and morphological traits. Trait-based approaches assume that simple functional traits influence fitness and life history evolution, but rigorous tests of this assumption are lacking, because they require quantitative information about the full lifecycles of many species representing different life histories. Here, we link a global traits database with empirical matrix population models for 222 species and report strong relationships between functional traits and plant life histories. Species with large seeds, long-lived leaves, or dense wood have slow life histories, with mean fitness (i.e., population growth rates) more strongly influenced by survival than by growth or fecundity, compared with fast life history species with small seeds, short-lived leaves, or soft wood. In contrast to measures of demographic contributions to fitness based on whole lifecycles, analyses focused on raw demographic rates may underestimate the strength of association between traits and mean fitness. Our results help establish the physiological basis for plant life history evolution and show the potential for trait-based approaches in population dynamics. [Adler, Peter B.; Compagnoni, Aldo] Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA; [Adler, Peter B.; Compagnoni, Aldo] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA; [Salguero-Gomez, Roberto] Univ Queensland, Sch Biol Sci, Brisbane, Qld 4072, Australia; [Salguero-Gomez, Roberto] Max Planck Inst Demog Res, Evolutionary Biodemog Lab, DE-18057 Rostock, Germany; [Hsu, Joanna S.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA; [Ray-Mukherjee, Jayanti] Univ KwaZulu Natal, ZA-4000 Durban, South Africa; [Mbeau-Ache, Cyril; Franco, Miguel] Univ Plymouth, Sch Biol Sci, Plymouth PL4 8AA, Devon, England Adler, PB (reprint author), Utah State Univ, Dept Wildland Resources, Logan, UT 84322 USA. peter.adler@usu.edu Salguero-Gomez, Roberto/N-6016-2016; Adler, Peter/D-3781-2009; Franco, Miguel/A-4671-2008 Salguero-Gomez, Roberto/0000-0002-6085-4433; Franco, Miguel/0000-0002-7249-4981; Compagnoni, Aldo/0000-0001-8302-7492 National Science Foundation [DEB-1054040]; Max Planck Institute for Demographic Research; Utah State University; National Science Foundation Graduate Fellowship; Plymouth University We thank Luke Zachmann and Andy Kleinhesselink for help collating trait data and David Koons, Nathan Kraft, Jonathan Levine, and Jennifer Williams for helpful comments on an earlier version of the manuscript. P.B.A. was supported by National Science Foundation Grant DEB-1054040. R.S.-G. acknowledges support from the Max Planck Institute for Demographic Research. A.C. was supported by the Utah State University. J.S.H. was supported by a National Science Foundation Graduate Fellowship. C.M.-A. and M.F. were supported by Plymouth University. Ackerly DD, 2003, INT J PLANT SCI, V164, pS1, DOI 10.1086/374729; Benton I, 2000, TRENDS ECOL EVOL, V15, P116; Bonser SP, 2006, OIKOS, V114, P187, DOI 10.1111/j.2006.0030-1299.14425.x; Buckley YM, 2005, J APPL ECOL, V42, P1020, DOI 10.1111/j.1365-2664.2005.01100.x; Campbell G., 1987, ASA P SECT STAT GRAP, P10; Caswell H, 2000, TRENDS ECOL EVOL, V15, P204, DOI 10.1016/S0169-5347(00)01854-1; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 2001, MATRIX POPULATION MO; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; Coomes DA, 2003, TRENDS ECOL EVOL, V18, P283, DOI 10.1016/S0169-5347(03)00072-7; Cornwell WK, 2009, ECOL MONOGR, V79, P109, DOI 10.1890/07-1134.1; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Diaz S, 2001, TRENDS ECOL EVOL, V16, P646, DOI 10.1016/S0169-5347(01)02283-2; Easdale TA, 2009, PERSPECT PLANT ECOL, V11, P203, DOI 10.1016/j.ppees.2009.03.001; Enquist BJ, 1999, NATURE, V401, P907, DOI 10.1038/44819; ENRIGHT NJ, 1995, OECOLOGIA, V104, P79, DOI 10.1007/BF00365565; Eviner VT, 2003, ANNU REV ECOL EVOL S, V34, P455, DOI 10.1146/annurev.ecolsys.34.011802.132342; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Funk JL, 2013, ECOLOGY, V94, P1893, DOI 10.1890/12-1602.1; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Gueorguieva R, 2008, COMPUT STAT DATA AN, V52, P5344, DOI 10.1016/j.csda.2008.05.030; Jongejans E, 2005, J ECOL, V93, P681, DOI 10.1111/j.1365-2745.2005.01003.x; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kazakou E, 2014, J VEG SCI, V25, P235, DOI 10.1111/jvs.12066; King DA, 2005, FUNCT ECOL, V19, P445, DOI 10.1111/j.1365-2435.2005.00982.x; Kraft NJB, 2010, NEW PHYTOL, V188, P1124, DOI 10.1111/j.1469-8137.2010.03444.x; Laughlin DC, 2012, ECOL LETT, V15, P1291, DOI 10.1111/j.1461-0248.2012.01852.x; Lavorel S, 2002, FUNCT ECOL, V16, P545, DOI 10.1046/j.1365-2435.2002.00664.x; Martinez-Vilalta J, 2010, J ECOL, V98, P1462, DOI 10.1111/j.1365-2745.2010.01718.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Moles AT, 2006, OIKOS, V113, P91, DOI 10.1111/j.0030-1299.2006.14194.x; Oostermeijer JGB, 1996, J ECOL, V84, P153, DOI 10.2307/2261351; Osnas JLD, 2013, SCIENCE, V340, P741, DOI 10.1126/science.1231574; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pearse WD, 2013, METHODS ECOL EVOL, V4, P692, DOI 10.1111/2041-210X.12055; Pfister CA, 1998, P NATL ACAD SCI USA, V95, P213, DOI 10.1073/pnas.95.1.213; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Ruger N, 2012, ECOLOGY, V93, P2626, DOI 10.1890/12-0622.1; Salguero-Gomez R, 2010, AM NAT, V176, P710, DOI 10.1086/657044; Salguero-Gomez R, 2010, J ECOL, V98, P312, DOI 10.1111/j.1365-2745.2009.01616.x; Scholze M, 2006, P NATL ACAD SCI USA, V103, P13116, DOI 10.1073/pnas.0601816103; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; SILVERTOWN J, 1993, FUNCT ECOL, V7, P380; VENABLE DL, 1992, AM NAT, V140, P287, DOI 10.1086/285413; Violle C, 2007, OIKOS, V116, P882, DOI 10.1111/j.2007.0030-1299.15559.x; Violle C, 2012, TRENDS ECOL EVOL, V27, P244, DOI 10.1016/j.tree.2011.11.014; Webb CO, 2008, BIOINFORMATICS, V24, P2098, DOI 10.1093/bioinformatics/btn358; Webb CO, 2005, MOL ECOL NOTES, V5, P181, DOI 10.1111/j.1471-8286.2004.00829.x; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Wikstrom N, 2001, P ROY SOC B-BIOL SCI, V268, P2211, DOI 10.1098/rspb.2001.1782; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Zuidema P, 2000, PROMAB SCI SERIES, V2, P159 59 130 134 17 294 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. JAN 14 2014 111 2 740 745 10.1073/pnas.1315179111 6 Multidisciplinary Sciences Science & Technology - Other Topics 288LW WOS:000329614500046 24379395 Green Published, Bronze 2019-02-21 J Stormer, C; Lummaa, V Stoermer, Charlotte; Lummaa, Virpi Increased Mortality Exposure within the Family Rather than Individual Mortality Experiences Triggers Faster Life-History Strategies in Historic Human Populations PLOS ONE English Article FATHER ABSENCE; REPRODUCTIVE STRATEGY; NATURAL-SELECTION; CARIBBEAN COMMUNITY; SEX-DIFFERENCES; CHILD SURVIVAL; PREDICTS AGE; EARLY STRESS; RISK-TAKING; DYING YOUNG Life History Theory predicts that extrinsic mortality risk is one of the most important factors shaping (human) life histories. Evidence from contemporary populations suggests that individuals confronted with high mortality environments show characteristic traits of fast life-history strategies: they marry and reproduce earlier, have shorter birth intervals and invest less in their offspring. However, little is known of the impact of mortality experiences on the speed of life histories in historical human populations with generally higher mortality risk, and on male life histories in particular. Furthermore, it remains unknown whether individual-level mortality experiences within the family have a greater effect on life-history decisions or family membership explains life-history variation. In a comparative approach using event history analyses, we study the impact of family versus individual-level effects of mortality exposure on two central life-history parameters, ages at first marriage and first birth, in three historical human populations (Germany, Finland, Canada). Mortality experience is measured as the confrontation with sibling deaths within the natal family up to an individual's age of 15. Results show that the speed of life histories is not adjusted according to individual-level mortality experiences but is due to family-level effects. The general finding of lower ages at marriage/reproduction after exposure to higher mortality in the family holds for both females and males. This study provides evidence for the importance of the family environment for reproductive timing while individual-level mortality experiences seem to play only a minor role in reproductive life history decisions in humans. [Stoermer, Charlotte] Univ Giessen, Inst Philosophie, D-35390 Giessen, Germany; [Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Lummaa, Virpi] Wissensch Kolleg Berlin, Berlin, Germany Stormer, C (reprint author), Univ Giessen, Inst Philosophie, D-35390 Giessen, Germany. Charlotte.Stoermer@phil.uni-giessen.de VolkswagenStiftung; Royal Society of London; European Research Council Funding from VolkswagenStiftung (http://www.volkswagenstiftung.de/); The Royal Society of London (http://royalsociety.org/grants/); European Research Council (http://erc.europa.eu/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Anderson KG, 2010, HUM NATURE-INT BIOS, V21, P103, DOI 10.1007/s12110-010-9087-z; Beise J, 2001, VERHALTENSOKOLOGIE M; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Ben-Shlomo Y, 2002, INT J EPIDEMIOL, V31, P285, DOI 10.1093/ije/31.2.285; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blossfeld H. P., 2002, TECHNIQUES EVENT HIS; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bolund E, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.2002; BROCKERHOFF M, 1990, DEMOGRAPHY, V27, P601, DOI 10.2307/2061573; Charbonneau H., 2000, POPULATION HIST N AM, P99; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Coall DA, 2010, AM J HUM BIOL, V22, P143, DOI 10.1002/ajhb.20965; COX DR, 1972, J R STAT SOC B, V34, P187; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Eriksson JG, 2009, AM J HUM BIOL, V22, P330, DOI DOI 10.1002/AJHB.20995; Flinn MV, 2006, DEV REV, V26, P138, DOI 10.1016/j.dr.2006.02.003; Gagnon A, 2012, AM J HUM BIOL, V24, P654, DOI 10.1002/ajhb.22287; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Gillespie DOS, 2010, AM NAT, V176, P159, DOI 10.1086/653668; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hayward AD, 2013, EVOLUTION MED PUBLIC, V1, P106, DOI DOI 10.1093/EMPH/E0T007; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Kleinbaum DG, 2012, STAT BIOL HEALTH, P1, DOI 10.1007/978-1-4419-6646-9; Lahdenpera M, 2011, J EVOLUTION BIOL, V24, P1053, DOI 10.1111/j.1420-9101.2011.02237.x; Mace R., 2005, GRANDMOTHERHOOD EVOL, P143; Mills M., 2011, INTRO SURVIVAL EVENT; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2010, BEHAV ECOL, V21, P387, DOI 10.1093/beheco/arp202; O'Quigley J, 2002, STAT MED, V21, P3219, DOI 10.1002/sim.1259; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Omariba DWR, 2010, POPUL RES POLICY REV, V29, P275, DOI 10.1007/s11113-009-9140-y; Oyen N, 2009, EPIDEMIOLOGY, V20, P757, DOI 10.1097/EDE.0b013e3181ad5444; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Quinlan RJ, 2007, AM ANTHROPOL, V109, P164, DOI 10.1525/AA.2007.109.1.164; Quinlan RJ, 2006, AM ANTHROPOL, V108, P464, DOI 10.1525/aa.2006.108.3.464; Quinlan RJ, 2010, HUM NATURE-INT BIOS, V21, P124, DOI 10.1007/s12110-010-9085-1; Rickard IJ, 2010, ECOLOGY, V91, P3515, DOI 10.1890/10-0019.1; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Sheppard P, 2012, BIOL LETTERS, V8, P237, DOI 10.1098/rsbl.2011.0747; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Stormer C, 2011, AM J HUM BIOL, V23, P201, DOI 10.1002/ajhb.21103; Vandezande M, 2010, EXPLAINING DEATH CLU, P1846; Voland E, 2000, EVOL ANTHROPOL, V9, P134; VOLAND E, 1995, HUMAN REPRODUCTIVE DECISIONS, P137; VOLAND E, 1995, HUM NATURE-INT BIOS, V6, P33, DOI 10.1007/BF02734134; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; Willfuhr KP, 2012, BIODEMOGR SOC BIOL, V58, P149, DOI 10.1080/19485565.2012.734745; Willfuhr KP, 2009, AM J HUM BIOL, V21, P488, DOI 10.1002/ajhb.20909; Willfuhr KP, 1670, BIODEMOGRAPHY SOCIAL; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Wilson M, 1996, POPUL ENVIRON, V18, P143, DOI 10.1007/BF02208408; Woods R, 2003, POPUL DEV REV, V29, P29, DOI 10.1111/j.1728-4457.2003.00029.x 62 9 9 0 19 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One JAN 8 2014 9 1 e83633 10.1371/journal.pone.0083633 9 Multidisciplinary Sciences Science & Technology - Other Topics 291WL WOS:000329862500061 24421897 DOAJ Gold, Green Published 2019-02-21 J Djomo Nana, E; Sedlacek, O; Vokurkova, J; Horak, D Djomo Nana, Eric; Sedlacek, Ondrej; Vokurkova, Jana; Horak, David Nest position and type affect predation rates of artificial avian nests in the tropical lowland forest on Mount Cameroon OSTRICH English Article Africa; artificial nests; Cameroon; nest predation; nest survival; rainforest undergrowth FRAGMENTATION; BIRDS; SUCCESS; RISK; TANZANIA; HABITAT; EDGE; SIZE Nest predation is the leading cause of reproductive failure in birds and thus it shapes their life history strategies. Intensities of nest predation appear to differ among nest locations and types in both temperate and tropical regions. However, there is limited knowledge of factors influencing susceptibility of avian nests to predation in Africa. The aim of our study was to investigate artificial nest predation rates of different ground and shrub nests located at different heights in the rainforest undergrowth. We placed artificial avian nests within a homogeneous lowland forest interior with sparse forest undergrowth in the Mount Cameroon National Park, Cameroon. We exposed three sets of nests: 50 bare-ground, 50 cup-ground and 50 cup-shrub nests, for 10 d. Predation was higher for cup-ground nests compared to cup-shrub nests, and bare-ground nests were more depredated than cup-ground nests. We concluded that the presence of a cup as well as higher nest position significantly increased probability of artificial nest survival. The results of this study suggest a potential selection pressure on nest type and placement in lowland forest birds for a poorly known tropical region. [Djomo Nana, Eric; Sedlacek, Ondrej; Vokurkova, Jana; Horak, David] Charles Univ Prague, Fac Sci, Dept Ecol, Prague, Czech Republic; [Djomo Nana, Eric] Int Res & Training Ctr, Yaounde, Cameroon Djomo Nana, E (reprint author), Charles Univ Prague, Fac Sci, Dept Ecol, Prague, Czech Republic. nanae@natur.cuni.cz Horak, David/A-9364-2010; Sedlacek, Ondrej/A-1667-2009 Horak, David/0000-0002-8073-1617; Djomo Nana, Eric/0000-0002-6118-9359 community of Bakingili; Francis Luma; Mt Cameroon National Park; Czech Science Foundation [P505/11/1617] We thank the community of Bakingili, Francis Luma and Mt Cameroon National Park for their support during field work. This study was performed with the authorisation number 2309/PRBS/MINFOF/SG/DFAP/SDVEF/SC of the Ministry of Forestry and Wildlife of the Republic of Cameroon. The research was funded by the Czech Science Foundation (project no. P505/11/1617). Bobo S. K., 2011, ECOTROPICA, V17, P21; Brawn JD, 2011, J AVIAN BIOL, V42, P61, DOI 10.1111/j.1600-048X.2010.04897.x; Burhans DE, 2002, J WILDLIFE MANAGE, V66, P240, DOI 10.2307/3802890; Carlson A, 2001, BIODIVERS CONSERV, V10, P1077, DOI 10.1023/A:1016649731062; Cooper DS, 1998, BIOL CONSERV, V85, P199, DOI 10.1016/S0006-3207(97)00118-3; DeGraaf RM, 1996, WILSON BULL, V108, P535; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Githiru M, 2005, BIOL CONSERV, V123, P189, DOI 10.1016/j.biocon.2004.11.006; Hanson TR, 2007, AFR J ECOL, V45, P499, DOI 10.1111/j.1365-2028.2007.00760.x; Hoak D., 2011, OSTRICH, V82, P175; Maina GG, 2003, BIOL CONSERV, V111, P161, DOI 10.1016/S0006-3207(02)00259-8; Major RE, 1996, IBIS, V138, P298, DOI 10.1111/j.1474-919X.1996.tb04342.x; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; MARTIN TE, 1993, AM NAT, V141, P897, DOI 10.1086/285515; MARTIN TE, 1988, AM NAT, V132, P900, DOI 10.1086/284896; Pangau-Adam MZ, 2006, BIODIVERS CONSERV, V15, P4143, DOI 10.1007/s10531-005-3370-z; Reme V, 2012, J AVIAN BIOL, V43, P1; Ricklefs R. E., 1969, SMITHSON CONTRIB ZOO, V9, P1, DOI [DOI 10.5479/SI.00810282.9, 10.5479/si.00810282.9]; Robinson WD, 2000, J AVIAN BIOL, V31, P151, DOI 10.1034/j.1600-048X.2000.310207.x; Schmidt KA, 1999, OIKOS, V87, P65, DOI 10.2307/3546997; Soderstrom B, 1999, ECOGRAPHY, V22, P455, DOI 10.1111/j.1600-0587.1999.tb00582.x; Sodhi NS, 2003, BIODIVERS CONSERV, V12, P2415, DOI 10.1023/A:1025852214528; Spanhove T, 2009, ANIM CONSERV, V12, P267, DOI 10.1111/j.1469-1795.2009.00249.x; STOUFFER PC, 1995, ECOLOGY, V76, P2429, DOI 10.2307/2265818; Trujillo G, 2005, ORNITOL NEOTROP, V16, P53; Vetter D, 2013, BIOL CONSERV, V159, P382, DOI 10.1016/j.biocon.2012.12.023; Yahner RH, 1996, WILSON BULL, V108, P129 27 1 1 1 9 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 0030-6525 1727-947X OSTRICH Ostrich JAN 2 2014 85 1 93 96 10.2989/00306525.2014.900830 4 Ornithology Zoology AH2VF WOS:000335979100012 2019-02-21 S Roach, DA; Carey, JR Futuyma, DJ Roach, Deborah A.; Carey, James R. Population Biology of Aging in the Wild ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS, VOL 45 Annual Review of Ecology Evolution and Systematics English Review; Book Chapter senescence; life span; long-lived; age-dependent; biodemography; wild population; elderly LONG-LIVED BIRD; POSTREPRODUCTIVE LIFE-SPAN; AGE-SPECIFIC VARIATION; REPRODUCTIVE SENESCENCE; OXIDATIVE STRESS; EVOLUTIONARY-THEORIES; NATURAL-SELECTION; LONGITUDINAL ANALYSIS; SOCIAL-BEHAVIOR; SOAY SHEEP Empirical studies reveal aging occurs in wild populations. Consideration of the ecological and evolutionary consequences of these findings is critical for many areas of research, including life-history evolution, sexual selection, behavior, and applied ecology. Variation in the patterns of age-dependent declines of phenotypic traits has been found both within and among individuals, and this raises future questions aimed at understanding what determines these trajectories across traits and across the tree of life. The presence of older, aging, individuals in populations can have transgenerational effects on offspring and can influence how individuals interact. In some species older individuals in populations can have positive impacts, influencing knowledge and leadership, postreproductive care, and population cycle stabilization. Aging and long life span also need to be recognized in an applied ecology context including management plans, vector-borne disease transmission, and ecotoxicology. [Roach, Deborah A.] Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA; [Carey, James R.] Univ Calif Davis, Dept Entomol, Davis, CA 95616 USA; [Carey, James R.] Univ Calif Berkeley, Ctr Econ & Demog Aging, Berkeley, CA 94720 USA Roach, DA (reprint author), Univ Virginia, Dept Biol, Charlottesville, VA 22904 USA. droach@virginia.edu; jrcarey@ucdavis.edu Roach, Deborah/0000-0002-5273-5370 ABRAMS PA, 1993, EVOLUTION, V47, P877, DOI 10.1111/j.1558-5646.1993.tb01241.x; AGUILAR A, 1994, ARCH ENVIRON CON TOX, V27, P546; Archie EA, 2012, MOL ECOL, V21, P765, DOI 10.1111/j.1365-294X.2011.05237.x; Balbontin J, 2012, J EVOLUTION BIOL, V25, P2298, DOI 10.1111/j.1420-9101.2012.02606.x; Balbontin J, 2011, J EVOLUTION BIOL, V24, P440, DOI 10.1111/j.1420-9101.2010.02183.x; Balbontin J, 2007, J ANIM ECOL, V76, P915, DOI 10.1111/j.1365-2656.2007.01269.x; Barrett ELB, 2013, MOL ECOL, V22, P249, DOI 10.1111/mec.12110; Baudisch A, 2005, P NATL ACAD SCI USA, V102, P8263, DOI 10.1073/pnas.0502155102; Baudisch A, 2013, J ECOL, V101, P596, DOI 10.1111/1365-2745.12084; Beamonte-Barrientos R, 2010, AM NAT, V175, P469, DOI 10.1086/650726; BEGON M, 1976, OECOLOGIA, V23, P31, DOI 10.1007/BF00351213; Berman M, 2009, P ROY SOC B-BIOL SCI, V276, P375, DOI 10.1098/rspb.2008.0925; Berube CH, 1999, ECOLOGY, V80, P2555, DOI 10.2307/177240; Bize P, 2009, P R SOC B, V276, P1679, DOI 10.1098/rspb.2008.1817; BLEST AD, 1963, NATURE, V197, P1183, DOI 10.1038/1971183a0; Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Bouwhuis S, 2010, J EVOLUTION BIOL, V23, P636, DOI 10.1111/j.1420-9101.2009.01929.x; Bouwhuis S, 2012, AM NAT, V179, pE15, DOI 10.1086/663194; Brockmann HJ, 1997, SOCIAL BEHAV INSECTS, P347; Brommer JE, 2010, HEREDITY, V104, P363, DOI 10.1038/hdy.2009.125; Bronikowski AM, 2005, TRENDS ECOL EVOL, V20, P271, DOI 10.1016/j.tree.2005.03.011; Carey JR, 2012, ECOL ENTOMOL, V37, P359, DOI 10.1111/j.1365-2311.2012.01372.x; Carey JR, 2001, ANNU REV ENTOMOL, V46, P79, DOI 10.1146/annurev.ento.46.1.79; Carey JR, 2001, POPUL DEV REV, V27, P411, DOI 10.1111/j.1728-4457.2001.00411.x; Carlson SM, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001286; Catry P, 2006, P R SOC B, V273, P1625, DOI 10.1098/rspb.2006.3482; Chu CJ, 2014, J ECOL, V102, P531, DOI 10.1111/1365-2745.12212; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Cohen AA, 2009, FUNCT ECOL, V23, P310, DOI 10.1111/j.1365-2435.2009.01540.x; Congdon JD, 2013, EVOL ECOL, V27, P445, DOI 10.1007/s10682-012-9595-x; Cosantini D, 2008, J EXP BIOL, V211, P377; Coulson T, 2001, SCIENCE, V292, P1528, DOI 10.1126/science.292.5521.1528; Dean R, 2010, CURR BIOL, V20, P1192, DOI 10.1016/j.cub.2010.04.059; Descamps S, 2008, OIKOS, V117, P1406, DOI 10.1111/j.2008.0030-1299.16545.x; DiSilvestro RL, 1991, AFRICAN ELEPHANT TWI, P96; Dugdale HL, 2011, MOL ECOL, V20, P3261, DOI 10.1111/j.1365-294X.2011.05167.x; Ericsson G, 2001, ECOSCIENCE, V8, P157, DOI 10.1080/11956860.2001.11682641; EVANS HE, 1958, P 10 INT C ENT, P449; FAULKES CG, 1991, J REPROD FERTIL, V93, P427; Field J, 2000, NATURE, V404, P869, DOI 10.1038/35009097; Finch CE, 2009, GERONTOLOGY, V55, P307, DOI 10.1159/000215589; Finkelstein ME, 2010, ANIM CONSERV, V13, P148, DOI 10.1111/j.1469-1795.2009.00311.x; Foote AD, 2008, BIOL LETTERS, V4, P189, DOI 10.1098/rsbl.2008.0006; Foster EA, 2012, SCIENCE, V337, P1313, DOI 10.1126/science.1224198; Freeman D, 1980, ELEPHANTS VANISHING, P53; FULLER TK, 1980, J WILDLIFE MANAGE, V44, P583, DOI 10.2307/3808006; Garcia MB, 2011, J ECOL, V99, P1424, DOI 10.1111/j.1365-2745.2011.01871.x; Goldwasser L, 2004, TRENDS ECOL EVOL, V16, P536; Grimaldi David, 2005, pi; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Hadley GL, 2007, OIKOS, V116, P601, DOI 10.1111/j.2007.0030-1299.15528.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Hammers M, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0040413; Harcourt AH, 2007, EVOL ANTHROPOL, V16, P147, DOI 10.1002/evan.20142; HASTINGS A, 1984, THEOR POPUL BIOL, V26, P271, DOI 10.1016/0040-5809(84)90033-9; Hayward AD, 2013, FUNCT ECOL, V27, P184, DOI 10.1111/1365-2435.12029; Hixon MA, 2013, J MAR SCI IN PRESS, DOI [10.1093/icesjms/fst200, DOI 10.1093/ICESJMS/FST200]; HRDY SB, 1981, OTHER WAYS GROWING O, P59; IZQUIERDO JI, 1991, ENTOMOL EXP APPL, V59, P51, DOI 10.1111/j.1570-7458.1991.tb01485.x; Johnson C.M., 1986, P335; JOHNSON CM, 1994, HAWAIIAN SPINNER DOL, P243; Jones OR, 2008, ECOL LETT, V11, P664, DOI 10.1111/j.1461-0248.2008.01187.x; Jones OR, 2014, NATURE, V505, P169, DOI 10.1038/nature12789; Jorgenson JT, 1997, ECOLOGY, V78, P1019, DOI 10.2307/2265855; Jullien M, 2000, ECOLOGY, V81, P3416, DOI 10.1890/0012-9658(2000)081[3416:TSVOFI]2.0.CO;2; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Kendall BE, 2011, ECOLOGY, V92, P1985, DOI 10.1890/11-0079.1; Kim SY, 2011, J EVOLUTION BIOL, V24, P295, DOI 10.1111/j.1420-9101.2010.02165.x; King AJ, 2010, BEHAV PROCESS, V84, P671, DOI 10.1016/j.beproc.2010.03.006; Kirkwood TBL, 2000, NATURE, V408, P1006; Land K. C., 2005, HDB POPULATION, P659; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lewontin R. C., 1965, P77; Longhurst A, 2002, FISH RES, V56, P125, DOI 10.1016/S0165-7836(01)00351-4; Low M, 2007, J ANIM ECOL, V76, P459, DOI 10.1111/j.1365-2656.2007.01234.x; MacNulty DR, 2009, ECOL LETT, V12, P1347, DOI 10.1111/j.1461-0248.2009.01385.x; Martin JGA, 2011, ECOL LETT, V14, P576, DOI 10.1111/j.1461-0248.2011.01621.x; Massot M, 2011, FUNCT ECOL, V25, P848, DOI 10.1111/j.1365-2435.2011.01837.x; McComb K, 2001, SCIENCE, V292, P491, DOI 10.1126/science.1057895; McNamara JM, 2009, P ROY SOC B-BIOL SCI, V276, P4061, DOI 10.1098/rspb.2009.0959; Medawar P, 1952, UNSOLVED PROBLEM BIO; Monaghan P, 2010, ANN NY ACAD SCI, V1206, P130, DOI 10.1111/j.1749-6632.2010.05705.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Morales M, 2013, J ECOL, V101, P555, DOI 10.1111/1365-2745.12080; Mota MDS, 2005, J ANIM BREED GENET, V122, P393, DOI 10.1111/j.1439-0388.2005.00551.x; Munne-Bosch S, 2007, PLANTA, V225, P1039, DOI 10.1007/s00425-006-0412-z; Novoseltsev VN, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039479; Nussey DH, 2013, AGEING RES REV, V12, P214, DOI 10.1016/j.arr.2012.07.004; Nussey DH, 2011, ECOLOGY, V92, P1936, DOI 10.1890/11-0308.1; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Odling-Smee FJ, 2003, NICHE CONSTRUCTION N; Olesiuk P.F., 1990, Reports of the International Whaling Commission Special Issue, P209; Packer C, 2011, CONSERV BIOL, V25, P142, DOI 10.1111/j.1523-1739.2010.01576.x; Packer C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005941; Pardo D, 2013, OECOLOGIA, V173, P1283, DOI 10.1007/s00442-013-2704-x; Pardo D, 2013, ECOLOGY, V94, P208, DOI 10.1890/12-0215.1; Perez VI, 2009, P NATL ACAD SCI USA, V106, P3059, DOI 10.1073/pnas.0809620106; Pizzari T, 2008, TRENDS ECOL EVOL, V23, P131, DOI 10.1016/j.tree.2007.12.003; Poole Joyce H., 1994, P331; POOLE TB, 1987, ZOO BIOL, V6, P315, DOI 10.1002/zoo.1430060406; Punzo F, 2003, J MAMMAL, V84, P1112, DOI 10.1644/BWG-106; Purves W. K., 2004, LIFE SCI BIOL; Radwan J, 2003, ECOL LETT, V6, P581, DOI 10.1046/j.1461-0248.2003.00484.x; Reichert BE, 2010, OIKOS, V119, P972, DOI 10.1111/j.1600-0706.2010.18366.x; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Ricklefs RE, 2010, P NATL ACAD SCI USA, V107, P10314, DOI 10.1073/pnas.1005862107; Roach DA, 2009, ECOLOGY, V90, P1427, DOI 10.1890/08-0981.1; Roach DA, 2012, EXP GERONTOL, V47, P782, DOI 10.1016/j.exger.2012.05.020; Robinson MR, 2012, ECOL LETT, V15, P260, DOI 10.1111/j.1461-0248.2011.01735.x; Robson SKA, 2006, J EXP BIOL, V209, P3155, DOI 10.1242/jeb.02318; Rowe CL, 2008, BIOSCIENCE, V58, P623, DOI 10.1641/B580709; Rowley I., 1976, P 16 INT ORN C CANB, P657; SACHER GA, 1978, BIOSCIENCE, V28, P497, DOI 10.2307/1307295; Saino N, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019593; Salomons HM, 2009, P ROY SOC B-BIOL SCI, V276, P3157, DOI 10.1098/rspb.2009.0517; Schumacher P, 1997, PHYSIOL ENTOMOL, V22, P149, DOI 10.1111/j.1365-3032.1997.tb01152.x; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sharp SP, 2010, J ANIM ECOL, V79, P176, DOI 10.1111/j.1365-2656.2009.01616.x; Shefferson RP, 2013, J ECOL, V101, P577, DOI 10.1111/1365-2745.12079; Sherratt TN, 2011, J EVOLUTION BIOL, V24, P810, DOI 10.1111/j.1420-9101.2010.02222.x; Siegel JS, 2012, DEMOGRAPHY AND EPIDEMIOLOGY OF HUMAN HEALTH AND AGING, P1, DOI 10.1007/978-94-007-1315-4; SLOBODKI.LB, 1968, AM ZOOL, V8, P43; Sparkman AM, 2007, P ROY SOC B-BIOL SCI, V274, P943, DOI 10.1098/rspb.2006.0072; Stark JD, 2003, ANNU REV ENTOMOL, V48, P505, DOI 10.1146/annurev.ento.48.091801.112621; Stroemme T, 2008, P FISH GLOB WELF ENV, P17; Styer LM, 2007, AM J TROP MED HYG, V76, P111, DOI 10.4269/ajtmh.2007.76.111; Tafani M, 2013, OECOLOGIA, V172, P427, DOI 10.1007/s00442-012-2499-1; Torres R, 2007, J ANIM ECOL, V76, P1161, DOI 10.1111/j.1365-2656.2007.01282.x; Turbill C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012019; TYACK P, 1986, TRENDS ECOL EVOL, V1, P144, DOI 10.1016/0169-5347(86)90042-X; Ungvari Z, 2011, J GERONTOL A-BIOL, V66, P741, DOI 10.1093/gerona/glr044; Vaupel JW, 2004, THEOR POPUL BIOL, V65, P339, DOI 10.1016/j.tpb.2003.12.003; Velando A, 2011, J EVOLUTION BIOL, V24, P693, DOI 10.1111/j.1420-9101.2010.02201.x; WARNER RR, 1985, AM NAT, V125, P769, DOI 10.1086/284379; Wells R.S., 1991, P199; White J, 2008, P NATL ACAD SCI USA, V105, P13947, DOI 10.1073/pnas.0803067105; Whitman K, 2004, NATURE, V428, P175, DOI 10.1038/nature02395; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Williams PD, 2003, EVOLUTION, V57, P1478; Williams R, 2006, BIOL LETTERS, V2, P497, DOI 10.1098/rsbl.2006.0510; Zajitschek F, 2009, ECOLOGY, V90, P1698, DOI 10.1890/08-0048.1 144 20 20 3 51 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 1543-592X 978-0-8243-1445-3 ANNU REV ECOL EVOL S Annu. Rev. Ecol. Evol. Syst. 2014 45 421 443 10.1146/annurev-ecolsys-120213-091730 23 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BB9ME WOS:000348461700019 2019-02-21 S Panter-Brick, C Brenneis, D; Strier, KB Panter-Brick, Catherine Health, Risk, and Resilience: Interdisciplinary Concepts and Applications ANNUAL REVIEW OF ANTHROPOLOGY, VOL 43 Annual Review of Anthropology English Article; Book Chapter culture; political economy; life history; child development; policy MENTAL-HEALTH; DEVELOPMENTAL ORIGINS; CHILD-DEVELOPMENT; CULTURE; CONTEXT; YOUTH; EPIDEMIOLOGY; ANTHROPOLOGY; PREVENTION; CONFLICT Risk and resilience research articulates major explanatory frameworks regarding the persistence of health disparities. Specifically, scholars have advocated a sophisticated knowledge of risk, a more grounded understanding of resilience, and comprehensive and meaningful measurements of risk and resilience pathways across cultures. The goal is to operationalize research issues into sustainable health practice and equity-focused policy. This article synthesizes current understandings on risk and resilience from the lens of medical anthropology: It reviews key insights gained from the standpoint of cultural narratives, political economy, and life history theory, as well as current shortcomings. The emergent literature on health-related risk and resilience is breathing new life into collaboration and dialogue across diverse fields of research and policy. Yale Univ, Dept Anthropol, New Haven, CT 06511 USA Panter-Brick, C (reprint author), Yale Univ, Dept Anthropol, New Haven, CT 06511 USA. catherine.panter-brick@yale.edu Ager A, 2013, J CHILD PSYCHOL PSYC, V54, P488, DOI 10.1111/jcpp.12030; Almedom AM, 2008, AFR HEALTH SCI, V8, pS1; Barber BK, 2008, INT J BEHAV DEV, V32, P298, DOI 10.1177/0165025408090972; Barber BK, 2013, J CHILD PSYCHOL PSYC, V54, P461, DOI 10.1111/jcpp.12056; Belsky J, 2013, DEV PSYCHOPATHOL, V25, P1243, DOI 10.1017/S095457941300059X; Bonanno GA, 2004, AM PSYCHOL, V59, P20, DOI 10.1037/0003-066X.59.1.20; Bourgois P., 2002, EXOTIC NO MORE ANTHR, P15; Bradbey H, 2010, GLOBAL PERSPECTIVES, P127; Brown K, 2011, ANNU REV ENV RESOUR, V36, P321, DOI 10.1146/annurev-environ-052610-092905; DAVISON C, 1991, SOCIOL HEALTH ILL, V13, P1, DOI 10.1111/1467-9566.ep11340301; DAVISON C, 1992, SOC SCI MED, V34, P675, DOI 10.1016/0277-9536(92)90195-V; Dobbs D., 2009, ATLANTIC, P60; Dressler WW, 2012, PREV MED, V55, P390, DOI 10.1016/j.ypmed.2011.12.022; Eggerman M, 2010, SOC SCI MED, V71, P71, DOI 10.1016/j.socscimed.2010.03.023; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Evans-Pritchard E, 1937, WITCHCRAFT ORACLES M; Farmer P, 2004, CURR ANTHROPOL, V45, P305, DOI 10.1086/382250; Farmer P, 2013, CALIF SER PUB ANTHR, V26, P1; Feldman R, 2007, DEV PSYCHOPATHOL, V19, P1, DOI 10.1017/S0954579407070010; Felner RD, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P105, DOI 10.1007/978-1-4614-3661-4_7; Goldstein S, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P1, DOI 10.1007/978-1-4614-3661-4; Gravlee CC, 2009, AM J PHYS ANTHROPOL, V139, P47, DOI 10.1002/ajpa.20983; Hall P., 2013, SOCIAL RESILIENCE NE; Heikkinen H, 2010, SOC SCI MED, V71, P877, DOI 10.1016/j.socscimed.2010.05.036; Hobfoll SE, 2012, PSYCHIATRY, V75, P227, DOI 10.1521/psyc.2012.75.3.227; Inhorn MC, 1997, ANTHR INFECT DIS, P413; Jaco E, 1979, PATIENTS PHYS ILLNES, P9; Jasienska G, 2009, AM J HUM BIOL, V21, P524, DOI 10.1002/ajhb.20931; Jones Camara Phyllis, 2009, J Health Care Poor Underserved, V20, P1, DOI 10.1353/hpu.0.0228; Kamat VR, 2008, MED ANTHROPOL Q, V22, P67, DOI 10.1111/j.1548-1387.2008.00004.x; Keshavjee S, 2006, PLOS MED, P1; Kleinman A., 2006, WHAT REALLY MATTERS; Kleinman A., 1997, SOCIAL SUFFERING; Kohrt BA, 2010, TRANSCULT PSYCHIATRY, V47, P727, DOI 10.1177/1363461510381290; Konner Melvin J., 2010, EVOLUTION CHILDHOOD; KRIEGER N, 1994, SOC SCI MED, V39, P887, DOI 10.1016/0277-9536(94)90202-X; Krieger N, 2002, AM J PUBLIC HEALTH, V92, P611, DOI 10.2105/AJPH.92.4.611; Kuzawa CW, 2007, AM J HUM BIOL, V19, P654, DOI 10.1002/ajhb.20659; Kuzawa CW, 2009, ANNU REV ANTHROPOL, V38, P131, DOI 10.1146/annurev-anthro-091908-164350; Langford R, 2013, SOC SCI MED, V83, P133, DOI 10.1016/j.socscimed.2013.01.036; Langford R, 2011, AM J HUM BIOL, V23, P621, DOI 10.1002/ajhb.21189; Lende DH, 2012, ENCULTURED BRAIN: AN INTRODUCTION TO NEUROANTHROPOLOGY, P1; Luthar SS, 2007, DEV PSYCHOPATHOL, V19, P931, DOI 10.1017/S0954579407000454; Maholmes V, 2012, OXFORD HDB POVERTY C, P603; Marmot M, 2007, LANCET, V370, P1153, DOI 10.1016/S0140-6736(07)61385-3; Masten AS, 2007, DEV PSYCHOPATHOL, V19, P921, DOI 10.1017/S0954579407000442; Masten AS, 2014, CHILD DEV, V85, P6, DOI 10.1111/cdev.12205; Masten AS, 2012, ANNU REV PSYCHOL, V63, P227, DOI 10.1146/annurev-psych-120710-100356; Masten AS, 2011, DEV PSYCHOPATHOL, V23, P493, DOI 10.1017/S0954579411000198; Masten AS, 2001, AM PSYCHOL, V56, P227, DOI 10.1037//0003-066X.56.3.227; McDade TW, 2004, J RES ADOLESCENCE, V14, P49, DOI 10.1111/j.1532-7795.2004.01401003.x; Miller KE, 2006, AM J ORTHOPSYCHIAT, V76, P423, DOI 10.1037/0002-9432.76.4.423; Murray LR, 2011, SOC SCI MED, V72, P945, DOI 10.1016/j.socscimed.2011.01.004; Nguyen-Gillham V, 2008, HEALTH SOC CARE COMM, V16, P291, DOI 10.1111/j.1365-2524.2008.00767.x; NICHTER M, 1991, MED ANTHROPOL Q, V5, P236, DOI 10.1525/maq.1991.5.3.02a00040; Obradovi J., 2012, ENV HUMAN DEV HDB TH, P35, DOI [DOI 10.1017/CB09781139016827.004, 10.1017/cbo9781139016827.004]; Ozbay Fatih, 2007, Psychiatry (Edgmont), V4, P35; Panter-Brick C, 2002, ANNU REV ANTHROPOL, V31, P147, DOI 10.1146/annurev.anthro.31.040402.085359; Panter-Brick C., 2010, HLTH RISK ADVERSITY; Panter-Brick C, 2008, AM J HUM BIOL, V20, P627, DOI 10.1002/ajhb.20797; Panter-Brick C, 2014, GLOBAL HEALTH ACTION, V7, DOI 10.3402/gha.v7.23411; Panter-Brick C, 2013, J CHILD PSYCHOL PSYC, V54, P333, DOI 10.1111/jcpp.12057; Panter-Brick C, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P369, DOI 10.1007/978-1-4614-0586-3_29; Panter-Brick C, 2009, LANCET, V374, P807, DOI 10.1016/S0140-6736(09)61080-1; Parker M, 2006, J BIOSOC SCI, V38, P1, DOI 10.1017/S0021932005001148; Parker M, 2011, HEALTH RES POLICY SY, V9, DOI 10.1186/1478-4505-9-3; Parker R, 2001, ANNU REV ANTHROPOL, V30, P163, DOI 10.1146/annurev.anthro.30.1.163; Phan T, 2006, INT CUL PSY, P427; Pollard TM, 2011, ANNU REV ANTHROPOL, V40, P145, DOI 10.1146/annurev-anthro-081309-145719; Pool R, 2005, MED ANTHR UNDERSTAND; Rutter M, 2013, J CHILD PSYCHOL PSYC, V54, P474, DOI 10.1111/j.1469-7610.2012.02615.x; Rutter M, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P33, DOI 10.1007/978-1-4614-0586-3_3; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Southwick S. M., 2011, RESILIENCE MENTAL HL; Southwick SM, 2012, SCIENCE, V338, P79, DOI 10.1126/science.1222942; Sweet E, 2010, SOC SCI MED, V70, P2029, DOI 10.1016/j.socscimed.2010.02.032; Tomlinson M, 2010, J HEALTH PSYCHOL, V15, P972, DOI 10.1177/1359105310371399; Ungar M, 2012, SOCIAL ECOLOGY OF RESILIENCE: A HANDBOOK OF THEORY AND PRACTICE, P1, DOI 10.1007/978-1-4614-0586-3; Ungar M, 2008, BRIT J SOC WORK, V38, P218, DOI 10.1093/bjsw/bc1343; Wexler LM, 2009, SOC SCI MED, V69, P565, DOI 10.1016/j.socscimed.2009.06.022; Wilkinson R., 2011, SPIRIT LEVEL WHY GRE; Worthman CM, 2010, FORMATIVE EXPERIENCE, P51; Wright MO, 2013, HANDBOOK OF RESILIENCE IN CHILDREN, SECOND EDITION, P15, DOI 10.1007/978-1-4614-3661-4_2 83 38 38 6 30 ANNUAL REVIEWS PALO ALTO 4139 EL CAMINO WAY, PO BOX 10139, PALO ALTO, CA 94303-0897 USA 0084-6570 978-0-8243-1943-4 ANNU REV ANTHROPOL Annu. Rev. Anthropol. 2014 43 431 448 10.1146/annurev-anthro-102313-025944 10.1146/annurev-anthro-092412-155504 18 Anthropology Anthropology BB9LA WOS:000348430900028 2019-02-21 J Jusufovski, D; Kuparinen, A Jusufovski, Dunja; Kuparinen, Anna Contrasting evolutionary and ecological management objectives in the context of sustainable harvesting EVOLUTIONARY ECOLOGY RESEARCH English Article age at maturation; European hake; fisheries-induced evolution; fishing; spawn-at-least-once FISHERIES-INDUCED EVOLUTION; MEDITERRANEAN HAKE; REFERENCE POINTS; FISH STOCKS; CONSEQUENCES; SELECTION; RECOVERY; AVOIDANCE; HISTORY; GROWTH Background: Harvesting of large, old fish can induce evolutionary changes in fish life histories (e. g. reduce age and size at maturation). Although reducing phenotypic selectivity of fishing can minimize the evolutionary impacts of fishing, this can lead to overfishing of immature individuals. The fishing strategy that aims to secure sufficient recruitment for the next generation, and thus targets solely the adult proportion of the population, is called the 'spawn-at-least-once' policy. However, this strategy conflicts with the attempt to avoid fisheries-induced evolution. Questions: What are the ecological and evolutionary impacts of the prevailing hake fishing strategy that can be characterized by low phenotypic selectivity, compared with a strategy that uses a spawn-at-least-once policy? How do these two fishing strategies contribute to the sustainability of hake fisheries from both the ecological and evolutionary perspectives? Methods: We address the questions using a case study, the European hake fishery. We simulate the eco-evolutionary dynamics of European hake populations under two alternative fishing strategies. The simulation approach is individual-based and describes individual life histories through von Bertalanffy growth curves and life-history invariants. We implemented the two strategies through two alternative fishing selectivity curves: (1) a low selectivity strategy estimated from current European hake fishing, which targets equally both immature and mature individuals, and (2) a spawn-at-least-once strategy of selectivity, which targets mature individuals. Key assumptions: Growth histories and vulnerability to fishing do not depend on the sex of an individual. Reproductive success depends on female body size. Mature individuals have higher natural mortality owing to the survival costs of reproduction. The model does not incorporate any differences between geographical areas or any behavioural adaptations that may vary among fish. Conclusions: The two fishing strategies showed opposite responses at the population and phenotypic levels. The spawn-at-least-once policy resulted in life-history evolution towards earlier maturation and smaller adult body size, but the population abundance remained high. In contrast, the prevailing low-selective fisheries strategy led to large reductions in population abundance but no evolutionary changes in life histories. [Jusufovski, Dunja; Kuparinen, Anna] Univ Helsinki, Dept Environm Sci, FI-00014 Helsinki, Finland Jusufovski, D (reprint author), Univ Helsinki, Dept Environm Sci, POB 65, FI-00014 Helsinki, Finland. dunja.jusufovski@helsinki.fi Academy of Finland; European Union [244706/ECOKNOWS] This study received support from the Academy of Finland (A.K.), and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 244706/ECOKNOWS (A.K., D.J.). This paper does not necessarily reflect the European Commission's views and in no way anticipates the Commission's future policy in the area. We are grateful to Santiago Cervino and Sergio Ragonese for their help in model parameterization. Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Audzijonyte A, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1103; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Casey J., 1995, HAKE BIOL FISHERIES, P125; Cervino S, 2014, FISH RES, V160, P112, DOI 10.1016/j.fishres.2013.11.010; Cervino S, 2013, FISH RES, V138, P168, DOI 10.1016/j.fishres.2012.07.016; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dominguez-Petit R., 2007, J MARINE SYST, V71, P260; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Garcia SM, 2012, SCIENCE, V335, P1045, DOI 10.1126/science.1214594; Heino M, 2002, B MAR SCI, V70, P639; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; ICES, 2005, CM2005ACFM02 ICES; ICES, 2012, CM2012ACOM11 ICES; Jacobsen N.S., 2013, P R SOC B, V281, DOI DOI 10.1098/RSPB.2013.2701; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jusufovski D., 2013, THESIS U LUND SWEDEN; Kuparinen A., 2011, EVOLUTIONARY APPL, V5, P245; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2014, CONSERV BIOL, V28, P790, DOI 10.1111/cobi.12216; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; LARKIN PA, 1977, T AM FISH SOC, V106, P1, DOI 10.1577/1548-8659(1977)106<1:AEFTCO>2.0.CO;2; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2012, ICES J MAR SCI, V69, P602, DOI 10.1093/icesjms/fss031; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Murua H, 2010, FISH RES, V104, P100, DOI 10.1016/j.fishres.2009.06.007; Myers R. A., 1998, ECOL APPL, V8, P165; R Development Core Team, 2012, R LANG ENV STAT COMP; Ragonese S, 2009, MEDITERR MAR SCI, V10, P125, DOI 10.12681/mms.126; Ragonese S, 2012, ACTA ADRIAT, V53, P105; ROFF DA, 2002, LIFE HIST EVOLUTION; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Vasilakopoulos P, 2011, ICES J MAR SCI, V68, P1525, DOI 10.1093/icesjms/fsr075; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507 35 1 1 1 11 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. 2014 16 2 133 142 10 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity CB2GF WOS:000349444300003 2019-02-21 J Henry, JQ Henry, Jonathan Q. Spiralian model systems INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY English Article bilaterian metazoan; spiral cleavage; life history strategy PLATYNEREIS-DUMERILII NEREIDIDAE; ANNELID CAPITELLA-TELETA; CELL LINEAGE; CREPIDULA-FORNICATA; FATE MAP; ILYANASSA-OBSOLETA; D-QUADRANT; PHYLOGENETIC-RELATIONSHIPS; DEVELOPMENTAL PROGRAM; GASTROPOD CREPIDULA The "Spiralia" represent one of the three major clades of bilaterian metazoans. Though members of this clade exhibit tremendous diversity in terms of their larval and adult body plans, many share a highly conserved early pattern of development involving a stereotypic cleavage program referred to as spiral cleavage. This group therefore represents an excellent one in which to undertake comparative studies to understand the origins of such diversity from a seemingly common ground plan. These organisms also present varied and diverse modes in terms of their ecology, development and life history strategies. A number of well established and emerging model systems have been developed to undertake studies at the molecular, genetic, cell and organismal levels. The Special Issue of the Int. J. Dev. Biol. entitled "Spiralian Model Systems" focuses on these organisms and here, I introduce this clade, pointing out different types of studies being undertaken with representative spiralian model systems. Univ Illinois, Dept Cell & Dev Biol, Urbana, IL 61801 USA Henry, JQ (reprint author), Univ Illinois, Dept Cell & Dev Biol, 601 S Goodwin Ave, Urbana, IL 61801 USA. j-henry4@illinois.edu NSF [1121268] The author would like to thank Drs. Deirdre Lyons and Marty Shankland for helpful comments concerning this manuscript. He thanks Drs. Richard Behringer and Juan Arechaga for inviting him to serve as the editor of this special issue of I.J.D.B. on spiralian model systems. The author also thanks, Drs. Michael LaBarbera, Aldine Amiel, Eric Roddinger, Sveta Maslakova, Mark Martindale, and Michael Boyle for the use of their beautiful photographs that appear in Figures 2 and 3. Finally, the author thanks Nickelodeon Animation Studios for permission to use the image of Sponge Bob that appears in Figure 1. The author (J.J.H.) is supported by NSF grant number 1121268. ABBOTT J. N., 1995, CEPHALOPOD NEUROBIOL; Abe M, 2014, INT J DEV BIOL, V58, P513, DOI 10.1387/ijdb.140087rk; Ackermann C, 2005, J MORPHOL, V266, P258, DOI 10.1002/jmor.10375; Akesson B., 1975, Pubblicazioni Staz zool Napoli, V39, P377; AKESSON B, 1973, ZOOL SCR, V2, P145; Akesson Bertil, 1994, Memoires du Museum National d'Histoire Naturelle, V162, P29; Amiel AR, 2013, DEV BIOL, V379, P107, DOI 10.1016/j.ydbio.2013.04.011; Arenas-Mena C, 2014, INT J DEV BIOL, V58, P575, DOI 10.1387/ijdb.140100ca; ARNOLD J. M., 1971, EXPT EMBRYOLOGY MARI; ARNOLD JM, 1962, BIOL BULL, V123, P53, DOI 10.2307/1539501; Balavoine G, 2014, INT J DEV BIOL, V58, P469, DOI 10.1387/ijdb.140148gb; Bely AE, 2014, INT J DEV BIOL, V58, P623, DOI 10.1387/ijdb.140142ab; BENJAMIN P.R., 2009, NEUROSCIENCE, V5, P197; Boycott AE, 1923, P R SOC LOND B-CONTA, V95, P207, DOI 10.1098/rspb.1923.0033; Boycott AE, 1931, PHILOS T R SOC LON B, V219, P51, DOI 10.1098/rstb.1931.0002; Boyer BC, 1998, DEV BIOL, V204, P111, DOI 10.1006/dbio.1998.9084; Boyer BC, 1996, DEV BIOL, V179, P329, DOI 10.1006/dbio.1996.0264; Boyle MJ, 2014, INT J DEV BIOL, V58, P485, DOI 10.1387/ijdb.140095mb; Brusca R., 2003, INVERTEBRATES; Callow Maureen E., 2002, Biologist (London), V49, P10; Cavalier-Smith T, 1998, BIOL REV, V73, P203, DOI 10.1017/S0006323198005167; Chan XY, 2014, DEV GENES EVOL, V224, P159, DOI 10.1007/s00427-014-0474-z; Chan XY, 2011, DEV BIOL, V349, P102, DOI 10.1016/j.ydbio.2010.10.001; Chaparro OR, 2002, BIOL BULL, V203, P80, DOI 10.2307/1543460; Collin R, 2003, SYST BIOL, V52, P618, DOI 10.1080/10635150390235430; Collin R, 2003, BIOL J LINN SOC, V78, P541, DOI 10.1046/j.0024-4066.2002.00166.x; Collin R, 2000, VELIGER, V43, P24; Conklin E. G., 1897, Journal of Morphology Boston, Vxiii, P1; Dohle W, 1999, HYDROBIOLOGIA, V402, P267, DOI 10.1023/A:1003709129576; Dunn CW, 2008, NATURE, V452, P745, DOI 10.1038/nature06614; Edgecombe GD, 2011, ORG DIVERS EVOL, V11, P151, DOI 10.1007/s13127-011-0044-4; Feng ZP, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-451; Fischer AHL, 2013, J EXP ZOOL PART B, V320B, P94, DOI 10.1002/jez.b.22486; Fischer AHL, 2010, FRONT ZOOL, V7, DOI 10.1186/1742-9994-7-31; FREEMAN G, 1992, J EVOLUTION BIOL, V5, P205, DOI 10.1046/j.1420-9101.1992.5020205.x; FREEMAN G, 1982, ROUX ARCH DEV BIOL, V191, P69, DOI 10.1007/BF00848443; FRETTER V, 1972, J MAR BIOL ASSOC UK, V52, P161, DOI 10.1017/S0025315400018622; Funch P, 1996, J MORPHOL, V230, P231, DOI 10.1002/(SICI)1097-4687(199612)230:3<231::AID-JMOR1>3.0.CO;2-H; FUNCH P, 1995, NATURE, V378, P711, DOI 10.1038/378711a0; GALLARDO CS, 1977, MAR BIOL, V39, P241, DOI 10.1007/BF00390998; Gharbiah Maey, 2009, Cold Spring Harb Protoc, V2009, DOI 10.1101/pdb.emo120; Gharbiah M, 2014, INT J DEV BIOL, V58, P551, DOI 10.1387/ijdb.140149ln; Giribet G, 2002, MOL PHYLOGENET EVOL, V24, P345, DOI 10.1016/S1055-7903(02)00206-3; Giribet G, 2000, SYST BIOL, V49, P539, DOI 10.1080/10635159950127385; Giribet G, 2008, PHILOS T R SOC B, V363, P1513, DOI 10.1098/rstb.2007.2241; Giribet G, 2007, ZOOTAXA, P61; Grande C, 2014, INT J DEV BIOL, V58, P521, DOI 10.1387/ijdb.140133cg; GUERRIER P, 1978, DEV BIOL, V63, P233, DOI 10.1016/0012-1606(78)90128-8; HALANYCH KM, 1995, SCIENCE, V267, P1641, DOI 10.1126/science.7886451; Hejnol A, 2007, DEV BIOL, V305, P63, DOI 10.1016/j.ydbio.2007.01.044; Hejnol A, 2010, INTEGR COMP BIOL, V50, P695, DOI 10.1093/icb/icq103; Hejnol A, 2009, P ROY SOC B-BIOL SCI, V276, P4261, DOI 10.1098/rspb.2009.0896; Helm C, 2014, INT J DEV BIOL, V58, P613, DOI 10.1387/ijdb.140081cb; Helmkampf M, 2008, P ROY SOC B-BIOL SCI, V275, P1927, DOI 10.1098/rspb.2008.0372; Helmkampf M, 2008, MOL PHYLOGENET EVOL, V46, P206, DOI 10.1016/j.ympev.2007.09.004; HENRY J. Q., 2010, BIOL B; Henry JJ, 1998, DEV BIOL, V201, P253, DOI 10.1006/dbio.1998.8966; Henry JJ, 2002, DEV BIOL, V248, P343, DOI 10.1006/dbio.2002.0741; Henry JJ, 1999, HYDROBIOLOGIA, V402, P255, DOI 10.1023/A:1003756912738; Henry JJ, 2008, DEV BIOL, V313, P181, DOI 10.1016/j.ydbio.2007.10.019; Henry JJ, 2010, INTEGR COMP BIOL, V50, P720, DOI 10.1093/icb/icq088; Henry JJ, 2010, BIOL BULL-US, V218, P211, DOI 10.1086/BBLv218n3p211; Henry JQ, 2006, DEV BIOL, V297, P295, DOI 10.1016/j.ydbio.2006.04.441; Henry JQ, 2004, DEV BIOL, V272, P145, DOI 10.1016/j.ybdio.2004.04.027; Heymons R., 1893, Zeitschrift fuer Wissenschaftliche Zoologie, Vlvi, P245; Kenny NJ, 2014, INT J DEV BIOL, V58, P533, DOI 10.1387/ijdb.140080nk; Kingsley EP, 2007, EVOL DEV, V9, P527, DOI 10.1111/j.1525-142X.2007.00194.x; Koop D, 2007, DEV BIOL, V311, P200, DOI 10.1016/j.ydbio.2007.08.035; Lambert JD, 2008, J EXP ZOOL PART B, V310B, P15, DOI 10.1002/jez.b.21176; Lambert JD, 2009, CURR TOP DEV BIOL, V86, P107, DOI 10.1016/S0070-2153(09)01005-9; Lambert JD, 2003, DEV BIOL, V263, P231, DOI 10.1016/j.ydbio.2003.07.006; Lambert JD, 2002, NATURE, V420, P682, DOI 10.1038/nature01241; Lambert JD, 2001, DEVELOPMENT, V128, P45; LAMBERT JD, 2009, CURR BIOL, V20, pR27; LEE P N, 2009, EMERGING MODEL ORGAN; Lesoway MP, 2014, INT J DEV BIOL, V58, P601, DOI 10.1387/ijdb.140136rc; Lillie F. R., 1895, Journal of Morphology, Vx, P1; LILLIE F. R., 1899, BIOL LECT MBL; Liu MM, 2014, INT J DEV BIOL, V58, P501, DOI 10.1387/ijdb.140121ad; Lyons DC, 2014, INT J DEV BIOL, V58, P413, DOI 10.1387/ijdb.140151dl; Lyons DC, 2012, EVODEVO, V3, DOI 10.1186/2041-9139-3-21; MAIENSCHEIN J, 1978, Journal of the History of Biology, V11, P129; MALAKHOV V. V., 2000, RUSS J MAR BIOL, V26, P412; MASLAKOVA S. A., 2012, J EXP ZOOL PART B, V9999B, P1; Maslakova SA, 2004, EVOL DEV, V6, P219, DOI 10.1111/j.1525-142X.2004.04027.x; Maslakova SA, 2004, DEV BIOL, V267, P342, DOI 10.1016/j.ydbio.2003.10.022; Maslakova SA, 2014, INT J DEV BIOL, V58, P585, DOI 10.1387/ijdb.140090sm; MEAD A., 1897, J MORPHOL, V13, P227, DOI DOI 10.1002/JMOR.1050130202; Meyer NP, 2010, INTEGR COMP BIOL, V50, P756, DOI 10.1093/icb/icq120; Meyer NP, 2010, EVODEVO, V1, DOI 10.1186/2041-9139-1-8; Meyer NP, 2009, DEV BIOL, V335, P237, DOI 10.1016/j.ydbio.2009.06.017; Morgan JAT, 2001, PARASITOLOGY, V123, pS211, DOI 10.1017/S0031182001007703; MORITZ C. E., 1939, UNIV CALIFORNIA PUBL ZOOL, V43, P217; MUKAI H, 1997, MICROSCOPIC ANATOMY, P69; MULLER KJ, 1981, NEUROBIOLOGY LEECH, P320; Nedved BT, 2009, SPRINGER SER BIOFILM, V4, P203, DOI 10.1007/7142_2008_15; NIELSEN C, 2001, ANIMAL EVOLUTION INT; Passamaneck Y, 2006, MOL PHYLOGENET EVOL, V40, P20, DOI 10.1016/j.ympev.2006.02.001; Paxton H, 2010, ZOOTAXA, P1; Pennerstorfer M, 2012, EVOL DEV, V14, P484, DOI 10.1111/ede.12002; PFANNENSTIEL HD, 1974, MAR BIOL, V24, P269, DOI 10.1007/BF00391902; Pruitt MM, 2014, INT J DEV BIOL, V58, P563, DOI 10.1387/ijdb.140084ss; Rabinowitz JS, 2008, CURR BIOL, V18, P331, DOI 10.1016/j.cub.2008.01.055; Rabinowitz JS, 2010, DEVELOPMENT, V137, P4039, DOI 10.1242/dev.055269; Rebscher N, 2014, INT J DEV BIOL, V58, P403, DOI 10.1387/ijdb.140125nr; Render J, 1997, DEV BIOL, V189, P301, DOI 10.1006/dbio.1997.8654; RENDER J, 1991, DEVELOPMENT, V113, P495; Roule L., 1891, Ann Sci Nat 7th ser, Vxi, P121; Ruppert EE, 2003, INVERTEBRATE ZOOLOGY; Schmerer MW, 2013, DEV BIOL, V382, P149, DOI 10.1016/j.ydbio.2013.07.015; Seaver EC, 2014, INT J DEV BIOL, V58, P457, DOI 10.1387/ijdb.140154es; SHIMIZU T., 2014, INT J DEV BIOL, V58, P445; STENT G.S., 1982, NEURONAL DEV, P1; STENT GS, 1978, SCIENCE, V200, P1348, DOI 10.1126/science.663615; STIMSON J, 1973, ECOLOGY, V54, P1020, DOI 10.2307/1935568; STIMSON J, 1970, ECOLOGY; Sturtevant AH, 1923, SCIENCE, V58, P269, DOI 10.1126/science.58.1501.269; Swartz SZ, 2008, DEV GENES EVOL, V218, P107, DOI 10.1007/s00427-008-0203-6; Szabo R, 2014, INT J DEV BIOL, V58, P635, DOI 10.1387/ijdb.140116df; Temereva EN, 2007, INVERTEBR REPROD DEV, V50, P57, DOI 10.1080/07924259.2007.9652228; van den Biggelaar J.A.M., 1983, P179; Verdonk N.H., 1983, P215; WATASE S., 1891, STUD J HOPKINS BIOL, V4, P165; WEISBLAT D. A., 2009, EMERGING MODEL ORGAN, V1; WEISBLAT DA, 1985, PHILOS T ROY SOC B, V312, P39, DOI 10.1098/rstb.1985.0176; Weisblat DA, 2014, INT J DEV BIOL, V58, P429, DOI 10.1387/ijdb.140132dw; Werner B., 1955, Helgolander Wissenschaftliche Meeresuntersuchungen, V5, P169, DOI 10.1007/BF01610508; Whitman C. O., 1887, Journal of Morphology, Vi, P105; WHITMANN C.O, 1978, Q J MIC SCI, V18.; Wierzejski A, 1905, Z WISS ZOOL ABT A, V83, P502; Wilson EB, 1898, ANN NY ACAD SCI, V11, P1; WILSON EB, 1892, J MORPHOL, V6, P361; Zakas C, 2014, INT J DEV BIOL, V58, P593, DOI 10.1387/ijdb.140088mr 133 22 22 1 9 UNIV BASQUE COUNTRY UPV-EHU PRESS BILBAO PO BOX 1397, BILBAO, BIZKAIA E-48080, SPAIN 0214-6282 1696-3547 INT J DEV BIOL Int. J. Dev. Biol. 2014 58 6-8 389 401 10.1387/ijdb.140127jh 13 Developmental Biology Developmental Biology AZ9RR WOS:000348552200002 25690957 Bronze 2019-02-21 J Zakas, C; Rockman, MV Zakas, Christina; Rockman, Matthew V. Dimorphic development in Streblospio benedicti: genetic analysis of morphological differences between larval types INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY English Article Streblospio benedicti; poecilogomi; quantitative genetics; life-history evolution MARINE-INVERTEBRATES; LIFE-HISTORY; POLYCHAETE STREBLOSPIO; POECILOGONOUS POLYCHAETE; SPIONIDAE; EVOLUTION; CONSEQUENCES; POPULATIONS; MODES; PATTERNS The marine polychaete Streblospio benedicti exhibits two distinct larval types, making it a model for the study of developmental evolution. Females produce either large eggs or small ones, which develop into distinct lecithotrophic or planktotrophic larvae with concomitant morphological and life-history differences. Here, we investigate the inheritance of key morphological traits that distinguish the larval types. We used genetic crosses to establish the influence of maternal and zygotic differences on larval phenotypes. We found a large maternal effect on larval size and the number of larval chaetae, while the number and length of these chaetae were also strongly influenced by zygotic genotype. Interestingly, the distribution of larval phenotypes produced by these crosses suggests traits intermediate to the two parental types should not be uncommon.Yet, despite gene flow between the types in natural populations, such intermediates are rarely found in nature, suggesting that selection may be maintaining distinct larval modes. NYU, Dept Biol, New York, NY 10003 USA; NYU, Ctr Genom & Syst Biol, New York, NY USA Rockman, MV (reprint author), 12 Waverly Pl,8th Floor, New York, NY 10003 USA. mrockman@nyu.edu NYU; Zegar Family Foundation; NSF [IOS-1350926] We thank Bruno Pernet for sending us animals he collected in Long Beach, Jenn Deutscher for assistance with animal husbandry and imaging, imaging, and Max Bernstein, Vicky Cattani, Taniya Kaur, Annalise Paaby, and Luke Noble for comments on the manuscript. We thank NYU, the Zegar Family Foundation, and NSF award IOS-1350926 for financial support. Bates D., 2011, IME4 LINEAR MIXED EF; BRIDGES TS, 1993, BIOL BULL, V184, P144, DOI 10.2307/1542224; Gibson G, 2010, INVERTEBR BIOL, V129, P328, DOI 10.1111/j.1744-7410.2010.00213.x; Hausen H, 2005, HYDROBIOLOGIA, V535, P37, DOI 10.1007/s10750-004-1836-8; Knott KE, 2012, INTEGR COMP BIOL, V52, P120, DOI 10.1093/icb/ics037; LANDE R, 1981, GENETICS, V99, P541; LEVIN LA, 1991, EVOLUTION, V45, P380, DOI 10.1111/j.1558-5646.1991.tb04412.x; LEVIN LA, 1986, MAR BIOL, V92, P103, DOI 10.1007/BF00392752; LEVIN LA, 1984, BIOL BULL, V166, P494, DOI 10.2307/1541157; LEVIN LA, 1994, AM ZOOL, V34, P323; LEVIN LA, 1990, ECOLOGY, V71, P2191, DOI 10.2307/1938632; LEVIN LA, 1986, BIOL BULL, V171, P143, DOI 10.2307/1541913; LYNCH M, 1991, EVOLUTION, V45, P622, DOI 10.1111/j.1558-5646.1991.tb04333.x; Lynch M, 1998, GENETICS ANAL QUANTI; Mahon AR, 2009, MAR BIOL RES, V5, P172, DOI 10.1080/17451000802317683; Marshall DJ, 2011, CURR BIOL, V21, pR718, DOI 10.1016/j.cub.2011.08.022; Mccain ER, 2008, INVERTEBR REPROD DEV, V51, P91, DOI 10.1080/07924259.2008.9652259; McEdward LR, 2000, SEMIN CELL DEV BIOL, V11, P403, DOI 10.1006/scdb.2000.0193; Moran AL, 2009, BIOL BULL-US, V216, P226; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; PENNINGTON JT, 1984, BIOL BULL, V167, P168, DOI 10.2307/1541345; Pernet B, 2006, MAR BIOL, V149, P803, DOI 10.1007/s00227-006-0266-8; Pernet Bruno, 2002, P209; R Core Development Team, 2011, R LANG ENV STAT COMP; Rockman MV, 2012, INTEGR COMP BIOL, V52, P173, DOI 10.1093/icb/ics083; Schneider CA, 2012, NAT METHODS, V9, P671, DOI 10.1038/nmeth.2089; Schulze SR, 2000, EVOLUTION, V54, P1247; STRATHMANN RR, 1978, EVOLUTION, V32, P894, DOI 10.1111/j.1558-5646.1978.tb04642.x; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; WRAY GA, 1991, TRENDS ECOL EVOL, V6, P45, DOI 10.1016/0169-5347(91)90121-D; Wright S, 1968, EVOLUTION GENETICS P, V1; Zakas C, 2012, MOL ECOL, V21, P5447, DOI 10.1111/mec.12040; Zakas C, 2012, INTEGR COMP BIOL, V52, P197, DOI 10.1093/icb/ics055 36 7 7 0 4 U B C PRESS BILBAO UNIV BASQUE COUNTRY, EDITORIAL SERVICES, PO BOX 1397, E-48080 BILBAO, SPAIN 0214-6282 1696-3547 INT J DEV BIOL Int. J. Dev. Biol. 2014 58 6-8 593 599 10.1387/ijdb.140088mr 7 Developmental Biology Developmental Biology AZ9RR WOS:000348552200018 25690973 Bronze 2019-02-21 J Richardson, GB; Chen, CC; Dai, CL; Hardesty, PH; Swoboda, CM Richardson, George B.; Chen, Ching-Chen; Dai, Chia-Liang; Hardesty, Patrick H.; Swoboda, Christopher M. Life History Strategy and Young Adult Substance Use EVOLUTIONARY PSYCHOLOGY English Article substance use; life history theory; life history strategy; structural equation modeling STRUCTURAL EQUATION MODELS; REPRODUCTIVE STRATEGIES; K-FACTOR; SOCIOECONOMIC-STATUS; ENVIRONMENTAL RISK; DRUG-ADDICTION; PERSONALITY; MORTALITY; EVOLUTION; VARIABLES This study tested whether life history strategy (LHS) and its intergenerational transmission could explain young adult use of common psychoactive substances. We tested a sequential structural equation model using data from the National Longitudinal Survey of Youth. During young adulthood, fast LHS explained 61% of the variance in overall liability for substance use. Faster parent LHS predicted poorer health and lesser alcohol use, greater neuroticism and cigarette smoking, but did not predict fast LHS or overall liability for substance use among young adults. Young adult neuroticism was independent of substance use controlling for fast LHS. The surprising finding of independence between parent and child LHS casts some uncertainty upon the identity of the parent and child LHS variables. Fast LHS may be the primary driver of young adult use of common psychoactive substances. However, it is possible that the young adult fast LHS variable is better defined as young adult mating competition. We discuss our findings in depth, chart out some intriguing new directions for life history research that may clarify the dimensionality of LHS and its mediation of the intergenerational transmission of substance use, and discuss implications for substance abuse prevention and treatment. [Richardson, George B.; Chen, Ching-Chen; Dai, Chia-Liang] Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA; [Hardesty, Patrick H.] Univ Louisville, Dept Educ & Counseling Psychol, Louisville, KY 40292 USA; [Hardesty, Patrick H.] Univ Louisville, Coll Student Personnel, Louisville, KY 40292 USA; [Swoboda, Christopher M.] Univ Cincinnati, Sch Educ, Cincinnati, OH USA Richardson, GB (reprint author), Univ Cincinnati, Sch Human Serv, Cincinnati, OH 45221 USA. george.richardson@uc.edu Beeghley L, 2004, STRUCTURE SOCIAL STR; Belsky J, 1997, PSYCHOL INQ, V8, P182, DOI 10.1207/s15327965pli0803_3; Bentler PM, 2009, PSYCHOMETRIKA, V74, P137, DOI 10.1007/s11336-008-9100-1; BENTLER PM, 1987, SOCIOL METHOD RES, V16, P78, DOI 10.1177/0049124187016001004; BOLLEN KA, 1989, STRUCTURAL EQUATIONS; BROWNE MW, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002001; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Bureau of Labor Statistics U.S. Department of Labor, 2013, NAT LONG SURV YOUTH; Buss DM, 2009, AM PSYCHOL, V64, P140, DOI 10.1037/a0013207; Byrne B. M., 2001, STRUCTURAL EQUATION; Caldwell BM, 1984, HOME OBSERVATION MEA; Carvalho L, 2012, DEMOGRAPHY, V49, P913, DOI 10.1007/s13524-012-0120-1; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cloninger CR, 1996, ALCOHOL HEALTH RES W, V20, P18; CRONBACH LJ, 1951, PSYCHOMETRIKA, V16, P297; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Enders C. K., 2010, APPL MISSING DATA AN; Figueredo A. J., 2012, APPL EVOLUTIONARY PS, P201; Figueredo A. J., 2011, OXFORD HDB SEXUAL CO, P72; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Friedman NP, 2006, PSYCHOL SCI, V17, P172, DOI 10.1111/j.1467-9280.2006.01681.x; Geronimus Arline T., 1992, Ethnicity and Disease, V2, P222; GERONIMUS AT, 1987, POPUL DEV REV, V13, P245, DOI 10.2307/1973193; GLADDEN PR, 2008, PERSONALITY INDIVIDU, V46, P270, DOI DOI 10.1016/J.PAID.2008.10.010; Goldman MP, 2006, COGNITION ADDICTION, P31; Goldstein MA, 2011, MASSGENERAL HOSPITAL FOR CHILDREN ADOLESCENT MEDICINE HANDBOOK, P155, DOI 10.1007/978-1-4419-6845-6_19; Goldstein RZ, 2002, AM J PSYCHIAT, V159, P1642, DOI 10.1176/appi.ajp.159.10.1642; Green SB, 2009, PSYCHOMETRIKA, V74, P155, DOI 10.1007/s11336-008-9099-3; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hagen E. H., 2005, EVOLUTIONARY PSYCHOL, P145; Hayduk L, 2007, PERS INDIV DIFFER, V42, P841, DOI 10.1016/j.paid.2006.10.001; Hayduk LA, 2012, BMC MED RES METHODOL, V12, DOI 10.1186/1471-2288-12-159; Hayduk LA, 2000, STRUCT EQU MODELING, V7, P1, DOI 10.1207/S15328007SEM0701_01; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Jacobus J, 2009, PHARMACOL BIOCHEM BE, V92, P559, DOI 10.1016/j.pbb.2009.04.001; Jones DN, 2007, CURR RES SOC PSYCHOL, V12, P186; Kline R. B., 2010, PRINCIPLES PRACTICE; Krueger RF, 2003, J PERS DISORD, V17, P109, DOI 10.1521/pedi.17.2.109.23986; Krueger RF, 2001, PERS INDIV DIFFER, V30, P1245, DOI 10.1016/S0191-8869(00)00106-9; Krueger RF, 2007, J ABNORM PSYCHOL, V116, P645, DOI 10.1037/0021-843X.116.4.645; Lieberman M., 2007, SOCIAL NEUROSCIENCE, P290; Little R. J. A., 2002, STAT ANAL MISSING DA; Little TD, 1999, PSYCHOL METHODS, V4, P192, DOI 10.1037//1082-989X.4.2.192; Margaron H, 2004, SUBST USE MISUSE, V39, P1423, DOI 10.1081/JA-120039399; Markon KE, 2005, J PERS SOC PSYCHOL, V88, P139, DOI 10.1037/0022-3514.88.1.139; McGrath RE, 2005, J PERS ASSESS, V85, P112, DOI 10.1207/s15327752jpa8502_02; MEALEY L, 2000, SEX DIFFERENCES DEV; Miller JW, 2007, PEDIATRICS, V119, P76, DOI 10.1542/peds.2006-1517; Mulaik SA, 2000, STRUCT EQU MODELING, V7, P36, DOI 10.1207/S15328007SEM0701_02; Muthen B., 1997, ROBUST INFEREN UNPUB; Nation M, 2006, AM J DRUG ALCOHOL AB, V32, P415, DOI 10.1080/00952990600753867; Nesse RM, 2002, ADDICTION, V97, P470, DOI 10.1046/j.1360-0443.2002.00086.x; NESSE RM, 1994, ETHOL SOCIOBIOL, V15, P339, DOI 10.1016/0162-3095(94)90007-8; O'Hara RB, 2010, METHODS ECOL EVOL, V1, P118, DOI 10.1111/j.2041-210X.2010.00021.x; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Patrick ME, 2012, J STUD ALCOHOL DRUGS, V73, P772, DOI 10.15288/jsad.2012.73.772; Pohlmann JT, 2004, J EDUC RES, V98, P14, DOI 10.3200/JOER.98.1.14-23; Pompili M, 2012, EUR ARCH PSY CLIN N, V262, P469, DOI 10.1007/s00406-012-0292-0; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Richardson G. E., 2011, THESIS; Richardson GB, 2012, EVOL PSYCHOL-US, V10, P731, DOI 10.1177/147470491201000408; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Schafer J., 1997, ANAL INCOMPLETE MULT; Schutter D.J.L.G., 2007, SOCIAL NEUROSCIENCE, P197; Shaffer H. J., 2012, APA ADDICTION SYNDRO, V1; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; Sibly RM, 2009, AM NAT, V173, pE185, DOI 10.1086/598680; Sijtsma K, 2009, PSYCHOMETRIKA, V74, P107, DOI 10.1007/s11336-008-9101-0; Substance Abuse and Mental Health Services Administration (SAMHSA), 2011, SAMHSA HHS PUBL, VSMA 11-4618; The National Center on Addiction and Substance Abuse (CASA), 2005, SHOV 2 IMP SUBST AB; Thornberry TP, 2006, J DRUG ISSUES, V36, P1, DOI 10.1177/002204260603600101; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Volkow ND, 2004, MOL PSYCHIATR, V9, P557, DOI 10.1038/sj.mp.4001507; Volkow ND, 2007, ARCH NEUROL-CHICAGO, V64, P1575, DOI 10.1001/archneur.64.11.1575; von Hippel PT, 2013, SOCIOL METHOD RES, V42, P105, DOI 10.1177/0049124112464866; Young Margaret B., 2012, Morbidity and Mortality Weekly Report, V61, P1; Yucel M, 2007, AUST NZ J PSYCHIAT, V41, P957, DOI 10.1080/00048670701689444 85 5 5 1 7 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 5 932 957 10.1177/147470491401200506 26 Psychology, Experimental Psychology AY3HY WOS:000347476200006 25365695 DOAJ Gold 2019-02-21 J Wang, XL; Xiang, XL; Xia, MN; Han, Y; Huang, L; Xi, YL Wang, Xue Ling; Xiang, Xian Ling; Xia, Meng Ning; Han, Ying; Huang, Lin; Xi, Yi Long Differences in life history characteristics between two sibling species in Brachionus calyciflorus complex from tropical shallow lakes ANNALES DE LIMNOLOGIE-INTERNATIONAL JOURNAL OF LIMNOLOGY English Article Rotifer; Brachionus calyciflorus species complex; sibling species; life history characteristics; temperature; algal density; interspecific divergence PLICATILIS MULLER 1786; GENETIC DIFFERENTIATION; REPRODUCTIVE ISOLATION; ROTIFER; STRAINS; PATTERNS; ZOOPLANKTON; TEMPERATURE; SPECIATION; DIVERSITY The studies of differences in life history and suitability of both water temperatures and trophic levels among rotifer sibling species improve our understanding of speciation, sibling species coexistence and possible niche differentiation over space and time, and consequences for the functioning of ecosystems induced by climate change and eutrophication. We collected Brachionus calyciflorus from Lake Baixiang and Lake Kongque, two tropical shallow lakes, in Xishuangbanna city, Yunnan, China, clonally cultured them in laboratory, and found that the B. calyciflorus complex contains two sibling species named sibling species BNA13 and BNB3 by phylogenetic analysis, and investigated the life-table parameters of the two sibling species BNA13 and BNB3 at four temperatures (16, 20, 24 and 28 degrees C) and four algal densities (0.5, 1.0, 2.0 and 4.0 x 10(6) cells.mL(-1)). The results showed that the responses to increasing temperature and algal density for each of the life-table parameters differed with rotifer sibling species. Sibling species, temperature, algal density and their interactions almost all significantly affected the durations of juvenile period, embryonic development, reproductive period, post-reproductive period, mean lifespan, net reproductive rate, generation time and intrinsic rate of population growth. Sibling species significantly affected the age-specific survivorship. Temperature, algal density and their interaction and the interaction of sibling species and temperature significantly affected the age-specific fecundity. Regardless of the effects of temperature and algal density, the durations of juvenile period, embryonic development, reproductive period, post-reproductive period and mean lifespan, age-specific survivorship, net reproductive rate and generation time of the B. calyciflorus sibling species BNA13 were greater than those of BNB3, but the intrinsic rate of population growth of BNA13 was lower than those of BNB3. This suggests that the two B. calyciflorus sibling species adopted variable life history strategies, low population growth and high survivorship for sibling species BNA13, and high population growth and low survivorship for sibling species BNB3. Both the intrinsic rates of population growth of BNA13 and BNB3 were the highest at 28 degrees C and 4.0 x 10(6) cells.mL(-1) algal density, indicating that some adaptations of the B. calyciflorus sibling species BNA13 and BNB3 in tropical shallow lakes to water temperatures and trophic levels were similar, and they have the potential for coexistence in single waterbody of higher temperature and higher trophic level. [Wang, Xue Ling; Xiang, Xian Ling; Xia, Meng Ning; Han, Ying; Huang, Lin; Xi, Yi Long] Anhui Normal Univ, Coll Life Sci, Key Lab Biot Environm & Ecol Safety Anhui Prov, Wuhu 241000, Anhui, Peoples R China Xiang, XL (reprint author), Anhui Normal Univ, Coll Life Sci, Key Lab Biot Environm & Ecol Safety Anhui Prov, Wuhu 241000, Anhui, Peoples R China. xiangxianling@163.com Xiang, Xianling/Q-6388-2018 Xiang, Xianling/0000-0002-1378-5877 Natural Science Foundation of China [31200324]; Natural Science Foundation of Anhui Province [1208085QC47]; Natural Science Foundation in College of Anhui Province [KJ2012A127]; Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui This research was funded by Natural Science Foundation of China (grant no. 31200324), Natural Science Foundation of Anhui Province (grant no. 1208085QC47), Natural Science Foundation in College of Anhui Province (grant no. KJ2012A127) and Foundation of Provincial Key Laboratory of Conservation and Utilization for Important Biological Resource in Anhui. Campillo S, 2011, EVOL ECOL, V25, P933, DOI 10.1007/s10682-010-9447-5; Carmona MJ, 1995, HYDROBIOLOGIA, V313, P365, DOI 10.1007/BF00025971; Cheng Xin-Feng, 2008, Acta Zoologica Sinica, V54, P245; Ciros-Perez J, 2001, J PLANKTON RES, V23, P1311, DOI 10.1093/plankt/23.12.1311; Ciros-Perez J, 2001, LIMNOL OCEANOGR, V46, P1511, DOI 10.4319/lo.2001.46.6.1511; Derry AM, 2003, LIMNOL OCEANOGR, V48, P675, DOI 10.4319/lo.2003.48.2.0675; Dong L.L., 2004, CHINESE J APPL ECOLO, V15, P2165; FANESTIL DD, 1965, J GERONTOL, V20, P462; Feng Li-Ke, 2004, Chinese Journal of Zoology, V39, P12; Fontaneto D, 2011, HYDROBIOLOGIA, V662, P27, DOI 10.1007/s10750-010-0481-7; Fontaneto D, 2009, MOL PHYLOGENET EVOL, V53, P182, DOI 10.1016/j.ympev.2009.04.011; Garcia CE, 2007, CHEM ECOL, V23, P303, DOI 10.1080/02757540701525988; Gilbert JJ, 2005, HYDROBIOLOGIA, V546, P257, DOI 10.1007/s10750-005-4205-3; Gilbert John J., 1999, P127; Gomez A, 2002, J EVOLUTION BIOL, V15, P158, DOI 10.1046/j.1420-9101.2002.00368.x; Gomez A, 1996, J EVOLUTION BIOL, V9, P953, DOI 10.1046/j.1420-9101.1996.9060953.x; Gomez A, 1997, OECOLOGIA, V111, P350, DOI 10.1007/s004420050245; Gomez A, 1995, HYDROBIOLOGIA, V313, P111, DOI 10.1007/BF00025938; GOMEZ A, 1995, J EVOLUTION BIOL, V8, P601, DOI 10.1046/j.1420-9101.1995.8050601.x; Guo RX, 2011, HYDROBIOLOGIA, V658, P163, DOI 10.1007/s10750-010-0459-5; [胡存兵 HU CunBing], 2008, [生态学报, Acta Ecologica Sinica], V28, P5957; KREBS CJ, 1985, ECOLOGY EXPT ANAL DI, P800; Lapesa S, 2002, FRESHWATER BIOL, V47, P1685, DOI 10.1046/j.1365-2427.2002.00926.x; [李化炳 LI Hua-Bing], 2009, [生态学报, Acta Ecologica Sinica], V29, P581; Li Hua-Bing, 2008, Acta Zoologica Sinica, V54, P256; Li L, 2010, J PLANKTON RES, V32, P951, DOI 10.1093/plankt/fbq014; Li SH, 1959, ACTA HYDROBIOL SINIC, V4, P462; MEADOW ND, 1971, J GERONTOL, V26, P302, DOI 10.1093/geronj/26.3.302; Montero-Pau J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021530; Montero-Pau J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020314; Ning L.F., 2013, J LAKE SCI, V25, P295; Ortells R, 2003, FRESHWATER BIOL, V48, P2194, DOI 10.1046/j.1365-2427.2003.01159.x; Pavon-Meza EL, 2005, HYDROBIOLOGIA, V546, P353, DOI 10.1007/s10750-005-4245-8; Peltier WH, 1985, EPA600485013; Perez-Legaspi IA, 1998, HYDROBIOLOGIA, V387, P341, DOI 10.1023/A:1017099906853; Pfenninger M, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-121; Poole RW, 1974, INTRO QUANTITATIVE E, P532; RICCI C, 1991, HYDROBIOLOGIA, V211, P147, DOI 10.1007/BF00037370; Sarma SSS, 2002, HYDROBIOLOGIA, V481, P89, DOI 10.1023/A:1021265104165; Segers H, 2008, HYDROBIOLOGIA, V595, P49, DOI 10.1007/s10750-007-9003-7; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stelzer CP, 2005, HYDROBIOLOGIA, V546, P335, DOI 10.1007/s10750-005-4243-x; Suatoni E, 2006, MOL PHYLOGENET EVOL, V41, P86, DOI 10.1016/j.ympev.2006.04.025; Tao L.X., 2008, CHIN J APPL ECOL, V15, P2165; WALKER KF, 1981, HYDROBIOLOGIA, V81-2, P159, DOI 10.1007/BF00048713; WALLACE RL, 2006, ROTIFERA 1; Xi YL, 2013, J FRESHWATER ECOL, V28, P539, DOI 10.1080/02705060.2013.799102; Xi YL, 2005, J FRESHWATER ECOL, V20, P707, DOI 10.1080/02705060.2005.9664794; Xiang XL, 2011, MOL ECOL, V20, P3027, DOI 10.1111/j.1365-294X.2011.05147.x; Xiang XL, 2011, MOL PHYLOGENET EVOL, V59, P386, DOI 10.1016/j.ympev.2011.02.011; Xiang Xian-Ling, 2010, Zoological Research, V31, P205, DOI 10.3724/SP.J.1141.2010.03205; Zou Enmin, 2003, Acta Zoologica Sinica, V49, P551 52 7 9 0 16 EDP SCIENCES S A LES ULIS CEDEX A 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE 0003-4088 2100-000X ANN LIMNOL-INT J LIM Ann. Limnol.-Int. J. Limnol. 2014 50 4 289 298 10.1051/limn/2014024 10 Limnology Marine & Freshwater Biology AW9WI WOS:000346605600004 Bronze 2019-02-21 J de Lira, JJPR; Silva, JRF; Rezende, CF; Martins, RP; Ferreira, TO; Souza, LP Pereira Rodrigues de Lira, Jose Jonathas; Feitosa Silva, Jose Roberto; Rezende, Carla Ferreira; Martins, Rogerio Parentoni; Ferreira, Tiago Osorio; Souza, Leonardo Peres Population biology of the crab Goniopsis cruentata: variation in body size, sexual maturity, and population density ANIMAL BIOLOGY English Article Environmental influence; mangrove; population size; reproduction LIFE-HISTORY EVOLUTION; RELATIVE GROWTH; REPRODUCTION; TEMPERATURE; CRUSTACEA; BRACHYURA; SURVIVAL; AGE; PREDICTIONS; ECTOTHERMS We studied two key traits in the life of organisms, body size and sexual maturity, and a population attribute, density, of the crab Goniopsis cruentata. Also, we evaluated the role of environmental factors on population density. We caught crabs in two mangrove sites that are under different influence of tidal fluctuation, and obtained pH and salinity of mangrove soil from each site as well as rainfall data for the period of study. Both body size and sexual maturity differed between sites, in which individuals from the small-bodied population matured at smaller sizes than their counterparts from the large-bodied population, which matured at larger sizes. In addition, density of the small-bodied population was lower than that of the large-bodied one. We did not detect any influence of the environmental factors on population density. Our finding indicate that key life history traits and population characteristics can vary on a very small spatial scale which may help to further elucidate the biology of natural populations. [Pereira Rodrigues de Lira, Jose Jonathas; Feitosa Silva, Jose Roberto; Rezende, Carla Ferreira; Martins, Rogerio Parentoni] Univ Fed Ceara, Dept Biol, Programa Posgrad Ecol & Recursos Nat, BR-60451970 Fortaleza, Ceara, Brazil; [Ferreira, Tiago Osorio] Univ Sao Paulo, ESALQ, Dept Ciencias Solo, Sao Paulo, Brazil; [Souza, Leonardo Peres] Univ Fed Piaui, Dept Med, BR-64202020 Parnaiba, Piaui, Brazil de Lira, JJPR (reprint author), Univ Fed Ceara, Dept Biol, Programa Posgrad Ecol & Recursos Nat, Ave Mister Hull S-N, BR-60451970 Fortaleza, Ceara, Brazil. jose.jonathas@hotmail.com Rezende, Carla/G-2050-2012; Ferreira, Tiago/D-3340-2015 Rezende, Carla/0000-0002-2319-6558; Ferreira, Tiago Osorio/0000-0002-4088-7457 FUNCAp scholarship (Brazil) We are thankful to Marcos Leitao for help with field work and for several useful suggestions to this study, and to Gislaine Marques for her great assistance with soil analysis. We also thank Caitlin Friesen and Catherine Ingram for kindly offer suggestions to an earlier version of this manuscript and for English reviewing, as well as two reviewers for providing valuable comments to the manuscript. The first author was supported by FUNCAp scholarship (Brazil). Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Araujo JMC, 2012, GEO-MAR LETT, V32, P289, DOI 10.1007/s00367-011-0268-5; Araujo MSLC, 2012, J MAR BIOL ASSOC UK, V92, P287, DOI 10.1017/S0025315411001135; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Bas C, 2005, HYDROBIOLOGIA, V537, P217, DOI 10.1007/s10750-004-3075-4; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bertschy KA, 1999, ECOLOGY, V80, P2299, DOI 10.2307/176911; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; CHRISTY JH, 1987, B MAR SCI, V41, P177; Cobo Valter José, 2005, Rev. Bras. Zool., V22, P219, DOI 10.1590/S0101-81752005000100027; Cohen M. C. L., 2004, Wetlands Ecology and Management, V12, P81, DOI 10.1023/B:WETL.0000021668.25445.41; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; Emond K, 2010, CAN J ZOOL, V88, P347, DOI 10.1139/Z10-008; Engelhard GH, 2004, FISH RES, V66, P299, DOI 10.1016/S0165-7836(03)00195-4; Ferreira TO, 2010, J SOIL SEDIMENT, V10, P995, DOI 10.1007/s11368-010-0224-4; Flores AAV, 2005, AUSTRAL ECOL, V30, P14, DOI 10.1111/j.1442-9993.2005.01409.x; Gardner JL, 2011, TRENDS ECOL EVOL, V26, P285, DOI 10.1016/j.tree.2011.03.005; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hartnoll R.G., 1982, P111; Hartnoll RG, 2006, HYDROBIOLOGIA, V557, P31, DOI 10.1007/s10750-005-9305-6; HARTNOLL RG, 1985, FACTORS ADULT GROWTH, P101; Hattori GY, 2006, THESIS U ESTADUAL PA; Hogarth P, 2007, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198568704.001.0001; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Ivo C.T.C., 1997, ESTATISTICA PESQUEIR; Jenkins TM, 1999, ECOLOGY, V80, P941, DOI 10.2307/177029; Johnston FD, 2009, ECOL APPL, V19, P449, DOI 10.1890/07-1507.1; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Lapucki T, 2008, COMP BIOCHEM PHYS A, V149, P299, DOI 10.1016/j.cbpa.2008.01.009; Lira J.J.P.R., 2013, ANIM BIOL, V63, P407, DOI DOI 10.1163/15707563-00002422; Lira J. J. P. R., 2013, REV BIOL TROP, V61, P29; Marty L., 2011, AM NAT, V177, P98; Pralon BGN, 2008, J MAR BIOL ASSOC UK, V88, P569, DOI 10.1017/S00253154o8000453; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Otero XL, 2009, GEODERMA, V148, P318, DOI 10.1016/j.geoderma.2008.10.016; Pezzuto P.R., 1993, ATLANTICA, V15, P93; Quinn G. P., 2002, EXPT DESIGN DATA ANA; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Ribeiro PD, 2003, CAN J ZOOL, V81, P1209, DOI 10.1139/Z03-102; Shimada Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028859; SOUZA LP, 2009, SCI MAR, V73, P527; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1981, EVOLUTION, V35, P455, DOI 10.1111/j.1558-5646.1981.tb04906.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Sturges HA, 1926, J AM STAT ASSOC, V21, P65, DOI 10.1080/01621459.1926.10502161; Taylor HH, 2005, COMP BIOCHEM PHYS A, V140, P495, DOI 10.1016/j.cbpb.2005.03.005; Tolosa E. M. C., 2003, MANUAL TECNICAS HIST; ZANDERS IP, 1978, COMP BIOCHEM PHYS A, V60, P293, DOI 10.1016/0300-9629(78)90252-9 50 0 0 0 16 BRILL ACADEMIC PUBLISHERS LEIDEN PLANTIJNSTRAAT 2, P O BOX 9000, 2300 PA LEIDEN, NETHERLANDS 1570-7555 1570-7563 ANIM BIOL Anim. Biol. 2014 64 4 383 394 10.1163/15707563-00002453 12 Zoology Zoology AU2YQ WOS:000345480800005 2019-02-21 J Copping, LT; Campbell, A; Muncer, S Copping, Lee T.; Campbell, Anne; Muncer, Steven Conceptualizing Time Preference: A Life-History Analysis EVOLUTIONARY PSYCHOLOGY English Article life-history strategies; time preference; impulsivity; sensation seeking; delay discounting; future orientation; aggression SENSATION SEEKING; DYSFUNCTIONAL IMPULSIVITY; AGE-DIFFERENCES; FUTURE ORIENTATION; RISK-TAKING; BEHAVIOR; PERSPECTIVE; SEX; PERSONALITY; AGGRESSION Life-history theory (LHT) has drawn upon the concept of "time preference" as a psychological mechanism for the development of fast and slow strategies. However, the conceptual and empirical nature of this mechanism is ill-defined. This study compared four traits commonly used as measures of "time preference" (impulsivity, sensation seeking, future orientation and delay discounting) and evaluated their relationship to variables associated with life-history strategies (aggressive behavior and mating attitudes, biological sex, pubertal timing, victimization, and exposure to aggression in the environment). Results indicated that only sensation seeking consistently showed all the predicted associations, although impulsivity, future orientation, and delay discounting showed some significant associations. A unidimensional higher-order factor of "time preference" did not adequately fit the data and lacked structural invariance across age and sex, suggesting that personality traits associated with LHT do not represent a global trait. We discuss the use of personality traits as measures in LHT and suggest that greater caution and clarity is required when conceptualizing this construct in future work. [Copping, Lee T.; Campbell, Anne] Univ Durham, Dept Psychol, Durham DH1 3LE, England; [Muncer, Steven] Univ Teesside, Programme Clin Psychol, Middlesbrough, Cleveland, England Copping, LT (reprint author), Univ Durham, Dept Psychol, Durham DH1 3LE, England. l.t.copping@durham.ac.uk Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Bolland JM, 2003, J ADOLESCENCE, V26, P145, DOI 10.1016/S0140-1971(02)00136-7; Brennan IR, 2010, PSYCHIAT RES, V178, P536, DOI 10.1016/j.psychres.2009.05.006; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; Brown T., 2006, CONFIRMATORY FACTOR; Browne M. W, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005; Cabrera P., 2009, J CHILD ADOLESCENT T, V2, P271, DOI DOI 10.1080/19361520903317311; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Copping LT, 2013, PERS INDIV DIFFER, V54, P908, DOI 10.1016/j.paid.2013.01.003; Cross CP, 2011, PSYCHOL BULL, V137, P97, DOI 10.1037/a0021591; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Depue RA, 1999, BEHAV BRAIN SCI, V22, P491; DICKMAN SJ, 1990, J PERS SOC PSYCHOL, V58, P95, DOI 10.1037//0022-3514.58.1.95; Donohew L, 2000, PERS INDIV DIFFER, V28, P1079, DOI 10.1016/S0191-8869(99)00158-0; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Evenden JL, 1999, PSYCHOPHARMACOLOGY, V146, P348, DOI 10.1007/PL00005481; Fawcett TW, 2012, BEHAV PROCESS, V89, P128, DOI 10.1016/j.beproc.2011.08.015; FIGUEREDO AJ, 2005, HDB EVOLUTIONARY PSY, P851; Frederick S, 2002, J ECON LIT, V40, P351, DOI 10.1257/002205102320161311; Gatzke-Kopp LM, 2002, J ABNORM CHILD PSYCH, V30, P477, DOI 10.1023/A:1019816930615; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; Hill E., 2008, J SOCIO-ECON, V37, P1381, DOI DOI 10.1016/J.S0CEC.2006.12.081; Hu LT, 1999, STRUCT EQU MODELING, V6, P1, DOI 10.1080/10705519909540118; Khurana A, 2012, DEV PSYCHOL, V48, P1416, DOI 10.1037/a0027491; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Loewenstein G., 2001, SURV RES HOUS EXP PR; MacDonald KB, 2008, PSYCHOL REV, V115, P1012, DOI 10.1037/a0013327; Mazur JE, 1987, QUANTITATIVE ANAL BE, V5, P55; McAlister AR, 2005, BRIT J PSYCHOL, V96, P331, DOI 10.1348/000712605X47936; Mishra S, 2011, PERS INDIV DIFFER, V50, P869, DOI 10.1016/j.paid.2010.11.037; Nagin DS, 2004, J QUANT CRIMINOL, V20, P295, DOI 10.1007/s10940-004-5866-1; Nettle D, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1343; NURMI JE, 1987, ADOLESCENCE, V22, P977; NURMI JE, 1992, INT J BEHAV DEV, V15, P487, DOI 10.1177/016502549201500404; Patton JH, 1995, J CLIN PSYCHOL, V51, P768, DOI 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Read D, 2004, ORGAN BEHAV HUM DEC, V94, P22, DOI 10.1016/j.obhdp.2004.01.002; Reif A, 2011, PSYCHOPHARMACOLOGY, V214, P239, DOI 10.1007/s00213-010-1915-7; Reimers S, 2009, PERS INDIV DIFFER, V47, P973, DOI 10.1016/j.paid.2009.07.026; Richardson D. S., 2003, INT REV SOCIAL PSYCH, V16, P11; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff Derek A., 1992; Schechter DE, 2010, HUM NATURE-INT BIOS, V21, P140, DOI 10.1007/s12110-010-9084-2; SETO MC, 1995, PERS INDIV DIFFER, V19, P669, DOI 10.1016/0191-8869(95)00101-B; Smith CL, 2008, BEHAV RES METHODS, V40, P940, DOI 10.3758/BRM.40.4.940; Stearns S, 1992, EVOLUTION LIFE HIST; Steinberg L, 2008, DEV PSYCHOL, V44, P1764, DOI 10.1037/a0012955; Steinberg L, 2009, CHILD DEV, V80, P28, DOI 10.1111/j.1467-8624.2008.01244.x; Teuscher U, 2011, PSYCHOL REC, V61, P613, DOI 10.1007/BF03395780; Trostel PA, 2001, ECON INQ, V39, P379, DOI 10.1093/ei/39.3.379; Vigil-Colet A, 2004, PERS INDIV DIFFER, V37, P1431, DOI 10.1016/j.paid.2004.01.013; Wilson J. Q, 1985, CRIME HUMAN NATURE D; Wilson L. C., 2010, AGGRESSIVE BEHAV, V35, P1; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; WILSON M, 1985, ETHOL SOCIOBIOL, V6, P59, DOI 10.1016/0162-3095(85)90041-X; Wilson M, 2006, PSYCHOL SCI, V17, P989, DOI 10.1111/j.1467-9280.2006.01817.x; Zimbardo PG, 1999, J PERS SOC PSYCHOL, V77, P1271, DOI 10.1037/0022-3514.77.6.1271; ZUCKERMAN M, 1993, J PERS SOC PSYCHOL, V65, P757, DOI 10.1037//0022-3514.65.4.757; Zuckerman M, 1994, BEHAV EXPRESSIONS BI; Zuckerman M., 1979, SENSATION SEEKING OP; Zuckerman M., 1993, NORMS ZUCKERMA UNPUB; Zumbo BD, 2007, J MOD APPL STAT METH, V6, P21 68 7 7 1 14 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 4 829 847 10.1177/147470491401200411 19 Psychology, Experimental Psychology AR6LW WOS:000343695900011 25300057 DOAJ Gold, Green Published 2019-02-21 J Copping, LT; Campbell, A; Muncer, S Copping, Lee T.; Campbell, Anne; Muncer, Steven Psychometrics and Life History Strategy: The Structure and Validity of the High K Strategy Scale EVOLUTIONARY PSYCHOLOGY English Article K-Strategy; life history; puberty; sex differences; psychometric analysis R-SELECTION; SEX; UNPREDICTABILITY; CHILDHOOD; EVOLUTION; PERSONALITY; ATTACHMENT; COVITALITY; FERTILITY; FITNESS In this paper, we critically review the conceptualization and implementation of psychological measures of life history strategy associated with Differential K theory. The High K Strategy Scale (HKSS: Giosan, 2006) was distributed to a large British sample (n = 809) with the aim of assessing its factor structure and construct validity in relation to theoretically relevant life history variables: age of puberty, age of first sexual encounter, and number of sexual partners. Exploratory and confirmatory factor analyses indicated that the HKSS in its current form did not show an adequate statistical fit to the data. Modifications to improve fit indicated four correlated factors (personal capital, environmental stability, environmental security, and social capital). Later puberty in women was positively associated with measures of the environment and personal capital. Among men, contrary to Differential K predictions but in line with female mate preferences, earlier sexual debut and more sexual partners were positively associated with more favorable environments and higher personal and social capital. We raise concerns about the use of psychometric indicators of lifestyle and personality as proxies for life history strategy when they have not been validated against objective measures derived from contemporary life history theory and when their status as causes, mediators, or correlates has not been investigated. [Copping, Lee T.; Campbell, Anne] Univ Durham, Dept Psychol, Durham DH1 3LE, England; [Muncer, Steven] Univ Teesside, Programme Clin Psychol, Middlesbrough, Cleveland, England Copping, LT (reprint author), Univ Durham, Dept Psychol, Durham DH1 3LE, England. l.t.copping@durham.ac.uk Abed R, 2012, SCI WORLD J, DOI 10.1100/2012/290813; BAILEY JM, 1994, J PERS SOC PSYCHOL, V66, P1081, DOI 10.1037/0022-3514.66.6.1081; Barclay H. J., 1981, AM NAT, V117, P994; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Browne M. W, 1993, TESTING STRUCTURAL E, P136, DOI DOI 10.1177/0049124192021002005; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; CARROLL JL, 1985, ARCH SEX BEHAV, V14, P131, DOI 10.1007/BF01541658; Charlesworth B., 1980, EVOLUTION IN AGE STR; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Charnov EL, 1993, LIFE HISTORY INVARIA; Chisholm J., 1999, DEATH HOPE AND SEX S; Clark G., 2007, FAREWELL ALMS BRIEF; Clark G, 2009, AM ECON REV, V99, P242, DOI 10.1257/aer.99.2.242; Daly M., 1983, SEX EVOLUTION AND BE; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, CHILD DEV PERSPECT, V4, P97, DOI 10.1111/j.1750-8606.2010.00125.x; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DRAPER P, 1989, ETHOL SOCIOBIOL, V10, P145, DOI 10.1016/0162-3095(89)90017-4; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P759, DOI 10.1016/j.paid.2011.12.035; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P202, DOI 10.1016/j.paid.2011.10.016; Dunkel CS, 2011, PERS INDIV DIFFER, V51, P34, DOI 10.1016/j.paid.2011.03.005; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Giosan C., 2006, EVOLUTIONARY PSYCHOL, V4, P394, DOI DOI 10.1177/147470490600400131; Giosan C, 2013, AUST J PSYCHOL, V65, P156, DOI 10.1111/ajpy.12016; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2008, EVOL HUM BEHAV, V29, P319, DOI 10.1016/j.evolhumbehav.2008.03.003; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Kanazawa S, 2003, SOCIOL QUART, V44, P291; LUCKINBILL LS, 1979, AM NAT, V113, P427, DOI 10.1086/283400; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; Messick S., 1989, ED MEASUREMENT, P13; Mulder M B, 1992, Hum Nat, V3, P45, DOI 10.1007/BF02692266; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Muncer S., 2013, PERSONALITY AND INDI, V51, P775; Negriff S, 2011, J YOUTH ADOLESCENCE, V40, P1343, DOI 10.1007/s10964-010-9621-7; Nettle D, 2013, BEHAV ECOL, V24, P1031, DOI 10.1093/beheco/ars222; NRS Ltd, 2011, NATIONAL READERSHIP; Olderbak S, 2014, PERS INDIV DIFFER, V58, P82, DOI 10.1016/j.paid.2013.10.012; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; PERUSSE D, 1993, BEHAV BRAIN SCI, V16, P267, DOI 10.1017/S0140525X00029939; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff Derek A., 1992; Rushton JP, 2008, PERS INDIV DIFFER, V45, P679, DOI 10.1016/j.paid.2008.07.015; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SCHAFFER WM, 1983, AM NAT, V121, P418, DOI 10.1086/284070; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Stearns S. C., 1992, THE EVOLUTION OF LIF; Steiger J. H, 1989, EZPATH CAUSAL MODELI; Tanner J. M., 1990, FOETUS INTO MAN PHYS; TAYLOR CE, 1980, EVOLUTION, V34, P1183, DOI 10.1111/j.1558-5646.1980.tb04064.x; Tourangeau R, 2007, PSYCHOL BULL, V133, P859, DOI 10.1037/0033-2909.133.5.859 67 23 23 0 13 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 1 200 222 10.1177/147470491401200115 23 Psychology, Experimental Psychology AR6LS WOS:000343695600014 25299760 DOAJ Gold, Green Published 2019-02-21 J Webster, GD; Graber, JA; Gesselman, AN; Crosier, BS; Schember, TO Webster, Gregory D.; Graber, Julia A.; Gesselman, Amanda N.; Crosier, Benjamin S.; Schember, Tatiana Orozco A Life History Theory of Father Absence and Menarche: A Meta-Analysis EVOLUTIONARY PSYCHOLOGY English Article menarche; meta-analysis; puberty; father absence; life history NATIONAL PROBABILITY SAMPLE; CHILDHOOD SEXUAL-ABUSE; REPRODUCTIVE DEVELOPMENT; INDIVIDUAL-DIFFERENCES; EVOLUTIONARY PERSPECTIVE; PUBERTAL MATURATION; FAMILY ENVIRONMENT; LONGITUDINAL TEST; RISK-TAKING; AGE Is the absence of biological fathers related to their daughters' earlier age at menarche? Drawing on evolutionary psychology and life history theory, prior research has suggested such a relationship (Belsky, Steinberg, and Draper, 1991; Draper and Harpending, 1982; Ellis, 2004). Although qualitative reviews have shown narrative support for this relationship (Allison and Hyde, 2013; Ellis, 2004; Kim, Smith, and Palermiti, 1997; Susman and Dorn, 2009), no quantitative review exists to provide empirical support for this relationship or to explain mixed results. Thus, we conducted a random-effects meta-analysis of correlations (Card, 2012) on father absence and daughter menarcheal age (k = 33; N = 70,403). The weighted mean correlation was .14, 95% CI [.09, .19], suggesting that father absence was significantly related to earlier menarche; effect sizes were heterogeneous. Egger's regression (Egger, Smith, Schneider, and Minder, 1997) showed no evidence of publication bias (file-drawer effect; r = .34, p = .052). Outcome measure differences (menarcheal age vs. menarcheal age embedded in a multi-item pubertal timing scale) did not moderate effect sizes. Study year effects (Schooler, 2011) were also nonsignificant. Our findings support one aspect of the life history model and provide groundwork for subsequent examination of other pathways in the model. [Webster, Gregory D.; Graber, Julia A.; Gesselman, Amanda N.; Crosier, Benjamin S.; Schember, Tatiana Orozco] Univ Florida, Dept Psychol, Gainesville, FL 32611 USA Webster, GD (reprint author), Univ Florida, Dept Psychol, Gainesville, FL 32611 USA. gdwebs@gmail.com Aiken LS, 1991, MULTIPLE REGRESSION; Allison CM, 2013, SEX ROLES, V68, P55, DOI 10.1007/s11199-011-9993-5; Alvergne A, 2008, PHYSIOL BEHAV, V95, P625, DOI 10.1016/j.physbeh.2008.09.005; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2007, CHILD DEV, V78, P1302, DOI 10.1111/j.1467-8624.2007.01067.x; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Bogaert AF, 2005, J ADOLESCENCE, V28, P541, DOI 10.1016/j.adolescence.2004.10.008; Bogaert AF, 2008, J BIOSOC SCI, V40, P623, DOI 10.1017/S0021932007002386; Bowlby J, 1982, ATTACHMENT LOSS; Burkett B. N., 2000, THESIS FRANKLIN MARS; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Cameron NM, 2005, NEUROSCI BIOBEHAV R, V29, P843, DOI 10.1016/j.neubiorev.2005.03.022; CAMPBELL BC, 1995, J BIOSOC SCI, V27, P127; Card N. A., 2012, APPL META ANAL SOCIA; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; COALL DA, 1999, 11 ANN M HUM BEH EV; Cohen J, 1988, STAT POWER ANAL BEHA; COLE LC, 1954, Q REV BIOL, V29, P103, DOI 10.1086/400074; Conger RD, 2007, ANNU REV PSYCHOL, V58, P175, DOI 10.1146/annurev.psych.58.110405.085551; Deardorff J, 2011, J ADOLESCENT HEALTH, V48, P441, DOI 10.1016/j.jadohealth.2010.07.032; DelPriore DJ, 2013, J PERS SOC PSYCHOL, V105, P234, DOI 10.1037/a0032784; Dishion TJ, 2012, DEV PSYCHOL, V48, P703, DOI 10.1037/a0027304; Doughty D, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P169; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Draper P., 1988, SOCIOBIOLOGICAL PERS, P340, DOI DOI 10.1007/978-1-4612-3760-0_12; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2003, CHILD DEV, V74, P801, DOI 10.1111/1467-8624.00569; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2007, CHILD DEV, V78, P1799, DOI 10.1111/j.1467-8624.2007.01092.x; Ellis BJ, 2012, DEV PSYCHOL, V48, P591, DOI 10.1037/a0027651; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Foster H, 2008, J HEALTH SOC BEHAV, V49, P162, DOI 10.1177/002214650804900204; Gesselman A. N., 2012, UNPUB; Graber J. A, 2009, HDB ADOLESCENT PSYCH, P642, DOI DOI 10.1002/9780470479193.ADLPSY001020; Graber JA, 2004, J AM ACAD CHILD PSY, V43, P718, DOI 10.1097/01.chi.0000120022.14101.11; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Hadden BW, 2014, PERS SOC PSYCHOL REV, V18, P42, DOI 10.1177/1088868313501885; Hirsch LR, 1996, ETHOL SOCIOBIOL, V17, P55, DOI 10.1016/0162-3095(96)00128-8; Hoier S, 2003, HUM NATURE-INT BIOS, V14, P209, DOI 10.1007/s12110-003-1004-2; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Hulanicka B, 2001, AM J HUM BIOL, V13, P771, DOI 10.1002/ajhb.1123; Hulanicka B., 1999, J REPROD INFANT PSYC, V17, P119; Hunter J. E., 2004, METHODS METAANALYSIS; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; James-Todd T, 2010, ANN EPIDEMIOL, V20, P836, DOI 10.1016/j.annepidem.2010.08.006; Jean RT, 2011, AM J EPIDEMIOL, V173, P1203, DOI 10.1093/aje/kwq498; Jennions MD, 2002, P ROY SOC B-BIOL SCI, V269, P43, DOI 10.1098/rspb.2001.1832; Joinson C, 2011, BRIT J PSYCHIAT, V198, P17, DOI 10.1192/bjp.bp.110.080861; JONES B, 1972, MED J AUSTRALIA, V2, P533; Jorm AF, 2004, AM J MED GENET B, V125B, P105, DOI 10.1002/ajmg.b.20114; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kiernan KE, 1997, POP STUD-J DEMOG, V51, P41, DOI 10.1080/0032472031000149716; Kim K, 1998, INT J BEHAV DEV, V22, P729, DOI 10.1080/016502598384144; Kim K, 1997, EVOL HUM BEHAV, V18, P109, DOI 10.1016/S1090-5138(96)00114-6; LOW BS, 1978, AM NAT, V112, P197, DOI 10.1086/283260; MEKOS D, 1992, PSYCHOSOCIAL ANTECED; Mendle J., 2006, DEV PSYCHOL, V42, P535; Mendle J, 2009, CHILD DEV, V80, P1463, DOI 10.1111/j.1467-8624.2009.01345.x; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; MORRIS NM, 1980, J YOUTH ADOLESCENCE, V9, P271, DOI 10.1007/BF02088471; Mustanski BS, 2004, DEV PSYCHOL, V40, P1188, DOI 10.1037/0012-1649.40.6.1188; Muthen LK, 2010, MPLUS USERS GUIDE; Neberich W, 2010, EUR J DEV PSYCHOL, V7, P153, DOI 10.1080/17405620801928029; Perilloux HK, 2010, SOC PSYCHOL PERS SCI, V1, P34, DOI 10.1177/1948550609349514; PETERSEN AC, 1988, J YOUTH ADOLESCENCE, V17, P117, DOI 10.1007/BF01537962; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P376, DOI 10.1016/S1090-5138(03)00039-4; Romans SE, 2003, PSYCHOL MED, V33, P933, DOI 10.1017/S0033291703007530; ROSENTHAL R, 1979, PSYCHOL BULL, V86, P638, DOI 10.1037/0033-2909.86.3.638; Schmidt F, 2010, PERSPECT PSYCHOL SCI, V5, P233, DOI 10.1177/1745691610369339; Schooler J, 2011, NATURE, V470, P437, DOI 10.1038/470437a; Sheppard P., 2011, BIOL LETT; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; SURBEY MK, 1990, MG PRIMATOL, V13, P11; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Susman E. J., 2009, HDB ADOLESCENT PSYCH, V1, P116; Tanner J. M., 1962, GROWTH ADOLESCENCE; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Toromanovic Alma, 2004, Bosn J Basic Med Sci, V4, P5; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; Webster GD, 2007, J RES PERS, V41, P917, DOI 10.1016/j.jrp.2006.08.007; Webster GD, 2012, J RES PERS, V46, P591, DOI 10.1016/j.jrp.2012.07.001; WIERSON M, 1993, ADOLESCENCE, V28, P913; Zabin LS, 2005, J ADOLESCENT HEALTH, V36, P393, DOI 10.1016/j.jadohealth.2004.07.013 91 27 27 2 26 EVOLUTIONARY PSYCHOL DAVIE C/O TOOD K SHACKELFORD, DIR, FLORIDA ATLANTIC UNIV, DEPT PSYCHOL, 2912 COLLEGE AVE, DAVIE, FL 33314 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 2 SI 273 294 10.1177/147470491401200202 22 Psychology, Experimental Psychology AR6LT WOS:000343695700002 25299880 DOAJ Gold 2019-02-21 J Hawley, PH Hawley, Patricia H. Ontogeny and Social Dominance: A Developmental View of Human Power Patterns EVOLUTIONARY PSYCHOLOGY English Article individual differences; personality; development; social dominance; power; prestige MORAL DEVELOPMENT THEORY; RESOURCE-CONTROL; EVOLUTIONARY PERSPECTIVE; SEXUAL SELECTION; REPRODUCTIVE STRATEGY; PEER GROUP; BEHAVIOR; PRESCHOOLERS; PERSONALITY; CHILDREN Developmental science has long evolutionary roots and has historically focused on individual differences. Accordingly, developmental models can inform conversations about phylogeny and personality. The present paper evokes life history theory to describe a theoretical model of competitive behavior that applies to both children and adults (resource control theory: RCT). The model suggests that prosocial and coercive behavior, though different in manifest form, serve similar evolutionary functions. Accordingly, RCT presents a view on social dominance that gives primacy to function over form that contrasts sharply from traditional views. This reformulation gives rise to novel questions (both developmental and non-developmental) and challenges long accepted views on prosociality (e.g., that it is altruistic) and aggression (e.g., that it is maladaptive). Similarly, RCT gives rise to a minority perspective that aligns aggression with social competence. Texas Tech Univ, Coll Educ, Lubbock, TX 79409 USA Hawley, PH (reprint author), Texas Tech Univ, Coll Educ, Lubbock, TX 79409 USA. Patricia.Hawley@ttu.edu Abbot P, 2011, NATURE, V471, pE1, DOI [10.1038/nature09831, 10.1038/nature09835]; ABRAMOVITCH R, 1976, SOCIAL STRUCTURE ATT, P153; Ainsworth MS, 1978, PATTERNS ATTACHMENT; ALCOCK J, 2005, ANIMAL BEHAV EVOLUTI; Alexander Richard, 1987, BIOL MORAL SYSTEMS; Alonso F, 2012, PHYSIOL BEHAV, V106, P612, DOI 10.1016/j.physbeh.2012.04.003; Axelrod R., 1984, EVOLUTION COOPERATIO; Baar P, 2011, SPORT PSYCHOL, V25, P444, DOI 10.1123/tsp.25.4.444; Bakan D, 1966, DUALITY HUMAN EXISTE; BAUMEISTER RF, 1995, PSYCHOL BULL, V117, P497, DOI 10.1037/0033-2909.117.3.497; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Berlin Isiah, 1980, CURRENT ESSAYS HIST, P25; BERNSTEIN IS, 1981, BEHAV BRAIN SCI, V4, P419, DOI 10.1017/S0140525X00009614; Blau P., 1964, EXCHANGE POWER SOCIA; Boehm C, 2000, J CONSCIOUSNESS STUD, V7, P79; BOEHM C, 1993, CURR ANTHROPOL, V34, P227, DOI 10.1086/204166; Boehm C., 1999, HIERARCHY FOREST EVO; Boehm C, 2010, SOCIAL PSYCHOL POWER, P46; Bowlby J., 1969, ATTACHMENT LOSS, V1; Bowles S, 2011, COOPERATIVE SPECIES: HUMAN RECIPROCITY AND ITS EVOLUTION, P1; Boyd R, 2003, P NATL ACAD SCI USA, V100, P3531, DOI 10.1073/pnas.0630443100; Buhler C., 1927, QUEL STUD JUGKD, V5, P1; BULL JJ, 1983, EVOLUTION SEX DETERM; Buss D. M., 2011, EVOLUTION PERSONALIT; Buss DM, 1999, J PERS, V67, P209, DOI 10.1111/1467-6494.00053; Byrne RW, 1988, MACHIAVELLIAN INTELL; Campbell RL, 1996, DEV REV, V16, P1, DOI 10.1006/drev.1996.0001; Camperio Ciani A., 2011, EVOLUTION PERSONALIT, P425; Carere C, 2013, ANIMAL PERSONALITIES; CARO TM, 1986, ANIM BEHAV, V34, P1483, DOI 10.1016/S0003-3472(86)80219-6; Carpenter CR, 1942, BIOL S, V8, P177; CHANCE MRA, 1967, MAN, V2, P503, DOI 10.2307/2799336; Charlesworth WR, 1996, INT J BEHAV DEV, V19, P25, DOI 10.1080/016502596385910; Chen BB, 2012, ASIAN J SOC PSYCHOL, V15, P122, DOI 10.1111/j.1467-839X.2012.01373.x; COIE JD, 1998, HDB CHILD PSYCHOL, V3, P779, DOI DOI 10.1002/9780470147658.CHPSY0312; Darwin C, 1871, DESCENT MAN SELECTIO; Dawkins R., 1976, SELFISH GENE; de Waal F., 1996, GOOD NATURED ORIGINS; de Waal F. B. M, 1982, CHIMPANZEE POLITICS; DEWAAL FBM, 1986, Q REV BIOL, V61, P459, DOI 10.1086/415144; Dijkstra JK, 2010, J RES ADOLESCENCE, V20, P942, DOI 10.1111/j.1532-7795.2010.00671.x; Dodge KA, 2012, DEV PSYCHOL, V48, P624, DOI 10.1037/a0027683; Drea CM, 2005, INTEGR COMP BIOL, V45, P915, DOI 10.1093/icb/45.5.915; Dreber A, 2008, NATURE, V452, P348, DOI 10.1038/nature06723; Dunbar R. I. M., 1988, PRIMATE SOCIAL SYSTE; EISENBERG N, 1984, CHILD STUDY J, V14, P115; Eisenberg N, 1996, DEV REV, V16, P48, DOI 10.1006/drev.1996.0002; Eisenberg Nancy, 1989, ROOTS PROSOCIAL BEHA; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Fehr E, 2000, J ECON PERSPECT, V14, P159, DOI 10.1257/jep.14.3.159; Figueredo A. J., 1992, MULTIVARIATE BEHAV R, V27, P413; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher RA, 1930, GENETICAL THEORY NAT; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; GADGIL M, 1972, AM NAT, V106, P574, DOI 10.1086/282797; Gintis H., CULTURAL EV IN PRESS; Gintis H., 2012, SOCIAL EVOLUTION FOR; Gintis Herbert, 2004, J BIOECON, DOI [10.1007/s10818-012-9140-6, DOI 10.1007/s10818-012-9140-6]; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; GOWATY PA, 1997, FEMINISM EVOLUTIONAR, P351; Green VA, 2008, J GENET PSYCHOL, V169, P92, DOI 10.3200/GNTP.169.1.92-112; Griskevicius V, 2010, J PERS SOC PSYCHOL, V98, P392, DOI 10.1037/a0017346; GROSS MR, 1991, PHILOS T R SOC B, V332, P59, DOI 10.1098/rstb.1991.0033; Haldane JBS, 1932, CAUSES EVOLUTION; HAMILTON WD, 1964, J THEOR BIOL, V7, P1, DOI 10.1016/0022-5193(64)90038-4; Hardy CL, 2006, PERS SOC PSYCHOL B, V32, P1402, DOI 10.1177/0146167206291006; Hawley P. H, 2006, HDB PERSONALITY DEV, P147, DOI 10.4324/9781315805610.ch8; Hawley P. H., 2011, EVOLUTION PERSONALIT, pix; Hawley P. H., 2014, MULTIDIMENSIONALITY, P43; Hawley P. H, 2007, AGGRESSION ADAPTATIO, P1; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 2007, J SCHOOL PSYCHOL, V45, P499, DOI 10.1016/j.jsp.2007.04.001; Hawley PH, 2007, INT J BEHAV DEV, V31, P170, DOI 10.1177/0165025407074630; Hawley PH, 2012, J EXP CHILD PSYCHOL, V112, P18, DOI 10.1016/j.jecp.2011.10.004; Hawley PH, 2011, J RES ADOLESCENCE, V21, P307, DOI 10.1111/j.1532-7795.2010.00732.x; Hawley PH, 2009, J SOC PERS RELAT, V26, P1097, DOI 10.1177/0265407509347939; Hawley PH, 2003, STRUCTURAL EQUATION MODELING, P143, DOI 10.1017/CBO9780511542138.007; Hawley PH, 1999, MERRILL PALMER QUART, V45, P185; Hawley PH, 2003, J EXP CHILD PSYCHOL, V85, P213, DOI 10.1016/S0022-0965(03)00073-0; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hawley PH, 2003, MERRILL PALMER QUART, V49, P279, DOI 10.1353/mpq.2003.0013; Hawley PH, 2002, INT J BEHAV DEV, V26, P167, DOI 10.1080/01650250042000726; Henrich J, 2001, EVOL HUM BEHAV, V22, P165, DOI 10.1016/S1090-5138(00)00071-4; Hofer H, 2003, EVOL ECOL, V17, P315, DOI 10.1023/A:1027352517231; HOFFMAN ML, 1994, REACHING OUT CARING, P196; HOFFMAN ML, 1983, SOCIAL COGNITION SOC; HOMBERG U, 1991, J COMP NEUROL, V303, P245, DOI 10.1002/cne.903030207; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy S. B., 1999, WOMAN NEVER EVOLVED; HSU Y, 2006, FISH COGNITION BEHAV, P96; Ishikawa Y, 2011, INSECT SOC, V58, P519, DOI 10.1007/s00040-011-0173-y; JESSOR R, 1991, J ADOLESCENT HEALTH, V12, P597, DOI 10.1016/1054-139X(91)90007-K; Jokela M, 2012, PSYCHOL SCI, V23, P835, DOI 10.1177/0956797612439067; Jokela M, 2009, J PERS SOC PSYCHOL, V96, P218, DOI 10.1037/a0014058; Kelley HH, 1978, INTERPERSONAL RELATI; Keltner D, 2003, PSYCHOL REV, V110, P265, DOI 10.1037/0033-295X.110.2.265; KENNY DA, 1984, ADV EXP SOC PSYCHOL, V18, P141, DOI 10.1016/S0065-2601(08)60144-6; Krause J., 2002, LIVING GROUPS; Krebs J. R, 1997, BEHAV ECOLOGY EVOLUT; Kropotkin P. A., 1902, MUTUAL AID FACTOR EV; KylHeku LM, 1996, PERS INDIV DIFFER, V21, P497, DOI 10.1016/0191-8869(96)00103-1; Lukaszewski AW, 2011, PERS SOC PSYCHOL B, V37, P409, DOI 10.1177/0146167210397209; Maccoby E. E., 1974, PSYCHOL SEX DIFFEREN; Machiavelli N., 1513, PRINCE; Marks PEL, 2012, SOC DEV, V21, P501, DOI 10.1111/j.1467-9507.2011.00647.x; Mascaro O, 2012, P NATL ACAD SCI USA, V109, P6862, DOI 10.1073/pnas.1113194109; McGrew W. C., 1972, ETHOLOGICAL STUDY CH; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Mikulincer M., 2007, ATTACHMENT ADULTHOOD; Nettle D., 2011, EVOLUTION PERSONALIT, P5; Nowak MA, 2011, NATURE, V471, pE9, DOI 10.1038/nature09836; Olthof T, 2011, J SCHOOL PSYCHOL, V49, P339, DOI 10.1016/j.jsp.2011.03.003; Ozer DJ, 2006, ANNU REV PSYCHOL, V57, P401, DOI 10.1146/annurev.psych.57.102904.190127; Palmen H., 2011, NARCISSISM MACHIAVEL, P233; Pellegrini AD, 2008, DEV REV, V28, P461, DOI 10.1016/j.dr.2008.03.001; Pelletier F, 2006, ANIM BEHAV, V71, P649, DOI 10.1016/j.anbehav.2005.07.008; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; RAVEN BH, 1958, SOCIOMETRY, V21, P83, DOI 10.2307/2785895; Roff Derek A., 1992; Roseth CJ, 2011, SOC DEV, V20, P185, DOI 10.1111/j.1467-9507.2010.00579.x; ROWELL TE, 1974, BEHAV BIOL, V11, P131, DOI 10.1016/S0091-6773(74)90289-2; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; SAHLINS MD, 1963, COMP STUD SOC HIST, V5, P285, DOI 10.1017/S0010417500001729; Schjelderup-Ebbe T., 1922, Zeitschrift fuer Psychologie Leipzig, V88, P225; Sell A, 2009, P NATL ACAD SCI USA, V106, P15073, DOI 10.1073/pnas.0904312106; Silk JB, 2003, SCIENCE, V302, P1231, DOI 10.1126/science.1088580; STRAYER FF, 1976, CHILD DEV, V47, P980, DOI 10.1111/j.1467-8624.1976.tb02278.x; Stump KN, 2009, SOCIAL BEHAVIOR AND SKILLS IN CHILDREN, P23, DOI 10.1007/978-1-4419-0234-4_2; Teisl M, 2012, DEV PSYCHOL, V48, P575, DOI 10.1037/a0024888; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; TRIVERS RL, 1971, Q REV BIOL, V46, P35, DOI 10.1086/406755; Van Vugt M, 2008, AM PSYCHOL, V63, P182, DOI 10.1037/0003-066X.63.3.182; Van Vugt M, 2013, BRIT J PSYCHOL, V104, P3, DOI 10.1111/j.2044-8295.2011.02093.x; Van Vugt M, 2010, GROUP PROCESS INTERG, V13, P101, DOI 10.1177/1368430209342258; Walster E., 1978, EQUITY THEORY RES; West SA, 2007, J EVOLUTION BIOL, V20, P415, DOI 10.1111/j.1420-9101.2006.01258.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Whitman D. W., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P1; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; Wilson E. O., 2012, SOCIAL CONQUEST EART; Wright S, 1931, GENETICS, V16, P0097; Zahn-Waxler C., 1983, ACAD PSYCHOL B, V5, P247 145 8 8 0 22 SAGE PUBLICATIONS INC THOUSAND OAKS 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA 1474-7049 EVOL PSYCHOL-US Evol. Psychol. 2014 12 2 SI 318 342 25 Psychology, Experimental Psychology AR6LT WOS:000343695700004 25299882 DOAJ Gold 2019-02-21 J Kim, DG; Lee, CY; Choi, LJ; Kang, HJ; Baek, MJ; Kim, JG; Bae, YJ Kim, Dong Gun; Lee, Cha Young; Choi, Lak Joong; Kang, Hyo Jeong; Baek, Min Jeong; Kim, Jae Geun; Bae, Yeon Jae Drought effects on the colonization of benthic macroinvertebrate communities in the early successional phases in experimental mesocosm wetlands JOURNAL OF FRESHWATER ECOLOGY English Article benthic macroinvertebrates; colonization; drought; mesocosm; natural disturbance; wetland MAN-MADE WETLANDS; INVERTEBRATE COMMUNITIES; TEMPORARY PONDS; LIFE-HISTORY; ASSEMBLAGES; HABITAT; STREAM; DURATION; POOLS; CHIRONOMIDAE We investigated the drought effects on the colonization rate and pattern of benthic macroinvertebrate communities in newly created mesocosm wetlands in the central Korean Peninsula, from June 2011 to June 2013. The comparison was made between the initial colonization after mesocosm construction (pre-drought) and the recolonization after a drought event (post-drought) with a drought period of 50days between them. In addition, we categorized communities according to their biological traits in relation to drought. Our results showed that aquatic vegetation abundance and covering degree were higher in post-drought than in pre-drought, thereby influencing rapid colonization. Drought-resistant benthic macroinvertebrates colonized rapidly in post-drought; consequently, the colonization speed was 2.5-fold higher in post-drought than in pre-drought. We classified the benthic macroinvertebrate taxa into three groups: (1) a resistant group which generally emerged after the initial colonization period (e.g., Mollusca, Turbellaria, and Oligochaeta); (2) a sensitive group with diverse life history strategies and biological traits such as active migration or population decline after drought disturbance (e.g., Diptera: Chironominae, Odonata: Orthetrum, Coleoptera: Agabus and Rhantus); and (3) a seasonal group, which emerged only during certain periods and were not markedly influenced by drought (e.g., Ephemeroptera: Cloeon, Diptera: Culicidae, Odonata: Zygoptera and Pantala). Our findings elucidated the effects of drought on benthic macroinvertebrate communities in wetlands by using a mesocosm experiment. [Kim, Dong Gun; Lee, Cha Young; Choi, Lak Joong; Kang, Hyo Jeong; Baek, Min Jeong; Bae, Yeon Jae] Korea Univ, Grad Sch, Dept Life Sci, Coll Life Sci & Biotechnol, Seoul 136713, South Korea; [Kim, Jae Geun] Seoul Natl Univ, Dept Biol Educ, Seoul 151748, South Korea; [Bae, Yeon Jae] Korea Univ, Div Environm Sci & Ecol Engn, Coll Life Sci & Biotechnol, Seoul 136713, South Korea Bae, YJ (reprint author), Korea Univ, Grad Sch, Dept Life Sci, Coll Life Sci & Biotechnol, Seoul 136713, South Korea. yjbae@korea.ac.kr Kim, Jae Geun/C-2939-2012 Kim, Jae Geun/0000-0002-9181-8830 Ministry of Environment of Korea [2011-2016: 416-111-009] This work was supported by the Ministry of Environment of Korea [Eco-Innoviation Project: 2011-2016: 416-111-009]. Batzer DP, 2013, FRESHWATER BIOL, V58, P1647, DOI 10.1111/fwb.12156; Bazzanti M, 1997, J FRESHWATER ECOL, V12, P89, DOI 10.1080/02705060.1997.9663512; Bogan MT, 2011, FRESHWATER BIOL, V56, P2070, DOI 10.1111/j.1365-2427.2011.02638.x; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Braun-Blanquet J, 1964, PFLANZENSOZIOLOGIE; Brock MA, 2003, FRESHWATER BIOL, V48, P1207, DOI 10.1046/j.1365-2427.2003.01083.x; Brooks RT, 2000, WETLANDS, V20, P707, DOI 10.1672/0277-5212(2000)020[0707:AASVAT]2.0.CO;2; Buden DW, 2010, PAC SCI, V64, P141, DOI 10.2984/64.1.141; Canedo-Arguelles M, 2009, J LIMNOL, V68, P229, DOI 10.3274/JL09-68-2-07; Chase JM, 2003, OECOLOGIA, V136, P489, DOI 10.1007/s00442-003-1311-7; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Clarke KR, 2006, PRIMER V6 USER MANUA; Fairchild GW, 2000, FRESHWATER BIOL, V44, P523, DOI 10.1046/j.1365-2427.2000.00601.x; Figuerola J, 2002, FRESHWATER BIOL, V47, P483, DOI 10.1046/j.1365-2427.2002.00829.x; Fritz KM, 2004, HYDROBIOLOGIA, V527, P99, DOI 10.1023/B:HYDR.0000043188.53497.9b; Gilbert B, 2008, CAN J FISH AQUAT SCI, V65, P890, DOI 10.1139/F08-057; Green AJ, 2008, FRESHWATER BIOL, V53, P380, DOI 10.1111/j.1365-2427.2007.01901.x; JEFFRIES M, 1994, FRESHWATER BIOL, V32, P603, DOI 10.1111/j.1365-2427.1994.tb01151.x; Jenkins DG, 2003, CONSERV BIOL, V17, P158, DOI 10.1046/j.1523-1739.2003.01450.x; Johnston K, 2009, INVERTEBR BIOL, V128, P269, DOI 10.1111/j.1744-7410.2009.00169.x; Kim DG, 2014, FUND APPL LIMNOL, V184, P35, DOI 10.1127/1863-9135/2014/0502; Kim KT, 2006, KOREAN WETLANDS SOC, V8, P49; Lake PS, 2011, DROUGHT AND AQUATIC ECOSYSTEMS: EFFECTS AND RESPONSES, P1, DOI 10.1002/9781444341812; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; LAKE PS, 1989, ARCH HYDROBIOL, V115, P171; Ledger ME, 2013, NAT CLIM CHANGE, V3, P223, DOI [10.1038/NCLIMATE1684, 10.1038/nclimate1684]; Lee CY, 2013, ENVIRON ENTOMOL, V42, P1149, DOI 10.1603/EN13012; Lee HG, 2011, ANIM CELLS SYST, V15, P169, DOI 10.1080/19768354.2011.555121; Lods-Crozet B, 2009, ANN LIMNOL-INT J LIM, V45, P257, DOI 10.1051/limn/2009028; McCune B, 2002, ANAL ECOLOGICAL COMM; Merritt R. W, 2008, INTRO AQUATIC INSECT; Reznickova P, 2007, INT REV HYDROBIOL, V92, P514, DOI 10.1002/iroh.200610997; Robson BJ, 2011, MAR FRESHWATER RES, V62, P801, DOI 10.1071/MF10062; Ruhi A, 2009, HYDROBIOLOGIA, V634, P137, DOI 10.1007/s10750-009-9896-4; Ruhi A, 2013, OECOLOGIA, V171, P545, DOI 10.1007/s00442-012-2440-7; Ruhi A, 2012, LIMNOLOGICA, V42, P328, DOI 10.1016/j.limno.2012.07.005; SAS Institute, 2004, PROC US GUID; Schneider DW, 1996, J N AM BENTHOL SOC, V15, P64, DOI 10.2307/1467433; Sim LL, 2013, FRESHW SCI, V32, P327, DOI 10.1899/12-024.1; Sridhar V, 2008, J HYDROMETEOROL, V9, P660, DOI 10.1175/2007JHM892.1; Szalay FAD, 2000, FRESHWATER BIOL, V45, P295; Therriault TW, 2001, ISRAEL J ZOOL, V47, P477, DOI 10.1560/BWWA-DTXB-LBJK-5GV5; Vanschoenwinkel B, 2010, J N AM BENTHOL SOC, V29, P1267, DOI 10.1899/09-114.1; Vanschoenwinkel B, 2009, FRESHWATER BIOL, V54, P1487, DOI 10.1111/j.1365-2427.2009.02198.x; Walters AW, 2011, J N AM BENTHOL SOC, V30, P346, DOI 10.1899/10-041.1; Wellborn GA, 1996, ANNU REV ECOL SYST, V27, P337, DOI 10.1146/annurev.ecolsys.27.1.337; WIGGINS G B, 1980, Archiv fuer Hydrobiologie Supplement, V58, P97; Yevievich V., 1967, HYDROLOGY PAPERS COL 48 3 3 0 35 TAYLOR & FRANCIS INC PHILADELPHIA 530 CHESTNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0270-5060 2156-6941 J FRESHWATER ECOL J. Freshw. Ecol. 2014 29 4 507 524 10.1080/02705060.2014.910846 18 Ecology; Limnology Environmental Sciences & Ecology; Marine & Freshwater Biology AP0OO WOS:000341761700004 2019-02-21 S Travis, J; Reznick, D; Bassar, RD; Lopez-Sepulcre, A; Ferriere, R; Coulson, T MoyaLarano, J; Rowntree, J; Woodward, G Travis, Joseph; Reznick, David; Bassar, Ronald D.; Lopez-Sepulcre, Andres; Ferriere, Regis; Coulson, Tim Do Eco-Evo Feedbacks Help Us Understand Nature? Answers From Studies of the Trinidadian Guppy ADVANCES IN ECOLOGICAL RESEARCH, VOL 50: ECO-EVOLUTIONARY DYNAMICS Advances in Ecological Research English Review; Book Chapter LIFE-HISTORY EVOLUTION; DENSITY-DEPENDENT SELECTION; POECILIA-RETICULATA; RAPID EVOLUTION; RIVULUS-HARTII; COMMUNITY STRUCTURE; ECOSYSTEM PROCESSES; SCHOOLING BEHAVIOR; GENETIC-ANALYSIS; OFFSPRING SIZE The bulk of evolutionary ecology implicitly assumes that ecology shapes evolution, rather than vice versa, but there is increasing interest in the possibility of a two-way interaction. Dynamic feedbacks between ecological and evolutionary processes (eco-evo feedbacks) have long been recognized in the theoretical literature, and the observation of rapid evolution has since inspired empiricists to explore the consequences of these feedbacks. Laboratory studies prove that short-term evolutionary change can significantly alter ecological dynamics, particularly in pair-wise interactions. We know far less about whether these reciprocal dynamics are important in more complex natural systems. Here, we outline our approach to that question, focusing on the Trinidadian guppy and the stream ecosystems it inhabits. We summarize results from several types of studies: comparative demography in two types of communities, experiments in mesocosms, common garden laboratory experiments and replicated introduction experiments. The latter were designed as perturbations to the natural steady state that allow us to follow the joint ecological and evolutionary dynamics of guppies and their ecosystem. In each approach, we replicated experiments across multiple independent origins of guppy population types and found that eco-evo feedbacks play major roles in guppy evolution. There are three possible sources for these feedbacks, all of which have some support in our data, which will form the focus of future research efforts. [Travis, Joseph; Reznick, David] Florida State Univ, Dept Biol Sci, Tallahassee, FL 32306 USA; [Reznick, David] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Bassar, Ronald D.] Univ Massachusetts, Dept Environm Conservat, Amherst, MA 01003 USA; [Lopez-Sepulcre, Andres] Ecole Normale Super, CNRS, Lab Ecol & Evolut, Unite Mixte Rech, Paris, France; [Ferriere, Regis] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA; [Coulson, Tim] Univ Oxford, Dept Zool, Oxford OX1 3PS, England Travis, J (reprint author), Florida State Univ, Dept Biol Sci, B-157, Tallahassee, FL 32306 USA. travis@bio.fsu.edu Ferriere, Regis/S-8050-2017 Ferriere, Regis/0000-0002-5806-5566; Coulson, Tim/0000-0001-9371-9003; reznick, david/0000-0002-1144-0568; Lopez-Sepulcre, Andres/0000-0001-9708-0788 Natural Environment Research Council [NE/H007148/2, NE/K014218/1, NE/I023791/2] Abrams PA, 1997, EVOLUTION, V51, P1742, DOI 10.1111/j.1558-5646.1997.tb05098.x; Alexander H.J., 2006, EVOLUTION, V60, P191; Barson NJ, 2009, J EVOLUTION BIOL, V22, P485, DOI 10.1111/j.1420-9101.2008.01675.x; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bassar RD, 2012, AM NAT, V180, P167, DOI 10.1086/666611; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Cameron TC, 2014, ADV ECOL RES, V50, P171, DOI 10.1016/B978-0-12-801374-8.00005-0; CHARLESWORTH B, 1971, ECOLOGY, V52, P469, DOI 10.2307/1937629; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; CLARKE B, 1972, AM NAT, V106, P1, DOI 10.1086/282747; COCKERHAM CC, 1972, AM NAT, V106, P493, DOI 10.1086/282790; Connelly S, 2008, ECOSYSTEMS, V11, P1262, DOI 10.1007/s10021-008-9191-7; Coulson T, 2012, OIKOS, V121, P1337, DOI 10.1111/j.1600-0706.2012.00035.x; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; de Villemereuil P.B., 2010, ECOL MODEL, V222, P419; Duffy MA, 2007, ECOL LETT, V10, P44, DOI 10.1111/j.1461-0248.2006.00995.x; Duffy MA, 2009, ECOLOGY, V90, P1441, DOI 10.1890/08-1130.1; DUNSON WA, 1991, AM NAT, V138, P1067, DOI 10.1086/285270; Easterling MR, 2000, ECOLOGY, V81, P694, DOI 10.2307/177370; Ellner SP, 2013, FUNCT ECOL, V27, P1087, DOI 10.1111/1365-2435.12174; Endler J.A., 1978, Evolutionary Biology (New York), V11, P319; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Estes JA, 2011, SCIENCE, V333, P301, DOI 10.1126/science.1205106; Ferriere R., 2004, EVOLUTIONARY CONSERV; Foerster K, 2007, NATURE, V447, P1107, DOI 10.1038/nature05912; Fowler NL, 2010, AM NAT, V175, P504, DOI 10.1086/651592; Fowler NL, 2006, ECOLOGY, V87, P655, DOI 10.1890/05-1197; Fraser DF, 2013, ECOLOGY, V94, P640, DOI 10.1890/12-0803.1; Furness AI, 2012, EVOLUTION, V66, P1240, DOI 10.1111/j.1558-5646.2011.01520.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garant D, 2004, AM NAT, V164, pE115, DOI 10.1086/424764; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Hiltunen T, 2014, ADV ECOL RES, V50, P41, DOI 10.1016/B978-0-12-801374-8.00002-5; Houde A., 1997, SEX COLOR MATE CHOIC; JAYAKAR S D, 1970, Theoretical Population Biology, V1, P140, DOI 10.1016/0040-5809(70)90032-8; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; KIRKWOOD TBL, 1993, NETH J ZOOL, V43, P359, DOI 10.1163/156854293X00115; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Kokko H, 2007, ECOL LETT, V10, P773, DOI 10.1111/j.1461-0248.2007.01086.x; Kot M., 2001, EVOLUTION, V56, P1683; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Lauridsen RB, 2014, FRESHWATER BIOL, V59, P1497, DOI 10.1111/fwb.12361; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1962, P NATL ACAD SCI USA, V48, P1893, DOI 10.1073/pnas.48.11.1893; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; Medawar P, 1952, UNSOLVED PROBLEM BIO; Merila J, 1997, MOL ECOL, V6, P1167, DOI 10.1046/j.1365-294X.1997.00295.x; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Morrissey MB, 2012, AM NAT, V179, pE97, DOI 10.1086/664686; Moya-Larano J, 2014, ADV ECOL RES, V50, P75, DOI 10.1016/B978-0-12-801374-8.00003-7; Mueller LD, 2000, ECOLOGY, V81, P1273, DOI 10.1890/0012-9658(2000)081[1273:DPSE]2.0.CO;2; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; Otto S., 2007, BIOL GUIDE MATH MODE; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; PAINE R T, 1974, Oecologia (Berlin), V15, P93, DOI 10.1007/BF00345739; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; PIMENTEL D, 1961, AM NAT, V95, P65, DOI 10.1086/282160; PIMENTEL D, 1968, SCIENCE, V159, P1432, DOI 10.1126/science.159.3822.1432; PULLIAM HR, 1974, AM NAT, V108, P59, DOI 10.1086/282885; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Rodd FH, 1997, ECOLOGY, V78, P405; ROUGHGARDEN J, 1976, THEOR POPUL BIOL, V9, P388, DOI 10.1016/0040-5809(76)90054-X; ROUGHGARDEN J, 1971, ECOLOGY, V52, P453, DOI 10.2307/1937628; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; SEGHERS BH, 1995, CAN J ZOOL, V73, P1100, DOI 10.1139/z95-131; SEGHERS BH, 1973, THESIS U BRIT COLUMB; Sheldon BC, 2003, EVOLUTION, V57, P406; Smallegange I., 2013, TRENDS ECOL EVOL, V28, P1; Smallegange IM, 2014, ADV ECOL RES, V50, P145, DOI 10.1016/B978-0-12-801374-8.00004-9; SMOUSE PE, 1976, AM NAT, V110, P849, DOI 10.1086/283107; STOKES TK, 1988, THEOR POPUL BIOL, V34, P248, DOI 10.1016/0040-5809(88)90023-8; Travis J, 2013, B MAR SCI, V89, P317, DOI 10.5343/bms.2012.1024; WALLACE B, 1975, EVOLUTION, V29, P465, DOI 10.1111/j.1558-5646.1975.tb00836.x; Walsh M.R., 2012, TRENDS ECOL EVOL, V28, P23; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walsh MR, 2011, FUNCT ECOL, V25, P227, DOI 10.1111/j.1365-2435.2010.01786.x; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Woodward G, 2008, OIKOS, V117, P683, DOI 10.1111/j.2008.0030-1299.16500.x; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 100 36 38 5 98 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 0065-2504 978-0-12-801374-8 ADV ECOL RES Adv. Ecol. Res. 2014 50 1 40 10.1016/B978-0-12-801374-8.00001-3 40 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BB1ND WOS:000341216800002 2019-02-21 S Smallegange, IM; Deere, JA MoyaLarano, J; Rowntree, J; Woodward, G Smallegange, Isabel M.; Deere, Jacques A. Eco-Evolutionary Interactions as a Consequence of Selection on a Secondary Sexual Trait ADVANCES IN ECOLOGICAL RESEARCH, VOL 50: ECO-EVOLUTIONARY DYNAMICS Advances in Ecological Research English Review; Book Chapter MITE RHIZOGLYPHUS-ROBINI; PUPAL COLOR DIMORPHISM; LIFE-HISTORY EVOLUTION; SALMON SALMO-SALAR; 2 MALE MORPHS; BULB MITE; CONDITIONAL STRATEGIES; ATLANTIC SALMON; PHENOTYPIC PLASTICITY; SANCASSANIA-BERLESEI Ecological and evolutionary population changes are often interlinked, complicating the understanding of how each is affected by environmental change. Using a male dimorphic mite as a model system, we studied concurrent changes in the expression of a conditional strategy and in the population in response to harvesting over 15 generations. We found evolutionary divergence in the expression of alternative male reproductive morphs fighters and defenceless scramblers (sneakers) caused by the selective harvesting of each male morph. Regardless of which morph was targeted, the direction of evolution of male morph expression in response to harvesting was always towards scramblers, which, in case of the harvesting of scramblers, we attributed to strong ecological feedback (reduced cannibalism opportunities for fighters) within the closed populations. Current evolutionary theory, however, predicts that the frequency of a morph always decreases when selected against: to understand phenotypic trait evolution fully, evolutionary theory would benefit from including ecological interactions, especially if traits have ecological consequences that in turn feedback to their evolutionary trajectory. [Smallegange, Isabel M.] Univ Amsterdam, IBED, Amsterdam, Netherlands; [Deere, Jacques A.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England Smallegange, IM (reprint author), Univ Amsterdam, IBED, Amsterdam, Netherlands. 1.smallegange@uva.nl Smallegange, Isabel/A-8198-2010 Smallegange, Isabel/0000-0001-6218-7358 Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Benton TG, 2004, J ANIM ECOL, V73, P983, DOI 10.1111/j.0021-8790.2004.00859.x; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; Buoro M, 2012, EVOLUTION, V66, P996, DOI 10.1111/j.1558-5646.2011.01484.x; Buzatto BA, 2012, BMC EVOL BIOL, V12, DOI 10.1186/1471-2148-12-118; Buzatto BA, 2011, EVOL ECOL, V25, P331, DOI 10.1007/s10682-010-9431-0; Cameron T.C., 2004, J ANIM ECOL, V73, P966; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; COSTANTINO RF, 1995, NATURE, V375, P227, DOI 10.1038/375227a0; Coulson T, 2011, SCIENCE, V334, P1275, DOI 10.1126/science.1209441; de Roos AM, 2013, POPULATION COMMUNITY; Deere JA, 2014, EXP APPL ACAROL, V62, P425, DOI 10.1007/s10493-013-9751-1; Diaz A, 2000, EXP APPL ACAROL, V24, P85, DOI 10.1023/A:1006304300657; DODD DMB, 1989, EVOLUTION, V43, P1308, DOI 10.1111/j.1558-5646.1989.tb02577.x; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Falconer D. S., 1996, INTRO QUANTITATIVE G; Garland T. J., 2009, EXPT EVOLUTION; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hazel W, 2004, AM NAT, V163, P888, DOI 10.1086/386313; HAZEL WN, 1990, P ROY SOC B-BIOL SCI, V242, P181, DOI 10.1098/rspb.1990.0122; HAZEL WN, 1977, HEREDITY, V38, P227, DOI 10.1038/hdy.1977.28; HAZEL WN, 1982, HEREDITY, V49, P295, DOI 10.1038/hdy.1982.103; Johnstone DL, 2013, MOL ECOL, V22, P2394, DOI 10.1111/mec.12186; Kawecki TJ, 2012, TRENDS ECOL EVOL, V27, P547, DOI 10.1016/j.tree.2012.06.001; Kokko H, 2007, ECOL LETT, V10, P773, DOI 10.1111/j.1461-0248.2007.01086.x; Kolss M, 2009, EVOLUTION, V63, P2389, DOI 10.1111/j.1558-5646.2009.00718.x; Leigh D.M., 2014, EXP APPL ACAROL; LIVELY CM, 1986, AM NAT, V128, P561, DOI 10.1086/284588; Losos JB, 1997, NATURE, V387, P70, DOI 10.1038/387070a0; Lukasik P, 2006, EVOLUTION, V60, P399, DOI 10.1111/j.0014-3820.2006.tb01116.x; Lukasik P, 2010, BEHAV ECOL, V21, P270, DOI 10.1093/beheco/arp186; Milner JM, 2007, CONSERV BIOL, V21, P36, DOI 10.1111/j.1523-1739.2006.00591.x; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; MOYA A, 1995, P NATL ACAD SCI USA, V92, P3983, DOI 10.1073/pnas.92.9.3983; MYERS RA, 1984, CAN J FISH AQUAT SCI, V41, P1349, DOI 10.1139/f84-165; Oliveira RF, 2008, ALTERNATIVE REPRODUCTIVE TACTICS: AN INTEGRATIVE APPROACH, P1, DOI 10.1017/CBO9780511542602; OLIVER JH, 1977, ANNU REV ENTOMOL, V22, P407, DOI 10.1146/annurev.en.22.010177.002203; OLIVER JH, 1971, AM ZOOL, V11, P283; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Piou C, 2013, GLOBAL CHANGE BIOL, V19, P711, DOI 10.1111/gcb.12085; PLUMMER M, 2006, CODA OUTPUT ANAL DIA; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Radwan J, 2000, EXP APPL ACAROL, V24, P115, DOI 10.1023/A:1006492903270; Radwan J, 2002, J EVOLUTION BIOL, V15, P744, DOI 10.1046/j.1420-9101.2002.00444.x; RADWAN J, 1995, HEREDITY, V74, P669, DOI 10.1038/hdy.1995.91; Radwan J, 2000, ETHOLOGY, V106, P53, DOI 10.1046/j.1439-0310.2000.00498.x; Radwan J, 2001, ETHOL ECOL EVOL, V13, P69; Ratner S, 2001, ECOLOGY, V82, P3093, DOI 10.1890/0012-9658(2001)082[3093:DAERTS]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Roff DA, 1996, Q REV BIOL, V71, P3, DOI 10.1086/419266; Santos M, 1997, EVOLUTION, V51, P420, DOI 10.1111/j.1558-5646.1997.tb02429.x; Sarkar D., 2007, LME4 LINEAR MIXED EF; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Smallegange IM, 2012, J EVOLUTION BIOL, V25, P972, DOI 10.1111/j.1420-9101.2012.02490.x; Smallegange IM, 2014, AM NAT, V183, P188, DOI 10.1086/674377; Smallegange IM, 2013, TRENDS ECOL EVOL, V28, P143, DOI 10.1016/j.tree.2012.07.021; Smallegange IM, 2011, ECOLOGY, V92, P755, DOI 10.1890/09-2069.1; Smallegange IM, 2011, NATURWISSENSCHAFTEN, V98, P339, DOI 10.1007/s00114-011-0773-4; Smallegange IM, 2011, EVOL ECOL, V25, P857, DOI 10.1007/s10682-010-9446-6; Tomkins JL, 2007, TRENDS ECOL EVOL, V22, P522, DOI 10.1016/j.tree.2007.09.002; Tomkins JL, 2011, CURR BIOL, V21, P569, DOI 10.1016/j.cub.2011.02.032; Van Doorslaer W, 2009, EVOLUTION, V63, P1867, DOI 10.1111/j.1558-5646.2009.00679.x; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Young Kyle A., 2004, P358 72 12 12 1 37 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 0065-2504 978-0-12-801374-8 ADV ECOL RES Adv. Ecol. Res. 2014 50 145 169 10.1016/B978-0-12-801374-8.00004-9 25 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BB1ND WOS:000341216800005 2019-02-21 S Cameron, TC; Plaistow, S; Mugabo, M; Piertney, SB; Benton, TG MoyaLarano, J; Rowntree, J; Woodward, G Cameron, Tom C.; Plaistow, Stewart; Mugabo, Marianne; Piertney, Stuart B.; Benton, Tim G. Eco-Evolutionary Dynamics: Experiments in a Model System ADVANCES IN ECOLOGICAL RESEARCH, VOL 50: ECO-EVOLUTIONARY DYNAMICS Advances in Ecological Research English Review; Book Chapter FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; ADAPTIVE PHENOTYPIC PLASTICITY; MATERNAL EFFECT HYPOTHESIS; ECOLOGICAL TIME-SCALES; WILD BIRD POPULATION; RAPID EVOLUTION; FISH POPULATIONS; ENVIRONMENTAL VARIABILITY; DEVELOPMENTAL THRESHOLDS Understanding the consequences of environmental change on both long- and short-term ecological and evolutionary dynamics is a basic pre-requisite for any effective conservation or management programme but inherently problematic because of the complex interplay between ecological and evolutionary processes. Components of such complexity have been described in isolation or within conceptual models on numerous occasions. What remains lacking are studies that characterise effectively the coupled ecological and evolutionary dynamics, to demonstrate feedback mechanisms that influence both phenotypic change, and its effects on population demography, in organisms with complex life histories. We present a systems-based approach that brings together multiple effects that 'shape' an organism's life history (e.g. direct and delayed life-history consequences of environmental variation) and the resulting eco-evolutionary population dynamics. Using soil mites in microcosms, we characterise ecological, phenotypic and evolutionary dynamics in replicated populations in response to experimental manipulations of environment (e.g. the competitive environment, female age, male quality). Our results demonstrate that population dynamics are complex and are affected by both plastic and evolved responses to past and present environments, and that the emergent population dynamic itself shaped the landscape for natural selection to act on in subsequent generations. Evolutionary and ecological effects on dynamics can therefore be almost impossible to partition, which needs to be considered and appreciated in research, management and conservation. [Cameron, Tom C.] Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England; [Plaistow, Stewart] Univ Liverpool, Inst Integrat Biol, Liverpool L69 3BX, Merseyside, England; [Mugabo, Marianne; Benton, Tim G.] Univ Leeds, Sch Biol, Fac Biol Sci, Leeds, W Yorkshire, England; [Piertney, Stuart B.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland Cameron, TC (reprint author), Univ Essex, Sch Biol Sci, Colchester CO4 3SQ, Essex, England. tcameron@csscx.ac.uk Benton, Tim/C-6493-2009; Mugabo, Marianne/P-3527-2015 Benton, Tim/0000-0002-7448-1973; Mugabo, Marianne/0000-0002-2346-2617; Piertney, Stuart/0000-0001-6654-0569 Natural Environment Research Council [NE/I024437/1, NBAF010003, NE/I012486/1, NE/E015964/1, NE/I01201X/1] Abrams PA, 1997, EVOLUTION, V51, P1742, DOI 10.1111/j.1558-5646.1997.tb05098.x; Andersen KH, 2009, P NATL ACAD SCI USA, V106, pE116, DOI 10.1073/pnas.09009811106; Andersen KH, 2009, P NATL ACAD SCI USA, V106, P11657, DOI 10.1073/pnas.0901690106; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Badyaev AV, 2009, PHILOS T R SOC B, V364, P1169, DOI 10.1098/rstb.2008.0302; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Beckerman AP, 2013, ECOL EVOL, V3, P5119, DOI 10.1002/ece3.766; Beckerman AP, 2006, P ROY SOC B-BIOL SCI, V273, P485, DOI 10.1098/rspb.2005.3315; Beckerman AP, 2003, AM NAT, V162, P754, DOI 10.1086/381056; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Becks L, 2012, ECOL LETT, V15, P492, DOI 10.1111/j.1461-0248.2012.01763.x; Begon M., 2006, ECOLOGY INDIVIDUALS; Bell G, 2009, ECOL LETT, V12, P942, DOI 10.1111/j.1461-0248.2009.01350.x; Benton TG, 2008, J ANIM ECOL, V77, P1038, DOI 10.1111/j.1365-2656.2008.01434.x; Benton TG, 2012, PHILOS T R SOC B, V367, P200, DOI 10.1098/rstb.2011.0168; Benton TG, 2006, P R SOC B, V273, P1173, DOI 10.1098/rspb.2006.3495; Benton TG, 2005, ADV ECOL RES, V37, P143, DOI 10.1016/S0065-2504(04)37005-4; Benton TG, 2005, P ROY SOC B-BIOL SCI, V272, P1351, DOI 10.1098/rspb.2005.3081; Benton TG, 2002, J ANIM ECOL, V71, P320, DOI 10.1046/j.1365-2656.2002.00601.x; Benton TG, 2001, J ANIM ECOL, V70, P590, DOI 10.1046/j.1365-2656.2001.00527.x; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Bonduriansky R, 2009, ANNU REV ECOL EVOL S, V40, P103, DOI 10.1146/annurev.ecolsys.39.110707.173441; Bonenfant C, 2009, J ANIM ECOL, V78, P161, DOI 10.1111/j.1365-2656.2008.01477.x; Browman HI, 2008, SCIENCE, V320, P47, DOI 10.1126/science.320.5872.47b; Bunnefeld N, 2009, J ANIM ECOL, V78, P485, DOI 10.1111/j.1365-2656.2008.01500.x; Cameron TC, 2013, ECOL LETT, V16, P754, DOI 10.1111/ele.12107; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Caswell H, 2010, J ECOL, V98, P324, DOI 10.1111/j.1365-2745.2009.01627.x; Champagne FA, 2008, FRONT NEUROENDOCRIN, V29, P386, DOI 10.1016/j.yfrne.2008.03.003; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Ciuti S, 2012, P ROY SOC B-BIOL SCI, V279, P4407, DOI 10.1098/rspb.2012.1483; Coltman DW, 2003, NATURE, V426, P655, DOI 10.1038/nature02177; Core Team R., 2014, R LANG ENV STAT COMP; Coulson T, 2006, P ROY SOC B-BIOL SCI, V273, P547, DOI 10.1098/rspb.2005.3357; Coulson T, 2008, AM NAT, V172, P599, DOI 10.1086/591693; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Crawley M. J., 2007, R BOOK; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; de Roos AM, 2003, P ROY SOC B-BIOL SCI, V270, P611, DOI 10.1098/rspb.2002.2286; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Ducatez S, 2012, EVOLUTION, V66, P3558, DOI 10.1111/j.1558-5646.2012.01704.x; Ellner S.P., 2011, ECOL LETT; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Ezard THG, 2009, PHILOS T R SOC B, V364, P1491, DOI 10.1098/rstb.2009.0006; Fagan WF, 2006, ECOL LETT, V9, P51, DOI 10.1111/j.1461-0248.2005.00845.x; Fryxell JM, 2005, OIKOS, V111, P143, DOI 10.1111/j.0030-1299.2005.13840.x; Fussmann GF, 2003, P ROY SOC B-BIOL SCI, V270, P1015, DOI 10.1098/rspb.2003.2335; Gil D, 1999, SCIENCE, V286, P126, DOI 10.1126/science.286.5437.126; Ginzburg LR, 1998, J ANIM ECOL, V67, P325, DOI 10.1046/j.1365-2656.1998.00226.x; GINZBURG LR, 1994, J ANIM ECOL, V63, P79, DOI 10.2307/5585; Hairston NG, 1999, NATURE, V401, P446, DOI 10.1038/46731; Hairston NG, 2001, EVOLUTION, V55, P2203; Hairston NG, 2005, ECOL LETT, V8, P1114, DOI 10.1111/j.1461-0248.2005.00812.x; Hamilton SL, 2007, ECOL APPL, V17, P2268, DOI 10.1890/06-1930.1; Haridas CV, 2005, AM NAT, V166, P481, DOI 10.1086/444444; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; HOUCK MA, 1991, ANNU REV ENTOMOL, V36, P611, DOI 10.1146/annurev.en.36.010191.003143; Inchausti P, 1998, J ANIM ECOL, V67, P180, DOI 10.1046/j.1365-2656.1998.00189.x; Isaksson C, 2006, BEHAV ECOL SOCIOBIOL, V60, P556, DOI 10.1007/s00265-006-0200-6; Jacquin L, 2012, FUNCT ECOL, V26, P866, DOI 10.1111/j.1365-2435.2012.01988.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kinnison MT, 2007, FUNCT ECOL, V21, P444, DOI 10.1111/j.1365-2435.2007.01278.x; Kinnison MT, 2009, P NATL ACAD SCI USA, V106, pE115, DOI 10.1073/pnas.09007871106; Kuparinen A, 2008, SCIENCE, V320, P47; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; LAW R, 1979, AM NAT, V114, P399, DOI 10.1086/283488; LENSKI RE, 1984, J THEOR BIOL, V108, P319, DOI 10.1016/S0022-5193(84)80035-1; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Meylan S, 2012, PHILOS T R SOC B, V367, P1647, DOI 10.1098/rstb.2012.0020; MICHOD RE, 1979, AM NAT, V113, P531, DOI 10.1086/283411; Milner JM, 2007, CONSERV BIOL, V21, P36, DOI 10.1111/j.1523-1739.2006.00591.x; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Morrissey MB, 2012, AM NAT, V179, pE97, DOI 10.1086/664686; Nussey DH, 2005, SCIENCE, V310, P304, DOI 10.1126/science.1117004; Olsen AS, 2012, DIABETES, V61, P485, DOI 10.2337/db11-0588; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsen EM, 2009, ECOL LETT, V12, P622, DOI 10.1111/j.1461-0248.2009.01311.x; Ozgul A, 2012, AM NAT, V179, P582, DOI 10.1086/664999; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Ozgul A, 2009, SCIENCE, V325, P464, DOI 10.1126/science.1173668; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Pelletier F, 2007, SCIENCE, V315, P1571, DOI 10.1126/science.1139024; Perrin MC, 2007, SCHIZOPHRENIA BULL, V33, P1270, DOI 10.1093/schbul/sbm093; Persson L, 2007, SCIENCE, V316, P1743, DOI 10.1126/science.1141412; PIMENTEL D, 1961, AM NAT, V95, P65, DOI 10.1086/282160; PIMENTEL D, 1978, AM NAT, V112, P119, DOI 10.1086/283256; PIMENTEL D, 1968, CAN ENTOMOL, V100, P655, DOI 10.4039/Ent100655-6; Pinder M, 2009, THESIS U LEEDS LEEDS; Plaistow SJ, 2009, PHILOS T R SOC B, V364, P1049, DOI 10.1098/rstb.2008.0251; Plaistow SJ, 2006, AM NAT, V167, P206, DOI 10.1086/499380; Plaistow SJ, 2004, P ROY SOC B-BIOL SCI, V271, P919, DOI 10.1098/rspb.2004.2682; Plaistow SJ, 2007, AM NAT, V170, P520, DOI 10.1086/521238; Post DM, 2009, PHILOS T R SOC B, V364, P1629, DOI 10.1098/rstb.2009.0012; Qvamstrom A., 2001, TRENDS ECOL EVOL, V16, P95; Rasanen K, 2007, FUNCT ECOL, V21, P408, DOI 10.1111/j.1365-2435.2007.01246.x; Rando OJ, 2012, CELL, V151, P702, DOI 10.1016/j.cell.2012.10.020; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; ROFF DA, 2002, LIFE HIST EVOLUTION; ROSSITER M, 1994, BIOSCIENCE, V44, P752, DOI 10.2307/1312584; Roth O, 2012, AM NAT, V180, P802, DOI 10.1086/668081; Savory FR, 2014, ECOL EVOL, V4, P1176, DOI 10.1002/ece3.1013; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Shertzer KW, 2002, ECOLOGY, V83, P2181, DOI 10.2307/3072050; Stearns S, 1992, EVOLUTION LIFE HIST; STENSON JAE, 1981, OIKOS, V37, P323, DOI 10.2307/3544123; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Strauss SY, 2008, ECOL LETT, V11, P199, DOI 10.1111/j.1461-0248.2007.01128.x; Tenhumberg B, 2000, J THEOR BIOL, V202, P257, DOI 10.1006/jtbi.1999.1049; Trotter MV, 2013, METHODS ECOL EVOL, V4, P290, DOI 10.1111/2041-210X.12010; Tuljapurkar S, 2003, AM NAT, V162, P489, DOI 10.1086/378648; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; Uller T, 2008, TRENDS ECOL EVOL, V23, P432, DOI 10.1016/j.tree.2008.04.005; Van Leeuwen A, 2008, J SEA RES, V60, P89, DOI 10.1016/j.seares.2008.02.008; van Wijk SJ, 2013, FRONT ECOL ENVIRON, V11, P181, DOI 10.1890/120229; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; Walsh MR, 2012, P ROY SOC B-BIOL SCI, V279, P3184, DOI 10.1098/rspb.2012.0496; WILCOX DL, 1979, AM NAT, V113, P163, DOI 10.1086/283377; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767; Yoshida T, 2007, PLOS BIOL, V5, P1868, DOI 10.1371/journal.pbio.0050235 124 8 8 0 62 ELSEVIER ACADEMIC PRESS INC SAN DIEGO 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA 0065-2504 978-0-12-801374-8 ADV ECOL RES Adv. Ecol. Res. 2014 50 171 206 10.1016/B978-0-12-801374-8.00005-0 36 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology BB1ND WOS:000341216800006 2019-02-21 J Kim, SH; Kim, JH; Park, SR; Lee, KS Kim, Seung Hyeon; Kim, Jong-Hyeob; Park, Sang Rul; Lee, Kun-Seop Annual and perennial life history strategies of Zostera marina populations under different light regimes MARINE ECOLOGY PROGRESS SERIES English Article Annuals; Flowering frequency; Life history; Light reduction; Perennials; Reproductive strategy; Seagrass GULF-OF-CALIFORNIA; RESOURCE-ALLOCATION; REPRODUCTIVE EFFORT; DEPTH DISTRIBUTION; GROWTH DYNAMICS; SEED BANKS; L EELGRASS; SEAGRASS; L.; PHOTOSYNTHESIS The seagrass Zostera marina is genetically considered to be perennial, but annual populations of this species exist as well and are under severe environmental stress in many geographical locations. We investigated why Z. marina in Jindong Bay (Korea) exhibited a typical perennial life history at a shallow site but an annual life history at a deep site. We hypothesized that Z. marina shoots in the deep population die off after fall due to severe light reductions, and that the re-establishment of this population is completely dependent on sexual reproduction. Life histories of these populations were examined by constructing life tables using monthly measurements of shoot recruitment and mortality. In the deep population, new shoot recruitment was only achieved by seedlings, and approximately 95% of the surviving seedlings flowered. No shoots overwintered in the deep population. In contrast, shoot recruitment in the shallow population was primarily achieved by asexual reproduction. High summer water temperatures and subsequent severe underwater light reduction during summer and fall probably led to the high mortality in Z. marina shoots in the deep population, resulting in no shoot survival after fall. The deep population likely exhibits an annual life history strategy to achieve population persistence under repetitive and acute unfavorable environmental conditions. From an evolutionary perspective, the life history traits of Z. marina would define this species as an intermediate between annual and perennial. [Kim, Seung Hyeon; Kim, Jong-Hyeob; Lee, Kun-Seop] Pusan Natl Univ, Dept Biol Sci, Pusan 609735, South Korea; [Park, Sang Rul] Jeju Natl Univ, Sch Marine Biomed Sci, Cheju 690756, South Korea Lee, KS (reprint author), Pusan Natl Univ, Dept Biol Sci, Pusan 609735, South Korea. klee@pusan.ac.kr Ministry of Oceans and Fisheries, Korea; National Research Foundation of Korea (NRF) grant - Korean government (MEST) [NRF-2012 R1A1A2004493] We thank Y. K. Kim, J. W. Kim, S. H. Park, and J. I. Park for their countless hours of field and laboratory assistance. Anonymous reviewers provided extremely helpful comments on an earlier version of the manuscript. This work was supported by the Ministry of Oceans and Fisheries, Korea (project title: Long-term change of structure and function in marine ecosystems of Korea) and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST; NRF-2012 R1A1A2004493). Alcoverro T, 1999, MAR ECOL PROG SER, V187, P121, DOI 10.3354/meps187121; Alexandre A, 2005, MAR ECOL PROG SER, V298, P115, DOI 10.3354/meps298115; Biber PD, 2009, J EXP MAR BIOL ECOL, V369, P110, DOI 10.1016/j.jembe.2008.10.031; Bintz JC, 2001, MAR ECOL PROG SER, V223, P133, DOI 10.3354/meps223133; Burke MK, 1996, MAR ECOL PROG SER, V137, P195, DOI 10.3354/meps137195; Cabaco S, 2012, ECOL INDIC, V23, P116, DOI 10.1016/j.ecolind.2012.03.022; Cabello-Pasini A, 2003, AQUAT BOT, V76, P31, DOI 10.1016/S0304-3770(03)00012-3; Cabello-Pasini A, 2002, AQUAT BOT, V74, P149, DOI 10.1016/S0304-3770(02)00076-1; CHAMBERS JC, 1994, ANNU REV ECOL SYST, V25, P263, DOI 10.1146/annurev.es.25.110194.001403; Clark CJ, 2007, AM NAT, V170, P128, DOI 10.1086/518565; DENNISON WC, 1985, MAR ECOL PROG SER, V25, P51, DOI 10.3354/meps025051; DENNISON WC, 1982, OECOLOGIA, V55, P137, DOI 10.1007/BF00384478; DENNISON WC, 1987, AQUAT BOT, V27, P15, DOI 10.1016/0304-3770(87)90083-0; Duarte CM, 1996, AQUAT BOT, V54, P279, DOI 10.1016/0304-3770(96)01050-9; Fishman JR, 1996, J EXP MAR BIOL ECOL, V198, P11, DOI 10.1016/0022-0981(95)00176-X; Greve TM, 2005, AQUAT BOT, V82, P143, DOI 10.1016/j.aquabot.2005.03.004; Grillo MA, 2009, EVOLUTION, V63, P870, DOI 10.1111/j.1558-5646.2008.00602.x; Harwell MC, 2002, ESTUARIES, V25, P1196, DOI 10.1007/BF02692216; Hauxwell J, 2001, ECOLOGY, V82, P1007, DOI 10.2307/2679899; Holmer M, 2002, J EXP MAR BIOL ECOL, V270, P25, DOI 10.1016/S0022-0981(02)00015-1; Jarvis JC, 2012, MAR ECOL PROG SER, V444, P43, DOI 10.3354/meps09428; KEDDY CJ, 1978, AQUAT BOT, V5, P163, DOI 10.1016/0304-3770(78)90059-1; Kim H.G., 2000, HDB OCEANOGRAPHY MAR; Kim Tae Hwan, 2008, Algae, V23, P241; Lee K.-S., 2003, WORLD ATLAS SEAGRASS, P193; Lee KS, 2005, MAR BIOL, V147, P1091, DOI 10.1007/s00227-005-0011-8; Lee KS, 2007, J EXP MAR BIOL ECOL, V350, P144, DOI 10.1016/j.jembe.2007.06.016; Lee KS, 2007, MAR ECOL PROG SER, V342, P105, DOI 10.3354/meps342105; MADSEN JD, 1991, AQUAT BOT, V41, P67, DOI 10.1016/0304-3770(91)90039-8; Meling-Lopez AE, 1999, AQUAT BOT, V65, P59, DOI 10.1016/S0304-3770(99)00031-5; Moore KA, 2006, SEAGRASSES: BIOLOGY, ECOLOGY AND CONSERVATION, P361; Muniz-Salazar R, 2005, MOL ECOL, V14, P711, DOI 10.1111/j.1365-294X.2005.02454.x; Nakaoka M, 2002, AQUAT BOT, V72, P99, DOI 10.1016/S0304-3770(01)00213-3; Nielsen SL, 2002, ESTUARIES, V25, P1025, DOI 10.1007/BF02691349; OLESEN B, 1994, J ECOL, V82, P379, DOI 10.2307/2261305; Olesen B, 1999, AQUAT BOT, V65, P209, DOI 10.1016/S0304-3770(99)00041-8; Park SR, 2009, ESTUAR COAST SHELF S, V81, P38, DOI 10.1016/j.ecss.2008.10.003; Peterson JE, 2004, AQUAT BOT, V78, P243, DOI 10.1016/j.aquabot.2003.10.005; Plus M, 2003, AQUAT BOT, V77, P121, DOI 10.1016/S0304-3770(03)00089-5; Reusch TBH, 2003, J ECOL, V91, P610, DOI 10.1046/j.1365-2745.2003.00787.x; ROBERTSON AI, 1984, MAR BIOL, V80, P131, DOI 10.1007/BF02180180; Santamaria-Gallegos NA, 2000, AQUAT BOT, V66, P329, DOI 10.1016/S0304-3770(99)00082-0; Thom RM, 2008, ESTUAR COAST, V31, P969, DOI 10.1007/s12237-008-9082-3; Tutin TG, 1942, J ECOL, V30, P217, DOI 10.2307/2256698; van Kleunen M, 2007, EVOL ECOL, V21, P185, DOI 10.1007/s10682-006-0019-7; VANLENT F, 1994, AQUAT BOT, V48, P31, DOI 10.1016/0304-3770(94)90072-8; ZIMMERMAN RC, 1994, MAR ECOL PROG SER, V114, P185, DOI 10.3354/meps114185; Zimmerman RC, 2001, MAR ECOL PROG SER, V218, P127, DOI 10.3354/meps218127 48 10 11 1 26 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2014 509 1 + 10.3354/meps10899 16 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography AO7YW WOS:000341570100001 Bronze 2019-02-21 J Vadell, MV; Villafane, IEG; Cavia, R Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R. Are life-history strategies of Norway rats (Rattus norvegicus) and house mice (Mus musculus) dependent on environmental characteristics? WILDLIFE RESEARCH English Article abundance; demography; life-history traits; reproduction INHABITING RICE GRANARIES; PUREORA FOREST PARK; POPULATION ECOLOGY; NEW-ZEALAND; MOUSE-POPULATIONS; CENTRAL ARGENTINA; POULTRY FARMS; ISLAND; DOMESTICUS; AUSTRALIA Context Life-history theory attempts to explain the way in which an organism is adapted to its environment as well as explaining the differences in life-history strategies among and within species. Aims The aim of this paper was to compare life-history traits of the Norway rat and the house mouse living in different habitats and geographic regions so as to find patterns related to environmental characteristics on the basis of published ecological studies conducted before 2011. Methods The environments where rodent populations lived were characterised according to climate type, occurrence of freezing temperatures and frost, degree of anthropisation and trapping location. Four demographic characteristics were analysed. A canonical correspondence analysis was performed to explain the effects of environmental variables on the demographic characteristics of rodents. Information was gathered from 35 articles published between 1945 and 2010. Key results Most populations of both species showed differences in abundance throughout the year, but no defined pattern was common among populations. The pregnancy rate of Norway rat was highest during spring and autumn in urban environments, during spring and winter in rural environments and during summer in sylvan habitats. House mouse populations were most frequently reported to experience high pregnancy rates during summer. Contrary to urban and rural populations, in sylvan environments the occurrence of a reproductive break was the most commonly reported pattern for both species. Litter size of Norway rat depended on the degree of anthropisation and the occurrence of freezing temperatures and frost. Litter size was greater in rural environments and in areas without freezing temperatures and frost. House mouse did not show differences in litter size resulting from any of the environmental characteristics analysed. Conclusions Both species are able to modify their reproductive strategies according to environmental characteristics, especially according to the degree of anthropisation of the environment. In sylvan areas, where animals are more exposed to seasonal changes in weather conditions, changes in reproductive investment are more evident. Implications Regarding the implications for rodent control, the best time to apply control measures could be winter in sylvan and urban environments. In rural environments, the best time for conducting control efforts is less clear, although cold seasons seem also to be the best. [Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R.] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Lab Ecol Poblac, Dept Ecol Genet & Evoluc, Buenos Aires, DF, Argentina; [Vadell, M. V.; Gomez Villafane, I. E.; Cavia, R.] UBA CONICET, IEGEBA, Buenos Aires, DF, Argentina Cavia, R (reprint author), Univ Buenos Aires, Fac Ciencias Exactas & Nat, Lab Ecol Poblac, Dept Ecol Genet & Evoluc, Ciudad Univ,PB 2,4to Piso,C1428EHA Nunez, Buenos Aires, DF, Argentina. rcavia@ege.fcen.uba.ar CONICET (Argentina); University of Buenos Aires We thank all the authors of the published articles included in this study. We are very grateful to Richard Douglass for his help with the revision of the manuscript. This research has been funded with grants of CONICET (Argentina) and the University of Buenos Aires. We are grateful to Olga V. Suarez and Maria Busch for their comments to the early version of this work. Aplin K. P., 2003, RATS MICE PEOPLE ROD, P487; Aplin K. P., 2003, FIELD METHODS RODENT; ATKINSON IAE, 1985, INT COUNCIL BIRD PRE, V3, P35; BADAN D, 1986, NEW ZEAL J ECOL, V9, P137; BERRY RJ, 1981, MAMMAL REV, V11, P91, DOI 10.1111/j.1365-2907.1981.tb00001.x; BERRY RJ, 1968, J ANIM ECOL, V37, P445, DOI 10.2307/2959; Bettesworth D.J., 1972, Tane, V18, P189; BISHOP JA, 1976, J ANIM ECOL, V45, P623, DOI 10.2307/3572; Bomford M., 1987, WILDLIFE RES, V14, P207, DOI [10.1071/WR9870207, DOI 10.1071/WR9870207]; BOONSTRA R, 1994, WILDLIFE RES, V21, P583, DOI 10.1071/WR9940583; Borcard D., 2011, NUMERICAL ECOLOGY R, P153; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bronson F. H., 1989, MAMMALIAN REPROD BIO; BRONSON FH, 1979, Q REV BIOL, V54, P265, DOI 10.1086/411295; BRONSON FH, 1987, AM ZOOL, V27, P929; Calhoun J. B, 1963, ECOLOGY SOCIOLOGY NO; Cavia R, 2009, LANDSCAPE URBAN PLAN, V90, P11, DOI 10.1016/j.landurbplan.2008.10.017; Chou CW, 1998, ZOOL STUD, V37, P201; Copson G., 1986, WILDLIFE RES, V13, P441, DOI [10.1071/WR9860441, DOI 10.1071/WR9860441]; Coto H, 1997, BIOL CONTROL RATAS S; Gomez MD, 2008, INT BIODETER BIODEGR, V62, P270, DOI 10.1016/j.ibiod.2007.08.004; DAVIS DE, 1951, ECOLOGY, V32, P469, DOI 10.2307/1931724; DAVIS DE, 1953, Q REV BIOL, V28, P373, DOI 10.1086/399860; Dobson FS, 2007, ECOSCIENCE, V14, P292, DOI 10.2980/1195-6860(2007)14[292:FASLHO]2.0.CO;2; DOBSON FS, 1987, AM NAT, V129, P382, DOI 10.1086/284643; EFFORD MG, 1988, J ZOOL, V216, P539, DOI 10.1111/j.1469-7998.1988.tb02450.x; FARHANG-AZAD A, 1979, Annals of Zoology (Agra), V15, P1; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Glass G.E., 1989, Occasional Papers of the Museum of Natural History University of Kansas, VNo. 130, P1; Villafane IEG, 2007, MAMM BIOL, V72, P364, DOI 10.1016/j.mambio.2006.09.002; Villafane IEG, 2013, MAMMALIA, V77, P187, DOI 10.1515/mammalia-2012-0075; Gómez Villafañe Isabel E., 2008, Mastozool. neotrop., V15, P203; Innes JG, 2001, NEW ZEAL J ZOOL, V28, P57, DOI 10.1080/03014223.2001.9518257; King CM, 1996, NEW ZEAL J ECOL, V20, P253; KING CM, 1983, J ANIM ECOL, V52, P141, DOI 10.2307/4593; Kottek M, 2006, METEOROL Z, V15, P259, DOI 10.1127/0941-2948/2006/0130; Krebs C. J, 1974, ADV ECOL RES, V8, P267, DOI [10.1016/50065-2504(08)60280-9, DOI 10.1016/S0065-2504(08)60280-9]; Krebs CJ, 1978, ECOLOGY EXPT ANAL DI; LAURIE EMO, 1946, PROC R SOC SER B-BIO, V133, P248, DOI 10.1098/rspb.1946.0012; Le Roux V, 2002, POLAR BIOL, V25, P49, DOI 10.1007/s003000100310; Leon VA, 2013, INTEGR ZOOL, V8, P18, DOI 10.1111/j.1749-4877.2012.00290.x; LESLIE PH, 1952, P ZOOL SOC LOND, V122, P187, DOI 10.1111/j.1469-7998.1952.tb06316.x; LIDICKER WZ, 1966, ECOL MONOGR, V36, P27, DOI 10.2307/1948487; Lund M., 1994, P23; Macdonald D. W., 1999, Ecologically-based management of rodent pests., P49; Major HL, 2007, J ZOOL, V271, P463, DOI 10.1111/j.1469-7998.2006.00230.x; MATTHEWSON DC, 1994, S AFR J ZOOL, V29, P99; McGuire B, 2006, AM MIDL NAT, V155, P221, DOI 10.1674/0003-0031(2006)155[0221:GEOARP]2.0.CO;2; Meehan AP, 1984, RATS MICE THEIR BIOL; MILLER CJ, 1995, NEW ZEAL J ECOL, V19, P19; MILLS JN, 1991, J MAMMAL, V72, P470, DOI 10.2307/1382129; MILLS JN, 1992, J MAMMAL, V73, P515, DOI 10.2307/1382017; MOORS PJ, 1985, NEW ZEAL J ECOL, V8, P37; MURPHY EC, 1992, NEW ZEAL J ECOL, V16, P33; NEWSOME AE, 1969, J ANIM ECOL, V38, P361, DOI 10.2307/2776; Oksanen J., 2013, PACKAGE VEGAN COMMUN; PEARSON OP, 1963, ECOLOGY, V44, P540, DOI 10.2307/1932533; Pocock MJO, 2004, J ANIM ECOL, V73, P878, DOI 10.1111/j.0021-8790.2004.00863.x; PYE T, 1980, J ZOOL, V192, P237; R Core Team, 2013, R LANG ENV STAT COMP; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Robinet O, 1998, BIOL CONSERV, V86, P223, DOI 10.1016/S0006-3207(97)00181-X; ROWE F P, 1973, Mammal Review, V3, P58, DOI 10.1111/j.1365-2907.1973.tb00172.x; ROWE FP, 1983, J ZOOL, V199, P259; SCHEIN MW, 1953, AM J TROP MED HYG, V2, P1117, DOI 10.4269/ajtmh.1953.2.1117; Singleton G, 2001, P ROY SOC B-BIOL SCI, V268, P1741, DOI 10.1098/rspb.2001.1638; Singleton G. R., 1999, Ecologically-based management of rodent pests., P17; Singleton GR, 2005, BIOL J LINN SOC, V84, P617, DOI 10.1111/j.1095-8312.2005.00458.x; Singleton GR, 2003, ACIAR MONOGRAPH, V96; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stenseth NC, 2003, FRONT ECOL ENVIRON, V1, P367, DOI 10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2; Stenseth NC, 2001, J APPL ECOL, V38, P1020, DOI 10.1046/j.1365-2664.2001.00656.x; STICKEL LF, 1979, J ANIM ECOL, V48, P871, DOI 10.2307/4200; Thorsen M, 2000, BIOL CONSERV, V96, P133, DOI 10.1016/S0006-3207(00)00059-8; TRIGGS GS, 1991, J ZOOL, V225, P449, DOI 10.1111/j.1469-7998.1991.tb03828.x; Venables LSV, 1942, J ANIM ECOL, V11, P44, DOI 10.2307/1300; Vadell MV, 2010, INT J PEST MANAGE, V56, P327, DOI 10.1080/09670874.2010.499479; Villa-C. Beatriz, 1997, Anales del Instituto de Biologia Universidad Nacional Autonoma de Mexico Serie Zoologia, V68, P165; Williams B. K., 2002, ANAL MANAGEMENT ANIM; Wu SY, 2006, ZOOL STUD, V45, P467; Zar J. H., 1996, BIOSTATISTICAL ANAL 83 7 9 2 45 CSIRO PUBLISHING COLLINGWOOD 150 OXFORD ST, PO BOX 1139, COLLINGWOOD, VICTORIA 3066, AUSTRALIA 1035-3712 1448-5494 WILDLIFE RES Wildl. Res. 2014 41 2 172 184 10.1071/WR14005 13 Ecology; Zoology Environmental Sciences & Ecology; Zoology AO7AG WOS:000341503600009 2019-02-21 J Del Giudice, M Del Giudice, Marco An Evolutionary Life History Framework for Psychopathology Marco Del Giudice PSYCHOLOGICAL INQUIRY English Article evolutionary psychopathology; fast-slow continuum; individual differences; life history strategies; life history theory; mental disorders OBSESSIVE-COMPULSIVE DISORDER; HIGHER-ORDER FACTORS; SPECTRUM QUOTIENT AQ; COMMON MENTAL-DISORDERS; HUMAN REPRODUCTIVE STRATEGIES; ANOREXIA-NERVOSA SUBTYPES; SMOKE DETECTOR PRINCIPLE; BROADER AUTISM PHENOTYPE; SUBSTANCE USE DISORDERS; EATING-DISORDERS In this article, I outline a general framework for the evolutionary analysis of mental disorders based on the concepts of life history theory. I synthesize and extend a large body of work showing that individual differences in life history strategy set the stage for the development of psychopathology. My analysis centers on the novel distinction between fast spectrum and slow spectrum disorders. I describe four main causal pathways from life history strategies to psychopathology, argue that psychopathology can arise at both ends of the fast-slow continuum of life history variation, and provide heuristic criteria for classifying disorders as fast or slow spectrum pathologies. I then apply the fast-slow distinction to a diverse sample of common mental disorders: externalizing disorders, schizophrenia and autism spectrum disorders, obsessive-compulsive disorders, eating disorders, and depression. The framework integrates previously disconnected models of psychopathology within a common frame of reference and has far-reaching implications for the classification of mental disorders. [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Abed RT, 2000, BRIT J PSYCHIAT, V177, P1, DOI 10.1192/bjp.177.1.1; Abed RT, 1998, BEHAV NEUROL, V11, P245; Adriaens PR, 2011, MALADAPTING MINDS PH; Ahmed AO, 2012, ACTA PSYCHIAT SCAND, V125, P54, DOI 10.1111/j.1600-0447.2011.01800.x; Alexander N, 2011, BEHAV BRAIN RES, V216, P53, DOI 10.1016/j.bbr.2010.07.003; Alink LRA, 2008, DEV PSYCHOBIOL, V50, P427, DOI 10.1002/dev.20300; Allan S., 2012, Eating and its disorders, P154; Allen NB, 2006, PROG NEURO-PSYCHOPH, V30, P815, DOI 10.1016/j.pnpbp.2006.01.007; Altman SE, 2009, CLIN PSYCHOL REV, V29, P638, DOI 10.1016/j.cpr.2009.08.001; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Angst J, 2007, ACTA PSYCHIAT SCAND, V115, P72, DOI 10.1111/j.1600-0447.2007.00965.x; Anholt GE, 2010, J AUTISM DEV DISORD, V40, P580, DOI 10.1007/s10803-009-0922-1; Archer J, 2009, BEHAV BRAIN SCI, V32, P249, DOI 10.1017/S0140525X09990951; Armour S, 2007, J YOUTH ADOLESCENCE, V36, P141, DOI 10.1007/s10964-006-9128-4; Asai T, 2011, PSYCHIAT RES, V185, P78, DOI 10.1016/j.psychres.2009.07.018; Asendorpf JB, 1999, J PERS SOC PSYCHOL, V77, P815, DOI 10.1037//0022-3514.77.4.815; Ashton MC, 2009, PERS SOC PSYCHOL REV, V13, P79, DOI 10.1177/1088868309338467; Austin EJ, 2005, PERS INDIV DIFFER, V38, P451, DOI 10.1016/j.paid.2004.04.022; AVIA MD, 1995, PERS INDIV DIFFER, V19, P81, DOI 10.1016/0191-8869(95)00007-S; Avila C, 2004, J ABNORM CHILD PSYCH, V32, P295, DOI 10.1023/B:JACP.0000026143.70832.4b; Awadalla P, 2010, AM J HUM GENET, V87, P316, DOI 10.1016/j.ajhg.2010.07.019; Bakermans-Kranenburg MJ, 2009, ATTACH HUM DEV, V11, P223, DOI 10.1080/14616730902814762; Bannon S, 2002, PSYCHIAT RES, V110, P165, DOI 10.1016/S0165-1781(02)00104-X; Baron-Cohen S, 2001, J AUTISM DEV DISORD, V31, P5, DOI 10.1023/A:1005653411471; Baron-Cohen S., 2003, ESSENTIAL DIFFERENCE; Baron-Cohen S, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1001081; Baron-Cohen S, 2009, PHILOS T R SOC B, V364, P1377, DOI 10.1098/rstb.2008.0337; Barr KN, 2004, EVOLUTIONARY PSYCHOLOGY, PUBLIC POLICY AND PERSONAL DECISIONS, P293; Bassett AS, 1996, SCHIZOPHR RES, V21, P151, DOI 10.1016/0920-9964(96)00018-7; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baumeister H, 2011, J AFFECT DISORDERS, V139, P126; Beauchaine TP, 2011, DEV PSYCHOPATHOL, V23, P975, DOI 10.1017/S0954579411000459; Beaussart ML, 2012, J CREATIVE BEHAV, V46, P151, DOI 10.1002/jocb.11; Bejerot S, 2007, AUTISM, V11, P101, DOI 10.1177/1362361307075699; Belloch A, 2010, J ANXIETY DISORD, V24, P573, DOI 10.1016/j.janxdis.2010.03.017; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Benros ME, 2012, ANN NY ACAD SCI, V1262, P56, DOI 10.1111/j.1749-6632.2012.06638.x; Besiroglu L, 2011, ACTA PSYCHIAT SCAND, V124, P141, DOI 10.1111/j.1600-0447.2011.01726.x; Besiroglu L, 2007, DEPRESS ANXIETY, V24, P461, DOI 10.1002/da.20240; Betancur C, 2011, BRAIN RES, V1380, P42, DOI 10.1016/j.brainres.2010.11.078; Bhasin TK, 2007, J AUTISM DEV DISORD, V37, P667, DOI 10.1007/s10803-006-0194-y; Block J., 2002, PERSONALITY AFFECT P; Block J. H., 1980, DEV COGNITION AFFECT, V13, P39; BLOCK JH, 1991, J PERS SOC PSYCHOL, V60, P726, DOI 10.1037/0022-3514.60.5.726; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Bogg T, 2004, PSYCHOL BULL, V130, P887, DOI 10.1037/0033-2909-130.6.887; Bollen E, 2004, EUR EAT DISORD REV, V12, P117, DOI 10.1002/erv.551; Borowsky IW, 2009, PEDIATRICS, V124, pE81, DOI 10.1542/peds.2008-3425; Bowlby J., 1973, ATTACHMENT LOSS, V2; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Boyer P, 2006, BEHAV BRAIN SCI, V29, P595, DOI 10.1017/S0140525X06009332; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Brakoulias V, 2013, COMPR PSYCHIAT, V54, P750, DOI 10.1016/j.comppsych.2013.02.005; Brezina T, 2009, CRIMINOLOGY, V47, P1091, DOI 10.1111/j.1745-9125.2009.00170.x; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; BROWN GW, 1995, PSYCHOL MED, V25, P7, DOI 10.1017/S003329170002804X; Brune M, 2006, PERSPECT BIOL MED, V49, P317, DOI 10.1353/pbm.2006.0037; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; Brune M, 2008, TXB EVOLUTIONARY PSY; Burns JK, 2004, BEHAV BRAIN SCI, V27, P831; Burt SA, 2003, ARCH GEN PSYCHIAT, V60, P505, DOI 10.1001/archpsyc.60.5.505; Buss D., 2005, HDB EVOLUTIONARY PSY; Buss D, 2011, EVOLUTIONARY PSYCHOL; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Cale EM, 2002, CLIN PSYCHOL REV, V22, P1179, DOI 10.1016/S0272-7358(01)00125-8; Calvo R, 2009, EUR PSYCHIAT, V24, P201, DOI 10.1016/j.eurpsy.2008.11.003; Carragher N, 2009, J AFFECT DISORDERS, V113, P88, DOI 10.1016/j.jad.2008.05.015; Caspi A, 2014, CLIN PSYCHOL SCI, V2, P119, DOI 10.1177/2167702613497473; Cassin SE, 2005, CLIN PSYCHOL REV, V25, P895, DOI 10.1016/j.cpr.2005.04.012; Cavedini P, 2010, BIOL PSYCHIAT, V67, P1178, DOI 10.1016/j.biopsych.2010.02.012; Chamberlain SR, 2007, AM J PSYCHIAT, V164, P335, DOI 10.1176/appi.ajp.164.2.335; Chamberlain SR, 2006, AM J PSYCHIAT, V163, P1282, DOI 10.1176/appi.ajp.163.7.1282; Champagne FA, 2010, DEV PSYCHOBIOL, V52, P299, DOI 10.1002/dev.20436; Chapman BP, 2011, J PERS SOC PSYCHOL, V101, P593, DOI 10.1037/a0024289; Charnov Eric L., 1993, P1; Chen LS, 2000, J AFFECT DISORDERS, V59, P1, DOI 10.1016/S0165-0327(99)00132-9; Chen P, 2011, DEV PSYCHOL, V47, P1633, DOI 10.1037/a0025327; Chevallier C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031107; Chiappe D, 2005, J GEN PSYCHOL, V132, P5, DOI 10.3200/GENP.132.1.5-40; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; CHISHOLM JS, 1999, DEATH HOPE SEX STEPS; Claes L, 2012, INT J EAT DISORDER, V45, P407, DOI 10.1002/eat.20966; Claridge G, 1996, BRIT J CLIN PSYCHOL, V35, P103, DOI 10.1111/j.2044-8260.1996.tb01166.x; Claridge G., 1997, SCHIZOTYPY IMPLICATI; Clark LA, 2005, J ABNORM PSYCHOL, V114, P505, DOI 10.1037/0021-843X.114.4.505; Clark LA, 2006, BRIT J PSYCHIAT, V189, P481, DOI 10.1192/bjp.bp.106.03825; Coghill D, 2012, J CHILD PSYCHOL PSYC, V53, P469, DOI 10.1111/j.1469-7610.2011.02511.x; Coles ME, 2008, J PSYCHIATR RES, V42, P289, DOI 10.1016/j.jpsychires.2006.12.009; Confer JC, 2010, EVOL HUM BEHAV, V31, P348, DOI 10.1016/j.evolhumbehav.2010.04.002; Copping LT, 2013, HUM NATURE-INT BIOS, V24, P137, DOI 10.1007/s12110-013-9163-2; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; COSTA PT, 1995, J PERS ASSESS, V64, P21, DOI 10.1207/s15327752jpa6401_2; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Crespi B, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-119; Crespi B, 2010, P NATL ACAD SCI USA, V107, P1736, DOI 10.1073/pnas.0906080106; Crespi BJ, 2010, ANN NY ACAD SCI, V1206, P80, DOI 10.1111/j.1749-6632.2010.05707.x; Crespi BJ, 2000, HEREDITY, V84, P623, DOI 10.1046/j.1365-2540.2000.00746.x; Crijnen AAM, 1997, J AM ACAD CHILD PSY, V36, P1269, DOI 10.1097/00004583-199709000-00020; Crow TJ, 1995, EUR NEUROPSYCHOPHARM, V5, P59, DOI 10.1016/0924-977X(95)00032-K; Crow TJ, 1997, SCHIZOPHR RES, V28, P127, DOI 10.1016/S0920-9964(97)00110-2; Crowell S. E., 2013, CHILD ADOLESCENT PSY, P577; Cui M, 2012, PERS RELATIONSHIP, V19, P354, DOI 10.1111/j.1475-6811.2011.01366.x; Currie TE, 2009, EVOL HUM BEHAV, V30, P409, DOI 10.1016/j.evolhumbehav.2009.06.005; Curry OS, 2008, PERS INDIV DIFFER, V44, P780, DOI 10.1016/j.paid.2007.09.023; DACOSTA M, 1992, INT J EAT DISORDER, V11, P305, DOI 10.1002/1098-108X(199205)11:4<305::AID-EAT2260110403>3.0.CO;2-2; Decuyper M, 2009, EUR J PERSONALITY, V23, P531, DOI 10.1002/per.729; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Del Giudice M, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0016040; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P45, DOI 10.1017/S0140525X09000272; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; DeYoung C. G., 2011, HDB SELF REGULATION, P485; DeYoung CG, 2002, PERS INDIV DIFFER, V33, P533, DOI 10.1016/S0191-8869(01)00171-4; DeYoung CG, 2008, J ABNORM PSYCHOL, V117, P947, DOI 10.1037/a0013742; DeYoung CG, 2006, J PERS SOC PSYCHOL, V91, P1138, DOI 10.1037/0022-3514.91.6.1138; Diamond A, 2013, ANNU REV PSYCHOL, V64, P135, DOI 10.1146/annurev-psych-113011-143750; DICKMAN SJ, 1990, J PERS SOC PSYCHOL, V58, P95, DOI 10.1037//0022-3514.58.1.95; Digman JM, 1997, J PERS SOC PSYCHOL, V73, P1246, DOI 10.1037/0022-3514.73.6.1246; Dinsdale NL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063316; Dunbar R., 2007, OXFORD HDB EVOLUTION; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Dunn MJ, 2010, EVOL HUM BEHAV, V31, P383, DOI 10.1016/j.evolhumbehav.2010.05.001; Dussault F, 2011, J CHILD PSYCHOL PSYC, V52, P130, DOI 10.1111/j.1469-7610.2010.02313.x; Dwyer DS, 2011, MOL PSYCHIATR, V16, P595, DOI 10.1038/mp.2010.95; Eddy KT, 2008, AM J PSYCHIAT, V165, P245, DOI 10.1176/appi.ajp.2007.07060951; Eisen J. L., 2012, OXFORD HDB OBSESSIVE, P189; Eisenberg N, 2001, CHILD DEV, V72, P1112, DOI 10.1111/1467-8624.00337; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2006, DEV REV, V26, P175, DOI 10.1016/j.dr.2006.02.004; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; ELLISON PT, 2001, FERTILE GROUND NATUR; Essau CA, 2006, ASSESSMENT, V13, P454, DOI 10.1177/1073191106287354; Ettelt S, 2007, ACTA PSYCHIAT SCAND, V115, P41, DOI 10.1111/j.1600-0447.2006.00835.x; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Falter CM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032774; Fanning JR, 2012, PERS INDIV DIFFER, V53, P868, DOI 10.1016/j.paid.2012.06.019; Farrington DP, 2005, CLIN PSYCHOL PSYCHOT, V12, P177, DOI 10.1002/cpp.448; Ferguson CJ, 2011, REV GEN PSYCHOL, V15, P11, DOI 10.1037/a0022607; Figueredo A. J., 2012, OXFORD HDB SEXUAL CO, P72; Figueredo A. J., 2011, J SOCIAL EVOLUTIONAR, V5, P14, DOI DOI 10.1037/H0099277; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2010, PSYCHOL EMOT MOTIV A, P3; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Fiske AP, 1997, J NERV MENT DIS, V185, P211, DOI 10.1097/00005053-199704000-00001; Flinn MV, 2011, NEUROSCI BIOBEHAV R, V35, P1611, DOI 10.1016/j.neubiorev.2011.01.005; Fontenelle LF, 2008, PROG NEURO-PSYCHOPH, V32, P1, DOI 10.1016/j.pnpbp.2007.06.04; Forbush KT, 2010, J ABNORM PSYCHOL, V119, P282, DOI 10.1037/a0019189; Fossati A, 2003, PERS INDIV DIFFER, V35, P1007, DOI 10.1016/S0191-8869(02)00314-8; Fowles D. C., 2006, HDB PSYCHOPATHY, P14; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Frederick MJ, 2012, EVOL PSYCHOL-US, V10, P342; FRIEDMAN HS, 1995, AM PSYCHOL, V50, P69, DOI 10.1037/0003-066X.50.2.69; Frith U, 2011, CURR BIOL, V21, pR994, DOI 10.1016/j.cub.2011.11.001; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gardener H, 2009, BRIT J PSYCHIAT, V195, P7, DOI 10.1192/bjp.bp.108.051672; Ge X., 2010, CURRENT DIRECTIONS P, V18, P327; Geary D. C., 2005, EVOLUTIONARY PSYCHOL, P483; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gettler LT, 2011, AM J HUM BIOL, V23, P609, DOI 10.1002/ajhb.21187; Gilbert P, 1998, PSYCHOL MED, V28, P585, DOI 10.1017/S0033291798006710; Gilbert P, 1992, DEPRESSION EVOLUTION; Gillath O, 2006, DYNAMICS ROMANTIC LO, P337; Gilman SR, 2012, NAT NEUROSCI, V15, P1723, DOI 10.1038/nn.3261; GJERDE PF, 1995, CHILD DEV, V66, P1277, DOI 10.2307/1131647; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glass D. J., 2012, THESIS STATE U NEW Y; Glenn AL, 2011, AGGRESS VIOLENT BEH, V16, P371, DOI 10.1016/j.avb.2011.03.009; Gluckman P.D., 2009, PRINCIPLES EVOLUTION; Gluckman PD, 2011, EVOL APPL, V4, P249, DOI 10.1111/j.1752-4571.2010.00164.x; Godart N, 2006, INT J EAT DISORDER, V39, P772, DOI 10.1002/eat.20274; Graber JA, 2004, J AM ACAD CHILD PSY, V43, P718, DOI 10.1097/01.chi.0000120022.14101.11; Graber JA, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P74, DOI 10.1017/CBO9780511551963.005; Grafen A., 1985, Oxford Surveys in Evolutionary Biology, V2, P28; Grant BF, 2004, J CLIN PSYCHIAT, V65, P948; Grinter EJ, 2009, J AUTISM DEV DISORD, V39, P670, DOI 10.1007/s10803-008-0658-3; Grisham JR, 2008, EUR ARCH PSY CLIN N, V258, P107, DOI 10.1007/s00406-007-0789-0; Gruzelier JH, 1996, SCHIZOPHR RES, V21, P183, DOI 10.1016/0920-9964(96)00050-3; Haberstick BC, 2005, BEHAV GENET, V35, P381, DOI 10.1007/s10519-004-1747-5; Hagen EH, 1999, EVOL HUM BEHAV, V20, P325, DOI 10.1016/S1090-5138(99)00016-1; Haidt J, 2003, SER AFFECTIVE SCI, P852; Halbreich U, 2007, J AFFECT DISORDERS, V102, P245, DOI 10.1016/j.jad.2006.09.023; Halmi KA, 2003, INT J EAT DISORDER, V33, P308, DOI 10.1002/eat.10138; Hansen S, 2011, BRAIN COGNITION, V76, P364, DOI 10.1016/j.bandc.2011.04.004; Happe F, 2006, NAT NEUROSCI, V9, P1218, DOI 10.1038/nn1770; Happe F, 2009, PHILOS T R SOC B, V364, P1369, DOI 10.1098/rstb.2008.0332; Happe F, 2008, NEUROPSYCHOL REV, V18, P287, DOI 10.1007/s11065-008-9076-8; Hare R. D., 2006, HDB PSYCHOPATHY, P58; Harris AC, 2002, PSYCHOL REC, V52, P429, DOI 10.1007/BF03395196; Harris GT, 2007, J PERS DISORD, V21, P1, DOI 10.1521/pedi.2007.21.1.1; Haselton MG, 2006, HUM NATURE-INT BIOS, V17, P50, DOI 10.1007/s12110-006-1020-0; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Haukka J, 2003, AM J PSYCHIAT, V160, P460, DOI 10.1176/appi.ajp.160.3.460; Hawley P. H, 2011, EVOLUTION PERSONALIT, P61; Hawley PH, 2008, INT J BEHAV DEV, V32, P76, DOI 10.1177/0165025407084054; Hawley PH, 1999, DEV REV, V19, P97, DOI 10.1006/drev.1998.0470; Hellemans H, 2007, J AUTISM DEV DISORD, V37, P260, DOI 10.1007/s10803-006-0159-1; Herman KC, 2007, J CONSULT CLIN PSYCH, V75, P716, DOI 10.1037/0022-006X.75.5.716; Hettema JM, 2008, AM J MED GENET C, V148C, P140, DOI 10.1002/ajmg.c.30171; Hill EM, 1997, HUM NATURE-INT BIOS, V8, P287, DOI 10.1007/BF02913037; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill Kim, 1993, Evolutionary Anthropology, V2, P78, DOI 10.1002/evan.1360020303; Hoek HW, 2006, CURR OPIN PSYCHIATR, V19, P389, DOI 10.1097/01.yco.0000228759.95237.78; Hofmann W, 2012, TRENDS COGN SCI, V16, P174, DOI 10.1016/j.tics.2012.01.006; Hollander E, 2003, PSYCHIAT RES, V117, P11, DOI 10.1016/S0165-1781(02)00304-9; Holtzman Nicholas S, 2013, Evol Psychol, V11, P1101; Hopwood CJ, 2010, COMPR PSYCHIAT, V51, P585, DOI 10.1016/j.comppsych.2010.03.006; Huey SJ, 1997, J ABNORM PSYCHOL, V106, P404, DOI 10.1037/0021-843X.106.3.404; Ingudomnuku E, 2007, HORM BEHAV, V51, P597, DOI 10.1016/j.yhbeh.2007.02.001; Ivarsson T, 2008, J ANXIETY DISORD, V22, P969, DOI 10.1016/j.janxdis.2007.10.003; Izuma K, 2011, P NATL ACAD SCI USA, V108, P17302, DOI 10.1073/pnas.1107038108; Jackson E. D, 2011, MALADAPTING MINDS PH, P173; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Jobe LE, 2007, PERS INDIV DIFFER, V42, P1479, DOI 10.1016/j.paid.2006.10.021; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jones D. N., 2007, EVOLUTIONARY PSYCHOL, V5, P367; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones S, 2012, PSYCHOL ASSESSMENT, V24, P255, DOI 10.1037/a0025264; Jones SE, 2011, J CRIM JUST, V39, P329, DOI 10.1016/j.jcrimjus.2011.03.004; Juda MN, 2004, EVOL HUM BEHAV, V25, P200, DOI 10.1016/j.evolhumbehav.2004.02.001; Just C, 2011, PERS INDIV DIFFER, V50, P765, DOI 10.1016/j.paid.2011.01.008; Kahn JA, 2002, J ADOLESCENT HEALTH, V30, P229, DOI 10.1016/S1054-139X(01)00391-3; Kaiser J, 1999, INT J PSYCHOPHYSIOL, V34, P237, DOI 10.1016/S0167-8760(99)00081-1; Kalkman HO, 2012, NEUROSCI BIOBEHAV R, V36, P2206, DOI 10.1016/j.neubiorev.2012.07.008; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kastner RM, 2012, PERS INDIV DIFFER, V53, P644, DOI 10.1016/j.paid.2012.05.005; Keel PK, 2004, ARCH GEN PSYCHIAT, V61, P192, DOI 10.1001/archpsyc.61.2.192; Keller MC, 2006, J PERS SOC PSYCHOL, V91, P316, DOI 10.1037/0022-3514.91.2.316; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Keltner D., 2006, EVOLUTION SOCIAL PSY, P115; Keltner D, 1998, REV GEN PSYCHOL, V2, P320, DOI [10.1037/1089-2680.2.3.320, DOI 10.1037/1089-2680.2.3.320]; Kendler KS, 2005, AM J PSYCHIAT, V162, P250, DOI 10.1176/appi.ajp.162.2.250; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P789, DOI 10.1001/archpsyc.60.8.789; Kendler KS, 2003, ARCH GEN PSYCHIAT, V60, P929, DOI 10.1001/archpsyc.60.9.929; Kennair L. E. O, 2011, EVOLUTION PERSONALIT, P451; Kennair LEO, 2003, CURR OPIN PSYCHIATR, V16, P691, DOI 10.1097/01.yco.0000097655.75497.2e; Kenrick DT, 1996, CHILD DEV, V67, P1499, DOI 10.1111/j.1467-8624.1996.tb01810.x; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; Kessler RC, 2005, ARCH GEN PSYCHIAT, V62, P593, DOI 10.1001/archpsyc.62.6.593; Kim S, 2011, PSYCHOL BULL, V137, P68, DOI 10.1037/a0021466; Kinney DK, 2000, CREATIVITY RES J, V13, P17; Kirk KM, 2001, EVOLUTION, V55, P423; Knickmeyer RC, 2006, DEV MED CHILD NEUROL, V48, P1007, DOI 10.1017/S0012162206222229; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kong A, 2012, NATURE, V488, P471, DOI 10.1038/nature11396; Korte SM, 2005, NEUROSCI BIOBEHAV R, V29, P3, DOI 10.1016/j.neubiorev.2004.08.009; Kotov R, 2010, PSYCHOL BULL, V136, P768, DOI 10.1037/a0020327; Krueger RF, 2002, J ABNORM PSYCHOL, V111, P411, DOI 10.1037//0021-843X.111.3.411; Krueger RF, 1998, J ABNORM PSYCHOL, V107, P216, DOI 10.1037/0021-843X.107.2.216; Krueger RF, 1999, ARCH GEN PSYCHIAT, V56, P921, DOI 10.1001/archpsyc.56.10.921; Krueger RF, 2011, J PERS DISORD, V25, P170, DOI 10.1521/pedi.2011.25.2.170; Kruger D. J., 2008, J SOCIAL EVOLUTIONAR, V2, P1, DOI DOI 10.1037/H0099336; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Kuzawa CW, 2012, CURR ANTHROPOL, V53, pS369, DOI 10.1086/667410; Kyaga S, 2011, BRIT J PSYCHIAT, V199, P373, DOI 10.1192/bjp.bp.110.085316; La Greca AM, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P318, DOI 10.1017/CBO9780511551963.017; Laghi F, 2009, SOC INDIC RES, V90, P181, DOI 10.1007/s11205-008-9249-0; Lahey BB, 2003, CAUSES OF CONDUCT DISORDER AND JUVENILE DELINQUENCY, P76; Lahey BB, 2008, J ABNORM CHILD PSYCH, V36, P187, DOI 10.1007/s10802-007-9169-5; Lahey BB, 2012, J CHILD PSYCHOL PSYC, V53, P536, DOI 10.1111/j.1469-7610.2011.02509.x; Lahey BB, 2011, ARCH GEN PSYCHIAT, V68, P181, DOI 10.1001/archgenpsychiatry.2010.192; Lalumiere M, 2008, EVOLUTIONARY FORENSI, P176; Lalumiere M. L., 2008, EVOLUTIONARY FORENSI, P139, DOI DOI 10.1093/ACPROF:OSO/9780195325; Lalumiere ML, 1996, PERS INDIV DIFFER, V21, P33, DOI 10.1016/0191-8869(96)00059-1; Leadbeater BJ, 1999, DEV PSYCHOL, V35, P1268, DOI 10.1037/0012-1649.35.5.1268; Lease AM, 2002, SOC DEV, V11, P508, DOI 10.1111/1467-9507.00213; Lee HJ, 2010, BEHAV RES THER, V48, P571, DOI 10.1016/j.brat.2010.03.006; Lee HJ, 2009, BEHAV RES THER, V47, P294, DOI 10.1016/j.brat.2009.01.002; Lee HJ, 2005, J ANXIETY DISORD, V19, P793, DOI 10.1016/j.janxdis.2004.10.001; Lee HJ, 2005, J CLIN PSYCHOL, V61, P401, DOI 10.1002/jcdp.20115; Lee HJ, 2003, BEHAV RES THER, V41, P11, DOI 10.1016/S0005-7967(01)00101-2; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Lejuez CW, 2002, J EXP PSYCHOL-APPL, V8, P75, DOI 10.1037//1076-898X.8.2.75; Leonard H, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017875; Levesque M, 2010, AGGRESSIVE BEHAV, V36, P358, DOI 10.1002/ab.20362; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Li XY, 2012, BEHAV GENET, V42, P268, DOI 10.1007/s10519-011-9506-x; Lien YJ, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024103; Loehlin JC, 2011, J RES PERS, V45, P44, DOI 10.1016/j.jrp.2010.11.008; Lorber MF, 2004, PSYCHOL BULL, V130, P531, DOI 10.1037/0033-2909.130.4.531; Lu HJ, 2012, EVOL PSYCHOL-US, V10, P120, DOI 10.1177/147470491201000113; Lucas RE, 2000, J PERS SOC PSYCHOL, V79, P452, DOI 10.1037/0022-3514.79.3.452; Lynam D. R., 2006, HDB PSYCHOPATHY, P133; Lynam DR, 2003, AGGRESSIVE BEHAV, V29, P316, DOI 10.1002/ab.10073; MacCabe JH, 2009, PSYCHOL MED, V39, P1667, DOI 10.1017/S0033291709005431; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; MacDonald K, 1999, POPUL ENVIRON, V21, P223; MACDONALD K, 1995, J PERS, V63, P525, DOI 10.1111/j.1467-6494.1995.tb00505.x; MacDonald K. B., 2012, J SOCIAL EVOLUTIONAR, V6, P260; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Martel MM, 2013, PSYCHOL BULL, V139, P1221, DOI 10.1037/a0032247; Martin LR, 2007, HEALTH PSYCHOL, V26, P428, DOI 10.1037/0278-6133.26.4.428; Mataix-Cols D, 2005, AM J PSYCHIAT, V162, P228, DOI 10.1176/appi.ajp.162.2.228; McAdams T, 2012, J RES ADOLESCENCE, V22, P100, DOI 10.1111/j.1532-7795.2011.00758.x; McGrath J. J., 2011, SCHIZOPHRENIA, P226; McKay D, 2004, CLIN PSYCHOL REV, V24, P283, DOI 10.1016/j.cpr.2004.04.003; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Meaney MJ, 2007, ADV GENET, V59, P173, DOI 10.1016/S0065-2660(07)59007-3; Mendle J, 2007, DEV REV, V27, P151, DOI 10.1016/j.dr.2006.11.001; Mendle J, 2012, DEV REV, V32, P49, DOI 10.1016/j.dr.2011.11.001; Miller GF, 2007, SCHIZOPHR RES, V93, P317, DOI 10.1016/j.schres.2007.02.007; Miller GE, 2007, PSYCHOL BULL, V133, P25, DOI 10.1037/0033-2909.133.1.25; Miyake A, 2000, COGNITIVE PSYCHOL, V41, P49, DOI 10.1006/cogp.1999.0734; Miyake A, 2012, CURR DIR PSYCHOL SCI, V21, P8, DOI 10.1177/0963721411429458; Moffitt T.E., 2005, DEV PSYCHOL AGGRESS, P161; Moffitt TE, 1996, DEV PSYCHOPATHOL, V8, P399, DOI 10.1017/S0954579400007161; Morgan AB, 2000, CLIN PSYCHOL REV, V20, P113, DOI 10.1016/S0272-7358(98)00096-8; Moritz S, 2002, ARCH CLIN NEUROPSYCH, V17, P477, DOI 10.1016/S0887-6177(01)00130-5; Mottron L, 2006, J AUTISM DEV DISORD, V36, P27, DOI 10.1007/s10803-005-0040-7; Moulding R, 2007, J ANXIETY DISORD, V21, P677, DOI 10.1016/j.janxdis.2006.10.001; Muris P, 2005, CLIN CHILD FAM PSYCH, V8, P271, DOI 10.1007/s10567-005-8809-y; Musek J, 2007, J RES PERS, V41, P1213, DOI 10.1016/j.jrp.2007.02.003; NANKO S, 1993, ACTA PSYCHIAT SCAND, V87, P400, DOI 10.1111/j.1600-0447.1993.tb03395.x; Nederlof AF, 2012, PERS INDIV DIFFER, V53, P33, DOI 10.1016/j.paid.2012.02.013; Nelson MT, 2013, NEUROSCI BIOBEHAV R, V37, P317, DOI 10.1016/j.neubiorev.2013.01.004; Nesse R M, 2001, Med Health Care Philos, V4, P37, DOI 10.1023/A:1009938513897; Nesse R M, 1990, Hum Nat, V1, P261, DOI 10.1007/BF02733986; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-5; Nesse RM, 2004, BEHAV BRAIN SCI, V27, P862; Nesse RM, 2005, EVOL HUM BEHAV, V26, P88, DOI 10.1016/j.evolhumbehav.2004.08.002; Nesse RM, 2004, PHILOS T ROY SOC B, V359, P1333, DOI 10.1098/rstb.2004.1511; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; Nesse RM, 2001, ANN NY ACAD SCI, V935, P75; NESSE RM, 2006, AM PSYCHIAT PUBLISHI, P159; Nestadt G, 2009, PSYCHOL MED, V39, P1491, DOI 10.1017/S0033291708004753; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2004, J AFFECT DISORDERS, V81, P91, DOI 10.1016/j.jad.2003.08.009; Nettle D., 2001, STRONG IMAGINATION M; Nettle D., 2011, EVOLUTION PERSONALIT, P5; Nettle D, 2012, CURR BIOL, V22, pR712, DOI 10.1016/j.cub.2012.06.020; Nettle D, 2006, BEHAV BRAIN SCI, V29, P418, DOI 10.1017/S0140525X06359092; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Nettle D, 2009, J THEOR BIOL, V257, P100, DOI 10.1016/j.jtbi.2008.10.033; Nettle D, 2006, J RES PERS, V40, P876, DOI 10.1016/j.jrp.2005.09.004; O'Connor LE, 1999, J SOC CLIN PSYCHOL, V18, P181, DOI 10.1521/jscp.1999.18.2.181; O'Connor LE, 2002, J AFFECT DISORDERS, V71, P19, DOI 10.1016/S0165-0327(01)00408-6; O'Hearn K, 2008, DEV PSYCHOPATHOL, V20, P1103, DOI 10.1017/S0954579408000527; O'Keane V, 2012, PSYCHONEUROENDOCRINO, V37, P1589, DOI 10.1016/j.psyneuen.2012.03.009; Oakley Barbara, 2012, PATHOLOGICAL ALTRUIS; Olderbak SG, 2010, PERS INDIV DIFFER, V49, P234, DOI 10.1016/j.paid.2010.03.041; Patterson PH, 2011, INFECT BEHAV BRAIN I; Peat C, 2009, INT J EAT DISORDER, V42, P590, DOI 10.1002/eat.20717; Penades R, 2007, EUR PSYCHIAT, V22, P404, DOI 10.1016/j.eurpsy.2006.05.001; PENNINGTON R, 1988, AM J PHYS ANTHROPOL, V77, P303, DOI 10.1002/ajpa.1330770304; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Phillips KA, 2010, DEPRESS ANXIETY, V27, P528, DOI 10.1002/da.20705; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Placek CD, 2012, P ROY SOC B-BIOL SCI, V279, P4003, DOI 10.1098/rspb.2012.1022; Podubinski T, 2012, PERS INDIV DIFFER, V52, P586, DOI 10.1016/j.paid.2011.11.025; Pollmann MMH, 2010, J AUTISM DEV DISORD, V40, P470, DOI 10.1007/s10803-009-0888-z; Pooni J, 2012, INT J EAT DISORDER, V45, P583, DOI 10.1002/eat.20980; Porter RJ, 2004, PSYCHOPHARMACOLOGY, V173, P1, DOI 10.1007/s00213-004-1774-1; Potts R, 1998, EVOL ANTHROPOL, V7, P81, DOI 10.1002/(SICI)1520-6505(1998)7:3<81::AID-EVAN3>3.3.CO;2-1; Poyurovsky M, 2005, J PSYCHIATR RES, V39, P399, DOI 10.1016/j.jpsychires.2004.09.004; Poyurovsky M, 2008, PSYCHIAT RES, V159, P254, DOI 10.1016/j.psychres.2007.02.019; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; Pronk TM, 2011, J PERS SOC PSYCHOL, V100, P827, DOI 10.1037/a0021993; PURCELL SM, 2009, NATURE, V0460; Quiles ZN, 1997, J PERS ASSESS, V69, P104, DOI 10.1207/s15327752jpa6901_6; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; Rai D, 2012, J AM ACAD CHILD PSY, V51, P467, DOI 10.1016/j.jaac.2012.02.012; Raison CL, 2013, MOL PSYCHIATR, V18, P15, DOI 10.1038/mp.2012.2; Rapoport JL, 1998, PERSPECT BIOL MED, V41, P159; Rawlings D, 2008, J RES PERS, V42, P465, DOI 10.1016/j.jrp.2007.06.005; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reynolds B, 2006, PERS INDIV DIFFER, V40, P305, DOI 10.1016/j.paid.2005.03.024; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ridley NJ, 2011, AUTISM, V15, P728, DOI 10.1177/1362361310395956; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Robins RW, 1996, J PERS SOC PSYCHOL, V70, P157, DOI 10.1037/0022-3514.70.1.157; Roff D. A., 2002, VARIATION CENTRAL CO, P333; Romer D, 2011, DEVELOPMENTAL SCI, V14, P1119, DOI 10.1111/j.1467-7687.2011.01061.x; Ronald A, 2011, MOL PSYCHIATR, V16, P1039, DOI 10.1038/mp.2010.82; Ross LT, 2002, SOC BEHAV PERSONAL, V30, P453, DOI 10.2224/sbp.2002.30.5.453; Ross SR, 2002, J PERS ASSESS, V79, P53, DOI 10.1207/S15327752JPA7901_04; Rosval L, 2006, INT J EAT DISORDER, V39, P590, DOI 10.1002/eat.20296; ROZIN P, 1994, J PERS SOC PSYCHOL, V66, P870, DOI 10.1037/0022-3514.66.5.870; Rozin P., 2000, HDB EMOTIONS, P637; Rushton JP, 2008, J RES PERS, V42, P1173, DOI 10.1016/j.jrp.2008.03.002; RUSHTON JP, 1987, PSYCHOL REP, V60, P539, DOI 10.2466/pr0.1987.60.2.539; RUSHTON JP, 1985, PERS INDIV DIFFER, V6, P441, DOI 10.1016/0191-8869(85)90137-0; Russo N, 2007, BRAIN COGNITION, V65, P77, DOI 10.1016/j.bandc.2006.04.007; Ruthsatz J, 2012, INTELLIGENCE, V40, P419, DOI 10.1016/j.intell.2012.06.002; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; SAETHER BE, 1987, OIKOS, V48, P79, DOI 10.2307/3565691; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; Samuel DB, 2012, J PERS, V80, P1669, DOI 10.1111/j.1467-6494.2012.00770.x; Sanders SJ, 2012, NATURE, V485, P237, DOI 10.1038/nature10945; Schaller M, 2011, PHILOS T R SOC B, V366, P3418, DOI 10.1098/rstb.2011.0029; Schlomer GL, 2011, PSYCHOL REV, V118, P496, DOI 10.1037/a0024043; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Sebastian C, 2009, J AUTISM DEV DISORD, V39, P1122, DOI 10.1007/s10803-009-0725-4; Shafran R, 1996, J ANXIETY DISORD, V10, P509, DOI 10.1016/S0887-6185(96)00026-6; Shaner A, 2004, SCHIZOPHR RES, V70, P101, DOI 10.1016/j.schres.2003.09.014; Shaner A, 2008, HUM NATURE-INT BIOS, V19, P389, DOI 10.1007/s12110-008-9049-x; Sherman RA, 2013, J PERS SOC PSYCHOL, V105, P873, DOI 10.1037/a0033772; Silverstein B, 2002, AM J PSYCHIAT, V159, P1051, DOI 10.1176/appi.ajp.159.6.1051; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Slade T, 2007, SOC PSYCH PSYCH EPID, V42, P554, DOI 10.1007/s00127-007-0200-5; SLOMAN L, 1987, ETHOL SOCIOBIOL, V8, pS99; Smallwood PD, 1996, AM ZOOL, V36, P392; Smari J, 2008, J BEHAV THER EXP PSY, V39, P228, DOI 10.1016/j.jbtep.2007.07.002; Sobin C, 2000, J PSYCHIATR RES, V34, P15, DOI 10.1016/S0022-3956(99)00023-0; Stamps JA, 2007, ECOL LETT, V10, P355, DOI 10.1111/j.1461-0248.2007.01034.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S. C., 2008, EVOLUTION HLTH DIS; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; STEVENS A, 1996, EVOLUTIONARY PSYCHIA; Stevenson JL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0059329; Stokes MA, 2005, AUTISM, V9, P266, DOI 10.1177/1362361305053258; Stokes M, 2007, J AUTISM DEV DISORD, V37, P1969, DOI 10.1007/s10803-006-0344-2; Suhr JA, 2006, J NERV MENT DIS, V194, P884, DOI 10.1097/01.nmd.0000243929.45895.d9; Sulkowski ML, 2009, PERS INDIV DIFFER, V47, P620, DOI 10.1016/j.paid.2009.05.020; Sullivan PF, 2002, J AFFECT DISORDERS, V68, P273, DOI 10.1016/S0165-0327(00)00364-5; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Szechtman H, 2004, PSYCHOL REV, V111, P111, DOI 10.1037/0033-295X.111.1.111; Tandon R, 2008, SCHIZOPHR RES, V102, P1, DOI 10.1016/j.schres.2008.04.011; Tangney JP, 2007, ANNU REV PSYCHOL, V58, P345, DOI 10.1146/annurev.psych.56.091103.070145; Tasca GA, 2009, EUR EAT DISORD REV, V17, P281, DOI 10.1002/erv.938; Taylor MA, 2008, J AFFECT DISORDERS, V105, P1, DOI 10.1016/j.jad.2007.05.023; Thompson-Brenner H, 2005, BRIT J PSYCHIAT, V186, P516, DOI 10.1192/bjp.186.6.516; Thompson-Brenner H, 2008, COMPR PSYCHIAT, V49, P551, DOI 10.1016/j.comppsych.2008.04.002; Thompson-Brenner H, 2008, J CHILD PSYCHOL PSYC, V49, P170, DOI 10.1111/j.1469-7610.2007.01825.x; Tompson MC, 2008, ADOLESCENT EMOTIONAL DEVELOPMENT AND THE EMERGENCE OF DEPRESSIVE DISORDERS, P280, DOI 10.1017/CBO9780511551963.015; Tops M, 2008, PSYCHONEUROENDOCRINO, V33, P551, DOI 10.1016/j.psyneuen.2008.01.011; Tops M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00152; Tops M, 2010, COGN AFFECT BEHAV NE, V10, P441, DOI 10.3758/CABN.10.4.441; Torgersen S, 2001, ARCH GEN PSYCHIAT, V58, P590, DOI 10.1001/archpsyc.58.6.590; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Troisi A, 1998, DARWINIAN PSYCHIAT; Troisi Alfonso, 2002, Neuro Endocrinol Lett, V23 Suppl 4, P31; Tucker DM, 1995, ANN NY ACAD SCI, V769, P213, DOI 10.1111/j.1749-6632.1995.tb38141.x; Tucker DM, 2007, COGNITIVE THER RES, V31, P189, DOI 10.1007/s10608-006-9115-9; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Ullrich S, 2008, PERS INDIV DIFFER, V44, P1162, DOI 10.1016/j.paid.2007.11.008; Vaidyanathan U, 2011, COMPR PSYCHIAT, V52, P527, DOI 10.1016/j.comppsych.2010.10.006; Vaillancourt T, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2013.0080; Van Eylen L, 2011, RES AUTISM SPECT DIS, V5, P1390, DOI 10.1016/j.rasd.2011.01.025; van Goozen SHM, 2002, ARCH SEX BEHAV, V31, P247, DOI 10.1023/A:1015248803022; van Goozen SHM, 2007, PSYCHOL BULL, V133, P149, DOI 10.1037/0033-2909.133.1.149; van Os J, 2009, PSYCHOL MED, V39, P179, DOI 10.1017/S0033291708003814; VENABLES PH, 1994, BRIT J CLIN PSYCHOL, V33, P277, DOI 10.1111/j.2044-8260.1994.tb01124.x; Verona E, 2011, PSYCHOL ASSESSMENT, V23, P545, DOI 10.1037/a0022055; Vital PM, 2009, J CHILD PSYCHOL PSYC, V50, P1093, DOI 10.1111/j.1469-7610.2009.02076.x; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Vollebergh WAM, 2001, ARCH GEN PSYCHIAT, V58, P597, DOI 10.1001/archpsyc.58.6.597; Wakabayashi A, 2006, PERS INDIV DIFFER, V41, P873, DOI 10.1016/j.paid.2006.04.003; Wakefield J. C., 2011, MALADAPTING MINDS PH, P141; WAKEFIELD JC, 1992, AM PSYCHOL, V47, P373, DOI 10.1037//0003-066X.47.3.373; Wakefield JC, 1999, J ABNORM PSYCHOL, V108, P374, DOI 10.1037//0021-843X.108.3.374; Walsh Z., 2012, J PERSONALITY DISORD, V26, P061; Wang J, 2010, J ADOLESCENT HEALTH, V47, P99, DOI 10.1016/j.jadohealth.2009.12.007; Wang XT, 2009, EVOL HUM BEHAV, V30, P77, DOI 10.1016/j.evolhumbehav.2008.09.006; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Watson D, 2005, J ABNORM PSYCHOL, V114, P522, DOI 10.1037/0021-843X.114.4.522; Watson D, 2008, DEPRESS ANXIETY, V25, P282, DOI 10.1002/da.20496; Watson PJ, 2002, J AFFECT DISORDERS, V72, P1, DOI 10.1016/S0165-0327(01)00459-1; Waxman SE, 2009, EUR EAT DISORD REV, V17, P408, DOI 10.1002/erv.952; Weiss A, 2005, PSYCHOSOM MED, V67, P724, DOI 10.1097/01.psy.0000181272.58103.18; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; West SA, 2007, CURR BIOL, V17, pR661, DOI 10.1016/j.cub.2007.06.004; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Westen D, 2001, AM J PSYCHIAT, V158, P547, DOI 10.1176/appi.ajp.158.4.547; Wheelwright S, 2006, BRAIN RES, V1079, P47, DOI 10.1016/j.brainres.2006.01.012; Wheelwright S, 2010, MOL AUTISM, V1, DOI 10.1186/2040-2392-1-10; WHITE JL, 1994, J ABNORM PSYCHOL, V103, P192, DOI 10.1037/0021-843X.103.2.192; Whitehouse AJO, 2011, J AUTISM DEV DISORD, V41, P1125, DOI 10.1007/s10803-010-1129-1; Wiederman MW, 1996, INT J EAT DISORDER, V19, P109, DOI 10.1002/(SICI)1098-108X(199603)19:2<109::AID-EAT1>3.0.CO;2-R; Williams Geroge C, 1966, ADAPTATION NATURAL S; WILSON M, 2002, HORMONES BRAIN BEHAV, V5, P381, DOI DOI 10.1016/B978-012532104-4/50096-2; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2012, AM NAT, V179, P679, DOI 10.1086/665656; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348; Woody EZ, 2011, NEUROSCI BIOBEHAV R, V35, P1019, DOI 10.1016/j.neubiorev.2010.08.003; Worthman C. M., 2005, DEV PSYCHOBIOLOGY AG, P187; Worthman CM, 2009, AM J HUM BIOL, V21, P772, DOI 10.1002/ajhb.20966; Worthman CM, 2005, AM J HUM BIOL, V17, P95, DOI 10.1002/ajhb.20096; Yu K, 2010, FRONT HUM NEUROSCI, V4, DOI 10.3389/fnhum.2010.00189; Zelazniewicz AM, 2011, ARCH SEX BEHAV, V40, P1129, DOI 10.1007/s10508-011-9850-1 506 60 60 4 56 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 261 300 10.1080/1047840X.2014.884918 40 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500001 2019-02-21 J Abed, R Abed, Riadh A Framework for Psychopathology Based on Life History Theory: A Landmark Formulation PSYCHOLOGICAL INQUIRY English Editorial Material EATING-DISORDERS; SCHIZOPHRENIA; COMPETITION; PREVALENCE; PSYCHIATRY; ANOREXIA; STRATEGY Minist Justice, Sheffield, S Yorkshire, England Abed, R (reprint author), Minist Justice, Sheffield, S Yorkshire, England. abedrt@btinternet.com Abed R., 2012, THESCIENTIFICWORLDJO; Abed R. T., 2014, Irish Journal of Psychological Medicine, V31, P1, DOI 10.1017/ipm.2014.2; Abed RT, 2011, PERSPECT BIOL MED, V54, P132, DOI 10.1353/pbm.2011.0020; Abed RT, 1998, BRIT J MED PSYCHOL, V71, P525, DOI 10.1111/j.2044-8341.1998.tb01007.x; Abed RT, 2000, BRIT J PSYCHIAT, V177, P1, DOI 10.1192/bjp.177.1.1; Bourque F, 2011, PSYCHOL MED, V41, P897, DOI 10.1017/S0033291710001406; Brune M, 2008, TXB EVOLUTIONARY PSY; Cantor-Graae E, 2005, AM J PSYCHIAT, V162, P12, DOI 10.1176/appi.ajp.162.1.12; Das-Munshi J, 2012, BRIT J PSYCHIAT, V201, P282, DOI 10.1192/bjp.bp.111.102376; Evans K, 2003, ACTA PSYCHIAT SCAND, V107, P323, DOI 10.1034/j.1600-0447.2003.00053.x; Faer LM, 2005, PSYCHOL PSYCHOTHER-T, V78, P397, DOI 10.1348/147608305X42929; Feierman JR, 2006, CLIN NEUROPSYCHIATR, V3, P87; Gluckman PD, 2006, MISMATCH WHY OUR WOR; Gordon R. A., 1990, ANOREXIA BULIMIA ANA; Hoek HW, 2003, INT J EAT DISORDER, V34, P383, DOI 10.1002/eat.10222; Jablensky A, 1992, Psychol Med Monogr Suppl, V20, P1; Kotte A., 2013, PEDIATRICS, V132, P612; Krabbendam L, 2005, SCHIZOPHRENIA BULL, V31, P795, DOI 10.1093/schbul/sbi060; Li NP, 2010, EVOL HUM BEHAV, V31, P365, DOI 10.1016/j.evolhumbehav.2010.05.004; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Nesse R., 2012, PRAGMATIC EVOLUTION, P107; Nesse R. M, 2005, HDB EVOLUTIONARY PSY, P903; Nesse RM, 2006, CLIN NEUROPSYCHIATR, V3, P121; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; Nesse RM, 2009, UNDERSTANDING DEPRES, P17; Russell G., 2000, NEW OXFORD TESTBOOK, P835; Salmon C, 2009, EVOL PSYCHOL-US, V7, P585; SARTORIUS N, 1986, PSYCHOL MED, V16, P909, DOI 10.1017/S0033291700011910; Stearns SC, 2010, P NATL ACAD SCI USA, V107, P1691, DOI 10.1073/pnas.0914475107; Stevens A., 2000, EVOLUTIONARY PSYCHIA; STEVENS A, 1996, EVOLUTIONARY PSYCHIA; TORREY EF, 1987, BRIT J PSYCHIAT, V150, P598, DOI 10.1192/bjp.150.5.598; Torrey EF, 1980, SCHIZOPHRENIA CIVILI; Troisi A, 1998, DARWINIAN PSYCHIAT; van Os J, 2012, BRIT J PSYCHIAT, V201, P258, DOI 10.1192/bjp.bp.112.110262; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; Wakefield JC, 2007, WORLD PSYCHIATRY, V6, P149; WHO, 1973, REP INT PIL STUD SCH 38 0 0 0 2 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 301 306 10.1080/1047840X.2014.904136 6 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500002 2019-02-21 J Brune, M Bruene, Martin Life History Theory as Organizing Principle of Psychiatric Disorders: Implications and Prospects Exemplified by Borderline Personality Disorder PSYCHOLOGICAL INQUIRY English Editorial Material POSTTRAUMATIC-STRESS-DISORDER; EARLY FAMILY ENVIRONMENT; CHILDHOOD MALTREATMENT; DIFFERENTIAL SUSCEPTIBILITY; EVOLUTIONARY-THEORY; ADULT ATTACHMENT; MATE RETENTION; MODEL; BEHAVIOR; VULNERABILITY Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat & Psychiat Prevent Med, D-44791 Bochum, Germany Brune, M (reprint author), Ruhr Univ Bochum, LWL Univ Hosp, Dept Psychiat Psychotherapy & Prevent Med, Div Cognit Neuropsychiat & Psychiat Prevent Med, Alexandrninenstr 1, D-44791 Bochum, Germany. martin.bruene@rub.de Agrawal HR, 2004, HARVARD REV PSYCHIAT, V12, P94, DOI 10.1080/10673220490447218; Amad A, 2014, NEUROSCI BIOBEHAV R, V40, P6, DOI 10.1016/j.neubiorev.2014.01.003; American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Bakermans-Kranenburg MJ, 2007, J CHILD PSYCHOL PSYC, V48, P1160, DOI 10.1111/j.1469-7610.2007.01801.x; Bakermans-Kranenburg MJ, 2006, DEV PSYCHOBIOL, V48, P406, DOI 10.1002/dev.20152; Bartz J, 2011, SOC COGN AFFECT NEUR, V6, P556, DOI 10.1093/scan/nsq085; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, MOL PSYCHIATR, V14, P746, DOI 10.1038/mp.2009.44; Belsky J, 2012, CURR DIR PSYCHOL SCI, V21, P310, DOI 10.1177/0963721412453588; Belsky J, 2011, J CHILD PSYCHOL PSYC, V52, P619, DOI 10.1111/j.1469-7610.2010.02327.x; Benecke C, 2004, NONVERBALE PROZESSE, P261; Bierer LM, 2003, CNS SPECTRUMS, V8, P737, DOI 10.1017/S1092852900019118; Bouchard S, 2009, J MARITAL FAM THER, V35, P446, DOI 10.1111/j.1752-0606.2009.00151.x; Bowlby J., 1969, ATTACHMENT LOSS, V1; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; BOYCE WT, 1995, PSYCHOSOM MED, V57, P411, DOI 10.1097/00006842-199509000-00001; Bribiescas RG, 2012, CURR ANTHROPOL, V53, pS424, DOI 10.1086/667538; Brune M, 2013, HUM PSYCHOPHARM CLIN, V28, P552, DOI 10.1002/hup.2343; Brune M, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-38; Brune M, 2012, WORLD PSYCHIATRY, V11, P55; Brune M, 2010, CLIN NEUROPSYCHIATR, V7, P3; Brune M, 2008, TXB EVOLUTIONARY PSY; Buchheim A, 2007, Z PSYCHOSOM MED PSYC, V53, P339; Cantor C, 2009, AUST NZ J PSYCHIAT, V43, P1038, DOI 10.3109/00048670903270407; Caspi A, 2002, SCIENCE, V297, P851, DOI 10.1126/science.1072290; Caspi A, 2010, AM J PSYCHIAT, V167, P509, DOI 10.1176/appi.ajp.2010.09101452; Chen EY, 2009, PSYCHIAT RES, V170, P86, DOI 10.1016/j.psychres.2009.03.006; Chisholm JS, 1999, HUM NATURE-INT BIOS, V10, P51, DOI 10.1007/s12110-999-1001-1; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; Cloninger C. R., 1994, TEMPERAMENT CHARACTE; Dannlowski U, 2012, BIOL PSYCHIAT, V71, P286, DOI 10.1016/j.biopsych.2011.10.021; Davidson RJ, 2012, NAT NEUROSCI, V15, P689, DOI 10.1038/nn.3093; Del Giudice M, 2012, J THEOR BIOL, V297, P48, DOI 10.1016/j.jtbi.2011.12.004; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Dinsdale N, 2013, J PERS DISORD, V27, P172, DOI 10.1521/pedi.2013.27.2.172; Ebert A, 2013, SOC NEUROSCI-UK, V8, P305, DOI 10.1080/17470919.2013.807301; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Feldman R, 2011, DEVELOPMENTAL SCI, V14, P752, DOI 10.1111/j.1467-7687.2010.01021.x; Fernand SC, 2012, PSYCHONEUROENDOCRINO, V37, P1659, DOI 10.1016/j.psyneuen.2012.02.012; Fonagy P, 2000, PSYCHIAT CLIN N AM, V23, P103, DOI 10.1016/S0193-953X(05)70146-5; Fossati A, 2001, J PERS DISORD, V15, P390, DOI 10.1521/pedi.15.5.390.19197; Franzen N, 2011, PSYCHIAT RES, V187, P224, DOI 10.1016/j.psychres.2010.11.012; Gaher RM, 2013, COGNITIVE THER RES, V37, P466, DOI 10.1007/s10608-012-9515-y; Gilbert P, 2004, J AFFECT DISORDERS, V79, P149, DOI 10.1016/S0165-0327(02)00405-6; Gunderson JG, 2008, J PERS DISORD, V22, P22, DOI 10.1521/pedi.2008.22.1.22; Hochberg Z, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-113; Jovev M, 2012, PSYCHIAT RES, V199, P44, DOI 10.1016/j.psychres.2012.03.027; King-Casas B, 2008, SCIENCE, V321, P806, DOI 10.1126/science.1156902; Kishida KT, 2010, NEURON, V67, P543, DOI 10.1016/j.neuron.2010.07.021; KROHN A, 1974, INT J PSYCHOANAL PSY, V3, P142; LABONTE E, 1993, CAN J PSYCHIAT, V38, P638, DOI 10.1177/070674379303801003; Lieb K, 2004, LANCET, V364, P453, DOI 10.1016/S0140-6736(04)16770-6; Linehan M, 1993, COGNITIVE BEHAV TREA; Luca M, 2012, PSYCHIAT QUART, V83, P281, DOI 10.1007/s11126-011-9198-7; MAC ARTHUR ROBERT H., 1967; Manuck SB, 2011, DEV PSYCHOPATHOL, V23, P69, DOI 10.1017/S0954579410000659; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; MONROE SM, 1991, PSYCHOL BULL, V110, P406, DOI 10.1037//0033-2909.110.3.406; Murgatroyd C, 2009, NAT NEUROSCI, V12, P1559, DOI 10.1038/nn.2436; Nicol K, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0073440; Olesen TB, 2012, EUR J PUBLIC HEALTH, V22, P220, DOI 10.1093/eurpub/ckr055; Pagura J, 2010, J PSYCHIATR RES, V44, P1190, DOI 10.1016/j.jpsychires.2010.04.016; Polanczyk G, 2009, ARCH GEN PSYCHIAT, V66, P978, DOI 10.1001/archgenpsychiatry.2009.114; Rosenvinge J H, 2000, Eat Weight Disord, V5, P52; Rusch N, 2011, EUR ARCH PSY CLIN N, V261, P369, DOI 10.1007/s00406-010-0174-2; Sansone Randy A, 2011, Innov Clin Neurosci, V8, P13; Shackelford TK, 2005, PERS RELATIONSHIP, V12, P447, DOI 10.1111/j.1475-6811.2005.00125.x; Silove D, 1998, PSYCHIATRY, V61, P181, DOI 10.1080/00332747.1998.11024830; Stanley B, 2010, AM J PSYCHIAT, V167, P24, DOI 10.1176/appi.ajp.2009.09050744; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stepp SD, 2012, PERSONAL DISORD, V3, P76, DOI 10.1037/a0023081; Taylor SE, 2006, BIOL PSYCHIAT, V60, P671, DOI 10.1016/j.biopsych.2006.04.019; Teicher MH, 2012, P NATL ACAD SCI USA, V109, pE563, DOI 10.1073/pnas.1115396109; Teicher MH, 2003, NEUROSCI BIOBEHAV R, V27, P33, DOI 10.1016/S0149-7634(03)00007-1; Tragesser SL, 2012, J PERS DISORD, V26, P334, DOI 10.1521/pedi.2012.26.3.334; Troisi A, 2005, NEUROSCI BIOBEHAV R, V29, P159, DOI 10.1016/j.neubiorev.2004.06.012; Troisi M., 2012, APPL EVOLUTIONARY PS, P276; Unoka Z, 2009, J PERS DISORD, V23, P399, DOI 10.1521/pedi.2009.23.4.399; van Ijzendoorn MH, 2008, GENES BRAIN BEHAV, V7, P403, DOI 10.1111/j.1601-183X.2007.00362.x; Volker KA, 2009, PSYCHOTHER PSYCH MED, V59, P264, DOI 10.1055/s-2008-1067437; Widom CS, 2006, BIOL PSYCHIAT, V60, P684, DOI 10.1016/j.biopsych.2006.03.039; Wischniewski J, 2013, J PERS DISORD, V27, P531, DOI 10.1521/pedi_2012_26_036; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf RC, 2012, EUR ARCH PSY CLIN N, V262, P677, DOI 10.1007/s00406-012-0303-1; ZWEIGFRANK H, 1991, AM J PSYCHIAT, V148, P648 88 4 4 0 5 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 311 321 10.1080/1047840X.2014.914120 11 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500004 2019-02-21 J Glass, DJ Glass, Daniel J. Life History Theory as a Powerful Framework for Clinical Psychology PSYCHOLOGICAL INQUIRY English Editorial Material EVOLUTIONARY PSYCHOLOGY; HARMFUL DYSFUNCTION; MENTAL DISORDER; STRATEGY; PSYCHOPATHOLOGY; LIMITATIONS; CRITIQUE Suffolk Univ, Dept Psychol, Boston, MA 02114 USA Glass, DJ (reprint author), Suffolk Univ, Dept Psychol, 41 Temple St,6th Floor, Boston, MA 02114 USA. djglass@suffolk.edu American Psychiatric Association, 2013, DIAGN STAT MAN MENT; BALACHANDRAN N, 2012, EVOL EDUC OUTREACH, V5, P312, DOI DOI 10.1007/s12052-012-0428-8; Bronfenbrenner U., 1979, ECOLOGY HUMAN DEV EX; Carmen R. A., 2013, EVOS J J EVOLUTIONAR, V5, P108; Cosmides L, 1999, J ABNORM PSYCHOL, V108, P453, DOI 10.1037//0021-843X.108.3.453; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Frankenhuis WE, 2007, PHILOS PSYCHOL, V20, P687, DOI 10.1080/09515080701665904; Gladden PR, 2009, PERS INDIV DIFFER, V46, P270, DOI 10.1016/j.paid.2008.10.010; Glantz K, 1989, EXILES EDEN PSYCHOTH; Insel T, 2010, AM J PSYCHIAT, V167, P748, DOI 10.1176/appi.ajp.2010.09091379; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kennair LEO, 2003, CURR OPIN PSYCHIATR, V16, P691, DOI 10.1097/01.yco.0000097655.75497.2e; Kutchins H, 1997, MAKING US CRAZY DSM; LILIENFELD SO, 1995, J ABNORM PSYCHOL, V104, P411, DOI 10.1037/0021-843X.104.3.411; McNally R. J., 2011, WHAT IS MENTAL ILLNE; McWilliams N, 2011, J PERS ASSESS, V93, P112, DOI 10.1080/00223891.2011.542709; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; Moffitt TE, 2005, PSYCHOL BULL, V131, P533, DOI 10.1037/0033-2909.131.4.533; Nesse RM, 1994, WHY WE GET SICK NEW; Robertson L, 1997, J COGNITIVE NEUROSCI, V9, P295, DOI 10.1162/jocn.1997.9.3.295; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tooby J., 1992, ADAPTED MIND EVOLUTI, P19, DOI DOI 10.1086/418398; Wakefield J. C., 2005, HDB EVOLUTIONARY PSY, P878; WAKEFIELD JC, 1992, PSYCHOL REV, V99, P232, DOI 10.1037/0033-295X.99.2.232; Walmsley T., 1993, PSYCHIATRIC B, V17, P748; Washburn M, 2013, SOC WORK, V58, P373, DOI 10.1093/sw/swt030; Wilson E. O., 1998, CONSILIENCE UNITY KN 29 0 0 0 4 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 334 336 10.1080/1047840X.2014.916195 3 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500008 2019-02-21 J Jonason, PK; Schmitt, DP Jonason, Peter K.; Schmitt, David P. The Virtues of Evolutionary Psychology for Studying Human Vices PSYCHOLOGICAL INQUIRY English Editorial Material TERM MATING STRATEGY; LIFE-HISTORY THEORY; DARK TRIAD; PERSONALITY; CULTURE; PSYCHOPATHY; ATTACHMENT; MACHIAVELLIANISM; NARCISSISM; EMPATHY [Jonason, Peter K.] Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia; [Schmitt, David P.] Bradley Univ, Dept Psychol, Peoria, IL 61625 USA Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au American Psychiatric Association, 2013, DIAGN STAT MAN MENT; Buss DM, 2000, AM PSYCHOL, V55, P15, DOI 10.1037//0003-066X.55.1.15; Christopher M, 2004, CLIN PSYCHOL REV, V24, P75, DOI 10.1016/j.cpr.2003.12.003; Church A. T., 2009, PERSPECT PSYCHOL SCI, V5, P441; Confer JC, 2010, AM PSYCHOL, V65, P110, DOI 10.1037/a0018413; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; Denissen JJA, 2008, J RES PERS, V42, P1285, DOI 10.1016/j.jrp.2008.04.002; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Ein-Dor T, 2010, PERSPECT PSYCHOL SCI, V5, P123, DOI 10.1177/1745691610362349; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Friedman M, 2010, PERS RELATIONSHIP, V17, P107, DOI 10.1111/j.1475-6811.2010.01256.x; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Holcomb H. R., 2001, CONCEPTUAL CHALLENGE, V27; Jonason P. K., 2009, J SEX RES, V46, P1; Jonason PK, 2014, PERS INDIV DIFFER, V67, P30, DOI 10.1016/j.paid.2013.10.006; Jonason PK, 2013, ARCH SEX BEHAV, V42, P1407, DOI 10.1007/s10508-013-0189-7; Jonason PK, 2013, PERS INDIV DIFFER, V55, P532, DOI 10.1016/j.paid.2013.04.027; Jonason PK, 2013, EVOL PSYCHOL-US, V11, P172, DOI 10.1177/147470491301100116; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Leistedt SJ, 2014, J FORENSIC SCI, V59, P167, DOI 10.1111/1556-4029.12359; MacCallum RC, 2002, PSYCHOL METHODS, V7, P19, DOI 10.1037//1082-989X.7.1.19; MAXWELL SE, 1993, PSYCHOL BULL, V113, P181, DOI 10.1037/0033-2909.113.1.181; Nesse RM, 1994, WHY WE GET SICK NEW; Nettle D, 2006, AM PSYCHOL, V61, P622, DOI 10.1037/0003-066X.61.6.622; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Penke L, 2011, HDB SEXUALITY RELATE, P622; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; Schaller M, 2010, EVOLUTION, CULTURE, AND THE HUMAN MIND, P243; Schmitt DP, 2008, CROSS-CULT RES, V42, P220, DOI 10.1177/1069397108317485; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2004, PSYCHOL SCI, V15, P643, DOI 10.1111/j.0956-7976.2004.00734.x; Van de Velde S, 2010, SOC SCI RES, V39, P396, DOI 10.1016/j.ssresearch.2010.01.002; van de Vijver FJR, 2001, J PERS, V69, P1007, DOI 10.1111/1467-6494.696173; WAKEFIELD JC, 1992, PSYCHOL REV, V99, P232, DOI 10.1037/0033-295X.99.2.232 43 1 1 2 21 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 341 345 10.1080/1047840X.2014.897200 5 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500010 2019-02-21 J Polimeni, J; Reiss, JP Polimeni, Joseph; Reiss, Jeffrey P. Life History Theory's Best Chance: Illuminating Cluster B Personality Disorders PSYCHOLOGICAL INQUIRY English Editorial Material OBSESSIVE-COMPULSIVE DISORDER; CLINICAL-FEATURES; SYMPTOMS; FAMILY; SCHIZOPHRENIA; HERITABILITY; IMPULSIVITY; SCHIZOTYPY; CHILDHOOD; SELECTION [Polimeni, Joseph] Univ Manitoba, Dept Psychiat, Winnipeg, MB R3T 2N2, Canada; [Reiss, Jeffrey P.] Univ Western Ontario, Dept Psychiat, London, ON N6A 3K7, Canada Polimeni, J (reprint author), 806-233 Kennedy St, Winnipeg, MB R3C 3J5, Canada. JPolimeni@shaw.ca Bandelow B, 2005, PSYCHIAT RES, V134, P169, DOI 10.1016/j.psychres.2003.07.008; Cardno AG, 1999, ARCH GEN PSYCHIAT, V56, P162, DOI 10.1001/archpsyc.56.2.162; Ettelt S, 2007, ACTA PSYCHIAT SCAND, V115, P41, DOI 10.1111/j.1600-0447.2006.00835.x; HARLOW HF, 1965, P NATL ACAD SCI USA, V54, P90, DOI 10.1073/pnas.54.1.90; Harrison PJ, 2005, MOL PSYCHIATR, V10, P40, DOI 10.1038/sj.mp.4001558; Jenkins Jeffrey R., 2001, Veterinary Clinics of North America Exotic Animal Practice, V4, P651; Mathews CA, 2007, AM J MED GENET B, V144B, P174, DOI 10.1002/ajmg.b.30370; Nesse RM, 2005, Q REV BIOL, V80, P62, DOI 10.1086/431026; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; Nettle D, 2006, J RES PERS, V40, P876, DOI 10.1016/j.jrp.2005.09.004; Polimeni J, 2002, MED HYPOTHESES, V58, P244, DOI 10.1054/mehy.2001.1504; Polimeni J, 2005, MED HYPOTHESES, V65, P655, DOI 10.1016/j.mehy.2005.05.023; Polimeni J., 2012, SHAMANS AMONG US SCH; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; PRICE J, 1967, LANCET, V2, P243; RASMUSSEN SA, 1992, PSYCHIAT CLIN N AM, V15, P743; Smari J, 2008, J BEHAV THER EXP PSY, V39, P228, DOI 10.1016/j.jbtep.2007.07.002; Stevens A., 2000, PROPHETS CULTS MADNE; Sulkowski ML, 2009, PERS INDIV DIFFER, V47, P620, DOI 10.1016/j.paid.2009.05.020; van Grootheest DS, 2005, TWIN RES HUM GENET, V8, P450, DOI 10.1375/twin.8.5.450; Winsper C, 2012, PSYCHOL MED, V42, P2405, DOI 10.1017/S0033291712000542; Zanarini MC, 1997, AM J PSYCHIAT, V154, P1101 22 0 0 0 4 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 360 362 10.1080/1047840X.2014.911639 3 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500014 2019-02-21 J Schlomer, GL; Cleveland, HH Schlomer, Gabriel L.; Cleveland, H. Harrington Life History Theory in Psychopathology: More Than an Elegant Heuristic? PSYCHOLOGICAL INQUIRY English Editorial Material EVOLUTIONARY-DEVELOPMENTAL THEORY; DIFFERENTIAL SUSCEPTIBILITY; BIOLOGICAL SENSITIVITY; REPRODUCTIVE STRATEGY; ENVIRONMENT; BEHAVIOR; PREVENTION; CONTEXT [Schlomer, Gabriel L.; Cleveland, H. Harrington] Penn State Univ, Dept Human Dev & Family Studies, University Pk, PA 16802 USA; [Schlomer, Gabriel L.] Penn State Univ, Dept Biobehav Hlth, University Pk, PA 16802 USA Schlomer, GL (reprint author), Penn State Univ, Dept Human Dev & Family Studies, University Pk, PA 16802 USA. gls29@psu.edu BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Brody GH, 2013, AM J PUBLIC HEALTH, V103, pS19, DOI 10.2105/AJPH.2012.301080; Cleveland HH, 2000, CHILD DEV, V71, P733, DOI 10.1111/1467-8624.00182; CRAWFORD CB, 1989, AM PSYCHOL, V44, P1449, DOI 10.1037/0003-066X.44.12.1449; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Duncan LE, 2011, AM J PSYCHIAT, V168, P1041, DOI 10.1176/appi.ajp.2011.11020191; Ellis BJ, 2005, DEV PSYCHOPATHOL, V17, P303, DOI 10.1017/S0954579405050157; Ellis BJ, 2012, DEV PSYCHOL, V48, P598, DOI 10.1037/a0026220; Ellis BJ, 2012, DEV PSYCHOPATHOL, V24, P317, DOI 10.1017/S095457941100085X; Ellis BJ, 2011, DEV PSYCHOPATHOL, V23, P7, DOI 10.1017/S0954579410000611; Essex MJ, 2013, CHILD DEV, V84, P58, DOI 10.1111/j.1467-8624.2011.01641.x; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Jaffee SR, 2007, MOL PSYCHIATR, V12, P432, DOI 10.1038/sj.mp.4001950; Lykken D. T., 1995, ANTISOCIAL PERSONALI; MCCLELLAND GH, 1993, PSYCHOL BULL, V114, P376, DOI 10.1037/0033-2909.114.2.376; Meaney MJ, 2010, CHILD DEV, V81, P41, DOI 10.1111/j.1467-8624.2009.01381.x; Nesse RM, 2012, BMC MED, V10, DOI 10.1186/1741-7015-10-5; Reiss D, 2013, AM J PUBLIC HEALTH, V103, P111, DOI 10.2105/AJPH.2013.301408; Rowe D. C., 2002, EVOL HUM BEHAV, V1, P1; Rowe DC, 1997, PERS INDIV DIFFER, V23, P105, DOI 10.1016/S0191-8869(97)00005-6; Schlomer G. L., 2013, M SOC RES CHILD DEV; WILLIAMS GC, 1991, Q REV BIOL, V66, P1, DOI 10.1086/417048 25 0 0 0 1 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 363 368 10.1080/1047840X.2014.916191 6 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500015 2019-02-21 J Surbey, MK Surbey, Michele K. Addressing Our Inner Salmon in an Evolutionary Framework for Psychopathology PSYCHOLOGICAL INQUIRY English Editorial Material LIFE-HISTORY EVOLUTION; TRADE-OFFS EXPLAIN; REPRODUCTIVE SUCCESS; K-SELECTION; R-SELECTION; PHENOTYPIC PLASTICITY; HUMAN PYGMIES; MORTALITY; HEIGHT; SPAN [Surbey, Michele K.] James Cook Univ, Dept Psychol, Townsville, Qld 4811, Australia Surbey, MK (reprint author), James Cook Univ, Dept Psychol, Sch Arts & Social Sci, Univ Dr, Townsville, Qld 4811, Australia. michele.surbey@jcu.edu.au Abrams PA, 2004, NATURE, V431, P1048, DOI 10.1038/4311048a; Baron-Cohen S, 2005, SCIENCE, V310, P819, DOI 10.1126/science.1115455; Baron-Cohen S., 1995, MINDBLINDNESS ESSAY; Becker NSA, 2010, HUM BIOL, V82, P17, DOI 10.3378/027.082.0101; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Charnov Eric L., 1993, P1; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Crespi B, 2008, BEHAV BRAIN SCI, V31, P241, DOI 10.1017/S0140525X08004214; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dean MC, 2006, P ROY SOC B-BIOL SCI, V273, P2799, DOI 10.1098/rspb.2006.3583; Del Giudice M., 2010, EVOLUTION PERSONALIT, P154; Del Giudice M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00041; Graves J. L., 2002, ANTHROPOL THEOR, V2, P131, DOI DOI 10.1177/1469962002002002627; Graves JL, 2002, RACE AND INTELLIGENCE: SEPARATING SCIENCE FROM MYTH, P57; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; Haig D, 2003, AM J HUM BIOL, V15, P320, DOI 10.1002/ajhb.10150; Hendry AP, 2004, EVOLUTION ILLUMINATE; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan H., 2007, GUTS BRAINS INTEGRAT, P47; Keller MC, 2006, BEHAV BRAIN SCI, V29, P385, DOI 10.1017/S0140525X06009095; Kennair L. E. O, 2011, EVOLUTION PERSONALIT, P451; Kennair LEO, 2003, CURR OPIN PSYCHIATR, V16, P691, DOI 10.1097/01.yco.0000097655.75497.2e; Kirkwood TBL, 1985, HDB BIOL AGING, P27; MAC ARTHUR ROBERT H., 1967; Martel MM, 2013, PSYCHOL BULL, V139, P1221, DOI 10.1037/a0032247; McGlothlin JW, 2007, AM NAT, V170, P864, DOI 10.1086/522838; Migliano AB, 2007, P NATL ACAD SCI USA, V104, P20216, DOI 10.1073/pnas.0708024105; Monden CWS, 2009, AM J HUM BIOL, V21, P305, DOI 10.1002/ajhb.20860; Nettle D, 2006, P ROY SOC B-BIOL SCI, V273, P611, DOI 10.1098/rspb.2005.3349; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pollet TV, 2008, AM J HUM BIOL, V20, P264, DOI 10.1002/ajhb.20708; Potts R, 2004, AM J PRIMATOL, V62, P209, DOI 10.1002/ajp.20016; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick DN, 2004, NATURE, V431, P1095, DOI 10.1038/nature02936; Robson SL, 2008, J ANAT, V212, P394, DOI 10.1111/j.1469-7580.2008.00867.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Russon Anne E., 2004, P353, DOI 10.1017/CBO9780511542299.023; Sear R, 2004, AM J HUM BIOL, V16, P223; Sear R, 2006, HUM NATURE-INT BIOS, V17, P405, DOI 10.1007/s12110-006-1003-1; Shaner A, 2004, SCHIZOPHR RES, V70, P101, DOI 10.1016/j.schres.2003.09.014; Shokhirev MN, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0086602; Smith TM, 2007, P NATL ACAD SCI USA, V104, P6128, DOI 10.1073/pnas.0700747104; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Stephenson Nathan L., 2000, Madrono, V47, P61; Surbey MK, 2011, EVOL HUM BEHAV, V32, P29, DOI 10.1016/j.evolhumbehav.2010.08.009; SURBEY MK, 1990, MG PRIMATOL, V13, P11; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Surbey MK, 1998, HUM NATURE-INT BIOS, V9, P67, DOI 10.1007/s12110-998-1012-3; Tanner J. M., 1962, GROWTH ADOLESCENCE; Voituron Y, 2011, BIOL LETTERS, V7, P105, DOI 10.1098/rsbl.2010.0539; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956; Williams PD, 2006, TRENDS ECOL EVOL, V21, P458, DOI 10.1016/j.tree.2006.05.008; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wynne-Edwards V. C., 1962, ANIMAL DISPERSION RE 62 0 0 0 3 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 2-4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 369 375 10.1080/1047840X.2014.915709 7 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500016 2019-02-21 J Tops, M Tops, Mattie Slow Life History Strategies and Slow Updating of Internal Models: The Examples of Conscientiousness and Obsessive-Compulsive Disorder PSYCHOLOGICAL INQUIRY English Editorial Material DISGUST SENSITIVITY; INDIVIDUAL-DIFFERENCES; DISEASE-AVOIDANCE; HEMISPHERIC ASYMMETRIES; INTERGROUP ATTITUDES; PERCEPTION PROCESSES; NONCLINICAL SAMPLE; PREFRONTAL CORTEX; SOCIAL-PERCEPTION; NEURAL RESPONSES Vrije Univ Amsterdam, Dept Clin Psychol, NL-1081 BT Amsterdam, Netherlands Tops, M (reprint author), Vrije Univ Amsterdam, Dept Clin Psychol, van der Boechorststr 1, NL-1081 BT Amsterdam, Netherlands. m.tops@vu.nl Tops, Mattie/0000-0001-7861-9661 Amodio DM, 2007, NAT NEUROSCI, V10, P1246, DOI 10.1038/nn1979; BENUS RF, 1990, BEHAVIOUR, V112, P176, DOI 10.1163/156853990X00185; Berthoz S, 2002, BRAIN, V125, P1696, DOI 10.1093/brain/awf190; Block J., 2002, PERSONALITY AFFECT P; Borg C, 2013, SOC COGN AFFECT NEUR, V8, P351, DOI 10.1093/scan/nss006; Brown LL, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0078734; Calder AJ, 2007, EUR J NEUROSCI, V25, P3422, DOI 10.1111/j.1460-9568.2007.05604.x; Carver CS, 2010, ANNU REV PSYCHOL, V61, P679, DOI 10.1146/annurev.psych.093008.100352; Caseras X, 2007, BIOL PSYCHIAT, V62, P464, DOI 10.1016/j.biopsych.2006.10.030; Champagne FA, 2007, BEHAV NEUROSCI, V121, P1353, DOI 10.1037/0735-7044.121.6.1353; Chapman HA, 2012, ANN NY ACAD SCI, V1251, P62, DOI 10.1111/j.1749-6632.2011.06369.x; Chiappe D, 2005, J GEN PSYCHOL, V132, P5, DOI 10.3200/GENP.132.1.5-40; Connor-Smith JK, 2007, J PERS SOC PSYCHOL, V93, P1080, DOI 10.1037/0022-3514.93.6.1080; Cope Lora M, 2010, Front Evol Neurosci, V2, P110, DOI 10.3389/fnevo.2010.00110; Craik KJW, 1943, NATURE EXPLANATION; Crost NW, 2008, BIOL PSYCHOL, V78, P43, DOI 10.1016/j.biopsycho.2007.12.008; Crowne D. P, 1979, EXPT STUDY PERSONALI; DAVEY GCL, 1994, BRIT J PSYCHOL, V85, P541, DOI 10.1111/j.2044-8295.1994.tb02540.x; De Dreu CKW, 2012, HORM BEHAV, V61, P419, DOI 10.1016/j.yhbeh.2011.12.009; De Fruyt F, 2004, ASSESSMENT, V11, P207, DOI 10.1177/1073191104265800; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; DELIUS JD, 1976, Z TIERPSYCHOL, V40, P183; DRAGO F, 1986, BRAIN RES, V368, P287, DOI 10.1016/0006-8993(86)90573-1; Druschel BA, 1999, PERS INDIV DIFFER, V26, P739, DOI 10.1016/S0191-8869(98)00196-2; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Faulkner J, 2004, GROUP PROCESS INTERG, V7, P333, DOI 10.1177/1368430204046142; Finger EC, 2006, NEUROIMAGE, V33, P414, DOI 10.1016/j.neuroimage.2006.06.011; Gazzaniga MS, 2000, BRAIN, V123, P1293, DOI 10.1093/brain/123.7.1293; GISPEN WH, 1981, PHARMACOL THERAPEUT, V12, P209, DOI 10.1016/0163-7258(81)90081-4; HAIDT J, 1994, PERS INDIV DIFFER, V16, P701, DOI 10.1016/0191-8869(94)90212-7; Hirsh JB, 2010, PERS SOC PSYCHOL B, V36, P655, DOI 10.1177/0146167210366854; Hodson G, 2007, PSYCHOL SCI, V18, P691, DOI 10.1111/j.1467-9280.2007.01962.x; Hummelen B, 2008, J NERV MENT DIS, V196, P446, DOI 10.1097/NMD.0b013e3181775a4e; Inbar Y, 2009, COGNITION EMOTION, V23, P714, DOI 10.1080/02699930802110007; Johnson-Laird P. N., 1989, COGNITION EMOTION, V3, P81, DOI DOI 10.1080/02699938908408075; Jones A, 2008, EMOTION, V8, P613, DOI 10.1037/a0013435; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jost JT, 2003, PSYCHOL BULL, V129, P339, DOI 10.1037/0033-2909.129.3.339; Kim JW, 2005, COGNITIVE BRAIN RES, V25, P659, DOI 10.1016/j.cogbrainres.2005.08.018; Kline JP, 2002, PERS INDIV DIFFER, V33, P459, DOI 10.1016/S0191-8869(01)00167-2; Koenig LB, 2006, GOD SCI MEET BRAIN E, P31; Koolhaas JM, 1999, NEUROSCI BIOBEHAV R, V23, P925, DOI 10.1016/S0149-7634(99)00026-3; Kurzban R, 2007, EVOL HUM BEHAV, V28, P75, DOI 10.1016/j.evolhumbehav.2006.06.001; LECKMAN JF, 1994, PSYCHONEUROENDOCRINO, V19, P723, DOI 10.1016/0306-4530(94)90021-3; Lissek S, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002023; Luders E, 2010, NEUROIMAGE, V52, P43, DOI 10.1016/j.neuroimage.2010.04.016; Lyle KB, 2014, LATERALITY, V19, P146, DOI 10.1080/1357650X.2013.783044; MacDonald KB, 2008, PSYCHOL REV, V115, P1012, DOI 10.1037/a0013327; Mancini F, 2001, PERS INDIV DIFFER, V31, P1173, DOI 10.1016/S0191-8869(00)00215-4; Marsolek CJ, 2013, EMOTION, V13, P462, DOI 10.1037/a0030784; Mataix-Cols D, 2008, EUR J NEUROSCI, V27, P3050, DOI 10.1111/j.1460-9568.2008.06311.x; MEHRABIAN A, 1995, CURR PSYCHOL, V14, P3, DOI 10.1007/BF02686870; Michl P, 2014, SOC COGN AFFECT NEUR, V9, P150, DOI 10.1093/scan/nss114; Muris P, 2000, PERS INDIV DIFFER, V29, P1163, DOI 10.1016/S0191-8869(99)00263-9; Navarrete CD, 2006, EVOL HUM BEHAV, V27, P270, DOI 10.1016/j.evolhumbehav.2005.12.001; NOONAN LR, 1989, PHARMACOL BIOCHEM BE, V33, P555, DOI 10.1016/0091-3057(89)90386-9; Nordin S, 2004, APPETITE, V43, P295, DOI 10.1016/j.appet.2004.07.002; Painuly Nitesh Prakash, 2011, Ind Psychiatry J, V20, P115, DOI 10.4103/0972-6748.102501; PAULS CA, 2005, J INDIVID DIFFER, V26, P29, DOI DOI 10.1027/1614-0001.26.1.29; Perlovsky LI, 2013, NEURAL NETWORKS, V41, P15, DOI 10.1016/j.neunet.2013.01.003; Pond RS, 2012, J PERS SOC PSYCHOL, V102, P175, DOI 10.1037/a0024296; Potts R, 1998, YEARB PHYS ANTHROPOL, V41, P93; Power M., 1997, COGNITION EMOTION OR; Prichard E, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00009; Propper R. E., 2012, OPEN J MED PSYCHOL, V1, P86, DOI DOI 10.4236/0JMP.2012.14014; Propper RE, 2010, BRAIN COGNITION, V73, P85, DOI 10.1016/j.bandc.2010.03.004; RAMACHANDRAN VS, 1995, CONSCIOUS COGN, V4, P22, DOI 10.1006/ccog.1995.1002; Roberts BW, 2005, PERS PSYCHOL, V58, P103, DOI 10.1111/j.1744-6570.2005.00301.x; ROSS ED, 1994, NEUROPSY NEUROPSY BE, V7, P1; Rothemund Y, 2011, NEUROSCIENCE, V197, P242, DOI 10.1016/j.neuroscience.2011.09.016; ROZIN P, 1987, PSYCHOL REV, V94, P23, DOI 10.1037//0033-295X.94.1.23; Sanders JD, 2004, SOC COGNITION, V22, P279, DOI 10.1521/soco.22.3.279.35968; Segerstrom SC, 2005, BRAIN BEHAV IMMUN, V19, P195, DOI 10.1016/j.bbi.2004.08.003; Sharot T, 2011, NAT NEUROSCI, V14, P1475, DOI 10.1038/nn.2949; Shin LM, 2000, BIOL PSYCHIAT, V48, P43, DOI 10.1016/S0006-3223(00)00251-1; Spence SA, 2008, NEUROIMAGE, V40, P1411, DOI 10.1016/j.neuroimage.2008.01.035; Takahashi H, 2004, NEUROIMAGE, V23, P967, DOI 10.1016/j.neuroimage.2004.07.054; Tellegen A., 1985, ANXIETY ANXIETY DISO, P681; TOMARKEN AJ, 1994, J ABNORM PSYCHOL, V103, P339, DOI 10.1037/0021-843X.103.2.339; Tops M., 2014, FRONTIERS PSYCHOL, DOI 0.3389/fpsyg.2014.00429; Tops M, 2014, PHARMACOL BIOCHEM BE, V119, P39, DOI 10.1016/j.pbb.2013.07.015; Tops Mattie, 2013, Front Psychol, V4, P761, DOI 10.3389/fpsyg.2013.00761; Tops M, 2012, NEUROSCI LETT, V516, P130, DOI 10.1016/j.neulet.2012.03.073; Tops M, 2010, FRONT PSYCHOL, V1, DOI 10.3389/fpsyg.2010.00152; Tops M, 2010, COGN AFFECT BEHAV NE, V10, P441, DOI 10.3758/CABN.10.4.441; Tucker DM, 1995, ANN NY ACAD SCI, V769, P213, DOI 10.1111/j.1749-6632.1995.tb38141.x; Tybur JM, 2009, J PERS SOC PSYCHOL, V97, P103, DOI 10.1037/a0015474; Uziel L, 2010, PERSPECT PSYCHOL SCI, V5, P243, DOI 10.1177/1745691610369465; Wagner U, 2011, CEREB CORTEX, V21, P2461, DOI 10.1093/cercor/bhr016; WARE J, 1994, BEHAV RES THER, V32, P57, DOI 10.1016/0005-7967(94)90084-1; Zahn R, 2009, CEREB CORTEX, V19, P276, DOI 10.1093/cercor/bhn080; Zarate MA, 2000, SOC COGNITION, V18, P223, DOI 10.1521/soco.2000.18.3.223; Zarate MA, 2008, J PERS SOC PSYCHOL, V94, P108, DOI 10.1037/0022-3514.94.1.108 93 7 7 0 9 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 376 384 10.1080/1047840X.2014.916194 9 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500017 2019-02-21 J Del Giudice, M Del Giudice, Marco A Tower Unto Heaven: Toward an Expanded Framework for Psychopathology PSYCHOLOGICAL INQUIRY English Article LIFE-HISTORIES; BODY-SIZE I respond to commentaries on my target article "An Evolutionary Life History Framework for Psychopathology." I start by addressing criticism of my basic assumptions about life history strategies and their implications for individual differences in human behavior. Next, I examine the theoretical structure of the proposed framework and respond to the commentators' challenges to its generality and flexibility. I show how the framework can be expanded to include multiple levels of analysis and to integrate behavioral control with neurological functionality; I also reinterpret the recent finding of a general factor of psychopathology in the context of the expanded framework. In the last section I discuss specific psychopathological conditions, namely attention deficit/hyperactivity disorder, borderline personality disorder, substance abuse, autism spectrum disorders, schizophrenia spectrum disorders, obsessive-compulsive disorder, eating disorders, and depression. For each condition, I reply to the commentators' criticism of my life history analysis, integrate their suggestions and insights, highlight the present weaknesses of the theory, and indicate promising directions for future research. [Del Giudice, Marco] Univ New Mexico, Dept Psychol, Albuquerque, NM 87131 USA Del Giudice, M (reprint author), Univ New Mexico, Logan Hall,2001 Redondo Dr NE, Albuquerque, NM 87131 USA. marcodg@unm.edu Del Giudice, Marco/F-7007-2010 Del Giudice, Marco/0000-0001-8526-1573 ABDI H, 2007, ENCY MEASUREMENT STA, P849; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; DARTON RA, 1980, STATISTICIAN, V29, P167, DOI 10.2307/2988040; HORN JL, 1973, MULTIVAR BEHAV RES, V8, P131, DOI 10.1207/s15327906mbr0802_1; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; ROFF DA, 2002, LIFE HIST EVOLUTION; Russell DW, 2002, PERS SOC PSYCHOL B, V28, P1629, DOI 10.1177/014616702237645; Sakamoto S, 1998, J CLIN PSYCHOL, V54, P477, DOI 10.1002/(SICI)1097-4679(199806)54:4<477::AID-JCLP9>3.0.CO;2-K; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104 9 3 3 0 6 ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND 1047-840X 1532-7965 PSYCHOL INQ Psychol. Inq. 2014 25 3-4 394 413 10.1080/1047840X.2014.925339 20 Psychology, Multidisciplinary Psychology AO0NL WOS:000341006500020 2019-02-21 J Mwale, M; Kaiser, H; Heemstra, PC Mwale, M.; Kaiser, H.; Heemstra, P. C. Reproductive biology and distribution of Syngnathus temminckii and S-watermeyeri (Pisces: Syngnathidae) in southern Africa AFRICAN JOURNAL OF MARINE SCIENCE English Article breeding season; estuarine species; fecundity; length at 50% maturity; pipefish; sex ratios ROLE REVERSED PIPEFISH; LIFE-HISTORY; FAMILY SYNGNATHIDAE; ESTUARINE TYPOLOGY; MATING PATTERNS; LARVAL FISHES; SURF ZONE; SEX; ECOLOGY; CONSERVATION The reproductive biology and distribution of two species of Syngnathus (S. temminckii and S. watermeyeri) were investigated using information from museum specimens, published data, survey data and samples collected during mouth-breaching events of temporarily open/closed estuaries over the period 1950-2011. Distribution records indicate that the two species are restricted to specific habitats and bioregions in southern Africa. Although S. temminckii has marine and estuarine populations, the species is most prevalent in warm and cool temperate estuarine systems. Syngnathus watermeyeri has limited dispersal capabilities owing to life-history characteristics and is completely dependent on shallow vegetated habitat in mesosaline estuarine systems in the warm temperate region, where it co-occurs with S. temminckii. The presence of breeding individuals and juveniles indicated that the spawning period of both species occurs in spring and summer, coinciding with warmer water temperatures and enhanced food resources, with reproductive activity of S. temminckii peaking in November. The estimated lengths (standard length) at 50% maturity of males and females of S. temminckii (129 and 120 mm respectively), were larger than those of S. watermeyeri (118 and 102 mm) and similar to those for other syngnathids. Although the observed sex ratios for S. temminckii (0.5:1.0, M:F) and S. watermeyeri (0.7:1.0), were biased towards females and similar to those observed among congeners, only S. temminckii was significantly different from the expected 1:1 ratio. The mean number of mature oocytes in the females (n = 379; 95% CI = 244-658) of S. temminckii was not significantly different from the mean number of eggs/embryos in the male brood pouch (n = 451; 95% CI = 270-486). The relationship between carrying capacity and size was linear and positively correlated, implying that fecundity, and hence reproductive efficiency, increases with the size of the individual. Comparative analyses indicated that these species have different life-history strategies and dispersal capabilities. However, they are both highly vulnerable as a result of anthropogenic threats to the unstable estuarine environment. [Mwale, M.; Heemstra, P. C.] South African Inst Aquat Biodivers, Grahamstown, South Africa; [Mwale, M.; Kaiser, H.] Rhodes Univ, Dept Ichthyol & Fisheries Sci, ZA-6140 Grahamstown, South Africa Mwale, M (reprint author), South African Inst Aquat Biodivers, Grahamstown, South Africa. m.mwale@saiab.ac.za Mwale, Monica/C-2556-2012 Mwale, Monica/0000-0003-2180-8917 National Research Foundation of South Africa; South African Institute for Aquatic Biodiversity; Andrew Mellon Foundation We thank the South African Museum for providing loans and access to specimens. We are also grateful to I Russell, P Vorwerk and N James for proving additional specimens. This research was supported financially by the National Research Foundation of South Africa and the South African Institute for Aquatic Biodiversity. MM was supported by a doctoral research fellowship from the Andrew Mellon Foundation. Beckley LE, 2002, MAR FRESHWATER RES, V53, P99, DOI 10.1071/MF01442; Begg GA, 1999, FISH RES, V43, P141, DOI 10.1016/S0165-7836(99)00071-5; Berglund A, 2003, ADV STUD BEHAV, V32, P131, DOI 10.1016/S0065-3454(03)01003-9; BERGLUND A, 1993, ANIM BEHAV, V46, P169, DOI 10.1006/anbe.1993.1172; BERGLUND A, 1993, BEHAV ECOL SOCIOBIOL, V32, P331; BERGLUND A, 1988, OIKOS, V51, P184, DOI 10.2307/3565641; BERGLUND A, 1991, EVOLUTION, V45, P770, DOI 10.1111/j.1558-5646.1991.tb04346.x; Blaber S. J. M, 2000, TROPICAL ESTUARINE F; Braga Goncalves I, 2011, J FISH BIOL, V78, P1847, DOI 10.1111/j.1095-8649.2011.02984.x; Braga Goncalves I, 2010, P ROY SOC B-BIOL SCI, V277, P1581, DOI 10.1098/rspb.2009.2290; Campbell BC, 1998, ESTUARIES, V21, P470, DOI 10.2307/1352845; Dawson C.E., 1986, P445; Day J., 1981, ESTUARINE ECOLOGY PA; FAO (Food and Agriculture Organization), 1984, EXP CONS REG FISH S2; Flegr J, 1997, J THEOR BIOL, V188, P121, DOI 10.1006/jtbi.1997.0458; Fortuin A, 2005, THESIS RHODES U S AF; Foster SJ, 2004, J FISH BIOL, V65, P1, DOI 10.1111/j.1095-8649.2004.00429.x; GORDINA A D, 1991, Voprosy Ikhtiologii, V31, P107; Gronell AM, 1984, J COMP ETHOLOGY, V6, P1; Gurkan S, 2009, NORTH-WEST J ZOOL, V5, P179; Harrison TD, 2012, J FISH BIOL, V81, P2005, DOI 10.1111/j.1095-8649.2012.03458.x; Harrison TD, 2008, J FISH BIOL, V73, P2542, DOI 10.1111/j.1095-8649.2008.02108.x; Harrison TD, 2002, MAR FRESHWATER RES, V53, P479, DOI 10.1071/MF01121; Harrison TD, 2004, ESTUAR COAST SHELF S, V61, P73, DOI 10.1016/j.ecss.2004.04.005; Harrisona TD, 2006, ENVIRON BIOL FISH, V75, P269, DOI 10.1007/s10641-006-0028-y; Heemstra E, 2004, COASTAL FISHES SO AF; HERALD EARL S., 1941, STANFORD ICHTHYOL BULL, V2, P49; Hesp SA, 2002, FISH B-NOAA, V100, P214; Kuiter RH, 2000, SEAHORSES SEADRAGONS; MAC ARTHUR ROBERT H., 1967; Mbande Sekiwe, 2005, Smithiana Bulletin, P1; Montoya-Maya PH, 2009, AFR ZOOL, V44, P75, DOI 10.3377/004.044.0108; Mwale M, 2013, J FISH BIOL, V82, P2045, DOI 10.1111/jfb.12130; Oelofse J, 2011, CAPE TIMES 1212; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Ramos-Miranda J, 2005, J FISH BIOL, V66, P513, DOI 10.1111/j.1095-8649.2005.00619.x; Rosenqvist G, 2011, J FISH BIOL, V78, P1647, DOI 10.1111/j.1095-8649.2011.02972.x; Russell I. A., 1994, Southern African Journal of Aquatic Sciences, V20, P93; Sheppard JN, 2011, ESTUAR COAST SHELF S, V95, P145, DOI 10.1016/j.ecss.2011.08.029; Stergiou KI, 2003, FISH RES, V60, P161, DOI 10.1016/S0165-7836(02)00077-2; Strydom NA, 2005, ESTUAR COAST SHELF S, V63, P101, DOI 10.1016/j.ecss.2004.10.013; Strydom NA, 2008, AFR ZOOL, V43, P256, DOI 10.3377/1562-7020-43.2.256; SVENSSON I, 1988, J ANIM ECOL, V57, P929, DOI 10.2307/5102; TARGETT TE, 1984, CONTRIB MAR SCI, V27, P169; Teixeira RL, 1995, ATLANTICA, V17, P123; Teske PR, 2005, MAR ECOL PROG SER, V286, P249, DOI 10.3354/meps286249; Turpie JK, 2000, BIOL CONSERV, V92, P59, DOI 10.1016/S0006-3207(99)00063-4; Vincent ACJ, 2011, J FISH BIOL, V78, P1681, DOI 10.1111/j.1095-8649.2011.03003.x; Vincent A. C. J., 1996, INT TRADE SEAHORSES; Vincent ACJ, 1995, ENVIRON BIOL FISH, V44, P347, DOI 10.1007/BF00008250; Vincent ACJ, 1995, NAGA, V18, P18; Vorwerk PD, 2007, S AFR J SCI, V103, P199; Watt-Pringle P, 2003, ESTUAR COAST SHELF S, V58, P765, DOI 10.1016/S0272-7714(03)00183-5; Weyl OLF, 1999, ENVIRON BIOL FISH, V55, P215, DOI 10.1023/A:1007543319416; Whitfield AK, 2008, AFR J MAR SCI, V30, P453, DOI 10.2989/AJMS.2008.30.3.2.636; WHITFIELD AK, 1995, ENVIRON BIOL FISH, V43, P152; WHITFIELD AK, 1994, S AFR J ZOOL, V29, P175; WHITFIELD AK, 1998, ICHTHYOLOGICAL MONOG; Wilson AB, 2003, EVOLUTION, V57, P1374 59 1 1 0 11 NATL INQUIRY SERVICES CENTRE PTY LTD GRAHAMSTOWN 19 WORCESTER STREET, PO BOX 377, GRAHAMSTOWN 6140, SOUTH AFRICA 1814-232X 1814-2338 AFR J MAR SCI Afr. J. Mar. Sci. 2014 36 2 175 184 10.2989/1814232X.2014.926292 10 Marine & Freshwater Biology Marine & Freshwater Biology AN0IO WOS:000340268200004 2019-02-21 J Hyle, AR; McBride, RS; Olney, JE Hyle, A. Reid; McBride, Richard S.; Olney, John E. Determinate Versus Indeterminate Fecundity in American Shad, an Anadromous Clupeid TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article ST-JOHNS RIVER; ALOSA-SAPIDISSIMA; BATCH FECUNDITY; OOCYTE GROWTH; SPAWNING RUN; LIFE-HISTORY; HICKORY SHAD; NORTH-SEA; MATURITY; FLORIDA Historical fecundity estimates of American Shad Alosa sapidissima used a determinate method that estimated annual fecundity as the standing stock of oocytes at a single point of time prior to spawning. Such fecundity estimates have been (1) reported for populations from the Canadian Maritimes to Florida, (2) applied to hypothesis tests of life history evolution, and (3) used in demographic models to advise management policy. However, American Shad have asynchronous development of yolked oocyte clutches, which suggests that new oocytes could arise after spawning commences, biasing the results of a determinate fecundity method downward. If so, annual fecundity should be a product of batch size and the number of batches-an indeterminate fecundity method. We investigated oocyte recruitment, atresia, and spawning intervals using gonad histology of females from the Mattaponi River, Virginia. Batch size (i.e., the number of hydrated oocytes prior to a spawning event) was estimated using a gravimetric method. Spawning duration was obtained from an independent acoustic tagging study. A size hiatus between primary and secondary oocytes was only evident in some individuals during spawning, so we conclude that an indeterminate fecundity method is necessary for this population of American Shad. Atresia was evident during spawning but was low at the end of the 2002 spawning season. Females spawned every 2.2-2.9 d, releasing 11-17 batches per season. Batch fecundity (range: 12,700-81,400) was 23% higher for repeat versus virgin spawners. A bootstrapped estimate of potential annual fecundity for a virgin female-as calculated with an indeterminate fecundity method-was 478,000-544,000 eggs (95% confidence interval), about double the previous (determinate) estimates from this river system (260,000 and 288,000). Until more comparisons are done with other populations, we urge caution in using the many published determinate fecundity estimates of American Shad and other Alosa species. [Hyle, A. Reid] Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, Melbourne, FL 32934 USA; [McBride, Richard S.] Natl Marine Fisheries Serv, Northeast Fisheries Sci Ctr, Woods Hole, MA 02543 USA; [Olney, John E.] Virginia Inst Marine Sci, Coll William & Mary, Gloucester Point, VA 23062 USA Hyle, AR (reprint author), Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, 2595 McGraw Ave, Melbourne, FL 32934 USA. reid.hyle@myfwc.com McBride, Richard/C-2818-2012 McBride, Richard/0000-0003-1120-0414 Northwest Atlantic Fisheries Organization under COST Action [FA0601] We thank both students and staff at the Virginia Institute of Marine Science for assistance in field sampling and laboratory processing. Special mention for field assistance to B. Watkins, J. Goins, S. Denny, J. Romine, W. Dowd, B. Daniels, D. Grusha, and R. A. Hyle for assistance with field collections. J. and V. Crawford of Walkerton generously offered their private dock as a staging area for the 72-h sampling efforts. C. and T. Custalow supplied specimens as well as valuable technical guidance on how, where, and when to fish drift gill nets for spawning American Shad. S. Denny provided crucial knowledge of preparation of fish ovaries for paraffin histology. A. Collins, K. Friedland, J. E. Harris and two anonymous reviewers provided helpful critiques of earlier iterations of this manuscript. Input on measuring and understanding fecundity was received from the Northwest Atlantic Fisheries Organization's Working Group on Reproductive Potential, particularly under the auspices of the COST Action FA0601, "Fish Reproduction and Fisheries." We appreciate everyone's assistance in this study. Alonso-Fernandeza A, 2008, AQUAT LIVING RESOUR, V21, P383, DOI 10.1051/alr:2008059; Bailey MM, 2013, N AM J FISH MANAGE, V33, P459, DOI 10.1080/02755947.2013.763874; BARBIERI LR, 1994, FISH B-NOAA, V92, P671; BIGELOW HENRY B., 1953, U S FISH AND WILDLIFE SERV FISH BULL, V53, P1; Bilkovic DM, 2002, FISH B-NOAA, V100, P632; Burnett J., 1989, NMFSFNEC76 NOAA; Castro-Santos T, 2010, CAN J FISH AQUAT SCI, V67, P806, DOI 10.1139/F10-026; CATING JAMES P., 1953, U S FISH AND WILDLIFE SERV FISH BULL, V54, P187; Davis W. S., 1957, US FISH WILDLIFE SER, V49, P1; Davison A. C., 1997, BOOTSTRAP METHODS TH; Duffy WJ, 2012, T AM FISH SOC, V141, P1664, DOI 10.1080/00028487.2012.720631; Duffy WJ, 2011, T AM FISH SOC, V140, P1023, DOI 10.1080/00028487.2011.603985; Fitzhugh GR, 2012, FISH B-NOAA, V110, P413; FITZHUGH GR, 1995, FISH B-NOAA, V93, P568; Friedland KD, 2005, J SEA RES, V54, P307, DOI 10.1016/j.seares.2005.06.002; Ganias K, 2004, FISH RES, V67, P13, DOI 10.1016/j.fishres.2003.08.008; Ganias K, 2007, FISH B-NOAA, V105, P131; Ganias K, 2013, FISH RES, V138, P23, DOI 10.1016/j.fishres.2012.05.006; GLEBE BD, 1981, CAN J FISH AQUAT SCI, V38, P806, DOI 10.1139/f81-109; Gordo LS, 2008, FISH RES, V89, P181, DOI 10.1016/j.fishres.2007.09.024; Harris JE, 2007, T AM FISH SOC, V136, P1463, DOI 10.1577/T06-187.1; Harris JE, 2012, MAR COAST FISH, V4, P262, DOI 10.1080/19425120.2012.675969; Harris JE, 2009, T AM FISH SOC, V138, P888, DOI 10.1577/T08-135.1; HUNTER JR, 1992, FISH B-NOAA, V90, P101; HUNTER JR, 1985, EGG PRODUCTION METHO, P79; JESSOP BM, 1993, T AM FISH SOC, V122, P85, DOI 10.1577/1548-8659(1993)122<0085:FOAAAB>2.3.CO;2; Kurita Y, 2003, J SEA RES, V49, P203, DOI 10.1016/S1385-1101(03)00004-2; Kurita Y, 2009, J SEA RES, V61, P188, DOI 10.1016/j.seares.2008.10.010; LAMBERT TC, 1987, MAR ECOL PROG SER, V39, P209, DOI 10.3354/meps039209; Latour RJ, 2012, MAR COAST FISH, V4, P302, DOI 10.1080/19425120.2012.675978; Leggett W. C., 1978, J FISH RES BOARD CAN, V35, P1469; Leggett W. C. G., 1969, THESIS MCGILL U MONT; LEGGETT WC, 1972, FISH BULL NATL OC AT, V70, P659; Leggett WC, 2004, AM FI SOC M, V9, P391; Lehman B. A., 1953, 33 US FISH WILDL SER; Limburg KE, 2003, AM FISH S S, V35, P125; LOWERREBARBIERI SK, 1993, FISH B-NOAA, V91, P165; Macchi GJ, 2003, FISH B-NOAA, V101, P332; Marteinsdottir G, 1998, CAN J FISH AQUAT SCI, V55, P1372, DOI 10.1139/cjfas-55-6-1372; McBride RS, 2015, FISH FISH, V16, P23, DOI 10.1111/faf.12043; McBride RS, 2013, J SEA RES, V75, P41, DOI 10.1016/j.seares.2012.04.005; McBride RS, 2010, T AM FISH SOC, V139, P598, DOI 10.1577/T09-068.1; McBride RS, 2003, FISH B-NOAA, V101, P583; McBride RS, 2002, MAR BIOL, V140, P713, DOI 10.1007/s00227-001-0759-4; MELVIN GD, 1986, CAN J FISH AQUAT SCI, V43, P640, DOI 10.1139/f86-077; Morgan J. M., 2009, CANADIAN J FISHERIES, V66, P404; Murauskas JG, 2011, T AM FISH SOC, V140, P1035, DOI 10.1080/00028487.2011.607036; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P33, DOI 10.2960/J.v33.a3; Murua H., 2003, Journal of Northwest Atlantic Fishery Science, V33, P23, DOI 10.2960/J.v33.a2; Mylonas Costadinos C., 1995, Journal of the World Aquaculture Society, V26, P240, DOI 10.1111/j.1749-7345.1995.tb00252.x; Nichols P. R., 1963, Fishery Bulletin United States, V63, P179; Olin M, 2012, FISHERIES MANAG ECOL, V19, P363, DOI 10.1111/j.1365-2400.2012.00845.x; Olney JE, 2003, AM FISH S S, V35, P185; Olney JE, 2001, B FR PECHE PISCIC, P881, DOI 10.1051/kmae:2001025; Olney JE, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:MAFUMA>2.0.CO;2; Olney JE, 2006, T AM FISH SOC, V135, P889, DOI 10.1577/T05-101.1; Pina T, 2003, SCI MAR, V67, P313; QASIM S. Z., 1956, JOUR CONSEIL PERM INTERNATL EXPLOR MER, V21, P144; R Core Team, 2012, R LANG ENV STAT COMP; Rideout RM, 2007, J FISH BIOL, V70, P1759, DOI 10.1111/j.1095-8649.2007.01448.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Schismenou E, 2012, MAR BIOL, V159, P757, DOI 10.1007/s00227-011-1852-y; Upton SA, 2012, MAR COAST FISH, V4, P346, DOI 10.1080/19425120.2012.675973; Uriarte A, 2012, FISH RES, V117, P96, DOI 10.1016/j.fishres.2011.03.002; WALLACE RA, 1981, AM ZOOL, V21, P325; Walters III J. F., 2003, AM FISHERIES SOC S, P201; Waters JM, 2000, J FISH BIOL, V56, P622, DOI 10.1006/jfbi.1999.1179; Witthames PR, 2010, FISH RES, V104, P27, DOI 10.1016/j.fishres.2009.11.008; WITTHAMES PR, 1995, AQUAT LIVING RESOUR, V8, P91, DOI 10.1051/alr:1995007 69 7 7 1 17 TAYLOR & FRANCIS INC PHILADELPHIA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. 2014 143 3 618 633 10.1080/00028487.2013.862178 16 Fisheries Fisheries AJ4EM WOS:000337624600007 2019-02-21 J Stewart-Koster, B; Olden, JD; Gido, KB Stewart-Koster, Ben; Olden, Julian D.; Gido, Keith B. Quantifying flow-ecology relationships with functional linear models HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES English Article hydrologic metrics; environmental flows; ecohydrology; flow variation; river regulation; functional data analysis; dams SAN-JUAN RIVER; LIFE-HISTORY STRATEGIES; HYDROLOGIC ALTERATION; NONNATIVE FISHES; WAVELET ANALYSIS; COLORADO RIVER; NEW-MEXICO; REGIME; VARIABILITY; HABITAT Hydrologic metrics have been used widely to quantify flow-ecology relationships; however, there are several challenges associated with their use, including the selection from a large number of available metrics and the limitation that metrics are a synthetic measure of a multi-dimensional flow regime. Using two case studies of fish species density and community composition, we illustrate the use of functional linear models to provide new insights into flow-ecology relationships and predict the expected impact of environmental flow scenarios, without relying on hydrologic metrics. The models identified statistically significant relationships to river flow over the 12 months prior to sampling (r(2) range 36-67%) and an environmental flow scenario that may enhance native species' densities while controlling a non-native species. Hydrologic metrics continue to play an important role in ecohydrology and environmental flow management; however, functional linear models provide an approach that overcomes some of the limitations associated with their use. [Stewart-Koster, Ben; Olden, Julian D.] Univ Washington, Sch Aquat & Fishery Sci, Seattle, WA 98195 USA; [Gido, Keith B.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA Stewart-Koster, B (reprint author), Griffith Univ, Australian Rivers Inst, 170 Kessels Rd, Nathan, Qld 4111, Australia. b.stewart-koster@griffith.edu.au Olden, Julian/0000-0003-2143-1187 H. Mason Keeler Endowed Professorship; Department of Defense-Strategic Environmental Research and Development Program [RC-1724] JDO was supported by the H. Mason Keeler Endowed Professorship and the Department of Defense-Strategic Environmental Research and Development Program [RC-1724]. Abell R, 2008, BIOSCIENCE, V58, P403, DOI 10.1641/B580507; Ainsworth LM, 2011, J AGR BIOL ENVIR ST, V16, P282, DOI 10.1007/s13253-010-0049-z; Arthington AH, 2006, ECOL APPL, V16, P1311, DOI 10.1890/1051-0761(2006)016[1311:TCOPEF]2.0.CO;2; Biggs BJF, 2005, RIVER RES APPL, V21, P283, DOI 10.1002/rra.847; Bliesner R., 1999, FLOW RECOMMENDATIONS, P4; Bliesner R., 2009, 2008 ANN REP; BRADSHAW GA, 1992, J ECOL, V80, P205, DOI 10.2307/2261007; Brewer SK, 2013, RIVER RES APPL, V29, P269, DOI 10.1002/rra.1595; Clausen B, 2000, J HYDROL, V237, P184, DOI 10.1016/S0022-1694(00)00306-1; Cooke SJ, 2005, BIOL CONSERV, V121, P317, DOI 10.1016/j.biocon.2004.05.015; Crainiceanu C, 2010, J STAT SOFTW, V32, P1; FARRINGER RT, 1979, T AM FISH SOC, V108, P271, DOI 10.1577/1548-8659(1979)108<271:RCOTRS>2.0.CO;2; Franssen NR, 2007, BIOL CONSERV, V138, P330, DOI 10.1016/j.biocon.2007.04.028; Gao YX, 2009, J HYDROL, V374, P136, DOI 10.1016/j.jhydrol.2009.06.009; Gido KB, 1999, COPEIA, P321; Gido KB, 2013, CAN J FISH AQUAT SCI, V70, P554, DOI 10.1139/cjfas-2012-0441; Gido KB, 2012, T AM FISH SOC, V141, P645, DOI 10.1080/00028487.2012.683471; Holden P. B., 1999, FLOW RECOMMENDATIONS; JOHN KR, 1963, COPEIA, P286; Jowett IG, 2009, RIVER RES APPL, V25, P1126, DOI 10.1002/rra.1208; Kennard MJ, 2007, CAN J FISH AQUAT SCI, V64, P1346, DOI 10.1139/F07-108; Kennard MJ, 2010, RIVER RES APPL, V26, P137, DOI 10.1002/rra.1249; Manly B. F. J., 2007, RANDOMIZATION BOOTST; Mathews R, 2007, J AM WATER RESOUR AS, V43, P1400, DOI 10.1111/j.1752-1688.2007.00099.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Minckley W. L., 2009, INLAND FISHES GREATE; Moore SL, 2008, RIVER RES APPL, V24, P267, DOI 10.1002/rra.1057; Muller HG, 2005, ANN STAT, V33, P774, DOI 10.1214/009053604000001156; Naiman RJ, 2008, CR GEOSCI, V340, P629, DOI 10.1016/j.crte.2008.01.002; Olden J. D., 2010, COMMUNITY ECOLOGY ST, P83; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2003, RIVER RES APPL, V19, P101, DOI 10.1002/rra.700; Olden JD, 2012, ECOHYDROLOGY, V5, P503, DOI 10.1002/eco.251; Paukert C, 2004, N AM J FISH MANAGE, V24, P648, DOI 10.1577/M03-087.1; Peterson James T., 1996, North American Journal of Fisheries Management, V16, P738, DOI 10.1577/1548-8675(1996)016<0738:NTRFTW>2.3.CO;2; Poff NL, 2010, FRESHWATER BIOL, V55, P147, DOI 10.1111/j.1365-2427.2009.02204.x; Poff NL, 2010, FRESHWATER BIOL, V55, P194, DOI 10.1111/j.1365-2427.2009.02272.x; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; POFF NL, 1989, CAN J FISH AQUAT SCI, V46, P1805, DOI 10.1139/f89-228; Priestley M. B., 1991, SPECTRAL ANAL TIME S; Propst DL, 2004, T AM FISH SOC, V133, P922, DOI 10.1577/T03-057.1; Puckridge JT, 1998, MAR FRESHWATER RES, V49, P55, DOI 10.1071/MF94161; R Development Core Team, 2012, R LANG ENV STAT COMP; Ramsay JO, 2009, USE R, P1, DOI 10.1007/978-0-387-98185-7_1; Ramsay J. O., 2006, FUNCTIONAL DATA ANAL; Ramsay J. O., 2002, APPL FUNCTIONAL DATA; Ramsay J.O., 2011, FDA FUNCTIONAL DATA; Richter BD, 2006, RIVER RES APPL, V22, P297, DOI 10.1002/rra.892; Richter BD, 1996, CONSERV BIOL, V10, P1163, DOI 10.1046/j.1523-1739.1996.10041163.x; Roberts ME, 2006, AM MIDL NAT, V155, P70, DOI 10.1674/0003-0031(2006)155[0070:REAFHO]2.0.CO;2; Sabo JL, 2008, ECOL MONOGR, V78, P19, DOI 10.1890/06-1340.1; Steel EA, 2007, RIVER RES APPL, V23, P351, DOI 10.1002/rra.985; Stewart G, 2005, RIVER RES APPL, V21, P1061, DOI 10.1002/rra.868; Stewart-Koster B, 2011, J FISH BIOL, V79, P1525, DOI 10.1111/j.1095-8649.2011.03072.x; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Zeug SC, 2007, CAN J FISH AQUAT SCI, V64, P1291, DOI 10.1139/F07-094 58 19 19 3 37 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 0262-6667 2150-3435 HYDROLOG SCI J Hydrol. Sci. J.-J. Sci. Hydrol. 2014 59 3-4 SI 629 644 10.1080/02626667.2013.860231 16 Water Resources Water Resources AI7PD WOS:000337085100014 2019-02-21 J Vila-Cabrera, A; Martinez-Vilalta, J; Retana, J Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier Variation in reproduction and growth in declining Scots pine populations PERSPECTIVES IN PLANT ECOLOGY EVOLUTION AND SYSTEMATICS English Article Drought; Growth; Pinus sylvestris; Reproduction; Size-dependent; Trade-off DROUGHT-INDUCED MORTALITY; NE IBERIAN PENINSULA; CONE PRODUCTION; TREE MORTALITY; FOREST DECLINE; ALEPPO PINE; ALLOCATION; ALLOMETRY; PATTERNS; PINACEAE Disentangling how variation in reproduction and growth is linked in plants across different ecological scales, and how allocation rules change in response to stress are fundamental aspects of life history theory. Although it is known that reproductive allocation is an allometric process and that environmental conditions can influence demographic traits, patterns of variation in vegetative and reproductive functions across and within individuals of tree species suffering drought-induced decline have rarely been documented. In this study we use Scots pine (Pinus sylvestris L.) as a model species to explore patterns of variation in cone production and growth in two declining populations at the southern edge of its distribution. A Bayesian approach was used to assess how these demographic traits vary as a function of drought effects and competition and covary across different ecological scales. The allometric trajectories relating tree size with cone production and growth differed along gradients of drought impacts and biotic interactions. Although reproduction and growth increased with tree size, cone production reached a maximum at intermediate sized trees and stabilized or decreased at larger sizes. Drought stress effects (defoliation at the tree level and overall decline at the plot level) and competition for resources reduced cone production and growth. Our results also showed differential effects of defoliation on cone production depending on tree size, with stronger effects on larger individuals. After accounting for these effects, much of the variation of demographic traits and correlations among them occurred at small ecological scales across individuals (i.e. within plots) and within individuals across years. This resulted in covariations between demographic traits among nearby individuals and within individuals through time, suggesting a consistent advantage in resource acquisition of some individuals within plots, and trade-offs between growth and cone production within trees across years. In conclusion, this study reports that drought-induced forest decline is associated with lower growth and cone production in Scots pine, which could contribute to explain the long-term impacts of drought in southern populations of this species and, in particular, its low regeneration capacity after severe drought. (C) 2014 Geobotanisches Institut ETH, Stiftung Ruebel. Published by Elsevier GmbH. All rights reserved. [Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier] CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain; [Vila-Cabrera, Albert; Martinez-Vilalta, Jordi; Retana, Javier] Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Catalonia, Spain; [Martinez-Vilalta, Jordi] Univ Edinburgh, Sch Geosci, Edinburgh EH9 3JN, Midlothian, Scotland Vila-Cabrera, A (reprint author), CREAF, Cerdanyola Del Valles 08193, Catalonia, Spain. a.vila@creaf.uab.es Retana, Javier/L-1214-2014; Martinez-Vilalta, Jordi/D-3385-2014 Retana, Javier/0000-0002-7505-9467; Martinez-Vilalta, Jordi/0000-0002-2332-7298 Spanish Ministry of Education and Science via competitive projects [CGL2007-60120, CONSOLIDER INGENIO 2010 CSD2008-0040] We thank J.M. Espelta for helpful suggestions and discussions on an earlier version of the manuscript. We would also like to thank M. Brunat, D. Gimenez, B. Ros, S. Guerrero and P. Garcia for their help with the fieldwork. This study was supported by the Spanish Ministry of Education and Science via competitive projects CGL2007-60120 and CONSOLIDER INGENIO 2010 CSD2008-0040. Aber J, 2001, BIOSCIENCE, V51, P735, DOI 10.1641/0006-3568(2001)051[0735:FPAGEC]2.0.CO;2; Adams HD, 2005, J BIOGEOGR, V32, P1629, DOI 10.1111/j.1365-2699.2005.01292.x; Barringer BC, 2012, OECOLOGIA, V171, P129; Bazzaz F. A., 2000, Seeds: the ecology of regeneration in plant communities, P1, DOI 10.1079/9780851994321.0001; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Linares JC, 2012, GLOBAL CHANGE BIOL, V18, P1000, DOI 10.1111/j.1365-2486.2011.02566.x; Carnicer J, 2011, P NATL ACAD SCI USA, V108, P1474, DOI 10.1073/pnas.1010070108; Climent J, 2008, AM J BOT, V95, P833, DOI 10.3732/ajb.2007354; COUSENS JE, 1988, FORESTRY, V61, P255, DOI 10.1093/forestry/61.3.255; Davies SJ, 2001, ECOLOGY, V82, P920, DOI 10.2307/2679892; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Di Filippo A, 2012, GLOBAL CHANGE BIOL, V18, P960, DOI 10.1111/j.1365-2486.2011.02617.x; ELKASSABY YA, 1992, CAN J BOT, V70, P1429, DOI 10.1139/b92-179; Espelta JM, 2008, ECOLOGY, V89, P805, DOI 10.1890/07-0217.1; Galiano L, 2011, NEW PHYTOL, V190, P750, DOI 10.1111/j.1469-8137.2010.03628.x; Galiano L, 2010, ECOSYSTEMS, V13, P978, DOI 10.1007/s10021-010-9368-8; Garcia D, 2000, J ECOL, V88, P436; Girard F, 2012, EUR J FOREST RES, V131, P919, DOI 10.1007/s10342-011-0565-6; Gomez-Aparicio L, 2011, GLOBAL CHANGE BIOL, V17, P2400, DOI 10.1111/j.1365-2486.2011.02421.x; GRACIA C, 2000, INVENTARI ECOLOGIC F; Gracia M., 2011, PINESDES PI ROIG MAN; Guo H, 2012, J ECOL, V100, P452, DOI 10.1111/j.1365-2745.2011.01884.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Harper J. L., 1977, POPULATION BIOL PLAN; Haymes KL, 2012, AM J BOT, V99, P640, DOI 10.3732/ajb.1100339; Heres AM, 2012, TREES-STRUCT FUNCT, V26, P621, DOI 10.1007/s00468-011-0628-9; Hulshof CM, 2012, ECOLOGY, V93, P180, DOI 10.1890/11-0740.1; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Lloret F, 2004, GLOBAL CHANGE BIOL, V10, P2092, DOI 10.1111/j.1365-2486.2004.00870.x; Lloret F, 2012, GLOBAL CHANGE BIOL, V18, P797, DOI 10.1111/j.1365-2486.2011.02624.x; Martinez-Alonso C, 2007, FOREST ECOL MANAG, V253, P19, DOI 10.1016/j.foreco.2007.06.043; Martinez-Vilalta J, 2002, FOREST ECOL MANAG, V161, P247, DOI 10.1016/S0378-1127(01)00495-9; Martinez-Vilalta J, 2012, OECOLOGIA, V168, P877, DOI 10.1007/s00442-011-2132-8; Mencuccini M, 2005, ECOL LETT, V8, P1183, DOI 10.1111/j.1461-0248.2005.00819.x; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; Monserrat-Marti G, 2009, TREES-STRUCT FUNCT, V23, P787; Mutke S., 2005, AGR FOR METEOROL, V132, P63; Niklas KJ, 2003, EVOL ECOL RES, V5, P79; Ninyerola M, 2000, INT J CLIMATOL, V20, P1823, DOI 10.1002/1097-0088(20001130)20:14<1823::AID-JOC566>3.0.CO;2-B; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Perez-Ramos IM, 2010, ECOLOGY, V91, P3057, DOI 10.1890/09-2313.1; Petit RJ, 2006, ANNU REV ECOL EVOL S, V37, P187, DOI 10.1146/annurev.ecolsys.37.091305.110215; Poyatos R, 2013, NEW PHYTOL, V200, P388, DOI 10.1111/nph.12278; R Development Core Team, 2011, R LANG ENV STAT COMP; Sakai A, 2006, AM J BOT, V93, P988, DOI 10.3732/ajb.93.7.988; Sala A, 2012, NEW PHYTOL, V196, P189, DOI 10.1111/j.1469-8137.2012.04257.x; Sala A, 2012, TREE PHYSIOL, V32, P764, DOI 10.1093/treephys/tpr143; Sanchez-Humanes B, 2011, OECOLOGIA, V166, P101, DOI 10.1007/s00442-010-1819-6; Sanchez-Humanes B, 2011, FORESTRY, V84, P73, DOI 10.1093/forestry/cpq045; Sanchez-Salguero R, 2012, CLIMATIC CHANGE, V113, P767, DOI 10.1007/s10584-011-0372-6; Santos-del-Blanco L, 2010, FOR SYST, V19, P381; Silvertown J, 1999, AM NAT, V154, P321, DOI 10.1086/303238; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staudhammer CL, 2013, OECOLOGIA, V173, P45, DOI 10.1007/s00442-013-2603-1; Thabeet A, 2009, TREES-STRUCT FUNCT, V23, P843, DOI 10.1007/s00468-009-0326-z; Vila-Cabrera A, 2013, ECOSYSTEMS, V16, P323, DOI 10.1007/s10021-012-9615-2; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; Zlotin RI, 2008, J ARID ENVIRON, V72, P1562, DOI 10.1016/j.jaridenv.2008.02.021 60 8 8 4 38 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 1433-8319 PERSPECT PLANT ECOL Perspect. Plant Ecol. Evol. Syst. 2014 16 3 111 120 10.1016/j.ppees.2014.02.005 10 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology AI4XB WOS:000336868700002 2019-02-21 J Liedtke, HC; Muller, H; Hafner, J; Nagel, P; Loader, SP Liedtke, H. Christoph; Mueller, Hendrik; Hafner, Julian; Nagel, Peter; Loader, Simon P. Interspecific patterns for egg and clutch sizes of African Bufonidae (Amphibia: Anura) ZOOLOGISCHER ANZEIGER English Article Ova; Field observations; Life history; Trade-off; Reproductive mode; Lecithotrophic viviparity; Matrotrophic viviparity LIFE-HISTORY; REPRODUCTIVE-BIOLOGY; EVOLUTION; FECUNDITY; FROGS; PARAMETERS; MASS Little is known about reproductive trade-offs in African amphibians, but such data, particularly in the form of quantitative measurements, are a key for investigating life history evolution. Here we compile and analyze known data on African bufonids from published material and new data from preserved museum specimens, to investigate interspecific patterns of egg and clutch sizes variation. Our data is a composite of mixed sources, including ova data from dissected females and laid clutches from observations in the field. Our study shows that, as body size increases, clutch size increases but egg size decreases, and when correcting for body size, egg size is inversely correlated with clutch size. These parameter interactions however, are different for different reproductive modes. In free-swimming larval developing species, the same trends are recovered, but for lecithotrophic viviparous species no significant correlations could be recovered for clutch size and body size nor for the trade-off between clutch size and egg size, and egg size is positively related to body size. The egg size of Nimbaphrynoides occidentalis (Angel, 1943) is a clear outlier, which may be due to its matrotrophic viviparous reproduction. In addition, we observed no statistical difference between ova data collected from dissections and laid clutch data from field observations, which suggests that such a mixed dataset has utility in comparative analyses. (C) 2014 Elsevier GmbH. All rights reserved. [Liedtke, H. Christoph; Hafner, Julian; Nagel, Peter; Loader, Simon P.] Univ Basel, Dept Environm Sci Biogeog, CH-4056 Basel, Switzerland; [Mueller, Hendrik] Univ Jena, Inst Spezielle Zool & Evolut Biol Phyletischem Mu, D-07743 Jena, Germany Liedtke, HC (reprint author), Univ Basel, Dept Environm Sci Biogeog, Klingelbergstr 27, CH-4056 Basel, Switzerland. christoph.liedtke@unibas.ch Liedtke, H. Christoph/K-2253-2015; Mueller, Hendrik/B-4979-2010 Liedtke, H. Christoph/0000-0002-6221-8043; Mueller, Hendrik/0000-0001-6764-7376 Swiss National Science Foundation [31003A-133067] We would like to thank Mark Wilkinson, David Gower, Barry Clarke, Patrick Campbell, Frank Tillack and Mark-Oliver Rodel for granting us access to museum collections and for providing useful references and literature. Thank you also to Serge Bogaerts for kindly providing a preserved clutch of B. brongersmai eggs and to Ruth Streitwolf for her help with researching the literature. This research was supported by the Swiss National Science Foundation (31003A-133067 granted to S.P.L). AmphibiaWeb, 2013, INF AMPH BIOL CONS; Angel F., 1944, Annales des Sciences Naturelles Paris Zoologie (11), V6, P63; BARBAULT R, 1984, OIKOS, V43, P77, DOI 10.2307/3544248; Berven K.A., 2008, COPEIA, P605; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; BLACKBURN DG, 1999, ENCY REPROD, V4, P994; BLACKBURN TM, 1991, AUK, V108, P973; Boulenger G. A., 1886, ANN MAGAZINE NATUR 5, V17, P463; Castanet J, 2000, ANN SCI NAT ZOOL, V21, P11, DOI 10.1016/S0003-4339(00)00103-9; Channing A., 2006, AMPHIBIANS E AFRICA; Christians JK, 2002, BIOL REV, V77, P1, DOI 10.1017/S1464793101005784; CUMMINS CP, 1986, J ANIM ECOL, V55, P303, DOI 10.2307/4710; Dobzhansky T, 1950, AM SCI, V38, P208; Duellman W. E., 1994, BIOL AMPHIBIANS; Dunbrack R.L., 1989, AM NAT, P138; Figuerola J, 2006, J ORNITHOL, V147, P57, DOI 10.1007/s10336-005-0017-5; Fox J., 2011, R COMPANION APPL REG; Gallien L., 1959, COMP ENDOCRINOL, P479; Garcia-Berthou E, 2001, J ANIM ECOL, V70, P708, DOI 10.1046/j.1365-2656.2001.00524.x; Gomez-Mestre I, 2012, EVOLUTION, V66, P3687, DOI 10.1111/j.1558-5646.2012.01715.x; Grandison A.G.C., 1983, Bulletin of the British Museum (Natural History) Zoology, V45, P85; HODL W, 1990, FORTS ZOOL, V38, P41; KURAMOTO M, 1978, EVOLUTION, V32, P287, DOI 10.1111/j.1558-5646.1978.tb00644.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Liiddecke H, 2002, OECOLOGIA, V130, P403; MAC ARTHUR ROBERT H., 1967; Malonza PK, 2005, TROP ZOOL, V18, P49, DOI 10.1080/03946975.2005.10531214; Martin TE, 2006, EVOLUTION, V60, P390; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poynton JC, 2005, AFR J HERPETOL, V54, P159, DOI 10.1080/21564574.2005.9635529; Prado CPA, 2005, HERPETOL J, V15, P181; Pupin NC, 2010, HERPETOL J, V20, P147; R Core Team, 2013, R LANG ENV STAT COMP; Roff D.A., 2002, J HERPETOL, V36, P121; Salthe S.N., 1973, P229; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Summers K, 2006, P ROY SOC B-BIOL SCI, V273, P687, DOI 10.1098/rspb.2005.3368; Van Bocxlaer I, 2010, SCIENCE, V327, P679, DOI 10.1126/science.1181707; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vitt LJ, 2009, HERPETOLOGY INTRO BI; WAKE MH, 1978, J HERPETOL, V12, P121, DOI 10.2307/1563398; Wells K. D., 2007, ECOLOGY BEHAV AMPHIB; Wheeler B, 2010, IMPERM PERMUTATION T; WILLIAMSON I, 1995, COPEIA, P105; WOURMS JP, 1981, AM ZOOL, V21, P473 45 9 9 1 16 ELSEVIER GMBH, URBAN & FISCHER VERLAG JENA OFFICE JENA, P O BOX 100537, 07705 JENA, GERMANY 0044-5231 ZOOL ANZ Zool. Anz. 2014 253 4 309 315 10.1016/j.jcz.2014.02.003 7 Zoology Zoology AI4XF WOS:000336869200004 2019-02-21 J Plaska, W; Tarkowska-Kukuryk, M Plaska, Wojciech; Tarkowska-Kukuryk, Monika Influence of Abiotic Factors on Species Spectrum of Zoopleuston in Different Types of Peatlands POLISH JOURNAL OF ENVIRONMENTAL STUDIES English Article zoopleuston; Heteroptera; peatlands; abiotic factors FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; ENVIRONMENTAL-FACTORS; HETEROPTERA; BIODIVERSITY; ASSEMBLAGES; BODIES; PONDS This study aimed to determine the species spectrum and abundance of zoopleuston in five small water bodies in different types of peatlands in Roztocze National Park in 2012. The highest number of taxa and density occurred in transitional bogs. The results of DCA analysis showed distinct grouping of zoopleuston communities, depending on bog type. The studied group of organisms had a strong gradient depending on the bog type correlated with the concentration of chlorophyll-a, suspension, and concentrations of inorganic nutrients in the habitat. [Plaska, Wojciech; Tarkowska-Kukuryk, Monika] Univ Life Sci, Dept Hydrobiol, PL-20262 Lublin, Poland Plaska, W (reprint author), Univ Life Sci, Dept Hydrobiol, Dobrzanskiego 37, PL-20262 Lublin, Poland. wojciech.plaska@up.lublin.pl Tarkowska-Kukuryk, Monika/T-7469-2018 Tarkowska-Kukuryk, Monika/0000-0001-5328-6944 National Fund for Environmental Protection and Water Management Co-financed by National Fund for Environmental Protection and Water Management Bloechl A, 2010, LIMNOLOGICA, V40, P215, DOI 10.1016/j.limno.2009.08.001; Boda P, 2009, INT VER THEOR ANGEW, V30, P1271; Boda P, 2009, AQUAT INSECT, V31, P301, DOI 10.1080/01650420903110519; Csabai Z, 2012, NATURWISSENSCHAFTEN, V99, P751, DOI 10.1007/s00114-012-0957-6; Donohue I, 2009, HYDROBIOLOGIA, V633, P105, DOI 10.1007/s10750-009-9868-8; GOLTERMAN H.L., 1969, METHODS CHEM ANAL FR, P213; Hirayama H, 2008, ANIM BEHAV, V76, P1919, DOI 10.1016/j.anbehav.2008.08.013; Jurado GB, 2009, HYDROBIOLOGIA, V634, P153, DOI 10.1007/s10750-009-9900-z; Karaouzas I, 2006, HYDROBIOLOGIA, V573, P199, DOI 10.1007/s10750-006-0274-1; Kurzatkowska A, 2008, OCEANOL HYDROBIOL ST, V37, P101, DOI 10.2478/v10009-008-0021-1; Leps J, 2003, MULTIVARIATE ANAL EC, DOI 10.1017/CBO9780511615146; Mieczan T, 2009, ZOOL STUD, V48, P33; Molnar A, 2011, J INSECT CONSERV, V15, P389, DOI 10.1007/s10841-010-9347-6; PLASKA W, 2013, OCHR KSZTALT SROD PR, V10; Plaska Wojciech, 2010, Teka Komisji Ochrony i Ksztaltowania Srodowiska Przyrodniczego, V7, P328; Plaska Wojciech, 2009, Teka Komisji Ochrony i Ksztaltowania Srodowiska Przyrodniczego, V6, P228; Porst G, 2012, HYDROBIOLOGIA, V696, P47, DOI 10.1007/s10750-012-1181-2; Porst G, 2009, HYDROBIOLOGIA, V636, P421, DOI 10.1007/s10750-009-9971-x; Porst G, 2009, AQUAT CONSERV, V19, P456, DOI 10.1002/aqc.1016; Robson TM, 2005, SOIL BIOL BIOCHEM, V37, P2205, DOI 10.1016/j.soilbio.2005.04.002; Saha N, 2008, INSECT SCI, V15, P461, DOI 10.1111/j.1744-7917.2008.00234.x; Savage A. A, 1989, ADULTS BRIT AQUATIC; Skern M, 2010, LIMNOLOGICA, V40, P241, DOI 10.1016/j.limno.2009.09.002; Spitzer K, 2006, ANNU REV ENTOMOL, V51, P137, DOI 10.1146/annurev.ento.51.110104.151036; Sucha P., 2010, Acta Phytopathologica et Entomologica Hungarica, V45, P107, DOI 10.1556/APhyt.45.2010.1.8; Ter Braak C. J. F., 2002, CANOCO REFERENCE MAN, P500; Thiere G, 2009, BIOL CONSERV, V142, P964, DOI 10.1016/j.biocon.2009.01.006; Turic N, 2012, AQUAT INSECT, V34, P189, DOI 10.1080/01650424.2012.643059; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Ward J. V., 1992, AQUATIC INSECT ECOLO, P73 31 2 2 0 3 HARD OLSZTYN 5 POST-OFFICE BOX, 10-718 OLSZTYN 5, POLAND 1230-1485 2083-5906 POL J ENVIRON STUD Pol. J. Environ. Stud. 2014 23 2 441 447 7 Environmental Sciences Environmental Sciences & Ecology AG6PX WOS:000335542000019 2019-02-21 J Kitaysky, AS; Schultner, J; Welcker, J; Young, R Kitaysky, A. S.; Schultner, J.; Welcker, J.; Young, R. Mechanistic links between evironmental variability and life-history strategies INTEGRATIVE AND COMPARATIVE BIOLOGY English Meeting Abstract Annual Meeting of the Society-for-Integrative-and-Comparative-Biology JAN 03-07, 2014 Austin, TX Soc Integrat & Comparat Biol Univ Alaska Fairbanks, Fairbanks, AK USA; Norwegian Univ Sci & Technol, N-7034 Trondheim, Norway; Norwegian Polar Res Inst, Tromso, Norway askitaysky@alaska.edu 0 0 0 0 8 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. 2014 54 1 E111 E111 1 Zoology Zoology AD2FP WOS:000333049500445 2019-02-21 J Duca, C; Marini, MA Duca, Charles; Marini, Miguel Angelo Territorial system and adult dispersal in a cooperative-breeding tanager AUK English Article Cerrado; home-range size; Neothraupis fasciata; Neotropical savanna; sex-biased dispersal; White-banded Tanager; year-round territory NEOTHRAUPIS-FASCIATA; EASTERN BLUEBIRDS; FEEDING TERRITORY; FOOD ABUNDANCE; TROPICAL BIRDS; CENTRAL BRAZIL; SIALIA-SIALIS; GREAT TITS; SIZE; SURVIVAL Latitudinal differences in territorial behavior are considered to have great influence on differences in life-history strategies of Nearctic and Neotropical birds. Most territorial behavior of tropical birds has particularities that cannot be explained only by theories from studies of birds in temperate regions. We evaluated the territorial system of the cooperative-breeding White-banded Tanager (Neothraupis fasciata) in central Brazil's savanna and present results on stability of territory site occupation, relationship between territory size and group size, and dispersal patterns. Territories (n = 27, mean per season) were monitored for 3 yr in a protected area in the cerrado of central Brazil and were defined by the minimum convex polygon method. Territory size averaged 3.7 +/- 0.6 ha, and was defended by all individuals of groups of 2-8 individuals (mean = 3.4 +/- 1.2). We recorded 44 dispersal events between territories, and most individuals dispersed distances equal to one territory in length. Males tended to stay in the same territory, whereas females dispersed. Our results support hypotheses that predict year-long territory defense for tropical birds. Territory size reflected group size, corroborating the hypothesis that individuals adjust the territory size to ensure the amount of resources for survival. [Duca, Charles] Univ Brasilia, Programa Posgrad Ecol, Brasilia, DF, Brazil; [Marini, Miguel Angelo] Univ Brasilia, Dept Zool, Brasilia, DF, Brazil Duca, C (reprint author), Univ Vila Velha, Vila Velha, ES, Brazil. cduca@uvv.br Duca, Charles/I-2993-2015; Marini, Miguel/J-6251-2012 Duca, Charles/0000-0003-3903-8260; Marini, Miguel/0000-0002-7300-7321 CNPq; Fundacao O Boticario de Protecao A Natureza; CAPES/CNPq This study was funded by CNPq and the Fundacao O Boticario de Protecao A Natureza. PEQUI-Pesquisa e Conservacao do Cerrado provided institutional support. We thank ESECAE/SEMARH for authorization to conduct this study. C.D. was supported by a fellowship from CAPES/CNPq, and M.A.M. was supported by a research fellowship from CNPq. We thank all our friends from Laboratorio de Ecologia e Conservacao de Ayes at Universidade de Brasilia for help during field work. We thank R. B. Cavalcanti, R. Macedo, M. A. S. Alves, R. Young, and A. C. Guaraldo for suggestions that improved the manuscript. We also thank anonymous reviewers who kindly made suggestions on the manuscript. Alves M. A. S., 1990, ARARAJUBA, V1, P91; Alves Maria Alice S., 1991, Ararajuba, V2, P25; ALVES MAS, 1990, CONDOR, V92, P470, DOI 10.2307/1368243; Ayres M., 2000, BIOSTAT 2 0 APLICACO; Bagno M. A., 1998, VERTEBRADOS ESTACAO, P495; Brown J. L., 1987, HELPING COMMUNAL BRE; BROWN JL, 1984, BEHAV ECOL SOCIOBIOL, V14, P203, DOI 10.1007/BF00299620; Burke DM, 1998, AUK, V115, P96, DOI 10.2307/4089115; BUSKIRK WH, 1976, AM NAT, V110, P293, DOI 10.1086/283065; DHONDT AA, 1968, BIRD STUDY, V15, P127, DOI 10.1080/00063656809476192; DHONDT AA, 1979, OECOLOGIA, V42, P139, DOI 10.1007/BF00344854; Doerr ED, 2006, ANIM BEHAV, V72, P147, DOI 10.1016/j.anbehav.2005.10.017; DOWSETT RJ, 1985, BIOTROPICA, V17, P145, DOI 10.2307/2388507; Duca C., EMU IN PRESS; Duca C, 2009, BIOL CONSERV, V142, P563, DOI 10.1016/j.biocon.2008.11.010; Duca Charles, 2005, Lundiana, V6, P29; Duca C, 2006, REV BRAS ZOOL, V23, P692, DOI 10.1590/S0101-81752006000300011; Duca C, 2011, WILSON J ORNITHOL, V123, P259, DOI 10.1676/10-116.1; EASON P, 1992, J ANIM ECOL, V61, P411, DOI 10.2307/5332; Fedy BC, 2005, BEHAV ECOL SOCIOBIOL, V58, P414, DOI 10.1007/s00265-005-0928-4; Freitas GHS, 2012, WILSON J ORNITHOL, V124, P57, DOI 10.1676/10-143.1; GASS CL, 1979, CAN J ZOOL, V57, P914, DOI 10.1139/z79-112; Gorrell JV, 2005, J FIELD ORNITHOL, V76, P395, DOI 10.1648/0273-8570-76.4.395; GOWATY PA, 1984, BEHAV ECOL SOCIOBIOL, V15, P91, DOI 10.1007/BF00299374; GREENBERG R, 1986, OECOLOGIA, V69, P618, DOI 10.1007/BF00410372; Greenberg R, 1997, J AVIAN BIOL, V28, P103, DOI 10.2307/3677303; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; GRIMES LG, 1980, IBIS, V122, P166, DOI 10.1111/j.1474-919X.1980.tb02658.x; Hinde R. A., 1956, Ibis, V98, P340; HIXON MA, 1980, AM NAT, V115, P510, DOI 10.1086/283577; Hussell DJT, 2012, CONDOR, V114, P595, DOI 10.1525/cond.2012.100231; Lopes LE, 2006, STUD NEOTROP FAUNA E, V41, P87, DOI 10.1080/01650520500309826; Lopes Leonardo Esteves, 2005, Pap. Avulsos Zool. (São Paulo), V45, P127, DOI 10.1590/S0031-10492005001200001; MAHER CR, 1995, ANIM BEHAV, V49, P1581, DOI 10.1016/0003-3472(95)90080-2; Manica LT, 2012, J ORNITHOL, V153, P149, DOI 10.1007/s10336-011-0718-x; MARINI MA, 1992, AUK, V109, P911; Martin Paul R., 1993, MEASURING BEHAV INTR; MEEK SB, 1994, ANIM BEHAV, V47, P295, DOI 10.1006/anbe.1994.1042; Mendonca E. C., 1999, 6 C ORN NEOTR LIBR R, pR273; MOLLER AP, 1990, ANIM BEHAV, V40, P1070, DOI 10.1016/S0003-3472(05)80173-3; MORTON ES, 1973, AM NAT, V107, P8, DOI 10.1086/282813; Morton ES, 2000, BEHAV ECOL, V11, P648, DOI 10.1093/beheco/11.6.648; Ninner E., 1979, SERIE RECURSOS NATUR, V4; NOBLE G. K., 1939, AUK, V56, P263; ODUM E. P., 1955, AUK, V72, P128; Payevsky VA, 2006, RUSS J ECOL+, V37, P180, DOI 10.1134/S1067413606030064; Perrins C.M., 1983, AVIAN ECOLOGY; PITELKA FRANK A., 1959, CONDOR, V61, P233, DOI 10.2307/1365497; Preston Kristine L., 1998, Western Birds, V29, P242; RABENOLD KN, 1985, BEHAV ECOL SOCIOBIOL, V17, P1, DOI 10.1007/BF00299422; Ragusa-Netto J., 2000, Revista Brasileira de Biologia, V60, P461; Ribeiro B. A., 2002, ARARAJUBA, V10, P231; Ribeiro J. F., 1998, CERRADO AMBIENTE FLO, P89; Rowley Ian, 1965, Emu, V64, P251; SCHOENER TW, 1968, ECOLOGY, V49, P123, DOI 10.2307/1933567; Silva Jose Maria Cardoso Da, 1995, Steenstrupia, V21, P69; SMITH TM, 1987, ECOLOGY, V68, P695, DOI 10.2307/1938475; Sogge MK, 2007, CONDOR, V109, P475, DOI 10.1650/0010-5422(2007)109[475:WFNTDB]2.0.CO;2; STOUFFER PC, 2007, AUK, V124, P292; Stutchbury BJM, 2001, BEHAV ECOLOGY TROPIC; TERBORGH J, 1990, ECOL MONOGR, V60, P213, DOI 10.2307/1943045; VanderWerf EA, 1998, CONDOR, V100, P541, DOI 10.2307/1369721; WILLIS EO, 1974, ECOL MONOGR, V44, P153, DOI 10.2307/1942309; Woltmann S, 2011, WILSON J ORNITHOL, V123, P15, DOI 10.1676/10-017.1; WOOLFENDEN GE, 1978, BIOSCIENCE, V28, P104, DOI 10.2307/1307423; YAMAGISHI S, 1986, J FIELD ORNITHOL, V57, P193 66 7 8 0 29 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK JAN 2014 131 1 32 40 10.1642/AUK-13-005.1 9 Ornithology Zoology AD7ZU WOS:000333487100005 2019-02-21 J Crozier, LG; Hutchings, JA Crozier, Lisa G.; Hutchings, Jeffrey A. Plastic and evolutionary responses to climate change in fish EVOLUTIONARY APPLICATIONS English Review adaptation; climate change; evolutionary theory; fisheries management; life-history evolution; phenotypic plasticity SALMON SALMO-SALAR; COD GADUS-MORHUA; TROUT ONCORHYNCHUS-MYKISS; LIFE-HISTORY EVOLUTION; FRESH-WATER FISH; FUTURE OCEAN ACIDIFICATION; NORTH-ATLANTIC OSCILLATION; ZEALAND CHINOOK SALMON; RIVER SOCKEYE-SALMON; CORAL-REEF FISHES The physical and ecological fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. [Crozier, Lisa G.] NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, Seattle, WA 98112 USA; [Hutchings, Jeffrey A.] Dalhousie Univ, Dept Biol, Halifax, NS, Canada; [Hutchings, Jeffrey A.] Univ Oslo, Dept Biosci, Ctr Ecol & Evolutionary Synth, Oslo, Norway Crozier, LG (reprint author), NOAA, Natl Marine Fisheries Serv, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA. lisa.crozier@noaa.gov Natural Sciences and Engineering Research Council (Canada) We thank Andrew Hendry and Juha Merila for initiating this project and providing very helpful editorial guidance, as well as two anonymous reviewers. JAH was supported by funding awarded by the Natural Sciences and Engineering Research Council (Canada). Ahas R, 2006, INT J BIOMETEOROL, V51, P17, DOI 10.1007/s00484-006-0041-z; Al-Chokhachy R, 2013, GLOBAL CHANGE BIOL, V19, DOI 10.1111/gcb.12262; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Anttila K, 2013, J EXP BIOL, V216, P1183, DOI 10.1242/jeb.080556; Arismendi I., 2012, GEOPHYS RES LETT, V39; Attrill MJ, 2002, NATURE, V417, P275, DOI 10.1038/417275a; Barrett RDH, 2011, P ROY SOC B-BIOL SCI, V278, P233, DOI 10.1098/rspb.2010.0923; Bartholomew JL, 1998, J AQUAT ANIM HEALTH, V10, P112, DOI 10.1577/1548-8667(1998)010<0112:HRTIBT>2.0.CO;2; Baumann H, 2011, P ROY SOC B-BIOL SCI, V278, P2265, DOI 10.1098/rspb.2010.2479; Beacham T. D., 1992, Journal of Aquatic Animal Health, V4, P153, DOI 10.1577/1548-8667(1992)004<0153:PAGVIR>2.3.CO;2; Beaugrand G, 2003, NATURE, V426, P661, DOI 10.1038/nature02164; Beitinger TL, 2000, ENVIRON BIOL FISH, V58, P237, DOI 10.1023/A:1007676325825; Bilyk KT, 2011, COMP BIOCHEM PHYS A, V158, P382, DOI 10.1016/j.cbpa.2010.12.010; Blunden J, 2013, B AM METEOROL SOC, V94, pS1, DOI 10.1175/2013BAMSStateoftheClimate.1; Bowden TJ, 2008, FISH SHELLFISH IMMUN, V25, P373, DOI 10.1016/j.fsi.2008.03.017; Bradbury IR, 2013, EVOL APPL, V6, P450, DOI 10.1111/eva.12026; Bradbury IR, 2010, P ROY SOC B-BIOL SCI, V277, P3725, DOI 10.1098/rspb.2010.0985; Brett J. R., 1995, PHYSL ECOLOGY PACIFI, P4; BRETT JR, 1956, Q REV BIOL, V31, P75, DOI 10.1086/401257; Carlson SM, 2004, EVOL ECOL RES, V6, P955; Carlson SM, 2007, ECOLOGY, V88, P2620, DOI 10.1890/06-1171.1; Carroll SP, 2007, FUNCT ECOL, V21, P387, DOI 10.1111/j.1365-2435.2007.01289.x; Chevin L.-M., 2010, PLOS BIOL, V8; Chevin LM, 2013, EVOLUTION, V67, P708, DOI 10.1111/j.1558-5646.2012.01809.x; Collins S, 2014, EVOL APPL, V7, P140, DOI 10.1111/eva.12120; Comte L, 2013, ECOGRAPHY, V36, P1236, DOI 10.1111/j.1600-0587.2013.00282.x; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Cote J, 2012, J EVOLUTION BIOL, V25, P2596, DOI 10.1111/jeb.12007; Coulson T, 2010, J ANIM ECOL, V79, P1226, DOI 10.1111/j.1365-2656.2010.01734.x; Cox SP, 1997, CAN J FISH AQUAT SCI, V54, P1159; Croisetiere S, 2010, MOL IMMUNOL, V47, P1817, DOI 10.1016/j.molimm.2009.12.012; Crozier LG, 2011, AM NAT, V178, P755, DOI 10.1086/662669; Dahl J, 2004, CAN J ZOOL, V82, P1864, DOI 10.1139/Z04-184; Danovaro R, 2011, FEMS MICROBIOL REV, V35, P993, DOI 10.1111/j.1574-6976.2010.00258.x; Debes PV, 2013, HEREDITY, V111, P238, DOI 10.1038/hdy.2013.43; Denman K, 2011, ICES J MAR SCI, V68, P1019, DOI 10.1093/icesjms/fsr074; Di Lorenzo E, 2008, GEOPHYS RES LETT, V35; Diaz Pauli B, 2013, J EVOLUTION BIOL, V26, P2184, DOI 10.1111/jeb.12215; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dionne M, 2007, EVOLUTION, V61, P2154, DOI 10.1111/j.1558-5646.2007.00178.x; Dixson DL, 2010, ECOL LETT, V13, P68, DOI 10.1111/j.1461-0248.2009.01400.x; Donelson JM, 2012, NAT CLIM CHANGE, V2, P30, DOI 10.1038/NCLIMATE1323; Donelson JM, 2012, J ANIM ECOL, V81, P1126, DOI 10.1111/j.1365-2656.2012.01982.x; Doney SC, 2012, ANNU REV MAR SCI, V4, P11, DOI 10.1146/annurev-marine-041911-111611; Dulvy NK, 2008, J APPL ECOL, V45, P1029, DOI 10.1111/j.1365-2664.2008.01488.x; Enzor LA, 2013, COMP BIOCHEM PHYS A, V164, P154, DOI 10.1016/j.cbpa.2012.07.016; Etterson JR, 2001, SCIENCE, V294, P151, DOI 10.1126/science.1063656; Fangue NA, 2009, PHYSIOL BIOCHEM ZOOL, V82, P776, DOI 10.1086/606030; Ficke AD, 2007, REV FISH BIOL FISHER, V17, P581, DOI 10.1007/s11160-007-9059-5; Field CB, 2012, SPECIAL REPORT WORKI, P582; Finstad AG, 2011, GLOBAL CHANGE BIOL, V17, P1703, DOI 10.1111/j.1365-2486.2010.02335.x; Francis J. A., 2012, GEOPHYS RES LETT, V39; Franke A, 2011, BIOGEOSCIENCES, V8, P3697, DOI 10.5194/bg-8-3697-2011; Franks S, 2013, EVOLUTIONARY APPL, V7, P123; Friedland KD, 2005, ICES J MAR SCI, V62, P1338, DOI 10.1016/j.icejms.2005.04.013; Frommel AY, 2012, NAT CLIM CHANGE, V2, P42, DOI 10.1038/nclimate1324; Fry R. E. J., 1967, THERMOBIOLOGY, P375; Fukushima M, 1997, CAN J FISH AQUAT SCI, V54, P96, DOI 10.1139/cjfas-54-1-96; Gillet C, 2006, J FISH BIOL, V69, P518, DOI 10.1111/j.1095-8649.2006.01123.x; Goodkin NF, 2008, NAT GEOSCI, V1, P844, DOI 10.1038/ngeo352; Graham CT, 2009, J FISH BIOL, V74, P1143, DOI 10.1111/j.1095-8649.2009.02180.x; Griffiths R. B., 2013, OCEANS MARINE RESOUR; Gruber N, 2012, SCIENCE, V337, P220, DOI 10.1126/science.1216773; Gruber N, 2011, PHILOS T R SOC A, V369, P1980, DOI 10.1098/rsta.2011.0003; Hale R, 2011, OIKOS, V120, P661, DOI 10.1111/j.1600-0706.2010.19469.x; HANDFORD P, 1977, J FISH RES BOARD CAN, V34, P954, DOI 10.1139/f77-148; Harvell CD, 1999, SCIENCE, V285, P1505, DOI 10.1126/science.285.5433.1505; Haugen TO, 2000, J EVOLUTION BIOL, V13, P897, DOI 10.1046/j.1420-9101.2000.00242.x; Healy TM, 2012, J COMP PHYSIOL B, V182, P49, DOI 10.1007/s00360-011-0595-x; Heath MR, 2012, AQUAT CONSERV, V22, P337, DOI 10.1002/aqc.2244; Helland IP, 2011, J ANIM ECOL, V80, P539, DOI 10.1111/j.1365-2656.2010.01793.x; Hendry AP, 2008, MOL ECOL, V17, P20, DOI 10.1111/j.1365-294X.2007.03428.x; Hendry AP, 1998, CAN J FISH AQUAT SCI, V55, P1387, DOI 10.1139/f98-020; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; Hendry AP, 2004, EVOLUTION ILLUMINATE; Hoegh-Guldberg O, 2010, SCIENCE, V328, P1523, DOI 10.1126/science.1189930; Hofmann GE, 2010, ANNU REV PHYSIOL, V72, P127, DOI 10.1146/annurev-physiol-021909-135900; Hurrell J., 1995, NAO INDEX DATA PROVI; Hurst TP, 2012, MAR BIOL, V159, P2173, DOI 10.1007/s00227-012-2003-9; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 2002, HDB FISH BIOL FISHER, V1, P149; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2007, P R SOC B, V274, P1693, DOI 10.1098/rspb.2007.0263; Ineno T, 2005, FISHERIES SCI, V71, P767, DOI 10.1111/j.1444-2906.2005.01026.x; Ineno T, 2008, FISHERIES SCI, V74, P372, DOI 10.1111/j.1444-2906.2008.01534.x; IPCC, 2007, CLIM CHANG 2007 PHYS; IPCC, 2013, CLIM CHANG 2013 PHYS; Jensen LF, 2008, P ROY SOC B-BIOL SCI, V275, P2859, DOI 10.1098/rspb.2008.0870; Jobling M., 1994, FISH BIOENERGETICS; Johansen JL, 2011, GLOBAL CHANGE BIOL, V17, P2971, DOI 10.1111/j.1365-2486.2011.02436.x; Jonsson N, 2004, J FISH BIOL, V64, P241, DOI 10.1111/j.1095-8649.2004.00269.x; Juanes F, 2004, CAN J FISH AQUAT SCI, V61, P2392, DOI 10.1139/f04-207; Kassahn KS, 2009, BIOL REV, V84, P277, DOI 10.1111/j.1469-185X.2008.00073.x; Kavanagh KD, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-350; Keefer ML, 2008, ECOL FRESHW FISH, V17, P136, DOI 10.1111/j.1600-0633.2007.00267.x; Kennedy RJ, 2010, J FISH BIOL, V76, P1786, DOI 10.1111/j.1095-8649.2010.02617.x; Kinnison MT, 2011, HEREDITY, V106, P448, DOI 10.1038/hdy.2010.162; Kinnison MT, 1998, CAN J FISH AQUAT SCI, V55, P1946, DOI 10.1139/cjfas-55-8-1946; Kinnison MT, 2001, GENETICA, V112, P145, DOI 10.1023/A:1013375419520; Kjesbu OS, 2007, J SEA RES, V58, P23, DOI 10.1016/j.seares.2007.02.001; Kjesbu OS, 1998, J SEA RES, V40, P303, DOI 10.1016/S1385-1101(98)00029-X; Klyashtorin L, 2009, MAR BIOL RES, V5, P4, DOI 10.1080/17451000802512283; Koehn JD, 2011, MAR FRESHWATER RES, V62, P1148, DOI 10.1071/MF11139; Kopp M, 2014, EVOL APPL, V7, P169, DOI 10.1111/eva.12127; Kovach R. P., 2013, PLOS ONE, V8; Kovach RP, 2012, P ROY SOC B-BIOL SCI, V279, P3870, DOI 10.1098/rspb.2012.1158; Kroeker K. J., 2010, ECOL LETT, V141, P9; Lande R, 2009, J EVOLUTION BIOL, V22, P1435, DOI 10.1111/j.1420-9101.2009.01754.x; Landis SH, 2012, BEHAV ECOL SOCIOBIOL, V66, P1399, DOI 10.1007/s00265-012-1395-3; Liu JP, 2012, P NATL ACAD SCI USA, V109, P4074, DOI 10.1073/pnas.1114910109; Lovejoy TE, 2005, CLIMATE CHANGE BIODI; Macnab V, 2012, GLOBAL CHANGE BIOL, V18, P1540, DOI 10.1111/j.1365-2486.2011.02595.x; Madeira D, 2012, J SEA RES, V70, P32, DOI 10.1016/j.seares.2012.03.002; Mantua NJ, 1997, B AM METEOROL SOC, V78, P1069, DOI 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2; Marcil J, 2006, P ROY SOC B-BIOL SCI, V273, P217, DOI 10.1098/rspb.2005.3306; Marcos-Lopez M, 2010, TRANSBOUND EMERG DIS, V57, P293, DOI 10.1111/j.1865-1682.2010.01150.x; Meffe GK, 1995, CAN J FISH AQUAT SCI, V52, P2704, DOI 10.1139/f95-259; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Merila J, 2014, EVOL APPL, V7, P1, DOI 10.1111/eva.12137; Miller MR, 2012, MOL ECOL, V21, P237, DOI 10.1111/j.1365-294X.2011.05305.x; Moran R, 2010, FRESHWATER BIOL, V55, P315, DOI 10.1111/j.1365-2427.2009.02276.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Munday PL, 2008, FISH FISH, V9, P261, DOI 10.1111/j.1467-2979.2008.00281.x; Munday PL, 2012, J EXP BIOL, V215, P3865, DOI 10.1242/jeb.074765; Munday PL, 2009, P NATL ACAD SCI USA, V106, P1848, DOI 10.1073/pnas.0809996106; Naughton GP, 2005, CAN J FISH AQUAT SCI, V62, P30, DOI 10.1139/F04-147; NCADAC, 2013, NAT CLIM ASS DEV ADV; Neira R, 2006, AQUACULTURE, V257, P1, DOI 10.1016/j.aquaculture.2006.03.001; Noges P, 2005, BOREAL ENVIRON RES, V10, P45; Orr JC, 2005, NATURE, V437, P681, DOI 10.1038/nature04095; Otero J, 2012, ECOL EVOL, V2, P2192, DOI 10.1002/ece3.337; Ottersen G, 2006, FISH OCEANOGR, V15, P230, DOI 10.1111/j.1365-2419.2006.00404.x; Pankhurst NW, 2011, MAR FRESHWATER RES, V62, P1015, DOI 10.1071/MF10269; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; Pinsky ML, 2013, SCIENCE, V341, P1239, DOI 10.1126/science.1239352; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Portner HO, 2008, SCIENCE, V322, P690, DOI 10.1126/science.1163156; Portner HO, 2001, CONT SHELF RES, V21, P1975, DOI 10.1016/S0278-4343(01)00038-3; PRICE GR, 1972, ANN HUM GENET, V35, P485, DOI 10.1111/j.1469-1809.1957.tb01874.x; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PURDOM CE, 1993, GENETICS FISH BREEDI; Quinn TP, 1996, ECOLOGY, V77, P1151, DOI 10.2307/2265584; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Rahel FJ, 2008, CONSERV BIOL, V22, P521, DOI 10.1111/j.1523-1739.2008.00950.x; Reusch TBH, 2014, EVOL APPL, V7, P104, DOI 10.1111/eva.12109; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; Roff D, 2002, EVOLUTION, V56, P1286; ROFF DA, 1986, BIOSCIENCE, V36, P316, DOI 10.2307/1310236; Rogers LA, 2011, P NATL ACAD SCI USA, V108, P1961, DOI 10.1073/pnas.1010314108; Russell IC, 2012, ICES J MAR SCI, V69, P1563, DOI 10.1093/icesjms/fsr208; Sala OE, 2000, SCIENCE, V287, P1770, DOI 10.1126/science.287.5459.1770; Salinas S, 2012, ECOL LETT, V15, P159, DOI 10.1111/j.1461-0248.2011.01721.x; SCHEINER SM, 1993, ANNU REV ECOL SYST, V24, P35, DOI 10.1146/annurev.es.24.110193.000343; Schindler DE, 2005, ECOLOGY, V86, P198, DOI 10.1890/03-0408; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; Schneider KN, 2010, T AM FISH SOC, V139, P1198, DOI 10.1577/T09-129.1; Scott GR, 2012, P NATL ACAD SCI USA, V109, P14247, DOI 10.1073/pnas.1205012109; Serbezov D, 2010, J EVOLUTION BIOL, V23, P1631, DOI 10.1111/j.1420-9101.2010.02028.x; Shuter BJ, 2012, AQUAT SCI, V74, P637, DOI 10.1007/s00027-012-0274-3; Sims DW, 2004, J ANIM ECOL, V73, P333, DOI 10.1111/j.0021-8790.2004.00810.x; Smoker William W., 1998, Alaska Fishery Research Bulletin, V5, P46; Somero GN, 2010, J EXP BIOL, V213, P912, DOI 10.1242/jeb.037473; Sorte CJB, 2010, GLOBAL ECOL BIOGEOGR, V19, P303, DOI 10.1111/j.1466-8238.2009.00519.x; Staudinger M. D., 2012, IMPACTS CLIMATE CHAN; Stenseth NC, 2005, J ANIM ECOL, V74, P1195, DOI 10.1111/j.1365-2656.2005.01005.x; Stillman JH, 2003, SCIENCE, V301, P65, DOI 10.1126/science.1083073; Stockwell CA, 2003, TRENDS ECOL EVOL, V18, P94, DOI 10.1016/S0169-5347(02)00044-7; Stoks R, 2014, EVOL APPL, V7, P42, DOI 10.1111/eva.12108; Strussmann CA, 2010, J FISH BIOL, V77, P1818, DOI 10.1111/j.1095-8649.2010.02780.x; Sundby S, 2008, ICES J MAR SCI, V65, P953, DOI 10.1093/icesjms/fsn085; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Taylor SG, 2008, GLOBAL CHANGE BIOL, V14, P229, DOI 10.1111/j.1365-2486.2007.01494.x; Teal LR, 2008, MAR ECOL PROG SER, V358, P219, DOI 10.3354/meps07367; Terzi E, 2012, TOXICOL IND HEALTH, V28, P499, DOI 10.1177/0748233711416943; Thomas CD, 2004, NATURE, V427, P145, DOI 10.1038/nature02121; Todd CD, 2008, GLOBAL CHANGE BIOL, V14, P958, DOI 10.1111/j.1365-2486.2007.01522.x; Todd CD, 2012, ICES J MAR SCI, V69, P1686, DOI 10.1093/icesjms/fss151; Tomanek L, 2010, J EXP BIOL, V213, P971, DOI 10.1242/jeb.038034; Tonteri A, 2010, MOL ECOL, V19, P1273, DOI 10.1111/j.1365-294X.2010.04573.x; Urban J., 2014, EVOLUTIONAR IN PRESS, V7, P88; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Valiente AG, 2011, T AM FISH SOC, V140, P367, DOI 10.1080/00028487.2011.557018; Volkov AF, 2012, RUSS J MAR BIOL+, V38, P465, DOI 10.1134/S1063074012070036; Walsh MR, 2011, EVOLUTION, V65, P1021, DOI 10.1111/j.1558-5646.2010.01188.x; Walters C. J., 2004, FISHERIES ECOLOGY MA; Walters RJ, 2012, FUNCT ECOL, V26, P1324, DOI 10.1111/j.1365-2435.2012.02045.x; Wenger SJ, 2012, METHODS ECOL EVOL, V3, P260, DOI 10.1111/j.2041-210X.2011.00170.x; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH 196 119 123 24 358 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. JAN 2014 7 1 SI 68 87 10.1111/eva.12135 20 Evolutionary Biology Evolutionary Biology AC7HS WOS:000332699400006 24454549 DOAJ Gold, Green Published 2019-02-21 J Armstrong, EL; Woodley, MA Armstrong, Elijah L.; Woodley, Michael A. The rule-dependence model explains the commonalities between the Flynn effect and IQ gains via retesting LEARNING AND INDIVIDUAL DIFFERENCES English Article IQ; Flynn effect; Retesting; Inductive ability; Life history LIFE-HISTORY THEORY; SECULAR INCREASES; GENERAL INTELLIGENCE; SPEARMANS G; REAL-WORLD; MEMORY; HYPOTHESIS; SCORES; TESTS; TIME We present a new model of the Flynn effect. It is proposed that Flynn effect gains are partly a function of the degree to which a test is dependent on rules or heuristics. This means that testees can become better at solving 'rule-dependent' problems over time in response to changing environments, which lead to the improvement of lower-order cognitive processes (such as implicit learning and aspects of working memory). These in turn lead to apparent IQ gains that are partially independent of general intelligence. We argue that the Flynn effect is directly analogous to IQ gains via retesting, noting that Raven's Progressive Matrices is particularly sensitive to both the effects of retesting and the Flynn effect. After an extensive review of the relevant supporting literature, we test our thesis by developing a rule-dependence typology and then correlate the vector of a test's position in the typology with the vector of the Flynn effect that it yields. We find a significant vector correlation of r similar to.60 (N = 14). Finally, we make a number of novel and testable predictions based on our model. (C) 2013 Elsevier Inc. All rights reserved. [Woodley, Michael A.] Umea Univ, Dept Psychol, S-90187 Umea, Sweden; [Woodley, Michael A.] Vrije Univ Brussel, Ctr Leo Apostel Interdisciplinary Res, Brussels, Belgium Armstrong, EL (reprint author), 34 Acacia Rd, Fairfax, CA 94930 USA. elijahlarmstrong@gmail.com; Michael.Woodley@psy.umu.se ACKERMAN PL, 1987, PSYCHOL BULL, V102, P3, DOI 10.1037//0033-2909.102.1.3; ACKERMAN PL, 1986, INTELLIGENCE, V10, P101, DOI 10.1016/0160-2896(86)90010-3; Barkow JH, 1992, ADAPTED MIND EVOLUTI; Batterjee AA, 2013, INTELLIGENCE, V41, P91, DOI 10.1016/j.intell.2012.10.011; Baxendale S, 2012, J CLIN EXP NEUROPSYC, V34, P1033, DOI 10.1080/13803395.2012.711812; Baxendale S, 2010, J CLIN EXP NEUROPSYC, V32, P699, DOI 10.1080/13803390903493515; Blair C, 2006, BEHAV BRAIN SCI, V29, P109; Brand C., 1996, G FACTOR GEN INTELLI; Brouwers SA, 2009, LEARN INDIVID DIFFER, V19, P330, DOI 10.1016/j.lindif.2008.10.006; CARPENTER PA, 1990, PSYCHOL REV, V97, P404, DOI 10.1037/0033-295X.97.3.404; Carroll J. B., 1993, HUMAN COGNITIVE ABIL; CECI SJ, 1991, DEV PSYCHOL, V27, P703, DOI 10.1037/0012-1649.27.5.703; Christian K., 2001, ENV EFFECTS COGNITIV, P287; Clark G., 2007, FAREWELL ALMS BRIEF; Colom R, 2001, PERS INDIV DIFFER, V30, P553, DOI 10.1016/S0191-8869(00)00054-4; Colom R, 2007, J BIOSOC SCI, V39, P79, DOI 10.1017/S0021932005001173; Conway A. R. A., 2007, VARIATION WORKING ME; Coyle TR, 2008, INTELLIGENCE, V36, P719, DOI 10.1016/j.intell.2008.05.001; Daley TC, 2003, PSYCHOL SCI, V14, P215, DOI 10.1111/1467-9280.02434; Dickens WT, 2001, PSYCHOL REV, V108, P346, DOI 10.1037//0033-295X.108.2.346; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Figueredo A. J., 2009, HUMAN ETHOLOGY B, V24, P5; Figueredo A. J, 2007, ARIZONA LIFE HIST BA; Figueredo AJ, 2006, INTELLIGENCE, V34, P211, DOI 10.1016/j.intell.2005.03.006; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2013, PERS INDIV DIFFER, V55, P251, DOI 10.1016/j.paid.2012.04.033; Figueredo AJ, 2009, TWIN RES HUM GENET, V12, P555, DOI 10.1375/twin.12.6.555; Flynn J. R., 2013, INTELLIGENCE; Flynn J. R, 2007, WHAT IS INTELLIGENCE; Flynn JR, 2012, ARE WE GETTING SMARTER?: RISING IQ IN THE TWENTY-FIRST CENTURY, P1, DOI 10.1017/CBO9781139235679; Flynn JR, 2009, WHAT IS INTELLIGENCE: BEYOND THE FLYNN EFFECT, P1; FLYNN JR, 1987, PSYCHOL BULL, V101, P171, DOI 10.1037/0033-2909.101.2.171; Fox MC, 2013, J EXP PSYCHOL GEN, V142, P979, DOI 10.1037/a0030155; Geutjes L.-L., 2009, 10 ANN M INT SOC INT; Girelli L, 2004, NEUROPSYCHOLOGIA, V42, P926, DOI 10.1016/j.neuropsychologia.2003.11.016; Gordon RW, 1997, SMITHSONIAN, V28, P24; Gottfredson LS, 1997, INTELLIGENCE, V24, P79, DOI 10.1016/S0160-2896(97)90014-3; Greiffenstein MF, 2011, PSYCHOL REP, V109, P353, DOI 10.2466/03.04.10.19.PR0.109.5.353-366; Howard RW, 1999, INTELLIGENCE, V27, P235, DOI 10.1016/S0160-2896(99)00018-5; Howard RW, 2001, PERS INDIV DIFFER, V30, P1039, DOI 10.1016/S0191-8869(00)00095-7; HUSEN T, 1991, EDUC RES, V20, P17, DOI [10.3102/0013189X020007017, DOI 10.3102/0013189X020007017]; Jensen A.R., 2006, CLOCKING MIND MENTAL; JENSEN AR, 1998, INTELLIGENCE, V25, P1; Jensen AR, 1998, G FACTOR SCI MENTAL; Johnson W, 2004, INTELLIGENCE, V32, P95, DOI 10.1016/S0160-2896(03)00062-X; Juan-Espinosa M, 2006, PSICOTHEMA, V18, P284; Kagitcibasi C, 2011, INTELLIGENCE, V39, P351, DOI 10.1016/j.intell.2011.06.001; Kane H, 2000, J GENET PSYCHOL, V161, P337, DOI 10.1080/00221320009596716; Kane HD, 2000, PERS INDIV DIFFER, V29, P561, DOI 10.1016/S0191-8869(99)00217-2; Kaufman A. S., 2010, J PSYCHOEDUCATIONAL, V28, P328; Kaufman SB, 2010, COGNITION, V116, P321, DOI 10.1016/j.cognition.2010.05.011; Khaleefa O, 2009, J BIOSOC SCI, V41, P279, DOI 10.1017/S0021932008003180; LEHRER Jonah, 2012, IMAGINE CREATIVITY W; Lewandowsky S, 2009, J EXP PSYCHOL LEARN, V35, P1545, DOI 10.1037/a0017010; Lezak M. D., 1983, NEUROPSYCHOLOGICAL A; LYNN R, 1990, PERS INDIV DIFFER, V11, P273, DOI 10.1016/0191-8869(90)90241-I; LYNN R, 1993, LEARN INDIVID DIFFER, V5, P43, DOI 10.1016/1041-6080(93)90025-N; LYNN R, 1994, CURR PSYCHOL, V13, P3, DOI 10.1007/BF02686854; LYNN R, 1989, BRIT J EDUC PSYCHOL, V59, P372, DOI 10.1111/j.2044-8279.1989.tb03112.x; Lynn R., 2011, DYSGENICS GENETIC DE; Lynn R., 2006, RACE DIFFERENCES INT; Lynn R., 2013, INTELLIGENCE; Lynn R., 1998, RISING CURVE LONG TE, P207; Lynn R, 2009, INTELLIGENCE, V37, P16, DOI 10.1016/j.intell.2008.07.008; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Melby-Lervag M, 2013, DEV PSYCHOL, V49, P270, DOI 10.1037/a0028228; Mingroni MA, 2004, INTELLIGENCE, V32, P65, DOI 10.1016/S0160-2896(03)00058-8; Mingroni MA, 2007, PSYCHOL REV, V114, P806, DOI 10.1037/0033-295X.114.3.806; Must A., 2013, INTELLIGENC IN PRESS; Must O, 2003, PERS INDIV DIFFER, V34, P1287, DOI 10.1016/S0191-8869(02)00115-0; Must O., 2003, INTELLIGENCE, V167, P1; Must O, 2009, INTELLIGENCE, V37, P25, DOI 10.1016/j.intell.2008.05.002; NAGOSHI CT, 1986, PERS INDIV DIFFER, V7, P201, DOI 10.1016/0191-8869(86)90056-5; Neisser U., 1998, RISING CURVE LONG TE, P207; NEISSER U, 1997, RISING CURVE LONG TE; Nettelbeck T, 2004, INTELLIGENCE, V32, P85, DOI 10.1016/S0160-2896(03)00060-6; Nevin R, 2000, ENVIRON RES, V83, P1, DOI 10.1006/enrs.1999.4045; Nijenhuis JT, 2007, PERS INDIV DIFFER, V43, P1259, DOI 10.1016/j.paid.2007.03.016; Pinker S., 2011, BETTER ANGELS OUR NA; Pisoni D., 2008, 29 IND U SPEECH RES; Prokosch MD, 2005, INTELLIGENCE, V33, P203, DOI 10.1016/j.intell.2004.07.007; Resing WCM, 2007, INT J TEST, V7, P191, DOI 10.1080/15305050701193546; Rindermann H, 2013, INTELLIGENCE, V41, P178, DOI 10.1016/j.intell.2013.02.003; Ronnlund M, 2008, INTELLIGENCE, V36, P192, DOI 10.1016/j.intell.2007.05.002; Ronnlund M, 2009, NEUROPSYCHOLOGIA, V47, P2174, DOI 10.1016/j.neuropsychologia.2008.11.007; Rushton JP, 2010, INTELLIGENCE, V38, P213, DOI 10.1016/j.intell.2009.12.002; Rushton JP, 2009, INT J NEUROSCI, V119, P691, DOI 10.1080/00207450802325843; Rushton JP, 1999, PERS INDIV DIFFER, V26, P381; Rushton JP, 1998, INTELLIGENCE, V26, P217, DOI 10.1016/S0160-2896(99)80004-X; Saito S, 2004, J MEM LANG, V50, P425, DOI 10.1016/j.jml.2003.12.003; Silverman IW, 2010, AM J PSYCHOL, V123, P39, DOI 10.5406/amerjpsyc.123.1.0039; Storfer M, 1999, INT J NEUROSCI, V98, P153, DOI 10.3109/00207459908997465; Suss HM, 2002, INTELLIGENCE, V30, P261, DOI 10.1016/S0160-2896(01)00100-3; te Nijenhuis J., 2013, INTELLIGENC IN PRESS; te Nijenhuis J, 2007, INTELLIGENCE, V35, P283, DOI 10.1016/j.intell.2006.07.006; te Nijenhuis J, 2013, PERS INDIV DIFFER, V55, P224, DOI 10.1016/j.paid.2011.12.023; te Nijenhuis J, 2012, PERS INDIV DIFFER, V53, P147, DOI 10.1016/j.paid.2011.03.022; TEASDALE TW, 1989, INTELLIGENCE, V13, P255, DOI 10.1016/0160-2896(89)90021-4; Tuddenham RD, 1948, AM PSYCHOL, V3, P54, DOI 10.1037/h0054962; van Eeden R., 2012, INTELLIGENCE, V39, P465; Verguts T, 2002, EUR J COGN PSYCHOL, V14, P521, DOI 10.1080/09541440143000230; Verguts T, 1999, INTELLIGENCE, V27, P329, DOI 10.1016/S0160-2896(99)00023-9; WELSH MC, 1988, DEV NEUROPSYCHOL, V4, P199, DOI 10.1080/87565648809540405; Wenner CJ, 2013, INTELLIGENCE, V41, P102, DOI 10.1016/j.intell.2012.11.004; Wicherts JM, 2004, INTELLIGENCE, V32, P509, DOI 10.1016/j.intell.2004.07.002; Williams R. L., 2013, INTELLIGENC IN PRESS; Woodley M. A., 2013, INTELLIGENC IN PRESS; Woodley M. A., 2013, HIST VARIABILITY HER; Woodley MA, 2013, PERS INDIV DIFFER, V55, P387, DOI 10.1016/j.paid.2013.03.016; Woodley MA, 2013, PERS INDIV DIFFER, V54, P871, DOI 10.1016/j.paid.2012.12.022; Woodley MA, 2013, PERS INDIV DIFFER, V55, P279, DOI 10.1016/j.paid.2012.05.024; Woodley MA, 2012, INTELLIGENCE, V40, P189, DOI 10.1016/j.intell.2011.12.002; Woodley MA, 2011, PSYCHOL REV, V118, P689, DOI 10.1037/a0024759; Woodley MA, 2012, PERS INDIV DIFFER, V53, P152, DOI 10.1016/j.paid.2011.03.028; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348; Zajonc RB, 1997, AM PSYCHOL, V52, P685 117 16 17 0 7 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1041-6080 1873-3425 LEARN INDIVID DIFFER Learn. Individ. Differ. JAN 2014 29 41 49 10.1016/j.lindif.2013.10.009 9 Psychology, Educational Psychology AA9NO WOS:000331420400005 2019-02-21 J Rickard, IJ; Frankenhuis, WE; Nettle, D Rickard, Ian J.; Frankenhuis, Willem E.; Nettle, Daniel Why Are Childhood Family Factors Associated With Timing of Maturation? A Role for Internal Prediction PERSPECTIVES ON PSYCHOLOGICAL SCIENCE English Article developmental plasticity; psychosocial acceleration; puberty; life history; familial adversity LIFE-HISTORY THEORY; SEXUAL RISK-TAKING; REPRODUCTIVE STRATEGIES; TELOMERE LENGTH; PUBERTAL MATURATION; INDIVIDUAL-DIFFERENCES; PSYCHOLOGICAL STRESS; METABOLIC SYNDROME; ADAPTIVE RESPONSE; OXIDATIVE STRESS Children, particularly girls, who experience early familial adversity tend to go on to reach sexual maturity relatively early. This feature of adolescent development is believed to be an evolved strategy that arose because individuals with genes that caused them to mature relatively early under certain conditions left behind more descendants than those who did not. However, although much has been done to uncover the psychological and physiological mechanisms underlying this process, less attention has been paid to the evolutionary reasons behind why it might be advantageous. It has previously been suggested that this strategy evolved because early familial adversity accurately indicated later environmental adversity, under which conditions early reproduction would likely maximize evolutionary fitness. In this article, we contrast this external prediction model with an alternative explanation, which builds on the existing explanation and is mutually compatible with it but also distinct from it. We argue that accelerated development is advantageous because early adversity detrimentally affects the individual's body, increasing later morbidity and mortality; individuals may adapt to this internal setback by accelerating their development. Unlike the external prediction model, this internal prediction relies not on temporal environmental continuity but on long-term effects of early circumstances on the body. [Rickard, Ian J.] Univ Durham, Dept Anthropol, Durham DH1 3LE, England; [Rickard, Ian J.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Rickard, Ian J.; Nettle, Daniel] Newcastle Univ, Inst Neurosci, Ctr Behav & Evolut, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England; [Frankenhuis, Willem E.] Radboud Univ Nijmegen, Inst Behav Sci, Dept Dev Psychol, NL-6525 ED Nijmegen, Netherlands Rickard, IJ (reprint author), Univ Durham, Dept Anthropol, Dawson Bldg,South Rd, Durham DH1 3LE, England. ian.rickard@durham.ac.uk Nettle, Daniel/0000-0001-9089-2599 Baig U., 2011, J OBESITY, V2011; Bakaysa SL, 2007, AGING CELL, V6, P769, DOI 10.1111/j.1474-9726.2007.00340.x; BARGLOW P, 1968, AM J ORTHOPSYCHIAT, V38, P672, DOI 10.1111/j.1939-0025.1968.tb02437.x; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2000, GENETIC INFLUENCES ON HUMAN FERTILITY AND SEXUALITY, P127; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; Belsky J, 2010, DEV PSYCHOL, V46, P120, DOI 10.1037/a0015549; Belsky J, 2009, PSYCHOL BULL, V135, P885, DOI 10.1037/a0017376; Bertram CE, 2001, BRIT MED BULL, V60, P103, DOI 10.1093/bmb/60.1.103; BLACKBURN EH, 1991, NATURE, V350, P569, DOI 10.1038/350569a0; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Cameron N. M., 2011, FRONTIERS EVOLUTIONA, V3; Cameron N, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002210; Chisholm JS, 2005, HUM NATURE-INT BIOS, V16, P233, DOI 10.1007/s12110-005-1009-0; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cho GJ, 2012, MENOPAUSE, V19, P456, DOI 10.1097/gme.0b013e3182337150; CHYUN YS, 1984, ENDOCRINOLOGY, V114, P477, DOI 10.1210/endo-114-2-477; Costello EJ, 2007, ARCH GEN PSYCHIAT, V64, P338, DOI 10.1001/archpsyc.64.3.338; D'Onofrio BM, 2006, DEV PSYCHOL, V42, P486, DOI 10.1037/0012-1649.42.3.486; Del Giudice M, 2011, NEUROSCI BIOBEHAV R, V35, P1562, DOI 10.1016/j.neubiorev.2010.11.007; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; DORIUS GL, 1993, YOUTH SOC, V25, P3, DOI 10.1177/0044118X93025001001; Ellis B. J., 2013, CHILD ADOLESCENT PSY, P251; Ellis BJ, 1999, J PERS SOC PSYCHOL, V77, P387, DOI 10.1037/0022-3514.77.2.387; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2000, CHILD DEV, V71, P485, DOI 10.1111/1467-8624.00159; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; Emlen DJ, 1999, J INSECT PHYSIOL, V45, P45, DOI 10.1016/S0022-1910(98)00096-1; Entringer S, 2011, P NATL ACAD SCI USA, V108, pE513, DOI 10.1073/pnas.1107759108; Epel ES, 2004, P NATL ACAD SCI USA, V101, P17312, DOI 10.1073/pnas.0407162101; Fawcett TW, 2003, P ROY SOC B-BIOL SCI, V270, P1637, DOI 10.1098/rspb.2003.2328; Frankenhuis WE, 2013, DEVELOPMENTAL SCI, V16, P584, DOI 10.1111/desc.12053; Frankenhuis WE, 2013, CHILD DEV PERSPECT, V7, P115, DOI 10.1111/cdep.12024; Frankenhuis WE, 2012, DEV PSYCHOL, V48, P628, DOI 10.1037/a0025629; Frankenhuis WE, 2011, P ROY SOC B-BIOL SCI, V278, P3558, DOI 10.1098/rspb.2011.0055; Frankenhuis WE, 2011, PERSPECT PSYCHOL SCI, V6, P336, DOI 10.1177/1745691611412602; Gavrilov LA, 2004, ANN NY ACAD SCI, V1019, P496, DOI 10.1196/annals.1297.091; Geronimus AT, 2013, AM J PUBLIC HEALTH, V103, P56, DOI 10.2105/AJPH.2013.301380; Gidron Y, 2006, BIOL PSYCHOL, V72, P291, DOI 10.1016/j.biopsycho.2005.11.011; Gillman MW, 2005, NEW ENGL J MED, V353, P1848, DOI 10.1056/NEJMe058187; GRABER JA, 1995, CHILD DEV, V66, P346, DOI 10.1111/j.1467-8624.1995.tb00875.x; Grafen A., 1988, REPROD SUCCESS, P454; GROSS MR, 1985, NATURE, V313, P47, DOI 10.1038/313047a0; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Hayward Adam D., 2013, Evolution Medicine and Public Health, P106, DOI 10.1093/emph/eot007; Hayward AD, 2013, P NATL ACAD SCI USA, V110, P13886, DOI 10.1073/pnas.1301817110; Hope D, 2013, ECON HUM BIOL, V11, P236, DOI 10.1016/j.ehb.2011.06.006; James J, 2012, DEV PSYCHOL, V48, P687, DOI 10.1037/a0026427; Joergensen A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0020795; JONES B, 1972, MED J AUSTRALIA, V2, P533; Jones JH, 2005, AM J HUM BIOL, V17, P22, DOI 10.1002/ajhb.20099; Kananen L, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010826; Kim K, 1998, J ADOLESCENCE, V21, P231, DOI 10.1006/jado.1998.0149; Kimura M, 2008, AM J EPIDEMIOL, V167, P799, DOI 10.1093/aje/kwm380; Liu Y, 2008, AM J PHYSIOL-RENAL, V294, pF768, DOI 10.1152/ajprenal.00163.2007; Maestripieri D, 2005, P ROY SOC B-BIOL SCI, V272, P1243, DOI 10.1098/rspb.2005.3059; Mangel M, 1988, DYNAMIC MODELING BEH; McEwen BS, 2003, HORM BEHAV, V43, P2, DOI 10.1016/S0018-506X(02)00024-7; McNamara J., 1999, MODELS ADAPTIVE BEHA; Mendle J, 2006, DEV PSYCHOL, V42, P533, DOI 10.1037/0012-1649.42.3.233; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Mezzich AC, 1997, DRUG ALCOHOL DEPEN, V44, P157, DOI 10.1016/S0376-8716(96)01333-6; Miller GE, 2011, PSYCHOL BULL, V137, P959, DOI 10.1037/a0024768; MOFFITT TE, 1992, CHILD DEV, V63, P47, DOI 10.1111/j.1467-8624.1992.tb03594.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Neal CR, 2004, AM J PHYSIOL-REG I, V287, pR375, DOI 10.1152/ajpregu.00012.2004; Neberich W, 2010, EUR J DEV PSYCHOL, V7, P153, DOI 10.1080/17405620801928029; Nettle D., 2013, P ROYAL SOC B, V280, DOI 10.1098/rspb.2013.1343; Nettle D, 2011, P ROY SOC B-BIOL SCI, V278, P1721, DOI 10.1098/rspb.2010.1726; Njajou OT, 2009, J GERONTOL A-BIOL, V64, P860, DOI 10.1093/gerona/glp061; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Penke L, 2009, EVOL HUM BEHAV, V30, P429, DOI 10.1016/j.evolhumbehav.2009.06.001; Pesonen AK, 2008, AM J HUM BIOL, V20, P345, DOI 10.1002/ajhb.20735; Rice F, 2010, PSYCHOL MED, V40, P335, DOI 10.1017/S0033291709005911; Rickard IJ, 2007, TRENDS ENDOCRIN MET, V18, P94, DOI 10.1016/j.tem.2007.02.004; Rickard IJ, 2012, P ROY SOC B-BIOL SCI, V279, P4253, DOI 10.1098/rspb.2012.1363; Rickard IJ, 2010, ECOLOGY, V91, P3515, DOI 10.1890/10-0019.1; Roustit C., 2011, BMC PUBLIC HLTH, V11; SCHWARTZ JE, 1995, AM J PUBLIC HEALTH, V85, P1237, DOI 10.2105/AJPH.85.9.1237; Segerstrom SC, 2004, PSYCHOL BULL, V130, P601, DOI 10.1037/0033-2909.130.4.601; Smallegange IM, 2011, EVOL ECOL, V25, P857, DOI 10.1007/s10682-010-9446-6; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEINBERG L, 1988, DEV PSYCHOL, V24, P122, DOI 10.1037/0012-1649.24.1.122; Stephens DW, 1991, BEHAV ECOL, V2, P77, DOI 10.1093/beheco/2.1.77; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; TONOLO G, 1988, J HYPERTENS, V6, P25; Turner PK, 1999, J REPROD INFANT PSYC, V17, P111, DOI DOI 10.1080/02646839908409091; Uller T, 2013, J EVOLUTION BIOL, V26, P2161, DOI 10.1111/jeb.12212; Vigil JM, 2005, DEV PSYCHOL, V41, P553, DOI 10.1037/0012-1649.41.3.553; von Zglinicki T, 2002, TRENDS BIOCHEM SCI, V27, P339, DOI 10.1016/S0968-0004(02)02110-2; Walker R, 2006, AM J HUM BIOL, V18, P295, DOI 10.1002/ajhb.20510; Waynforth D, 2012, P ROY SOC B-BIOL SCI, V279, P2998, DOI 10.1098/rspb.2012.0220; Webb RT, 2011, PSYCHOL MED, V41, P1867, DOI 10.1017/S0033291711000055; Wegman HL, 2009, PSYCHOSOM MED, V71, P805, DOI 10.1097/PSY.0b013e3181bb2b46; Wells JCK, 2012, INT J EPIDEMIOL, V41, P229, DOI 10.1093/ije/dyr239; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Widen E, 2012, DIABETES CARE, V35, P850, DOI 10.2337/dc11-1365; Zafir A, 2009, STRESS, V12, P167, DOI 10.1080/10253890802234168 98 47 48 2 33 SAGE PUBLICATIONS LTD LONDON 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND 1745-6916 1745-6924 PERSPECT PSYCHOL SCI Perspect. Psychol. Sci. JAN 2014 9 1 3 15 10.1177/1745691613513467 13 Psychology, Multidisciplinary Psychology AA1IB WOS:000330848700001 26173236 2019-02-21 J Sternberg, D; Kennard, MJ Sternberg, David; Kennard, Mark J. Phylogenetic effects on functional traits and life history strategies of Australian freshwater fish ECOGRAPHY English Article AMERICAN FISHES; SPECIES TRAITS; EVOLUTION; SELECTION; ECOLOGY; HABITAT; DIVERSIFICATION; DEFINITION; DIVERSITY; PATTERNS Understanding the biogeographic and phylogenetic basis to interspecific differences in species' functional traits is a central goal of evolutionary biology and community ecology. We quantify the extent of phylogenetic influence on functional traits and life-history strategies of Australian freshwater fish to highlight intercontinental differences as a result of Australia's unique biogeographic and evolutionary history. We assembled data on life history, morphological and ecological traits from published sources for 194 Australian freshwater species. Interspecific variation among species could be described by a specialist-generalist gradient of variation in life-history strategies associated with spawning frequency, fecundity and spawning migration. In general, Australian fish showed an affinity for life-history strategies that maximise fitness in hydrologically unpredictable environments. We also observed differences in trait lability between and within life history, morphological and ecological traits where in general morphological and ecological traits were more labile. Our results showed that life-history strategies are relatively evolutionarily labile and species have potentially evolved or colonised in freshwaters frequently and independently allowing them to maximise population performance in a range of environments. In addition, reproductive guild membership showed strong phylogenetic constraint indicating that evolutionary history is an important component influencing the range and distribution of reproductive strategies in extant species assemblages. For Australian freshwater fish, biogeographic and phylogenetic history contribute to broad taxonomic differences in species functional traits, while finer scale ecological processes contribute to interspecific differences in smaller taxonomic units. These results suggest that the lability or phylogenetic relatedness of different functional traits affects their suitability for testing hypothesis surrounding community level responses to environmental change. [Sternberg, David; Kennard, Mark J.] Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia; [Kennard, Mark J.] Natl Environm Res Program Northern Australian Hub, Nathan, Qld, Australia Sternberg, D (reprint author), Griffith Univ, Australian Rivers Inst, Nathan, Qld 4111, Australia. d.sternberg@griffith.edu.au Kennard, Mark/C-3425-2008 Kennard, Mark/0000-0003-4383-4999 Australian Government Dept of Sustainability, Environment, Water, Population and Communities; National Water Commission; Tropical Rivers and Coastal Knowledge (TRaCK) Research Hub; National Environmental Research Program; Australian Rivers Inst., Griffith Univ.; Australian Society for Fish Biology; Australian Postgraduate Award Scholarship; Australian Rivers Inst. We acknowledge the Australian Government Dept of Sustainability, Environment, Water, Population and Communities, the National Water Commission, the Tropical Rivers and Coastal Knowledge (TRaCK) Research Hub, the National Environmental Research Program, and the Australian Rivers Inst., Griffith Univ., for funding this study. DS gratefully acknowledges funding support provided by the Australian Society for Fish Biology, an Australian Postgraduate Award Scholarship and the Australian Rivers Inst. We thank Tim Page and Dan Schmidt for useful discussions during development of the manuscript. Albert CH, 2011, PERSPECT PLANT ECOL, V13, P217, DOI 10.1016/j.ppees.2011.04.003; Allen G., 2003, FIELD GUIDE FRESHWAT; AWRC, 1976, REV AUSTR WAT RES 19; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; Blanck A, 2007, FRESHWATER BIOL, V52, P843, DOI 10.1111/j.1365-2427.2007.01736.x; Blomberg SP, 2003, EVOLUTION, V57, P717, DOI 10.1111/j.0014-3820.2003.tb00285.x; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; CHEVERUD JM, 1985, EVOLUTION, V39, P1335, DOI 10.1111/j.1558-5646.1985.tb05699.x; Davis AM, 2012, J EVOLUTION BIOL, V25, P1163, DOI 10.1111/j.1420-9101.2012.02504.x; Diniz JAF, 2012, ECOGRAPHY, V35, P239, DOI 10.1111/j.1600-0587.2011.06949.x; Diniz JAF, 2011, FUNCT ECOL, V25, P735, DOI 10.1111/j.1365-2435.2011.01836.x; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; Grafen A, 1996, J THEOR BIOL, V183, P255, DOI 10.1006/jtbi.1996.0219; Graham CH, 2012, ECOLOGY, V93, pS99, DOI 10.1890/11-0493.1; Halsey LG, 2006, FUNCT ECOL, V20, P889, DOI 10.1111/j.1365-2435.2006.01170.x; Huey JA, 2010, J N AM BENTHOL SOC, V29, P1148, DOI 10.1899/09-093.1; Kellermann V, 2012, EVOLUTION, V66, P3377, DOI 10.1111/j.1558-5646.2012.01685.x; Kelly CK, 1996, PHILOS T R SOC B, V351, P1261, DOI 10.1098/rstb.1996.0109; Kennard MJ, 2010, FRESHWATER BIOL, V55, P171, DOI 10.1111/j.1365-2427.2009.02307.x; KLASSEN GJ, 1991, SYST ZOOL, V40, P446, DOI 10.2307/2992239; Klingenberg Christian Peter, 2005, P219, DOI 10.1016/B978-012088777-4/50013-2; KLUGE AG, 1969, SYST ZOOL, V18, P1, DOI 10.2307/2412407; Kraft NJB, 2007, AM NAT, V170, P271, DOI 10.1086/519400; Legendre P, 1998, NUMERICAL ECOLOGY; Lintermans M., 2007, FISHES MURRAY DARLIN; Logez M., 2012, ECOGRAPHY, V35, P1; MAC ARTHUR ROBERT H., 1967; Maddison W.P., 2011, MESQUITE MODULAR SYS; Maddison WP, 2000, J THEOR BIOL, V202, P195, DOI 10.1006/jtbi.1999.1050; McDowall R, 1996, FRESHWATER FISHES S; Merrick J. R., 1984, AUSTR FRESHWATER FIS; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Morrongiello JR, 2012, J ANIM ECOL, V81, P806, DOI 10.1111/j.1365-2656.2012.01961.x; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olden JD, 2010, COMMUNITY ECOLOGY ST, P83; Peres-Neto PR, 2012, ECOLOGY, V93, pS14, DOI 10.1890/11-0494.1; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PIANKA ER, 2000, EVOLUTIONARY ECOLOGY; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pusey B., 2004, FRESHWATER FISHES N; Roff Derek A., 1992; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schweiger O, 2008, OECOLOGIA, V157, P485, DOI 10.1007/s00442-008-1082-2; SIBLY R, 1986, J THEOR BIOL, V123, P311, DOI 10.1016/S0022-5193(86)80246-6; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Sternberg D, 2013, FRESHWATER BIOL, V58, P1767, DOI 10.1111/fwb.12166; Swofford D. L., 2003, PAUP PHYLOGENETIC AN; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tedesco P, 2006, OIKOS, V115, P117, DOI 10.1111/j.2006.0030-1299.14847.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Unmack PJ, 2001, J BIOGEOGR, V28, P1053, DOI 10.1046/j.1365-2699.2001.00615.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; WAKE DB, 1991, AM NAT, V138, P543, DOI 10.1086/285234; Webb CO, 2002, ANNU REV ECOL SYST, V33, P475, DOI 10.1146/annurev.ecolysis.33.010802.150448; WHITE ME, 1994, GREENING BROWNING AU; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 58 15 15 1 55 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-7590 1600-0587 ECOGRAPHY Ecography JAN 2014 37 1 54 64 10.1111/j.1600-0587.2013.00362.x 11 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 304JY WOS:000330744100006 2019-02-21 J Marty, L; Rochet, MJ; Ernande, B Marty, Lise; Rochet, Marie-Joelle; Ernande, Bruno Temporal trends in age and size at maturation of four North Sea gadid species: cod, haddock, whiting and Norway pout MARINE ECOLOGY PROGRESS SERIES English Article Probabilistic maturation reaction norm; Demography; Phenotypic plasticity; Fisheries-induced evolution; Life-history strategy; Maturity; Growth; Reproductive investment FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY TRAITS; PROBABILISTIC REACTION NORMS; EVOLVING FISH STOCKS; GADUS-MORHUA; ATLANTIC COD; MELANOGRAMMUS-AEGLEFINUS; PHENOTYPIC PLASTICITY; TRISOPTERUS-ESMARKII; OPTIMAL ALLOCATION Younger ages and smaller sizes at maturation have been observed in commercial fish stocks over the last century. We establish that age and length at 50% proportion mature (i.e. the proportion of mature individuals in a population or the probability that an individual is mature) decreased from the 1970s to the 2000s in North Sea cod Gadus morhua, haddock Melanogrammus aeglefinus and whiting Merlangius merlangus, but not in Norway pout Trisopterus esmarkii. The potential contributions of demography, phenotypic plasticity and evolution to these trends were assessed. First, maturation trends were extricated from demographic effects and growth-dependent plasticity by estimating probabilistic maturation reaction norms (PMRNs). PMRN midpoints have significantly shifted downwards at most ages for cod, haddock and whiting, but not for Norway pout. Second, increased temperature and food abundance, loosened trophic competition and relaxed social pressure may also trigger growth-independent plasticity in maturation. Principal component regression of PMRN midpoints on annual estimates of relevant environmental variables exhibiting a temporal trend suggest that, despite some evidence of environmental effects, PMRN trends were mostly independent of growth-independent plasticity in haddock, whiting and male cod, but not in female cod. According to these findings, evolution of maturation, potentially in response to fishing, is plausible in haddock, whiting and male cod, but unlikely for Norway pout, and does not explain trends in female cod maturation. In agreement with life-history theory, the maturation response was larger in fast-growing, late- and large-maturing species exhibiting moderate reproductive effort. [Marty, Lise; Ernande, Bruno] IFREMER, Lab Ressources Halieut, F-62321 Boulogne Sur Mer, France; [Rochet, Marie-Joelle] IFREMER, F-44311 Nantes 03, France; [Ernande, Bruno] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Marty, L (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources DTU Aqua, Ctr Ocean Life, DK-2920 Charlottenlund, Denmark. lisma@aqua.dtu.dk Ernande, Bruno/C-1182-2008 Ernande, Bruno/0000-0002-0727-5774 European Commission [SSP-2006-044276] This study was carried out with financial support from the European Commission, as part of the Specific Targeted Research Project on 'Fisheries-induced evolution' (FinE, contract number SSP-2006-044276) under the Scientific Support to Policies cross-cutting activities of the European Community's Sixth Framework Programme. It Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Barot S, 2004, EVOL ECOL RES, V6, P659; Baulier L, 2008, J FISH BIOL, V73, P2452, DOI 10.1111/j.1095-8649.2008.02088.x; Berkeley SA, 2004, ECOLOGY, V85, P1258, DOI 10.1890/03-0706; BERNARDO J, 1993, TRENDS ECOL EVOL, V8, P166, DOI 10.1016/0169-5347(93)90142-C; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charrier G, 2007, MAR ECOL PROG SER, V330, P201, DOI 10.3354/meps330201; Coxe K. L, 1986, ENCY STAT SCI, P181; Devine JA, 2011, FISH RES, V110, P441, DOI 10.1016/j.fishres.2011.05.016; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2003, ICES J MAR SCI, V60, P304, DOI 10.1016/S1054-3139(03)00017-1; Ernande B, 2004, P ROY SOC B-BIOL SCI, V271, P415, DOI 10.1098/rspb.2003.2519; Fekedulegn B.D., 2002, NE721 USDA FOR SERV; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Grift RE, 2003, MAR ECOL PROG SER, V257, P247, DOI 10.3354/meps257247; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; Heino M, 2002, B MAR SCI, V70, P639; HEINO M, 2002, 2002Y14 ICES CM; Heino M, 2008, B MAR SCI, V83, P69; Hislop J, 1997, 219 ICES, V219; Hislop JRG, 1984, FISH REPROD STRATEGI, P311; Hobbs JPA, 2004, P ROY SOC B-BIOL SCI, V271, P2109, DOI 10.1098/rspb.2004.2845; HOLM S, 1979, SCAND J STAT, V6, P65; Hutchings JA, 2005, CAN J FISH AQUAT SCI, V62, P824, DOI 10.1139/F05-081; Hutchings JA, 1999, CAN J FISH AQUAT SCI, V56, P97, DOI 10.1139/cjfas-56-1-97; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchinson WF, 2001, MAR ECOL PROG SER, V223, P251, DOI 10.3354/meps223251; ICES, 2012, REP WORK GROUP ASS D; ICES, 2010, SER ICES SURV PROT; ICES, 2009, REP WORK GROUP ASS D; Jakobsen Tore, 1999, Journal of Northwest Atlantic Fishery Science, V25, P125, DOI 10.2960/J.v25.a11; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; JORGENSEN T, 1990, J CONSEIL, V46, P235; Kinnison MT, 2011, HEREDITY, V106, P448, DOI 10.1038/hdy.2010.162; Kjesbu OS, 2007, J SEA RES, V58, P23, DOI 10.1016/j.seares.2007.02.001; KOZLOWSKI J, 1992, TRENDS ECOL EVOL, V7, P15, DOI 10.1016/0169-5347(92)90192-E; KOZLOWSKI J, 1986, THEOR POPUL BIOL, V29, P16; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Lambert G, 2009, ICES J MAR SCI, V66, P1899, DOI 10.1093/icesjms/fsp153; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Manly BFJ, 1997, RANDOMIZATION BOOTST; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Marteinsdottir G, 2002, MAR ECOL PROG SER, V235, P235, DOI 10.3354/meps235235; Marty L, 2011, AM NAT, V177, pE98, DOI 10.1086/658988; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Mollet FM, 2010, OIKOS, V119, P10, DOI 10.1111/j.1600-0706.2009.17746.x; Morita K, 2007, MAR ECOL PROG SER, V335, P289, DOI 10.3354/meps335289; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Neuheimer AB, 2012, GLOBAL CHANGE BIOL, V18, P1812, DOI 10.1111/j.1365-2486.2012.02673.x; Neuheimer AB, 2010, CAN J FISH AQUAT SCI, V67, P854, DOI 10.1139/F10-025; Nielsen EE, 2009, MAR ECOL PROG SER, V376, P213, DOI 10.3354/meps07798; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Pardoe H, 2009, CAN J FISH AQUAT SCI, V66, P1719, DOI 10.1139/F09-132; R Development Core Team, 2013, R LANG ENV STAT COMP; REZNICK DN, 1993, EXPLOITATION EVOLVIN, P72; Rochet MJ, 2000, J SEA RES, V44, P145, DOI 10.1016/S1385-1101(00)00041-1; Rochet MJ, 2000, 2000N2613 ICES CM; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Siems DP, 1998, ENVIRON BIOL FISH, V53, P319, DOI 10.1023/A:1007407925835; SOHN JJ, 1977, SCIENCE, V195, P199, DOI 10.1126/science.831271; Sparholt H, 2002, ICES J MAR SCI, V59, P1270, DOI 10.1006/jmsc.2002.1296; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; WEATHERLEY AH, 1990, T AM FISH SOC, V119, P662, DOI 10.1577/1548-8659(1990)119<0662:ATUFG>2.3.CO;2; Wright PJ, 2006, J FISH BIOL, V69, P181, DOI 10.1111/j.1095-8649.2006.01262.x; Wright PJ, 2011, ICES J MAR SCI, V68, P1918, DOI 10.1093/icesjms/fsr111; Wright PJ, 2011, MAR ECOL PROG SER, V432, P149, DOI 10.3354/meps09168; Yoneda M, 2004, MAR ECOL PROG SER, V276, P237, DOI 10.3354/meps276237 84 9 9 2 36 INTER-RESEARCH OLDENDORF LUHE NORDBUNTE 23, D-21385 OLDENDORF LUHE, GERMANY 0171-8630 1616-1599 MAR ECOL PROG SER Mar. Ecol.-Prog. Ser. 2014 497 179 197 10.3354/meps10580 19 Ecology; Marine & Freshwater Biology; Oceanography Environmental Sciences & Ecology; Marine & Freshwater Biology; Oceanography 304CM WOS:000330723600014 2019-02-21 J Descloux, S; Datry, T; Usseglio-Polatera, P Descloux, S.; Datry, T.; Usseglio-Polatera, P. Trait-based structure of invertebrates along a gradient of sediment colmation: Benthos versus hyporheos responses SCIENCE OF THE TOTAL ENVIRONMENT English Article Biological attributes; Fine sediment; Functional groups; Community; Mixed-effects models FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; LARGE EUROPEAN RIVERS; BIOLOGICAL TRAITS; FINE SEDIMENTS; NEW-ZEALAND; VERTICAL-DISTRIBUTION; SEASONAL SUCCESSIONS; MULTIPLE STRESSORS; ECOLOGICAL TRAITS Streambed colmation by fine sediment, e.g. the deposition, accumulation and storage of fines in the substrate, is known to have severe effects on invertebrate assemblages in both the benthic and hyporheic zones but the changes in biological attributes of invertebrate assemblages related to colmation have never been considered simultaneously for these two zones. We studied the effects of colmation on the invertebrate assemblages of three rivers, testing a priori hypotheses on the biological attributes that should be more selected in communities subjected to different levels of colmation in both zones. Only the proportion of organisms with high fecundity increased and the proportion of small-sized organisms decreased along the colmation gradient in both zones simultaneously. As expected, a higher number of traits were significantly modified with colmation in the benthic vs. hyporheic assemblages. Most of the biological attributes impaired were different in the two zones. In the benthic zone, colmation mainly selected particular physiological or trophic characteristics of species and features related to their resistance or resilience capacities. In contrast, the morphological attributes of species were much more impaired by colmation in the hyporheic zone than in the benthic zone. In clogged benthic habitats, traits seemed to be more impaired by an increase in physico-chemical constraints (e.g. the reduction of oxygen availability) and a reduction of potential exchanges (including exchanges of food resources) due to a decline in stream bed conductivity. The morphological attributes of the hyporheic species were probably more influenced by changes in interstitial space characteristics. A potential indicator of the effects of colmation on river health may be based on the functional traits of benthic communities because they (i) satisfy the WFD recommendations, (ii) respond consistently along a colmation gradient and (iii) are comparable among assemblages even across ecoregions that differ in their taxonomic composition. (C) 2013 Elsevier B.V. All rights reserved. [Descloux, S.] Univ Lyon 1, CNRS, UMR 5023, Ecol Nat & Anthropized Hydrosyst Lab, F-69622 Villeurbanne, France; [Descloux, S.; Datry, T.] IRSTEA, UR MALY, F-69336 Lyon, France; [Descloux, S.] Savoie Technolac, Elect France, F-73373 Le Bourget Du Lac, France; [Usseglio-Polatera, P.] Univ Lorraine, CNRS, UMR 7360, Interdisciplinary Lab Continental Environm, F-57070 Metz, France Descloux, S (reprint author), Savoie Technolac, Elect France, F-73373 Le Bourget Du Lac, France. stephane.descloux@edf.fr Electricite De France; IRSTEA We are grateful to the Zone Atelier Bassin du Rhone (ZABR) for information and contacts. The lead author (SD) was funded by a grant from Electricite De France, the second author (TD) by the IRSTEA. We are grateful to Professor Pierre Marmonier for his help in coding Ostracoda and Cladocera trait profiles. Angradi TR, 1999, J N AM BENTHOL SOC, V18, P49, DOI 10.2307/1468008; Archaimbault V, 2010, FRESHWATER BIOL, V55, P1430, DOI 10.1111/j.1365-2427.2009.02281.x; Bjornn TC, 1977, B036IDA COLL OR WILD; Bohmer J, 2004, HYDROBIOLOGIA, V516, P215, DOI 10.1023/B:HYDR.0000025267.58196.5f; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BOU C, 1967, CR ACAD SCI D NAT, V265, P369; Boulton AJ, 1998, ANNU REV ECOL SYST, V29, P59, DOI 10.1146/annurev.ecolsys.29.1.59; Boulton AJ, 2008, INVERTEBR SYST, V22, P103, DOI 10.1071/IS07024; Boulton AJ, 2007, FRESHWATER BIOL, V52, P632, DOI 10.1111/j.1365-2427.2006.01710.x; Bournaud M, 1998, ANN LIMNOL-INT J LIM, V34, P83, DOI 10.1051/limn/1998009; Broekhuizen N, 2001, HYDROBIOLOGIA, V457, P125, DOI 10.1023/A:1012223332472; Buffagni A, 2004, HYDROBIOLOGIA, V516, P313, DOI 10.1023/B:HYDR.0000025273.15958.6a; Charvet S, 2000, FRESHWATER BIOL, V43, P277, DOI 10.1046/j.1365-2427.2000.00545.x; Chevenet F, 1994, FRESHWATER BIOL, V31, P277; Collier KJ, 2004, NEW ZEAL J MAR FRESH, V38, P301, DOI 10.1080/00288330.2004.9517239; Dangles O, 2001, FRESHWATER BIOL, V46, P575, DOI 10.1046/j.1365-2427.2001.00693.x; Demars BOL, 2012, ECOL INDIC, V23, P301, DOI 10.1016/j.ecolind.2012.04.011; Descloux S, 2013, AQUAT SCI IN PRESS, DOI DOI 10.1007/S00027-013-0295-6.[IN; Descloux S, 2010, INT REV HYDROBIOL, V95, P520, DOI 10.1002/iroh.201011250; Devin S, 2005, HYDROBIOLOGIA, V542, P113, DOI 10.1007/s10750-004-8771-6; Doledec S, 2006, J N AM BENTHOL SOC, V25, P44, DOI 10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2; DOLEDEC S, 1989, ACTA OECOL-OEC GEN, V10, P207; DOLEDEC S, 1987, ACTA OECOL-OEC GEN, V8, P403; Doledec S, 2000, ARCH HYDROBIOL, V148, P25; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Furse M, 2006, HYDROBIOLOGIA, V566, P3, DOI 10.1007/s10750-006-0067-6; Gabriels W, 2010, LIMNOLOGICA, V40, P199, DOI 10.1016/j.limno.2009.10.001; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Gayraud S, 2003, INT REV HYDROBIOL, V88, P77, DOI 10.1002/iroh.200390007; Gayraud S, 2001, ARCH HYDROBIOL, V151, P667; Hancock P. J., 2002, ENVIRON MANAGE, V29, P761; Harding J. P., 1974, KEY BRIT FRESHWATER; Hering D, 2006, FRESHWATER BIOL, V51, P1757, DOI 10.1111/j.1365-2427.2006.01610.x; Horrigan N, 2008, CAN J FISH AQUAT SCI, V65, P670, DOI 10.1139/F07-191; James ABW, 2008, FRESHWATER BIOL, V53, P1316, DOI 10.1111/j.1365-2427.2008.01969.x; Larsen S, 2009, FRESHWATER BIOL, V54, P203, DOI 10.1111/j.1365-2427.2008.02093.x; Larsen S, 2011, RIVER RES APPL, V27, DOI 10.1002/rra.1361; Larsen S, 2010, FRESHWATER BIOL, V55, P476, DOI 10.1111/j.1365-2427.2009.02282.x; Lecerf A, 2006, ARCH HYDROBIOL, V165, P105, DOI 10.1127/0003-9136/2006/0165-0105; LEMLY AD, 1982, HYDROBIOLOGIA, V87, P229, DOI 10.1007/BF00007232; LENAT DR, 1981, HYDROBIOLOGIA, V79, P187, DOI 10.1007/BF00006126; Lenat DR, 1979, BIOL SERIES N CAROLI, V102; Lorenz A, 2004, HYDROBIOLOGIA, V516, P107, DOI 10.1023/B:HYDR.0000025261.79761.b3; Maridet L, 1995, INFLUENCE S1BSTRATE, V91, P101; MARMONIER P, 1993, TRENDS ECOL EVOL, V8, P392, DOI 10.1016/0169-5347(93)90039-R; Matthaei CD, 2006, FRESHWATER BIOL, V51, P2154, DOI 10.1111/j.1365-2427.2006.01643.x; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Minshall G.W., 1984, P358; Mondy CP, 2012, ECOL INDIC, V18, P452, DOI 10.1016/j.ecolind.2011.12.013; Ockinger E, 2010, ECOL LETT, V13, P969, DOI 10.1111/j.1461-0248.2010.01487.x; Orghidan T., 1959, Archiv fuer Hydrobiologie, V55, P392; Paillex A, 2009, J APPL ECOL, V46, P250, DOI 10.1111/j.1365-2664.2008.01593.x; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; PETTS GE, 1989, SCI TOTAL ENVIRON, V84, P259, DOI 10.1016/0048-9697(89)90388-4; Pinheiro J., 2009, NLME LINEAR NONLINEA; Piscart C, 2006, ARCH HYDROBIOL, V166, P185, DOI 10.1127/0003-9136/2006/0166-0185; Puig M. A., 1990, MAYFLIES STONEFLIES, P255; R Development Core Team, 2009, R LANG ENV STAT COMP; RELYEA CD, 2000, P WATER ENV FEDERATI, V24, P663; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; RICHARDS C, 1994, GREAT BASIN NAT, V54, P106; Robertson AL, 2010, FUND APPL LIMNOL, V176, P279, DOI 10.1127/1863-9135/2010/0176-0279; Ryan RJ, 2007, STOCH ENV RES RISK A, V21, P309, DOI 10.1007/s00477-006-0066-1; Scarbrook MR, 2003, NIWA SCI TECHNOLOGY; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; Stanford JA, 2001, REGUL RIVER, V17, P303, DOI 10.1002/rrr.659.abs; STATZNER B, 1982, OECOLOGIA, V53, P290, DOI 10.1007/BF00389001; STATZNER B, 1994, FRESHWATER BIOL, V31, P253, DOI 10.1111/j.1365-2427.1994.tb01739.x; Statzner B, 2001, BASIC APPL ECOL, V2, P73, DOI 10.1078/1439-1791-00039; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STOCKER ZSJ, 1972, LIMNOL OCEANOGR, V17, P136, DOI 10.4319/lo.1972.17.1.0136; STRAHLER AN, 1952, GEOL SOC AM BULL, V63, P1117, DOI 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2; TACHET H, 2002, INVERTEBRES EAU DOUC; Thioulouse J, 1997, STAT COMPUT, V7, P75, DOI 10.1023/A:1018513530268; Tomanova S, 2008, RIVER RES APPL, V24, P1230, DOI 10.1002/rra.1148; Townsend CR, 2008, J APPL ECOL, V45, P1810, DOI 10.1111/j.1365-2664.2008.01548.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Usseglio-Polatera P, 2000, HYDROBIOLOGIA, V422, P153, DOI 10.1023/A:1017042921298; Usseglio-Polatera Philippe, 2001, Archiv fuer Hydrobiologie Supplement, V139, P53; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Wantzen KM, 2006, AQUAT CONSERV, V16, P733, DOI 10.1002/aqc.813; Ward JV, 1998, FRESHWATER BIOL, V40, P531, DOI 10.1046/j.1365-2427.1998.00368.x; Waters T. F, 1995, SEDIMENT STREAMS SOU; Weigelhofer G, 2003, INT REV HYDROBIOL, V88, P304, DOI 10.1002/iroh.200390027; Zweig LD, 2001, J N AM BENTHOL SOC, V20, P643, DOI 10.2307/1468094 90 21 21 3 57 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0048-9697 1879-1026 SCI TOTAL ENVIRON Sci. Total Environ. JAN 1 2014 466 265 276 10.1016/j.scitotenv.2013.06.082 12 Environmental Sciences Environmental Sciences & Ecology 300VH WOS:000330491600030 23911840 2019-02-21 J White, KS; Barten, NL; Crouse, S; Crouse, J White, Kevin S.; Barten, Neil L.; Crouse, Stacy; Crouse, John Benefits of migration in relation to nutritional condition and predation risk in a partially migratory moose population ECOLOGY English Article Alaska; Alces alces; forage maturation; moose; nutrition; predation risk; ungulate migration SOUTH-CENTRAL ALASKA; ALCES-ALCES; LARGE HERBIVORES; TRADE-OFFS; ANTIPREDATOR TACTICS; DENSITY-DEPENDENCE; WOLF PREDATION; GLACIER BAY; UNGULATE; CARIBOU The costs and benefits of alternative migratory strategies are often framed in the context of top-down and bottom-up effects on individual fitness. This occurs because migration is considered a costly behavioral strategy that presumably confers explicit benefits to migrants in the form of either decreased predation risk (predation risk avoidance hypothesis) or increased nutrition (forage maturation hypothesis). To test these hypotheses, we studied a partially migratory moose (Alces alces) population and contrasted explicit measures of predation risk (i.e., offspring survival) and nutrition (i.e., accumulation of endogenous energy reserves) between resident and migratory subpopulations. We relied on data collected from migratory and nonmigratory radio-marked moose (n = 67) that inhabited a novel study system located in coastal Alaska between 2004 and 2010. In this area, 30% of the population resides year-round on a coastal foreland area, while 48% migrate to either a small island archipelago or a subalpine ridge system (the remainder exhibited one of six different low-occurrence strategies). Overall, we determined that accumulation of body fat during the growing season did not differ between migratory or resident modalities. However, calf survival was 2.6-2.9 times higher for individuals that migrated (survival, islands = 0.49 +/- 0.16 [mean +/- SE], n = 35; ridge = 0.52 +/- 0.16, n = 33) than those that did not (survival, resident = 0.19 +/- 0.08, n = 57). Our results support the predation risk avoidance hypotheses, and suggest that migration is a behavioral strategy that principally operates to reduce the risk of calf predation and does not confer explicit nutritional benefits. We did not directly detect trade-offs between predation risk and nutrition for migratory individuals. Yet we identify an indirect life history mechanism that may mildly dampen the apparent fitness benefits of migration. The proximate factors accounting for differences in migration-specific neonate survival are likely linked to accessibility of refugial habitats for moose at local and landscape scales, landscape factors that affect hunting efficacy of large carnivores, and interactions with rural human communities. Conservation of ungulate populations can be aided by integrating knowledge about migratory behavior, life history strategies, and factors that alter ungulate vulnerability, particularly those induced by human activity. [White, Kevin S.; Barten, Neil L.] Alaska Dept Fish & Game, Div Wildlife Conservat, Juneau, AK 99811 USA; [Crouse, Stacy; Crouse, John] Alaska Dept Fish & Game, Moose Res Ctr, Div Wildlife Conservat, Soldotna, AK 99669 USA White, KS (reprint author), Alaska Dept Fish & Game, Div Wildlife Conservat, POB 110024, Juneau, AK 99811 USA. kevin.white@alaska.gov Alaska Department of Fish and Game through the Federal Aid in Wildlife Restoration Program We thank G. Streveler for stimulating discussion that led to this analysis. J. Jemison, J. Womble, R. Piehl, J. King, K. Colson, D. Raper, K. McCoy, and K. Obermeyer assisted in collection of risky yet critical summer calf status data. J. Jemison, C. Rice, R. Scott, E. Hood, K. Colson, D. Raper, K. McCoy, K. Blejwas, J. Mondragon, P. Converse, B. Riley, R. Woodford, J. Brakel, and D. Bryant assisted with moose capture and handling. Helicopter pilots R. Madrid, M. Horton, C. Kolden, J. Naiman, and E. Lorvig provided exceptional assistance with animal captures. Pilots C. Schroth, L. Bennett, M. Morris, P. Valkenburg, and M Sharp were instrumental in the safe and efficient acquisition of aerial telemetry data. T. Levi, J. Womble, D. Gregovich, and D. Raper provided useful comments on early drafts of the manuscript. This study was funded by the Alaska Department of Fish and Game through the Federal Aid in Wildlife Restoration Program. Additional logistic support was provided by the Alaska Department of Transportation and Glacier Bay National Park. We thank two anonymous reviewers for providing particularly useful and constructive comments. Adams LG, 2010, ECOL APPL, V20, P251, DOI 10.1890/08-1437.1; ALBON SD, 1992, OIKOS, V65, P502, DOI 10.2307/3545568; ALTMANN M., 1958, ANIMAL BEHAVIOUR, V6, P155, DOI 10.1016/0003-3472(58)90045-9; Bailey T.N., 1980, P N AM MOOS C WORKSH, V16, P289; Barten NL, 2001, J WILDLIFE MANAGE, V65, P77, DOI 10.2307/3803279; Berger J, 1999, P ROY SOC B-BIOL SCI, V266, P2261, DOI 10.1098/rspb.1999.0917; Berger J, 2004, CONSERV BIOL, V18, P320, DOI 10.1111/j.1523-1739.2004.00548.x; Berger J, 2007, BIOLOGY LETT, V3, P620, DOI 10.1098/rsbl.2007.0415; BERGERUD AT, 1990, ANIM BEHAV, V39, P360, DOI 10.1016/S0003-3472(05)80882-6; BERGERUD AT, 1987, CAN J ZOOL, V65, P1597, DOI 10.1139/z87-249; BERGERUD AT, 1984, CAN J ZOOL, V62, P1566, DOI 10.1139/z84-229; Bergman EJ, 2006, ECOL APPL, V16, P273, DOI 10.1890/04-1532; Bischof R, 2012, AM NAT, V180, P407, DOI 10.1086/667590; Bolger DT, 2008, ECOL LETT, V11, P63; Bonenfant C, 2009, ADV ECOL RES, V41, P313, DOI 10.1016/S0065-2504(09)00405-X; Bowyer RT, 1999, J MAMMAL, V80, P1070, DOI 10.2307/1383161; Bunnefeld N, 2011, J ANIM ECOL, V80, P466, DOI 10.1111/j.1365-2656.2010.01776.x; CHAPIN FS, 1994, ECOL MONOGR, V64, P149, DOI 10.2307/2937039; Chapman BB, 2011, OIKOS, V120, P1764, DOI 10.1111/j.1600-0706.2011.20131.x; Chapman BB, 2011, OIKOS, V120, P1761, DOI 10.1111/j.1600-0706.2011.20070.x; Colson K. E., 2013, THESIS U ALASKA FAIR; Cook J. G., 2006, WILDLIFE MONOGR, V155, P1; Cooper WS, 1923, ECOLOGY, V4, P223, DOI 10.2307/1929047; Crouse J. A., 2006, P GLACIER BAY SCI S, V4, P25; Dinneford B., 1988, P GLACIER BAY SCI S, V2, P83; EASTLAND WG, 1989, J MAMMAL, V70, P824, DOI 10.2307/1381720; EDWARDS J, 1983, OECOLOGIA, V60, P185, DOI 10.1007/BF00379520; Farmer CJ, 2006, J WILDLIFE MANAGE, V70, P1403, DOI 10.2193/0022-541X(2006)70[1403:RFAMOB]2.0.CO;2; Franzmann A.W., 1985, P239; Frid A, 2002, CONSERV ECOL, V6; Frid A., 2010, ENCY ANIMAL BEHAV, P366; FRYXELL JM, 1988, TRENDS ECOL EVOL, V3, P237, DOI 10.1016/0169-5347(88)90166-8; FRYXELL JM, 1988, AM NAT, V131, P781, DOI 10.1086/284822; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Harris Grant, 2009, Endangered Species Research, V7, P55, DOI 10.3354/esr00173; Hebblewhite M, 2005, ECOLOGY, V86, P2135, DOI 10.1890/04-1269; Hebblewhite M, 2008, ECOL MONOGR, V78, P141, DOI 10.1890/06-1708.1; Hebblewhite M, 2007, OECOLOGIA, V152, P377, DOI 10.1007/s00442-007-0661-y; Hebblewhite M, 2011, OIKOS, V120, P1860, DOI 10.1111/j.1600-0706.2011.19436.x; Hebblewhite M, 2009, ECOLOGY, V90, P3445, DOI 10.1890/08-2090.1; Hilderbrand GV, 1999, CAN J ZOOL, V77, P132, DOI 10.1139/cjz-77-1-132; Hosmer D. W., 2000, APPL LOGISTIC REGRES; Hundertmark Kris J., 1998, P303; Kauffman MJ, 2007, ECOL LETT, V10, P690, DOI 10.1111/j.1461-0248.2007.01059.x; Keech MA, 2000, J WILDLIFE MANAGE, V64, P450, DOI 10.2307/3803243; Lewis T. L., 2012, THESIS U ALASKA FAIR; Mcart SH, 2009, ECOLOGY, V90, P1400, DOI 10.1890/08-1435.1; Miller Sterling D., 1997, Wildlife Monographs, V133, P1; Milner AM, 2007, BIOSCIENCE, V57, P237, DOI 10.1641/B570307; MIQUELLE DG, 1992, WILDLIFE MONOGR, P1; MOLVAR EM, 1994, J MAMMAL, V75, P621, DOI 10.2307/1382509; Mysterud A, 2011, OIKOS, V120, P1817, DOI 10.1111/j.1600-0706.2010.19439.x; Neumann Wiebke, 2011, Alces, V47, P17; Oftedal O. T., 1985, BIOENERGETICS WILD H, V10, P215; Parker KL, 2009, FUNCT ECOL, V23, P57, DOI 10.1111/j.1365-2435.2009.01528.x; PETERSON RL, 1955, N AM MOOSE; Piasecke JR, 2009, RANGELAND ECOL MANAG, V62, P145, DOI 10.2111/07-020.1; Pinjuv K, 2013, THESIS EVERGREEN STA; Sawyer H, 2011, J ANIM ECOL, V80, P1078, DOI 10.1111/j.1365-2656.2011.01845.x; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; Shanley C.S., 2011, ECOSPHERE, V2, P1; Sivertsen TR, 2012, EUR J WILDLIFE RES, V58, P863, DOI 10.1007/s10344-012-0626-2; Stankowich T, 2008, BIOL CONSERV, V141, P2159, DOI 10.1016/j.biocon.2008.06.026; STEPHENS PW, 1984, HOLARCTIC ECOL, V7, P239; Stephenson T. R., 1998, CAN J ZOOL, V76, P712; Stewart KM, 2005, OECOLOGIA, V143, P85, DOI 10.1007/s00442-004-1785-y; Streveler G. P., 1978, ENDICOTT GAP LARGE M; Szepanski MM, 1999, OECOLOGIA, V120, P327, DOI 10.1007/s004420050866; Taylor W. P., 2000, WILDLIFE CAPTURE RES; Testa JW, 2004, ECOLOGY, V85, P1439, DOI 10.1890/02-0671; Testa JW, 1998, J MAMMAL, V79, P1345, DOI 10.2307/1383026; Testa JW, 2000, J MAMMAL, V81, P162, DOI 10.1644/1545-1542(2000)081<0162:TPITSO>2.0.CO;2; van Beest FM, 2010, J ANIM ECOL, V79, P910, DOI 10.1111/j.1365-2656.2010.01701.x; Wasser SK, 2011, FRONT ECOL ENVIRON, V9, P546, DOI 10.1890/100071; White KS, 2001, CAN J ZOOL, V79, P2055, DOI 10.1139/cjz-79-11-2055; WHITE RG, 1983, OIKOS, V40, P377, DOI 10.2307/3544310; Wilton Mike L., 1991, Alces, V27, P111; Young JK, 2011, BIOSCIENCE, V61, P125, DOI 10.1525/bio.2011.61.2.7 78 18 20 1 94 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology JAN 2014 95 1 225 237 10.1890/13-0054.1 13 Ecology Environmental Sciences & Ecology 291IR WOS:000329822900024 24649661 2019-02-21 J Muller, MN; Wrangham, RW Muller, Martin N.; Wrangham, Richard W. Mortality rates among Kanyawara chimpanzees JOURNAL OF HUMAN EVOLUTION English Article Wild chimpanzees; Life history evolution; Life table; Foragers HUMAN LIFE-HISTORY; GOMBE NATIONAL-PARK; WILD CHIMPANZEES; HUNTER-GATHERERS; 1ST EVIDENCE; RAIN-FOREST; GREAT APES; EVOLUTION; LEOPARD; LONGEVITY Demographic data from wild chimpanzees are of considerable interest for understanding the evolution of the human life history. Published mortality data, however, come primarily from chimpanzee populations that have recently suffered dramatic, human-induced declines, and exhibit rates of reproduction well below replacement. Here we present a life table for chimpanzees living in the Kanyawara community of Kibale National Park, comprising 1129 individual risk years and 56 deaths. This community has shown modest growth over the past 25 years, avoiding some of the worst impacts of human contact. Sex differences in mortality at Kanyawara appeared similar to those reported from other sites. However, overall mortality rates were significantly lower than those reported from the long-term study sites of Gombe, Tai and Mahale. Kanyawara chimpanzees in this sample had a life expectancy at birth of 19 years, and individuals living to age 14 could expect to live for another 24 years. Life table data from Kanyawara indicate a mean mortality rate of 3.9% per year over the ages of 10-35, substantially less than the equivalent figure of 6.8% from a sample of other long-term chimpanzee study sites. The comparable adult mortality rate from a range of human foraging societies is similar to 2%. The Kanyawara data thus suggest an important downward revision in adult mortality rates for wild chimpanzees, but they do not challenge the existence of an important difference in adult mortality between humans and chimpanzees. (C) 2013 Elsevier Ltd. All rights reserved. [Muller, Martin N.] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA; [Wrangham, Richard W.] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA Muller, MN (reprint author), Univ New Mexico, Dept Anthropol, MSC01-1040, Albuquerque, NM 87131 USA. muller@unm.edu U.S. National Science Foundation [9807448, 0416125]; Leakey Foundation; National Geographic Society; Getty Foundation; Wenner-Gren Foundation The authors thank Bret Beheim, Paul Hooper, Hilly Kaplan, Zarin Machanda, Sherry Nelson, and Jon Stieglitz for comments on the manuscript or assistance with data analysis, and Nicholas Blurton Jones for permission to use unpublished Hadza data. Comments from two anonymous reviewers improved the manuscript considerably. The U.S. National Science Foundation (grants 9807448, 0416125), the Leakey Foundation, the National Geographic Society, the Getty Foundation and the Wenner-Gren Foundation generously funded research at Kanyawara. The Uganda Wildlife Authority, Uganda National Council of Science and Technology, and Makerere University Biological Field Station granted research permission. We thank G. Isabirye-Basuta, J. Kasenene, and J. Lwanga for their support. The late J. Barwogeza, the late J. Basigara, J. Sunday, C. Katongole, J. Kyomuhendo, F. Mugurusi, the late D. Muhangyi, the late C. Muruuli, S. Musana, J. Musunguzi, D. Sebugwawo, P. Tuhairwe, and W. Tweheyo collected data, with research oversight by K. Duffy, C. Hooven, A. Houle, S. Mugume, E. Otali, K. Pieta, and M. Wilson. Blurton Jones N., HADZA DEMOGRAP UNPUB; Boesch C, 2000, CHIMPANZEES TAI FORE; Boesch C, 2008, AM J PRIMATOL, V70, P519, DOI 10.1002/ajp.20524; Charnov Eric L., 1993, P1; Daszak P, 2001, ACTA TROP, V78, P103, DOI 10.1016/S0001-706X(00)00179-0; Edgaonkar A, 2002, MAMMALIA, V66, P353, DOI 10.1515/mamm.2002.66.3.353; Formenty P, 1999, J INFECT DIS, V179, pS120, DOI 10.1086/514296; Gerald CN, 1995, THESIS PRINCETON U; Goldberg TL, 2007, BIOL CONSERV, V135, P511, DOI 10.1016/j.biocon.2006.10.048; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; Gurven M, 2012, EXP GERONTOL, V47, P807, DOI 10.1016/j.exger.2012.05.006; Harcourt AH, 2007, EVOL ANTHROPOL, V16, P147, DOI 10.1002/evan.20142; Hart JA, 1996, AFR J ECOL, V34, P364, DOI 10.1111/j.1365-2028.1996.tb00632.x; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Henschel P, 2005, AFR J ECOL, V43, P21, DOI 10.1111/j.1365-2028.2004.00518.x; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST; Hill K, 2007, J HUM EVOL, V52, P443, DOI 10.1016/j.jhevol.2006.11.003; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kaplan HS, 2003, OFFSPRING, P170; Kondgen S, 2008, CURR BIOL, V18, P260, DOI 10.1016/j.cub.2008.01.012; Leendertz FH, 2006, BIOL CONSERV, V131, P325, DOI 10.1016/j.biocon.2006.05.002; Leendertz FH, 2004, NATURE, V430, P451, DOI 10.1038/nature02722; Mumby H, 2008, EVOL BIOL, V35, P287, DOI 10.1007/s11692-008-9040-9; Nakazawa N, 2013, J HUM EVOL, V65, P334, DOI 10.1016/j.jhevol.2013.04.003; Nishida T, 2003, AM J PRIMATOL, V59, P99, DOI 10.1002/ajp.10068; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pusey AE, 2008, AM J PRIMATOL, V70, P738, DOI 10.1002/ajp.20567; Pusey AE, 2007, CONSERV BIOL, V21, P623, DOI 10.1111/j.1523-1739.2007.00704.x; Robson SL, 2008, J ANAT, V212, P394, DOI 10.1111/j.1469-7580.2008.00867.x; Robson SL, 2006, SCH AM RES, P17; Rudicell RS, 2010, PLOS PATHOG, V6, DOI 10.1371/journal.ppat.1001116; Santiago ML, 2003, J VIROL, V77, P7545, DOI 10.1128/JVI.77.13.7545-7562.2003; Sharp PM, 2011, COLD SPRING HARB PER, V1; SHEA BT, 1983, INT J PRIMATOL, V4, P33, DOI 10.1007/BF02739359; Sibly RM, 2007, P NATL ACAD SCI USA, V104, P17707, DOI 10.1073/pnas.0707725104; STRUHSAKER T, 1998, ECOLOGY AFRICAN RAIN; Sugiyama Y, 2004, AM J PHYS ANTHROPOL, V124, P154, DOI 10.1002/ajpa.10345; Sugiyama Y, 2011, PRIMATOL MONOGR, P23, DOI 10.1007/978-4-431-53921-6_4; Therneau T, 2012, PACKAGE SURVIVAL ANA; TSUKAHARA T, 1993, AM J PRIMATOL, V29, P1, DOI 10.1002/ajp.1350290102; van Schaik Carel P., 2012, P220; Watts David P., 2012, P313; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wrangham R., 2002, ALL APES GREAT SMALL, VI, P5; Wrangham R, 2010, EVOL ANTHROPOL, V19, P187, DOI 10.1002/evan.20275; Zuberbuhler K, 2002, J HUM EVOL, V43, P873, DOI 10.1006/jhev.2002.0605 47 22 22 2 38 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0047-2484 J HUM EVOL J. Hum. Evol. JAN 2014 66 107 114 10.1016/j.jhevol.2013.10.004 8 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 296AD WOS:000330156600009 24374229 2019-02-21 J Van Ginderdeuren, K; Van Hoey, G; Vincx, M; Hostens, K Van Ginderdeuren, Karl; Van Hoey, Gert; Vincx, Magda; Hostens, Kris The mesozooplankton community of the Belgian shelf (North Sea) JOURNAL OF SEA RESEARCH English Article Zooplankton; Marine biodiversity; Belgian part of the North Sea; Community; Phenology COPEPOD TEMORA-LONGICORNIS; LIFE-HISTORY STRATEGIES; COASTAL ZONE; SCHELDE ESTUARY; CLIMATE-CHANGE; TEMPORAL PATTERNS; CALANOID COPEPODS; ENGLISH-CHANNEL; HELGOLAND ROADS; SOUTHERN BIGHT This manuscript presents the mesozooplankton community structure and its spatial and temporal variabilities in the Belgian part of the North Sea (BPNS), a first thorough study on this topic in nearly 40 years. Monthly sampling campaigns at ten stations in the BPNS in 2009 and 2010 yielded a total of 137 mesozooplankton taxa (46 holoplanktonic, 50 meroplanktonic and 41 tychoplanktonic), of which nine species had never been reported in the area. Smaller neritic copepods, especially Temora longicornis and Acartia clausi, were present in all samples and dominated zooplankton densities (66%), together with the appendicularian Oikopleura dioica (10%). They were joined by high numbers of meroplanktonic echinoderm larvae (9%) in spring and summer. Based on diversity alone, the mesozooplankton could be typified as one neritic zooplankton community, due to the ubiquitous presence in time and space of the dominant copepods. Yet, these neritic species were often joined by low numbers of oceanic species that are occasionally imported with the inflow of Atlantic oceanic water in the BPNS. Based on a combination of abundance and diversity, our results indicate distinct seasonal and spatial distribution patterns in the mesozooplankton. Months with highest average densities were May, June and July, lowest densities were noted in December and January. Only limited long-term zooplankton, data are available for the BPNS from the Continuous Plankton Recorder surveys or the long-term monitoring stations in the vicinity of our research area. However, our data suggest that nowadays zooplankton species appear earlier in the BPNS, comparable with other areas in the North Sea. Densities varied between 150 and 15,000 ind.m(-3), and averaged highest at midshore stations, then nearshore and offshore. This is partially comparable with the spatial patterns recorded for other ecosystem components, such as demersal fish, epibenthos and macrobenthos, of which densities peak in a stretch almost parallel to but some miles away from the coastline in the BPNS. (C) 2613 Elsevier B.V. All rights reserved. [Van Ginderdeuren, Karl; Van Hoey, Gert; Hostens, Kris] Inst Agr & Fisheries Res, Anim Sci Unit Fisheries, B-8400 Oostende, Belgium; [Van Ginderdeuren, Karl; Vincx, Magda] Ghent Univ UGent, Dept Biol, Marine Biol, B-9000 Ghent, Belgium Van Ginderdeuren, K (reprint author), Inst Agr & Fisheries Res, Anim Sci Unit Fisheries, Ankerstr 1, B-8400 Oostende, Belgium. karl.vanginderdeuren@ilvo.vlaanderen.be Van Hoey, Gert/0000-0003-2055-5292 Institute for Agricultural and Fisheries Research ILVO Funding for this study originated from a PhD grant provided by the Institute for Agricultural and Fisheries Research ILVO. Antajan E., 2004, THESIS U BRUSSELS; Appeltans W, 2003, J PLANKTON RES, V25, P1441, DOI 10.1093/plankt/fbg101; Azemar F., 2004, VLIZ SPECIAL PUBLICA, V17, P33; Bakker C., 1975, J SEA RES, V9, P145; Beaugrand G, 2003, FISH OCEANOGR, V12, P270, DOI 10.1046/j.1365-2419.2003.00248.x; Bonnet D, 2005, PROG OCEANOGR, V65, P1, DOI 10.1016/j.pocean.2005.02.002; Brante A, 2003, MAR ECOL PROG SER, V251, P221, DOI 10.3354/meps251221; Brylinski JM, 2009, CAH BIOL MAR, V50, P251; Canu E., 1892, TRAVAUX LAB ZOOLOGIE; Cattrijsse A., 2001, SUSTAINABLE MANAGEME, P48; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Clarke KR, 2006, PRIMER V6 USER MANUA; CUSHING DH, 1990, ADV MAR BIOL, V26, P249, DOI 10.1016/S0065-2881(08)60202-3; Daro M.-H., 2006, CURRENT STATUS EUTRO, P61; DARO MH, 1985, B MAR SCI, V37, P764; DARO MH, 1985, B MAR SCI, V37, P487; DARO MH, 1974, HYDROBIOLOGIA, V44, P149, DOI 10.1007/BF00187267; Dauvin JC, 2003, CAH BIOL MAR, V44, P67; De Backer A., 2010, WEIGHING NATURAL VAR; Degraer S, 2003, ESTUAR COAST SHELF S, V56, P459, DOI 10.1016/S0272-7714(02)00195-6; Degraer S, 1999, ESTUARIES, V22, P742, DOI 10.2307/1353107; Dewicke A, 2003, J SEA RES, V49, P27, DOI 10.1016/S1385-1101(02)00167-3; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; Eilertsen HC, 2000, S AFR J MARINE SCI, V22, P323, DOI 10.2989/025776100784125717; FENAUX L, 1994, LIMNOL OCEANOGR, V39, P84, DOI 10.4319/lo.1994.39.1.0084; Fischer K, 2003, ECOLOGY, V84, P3138, DOI 10.1890/02-0733; Fransz H.G., 2000, GRAADMETER SOORTENDI; Fransz H.G., 1975, 10TH EUR M BIOL S, P247; FRANSZ HG, 1991, NETH J SEA RES, V28, P1, DOI 10.1016/0077-7579(91)90003-J; Fraser J.H., 1965, ZOOPLANKTON INDICATO, P6; Gasparini S, 2000, J SEA RES, V43, P345, DOI 10.1016/S1385-1101(00)00016-2; Greve W, 2005, ICES J MAR SCI, V62, P1216, DOI 10.1016/j.iccsjms.2005.03.011; Greve W, 2004, HELGOLAND MAR RES, V58, P274, DOI 10.1007/s10152-004-0191-5; Haddock SHD, 2008, LIMNOL OCEANOGR, V53, P2759; Halsband-Lenk C, 2004, ICES J MAR SCI, V61, P709, DOI 10.1016/j.icesjms.2004.03.020; HANSEN FC, 1991, MAR ECOL PROG SER, V78, P123, DOI 10.3354/meps078123; Hay Steve, 2011, ICES Cooperative Research Report, V307, P82; Hays GC, 2005, TRENDS ECOL EVOL, V20, P337, DOI 10.1016/j.tree.2005.03.004; Hjort J., 1914, RAPP P V REUN CONS I, V20, P1; Howarth M.J., 2001, ENCY OCEAN SCI, VIV, P1912; Kirby RR, 2007, MAR ECOL PROG SER, V330, P31, DOI 10.3354/meps330031; KMI, 2010, KLIM OV JAAR 2010; KRAUSE M, 1995, PROG OCEANOGR, V35, P81, DOI 10.1016/0079-6611(95)00006-3; Lancelot C., 1998, NATO ASI Series Series G Ecological Sciences, V41, P209; LANCELOT C, 1995, SCI TOTAL ENVIRON, V165, P83, DOI 10.1016/0048-9697(95)04545-C; Lancelot C., 2007, ADV MODELING RES EUT; Lindley J.A., 2007, LONT TERM CHANGES ME; Lock K, 2011, HYDROBIOLOGIA, V664, P173, DOI 10.1007/s10750-010-0597-9; Lynam CP, 2004, LIMNOL OCEANOGR, V49, P637, DOI 10.4319/lo.2004.49.3.0637; M'harzi A, 1998, J PLANKTON RES, V20, P2031; Maes J., 2002, ECSA LOC M EC STRUCT, P16; Mauchline J, 1998, ADV MAR BIOL, V33, P1; MILLS EL, 1969, J FISH RES BOARD CAN, V26, P1415, DOI 10.1139/f69-132; Morin P.J., 1999, COMMUNITY ECOLOGY; MUMM, 1996, INV STROOM GET 1977; Muylaert K, 2006, J SEA RES, V55, P253, DOI 10.1016/j.seares.2005.12.002; Nejstgaard JC, 2007, BIOGEOCHEMISTRY, V83, P147, DOI 10.1007/s10533-007-9098-y; NIELSEN TG, 1993, MAR ECOL PROG SER, V95, P115, DOI 10.3354/meps095115; Nielsen TG, 1998, J PLANKTON RES, V20, P2313; NIHOUL JCJ, 1984, CONT SHELF RES, V3, P167, DOI 10.1016/0278-4343(84)90005-0; O'Brien T. D., 2011, 307 ICES; Peperzak L, 1998, J PLANKTON RES, V20, P517, DOI 10.1093/plankt/20.3.517; Provoost P, 2013, ESTUAR COAST SHELF S, V120, P1, DOI 10.1016/j.ecss.2013.01.008; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Reid PC, 2003, FISH OCEANOGR, V12, P260, DOI 10.1046/j.1365-2419.2003.00252.x; REID PC, 1990, NETH J SEA RES, V26, P295, DOI 10.1016/0077-7579(90)90094-W; Richardson AJ, 2008, ICES J MAR SCI, V65, P279, DOI 10.1093/icesjms/fsn028; Rousseau V., CURRENT STATUS EUTRO, P121; RUSSELL F. S., 1935, JOUR MARINE BIOL ASSOC UNITED KINGDOM, V20, P309; Russell F.S., 1976, EGGS PLANKTONIC STAG; Sheader M, 1996, MAR BIOL, V124, P519, DOI 10.1007/BF00351033; SMITH PE, 1968, J CONSEIL, V32, P232; SOETAERT K, 1993, MAR ECOL PROG SER, V97, P47, DOI 10.3354/meps097047; SOUTHWARD AJ, 1995, J THERM BIOL, V20, P127, DOI 10.1016/0306-4565(94)00043-I; Stark J. D., 2007, OC 07 IEEE AB C P MA; Tackx M, 2005, HYDROBIOLOGIA, V540, P275, DOI 10.1007/s10750-004-7151-6; Tackx MLM, 2004, J PLANKTON RES, V26, P133, DOI 10.1093/plankt/fbh016; Van Ginderdeuren K, 2012, AQUAT INVASIONS, V7, P163, DOI 10.3391/ai.2012.7.2.002; Van Ginderdeuren K, 2012, BELG J ZOOL, V142, P3; Van Hoey G, 2004, ESTUAR COAST SHELF S, V59, P599, DOI 10.1016/j.ecss.2003.11.005; Van Hoey G., 2006, THESIS U GENT GENT; Van Loen H, 2002, VERZMELING GUSTAVE G, V4; Van Meel L.I.J., 1975, ETUDE PLANCTONIQUE, VII; Vandendriessche S, 2006, J SEA RES, V55, P103, DOI 10.1016/j.seares.2005.09.002; Vandepitte L., 2010, VLIZ SPECIAL PUBLICA, V46; VANGUELPEN L, 1982, J CONSEIL, V40, P226; Vanhellemont Q., 2011, P COASTGIS 2011 C HE, P201; Vasas V, 2007, MAR ECOL PROG SER, V336, P1, DOI 10.3354/meps336001; Wasmund Norbert, 2011, Meereswissenschaftliche Berichte, V85, P89; Wesche A, 2007, MAR BIOL, V151, P1309, DOI 10.1007/s00227-006-0560-5; Wiltshire KH, 2004, HELGOLAND MAR RES, V58, P269, DOI 10.1007/s10152-004-0196-0 91 6 6 0 50 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. JAN 2014 85 48 58 10.1016/j.seares.2013.10.003 11 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 292EJ WOS:000329884700005 2019-02-21 J Cavraro, F; Daouti, I; Leonardos, I; Torricelli, P; Malavasi, S Cavraro, Francesco; Daouti, Irini; Leonardos, Ioannis; Torricelli, Patrizia; Malavasi, Stefano Linking habitat structure to life history strategy: Insights from a Mediterranean killifish JOURNAL OF SEA RESEARCH English Article Salt Marsh; Predation; Energy; Demography; Reproduction APHANIUS-FASCIATUS VALENCIENNES; LAGOONS W. GREECE; VENICE-LAGOON; SALT MARSHES; COMPARATIVE ECOLOGY; REDUNDANCY ANALYSIS; FISH ASSEMBLAGES; RIVULUS-HARTII; 1827 PISCES; EVOLUTION Modern theories of life history evolution deal with finding links between environmental factors, demographic structure of animal populations and the optimal life history strategy. Small-sized teleost fish, occurring in fragmented populations under contrasting environments, have been widely used as study models to investigate these issues. In the present study, the Mediterranean killifish Aphanius fasciatus was used to investigate the relationships between some habitat features and life history strategy. We selected four sites in the Venice lagoon inhabited by this species, exhibiting different combinations of two factors: overall adult mortality, related to intertidal water coverage and a consequent higher level of predator exposure, and the level of sediment organic matter, as indicator of habitat trophic richness. Results showed that these were the two most important factors influencing demography and life history traits in the four sites. Fish from salt marshes with high predator pressure were smaller and produced a higher number of eggs, whereas bigger fish and a lower reproductive investment were found in the two closed, not tidally influenced habitats. Habitat richness was positively related with population density, but negatively related with growth rate. In particular the synergy between high resources and low predation level was found to be important in shaping peculiar life history traits. Results were discussed in the light of the interactions between selective demographic forces acting differentially on age/size classes, such as predation, and habitat trophic richness that may represent an important energetic constraint on life history traits. The importance to link habitat productivity and morphology to demographic factors for a better understanding of the evolution of life history strategy under contrasting environments was finally suggested. (C) 2013 Elsevier B.V. All rights reserved. [Cavraro, Francesco; Torricelli, Patrizia; Malavasi, Stefano] Univ Ca Foscari Venezia, CEMAS Ctr Estuarine & Coastal Marine Sci, I-30122 Venice, Italy; [Daouti, Irini; Leonardos, Ioannis] Univ Ioannina, Dept Biol Applicat & Technol, Zool Lab, GR-45110 Ioannina, Greece Cavraro, F (reprint author), Univ Ca Foscari Venezia, CEMAS Ctr Estuarine & Coastal Marine Sci, Campo Celestia,Castello 2737-B, I-30122 Venice, Italy. cavraro@unive.it Malavasi, Stefano/F-6419-2014 Italian MIUR (Italian Ministry of University and Public Instructions) This work was partially supported by Italian MIUR (Italian Ministry of University and Public Instructions). Able KW, 2007, J EXP MAR BIOL ECOL, V345, P26, DOI 10.1016/j.jembe.2007.01.003; BAGENAL TB, 1978, INT BIOL PROGRAMME H, V3, P101; BALTZ DM, 1993, ENVIRON BIOL FISH, V36, P109, DOI 10.1007/BF00002790; Cavraro Francesco, 2011, Bollettino del Museo di Storia Naturale di Venezia, V62, P125; CHAPMAN DG, 1960, BIOMETRICS, V16, P354, DOI 10.2307/2527687; El-Sabaawi R.W., 2012, PLOS ONE, V7, pe3271, DOI DOI 10.1371/J0UMAL.P0NE.0032713; Everhart WH, 1975, PRINCIPLES FISHERY S; Figueiredo-Barros MP, 2006, ESTUAR COAST SHELF S, V69, P87, DOI 10.1016/j.ecss.2006.03.023; Franco A, 2006, HYDROBIOLOGIA, V555, P159, DOI 10.1007/s10750-005-1113-5; Franzoi P, 2010, REND LINCEI-SCI FIS, V21, P269, DOI 10.1007/s12210-010-0079-z; Furness AI, 2012, EVOLUTION, V66, P1240, DOI 10.1111/j.1558-5646.2011.01520.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardmark A, 2006, P ROY SOC B-BIOL SCI, V273, P2185, DOI 10.1098/rspb.2006.3562; Gunderson DR, 1997, CAN J FISH AQUAT SCI, V54, P990, DOI 10.1139/cjfas-54-5-990; Halpin PM, 2000, MAR ECOL PROG SER, V198, P203, DOI 10.3354/meps198203; Heiri O, 2001, J PALEOLIMNOL, V25, P101, DOI 10.1023/A:1008119611481; HOWES BL, 1984, LIMNOL OCEANOGR, V29, P1037, DOI 10.4319/lo.1984.29.5.1037; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnston TA, 2002, ECOLOGY, V83, P1777, DOI 10.1890/0012-9658(2002)083[1777:MAEGIT]2.0.CO;2; Kevrekidis T, 2005, INT REV HYDROBIOL, V90, P100, DOI 10.1002/iroh.200310713; Legendre P, 1999, ECOL MONOGR, V69, P1, DOI 10.1890/0012-9615(1999)069[0001:DBRATM]2.0.CO;2; Leonardos I, 1999, FISH RES, V40, P227, DOI 10.1016/S0165-7836(98)00231-8; Leonardos I, 1998, FISH RES, V35, P171, DOI 10.1016/S0165-7836(98)00082-4; Leonardos I, 2008, SCI MAR, V72, P393; MAC ARTHUR ROBERT H., 1967; Malavasi S, 2004, J MARINE SYST, V51, P19, DOI 10.1016/j.jmarsys.2004.05.006; McArdle BH, 2001, ECOLOGY, V82, P290, DOI 10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2; Mitsch WJ, 2000, WETLANDS; Nordlie FG, 2000, HYDROBIOLOGIA, V434, P165, DOI 10.1023/A:1004073125007; ODUM WE, 1988, ANNU REV ECOL SYST, V19, P147, DOI 10.1146/annurev.es.19.110188.001051; Pyke GH, 2005, REV FISH BIOL FISHER, V15, P339, DOI 10.1007/s11160-006-6394-x; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Reznick D.N., 2010, EVOLUTION, V65, P1021; RODD FH, 1991, OIKOS, V62, P13, DOI 10.2307/3545440; Taborsky B, 2006, P ROY SOC B-BIOL SCI, V273, P741, DOI 10.1098/rspb.2005.3347; Walsh MR, 2008, P NATL ACAD SCI USA, V105, P594, DOI 10.1073/pnas.0710051105; Walsh MR, 2010, EVOLUTION, V64, P1583, DOI 10.1111/j.1558-5646.2009.00922.x; Walsh MR, 2009, EVOLUTION, V63, P3201, DOI 10.1111/j.1558-5646.2009.00785.x 42 9 9 1 20 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1385-1101 1873-1414 J SEA RES J. Sea Res. JAN 2014 85 205 213 10.1016/j.seares.2013.05.004 9 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 292EJ WOS:000329884700020 2019-02-21 J Webb, SL; Gee, KL Webb, Stephen L.; Gee, Kenneth L. Annual survival and site fidelity of free-ranging white-tailed deer (Odocoileus virginianus): comparative demography before (1983-1992) and after (1993-2005) spatial confinement INTEGRATIVE ZOOLOGY English Article conservation; deer; fidelity; mortality; Odocoileus virginianus; population dynamics CAUSE-SPECIFIC MORTALITY; POPULATION-DYNAMICS; RED DEER; DISPERSAL; MANAGEMENT; MOVEMENTS; ECOLOGY; MINNESOTA; PATTERNS; ANIMALS Survival and movement are important demographic variables influencing the dynamics of large herbivores with implications for management and evolution of life-history strategies. Management practices such as spatial confinement and harvest regulation attempt to control survival and movement for the sustainability of harvested deer populations, but a paucity of long-term data exists on these management practices. We examined annual survival and site fidelity of free-ranging white-tailed deer (Odocoileus virginianus) over 10 years (1983-1992) to compare demographic parameters after spatial confinement (1993-2005). We used capture records (n = 174; 104 females, 70 males), marked deer recaptures (n = 42), and dead recoveries (n = 68) to estimate sex-specific, age-specific and time-specific parameters. We found that annual female survival was 50% from 1983-1987 during a period of intense harvest, but increased to 93.7% after intense harvesting was eliminated. Prior to spatial confinement, annual survival of marked male deer averaged 36.7%-42.5%. After spatial confinement, annual survival increased on average for males (58%-99%) and females (77%-98%). Females showed high levels of site fidelity (>99%) prior to spatial confinement, whereas males showed much less site fidelity (4.5% for the 2 top-ranking models). During spatial confinement, the semi-impermeable fence effectively increased site fidelity of males (56%). These results stem from long-term study (23 years) of a large herbivore experiencing changes to life-history, resulting from changes in management that were applied to the population and aimed at altering population demographics, for sustainability of a harvestable population of deer. [Webb, Stephen L.; Gee, Kenneth L.] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA Webb, SL (reprint author), Samuel Roberts Noble Fdn Inc, Dept Comp Serv, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. slwebb@noble.org /0000-0001-6034-5164 Samuel Roberts Noble Foundation We thank J. Holman for his numerous contributions to the project; all interns and volunteers that assisted during deer captures; and R. Stevens and G. Wang for improving earlier drafts of this manuscript. Funding was provided by The Samuel Roberts Noble Foundation. Bowman Jacob L., 2007, Proceedings of the Annual Conference Southeastern Association of Fish and Wildlife Agencies, V61, P76; BROWN CG, 1992, J WILDLIFE MANAGE, V56, P246, DOI 10.2307/3808819; Burnham Kenneth P., 1993, P199; Burnham KP, 2002, MODEL SELECTION INFE; Catchpole EA, 1998, BIOMETRICS, V54, P33, DOI 10.2307/2533993; Clutton-Brock T, 1982, RED DEER BEHAV ECOLO; Cooch E., 2007, PROGRAM MARK GENTLE; Demarais S., 2002, WILDLIFE SOC TECHNIC, V02-3; DeYoung CA, 2011, Biology and Management of White-Tailed Deer, P147; DeYoung RW, 2009, J MAMMAL, V90, P946, DOI 10.1644/08-MAMM-A-227.1; DINKINES WC, 1992, J WILDLIFE DIS, V28, P391, DOI 10.7589/0090-3558-28.3.391; Ditchkoff SS, 2001, J WILDLIFE MANAGE, V65, P552, DOI 10.2307/3803108; DUSEK GL, 1989, WILDLIFE MONOGR, P1; FULLER TK, 1990, WILDLIFE MONOGR, P1; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1993, J ANIM ECOL, V62, P778; Gannon WL, 2007, J MAMMAL, V88, P809, DOI 10.1644/06-MAMM-F-185R1.1; Gee KL, 2002, WILDLIFE SOC B, V30, P387; GEE KL, 1994, WHITE TAILED DEER TH; Giuliano WM, 1999, J WILDLIFE MANAGE, V63, P570, DOI 10.2307/3802644; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; Haines AM, 2012, WILDLIFE SOC B, V36, P685, DOI 10.1002/wsb.194; Hamilton J., 1995, QUALITY WHITETAILS W, P7; Hansen LP, 2003, PROCEEDINGS OF THE FIFTY-SEVENTH ANNUAL CONFERENCE OF THE SOUTHEASTERN ASSOCIATION OF FISH AND WILDLIFE AGENCIES, P326; Langvatn R, 1999, WILDLIFE BIOL, V5, P213; Little A. R., 2011, THESIS MISSISSIPPI S; Loison A, 1998, OECOLOGIA, V116, P489, DOI 10.1007/s004420050614; Loison A, 1999, ECOLOGY, V80, P2539, DOI 10.2307/177239; Long ES, 2008, BEHAV ECOL, V19, P1235, DOI 10.1093/beheco/arn082; McCoy JE, 2005, J WILDLIFE MANAGE, V69, P366, DOI 10.2193/0022-541X(2005)069<0366:DBYMWD>2.0.CO;2; Messner TC, 2011, HUM ECOL, V39, P165, DOI 10.1007/s10745-011-9380-4; MILLER KV, 2003, WILD MAMMALS N AM BI, P906; NELSON ME, 1986, J WILDLIFE MANAGE, V50, P691, DOI 10.2307/3800983; NIXON CM, 1991, WILDLIFE MONOGR, P1; Pusey A, 1996, TRENDS ECOL EVOL, V11, P201, DOI 10.1016/0169-5347(96)10028-8; RAMSEY CW, 1968, J WILDLIFE MANAGE, V32, P187, DOI 10.2307/3798257; SEVERINGHAUS CW, 1949, J WILDLIFE MANAGE, V13, P195, DOI 10.2307/3796089; Shaw JC, 2006, J WILDLIFE MANAGE, V70, P1293, DOI 10.2193/0022-541X(2006)70[1293:EOPDAS]2.0.CO;2; Sidhu LA, 2007, AUK, V124, P815, DOI 10.1642/0004-8038(2007)124[815:MMAASI]2.0.CO;2; Somers MJ, 2012, FENCING FOR CONSERVATION: RESTRICTION OF EVOLUTIONARY POTENTIAL OR A RIPOSTE TO THREATENING PROCESSES?, P1, DOI 10.1007/978-1-4614-0902-1; Webb S.L., 2009, WILDLIFE BIOL PRACTI, V5, P45, DOI DOI 10.2461/WBP.2009.5.7; Webb SL, 2007, J WILDLIFE MANAGE, V71, P1507, DOI 10.2193/2006-300; Webb SL, 2007, J WILDLIFE MANAGE, V71, P555, DOI 10.2193/2006-189; Webb SL, 2010, SOUTHWEST NAT, V55, P488, DOI 10.1894/TAL-11.1; Webb SL, 2010, POPUL ECOL, V52, P81, DOI 10.1007/s10144-009-0178-9; White GC, 1999, BIRD STUDY, V46, P120 46 3 3 1 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1749-4877 1749-4869 INTEGR ZOOL Integr. Zool. JAN 2014 9 1 24 33 10.1111/1749-4877.12032 10 Zoology Zoology 292QQ WOS:000329917600004 24447659 2019-02-21 J Maps, F; Record, NR; Pershing, AJ Maps, Frederic; Record, Nicholas R.; Pershing, Andrew J. A metabolic approach to dormancy in pelagic copepods helps explaining inter- and intra-specific variability in life-history strategies JOURNAL OF PLANKTON RESEARCH English Article copepod; dormancy; diapause; life-history; metabolism; development; numerical modelling CALANUS-FINMARCHICUS; DEVELOPMENT RATES; PLANKTONIC EMBRYOS; DYNAMIC ACTION; LIPID STORAGE; HYPERBOREUS; GROWTH; SEA; RESPIRATION; DIAPAUSE Dormancy (diapause) is a key life-history strategy of pelagic copepods that allows them to thrive in highly seasonal environments. Successful dormancy of copepodid stages requires the ability to store energy efficiently (for example as lipids) and to slow down the rate of mobilization of this capital during the dormant period. The physiology of lipids in copepods has been extensively reviewed; however, data about the energetics of dormancy are currently scattered throughout the literature. Thus, we conducted a meta-analysis comparing the metabolism of active and dormant copepods in 15 species that undergo dormancy as copepodids. Linear mixed-effects models showed that the metabolic rate of dormant copepods is about one-fourth of the values for actively growing copepods, a level that remains consistent across a large range of body size or environmental conditions. Based on these metabolic rates, we used a numerical modelling approach to predict dormancy duration as a function of body mass and ambient temperature, and to explain the observed range of body masses at the initiation of dormancy. Our numerical approach also provides explanations for inter- and intra-specific variability in life-history strategies, such as which stages undergo dormancy and the prevalence of lipid-based reproduction in some copepod species. [Maps, Frederic] Fisheries & Oceans Canada, Maurice Lamontagne Inst, Mont Joli, PQ G5H 3Z4, Canada; [Record, Nicholas R.] Bigelow Lab Ocean Sci, East Boothbay, ME 04544 USA; [Pershing, Andrew J.] Univ Maine, Sch Marine Sci, Orono, ME 04469 USA; [Pershing, Andrew J.] Gulf Maine Res Inst, Portland, ME 04101 USA Maps, F (reprint author), Univ Laval, Dept Biol, Quebec City, PQ G1V 0A6, Canada. frederic.maps@bio.ulaval.ca Maps, Frederic/L-4546-2013 Maps, Frederic/0000-0001-7115-2464 National Science Foundation's Biological Oceanography program [OCE-0962074]; Fisheries and Oceans Canada This work was supported by the National Science Foundation's Biological Oceanography program (OCE-0962074) and Fisheries and Oceans Canada. Aksnes DL, 2006, MAR ECOL PROG SER, V318, P75, DOI 10.3354/meps318075; Arrhenius S., 1889, Z PHYS CHEM, V4, P226, DOI DOI 10.1515/ZPCH-1889-0116; Auel H, 2005, AFR J MAR SCI, V27, P653, DOI 10.2989/18142320509504125; Auel H, 2003, MAR BIOL, V143, P275, DOI 10.1007/s00227-003-1061-4; Bonnet D, 2007, MAR BIOL, V151, P313, DOI 10.1007/s00227-006-0481-3; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Campbell RG, 2001, MAR ECOL PROG SER, V221, P161, DOI 10.3354/meps221161; Conover R. J., 1967, Crustaceana, V13, P61, DOI 10.1163/156854067X00080; CONOVER R J, 1962, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V153, P190; Conover R.J., 1991, Journal of Marine Systems, V2, P1, DOI 10.1016/0924-7963(91)90011-I; Corkett C. J., 1986, SYLLOGEUS, P539; DAHMS HU, 1995, HYDROBIOLOGIA, V306, P199, DOI 10.1007/BF00017691; Evanson M, 2000, MAR ECOL PROG SER, V192, P239, DOI 10.3354/meps192239; Forest A., 2010, J PLANKTON RES, V33, P161; Forster J, 2011, AM NAT, V178, P668, DOI 10.1086/662174; Hagen W, 1996, DEEP-SEA RES PT I, V43, P139, DOI 10.1016/0967-0637(96)00001-5; HALLBERG E, 1980, J EXP MAR BIOL ECOL, V48, P283, DOI 10.1016/0022-0981(80)90083-0; HART RC, 1990, HYDROBIOLOGIA, V206, P175, DOI 10.1007/BF00014085; HIRCHE HJ, 1983, MAR ECOL PROG SER, V11, P281, DOI 10.3354/meps011281; Hirche HJ, 1997, MAR BIOL, V128, P607, DOI 10.1007/s002270050127; Ingvarsdottir Anna, 1999, Fisheries Oceanography, V8, P73, DOI 10.1046/j.1365-2419.1999.00002.x; Ji RB, 2010, J PLANKTON RES, V32, P1355, DOI 10.1093/plankt/fbq062; Johnson CL, 2008, ICES J MAR SCI, V65, P339, DOI 10.1093/icesjms/fsm171; Jonasdottir Sigrun H., 1999, Fisheries Oceanography, V8, P61, DOI 10.1046/j.1365-2419.1999.00003.x; KIORBOE T, 1985, MAR ECOL PROG SER, V26, P85, DOI 10.3354/meps026085; Koski M, 1999, J PLANKTON RES, V21, P1565, DOI 10.1093/plankt/21.8.1565; Lee RF, 2006, MAR ECOL PROG SER, V307, P273, DOI 10.3354/meps307273; Makarieva AM, 2008, P NATL ACAD SCI USA, V105, P16994, DOI 10.1073/pnas.0802148105; Maps F., 2011, J PLANKTON RES, V34, P36; Maps F, 2012, ICES J MAR SCI, V69, P370, DOI 10.1093/icesjms/fsr182; Maps F, 2010, MAR ECOL PROG SER, V403, P165, DOI 10.3354/meps08525; MAUCHLINE J, 1998, ADV MARINE BIOL, V33; MCLAREN IA, 1988, HYDROBIOLOGIA, V167, P275, DOI 10.1007/BF00026315; McNamara JM, 2008, PHILOS T R SOC B, V363, P301, DOI 10.1098/rstb.2007.2141; Meyer B, 2010, MAR ECOL PROG SER, V398, P1, DOI 10.3354/meps08371; Miller CB, 2000, ICES J MAR SCI, V57, P1786, DOI 10.1006/jmsc.2000.0975; Osenberg CW, 1999, ECOLOGY, V80, P1105, DOI 10.2307/177058; Perrin G, 2012, J PLANKTON RES, V34, P685, DOI 10.1093/plankt/fbs042; Peterson W, 1998, J MARINE SYST, V15, P313, DOI 10.1016/S0924-7963(97)00082-1; Plourde S, 2003, MAR ECOL PROG SER, V255, P219, DOI 10.3354/meps255219; Record NR, 2012, OECOLOGIA, V170, P289, DOI 10.1007/s00442-012-2313-0; Reygondeau G, 2011, GLOBAL CHANGE BIOL, V17, P756, DOI 10.1111/j.1365-2486.2010.02310.x; Saumweber WJ, 2006, DEEP-SEA RES PT II, V53, P2597, DOI 10.1016/j.dsr2.2006.08.003; Smith RJ, 2009, AM J PHYS ANTHROPOL, V140, P476, DOI 10.1002/ajpa.21090; Staver JM, 2002, BIOL BULL, V203, P58, DOI 10.2307/1543458; Svetlichny LS, 2009, MAR ECOL PROG SER, V374, P199, DOI 10.3354/meps07740; Svetlichny LS, 2005, J PLANKTON RES, V27, P671, DOI 10.1093/plankt/fbi041; Tarrant AM, 2008, MAR ECOL PROG SER, V355, P193, DOI 10.3354/meps07207; TORRES JJ, 1994, MAR ECOL PROG SER, V113, P221, DOI 10.3354/meps113221; VANDENBOSCH F, 1994, LIMNOL OCEANOGR, V39, P1528, DOI 10.4319/lo.1994.39.7.1528 50 24 24 4 34 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0142-7873 1464-3774 J PLANKTON RES J. Plankton Res. JAN-FEB 2014 36 1 18 30 10.1093/plankt/fbt100 13 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 292MO WOS:000329906200004 Bronze 2019-02-21 J Garrison, AJ; Miller, AD; Ryan, MR; Roxburgh, SH; Shea, K Garrison, Andrew J.; Miller, Adam D.; Ryan, Matthew R.; Roxburgh, Stephen H.; Shea, Katriona Stacked Crop Rotations Exploit Weed-Weed Competition for Sustainable Weed Management WEED SCIENCE English Article Autocorrelation; canola; disturbance; maize; Reciprocal-Yield Law; soybean; wheat POPULATION-DYNAMICS; ASSEMBLY THEORY; GREAT-PLAINS; COEXISTENCE; MECHANISMS; SYSTEMS; STRATEGIES; DIVERSITY; DENSITY; COMMUNITIES Crop rotation has long been considered one of the simplest and most effective tools for managing weeds. In this paper, we demonstrate how crop rotations can be strategically arranged to harness a novel mechanism of weed suppression: weed-weed competition. Specifically, we consider how crop stacking, or increasing the number of consecutive plantings of a single crop within a rotation, can decrease the size of the weed seed bank, by forcing weeds to compete with each other in similar environments for longer periods of time, while still reaping the traditional benefits of crop rotation. Using an annual plant model, we investigate the theoretical effects of stacked crop rotations on weeds that have different life-history strategies and phenology. Our results show that when weeds compete within a season, stacking can reduce the weed seed bank compared to rotations without stacked crops. Although more research is needed to fully understand the effects of crop stacking on other aspects of the system, such as insect pests and diseases, our research suggests that crop stacking has the potential to improve weed suppression without additional inputs, and their associated costs and externalities. More generally, improving management by changing the temporal arrangement of disturbances is a novel, process-based approach that could likely be applied to other weed management practices, such as mowing and herbicide application, and which could involve mechanisms other than weed-weed competition. Leveraging this new application of existing ecological theory to improve weed management strategies holds great promise. [Garrison, Andrew J.; Shea, Katriona] Penn State Univ, University Pk, PA 16802 USA; [Miller, Adam D.] Univ Illinois, Urbana, IL 61801 USA; [Ryan, Matthew R.] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14853 USA; [Roxburgh, Stephen H.] CSIRO Ecosyst Sci, Canberra, ACT 2601, Australia; [Roxburgh, Stephen H.] CSIRO Sustainable Agr Flagship, Canberra, ACT 2601, Australia Shea, K (reprint author), Penn State Univ, University Pk, PA 16802 USA. k-shea@psu.edu Roxburgh, Stephen/A-2935-2011; Shea, Katriona/B-7954-2008 Shea, Katriona/0000-0002-7607-8248 NSF [DEB-0815373]; NSF-REUs We thank members of the Shea lab for useful discussions. This work was supported by NSF grant DEB-0815373 and two NSF-REUs to K. S. Anderson RL, 2009, WEED TECHNOL, V23, P398, DOI 10.1614/WT-09-030.1; Anderson RL, 2005, AGRON J, V97, P1579, DOI 10.2134/agronj2005.0194; Anderson RL, 2004, WEED TECHNOL, V18, P157, DOI 10.1614/WT-03-090R; Bastiaans L, 2008, WEED RES, V48, P481, DOI 10.1111/j.1365-3180.2008.00662.x; Beck D, 2003, EMPHASIS ROTATIONS; Bohan DA, 2011, WEED RES, V51, P422, DOI 10.1111/j.1365-3180.2011.00860.x; Booth BD, 2002, WEED SCI, V50, P2, DOI 10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2; Burnside OC, 1996, WEED SCI, V44, P74; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; Clay SA, 2005, AGRON J, V97, P294; Davis A., 2005, INTEGRATED WEED MANA; Davis AS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0047149; Derksen DA, 2002, AGRON J, V94, P174, DOI 10.2134/agronj2002.0174; Doucet C, 1999, WEED SCI, V47, P729; ELLNER S, 1985, THEOR POPUL BIOL, V28, P80, DOI 10.1016/0040-5809(85)90023-1; Eyre MD, 2011, EUR J AGRON, V34, P153, DOI 10.1016/j.eja.2011.01.001; Gallandt E, 2009, MANAGING WEED CROP R; Garrison A, 2012, J APPL ECOL, V49, P1020, DOI 10.1111/j.1365-2664.2012.02187.x; Hagny M, 2001, LEADING EDGE J NO TI, V1, P13; Leighty CE, 1938, SOILS MEN YB AGR 193, V1938, P406; Liebman M, 2000, WEED RES, V40, P27, DOI 10.1046/j.1365-3180.2000.00164.x; Liebman M, 2001, ECOLOGICAL MANAGEMEN; Liebman Matt, 1997, P291, DOI 10.1016/B978-012378260-1/50010-5; Maxwell BD, 2007, NON CHEMICAL WEED MANAGEMENT: PRINCIPLES, CONCEPTS AND TECHNOLOGY, P17, DOI 10.1079/9781845932909.0017; McCloskey MC, 1998, WEED RES, V38, P11; Mertens SK, 2002, ECOL APPL, V12, P1125, DOI 10.1890/1051-0761(2002)012[1125:WPACRE]2.0.CO;2; Miller A, 2012, ECOL RES, V27, P783, DOI 10.1007/s11284-012-0954-4; Miller AD, 2011, P NATL ACAD SCI USA, V108, P5643, DOI 10.1073/pnas.1018594108; Miller AD, 2009, AM NAT, V173, pE30, DOI 10.1086/595750; Miller AD, 2012, THEOR ECOL-NETH, V5, P419, DOI 10.1007/s12080-011-0133-1; Mohler CL, 2009, CROP ROTATION ORGANI, P44; Munier-Jolain NM, 2002, WEED RES, V42, P107, DOI 10.1046/j.1365-3180.2002.00267.x; Nord EA, 2012, WEED SCI, V60, P624, DOI 10.1614/WS-D-12-00024.1; Olsen JM, 2012, WEED SCI, V60, P501, DOI 10.1614/WS-D-11-00172.1; Pickett S. T. A, 1985, ECOLOGY NATURAL DIST; RADOSEVICH SR, 1987, WEED TECHNOL, V1, P190; Roxburgh SH, 2004, ECOLOGY, V85, P359, DOI 10.1890/03-0266; Ryan MR, 2010, WEED SCI, V58, P265, DOI 10.1614/WS-D-09-00054.1; SCHREIBER MM, 1992, WEED SCI, V40, P645; Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x; SHINOZAKI KICHIRO, 1956, JOUR INST POLYTECH OSAKA CITY UNIV SER D BIOL, V7, P35; Storkey J, 2010, WEED SCI, V58, P39, DOI 10.1614/WS-09-096.1; Weiner J, 2010, EVOL APPL, V3, P473, DOI 10.1111/j.1752-4571.2010.00144.x; Westerman P, 2005, WEED SCI, V53, P382, DOI 10.1614/WS-04-130R; Zhang R, 2012, ANN BOT-LONDON, V110, P1395, DOI 10.1093/aob/mcr312 45 15 15 3 39 WEED SCI SOC AMER LAWRENCE 810 EAST 10TH ST, LAWRENCE, KS 66044-8897 USA 0043-1745 1550-2759 WEED SCI Weed Sci. JAN-MAR 2014 62 1 166 176 10.1614/WS-D-13-00037.1 11 Agronomy; Plant Sciences Agriculture; Plant Sciences 294HO WOS:000330036100019 2019-02-21 J Jones, JH; Bird, RB Jones, James Holland; Bird, Rebecca Bliege The marginal valuation of fertility EVOLUTION AND HUMAN BEHAVIOR English Article Demography; Life history theory; Human evolution; Fertility; Utah; Reproductive effort PARENTAL INVESTMENT; BIRTH INTERVALS; LIFE-HISTORIES; REPRODUCTIVE SUCCESS; DEMOGRAPHIC-TRANSITION; CHILDHOOD MORTALITY; INDIVIDUAL FITNESS; FAMILY-SIZE; POPULATION; EVOLUTION Substantial theoretical and empirical evidence demonstrates that fertility entails economic, physiological, and demographic trade-offs. The existence of trade-offs suggests that fitness should be maximized by an intermediate level of fertility, but this hypothesis has not had much support in the human life-history literature. We suggest that the difficulty of finding intermediate optima may be a function of the way fitness is calculated. Evolutionary analyses of human behavior typically use lifetime reproductive success as their fitness criterion. This fitness measure implicitly assumes that women are indifferent to the timing of reproduction and that they are risk-neutral in their reproductive decision-making. In this paper, we offer an alternative, easily-calculated fitness measure that accounts for differences in reproductive timing and yields clear preferences in the face of risky reproductive decision-making. Using historical demographic data from a genealogically-detailed dataset from 19th century Utah, we show that this measure is highly concave with respect to reproductive effort. This result has three major implications: (1) if births are properly timed, a lower-fertility reproductive strategy can have the same fitness as a high-fertility strategy, (2) intermediate optima are far more likely using fitness measures that are strongly concave with respect to effort, (3) we expect mothers to have strong investment preferences with respect to the risk inherent in reproduction. (C) 2014 Elsevier Inc. All rights reserved. [Jones, James Holland; Bird, Rebecca Bliege] Stanford Univ, Dept Anthropol, Stanford, CA 94305 USA Jones, JH (reprint author), Dept Anthropol, 450 Serra Mall,Bldg 50, Stanford, CA 94305 USA. jhj1@stanford.edu Jones, James/0000-0003-1680-6757 Huntsman Cancer Institute; Hellman Faculty Scholarship; Stanford Center for Economics and Demography of Health and Aging [NIA: P30AG017253-11]; IRiSS Faculty Fellowship We thank Geri Mineau and staff at the Huntsman Cancer Institute at the University of Utah for help with accessing the UPDB. Partial support for all datasets within the Utah Population Database is provided by the Huntsman Cancer Institute. Thanks to Claudia Engel, Carole Schaffer, and David Lawson for database help and critical comments. This research was supported by a Hellman Faculty Scholarship, a pilot grant from the Stanford Center for Economics and Demography of Health and Aging (NIA: P30AG017253-11), and an IRiSS Faculty Fellowship to JHJ. Anderies JM, 1996, ETHOL SOCIOBIOL, V17, P221, DOI 10.1016/0162-3095(96)00037-4; ANDERTON DL, 1983, POPUL INDEX, V49, P363; ANDERTON DL, 1985, DEMOGRAPHY, V22, P169, DOI 10.2307/2061176; Arrow K. J, 1965, ASPECTS THEORY RISK; BARKOW JH, 1977, ETHOS, V5, P409, DOI 10.1525/eth.1977.5.4.02a00030; Bean LL, 1990, FERTILITY CHANGE AM; Bengtsson T, 2006, DEMOGRAPHY, V43, P727, DOI 10.1353/dem.2006.0030; Bhalotra S, 2008, J ECONOMETRICS, V143, P274, DOI 10.1016/j.jeconom.2007.10.005; Billari FC, 2004, POP STUD-J DEMOG, V58, P161, DOI 10.1080/0032472042000213695; Blurton Jones N. G., 1978, SSHB S 18 HUM BEH AD, P135; Bolker B. M, 2008, ECOLOGICAL MODELS DA; Bongaarts J, 1999, POP STUD-J DEMOG, V53, P277, DOI 10.1080/00324720308088; BOONE JL, 1986, AM ANTHROPOL, V88, P859; Boone JL, 2002, WORLD ARCHAEOL, V34, P6, DOI 10.1080/00438240220134232; Borgerhoff Mulder M., 2000, EVOL HUM BEHAV, V21, P391, DOI [10.1016/S1090-5138(00)00054-4, DOI 10.1016/S1090-5138(00)00054-4]; BOSERUP E, 1985, POPUL DEV REV, V11, P383, DOI 10.2307/1973245; Brommer JE, 2002, ECOL LETT, V5, P802, DOI 10.1046/j.1461-0248.2002.00369.x; Caldwell J. C., 1982, THEORY FERTILITY DEC; Caswell H., 2001, MATRIX POPULATION MO; CHAGNON NA, 1988, SCIENCE, V239, P985, DOI 10.1126/science.239.4843.985; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CHARNOV EL, 1991, P NATL ACAD SCI USA, V88, P1134, DOI 10.1073/pnas.88.4.1134; CHARNOV EL, 1976, THEOR POPUL BIOL, V9, P129, DOI 10.1016/0040-5809(76)90040-X; Coale AJ, 1986, DECLINE FERTILITY EU; Cohen Joel, 1995, MANY PEOPLE CAN EART; Conde-Agudelo A, 2006, JAMA-J AM MED ASSOC, V295, P1809, DOI 10.1001/jama.295.15.1809; Conde-Agudelo A, 2007, AM J OBSTET GYNECOL, V196, P297, DOI 10.1016/j.ajog.2006.05.055; CRONK L, 1989, CURR ANTHROPOL, V30, P224, DOI 10.1086/203736; Davies N.B., 1978, P317; Derose LF, 2002, POP STUD-J DEMOG, V56, P167, DOI 10.1080/00324720215924; ELLISON PT, 1993, HUM REPROD, V8, P2248, DOI 10.1093/oxfordjournals.humrep.a138015; Excoffier L, 1999, P NATL ACAD SCI USA, V96, P10597, DOI 10.1073/pnas.96.19.10597; Fisher R. A., 1958, GENETICAL THEORY NAT; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; George DS, 2000, AM J HUM BIOL, V12, P50; Gibson MA, 2006, PLOS MED, V3, P476, DOI 10.1371/journal.pmed.0030087; Gibson MA, 2010, CURR ANTHROPOL, V51, P693, DOI 10.1086/655954; Goodman A, 2012, P ROY SOC B-BIOL SCI, V279, P4342, DOI 10.1098/rspb.2012.1415; Gurmu E, 2008, J BIOSOC SCI, V40, P339, DOI 10.1017/S002193200700260X; Hagen EH, 2006, AM J PHYS ANTHROPOL, V130, P405, DOI 10.1002/ajpa.20272; Helle S, 2004, EVOLUTION, V58, P430, DOI 10.1111/j.0014-3820.2004.tb01658.x; HILL K, 1996, ACHE LIFE HIST DEMOG; HOBCRAFT J, 1983, POPUL INDEX, V49, P585, DOI 10.2307/2737284; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Jeon J, 2008, BEHAV ECOL, V19, P344, DOI 10.1093/beheco/arm136; Jones JH, 2011, CURR BIOL, V21, pR708, DOI 10.1016/j.cub.2011.08.025; Jones JH, 2007, J STAT SOFTW, V22, P1; Jones JH, 2009, EVOL HUM BEHAV, V30, P305, DOI 10.1016/j.evolhumbehav.2009.01.005; JONES NB, 1986, ETHOL SOCIOBIOL, V7, P91, DOI 10.1016/0162-3095(86)90002-6; Kaar P, 1998, P ROY SOC B-BIOL SCI, V265, P2415, DOI 10.1098/rspb.1998.0592; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; KAPLAN H, 1994, POPUL DEV REV, V20, P753, DOI 10.2307/2137661; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; KAPLAN HS, 1995, HUM NATURE-INT BIOS, V6, P325, DOI 10.1007/BF02734205; Keyfitz N, 2005, STAT BIOL HEALTH, P1, DOI 10.1007/b139042; Kohler HP., 2006, BABY BUST WHO WILL D, P48; Korpelainen H, 2000, P ROY SOC B-BIOL SCI, V267, P1765, DOI 10.1098/rspb.2000.1208; Korpelainen H, 2003, AM J PHYS ANTHROPOL, V120, P384, DOI 10.1002/ajpa.10191; Kramer KL, 2007, AM ANTHROPOL, V109, P713, DOI [10.1525/aa.2007.109.4.713, 10.1525/AA.2007.109.4.713]; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; Lawson DW, 2010, HUM NATURE-INT BIOS, V21, P39, DOI 10.1007/s12110-010-9080-6; Lawson DW, 2009, EVOL HUM BEHAV, V30, P170, DOI 10.1016/j.evolhumbehav.2008.12.001; Manda SOM, 1999, SOC SCI MED, V48, P301, DOI 10.1016/S0277-9536(98)00359-1; McGraw JB, 1996, AM NAT, V147, P47, DOI 10.1086/285839; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Mulder MB, 1998, TRENDS ECOL EVOL, V13, P266, DOI 10.1016/S0169-5347(98)01357-3; Nath DC, 1999, J BIOSOC SCI, V31, P55, DOI 10.1017/S0021932099000553; Nee S, 2005, SCIENCE, V309, P1236, DOI 10.1126/science.1114488; Notestein Frank, 1953, P 8 INT C AGR EC, P13; PARKER GA, 1976, AM NAT, V110, P1055, DOI 10.1086/283126; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; R Development Core Team, 2012, R LANG ENV STAT COMP; Rindfuss RR, 2007, DEMOGRAPHY, V44, P345, DOI 10.1353/dem.2007.0017; Rutstein SO, 2005, INT J GYNECOL OBSTET, V89, pS7, DOI 10.1016/j.ijgo.2004.11.012; Schoen R, 2004, DEMOGRAPHY, V41, P801, DOI 10.1353/dem.2004.0036; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Strassmann BI, 2002, P ROY SOC B-BIOL SCI, V269, P553, DOI 10.1098/rspb.2001.1912; TURKE PW, 1985, ETHOL SOCIOBIOL, V6, P79, DOI 10.1016/0162-3095(85)90001-9; Upadhyay UD, 2005, SOC SCI MED, V60, P2641, DOI 10.1016/j.socscimed.2004.11.032; Van Bavel J, 2004, EUR J POPUL, V20, P119, DOI 10.1023/B:EUJP.0000033860.39537.e2; Van Bavel J, 2004, POP STUD-J DEMOG, V58, P95, DOI 10.1080/0032472032000167706; Van Bavel J, 2003, POP STUD-J DEMOG, V57, P55, DOI 10.1080/0032472032000061721; van Eijsden M, 2008, AM J CLIN NUTR, V88, P147; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Voland E., 1988, HUMAN REPROD BEHAV D, P253; Whitworth A, 2002, SOC SCI MED, V55, P2107, DOI 10.1016/S0277-9536(02)00002-3; Wood J., 1994, DYNAMICS HUMAN REPRO 89 13 13 1 31 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 1090-5138 1879-0607 EVOL HUM BEHAV Evol. Hum. Behav. JAN 2014 35 1 65 71 10.1016/j.evolhumbehav.2013.10.002 7 Psychology, Biological; Behavioral Sciences; Social Sciences, Biomedical Psychology; Behavioral Sciences; Biomedical Social Sciences 288DG WOS:000329591600009 24778546 Green Accepted 2019-02-21 J Orizaola, G; Dahl, E; Laurila, A Orizaola, German; Dahl, Emma; Laurila, Anssi Compensatory growth strategies are affected by the strength of environmental time constraints in anuran larvae OECOLOGIA English Article Adaptive plasticity; Climate change; Food intake; Growth efficiency; Growth rates; Time constraints CATCH-UP GROWTH; FROG RANA-TEMPORARIA; LIFE-HISTORY; PREDATION RISK; TRADE-OFFS; RATES; RESPONSES; TADPOLES; BEHAVIOR; PLASTICITY Organisms normally grow at a sub-maximal rate. After experiencing a period of arrested growth, individuals often show compensatory growth responses by modifying their life-history, behaviour and physiology. However, the strength of compensatory responses may vary across broad geographic scales as populations differ in their exposition to varying time constraints. We examined differences in compensatory growth strategies in common frog (Rana temporaria) populations from southern and northern Sweden. Tadpoles from four populations were reared in the laboratory and exposed to low temperature to evaluate the patterns and mechanisms of compensatory growth responses. We determined tadpoles' growth rate, food intake and growth efficiency during the compensation period. In the absence of arrested growth conditions, tadpoles from all the populations showed similar (size-corrected) growth rates, food intake and growth efficiency. After being exposed to low temperature for 1 week, only larvae from the northern populations increased growth rates by increasing both food intake and growth efficiency. These geographic differences in compensatory growth mechanisms suggest that the strategies for recovering after a period of growth deprivation may depend on the strength of time constraints faced by the populations. Due to the costs of fast growth, only populations exposed to the strong time constraints are prone to develop fast recovering strategies in order to metamorphose before conditions deteriorate. Understanding how organisms balance the cost and benefits of growth strategies may help in forecasting the impact of fluctuating environmental conditions on life-history strategies of populations likely to be exposed to increasing environmental variation in the future. [Orizaola, German; Dahl, Emma; Laurila, Anssi] Uppsala Univ, Anim Ecol Dept Ecol & Genet, Evolutionary Biol Ctr, S-75236 Uppsala, Sweden Orizaola, G (reprint author), Uppsala Univ, Anim Ecol Dept Ecol & Genet, Evolutionary Biol Ctr, Norbyvagen 18D, S-75236 Uppsala, Sweden. german.orizaola@ebc.uu.se Orizaola, German/A-5217-2008 Orizaola, German/0000-0002-6748-966X Fundacion Caja Madrid; Fundacion Ramon Areces; Helge Ax:son Johnsons Stiftelse; Stiftelsen Oscar och Lili Lamms Minne; Stiftelsen for Zoologisk Forskning; Swedish Research Council We thank Frank Johansson and Alfredo Nicieza for comments on a previous draft of the manuscript. The animals were collected with the permissions from the county authorities and the experiment was approved by the Ethical Committee for Animal Experiments in Uppsala County (C70/8). Our research was supported by Fundacion Caja Madrid, Fundacion Ramon Areces, Helge Ax:son Johnsons Stiftelse and Stiftelsen Oscar och Lili Lamms Minne (G.O.), Stiftelsen for Zoologisk Forskning (E. D.), and the Swedish Research Council (A.L.). Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Ali M, 2003, FISH FISH, V4, P147, DOI 10.1046/j.1467-2979.2003.00120.x; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; ANHOLT BR, 1995, ECOLOGY, V76, P2230, DOI 10.2307/1941696; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; BENAVIDES AG, 1994, FUNCT ECOL, V8, P46, DOI 10.2307/2390110; Beniston M, 2007, CLIMATIC CHANGE, V81, P71, DOI 10.1007/s10584-006-9226-z; Berger D, 2008, BEHAV ECOL SOCIOBIOL, V62, P1655, DOI 10.1007/s00265-008-0594-4; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; De Block M, 2008, ECOGRAPHY, V31, P115, DOI 10.1111/j.2007.0906-7590.05313.x; De Block M, 2008, P R SOC B, V275, P781, DOI 10.1098/rspb.2007.1515; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Finch CE, 2000, CHANGE DEV AGEING; Fraker ME, 2008, BEHAV ECOL SOCIOBIOL, V62, P1201, DOI 10.1007/s00265-008-0549-9; Gasc J.-P., 1997, ATLAS AMPHIBIANS REP; Gosner K. L., 1960, Herpetologica, V16, P183; Gotthard K, 2000, J ANIM ECOL, V69, P896, DOI 10.1046/j.1365-2656.2000.00432.x; Hector KL, 2012, J ANIM ECOL, V81, P583, DOI 10.1111/j.1365-2656.2011.01942.x; HORAT P, 1994, BEHAV ECOL SOCIOBIOL, V34, P393, DOI 10.1007/BF00167330; Jobling M, 2010, AQUACULT INT, V18, P501, DOI 10.1007/s10499-009-9260-8; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Johansson M, 2006, MOL ECOL, V15, P975, DOI 10.1111/j.1365-294X.2006.02866.x; KAPOOR BG, 1975, ADV MAR BIOL, V13, P109; Laugen AT, 2003, J EVOLUTION BIOL, V16, P996, DOI 10.1046/j.1420-9101.2003.00560.x; Laurila A, 2008, ECOLOGY, V89, P1399, DOI 10.1890/07-1521.1; Lee WS, 2012, ECOLOGY, V93, P902, DOI 10.1890/11-0890.1; Lima SL, 1998, ADV STUD BEHAV, V27, P215; Lindgren B, 2005, J EVOLUTION BIOL, V18, P820, DOI 10.1111/j.1420-9101.2004.00875.x; Lindgren B, 2009, BIOL J LINN SOC, V98, P217, DOI 10.1111/j.1095-8312.2009.01255.x; Mangel M, 2001, EVOL ECOL RES, V3, P583; MANGEL M, 2005, AM NAT, V166, P155, DOI DOI 10.1086/444439; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; Metcalfe NB, 2002, EVOL ECOL RES, V4, P871; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Orizaola G, 2013, OECOLOGIA, V171, P873, DOI 10.1007/s00442-012-2456-z; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; Piersma T, 2003, TRENDS ECOL EVOL, V18, P228, DOI 10.1016/S0169-5347(03)00036-3; Relyea RA, 2004, ECOL LETT, V7, P869, DOI 10.1111/j.1461-0248.2004.00645.x; Richter-Boix A, 2010, MOL ECOL, V19, P716, DOI 10.1111/j.1365-294X.2009.04502.x; Roark AM, 2009, ECOLOGY, V90, P2524, DOI 10.1890/08-1835.1; ROWE L, 1991, ECOLOGY, V72, P413, DOI 10.2307/2937184; Schultz ET, 2002, OECOLOGIA, V133, P501, DOI 10.1007/s00442-002-1076-4; Skalski GT, 2005, ECOLOGY, V86, P1452, DOI 10.1890/04-0896; SKELLY DK, 1994, ANIM BEHAV, V47, P465, DOI 10.1006/anbe.1994.1063; Sogard SM, 2002, MAR ECOL PROG SER, V243, P165, DOI 10.3354/meps243165; Steiner UK, 2007, ANIM BEHAV, V74, P1473, DOI 10.1016/j.anbehav.2007.02.016; Stevens DJ, 2000, P ROY SOC B-BIOL SCI, V267, P1511, DOI 10.1098/rspb.2000.1172; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2012, J ANIM ECOL, V81, P1034, DOI 10.1111/j.1365-2656.2012.01987.x; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; Yearsley JM, 2004, FUNCT ECOL, V18, P563, DOI 10.1111/j.0269-8463.2004.00879.x 53 16 16 5 56 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia JAN 2014 174 1 131 137 10.1007/s00442-013-2754-0 7 Ecology Environmental Sciences & Ecology 288PQ WOS:000329624300013 23996230 2019-02-21 J Kaemingk, MA; Stahr, KJ; Jolley, JC; Holland, RS; Willis, DW Kaemingk, Mark A.; Stahr, Kristopher J.; Jolley, Jeffrey C.; Holland, Richard S.; Willis, David W. Evidence for bluegill spawning plasticity obtained by disentangling complex factors related to recruitment CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY STRATEGIES; PERCH PERCA-FLAVESCENS; LARVAL YELLOW PERCH; SOUTH-DAKOTA LAKES; LEPOMIS-MACROCHIRUS; BODY-SIZE; FISH RECRUITMENT; POPULATION REGULATION; ZOOPLANKTON BIOMASS; TEMPORAL DIMENSION Fishes can exhibit many forms of plasticity to maximize fitness. However, limited information exists on the ability of freshwater fish to adjust spawning behavior and characteristics (e.g., timing, duration, magnitude of spawning events) to minimize mortality of recruits and ultimately maximize fitness. We wanted to test the life history hypothesis for bluegill (Lepomis macrochirus) (i.e., opportunistic strategy) utilizing existing literature and results from our study to further evaluate the potential for spawning plasticity in this species. Our objective was to identify bluegill recruitment bottlenecks (i.e., periods of high mortality) and factors associated with these events in a single lake during 7 consecutive years. Bluegills exhibited shorter spawning durations and fewer spawning pulses (i.e., peaks in larval production) compared with bluegill in previous studies. Late-hatched (compared with early-hatched) bluegills consistently contributed the most to the fall juvenile population; these recruitment patterns were primarily attributed to biotic drivers. Our study suggests that bluegill could exhibit spawning plasticity and extends our current understanding of adaptations that are potentially capable of increasing fitness for a freshwater fish species under a wide range of environmental conditions and uncertainty. [Kaemingk, Mark A.; Willis, David W.] S Dakota State Univ, Dept Nat Resource Management, Brookings, SD 57007 USA; [Stahr, Kristopher J.] Oklahoma State Univ, Dept Nat Resource Ecol & Management, Stillwater, OK 74078 USA; [Jolley, Jeffrey C.] US Fish & Wildlife Serv, Columbia River Fisheries Program Off, Vancouver, WA 98683 USA; [Holland, Richard S.] Nebraska Game & Pk Commiss, Lincoln, NE 68701 USA Kaemingk, MA (reprint author), S Dakota State Univ, Dept Nat Resource Management, Brookings, SD 57007 USA. mark.kaemingk@vuw.ac.nz Stahr, Kristopher/0000-0001-8966-8661; Kaemingk, Mark/0000-0001-9588-4563 Nebraska Game and Parks Commission through the Federal Aid in Sport Fish Restoration Project [F-118-R] We sincerely thank all the technicians who assisted in the field and laboratory, especially A. Andrews for the aging component of this study. M. Lindvall and Valentine National Wildlife Refuge provided access to Pelican Lake. Z. Brashears, D. Graham, D. Hartmann, D. Krueger, and the Valentine State Fish Hatchery provided assistance. Thanks to T. L. Galarowicz for reviewing an earlier draft and providing helpful comments. Funding for this project was provided by the Nebraska Game and Parks Commission through the Federal Aid in Sport Fish Restoration Project F-118-R. Aday DD, 2006, OECOLOGIA, V147, P31, DOI 10.1007/s00442-005-0242-x; Aday DD, 2003, ECOLOGY, V84, P3370; Auer N. A., 1982, SPECIAL PUBLICATION, V82-3; Beard T.D., 1982, TECHNICAL B WISCONSI, V127; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; BREMIGAN MT, 1994, CAN J FISH AQUAT SCI, V51, P913, DOI 10.1139/f94-090; Brown ML, 2002, FISHERIES MANAG ECOL, V9, P225, DOI 10.1046/j.1365-2400.2002.00299.x; Bunnell DB, 2003, CAN J FISH AQUAT SCI, V60, P1314, DOI [10.1139/f03-112, 10.1139/F03-112]; Burnham K. P, 2002, MODEL SELECTION MULT; Cargnelli LM, 1996, CAN J FISH AQUAT SCI, V53, P360, DOI 10.1139/cjfas-53-2-360; Chvala P.J., 2000, THESIS S DAKOTA STAT; Coble D.W., 1988, North American Journal of Fisheries Management, V8, P277, DOI 10.1577/1548-8675(1988)008<0277:EOAOBP>2.3.CO;2; COLEMAN RM, 1985, BEHAV ECOL SOCIOBIOL, V18, P59; CULVER DA, 1985, CAN J FISH AQUAT SCI, V42, P1380, DOI 10.1139/f85-173; CUMMINS KW, 1971, CALORIC EQUIVALENTS; DeBoer JA, 2013, ECOL FRESHW FISH, V22, P43, DOI 10.1111/eff.12000; DEVRIES DR, 1992, CAN J FISH AQUAT SCI, V49, P1216, DOI 10.1139/f92-137; Dumont HJ, 1975, OECOLOGIA, V19, P79, DOI DOI 10.1007/BF00377592; Edwards KR, 2007, J FRESHWATER ECOL, V22, P19, DOI 10.1080/02705060.2007.9664141; GABELHOUSE D W JR, 1987, North American Journal of Fisheries Management, V7, P81, DOI 10.1577/1548-8659(1987)7<81:ROLBAB>2.0.CO;2; Garvey JE, 2002, ECOL APPL, V12, P194, DOI 10.2307/3061146; Garvey JE, 1998, T AM FISH SOC, V127, P1021, DOI 10.1577/1548-8659(1998)127<1021:CBLFIR>2.0.CO;2; GROSS MR, 1985, AM ZOOL, V25, P807; Holland-Bartels L.E., 1990, GUIDE LARVAL FISHES; Isermann DA, 2008, FISHERIES MANAG ECOL, V15, P259, DOI 10.1111/j.1365-2400.2008.00610.x; Jackson DA, 2001, CAN J FISH AQUAT SCI, V58, P157, DOI 10.1139/f00-239; Jolley JC, 2010, J FISH WILDL MANAG, V1, P73, DOI 10.3996/062010-JFWM-018; Jolley JC, 2009, J FRESHWATER ECOL, V24, P29, DOI 10.1080/02705060.2009.9664262; Kaemingk MA, 2011, J FISH BIOL, V78, P1132, DOI 10.1111/j.1095-8649.2011.02924.x; Kaemingk MA, 2012, AQUAT ECOL, V46, P353, DOI 10.1007/s10452-012-9406-z; Kaemingk MA, 2012, FRESHWATER BIOL, V57, P654, DOI 10.1111/j.1365-2427.2011.02728.x; Kallemeyn L.W., 1987, North American Journal of Fisheries Management, V7, P513, DOI 10.1577/1548-8659(1987)7<513:CORLLA>2.0.CO;2; KIM Y U, 1987, Journal of the Korean Fisheries Society, V20, P24; KRUMHOLZ LOUIS A., 1949, TRANS AMER FISH SOC, V76, P190, DOI 10.1577/1548-8659(1946)76[190:ROSAGO]2.0.CO;2; LATTA W C, 1977, Michigan Academician, V9, P483; LIND OT, 1985, HDB COMMON METHODS L; LYNCH M, 1986, LIMNOL OCEANOGR, V31, P17, DOI 10.4319/lo.1986.31.1.0017; MCCAULEY E, 1981, CAN J FISH AQUAT SCI, V38, P458, DOI 10.1139/f81-063; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Olson NW, 2003, FISHERIES MANAG ECOL, V10, P31, DOI 10.1046/j.1365-2400.2003.00323.x; PAINE MD, 1990, J FISH BIOL, V37, P473, DOI 10.1111/j.1095-8649.1990.tb05877.x; Partridge DG, 1999, T AM FISH SOC, V128, P625, DOI 10.1577/1548-8659(1999)128<0625:ROGAMI>2.0.CO;2; Paukert CP, 2002, N AM J FISH MANAGE, V22, P1329, DOI 10.1577/1548-8675(2002)022<1329:SSRFIS>2.0.CO;2; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Pine WE, 2001, T AM FISH SOC, V130, P80, DOI 10.1577/1548-8659(2001)130<0080:DGASOW>2.0.CO;2; Rabeni Charles F., 1996, P335; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Santucci VJ, 2003, T AM FISH SOC, V132, P346, DOI 10.1577/1548-8659(2003)132<0346:TEOGPA>2.0.CO;2; Schneider James C., 1999, North American Journal of Fisheries Management, V19, P97, DOI 10.1577/1548-8675(1999)019<0097:DOQBPI>2.0.CO;2; SDGFP, 2011, 2102F21R44 SDGFP FIS; SEABURG KEITH G., 1964, TRANS AMER FISH SOC, V93, P269, DOI 10.1577/1548-8659(1964)93[269:FHDRAG]2.0.CO;2; Shoup DE, 2008, T AM FISH SOC, V137, P1063, DOI 10.1577/T07-038.1; SMOCK LA, 1980, FRESHWATER BIOL, V10, P375, DOI 10.1111/j.1365-2427.1980.tb01211.x; TAUBERT BD, 1977, J FISH RES BOARD CAN, V34, P332, DOI 10.1139/f77-054; TONN WM, 1990, AM NAT, V136, P345, DOI 10.1086/285102; VANWINKLE W, 1993, T AM FISH SOC, V122, P459, DOI 10.1577/1548-8659(1993)122<0459:LLHTES>2.3.CO;2; Weber MJ, 2011, T AM FISH SOC, V140, P1172, DOI 10.1080/00028487.2011.608605; WERNER EE, 1977, ECOLOGY, V58, P869, DOI 10.2307/1936222; WERNER EE, 1979, ECOLOGY, V60, P256, DOI 10.2307/1937653; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Winemiller KO, 1995, ENCY ENV BIOL, V2, P49 63 7 7 0 9 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. JAN 2014 71 1 93 105 10.1139/cjfas-2013-0282 13 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 283AZ WOS:000329217900009 2019-02-21 J Duvernell, DD; Schaefer, JF Duvernell, David D.; Schaefer, Jacob F. Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F-olivaceus, across isolated drainage systems EVOLUTIONARY ECOLOGY English Article Hybrid zone; Reproductive isolation; Ecological gradient; River continuum; Convergence; Fitness LIFE-HISTORY EVOLUTION; ECOLOGICAL CHARACTER DISPLACEMENT; GUPPIES POECILIA-RETICULATA; HYBRID ZONES; ENVIRONMENTAL GRADIENTS; REPRODUCTIVE ISOLATION; SYNTOPIC POPULATIONS; RIVER CONTINUUM; STREAM FISHES; GENE FLOW Spatially variable selection pressure within heterogeneous environments can result in the evolution of specialist phenotypes that facilitate co-occurrence of closely related species and limit genetic exchange. If divergent selection pressures maintain reproductive isolation, hybridization is expected to correlate with the strength of underlying ecological gradients and the traits shaped by adaptive processes. We sampled ten replicate topminnow (Fundulus olivaceus and Fundulus notatus) hybrid zones in isolated drainages throughout central and southern North America. In all drainages, species were distributed in an upstream-downstream manner with contact zones localized at confluences featuring abrupt shifts from tributary to river habitat. In two drainages, the typical up and downstream positions of species were reversed. Phenotype differences between the species reflect predicted selection differences along stream gradients. Downstream populations (lower food availability and greater predator pressure) generally showed larger investment in reproduction (higher gonadal somatic index), smaller body size and lower somatic condition compared to upstream populations. Phenotypic differences between the species in the two reversed drainages were consistent with convergence of life history traits in the respective habitats. Phenotypes of individuals of hybrid origin (F-1 hybrids or backcrosses) were not significantly different from the average of the two parental forms, though there were trends towards reduced fitness. The prevalence of hybridization among drainages ranged from no hybrids in two drainages to near random mating. The strongest correlates of hybridization rate among replicate hybrid zones were similarity in body shape and the homogeneity of habitat through tributary-river confluences. The two reversed orientation hybrid zones also exhibited high prevalence of hybrids suggesting that phenotypic convergence could lead to increased hybridization. [Duvernell, David D.] So Illinois Univ, Dept Biol Sci, Edwardsville, IL 62026 USA; [Schaefer, Jacob F.] Univ So Mississippi, Dept Biol Sci, Hattiesburg, MS 39406 USA Duvernell, DD (reprint author), So Illinois Univ, Dept Biol Sci, Edwardsville, IL 62026 USA. dduvern@siue.edu Duvernell, David/0000-0003-2478-6522 National Science Foundation (DEB) [0716985] We thank B. Kreiser, C. Champagne, P. Mickle, S. Clark, B. Schmidt, M. Gutierrez, B. Knittel, J. Westerfield, K. Woods, J. Scott, P. Farrow, N. Green, M. Johns, J. Curry, D. McGinnie, M. Stasik, A. Stevenson, N. Anciulis, M. Hurt, A. Gafford, J. Einhorn, W. Vogel, M. Miller, P. Alldredge, B. Schoeneck, and M. Jablonski for assistance with field collections and laboratory work. Funding provided by the National Science Foundation (DEB # 0716985). Aboim MA, 2010, J EVOLUTION BIOL, V23, P817, DOI 10.1111/j.1420-9101.2010.01953.x; Alldredge P, 2011, ECOL FRESHW FISH, V20, P513, DOI 10.1111/j.1600-0633.2011.00499.x; Anderson EC, 2002, GENETICS, V160, P1217; BARTON NH, 1989, NATURE, V341, P497, DOI 10.1038/341497a0; Belkhir K, 2000, 9060 CNRS UPR U MONT; Benda L, 2004, BIOSCIENCE, V54, P413, DOI 10.1641/0006-3568(2004)054[0413:TNDHHC]2.0.CO;2; Berdan EL, 2012, EVOLUTION, V66, P3224, DOI 10.1111/j.1558-5646.2011.01646.x; BLACK A, 1978, COPEIA, P280; Blanchard TA, 1996, ENVIRON BIOL FISH, V47, P155, DOI 10.1007/BF00005038; Braasch M. E., 1965, Copeia, V1965, P46, DOI 10.2307/1441238; BULL CM, 1991, ANNU REV ECOL SYST, V22, P19, DOI 10.1146/annurev.es.22.110191.000315; Cooke GM, 2012, MOL ECOL, V21, P2410, DOI 10.1111/j.1365-294X.2012.05540.x; Culumber ZW, 2012, J EVOLUTION BIOL, V25, P1800, DOI 10.1111/j.1420-9101.2012.02562.x; Culumber ZW, 2011, MOL ECOL, V20, P342, DOI 10.1111/j.1365-294X.2010.04949.x; CUMMINS KENNETH W., 1962, AMER MIDLAND NAT, V67, P477, DOI 10.2307/2422722; Duvernell DD, 2007, J EVOLUTION BIOL, V20, P152, DOI 10.1111/j.1420-9101.2006.01213.x; Duvernell DD, 2013, MOL PHYL EV IN PRESS; Fuller RC, 2007, J EVOLUTION BIOL, V20, P1962, DOI 10.1111/j.1420-9101.2007.01368.x; GORMAN OT, 1986, AM NAT, V128, P611, DOI 10.1086/284592; Griffiths D, 2010, BIOL J LINN SOC, V100, P46, DOI 10.1111/j.1095-8312.2010.01404.x; HEWITT GM, 1988, TRENDS ECOL EVOL, V3, P158, DOI 10.1016/0169-5347(88)90033-X; Hitt NP, 2006, AM FISH S S, V48, P75; Howell W. M., 1981, B ALABAMA MUS NAT HI, V6, P19; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; McKinnon JS, 2004, NATURE, V429, P294, DOI 10.1038/nature02556; McKinnon JS, 2002, TRENDS ECOL EVOL, V17, P480, DOI 10.1016/S0169-5347(02)02579-X; OSBORNE LL, 1992, CAN J FISH AQUAT SCI, V49, P671, DOI 10.1139/f92-076; Pritchard JK, 2000, GENETICS, V155, P945; Pritchard JR, 2001, EVOL ECOL RES, V3, P209; Reifova R, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-138; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Rice SP, 2001, CAN J FISH AQUAT SCI, V58, P824, DOI 10.1139/cjfas-58-4-824; Schaefer J, 2009, ECOL FRESHW FISH, V18, P360, DOI 10.1111/j.1600-0633.2009.00353.x; Schaefer J, 2012, NATURWISSENSCHAFTEN, V99, P591, DOI 10.1007/s00114-012-0936-y; Schaefer J, 2011, BIOL J LINN SOC, V103, P612, DOI 10.1111/j.1095-8312.2011.01660.x; Schaefer J, 2010, FUNCT ECOL, V24, P1087, DOI 10.1111/j.1365-2435.2010.01726.x; Schaefer JF, 2011, EVOL ECOL, V25, P1145, DOI 10.1007/s10682-011-9461-2; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D, 2009, P NATL ACAD SCI USA, V106, P9955, DOI 10.1073/pnas.0901264106; Schluter D, 2009, SCIENCE, V323, P737, DOI 10.1126/science.1160006; Seehausen O, 2008, MOL ECOL, V17, P30, DOI 10.1111/j.1365-294X.2007.03529.x; SETZER PY, 1970, T AM FISH SOC, V99, P139, DOI 10.1577/1548-8659(1970)99<139:AAOANH>2.0.CO;2; SEUTIN G, 1991, CAN J ZOOL, V69, P82, DOI 10.1139/z91-013; Smithson EB, 1999, T AM FISH SOC, V128, P847, DOI 10.1577/1548-8659(1999)128<0847:MPOSFI>2.0.CO;2; Stelkens RB, 2009, J EVOLUTION BIOL, V22, P1679, DOI 10.1111/j.1420-9101.2009.01777.x; STRAHLER A. N., 1957, T AM GEOPHYS UNION, V38, P913, DOI [DOI 10.1029/TR038I006P00913, 10.1029/TR038i006p00913]; Sutton SG, 2000, T AM FISH SOC, V129, P527, DOI 10.1577/1548-8659(2000)129<0527:RAFWBW>2.0.CO;2; Swenson NG, 2005, AM NAT, V166, P581, DOI 10.1086/491688; THOMERSON JAMIE E., 1966, TULANE STUD ZOOL, V13, P29; THOMERSON JE, 1970, AM MIDL NAT, V84, P573, DOI 10.2307/2423875; Tipton JA, 2004, HYDROBIOLOGIA, V527, P49, DOI 10.1023/B:HYDR.0000043181.40585.ef; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Vaha JP, 2006, MOL ECOL, V15, P63, DOI 10.1111/j.1365-294X.2005.02773.x; Vamosi SM, 2008, MOL ECOL, V18, P572; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Vigueira PA, 2008, EVOL ECOL, V22, P55, DOI 10.1007/s10682-007-9158-8; Vines TH, 2006, P R SOC B, V273, P911, DOI 10.1098/rspb.2005.3387; Ward JL, 2012, EVOL APPL, V5, P901, DOI 10.1111/j.1752-4571.2012.00283.x; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; WILEY EO, 1985, ANN MO BOT GARD, V72, P596, DOI 10.2307/2399217; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 65 7 7 3 15 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2014 28 1 37 53 10.1007/s10682-013-9653-z 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 284MQ WOS:000329323400003 2019-02-21 J Vega-Trejo, R; Zuniga-Vega, JJ; Langerhans, RB Vega-Trejo, Regina; Jaime Zuniga-Vega, J.; Langerhans, R. Brian Morphological differentiation among populations of Rhinella marina (Amphibia: Anura) in western Mexico EVOLUTIONARY ECOLOGY English Article Geometric morphometrics; Mark-recapture; Survival; Predation; Body shape TOADS BUFO-MARINUS; FISH BRACHYRHAPHIS-RHABDOPHORA; LIFE-HISTORY EVOLUTION; BODY-SIZE; DIVERGENT SELECTION; JUMPING PERFORMANCE; LARVAL DEVELOPMENT; GAMBUSIA-AFFINIS; ESCAPE BEHAVIOR; PREDATION RISK Conspecific populations inhabiting different environments may exhibit morphological differences, potentially reflecting differential local adaptation. In anuran amphibians, morphology of the pelvis and hindlimbs may often experience strong selection due to effects on locomotion. In this study, we used the cane toad Rhinella marina to test the hypothesis that populations experiencing a higher abundance of predators should suffer higher mortality rates and exhibit morphological traits associated with enhanced locomotor performance (narrower pelvis and head, longer pelvis and hindlimbs, shorter presacral vertebral column). We investigated inter-population variation in survival rate, abundance of predators, and body shape across five populations in rivers in western Mexico. We conducted (1) mark-recapture experiments to calculate survival rates, (2) linear transects with point counts to estimate abundance of predatory spiders, snakes, and birds, and (3) geometric morphometric analyses to investigate body shape variation. We found significant differences among populations in survival rates, abundance of predators, and body shape. However, these three variables were not necessarily inter-related. Increased predator abundance did not result in decreased survival rates, suggesting other causes of mortality affect these populations. While some morphological differences supported our predictions (trend for longer pelvis, shorter presacral vertebral column, and narrower head in sites with increased abundance of spiders and snakes), other aspects of morphology did not. We discuss alternative explanations for the lack of clear associations between predation, survival, and morphology. [Vega-Trejo, Regina; Jaime Zuniga-Vega, J.] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, Dept Biol Sci, Raleigh, NC 27695 USA Vega-Trejo, R (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. reginavegatrejo@gmail.com Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (UNAM) through project PAPIIT [IN206309-3]; Consejo Nacional de Ciencia y Tecnologia; UNAM This research was funded by the Direccion General de Asuntos del Personal Academico-Universidad Nacional Autonoma de Mexico (UNAM) through the project PAPIIT IN206309-3. Hugh Drummond and Zenon Cano-Sanatana provided helpful advice. Fieldwork was assisted by F. Reyes-Rodriguez, A. Hernandez-Rosas, A. Molina-Moctezuma, E. Garcia-Molina, A. Arellano, E. Romero-Garcia, and I. Gonzalez-Leyva. I. Castellanos provided help on the estimation on predator abundance. We thank the personnel of the Biosphere Reserva Chamela-Cuixmala: E. Ramirez-Garcia, A. Miranda, E. Robles-Jimenez, J. M. Robles-Jimenez, D. Verduzco-Robles, I. Rubio-Crisoto, and N. Barocio. J. Zuniga-Guiterrez provided logistic support. This paper constitutes a partial fulfillment of the Graduate Program in Biological Sciences of the Universidad Nacional Autonoma de Mexico. R. Vega-Trejo acknowledges the scholarship and financial support provided by the Consejo Nacional de Ciencia y Tecnologia and UNAM. Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Altwegg R, 2003, EVOLUTION, V57, P872; Alvarez D, 2002, OECOLOGIA, V131, P186, DOI 10.1007/s00442-002-0876-x; Arendt JD, 2003, FUNCT ECOL, V17, P328, DOI 10.1046/j.1365-2435.2003.00737.x; ARNOLD SJ, 1978, ECOLOGY, V59, P1014, DOI 10.2307/1938553; Beck CW, 2000, FUNCT ECOL, V14, P32, DOI 10.1046/j.1365-2435.2000.00386.x; Bookstein FL., 1991, MORPHOMETRIC TOOLS L; BRONMARK C, 1992, SCIENCE, V258, P1348, DOI 10.1126/science.258.5086.1348; Burnham K. P, 2002, MODEL SELECTION MULT; Cabrera-Guzman E, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070121; Capellan E, 2007, EVOL ECOL, V21, P445, DOI 10.1007/s10682-006-9133-9; Ceballos G, 2005, MAMIFEROS SILVESTRES; Chadwell BA, 2002, J MORPHOL, V251, P309, DOI 10.1002/jmor.1091; Child T, 2008, AUSTRAL ECOL, V33, P630, DOI 10.1111/j.1442-9993.2007.01829.x; Choi I, 2003, J EXP ZOOL PART A, V299A, P99, DOI 10.1002/jez.a.10293; Choi IH, 2000, J HERPETOL, V34, P222, DOI 10.2307/1565418; Dahl E, 2012, J ANIM ECOL, V81, P1233, DOI 10.1111/j.1365-2656.2012.02009.x; Dayton GH, 2005, OIKOS, V111, P582, DOI 10.1111/j.1600-0706.2005.14340.x; Del Hoyo J., 1996, HDB BIRDS WORLD, V3; DELHOYO J, 2001, HDB BIRDS WORLD, V6; DELHOYO J. D, 1992, HDB BIRDS WORLD, V1; DeWitt T. J., 2004, PHENOTYPIC PLASTICIT, P1; DeWitt TJ, 2003, J SEA RES, V49, P143, DOI 10.1016/S1385-1101(02)00220-4; Duellman WE, 1996, BIOL AMPHIBIANS, P289; Eklov P, 2006, AM NAT, V167, P440, DOI 10.1086/499544; EMERSON SB, 1978, EVOLUTION, V32, P551, DOI 10.1111/j.1558-5646.1978.tb04598.x; Emerson SB, 1985, FUNCTIONAL VERTEBRAT, V403, pS59; Ficetola GF, 2006, EVOL ECOL, V20, P143, DOI 10.1007/s10682-005-5508-6; Flores EE, 2013, FUNCT ECOL, V27, P816, DOI 10.1111/1365-2435.12084; FREELAND WJ, 1991, WILDLIFE RES, V18, P431, DOI 10.1071/WR9910431; GARCIA A., 1994, FIELD GUIDE REPTILES; GOATER CP, 1994, ECOLOGY, V75, P2264, DOI 10.2307/1940882; Gosner K. L., 1960, Herpetologica, V16, P183; Gray MJ, 2005, J WILDLIFE MANAGE, V69, P515, DOI 10.2193/0022-541X(2005)069[0515:IOLUOP]2.0.CO;2; Harrison JF, 2013, ECOL EVOL, V3, P1305, DOI 10.1002/ece3.551; Hawley TJ, 2009, COPEIA, P748, DOI 10.1643/CP-08-114; HOGLUND J, 1989, J EVOLUTION BIOL, V2, P367, DOI 10.1046/j.1420-9101.1989.2050367.x; Hossie TJ, 2010, ECOSCIENCE, V17, P100, DOI 10.2980/17-1-3312; Johansson F, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011680; Johnson JB, 2001, OECOLOGIA, V126, P142, DOI 10.1007/s004420000504; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Kingsolver JG, 2004, EVOLUTION, V58, P1608; Langerhans RB, 2009, J EVOLUTION BIOL, V22, P1057, DOI 10.1111/j.1420-9101.2009.01716.x; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2009, EVOLUTION, V63, P561, DOI 10.1111/j.1558-5646.2008.00556.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lever C., 2001, CANE TOAD HIST ECOLO; Lind J, 2005, BEHAV ECOL, V16, P945, DOI 10.1093/beheco/ari075; Lopez LO, 2009, FAMILIA BUFONIDAE ME; MARTOF BS, 1953, ECOLOGY, V34, P165, DOI 10.2307/1930316; McCollum SA, 1996, EVOLUTION, V50, P583, DOI 10.1111/j.1558-5646.1996.tb03870.x; Menin Marcelo, 2008, South American Journal of Herpetology, V3, P68, DOI 10.2994/1808-9798(2008)3[68:TVITAA]2.0.CO;2; Miller RR, 2005, FRESHWATER FISHES ME; Mobley KB, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-287; Nakazawa T, 2013, BIOL LETTERS, V9, DOI 10.1098/rsbl.2012.1193; NEWMAN RA, 1994, COPEIA, P372; Ortiz-Santaliestra ME, 2012, AQUAT TOXICOL, V110, P170, DOI 10.1016/j.aquatox.2012.01.010; Pizzatto L, 2008, BEHAV ECOL SOCIOBIOL, V63, P123, DOI 10.1007/s00265-008-0642-0; Putman R., 1984, PRINCIPLES ECOLOGY; Relyea RA, 2003, OECOLOGIA, V134, P596, DOI 10.1007/s00442-002-1161-8; Relyea RA, 2001, ECOLOGY, V82, P1947, DOI 10.2307/2680059; Reznick DN, 2012, EVOLUTION, V66, P2903, DOI 10.1111/j.1558-5646.2012.01650.x; Rodriguez-Palafox A, 2002, HIST NATURAL CHAMELA, P203; Rohlf F., 2006, TPSDIG; ROHLF F, 2007, TPSRELW; Rouse DJ, 1999, ENV HLTH PERSPECT, V107, P799; Scoville AG, 2010, P NATL ACAD SCI USA, V107, P4260, DOI 10.1073/pnas.0912748107; Solis F, 2009, IUCN 2010 IUCN RED L; Southwood T. R. E., 2000, ECOLOGICAL METHODS; Steiner UK, 2007, OECOLOGIA, V152, P201, DOI 10.1007/s00442-006-0645-3; Tejedo M, 2000, COPEIA, P448, DOI 10.1643/0045-8511(2000)000[0448:COMAJP]2.0.CO;2; Tejedo M, 2010, CLIM RES, V43, P31, DOI 10.3354/cr00878; Teplitsky C, 2005, J EVOLUTION BIOL, V18, P180, DOI 10.1111/j.1420-9101.2004.00790.x; Tingley R, 2012, OIKOS, V121, P1959, DOI 10.1111/j.1600-0706.2012.20422.x; Toledo LF, 2007, J ZOOL, V271, P170, DOI 10.1111/j.1469-7998.2006.00195.x; Toledo Luis Felipe, 2005, Herpetological Review, V36, P395; Toledo Luis Felipe, 2003, Phyllomedusa, V2, P105; Toledo Luis Felipe, 2009, International Journal of Zoology, V2009, P1, DOI 10.1155/2009/910892; Touchon JC, 2013, OECOLOGIA; Tracy CR, 2013, AUSTRAL ECOL, V38, P476, DOI 10.1111/j.1442-9993.2012.02416.x; Uller T, 2010, OECOLOGIA, V162, P663, DOI 10.1007/s00442-009-1503-x; Vamosi SM, 2003, EVOL ECOL RES, V5, P717; Vincent SE, 2006, OECOLOGIA, V147, P204, DOI 10.1007/s00442-005-0258-2; Wainwright PC, 2005, INTEGR COMP BIOL, V45, P256, DOI 10.1093/icb/45.2.256; Walsh MR, 2009, EVOLUTION, V12, P1; Ward-Fear G, 2010, BIOL J LINN SOC, V99, P738, DOI 10.1111/j.1095-8312.2010.01395.x; White GC, 1999, BIRD STUDY, V46, P120; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; ZUG GR, 1972, COPEIA, P613, DOI 10.2307/1442720; Zug GR, 1979, SMITHSON CONTRIB ZOO, V284, P1, DOI DOI 10.5479/SI.00810282.284 93 4 4 2 56 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2014 28 1 69 88 10.1007/s10682-013-9667-6 20 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 284MQ WOS:000329323400005 2019-02-21 J Neal, AT; Schall, JJ Neal, Allison T.; Schall, Jos. J. Life history focus on a malaria parasite: linked traits and variation among genetic clones EVOLUTIONARY ECOLOGY English Article Protists; Plasmodium; Principal components; Clonal infections; Sex ratio GAMETOCYTE SEX-RATIO; MIXED-GENOTYPE INFECTIONS; WESTERN FENCE LIZARD; PLASMODIUM-MEXICANUM; SCELOPORUS-OCCIDENTALIS; REPRODUCTIVE RESTRAINT; VERTEBRATE HOST; TRANSMISSION; DIVERSITY; EVOLUTION Life history theory has long been a major campaign in evolutionary ecology, but has typically focused only on animals and plants. Life history research on single-celled eukaryotic protists such as malaria parasites (Plasmodium) will offer new insights into the theory's general utility as well as the parasite's basic biology. For example, parasitologists have described the Plasmodium life cycle and cell types in exquisite detail, with little discussion of evolutionary issues such as developmental links between traits. We measured 10 life history traits of replicate single-genotype experimental Plasmodium mexicanum infections in its natural lizard host to identify groups of linked traits. These 10 traits formed 4 trait groups: "Rate/Peak" merges measures of growth rate and maximum parasitemia of infections; "Timing" combines time to patency and maximum parasitemia; "Growth Shape" describes the fit to an exponential growth curve; and "Sex Ratio" includes only the gametocyte sex ratio. Parasite genotype (clone) showed no effect on the life history trait groups, with the exception of gametocyte sex ratio. Therefore, variation in most life history traits among infections appears to be driven by environmental (individual host) effects. The findings support the model that life history traits are often linked by developmental constraints. Understanding why life history traits of Plasmodium are linked in this way would offer a new window into the evolution of the parasites, and also should inform public health efforts to control infection prevalence. [Neal, Allison T.; Schall, Jos. J.] Univ Vermont, Dept Biol, Burlington, VT 05405 USA Neal, AT (reprint author), Univ Vermont, Dept Biol, Burlington, VT 05405 USA. aneal@uvm.edu Neal, Allison T/0000-0001-9805-5461 US National Science Foundation [DEB-0813832]; US National Science Foundation Graduate Research Fellowship N. Hicks and J. Grauer assisted with the field experiments, and J. Grauer, K. St. Denis, N. Hicks, P. Teixeira, W. C. Stevens, D. Golschneider, and M. Lind assisted with the lab duties. We also thank the staff of the Hopland Research and Extension Center for all their help and support. The research was supported by funding from the US National Science Foundation (grant number DEB-0813832 to JJS) and ATN was supported by a US National Science Foundation Graduate Research Fellowship. Al-Olayan EM, 2002, INT J PARASITOL, V32, P1133, DOI 10.1016/S0020-7519(02)00087-5; Anderson TJC, 2010, P ROY SOC B-BIOL SCI, V277, P2531, DOI 10.1098/rspb.2010.0196; Barclay VC, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001368; BROMWICH CR, 1986, ECOLOGY, V67, P1227, DOI 10.2307/1938678; Buckling A, 1999, EXP PARASITOL, V93, P45, DOI 10.1006/expr.1999.4429; Buckling AGJ, 1997, P ROY SOC B-BIOL SCI, V264, P553, DOI 10.1098/rspb.1997.0079; BURKOT TR, 1984, T ROY SOC TROP MED H, V78, P339, DOI 10.1016/0035-9203(84)90114-7; Charnov Eric L., 1993, P1; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; DUNLAP KD, 1995, PHYSIOL ZOOL, V68, P608, DOI 10.1086/physzool.68.4.30166347; Edwards AWF, 2000, THEOR POPUL BIOL, V58, P255, DOI 10.1006/tpbi.2000.1482; Eisen RJ, 2000, P ROY SOC B-BIOL SCI, V267, P793, DOI 10.1098/rspb.2000.1073; Eisen RJ, 2000, CAN J ZOOL, V78, P1230, DOI 10.1139/cjz-78-7-1230; Fisher RA, 1930, GENETICAL THEORY NAT; Ford AF, 2011, INT J PARASITOL, V41, P731, DOI 10.1016/j.ijpara.2011.01.010; Fricke JM, 2010, J PARASITOL, V96, P308, DOI 10.1645/GE-2304.1; Gotelli N.J., 2008, PRIMER ECOLOGY; Gotelli N. J., 2004, PRIMER ECOLOGICAL ST; GRAVES PM, 1984, AM J TROP MED HYG, V33, P1045, DOI 10.4269/ajtmh.1984.33.1045; Guilbride DL, 2012, TRENDS PARASITOL, V28, P142, DOI 10.1016/j.pt.2012.01.002; HAMILTON WD, 1967, SCIENCE, V156, P477, DOI 10.1126/science.156.3774.477; Joliffe I. T., 2002, PRINCIPAL COMPONENT; Mackinnon MJ, 1999, P ROY SOC B-BIOL SCI, V266, P741, DOI 10.1098/rspb.1999.0699; Mackinnon MJ, 1999, EVOLUTION, V53, P689, DOI 10.1111/j.1558-5646.1999.tb05364.x; Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012; Mideo N, 2008, P ROY SOC B-BIOL SCI, V275, P1217, DOI 10.1098/rspb.2007.1545; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Neal AT, 2011, PARASITOLOGY, V138, P1203, DOI 10.1017/S0031182011000941; Neal AT, 2010, PARASITOLOGY, V137, P1851, DOI 10.1017/S0031182010000909; Osgood SM, 2004, PARASITOLOGY, V128, P23, DOI 10.1017/S0031182003004207; Osgood SM, 2003, J PARASITOL, V89, P190, DOI 10.1645/0022-3395(2003)089[0190:MOTVHT]2.0.CO;2; Osgood SM, 2002, J PARASITOL, V88, P494, DOI 10.1645/0022-3395(2002)088[0494:GSROAM]2.0.CO;2; Paul REL, 1998, PARASITOL TODAY, V14, P197, DOI 10.1016/S0169-4758(98)01226-5; Perkins SL, 1998, MOL ECOL, V7, P1587, DOI 10.1046/j.1365-294x.1998.00496.x; Pollitt LC, 2011, AM NAT, V177, P358, DOI 10.1086/658175; READ AF, 1992, PARASITOL TODAY, V8, P239, DOI 10.1016/0169-4758(92)90125-L; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Reece SE, 2009, EVOL APPL, V2, P11, DOI 10.1111/j.1752-4571.2008.00060.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Schall JJ, 2013, PARASITOLOGY, V140, P21, DOI 10.1017/S0031182012001217; SCHALL JJ, 1995, J ANIM ECOL, V64, P177, DOI 10.2307/5753; SCHALL JJ, 1982, SCIENCE, V217, P1057, DOI 10.1126/science.7112113; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; SCHALL JJ, 1989, PARASITOLOGY, V98, P343, DOI 10.1017/S0031182000061412; SCHALL JJ, 1990, PARASITOLOGY, V100, pS35, DOI 10.1017/S0031182000073005; Schall JJ, 2007, MOL ECOL NOTES, V7, P227, DOI 10.1111/j.1471-8286.2006.01528.x; Schall JJ, 2009, TRENDS PARASITOL, V25, P120, DOI 10.1016/j.pt.2008.12.006; Stearns S, 1992, EVOLUTION LIFE HIST; Taylor LH, 1997, PARASITOL TODAY, V13, P135, DOI 10.1016/S0169-4758(97)89810-9; Taylor LH, 1997, P ROY SOC B-BIOL SCI, V264, P927, DOI 10.1098/rspb.1997.0128; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vardo AM, 2007, MOL ECOL, V16, P2712, DOI 10.1111/j.1365-294X.2007.03355.x; Vardo-Zalik AM, 2008, PARASITOLOGY, V135, P1363, DOI 10.1017/S0031182008004964; Vardo-Zalik AM, 2009, ECOLOGY, V90, P529, DOI 10.1890/07-1866.1; West S.A., 2009, SEX ALLOCATION 55 4 4 3 31 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2014 28 1 89 102 10.1007/s10682-013-9654-y 14 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 284MQ WOS:000329323400006 2019-02-21 J Breckels, RD; Garner, SR; Neff, BD Breckels, Ross D.; Garner, Shawn R.; Neff, Bryan D. Rapid evolution in response to increased temperature maintains population viability despite genetic erosion in a tropical ectotherm EVOLUTIONARY ECOLOGY English Article Life history traits; Population demographics; Global warming; Genetic diversity; Effective population size; Temperature-size rule; Poecilia reticulata GUPPY POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; NATURAL-POPULATIONS; SIZE; GROWTH; SELECTION; SOFTWARE; FITNESS; DIFFERENTIATION; CONSEQUENCES Climate change is predicted to increase the average global air temperature by up to 4.0 A degrees C by the end of the century. This increased temperature could have negative effects on many life history traits that are closely linked to fitness. Many species will therefore have to adapt to the warmer environment, but life history traits often have limited additive genetic variance. Here, we investigated population demographics and the evolutionary response of life history traits, as well as genetic diversity in guppies (Poecilia reticulata), in response to an experimentally increased temperature. There were fewer successful pregnancies, smaller brood sizes, and males matured earlier at a higher temperature as compared to control populations. However, there was no sign of an evolutionary response in these traits after 24 months of exposure to the increased temperature. We also found that population size, brood survivorship, sex ratio, and male length at maturity were unaffected by the increased temperature. Genetic diversity decreased rapidly in the increased temperature populations at a rate equivalent to an effective population size of only one quarter of the controls, revealing a clear signature of selection in response to increased temperature. This genetic erosion, however, could hamper the adaptive potential of the populations to other environmental changes associated with climate change. [Breckels, Ross D.; Garner, Shawn R.; Neff, Bryan D.] Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada Neff, BD (reprint author), Univ Western Ontario, Dept Biol, London, ON N6A 5B7, Canada. rbreckel@uwo.ca; bneff@uwo.ca Garner, Shawn/D-9170-2013 Natural Sciences and Engineering Research Council of Canada We thank A. Berchtold, L. Crawford, J. Hung, M. Khan, D. Koscinski, and M. Lau for help with genetic analysis. T. Hain, A. Houde, and two anonymous reviewers provided comments on the manuscript. This project was funded by the Natural Sciences and Engineering Research Council of Canada. Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Athrey NRG, 2007, ENVIRON TOXICOL CHEM, V26, P1916, DOI 10.1897/06-589R.1; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Becher SA, 2002, MOL ECOL NOTES, V2, P456, DOI 10.1046/j.1471-8286.2002.00276.x; Breckels RD, 2013, J EXP BIOL, V216, P2658, DOI 10.1242/jeb.084962; Caissie D, 2001, J HYDROL, V251, P14, DOI 10.1016/S0022-1694(01)00427-9; Chapuis MP, 2007, MOL BIOL EVOL, V24, P621, DOI 10.1093/molbev/msl191; CHARLESWORTH D, 1987, ANNU REV ECOL SYST, V18, P237, DOI 10.1146/annurev.es.18.110187.001321; CRNOKRAK P, 1995, HEREDITY, V75, P530, DOI 10.1038/hdy.1995.169; Daufresne M, 2009, P NATL ACAD SCI USA, V106, P12788, DOI 10.1073/pnas.0902080106; DeWitt TJ, 1998, TRENDS ECOL EVOL, V13, P77, DOI 10.1016/S0169-5347(97)01274-3; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dzikowski R, 2001, AQUACULTURE, V199, P323, DOI 10.1016/S0044-8486(01)00561-0; ENDLER JA, 1980, EVOLUTION, V34, P76, DOI 10.1111/j.1558-5646.1980.tb04790.x; Frankham R, 2005, INTRO CONSERVATION G; FUJIO Y, 1990, JPN J GENET, V65, P201, DOI 10.1266/jjg.65.201; Fuller A, 2010, PHYSIOL BIOCHEM ZOOL, V83, P713, DOI 10.1086/652242; Gibson G, 2004, NAT REV GENET, V5, P681, DOI 10.1038/nrg1426; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Hoffmann AA, 2008, NAT REV GENET, V9, P421, DOI 10.1038/nrg2339; Houde AE, 1997, SEX COLOUR MATE CHOI; IPCC, 2007, CLIMATE CHANGE 2007; Karayucel I, 2008, J ANIM VET ADV, V7, P1261; Kaushal SS, 2010, FRONT ECOL ENVIRON, V8, P461, DOI 10.1890/090037; Keller LF, 2002, TRENDS ECOL EVOL, V17, P230, DOI 10.1016/S0169-5347(02)02489-8; Kristensen TN, 2003, CONSERV GENET, V4, P453, DOI 10.1023/A:1024763013798; Lahnsteiner F, 2013, J EXP ZOOL PART A, V319A, P138, DOI 10.1002/jez.1779; Meyer JN, 2003, ECOL APPL, V13, P490, DOI 10.1890/1051-0761(2003)013[0490:HAAFCI]2.0.CO;2; Nakajima M, 2009, FISHERIES SCI, V75, P683, DOI 10.1007/s12562-009-0089-x; Neff BD, 2000, T AM FISH SOC, V129, P584, DOI 10.1577/1548-8659(2000)129<0584:MMIF>2.0.CO;2; Neuheimer AB, 2007, CAN J FISH AQUAT SCI, V64, P375, DOI 10.1139/F07-003; Nowak C, 2009, ENVIRON POLLUT, V157, P881, DOI 10.1016/j.envpol.2008.11.005; Pauls SU, 2013, MOL ECOL, V22, P925, DOI 10.1111/mec.12152; Peakall R, 2012, BIOINFORMATICS, V28, P2537, DOI 10.1093/bioinformatics/bts460; Pitcher TE, 2008, GENETICA, V134, P137, DOI 10.1007/s10709-008-9246-x; Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Roff DA, 2006, EVOLUTION, V60, P1981, DOI 10.1111/j.0014-3820.2006.tb01836.x; Rousset F, 2008, MOL ECOL RESOUR, V8, P103, DOI 10.1111/j.1471-8286.2007.01931.x; Santos M, 2005, AM NAT, V165, P258, DOI 10.1086/427093; Stearns S, 1992, EVOLUTION LIFE HIST; Stefan HG, 1993, J AM WATER RESOUR AS, V29, P27, DOI DOI 10.1111/J.1752-1688.1993.TB01502.X; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; Vogt C, 2010, ECOTOXICOLOGY, V19, P1174, DOI 10.1007/s10646-010-0501-4; Water Resources Agency, 2001, NAT REP INT MAN WAT; Wedekind C, 2013, CONSERV BIOL, V27, P229, DOI 10.1111/j.1523-1739.2012.01909.x; Zeh JA, 2012, GLOBAL CHANGE BIOL, V18, P1833, DOI 10.1111/j.1365-2486.2012.02640.x 52 3 3 0 35 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. JAN 2014 28 1 141 155 10.1007/s10682-013-9668-5 15 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 284MQ WOS:000329323400010 2019-02-21 J Therry, L; Nilsson-Ortman, V; Bonte, D; Stoks, R Therry, L.; Nilsson-Oertman, V.; Bonte, D.; Stoks, R. Rapid evolution of larval life history, adult immune function and flight muscles in a poleward-moving damselfly JOURNAL OF EVOLUTIONARY BIOLOGY English Article encapsulation response; flight ability; immune function; life history evolution; Odonata; spatial sorting TRADE-OFFS; ODONATA COENAGRIONIDAE; TIME CONSTRAINTS; PARASITE BURDEN; REACTION NORMS; RANGE; SIZE; DISPERSAL; ECOLOGY; GROWTH Although a growing number of studies have documented the evolution of adult dispersal-related traits at the range edge of poleward-expanding species, we know little about evolutionary changes in immune function or traits expressed by nondispersing larvae. We investigated differentiation in larval (growth and development) and adult traits (immune function and flight-related traits) between replicated core and edge populations of the poleward-moving damselfly Coenagrion scitulum. These traits were measured on individuals reared in a common garden experiment at two different food levels, as allocation trade-offs may be easier to detect under energy shortage. Edge individuals had a faster larval life history (growth and development rates), a higher adult immune function and a nearly significant higher relative flight muscle mass. Most of the differentiation between core and edge populations remained and edge populations had a higher relative flight muscle mass when corrected for latitude-specific thermal regimes, and hence could likely be attributed to the range expansion process per se. We here for the first time document a higher immune function in individuals at the expansion front of a poleward-expanding species and documented the rarely investigated evolution of faster life histories during range expansion. The rapid multivariate evolution in these ecological relevant traits between edge and core populations is expected to translate into changed ecological interactions and therefore has the potential to generate novel eco-evolutionary dynamics at the expansion front. [Therry, L.; Stoks, R.] Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, B-3000 Louvain, Belgium; [Nilsson-Oertman, V.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada; [Bonte, D.] Univ Ghent, Fac Sci, Dept Biol, Terr Ecol Unit, B-9000 Ghent, Belgium Therry, L (reprint author), Katholieke Univ Leuven, Lab Aquat Ecol Evolut & Conservat, Deberiotstr 32, B-3000 Louvain, Belgium. Lieven.therry@bio.kuleuven.be Bonte, Dries/0000-0002-3320-7505 Fund for Scientific Research (FWO) Flanders [G.0610.11]; KU Leuven Research Fund [GOA/2008/06]; KU Leuven (Excellence Center Financing) [PF/2010/07] We thank Geert De Knijf, Cedric Vanappelghem, Klaus-Jurgen Conze, Dietmar Glitz, Frantz Veille and Jochen Rodenkirchen for their help in guiding us to populations, Sharon Schillewaert and Silke Sterck for assistance in the field and the 'Office National des Forets' for access at the 'RBD de la cote d'Opale'. Two anonymous reviewers provided useful comments. All experiments conformed with the permit by the Flemish Agency for Nature and Forest (ANB-Flanders). This work was supported by research grants from the Fund for Scientific Research (FWO) Flanders (G.0610.11) to DB and RS and the KU Leuven Research Fund (GOA/2008/06 and Excellence Center Financing PF/2010/07) to RS. ANHOLT BR, 1990, ECOLOGY, V71, P1483, DOI 10.2307/1938285; ANHOLT BR, 1990, OECOLOGIA, V83, P385, DOI 10.1007/BF00317564; BAKER RL, 1989, OECOLOGIA, V81, P111, DOI 10.1007/BF00377019; Barber I, 2010, PHILOS T R SOC B, V365, P4077, DOI 10.1098/rstb.2010.0182; Beckerman AP, 2010, FUNCT ECOL, V24, P1, DOI 10.1111/j.1365-2435.2009.01673.x; Benard MF, 2008, AM NAT, V171, P553, DOI 10.1086/587072; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bonte D, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P161; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Burton OJ, 2010, ECOL LETT, V13, P1210, DOI 10.1111/j.1461-0248.2010.01505.x; Chen IC, 2011, SCIENCE, V333, P1024, DOI 10.1126/science.1206432; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; CORBET P. S., 1999, DRAGONFLIES BEHAV EC; De Block M, 2008, ECOGRAPHY, V31, P115, DOI 10.1111/j.2007.0906-7590.05313.x; DIJKSTRA K.-D.B, 2006, FIELD GUIDE DRAGONFL; Dmitriew C, 2007, J EVOLUTION BIOL, V20, P1298, DOI 10.1111/j.1420-9101.2007.01349.x; Edwards KF, 2010, ECOLOGY, V91, P3146, DOI 10.1890/10-0440.1; Gonzalez-Santoyo I, 2012, ENTOMOL EXP APPL, V142, P1, DOI 10.1111/j.1570-7458.2011.01187.x; HANSKI I, 2012, ANN NY ACAD SCI, V1249, P1; Hassall C, 2008, EUR J ENTOMOL, V105, P939, DOI 10.14411/eje.2008.120; Hill JK, 2011, ANNU REV ENTOMOL, V56, P143, DOI 10.1146/annurev-ento-120709-144746; Hill JK, 1999, OECOLOGIA, V121, P165, DOI 10.1007/s004420050918; Honkavaara J, 2009, ENTOMOL EXP APPL, V132, P165, DOI 10.1111/j.1570-7458.2009.00877.x; Hughes CL, 2003, P ROY SOC B-BIOL SCI, V270, pS147, DOI 10.1098/rsbl.2003.0049; Johansson F, 2001, ECOLOGY, V82, P1857, DOI 10.1890/0012-9658(2001)082[1857:LHPIAD]2.0.CO;2; Kaunisto KM, 2013, PARASITOLOGY, V140, P87, DOI 10.1017/S0031182012001369; Kim MH, 2000, EUR J BIOCHEM, V267, P2599, DOI 10.1046/j.1432-1327.2000.01271.x; Laughton AM, 2011, J INSECT PHYSIOL, V57, P1023, DOI 10.1016/j.jinsphys.2011.04.020; Lindholm AK, 2006, BIOL LETTERS, V2, P586, DOI 10.1098/rsbl.2006.0546; Llewellyn D, 2012, BIOL INVASIONS, V14, P999, DOI 10.1007/s10530-011-0135-3; Moller AP, 2001, ECOL LETT, V4, P484, DOI 10.1046/j.1461-0248.2001.00259.x; Nagel L, 2010, EVOL ECOL RES, V12, P653; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; Phillips BL, 2009, BIOL LETTERS, V5, P802, DOI 10.1098/rsbl.2009.0367; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; Plaistow S, 1999, ANIM BEHAV, V58, P659, DOI 10.1006/anbe.1999.1171; Rantala MJ, 2000, P ROY SOC B-BIOL SCI, V267, P2453, DOI 10.1098/rspb.2000.1305; Reinhardt K, 1996, AQUAT INSECT, V18, P233, DOI 10.1080/01650429609361626; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; Rolff J, 2002, P ROY SOC B-BIOL SCI, V269, P867, DOI 10.1098/rspb.2002.1959; Schilder RJ, 2004, J EXP BIOL, V207, P767, DOI 10.1242/jeb.00817; Schluchter MD, 1990, J STAT COMPUT SIM, V37, P69, DOI DOI 10.1080/00949659008811295; Shama LNS, 2011, MOL ECOL, V20, P2929, DOI 10.1111/j.1365-294X.2011.05156.x; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; SLOMINSKI A, 1988, J CELL SCI, V89, P287; Stoks R, 2006, ECOLOGY, V87, P809, DOI 10.1890/0012-9658(2006)87[809:TCMPPI]2.0.CO;2; Stoks R, 2005, J ANIM ECOL, V74, P708, DOI 10.1111/j.1365-2656.2005.00969.x; Stoks R, 2012, ANNU REV ENTOMOL, V57, P249, DOI 10.1146/annurev-ento-120710-100557; Strobbe F, 2004, BIOL J LINN SOC, V83, P187, DOI 10.1111/j.1095-8312.2004.00379.x; Swillen I, 2009, ECOL ENTOMOL, V34, P677, DOI 10.1111/j.1365-2311.2009.01114.x; Travis JMJ, 2002, EVOL ECOL RES, V4, P1119; Wasscher M., 2010, Brachytron, V13, P19; Yang SY, 2007, ANN ZOOL FENN, V44, P89; Yourth CP, 2001, CAN J ZOOL, V79, P815, DOI 10.1139/cjz-79-5-815; Zera AJ, 1997, ANNU REV ENTOMOL, V42, P207, DOI 10.1146/annurev.ento.42.1.207 59 27 27 2 62 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2014 27 1 141 152 10.1111/jeb.12281 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 283OD WOS:000329254500013 24313892 2019-02-21 J Rutkowska, J; Dubiec, A; Nakagawa, S Rutkowska, J.; Dubiec, A.; Nakagawa, S. All eggs are made equal: meta-analysis of egg sexual size dimorphism in birds JOURNAL OF EVOLUTIONARY BIOLOGY English Article egg mass; egg volume; maternal effect; offspring sex; phylogenetic meta-analysis; publication bias FINCHES TAENIOPYGIA-GUTTATA; OFFSPRING SEX; LAYING SEQUENCE; ZEBRA FINCHES; PUBLICATION BIAS; HATCHING ASYNCHRONY; MATERNAL INVESTMENT; PRACTICAL GUIDE; EMBRYO SEX; RATIO Sex-biased resource allocation in avian eggs has gained increasing interest. The adaptive explanations of such allocation are often related to life-history strategies of the studied species. In some species, egg sexual size dimorphism (SSD) was suggested to promote future size differences between adults of each sex. In other species, egg SSD was invoked as an adaptive means by which a mother balances sex-specific nestling mortality. According to the first scenario, mothers should produce bigger eggs for the bigger sex, thus across species, adult SSD should be a significant positive predictor of egg SSD. Under the second scenario, mothers should produce bigger eggs for the smaller sex. If different species use contrasting strategies, then a universal expectation is that there should be a significant relationship between the magnitude of adult SSD and the magnitude of egg SSD, irrespective of the direction of those differences. Our aim was to examine whether the direction of egg SSD is predicted by the direction of adult SSD or whether degree of egg SSD is related to degree of adult SSD. To answer that question, we performed meta-analysis of 63 studies, which included information on egg SSD of 65 effect sizes from 51 avian species. We found that across species, adult SSD does not predict egg SSD. More importantly, the observed variation in effect sizes in our data set was largely explained by sampling error (variance). Although adult SSD is undoubtedly a prominent feature of birds, there is little evidence for egg SSD across avian species. [Rutkowska, J.] Jagiellonian Univ, Inst Environm Sci, PL-30387 Krakow, Poland; [Dubiec, A.] Polish Acad Sci, Museum & Inst Zool, PL-00679 Warsaw, Poland; [Nakagawa, S.] Univ Otago, Dept Zool, Dunedin, New Zealand Rutkowska, J (reprint author), Jagiellonian Univ, Inst Environm Sci, Gronostajowa 7, PL-30387 Krakow, Poland. joanna.rutkowska@uj.edu.pl Dubiec, Anna/H-2941-2012; Rutkowska, Joanna/A-8309-2008; Nakagawa, Shinichi/B-5571-2011 Dubiec, Anna/0000-0003-4007-5915; Rutkowska, Joanna/0000-0003-0396-1790; Nakagawa, Shinichi/0000-0002-7765-5182 Polish National Science Center [DEC-2012/07/B/NZ8/01293]; Rutherford Discovery Fellowship (New Zealand); [DS/WBiNoZ/INoS/757/13] We are grateful to all the authors who shared with us the details of their published and unpublished studies. We thank Zofia Prokop for helpful comments on the manuscript and Alistair Senior for comments and proofreading the final version. J. R. was supported by DS/WBiNoZ/INoS/757/13 and by Polish National Science Center DEC-2012/07/B/NZ8/01293. S. N. was supported by the Rutherford Discovery Fellowship (New Zealand). Anderson DJ, 1997, FUNCT ECOL, V11, P331, DOI 10.1046/j.1365-2435.1997.00091.x; Badyaev AV, 2006, J EVOLUTION BIOL, V19, P1044, DOI 10.1111/j.1420-9101.2006.01106.x; Badyaev AV, 2006, J EVOLUTION BIOL, V19, P909, DOI 10.1111/j.1420-9101.2005.01041.x; Badyaev AV, 2002, TRENDS ECOL EVOL, V17, P369, DOI 10.1016/S0169-5347(02)02569-7; BANCROFT GT, 1984, IBIS, V126, P496, DOI 10.1111/j.1474-919X.1984.tb02076.x; Blanco G, 2003, J ANIM ECOL, V72, P831, DOI 10.1046/j.1365-2656.2003.00753.x; Bonier F, 2007, BEHAV ECOL, V18, P1045, DOI 10.1093/beheco/arm075; Bowers EK, 2013, MOL ECOL, V22, P215, DOI 10.1111/mec.12106; Chin EH, 2012, J AVIAN BIOL, V43, P385, DOI 10.1111/j.1600-048X.2012.05578.x; Clotfelter ED, 1996, AUK, V113, P441, DOI 10.2307/4088910; Cohen J, 1988, STAT POWER ANAL BEHA; Cordero PJ, 2000, BEHAV ECOL SOCIOBIOL, V48, P353, DOI 10.1007/s002650000252; Cordero PJ, 2001, J EVOLUTION BIOL, V14, P829, DOI 10.1046/j.1420-9101.2001.00320.x; D'Alba L, 2007, AUK, V124, P643, DOI 10.1642/0004-8038(2007)124[643:SEVALS]2.0.CO;2; Dunning J., 2008, CRC HDB AVIAN BODY M; Duval S, 2000, J AM STAT ASSOC, V95, P89, DOI 10.2307/2669529; Duval S, 2000, BIOMETRICS, V56, P455, DOI 10.1111/j.0006-341X.2000.00455.x; Egger M, 1997, BMJ-BRIT MED J, V315, P629, DOI 10.1136/bmj.315.7109.629; Etches R. J, 1996, REPROD POULTRY; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Hadfield JD, 2010, J EVOLUTION BIOL, V23, P494, DOI 10.1111/j.1420-9101.2009.01915.x; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Higgins JPT, 2003, BRIT MED J, V327, P557, DOI 10.1136/bmj.327.7414.557; Higgins JPT, 2012, COCHRANE HDB SYSTEMA; Isaksson C, 2010, GEN COMP ENDOCR, V165, P97, DOI 10.1016/j.ygcen.2009.06.015; Janssen K, 2006, BEHAV ECOL, V17, P236, DOI 10.1093/beheco/arj015; Jennions M. D., 2013, HDB METAANALYSIS ECO, P364; Jennions M. D., 2013, HDB METAANALYSIS ECO, P381; Jetz W, 2012, NATURE, V491, P444, DOI 10.1038/nature11631; Krist M, 2011, BIOL REV, V86, P692, DOI 10.1111/j.1469-185X.2010.00166.x; Leitner S, 2006, ETHOLOGY, V112, P554, DOI 10.1111/j.1439-0310.2006.01195.x; Lerner M., 1951, AM NAT, V85, P365; Lipsey M. W., 2001, PRACTICAL METAANALYS; Lislevand T, 2005, J ZOOL, V267, P81, DOI 10.1017/S0952836905007260; Love OP, 2011, J EVOLUTION BIOL, V24, P1497, DOI 10.1111/j.1420-9101.2011.02282.x; Magrath MJL, 2003, BEHAV ECOL SOCIOBIOL, V54, P240, DOI 10.1007/s00265-003-0627-y; Martyka R, 2011, BIOL LETTERS, V7, P50, DOI 10.1098/rsbl.2010.0549; Martyka R, 2010, J ORNITHOL, V151, P827, DOI 10.1007/s10336-010-0519-7; MEAD PS, 1987, CONDOR, V89, P798, DOI 10.2307/1368527; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Muller W, 2005, J EVOLUTION BIOL, V18, P661, DOI 10.1111/j.1420-9101.2004.00859.x; Nakagawa S, 2007, BIOL REV, V82, P591, DOI 10.1111/j.1469-185X.2007.00027.x; Nakagawa S, 2012, EVOL ECOL, V26, P1253, DOI 10.1007/s10682-012-9555-5; Nakagawa S, 2012, EVOL ECOL, V26, P1085, DOI 10.1007/s10682-012-9593-z; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Palmer AR, 1999, AM NAT, V154, P220, DOI 10.1086/303223; Pariser EC, 2012, BEHAV ECOL SOCIOBIOL, V66, P519, DOI 10.1007/s00265-011-1300-5; Petrie M, 2001, NATURE, V412, P498, DOI 10.1038/35087652; POTTI J, 1994, OECOLOGIA, V100, P331, DOI 10.1007/BF00316962; R Development Core Team, 2013, LANG ENV STAT COMP; RAO JNK, 1992, BIOMETRICS, V48, P577, DOI 10.2307/2532311; Rohatgi A, WEBPLOTDIGITIZER; Rubolini D, 2011, FRONT ZOOL, V8, DOI 10.1186/1742-9994-8-24; Rutkowska J, 2005, J AVIAN BIOL, V36, P12, DOI 10.1111/j.0908-8857.2005.03469.x; Rutkowska J, 2002, ANIM BEHAV, V64, P817, DOI 10.1006/anbe.2002.1973; Saino N, 2003, J EVOLUTION BIOL, V16, P516, DOI 10.1046/j.1420-9101.2003.00534.x; Schielzeth H, 2010, METHODS ECOL EVOL, V1, P103, DOI 10.1111/j.2041-210X.2010.00012.x; SLAGSVOLD T, 1992, OECOLOGIA, V90, P43, DOI 10.1007/BF00317807; Stein RW, 2013, AM NAT, V182, P260, DOI 10.1086/670929; TEATHER KL, 1989, CONDOR, V91, P203, DOI 10.2307/1368164; THOMPSON B, 2002, ED RES, V31, P25, DOI DOI 10.3102/0013189X031003025; Trikalinos TA, 2005, PUBLICATION BIAS IN META-ANALYSIS: PREVENTION, ASSESSMENT AND ADJUSTMENTS, P241; Viechtbauer W, 2010, J STAT SOFTW, V36, P1; WEATHERHEAD PJ, 1985, AUK, V102, P298, DOI 10.2307/4086772; WEATHERHEAD PJ, 1994, EVOLUTION, V48, P671, DOI 10.1111/j.1558-5646.1994.tb01352.x; West SA, 2002, SCIENCE, V295, P1685, DOI 10.1126/science.1069043; Wetzel DP, 2012, MOL ECOL, V21, P406, DOI 10.1111/j.1365-294X.2011.05380.x; WILLIAMS TD, 1994, BIOL REV, V69, P35, DOI 10.1111/j.1469-185X.1994.tb01485.x 68 7 7 0 42 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2014 27 1 153 160 10.1111/jeb.12282 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 283OD WOS:000329254500014 24313923 2019-02-21 J Akiyama, R; Agren, J Akiyama, R.; Agren, J. Conflicting selection on the timing of germination in a natural population of Arabidopsis thaliana JOURNAL OF EVOLUTIONARY BIOLOGY English Article Arabidopsis thaliana; conflicting selection; fecundity; field experiment; fitness; life-history evolution; survival; timing of germination SEED DORMANCY; PHENOTYPIC SELECTION; EVOLUTIONARY ECOLOGY; TRADE-OFFS; PRESSURES; DATE; SIZE; CONSEQUENCES; METAANALYSIS; ADAPTATION The timing of germination is a key life-history trait that may strongly influence plant fitness and that sets the stage for selection on traits expressed later in the life cycle. In seasonal environments, the period favourable for germination and the total length of the growing season are limited. The optimal timing of germination may therefore be governed by conflicting selection through survival and fecundity. We conducted a field experiment to examine the effects of timing of germination on survival, fecundity and overall fitness in a natural population of the annual herb Arabidopsis thaliana in north-central Sweden. Seedlings were transplanted at three different times in late summer and in autumn covering the period of seed germination in the study population. Early germination was associated with low seedling survival, but also with high survival and fecundity among established plants. The advantages of germinating early more than balanced the disadvantage and selection favoured early germination. The results suggest that low survival among early germinating seeds is the main force opposing the evolution of earlier germination and that the optimal timing of germination should vary in space and time as a function of the direction and strength of selection acting during different life-history stages. [Akiyama, R.; Agren, J.] Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, Uppsala, Sweden; [Akiyama, R.] Univ Zurich, Inst Evolutionary Biol & Environm Studies, CH-8057 Zurich, Switzerland; [Akiyama, R.] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Nagoya, Aichi 4648601, Japan Akiyama, R (reprint author), Univ Zurich, Inst Evolutionary Biol & Environm Studies, Winterthurerstr 190, CH-8057 Zurich, Switzerland. reiko.akiyama@ieu.uzh.ch Agren, Jon/E-6093-2011 Agren, Jon/0000-0001-9573-2463 Nakajima Foundation; Regnells Stiftelse; Helge Ax:on Johnsons Stiftelse; Svenska vaxtgeografiska sallskapet; Swedish Research Council We thank L. Lehndal, J. Glans, M. Skoglund, F. Svanstrom, K. Bolinder and P. Warnicke for assistance in the field; E. Boberg, N. Haubner, J. Maad and A. Puentes for discussion; and S. Karrenberg, C. Madec and D. Schemske for comments on previous versions of the manuscript. Financial support was given by the Nakajima Foundation, Regnells Stiftelse, Helge Ax:on Johnsons Stiftelse and Svenska vaxtgeografiska sallskapet to RA, and by the Swedish Research Council to JA. The authors have no conflict of interest to declare. Al-Shehbaz I. A., 2002, ARABIDOPSIS BOOK, V11, P1; Alcantara JM, 2003, J EVOLUTION BIOL, V16, P1168, DOI 10.1046/j.1420-9101.2003.00618.x; Alonso-Blanco C, 2003, GENETICS, V164, P711; [Anonymous], 2009, PLOS ONE, DOI DOI 10.1371/J0URNAL.P0NE.0007213; BASKIN JM, 1972, AM MIDL NAT, V88, P318, DOI 10.2307/2424357; Bentsink L, 2010, P NATL ACAD SCI USA, V107, P4264, DOI 10.1073/pnas.1000410107; Boquet DJ, 2009, AGRON J, V101, P1123, DOI 10.2134/agronj2009.0071; Donohue K, 2005, EVOLUTION, V59, P758; Donohue K, 2002, ECOLOGY, V83, P1006; Donohue K, 2010, ANNU REV ECOL EVOL S, V41, P293, DOI 10.1146/annurev-ecolsys-102209-144715; Donohue K, 2009, PHILOS T R SOC B, V364, P1059, DOI 10.1098/rstb.2008.0291; Gomez JM, 2004, EVOLUTION, V58, P71, DOI 10.1111/j.0014-3820.2004.tb01574.x; Gomez JM, 2008, EVOLUTION, V62, P668, DOI 10.1111/j.1558-5646.2007.00312.x; Gonzalez-Astorga J, 2000, PLANT ECOL, V151, P253, DOI 10.1023/A:1026570623406; gren J., 2013, P NATL ACAD SCI US, V110, P18202; gren J, 2012, NEW PHYTOL, V194, P1112; Huang XQ, 2010, MOL ECOL, V19, P1335, DOI 10.1111/j.1365-294X.2010.04557.x; KALISZ S, 1986, EVOLUTION, V40, P479, DOI 10.1111/j.1558-5646.1986.tb00501.x; KELLY CA, 1992, EVOLUTION, V46, P1658, DOI 10.1111/j.1558-5646.1992.tb01160.x; Kelly MG, 1997, J ECOL, V85, P755, DOI 10.2307/2960599; Koornneef M, 2004, ANNU REV PLANT BIOL, V55, P141, DOI 10.1146/annurev.arplant.55.031903.141605; LITTELL RC, 1996, SAS SYSTEM MIXED MOD, P423; MitchellOlds T, 1996, EVOLUTION, V50, P140, DOI 10.1111/j.1558-5646.1996.tb04480.x; Mojica JP, 2010, P ROY SOC B-BIOL SCI, V277, P2945, DOI 10.1098/rspb.2010.0568; Montesinos-Navarro A, 2012, EVOLUTION, V66, P3417, DOI 10.1111/j.1558-5646.2012.01689.x; Munguia-Rosas MA, 2011, ECOL LETT, V14, P511, DOI 10.1111/j.1461-0248.2011.01601.x; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; STRATTON DA, 1992, EVOLUTION, V46, P92, DOI 10.1111/j.1558-5646.1992.tb01987.x; Strauss SY, 2004, ANNU REV ECOL EVOL S, V35, P435, DOI 10.1146/annurev.ecolsys.35.112202.130215; Venable D. L, 1984, PERSPECTIVES PLANT P, P166; Verdu M, 2005, ECOLOGY, V86, P1385, DOI 10.1890/04-1647; Pico FX, 2012, J ECOL, V100, P1009, DOI 10.1111/j.1365-2745.2012.01979.x 33 13 13 1 44 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. JAN 2014 27 1 193 199 10.1111/jeb.12293 7 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 283OD WOS:000329254500018 24329869 Bronze 2019-02-21 J Speakman, JR; Garratt, M Speakman, John R.; Garratt, Michael Oxidative stress as a cost of reproduction: Beyond the simplistic trade-off model BIOESSAYS English Article life history; oxidative stress LIFE-HISTORY EVOLUTION; IN-HOUSE MICE; ENERGY-EXPENDITURE; CALORIE RESTRICTION; BODY-COMPOSITION; METABOLIC-RATE; COLD-EXPOSURE; SPAN; LONGEVITY; DAMAGE The idea that oxidative stress may underpin life history trade-offs has become extremely popular. However, experimental support for the concept has proved equivocal. It has recently been suggested that this might be because of flaws in the design of existing studies. Here, we explore the background to the oxidative stress hypothesis and highlight some of the complexities in testing it. We conclude that the approach recently suggested to be least useful in this context (comparing reproducing to non-reproducing animals) may in fact be the most powerful. Moreover, suggested alternative approaches of limiting food supply or manipulating litter sizes have many complexities and problems. We suggest some useful alternative approaches that have not been previously advocated, particularly the study of individuals reproducing at greater parity later in life. Finally, the measures of oxidative stress and tissues that are analysed influence the experimental outcome. This suggests our conceptual model of the trade-off is currently too simplistic, and that studies based on single or limited numbers of assays, or restricted to single tissues, whether they support or refute the theory, should be interpreted with great caution. [Speakman, John R.] Chinese Acad Sci, Key State Lab Mol Dev Biol, Inst Genet & Dev Biol, Beijing, Peoples R China; [Speakman, John R.] Univ Aberdeen, Inst Biol & Environm Sci, Aberdeen, Scotland; [Garratt, Michael] Univ New S Wales, Evolut & Ecol Res Grp, Sydney, NSW, Australia; [Garratt, Michael] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW, Australia Speakman, JR (reprint author), Chinese Acad Sci, Key State Lab Mol Dev Biol, Inst Genet & Dev Biol, Beijing, Peoples R China. j.speakman@abdn.ac.uk John, Speakman/A-9494-2008 John, Speakman/0000-0002-2457-1823 Chinese Academy of Sciences; CAS-NovoNordisk Foundation; Australian Research Council We thank Rob Brooks and Pierre Bize for helpful comments that significantly improved earlier drafts. John Speakman was supported by a 1000 talents professorship at the Chinese Academy of Sciences and a Great wall professorship of the CAS-NovoNordisk Foundation, and Michael Garratt was supported by an Australian Research Council Discovery Grant awarded to Robert C Brooks during the preparation of this paper. Alonso-Alvarez C, 2004, ECOL LETT, V7, P363, DOI 10.1111/j.1461-0248.2004.00594.x; Alonso-Alvarez C, 2007, P R SOC B, V274, P819, DOI 10.1098/rspb.2006.3764; Alonso-Alvarez C, 2010, PHYSIOL BIOCHEM ZOOL, V83, P110, DOI 10.1086/605395; Banks R, 2010, MOL NUTR FOOD RES, V54, P719, DOI 10.1002/mnfr.200900382; Barja G, 2007, REJUV RES, V10, P215, DOI 10.1089/rej.2006.0516; Barnes AI, 2003, ANIM BEHAV, V66, P199, DOI 10.1006/anbe.2003.2122; Beaulieu M, 2011, FUNCT ECOL, V25, P577, DOI 10.1111/j.1365-2435.2010.01825.x; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; Brand MD, 2000, EXP GERONTOL, V35, P811, DOI 10.1016/S0531-5565(00)00135-2; Brand MD, 2005, CELL METAB, V2, P85, DOI 10.1016/j.cmet.2005.06.002; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; BRYANT DM, 1988, IBIS, V130, P17, DOI 10.1111/j.1474-919X.1988.tb00952.x; Buffenstein R, 2008, AGE, V30, P99, DOI 10.1007/s11357-008-9058-z; Casagrande S, 2011, COMP BIOCHEM PHYS A, V160, P16, DOI 10.1016/j.cbpa.2011.04.011; Chapman T, 1996, P ROY SOC B-BIOL SCI, V263, P755, DOI 10.1098/rspb.1996.0113; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; Costantini D, 2010, IBIS, V152, P793, DOI 10.1111/j.1474-919X.2010.01052.x; da Silva CCC, 2008, AGING CELL, V7, P552, DOI 10.1111/j.1474-9726.2008.00407.x; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; DRENT RH, 1980, ARDEA, V68, P225; Droge W, 2002, PHYSIOL REV, V82, P47; Duah OA, 2013, J EXP BIOL, V216, P2339, DOI 10.1242/jeb.078428; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Elliott KH, 2013, J ANIM ECOL IN PRESS, DOI 10.1111/1365-2656.12126; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2008, P NATL ACAD SCI USA, V105, P6368, DOI 10.1073/pnas.0709128105; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Fletcher QE, 2013, EVOLUTION, V67, P1527, DOI 10.1111/evo.12014; Furness LJ, 2008, AGE, V30, P75, DOI 10.1007/s11357-008-9054-3; Gamo Y, 2013, J EXP BIOL, V216, P2328, DOI 10.1242/jeb.078410; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; Garratt M, 2012, FUNCT ECOL, V26, P423, DOI 10.1111/j.1365-2435.2011.01952.x; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gems D, 2013, ANNU REV PHYSIOL, V75, P621, DOI 10.1146/annurev-physiol-030212-183712; GERSCHMAN R, 1954, SCIENCE, V119, P623, DOI 10.1126/science.119.3097.623; Halliwell B, 1996, ANNU REV NUTR, V16, P33, DOI 10.1146/annurev.nu.16.070196.000341; Hammond KA, 1997, NATURE, V386, P457, DOI 10.1038/386457a0; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Heiss RS, 2012, PHYSIOL BIOCHEM ZOOL, V85, P499, DOI 10.1086/666840; HOLLIDAY R, 1989, BIOESSAYS, V10, P125, DOI 10.1002/bies.950100408; Hsin H, 1999, NATURE, V399, P362, DOI 10.1038/20694; Hughes KA, 2005, ANNU REV ENTOMOL, V50, P421, DOI 10.1146/annurev.ento.50.071803.130409; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Johnson MS, 2001, J EXP BIOL, V204, P1925; Jones DP, 2010, DIABETES OBES METAB, V12, P116, DOI 10.1111/j.1463-1326.2010.01266.x; Keipert S, 2011, AGING CELL, V10, P122, DOI 10.1111/j.1474-9726.2010.00648.x; KIRKWOOD TBL, 1979, PROC R SOC SER B-BIO, V205, P531, DOI 10.1098/rspb.1979.0083; Levay EA, 2010, NUTR RES, V30, P366, DOI 10.1016/j.nutres.2010.05.001; Marko G, 2011, J COMP PHYSIOL B, V181, P73, DOI 10.1007/s00360-010-0502-x; Meitern R, 2013, J EXP BIOL, V216, P2713, DOI 10.1242/jeb.087528; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; NELSON JF, 1985, BIOL REPROD, V32, P515, DOI 10.1095/biolreprod32.3.515; Niitepold K, 2013, J EXP BIOL, V216, P1388, DOI 10.1242/jeb.080739; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Odakowski Piotrowska, 2012, J EXP BIOL, V215, P1799; Oldakowski L, 2012, J EXP BIOL, V215, P1799, DOI 10.1242/jeb.068452; Olsson M, 2012, OECOLOGIA, V170, P917, DOI 10.1007/s00442-012-2383-z; Pallauf K, 2013, FOOD CHEM TOXICOL, V58, P255, DOI 10.1016/j.fct.2013.04.046; Pearl R., 1928, RATE LIVING LONDON; Perez VI, 2009, BBA-GEN SUBJECTS, V1790, P1005, DOI 10.1016/j.bbagen.2009.06.003; PERRIGO G, 1987, ANIM BEHAV, V35, P1298, DOI 10.1016/S0003-3472(87)80002-7; PETERSON CC, 1990, P NATL ACAD SCI USA, V87, P2324, DOI 10.1073/pnas.87.6.2324; Piersma T, 2011, FLEXIBLE PHENOTYPE B; Roff Derek A., 1992; Rubner M., 1908, PROBLEM LEBENSDAUER; Sainz RM, 2000, J REPROD FERTIL, V119, P143, DOI 10.1530/reprod/119.1.143; Seifried HE, 2007, J NUTR BIOCHEM, V18, P567, DOI 10.1016/j.jnutbio.2006.10.007; Selman C, 2000, FREE RADICAL BIO MED, V28, P1279, DOI 10.1016/S0891-5849(00)00263-X; Selman C, 2013, BIOL LETT, V9; Selman C, 2008, P ROY SOC B-BIOL SCI, V275, P1907, DOI 10.1098/rspb.2008.0355; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; Shen YD, 2012, SCIENCE, V338, P1472, DOI 10.1126/science.1228967; Silva A, 2013, BIOGERONTOLOGY, V14, P411; Skibiel AL, 2013, FUNCT ECOL IN PRESS, DOI 10.1111/1365-2435.12130; Skibiel J, 2013, INTEGR COMP BIOL, V52; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2011, MOL ASPECTS MED, V32, P159, DOI 10.1016/j.mam.2011.07.001; Speakman JR, 2011, BIOESSAYS, V33, P255, DOI 10.1002/bies.201000132; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Speakman JR, 2010, J ANIM ECOL, V79, P726, DOI 10.1111/j.1365-2656.2010.01689.x; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; Speakman JR, 2004, AGING CELL, V3, P87, DOI 10.1111/j.1474-9728.2004.00097.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stier A, 2012, FRONT ZOOL, V9, DOI 10.1186/1742-9994-9-37; Tinbergen JM, 2000, J ANIM ECOL, V69, P323, DOI 10.1046/j.1365-2656.2000.00395.x; Upreti K., 2002, HLTH POPUL PERSPECT, V25, P177; Vaanholt LM, 2013, J EXP BIOL, V216, P2308, DOI 10.1242/jeb.078394; Vaanholt LM, 2009, PHYSIOL BIOCHEM ZOOL, V82, P314, DOI 10.1086/589727; van De Crommenacker J., 2011, P R SOC B, V279, P1466; Welcker J, 2010, J ANIM ECOL, V79, P205, DOI 10.1111/j.1365-2656.2009.01626.x; Wiersma P, 2004, P ROY SOC B-BIOL SCI, V271, pS360, DOI 10.1098/rsbl.2004.0171; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson SM, 2012, COMP BIOCHEM PHYS A, V162, P212, DOI 10.1016/j.cbpa.2012.02.023; Xu Y-C, 2013, FUNCT ECOL IN PRESS, DOI 10.1111/1365-2435.12168; Xu YC, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037182; Yang DB, 2013, J EXP BIOL, V216, P4242, DOI 10.1242/jeb.092049; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006; Zhao ZJ, 2013, J EXP BIOL, V216, P2316, DOI 10.1242/jeb.078402 105 97 99 1 91 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0265-9247 1521-1878 BIOESSAYS Bioessays JAN 2014 36 1 93 106 10.1002/bies.201300108 14 Biochemistry & Molecular Biology; Biology Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics 271KV WOS:000328391600014 24285005 2019-02-21 J Kazancioglu, E; Arnqvist, G Kazancioglu, Erem; Arnqvist, Goran The maintenance of mitochondrial genetic variation by negative frequency-dependent selection ECOLOGY LETTERS English Article Callosobruchus; competition; epistasis; habitat heterogeneity; life history evolution; mtDNA; niche; phylogeography; population biology EXPERIMENTAL POPULATIONS; DROSOPHILA-SUBOBSCURA; DNA HAPLOTYPES; CYTOCHROME-C; SEED BEETLES; EVOLUTION; POLYMORPHISM; DIVERSITY; NUCLEAR; BIOLOGY Mitochondrial genes generally show high levels of standing genetic variation, which is puzzling given the accumulating evidence for phenotypic effects of mitochondrial genetic variation. Negative frequency-dependent selection, where the relative fitness of a genotype is inversely related to its frequency in a population, provides a potent and potentially general process that can maintain mitochondrial polymorphism. We assessed the change in mitochondrial haplotype frequencies over 10 generations of experimental evolution in 180 seed beetle populations in the laboratory, where haplotypes competed for propagation to subsequent generations. We found that haplotypes consistently increased in frequency when they were initially rare and decreased in frequency when initially common. Our results have important implications for the use of mtDNA haplotype frequency data to infer population level processes and they revive the general hypothesis that negative frequency-dependent selection, presumably caused by habitat heterogeneity, may commonly promote polymorphism in ecologically relevant life history genes. [Kazancioglu, Erem; Arnqvist, Goran] Uppsala Univ, Dept Ecol & Genet, SE-75236 Uppsala, Sweden Arnqvist, G (reprint author), Uppsala Univ, Dept Ecol & Genet, Norbyv 18, SE-75236 Uppsala, Sweden. goran.arnqvist@ebc.uu.se Arnqvist, Goran/E-6782-2015 Arnqvist, Goran/0000-0002-3501-3376 European Research Council [AdG-294333]; Swedish Research Council [621-2010-5266] We thank N. Amvrosiadi, M. Avolio, C. Hotzy and E. Gustafsson for assistance during the experimental procedure, Uppsala Genome Centre (SciLifeLab) personnel for their assistance with the sequencing effort, and S. H. Alonzo, D. Dowling, J. Hoglund, P. J. Palsboll and the GENCON laboratory group for their constructive comments on earlier versions of this manuscript. This study was funded by the European Research Council (AdG-294333 to G.A) and the Swedish Research Council (621-2010-5266 to G.A.). Adrianov B V, 2008, Genetika, V44, P195; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; AVISE JC, 1987, ANNU REV ECOL SYST, V18, P489, DOI 10.1146/annurev.ecolsys.18.1.489; Babcock CS, 1996, GENETICS, V144, P839; Ballard JWO, 2010, MOL ECOL, V19, P1523, DOI 10.1111/j.1365-294X.2010.04594.x; Ballard JWO, 2005, ANNU REV ECOL EVOL S, V36, P621, DOI 10.1146/annurev.ecolsys.36.091704.175513; Ballard JWO, 2004, MOL ECOL, V13, P729, DOI 10.1046/j.1365-294X.2003.02063.x; Bazin E, 2006, SCIENCE, V312, P570, DOI 10.1126/science.1122033; Breen MS, 2012, NATURE, V490, P535, DOI 10.1038/nature11510; CHARLESWORTH B, 2000, EVOL GENET, P369; Charlesworth D, 2006, PLOS GENET, V2, P379, DOI 10.1371/journal.pgen.0020064; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CLARK AG, 1984, GENETICS, V107, P679; Doebeli M, 2010, SCIENCE, V328, P494, DOI 10.1126/science.1187468; Dowling DK, 2008, TRENDS ECOL EVOL, V23, P546, DOI 10.1016/j.tree.2008.05.011; Dowling DK, 2007, EVOLUTION, V61, P194, DOI 10.1111/j.1558-5646.2007.00016.x; Dowling DK, 2010, AM NAT, V176, P131, DOI 10.1086/653671; Ellison CK, 2008, EVOLUTION, V62, P631, DOI 10.1111/j.1558-5646.2007.00305.x; Fitzpatrick MJ, 2007, NATURE, V447, P210, DOI 10.1038/nature05764; FOS M, 1990, P NATL ACAD SCI USA, V87, P4198, DOI 10.1073/pnas.87.11.4198; Frankham R, 2012, HEREDITY, V108, P167, DOI 10.1038/hdy.2011.66; Galtier N, 2009, MOL ECOL, V18, P4541, DOI 10.1111/j.1365-294X.2009.04380.x; Gerber AS, 2001, ANNU REV GENET, V35, P539, DOI 10.1146/annurev.genet.35.102401.091106; Grant WS, 2006, J HERED, V97, P571, DOI 10.1093/jhered/esl033; GREGORIUS HR, 1984, GENETICS, V107, P165; GUREVITCH J, 1992, AM NAT, V140, P539, DOI 10.1086/285428; HARRISON RG, 1989, TRENDS ECOL EVOL, V4, P6, DOI 10.1016/0169-5347(89)90006-2; Houtkooper RH, 2013, NATURE, V497, P451, DOI 10.1038/nature12188; Innocenti P, 2011, SCIENCE, V332, P845, DOI 10.1126/science.1201157; Jiggins FM, 2005, GENETICS, V171, P1115, DOI 10.1534/genetics.105.046342; Kang M. S., 1996, GENOTYPE ENV INTERAC; Kassen R, 2002, J EVOLUTION BIOL, V15, P173, DOI 10.1046/j.1420-9101.2002.00377.x; KOJIMA KI, 1969, GENETICS, V63, P639; Kvie KS, 2013, ECOL EVOL, V3, P126, DOI 10.1002/ece3.434; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Liu RY, 2007, THEOR POPUL BIOL, V71, P445, DOI 10.1016/j.tpb.2007.03.008; Loisel DA, 2006, P NATL ACAD SCI USA, V103, P16331, DOI 10.1073/pnas.0607662103; MACRAE AF, 1988, GENETICS, V120, P485; Mitchell-Olds T, 2007, NAT REV GENET, V8, P845, DOI 10.1038/nrg2207; MORITZ C, 1994, MOL ECOL, V3, P401, DOI 10.1111/j.1365-294X.1994.tb00080.x; MORITZ C, 1987, ANNU REV ECOL SYST, V18, P269, DOI 10.1146/annurev.ecolsys.18.1.269; Nachman MW, 1996, GENETICS, V142, P953; Oliver P, 2005, GENOME, V48, P1010, DOI 10.1139/G05-077; Rand DM, 2004, TRENDS ECOL EVOL, V19, P645, DOI 10.1016/j.tree.2004.10.003; Rand DM, 2001, GENETICS, V159, P173; Rawson PD, 2002, P NATL ACAD SCI USA, V99, P12955, DOI 10.1073/pnas.202335899; Ruiz-Pesini E, 2004, SCIENCE, V303, P223, DOI 10.1126/science.1088434; WHITTAM TS, 1986, P NATL ACAD SCI USA, V83, P9611, DOI 10.1073/pnas.83.24.9611; Willett CS, 2003, EVOLUTION, V57, P2286; WILLIAM J, 1995, TRENDS ECOL EVOL, V10, P485, DOI 10.1016/S0169-5347(00)89195-8 50 24 24 2 39 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JAN 2014 17 1 22 27 10.1111/ele.12195 6 Ecology Environmental Sciences & Ecology 270JY WOS:000328315900003 24134428 2019-02-21 J Riesch, R; Plath, M; Schlupp, I; Tobler, M; Langerhans, RB Riesch, Ruediger; Plath, Martin; Schlupp, Ingo; Tobler, Michael; Langerhans, R. Brian Colonisation of toxic environments drives predictable life-history evolution in livebearing fishes (Poeciliidae) ECOLOGY LETTERS English Article Divergent natural selection; ecological speciation; extreme environments; Gambusia; life-history evolution; phenotypic convergence; Poecilia; replicated evolution OFFSPRING SIZE; LIVE-BEARING; EXTREME ENVIRONMENTS; MOLECULAR PHYLOGENY; HYDROGEN-SULFIDE; GENETIC-BASIS; ADAPTATIONS; SELECTION; COMPETITION; DIVERGENCE New World livebearing fishes (family Poeciliidae) have repeatedly colonised toxic, hydrogen sulphide-rich waters across their natural distribution. Physiological considerations and life-history theory predict that these adverse conditions should favour the evolution of larger offspring. Here, we examined nine poeciliid species that independently colonised toxic environments, and show that these fishes have indeed repeatedly evolved much larger offspring size at birth in sulphidic waters, thus uncovering a widespread pattern of predictable evolution. However, a second pattern, only indirectly predicted by theory, proved additionally common: a reduction in the number of offspring carried per clutch (i.e. lower fecundity). Our analyses reveal that this secondary pattern represents a mere consequence of a classic life-history trade-off combined with strong selection on offspring size alone. With such strong natural selection in extreme environments, extremophile organisms may commonly exhibit multivariate phenotypic shifts even though not all diverging traits necessarily represent adaptations to the extreme conditions. [Riesch, Ruediger; Langerhans, R. Brian] N Carolina State Univ, Dept Biol Sci, David Clark Labs 127, Raleigh, NC 27695 USA; [Riesch, Ruediger; Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, David Clark Labs 127, Raleigh, NC 27695 USA; [Riesch, Ruediger] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Plath, Martin] Goethe Univ Frankfurt, Evolutionary Ecol Grp, D-60438 Frankfurt, Germany; [Schlupp, Ingo] Univ Oklahoma, Dept Biol, Norman, OK 73019 USA; [Tobler, Michael] Oklahoma State Univ, Dept Zool, Stillwater, OK 74078 USA Riesch, R (reprint author), N Carolina State Univ, Dept Biol Sci, David Clark Labs 127, Raleigh, NC 27695 USA. rwriesch.evolutionarybiology@gmail.com Riesch, Rudiger/A-5787-2008; Schlupp, Ingo/C-3913-2012 Riesch, Rudiger/0000-0002-0223-1254; Schlupp, Ingo/0000-0002-2460-5667; Tobler, Michael/0000-0002-0326-0890 Mexican government [CONAPESCA: DGOPA/16986/191205/8101, DGOPA/02232/230706/1079, DGOPA.06192. 240608-1562, SGPA/DGVS/04751/08]; Municipal of Tacotalpa [SM/1133/208]; United States National Park Service Chickasaw NRA [CHIC-2007-SCI-0001]; National Science Foundation of America [DEB-0743406, IOS-1121832, DEB-0842364]; German Science Foundation [DFG, PL 470/1-2]; Alexander von Humboldt Foundation; W. M. Keck Center for Behavioral Biology; University of Oklahoma IACUC [R06-026] We thank L. Arias-Rodriguez and F. J. Garcia de Leon for help during the collections in Mexico. The Mexican government (CONAPESCA: DGOPA/16986/191205/8101, DGOPA/02232/230706/1079, DGOPA.06192. 240608-1562, and SGPA/DGVS/04751/08), the Municipal of Tacotalpa (SM/1133/208) and the United States National Park Service Chickasaw NRA (CHIC-2007-SCI-0001) kindly provided collection permits. Financial support came from the National Science Foundation of America (DEB-0743406 to IS; IOS-1121832 to MT, DEB-0842364 to RBL), the German Science Foundation (DFG, PL 470/1-2, to MP), the Alexander von Humboldt Foundation (to IS), and the W. M. Keck Center for Behavioral Biology (to RR and RBL). This study was conducted under University of Oklahoma IACUC #R06-026. BAGARINAO T, 1992, AQUAT TOXICOL, V24, P21, DOI 10.1016/0166-445X(92)90015-F; Bashey F, 2008, OIKOS, V117, P104, DOI 10.1111/j.2007.0030-1299.16094.x; Bowmaker JK, 1998, EYE, V12, P541; Breden F, 1999, MOL PHYLOGENET EVOL, V12, P95, DOI 10.1006/mpev.1998.0600; BROCKELMAN WY, 1975, AM NAT, V109, P677, DOI 10.1086/283037; Calow P, 2003, ENVIRON SCI TECHNOL, V37, p146A, DOI 10.1021/es0324003; Darriba D, 2012, NAT METHODS, V9, P772, DOI 10.1038/nmeth.2109; Darwin C., 1859, ORIGIN SPECIES MEANS; Duponchelle F, 2008, P NATL ACAD SCI USA, V105, P15475, DOI 10.1073/pnas.0802343105; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; Grieshaber MK, 1998, ANNU REV PHYSIOL, V60, P33, DOI 10.1146/annurev.physiol.60.1.33; Guindon S, 2003, SYST BIOL, V52, P696, DOI 10.1080/10635150390235520; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hoekstra HE, 2006, SCIENCE, V313, P101, DOI 10.1126/science.1126121; Hrbek T, 2007, MOL PHYLOGENET EVOL, V43, P986, DOI 10.1016/j.ympev.2006.06.009; Hulsey CD, 2008, EVOLUTION, V62, P1587, DOI 10.1111/j.1558-5646.2008.00384.x; Jahn A, 1997, MAR ECOL PROG SER, V154, P175, DOI 10.3354/meps154175; Jennions MD, 2002, OECOLOGIA, V132, P44, DOI 10.1007/s00442-002-0942-4; Johnson JB, 2001, EVOLUTION, V55, P1486; Jorgensen C, 2011, AM NAT, V177, pE119, DOI 10.1086/659622; Langerhans RB, 2013, CURR ZOOL, V59, P31, DOI 10.1093/czoolo/59.1.31; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Losos JB, 2006, SCIENCE, V314, P1111, DOI 10.1126/science.1133584; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; LYDEARD C, 1995, CAN J ZOOL, V73, P213, DOI 10.1139/z95-025; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Plath M, 2013, EVOLUTION, V67, P2647, DOI 10.1111/evo.12133; POWELL E, 1989, J MAR RES, V47, P887, DOI 10.1357/002224089785076082; Protas ME, 2006, NAT GENET, V38, P107, DOI 10.1038/ng1700; R Core Team, 2012, R LANG ENV STAT COMP; Revell LJ, 2009, EVOLUTION, V63, P3258, DOI 10.1111/j.1558-5646.2009.00804.x; Reznick D, 2000, TRENDS ECOL EVOL, V15, P421, DOI 10.1016/S0169-5347(00)01941-8; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027377; Riesch R, 2010, EVOL ECOL, V24, P789, DOI 10.1007/s10682-009-9335-z; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Riesch R, 2010, NATURWISSENSCHAFTEN, V97, P133, DOI 10.1007/s00114-009-0613-y; Rollinson N, 2013, AM NAT, V182, P76, DOI 10.1086/670648; Rollinson N, 2013, ECOLOGY, V94, P315, DOI 10.1890/2-0552.1; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Stern DL, 2008, EVOLUTION, V62, P2155, DOI 10.1111/j.1558-5646.2008.00450.x; Tobler M, 2008, J FISH BIOL, V72, P523, DOI 10.1111/j.1095-8649.2007.01716.x; Tobler M, 2008, EVOLUTION, V62, P2643, DOI 10.1111/j.1558-5646.2008.00466.x; Tobler M, 2011, EVOLUTION, V65, P2213, DOI 10.1111/j.1558-5646.2011.01298.x; Whiting MF, 2003, NATURE, V421, P264, DOI 10.1038/nature01313 51 30 33 5 58 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X 1461-0248 ECOL LETT Ecol. Lett. JAN 2014 17 1 65 71 10.1111/ele.12209 7 Ecology Environmental Sciences & Ecology 270JY WOS:000328315900008 24188245 2019-02-21 J Anderson, JT; Lee, CR; Mitchell-Olds, T Anderson, Jill T.; Lee, Cheng-Ruei; Mitchell-Olds, Thomas STRONG SELECTION GENOME-WIDE ENHANCES FITNESS TRADE-OFFS ACROSS ENVIRONMENTS AND EPISODES OF SELECTION EVOLUTION English Article Antagonistic pleiotropy; conditional neutrality; ecological genetics; evolutionary constraints; fitness components; local adaptation QUANTITATIVE TRAIT LOCI; BOECHERA-STRICTA; GENE FLOW; ARABIDOPSIS-THALIANA; PHENOTYPIC SELECTION; ECOLOGICAL GENOMICS; NATURAL-SELECTION; MIMULUS-GUTTATUS; FLOWERING TIME; LIFE-HISTORY Fitness trade-offs across episodes of selection and environments influence life-history evolution and adaptive population divergence. Documenting these trade-offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade-offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual-level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade-offs. This analytical approach (Conditional Neutrality-Antagonistic Pleiotropy, CNAP) identified genetic trade-offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade-offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA-based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade-offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade-offs that took many generations to evolve. [Anderson, Jill T.] Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA; [Lee, Cheng-Ruei; Mitchell-Olds, Thomas] Duke Univ, Dept Biol, Inst Genome Sci & Policy, Durham, NC 27708 USA Anderson, JT (reprint author), Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. jtanders@mailbox.sc.edu Mitchell-Olds, Thomas/K-8121-2012 Mitchell-Olds, Thomas/0000-0003-3439-9921; Anderson, Jill/0000-0002-3253-8142; Lee, Cheng-Ruei/0000-0002-1913-9964 National Science Foundation [EF-0723447]; National Institutes of Health [R01 GM086496] We thank N. Wicks, J. Reithel, I. Billick, and Connie Heald, Willie Heald, and Eric Heald for logistical support, and personnel from Bitterroot National Forest for permitting this field research. C. Rushworth, R. Colautti, A. Manzaneda, B.-H. Song, C.-L. Huang, S. Mitchell-Olds, T. Pendergast, K. Dales, R. Doll, E. Raskin, and M. Wagner assisted with fieldwork. R. Embick and A. Philbin commented on the manuscript. We thank Associate Editor C. Lee and three anonymous reviewers for critiques of a previous draft. This research was supported by funding from the National Science Foundation (EF-0723447 to T.M.-O.) and the National Institutes of Health (R01 GM086496 to T.M.-O.). Anderson JT, 2013, MOL ECOL, V22, P699, DOI 10.1111/j.1365-294X.2012.05522.x; Anderson JT, 2011, EVOLUTION, V65, P771, DOI 10.1111/j.1558-5646.2010.01175.x; Anderson JT, 2010, EVOLUTION, V64, P370, DOI 10.1111/j.1558-5646.2009.00825.x; Bennington CC, 2012, J ECOL, V100, P841, DOI 10.1111/j.1365-2745.2012.01984.x; Brunelle A, 2005, QUATERNARY SCI REV, V24, P2281, DOI 10.1016/j.quascirev.2005.11.010; Chandler C. H., 2008, J EVOLUTION BIOL, V22, P192; CHURCHILL GA, 1994, GENETICS, V138, P963; Colautti RI, 2012, CURR OPIN PLANT BIOL, V15, P199, DOI 10.1016/j.pbi.2012.01.016; Cox RM, 2010, EVOLUTION, V64, P1321, DOI 10.1111/j.1558-5646.2009.00906.x; Davis MB, 2001, SCIENCE, V292, P673, DOI 10.1126/science.292.5517.673; Doerge RW, 1996, GENETICS, V142, P285; Fournier-Level A, 2011, SCIENCE, V334, P86, DOI 10.1126/science.1209271; Garrido E, 2012, NEW PHYTOL, V193, P445, DOI 10.1111/j.1469-8137.2011.03923.x; Geyer CJ, 2012, 692 U MINN SCH STAT; Gonzalo-Turpin H, 2009, J ECOL, V97, P742, DOI 10.1111/j.1365-2745.2009.01509.x; Hall MC, 2010, MOL ECOL, V19, P2739, DOI 10.1111/j.1365-294X.2010.04680.x; Hereford J, 2004, EVOLUTION, V58, P2133; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; Kao CH, 1999, GENETICS, V152, P1203; Kawecki TJ, 2008, ANNU REV ECOL EVOL S, V39, P321, DOI 10.1146/annurev.ecolsys.38.091206.095622; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Lee CR, 2012, MOL BIOL EVOL, V29, P3721, DOI 10.1093/molbev/mss174; Lee CR, 2011, MOL ECOL, V20, P4631, DOI 10.1111/j.1365-294X.2011.05310.x; Leimu R, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0004010; Leinonen PH, 2013, MOL ECOL, V22, P709, DOI 10.1111/j.1365-294X.2012.05678.x; Lowry DB, 2008, EVOLUTION, V62, P2196, DOI 10.1111/j.1558-5646.2008.00457.x; Lowry DB, 2012, NEW PHYTOL, V194, P888, DOI 10.1111/j.1469-8137.2012.04146.x; Lowry DB, 2010, PLOS BIOL, V8; Miller TEX, 2008, AM NAT, V171, P141, DOI 10.1086/524961; Mojica JP, 2010, P ROY SOC B-BIOL SCI, V277, P2945, DOI 10.1098/rspb.2010.0568; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Paul JR, 2011, AM NAT, V178, pS62, DOI 10.1086/661781; Poisot T, 2011, ECOL LETT, V14, P841, DOI 10.1111/j.1461-0248.2011.01645.x; Prasad KVSK, 2012, SCIENCE, V337, P1081, DOI 10.1126/science.1221636; Primack R, 1998, AM J BOT, V85, P1672, DOI 10.2307/2446500; REZNICK D, 1992, TRENDS ECOL EVOL, V7, P42, DOI 10.1016/0169-5347(92)90104-J; Roff DA, 2000, J EVOLUTION BIOL, V13, P434, DOI 10.1046/j.1420-9101.2000.00186.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rushworth CA, 2011, MOL ECOL, V20, P4843, DOI 10.1111/j.1365-294X.2011.05340.x; Sambatti JBM, 2006, EVOLUTION, V60, P696; Schranz ME, 2009, HEREDITY, V102, P465, DOI 10.1038/hdy.2009.12; Schranz ME, 2007, PLANT PHYSIOL, V144, P286, DOI 10.1104/pp.107.096685; Schranz ME, 2005, AM J BOT, V92, P1797, DOI 10.3732/ajb.92.11.1797; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Song BH, 2009, GENETICS, V181, P1021, DOI 10.1534/genetics.108.095364; Song BH, 2006, MOL ECOL, V15, P357, DOI 10.1111/j.1365-294X.2005.02817.x; Stearns S, 1992, EVOLUTION LIFE HIST; VANOOIJEN JW, 1992, THEOR APPL GENET, V84, P803, DOI 10.1007/BF00227388; Verhoeven KJF, 2004, EVOLUTION, V58, P270, DOI 10.1111/j.0014-3820.2004.tb01644.x; Voorrips RE, 2002, J HERED, V93, P77, DOI 10.1093/jhered/93.1.77; Wang S., 2012, WINDOWS QTL CARTOGRA; Wang T, 2006, GLOBAL CHANGE BIOL, V12, P2404, DOI 10.1111/j.1365-2486.2006.01271.x; Wang TL, 2010, ECOL APPL, V20, P153, DOI 10.1890/08-2257.1; Yang RQ, 2009, BIOINFORMATICS, V25, P1033, DOI 10.1093/bioinformatics/btn558 55 26 26 2 84 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution JAN 2014 68 1 16 31 10.1111/evo.12259 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 276CW WOS:000328726700002 24102539 Bronze, Green Accepted 2019-02-21 J Wilson, AJ Wilson, A. J. Competition as a source of constraint on life history evolution in natural populations HEREDITY English Review indirect genetic effects; evolutionary constraint; behaviour; personality; G-matrix INTERACTING PHENOTYPES; QUANTITATIVE GENETICS; MULTILEVEL SELECTION; RED DEER; DIRECTIONAL SELECTION; SOCIAL INTERACTIONS; INDIVIDUAL QUALITY; TRADE-OFFS; GROUP-SIZE; WILD Competition among individuals is central to our understanding of ecology and population dynamics. However, it could also have major implications for the evolution of resource-dependent life history traits (for example, growth, fecundity) that are important determinants of fitness in natural populations. This is because when competition occurs, the phenotype of each individual will be causally influenced by the phenotypes, and so the genotypes, of competitors. Theory tells us that indirect genetic effects arising from competitive interactions will give rise to the phenomenon of 'evolutionary environmental deterioration', and act as a source of evolutionary constraint on resource-dependent traits under natural selection. However, just how important this constraint is remains an unanswered question. This article seeks to stimulate empirical research in this area, first highlighting some patterns emerging from life history studies that are consistent with a competition-based model of evolutionary constraint, before describing several quantitative modelling strategies that could be usefully applied. A recurrent theme is that rigorous quantification of a competition's impact on life history evolution will require an understanding of the causal pathways and behavioural processes by which genetic (co) variance structures arise. Knowledge of the G-matrix among life history traits is not, in and of itself, sufficient to identify the constraints caused by competition. Univ Exeter, Ctr Ecol & Conservat, Cornwall TR10 9EZ, England Wilson, AJ (reprint author), Univ Exeter, Ctr Ecol & Conservat, Cornwall Campus,Treliever Rd, Cornwall TR10 9EZ, England. a.wilson@ex.ac.uk Wilson, Alastair/0000-0002-5045-2051 BBSRC David Phillips Fellowship; Biotechnology and Biological Sciences Research Council [BB/G022976/1, BB/G022976/2] This work was supported by a BBSRC David Phillips Fellowship. I am grateful to Craig Walling and Katie Stopher for their comments on an earlier version of this manuscript. Agrawal A. F., 2009, P ROY SOC B, V364, P1593; BARRETTE C, 1987, TRENDS ECOL EVOL, V2, P251, DOI 10.1016/0169-5347(87)90008-5; BERGERON P, 2010, J ANIM ECOL, V80, P361; Bergsma R, 2008, GENETICS, V178, P1559, DOI 10.1534/genetics.107.084236; Bijma P, 2008, J EVOLUTION BIOL, V21, P1175, DOI 10.1111/j.1420-9101.2008.01550.x; Bijma P, 2007, GENETICS, V175, P277; Bijma P, 2010, GENETICS, V186, P1029, DOI 10.1534/genetics.110.120485; Bijma P, 2010, GENETICS, V186, P1013, DOI 10.1534/genetics.110.120493; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; BLOWS MW, 2009, ADAPTATION FITNESS A; Brommer JE, 2008, EVOLUTION, V62, P2326, DOI 10.1111/j.1558-5646.2008.00451.x; Cappa EP, 2008, SILVAE GENET, V57, P45, DOI 10.1515/sg-2008-0008; CHARLESWORTH B, 1990, EVOLUTION, V44, P520, DOI 10.1111/j.1558-5646.1990.tb05936.x; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; Cheverud JM, 2003, P NATL ACAD SCI USA, V100, P4357, DOI 10.1073/pnas.0931311100; Coltman DW, 2005, EVOLUTION, V59, P1372; COOKE F, 1990, AM NAT, V136, P261, DOI 10.1086/285095; Silva JCE, 2013, TREE GENET GENOMES, V9, P1, DOI 10.1007/s11295-012-0521-8; Cresswell W, 2001, J ANIM ECOL, V70, P218, DOI 10.1046/j.1365-2656.2001.00486.x; DEJONG G, 1976, AM NAT, V110, P1013, DOI 10.1086/283124; Dingemanse NJ, 2012, J EVOLUTION BIOL, V25, P485, DOI 10.1111/j.1420-9101.2011.02439.x; Dochtermann NA, 2011, EVOLUTION, V65, P1814, DOI 10.1111/j.1558-5646.2011.01264.x; Ellegren H, 2008, NATURE, V452, P169, DOI 10.1038/nature06737; Ellen ED, 2007, GENETICS, V176, P489, DOI 10.1534/genetics.106.069542; Fairbairn DJ, 2006, HEREDITY, V97, P319, DOI 10.1038/sj.hdy.6800895; Fisher R. A., 1958, GENETICAL THEORY NAT; Frank S, 1992, TREE, V73, P92; GRIFFING B, 1976, GENETICS, V82, P723; Griffing B., 1967, AUST J BIOL SCI, V10, P127; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Hadfield JD, 2007, GENETICS, V177, P667, DOI 10.1534/genetics.107.075622; Hadfield JD, 2011, GENETICS, V187, P1099, DOI 10.1534/genetics.110.124990; Hamel S, 2009, ECOLOGY, V90, P1981, DOI 10.1890/08-0596.1; Hansen TF, 2003, J EXP ZOOL PART B, V296B, P23, DOI 10.1002/jez.b.00014; House CM, 2012, J EVOLUTION BIOL, V25, P1711, DOI 10.1111/j.1420-9101.2012.02559.x; Kingsolver JG, 2001, AM NAT, V157, P245, DOI 10.1086/319193; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; Kolliker M, 2005, AM NAT, V166, P506, DOI 10.1086/491687; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Kruuk LEB, 2002, EVOLUTION, V56, P1683; Kruuk LEB, 2008, ANNU REV ECOL EVOL S, V39, P524; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Lush J.L., 1937, ANIMAL BREEDING PLAN; Lynch M, 1998, GENETICS ANAL QUANTI, P980; McGlothlin JW, 2010, EVOLUTION, V64, P2558, DOI 10.1111/j.1558-5646.2010.01012.x; McGlothlin JW, 2009, EVOLUTION, V63, P1785, DOI 10.1111/j.1558-5646.2009.00676.x; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Moore AJ, 1997, EVOLUTION, V51, P1352, DOI 10.1111/j.1558-5646.1997.tb01458.x; Moore AJ, 2002, AM NAT, V160, pS186, DOI 10.1086/342899; Morrissey MB, 2010, J EVOLUTION BIOL, V23, P2277, DOI 10.1111/j.1420-9101.2010.02084.x; Moyes K, 2009, J ANIM ECOL, V78, P406, DOI 10.1111/j.1365-2656.2008.01497.x; Muir WM, 2005, GENETICS, V170, P1247, DOI 10.1534/genetics.104.035956; Muir WM, 1998, POULTRY SCI, V77, P1781, DOI 10.1093/ps/77.12.1781; Nicholson, 1954, AUST J ZOOL, V2, P9; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; ROBERTSON A, 1966, ANIM PROD, V8, P95, DOI 10.1017/S0003356100037752; Roff DA, 1996, EVOLUTION, V50, P1392, DOI 10.1111/j.1558-5646.1996.tb03913.x; ROFF DA, 2002, LIFE HIST EVOLUTION; Rudin FS, 2012, P ROY SOC B-BIOL SCI, V279, P1904, DOI 10.1098/rspb.2011.2418; Siepielski AM, 2009, ECOL LETT, V12, P1261, DOI 10.1111/j.1461-0248.2009.01381.x; Sih A, 2009, BEHAV ECOL SOCIOBIOL, V63, P975, DOI 10.1007/s00265-009-0725-6; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stinchcombe JR, 2002, AM NAT, V160, P511, DOI 10.1086/342069; Stopher KV, 2012, EVOLUTION, V66, P2411, DOI 10.1111/j.1558-5646.2012.01620.x; Teplitsky C, 2010, J EVOLUTION BIOL, V23, P935, DOI 10.1111/j.1420-9101.2010.01959.x; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Wey T, 2008, ANIM BEHAV, V75, P333, DOI 10.1016/j.anbehav.2007.06.020; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216; Wilson AJ, 2011, J EVOLUTION BIOL, V24, P772, DOI 10.1111/j.1420-9101.2010.02212.x; Wilson A. J., 2009, J ANIM ECOL, V79, P13, DOI DOI 10.1111/J.1365-2656.2009.01639.X); Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson AJ, 2009, P R SOC B, V276, P533, DOI 10.1098/rspb.2008.1193; Wolf JB, 2003, P NATL ACAD SCI USA, V100, P4655, DOI 10.1073/pnas.0635741100; Wolf JB, 1999, AM NAT, V153, P254, DOI 10.1086/303168 77 34 34 6 77 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 0018-067X 1365-2540 HEREDITY Heredity JAN 2014 112 1 SI 70 78 10.1038/hdy.2013.7 9 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 276LF WOS:000328751100009 23443060 Bronze, Green Published 2019-02-21 J Gaillard, JM; Nilsen, EB; Odden, J; Andren, H; Linnell, JDC Gaillard, Jean-Michel; Nilsen, Erlend B.; Odden, John; Andren, Henrik; Linnell, John D. C. One size fits all: Eurasian lynx females share a common optimal litter size JOURNAL OF ANIMAL ECOLOGY English Article environmental stochasticity; felids; individual optimization; Lack clutch size; life-history evolution; reproductive tactic LIFE-HISTORY TRAITS; CLUTCH SIZE; ROE DEER; EVOLUTIONARY BETS; GROUND-SQUIRRELS; FITNESS COSTS; WILD BOAR; GREAT TIT; REPRODUCTION; POPULATION Lack proposed that the average clutch size of altricial species should be determined by the average maximum number of young the parents can raise such that all females in a given population should share a common optimal clutch size. Support for this model remains equivocal and recent studies have suggested that intra-population variation in clutch size is adaptive because each female has its own optimal clutch size associated with its intrinsic ability to raise offspring. Although Lack litter size and condition-dependent litter size are presented as two competing models, both are based on the concept of individual optimization. We propose a unified optimal litter size model (called adaptive litter size') and identify a set of conditions under which a common vs. a state-dependent optimal litter size should be observed. We test whether females of Eurasian lynx (Lynx lynx) have a common optimal litter size, or whether they adjust their litter size according to their state. We used a detailed individual-based data set collected from contrasting populations of Eurasian lynx in Scandinavia. Observed reproductive patterns in female lynx provide strong support for the existence of a common optimal litter size. Litter size did not vary according to female body mass or reproductive category, or among contrasted populations and years. A litter size of 2 was associated with a higher fitness than both smaller and larger litters, and thus corresponded to the adaptive litter size' for female lynx. We suggest that the reproductive pattern of female lynx might correspond to a risk avoidance tactic common to all individuals, which has evolved in response to strong environmental constraints generated by a highly unpredictable food supply during lactation. [Gaillard, Jean-Michel] Univ Lyon 1, Unite Mixte Rech Biometrie & Biol Evolut 5558, F-69622 Villeurbanne, France; [Nilsen, Erlend B.; Odden, John; Linnell, John D. C.] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway; [Andren, Henrik] Swedish Univ Agr Sci, Grimso Wildlife Res Stn, Dept Ecol, SE-73091 Riddarhyttan, Sweden Gaillard, JM (reprint author), Univ Lyon 1, Unite Mixte Rech Biometrie & Biol Evolut 5558, Bat G Mendel,43 Bd 11 Novembre 1918, F-69622 Villeurbanne, France. jean-michel.gaillard@univ-lyon1.fr Nilsen, Erlend Birkeland/G-3134-2017 Nilsen, Erlend Birkeland/0000-0002-5119-8331; Linnell, John D C/0000-0002-8370-5633; Andren, Henrik/0000-0002-5616-2426 ITTECOP research programme; CNRS; Swedish Environmental Protection Agency; Swedish Association for Hunting and Wildlife Management; Norwegian Directorate for Nature Management; Norwegian Research Council; Regional Management Board from Region 2 (Norway); Regional Management Board from Region 3 (Norway); Regional Management Board from Region 4 (Norway); office of Environmental Affairs in Hedmark county; office of Environmental Affairs in Oslo county; office of Environmental Affairs in Akershus county; office of Environmental Affairs in Ostfold county; office of Environmental Affairs in Oppland county; office of Environmental Affairs in Buskerud county; office of Environmental Affairs in Telemark county We thank all the highly skilled and dedicated people who were involved in the field work that allowed the collection of the data analysed in this article. We thank the ITTECOP research programme, the CNRS, and the Swedish Environmental Protection Agency, the Swedish Association for Hunting and Wildlife Management, the Norwegian Directorate for Nature Management, the Norwegian Research Council, the Regional Management Board from Region 2, 3 and 4 (Norway), and the offices of Environmental Affairs in Hedmark, Oslo and Akershus, Ostfold, Oppland, Buskerud and Telemark counties for having funded this project over so many years. We are most grateful to Sebastien Devillard, Steve Dobson, Marco Festa-Bianchet, Dan Nussey, Doug Morris and an anonymous referee for extremely constructive and helpful comments on previous drafts of this article. Andersen R, 2000, J ANIM ECOL, V69, P672, DOI 10.1046/j.1365-2656.2000.00425.x; Andren H, 2006, BIOL CONSERV, V131, P23, DOI 10.1016/j.biocon.2006.01.025; Andren H, 2002, WILDLIFE BIOL, V8, P299; Arnemo JM, 2006, WILDLIFE BIOL, V12, P109, DOI 10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2; Arnemo JM, 1999, WILDLIFE BIOL, V5, P245; BATES D, 2008, LME4 LINEAR MIXED EF; Bieber C, 2005, J APPL ECOL, V42, P1203, DOI 10.1111/j.1365-2664.2005.01094.x; BOYCE MS, 1987, ECOLOGY, V68, P142, DOI 10.2307/1938814; BOYCE MS, 1977, THEOR POPUL BIOL, V12, P366, DOI 10.1016/0040-5809(77)90050-8; Breitenmoser-Wursten C, 2007, WILDLIFE BIOL, V13, P381, DOI 10.2981/0909-6396(2007)13[381:DOLLLI]2.0.CO;2; Broussard DR, 2008, J MAMMAL, V89, P145, DOI 10.1644/06-MAMM-A-357.1; BULMER MG, 1985, AM NAT, V126, P63, DOI 10.1086/284396; Burnham K. P, 2002, MODEL SELECTION MULT; BYERS JA, 1997, AM PRONGHORN SOCIAL; Clutton-Brock T, 2010, TRENDS ECOL EVOL, V25, P562, DOI 10.1016/j.tree.2010.08.002; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; CURIO E, 1983, IBIS, V125, P400, DOI 10.1111/j.1474-919X.1983.tb03130.x; DRENT RH, 1980, ARDEA, V68, P225; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; Hayen A, 2007, J SCI MED SPORT, V10, P201, DOI 10.1016/j.jsams.2006.09.002; Henriksen HB, 2005, EUR J WILDLIFE RES, V51, P151, DOI 10.1007/s10344-005-0104-1; Hewison AJM, 2001, J ANIM ECOL, V70, P600, DOI 10.1046/j.1365-2656.2001.00528.x; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Krofel M, 2012, BEHAV ECOL SOCIOBIOL, V66, P1297, DOI 10.1007/s00265-012-1384-6; KVAM T, 1984, Acta Zoologica Fennica, V171, P221; LACK D, 1948, J ANIM ECOL, V17, P45, DOI 10.2307/1608; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; LINDEN M, 1989, TRENDS ECOL EVOL, V4, P367, DOI 10.1016/0169-5347(89)90101-8; Mattisson J, 2011, BIOL CONSERV, V144, P3009, DOI 10.1016/j.biocon.2011.09.004; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; MORRIS DW, 1987, OIKOS, V49, P332, DOI 10.2307/3565769; MORRIS DW, 1985, OIKOS, V45, P290, DOI 10.2307/3565719; MOUNTFORD MD, 1968, J ANIM ECOL, V37, P363, DOI 10.2307/2953; Murphy MT, 2000, ECOL MONOGR, V70, P1, DOI 10.1890/0012-9615(2000)070[0001:EOCSIT]2.0.CO;2; Nilsen EB, 2012, ACTA THERIOL, V57, P217, DOI 10.1007/s13364-011-0066-5; Nilsen EB, 2009, J ANIM ECOL, V78, P741, DOI 10.1111/j.1365-2656.2009.01547.x; Nilsen EB, 2009, J ANIM ECOL, V78, P585, DOI 10.1111/j.1365-2656.2009.01523.x; Nussey DH, 2007, CURR BIOL, V17, pR1000, DOI 10.1016/j.cub.2007.10.005; Odden J, 2006, EUR J WILDLIFE RES, V52, P237, DOI 10.1007/s10344-006-0052-4; PERRINS CM, 1975, J ANIM ECOL, V44, P695, DOI 10.2307/3712; PETTIFOR RA, 1988, NATURE, V336, P160, DOI 10.1038/336160a0; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; POWER HW, 1989, CONDOR, V91, P753, DOI 10.2307/1368058; R Development Core Team, 2010, R LANG ENV STAT COMP; Rieger JF, 1996, OECOLOGIA, V107, P463, DOI 10.1007/BF00333936; Risch TS, 2007, ECOLOGY, V88, P306, DOI 10.1890/06-0249; Rutz C, 2006, P ROY SOC B-BIOL SCI, V273, P579, DOI 10.1098/rspb.2005.3353; Samelius G, 2012, J ZOOL, V286, P120, DOI 10.1111/j.1469-7998.2011.00857.x; Schmidt K, 1998, ACTA THERIOL, V43, P391, DOI 10.4098/AT.arch.98-50; Servanty S, 2009, J ANIM ECOL, V78, P1278, DOI 10.1111/j.1365-2656.2009.01579.x; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; THOMAS CD, 1994, CONSERV BIOL, V8, P373, DOI 10.1046/j.1523-1739.1994.08020373.x; TULJAPURKAR S, 1989, THEOR POPUL BIOL, V35, P227, DOI 10.1016/0040-5809(89)90001-4; Van VALEN LEIGH, 1965, AMER NATUR, V99, P377, DOI 10.1086/282379; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393 62 8 8 3 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0021-8790 1365-2656 J ANIM ECOL J. Anim. Ecol. JAN 2014 83 1 107 115 10.1111/1365-2656.12110 9 Ecology; Zoology Environmental Sciences & Ecology; Zoology 274OH WOS:000328615300012 23859302 2019-02-21 J Shibata, R; Shibata, M; Tanaka, H; Iida, S; Masaki, T; Hatta, F; Kurokawa, H; Nakashizuka, T Shibata, Rei; Shibata, Mitsue; Tanaka, Hiroshi; Iida, Shigeo; Masaki, Takashi; Hatta, Fumika; Kurokawa, Hiroko; Nakashizuka, Tohru Interspecific variation in the size-dependent resprouting ability of temperate woody species and its adaptive significance JOURNAL OF ECOLOGY English Article demographic parameter; disturbance regime; life-history strategy; Ogawa Forest Reserve; plant development and life-history traits; plant functional trait; resprouting ability; shade tolerance; temperate forest COASTAL DUNE FOREST; RAIN-FOREST; MEDITERRANEAN BASIN; TREE REGENERATION; TROPICAL FOREST; SHADE TOLERANCE; BEECH FOREST; DISTURBANCE; STRATEGY; LEAF Resprouting of woody species after above-ground damage may help plants to persist longer at a given site and quickly reoccupy disturbed sites, thereby strongly influencing forest dynamics. Resprouting has been discussed from two adaptation perspectives: recovery from damage by catastrophic disturbance and survival in frequently disturbed shaded understorey. However, few studies have comprehensively dealt with both adaptation types to understand resprouting strategies. To understand the adaptive significance of resprouting, we assessed the size dependence of resprouting ability after stem clipping for 24 deciduous broad-leaved species, including shrubs, sub-canopy and canopy trees, in a cool-temperate forest in Japan. The community assembly includes species adapted to past catastrophic disturbances (e.g. fire, logging) and to stable forest with intermittent treefall (currently the dominant disturbance). We correlated resprouting ability with life-history strategies based on demographic parameters and plant functional traits, such as leaf mass per area (LMA), leaf toughness and wood density. All the studied species could resprout in juveniles, and resprouting ability increased as stump size increased. Most sub-canopy and canopy trees lost their ability to resprout after attaining a particular stump size, whereas shrub species retained the ability to resprout throughout their lifetimes. The relative growth rate, LMA and foliar nitrogen did not greatly influence the resprouting ability of a species. In contrast, species with smaller maximum size, lower leaf toughness and lower wood density had better juvenile resprouting ability. This better resprouting ability may have evolved because these characteristics make them more vulnerable to shaded understorey. However, species with larger maximum size and lower leaf toughness retained their ability to resprout to a larger size.Synthesis. A better resprouting ability is related to the ability to survive frequent disturbances, in juveniles, which are characteristics of both forest understorey and frequent fire or drought. To retain resprouting ability until grown seems to be an adaptation to survive infrequent large disturbances. Light-demanding species, which generally have better resprouting ability than shade-tolerants both in juveniles and adults, are adapted to disturbances of various scale and frequency; however, shade-tolerants could survive well in the understorey due to a combination of stronger physical defences and resprouting ability. [Shibata, Rei; Hatta, Fumika; Kurokawa, Hiroko; Nakashizuka, Tohru] Tohoku Univ, Grad Sch Life Sci, Aoba Ku, Sendai, Miyagi 9808578, Japan; [Shibata, Mitsue] Tohoku Res Ctr, Forestry & Forest Prod Res Inst, Morioka, Iwate 0200123, Japan; [Tanaka, Hiroshi; Masaki, Takashi] Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan; [Iida, Shigeo] Hokkaido Res Ctr, Forestry & Forest Prod Res Inst, Sapporo, Hokkaido 0628516, Japan Kurokawa, H (reprint author), Tohoku Univ, Grad Sch Life Sci, Aoba Ku, 6-3 Aoba, Sendai, Miyagi 9808578, Japan. hiro@m.tohoku.ac.jp Environment Research and Technology Development Fund of the Ministry of the Environment, Japan [S-9-3]; Research Funds for the National Organizations for Pollution Prevention of the Ministry of the Environment, Japan; FFPRI, Japan; [2337007] We thank Dr. S. Abe and other members of the Forestry and Forest Products Research Institute (FFPRI) for the opportunity to conduct research in the Ogawa Forest Reserve and for their advice in the field; Mr. S. Ishida and M. Uno from Tohoku University for helping to collect the resprouting data; Prof. K. Hikosaka from Tohoku University for detailed comments and suggestions on an early version of this article; Drs. S. Sakai, T. Sasaki, M. Aiba and T. Itagaki from Tohoku University for providing valuable suggestion throughout our study; and all researchers who were studying in the Ogawa Forest Reserve for helping in the field and in the laboratory work. We also thank an associate editor, Dr. Peter Klinkhamer, and two anonymous reviewers for providing valuable comments to improve our manuscript. This study was supported by a Grant-in-Aid for Scientific Research (B) (2337007), by the Environment Research and Technology Development Fund (S-9-3) of the Ministry of the Environment, Japan, by Research Funds for the National Organizations for Pollution Prevention of the Ministry of the Environment, Japan, and by Research grant of the FFPRI, Japan. Aiba M, 2009, FUNCT ECOL, V23, P265, DOI 10.1111/j.1365-2435.2008.01500.x; AUGSPURGER CK, 1984, ECOLOGY, V65, P1705, DOI 10.2307/1937766; AUGSPURGER CK, 1987, ECOLOGY, V68, P27, DOI 10.2307/1938802; Bell DT, 2001, BOT REV, V67, P417, DOI 10.1007/BF02857891; Bellingham PJ, 2000, OIKOS, V89, P409, DOI 10.1034/j.1600-0706.2000.890224.x; BELLINGHAM PJ, 1994, J ECOL, V82, P747, DOI 10.2307/2261440; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; CLARK DB, 1991, J ECOL, V79, P447, DOI 10.2307/2260725; Clarke PJ, 2013, NEW PHYTOL, V197, P19, DOI 10.1111/nph.12001; Clarke PJ, 2005, J ECOL, V93, P544, DOI 10.1111/j.1365-2745.2005.00971.x; Cooper-Ellis S, 1999, ECOLOGY, V80, P2683, DOI 10.1890/0012-9658(1999)080[2683:FRTCWR]2.0.CO;2; Del Tredici P, 2001, BOT REV, V67, P121, DOI 10.1007/BF02858075; Dietze MC, 2008, ECOL MONOGR, V78, P331, DOI 10.1890/07-0271.1; Faraway J. J., 2006, EXTENDING LINEAR MOD; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Fujiki D, 2006, ECOL RES, V21, P380, DOI 10.1007/s11284-006-0169-7; GARTNER BL, 1989, BIOTROPICA, V21, P303, DOI 10.2307/2388280; Goto Y, 1996, VEGETATIO, V122, P157, DOI 10.1007/BF00044698; Hara M, 2004, J VEG SCI, V15, P475, DOI 10.1658/1100-9233(2004)015[0475:PDOFUS]2.0.CO;2; HARA M, 1987, VEGETATIO, V71, P67; Hernandez EI, 2011, PLANT ECOL, V212, P1959, DOI 10.1007/s11258-011-9976-1; Ickes K, 2003, J ECOL, V91, P222, DOI 10.1046/j.1365-2745.2003.00767.x; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Kabeya D, 2005, ANN BOT-LONDON, V96, P479, DOI 10.1093/aob/mci200; KAMITANI T, 1986, Journal of the Japanese Forestry Society, V68, P127; Kitajima K, 2010, NEW PHYTOL, V186, P708, DOI 10.1111/j.1469-8137.2010.03212.x; Knox KJE, 2005, FUNCT ECOL, V19, P690, DOI 10.1111/j.1365-2435.2005.01006.x; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; Masaki T, 2002, ECOL STU AN, V158, P53; Masaki T, 2012, J PLANT RES, V125, P103, DOI 10.1007/s10265-011-0423-0; Mason NWH, 2010, J ECOL, V98, P1422, DOI 10.1111/j.1365-2745.2010.01714.x; Midgley JJ, 1996, ECOGRAPHY, V19, P92, DOI 10.1111/j.1600-0587.1996.tb00159.x; Moreira B, 2012, OIKOS, V121, P1577, DOI 10.1111/j.1600-0706.2011.20258.x; Muggeo V. M. R., 2011, SEGMENTED SEGMENTED; Muller-Landau HC, 2004, BIOTROPICA, V36, P20, DOI 10.1111/j.1744-7429.2004.tb00292.x; NAKASHIZUKA T, 2002, DIVERSITY INTERACTIO; Nakayama S, 2000, SEEDS WILD PLANTS JA; Nzunda EF, 2008, FUNCT ECOL, V22, P577, DOI 10.1111/j.1365-2435.2008.01405.x; Nzunda EF, 2011, PLANT ECOL, V212, P1991, DOI 10.1007/s11258-011-9991-2; Nzunda EF, 2007, J VEG SCI, V18, P693, DOI 10.1658/1100-9233(2007)18[693:MTISCD]2.0.CO;2; Paciorek CJ, 2000, J ECOL, V88, P765, DOI 10.1046/j.1365-2745.2000.00494.x; Paradis E., 2011, APE ANAL PHYLOGENETI; Paula S, 2006, FUNCT ECOL, V20, P941, DOI 10.1111/j.1365-2435.2006.01185.x; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2010, ECOLOGY, V91, P2613, DOI 10.1890/09-0862.1; R Development Core Team, 2011, R LANG ENV STAT COMP; Reich PB, 1998, FUNCT ECOL, V12, P395, DOI 10.1046/j.1365-2435.1998.00209.x; Salk CF, 2011, OECOLOGIA, V166, P485, DOI 10.1007/s00442-010-1850-7; Shibata M, 2010, ECOSCIENCE, V17, P137, DOI 10.2980/17-2-3163; Suzuki Wajirou, 2002, VVolume 158, P27; Tanentzap AJ, 2012, J ECOL, V100, P171, DOI 10.1111/j.1365-2745.2011.01879.x; Toms JD, 2003, ECOLOGY, V84, P2034, DOI 10.1890/02-0472; van Nieuwstadt M.G.L, 2002, THESIS UTRECHT U UTR; Vesk PA, 2004, OIKOS, V106, P200, DOI 10.1111/j.0030-1299.2004.13204.x; Webb C. O., 2009, PHYLOMATIC DATABASE; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038 57 15 16 3 65 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-0477 1365-2745 J ECOL J. Ecol. JAN 2014 102 1 209 220 10.1111/1365-2745.12174 12 Plant Sciences; Ecology Plant Sciences; Environmental Sciences & Ecology 273SC WOS:000328555600023 Bronze 2019-02-21 J Dahirel, M; Ansart, A; Madec, L Dahirel, Maxime; Ansart, Armelle; Madec, Luc Stage- and weather-dependent dispersal in the brown garden snail Cornu aspersum POPULATION ECOLOGY English Article Dispersal distances; Helix aspersa; Life-history strategies; Natal dispersal; Phenotype-dependent dispersal HELIX-ASPERSA; LAND SNAIL; NATAL DISPERSAL; DENSITY; SEX; CONSEQUENCES; BEHAVIOR; GROWTH; AVAILABILITY; REPRODUCTION Dispersal decisions are often condition-dependent, influenced by the interaction of individual phenotype and environmental conditions. Terrestrial Gastropods are simultaneous hermaphrodites, a reproductive system rarely studied in the context of dispersal. Moreover, the energetic cost of their movement is one of the highest among animals. Despite these features, which make them valuable models to understand the trade-offs between dispersal and other life-history traits, their dispersal strategies have been barely explored. We studied the movements of subadults and adults of the brown garden snail Cornu aspersum in a semi-natural 4-patch network, for 2 months in 2011 (a dry year) and 1 month in 2012 (a wet year). We assessed the effects of life-history stage (subadult/adult) and weather conditions on dispersal propensity and dispersal speed. Snails were more mobile under humid and warm weather, but nearly all individuals left patches when the relative humidity was close to 100 % in 2012. Because such humidity levels are potentially lethal to C. aspersum, we argue these extreme emigration rates might be an emergency escape response to harmful conditions. Despite a theoretically higher cost of movement, we found that subadults emigrated more, and dispersed faster and further, than adults. Thus, and contrary to what was expected, direct costs of movement do not play the main role in shaping dispersal in C. aspersum. Observed differences between subadults and adults in dispersal behaviour are discussed in the context of intraspecific competition, inbreeding avoidance and relative costs of male and female reproduction. [Dahirel, Maxime; Ansart, Armelle; Madec, Luc] Univ Rennes 1, CNRS, UMR Ecobio 6553, F-35042 Rennes, France Dahirel, M (reprint author), Univ Rennes 1, CNRS, UMR Ecobio 6553, 263 Ave Gen Leclerc, F-35042 Rennes, France. maxime.dahirel@yahoo.fr Dahirel, Maxime/0000-0001-8077-7765 Aubry S, 2006, J ANIM ECOL, V75, P802, DOI 10.1111/j.1365-2656.2006.01100.x; Baeza JA, 2007, BEHAV ECOL SOCIOBIOL, V61, P365, DOI 10.1007/s00265-006-0265-2; Baguette M, 2007, LANDSCAPE ECOL, V22, P1117, DOI 10.1007/s10980-007-9108-4; Bailey S.E.R., 1989, Haliotis, V19, P23; Bailey SER, 1975, J MOLLUS STUD, V41, P415; Barker G.M., 2001, P1, DOI 10.1079/9780851993188.0001; Barker G. M, 2001, BIOL TERRESTRIAL MOL; Barker G. M, 2004, NATURAL ENEMIES TERR; Barker G. M, 2002, MOLLUSCS CROP PESTS; Barton KA, 2012, R PACKAGE MUMIN MODE; Bates D., 2011, R PACKAGE LME4 LINEA; BAUR A, 1993, J ZOOL, V230, P87, DOI 10.1111/j.1469-7998.1993.tb02674.x; Baur B, 1997, INVERTEBR BIOL, V116, P294, DOI 10.2307/3226861; BAUR B, 1990, Malacological Review, V23, P103; BAUR B., 1993, ANN NATURHISTORISC B, V94, P307; Benard MF, 2008, AM NAT, V171, P553, DOI 10.1086/587072; Bitume EV, 2013, ECOL LETT, V16, P430, DOI 10.1111/ele.12057; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Bowler DE, 2009, J ANIM ECOL, V78, P1234, DOI 10.1111/j.1365-2656.2009.01580.x; BRIDE J, 1991, REPROD NUTR DEV, V31, P81, DOI 10.1051/rnd:19910108; Burnham K. P, 2002, MODEL SELECTION MULT; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Cook A., 2001, P447, DOI 10.1079/9780851993188.0447; Costello CM, 2008, MOL ECOL, V17, P4713, DOI 10.1111/j.1365-294X.2008.03930.x; Cowie RH, 2011, ENCY BIOL INVASIONS, P634; Dale S, 2001, OIKOS, V92, P344, DOI 10.1034/j.1600-0706.2001.920217.x; DAN N, 1982, J MOLLUS STUD, V48, P257, DOI 10.1093/oxfordjournals.mollus.a065647; Dan N., 1978, THESIS U MANCHESTER; Danchin E, 2002, BEHAV ECOL SOCIOBIOL, V51, P153, DOI 10.1007/s00265-001-0423-5; Debeffe L, 2012, J ANIM ECOL, V81, DOI 10.1111/j.1365-2656.2012.02014.x; Delattre T, 2010, THESIS U RENNES 1; DEMATOS RMA, 1984, BROTERIA GENETICA LI, V5, P181; DENNY M, 1980, SCIENCE, V208, P1288, DOI 10.1126/science.208.4449.1288; Dorge N., 1999, Zeitschrift fur Okologie und Naturschutz, V8, P1; FEARNLEY RH, 1993, THESIS U MANCHESTER; Gonzalez O, 2008, CIENC INVESTIG AGRAR, V35, P251, DOI 10.4067/S0718-16202008000300002; Guerra PA, 2011, BIOL REV, V86, P813, DOI 10.1111/j.1469-185X.2010.00172.x; Guiller A, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0049674; Hanski I, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P290; Haynes KJ, 2006, OIKOS, V113, P43, DOI 10.1111/j.0030-1299.2006.13977.x; Henry PY, 2007, INVERTEBR BIOL, V126, P138, DOI 10.1111/j.1744-7410.2007.00084.x; Honek A, 2011, ANN APPL BIOL, V158, P79, DOI 10.1111/j.1744-7348.2010.00442.x; Iglesias J, 1999, J MOLLUS STUD, V65, P411, DOI 10.1093/mollus/65.4.411; Ims Rolf A., 2001, P203; Klein-Rollais D, 1993, THESIS U RENNES 1 RE, P1; Kupfernagel S, 2011, CAN J ZOOL, V89, P1041, DOI 10.1139/Z11-080; Mathieu J, 2010, SOIL BIOL BIOCHEM, V42, P203, DOI 10.1016/j.soilbio.2009.10.018; Miller TEX, 2013, ECOL LETT, V16, P354, DOI 10.1111/ele.12049; OOSTERHOFF L M, 1977, Netherlands Journal of Zoology, V27, P1; Perrin Nicolas, 2001, P123; Peschel M, 1996, J COMP PHYSIOL A, V178, P317; R Development Core Team, 2011, R LANG ENV STAT COMP; Reynolds AM, 2007, BIOL LETTERS, V3, P237, DOI 10.1098/rsbl.2007.0109; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Saccheri IJ, 2002, P ROY SOC B-BIOL SCI, V269, P1073, DOI 10.1098/rspb.2002.1963; Saether BE, 1999, P ROY SOC B-BIOL SCI, V266, P113, DOI 10.1098/rspb.1999.0610; Schooley RL, 2004, LANDSCAPE ECOL, V19, P801, DOI 10.1007/s10980-005-0093-2; Starrfelt J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P19; Stratton L. W., 1964, Field Studies, V2, P41; TOMIYAMA K, 1993, J MOLLUS STUD, V59, P315, DOI 10.1093/mollus/59.3.315; Tuda M, 2002, POPUL ECOL, V44, P251, DOI 10.1007/s101440200028; Turchin P, 1998, QUANTITATIVE ANAL MO 63 9 9 1 58 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. JAN 2014 56 1 227 237 10.1007/s10144-013-0407-0 11 Ecology Environmental Sciences & Ecology 277XG WOS:000328852000023 2019-02-21 J Irwin, MT; Raharison, JL; Raubenheimer, D; Chapman, CA; Rothman, JM Irwin, Mitchell T.; Raharison, Jean-Luc; Raubenheimer, David; Chapman, Colin A.; Rothman, Jessica M. Nutritional Correlates of the "Lean Season": Effects of Seasonality and Frugivory on the Nutritional Ecology of Diademed Sifakas AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article lemurs; nutrient intake; fallback foods; seasonality EULEMUR-FULVUS-RUFUS; PROPITHECUS-DIADEMA; EASTERN MADAGASCAR; FOLIVOROUS PRIMATES; FRAGMENTED FOREST; NONHUMAN-PRIMATES; DIETARY-RESPONSE; FEMALE DOMINANCE; FRUIT ABUNDANCE; FALLBACK FOODS Primate field studies often identify lean seasons, when preferred foods are scarce, and lower-quality, abundant foods (fallback foods) are consumed. Here, we quantify the nutritional implications of these terms for two diademed sifaka groups (Propithecus diadema) in Madagascar, using detailed feeding observations and chemical analyses of foods. In particular, we sought to understand 1) how macronutrient and energy intakes vary seasonally, including whether these intakes respond in similar or divergent ways; 2) how the amount of food ingested varies seasonally (including whether changes in amount eaten may compensate for altered food quality); and 3) correlations between these variables and the degree of frugivory. In the lean season, sifakas shifted to non-fruit foods (leaves and flowers), which tended to be high in protein while low in other macronutrients and energy, but the average composition of the most used foods in each season was similar. They also showed dramatic decreases in feeding time, food ingested, and consequently, daily intake of macronutrients and energy. The degree of frugivory in the daily diet was a strong positive predictor of feeding time, amount ingested and all macronutrient and energy intakes, though season had an independent effect. These results suggest that factors restricting how much food can be eaten (e.g., handling time, availability, or intrinsic characteristics like fiber and plant secondary metabolites) can be more important than the nutritional composition of foods themselves in determining nutritional outcomesa finding with relevance for understanding seasonal changes in behavior, life history strategies, competitive regimes, and conservation planning. Am J Phys Anthropol 153:78-91, 2014. (c) 2013 Wiley Periodicals, Inc. [Irwin, Mitchell T.] No Illinois Univ, Dept Anthropol, De Kalb, IL 60115 USA; [Raharison, Jean-Luc] Univ Antananarivo, Dept Anim Biol, Antananarivo 101, Madagascar; [Raubenheimer, David] Univ Sydney, Fac Vet Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia; [Raubenheimer, David] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia; [Chapman, Colin A.] McGill Univ, Dept Anthropol, Montreal, PQ, Canada; [Chapman, Colin A.] McGill Univ, McGill Sch Environm, Montreal, PQ, Canada; [Chapman, Colin A.] Wildlife Conservat Soc, Bronx, NY USA; [Rothman, Jessica M.] CUNY Hunter Coll, Dept Anthropol, New York, NY 10021 USA; [Rothman, Jessica M.] New York Consortium Evolutionary Primatol, New York, NY USA Irwin, MT (reprint author), No Illinois Univ, Dept Anthropol, De Kalb, IL 60115 USA. mirwin@niu.edu Irwin, Mitchell/A-1482-2012 Irwin, Mitchell/0000-0003-2088-0028; Chapman, Colin/0000-0002-8827-8140; Raubenheimer, David/0000-0001-9050-1447 Margot Marsh Biodiversity Foundation, National Geographic Society, NSERC, Gravida Grant sponsor: Margot Marsh Biodiversity Foundation, National Geographic Society, NSERC, Gravida. Altmann S. A., 1998, FORAGING SURVIVAL YE; BEESON M, 1989, OECOLOGIA, V78, P565, DOI 10.1007/BF00378749; Blanco MB, 2010, NATURWISSENSCHAFTEN, V97, P945, DOI 10.1007/s00114-010-0707-6; Brockman DK, 2005, CAM S BIO EVOL ANTHR, V44, P1, DOI 10.1017/CBO9780511542343; Campbell JL, 2004, AM J PRIMATOL, V64, P309, DOI 10.1002/ajp.20080; Campbell JL, 2001, ZOO BIOL, V20, P447, DOI 10.1002/zoo.10007; Campbell JL, 1999, AM J PRIMATOL, V48, P237, DOI 10.1002/(SICI)1098-2345(1999)48:3<237::AID-AJP5>3.3.CO;2-M; Castanet J, 2004, J ZOOL, V263, P31, DOI 10.1017/S0952836904004844; Chapman CA, 2002, INT J PRIMATOL, V23, P283, DOI 10.1023/A:1013831511405; Chapman CA, 2005, J TROP ECOL, V21, P31, DOI 10.1017/S0266467404001993; Chapman CA, 2010, BIOL CONSERV, V143, P366, DOI 10.1016/j.biocon.2009.10.023; Clissold FJ, 2009, ECOLOGY, V90, P3393, DOI 10.1890/09-0130.1; Conklin-Brittain Nancy Lou, 2006, P445; Conklin-Brittain NL, 1998, INT J PRIMATOL, V19, P971, DOI 10.1023/A:1020370119096; Curtis DJ, 2004, AM J PHYS ANTHROPOL, V124, P234, DOI 10.1002/ajpa.10268; Danish Lisa, 2006, P473; DeGabriel JL, 2009, OECOLOGIA, V161, P539, DOI 10.1007/s00442-009-1407-9; Dewar RE, 2007, P NATL ACAD SCI USA, V104, P13723, DOI 10.1073/pnas.0704346104; Doran-Sheehy D, 2009, AM J PHYS ANTHROPOL, V140, P727, DOI 10.1002/ajpa.21118; DUBOIS M, 1956, ANAL CHEM, V28, P350, DOI 10.1021/ac60111a017; Faulkner AL, 2006, FOLIA PRIMATOL, V77, P218, DOI 10.1159/000091231; Felton AM, 2009, INT J PRIMATOL, V30, P675, DOI 10.1007/s10764-009-9367-9; Ganzhorn JU, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0008253; GANZHORN JU, 1992, OECOLOGIA, V91, P540, DOI 10.1007/BF00650329; Ganzhorn JU, 2002, OECOLOGIA, V131, P427, DOI 10.1007/s00442-002-0891-y; Gates RJ, 2001, WILDLIFE MONOGR, P1; Gogarten JF, 2012, EVOLUTION, V66, P3252, DOI 10.1111/j.1558-5646.2012.01668.x; Gould L, 2011, AM J PHYS ANTHROPOL, V145, P469, DOI 10.1002/ajpa.21530; Hemingway CA, 2005, CAM S BIO EVOL ANTHR, V44, P57, DOI 10.1017/CBO9780511542343.004; Irwin MT, 2008, BIOTROPICA, V40, P231, DOI 10.1111/j.1744-7429.2007.00368.x; Irwin Mitchell T., 2006, P305, DOI 10.1007/978-0-387-34586-4_14; Irwin MT, 2008, INT J PRIMATOL, V29, P95, DOI 10.1007/s10764-007-9222-9; Irwin MT, 2010, AM J PRIMATOL, V72, P1013, DOI 10.1002/ajp.20847; IRWIN MT, 2006, ECOLOGICAL IMPACTS F; Janson CH, 2000, PRIMATE COMMUNITIES, P237; Janson C, 2005, CAM S BIO EVOL ANTHR, V44, P307, DOI 10.1017/CBO9780511542343.012; Kappeler PM, 2008, BEHAV ECOL SOCIOBIOL, V62, P1007, DOI 10.1007/s00265-007-0528-6; Koenig A, 1997, J ZOOL, V243, P215, DOI 10.1111/j.1469-7998.1997.tb02778.x; Lambert JE, 2004, AM J PHYS ANTHROPOL, V125, P363, DOI 10.1002/ajpa.10403; Licitra G, 1996, ANIM FEED SCI TECH, V57, P347, DOI 10.1016/0377-8401(95)00837-3; Marsh KJ, 2006, J CHEM ECOL, V32, P1247, DOI 10.1007/s10886-006-9082-3; Marshall AJ, 2007, INT J PRIMATOL, V28, P1218, DOI 10.1007/s10764-007-9218-5; Moore BD, 2010, ECOLOGY, V91, P3165, DOI 10.1890/09-1714.1; Munn AJ, 2009, PHYSIOL BIOCHEM ZOOL, V82, P270, DOI 10.1086/597527; NAGY KA, 1994, AUST J ZOOL, V42, P43, DOI 10.1071/ZO9940043; National Research Council, 2003, NUTR REQ NONH PRIM; Norconk Marilyn A., 2009, P279, DOI 10.1007/978-0-387-78705-3_11; Norscia I, 2006, INT J PRIMATOL, V27, P1001, DOI 10.1007/s10764-006-9056-x; OVERDORFF DJ, 1993, INT J PRIMATOL, V14, P721, DOI 10.1007/BF02192188; Overdorff DJ, 1996, AM J PRIMATOL, V40, P327, DOI 10.1002/(SICI)1098-2345(1996)40:4<327::AID-AJP3>3.0.CO;2-#; Post E, 1999, P NATL ACAD SCI USA, V96, P4467, DOI 10.1073/pnas.96.8.4467; Power ML, 1996, AM J PRIMATOL, V40, P131, DOI 10.1002/(SICI)1098-2345(1996)40:2<131::AID-AJP2>3.3.CO;2-8; Powzyk JA, 2003, INT J PRIMATOL, V24, P1143, DOI 10.1023/B:IJOP.0000005984.36518.94; Randrianambinina B, 2003, PRIMATES, V44, P321, DOI 10.1007/s10329-003-0046-8; RICHARD AF, 1978, BEHAV VARIATION CASE; Rothman JM, 2007, J TROP ECOL, V23, P673, DOI 10.1017/S0266467407004555; Rothman JM, 2008, OECOLOGIA, V155, P111, DOI 10.1007/s00442-007-0901-1; Rothman JM, 2006, AM J PRIMATOL, V68, P675, DOI 10.1002/ajp.20243; Rothman JM, 2012, INT J PRIMATOL, V33, P542, DOI 10.1007/s10764-011-9568-x; Sauther ML, 2009, AM J PHYS ANTHROPOL, V140, P671, DOI 10.1002/ajpa.21128; Schlulke O, 2006, AM J PRIMATOL, V68, P951, DOI 10.1002/ajp.20300; Shultz S, 2011, NATURE, V479, P219, DOI 10.1038/nature10601; Sterck EHM, 1997, BEHAV ECOL SOCIOBIOL, V41, P291, DOI 10.1007/s002650050390; van Schaik CP, 2005, CAM S BIO EVOL ANTHR, V44, P445, DOI 10.1017/CBO9780511542343.016; Vasey Natalie, 2006, P275, DOI 10.1007/978-0-387-34586-4_13; Vogel ER, 2012, BIOL LETTERS, V8, P333, DOI 10.1098/rsbl.2011.1040; Wrangham RW, 1998, INT J PRIMATOL, V19, P949, DOI 10.1023/A:1020318102257; Wright PC, 1999, YEARB PHYS ANTHROPOL, V42, P31; Wright PC, 2005, Tropical Fruits and Frugivores: The Search for Strong Interactors, P121, DOI 10.1007/1-4020-3833-X_7; Yamashita N, 2008, INT J PRIMATOL, V29, P339, DOI 10.1007/s10764-008-9232-2 70 25 25 7 73 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. JAN 2014 153 1 78 91 10.1002/ajpa.22412 14 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 264RT WOS:000327898900009 24318944 2019-02-21 J Lee, VE; Head, ML; Carter, MJ; Royle, NJ Lee, Victoria E.; Head, Megan L.; Carter, Mauricio J.; Royle, Nick J. Effects of age and experience on contest behavior in the burying beetle, Nicrophorus vespilloides BEHAVIORAL ECOLOGY English Article age; contest behavior; fighting; male competition; Nicrophorus vespilloides; social experience; terminal investment; winner-loser effect AGGRESSIVE-BEHAVIOR; FIGHTING EXPERIENCE; PERSONALITY-TRAITS; PARASITOID WASP; PATERNAL CARE; COMPETITION; EVOLUTION; SUCCESS; WINNER; MATE Contest behavior forms an important part of reproductive investment. Life-history theory predicts that as individuals age and their residual reproductive value decreases, they should increase investment in contest behavior. However, other factors such as social experience may also be important in determining age-related variation in contest behavior. To understand how selection acts on contest behavior over an individual's lifetime, it is therefore important to tease apart the effects of age per se from other factors that may vary with age. Here, we independently manipulate male age and social experience to examine their effects on male contest behavior in the burying beetle Nicrophorus vespilloides. We found that social experience, but not age, influenced male contest behavior but that these changes in behavior did not alter contest outcomes. Male size (relative to his opponent) was overwhelmingly the most important factor determining contest outcome. Our results suggest that in systems with high variation in fighting ability among males, there may be little opportunity for selection to act on factors that influence contest outcomes by altering motivation to win. [Lee, Victoria E.; Carter, Mauricio J.; Royle, Nick J.] Univ Exeter, Coll Life & Environm Sci, Ctr Ecol & Conservat, Penryn TR10 9EZ, Cornwall, England; [Head, Megan L.] Australian Natl Univ, Res Sch Biol, Div Evolut Ecol & Genet, Acton, ACT 0200, Australia Head, ML (reprint author), Australian Natl Univ, Res Sch Biol, Div Evolut Ecol & Genet, Acton, ACT 0200, Australia. megan.head@anu.edu.au Carter, Mauricio/C-3099-2013; Royle, Nick/H-2802-2015; Head, Megan/D-2551-2010 Royle, Nick/0000-0002-1617-3884; Head, Megan/0000-0002-8123-7661 Natural Environment Research Council (UK) [NG/H022805/1] Natural Environment Research Council (UK) grant (NG/H022805/1) to N.J.R. Arnott G, 2009, ANIM BEHAV, V77, P991, DOI 10.1016/j.anbehav.2009.02.010; BARTLETT J, 1988, BEHAV ECOL SOCIOBIOL, V23, P297, DOI 10.1007/BF00300576; Benowitz KM, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1124; Bergman M, 2010, P ROY SOC B-BIOL SCI, V277, P3027, DOI 10.1098/rspb.2010.0646; Briffa M, 2013, ANIMAL CONTESTS, P1; Briffa M, 2013, ANIMAL CONTESTS, P47; Chamorro-Florescano IA, 2011, EVOL ECOL, V25, P277, DOI 10.1007/s10682-010-9428-8; Crawley M. J., 2007, R BOOK; Edenbrow M, 2013, OIKOS, V122, P667, DOI 10.1111/j.1600-0706.2012.20556.x; Egge AR, 2011, BEHAV ECOL SOCIOBIOL, V65, P1731, DOI 10.1007/s00265-011-1181-7; Eggert AK, 2008, P ROY SOC B-BIOL SCI, V275, P2521, DOI 10.1098/rspb.2008.0661; Fawcett TW, 2010, P ROY SOC B-BIOL SCI, V277, P1427, DOI 10.1098/rspb.2009.2088; Frost AJ, 2007, P ROY SOC B-BIOL SCI, V274, P333, DOI 10.1098/rspb.2006.3751; Garcia MJ, 2012, ETHOLOGY, V118, P821, DOI 10.1111/j.1439-0310.2012.02072.x; Goubault M, 2012, AM NAT, V180, P364, DOI 10.1086/667192; HALEY MP, 1994, BEHAV ECOL SOCIOBIOL, V34, P427, DOI 10.1007/s002650050059; Head ML, 2012, EVOLUTION, V66, P3570, DOI 10.1111/j.1558-5646.2012.01699.x; Holveck MJ, 2010, P ROY SOC B-BIOL SCI, V277, P153, DOI 10.1098/rspb.2009.1222; Hopwood PE, 2013, FUNCT ECOL, V27, P1350, DOI 10.1111/1365-2435.12137; Hsu YY, 2006, BIOL REV, V81, P33, DOI 10.1017/S146479310500686X; Jennings DJ, 2010, ANIM BEHAV, V79, P1293, DOI 10.1016/j.anbehav.2010.02.031; Johnsson JI, 1998, ANIM BEHAV, V56, P771, DOI 10.1006/anbe.1998.0824; Jolliffe I., 2002, PRINCIPAL COMPONENT; Judge KA, 2010, BEHAV ECOL SOCIOBIOL, V64, P1971, DOI 10.1007/s00265-010-1008-y; Kasumovic MM, 2011, BEHAV ECOL, V22, P39, DOI 10.1093/beheco/arq161; Kasumovic MM, 2010, BEHAV ECOL, V21, P404, DOI 10.1093/beheco/arp204; Kemp DJ, 2006, BIOL J LINN SOC, V88, P565, DOI 10.1111/j.1095-8312.2006.00643.x; Kemp DJ, 2006, ETHOLOGY, V112, P471, DOI 10.1111/j.1439-0310.2005.01173.x; Kemp DJ, 2003, BEHAV ECOL SOCIOBIOL, V54, P7, DOI 10.1007/s00265-003-0602-7; Knell RJ, 2009, J ZOOL, V278, P83, DOI 10.1111/j.1469-7998.2009.00566.x; Kozak GM, 2009, BEHAV ECOL, V20, P1282, DOI 10.1093/beheco/arp134; Oliveira RF, 1998, P ROY SOC B-BIOL SCI, V265, P1045, DOI 10.1098/rspb.1998.0397; OTRONEN M, 1988, ANN ZOOL FENN, V25, P191; OTRONEN M, 1990, ANIM BEHAV, V40, P980, DOI 10.1016/S0003-3472(05)81000-0; PARKER GA, 1974, J THEOR BIOL, V47, P223, DOI 10.1016/0022-5193(74)90111-8; Pukowski E., 1933, F Z MORPHOL OKOL TIE, V27, P518; R Development Team, 2012, R LANG ENV STAT COMP; Roff Derek A., 1992; Ruploh T, 2013, BEHAV ECOL SOCIOBIOL, V67, P175, DOI 10.1007/s00265-012-1436-y; Rutte C, 2006, TRENDS ECOL EVOL, V21, P16, DOI 10.1016/j.tree.2005.10.014; Sachser N, 2013, PHILOS T R SOC B, V368, DOI 10.1098/rstb.2012.0344; Safryn SA, 2000, J INSECT BEHAV, V13, P291, DOI 10.1023/A:1007700601095; Sharpe LL, 2005, ANIM BEHAV, V69, P1023, DOI 10.1016/j.anbehav.2004.07.013; Sneddon LU, 2000, J ZOOL, V250, P397, DOI 10.1111/j.1469-7998.2000.tb00783.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stokkebo S, 2000, ANIM BEHAV, V59, P1111, DOI 10.1006/anbe.2000.1407; Van Wilgenburg E, 2010, BIOL LETTERS, V6, P152, DOI 10.1098/rsbl.2009.0616; Walling CA, 2009, BEHAV ECOL, V20, P153, DOI 10.1093/beheco/arn127; Wong BBM, 2005, BIOL REV, V80, P559, DOI 10.1017/S1464793105006809 49 16 16 0 43 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 1465-7279 BEHAV ECOL Behav. Ecol. JAN-FEB 2014 25 1 172 179 10.1093/beheco/art101 8 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 271GO WOS:000328380000023 Bronze, Green Published 2019-02-21 J de la Cerda, HEC; Estrada, EO; Poot, FRT; Banik, SD Cuanalo de la Cerda, Heriberto E.; Ochoa Estrada, Ernesto; Tuz Poot, Felipe R.; Datta Banik, Sudip Food intake and nutrition in children 1-4 years of age in Yucatan, Mexico ANNALS OF HUMAN BIOLOGY English Article Food intake; growth; nutrition; pre-school children NATIONAL-HEALTH; ENERGY Background: The National Health and Nutrition Survey 2006 (ENSANUT in Spanish) reported high rates of under-nutrition in children of Yucatan. Is food intake the main cause of undernutrition in children of the state of Yucatan, Mexico? Aim: Identify the primary causes of under-nutrition in pre-school children in Yucatan. Subjects: A sample of 111 children (59 girls and 52 boys) aged 1-4 years representing Yucatan was taken from a database of ENSANUT 2006 and another national survey, a federal poverty mitigation programme for the state of Yucatan, Mexico entitled "Oportunidades". Methods: A human ecology approach together with life history theory was used to analyse anthropometric indices and food intake data from the ENSANUT 2006 and "Oportunidades". Results: Height and weight were significantly correlated to age and total food intake. No correlations were found between age and anthropometric indices or food intake rates. The children in the sample had adequate protein intake but deficient energy intake. No correlation was identified between nutritional status and food intake rates. Pre-schoolers with higher weight-for-height values achieved greater height-for-age. These relationships can be explained by life history theory in that energy intake was used either for maintenance (combating and recovering from infections) or growth. Conclusion: The poor relationship between food intake rates and nutritional status is probably explained by the interaction between high disease incidence and insufficient energy intake. These conditions are endemic in Yucatan due to widespread poor housing, water and sanitation conditions. [Tuz Poot, Felipe R.] Autonomous Univ Yucatan UADY, Fac Math, Merida, Yucatan, Mexico de la Cerda, HEC (reprint author), IPN, Dept Human Ecol, Cinvestav Ctr Invest & Estudios Avanzados, Merida Unit, Km 6,Carretera Antigua Progreso, Merida 97310, Yucatan, Mexico. cuanalo@mda.cinvestav.mx DATTA BANIK, SUDIP/E-3753-2013 DATTA BANIK, SUDIP/0000-0001-5359-1850 Behar M, 1977, Ann N Y Acad Sci, V300, P176, DOI 10.1111/j.1749-6632.1977.tb19316.x; Bogin B., 1999, PATTERNS HUMAN GROWT, V23; Cabrera Z, 2007, ECOL FOOD NUTR, V46, P37; CONEVAL, 2008, POBR INGR SEG ENT FE; Cuanalo de la CHE, 2009, C INT ED POP AM SIGL, P111; Food and Agriculture Organization, 2004, FOOD NUTR TECHN REP; Hernandez F, 2003, CUADERNOS DESARROLLO; *INSP, 2007, ENC NAC SAL NUTR 200; INSP (Instituto Nacional de Salud Publica), 2006, ENCUESTA NACL SALUD; Institute of Medicine, 2005, DIET REF INT EN CARB, P176; Lindsay HA, 1992, AM J CLIN NUTR, V56, P353; Lindsay HA, 1995, J NUTR, V125, p1119S; McDade WT, 2008, AM J PHYS ANTHROPOL, V136, P478; McDade WT, 2003, YEARB PHYS ANTHROPOL, V46, P100; Mundo-Rosas V, 2009, SALUD PUBLICA MEXICO, V51, pS530, DOI 10.1590/s0036-36342009001000008; Olaiz-Fernandez G, 2006, ENCUESTA NACL SALUD; Oyama S., 1985, ONTOGENY INFORM DEV; PERRIN N, 1993, ANNU REV ECOL SYST, V24, P379, DOI 10.1146/annurev.es.24.110193.002115; Powanda CM, 2003, J NUTR, V133, p322S; Rivera DJ, 2001, ECCUESTA NACL NUTR 1, p[30, 34]; Rodriguez-Ramirez S, 2009, SALUD PUBLICA MEXICO, V51, pS523, DOI 10.1590/s0036-36342009001000007; Scrimshaw SN, 2003, J NUTR, V133, p316S; Shamah-Levy T, 2007, RESULTADOS SALUD NUT; SINAVE, 2005, EPIDEMIOLOGIA, V22; Teran R, 2011, CLIN IMMUNOL, V138, P299, DOI 10.1016/j.clim.2010.12.011; Wiskin AE, 2011, ARCH DIS CHILD, V96, P567, DOI 10.1136/adc.2009.158303; World Health Organization, 1995, WHO TECHN REP SER 27 1 1 0 6 INFORMA HEALTHCARE LONDON TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND 0301-4460 1464-5033 ANN HUM BIOL Ann. Hum. Biol. JAN-FEB 2014 41 1 46 52 10.3109/03014460.2013.824024 7 Anthropology; Biology; Public, Environmental & Occupational Health Anthropology; Life Sciences & Biomedicine - Other Topics; Public, Environmental & Occupational Health 267NS WOS:000328105200007 23992150 2019-02-21 J Holt, RE; Jorgensen, C Holt, Rebecca E.; Jorgensen, Christian Climate warming causes life-history evolution in a model for Atlantic cod (Gadus morhua) CONSERVATION PHYSIOLOGY English Article Adaptation; behaviour; bioenergetics; climate; respiratory physiology Climate change influences the marine environment, with ocean warming being the foremost driving factor governing changes in the physiology and ecology of fish. At the individual level, increasing temperature influences bioenergetics and numerous physiological and life-history processes, which have consequences for the population level and beyond. We provide a state-dependent energy allocation model that predicts temperature-induced adaptations for life histories and behaviour for the North-East Arctic stock (NEA) of Atlantic cod (Gadus morhua) in response to climate warming. The key constraint is temperature-dependent respiratory physiology, and the model includes a number of trade-offs that reflect key physiological and ecological processes. Dynamic programming is used to find an evolutionarily optimal strategy of foraging and energy allocation that maximizes expected lifetime reproductive output given constraints from physiology and ecology. The optimal strategy is then simulated in a population, where survival, foraging behaviour, growth, maturation and reproduction emerge. Using current forcing, the model reproduces patterns of growth, size-at-age, maturation, gonad production and natural mortality for NEA cod. The predicted climate responses are positive for this stock; under a 2 degrees C warming, the model predicted increased growth rates and a larger asymptotic size. Maturation age was unaffected, but gonad weight was predicted to more than double. Predictions for a wider range of temperatures, from 2 to 7 degrees C, show that temperature responses were gradual; fish were predicted to grow faster and increase reproductive investment at higher temperatures. An emergent pattern of higher risk acceptance and increased foraging behaviour was also predicted. Our results provide important insight into the effects of climate warming on NEA cod by revealing the underlying mechanisms and drivers of change. We show how temperature-induced adaptations of behaviour and several life-history traits are not only mediated by physiology but also by trade-offs with survival, which has consequences for conservation physiology. [Holt, Rebecca E.] Univ Bergen, Dept Biol, POB 7803, N-5020 Bergen, Norway; [Jorgensen, Christian] Uni Res, N-5020 Bergen, Norway Holt, RE (reprint author), Univ Bergen, Dept Biol, POB 7803, N-5020 Bergen, Norway. rebecca.holt@bio.uib.no Holt, Rebecca/K-1839-2016; Jorgensen, Christian/B-4453-2009 Holt, Rebecca/0000-0002-7567-5518; Jorgensen, Christian/0000-0001-7087-4625 Nordforsk through the Nordic Centre of Excellence for Research on Marine Ecosystems and Resources under Climate Change (NorMER) R.E.H. acknowledges funding from Nordforsk through the Nordic Centre of Excellence for Research on Marine Ecosystems and Resources under Climate Change (NorMER). Arnott SA, 2006, EVOLUTION, V60, P1269; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2007, P NATL ACAD SCI USA, V104, P9715, DOI 10.1073/pnas.0701638104; Bjornsson B, 2001, ICES J MAR SCI, V58, P29, DOI 10.1006/jmsc.2000.0986; Bjornsson B, 2007, AQUACULTURE, V271, P216, DOI 10.1016/j.aquaculture.2007.06.026; Block BA, 2005, NATURE, V434, P1121, DOI 10.1038/nature03463; BRANDER KM, 1995, ICES J MAR SCI, V52, P1, DOI 10.1016/1054-3139(95)80010-7; BRETT JR, 1956, Q REV BIOL, V31, P75, DOI 10.1086/401257; Burrows MT, 2011, SCIENCE, V334, P652, DOI 10.1126/science.1210288; Careau V, 2008, OIKOS, V117, P641, DOI 10.1111/j.0030-1299.2008.16513.x; Carey MP, 2014, ECOL EVOL, V4, P1981, DOI 10.1002/ece3.1080; Cheung WWL, 2012, NATURE CLIMATE CHANG, V3, P254, DOI DOI 10.1038/NCLIMATE1691; Chiba S, 2007, OECOLOGIA, V154, P237, DOI 10.1007/s00442-007-0825-9; Christiansen JS, 2014, GLOBAL CHANGE BIOL, V20, P352, DOI 10.1111/gcb.12395; Claireaux G, 2000, J SEA RES, V44, P257, DOI 10.1016/S1385-1101(00)00053-8; Clark C., 2000, DEMOCRACY STATUS WOM, P1; Clark RA, 2003, GLOBAL CHANGE BIOL, V9, P1669, DOI 10.1046/j.1365-2486.2003.00685.x; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Crozier LG, 2008, EVOL APPL, V1, P252, DOI 10.1111/j.1752-4571.2008.00033.x; Dalpadado P, 2012, ICES J MAR SCI, V69, P1303, DOI 10.1093/icesjms/fss063; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Daufresne M, 2009, P NATL ACAD SCI USA, V106, P12788, DOI 10.1073/pnas.0902080106; Devine JA, 2012, CAN J FISH AQUAT SCI, V69, P1105, DOI 10.1139/F2012-047; Drinkwater KF, 2005, ICES J MAR SCI, V62, P1327, DOI 10.1016/j.icejms.2005.05.015; Easterling DR, 2000, SCIENCE, V289, P2068, DOI 10.1126/science.289.5487.2068; Finstad AG, 2007, FUNCT ECOL, V21, P905, DOI 10.1111/j.1365-2435.2007.01291.x; Fry F. E. J., 1971, FISH PHYSIOL, V34, P1, DOI DOI 10.1016/S1546-5098(08)60146-6; Fulton EA, 2010, J MARINE SYST, V81, P171, DOI 10.1016/j.jmarsys.2009.12.012; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Gislason H, 2010, FISH FISH, V11, P149, DOI 10.1111/j.1467-2979.2009.00350.x; Griffith GP, 2014, ICES J MAR SCI, V71, P764, DOI 10.1093/icesjms/fst196; Grimm V, 2005, SCIENCE, V310, P987, DOI 10.1126/science.1116681; Grimm V, 1996, SCI TOTAL ENVIRON, V183, P151, DOI 10.1016/0048-9697(95)04966-5; Hansson S, 1996, ICES J MAR SCI, V53, P107, DOI 10.1006/jmsc.1996.0010; Hewett SW, 1992, FISH BIOENERGETICS M, V2, P1; Hochachka PW, 2001, BIOCH ADAPTATION MEC, P1; Hoffmann AA, 2011, NATURE, V470, P479, DOI 10.1038/nature09670; HOLDWAY DA, 1984, J EXP MAR BIOL ECOL, V81, P147, DOI 10.1016/0022-0981(84)90003-0; Hollowed AB, 2014, SCIENCE, V344, P1084, DOI 10.1126/science.1251166; Houston AI, 1999, MODELS ADAPTIVE BEHA, P1; Hughes L, 2000, TRENDS ECOL EVOL, V15, P56, DOI 10.1016/S0169-5347(99)01764-4; Huntingford FA, 2010, J FISH BIOL, V76, P156; Huse G, 2002, J FISH BIOL, V60, P571, DOI 10.1006/jfbi.2002.1874; ICES, 2012, 2012ACOM05 ICES AFWG; IPCC, 2013, CLIM CHANG 2013 PHYS; JOBLING M, 1988, AQUACULTURE, V70, P1, DOI 10.1016/0044-8486(88)90002-6; Jobling M, 1996, GLOBAL WARMING IMPLI, P229; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Jorgensen C, 2010, CAN J FISH AQUAT SCI, V67, P1086, DOI 10.1139/F10-049; Jorgensen C, 2008, ECOLOGY, V89, P3436, DOI 10.1890/07-1469.1; Killen SS, 2007, P ROY SOC B-BIOL SCI, V274, P431, DOI 10.1098/rspb.2006.3741; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; Killen SS, 2010, ECOL LETT, V13, P184, DOI 10.1111/j.1461-0248.2009.01415.x; Kishi MJ, 2007, ECOL MODEL, V202, P1, DOI 10.1016/j.ecolmodel.2006.10.001; Kjesbu OS, 2014, P NATL ACAD SCI USA, V111, P3478, DOI 10.1073/pnas.1316342111; Kopp M, 2014, EVOL APPL, V7, P169, DOI 10.1111/eva.12127; Koster FW, 2003, SCI MAR, V67, P129, DOI 10.3989/scimar.2003.67s1129; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; MacKenzie B, 1996, MAR ECOL PROG SER, V134, P265, DOI 10.3354/meps134265; MANGEL M, 1994, DEEP-SEA RES PT II, V41, P75, DOI 10.1016/0967-0645(94)90063-9; McCarty JP, 2001, CONSERV BIOL, V15, P320, DOI 10.1046/j.1523-1739.2001.015002320.x; MCGURK MD, 1986, MAR ECOL PROG SER, V34, P227, DOI 10.3354/meps034227; MCNAB BK, 1988, OECOLOGIA, V77, P343, DOI 10.1007/BF00378040; MCNAMARA JM, 1986, AM NAT, V127, P358, DOI 10.1086/284489; Michalsen K, 1998, ICES J MAR SCI, V55, P863, DOI 10.1006/jmsc.1998.0364; Nash Richard D.M., 2009, Journal of Northwest Atlantic Fishery Science, V41, P71; Ohlberger J, 2012, OIKOS, V121, P245, DOI 10.1111/j.1600-0706.2011.19882.x; Olsen E, 2007, ICES J MAR SCI, V64, P599, DOI 10.1093/icesjms/fsm005; Opdal AF, 2011, MAR ECOL PROG SER, V439, P255, DOI 10.3354/meps09335; Ottersen G, 2006, FISH OCEANOGR, V15, P230, DOI 10.1111/j.1365-2419.2006.00404.x; Ottersen G, 2013, MAR ECOL PROG SER, V480, P205, DOI 10.3354/meps10249; Perry AL, 2005, SCIENCE, V308, P1912, DOI 10.1126/science.1111322; Planque B, 1999, CAN J FISH AQUAT SCI, V56, P2069, DOI 10.1139/cjfas-56-11-2069; Planque B, 2010, J MARINE SYST, V79, P403, DOI 10.1016/j.jmarsys.2008.12.018; Portner HO, 2010, J FISH BIOL, V77, P1745, DOI 10.1111/j.1095-8649.2010.02783.x; Portner HO, 2010, J EXP BIOL, V213, P881, DOI 10.1242/jeb.037523; Portner HO, 2007, SCIENCE, V315, P95, DOI 10.1126/science.1135471; Portner HO, 2008, CLIM RES, V37, P253, DOI 10.3354/cr00766; Portner HO, 2001, NATURWISSENSCHAFTEN, V88, P137; Priede IG, 1985, FISH ENERGETICS NEW, P37; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Righton DA, 2010, MAR ECOL PROG SER, V420, P1, DOI 10.3354/meps08889; Rijnsdorp AD, 2009, ICES J MAR SCI, V66, P1570, DOI 10.1093/icesjms/fsp056; Roessig JM, 2004, REV FISH BIOL FISHER, V14, P251, DOI 10.1007/s11160-004-6749-0; ROFF DA, 1988, ENVIRON BIOL FISH, V22, P133, DOI 10.1007/BF00001543; Rose KA, 2010, MAR COAST FISH, V2, P115, DOI 10.1577/C09-059.1; Satterthwaite WH, 2009, EVOLUTIONARY APPL, V3, P221, DOI DOI 10.1111/J.1752-4571.2009.00103.X; Stenevik EK, 2007, MAR POLICY, V31, P19, DOI 10.1016/j.marpol.2006.05.001; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Teplitsky C, 2008, P NATL ACAD SCI USA, V105, P13492, DOI 10.1073/pnas.0800999105; Vikebo F, 2005, ICES J MAR SCI, V62, P1375, DOI 10.1016/j.icesjms.2005.05.017; Walther GR, 2001, FINGERPRINTS OF CLIMATE CHANGE, P1; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; WARE DM, 1978, J FISH RES BOARD CAN, V35, P220, DOI 10.1139/f78-036; Wiedmann MA, 2014, ECOL EVOL, V4, P3596, DOI 10.1002/ece3.1203; Wiltshire KH, 2004, MAR RES, V52, P269; Yaragina NA, 2010, ICES J MAR SCI, V67, P2033, DOI 10.1093/icesjms/fsq059; Yoneda M, 2005, ICES J MAR SCI, V62, P1387, DOI 10.1016/j.icesjms.2005.04.018 103 12 12 0 25 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 2051-1434 CONSERV PHYSIOL Conserv. Physiol. 2014 2 1 cou050 10.1093/conphys/cou050 16 Biodiversity Conservation; Ecology; Environmental Sciences; Physiology Biodiversity & Conservation; Environmental Sciences & Ecology; Physiology V43TN WOS:000209703800032 27293671 DOAJ Gold, Green Published 2019-02-21 J Riesgo, A; Novo, M; Sharma, PP; Peterson, M; Maldonado, M; Giribet, G Riesgo, Ana; Novo, Marta; Sharma, Prashant P.; Peterson, Michaela; Maldonado, Manuel; Giribet, Gonzalo Inferring the ancestral sexuality and reproductive condition in sponges (Porifera) ZOOLOGICA SCRIPTA English Article MOLECULAR PHYLOGENETIC ANALYSIS; EPHYDATIA-FLUVIATILIS PORIFERA; LIFE-HISTORY EVOLUTION; OXIDASE SUBUNIT-I; CLASS DEMOSPONGIAE; MARINE-INVERTEBRATES; ORDER HAPLOSCLERIDA; PHYLUM PORIFERA; HALISARCA-DUJARDINI; MEIOTIC GENES Considerable diversity abounds among sponges with respect to reproductive and developmental biology. Their ancestral sexual mode (gonochorism vs. hermaphroditism) and reproductive condition (oviparity vs. viviparity) however remain unclear, and these traits appear to have undergone correlated evolution in the phylum. To infer ancestral traits and investigate this putative correlation, we used DNA sequence data from two loci (18S ribosomal RNA and cytochrome c oxidase subunit I) to explore the phylogenetic relationships of 62 sponges whose reproductive traits have been previously documented. Although the inferred tree topologies, using the limited data available, favoured paraphyly of sponges, we also investigated ancestral character-state reconstruction on a phylogeny with constrained sponge monophyly. Both parsimony- and likelihood-based ancestral state reconstructions indicate that viviparity (brooding) was the likely reproductive mode of the ancestral sponge. Hermaphroditism is favoured over gonochorism as the sexual condition of the sponge ancestor under parsimony, but the reconstruction is ambiguous under likelihood, rendering the ancestry of sexuality unresolved in our study. These results are insensitive to the constraint of sponge monophyly when tracing the reproductive characters using parsimony methods. However, the maximum likelihood analysis of the monophyletic hypothetical tree rendered gonochorism as ancestral for the phylum. A test of trait correlation unambiguously favours the concerted evolution of sexuality and reproductive mode in sponges (hermaphroditism/viviparity, gonochorism/oviparity). Although testing ecological hypotheses for the pattern of sponge reproduction is beyond the scope of our analyses, we postulate that certain physiological constrains might be key causes for the correlation of reproductive characters. [Riesgo, Ana; Novo, Marta; Sharma, Prashant P.; Peterson, Michaela; Giribet, Gonzalo] Harvard Univ, Dept Organism & Evolutionary Biol, Museum Comparat Zool, Cambridge, MA 02138 USA; [Riesgo, Ana; Maldonado, Manuel] CSIC, CEAB, Dept Marine Ecol, Blanes 17300, Girona, Spain; [Peterson, Michaela] Cambridge Rindge & Latin High Sch, Cambridge, MA 02138 USA Riesgo, A (reprint author), Harvard Univ, Dept Organism & Evolutionary Biol, Museum Comparat Zool, 26 Oxford St, Cambridge, MA 02138 USA. anariesgogil@gmail.com; novom@cf.ac.uk; psharma@post.harvard.edu; scruffy5@myway.com; maldonado@ceab.csic.es; ggiribet@g.harvard.edu Novo, Marta/A-9656-2017; Riesgo, Ana/E-3341-2014 Novo, Marta/0000-0001-7902-3819; Riesgo, Ana/0000-0002-7993-1523; Giribet, Gonzalo/0000-0002-5467-8429 Marie Curie Outgoing Fellowship [237219]; Fundacion Caja Madrid; Museum of Comparative Zoology; Faculty of Arts and Sciences, Harvard University; [BFU2008-00227/BMC] We are indebted to Joana Xavier, Micha Ilan, Giuseppe Corriero, Carlo Cerrano, Jane Fromont, Steve Whalan, Joe Lopez, Andia Chaves-Fonnegra, Sally Leys and Alicia R. Perez-Porro for providing samples for the study; Iosune Uriz, Sergio Taboada, Xavier Turon, Joan Mora and Vanessa Gonzalez for help in the field; Kylee Jane Clatt, Sonia Andrade, Erin McIntyre and Gisele Kawauchi for laboratory assistance; Albert Barberan for help with statistical analyses. We also acknowledge two anonymous reviewers and the editor for suggestions that helped to improve this article. A.R. was supported by a Marie Curie Outgoing Fellowship (contract number 237219), M.N. by a fellowship from the Fundacion Caja Madrid, and M.M. by Grant BFU2008-00227/BMC. Sequencing costs were covered by internal funds from the Museum of Comparative Zoology and the Faculty of Arts and Sciences, Harvard University. Altschul SF, 1997, NUCLEIC ACIDS RES, V25, P3389, DOI 10.1093/nar/25.17.3389; Andrews RM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P145, DOI 10.1086/339388; Barrett SCH, 2002, NAT REV GENET, V3, P274, DOI 10.1038/nrg776; Belinky F, 2012, MOL PHYLOGENET EVOL, V63, P702, DOI 10.1016/j.ympev.2012.02.008; BERNSTEIN H, 1981, AM NAT, V117, P537, DOI 10.1086/283734; Borchiellini C, 2004, MOL PHYLOGENET EVOL, V32, P823, DOI 10.1016/j.ympev.2004.02.021; Borchiellini C, 2001, J EVOLUTION BIOL, V14, P171, DOI 10.1046/j.1420-9101.2001.00244.x; Boute N, 1996, BIOL CELL, V88, P37, DOI 10.1016/S0248-4900(97)86829-3; Cardenas P, 2012, ADV MAR BIOL, V61, P79, DOI 10.1016/B978-0-12-387787-1.00010-6; Chen W.-T., 1976, P113; Chombard Catherine, 1999, Memoirs of the Queensland Museum, V44, P100; Dunn CW, 2008, NATURE, V452, P745, DOI 10.1038/nature06614; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Efremova S., 1980, ARKH ANAT GISTOL EMB, V12, P88; Ereskovsky AV, 2011, ZOOTAXA, P5, DOI 10.11646/zootaxa.2768.1.2; Ereskovsky AV, 2010, COMPARATIVE EMBRYOLOGY OF SPONGES, P1, DOI 10.1007/978-90-481-8575-7; Ereskovsky AV, 2000, BIOL BULL, V198, P77, DOI 10.2307/1542805; Erpenbeck D, 2006, MOL PHYLOGENET EVOL, V38, P293, DOI 10.1016/j.ympev.2005.11.001; Erpenbeck D, 2005, J ZOOL SYST EVOL RES, V43, P93, DOI 10.1111/j.1439-0469.2005.00306.93-99; Erpenbeck D, 2007, J MAR BIOL ASSOC UK, V87, P1571, DOI 10.1017/S0025315407058201; Erpenbeck D, 2007, J MAR BIOL ASSOC UK, V87, P1563, DOI 10.1017/S0025315407058195; Erpenbeck D, 2012, ORG DIVERS EVOL, V12, P57, DOI 10.1007/s13127-011-0068-9; Erpenbeck D, 2012, MOL PHYLOGENET EVOL, V63, P809, DOI 10.1016/j.ympev.2012.02.024; FELL PE, 1979, BIOL BULL-US, V156, P62, DOI 10.2307/1541003; FELL PE, 1974, REPRODUCTION MARINE, V1, P51; FELL PE, 1983, REPRODUCTIVE BIOL IN, V1, P1; Fernandez M, 2000, ECOL LETT, V3, P487, DOI 10.1046/j.1461-0248.2000.00172.x; Folmer O., 1994, Molecular Marine Biology and Biotechnology, V3, P294; Gazave E, 2010, MOL PHYLOGENET EVOL, V57, P35, DOI 10.1016/j.ympev.2010.05.028; GHISELIN MT, 1969, Q REV BIOL, V44, P189, DOI 10.1086/406066; GILBERT JJ, 1976, J EXP ZOOL, V195, P145, DOI 10.1002/jez.1401950114; Haag ES, 2007, SEMIN CELL DEV BIOL, V18, P348, DOI 10.1016/j.semcdb.2007.05.009; Hajdu E., 2002, SYSTEMA PORIFERA GUI, P642; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; HEATH DJ, 1979, J THEOR BIOL, V81, P151, DOI 10.1016/0022-5193(79)90157-7; HEATH DJ, 1977, J THEOR BIOL, V64, P363, DOI 10.1016/0022-5193(77)90363-0; Hejnol A, 2009, P ROY SOC B-BIOL SCI, V276, P4261, DOI 10.1098/rspb.2009.0896; HELLER J, 1993, BIOL J LINN SOC, V48, P19, DOI 10.1006/bijl.1993.1003; Hooper J. N. A., 2002, SYSTEMA PORIFERA; HOPPE WF, 1987, MAR BIOL, V94, P277, DOI 10.1007/BF00392941; Huelsenbeck JP, 2005, STAT BIOL HEALTH, P183, DOI 10.1007/0-387-27733-1_7; Kerr AM, 2011, P ROY SOC B-BIOL SCI, V278, P75, DOI 10.1098/rspb.2010.1196; Kober KM, 2007, J MAR BIOL ASSOC UK, V87, P1585, DOI 10.1017/S0025315407058237; Lavrov DV, 2008, MOL PHYLOGENET EVOL, V49, P111, DOI 10.1016/j.ympev.2008.05.014; Levi C., 1956, Archives de Zoologie Experimentale et Generale, V93, P1; Levi C., 1973, TRAITE ZOOLOGIE ANAT, Viii, P133; Lewis ME, 2001, IEEE T AUTOMAT CONTR, V46, P96, DOI 10.1109/9.898698; Leys SP, 2007, ADV MAR BIOL, V52, P1, DOI 10.1016/S0065-2881(06)52001-2; Leys SP, 2012, J EXP ZOOL PART B, V318B, P438, DOI 10.1002/jez.b.21442; Maddison W.P., 2011, MESQUITE MODULAR SYS; Maldonado M, 2008, TREBALLS SOC CATALAN, V59, P29, DOI DOI 10.2436/20.1501.02.56; Maldonado M, 2009, MAR BIOL, V156, P2181, DOI 10.1007/s00227-009-1248-4; Maldonado Manuel, 2002, P21; Malik SB, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002879; McCormack GP, 2002, J ZOOL SYST EVOL RES, V40, P237, DOI 10.1046/j.1439-0469.2002.00204.x; McCormack GP, 2002, J NAT HIST, V36, P1009, DOI 10.1080/00222930110040394; McFadden CS, 2001, EVOLUTION, V55, P54; McHugh D, 1998, TRENDS ECOL EVOL, V13, P182, DOI 10.1016/S0169-5347(97)01285-8; MEEWIS H, 1938, ARCH BIOL LIEGE, V59, P1; MENGE BA, 1975, MAR BIOL, V31, P87, DOI 10.1007/BF00390651; Mitchell KD, 2011, ZOOTAXA, P19; Morrow CC, 2012, MOL PHYLOGENET EVOL, V62, P174, DOI 10.1016/j.ympev.2011.09.016; Nichols SA, 2005, MOL PHYLOGENET EVOL, V34, P81, DOI 10.1016/j.ympev.2004.08.019; Nosenko T, 2013, MOL PHYLOGENET EVOL, V67, P223, DOI 10.1016/j.ympev.2013.01.010; Pagel M., 2007, USERS MANUAL CONTINU; PAULUS W, 1986, ZOOMORPHOLOGY, V106, P155, DOI 10.1007/BF00312204; PAULUS W, 1989, ZOOMORPHOLOGY, V109, P123, DOI 10.1007/BF00312264; Philippe H, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000602; Philippe H, 2009, CURR BIOL, V19, P706, DOI 10.1016/j.cub.2009.02.052; Pick KS, 2010, MOL BIOL EVOL, V27, P1983, DOI 10.1093/molbev/msq089; Posada D, 2004, SYST BIOL, V53, P793, DOI 10.1080/10635150490522304; Posada D, 2008, MOL BIOL EVOL, V25, P1253, DOI 10.1093/molbev/msn083; Prendini L, 2001, SYST BIOL, V50, P290, DOI 10.1080/10635150118650; Raleigh J, 2007, J MAR BIOL ASSOC UK, V87, P1577, DOI 10.1017/S0025315407058341; Rambaut A, 2007, TRACER V1 4; Ramesh MA, 2005, CURR BIOL, V15, P185, DOI 10.1016/j.cub.2005.01.003; Redmond NE, 2007, MOL PHYLOGENET EVOL, V43, P344, DOI 10.1016/j.ympev.2006.10.021; Redmond NE, 2008, MOL PHYLOGENET EVOL, V47, P1090, DOI 10.1016/j.ympev.2008.02.018; Redmond NE, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024344; Riesgo A, 2009, BIOL J LINN SOC, V97, P413, DOI 10.1111/j.1095-8312.2009.01214.x; Riesgo A, 2008, INVERTEBR BIOL, V127, P357, DOI 10.1111/j.1744-7410.2008.00128.x; Sara A, 2002, POLAR BIOL, V25, P425, DOI 10.1007/s00300-002-0360-4; Simpson TL, 1984, CELL BIOL SPONGES, P341; Sperling EA, 2009, MOL BIOL EVOL, V26, P2261, DOI 10.1093/molbev/msp148; Stamatakis A, 2008, SYST BIOL, V57, P758, DOI 10.1080/10635150802429642; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; STRATHMANN RR, 1982, AM NAT, V119, P91, DOI 10.1086/283892; STRATHMANN RR, 1986, B MAR SCI, V39, P616; Tavare S, 1986, LECT MATH LIFE SCI, V17, P57; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; TOMLINSON J, 1966, J THEOR BIOL, V11, P54, DOI 10.1016/0022-5193(66)90038-5; Tuzet O., 1964, OCTAVELLA GALANGAUI, V15, P309; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Voigt O, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-69; Worheide G, 2012, ADV MAR BIOL, V61, P1, DOI 10.1016/B978-0-12-387787-1.00007-6; Yang ZH, 1996, TRENDS ECOL EVOL, V11, P367, DOI 10.1016/0169-5347(96)10041-0 96 10 10 1 44 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0300-3256 1463-6409 ZOOL SCR Zool. Scr. JAN 2014 43 1 101 117 10.1111/zsc.12031 17 Evolutionary Biology; Zoology Evolutionary Biology; Zoology 263QD WOS:000327822200007 2019-02-21 J Tondato, KK; Fialho, CB; Suarez, YR Tondato, Karina Keyla; Fialho, Clarice Bernhardt; Suarez, Yzel Rondon Reproductive ecology of Odontostilbe pequira (Steindachner, 1882) (Characidae, Cheirodontinae) in the Paraguay River, southern Pantanal, Brazil ENVIRONMENTAL BIOLOGY OF FISHES English Article Life history; Cheirodontinae; Population structure; Reproductive biology LIFE-HISTORY STRATEGIES; UPPER PARANA RIVER; SEXUAL-MATURITY; CUIABA RIVER; FLOOD REGIME; FISH LARVAE; MATO-GROSSO; STREAM; PATTERNS; CHARACIFORMES The reproductive biology of Odontostilbe pequira was studied aiming to determining differences in population structure, reproductive tactics and correlating the reproductive period with rainfall, temperature and level of the Paraguay River, in the southern Pantanal, Brazil. Data were obtained for 623 individuals (366 females and 257 males), and of these, 253 females and 126 males were dissected for reproductive analysis. No significant variation was observed in the distribution of standard length and total weight between the sexes. The sex ratio was 1.42:1 (female: male), but the ratio did not differ over most months and between most length classes. The reproductive period was long (10 months). No correlation was found between the gonadosomatic index (GSI) of both sexes with water temperature and rainfall over the months analyzed. Males showed no significant association between the GSI and river level, but a marginally significant correlation was observed for females. Moreover, an effect of the mean historical river level on GSI was observed in both sexes, indicating that the flooding regime drive the reproductive activity, which proportions spawnings even when rainfall and temperature levels are low. Length at first maturity of the females was 24.2 mm and of the males 22.2 mm, with a significant difference between the sexes. The mean absolute fecundity was 181.4 oocytes/female, while mean relative fecundity was 0.544 oocytes/mg. Absolute fecundity was positively related to total weight, gonad weight and standard length. The mean diameter of the mature oocytes was 0.46 mm and the frequency distribution of the diameters showed various modes, indicating a multiple spawning. Thus, the reproductive tactics of O. pequira was characterized as "opportunistic strategist", with reproductive activity strongly associated with the flood pulse. [Tondato, Karina Keyla] Univ Fed Rio Grande do Sul, Programa Posgrad Biol Anim, Dept Zool, BR-91501970 Porto Alegre, RS, Brazil; [Fialho, Clarice Bernhardt] Univ Fed Rio Grande do Sul, Dept Zool, BR-91501970 Porto Alegre, RS, Brazil; [Suarez, Yzel Rondon] Univ Estadual Mato Grosso Sul, Ecol Lab, Ctr Integrado Anal & Monitoramento Ambiental, BR-79804970 Dourados, MG, Brazil Tondato, KK (reprint author), Univ Fed Rio Grande do Sul, Programa Posgrad Biol Anim, Dept Zool, Av Bento Goncalves,9500, BR-91501970 Porto Alegre, RS, Brazil. ktondato@hotmail.com Suarez, Yzel Rondon/G-5415-2016; Suarez, Yzel/K-1376-2013 Suarez, Yzel Rondon/0000-0003-1226-4321; Centro de Pesquisa do Pantanal (CPP/MCT); Fundect; UEMS; UFRGS; Cnpq The authors gratefully acknowledge the Centro de Pesquisa do Pantanal (CPP/MCT), Fundect, UEMS and UFRGS for their financial, human and logistic support. Cnpq is acknowledged for providing a doctoral grant to the author. We thank the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaveis - IBAMA (SISBIO # 13458-1) that authorized the scientific samples. We are indebted to Ana Paula S. Dufech e Julia Giora for his help with histological analysis of gonads and Marcelo M. Souza, Marlon C. Pereira, Fabiane S. Ferreira, Gabriela S. V. Duarte, Maiane J. Pereira, Edileia S. Amancio, Wagner Vicentin, Patricia L. Rondon, for their help in the field work. Y. R. Suarez is supported by productivity grants from CNPq. Also thank Ibraim Fantin-Cruz and Luis R. Malabarba for suggestions in the text. Abilhoa V, 2007, REV BRAS ZOOL, V24, P997, DOI 10.1590/S0101-81752007000400016; ADEBISI AA, 1987, ARCH HYDROBIOL, V111, P151; Agostinho AA, 2004, REV FISH BIOL FISHER, V14, P11, DOI 10.1007/s11160-004-3551-y; Alkins-Koo M, 2000, ENVIRON BIOL FISH, V57, P49, DOI 10.1023/A:1007566609881; Azevedo MA, 2010, NEOTROP ICHTHYOL, V8, P87, DOI 10.1590/S1679-62252010005000004; Bailly D, 2008, RIVER RES APPL, V24, P1218, DOI 10.1002/rra.1147; Baumgartner Gilmar, 1997, Revista Brasileira de Zoologia, V14, P551; Benitez Rosangela S., 2009, Pan-American Journal of Aquatic Sciences, V4, P271; Blanck A, 2007, J BIOGEOGR, V34, P862, DOI 10.1111/j.1365-2699.2006.01654.x; Britski HA, 2007, PEIXES PANTANAL MANU; Bye V.J., 1984, P187; Costa RMR, 2009, NEOTROP ICHTHYOL, V7, P447; Fantin-Cruz I, 2011, J HYDROL, V399, P376, DOI 10.1016/j.jhydrol.2011.01.014; Garcia AM, 2004, HYDROBIOLOGIA, V515, P39, DOI 10.1023/B:HYDR.0000027316.59258.a0; Gelain Daniela, 1999, Comunicacoes do Museu de Ciencias e Tecnologia da PUCRS Serie Zoologia, V12, P71; Goncalves HC, 2011, BRAZ J BIOL, V71, P241, DOI 10.1590/S1519-69842011000200003; Hamilton SK, 1996, ARCH HYDROBIOL, V137, P1; Hojo Renê Eiji Souza, 2004, Rev. Bras. Zool., V21, P519, DOI 10.1590/S0101-81752004000300015; Humphries P, 1999, ENVIRON BIOL FISH, V56, P129, DOI 10.1023/A:1007536009916; Humphries P, 2002, FRESHWATER BIOL, V47, P1307, DOI 10.1046/j.1365-2427.2002.00871.x; HUTCHINGS JA, 2002, FISH BIOL FISHERIES, V1; Jobling M., 1995, ENV BIOL FISHES; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; King AJ, 2003, CAN J FISH AQUAT SCI, V60, P773, DOI 10.1139/F03-057; KRAMER DL, 1978, ECOLOGY, V59, P976, DOI 10.2307/1938549; Lourenco LS, 2008, BIOTA NEOTROP, V8, P1; Lourenco LD, 2008, REV BRAS ZOOL, V25, P20, DOI 10.1590/S0101-81752008000100004; Loverde-Oliveira SM, 2009, ECOSYSTEMS, V12, P807, DOI 10.1007/s10021-009-9258-0; LOWEMCCONNEL RH, 1999, ESTUDOS ECOLOGICOS C; MACHADOALLISON A, 1990, INTERCIENCIA, V15, P411; Magalhaes MF, 2003, J FISH BIOL, V63, P300, DOI 10.1046/j.1095-8649.2003.00148.x; Matthews W. J., 1998, PATTERNS FRESHWATER; Mazzoni R., 2005, Braz. J. Biol., V65, P643, DOI 10.1590/S1519-69842005000400012; Mazzoni R, 2006, REV BRAS ZOOL, V23, P228, DOI 10.1590/S0101-81752006000100016; MAZZONI R., 2002, Braz. J. Biol., V62, P487, DOI 10.1590/S1519-69842002000300013; MAZZONI R, 1995, J FISH BIOL, V47, P841, DOI 10.1111/j.1095-8649.1995.tb06006.x; Merona B. D. E., 2009, NEOTROP ICHTHYOL, V7, P683; Munro A.D., 1990, P145; Nakatani K, 1997, PLANICIE INUNDACAO A, P201; Nikolsky G. V., 1969, THEORY FISH POPULATI; Nikolsky G. W., 1963, ECOLOGY FISHES; Oliveira CLC, 2002, COMUNICACOES MUSEU Z, V15, P3; Oliveira CLC, 2010, NEOTROP ICHTHYOL, V8, P351, DOI 10.1590/S1679-62252010000200014; Pampoulie C, 2000, J FISH BIOL, V57, P1441, DOI 10.1006/jfbi.2000.1407; Pelicice FM, 2005, FISH RES, V72, P109, DOI 10.1016/j.fishres.2004.09.005; Roa R, 1999, FISH B-NOAA, V97, P570; Rochet MJ, 2000, ICES J MAR SCI, V57, P228, DOI 10.1006/jmsc.2000.0641; SILVA JSV, 1998, PESQUISA AGROPECUARI, V33, P1703; Silvano Jacira, 2003, Neotrop. ichthyol., V1, P61, DOI 10.1590/S1679-62252003000100007; Stearns S, 1992, EVOLUTION LIFE HIST; Steindachner F., 1882, MATH NATURWISSENSCHA, V19, P175; Suarez YR, 2001, FISHERIES MANAG ECOL, V8, P173, DOI 10.1046/j.1365-2400.2001.00236.x; Suarez YR, 2009, NEOTROP ICHTHYOL, V7, P49, DOI 10.1590/S1679-62252009000100007; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tondato KK, 2010, NEOTROP ICHTHYOL, V8, P123, DOI 10.1590/S1679-62252010005000002; Vazzoler A. E. A. M., 1997, PLANICIE INUNDACAO A, P249; VAZZOLER A. E. A. M, 1992, REV BRAS BIOL, V52, P626; Vazzoler A. E. A. M., 1996, BIOL REPROD PEIXES T; Verissimo Samuel, 2005, Check List, V1, P1; Welcomme R. L, 1979, FISHERIES ECOLOGY FL; WELCOMME RL, 1985, FAO FISHERIES TECHNI, V262, P330; Wilkinson L, 2007, SYSTAT SYSTEM STAT V; Winemiller K. O., 2005, P 2 INT S MAN LARG R, V2, P285; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WOOTTON RJ, 1992, NETH J ZOOL, V42, P291, DOI 10.1163/156854291X00342; WOOTTON RJ, 1998, ECOLOGY TELEOST FISH; Zeug SC, 2007, CAN J FISH AQUAT SCI, V64, P1291, DOI 10.1139/F07-094 67 6 7 1 16 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes JAN 2014 97 1 13 25 10.1007/s10641-013-0119-5 13 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 258ZV WOS:000327498100002 2019-02-21 J Dargent, F; Scott, ME; Hendry, AP; Fussmann, GF Dargent, Felipe; Scott, Marilyn E.; Hendry, Andrew P.; Fussmann, Gregor F. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article relaxed selection; experimental evolution; rapid evolution; resistance; tolerance GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; MHC CLASS IIB; GYRODACTYLUS-BULLATARUDIS; TRINIDADIAN GUPPIES; RAPID EVOLUTION; WILD; POPULATIONS; SELECTION; TURNBULLI A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth-and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host-parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts. [Dargent, Felipe; Fussmann, Gregor F.] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada; [Scott, Marilyn E.] McGill Univ, Inst Parasitol, Ste Anne De Bellevue, PQ H9X 3V9, Canada; [Hendry, Andrew P.] McGill Univ, Redpath Museum, Montreal, PQ H3A 2K6, Canada Dargent, F (reprint author), McGill Univ, Dept Biol, 1205 Doctor Penfield Ave, Montreal, PQ H3A 1B1, Canada. felipe.dargent@mail.mcgill.ca Scott, Marilyn/L-5347-2015 Dargent, Felipe/0000-0002-4510-0086; Fussmann, Gregor/0000-0001-9576-0122 Natural Sciences and Engineering Research Council of Canada [356373-07]; Vanier CGS; FQRNT Regroupement; RTI Financial support was provided by the Natural Sciences and Engineering Research Council of Canada through a Special Research Opportunity grant (G. F. F., M. E. S. and A. P. H.-no. 356373-07), Vanier CGS to F. D., and RTI to A. P. H. et al. Research at the Institute of Parasitology is supported by an FQRNT Regroupement. Bakke TA, 2007, ADV PARASIT, V64, P161, DOI 10.1016/S0065-308X(06)64003-7; Bonneaud C, 2011, P NATL ACAD SCI USA, V108, P7866, DOI 10.1073/pnas.1018580108; Boots M, 2009, PHILOS T R SOC B, V364, P27, DOI 10.1098/rstb.2008.0160; Boots M, 2011, AM NAT, V178, P214, DOI 10.1086/660833; Cable J, 2007, INT J PARASITOL, V37, P1449, DOI 10.1016/j.ijpara.2007.04.013; Cable J, 2007, BIOL J LINN SOC, V90, P647, DOI 10.1111/j.1095-8312.2006.00755.x; CUSACK R, 1986, J FISH DIS, V9, P169, DOI 10.1111/j.1365-2761.1986.tb01000.x; DIAMOND J, 1989, AM NAT, V134, P675, DOI 10.1086/285006; Duncan AB, 2011, EVOLUTION, V65, P3462, DOI 10.1111/j.1558-5646.2011.01388.x; Edeline E, 2008, P NATL ACAD SCI USA, V105, P19792, DOI 10.1073/pnas.0808011105; Endler J. A., 1986, NATURAL SELECTION WI; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Fraser BA, 2009, J FISH BIOL, V75, P2299, DOI 10.1111/j.1095-8649.2009.02449.x; Fraser BA, 2010, EVOLUTION, V64, P2086, DOI 10.1111/j.1558-5646.2010.00965.x; Fuxa JR, 1998, J INVERTEBR PATHOL, V71, P159, DOI 10.1006/jipa.1997.4724; Gotanda KM, 2013, OECOLOGIA, V172, P155, DOI 10.1007/s00442-012-2485-7; Graham AL, 2010, SCIENCE, V330, P662, DOI 10.1126/science.1194878; Handelsman CA, INT COMP BIOL, DOI [10.1093/icb/ict057, DOI 10.1093/ICB/ICT057)]; HARRIS PD, 1992, J PARASITOL, V78, P912, DOI 10.2307/3283329; Hatcher MJ, 2006, ECOL LETT, V9, P1253, DOI 10.1111/j.1461-0248.2006.00964.x; Hendry AP, 1999, EVOLUTION, V53, P1637, DOI 10.1111/j.1558-5646.1999.tb04550.x; JAIN SK, 1966, HEREDITY, V21, P407, DOI 10.1038/hdy.1966.42; Johnson PTJ, 2012, ECOL LETT, V15, P235, DOI 10.1111/j.1461-0248.2011.01730.x; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Kolluru GR, 2006, BIOL J LINN SOC, V89, P301, DOI 10.1111/j.1095-8312.2006.00675.x; Koskella B, 2012, P ROY SOC B-BIOL SCI, V279, P1896, DOI 10.1098/rspb.2011.2259; Lahti DC, 2009, TRENDS ECOL EVOL, V24, P487, DOI 10.1016/j.tree.2009.03.010; LECREN ED, 1951, J ANIM ECOL, V20, P201; Levinton JS, 2003, P NATL ACAD SCI USA, V100, P9889, DOI 10.1073/pnas.1731446100; Lochmiller RL, 2000, OIKOS, V88, P87, DOI 10.1034/j.1600-0706.2000.880110.x; Lopez S, 1999, ANIM BEHAV, V57, P1129, DOI 10.1006/anbe.1998.1064; Lopez-Sepulcre A, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.1116; MARSHALL I. D., 1958, JOUR HYGIENE, V56, P288; Perez-Jvostov F, 2012, OECOLOGIA, V170, P77, DOI 10.1007/s00442-012-2289-9; Phillips BL, 2004, P NATL ACAD SCI USA, V101, P17150, DOI 10.1073/pnas.0406440101; Previtali MA, 2012, OIKOS, V121, P1483, DOI 10.1111/j.1600-0706.2012.020215.x; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Roy BA, 2000, EVOLUTION, V54, P51, DOI 10.1111/j.0014-3820.2000.tb00007.x; Ruell EW, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2019; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Schulte RD, 2010, P NATL ACAD SCI USA, V107, P7359, DOI 10.1073/pnas.1003113107; SCOTT ME, 1982, PARASITOLOGY, V85, P217, DOI 10.1017/S0031182000055207; SCOTT ME, 1985, J FISH DIS, V8, P495, DOI 10.1111/j.1365-2761.1985.tb00964.x; Torchin ME, 2003, NATURE, V421, P628, DOI 10.1038/nature01346; Turley NE, 2013, AM NAT, V181, pS21, DOI 10.1086/668075; van Oosterhout C, 2007, INT J PARASITOL, V37, P805, DOI 10.1016/j.ijpara.2006.12.016; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 50 25 25 3 63 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 22 2013 280 1773 20132371 10.1098/rspb.2013.2371 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298LO WOS:000330325600019 24197417 Green Published, Bronze 2019-02-21 J Giacomini, HC; Shuter, BJ Giacomini, Henrique C.; Shuter, Brian J. Adaptive responses of energy storage and fish life histories to climatic gradients JOURNAL OF THEORETICAL BIOLOGY English Article Fish bioenergetics; Life history optimization; Seasonal environments; Biphasic growth model; Energy budget SIZE-STRUCTURED POPULATIONS; WINTER LIPID STORES; FRESH-WATER FISH; SALVELINUS-NAMAYCUSH; BIPHASIC GROWTH; ATLANTIC SALMON; SOMATIC GROWTH; YOUNG FISH; LAKE TROUT; MORTALITY Energy storage is a common adaptation of fish living in seasonal environments. For some species, the energy accumulated during the growing season, and stored primarily as lipids, is crucial to preventing starvation mortality over winter. Thus, in order to understand the adaptive responses of fish life history to climate, it is important to determine how energy should be allocated to storage and how it trades off with the other body components that contribute to fitness. In this paper, we extend previous life history theory to include an explicit representation of how the seasonal allocation of energy to storage acts as a constraint on fish growth. We show that a strategy that privileges allocation to structural mass in the first part of the growing season and switches to storage allocation later on, as observed empirically in several fish species, is the strategy that maximizes growth efficiency and hence is expected to be favored by natural selection. Stochastic simulations within this theoretical framework demonstrate that the relative performance of this switching strategy is robust to a wide range of fluctuations in growing season length, and to moderate short-term (i.e., daily) fluctuations in energy intake and/or expenditure within the growing season. We then integrate this switching strategy with a biphasic growth modeling framework to predict typical growth rates of walleye Sander vitreus, a cool water species, and lake trout Salvelinus namaycush, a cold water specialist, across a climatic gradient in North America. As predicted, growth rates increased linearly with the duration of the growing season. Regression line intercepts were negative, indicating that growth can only occur when growing season length exceeds a threshold necessary to produce storage for winter survival. The model also reveals important differences between species, showing that observed growth rates of lake trout are systematically higher than those of walleye in relatively colder lakes. This systematic difference is consistent with both (i) the expected superior capacity of lake trout to withstand harsh winter conditions, and (ii) some degree of counter gradient adaptation of lake trout growth capacity to the climatic gradient covered by our data. (C) 2013 Elsevier Ltd. All rights reserved. [Giacomini, Henrique C.; Shuter, Brian J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3G5, Canada; [Shuter, Brian J.] Ontario Minist Nat Resources, Harkness Lab Fisheries Res, Peterborough, ON K9J 7B8, Canada Giacomini, HC (reprint author), Univ Toronto, Dept Ecol & Evolutionary Biol, 25 Harbord St, Toronto, ON M5S 3G5, Canada. hgiacomini@gmail.com Natural Sciences and Engineering Research Council of Canada; Ontario Ministry of Natural Resources; University of Toronto; NSERC This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Ontario Ministry of Natural Resources and the University of Toronto. H.C.G. is supported by a postdoctoral fellowship funded by NSERC and the University of Toronto. We thank Peter A. Abrams and Nigel Lester for advice and suggestions on the manuscript. Nigel Lester was extensively involved in compiling and validating the lake trout and walleye life history data bases. ABRAMS P, 1983, THEOR POPUL BIOL, V24, P22, DOI 10.1016/0040-5809(83)90044-8; ABRAMS PA, 1994, THEOR POPUL BIOL, V46, P78, DOI 10.1006/tpbi.1994.1020; Abrams PA, 2003, EVOL ECOL RES, V5, P653; Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; ABRAMS PA, 1993, BEHAV ECOL, V4, P246, DOI 10.1093/beheco/4.3.246; ABRAMS PA, 1991, ECOLOGY, V72, P1242, DOI 10.2307/1941098; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Berg OK, 2011, J FISH BIOL, V79, P1156, DOI 10.1111/j.1095-8649.2011.03097.x; Berg OK, 2009, J FISH BIOL, V74, P1383, DOI 10.1111/j.1095-8649.2009.02193.x; Biro PA, 2005, P ROY SOC B-BIOL SCI, V272, P1443, DOI 10.1098/rspb.2005.3096; Biro PA, 2004, CAN J FISH AQUAT SCI, V61, P1513, DOI [10.1139/f04-083, 10.1139/F04-083]; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bozek MA, 2011, BIOLOGY, MANAGEMENT, AND CULTURE OF WALLEYE AND SAUGER, P233; Bradshaw WE, 2007, ANNU REV ECOL EVOL S, V38, P1, DOI 10.1146/annurev.ecolsys.37.091305.110115; Bradshaw WE, 2010, ANNU REV PHYSIOL, V72, P147, DOI 10.1146/annurev-physiol-021909-135837; Brown JH, 2004, ECOLOGY, V85, P1771, DOI 10.1890/03-9000; Bull CD, 1996, P ROY SOC B-BIOL SCI, V263, P13, DOI 10.1098/rspb.1996.0003; CHRISTIE GC, 1988, CAN J FISH AQUAT SCI, V45, P301, DOI 10.1139/f88-036; Clarke A, 1999, J ANIM ECOL, V68, P893, DOI 10.1046/j.1365-2656.1999.00337.x; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; Day T, 2002, EVOLUTION, V56, P877; Dmitriew CM, 2011, BIOL REV, V86, P97, DOI 10.1111/j.1469-185X.2010.00136.x; Emerson KJ, 2008, EVOLUTION, V62, P979, DOI 10.1111/j.1558-5646.2008.00324.x; Enberg K, 2012, MAR ECOL-EVOL PERSP, V33, P1, DOI 10.1111/j.1439-0485.2011.00460.x; Ernest SKM, 2003, ECOL LETT, V6, P990, DOI 10.1046/j.1461-0248.2003.00526.x; Finstad AG, 2010, P R SOC B, V277, P1113, DOI 10.1098/rspb.2009.1874; Hasnain SS, 2013, CAN J FISH AQUAT SCI, V70, P964, DOI 10.1139/cjfas-2012-0217; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; Hurst TP, 2003, ECOLOGY, V84, P3360, DOI 10.1890/02-0562; Intergovernmental Panel on Climate Change (IPCC), 2005, IPCC DAT DISTR CTR G; Kooijman SALM, 2007, BIOL REV, V82, P113, DOI 10.1111/j.1469-185X.2006.00006.x; Kooijman S. A. L. M, 2000, DYNAMIC ENERGY MASS; Kozlowski J, 1996, P ROY SOC B-BIOL SCI, V263, P559, DOI 10.1098/rspb.1996.0084; Kozlowski J, 1999, EVOL ECOL RES, V1, P423; Lee WS, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2370; LEGENDRE L., 1998, NUMERICAL ECOLOGY; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; McDermid JL, 2010, CAN J FISH AQUAT SCI, V67, P314, DOI 10.1139/F09-183; Mogensen S, 2012, OECOLOGIA, V168, P923, DOI 10.1007/s00442-011-2164-0; NELISSEN MHJ, 1992, J ETHOL, V10, P153, DOI 10.1007/BF02350121; Nisbet RM, 2000, J ANIM ECOL, V69, P913, DOI 10.1046/j.1365-2656.2000.00448.x; Nisbet RM, 2012, J EXP BIOL, V215, P892, DOI 10.1242/jeb.059675; PAULY D, 1980, J CONSEIL, V39, P175; Persson L, 1996, ECOLOGY, V77, P900, DOI 10.2307/2265510; Portner HO, 2006, DEEP-SEA RES PT II, V53, P1071, DOI 10.1016/j.dsr2.2006.02.015; Pope JG, 2006, ICES J MAR SCI, V63, P1029, DOI 10.1016/j.icesjms.2006.04.015; Post JR, 2001, ECOLOGY, V82, P1040, DOI 10.2307/2679901; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; ROFF DA, 2002, LIFE HIST EVOLUTION; Schultz ET, 1997, OECOLOGIA, V109, P516, DOI 10.1007/s004420050112; Shulman G.E, 1974, LIFE CYCLES OF FISH; SHULMAN GE, 1999, BIOCH ECOLOGY MARINE; Shuter BJ, 2012, AQUAT SCI, V74, P637, DOI 10.1007/s00027-012-0274-3; SHUTER BJ, 1983, CAN J FISH AQUAT SCI, V40, P1838, DOI 10.1139/f83-213; Shuter BJ, 2005, CAN J FISH AQUAT SCI, V62, P738, DOI 10.1139/F05-070; STEWART DJ, 1983, CAN J FISH AQUAT SCI, V40, P681, DOI 10.1139/f83-091; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141 60 13 13 3 71 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. DEC 21 2013 339 SI 100 111 10.1016/j.jtbi.2013.08.020 12 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 256EN WOS:000327292600011 23999284 2019-02-21 J Hegemann, A; Matson, KD; Flinks, H; Tieleman, BI Hegemann, Arne; Matson, Kevin D.; Flinks, Heiner; Tieleman, B. Irene Offspring pay sooner, parents pay later: experimental manipulation of body mass reveals trade-offs between immune function, reproduction and survival FRONTIERS IN ZOOLOGY English Article Birds; Cost of reproduction; Ecoimmunology; Ecophysiology; Immunity; Life history; Carry-over effect; Avian KESTREL FALCO-TINNUNCULUS; BLACK-LEGGED KITTIWAKES; ROSE COLORED STARLINGS; TIT PARUS-MAJOR; BROOD SIZE; GREAT TIT; ENERGY-EXPENDITURE; EXPERIMENTAL INCREASE; PARTNER CONTRIBUTION; STURNUS-VULGARIS Introduction: Life-history theory predicts that organisms trade off survival against reproduction. However, the time scales on which various consequences become evident and the physiology mediating the cost of reproduction remain poorly understood. Yet, explaining not only which mechanisms mediate this trade-off, but also how fast or slow the mechanisms act, is crucial for an improved understanding of life-history evolution. We investigated three time scales on which an experimental increase in body mass could affect this trade-off: within broods, within season and between years. We handicapped adult skylarks (Alauda arvensis) by attaching extra weight during first broods to both adults of a pair. We measured body mass, immune function and return rates in these birds. We also measured nest success, feeding rates, diet composition, nestling size, nestling immune function and recruitment rates. Results: When nestlings of first broods fledged, parent body condition had not changed, but experimental birds experienced higher nest failure. Depending on the year, immune parameters of nestlings from experimental parents were either higher or lower than of control nestlings. Later, when parents were feeding their second brood, the balance between self-maintenance and nest success had shifted. Control and experimental adults differed in immune function, while mass and immune function of their nestlings did not differ. Although weights were removed after breeding, immune measurements during the second brood had the capacity to predict return rates to the next breeding season. Among birds that returned the next year, body condition and reproductive performance a year after the experiment did not differ between treatment groups. Conclusions: We conclude that the balance between current reproduction and survival shifts from affecting nestlings to affecting parents as the reproductive season progresses. Furthermore, immune function is apparently one physiological mechanism involved in this trade-off. By unravelling a physiological mechanism underlying the trade-offs between current and future reproduction and by demonstrating the different time scales on which it acts, our study represents an important step in understanding a central theory of life-history evolution. [Hegemann, Arne; Matson, Kevin D.; Tieleman, B. Irene] Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, NL-9700 CC Groningen, Netherlands Hegemann, A (reprint author), Univ Groningen, Ctr Ecol & Evolut Studies, Anim Ecol Grp, POB 11103, NL-9700 CC Groningen, Netherlands. a.hegemann@rug.nl Matson, Kevin/G-3855-2010 Matson, Kevin/0000-0002-4373-5926; Hegemann, Arne/0000-0002-3309-9866 BirdLife Netherlands; Rosalind Franklin Fellowship; Netherlands Organization for Scientific Research [863.04.023, 863.08.026]; Schure-Beijerinck-Popping Fonds; Deutsche Ornithologen-Gesellschaft We thank T. Piersma, C. Both and the late R. Drent for discussions about experimental design, R. Voesten for field work, M. van der Velde for molecular sexing, C. Gotteland and E. Gilot for slide counts, K. Meirmans and S. Wallert for feeding observations, M. A. Versteegh, I. R. Pen for advice on statistics and D. Visser for help with the graphic design of figures. S. Verhulst, C. Both, two anonymous reviewers and the editor T. Price provided useful comments on earlier drafts. Staatsbosbeheer Drents-Friese Wold kindly allowed working in their area. Financial support came from BirdLife Netherlands (BIT), a Rosalind Franklin Fellowship (BIT), the Netherlands Organization for Scientific Research (BIT: 863.04.023, KDM: 863.08.026), Schure-Beijerinck-Popping Fonds (AH) and the Deutsche Ornithologen-Gesellschaft (AH). Alonso-Alvarez C, 2001, CAN J ZOOL, V79, P101, DOI 10.1139/cjz-79-1-101; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Beaulieu M, 2010, J EXP BIOL, V213, P33, DOI 10.1242/jeb.035378; Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; CALVER MC, 1982, AUST WILDLIFE RES, V9, P293; Daan S, 1996, J ANIM ECOL, V65, P539, DOI 10.2307/5734; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; DEERENBERG C, 1995, ZOOL-ANAL COMPLEX SY, V99, P39; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Dietz MW, 2007, FUNCT ECOL, V21, P317, DOI 10.1111/j.1365-2435.2006.01234.x; DIJKSTRA C, 1990, J ANIM ECOL, V59, P269, DOI 10.2307/5172; DONALD PF, 2004, SKYLARK; DUNCAN R, 1987, GRAMPIAN RINGING GRO, V5, P49; Engel S, 2006, J COMP PHYSIOL B, V176, P415, DOI 10.1007/s00360-006-0063-1; Feldman B., 2000, SCHALMS VET HEMATOLO; FLINKS H, 1987, Vogelwelt, V108, P41; Glutz von Blotzheim UN, 1985, HDB VOGEL MITTELEURO, V10; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GUSTAFSSON L, 1994, PHILOS T ROY SOC B, V346, P323, DOI 10.1098/rstb.1994.0149; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Harding AMA, 2009, ANIM BEHAV, V78, P321, DOI 10.1016/j.anbehav.2009.05.009; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Hasselquist D, 2001, BEHAV ECOL, V12, P93, DOI 10.1093/oxfordjournals.beheco.a000384; Hegemann A, 2013, J EXP BIOL, V216, P2573, DOI 10.1242/jeb.083147; Hegemann A, 2012, OECOLOGIA, V170, P605, DOI 10.1007/s00442-012-2339-3; Hegemann Arne, 2012, Ringing & Migration, V27, P7; Hegemann A, 2010, ARDEA, V98, P135, DOI 10.5253/078.098.0202; Janeway CA, 2002, ANNU REV IMMUNOL, V20, P197, DOI 10.1146/annurev.immunol.20.083001.084359; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; JENNI L, 1990, IBIS, V132, P445, DOI 10.1111/j.1474-919X.1990.tb01062.x; Klasing Kirk C., 2004, Acta Zoologica Sinica, V50, P961; Knowles SCL, 2009, FUNCT ECOL, V23, P405, DOI 10.1111/j.1365-2435.2008.01507.x; Koivula M, 2003, ECOLOGY, V84, P398, DOI 10.1890/0012-9658(2003)084[0398:CORITW]2.0.CO;2; Kurtz J, 2004, MICROBES INFECT, V6, P1410, DOI 10.1016/j.micinf.2004.10.002; Kvist A, 2001, NATURE, V413, P730, DOI 10.1038/35099556; Leclaire S, 2010, BEHAVIOUR, V147, P1841, DOI 10.1163/000579510X538872; LINDEN M, 1988, OIKOS, V51, P285, DOI 10.2307/3565309; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Matson KD, 2006, PHYSIOL BIOCHEM ZOOL, V79, P556, DOI 10.1086/501057; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Matson KD, 2012, J EXP BIOL, V215, P3734, DOI 10.1242/jeb.072264; Matson KD, 2012, COMP BIOCHEM PHYS A, V162, P7, DOI 10.1016/j.cbpa.2012.01.010; MAUCK RA, 1995, ANIM BEHAV, V49, P999, DOI 10.1006/anbe.1995.0129; Moller AP, 2004, OIKOS, V104, P299, DOI 10.1111/j.0030-1299.2004.12844.x; Moreno J, 1999, BEHAV ECOL SOCIOBIOL, V46, P244, DOI 10.1007/s002650050616; Moreno-Rueda G, 2010, J EVOLUTION BIOL, V23, P2229, DOI 10.1111/j.1420-9101.2010.02090.x; Navarro J, 2007, OECOLOGIA, V151, P150, DOI 10.1007/s00442-006-0559-0; Nilsson JA, 1996, P ROY SOC B-BIOL SCI, V263, P711, DOI 10.1098/rspb.1996.0106; Nordling D, 1998, P ROY SOC B-BIOL SCI, V265, P1291, DOI 10.1098/rspb.1998.0432; NORRIS K, 1994, J ANIM ECOL, V63, P601, DOI 10.2307/5226; Owen JC, 2008, CAN J ZOOL, V86, P638, DOI [10.1139/Z08-038, 10.1139/7-08-038]; Owen JC, 2008, J ETHOL, V26, P383, DOI 10.1007/s10164-008-0092-1; R Development Core Team, 2011, R LANG ENV STAT COMP; RALPH CP, 1985, J FIELD ORNITHOL, V56, P165; RAPPOLE JH, 1991, J FIELD ORNITHOL, V62, P335; Sanz JJ, 2000, J ANIM ECOL, V69, P74, DOI 10.1046/j.1365-2656.2000.00373.x; Schmidt-Wellenburg CA, 2008, J COMP PHYSIOL B, V178, P767, DOI 10.1007/s00360-008-0267-7; SMITH HG, 1987, AUK, V104, P700; Stearns S, 1992, EVOLUTION LIFE HIST; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; Tieleman BI, 2008, BEHAV ECOL, V19, P949, DOI 10.1093/beheco/arn051; TINBERGEN JM, 1987, ARDEA, V75, P111; TINBERGEN JM, 1981, ARDEA, V69, P1; van de Crommenacker J, 2010, J EXP BIOL, V213, P3527, DOI 10.1242/jeb.045591; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; Wernham CV, 1998, J ANIM ECOL, V67, P25, DOI 10.1046/j.1365-2656.1998.00166.x; Wiebe KL, 2010, J ANIM ECOL, V79, P63, DOI 10.1111/j.1365-2656.2009.01614.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WRIGHT J, 1990, ANIM BEHAV, V40, P462, DOI 10.1016/S0003-3472(05)80526-3; Wright J, 1998, J ANIM ECOL, V67, P620; Wright J, 1990, BEHAV ECOL, V1, P116, DOI 10.1093/beheco/1.2.116 72 24 24 1 87 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1742-9994 FRONT ZOOL Front. Zool. DEC 17 2013 10 77 10.1186/1742-9994-10-77 11 Zoology Zoology 287EI WOS:000329523400001 24344978 DOAJ Gold, Green Published 2019-02-21 J Adamson, JJ Adamson, Joel J. Evolution of male life histories and age-dependent sexual signals under female choice PEERJ English Article Sexual selection; Life-history theory; Evolutionary theory Sexual selection theory models evolution of sexual signals and preferences using simple life histories. However, life-history models predict that males benefit from increasing sexual investment approaching old age, producing age-dependent sexual traits. Age-dependent traits require time and energy to grow, and will not fully mature before individuals enter mating competition. Early evolutionary stages pose several problems for these traits. Age-dependent traits suffer from strong viability selection and gain little benefit from mate choice when rare. Few males will grow large traits, and they will rarely encounter choosy females. The evolutionary origins of age-dependent traits therefore remain unclear. I used numerical simulations to analyze evolution of preferences, condition (viability) and traits in an age-structured population. Traits in the model depended on age and condition ("good genes") in a population with no genetic drift. I asked (1) if age-dependent indicator traits and their preferences can originate depending on the strength of selection and the size of the trait; (2) which mode of development (age-dependent versus age-independent) eventually predominates when both modes occur in the population; and (3) if age-independent traits can invade a population with age-dependent traits. Age-dependent traits evolve under weaker selection and at smaller sizes than age-independent traits. This result held in isolation and when the types co-occur. Evolution of age-independent traits depends only on trait size, whereas evolution of age-dependent traits depends on both strength of selection and growth rate. Invasion of age-independence into populations with established traits followed a similar pattern with age-dependence predominating at small trait sizes. I suggest that reduced adult mortality facilitates sexual selection by favoring the evolution of age-dependent sexual signals under weak selection. Univ N Carolina, Chapel Hill, NC USA Adamson, JJ (reprint author), Univ N Carolina, Chapel Hill, NC USA. adamsonj@ninthfloor.org NSF [DEB-0614166, DEB-0919018] This research was supported by NSF DEB-0614166 and NSF DEB-0919018 to Maria Servedio, Ph.D. advisor to the author; these grants were to provide support for graduate students. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Badyaev AV, 2002, AUK, V119, P301, DOI 10.1642/0004-8038(2002)119[0301:PSTITC]2.0.CO;2; Ballentine B, 2009, ANIM BEHAV, V77, P973, DOI 10.1016/j.anbehav.2008.12.027; Beck CW, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000939; Bonduriansky R, 2005, J EVOLUTION BIOL, V18, P1332, DOI 10.1111/j.1420-9101.2005.00957.x; Brooks R, 2001, TRENDS ECOL EVOL, V16, P308, DOI 10.1016/S0169-5347(01)02147-4; Burger R., 2000, MATH THEORY SELECTIO; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Candolin U, 2000, P ROY SOC B-BIOL SCI, V267, P2425, DOI 10.1098/rspb.2000.1301; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLINTON WL, 1993, ECOLOGY, V74, P1884, DOI 10.2307/1939945; Coltman DW, 2002, P ROY SOC B-BIOL SCI, V269, P165, DOI 10.1098/rspb.2001.1851; Courtiol A, 2012, P NATL ACAD SCI USA, V109, P8044, DOI 10.1073/pnas.1118174109; Evans MR, 1997, ANIM BEHAV, V53, P749, DOI 10.1006/anbe.1996.0311; Evans SR, 2011, EVOLUTION, V65, P1623, DOI 10.1111/j.1558-5646.2011.01253.x; Garamszegi LZ, 2007, ETHOLOGY, V113, P246, DOI 10.1111/j.1439-0310.2007.01337.x; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; Gil D, 2001, ANIM BEHAV, V62, P689, DOI 10.1006/anbe.2001.1812; Hammerstein Peter, 1998, P3; Hansen TF, 1999, GENETICA, V106, P251, DOI 10.1023/A:1003988101586; Hawkins GL, 2012, BIOL REV, V87, P257, DOI 10.1111/j.1469-185X.2011.00193.x; HIEBERT SM, 1989, ANIM BEHAV, V37, P266, DOI 10.1016/0003-3472(89)90115-2; Jacob A, 2010, MOL ECOL, V19, P5296, DOI 10.1111/j.1365-294X.2010.04884.x; Jacob A, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-207; Johnson DW, 2011, J EVOLUTION BIOL, V24, P1653, DOI 10.1111/j.1420-9101.2011.02298.x; Jones AG, 2009, P NATL ACAD SCI USA, V106, P10001, DOI 10.1073/pnas.0901129106; Jones TM, 2004, P ROY SOC B-BIOL SCI, V271, P1311, DOI 10.1098/rspb.2004.2723; Jones TM, 2000, P ROY SOC B-BIOL SCI, V267, P681, DOI 10.1098/rspb.2000.1056; Judge KA, 2011, ANIM BEHAV, V81, P185, DOI 10.1016/j.anbehav.2010.09.032; KIRKPATRICK M, 1982, EVOLUTION, V36, P1, DOI 10.1111/j.1558-5646.1982.tb05003.x; Kirkpatrick M, 1997, P NATL ACAD SCI USA, V94, P1282, DOI 10.1073/pnas.94.4.1282; Kivleniece I, 2010, ANIM BEHAV, V80, P1015, DOI 10.1016/j.anbehav.2010.09.004; KODRICBROWN A, 1984, AM NAT, V124, P309, DOI 10.1086/284275; Kokko H, 2002, P ROY SOC B-BIOL SCI, V269, P1331, DOI 10.1098/rspb.2002.2020; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kokko H, 2001, ECOL LETT, V4, P322, DOI 10.1046/j.1461-0248.2001.00224.x; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; MCDONALD DB, 1994, SCIENCE, V266, P1030, DOI 10.1126/science.7973654; Miller LK, 2005, EVOLUTION, V59, P2414; Moorad JA, 2008, GENETICS, V179, P2061, DOI 10.1534/genetics.108.088526; Oh KP, 2010, AM NAT, V176, pE80, DOI 10.1086/655216; Pemberton JM, 2004, SOAY SHEEP: DYNAMICS AND SELECTION IN AN ISLAND POPULATION, P166; Poissant J, 2008, P R SOC B, V275, P623, DOI 10.1098/rspb.2007.1361; Proulx SR, 2002, P ROY SOC B-BIOL SCI, V269, P2291, DOI 10.1098/rspb.2002.2129; Rands SA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027174; Rowe L, 1996, P ROY SOC B-BIOL SCI, V263, P1415, DOI 10.1098/rspb.1996.0207; Taff CC, 2011, ANIM BEHAV, V81, P619, DOI 10.1016/j.anbehav.2010.12.009; Verburgt L, 2011, ANIM BEHAV, V81, P19, DOI 10.1016/j.anbehav.2010.09.010 48 4 4 0 12 PEERJ INC LONDON 341-345 OLD ST, THIRD FLR, LONDON, EC1V 9LL, ENGLAND 2167-8359 PEERJ PeerJ DEC 17 2013 1 e225 10.7717/peerj.225 20 Multidisciplinary Sciences Science & Technology - Other Topics V36CY WOS:000209192100001 24392289 DOAJ Gold, Green Published 2019-02-21 J Rose, CS; James, B Rose, Christopher S.; James, Brandon Plasticity of lung development in the amphibian, Xenopus laevis BIOLOGY OPEN English Article Lung; Plasticity; Respiration; Amphibian Contrary to previous studies, we found that Xenopus laevis tadpoles raised in normoxic water without access to air can routinely complete metamorphosis with lungs that are either severely stunted and uninflated or absent altogether. This is the first demonstration that lung development in a tetrapod can be inhibited by environmental factors and that a tetrapod that relies significantly on lung respiration under unstressed conditions can be raised to forego this function without adverse effects. This study compared lung development in untreated, air-deprived (AD) and air-restored (AR) tadpoles and frogs using whole mounts, histology, BrdU labeling of cell division and antibody staining of smooth muscle actin. We also examined the relationship of swimming and breathing behaviors to lung recovery in AR animals. Inhibition and recovery of lung development occurred at the stage of lung inflation. Lung recovery in AR tadpoles occurred at a predictable and rapid rate and correlated with changes in swimming and breathing behavior. It thus presents a new experimental model for investigating the role of mechanical forces in lung development. Lung recovery in AR frogs was unpredictable and did not correlate with behavioral changes. Its low frequency of occurrence could be attributed to developmental, physical and behavioral changes, the effects of which increase with size and age. Plasticity of lung inflation at tadpole stages and loss of plasticity at postmetamorphic stages offer new insights into the role of developmental plasticity in amphibian lung loss and life history evolution. (C) 2013. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. [Rose, Christopher S.; James, Brandon] James Madison Univ, Dept Biol, Harrisonburg, VA 22807 USA Rose, CS (reprint author), James Madison Univ, Dept Biol, Harrisonburg, VA 22807 USA. rosecs@jmu.edu James Madison University College of Science and Mathematics Thanks to James Madison University College of Science and Mathematics for funding and support. Barja de Quiroga G., 1989, COMP BIOCH PHYSL A, V92A, P581; BEACHY CK, 1992, AM NAT, V139, P839, DOI 10.1086/285360; Bickford D, 2008, CURR BIOL, V18, pR374, DOI 10.1016/j.cub.2008.03.010; BOLKER JA, 1995, BIOESSAYS, V17, P451, DOI 10.1002/bies.950170513; Boudreault F, 2010, AM J RESP CELL MOL, V43, P64, DOI 10.1165/rcmb.2009-0092OC; BOUTILIER RG, 1984, J EXP BIOL, V110, P291; BOUTILIER RG, 1986, J EXP BIOL, V122, P223; BRUCE RC, 1994, J EXP ZOOL, V268, P377, DOI 10.1002/jez.1402680506; BURGGREN W, 1983, J EXP BIOL, V105, P191; Burggren Warren W., 1992, P467; BURGGREN WW, 1982, RESP PHYSIOL, V47, P151, DOI 10.1016/0034-5687(82)90108-6; Calich HJ, 2012, COPEIA, P690, DOI 10.1643/CE-11-012; Champagnat J, 2011, RESP PHYSIOL NEUROBI, V178, P146, DOI 10.1016/j.resp.2011.04.013; Chapman CA, 2009, J EXP ZOOL PART A, V311A, P422, DOI 10.1002/jez.539; CZOPEK J, 1965, ACTA ANAT, V62, P296; Czopek J., 1962, Copeia, V1962, P576, DOI 10.2307/1441182; Duellman W. E., 1986, BIOL AMPHIBIANS; Dunn ER, 1923, P AM ACAD ARTS SCI, V58, P445, DOI 10.2307/20026019; DUNN ER, 1926, SALAMANDERS FAMILY P; FEDER ME, 1984, J EXP BIOL, V108, P231; FEDER ME, 1983, J EXP BIOL, V104, P79; FEDER ME, 1984, J EXP BIOL, V110, P91; GATZ RN, 1979, RESP PHYSIOL, V38, P377, DOI 10.1016/0034-5687(79)90062-8; Gilbert KA, 1998, AM J PHYSIOL-LUNG C, V275, pL21, DOI 10.1152/ajplung.1998.275.1.L21; Gilbert S F, 2009, ECOLOGICAL DEV BIOL; GONIAKOWSKAWITALINSKA L, 1980, J ANAT, V130, P571; GRADWELL N, 1971, Herpetologica, V27, P107; HILKEN G, 1995, LAB ANIM, V29, P152, DOI 10.1258/002367795780740276; Hutchison VH, 2008, CURR BIOL, V18, pR392, DOI 10.1016/j.cub.2008.03.006; KATZ LC, 1981, ANIM BEHAV, V29, P20, DOI 10.1016/S0003-3472(81)80148-0; Konno N, 2013, GEN COMP ENDOCR, V185, P44, DOI 10.1016/j.ygcen.2013.01.015; LEFFLER CW, 1984, PEDIATR RES, V18, P938, DOI 10.1203/00006450-198418100-00006; Leone T. A., 2006, CURR PAEDIAT, V16, P269; Mekeel A. G., 1930, THESIS CORNELL U ITH; Mekeel A. G., 1926, ANAT REC, V34, P141; Mortola J. P., 2006, ENCY RESP MED, V1, P250; Nieuwkoop P.D., 1956, NORMAL TABLE XENOPUS; Noble GK, 1925, J MORPHOL PHYSIOL, V40, P341, DOI 10.1002/jmor.1050400206; Noble GK, 1929, B AM MUS NAT HIST, V58, P291; Noble GK, 1931, BIOL AMPHIBIA; NUSSBAUM RA, 1995, P ROY SOC B-BIOL SCI, V261, P331, DOI 10.1098/rspb.1995.0155; OKADA YOSHIO, 1962, ACTA TUBERC JAPON, V11, P63; Pan TCF, 2010, COMP BIOCHEM PHYS A, V157, P382, DOI [10.1016/J.cbpa.2010.08.018, 10.1016/j.cbpa.2010.08.018]; PRONYCH S, 1994, CAN J ZOOL, V72, P738, DOI 10.1139/z94-099; RANNELS DE, 1989, AM J PHYSIOL, V257, pL179; Reigle N. J., 1967, Herpetologica, V23, P232; Sheafor EA, 2000, J EXP BIOL, V203, P3785; SMITH DG, 1976, CELL TISSUE RES, V165, P199; Tschumperlin DJ, 2010, J BIOMECH, V43, P99, DOI 10.1016/j.jbiomech.2009.09.015; Ultsch GR, 1999, TADPOLES, P189; Wassersug R.J., 1975, Copeia, V1975, P86, DOI 10.2307/1442410; WASSERSUG RJ, 1987, EXP BIOL, V46, P141; WASSERSUG RJ, 1996, BIOL XENOPUS, P195; WATERMAN F. A., 1939, OHIO JOUR SCI, V39, P97; Welsh HH, 1996, J HERPETOL, V30, P385, DOI 10.2307/1565176; WEST NH, 1982, RESP PHYSIOL, V47, P165, DOI 10.1016/0034-5687(82)90109-8; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wiechmann A.F., 2003, COLOR ATLAS XENOPUS; WILDER IW, 1920, COPEIA, V84, P63; Wilkinson M, 1997, BIOL J LINN SOC, V62, P39; Willem V., 1931, MEMOIRES COLLECTION; Yang Y, 2000, J CLIN INVEST, V106, P1321, DOI 10.1172/JCI8893 62 5 6 2 19 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 2046-6390 BIOL OPEN Biol. Open DEC 15 2013 2 12 1324 1335 10.1242/bio.20133772 12 Biology Life Sciences & Biomedicine - Other Topics V36IW WOS:000209206900006 24337117 DOAJ Gold, Green Published 2019-02-21 J Bolund, E; Bouwhuis, S; Pettay, JE; Lummaa, V Bolund, Elisabeth; Bouwhuis, Sandra; Pettay, Jenni E.; Lummaa, Virpi Divergent selection on, but no genetic conflict over, female and male timing and rate of reproduction in a human population PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article sexually antagonistic selection; genetic correlation; heritability; life history CONTEMPORARY HUMAN-POPULATION; LIFE-HISTORY TRAITS; NATURAL-SELECTION; QUANTITATIVE GENETICS; PREINDUSTRIAL HUMANS; BREEDERS EQUATION; SEXUAL-DIMORPHISM; ANIMAL-MODEL; FITNESS; EVOLUTION The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution. [Bolund, Elisabeth; Bouwhuis, Sandra; Lummaa, Virpi] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Bouwhuis, Sandra] Univ Oxford, Edward Grey Inst, Oxford OX1 3PS, England; [Bouwhuis, Sandra] Inst Avian Res, D-26386 Wilhelmshaven, Germany; [Pettay, Jenni E.] Univ Turku, Dept Biol, Turku 20014, Finland Bolund, E (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. e.bolund@sheffield.ac.uk Bouwhuis, Sandra/H-5270-2011 Bouwhuis, Sandra/0000-0003-4023-1578 European Research Council; Royal Society of London; Kone Foundation Financial support was provided by grants from the European Research Council and the Royal Society of London to V. L. and the Kone Foundation to J.P. Anderson KG, 2006, CURR ANTHROPOL, V47, P513, DOI 10.1086/504167; Arnqvist G, 2005, SEXUAL CONFLICT; Bonduriansky R, 2009, TRENDS ECOL EVOL, V24, P280, DOI 10.1016/j.tree.2008.12.005; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Byars SG, 2010, P NATL ACAD SCI USA, V107, P1787, DOI 10.1073/pnas.0906199106; Charmantier A, 2005, MOL ECOL, V14, P2839, DOI 10.1111/j.1365-294X.2005.02619.x; Charmantier A, 2006, P NATL ACAD SCI USA, V103, P6587, DOI 10.1073/pnas.0511123103; Courtiol A, 2012, P NATL ACAD SCI USA, V109, P8044, DOI 10.1073/pnas.1118174109; Cox RM, 2009, AM NAT, V173, P176, DOI 10.1086/595841; Faurie C, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005680; Fisher RA, 1930, GENETICAL THEORY NAT; Frank SA, 2012, J EVOLUTION BIOL, V25, P1002, DOI 10.1111/j.1420-9101.2012.02498.x; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Hadfield JD, 2008, P ROY SOC B-BIOL SCI, V275, P723, DOI 10.1098/rspb.2007.1013; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HENDERSON CR, 1975, BIOMETRICS, V31, P423, DOI 10.2307/2529430; Kim PS, 2012, P ROY SOC B-BIOL SCI, V279, P4880, DOI 10.1098/rspb.2012.1751; Kirk KM, 2001, EVOLUTION, V55, P423; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Lahdenpera M, 2007, P ROY SOC B-BIOL SCI, V274, P2437, DOI 10.1098/rspb.2007.0688; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2011, J EVOLUTION BIOL, V24, P1053, DOI 10.1111/j.1420-9101.2011.02237.x; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; LANDE R, 1980, EVOLUTION, V34, P292, DOI 10.1111/j.1558-5646.1980.tb04817.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Liu JH, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0034898; Lummaa V, 2007, P NATL ACAD SCI USA, V104, P10915, DOI 10.1073/pnas.0605875104; LUTHER G, 1993, SUOMEN TILASTOTOIMEN; Lynch M, 1998, GENETICS ANAL QUANTI; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; Milot E, 2011, P NATL ACAD SCI USA, V108, P17040, DOI 10.1073/pnas.1104210108; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; Moring B, 2003, CONTINUITY CHANGE, V18, P77, DOI 10.1017/S0268416003004508; Morrissey MB, 2010, J EVOLUTION BIOL, V23, P2277, DOI 10.1111/j.1420-9101.2010.02084.x; Morrissey MB, 2012, EVOLUTION, V66, P2399, DOI 10.1111/j.1558-5646.2012.01632.x; MOUSSEAU TA, 1987, HEREDITY, V59, P181, DOI 10.1038/hdy.1987.113; Mulder MB, 2009, EVOL ANTHROPOL, V18, P201, DOI 10.1002/evan.20226; Penn DJ, 2007, P NATL ACAD SCI USA, V104, P553, DOI 10.1073/pnas.0609301103; Pettay JE, 2005, P NATL ACAD SCI USA, V102, P2838, DOI 10.1073/pnas.0406709102; Pettay JE, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000606; POISSANT J, 2009, EVOLUTION, V64, P97, DOI DOI 10.1111/J.1558-5646.2009.00793.X; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; PRICE T, 1988, SCIENCE, V240, P798, DOI 10.1126/science.3363360; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; RAUSHER MD, 1992, EVOLUTION, V46, P616, DOI 10.1111/j.1558-5646.1992.tb02070.x; ROBERTSON A, 1966, ANIM PROD, V8, P95, DOI 10.1017/S0003356100037752; ROFF DA, 2002, LIFE HIST EVOLUTION; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Stearns SC, 2012, P ROY SOC B-BIOL SCI, V279, P4836, DOI 10.1098/rspb.2012.2024; Stearns SC, 2010, NAT REV GENET, V11, P611, DOI 10.1038/nrg2831; Stinchcombe JR, 2008, EVOLUTION, V62, P2435, DOI 10.1111/j.1558-5646.2008.00449.x; SUNDIN J, 1992, SOC SCI HIST, V16, P99, DOI 10.2307/1171323; The R Development Core Team, 2007, R LANG ENV STAT COMP; Visscher PM, 2008, NAT REV GENET, V9, P255, DOI 10.1038/nrg2322; Weiss LA, 2006, NAT GENET, V38, P218, DOI 10.1038/ng1726; Wilson AJ, 2010, TRENDS ECOL EVOL, V25, P207, DOI 10.1016/j.tree.2009.10.002; Wilson AJ, 2010, J ANIM ECOL, V79, P13, DOI 10.1111/j.1365-2656.2009.01639.x; Wolf JB, 2001, J EVOLUTION BIOL, V14, P347, DOI 10.1046/j.1420-9101.2001.00277.x 60 18 18 1 32 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. DEC 7 2013 280 1772 20132002 10.1098/rspb.2013.2002 9 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298LM WOS:000330325400007 24107531 Green Published, Other Gold 2019-02-21 J King, AJ; Furtbauer, I; Mamuneas, D; James, C; Manica, A King, Andrew J.; Fuertbauer, Ines; Mamuneas, Diamanto; James, Charlotte; Manica, Andrea Sex-Differences and Temporal Consistency in Stickleback Fish Boldness PLOS ONE English Article GUPPY POECILIA-RETICULATA; MALE 3-SPINED STICKLEBACK; RISK-TAKING BEHAVIOR; IOWA GAMBLING TASK; GASTEROSTEUS-ACULEATUS; ANIMAL PERSONALITY; SOCIAL-CONTEXT; POPULATIONS; EVOLUTION; ECOLOGY Behavioural traits that co-vary across contexts or situations often reflect fundamental trade-offs which individuals experience in different contexts (e. g. fitness trade-offs between exploration and predation risk). Since males tend to experience greater variance in reproductive success than females, there may be considerable fitness benefits associated with "bolder" behavioural types, but only recently have researchers begun to consider sex-specific and life-history strategies associated with these. Here we test the hypothesis that male three-spined sticklebacks (Gasterosteus aculeatus) show high risk but potentially high return behaviours compared to females. According to this hypothesis we predicted that male fish would show greater exploration of their environment in a foraging context, and be caught sooner by an experimenter than females. We found that the time fish spent out of cover exploring their environment was correlated over two days, and males spent significantly more time out of cover than females. Also, the order in which fish were net-caught from their holding aquarium by an experimenter prior to experiments was negatively correlated with the time spent out of cover during tests, and males tended to be caught sooner than females. Moreover, we found a positive correlation between the catch number prior to our experiments and nine months after, pointing towards consistent, long-term individual differences in behaviour. [King, Andrew J.; Fuertbauer, Ines] Swansea Univ, Coll Sci, Dept Biosci, Swansea, W Glam, Wales; [King, Andrew J.; Mamuneas, Diamanto; James, Charlotte] Univ London Royal Vet Coll, Struct & Mot Lab, Hatfield, Herts, England; [King, Andrew J.; Manica, Andrea] Univ Cambridge, Dept Zool, Evolutionary Ecol Grp, Cambridge, England King, AJ (reprint author), Swansea Univ, Coll Sci, Dept Biosci, Swansea, W Glam, Wales. a.j.king@swansea.ac.uk Manica, Andrea/B-5497-2008 Manica, Andrea/0000-0003-1895-450X; Furtbauer, Ines/0000-0003-1404-6280 NERC Postdoctoral Fellowship [NE/H016600/2]; BBSRC; Natural Environment Research Council [NE/H016600/3, NE/H016600/2] This work was supported by a NERC Postdoctoral Fellowship awarded to A.J.K (NE/H016600/2) and D.M. was supported by a BBSRC studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Archard GA, 2011, BEHAV PROCESS, V86, P52, DOI 10.1016/j.beproc.2010.09.002; Bell AM, 2007, P ROY SOC B-BIOL SCI, V274, P755, DOI 10.1098/rspb.2006.0199; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Bell AM, 2005, J EVOLUTION BIOL, V18, P464, DOI 10.1111/j.1420-9101.2004.00817.x; Bell AM, 2004, ANIM BEHAV, V68, P1339, DOI 10.1016/j.anbehav.2004.05.007; Biro PA, 2009, TRENDS ECOL EVOL, V24, P66, DOI 10.1016/j.tree.2008.11.001; Candolin U, 1999, P ROY SOC B-BIOL SCI, V266, P785, DOI 10.1098/rspb.1999.0706; Candolin U, 2000, BEHAV ECOL SOCIOBIOL, V49, P57, DOI 10.1007/s002650000267; Carter AJ, 2013, BIOL REV, V88, P465, DOI 10.1111/brv.12007; Carter AJ, 2012, ANIM BEHAV, V84, P603, DOI 10.1016/j.anbehav.2012.06.015; Carter AJ, 2012, ANIM BEHAV, V83, P1051, DOI 10.1016/j.anbehav.2012.01.033; CHELLAPPA S, 1989, J FISH BIOL, V35, P315, DOI 10.1111/j.1095-8649.1989.tb02982.x; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Conrad JL, 2011, J FISH BIOL, V78, P395, DOI 10.1111/j.1095-8649.2010.02874.x; Cote J, 2012, ANIM BEHAV, V83, P1469, DOI 10.1016/j.anbehav.2012.03.019; Croft DP, 2003, OECOLOGIA, V137, P62, DOI 10.1007/s00442-003-1268-6; Dammhahn M, 2012, P ROY SOC B-BIOL SCI, V279, P2645, DOI 10.1098/rspb.2012.0212; David M, 2012, ETHOLOGY, V118, P932, DOI 10.1111/j.1439-0310.2012.02085.x; Dingemanse NJ, 2007, J ANIM ECOL, V76, P1128, DOI 10.1111/j.1365-2656.2007.01284.x; Edenbrow M, 2011, ANIM BEHAV, V82, P731, DOI 10.1016/j.anbehav.2011.07.003; FITZGERALD GJ, 1989, EXP BIOL, V48, P295; Harcourt J, 2010, BOLDNESS SOCIAL INTE; Harcourt JL, 2010, ETHOLOGY, V116, P440, DOI 10.1111/j.1439-0310.2010.01757.x; Harcourt JL, 2009, ANIM BEHAV, V77, P1501, DOI 10.1016/j.anbehav.2009.03.004; Harcourt JL, 2009, CURR BIOL, V19, P248, DOI 10.1016/j.cub.2008.12.051; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Hedrick AV, 2012, BEHAV ECOL SOCIOBIOL, V66, P407, DOI 10.1007/s00265-011-1286-z; Herczeg G, 2009, J EVOLUTION BIOL, V22, P544, DOI 10.1111/j.1420-9101.2008.01674.x; Huntingford FA, 2009, J FISH BIOL, V75, P1943, DOI 10.1111/j.1095-8649.2009.02420.x; HUNTINGFORD FA, 1976, ANIM BEHAV, V24, P245, DOI 10.1016/S0003-3472(76)80034-6; King AJ, 2009, CURR BIOL, V19, pR911, DOI 10.1016/j.cub.2009.07.027; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; Magurran AE, 2001, BIOL J LINN SOC, V73, P1, DOI 10.1006/bijl.2000.0519; MILINSKI M, 1990, NATURE, V344, P330, DOI 10.1038/344330a0; Nannini MA, 2012, T AM FISH SOC, V141, P26, DOI 10.1080/00028487.2011.639268; Parker G.A., 1979, P123; Piyapong C, 2010, BEHAV ECOL, V21, P3, DOI 10.1093/beheco/arp142; Reale D, 2007, BIOL REV, V82, P291, DOI 10.1111/j.1469-185X.2007.00010.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reaney LT, 2007, BEHAV ECOL, V18, P521, DOI 10.1093/beheco/arm014; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Scharer L, 2012, TRENDS ECOL EVOL, V27, P260, DOI 10.1016/j.tree.2011.12.006; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2008, ADV STUD BEHAV, V23, P277; Sih A, 2011, DEV PRIMATOL-PROG PR, P313, DOI 10.1007/978-1-4614-0176-6_12; Smith C, 1999, J FISH BIOL, V54, P1132, DOI 10.1006/jfbi.1999.0940; SMITH JM, 1977, ANIM BEHAV, V25, P1, DOI 10.1016/0003-3472(77)90062-8; Smith KL, 2009, BEHAVIOUR, V146, P283, DOI 10.1163/156853909X410784; Tolulope OA, 2013, BEHAV ECOLOGY; van den Bos R, 2013, BEHAV BRAIN RES, V238, P95, DOI 10.1016/j.bbr.2012.10.002; van den Bos R, 2012, BEHAV BRAIN RES, V234, P375, DOI 10.1016/j.bbr.2012.07.015; van Oers K, 2005, BEHAV ECOL, V16, P716, DOI 10.1093/beheco/ari045; von Merten S, 2012, ANIM BEHAV, V84, P29, DOI 10.1016/j.anbehav.2012.04.002; Ward AJW, 2004, BEHAV ECOL, V15, P925, DOI 10.1093/beheco/arh097; Ward AJW, 2004, BEHAV ECOL SOCIOBIOL, V55, P561, DOI 10.1007/s00265-003-0751-8; Webster MM, 2007, BEHAVIOUR, V144, P351, DOI 10.1163/156853907780425721; Webster MM, 2011, P ROY SOC B-BIOL SCI, V278, P619, DOI 10.1098/rspb.2010.1562; Webster MM, 2011, BIOL REV, V86, P759, DOI 10.1111/j.1469-185X.2010.00169.x; Williams LJ, 2012, ANIM BEHAV, V84, P159, DOI 10.1016/j.anbehav.2012.04.025; Wilson ADM, 2011, CAN J FISH AQUAT SCI, V68, P749, DOI 10.1139/F2011-019; WILSON DS, 1993, J COMP PSYCHOL, V107, P250, DOI 10.1037/0735-7036.107.3.250; WILSON DS, 1994, TRENDS ECOL EVOL, V9, P442, DOI 10.1016/0169-5347(94)90134-1; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835 63 29 29 6 92 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One DEC 4 2013 8 12 e81116 10.1371/journal.pone.0081116 6 Multidisciplinary Sciences Science & Technology - Other Topics 265KD WOS:000327949300071 24324664 DOAJ Gold, Green Published 2019-02-21 J Gray, PB Gray, Peter B. Evolution and Human Sexuality AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY English Article evolution; sexual behavior; sexual function; sexual selection; hominin; Homo; life course; life history; genetics; neuroendocrine; polygyny SALIVARY TESTOSTERONE LEVELS; HUMAN LIFE-HISTORY; ROMANTIC LOVE; MATE CHOICE; REPRODUCTIVE SUCCESS; MALE COMPETITION; STRESS HORMONES; SEX-DIFFERENCES; UNITED-STATES; HOMO-ERECTUS The aim of this review is to put core features of human sexuality in an evolutionary light. Toward that end, I address five topics concerning the evolution of human sexuality. First, I address theoretical foundations, including recent critiques and developments. While much traces back to Darwin and his view of sexual selection, more recent work helps refine the theoretical bases to sex differences and life history allocations to mating effort. Second, I consider central models attempting to specify the phylogenetic details regarding how hominin sexuality might have changed, with most of those models honing in on transitions from a possible chimpanzee-like ancestor to the slightly polygynous and long-term bonded sociosexual partnerships observed among most recently studied hunter-gatherers. Third, I address recent genetic and physiological data contributing to a refined understanding of human sexuality. As examples, the availability of rapidly increasing genomic information aids comparative approaches to discern signals of selection in sexuality-related phenotypes, and neuroendocrine studies of human responses to sexual stimuli provide insight into homologous and derived mechanisms. Fourth, I consider some of the most recent, large, and rigorous studies of human sexuality. These provide insights into sexual behavior across other national samples and on the Internet. Fifth, I discuss the relevance of a life course perspective to understanding the evolution of human sexuality. Most research on the evolution of human sexuality focuses on young adults. Yet humans are sexual beings from gestation to death, albeit in different ways across the life course, and in ways that can be theoretically couched within life history theory. Am J Phys Anthropol 57:94-118, 2013. (c) 2013 Wiley Periodicals, Inc. Univ Nevada, Dept Anthropol, Las Vegas, NV 89154 USA Gray, PB (reprint author), Univ Nevada, Dept Anthropol, 4505 Maryland Pkwy,Box 455003, Las Vegas, NV 89154 USA. peter.gray@unlv.edu Gray, Peter/0000-0003-1774-2468 Alvergne A, 2010, TRENDS ECOL EVOL, V25, P171, DOI 10.1016/j.tree.2009.08.003; Andersson M., 1994, SEXUAL SELECTION; Apostolou M, 2007, EVOL HUM BEHAV, V28, P403, DOI 10.1016/j.evolhumbehav.2007.05.007; Archer J, 2005, PERS SOC PSYCHOL REV, V9, P212, DOI 10.1207/s15327957pspr0903_2; Archer J, 2006, NEUROSCI BIOBEHAV R, V30, P319, DOI 10.1016/j.neubiorev.2004.12.007; Aron A, 2005, J NEUROPHYSIOL, V94, P327, DOI 10.1152/jn.00838.2004; Avis NE, 2009, MENOPAUSE, V16, P442, DOI 10.1097/gme.0b013e3181948dd0; Baker R. R., 1994, HUMAN SPERM COMPETIT; Bancroft J, 2005, J ENDOCRINOL, V186, P411, DOI 10.1677/joe.1.06233; Bartels A, 2000, NEUROREPORT, V11, P3829, DOI 10.1097/00001756-200011270-00046; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Baumeister RF, 2001, PERS SOC PSYCHOL REV, V5, P242, DOI 10.1207/S15327957PSPR0503_5; BEACH FA, 1976, HORM BEHAV, V7, P105, DOI 10.1016/0018-506X(76)90008-8; Beach Frank A., 1951, PATTERNS SEXUAL BEHA; Berndt R, 1951, SEXUAL BEHAV ARNHEM; Betzig L, 2012, EVOL HUM BEHAV, V33, P309, DOI 10.1016/j.evolhumbehav.2011.10.008; Bird R, 1999, EVOL ANTHROPOL, V8, P65, DOI 10.1002/(SICI)1520-6505(1999)8:2<65::AID-EVAN5>3.3.CO;2-V; BIRKHEAD T, 2000, PROMISCUITY; Blurton Jones N. G., 2000, ADAPTATION HUMAN BEH, P65; Bogin B, 1999, PATTERNS HUMAN GROWT; Brewis A, 2005, J BIOSOC SCI, V37, P499, DOI 10.1017/S002193200400690X; Brewis A, 2005, CURR ANTHROPOL, V46, P465, DOI 10.1086/430016; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; Brown JK, 1992, HER PRIME NEW VIEWS; Brunet M, 2005, NATURE, V434, P752, DOI 10.1038/nature03392; Buss David M, 2003, EVOLUTION DESIRE STR; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; Campbell A, 1999, BEHAV BRAIN SCI, V22, P203; Campbell CJ, 2011, PRIMATES PERSPECTIVE; CARMICHAEL MS, 1987, J CLIN ENDOCR METAB, V64, P27, DOI 10.1210/jcem-64-1-27; Carnahan SJ, 2008, AM J PRIMATOL, V70, P939, DOI 10.1002/ajp.20585; Chapais B., 2008, PRIMEVAL KINSHIP PAI; Chapman T, 2003, TRENDS ECOL EVOL, V18, P41, DOI 10.1016/S0169-5347(02)00004-6; Chivers ML, 2010, ARCH SEX BEHAV, V39, P5, DOI 10.1007/s10508-009-9556-9; Clark NL, 2005, PLOS GENET, V1, P335, DOI 10.1371/journal.pgen.0010035; Clutton-Brock T, 2009, Q REV BIOL, V84, P3, DOI 10.1086/596461; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Crompton RH, 2008, J ANAT, V212, P501, DOI 10.1111/j.1469-7580.2008.00870.x; Darwin C, 1871, DESCENT MAN SELECTIO; Dean C, 2001, NATURE, V414, P628, DOI 10.1038/414628a; Dennerstein Lorraine, 2003, Annu Rev Sex Res, V14, P64; Disotell TR, 2012, AM J PHYS ANTHROPOL, V149, P24, DOI 10.1002/ajpa.22159; Ditzen B, 2009, BIOL PSYCHIAT, V65, P728, DOI 10.1016/j.biopsych.2008.10.011; Dixson A. F., 2009, SEXUAL SELECTION ORI; Dixson AF, 2012, PRIMATE SEXUALITY: COMPARATIVE STUDIES OF THE PROSIMIANS, MONKEYS, APES, AND HUMANS, 2ND EDITION, P1, DOI 10.1093/acprof:osobl/9780199544646.001.0001; Durante KM, 2008, PERS SOC PSYCHOL B, V34, P1451, DOI 10.1177/0146167208323103; Eberhard W.G., 1996, FEMALE CONTROL SEXUA; Ellison PT, 2001, FERTILE GROUND; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Escasa MJ, 2011, ARCH SEX BEHAV, V40, P921, DOI 10.1007/s10508-010-9711-3; Fisher HE, 1982, SEX CONTRACT; Fisher HE, 2006, PHILOS T R SOC B, V361, P2173, DOI 10.1098/rstb.2006.1938; Foley R, 2009, PHILOS T R SOC B, V364, P3267, DOI 10.1098/rstb.2009.0136; Frayser S. G., 1985, VARIETIES SEXUAL EXP; Gangestad SW, 2008, P ROY SOC B-BIOL SCI, V275, P991, DOI 10.1098/rspb.2007.1425; Garcia JR, 2012, REV GEN PSYCHOL, V16, P161, DOI 10.1037/a0027911; Garcia JR, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0014162; Gat A., 2006, WAR HUMAN CIVILIZATI; Geary D. C., 2010, MALE FEMALE EVOLUTIO; Geary DC, 2001, PARENT-SCI PRACT, V1, P5, DOI 10.1207/S15327922PAR011&2_2; Geary DC, 2002, ADV CHILD DEV BEHAV, V30, P41, DOI 10.1016/S0065-2407(02)80039-8; GENTRY GA, 1988, P NATL ACAD SCI USA, V85, P2658, DOI 10.1073/pnas.85.8.2658; Georgiadis JR, 2009, HUM BRAIN MAPP, V30, P3089, DOI 10.1002/hbm.20733; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Good JM, 2013, MOL BIOL EVOL, V30, P964, DOI 10.1093/molbev/mst005; Goodman M, 1998, MOL PHYLOGENET EVOL, V9, P585, DOI 10.1006/mpev.1998.0495; Gowaty PA, 2012, P NATL ACAD SCI USA, V109, P11740, DOI 10.1073/pnas.1207851109; Gray P, 2005, INT J IMPOT RES, V17, P445, DOI 10.1038/sj.ijir.3901359; Gray P. B, 2010, FATHERHOOD EVOLUTION; Gray PB, 2006, P ROY SOC B-BIOL SCI, V273, P333, DOI 10.1098/rspb.2005.3311; Gray PB, 2003, AM J PHYS ANTHROPOL, V122, P279, DOI 10.1002/ajpa.10293; Gray PB, 2009, ENDOCRINOLOGY SOCIAL; Gray PB, 2013, EVOLUTION HUMAN SEXU; Gray PB, 2012, GERONTOLOGY, V58, P446, DOI 10.1159/000337420; Grewen KM, 2005, PSYCHOSOM MED, V67, P531, DOI 10.1097/01.psy.0000170341.88395.47; Gueguen N, 2009, EVOL HUM BEHAV, V30, P351, DOI 10.1016/j.evolhumbehav.2009.03.004; Guttentag M, 1983, TOO MANY WOMEN SEX R; Hammock EAD, 2005, SCIENCE, V308, P1630, DOI 10.1126/science.1111427; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; Harmon E, 2009, J HUM EVOL, V56, P551, DOI 10.1016/j.jhevol.2009.01.002; Harpending H, 2002, P NATL ACAD SCI USA, V99, P10, DOI 10.1073/pnas.012612799; Hausfater G., 1984, INFANTICIDE COMP EVO; Hawkes K, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P443; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K., 2006, EVOLUTION HUMAN LIFE; Herbenick D, 2010, J SEX MED, V7, P255, DOI 10.1111/j.1743-6109.2010.02012.x; Herdt G, 2000, ARCH SEX BEHAV, V29, P587, DOI 10.1023/A:1002006521067; Hewlett BS, 2010, AFRICAN STUDY MONOGR, V31, P107; Heyer E, 2012, MOL ECOL, V21, P597, DOI 10.1111/j.1365-294X.2011.05406.x; Howell N., 2010, LIFE HIST DOBE KUNG; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy S. B., 1981, WOMAN NEVER EVOLVED; Hrdy Sarah Blaffer, 1999, MOTHER NATURE NATURA; Hughes JF, 2010, NATURE, V463, P536, DOI 10.1038/nature08700; Jankowiak W, 2005, ETHNOLOGY, V44, P81, DOI 10.2307/3773961; Jankowiak W. R., 2008, INTIMACIES LOVE SEX; Janson CH, 2000, INFANICIDE MALES ITS; Kaplan H, 2000, EVOL ANTHROPOL, V9, P156, DOI 10.1002/1520-6505(2000)9:4<156::AID-EVAN5>3.0.CO;2-7; Kelly RL, 1995, FORAGING SPECTRUM; Kiecolt-Glaser JK, 2003, J CONSULT CLIN PSYCH, V71, P176, DOI 10.1037/0022-006X.71.1.176; Kinsey A. C., 1948, SEXUAL BEHAV HUMAN M; Kinsey A. C., 1953, SEXUAL BEHAV HUMAN F; Kirkpatrick RC, 2000, CURR ANTHROPOL, V41, P385, DOI 10.1086/300145; Kokko H, 2003, TRENDS ECOL EVOL, V18, P103, DOI 10.1016/S0169-5347(03)00009-0; Kokko H, 2008, J EVOLUTION BIOL, V21, P919, DOI 10.1111/j.1420-9101.2008.01540.x; Kokko H, 2008, CURR BIOL, V18, pR121, DOI 10.1016/j.cub.2007.11.063; Komisaruk BR, 2005, ANN REV SEX RES, V16, P62; Kruger THC, 2003, J ENDOCRINOL, V177, P57, DOI 10.1677/joe.0.1770057; Labuda D, 2010, AM J HUM GENET, V86, P353, DOI 10.1016/j.ajhg.2010.01.029; Lassek WD, 2009, EVOL HUM BEHAV, V30, P322, DOI 10.1016/j.evolhumbehav.2009.04.002; Laumann EO, 1994, SOCIAL ORG SEXUALITY; Lieberman DE, 2011, EVOLUTION HUMAN HEAD; Lindau ST, 2007, NEW ENGL J MED, V357, P762, DOI 10.1056/NEJMoa067423; Lockwood CA, 1999, AM J PHYS ANTHROPOL, V108, P97, DOI 10.1002/(SICI)1096-8644(199901)108:1<97::AID-AJPA6>3.0.CO;2-O; Lockwood CA, 2007, SCIENCE, V318, P1443, DOI 10.1126/science.1149211; Lovejoy CO, 2009, SCIENCE, V326, p74e1; Low BS, 2000, WHY SEX MATTERS; Lukas D, 2013, SCIENCE, V341, P526, DOI 10.1126/science.1238677; Maccoby E. E., 1998, 2 SEXES GROWING APAR; Mallants C, 2008, EUR J PEDIATR, V167, P1111, DOI 10.1007/s00431-008-0766-2; Marlowe FW, 2007, CROSS-CULT RES, V41, P170, DOI 10.1177/1069397106297529; Marlowe Frank W, 2010, HADZA HUNTER GATHERE; Marlowe FW, 2003, EVOL HUM BEHAV, V24, P217, DOI 10.1016/S1090-5138(03)00014-X; Marlowe FW, 2005, EVOL ANTHROPOL, V14, P54, DOI 10.1002/evan.20046; Mazur A, 1998, SOC FORCES, V77, P315, DOI 10.2307/3006019; MCHENRY HM, 1994, J HUM EVOL, V27, P77, DOI 10.1006/jhev.1994.1036; McLean CY, 2011, NATURE, V471, P216, DOI 10.1038/nature09774; MEIZNER I, 1987, J ULTRAS MED, V6, P111, DOI 10.7863/jum.1987.6.2.111; Mesnick SL, 1997, FEMINISM EVOLUTIONAR; Mikkelsen TS, 2005, NATURE, V437, P69, DOI 10.1038/nature04072; MILLER GF, 2000, MATING MIND; Mitani JC, 1996, AM NAT, V147, P966, DOI 10.1086/285888; Mitani JC, 2012, EVOLUTION PRIMATE SO; Montagu MFA, 1946, ADOLESCENT STERILITY; Mubiru JN, 2012, J MED PRIMATOL, V41, P67, DOI 10.1111/j.1600-0684.2011.00517.x; Muehlenbein MP, 2010, HUMAN EVOLUTIONARY B; Muller M. N., 2009, SEXUAL COERCION PRIM; Muller MN, 2006, CURR BIOL, V16, P2234, DOI 10.1016/j.cub.2006.09.042; MURDOCK GEORGE PETER, 1949, SOCIAL STRUCTURE; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; Nelson E, 2011, P ROY SOC B-BIOL SCI, V278, P1556, DOI 10.1098/rspb.2010.1740; Nunn CL, 1999, ANIM BEHAV, V58, P229, DOI 10.1006/anbe.1999.1159; O'Bleness M, 2012, NAT REV GENET, V13, P853, DOI 10.1038/nrg3336; O'Connell J.F., 2007, RETHINKING HUMAN REV, P395; Ogas O, 2011, BILLION WICKED THOUG; Parish WL, 2007, POPUL DEV REV, V33, P729, DOI 10.1111/j.1728-4457.2007.00195.x; PARKER GA, 1970, BIOL REV, V45, P525, DOI 10.1111/j.1469-185X.1970.tb01176.x; Plavcan JM, 2012, HUM NATURE-INT BIOS, V23, P45, DOI 10.1007/s12110-012-9130-3; Poiani A., 2010, ANIMAL HOMOSEXUALITY; Prichard Zoe M, 2007, Hum Mutat, V28, P1150, DOI 10.1002/humu.9510; Prufer K, 2012, NATURE, V486, P527, DOI 10.1038/nature11128; Pusey AE, 2012, EVOLUTION PRIMATE SO; Puts DA, 2010, EVOL HUM BEHAV, V31, P157, DOI 10.1016/j.evolhumbehav.2010.02.005; Quinlan RJ, 2008, EVOL ANTHROPOL, V17, P227, DOI 10.1002/evan.20191; Ravel J, 2011, P NATL ACAD SCI USA, V108, P4680, DOI 10.1073/pnas.1002611107; Reno PL, 2003, P NATL ACAD SCI USA, V100, P9404, DOI 10.1073/pnas.1133180100; REYNOLDS JD, 1987, IBIS, V129, P225, DOI 10.1111/j.1474-919X.1987.tb03203.x; Robles TF, 2006, J SOC PERS RELAT, V23, P305, DOI 10.1177/0265407506062482; Ryan C, 2010, SEX DAWN WE MATE WE; Schaefer K, 2004, ANN ANAT, V186, P471, DOI 10.1016/S0940-9602(04)80086-4; SCHLEGEL A, 1991, ADOLESCENCE ANTHR IN; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; Senut B, 2001, CR ACAD SCI II A, V332, P137, DOI 10.1016/S1251-8050(01)01529-4; SHORT RV, 1976, PROC R SOC SER B-BIO, V195, P3, DOI 10.1098/rspb.1976.0095; Shoskak M., 1981, NISA LIFE WORDS KUNG; Simpson SW, 2008, SCIENCE, V322, P1089, DOI 10.1126/science.1163592; Smith EA, 2004, HUM NATURE-INT BIOS, V15, P343, DOI 10.1007/s12110-004-1013-9; Smuts B, 1992, Hum Nat, V3, P1, DOI 10.1007/BF02692265; Smuts B. B., 1985, SEX FRIENDSHIP BABOO; Sokol Chang R, 2013, EVOLUTIONS EMPRESS D, P260; Starkweather KE, 2012, HUM NATURE-INT BIOS, V23, P149, DOI 10.1007/s12110-012-9144-x; Stearns S, 1992, EVOLUTION LIFE HIST; Stockley P, 2011, BIOL REV, V86, P341, DOI 10.1111/j.1469-185X.2010.00149.x; STRASSMANN BI, 1981, ETHOL SOCIOBIOL, V2, P31, DOI 10.1016/0162-3095(81)90020-0; STRIER KB, 1990, INT J PRIMATOL, V11, P7, DOI 10.1007/BF02193693; Symons D., 1979, EVOLUTION HUMAN SEXU; Tinbergen N., 1963, Zeitschrift fuer Tierpsychologie, V20, P410; Trivers R, 1972, SEXUAL SELECTION DES, P136; Van Anders SM, 2006, HUM NATURE-INT BIOS, V17, P212, DOI 10.1007/s12110-006-1018-7; van Anders SM, 2009, J SEX MED, V6, P739, DOI 10.1111/j.1743-6109.2008.01123.x; vansAnders Sari M., 2007, ANN REV SEX RES, V18, P60, DOI DOI 10.1080/10532528.2007; VANSCHAIK CP, 1983, BEHAVIOUR, V87, P120, DOI 10.1163/156853983X00147; VANSCHAIK CP, 1990, BEHAVIOUR, V115, P30, DOI 10.1163/156853990X00284; Vitzthum VJ, 2009, YEARB PHYS ANTHROPOL, V52, P95, DOI 10.1002/ajpa.21195; von Sydow K, 1999, J PSYCHOSOM RES, V47, P27, DOI 10.1016/S0022-3999(98)00106-8; WALKER A, 1993, NARIOKOTOME HOMOEREC; Walker RS, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0019066; Walum H, 2008, P NATL ACAD SCI USA, V105, P14153, DOI 10.1073/pnas.0803081105; Weisfeld G, 1999, EVOLUTIONARY PRINCIP; Wellings K, 2006, LANCET, V368, P1706, DOI 10.1016/S0140-6736(06)69479-8; Wilcox AJ, 2004, HUM REPROD, V19, P1539, DOI 10.1093/humrep/deh305; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Winking J, 2007, P R SOC B, V274, P1643, DOI 10.1098/rspb.2006.0437; WINN RL, 1982, ARCH SEX BEHAV, V11, P283, DOI 10.1007/BF01541590; Wood B, 2008, J ANAT, V212, P354, DOI 10.1111/j.1469-7580.2008.00871.x; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083; WRANGHAM RW, 1979, SOC SCI INFORM, V18, P335; Yang CFJ, 2005, AM J PSYCHIAT, V162, P263, DOI 10.1176/appi.ajp.162.2.263; Zeki S, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0015802 200 16 16 8 126 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0002-9483 1096-8644 AM J PHYS ANTHROPOL Am. J. Phys. Anthropol. DEC 2013 152 57 94 118 10.1002/ajpa.22394 25 Anthropology; Evolutionary Biology Anthropology; Evolutionary Biology 296JL WOS:000330181100005 24151100 Bronze 2019-02-21 J Beuchel, JS; Marschall, EA; Aday, DD Beuchel, J. S.; Marschall, E. A.; Aday, D. D. Energy allocation patterns in a multiple spawning sunfish: evidence for an income-based reproductive strategy FISHERIES MANAGEMENT AND ECOLOGY English Article capital spawner; Centrarchidae; income spawner; life history; reproduction BLUEGILL LEPOMIS-MACROCHIRUS; WALLEYE STIZOSTEDION-VITREUM; BODY-SIZE; LIFE-HISTORIES; EGG CHARACTERISTICS; WHITE CRAPPIE; ANNUAL CYCLE; LAKE-ERIE; POPULATION; FEMALE Timing of reproduction is an important life-history trait that varies among species as a function of energy allocation strategy, particularly as individuals are influenced by seasonal variations prior to and during the reproductive season. This study investigated size- and sex-based seasonal patterns of energy allocation in bluegill, Lepomis macrochirus (Rafinesque), a species that spawns repeatedly throughout the summer, by quantifying gonad, liver and mesenteric fat masses. Results indicate that bluegill delay production of gonad tissue until the onset of the spawning season and use an income spawning' approach. Comparisons of energetic trends with crappies, Pomoxis annularis (Rafinesque) and P.nigromaculatus (Lesueur), a confamilial species of relatively similar size and morphology that spawns in the spring, highlight the flexibility of energy allocation patterns even among relatively similar fishes and shed light on bluegill life-history strategies. [Beuchel, J. S.; Marschall, E. A.; Aday, D. D.] Ohio State Univ, Dept Ecol Evolut & Organismal Biol, Columbus, OH 43210 USA Beuchel, JS (reprint author), Triton Coll, Coll Arts & Sci, 2000 Fifth Ave, River Grove, IL 60171 USA. jbeuchel@triton.edu Marschall, Elizabeth/0000-0002-8026-4203 ADAMS SM, 1982, T AM FISH SOC, V111, P549, DOI 10.1577/1548-8659(1982)111<549:EPILBU>2.0.CO;2; Aday D.D., 2009, P134, DOI 10.1002/9781444316032.ch6; Aday DD, 2006, OECOLOGIA, V147, P31, DOI 10.1007/s00442-005-0242-x; Aday DD, 2002, ECOL FRESHW FISH, V11, P190, DOI 10.1034/j.1600-0633.2002.00011.x; Aday DD, 2003, ECOLOGY, V84, P3370; Avila V. L., 1976, AM MIDL NAT, V96, P195; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Beuchel J., 2007, THESIS OHIO STATE U; Bonnet X, 1998, OIKOS, V83, P333, DOI 10.2307/3546846; Bunnell DB, 2007, J FISH BIOL, V70, P1838, DOI 10.1111/j.1095-8649.2007.01459.x; Bunnell DB, 2005, T AM FISH SOC, V134, P607, DOI 10.1577/T04-094.1; Bunnell DB, 2003, EVOL ECOL RES, V5, P439; Cargnelli LM, 1997, T AM FISH SOC, V126, P153, DOI 10.1577/1548-8659(1997)126<0153:NFELIE>2.3.CO;2; Colgan P. W., 1979, ENVIRON BIOL FISH, V4, P29; DANYLCHUK AJ, 1994, CAN J FISH AQUAT SCI, V51, P490, DOI 10.1139/f94-051; Encina L, 1997, J FISH BIOL, V50, P511; Fischer RU, 1998, J THERM BIOL, V23, P359, DOI 10.1016/S0306-4565(98)00026-6; Fox MG, 1998, CAN J FISH AQUAT SCI, V55, P737, DOI 10.1139/cjfas-55-3-737; FOX MG, 1994, ECOLOGY, V75, P1157, DOI 10.2307/1939439; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Garvey JE, 2002, ECOL APPL, V12, P194, DOI 10.2307/3061146; Garvey JE, 2003, CAN J FISH AQUAT SCI, V60, P938, DOI [10.1139/f03-083, 10.1139/F03-083]; GROSS MR, 1980, P NATL ACAD SCI-BIOL, V77, P6937, DOI 10.1073/pnas.77.11.6937; GROSS MR, 1982, Z TIERPSYCHOL, V60, P1; HENDERSON BA, 1994, CAN J FISH AQUAT SCI, V51, P986, DOI 10.1139/f94-099; Henderson BA, 2000, J FISH BIOL, V57, P122, DOI 10.1111/j.1095-8649.2000.tb00780.x; Henderson BA, 1996, CAN J FISH AQUAT SCI, V53, P127, DOI 10.1139/f95-162; Hendry AP, 1999, OIKOS, V85, P499, DOI 10.2307/3546699; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jenkins RE, 1993, FRESHWATER FISHES VI; Jennings Martin J., 1997, North American Journal of Fisheries Management, V17, P516, DOI 10.1577/1548-8675(1997)017<0516:EOPSSO>2.3.CO;2; Johnston TA, 1997, CAN J FISH AQUAT SCI, V54, P1006, DOI 10.1139/cjfas-54-5-1006; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; LAWLOR LR, 1976, ECOLOGY, V57, P1179, DOI 10.2307/1935043; Mathur D., 1971, T AM FISH SOC, V2, P307; Michaletz PH, 1998, J FRESHWATER ECOL, V13, P307, DOI 10.1080/02705060.1998.9663623; Nanton DA, 2001, AQUAC RES, V32, P225, DOI 10.1046/j.1355-557x.2001.00019.x; O'Brien DM, 2000, ECOLOGY, V81, P2822, DOI 10.2307/177344; Obeso JR, 2004, PERSPECT PLANT ECOL, V6, P217, DOI 10.1078/1433-8319-00080; Ouellet P, 2001, ICES J MAR SCI, V58, P672, DOI 10.1006/jmsc.2001.1065; RAND PS, 1994, T AM FISH SOC, V123, P519, DOI 10.1577/1548-8659(1994)123<0519:EDASOP>2.3.CO;2; RIDGWAY MS, 1991, J ANIM ECOL, V60, P665, DOI 10.2307/5304; ROFF DA, 1984, CAN J FISH AQUAT SCI, V41, P989, DOI 10.1139/f84-114; Stearns S, 1992, EVOLUTION LIFE HIST; Uysal K, 2006, ECOL FRESHW FISH, V15, P441, DOI 10.1111/j.1600-0633.2006.00174.x; Varpe O, 2009, OIKOS, V118, P363, DOI 10.1111/j.1600-0706.2008.17036.x; WOOTTON RJ, 1978, J FISH BIOL, V12, P331, DOI 10.1111/j.1095-8649.1978.tb04178.x 48 1 1 2 14 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0969-997X 1365-2400 FISHERIES MANAG ECOL Fisheries Manag. Ecol. DEC 2013 20 6 508 517 10.1111/fme.12041 10 Fisheries Fisheries 295QD WOS:000330129700005 2019-02-21 J Novosolov, M; Meiri, S Novosolov, Maria; Meiri, Shai The effect of island type on lizard reproductive traits JOURNAL OF BIOGEOGRAPHY English Article Evolution; island biogeography; island endemism; island syndrome; island type; life history; lizards; reproduction BODY-SIZE; ECOLOGY; BIOGEOGRAPHY; EVOLUTION; LAND; AGE; DIVERSIFICATION; CONSERVATION; VARIABILITY; POPULATION AimThe origins of islands influence island colonization and radiation dynamics, thus exerting differential selection pressures on the species that inhabit them. The occurrence of lower numbers of predator and competitor species on islands than the mainland selects for slow' life-history attributes (the island syndrome'). Animals colonizing, and radiating on, oceanic islands probably face more novel environments than do those inhabiting continental fragment and land-bridge islands. We hypothesized that oceanic island endemics will show the slowest life histories, whereas land-bridge island species will resemble mainland species the most. We predicted that species on old, small and isolated islands will also have slow life histories. LocationWorld-wide. MethodsWe assembled life-history data for 540 mainland and 319 insular endemic lizard species. We tested whether clutch size, brood frequency, hatchling mass and productivity differed between islands of different origin and between islands and the mainland. We controlled for female size, for latitude and for phylogenetic relationship using the R package caper. In addition, we tested the influences of island age, area and isolation on species life histories. ResultsOceanic island endemics have the smallest clutches and the largest offspring, and, together with continental fragment island endemics, lay most frequently. Clutch size, brood frequency and productivity increase with increasing island age. Isolation and area have little effect on lizard life history. Main conclusionsOur findings support the proposition that selection pressure differs across island type. The predator-poor environments on oceanic islands select for few, large offspring, while the predator-rich environments of the mainland and land-bridge islands select for many, small offspring. Island geological origin creates the environment within which evolution takes place, and thus plays a major role in life-history evolution. As islands grow older, lizards adapt by increasing their yearly reproductive effort. [Novosolov, Maria; Meiri, Shai] Tel Aviv Univ, Dept Zool, IL-6997801 Tel Aviv, Israel Novosolov, M (reprint author), Tel Aviv Univ, Dept Zool, IL-6997801 Tel Aviv, Israel. marianovosolov@gmail.com Novosolov, Maria/Q-3929-2017; Meiri, Shai/D-2403-2010 Novosolov, Maria/0000-0002-4034-3441; Meiri, Shai/0000-0003-3839-6330 ISF [1005/12] Erez Maza and members of the Global Assessment of Reptile Distribution (GARD) group were instrumental in obtaining data on lizard distributions. We thank three anonymous referees, the editor Kostas Triantis, and Jonathan Belmaker, Ofer Ovadia and, especially, Pasquale Raia for constructive comments on an earlier version of this work. We thank Salvador Carranza for valuable discussion. This study is funded by ISF grant number 1005/12 to S.M. ADLER GH, 1994, Q REV BIOL, V69, P473, DOI 10.1086/418744; ANDREWS R. M., 1979, BREVIORA, V454, P1; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Badano EI, 2005, J BIOGEOGR, V32, P221, DOI 10.1111/j.1365-2699.2004.01174.x; Blondel J, 2000, VIE MILIEU, V50, P205; CARLQUIST S. J., 1974, ISLAND BIOL; Carstensen DW, 2012, J BIOGEOGR, V39, P739, DOI 10.1111/j.1365-2699.2011.02628.x; CASE TJ, 1987, AM SCI, V75, P402; Cronk QCB, 1997, BIODIVERS CONSERV, V6, P477, DOI 10.1023/A:1018372910025; Dabool L., 2013, THESIS TEL AVIV U TE; Darwin C, 1845, VOYAGE BEAGLE; Foufopoulos J, 2011, AM NAT, V177, P119, DOI 10.1086/657624; Freckleton RP, 2002, AM NAT, V160, P712, DOI 10.1086/343873; GEIST V, 1987, CAN J ZOOL, V65, P1035, DOI 10.1139/z87-164; Gillespie R. G., 2009, ENCY ISLANDS; Goltsman M, 2005, J ZOOL, V267, P405, DOI 10.1017/S0952836905007557; GORDON KR, 1986, J MAMMAL, V67, P395, DOI 10.2307/1380895; HANSKI I, 1977, Annales Entomologici Fennici, V43, P101; Heads M, 2011, SYST BIOL, V60, P204, DOI 10.1093/sysbio/syq075; KARR JR, 1982, ECOLOGY, V63, P1975, DOI 10.2307/1940137; Lack D., 1971, ADAPTIVE ASPECTS INS, P29; Lomolino MV, 2010, THEORY OF ISLAND BIOGEOGRAPHY REVISITED, P13; Losos JB, 2010, THEORY OF ISLAND BIOGEOGRAPHY REVISITED, P1; Losos JB, 2009, NATURE, V457, P830, DOI 10.1038/nature07893; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1972, ECOLOGY, V53, P330, DOI 10.2307/1934090; Mayr E., 1967, Australian Natural History, V15, P369; McNab B.K., 2002, PHYSL ECOLOGY VERTEB; MCNAB BK, 1994, AM NAT, V144, P643, DOI 10.1086/285698; MCNAB BK, 1994, AM NAT, V144, P628, DOI 10.1086/285697; Meiri S, 2005, ECOLOGY, V86, P1432, DOI 10.1890/04-1503; Meiri S, 2005, AM NAT, V165, P505, DOI 10.1086/428297; Meiri S, 2010, J ZOOL, V281, P218, DOI 10.1111/j.1469-7998.2010.00696.x; Meiri S, 2007, J BIOGEOGR, V34, P2148, DOI 10.1111/j.1365-2699.2007.01771.x; Meiri S, 2013, GLOBAL ECOL BIOGEOGR, V22, P834, DOI 10.1111/geb.12053; Meiri S, 2012, GLOBAL ECOL BIOGEOGR, V21, P592, DOI 10.1111/j.1466-8238.2011.00700.x; Meiri S, 2010, P NATL ACAD SCI USA, V107, pE27, DOI 10.1073/pnas.0914098107; NIMA, 1997, VECT MAP LEV 0 VMAP0; Novosolov M, 2013, GLOBAL ECOL BIOGEOGR, V22, P184, DOI 10.1111/j.1466-8238.2012.00791.x; Orme C. D. L., 2012, CAPER COMP ANAL PHYL; Pafilis P, 2011, COPEIA, P545, DOI 10.1643/CE-10-041; Pafilis P, 2009, NATURWISSENSCHAFTEN, V96, P1107, DOI 10.1007/s00114-009-0564-3; Pincheira-Donoso D, 2011, HERPETOL J, V21, P35; Raia P, 2011, EVOLUTION, V65, P1927, DOI 10.1111/j.1558-5646.2011.01263.x; Rambaut A., 2010, FIGTREE VERSION 1 3; Rosindell J, 2011, ECOL LETT, V14, P552, DOI 10.1111/j.1461-0248.2011.01617.x; Schluter D, 2001, TRENDS ECOL EVOL, V16, P372, DOI 10.1016/S0169-5347(01)02198-X; Thomas GH, 2009, EVOLUTION, V63, P2017, DOI 10.1111/j.1558-5646.2009.00694.x; Van VALEN LEIGH, 1965, AMER NATUR, V99, P377, DOI 10.1086/282379; Voris HK, 2000, J BIOGEOGR, V27, P1153, DOI 10.1046/j.1365-2699.2000.00489.x; Wallace A. R., 1902, ISLAND LIFE; Wang Z., 2011, PLOS ONE, V6; Watson M. D., 2009, ENCY ISLANDS, P180; Whittaker R. J, 2007, ISLAND BIOGEOGRAPHY; Wiens JJ, 2010, SYST BIOL, V59, P674, DOI 10.1093/sysbio/syq048; WILCOX BA, 1978, SCIENCE, V199, P996, DOI 10.1126/science.199.4332.996; Williamson M. H., 1981, ISLAND POPULATIONS 57 9 9 5 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0305-0270 1365-2699 J BIOGEOGR J. Biogeogr. DEC 2013 40 12 2385 2395 10.1111/jbi.12179 11 Ecology; Geography, Physical Environmental Sciences & Ecology; Physical Geography 295FS WOS:000330102600016 2019-02-21 J Morbey, YE; Shuter, BJ Morbey, Yolanda E.; Shuter, Brian J. Intermittent breeding in the absence of a large cost of reproduction: evidence for a non-migratory, iteroparous salmonid ECOSPHERE English Article individual quality; intermittent breeding; Lake Opeongo; life history theory; reproduction; resource allocation; Salmonidae; Salvelinus namaycush; state-dependent decisions TROUT SALVELINUS-NAMAYCUSH; LAKE TROUT; REACTION NORMS; BIPHASIC GROWTH; ATLANTIC SALMON; MATURATION; HISTORY; FISHES; MODEL; SIZE In long-lived organisms, intermittent breeding likely evolves as a resource allocation strategy for coping with environmental uncertainty or individual heterogeneity in condition. In fishes, the phenomenon of intermittent breeding is referred to as skipped spawning, and appears to be more common at high latitudes or in migratory species with high accessory costs of reproduction. We used long-term monitoring data on lake trout (Salvelinus namaycush) to test whether key predictions about the frequency of skipped spawning hold in a mid-latitude population of a species lacking any obvious costs of reproduction beyond the production and fertilization of gametes. We first developed a threshold-based method to classify skipped spawners based on gonad size, fish size, and fish age. Consistent with life history theory, age-specific frequencies of skipped spawning were higher in females than males. The frequency of skipped spawning varied among years and was higher in 1994-2011 than in 1938-1959, perhaps because of food web changes over the past century. In temperate lakes, food web structure may be sufficiently variable to favor intermittent breeding in long-lived iteroparous fishes, despite low accessory costs of reproduction. [Morbey, Yolanda E.] Western Univ, Dept Biol, London, ON N5Y 3P3, Canada; [Shuter, Brian J.] Ontario Minist Nat Resources, Harkness Lab Fisheries Res, Aquat Res & Dev Sect, Peterborough, ON K9J 7B8, Canada; [Shuter, Brian J.] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON M5S 3B2, Canada Morbey, YE (reprint author), Western Univ, Dept Biol, London, ON N5Y 3P3, Canada. ymorbey@uwo.ca Morbey, Yolanda/F-9035-2013 Ontario Ministry of Natural Resources; MITACs We are extremely grateful to the staff at the Harkness Laboratory of Fisheries Research, and in particular G. Ridout and T. Middel, for their efforts in sustaining the high quality creel program in Lake Opeongo. We also thank Nick Lacombe and Devon Waters for their help in acquiring supplementary data for this project. Comments and suggestions by C. Jorgensen and an anonymous reviewer greatly improved the manuscript. In addition to continual funding by the Ontario Ministry of Natural Resources, partial support was provided by an Accelerator Grant from MITACs to Y.E. Morbey and B.J. Shuter. Barot S, 2004, EVOL ECOL RES, V6, P659; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Cam E, 1998, ECOLOGY, V79, P2917, DOI 10.2307/176526; Clutton-Brock TH, 2002, PHILOS T ROY SOC B, V357, P1285, DOI 10.1098/rstb.2002.1128; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Goetz F, 2011, T AM FISH SOC, V140, P1472, DOI 10.1080/00028487.2011.630276; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Henderson BA, 1998, J FISH BIOL, V52, P1078, DOI 10.1006/jfbi.1997.0631; Holmgren K, 2003, J FISH BIOL, V62, P918, DOI 10.1046/j.1095-8649.2003.00086.x; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P186, DOI 10.1139/F05-209; Jorgensen C, 2006, CAN J FISH AQUAT SCI, V63, P200, DOI 10.1139/F05-210; Keeley ER, 2001, CAN J FISH AQUAT SCI, V58, P1122, DOI 10.1139/cjfas-58-6-1122; KENNEDY W. A., 1954, JOUR FISH RES BD CANADA, V11, P827; Kinnison MT, 2001, EVOLUTION, V55, P1656; Korstrom J. S., 2003, SALMON ILLUMINATED S, V62, P85; Lester NP, 2004, P ROY SOC B-BIOL SCI, V271, P1625, DOI 10.1098/rspb.2004.2778; Manly BFJ, 1997, RANDOMIZATION BOOTST; MARTIN NV, 1970, J FISH RES BOARD CAN, V27, P125, DOI 10.1139/f70-013; MATUSZEK JE, 1990, T AM FISH SOC, V119, P718, DOI 10.1577/1548-8659(1990)119<0718:CILTGA>2.3.CO;2; McDermid JL, 2007, T AM FISH SOC, V136, P1018, DOI 10.1577/T06-189.1; MILLER R. B., 1948, JOUR FISH RES BD CANADA, V7, P176; Morbey YE, 2010, J FISH BIOL, V77, P2298, DOI 10.1111/j.1095-8649.2010.02804.x; Morbey YE, 2007, T AM FISH SOC, V136, P477, DOI 10.1577/T06-070.1; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Quince C, 2008, J THEOR BIOL, V254, P207, DOI 10.1016/j.jtbi.2008.05.030; Quince C, 2008, J THEOR BIOL, V254, P197, DOI 10.1016/j.jtbi.2008.05.029; R Core Development Team, 2009, R LANG ENV STAT COMP; Rennie MD, 2008, N AM J FISH MANAGE, V28, P1270, DOI 10.1577/M06-258.1; Rideout RM, 2005, FISH FISH, V6, P50, DOI 10.1111/j.1467-2679.2005.00174.x; ROFF DA, 1983, CAN J FISH AQUAT SCI, V40, P1395, DOI 10.1139/f83-161; Sedinger JS, 2001, J ANIM ECOL, V70, P798, DOI 10.1046/j.0021-8790.2001.00535.x; Shaw AK, 2013, J MATH BIOL, V66, P685, DOI 10.1007/s00285-012-0603-0; Shaw AK, 2011, OIKOS, V120, P1871, DOI 10.1111/j.1600-0706.2011.19443.x; Shuter BJ, 1998, CAN J FISH AQUAT SCI, V55, P2161, DOI 10.1139/cjfas-55-9-2161; Skjaeraasen JE, 2012, P NATL ACAD SCI USA, V109, P8995, DOI 10.1073/pnas.1200223109; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Wang HY, 2008, CAN J FISH AQUAT SCI, V65, P2157, DOI 10.1139/F08-124; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 43 8 8 2 27 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere DEC 2013 4 12 UNSP 150 10.1890/ES13-00259.1 18 Ecology Environmental Sciences & Ecology 285PI WOS:000329405700006 DOAJ Gold 2019-02-21 J Zattara, EE; Bely, AE Zattara, Eduardo E.; Bely, Alexandra E. Investment Choices in Post-Embryonic Development: Quantifying Interactions Among Growth, Regeneration, and Asexual Reproduction in the Annelid Pristina leidyi JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION English Article LIFE-HISTORY EVOLUTION; TRADE-OFFS; RESOURCE-ALLOCATION; ANIMALS; FISSION; COSTS; PROLIFERATION; COMPETITION; PATTERNS; GANGLION Animals capable of multiple forms of post-embryonic development, such as growth, regeneration, and asexual reproduction, must make choices about which processes to invest in. What strategies guide post-embryonic resource allocation investments? We investigated this question in the annelid Pristina leidyi, which can grow continuously, regenerates well, and reproduces asexually by fission. We found that in this species growth is concentrated in three zones: a subterminal posterior zone (forming new segments), a mid-body zone (forming fission zones), and a previously undescribed subterminal anterior zone at the base of the prostomium (which we suggest continually builds the prostomium through a conveyor-belt like process). Body-wide counts of proliferating cells are greater under high food than low food conditions but proliferation patterns themselves are independent of feeding level. Proliferation patterns are strongly affected by amputation, however, with proliferation rapidly shutting-down throughout the body, except at the wound site, following injury. Relative investment to fission and regeneration is highly context-dependent, being sensitive to the position of the cut and the stage of fission. Outcomes range from fission acceleration and regeneration stalling (high fission:regeneration investment) to resorption of fission zones and progression of regeneration (low fission:regeneration investment). Our findings reveal strong interactions between growth, regeneration, and fission and demonstrate a particularly important effect of injury on resource allocation patterns. Patterns of resource investment in P. leidyi show similarities to those described in two other groups that evolved fission independently (naidine annelids and catenulid flatworms), suggesting that similar developmental and physiological contexts may drive convergent evolution of resource allocation strategies. J. Exp. Zool. (Mol. Dev. Evol.) 320B: 471-488, 2013. (c) 2013 Wiley Periodicals, Inc. [Zattara, Eduardo E.; Bely, Alexandra E.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA Bely, AE (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. ezattara@umd.edu; abely@umd.edu Zattara, Eduardo/A-3760-2012 Zattara, Eduardo/0000-0002-9947-9036 National Science Foundation [IOB-0520389, IOS-0920502]; University of Maryland Graduate School; Behavior, Ecology, Evolution, and Systematics Graduate Program Grant sponsor: National Science Foundation; grant numbers: IOB-0520389, IOS-0920502; grant sponsor: University of Maryland Graduate School; grant sponsor: Behavior, Ecology, Evolution, and Systematics Graduate Program. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Bely AE, 1999, HYDROBIOLOGIA, V406, P243, DOI 10.1023/A:1003763915697; Bely AE, 2001, DEVELOPMENT, V128, P2781; Bely AE, 2010, P NATL ACAD SCI USA, V107, P1464, DOI 10.1073/pnas.0907931107; BERRILL NJ, 1952, BIOL REV, V27, P401, DOI 10.1111/j.1469-185X.1952.tb01512.x; Blackiston DJ, 2009, CELL CYCLE, V8, P3527, DOI 10.4161/cc.8.21.9888; CAMPBELL RD, 1967, J MORPHOL, V121, P19, DOI 10.1002/jmor.1051210103; Child CM, 1903, ARCH ENTWICKLUNG ORG, V17, P1, DOI 10.1007/BF02161891; CLARK RB, 1959, NATURE, V183, P1834, DOI 10.1038/1831834b0; CLARK RB, 1960, J EMBRYOL EXP MORPH, V8, P112; Consoli L, 1923, B I ZOOL PALERMO, V1, P23; Envall I, 2006, MOL PHYLOGENET EVOL, V40, P570, DOI 10.1016/j.ympev.2006.03.021; Fischer A, 2004, BIOESSAYS, V26, P314, DOI 10.1002/bies.10409; Fry CL, 2006, EVOL DEV, V8, P191, DOI 10.1111/j.1525-142X.2006.00089.x; Galloway TW, 1899, B MUS COMP ZOOL HARV, V35, P1; Goldfarb AJ, 1909, J EXP ZOOL, V7, P643, DOI 10.1002/jez.1400070403; Harper EH, 1904, BIOL BULL-US, V6, P173, DOI 10.2307/1535723; Heino M, 1999, J EVOLUTION BIOL, V12, P423; HERLANT-MEEWIS HENRIETTE, 1964, ADVANCE MORPHOGENESIS, V4, P155; HUGHES RN, 1989, FUNCTIONAL BIOL CLON; HYMAN LIBBIE H., 1938, PHYSIOL ZOOL, V11, P126; Jacobs DK, 2005, EVOL DEV, V7, P498, DOI 10.1111/j.1525-142X.2005.05055.x; Klingenberg CP, 1998, P ROY SOC B-BIOL SCI, V265, P1135, DOI 10.1098/rspb.1998.0409; Lawrence JM, 2010, INTEGR COMP BIOL, V50, P506, DOI 10.1093/icb/icq027; Levin M, 2012, BIOESSAYS, V34, P205, DOI 10.1002/bies.201100136; Maginnis TL, 2006, BEHAV ECOL, V17, P857, DOI 10.1093/beheco/arl010; Nielsen C, 2005, HYDROBIOLOGIA, V535, P23, DOI 10.1007/s10750-004-1404-2; Nijhout HF, 1998, P NATL ACAD SCI USA, V95, P3685, DOI 10.1073/pnas.95.7.3685; Parzer HF, 2008, EVOLUTION, V62, P2423, DOI 10.1111/j.1558-5646.2008.00448.x; R Development Core Team, 2011, R LANG ENV STAT COMP; Rosa R, 2005, EVOL DEV, V7, P574, DOI DOI 10.1111/J.1525-142X.2005.05061.X; Seaver EC, 2005, EVOL DEV, V7, P312, DOI 10.1111/j.1525-142X.2005.05037.x; Simmons LW, 2006, P NATL ACAD SCI USA, V103, P16346, DOI 10.1073/pnas.0603474103; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tomkins JL, 2005, P ROY SOC B-BIOL SCI, V272, P543, DOI 10.1098/rspb.2004.2950; Troedsson C, 2002, MAR ECOL PROG SER, V243, P83, DOI 10.3354/meps243083; TUOMI J, 1983, AM ZOOL, V23, P25; Van Cleave C. D., 1937, Physiological Zoology Chicago, V10, P299; Van Cleave C. D., 1929, Physiological Zoology Chicago, V2, P18; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vorontsova M.A., 1960, ASEXUAL PROPAGATION; Zattara EE, 2011, EVOL DEV, V13, P80, DOI 10.1111/j.1525-142X.2010.00458.x; Zattara EE, 2012, THESIS U MARYLAND CO; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 44 18 18 0 22 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1552-5007 1552-5015 J EXP ZOOL PART B J. Exp. Zool. Part B DEC 2013 320 8 471 488 10.1002/jez.b.22523 18 Evolutionary Biology; Developmental Biology; Zoology Evolutionary Biology; Developmental Biology; Zoology 291AX WOS:000329801100001 23913524 2019-02-21 J Leite, MDL; Rezende, CF; Silva, JRF Leao Leite, Marcos de Miranda; Rezende, Carla Ferreira; Feitosa Silva, Jose Roberto Population biology of the mangrove crab Ucides cordatus (Decapoda: Ucididae) in an estuary from semiarid Northeastern Brazil REVISTA DE BIOLOGIA TROPICAL English Article allometry; population structure; fishery management; sex ratio; size at sexual maturity LIFE-HISTORY EVOLUTION; SAO-PAULO STATE; SEXUAL-MATURITY; REPRODUCTIVE-BIOLOGY; RELATIVE GROWTH; ARATUS-PISONII; TROPICAL MANGROVE; SOUTHERN BRAZIL; ESPIRITO-SANTO; NORTH BRAZIL The mangrove crab Ucides cordatus is an important resource of estuarine regions along the Brazilian coast. U. cordatus is distributed from Florida, USA, to the coast of Santa Catarina, Brazil. The species plays an important role in processing leaf litter in the mangroves, which optimizes the processes of energy transfer and nutrient cycling, and is considered a keystone species in the ecosystem. Population declines have been reported in different parts of the Brazilian coast. In the present study we evaluated aspects of the population structure, sex ratio and size at morphological sexual maturity. We analyzed 977 specimens collected monthly over 24 months (2010-2012), in a mangrove of the Jaguaribe River, in the municipality of Aracati on the East coast of Ceara state, Northeastern Brazil. The study area has a mild semiarid tropical climate, with mean temperatures between 26 and 28 C. The area is located within the eco-region of the semiarid Northeast coast, where mangroves occur in small areas and estuaries are affected by mesomareal regimes. The population structure was evaluated by the frequency distribution of size classes in each month, and the overall sex ratio was analyzed using the chi-square test. Size at morphological sexual maturity was estimated based on the allometry of the cheliped of the males and the abdomen width of the females, using the program REGRANS. The size-frequency distribution was unimodal in both sexes. The overall sex ratio (M: F) (1:0.6) was significantly different from 1:1. Analysis of the sex ratio by size class showed that the proportion of males increased significantly from size class 55-60mm upward, and this pattern persisted in the larger size classes. In the smaller size classes the sex ratio did not differ from 1:1. The size at morphological sexual maturity was estimated at a carapace width (CW) of 52mm and 45mm for males and females, respectively. Analysis of the population parameters indicated that the population of U. cordatus in the Jaguaribe River mangrove is stable. However, constant monitoring of the population is required to detect any changes in the population attributes that may affect this stability. [Leao Leite, Marcos de Miranda] Univ Fed Ceara, Programa Posgrad Ecol & Recursos Nat, BR-60455760 Fortaleza, Ceara, Brazil; [Rezende, Carla Ferreira; Feitosa Silva, Jose Roberto] Univ Fed Ceara, Dept Biol, Secretaria Programa Posgrad Ecol & Recursos Nat, BR-60455760 Fortaleza, Ceara, Brazil Leite, MDL (reprint author), Univ Fed Ceara, Programa Posgrad Ecol & Recursos Nat, BR-60455760 Fortaleza, Ceara, Brazil. 1975.mirandaleao@gmail.com; carlarezende.ufc@gmail.com; robertofeitosa@ufc.br Rezende, Carla/G-2050-2012 Rezende, Carla/0000-0002-2319-6558 CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) The first author thanks CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) for providing a PhD scholarship. We are grateful to the fisherman Ronaldo Gonzaga da Silva for his help in fieldwork, and to Kate Ingram for translating the text. All sampling in this study was conducted in compliance with current applicable federal laws (ICMBio 20240-1). Alcantara-Filho P, 1978, ARQUIVOS CIENCIAS MA, V18, P1; Alves RRN, 2004, TROPICAL OCEANOGRAPH, V32, P23, DOI DOI 10.5914/TROPOCEAN.V32I1.5031; Pinheiro MAA, 2006, BRAZ ARCH BIOL TECHN, V49, P813, DOI 10.1590/S1516-89132006000600016; Araujo MSLC, 2012, AN ACAD BRAS CIENC, V84, P129, DOI 10.1590/S0001-37652012000100013; Bezerra LEA, 2007, ACTA OECOL, V31, P251, DOI 10.1016/j.actao.2006.10.003; Benetti AS, 2007, REV BIOL TROP, V55, P55; Borisov VM., 1978, J ICHTHYOL, V18, P896; BOTELHO ER, 2000, B TEC CIENT CEPENE, V8, P55; Bussab W. O., 2003, ESTATISTICA BASICA; CALOW P, 1979, BIOL REV, V54, P23, DOI 10.1111/j.1469-185X.1979.tb00866.x; Carvalho H.R.L., 2009, BIOTEMAS, V22, P69; Castiglioni D. S., 2011, J MAR BIOL ASSOC UK, V91, P1394; Castiglioni DD, 2011, IHERINGIA SER ZOOL, V101, P138, DOI 10.1590/S0073-47212011000100020; Castiglioni Daniela da Silva, 2006, Atlantica, V28, P73; Castro A. C. L., 2008, AMAZONIA CIENCIA DES, V3, P17; Charnov EL, 2001, P NATL ACAD SCI USA, V98, P9460, DOI 10.1073/pnas.161294498; Clayton D. A., 1991, CRUSTACEANA, V61, P2; Clayton J. C., 1990, CRUSTACEANA, V58, P570; Cobo VJ, 2005, CRUSTACEANA, V78, P1079, DOI 10.1163/156854005775361016; Conde JE, 2000, INTERCIENCIA, V25, P151; Conti RD, 2010, BRAZ J OCEANOGR, V58, P81, DOI 10.1590/S1679-87592010000200001; Corgos A, 2006, ICES J MAR SCI, V63, P851, DOI 10.1016/j.icesjms.2006.03.003; COSTA RS, 1972, THESIS U SAO PAULO S; Dalabona G, 2005, BRAZ ARCH BIOL TECHN, V48, P139, DOI 10.1590/S1516-89132005000100018; DIAZ H, 1989, B MAR SCI, V45, P148; Diele K, 2005, AQUAT LIVING RESOUR, V18, P169, DOI 10.1051/alr:2005018; Diele K, 2010, J EXP MAR BIOL ECOL, V395, P171, DOI 10.1016/j.jembe.2010.08.029; Draper N. R., 1966, APPL REGRESSIONS ANA; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fernandes M., 2007, B LAB HIDROBIOLOGIA, V20, P15; Fernandes-Goes L.C., 2005, NAUPLIUS, V13, P191; Fisher RA, 1930, GENETICAL THEORY NAT; Flores AAV, 1999, B MAR SCI, V65, P59; Fonteles-Filho A. A., 1989, RECURSOS PESQUIROS B; Fransozo A, 2003, J NAT HIST, V37, P297, DOI 10.1080/00222930110067926; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gardner C, 2002, MAR FRESHWATER RES, V53, P661, DOI 10.1071/MF01097; Gerhart SD, 2008, J CRUSTACEAN BIOL, V28, P252, DOI 10.1651/0278-0372(2008)028[0252:LAOSCG]2.0.CO;2; Glaser M, 2004, ECOL ECON, V49, P361, DOI 10.1016/j.ecolecon.2004.01.017; Glazier DS, 1999, EVOL ECOL, V13, P539, DOI 10.1023/A:1006793600600; Goes P, 2010, BRAZ J OCEANOGR, V58, P153, DOI 10.1590/S1679-87592010000200006; Gonzalez-Gurriaran E., 1994, J MARINE SCI, V51, P133; Gregati RA, 2009, ZOOLOGIA-CURITIBA, V26, P32, DOI 10.1590/S1984-46702009000100006; HARTNOLL R G, 1974, Crustaceana (Leiden), V27, P131, DOI 10.1163/156854074X00334; Hartnoll R. G, 1982, BIOL CRUSTACEA, P11; Hartnoll RG, 2006, HYDROBIOLOGIA, V557, P31, DOI 10.1007/s10750-005-9305-6; HARTNOLL RG, 1990, J CRUSTACEAN BIOL, V10, P14, DOI 10.2307/1548665; HARTNOLL RG, 1978, CRUSTACEANA, V34, P281, DOI 10.1163/156854078X00844; HARTNOLL RG, 1988, S ZOOLOGICAL SOC LON, V59, P1; Hartnoll RG, 2009, J CRUSTACEAN BIOL, V29, P57, DOI [10.1651/08-2992.1, 10.1561/08-2992.1]; Heino M, 2002, B MAR SCI, V70, P639; HINES AH, 1989, B MAR SCI, V45, P356; Ibama, 1994, LAG CAR CAM NOR; Ipece, 2010, PLAN BAS MUN AR; Ivo C. T. C., 1997, ESTATISTICA PESQIER; Ivo Carlos Tassito Correa, 1999, Boletim Tecnico Cientifico do CEPENE, V7, P9; Ivo Carlos Tassito Correa, 1999, Boletim Tecnico Cientifico do CEPENE, V7, P53; Johnson PTJ, 2003, CRUSTACEANA, V76, P559, DOI 10.1163/156854003322316209; Kassuga Alexandre D., 2008, Pan-American Journal of Aquatic Sciences, V3, P116; Kurata H., 1962, B HOKKAIDO REG FISH, V24, P1; Kuris A. M., 1987, MACROBRACHIUM ROSENB, V7, P219; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lee SY, 1995, J EXP MAR BIOL ECOL, V193, P161, DOI 10.1016/0022-0981(95)00116-6; Legat J., 2005, NAUPLIUS, V13, P65; Leite M. M. L., 2005, THESIS U FEDERAL CEA; Leite Marcos de Miranda Leao, 2006, Boletim Tecnico Cientifico do CEPENE, V14, P41; Leme MHD, 2002, J CRUSTACEAN BIOL, V22, P553; Lika K, 2003, B MATH BIOL, V65, P809, DOI 10.1016/S0092-8240(03)00039-9; LINHARES J. C. S., 2010, THESIS U FEDERAL CEA; Litulo C, 2005, ACTA OECOL, V27, P135, DOI 10.1016/j.actao.2004.11.002; Lizzarraga-Cubedo H. A., 2003, FISH RES, V65, P137; Mantelatto FLM, 2001, J NAT HIST, V35, P429, DOI 10.1080/002229301300009621; MARINS R. V., 2003, CIENCIA HOJE, V33, P66; Marques D. F., 2008, THESIS U FEDERAL CEA; McQuaid N, 2006, FISH RES, V81, P26, DOI 10.1016/j.fishres.2006.06.003; Melo G. A., 1996, MANUAL INDEITIFICAO; Mendonca JT, 2009, BOL INST PESCA, V35, P169; Mota Alves M.I., 1975, Arquivos Cienc Mar, V15, P85; Nascimento S. A., 1993, BIOL CARANGUJO UCA; Nordhaus I, 2007, MAR BIOL, V151, P1665, DOI 10.1007/s00227-006-0597-5; Olsen E, 2005, CAN J FISH AQUAT SCI, V62, P811, DOI 10.1139/F05-065; Paiva M. P., 1997, RECURSOS PESQUIEROS; Passos C. A., 2005, R J BIOTEMAS, V18, P223; Pezzuto R., 1993, ATLANTICA, V15, P93; Pinheiro MAA, 1998, CRUSTACEANA, V71, P434; PINHEIRO MAA, 2001, MANUAL APOIO FISCALI; Rostant LV, 2008, J CRUSTACEAN BIOL, V28, P485, DOI 10.1651/07-2913R.1; Sant'Ana R, 2009, LAT AM J AQUAT RES, V37, P429, DOI 10.3856/vol37-issue3-fulltext-12; Schories D, 2003, WETL ECOL MANAG, V11, P243, DOI 10.1023/A:1025011431984; Semace, 2006, ATL MANG NORD BRAS A; Sforza R, 2010, J CRUSTACEAN BIOL, V30, P597, DOI 10.1651/09-3223.1; Souza-Carvalho E. A. S., 2011, PAP AVULSOS ZOOL, V51, P367; SPIVAK ED, 1991, B MAR SCI, V48, P679; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Streissl F, 2002, HYDROBIOLOGIA, V477, P201, DOI 10.1023/A:1021046426577; Sturges HA, 1926, J AM STAT ASSOC, V21, P65, DOI 10.1080/01621459.1926.10502161; THURMAN CL, 1985, BIOL BULL-US, V169, P215, DOI 10.2307/1541399; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Vasconcelos E. M. S., 1999, ESTUDO BIOL CARANGUE, V7, P85; Wada Satoshi, 2008, Crustacean Research, V37, P67; WARNER GF, 1967, J ZOOL, V153, P321, DOI 10.1111/j.1469-7998.1967.tb04066.x; WENNER AM, 1974, CAN J ZOOL, V52, P1095, DOI 10.1139/z74-147; WENNER AM, 1972, AM NAT, V106, P321, DOI 10.1086/282774; Zar JH, 2010, BIOSTATISTICAL ANAL 107 4 4 0 22 REVISTA DE BIOLOGIA TROPICAL SAN JOSE UNIVERSIDAD DE COSTA RICA CIUDAD UNIVERSITARIA, SAN JOSE, 00000, COSTA RICA 0034-7744 2215-2075 REV BIOL TROP Rev. Biol. Trop. DEC 2013 61 4 1721 1735 15 Biology Life Sciences & Biomedicine - Other Topics 287ID WOS:000329534400013 24432529 DOAJ Gold 2019-02-21 J Hicks, ND; Schall, JJ Hicks, Nathan D.; Schall, Jos. J. ESTABLISHMENT EFFICIENCY AMONG CLONES OF THE MALARIA PARASITE, PLASMODIUM MEXICANUM, FOR MIXED-CLONE INFECTIONS IN ITS NATURAL LIZARD HOST JOURNAL OF PARASITOLOGY English Article WESTERN FENCE LIZARD; SEX-RATIO; VERTEBRATE HOST; MICROSATELLITE MARKERS; GENOTYPE INFECTIONS; SCELOPORUS-OCCIDENTALIS; TRANSMISSION SUCCESS; VIVAX INFECTIONS; LIFE-HISTORY; DIVERSITY Within genetically diverse infections of malaria parasites (Plasmodium spp.), the relative proportions of genetic clones in the vertebrate host's blood can influence clonal competition, transmission success, gametocyte sex ratio, and virulence. Clonal proportions depend on establishment success of each clone when they enter a new host and on subsequent differences in rates of asexual replication and clearance. Both of these life history traits could be influenced by clone genotype. To assess genetic (clonal) influences on both establishment success and later changes in relative proportion for the lizard malaria parasite Plasmodium mexicanum, 7 naturally infected fence lizards harboring a single clone of P. mexicanum served as donors to initiate replicate experimental infections containing each of the clones and combinations of 2 clones. Measured were relative establishment success of each clone, change in relative proportions over time, and rate of increase of parasite density and total parasitemia. Relative clonal proportions were determined using microsatellite markers. Rates of increase in the parasitemia and degree of change in relative proportions were not correlated, so both rapidly and slowly growing infections could show either little or substantial change in clonal proportions over time. There was a significant clone effect on establishment efficiency but not on later changes in relative proportions. These results argue for a combination of genetic and environmental (host) effects on the success of P. mexicanum clones in genetically complex infections. The maintenance of genetic variation for establishment success, but not subsequent replication rate or shifts in relative proportion, suggests trade-offs between these traits during life history evolution of malaria parasites. [Hicks, Nathan D.; Schall, Jos. J.] Univ Vermont, Dept Biol, Burlington, VT 05405 USA Schall, JJ (reprint author), Univ Vermont, Dept Biol, Burlington, VT 05405 USA. jschall@zoo.uvm.edu NSF; University of Vermont (UVM) summer research stipend; UVM Office of Undergraduate Research Mini-grant We thank the staff of the Hopland Research and Extension Center for their continuing logistical support of the field studies on lizard malaria; this project would not be possible without their help. Allison Neal and Jennifer Grauer assisted with the field and experimental studies. Funding was provided by NSF (to J.J.S.), a University of Vermont (UVM) summer research stipend, and a UVM Office of Undergraduate Research Mini-grant (to N.D.H). Anderson TJC, 2000, MOL BIOL EVOL, V17, P1467, DOI 10.1093/oxfordjournals.molbev.a026247; Bell AS, 2006, EVOLUTION, V60, P1358, DOI 10.1554/05-611.1; Branch OH, 2001, INFECT IMMUN, V69, P7783, DOI 10.1128/IAI.69.12.7783-7792.2001; BROMWICH CR, 1986, ECOLOGY, V67, P1227, DOI 10.2307/1938678; Cheesman SJ, 2003, MOL BIOCHEM PARASIT, V131, P83, DOI 10.1016/S0166-6851(03)00195-6; Chen NH, 2007, J INFECT DIS, V195, P934, DOI 10.1086/512242; Conway DJ, 2007, CLIN MICROBIOL REV, V20, P188, DOI 10.1128/CMR.00021-06; de Roode JC, 2005, P NATL ACAD SCI USA, V102, P7624, DOI 10.1073/pnas.0500078102; de Roode JC, 2005, AM NAT, V166, P531, DOI 10.1086/491659; Drew DR, 2007, MOL BIOCHEM PARASIT, V156, P199, DOI 10.1016/j.molbiopara.2007.08.004; Eisen RJ, 2000, P ROY SOC B-BIOL SCI, V267, P793, DOI 10.1098/rspb.2000.1073; Farnert A, 2008, TRENDS PARASITOL, V24, P340, DOI 10.1016/j.pt.2008.04.008; FIALHO RF, 1995, J ANIM ECOL, V64, P553, DOI 10.2307/5799; Ford AF, 2011, INT J PARASITOL, V41, P731, DOI 10.1016/j.ijpara.2011.01.010; Ford AF, 2010, J PARASITOL, V96, P908, DOI 10.1645/GE-2499.1; Fricke JM, 2010, J PARASITOL, V96, P308, DOI 10.1645/GE-2304.1; Havryliuk T, 2009, MEM I OSWALDO CRUZ, V104, P67, DOI 10.1590/S0074-02762009000100011; Huijben S, 2010, EVOLUTION, V64, P2952, DOI 10.1111/j.1558-5646.2010.01068.x; Koepfli C, 2011, PLOS NEGLECT TROP D, V5, DOI 10.1371/journal.pntd.0001424; Martinsen ES, 2008, MOL PHYLOGENET EVOL, V47, P261, DOI 10.1016/j.ympev.2007.11.012; Neal AT, 2011, PARASITOLOGY, V138, P1203, DOI 10.1017/S0031182011000941; Neal AT, 2010, PARASITOLOGY, V137, P1851, DOI 10.1017/S0031182010000909; Read AF, 2001, SCIENCE, V292, P1099, DOI 10.1126/science.1059410; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Schall JJ, 2013, PARASITOLOGY, V140, P21, DOI 10.1017/S0031182012001217; SCHALL J. J., 2013, EVOLUTIONAR IN PRESS; SCHALL JJ, 1995, J ANIM ECOL, V64, P177, DOI 10.2307/5753; Schall JJ, 1996, ADV PARASIT, V37, P255, DOI 10.1016/S0065-308X(08)60222-5; Schall JJ, 2000, PARASITOLOGY, V121, P575, DOI 10.1017/S0031182000006818; Schall JJ, 2007, MOL ECOL NOTES, V7, P227, DOI 10.1111/j.1471-8286.2006.01528.x; Schall JJ, 2009, TRENDS PARASITOL, V25, P120, DOI 10.1016/j.pt.2008.12.006; Stearns S, 1992, EVOLUTION LIFE HIST; Taylor LH, 1997, PARASITOLOGY, V115, P121, DOI 10.1017/S0031182097001145; Taylor LH, 1998, EVOLUTION, V52, P583, DOI 10.1111/j.1558-5646.1998.tb01656.x; Vardo AM, 2007, MOL ECOL, V16, P2712, DOI 10.1111/j.1365-294X.2007.03355.x; Vardo AM, 2005, J PARASITOL, V91, P1509, DOI 10.1645/GE-589R.1; Vardo-Zalik AM, 2009, INT J PARASITOL, V39, P1573, DOI 10.1016/j.ijpara.2009.05.014; Vardo-Zalik AM, 2008, PARASITOLOGY, V135, P1363, DOI 10.1017/S0031182008004964; Vardo-Zalik AM, 2009, PARASITOL RES, V105, P209, DOI 10.1007/s00436-009-1385-1; Vardo-Zalik AM, 2009, ECOLOGY, V90, P529, DOI 10.1890/07-1866.1; Walliker D, 2000, MOL EPIDEMIOLOGY INF, P93; Wargo AR, 2007, P R SOC B, V274, P2629, DOI 10.1098/rspb.2007.0873; Wenyon C. M., 1926, PROTOZOOLOGY MANUAL 43 1 1 1 7 AMER SOC PARASITOLOGISTS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-3395 1937-2345 J PARASITOL J. Parasitol. DEC 2013 99 6 1050 1055 10.1645/12-72.1 6 Parasitology Parasitology 282JY WOS:000329168600019 23841469 2019-02-21 J Melnycky, NA; Weladji, RB; Holand, O; Nieminen, M Melnycky, Natalka A.; Weladji, Robert B.; Holand, Oystein; Nieminen, Mauri Scaling of antler size in reindeer (Rangifer tarandus): sexual dimorphism and variability in resource allocation JOURNAL OF MAMMALOGY English Article allometry; antler growth; Rangifer tarandus; resource allocation; trade-offs REPRODUCTIVE EFFORT; SOCIAL RANK; BODY-MASS; FEMALE REINDEER; MOUNTAIN GOATS; WILD REINDEER; OREAMNOS-AMERICANUS; TERMINAL INVESTMENT; HORN ALLOMETRY; RED DEER Male cervids face trade-offs in allocating resources to body mass (linked to survival) and antlers (linked to reproductive success). Reindeer (Rangifer tarandus) are unique among cervids because females also possess antlers, providing an opportunity to investigate sex- and age-specific patterns of resource allocation to body mass and antlers. Using long-term (1996-2011) data on 560 reindeer, we examined how body mass and antler length varied with age and sex, and the relative allocation of resources toward antlers using scaling analysis. Body mass and antler length increased through age 5 years in males but plateaued in females at age 3 years, with males 59% greater in body mass and 146% longer in antler length by age 5 years. All age and sex categories, except yearling males and mature females, had a positive scaling (a scaling exponent greater than isometry) of antlers with body mass, with the highest relative allocation of resources toward antlers in female calves. Relative allocation toward antlers tended to increase with age in males but decrease with age in females. The observed patterns in antler and body growth are likely a reflection of sex-specific life-history strategies of reindeer whereby females have offspring yearly from puberty and males have an increased number of offspring as they mature. [Melnycky, Natalka A.; Weladji, Robert B.] Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada; [Holand, Oystein] Norwegian Univ Life Sci, Dept Anim & Aquacultural Sci, N-1432 As, Norway; [Nieminen, Mauri] Finnish Game & Fisheries Res Inst, Reindeer Res Stn, Kaamanen 99910, Finland Weladji, RB (reprint author), Concordia Univ, Dept Biol, 7141 Sherbrooke St West, Montreal, PQ H4B 1R6, Canada. robert.weladji@concordia.ca Northern Scientific Training Program; Quebec Center for Biodiversity Science; Natural Sciences and Engineering Research Council of Canada We are grateful to the Northern Scientific Training Program and the Quebec Center for Biodiversity Science (travel award to NAM) and the Natural Sciences and Engineering Research Council of Canada (research grant to RBW) for their financial support. Without the logistical help of the Finnish Reindeer Herders Association through the Kutuharju Field Reindeer Station (Kaamanen, Finland) and the Finnish Game and Fisheries Research, this work would not be possible. Special thanks to M. Tervonen, H. Tormanen, and H. Gjostein. Thanks also to M. Festa-Bianchet and an anonymous referee for comments that improved this manuscript. Agrawal A. A., 2010, EVOLUTION DARWIN 1 1, P243; Andersson M., 1994, SEXUAL SELECTION; BARRETTE C, 1986, BEHAVIOUR, V97, P118, DOI 10.1163/156853986X00342; Barton K., 2012, PACKAGE MU MIN MULTI; Bender LC, 2003, AM MIDL NAT, V150, P169, DOI 10.1674/0003-0031(2003)150[0169:BMAADP]2.0.CO;2; Bergeron P, 2008, OIKOS, V117, P77, DOI 10.1111/j.2007.0030-1299.16158.x; Bonduriansky R, 2003, EVOLUTION, V57, P2450; Bonduriansky R, 2007, EVOLUTION, V61, P838, DOI 10.1111/j.1558-5646.2007.00081.x; Burnham K. P, 2002, MODEL SELECTION MULT; Calder W. A., 1996, SIZE FUNCTION LIFE H; CAMERON RD, 1993, CAN J ZOOL, V71, P480, DOI 10.1139/z93-069; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; Clutton-Brock T, 2009, ANIM BEHAV, V77, P3, DOI 10.1016/j.anbehav.2008.08.026; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CLUTTONBROCK TH, 1982, BEHAVIOUR, V79, P108, DOI 10.1163/156853982X00201; Cote SD, 1998, J MAMMAL, V79, P406, DOI 10.2307/1382971; Couturier S, 2010, J WILDLIFE MANAGE, V74, P395, DOI 10.2193/2008-384; Cronin Matthew A., 2003, Rangifer, V23, P67; Emlen DJ, 1997, P ROY SOC B-BIOL SCI, V264, P567, DOI 10.1098/rspb.1997.0081; Ericsson G, 2001, ECOLOGY, V82, P1613, DOI 10.1890/0012-9658(2001)082[1613:ARREAS]2.0.CO;2; ESPMARK Y, 1971, J WILDLIFE MANAGE, V35, P175, DOI 10.2307/3799887; ESPMARK Y, 1964, ANIM BEHAV, V12, P420, DOI 10.1016/0003-3472(64)90061-2; Fessler DMT, 2005, AM J PHYS ANTHROPOL, V127, P95, DOI 10.1002/ajpa.20039; Festa-Bianchet M, 2004, BEHAV ECOL, V15, P305, DOI 10.1093/beheco/arh014; Forchhammer MC, 2001, J ANIM ECOL, V70, P721, DOI 10.1046/j.0021-8790.2001.00532.x; FOURNIER F, 1995, ANIM BEHAV, V49, P1449, DOI 10.1016/0003-3472(95)90066-7; GEIST V, 1988, J ZOOL, V214, P45, DOI 10.1111/j.1469-7998.1988.tb04985.x; Gjstein H., 2004, COMP BIOCH PHYSL A, V137, P649; Goss R., 1983, DEER ANTLERS REGENER; Gould J. L., 1997, SEXUAL SELECTION MAT, P71; Hamel S, 2009, OECOLOGIA, V161, P421, DOI 10.1007/s00442-009-1377-y; Henshaw J., 1968, Deer, V1, P222; HIROTANI A, 1990, CAN J ZOOL, V68, P743, DOI 10.1139/z90-107; Holand O, 2004, BEHAV ECOL SOCIOBIOL, V57, P69, DOI 10.1007/s00265-004-0827-0; Holand O, 2004, J ZOOL, V263, P365, DOI 10.1017/S0952836904005382; Hymork A., 1999, RANGIFER, V22, P75; KILTIE RA, 1985, BIOL J LINN SOC, V24, P299, DOI 10.1111/j.1095-8312.1985.tb00377.x; Kodric-Brown A, 2006, P NATL ACAD SCI USA, V103, P8733, DOI 10.1073/pnas.0602994103; KOJOLA I, 1989, ANIM BEHAV, V38, P177, DOI 10.1016/S0003-3472(89)80080-6; KOJOLA I, 1991, J MAMMAL, V72, P208, DOI 10.2307/1382001; Kramer M, 2005, P C APPL STAT AGR, P148; Kruuk LEB, 2002, EVOLUTION, V56, P1683; Kumpula J., 1991, RANGIFER, V12, P173; LABARBERA M, 1989, ANNU REV ECOL SYST, V20, P97, DOI 10.1146/annurev.es.20.110189.000525; Lincoln G.A., 1994, P131; LINCOLN GA, 1992, J ZOOL, V226, P517, DOI 10.1111/j.1469-7998.1992.tb07495.x; Loison A, 2005, BEHAV ECOL, V16, P624, DOI 10.1093/beheco/ari037; Loison A, 1999, ECOGRAPHY, V22, P20, DOI 10.1111/j.1600-0587.1999.tb00451.x; MACHLIS L, 1985, Z TIERPSYCHOL, V68, P201; Mahoney Shane P., 2011, Rangifer, V31, P21; Mainguy J, 2008, BEHAV ECOL SOCIOBIOL, V62, P935, DOI 10.1007/s00265-007-0517-9; Mainguy J, 2009, P ROY SOC B-BIOL SCI, V276, P4067, DOI 10.1098/rspb.2009.1231; Markusson E, 1997, OECOLOGIA, V110, P501, DOI 10.1007/s004420050186; McPherson FJ, 2012, ANIM REPROD SCI, V131, P109, DOI 10.1016/j.anireprosci.2012.02.007; Plard F, 2011, OIKOS, V120, P601, DOI 10.1111/j.1600-0706.2010.18934.x; Pomfret JC, 2006, ANIM BEHAV, V71, P567, DOI 10.1016/j.anbehav.2005.05.023; R Development Core Team, 2010, R LANG ENV STAT COMP; Reimers E, 2005, J ZOOL, V265, P53, DOI 10.1017/S0952836904006041; REIMERS E, 1983, CAN J ZOOL, V61, P211, DOI 10.1139/z83-026; REIMERS E, 1993, CAN J ZOOL, V71, P1319, DOI 10.1139/z93-182; Reimers E., 1983, RANGIFER, V3, P3, DOI DOI 10.7557/2.3.1.463; Roed KH, 2005, J WILDLIFE MANAGE, V69, P1163, DOI 10.2193/0022-541X(2005)069[1163:VIMRSI]2.0.CO;2; Ropstad E, 2000, ANIM REPROD SCI, V60, P561, DOI 10.1016/S0378-4320(00)00100-7; Schaefer JA, 2001, ECOLOGY, V82, P3556, DOI 10.1890/0012-9658(2001)082[3556:AOFCBO]2.0.CO;2; Sikes RS, 2011, J MAMMAL, V92, P235, DOI 10.1644/10-MAMM-F-355.1; Stewart Kelley M., 2000, Alces, V36, P77; Taillon J, 2006, ANIM BEHAV, V72, P1103, DOI 10.1016/j.anbehav.2006.03.016; Tennenhouse EM, 2011, BEHAV ECOL SOCIOBIOL, V65, P287, DOI 10.1007/s00265-010-1043-8; Thomas D, 2005, ARCTIC, V58, P241; Tomkins JL, 2005, P ROY SOC B-BIOL SCI, V272, P543, DOI 10.1098/rspb.2004.2950; Vanpe C, 2007, AM NAT, V169, P481, DOI 10.1086/512046; Wagenmakers EJ, 2004, PSYCHON B REV, V11, P192, DOI 10.3758/BF03206482; Weladji RB, 2005, OECOLOGIA, V145, P549, DOI 10.1007/s00442-005-0155-8; Weladji RB, 2002, OECOLOGIA, V131, P79, DOI 10.1007/s00442-001-0864-6; Weladji RB, 2006, P ROY SOC B-BIOL SCI, V273, P1239, DOI 10.1098/rspb.2005.3393; Weladji RB, 2010, OECOLOGIA, V162, P261, DOI 10.1007/s00442-009-1443-5 76 5 5 1 63 ALLIANCE COMMUNICATIONS GROUP DIVISION ALLEN PRESS LAWRENCE 810 EAST 10TH STREET, LAWRENCE, KS 66044 USA 0022-2372 1545-1542 J MAMMAL J. Mammal. DEC 2013 94 6 1371 1379 10.1644/12-MAMM-A-282.1 9 Zoology Zoology 280DZ WOS:000329010200018 Bronze 2019-02-21 J Martin, AR; Thomas, SC Martin, Adam R.; Thomas, Sean C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees TREE PHYSIOLOGY English Article carbon; functional traits; leaf economics; non-structural carbohydrates; size-dependence; tree ontogeny; tropical forest; wood economics FUNCTIONAL TRAITS; LIGHT AVAILABILITY; AMAZONIAN FOREST; CARBOHYDRATE RESERVES; ECONOMICS SPECTRUM; NOTHOFAGUS-NITIDA; CARBON LIMITATION; ASYMPTOTIC HEIGHT; ONTOGENIC CHANGES; SHADE-TOLERANCE Tree functional traits and their link to patterns of growth and demography are central to informing trait-based analyses of forest communities, and mechanistic models of forest dynamics. However, few data are available on how functional traits in trees vary through ontogeny, particularly in tropical species; and less is known about how patterns of size-dependent changes in traits may differ across species of contrasting life-history strategies. Here we describe size-dependent variation in seven leaf functional traits and four wood chemical traits, in two Dominican rainforest tree species (Dacryodes excelsa Vahl. and Miconia mirabilis (Aubl.) L.O. Williams), ranging from small saplings to the largest canopy trees. With one exception, all traits showed pronounced variation with tree size (diameter at breast height, DBH). Leaf mass per area (LMA), thickness and tissue density increased monotonically with DBH in both species. Leaf area, leaf nitrogen (N) and carbon (C) : nitrogen (N) ratios also varied significantly with DBH; however, these patterns were unimodal, with peak trait values preceding the DBH at reproductive onset in both species. Size-dependent changes in leaf structural traits (LMA and leaf thickness) were generally similar in both species, while traits associated with leaf-level investment in C gain (leaf area, leaf C : N ratio) showed contrasting ontogenetic trends between species. Wood starch concentration varied with DBH in both species, also showing unimodal patterns with peaks preceding size at reproductive onset. Wood C concentration increased linearly with DBH in both species, though significantly only in M. mirabilis. Size-dependent patterns in wood chemical traits were similar between both species. Our data demonstrate pronounced variation in functional traits through tree ontogeny, probably due to a combination of environmental factors and shifts in resource allocation. Such ontogenetic variation is comparable in magnitude with interspecific variation, and so should be accounted for in trait-based studies of forest dynamics, structure and function. [Martin, Adam R.; Thomas, Sean C.] Univ Toronto, Fac Forestry, Toronto, ON M5S 3B3, Canada Thomas, SC (reprint author), Univ Toronto, Fac Forestry, Earth Sci Bldg,33 Willcocks St, Toronto, ON M5S 3B3, Canada. sc.thomas@utoronto.ca Natural Sciences and Engineering Research Council of Canada; University of Toronto The Natural Sciences and Engineering Research Council of Canada and the Jeanne F. Goulding Fellowship program at the University of Toronto provided funding for this research. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Ackerly DD, 2007, ECOL LETT, V10, P135, DOI 10.1111/j.1461-0248.2006.01006.x; ALVAREZBUYLLA ER, 1992, J ECOL, V80, P275, DOI 10.2307/2261011; Baker TR, 2004, GLOBAL CHANGE BIOL, V10, P545, DOI 10.1111/j.1529-8817.2003.00751.x; Baltzer JL, 2007, J ECOL, V95, P1208, DOI 10.1111/j.1365-2745.2007.01286.x; Baltzer JL, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013163; Barbaroux C, 2002, TREE PHYSIOL, V22, P1201, DOI 10.1093/treephys/22.17.1201; BULLOCK SH, 1992, BIOTROPICA, V24, P140, DOI 10.2307/2388667; Cavaleri MA, 2010, ECOLOGY, V91, P1730, DOI 10.1890/09-1326.1; Chave J, 2009, ECOL LETT, V12, P351, DOI 10.1111/j.1461-0248.2009.01285.x; CLARK DA, 1992, ECOL MONOGR, V62, P315, DOI 10.2307/2937114; Clark JS, 2003, ECOLOGY, V84, P17, DOI 10.1890/0012-9658(2003)084[0017:CHTITT]2.0.CO;2; Coopman RE, 2008, TREE PHYSIOL, V28, P1561, DOI 10.1093/treephys/28.10.1561; Coopman RE, 2011, TREE PHYSIOL, V31, P1128, DOI 10.1093/treephys/tpr094; Cornelissen JHC, 2003, AUST J BOT, V51, P335, DOI 10.1071/BT02124; Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2; Curran TJ, 2008, AUSTRAL ECOL, V33, P442, DOI 10.1111/j.1442-9993.2008.01899.x; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Du S, 2007, J INTEGR PLANT BIOL, V49, P131, DOI 10.1111/j.1744-7909.2007.00427.x; Eggleston HS, 2006, NAT GREENH GAS INV P; Genet H, 2010, TREE PHYSIOL, V30, P177, DOI 10.1093/treephys/tpp105; HARVEY PH, 1991, OXFORD SERIES ECOLOG; Herault B, 2011, J ECOL, V99, P1431, DOI 10.1111/j.1365-2745.2011.01883.x; Hoch G, 2005, PLANT CELL ENVIRON, V28, P651, DOI 10.1111/j.1365-3040.2004.01311.x; Hoch G, 2003, PLANT CELL ENVIRON, V26, P1067, DOI 10.1046/j.0016-8025.2003.01032.x; Hoch G, 2002, OIKOS, V98, P361, DOI 10.1034/j.1600-0706.2002.980301.x; Hughes RF, 2000, ECOL APPL, V10, P515, DOI 10.1890/1051-0761(2000)010[0515:ESIODA]2.0.CO;2; Ichie T, 2005, TREES-STRUCT FUNCT, V19, P703, DOI 10.1007/s00468-005-0434-3; Ishida A, 2005, TREE PHYSIOL, V25, P513, DOI 10.1093/treephys/25.5.513; Wright SJ, 2010, ECOLOGY, V91, P3664, DOI 10.1890/09-2335.1; Kattge J, 2011, GLOBAL CHANGE BIOL, V17, P2905, DOI 10.1111/j.1365-2486.2011.02451.x; Kenzo T, 2006, TREE PHYSIOL, V26, P865, DOI 10.1093/treephys/26.7.865; Kenzo T, 2012, JARQ-JPN AGR RES Q, V46, P167, DOI 10.6090/jarq.46.167; Kobe RK, 1997, OIKOS, V80, P226, DOI 10.2307/3546590; Korner C, 2003, J ECOL, V91, P4, DOI 10.1046/j.1365-2745.2003.00742.x; Kraft NJB, 2008, SCIENCE, V322, P580, DOI 10.1126/science.1160662; Kraft NJB, 2010, ECOL MONOGR, V80, P401, DOI 10.1890/09-1672.1; Kraft NJB, 2009, SCIENCE, V324, p1015D, DOI 10.1126/science.1169885; Lamlom SH, 2006, TREE PHYSIOL, V26, P459, DOI 10.1093/treephys/26.4.459; Lichstein JW, 2007, AM NAT, V170, P807, DOI 10.1086/522937; Lusk CH, 2008, TRENDS ECOL EVOL, V23, P299, DOI 10.1016/j.tree.2008.02.006; Martin A. R., 2011, Journal of Negative Results, V8, P6; Martin AR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0023533; Martin AR, 2013, AOB PLANTS, V5, DOI [10.1093/aobpla/plt039, DOI 10.1093/A0BPLA/PLT039]; Miyazaki Y, 2002, ANN BOT-LONDON, V89, P767, DOI 10.1093/aob/mcf107; Newell EA, 2002, OECOLOGIA, V131, P333, DOI 10.1007/s00442-002-0888-6; NEWELL EA, 1991, J ECOL, V79, P365, DOI 10.2307/2260719; Nicolson DH, 1991, SMITHSONIAN CONTRIBU; Niinemets U, 2006, J ECOL, V94, P464, DOI 10.1111/j.1365-2745.2006.01093.x; Niinemets U, 1997, TREES-STRUCT FUNCT, V11, P144, DOI 10.1007/s004680050070; NIINEMETS U, 1995, TREE PHYSIOL, V15, P307, DOI 10.1093/treephys/15.5.307; OBRIEN ST, 1995, ECOLOGY, V76, P1926, DOI 10.2307/1940724; Patankar R, 2011, OECOLOGIA, V167, P701, DOI 10.1007/s00442-011-2019-8; Poorter H, 2009, NEW PHYTOL, V182, P565, DOI 10.1111/j.1469-8137.2009.02830.x; Poorter L, 2008, ECOLOGY, V89, P1908, DOI 10.1890/07-0207.1; Poorter L, 2005, J ECOL, V93, P256, DOI 10.1111/j.1365-2745.2004.00956.x; POORTER L, 1995, AM J BOT, V82, P1257, DOI 10.2307/2446248; Poorter L, 2007, ECOLOGY, V88, P1000, DOI 10.1890/06-0984; Poorter L, 2006, ECOLOGY, V87, P1733, DOI 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2; Reich PB, 1999, ECOLOGY, V80, P1955, DOI 10.2307/176671; Rijkers T, 2000, FUNCT ECOL, V14, P77, DOI 10.1046/j.1365-2435.2000.00395.x; Rozendaal DMA, 2006, FUNCT ECOL, V20, P207, DOI 10.1111/j.1365-2435.01105.x; Sala A, 2009, PLANT CELL ENVIRON, V32, P22, DOI 10.1111/j.1365-3040.2008.01896.x; Sala A, 2012, NEW PHYTOL, V196, P189, DOI 10.1111/j.1469-8137.2012.04257.x; Sala A, 2011, TREE PHYSIOL SER, V4, P287, DOI 10.1007/978-94-007-1242-3_11; Sendall KM, 2013, TREE PHYSIOL, V33, P713, DOI 10.1093/treephys/tpt048; Smith RB, 2009, J ATMOS SCI, V66, P1698, DOI 10.1175/2008JAS2920.1; STEPHENSON RA, 1989, SCI HORTIC-AMSTERDAM, V40, P227, DOI 10.1016/0304-4238(89)90115-5; Sterck FJ, 2001, J ECOL, V89, P1, DOI 10.1046/j.1365-2745.2001.00525.x; Thomas SC, 1995, BIOTROPICA, V27, P427, DOI 10.2307/2388954; Thomas SC, 1996, OIKOS, V76, P145, DOI 10.2307/3545756; Thomas SC, 1999, ECOLOGY, V80, P1607; Thomas SC, 1996, AM J BOT, V83, P556, DOI 10.2307/2445913; Thomas SC, 2011, TREE PHYSIOL-NETH, V4, P33, DOI 10.1007/978-94-007-1242-3_2; Thomas SC, 2010, TREE PHYSIOL, V30, P555, DOI 10.1093/treephys/tpq005; Weedon JT, 2009, ECOL LETT, V12, P45, DOI 10.1111/j.1461-0248.2008.01259.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wright SJ, 2003, ECOLOGY, V84, P3174, DOI 10.1890/02-0038; Wurth MKR, 2005, OECOLOGIA, V143, P11, DOI 10.1007/s00442-004-1773-2 79 14 16 4 48 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0829-318X 1758-4469 TREE PHYSIOL Tree Physiol. DEC 2013 33 12 1338 1353 10.1093/treephys/tpt085 16 Forestry Forestry 281WV WOS:000329132600009 24336517 Bronze 2019-02-21 J Postma, M; Bester, MN; De Bruyn, PJN Postma, Martin; Bester, Marthan N.; De Bruyn, P. J. Nico Spatial variation in female southern elephant seal mass change assessed by an accurate non-invasive photogrammetry method ANTARCTIC SCIENCE English Article breeding season; life history theory; methodology advancement; Mirounga leonina; moult; pelagic foraging KING-GEORGE-ISLAND; LIONS EUMETOPIAS-JUBATUS; MIROUNGA-LEONINA; MARION ISLAND; MACQUARIE ISLAND; WEANING MASS; EL-NINO; LA-NINA; INVESTMENT; LACTATION Physically weighing large marine mammals sequentially over time has presented researchers with a logistical challenge and has severely limited sample sizes. Using a well-established photogrammetry method we developed a simple mathematical method to calculate accurate mass measurements at specific stages in the life cycle of a top marine predator. Female southern elephant seals (n = 23) at Marion Island were sampled sequentially using photogrammetry and three-dimensional models (based on each photogrammetry project) were built for estimation of body mass. Simple equations were applied to obtain mass at critical instances in their life cycle. Marion Island elephant seal mass data was compared to data obtained from physically weighed elephant seals from King George, South Georgia and Macquarie islands. Females from Marion Island are smaller, but their percentage lactation mass loss is similar to females from these other populations. The similarity of percentage mass loss during lactation between different female populations illustrates the accuracy and practicality of the photogrammetric method over a temporal scale. Photogrammetric mass estimation can be used alongside datasets of physically weighed animals and can greatly benefit ecology and life history studies. [Postma, Martin; Bester, Marthan N.; De Bruyn, P. J. Nico] Univ Pretoria, Dept Zool & Entomol, Mammal Res Inst, ZA-0028 Hatfield, South Africa Postma, M (reprint author), Univ Pretoria, Dept Zool & Entomol, Mammal Res Inst, Private Bag X20, ZA-0028 Hatfield, South Africa. mpostma@zoology.up.ac.za de Bruyn, P. J. Nico/E-4176-2010 de Bruyn, P. J. Nico/0000-0002-9114-9569 Department of Science and Technology We thank the South African Department of Environmental Affairs for providing logistical support within the South African National Antarctic Programme and the Department of Science and Technology (administered through the National Research Foundation) for funding the marine mammal monitoring programme at Marion Island. The Marion Island seal researchers of 2006, 2007, 2008 and 2009 are thanked for their endless hours of data collection and Cheryl Tosh for valuable comments on earlier versions of this paper. The comments by the editor and two anonymous reviewers are acknowledged and improved the manuscript. Arnbom T, 1997, ECOLOGY, V78, P471; Baker WH, 1960, ELEMENTS PHOTOGRAMME; Bergmann C., 1847, GOTTINGER STUDIEN, V3, P595; Bornemann H, 2000, ANTARCT SCI, V12, P3; BOYD I, 1993, PHYSIOL ZOOL, V66, P43, DOI 10.1086/physzool.66.1.30158286; BOYD IL, 1989, BEHAV ECOL SOCIOBIOL, V24, P377, DOI 10.1007/BF00293265; Boyd IL, 1996, CAN J ZOOL, V74, P1696, DOI 10.1139/z96-187; Carlini AR, 1997, POLAR BIOL, V18, P305, DOI 10.1007/s003000050192; Carlini AR, 2004, POLAR BIOL, V27, P266, DOI 10.1007/s00300-003-0584-y; Carlini AR, 1999, POLAR BIOL, V21, P234, DOI 10.1007/s003000050358; Condy P.R., 1978, South African Journal of Antarctic Research, V8, P42; de Bruyn PJN, 2011, ANIM BEHAV, V82, P445, DOI 10.1016/j.anbehav.2011.06.006; de Bruyn PJN, 2009, AQUAT BIOL, V5, P31, DOI 10.3354/ab00135; de Bruyn PJN, 2008, S AFR J WILDL RES, V38, P133, DOI 10.3957/0379-4369-38.2.133; Fedak MA, 1996, PHYSIOL ZOOL, V69, P887, DOI 10.1086/physzool.69.4.30164234; Fedak Michael A., 1994, P354; Hindell MA, 2000, PHYSIOL BIOCHEM ZOOL, V73, P790, DOI 10.1086/318104; HINDELL MA, 1994, POLAR BIOL, V14, P275; Huston MA, 2011, ECOL MONOGR, V81, P349, DOI 10.1890/10-1523.1; Kirkman SP, 2004, AUST J ZOOL, V52, P379, DOI 10.1071/ZO03038; Kirkman SP, 2003, S AFR J WILDL RES, V33, P79; KLEIBER M, 1947, PHYSIOL REV, V27, P511; Laws Richard M., 1994, P49; Le Boeuf B. J, 1994, ELEPHANT SEALS POPUL; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; MCCANN TS, 1989, BEHAV ECOL SOCIOBIOL, V25, P81, DOI 10.1007/BF00302924; McConnell BJ, 1996, CAN J ZOOL, V74, P1485, DOI 10.1139/z96-163; McIntyre T, 2010, POLAR BIOL, V33, P1037, DOI 10.1007/s00300-010-0782-3; McMahon CR, 2005, MAMMAL REV, V35, P82, DOI 10.1111/j.1365-2907.2005.00055.x; McMahon CR, 2003, J ANIM ECOL, V72, P61, DOI 10.1046/j.1365-2656.2003.00685.x; McMahon CR, 2000, ANTARCT SCI, V12, P149; Pakhomov EA, 2003, OCEAN YEARB, V17, P348, DOI 10.1163/221160003X00140; Pistorius PA, 2011, AFR J MAR SCI, V33, P523, DOI 10.2989/1814232X.2011.637357; R Development Core Team, 2011, R LANG ENV STAT COMP; Remondino F., 2006, INT ARCH PHOTOGRAMM, VXXXVI, P266; Richards R., 1992, POLAR MONOGRAPHS, V1, P1; Rode KD, 2010, ECOL APPL, V20, P768, DOI 10.1890/08-1036.1; Rosen DAS, 2009, MAMMAL REV, V39, P284, DOI 10.1111/j.1365-2907.2009.00150.x; Trites AW, 2003, MAMMAL REV, V33, P3, DOI 10.1046/j.1365-2907.2003.00009.x; Vergani DF, 2008, J BIOGEOGR, V35, P248, DOI 10.1111/j.1365-2699.2007.01780.x; Vergani DF, 2001, ANTARCT SCI, V13, P37; Wilkinson IS, 2001, MAR MAMMAL SCI, V17, P873, DOI 10.1111/j.1748-7692.2001.tb01303.x 42 9 9 0 19 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 0954-1020 1365-2079 ANTARCT SCI Antarct. Sci. DEC 2013 25 6 731 740 10.1017/S0954102013000059 10 Environmental Sciences; Geography, Physical; Geosciences, Multidisciplinary Environmental Sciences & Ecology; Physical Geography; Geology 273PG WOS:000328547200002 Bronze 2019-02-21 J Beckerman, AP; de Roij, J; Dennis, SR; Little, TJ Beckerman, Andrew P.; de Roij, Job; Dennis, Stuart R.; Little, Tom J. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory ECOLOGY AND EVOLUTION English Article Chitin; disease; endocrine physiology; inducible defenses; parasites; predation; trade-offs MIDGUT PERITROPHIC MATRIX; JUVENILE-HORMONE; ANOPHELES-GAMBIAE; MANDUCA-SEXTA; DROSOPHILA-MELANOGASTER; ANTIMICROBIAL PEPTIDES; EPIDERMAL CUTICLE; TOBACCO HORNWORM; PLANT-RESPONSES; IMMUNE-RESPONSE Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance. [Beckerman, Andrew P.; Dennis, Stuart R.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [de Roij, Job; Little, Tom J.] Univ Edinburgh, Inst Evolutionary Biol, Ashworth Labs, Edinburgh EH9 3JT, Midlothian, Scotland Beckerman, AP (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Western Bank, Sheffield S10 2TN, S Yorkshire, England. a.beckerman@sheffield.ac.uk Little, Tom/B-7890-2009; Dennis, Stuart/L-7998-2017; Beckerman, Andrew/D-3020-2011 Little, Tom/0000-0002-8945-0416; Dennis, Stuart/0000-0003-4263-3562; Beckerman, Andrew/0000-0002-4797-9143 NERC; Wellcome Trust; Natural Environment Research Council [NE/D012244/1] A. P. Beckerman and S. R. Dennis were supported by NERC. TJL and JdR were supported by the Wellcome Trust and NERC. Arakane Y, 2005, INSECT MOL BIOL, V14, P453, DOI 10.1111/j.1365-2583.2005.00576.x; Badariotti F, 2007, DEV COMP IMMUNOL, V31, P559, DOI 10.1016/j.dci.2006.09.002; Baldwin IT, 2001, CURR OPIN PLANT BIOL, V4, P351, DOI 10.1016/S1369-5266(00)00184-9; Baumann AA, 2011, GENE DUPLICATION, P333; BECKER B, 1978, J INSECT PHYSIOL, V24, P699, DOI 10.1016/0022-1910(78)90067-7; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Boersma M, 1998, AM NAT, V152, P237, DOI 10.1086/286164; Brakefield PM, 1998, AM NAT, V152, P853, DOI 10.1086/286213; Bulet P, 1999, DEV COMP IMMUNOL, V23, P329, DOI 10.1016/S0145-305X(99)00015-4; Chadwick W, 2005, P ROY SOC B-BIOL SCI, V272, P505, DOI 10.1098/rspb.2004.2959; Chaudhari SS, 2011, P NATL ACAD SCI USA, V108, P17028, DOI 10.1073/pnas.1112288108; DEJONG G, 1992, AM NAT, V139, P749, DOI 10.1086/285356; Dinglasan RR, 2009, INSECT BIOCHEM MOLEC, V39, P125, DOI 10.1016/j.ibmb.2008.10.010; Ebert D, 2004, AM NAT, V164, pS19, DOI 10.1086/424606; Emlen DJ, 1999, J INSECT PHYSIOL, V45, P45, DOI 10.1016/S0022-1910(98)00096-1; Emlen DJ, 2000, ANNU REV ENTOMOL, V45, P661, DOI 10.1146/annurev.ento.45.1.661; Erezyilmaz DF, 2009, DEV GENES EVOL, V219, P535, DOI 10.1007/s00427-009-0315-7; Erezyilmaz DF, 2006, P NATL ACAD SCI USA, V103, P6925, DOI 10.1073/pnas.0509983103; Erezyilmaz DF, 2005, DEV BIOL, V283, P653; Filho P. D. B., 2002, INSECT BIOCHEM MOLEC, V32, P1723; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2008, J EXP BIOL, V211, P2712, DOI 10.1242/jeb.014878; Hiruma K, 2009, INSECT BIOCHEM MOLEC, V39, P245, DOI 10.1016/j.ibmb.2009.01.008; Jolles P., 1999, CHITIN CHITINASES; Kessler A, 2002, ANNU REV PLANT BIOL, V53, P299, DOI 10.1146/annurev.arplant.53.100301.135207; Khajuria C, 2010, INSECT BIOCHEM MOLEC, V40, P621, DOI 10.1016/j.ibmb.2010.06.003; Kramer K.J., 2009, INSECT DEV MORPHOGEN, P497; KRAMER KJ, 1993, INSECT BIOCHEM MOLEC, V23, P691, DOI 10.1016/0965-1748(93)90043-R; Krist AC, 2001, EVOL ECOL RES, V3, P191; Lass S, 2002, OECOLOGIA, V132, P344, DOI 10.1007/s00442-002-0982-9; Lee CG, 2008, CURR OPIN IMMUNOL, V20, P684, DOI 10.1016/j.coi.2008.10.002; Lehane MJ, 1997, ANNU REV ENTOMOL, V42, P525, DOI 10.1146/annurev.ento.42.1.525; Marmaras VJ, 1996, ARCH INSECT BIOCHEM, V31, P119, DOI 10.1002/(SICI)1520-6327(1996)31:2<119::AID-ARCH1>3.0.CO;2-V; McTaggart SJ, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-175; Merzendorfer H, 2003, J EXP BIOL, V206, P4393, DOI 10.1242/jeb.00709; Minakuchi C, 2008, MECH DEVELOP, V125, P91, DOI 10.1016/j.mod.2007.10.002; Muthukrishnan S, 2007, COMP BIOCHEM PHYS A, V148, pS57, DOI 10.1016/j.cbpa.2007.06.144; Nagai T, 2001, J BIOL CHEM, V276, P27166, DOI 10.1074/jbc.M102596200; Nair MG, 2003, IMMUNOL LETT, V85, P173, DOI 10.1016/S0165-2478(02)00225-0; Oda S, 2005, CHEMOSPHERE, V61, P1168, DOI 10.1016/j.chemosphere.2005.02.075; Oda S, 2011, ENVIRON TOXICOL CHEM, V30, P232, DOI 10.1002/etc.378; Olmstead AW, 2007, INT J BIOL SCI, V3, P77; Riessen HP, 1999, CAN J FISH AQUAT SCI, V56, P2487, DOI 10.1139/cjfas-56-12-2487; ROUNTREE DB, 1995, J INSECT PHYSIOL, V41, P987, DOI 10.1016/0022-1910(95)00046-W; Shen ZC, 1997, J BIOL CHEM, V272, P28895, DOI 10.1074/jbc.272.46.28895; Shi L, 2004, INSECT MOL BIOL, V13, P387, DOI 10.1111/j.0962-1075.2004.00496.x; Siva-Jothy MT, 2005, ADV INSECT PHYSIOL, V32, P1, DOI 10.1016/S0065-2806(05)32001-7; Soderhall K, 1998, CURR OPIN IMMUNOL, V10, P23, DOI 10.1016/S0952-7915(98)80026-5; THORNHILL JA, 1986, PARASITOLOGY, V93, P443, DOI 10.1017/S0031182000081166; Tiffin P, 2006, TRENDS GENET, V22, P662, DOI 10.1016/j.tig.2006.09.011; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Tran HT, 2011, HISTOL HISTOPATHOL, V26, P1453, DOI 10.14670/HH-26.1453; TRUMAN JW, 1973, J INSECT PHYSIOL, V19, P195, DOI 10.1016/0022-1910(73)90232-1; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Walker CA, 2010, EUKARYOT CELL, V9, P1329, DOI 10.1128/EC.00051-10; WIGGLESWORTH VB, 1970, INSECT HORMONES; Wu JQ, 2010, ANNU REV GENET, V44, P1, DOI 10.1146/annurev-genet-102209-163500; Zera AJ, 2006, AM NAT, V167, P889, DOI 10.1086/503578; Zhou BH, 1998, DEV BIOL, V203, P233, DOI 10.1006/dbio.1998.9059; Zhou X, 2001, DEV BIOL, V235, P261; Zhou XF, 2002, DEVELOPMENT, V129, P2259 61 16 16 1 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2013 3 15 5119 5126 10.1002/ece3.766 8 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 265ON WOS:000327961500022 24455141 DOAJ Gold, Green Published 2019-02-21 J Duplouy, A; Ikonen, S; Hanski, I Duplouy, Anne; Ikonen, Suvi; Hanski, Ilkka Life history of the Glanville fritillary butterfly in fragmented versus continuous landscapes ECOLOGY AND EVOLUTION English Article Dispersal; habitat fragmentation; flight capacity; larval growth; life-history evolution; male mating success; oviposition rate ECO-EVOLUTIONARY DYNAMICS; HABITAT FRAGMENTATION; DISPERSAL RATE; ECOLOGICAL DYNAMICS; CLIMATE-CHANGE; TRADE-OFFS; METAPOPULATION; POPULATION; EXTINCTION; MOVEMENTS Habitat loss and fragmentation threaten the long-term viability of innumerable species of plants and animals. At the same time, habitat fragmentation may impose strong natural selection and lead to evolution of life histories with possible consequences for demographic dynamics. The Baltic populations of the Glanville fritillary butterfly (Melitaea cinxia) inhabit regions with highly fragmented habitat (networks of small dry meadows) as well as regions with extensive continuous habitat (calcareous alvar grasslands). Here, we report the results of common garden studies on butterflies originating from two highly fragmented landscapes (FL) in Finland and Sweden and from two continuous landscapes (CL) in Sweden and Estonia, conducted in a large outdoor cage (32 by 26m) and in the laboratory. We investigated a comprehensive set of 51 life-history traits, including measures of larval growth and development, flight performance, and adult reproductive behavior. Seventeen of the 51 traits showed a significant difference between fragmented versus CL. Most notably, the growth rate of postdiapause larvae and several measures of flight capacity, including flight metabolic rate, were higher in butterflies from fragmented than CL. Females from CL had shorter intervals between consecutive egg clutches and somewhat higher life-time egg production, but shorter longevity, than females from FL. These results are likely to reflect the constant opportunities for oviposition in females living in continuous habitats, while the more dispersive females from FL allocate more resources to dispersal capacity at the cost of egg maturation rate. This study supports theoretical predictions about small population sizes and high rate of population turnover in fragmented habitats selecting for increased rate of dispersal, but the results also indicate that many other life-history traits apart from dispersal are affected by the degree of habitat fragmentation. [Duplouy, Anne; Hanski, Ilkka] Univ Helsinki, Dept Biosci, FI-00014 Helsinki, Finland; [Ikonen, Suvi] Lammi Biol Stn, FI-16900 Lammi, Finland Duplouy, A (reprint author), Univ Helsinki, Dept Biosci, POB 65, FI-00014 Helsinki, Finland. anne.duplouy@helsinki.fi Duplouy, Anne/0000-0002-7147-5199 European Research Council [AdG232826]; Academy of Finland [133132, 256453, 250444] Funding provided by the European Research Council (grant #AdG232826 to IH) and the Academy of Finland (grants #133132, 256453 and 250444 to IH). Austin A, 2011, OIKOS, V120, P1357, DOI 10.1111/j.1600-0706.2010.18992.x; Baguette M, 2004, BASIC APPL ECOL, V5, P213, DOI 10.1016/j.baae.2004.03.001; Baguette M, 2007, LANDSCAPE ECOL, V22, P1117, DOI 10.1007/s10980-007-9108-4; Barnosky AD, 2011, NATURE, V471, P51, DOI 10.1038/nature09678; Bonte D, 2012, BIOL REV, V87, P290, DOI 10.1111/j.1469-185X.2011.00201.x; Charlat S, 2007, CURR BIOL, V17, P273, DOI 10.1016/j.cub.2006.11.068; Cheptou PO, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P304; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Cody ML, 1996, J ECOL, V84, P53, DOI 10.2307/2261699; Debinski DM, 2000, CONSERV BIOL, V14, P342, DOI 10.1046/j.1523-1739.2000.98081.x; Dornier A, 2012, OECOLOGIA, V169, P703, DOI 10.1007/s00442-011-2229-0; Dytham C, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P392; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; Fresnillo B, 2008, PLANT SYST EVOL, V270, P243, DOI 10.1007/s00606-007-0615-1; Gibbs M, 2010, OECOLOGIA, V163, P341, DOI 10.1007/s00442-010-1613-5; Haag CR, 2005, P ROY SOC B-BIOL SCI, V272, P2449, DOI 10.1098/rspb.2005.3235; HANSKI I, 1995, OIKOS, V72, P21, DOI 10.2307/3546033; Hanski I, 2006, J ANIM ECOL, V75, P91, DOI 10.1111/j.1365-2656.2005.01024.x; Hanski I, 2000, NATURE, V404, P755, DOI 10.1038/35008063; Hanski I., 1999, METAPOPULATION ECOLO; Hanski I., 2005, SHRINKING WORLD ECOL; HANSKI I, 2012, ANN NY ACAD SCI, V1249, P1; Hanski I, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P290; Hanski I, 2011, ECOL LETT, V14, P1025, DOI 10.1111/j.1461-0248.2011.01671.x; Hanski IA, 2011, P NATL ACAD SCI USA, V108, P14397, DOI 10.1073/pnas.1110020108; Haunerland NH, 1996, INSECT BIOCHEM MOLEC, V26, P755, DOI 10.1016/S0965-1748(96)00035-5; Heino M, 2001, AM NAT, V157, P495, DOI 10.1086/319927; Helm A, 2006, ECOL LETT, V9, P72, DOI 10.1111/j.1461-0248.2005.00841.x; Hendry AP, 2001, GENETICA, V112, P1, DOI 10.1023/A:1013368628607; Honnay O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P420; Hughes JB, 1997, SCIENCE, V278, P689, DOI 10.1126/science.278.5338.689; Karlsson B, 2005, P ROY SOC B-BIOL SCI, V272, P1257, DOI 10.1098/rspb.2005.3074; Karlsson B, 2008, P ROY SOC B-BIOL SCI, V275, P2131, DOI 10.1098/rspb.2008.0404; Katrantsiotis C., 2013, PALEOENVIRONMENT SHO; Kirchner JW, 1999, AM NAT, V154, P140, DOI 10.1086/303232; Kuussaari Mikko, 1995, Baptria (Helsinki), V20, P167; Kvist J, 2013, MOL ECOL, V22, P602, DOI 10.1111/j.1365-294X.2012.05521.x; Lepais O, 2010, MOL ECOL, V19, P819, DOI 10.1111/j.1365-294X.2009.04500.x; Malcolm JR, 2002, J BIOGEOGR, V29, P835, DOI 10.1046/j.1365-2699.2002.00702.x; Matthysen E, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P3; Mattila ALK, 2012, P NATL ACAD SCI USA, V109, pE2496, DOI 10.1073/pnas.1205789109; Merckx T, 2003, P ROY SOC B-BIOL SCI, V270, P1815, DOI 10.1098/rspb.2003.2459; Millennium Ecosystem Assessment, 2005, EC HUM WELL BEING SY; Mora MS, 2010, BMC GENET, V11, DOI 10.1186/1471-2156-11-9; Morris DW, 2003, OECOLOGIA, V136, P1, DOI 10.1007/s00442-003-1241-4; Nieminen M, 2004, ON THE WINGS OF CHECKERSPOTS: A MODEL SYSTEM FOR POPULATION BIOLOGY, P63; Niitepold K, 2009, ECOLOGY, V90, P2223, DOI 10.1890/08-1498.1; Ojanen SP, 2013, ECOL EVOL, V3, P3713, DOI 10.1002/ece3.733; Ovaskainen O, 2008, P NATL ACAD SCI USA, V105, P19090, DOI 10.1073/pnas.0802066105; Pelletier F, 2009, PHILOS T R SOC B, V364, P1483, DOI 10.1098/rstb.2009.0027; R Development Core Team, 2009, R LANG ENV STAT COMP; Radchuk V, 2013, J ANIM ECOL, V82, P275, DOI 10.1111/j.1365-2656.2012.02029.x; Ronce O, 1997, AM NAT, V150, P220, DOI 10.1086/286064; Ronce O, 2007, ANNU REV ECOL EVOL S, V38, P231, DOI 10.1146/annurev.ecolsys.38.091206.095611; Ronce Ophelie, 2004, P227, DOI 10.1016/B978-012323448-3/50012-X; Ronce O, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P119; Saastamoinen M, 2008, HEREDITY, V100, P39, DOI 10.1038/sj.hdy.6801056; Saastamoinen M, 2009, P ROY SOC B-BIOL SCI, V276, P1313, DOI 10.1098/rspb.2008.1464; Saccheri I, 1998, NATURE, V392, P491, DOI 10.1038/33136; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Sarhan A, 2007, EVOLUTION, V61, P606, DOI 10.1111/j.1558-5646.2007.00053.x; Schoener TW, 2011, SCIENCE, V331, P426, DOI 10.1126/science.1193954; Schtickzelle N, 2006, ECOLOGY, V87, P1057, DOI 10.1890/0012-9658(2006)87[1057:DDWHFI]2.0.CO;2; Starrfelt J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P19; Stjernholm F, 2005, BIOL J LINN SOC, V86, P363, DOI 10.1111/j.1095-8312.2005.00542.x; Stjernholm F, 2000, P ROY SOC B-BIOL SCI, V267, P807, DOI 10.1098/rspb.2000.1075; SVARD L, 1986, BEHAV ECOL SOCIOBIOL, V18, P325, DOI 10.1007/BF00299663; TAYLOR PD, 1995, OIKOS, V73, P43, DOI 10.2307/3545723; Thomas CD, 1998, J ANIM ECOL, V67, P485, DOI 10.1046/j.1365-2656.1998.00213.x; Thomas CD, 2001, NATURE, V411, P577, DOI 10.1038/35079066; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P723, DOI 10.1098/rspb.1999.0696; Van Dyck H, 2005, BASIC APPL ECOL, V6, P535, DOI 10.1016/j.baae.2005.03.005; Van Dyck H, 1999, TRENDS ECOL EVOL, V14, P172, DOI 10.1016/S0169-5347(99)01610-9; Wahlberg N, 2007, EUR J ENTOMOL, V104, P675, DOI 10.14411/eje.2007.085; Wheat CW, 2011, MOL ECOL, V20, P1813, DOI 10.1111/j.1365-294X.2011.05062.x; Zheng CZ, 2009, PHILOS T R SOC B, V364, P1519, DOI 10.1098/rstb.2009.0005 76 21 22 3 80 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2013 3 16 5141 5156 10.1002/ece3.885 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 275JR WOS:000328672600002 24455144 DOAJ Gold, Green Published 2019-02-21 J McGaughran, A; Morgan, K; Sommer, RJ McGaughran, Angela; Morgan, Katy; Sommer, Ralf J. Natural variation in chemosensation: lessons from an island nematode ECOLOGY AND EVOLUTION English Article Chemoattraction; ecology; La Reunion Island; natural variation; nematode; Pristionchus pacificus PRISTIONCHUS-PACIFICUS; ENTOMOPATHOGENIC NEMATODES; CAENORHABDITIS-ELEGANS; CONSERVATION PRIORITIES; INDIVIDUAL-DIFFERENCES; EVOLUTIONARY HISTORY; PREMATING ISOLATION; BEHAVIOR; REVEALS; BEETLE All organisms must interact with their environment, responding in behavioral, chemical, and other ways to various stimuli throughout their life cycles. Characterizing traits that directly represent an organism's ability to sense and react to their environment provides useful insight into the evolution of life-history strategies. One such trait for the nematode Pristionchus pacificus, chemosensation, is involved in navigation to beetle hosts. Essential for the survival of the nematode, chemosensory behavior may be subject to variation as nematodes discriminate among chemical cues to complete their life cycle. We examine this hypothesis using natural isolates of P.pacificus from La Reunion Island. We select strains from a variety of La Reunion beetle hosts and geographic locations and examine their chemoattraction response toward organic compounds, beetle washes, and live beetles. We find that nematodes show significant differences in their response to various chemicals and are able to chemotax to live beetles in a novel assay. Further, strains can discriminate among different cues, showing more similar responses toward beetle washes than to organic compounds in cluster analyses. However, we find that variance in chemoattraction response is not significantly associated with temperature, location, or beetle host. Rather, strains show a more concerted response toward compounds they most likely directly encounter in the wild. We suggest that divergence in odor-guided behavior in P.pacificus may therefore have an important ecological component. [McGaughran, Angela; Morgan, Katy; Sommer, Ralf J.] Max Planck Inst Dev Biol, Dept Evolutionary Biol, D-72076 Tubingen, Germany McGaughran, A (reprint author), Max Planck Inst Dev Biol, Dept Evolutionary Biol, Spemannstr 35-4, D-72076 Tubingen, Germany. ang.mcgaughran@gmail.com McGaughran, Angela/C-5916-2014 McGaughran, Angela/0000-0002-3429-8699 Max Planck Society; Alexander von Humboldt Foundation We thank the Max Planck Society and the Alexander von Humboldt Foundation (Research Fellowship for Postdoctoral Researchers to AM) for funding. Ali JG, 2011, J ECOL, V99, P26, DOI 10.1111/j.1365-2745.2010.01758.x; Ali JG, 2010, J CHEM ECOL, V36, P361, DOI 10.1007/s10886-010-9773-7; BARGMANN CI, 1993, CELL, V74, P515, DOI 10.1016/0092-8674(93)80053-H; Barros Alistair, 2005, CRITICAL OVERVIEW WE, P1; Bento G, 2010, NATURE, V466, P494, DOI 10.1038/nature09164; BRENNER S, 1974, GENETICS, V77, P71; BURMAN M, 1980, EXP PARASITOL, V49, P258, DOI 10.1016/0014-4894(80)90122-8; Cheke A. S, 2008, LOST LAND DODO ECOLO; EHLINGER TJ, 1990, ECOLOGY, V71, P886, DOI 10.2307/1937360; Etges WJ, 2001, AM NAT, V158, P585, DOI 10.1086/323587; Ferveur JF, 2005, BEHAV GENET, V35, P279, DOI 10.1007/s10519-005-3220-5; GREWAL PS, 1993, J PARASITOL, V79, P495, DOI 10.2307/3283373; Hallem EA, 2011, P NATL ACAD SCI USA, V108, P254, DOI 10.1073/pnas.1017354108; Herrmann M., 2011, BIOL J LINN SOC, V100, P170; Herrmann M, 2007, ZOOL SCI, V24, P883, DOI 10.2108/zsj.24.883; Herrmann M, 2006, ZOOLOGY, V109, P96, DOI 10.1016/j.zool.2006.03.001; Hong RL, 2008, P NATL ACAD SCI USA, V105, P7779, DOI 10.1073/pnas.0708406105; Hong RL, 2006, CURR BIOL, V16, P2359, DOI 10.1016/j.cub.2006.10.031; Jovelin R, 2003, MOL ECOL, V12, P1325, DOI 10.1046/j.1365-294X.2003.01805.x; Laznik Z, 2013, EXP PARASITOL, V134, P349, DOI 10.1016/j.exppara.2013.03.030; Mayer MG, 2011, P ROY SOC B-BIOL SCI, V278, P2784, DOI 10.1098/rspb.2010.2760; McGaughran A, 2013, ECOL EVOL, V3, P667, DOI 10.1002/ece3.495; Morgan K, 2012, MOL ECOL, V21, P250, DOI 10.1111/j.1365-294X.2011.05382.x; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; PAFFENHOFER GA, 1994, J PLANKTON RES, V16, P617, DOI 10.1093/plankt/16.6.617; Pye A. E., 1981, EXPT PARASITOLOGY, V51, P77; Rae R, 2008, J EXP BIOL, V211, P1927, DOI 10.1242/jeb.014944; Schulenburg H, 2004, PARASITOLOGY, V128, P433, DOI 10.1017/S003118200300461X; Shapiro-Ilan DI, 2012, J INVERTEBR PATHOL, V109, P34, DOI 10.1016/j.jip.2011.09.004; Smadja C, 2009, HEREDITY, V102, P77, DOI 10.1038/hdy.2008.55; Sneddon LU, 2003, J FISH BIOL, V62, P971, DOI 10.1046/j.1095-8649.2003.00084.x; Sokolowski MB, 2008, CURR BIOL, V18, pR480, DOI 10.1016/j.cub.2008.04.038; Strasberg D, 2005, BIODIVERS CONSERV, V14, P3015, DOI 10.1007/s10531-004-0258-2; THEBAUD C., 2009, ENCY ISLANDS, P612; Utne ACW, 1997, CAN J ZOOL, V75, P2027, DOI 10.1139/z97-836; van Oers K, 2005, BEHAV ECOL, V16, P716, DOI 10.1093/beheco/ari045; Vercambre B, 1991, P RENC CAR LUTT BIOL, V57; Viney Mark, 2012, Worm, V1, P98, DOI 10.4161/worm.21086; Weller AM, 2010, J PARASITOL, V96, P525, DOI 10.1645/GE-2319.1 39 15 15 0 13 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. DEC 2013 3 16 5209 5224 10.1002/ece3.902 16 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 275JR WOS:000328672600008 24455150 DOAJ Gold, Green Published 2019-02-21 J Perez-Mendoza, HA; Zuniga-Vega, JJ; Zurita-Gutierrez, YH; Fornoni, J; Solano-Zavaleta, I; Hernandez-Rosas, AL; Molina-Moctezuma, A Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J.; Zurita-Gutierrez, Yazmin H.; Fornoni, Juan; Solano-Zavaleta, Israel; Hernandez-Rosas, Ana L.; Molina-Moctezuma, Alejandro DEMOGRAPHIC IMPORTANCE OF THE LIFE-CYCLE COMPONENTS IN SCELOPORUS GRAMMICUS HERPETOLOGICA English Article Elasticity analysis; Fast-slow continuum; Life-history evolution; Mark-recapture experiment; Projection matrices POPULATION-GROWTH RATE; DENSITY-DEPENDENT SELECTION; FAST-SLOW CONTINUUM; LIZARD XENOSAURUS-GRANDIS; HISTORY VARIATION; HUMAN DISTURBANCE; CENTRAL MEXICO; WATER-LOSS; COMPLEX PHRYNOSOMATIDAE; PROJECTION MATRICES Survival, growth, and fecundity are considered as the three main components of the life cycle of any living organism. The relative contribution of these three components to average fitness may vary drastically among populations of single species. Examining this interpopulation variation and understanding its causes can provide insight on the particular selection pressures that drive phenotypic divergence among populations. We conducted a demographic study of eight distinct populations of the viviparous lizard Sceloporus grammicus in central Mexico. We estimated variation among populations in stage-specific survival, growth, and fecundity. Using these data we constructed site-specific population projection matrices to estimate population growth rates, which we interpreted as measures of the average fitness of each population. Elasticity analysis was used to calculate the relative contribution of the three life-cycle components to population growth rates. The three life-cycle components had relatively high elasticity values, which meant that survival, growth, and fecundity contributed similarly to fitness. However, some variation was found among populations. We searched for potential associations between the observed interpopulation variation in these measures of relative importance for average fitness and interpopulation variation in temperature, rainfall, population density, microhabitat availability, degree of human-induced disturbance, and overall mortality. None of these environmental factors or their interactions could explain the observed interpopulation variation in the relative importance of the life-cycle components. Our results provide insight about how these viviparous lizards allocate resources to survival, growth, and fecundity in different environments. [Perez-Mendoza, Hibraim A.; Jaime Zuniga-Vega, J.; Zurita-Gutierrez, Yazmin H.; Hernandez-Rosas, Ana L.; Molina-Moctezuma, Alejandro] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Fornoni, Juan] Univ Nacl Autonoma Mexico, Inst Ecol, Dept Ecol Evolut, Mexico City 04510, DF, Mexico; [Solano-Zavaleta, Israel] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Biol Evolut, Mexico City 04510, DF, Mexico Perez-Mendoza, HA (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Ciudad Univ, Mexico City 04510, DF, Mexico. hibraimperez@ciencias.unam.mx Consejo Nacional de Ciencia y Tecnologia [210458]; Universidad Nacional Autonoma de Mexico [PAPIIT-IN206309-3] This paper is a requisite to obtain the Ph.D. degree in the Posgrado en Ciencias Biologicas of Universidad Nacional Autonoma de Mexico. We would like to thank the Consejo Nacional de Ciencia y Tecnologia 210458 and the Programa de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (project PAPIIT-IN206309-3) from Universidad Nacional Autonoma de Mexico for the financial support provided for this research. Also we would like to thank C. Martorell for his comments, which improved this study. Finally, we thank P. Mendoza-Hernandez, J. Maceda-Cruz, L. Moyers-Arevalo, M. Romano-Garcia, C. Molina-Zuluaga, C. Olivera-Tlahuel, and F. Rodriguez-Reyes for field assistance. Fieldwork was conducted under permit FAUT-0240 issued by the Direccion General de Vida Silvestre - Mexico. ADOLPH SC, 1993, AM NAT, V142, P273, DOI 10.1086/285538; Akaike H., 1973, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_; Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; Andrews R.M., 1982, Biology of Reptilia, V13, P273; Angilletta M.J., 2004, AM NAT, V164, pE178; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Arendt JD, 2011, EVOLUTION, V65, P43, DOI 10.1111/j.1558-5646.2010.01112.x; AREVALO E, 1993, COPEIA, P352; AREVALO E, 1994, SYST BIOL, V43, P387, DOI 10.2307/2413675; AREVALO E, 1991, HERPETOL MONOGR, V5, P79; Armstrong DP, 2005, J ANIM ECOL, V74, P160, DOI 10.1111/j.1365-2656.2004.00908.x; Ashbrook K, 2010, P ROY SOC B-BIOL SCI, V277, P2355, DOI 10.1098/rspb.2010.0352; Bauwens D, 1997, AM NAT, V149, P91, DOI 10.1086/285980; Belk MC, 2011, WEST N AM NATURALIST, V71, P490, DOI 10.3398/064.071.0406; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BOUTIN C, 1991, J ECOL, V79, P199, DOI 10.2307/2260793; Box G. E., 2008, TIME SERIES ANAL FOR; BROWNIE C, 1993, BIOMETRICS, V49, P1173, DOI 10.2307/2532259; Burnham K. P, 2002, MODEL SELECTION MULT; Burnham KP, 2004, SOCIOL METHOD RES, V33, P261, DOI 10.1177/0049124104268644; Calsbeek R, 2007, EVOLUTION, V61, P1052, DOI 10.1111/j.1558-5646.2007.00093.x; Canseco-Marquez L., 2010, ANFIBIOS REPTILES VA; CASWELL H, 1978, THEOR POPUL BIOL, V14, P215, DOI 10.1016/0040-5809(78)90025-4; Caswell H., 2001, MATRIX POPULATION MO; Clobert J, 1998, J EVOLUTION BIOL, V11, P329; Crone EE, 2011, ECOL LETT, V14, P1, DOI 10.1111/j.1461-0248.2010.01540.x; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Martonne EE, 1926, METEOROLOGIE, P449; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; Dibattista JD, 2007, J EVOLUTION BIOL, V20, P201, DOI 10.1111/j.1420-9101.2006.01210.x; DUNHAM AE, 1978, ECOLOGY, V59, P770, DOI 10.2307/1938781; Einum S, 2008, EVOL APPL, V1, P239, DOI 10.1111/j.1752-4571.2008.00021.x; Ferrer M, 2008, J APPL ECOL, V45, P1453, DOI 10.1111/j.1365-2664.2008.01497.x; Floyd SK, 1998, INT J PLANT SCI, V159, P853, DOI 10.1086/297607; Forsman A, 1995, FUNCT ECOL, V9, P818, DOI 10.2307/2389979; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Franco M., 2004, ECOLOGY, V85, P532; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; GRANT BW, 1990, ECOLOGY, V71, P2323, DOI 10.2307/1938643; Guillette Jr L.J., 1980, J HERPETOL, V19, P474; GUILLETTE L J JR, 1986, Transactions of the Kansas Academy of Science, V89, P31, DOI 10.2307/3627729; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Heppell SS, 2000, ECOLOGY, V81, P654, DOI 10.1890/0012-9658(2000)081[0654:LHAEPP]2.0.CO;2; HORVITZ CC, 1995, ECOL MONOGR, V65, P155, DOI 10.2307/2937136; Iraeta P, 2008, ECOSCIENCE, V15, P298, DOI 10.2980/15-3-3119; Iverson JB, 2006, BIOL CONSERV, V132, P300, DOI 10.1016/j.biocon.2006.04.022; Jessop TS, 2007, BIOL CONSERV, V135, P247, DOI 10.1016/j.biocon.2006.10.025; Jimenez-Cruz E, 2005, SOUTHWEST NAT, V50, P178, DOI 10.1894/0038-4909(2005)050[0178:RCOSGS]2.0.CO;2; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Lemos-Espinal JA, 1998, GREAT BASIN NAT, V58, P375; Macip-Rios R, 2011, HERPETOL J, V21, P235; Manteuffel VM, 2010, J HERPETOL, V44, P21, DOI 10.1670/08-165.1; Mappes T, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0001687; MAUTZ WJ, 1980, COMP BIOCHEM PHYS A, V67, P429, DOI 10.1016/S0300-9629(80)80019-3; McKay JK, 2001, P ROY SOC B-BIOL SCI, V268, P1715, DOI 10.1098/rspb.2001.1715; MESTERTONGIBBONS M, 1993, ECOLOGY, V74, P2467, DOI 10.2307/1939599; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Miller DA, 2011, ECOLOGY, V92, P1658; MUNSEY LD, 1972, COMP BIOCHEM PHYSIOL, V43, P781, DOI 10.1016/0300-9629(72)90147-8; NICHOLS JD, 1992, ECOLOGY, V73, P306, DOI 10.2307/1938741; Niewiarowski PH, 2001, AM NAT, V157, P421, DOI 10.1086/319321; Oli MK, 2004, BASIC APPL ECOL, V5, P449, DOI 10.1016/j.baae.2004.06.002; Oli MK, 2003, AM NAT, V161, P422, DOI 10.1086/367591; Oliveira D., 2003, COPEIA, V2003, P285; Oriazola G., 2009, EVOLUTIONARY ECOLOGY, V23, P979; ORTEGA A, 1984, J HERPETOL, V18, P168, DOI 10.2307/1563745; Papadatou E, 2011, OECOLOGIA, V165, P925, DOI 10.1007/s00442-010-1771-5; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Pyper BJ, 1998, CAN J FISH AQUAT SCI, V55, P2127; Ramirez-Bautista A, 2004, WEST N AM NATURALIST, V64, P175; Ramirez-Bautista Aurelio, 2005, Acta Zoologica Sinica, V51, P998; Ranjan P, 2006, GLOBAL ENVIRON CHANG, V16, P388, DOI 10.1016/j.gloenvcha.2006.03.006; Reichel E, 1928, TATIGKEITSBERICHT PR, V362, P84; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Rittenhouse TAG, 2008, COPEIA, P807, DOI 10.1643/CH-07-176; Rojas-Gonzalez RI, 2008, AMPHIBIA-REPTILIA, V29, P245; ROSE B, 1981, ECOLOGY, V62, P706, DOI 10.2307/1937739; Ruhlen TD, 2003, J FIELD ORNITHOL, V74, P300, DOI 10.1648/0273-8570-74.3.300; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; SILVERTOWN J, 1993, J ECOL, V81, P465, DOI 10.2307/2261525; SILVERTOWN J, 1992, FUNCT ECOL, V6, P130, DOI 10.2307/2389746; Silvertown J, 1996, CONSERV BIOL, V10, P591, DOI 10.1046/j.1523-1739.1996.10020591.x; SINERVO B, 1994, ECOLOGY, V75, P776, DOI 10.2307/1941734; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; SITES JW, 1983, EVOLUTION, V37, P54, DOI 10.1111/j.1558-5646.1983.tb05513.x; SITES JW, 1992, B AM MUS NAT HIST, P1; Smart R, 2005, BIOL CONSERV, V122, P23, DOI 10.1016/j.biocon.2004.06.016; Stearns S, 1992, EVOLUTION LIFE HIST; Svensson E, 2000, EVOLUTION, V54, P1396; van Tienderen PH, 2000, ECOLOGY, V81, P666, DOI 10.1890/0012-9658(2000)081[0666:EATLBD]2.0.CO;2; Venable DL, 2007, ECOLOGY, V88, P1086, DOI 10.1890/06-1495; VIA S, 1991, EVOLUTION, V45, P827, DOI 10.1111/j.1558-5646.1991.tb04353.x; WAICHMAN A V, 1992, Herpetological Review, V23, P19; Webb JK, 2002, ORYX, V36, P170, DOI 10.1017/S0030605302000248; Welch DW, 2011, P NATL ACAD SCI USA, V108, P8708, DOI 10.1073/pnas.1014044108; White GC, 1999, BIRD STUDY, V46, P120; Wilson S, 2011, POPUL ECOL, V53, P459, DOI 10.1007/s10144-011-0261-x; Zar JH, 2010, BIOSTATISTICAL ANAL; ZUCKER A, 1980, COPEIA, P425, DOI 10.2307/1444518; Zuniga-Vega JJ, 2011, J FISH BIOL, V79, P1029, DOI 10.1111/j.1095-8649.2011.03081.x; Zuniga-Vega JJ, 2008, CAN J ZOOL, V86, P1397, DOI 10.1139/Z08-124; Zuniga-Vega JJ, 2008, AMPHIBIA-REPTILIA, V29, P127, DOI 10.1163/156853808783431550; Zuniga-Vega JJ, 2007, COPEIA, P324, DOI 10.1643/0045-8511(2007)7[324:AOTPDO]2.0.CO;2; Zuniga-Vega JJ, 2005, J HERPETOL, V39, P433, DOI 10.1670/202-04A.1 110 7 7 4 20 HERPETOLOGISTS LEAGUE EMPORIA EMPORIA STATE UNIV, DIVISION BIOLOGICAL SCIENCES, 1200 COMMERCIAL ST, EMPORIA, KS 66801-5087 USA 0018-0831 1938-5099 HERPETOLOGICA Herpetologica DEC 2013 69 4 411 435 25 Zoology Zoology 273MP WOS:000328539300004 2019-02-21 J Colodro-Conde, L; Rijsdijk, F; Ordonana, JR Colodro-Conde, Lucia; Rijsdijk, Fruehling; Ordonana, Juan R. The Genetic and Environmental Structure of Reproduction-Related Variables: The Case of Fertility and Breastfeeding TWIN RESEARCH AND HUMAN GENETICS English Article life history traits; fertility; breastfeeding; twin study MURCIA TWIN REGISTRY; LIFE-HISTORY TRAITS; EVOLUTIONARY PERSPECTIVE; PARENTAL INVESTMENT; TRADE-OFF; INITIATION; HERITABILITY; BEHAVIOR; SPAIN; DETERMINANTS Life history theory studies the evolution of traits related to reproductive fitness. Fertility and parental investment are key life history traits which, from an evolutionary standpoint, appear strongly interrelated. The aim of this work was to analyze the genetic and environmental structure and relationship of two behaviors associated with reproductive fitness: total number of offspring and mean duration of breastfeeding. A total of 1,347 women distributed in 239 monozygotic pairs, 236 dizygotic pairs, and 393 individual twins from opposite sex pairs provided information about their reproductive history. We conducted separate univariate analyses to study the sources of variance of both variables; and a bivariate analysis, with threshold liability models. The sources of variance for number of children and breastfeeding were best explained by a model including familial and unique environmental factors, being E = 0.54 (CI 95%: 0.44, 0.66) and E = 0.46 (CI 95%: 0.34, 0.61), respectively. The phenotypic correlation between number of children and breastfeeding was low but significant (r = 0.16, CI 95%: 0.07, 0.25). Familial correlation between these variables did not reach significance, but unique environmental correlation did (r(e) = 0.20, CI 95%: 0.02, 0.37). In conclusion, results do not support the existence of a clear common structure for the number of children a woman has and the time she spends breastfeeding them, at least in modern societies. The relationship found was mainly due to unique environmental factors. More research on these and related phenotypes is needed to better understand women's reproductive decisions and how natural selection acts on the life history traits. [Colodro-Conde, Lucia; Ordonana, Juan R.] Univ Murcia, Dept Human Anat & Psychobiol, Murcia Twin Registry, Murcia, Spain; [Colodro-Conde, Lucia; Ordonana, Juan R.] Murcia Inst Biomed Res, Murcia, Spain; [Rijsdijk, Fruehling] Kings Coll London, Inst Psychiat, MRC Social Genet & Dev Psychiat Ctr, London WC2R 2LS, England Ordonana, JR (reprint author), Univ Murcia, Dept Human Anat & Psychobiol, Murcia Twin Registry, Area Psychobiol, Espinardo 30100, Spain. ordonana@um.es Ordonana, Juan/M-1196-2014 Ordonana, Juan/0000-0001-7779-6017; Rijsdijk, Fruhling/0000-0003-4762-2803; Colodro Conde, Lucia/0000-0002-9004-364X Seneca Foundation - Regional Agency for Science and Technology, Murcia, Spain [08633/PHCS/08, 15302/PHCS/10]; Ministry of Science and Innovation, Spain [PSI11560-2009]; Seneca Foundation [12431/FPI/09] The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Seneca Foundation - Regional Agency for Science and Technology, Murcia, Spain (08633/PHCS/08 and 15302/PHCS/10) and Ministry of Science and Innovation, Spain (PSI11560-2009). First author was supported by a grant provided by Seneca Foundation (12431/FPI/09). Barona-Vilar C, 2009, MIDWIFERY, V25, P187, DOI 10.1016/j.midw.2007.01.013; Colodro-Conde L, 2011, J HUM LACT, V27, P272, DOI 10.1177/0890334411403929; Colodro-Conde L, 2013, TWIN RES HUM GENET, V16, P575, DOI 10.1017/thg.2013.2; Earle S, 2002, HEALTH PROMOT INT, V17, P205, DOI 10.1093/heapro/17.3.205; Ekstrom A, 2003, BIRTH-ISS PERINAT C, V30, P261, DOI 10.1046/j.1523-536X.2003.00256.x; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Holman DJ, 2003, AM J HUM BIOL, V15, P765, DOI 10.1002/ajhb.10219; Huber S, 2010, AM J HUM BIOL, V22, P578, DOI 10.1002/ajhb.21048; Kaplan H, 1996, YEARB PHYS ANTHROPOL, V39, P91; Kaplan HS, 2003, OFFSPRING, P170; Kohler HP, 2006, INT J ANDROL, V29, P46, DOI 10.1111/j.1365-2605.2005.00606.x; Kools EJ, 2005, HEALTH EDUC BEHAV, V32, P809, DOI 10.1177/1090198105277327; Kosova G, 2010, P NATL ACAD SCI USA, V107, P1772, DOI 10.1073/pnas.0906196106; Lawson DW, 2012, P ROY SOC B-BIOL SCI, V279, P4755, DOI 10.1098/rspb.2012.1635; Lawson DW, 2011, PHILOS T R SOC B, V366, P333, DOI 10.1098/rstb.2010.0297; MacDonald K, 1999, POPUL ENVIRON, V21, P223; Meij JJ, 2009, J EVOLUTION BIOL, V22, P1014, DOI 10.1111/j.1420-9101.2009.01713.x; Miller WB, 2010, DEMOGRAPHY, V47, P393, DOI 10.1353/dem.0.0107; Neale M., 1992, METHODOLOGY GENETIC; Neale M. C., 2006, MX STAT MODELING; Ordonana JR, 2006, TWIN RES HUM GENET, V9, P865, DOI 10.1375/183242706779462534; Ordonana JR, 2013, TWIN RES HUM GENET, V16, P302, DOI 10.1017/thg.2012.66; Papadimitriou F., 2008, MOTHERHOOD MOTIVATIO; Posthuma D, 2003, TWIN RES, V6, P361, DOI 10.1375/twin.6.5.361; PRICE T, 1991, EVOLUTION, V45, P853, DOI 10.1111/j.1558-5646.1991.tb04354.x; Rijsdijk Fruhling V, 2002, Brief Bioinform, V3, P119, DOI 10.1093/bib/3.2.119; Rodgers JL, 2001, CURR DIR PSYCHOL SCI, V10, P184, DOI 10.1111/1467-8721.00145; Rodgers JL, 2001, DEMOGRAPHY, V38, P29, DOI 10.2307/3088286; Rodgers JL, 2007, BEHAV GENET, V37, P345, DOI 10.1007/s10519-006-9137-9; Rudzik AEF, 2011, ANTHR MOTHERING, P159; SPSS, 2010, IBM SPSS STAT BAS 19; Swanson V, 2005, J ADV NURS, V50, P272, DOI 10.1111/j.1365-2648.2005.03390.x; Volk A. A., 2008, J SOCIAL CULTURAL EV, V3, P103; Volk A. A., 2009, J SOCIAL EVOLUTIONAR, V3, P304; Zietsch B. P., 2013, PERFECT GENETI UNPUB 36 0 0 0 10 CAMBRIDGE UNIV PRESS NEW YORK 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA 1832-4274 1839-2628 TWIN RES HUM GENET Twin Res. Hum. Genet. DEC 2013 16 6 1096 1102 10.1017/thg.2013.64 7 Genetics & Heredity; Obstetrics & Gynecology Genetics & Heredity; Obstetrics & Gynecology 273OX WOS:000328546200006 24050145 2019-02-21 J O'Malley, KG; Jacobson, DP; Kurth, R; Dill, AJ; Banks, MA O'Malley, Kathleen G.; Jacobson, Dave P.; Kurth, Ryon; Dill, Allen J.; Banks, Michael A. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow EVOLUTIONARY APPLICATIONS English Article captive populations; conservation biology; conservation genetics; ecological genetics; fisheries management; hybridization; life history evolution; population genetics CROSS-SPECIES AMPLIFICATION; VERTEBRATE CIRCADIAN CLOCK; QUANTITATIVE TRAIT LOCI; RAINBOW-TROUT; POPULATION-STRUCTURE; MICROSATELLITE LOCI; PACIFIC SALMON; COHO SALMON; EXPRESSION; MAMMALS Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing. [O'Malley, Kathleen G.; Jacobson, Dave P.; Banks, Michael A.] Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA; [Kurth, Ryon] Calif Dept Water Resources, Div Environm Serv, Oroville, CA USA; [Dill, Allen J.] Calif Dept Fish & Game, Feather River Hatchery O, CA USA O'Malley, KG (reprint author), Oregon State Univ, Hatfield Marine Sci Ctr, Dept Fisheries & Wildlife, Coastal Oregon Marine Expt Stn, Newport, OR 97365 USA. kathleen.omalley@oregonstate.edu California Department of Water Resources This research was supported by the California Department of Water Resources. We are grateful to Anna Kastner, the Feather River Hatchery Manager, for her support to this research and whose comments improved the manuscript, Carol Stroble of the California Department of Water Resources for providing samples. We thank Fred Allendorf for providing insightful comments. Allendorf FW, 2010, NAT REV GENET, V11, P697, DOI 10.1038/nrg2844; Aubin-Horth N, 2005, P ROY SOC B-BIOL SCI, V272, P1655, DOI 10.1098/rspb.2005.3125; Banks MA, 2000, CAN J FISH AQUAT SCI, V57, P915, DOI 10.1139/cjfas-57-5-915; Belkhir K., 2000, GENETIX 4 04 LOGICIE; Bromage N, 2001, AQUACULTURE, V197, P63, DOI 10.1016/S0044-8486(01)00583-X; Busino L, 2007, SCIENCE, V316, P900, DOI 10.1126/science.1141194; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Cavallo B., 2009, HATCHERY GENETIC MAN; Cermakian N, 2000, P NATL ACAD SCI USA, V97, P4339, DOI 10.1073/pnas.97.8.4339; Dardente H, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003530; Davie A, 2009, CHRONOBIOL INT, V26, P379, DOI 10.1080/07420520902820947; Frankham R, 2010, CONSERV GENET, V11, P661, DOI 10.1007/s10592-009-0010-2; Froy O, 2003, SCIENCE, V300, P1303, DOI 10.1126/science.1084874; Funk CF, 2012, TRENDS ECOL EVOL, V27, P489; Greig C, 2003, MOL ECOL NOTES, V3, P376, DOI 10.1046/j.1471-8286.2003.00455.x; Groot C., 1991, PACIFIC SALMON LIFE; Hedgecock D., 2001, FISH B, V179, P2001; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Ikegami K, 2012, MOL CELL ENDOCRINOL, V349, P76, DOI 10.1016/j.mce.2011.06.040; Ivanova NV, 2006, MOL ECOL NOTES, V6, P998, DOI 10.1111/j.1471-8286.2006.01428.x; Karrigan S., 2010, STOCK SELECTION STRA; Krabbenhoft TJ, 2012, THESIS U NEW MEXICO; Leder EH, 2006, J HERED, V97, P74, DOI 10.1093/jhered/esj004; Liedvogel M., 2011, TRENDS ECOL EVOL, P1; Liedvogel M, 2009, MOL ECOL, V18, P2444, DOI 10.1111/j.1365-294X.2009.04204.x; Lincoln GA, 2003, J ENDOCRINOL, V179, P1, DOI 10.1677/joe.0.1790001; MORITZ C, 1994, TRENDS ECOL EVOL, V9, P373, DOI 10.1016/0169-5347(94)90057-4; NAISH KA, 2002, ANIMAL GENETICS, V33, P312; Nelson RJ, 1999, ANIM GENET, V30, P228, DOI 10.1046/j.1365-2052.1999.00404-4.x; NOAA, 2005, FED REG, V70; O'Malley KG, 2008, GENETICA, V132, P87, DOI 10.1007/s10709-007-9151-8; O'Malley K. G., 2013, FISHERIES M IN PRESS; O'Malley KG, 2008, P ROY SOC B-BIOL SCI, V275, P2813, DOI 10.1098/rspb.2008.0524; O'Malley KG, 2007, MOL ECOL, V16, P4930, DOI 10.1111/j.1365-294X.2007.03565.x; O'Malley KG, 2010, P ROY SOC B-BIOL SCI, V277, P3703, DOI 10.1098/rspb.2010.0762; O'Malley KG, 2010, J HERED, V101, P628, DOI 10.1093/jhered/esq063; O'Malley KG, 2003, J HERED, V94, P273, DOI 10.1093/jhered/esg067; PalsbOll P. J., 2006, TRENDS ECOL EVOL, V21, P11; Pando MP, 2002, BIOESSAYS, V24, P419, DOI 10.1002/bies.10091; Quinn TP, 1996, ECOLOGY, V77, P1151, DOI 10.2307/2265584; RAYMOND M, 1995, J HERED, V86, P248, DOI 10.1093/oxfordjournals.jhered.a111573; Reppert SM, 2002, NATURE, V418, P935, DOI 10.1038/nature00965; Robards MD, 2002, T AM FISH SOC, V131, P523, DOI 10.1577/1548-8659(2002)131<0523:TMTOAS>2.0.CO;2; Rodriguez MF, 2004, AQUACULTURE, V241, P93, DOI 10.1016/j.aquaculture.2004.08.003; Siepka SM, 2007, CELL, V129, P1011, DOI 10.1016/j.cell.2007.04.030; Siwach P, 2006, MOL BIOL EVOL, V23, P1357, DOI 10.1093/molbev/msk022; Small MP, 1998, MOL ECOL, V7, P141, DOI 10.1046/j.1365-294x.1998.00324.x; Spies IB, 2005, MOL ECOL NOTES, V5, P278, DOI 10.1111/j.1471-8286.20.05.00900.x; Sumova A, 2004, PHYSIOL RES, V53, pS167; Takahashi JS, 2008, NAT REV GENET, V9, P764, DOI 10.1038/nrg2430; Taylor BL, 1999, MOL ECOL, V8, pS11, DOI 10.1046/j.1365-294X.1999.00797.x; Waples R.S., 1991, MAR FISH REV, V53, P11; Waples RS, 2004, EVOLUTION, V58, P386, DOI 10.1111/j.0014-3820.2004.tb01654.x; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Whitmore D, 2000, NATURE, V404, P87; Williamson KS, 2002, MOL ECOL NOTES, V2, P17, DOI 10.1046/j.1471-8286.2002.00129.x; Yasuo S, 2003, ENDOCRINOLOGY, V144, P3742, DOI 10.1210/en.2003-0435; Yoshiyama RM, 2001, CALIFORNIA DEPT FISH, V179, P71 58 18 18 0 42 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1752-4571 EVOL APPL Evol. Appl. DEC 2013 6 8 1184 1194 10.1111/eva.12095 11 Evolutionary Biology Evolutionary Biology 264SL WOS:000327900700006 24478800 DOAJ Gold, Green Published 2019-02-21 J Davila-Flores, AM; DeWitt, TJ; Bernal, JS Davila-Flores, Amanda M.; DeWitt, Thomas J.; Bernal, Julio S. Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding OECOLOGIA English Article Zea mays mays; Zea mays parviglumis; Zea diploperennis; Teosinte; Dalbulus maidis FURCIFERA HORVATH HOMOPTERA; GENUS DALBULUS HOMOPTERA; GENETIC DIVERSITY; POPULATION-STRUCTURE; MAIZE DOMESTICATION; ZEA-DIPLOPERENNIS; WHITEBACKED PLANTHOPPER; LEAFHOPPER HOMOPTERA; CORN LEAFHOPPER; WILD RELATIVES Plant defenses against herbivores are predicted to change as plant lineages diversify, and with domestication and subsequent selection and breeding in the case of crop plants. We addressed whether defense against a specialist herbivore declined coincidently with life history evolution, domestication, and breeding within the grass genus Zea (Poaceae). For this, we assessed performance of corn leafhopper (Dalbulus maidis) following colonization of one of four Zea species containing three successive transitions: the evolutionary transition from perennial to annual life cycle, the agricultural transition from wild annual grass to primitive crop cultivar, and the agronomic transition from primitive to modern crop cultivar. Performance of corn leafhopper was measured through seven variables relevant to development speed, survivorship, fecundity, and body size. The plants included in our study were perennial teosinte (Zea diploperennis), Balsas teosinte (Zea mays parviglumis), a landrace maize (Zea mays mays), and a hybrid maize. Perennial teosinte is a perennial, iteroparous species, and is basal in Zea; Balsas teosinte is an annual species, and the progenitor of maize; the landrace maize is a primitive, genetically diverse cultivar, and is ancestral to the hybrid maize; and, the hybrid maize is a highly inbred, modern cultivar. Performance of corn leafhopper was poorest on perennial teosinte, intermediate on Balsas teosinte and landrace maize, and best on hybrid maize, consistent with our expectation of declining defense from perennial teosinte to hybrid maize. Overall, our results indicated that corn leafhopper performance increased most with the agronomic transition, followed by the life history transition, and least with the domestication transition. [Davila-Flores, Amanda M.; Bernal, Julio S.] Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA; [DeWitt, Thomas J.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA Bernal, JS (reprint author), Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA. juliobernal@tamu.edu National Science Foundation [NSF-DEB 0818240]; Hatch funds [TEX07234]; CONACyT-TAMU We are grateful to Dr Ramon Cuevas and Francisco Santana Michel (both at Universidad de Guadalajara, Autlan campus, Mexico) for facilitating collection of perennial and Balsas teosinte seed, respectively, Dr Mark Millard (USDA NPGS, Ames, IA) for providing Tuxpeno landrace seed, and Dr Raul Medina (Texas A&M University, College Station) for critical review of an early version of the manuscript. This project was supported in part by National Science Foundation (NSF-DEB 0818240) and Hatch (TEX07234) funds to J. S. B, and CONACyT-TAMU Visiting Student Researcher Program funds to A. M. D.-F. Abdi H, 2010, ENCY RES DESIGN, P243; Agrawal AA, 2008, P NATL ACAD SCI USA, V105, P10057, DOI 10.1073/pnas.0802368105; Agrawal AA, 2009, P NATL ACAD SCI USA, V106, P18067, DOI 10.1073/pnas.0904862106; Agrawal AA, 2009, EVOLUTION, V63, P663, DOI 10.1111/j.1558-5646.2008.00573.x; Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006; BACKUS EA, 1988, J ECON ENTOMOL, V81, P1819, DOI 10.1093/jee/81.6.1819; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Bellota-Villafuerte E, 2012, THESIS TEXAS A M U C, P54; Benrey B, 1998, BIOL CONTROL, V11, P130, DOI 10.1006/bcon.1997.0590; BENZ BF, 1990, MAYDICA, V35, P85; BUCKLER ES, 2005, DARWINS HARVEST, P67; Chen YH, 2005, ECOL ENTOMOL, V30, P673, DOI 10.1111/j.0307-6946.2005.00737.x; Chen YH, 2007, J APPL ECOL, V44, P238, DOI 10.1111/j.1365-2664.2006.01255.x; Davila-Flores AM, 2012, THESIS TEXAS A M U C, P54; Degen T, 2004, PLANT PHYSIOL, V135, P1928, DOI 10.1104/pp.104.039891; Dietrich CH, 1998, ANN ENTOMOL SOC AM, V91, P590, DOI 10.1093/aesa/91.5.590; Doebley JF, 2004, ANNU REV GENET, V38, P7; Feeny P. P., 1976, BIOCH INTERACTION PL; FRITZSCHEHOBALL.ME, 2002, J CHEM ECOL, V28, P951; Fukunaga K, 2005, GENETICS, V169, P2241, DOI 10.1534/genetics.104.031393; Gols R, 2008, ECOLOGY, V89, P1616, DOI 10.1890/07-0873.1; Gouinguene S, 2001, CHEMOECOLOGY, V11, P9, DOI 10.1007/PL00001832; Heerwaarden J., 2011, P NATL ACAD SCI USA, V108, P1088; HERMS DA, 1992, Q REV BIOL, V67, P283, DOI 10.1086/417659; Hilker M, 2011, PHYTOCHEMISTRY, V72, P1612, DOI 10.1016/j.phytochem.2011.02.018; Hufford KM, 2007, PLANT PHYSIOL, V144, P1642, DOI 10.1104/pp.107.098988; Hufford MB, 2012, NAT GENET, V44, P808, DOI 10.1038/ng.2309; Jindal V, 2011, PHYTOPARASITICA, V39, P129, DOI 10.1007/s12600-011-0144-x; Lankau RA, 2007, NEW PHYTOL, V175, P176, DOI 10.1111/j.1469-8137.2007.02090.x; LARSEN KJ, 1992, ENVIRON ENTOMOL, V21, P566, DOI 10.1093/ee/21.3.566; Magagula C. N., 2012, Journal of Biology, Agriculture and Healthcare, V2, P67; Masarovicova E, 2000, MAYDICA, V45, P13; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; Medina RF, 2012, ENTOMOL EXP APPL, V142, P223, DOI 10.1111/j.1570-7458.2012.01220.x; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; Mondragon-Pichardo J, 2005, MAYDICA, V50, P123; Moya-Raygoza G, 2007, ANN APP BIOL, V151, P73; MUTIKAINEN P, 1995, OECOLOGIA, V104, P487, DOI 10.1007/BF00341346; NAULT LR, 1990, MAYDICA, V35, P165; NAULT LR, 1980, ANN ENTOMOL SOC AM, V73, P349, DOI 10.1093/aesa/73.4.349; NAULT LR, 1985, ECOL ENTOMOL, V10, P57, DOI 10.1111/j.1365-2311.1985.tb00534.x; Numerical dynamics, 2013, MULT EXC ADD INS PCA; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; PITRE H N, 1970, Florida Entomologist, V53, P33, DOI 10.2307/3493113; Power AG, 1988, ENTOMOL EXP APPL, V49, P210; Rasmann S, 2005, NATURE, V434, P732, DOI 10.1038/nature03451; Rodriguez-Saona C, 2011, J EXP BOT, V62, P2633, DOI 10.1093/jxb/erq466; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; ROSENTHAL JP, 1995, OECOLOGIA, V102, P146, DOI 10.1007/BF00333245; Sanchez-Gonzalez JJ, 2011, MANUSCRITO; Sanchez-Gonzalez JJ, 1998, 2 CTR INV REG PAC CT, V2; Sanchez-Velasquez LR, 2001, REV BIOL TROP, V49, P249; Seino Y, 1996, APPL ENTOMOL ZOOL, V31, P467, DOI 10.1303/aez.31.467; Summers CG, 2004, ENVIRON ENTOMOL, V33, P1644, DOI 10.1603/0046-225X-33.6.1644; Suzuki Y, 1996, APPL ENTOMOL ZOOL, V31, P111, DOI 10.1303/aez.31.111; Szczepaniec A, 2012, ENTOMOLOGIA EXPT APP, V146, P242; Takahashi CG, 2012, ENTOMOL EXP APPL, V145, P191, DOI 10.1111/eea.12004; Tamiru A, 2011, ECOL LETT, V14, P1075, DOI 10.1111/j.1461-0248.2011.01674.x; Tian F, 2009, P NATL ACAD SCI USA, V106, P9979, DOI 10.1073/pnas.0901122106; TRIPLEHORN BW, 1985, ANN ENTOMOL SOC AM, V78, P291, DOI 10.1093/aesa/78.3.291; TRIPLEHORN BW, 1990, ANN ENTOMOL SOC AM, V83, P694, DOI 10.1093/aesa/83.4.694; Vigouroux Y, 2005, GENETICS, V169, P1617, DOI 10.1534/genetics.104.032086; Vigouroux Y, 2008, AM J BOT, V95, P1240, DOI 10.3732/ajb.0800097; Wang XG, 2009, BASIC APPL ECOL, V10, P216, DOI 10.1016/j.baae.2008.06.003; Wen WW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0032626; Whitt SR, 2002, P NATL ACAD SCI USA, V99, P12959, DOI 10.1073/pnas.202476999 66 25 25 0 40 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia DEC 2013 173 4 1425 1437 10.1007/s00442-013-2728-2 13 Ecology Environmental Sciences & Ecology 268ZR WOS:000328210000024 23868032 2019-02-21 J Portillo, MC; Leff, JW; Lauber, CL; Fierer, N Portillo, Maria C.; Leff, Jonathan W.; Lauber, Christian L.; Fierer, Noah Cell Size Distributions of Soil Bacterial and Archaeal Taxa APPLIED AND ENVIRONMENTAL MICROBIOLOGY English Article DENSITY GRADIENT CENTRIFUGATION; MICROBIAL COMMUNITIES; FLOW-CYTOMETRY; CULTIVATION; TAXONOMY; ULTRAMICROBACTERIA; ACTINOBACTERIA; CLASSIFICATION; CULTURABILITY; EXTRACTION Cell size is a key ecological trait of soil microorganisms that determines a wide range of life history attributes, including the efficiency of nutrient acquisition. However, because of the methodological issues associated with determining cell sizes in situ, we have a limited understanding of how cell abundances vary across cell size fractions and whether certain microbial taxa have consistently smaller cells than other taxa. In this study, we extracted cells from three distinct soils and fractionated them into seven size ranges (5 mu m to 0.2 mu m) by filtration. Cell abundances in each size fraction were determined by direct microscopy, with the taxonomic composition of each size fraction determined by high-throughput sequencing of the 16S rRNA gene. Most of the cells were smaller than cells typically grown in culture, with 59 to 67% of cells <1.2 mu m in diameter. Furthermore, each size fraction harbored distinct bacterial and archaeal communities in each of the three soils, and many of the taxa exhibited distinct size distribution patterns, with the smaller size fractions having higher relative abundances of taxa that are rare or poorly characterized (including Acidobacteria, Gemmatimonadetes, Crenarchaeota, Verrucomicrobia, and Elusimicrobia). In general, there was a direct relationship between average cell size and culturability, with those soil taxa that are poorly represented in culture collections tending to be smaller. Size fractionation not only provides important insight into the life history strategies of soil microbial taxa but also is a useful tool to enable more focused investigations into those taxa that remain poorly characterized. [Portillo, Maria C.; Leff, Jonathan W.; Lauber, Christian L.; Fierer, Noah] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA; [Leff, Jonathan W.; Fierer, Noah] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA Fierer, N (reprint author), Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. noah.fierer@colorado.edu Portillo, Maria Carmen/N-3257-2014 Portillo, Maria Carmen/0000-0002-4576-0244; FIERER, NOAH/0000-0002-6432-4261 Fulbright Program; Spanish Ministry of Education through the National Program of Mobility and Human Resources from the National Plan I-D+I; National Science Foundation [DEB-0953331]; U.S. Department of Agriculture M.C.P. received funding for this work from both the Fulbright Program and the Spanish Ministry of Education through the National Program of Mobility and Human Resources from the National Plan I-D+I 2008-2011. N.F., C.L.L., and J.W.L. were supported by grants from the National Science Foundation (DEB-0953331) and the U.S. Department of Agriculture. AKERLUND T, 1995, J BACTERIOL, V177, P6791, DOI 10.1128/jb.177.23.6791-6797.1995; AMANN RI, 1995, MICROBIOL REV, V59, P143; BAATH E, 1994, MICROBIAL ECOL, V27, P267, DOI 10.1007/BF00182410; BAE HC, 1972, APPL MICROBIOL, V23, P637; BAKKEN LR, 1987, MICROBIAL ECOL, V13, P103, DOI 10.1007/BF02011247; Bates ST, 2011, ISME J, V5, P908, DOI 10.1038/ismej.2010.171; Burmolle M, 2003, MICROBIAL ECOL, V45, P226, DOI 10.1007/s00248-002-2028-6; Caporaso JG, 2012, ISME J, V6, P1621, DOI 10.1038/ismej.2012.8; Caporaso JG, 2010, NAT METHODS, V7, P335, DOI 10.1038/nmeth.f.303; Caporaso JG, 2010, BIOINFORMATICS, V26, P266, DOI 10.1093/bioinformatics/btp636; Christensen H, 1999, APPL ENVIRON MICROB, V65, P1753; Clarke KR, 2006, PRIMER; Cole JR, 2003, NUCLEIC ACIDS RES, V31, P442, DOI 10.1093/nar/gkg039; Courtois S, 2001, ENVIRON MICROBIOL, V3, P431, DOI 10.1046/j.1462-2920.2001.00208.x; Edgar RC, 2010, BIOINFORMATICS, V26, P2460, DOI 10.1093/bioinformatics/btq461; Eilers H, 2000, APPL ENVIRON MICROB, V66, P3044, DOI 10.1128/AEM.66.7.3044-3051.2000; Fierer N, 2007, ECOLOGY, V88, P1354, DOI 10.1890/05-1839; Fierer N, 2012, P NATL ACAD SCI USA, V109, P21390, DOI 10.1073/pnas.1215210110; Hahn MW, 2004, RES MICROBIOL, V155, P688, DOI 10.1016/j.resmic.2004.05.003; Hahn MW, 2003, APPL ENVIRON MICROB, V69, P1442, DOI 10.1128/AEM.69.3.1442-1451.2003; Holmsgaard PN, 2011, SOIL BIOL BIOCHEM, V43, P2152, DOI 10.1016/j.soilbio.2011.06.019; Iizuka T, 1998, J GEN APPL MICROBIOL, V44, P75, DOI 10.2323/jgam.44.75; Janssen PH, 2002, APPL ENVIRON MICROB, V68, P2391, DOI 10.1128/AEM.68.5.2391-2396.2002; Joseph SJ, 2003, APPL ENVIRON MICROB, V69, P7210, DOI 10.1128/AEM.69.12.7210-7215.2003; Laflamme C, 2005, ARCH MICROBIOL, V183, P107, DOI 10.1007/s00203-004-0750-9; Lauber CL, 2009, APPL ENVIRON MICROB, V75, P5111, DOI 10.1128/AEM.00335-09; Lindahl V, 1997, SOIL BIOL BIOCHEM, V29, P1565, DOI 10.1016/S0038-0717(97)00101-6; LINDAHL V, 1995, FEMS MICROBIOL ECOL, V16, P135, DOI 10.1111/j.1574-6941.1995.tb00277.x; Lozupone C, 2005, APPL ENVIRON MICROB, V71, P8228, DOI 10.1128/AEM.71.12.8228-8235.2005; Maron PA, 2006, EUR J SOIL BIOL, V42, P65, DOI 10.1016/j.ejsobi.2005.08.003; Mayr C, 1999, J MICROBIOL METH, V36, P29, DOI 10.1016/S0167-7012(99)00008-1; McDonald D, 2012, ISME J, V6, P610, DOI 10.1038/ismej.2011.139; OLSEN RA, 1987, MICROB ECOL, V13, P59, DOI 10.1007/BF02014963; Ronn R, 2002, APPL ENVIRON MICROB, V68, P6094, DOI 10.1128/AEM.68.12.6094-6105.2002; Rutz BA, 2004, SOIL BIOL BIOCHEM, V36, P825, DOI 10.1016/j.soilbio.2004.01.012; Schulz HN, 2001, ANNU REV MICROBIOL, V55, P105, DOI 10.1146/annurev.micro.55.1.105; Sessitsch A, 2001, APPL ENVIRON MICROB, V67, P4215, DOI 10.1128/AEM.67.9.4215-4224.2001; Stevenson BS, 2004, APPL ENVIRON MICROB, V70, P4748, DOI 10.1128/AEM.70.8.4748-4755.2004; Tabei Y, 2010, J GEN APPL MICROBIOL, V56, P129, DOI 10.2323/jgam.56.129; TORRELLA F, 1981, APPL ENVIRON MICROB, V41, P518; Vestergard M, 2011, SOIL BIOL BIOCHEM, V43, P1379, DOI 10.1016/j.soilbio.2011.02.008; Wang Q, 2007, APPL ENVIRON MICROB, V73, P5261, DOI 10.1128/AEM.00062-07; Young KD, 2006, MICROBIOL MOL BIOL R, V70, P660, DOI 10.1128/MMBR.00001-06 43 28 30 2 58 AMER SOC MICROBIOLOGY WASHINGTON 1752 N ST NW, WASHINGTON, DC 20036-2904 USA 0099-2240 1098-5336 APPL ENVIRON MICROB Appl. Environ. Microbiol. DEC 2013 79 24 7610 7617 10.1128/AEM.02710-13 8 Biotechnology & Applied Microbiology; Microbiology Biotechnology & Applied Microbiology; Microbiology 263NF WOS:000327814600008 24077710 Green Published, Bronze 2019-02-21 J Haley, KL; Rosenberg, DK Haley, Katherin L.; Rosenberg, Daniel K. INFLUENCE OF FOOD LIMITATION ON REPRODUCTIVE PERFORMANCE OF BURROWING OWLS JOURNAL OF RAPTOR RESEARCH English Article Burrowing Owl; Athene cunicularia; asynchronous hatching brood reduction; food limitation; nest attendance; population ecology; reproductive performance KESTRELS FALCO-SPARVERIUS; HATCHING ASYNCHRONY; ATHENE-CUNICULARIA; CLUTCH SIZE; SUPPLEMENTAL FOOD; NORTHERN GOSHAWKS; BROOD REDUCTION; IMPERIAL-VALLEY; LAYING DATE; URAL OWLS Reproductive strategies of birds are shaped by patterns of food supply, yet empirical evidence of the consequences and mechanisms of food limitation on reproductive performance is inconsistent, probably due to variable responses from species of differing life-history strategies. We tested the hypothesis that food supplementation would increase reproductive rates of a nonmigratory population of Burrowing Owls (Athene cunicularia) via direct and indirect pathways. We predicted increasing food availability would directly increase growth and survival of the youngest nestlings and would indirectly decrease predation rates of eggs and nestlings by increasing nest attendance. We experimentally supplemented food from clutch completion through brood-rearing during two breeding seasons (April July 1999 and 2000) in the agricultural matrix of the Imperial Valley, in southeastern California. In both years, hatching success (hatchlings/egg laid) was similar between supplemented and non-supplemented nests, but the proportion that survived to 28 d was higher in food-supplemented nests. Growth rates and survival rates of last-hatched young were lower in non-supplemented than supplemented nests in only one year of the study. A greater proportion of hatchling deaths were attributed to starvation in non-supplemented nests. Nest attendance was greater in supplemented nests although low predation for supplemented and non-supplemented nests resulted in no effects on reproductive success. Our results were consistent with the brood-reduction hypothesis that predicts that food supplementation would result in a greater number of fledglings by increasing survival of the youngest nestlings through increased growth rates when hatching asynchrony exists and food is limited. [Haley, Katherin L.; Rosenberg, Daniel K.] Oregon State Univ, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA; [Rosenberg, Daniel K.] Oregon Wildlife Inst, Corvallis, OR 97339 USA Haley, KL (reprint author), Florida Fish & Wildlife Conservat Commiss, 620 South Meridian St, Tallahassee, FL 32399 USA. dan@oregonwildlife.org U.S. Fish and Wildlife Service (Non-game Bird Program); Southern Gas; Cal Energy; Thomas G. Scott Publication Fund We thank J. Gervais, L. Houck, P. Kennedy, D. Roby, N. Ronan, T. Wellicome, and M. York for helpful discussion and comments on the manuscript, K. Hughes, R. Balzer, C. Faustino, P. Phelps, and J. Rosier for their dedicated field assistance, and the staff of the Sonny Bono Salton Sea National Wildlife Refuge for logistic support. We are grateful to the U.S. Fish and Wildlife Service (Non-game Bird Program), Southern Gas, and Cal Energy for financial support. Publication of this paper was supported, in part, by the Thomas G. Scott Publication Fund. This study was conducted as a part of the Burrowing Owl Research Program, including The Institute for Bird Populations, Oregon Wildlife Institute, Oregon State University, and San Jose State University. Arnold TW, 2011, AUK, V128, P737, DOI 10.1525/auk.2011.11050; BOTELHO E.S., 1996, THESIS NEW MEXICO ST; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Brommer JE, 2004, OECOLOGIA, V139, P354, DOI 10.1007/s00442-004-1528-0; Bukacinski D, 1998, IBIS, V140, P422, DOI 10.1111/j.1474-919X.1998.tb04603.x; Burnham KP, 2002, MODEL SELECTION INFE; Catlin DH, 2008, AM MIDL NAT, V159, P1, DOI 10.1674/0003-0031(2008)159[1:BDANBO]2.0.CO;2; Chalfoun AD, 2007, ANIM BEHAV, V73, P579, DOI 10.1016/j.anbehav.2006.09.010; Conway M, 2012, J ETHOL, V30, P395, DOI 10.1007/s10164-012-0337-x; COULOMBE HN, 1971, CONDOR, V73, P162, DOI 10.2307/1365837; Dawson RD, 2002, BEHAV ECOL SOCIOBIOL, V52, P43, DOI 10.1007/s00265-002-0486-y; Dewey SR, 2001, AUK, V118, P352, DOI 10.1642/0004-8038(2001)118[0352:EOSFOP]2.0.CO;2; Fisher RJ, 2004, CAN J ZOOL, V82, P707, DOI 10.1139/Z04-035; GARCIA PFJ, 1993, CAN J ZOOL, V71, P2352, DOI 10.1139/z93-330; Gervais JA, 2006, ECOL APPL, V16, P666, DOI 10.1890/1051-0761(2006)016[0666:IEOPAP]2.0.CO;2; Gervais JA, 2003, ECOL APPL, V13, P1250, DOI 10.1890/02-5202; Gervais JA, 1999, WILSON BULL, V111, P569; HALEY KL, 2002, THESIS OREGON STATE; Hipkiss T, 2002, J ANIM ECOL, V71, P693, DOI 10.1046/j.1365-2656.2002.00635.x; Kontiainen P, 2010, BEHAV ECOL, V21, P722, DOI 10.1093/beheco/arq045; Landry R. E., 1979, THESIS CALIFORNIA ST; Martin T.E., 1992, Current Ornithology, V9, P163; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MILLSAP BA, 1990, WILSON BULL, V102, P313; MOCK DW, 1994, J AVIAN BIOL, V25, P3, DOI 10.2307/3677288; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; Newton I, 1998, POPULATION LIMITATIO; OLENICK B.E., 1990, THESIS IDAHO STATE U; PARKER GA, 1989, AM NAT, V133, P846, DOI 10.1086/284956; Poulin R, 2011, BIRDS N AM ONLINE; Poulin RG, 2001, J RAPTOR RES, V35, P288; RONAN NA, 2002, THESIS OREGON STATE; Rosenberg Daniel K., 2004, Studies in Avian Biology, V27, P120; Simons L.S., 1988, THESIS ARIZONA STATE; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; SKALSKI J.R., 1992, TECHNIQUES WILDLIFE; Soler M, 1996, IBIS, V138, P377, DOI 10.1111/j.1474-919X.1996.tb08054.x; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; Todd LD, 2002, CAN FIELD NAT, V116, P307; TRULIO LA, 1995, J FIELD ORNITHOL, V66, P99; Vergauwen J, 2012, GEN COMP ENDOCR, V176, P112, DOI 10.1016/j.ygcen.2012.01.003; WALSBERG GE, 1983, AVIAN BIOL, V7, P161; Ward JM, 1996, AUK, V113, P200; WELLICOME T. I., 1997, BURROWING OWL ITS BI, P68; Wellicome TI, 2005, OECOLOGIA, V142, P326, DOI 10.1007/s00442-004-1727-8; Wellicome TI, 2000, THESIS U ALBERTA EDM; Welty JL, 2012, CAN J ZOOL, V90, P182, DOI 10.1139/Z11-125; White GC, 1999, BIRD STUDY, V46, P120; WIEBE KL, 1995, BEHAV ECOL SOCIOBIOL, V36, P49; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.2307/2265943; WIJNANDTS H, 1984, ARDEA, V72, P1; Woodburn RJW, 1997, J ZOOL, V243, P789, DOI 10.1111/j.1469-7998.1997.tb01976.x; YOMTOV Y, 1974, J ANIM ECOL, V43, P479, DOI 10.2307/3378; York MM, 2002, WEST N AM NATURALIST, V62, P280 54 7 7 6 44 RAPTOR RESEARCH FOUNDATION INC HASTINGS 14377 117TH STREET SOUTH, HASTINGS, MN 55033 USA 0892-1016 2162-4569 J RAPTOR RES J. Raptor Res. DEC 2013 47 4 365 376 10.3356/JRR-12-00022.1 12 Ornithology Zoology 264VB WOS:000327908000003 2019-02-21 J Jorgensen, JC; McClure, MM; Sheer, MB; Munn, NL Jorgensen, Jeffrey C.; McClure, Michelle M.; Sheer, Mindi B.; Munn, Nancy L. Combined Effects of Climate Change and Bank Stabilization on Shallow Water Habitats of Chinook Salmon CONSERVATION BIOLOGY English Article chinook salmon; endangered species act; mainstem; riprap; riverbank stabilization; section 7 consultation; Willamette river COLUMBIA RIVER; WILLAMETTE RIVER; BIODIVERSITY; ECOSYSTEMS; IMPACTS; REGIMES; RIPRAP; OREGON; FISH Significant challenges remain in the ability to estimate habitat change under the combined effects of natural variability, climate change, and human activity. We examined anticipated effects on shallow water over low-sloped beaches to these combined effects in the lower Willamette River, Oregon, an area highly altered by development. A proposal to stabilize some shoreline with large rocks (riprap) would alter shallow water areas, an important habitat for threatened Chinook salmon (Oncorhynchus tshawytscha), and would be subject to U.S. Endangered Species Act-mandated oversight. In the mainstem, subyearling Chinook salmon appear to preferentially occupy these areas, which fluctuate with river stages. We estimated effects with a geospatial model and projections of future river flows. Recent (1999-2009) median river stages during peak subyearling occupancy (April-June) maximized beach shallow water area in the lower mainstem. Upstream shallow water area was maximized at lower river stages than have occurred recently. Higher river stages in April-June, resulting from increased flows predicted for the 2080s, decreased beach shallow water area 17-32%. On the basis of projected 2080s flows, more than 15% of beach shallow water area was displaced by the riprap. Beach shallow water area lost to riprap represented up to 1.6% of the total from the mouth to 12.9 km upstream. Reductions in shallow water area could restrict salmon feeding, resting, and refuge from predators and potentially reduce opportunities for the expression of the full range of life-history strategies. Although climate change analyses provided useful information, detailed analyses are prohibitive at the project scale for the multitude of small projects reviewed annually. The benefits of our approach to resource managers include a wider geographic context for reviewing similar small projects in concert with climate change, an approach to analyze cumulative effects of similar actions, and estimation of the actions' long-term effects. [Jorgensen, Jeffrey C.; McClure, Michelle M.; Sheer, Mindi B.] NOAA Fisheries, NW Fisheries Sci Ctr, Seattle, WA 98112 USA; [Munn, Nancy L.] NOAA Fisheries, Habitat Conservat Div, Portland, OR 97232 USA Jorgensen, JC (reprint author), NOAA Fisheries, NW Fisheries Sci Ctr, 2725 Montlake Blvd E, Seattle, WA 98112 USA. jeff.jorgensen@noaa.gov McClure, Michelle/O-7853-2015 McClure, Michelle/0000-0003-4791-8719 Adam JC, 2009, HYDROL PROCESS, V23, P962, DOI 10.1002/hyp.7201; Bottom D. L., 2005, NMFSNWFSC68 US DEP C; Bunn SE, 2002, ENVIRON MANAGE, V30, P492, DOI 10.1007/s00267-002-2737-0; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Chang H, 2010, OREGON CLIMATE ASSES; Crozier L, 2006, J ANIM ECOL, V75, P1100, DOI 10.1111/j.1365-2656.2006.01130.x; DAUBLE DD, 1989, FISH B-NOAA, V87, P775; Fischenich J. C., 2003, TR034 ERDCEL US ARM; Friesen TA, 2007, NORTHWEST SCI, V81, P173, DOI 10.3955/0029-344X-81.3.173; Garland RD, 2002, N AM J FISH MANAGE, V22, P1283, DOI 10.1577/1548-8675(2002)022<1283:COSFCS>2.0.CO;2; Greene C. M., 2009, BIOL LETT, V6, P382; Gregory S., 2002, WILLAMETTE RIVER BAS, P92; Hamlet A.F., 2010, FINAL PROJECT REPORT; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; HUGHES RM, 1987, T AM FISH SOC, V116, P196, DOI 10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2; Kammerer J.C., 1990, 87242 US GEOL SURV; Kukulka T, 2003, J GEOPHYS RES-OCEANS, V108, DOI 10.1029/2003JC001829; Lewis CA, 1996, CAN J FISH AQUAT SCI, V53, P440, DOI 10.1139/f96-021; Mantua N, 2010, CLIMATIC CHANGE, V102, P187, DOI 10.1007/s10584-010-9845-2; Mattson C.R., 1962, EARLY LIFE HIST WILL; Mcclure MM, 2013, CONSERV BIOL, V27, P1222, DOI 10.1111/cobi.12166; MCELHANY P, 2000, NMFSNWFSC42 US DEP C; Minns CK, 1996, CAN J FISH AQUAT SCI, V53, P403, DOI 10.1139/f95-262; Montgomery D. R., 1998, RIVER ECOLOGY MANAGE, P13, DOI 10.1007/978-1-4612-1652-0_2; Mote P. W., 2011, EOS T AM GEOPHYS UN, V92, P257, DOI [10.1029/2011EO310001, DOI 10.1029/2011EO310001]; Mote PW, 2010, CLIMATIC CHANGE, V102, P29, DOI 10.1007/s10584-010-9848-z; Myers J., 2006, NMFSNWFSC73 US DEP C; Naiman R, 1998, RIVER ECOLOGY MANAGE; NMFS, 2005, FED REGISTER, V70, P37160; ODFW (Oregon Department of Fish and Wildlife), 2011, UPP WILL RIV CONS RE; Poff NL, 2007, P NATL ACAD SCI USA, V104, P5732, DOI 10.1073/pnas.0609812104; Poff NL, 1997, BIOSCIENCE, V47, P769, DOI 10.2307/1313099; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Schmetterling DA, 2001, FISHERIES, V26, P6, DOI 10.1577/1548-8446(2001)026<0006:EORBRO>2.0.CO;2; Seney EE, 2013, CONSERV BIOL, V27, P1138, DOI 10.1111/cobi.12167; Snover AK, 2013, CONSERV BIOL, V27, P1147, DOI 10.1111/cobi.12163; Tabor RA, 2011, N AM J FISH MANAGE, V31, P700, DOI 10.1080/02755947.2011.611424; Teel DJ, 2009, T AM FISH SOC, V138, P211, DOI 10.1577/T08-084.1; Tiffan KF, 2002, N AM J FISH MANAGE, V22, P713, DOI 10.1577/1548-8675(2002)022<0713:QFDCIS>2.0.CO;2; USACE (U.S. Army Corps of Engineers), 2004, PORTL VANC HARB INF; Waples RS, 2009, ECOL SOC, V14; Ward David L., 1994, North American Journal of Fisheries Management, V14, P362, DOI 10.1577/1548-8675(1994)014<0362:IOWDOM>2.3.CO;2; Western D, 2001, P NATL ACAD SCI USA, V98, P5458, DOI 10.1073/pnas.101093598; Willamette/Lower Columbia Technical Recovery Team (WLCTRT), 2006, REV VIAB CRIT SALM S 44 3 3 4 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0888-8892 1523-1739 CONSERV BIOL Conserv. Biol. DEC 2013 27 6 1201 1211 10.1111/cobi.12168 11 Biodiversity Conservation; Ecology; Environmental Sciences Biodiversity & Conservation; Environmental Sciences & Ecology 259ZH WOS:000327564300009 24299086 2019-02-21 J Hendry, AP; Kaeuffer, R; Crispo, E; Peichel, CL; Bolnick, DI Hendry, Andrew P.; Kaeuffer, Renaud; Crispo, Erika; Peichel, Catherine L.; Bolnick, Daniel I. EVOLUTIONARY INFERENCES FROM THE ANALYSIS OF EXCHANGEABILITY EVOLUTION English Article Adaptive radiation; convergent evolution; Gasterosteus aculeatus; ecological speciation; natural selection; parallel evolution GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; GENE FLOW; ADAPTIVE DIVERGENCE; STREAM STICKLEBACK; DARWINS FINCHES; ECOLOGICAL SPECIATION; NATURAL-SELECTION; MIGRATION LOAD; POPULATION-STRUCTURE Evolutionary inferences are usually based on statistical models that compare mean genotypes or phenotypes (or their frequencies) among populations. An alternative is to use the full distribution of genotypes and phenotypes to infer the exchangeability of individuals among populations. We illustrate this approach by using discriminant functions on principal components to classify individuals among paired lake and stream populations of threespine stickleback in each of six independent watersheds. Classification based on neutral and nonneutral microsatellite markers was highest to the population of origin and next highest to populations in the same watershed. These patterns are consistent with the influence of historical contingency (separate colonization of each watershed) and subsequent gene flow (within but not between watersheds). In comparison to this low genetic exchangeability, ecological (diet) and morphological (trophic and armor traits) exchangeability was relatively highparticularly among populations from similar habitats. These patterns reflect the role of natural selection in driving parallel adaptive changes when independent populations colonize similar habitats. Importantly, however, substantial nonparallelism was also evident. Our results show that analyses based on exchangeability can confirm inferences based on statistical analyses of means or frequencies, while also refining insights into the drivers ofand constraints onevolutionary diversification. [Hendry, Andrew P.; Kaeuffer, Renaud] McGill Univ, Redpath Museum, Montreal, PQ H3A 0C4, Canada; [Hendry, Andrew P.; Kaeuffer, Renaud] McGill Univ, Dept Biol, Montreal, PQ H3A 0C4, Canada; [Crispo, Erika] Pace Univ, Dyson Coll Arts & Sci, Dept Biol & Hlth Sci, New York, NY 10038 USA; [Peichel, Catherine L.] Fred Hutchinson Canc Res Ctr, Div Human Biol, Seattle, WA 98109 USA; [Bolnick, Daniel I.] Univ Texas Austin, Howard Hughes Med Inst, Sect Integrat Biol, Austin, TX 78712 USA Hendry, AP (reprint author), McGill Univ, Redpath Museum, 859 Sherbrooke St W, Montreal, PQ H3A 0C4, Canada. andrew.hendry@mcgill.ca Bolnick, Daniel/G-4440-2015 Bolnick, Daniel/0000-0003-3148-6296; Peichel, Catherine/0000-0002-7731-8944 FQRNT; National Institutes of Health [P50 HG002568]; David and Lucille Packard Foundation Fellowship; Howard Hughes Medical Institute; Natural Sciences and Engineering Research Council of Canada Field work was assisted by J.-S. Moore. Morphological measurements were assisted by S. Barrette, C. Macnaughton, and S. Muttalib. Genetic data collection was assisted by members of the Peichel lab. Additional comments and advice were provided by E. Taylor and X. Thibert-Plante. Financial support was provided by an FQRNT postdoctoral fellowship (RK), a National Institutes of Health grant P50 HG002568 (CLP), a David and Lucille Packard Foundation Fellowship (DIB), the Howard Hughes Medical Institute (DIB), and the Natural Sciences and Engineering Research Council of Canada (APH). Arendt J, 2008, TRENDS ECOL EVOL, V23, P26, DOI 10.1016/j.tree.2007.09.011; Berner D, 2008, J EVOLUTION BIOL, V21, P1653, DOI 10.1111/j.1420-9101.2008.01583.x; Berner D, 2009, EVOLUTION, V63, P1740, DOI 10.1111/j.1558-5646.2009.00665.x; Bolnick DI, 2008, BIOL J LINN SOC, V94, P273, DOI 10.1111/j.1095-8312.2008.00978.x; Bolnick DI, 2007, EVOLUTION, V61, P2229, DOI 10.1111/j.1558-5646.2007.00179.x; Bolnick DI, 2011, EVOL ECOL RES, V13, P439; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bolnick DI, 2009, EVOLUTION, V63, P2004, DOI 10.1111/j.1558-5646.2009.00699.x; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; Bond JE, 2008, SYST BIOL, V57, P628, DOI 10.1080/10635150802302443; Cano JM, 2008, BIOL CONSERV, V141, P1055, DOI 10.1016/j.biocon.2008.01.015; Castric V, 2004, MOL ECOL, V13, P1299, DOI 10.1111/j.1365-294X.2004.02129.x; Crandall KA, 2000, TRENDS ECOL EVOL, V15, P290, DOI 10.1016/S0169-5347(00)01876-0; Crispo E, 2008, J EVOLUTION BIOL, V21, P1460, DOI 10.1111/j.1420-9101.2008.01592.x; Crispo E, 2006, MOL ECOL, V15, P49, DOI 10.1111/j.1365-294X.2005.02764.x; Edelaar P, 2008, EVOLUTION, V62, P2462, DOI 10.1111/j.1558-5646.2008.00459.x; Endler J. A., 1986, NATURAL SELECTION WI; Ferrari J, 2006, EVOLUTION, V60, P1574, DOI 10.1554/06-024.1; Funk SM, 2006, CONSERV GENET, V7, P651, DOI 10.1007/s10592-005-9068-7; Futuyma DJ, 2010, EVOLUTION, V64, P1865, DOI 10.1111/j.1558-5646.2010.00960.x; Grant P., 1999, ECOLOGY EVOLUTION DA; GRANT PR, 1994, EVOLUTION, V48, P297, DOI 10.1111/j.1558-5646.1994.tb01313.x; Grant PR, 2004, EVOLUTION, V58, P1588; Hadfield JD, 2010, AM NAT, V175, P116, DOI 10.1086/648604; Hansen MM, 2001, CAN J FISH AQUAT SCI, V58, P1853, DOI 10.1139/cjfas-58-9-1853; Hansen TF, 2006, AM NAT, V168, P168, DOI 10.1086/505768; Hauser L, 2006, MOL ECOL, V15, P3157, DOI 10.1111/j.1365-294X.2006.03017.x; Hendry AP, 2009, CAN J FISH AQUAT SCI, V66, P1383, DOI 10.1139/F09-074; Hendry AP, 2002, EVOLUTION, V56, P1199; Hendry AP, 2004, EVOLUTION, V58, P2319; Hendry AP, 2001, EVOLUTION, V55, P459, DOI 10.1554/0014-3820(2001)055[0459:PMATAD]2.0.CO;2; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; Jombart T, 2010, BMC GENET, V11, DOI 10.1186/1471-2156-11-94; Kaeuffer R, 2012, EVOLUTION, V66, P402, DOI 10.1111/j.1558-5646.2011.01440.x; Kruuk LEB, 2004, PHILOS T ROY SOC B, V359, P873, DOI 10.1098/rstb.2003.1437; Langerhans RB, 2008, INTEGR COMP BIOL, V48, P750, DOI 10.1093/icb/icn092; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; LAVIN PA, 1993, CAN J ZOOL, V71, P11, DOI 10.1139/z93-003; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; Losos JB, 2011, EVOLUTION, V65, P1827, DOI 10.1111/j.1558-5646.2011.01289.x; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Manel S, 2005, TRENDS ECOL EVOL, V20, P136, DOI 10.1016/j.tree.2004.12.004; Matthews B, 2010, ECOLOGY, V91, P1025, DOI 10.1890/09-0235.1; Morjan CL, 2004, MOL ECOL, V13, P1341, DOI 10.1111/j.1365-294X.2004.02164.x; Newsome SD, 2007, FRONT ECOL ENVIRON, V5, P429, DOI 10.1890/060150.1; Nosil P, 2004, EVOLUTION, V58, P102, DOI 10.1111/j.0014-3820.2004.tb01577.x; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Petren K, 2005, MOL ECOL, V14, P2943, DOI 10.1111/j.1365-294X.2005.02632.x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; Pritchard JK, 2000, GENETICS, V155, P945; Quinn TP, 2001, GENETICA, V112, P493, DOI 10.1023/A:1013348024063; Rader RB, 2005, ANIM CONSERV, V8, P239, DOI 10.1017/S1367943005002271; Rasanen K, 2008, ECOL LETT, V11, P624, DOI 10.1111/j.1461-0248.2008.01176.x; Reimchen TE, 2008, BEHAVIOUR, V145, P561, DOI 10.1163/156853908792451449; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Roesti M, 2012, MOL ECOL, V21, P2852, DOI 10.1111/j.1365-294X.2012.05509.x; ROHLF F, 2006, TPSDIG2; ROHLF FJ, 2005, TPSRELW; SCHLUTER D, 1992, AM NAT, V140, P85, DOI 10.1086/285404; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Shine R, 2011, P NATL ACAD SCI USA, V108, P5708, DOI 10.1073/pnas.1018989108; Siwertsson A, 2010, EVOL ECOL RES, V12, P929; Snowberg LK, 2008, AM NAT, V172, P733, DOI 10.1086/591692; Stockman AK, 2007, MOL ECOL, V16, P3374, DOI 10.1111/j.1365-294X.2007.03389.x; Templeton A.R., 1989, P3; Templeton AR, 2001, MOL ECOL, V10, P779, DOI 10.1046/j.1365-294x.2001.01199.x; Thibert-Plante X, 2010, MOL ECOL, V19, P2301, DOI 10.1111/j.1365-294X.2010.04641.x; Vonlanthen P, 2012, NATURE, V482, P357, DOI 10.1038/nature10824; WADE MJ, 1990, EVOLUTION, V44, P1947, DOI 10.1111/j.1558-5646.1990.tb04301.x; Wake DB, 2011, SCIENCE, V331, P1032, DOI 10.1126/science.1188545; Waples RS, 2006, MOL ECOL, V15, P1419, DOI 10.1111/j.1365-294X.2006.02890.x; Yeaman S, 2009, EVOLUTION, V63, P2926, DOI 10.1111/j.1558-5646.2009.00773.x; Zelditch M. L, 2004, GEOMETRIC MORPHOMETR; Zink RM, 2002, AUK, V119, P864, DOI 10.1642/0004-8038(2002)119[0864:ANPOTE]2.0.CO;2 75 18 18 1 39 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution DEC 2013 67 12 3429 3441 10.1111/evo.12160 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 260CK WOS:000327572400005 24299398 Green Accepted 2019-02-21 J Bergstad, OA Bergstad, O. A. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future JOURNAL OF FISH BIOLOGY English Review abundance; benthic; benthopelagic; fishes; life history; recruitment GRENADIER CORYPHAENOIDES-RUPESTRIS; POPULATION GENETIC-STRUCTURE; APHANOPUS-CARBO LOWE; MID-ATLANTIC; ROUNDNOSE GRENADIER; SEA FISHES; ROUGHHEAD GRENADIER; SPECIES COMPOSITION; PORCUPINE SEABIGHT; MIDOCEAN RIDGE This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has only been studied for few deep-water species. A time series of roundnose grenadier Coryphaenoides rupestris recruitment spanning three decades of fisheries-independent data suggests that abundant year classes occur rarely and may influence size structure and abundance even for this long-lived species. Inst Marine Res, N-4817 Flodevigen, His, Norway Bergstad, OA (reprint author), Inst Marine Res, N-4817 Flodevigen, His, Norway. oddaksel@imr.no Bergstad, Odd Aksel/0000-0002-4096-0896 Allain V, 2000, CYBIUM, V24, P7; Allain V, 2001, FISH RES, V51, P165, DOI 10.1016/S0165-7836(01)00243-0; Andriyashev A. P, 1953, NOTES SPECIAL PROBLE, P58; Bailey DM, 2009, P ROY SOC B-BIOL SCI, V276, P1965, DOI 10.1098/rspb.2009.0098; Baker KD, 2009, ENVIRON BIOL FISH, V85, P79, DOI 10.1007/s10641-009-9465-8; BASSON M, 2002, 324 JNCC; Bergmann M., 2005, 40 EUR MAR BIOL S 21; Bergstad OA, 2008, DEEP-SEA RES PT II, V55, P185, DOI 10.1016/j.dsr2.2007.09.005; Bergstad OA, 2008, DEEP-SEA RES PT II, V55, P1, DOI 10.1016/j.dsr2.2007.10.001; BERGSTAD OA, 1990, NETH J SEA RES, V25, P237, DOI 10.1016/0077-7579(90)90025-C; Bergstad OA, 1999, SARSIA, V84, P67, DOI 10.1080/00364827.1999.10420452; BERGSTAD OA, 1990, MAR BIOL, V107, P25, DOI 10.1007/BF01313239; Bergstad OA, 2008, AM FISH S S, V63, P65; Bergstad OA, 2012, DEEP-SEA RES PT I, V61, P74, DOI 10.1016/j.dsr.2011.12.002; Bergstad OA, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031493; Byrkjedal I, 2007, POLAR RES, V26, P135, DOI 10.1111/J.1751-8369.2007.00030.x; Cadrin SX, 2010, ICES J MAR SCI, V67, P1617, DOI 10.1093/icesjms/fsq046; Campbell N, 2011, ICES J MAR SCI, V68, P365, DOI 10.1093/icesjms/fsq070; Chambers CA, 2005, ENVIRON BIOL FISH, V74, P365, DOI 10.1007/s10641-005-2922-0; Clark MR, 2007, SEAMOUNTS ECOLOGY FI, P361; Clarke M, 2003, DANCING TIMES, V93, P31; Clarke MW, 2001, J MAR BIOL ASSOC UK, V81, P1019, DOI 10.1017/S0025315401005008; Coggan RA, 1999, J FISH BIOL, V54, P152, DOI 10.1006/jfbi.1998.0853; Consalvey Mireille, 2010, P123, DOI 10.1002/9781444325508.ch7; Devine JA, 2006, NATURE, V439, P29, DOI 10.1038/439029a; Dolgov AV, 2008, AM FISH S S, V63, P343; Drazen JC, 2012, DEEP-SEA RES PT I, V61, P34, DOI 10.1016/j.dsr.2011.11.002; FAO, 2009, INT GUID MAN DEEP SE; FAO, 2008, 522 FAO; Figueiredo I, 2003, ICES J MAR SCI, V60, P774, DOI 10.1016/S1054-3139(03)00064-X; Fossen I, 2008, DEEP-SEA RES PT II, V55, P203, DOI 10.1016/j.dsr2.2007.09.004; Fossen Inge, 2003, Journal of Northwest Atlantic Fishery Science, V31, P285; Fossen I, 2006, FISH RES, V82, P19, DOI 10.1016/j.fishres.2006.08.023; Godbold JA, 2013, BIOGEOSCIENCES, V10, P529, DOI 10.5194/bg-10-529-2013; Gonzalez-Costas F., 2010, 1032 NAFO; Gordon J. D. M., 2003, Journal of Northwest Atlantic Fishery Science, V31, P137; Gordon J. D. M., 1999, DEV DEEP WATER FISHE; Gordon J. D. M., 2003, FAO FISHERIES P, V3/1, P70; GORDON JDM, 1985, PROG OCEANOGR, V15, P37, DOI 10.1016/0079-6611(85)90037-0; Haedrich R. L., 1990, PROGR OCEANOGRAPHY, V24, P234; HAEDRICH RL, 1988, J NAT HIST, V22, P1325, DOI 10.1080/00222938800770811; Hareide NR, 2001, FISH RES, V51, P297, DOI 10.1016/S0165-7836(01)00253-3; Henriques C, 2002, MAR BIOL, V141, P307, DOI 10.1007/s00227-002-0833-6; ICES, 2013, ZONING; ICES, 2012, REP ADV COMM; ICES, 2009, REP WORKSH REDF STOC; Jakobsdottir KB, 2001, FISH RES, V51, P247, DOI 10.1016/S0165-7836(01)00250-8; Jonsson G., 2006, ISLENSKIR FISKAR; JOrgensen O. A., 1995, DEEP WATER FISHERIES, P235; Jorgensen OA, 2005, CAN J FISH AQUAT SCI, V62, P1833, DOI 10.1139/F05-101; Kelly CJ, 1997, J FISH BIOL, V50, P1; Kendall VJ, 2006, DEEP-SEA RES PT I, V53, P506, DOI 10.1016/j.dsr.2005.12.005; King NJ, 2006, MAR ECOL PROG SER, V319, P263, DOI 10.3354/meps319263; Knutsen H, 2007, CAN J FISH AQUAT SCI, V64, P857, DOI 10.1139/F07-070; Knutsen H, 2012, MAR ECOL PROG SER, V460, P233, DOI 10.3354/meps09728; Knutsen H, 2009, MOL ECOL, V18, P3151, DOI 10.1111/j.1365-294X.2009.04253.x; KOSLOW JA, 1993, PROG OCEANOGR, V31, P321; Kukuev EI, 2004, ARCH FISH MAR RES, V51, P215; Langedal G., 2000, RAPPORT FORSOKSFISKE; Large P. A., 2003, Journal of Northwest Atlantic Fishery Science, V31, P151; Longmore C, 2011, MAR ECOL PROG SER, V435, P209, DOI 10.3354/meps09197; Lorance P, 2008, AM FISH S S, V63, P365; Magnussen E, 2002, MAR ECOL PROG SER, V238, P211, DOI 10.3354/meps238211; Marshall N. B., 1979, DEV DEEP SEA BIOL; Marshall NB, 1971, EXPLORATIONS LIFE FI; Mecklenburg Catherine W., 2011, Marine Biodiversity, V41, P109, DOI 10.1007/s12526-010-0070-z; Menezes GM, 2006, MAR ECOL PROG SER, V324, P241, DOI 10.3354/meps324241; Merrett N. R, 1997, DEEP SEA DEMERSAL FI; Moore J. A., 2003, Journal of Northwest Atlantic Fishery Science, V31, P363; Moore JA, 2003, NORTHEAST NAT, V10, P159, DOI 10.1656/1092-6194(2003)010[0159:AALODF]2.0.CO;2; Morgan M. J., 2003, Journal of Northwest Atlantic Fishery Science, V31, P99; Murua H, 2000, SARSIA, V85, P393, DOI 10.1080/00364827.2000.10414590; Neat F, 2010, DEEP-SEA RES PT I, V57, P434, DOI 10.1016/j.dsr.2009.12.003; Planque B, 2012, ICES J MAR SCI, V69, P547, DOI 10.1093/icesjms/fss014; Priede I. G., 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0061550; PRIEDE IG, 1994, J MAR BIOL ASSOC UK, V74, P481, DOI 10.1017/S0025315400047615; Priede IG, 2011, ICES J MAR SCI, V68, P281, DOI 10.1093/icesjms/fsq045; Priede IG, 2010, MAR ECOL-EVOL PERSP, V31, P247, DOI 10.1111/j.1439-0485.2009.00330.x; Rodriguez-Marin E, 2002, J APPL ICHTHYOL, V18, P70, DOI 10.1046/j.1439-0426.2002.00330.x; Schander C, 2010, MAR BIOL RES, V6, P155, DOI 10.1080/17451000903147450; Shibanov VN, 2008, AM FISH S S, V63, P399; Swan SC, 2001, FISH RES, V51, P177, DOI 10.1016/S0165-7836(01)00244-2; TAMBSLYCHE H, 1987, SARSIA, V72, P101, DOI 10.1080/00364827.1987.10419709; Troyanovsky F. M., 1995, DEEP WATER FISHERIES, P357; Uiblein F, 1996, J FISH BIOL, V49, P75, DOI 10.1111/j.1095-8649.1996.tb06068.x; Vieira AR, 2009, SCI MAR, V73, P33, DOI 10.3989/scimar.2009.73s2033; Vinnichenko VI, 2008, AM FISH S S, V63, P119; WGDEEP, 2001, 2001ACFM23 ICES CM; White TA, 2010, MOL ECOL, V19, P216, DOI 10.1111/j.1365-294X.2009.04446.x; White TA, 2009, MOL ECOL, V18, P2563, DOI 10.1111/j.1365-294X.2009.04218.x; Wienerroither R., 2011, IMR PINRO JOINT REPO, V1; Wienerroither Rupert M., 2011, Marine Biodiversity, V41, P395, DOI 10.1007/s12526-010-0055-y 92 10 10 4 41 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0022-1112 1095-8649 J FISH BIOL J. Fish Biol. DEC 2013 83 6 1489 1507 10.1111/jfb.12208 19 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 262DH WOS:000327713800001 24298948 2019-02-21 J Neuberg, SL; Sng, O Neuberg, Steven L.; Sng, Oliver A LIFE HISTORY THEORY OF SOCIAL PERCEPTION: STEREOTYPING AT THE INTERSECTIONS OF AGE, SEX, ECOLOGY (AND RACE) SOCIAL COGNITION English Article GENDER STEREOTYPES; EVOLUTION; PREJUDICE; ATTITUDES; ENVIRONMENTS; BEHAVIOR; MOTIVES; ROLES; PREFERENCES; PERSPECTIVE The authors present a framework to better account for the social dimensions people use to categorize others and the nuanced stereotypes they hold. Conceiving stereotypes as imperfect but useful tools for managing social threats and opportunities, and incorporating ideas from Life History Theory, the authors propose three dimensions of special significance for social perception-age, sex, and home ecology (characterized as "desperation" versus "hopeful"). People possess stereotypes about others along these dimensions-as intersecting AgeSexEcology stereotypes-because, interactively, these dimensions shape the goals and behavioral strategies of others. The authors hypothesize that AgeSexEcology stereotypes are universal. They further propose that race is an important dimension for categorization in the United States because it provides a cue to ecology, and that AgeSexRace stereotypes in the United States should thus track AgeSexEcology stereotypes. The authors discuss several novel implications of this approach for the literature on social stereotypes and for social perception processes more broadly. [Neuberg, Steven L.; Sng, Oliver] Arizona State Univ, Tempe, AZ 85287 USA Neuberg, SL (reprint author), Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA. steven.neuberg@asu.edu Balcetis E, 2010, PSYCHOL SCI, V21, P147, DOI 10.1177/0956797609356283; Barden J, 2004, J PERS SOC PSYCHOL, V87, P5, DOI 10.1037/0022-3514.87.1.5; Bernstein MJ, 2008, PSYCHOL SCI, V19, P981, DOI 10.1111/j.1467-9280.2008.02187.x; Brewer M. B., 1988, ADV SOCIAL COGNITION, V1, P1, DOI DOI 10.1037/0022-3514.56.1.5; Brewer M. B., 1997, MESSAGE SOCIAL PSYCH, P54; BREWER MB, 1981, J PERS SOC PSYCHOL, V41, P656, DOI 10.1037/0022-3514.41.4.656; Brumbach BH, 2009, HUM NATURE-INT BIOS, V20, P25, DOI 10.1007/s12110-009-9059-3; CAMPBELL DT, 1982, J SOC BIOL STRUCT, V5, P431, DOI 10.1016/S0140-1750(82)92071-1; Chamov E., 1993, LIFE HIST INVARIANTS; Cole ER, 2009, AM PSYCHOL, V64, P170, DOI 10.1037/a0014564; Cottrell CA, 2005, J PERS SOC PSYCHOL, V88, P770, DOI 10.1037/0022-3514.88.5.770; CROWL TA, 1990, SCIENCE, V247, P949, DOI 10.1126/science.247.4945.949; Dasgupta N, 2001, J PERS SOC PSYCHOL, V81, P800, DOI 10.1037//0022-3514.81.5.800; DEVINE PG, 1989, J PERS SOC PSYCHOL, V56, P5, DOI 10.1037/0022-3514.56.5.680; Dunkel C., 2010, J SOCIAL EVOLUTIONAR, V4, P51, DOI DOI 10.1037/H0099301; Dunkel CS, 2010, EVOL PSYCHOL-US, V8, P492; EAGLY AH, 1984, J PERS SOC PSYCHOL, V46, P735, DOI 10.1037//0022-3514.46.4.735; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FABES RA, 1991, PERS SOC PSYCHOL B, V17, P532, DOI 10.1177/0146167291175008; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; FISKE ST, 1990, ADV EXP SOC PSYCHOL, V23, P1, DOI 10.1016/S0065-2601(08)60317-2; Fox R., 1992, PSYCHOL INQ, V3, P137; Gibson J. J., 1979, ECOLOGICAL APPROACH; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Jussim L, 2009, HDB PREJUDICE STEREO, P199; Kaplan H. S., 2004, HDB EVOLUTIONARY PSY, P68; Kenrick D. T., 2013, OXFORD HDB SOCIAL CO, P656; Kenrick DT, 2010, CURR DIR PSYCHOL SCI, V19, P63, DOI 10.1177/0963721409359281; KENRICK DT, 1992, BEHAV BRAIN SCI, V15, P75, DOI 10.1017/S0140525X00067595; KENRICK DT, 1990, J PERS, V58, P97, DOI 10.1111/j.1467-6494.1990.tb00909.x; Kenrick DT, 2000, DEVELOPMENTAL SOCIAL PSYCHOLOGY OF GENDER, P35; KITE ME, 1991, PSYCHOL AGING, V6, P19, DOI 10.1037/0882-7974.6.1.19; Kite ME, 2005, J SOC ISSUES, V61, P241, DOI 10.1111/j.1540-4560.2005.00404.x; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Lueptow LB, 1995, ETHOL SOCIOBIOL, V16, P509, DOI 10.1016/0162-3095(95)00072-0; Macrae C. N., 2010, HDB SOCIAL PSYCHOL, P428, DOI DOI 10.1002/9780470561119.SOCPSY001012; MACRAE CN, 1994, J PERS SOC PSYCHOL, V66, P37, DOI 10.1037/0022-3514.66.1.37; Maner JK, 2005, J PERS SOC PSYCHOL, V88, P63, DOI [10.1037/0022-3514.88.1.63, 10.1037/0022-3514.1.63]; Maner JK, 2012, J PERS SOC PSYCHOL, V103, P70, DOI 10.1037/a0028172; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; MASSEY DS, 2004, DU BOIS REV, V1, P1; MCARTHUR LZ, 1983, PSYCHOL REV, V90, P215, DOI 10.1037//0033-295X.90.3.215; McCall L, 2005, SIGNS, V30, P1771, DOI 10.1086/426800; Miller SL, 2010, J PERS SOC PSYCHOL, V99, P62, DOI 10.1037/a0018086; Neuberg S. L., 2006, EVOLUTION SOCIAL PSY, P163; Neuberg S. L., APA HDB PERSONALITY, V1; Neuberg S. L., 2010, HDB SOCIAL PSYCHOL, P761; Plant EA, 2009, J EXP SOC PSYCHOL, V45, P961, DOI 10.1016/j.jesp.2009.04.018; Richerson P., 1995, RINGB CASTL S ID WAR; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Roff Derek A., 1992; ROSENCRA.HA, 1969, GERONTOLOGIST, V9, P55, DOI 10.1093/geront/9.1.55; Rule NO, 2011, PSYCHOL SCI, V22, P881, DOI 10.1177/0956797611412394; Sampson RJ, 1997, SCIENCE, V277, P918, DOI 10.1126/science.277.5328.918; Schaller M, 2012, ADV EXP SOC PSYCHOL, V46, P1, DOI 10.1016/B978-0-12-394281-4.00001-5; Shields SA, 2008, SEX ROLES, V59, P301, DOI 10.1007/s11199-008-9501-8; Simpson JA, 2012, DEV PSYCHOL, V48, P674, DOI 10.1037/a0027293; Sng O., 2013, SEX AGE STEREO UNPUB; Spence J., 1978, MASCULINITY FEMININI; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; SWIM JK, 1994, J PERS SOC PSYCHOL, V66, P21, DOI 10.1037//0022-3514.66.1.21; Taylor S. E., 1981, COGNITIVE PROCESS, P83; Williams J. E., 1982, MEASURING SEX STEREO; Williams K. E. G., 2013, UNPUB; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; Wittenbrink B, 2001, J PERS SOC PSYCHOL, V81, P815, DOI 10.1037/0022-3514.81.5.815; Zebrowitz L.A, 2011, SCI SOCIAL VISION, P3; Zebrowitz L. A., 2006, EVOLUTION SOCIAL PSY, P81 73 16 18 4 33 GUILFORD PUBLICATIONS INC NEW YORK 370 SEVENTH AVE, SUITE 1200, NEW YORK, NY 10001-1020 USA 0278-016X SOC COGNITION Soc. Cogn. DEC 2013 31 6 SI 696 711 10.1521/soco.2013.31.6.696 16 Psychology, Social Psychology 263NM WOS:000327815300007 2019-02-21 J Zwoinska, MK; Kolm, N; Maklakov, AA Zwoinska, Martyna K.; Kolm, Niclas; Maklakov, Alexei A. Sex differences in cognitive ageing: Testing predictions derived from life-history theory in a dioecious nematode EXPERIMENTAL GERONTOLOGY English Article Ageing; Caenorhabditis; Learning; Life-history; Sex differences; Trade-off DROSOPHILA-MELANOGASTER; LEARNING-ABILITY; SELECTION; EVOLUTION; LONGEVITY; ELEGANS; MEMORY; BRAIN; SPAN; COST Life-history theory maintains that organisms allocate limited resources to different traits to maximize fitness. Learning ability and memory are costly and known to trade-off with longevity in invertebrates. However, since the relationship between longevity and fitness often differs between the sexes, it is likely that sexes will differentially resolve the trade-off between learning and longevity. We used an established associative learning paradigm in the dioecious nematode Caenorhabditis remanei, which is sexually dimorphic for lifespan, to study age-related learning ability in males and females. In particular, we tested the hypothesis that females (the shorter-lived sex) show higher learning ability than males early in life but senesce faster. Indeed, young females outperformed young males in learning a novel association between an odour (butanone) and food (bacteria). However, while learning ability and offspring production declined rapidly with age in females, males maintained high levels of these traits until mid-age. These results not only demonstrate sexual dimorphismin age-related learning ability but also suggest that it conforms to predictions derived from the life-history theory. (C) 2013 Elsevier Inc. All rights reserved. [Zwoinska, Martyna K.; Maklakov, Alexei A.] Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Ecol, S-75236 Uppsala, Sweden; [Kolm, Niclas] Stockholm Univ, Dept Zool Ethol, S-10691 Stockholm, Sweden Zwoinska, MK (reprint author), Uppsala Univ, Evolutionary Biol Ctr, Dept Anim Ecol, Ageing Res Grp, Norbyvagen 18 D, S-75236 Uppsala, Sweden. martyna.zwoinska@ebc.uu.se; niclas.kolm@ebc.uu.se; alexei.maklakov@ebc.uu.se Maklakov, Alexei/F-8167-2014 Maklakov, Alexei/0000-0002-5809-1203; Kolm, Niclas/0000-0001-5791-336X Swedish Research Council; ERC The study was supported by Swedish Research Council and ERC Starting Grant to A. A. M. The authors are grateful to two reviewers for constructive comments on the manuscript. Bonduriansky R, 2008, FUNCT ECOL, V22, P443, DOI 10.1111/j.1365-2435.2008.01417.x; Burger JMS, 2008, EVOLUTION, V62, P1294, DOI 10.1111/j.1558-5646.2008.00376.x; Chen HY, 2012, CURR BIOL, V22, P2140, DOI 10.1016/j.cub.2012.09.021; Clutton-Brock TH, 2007, P ROY SOC B-BIOL SCI, V274, P3097, DOI 10.1098/rspb.2007.1138; Dukas R, 1998, COGNITIVE ECOLOGY EV; Kauffman AL, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000372; Kotrschal A, 2013, CURR BIOL, V23, P168, DOI 10.1016/j.cub.2012.11.058; Lagasse F, 2012, P ROY SOC B-BIOL SCI, V279, P4015, DOI 10.1098/rspb.2012.1457; Maklakov AA, 2013, BIOESSAYS, V35, P717, DOI 10.1002/bies.201300021; McCulloch D, 2003, AGING CELL, V2, P165, DOI 10.1046/j.1474-9728.2003.00047.x; Mery F, 2003, P ROY SOC B-BIOL SCI, V270, P2465, DOI 10.1098/rspb.2003.2548; Mery F, 2004, ANIM BEHAV, V68, P589, DOI 10.1016/j.anbehav.2003.12.005; Placais PY, 2013, SCIENCE, V339, P440, DOI 10.1126/science.1226018; Snell-Rood EC, 2011, BEHAV ECOL, V22, P291, DOI 10.1093/beheco/arq169; Stein Geneva M., 2012, Frontiers in Genetics, V3, P259, DOI 10.3389/fgene.2012.00259; Stiernagle T, 2006, WORMBOOK, V2006, P1, DOI DOI 10.1895/W0RMB00K.1.101.1; Trivers RL, 1972, SEXUAL SELECTION DES; Tsui D, 2008, LEARN MEMORY, V15, P844, DOI 10.1101/lm.1188208; Vellai T, 2006, GENETICS, V174, P309, DOI 10.1534/genetics.106.061499; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060 20 5 5 0 22 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. DEC 2013 48 12 1469 1472 10.1016/j.exger.2013.09.008 4 Geriatrics & Gerontology Geriatrics & Gerontology 258WQ WOS:000327489800012 24120565 2019-02-21 J Handelsman, CA; Broder, ED; Dalton, CM; Ruell, EW; Myrick, CA; Reznick, DN; Ghalambor, CK Handelsman, Corey A.; Broder, E. Dale; Dalton, Christopher M.; Ruell, Emily W.; Myrick, Christopher A.; Reznick, David N.; Ghalambor, Cameron K. Predator-Induced Phenotypic Plasticity in Metabolism and Rate of Growth: Rapid Adaptation to a Novel Environment INTEGRATIVE AND COMPARATIVE BIOLOGY English Article GUPPIES POECILIA-RETICULATA; LIFE-HISTORY EVOLUTION; ENERGY ACQUISITION RATES; JUVENILE ATLANTIC SALMON; FROG RANA-SYLVATICA; RISK TRADE-OFF; TRINIDADIAN GUPPIES; GENETIC-BASIS; ANTIPREDATOR BEHAVIOR; INTRINSIC GROWTH Novel environments often impose directional selection for a new phenotypic optimum. Novel environments, however, can also change the distribution of phenotypes exposed to selection by inducing phenotypic plasticity. Plasticity can produce phenotypes that either align with or oppose the direction of selection. When plasticity and selection are parallel, plasticity is considered adaptive because it provides a better pairing between the phenotype and the environment. If the plastic response is incomplete and falls short of producing the optimum phenotype, synergistic selection can lead to genetic divergence and bring the phenotype closer to the optimum. In contrast, non-adaptive plasticity should increase the strength of selection, because phenotypes will be further from the local optimum, requiring antagonistic selection to overcome the phenotype-environment mismatch and facilitate adaptive divergence. We test these ideas by documenting predator-induced plasticity for resting metabolic rate and growth rate in populations of the Trinidadian guppy (Poecilia reticulata) adapted to high and low predation. We find reduced metabolic rates and growth rates when cues from a predator are present during development, a pattern suggestive of adaptive and non-adaptive plasticity, respectively. When we compared populations recently transplanted from a high-predation environment into four streams lacking predators, we found evidence for rapid adaptive evolution both in metabolism and growth rate. We discuss the implications for predicting how traits will respond to selection, depending on the type of plasticity they exhibit. [Handelsman, Corey A.; Ruell, Emily W.; Ghalambor, Cameron K.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Broder, E. Dale; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Dalton, Christopher M.] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14853 USA; [Myrick, Christopher A.] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA; [Reznick, David N.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA Handelsman, CA (reprint author), Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. chandelsman@gmail.com reznick, david/0000-0002-1144-0568 National Science Foundation [DEB-0846175, EF-0623632] This work was supported by the National Science Foundation Faculty Early Career Development grant (DEB-0846175 to C.K.G.) and National Science Foundation Frontiers in Integrative Biological Research grant (EF-0623632 to D.N.R.). Alexander HJ, 2006, EVOLUTION, V60, P2352, DOI 10.1111/j.0014-3820.2006.tb01870.x; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Armstrong JD, 2011, ECOL FRESHW FISH, V20, P371, DOI 10.1111/j.1600-0633.2011.00486.x; Arnqvist G, 2010, EVOLUTION, V64, P3354, DOI 10.1111/j.1558-5646.2010.01135.x; Auer SK, 2010, ECOL LETT, V13, P998, DOI 10.1111/j.1461-0248.2010.01491.x; Baayen R. H, 2011, LANGUAGER DATA SETS; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Bates D., 2012, LME4 LINEAR MIXED EF; Beckerman AP, 2007, OECOLOGIA, V152, P335, DOI 10.1007/s00442-006-0642-6; BERVEN KA, 1982, EVOLUTION, V36, P962, DOI 10.1111/j.1558-5646.1982.tb05466.x; BERVEN KA, 1982, OECOLOGIA, V52, P360, DOI 10.1007/BF00367960; Billerbeck JM, 2001, EVOLUTION, V55, P1863; Biro PA, 2006, J ANIM ECOL, V75, P1165, DOI 10.1111/j.1365-2656.2006.01137.x; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Blackmer AL, 2005, BEHAV ECOL, V16, P906, DOI 10.1093/beheco/ari069; Boratynski Z, 2010, FUNCT ECOL, V24, P1252, DOI 10.1111/j.1365-2435.2010.01764.x; BRADSHAW A. D., 1965, ADVANCE GENET, V13, P115, DOI 10.1016/S0065-2660(08)60048-6; Brown GE, 2006, BEHAV ECOL SOCIOBIOL, V61, P9, DOI 10.1007/s00265-006-0232-y; Burns JG, 2009, J FISH BIOL, V75, P1144, DOI 10.1111/j.1095-8649.2009.02314.x; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; Cech J.J. Jr, 1990, P335; Conover DO, 2009, ANN NY ACAD SCI, V1168, P100, DOI 10.1111/j.1749-6632.2009.04575.x; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; CONOVER DO, 1995, TRENDS ECOL EVOL, V10, P248, DOI 10.1016/S0169-5347(00)89081-3; Czesak ME, 2006, AM NAT, V168, P323, DOI 10.1086/506919; Daan S., 1990, AM J PHYSIOL, V259, P333; Day T, 1996, OECOLOGIA, V108, P380, DOI 10.1007/BF00334665; DAY T, 1994, EVOLUTION, V48, P1723, DOI 10.1111/j.1558-5646.1994.tb02208.x; El-Sabaawi RW, 2012, FUNCT ECOL, V26, P666, DOI 10.1111/j.1365-2435.2012.01974.x; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; Falconer D.S., 1981, INTRO QUANTITATIVE G; FALCONER DS, 1990, GENET RES, V56, P57, DOI 10.1017/S0016672300028883; Finstad AG, 2004, J ANIM ECOL, V73, P959, DOI 10.1111/j.0021-8790.2004.00871.x; Fraser DF, 2004, ECOLOGY, V85, P312, DOI 10.1890/03-3023; FRASER DF, 1987, BEHAV ECOL SOCIOBIOL, V21, P203, DOI 10.1007/BF00292500; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARLAND T, 1994, ANNU REV PHYSIOL, V56, P579, DOI 10.1146/annurev.ph.56.030194.003051; Ghalambor CK, 2007, FUNCT ECOL, V21, P394, DOI 10.1111/j.1365-2435.2007.01283.x; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Godin JGJ, 1996, ANIM BEHAV, V51, P117, DOI 10.1006/anbe.1996.0010; GOTTHARD K, 1995, OIKOS, V74, P3, DOI 10.2307/3545669; Grether GF, 2005, AM NAT, V166, pE115, DOI 10.1086/432023; Hendry AP, 2006, J EVOLUTION BIOL, V19, P741, DOI 10.1111/j.1420-9101.2005.01061.x; Huntingford FA, 2010, J FISH BIOL, V76, P1576, DOI 10.1111/j.1095-8649.2010.02582.x; INNES AJ, 1985, ENVIRON BIOL FISH, V14, P213, DOI 10.1007/BF00000829; Killen SS, 2011, J ANIM ECOL, V80, P1024, DOI 10.1111/j.1365-2656.2011.01844.x; Kohler TJ, 2012, FRESHW SCI, V31, P1019, DOI 10.1899/11-141.1; Konarzewski M, 1995, EVOLUTION, V49, P1239, DOI 10.1111/j.1558-5646.1995.tb04450.x; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; Langerhans RB, 2004, AM NAT, V164, P335, DOI 10.1086/422857; Langerhans RB, 2003, BIOL J LINN SOC, V80, P689, DOI 10.1111/j.1095-8312.2003.00266.x; Lankford TE, 2001, EVOLUTION, V55, P1873, DOI 10.1111/j.0014-3820.2001.tb00836.x; Levins R., 1968, EVOLUTION CHANGING E; Liebold M, 1991, OECOLOGIA, V86, P342; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MATTINGLY HT, 1994, OIKOS, V69, P54, DOI 10.2307/3545283; McCarthy ID, 2000, J FISH BIOL, V57, P224, DOI 10.1111/j.1095-8649.2000.tb00788.x; McNab B.K., 2002, PHYSL ECOLOGY VERTEB; MCNAB BK, 1980, AM NAT, V116, P106, DOI 10.1086/283614; McPeek MA, 2004, AM NAT, V163, pE88, DOI 10.1086/382755; McPeek MA, 2001, ECOLOGY, V82, P1535, DOI 10.1890/0012-9658(2001)082[1535:PABRTP]2.0.CO;2; Metcalfe NB, 2003, EXP GERONTOL, V38, P935, DOI 10.1016/S0531-5565(03)00159-1; METCALFE NB, 1995, ANIM BEHAV, V49, P431, DOI 10.1006/anbe.1995.0056; Myrick CA, 2011, ENCYCLOPEDIA OF FISH PHYSIOLOGY: FROM GENOME TO ENVIRONMENT, VOLS 1-3, P2084; Nespolo RF, 2007, J EXP BIOL, V210, P2000, DOI 10.1242/jeb.02780; Nilsson JA, 2002, P ROY SOC B-BIOL SCI, V269, P1735, DOI 10.1098/rspb.2002.2071; O'Steen S, 2002, EVOLUTION, V56, P776, DOI 10.1554/0014-3820(2002)056[0776:REOEAI]2.0.CO;2; PERRIN N, 1990, FUNCT ECOL, V4, P53, DOI 10.2307/2389652; Price TD, 2003, P ROY SOC B-BIOL SCI, V270, P1433, DOI 10.1098/rspb.2003.2372; R Core Team, 2012, R LANG ENV STAT COMP; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, AM NAT, V147, P339, DOI 10.1086/285855; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 2001, GENETICA, V112, P183, DOI 10.1023/A:1013352109042; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Ruell EW, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2019; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; SCHLUTER D, 1993, ECOLOGY, V74, P699, DOI 10.2307/1940797; Schmalhausen II, 1949, FACTORS EVOLUTION TH; Schultz ET, 1998, CAN J FISH AQUAT SCI, V55, P1149, DOI 10.1139/cjfas-55-5-1149; Seghers B. H., 1973, ANAL GEOGRAPHIC VARI; SEGHERS BH, 1974, EVOLUTION, V28, P486, DOI 10.1111/j.1558-5646.1974.tb00774.x; Speakman JR, 1996, PHYSIOL ZOOL, V69, P746, DOI 10.1086/physzool.69.4.30164228; SPITZE K, 1991, EVOLUTION, V45, P82, DOI 10.1111/j.1558-5646.1991.tb05268.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Steiner UK, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006160; Templeton CN, 2004, BEHAV ECOL, V15, P673, DOI 10.1093/beheco/arh065; Thompson Steven D., 1992, P213; Torres-Dowdall J, 2012, EVOLUTION, V66, P3432, DOI 10.1111/j.1558-5646.2012.01694.x; Torres-Dowdall J, 2012, FUNCT ECOL, V26, P616, DOI 10.1111/j.1365-2435.2012.01980.x; VIA S, 1995, TRENDS ECOL EVOL, V10, P212, DOI 10.1016/S0169-5347(00)89061-8; VIA S, 1985, EVOLUTION, V39, P505, DOI 10.1111/j.1558-5646.1985.tb00391.x; Walker JA, 2005, FUNCT ECOL, V19, P808, DOI 10.1111/j.1365-2435.2005.01033.x; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; Werner EE, 1993, AM NAT, V142, P247; Wund MA, 2008, AM NAT, V172, P449, DOI 10.1086/590966; Zandona E, 2011, FUNCT ECOL, V25, P964, DOI 10.1111/j.1365-2435.2011.01865.x 105 41 41 2 102 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1540-7063 1557-7023 INTEGR COMP BIOL Integr. Comp. Biol. DEC 2013 53 6 975 988 10.1093/icb/ict057 14 Zoology Zoology 259RF WOS:000327543300011 23784701 Bronze 2019-02-21 J Aktipis, CA; Boddy, AM; Gatenby, RA; Brown, JS; Maley, CC Aktipis, C. Athena; Boddy, Amy M.; Gatenby, Robert A.; Brown, Joel S.; Maley, Carlo C. Life history trade-offs in cancer evolution NATURE REVIEWS CANCER English Review ACUTE MYELOID-LEUKEMIA; STEM-CELLS; NATURAL-SELECTION; SUPPRESSOR-CELLS; CLONAL EVOLUTION; BREAST-CANCER; R-SELECTION; TUMOR; HETEROGENEITY; INFLAMMATION Somatic evolution during cancer progression and therapy results in tumour cells that show a wide range of phenotypes, which include rapid proliferation and quiescence. Evolutionary life history theory may help us to understand the diversity of these phenotypes. Fast life history organisms reproduce rapidly, whereas those with slow life histories show less fecundity and invest more resources in survival. Life history theory also provides an evolutionary framework for phenotypic plasticity, which has potential implications for understanding 'cancer stem cells'. Life history theory suggests that different therapy dosing schedules might select for fast or slow life history cell phenotypes, with important clinical consequences. [Aktipis, C. Athena; Boddy, Amy M.; Maley, Carlo C.] Univ Calif San Francisco, Ctr Evolut & Canc, San Francisco, CA 94143 USA; [Aktipis, C. Athena; Boddy, Amy M.; Maley, Carlo C.] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA; [Aktipis, C. Athena] Arizona State Univ, Dept Psychol, Tempe, AZ 85287 USA; [Gatenby, Robert A.] H Lee Moffitt Canc Ctr & Res Inst, Tampa, FL 33612 USA; [Brown, Joel S.] Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA Aktipis, CA (reprint author), Univ Calif San Francisco, Ctr Evolut & Canc, 2340 Sutter St,BOX 1351, San Francisco, CA 94143 USA. aktipis@alumni.reed.edu American Cancer Society [117209-RSG-09-163-01-CNE]; US National Institutes of Health (NIH) [F32 CA144331, R01 CA149566, R01 CA170595, R01 CA140657, U54 CA143970]; McDonnell Foundation [220020270] The authors thank A. Nedelcu, A. Caulin and A. J. Figuredo for thoughtful and thought-provoking discussions during the development of these ideas. This work was supported in part by Research Scholar Grant number 117209-RSG-09-163-01-CNE from the American Cancer Society, by US National Institutes of Health (NIH) grants F32 CA144331, R01 CA149566, R01 CA170595, R01 CA140657 and U54 CA143970, and by a grant from the McDonnell Foundation 220020270. Aguirre-Ghiso JA, 2007, NAT REV CANCER, V7, P834, DOI 10.1038/nrc2256; Aktipis CA, 2012, CANCER PREV RES, V5, P266, DOI 10.1158/1940-6207.CAPR-11-0004; Alfarouk KO, 2013, EVOL APPL, V6, P46, DOI 10.1111/eva.12015; Ball SL, 1996, ECOLOGY, V77, P1116, DOI 10.2307/2265580; Biddle A, 2011, CANCER RES, V71, P5317, DOI 10.1158/0008-5472.CAN-11-1059; Bissell MJ, 2005, CANCER CELL, V7, P17, DOI 10.1016/j.ccr.2004.12.013; Borst P, 2012, OPEN BIOL, V2, DOI 10.1098/rsob.120066; BROXTERMAN HJ, 1988, FASEB J, V2, P2278; Brurberg KG, 2005, RADIOTHER ONCOL, V77, P220, DOI 10.1016/j.radonc.2005.09.009; BUHSE HE, 1982, J PROTOZOOL, V29, P222, DOI 10.1111/j.1550-7408.1982.tb04015.x; Bunt SK, 2006, J IMMUNOL, V176, P284, DOI 10.4049/jimmunol.176.1.284; Bunt SK, 2007, CANCER RES, V67, P10019, DOI 10.1158/0008-5472.CAN-07-2354; CAIRNS J, 1975, NATURE, V255, P197, DOI 10.1038/255197a0; Campisi J, 2003, EXP GERONTOL, V38, P5, DOI 10.1016/S0531-5565(02)00152-3; Cardenas-Navia LI, 2008, CANCER RES, V68, P5812, DOI 10.1158/0008-5472.CAN-07-6387; Chen J, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017933; Chivers DP, 1999, J CHEM ECOL, V25, P2455, DOI 10.1023/A:1020818006898; Clevers H, 2011, NAT MED, V17, P313, DOI 10.1038/nm.2304; Coffey JC, 2003, LANCET ONCOL, V4, P760, DOI 10.1016/S1470-2045(03)01282-8; Contractor KB, 2009, J NUCL MED, V50, p97S, DOI 10.2967/jnumed.108.057273; Corley DA, 2003, GASTROENTEROLOGY, V124, P47, DOI 10.1053/gast.2003.50008; Creighton JC, 2009, AM NAT, V174, P673, DOI 10.1086/605963; Crook JM, 2012, NEW ENGL J MED, V367, P895, DOI 10.1056/NEJMoa1201546; Debarre F, 2011, AM NAT, V177, pE84, DOI 10.1086/658178; Debnath J, 2005, NAT REV CANCER, V5, P675, DOI 10.1038/nrc1695; EBENMAN B, 1988, J THEOR BIOL, V131, P389, DOI 10.1016/S0022-5193(88)80036-5; Etzioni R, 2003, NAT REV CANCER, V3, P243, DOI 10.1038/nrc1041; Fabian D., 2012, NATURE ED KNOWLEDGE, V3, P24; Fitzpatrick MJ, 2005, TRENDS ECOL EVOL, V20, P96, DOI 10.1016/j.tree.2004.11.017; Foret S, 2012, P NATL ACAD SCI USA, V109, P4968, DOI 10.1073/pnas.1202392109; Gatenby RA, 2004, NAT REV CANCER, V4, P891, DOI 10.1038/nrc1478; Gatenby RA, 2013, RADIOLOGY, V269, P8, DOI 10.1148/radiol.13122697; Gatenby RA, 2009, CANCER RES, V69, P4894, DOI 10.1158/0008-5472.CAN-08-3658; Gerlinger M, 2010, BRIT J CANCER, V103, P1139, DOI 10.1038/sj.bjc.6605912; Gillies RJ, 2012, NAT REV CANCER, V12, P487, DOI 10.1038/nrc3298; Godlewski J, 2010, MOL CELL, V37, P620, DOI 10.1016/j.molcel.2010.02.018; Gottesman MM, 2002, NAT REV CANCER, V2, P48, DOI 10.1038/nrc706; Graham TA, 2011, GASTROENTEROLOGY, V140, P1241, DOI 10.1053/j.gastro.2010.12.036; Greaves LC, 2006, P NATL ACAD SCI USA, V103, P714, DOI 10.1073/pnas.0505903103; Greaves M, 2012, NATURE, V481, P306, DOI 10.1038/nature10762; Grivennikov SI, 2010, CELL, V140, P883, DOI 10.1016/j.cell.2010.01.025; Gupta PB, 2011, CELL, V146, P633, DOI 10.1016/j.cell.2011.07.026; Gurney WSC, 1996, FUNCT ECOL, V10, P602, DOI 10.2307/2390170; Hanahan D, 2000, CELL, V100, P57, DOI 10.1016/S0092-8674(00)81683-9; Hanahan D, 2011, CELL, V144, P646, DOI 10.1016/j.cell.2011.02.013; Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809; Hibbing ME, 2010, NAT REV MICROBIOL, V8, P15, DOI 10.1038/nrmicro2259; Holzel M, 2013, NAT REV CANCER, V13, P365, DOI 10.1038/nrc3498; HOUSTON AI, 1992, EVOL ECOL, V6, P243, DOI 10.1007/BF02214164; HOWE HF, 1982, ANNU REV ECOL SYST, V13, P201, DOI 10.1146/annurev.es.13.110182.001221; Jerby L, 2012, CANCER RES, V72, P5712, DOI 10.1158/0008-5472.CAN-12-2215; Jeschke JM, 2009, EVOL ECOL, V23, P867, DOI 10.1007/s10682-008-9276-y; Joyce JA, 2009, NAT REV CANCER, V9, P239, DOI 10.1038/nrc2618; Kenific CM, 2010, CURR OPIN CELL BIOL, V22, P241, DOI 10.1016/j.ceb.2009.10.008; Kirkwood TBL, 2002, MECH AGEING DEV, V123, P737, DOI 10.1016/S0047-6374(01)00419-5; Kostadinov RL, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003553; Kreso A, 2013, SCIENCE, V339, P543, DOI 10.1126/science.1227670; Kusumbe AP, 2009, CANCER RES, V69, P9245, DOI 10.1158/0008-5472.CAN-09-2802; LAPIDOT T, 1994, NATURE, V367, P645, DOI 10.1038/367645a0; Leroi AM, 2005, MECH AGEING DEV, V126, P421, DOI 10.1016/j.mad.2004.07.012; Levins R., 1968, EVOLUTION CHANGING E; Li LH, 2010, SCIENCE, V327, P542, DOI 10.1126/science.1180794; Limberger R, 2011, OECOLOGIA, V167, P723, DOI 10.1007/s00442-011-2013-1; Lu Z, 2008, J CLIN INVEST, V118, P3917, DOI 10.1172/JCI35512; MAC ARTHUR ROBERT H., 1967; Magee JA, 2012, CANCER CELL, V21, P283, DOI 10.1016/j.ccr.2012.03.003; Malthus T. R., 1798, ESSAY PRINCIPLE POPU; Mantovani A, 2008, NATURE, V454, P436, DOI 10.1038/nature07205; Mazzone M, 2009, CELL, V136, P839, DOI 10.1016/j.cell.2009.01.020; Merlo LMF, 2006, NAT REV CANCER, V6, P924, DOI 10.1038/nrc2013; MUELLER LD, 1988, AM NAT, V132, P786, DOI 10.1086/284890; NOWELL PC, 1976, SCIENCE, V194, P23, DOI 10.1126/science.959840; O'Brien CA, 2007, NATURE, V445, P106, DOI 10.1038/nature05372; Orlando PA, 2013, FRONT ONCOL, V3, DOI 10.3389/fonc.2013.00045; PARRY GD, 1981, OECOLOGIA, V48, P260, DOI 10.1007/BF00347974; Pasquier E, 2010, NAT REV CLIN ONCOL, V7, P455, DOI 10.1038/nrclinonc.2010.82; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; Radich JP, 2012, CONTEMP HEMATOL, P251, DOI 10.1007/978-1-60761-565-1_9; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Rhim AD, 2012, CELL, V148, P349, DOI 10.1016/j.cell.2011.11.025; Robey IF, 2009, CANCER RES, V69, P2260, DOI 10.1158/0008-5472.CAN-07-5575; Rothwell PM, 2011, LANCET, V377, P31, DOI 10.1016/S0140-6736(10)62110-1; Ryals PE, 2002, INT REV CYTOL, V212, P209; Schlichting CD, 2003, EVOL DEV, V5, P98, DOI 10.1046/j.1525-142X.2003.03015.x; Schmidt-Kittler O, 2003, P NATL ACAD SCI USA, V100, P7737, DOI 10.1073/pnas.1331931100; Seliger B, 2005, BIODRUGS, V19, P347, DOI 10.2165/00063030-200519060-00002; Sharma SV, 2010, CELL, V141, P69, DOI 10.1016/j.cell.2010.02.027; SKUTCH AF, 1951, IBIS, V93, P180; Smith CR, 2008, NAT REV GENET, V9, P735, DOI 10.1038/nrg2429; Smith VH, 1996, TRENDS ECOL EVOL, V11, P386, DOI 10.1016/0169-5347(96)20067-9; Sprouffske K, 2013, EVOL APPL, V6, P92, DOI 10.1111/eva.12030; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Taussig DC, 2010, BLOOD, V115, P1976, DOI 10.1182/blood-2009-02-206565; Turchin P, 2001, OIKOS, V94, P17, DOI 10.1034/j.1600-0706.2001.11310.x; Turnbull LA, 1999, J ECOL, V87, P899, DOI 10.1046/j.1365-2745.1999.00405.x; Ungewitter E, 2009, MECH AGEING DEV, V130, P10, DOI 10.1016/j.mad.2008.06.002; van Diest PJ, 2004, J CLIN PATHOL, V57, P675, DOI 10.1136/jcp.2003.010777; Vaughan TL, 2005, LANCET ONCOL, V6, P945, DOI 10.1016/S1470-2045(05)70431-9; Wargo AR, 2007, P NATL ACAD SCI USA, V104, P19914, DOI 10.1073/pnas.0707766104; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilkinson GS, 2002, AGING CELL, V1, P124, DOI 10.1046/j.1474-9728.2002.00020.x; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Wilson A, 2007, ANN NY ACAD SCI, V1106, P64, DOI 10.1196/annals.1392.021; Wilting RH, 2012, DRUG RESIST UPDATE, V15, P21, DOI 10.1016/j.drup.2012.01.008; Zakrzewska A, 2011, MOL BIOL CELL, V22, P4435, DOI 10.1091/mbc.E10-08-0721; Zhang WG, 2005, CARCINOGENESIS, V26, P249, DOI 10.1093/carcin/bgh300 110 82 83 1 69 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1474-175X 1474-1768 NAT REV CANCER Nat. Rev. Cancer DEC 2013 13 12 883 892 10.1038/nrc3606 10 Oncology Oncology 259RA WOS:000327542800011 24213474 Green Accepted, Green Published 2019-02-21 J Fonteneau, F; Cook, TR Fonteneau, Frederic; Cook, Timothee R. New data on gastrointestinal helminths in shags (Phalacrocorax verrucosus) at Kerguelen Archipelago POLAR BIOLOGY English Article Nematoda; Cestoda; Acanthocephala; Southern Ocean; Cormorant; Seabird PELICAN PELECANUS-OCCIDENTALIS; FISH-EATING BIRDS; NEMATODA ANISAKIDAE; CARBO-SINENSIS; N. SP; PARASITES; POPULATIONS; CONGENERS; CORMORANT; AVIFAUNA To date, the knowledge of the helminth communities of Antarctic birds is scarce or fragmented. Knowledge about diseases and parasites is crucial for understanding and managing ecosystems, particularly in isolated areas where host species are more sensitive to new diseases or parasite infections. It has been showed that variations in rate of parasitism may occur between populations of host species. Two major non-exclusive hypotheses have been proposed to explain such variability: exposure to parasitism and, perhaps more important, life history strategies of hosts. We studied the helminth community of the Kerguelen Shag Phalacrocorax verrucosus, an endemic seabird species of the Kerguelen Archipelago. We provide new data on the helminths infecting this species from partial or complete digestive tracts of two birds. Two nematodes (Contracaecum rudolphii s.l. and Ingliseria cirrohamata) were found free or attached to the wall of the proventriculus of birds, while the acanthocephalan Corynosoma sp. and the cestode species Tetrabothrius sp. occurred in the intestine of the shags. The genus Tetrabothrius is reported for the first time in Kerguelen Shags and in this area. The analysis of stomach contents from 41 live Kerguelen Shag individuals revealed infection by Contracaecum nematodes. The proportion of infected birds differed between colonies, possibly in relation to differential exposure to infected fish hosts. [Fonteneau, Frederic] Univ Rennes 1, UMR CNRS Ecobio, F-35042 Rennes, France; [Cook, Timothee R.] Univ Cape Town, Percy FitzPatrick Inst, DST NRF Ctr Excellence, ZA-7701 Rondebosch, South Africa; [Cook, Timothee R.] CNRS, Ctr Etud Biol Chize, UPR 1934, F-79360 Villiers En Bois, France Fonteneau, F (reprint author), Univ Rennes 1, UMR CNRS Ecobio, Campus Beaulieu,Ave Gen Leclerc, F-35042 Rennes, France. frederic.fonteneau@gmail.com; timothee.cook@gmail.com Cook, Timothee/0000-0003-2354-824X French Polar Institute (IPEV); Terres Australes et Antarctiques Francaises The authors are grateful to the French Polar Institute (IPEV) and the Terres Australes et Antarctiques Francaises for financial and logistical means in the field. Field work was approved by the institute's ethics committee and was conducted under IPEV research program number 394 (Diving Seabirds, coordinator: Charles-Andre Bost). Thanks to John Mike Kinsella for his precious assistance in the identification of parasites and to two anonymous referees to their constructive comments and suggestions. Abollo E, 2001, J HELMINTHOL, V75, P209; Barbosa A, 2009, POLAR BIOL, V32, P1095, DOI 10.1007/s00300-009-0640-3; Cook TR, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056297; Cram E. B., 1927, B US NAT MUS, V140, P1; D'Amelio S, 2012, SYST PARASITOL, V81, P1, DOI 10.1007/s11230-011-9323-x; Dezfuli BS, 2002, PARASITOLOGY, V124, P537, DOI 10.1017/S0031182002001555; Diaz JI, 2009, J PARASITOL, V95, P396, DOI 10.1645/GE-1758.1; Edmonds SJ, 1957, BRIT AUSTR NZ ANT B, V6, P93; Fedynich AM, 1997, J HELMINTHOL SOC W, V64, P176; Fonteneau F, 2011, POLAR BIOL, V34, P1249, DOI 10.1007/s00300-011-0970-9; Garbin L, 2011, J PARASITOL, V97, P476, DOI 10.1645/GE-2450.1; Goss OM, 1940, J ROYAL SOC W AUSTR, V26, P1; HOBERG EP, 1987, CAN J ZOOL, V65, P2969, DOI 10.1139/z87-450; HUIZINGA H W, 1971, Journal of Wildlife Diseases, V7, P198; Johnston TH, 1945, BANZ ARE, V5, P74; Johnston TH, 1937, AUST ANTARCT EXP C 4, V10; Johnston TH, 1937, AUST ANTARCT EXP C 5, V10; JONES HI, 1988, J WILDLIFE DIS, V24, P166, DOI 10.7589/0090-3558-24.1.166; Laskowski Zdzislaw, 2005, Polish Polar Research, V26, P315; Lindstrom KM, 2004, P ROY SOC B-BIOL SCI, V271, P1513, DOI 10.1098/rspb.2004.2752; Linstow O, 1888, REP VOYAGE HMS CHALL, V23, P1; LIU S-K, 1971, Journal of Wildlife Diseases, V7, P266; Mattiucci S, 2009, 5 C ARG PAR 25 28 MA; Mattiucci S, 2008, SYST PARASITOL, V69, P101, DOI 10.1007/s11230-007-9116-4; ORTA J, 1992, HDB BIRDS WORLD, V1, P326; Rokicki J, 2009, POL POLAR RES, V30, P49; Svazas S, 2011, VET ZOOTECH-LITH, V55, P79; Turner JRG, 2004, BASIC APPL ECOL, V5, P435, DOI 10.1016/j.baae.2004.08.004; Vidal V, 2012, PARASITOL RES, V111, P723, DOI 10.1007/s00436-012-2892-z; WARNER RE, 1968, CONDOR, V70, P101, DOI 10.2307/1365954; WEIMERSKIRCH H, 1989, EMU, V89, P15, DOI 10.1071/MU9890015; ZDZITOWIECKI K, 1986, Polish Polar Research, V7, P79 32 1 1 0 20 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 1432-2056 POLAR BIOL Polar Biol. DEC 2013 36 12 1839 1843 10.1007/s00300-013-1391-8 5 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 257OG WOS:000327393700012 2019-02-21 J Schmitt, DP; Rohde, PA Schmitt, David P.; Rohde, Percy A. The Human Polygyny Index and its Ecological Correlates: Testing Sexual Selection and Life History Theory at the Cross-National Level SOCIAL SCIENCE QUARTERLY English Article HUMAN MATE PREFERENCES; MATING SYSTEMS; EVOLUTIONARY PERSPECTIVE; REPRODUCTIVE STRATEGIES; INCOME INEQUALITY; SIZE DIMORPHISM; CULTURAL SAMPLE; UNITED-STATES; MAMMALS; RATES ObjectivesSexual selection theory suggests patterns of covariance among polygynous mating behaviors and ecological variables at the cross-national level. We quantified national levels of polygyny using the human polygyny index (HPI), a ratio of men's to women's variability in the numbers of sex partners over the past year. MethodsHPI scores were available for 48 nations from the International Sexuality Description Project (Schmitt, 2005), and were used to test three hypotheses: (1) human polygyny should be associated with increased intrasexual competition (e.g., high male-male aggression and resource competition), (2) human polygyny should be associated with features of natural and intersexual selection (e.g., high pathogen stress and an emphasis on physical attractiveness in mate choice), and (3) human polygyny should be associated with early and more prolific reproduction. ResultsAll three hypotheses received at least partial support. ConclusionsDiscussion focuses on the limitations and implications of the current findings. [Schmitt, David P.] Bradley Univ, Peoria, IL 61625 USA; [Rohde, Percy A.] Univ Kassel, Kassel, Germany Schmitt, DP (reprint author), Bradley Univ, Dept Psychol, 75 Bradley Hall, Peoria, IL 61625 USA. dps@bradley.edu Alcock J, 2001, ANIMAL BEHAV; Alexander R.D., 1979, EVOLUTIONARY BIOL HU, P402; Alexander Richard D., 1979, EVOLUTIONARY BIOL HU, P436; Andersson M., 1994, SEXUAL SELECTION; Baker R. R., 1995, HUMAN SPERM COMPETIT; BARASH DP, 2001, MYTH MONOGAMY; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bateson P. P. G, 1983, MATE CHOICE; BELSKY J, 1999, HDB ATTACHMENT THEOR, P141; Betzig L., 1988, HUMAN REPROD BEHAV D; Breuer T, 2012, J HUM EVOL, V62, P466, DOI 10.1016/j.jhevol.2012.01.006; Brown GP, 1999, BEHAV ECOL SOCIOBIOL, V47, P9, DOI 10.1007/s002650050644; BUSS DM, 1989, BEHAV BRAIN SCI, V12, P1, DOI 10.1017/S0140525X00023992; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Central Intelligence Agency, 2002, WORLD FACTB; Chagnon N.A., 1979, EVOLUTIONARY BIOL HU, P374; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Clutton-Brock T, 1988, REPROD SUCCESS STUDI; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Daly M, 2001, CAN J CRIMINOL, V43, P219; Daly M., 1983, SEX EVOLUTION BEHAV; Daly M., 1988, HOMICIDE; Daly M., 1990, HUMAN NATURE, V1, P87; Darwin C, 1871, DESCENT MAN SELECTIO; Dixson AF, 1998, PRIMATE SEXUALITY CO; ELDER GH, 1969, AM SOCIOL REV, V34, P519, DOI 10.2307/2091961; EMBER M, 1974, ETHNOLOGY, V13, P197, DOI 10.2307/3773112; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Flinn MV, 1986, ECOLOGICAL ASPECTS S, P217; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Frank RH, 1999, LUXURY FEVER WHY MON; Franzen Axel, 2001, PARTNERWAHL HEIRATSM, P183; Frayser S. G., 1985, VARIETIES SEXUAL EXP; Gangestad SW, 2006, PSYCHOL INQ, V17, P75, DOI 10.1207/s15327965pli1702_1; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Garamszegi LZ, 2004, BEHAV ECOL, V15, P148, DOI 10.1093/beheco/arg108; Geary D. C, 1998, MALE FEMALE EVOLUTIO; Geronimus AT, 1996, HUM NATURE-INT BIOS, V7, P323, DOI 10.1007/BF02732898; Goldberg JL, 2001, BEHAV ECOL, V12, P490, DOI 10.1093/beheco/12.4.490; Gross MR, 1996, TRENDS ECOL EVOL, V11, P92, DOI 10.1016/0169-5347(96)81050-0; Guttentag M., 1983, TOO MANY WOMEN SEX R; GWYNNE DT, 1990, NATURE, V346, P172, DOI 10.1038/346172a0; Harvey P. H., 1994, DIFFERENCE SEXES, P51; Henrich J, 2012, PHILOS T R SOC B, V367, P657, DOI 10.1098/rstb.2011.0290; Hill EM, 2002, ADDICTION, V97, P401, DOI 10.1046/j.1360-0443.2002.00020.x; Hill K, 1999, ANNU REV ANTHROPOL, V28, P397, DOI 10.1146/annurev.anthro.28.1.397; Hill K., 1996, ACHE LIFE HIST ECOLO; Hofstede G., 2001, CULTURES CONSEQUENCE; Isaac JL, 2005, MAMMAL REV, V35, P101, DOI 10.1111/j.1365-2907.2005.00045.x; Kanazawa S, 2001, EVOL HUM BEHAV, V22, P329, DOI 10.1016/S1090-5138(01)00073-3; Kanazawa S, 1999, SOC FORCES, V78, P25, DOI 10.2307/3005789; Kappeler PM, 2002, INT J PRIMATOL, V23, P707, DOI 10.1023/A:1015520830318; Kasser T, 1999, PSYCHOL SCI, V10, P374, DOI 10.1111/1467-9280.00171; KAWACHI I, 1999, SOC POPULATION HLTH, V1; Kruger DJ, 2010, EVOL PSYCHOL-US, V8, P194; Kuemmerling A., 2001, Z SOZIALPSYCHOL, V32, P81; le Boeuf B.J., 1988, P344; Lloyd B., 2002, SEX GENDER; Low Bobbi S., 2003, P161; LOW BS, 1988, CURR ANTHROPOL, V29, P189, DOI 10.1086/203627; LOW BS, 1989, J COMP PSYCHOL, V103, P311, DOI 10.1037//0735-7036.103.4.311; Low BS, 1998, HANDBOOK OF EVOLUTIONARY PSYCHOLOGY, P131; LOW BS, 1990, AM ZOOL, V30, P325; Low BS, 2000, WHY SEX MATTERS; MacDonald K, 1997, HUM NATURE-INT BIOS, V8, P327, DOI 10.1007/BF02913038; Mace R, 2003, COMP BIOCHEM PHYS A, V136, P85, DOI 10.1016/S1095-6433(03)00019-9; Marlowe FW, 2000, BEHAV PROCESS, V51, P45, DOI 10.1016/S0376-6357(00)00118-2; Marlowe FW, 2003, CROSS-CULT RES, V37, P282, DOI 10.1177/1069397103254008; Mayr E, 1939, AM NAT, V73, P156, DOI 10.1086/280824; Mesquida CG, 1996, ETHOL SOCIOBIOL, V17, P247, DOI 10.1016/0162-3095(96)00035-0; MESQUIDA CG, 1999, POLIT LIFE SCI, V18, P113; Moller Anders Pape, 2005, P251; Moller H., 1967, COMP STUDIES SOC HIS, V10, P237; MULDER MB, 1990, BEHAV ECOL SOCIOBIOL, V27, P255; Murdock George P., 1967, ETHNOGRAPHIC ATLAS; MURDOCK GP, 1969, ETHNOLOGY, V8, P329, DOI 10.2307/3772907; ORIANS GH, 1969, AM NAT, V103, P589, DOI 10.1086/282628; PARKER GA, 1972, J THEOR BIOL, V36, P529, DOI 10.1016/0022-5193(72)90007-0; PASTERNAK B, 1997, SEX GENDER KINSHIP C; Pedersen F A, 1991, Hum Nat, V2, P271, DOI 10.1007/BF02692189; Penke L., 2008, MATING INTELLIGENCE, P37; Penton-Voak IS, 2004, EVOL HUM BEHAV, V25, P355, DOI 10.1016/j.evolhumbehav.2004.06.002; PIANTADOSI S, 1988, AM J EPIDEMIOL, V127, P893, DOI 10.1093/oxfordjournals.aje.a114892; Pickett KE, 2005, AM J PUBLIC HEALTH, V95, P1181, DOI 10.2105/AJPH.2004.056721; Plavcan JM, 2001, YEARB PHYS ANTHROPOL, V44, P25, DOI 10.1002/ajpa.10011; QUINN N, 1977, ANNU REV ANTHROPOL, V6, P181, DOI 10.1146/annurev.an.06.100177.001145; RALLS K, 1977, AM NAT, V111, P917, DOI 10.1086/283223; Regan PC, 1998, PERS SOC PSYCHOL B, V24, P1294, DOI 10.1177/01461672982412004; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Rohde P. A., 2006, PROMISCUITY ATTRACTI; SALZANO FM, 1967, AM J HUM GENET, V19, P463; Schaller M, 2006, PSYCHOL INQ, V17, P96; Schmitt D. P., 2010, HUMAN EVOLUTIONARY B, P295; Schmitt DP, 2008, J PERS SOC PSYCHOL, V94, P168, DOI 10.1037/0022-3514.94.1.168; Schmitt DP, 2005, BEHAV BRAIN SCI, V28, P247, DOI 10.1017/S0140525X05000051; Schmitt DP, 2004, J PERS SOC PSYCHOL, V86, P560, DOI 10.1037/0022-3514.86.4.560; Schmitt DP, 2003, J PERS SOC PSYCHOL, V85, P85, DOI 10.1037/0022-3514.85.1.85; SEFCEK JA, 2006, J PSYCHOL HUMAN SEXU, V18, P125, DOI DOI 10.1300/J056V18N02_05; Sheets V., 1996, SEX POWER CONFLICT E, P29; SIMMONS LW, 1994, BEHAV ECOL, V5, P259, DOI 10.1093/beheco/5.3.259; Simpson JA, 1999, J PERS SOC PSYCHOL, V76, P159, DOI 10.1037/0022-3514.76.1.159; SIMPSON JA, 1991, J PERS SOC PSYCHOL, V60, P870, DOI 10.1037//0022-3514.60.6.870; Starks PT, 2000, P ROY SOC B-BIOL SCI, V267, P1259, DOI 10.1098/rspb.2000.1136; Stearns S, 1992, EVOLUTION LIFE HIST; Surbey MK, 2007, ACTA PSYCHOL SINICA, V39, P513; Symons D., 1979, EVOLUTION HUMAN SEXU; THIESSEN D, 1994, HUM NATURE-INT BIOS, V5, P167, DOI 10.1007/BF02692160; Thomas RB, 2002, COPEIA, P456, DOI 10.1643/0045-8511(2002)002[0456:CMSIAL]2.0.CO;2; TOWNSEND JM, 1990, ARCH SEX BEHAV, V19, P149, DOI 10.1007/BF01542229; UDRY JR, 1984, PSYCHOL REP, V54, P47, DOI 10.2466/pr0.1984.54.1.47; *UN DEV PROGR, 2001, HUM DEV REP 2001; *UN STAT DIV, 2001, WORLD POP PROSP 2000, V1; Van de Vliert E, 1999, J CROSS CULT PSYCHOL, V30, P291, DOI 10.1177/0022022199030003002; Vayda A. P., 1976, WAR ECOLOGICAL PERSP; Weckerly FW, 1998, J MAMMAL, V79, P33, DOI 10.2307/1382840; WIEDERMAN MW, 1992, ETHOL SOCIOBIOL, V13, P115, DOI 10.1016/0162-3095(92)90021-U; Wilkinson Richard, 2005, IMPACT INEQUALITY MA; Wilson M, 1997, BRIT MED J, V314, P1271, DOI 10.1136/bmj.314.7089.1271; Yanca C., 2005, EVOL HUM BEHAV, V25, P9; Zamudio KR, 2003, LIZARD SOCIAL BEHAVIOR, P83 122 8 8 5 45 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0038-4941 1540-6237 SOC SCI QUART Soc. Sci. Q. DEC 2013 94 4 1159 1184 10.1111/ssqu.12030 26 Political Science; Sociology Government & Law; Sociology 252SG WOS:000327029800014 2019-02-21 J Edwards, KF; Klausmeier, CA; Litchman, E Edwards, Kyle F.; Klausmeier, Christopher A.; Litchman, Elena A Three-Way Trade-Off Maintains Functional Diversity under Variable Resource Supply AMERICAN NATURALIST English Article functional traits; coexistence; resource pulse; fluctuating environment; phytoplankton LIFE-HISTORY EVOLUTION; PHYTOPLANKTON; PHOSPHORUS; COMPETITION; LAKE; DYNAMICS; GROWTH; ENVIRONMENTS; COEXISTENCE; STORAGE The resources that organisms depend on often fluctuate over time, and a variety of common traits are thought to be adaptations to variable resource supply. To understand the trait structure of communities, it is necessary to understand the functional trade-offs that determine what trait combinations are possible and which species can persist and coexist in a given environment. We compare traits across phytoplankton species in order to test for proposed trade-offs between maximum growth rate, equilibrium competitive ability for phosphorus (P), and ability to store P. We find evidence for a three-way trade-off between these traits, and we use empirical trait covariation to parameterize a mechanistic model of competition under pulsed P supply. The model shows that different strategies are favored under different conditions of nutrient supply regime, productivity, and mortality. Furthermore, multiple strategies typically coexist, and the range of traits that persist in the model is similar to the range of traits found in real species. These results suggest that mechanistic models informed by empirical trait variation, in combination with data on the trait structure of natural communities, will play an important role in uncovering the mechanisms that underlie the diversity and structure of ecological communities. [Edwards, Kyle F.; Klausmeier, Christopher A.; Litchman, Elena] Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA; [Klausmeier, Christopher A.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA; [Litchman, Elena] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA Edwards, KF (reprint author), Michigan State Univ, Kellogg Biol Stn, Hickory Corners, MI 49060 USA. edwar466@msu.edu Klausmeier, Christopher/J-9339-2012 Litchman, Elena/0000-0001-7736-6332 National Science Foundation [DEB-0845932, DEB-0845825, OCE-0928819] This research was supported by National Science Foundation grants DEB-0845932 (to E.L.), DEB-0845825 (to C.A.K.), and OCE-0928819 (to E.L. and C.A.K.). We thank F. Adler and two anonymous reviewers for helpful comments on a prior version of this manuscript. This is Kellogg Biological Station publication number 1724. Angert AL, 2009, P NATL ACAD SCI USA, V106, P11641, DOI 10.1073/pnas.0904512106; [Anonymous], 1990, LE FTANFAIS PRECLASS, VI, P3; Bode A, 1997, MAR BIOL, V129, P399, DOI 10.1007/s002270050180; CARACO NF, 1992, LIMNOL OCEANOGR, V37, P590, DOI 10.4319/lo.1992.37.3.0590; Chapelle A, 2010, J MARINE SYST, V83, P181, DOI 10.1016/j.jmarsys.2010.05.012; Chesson P, 2004, OECOLOGIA, V141, P236, DOI 10.1007/s00442-004-1551-1; DODSON AN, 1977, J EXP MAR BIOL ECOL, V26, P153, DOI 10.1016/0022-0981(77)90104-6; DROOP MR, 1973, J PHYCOL, V9, P264; Ducobu H, 1998, J PHYCOL, V34, P467, DOI 10.1046/j.1529-8817.1998.340467.x; DUGDALE RC, 1967, LIMNOL OCEANOGR, V12, P196, DOI 10.4319/lo.1967.12.2.0196; Edwards K. F., 2013, DRYAD DIGITAL REPOSI, DOI DOI 10.5061/DRYAD.KF4RT; Edwards KF, 2012, LIMNOL OCEANOGR, V57, P554, DOI 10.4319/lo.2012.57.2.0554; Edwards KF, 2011, ECOLOGY, V92, P2085, DOI 10.1890/11-0395.1; ELLNER S, 1987, VEGETATIO, V69, P199, DOI 10.1007/BF00038701; ELRIFI IR, 1985, J PHYCOL, V21, P592, DOI 10.1111/j.0022-3646.1985.00592.x; Evans MEK, 2005, Q REV BIOL, V80, P431, DOI 10.1086/498282; Flynn KJ, 2008, J PLANKTON RES, V30, P423, DOI 10.1093/plankt/fbn007; GOTHAM IJ, 1981, J PHYCOL, V17, P257, DOI 10.1111/j.1529-8817.1981.tb00848.x; Grover JP, 2011, AM NAT, V178, pE124, DOI 10.1086/662163; GROVER JP, 1991, OIKOS, V62, P231, DOI 10.2307/3545269; GROVER JP, 1989, J PHYCOL, V25, P402, DOI 10.1111/j.1529-8817.1989.tb00138.x; GROVER JP, 1990, AM NAT, V136, P771, DOI 10.1086/285131; HEALEY FP, 1980, MICROBIAL ECOL, V5, P281, DOI 10.1007/BF02020335; Hudson JJ, 1999, NATURE, V400, P659, DOI 10.1038/23240; Istvanovics V, 2004, FRESHWATER BIOL, V49, P232, DOI 10.1111/j.1365-2427.2004.01180.x; Kamarainen AM, 2009, AQUAT SCI, V71, P214, DOI 10.1007/s00027-009-9165-7; Lampert W, 2007, LIMNOECOLOGY ECOLOGY; Levine JM, 2002, AM NAT, V160, P452, DOI 10.1086/342073; Litchman E, 2009, P NATL ACAD SCI USA, V106, P2665, DOI 10.1073/pnas.0810891106; Litchman E, 2001, AM NAT, V157, P170, DOI 10.1086/318628; Litchman E, 2007, ECOL LETT, V10, P1170, DOI 10.1111/j.1461-0248.2007.01117.x; MOREL FMM, 1987, J PHYCOL, V23, P137; Noy-Mein I., 1974, Annual Rev Ecol Syst, V5, P195, DOI 10.1146/annurev.es.05.110174.001211; Noy-Meir I., 1973, Annual Review of Ecology and Systematics, V4, P25, DOI 10.1146/annurev.es.04.110173.000325; Polis GA, 1997, ECOLOGY, V78, P1884; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Robarts RD, 1998, LIMNOL OCEANOGR, V43, P1023, DOI 10.4319/lo.1998.43.6.1023; SMITH CC, 1976, AM ZOOL, V16, P763; Sommer U, 1996, NATURWISSENSCHAFTEN, V83, P293, DOI 10.1007/BF01152210; SOMMER U, 1984, LIMNOL OCEANOGR, V29, P633, DOI 10.4319/lo.1984.29.3.0633; Soranno PA, 1997, CAN J FISH AQUAT SCI, V54, P1883, DOI 10.1139/cjfas-54-8-1883; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tilman D., 1982, MONOGRAPHS POPULATIO; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Yang LH, 2010, ECOL MONOGR, V80, P125, DOI 10.1890/08-1996.1 45 14 14 2 79 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0003-0147 1537-5323 AM NAT Am. Nat. DEC 1 2013 182 6 786 800 10.1086/673532 15 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 251DF WOS:000326907300011 24231539 2019-02-21 J Kudo, H; Karino, K Kudo, Hiromi; Karino, Kenji Negative correlation between male ornament size and female preference intensity in a wild guppy population BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY English Article Female mate choice; Plasticity; Poecilia reticulata; Sexual ornament; Sexual selection LIFE-HISTORY EVOLUTION; ORANGE SPOT COLORATION; DIGITALLY-MODIFIED VIDEOS; POECILIA-RETICULATA; SEXUAL SELECTION; MATE CHOICE; MATING PREFERENCES; CAROTENOID LIMITATION; RELATIVE IMPORTANCE; NATURAL-POPULATION Although traditional sexual selection theories for the evolution of ornamental male traits often assume consistency in female preferences for the traits over time, recent theories predict plasticity in female mate preferences and the contribution of plastic female preferences to the maintenance of polymorphism in male sexual ornaments. However, the plasticity of female preferences and its influences on male ornaments are almost unknown in natural populations. Here we examined both the intensity of female preferences and the exaggeration of a male ornament (relative area of orange spots) in a wild population of the guppy (Poecilia reticulata) every few months over a period of 3 years. Results indicated that female preference intensity was negatively correlated with the relative area of orange spots of males. In addition, we found a positive correlation between female preference intensity and the relative area of orange spots of males of their offspring generation. Because the relative area of orange spots of male guppies is a heritable trait, female preferences might have a strong influence on male orange spot size in the next generation. This study provides the first evidence of plastic female preferences depending on the scarcity of males with large ornaments in a natural population. Results of this study imply a possible contribution of female preferences for the maintenance of variation in male ornamentation. [Kudo, Hiromi; Karino, Kenji] Tokyo Gakugei Univ, Dept Biol, Koganei, Tokyo 1848501, Japan Kudo, H (reprint author), Tokyo Gakugei Univ, Dept Biol, Nukui Kita 4-1-1, Koganei, Tokyo 1848501, Japan. r096002y@st.u-gakugei.ac.jp; kkarino@u-gakugei.ac.jp JSPS KAKENHI [23570020] We are grateful to two anonymous reviewers for their valuable comments and to Ryuichi Aihara, Shoko Fukuda, Nanae Hayashi, Munehiko Ito, Sonoko Miyazaki, and Aya Sato for help with culture maintenance and fieldwork. This study was supported in part by JSPS KAKENHI Grant Number 23570020 to KK. Andersson M., 1994, SEXUAL SELECTION; Andersson M, 2006, TRENDS ECOL EVOL, V21, P296, DOI 10.1016/j.tree.2006.03.015; Brooks R, 1996, BEHAV ECOL SOCIOBIOL, V39, P323, DOI 10.1007/s002650050296; Brooks R, 2001, EVOLUTION, V55, P1002, DOI 10.1554/0014-3820(2001)055[1002:DAISSA]2.0.CO;2; Candolin U, 2008, TRENDS ECOL EVOL, V23, P446, DOI 10.1016/j.tree.2008.04.008; Chaine AS, 2008, SCIENCE, V319, P459, DOI 10.1126/science.1149167; CHARLESWORTH B, 2000, EVOL GENET, P369; CLARK DL, 1992, ANIM BEHAV, V43, P247, DOI 10.1016/S0003-3472(05)80220-9; Cornwallis CK, 2010, TRENDS ECOL EVOL, V25, P145, DOI 10.1016/j.tree.2009.09.008; Eakley A.L., 2004, P R SOC LOND B S, V271, P299; Easty LK, 2011, ANIM BEHAV, V82, P1085, DOI 10.1016/j.anbehav.2011.08.001; Evans JP, 2003, BIOL J LINN SOC, V78, P605, DOI 10.1046/j.0024-4066.2002.00193.x; Farr JA, 1977, EVOLUTION, V31, P62; Gray SM, 2007, TRENDS ECOL EVOL, V22, P71, DOI 10.1016/j.tree.2006.10.005; Grether GF, 2000, EVOLUTION, V54, P1712; Grether GF, 1999, P ROY SOC B-BIOL SCI, V266, P1317, DOI 10.1098/rspb.1999.0781; GWYNNE DT, 1984, EVOLUTION, V38, P1011, DOI 10.1111/j.1558-5646.1984.tb00371.x; Hampton KJ, 2009, ETHOLOGY, V115, P475, DOI 10.1111/j.1439-0310.2009.01634.x; Hebets EA, 2000, BEHAV ECOL SOCIOBIOL, V47, P280, DOI 10.1007/s002650050667; Heubel KU, 2008, BEHAV ECOL, V19, P1080, DOI 10.1093/beheco/arn105; Houde A., 1997, SEX COLOR MATE CHOIC; HOUDE AE, 1992, HEREDITY, V69, P229, DOI 10.1038/hdy.1992.120; HOUDE AE, 1987, EVOLUTION, V41, P1, DOI 10.1111/j.1558-5646.1987.tb05766.x; HOUDE AE, 1994, P ROY SOC B-BIOL SCI, V256, P125, DOI 10.1098/rspb.1994.0059; Hughes KA, 1999, ANIM BEHAV, V58, P907, DOI 10.1006/anbe.1999.1225; Jennions MD, 1997, BIOL REV, V72, P283, DOI 10.1017/S0006323196005014; Karino K, 2004, ICHTHYOL RES, V51, P316, DOI 10.1007/s10228-004-0234-6; Karino K, 2002, BEHAVIOUR, V139, P1491, DOI 10.1163/15685390260514735; Karino K, 2010, J FISH BIOL, V77, P299, DOI 10.1111/j.1095-8649.2010.02688.x; Karino K, 2001, J ETHOL, V19, P33, DOI 10.1007/s101640170015; Karino K, 2007, BEHAVIOUR, V144, P101, DOI 10.1163/156853907779947427; Karino K, 2008, ENVIRON BIOL FISH, V83, P397, DOI 10.1007/s10641-008-9360-8; Kiritome A, 2012, ICHTHYOL RES, V59, P304, DOI 10.1007/s10228-012-0287-x; KIRKPATRICK M, 1991, NATURE, V350, P33, DOI 10.1038/350033a0; Kodric-Brown A, 2001, BEHAV ECOL SOCIOBIOL, V50, P346, DOI 10.1007/s002650100374; KodricBrown A, 1997, ANIM BEHAV, V54, P369, DOI 10.1006/anbe.1996.0420; KODRICBROWN A, 1989, BEHAV ECOL SOCIOBIOL, V25, P393, DOI 10.1007/BF00300185; Kokko H, 2007, P ROY SOC B-BIOL SCI, V274, P1317, DOI 10.1098/rspb.2007.0043; Kokko H, 2006, ANNU REV ECOL EVOL S, V37, P43, DOI 10.1146/annurev.ecolsys.37.091305.110259; Kraaijeveld K., 2010, BIOL REV, V86, P367, DOI DOI 10.1111/J.1469-185X.2010.00150.X; Kudo H, 2012, ZOOL SCI, V29, P319, DOI 10.2108/zsj.29.319; Kudo H, 2012, ICHTHYOL RES, V59, P1, DOI 10.1007/s10228-011-0239-x; Kwiatkowski MA, 2002, EVOLUTION, V56, P2039; Liley RN, 1966, BEHAVIOUR S, V13, P1; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Mead LS, 2004, TRENDS ECOL EVOL, V19, P264, DOI 10.1016/j.tree.2004.03.003; Milner RNC, 2010, BEHAV ECOL, V21, P311, DOI 10.1093/beheco/arp196; Nicoletto PF, 1999, ENVIRON BIOL FISH, V56, P333, DOI 10.1023/A:1007444904705; ODONALD P, 1983, THEOR POPUL BIOL, V23, P64, DOI 10.1016/0040-5809(83)90005-9; Olendorf R, 2006, NATURE, V441, P633, DOI 10.1038/nature04646; Pilastro A, 1999, P ROY SOC B-BIOL SCI, V266, P1887, DOI 10.1098/rspb.1999.0862; Qvarnstrom A, 2001, TRENDS ECOL EVOL, V16, P5, DOI 10.1016/S0169-5347(00)02030-9; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Rosenqvist G, 1997, BEHAV ECOL, V8, P194, DOI 10.1093/beheco/8.2.194; Sato A, 2006, ICHTHYOL RES, V53, P398, DOI 10.1007/s10228-006-0364-0; Singh BN, 2000, CURR SCI INDIA, V78, P141; Wong BBM, 2007, AM NAT, V170, P184, DOI 10.1086/519398; Zajitschek SRK, 2006, BEHAV ECOL, V17, P911, DOI 10.1093/beheco/arl026; Zajitschek SRK, 2008, AM NAT, V172, P843, DOI 10.1086/593001 61 3 3 0 45 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0340-5443 1432-0762 BEHAV ECOL SOCIOBIOL Behav. Ecol. Sociobiol. DEC 2013 67 12 1931 1938 10.1007/s00265-013-1600-z 8 Behavioral Sciences; Ecology; Zoology Behavioral Sciences; Environmental Sciences & Ecology; Zoology 253HF WOS:000327074200004 2019-02-21 J Saino, N; Canova, L; Costanzo, A; Rubolini, D; Roulin, A; Moller, A Saino, Nicola; Canova, Luca; Costanzo, Alessandra; Rubolini, Diego; Roulin, Alexandre; Moller, Anders Pape Immune and Stress Responses Covary with Melanin-Based Coloration in the Barn Swallow EVOLUTIONARY BIOLOGY English Review Corticosterone; Color; Hirundo rustica; Immunity; Melanin; Sex SEXUAL ORNAMENTATION; HIRUNDO-RUSTICA; PARENTAL EFFORT; PLUMAGE COLOR; ALPHA-MSH; CORTICOSTERONE; EVOLUTION; OWLS; GROWTH; GLUCOCORTICOIDS Eumelanin and pheomelanin are the main endogenous pigments in animals and melanin-based coloration has multiple functions. Melanization is associated with major life-history traits, including immune and stress response, possibly because of pleiotropic effects of genes that control melanogenesis. The net effects on pheo- versus eumelanization and other life-history traits may depend on the antagonistic effects of the genes that trigger the biosynthesis of either melanin form. Covariation between melanin-based pigmentation and fitness traits enforced by pleiotropic genes has major evolutionary implications particularly for socio-sexual communication. However, evidence from non-model organisms in the wild is limited to very few species. Here, we tested the hypothesis that melanin-based coloration of barn swallow (Hirundo rustica) throat and belly feathers covaries with acquired immunity and activation of the hypothalamic-pituitary-adrenal (HPA) axis, as gauged by corticosterone plasma levels. Individuals of both sexes with darker brownish belly feathers had weaker humoral immune response, while darker males had higher circulating corticosterone levels only when parental workload was experimentally reduced. Because color of belly feathers depends on both eu- and pheomelanin, and its darkness decreases with an increase in the concentration of eu- relative to pheomelanin, these results are consistent with our expectation that relatively more eu- than pheomelanized individuals have better immune response and smaller activation of the HPA-axis. Covariation of immune and stress response arose for belly but not throat feather color, suggesting that any function of color as a signal of individual quality or of alternative life-history strategies depends on plumage region. [Saino, Nicola; Costanzo, Alessandra; Rubolini, Diego] Univ Milan, Dept Biosci, I-20133 Milan, Italy; [Canova, Luca] Univ Pavia, Dept Biol & Biotechnol Lazzaro Spallanzani, I-27100 Pavia, Italy; [Roulin, Alexandre] Univ Lausanne, Dept Ecol & Evolut, CH-1024 Lausanne, Switzerland; [Moller, Anders Pape] Lab Ecol Systemat & Evolut, F-91405 Orsay, France Saino, N (reprint author), Univ Milan, Dept Biosci, Via Celoria 26, I-20133 Milan, Italy. nicola.saino@unimi.it Canova, Luca/P-6066-2017; Rubolini, Diego/F-2851-2011 Canova, Luca/0000-0002-5011-7413; Rubolini, Diego/0000-0003-2703-5783; costanzo, alessandra/0000-0003-3781-0798; Saino, Nicola/0000-0002-0230-3967 Almasi B, 2012, J EVOLUTION BIOL, V25, P1189, DOI 10.1111/j.1420-9101.2012.02508.x; Almasi B, 2010, J EVOLUTION BIOL, V23, P987, DOI 10.1111/j.1420-9101.2010.01969.x; Almasi B, 2008, HORM BEHAV, V54, P217, DOI 10.1016/j.yhbeh.2008.02.021; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonneaud C, 2003, AM NAT, V161, P367, DOI 10.1086/346134; Bowers RR, 1999, CELL MOL BIOL, V45, P1065; Breuner CW, 1999, J EXP ZOOL, V284, P334, DOI 10.1002/(SICI)1097-010X(19990801)284:3<334::AID-JEZ11>3.0.CO;2-#; Catania A, 1996, PEPTIDES, V17, P675, DOI 10.1016/0196-9781(96)00037-X; Charmandari E, 2005, ANNU REV PHYSIOL, V67, P259, DOI 10.1146/annurev.physiol.67.040403.120816; Czifra G, 1996, AVIAN PATHOL, V25, P691, DOI 10.1080/03079459608419175; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Fargallo JA, 2007, EVOL ECOL, V21, P157, DOI 10.1007/s10682-006-0020-1; Galeotti P, 2003, J ZOOL, V261, P91, DOI 10.1017/S0952836903003960; Galvan I, 2009, FUNCT ECOL, V23, P302, DOI 10.1111/j.1365-2435.2008.01504.x; Gangoso L, 2011, J EVOLUTION BIOL, V24, P2055, DOI 10.1111/j.1420-9101.2011.02336.x; Gasparini J, 2009, J EVOLUTION BIOL, V22, P2348, DOI 10.1111/j.1420-9101.2009.01831.x; Ginn H. B, 1983, MOULT IN BIRDS; GOLDSMITH TH, 1990, Q REV BIOL, V65, P281, DOI 10.1086/416840; Hill G, 2006, BIRD COLORATION, V2; Hoekstra HE, 2006, HEREDITY, V97, P222, DOI 10.1038/sj.hdy.6800861; Janeway Jr CA, 2005, IMMUNOBIOLOGY IMMUNE; Jawor JM, 2003, AUK, V120, P249, DOI 10.1642/0004-8038(2003)120[0249:MOHASS]2.0.CO;2; Jessop TS, 2002, HORM BEHAV, V41, P357, DOI 10.1006/hbeh.2002.1775; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Liebl AL, 2012, P ROY SOC B-BIOL SCI, V279, P4375, DOI 10.1098/rspb.2012.1606; Loser K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008958; Majerus M. E. N., 1998, MELANISM EVOLUTION A; McGraw KJ, 2005, FUNCT ECOL, V19, P816, DOI 10.1111/j.1365-2435.2005.01032.x; McGraw KJ, 2004, BEHAV ECOL, V15, P889, DOI 10.1093/beheco/arh109; Meunier J, 2011, BEHAV ECOL SOCIOBIOL, V65, P559, DOI 10.1007/s00265-010-1092-z; MOLLER AP, 1993, BEHAV ECOL SOCIOBIOL, V32, P167; PANCAK MK, 1983, GEN COMP ENDOCR, V50, P490, DOI 10.1016/0016-6480(83)90271-X; Piault R, 2009, AM NAT, V174, P548, DOI 10.1086/605374; POTTI J, 1991, IBIS, V133, P293, DOI 10.1111/j.1474-919X.1991.tb04572.x; Rensel MA, 2010, GEN COMP ENDOCR, V165, P255, DOI 10.1016/j.ygcen.2009.07.002; Romero LM, 2004, TRENDS ECOL EVOL, V19, P249, DOI 10.1016/j.tree.2004.03.008; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Roulin A, 2000, P ROY SOC B-BIOL SCI, V267, P937, DOI 10.1098/rspb.2000.1093; Roulin A, 2008, BEHAV ECOL SOCIOBIOL, V62, P507, DOI 10.1007/s00265-007-0475-2; Roulin A, 2004, BIOL REV, V79, P815, DOI 10.1017/S1464793104006487; Roulin A, 2011, J EVOLUTION BIOL, V24, P2241, DOI 10.1111/j.1420-9101.2011.02353.x; Roulin A, 2010, J EVOLUTION BIOL, V23, P2046, DOI 10.1111/j.1420-9101.2010.02086.x; Roulin A, 2008, ANIM BEHAV, V75, P1351, DOI 10.1016/j.anbehav.2007.09.007; Roulin A, 2011, EUR J PHARMACOL, V660, P226, DOI 10.1016/j.ejphar.2011.01.036; Roulin A, 2009, NATURWISSENSCHAFTEN, V96, P375, DOI 10.1007/s00114-008-0489-2; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; Saino N, 2003, J EVOLUTION BIOL, V16, P1127, DOI 10.1046/j.1420-9101.2003.00616.x; Saino N, 2002, P ROY SOC B-BIOL SCI, V269, P1005, DOI 10.1098/rspb.2002.1992; Saino N, 2002, BEHAV ECOL, V13, P169, DOI 10.1093/beheco/13.2.169; Saino N, 2000, AM NAT, V156, P637, DOI 10.1086/316996; Saino N, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0058024; Saino N, 2012, J ANIM ECOL, V81, P1004, DOI 10.1111/j.1365-2656.2012.01989.x; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Simon JD, 2009, PIGM CELL MELANOMA R, V22, P563, DOI 10.1111/j.1755-148X.2009.00610.x; Stoddard MC, 2008, AM NAT, V171, P755, DOI 10.1086/587526; Taherzadeh S, 1999, AM J PHYSIOL-REG I, V276, pR1289; Turner A, 2006, BARN SWALLOW; Uller T, 2006, FUNCT ECOL, V20, P873, DOI 10.1111/j.1365-2435.2006.01163.x; WEIMERSKIRCH H, 1989, J ZOOL, V219, P411, DOI 10.1111/j.1469-7998.1989.tb02589.x; WINGFIELD JC, 1998, BEHAV APPROACHES CON, P95 60 17 18 2 59 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0071-3260 1934-2845 EVOL BIOL Evol. Biol. DEC 2013 40 4 521 531 10.1007/s11692-013-9228-5 11 Evolutionary Biology Evolutionary Biology 253YN WOS:000327126200006 2019-02-21 J Frazer, KK; Russello, MA Frazer, K. K.; Russello, M. A. Lack of parallel genetic patterns underlying the repeated ecological divergence of beach and stream-spawning kokanee salmon JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; expressed sequence tag-linked microsatellites; life history evolution; population genomics; sockeye salmon SINGLE-NUCLEOTIDE POLYMORPHISMS; ALLELE FREQUENCY DATA; ONCORHYNCHUS-NERKA; SOCKEYE-SALMON; GENOME SCANS; POPULATION-STRUCTURE; NATURAL-SELECTION; ATLANTIC SALMON; CANDIDATE LOCI; COMPUTER-PROGRAM Recent progress in methods for detecting adaptive population divergence in situ shows promise for elucidating the conditions under which selection acts to generate intraspecific diversity. Rapid ecological diversification is common in fishes; however, the role of phenotypic plasticity and adaptation to local environments is poorly understood. It is now possible to investigate genetic patterns to make inferences regarding phenotypic traits under selection and possible mechanisms underlying ecotype divergence, particularly where similar novel phenotypes have arisen in multiple independent populations. Here, we employed a bottom-up approach to test for signatures of directional selection associated with divergence of beach- and stream-spawning kokanee, the obligate freshwater form of sockeye salmon (Oncorhynchus nerka). Beach- and stream-spawners co-exist in many post-glacial lakes and exhibit distinct reproductive behaviours, life-history traits and spawning habitat preferences. Replicate ecotype pairs across five lakes in British Columbia, Canada were genotyped at 57 expressed sequence tag-linked and anonymous microsatellite loci identified in a previous genome scan. Fifteen loci exhibited signatures of directional selection (high F-ST outliers), four of which were identified in multiple lakes. However, the lack of parallel genetic patterns across all lakes may be a result of: 1) an inability to detect loci truly under selection; 2) alternative genetic pathways underlying ecotype divergence in this system; and/or 3) phenotypic plasticity playing a formative role in driving kokanee spawning habitat differences. Gene annotations for detected outliers suggest pathogen resistance and energy metabolism as potential mechanisms contributing to the divergence of beach- and stream-spawning kokanee, but further study is required. [Frazer, K. K.; Russello, M. A.] Univ British Columbia, Dept Biol, Kelowna, BC V1V 1V7, Canada Russello, MA (reprint author), Univ British Columbia, Dept Biol, Okanagan Campus,3333 Univ Way, Kelowna, BC V1V 1V7, Canada. michael.russello@ubc.ca Natural Sciences and Engineering Research Council of Canada (NSERC) [341711-07]; NSERC Canada Graduate Scholarship; Pacific Century Award Paul Askey (BC Ministry of Forests, Lands and Natural Resource Operations) offered valuable background information regarding this system and, together with Jason Webster (Chara Consulting), was instrumental in providing samples from Okanagan and Wood Lakes. Jeff Burrows and Joe DeGisi (BC Ministry of Environment) facilitated sampling in Kootenay and Tchesinkut Lakes, respectively, and all samples from Duncan Lake were provided by Ico de Zwart (Masse Environmental Consultants). Matt Lemay provided helpful comments on an earlier version of this manuscript and Mark Rheault offered valuable advice regarding gene annotations. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC; Discovery grant # 341711-07 to MR) and KF was partially supported by an NSERC Canada Graduate Scholarship and a Pacific Century Award. Abele R, 2006, FEBS LETT, V580, P1156, DOI 10.1016/j.febslet.2005.11.048; Andrusak G., 2011, OBSERVATIONS ANAL SH; Antao T, 2008, BMC BIOINFORMATICS, V9, DOI 10.1186/1471-2105-9-323; Ashley K., 1998, 73 RD MIN FISH FISH; Barrett RDH, 2011, NAT REV GENET, V12, P767, DOI 10.1038/nrg3015; Beaumont MA, 1996, P ROY SOC B-BIOL SCI, V263, P1619, DOI 10.1098/rspb.1996.0237; BENJAMINI Y, 1995, J R STAT SOC B, V57, P289; Bonin A, 2006, MOL BIOL EVOL, V23, P773, DOI 10.1093/molbev/msj087; Brownstein MJ, 1996, BIOTECHNIQUES, V20, P1004; BURGER CV, 1995, T AM FISH SOC, V124, P1, DOI 10.1577/1548-8659(1995)124<0001:POSSBS>2.3.CO;2; Butlin RK, 2010, GENETICA, V138, P409, DOI 10.1007/s10709-008-9321-3; Campbell D, 2004, MOL BIOL EVOL, V21, P945, DOI 10.1093/molbev/msh101; Colosimo PF, 2004, PLOS BIOL, V2, P635, DOI 10.1371/journal.pbio.0020109; Conte GL, 2012, P ROY SOC B-BIOL SCI, V279, P5039, DOI 10.1098/rspb.2012.2146; Cornuet JM, 1996, GENETICS, V144, P2001; Creelman EK, 2011, T AM FISH SOC, V140, P749, DOI 10.1080/00028487.2011.584494; Deagle BE, 2012, P ROY SOC B-BIOL SCI, V279, P1277, DOI 10.1098/rspb.2011.1552; DeFaveri J, 2011, EVOLUTION, V65, P1800, DOI 10.1111/j.1558-5646.2011.01247.x; Dill P., 1996, STUDY SHORE SPAWNING, P23; DIRIENZO A, 1994, P NATL ACAD SCI USA, V91, P3166, DOI 10.1073/pnas.91.8.3166; Dittman AH, 1996, J EXP BIOL, V199, P83; Drummond A.J., 2011, GENEIOUS V5 4; Earl DA, 2012, CONSERV GENET RESOUR, V4, P359, DOI 10.1007/s12686-011-9548-7; Egan SP, 2008, EVOLUTION, V62, P1162, DOI 10.1111/j.1558-5646.2008.00352.x; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2009, HEREDITY, V103, P285, DOI 10.1038/hdy.2009.74; EXCOFFIER L, 1992, GENETICS, V131, P479; Excoffier L, 2010, MOL ECOL RESOUR, V10, P564, DOI 10.1111/j.1755-0998.2010.02847.x; Feder JL, 2012, TRENDS GENET, V28, P342, DOI 10.1016/j.tig.2012.03.009; Foll M, 2008, GENETICS, V180, P977, DOI 10.1534/genetics.108.092221; FOOTE CJ, 1989, CAN J FISH AQUAT SCI, V46, P149, DOI 10.1139/f89-020; Garza JC, 2001, MOL ECOL, V10, P305, DOI 10.1046/j.1365-294x.2001.01190.x; Gomez-Uchida D, 2011, BMC EVOL BIOL, V11, DOI 10.1186/1471-2148-11-48; GUO SW, 1992, AM J HUM GENET, V51, P1111; Hassemer P.F., 1981, North American Journal of Fisheries Management, V1, P173, DOI 10.1577/1548-8659(1981)1<173:OODKOA>2.0.CO;2; HEEMELS MT, 1994, IMMUNITY, V1, P775, DOI 10.1016/S1074-7613(94)80019-7; Hendry AP, 2009, CAN J FISH AQUAT SCI, V66, P1383, DOI 10.1139/F09-074; Hendry AP, 2004, EVOLUTION ILLUMINATE; Hoekstra HE, 2006, SCIENCE, V313, P101, DOI 10.1126/science.1126121; Hohenlohe PA, 2010, PLOS GENET, V6, DOI 10.1371/journal.pgen.1000862; Hubisz MJ, 2009, MOL ECOL RESOUR, V9, P1322, DOI 10.1111/j.1755-0998.2009.02591.x; Jensen LF, 2008, HEREDITY, V100, P79, DOI 10.1038/sj.hdy.6801067; Johannesson K, 2001, TRENDS ECOL EVOL, V16, P148, DOI 10.1016/S0169-5347(00)02078-4; Jombart T, 2010, BMC GENET, V11, DOI 10.1186/1471-2156-11-94; Kauer MO, 2003, GENETICS, V165, P1137; Keller I, 2011, MOL ECOL, V20, P1888, DOI 10.1111/j.1365-294X.2011.05067.x; Lecomte F, 2004, EVOL ECOL RES, V6, P631; Lemay MA, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-308; Liao BY, 2010, P NATL ACAD SCI USA, V107, P7353, DOI 10.1073/pnas.0910339107; Luikart G, 2003, NAT REV GENET, V4, P981, DOI 10.1038/nrg1226; Margolis G. A., 1991, PACIFIC SALMON LIFE, P3; McCluskey J, 2004, CURR OPIN IMMUNOL, V16, P651, DOI 10.1016/j.coi.2004.07.016; McKinnon JS, 2004, NATURE, V429, P294, DOI 10.1038/nature02556; Monaco J. J., 1992, CURR BIOL, V2, P433; Moran MD, 2003, OIKOS, V100, P403, DOI 10.1034/j.1600-0706.2003.12010.x; Morbey YE, 2003, BEHAV ECOL SOCIOBIOL, V54, P127, DOI 10.1007/s00265-003-0606-3; Morbey YE, 2002, BEHAVIOUR, V139, P507, DOI 10.1163/15685390260135989; Namroud MC, 2008, MOL ECOL, V17, P3599, DOI 10.1111/j.1365-294X.2008.03840.x; Narum SR, 2011, MOL ECOL RESOUR, V11, P184, DOI 10.1111/j.1755-0998.2011.02987.x; Nash D, 2005, P ROY SOC B-BIOL SCI, V272, P1153, DOI 10.1098/rspb.2004.3026; Nei M., 1987, MOL EVOLUTIONARY GEN; Nie YC, 2008, J EXP MED, V205, P777, DOI 10.1084/jem.20072513; Nielsen R, 2005, ANNU REV GENET, V39, P197, DOI 10.1146/annurev.genet.39.073003.112420; Nosil P, 2009, MOL ECOL, V18, P375, DOI 10.1111/j.1365-294X.2008.03946.x; O'Malley KG, 2007, MOL ECOL, V16, P4930, DOI 10.1111/j.1365-294X.2007.03565.x; Oetjen K, 2007, MOL ECOL, V16, P5156, DOI 10.1111/j.1365-294X.2007.03577.x; Ohta Y, 2003, EUR J IMMUNOL, V33, P3017, DOI 10.1002/eji.200324207; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Piry S, 1999, J HERED, V90, P502, DOI 10.1093/jhered/90.4.502; POWIS SJ, 1992, NATURE, V357, P211, DOI 10.1038/357211a0; Pritchard JK, 2000, GENETICS, V155, P945; Quinn TP, 1999, BEHAVIOUR, V136, P179, DOI 10.1163/156853999501270; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; R Development Core Team, 2012, R LANG ENV STAT COMP; Raymond M, 1995, EVOLUTION, V49, P1280, DOI 10.1111/j.1558-5646.1995.tb04456.x; Renaut S, 2011, MOL ECOL, V20, P545, DOI 10.1111/j.1365-294X.2010.04952.x; Rexroad CE, 2005, BMC GENOMICS, V6, DOI 10.1186/1471-2164-6-54; RICE WR, 1989, EVOLUTION, V43, P223, DOI 10.1111/j.1558-5646.1989.tb04220.x; Ricker W. E., 1940, Transactions of the Royal Society of Canada (3), V34, P121; Roberge C, 2007, MOL IMMUNOL, V44, P1374, DOI 10.1016/j.molimm.2006.05.005; Roesti M, 2012, MOL ECOL, V21, P2852, DOI 10.1111/j.1365-294X.2012.05509.x; Rogers SM, 2005, MOL ECOL, V14, P351, DOI 10.1111/j.1365-294X.2004.02396.x; Rozen S, 2000, Methods Mol Biol, V132, P365; Russello MA, 2012, EVOL APPL, V5, P39, DOI 10.1111/j.1752-4571.2011.00206.x; Salem M, 2010, BMC GENOMICS, V11, DOI 10.1186/1471-2164-11-564; Savolainen V, 2006, NATURE, V441, P210, DOI 10.1038/nature04566; Schlotterer C, 2003, TRENDS GENET, V19, P32, DOI 10.1016/S0168-9525(02)00012-4; Schlotterer C, 2002, GENETICS, V160, P753; Schluter D, 2010, PHILOS T R SOC B, V365, P2479, DOI 10.1098/rstb.2010.0036; Schuelke M, 2000, NAT BIOTECHNOL, V18, P233, DOI 10.1038/72708; Shephard B. G., 2000, P C BIOL MAN SPEC HA, P609; Shikano T, 2010, MOL BIOL EVOL, V27, P2775, DOI 10.1093/molbev/msq167; Skugor S, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-498; St-Cyr J, 2008, MOL ECOL, V17, P1850, DOI 10.1111/j.1365-294X.2008.03696.x; Stinchcombe JR, 2008, HEREDITY, V100, P158, DOI 10.1038/sj.hdy.6800937; Stolting KN, 2013, MOL ECOL, V22, P842, DOI 10.1111/mec.12011; Storz JF, 2005, MOL ECOL, V14, P671, DOI 10.1111/j.1365-294X.2005.02437.x; Storz JF, 2003, EVOLUTION, V57, P2628; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Taylor EB, 1997, MOL ECOL, V6, P503, DOI 10.1046/j.1365-294X.1997.00213.x; Taylor EB, 1996, EVOLUTION, V50, P401, DOI 10.1111/j.1558-5646.1996.tb04502.x; Taylor Eric B., 2000, Conservation Genetics, V1, P231, DOI 10.1023/A:1011553705015; Teschke M, 2008, GENETICS, V180, P1537, DOI 10.1534/genetics.108.090811; Teshima KM, 2006, GENOME RES, V16, P702, DOI 10.1101/gr.5105206; Thornton KR, 2007, GENETICS, V175, P737, DOI 10.1534/genetics.106.064642; Tice KA, 2011, J EVOLUTION BIOL, V24, P1814, DOI 10.1111/j.1420-9101.2011.02314.x; Turner TL, 2005, PLOS BIOL, V3, P1572, DOI 10.1371/journal.pbio.0030285; Van Oosterhout C, 2004, MOL ECOL NOTES, V4, P535, DOI 10.1111/j.1471-8286.2004.00684.x; Vasemagi A, 2005, MOL ECOL, V14, P3623, DOI 10.1111/j.1365-294X.2005.02690.x; Vasemagi A, 2005, MOL BIOL EVOL, V22, P1067, DOI 10.1093/molbev/msi093; Via S, 2008, MOL ECOL, V17, P4334, DOI 10.1111/j.1365-294X.2008.03921.x; Via S, 2009, P NATL ACAD SCI USA, V106, P9939, DOI 10.1073/pnas.0901397106; Vitalis R, 2003, J HERED, V94, P429, DOI 10.1093/jhered/esg083; Vitalis R, 2001, GENETICS, V158, P1811; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Winans GA, 2003, ENVIRON BIOL FISH, V67, P87, DOI 10.1023/A:1024401102141; Wolf JBW, 2010, PHILOS T R SOC B, V365, P1717, DOI 10.1098/rstb.2010.0023 117 10 10 1 46 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. DEC 2013 26 12 2606 2621 10.1111/jeb.12250 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 253UX WOS:000327115900007 24118176 Bronze 2019-02-21 J Seiter, S; Ohsaki, N; Kingsolver, J Seiter, S.; Ohsaki, N.; Kingsolver, J. Parallel invasions produce heterogenous patterns of life history adaptation: rapid divergence in an invasive insect JOURNAL OF EVOLUTIONARY BIOLOGY English Article adaptation; evolutionary physiology; host-parasite interaction; insects; life history evolution; natural selection; phenotypic plasticity; trade-offs L HYMENOPTERA-BRACONIDAE; BUTTERFLY PIERIS-RAPAE; MANDUCA-SEXTA; DROSOPHILA-SUBOBSCURA; POPULATION DIVERGENCE; GEOGRAPHIC-VARIATION; IMMUNE-RESPONSES; DEVELOPMENT TIME; TRADE-OFFS; BODY-SIZE Biotic invasions provide a natural experiment in evolution: when invasive species colonize new ranges, they may evolve new clines in traits in response to environmental gradients. Yet it is not clear how rapidly such patterns can evolve and whether they are consistent between regions. We compare four populations of the invasive cabbage white butterfly (Pieris rapae) from North America and Japan, independently colonized by P.rapae 150years ago and 300years ago, respectively. On each continent, we employed a northern and southern population to compare the effects of latitude on body mass, development rate and immune function. For each population, we used a split-sibling family design in which siblings were reared at either warm (26.7 degrees C) or cool (20 degrees C) temperatures to determine reaction norms for each trait. Latitudinal patterns in development time were similar between the two continents. In contrast, there were strong geographical differences in reaction norms for body size, but no consistent effects of latitude; there were no detectable effects of latitude or continent on immune function. These results imply that some life history traits respond consistently to selection along climatic gradients, whereas other traits may respond to local environmental factors, or not at all. [Seiter, S.] Univ N Carolina, Dept Ecol Evolut & Organismal Biol, Chapel Hill, NC 27515 USA; [Ohsaki, N.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA; [Kingsolver, J.] Yamagata Univ, Yamagata 990, Japan Seiter, S (reprint author), Univ N Carolina, Dept Ecol Evolut & Organismal Biol, Chapel Hill, NC 27515 USA. sseiter@live.unc.edu JSPS [1108085]; NSF [1108085, IOS-0641179, IOS-1120500] The authors wish to thank Dr. Shingo Tanaka for collecting and shipping animals from the Sapporo population of P. rapae, without his assistance, this work would not be possible. We also wish to thank Dr. Yoshibumi Sato, Dr. Noriyuki Suzuki, Daisuke Kyogoku, Kazutaka Kawatsu, Shuhei Kada and the other members of the Laboratory of Insect Ecology at Kyoto University for their invaluable help and guidance in the laboratory and beyond. We also wish to thank Emily Ryan, Austin Brandt, Samantha Card and Heidi MacLean for their help with the North America populations. Dr. Charles Mitchell, Dr. Lauren Buckley, Dr. David Pfennig and Dr. Mark Sorenson, Jessica Higgins, Kate Augustine, Heidi MacLean and two anonymous reviewers provided valuable feedback on the article. The research was jointly supported by the JSPS and the NSF through the East Asia and the Pacific Fellowship program (Award #: 1108085) and through NSF Grants IOS-0641179 and IOS-1120500 awarded to JGK. Abramoff MD, 2004, BIOPHOTONICS INT, V11, P36, DOI DOI 10.1117/1.3589100; Angilletta MJ, 2009, BIO HABIT, P1, DOI 10.1093/acprof:oso/9780198570875.001.1; Angilletta MJ, 2001, PHYSIOL BIOCHEM ZOOL, V74, P11; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Baker H. G., 1965, GENETICS COLONIZING; Beetz S, 2008, ARCH INSECT BIOCHEM, V67, P63, DOI 10.1002/arch.20221; Blanckenhorn WU, 2004, INTEGR COMP BIOL, V44, P413, DOI 10.1093/icb/44.6.413; Caicedo AL, 2004, P NATL ACAD SCI USA, V101, P15670, DOI 10.1073/pnas.0406232101; Corby-Harris V, 2008, J ANIM ECOL, V77, P768, DOI 10.1111/j.1365-2656.2008.01399.x; De Block M, 2008, ECOGRAPHY, V31, P115, DOI 10.1111/j.2007.0906-7590.05313.x; Diamond SE, 2011, P ROY SOC B-BIOL SCI, V278, P289, DOI 10.1098/rspb.2010.1137; Fukano Y, 2012, INSECT SCI, V19, P239, DOI 10.1111/j.1744-7917.2011.01441.x; GILBERT N, 1988, J ANIM ECOL, V57, P395, DOI 10.2307/4913; GILBERT N, 1984, J ANIM ECOL, V53, P589, DOI 10.2307/4537; Gilchrist GW, 2004, INTEGR COMP BIOL, V44, P461, DOI 10.1093/icb/44.6.461; Gilchrist GW, 2001, GENETICA, V112, P273, DOI 10.1023/A:1013358931816; Gomi T, 1996, FUNCT ECOL, V10, P384, DOI 10.2307/2390287; Hu YW, 2012, ENTOMOL EXP APPL, V144, P223, DOI 10.1111/j.1570-7458.2012.01281.x; JOHNSTON RF, 1964, SCIENCE, V144, P548, DOI 10.1126/science.144.3618.548; Jonas CS, 1999, AM J BOT, V86, P333, DOI 10.2307/2656755; Kawakatsu M., 2010, Z WISSENSCHAFTLICHE, V38; Kingsolver JG, 2007, J EVOLUTION BIOL, V20, P892, DOI 10.1111/j.1420-9101.2007.01318.x; Kingsolver J. G., 2012, FUNCT ECOL, V59, P8; Kraaijeveld AR, 2001, EVOL ECOL RES, V3, P107; Kraaijeveld AR, 1999, AM NAT, V153, pS61, DOI 10.1086/303212; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; Maron JL, 2007, EVOLUTION, V61, P1912, DOI 10.1111/j.1558-5646.2007.00153.x; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; MOONEY HA, 1961, ECOL MONOGR, V31, P1, DOI 10.2307/1950744; Nygren Georg H., 2008, Journal of Insect Science (Tucson), V8, P1, DOI 10.1673/031.008.4701; Obara Y, 2008, ZOOL SCI, V25, P1106, DOI 10.2108/zsj.25.1106; PARSONS PA, 1983, EVOLUTIONARY BIOL CO; PEGUEROLES G, 1995, EVOL ECOL, V9, P453, DOI 10.1007/BF01237767; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; ROFF DA, 2002, LIFE HIST EVOLUTION; SATO Y, 1978, APPL ENTOMOL ZOOL, V13, P76, DOI 10.1303/aez.13.76; SATO Y, 1977, APPL ENTOMOL ZOOL, V12, P330, DOI 10.1303/aez.12.330; Scudder S. H., 1887, INTRO SPREAD PIERIS, P1860; Seiter S, 2013, J EVOLUTION BIOL, V26, P1634, DOI 10.1111/jeb.12159; Shelomi M, 2012, AM NAT, V180, P511, DOI 10.1086/667595; Smilanich AM, 2009, ECOL LETT, V12, P612, DOI 10.1111/j.1461-0248.2009.01309.x; Snell-Rood EC, 2009, AM NAT, V173, P615, DOI 10.1086/597609; Stillwell RC, 2007, OECOLOGIA, V153, P273, DOI 10.1007/s00442-007-0724-0; Tanaka S., 2007, EVOLUTION, V179, P1; TROETSCHLER RG, 1985, J ECON ENTOMOL, V78, P1521, DOI 10.1093/jee/78.6.1521; Vos M, 2004, EVOL ECOL RES, V6, P1021 47 2 3 2 35 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. DEC 2013 26 12 2721 2728 10.1111/jeb.12263 8 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 253UX WOS:000327115900017 24164624 Bronze 2019-02-21 J Espirito-Santo, HMV; Rodriguez, MA; Zuanon, J Espirito-Santo, Helder M. V.; Rodriguez, Marco A.; Zuanon, Jansen Reproductive strategies of Amazonian stream fishes and their fine-scale use of habitat are ordered along a hydrological gradient FRESHWATER BIOLOGY English Article freshwater fish; habitat segregation; life-history strategy; seasonal variation; temporary ponds LIFE-HISTORY VARIATION; AMERICAN FISHES; SELECTION; COMMUNITIES; PREDATION; PATTERNS; DISTRIBUTIONS; ENVIRONMENTS; ASSEMBLAGES; VARIABILITY Macroecological comparisons have shown that habitat characteristics have a major influence on the evolution of life-history strategies of fishes in large river systems. Specifically, habitat variability and predictability seem to forge the reproductive strategies of fishes into a trilateral continuum with three main types: seasonal, opportunistic and equilibrium. Despite the usefulness of such a broad categorisation, large-scale patterns of trait distribution should ultimately be influenced by selection at smaller (i.e. individual) spatial scales. However, the scarcity of studies developed at the organismal scale leaves gaps in our understanding of how habitat characteristics affect life history and behavioural tactics of stream fishes. We examined the fine-scale spatial distribution of fishes in pristine Amazonian headwater streams over a full seasonal cycle to test whether segregation into main channel and associated temporary pond habitats was predictably related to hydrological variation and species' life-history traits. Most species could not be unambiguously assigned to one of the three end points of the trilateral continuum, but seemingly occupied instead the intermediate multivariate space between the end points. However, species were clearly ordered along a gradient of relative habitat use, ranging from strict channel dwellers throughout the hydrological cycle to pond specialists, with some species occupying the ponds at high water levels. Hydrological effects on habitat use were significantly related to species' reproductive strategies, with the strongest responses found in species with large eggs and seasonally concentrated reproduction, which were most abundant in ponds at high water levels. We suggest that trophic limitations and hydrological characteristics of Amazonian headwater forest streams may severely limit the seasonal strategy, one of the end points of the trilateral model. The species-specific habitat segregation reported here adds to the list of mechanisms, such as miniaturisation and isolation by distance, previously postulated to contribute to high diversity of stream fish faunas in the Amazon basin. [Espirito-Santo, Helder M. V.] Inst Nacl de Pesquisas da Amazonia, Programa Posgrad Ecol, BR-69060001 Manaus, Amazonas, Brazil; [Rodriguez, Marco A.] Univ Quebec Trois Rivieres, Dept Environm Sci, Trois Rivieres, PQ GA9 5H7, Canada; [Zuanon, Jansen] Inst Nacl de Pesquisas da Amazonia, BR-69060001 Manaus, Amazonas, Brazil Espirito-Santo, HMV (reprint author), Inst Nacl de Pesquisas da Amazonia, Programa Posgrad Ecol, Av Andre Araujo,2936 Aleixo,CP 478, BR-69060001 Manaus, Amazonas, Brazil. espiritosantohm@gmail.com Rodriguez, Marco A./J-6492-2012; Espirito-Santo, Helder/L-8565-2013 Rodriguez, Marco A./0000-0003-0391-9170; Espirito-Santo, Helder/0000-0001-7256-1868 Conselho Nacional de Desenvolvimento Cientifico e Tecologico (CNPq); Natural Sciences and Engineering Research Council of Canada; CNPq [307464/2009-1]; Projetos Ecologicos de Longa Duracao (PELD); Programa de Pesquisa em Biodiversidade (PPBio); CNPq; FAPEAM We thank W. Magnusson for advice and support in the conception of the study; M. S. Dias and M. S. Carvalho for field assistance and ideas; and Jose Lopes, Vanessa Reis, Claudia Gualberto and Leandro Avila for field assistance. HMVES thanks Conselho Nacional de Desenvolvimento Cientifico e Tecologico (CNPq) for DTI, BSP and doctoral scholarships; MAR thanks the Natural Sciences and Engineering Research Council of Canada for financial support. JZ receives a productivity grant from CNPq (#307464/2009-1). Supplementary logistics and financial support were provided by Projetos Ecologicos de Longa Duracao (PELD) and Programa de Pesquisa em Biodiversidade (PPBio). CNPq and FAPEAM provided long-term financial support to Projeto Igarapes. This is contribution # 32 of Projeto Igarapes. AXELROD HR, 1990, HDB TROPICAL AQUARIU; BRUTON MN, 1990, ENVIRON BIOL FISH, V28, P179, DOI 10.1007/BF00751034; Buhrnheim C. M., 2004, HIST NATURAL ECOLOGI, P157; Castello L, 2008, ECOL FRESHW FISH, V17, P38, DOI 10.1111/j.1600-0633.2007.00255.x; Castro R. M. C., 1999, ECOLOGIA PEIXES RIAC, P139; Cox-Fernandes C., 1997, ECOL FRESHW FISH, V6, P36; Crampton WGR, 2011, HISTORICAL BIOGEOGRAPHY OF NEOTROPICAL FRESHWATER FISHES, P165; FRASER DF, 1995, ECOLOGY, V76, P1461, DOI 10.2307/1938148; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Gery J., 1977, CHARACOIDS WORLD; Gibb AC, 2011, J EXP ZOOL PART A, V315A, P649, DOI 10.1002/jez.711; GILLIAM JF, 1987, ECOLOGY, V68, P1856, DOI 10.2307/1939877; GORMAN OT, 1978, ECOLOGY, V59, P507, DOI 10.2307/1936581; GOTELLI NJ, 1991, OIKOS, V62, P30, DOI 10.2307/3545443; Goulding M., 1989, FISHES FOREST EXPLOR; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hadfield JD, 2010, J STAT SOFTW, V33, P1; JUNK W J, 1989, Canadian Special Publication of Fisheries and Aquatic Sciences, V106, P110; Lowe-McConnell RH, 1987, ECOLOGICAL STUDIES T; MENDONCA F. P., 2005, COPEIA, V2005, P750; Merigoux S, 2001, FRESHWATER BIOL, V46, P1251, DOI 10.1046/j.1365-2427.2001.00744.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; Morris DW, 2003, OECOLOGIA, V136, P1, DOI 10.1007/s00442-003-1241-4; Nunn AD, 2007, J FISH BIOL, V70, P1254, DOI 10.1111/j.1095-8649.2007.01415.x; Oksanen J, 2012, VEGAN COMMUNITY ECOL; Olden JD, 2010, AM FISH S S, V73, P83; Osorio D, 2011, ECOL FRESHW FISH, V20, P619, DOI 10.1111/j.1600-0633.2011.00511.x; Pazin VFV, 2006, FRESHWATER BIOL, V51, P1025, DOI 10.1111/j.1365-2427.2006.01552.x; PETTS GL, 1994, RIVER HDB, P3; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; POWER ME, 1984, ECOLOGY, V65, P523, DOI 10.2307/1941414; R Core Team, 2012, R LANG ENV STAT COMP; Ricklefs RE, 2008, AM NAT, V172, P741, DOI 10.1086/593002; Rosenzweig ML, 1987, EVOL ECOL, V1, P315, DOI 10.1007/BF02071556; Saint-Paul U, 2000, ENVIRON BIOL FISH, V57, P235, DOI 10.1023/A:1007699130333; Schlosser IJ, 1995, AM FISH S S, V17, P392; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SILVA CCS, 2008, NEOTROP ICHTHYOL, V6, P237; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P336, DOI DOI 10.2307/3817; Stearns S, 1992, EVOLUTION LIFE HIST; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tomasella J, 2008, HYDROL PROCESS, V22, P2133, DOI 10.1002/hyp.6813; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Espirito-Santo HMV, 2009, FRESHWATER BIOL, V54, P536, DOI 10.1111/j.1365-2427.2008.02129.x; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Vila-Gispert A, 2002, ENVIRON BIOL FISH, V65, P387, DOI 10.1023/A:1021181022360; Walker I., 1995, LIMNOLOGY BRAZIL, P167; WEITZMAN SH, 1988, P BIOL SOC WASH, V101, P444; WERNER EE, 1983, ECOLOGY, V64, P1540, DOI 10.2307/1937508; WINEMILLER KO, 1989, OECOLOGIA, V81, P225, DOI 10.1007/BF00379810; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242 52 15 17 1 46 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. DEC 2013 58 12 2494 2504 10.1111/fwb.12225 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 239KH WOS:000326021800005 2019-02-21 J Andrade, EA; Barbosa, MEA; Demetrio, GR Andrade, Eleonora Alvarenga; Avelar Barbosa, Mario Eduardo; Demetrio, Guilherme Ramos Density-dependent morphological plasticity and trade-offs among vegetative traits in Eichhornia crassipes (Pontederiaceae) ACTA AMAZONICA English Article Phenotypic plasticity; Plant-environment relationships; Plastic morphology; Macrophyte PHENOTYPIC PLASTICITY; MORPHOGENIC RESPONSES; PLANT; ALLOCATION; LEVEL Density-dependent responses are an important component of the organism life-history, and the resource allocation theory is a central concept to the life-history theory. When resource allocation varies due to environmental changes, a plant may change its morphology or physiology to cope with the new conditions, a process known as phenotypic plasticity. Our study aimed to evaluate how plant density affects Eichhornia crassipes allocation patterns. A total of 214 individuals in high and low density were collected. The density effect was observed in all plant traits examined including biomass accumulation. All traits of E. crassipes demonstrated higher values in high density conditions, except for biomass of leaves. Density exhibited a high influence on vegetative traits of E. crassipes, but did not influence allocation pattern, since a trade-off among the vegetative traits was not found. The morphological plasticity and the a bsence of trade-offs were discussed as strategies to overcome neighbor plants in competition situations. In high density conditions, there were clear changes in the morphology of the plants which probably allows for their survival in a highly competitive environment. [Andrade, Eleonora Alvarenga] Univ Fed Amazonas, Inst Educ Agr & Ambiente, BR-69800000 Humaita, AM, Brazil; [Avelar Barbosa, Mario Eduardo; Demetrio, Guilherme Ramos] Univ Fed Lavras, Programa Pos Grad Ecol Aplicada, BR-37200000 Lavras, MG, Brazil Andrade, EA (reprint author), Univ Fed Amazonas, Inst Educ Agr & Ambiente, Rua 29 Agosto,786 Ctr, BR-69800000 Humaita, AM, Brazil. eleonoralvarenga@yahoo.com.br; mario.eab@gmail.com; gramosdemetrio@gmail.com CENTER TD, 1981, AQUAT BOT, V10, P1, DOI 10.1016/0304-3770(81)90002-4; Coelho FF, 2005, REV BIOL TROP, V53, P369; Coelho FF, 2000, AQUAT BOT, V66, P273, DOI 10.1016/S0304-3770(99)00084-4; Harper J. L., 1977, POPULATION BIOL PLAN; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Ikegami M, 2008, ECOL MODEL, V213, P156, DOI 10.1016/j.ecolmodel.2007.11.016; Lorenzi H, 2008, PLANTAS DANINHAS BRA; MADSEN JD, 1991, AQUAT BOT, V41, P67, DOI 10.1016/0304-3770(91)90039-8; Miranda E.V., 2002, THESIS AMAZON U FDN; Petit C, 1996, CAN J BOT, V74, P1964, DOI 10.1139/b96-235; Pott VP, 2000, PLANTAS AQUATICAS PA; Potters G, 2009, PLANT CELL ENVIRON, V32, P158, DOI 10.1111/j.1365-3040.2008.01908.x; Potters G, 2007, TRENDS PLANT SCI, V12, P98, DOI 10.1016/j.tplants.2007.01.004; ROOM PM, 1988, J ECOL, V76, P826, DOI 10.2307/2260576; SCHLICHTING CD, 1986, ANNU REV ECOL SYST, V17, P667, DOI 10.1146/annurev.es.17.110186.003315; Souza V.C., 2005, BOT SISTEMATICA GUIA; Stearns S, 1992, EVOLUTION LIFE HIST; Weiner J, 2004, PERSPECT PLANT ECOL, V6, P207, DOI 10.1078/1433-8319-00083; Xie YH, 2006, ENVIRON EXP BOT, V57, P195, DOI 10.1016/j.envexpbot.2005.06.001; ZEIDEMANN V.K., 2001, FLORESTAS RIO NEGRO, P62; Zou YY, 2010, FUND APPL LIMNOL, V177, P197, DOI 10.1127/1863-9135/2010/0177-0197 21 2 3 0 104 INST NACIONAL PESQUISAS AMAZONIA MANAUS CAIXA POSTAL 478, ALAMEDA COSME FERREIRA, 1756, MANAUS, AMAZONAS 00000, BRAZIL 0044-5967 ACTA AMAZON ACTA AMAZON. DEC 2013 43 4 455 459 10.1590/S0044-59672013000400007 5 Agronomy; Plant Sciences; Ecology; Forestry; Zoology Agriculture; Plant Sciences; Environmental Sciences & Ecology; Forestry; Zoology 212SU WOS:000324003900007 DOAJ Gold 2019-02-21 J Schultner, J; Kitaysky, AS; Gabrielsen, GW; Hatch, SA; Bech, C Schultner, J.; Kitaysky, A. S.; Gabrielsen, G. W.; Hatch, S. A.; Bech, C. Differential reproductive responses to stress reveal the role of life-history strategies within a species PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article trade-offs; stress hormones; reproduction; populations; seabirds; life-history theory BLACK-LEGGED KITTIWAKES; LONG-LIVED BIRD; RISSA-TRIDACTYLA; FOOD AVAILABILITY; CLIMATE-CHANGE; POPULATION PROCESSES; TRADE-OFFS; CORTICOSTERONE; SEABIRDS; SURVIVAL Life-history strategies describe that 'slow'-in contrast to 'fast'-living species allocate resources cautiously towards reproduction to enhance survival. Recent evidence suggests that variation in strategies exists not only among species but also among populations of the same species. Here, we examined the effect of experimentally induced stress on resource allocation of breeding seabirds in two populations with contrasting life-history strategies: slow-living Pacific and fast-living Atlantic black-legged kittiwakes. We tested the hypothesis that reproductive responses in kittiwakes under stress reflect their life-history strategies. We predicted that in response to stress, Pacific kittiwakes reduce investment in reproduction compared with Atlantic kittiwakes. We exposed chick-rearing kittiwakes to a short-term (3-day) period of increased exogenous corticosterone (CORT), a hormone that is released during food shortages. We examined changes in baseline CORT levels, parental care and effects on offspring. We found that kittiwakes from the two populations invested differently in offspring when facing stress. In response to elevated CORT, Pacific kittiwakes reduced nest attendance and deserted offspring more readily than Atlantic kittiwakes. We observed lower chick growth, a higher stress response in offspring and lower reproductive success in response to CORT implantation in Pacific kittiwakes, whereas the opposite occurred in the Atlantic. Our findings support the hypothesis that life-history strategies predict short-term responses of individuals to stress within a species. We conclude that behaviour and physiology under stress are consistent with trade-off priorities as predicted by life-history theory. We encourage future studies to consider the pivotal role of life-history strategies when interpreting inter-population differences of animal responses to stressful environmental events. [Schultner, J.; Bech, C.] Norwegian Univ Sci & Technol, Dept Biol, N-7034 Trondheim, Norway; [Schultner, J.; Kitaysky, A. S.] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA; [Gabrielsen, G. W.] Norwegian Polar Res Inst, Tromso, Norway; [Hatch, S. A.] US Geol Survey, Anchorage Sci Ctr, Anchorage, AK USA; [Hatch, S. A.] Inst Seabird Res & Conservat, Anchorage, AK USA Schultner, J (reprint author), Norwegian Univ Sci & Technol, Dept Biol, N-7034 Trondheim, Norway. jschultner@gmail.com Schultner, Jannik/G-2264-2010; Bech, Claus/C-1086-2011 Schultner, Jannik/0000-0002-5865-7975; Bech, Claus/0000-0002-0860-0663 Research Council of Norway (SPORE project) [196181]; Research Council of Norway (MariClim project) [165112]; North Pacific Research Board; Arctic Field Grants from Svalbard Science Forum This work was supported by the Research Council of Norway (SPORE project, grant no. 196181; MariClim project, grant no. 165112). J.S. was supported by a Graduate Student Research Award from the North Pacific Research Board. J.S. and C. B. received support by Arctic Field Grants from the Svalbard Science Forum. Angelier F, 2007, HORM BEHAV, V52, P482, DOI 10.1016/j.yhbeh.2007.07.003; Angelier F, 2009, FUNCT ECOL, V23, P784, DOI 10.1111/j.1365-2435.2009.01545.x; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Boonstra R, 2000, J EXP ZOOL, V286, P390, DOI 10.1002/(SICI)1097-010X(20000301)286:4<390::AID-JEZ7>3.0.CO;2-O; Breuner CW, 2002, J ENDOCRINOL, V175, P99, DOI 10.1677/joe.0.1750099; Brewer JH, 2008, J FIELD ORNITHOL, V79, P391, DOI 10.1111/j.1557-9263.2008.00187.x; Buck CL, 2007, GEN COMP ENDOCR, V150, P430, DOI 10.1016/j.ygcen.2006.10.011; Burnham K. P, 2002, MODEL SELECTION MULT; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Chardine JW, 2002, CONDOR, V104, P687, DOI 10.1650/0010-5422(2002)104[0687:GVITWP]2.0.CO;2; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Chastel O, 2005, HORM BEHAV, V47, P459, DOI 10.1016/j.yhbeh.2004.10.009; Cheviron ZA, 2009, EVOLUTION, V63, P1593, DOI 10.1111/j.1558-5646.2009.00644.x; Coulson JC, 2002, J AVIAN BIOL, V33, P111, DOI 10.1034/j.1600-048X.2002.t01-1-330201.x; Erikstad KE, 2009, ECOLOGY, V90, P3197, DOI 10.1890/08-1778.1; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Frederiksen M, 2005, OIKOS, V111, P209, DOI 10.1111/j.0030-1299.2005.13746.x; Frederiksen M, 2006, J ANIM ECOL, V75, P1259, DOI 10.1111/j.1365-2656.2006.01148.x; Friesen VL, 2007, MOL ECOL, V16, P1765, DOI 10.1111/j.1365-294X.2006.03197.x; Gaillard J. -M., 1989, OIKOS, V56, P56, DOI DOI 10.2307/3566088); Gill VA, 2002, IBIS, V144, P268, DOI 10.1046/j.1474-919X.2002.00043.x; Gill VA, 2002, J AVIAN BIOL, V33, P113, DOI 10.1034/j.1600-048X.2002.330201.x; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; Goutte A, 2011, J EXP BIOL, V214, P2005, DOI 10.1242/jeb.051979; Goutte A, 2010, GEN COMP ENDOCR, V169, P108, DOI 10.1016/j.ygcen.2010.07.016; Goutte A, 2010, GEN COMP ENDOCR, V167, P246, DOI 10.1016/j.ygcen.2010.03.018; Green AJ, 2001, ECOLOGY, V82, P1473, DOI 10.2307/2680003; Harley CDG, 2006, ECOL LETT, V9, P228, DOI 10.1111/j.1461-0248.2005.00871.x; HATCH SA, 1993, IBIS, V135, P247, DOI 10.1111/j.1474-919X.1993.tb02841.x; Hatch SA, 2013, MAR ECOL PROG SER, V477, P271, DOI 10.3354/meps10161; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Kitaysky AS, 2007, MAR ECOL PROG SER, V352, P245, DOI 10.3354/meps07074; Kitaysky AS, 2010, FUNCT ECOL, V24, P625, DOI 10.1111/j.1365-2435.2009.01679.x; Kitaysky AS, 2003, HORM BEHAV, V43, P140, DOI 10.1016/S0018-506X(02)00030-2; Kitaysky AS, 1999, J COMP PHYSIOL B, V169, P303, DOI 10.1007/s003600050225; Kitaysky AS, 2001, J COMP PHYSIOL B, V171, P701, DOI 10.1007/s003600100230; Kitaysky AS, 2001, BEHAV ECOL, V12, P619, DOI 10.1093/beheco/12.5.619; Lahann P, 2011, BEHAV ECOL SOCIOBIOL, V65, P381, DOI 10.1007/s00265-010-1055-4; Lancaster LT, 2008, J EVOLUTION BIOL, V21, P556, DOI 10.1111/j.1420-9101.2007.01478.x; Lanctot RB, 2003, HORM BEHAV, V43, P489, DOI 10.1016/S0018-506X(03)00030-8; Lindstrom J, 1999, TRENDS ECOL EVOL, V14, P343, DOI 10.1016/S0169-5347(99)01639-0; McCoy KD, 2005, MOL ECOL, V14, P2825, DOI 10.1111/j.1365-294X.2005.02631.x; McNamara JM, 1996, NATURE, V380, P215, DOI 10.1038/380215a0; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Miles DB, 2007, FUNCT ECOL, V21, P653, DOI 10.1111/j.1365-2435.2007.01304.x; Morris WF, 2008, ECOLOGY, V89, P19, DOI 10.1890/07-0774.1; Mulard H, 2009, BIOL J LINN SOC, V97, P289, DOI 10.1111/j.1095-8312.2009.01198.x; Palacios MG, 2012, GEN COMP ENDOCR, V175, P443, DOI 10.1016/j.ygcen.2011.11.042; R Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Robinson R.A., 2012, ONLINE RINGING REPOR; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Schultner J, 2013, FUNCT ECOL, V27, P45, DOI 10.1111/j.1365-2435.2012.02058.x; SHULTZ MT, 2007, THESIS U ALASKA FAIR; Spee M, 2011, HORM BEHAV, V60, P362, DOI 10.1016/j.yhbeh.2011.07.003; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Suryan RM, 2009, PROG OCEANOGR, V81, P214, DOI 10.1016/j.pocean.2009.04.012; Vincenzi S, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2013.0554; Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; Williams JB, 2010, INTEGR COMP BIOL, V50, P855, DOI 10.1093/icb/icq024; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 64 31 31 3 86 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. NOV 22 2013 280 1771 UNSP 20132090 10.1098/rspb.2013.2090 10 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298LH WOS:000330324900020 24089339 Green Published, Bronze 2019-02-21 J Farrell, LL; Burke, T; Slate, J; McRae, SB; Lank, DB Farrell, Lindsay L.; Burke, Terry; Slate, Jon; McRae, Susan B.; Lank, David B. Genetic mapping of the female mimic morph locus in the ruff BMC GENETICS English Article PHILOMACHUS-PUGNAX; COLOR POLYMORPHISM; SEX; STRATEGIES; EVOLUTION; CHICKEN; SYSTEM; MODEL; MAP Background: Ruffs (Aves: Philomachus pugnax) possess a genetic polymorphism for male mating behaviour resulting in three permanent alternative male reproductive morphs: (i) territorial 'Independents', (ii) non-territorial 'Satellites', and (iii) female-mimicking 'Faeders'. Development into independent or satellite morphs has previously been shown to be due to a single-locus, two-allele autosomal Mendelian mode of inheritance at the Satellite locus. Here, we use linkage analysis to map the chromosomal location of the Faeder locus, which controls development into the Faeder morph, and draw further conclusions about candidate genes, assuming shared synteny with other birds. Results: Segregation data on the Faeder locus were obtained from captive-bred pedigrees comprising 64 multigeneration families (N = 381). There was no evidence that the Faeder locus was linked to the Satellite locus, but it was linked with microsatellite marker Ppu020. Comparative mapping of ruff microsatellite markers against the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata) genomes places the Ppu020 and Faeder loci on a region of chromosome 11 that includes the Melanocortin-1 receptor (MC1R) gene, which regulates colour polymorphisms in numerous birds and other vertebrates. Melanin-based colouration varies with life-history strategies in ruffs and other species, thus the MC1R gene is a strong candidate to play a role in alternative male morph determination. Conclusion: Two unlinked loci appear to control behavioural development in ruffs. The Faeder locus is linked to Ppu020, which, assuming synteny, is located on avian chromosome 11. MC1R is a candidate gene involved in alternative male morph determination in ruffs. [Farrell, Lindsay L.; Burke, Terry; Slate, Jon] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Farrell, Lindsay L.; Lank, David B.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [McRae, Susan B.] E Carolina Univ, Dept Biol, Greenville, NC 27858 USA; [McRae, Susan B.] E Carolina Univ, Ctr Biodivers, Greenville, NC 27858 USA Farrell, LL (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. lfarrell@sfu.ca Burke, Terry/B-3196-2011; Slate, Jon/D-2925-2012 Burke, Terry/0000-0003-3848-1244; Slate, Jon/0000-0003-3356-5123 UK Biotechnology and Biological Sciences Research Council; Natural Sciences and Engineering Research Council of Canada (NSERC); NSERC PGS-D3; Biotechnology and Biological Sciences Research Council [BB/J018937/1] During this work, LLF was a PhD student in the department of Biological Sciences at Simon Fraser University. The laboratory work was performed at the University of Sheffield and supported by a UK Biotechnology and Biological Sciences Research Council grant to TB and JS. The captive ruff colony was supported by a Natural Sciences and Engineering Research Council of Canada grant (NSERC; to DBL), and LLF was supported by an NSERC PGS-D3. Anderson NG, 2001, PROTEOMICS, V1, P3, DOI 10.1002/1615-9861(200101)1:1<3::AID-PROT3>3.0.CO;2-T; Chevin LM, 2013, AM NAT, V182, P13, DOI 10.1086/670613; Cheviron ZA, 2008, MOL ECOL, V17, P4556, DOI 10.1111/j.1365-294X.2008.03942.x; Dale J, 2001, AM NAT, V158, P75, DOI 10.1086/320861; Dawson DA, 2006, MOL ECOL, V15, P1299, DOI 10.1111/j.1365-294X.2006.02803.x; Dawson DA, 2007, MOL BIOL EVOL, V24, P1537, DOI 10.1093/molbev/msm071; Dobzhansky T., 1970, GENETICS EVOLUTIONAR; Ducrest AL, 2008, TRENDS ECOL EVOL, V23, P502, DOI 10.1016/j.tree.2008.06.001; Farrell LL, 2013, ECOL EVOL, V3, P4631, DOI 10.1002/ece3.830; Farrell LL, 2012, CONSERV GENET RESOUR, V4, P763, DOI 10.1007/s12686-012-9639-0; GREEN P, 1990, CRIMAP DOCUMENTATION; Hoekstra HE, 2006, HEREDITY, V97, P222, DOI 10.1038/sj.hdy.6800861; Hogan-Warburg AJ., 1966, ARDEA, V54, P108; Hugie DM, 1997, BEHAV ECOL, V8, P218, DOI 10.1093/beheco/8.2.218; Jaatinen K, 2010, ORNIS FENNICA, V87, P125; Jukema J, 2006, BIOL LETT-UK, V2, P161, DOI 10.1098/rsbl.2005.0416; Karlionova Natalia, 2007, Ringing & Migration, V23, P134; Lank DB, 1999, P ROY SOC B-BIOL SCI, V266, P2323, DOI 10.1098/rspb.1999.0926; LANK DB, 1995, NATURE, V378, P59, DOI 10.1038/378059a0; Lank DB, 2002, BEHAV ECOL, V13, P209, DOI 10.1093/beheco/13.2.209; Lank DB, 2001, AUK, V118, P759, DOI 10.1642/0004-8038(2001)118[0759:VSFIIT]2.0.CO;2; Lank DB, 2013, BIOL LETT, V2013, DOI [10.1098/rsbl.2013.0653, DOI 10.1098/RSBL.2013.0653]; Roulin A, 2004, EVOL ECOL RES, V6, P1253; Shuster SM, 1997, NATURE, V388, P373, DOI 10.1038/41089; Silva AD, 2013, BEHAV ECOL SOCIOBIOL, V67, P1041; Sinervo B, 2001, EVOLUTION, V55, P2040; van Rhijn J.G., 1973, Behaviour, V47, P153, DOI 10.1163/156853973X00076; VANRHIJN JG, 1991, RUFF; Verkuil YI, 2008, BIRD STUDY, V55, P241, DOI 10.1080/00063650809461529; Widemo F, 1998, ANIM BEHAV, V56, P329, DOI 10.1006/anbe.1998.0792 30 5 5 0 25 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2156 BMC GENET BMC Genet. NOV 20 2013 14 109 10.1186/1471-2156-14-109 4 Genetics & Heredity Genetics & Heredity 272UB WOS:000328485600001 24256185 DOAJ Gold, Green Published 2019-02-21 J Sukumaran, S; Grant, A Sukumaran, Sandhya; Grant, Alastair Multigenerational demographic responses of sexual and asexual Artemia to chronic genotoxicity by a reference mutagen AQUATIC TOXICOLOGY English Article Chronic genotoxicity; Ethyl methane sulfonate; Artemia; Sexual and asexual reproduction; Evolution; Matrix population modelling ECOLOGICAL RISK ASSESSMENT; POPULATION-GROWTH RATE; ZEBRAFISH DANIO-RERIO; BRINE SHRIMP ARTEMIA; LIFE-CYCLE TEST; DELETERIOUS MUTATIONS; NATURAL-POPULATIONS; DAPHNIA-MAGNA; ECOTOXICOLOGY; EVOLUTIONARY Genotoxins are capable of multigenerational impacts on natural populations via DNA damage and mutations. Sexual reproduction is assumed to reduce the long term consequences of genotoxicity for individual fitness and should therefore reduce population level effects. However, rather few empirical studies have quantified the magnitude of this effect. We tried to analyse the multigenerational demographic responses of sexual Artemia franciscana and asexual Artemia parthenogenetica due to chronic genotoxicity by a reference mutagen, ethyl methane sulfonate (EMS). A prospective (elasticity analysis) and retrospective (differences and contributions) perturbation analysis was carried out to understand the interactions of life history traits with population growth rate X by comparing elasticities, differences and contributions of vital rates to X. None of the previous studies have compared the effects of chronic genotoxicity using prospective and retrospective perturbation analyses in a sexual and asexual species over generations. The behaviour of a population with lower growth rate in the presence of genotoxicants in the field was studied by simulating reduced fertilities in the LTRE design. The results of prospective and retrospective perturbation analyses of effects on X showed that population growth rate was proportionally more sensitive to juvenile survival whereas the effect of EMS on juvenile fertility contributed more to the variations in population growth rate in both the species and this effect was due to the high growth rate of Artemia. Simulations of lower population growth rate in the model showed that adult fertility and survival are also of importance. Sexual reproduction substantially mitigated the long term consequences of genetic damage, although these would be greater if population growth rate were lower. So multigenerational population level consequences of genotoxicity were much greater in an asexual species. So asexual species, and those with a parthenogenetic phase in their life cycle, may be particularly vulnerable to the effects of environmental mutagens. Ecological risk assessments should include information from multigenerational studies, as responses to genotoxicity may vary depending on the life history strategies and reproductive modes of the species under consideration. Single generation studies may under or over-estimate risks. (C) 2013 Elsevier B.V. All rights reserved. [Sukumaran, Sandhya; Grant, Alastair] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England Sukumaran, S (reprint author), Cent Marine Fisheries Res Inst, POB 1603, Kochi 682018, Kerala, India. sukumaransandhya@yahoo.com Grant, Alastair/L-7301-2018 Grant, Alastair/0000-0002-1147-2375 Commonwealth Scholarship Commission We thank Commonwealth Scholarship Commission for providing a Ph.D. Scholarship to SS. Agrawal AF, 2006, PLOS BIOL, V4, P1364, DOI 10.1371/journal.pbio.0040265; Andre JB, 2006, GENETICS, V172, P611, DOI 10.1534/genetics.105.046680; Barata C, 2002, ENVIRON TOXICOL CHEM, V21, P1058, DOI [10.1897/1551-5028(2002)021<1058:AAWPVI>2.0.CO;2, 10.1002/etc.5620210523]; Baxevanis AD, 2006, MOL PHYLOGENET EVOL, V40, P724, DOI 10.1016/j.ympev.2006.04.010; Belfiore NM, 2001, MUTAT RES-REV MUTAT, V489, P97, DOI 10.1016/S1383-5742(01)00065-5; Benton TG, 1999, TRENDS ECOL EVOL, V14, P467, DOI 10.1016/S0169-5347(99)01724-3; Bianchi J, 2011, ECOTOX ENVIRON SAFE, V74, P826, DOI 10.1016/j.ecoenv.2010.11.006; Bickham JW, 2011, ECOTOXICOLOGY, V20, P497, DOI 10.1007/s10646-011-0636-y; Bickham JW, 2000, MUTAT RES-REV MUTAT, V463, P33, DOI 10.1016/S1383-5742(00)00004-1; Bourret V, 2008, AQUAT TOXICOL, V86, P76, DOI 10.1016/j.aquatox.2007.10.003; BROWNE RA, 1992, TRENDS ECOL EVOL, V7, P232, DOI 10.1016/0169-5347(92)90051-C; BROWNE RA, 1990, EVOLUTION, V44, P1035, DOI 10.1111/j.1558-5646.1990.tb03824.x; Burt A, 2000, EVOLUTION, V54, P337; Canty MN, 2009, AQUAT TOXICOL, V94, P68, DOI 10.1016/j.aquatox.2009.06.001; Caswell H., 2001, MATRIX POPULATION MO; Chapman PM, 2002, MAR POLLUT BULL, V44, P7, DOI 10.1016/S0025-326X(01)00253-3; Cislaghi C, 1997, NATURE, V387, P463, DOI 10.1038/387463a0; Coulson T, 2005, J ANIM ECOL, V74, P789, DOI 10.1111/j.1365-2656.2005.00975.x; Dawidowicz P, 2010, HYDROBIOLOGIA, V643, P27, DOI 10.1007/s10750-010-0132-z; De Coen WM, 2003, ENVIRON TOXICOL CHEM, V22, P1632, DOI 10.1897/1551-5028(2003)22<1632:TMBLRB>2.0.CO;2; de Kroon H, 2000, ECOLOGY, V81, P607, DOI 10.1890/0012-9658(2000)081[0607:EAROMA]2.0.CO;2; De Wolf H, 2004, MUTAT RES-REV MUTAT, V566, P249, DOI 10.1016/j.mrrev.2003.10.003; DEKROON H, 1986, ECOLOGY, V67, P1427, DOI 10.2307/1938700; DERAAT WK, 1985, FOOD CHEM TOXICOL, V23, P33, DOI 10.1016/0278-6915(85)90217-0; Devaux A., 2010, AQUAT TOXICOL, V101, P405; Diekmann M, 2004, AQUAT TOXICOL, V68, P27, DOI 10.1016/j.aquatox.2004.01.019; Diekmann M, 2004, AQUAT TOXICOL, V68, P13, DOI 10.1016/j.aquatox.2004.01.020; Dimijian Gregory G, 2005, Proc (Bayl Univ Med Cent), V18, P244; Doak SH, 2007, CANCER RES, V67, P3904, DOI 10.1158/0008-5472.CAN-06-4061; Ezard THG, 2010, J APPL ECOL, V47, P515, DOI 10.1111/j.1365-2664.2010.01801.x; FIX DF, 1990, MUTAT RES, V244, P115, DOI 10.1016/0165-7992(90)90059-S; Forbes Valery E, 2010, Integr Environ Assess Manag, V6, P191, DOI 10.1002/ieam.25; Forbes VE, 2002, PHILOS T ROY SOC B, V357, P1299, DOI 10.1098/rstb.2002.1129; Forbes VE, 2001, ECOL APPL, V11, P1249, DOI 10.1890/1051-0761(2001)011[1249:TIODLP]2.0.CO;2; Gocke E, 2009, TOXICOL LETT, V190, P254, DOI 10.1016/j.toxlet.2009.03.016; Grant A, 1998, ECOL MODEL, V105, P325, DOI 10.1016/S0304-3800(97)00176-2; Hadany L, 2005, J EVOLUTION BIOL, V18, P309, DOI 10.1111/j.1420-9101.2004.00858.x; Hood ME, 2004, GENETICS, V166, P1751, DOI 10.1534/genetics.166.4.1751; KONDRASHOV AS, 1995, J THEOR BIOL, V175, P583, DOI 10.1006/jtbi.1995.0167; KONDRASHOV AS, 1993, J HERED, V84, P372, DOI 10.1093/oxfordjournals.jhered.a111358; Lacaze E, 2011, ENVIRON RES, V111, P626, DOI 10.1016/j.envres.2011.03.012; Levin L, 1996, ECOL APPL, V6, P1295, DOI 10.2307/2269608; Loewe L, 2010, PHILOS T R SOC B, V365, P1153, DOI 10.1098/rstb.2009.0317; Maniatsi S, 2011, MOL PHYLOGENET EVOL, V58, P353, DOI 10.1016/j.ympev.2010.11.029; Marabini L, 2011, TOXICOL IN VITRO, V25, P1045, DOI 10.1016/j.tiv.2011.04.004; Melian CJ, 2012, PLOS COMPUT BIOL, V8, DOI 10.1371/journal.pcbi.1002414; Michod R. E, 1995, EROS EVOLUTION NATUR; Morris WF, 2002, QUANTITATIVE CONSERV; MULLER HJ, 1964, MUTAT RES, V1, P2, DOI 10.1016/0027-5107(64)90047-8; Normark BB, 2003, BIOL J LINN SOC, V79, P69, DOI 10.1046/j.1095-8312.2003.00182.x; Nunes E.A., 2011, CHEMOSPHERE, V84, P4753; Persoone G., 1987, ARTEMIA RES ITS APPL, V1, P259; Pound GE, 2004, J EVOLUTION BIOL, V17, P651, DOI 10.1111/j.1420-9101.2003.00690.x; Rinner BP, 2011, ECOTOXICOLOGY, V20, P365, DOI 10.1007/s10646-010-0587-8; Schurko AM, 2009, TRENDS ECOL EVOL, V24, P208, DOI 10.1016/j.tree.2008.11.010; Shugart LR, 2000, ECOTOXICOLOGY, V9, P329, DOI 10.1023/A:1026513009527; Simon JC, 2003, BIOL J LINN SOC, V79, P151, DOI 10.1046/j.1095-8312.2003.00175.x; Smital T, 2011, ECOTOX ENVIRON SAFE, V74, P844, DOI 10.1016/j.ecoenv.2010.11.010; SMITH JM, 1988, GENET RES, V51, P59, DOI 10.1017/S0016672300023958; Sukumaran S., 2013, MUTAT RES; Theodorakis CW, 2004, ECOTOXICOLOGY, V13, P303, DOI 10.1023/B:ECTX.0000033088.68427.59; Theodorakis CW, 2001, ECOTOXICOLOGY, V10, P245, DOI 10.1023/A:1016677629442; TRIANTAPHYLLIDIS GV, 1995, HYDROBIOLOGIA, V302, P215, DOI 10.1007/BF00032111; Wessel N, 2007, AQUAT TOXICOL, V85, P133, DOI 10.1016/j.aquatox.2007.08.007 64 6 6 0 20 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0166-445X 1879-1514 AQUAT TOXICOL Aquat. Toxicol. NOV 15 2013 144 66 74 10.1016/j.aquatox.2013.09.017 9 Marine & Freshwater Biology; Toxicology Marine & Freshwater Biology; Toxicology AA0WD WOS:000330817200008 24141038 2019-02-21 J von Hippel, FA; Smayda, LC; Zimmerman, CE; Bell, MA von Hippel, Frank A.; Smayda, Lauren C.; Zimmerman, Christian E.; Bell, Michael A. Validation of daily growth increments in otoliths to age threespine stickleback (Gasterosteus aculeatus) EVOLUTIONARY ECOLOGY RESEARCH English Article otolith; sagitta; daily growth increments; age determination 3-SPINED STICKLEBACK; FISH OTOLITHS; LARVAL FISH; EVOLUTION; POPULATIONS; REDUCTION; ALASKA; MICROSTRUCTURE; SELECTION; PARALLEL Hypothesis: Threespine stickleback deposit daily growth increments in their otoliths. Organism: Anadromous threespine stickleback (Gasterosteus aculeatus) from Rabbit Slough, Alaska. Methods: We reared stickleback from an in vitro cross for 95 days in a large outdoor pool and analysed the sagittae of specimens from weekly samples. Results: Putative daily growth increments in otoliths were significantly correlated with true age in days (r = 0.97). Other relationships, such as those between age and otolith radius (r = 0.72), and between standard length and number of increments (r = 0.63) or otolith radius (r = 0.51), were also significant though not as strong. Conclusions: These data are consistent with published results for resident freshwater threespine stickleback from Great Britain, a different clade, continent, latitude, ecological system, and fish life history. Ageing young-of-the-year threespine stickleback with daily growth increments in their otoliths thus appears to be possible for distantly related populations with different life histories and locations. Daily growth increments in the otoliths of young stickleback provide a powerful tool for investigating life-history evolution or any subject that employs precise age as a covariate, since age of wild-caught fish can be associated with a suite of fitness measures, phenotypes, or genotypes. [von Hippel, Frank A.; Smayda, Lauren C.] Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK 99508 USA; [Zimmerman, Christian E.] US Geol Survey, Alaska Sci Ctr, Anchorage, AK USA; [Bell, Michael A.] SUNY Stony Brook, Dept Ecol & Evolut, Stony Brook, NY 11794 USA von Hippel, FA (reprint author), Univ Alaska Anchorage, Dept Biol Sci, 3211 Providence Dr, Anchorage, AK 99508 USA. favonhippel@uaa.alaska.edu Zimmerman, Christian/0000-0002-3646-0688 National Science Foundation [DEB 0320076, 0422687, 0522059, 0618551, DEB 0211391, DEB 0322818] We thank Jenifer Rollins, Andrew Hendry, and anonymous reviewers for helpful comments on the manuscript. Stickleback were collected under Alaska Department of Fish and Game permits SF-2001-062 and SF-2006-017. All work was approved by the UAA IACUC. This work was supported by National Science Foundation grants DEB 0320076, 0422687, 0522059, and 0618551 to F. A. vH., DEB 0211391 to M. A. B., and DEB 0322818 to M. A. B. and F.J. Rohlf. Use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. This is contribution 1229 from Ecology and Evolution at Stony Brook University. Aguirre WE, 2008, BIOL J LINN SOC, V95, P465, DOI 10.1111/j.1095-8312.2008.01075.x; Barrett RDH, 2008, SCIENCE, V322, P255, DOI 10.1126/science.1159978; BEAMISH RJ, 1983, T AM FISH SOC, V112, P735, DOI 10.1577/1548-8659(1983)112<735:TFRFAV>2.0.CO;2; BELL MA, 1993, EVOLUTION, V47, P906, DOI 10.1111/j.1558-5646.1993.tb01243.x; Bell Michael A., 2001, Trends in Ecology and Evolution, V16, P599, DOI 10.1016/S0169-5347(01)02307-2; BOURGEOIS JF, 1994, CAN J ZOOL, V72, P1497, DOI 10.1139/z94-198; Brothers E.B., 1987, P319; Brothers E.B., 1990, AM FISHERIES SOC S, V7, P183; Brothers E.B., 1979, STOCK ASSESSMENT TRO, P119; BROTHERS EB, 1976, FISH B-NOAA, V74, P1; Campana SE, 2001, J FISH BIOL, V59, P197, DOI 10.1006/jfbi.2001.1668; Campana SE, 2001, CAN J FISH AQUAT SCI, V58, P30, DOI 10.1139/cjfas-58-1-30; CAMPANA SE, 1985, CAN J FISH AQUAT SCI, V42, P1014, DOI 10.1139/f85-127; Cargnelli LM, 1996, CAN J FISH AQUAT SCI, V53, P360, DOI 10.1139/cjfas-53-2-360; COWEN RK, 1991, CAN J FISH AQUAT SCI, V48, P1679, DOI 10.1139/f91-199; Cresko WA, 2007, GENETICA, V129, P105, DOI 10.1007/s10709-006-0036-z; Eckmann Reiner, 2000, Limnologica, V30, P102, DOI 10.1016/S0075-9511(00)80003-1; Foster SA, 2004, TRENDS ECOL EVOL, V19, P456, DOI 10.1016/j.tree.2004.07.004; FOSTER SA, 1988, OECOLOGIA, V74, P577, DOI 10.1007/BF00380056; Geffen A.J., 1992, Canadian Special Publication of Fisheries and Aquatic Sciences, V117, P101; Geffen A.J., 1987, AGE GROWTH FISH, P123; Gibson G, 2005, SCIENCE, V307, P1890, DOI 10.1126/science.1109835; GILES N, 1983, J ZOOL, V199, P535; Gow JL, 2007, J EVOLUTION BIOL, V20, P2173, DOI 10.1111/j.1420-9101.2007.01427.x; Hendry AP, 2013, EVOL ECOL RES, V15, P111; Huuskonen H, 1999, MAR ECOL PROG SER, V177, P309, DOI 10.3354/meps177309; JONES C, 1986, FISH B-NOAA, V84, P91; Jones FC, 2006, J EVOLUTION BIOL, V19, P1531, DOI 10.1111/j.1420-9101.2006.01122.x; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Katsiadaki I, 2002, MAR ENVIRON RES, V54, P725, DOI 10.1016/S0141-1136(02)00110-1; Lescak EA, 2013, EVOL ECOL RES, V15, P155; Marchinko KB, 2007, EVOLUTION, V61, P1084, DOI 10.1111/j.1558-5646.2007.00103.x; Mattern Michelle Y., 2007, P1; McKinnon JS, 2002, TRENDS ECOL EVOL, V17, P480, DOI 10.1016/S0169-5347(02)02579-X; MOSEGAARD H, 1988, CAN J FISH AQUAT SCI, V45, P1514, DOI 10.1139/f88-180; ORTI G, 1994, EVOLUTION, V48, P608, DOI 10.1111/j.1558-5646.1994.tb01348.x; OSTLUNDNILSSON S, 2007, BIOL 3 SPINED STICKL; Panfili J, 2002, MANUAL FISH SCLEROCH; PANNELLA G, 1971, SCIENCE, V173, P1124, DOI 10.1126/science.173.4002.1124; Pannella G., 1980, SKELETAL GROWTH AQUA, P519; RADTKE RL, 1989, CAN J FISH AQUAT SCI, V46, P1884, DOI 10.1139/f89-237; SWARUP H, 1958, J EMBRYOL EXP MORPH, V6, P373; Von Hippel F, 2010, TINBERGENS LEGACY BE; von Hippel FA, 2008, BEHAVIOUR, V145, P693, DOI 10.1163/156853908792451467; Wright P.J., 2002, P114; WRIGHT PJ, 1993, J FISH BIOL, V42, P65; Zimmerman CE, 2005, CAN J FISH AQUAT SCI, V62, P88, DOI 10.1139/F04-182 47 2 2 1 20 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. NOV 2013 15 8 947 957 11 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AL2VE WOS:000338982900007 2019-02-21 J Mercier, A; Doncaster, EJ; Hamel, JF Mercier, Annie; Doncaster, Emily Joan; Hamel, Jean-Francois Contrasting predation rates on planktotrophic and lecithotrophic propagules by marine benthic invertebrates JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY English Article Cnidaria; Echinodermata; Egg; Larva; Mortality; Offspring LIFE-HISTORY EVOLUTION; DENDRASTER-EXCENTRICUS; LARVAL DEVELOPMENT; CHEMICAL DEFENSE; MYTILUS-EDULIS; SAND DOLLAR; FLOW REGIME; EMBRYOS; ECHINODERMATA; PALATABILITY When modeling life-history evolution of marine benthic invertebrates, it has been common to assume constant mortality rate of offspring during the pre-settlement phase and greater propagule vulnerability in the pelagic than in the benthic habitat. However, recent findings have challenged these assumptions, emphasizing the need for further empirical tests. Here we present the results of a multifactorial experimental investigation of predation rates on propagules of various taxa by benthic invertebrates. Planktotrophic and lecithotrophic propagules of echinoderms, cnidarians and annelids (i.e. sea cucumbers, sea stars, sea urchins, corals, sea anemones, jellyfishes, and polychaetes) were tested at various stages of development to examine the effects of ontogeny, size and behavior on predation rates by common filter feeders (mussels, tunicates) and suspension feeders (sea anemones). Overall, propagule survival was positively correlated with their size, although on closer inspection this was essentially due to the size difference between developmental modes (larger lecithotrophic propagules being less vulnerable). A slight inverse relationship between survival and age was detected in both lecithotrophic and planktotrophic propagules; however ingestion rates were not systematically higher on more advanced life stages within prey species due to predator-specific responses to ontogenetic changes. Filter feeders were generally more effective predators than suspension feeders. Tunicates expressed greater selectivity based on size and age of propagules than on their behavior, while the inverse occurred in the two other predators. A combination of factors, i.e. size, buoyancy and chemical defenses, presumably underlie overall higher survival rates in lecithotrophic than in planktotrophic propagules, supporting the hypothesis that the former but not the latter may have evolved due to increased epibenthic predation. (c) 2013 Elsevier B.V. All rights reserved. [Mercier, Annie; Doncaster, Emily Joan] Mem Univ Newfoundland, Dept Ocean Sci, St John, NF A1C 5S7, Canada; [Hamel, Jean-Francois] Soc Explorat & Valuing Environm, Portugal Cove St Philips, NF A1M 2B7, Canada Mercier, A (reprint author), Mem Univ Newfoundland, Dept Ocean Sci, St John, NF A1C 5S7, Canada. amercier@mun.ca Mercier, Annie/B-4254-2012 NSERC; CFI Sincere thanks to the Ocean Sciences Center Field Services Unit for the collection of specimens used in these experiments, and to members of the lab for their assistance: Z. Sun, G. Doyle, J. So and P. Sargent. We also thank the editor and an anonymous reviewer for comments on the manuscript. This research was supported by NSERC and CFI grants to A.M. [SS] Allen JD, 2008, BIOL BULL-US, V214, P42, DOI 10.2307/25066658; Allen JD, 2007, J EXP MAR BIOL ECOL, V347, P77, DOI 10.1016/j.jembe.2007.03.010; Anthony KRN, 1997, BIOL BULL, V192, P73, DOI 10.2307/1542577; Bullard S.G., 1999, SUSCEPTIBILITY INVER; Christian J.R., 2010, 2925 FISH OC CAN; Civelek CV, 2013, J EXP MAR BIOL ECOL, V445, P1, DOI 10.1016/j.jembe.2013.03.010; COWDEN C, 1984, MAR ECOL PROG SER, V14, P145, DOI 10.3354/meps014145; Cowen RK, 2009, ANNU REV MAR SCI, V1, P443, DOI 10.1146/annurev.marine.010908.163757; Davenport J, 2000, MAR ECOL PROG SER, V198, P131, DOI 10.3354/meps198131; Emlet R.B., 1987, Echinoderm Studies, V2, P55; GRONDAHL F, 1988, MAR BIOL, V97, P541, DOI 10.1007/BF00391050; Herrera JC, 1996, OCEANOL ACTA, V19, P313; Humphries S, 2009, P NATL ACAD SCI USA, V106, P7882, DOI 10.1073/pnas.0809063106; Iyengar EV, 2001, J EXP MAR BIOL ECOL, V264, P171, DOI 10.1016/S0022-0981(01)00314-8; Johnson KB, 2003, MAR ECOL PROG SER, V248, P125, DOI 10.3354/meps248125; Kalinin V.I., 2007, BIOL ACTIVITIES FUNC, V35, P135; Lamare MD, 1999, MAR ECOL PROG SER, V180, P197, DOI 10.3354/meps180197; LEONARD AB, 1988, MAR BIOL, V97, P111, DOI 10.1007/BF00391251; LESSER MP, 1994, BIOL BULL, V187, P319, DOI 10.2307/1542289; Lindquist N, 1996, MAR BIOL, V126, P745, DOI 10.1007/BF00351341; Lindquist N, 2002, J CHEM ECOL, V28, P1987, DOI 10.1023/A:1020745810968; Lindquist N, 1996, ECOL MONOGR, V66, P431, DOI 10.2307/2963489; McClintock JB, 2001, CRC MAR SCI, P195; McDonald KA, 2012, J EXP BIOL, V215, P141, DOI 10.1242/jeb.060541; McEdward LR, 1997, BIOL J LINN SOC, V60, P381; Mercier A, 2013, GLOBAL ECOL BIOGEOGR, V22, P517, DOI 10.1111/geb.12018; Mercier A, 2010, BEHAV ECOL SOCIOBIOL, V64, P1749, DOI 10.1007/s00265-010-0987-z; MORGAN SG, 1992, J EXP MAR BIOL ECOL, V163, P91, DOI 10.1016/0022-0981(92)90149-5; Morgan Steven G., 1995, P279; Nielsen C, 2009, BIOL BULL-US, V216, P203; Pechenik JA, 1999, MAR ECOL PROG SER, V177, P269, DOI 10.3354/meps177269; PENNINGTON JT, 1986, B MAR SCI, V39, P234; PENNINGTON JT, 1984, BIOL BULL, V167, P168, DOI 10.2307/1541345; Petersen JK, 2007, J EXP MAR BIOL ECOL, V342, P127, DOI 10.1016/j.jembe.2006.10.023; Peterson KJ, 2005, GEOLOGY, V33, P929, DOI 10.1130/G21697.1; Raff RA, 2008, PHILOS T R SOC B, V363, P1473, DOI 10.1098/rstb.2007.2237; Roberts EC, 2011, J PLANKTON RES, V33, P833, DOI 10.1093/plankt/fbr005; RUMRILL SS, 1985, J EXP MAR BIOL ECOL, V90, P193, DOI 10.1016/0022-0981(85)90166-2; RUMRILL SS, 1990, OPHELIA, V32, P163, DOI 10.1080/00785236.1990.10422030; SEBENS KP, 1984, MAR BIOL, V81, P255, DOI 10.1007/BF00393220; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Vaughn D, 2010, INTEGR COMP BIOL, V50, P552, DOI 10.1093/icb/icq037; Villinski JT, 2002, EVOLUTION, V56, P1764, DOI 10.1111/j.0014-3820.2002.tb00190.x; Ward JE, 2004, J EXP MAR BIOL ECOL, V300, P83, DOI 10.1016/j.jembe.2004.03.002; WINTER JE, 1973, MAR BIOL, V22, P317, DOI 10.1007/BF00391388; Wirtz KW, 2011, MAR ECOL PROG SER, V445, P1; YOUNG CM, 1987, REPRODUCTION MARINE, V9, P385 49 9 9 3 41 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0022-0981 1879-1697 J EXP MAR BIOL ECOL J. Exp. Mar. Biol. Ecol. NOV 2013 449 100 110 10.1016/j.jembe.2013.09.007 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology AF3YB WOS:000334647500015 2019-02-21 J Remington, DL; Leinonen, PH; Leppala, J; Savolainen, O Remington, David L.; Leinonen, Paivi H.; Leppala, Johanna; Savolainen, Outi Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations GENETICS English Article resource allocation; quantitative trait locus; structural equation model; trait network; pleiotropy FLOWERING TIME-VARIATION; LIFE-HISTORY; LOCAL ADAPTATION; MERISTEM ALLOCATION; PHENOTYPIC PLASTICITY; NATURAL-POPULATIONS; QUANTITATIVE TRAITS; ERYSIMUM-CAPITATUM; HERBACEOUS PLANTS; AUXIN TRANSPORT Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F-2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. [Remington, David L.] Univ N Carolina, Dept Biol, Greensboro, NC 27402 USA; [Leinonen, Paivi H.; Leppala, Johanna; Savolainen, Outi] Univ Oulu, Dept Biol, FIN-90401 Oulu, Finland; [Leinonen, Paivi H.; Leppala, Johanna; Savolainen, Outi] Univ Oulu, Bioctr Oulu, FIN-90401 Oulu, Finland Remington, DL (reprint author), Univ N Carolina, Dept Biol, 312 Eberhart Bldg,POB 26170, Greensboro, NC 27402 USA. dlreming@uncg.edu Leppala, Johanna/0000-0001-7603-3907; Leinonen, Paivi/0000-0003-0210-5589 Population Genetic Graduate School; Biocenter Oulu; Bioscience and Environment Research Council of Finland; ERA-NET Plant Genomics; University of North Carolina at Greensboro We thank the many volunteers and students in the Savolainen and Remington labs who helped establish, maintain, and measure the Norway and North Carolina field studies and assisted with lab work. In addition, Soile Alatalo, Meeri Otsukka, Asta Airikainen (University of Oulu) and Derrick Fowler (University of North Carolina at Greensboro) provided valuable assistance with molecular laboratory procedures. We thank Charles Langley for providing the seeds from the Mayodan population used in these studies. We received valuable assistance at the Norway field site from the Bakkom and Sulheim families, and at the North Carolina site from Leon Moses and the North Carolina A&T Farm staff. Justin Borevitz and two anonymous reviewers provided helpful suggestions to improve the manuscript. Support was provided by the Population Genetic Graduate School (P. H. L.), Biocenter Oulu (O.S.), the Bioscience and Environment Research Council of Finland (O.S.), ERA-NET Plant Genomics (O.S.), and University of North Carolina at Greensboro (D.L.R.). Arntz AM, 1998, OECOLOGIA, V117, P323, DOI 10.1007/s004420050665; Baker AM, 2005, EVOLUTION, V59, P970; Baker RL, 2012, NEW PHYTOL, V196, P271, DOI 10.1111/j.1469-8137.2012.04245.x; Barbez E, 2012, NATURE, V485, P119, DOI 10.1038/nature11001; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; BIERE A, 1995, J ECOL, V83, P629, DOI 10.2307/2261631; Bjorklund M, 2004, EVOLUTION, V58, P1157; Bohlenius H, 2006, SCIENCE, V312, P1040, DOI 10.1126/science.1126038; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; Bonser SP, 1996, OIKOS, V77, P347, DOI 10.2307/3546076; Broman KW, 2003, BIOINFORMATICS, V19, P889, DOI 10.1093/bioinformatics/btg112; Brooker J., 2003, PLANT CELL, V15, P495; Callahan HS, 2005, NEW PHYTOL, V166, P129, DOI 10.1111/j.1469-8137.2005.01368.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; CHURCHILL GA, 1994, GENETICS, V138, P963; DEJONG G, 1990, J EVOLUTION BIOL, V3, P447, DOI 10.1046/j.1420-9101.1990.3050447.x; Diggle PK, 1999, INT J PLANT SCI, V160, pS123, DOI 10.1086/314217; DOUST JL, 1989, TRENDS ECOL EVOL, V4, P230, DOI 10.1016/0169-5347(89)90166-3; Fox J, 2006, STRUCT EQU MODELING, V13, P465, DOI 10.1207/s15328007sem1303_7; Friml J, 2002, NATURE, V415, P806; Galweiler L, 1998, SCIENCE, V282, P2226, DOI 10.1126/science.282.5397.2226; GEBER MA, 1990, EVOLUTION, V44, P799, DOI 10.1111/j.1558-5646.1990.tb03806.x; Gove RP, 2012, J THEOR BIOL, V293, P1, DOI 10.1016/j.jtbi.2011.09.034; HALEY CS, 1992, HEREDITY, V69, P315, DOI 10.1038/hdy.1992.131; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Hsu CY, 2011, P NATL ACAD SCI USA, V108, P10756, DOI 10.1073/pnas.1104713108; Hu TT, 2011, NAT GENET, V43, P476, DOI 10.1038/ng.807; Huber H, 2000, EVOL ECOL, V14, P731, DOI 10.1023/A:1011643904616; Johnson MTJ, 2007, J EVOLUTION BIOL, V20, P190, DOI 10.1111/j.1420-9101.2006.01201.x; Jongejans E, 2006, OECOLOGIA, V147, P369, DOI 10.1007/s00442-005-0325-8; Karrenberg S, 2008, CURR OPIN PLANT BIOL, V11, P156, DOI 10.1016/j.pbi.2008.01.004; Kim E, 2012, FUNCT ECOL, V26, P294, DOI 10.1111/j.1365-2435.2011.01936.x; Kim E, 2011, AM J BOT, V98, P1752, DOI 10.3732/ajb.1100194; Koch MA, 2007, P NATL ACAD SCI USA, V104, P6272, DOI 10.1073/pnas.0701338104; Koelewijn HP, 2004, NEW PHYTOL, V163, P67, DOI 10.1111/j.1469-8137.2004.01078.x; Kuittinen H, 2004, GENETICS, V168, P1575, DOI 10.1534/genetics.103.022343; Kuittinen H, 2008, MOL BIOL EVOL, V25, P319, DOI 10.1093/molbev/msm257; Leinonen PH, 2013, MOL ECOL, V22, P709, DOI 10.1111/j.1365-294X.2012.05678.x; Leinonen PH, 2011, EVOLUTION, V65, P90, DOI 10.1111/j.1558-5646.2010.01119.x; Leinonen PH, 2009, AM J BOT, V96, P1129, DOI 10.3732/ajb.0800080; Leppala J, 2011, EVOLUTION, V65, P2959, DOI 10.1111/j.1558-5646.2011.01361.x; Li RH, 2006, PLOS GENET, V2, P1046, DOI 10.1371/journal.pgen0020114; Li Y, 2010, TRENDS GENET, V26, P493, DOI 10.1016/j.tig.2010.09.002; Lowry DB, 2010, PLOS BIOL, V8; Mackay TFC, 2009, NAT REV GENET, V10, P565, DOI 10.1038/nrg2612; McKay JK, 2003, MOL ECOL, V12, P1137, DOI 10.1046/j.1365-294X.2003.01833.x; Mitchell-Olds T, 2006, NATURE, V441, P947, DOI 10.1038/nature04878; Munne-Bosch S, 2008, TRENDS PLANT SCI, V13, P216, DOI 10.1016/j.tplants.2008.02.002; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Prusinkiewicz P, 2009, P NATL ACAD SCI USA, V106, P17431, DOI 10.1073/pnas.0906696106; R Development Core Team, 2008, R LANG ENV STAT COMP; RATHCKE B, 1985, ANNU REV ECOL SYST, V16, P179, DOI 10.1146/annurev.es.16.110185.001143; Remington DL, 2009, GENETICS, V181, P1087, DOI 10.1534/genetics.108.092668; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Riihimaki M, 2005, GENETICA, V123, P63, DOI 10.1007/s10709-003-2711-7; Riihimaki M, 2004, AM J BOT, V91, P1036, DOI 10.3732/ajb.91.7.1036; Rockman MV, 2008, NATURE, V456, P738, DOI 10.1038/nature07633; Roff DA, 2007, J EVOLUTION BIOL, V20, P433, DOI 10.1111/j.1420-9101.2006.01255.x; Ross-Ibarra J, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002411; Scarcelli N, 2007, P NATL ACAD SCI USA, V104, P16986, DOI 10.1073/pnas.0708209104; Schadt EE, 2005, NAT GENET, V37, P710, DOI 10.1038/ng1589; Schmickl R, 2010, BMC EVOL BIOL, V10, DOI 10.1186/1471-2148-10-98; Schranz ME, 2006, TRENDS PLANT SCI, V11, P535, DOI 10.1016/j.tplants.2006.09.002; STEARNS S, 1991, TRENDS ECOL EVOL, V6, P122, DOI 10.1016/0169-5347(91)90090-K; Stearns S, 1992, EVOLUTION LIFE HIST; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Sultan SE, 2000, TRENDS PLANT SCI, V5, P537, DOI 10.1016/S1360-1385(00)01797-0; Thomas H, 2000, J EXP BOT, V51, P1781, DOI 10.1093/jexbot/51.352.1781; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; Vieten A, 2005, DEVELOPMENT, V132, P4521, DOI 10.1242/dev.02027; Wang RH, 2009, NATURE, V459, P423, DOI 10.1038/nature07988; Wilczek AM, 2009, SCIENCE, V323, P930, DOI 10.1126/science.1165826; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Willmann MR, 2011, DEVELOPMENT, V138, P677, DOI 10.1242/dev.057448; Worley AC, 2003, AM NAT, V161, P153, DOI 10.1086/345461 76 11 11 0 35 GENETICS SOC AM BETHESDA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA 1943-2631 GENETICS Genetics NOV 2013 195 3 1087 + 10.1534/genetics.113.151803 27 Genetics & Heredity Genetics & Heredity 292AN WOS:000329874100034 23979581 Bronze, Green Published 2019-02-21 J Bleu, J; Massot, M; Haussy, C; Meylan, S Bleu, Josefa; Massot, Manuel; Haussy, Claudy; Meylan, Sandrine An Experimental Study of the Gestation Costs in a Viviparous Lizard: A Hormonal Manipulation PHYSIOLOGICAL AND BIOCHEMICAL ZOOLOGY English Article LACERTA ZOOTOCA VIVIPARA; ARGININE VASOTOCIN AVT; REPRODUCTIVELY BIMODAL LIZARD; LIFE-HISTORY EVOLUTION; LOCOMOTOR PERFORMANCE; NATURAL-SELECTION; UTA-STANSBURIANA; GRAVID LIZARDS; COMMON LIZARD; SPRINT SPEED The trade-offs between reproduction and survival or future reproduction represent the costs of reproduction, which are central to the theory of life-history traits evolution. In particular, different stages of the reproductive cycle may be associated with different costs and thus explain the evolution of alternative reproductive strategies. Viviparity (live bearing) has evolved from oviparity (egg laying) several times independently in vertebrates. To better understand these transitions, we aimed to specifically investigate gestation costs in a squamate reptile with a new experimental procedure. We reduced litter size during gestation in the common lizard (Zootoca vivipara) with a hormonal injection of arginine vasotocin. This method is less invasive than a surgical method and does not reduce the number of offspring of future reproductive events. We monitored body mass change, immune response, endurance capacity, thermoregulatory behavior, offspring characteristic at birth, female and offspring survival, female body mass gain after parturition, and offspring growth rate after birth. Maternal treatment did not significantly change the offspring characteristics measured. Thus, litter size reduction did not change offspring development during gestation. For the females, there is evidence that endurance capacity during gestation is modified because of the physical burden of the litter and because of physiological changes. With respect to gestation costs, we did not observe a trade-off between the investment during gestation and females'' resources postparturition (female body mass) or survival, but there was a facultative trade-off with the immune response. It will be interesting to replicate this study to increase the robustness of these results and to confirm the effects on the endurance capacity and the immune response. Gestation costs seem to be limited in this species, and they should be studied in more detail to evaluate their influence on the evolution of viviparity. [Bleu, Josefa] Univ Savoie, Lab Ecol Alpine, Ctr Natl Rech Sci CNRS Unite Mixte Rech UMR 5553, F-73376 Le Bourget Du Lac, France; [Bleu, Josefa; Massot, Manuel; Haussy, Claudy; Meylan, Sandrine] Univ Paris 06, CNRS, Ecole Natl Super UMR 7625, Lab Ecol & Evolut, F-75005 Paris, France; [Meylan, Sandrine] Univ Paris 04, Inst Univ Format Maitres Paris, F-75016 Paris, France Bleu, J (reprint author), Univ Savoie, Lab Ecol Alpine, Ctr Natl Rech Sci CNRS Unite Mixte Rech UMR 5553, F-73376 Le Bourget Du Lac, France. josefa.bleu@gmail.com Bleu, Josefa/B-2574-2009 Bleu, Josefa/0000-0002-3403-8272; Massot, Manuel/0000-0002-2762-4417 Agence Nationale de la Recherche [07-BLAN-0217]; Ministere de l'Enseignement Superieur et de la Recherche We are grateful to the Parc National des Cevennes and the Office National des Forets for providing facilities during field work. We thank the students who helped collecting data, especially Nastasia Wisniewski and Lucille Billon, and Donald Miles for the treadmill. All experiments complied with the current laws of France. This work was supported by the Agence Nationale de la Recherche (07-BLAN-0217 to M.M.) and the Ministere de l'Enseignement Superieur et de la Recherche (PhD grant and postdoctoral grant to J.B.). Andrews R.M., 1982, Biology of Reptilia, V13, P273; Atkins N, 2006, J COMP PHYSIOL B, V176, P783, DOI 10.1007/s00360-006-0100-0; AVERY RA, 1974, J ZOOL, V173, P419, DOI 10.1111/j.1469-7998.1974.tb04124.x; BAUWENS D, 1985, J HERPETOL, V19, P353, DOI 10.2307/1564263; BERGLUND A, 1986, OIKOS, V46, P349, DOI 10.2307/3565833; Blackburn DG, 1999, HERPETOLOGICA, V55, P556; BLACKBURN DG, 1999, ENCY REPROD, V4, P994; Bleu J, 2012, J EVOLUTION BIOL, V25, P1264, DOI 10.1111/j.1420-9101.2012.02518.x; Bleu J, 2013, OECOLOGIA, V171, P141, DOI 10.1007/s00442-012-2401-1; Bleu J, 2012, P ROY SOC B-BIOL SCI, V279, P489, DOI 10.1098/rspb.2011.0966; BOYD SK, 1991, HORM BEHAV, V25, P57, DOI 10.1016/0018-506X(91)90039-K; Bradshaw D, 2007, GEN COMP ENDOCR, V150, P34, DOI 10.1016/j.ygcen.2006.07.003; Bradshaw SD, 2002, GEN COMP ENDOCR, V126, P7, DOI 10.1006/gcen.2002.7780; Burnham K. P., 1998, MODEL SELECTION INFE; CLUTTONBROCK TH, 1989, NATURE, V337, P260, DOI 10.1038/337260a0; COOPER WE, 1990, BEHAV ECOL SOCIOBIOL, V27, P153; Cote J, 2010, GEN COMP ENDOCR, V166, P142, DOI 10.1016/j.ygcen.2009.11.008; Cox RM, 2006, J ANIM ECOL, V75, P1361, DOI 10.1111/j.1365-2656.2006.01160.x; Cox RM, 2010, FUNCT ECOL, V24, P1262, DOI 10.1111/j.1365-2435.2010.01756.x; DEMARCO V, 1992, J EXP ZOOL, V262, P383, DOI 10.1002/jez.1402620404; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Du WG, 2005, BIOL LETTERS, V1, P98, DOI 10.1016/rsbl.2004.0268; DUFAURE JP, 1961, ARCH ANAT MICROSC MO, V50, P309; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Feldman ML, 2007, CHELONIAN CONSERV BI, V6, P313, DOI 10.2744/1071-8443(2007)6[313:SOTIOI]2.0.CO;2; French SS, 2007, AM NAT, V170, P79, DOI 10.1086/518569; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Girling JE, 2002, J EXP ZOOL, V293, P525, DOI 10.1002/jez.10140; Godwin J, 2012, HORM BEHAV, V61, P230, DOI 10.1016/j.yhbeh.2011.12.016; Goodson JL, 2001, BRAIN RES REV, V35, P246, DOI 10.1016/S0165-0173(01)00043-1; GUILLETTE LJ, 1991, AM J PHYSIOL, V260, pR854; GUILLETTE LJ, 1979, GEN COMP ENDOCR, V38, P457, DOI 10.1016/0016-6480(79)90153-9; GUILLETTE LJ, 1982, J HERPETOL, V16, P140, DOI 10.2307/1563806; Hanssen SA, 2005, P ROY SOC B-BIOL SCI, V272, P1039, DOI 10.1098/rspb.2005.3057; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Ladyman M, 2003, PHYSIOL BIOCHEM ZOOL, V76, P497, DOI 10.1086/376420; LANDWER AJ, 1994, OECOLOGIA, V100, P243, DOI 10.1007/BF00316951; Le Galliard JF, 2005, OIKOS, V111, P368, DOI 10.1111/j.0030-1299.2005.14163.x; Le Galliard JF, 2003, FUNCT ECOL, V17, P877, DOI 10.1046/j.0269-8463.2003.00800.x; LECOMTE J, 1992, Amphibia-Reptilia, V13, P21, DOI 10.1163/156853892X00193; Lee SJ, 1996, P ROY SOC B-BIOL SCI, V263, P619, DOI 10.1098/rspb.1996.0093; Lin CX, 2008, ZOOLOGY, V111, P188, DOI 10.1016/j.zool.2007.06.005; Lorenzon P, 1999, OECOLOGIA, V118, P423, DOI 10.1007/s004420050744; MICHENER GR, 1989, OECOLOGIA, V78, P77, DOI 10.1007/BF00377200; Miles DB, 2000, EVOLUTION, V54, P1386; Miles DB, 2007, HORM BEHAV, V51, P548, DOI 10.1016/j.yhbeh.2007.02.005; Naulleau G, 1996, OECOLOGIA, V107, P301, DOI 10.1007/BF00328446; Nephew BC, 2005, HORM BEHAV, V47, P280, DOI 10.1016/j.yhbeh.2004.11.007; Oksanen TA, 2002, EVOLUTION, V56, P1530; Oksanen TA, 2007, EVOLUTION, V61, P2822, DOI 10.1111/j.1558-5646.2007.00245.x; Olsson M, 2000, J EVOLUTION BIOL, V13, P263; PANIGEL MAURICE, 1956, ANN SCI NAT ZOOL, V18, P569; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Qualls CP, 1998, OIKOS, V82, P539, DOI 10.2307/3546374; Qualls FJ, 1997, FUNCT ECOL, V11, P757, DOI 10.1046/j.1365-2435.1997.00150.x; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; ROFF DA, 2002, LIFE HIST EVOLUTION; Sangha S, 1996, HERPETOLOGICA, V52, P32; Shaffer LR, 1996, ANIM BEHAV, V51, P1017, DOI 10.1006/anbe.1996.0104; Shine R, 2003, FUNCT ECOL, V17, P526, DOI 10.1046/j.1365-2435.2003.00756.x; Shine R, 2003, OECOLOGIA, V136, P450, DOI 10.1007/s00442-003-1281-9; Sinervo B, 1999, AM NAT, V154, pS26, DOI 10.1086/303281; SINERVO B, 1990, SCIENCE, V248, P1106, DOI 10.1126/science.248.4959.1106; Sinervo B, 1996, EVOLUTION, V50, P1299, DOI 10.1111/j.1558-5646.1996.tb02370.x; SINERVO B, 1991, J EXP ZOOL, V257, P252, DOI 10.1002/jez.1402570216; SINERVO B, 1991, J EXP BIOL, V155, P323; SINERVO B, 1992, SCIENCE, V258, P1927, DOI 10.1126/science.258.5090.1927; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stewart JR, 2009, J EXP BIOL, V212, P2520, DOI 10.1242/jeb.030643; Stewart JR, 2004, ZOOLOGY, V107, P289, DOI 10.1016/j.zool.2004.07.004; SUMMERS CH, 1985, GEN COMP ENDOCR, V57, P389, DOI 10.1016/0016-6480(85)90219-9; Surget-Groba Y, 2001, MOL PHYLOGENET EVOL, V18, P449, DOI 10.1006/mpev.2000.0896; Swain R, 2000, COMP BIOCHEM PHYS A, V127, P441, DOI 10.1016/S1095-6433(00)00275-0; Tella JL, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003295; Thompson RR, 2000, HORM BEHAV, V38, P75, DOI 10.1006/hbeh.2000.1610; Tinkle D.W, 1977, Miscellaneous Publs Mus Zool Univ Michigan, VNo. 154, P1; Uller T, 2003, P ROY SOC B-BIOL SCI, V270, P1867, DOI 10.1098/rspb.2003.2451; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VANDAMME R, 1989, J HERPETOL, V23, P459; Veasey JS, 2000, FUNCT ECOL, V14, P115, DOI 10.1046/j.1365-2435.2000.00391.x; Venables WN, 2002, MODERN APPL STAT S; Vinkler M, 2010, FUNCT ECOL, V24, P1081, DOI 10.1111/j.1365-2435.2010.01711.x; Visser ME, 2001, P ROY SOC B-BIOL SCI, V268, P1271, DOI 10.1098/rspb.2001.1661; White GC, 1999, BIRD STUDY, V46, P120; Zani PA, 2008, J HERPETOL, V42, P76, DOI 10.1670/07-090R1.1; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 87 4 4 0 47 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 1522-2152 1537-5293 PHYSIOL BIOCHEM ZOOL Physiol. Biochem. Zool. NOV 1 2013 86 6 690 701 10.1086/673099 12 Physiology; Zoology Physiology; Zoology 294CI WOS:000330019600008 24241066 2019-02-21 J Macedo, MV; Monteiro, RF; Silveira, MP; Mayhew, PJ Macedo, Margarete V.; Monteiro, Ricardo F.; Silveira, Mariana P.; Mayhew, Peter J. Male-male contests for mates, sexual size dimorphism, and sex ratio in a natural population of a solitary parasitoid BEHAVIOURAL PROCESSES English Article Allometry; Animal contests; Body size; Conditional sex allocation; Field fitness; Mating behaviour LIFE-HISTORY EVOLUTION; OPTIMAL CLUTCH SIZE; HOST-SIZE; BODY-SIZE; FIG WASP; FITNESS; HYMENOPTERA; ICHNEUMONIDAE; CONSEQUENCES; MANIPULATION Understanding how different behavioural and life history traits interact is fundamental to developing ethological theory. Here we study the interaction of male-male competition for mates and sexual size dimorphism in a solitary wasp, with implications for sex allocation. In Hymenoptera, females are normally larger than males suggesting that males do not benefit as much as females from larger size. However, in our focal species, a solitary Eurytoma wasp, males compete for mates by pairwise contests at female emergence sites, suggesting that male size may strongly affect fitness. In contests observed in the field, larger males were more likely to win fights, and males fighting at female emergence sites were much larger than average males. Males showed higher variance in body size than females, such that all the smallest individuals were males, a majority of medium-to-large individuals were female, but the majority of largest individuals were male. Our data suggest that sexual size dimorphism in this species has been affected by intra-sexual selection for male size, which may have implications for sex allocation. (C) 2013 Elsevier B.V. All rights reserved. [Macedo, Margarete V.; Monteiro, Ricardo F.; Silveira, Mariana P.] Univ Fed Rio de Janeiro, Inst Biol, Dept Ecol, BR-21941590 Rio De Janeiro, Brazil; [Macedo, Margarete V.; Mayhew, Peter J.] Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England; [Silveira, Mariana P.] Embrapa Meio Ambiente, BR-13120000 Jaguariuna, SP, Brazil Mayhew, PJ (reprint author), Univ York, Dept Biol, York YO10 5DD, N Yorkshire, England. peter.mayhew@york.ac.uk Mayhew, Peter/I-6363-2012 Mayhew, Peter/0000-0002-7346-6560 CNPq; CAPES; FAPESP (Instituto Nacional de Ciencia e Tecnologia HYMPAR - Sudeste, Brazil) We are grateful to Thomas M. Lewinsohn and Rogerio P. Martins for valuable suggestions during the early phases of this research and to Marina C.P.P. Landeiro for assistance in the field and with laboratory work. The authors also thank CNPq, CAPES and FAPESP (Instituto Nacional de Ciencia e Tecnologia HYMPAR - Sudeste, Brazil) for financial support and a scholarship to MVM. Part of this study was developed as a PhD Project of MVM at UNICAMP (Departamento de Biologia Animal), Brazil. Andersson M., 1994, SEXUAL SELECTION; Cade W., 1979, P343; CHARNOV EL, 1981, NATURE, V289, P27, DOI 10.1038/289027a0; Charnov Eric L., 1993, P1; Cloutier C, 2000, ENTOMOL EXP APPL, V97, P29, DOI 10.1023/A:1004056818645; de Macedo Margarete Valverde, 1998, Journal of Hymenoptera Research, V7, P274; DEMACEDO MV, 1989, J NEW YORK ENTOMOL S, V97, P358; Durocher-Granger L, 2011, ENTOMOL EXP APPL, V140, P262, DOI 10.1111/j.1570-7458.2011.01158.x; Ellers J, 1997, J EVOLUTION BIOL, V10, P771, DOI 10.1007/s000360050053; Fairbairn D.J., 2007, SIZE SEX GENDER ROLE; GAULD ID, 1987, BIOL J LINN SOC, V31, P291, DOI 10.1111/j.1095-8312.1987.tb01994.x; Godfray HCJ, 1994, PARASITOIDS BEHAV EV; Hamilton W.D., 1979, P167; Han X, 2013, BMC EVOL BIOL, V13, DOI 10.1186/1471-2148-13-27; Hardy I. C. W., 2002, SEX RATIOS CONCEPTS; Hardy ICW, 1998, ANIM BEHAV, V56, P787, DOI 10.1006/anbe.1998.0833; Harlow PS, 2000, AUSTRAL ECOL, V25, P640, DOI 10.1046/j.1442-9993.2000.01064.x; HEINZ KM, 1991, EVOLUTION, V45, P1511, DOI 10.1111/j.1558-5646.1991.tb02653.x; HURLBUTT B, 1987, BIOL J LINN SOC, V30, P63, DOI 10.1111/j.1095-8312.1987.tb00290.x; Innocent TM, 2007, BEHAV ECOL, V18, P709, DOI 10.1093/beheco/arm034; Isaac JL, 2005, MAMMAL REV, V35, P101, DOI 10.1111/j.1365-2907.2005.00045.x; IVES AR, 1989, AM NAT, V133, P671, DOI 10.1086/284944; JONES WT, 1982, BEHAV ECOL SOCIOBIOL, V10, P207, DOI 10.1007/BF00299686; KAZMER DJ, 1995, ECOLOGY, V76, P412, DOI 10.2307/1941200; KING BH, 1988, EVOLUTION, V42, P1190, DOI 10.1111/j.1558-5646.1988.tb04179.x; KING BH, 1989, OECOLOGIA, V78, P420, DOI 10.1007/BF00379119; Lacoume S, 2006, J INSECT PHYSIOL, V52, P249, DOI 10.1016/j.jinsphys.2005.11.003; Lewis HM, 2010, J EVOLUTION BIOL, V23, P1708, DOI 10.1111/j.1420-9101.2010.02038.x; LINDENFORS P, 2007, SEX SIZE GENDER ROLE, P19; Mesterton-Gibbons M, 2004, P ROY SOC B-BIOL SCI, V271, P971, DOI 10.1098/rspb.2003.2670; MOORE AJ, 1989, ETHOLOGY, V80, P120; Moore JC, 2008, ANIM BEHAV, V76, P315, DOI 10.1016/j.anbehav.2008.01.018; Moynihan AM, 2011, J EVOLUTION BIOL, V24, P2002, DOI 10.1111/j.1420-9101.2011.02343.x; Nicol CMY, 1999, ENTOMOL EXP APPL, V90, P83, DOI 10.1046/j.1570-7458.1999.00425.x; Petersen G, 1996, ANIM BEHAV, V51, P1363, DOI 10.1006/anbe.1996.0139; Pexton JJ, 2005, BEHAV ECOL SOCIOBIOL, V58, P99, DOI 10.1007/s00265-004-0881-7; Pexton JJ, 2002, BEHAV ECOL, V13, P690, DOI 10.1093/beheco/13.5.690; R Development Core Team, 2008, R LANG ENV STAT COMP; Reece SE, 2007, ANIM BEHAV, V74, P1163, DOI 10.1016/j.anbehav.2006.10.027; Roff Derek A., 1992; SEIDL SE, 1993, EVOLUTION, V47, P1876, DOI 10.1111/j.1558-5646.1993.tb01276.x; Sheldon BC, 2004, AM NAT, V163, P40, DOI 10.1086/381003; SHINE R, 1989, Q REV BIOL, V64, P419, DOI 10.1086/416458; Stearns S, 1992, EVOLUTION LIFE HIST; Teder T, 2005, ECOL ENTOMOL, V30, P342, DOI 10.1111/j.0307-6946.2005.00693.x; Teder T, 2005, OIKOS, V108, P321, DOI 10.1111/j.0030-1299.2005.13609.x; VANDENASSEM J, 1989, BEHAVIOUR, V108, P160, DOI 10.1163/156853989X00114; VISSER ME, 1994, J ANIM ECOL, V63, P963, DOI 10.2307/5273; Warner DA, 2008, NATURE, V451, P566, DOI 10.1038/nature06519; Weiblen GD, 2002, ANNU REV ENTOMOL, V47, P299, DOI 10.1146/annurev.ento.47.091201.145213; West S.A., 2009, SEX ALLOCATION; West SA, 1996, J ANIM ECOL, V65, P631, DOI 10.2307/5742; West SA, 2002, SCIENCE, V295, P1685, DOI 10.1126/science.1069043 53 4 4 2 30 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0376-6357 1872-8308 BEHAV PROCESS Behav. Processes NOV 2013 100 1 8 10.1016/j.beproc.2013.07.003 8 Psychology, Biological; Behavioral Sciences; Zoology Psychology; Behavioral Sciences; Zoology 283RY WOS:000329265900001 23872503 2019-02-21 J Johansson, F; Veldhoen, N; Lind, MI; Helbing, CC Johansson, Frank; Veldhoen, Nik; Lind, Martin I.; Helbing, Caren C. Phenotypic plasticity in the hepatic transcriptome of the European common frog (Rana temporaria): the interplay between environmental induction and geographical lineage on developmental response MOLECULAR ECOLOGY English Article adaptation; amphibians; gene structure and function; life history evolution; molecular evolution; phenotypic plasticity GENE-EXPRESSION INDICATORS; THYROID AXIS DISRUPTION; XENOPUS-LAEVIS; SPADEFOOT TOADS; AMPHIBIAN METAMORPHOSIS; ISLAND POPULATIONS; LARVAL DEVELOPMENT; LOCAL ADAPTATION; END-POINTS; EVOLUTION Phenotypic plasticity might facilitate adaptation to new environmental conditions through the enhancement of initial survival of organisms. Once a population is established, further adaptation and diversification may occur through adaptive trait evolution. While several studies have found evidence for this mechanism using phenotypic traits, much less is known at the level of gene expression. Here, we use an islands system of frog populations that show local adaptation and phenotypic plasticity to pool drying conditions in development time until metamorphoses. We examined gene expression differences in Rana temporaria tadpole livers with respect to pool drying at the source population and in response to simulated pool drying in the laboratory. Using a MAGEX cDNA microarray and quantitative real-time polymerase chain reaction (qPCR), we identified an increase in several gene transcripts in response to artificial pool drying including thyroid hormone receptor alpha and beta, carbamoyl phosphate synthetase 1, ornithine transcarbamylase and catalase. In addition, these gene transcripts also showed greater abundance in island populations that developed faster. Hence, the gene transcripts were related to both constitutive response (higher levels in island populations that developed faster) and plastic response (increased abundance under decreasing water levels). This pattern is in accordance with genetic accommodation, which predicts similarities between plastic gene expression and constitutive expression in locally adapted populations. [Johansson, Frank; Lind, Martin I.] Uppsala Univ, Dept Ecol & Genet, S-75105 Uppsala, Sweden; [Veldhoen, Nik; Helbing, Caren C.] Univ Victoria, Dept Biochem & Microbiol, Stn CSC, Victoria, BC V8W 3P6, Canada Johansson, F (reprint author), Uppsala Univ, Dept Ecol & Genet, S-75105 Uppsala, Sweden. frank.johansson@ebc.uu.se Lind, Martin/A-4189-2011 Lind, Martin/0000-0001-5602-1933; Helbing, Caren/0000-0002-8861-1070 Swedish Research Council; Natural Sciences and Engineering Research Council The research was funded by the Swedish Research Council (FJ) and, in part, by the Natural Sciences and Engineering Research Council (CCH). The experiments were performed with the permission (A25-10) of the Swedish Animal Welfare Agency, the Swedish Board of Agriculture. We would like to thank Vicki Rehaume for her technical assistance. Abouheif E, 2002, SCIENCE, V297, P249, DOI 10.1126/science.1071468; Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Almfelt JEM, 2005, THESIS UMEA U UMEA; Altwegg R, 2003, EVOLUTION, V57, P872; Atkinson B. G., 1996, METAMORPHOSIS POSTEM, P539; BERVEN KA, 1990, ECOLOGY, V71, P1599, DOI 10.2307/1938295; Brakefield MP, 1996, NATURE, V384, P236; Denver RJ, 1998, COMP BIOCHEM PHYS C, V119, P219, DOI 10.1016/S0742-8413(98)00011-5; Denver RJ, 1997, AM ZOOL, V37, P172; Gomez-Mestre I, 2006, P NATL ACAD SCI USA, V103, P19021, DOI 10.1073/pnas.0603562103; Gosner K. L., 1960, Herpetologica, V16, P183; Hammond SA, 2013, ZOOL SCI, V30, P392, DOI 10.2108/zsj.30.392; HELBING C, 1992, DEV GENET, V13, P289, DOI 10.1002/dvg.1020130406; Helbing CC, 2007, AQUAT TOXICOL, V82, P227, DOI 10.1016/j.aquatox.2007.02.013; Helbing CC, 2007, AQUAT TOXICOL, V82, P215, DOI 10.1016/j.aquatox.2007.02.014; Helbing Caren C., 2012, Frontiers in Genetics, V3, P37, DOI 10.3389/fgene.2012.00037; Helbing CC, 2010, GEN COMP ENDOCR, V168, P190, DOI 10.1016/j.ygcen.2010.01.012; Hollar AR, 2011, GEN COMP ENDOCR, V173, P190, DOI 10.1016/j.ygcen.2011.05.013; Johansson F, 2010, PLOS ONE, V5; KAWECKI TJ, 1994, AM NAT, V144, P833, DOI 10.1086/285709; Kvist J, 2013, MOL ECOL, V22, P602, DOI 10.1111/j.1365-294X.2012.05521.x; Ledon-Rettig CC, 2008, EVOL DEV, V10, P316, DOI 10.1111/j.1525-142X.2008.00240.x; Lind MI, 2007, J EVOLUTION BIOL, V20, P1288, DOI 10.1111/j.1420-9101.2007.01353.x; Lind MI, 2011, J EVOLUTION BIOL, V24, P2696, DOI 10.1111/j.1420-9101.2011.02393.x; Lind MI, 2011, EVOLUTION, V65, P684, DOI 10.1111/j.1558-5646.2010.01122.x; Lind MI, 2009, EVOLUTION, V63, P1508, DOI 10.1111/j.1558-5646.2009.00647.x; Moczek AP, 2005, EVOL DEV, V7, P175, DOI 10.1111/j.1525-142X.2005.05020.x; Moczek AP, 2011, P ROY SOC B-BIOL SCI, V278, P2705, DOI 10.1098/rspb.2011.0971; Morey S, 2001, ECOLOGY, V82, P510, DOI 10.2307/2679876; NEWMAN RA, 1988, EVOLUTION, V42, P774, DOI 10.1111/j.1558-5646.1988.tb02495.x; Oleksiak MF, 2002, NAT GENET, V32, P261, DOI 10.1038/ng983; Pal C, 2006, NAT REV GENET, V7, P337, DOI 10.1038/nrg1838; Richter-Boix A, 2006, EVOL ECOL RES, V8, P309; Richter-Boix A, 2011, ECOL EVOL, V1, P15, DOI 10.1002/ece3.2; Rose CS, 2005, TRENDS ECOL EVOL, V20, P129, DOI 10.1016/j.tree.2005.01.005; Savage R. M., 1961, ECOLOGY LIFE HIST CO; Searcy BT, 2012, GEN COMP ENDOCR, V176, P481, DOI 10.1016/j.ygcen.2011.12.036; SMITH DC, 1987, ECOLOGY, V68, P344, DOI 10.2307/1939265; Snell-Rood EC, 2012, INTEGR COMP BIOL, V52, P31, DOI 10.1093/icb/ics067; Snell-Rood EC, 2011, EVOLUTION, V65, P231, DOI 10.1111/j.1558-5646.2010.01106.x; Sultan SE, 2002, AM NAT, V160, P271, DOI 10.1086/341015; Veldhoen N, 2002, DEV DYNAM, V225, P457, DOI 10.1002/dvdy.10175; Veldhoen N, 2006, COMP BIOCHEM PHYS D, V1, P187, DOI 10.1016/j.cbd.2005.10.005; West-Eberhard MJ, 2005, P NATL ACAD SCI USA, V102, P6543, DOI 10.1073/pnas.0501844102; Zhang F, 2006, AQUAT TOXICOL, V76, P24, DOI 10.1016/j.aquatox.2005.09.003 45 9 9 0 50 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. NOV 2013 22 22 5608 5623 10.1111/mec.12497 16 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 290VO WOS:000329786700009 24118477 2019-02-21 J Eckert, AJ; Bower, AD; Jermstad, KD; Wegrzyn, JL; Knaus, BJ; Syring, JV; Neale, DB Eckert, Andrew J.; Bower, Andrew D.; Jermstad, Kathleen D.; Wegrzyn, Jill L.; Knaus, Brian J.; Syring, John V.; Neale, David B. Multilocus analyses reveal little evidence for lineage-wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus) MOLECULAR ECOLOGY English Article adaptive evolution; distribution of deleterious fitness effects; nearly neutral theory of molecular evolution; Pinus; purifying selection; subgenus Strobus EFFECTIVE POPULATION-SIZE; MULTIPLE SEQUENCE ALIGNMENT; SITE FREQUENCY-SPECTRUM; MOLECULAR EVOLUTION; NONSYNONYMOUS MUTATIONS; DELETERIOUS MUTATIONS; ASSOCIATION GENETICS; PURIFYING SELECTION; PROTEIN EVOLUTION; NATURAL-SELECTION Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (N-e). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of N-e. An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions () for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long-term adaptive evolution was detected, as all 11 estimates for were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome-wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and . This implies that genome-wide parameter estimates will need truly genome-wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision. [Eckert, Andrew J.] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA; [Bower, Andrew D.] US Forest Serv, USDA, Olympia, WA 98512 USA; [Jermstad, Kathleen D.] US Forest Serv, USDA, Pacific Southwest Res Stn, Inst Forest Genet, Placerville, CA 95667 USA; [Wegrzyn, Jill L.; Neale, David B.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA; [Knaus, Brian J.] US Forest Serv, USDA, Pacific NW Res Stn, Corvallis, OR 97331 USA; [Syring, John V.] Linfield Coll, Dept Biol, Mcminnville, OR 97128 USA Neale, DB (reprint author), ARS, USDA, Hort Crops Res Unit, Corvallis, OR 97331 USA. dbneale@ucdavis.edu Eckert, Andrew/E-4788-2011 Eckert, Andrew/0000-0002-6522-2646; Knaus, Brian/0000-0003-1665-4343; Wegrzyn, Jill/0000-0001-5923-0888 National Science Foundation [IOS-PGRP 0638502] Samples were kindly provided by Paul Berrang, Gaetan Doust, Joan Dunlap, Tom Ledig, Aaron Liston, Sierra Curtis-McLean, Donna Palamarek, Ken Roeder, Anna Schoettle, Dale Simpson and Det Vogler. Erik Grimstad and Ismael Grachico contributed many hours of work on determining and confirming gene structure. This work was supported by the National Science Foundation (IOS-PGRP 0638502 to D. B. Neale and C. H. Langley). Axelsson E, 2009, MOL BIOL EVOL, V26, P1073, DOI 10.1093/molbev/msp019; Bierne N, 2004, MOL BIOL EVOL, V21, P1350, DOI 10.1093/molbev/msh134; Boyko AR, 2008, PLOS GENETICS, V4; Bustamante CD, 2002, NATURE, V416, P531, DOI 10.1038/416531a; Cai JJ, 2010, GENOME BIOL EVOL, V2, P393, DOI 10.1093/gbe/evq019; Charlesworth B, 2009, NAT REV GENET, V10, P195, DOI 10.1038/nrg2526; Comeron JM, 1995, J MOL EVOL, V41, P1152; CRITCHFIELD WILLIAM B., 1966, US DEP AGR MIS PUBLICATION, V991, P1; Eckert AJ, 2008, MOL ECOL, V17, P1983, DOI 10.1111/j.1365-294X.2008.03722.x; Eckert AJ, 2012, NEW PHYTOL, V193, P890, DOI 10.1111/j.1469-8137.2011.03976.x; Eckert AJ, 2010, GENETICS, V185, P969, DOI 10.1534/genetics.110.115543; Eckert AJ, 2010, MOL ECOL RESOUR, V10, P542, DOI 10.1111/j.1755-0998.2009.02768.x; Edgar RC, 2004, BMC BIOINFORMATICS, V5, P1, DOI 10.1186/1471-2105-5-113; Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340; Elyashiv E, 2010, GENOME RES, V20, P1558, DOI 10.1101/gr.108993.110; Ewing B, 1998, GENOME RES, V8, P186, DOI 10.1101/gr.8.3.186; Ewing B, 1998, GENOME RES, V8, P175, DOI 10.1101/gr.8.3.175; Eyre-Walker A, 2006, GENETICS, V173, P891, DOI 10.1534/genetics.106.057570; Eyre-Walker A, 2010, P NATL ACAD SCI USA, V107, P1752, DOI 10.1073/pnas.0906182107; Eyre-Walker A, 2009, MOL BIOL EVOL, V26, P2097, DOI 10.1093/molbev/msp119; Falush D, 2003, GENETICS, V164, P1567; Fay JC, 2000, GENETICS, V155, P1405; Foxe JP, 2008, MOL BIOL EVOL, V25, P1375, DOI 10.1093/molbev/msn079; Gaut BS, 2007, NAT REV GENET, V8, P77, DOI 10.1038/nrg1970; Gernandt DS, 2005, TAXON, V54, P29, DOI 10.2307/25065300; Gillespie JH, 2001, EVOLUTION, V55, P2161; Gillespie JH, 1999, THEOR POPUL BIOL, V55, P145, DOI 10.1006/tpbi.1998.1391; Gillespie JH, 2000, GENETICS, V155, P909; Gossmann TI, 2012, GENOME BIOL EVOL, V4, P658, DOI 10.1093/gbe/evs027; Gossmann TI, 2010, MOL BIOL EVOL, V27, P1822, DOI 10.1093/molbev/msq079; Haddrill PR, 2010, GENETICS, V185, P1381, DOI 10.1534/genetics.110.117614; Hahn MW, 2008, EVOLUTION, V62, P255, DOI 10.1111/j.1558-5646.2007.00308.x; Halligan DL, 2010, PLOS GENETICS, V6; Hamblin MT, 2006, GENETICS, V173, P953, DOI 10.1534/genetics.105.054312; Hamrick JL, 1996, PHILOS T ROY SOC B, V351, P1291, DOI 10.1098/rstb.1996.0112; Hernandez RD, 2008, BIOINFORMATICS, V24, P2786, DOI 10.1093/bioinformatics/btn522; HILL W G, 1968, Theoretical and Applied Genetics, V38, P226, DOI 10.1007/BF01245622; Ingvarsson PK, 2011, NEW PHYTOL, V189, P909, DOI 10.1111/j.1469-8137.2010.03593.x; Ingvarsson PK, 2010, MOL BIOL EVOL, V27, P650, DOI 10.1093/molbev/msp255; Keightley PD, 2007, GENETICS, V177, P2251, DOI 10.1534/genetics.107.080663; Kelly JK, 1997, GENETICS, V146, P1197; Kern AD, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005152; KIMURA M, 1968, NATURE, V217, P624, DOI 10.1038/217624a0; Kimura M., 1983, NEUTRAL THEORY MOL E; Larson ER, 2011, J BIOGEOGR, V38, P453, DOI 10.1111/j.1365-2699.2010.02430.x; Ledig F. Thomas, 1998, P251; Marth GT, 1999, NAT GENET, V23, P452, DOI 10.1038/70570; MCDONALD JH, 1991, NATURE, V351, P652, DOI 10.1038/351652a0; Messer PW, 2013, P NATL ACAD SCI USA, V110, P8615, DOI 10.1073/pnas.1220835110; Mirov N. T., 1967, THE GENUS PINUS; Morgenstern EK, 1996, GEOGRAPHIC VARIATION; Neale DB, 2011, NAT REV GENET, V12, P111, DOI 10.1038/nrg2931; Nei M., 1987, MOL EVOLUTIONARY GEN; Nickerson DA, 1997, NUCLEIC ACIDS RES, V25, P2745, DOI 10.1093/nar/25.14.2745; Nielsen R, 2005, PLOS BIOL, V3, P976, DOI 10.1371/journal.pbio.0030170; OHTA T, 1992, ANNU REV ECOL SYST, V23, P263, DOI 10.1146/annurev.es.23.110192.001403; Ohta T, 2002, P NATL ACAD SCI USA, V99, P16134, DOI 10.1073/pnas.252626899; OHTA T, 1973, NATURE, V246, P96, DOI 10.1038/246096a0; Ohta T, 1996, THEOR POPUL BIOL, V49, P128, DOI 10.1006/tpbi.1996.0007; PALME AE, 2009, MOL BIOL EVOL, V26, P898; Parks M, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-84; Piganeau G, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0004396; Pritchard JK, 2010, CURR BIOL, V20, pR208, DOI 10.1016/j.cub.2009.11.055; R Development Core Team, 2010, R LANG ENV STAT COMP; Ross-Ibarra J, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0002411; Savolainen O, 2007, ANNU REV ECOL EVOL S, V38, P595, DOI 10.1146/annurev.ecolsys.38.091206.095646; Savolainen O, 2007, CURR OPIN PLANT BIOL, V10, P162, DOI 10.1016/j.pbi.2007.01.011; Sella G, 2009, PLOS GENETICS, V5; Slotte T, 2010, MOL BIOL EVOL, V27, P1813, DOI 10.1093/molbev/msq062; Stadler T, 2009, GENETICS, V182, P205, DOI 10.1534/genetics.108.094904; Strasburg JL, 2011, MOL BIOL EVOL, V28, P1569, DOI 10.1093/molbev/msq270; Strasburg JL, 2009, MOL BIOL EVOL, V26, P1341, DOI 10.1093/molbev/msp043; Syring J, 2007, SYSTEMATIC BIOL, V56, P163, DOI 10.1080/10635150701258787; TAJIMA F, 1989, GENETICS, V123, P585; TAJIMA F, 1983, GENETICS, V105, P437; Thornton K, 2003, BIOINFORMATICS, V19, P2325, DOI 10.1093/bioinformatics/btg316; WATTERSON GA, 1975, THEOR POPUL BIOL, V7, P256, DOI 10.1016/0040-5809(75)90020-9; Wegrzyn JL, 2009, BIOINFORMATICS, V25, P2609, DOI 10.1093/bioinformatics/btp477; Welch JJ, 2006, GENETICS, V173, P821, DOI 10.1534/genetics.106.056911; Wright SI, 2005, MOL BIOL EVOL, V22, P506, DOI 10.1093/molbev/msi035; Wright SI, 2008, ANNU REV ECOL EVOL S, V39, P193, DOI 10.1146/annurev.ecolsys.39.110707.173342 81 16 16 0 25 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. NOV 2013 22 22 5635 5650 10.1111/mec.12514 16 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 290VO WOS:000329786700011 24134614 2019-02-21 J Hawkes, K; Coxworth, JE Hawkes, Kristen; Coxworth, James E. Grandmothers and the Evolution of Human Longevity: A Review of Findings and Future Directions EVOLUTIONARY ANTHROPOLOGY English Review life history evolution; senescence; cooperative child rearing; infant psychology; male-male competition NATURAL-SELECTION; HUNTER-GATHERERS; LIFE-SPAN; INTERGENERATIONAL TRANSFERS; POSTREPRODUCTIVE LIFE; REPRODUCTIVE CONFLICT; PAN-TROGLODYTES; CHILD SURVIVAL; CHIMPANZEES; MENOPAUSE Women and female great apes both continue giving birth into their forties, but not beyond. However humans live much longer than other apes do. Even in hunting and gathering societies, where the mortality rate is high, adult life spans average twice those of chimpanzees, which become decrepit during their fertile years and rarely survive them. Since women usually remain healthy through and beyond childbearing age, human communities include substantial proportions of economically productive postmenopausal women. A grandmother hypothesis(8-12) may explain why greater longevity evolved in our lineage while female fertility still ends at ancestral ages. This hypothesis has implications for the evolution of a wide array of human features. Here we review some history of the hypothesis, recent findings, and questions for ongoing research. Alberts SC, 2013, P NATL ACAD SCI USA, V110, P13440, DOI 10.1073/pnas.1311857110; Alvarez HP, 2004, KINSHIP AND BEHAVIOR IN PRIMATES, P420; Alvarez HP, 2000, AM J PHYS ANTHROPOL, V113, P435, DOI 10.1002/1096-8644(200011)113:3<435::AID-AJPA11>3.0.CO;2-O; Bernstein RM, 2012, AM J PHYS ANTHROPOL, V147, P389, DOI 10.1002/ajpa.22001; Blevins JK, 2013, AM J PHYS ANTHROPOL, V151, P643, DOI 10.1002/ajpa.22300; Blurton Jones N. G., 2005, GRANDMOTHERHOOD EVOL, P160; Blurton Jones N. G., 2000, ADAPTATION HUMAN BEH, P31; Blurton Jones NG, 2013, HADZA DEMOGRAPHY SOC; Cant MA, 2008, P NATL ACAD SCI USA, V105, P5332, DOI 10.1073/pnas.0711911105; Caspari R, 2005, J HUM EVOL, V49, P654, DOI 10.1016/j.jhevol.2005.08.005; Chapais B., 2008, PRIMEVAL KINSHIP PAI; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov Eric L., 1993, P1; Coxworth J. E., 2013, THESIS U UTAH SALT L; Darwin C, 1871, DESCENT MAN SELECTIO; de Waal FBM, 2012, SCIENCE, V336, P874, DOI 10.1126/science.1220999; de Waal FBM, 2011, ANN NY ACAD SCI, V1224, P191, DOI 10.1111/j.1749-6632.2010.05912.x; Finch CE, 2010, P NATL ACAD SCI USA, V107, P1718, DOI 10.1073/pnas.0909606106; Fox M, 2010, P ROY SOC B-BIOL SCI, V277, P567, DOI 10.1098/rspb.2009.1660; Gomes NMV, 2011, AGING CELL, V10, P761, DOI 10.1111/j.1474-9726.2011.00718.x; Goodall J., 1986, CHIMPANZEES GOMBE PA; GOSDEN RG, 1987, J ZOOL, V211, P169, DOI 10.1111/j.1469-7998.1987.tb07460.x; Graham CE, 1986, COMP PRIMATE BIOL, V3, P93; Gurven M, 2007, POPUL DEV REV, V33, P321, DOI 10.1111/j.1728-4457.2007.00171.x; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; HAMILTON WD, 1964, J THEOR BIOL, V7, P17, DOI 10.1016/0022-5193(64)90039-6; Haussmann MF, 2010, CURR ZOOL, V56, P714; HAWKES K, 1995, CURR ANTHROPOL, V36, P688, DOI 10.1086/204420; Hawkes K, 1997, CURR ANTHROPOL, V38, P551, DOI 10.1086/204646; Hawkes K, 2005, J HUM EVOL, V49, P650, DOI 10.1016/j.jhevol.2005.04.012; Hawkes K, 2003, AM J HUM BIOL, V15, P380, DOI 10.1002/ajhb.10156; Hawkes K, 1998, P NATL ACAD SCI USA, V95, P1336, DOI 10.1073/pnas.95.3.1336; HAWKES K, 2005, GRANDMOTHERHOOD EVOL, P118, DOI DOI 10.1007/S12110-010-9098-9; Hawkes K, 2006, SCH AM RES, P95; Hawkes K, 2006, SCH AM RES, P45; Hawkes K, 2014, HUM NATURE-INT BIOS, V25, P28, DOI 10.1007/s12110-013-9184-x; Hawkes K, 2011, P ROY SOC B-BIOL SCI, V278, P1936, DOI 10.1098/rspb.2010.2720; Hawkes K, 2010, ANN NY ACAD SCI, V1204, P43, DOI [10.1111/L1749-6632.2010.05527A, 10.1111/j.1749-6632.2010.05527.x]; Herndon JG, 2012, AGE, V34, P1145, DOI 10.1007/s11357-011-9351-0; Hill K, 2001, J HUM EVOL, V40, P437, DOI 10.1006/jhev.2001.0469; Hill K., 1996, ACHE LIFE HIST ECOLO; Hill K, 2009, P ROY SOC B-BIOL SCI, V276, P3863, DOI 10.1098/rspb.2009.1061; Hill KR, 2011, SCIENCE, V331, P1286, DOI 10.1126/science.1199071; Howell N., 1979, DEMOGRAPHY DOBE KUNG; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hrdy Sarah Blaffer, 1999, MOTHER NATURE HIST M; Hrdy SB, 2013, ORIGINS IMPLICATIONS; Ingram DK, 2001, EXP GERONTOL, V36, P1025, DOI 10.1016/S0531-5565(01)00110-3; Jaeggi AV, 2011, BEHAV ECOL SOCIOBIOL, V65, P2125, DOI 10.1007/s00265-011-1221-3; Jones Doug, 1996, Evolutionary Anthropology, V5, P97, DOI 10.1002/(SICI)1520-6505(1996)5:3<97::AID-EVAN5>3.0.CO;2-T; Jones KP, 2007, BIOL REPROD, V77, P247, DOI 10.1095/biolreprod.106.059634; Jones NGB, 2002, AM J HUM BIOL, V14, P184, DOI 10.1002/ajhb.10038; Kachel AF, 2011, P ROY SOC B-BIOL SCI, V278, P384, DOI 10.1098/rspb.2010.1247; Kaplan H, 2010, ANN NY ACAD SCI, V1204, P30, DOI [10.1111/j.1749-6632.2010.05528.x, 10.1111/J.1749-6632.2010.05528.x]; Kaplan HS, 2002, P NATL ACAD SCI USA, V99, P10221, DOI 10.1073/pnas.152502899; Kim PS, 2012, P ROY SOC B-BIOL SCI, V279, P4880, DOI 10.1098/rspb.2012.1751; Kim PS, GRANDMOTHERING UNPUB; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; Koenig A, 2012, EVOL ANTHROPOL, V21, P108, DOI 10.1002/evan.21300; Kramer KL, 2010, EVOL ANTHROPOL, V19, P136, DOI 10.1002/evan.20265; LABRIE F, 1991, MOL CELL ENDOCRINOL, V78, pC113, DOI 10.1016/0303-7207(91)90116-A; Labrie F, 2011, MENOPAUSE, V18, P30, DOI 10.1097/gme.0b013e3181e195a6; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; Lahdenpera M, 2012, ECOL LETT, V15, P1283, DOI 10.1111/j.1461-0248.2012.01851.x; Lane MA, 1997, J CLIN ENDOCR METAB, V82, P2093, DOI 10.1210/jc.82.7.2093; Lasley BL, 2012, MENOPAUSE, V19, P650, DOI 10.1097/gme.0b013e31823df577; Lee RD, 2003, P NATL ACAD SCI USA, V100, P9637, DOI 10.1073/pnas.1530303100; Lee R, 2008, P NATL ACAD SCI USA, V105, P7124, DOI 10.1073/pnas.0710234105; Leonetti DL, 2005, GRANDMOTHERHOOD EVOL, P194; Leonetti DL, 2011, HUM NATURE-INT BIOS, V22, P16, DOI 10.1007/s12110-011-9111-y; Levitis DA, 2013, EVOL ANTHROPOL, V22, P66, DOI 10.1002/evan.21332; Marlowe FW, 2012, J HUM EVOL, V63, P834, DOI 10.1016/j.jhevol.2012.09.004; Marlowe FW, 2004, CURR ANTHROPOL, V45, P277, DOI 10.1086/382256; Medawar P, 1952, UNSOLVED PROBLEM BIO; Mizroch S. A., 1981, REP INT WHALING COMM, V31, P425; Morton RA, 2013, PLOS COMPUT BIOL, V9, DOI 10.1371/journal.pcbi.1003092; Moss CJ, 2001, J ZOOL, V255, P145, DOI 10.1017/S0952836901001212; Muller MN, 2006, CURR BIOL, V16, P2234, DOI 10.1016/j.cub.2006.09.042; O'Connell JF, 1999, J HUM EVOL, V36, P461, DOI 10.1006/jhev.1998.0285; Oeppen J, 2002, SCIENCE, V296, P1029, DOI 10.1126/science.1069675; Organ C, 2011, P NATL ACAD SCI USA, V108, P14555, DOI 10.1073/pnas.1107806108; Plooij F. X., 1984, BEHAV DEV FREE LIVIN; Robson SL, 2006, SCH AM RES, P17; Sear R, 2008, HUM NATURE-INT BIOS, V19, P277, DOI 10.1007/s12110-008-9042-4; Sear R, 2008, EVOL HUM BEHAV, V29, P1, DOI 10.1016/j.evolhumbehav.2007.10.001; Shay JW, 2007, J PATHOL, V211, P114, DOI 10.1002/path.2090; Strassmann BI, 2011, HUM NATURE-INT BIOS, V22, P201, DOI 10.1007/s12110-011-9114-8; Tackney J, 2013, BLOOD CELL TEL UNPUB; Tomasello M, 2005, BEHAV BRAIN SCI, V28, P675, DOI 10.1017/S0140525X05000129; Tomasello M., 2008, ORIGINS HUMAN COMMUN; Tomonaga M, 2004, JPN PSYCHOL RES, V46, P227, DOI 10.1111/j.1468-5584.2004.00254.x; Voland E, 2002, BEHAV ECOL SOCIOBIOL, V52, P435, DOI 10.1007/s00265-002-0539-2; Voland E, 2005, GRANDMOTHERHOOD EVOL; VOMSAAL FS, 1994, PHYSL REPRODUCTION, V2, P1213; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wrangham R, 2009, CATCHING FIRE COOKIN; Wrangham R. W., 2007, EVOLUTION HUMAN DIET, P308; Wrangham R, 2010, EVOL ANTHROPOL, V19, P187, DOI 10.1002/evan.20275; Wrangham RW, 1999, CURR ANTHROPOL, V40, P567, DOI 10.1086/300083; Wrangham RW, 1987, EVOL HUM BEHAV, P55 100 44 45 5 101 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1060-1538 1520-6505 EVOL ANTHROPOL Evol. Anthropol. NOV 2013 22 6 294 302 10.1002/evan.21382 9 Anthropology Anthropology 274MX WOS:000328611700003 24347503 2019-02-21 J Boets, P; Thas, O; Van de Vijver, E; Lock, K; Topke, K; De Cooman, W; Janssen, CR; Goethals, PLM Boets, Pieter; Thas, Olivier; Van de Vijver, Ellen; Lock, Koen; Topke, Katrien; De Cooman, Ward; Janssen, Colin R.; Goethals, Peter L. M. Relating taxonomy-based traits of macroinvertebrates with river sediment quality based on basic and zero-inflated Poisson models ECOLOGICAL INFORMATICS English Article Body length; Community composition; Macroinvertebrates; Metal contamination; Traits-based ecological risk assessment FRESH-WATER MACROINVERTEBRATES; LIFE-HISTORY STRATEGIES; INITIAL APPLICATION; BIOLOGICAL TRAITS; COUNT DATA; BODY-SIZE; COMMUNITIES; RESPONSES; SENSITIVITY; ABUNDANCE To date, approaches in environmental risk assessment (ERA) are based on taxonomy-based descriptions of ecosystems. Due to the widespread occurrence of numerous types of chemicals in the environment and ensuing environmental risks, there is a need to get insight in the relationship between the response of the ecosystem to pollution and the characteristics (traits) of the organisms. The main hypothesis of the present research is that the trait composition of macroinvertebrate communities changes in a consistent manner along general environmental disturbance gradients. In this study, the relationship between maximal body length of macroinvertebrates and environmental variables (e.g. Cu concentration) reflecting river sediment quality in Flanders (Belgium) was analysed. It was found that the abundance at almost all body lengths decreased with a decreasing quality of the river sediment, which could be associated with a decrease in abundance of macroinvertebrate taxa. It was also observed that the number of different body lengths decreased with increasing pollution, which can be linked to a decrease in diversity of the macroinvertebrate community. At low levels of general environmental pollution especially small taxa (<20 mm) experienced negative effects, but with increasing pollution also the abundance of larger taxa (>60 mm) decreased. The trend observed for general environmental pollution was further analysed for specific types of metal contamination. Basic and zero-inflated Poisson models showed that with increasing copper pollution, the abundance of larger taxa quickly decreased and only relatively small taxa remained abundant. However, the observed trend was not generally applicable for all contaminants. The results of this research indicate that by using only individual metal concentrations it is not possible to explain the shifts in size distribution of macroinvertebrates. Including other environmental characteristics and other traits could enhance the understanding of how the macroinvertebrate community composition responds to environmental disturbances. (C) 2013 Elsevier B.V. All rights reserved. [Boets, Pieter; Topke, Katrien; Janssen, Colin R.; Goethals, Peter L. M.] Univ Ghent, Lab Environm Toxicol & Aquat Ecol, B-9000 Ghent, Belgium; [Thas, Olivier] Univ Ghent, Dept Math Modelling Stat & Bioinformat, B-9000 Ghent, Belgium; [Thas, Olivier] Univ Wollongong, Ctr Stat & Survey Methodol, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia; [Van de Vijver, Ellen] Univ Ghent, Dept Soil Management, B-9000 Ghent, Belgium; [Lock, Koen] eCOAST Marine Res, B-8400 Oostende, Belgium; [De Cooman, Ward] Flemish Environm Agcy, B-9320 Erembodegem, Belgium Boets, P (reprint author), Univ Ghent, Lab Environm Toxicol & Aquat Ecol, J Plateaustr 22, B-9000 Ghent, Belgium. pieter.boets@ugent.be Van De Vijver, Ellen/R-2569-2018; Janssen, Colin/H-3122-2015 Van De Vijver, Ellen/0000-0002-1585-9809; Thas, Olivier/0000-0001-6442-4089 Fund for Scientific Research (FWO-Vlaanderen, Belgium); [BOF09/24J/092] In the first place, we would like to thank the Flemish Environment Agency for the opportunity to study their databases and for their supporting information regarding these databases. Katrien Topke was supported by a doctoral scholarship (BOF09/24J/092). Koen Lock was supported by a post-doctoral fellowship from the Fund for Scientific Research (FWO-Vlaanderen, Belgium). Allan IJ, 2006, TALANTA, V69, P302, DOI 10.1016/j.talanta.2005.09.043; Baird DJ, 2007, ECOTOX ENVIRON SAFE, V67, P296, DOI 10.1016/j.ecoenv.2006.07.001; Baird Donald J, 2008, Integr Environ Assess Manag, V4, P2, DOI 10.1897/IEAM_2007-063.1; Basset A., 2004, AQUAT CONSERV, V14, P43; Basset A., 2008, AQUAT CONSERV, V16S, P4; Basset A, 2007, OIKOS, V116, P1363, DOI 10.1111/j.2007.0030-1299.15702.x; Charvet S, 2000, FRESHWATER BIOL, V43, P277, DOI 10.1046/j.1365-2427.2000.00545.x; Clements WH, 2004, ECOL APPL, V14, P954, DOI 10.1890/03-5009; COOK SEK, 1976, ENVIRON POLLUT, V11, P269, DOI 10.1016/0013-9327(76)90067-7; Cunningham RB, 2005, ECOLOGY, V86, P1135, DOI 10.1890/04-0589; De Jonge M, 2008, SCI TOTAL ENVIRON, V407, P615, DOI 10.1016/j.scitotenv.2008.07.020; De Pauw Niels, 2001, Aquatic Ecology, V35, P121, DOI 10.1023/A:1011478427152; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; De Zwart D., 2005, THESIS U AMSTERDAM; Di Toro DM, 2005, ENVIRON TOXICOL CHEM, V24, P2410, DOI 10.1897/04-413R.1; Doledec S, 2010, J N AM BENTHOL SOC, V29, P286, DOI 10.1899/08-090.1; Floras M., 1999, CATS 4; Gabriels W, 2010, LIMNOLOGICA, V40, P199, DOI 10.1016/j.limno.2009.10.001; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Haybach A, 2004, LIMNOLOGICA, V34, P451, DOI 10.1016/S0075-9511(04)80012-4; Horrigan N, 2008, CAN J FISH AQUAT SCI, V65, P670, DOI 10.1139/F07-191; Kashian DR, 2007, ECOL APPL, V17, P365, DOI 10.1890/06-0396; Liess M, 2008, SCI TOTAL ENVIRON, V406, P484, DOI 10.1016/j.scitotenv.2008.05.054; Ministry of the Flemish Community, 2000, MAN CHAR SED FLEM WA; Peeters B., 2010, VLAAMSE MILIEUMAATSC; RASMUSSEN JB, 1993, CAN J FISH AQUAT SCI, V50, P2192, DOI 10.1139/f93-246; Rosenberg David M., 1993, P1; Rubach Mascha N., 2011, Integrated Environmental Assessment and Management, V7, P172, DOI 10.1002/ieam.105; Sagnes P, 2008, LIMNOLOGICA, V38, P23, DOI 10.1016/j.limno.2007.09.002; Sileshi G, 2009, ECOL MODEL, V220, P1764, DOI 10.1016/j.ecolmodel.2009.03.024; Tachet H, 2006, INVERTEBRES EAU DOUC; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Van den Brink Paul J., 2011, Integrated Environmental Assessment and Management, V7, P169, DOI 10.1002/ieam.103; Van Steertegem M., 2009, MIRA T 2008 INDICATO; Vannevel R., 1993, MACROINVERTEBRATEN W; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1739, DOI 10.1111/j.1365-2427.2008.02036.x; Vieira N. K. M., 2006, US GEOLOGICAL SURVEY, V187; Wenger SJ, 2008, ECOLOGY, V89, P2953, DOI 10.1890/07-1127.1 39 3 3 0 18 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 1574-9541 1878-0512 ECOL INFORM Ecol. Inform. NOV 2013 18 49 60 10.1016/j.ecoinf.2013.06.008 12 Ecology Environmental Sciences & Ecology 264XP WOS:000327914600006 2019-02-21 J Tanentzap, AJ; Lee, WG; Schulz, KAC Tanentzap, Andrew J.; Lee, William G.; Schulz, Katharina A. C. Niches drive peaked and positive relationships between diversity and disturbance in natural ecosystems ECOSPHERE English Article beta-diversity; coexistence; community structure; functional traits; intermediate disturbance hypothesis; neutral theory; trade-offs COMMUNITY ECOLOGY; FUNCTIONAL TRAITS; SPECIES-DIVERSITY; PLANT-COMMUNITIES; BAYESIAN MEASURES; NEUTRAL THEORY; TRADE-OFFS; BIODIVERSITY; COEXISTENCE; DYNAMICS A unified understanding of the relationship between disturbance and biodiversity is needed to predict biotic responses to global change. Recent advances have identified the need to deconstruct traditional models of disturbance into intensity and frequency to reconcile empirical studies that appear to generate contradictory associations between species diversity and disturbance. We integrate results from theoretical simulation modelling, field-based surveys of 5176 vegetation plots from 48 transects across 6 sites, and experimental pot-based manipulations of flooding to identify how disturbance drives species diversity within ephemeral wetlands in South Island, New Zealand. We find empirical, hump-shaped and positive relationships between species diversity and both disturbance intensity and frequency, mirroring patterns from a simulation model in which species differed in their demographic responses to disturbance. More generally, our simulations show that the relationships between diversity and disturbance shift from positive to hump-shaped to negative as species that are favored at low disturbance because of their resistance strategies, defined by low mortality and recruitment, decline within communities relative to resilient species. Resilient species with higher mortality and recruitment rates are instead favored as disturbance intensity and frequency intensify. Our theoretical findings suggest that sites must also have a third group of unique species with intermediate resilience and resistance. Analyses of community composition along our disturbance gradients support this prediction, emphasizing that shifts in community-level resistance and resilience drive empirical associations between diversity and disturbance. Overall, terrestrial plants may be unable to resist intense and frequent flooding, even with specialized traits. Only fast-growing species with high regeneration from seed may respond once flooding subsides and dominate community composition in these situations, especially on nutrient-rich soils. However, different strategies can co-occur at intermediate disturbance, ultimately increasing species richness. As disturbances become more pervasive globally, our results suggest that differences in the niches of species, rather than demographic stochasticity, drive biodiversity patterns. These niche-based processes may especially prevail, without accompanying losses in species richness, where sites are initially dominated by resistant taxa or life history strategies that balance resistance and resilience. [Tanentzap, Andrew J.; Lee, William G.] Landcare Res, Dunedin 9054, New Zealand; [Lee, William G.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand; [Schulz, Katharina A. C.] Univ Potsdam, Inst Biochem & Biol, D-14469 Potsdam, Germany Tanentzap, AJ (reprint author), Landcare Res, Private Bag 1930, Dunedin 9054, New Zealand. ajt65@cantab.net Ministry of Business, Innovation and Employment [CO9X0503]; Department of Conservation We thank N.W.H. Mason, J.B. Wilson, and A. Monks for useful discussion, and we acknowledge the use of the high-performance computing facilities provided by the Australian Research Collaboration Service and the SCENZ-Grid cluster. J. Comrie, P. Johnson, K. Ladley, J. Payne, and G. Rogers assisted with vegetation sampling and the flooding experiment, and A. Hicks patiently supported our computing demands. D. A. Coomes, A. J. F. Fergus, L. A. Spence, and two anonymous reviewers provided helpful comments on an earlier version of the manuscript. Funding was provided by the Ministry of Business, Innovation and Employment (Contract CO9X0503) in partnership with the Department of Conservation. ALLAN HH, 1982, FLORA NZ, V1; Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Araya YN, 2011, NEW PHYTOL, V189, P253, DOI 10.1111/j.1469-8137.2010.03475.x; Bell G, 2000, AM NAT, V155, P606, DOI 10.1086/303345; Bernhardt-Romermann M, 2011, J ECOL, V99, P777, DOI 10.1111/j.1365-2745.2011.01794.x; Bond WJ, 2001, TRENDS ECOL EVOL, V16, P45, DOI 10.1016/S0169-5347(00)02033-4; Brewer JS, 2011, J ECOL, V99, P1219, DOI 10.1111/j.1365-2745.2011.01846.x; Brock MA, 1998, AQUAT BOT, V61, P123, DOI 10.1016/S0304-3770(98)00062-X; Burnham K. P, 2002, MODEL SELECTION MULT; Cadotte MW, 2007, ECOLOGY, V88, P823, DOI 10.1890/06-1117; Capers RS, 2003, FRESHWATER BIOL, V48, P1640, DOI 10.1046/j.1365-2427.2003.01115.x; Chapin FS, 2000, NATURE, V405, P234, DOI 10.1038/35012241; Chase JM, 2007, P NATL ACAD SCI USA, V104, P17430, DOI 10.1073/pnas.0704350104; Chase JM, 2011, ECOSPHERE, V2, DOI 10.1890/ES10-00117.1; Chase JM, 2011, PHILOS T R SOC B, V366, P2351, DOI 10.1098/rstb.2011.0063; Chase JM, 2010, SCIENCE, V328, P1388, DOI 10.1126/science.1187820; Chave J, 2004, ECOL LETT, V7, P241, DOI 10.1111/j.1461-0248.2003.00566.x; Chen HJ, 2010, WETLANDS, V30, P957, DOI 10.1007/s13157-010-0094-y; Chesson P, 2000, ANNU REV ECOL SYST, V31, P343, DOI 10.1146/annurev.ecolsys.31.1.343; CHESSON PL, 1981, AM NAT, V117, P923, DOI 10.1086/283778; Clark JS, 2010, SCIENCE, V327, P1129, DOI 10.1126/science.1183506; Collinge SK, 2009, ECOLOGY, V90, P3313, DOI 10.1890/08-2155.1; CONNELL JH, 1978, SCIENCE, V199, P1302, DOI 10.1126/science.199.4335.1302; De la Cruz R, 2009, BIOMETRICAL J, V51, P588, DOI 10.1002/bimj.200800154; Dial R, 1998, ECOLOGY, V79, P1412, DOI 10.2307/176752; DODDS WK, 1995, J PHYCOL, V31, P2, DOI 10.1111/j.0022-3646.1995.00002.x; Dornelas M, 2010, PHILOS T R SOC B, V365, P3719, DOI 10.1098/rstb.2010.0295; dos Santos FS, 2010, ECOL MODEL, V221, P2776, DOI 10.1016/j.ecolmodel.2010.08.005; EDGAR E, 2000, FLORA NZ, V5; Elderd BD, 2006, J ECOL, V94, P656, DOI 10.1111/j.1365-2745.2006.01115.x; Fox JW, 2013, TRENDS ECOL EVOL, V28, P86, DOI 10.1016/j.tree.2012.08.014; Gagnon PR, 2008, ECOLOGY, V89, P612, DOI 10.1890/07-1255.1; Gelman A, 2006, TECHNOMETRICS, V48, P241, DOI 10.1198/004017005000000517; Gelman A., 2007, DATA ANAL USING REGR; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Hahn S, 2008, FRESHWATER BIOL, V53, P181, DOI 10.1111/j.1365-2427.2007.01881.x; HEALY AJ, 1980, FLORA NZ, V3; Hubbell Stephen P., 2001, V32, pi; HUTCHINSON GE, 1957, COLD SPRING HARB SYM, V22, P415, DOI 10.1101/SQB.1957.022.01.039; Jung V, 2010, J ECOL, V98, P1134, DOI 10.1111/j.1365-2745.2010.01687.x; Kadmon R, 2006, AM NAT, V167, P939, DOI 10.1086/504602; Keddy P. A, 2010, WETLAND ECOLOGY PRIN; Leibold MA, 2006, ECOLOGY, V87, P1399, DOI 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2; Lin K, 2009, ECOLOGY, V90, P31, DOI 10.1890/07-2079.1; Lunn D, 2009, STAT MED, V28, P3049, DOI 10.1002/sim.3680; Mack MC, 1998, TRENDS ECOL EVOL, V13, P195, DOI 10.1016/S0169-5347(97)01286-X; Mackey RL, 2001, ECOLOGY, V82, P3479, DOI 10.1890/0012-9658(2001)082[3479:TDDRII]2.0.CO;2; Mayor SJ, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2145; Miller AD, 2011, P NATL ACAD SCI USA, V108, P5643, DOI 10.1073/pnas.1018594108; Miller AD, 2009, AM NAT, V173, pE30, DOI 10.1086/595750; MITCHELLOLDS T, 1987, EVOLUTION, V41, P1149, DOI 10.1111/j.1558-5646.1987.tb02457.x; MOORE LB, 1970, FLORA NZ, V2; Pickett S. T. A., 1985, ECOLOGY NATURAL DIST, P3; Purves DW, 2010, J ANIM ECOL, V79, P1215, DOI 10.1111/j.1365-2656.2010.01738.x; R Development Core Team, 2011, R LANG ENV STAT COMP; Roxburgh SH, 2004, ECOLOGY, V85, P359, DOI 10.1890/03-0266; Schleuning M, 2008, J ECOL, V96, P1045, DOI 10.1111/j.1365-2745.2008.01416.x; Shea K, 2004, ECOL LETT, V7, P491, DOI 10.1111/j.1461-0248.2004.00600.x; Sousa WP, 2001, MARINE COMMUNITY ECOLOGY, P85; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Srivastava DS, 1998, AM NAT, V152, P510, DOI 10.1086/286187; Tilman D, 2004, P NATL ACAD SCI USA, V101, P10854, DOI 10.1073/pnas.0403458101; Turner MG, 2010, ECOLOGY, V91, P2833, DOI 10.1890/10-0097.1; Vervuren PJA, 2003, J ECOL, V91, P135, DOI 10.1046/j.1365-2745.2003.00749.x; Violle C, 2011, OIKOS, V120, P389, DOI 10.1111/j.1600-0706.2010.18525.x; Violle C, 2010, P NATL ACAD SCI USA, V107, P12925, DOI 10.1073/pnas.1000699107; Webb CJ, 1988, FLORA NZ 67 12 12 6 70 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2150-8925 ECOSPHERE Ecosphere NOV 2013 4 11 UNSP 133 10.1890/ES13-00102.1 28 Ecology Environmental Sciences & Ecology 257JY WOS:000327380900001 DOAJ Gold 2019-02-21 J Jude, DJ; Wang, Y; Hensler, SR; Janssen, J Jude, David J.; Wang, Yu; Hensler, Stephen R.; Janssen, John Burbot Early Life History Strategies in the Great Lakes TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article DIEL VERTICAL MIGRATION; DEEP-WATER SCULPIN; THE-YEAR BURBOT; LOTA-LOTA L; PERCA-FLUVIATILIS; LARVAL FISHES; REEF COMPLEX; MICHIGAN; ABUNDANCE; GROWTH Burbot Lota lota exhibit four previously known reproductive strategies in the Great Lakes region. In this paper we review those strategies and provide evidence for a fifth onedelayed deepwater spawning. The four known, shallow-water strategies are as follows: (1) spawning by self-sustaining, landlocked populations, (2) spawning in tributaries in winter and the exit of larvae to a Great Lake, (3) spawning by residents in a spawning stream with access to a Great Lake, and (4) spawning on unconsolidated and rocky areas in shallow water in winter in the lake proper. Resident, landlocked populations exist in some Michigan and Wisconsin rivers (e.g., the Muskegon River in Michigan). The evidence for winter tributary spawning is the appearance of newly hatched Burbot in the St. Marys and Bark rivers during April-June. Evidence for Burbot juveniles leaving spawning streams is U.S. Fish and Wildlife Service tributory mouth trap data. The evidence for winter nearshore spawning comes from power plant monthly entrainment studies (Mansfield etal. 1983). Our proposed fifth strategy is spring and summer spawning at deep reefs, where there is probably cobble or boulder habitat. Our evidence comes from midlake reefs in Lake Michigan and offshore areas of Lake Huron: (1) we collected adult Burbot at midlake reefs in Lake Michigan, (2) we collected many Burbot larvae (many of which were newly hatched) from Lakes Michigan and Huron in June-August, and (3) we collected a Burbot egg in a PONAR grab in mid-July from 73m in southern Lake Huron. An important question remains, namely, which life history strategy provides the highest recruitment success for this species. It may be that adaptability ensures the survival of this important, top-predator fish during periods of crisis (e.g., encounters with dams, Sea Lamprey Petromyzon marinus predation). [Jude, David J.; Hensler, Stephen R.] Univ Michigan, Sch Nat Resources, Ann Arbor, MI 48109 USA; [Wang, Yu; Janssen, John] Univ Wisconsin, Sch Freshwater Sci, Milwaukee, WI 53203 USA Jude, DJ (reprint author), Univ Michigan, Sch Nat Resources, 440 Church St, Ann Arbor, MI 48109 USA. djude@umich.edu Environmental Protection Agency; Great Lakes National Program Office; Great Lakes Fishery Trust; Great Lakes Fishery Commission; University of Wisconsin Sea Grant Institute; National Oceanic and Atmospheric Administration; National Sea Grant College Program; state of Wisconsin; University of Michigan School of Natural Resources and Environment; [NA06OAR417001]; [R/FI-I] We thank the Environmental Protection Agency, Great Lakes National Program Office, the Great Lakes Fishery Trust, and the Great Lakes Fishery Commission for funding the larval fish work. This work was also funded by the University of Wisconsin Sea Grant Institute under a grant from the National Oceanic and Atmospheric Administration, National Sea Grant College Program and the state of Wisconsin. Federal grant number NA06OAR417001, project number R/FI-I. The University of Michigan School of Natural Resources and Environment funded the collection of Burbot juveniles from the Muskegon River. We thank Michael Wiley for help with the Michigan River Inventory data set and our zooplankton/Mysis technicians for their care in removing larval fish from samples. Erin Burkett produced Figure 5 while Lacey Mason created Figure 1; we are indebted. Thanks to the reviewers and Martin Stapanian for critical comments. Auer NA, 1982, GREAT LAKES FISHERY, V82-3; BAILEY MM, 1972, T AM FISH SOC, V101, P667, DOI 10.1577/1548-8659(1972)101<667:AGRAFO>2.0.CO;2; Bailey R. M., 2004, U MICHIGAN MUSEUM ZO, V192; Barbiero R., 2002, EPA905R GREAT LAK NA; Barbiero RP, 2009, CAN J FISH AQUAT SCI, V66, P816, DOI 10.1139/F09-036; Barbiero RP, 2004, CAN J FISH AQUAT SCI, V61, P2111, DOI 10.1139/f04-149; Barbiero RP, 2001, J GREAT LAKES RES, V27, P134, DOI 10.1016/S0380-1330(01)70628-4; Bassett C., 2009, STURGEON RIVER FISHE; Bassett C., 2009, WHITEFISH RIVER FISH; BAYLEY PB, 1995, BIOSCIENCE, V45, P153, DOI 10.2307/1312554; Becker GC, 1983, FISHES WISCONSIN; Beletsky D, 2007, J GREAT LAKES RES, V33, P842, DOI 10.3394/0380-1330(2007)33[842:BMOLYP]2.0.CO;2; BJORN EE, 1939, T AM FISH SOC, V69, P192; BOYER LF, 1989, J GREAT LAKES RES, V15, P174, DOI 10.1016/S0380-1330(89)71472-6; Campana SE, 1999, MAR ECOL PROG SER, V188, P263, DOI 10.3354/meps188263; Cardinale M., 2008, RESILIENCY GADID STO, P231; CLADY M D, 1976, Journal of Great Lakes Research, V2, P234; COBLE DW, 1990, T AM FISH SOC, V119, P985, DOI 10.1577/1548-8659(1990)119<0985:LTSLAO>2.3.CO;2; Cushing D. H., 1982, CLIMATE FISHERIES; Dettmers JM, 2005, CAN J FISH AQUAT SCI, V62, P2683, DOI 10.1139/F05-173; Dixon CJ, 2009, ECOL FRESHW FISH, V18, P234, DOI 10.1111/j.1600-0633.2008.00341.x; Donner MT, 2011, FRESHWATER BIOL, V56, P916, DOI 10.1111/j.1365-2427.2010.02536.x; EDSALL TA, 1993, T AM FISH SOC, V122, P560, DOI 10.1577/1548-8659(1993)122<0560:DAARMO>2.3.CO;2; Fischer P, 1997, ARCH HYDROBIOL, V139, P433; Fischer P, 1999, J FISH BIOL, V54, P1231, DOI 10.1006/jfbi.1999.0956; Fratt TW, 1997, J GREAT LAKES RES, V23, P1, DOI 10.1016/S0380-1330(97)70880-3; GEFFEN AJ, 1992, J FISH BIOL, V41, P101, DOI 10.1111/j.1095-8649.1992.tb03872.x; Genin A, 2004, J MARINE SYST, V50, P3, DOI 10.1016/j.marsys.2003.10.008; GHAN D, 1993, J FISH BIOL, V42, P47, DOI 10.1006/jfbi.1993.1005; Gottlieb E. S., 1989, GLERL71 NOAA; Hensler SR, 2008, AM FISH S S, V59, P91; Hofmann N, 2001, ECOL FRESHW FISH, V10, P21, DOI 10.1034/j.1600-0633.2001.100103.x; Houghton CJ, 2010, J GREAT LAKES RES, V36, P666, DOI 10.1016/j.jglr.2010.07.003; Jacobs GR, 2010, J GREAT LAKES RES, V36, P312, DOI 10.1016/j.jglr.2010.02.007; Jager T., 1981, Rapports et Proces-Verbaux des Reunions Conseil International pour l'Exploration de la Mer, V178, P345; Janssen J, 2007, J GREAT LAKES RES, V33, P59, DOI 10.3394/0380-1330(2007)33[59:CTDRBL]2.0.CO;2; Janssen J, 2006, J GREAT LAKES RES, V32, P749, DOI 10.3394/0380-1330(2006)32[749:EOLTRA]2.0.CO;2; Jones ML, 1995, J GREAT LAKES RES, V21, P505, DOI 10.1016/S0380-1330(95)71122-4; Jude D. J., 1979, 71 U MICH GREAT LAK; Jude DJ, 1998, J GREAT LAKES RES, V24, P569, DOI 10.1016/S0380-1330(98)70845-7; Kallasvuo M, 2010, ESTUAR COAST SHELF S, V86, P148, DOI 10.1016/j.ecss.2009.11.009; MacPherson LM, 2012, N AM J FISH MANAGE, V32, P480, DOI 10.1080/02755947.2012.686004; Madenjian CP, 2002, CAN J FISH AQUAT SCI, V59, P736, DOI 10.1139/F02-044; MANSFIELD PJ, 1983, T AM FISH SOC, V112, P162, DOI 10.1577/1548-8659(1983)112<162:DAAOLB>2.0.CO;2; Martin N., 1980, CHARRS SALMONID FISH, P206; McCormick MJ, 1999, LIMNOL OCEANOGR, V44, P530, DOI 10.4319/lo.1999.44.3.0530; McCrimmon H. R., 1959, J WILDLIFE MANAGE, V23, P2347; MDNR (Michigan Department of Natural Resources), 1993, ROT SURV MUSK RIV OS; Miler O, 2004, J FISH BIOL, V64, P176, DOI 10.1111/j.1095-8649.2004.00300.x; Mortimer C. H., 2004, LAKE MICHIGAN MOTION; Muth K., 1973, THESIS U MINNESOTA M; Naesje T, 1995, CAN J FISH AQUAT SCI, V52, P2190, DOI 10.1139/f95-811; NASH RDM, 1991, J GREAT LAKES RES, V17, P25, DOI 10.1016/S0380-1330(91)71339-7; Oyadomari JK, 2004, J GREAT LAKES RES, V30, P369, DOI 10.1016/S0380-1330(04)70398-6; Prada C, 2013, P NATL ACAD SCI USA, V110, P3961, DOI 10.1073/pnas.1208931110; Probst WN, 2009, ECOL FRESHW FISH, V18, P527, DOI 10.1111/j.1600-0633.2009.00367.x; Probst WN, 2009, J FISH BIOL, V74, P150, DOI 10.1111/j.1095-8649.2008.02120.x; RICE JA, 1985, T AM FISH SOC, V114, P532, DOI 10.1577/1548-8659(1985)114<532:EOAFBC>2.0.CO;2; RYDER RA, 1992, HYDROBIOLOGIA, V243, P211, DOI 10.1007/BF00007037; Scott W. B, 1973, FISHERIES RES BOARD, V184; Seelbach P.W., 1997, 973 MICH DEP NAT RES; Sideleva V. G., 2003, ENDEMIC FISHES LAKE; Stauffer T. M., 1979, 1864 MICH DEP NAT RE; STEELE JH, 1985, NATURE, V313, P355, DOI 10.1038/313355a0; Thurber N. J., 1985, 115 U MICH GREAT LAK; Ullman D, 1998, J GREAT LAKES RES, V24, P753, DOI 10.1016/S0380-1330(98)70860-3; Wang N, 1998, ECOL FRESHW FISH, V7, P176, DOI 10.1111/j.1600-0633.1998.tb00184.x; Wang Y, 2012, J GREAT LAKES RES, V38, P68, DOI 10.1016/j.jglr.2011.11.016; Wojcik J., 1982, J GREAT LAKES RES, V12, P225 69 6 6 0 24 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. NOV 1 2013 142 6 1733 1745 10.1080/00028487.2013.795192 13 Fisheries Fisheries 258OX WOS:000327469700024 2019-02-21 J Patrick, SC; Charmantier, A; Weimerskirch, H Patrick, Samantha C.; Charmantier, Anne; Weimerskirch, Henri Differences in boldness are repeatable and heritable in a long-lived marine predator ECOLOGY AND EVOLUTION English Article Animal model; Bayesian environment; individual behavioral differences; personality; quantitative genetics; wandering albatross ADAPTIVE PERSONALITY-DIFFERENCES; LIFE-HISTORY TRAITS; WANDERING ALBATROSS; ANIMAL PERSONALITY; POPULATION-DYNAMICS; FORAGING BEHAVIOR; NATURAL-SELECTION; DIOMEDEA-EXULANS; STABLE-ISOTOPES; DISPERSAL Animal personalities, composed of axes of consistent individual behaviors, are widely reported and can have important fitness consequences. However, despite theoretical predictions that life-history trade-offs may cause and maintain personality differences, our understanding of the evolutionary ecology of personality remains poor, especially in long-lived species where trade-offs and senescence have been shown to be stronger. Furthermore, although much theoretical and empirical work assumes selection shapes variation in personalities, studies exploring the genetic underpinnings of personality traits are rare. Here we study one standard axis of personality, the shy-bold continuum, in a long-lived marine species, the wandering albatross from Possession Island, Crozet, by measuring the behavioral response to a human approach. Using generalized linear mixed models in a Bayesian framework, we show that boldness is highly repeatable and heritable. We also find strong differences in boldness between breeding colonies, which vary in size and density, suggesting birds are shyer in more dense colonies. These results demonstrate that in this seabird population, boldness is both heritable and repeatable and highlights the potential for ecological and evolutionary processes to shape personality traits in species with varying life-history strategies. [Patrick, Samantha C.; Weimerskirch, Henri] CNRS, Ctr Etudes Biol Chize, UPR1934, F-79360 Villiers En Bois, France; [Charmantier, Anne] Campus CNRS, Ctr Ecol Fonctionnelle & Evolut, UMR 5175, Montpellier 5, France Patrick, SC (reprint author), Biosci QU116,Francis Close Hall Campus Univ Gloce, Cheltenham GL50 4AZ, Glos, England. spatrick@glos.ac.uk Institut Polaire Francais Paul Emile Victor (IPEV) [109]; Terres Australes and Antarctique Francaises (TAAF); Marie Curie Intra-European fellowship (ALBASPECIALISATION); Agence Nationale de la Recherche [ANR-12-ADAP-0006-02-PEPS] The Institut Polaire Francais Paul Emile Victor (IPEV, programme 109) and the Terres Australes and Antarctique Francaises (TAAF) provided logistical and financial support, and S. C. P. was funded by a Marie Curie Intra-European fellowship (ALBASPECIALISATION). A. C. was funded by the Agence Nationale de la Recherche (grant ANR-12-ADAP-0006-02-PEPS). Angelier F, 2007, PHYSIOL BIOCHEM ZOOL, V80, P283, DOI 10.1086/512585; Barbraud C, 2000, J EVOLUTION BIOL, V13, P81; Bartumeus F, 2010, CURR BIOL, V20, P215, DOI 10.1016/j.cub.2009.11.073; Bearhop S, 2006, MAR ECOL PROG SER, V311, P157, DOI 10.3354/meps311157; Bell AM, 2009, ANIM BEHAV, V77, P771, DOI 10.1016/j.anbehav.2008.12.022; Biro PA, 2008, TRENDS ECOL EVOL, V23, P361, DOI 10.1016/j.tree.2008.04.003; Blumstein DT, 2010, J EVOLUTION BIOL, V23, P879, DOI 10.1111/j.1420-9101.2010.01967.x; Boulinier T, 1997, J EVOLUTION BIOL, V10, P77, DOI 10.1007/s000360050010; Ceia FR, 2012, MAR BIOL, V159, P1581, DOI 10.1007/s00227-012-1946-1; Charmantier A, 2005, MOL ECOL, V14, P2839, DOI 10.1111/j.1365-294X.2005.02619.x; Charmantier A, 2011, J EVOLUTION BIOL, V24, P1487, DOI 10.1111/j.1420-9101.2011.02281.x; Cote J, 2011, P ROY SOC B-BIOL SCI, V278, P1670, DOI 10.1098/rspb.2010.1892; Dall SRX, 2004, ECOL LETT, V7, P734, DOI 10.1111/j.1461-0248.2004.00618.x; de Villemereuil P., 2013, METHODS ECOLOGY EVOL, V4, P260, DOI DOI 10.1111/2041-210X.12011; Dingemanse NJ, 2012, J ANIM ECOL, V81, P116, DOI 10.1111/j.1365-2656.2011.01877.x; Dingemanse NJ, 2010, PHILOS T R SOC B, V365, P3947, DOI 10.1098/rstb.2010.0221; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P81, DOI 10.1016/j.tree.2009.07.013; Dingemanse NJ, 2005, BEHAVIOUR, V142, P1159, DOI 10.1163/156853905774539445; Duckworth RA, 2009, EVOLUTION, V63, P968, DOI 10.1111/j.1558-5646.2009.00625.x; Furness RW, 1987, THE SKUAS; Gauthier G, 2010, J ANIM ECOL, V79, P879, DOI 10.1111/j.1365-2656.2010.01683.x; Gosling SD, 1999, CURR DIR PSYCHOL SCI, V8, P69, DOI 10.1111/1467-8721.00017; Gosling SD, 2001, PSYCHOL BULL, V127, P45, DOI 10.1037/0033-2909.127.1.45; Granadeiro JP, 2014, ANIM CONSERV, V17, P19, DOI 10.1111/acv.12050; Granadeiro JP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017467; Gremillet D, 2009, MAR ECOL PROG SER, V391, P121, DOI 10.3354/meps08212; Hadfield JD, 2010, J STAT SOFTW, V33, P1; HEIDELBERGER P, 1983, OPER RES, V31, P1109, DOI 10.1287/opre.31.6.1109; Inchausti P, 2002, J ANIM ECOL, V71, P765, DOI 10.1046/j.1365-2656.2002.00638.x; Jaeger A, 2010, RAPID COMMUN MASS SP, V24, P3456, DOI 10.1002/rcm.4792; Jouventin P, 2007, IBIS, V149, P67, DOI 10.1111/j.1474-919X.2006.00597.x; Kazama K, 2012, J ETHOL, V30, P279, DOI 10.1007/s10164-011-0324-7; Kazama K, 2010, BEHAV ECOL SOCIOBIOL, V64, P1239, DOI 10.1007/s00265-010-0938-8; Kim SY, 2012, BIOL J LINN SOC, V106, P439, DOI 10.1111/j.1095-8312.2012.01861.x; Kruuk LEB, 2007, J EVOLUTION BIOL, V20, P1890, DOI 10.1111/j.1420-9101.2007.01377.x; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lewis S, 2002, P ROY SOC B-BIOL SCI, V269, P1687, DOI 10.1098/rspb.2002.2083; Louzao M, 2013, ECOGRAPHY, V36, P57, DOI 10.1111/j.1600-0587.2012.07587.x; Marchant S., 1990, HDB AUSTR NZ ANTARCT; Milot E, 2008, MOL ECOL, V17, P1658, DOI 10.1111/j.1365-294X.2008.03700.x; Morrissey MB, 2007, J EVOLUTION BIOL, V20, P2309, DOI 10.1111/j.1420-9101.2007.01412.x; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Patrick S. C., OIKOS IN PRESS; Peck DR, 2006, EMU, V106, P227, DOI 10.1071/MU05037; Phillips RA, 2007, AQUAT CONSERV, V17, pS6, DOI 10.1002/aqc.906; Quinn JL, 2011, J ANIM ECOL, V80, P918, DOI 10.1111/j.1365-2656.2011.01835.x; R Development Core Team, 2012, R LANG ENV STAT COMP; Reale D, 2009, J EVOLUTION BIOL, V22, P1599, DOI 10.1111/j.1420-9101.2009.01781.x; Reale D, 2010, PHILOS T R SOC B, V365, P4051, DOI 10.1098/rstb.2010.0208; Reale D, 2010, PHILOS T R SOC B, V365, P3937, DOI 10.1098/rstb.2010.0222; Reinhold K, 2002, J HERED, V93, P400, DOI 10.1093/jhered/93.6.400; Schuett W, 2010, BIOL REV, V85, P217, DOI 10.1111/j.1469-185X.2009.00101.x; Sih A, 2004, Q REV BIOL, V79, P241, DOI 10.1086/422893; Sinn DL, 2006, J EVOLUTION BIOL, V19, P1437, DOI 10.1111/j.1420-9101.2006.01136.x; Smith BR, 2008, BEHAV ECOL, V19, P448, DOI 10.1093/beheco/arm144; Stamps JA, 2012, ANIM BEHAV, V83, P1325, DOI 10.1016/j.anbehav.2012.02.017; Taylor RW, 2012, J EVOLUTION BIOL, V25, P614, DOI 10.1111/j.1420-9101.2012.02456.x; Tickell W. L. N., 1968, ANTARCTIC BIRD STUDI; Torres LG, 2011, MAR ECOL PROG SER, V428, P289, DOI 10.3354/meps09068; Turbill C, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012019; Votier SC, 2010, J APPL ECOL, V47, P487, DOI 10.1111/j.1365-2664.2010.01790.x; WEIMERSKIRCH H, 1988, CONDOR, V90, P214, DOI 10.2307/1368450; Weimerskirch H, 2000, POLAR BIOL, V23, P733, DOI 10.1007/s003000000144; WEIMERSKIRCH H, 1987, OIKOS, V49, P315, DOI 10.2307/3565767; WEIMERSKIRCH H, 1993, AUK, V110, P325; Weimerskirch H, 2012, SCIENCE, V335, P211, DOI 10.1126/science.1210270; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; Wilson AJ, 2008, J EVOLUTION BIOL, V21, P647, DOI 10.1111/j.1420-9101.2008.01500.x; Wilson AJ, 2003, GENET RES, V81, P145, DOI 10.1017/S0016672302006055; Wolf M, 2007, NATURE, V447, P581, DOI 10.1038/nature05835; Wolf M, 2010, PHILOS T R SOC B, V365, P3959, DOI 10.1098/rstb.2010.0215 71 26 27 2 109 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2013 3 13 4291 4299 10.1002/ece3.748 9 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 250BE WOS:000326824300001 24340172 DOAJ Gold, Green Published 2019-02-21 J Rollins, LA; Moles, AT; Lam, S; Buitenwerf, R; Buswell, JM; Brandenburger, CR; Flores-Moreno, H; Nielsen, KB; Couchman, E; Brown, GS; Thomson, FJ; Hemmings, F; Frankham, R; Sherwin, WB Rollins, Lee A.; Moles, Angela T.; Lam, Serena; Buitenwerf, Robert; Buswell, Joanna M.; Brandenburger, Claire R.; Flores-Moreno, Habacuc; Nielsen, Knud B.; Couchman, Ellen; Brown, Gordon S.; Thomson, Fiona J.; Hemmings, Frank; Frankham, Richard; Sherwin, William B. High genetic diversity is not essential for successful introduction ECOLOGY AND EVOLUTION English Article Asteraceae; biological invasions; caryophyllaceae; genetic diversity; microsatellite; rapid evolution LIFE-HISTORY EVOLUTION; MULTILOCUS GENOTYPE DATA; RAPID EVOLUTION; NORTH-AMERICA; AMBROSIA-ARTEMISIIFOLIA; MULTIPLE INTRODUCTIONS; POPULATION BOTTLENECKS; MICROSATELLITE MARKERS; PHRAGMITES-AUSTRALIS; COLONIZATION SUCCESS Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia nanteuilii. Using microsatellite data, we identified the source for each introduction, estimated genetic diversity in native and introduced populations, and calculated the amount of diversity retained in introduced populations. These values were compared to those from a literature review of diversity in native, confamilial populations and to estimates of genetic diversity retained at introduction. Gene diversity in the native range of both species was significantly lower than for confamilials. We found that, on average, introduced populations showing evidence of adaptation to their new environments retained 81% of the genetic diversity from the native range. Introduced populations of P. nanteuilii had higher genetic diversity than found in the native source populations, whereas introduced populations of A. populifolia retained only 14% of its native diversity in one introduction and 1% in another. Our literature review has shown that most introductions demonstrating adaptive ability have lost diversity upon introduction. The two species studied here had exceptionally low native range genetic diversity. Further, the two introductions of A. populifolia represent the largest percentage loss of genetic diversity in a species showing evidence of substantial morphological change in the introduced range. While high genetic diversity may increase the likelihood of invasion success, the species examined here adapted to their new environments with very little neutral genetic diversity. This finding suggests that even introductions founded by small numbers of individuals have the potential to become invasive. [Rollins, Lee A.] Deakin Univ, Ctr Integrat Ecol, Sch Life & Environm Sci, Geelong, Vic 3216, Australia; [Rollins, Lee A.; Moles, Angela T.; Lam, Serena; Buitenwerf, Robert; Buswell, Joanna M.; Brandenburger, Claire R.; Flores-Moreno, Habacuc; Nielsen, Knud B.; Couchman, Ellen; Brown, Gordon S.; Thomson, Fiona J.; Hemmings, Frank; Sherwin, William B.] Univ New S Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia; [Frankham, Richard] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia Moles, AT (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia. a.moles@unsw.edu.au Moles, Angela/C-3083-2008; Sherwin, William B/C-3432-2008; Nielsen, Knud/B-5538-2015 Moles, Angela/0000-0003-2041-7762; Sherwin, William B/0000-0002-1578-8473; Nielsen, Knud/0000-0002-5777-1485 ARC [DP0984222]; Deakin University This research was funded by an ARC grant to Moles, Frankham and Sherwin (DP0984222) and a Research Fellowship from Deakin University to Rollins. Abdelkrim J, 2009, BIOTECHNIQUES, V46, P185, DOI 10.2144/000113084; Able KP, 1998, P ROY SOC B-BIOL SCI, V265, P2063, DOI 10.1098/rspb.1998.0541; Allendorf FW, 2003, CONSERV BIOL, V17, P24, DOI 10.1046/j.1523-1739.2003.02365.x; Allendorf FW, 2007, CONSERVATION GENETIC; Amundsen PA, 2012, BIOL INVASIONS, V14, P1501, DOI 10.1007/s10530-012-0175-3; AVH Database, 2012, AUSTR VIRT HERB; BAKER AJ, 1987, EVOLUTION, V41, P525, DOI 10.1111/j.1558-5646.1987.tb05823.x; BAKER AJ, 1992, EVOLUTION, V46, P1784, DOI 10.1111/j.1558-5646.1992.tb01169.x; BAKER HG, 1955, EVOLUTION, V9, P347, DOI 10.1111/j.1558-5646.1955.tb01544.x; BALL P. W., 1964, BULL BRIT MUS [NATUR HIST] BOT, V3, P121; Bariteau M., 1992, Amelioration des especes vegetales cultivees: objectifs et criteres de selection., P732; Barlow J.C., 1980, Acta Congressus Internationalis Ornithologici, V2, P1143; Barrett RDH, 2008, TRENDS ECOL EVOL, V23, P38, DOI 10.1016/j.tree.2007.09.008; Barrett SCH, 1996, PHILOS T ROY SOC B, V351, P725, DOI 10.1098/rstb.1996.0067; Berthouly-Salazar C., 2012, PLOS ONE, V7; BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; BOSSARD C. C, 2000, INVASIVE PLANTS CALI; Bossdorf O, 2004, ECOL LETT, V7, P346, DOI 10.1111/j.1461-0248.2004.00583.x; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Bossdorf O, 2004, AM J BOT, V91, P856, DOI 10.3732/ajb.91.6.856; Briscoe D. A, 2010, INTRO CONSERVATION G; Buswell JM, 2011, J ECOL, V99, P214, DOI 10.1111/j.1365-2745.2010.01759.x; CHAKRABORTY R, 1982, GENET RES, V39, P303, DOI 10.1017/S0016672300020978; Chang CC, 2012, OECOLOGIA, V168, P1091, DOI 10.1007/s00442-011-2157-z; Chen YH, 2006, OECOLOGIA, V149, P656, DOI 10.1007/s00442-006-0482-4; Cheptou PO, 2008, P NATL ACAD SCI USA, V105, P3796, DOI 10.1073/pnas.0708446105; Cody ML, 1996, J ECOL, V84, P53, DOI 10.2307/2261699; Cordeiro A.R., 1980, HEREDITY, V44, P123; Crawford KM, 2010, MOL ECOL, V19, P1253, DOI 10.1111/j.1365-294X.2010.04550.x; DeWalt SJ, 2004, AM J BOT, V91, P1155, DOI 10.3732/ajb.91.8.1155; DeWalt SJ, 2004, OECOLOGIA, V138, P521, DOI 10.1007/s00442-003-1462-6; Dewar RC, 2011, MOL ECOL, V20, P3156, DOI 10.1111/j.1365-294X.2011.05171.x; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Durka W, 2005, MOL ECOL, V14, P1697, DOI 10.1111/j.1365-294X.2005.02521.x; Egbert JR, 2003, CONDOR, V105, P825, DOI 10.1650/7275; Estoup A, 2001, GENETICS, V159, P1671; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Falush D, 2003, GENETICS, V164, P1567; Frankham R., 1980, Selection experiments in laboratory and domestic animals., P56; Frankham R., 1980, Selection experiments in laboratory and domestic animals., P87; Frankham R., 1983, P 32 ANN NAT BREED R, P1; Frankham R, 1999, ANIM CONSERV, V2, P255, DOI 10.1111/j.1469-1795.1999.tb00071.x; GCW database, 2012, GLOBAL COMPENDIUM WE; Genton BJ, 2005, MOL ECOL, V14, P4275, DOI 10.1111/j.1365-294X.2005.02750.x; Geoghegan JL, 2012, THEOR POPUL BIOL, V81, P232, DOI 10.1016/j.tpb.2011.08.001; Goudet J, 1995, J HERED, V86, P485, DOI 10.1093/oxfordjournals.jhered.a111627; Goudet J, 2002, FSTAT PROGRAM ESTIMA; GRIN database, 2012, NAT GEN RES PROGR; Harden GJ, 1992, FLORA NEW S WALES, V3; Hardesty BD, 2012, DIVERS DISTRIB, V18, P147, DOI 10.1111/j.1472-4642.2011.00832.x; Harris C., 2012, EVOL ECOL, V26, P1; Hawley DM, 2006, MOL ECOL, V15, P263, DOI 10.1111/j.1365-294X.2005.02767.x; Heyligers Petrus C., 1998, Cunninghamia, V5, P645; Heyligers Petrus C., 2007, Cunninghamia, V10, P167; HILL MO, 1973, ECOLOGY, V54, P427, DOI 10.2307/1934352; HILL WG, 1982, GENET RES, V40, P255, DOI 10.1017/S0016672300019145; HILL WG, 1982, P NATL ACAD SCI-BIOL, V79, P142, DOI 10.1073/pnas.79.1.142; Hodgins KA, 2011, J EVOLUTION BIOL, V24, P2731, DOI 10.1111/j.1420-9101.2011.02404.x; Hovick SM, 2012, PLANT ECOL, V213, P1365, DOI 10.1007/s11258-012-0097-2; Huey RB, 2000, SCIENCE, V287, P308, DOI 10.1126/science.287.5451.308; Hufbauer RA, 2008, CURR BIOL, V18, pR246, DOI 10.1016/j.cub.2008.01.038; Jones EI, 2012, AM NAT, V179, pE28, DOI 10.1086/663678; Jost L, 2010, DIVERS DISTRIB, V16, P65, DOI 10.1111/j.1472-4642.2009.00626.x; Kashtan N, 2007, P NATL ACAD SCI USA, V104, P13711, DOI 10.1073/pnas.0611630104; Kettenring KM, 2012, BIOL INVASIONS, V14, P2489, DOI 10.1007/s10530-012-0246-5; Kolbe JJ, 2004, NATURE, V431, P177, DOI 10.1038/nature02807; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lefevre F, 2004, HEREDITY, V93, P542, DOI 10.1038/sj.hdy.6800549; Leinonen T, 2008, J EVOLUTION BIOL, V21, P1, DOI 10.1111/j.1420-9101.2007.01445.x; Leinster T, 2012, ECOLOGY, V93, P477, DOI 10.1890/10-2402.1; Liebl AL, 2013, INTEGR COMP BIOL, V53, P351, DOI 10.1093/icb/ict007; Mayr E., 1965, SUMMARY GENETICS COL; Meglecz E, 2010, BIOINFORMATICS, V26, P403, DOI 10.1093/bioinformatics/btp670; Mergeay J, 2006, P R SOC B, V273, P2839, DOI 10.1098/rspb.2006.3661; Merila J, 2001, J EVOLUTION BIOL, V14, P892, DOI 10.1046/j.1420-9101.2001.00348.x; Mucina L., 2006, VEGETATION S AFRICA; NEI M, 1972, AM NAT, V106, P283, DOI 10.1086/282771; Neilan BA, 1997, NUCLEIC ACIDS RES, V25, P2938, DOI 10.1093/nar/25.14.2938; Norlindh T., 1967, AQUILO SER BOT, V6, P84; Novy A, 2013, J EVOLUTION BIOL, V26, P443, DOI 10.1111/jeb.12047; Novy A, 2012, AM J BOT, V99, pE56, DOI 10.3732/ajb.1100337; Noyes R.D., 2007, FUNCT PL SCI BIOTECH, V1, P207; Pascual M, 2001, MOL BIOL EVOL, V18, P731, DOI 10.1093/oxfordjournals.molbev.a003855; Peakall R, 2006, MOL ECOL NOTES, V6, P288, DOI 10.1111/j.1471-8286.2005.01155.x; Phillips BL, 2006, NATURE, V439, P803, DOI 10.1038/439803a; PIELOU EC, 1966, J THEOR BIOL, V10, P370, DOI 10.1016/0022-5193(66)90133-0; Pritchard JK, 2000, GENETICS, V155, P945; Reed DH, 2001, EVOLUTION, V55, P1095; Ren MX, 2005, WEED RES, V45, P236, DOI 10.1111/j.1365-3180.2005.00445.x; Richards CL, 2008, AM J BOT, V95, P931, DOI 10.3732/ajb.2007364; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; Richards CL, 2012, ECOL LETT, V15, P1016, DOI 10.1111/j.1461-0248.2012.01824.x; Ridley CE, 2009, BIOL INVASIONS, V11, P2251, DOI 10.1007/s10530-008-9412-1; ROBERTSON A., 1960, PROC ROY SOC SER B BIOL SCI, V153, P234, DOI 10.1098/rspb.1960.0099; Roman J, 2007, TRENDS ECOL EVOL, V22, P454, DOI 10.1016/j.tree.2007.07.002; Rozen S, 2000, Methods Mol Biol, V132, P365; Sakai AK, 2001, ANNU REV ECOL SYST, V32, P305, DOI 10.1146/annurev.ecolsys.32.081501.114037; Saltonstall K, 2007, AQUAT BOT, V86, P331, DOI 10.1016/j.aquabot.2006.12.003; Schweingruber F., 2011, ANATOMY STEMS HERBS, V1; SCRIBNER KT, 1992, J EVOLUTION BIOL, V5, P267, DOI 10.1046/j.1420-9101.1992.5020267.x; Sherwin WB, 2006, MOL ECOL, V15, P2857, DOI 10.1111/j.1365-294X.2006.02992.x; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; STEARNS SC, 1983, EVOLUTION, V37, P601, DOI 10.1111/j.1558-5646.1983.tb05577.x; STEBBINS GL, 1957, AM NAT, V91, P337, DOI 10.1086/281999; STLOUIS VL, 1988, EVOLUTION, V42, P266, DOI 10.1111/j.1558-5646.1988.tb04131.x; THOMAS SM, 1981, PLANT SYST EVOL, V139, P77, DOI 10.1007/BF00983923; Thomson John A., 2002, Telopea, V9, P755; Tsutsui ND, 2000, P NATL ACAD SCI USA, V97, P5948, DOI 10.1073/pnas.100110397; van Heerwaarden B, 2008, GENETICS, V179, P2135, DOI 10.1534/genetics.107.082768; Van Kleunen M, 2008, AM NAT, V171, P195, DOI 10.1086/525057; Van Kleunen M, 2007, CONSERV BIOL, V21, P1537, DOI 10.1111/j.1523-1739.2007.00765.x; Voss N, 2012, ANN BOT-LONDON, V110, P585, DOI 10.1093/aob/mcs117; Wang JL, 1998, GENETICS, V150, P435; Weber K., 2004, Plant Breeding Reviews, V24, P249; Willi Y, 2006, ANNU REV ECOL EVOL S, V37, P433, DOI 10.1146/annurev.ecolsys.37.091305.110145; WILLIAMS CK, 1989, J ANIM ECOL, V58, P495, DOI 10.2307/4844; WILLIS JH, 1993, EVOLUTION, V47, P949, DOI 10.1111/j.1558-5646.1993.tb01249.x; WRIGHT S, 1951, ANN EUGENIC, V15, P323; Yonekura R, 2007, ECOL RES, V22, P911, DOI 10.1007/s11284-007-0357-0; Zenger KR, 2003, MOL ECOL, V12, P789, DOI 10.1046/j.1365-294X.2003.01759.x; Zimmermann H, 2010, INT J PLANT SCI, V171, P435, DOI 10.1086/651244 124 27 28 3 88 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. NOV 2013 3 13 4501 4517 10.1002/ece3.824 17 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 250BE WOS:000326824300019 24340190 DOAJ Gold, Green Published 2019-02-21 J Clemens, BJ; van de Wetering, S; Sower, SA; Schreck, CB Clemens, Benjamin J.; van de Wetering, Stan; Sower, Stacia A.; Schreck, Carl B. Maturation characteristics and life-history strategies of the Pacific lamprey, Entosphenus tridentatus CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE English Article primitive; Petromyzontiformes; life history GONADOTROPIN-RELEASING-HORMONE; PETROMYZON-MARINUS; SEA LAMPREY; LAMPETRA-TRIDENTATA; CONSERVATION STATUS; PARASITIC LAMPREYS; COLUMBIA RIVER; ADULT; OREGON; POPULATION Lampreys (Petromyzontiformes) have persisted over millennia and now suffer a recent decline in abundance. Complex life histories may have factored in their persistence; anthropogenic perturbations in their demise. The complexity of life histories of lampreys is not understood, particularly for the anadromous Pacific lamprey, Entosphenus tridentatus Gairdner, 1836. Our goals were to describe the maturation timing and associated characteristics of adult Pacific lamprey, and to test the null hypothesis that different life histories do not exist. Females exhibited early vitellogenesis - early maturation stages; males exhibited spermatogonia - spermatozoa. Cluster analyses revealed an "immature" group and a "maturing-mature" group for each sex. We found statistically significant differences between these groups in the relationships between (i) body mass and total length in males; (ii) Fulton's condition factor and liver lipids in males; (iii) the gonadosomatic index (GSI) and liver lipids in females; (iv) GSI and total length in females; (v) mean oocyte diameter and liver lipids; and (vi) mean oocyte diameter and GSI. We found no significant difference between the groups in the relationship of muscle lipids and body mass. Our analyses support rejection of the hypothesis of a single life history. We found evidence for an "ocean-maturing" life history that would likely spawn within several weeks of entering fresh water, in addition to the formerly recognized life history of spending 1 year in fresh water prior to spawning-the "stream-maturing" life history. Late maturity, semelparity, and high fecundity suggest that Pacific lamprey capitalize on infrequent opportunities for reproduction in highly variable environments. [Clemens, Benjamin J.] Oregon State Univ, Dept Fisheries & Wildlife, Oregon Cooperat Fish & Wildlife Res Unit, Corvallis, OR 97331 USA; [Clemens, Benjamin J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA; [van de Wetering, Stan] Confederated Tribes Siletz Indians, Dept Nat Resources, Siletz, OR 97380 USA; [Sower, Stacia A.] Univ New Hampshire, Dept Mol Cellular & Biomed Sci, Ctr Mol & Comparat Endocrinol, Durham, NH 03824 USA; [Schreck, Carl B.] Oregon State Univ, US Geol Survey, Oregon Cooperat Fish & Wildlife Res Unit, Dept Fisheries & Wildlife, Corvallis, OR 97331 USA Clemens, BJ (reprint author), Oregon Dept Fish & Wildlife, Corvallis Res Lab, 28655 Highway 34, Corvallis, OR 97333 USA. Ben.Clemens@oregonstate.edu National Fish and Wildlife Foundation; U.S. Fish and Wildlife Service; Confederated Tribes of the Siletz Indians; Department of Fisheries and Wildlife at Oregon State University; Columbia River Inter-Tribal Fish Commission Many individuals from Oregon State University (OSU), the Yurok and Karuk tribes, the Confederated Tribes of the Siletz, Portland General Electric, and the Oregon Department of Fish and Wildlife assisted in the field. Several OSU affiliates assisted with fecundity counts. T. Workman assisted with lipid extractions. M. Kent provided a microscope and camera, and T. Peterson provided assistance with histology interpretations. D. Roby provided access to the equipment for lipid extractions. Funding was provided by the National Fish and Wildlife Foundation, the U.S. Fish and Wildlife Service, the Confederated Tribes of the Siletz Indians, the Department of Fisheries and Wildlife at Oregon State University, and the Columbia River Inter-Tribal Fish Commission. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This study was approved by Institutional Animal Care and Use Committee of Oregon State University (ACUP No. 3569). Anderson Richard O., 1996, P447; Anthony JA, 2000, J EXP MAR BIOL ECOL, V248, P53, DOI 10.1016/S0022-0981(00)00159-3; BEAMISH FWH, 1979, J ANIM ECOL, V48, P1, DOI 10.2307/4096; BEAMISH RJ, 1987, CAN J FISH AQUAT SCI, V44, P1779, DOI 10.1139/f87-219; BEAMISH RJ, 1980, CAN J FISH AQUAT SCI, V37, P1906, DOI 10.1139/f80-232; Behnke R. J., 2002, TROUT SALMON N AM; BOLDUC TG, 1992, J EXP ZOOL, V264, P55, DOI 10.1002/jez.1402640109; BULKLEY RV, 1967, J FISH RES BOARD CAN, V24, P917, DOI 10.1139/f67-082; Clemens BJ, 2009, ECOL FRESHW FISH, V18, P418, DOI 10.1111/j.1600-0633.2009.00358.x; Clemens B.J., 2011, THESIS OREGON STATE; Clemens BJ, 2012, CAN J ZOOL, V90, P1201, DOI 10.1139/Z2012-085; Clemens BJ, 2012, ENVIRON BIOL FISH, V93, P245, DOI 10.1007/s10641-011-9910-3; Clemens BJ, 2010, FISHERIES, V35, P580, DOI 10.1577/1548-8446-35.12.580; Close D. A., 2004, J NW ANTHR, V38, P141; Dawkins R., 2004, ANCESTORS TALE PILGR; Docker MF, 2009, AM FISH S S, V72, P71; FAHIEN CM, 1990, GEN COMP ENDOCR, V80, P427, DOI 10.1016/0016-6480(90)90192-O; Gill HS, 2003, COPEIA, P687, DOI 10.1643/IA02-085.1; Helfman G., 2009, DIVERSITY FISHES BIO; HESS JE, 2012, MOL ECOLOGY, V0022; Janvier P, 2008, PRIMITIVE FISHES, P1; Jelks HL, 2008, FISHERIES, V33, P372, DOI 10.1577/1548-8446-33.8.372; Kan T. T., 1975, THESIS OREGON STATE; Keefer ML, 2013, ECOL FRESHW FISH, V22, P1, DOI 10.1111/j.1600-0633.2012.00586.x; Kostow K., 2002, OREGON LAMPREYS NATU; KOTT E, 1971, CAN J ZOOLOG, V49, P801, DOI 10.1139/z71-120; LARSEN LO, 1980, CAN J FISH AQUAT SCI, V37, P1762, DOI 10.1139/f80-221; Lewis P., 2009, BRIT ACAD MANAGEMENT, P1; Luzier C. W., 2009, P PAC LAMPR CONS IN; Meeuwig MH, 2005, T AM FISH SOC, V134, P19, DOI 10.1577/FT03-206.1; MEFFE GK, 1993, COPEIA, P596; Mesa MG, 2010, NORTHWEST SCI, V84, P233, DOI 10.3955/046.084.0303; Miller J., 2012, J NW ANTHR, V46, P65; Moser ML, 2002, T AM FISH SOC, V131, P956, DOI 10.1577/1548-8659(2002)131<0956:PEOAPL>2.0.CO;2; Moyle PB, 2002, INLAND FISHES CALIFO; Moyle PB, 2009, AM FISH S S, V72, P279; Perce Nez, 2008, TRIB PAC LA IN PRESS; POTTER IC, 1980, CAN J FISH AQUAT SCI, V37, P1595, DOI 10.1139/f80-207; Quinn TP, 2011, T AM FISH SOC, V140, P45, DOI 10.1080/00028487.2010.550244; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Renaud CB, 1997, J APPL ICHTHYOL, V13, P143, DOI 10.1111/j.1439-0426.1997.tb00114.x; Richardson J., 1836, FAUNA BOREALI AM ZOO; Robinson TC, 2005, NORTHWEST SCI, V79, P106; Salewski V, 2003, J FISH BIOL, V63, P267, DOI 10.1046/j.1095-8649.2003.00166.x; Smith SJ, 2007, T AM FISH SOC, V136, P979, DOI 10.1577/T06-106.1; Ward DL, 2012, FISHERIES, V37, P351, DOI 10.1080/03632415.2012.704818; WHYTE JNC, 1993, CAN J FISH AQUAT SCI, V50, P591, DOI 10.1139/f93-068; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Youson JH, 2001, COMP BIOCHEM PHYS B, V129, P337, DOI 10.1016/S1096-4959(01)00341-4; YOUSON JH, 1991, CAN J ZOOL, V69, P628, DOI 10.1139/z91-093; YOUSON JH, 1981, BIOL LAMPREYS, V3, P95 51 6 6 1 32 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0008-4301 1480-3283 CAN J ZOOL Can. J. Zool.-Rev. Can. Zool. NOV 2013 91 11 775 788 10.1139/cjz-2013-0114 14 Zoology Zoology 245MH WOS:000326467300002 2019-02-21 J Perez-Ruzafa, A; Marcos, C; Perez-Ruzafa, IM; Perez-Marcos, M Perez-Ruzafa, Angel; Marcos, Concepcion; Maria Perez-Ruzafa, Isabel; Perez-Marcos, Maria Are coastal lagoons physically or biologically controlled ecosystems? Revisiting r vs. K strategies in coastal lagoons and estuaries ESTUARINE COASTAL AND SHELF SCIENCE English Article coastal lagoons; estuaries; fish assemblages; ecological strategies; transitional ecosystems FISH ASSEMBLAGE STRUCTURE; EASTERN ENGLISH-CHANNEL; LIFE-HISTORY TRAITS; VENICE-LAGOON; ENVIRONMENTAL-FACTORS; MEDITERRANEAN LAGOON; TRANSITIONAL WATERS; EUROPEAN ESTUARIES; GUILD APPROACH; PORTUGAL Environmental stress influences biological assemblages, with species responding to stress by adopting particular life-history strategies (e.g., r vs. K). Coastal lagoons and estuaries are considered naturally stressed and physically controlled systems with frequent environmental disturbances and fluctuations. At the same time, their transitional nature (between terrestrial, freshwater and marine) makes them especially vulnerable to human impacts and land and freshwater inputs. As a result, it is hypothesised that residents of coastal lagoons would display characteristics of r-selected species. The r-strategy involves increased reproductive effort through early reproduction, small and numerous offspring with a large dispersive capability, short lifespan and small adult body size. Together, these traits provide a selective advantage in such unpredictable or short-lived environments. Alternatively, immigrants to coastal lagoons should mostly be K-strategists, with a competitive advantage over the r-strategists, at least on a temporary time scale. These hypotheses were explored using a dataset from 73 Atlanto-Mediterranean sites: 27 estuaries, 42 coastal lagoons and 4 from the sea, obtained from published sources. A detailed analysis of the distributions of the different resident fish species according to lagoon characteristics indicated that in lagoons with a higher marine influence the families Gobiidae, Blenniidae and Syngnathidae were common, while lagoons with freshwater influence are characterized by Cyprinidae and other freshwater species. In analyzing the biological strategies of lagoon species we found that fish assemblages inhabiting marine influenced lagoons were characterized by solitary, necto-benthonic sedentary species. These species are often hermaphroditic, with benthic broods and many exhibit brooding behaviour. This suggests that marine influenced lagoons are dominated by K-strategist species, while r-strategy species will be more common in freshwater lagoons and among marine migrant species. (C) 2012 Elsevier Ltd. All rights reserved. [Perez-Ruzafa, Angel; Marcos, Concepcion] Univ Murcia, Dept Ecol & Hidrol, E-30100 Murcia, Spain; [Maria Perez-Ruzafa, Isabel] Univ Complutense Madrid, Dept Biol Vegetal 1, E-28040 Madrid, Spain; [Perez-Marcos, Maria] Univ Murcia, Dept Zool & Antropol Fis, E-30100 Murcia, Spain Perez-Ruzafa, A (reprint author), Univ Murcia, Dept Ecol & Hidrol, Reg Campus Int Excellence Campus Mare Nostrum, E-30100 Murcia, Spain. angelpr@um.es Marcos, Concepcion/A-1877-2014; Perez-Ruzafa, Angel/A-3406-2009; Perez-Ruzafa, Isabel/C-7119-2012; Perez-Marcos, Maria/M-4145-2018 Marcos, Concepcion/0000-0002-5857-6411; Perez-Ruzafa, Angel/0000-0003-4769-8912; Perez-Ruzafa, Isabel/0000-0002-3070-0900; Perez-Marcos, Maria/0000-0003-0979-9931 Abdel-Moati A.R., 1990, RAPP COMM INT MER ME, V32, P68; Agostini S, 2002, OCEANOL ACTA, V25, P297, DOI 10.1016/S0399-1784(02)01196-9; Akin S, 2005, ESTUAR COAST SHELF S, V64, P671, DOI 10.1016/j.ecss.2003.03.019; Alongi D M, 1998, COASTAL ECOSYSTEM PR; Anderson M. J, 2005, PERMANOVA FORTRAN CO; Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; Ardizzone G.D., 1984, FAO STUDIES REV GFCM, V61, P461; Bachelet G, 2000, ICES J MAR SCI, V57, P1495, DOI 10.1006/jmsc.2000.0902; BARCALA E, 1999, THESIS U MURCIA SPAI; Barnes R, 1980, CAMBRIDGE STUDIES MO, V1; Basset A, 2006, AQUAT CONSERV, V16, P441, DOI 10.1002/aqc.767; Basset A., 2006, TRANSITIONAL WATERS, V1, P48, DOI DOI 10.1285/I1825226XV1N1P48; Ben Hassine O.K., 1981, RAPP COMM INT MER ME, V27, P125; BEVERTON RJH, 1992, J FISH BIOL, V41, P137, DOI 10.1111/j.1095-8649.1992.tb03875.x; Bianchi F, 2000, MAN BIOSPH, V25, P97; Borger L, 2008, ECOL LETT, V11, P637, DOI 10.1111/j.1461-0248.2008.01182.x; Boussalwa EH, 2000, CAH BIOL MAR, V41, P255; Breine JJ, 2007, HYDROBIOLOGIA, V575, P141, DOI 10.1007/s10750-006-0357-z; Busatto T., 2002, PESCI MOLLUSCHI CROS; Calvo S., 1986, ATT 7 C AIOL, V11, P185; Campolmi M., 1996, Publicaciones Especiales Instituto Espanol de Oceanografia, V21, P205; Cancela da Fonseca L., 1989, TOPICS MARINE BIOL S, V53, P663; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; Cavallaro G., 1978, STUDIO AMBIENTE LAGU; CHARNOV EL, 1995, NATURE, V376, P418, DOI 10.1038/376418a0; Charnov EL, 1997, NATURE, V387, P393, DOI 10.1038/387393a0; CHARNOV EL, 1991, EVOL ECOL, V5, P63, DOI 10.1007/BF02285246; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Charnov Eric L., 1993, Evolutionary Anthropology, V1, P191, DOI 10.1002/evan.1360010604; Charnov EL, 2009, EVOL ECOL RES, V11, P983; Clarke K, 2001, CHANGE MARINE COMMUN; CLARKE KR, 1988, MAR ECOL PROG SER, V46, P213, DOI 10.3354/meps046213; Claudet J, 2010, ECOL APPL, V20, P830, DOI 10.1890/08-2131.1; CONNOLLY RM, 1994, AUST J MAR FRESH RES, V45, P1033, DOI 10.1071/MF9941033; Correia M.J., 1997, Publicaciones Especiales Instituto Espanol de Oceanografia, V23, P153; Crespi V, 2002, FISHERIES MANAG ECOL, V9, P19, DOI 10.1046/j.1365-2400.2002.00275.x; de Sostoa A., 1985, P79; Drake P, 2002, ESTUARIES, V25, P451, DOI 10.1007/BF02695987; Dumay O, 2004, J FISH BIOL, V64, P970, DOI 10.1111/j.1095-8649.2004.00365.x; Elliott M., 1995, Netherlands Journal of Aquatic Ecology, V29, P397, DOI 10.1007/BF02084239; Elliott M, 2007, FISH FISH, V8, P241, DOI 10.1111/j.1467-2679.2007.00253.x; Elliott M, 2007, MAR POLLUT BULL, V54, P640, DOI 10.1016/j.marpolbul.2007.02.003; Eschmeyer WN, 2009, CATALOG FISHES ELECT; European Union, 2000, OFFICIAL J L, V327; Fouda M.M., 1987, Lebanese Science Bulletin, V3, P5; Franca S, 2009, SCI MAR, V73, P307, DOI 10.3989/scimar.2009.73n2307; Franco A, 2006, ESTUAR COAST SHELF S, V66, P67, DOI 10.1016/j.ecss.2005.07.020; Franco A, 2008, ESTUAR COAST SHELF S, V79, P549, DOI 10.1016/j.ecss.2008.05.011; Franco A, 2008, MAR ECOL PROG SER, V354, P219, DOI 10.3354/meps07203; Franco A, 2009, MAR POLLUT BULL, V58, P1704, DOI 10.1016/j.marpolbul.2009.06.016; Francour P., 1988, SCI REP PORT CROS NA, V14, P65; Frisoni G., 1984, GEN FISHERIES COUNCI, V61, P39; Frisoni G.-F., 1983, J RECHERCHE OCEANO 3, V1, P57; FROESE R, 2008, FISHBASE; Gamito S, 2005, COASTAL LAGOONS: ECOSYSTEM PROCESSES AND MODELING FOR SUSTAINABLE USE AND DEVELOPMENT, P193; GONZALEZ J A, 1991, Acta Botanica Malacitana, V16, P63; Gordo LS, 2001, HYDROBIOLOGIA, V459, P125; Harrisona TD, 2006, ENVIRON BIOL FISH, V75, P269, DOI 10.1007/s10641-006-0028-y; Herve P., 1981, Vie et Milieu, V30, P275; IFREMER, 2001, RSL012001 IFREMER; Izzo G., 2005, PROGETTO PARCHI QUAL, P1; JOYEUX J-C, 1992, Vie et Milieu, V42, P1; JOYEUX JC, 1991, ANN SCI NAT ZOOL, V12, P57; Katselis G, 2003, SCI MAR, V67, P501, DOI 10.3989/scimar.2003.67n4501; Kjerfve B, 1994, COASTAL LAGOON PROCE; Koutrakis ET, 2005, HYDROBIOLOGIA, V543, P245, DOI 10.1007/s10750-004-7891-3; Koutsogiannopoulou V, 2007, HYDROBIOLOGIA, V588, P213, DOI 10.1007/s10750-007-0664-z; Laugier T., 2002, RAPPORT 2001 RESEAU, P184; Lemoalle J., 1984, FAO STUDIES REV, V61, P175; Lozano Cabo F., 1953, B I ESPANOL OCEANOGR, V64, P1; LUCKINBILL LS, 1978, SCIENCE, V202, P1201, DOI 10.1126/science.202.4373.1201; MAC ARTHUR ROBERT H., 1967; Maillo PA, 2005, ACTA PARASITOL, V50, P156; Malavasi S, 2004, J MARINE SYST, V51, P19, DOI 10.1016/j.jmarsys.2004.05.006; Malavasi S, 2007, ESTUAR COAST SHELF S, V75, P143, DOI 10.1016/j.ecss.2007.02.022; MARGALEF R, 1974, ECOLOGIA; Mariani S, 2001, ESTUAR COAST SHELF S, V52, P261, DOI 10.1006/ecss.2000.0746; Mistri M, 2002, MAR ECOL-P S Z N I, V23, P31, DOI 10.1046/j.1439-0485.2002.02751.x; Moranta J, 2006, ESTUAR COAST SHELF S, V68, P579, DOI 10.1016/j.ecss.2006.03.008; Morin P, 2000, MAN BIOSPH, V25, P143; Morrison MA, 2002, ESTUAR COAST SHELF S, V54, P793, DOI 10.1006/ecss.2001.0857; MUELLER LD, 1991, SCIENCE, V253, P433, DOI 10.1126/science.1907401; MURPHY GI, 1968, AM NAT, V102, P391, DOI 10.1086/282553; Odum EP, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P3; PARIS J, 1971, VIE MILIEU, V22, P301; PARTRIDGE L, 1988, SCIENCE, V241, P1449, DOI 10.1126/science.241.4872.1449; Pauly D., 1998, FISHBASE 1998 CONCEP, P155; Pauly D., 1994, COASTAL LAGOON PROCE, P377; Peja N, 1996, FISH RES, V27, P215, DOI 10.1016/0165-7836(95)00467-X; Perez-Ruzafa A, 2007, ESTUAR COAST SHELF S, V75, P175, DOI 10.1016/j.ecss.2007.04.030; Perez-Ruzafa A, 2006, MAR POLLUT BULL, V53, P107, DOI 10.1016/j.marpolbul.2005.07.014; Perez-Ruzafa A, 2005, HYDROBIOLOGIA, V550, P11, DOI 10.1007/s10750-005-4356-2; Perez-Ruzafa A, 2004, J FISH BIOL, V64, P202, DOI 10.1111/j.1095-8649.2004.00301.x; Perez-Ruzafa A, 2002, HYDROBIOLOGIA, V475, P359, DOI 10.1023/A:1020343510060; Perez-Ruzafa A, 2007, HYDROBIOLOGIA, V577, P107, DOI 10.1007/s10750-006-0421-8; Perez-Ruzafa A, 2011, J COAST CONSERV, V15, P369, DOI 10.1007/s11852-010-0095-2; PEREZRUZAFA A, 1989, THESIS U MURCIA SPAI; PIANKA ER, 1980, OIKOS, V35, P194, DOI 10.2307/3544427; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Poizat G, 2004, ESTUAR COAST SHELF S, V59, P615, DOI 10.1016/j.ecss.2003.11.007; Pombo L, 2002, J FISH BIOL, V61, P167, DOI 10.1006/jfbi.2002.2075; Pombo L, 2007, HYDROBIOLOGIA, V587, P253, DOI 10.1007/s10750-007-0687-5; Por F.D., 1981, Rapports et Proces-Verbaux des Reunions Commission Internationale pour l'Exploration Scientifique de la Mer Mediterranee Monaco, V27, P101; Potter IC, 2001, J EXP MAR BIOL ECOL, V258, P15, DOI 10.1016/S0022-0981(00)00343-9; QUINTINO V, 1989, OLSEN INT S, P441; Ramos Espla A.A., 1985, Anales de Biologia (Murcia), V4, P49; Ramos S, 2006, ESTUAR COAST SHELF S, V66, P303, DOI 10.1016/j.ecss.2005.09.012; ROOT RB, 1967, ECOL MONOGR, V37, P317, DOI 10.2307/1942327; Roselli L, 2009, ESTUAR COAST SHELF S, V84, P539, DOI 10.1016/j.ecss.2009.07.023; Rossi R., 1984, FAO STUDIES REV, V61, P441; Rowntree J., 1984, FAO STUDIES REV, V61, P541; SANDERS HL, 1968, AM NAT, V102, P243, DOI 10.1086/282541; Selleslagh J, 2009, ESTUAR COAST SHELF S, V81, P149, DOI 10.1016/j.ecss.2008.10.008; Selleslagh J, 2008, ESTUAR COAST SHELF S, V79, P507, DOI 10.1016/j.ecss.2008.05.006; SORIA JM, 2002, PROC INT ASSOC THE 2, V28, P564; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Tagliapietra D, 2006, AQUAT CONSERV, V16, P457, DOI 10.1002/aqc.768; Tagliapietra D, 2009, MAR FRESHWATER RES, V60, P497, DOI 10.1071/MF08088; ter Braak C. J. F., 1990, UPDATE NOTES CANOCO; TERBRAAK CJF, 1988, ADV ECOL RES, V18, P271; Thiel R, 2003, J APPL ICHTHYOL, V19, P330, DOI 10.1046/j.1439-0426.2003.00474.x; Thiel R, 2001, MAR BIOL, V138, P603, DOI 10.1007/s002270000491; Tongeren Van, 1987, DATA ANAL COMMUNITY; UNESCO, 1981, UNESCO TECHNICAL PAP, V33; UNESCO, 1980, UNESCO TECHNICAL PAP; Uriarte A, 2009, ESTUAR COAST SHELF S, V82, P214, DOI 10.1016/j.ecss.2009.01.008; Vanden Bossche J.P., 1991, 1990 WORKSH EL COOL, P1; Villena MJ, 2003, HYDROBIOLOGIA, V506, P281, DOI 10.1023/B:HYDR.0000008565.23626.aa; Whitfield AK, 2002, J FISH BIOL, V61, P229, DOI 10.1006/jfbi.2002.2079 129 15 15 0 46 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0272-7714 1096-0015 ESTUAR COAST SHELF S Estuar. Coast. Shelf Sci. NOV 1 2013 132 SI 17 33 10.1016/j.ecss.2012.04.011 17 Marine & Freshwater Biology; Oceanography Marine & Freshwater Biology; Oceanography 244VY WOS:000326419500003 2019-02-21 J Crossin, GT; Phillips, RA; Lattin, CR; Romero, LM; Williams, TD Crossin, Glenn T.; Phillips, Richard A.; Lattin, Christine R.; Romero, L. Michael; Williams, Tony D. Corticosterone mediated costs of reproduction link current to future breeding GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Breeding-moult overlap; Macronectes; Chick rearing; Feather corticosterone; Foraging behaviour GIANT PETRELS MACRONECTES; PIED FLYCATCHERS; ADRENOCORTICAL-RESPONSE; FORAGING BEHAVIOR; SEXUAL CONFLICT; FEATHER QUALITY; SOUTH GEORGIA; KING PENGUINS; PARENTAL CARE; LONG-TERM Life-history theory predicts that costs are associated with reproduction. One possible mediator of costs involves the secretion of glucocorticoid hormones, which in birds can be measured in feathers grown during the breeding period. Glucocorticoids mediate physiological responses to unpredictable environmental or other stressors, but they can also function as metabolic regulators during more predictable events such as reproduction. Here we show that corticosterone ("Cort") in feathers grown during the breeding season reflects reproductive effort in two Antarctic seabird species (giant petrels, Macronectes spp.). In females of both species, but not males, feather Cort ("fCort") was nearly 1.5-fold higher in successful than failed breeders (those that lost their eggs/chicks), suggesting a cost of successful reproduction, i.e., high fCort levels in females reflect the elevated plasma Cort levels required to support high metabolic demands of chick-rearing. Successful breeding also led to delayed moult prior to winter migration. The fCort levels and pre-migration moult score that we measured at the end of current breeding were predictive of subsequent reproductive effort in the following year. Birds with high fCort and a delayed initiation of moult were much more likely to defer breeding in the following year. Cort levels and the timing of moult thus provide a potential mechanism for the tradeoff between current and future reproduction. Crown Copyright (C) 2013 Published by Elsevier Inc. All rights reserved. [Crossin, Glenn T.] Dalhousie Univ, Dept Biol, Halifax, NS B3H 4R2, Canada; [Phillips, Richard A.] British Antarctic Survey, Nat Environm Res Council, Cambridge CB3 0ET, England; [Lattin, Christine R.; Romero, L. Michael] Tufts Univ, Dept Biol, Medford, MA 02155 USA; [Williams, Tony D.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada Crossin, GT (reprint author), Dalhousie Univ, Dept Biol, Life Sci Ctr, 1355 Oxford St, Halifax, NS B3H 4R2, Canada. gtc@dal.ca Lattin, Christine/E-5662-2013 Lattin, Christine/0000-0003-4030-4212 British Antarctic Survey through their Antarctic Funding Initiative; National Science and Engineering Research Council (Canada); E-BIRD; NSERC; National Science Foundation (U.S.) [IOS-1048529]; Antarctic Science Bursary; Natural Environment Research Council [bas0100025] We thank Stacey Ad lard, Fabrice Le Bouard, Ruth Brown, Kristen Gorman, and Andy Wood for assistance. Financial support was provided by the British Antarctic Survey through their Antarctic Funding Initiative, by a National Science and Engineering Research Council (Canada) Post-doctoral Fellowship and E-BIRD funding to GTC, by a NSERC Discovery Grant to TDW, and by a National Science Foundation (U.S.) grant (IOS-1048529) to LMR. GTC was also supported by an Antarctic Science Bursary. Angelier F, 2008, GEN COMP ENDOCR, V156, P134, DOI 10.1016/j.ygcen.2007.12.001; Angelier F, 2009, J EXP BIOL, V212, P2824, DOI 10.1242/jeb.027722; Bias J., 2007, P NATL ACAD SCI USA, V104, P8880; Bonier F, 2011, BIOL LETTERS, V7, P944, DOI 10.1098/rsbl.2011.0391; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Bortolotti GR, 2008, FUNCT ECOL, V22, P494, DOI 10.1111/j.1365-2435.2008.01387.x; Bortolotti GR, 2009, J EXP BIOL, V212, P1477, DOI 10.1242/jeb.022152; Breuner CW, 2008, GEN COMP ENDOCR, V157, P288, DOI 10.1016/j.ygcen.2008.05.017; Bridge Eli S., 2006, Marine Ornithology, V34, P7; BROOKE M, 2004, ALBATROSSES PETRELS; BUTTEMER WA, 1991, J COMP PHYSIOL B, V161, P427; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; Crossin GT, 2012, GEN COMP ENDOCR, V175, P74, DOI 10.1016/j.ygcen.2011.10.003; Dawson A, 2004, AUK, V121, P372, DOI 10.1642/0004-8038(2004)121[0372:UAVOAM]2.0.CO;2; DesRochers DW, 2009, COMP BIOCHEM PHYS A, V152, P46, DOI 10.1016/j.cbpa.2008.08.034; Fairhurst GD, 2012, P ROY SOC B-BIOL SCI, V279, P177, DOI 10.1098/rspb.2011.0884; Foote CG, 2011, BEHAV ECOL, V22, P156, DOI 10.1093/beheco/arq178; Fourie NH, 2011, GEN COMP ENDOCR, V174, P150, DOI 10.1016/j.ygcen.2011.08.013; Golet GH, 1998, J ANIM ECOL, V67, P827, DOI 10.1046/j.1365-2656.1998.00233.x; GONZALEZSOLIS J, 2008, AQUAT CONSERV, V17, pS22; Groscolas R, 2008, HORM BEHAV, V53, P51, DOI 10.1016/j.yhbeh.2007.08.010; Hau M, 2011, GEN COMP ENDOCR, V172, P305, DOI 10.1016/j.ygcen.2011.03.016; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hemborg C, 1998, P ROY SOC B-BIOL SCI, V265, P2003, DOI 10.1098/rspb.1998.0532; Hemborg C, 1999, J ANIM ECOL, V68, P429, DOI 10.1046/j.1365-2656.1999.00295.x; HUNTER S, 1984, J ZOOL, V203, P441; HUNTER S, 1984, IBIS, V126, P119, DOI 10.1111/j.1474-919X.1984.tb07993.x; Koren L., 2011, P ROY SOC LOND B BIO, V279, P1560, DOI DOI 10.1098/RSPB.2011.2062); Kouwenberg AL, 2013, IBIS, V155, P413, DOI 10.1111/ibi.12030; Landys MM, 2006, GEN COMP ENDOCR, V148, P132, DOI 10.1016/j.ygcen.2006.02.013; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; Lattin CR, 2011, J AVIAN BIOL, V42, P247, DOI 10.1111/j.1600-048X.2010.05310.x; Love OP, 2004, HORM BEHAV, V46, P59, DOI 10.1016/j.yhbeh.2004.02.001; Macbeth BJ, 2010, CAN J ZOOL, V88, P935, DOI 10.1139/Z10-057; MacDougall-Shackleton SA, 2009, BIOL LETTERS, V5, P746, DOI 10.1098/rsbl.2009.0382; Morales J, 2007, ECOSCIENCE, V14, P31, DOI 10.2980/1195-6860(2007)14[31:EMILSA]2.0.CO;2; MORTON GA, 1990, CONDOR, V92, P813, DOI 10.2307/1368717; MURPHY ME, 1995, COMP BIOCHEM PHYS A, V111, P385, DOI 10.1016/0300-9629(95)00039-A; Phillips RA, 2011, MAR BIOL, V158, P2199, DOI 10.1007/s00227-011-1725-4; Rohwer S, 2011, CONDOR, V113, P61, DOI 10.1525/cond.2011.100092; Romero LM, 2009, HORM BEHAV, V55, P375, DOI 10.1016/j.yhbeh.2008.12.009; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2005, COMP BIOCHEM PHYS A, V142, P65, DOI 10.1016/j.cbpa.2005.07.014; SCHIELTZ PC, 1995, COMP BIOCHEM PHYS A, V112, P265, DOI 10.1016/0300-9629(95)00097-6; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; STEARNS SC, 1972, Q REVIEW BIOLOGY, V51, P3; Strochlic DE, 2008, COMP BIOCHEM PHYS A, V149, P68, DOI 10.1016/j.cbpa.2007.10.011; Svensson E, 1997, BEHAV ECOL, V8, P92, DOI 10.1093/beheco/8.1.92; WINGFIELD JC, 1992, J EXP ZOOL, V264, P419, DOI 10.1002/jez.1402640407; Wingfield JC, 1998, AM ZOOL, V38, P191 51 30 30 4 99 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 1095-6840 GEN COMP ENDOCR Gen. Comp. Endocrinol. NOV 1 2013 193 112 120 10.1016/j.ygcen.2013.07.011 9 Endocrinology & Metabolism Endocrinology & Metabolism 244YX WOS:000326427200014 23891657 2019-02-21 J Porto, A; Shirai, LT; de Oliveira, FB; Marroig, G Porto, Arthur; Shirai, Leila Teruko; de Oliveira, Felipe Bandoni; Marroig, Gabriel SIZE VARIATION, GROWTH STRATEGIES, AND THE EVOLUTION OF MODULARITY IN THE MAMMALIAN SKULL EVOLUTION English Article Allometry; constraints; flexibility; life-history evolution; morphospace; V/CV matrix QUANTITATIVE GENETIC-ANALYSIS; NEW-WORLD MONKEYS; MORPHOLOGICAL INTEGRATION; CRANIAL EVOLUTION; NATURAL-SELECTION; SAKIS PITHECIA; PATTERNS; EVOLVABILITY; DIVERSIFICATION; CONSEQUENCES Allometry is a major determinant of within-population patterns of association among traits and, therefore, a major component of morphological integration studies. Even so, the influence of size variation over evolutionary change has been largely unappreciated. Here, we explore the interplay between allometric size variation, modularity, and life-history strategies in the skull from representatives of 35 mammalian families. We start by removing size variation from within-species data and analyzing its influence on integration magnitudes, modularity patterns, and responses to selection. We also carry out a simulation in which we artificially alter the influence of size variation in within-taxa matrices. Finally, we explore the relationship between size variation and different growth strategies. We demonstrate that a large portion of the evolution of modularity in the mammalian skull is associated to the evolution of growth strategies. Lineages with highly altricial neonates have adult variation patterns dominated by size variation, leading to high correlations among traits regardless of any underlying modular process and impacting directly their potential to respond to selection. Greater influence of size variation is associated to larger intermodule correlations, less individualized modules, and less flexible responses to natural selection. [Porto, Arthur] Washington Univ, Dept Anat & Neurobiol, St Louis, MO 63130 USA; [Porto, Arthur; de Oliveira, Felipe Bandoni; Marroig, Gabriel] Univ Sao Paulo, Inst Biociencias, Dept Genet & Biol Evolut, BR-05508090 Sao Paulo, Brazil; [Shirai, Leila Teruko] Inst Gulbenkian Sci, Oeiras, Portugal Porto, A (reprint author), Washington Univ, Dept Anat & Neurobiol, St Louis, MO 63130 USA. agporto@go.wustl.edu IB/USP, Genetica e Biologia/G-1755-2017 FAPESP; CAPES; CNPq; American Museum of Natural History; Department of Biology from Washington University in St Louis The authors are grateful to A. Templeton and two anonymous reviewers for careful revision of previous drafts of this manuscript, and to J. Cheverud for helpful discussions. The authors are also grateful to people and institutions that provided generous help and access to museum collections (Supporting Information). This research was supported by grants and fellowships from FAPESP, CAPES, CNPq, an American Museum of Natural History Collections Study Grant, and by the Department of Biology from Washington University in St Louis. Armbruster WS, 2004, PHENOTYPIC INTEGRATION: STUDYING THE ECOLOGY AND EVOLUTION OF COMPLEX PHENOTYPES, P23; Arnold SJ, 2001, GENETICA, V112, P9, DOI 10.1023/A:1013373907708; ARNOLD SJ, 1992, AM NAT, V140, pS85, DOI 10.1086/285398; Badyaev AV, 2004, AM NAT, V163, P868, DOI 10.1086/386551; BERG RL, 1960, EVOLUTION, V14, P171, DOI 10.1111/j.1558-5646.1960.tb03076.x; Bininda-Emonds ORP, 2007, NATURE, V446, P507, DOI 10.1038/nature05634; CHERNOFF B, 1999, MORPHOLOGICAL INTEGR, P316; CHEVERUD JM, 1982, EVOLUTION, V36, P499, DOI 10.1111/j.1558-5646.1982.tb05070.x; CHEVERUD JM, 1995, AM NAT, V145, P63, DOI 10.1086/285728; CHEVERUD JM, 1988, EVOLUTION, V42, P958, DOI 10.1111/j.1558-5646.1988.tb02514.x; Cheverud JM, 1996, J EVOLUTION BIOL, V9, P5, DOI 10.1046/j.1420-9101.1996.9010005.x; CHEVERUD JM, 1984, J THEOR BIOL, V110, P155, DOI 10.1016/S0022-5193(84)80050-8; de Magalhaes JP, 2009, J EVOLUTION BIOL, V22, P1770, DOI 10.1111/j.1420-9101.2009.01783.x; Delph LF, 2011, EVOLUTION, V65, P2872, DOI 10.1111/j.1558-5646.2011.01350.x; Eble GJ, 2004, PHENOTYPIC INTEGRATION: STUDYING THE ECOLOGY AND EVOLUTION OF COMPLEX PHENOTYPES, P253; Emerson SB, 1998, Q REV BIOL, V73, P141, DOI 10.1086/420182; Hansen TF, 2008, J EVOLUTION BIOL, V21, P1201, DOI 10.1111/j.1420-9101.2008.01573.x; Hansen TF, 2011, EVOLUTION, V65, P1821, DOI 10.1111/j.1558-5646.2011.01281.x; Harmon LJ, 2010, EVOLUTION, V64, P2173, DOI 10.1111/j.1558-5646.2010.00973.x; HAYSSEN VD, 1993, ASDELLS PATTERNS MAM; Huxley J. S., 1932, PROBLEMS RELATIVE GR; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; Jones Kate E., 2009, Ecology (Washington D C), V90, P2648, DOI 10.1890/08-1494.1; Klingenberg CP, 2009, EVOL DEV, V11, P405, DOI 10.1111/j.1525-142X.2009.00347.x; Klingenberg CP, 2004, PHENOTYPIC INTEGRATION: STUDYING THE ECOLOGY AND EVOLUTION OF COMPLEX PHENOTYPES, P213; LANDE R, 1979, EVOLUTION, V33, P402, DOI 10.1111/j.1558-5646.1979.tb04694.x; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Lindenfors Patrik, 2007, P16; Marroig G, 2004, J EVOLUTION BIOL, V17, P144, DOI 10.1046/j.1420-9101.2003.00653.x; Marroig G, 2001, EVOLUTION, V55, P2576; Marroig G, 2005, EVOLUTION, V59, P1128; Marroig G, 2004, AM NAT, V163, P417, DOI 10.1086/381693; Marroig G, 2004, AM J PHYS ANTHROPOL, V125, P266, DOI 10.1002/ajpa.10421; Marroig G, 2012, EVOLUTION, V66, P1506, DOI 10.1111/j.1558-5646.2011.01555.x; Marroig G, 2010, EVOLUTION, V64, P1470, DOI 10.1111/j.1558-5646.2009.00920.x; Marroig G, 2009, EVOL BIOL, V36, P136, DOI 10.1007/s11692-009-9051-1; Martinez-Abadias N., 2011, EVOLUTION, V66, P1010, DOI [10.5061/dryad.12g3c7ht, DOI 10.5061/DRYAD.12G3C7HT]; Maynard SJ, 1985, Q REV BIOL, V60, P265, DOI DOI 10.1086/414425); Mitteroecker P, 2008, EVOLUTION, V62, P943, DOI 10.1111/j.1558-5646.2008.00321.x; Monteiro LR, 2005, EVOL DEV, V7, P429, DOI 10.1111/j.1525-142X.2005.05047.x; Moore W., 1981, MAMMALIAN SKULL; Nijhout HF, 2011, J THEOR BIOL, V288, P35, DOI 10.1016/j.jtbi.2011.08.008; Oliveira F. B., 2009, J HUM EVOL, V56, P417, DOI DOI 10.1016/J.JHEVOL.2009.01.010; Olson EC, 1958, MORPHOLOGICAL INTEGR; Pavlicev M, 2008, EVOLUTION, V62, P199, DOI 10.1111/j.1558-5646.2007.00255.x; Pavlicev M, 2011, J EXP ZOOL PART B, V316B, P371, DOI 10.1002/jez.b.21410; Porto A, 2009, EVOL BIOL, V36, P118, DOI 10.1007/s11692-008-9038-3; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; READ AF, 1989, J ZOOL, V219, P329, DOI 10.1111/j.1469-7998.1989.tb02584.x; Schlosser G, 2004, MODULARITY DEV EVOLU; Schluter D, 1996, EVOLUTION, V50, P1766, DOI 10.1111/j.1558-5646.1996.tb03563.x; Shirai LT, 2010, J EXP ZOOL PART B, V314B, P663, DOI 10.1002/jez.b.21367; Smith KK, 1996, AM ZOOL, V36, P70; Smith KK, 2001, J ANAT, V199, P121, DOI 10.1046/j.1469-7580.2001.19910121.x; Smith KK, 1997, EVOLUTION, V51, P1663, DOI 10.1111/j.1558-5646.1997.tb01489.x; Steppan SJ, 2002, TRENDS ECOL EVOL, V17, P320, DOI 10.1016/S0169-5347(02)02505-3; Wagner GP, 1996, EVOLUTION, V50, P967, DOI 10.1111/j.1558-5646.1996.tb02339.x; West GB, 2001, NATURE, V413, P628, DOI 10.1038/35098076; Wilson DE, 2005, MAMMAL SPECIES WORLD; Young NM, 2010, P NATL ACAD SCI USA, V107, P3400, DOI 10.1073/pnas.0911856107 60 27 28 0 36 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution NOV 2013 67 11 3305 3322 10.1111/evo.12177 18 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 238ZW WOS:000325991900017 24152009 Bronze 2019-02-21 J Harris, S; Green, KK; Pettersson, LB Harris, Sanna; Green, Kristina Karlsson; Pettersson, Lars B. Predator faunas past and present: quantifying the influence of waterborne cues in divergent ecotypes of the isopod Asellus aquaticus OECOLOGIA English Article Aeshna spp.; Antipredator behaviour; Chemical communication; Learning; Perca fluviatilis STREAM-DWELLING ISOPOD; CHEMICAL ALARM CUES; GAMMARUS PSEUDOLIMNAEUS; LIRCEUS-FONTINALIS; TEMPORAL VARIATION; PREY DEFENSES; CRUCIAN CARP; HABITAT USE; FISH; RISK Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies. [Harris, Sanna; Green, Kristina Karlsson; Pettersson, Lars B.] Lund Univ, Dept Biol, S-22362 Lund, Sweden Green, KK (reprint author), Univ Helsinki, Dept Biosci, Metapopulat Res Grp, POB 65, FIN-00014 Helsinki, Finland. kristina.karlsson@biol.lu.se Pettersson, Lars/0000-0001-5745-508X Swedish Research Council; Swedish EPA We are grateful to Henrik G. Smith for statistical advice and two anonymous referees for constructive comments on a previous draft of this manuscript. This study was financially supported by the Swedish Research Council and the Swedish EPA to L. B. P. Arakelova Katherine S., 2001, Aquatic Ecology, V35, P31, DOI 10.1023/A:1011446224456; Baker CF, 2001, J FISH BIOL, V58, P1221, DOI 10.1006/jfbi.2000.1528; Benard MF, 2004, ANNU REV ECOL EVOL S, V35, P651, DOI 10.1146/annurev.ecolsys.35.021004.112426; bjornsson K., 1997, OECOLOGIA, V111, P166; bjornsson K., 2004, ECOLOGY, V85, P1859; BRONMARK C, 1994, OIKOS, V70, P396, DOI 10.2307/3545777; Brown GE, 1999, ANIM BEHAV, V57, P475, DOI 10.1006/anbe.1998.1017; Brown GE, 2003, FISH FISH, V4, P227, DOI 10.1046/j.1467-2979.2003.00132.x; Brown GE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2712; Brown GE, 2009, BEHAV ECOL SOCIOBIOL, V63, P699, DOI 10.1007/s00265-008-0703-4; Dahl J, 1998, P ROY SOC B-BIOL SCI, V265, P1339, DOI 10.1098/rspb.1998.0439; Dunn AM, 2008, ANIM BEHAV, V76, P1289, DOI 10.1016/j.anbehav.2008.06.013; Eroukhmanoff F, 2009, J EVOLUTION BIOL, V22, P1098, DOI 10.1111/j.1420-9101.2009.01723.x; Eroukhmanoff F, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006173; Ferrari MCO, 2008, P ROY SOC B-BIOL SCI, V275, P1811, DOI 10.1098/rspb.2008.0305; Ferrari MCO, 2007, P R SOC B, V274, P1853, DOI 10.1098/rspb.2007.0297; Ferrari MCO, 2006, ANIM BEHAV, V72, P927, DOI 10.1016/j.anbehav.2006.03.001; Gonzalo A, 2007, ANIM BEHAV, V74, P447, DOI 10.1016/j.anbehav.2006.11.032; Hale R, 2009, OECOLOGIA, V159, P679, DOI 10.1007/s00442-008-1248-y; Hargeby A, 2006, J EVOLUTION BIOL, V19, P1911, DOI 10.1111/j.1420-9101.2006.01170.x; Hargeby A, 2005, J EVOLUTION BIOL, V18, P713, DOI 10.1111/j.1420-9101.2004.00837.x; Hargeby A, 2004, EVOLUTION, V58, P81; HARGEBY A, 1994, HYDROBIOLOGIA, V279, P83, DOI 10.1007/BF00027843; Hargeby A, 2007, ECOSYSTEMS, V10, P29, DOI 10.1007/s10021-006-9008-5; Harris S, 2011, J EVOLUTION BIOL, V24, P1887, DOI 10.1111/j.1420-9101.2011.02322.x; Harris S, 2010, THESIS LUND U LUND; Harris S, 2010, OIKOS, V119, P1711, DOI 10.1111/j.1600-0706.2010.18028.x; Hawkins LA, 2007, ANIM BEHAV, V73, P1051, DOI 10.1016/j.anbehav.2006.08.011; HELFMAN GS, 1989, BEHAV ECOL SOCIOBIOL, V24, P47, DOI 10.1007/BF00300117; HOLOMUZKI JR, 1988, OIKOS, V52, P79, DOI 10.2307/3565985; HOLOMUZKI JR, 1990, HOLARCTIC ECOL, V13, P300; Jormalainen V, 2000, ANIM BEHAV, V60, P85, DOI 10.1006/anbe.2000.1429; Karlsson K, 2010, J EVOLUTION BIOL, V23, P2540, DOI 10.1111/j.1420-9101.2010.02102.x; Karlsson K, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012755; Kats LB, 1998, ECOSCIENCE, V5, P361, DOI 10.1080/11956860.1998.11682468; Kelley JL, 2003, FISH FISH, V4, P216, DOI 10.1046/j.1467-2979.2003.00126.x; Lass S, 2003, HYDROBIOLOGIA, V491, P221, DOI 10.1023/A:1024487804497; Lima SL, 1999, AM NAT, V153, P649, DOI 10.1086/303202; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima Steven L., 2005, P166; Littell RC, 2006, SAS MIXED MODELS; Mathis A, 1997, ETHOLOGY, V103, P33; McIntosh AR, 1999, OECOLOGIA, V118, P256, DOI 10.1007/s004420050726; Pettersson LB, 2000, OIKOS, V88, P200, DOI 10.1034/j.1600-0706.2000.880122.x; RASK M, 1985, HYDROBIOLOGIA, V121, P27, DOI 10.1007/BF00035226; Schoeppner NM, 2009, FUNCT ECOL, V23, P1114, DOI 10.1111/j.1365-2435.2009.01578.x; Schoeppner NM, 2005, ECOL LETT, V8, P505, DOI 10.1111/j.1461-0248.2005.00744.x; SHORT TM, 1992, FRESHWATER BIOL, V27, P91, DOI 10.1111/j.1365-2427.1992.tb00526.x; Sih A, 2000, TRENDS ECOL EVOL, V15, P3, DOI 10.1016/S0169-5347(99)01766-8; Smith GR, 2008, ETHOLOGY, V114, P701, DOI 10.1111/j.1439-0310.2008.01505.x; SMOCK LA, 1983, ECOLOGY, V64, P1556, DOI 10.2307/1937510; Unwin E. E., 1920, Journal of the Linnean Society London Zoology, V34; Utne-Palm AC, 2001, MAR ECOL PROG SER, V218, P267, DOI 10.3354/meps218267; Verovnik R, 2005, MOL ECOL, V14, P4355, DOI 10.1111/j.1365-294X.2005.02745.x; Wagner BMA, 1998, HYDROBIOLOGIA, V368, P75, DOI 10.1023/A:1003213224327; WILLIAMS DD, 1985, OIKOS, V44, P280, DOI 10.2307/3544701; Wisenden Brian D., 2006, P259; Wisenden B, 2009, BEHAV ECOL SOCIOBIOL, V63, P443, DOI 10.1007/s00265-008-0678-1; Wudkevich K, 1997, J CHEM ECOL, V23, P1163, DOI 10.1023/B:JOEC.0000006393.92013.36 59 5 5 0 21 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0029-8549 1432-1939 OECOLOGIA Oecologia NOV 2013 173 3 791 799 10.1007/s00442-013-2667-y 9 Ecology Environmental Sciences & Ecology 236SO WOS:000325819700015 23636460 2019-02-21 J Bellota, E; Medina, RF; Bernal, JS Bellota, Edwin; Medina, Raul F.; Bernal, Julio S. Physical leaf defenses - altered by Zea life-history evolution, domestication, and breeding - mediate oviposition preference of a specialist leafhopper ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA English Article plant defense; maize; corn; teosinte; landraces; Dalbulus maidis; Poaceae; Hemiptera; Cicadellidae ANTI-HERBIVORE DEFENSE; PLANT DEFENSE; CROP DOMESTICATION; DALBULUS-MAIDIS; GENERALIST HERBIVORES; CORN LEAFHOPPER; WILD RELATIVES; TRICHOMES; MAIZE; CICADELLIDAE Plant anti-herbivore defenses are known to be affected by life-history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti-herbivore defenses are affected by plant life-history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z.mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z.diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D.maidis. Results on leaf toughness suggested that the life-history and domestication transitions weakened the plant's resistance to penetration by the mouthparts and ovipositor of D.maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D.maidis coincided with the expectation that life-history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D.maidis were variably affected by plant life-history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D.maidis because leaf toughness and pubescence only partially explained its host preferences. [Bellota, Edwin; Medina, Raul F.; Bernal, Julio S.] Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA Bernal, JS (reprint author), Texas A&M Univ, Dept Entomol, College Stn, TX 77843 USA. juliobernal@tamu.edu Bellota, Edwin/0000-0002-4971-6056 National Science Foundation [NSF-DEB 0818240]; Hatch funds [TEX07234] We are grateful to Dr. Ramon Cuevas and Francisco Santana Michel (both at Universidad de Guadalajara, Autlan campus, Mexico) for facilitating the collection of Perennial teosinte seed and Balsas teosinte seed, respectively, and Dr. Mark Millard (USDA NPGS, Ames, IA, USA) for providing Tuxpeno landrace seed. We thank Drs. Lloyd Rooney and Tom Jondiko (Department of Soil and Crop Sciences, Texas A&M University, College Station) for access and invaluable help with the texture analyzer, and Dr. Micky Eubanks (Department of Entomology, TAMU, College Station) for suggestions on earlier versions of the manuscript and access to his laboratory. This project was supported in part by National Science Foundation (NSF-DEB 0818240) and Hatch (TEX07234) funds to JSB. Abdi H, 2010, ENCY RES DESIGN, P243; Agrawal AA, 2006, ECOLOGY, V87, pS132, DOI 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2; Ali JG, 2012, TRENDS PLANT SCI, V17, P293, DOI 10.1016/j.tplants.2012.02.006; Alivizatos AS, 1982, CHRONIKA BENAKI PHYT, V13, P132; BACKUS EA, 1988, J ECON ENTOMOL, V81, P1819, DOI 10.1093/jee/81.6.1819; BAZZAZ FA, 1987, BIOSCIENCE, V37, P58, DOI 10.2307/1310178; Bellota Villafuerte E, 2013, THESIS TEXAS A M U C; BERGVINSON DJ, 1994, J ECON ENTOMOL, V87, P1743, DOI 10.1093/jee/87.6.1743; BROERSMA DB, 1972, J ECON ENTOMOL, V65, P78, DOI 10.1093/jee/65.1.78; BUCKLER ES, 2005, DARWINS HARVEST, P67; BUTLER GD, 1991, CROP PROT, V10, P461, DOI 10.1016/S0261-2194(91)80117-X; Cervantes Mayagoitia JF, 2011, GUIA ACAROS INSECTOS, V1; Chen YH, 2005, ECOL ENTOMOL, V30, P673, DOI 10.1111/j.0307-6946.2005.00737.x; COLEY PD, 1983, ECOL MONOGR, V53, P209, DOI 10.2307/1942495; Constant B, 1996, J ECON ENTOMOL, V89, P1446, DOI 10.1093/jee/89.6.1446; Davila-Flores AM, 2013, OECOLOGIA, DOI 10.1007/s00442-013-2728-2; Dellinger TA, 2006, J ECON ENTOMOL, V99, P1235, DOI 10.1093/jee/99.4.1235; Doebley JF, 2006, CELL, V127, P1309, DOI 10.1016/j.cell.2006.12.006; Fordyce JA, 2001, J ANIM ECOL, V70, P997, DOI 10.1046/j.0021-8790.2001.00568.x; Gaudin ACM, 2011, CROP SCI, V51, P2780, DOI 10.2135/cropsci2010.12.0686; Gepts P., 2004, Plant Breeding Reviews, V24, P1, DOI 10.1002/9780470650288.ch1; Gepts P, 2002, CROP SCI, V42, P1780, DOI 10.2135/cropsci2002.1780; Greco Nancy M., 1998, Ecologia Austral, V8, P31; Gripenberg S, 2010, ECOL LETT, V13, P383, DOI 10.1111/j.1461-0248.2009.01433.x; Hanley ME, 2007, PERSPECT PLANT ECOL, V8, P157, DOI 10.1016/j.ppees.2007.01.001; Heisswolf A, 2005, ECOL ENTOMOL, V30, P299, DOI 10.1111/j.0307-6946.2005.00706.x; HERMS DA, 1992, Q REV BIOL, V67, P478; Heshula LUP, 2011, BIOCONTROL, V56, P925, DOI 10.1007/s10526-011-9359-5; Horgan FG, 2007, ENTOMOL EXP APPL, V125, P1, DOI 10.1111/j.1570-7458.2007.00590.x; Hufford MB, 2012, NAT GENET, V44, P808, DOI 10.1038/ng.2309; Kaplan I, 2009, ECOL APPL, V19, P864, DOI 10.1890/07-1566.1; Kumar H, 1997, CROP PROT, V16, P243, DOI 10.1016/S0261-2194(96)00094-4; Lankau RA, 2007, NEW PHYTOL, V175, P176, DOI 10.1111/j.1469-8137.2007.02090.x; Lauter N, 2004, GENETICS, V167, P1949, DOI 10.1534/genetics.104.026997; LEVIN DA, 1973, Q REV BIOL, V48, P3, DOI 10.1086/407484; Lill JT, 2006, ENVIRON ENTOMOL, V35, P797, DOI 10.1603/0046-225X-35.3.797; Lokesh, 2005, ENTOMOL GEN, V28, P103; Loughner R, 2008, EXP APPL ACAROL, V45, P111, DOI 10.1007/s10493-008-9183-5; Macfadyen S, 2010, BASIC APPL ECOL, V11, P116, DOI 10.1016/j.baae.2009.11.008; Massei G, 2000, OECOLOGIA, V122, P225, DOI 10.1007/s004420050010; Matos CHC, 2009, NEOTROP ENTOMOL, V38, P589, DOI 10.1590/S1519-566X2009000500005; Matsuoka Y, 2002, P NATL ACAD SCI USA, V99, P6080, DOI 10.1073/pnas.052125199; Medina RF, 2012, ENTOMOL EXP APPL, V142, P223, DOI 10.1111/j.1570-7458.2012.01220.x; MOLE S, 1994, OIKOS, V71, P3, DOI 10.2307/3546166; Moose SP, 2004, GENETICS, V166, P1451, DOI 10.1534/genetics.166.3.1451; NAULT LR, 1990, MAYDICA, V35, P165; NAULT LR, 1980, ANN ENTOMOL SOC AM, V73, P349, DOI 10.1093/aesa/73.4.349; NAULT LR, 1985, ECOL ENTOMOL, V10, P57, DOI 10.1111/j.1365-2311.1985.tb00534.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Onoda Y, 2008, ANN BOT-LONDON, V101, P727, DOI 10.1093/aob/mcn013; Palomera V, 2012, FLA ENTOMOL, V95, P150, DOI 10.1653/024.095.0123; Peeters PJ, 2007, FUNCT ECOL, V21, P246, DOI 10.1111/j.1365-2435.2006.01223.x; PITRE HN, 1967, J ECON ENTOMOL, V60, P417, DOI 10.1093/jee/60.2.417; Ranger CM, 2002, ENTOMOL EXP APPL, V105, P71, DOI 10.1046/j.1570-7458.2002.01035.x; Rodriguez-Saona C, 2011, J EXP BOT, V62, P2633, DOI 10.1093/jxb/erq466; Rosenthal JP, 1997, EVOL ECOL, V11, P337, DOI 10.1023/A:1018420504439; ROSENTHAL JP, 1995, OECOLOGIA, V102, P146, DOI 10.1007/BF00333245; Schoonhoven L. M., 2005, INSECT PLANT BIOL; Smith C. M., 1997, Insect resistant maize: recent advances and utilization. Proceedings of an International Symposium held at the International Maize and Wheat Improvement Center, 27 November-3 December 1994., P1; Styrsky JD, 2006, BIOL CONTROL, V36, P375, DOI 10.1016/j.biocontrol.2005.10.003; Summers CG, 2004, ENVIRON ENTOMOL, V33, P1644, DOI 10.1603/0046-225X-33.6.1644; Szczepaniec A, 2012, ENTOMOLOGIA EXPT APP, V146, P242; Takahashi CG, 2012, ENTOMOL EXP APPL, V145, P191, DOI 10.1111/eea.12004; UNESCO, 2011, BIOSPH RES INF SIERR; vanderMeijden E, 1996, ENTOMOL EXP APPL, V80, P307; WALKER GP, 1985, ENTOMOL EXP APPL, V39, P115, DOI 10.1111/j.1570-7458.1985.tb03551.x; Wang XG, 2009, BASIC APPL ECOL, V10, P216, DOI 10.1016/j.baae.2008.06.003; Wayadande AC, 1996, J INSECT BEHAV, V9, P3, DOI 10.1007/BF02213720 68 14 14 1 44 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0013-8703 1570-7458 ENTOMOL EXP APPL Entomol. Exp. Appl. NOV 2013 149 2 185 195 10.1111/eea.12122 11 Entomology Entomology 230QD WOS:000325356200010 2019-02-21 J Wit, J; Kristensen, TN; Sarup, P; Frydenberg, J; Loeschcke, V Wit, Janneke; Kristensen, Torsten Nygaard; Sarup, Pernille; Frydenberg, Jane; Loeschcke, Volker Laboratory selection for increased longevity in Drosophila melanogaster reduces field performance EXPERIMENTAL GERONTOLOGY English Article Ageing; Release-capture; Functional senescence; Environmental temperature; Longevity selection; Fitness in the field LIFE-HISTORY EVOLUTION; POSTPONED SENESCENCE; DESICCATION-RESISTANCE; STARVATION RESISTANCE; CORRELATED RESPONSES; NATURAL-POPULATIONS; EXTENDED LONGEVITY; STRESS RESISTANCE; CAENORHABDITIS-ELEGANS; SEMINATURAL CONDITIONS Drosophila melanogaster is frequently used in ageing studies to elucidate which mechanisms determine the onset and progress of senescence. Lines selected for increased longevity have often been shown to perform as well as or superior to control lines in life history, stress resistance and behavioural traits when tested in the laboratory. Functional senescence in longevity selected lines has also been shown to occur at a slower rate. However, it is known that performance in a controlled laboratory setting is not necessarily representative of performance in nature. In this study the effect of ageing, environmental temperature and longevity selection on performance in the field was tested. Flies from longevity selected and control lines of different ages (2, 5, 10 and 15 days) were released in an environment free of natural food sources. Control flies were tested at low, intermediate and high temperatures, while longevity selected flies were tested at the intermediate temperature only. The ability of flies to locate and reach a food source was tested. Flies of intermediate age were generally better at locating resources than both younger and older flies, where hot and cold environments accelerate the senescent decline in performance. Control lines were better able to locate a resource compared to longevity selected lines of the same age, suggesting that longevity comes at a cost in early life field fitness, supporting the antagonistic pleiotropy theory of ageing. (C) 2013 Elsevier Inc. All rights reserved. [Wit, Janneke; Sarup, Pernille; Frydenberg, Jane; Loeschcke, Volker] Aarhus Univ, Dept Biosci Integrat Ecol & Evolut, DK-8000 Aarhus C, Denmark; [Kristensen, Torsten Nygaard] Aarhus Univ, Ctr Quantitat Genet & Genom, Dept Mol Biol & Genet, DK-8830 Tjele, Denmark Wit, J (reprint author), Aarhus Univ, Dept Biosci Integrat Ecol & Evolut, Ny Munkegade 114-116, DK-8000 Aarhus C, Denmark. janneke.wit@biology.au.dk; torsten.nygaard@nordgen.org; pernille.sarup@biology.au.dk; jane.frydenberg@biology.au.dk; volker.loeschcke@biology.au.dk Loeschcke, Volker/J-2527-2013; Sarup, Pernille/B-8632-2014; Kristensen, Torsten/C-5031-2015 Loeschcke, Volker/0000-0003-1450-0754; Sarup, Pernille/0000-0002-5838-1251; Kristensen, Torsten/0000-0001-6204-8753 Lundbeck Foundation [R31-A2517]; Danish Council for Independent Research \ Natural Sciences [10-093806/IPD/MAJ, 437369, 09-064936] The authors are grateful to Mads Fristrup Schou, Vanessa Kellermann, Doth Andersen, Neda Nasiri Moghadam, Golshah Ayoubi, Marie Rosenstand Hansen and Anne Marie Vestergaard Henten for their help with the execution of the release experiments. We also want to thank Kuke (R.) Bijlsma and Alexei A. Maklakov for commenting on an earlier version of this manuscript and Kjeld and Bente Nygaard Kristensen for allowing us to perform the release-capture experiments at Kistrupgaard. For financial support we thank the Lundbeck Foundation (R31-A2517) and The Danish Council for Independent Research vertical bar Natural Sciences (PS: 10-093806/IPD/MAJ; VL: 437369; TNK: 09-064936). ARKING R, 1990, DEV GENET, V11, P141, DOI 10.1002/dvg.1020110204; Arking R, 2002, AGEING RES REV, V1, P209, DOI 10.1016/S1568-1637(01)00010-1; Arrese EL, 2010, ANNU REV ENTOMOL, V55, P207, DOI 10.1146/annurev-ento-112408-085356; Bubliy OA, 2005, J EVOLUTION BIOL, V18, P789, DOI 10.1111/j.1420-9101.2005.00928.x; Buck S, 2000, J GERONTOL A-BIOL, V55, pB292, DOI 10.1093/gerona/55.6.B292; Chapman T, 2001, HEREDITY, V87, P511, DOI 10.1046/j.1365-2540.2001.00961.x; CHIPPINDALE AK, 1994, EVOLUTION, V48, P1880, DOI 10.1111/j.1558-5646.1994.tb02221.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; Cordts R, 1996, ANIM BEHAV, V52, P269, DOI 10.1006/anbe.1996.0172; DUHON SA, 1995, J GERONTOL A-BIOL, V50, pB254, DOI 10.1093/gerona/50A.5.B254; Folk DG, 2001, J EXP BIOL, V204, P3323; Force AG, 1995, DEV GENET, V17, P340, DOI 10.1002/dvg.1020170407; FOWLER K, 1989, NATURE, V338, P760, DOI 10.1038/338760a0; FRIEDMAN DB, 1988, J GERONTOL, V43, pB102, DOI 10.1093/geronj/43.4.B102; Gibert P, 2001, EVOLUTION, V55, P205; GRAVES JL, 1988, J INSECT PHYSIOL, V34, P1021, DOI 10.1016/0022-1910(88)90201-6; Grotewiel MS, 2005, AGEING RES REV, V4, P372, DOI 10.1016/j.arr.2005.04.001; Harshman LG, 2000, TRENDS ECOL EVOL, V15, P32, DOI 10.1016/S0169-5347(99)01756-5; Harshman LG, 1999, J EVOLUTION BIOL, V12, P370, DOI 10.1046/j.1420-9101.1999.00024.x; Hoffmann AA, 2003, J EVOLUTION BIOL, V16, P614, DOI 10.1046/j.1420-9101.2003.00561.x; HOFFMANN AA, 1993, J EVOLUTION BIOL, V6, P643, DOI 10.1046/j.1420-9101.1993.6050643.x; HOFFMANN AA, 1993, BIOL J LINN SOC, V48, P43, DOI 10.1006/bijl.1993.1004; HOULE D, 1991, EVOLUTION, V45, P630, DOI 10.1111/j.1558-5646.1991.tb04334.x; Kellermann VM, 2007, BIOL J LINN SOC, V92, P457, DOI 10.1111/j.1095-8312.2007.00875.x; Kristensen TN, 2008, P ROY SOC B-BIOL SCI, V275, P2055, DOI 10.1098/rspb.2008.0426; Kristensen TN, 2008, CONSERV BIOL, V22, P189, DOI 10.1111/j.1523-1739.2007.00816.x; Kristensen TN, 2008, P NATL ACAD SCI USA, V105, P216, DOI 10.1073/pnas.0708074105; Kristensen TN, 2007, P R SOC B, V274, P771, DOI 10.1098/rspb.2006.0247; LEROI AM, 1994, EVOLUTION, V48, P1258, DOI 10.1111/j.1558-5646.1994.tb05310.x; LEROI AM, 1994, EVOLUTION, V48, P1244, DOI 10.1111/j.1558-5646.1994.tb05309.x; LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540; LUCKINBILL LS, 1984, EVOLUTION, V38, P996, DOI 10.1111/j.1558-5646.1984.tb00369.x; Magwere T, 2006, J GERONTOL A-BIOL, V61, P136, DOI 10.1093/gerona/61.2.136; Minois N, 2001, J INSECT PHYSIOL, V47, P1007, DOI 10.1016/S0022-1910(01)00076-2; Minois N, 2001, EXP GERONTOL, V36, P1137, DOI 10.1016/S0531-5565(00)00263-1; Minois N, 1999, MECH AGEING DEV, V109, P53, DOI 10.1016/S0047-6374(99)00025-1; Mitrovski P, 2001, P ROY SOC B-BIOL SCI, V268, P2163, DOI 10.1098/rspb.2001.1787; Partridge L, 1999, P ROY SOC B-BIOL SCI, V266, P255, DOI 10.1098/rspb.1999.0630; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; Piazza N, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0005886; Prowse N, 1997, J INSECT PHYSIOL, V43, P501, DOI 10.1016/S0022-1910(97)00014-0; ROSE MR, 1984, EVOLUTION, V38, P1004, DOI 10.1111/j.1558-5646.1984.tb00370.x; ROSEWELL J, 1987, BIOL J LINN SOC, V32, P373, DOI 10.1111/j.1095-8312.1987.tb00438.x; Sarup P, 2011, AGE, V33, P69, DOI 10.1007/s11357-010-9162-8; SERVICE PM, 1987, PHYSIOL ZOOL, V60, P321, DOI 10.1086/physzool.60.3.30162285; SERVICE PM, 1985, PHYSIOL ZOOL, V58, P380, DOI 10.1086/physzool.58.4.30156013; SERVICE PM, 1989, J INSECT PHYSIOL, V35, P447, DOI 10.1016/0022-1910(89)90120-0; Simon AF, 2006, MECH AGEING DEV, V127, P647, DOI 10.1016/j.mad.2006.02.006; Sorensen J.G., 2008, FUNCT ECOL, V23, P240; Sorensen JG, 2002, FUNCT ECOL, V16, P379, DOI 10.1046/j.1365-2435.2002.00639.x; Sorensen JG, 2001, FUNCT ECOL, V15, P289, DOI 10.1046/j.1365-2435.2001.00525.x; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stratman R, 1998, FUNCT ECOL, V12, P965, DOI 10.1046/j.1365-2435.1998.00270.x; TURELLI M, 1995, GENETICS, V140, P1319; Vermeulen CJ, 2006, J INSECT PHYSIOL, V52, P910, DOI 10.1016/j.jinsphys.2006.05.014; Vermeulen CJ, 2005, BIOGERONTOLOGY, V6, P387, DOI 10.1007/s10522-005-4903-2; Vermeulen CJ, 2006, J EVOLUTION BIOL, V19, P216, DOI 10.1111/j.1420-9101.2005.00972.x; Walker DW, 2000, NATURE, V405, P296, DOI 10.1038/35012693; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wit J, 2013, EXP GERONTOL, V48, P349, DOI 10.1016/j.exger.2013.01.008; ZWAAN B, 1995, EVOLUTION, V49, P649, DOI 10.1111/j.1558-5646.1995.tb02301.x; Zwaan BJ, 1999, HEREDITY, V82, P589, DOI 10.1046/j.1365-2540.1999.00544.x 63 8 8 0 43 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0531-5565 1873-6815 EXP GERONTOL Exp. Gerontol. NOV 2013 48 11 1189 1195 10.1016/j.exger.2013.07.012 7 Geriatrics & Gerontology Geriatrics & Gerontology 235WD WOS:000325750900007 23916841 2019-02-21 J Hayward, AD Hayward, A. D. Causes and consequences of intra- and inter-host heterogeneity in defence against nematodes PARASITE IMMUNOLOGY English Review ageing; co-infection; immunosenescence; life-history trade-offs; parasite resistance; sexual selection GENOME-WIDE ASSOCIATION; MICROPARASITE-MACROPARASITE COINFECTION; IMMUNOCOMPETENCE HANDICAP HYPOTHESIS; ALTERNATIVELY ACTIVATED MACROPHAGES; TRICHURIS-MURIS INFECTION; HUMAN HOOKWORM INFECTION; TEXEL SHEEP BREEDS; REGULATORY T-CELLS; HELMINTH INFECTION; IMMUNE-RESPONSES Despite strong natural and artificial selection for increased resistance to nematode parasites, there is considerable heterogeneity between hosts in human, livestock and wildlife populations, with a minority of hosts carrying the majority of parasites. In addition, levels of defence may vary across the lifespan of individuals due to changes in their physiological state and infection history. Such variation influences nematode transmission dynamics and the evolution of parasite life-history strategies. Therefore, identifying sources of between- and within-individual variation in resistance and predicting their consequences is crucial for understanding the epidemiology of nematode parasitic diseases. In this review, several key sources of variation are identified, using examples from mouse models, immuno-epidemiological studies of human populations and observational and experimental studies of wildlife and livestock. The mutual applicability of approaches used across these study systems is emphasized, with the assertion that the concerted efforts of researchers from a range of disciplines will enable us to better understand the proximate and ultimate causes of variation in defence against nematode parasites. This will facilitate predictions of the epidemiological and evolutionary consequences of this variation, with the potential to improve disease treatment and management. Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England Hayward, AD (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. a.hayward@sheffield.ac.uk Hayward, Adam/B-7659-2016 Hayward, Adam/0000-0001-6953-7509 ERC [R120448-11-1] I would like to thank J. Slate, C. Bourke and L. Pollitt for comments, suggestions and discussion, and V. Lummaa for continuous encouragement. A. H. is supported by ERC Grant R120448-11-1 to V.L. Acevedo N, 2009, CLIN EXP IMMUNOL, V157, P282, DOI 10.1111/j.1365-2249.2009.03948.x; Allen JE, 1997, IMMUNOL TODAY, V18, P387, DOI 10.1016/S0167-5699(97)01102-X; Allen JE, 2011, NAT REV IMMUNOL, V11, P375, DOI 10.1038/nri2992; ANDERSON RM, 1985, ADV PARASIT, V24, P1, DOI 10.1016/S0065-308X(08)60561-8; ANDERSON RM, 1982, PARASITOLOGY, V85, P373, DOI 10.1017/S0031182000055347; Anthony RM, 2006, NAT MED, V12, P955, DOI 10.1038/nm1415; Aspinall R, 2006, MECH AGEING DEV, V127, P572, DOI 10.1016/j.mad.2006.01.016; Babayan SA, 2010, PLOS BIOL, V8; Bancroft AJ, 1998, J IMMUNOL, V160, P3453; BEHNKE JM, 1984, ANN TROP MED PARASIT, V78, P509, DOI 10.1080/00034983.1984.11811857; BEHNKE JM, 1978, EXP PARASITOL, V46, P121, DOI 10.1016/0014-4894(78)90162-5; Bleay C, 2009, PARASITOLOGY, V136, P567, DOI 10.1017/S0031182009005617; Bourke CD, 2011, PARASITOLOGY, V138, P139, DOI 10.1017/S0031182010001216; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Breitling LP, 2008, PARASITOLOGY, V135, P1407, DOI 10.1017/S0031182008004976; Brown EA, 2013, MOL ECOL, V22, P757, DOI 10.1111/j.1365-294X.2012.05757.x; Cattadori IM, 2008, INT J PARASITOL, V38, P371, DOI 10.1016/j.ijpara.2007.08.004; Cattadori IM, 2007, J R SOC INTERFACE, V4, P831, DOI 10.1098/rsif.2007.1075; Cichon M, 2003, J EVOLUTION BIOL, V16, P1205, DOI 10.1046/j.1420-9101.2003.00611.x; Cliffe LJ, 2005, SCIENCE, V308, P1463, DOI 10.1126/science.1108661; Collins A, 2009, PARASITE IMMUNOL, V31, P225, DOI 10.1111/j.1365-3024.2008.01089.x; Coltman DW, 2001, PARASITOLOGY, V122, P571, DOI 10.1017/S0031182001007570; Cox FEG, 2001, PARASITOLOGY, V122, pS23, DOI 10.1017/S003118200001698X; Cuenco KT, 2009, J INFECT DIS, V200, P1271, DOI 10.1086/605844; CURRY AJ, 1995, J EXP MED, V181, P769, DOI 10.1084/jem.181.2.769; Datta FU, 1999, INT J PARASITOL, V29, P479, DOI 10.1016/S0020-7519(98)00209-4; Datta FU, 1998, INT J PARASITOL, V28, P1269, DOI 10.1016/S0020-7519(98)00104-0; Dervishi E, 2011, VET IMMUNOL IMMUNOP, V141, P100, DOI 10.1016/j.vetimm.2011.02.013; Diaz A, 2007, EUR J IMMUNOL, V37, P3319, DOI 10.1002/eji.200737765; Doeschl-Wilson AB, 2008, GENET SEL EVOL, V40, P241, DOI 10.1051/gse:2008001; Easton DF, 2007, NATURE, V447, P1087, DOI 10.1038/nature05887; Eeles RA, 2008, NAT GENET, V40, P316, DOI 10.1038/ng.90; Ellis MK, 2007, INT J PARASITOL, V37, P1153, DOI 10.1016/j.ijpara.2007.02.008; ELSE K, 1989, PARASITE IMMUNOL, V11, P77, DOI 10.1111/j.1365-3024.1989.tb00650.x; ELSE K, 1988, PARASITOLOGY, V96, P543, DOI 10.1017/S0031182000080173; Ezenwa VO, 2012, FUNCT ECOL, V26, P123, DOI 10.1111/j.1365-2435.2011.01919.x; Fabre V, 2009, J IMMUNOL, V182, P1577, DOI 10.4049/jimmunol.182.3.1577; Fenton A, 2008, PARASITOLOGY, V135, P1545, DOI 10.1017/S003118200700025X; Fenton A, 2008, PARASITOLOGY, V135, P841, DOI 10.1017/S0031182008000310; Ferrari N, 2007, INT J PARASITOL, V37, P341, DOI 10.1016/j.ijpara.2006.10.015; Ferrari N, 2004, ECOL LETT, V7, P88, DOI 10.1046/j.1461-0248.2003.00552.x; Finney CAM, 2007, EUR J IMMUNOL, V37, P1874, DOI 10.1002/eji.200636751; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Fuxjager MJ, 2011, FUNCT ECOL, V25, P132, DOI 10.1111/j.1365-2435.2010.01784.x; Gazzinelli A, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001603; Gebreselassie NG, 2012, J IMMUNOL, V188, P417, DOI 10.4049/jimmunol.1101980; Gemmill AW, 1999, J EVOLUTION BIOL, V12, P1148, DOI 10.1046/j.1420-9101.1999.00117.x; Germain RN, 2001, SCIENCE, V293, P240, DOI 10.1126/science.1062946; Graham AL, 2007, TRENDS PARASITOL, V23, P284, DOI 10.1016/j.pt.2007.04.005; Grear DA, 2009, ECOL LETT, V12, P528, DOI 10.1111/j.1461-0248.2009.01306.x; Gruner L, 2004, VET PARASITOL, V119, P51, DOI 10.1016/j.vetpar.2003.10.014; Gutierrez-Gil B, 2010, ANIMAL, V4, P505, DOI 10.1017/S1751731109991431; Halliday AM, 2010, PARASITE IMMUNOL, V32, P81, DOI 10.1111/j.1365-3024.2009.01173.x; Hashimoto K, 2010, PARASITOLOGY, V137, P881, DOI 10.1017/S0031182009991673; Hasnain SZ, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001856; Hayes KS, 2007, PARASITE IMMUNOL, V29, P575, DOI 10.1111/j.1365-3024.2007.00979.x; Hayes KS, 2010, SCIENCE, V328, P1391, DOI 10.1126/science.1187703; Hayward AD, 2009, P R SOC B, V276, P3477, DOI 10.1098/rspb.2009.0906; Hepworth MR, 2010, EUR J IMMUNOL, V40, P406, DOI 10.1002/eji.200939589; Hepworth MR, 2009, J IMMUNOL, V183, P3906, DOI 10.4049/jimmunol.0900577; Hindorff L. A., 2013, CATALOG PUBLISHED GE; Hindorff LA, 2009, P NATL ACAD SCI USA, V106, P9362, DOI 10.1073/pnas.0903103106; Hoeve MA, 2006, EUR J IMMUNOL, V36, P661, DOI 10.1002/eji.200535239; Humphreys NE, 2002, INFECT IMMUN, V70, P5148, DOI 10.1128/IAI.70.9.5148-5157.2002; Isomursu M, 2006, J AVIAN BIOL, V37, P516, DOI 10.1111/j.2006.0908-8857.03838.x; Jackson JA, 2004, INT J PARASITOL, V34, P1237, DOI 10.1016/j.ijpara.2004.07.009; Jackson JA, 2004, J INFECT DIS, V190, P1804, DOI 10.1086/425014; Johnson SA, 2004, ARTHRITIS RES THER, V6, P131, DOI 10.1186/ar1180; Joop G, 2006, BMC EVOL BIOL, V6, DOI 10.1186/1471-2148-6-19; Khor CC, 2012, TRENDS GENET, V28, P233, DOI 10.1016/j.tig.2012.02.001; Klein SL, 2004, PARASITE IMMUNOL, V26, P247, DOI 10.1111/j.0141-9838.2004.00710.x; Klementowicz JE, 2012, SEMIN IMMUNOPATHOL, V34, P815, DOI 10.1007/s00281-012-0348-2; Klion AD, 2004, J ALLERGY CLIN IMMUN, V113, P30, DOI 10.1016/j.jaci.2003.10.050; LAMMAS DA, 1992, PARASITOLOGY, V105, P117, DOI 10.1017/S0031182000073765; Lecomte VJ, 2010, P NATL ACAD SCI USA, V107, P6370, DOI 10.1073/pnas.0911181107; Lello J, 2004, NATURE, V428, P840, DOI 10.1038/nature02490; Lello J, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2813; Lleo A, 2008, AUTOIMMUN REV, V7, P626, DOI 10.1016/j.autrev.2008.06.009; Lloyd-Smith JO, 2005, NATURE, V438, P355, DOI 10.1038/nature04153; Lynch HE, 2009, TRENDS IMMUNOL, V30, P366, DOI 10.1016/j.it.2009.04.003; Lynch M, 1998, GENETICS ANAL QUANTI; Lynch PA, 2008, PARASITOLOGY, V135, P1599, DOI 10.1017/S0031182008000309; Maizels RM, 2012, CURR OPIN IMMUNOL, V24, P459, DOI 10.1016/j.coi.2012.06.003; Malik A, 2012, CRIT REV MICROBIOL, V38, P168, DOI 10.3109/1040841X.2011.645519; Massot M, 2011, FUNCT ECOL, V25, P848, DOI 10.1111/j.1365-2435.2011.01837.x; Masure D, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002138; Mccoy KD, 2008, CELL HOST MICROBE, V4, P362, DOI 10.1016/j.chom.2008.08.014; McMahon C, 2013, VET PARASITOL, V195, P122, DOI 10.1016/j.vetpar.2013.01.006; Mideo N, 2011, EVOLUTION, V65, P3298, DOI 10.1111/j.1558-5646.2011.01382.x; Mills SC, 2010, EVOLUTION, V64, P166, DOI 10.1111/j.1558-5646.2009.00820.x; Moore SL, 2002, SCIENCE, V297, P2015, DOI 10.1126/science.1074196; Morimoto M, 2011, J VET MED SCI, V73, P849, DOI 10.1292/jvms.10-0566; Murphy L, 2011, PARASITE IMMUNOL, V33, P287, DOI 10.1111/j.1365-3024.2011.01281.x; Neill DR, 2010, NATURE, V464, P1367, DOI 10.1038/nature08900; Newport MJ, 2011, BRIEF FUNCT GENOMICS, V10, P98, DOI 10.1093/bfgp/elq037; Nussey DH, 2008, FUNCT ECOL, V22, P393, DOI 10.1111/j.1365-2435.2008.01408.x; Nussey DH, 2012, AGING CELL, V11, P178, DOI 10.1111/j.1474-9726.2011.00771.x; Palacios MG, 2007, P ROY SOC B-BIOL SCI, V274, P951, DOI 10.1098/rspb.2006.0192; Papadopoulos E, 2012, VET PARASITOL, V189, P85, DOI 10.1016/j.vetpar.2012.03.036; Paterson S, 1998, P NATL ACAD SCI USA, V95, P3714, DOI 10.1073/pnas.95.7.3714; Pathak AK, 2012, INT J PARASITOL, V42, P647, DOI 10.1016/j.ijpara.2012.04.011; Pereira LF, 2011, MECH AGEING DEV, V132, P187, DOI 10.1016/j.mad.2011.03.005; Pfeffer A, 2005, VET IMMUNOL IMMUNOP, V108, P315, DOI 10.1016/j.vetimm.2005.06.004; Pharoah PDP, 2013, NAT GENET, V45, P362, DOI 10.1038/ng.2564; Pollard KM, 2012, J AUTOIMMUN, V38, pJ177, DOI 10.1016/j.jaut.2011.11.007; Prowse S.J., 1979, Parasite Immunology (Oxford), V1, P277, DOI 10.1111/j.1365-3024.1979.tb00713.x; Pullan RL, 2010, PLOS NEGLECT TROP D, V4, DOI 10.1371/journal.pntd.0000713; Pullan RL, 2010, INT J PARASITOL, V40, P299, DOI 10.1016/j.ijpara.2009.08.002; Quinnell RJ, 2010, J INFECT DIS, V202, P954, DOI 10.1086/655813; Rausch S, 2008, INFECT IMMUN, V76, P1908, DOI 10.1128/IAI.01233-07; Rebke M, 2010, P NATL ACAD SCI USA, V107, P7841, DOI 10.1073/pnas.1002645107; Reid JM, 2010, J ANIM ECOL, V79, P851, DOI 10.1111/j.1365-2656.2010.01669.x; Righetti AA, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001889; Roberts ML, 2007, HORM BEHAV, V51, P126, DOI 10.1016/j.yhbeh.2006.09.004; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Roth O, 2011, J EVOLUTION BIOL, V24, P1410, DOI 10.1111/j.1420-9101.2011.02273.x; Rymkiewicz PD, 2012, IMMUNOL RES, V53, P235, DOI 10.1007/s12026-012-8289-3; Saenz SA, 2010, NATURE, V464, P1362, DOI 10.1038/nature08901; Sakiani S, 2013, NAT REV ENDOCRINOL, V9, P56, DOI 10.1038/nrendo.2012.206; Sanchez A, 2011, INT J PARASITOL, V41, P1397, DOI 10.1016/j.ijpara.2011.09.004; Sayers G, 2005, RES VET SCI, V79, P191, DOI 10.1016/j.rvsc.2004.12.002; Sayers G, 2005, PARASITOLOGY, V131, P403, DOI 10.1017/S0031182005007778; SCHWAIGER FW, 1995, INT J PARASITOL, V25, P815, DOI 10.1016/0020-7519(94)00216-B; Shanley DP, 2009, TRENDS IMMUNOL, V30, P374, DOI 10.1016/j.it.2009.05.001; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; SITEPU P, 1982, PARASITOLOGY, V85, P73, DOI 10.1017/S0031182000054160; Slate J, 2013, EVOLUTION, V67, P1251, DOI 10.1111/evo.12060; SMITH WD, 1985, J COMP PATHOL, V95, P235, DOI 10.1016/0021-9975(85)90010-6; Sorci G, 2003, P ROY SOC B-BIOL SCI, V270, P2481, DOI 10.1098/rspb.2003.2536; Stear MJ, 1997, NATURE, V389, P27, DOI 10.1038/37895; Sugawara Y, 2011, J VET MED SCI, V73, P511, DOI 10.1292/jvms.10-0269; Thakar J, 2012, PLOS COMPUT BIOL, V8; Thomas G, 2008, NAT GENET, V40, P310, DOI 10.1038/ng.91; Todd JA, 2006, NAT GENET, V38, P731, DOI 10.1038/ng0706-731; Tschirren B, 2011, J EVOLUTION BIOL, V24, P1232, DOI 10.1111/j.1420-9101.2011.02254.x; Turner AK, 2011, PLOS GENET, V7; Turner AK, 2012, MOL ECOL, V21, P1632, DOI 10.1111/j.1365-294X.2012.05501.x; Turner JD, 2003, J INFECT DIS, V188, P1768, DOI 10.1086/379370; Turner JD, 2008, J INFECT DIS, V197, P1204, DOI 10.1086/586717; van de Pol M, 2006, AM NAT, V167, P766, DOI 10.1086/503331; Wikby A, 1998, MECH AGEING DEV, V102, P187, DOI 10.1016/S0047-6374(97)00151-6; Williams-Blangero S, 1999, AM J TROP MED HYG, V60, P921, DOI 10.4269/ajtmh.1999.60.921; Williams-Blangero S, 2004, HUM BIOL, V76, P515, DOI 10.1353/hub.2004.0062; Williams-Blangero S, 2002, P NATL ACAD SCI USA, V99, P5533, DOI 10.1073/pnas.082115999; Williams-Blangero S, 2008, J INFECT DIS, V197, P66, DOI 10.1086/524060; Wilson K., 2002, P6; WOOLASTON RR, 1990, INT J PARASITOL, V20, P1015, DOI 10.1016/0020-7519(90)90043-M; Yoshida Ayako, 1999, Parasitology International, V48, P73, DOI 10.1016/S1383-5769(99)00006-9; Zhao AP, 2008, GASTROENTEROLOGY, V135, P217, DOI 10.1053/j.gastro.2008.03.077; Zhong S, 1996, EXP PARASITOL, V82, P122, DOI 10.1006/expr.1996.0016; ZUK M, 1990, PARASITOL TODAY, V6, P231, DOI 10.1016/0169-4758(90)90202-F; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 153 16 16 2 74 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0141-9838 1365-3024 PARASITE IMMUNOL Parasite Immunol. NOV 2013 35 11 SI 362 373 10.1111/pim.12054 12 Immunology; Parasitology Immunology; Parasitology 233CF WOS:000325542100006 23855786 2019-02-21 J Hershkovitz, Y; Gasith, A Hershkovitz, Yaron; Gasith, Avital Resistance, resilience, and community dynamics in mediterranean-climate streams HYDROBIOLOGIA English Review Drying; Flooding; Invertebrates; Fish; Persistence adaptations; Community succession FRESH-WATER INVERTEBRATES; TEMPORARY-RIVER ECOLOGY; LIFE-HISTORY EVOLUTION; NON-PERENNIAL STREAMS; MACROINVERTEBRATE ASSEMBLAGES; BIOLOGICAL TRAITS; FISH ASSEMBLAGES; SPECIES TRAITS; FLASH-FLOOD; BENTHIC-MACROINVERTEBRATES Streams and rivers in mediterranean-climate regions (med-rivers) are subjected to sequential, yet contrasting hydrologic disturbances of drying and flooding. Although seasonally predictable, these disturbances can vary in intensity and duration within and among mediterranean-climate regions (med-regions). Consequently, med-rivers differ in the permanence of their aquatic habitats. To persist, species have acquired matched resistance and resilience adaptations. They gain resistance either by enduring the stress or avoiding it. Community recovery (or resilience) is achieved with cessation of hydrologic stress that permits maximization of re-colonization and reproduction. Endurance strategies are usually disturbance-specific, but avoidance enables organisms to cope with both drying and flooding, and is the prevalent resistance strategy. Correspondingly, community persistence depends to a large extent on the integrity of refuges, an aspect that has so far been little explored. Existing information suggests that seasonal community succession becomes more pronounced with increasing aridity and declining water permanence. The invertebrate community in semi-arid med-rivers can therefore undergo succession through three to four identifiable assemblages, whereas in perennial streams the difference between wet and dry period assemblages is smaller. Community turnover is influenced by the intensity of the hydrologic disturbances and varies between wet and drought years. [Hershkovitz, Yaron; Gasith, Avital] Tel Aviv Univ, Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel Hershkovitz, Y (reprint author), Tel Aviv Univ, Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel. yaronhe@gmail.com Acuna V, 2005, J N AM BENTHOL SOC, V24, P919, DOI 10.1899/04-078.1; Acuna V, 2007, J N AM BENTHOL SOC, V26, P54, DOI 10.1899/0887-3593(2007)26[54:MARIOO]2.0.CO;2; ALLAN J. D., 2007, STREAM ECOLOGY STRUC; Alvarez M., 2007, J N AM BENTHOL SOC, V26, P207; Alvarez M., 2009, AQUAT SCI, V71, P202; Aparicio E, 1999, J FISH BIOL, V55, P1086, DOI 10.1111/j.1095-8649.1999.tb00743.x; Argerich A., 2004, Limnetica, V23, P283; Argyroudi A, 2009, AQUAT ECOL, V43, P465, DOI 10.1007/s10452-008-9176-9; Aschmann H., 1973, ECOL STUD, V7, P11; Beche LA, 2006, FRESHWATER BIOL, V51, P56, DOI 10.1111/j.1365-2427.2005.01473.x; Beche LA, 2007, FUND APPL LIMNOL, V169, P1, DOI 10.1127/1863-9135/2007/0169-0001; Beche LA, 2009, ECOGRAPHY, V32, P778, DOI 10.1111/j.1600-0587.2009.05612.x; Bilton DT, 2001, ANNU REV ECOL SYST, V32, P159, DOI 10.1146/annurev.ecolsys.32.081501.114016; Bogan MT, 2007, FRESHWATER BIOL, V52, P290, DOI 10.1111/j.1365-2427.2006.01691.x; Bohonak AJ, 2003, ECOL LETT, V6, P783, DOI 10.1046/j.1461-0248.2003.00486.x; Boix D, 2010, J HYDROL, V383, P135, DOI 10.1016/j.jhydrol.2010.01.014; Bonada N, 2006, J N AM BENTHOL SOC, V25, P32, DOI 10.1899/0887-3593(2006)25[32:BMAAMC]2.0.CO;2; Bonada N, 2007, HYDROBIOLOGIA, V589, P91, DOI 10.1007/s10750-007-0723-5; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Bond NR, 2008, HYDROBIOLOGIA, V600, P3, DOI 10.1007/s10750-008-9326-z; Boulton AJ, 2006, ECOLOGY OF DESERT RIVERS, P133; Boulton A. J., 2008, Aquatic insects: challenges to populations, P81, DOI 10.1079/9781845933968.0081; Boulton AJ, 2003, FRESHWATER BIOL, V48, P1173, DOI 10.1046/j.1365-2427.2003.01084.x; Bourrin F, 2008, CONT SHELF RES, V28, P1895, DOI 10.1016/j.csr.2008.06.005; Brown BL, 2007, HYDROBIOLOGIA, V586, P93, DOI 10.1007/s10750-006-0531-3; Buffagni A, 2010, AQUAT SCI, V72, P45, DOI 10.1007/s00027-009-0112-4; Perez-Quintero JC, 2011, HYDROBIOLOGIA, V678, P65, DOI 10.1007/s10750-011-0821-2; Chester ET, 2011, FRESHWATER BIOL, V56, P2094, DOI 10.1111/j.1365-2427.2011.02644.x; Corenblit D, 2010, ECOGRAPHY, V33, P1136, DOI 10.1111/j.1600-0587.2010.05894.x; Cowling RM, 2005, GLOBAL ECOL BIOGEOGR, V14, P509, DOI 10.1111/j.1466-822x.2005.00166.x; Datry T, 2011, AQUAT SCI, V73, P453, DOI 10.1007/s00027-011-0236-1; Davey AJH, 2007, FRESHWATER BIOL, V52, P1719, DOI 10.1111/j.1365-2427.2007.01800.x; Death R. G., 2008, AQUATIC INSECTS CHAL, P81; Death RG, 2005, OIKOS, V111, P392, DOI 10.1111/j.0030-1299.2005.13799.x; DEGANI G, 1993, HYDROBIOLOGIA, V263, P163, DOI 10.1007/BF00006267; del Rosario RB, 2000, J N AM BENTHOL SOC, V19, P680, DOI 10.2307/1468126; DELUCCHI CM, 1989, J N AM BENTHOL SOC, V8, P308, DOI 10.2307/1467494; DELUCCHI CM, 1989, OECOLOGIA, V78, P199, DOI 10.1007/BF00377156; Dewson ZS, 2007, J N AM BENTHOL SOC, V26, P401, DOI 10.1899/06-110.1; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Domisch S, 2011, FRESHWATER BIOL, V56, P2009, DOI 10.1111/j.1365-2427.2011.02631.x; Elron E, 2006, ENVIRON BIOL FISH, V77, P141, DOI 10.1007/s10641-006-9066-8; Eriksen Clyde H., 1996, P29; Ferreira MT, 2007, FISHERIES MANAGEMENT, V14, P473; Filipe AF, 2013, HYDROBIOLOGIA, V719, P331, DOI 10.1007/s10750-012-1244-4; Franken RJM, 2006, J N AM BENTHOL SOC, V25, P656, DOI 10.1899/0887-3593(2006)25[656:EOIRAC]2.0.CO;2; Fritz KM, 2004, HYDROBIOLOGIA, V527, P99, DOI 10.1023/B:HYDR.0000043188.53497.9b; Gallart F., 2011, HYDROL EARTH SYST SC, V8, P9637; Garcia-Roger EM, 2011, AQUAT SCI, V73, P567, DOI 10.1007/s00027-011-0218-3; Gasith A, 1999, ANNU REV ECOL SYST, V30, P51, DOI 10.1146/annurev.ecolsys.30.1.51; Gibbins C, 2007, FRESHWATER BIOL, V52, P2369, DOI 10.1111/j.1365-2427.2007.01858.x; Giller PS, 1998, BIOL STREAMS RIVERS; Goren M, 1999, BIOL CONSERV, V89, P1, DOI 10.1016/S0006-3207(98)00127-X; Graca MAS, 2004, INT REV HYDROBIOL, V89, P151, DOI 10.1002/irob.200310705; Grantham TE, 2010, FRESHWATER BIOL, V55, P188, DOI 10.1111/j.1365-2427.2009.02379.x; Green AJ, 2005, DIVERS DISTRIB, V11, P149, DOI 10.1111/j.1366-9516.2005.00147.x; Grodek T, 2012, GEOMORPHOLOGY, V159, P156, DOI 10.1016/j.geomorph.2012.03.016; Gunderson LH, 2000, ANNU REV ECOL SYST, V31, P425, DOI 10.1146/annurev.ecolsys.31.1.425; Haidekker A., 2007, AQUAT ECOL, V42, P463; Hart D. D., 1997, B N AM BENTHOLOGICAL, V14, P102; Hart DD, 1999, ANNU REV ECOL SYST, V30, P363, DOI 10.1146/annurev.ecolsys.30.1.363; Hering D, 1997, OECOLOGIA, V111, P261, DOI 10.1007/s004420050234; Hering D, 2009, AQUAT SCI, V71, P3, DOI 10.1007/s00027-009-9159-5; Holling C.S., 1973, Annual Rev Ecol Syst, V4, P1, DOI 10.1146/annurev.es.04.110173.000245; Imbert JB, 2005, INT REV HYDROBIOL, V90, P51, DOI 10.1002/iroh.200410739; IPCC, 2007, CLIMATE CHANGE 2007; James ABW, 2009, J N AM BENTHOL SOC, V28, P220, DOI 10.1899/07-146.1; Jenkins KM, 2003, ECOLOGY, V84, P2708, DOI 10.1890/02-0326; Jonsson B, 2009, J FISH BIOL, V75, P2381, DOI 10.1111/j.1095-8649.2009.02380.x; Lake P. S., 2007, HYDROECOLOGY ECOHYDR, P75; Lake PS, 2003, FRESHWATER BIOL, V48, P1161, DOI 10.1046/j.1365-2427.2003.01086.x; Lake PS, 2000, J N AM BENTHOL SOC, V19, P573, DOI 10.2307/1468118; Lancaster J, 2000, J ANIM ECOL, V69, P442, DOI 10.1046/j.1365-2656.2000.00407.x; Larned ST, 2010, FRESHWATER BIOL, V55, P717, DOI 10.1111/j.1365-2427.2009.02322.x; Latron J, 2009, GEOGR COMPASS, V3, P2045, DOI 10.1111/j.1749-8198.2009.00287.x; Lawrence JE, 2010, J N AM BENTHOL SOC, V29, P1424, DOI 10.1899/09-178.1; Lind PR, 2006, FRESHWATER BIOL, V51, P2282, DOI 10.1111/j.1365-2427.2006.01650.x; Lopez-Rodriguez MJ, 2009, J N AM BENTHOL SOC, V28, P611, DOI 10.1899/08-105.1; Lytle D. A., 2008, Aquatic insects: challenges to populations, P122, DOI 10.1079/9781845933968.0122; Lytle DA, 2004, TRENDS ECOL EVOL, V19, P94, DOI 10.1016/j.tree.2003.10.002; Lytle DA, 2002, ECOLOGY, V83, P370; Lytle DA, 2001, AM NAT, V157, P525, DOI 10.1086/319930; Lytle DA, 2007, J INSECT BEHAV, V20, P413, DOI 10.1007/s10905-007-9089-9; Maceda-Veiga A, 2011, ECOL INDIC, V11, P311, DOI 10.1016/j.ecolind.2010.05.009; MACKAY RJ, 1992, CAN J FISH AQUAT SCI, V49, P617, DOI 10.1139/f92-071; Magalhaes MF, 2007, FRESHWATER BIOL, V52, P1494, DOI 10.1111/j.1365-2427.2007.01781.x; Magalhaes MF, 2003, J FISH BIOL, V63, P300, DOI 10.1046/j.1095-8649.2003.00148.x; Magalhaes MF, 2002, FRESHWATER BIOL, V47, P1919, DOI 10.1046/j.1365-2427.2002.00941.x; Magoulick DD, 2003, FRESHWATER BIOL, V48, P1186, DOI 10.1046/j.1365-2427.2003.01089.x; Mas-Marti E, 2010, HYDROBIOLOGIA, V657, P167, DOI 10.1007/s10750-010-0292-x; Medeiros ESF, 1999, J ARID ENVIRON, V43, P351, DOI 10.1006/jare.1999.0545; MEFFE GK, 1984, ECOLOGY, V65, P1525, DOI 10.2307/1939132; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Merigoux S, 2004, FRESHWATER BIOL, V49, P600, DOI 10.1111/j.1365-2427.2004.01214.x; Mesquita M., 2006, ENVIRON BIOL FISH, V77, P105; MITCHELL CP, 1989, NEW ZEAL J MAR FRESH, V23, P181, DOI 10.1080/00288330.1989.9516354; Moran-Lopez R, 2006, J FISH BIOL, V69, P1552, DOI 10.1111/j.1095-8649.01221.x; Munoz Isabel, 2003, Limnetica, V22, P107; Nagrodski A, 2012, J ENVIRON MANAGE, V103, P133, DOI 10.1016/j.jenvman.2012.03.007; Nickus U., 2010, CLIMATE CHANGE IMPAC, P38; Ormerod SJ, 2009, AQUAT CONSERV, V19, P609, DOI 10.1002/aqc.1062; PETERSON CG, 1992, ECOLOGY, V73, P1445, DOI 10.2307/1940689; Peterson G, 1998, ECOSYSTEMS, V1, P6, DOI 10.1007/s100219900002; Pires AM, 2008, FISHERIES MANAG ECOL, V15, P49, DOI 10.1111/j.1365-2400.2007.00570.x; Pires AM, 2000, HYDROBIOLOGIA, V435, P167, DOI 10.1023/A:1004003726283; Pires DF, 2010, ECOL FRESHW FISH, V19, P74, DOI 10.1111/j.1600-0633.2009.00391.x; Platt WJ, 2003, ECOL MONOGR, V73, P507, DOI 10.1890/01-0552; Poff NL, 2006, J N AM BENTHOL SOC, V25, P730, DOI 10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2; POFF NL, 1992, J N AM BENTHOL SOC, V11, P86, DOI 10.2307/1467885; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Power ME, 2008, ECOL MONOGR, V78, P263, DOI 10.1890/06-0902.1; Power ME, 2002, ECOL RES, V17, P451, DOI 10.1046/j.1440-1703.2002.00503.x; RESH VH, 1988, J N AM BENTHOL SOC, V7, P433, DOI 10.2307/1467300; Robson BJ, 2011, MAR FRESHWATER RES, V62, P801, DOI 10.1071/MF10062; Robson BJ, 2005, FRESHWATER BIOL, V50, P944, DOI 10.1111/j.1365-2427.2005.01376.x; Sabater S, 2008, SCI TOTAL ENVIRON, V390, P475, DOI 10.1016/j.scitotenv.2007.10.030; Sanchez-Montoya MD, 2007, FRESHWATER BIOL, V52, P2240, DOI 10.1111/j.1365-2427.2007.01826.x; Sangiorgio F, 2007, INT REV HYDROBIOL, V92, P156, DOI 10.1002/iroh.200510953; Sayer MDJ, 2005, FISH FISH, V6, P186, DOI 10.1111/j.1467-2979.2005.00193.x; Schafer RB, 2011, SCI TOTAL ENVIRON, V409, P2055, DOI 10.1016/j.scitotenv.2011.01.053; Skoulikidis NT, 2011, AQUAT SCI, V73, P581, DOI 10.1007/s00027-011-0228-1; SOUTHWOOD TRE, 1988, OIKOS, V52, P3, DOI 10.2307/3565974; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P336, DOI DOI 10.2307/3817; Stamp JD, 2010, J N AM BENTHOL SOC, V29, P1410, DOI 10.1899/10-003.1; Stanley EH, 1997, BIOSCIENCE, V47, P427, DOI 10.2307/1313058; Stanley EH, 2010, J N AM BENTHOL SOC, V29, P67, DOI 10.1899/08-027.1; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Statzner B, 2001, ANNU REV ENTOMOL, V46, P291, DOI 10.1146/annurev.ento.46.1.291; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Steward AL, 2012, FRONT ECOL ENVIRON, V10, P202, DOI 10.1890/110136; Tarolli P, 2012, NAT HAZARD EARTH SYS, V12, P1255, DOI 10.5194/nhess-12-1255-2012; Tockner K, 1999, FRESHWATER BIOL, V41, P521, DOI 10.1046/j.1365-2427.1999.00399.x; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Vanschoenwinkel B, 2008, FRESHWATER BIOL, V53, P2264, DOI 10.1111/j.1365-2427.2008.02071.x; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Vieira NKM, 2004, FRESHWATER BIOL, V49, P1243, DOI 10.1111/j.1365-2427.2004.01261.x; Walters AW, 2011, J N AM BENTHOL SOC, V30, P346, DOI 10.1899/10-041.1; Walters AW, 2011, ECOL APPL, V21, P163, DOI 10.1890/09-2323.1; Waterkeyn A, 2010, HYDROBIOLOGIA, V654, P267, DOI 10.1007/s10750-010-0388-3; Webster J.R., 1983, P355; Wilby RL, 2010, SCI TOTAL ENVIRON, V408, P4150, DOI 10.1016/j.scitotenv.2010.05.014; Williams D. D, 2006, BIOL TEMPORARY WATER; Williams DD, 1996, J N AM BENTHOL SOC, V15, P634, DOI 10.2307/1467813; WILLIAMS DD, 1985, HYDROBIOLOGIA, V125, P85; Woodward G, 2010, PHILOS T R SOC B, V365, P2093, DOI 10.1098/rstb.2010.0055 147 51 52 2 106 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0018-8158 HYDROBIOLOGIA Hydrobiologia NOV 2013 719 1 59 75 10.1007/s10750-012-1387-3 17 Marine & Freshwater Biology Marine & Freshwater Biology 228JP WOS:000325182400004 2019-02-21 J Wood, AL; Butler, JRA; Sheaves, M; Wani, J Wood, Apanie L.; Butler, James R. A.; Sheaves, Marcus; Wani, Jacob Sport fisheries: Opportunities and challenges for diversifying coastal livelihoods in the Pacific MARINE POLICY English Article Adaptive co-management; Climate change adaptation; Ecosystem services; Ecotourism; Food security; Monitoring and evaluation SOCIAL-ECOLOGICAL SYSTEMS; CATCH-AND-RELEASE; COMMUNITY-BASED CONSERVATION; NATURAL-RESOURCE MANAGEMENT; LIFE-HISTORY STRATEGIES; MARINE PROTECTED AREAS; SEA-LEVEL RISE; LOCAL-COMMUNITIES; CLIMATE-CHANGE; CORAL-REEF High population growth rates and poverty are likely to elevate the vulnerability of many coastal communities in the Pacific region to climate change. Alternative livelihood strategies which can generate income and simultaneously conserve fish stocks and their habitats are a priority. This paper investigates the feasibility of 'sport fishing' (recreational catch and release angling for particular species of predatory game fish) as such a strategy. The limited research of sport fisheries in developing countries is augmented with a review of community-based ecotourism, integrated conservation and development projects (ICDPs) and common property management literature to propose design principles. Five prerequisite principles for the success of sport fishery enterprises are suggested. First, adequate local capacity must be available to manage a tourism business and facilities, supported by cross-scale co-management amongst stakeholders. Second, appropriate governance arrangements must be in place to ensure the equitable dispersal of benefits to all members of the local community, and conflict resolution. Third, resource-ownership boundaries and rights must be clearly delineated before the enterprise begins in order to minimise the potential for future conflict. Fourth, social, biodiversity and ecosystem service co-benefits should result from the enterprise. These should include improvements in income, health, education, food security, the status of the target and non-target species and their habitat and non-fishery ecosystem services. Fifth, monitoring and evaluation of these principles is required within an adaptive co-management framework which takes a social-ecological systems approach and includes all stakeholders in social learning and power-sharing. Through this, broader impacts of the enterprise may emerge which go beyond the standard assessment of ecotourism and ICDP success in financial or biodiversity terms. These principles now need to be tested by researching the experiences of case studies of sport fishing enterprises in the Pacific. (C) 2013 Elsevier Ltd. All rights reserved. [Wood, Apanie L.; Sheaves, Marcus] James Cook Univ, Ctr Trop Water & Aquat Ecosyst Res, Townsville, Qld 4811, Australia; [Butler, James R. A.] CSIRO Ecosyst Sci, Brisbane, Qld 4001, Australia; [Wani, Jacob] Papua New Guinea Natl Fisheries Author, Port Moresby, Papua N Guinea Wood, AL (reprint author), James Cook Univ, Ctr Trop Water & Aquat Ecosyst Res, Townsville, Qld 4811, Australia. apanie.wood@jcu.edu.au; James.Butler@csiro.au; marcus.sheaves@jcu.edu.au; jacobaruma.wani@gmail.com Sheaves, Marcus/G-4283-2012; TropWATER, Research ID/P-1401-2014; Research ID, CTBCC/O-3564-2014; Butler, James/D-7446-2011; CSTFA, ResearcherID/P-1067-2014 Sheaves, Marcus/0000-0003-0662-3439; Agrawal A, 2001, MT RES DEV, V21, P208, DOI 10.1659/0276-4741(2001)021[0208:TRC]2.0.CO;2; Agrawal A, 2006, POVERTY DEV BIODIVER; Agrawal A, 2011, ENVIRON CONSERV, V38, P199, DOI 10.1017/S0376892910000925; Allison EH, 2001, MAR POLICY, V25, P377, DOI 10.1016/S0308-597X(01)00023-9; Araki H, 2010, AQUACULTURE, V108, pS2; Archabald K, 2001, ENVIRON CONSERV, V28, P135, DOI 10.1017/S0376892901000145; Arlinghaus R, 2007, REV FISH SCI, V15, P75, DOI 10.1080/10641260601149432; Armitage DR, 2009, FRONT ECOL ENVIRON, V7, P95, DOI 10.1890/070089; Asafu-Adjaye J., 2000, INT J SOC ECON, V27, P917; Aswani S, 2005, REV FISH BIOL FISHER, V15, P285, DOI 10.1007/s11160-005-4868-x; Aswani S, 2002, AMBIO, V31, P272, DOI 10.1639/0044-7447(2002)031[0272:ATEOCD]2.0.CO;2; Babcock RC, 2010, P NATL ACAD SCI USA, V107, P18256, DOI 10.1073/pnas.0908012107; Barrett CB, 2001, BIOSCIENCE, V51, P497, DOI 10.1641/0006-3568(2001)051[0497:CTBAWI]2.0.CO;2; Bell JD, 2009, MAR POLICY, V33, P64, DOI 10.1016/j.marpol.2008.04.002; Bell S, 2001, LOCAL ENV, V6, P291; Berkes F, 2000, ECOL APPL, V10, P1251, DOI 10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2; Berkes F, 2004, CONSERV BIOL, V18, P621, DOI 10.1111/j.1523-1739.2004.00077.x; Berkes F, 2007, P NATL ACAD SCI USA, V104, P15188, DOI 10.1073/pnas.0702098104; Berkes F, 2009, J ENVIRON MANAGE, V90, P1692, DOI 10.1016/j.jenvman.2008.12.001; Bohensky E. L., 2011, J MARINE BIOL, V2011, P11; Bookbinder MP, 1998, CONSERV BIOL, V12, P1399, DOI 10.1046/j.1523-1739.1998.97229.x; Broadhurst MK, 2012, J FISH BIOL, V80, P638, DOI 10.1111/j.1095-8649.2011.03202.x; Brooks JS, 2006, CONSERV BIOL, V20, P1528, DOI 10.1111/j.1523-1739.2006.00506.x; Brunnschweiler JM, 2010, J SUSTAIN TOUR, V18, P29, DOI 10.1080/09669580903071987; Butler JRA, 2006, FISHERIES MANAG ECOL, V13, P285, DOI 10.1111/j.1365-2400.2006.00504.x; Butler JRA, 2011, ANIM CONSERV, V14, P599, DOI 10.1111/j.1469-1795.2011.00509.x; Butler JRA, 2009, FISH RES, V96, P259, DOI 10.1016/j.fishres.2008.12.006; Butler J. R. A., 2011, AGR ECOSYSTEMS ENV; Butler James, 1994, Oryx, V28, P276; Butler JRA, 2008, AQUAT CONSERV, V18, P1025, DOI 10.1002/aqc.923; Butler JRA, 2012, ECOL SOC, V17, DOI 10.5751/ES-05165-170434; Butler JRA, 2011, MAR POLICY, V35, P317, DOI 10.1016/j.marpol.2010.10.011; Butler JRA, 2005, FISHERIES MANAG ECOL, V12, P149, DOI 10.1111/j.1365-2400.2005.00437.x; Butler JRA, 1996, J TROP ECOL, V12, P475, DOI 10.1017/S0266467400009718; BUTLER JRA, 1994, S AFR J WILDL RES, V24, P41; Butler JRA, 2011, MARINE ECOLOGY PROGR, V3, P876; Ceballos-Lascurain H., 1996, TOURISM ECOTOURISM P; Cinner J, 2005, ECOL SOC, V10; Cinner JE, 2007, CORAL REEFS, V26, P1035, DOI 10.1007/s00338-007-0213-2; Cinner JE, 2012, GLOBAL ENVIRON CHANG, V22, P651, DOI 10.1016/j.gloenvcha.2012.03.002; Cinner JE, 2007, CONSERV BIOL, V21, P1603, DOI 10.1111/j.1523-1739.2007.00796.x; Cinner JE, 2007, BIOL CONSERV, V140, P201, DOI 10.1016/j.biocon.2007.08.008; Cinner JE, 2012, P NATL ACAD SCI USA, V109, P5219, DOI 10.1073/pnas.1121215109; Cinner JE, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011999; Clements C, 2012, MAR ECOL PROG SER, V449, P233, DOI 10.3354/meps09554; Cline TJ, 2012, CAN J FISH AQUAT SCI, V69, P224, DOI 10.1139/F2011-150; Cooke SJ, 2007, FISHERIES MANAG ECOL, V14, P73, DOI 10.1111/j.1365-2400.2007.00527.x; Cooke SJ, 2005, BIODIVERS CONSERV, V14, P1195, DOI 10.1007/s10531-004-7845-0; Cooke SJ, 2008, BIOL MANAGEMENT WORL; Coria J, 2012, ECOL ECON, V73, P47, DOI 10.1016/j.ecolecon.2011.10.024; Cosgrove P. J., 2004, Scottish Birds, V24, P1; Crowder LB, 2008, ANNU REV ECOL EVOL S, V39, P259, DOI 10.1146/annurev.ecolsys.39.110707.173406; Cumming GS, 2006, ECOL SOC, V11; Curry G, 1999, GEOFORUM, V30, P285, DOI 10.1016/S0016-7185(99)00020-2; Davis GW, 1998, PAC COMM FISH MAN WO; Dietz T, 2003, SCIENCE, V302, P1907, DOI 10.1126/science.1091015; Diffenbaugh NS, 2007, P NATL ACAD SCI USA, V104, P20195, DOI 10.1073/pnas.0706680105; Diggles BK, 1997, MAR FRESHWATER RES, V48, P479, DOI 10.1071/MF96108; Ell L., 2003, STRIVING ECOTOURISM; Everard M, 2011, AQUAT CONSERV, V21, P101, DOI 10.1002/aqc.1159; Fabricius C., 2007, Water Policy, V9, P83; Farrelly TA, 2011, J SUSTAIN TOUR, V19, P817, DOI 10.1080/09669582.2011.553390; Fay DA, 2007, HUM ECOL, V35, P81, DOI 10.1007/s10745-006-9071-8; Fennell DA., 2010, J SUSTAIN TOUR, V8, P341; Fisher B, 2007, ECOL ECON, V62, P93, DOI 10.1016/j.ecolecon.2006.05.020; Foale S., 2008, SPC TRADITIONAL MARI, V24, P3; Folke C, 2005, ANNU REV ENV RESOUR, V30, P441, DOI 10.1146/annurev.energy.30.050504.144511; Folke C, 2002, AMBIO, V31, P437, DOI 10.1639/0044-7447(2002)031[0437:RASDBA]2.0.CO;2; Fraser EDG, 2006, J ENVIRON MANAGE, V78, P114, DOI 10.1016/j.jenvman.2005.04.009; Fuller D, 2005, TOURISM MANAGE, V26, P891, DOI 10.1016/j.tourman.2004.04.006; Fulton E, 1999, CAN J FISH AQUAT SCI, V56, P1096, DOI 10.1139/cjfas-56-6-1096; Garcia CA, 2008, BIODIVERS CONSERV, V17, P1303, DOI 10.1007/s10531-008-9347-y; Gillett R, 2002, CONTRIBUTION FISHERI; Gilman EL, 2008, AQUAT BOT, V89, P237, DOI 10.1016/j.aquabot.2007.12.009; Gilman EL, 2006, CLIMATE RES, V32, P161, DOI 10.3354/cr032161; Gjertsen H, 2005, WORLD DEV, V33, P199, DOI 10.1016/j.worlddev.2004.07.009; Gooch M, 2012, SOC NATUR RESOUR, V25, P421, DOI 10.1080/08941920.2011.608183; Goodwin H, 1996, BIODIVERS CONSERV, V5, P277, DOI 10.1007/BF00051774; Grantham H. S., 2011, Pacific Conservation Biology, V17, P241; Gratani M, 2011, ECOL SOC, V16, DOI 10.5751/ES-04249-160325; Grixti D, 2010, FISHERIES MANAG ECOL, V17, P1, DOI 10.1111/j.1365-2400.2009.00704.x; Guillemot N, 2009, FISH RES, V98, P51, DOI 10.1016/j.fishres.2009.03.013; Gutierrez NL, 2011, NATURE, V470, P386, DOI 10.1038/nature09689; Haller T., 2008, Journal of Environment & Development, V17, P118, DOI 10.1177/1070496508316853; Hanich Q, 2012, MAR POLICY, V36, P327, DOI 10.1016/j.marpol.2011.07.008; He GM, 2008, ENVIRON MANAGE, V42, P1017, DOI 10.1007/s00267-008-9214-3; Hockings M., 2004, Journal of Environmental Policy and Planning, V6, P157, DOI 10.1080/1523908042000320731; Holland SM, 2010, J SUSTAIN TOUR, V8, P346; Holland SM, 2009, J SUSTAIN TOUR, V6, P97; Horowitz LS, 1998, HUM ECOL, V26, P371, DOI 10.1023/A:1018752115074; HVIDING E, 1994, DEV CHANGE, V25, P13, DOI 10.1111/j.1467-7660.1994.tb00508.x; Hyndman D., 1993, PACIFIC STUDIES, V16, P99; JOHANNES RE, 1982, AMBIO, V11, P258; Kaimowitz D, 2007, BIOTROPICA, V39, P567, DOI 10.1111/j.1744-7429.2007.00332.x; Kawamura K, 2012, J FISH BIOL, V81, P94, DOI 10.1111/j.1095-8649.2012.03315.x; King JR, 2003, FISHERIES MANAG ECOL, V10, P249, DOI 10.1046/j.1365-2400.2003.00359.x; King M, 1999, FISHERIES MANAG ECOL, V6, P133, DOI 10.1046/j.1365-2400.1999.00136.x; Kiss A, 2004, TRENDS ECOL EVOL, V19, P232, DOI 10.1016/j.tree.2004.03.010; Klein J, 2007, SOC NATUR RESOUR, V20, P451, DOI 10.1080/08941920701211900; Kronen M, 2010, FISH RES, V101, P1, DOI 10.1016/j.fishres.2009.08.011; Lapeyre R, 2010, DEV SO AFR, V27, P757, DOI 10.1080/0376835X.2010.522837; Lewin WC, 2006, REV FISH SCI, V14, P305, DOI 10.1080/10641260600886455; Lindberg K, 1996, ANN TOURISM RES, V23, P543, DOI 10.1016/0160-7383(95)00074-7; MARQUISS M, 1998, FISH EATING BIRDS SA; Marton K., 2004, 53 AUSTR NAT U; McClanahan TR, 2010, CONSERV BIOL, V24, P1519, DOI 10.1111/j.1523-1739.2010.01530.x; Mcleod E, 2010, SUSTAIN SCI, V5, P207, DOI 10.1007/s11625-010-0105-1; Mimura N, 1999, CLIM RES, V12, P137, DOI 10.3354/cr012137; Moswete N, 2009, LOCAL COMMUNITIES NA; Mumby PJ, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0008657; Mumby PJ, 2004, NATURE, V427, P533, DOI 10.1038/nature02286; Nikolic N, 2009, GENET RES, V91, P395, DOI 10.1017/S0016672309990346; Nyaupane GP, 2011, ANN TOURISM RES, V38, P1344, DOI 10.1016/j.annals.2011.03.006; Ogutu ZA, 2002, LAND DEGRAD DEV, V13, P251, DOI 10.1002/ldr.502; Olsson P, 2004, ENVIRON MANAGE, V34, P75, DOI 10.1007/s00267-003-0101-7; Ostrom E., 1990, GOVERNING COMMONS EV; Pert PL, 2010, ECOL COMPLEX, V7, P378, DOI 10.1016/j.ecocom.2010.05.002; Pikitch EK, 2004, SCIENCE, V305, P346, DOI 10.1126/science.1098222; Platteau JP, 2002, J DEV STUD, V39, P104, DOI 10.1080/00220380412331322771; Platten JR, 2002, J FISH BIOL, V60, P301, DOI 10.1006/jfbi.2001.1826; Plummer R, 2007, ECOL ECON, V61, P62, DOI 10.1016/j.ecolecon.2006.09.025; Pollnac R, 2010, P NATL ACAD SCI USA, V107, P18262, DOI 10.1073/pnas.0908266107; Pomeroy RS, 2006, MAR POLICY, V30, P786, DOI 10.1016/j.marpol.2006.02.003; Reed MS, 2008, ECOL APPL, V18, P1253, DOI 10.1890/07-0519.1; Reed MS, 2002, GEOGR J, V168, P224, DOI 10.1111/1475-4959.00050; REES J, 1978, J BIOGEOGR, V5, P93, DOI 10.2307/3038110; Rietkerk M, 2004, SCIENCE, V305, P1926, DOI 10.1126/science.1101867; Russell DJ, 2008, NEW ZEAL J MAR FRESH, V42, P219, DOI 10.1080/00288330809509950; RUSSELL DJ, 1985, AUST J MAR FRESH RES, V36, P191, DOI 10.1071/MF9850191; Salafsky N, 2000, WORLD DEV, V28, P1421, DOI 10.1016/S0305-750X(00)00031-0; Salafsky N, 2001, CONSERV BIOL, V15, P1585, DOI 10.1046/j.1523-1739.2001.00220.x; Salafsky N., 1999, EVALUATING LINKAGES; Sano Y., 2008, SPC TRADITIONAL MARI, V24, P19; Sayer J, 2007, BIODIVERS CONSERV, V16, P2677, DOI 10.1007/s10531-006-9079-9; Scheyvens R, 1999, TOURISM MANAGE, V20, P245, DOI 10.1016/S0261-5177(98)00069-7; Secor DH, 2005, ESTUAR COAST SHELF S, V64, P1, DOI 10.1016/j.ecss.2005.02.001; Sheaves M, 2005, MAR ECOL PROG SER, V302, P293, DOI 10.3354/meps302293; Sheaves M, 1995, MAR ECOL PROG SER, V129, P31, DOI 10.3354/meps129031; Sheaves M, 2008, MAR ECOL PROG SER, V357, P225, DOI 10.3354/meps07292; Sindiga I., 1995, Journal of Tourism Studies, V6, P45; Spenceley A, 2008, TOURISM GEOGR, V10, P285, DOI 10.1080/14616680802236295; Spenceley A, 2012, J SUSTAIN TOUR, V20, P297, DOI 10.1080/09669582.2012.668909; Stensland S, 2012, FISHERIES MANAG ECOL, V19, P273, DOI 10.1111/j.1365-2400.2011.00829.x; Stronza A, 2001, ANNU REV ANTHROPOL, V30, P261, DOI 10.1146/annurev.anthro.30.1.261; Tallis H, 2008, P NATL ACAD SCI USA, V105, P9457, DOI 10.1073/pnas.0705797105; Thampanya U, 2006, ESTUAR COAST SHELF S, V68, P75, DOI 10.1016/j.ecss.2006.01.011; Thompson M, 2002, HUM ECOL, V30, P107, DOI 10.1023/A:1014519113923; Thompson PM, 2007, ANIM CONSERV, V10, P48, DOI 10.1111/j.1469-1795.2006.00066.x; Timothy D. J., 1999, Current Issues in Tourism, V2, P226; Torquebiau E, 2009, BIODIVERS CONSERV, V18, P2537, DOI 10.1007/s10531-009-9706-3; Tumusiime David Mwesigye, 2012, Conservation & Society, V10, P15, DOI 10.4103/0972-4923.92189; Tumusiime DM, 2011, FORUM DEV STUD, V38, P1; Valiela I, 2002, ECOSYSTEMS, V5, P92, DOI 10.1007/s10021-001-0058-4; van der Duim R, 2002, ANN TOURISM RES, V29, P743, DOI 10.1016/S0160-7383(01)00087-1; Victurine R., 2000, Journal of Travel Research, V38, P221; Wagner J., 2000, RMAP WORKING PAPERS; Wallace GN, 1996, ANN TOURISM RES, V23, P843, DOI 10.1016/0160-7383(96)00009-6; Wamukota AW, 2012, MAR POLICY, V36, P481, DOI 10.1016/j.marpol.2011.09.001; Waylen KA, 2010, CONSERV BIOL, V24, P1119, DOI 10.1111/j.1523-1739.2010.01446.x; Weiler B., 2002, Journal of Sustainable Tourism, V10, P52; Whitelaw W, 2003, MAR FRESHWATER RES, V54, P463, DOI 10.1071/MF01260; Whitelaw W., COUNTRY GUIDE GAMEFI; Wilson JA, 2006, ECOL SOC, V11; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; Wunder S, 2000, ECOL ECON, V32, P465, DOI 10.1016/S0921-8009(99)00119-6; Young JC, 2012, BIODIVERS CONSERV, V21, P1095, DOI 10.1007/s10531-012-0243-0; Zeppel HD, 2006, ECOTOUR BK SER, V3, P1, DOI 10.1079/9781845931247.0000 167 15 15 2 230 ELSEVIER SCI LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND 0308-597X MAR POLICY Mar. Pol. NOV 2013 42 305 314 10.1016/j.marpol.2013.03.005 10 Environmental Studies; International Relations Environmental Sciences & Ecology; International Relations 168DO WOS:000320686100038 2019-02-21 J Gonzalez-Braojos, S; Ruiz-de-Castaneda, R; Moreno, J Gonzalez-Braojos, Sonia; Ruiz-de-Castaneda, Rafael; Moreno, Juan No association between measures of immunity in nestling pied flycatchers (Ficedula hypoleuca) ANNALES ZOOLOGICI FENNICI English Article CELL-MEDIATED-IMMUNITY; ECOLOGICAL IMMUNOLOGY; REPRODUCTIVE EFFORT; HOUSE SPARROWS; TRADE-OFFS; SEXUAL ADVERTISEMENT; REARING ENVIRONMENT; TACHYCINETA-BICOLOR; PASSER-DOMESTICUS; HUMORAL IMMUNITY Costs of immunity are widely believed to play an important role in life history evolution, but many studies of ecological immunology have considered only single aspects of immunity. Young of altricial birds, while dependent primarily on innate immunity and maternally derived antibodies for immune defence, have to develop all components of the immune system which could generate resource-based trade-offs among different arms and between growth and immunity We conducted a study on nestling pied flycatchers Ficedula hypoleuca in which we measured levels of natural antibodies (NAbs) and hemolysis, estimated serum immunoglobulin levels and obtained a specific measure of inflammation after inoculation of an antigen, phytohaemagglutinin (PHA). Thus we obtained independent estimates to explore the relationships among different arms of the immune system. We found that no immune variable measured was associated with any other variable at the individual and brood levels. This indicates that different aspects of immunity are independent and difficult to integrate in a general measure of immune response capacity in altricial nestling birds. We found that only NAbs was negatively associated with tarsus length at the age of 7 days, but not later. Thus, the evidence for resource-based trade-offs between nestling growth and immunity is weak in our study population. [Gonzalez-Braojos, Sonia; Ruiz-de-Castaneda, Rafael; Moreno, Juan] CSIC, Museo Nacl Ciencias Nat, Dept Ecol Evolut, ES-28006 Madrid, Spain Gonzalez-Braojos, S (reprint author), CSIC, Museo Nacl Ciencias Nat, Dept Ecol Evolut, Jose Gutierrez Abascal 2, ES-28006 Madrid, Spain. soniagbr@mncn.csic.es Evolutionary Ecology, Ecologia Evolutiva/M-3553-2014 Ministerio de Ciencia e Innovacion [CGL2007-6125, CGL2010-19233-C03-02]; FPI grant from MICINN; JAE-CSIC This study was financed by projects CGL2007-6125 and CGL2010-19233-C03-02 to JM (Ministerio de Ciencia e Innovacion). SG-B was supported by a FPI grant from MICINN and RR-d-C was supported by a JAE-CSIC grant. All necessary permits were obtained from the regional wildlife authorities of Castilla y Leon for the field studies and sampling. We were authorized by J. Dones, Director of "Centro Montes de Valsain" (Organism Autonomo de Parques Nacionales) to work in the study area. We thank E Lobato and D. Martin-Galvez for their help with immunological techniques and S. Merino, J. Martinez-de la Puente, S. del Cerro and J. Rivero-de Aguilar for collaboration in the field. We thank two anonymous reviewers for their comments on an early draft of this manuscript. This paper is a contribution from the field station "El Ventorrillo". Adamo SA, 2004, ANIM BEHAV, V68, P1443, DOI 10.1016/j.anbehav.2004.05.005; Apanius V, 1998, AVIAN GROWTH DEV EVO, P203; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Ardia DR, 2008, AVIAN IMMUNOLOGY, P421, DOI 10.1016/B978-012370634-8.50025-1; Ardia DR, 2003, P ROY SOC B-BIOL SCI, V270, P1679, DOI 10.1098/rspb.2003.2424; Arriero E, 2009, OECOLOGIA, V159, P697, DOI 10.1007/s00442-008-1253-1; Blount JD, 2003, OIKOS, V102, P340, DOI 10.1034/j.1600-0706.2003.12413.x; Brinkhof MWG, 1999, P ROY SOC B-BIOL SCI, V266, P2315, DOI 10.1098/rspb.1999.0925; Brommer JE, 2004, P ROY SOC B-BIOL SCI, V271, pS110, DOI 10.1098/rsbl.2003.0103; Brzek P, 2007, J EXP BIOL, V210, P2361, DOI 10.1242/jeb.003517; Buchanan KL, 2003, BEHAV ECOL SOCIOBIOL, V55, P50, DOI 10.1007/s00265-003-0682-4; Christe P, 2001, OECOLOGIA, V126, P333, DOI 10.1007/s004420000527; Davison F, 2008, AVIAN IMMUNOLOGY, P1; De Coster G, 2010, J EXP BIOL, V213, P3012, DOI 10.1242/jeb.042721; Deerenberg C, 1997, P ROY SOC B-BIOL SCI, V264, P1021, DOI 10.1098/rspb.1997.0141; Forsman AM, 2008, J EVOLUTION BIOL, V21, P873, DOI 10.1111/j.1420-9101.2008.01503.x; Forsman AM, 2010, PHYSIOL BIOCHEM ZOOL, V83, P512, DOI 10.1086/649894; Gonzalez G, 1999, J ANIM ECOL, V68, P1225, DOI 10.1046/j.1365-2656.1999.00364.x; Gonzalez-Braojos S, 2012, J ORNITHOL, V153, P181, DOI 10.1007/s10336-011-0725-y; Grindstaff JL, 2006, P ROY SOC B-BIOL SCI, V273, P2551, DOI 10.1098/rspb.2006.3608; Hanssen SA, 2004, P ROY SOC B-BIOL SCI, V271, P925, DOI 10.1098/rspb.2004.2678; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; Horak P, 2000, CAN J ZOOL, V78, P905, DOI 10.1139/cjz-78-6-905; Ilmonen P, 2003, OECOLOGIA, V136, P148, DOI 10.1007/s00442-003-1243-2; JANEWAY CA, 1996, IMMUNOBIOLOGY IMMUNE; Johnsen TS, 1999, OIKOS, V86, P487, DOI 10.2307/3546653; Kilpimaa J, 2004, P ROY SOC B-BIOL SCI, V271, P245, DOI 10.1098/rspb.2003.2568; KLASING KC, 1994, POULTRY SCI, V73, P1035, DOI 10.3382/ps.0731035; Klasing KC, 1998, POULTRY SCI, V77, P1119, DOI 10.1093/ps/77.8.1119; KLASING KC, 1998, P 22 INT ORN C DURB, P2817; Lundberg A., 1992, PIED FLYCATCHER; Martin LB, 2003, P ROY SOC B-BIOL SCI, V270, P153, DOI 10.1098/rspb.2002.2185; Martin LB, 2006, FUNCT ECOL, V20, P290, DOI 10.1111/j.1365-2435.01094.x; Martin TE, 2001, P NATL ACAD SCI USA, V98, P2071, DOI 10.1073/pnas.98.4.2071; Martinez J, 2003, FUNCT ECOL, V17, P700, DOI 10.1046/j.1365-2435.2003.00771.x; Matson KD, 2006, P ROY SOC B-BIOL SCI, V273, P815, DOI 10.1098/rspb.2005.3376; Matson KD, 2005, DEV COMP IMMUNOL, V29, P275, DOI 10.1016/j.dci.2004.07.006; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; Mendes L, 2006, J EXP BIOL, V209, P284, DOI 10.1242/jeb.02015; Merino S, 1999, ANIM BEHAV, V58, P219, DOI 10.1006/anbe.1999.1127; Moller AP, 2001, AM NAT, V158, P136, DOI 10.1086/321308; Moller AP, 2002, BEHAV ECOL, V13, P248, DOI 10.1093/beheco/13.2.248; Morales J, 2006, FUNCT ECOL, V20, P647, DOI 10.1111/j.1365-2435.2006.01139.x; Morales J, 2004, CAN J ZOOL, V82, P1484, DOI 10.1139/Z04-132; Moreno J, 2005, J AVIAN BIOL, V36, P251, DOI 10.1111/j.0908-8857.2005.03413.x; Moreno J, 1999, P ROY SOC B-BIOL SCI, V266, P1105, DOI 10.1098/rspb.1999.0750; Moreno J, 1998, OECOLOGIA, V115, P312, DOI 10.1007/s004420050522; Moreno J, 2001, ANN ZOOL FENN, V38, P111; Moreno J, 2008, OECOLOGIA, V156, P727, DOI 10.1007/s00442-008-1029-7; Moreno J, 2011, ACTA ETHOL, V14, P85, DOI 10.1007/s10211-011-0100-2; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; O'Connor RJ., 1984, GROWTH DEV BIRDS; Ochsenbein AF, 2000, IMMUNOL TODAY, V21, P624, DOI 10.1016/S0167-5699(00)01754-0; Palacios MG, 2009, DEV COMP IMMUNOL, V33, P456, DOI 10.1016/j.dci.2008.09.006; Pihlaja M, 2006, J ANIM ECOL, V75, P1154, DOI 10.1111/j.1365-2656.2006.01136.x; Raberg L, 1998, P ROY SOC B-BIOL SCI, V265, P1637, DOI 10.1098/rspb.1998.0482; Raberg L, 2002, P ROY SOC B-BIOL SCI, V269, P817, DOI 10.1098/rspb.2001.1953; RICKLEFS RE, 1992, P NATL ACAD SCI USA, V89, P4722, DOI 10.1073/pnas.89.10.4722; Roitt I, 1998, IMMUNOLOGY; Roulin A, 2007, BIOL J LINN SOC, V90, P703, DOI 10.1111/j.1095-8312.2007.00759.x; Saino N, 1997, P NATL ACAD SCI USA, V94, P549, DOI 10.1073/pnas.94.2.549; Salvante KG, 2006, AUK, V123, P575, DOI 10.1642/0004-8038(2006)123[575:TFSIIF]2.0.CO;2; Sanz JJ, 1995, J AVIAN BIOL, V26, P313, DOI 10.2307/3677046; Sanz JJ, 2003, GLOBAL CHANGE BIOL, V9, P461, DOI 10.1046/j.1365-2486.2003.00575.x; SATTERTHWAITE FE, 1946, BIOMETRICS BULL, V2, P110, DOI 10.2307/3002019; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Smits JE, 1999, FUNCT ECOL, V13, P567, DOI 10.1046/j.1365-2435.1999.00338.x; Soler JJ, 2003, P ROY SOC B-BIOL SCI, V270, P241, DOI 10.1098/rspb.2002.2217; STARCK JM, 1998, AVIAN GROWTH DEV; Szep T, 1999, OECOLOGIA, V119, P9, DOI 10.1007/s004420050755; Tschirren B, 2006, P R SOC B, V273, P1773, DOI 10.1098/rspb.2006.3524; Viney ME, 2005, TRENDS ECOL EVOL, V20, P665, DOI 10.1016/j.tree.2005.10.003; Vinkler M, 2011, J AVIAN BIOL, V42, P490, DOI 10.1111/j.1600-048X.2011.05499.x; Westneat DF, 2004, OECOLOGIA, V141, P17, DOI 10.1007/s00442-004-1653-9; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 75 3 3 1 22 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD UNIV HELSINKI P O BOX 26, FI-00014 UNIV HELSINKI, FINLAND 0003-455X 1797-2450 ANN ZOOL FENN Ann. Zool. Fenn. OCT 31 2013 50 5 279 288 10 Ecology; Zoology Environmental Sciences & Ecology; Zoology 244WW WOS:000326421900004 2019-02-21 J Keever, CC; Puritz, JB; Addison, JA; Byrne, M; Grosberg, RK; Toonen, RJ; Hart, MW Keever, Carson C.; Puritz, Jonathan B.; Addison, Jason A.; Byrne, Maria; Grosberg, Richard K.; Toonen, Robert J.; Hart, Michael W. Shallow gene pools in the high intertidal: extreme loss of genetic diversity in viviparous sea stars (Parvulastra) BIOLOGY LETTERS English Article inbreeding; self-fertilization; dispersal; Asterinidae LIFE-HISTORY EVOLUTION; MARINE-INVERTEBRATES; POPULATION-GENETICS; DISPERSAL; PHYLOGEOGRAPHY; ASTERINIDAE; DIVERGENCE; LITTORINA; ECOLOGY; SYSTEMS We document an extreme example of reproductive trait evolution that affects population genetic structure in sister species of Parvulastra cushion stars from Australia. Self-fertilization by hermaphroditic adults and brood protection of benthic larvae causes strong inbreeding and range-wide genetic poverty. Most samples were fixed for a single allele at nearly all nuclear loci; heterozygotes were extremely rare (0.18%); mitochondrial DNA sequences were more variable, but few populations shared haplotypes in common. Isolation-with-migration models suggest that these patterns are caused by population bottlenecks (relative to ancestral population size) and low gene flow. Loss of genetic diversity and low potential for dispersal between high-intertidal habitats may have dire consequences for extinction risk and potential for future adaptive evolution in response to climate and other selective agents. [Keever, Carson C.; Hart, Michael W.] Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada; [Keever, Carson C.] Hemmera Envirochem, Vancouver, BC V6Z 2H3, Canada; [Keever, Carson C.] Kwantlen Polytech Univ, Dept Biol, Surrey, BC V3W 2M8, Canada; [Puritz, Jonathan B.; Toonen, Robert J.] Univ Hawaii, Hawaii Inst Marine Biol, Kaneohe, HI 96744 USA; [Puritz, Jonathan B.] Texas A&M Univ, Dept Wildlife & Fisheries Sci, College Stn, TX 77843 USA; [Addison, Jason A.; Grosberg, Richard K.] Univ Calif Davis, Coll Biol Sci, Davis, CA 95616 USA; [Addison, Jason A.] Univ New Brunswick, Dept Biol, Fredericton, NB E3B 5A3, Canada; [Byrne, Maria] Univ Sydney, Sch Med Sci, Sydney, NSW 2006, Australia; [Byrne, Maria] Univ Sydney, Sch Biol Sci, Sydney, NSW 2006, Australia Hart, MW (reprint author), Simon Fraser Univ, Dept Biol Sci, Burnaby, BC V5A 1S6, Canada. mike_hart@sfu.ca Puritz, Jonathan/C-9289-2011 Puritz, Jonathan/0000-0003-1404-4680; Byrne, Maria/0000-0002-8902-9808; Toonen, Rob/0000-0001-6339-4340 US National Science Foundation [OCE-0623678]; Natural Sciences and Engineering Research Council (Canada); Australian Research Council This work was supported by a US National Science Foundation grant (OCE-0623678), the Natural Sciences and Engineering Research Council (Canada) and the Australian Research Council. This is contribution no. 1562 from the Hawai'i Institute of Marine Biology, no. 8977 from the School of Ocean and Earth Sciences and Technology and no. 101 from the Sydney Institute of Marine Science. Ayre DJ, 2009, MOL ECOL, V18, P1887, DOI 10.1111/j.1365-294X.2009.04127.x; Barbosa SS, 2013, BIOL J LINN SOC, V108, P821, DOI 10.1111/bij.12006; BERGER EM, 1973, BIOL BULL-US, V145, P83, DOI 10.2307/1540349; Byrne M, 2011, DEEP-SEA RES PT II, V58, P712, DOI 10.1016/j.dsr2.2010.06.010; Byrne M, 2006, INTEGR COMP BIOL, V46, P243, DOI 10.1093/icb/icj033; Charlesworth D, 2006, CURR BIOL, V16, pR726, DOI 10.1016/j.cub.2006.07.068; Collin R, 2001, MOL ECOL, V10, P2249, DOI 10.1046/j.1365-294X.2001.01372.x; GARLAND T, 1994, PHYSIOL ZOOL, V67, P797, DOI 10.1086/physzool.67.4.30163866; Goodwillie C, 2005, ANNU REV ECOL EVOL S, V36, P47, DOI 10.1146/annurev.ecolsys.36.091704.175539; Hart MW, 2010, INTEGR COMP BIOL, V50, P643, DOI 10.1093/icb/icq068; Hart MW, 1997, EVOLUTION, V51, P1848, DOI 10.1111/j.1558-5646.1997.tb05108.x; Hellberg ME, 2009, ANNU REV ECOL EVOL S, V40, P291, DOI 10.1146/annurev.ecolsys.110308.120223; Hey J, 2007, P NATL ACAD SCI USA, V104, P2785, DOI 10.1073/pnas.0611164104; JABLONSKI D, 1986, B MAR SCI, V39, P565; Keever CC, 2008, BIOL BULL-US, V215, P164, DOI 10.2307/25470697; Keever CC, 2009, EVOLUTION, V63, P3214, DOI 10.1111/j.1558-5646.2009.00801.x; Kyle CJ, 2000, MAR BIOL, V137, P835, DOI 10.1007/s002270000412; Manel S, 2003, TRENDS ECOL EVOL, V18, P189, DOI 10.1016/S0169-5347(03)00008-9; Marshall DJ, 2012, ANNU REV ECOL EVOL S, V43, P97, DOI 10.1146/annurev-ecolsys-102710-145004; Puritz JB, 2012, P ROY SOC B-BIOL SCI, V279, P3914, DOI 10.1098/rspb.2012.1343; Roediger LM, 2008, MAR FRESHWATER RES, V59, P205, DOI 10.1071/MF07084; Somero GN, 2012, ANNU REV MAR SCI, V4, P39, DOI 10.1146/annurev-marine-120710-100935; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Sunday JM, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0022881; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Wakeley John, 2004, P175, DOI 10.1016/B978-012323448-3/50010-6; Waters JM, 2004, MOL ECOL, V13, P2797, DOI 10.1111/j.1365-294X.2004.02282.x 27 5 6 0 38 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 1744-957X BIOL LETTERS Biol. Lett. OCT 23 2013 9 5 20130551 10.1098/rsbl.2013.0551 5 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 297XY WOS:000330289600054 23925835 Bronze, Green Published 2019-02-21 J Wander, K; Mattison, SM Wander, Katherine; Mattison, Siobhan M. The evolutionary ecology of early weaning in Kilimanjaro, Tanzania PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article breastfeeding; parental investment; life history theory; Trivers-Willard hypothesis TRIVERS-WILLARD HYPOTHESIS; HUNGARIAN GYPSY POPULATION; BIASED PARENTAL INVESTMENT; PAPUA-NEW-GUINEA; WEANLINGS DILEMMA; HUMAN LACTATION; NORTHERN KENYA; DURATION; INFANT; SONS Public health recommendations promote prolonged breastfeeding of all children; however, parental investment (PI) theory predicts that breastfeeding will be allocated among a mothers' offspring to maximize her reproductive success. We evaluated PI in terms of risk for weaning before age two among 283 children in Kilimanjaro, Tanzania. Results demonstrate: (i) a Trivers-Willard effect-high socioeconomic status (SES) females and low SES males were more likely to be weaned early; (ii) later-born children were less likely to be weaned early; (iii) higher birthweight children were less likely to be weaned early, and (iv) no effect of cattle (a source of supplementary milk) ownership. These associations were largely independent and remained significant in models controlling for potential confounders; however, the inverse association between early weaning and birth order lost significance in the model containing birthweight. These patterns were observed despite public health recommendations encouraging breastfeeding for at least two years. [Wander, Katherine] Univ Washington, Dept Anthropol, Seattle, WA 98195 USA; [Mattison, Siobhan M.] Univ Auckland, Dept Anthropol, Auckland 1, New Zealand Wander, K (reprint author), Univ Washington, Dept Anthropol, Seattle, WA 98195 USA. kwander@uw.edu National Science Foundation [0968742]; Wenner-Gren Foundation for Anthropological Research [8065]; National Institute of Child Health and Human Development [5R24 HD042828] This work was supported by the National Science Foundation (0968742 to KW), the Wenner-Gren Foundation for Anthropological Research (8065 to KW) and the National Institute of Child Health and Human Development (5R24 HD042828 to the UW Center for Studies in Demography and Ecology). Basire K, 1997, NEW ZEAL MED J, V110, P184; Bereczkei T, 2000, HUM NATURE-INT BIOS, V11, P183, DOI 10.1007/s12110-000-1018-y; Bereczkei T, 2002, CURR ANTHROPOL, V43, P804, DOI 10.1086/344374; Bereczkei T, 1997, P ROY SOC B-BIOL SCI, V264, P17, DOI 10.1098/rspb.1997.0003; Bereczkei T, 2001, EVOL HUM BEHAV, V22, P197, DOI 10.1016/S1090-5138(01)00062-9; Bourgoin GL, 1997, CAN J PUBLIC HEALTH, V88, P238; Brown GR, 2009, TRENDS ECOL EVOL, V24, P297, DOI 10.1016/j.tree.2009.02.005; CRONK L, 1989, AM ANTHROPOL, V91, P414, DOI 10.1525/aa.1989.91.2.02a00090; CRONK L, 2000, ADAPTATION HUMAN BEH, P203; Cronk L, 2007, REPROD BIOMED ONLINE, V15, P23, DOI 10.1016/S1472-6483(10)60546-9; Daly M, 1987, SOCIOBIOLOGY PSYCHOL, P293; Datar A, 2010, DEMOGRAPHY, V47, P145; Dettwyler K.A., 1995, BREASTFEEDING BIOCUL, P39; Dufour DL, 2002, AM J HUM BIOL, V14, P584, DOI 10.1002/ajhb.10071; Fujita M, 2012, AM J PHYS ANTHROPOL, V149, P52, DOI 10.1002/ajpa.22092; Fujita M, 2012, EVOL HUM BEHAV, V33, P357, DOI 10.1016/j.evolhumbehav.2011.11.006; GAULIN SJC, 1991, AM J PHYS ANTHROPOL, V85, P61, DOI 10.1002/ajpa.1330850108; Hinde K, 2009, AM J HUM BIOL, V21, P512, DOI 10.1002/ajhb.20917; Hinde K, 2011, EVOL ANTHROPOL, V20, P9, DOI 10.1002/evan.20289; Irons W, 1998, EVOL ANTHROPOL, V6, P194, DOI 10.1002/(SICI)1520-6505(1998)6:6<194::AID-EVAN2>3.0.CO;2-B; JACKSON DA, 1992, BRIT J NUTR, V67, P149, DOI 10.1079/BJN19920019; Jasienska G, 2001, FOUND HUM B, P59; Keller MC, 2001, EVOL HUM BEHAV, V22, P343, DOI 10.1016/S1090-5138(01)00075-7; Kennedy GE, 2005, J HUM EVOL, V48, P123, DOI 10.1016/j.jhevol.2004.09.005; Koziel S, 2001, AM J PHYS ANTHROPOL, V115, P71, DOI 10.1002/ajpa.1058; KURINIJ N, 1988, PEDIATRICS, V81, P365; Long J. Scott, 1997, REGRESSION MODELS CA; Mann J., 1992, ADAPTED MIND EVOLUTI, P367; MARGULIS SW, 1993, BEHAV ECOL SOCIOBIOL, V32, P41; McDade TW, 2001, HUM NATURE-INT BIOS, V12, P9, DOI 10.1007/s12110-001-1011-0; McDade TW, 1998, J DEV BEHAV PEDIATR, V19, P286, DOI 10.1097/00004703-199808000-00008; MICHAELSEN KF, 1994, ACTA PAEDIATR, V83, P565; Oddy W H, 2001, Breastfeed Rev, V9, P11; Piper S, 1996, BIRTH-ISS PERINAT C, V23, P7, DOI 10.1111/j.1523-536X.1996.tb00454.x; QUANDT SA, 1987, HUM ORGAN, V46, P152, DOI 10.17730/humo.46.2.f580815271u10732; Quinlan RJ, 2005, CURR ANTHROPOL, V46, P471, DOI 10.1086/430017; Quinlan RJ, 2003, EVOL HUM BEHAV, V24, P1, DOI 10.1016/S1090-5138(02)00104-6; Quinlan RJ, 2008, HUM NATURE-INT BIOS, V19, P87, DOI 10.1007/s12110-007-9026-9; Sellen DW, 2007, ANNU REV NUTR, V27, P123, DOI 10.1146/annurev.nutr.25.050304.092557; Sellen DW, 2001, HUM NATURE-INT BIOS, V12, P47, DOI 10.1007/s12110-001-1013-y; Sellen DW, 2001, J NUTR, V131, P2707; SIEFF DF, 1990, CURR ANTHROPOL, V31, P25, DOI 10.1086/203801; Tracer DP, 2009, AM J HUM BIOL, V21, P635, DOI 10.1002/ajhb.20928; Tracer DP, 1996, HUM BIOL, V68, P277; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Valeggia CR, 2001, FOUND HUM B, P85; Vega Lopez M G, 1993, Bull Pan Am Health Organ, V27, P350; VITZTHUM VJ, 1994, ANN NY ACAD SCI, V709, P221, DOI 10.1111/j.1749-6632.1994.tb30408.x; Vitzthum VJ, 1994, AM J PHYS ANTHROPOL, V37, P307, DOI [10.1002/ajpa.1330370611, DOI 10.1002/AJPA.1330370611)]; Vogel A, 1999, ACTA PAEDIATR, V88, P1320, DOI 10.1080/080352599750030013; WILDE CJ, 1995, P NUTR SOC, V54, P401, DOI 10.1079/PNS19950009 51 6 6 2 18 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. OCT 7 2013 280 1768 20131359 10.1098/rspb.2013.1359 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298JY WOS:000330321300010 23926151 Green Published, Bronze 2019-02-21 J Bellay, S; de Oliveira, EF; Almeida-Neto, M; Lima, DP; Takemoto, RM; Luque, JL Bellay, Sybelle; de Oliveira, Edson Fontes; Almeida-Neto, Mario; Lima Junior, Dilermando Pereira; Takemoto, Ricardo Massato; Luque, Jose Luis Developmental Stage of Parasites Influences the Structure of Fish-Parasite Networks PLOS ONE English Article MUTUALISTIC NETWORKS; INTERMEDIATE HOSTS; NESTEDNESS; SPECIFICITY; MODULARITY; EVOLUTION; PATTERNS Specialized interactions tend to be more common in systems that require strong reciprocal adaptation between species, such as those observed between parasites and hosts. Parasites exhibit a high diversity of species and life history strategies, presenting host specificity which increases the complexity of these antagonistic systems. However, most studies are limited to the description of interactions between a few parasite and host species, which restricts our understanding of these systems as a whole. We investigated the effect of the developmental stage of the parasite on the structure of 30 metazoan fish-parasite networks, with an emphasis on the specificity of the interactions, connectance and modularity. We assessed the functional role of each species in modular networks and its interactions within and among the modules according to the developmental stage (larval and adult) and taxonomic group of the parasites. We observed that most parasite and host species perform a few interactions but that parasites at the larval stage tended to be generalists, increasing the network connectivity within and among modules. The parasite groups did not differ among each other in the number of interactions within and among the modules when considering only species at the larval stage. However, the same groups of adult individuals differed from each other in their interaction patterns, which were related to variations in the degree of host specificity at this stage. Our results show that the interaction pattern of fishes with parasites, such as acanthocephalans, cestodes, digeneans and nematodes, is more closely associated with their developmental stage than their phylogenetic history. This finding corroborates the hypothesis that the life history of parasites results in adaptations that cross phylogenetic boundaries. [Bellay, Sybelle; Takemoto, Ricardo Massato] Univ Estadual Maringa, Nucleo Pesquisas Limnol Ictiol & Aquicultura, Programa Posgrad Ecol Ambientes Aquat Continentai, Dept Ciencias Biol, Maringa, Parana, Brazil; [Bellay, Sybelle] Univ Estadual Norte Parana, Ctr Ciencias Humanas & Educ, Grp Estudos & Pesquisa Recursos Hidr & Ecol Aplic, Jacarezinho, Parana, Brazil; [de Oliveira, Edson Fontes] Univ Tecnol Fed Parana, Dept Engn Ambiental, Programa Posgrad Engn Ambiental, Londrina, Parana, Brazil; [Almeida-Neto, Mario] Univ Fed Goias, Dept Ecol, Inst Ciencias Biol, Goiania, Go, Brazil; [Lima Junior, Dilermando Pereira] Univ Fed Mato Grosso, Dept Ciencias Biol & Saude, Pontal Do Araguaia, MG, Brazil; [Luque, Jose Luis] Univ Fed Rio de Janeiro, Dept Parasitol Anim, Rio De Janeiro, Brazil Bellay, S (reprint author), Univ Estadual Maringa, Nucleo Pesquisas Limnol Ictiol & Aquicultura, Programa Posgrad Ecol Ambientes Aquat Continentai, Dept Ciencias Biol, Maringa, Parana, Brazil. sybellebellay@yahoo.com.br Takemoto, Ricardo/F-7010-2012; Almeida-Neto, Mario/A-6389-2009 Takemoto, Ricardo/0000-0001-7592-2083; Almeida-Neto, Mario/0000-0002-2161-2968; Bellay, Sybelle/0000-0002-2242-9735 PEA/CAPES/PROEX; DIRPPG/UTFPR- Campus Londrina; CNPq Manuscript funded by PEA/CAPES/PROEX, DIRPPG/UTFPR- Campus Londrina and CNPq. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Anderson MJ, 2001, AUSTRAL ECOL, V26, P32, DOI 10.1046/j.1442-9993.2001.01070.x; BARKER SC, 1991, INT J PARASITOL, V21, P497, DOI 10.1016/0020-7519(91)90053-A; Bascompte J, 2003, P NATL ACAD SCI USA, V100, P9383, DOI 10.1073/pnas.1633576100; Bellay S, 2011, PARASITOLOGY, V138, P1945, DOI 10.1017/S0031182011001314; Bluthgen N, 2008, ECOLOGY, V89, P3387, DOI 10.1890/07-2121.1; Bozza AN, 2010, BIOTA NEOTROP, V10, P217, DOI 10.1590/S1676-06032010000300025; Choisy M, 2003, AM NAT, V162, P172, DOI 10.1086/375681; Dobson A, 2008, P NATL ACAD SCI USA, V105, P11482, DOI 10.1073/pnas.0803232105; ESCH GW, 1993, FUNCTIONAL BIOL PARA; Fortuna MA, 2010, J ANIM ECOL, V79, P811, DOI 10.1111/j.1365-2656.2010.01688.x; Guimaraes PR, 2007, CURR BIOL, V17, P1797, DOI 10.1016/j.cub.2007.09.059; Guimaraes PR, 2006, ENVIRON MODELL SOFTW, V21, P1512, DOI 10.1016/j.envsoft.2006.04.002; Guimera R, 2005, NATURE, V433, P895, DOI 10.1038/nature03288; Guimera R, 2005, J STAT MECH-THEORY E, DOI 10.1088/1742-5468/2005/02/P02001; Jordano P, 2006, PLANT-POLLINATOR INTERACTIONS: FROM SPECIALIZATION TO GENERALIZATION, P173; Khan R.A., 2012, Journal of Parasitology Research, P237280, DOI 10.1155/2012/237280; Krasnov BR, 2012, AM NAT, V179, P501, DOI 10.1086/664612; Lewinsohn TM, 2006, OIKOS, V113, P174, DOI 10.1111/j.0030-1299.2006.14583.x; Lima DP, 2012, J ANIM ECOL, V81, P905, DOI 10.1111/j.1365-2656.2012.01967.x; Luque JL, 2004, ACTA PARASITOL, V49, P353; Mouillot D, 2008, ECOGRAPHY, V31, P16, DOI 10.1111/j.2007.0906-7590.05231.x; Newman MEJ, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.026113; Olesen JM, 2007, P NATL ACAD SCI USA, V104, P19891, DOI 10.1073/pnas.0706375104; Palm HW, 2008, INT J PARASITOL, V38, P381, DOI 10.1016/j.ijpara.2007.08.011; Pimm SL, 1982, FOOD WEBS; Podani J, 2012, ECOGRAPHY, V35, P889, DOI 10.1111/j.1600-0587.2011.07319.x; POULIN R, 1992, INT J PARASITOL, V22, P753, DOI 10.1016/0020-7519(92)90124-4; Poulin R, 2007, PARASITOLOGY, V134, P763, DOI 10.1017/S0031182006002150; Poulin R., 1998, EVOLUTIONARY ECOLOGY; Poulin R, 2013, J ANIM ECOL, V82, P1265, DOI 10.1111/1365-2656.12101; Poulin R, 2010, TRENDS PARASITOL, V26, P492, DOI 10.1016/j.pt.2010.05.008; Price P. W., 1980, EVOLUTIONARY BIOL PA; Proulx SR, 2005, TRENDS ECOL EVOL, V20, P345, DOI 10.1016/j.tree.2005.04.004; R Development Core Team, 2011, R LANG ENV STAT COMP; Mello MAR, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0017395; *STATSOFT INC, 2005, STAT DAT AN SOFTW SY; THATCHER V. E., 2006, AQUATIC BIODIVERSITY, V1; Thompson J. N., 2005, GEOGRAPHIC MOSAIC CO; Thompson J. N, 1994, COEVOLUTIONARY PROCE; Vazquez DP, 2005, J ANIM ECOL, V74, P946, DOI 10.1111/j.1365-2656.2005.00992.x; Whittington ID, 2011, INTEGR COMP BIOL, V51, P91, DOI 10.1093/icb/icr003; Woo PTK, 2006, FISH DIS DISORDERS P, V1 42 14 14 0 15 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One OCT 4 2013 8 10 e75710 10.1371/journal.pone.0075710 6 Multidisciplinary Sciences Science & Technology - Other Topics 232JF WOS:000325489100063 24124506 DOAJ Gold, Green Published 2019-02-21 J Zheng, YL; Feng, YL; Liao, ZY; Li, WT; Xiao, HF; Sui, HZ Zheng, Yulong; Feng, Yulong; Liao, Zhiyong; Li, Weitao; Xiao, Haifeng; Sui, Haozhi Invasive Chromolaena odorata has similar size but higher phenolic concentration than native conspecifics EVOLUTIONARY ECOLOGY RESEARCH English Article Chromolaena odorata; common garden experiment; EICA hypothesis; evolution; genetic differentiation INCREASED COMPETITIVE ABILITY; TREE SAPIUM-SEBIFERUM; LIFE-HISTORY EVOLUTION; INTRODUCED POPULATIONS; NONADAPTIVE EVOLUTION; SENECIO-INAEQUIDENS; GENETIC DIVERSITY; CLINAL VARIATION; RAPID EVOLUTION; PLANT Background: Chromolaena odorata, a perennial shrub, is native to tropical America and invasive in Asia. In Asia it interferes with agriculture, forestry, and stockbreeding, and threatens biodiversity. Hypothesis: Invasive populations of C. odorata have adapted rapidly to new local environments, and this adaptation is at least partly responsible for their success. They show a cline with climatic conditions absent in the natives. And they have evolved increased competitive ability and decreased defensive ability (the EICA hypothesis) by growing to be larger than they had been in their native range. Locations: Tlayacapan, Morelos, Mexico and Menglun, Mengla, Yunnan, China. Methods: Conduct two common garden experiments. Plant seedlings of 13 native and 13 invasive C. odorata populations in the garden in Mexico, and plant seedlings of eight native and eight invasive populations in another garden in China. In the garden in Mexico, compare native and invasive C. odorata populations. After 8 months, compare several of their functional traits, and after 2 months, compare their leaf phenolic contents and their stem phenolic contents. Results: Genetic differentiation in response to variation in mean annual temperature and precipitation occurred in invasive populations but was not significant in native populations. Inconsistent with the EICA hypothesis, invasive C. odorata were of similar size or even smaller than natives. Total phenolics in leaves and stems of invasives were higher than in natives. [Zheng, Yulong; Feng, Yulong; Liao, Zhiyong; Li, Weitao; Xiao, Haifeng] Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Forest Ecol, Kunming 650223, Peoples R China; [Feng, Yulong] Shenyang Agr Univ, Coll Biosci & Technol, Shenyang 110161, Peoples R China; [Sui, Haozhi] Weifang Engn Vocat Coll, Qingzhou, Shandong, Peoples R China Zheng, YL (reprint author), Chinese Acad Sci, Xishuangbanna Trop Bot Garden, Key Lab Trop Forest Ecol, Kunming 650223, Peoples R China. zhengyl@xtbg.org.cn; fengyl1964@126.com Feng, Yulong/B-7416-2012 Natural Science Foundation of China [30830027, 31200333]; Applied Basic Study Project of Yunnan Province [2013FB075]; CAS 135 programme [XTBG-F01] We are grateful to Tran Xuan Cuong, Dao-Ling Du, Yi-Yun Huang, Gregor F. Barclay, Helen Jacobs, Jorge A. Sanchez, Steven W. Woodmansee, Chang-Long Zhang, and Xiao-Ming Zou for collecting the seeds of Chromolaena odorata, and Alfonso Valiente-Banuet and Carlos Silva-Pereyra for their assistance in locating a suitable site for the study. This study was funded by the Natural Science Foundation of China (projects 30830027, 31200333), the Applied Basic Study Project of Yunnan Province (2013FB075), and the CAS 135 programme (XTBG-F01). BLOSSEY B, 1995, J ECOL, V83, P887, DOI 10.2307/2261425; Bossdorf O, 2004, ECOL LETT, V7, P346, DOI 10.1111/j.1461-0248.2004.00583.x; Bossdorf O, 2005, OECOLOGIA, V144, P1, DOI 10.1007/s00442-005-0070-z; Bossdorf O, 2008, DIVERS DISTRIB, V14, P676, DOI 10.1111/j.1472-4642.2008.00471.x; Callaway RM, 2004, FRONT ECOL ENVIRON, V2, P436, DOI 10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2; D'Antonio CM, 2002, TRENDS ECOL EVOL, V17, P202, DOI 10.1016/S0169-5347(02)02454-0; Daehler CC, 1997, OECOLOGIA, V110, P99, DOI 10.1007/s004420050138; Dlugosch KM, 2008, MOL ECOL, V17, P431, DOI 10.1111/j.1365-294X.2007.03538.x; Dlugosch KM, 2008, ECOL LETT, V11, P701, DOI 10.1111/j.1461-0248.2008.01181.x; Ellstrand NC, 2000, P NATL ACAD SCI USA, V97, P7043, DOI 10.1073/pnas.97.13.7043; Etterson JR, 2008, BOTANY, V86, P91, DOI 10.1139/B07-115; Feng YL, 2009, P NATL ACAD SCI USA, V106, P1853, DOI 10.1073/pnas.0808434106; Fosberg F.R., 1973, MICRONESICA, V11, P77; Raimundo RLG, 2007, WEED SCI, V55, P41, DOI 10.1614/WS-06-083.1; Garcia E, 1988, MODIFICACIONES SISTE; Gautier L., 1993, P 3 INT WORKSH BIOL, P54; Hanfling Bernd, 2002, Trends in Ecology and Evolution, V17, P545, DOI 10.1016/S0169-5347(02)02644-7; Hierro JL, 2005, J ECOL, V93, P5, DOI [10.1111/j.0022-0477.2004.00953.x, 10.1111/j.1365-2745.2004.00953.x]; Lachmuth S, 2011, NEW PHYTOL, V192, P529, DOI 10.1111/j.1469-8137.2011.03808.x; Lavergne S, 2007, P NATL ACAD SCI USA, V104, P3883, DOI 10.1073/pnas.0607324104; Lee CE, 2002, TRENDS ECOL EVOL, V17, P386, DOI 10.1016/S0169-5347(02)02554-5; Maron JL, 2004, ECOL MONOGR, V74, P261, DOI 10.1890/03-4027; MARUTANI M, 1991, ANN APPL BIOL, V119, P227, DOI 10.1111/j.1744-7348.1991.tb04861.x; McDonald S, 2001, FOOD CHEM, V73, P73, DOI 10.1016/S0308-8146(00)00288-0; McFadyen R. E. C., 2002, Proceedings of the Fifth International Workshop on Biological Control and Management of Chromolaena odorata, Durban, South Africa, 23-25 October 2000, P13; MCFADYEN RE, 1996, AGR ECOSYST ENVIRON, V59, P1; MCFADYEN REC, 1989, PLANT PROTECTION Q, V4, P3; Montague JL, 2008, J EVOLUTION BIOL, V21, P234, DOI 10.1111/j.1420-9101.2007.01456.x; Monty A, 2009, OECOLOGIA, V159, P305, DOI 10.1007/s00442-008-1228-2; Muller-Scharer H, 2004, TRENDS ECOL EVOL, V19, P417, DOI 10.1016/j.tree.2004.05.010; MUNIAPPAN R, 1993, CURR SCI INDIA, V64, P555; Muniappan R., 2004, P 6 INT WORKSH BIOL, P11; Niinemets U, 2001, ECOLOGY, V82, P453, DOI 10.2307/2679872; Pancho J.V., 1971, PHILIPP J ANIM SCI, V8, P143; Phillips BL, 2010, ECOLOGY, V91, P1617, DOI 10.1890/09-0910.1; Qin RM, 2013, NEW PHYTOL, V197, P979, DOI 10.1111/nph.12071; Reich PB, 1997, P NATL ACAD SCI USA, V94, P13730, DOI 10.1073/pnas.94.25.13730; Rogers WE, 2004, J APPL ECOL, V41, P561, DOI 10.1111/j.0021-8901.2004.00914.x; Royer DL, 2005, AM J BOT, V92, P1141, DOI 10.3732/ajb.92.7.1141; Schaffner U, 2011, ECOLOGY, V92, P829, DOI 10.1890/10-1230.1; Scott LJ, 1998, WEED TECHNOL, V12, P27; Senger I. von, 2002, Proceedings of the Fifth International Workshop on Biological Control and Management of Chromolaena odorata, Durban, South Africa, 23-25 October 2000, P90; Sexton JP, 2002, ECOL APPL, V12, P1652, DOI 10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2; Siemann E, 2003, ECOL APPL, V13, P1503, DOI 10.1890/03-5022; Siemann E, 2003, OECOLOGIA, V135, P451, DOI 10.1007/s00442-003-1217-4; Siemann E, 2001, ECOL LETT, V4, P514, DOI 10.1046/j.1461-0248.2001.00274.x; van Kleunen M, 2008, BASIC APPL ECOL, V9, P213, DOI 10.1016/j.baae.2007.03.006; Vila M, 2003, OECOLOGIA, V137, P211, DOI 10.1007/s00442-003-1342-0; Whitney KD, 2008, DIVERS DISTRIB, V14, P569, DOI 10.1111/j.1472-4642.2008.00473.x; Williams JL, 2008, OECOLOGIA, V157, P239, DOI 10.1007/s00442-008-1075-1; Wolfe LM, 2004, ECOL LETT, V7, P813, DOI 10.1111/j.1461-0248.2004.00649.x; Wright IJ, 2007, ANN BOT-LONDON, V99, P1003, DOI 10.1093/aob/mcl066; Xu F, 2009, PROG NAT SCI-MATER, V19, P1789, DOI 10.1016/j.pnsc.2009.10.001; Ye WH, 2004, WEED RES, V44, P129, DOI 10.1111/j.1365-3180.2004.00381.x; Zou JW, 2008, BIOL INVASIONS, V10, P291, DOI 10.1007/s10530-007-9130-0; Zou JW, 2006, OECOLOGIA, V150, P272, DOI 10.1007/s00442-006-0512-2 56 2 2 1 29 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. OCT 2013 15 7 769 781 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AA8YL WOS:000331380800003 2019-02-21 J Ab Ghani, NI; Kuparinen, A; Leinonen, T; Merila, J Ab Ghani, Nurul Izza; Kuparinen, Anna; Leinonen, Tuomas; Merila, Juha Population- and sex-specific divergence in growth patterns between two ninespine stickleback (Pungitius pungitius L) populations EVOLUTIONARY ECOLOGY RESEARCH English Article asymptotic length; common garden; growth rate; maturation; Pungitius pungitius; von Bertalanffy FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; BODY-SIZE; REPRODUCTIVE STRATEGIES; FISH POPULATIONS; ATLANTIC SALMON; REACTION NORMS; MATURATION; TEMPERATURE; AGE Background: Growth rate is an important life-history trait that often shows sex-and population-specific differentiation in many organisms. Yet the relative contributions of additive genetic, non-additive genetic, environmental, and maternal effects underlying these differences remain largely unknown, especially in wild animal populations. Goal: To determine the relative contributions of additive genetic, non-additive genetic, and environmental effects underlying population differences in growth rate between two stickleback populations differing markedly in their body size. Organism: Ninespine stickleback (Pungitius pungitius). Methods: We crossed two phenotypically and genetically distinct populations to produce 'pure' marine (Hel-Hel; small sized), 'pure' pond (Pyo-Pyo; large sized), and 'hybrid' (Hel-Pyo and Pyo-Hel) offspring. We reared them in standardized common garden settings until maturation. Results: Analyses of Von Bertalanffy growth curve parameters revealed that sexes and crosstypes differed in their intrinsic growth rates (k) and asymptotic sizes (L8). In general, males and marine fish (Hel-Hel) had higher k and smaller L8 than females and fish from the pond (Pyo-Pyo). Fish from 'hybrid' crosses exhibited k and L8 intermediate to the 'pure' crosses, but were more similar in both respects to the pure marine than to the pure pond fish. Thus population differentiation in k and L8 has a genetic basis, but additive genetic effects do not explain all the observed differences. k and L8 were negatively correlated within three cross-types (both 'hybrids' and Pyo-Pyo): low intrinsic growth rates were associated with increased asymptotic size. k and L8 were not correlated within the Hel-Hel cross: high intrinsic growth rate was not directly associated with reduced asymptotic size. Neither k nor L8 predicted the age at maturation in Hel-Hel fish, and only poorly so in Pyo-Pyo fish. Conclusion: We discovered genetically based population differentiation in key growth-related life-history traits, but little or no evidence for a role of intrinsic growth rate or asymptotic size in determining the timing of maturation in ninespine stickleback. [Ab Ghani, Nurul Izza; Leinonen, Tuomas; Merila, Juha] Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, FI-00014 Helsinki, Finland; [Kuparinen, Anna] Univ Helsinki, Dept Environm Sci, Fisheries & Environm Management Grp, FI-00014 Helsinki, Finland Merila, J (reprint author), Univ Helsinki, Ecol Genet Res Unit, Dept Biosci, POB 65, FI-00014 Helsinki, Finland. juha.merila@helsinki.fi Merila, Juha/A-4061-2008 Merila, Juha/0000-0001-9614-0072 Academy of Finland [129662, 134728, 218343, 265211]; Universiti Putra Malaysia; LUOVA graduate school; European Community's Seventh Framework Programme [217246]; joint Baltic Sea research and development programme We thank Marika Holtta, Niina Nurmi, Linda Uoti, and Mirva Turtiainen for their help during the experiments, and Gabor Herczeg for sampling and producing the crosses. We also thank Michael Kinnison for his helpful comments on an earlier draft of the manuscript. The research was supported by the Academy of Finland (grants #129662, 134728, 218343, and 265211 to J.M.), as well as Universiti Putra Malaysia and a grant from LUOVA graduate school to I. A. G. The research leading to these results also received funding from the European Community's Seventh Framework Programme (FP/2007-2013) under grant agreement #217246 made with BONUS, the joint Baltic Sea research and development programme (to J.M.). The research was conducted with a license from the Finnish National Animal Experiment Board (License no. STH211A). AARSSEN LW, 1992, J ECOL, V80, P109, DOI 10.2307/2261067; Ab Ghani NI, 2013, J EVOLUTION BIOL, V26, P775; Ab Ghani NI, 2012, BIOL J LINN SOC, V107, P521, DOI 10.1111/j.1095-8312.2012.01956.x; Aikio S, 2013, J FISH BIOL, V82, P318, DOI 10.1111/jfb.12006; ALM GUNNAR, 1959, REPT INST FRESHWATER RES DROTTNINGHOLM, V40, P5; Angilletta MJ, 2004, AM NAT, V164, pE168, DOI 10.1086/425222; Arlinghaus R, 2009, EVOL APPL, V2, P335, DOI 10.1111/j.1752-4571.2009.00081.x; BAGGERMAN B, 1985, BEHAVIOUR, V93, P1, DOI 10.1163/156853986X00685; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Borrell B, 2013, NATURE, V493, P597, DOI 10.1038/493597a; Brito JC, 2003, COPEIA, P865, DOI 10.1643/h202-279.1; Chapman EW, 2011, CAN J FISH AQUAT SCI, V68, P1934, DOI 10.1139/F2011-109; CHARNOV E L, 1982; CONOVER DO, 1990, OECOLOGIA, V83, P316, DOI 10.1007/BF00317554; Crawley M. J., 2007, R BOOK; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Fleming IA, 1996, REV FISH BIOL FISHER, V6, P379, DOI 10.1007/BF00164323; Gambling SJ, 2012, CAN J ZOOL, V90, P284, DOI 10.1139/Z11-133; GARRARD G, 1974, J EMBRYOL EXP MORPH, V31, P247; Green BS, 2008, ADV MAR BIOL, V54, P1, DOI 10.1016/S0065-2881(08)00001-1; GROSS KL, 1981, OECOLOGIA, V48, P209, DOI 10.1007/BF00347966; Herczeg G, 2012, EVOL ECOL, V26, P109, DOI 10.1007/s10682-011-9491-9; Herczeg G, 2010, J ANIM ECOL, V79, P581, DOI 10.1111/j.1365-2656.2010.01665.x; Herczeg G, 2009, EVOLUTION, V63, P3190, DOI 10.1111/j.1558-5646.2009.00781.x; Herczeg G, 2009, ANIM BEHAV, V77, P575, DOI 10.1016/j.anbehav.2008.10.023; HUTCHINGS JA, 1993, ECOLOGY, V74, P673, DOI 10.2307/1940795; Kinnison MT, 2011, HEREDITY, V106, P448, DOI 10.1038/hdy.2010.162; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Kuparinen A, 2011, OECOLOGIA, V167, P435, DOI 10.1007/s00442-011-1989-x; Lanche S., 1987, CAN J ZOOL, V65, P1573; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Law R, 2007, MAR ECOL PROG SER, V335, P271, DOI 10.3354/meps335271; Lorenzen K, 2002, P ROY SOC B-BIOL SCI, V269, P49, DOI 10.1098/rspb.2001.1853; Lynch M, 1998, GENETICS ANAL QUANTI; MADSEN T, 1983, OIKOS, V40, P277, DOI 10.2307/3544592; MARION KR, 1982, HERPETOLOGICA, V38, P26; MCGRAW JB, 1983, J THEOR BIOL, V103, P21, DOI 10.1016/0022-5193(83)90196-0; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Nestor KE, 2005, POULTRY SCI, V84, P1825, DOI 10.1093/ps/84.12.1825; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; OSTLUNDNILSSON S, 2007, BIOL 3 SPINED STICKL; Partridge L, 1997, EVOLUTION, V51, P632, DOI 10.1111/j.1558-5646.1997.tb02454.x; Post E, 1999, P NATL ACAD SCI USA, V96, P4467, DOI 10.1073/pnas.96.8.4467; R Development Core Team, 2009, R LANG ENV STAT COMP; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; ROFF DA, 1982, CAN J FISH AQUAT SCI, V39, P1686, DOI 10.1139/f82-225; Roff Derek A., 1992; Rohlf FJ., 2006, TPSDIG DIGITIZE LAND; Rossiter MC, 1996, ANNU REV ECOL SYST, V27, P451, DOI 10.1146/annurev.ecolsys.27.1.451; Salinas S, 2012, ECOL LETT, V15, P159, DOI 10.1111/j.1461-0248.2011.01721.x; Shikano Takahito, 2011, BMC Research Notes, V4, DOI 10.1186/1756-0500-4-119; Shikano T, 2010, MOL ECOL, V19, P1147, DOI 10.1111/j.1365-294X.2010.04553.x; Shimada Y, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0028859; SHINE R, 1988, AM NAT, V131, P124, DOI 10.1086/284778; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Taranger GL, 1999, AQUACULTURE, V177, P47, DOI 10.1016/S0044-8486(99)00068-X; Valimaki K, 2012, J ANIM ECOL, V81, P859, DOI 10.1111/j.1365-2656.2012.01971.x; von BERTALANFFY LUDWIG, 1938, HUMAN BIOL, V10, P181; Werner E.E., 1988, P60; Williams AJ, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0039318; Wright S., 1978, EVOLUTION GENETICS P, P336 64 2 2 1 10 EVOLUTIONARY ECOLOGY LTD TUCSON UNIV ARIZONA, 321 BIOSCIENCES WEST, TUCSON, AZ 85721 USA 1522-0613 1937-3791 EVOL ECOL RES Evol. Ecol. Res. OCT 2013 15 7 793 808 16 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity AA8YL WOS:000331380800005 2019-02-21 J Diaz Pauli, B; Heino, M Diaz Pauli, B.; Heino, M. The importance of social dimension and maturation stage for the probabilistic maturation reaction norm in Poecilia reticulata JOURNAL OF EVOLUTIONARY BIOLOGY English Article age; maturation; maturation stages; probabilistic maturation reaction norm; size; social cues LIFE-HISTORY EVOLUTION; HADDOCK MELANOGRAMMUS-AEGLEFINUS; MALE GUPPIES; PHENOTYPIC PLASTICITY; XIPHOPHORUS-MACULATUS; SEXUAL-MATURATION; TRINIDADIAN GUPPIES; NATURAL-POPULATIONS; GAMBUSIA-AFFINIS; MARINE FISH Maturation is an important event in an organism's life history, with important implications on dynamics of both wild and captive populations. The probabilistic maturation reaction norm (PMRN) has emerged as an important method to describe variation in maturation in wild fish. Because most PMRNs are based on age and size only, it is important to understand limitations of these variables in explaining maturation. We experimentally assessed (i) the sensitivity of age- and size-based PMRNs to unaccounted sources of plasticity, (ii) the role of social environment on maturation and (iii) the significance of estimating PMRNs early and late in the maturation process (initiation and completion of maturation, respectively). We reared male guppies (Poecilia reticulata) under laboratory conditions, subjected to two food levels and three different social cues. We found that growth and social environment affected the maturation in a way that could not be accounted for by their effect on age and size. PMRNs estimated for the initiation stage were less plastic (growth differences and social cues influenced the PMRN shape only little) than those for completion. The initiation of maturation is probably closer to the maturation decision' and allows determining factors influencing maturation decision most accurately. [Diaz Pauli, B.; Heino, M.] Univ Bergen, Dept Biol, N-5020 Bergen, Norway; [Heino, M.] Inst Marine Res, N-5024 Bergen, Norway; [Heino, M.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria Diaz Pauli, B (reprint author), Univ Bergen, Dept Biol, Box 7803, N-5020 Bergen, Norway. beatriz.diaz-pauli@bio.uib.no Diaz Pauli, Beatriz/J-9430-2013; Heino, Mikko/C-7241-2009 Diaz Pauli, Beatriz/0000-0002-9421-7758; Heino, Mikko/0000-0003-2928-3940 Bergen Research Foundation; Research Council of Norway [214189/F20] We would like to thank Anne Christine Utne-Palm, Florent Chareyre, Heikki Savolainen, Chandana Nissanka and Roger Colominas for their great help in the laboratory, David Reznick and Christian Jorgensen for constructive advice on the experimental design, Jennifer Devine for valuable statistical advice, Jan Heuschele and anonymous reviewers for comments on the manuscript, and the Bergen Research Foundation and the Research Council of Norway (project 214189/F20) for funding. ABRAHAMS MV, 1993, ANIM BEHAV, V45, P673, DOI 10.1006/anbe.1993.1082; Aday DD, 2003, J FISH BIOL, V62, P486, DOI 10.1046/j.1095-8649.2003.00033.x; ARISAKA N, 1975, Bulletin of the Faculty of Fisheries Hokkaido University, V26, P122; Auer SK, 2010, AM NAT, V176, P818, DOI 10.1086/657061; Bates D., 2011, LME4 LINEAR MIXED EF; Baulier L., 2006, 2006H19 ICES CM, V2006, P1; Baulier L, 2012, AQUAT LIVING RESOUR, V25, P151, DOI 10.1051/alr/2012014; Beckerman AP, 2010, J ANIM ECOL, V79, P1069, DOI 10.1111/j.1365-2656.2010.01703.x; Berner D, 2007, FUNCT ECOL, V21, P505, DOI 10.1111/j.1365-2435.2007.01253.x; Bisazza A, 1996, J FISH BIOL, V48, P726, DOI 10.1111/j.1095-8649.1996.tb01468.x; BOROWSKY R, 1978, SCIENCE, V201, P933, DOI 10.1126/science.201.4359.933; Boulcott P, 2008, AQUAT BIOL, V3, P31, DOI 10.3354/ab00063; BUSHMANN PJ, 1994, J FISH BIOL, V44, P263, DOI 10.1111/j.1095-8649.1994.tb01204.x; Cailliet GM, 2006, ENVIRON BIOL FISH, V77, P211, DOI 10.1007/s10641-006-9105-5; Cote IM, 2003, ANIMAL BEHAVIOR AND WILDLIFE CONSERVATION, P77; Danylchuk AJ, 2001, BEHAV ECOL, V12, P482, DOI 10.1093/beheco/12.4.482; Day T, 2002, AM NAT, V159, P338, DOI 10.1086/338989; Devine JA, 2011, FISH RES, V110, P441, DOI 10.1016/j.fishres.2011.05.016; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Evans JP, 2002, J FISH BIOL, V60, P495, DOI 10.1006/jfbi.2001.1849; Field KL, 2004, ANIM BEHAV, V68, P1381, DOI 10.1016/j.anbehav.2003.12.022; Greven H., 2011, ECOLOGY EVOLUTION PO, P3; Griffiths SW, 1996, J FISH BIOL, V48, P891; Grift RE, 2007, MAR ECOL PROG SER, V334, P213, DOI 10.3354/meps334213; Harney E, 2013, EVOLUTION, V67, P525, DOI 10.1111/j.1558-5646.2012.01758.x; Heino M, 2002, EVOLUTION, V56, P669, DOI 10.1111/j.0014-3820.2002.tb01378.x; Heino M, 2008, B MAR SCI, V83, P69; Houde A., 1997, SEX COLOR MATE CHOIC; Jakobsen Tore, 1999, Journal of Northwest Atlantic Fishery Science, V25, P125, DOI 10.2960/J.v25.a11; JONES GP, 1980, MAR BIOL, V59, P247, DOI 10.1007/BF00404748; Jordan LA, 2010, J EVOLUTION BIOL, V23, P2403, DOI 10.1111/j.1420-9101.2010.02104.x; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; KALLMAN KD, 1973, GEN COMP ENDOCR, V21, P287, DOI 10.1016/0016-6480(73)90061-0; Koya Y, 2003, ZOOL SCI, V20, P1231, DOI 10.2108/zsj.20.1231; Kraak SBM, 2007, MAR ECOL PROG SER, V335, P295, DOI 10.3354/meps335295; Magellan K, 2009, J FISH BIOL, V74, P2329, DOI 10.1111/j.1095-8649.2009.02245.x; Marshall CT, 2007, MAR ECOL PROG SER, V335, P249, DOI 10.3354/meps335249; Mollet FM, 2007, MAR ECOL PROG SER, V351, P189, DOI 10.3354/meps07138; Morita K, 2006, EVOLUTION, V60, P1516, DOI 10.1554/06-007.1; Morita K, 2009, BIOL LETTERS, V5, P628, DOI 10.1098/rsbl.2009.0290; Olsen EM, 2008, EVOL APPL, V1, P524, DOI 10.1111/j.1752-4571.2008.00024.x; PATTERSON DJ, 1992, J ANIM SCI, V70, P4018; Pinheiro J, 2011, NLME LINEAR NONLINEA; R Development Core Team, 2011, R LANG ENV STAT COMP; Rasband W. S, 2011, IMAGEJ; REZNICK D, 1982, EVOLUTION, V36, P1236, DOI 10.1111/j.1558-5646.1982.tb05493.x; Reznick D, 2001, EXP GERONTOL, V36, P791, DOI 10.1016/S0531-5565(00)00241-2; REZNICK DN, 1990, J EVOLUTION BIOL, V3, P185, DOI 10.1046/j.1420-9101.1990.3030185.x; Roff Derek A., 1992; Rowe S, 2003, TRENDS ECOL EVOL, V18, P567, DOI 10.1016/j.tree.2003.09.004; Saborido-Rey F, 1998, ICES J MAR SCI, V55, P515, DOI 10.1006/jmsc.1997.0344; SCHREIBMAN MP, 1977, J EXP ZOOL, V200, P277, DOI 10.1002/jez.1402000209; SCHREIBMAN MP, 1982, CELL TISSUE RES, V224, P81, DOI 10.1007/BF00217268; Solmundsson J, 2003, FISH RES, V61, P57, DOI 10.1016/S0165-7836(02)00212-6; Stearns S, 1992, EVOLUTION LIFE HIST; Stearns S.C., 1984, P13; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; STEARNS SC, 1983, AM ZOOL, V23, P65; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Taranger GL, 2010, GEN COMP ENDOCR, V165, P483, DOI 10.1016/j.ygcen.2009.05.004; Thorpe JE, 1998, EVOL ECOL, V12, P581, DOI 10.1023/A:1022351814644; Thorpe JE, 2007, MAR ECOL PROG SER, V335, P285, DOI 10.3354/meps335285; Tobin D, 2010, J FISH BIOL, V77, P1252, DOI 10.1111/j.1095-8649.2010.02739.x; Tobin D, 2011, J EXP MAR BIOL ECOL, V403, P9, DOI 10.1016/j.jembe.2011.03.018; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Turner CL, 1941, J MORPHOL, V69, P161, DOI 10.1002/jmor.1050690107; Uusi-Heikkila S, 2011, P ROY SOC B-BIOL SCI, V278, P709, DOI 10.1098/rspb.2010.1507; Vainikka A, 2009, ICES J MAR SCI, V66, P248, DOI 10.1093/icesjms/fsn199; van den Hurk R., 1974, Proceedings K ned Akad Wet (Biol med Sci), V77, P193; Van Dooren TJM, 2005, EVOLUTION, V59, P500, DOI 10.1554/04-356; van Walraven L, 2010, J SEA RES, V64, P85, DOI 10.1016/j.seares.2009.07.003; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279 72 12 12 1 17 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X 1420-9101 J EVOLUTION BIOL J. Evol. Biol. OCT 2013 26 10 2184 2196 10.1111/jeb.12215 13 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 286MJ WOS:000329473100011 23937558 Bronze 2019-02-21 J Rohwer, S; Broms, K Rohwer, Sievert; Broms, Kristin REPLACEMENT RULES FOR THE FLIGHT FEATHERS OF YELLOW-BILLED CUCKOOS (COCCYZUS AMERICANUS) AND COMMON CUCKOOS (CUCULUS CANORUS) AUK English Article Coccyzus americanus; cuckoos; Cuculus canorus; life history evolution; molt methods; multiple replacement series; transilient molt PRIMARY MOLT; ALBATROSSES; PATTERNS; HISTORY; BIRDS; FALCONIFORMES; STAFFELMAUSER; STRATEGIES; TRADEOFFS; ALBA Past studies of the replacement rules for flight feathers of cuckoos have been plagued by the erroneous assumption that the primaries constituted a single molt series. Instead, we show that the primaries of the Yellow-billed Cuckoo (Coccyzus americanus) are divided into three molt series and those of the Common Cuckoo (Cuculus canorus) into four series and, further, that Yellow-billed Cuckoos replace their rectrices in two molt series. Multiple molt series make it impossible to consistently describe primary replacement as a unique sequence of feather loss, as earlier researchers have attempted to do for cuckoos. We calculated the mean number of days (+/- SE) required to replace the primaries in each molt series. Primary replacement takes considerably less time in the larger Common Cuckoo than in the smaller Yellow-billed Cuckoo, mostly because Common Cuckoos replace four primaries at a time whereas Yellow-billed Cuckoos replace only three at a time. The primaries of Common Cuckoos cannot be better allocated into four molt series such that the time required for their replacement would be reduced, but molt duration would be reduced in Yellow-billed Cuckoos if their primaries were differently allocated into three replacement series. Both species replace their primaries faster than birds of similar size whose primaries are organized in a single replacement series. [Rohwer, Sievert] Univ Washington, Dept Biol, Seattle, WA 98195 USA; [Rohwer, Sievert] Univ Washington, Burke Museum, Seattle, WA 98195 USA; [Broms, Kristin] Univ Washington, Seattle, WA 98195 USA Rohwer, S (reprint author), Univ Washington, Dept Biol, Seattle, WA 98195 USA. rohwer@uw.edu ASHMOLE NP, 1968, CONDOR, V70, P35, DOI 10.2307/1366507; Bridge Eli S., 2006, Marine Ornithology, V34, P7; Dunning Jr J.B., 2007, CRC HDB AVIAN BODY M; EDELSTAM C, 1984, ANN ZOOL FENN, V21, P271; Edwards AE, 2005, CONDOR, V107, P835, DOI 10.1650/7533.1; GRUBB TC, 2006, PTILOCHRONOLOGY FEAT; Hackett SJ, 2008, SCIENCE, V320, P1763, DOI 10.1126/science.1157704; HAMNER D. B., 1995, HONEYGUIDE, V41, P65; Heinroth O, 1898, SITZUNGSBERICHTE GES, V1898, P95; Herremans M, 2000, BIRD STUDY, V47, P332, DOI 10.1080/00063650009461193; HORNFELDT B, 1988, AUK, V105, P783; LANGSTON NE, 1995, CONDOR, V97, P1, DOI 10.2307/1368978; Langston NE, 1996, OIKOS, V76, P498, DOI 10.2307/3546343; LENTON GM, 1984, IBIS, V126, P188, DOI 10.1111/j.1474-919X.1984.tb07998.x; MILLER ALDEN H., 1941, CONDOR, V43, P113, DOI 10.2307/1364415; Payne R.B., 2005, CUCKOOS; PETTY SJ, 1992, ECOLOGY CONSERVATION, P89; PIETIAINEN H, 1984, ANN ZOOL FENN, V21, P277; POTTS GR, 1971, IBIS, V113, P298, DOI 10.1111/j.1474-919X.1971.tb05159.x; PREVOST Y, 1983, ARDEA, V71, P199; Prince PA, 1997, CONDOR, V99, P58, DOI 10.2307/1370224; Pyle P, 2005, CONDOR, V107, P823, DOI 10.1650/7598.1; PYLE P, 1997, MONOGRAPHS FIELD ORN, V2; Pyle P, 1997, IDENTIFICATION GUI 1; Pyle P, 2013, CONDOR, V115, P593, DOI 10.1525/cond.2013.120173; ROHWER S, 1999, P INT ORNITHOLOGICAL, V22, P568; Rohwer S, 2012, AUK, V129, P653, DOI 10.1525/auk.2012.12096; Rohwer S, 2011, CONDOR, V113, P61, DOI 10.1525/cond.2011.100092; Rohwer S, 2009, PLOS BIOL, V7, DOI 10.1371/journal.pbio.1000132; Rohwer S, 2008, CONDOR, V110, P799, DOI 10.1525/cond.2008.8320; Rohwer Sievert, 2006, Western Birds, V37, P245; Rohwer VG, 2013, AUK, V130, P699, DOI 10.1525/auk.2013.13042; SEEL D. C., 1984, SCI ZOOLOGIQUES, V239, P51; Shugart GW, 1996, CONDOR, V98, P222, DOI 10.2307/1369140; Siegfried W.R., 1971, Ostrich, VNo. 9, P153; Sorenson MD, 2005, CUCKOOS, P68; STRESEMANN ERWIN, 1966, J ORNITHOL, V107, P1; Stresemann V., 1961, Journal fuer Ornithologie, V102, P317; Verheyen R., 1950, Gerfaut Bruxelles, V40, P212; Yuri T, 1997, AUK, V114, P249, DOI 10.2307/4089166 40 6 7 1 5 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2013 130 4 599 608 10.1525/auk.2013.13123 10 Ornithology Zoology 274EM WOS:000328588800004 2019-02-21 J Colwell, MA; Pearson, WJ; Eberhart-Phillips, LJ; Dinsmore, SJ Colwell, Mark A.; Pearson, Wendy J.; Eberhart-Phillips, Luke J.; Dinsmore, Stephen J. APPARENT SURVIVAL OF SNOWY PLOVERS (CHARADRIUS NIVOSUS) VARIES WITH REPRODUCTIVE EFFORT AND YEAR AND BETWEEN SEXES AUK English Article apparent survival; Charadrius nivosus; incubation; reproductive effort; Snowy Plover; threatened COASTAL NORTHERN CALIFORNIA; POPULATION-GROWTH RATE; BREEDING GROUNDS; NATAL DISPERSAL; BODY STORES; CLUTCH SIZE; SUCCESS; ALEXANDRINUS; COSTS; EXCLOSURES Life history theory predicts a tradeoff between reproductive effort and survival, which suggests that some management practices aimed at increasing productivity may compromise population growth. We analyzed a 10-year data set of 225 individually marked Snowy Plovers (Charadrius nivosus), a threatened shorebird, to determine whether individual reproductive effort was correlated with low apparent survival. Most adults resided in the population an average of 2 years (range: 1-10 years), during which females laid 3-60 eggs, and both males and females invested considerable time in incubation and brooding. Apparent survival varied annually and was higher for males than for females. Contrary to theory, we found no evidence that increased reproductive effort, either current or cumulative, compromised survival. Instead, apparent survival was correlated positively with incubation time, which may be related to either high-quality individuals having high reproductive rates and high survival or permanent emigration of failed breeders (who incubated for shorter intervals). Although our results suggest that some predator management practices (e.g., nest exclosures) aimed at increasing productivity will not compromise survival in a subsequent year, we caution that these same practices may have serious negative consequences for population growth if (1) reproductive effort does not translate into higher per capita fledging success and (2) direct mortality of adults results from the practice. [Colwell, Mark A.; Pearson, Wendy J.; Eberhart-Phillips, Luke J.] Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA; [Dinsmore, Stephen J.] Iowa State Univ, Dept Nat Resource Ecol & Management, Ames, IA 50011 USA Colwell, MA (reprint author), Humboldt State Univ, Dept Wildlife, Arcata, CA 95521 USA. mac3@humboldt.edu California Department of Fish and Game; California Department of Parks and Recreation; Chevron Oil Corporation; Eureka Rotary Club; Humboldt County Fish and Game Advisory Commission; Humboldt County Planning Department; Humboldt State University Sponsored Programs Foundation; Mad River Biologists; Mann Rod and Gun Club; MRB Research, Inc.; Redwood Region Audubon Society; Stockton Sportsmen's Club; Western Section of The Wildlife Society; U.S. Bureau of Land Management; U.S. Fish and Wildlife Service; California Department of Fish and Game's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Wildlife Health Center, School of Veterinary Medicine, University of California, Davis Many individuals assisted us with fieldwork. In particular, we thank K. Brindock, N. Burrell, W. Goldenberg, J. Hall, M. Hardy, J. Harris, A. Hoffmann, S. Hurley, R. LeValley, A. Liebenberg, S. McAllister, J. Meyer, C. Millett, S. Mullin, Z. Nelson, S. Peterson, K. Ross, R. Thiem, A. Transou, J. Watkins, and C. Wilson. Our work was funded by the California Department of Fish and Game, California Department of Parks and Recreation, Chevron Oil Corporation, Eureka Rotary Club, Humboldt County Fish and Game Advisory Commission, Humboldt County Planning Department, Humboldt State University Sponsored Programs Foundation, Mad River Biologists, Mann Rod and Gun Club, MRB Research, Inc., Redwood Region Audubon Society, Stockton Sportsmen's Club, Western Section of The Wildlife Society, U.S. Bureau of Land Management, U.S. Fish and Wildlife Service, and California Department of Fish and Game's Oil Spill Response Trust Fund through the Oiled Wildlife Care Network at the Wildlife Health Center, School of Veterinary Medicine, University of California, Davis. Burnham K. P, 2002, MODEL SELECTION MULT; BURNHAM KP, 1987, AM FISHERIES SOC MON, V5; Burrell Noah S., 2012, Wildfowl, V62, P204; Catlin DH, 2011, J WILDLIFE MANAGE, V75, P458, DOI 10.1002/jwmg.56; Collier BA, 2009, WILDLIFE BIOL, V15, P370, DOI 10.2981/09-011; Colwell MA, 2007, WILSON J ORNITHOL, V119, P378, DOI 10.1676/06-038.1; Colwell MA, 2007, CONDOR, V109, P638, DOI 10.1650/8236.1; Colwell MA, 2010, J FIELD ORNITHOL, V81, P349, DOI 10.1111/j.1557-9263.2010.00291.x; Colwell Mark A., 2006, Wader Study Group Bulletin, V111, P50; Cooch E. G., 2011, PROGRAM MARK GENTLE; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; EBERHART-PHILLIPS L. J., 2013, BIRD CONSER IN PRESS, V23; Foppen RR, 2006, ARDEA, V94, P159; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; Hardy Michael A., 2008, Wader Study Group Bulletin, V115, P161; Hitchcock CL, 1997, ECOLOGY, V78, P522; Isaksson D, 2007, BIOL CONSERV, V136, P136, DOI 10.1016/j.biocon.2006.11.015; Liebezeit JR, 2007, CONDOR, V109, P32, DOI 10.1650/0010-5422(2007)109[32:ATDOSE]2.0.CO;2; Mabee TJ, 2000, WILSON BULL, V112, P14, DOI 10.1676/0043-5643(2000)112[0014:ATEOPE]2.0.CO;2; Morrison RIG, 2005, CONDOR, V107, P449, DOI 10.1650/7614; Morrison RIG, 2004, AUK, V121, P333, DOI 10.1642/0004-8038(2004)121[0333:UOBSIS]2.0.CO;2; Moyes K, 2006, OIKOS, V115, P241, DOI 10.1111/j.2006.0030-1299.15200.x; Muir JJ, 2010, CONDOR, V112, P507, DOI 10.1525/cond.2010.090196; Mullin SM, 2010, J WILDLIFE MANAGE, V74, P1792, DOI 10.2193/2009-503; Murphy MT, 2000, ECOL MONOGR, V70, P1, DOI 10.1890/0012-9615(2000)070[0001:EOCSIT]2.0.CO;2; Neuman KK, 2004, WATERBIRDS, V27, P257, DOI 10.1675/1524-4695(2004)027[0257:EOMPMO]2.0.CO;2; Newton I, 1998, POPULATION LIMITATIO; Page G.W., 1995, BIRDS N AM, V154; PATON PWC, 1994, CONDOR, V96, P1106, DOI 10.2307/1369123; Pauliny A, 2008, J WILDLIFE MANAGE, V72, P1579, DOI 10.2193/2007-199; PEARSON W. J., 2013, BIRD CONSER IN PRESS, V23; R Development Core Team, 2010, R LANG ENV STAT COMP; Roff Derek A., 1992; Rotella JJ, 2003, CONDOR, V105, P336, DOI 10.1650/0010-5422(2003)105[0336:SOFLSE]2.0.CO;2; Saether BE, 2000, ECOLOGY, V81, P642, DOI 10.2307/177366; Sandercock BK, 2005, CONDOR, V107, P583, DOI 10.1650/0010-5422(2005)107[0583:TEOAAS]2.0.CO;2; Sandercock Brett K., 2003, Wader Study Group Bulletin, V100, P163; Sim IMW, 2011, J ANIM ECOL, V80, P159, DOI 10.1111/j.1365-2656.2010.01750.x; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; Stenzel LE, 2007, AUK, V124, P1023, DOI 10.1642/0004-8038(2007)124[1023:SANDOJ]2.0.CO;2; Stenzel LE, 2011, IBIS, V153, P312, DOI 10.1111/j.1474-919X.2011.01118.x; Stjernman M, 2004, P ROY SOC B-BIOL SCI, V271, P2387, DOI 10.1098/rspb.2004.2883; U.S. DEPARTMENT OF INTERIOR, 1993, FED REGISTER, V58, P2864; U.S. Fish and Wildlife Service, 2007, REC PLAN PAC COAST P; VanderWerf EA, 2011, AUK, V128, P726, DOI 10.1525/auk.2011.10285; Verhulst S, 1998, FUNCT ECOL, V12, P132, DOI 10.1046/j.1365-2435.1998.00165.x; WASER PM, 1991, ECOLOGY, V72, P771, DOI 10.2307/1940579; White GC, 1999, BIRD STUDY, V46, P120 48 3 4 1 33 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2013 130 4 725 732 10.1525/auk.2013.13147 8 Ornithology Zoology 274EM WOS:000328588800017 2019-02-21 J Cline, MH; Strong, AM; Sillett, TS; Rodenhouse, NL; Holmes, RT Cline, Mason H.; Strong, Allan M.; Sillett, T. Scott; Rodenhouse, Nicholas L.; Holmes, Richard T. CORRELATES AND CONSEQUENCES OF BREEDING DISPERSAL IN A MIGRATORY SONGBIRD AUK English Article Black-throated Blue Warbler; breeding dispersal; habitat structure; migratory passerine; movement; reproductive success; Setophaga caerulescens THROATED BLUE WARBLERS; DENSITY-DEPENDENT DISPERSAL; NEST-SITE FIDELITY; REPRODUCTIVE SUCCESS; COLLARED FLYCATCHER; DENDROICA-CAERULESCENS; INBREEDING AVOIDANCE; HABITAT SELECTION; AVIAN DISPERSAL; BIRD POPULATION Knowledge of breeding dispersal, defined as shifts in territory location between two successive breeding seasons, remains limited for migratory passerines. We investigated the relationship between two ecological factors, habitat structure and reproductive success, and 499 breeding dispersal events in a Nearctic-Neotropic migratory songbird, the Black-throated Blue Warbler (Setophaga caerulescens) breeding at the Hubbard Brook Experimental Forest, New Hampshire, from 1998 to 2008. Male dispersal distance was correlated with both individual age and habitat structure, with older males moving shorter distances than younger males, and males on the high-shrub-density plot (i.e., higher quality) moving shorter distances than males on the plot with lower shrub density. Female dispersal distance was also correlated with habitat structure; individuals on the higher-quality plot moved shorter distances than those on the lower-quality plot. In contrast to that of males, female dispersal distance was independent of age, but correlated with reproductive success: females that fledged relatively few offspring in a year subsequently dispersed farther than those that experienced high reproductive success. Mean ( SE) breeding dispersal distance for females (245 20 m) was greater than that of males (163 11 m). We also examined reproductive consequences of breeding dispersal and found that males that moved shorter distances fledged more offspring after dispersal than those that moved longer distances; no trend was found for females. These differences in dispersal patterns and outcomes suggest sex-specific selective pressures and life-history strategies. [Cline, Mason H.; Strong, Allan M.] Univ Vermont, Rubenstein Sch Environm & Nat Resources, Burlington, VT 05405 USA; [Sillett, T. Scott] Smithsonian Conservat Biol Inst, Migratory Bird Ctr, Washington, DC 20013 USA; [Rodenhouse, Nicholas L.] Wellesley Coll, Dept Biol Sci, Wellesley, MA 02481 USA; [Holmes, Richard T.] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA Cline, MH (reprint author), Univ Georgia, Warnell Sch Forestry & Nat Resources, 180 East Green St, Athens, GA 30602 USA. mcline@uga.edu Sillett, Scott/0000-0002-7486-0076 U.S. National Science Foundation (NSF); University of Vermont's Rubenstein School of Environment and Natural Resources; U.S. Department of Agriculture (USDA) McIntire-Stennis Forestry Program; Smithsonian Institution; NSF This research was funded by the U.S. National Science Foundation (NSF), the University of Vermont's Rubenstein School of Environment and Natural Resources, the U.S. Department of Agriculture (USDA) McIntire-Stennis Forestry Program, and the Smithsonian Institution. We thank the many field assistants who worked on our research project and F. Sutti for assistance with GIS. We thank J. Hatt and reviewers for helpful comments on the manuscript. This manuscript is a contribution of the Hubbard Brook Ecosystem Study. Hubbard Brook is part of the Long-Term Ecological Research network, which is supported by the NSF. The Hubbard Brook Experimental Forest is operated and maintained by the USDA Forest Service, Northern Research Station, Newtown Square, Pennsylvania. American Ornithologists' Union, 1998, CHECK LIST N AM BIRD; Andreu J, 2006, ARDEA, V94, P45; Arnold TW, 2010, J WILDLIFE MANAGE, V74, P1175, DOI 10.2193/2009-367; Baker RR, 1978, EVOLUTIONARY ECOLOGY; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; Bernard MJ, 2011, AUK, V128, P633, DOI 10.1525/auk.2011.10206; Betts MG, 2008, P ROY SOC B-BIOL SCI, V275, P2257, DOI 10.1098/rspb.2008.0217; Botsch Y, 2012, AUK, V129, P283, DOI 10.1525/auk.2012.11079; BOLLINGER EK, 1989, AUK, V106, P584; Boulinier T, 2008, BIOL LETTERS, V4, P538, DOI 10.1098/rsbl.2008.0291; Bowler DE, 2005, BIOL REV, V80, P205, DOI 10.1017/S1464793104006645; Burnham K. P, 2002, MODEL SELECTION MULT; Calabuig G, 2008, ANIM BEHAV, V76, P1989, DOI 10.1016/j.anbehav.2008.08.019; Chuang HC, 1999, AUK, V116, P726; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; Clark RG, 2004, CONDOR, V106, P717, DOI 10.1650/7644; Clarke AL, 1997, OIKOS, V79, P429, DOI 10.2307/3546885; Clobert J, 2012, DISPERSAL ECOLOGY AND EVOLUTION, P1, DOI 10.1093/acprof:oso/9780199608898.001.0001; Clobert J., 2001, DISPERSAL; Clobert J, 2009, ECOL LETT, V12, P197, DOI 10.1111/j.1461-0248.2008.01267.x; Danchin E, 2002, BEHAV ECOL SOCIOBIOL, V51, P153, DOI 10.1007/s00265-001-0423-5; Daniels SJ, 2000, ECOLOGY, V81, P2473, DOI 10.2307/177468; Dieckmann U, 1999, TRENDS ECOL EVOL, V14, P88, DOI 10.1016/S0169-5347(98)01571-7; Dobson FS, 2013, ANIM BEHAV, V85, P299, DOI 10.1016/j.anbehav.2012.11.014; Doligez B, 1999, J ANIM ECOL, V68, P1193, DOI 10.1046/j.1365-2656.1999.00362.x; Fajardo N, 2009, AUK, V126, P310, DOI 10.1525/auk.2009.07097; Forero MG, 1999, ECOLOGY, V80, P1298, DOI 10.1890/0012-9658(1999)080[1298:CACOTC]2.0.CO;2; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Gandon S, 1999, J THEOR BIOL, V200, P345, DOI 10.1006/jtbi.1999.0994; Garcia-Navas V, 2011, BEHAV ECOL, V22, P932, DOI 10.1093/beheco/arr067; Green DJ, 2004, BEHAV ECOL SOCIOBIOL, V55, P278, DOI 10.1007/s00265-003-0679-z; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; GREENWOOD PJ, 1976, J ANIM ECOL, V45, P887, DOI 10.2307/3587; GREENWOOD PJ, 1980, ANIM BEHAV, V28, P1140, DOI 10.1016/S0003-3472(80)80103-5; GREIGSMITH PW, 1982, ORNIS SCAND, V13, P232, DOI 10.2307/3676304; Gutierrez RJ, 2011, IBIS, V153, P592, DOI 10.1111/j.1474-919X.2011.01140.x; Haas CA, 1998, AUK, V115, P929, DOI 10.2307/4089511; HARVEY PH, 1984, J ANIM ECOL, V53, P727, DOI 10.2307/4655; Hobson KA, 2004, CONDOR, V106, P732, DOI 10.1650/7631; Holmes R. T., 2005, BIRDS N AM ONLINE; Holmes RT, 2011, FOREST ECOL MANAG, V262, P20, DOI 10.1016/j.foreco.2010.06.021; Holmes RT, 1996, J ANIM ECOL, V65, P183, DOI 10.2307/5721; HOLMES RT, 1992, ECOLOGY AND CONSERVATION OF NEOTROPICAL MIGRANT LANDBIRDS, P563; Hoover JP, 2003, ECOLOGY, V84, P416, DOI 10.1890/0012-9658(2003)084[0416:DRFSFI]2.0.CO;2; Howlett JS, 1997, WILSON BULL, V109, P643; Howlett JS, 2003, AUK, V120, P457, DOI 10.1642/0004-8038(2003)120[0457:DOBSTA]2.0.CO;2; JACKSON WM, 1989, CONDOR, V91, P233, DOI 10.2307/1368300; Jette L. A., 1998, 9852 US ARM CONSTR E; Lindberg MS, 1997, CONDOR, V99, P25, DOI 10.2307/1370221; Mabry KE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0057980; Matthysen E, 2005, ECOGRAPHY, V28, P403, DOI 10.1111/j.0906-7590.2005.04073.x; MCPEEK MA, 1992, AM NAT, V140, P1010, DOI 10.1086/285453; Molina-Morales M, 2012, ANIM BEHAV, V83, P671, DOI 10.1016/j.anbehav.2011.12.011; Nagy LR, 2005, AUK, V122, P902, DOI 10.1642/0004-8038(2005)122[0902:TDONIV]2.0.CO;2; Nathan Ran, 2001, Trends in Ecology and Evolution, V16, P481, DOI 10.1016/S0169-5347(01)02272-8; Nelson-Flower MJ, 2012, J ANIM ECOL, V81, P876, DOI 10.1111/j.1365-2656.2012.01983.x; Newton I, 2001, ARDEA, V89, P143; NOLAN V, 1978, ORNITHOLOGICAL MONOG, V26; Ost M, 2011, OECOLOGIA, V166, P327, DOI 10.1007/s00442-010-1855-2; Paradis E, 1998, J ANIM ECOL, V67, P518, DOI 10.1046/j.1365-2656.1998.00215.x; PART T, 1995, ANIM BEHAV, V49, P1029, DOI 10.1006/anbe.1995.0132; PART T, 1989, J ANIM ECOL, V58, P305, DOI 10.2307/5002; Pasinelli G, 2007, BEHAV ECOL SOCIOBIOL, V61, P1061, DOI 10.1007/s00265-006-0339-1; Paton PWC, 1996, AUK, V113, P534; PAYNE RB, 1993, CONDOR, V95, P1, DOI 10.2307/1369382; Pyle P, 1997, IDENTIFICATION GUI 1; Queller DC, 1997, P ROY SOC B-BIOL SCI, V264, P1555, DOI 10.1098/rspb.1997.0216; Redmond LJ, 2009, ANIM BEHAV, V77, P457, DOI 10.1016/j.anbehav.2008.10.025; REED JM, 1993, AUK, V110, P541, DOI 10.2307/4088418; Rodenhouse NL, 2003, P ROY SOC B-BIOL SCI, V270, P2105, DOI 10.1098/rspb.2003.2438; Rohwer S, 2004, ECOLOGY, V85, P423, DOI 10.1890/02-0380; Saunders SP, 2012, AUK, V129, P329, DOI 10.1525/auk.2012.11125; Schaub M, 2009, J ANIM ECOL, V78, P625, DOI 10.1111/j.1365-2656.2008.01508.x; Shutler D, 2003, AUK, V120, P619, DOI 10.1642/0004-8038(2003)120[0619:CACOTS]2.0.CO;2; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; Sillett TS, 2004, ECOLOGY, V85, P2467, DOI 10.1890/03-0272; STACEY PB, 1987, AM NAT, V130, P654, DOI 10.1086/284737; Stanback MT, 2001, AUK, V118, P743, DOI 10.1642/0004-8038(2001)118[0743:WSNSFI]2.0.CO;2; STEELE BB, 1993, CONDOR, V95, P568, DOI 10.2307/1369601; STRICKLAND D, 1991, CAN J ZOOL, V69, P2935, DOI 10.1139/z91-414; SUTHERLAND WJ, 1996, INDIVIDUAL BEHAV POP; Switzer PV, 1997, BEHAV ECOL SOCIOBIOL, V40, P307, DOI 10.1007/s002650050346; Szulkin M, 2008, P R SOC B, V275, P703, DOI 10.1098/rspb.2007.0989; Travis JMJ, 1999, P ROY SOC B-BIOL SCI, V266, P1837, DOI 10.1098/rspb.1999.0854; Veit ML, 2005, CONSERV GENET, V6, P159, DOI 10.1007/s10592-004-7831-9; WASER PM, 1985, ECOLOGY, V66, P1170, DOI 10.2307/1939169; Webster MS, 2001, BEHAV ECOL, V12, P439, DOI 10.1093/beheco/12.4.439; Yoder JM, 2004, BEHAV ECOL, V15, P469, DOI 10.1093/beheco/arh037 88 17 17 2 50 AMER ORNITHOLOGISTS UNION LAWRENCE ORNITHOLOGICAL SOC NORTH AMER PO BOX 1897, LAWRENCE, KS 66044-8897 USA 0004-8038 1938-4254 AUK AUK OCT 2013 130 4 742 752 10.1525/auk.2013.12244 11 Ornithology Zoology 274EM WOS:000328588800019 2019-02-21 J Das, MK; Sharma, AP; Vass, KK; Tyagi, RK; Suresh, VR; Naskar, M; Akolkar, AB Das, M. K.; Sharma, A. P.; Vass, K. K.; Tyagi, R. K.; Suresh, V. R.; Naskar, M.; Akolkar, A. B. Fish diversity, community structure and ecological integrity of the tropical River Ganges, India AQUATIC ECOSYSTEM HEALTH & MANAGEMENT English Article Ganges River; environment; fish abundance; species richness; exotic species; spatial distribution; biotic integrity BIOTIC INTEGRITY; ASSEMBLAGE; INDEX The Ganges River is one of the largest river systems in the world and sustains a rich biodiversity of fish and fishers. In recent years, a decline in fish diversity and catch has become apparent due to various anthropogenic activities in the river basin. This study analyses the current fish diversity, distribution and community structure along the longitudinal gradient of the river and evaluates the ecological integrity of the riverine stretch applying a multimetric assessment approach. One hundred forty three fish species were recorded from the river and Cyprinidae was the dominant family. The middle stretch of the river exhibited dominance of small bodied erytopic, indigenous and exotic fish species with periodic and opportunistic life history strategies with significant decline of the large bodied prized Indian major carps. A tropic shift towards dominance of carnivore catfish species is evident. Non-metric multidimensional scaling revealed greater distribution and abundance of fish species with increasing river width and depth, higher sediment organic carbon, silt and clay along the river gradient. A significant change in the catches composition was evident from 1961 to 2010 in the middle stretch of the river at Allahabad. It reflected a progressive decline in proportion of Indian major carps (IMC) and the anadromous Shad Tenualosa ilisha and a significant increase in the proportion of exotic fish Cyprinus carpio and Oreochromis niloticus which represented 43-48% of the total catch. Assessment of biotic integrity showed that 28% of sample locations in the river supported fish assemblages under acceptable conditions. [Das, M. K.; Sharma, A. P.; Vass, K. K.; Tyagi, R. K.; Suresh, V. R.; Naskar, M.] Cent Inland Fisheries Res Inst, Kolkata 700120, India; [Akolkar, A. B.] Cent Pollut Control Board, New Delhi, India Das, MK (reprint author), Cent Inland Fisheries Res Inst, Kolkata 700120, India. mkdas412@rediffmail.com Central Pollution Control Board, Government of India We thank the sincere efforts of the research students in collecting necessary information and for their assistance in analyses of the data. We are grateful to Central Pollution Control Board, Government of India, for providing financial assistance and to Indian Council of Agricultural Research for the facilities provided for the study. Aarts BGW, 2003, HYDROBIOLOGIA, V500, P157, DOI 10.1023/A:1024638726162; [Anonymous], 1961, ANN REPORTS CENTRAL; APHA, 1998, STANDARD METHODS EXA; Arthington A. H., 2004, P 2 INT S MAN LARG R, V2, P79; Baird IG, 2005, ENVIRON MANAGE, V36, P439, DOI 10.1007/s00267-005-3093-7; Bhat A, 2003, ENVIRON BIOL FISH, V68, P25, DOI 10.1023/A:1026017119070; Bleeker P., 1853, TREATISES BATAVIAN S, V25, P1; Burge J., 1993, J AM STAT ASSOC, V88, P364; Das M. K., 2007, NATURAL ANTHROPOGENI, P137; Das MK, 2012, ACTA ICHTHYOL PISCAT, V42, P47, DOI 10.3750/AIP2011.42.1.06; Das Manas Kr., 2006, Indian Journal of Fisheries, V53, P47; Day F., 1994, BURMA CEYLON, V1 & 2; De Silva SS, 2007, DIVERS DISTRIB, V13, P172, DOI 10.1111/j.1472-4642.2006.00311.x; Duan XB, 2009, ENVIRON BIOL FISH, V86, P13, DOI 10.1007/s10641-009-9498-z; Dudgeon D, 2006, BIOL REV, V81, P163, DOI 10.1017/S1464793105006950; FAUSCH KD, 1984, T AM FISH SOC, V113, P39, DOI 10.1577/1548-8659(1984)113<39:RAOAIO>2.0.CO;2; Froese R, 2010, FISHBASE; Ganasan V., 1998, FRESHWATER BIOL, V40, P361; Gutierrez M. A. R., 1994, THESIS U NACL EXPT L; HAMMER O., 2001, PALAEONTOL ELECTRON, V4, P1, DOI DOI 10.1016/J.BCP.2008.05.025; Hering D, 2004, HYDROBIOLOGIA, V516, P1, DOI 10.1023/B:HYDR.0000025255.70009.a5; Hocutt Charles H., 1994, Revue d'Hydrobiologie Tropicale, V27, P361; Hughes RM, 1998, CAN J FISH AQUAT SCI, V55, P1618, DOI 10.1139/cjfas-55-7-1618; Jackson M. L. R., 1964, SOIL CHEM ANAL; Jayaram K. C., 1999, FRESH WATER FISHES I; Jayaram KC, 1981, FRESHWATER FISHES IN; Karr J. R., 1986, SPECIAL PUBLICATIONS; KARR JR, 1981, FISHERIES, V6, P21, DOI 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2; Kolar CS, 2002, SCIENCE, V298, P1233, DOI 10.1126/science.1075753; Lyons J., 1992, NC149 USDA; Mas-Marti E, 2010, HYDROBIOLOGIA, V657, P167, DOI 10.1007/s10750-010-0292-x; Ministry of Environment and Forest (MOEF), 2009, NAT GANG RIV BAS AUT, P1; Montana CG, 2011, FISHERIES MANAG ECOL, V18, P282, DOI 10.1111/j.1365-2400.2010.00782.x; Namin JI, 2004, CZECH J ANIM SCI, V49, P43, DOI 10.17221/4270-CJAS; Pathak V, 2010, BULLETIN, V161; Payne A. I., 2004, P 2 INT S MAN LARG R, VI, P229; Postel S., 2003, RIVERS LIFE MANAGING; R Development Core Team, 2011, R LANG ENV STAT COMP; SARKAR UK, 2011, REV FISH BIOL FISHER, V22, P251; Shahnawaz A, 2010, ENVIRON MONIT ASSESS, V161, P83, DOI 10.1007/s10661-008-0729-0; Sinha M., 2001, Aquatic Ecosystem Health & Management, V4, P493, DOI 10.1080/146349801317276143; Sinha M., 1998, GANGA ENV FISHERY; Talwar P, 1991, INLAND FISHES INDIA; Pinto BCT, 2007, BRAZ ARCH BIOL TECHN, V50, P489, DOI 10.1590/S1516-89132007000300015; Vass K. K., 2011, International Journal of Ecology and Environmental Sciences, V37, P157; Vass KK, 2009, AQUAT ECOSYST HEALTH, V12, P138, DOI 10.1080/14634980902908746; Vass K. K., 2007, WATER MANAGEMENT FIS, P64; Welcomme RL, 1985, 262 FAO 48 4 5 0 27 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 1463-4988 1539-4077 AQUAT ECOSYST HEALTH Aquat. Ecosyst. Health Manag. OCT 1 2013 16 4 SI 395 407 10.1080/14634988.2013.851592 13 Ecology; Environmental Sciences; Marine & Freshwater Biology; Water Resources Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources 268TJ WOS:000328193100006 2019-02-21 J Walters, AW; Copeland, T; Venditti, DA Walters, Annika W.; Copeland, Timothy; Venditti, David A. The density dilemma: limitations on juvenile production in threatened salmon populations ECOLOGY OF FRESHWATER FISH English Article density dependence; Oncorhynchus tshawytscha; growth; survival; hierarchical modelling DEPENDENT INDIVIDUAL GROWTH; TO-SMOLT SURVIVAL; CHINOOK SALMON; ONCORHYNCHUS-TSHAWYTSCHA; ATLANTIC SALMON; BROWN TROUT; SNAKE RIVER; FISH STOCKS; PACIFIC SALMON; IDAHO STREAMS Density-dependent processes have repeatedly been shown to have a central role in salmonid population dynamics, but are often assumed to be negligible for populations at low abundances relative to historical records. Density dependence has been observed in overall spring/summer Snake River Chinook salmon Oncorhynchus tshawytscha production, but it is not clear how patterns observed at the aggregate level relate to individual populations within the basin. We used a Bayesian hierarchical modelling approach to explore the degree of density dependence in juvenile production for nine Idaho populations. Our results indicate that density dependence is ubiquitous, although its strength varies between populations. We also investigated the processes driving the population-level pattern and found density-dependent growth and mortality present for both common life-history strategies, but no evidence of density-dependent movement. Overwinter mortality, spatial clustering of redds and limited resource availability were identified as potentially important limiting factors contributing to density dependence. The ubiquity of density dependence for these threatened populations is alarming as stability at present low abundance levels suggests recovery may be difficult without major changes. We conclude that density dependence at the population level is common and must be considered in demographic analysis and management. [Walters, Annika W.] Univ Wyoming, US Geol Survey, Wyoming Cooperat Fish & Wildlife Res Unit, Laramie, WY 82071 USA; [Copeland, Timothy; Venditti, David A.] Fisheries Res, Idaho Dept Fish & Game, Nampa, ID USA Walters, AW (reprint author), Univ Wyoming, US Geol Survey, Wyoming Cooperat Fish & Wildlife Res Unit, Dept 3166, 1000 E Univ Ave, Laramie, WY 82071 USA. annika.walters@uwyo.edu Bonneville Power Administration [1989-098-00, 1990-055-00]; National Research Council Bruce Barnett assisted with collection and collation of much of the data. The Nez Perce Tribe and the Shoshone-Bannock Tribes provided data for the Secesh River and East Fork Salmon River, respectively. Paul Bunn provided the map figure. Eric Ward wrote the code for the Bayesian hierarchical modelling. Michelle McClure generously gave guidance to AWW. The study benefitted from review by Charlie Petrosky and two anonymous reviewers. Funding for field work and support for DAV and TC were provided by the Bonneville Power Administration (projects 1989-098-00 and 1990-055-00). AWW was supported by a postdoctoral fellowship from the National Research Council. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Achord S, 2003, ECOL LETT, V6, P335, DOI 10.1046/j.1461-0248.2003.00438.x; Armstrong JD, 2001, J FISH BIOL, V58, P1524, DOI 10.1111/j.1095-8649.2001.tb02309.x; BARNTHOUSE LW, 1984, BIOSCIENCE, V34, P14, DOI 10.2307/1309420; BEARD TD, 1991, T AM FISH SOC, V120, P711, DOI 10.1577/1548-8659(1991)120<0711:IOSAOS>2.3.CO;2; Beckerman AP, 2002, TRENDS ECOL EVOL, V17, P263, DOI 10.1016/S0169-5347(02)02469-2; Bentzen P, 2001, J HERED, V92, P127, DOI 10.1093/jhered/92.2.127; Berryman AA, 2002, OIKOS, V99, P600, DOI 10.1034/j.1600-0706.2002.12106.x; Bjornn T. C., 1978, COLL FORESTRY WILDLI, V27; BJORNN TC, 1971, T AM FISH SOC, V100, P423, DOI 10.1577/1548-8659(1971)100<423:TASMIT>2.0.CO;2; Bolker B, 2009, ECOL APPL, V19, P588, DOI 10.1890/08-0639.1; Bowersox B. J., 2011, 11103 ID DEP FISH GA; Buhle ER, 2009, BIOL CONSERV, V142, P2449, DOI 10.1016/j.biocon.2009.05.013; Connor WP, 2012, T AM FISH SOC, V141, P1207, DOI 10.1080/00028487.2012.685121; Copeland T., 2009, 0906 ID DEP FISH GAM; Copeland T, 2009, CAN J FISH AQUAT SCI, V66, P1658, DOI 10.1139/F09-110; Crozier LG, 2010, J ANIM ECOL, V79, P342, DOI 10.1111/j.1365-2656.2009.01641.x; Einum S, 2008, J APPL ECOL, V45, P930, DOI 10.1111/j.1365-2664.2008.01464.x; Einum S, 2006, OIKOS, V113, P489, DOI 10.1111/j.2006.0030-1299.14806.x; Foldvik A, 2010, J ANIM ECOL, V79, P501, DOI 10.1111/j.1365-2656.2009.01652.x; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Francis RICC, 1997, CAN J FISH AQUAT SCI, V54, P982, DOI 10.1139/cjfas-54-4-982; Gelman A., 2007, DATA ANAL USING REGR; Gilbert DJ, 1997, CAN J FISH AQUAT SCI, V54, P969, DOI 10.1139/cjfas-54-4-969; Good T. P., 2005, NMFSNWFSC66 NOAA US; Grant JWA, 2005, J FISH BIOL, V67, P100, DOI 10.1111/j.1095-8649.2005.00916.x; Greene CM, 2004, CAN J FISH AQUAT SCI, V61, P590, DOI 10.1139/F04-024; Gresh T, 2000, FISHERIES, V25, P15, DOI 10.1577/1548-8446(2000)025<0015:AEOHAC>2.0.CO;2; HALL CAS, 1988, ECOL MODEL, V43, P5, DOI 10.1016/0304-3800(88)90070-1; Hamann EJ, 2012, ECOLOGY, V93, P733, DOI 10.1890/11-1009.1; Hilborn R, 1997, CAN J FISH AQUAT SCI, V54, P984, DOI 10.1139/cjfas-54-4-984; HILBORN R, 1985, CAN J FISH AQUAT SCI, V42, P718, DOI 10.1139/f85-092; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; Hurst TP, 2007, J FISH BIOL, V71, P315, DOI 10.1111/j.1095-8649.2007.01596.x; Iles TC, 2000, ICES J MAR SCI, V57, P216, DOI 10.1006/jmsc.2000.0646; Isaak DJ, 2006, CAN J FISH AQUAT SCI, V63, P285, DOI 10.1139/F05-214; Kohler AE, 2012, T AM FISH SOC, V141, P802, DOI 10.1080/00028487.2012.676380; KREBS CJ, 1995, WILDLIFE RES, V22, P1, DOI 10.1071/WR9950001; Lady J., 2010, SURPH SURVIVAL PROPO; Liermann M, 1997, CAN J FISH AQUAT SCI, V54, P1976, DOI 10.1139/cjfas-54-9-1976; Lobon-Cervia J, 2007, FUNCT ECOL, V21, P117, DOI 10.1111/j.1365-2435.2006.01204.x; Lobon-Cervia J, 2009, FRESHWATER BIOL, V54, P1692, DOI 10.1111/j.1365-2427.2009.02218.x; Lorenzen K, 2005, PHILOS T ROY SOC B, V360, P171, DOI 10.1098/rstb.2004.1570; Matthews G. M., 1991, STATUS REV SNAKE RIV; Milner NJ, 2003, FISH RES, V62, P111, DOI 10.1016/S0165-7836(02)00157-1; Myers R. A, 2002, HDB FISH BIOL FISHER, V1, P123; Myers RA, 1997, CAN J FISH AQUAT SCI, V54, P978, DOI 10.1139/cjfas-54-4-978; Myers RA, 2001, CAN J FISH AQUAT SCI, V58, P1464, DOI 10.1139/cjfas-58-7-1464; Paulsen CM, 2001, T AM FISH SOC, V130, P347, DOI 10.1577/1548-8659(2001)130<0347:SRBPTS>2.0.CO;2; Peery C. A., 2000, North American Journal of Fisheries Management, V20, P19, DOI 10.1577/1548-8675(2000)020<0019:DOHRCS>2.0.CO;2; Peterman R. M., 1987, AM FISH SOC S, V1, P417; Petrosky CE, 2001, CAN J FISH AQUAT SCI, V58, P1196, DOI 10.1139/cjfas-58-6-1196; Quinn T. J., 1999, QUANTITATIVE FISH DY; R Development Core Team, 2011, R LANG ENV STAT COMP; RAYMOND HL, 1979, T AM FISH SOC, V108, P505, DOI 10.1577/1548-8659(1979)108<505:EODAIO>2.0.CO;2; Richards C., 1989, North American Journal of Fisheries Management, V9, P345, DOI 10.1577/1548-8675(1989)009<0345:DAAOHR>2.3.CO;2; Rinella D. J., 2009, CANADIAN J FISHERIES, V69, P73; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; Sanderson BL, 2009, J N AM BENTHOL SOC, V28, P832, DOI 10.1899/09-072.1; Sekulich P. T., 1980, THESIS U IDAHO MOSCO; Sibly RM, 2005, SCIENCE, V309, P607, DOI 10.1126/science.1110760; Spiegelhalter DJ, 2002, J ROY STAT SOC B, V64, P583, DOI 10.1111/1467-9868.00353; Stamps JA, 2006, ECOL LETT, V9, P1179, DOI 10.1111/j.1461-0248.2006.00972.x; Steinhorst K, 2004, J AGR BIOL ENVIR ST, V9, P284, DOI 10.1198/108571104X3325; Teichert MAK, 2010, J FISH BIOL, V76, P1751, DOI 10.1111/j.1095-8649.2010.02614.x; Thompson William L., 2002, Natural Resource Modeling, V15, P227; Turchin P, 1999, OIKOS, V84, P153, DOI 10.2307/3546876; Utz RM, 2009, CAN J FISH AQUAT SCI, V66, P1072, DOI 10.1139/F09-063; Venditti D. A., 2010, IDAHO SUPPLEMENTATIO, P10; Vincenzi S, 2010, ECOL FRESHW FISH, V19, P338, DOI 10.1111/j.1600-0633.2010.00416.x; Vincenzi S, 2008, OECOLOGIA, V156, P523, DOI 10.1007/s00442-008-1012-3; Vincenzi S, 2012, REV FISH BIOL FISHER, V22, P813, DOI 10.1007/s11160-011-9247-1; Vollestad LA, 2008, OIKOS, V117, P1752, DOI 10.1111/j.1600-0706.2008.16872.x; Walters C. J, 1992, QUANTITATIVE FISHERI; WALTERS CJ, 1993, CAN J FISH AQUAT SCI, V50, P2058, DOI 10.1139/f93-229; Ward DM, 2009, T AM FISH SOC, V138, P135, DOI 10.1577/T08-128.1; WERNER EE, 1993, AM NAT, V142, P242, DOI 10.1086/285537; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Wipfli MS, 2003, T AM FISH SOC, V132, P371, DOI 10.1577/1548-8659(2003)132<0371:MSIFES>2.0.CO;2; Zabel RW, 2004, ECOLOGY, V85, P795, DOI 10.1890/02-0719 79 9 9 3 49 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0906-6691 1600-0633 ECOL FRESHW FISH Ecol. Freshw. Fish OCT 2013 22 4 508 519 10.1111/eff.12046 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 263CC WOS:000327783200002 2019-02-21 J King, EDA; Garratt, M; Brooks, R King, Edith D. Aloise; Garratt, Michael; Brooks, Robert Manipulating reproductive effort leads to changes in female reproductive scheduling but not oxidative stress ECOLOGY AND EVOLUTION English Article Ageing; aging; cost of reproduction; cross-foster; Free Radical Theory of ageing; life history; oxidative damage; postpartum pregnancy; senescence; trade-off SUSTAINED ENERGY-INTAKE; LIFE-HISTORY EVOLUTION; MICE MUS-MUSCULUS; HOUSE MICE; CONCURRENT PREGNANCY; MATERNAL-CARE; LITTER SIZE; TRADE-OFFS; LACTATION; WEIGHT The trade-off between reproductive investment and lifespan is the single most important concept in life-history theory. A variety of sources of evidence support the existence of this trade-off, but the physiological costs of reproduction that underlie this relationship remain poorly understood. The Free Radical Theory of Ageing suggests that oxidative stress, which occurs when there is an imbalance between the production of damaging Reactive Oxygen Species (ROS) and protective antioxidants, may be an important mediator of this trade-off. We sought to test this theory by manipulating the reproductive investment of female mice (Mus musculus domesticus) and measuring the effects on a number of life history and oxidative stress variables. Females with a greater reproductive load showed no consistent increase in oxidative damage above females who had a smaller reproductive load. The groups differed, however, in their food consumption, reproductive scheduling and mean offspring mass. Of particular note, females with a very high reproductive load delayed blastocyst implantation of their second litter, potentially mitigating the costs of energetically costly reproductive periods. Our results highlight that females use strategies to offset particularly costly periods of reproduction and illustrate the absence of a simple relationship between oxidative stress and reproduction. [Brooks, Robert] Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia; [Brooks, Robert] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2052, Australia Brooks, R (reprint author), Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. rob.brooks@unsw.edu.au Brooks, Robert/A-1251-2008 Brooks, Robert/0000-0001-6926-0781 Australian Research Council This research is funded by an Australian Research Council Discovery Grant and Professorial Fellowship to RB. Anderson ME, 1996, FREE RADICALS PRACTI, P213; Beckman KB, 1998, PHYSIOL REV, V78, P547; Bergeron P, 2011, FUNCT ECOL, V25, P1063, DOI 10.1111/j.1365-2435.2011.01868.x; BERRY R J, 1970, Field Studies, V3, P219; Berry R. J., 1981, BIOL HOUSE MOUSE; BIGGERSTAFF S, 1992, PHYSIOL BEHAV, V52, P485, DOI 10.1016/0031-9384(92)90335-Y; BRUCE HM, 1956, J ENDOCRINOL, V14, P19, DOI 10.1677/joe.0.0140019; Cheetham SA, 2009, PHYSIOL BEHAV, V96, P253, DOI 10.1016/j.physbeh.2008.10.005; Costantini D, 2008, ECOL LETT, V11, P1238, DOI 10.1111/j.1461-0248.2008.01246.x; DIMONTE D, 1984, ARCH BIOCHEM BIOPHYS, V235, P343, DOI 10.1016/0003-9861(84)90207-8; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Edward DA, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P137; Fletcher Q. E., 2012, EVOLUTION, V67, P1527; Garratt M, 2013, J EXP BIOL, V216, P2879, DOI 10.1242/jeb.082669; Garratt M, 2012, P ROY SOC B-BIOL SCI, V279, P3121, DOI 10.1098/rspb.2012.0568; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Hamel S, 2010, ECOL LETT, V13, P915, DOI 10.1111/j.1461-0248.2010.01478.x; HARMAN D, 1956, J GERONTOL, V11, P298, DOI 10.1093/geronj/11.3.298; Harshman LG, 2007, TRENDS ECOL EVOL, V22, P80, DOI 10.1016/j.tree.2006.10.008; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Johnson MS, 2001, J EXP BIOL, V204, P1947; Jones DP, 2008, AM J PHYSIOL-CELL PH, V295, pC849, DOI 10.1152/ajpcell.00283.2008; Jones DP, 2006, ANTIOXID REDOX SIGN, V8, P1865, DOI 10.1089/ars.2006.8.1865; KONIG B, 1987, BEHAV ECOL SOCIOBIOL, V20, P1, DOI 10.1007/BF00292161; KONIG B, 1988, J ZOOL, V216, P195; KRACKOW S, 1993, ETHOLOGY, V95, P76; KRACKOW S, 1989, ANIM BEHAV, V37, P177, DOI 10.1016/0003-3472(89)90108-5; Krol E, 2007, J EXP BIOL, V210, P4233, DOI 10.1242/jeb.009779; MANTALENAKIS SJ, 1966, J REPROD FERTIL, V12, P391; Metcalfe NB, 2013, TRENDS ECOL EVOL, V28, P347, DOI 10.1016/j.tree.2013.01.015; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; NORRIS ML, 1981, LAB ANIM, V15, P273, DOI 10.1258/002367781780893858; Nussey DH, 2009, FUNCT ECOL, V23, P809, DOI 10.1111/j.1365-2435.2009.01555.x; Odakowski, 2012, J EXP BIOL, V215, P1799; ORTIZ CL, 1984, AM NAT, V124, P416, DOI 10.1086/284282; OSWALD C, 1990, J MAMMAL, V71, P500, DOI 10.2307/1381788; PERRIGO G, 1987, ANIM BEHAV, V35, P1298, DOI 10.1016/S0003-3472(87)80002-7; PONTIER D, 1989, OECOLOGIA, V80, P390, DOI 10.1007/BF00379041; ROSS C, 1988, J ZOOL, V214, P199, DOI 10.1111/j.1469-7998.1988.tb04717.x; Salmon AB, 2010, FREE RADICAL BIO MED, V48, P642, DOI 10.1016/j.freeradbiomed.2009.12.015; Selman C, 2012, TRENDS ECOL EVOL, V27, P570, DOI 10.1016/j.tree.2012.06.006; Sohal RS, 1996, SCIENCE, V273, P59, DOI 10.1126/science.273.5271.59; Sohal RS, 2002, FREE RADICAL BIO MED, V33, P575, DOI 10.1016/S0891-5849(02)00886-9; Speakman JR, 2008, PHILOS T R SOC B, V363, P375, DOI 10.1098/rstb.2007.2145; Speakman JR, 2010, INTEGR COMP BIOL, V50, P793, DOI 10.1093/icb/icq049; Stearns S, 1992, EVOLUTION LIFE HIST; THOMPSON LJ, 1977, J DAIRY SCI, V60, P126, DOI 10.3168/jds.S0022-0302(77)83838-1; Vasilaki A, 2006, AGING CELL, V5, P109, DOI 10.1111/j.1474-9726.2006.00198.x; Warton DI, 2011, ECOLOGY, V92, P3, DOI 10.1890/10-0340.1; Zera AJ, 2001, ANNU REV ECOL SYST, V32, P95, DOI 10.1146/annurev.ecolsys.32.081501.114006 51 15 16 1 26 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2013 3 12 4161 4171 10.1002/ece3.786 11 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 242ZU WOS:000326286700010 24324867 DOAJ Gold, Green Published 2019-02-21 J Smith, KE; Thatje, S Smith, Kathryn E.; Thatje, Sven The subtle intracapsular survival of the fittest: maternal investment, sibling conflict, or environmental effects? ECOLOGY English Article Buccinum undatum; cannibalism; embryology; life history theory; marine gastropods; maternal investment; nurse egg consumption; resource partitioning; sibling rivalry; temperature OFFSPRING SIZE; OXYGEN AVAILABILITY; DIFFERENT TEMPERATURES; VARIABLE ENVIRONMENTS; EMBRYONIC-DEVELOPMENT; MARINE-INVERTEBRATES; PARENTAL INVESTMENT; ACANTHINA-MONODON; EVOLUTIONARY BETS; HATCHING SIZE Developmental resource partitioning and the consequent offspring size variations are of fundamental importance for marine invertebrates, in both an ecological and evolutionary context. Typically, differences are attributed to maternal investment and the environmental factors determining this; additional variables, such as environmental factors affecting development, are rarely discussed. During intracapsular development, for example, sibling conflict has the potential to affect resource partitioning. Here, we investigate encapsulated development in the marine gastropod Buccinum undatum. We examine the effects of maternal investment and temperature on intracapsular resource partitioning in this species. Reproductive output was positively influenced by maternal investment, but additionally, temperature and sibling conflict significantly affected offspring size, number, and quality during development. Increased temperature led to reduced offspring number, and a combination of high sibling competition and asynchronous early development resulted in a common occurrence of empty embryos, which received no nutrition at all. The proportion of empty embryos increased with both temperature and capsule size. Additionally, a novel example of a risk in sibling conflict was observed; embryos cannibalized by others during early development ingested nurse eggs from inside the consumer, killing it in a Trojan horse scenario. Our results highlight the complexity surrounding offspring fitness. Encapsulation should be considered as significant in determining maternal output. Considering predicted increases in ocean temperatures, this may impact offspring quality and consequently species distribution and abundance. [Smith, Kathryn E.; Thatje, Sven] Univ Southampton, Natl Oceanog Ctr, Southampton SO14 3ZH, Hants, England Smith, KE (reprint author), Florida Inst Technol, 150 West Univ Blvd, Melbourne, FL 32901 USA. kathryn@fit.edu Smith, Kathryn/G-5257-2014 Smith, Kathryn/0000-0002-7240-1490 Total Foundation [Abyss2100]; Malacological Society Thanks are given to Viviers, UK, and Vor Marine Research Center, Iceland, for their help with adult sample collection. Thanks also go to Adam Reed, Alastair Brown, and Andrew Oliphant for help with animal maintenance, and to Andrew Oliphant for helpful discussions on the topic. This work was supported by grants from the Total Foundation (Abyss2100) to S. Thatje and the Malacological Society to K. Smith. We thank two anonymous reviewers for constructive criticism on the draft manuscript. Anger K, 2004, J EXP MAR BIOL ECOL, V306, P217, DOI 10.1016/j.jembe.2004.01.010; Anger K, 2001, CRUSTACEAN ISSUES, V14; Bernardo J, 1996, AM ZOOL, V36, P216; CHAPARRO OR, 1990, MAR ECOL PROG SER, V65, P183, DOI 10.3354/meps065183; CLARKE A, 1992, INVERTEBR REPROD DEV, V22, P175, DOI 10.1080/07924259.1992.9672270; Collin R, 2012, BIOL J LINN SOC, V106, P763, DOI 10.1111/j.1095-8312.2012.01908.x; Crean AJ, 2009, PHILOS T R SOC B, V364, P1087, DOI 10.1098/rstb.2008.0237; Cumplido M, 2011, J MOLLUS STUD, V77, P429, DOI 10.1093/mollus/eyr025; Dziminski MA, 2005, OECOLOGIA, V146, P98, DOI 10.1007/s00442-005-0177-2; Evjemo JO, 2001, AQUACULTURE, V193, P65, DOI 10.1016/S0044-8486(00)00470-1; Fernandez M, 2006, REV CHIL HIST NAT, V79, P155, DOI 10.4067/S0716-078X2006000200002; Fox CW, 2000, ANNU REV ENTOMOL, V45, P341, DOI 10.1146/annurev.ento.45.1.341; GALLARDO CS, 1979, BIOL BULL, V157, P453, DOI 10.2307/1541030; Garcia-Guerrero M, 2003, COMP BIOCHEM PHYS A, V135, P147, DOI 10.1016/S1095-6433(02)00354-9; Gibson G, 1999, MAR BIOL, V134, P743, DOI 10.1007/s002270050591; Gibson G, 2013, J MORPHOL, V274, P11, DOI 10.1002/jmor.20071; Gonzalez KA, 1999, OPHELIA, V51, P77, DOI 10.1080/00785326.1999.10409400; HADFIELD MG, 1989, B MAR SCI, V45, P369; Hughes SL, 2010, TEMPERATURE AIR SEA; JABLONSKI D, 1991, SCIENCE, V252, P1831, DOI 10.1126/science.252.5014.1831; Kamel SJ, 2010, INTEGR COMP BIOL, V50, P619, DOI 10.1093/icb/icq104; Kamel SJ, 2010, TRENDS ECOL EVOL, V25, P442, DOI 10.1016/j.tree.2010.05.008; Kesaniemi JE, 2012, ECOL EVOL, V2, P994, DOI 10.1002/ece3.226; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Koops MA, 2003, EVOL ECOL RES, V5, P29; Krug PJ, 2012, INTEGR COMP BIOL, V52, P161, DOI 10.1093/icb/ics059; Kudo S, 2001, OIKOS, V92, P208, DOI 10.1034/j.1600-0706.2001.920202.x; Lardies MA, 2002, MAR ECOL PROG SER, V239, P139, DOI 10.3354/meps239139; Lawler A., 2009, WHELK BIOL; Marshall DJ, 2006, ECOLOGY, V87, P214, DOI 10.1890/05-0350; Marshall DJ, 2008, ECOLOGY, V89, P2506, DOI 10.1890/07-0267.1; Marshall DJ, 2008, OCEANOGR MAR BIOL, V46, P203, DOI 10.1201/9781420065756.ch5; Marshall DJ, 2008, ADV MAR BIOL, V53, P1, DOI 10.1016/S0065-2881(07)53001-4; MARTEL A, 1986, J EXP MAR BIOL ECOL, V96, P27, DOI 10.1016/0022-0981(86)90011-0; MCGINLEY MA, 1987, AM NAT, V130, P370, DOI 10.1086/284716; Moran AL, 2001, ECOLOGY, V82, P1597, DOI 10.2307/2679803; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; Ojeda JA, 2004, MAR BIOL, V144, P263, DOI 10.1007/s00227-003-1194-5; Oyarzun FX, 2011, INTEGR COMP BIOL, V51, P81, DOI 10.1093/icb/icr009; Parker GA, 2002, PHILOS T R SOC B, V357, P295, DOI 10.1098/rstb.2001.0950; PHILIPPI T, 1989, TRENDS ECOL EVOL, V4, P41, DOI 10.1016/0169-5347(89)90138-9; Portmann A., 1925, Zeitschrift Morph Oekol Berlin, V3, P526, DOI 10.1007/BF00408189; RHYMER JM, 1988, OECOLOGIA, V75, P20, DOI 10.1007/BF00378809; RIVEST BR, 1983, J EXP MAR BIOL ECOL, V69, P217, DOI 10.1016/0022-0981(83)90071-0; SLATKIN M, 1974, NATURE, V250, P704, DOI 10.1038/250704b0; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Smith KE, 2013, J SEA RES, V79, P32, DOI 10.1016/j.seares.2013.01.008; Smith KE, 2013, HELGOLAND MAR RES, V67, P109, DOI 10.1007/s10152-012-0308-1; SPIGHT TM, 1976, OECOLOGIA, V24, P283, DOI 10.1007/BF00381135; Strathmann MF, 2006, PAC SCI, V60, P97, DOI 10.1353/psc.2005.0062; STRATHMANN RR, 1995, AM ZOOL, V35, P426; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; Valentinsson D, 2002, MAR BIOL, V140, P1139, DOI 10.1007/s00227-002-0793-x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838 54 6 6 0 37 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 0012-9658 1939-9170 ECOLOGY Ecology OCT 2013 94 10 2263 2274 10.1890/12-1701.1 12 Ecology Environmental Sciences & Ecology 235CN WOS:000325692900018 24358712 2019-02-21 J Gomez, J; Barboza, FR; Defeo, O Gomez, Julio; Barboza, Francisco R.; Defeo, Omar Environmental drivers defining linkages among life-history traits: mechanistic insights from a semiterrestrial amphipod subjected to macroscale gradients ECOLOGY AND EVOLUTION English Article Environmental gradients; functional linkages; life-history traits; mixed models; phenotypic variability; Talitridae SANDY BEACH MACROFAUNA; EGG SIZE; PHYSIOLOGICAL ECOLOGY; SUPRALITTORAL AMPHIPOD; MARINE-INVERTEBRATES; MORPHODYNAMICS; CRUSTACEA; SALINITY; BIOLOGY; BRASILIENSIS Determining the existence of interconnected responses among life-history traits and identifying underlying environmental drivers are recognized as key goals for understanding the basis of phenotypic variability. We studied potentially interconnected responses among senescence, fecundity, embryos size, weight of brooding females, size at maturity and sex ratio in a semiterrestrial amphipod affected by macroscale gradients in beach morphodynamics and salinity. To this end, multiple modelling processes based on generalized additive mixed models were used to deal with the spatio-temporal structure of the data obtained at 10 beaches during 22months. Salinity was the only nexus among life-history traits, suggesting that this physiological stressor influences the energy balance of organisms. Different salinity scenarios determined shifts in the weight of brooding females and size at maturity, having consequences in the number and size of embryos which in turn affected sex determination and sex ratio at the population level. Our work highlights the importance of analysing field data to find the variables and potential mechanisms that define concerted responses among traits, therefore defining life-history strategies. [Gomez, Julio; Barboza, Francisco R.; Defeo, Omar] UdelaR, Fac Ciencias, Dept Ecol & Evoluc, UNDECIMAR, Montevideo, Uruguay Gomez, J (reprint author), UdelaR, Fac Ciencias, Dept Ecol & Evoluc, UNDECIMAR, Igua 4225, Montevideo, Uruguay. julgofe@fcien.edu.uy Defeo, Omar/0000-0001-8318-528X Fondo Clemente Estable [4034]; Global Environmental Facility [GCP URU 030 GFF]; PEDECIBA PhD programme; Pew Charitable Trusts Financial support provided by Fondo Clemente Estable (4034), Global Environmental Facility (GCP URU 030 GFF), PEDECIBA PhD programme and The Pew Charitable Trusts is acknowledged. Barboza F. R., 2012, PLOS ONE, V7; Brazeiro A, 1996, ESTUAR COAST SHELF S, V42, P523, DOI 10.1006/ecss.1996.0033; BULNHEIM HP, 1991, HELGOLANDER MEERESUN, V45, P381, DOI 10.1007/BF02365527; Defeo O, 2005, MAR ECOL PROG SER, V295, P1, DOI 10.3354/meps295001; Defeo O, 2005, MAR ECOL PROG SER, V293, P143, DOI 10.3354/meps293143; EMERY KO, 1961, LIMNOL OCEANOGR, V6, P90, DOI 10.4319/lo.1961.6.1.0090; Gamble T., 2012, CURR BIOL, V22, P257; Gomez J, 1999, MAR ECOL PROG SER, V182, P209, DOI 10.3354/meps182209; Gomez J, 2012, ESTUAR COAST SHELF S, V98, P84, DOI 10.1016/j.ecss.2011.12.008; Herrick JE, 2002, SOIL SCI SOC AM J, V66, P1320, DOI 10.2136/sssaj2002.1320; HURLEY DE, 1968, AM ZOOL, V8, P327; Isaksson C, 2011, BIOSCIENCE, V61, P194, DOI 10.1525/bio.2011.61.3.5; Johnson WS, 2001, ADV MAR BIOL, V39, P105, DOI 10.1016/S0065-2881(01)39009-0; Joshi J, 2001, ECOL LETT, V4, P536, DOI 10.1046/j.1461-0248.2001.00262.x; Kato Y., 2011, PLOS GENET, V7; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; Lercari D, 2006, ESTUAR COAST SHELF S, V68, P27, DOI 10.1016/k.ecss.2005.12.017; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Marques JC, 2003, ESTUAR COAST SHELF S, V58, P127, DOI 10.1016/S0272-7714(03)00042-8; McLachlan A, 2006, ECOLOGY SANDY SHORES; Moran AL, 2009, BIOL BULL-US, V216, P226; Morritt D, 1998, CAN J ZOOL, V76, P1965, DOI 10.1139/cjz-76-11-1965; Nagaraju GPC, 2011, J EXP BIOL, V214, P3, DOI 10.1242/jeb.047183; Normant M, 2006, J EXP MAR BIOL ECOL, V334, P158, DOI 10.1016/j.jembe.2006.01.022; Pigliucci M., 2001, PHENOTYPIC PLASTICIT; Radder RS, 2009, CURR BIOL, V19, P1102, DOI 10.1016/j.cub.2009.05.027; Ramus AP, 2012, COMP BIOCHEM PHYS A, V161, P159, DOI 10.1016/j.cbpa.2011.10.021; Ricklefs RE, 2002, TRENDS ECOL EVOL, V17, P462, DOI 10.1016/S0169-5347(02)02578-8; Schmidt-Nielsen K, 1997, ANIMAL PHYSL ADAPTAT; SHEADER M, 1983, J MAR BIOL ASSOC UK, V63, P517, DOI 10.1017/S0025315400070855; Sheader M, 1996, MAR BIOL, V124, P519, DOI 10.1007/BF00351033; Short AD, 1999, HDB BEACH SHOREFACE; SPICER JI, 1987, PROC R SOC SER B-BIO, V232, P95, DOI 10.1098/rspb.1987.0063; STEELE DH, 1991, MAR ECOL PROG SER, V78, P49, DOI 10.3354/meps078049; Tibshirani R. J, 1990, GEN ADDITIVE MODELS; TRUCHOT JP, 1990, ANNU REV PHYSIOL, V52, P61, DOI 10.1146/annurev.ph.52.030190.000425; West SA, 2002, HEREDITY, V88, P117, DOI 10.1038/sj/hdy/6800018; Wood S. N., 2011, GAMM4 GEN ADDITIVE M 38 4 4 0 28 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. OCT 2013 3 11 3918 3924 10.1002/ece3.759 7 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 232IF WOS:000325486000021 24198949 DOAJ Gold, Green Published 2019-02-21 J Leggett, HC; Buckling, A; Long, GH; Boots, M Leggett, Helen C.; Buckling, Angus; Long, Grainne H.; Boots, Mike Generalism and the evolution of parasite virulence TRENDS IN ECOLOGY & EVOLUTION English Article PHENOTYPIC PLASTICITY; KIN SELECTION; TRADE-OFF; HOST SPECIALIZATION; MALARIA PARASITES; LOCAL ADAPTATION; ARMS RACES; RED-QUEEN; TRANSMISSION; PATHOGENS The evolution of parasite-imposed host harm (virulence) will be affected by numerous factors, not least the range of hosts that parasites can infect. Here, we consider four ways that parasite host range (generalism) might directly affect observed levels of parasite virulence: costs of generalism, multiplicity of infection, maladaptive virulence, and host availability. Integrating parasite infectivity range with life-history evolution will generate novel general hypotheses for the evolutionary ecology of virulence, as well as explicit predictions about the virulence of emerging diseases resulting from host shifts. [Leggett, Helen C.] Univ Oxford, Dept Zool, Oxford OX1 3PS, England; [Leggett, Helen C.; Buckling, Angus; Boots, Mike] Univ Exeter, Penryn TR10 9EZ, England; [Long, Grainne H.] Univ Cambridge, MRC Epidemiol Unit, Inst Publ Hlth, Addenbrookes Hosp, Cambridge CB2 0QQ, England Leggett, HC (reprint author), Univ Oxford, Dept Zool, S Parks Rd, Oxford OX1 3PS, England. helen.leggett@zoo.ox.ac.uk Long, Grainne/0000-0001-5080-9885 BBSRC; Natural Environment Research Council [NE/K014617/1, NE/F019610/2] We thank Stu West, Sunetra Gupta, Kevin Foster, and Sam Brown for useful discussions; BBSRC for funding; and Samuel Alizon, Sarah Reece, and two anonymous reviewers for comments that improved the manuscript. Abedon ST, 1999, GENET RES, V74, P1, DOI 10.1017/S0016672399003833; Agrawal AA, 2001, SCIENCE, V294, P321, DOI 10.1126/science.1060701; Agudelo-Romero P, 2008, SPAN J AGRIC RES, V6, P160; Alderman DJ, 1996, REV SCI TECH OIE, V15, P603, DOI 10.20506/rst.15.2.943; Alizon S, 2009, J EVOLUTION BIOL, V22, P245, DOI 10.1111/j.1420-9101.2008.01658.x; ANDERSON RM, 1982, PARASITOLOGY, V85, P411, DOI 10.1017/S0031182000055360; ANDERSON RM, 1981, PHILOS T R SOC B, V291, P451, DOI 10.1098/rstb.1981.0005; Antonovics J, 2013, EVOLUTION, V67, P1, DOI 10.1111/j.1558-5646.2012.01793.x; Barrett LG, 2009, NEW PHYTOL, V183, P513, DOI 10.1111/j.1469-8137.2009.02927.x; Bedhomme S, 2012, MOL BIOL EVOL, V29, P1481, DOI 10.1093/molbev/msr314; Benmayor R, 2009, CURR BIOL, V19, P764, DOI 10.1016/j.cub.2009.03.023; Berngruber TW, 2013, PLOS PATHOG, V9, DOI 10.1371/journal.ppat.1003209; Boots M, 1999, P ROY SOC B-BIOL SCI, V266, P1933, DOI 10.1098/rspb.1999.0869; BREMERMANN HJ, 1983, J THEOR BIOL, V100, P411, DOI 10.1016/0022-5193(83)90438-1; Brown SP, 2012, TRENDS MICROBIOL, V20, P336, DOI 10.1016/j.tim.2012.04.005; Buckling A, 2008, HEREDITY, V100, P484, DOI 10.1038/sj.hdy.6801093; Chan WC, 2004, J MED CHEM, V47, P4633, DOI 10.1021/jm0400754; Dybdahl MF, 2003, TRENDS ECOL EVOL, V18, P523, DOI 10.1016/S0169-5347(03)00223-4; Ebert D, 1998, SCIENCE, V282, P1432, DOI 10.1126/science.282.5393.1432; Elliot SL, 2003, ECOLOGY, V84, P2568, DOI 10.1890/02-8013; FLOR HH, 1956, ADV GENET, V8, P29, DOI 10.1016/S0065-2660(08)60498-8; Frank SA, 1996, Q REV BIOL, V71, P37, DOI 10.1086/419267; FRANK SA, 1992, P ROY SOC B-BIOL SCI, V250, P195, DOI 10.1098/rspb.1992.0149; FRANK SA, 1994, P ROY SOC B-BIOL SCI, V258, P153, DOI 10.1098/rspb.1994.0156; Froissart R, 2010, PHILOS T R SOC B, V365, P1907, DOI 10.1098/rstb.2010.0068; FUTUYMA DJ, 1988, ANNU REV ECOL SYST, V19, P207, DOI 10.1146/annurev.es.19.110188.001231; Gandon S, 2004, EVOLUTION, V58, P455, DOI 10.1111/j.0014-3820.2004.tb01669.x; Gandon S, 2002, AM NAT, V159, P658, DOI 10.1086/339993; Garamszegi LZ, 2006, ECOL LETT, V9, P933, DOI 10.1111/j.1461-0248.2006.00936.x; Graham AL, 2008, P NATL ACAD SCI USA, V105, P566, DOI 10.1073/pnas.0707221105; Hall AR, 2011, ECOL LETT, V14, P635, DOI 10.1111/j.1461-0248.2011.01624.x; Hellgren O, 2009, ECOLOGY, V90, P2840, DOI 10.1890/08-1059.1; Hinnebusch BJ, 2005, CURR ISSUES MOL BIOL, V7, P197; Kawecki TJ, 1998, AM NAT, V152, P635, DOI 10.1086/286195; Kirchner JW, 2002, EVOL ECOL RES, V4, P27; Lalic J., 2013, PLOS GENET, V7, P17; Leggett HC, 2013, CURR BIOL, V23, P139, DOI 10.1016/j.cub.2012.11.045; Legros M., 2010, BMC EVOL BIOL, V10, P7; LEVIN S, 1981, AM NAT, V117, P308, DOI 10.1086/283708; Lion S, 2010, ECOL LETT, V13, P1245, DOI 10.1111/j.1461-0248.2010.01516.x; Malpica J.M., 2006, PLOS ONE, V1, P8; MAY RM, 1995, P ROY SOC B-BIOL SCI, V261, P209, DOI 10.1098/rspb.1995.0138; Messenger SL, 1999, P ROY SOC B-BIOL SCI, V266, P397, DOI 10.1098/rspb.1999.0651; Michod RE, 2008, INFECT GENET EVOL, V8, P267, DOI 10.1016/j.meegid.2008.01.002; Mideo N, 2009, TRENDS PARASITOL, V25, P261, DOI 10.1016/j.pt.2009.03.001; Miller MB, 2002, CELL, V110, P303, DOI 10.1016/S0092-8674(02)00829-2; NOWAK MA, 1994, P ROY SOC B-BIOL SCI, V255, P81, DOI 10.1098/rspb.1994.0012; Parrish CR, 2008, MICROBIOL MOL BIOL R, V72, P457, DOI 10.1128/MMBR.00004-08; Pedersen AB, 2007, TRENDS ECOL EVOL, V22, P133, DOI 10.1016/j.tree.2006.11.005; Poulin R., 2007, EVOLUTIONARY ECOLOGY; Poullain V, 2008, EVOLUTION, V62, P1, DOI 10.1111/j.1558-5646.2007.00260.x; Reece SE, 2008, NATURE, V453, P609, DOI 10.1038/nature06954; Regoes RR, 2000, EVOLUTION, V54, P64, DOI 10.1111/j.0014-3820.2000.tb00008.x; Rigaud T, 2010, P ROY SOC B-BIOL SCI, V277, P3693, DOI 10.1098/rspb.2010.1163; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Taylor LH, 1998, EVOLUTION, V52, P583, DOI 10.1111/j.1558-5646.1998.tb01656.x; Tompkins DM, 2003, ECOL LETT, V6, P189, DOI 10.1046/j.1461-0248.2003.00417.x; vanBaalen M, 1995, AM NAT, V146, P881, DOI 10.1086/285830; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Woolhouse MEJ, 2005, TRENDS ECOL EVOL, V20, P238, DOI 10.1016/j.tree.2005.02.009; Woolhouse MEJ, 2001, SCIENCE, V292, P1109, DOI 10.1126/science.1059026 62 38 38 4 153 ELSEVIER SCIENCE LONDON LONDON 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND 0169-5347 TRENDS ECOL EVOL Trends Ecol. Evol. OCT 2013 28 10 592 596 10.1016/j.tree.2013.07.002 5 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 233SG WOS:000325589200007 23968968 2019-02-21 J Keswick, T; Hofmeyr, MD Keswick, Toby; Hofmeyr, Margaretha D. Population ecology of Psammobates oculifer in a semi-arid environment AFRICAN JOURNAL OF HERPETOLOGY English Article Annuli; body condition; capture effort; maturity; sex ratio; tortoise HOMOPUS-SIGNATUS-SIGNATUS; NAMAQUALAND SPECKLED PADLOPER; TORTOISES GOPHERUS-AGASSIZII; LIFE-HISTORY EVOLUTION; DESERT TORTOISES; SMALLEST TORTOISE; SOUTH-AFRICA; LEOPARD TORTOISES; SIZE DIMORPHISM; BODY CONDITION We studied the ecology of Psammobates oculifer over 13 months near Kimberley, South Africa, to ascertain if the population's life history traits conform to chelonian patterns in arid environments. Capture rates were highest in spring and lowest in winter when environmental conditions were respectively most and least favourable for tortoise activity. Body condition did not change from autumn to spring, but reached lower values during the summer drought. Capture effort averaged 5 hours/tortoise, which corresponds closely to that of species with low population densities in arid regions. Population size structure was skewed towards adults, indicative of low recruitment and/or low juvenile survivorship. Females were larger and heavier than males, confirming sexual dimorphism in this species. Body size of cohorts scaled to annuli counts, indicating a close correspondence between body size and age. Telemetered adults deposited one or no growth ring in the year of study; consequently, annuli counts could underestimate adult age. Regression analyses showed that male and female growth rates did not differ, but males matured at a smaller size and younger age than females. The smallest male showing reproductive behaviour had 12 annuli and a shell volume of 157 cm(3), while similar measures for females were 14 annuli and 185 cm(3). The sex ratio of the population did not differ from 1:1 but the bias towards males in spring, and towards females in autumn, indicates that studies limited to particular seasons can misrepresent life history traits of populations. We concluded that the life history of P. oculifer conforms to chelonian patterns in arid regions. [Keswick, Toby; Hofmeyr, Margaretha D.] Univ Western Cape, Dept Biodivers & Conservat Biol, Chelonian Biodivers & Conservat, ZA-7535 Bellville, South Africa Hofmeyr, MD (reprint author), Univ Western Cape, Dept Biodivers & Conservat Biol, Chelonian Biodivers & Conservat, ZA-7535 Bellville, South Africa. mdhofmeyr@uwc.ac.za South African National Research Foundation (NRF) We thank De Beers Consolidated Mines and the Percy Fitzpatrick Institute for allowing us to carry out this study at Benfontein farm. The Northern Cape Department of Nature and Environmental Conservation permitted collection of tortoise and botanical data under permit numbers 011/2005 015/2006, 0032/06 and 0034/06. Eric Herrmann and Fiona Ballantyne both assisted in data collection for the project. South African Weather Services (SAWS) provided us with climate data and the South African National Research Foundation (NRF) provided funding for this project. Aresco MJ, 1999, HERPETOLOGICA, V55, P499; Boycott R.C., 2000, SO AFRICAN TORTOISE; Branch B, 2008, TORTOISES TERRAPINS; Branch W.R., 1984, Amphibia-Reptilia, V5, P43, DOI 10.1163/156853884X00084; Branch W. R., 1988, FIELD GUIDE SNAKES O; Branch WR, 1995, S AFR J ZOOL, V30, P91; BROWN JH, 1995, ECOLOGY, V76, P2028, DOI 10.2307/1941678; BURBIDGE AA, 1981, AUST WILDLIFE RES, V8, P203, DOI 10.1071/WR9810203; Chen TH, 2002, J HERPETOL, V36, P201, DOI 10.1670/0022-1511(2002)036[0201:GPOTYM]2.0.CO;2; Coulson IM, 2001, AFR J ECOL, V39, P383, DOI 10.1046/j.0141-6707.2001.00328.x; Curtin AJ, 2009, J ARID ENVIRON, V73, P463, DOI 10.1016/j.jaridenv.2008.11.011; Davis C, 2011, CLIMATE RISK VULNERA; Freilich JE, 2000, CONSERV BIOL, V14, P1479, DOI 10.1046/j.1523-1739.2000.98360.x; Germano D. J., 1994, P DESERT TORTOISE CO, P93; Germano David J., 1998, Chelonian Conservation and Biology, V3, P123; GERMANO DJ, 1994, CAN J ZOOL, V72, P918, DOI 10.1139/z94-125; GERMANO DJ, 1992, COPEIA, P367, DOI 10.2307/1446197; GIBBONS JW, 1990, HERPETOL MONOGR, V4, P1; Hellgren EC, 2000, ECOLOGY, V81, P1297, DOI 10.1890/0012-9658(2000)081[1297:VITLHD]2.0.CO;2; Henen BT, 1997, ECOLOGY, V78, P283; Heppell SS, 1998, COPEIA, P367, DOI 10.2307/1447430; Hofmeyr MD, 2005, CAN J ZOOL, V83, P1343, DOI 10.1139/Z05-132; HOLM S, 1979, SCAND J STAT, V6, P65; Honegger R.E., 1979, International Zoo Yearbook, V19, P14, DOI 10.1111/j.1748-1090.1979.tb00518.x; Ihlow F, 2012, GLOBAL CHANGE BIOL, V18, P1520, DOI 10.1111/j.1365-2486.2011.02623.x; Iverson JB, 1992, HERPETOL MONOGR, V6, P25, DOI DOI 10.2307/1466960; Keswick T., 2012, THESIS U W CAPE BELV; Klare U, 2010, J WILDLIFE MANAGE, V74, P1030, DOI 10.2193/2009-211; Kuchling G., 1999, REPROD BIOL CHELONIA; Lagarde F, 2001, CAN J ZOOL, V79, P1433, DOI 10.1139/cjz-79-8-1433; Lefebvre J, 2011, HERPETOL CONSERV BIO, V6, P465; Loehr VJT, 2007, J ARID ENVIRON, V71, P337, DOI 10.1016/j.jaridenv.2007.04.011; Loehr VJT, 2007, OECOLOGIA, V153, P479, DOI 10.1007/s00442-007-0738-7; Loehr VJT, 2004, HERPETOLOGICA, V60, P444, DOI 10.1655/03-59; Loehr VJT, 2002, J HERPETOL, V36, P378, DOI 10.1670/0022-1511(2002)036[0378:PCAAPO]2.0.CO;2; Mason MC, 2000, AFR J ECOL, V38, P147, DOI 10.1046/j.1365-2028.2000.00231.x; McMaster MK, 2006, J HERPETOL, V40, P495, DOI 10.1670/0022-1511(2006)40[495:PSADOL]2.0.CO;2; Medica PA, 2012, J HERPETOL, V46, P213, DOI 10.1670/11-327; NAGY KA, 1986, HERPETOLOGICA, V42, P73; Pike DA, 2006, HERPETOLOGICA, V62, P125, DOI 10.1655/05-49.1; Pike DA, 2008, ECOLOGY, V89, P607, DOI 10.1890/06-2162.1; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Rhodin A. G. J., 2011, TURTLES TROUBLE WORL; Rodda GH, 2012, REPTILE BIODIVERSITY: STANDARD METHODS FOR INVENTORY AND MONITORING, P283; Schulze R. E., 1997, P21; Scott R, 2012, FUNCT ECOL, V26, P227, DOI 10.1111/j.1365-2435.2011.01915.x; SHINE R, 1995, OIKOS, V72, P343, DOI 10.2307/3546119; Shine R, 2001, EVOLUTION, V55, P598, DOI 10.1554/0014-3820(2001)055[0598:BITSDE]2.0.CO;2; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1983, OIKOS, V41, P173, DOI 10.2307/3544261; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Tuljapurkar S, 2009, PHILOS T R SOC B, V364, P1499, DOI 10.1098/rstb.2009.0021; VANHEEZIK YM, 1994, J HERPETOL, V28, P447; Walker R.C.J., 2007, AFRICAN J ECOLOGY, V46, P67; Wilbur H.M., 1988, Biology of Reptilia, V16, P387; ZAR J, 2001, BIOSTATISTICAL ANAL; Zug G. R., 1991, 20 SOC STUD AMPH REP, P5 57 1 1 0 6 TAYLOR & FRANCIS LTD ABINGDON 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND 2156-4574 2153-3660 AFR J HERPETOL Afr. J. Herpetol. OCT 1 2013 62 2 63 77 10.1080/21564574.2013.786761 15 Zoology Zoology 226TP WOS:000325059200001 2019-02-21 J Renzaglia, KS; Whittier, DP Renzaglia, Karen S.; Whittier, Dean P. Microanatomy of the placenta of Lycopodium obscurum: novel design in an underground embryo ANNALS OF BOTANY English Article Embryology; evolution; foot; sub-terranean gametophyte; mycoheterotrophy; matrotrophy; lycophytes; Lycopodium obscurum; ultrastructure; transfer cell; wall ingrowths; gametophytesporophyte junction GAMETOPHYTE-SPOROPHYTE JUNCTION; LAND PLANTS; BRYOLOGICAL PERSPECTIVE; CERATOPTERIS-RICHARDII Long-lived underground populations of mycoheterotrophic gametophytes and attached sporophytes at various developmental stages occur in lycophytes. Young underground sporophytes obtain carbon solely from the gametophyte and establish nutritional independence only after reaching the soil surface, which may take several years. This prolonged period of matrotrophy exceeds that of bryophytes. The foot is massive and provides the lifeline for sporophyte establishment, yet the fine structure of the placental region is unexplored in lycophytes with underground gametophytes. Gametophytes with attached embryos/young sporophytes of Lycopodium obscurum were collected in nature, processed and examined by light and transmission electron microscopy. Three ultrastructurally distinct regions were identified within a single foot of a sporophyte emerging from the soil. Young foot regions actively divide, and have direct contact with and show little differentiation from gametophyte cells. In unlobed foot areas, cells in both generations exhibit polarity in content and indicate unidirectional transport of carbon reserves into the foot toward the developing shoot and root. The foot has inconspicuous wall ingrowths. Highly lobed foot regions contain peripheral transfer cells with prominent wall ingrowths that absorb nutrients from degenerating gametophyte cells. Variability within a single placenta is consistent with an invasive and long-lived foot. The late appearance of wall ingrowths in transfer cells reflects this dynamic ever-growing embryo. Placental features in lycophytes are related to the unique reorientation of all embryonic regions during development. Small placentas with wall ingrowths in both generations characterize ephemeral embryos in green gametophytes, while short-lived and repositioning embryos of heterosporous taxa are devoid of transfer cells. Transfer cell evolution across embryophytes is riddled with homoplasy and reflects diverse patterns of embryology. Scrutiny of placental evolution must include consideration of nutritional status and life history strategies of the gametophyte and young sporophyte. [Renzaglia, Karen S.] So Illinois Univ, Dept Plant Biol, Carbondale, IL 62901 USA; [Whittier, Dean P.] Vanderbilt Univ, Dept Biol Sci, Nashville, TN 37235 USA Renzaglia, KS (reprint author), So Illinois Univ, Dept Plant Biol, Carbondale, IL 62901 USA. renzaglia@siu.edu National Science Foundation [DEB-0322664, DEB-0423625, DEB-052177] We thank Lewis Melville from the laboratory of R. L. Peterson at the University of Guelph for technical assistance, and Gabriel Johnson and Jeff Duckett for comments on the manuscript. This work was supported by the National Science Foundation (grants DEB-0322664, DEB-0423625 and DEB-052177 to K.S.R.). BIERHORST D, 1971, MORPHOLOGY VASCULAR; BRUCE JG, 1979, AM FERN J, V69, P33, DOI 10.2307/1546892; BRUCE JG, 1979, AM J BOT, V66, P1138, DOI 10.2307/2442212; Bruchmann H., 1912, FLORA, V104, P180; Bruchmann H., 1898, PROTHALLIEN KEIM PFL; DUCKETT JG, 1992, CAN J BOT, V70, P58, DOI 10.1139/b92-008; Duckett JG, 2003, ANN BOT-LONDON, V92, P513, DOI 10.1093/aob/mcg160; FREY W, 1994, NOVA HEDWIGIA, V59, P21; Frey W, 2001, FLORA, V196, P431, DOI 10.1016/S0367-2530(17)30085-3; Gifford E. M. E. M, 1989, MORPHOLOGY EVOLUTION; Hilger HH, 2005, PHYTON-ANN REI BOT A, V45, P1; Hilger HH, 2002, PHYTON-ANN REI BOT A, V42, P149; Johnson GP, 2008, J PLANT RES, V121, P581, DOI 10.1007/s10265-008-0187-3; Johnson GP, 2009, PLANT SYST EVOL, V283, P149, DOI 10.1007/s00606-009-0222-4; La Motte C, 1937, ANN BOT-LONDON, V1, P695; Lang WH, 1899, ANN BOT, V13, P279; LIGRONE R, 1993, ADV BOT RES, V19, P231, DOI 10.1016/S0065-2296(08)60206-2; Ligrone R, 2012, ANN BOT-LONDON, V110, P935, DOI 10.1093/aob/mcs176; Ligrone R, 2012, ANN BOT-LONDON, V109, P851, DOI 10.1093/aob/mcs017; Peterson RL, 1990, CAN J BOT, V69, P222; RENZAGLIA KS, 1995, AM BIOL TEACH, V57, P438, DOI 10.2307/4450034 21 0 1 0 16 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 ANN BOT-LONDON Ann. Bot. OCT 2013 112 6 1083 1088 10.1093/aob/mct178 6 Plant Sciences Plant Sciences 227YX WOS:000325152700011 23979904 Green Published, Bronze 2019-02-21 J Bubley, WJ; Sulikowski, JA; Koester, DM; Tsang, PCW Bubley, Walter J.; Sulikowski, James A.; Koester, David M.; Tsang, Paul C. W. Using a multi-parameter approach to reassess maturity of spiny dogfish, Squalus acanthias, following increased fishing pressure in the Western North Atlantic FISHERIES RESEARCH English Article Histology; Morphology; Physiology; Reproduction; Steroid hormones LIFE-HISTORY EVOLUTION; REPRODUCTIVE-BIOLOGY; LEUCORAJA-OCELLATA; STEROID-HORMONES; WINTER SKATE; SHARK; AGE; MANAGEMENT; FISHERIES; STOCKS Age at size was linked to sexual maturity in 147 male and 249 female spiny dogfish, Squalus acanthias, from the Gulf of Maine using three criteria: (1) gross reproductive morphology, (2) histology and (3) steroid hormone concentrations. Collected specimens ranged from 25 cm to 102 cm stretch total length, and 0 to 24 years old. Maturity ogives for males, based on data gathered for clasper length, circulating testosterone concentrations and proportion of tissue with mature spermatocysts within the testes, predicted that 50% maturity occurred at a total length of 63.1 mm and 7.5 years of age. For females, maturity gives, based on data gathered for embryo presence, ovary mass, shell gland mass, follicle size and circulating estradiol concentrations, predicted that 50% maturity occurred at a total length of 76.9 cm and 9.1 years of age. These maturity parameters for females decreased by over 7 cm and 3 years from those previously reported two decades ago for S. acanthias in the Western North Atlantic. While the causes for the decrease in maturity parameters could not be determined, as this was beyond the scope of the current study, these changes occurred over a period of increased fishing pressure. (C) 2013 Elsevier B.V. All rights reserved. [Bubley, Walter J.; Tsang, Paul C. W.] Univ New Hampshire, Mol Cellular & Biomed Sci Dept, Durham, NH 03824 USA; [Sulikowski, James A.] Univ New England, Dept Marine Sci, Biddeford, ME 04005 USA; [Koester, David M.] Univ New England, Dept Biol, Biddeford, ME 04005 USA Bubley, WJ (reprint author), Texas Parks & Wildlife Dept, Coastal Fisheries Div, POB 688, Port Oconnor, TX 77982 USA. walter.bubley@tpwd.state.tx.us National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration [NA060AR4170109] We thank the captains and crew for collection of S. acanthias conducted on the F/V "Mystique Lady", F/V "Lady Victoria", and on the National Oceanic and Atmospheric Administration/National Marine Fisheries Service bottom trawl surveys. We thank E. Nuber, T. Boag, and L. Carleton for histological processing. This study was made possible by a grant to PCWT and JAS from the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and Atmospheric Administration grant NA060AR4170109 to the N.H. Sea Grant College Program. ASMFC (Atlantic States Marine Fisheries Commission), 2002, 40 ASMFC; Bigelow HB, 1953, FISH B FISH WILDLIFE, V53, P577; Bubley WJ, 2012, J FISH BIOL, V80, P1300, DOI 10.1111/j.1095-8649.2011.03171.x; Burgess G. H., 2002, BIGELOW SCHROEDERS F, P48; BUXTON CD, 1993, ENVIRON BIOL FISH, V36, P47, DOI 10.1007/BF00005979; CALLARD GV, 1992, J EXP ZOOL, V261, P132, DOI 10.1002/jez.1402610204; Campana SE, 2009, BIOLOGY AND MANAGEMENT OF DOGFISH SHARKS, P195; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; Conrath C.L., 2005, MANAGEMENT TECHNIQUE; Conrath CL, 2002, ENVIRON BIOL FISH, V64, P367, DOI 10.1023/A:1016117415855; CROSS JN, 1988, FISH B-NOAA, V86, P691; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Die DJ, 1997, FISH RES, V32, P69, DOI 10.1016/S0165-7836(97)00029-5; Fenberg PB, 2008, MOL ECOL, V17, P209, DOI 10.1111/j.1365-294X.2007.03522.x; Festa-Bianchet M, 2003, ANIMAL BEHAVIOR AND WILDLIFE CONSERVATION, P191; GAY VL, 1978, ARCH ANDROLOGY, V1, P257, DOI 10.3109/01485017808988345; Gelsleichter J, 2002, FISH PHYSIOL BIOCHEM, V26, P389, DOI 10.1023/B:FISH.0000009292.70958.65; GIBORI G, 1977, ENDOCRINOLOGY, V100, P1483, DOI 10.1210/endo-100-6-1483; HEALEY MC, 1975, J FISH RES BOARD CAN, V32, P427, DOI 10.1139/f75-053; Heino M, 1998, CAN J FISH AQUAT SCI, V55, P1971, DOI 10.1139/cjfas-55-8-1971; HISAW FL, 1947, BIOL BULL, V92, P187, DOI 10.2307/1538305; JENSEN AC, 1965, FISH B, V65, P527; KOOB TJ, 1986, BIOL REPROD, V35, P267, DOI 10.1095/biolreprod35.2.267; KORENMAN SG, 1974, J CLIN ENDOCR METAB, V38, P718, DOI 10.1210/jcem-38-4-718; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Marques da Silva H.G., 1993, THESIS U MASSACHUSET; Maruska KP, 1996, J EXP ZOOL, V276, P219, DOI 10.1002/(SICI)1097-010X(19961015)276:3<219::AID-JEZ6>3.0.CO;2-Q; Musick JA, 1999, AM FISH S S, V23, P1; NAMMACK MF, 1985, T AM FISH SOC, V114, P367, DOI 10.1577/1548-8659(1985)114<367:LHOSDO>2.0.CO;2; NEFSC, 1998, 26 NE REG STOCK ASS; PARSONS GR, 1992, J EXP ZOOL, V261, P173, DOI 10.1002/jez.1402610208; Pauly D, 1998, REV FISH BIOL FISHER, V8, P307, DOI 10.1023/A:1008863215253; Rago PJ, 1998, FISH RES, V39, P165, DOI 10.1016/S0165-7836(98)00181-7; RASMUSSEN LEL, 1993, ENVIRON BIOL FISH, V38, P167, DOI 10.1007/BF00842913; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; RICKER WE, 1981, CAN J FISH AQUAT SCI, V38, P1636, DOI 10.1139/f81-213; RIJNSDORP AD, 1993, OECOLOGIA, V96, P391, DOI 10.1007/BF00317510; Rose KA, 2001, FISH FISH, V2, P293, DOI 10.1046/j.1467-2960.2001.00056.x; ROWELL CA, 1993, EXPLOITATION EVOLVIN, P44; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sminkey TR, 1995, COPEIA, P871; Sosebee Katherine A., 2005, Journal of Northwest Atlantic Fishery Science, V35, P115; Stergiou KI, 2002, FISH RES, V55, P1; Stevens JD, 2000, ICES J MAR SCI, V57, P476, DOI 10.1006/jmsc.2000.0724; Stokes K, 2000, MAR ECOL PROG SER, V208, P307; Sulikowski JA, 2005, ENVIRON BIOL FISH, V72, P429, DOI 10.1007/s10641-004-2866-9; Sulikowski JA, 2004, MAR BIOL, V144, P845, DOI 10.1007/s00227-003-1264-8; Sulikowski JA, 2007, ENVIRON BIOL FISH, V80, P285, DOI 10.1007/s10641-007-9257-y; Taylor IG, 2009, CAN J FISH AQUAT SCI, V66, P351, DOI 10.1139/F08-211; TESHIMA K, 1981, Journal of National Fisheries University, V29, P113; Trinnie FI, 2009, MAR FRESHWATER RES, V60, P845, DOI 10.1071/MF08165; TSANG PCW, 1987, GEN COMP ENDOCR, V66, P182, DOI 10.1016/0016-6480(87)90266-8; Walker TI, 2007, MAR FRESHWATER RES, V58, P67, DOI 10.1071/MF06074; Walker Terence I., 2005, P81; Walker TI, 1998, MAR FRESHWATER RES, V49, P553, DOI 10.1071/MF98017; Zwanenburg KCT, 2000, ICES J MAR SCI, V57, P503, DOI 10.1006/jmsc.2000.0744 57 9 10 2 32 ELSEVIER SCIENCE BV AMSTERDAM PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS 0165-7836 1872-6763 FISH RES Fish Res. OCT 2013 147 202 212 10.1016/j.fishres.2013.06.004 11 Fisheries Fisheries 228MW WOS:000325191900023 2019-02-21 J Voss, MA; Cooper, CB Voss, Margaret A.; Cooper, Caren B. Solar noon and tactile cues synergistically regulate clutch size: a new approach to investigations of avian life-history theory IBIS English Editorial Material CLOCK GENE-EXPRESSION; LUTEINIZING-HORMONE; GALLUS-DOMESTICUS; PREMAMMILLARY NUCLEUS; JAPANESE-QUAIL; TRADE-OFFS; BIRDS; HYPOTHALAMUS; REPRODUCTION; HEN [Voss, Margaret A.] Penn State Univ, Behrend Coll, Sch Sci, Erie, PA 16563 USA; [Cooper, Caren B.] Cornell Lab Ornithol, Ithaca, NY 14850 USA Voss, MA (reprint author), Penn State Univ, Behrend Coll, Sch Sci, 4205 Coll Dr, Erie, PA 16563 USA. mav11@psu.edu Voss, Margaret/H-6720-2016 Voss, Margaret/0000-0002-7969-4871 Aschoff J., 1980, P INT ORNITHOL C, V17, P113; Ball GF, 2007, ENDOCRINOLOGY, V148, P3029, DOI 10.1210/en.2007-0570; BEUKEBOOM L, 1988, ORNIS SCAND, V19, P41, DOI 10.2307/3676526; BHATTI BM, 1978, BRIT POULTRY SCI, V19, P365, DOI 10.1080/00071667808416488; CHARNOV EL, 1974, IBIS, V116, P217, DOI 10.1111/j.1474-919X.1974.tb00241.x; Cooper CB, 2009, CONDOR, V111, P752, DOI 10.1525/cond.2009.090061; CRICK HQP, 1993, J ANIM ECOL, V62, P263, DOI 10.2307/5357; Dawson A, 2008, PHILOS T R SOC B, V363, P1621, DOI 10.1098/rstb.2007.0004; ETCHES RJ, 1984, J EXP ZOOL, V232, P501, DOI 10.1002/jez.1402320317; FARNER DS, 1964, AM NAT, V98, P375, DOI 10.1086/282333; Fraps R. M., 1955, PROGR PHYSL FARM ANI, P661; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; Gill SA, 2003, J FIELD ORNITHOL, V74, P31, DOI 10.1648/0273-8570-74.1.31; Hamner W. M., 1964, NATURE, V205, P1400; HAMNER WM, 1963, SCIENCE, V142, P1294, DOI 10.1126/science.142.3597.1294; HAYWOOD S, 1993, AUK, V110, P778, DOI 10.2307/4088633; HAYWOOD S, 1993, IBIS, V135, P79, DOI 10.1111/j.1474-919X.1993.tb02812.x; HAYWOOD S, 1993, Q REV BIOL, V68, P33, DOI 10.1086/417910; Haywood S, 2013, IBIS, V155, P714, DOI 10.1111/ibi.12086; HOCHACHKA W, 1990, ECOLOGY, V71, P1279, DOI 10.2307/1938265; Houdelier C, 2007, CHRONOBIOL INT, V24, P235, DOI 10.1080/07420520701283701; JOHNSON AL, 1980, BIOL REPROD, V23, P386, DOI 10.1095/biolreprod23.2.386; JOHNSON PA, 1985, GEN COMP ENDOCR, V58, P478, DOI 10.1016/0016-6480(85)90122-4; Johnston SA, 2007, BRIT POULTRY SCI, V48, P224, DOI 10.1080/00071660701227493; Kang SW, 2010, NEUROSCIENCE, V170, P200, DOI 10.1016/j.neuroscience.2010.06.082; KENNEDY ED, 1991, CONDOR, V93, P106, DOI 10.2307/1368612; KLOMP H, 1970, ARDEA, V58, P1; Leclerc B, 2010, J NEUROENDOCRINOL, V22, P119, DOI 10.1111/j.1365-2826.2009.01942.x; McMaster DG, 1999, AUK, V116, P236, DOI 10.2307/4089472; MORRIS DW, 1986, EVOLUTION, V40, P169, DOI 10.1111/j.1558-5646.1986.tb05728.x; NICE MARGARET M., 1948, WILSON BULL, V60, P139; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Silverin B, 2008, HORM BEHAV, V54, P60, DOI 10.1016/j.yhbeh.2008.01.015; Sinervo B, 1998, OIKOS, V83, P432, DOI 10.2307/3546671; Skutch A. F., 1952, Ibis, V94, P49, DOI 10.1111/j.1474-919X.1952.tb01787.x; SLAUGH BT, 1988, THERIOGENOLOGY, V30, P291, DOI 10.1016/0093-691X(88)90178-1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; TEWARY PD, 1984, PHYSIOL ZOOL, V57, P563, DOI 10.1086/physzool.57.5.30163949; Turek R. W., 1974, J COMP PHYSL, V92, P59; Underwood H., 1997, AM J PHYSIOL, V272, P172; Wingfield JC, 2003, GEN COMP ENDOCR, V131, P143, DOI 10.1016/S0016-6480(02)00648-2; Yasuo S, 2004, ENDOCRINOLOGY, V145, P1612, DOI 10.1210/en.2003-1285; Yasuo S, 2003, ENDOCRINOLOGY, V144, P3742, DOI 10.1210/en.2003-0435; Yoshimura T, 2003, NATURE, V426, P178, DOI 10.1038/nature02117 46 1 1 0 19 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0019-1019 IBIS Ibis OCT 2013 155 4 709 713 10.1111/ibi.12098 5 Ornithology Zoology 219XE WOS:000324544200001 Bronze 2019-02-21 J Hughes, AL Hughes, Austin L. Indices of Anseriform body shape based on the relative size of major skeletal elements and their relationship to reproductive effort IBIS English Article Anseriformes; body shape; clutch size; morphometrics; relative clutch mass OPTIMAL CLUTCH SIZE; LIFE-HISTORY EVOLUTION; NUTRIENT RESERVES; NATURAL-SELECTION; MORPHOLOGICAL EVOLUTION; SEXUAL SELECTION; NEST PARASITISM; EGG SIZE; BIRDS; LIZARDS To assess whether relative clutch mass (RCM) in Anseriformes (wildfowl or waterfowl) is constrained by body shape, principal components (PCs) of size-adjusted measurements of five major skeletal elements of adult males and females of 60 species of Anseriformes provided indices of body shape. PC1 accounted for 69.8% of the variance and contrasted anterior elements (cranium and sternum) to posterior elements (synsacrum, femur and tibiotarsus). PC1 scores were high in species with a duck-like' body shape and low in those with a goose-like' body shape. Over the phylogeny of Anseriformes, decreased PC1 scores were associated with feeding on land. PC2 accounted for 18.6% of the variance and contrasted core elements (sternum and synsacrum) with peripheral elements (cranium, femur and tibiotarsus). High PC2 scores were associated with dependence on animal food, particularly in diving species. PC3 accounted for 7.7% of the variance and reflected mainly the relative size of the femur, which was low in diving species. Controlling statistically for phylogenetically independent contrasts in female body shape, there was a significant positive partial correlation between RCM and PC1, suggesting that independent of body size, body shape imposes constraints on reproductive effort in Anseriformes. The results suggest that models of the evolution of reproductive effort in this order, and perhaps in other orders, of birds should control for the effects of body shape. Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA Hughes, AL (reprint author), Univ S Carolina, Dept Biol Sci, Columbia, SC 29208 USA. austin@biol.sc.edu ANKNEY CD, 1984, AUK, V101, P361; ANKNEY CD, 1988, CONDOR, V90, P459, DOI 10.2307/1368574; ANKNEY CD, 1978, AUK, V95, P459; ANKNEY CD, 1991, CONDOR, V93, P1029, DOI 10.2307/3247743; Baumel J.J., 1993, HDB AVIAN ANATOMY NO; BELL G, 1980, AM NAT, V116, P45, DOI 10.1086/283611; Bergmann PJ, 2010, EVOLUTION, V64, P1569, DOI 10.1111/j.1558-5646.2009.00935.x; CABANA G, 1982, AM NAT, V120, P17, DOI 10.1086/283966; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Christians JK, 2000, FUNCT ECOL, V14, P497, DOI 10.1046/j.1365-2435.2000.00444.x; CLENCH MH, 1995, WILSON BULL, V107, P93; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; CUELLAR O, 1984, AM MIDL NAT, V111, P242, DOI 10.2307/2425319; DARROCH JN, 1985, BIOMETRIKA, V72, P241, DOI 10.2307/2336077; DELHOYO J. D, 1992, HDB BIRDS WORLD, V1; DRENT RH, 1980, ARDEA, V68, P225; Drovetski SV, 2006, J EVOLUTION BIOL, V19, P1083, DOI 10.1111/j.1420-9101.2006.01097.x; Du WG, 2005, BIOL LETTERS, V1, P98, DOI 10.1016/rsbl.2004.0268; Dunning J., 2008, CRC HDB AVIAN BODY M; Duprez D, 1996, MECH DEVELOP, V57, P145, DOI 10.1016/0925-4773(96)00540-0; Fasola M, 1998, ETHOL ECOL EVOL, V10, P33, DOI 10.1080/08927014.1998.9522869; Figuerola J, 2000, FUNCT ECOL, V14, P701, DOI 10.1046/j.1365-2435.2000.00474.x; GADGIL M, 1970, American Naturalist, V104, P1, DOI 10.1086/282637; GARLAND T, 1992, SYST BIOL, V41, P18, DOI 10.2307/2992503; GARLAND T, 1993, SYST BIOL, V42, P265, DOI 10.2307/2992464; GODFRAY HCJ, 1991, ANNU REV ECOL SYST, V22, P409, DOI 10.1146/annurev.es.22.110191.002205; Gonzalez J, 2009, J ZOOL, V279, P310, DOI 10.1111/j.1469-7998.2009.00622.x; Goodman BA, 2009, EVOLUTION, V63, P1279, DOI 10.1111/j.1558-5646.2009.00621.x; Harmon LJ, 2010, EVOLUTION, V64, P2385, DOI 10.1111/j.1558-5646.2010.01025.x; HILLS S, 1980, AM ZOOL, V20, P774; Hinic-Frlog S, 2010, J EVOLUTION BIOL, V23, P372, DOI 10.1111/j.1420-9101.2009.01909.x; HIRSHFIELD MF, 1975, P NATL ACAD SCI USA, V72, P2227, DOI 10.1073/pnas.72.6.2227; Hughes AL, 2013, EVOL BIOL, V40, P92, DOI 10.1007/s11692-012-9188-1; Jetz W, 2008, PLOS BIOL, V6, P2650, DOI 10.1371/journal.pbio.0060303; JOHNSGARD P A, 1973, Wildfowl, V24, P144; Jungers WL, 1995, YEARB PHYS ANTHROPOL, V38, P137; Krapu Gary L., 1992, P1; KRAPU GL, 1981, AUK, V98, P29; Kruger O., 2007, REPROD BIOL PHYLOGEN, P327; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1967, WILDFOWL TRUST ANNU, V18, P125; Lack D, 1968, ECOLOGICAL ADAPTATIO; Livezey BC, 1997, ANN CARNEGIE MUS, V66, P457; Lovvorn JR, 2001, J EXP BIOL, V204, P1547; Lyon BE, 1998, NATURE, V392, P380, DOI 10.1038/32878; MACLEAN GL, 1972, AUK, V89, P299, DOI 10.2307/4084208; Maddison W.P., 2011, MESQUITE MODULAR SYS; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Marugan-Lobon J, 2006, ZOOLOGY, V109, P217, DOI 10.1016/j.zool.2006.03.005; Monaghan P, 1997, TRENDS ECOL EVOL, V12, P270, DOI 10.1016/S0169-5347(97)01094-X; MOSIMANN JE, 1970, J AM STAT ASSOC, V65, P930, DOI 10.2307/2284599; MOSS WW, 1970, SCIENCE, V168, P1000, DOI 10.1126/science.168.3934.1000; PRICE T, 1989, AM NAT, V134, P950, DOI 10.1086/285023; Raikow R. J., 1970, U CALIF PUBL ZOOL, V94, P1; Reynolds JD, 1997, BEHAV ECOL, V8, P126, DOI 10.1093/beheco/8.2.126; RICKLEFS RE, 1977, AM NAT, V111, P453, DOI 10.1086/283179; ROHWER FC, 1988, AUK, V105, P161; Rohwer Frank C., 1992, P486; RYDER JP, 1970, WILSON BULL, V82, P5; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Sievwright H, 2012, ZOOL J LINN SOC-LOND, V165, P390, DOI 10.1111/j.1096-3642.2012.00818.x; Skutch A. F., 1985, ORNITHOLOGICAL MONOG, V36, P575, DOI DOI 10.2307/40168306; Slagsvold T., 1982, ECOLOGY, V63, P945; Stearns S, 1992, EVOLUTION LIFE HIST; TUOMI J, 1983, AM ZOOL, V23, P25; Vanderwerf F., 1992, ECOLOGY, V73, P1699; VITT LJ, 1978, AM NAT, V112, P595, DOI 10.1086/283300; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Winkler D.W., 1983, Current Ornithology, V1, P33; Wu P, 2006, DEV DYNAM, V235, P1400, DOI 10.1002/dvdy.20825; WYLES JS, 1983, P NATL ACAD SCI-BIOL, V80, P4394, DOI 10.1073/pnas.80.14.4394; Yom-Tov Y, 2001, IBIS, V143, P133, DOI 10.1111/j.1474-919X.2001.tb04177.x 74 4 4 0 13 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0019-1019 IBIS Ibis OCT 2013 155 4 835 846 10.1111/ibi.12087 12 Ornithology Zoology 219XE WOS:000324544200012 2019-02-21 J Muths, E; Scherer, RD; Bosch, J Muths, Erin; Scherer, Rick D.; Bosch, Jaime Evidence for plasticity in the frequency of skipped breeding opportunities in common toads POPULATION ECOLOGY English Article Bufo bufo; Capture-recapture; Life history; Temperate zone; Temporary emigration CAPTURE-RECAPTURE DATA; TEMPORARY EMIGRATION; GEOGRAPHIC-VARIATION; BUFO-BUFO; SURVIVAL; POPULATIONS; REPRODUCTION; FROG; SALAMANDER; ANIMALS Breeding is limited by energetic or environmental constraints and long-lived species sometimes skip breeding opportunities. Environmental conditions may vary considerably across the geographic and elevational range of a species and species that can respond through variation in life history strategies are likely to maintain populations at the extremes of their ranges. The decision to skip breeding enables animals to adjust life history to circumstances, and plasticity in behavior allows implementation of adjustments. Elevational patterns suggest that breeding may be limited physiologically at high elevations (e.g., greater probability of skipped breeding; resources and environmental conditions more variable) in contrast to low elevations (probability of skipping breeding lower; resources and environmental conditions more predictable). We estimated the probabilities of survival and skipped breeding in a high-elevation population of common toads and compared estimates to existing data for common toads at low elevations, and to another toad species inhabiting a similar high elevation environment. Female common toads at high elevations tend to have high probabilities of skipping breeding and survival relative to data for common toads at low elevations, and appear to use a similar strategy of skipping breeding in response to similar environmental constraints as other toads at high elevations. We provide evidence of variability in this aspect of life history for common toads. Understanding variation in life history within widely distributed species is critical. Knowing that certain life history strategies are employed on a continuum informs conservation efforts, especially as impacts of climate change are likely to be different depending on elevation. [Muths, Erin] US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA; [Scherer, Rick D.] Colorado State Univ, Dept Fish Wildlife & Conservat Biol, Ft Collins, CO 80523 USA; [Bosch, Jaime] CSIC, Museo Nacl Ciencias Nat, E-28006 Madrid, Spain Muths, E (reprint author), US Geol Survey, Ft Collins Sci Ctr, Ft Collins, CO 80526 USA. muthse@usgs.gov Bosch, Jaime/H-3042-2011 Bosch, Jaime/0000-0002-0099-7934 Fundacion General CSIC; USGS Amphibian Research and Monitoring Initiative (ARMI) We thank Penalara Natural Park, and A. Diaz-Guerra, S. Fernandez-Beaskoetxea, B. Martin-Bayer, O. Quiroga, and M. Beracoechea for fieldwork. Funding was provided by Fundacion General CSIC and USGS Amphibian Research and Monitoring Initiative (ARMI). Animal handling procedures approved: Consejeria de Medio Ambiente, Comunidad Autonoma de Madrid, Spain. L. Bailey provided useful and much appreciated comments on an earlier draft of the manuscript. This is contribution no. 444 of the USGS Amphibian Research and Monitoring Initiative. Use of trade, product, or firm names descriptive and does not imply endorsement by the US Government. Anholt BR, 2003, ECOLOGY, V84, P391, DOI 10.1890/0012-9658(2003)084[0391:OSORLA]2.0.CO;2; Bell BD, 2010, AUSTRAL ECOL, V35, P241, DOI 10.1111/j.1442-9993.2009.02024.x; BERVEN KA, 1983, AM ZOOL, V23, P85; BULL JJ, 1979, AM NAT, V114, P296, DOI 10.1086/283476; Burnham K. P, 2002, MODEL SELECTION MULT; Chevin LM, 2010, PLOS BIOL, V8, DOI 10.1371/journal.pbio.1000357; Church DR, 2007, ECOLOGY, V88, P891, DOI 10.1890/06-0896; Cubaynes S, 2011, BIOL LETTERS, V7, P303, DOI 10.1098/rsbl.2010.0778; De Lisle SP, 2011, HERPETOL CONSERV BIO, V6, P215; Duellman W. E., 1986, BIOL AMPHIBIANS; Fretey T, 2004, CAN J ZOOL, V82, P859, DOI 10.1139/Z04-058; Frick WF, 2010, J ANIM ECOL, V79, P128, DOI 10.1111/j.1365-2656.2009.01615.x; GITTINS SP, 1983, J ANIM ECOL, V52, P981, DOI 10.2307/4468; Grayson KL, 2011, ECOLOGY, V92, P1236, DOI 10.1890/11-0133.1; Hayward A, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016557; Houston AI, 2007, BEHAV ECOL, V18, P241, DOI 10.1093/beheco/arl080; Jorgensen C. Barker, 1992, P439; Kendall WL, 2001, BIOMETRICS, V57, P1113, DOI 10.1111/j.0006-341X.2001.01113.x; LICHT LE, 1975, CAN J ZOOL, V53, P1254, DOI 10.1139/z75-150; Loman J, 2010, AMPHIBIA-REPTILIA, V31, P509, DOI 10.1163/017353710X524705; McCaffery RM, 2010, P NATL ACAD SCI USA, V107, P8644, DOI 10.1073/pnas.0912945107; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Muths E, 2006, ECOLOGY, V87, P1048, DOI 10.1890/0012-9658(2006)87[1048:EOTEIM]2.0.CO;2; Muths E, 2010, METHODS ECOL EVOL, V1, P123, DOI 10.1111/j.2041-210X.2010.00019.x; NICHOLS JD, 1994, ECOLOGY, V75, P2052, DOI 10.2307/1941610; Nussey DH, 2007, J EVOLUTION BIOL, V20, P831, DOI 10.1111/j.1420-9101.2007.01300.x; Pilastro A, 2003, ECOLOGY, V84, P1784, DOI 10.1890/0012-9658(2003)084[1784:LLARSI]2.0.CO;2; Reading CJ, 2007, OECOLOGIA, V151, P125, DOI 10.1007/s00442-006-0558-1; Roff Derek A., 1992; Ryser Jan, 1996, Amphibia-Reptilia, V17, P183, DOI 10.1163/156853896X00379; Schmidt BR, 2002, AMPHIBIA-REPTILIA, V23, P375, DOI 10.1163/15685380260449234; Schuett GW, 2011, J ZOOL, V284, P105, DOI 10.1111/j.1469-7998.2010.00786.x; Tomasevic N, 2008, REV ECOL-TERRE VIE, V63, P371; White GC, 1999, BIRD STUDY, V46, P120; WILLIAMS CB, 1951, PROC R SOC SER B-BIO, V138, P130, DOI 10.1098/rspb.1951.0011 35 9 9 0 27 SPRINGER JAPAN KK TOKYO CHIYODA FIRST BLDG EAST, 3-8-1 NISHI-KANDA, CHIYODA-KU, TOKYO, 101-0065, JAPAN 1438-3896 1438-390X POPUL ECOL Popul. Ecol. OCT 2013 55 4 535 544 10.1007/s10144-013-0381-6 10 Ecology Environmental Sciences & Ecology 227SA WOS:000325133100003 2019-02-21 J Maharjan, R; Nilsson, S; Sung, J; Haynes, K; Beardmore, RE; Hurst, LD; Ferenci, T; Gudelj, I Maharjan, Ram; Nilsson, Susanna; Sung, Judy; Haynes, Ken; Beardmore, Robert E.; Hurst, Laurence D.; Ferenci, Tom; Gudelj, Ivana The form of a trade-off determines the response to competition ECOLOGY LETTERS English Article resource allocation; Experimental ecology; trade-offs; stress responses; mathematical models; microorganisms; trade-off shapes; synthetic ecology RNA-POLYMERASE AVAILABILITY; ESCHERICHIA-COLI POPULATION; LIFE-HISTORY EVOLUTION; COSTLY RESISTANCE; STRESS RESPONSES; RPOS; MAINTENANCE; DIVERGENCE; FITNESS; SYSTEM Abstract Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re-derived in multiple fields) showed that, in theory, the form of a trade-off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade-off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition-specific trade-offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable. [Maharjan, Ram; Sung, Judy; Ferenci, Tom] Univ Sydney, Sch Mol Biosci, Sydney, NSW 2006, Australia; [Nilsson, Susanna] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW2 2AZ, England; [Haynes, Ken; Beardmore, Robert E.; Gudelj, Ivana] Univ Exeter, Exeter EX4 4QD, Devon, England; [Hurst, Laurence D.] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England Gudelj, I (reprint author), Univ Exeter, Geoffrey Pope Bldg, Exeter EX4 4QD, Devon, England. tom.ferenci@sydney.edu.au; i.gudelj@exeter.ac.uk Ferenci, Tom/A-1177-2010; Hurst, Laurence/F-9215-2010 Hurst, Laurence/0000-0002-1002-1054 NERC Advanced Research Fellowship; Australian Research Council; EPSRC; BBSRC-SABR; Royal Society; Biotechnology and Biological Sciences Research Council [BB/F005210/2, BB/F005210/1]; Engineering and Physical Sciences Research Council [EP/I018263/1, EP/I00503X/1]; Medical Research Council [G0802611]; Natural Environment Research Council [NE/E013007/3, NE/E013007/2, NE/E013007/1] We thank Mike Boots for helpful comments on the earlier version of the manuscript. We thank a self-identified reviewer, Samuel Alizon, for constructive suggestions. I. G. was supported by a NERC Advanced Research Fellowship, T. F. was supported by a Discovery Project grant from the Australian Research Council and REB was supported by an EPSRC Leadership Fellowship. I. G., S.N. and K. H. were supported by a BBSRC-SABR grant while L. D. H. is a Royal Society Wolfson Research Merit Award Holder. Agrawal A. A., 2010, EVOLUTION DARWIN 1 1, P243; Battesti A, 2011, ANNU REV MICROBIOL, V65, P189, DOI 10.1146/annurev-micro-090110-102946; Beardmore RE, 2011, NATURE, V472, P342, DOI 10.1038/nature09905; Bohannan BJM, 2002, ANTON LEEUW INT J G, V81, P107, DOI 10.1023/A:1020585711378; Boots M, 1999, AM NAT, V153, P359, DOI 10.1086/303181; Braendle C, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P3; Chiang SM, 2011, APPL ENVIRON MICROB, V77, P7915, DOI 10.1128/AEM.05274-11; de Mazancourt C, 2004, AM NAT, V164, P765, DOI 10.1086/424762; De Paepe M., 2011, PLOS GENET, V7; de Roode JC, 2008, P NATL ACAD SCI USA, V105, P7489, DOI 10.1073/pnas.0710909105; Ebert D, 2003, TRENDS MICROBIOL, V11, P15, DOI 10.1016/S0966-842X(02)00003-3; Ferenci T, 2005, MOL MICROBIOL, V57, P1, DOI 10.1111/j.1365-2958.2005.04649.x; Ferenci T, 2007, ANN NY ACAD SCI, V1113, P105, DOI 10.1196/annals.1391.003; Ferenci T, 2011, BMC MICROBIOL, V11, DOI 10.1186/1471-2180-11-62; Ferenci T, 2009, J BACTERIOL, V191, P4025, DOI 10.1128/JB.00118-09; Flores N, 2008, J MOL MICROB BIOTECH, V14, P176, DOI 10.1159/000109945; Fraser C, 2007, P NATL ACAD SCI USA, V104, P17441, DOI 10.1073/pnas.0708559104; Galhardo RS, 2007, CRIT REV BIOCHEM MOL, V42, P399, DOI 10.1080/10409230701648502; Gralla JD, 2006, EMBO J, V25, P1515, DOI 10.1038/sj.emboj.7601041; Gresham D, 2008, PLOS GENET, V4; Gudelj I, 2004, P ROY SOC B-BIOL SCI, V271, P2187, DOI 10.1098/rspb.2004.2837; Gummesson B, 2009, EMBO J, V28, P2209, DOI 10.1038/emboj.2009.181; Hengge-Aronis R, 2002, MICROBIOL MOL BIOL R, V66, P373, DOI 10.1128/MMBR.66.3.373-395.2002; Ishihama A, 2000, ANNU REV MICROBIOL, V54, P499, DOI 10.1146/annurev.micro.54.1.499; Jessup CM, 2008, ECOL LETT, V11, P947, DOI 10.1111/j.1461-0248.2008.01205.x; Kang YS, 2010, ENVIRON MICROBIOL, V12, P1304, DOI 10.1111/j.1462-2920.2010.02175.x; King T, 2004, J BACTERIOL, V186, P5614, DOI 10.1128/JB.186.17.5614.5620.2004; Lang GI, 2009, P NATL ACAD SCI USA, V106, P5755, DOI 10.1073/pnas.0901620106; Leroi AM, 2001, TRENDS ECOL EVOL, V16, P24, DOI 10.1016/S0169-5347(00)02032-2; LEVINS R, 1962, AM NAT, V96, P361, DOI 10.1086/282245; Levins R., 1968, EVOLUTION CHANGING E; Maharjan R, 2010, J BACTERIOL, V192, P4517, DOI 10.1128/JB.00368-10; Maharjan RP, 2007, J BACTERIOL, V189, P2350, DOI 10.1128/JB.01414-06; Mealor MA, 2006, J EVOLUTION BIOL, V19, P326, DOI 10.1111/j.1420-9101.2005.01031.x; MILLER JH, 1972, EXPT MOL GENETICS; Mongkolsuk S, 2002, MOL MICROBIOL, V45, P9, DOI 10.1046/j.1365-2958.2002.03015.x; Notley-McRobb L, 2003, P ROY SOC B-BIOL SCI, V270, P843, DOI 10.1098/rspb.2002.2295; Nystrom T, 2004, MOL MICROBIOL, V54, P855, DOI 10.1111/j.1365-2958.2004.04342.x; Phan K., 2013, ISME J, DOI 10.1038/ismej.2013.82; Poelwijk FJ, 2011, CELL, V146, P462, DOI 10.1016/j.cell.2011.06.035; Seputiene V, 2006, MICROBIOL RES, V161, P65, DOI 10.1016/j.micres.2005.06.002; Shoval O, 2012, SCIENCE, V336, P1157, DOI 10.1126/science.1217405; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; STORZ G, 2000, BACTERIAL STRESS RES; Tilman D, 2000, NATURE, V405, P208, DOI 10.1038/35012217; Wang L, 2010, GENOME BIOL EVOL, V2, P478, DOI 10.1093/gbe/evq035; White A, 2005, MATH BIOSCI, V193, P101, DOI 10.1016/j.mbs.2004.10.006; Yu DG, 2000, P NATL ACAD SCI USA, V97, P5978, DOI 10.1073/pnas.100127597 50 28 28 0 68 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1461-023X ECOL LETT Ecol. Lett. OCT 2013 16 10 1267 1276 10.1111/ele.12159 10 Ecology Environmental Sciences & Ecology 216VN WOS:000324313600005 23902419 2019-02-21 J Irie, T; Morimoto, N; Fischer, K Irie, Takahiro; Morimoto, Naoko; Fischer, Klaus Higher calcification costs at lower temperatures do not break the temperature-size rule in an intertidal gastropod with determinate growth MARINE BIOLOGY English Article BUTTERFLY LYCAENA-TITYRUS; COWRIES GENUS-CYPRAEA; LIFE-HISTORY; REACTION NORMS; GEOGRAPHIC-VARIATION; SEXUAL-DIMORPHISM; SHELL MORPHOLOGY; ECTOTHERMS; CORAL; MODEL The vast majority of ectothermic organisms grow larger when developing at cooler environmental temperatures, a pattern frequently referred to as the temperature-size rule (TSR). Assuming that this reaction norm has adaptive significance, life history theory predicts that converse patterns may evolve if favored by natural selection, namely if the costs associated with complying to the TSR outweigh the benefits. Calcifying ectotherms may comprise such an exception not following the TSR, because calcification is expected to be more costly at lower temperatures thus increasing associated costs. To test this hypothesis, we reared wild-caught juveniles of the intertidal gastropod Monetaria annulus and compared their shell sizes at the end of the juvenile stage between two rearing temperatures. Contrary to our prediction, M. annulus does follow the TSR, suggesting that increased calcification costs at lower temperatures are not high enough to break the TSR. Such plastic responses should be considered when interpreting geographical patterns such as latitudinal size clines, which may be caused at least partly by phenotypic plasticity. [Irie, Takahiro] Stanford Univ, Dept Biol, Stanford, CA 94305 USA; [Morimoto, Naoko] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba 2778564, Japan; [Fischer, Klaus] Ernst Moritz Arndt Univ Greifswald, Museum & Inst Zool, D-17489 Greifswald, Germany Irie, T (reprint author), Stanford Univ, Dept Biol, Stanford, CA 94305 USA. irie@bio-math10.biology.kyushu-u.ac.jp Irie, Takahiro/A-3621-2012 Japan Society for the Promotion of Science (JSPS) The authors are grateful to P. Kraufvelin, W. C. E. P. Verberk, W. Zuo, and three anonymous reviewers for valuable comments, and to S. Nakamura and Y. Nakano for maintaining the equipment necessary for rearing experiments at Sesoko Station. We also thank K. Baba, Y. Iwasa, K. Sakai, S. Tuljapurkar, and K. Yamahira for helpful discussions. This project was funded by the Japan Society for the Promotion of Science (JSPS). Angilletta MJ, 2003, AM NAT, V162, P332; Angilletta MJ, 2004, INTEGR COMP BIOL, V44, P498, DOI 10.1093/icb/44.6.498; Arendt J. D., 2010, EVOLUTION, V65, P43; ATKINSON D, 1994, ADV ECOL RES, V25, P1, DOI 10.1016/S0065-2504(08)60212-3; ATKINSON D, 1995, J THERM BIOL, V20, P61, DOI 10.1016/0306-4565(94)00028-H; Atkinson D, 2003, P ROY SOC B-BIOL SCI, V270, P2605, DOI 10.1098/rspb.2003.2538; ATKINSON D, 1996, ANIMALS TEMPERATURE, P61; Bourdeau PE, 2010, P R SOC B, V277, P455, DOI 10.1098/rspb.2009.1295; Cohen AL, 2003, REV MINERAL GEOCHEM, V54, P151, DOI 10.2113/0540151; Cohen AL, 2009, OCEANOGRAPHY, V22, P117; Cohen AL, 2009, GEOCHEM GEOPHY GEOSY, V10, DOI 10.1029/2009GC002411; Davison A. C., 1997, BOOTSTRAP METHODS TH; Efron B., 1993, INTRO BOOTSTRAP; Faraway J. J., 2002, PRACTICAL REGRESSION; Feely RA, 2012, GLOBAL BIOGEOCHEM CY, V26, DOI 10.1029/2011GB004157; Fischer K, 2002, EVOL ECOL, V16, P333, DOI 10.1023/A:1020271600025; Fischer K, 2001, J EVOLUTION BIOL, V14, P210, DOI 10.1046/j.1420-9101.2001.00280.x; Fischer K, 2000, OIKOS, V90, P372, DOI 10.1034/j.1600-0706.2000.900218.x; FOIN T C, 1972, Proceedings of the Malacological Society of London, V40, P211; Hosono T, 2011, MAR BIOL, V158, P363, DOI 10.1007/s00227-010-1564-8; Irie T, 2007, VELIGER, V49, P209; Irie T, 2006, J MOLLUS STUD, V72, P31, DOI 10.1093/mollus/eyi043; Irie T, 2005, AM NAT, V165, P238, DOI 10.1086/427157; Irie T, 2003, EVOL ECOL RES, V5, P1133; Irie T., 1997, YURIYAGAI J MALACOZO, V5, P17; Irie T, 2008, BIOL BULL-US, V215, P126, DOI 10.2307/25470693; Irie T, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013436; Irie T, 2009, MAR ECOL PROG SER, V385, P33, DOI 10.3354/meps08090; Ishii M, 2011, J GEOPHYS RES-OCEANS, V116, DOI 10.1029/2010JC006831; Kammenga JE, 2007, PLOS GENET, V3, P358, DOI 10.1371/journal.pgen.0030034; Karl I, 2008, OIKOS, V117, P778, DOI 10.1111/j.2008.0030-1299.16522.x; KATOH M, 1989, MAR BIOL, V101, P227, DOI 10.1007/BF00391462; KAY ALISON, 1961, VELIGER, V4, P36; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kozlowski J, 2004, INTEGR COMP BIOL, V44, P480, DOI 10.1093/icb/44.6.480; Kozlowski J, 1987, EVOL ECOL, V1, P231, DOI 10.1007/BF02067553; Marubini F, 1999, MAR ECOL PROG SER, V188, P117, DOI 10.3354/meps188117; McConnaughey TA, 2008, GEO-MAR LETT, V28, P287, DOI 10.1007/s00367-008-0116-4; Morse JW, 2007, CHEM REV, V107, P342, DOI 10.1021/cr050358j; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; O'Dea A, 2000, PALAEOGEOGR PALAEOCL, V162, P319, DOI 10.1016/S0031-0182(00)00136-X; Ohde S, 2004, GEOCHEM J, V38, P613, DOI 10.2343/geochemj.38.613; PALMER AR, 1983, MAR BIOL, V75, P287, DOI 10.1007/BF00406014; PALMER AR, 1992, P NATL ACAD SCI USA, V89, P1379, DOI 10.1073/pnas.89.4.1379; PALMER AR, 1981, NATURE, V292, P150, DOI 10.1038/292150a0; PARTRIDGE L, 1996, ANIMALS TEMPERATURE, P265; Peterson LC, 2010, MARINE CHEM GEOCHEMI, P336; PLUMMER LN, 1982, GEOCHIM COSMOCHIM AC, V46, P1011, DOI 10.1016/0016-7037(82)90056-4; Ruppert D., 2003, SEMIPARAMETRIC REGRE; SCHILDER F A, 1968, Veliger, V11, P109; SCHILDER F. A., 1961, VELIGER, V4, P15; TISSOT BN, 1984, VELIGER, V27, P106; TISSOT BN, 1988, EVOLUTION, V42, P103, DOI 10.1111/j.1558-5646.1988.tb04111.x; vanderHave TM, 1996, J THEOR BIOL, V183, P329, DOI 10.1006/jtbi.1996.0224; vanVoorhies WA, 1996, EVOLUTION, V50, P1259, DOI 10.1111/j.1558-5646.1996.tb02366.x; Vermeij GJ, 1987, EVOLUTION ESCALATION; Walters RJ, 2006, AM NAT, V167, P510, DOI 10.1086/501029; Zuo WY, 2012, P ROY SOC B-BIOL SCI, V279, P1840, DOI 10.1098/rspb.2011.2000 58 6 6 0 30 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0025-3162 MAR BIOL Mar. Biol. OCT 2013 160 10 2619 2629 10.1007/s00227-013-2256-y 11 Marine & Freshwater Biology Marine & Freshwater Biology 224GP WOS:000324871300009 2019-02-21 J Kareva, I; Berezovskaya, F; Karev, G Kareva, Irina; Berezovskaya, Faina; Karev, Georgy MIXED STRATEGIES AND NATURAL SELECTION IN RESOURCE ALLOCATION MATHEMATICAL BIOSCIENCES AND ENGINEERING English Article Natural selection; resource allocation; mathematical model; population heterogeneity; strategies LIFE-HISTORY EVOLUTION; POPULATION-DYNAMICS; CANCER GENOME; COMPETITION; DIVERGENCE; DIVERSITY; BACTERIA; BIOFILMS; MODELS An appropriate choice of strategy for resource allocation may frequently determine whether a population will be able to survive under the conditions of severe resource limitations. Here we focus on two classes of strategies allocation of resources towards rapid proliferation, or towards slower proliferation but increased physiological and environmental maintenance. We propose a generalized framework, where individuals within a population can use either strategy in different proportion for utilization of a common dynamical resource in order to maximize their fitness. We use the model to address two major questions, namely, whether either strategy is more likely to be selected for as a result of natural selection, and, if one allows for the possibility of resource over-consumption, whether either strategy is preferable for avoiding population collapse due to resource exhaustion. Analytical and numerical results suggest that the ultimate choice of strategy is determined primarily by the initial distribution of individuals in the population, and that while investment in physiological and environmental maintenance is a preferable strategy in a homogeneous population, no generalized prediction can be made about heterogeneous populations. [Kareva, Irina] Arizona State Univ, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA; [Berezovskaya, Faina] Howard Univ, Dept Math, Washington, DC 20059 USA; [Karev, Georgy] Natl Inst Biotechnol Informat NCBI, NIH, Bethesda, MD 20894 USA Kareva, I (reprint author), Arizona State Univ, Sch Human Evolut & Social Change, 900 S Cady Mall, Tempe, AZ 85287 USA. ikareva@asu.edu; fberezovskaya@howard.edu; karev@ncbi.nlm.nih.gov National Science Foundation (NSF) [DMPS-0838705, DMS-1135663]; National Security Agency (NSA) [H98230-09-1-0104]; Alfred P. Sloan Foundation; Office of the Provost of Arizona State University; NIH, NCBI This researcht has been supported by grants from the National Science Foundation (NSF - Grant DMPS-0838705), the National Security Agency (NSA - Grant H98230-09-1-0104), the Alfred P. Sloan Foundation, the Office of the Provost of Arizona State University and Intramural Research Program of the NIH, NCBI. This material is also based upon work partially supported by the National Science Foundation under Grant No. DMS-1135663. Algar AC, 2011, ECOLOGY, V92, P903, DOI 10.1890/10-0606.1; Bautin N., 1976, METHODS RULES QUALIT; Berezovskaya FS, 2007, MATH BIOSCI, V208, P270, DOI 10.1016/j.mbs.2006.10.006; Chikatsu N, 2002, ONCOGENE, V21, P3043, DOI 10.1038/sj/onc/1205413; Clark JS, 2010, SCIENCE, V327, P1129, DOI 10.1126/science.1183506; COSTERTON JW, 1995, ANNU REV MICROBIOL, V49, P711, DOI 10.1146/annurev.mi.49.100195.003431; Denef VJ, 2010, P NATL ACAD SCI USA, V107, P2383, DOI 10.1073/pnas.0907041107; Dobzhansky T., 1950, American Scientist, V38, P209; Elser JJ, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0001028; Grimm NB, 2008, SCIENCE, V319, P756, DOI 10.1126/science.1150195; HARDIN G, 1968, SCIENCE, V162, P1243; Hudson TJ, 2010, NATURE, V464, P993, DOI 10.1038/nature08987; Kapur J. N., 1989, MAXIMUM ENTROPY MODE; Karev GP, 2010, ENTROPY-SWITZ, V12, P1673, DOI 10.3390/e12071673; Karev GP, 2010, J MATH BIOL, V60, P107, DOI 10.1007/s00285-009-0252-0; Kareva I, 2012, MATH BIOSCI, V240, P114, DOI 10.1016/j.mbs.2012.06.001; Krakauer DC, 2009, AM NAT, V173, P26, DOI 10.1086/593707; Kuznetsov Y.A., 1998, ELEMENTS APPL BIFURC; MACARTHUR R, 1967, AM NAT, V101, P377, DOI 10.1086/282505; Macdonald DW, 2009, J MAMMAL, V90, P1392, DOI 10.1644/08-MAMM-A-356R1.1; Merlo LMF, 2006, NAT REV CANCER, V6, P924, DOI 10.1038/nrc2013; Ostrom E., 1990, GOVERNING COMMONS EV; Ostrom E, 2009, SCIENCE, V325, P419, DOI 10.1126/science.1172133; PIANKA ER, 1974, P NATL ACAD SCI USA, V71, P2141, DOI 10.1073/pnas.71.5.2141; Prakash B, 2003, CURR SCI INDIA, V85, P1299; Reznick D., ECOLOGY, V83, P1509; Russell TL, 2011, P ROY SOC B-BIOL SCI, V278, P3142, DOI 10.1098/rspb.2011.0153; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; Stearns SC, 2000, NATURWISSENSCHAFTEN, V87, P476, DOI 10.1007/s001140050763; Stratton MR, 2009, NATURE, V458, P719, DOI 10.1038/nature07943; Voytek SB, 2009, P NATL ACAD SCI USA, V106, P7780, DOI 10.1073/pnas.0903397106; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 33 1 1 0 13 AMER INST MATHEMATICAL SCIENCES SPRINGFIELD PO BOX 2604, SPRINGFIELD, MO 65801-2604 USA 1547-1063 MATH BIOSCI ENG Math. Biosci. Eng. OCT-DEC 2013 10 5-6 SI 1561 1586 10.3934/mbe.2013.10.1561 26 Mathematical & Computational Biology Mathematical & Computational Biology 217XV WOS:000324397300020 24245635 Other Gold 2019-02-21 J Perera, HACC; Rypel, AL; Murphy, BR; Li, Z; Xia, Y; Liu, J Perera, H. A. C. C.; Rypel, A. L.; Murphy, B. R.; Li, Z.; Xia, Y.; Liu, J. Population characteristics of yellow catfish (Peltobagrus fluvidraco) along the longitudinal profile of Three Gorges Reservoir, China JOURNAL OF APPLIED ICHTHYOLOGY English Article LIFE-HISTORY STRATEGIES; YANGTZE-RIVER; BIODIVERSITY CONSERVATION; FISH POPULATIONS; IMPOUNDMENT; DAMS; FISHERIES; ECOLOGY; LAKE; PERSPECTIVE The length-frequency and age distributions, condition factor (K), gonadosomatic index (GSI) and gastrosomatic index (GaSI) of yellow catfish (Peltobagrus fluvidraco) were studied at three sites along the 500-km longitudinal profile of Three Gorges Reservoir. Across all three sites (dam, mid-reservoir and upper reservoir), GSI increased from April through June, with peak values observed in May and June. Mean K and GSI for fish captured near the dam were significantly higher compared to mid-reservoir or upper-reservoir areas. The GaSI index showed no significant variations across sites. However, the length-frequency histogram of yellow catfish in the more riverine upper reservoir was log-normal and skewed towards larger (total length) fish, a pattern that was significantly different from mid-reservoir or near-dam habitats, where fish length data were normally distributed but at a smaller length mode. Age estimations using otolith sagittae revealed that the spawning population was dominated by fish from only two age-classes (1 and 2). This study provides novel insight into population characteristics of fish along the substantial spatial scale of Three Gorges Reservoir. Given the irregular population size-and age-structure and the fact that the species is currently commercially exploited, this population is believed to be susceptible to overfishing. Restricted harvesting during peak reproductive months is recommended and suggested that additional research is needed on recruitment and harvest dynamics of this species throughout Three Gorges Reservoir. Additional research is also required to determine whether the spike in K and GSI at lentic sites is a transient product of recent impoundment or an indicator of optimal hydrologic habitat for the species. [Perera, H. A. C. C.; Li, Z.; Xia, Y.; Liu, J.] Wuhan Univ, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Hubei, Peoples R China; [Perera, H. A. C. C.; Xia, Y.] Univ Chinese Acad Sci, Beijing, Peoples R China; [Rypel, A. L.; Murphy, B. R.] Virginia Polytech Inst & State Univ, Dept Fish & Wildlife Conservat, Blacksburg, VA 24061 USA Liu, J (reprint author), Wuhan Univ, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Hubei, Peoples R China. jsliu@ihb.ac.cn National Science and Technology Supporting Program of China [2012BAD25B08]; China Three Gorges Corporation Project [CT-12-08-01]; Virginia Technology Department of Fish and Wildlife Conservation; Acorn Alcinda Foundation This research was financially supported by the National Science and Technology Supporting Program of China (No. 2012BAD25B08) and China Three Gorges Corporation Project (CT-12-08-01). We also acknowledge our laboratory colleagues and our senior technician Mr. Xinnian Chen for their help in various aspects throughout the project. B. R. Murphy and A. L. Rypel were supported by the Virginia Technology Department of Fish and Wildlife Conservation and the Acorn Alcinda Foundation. Agostinho AA, 2008, BRAZ J BIOL, V68, P1119, DOI 10.1590/S1519-69842008000500019; ALLAN JD, 1993, BIOSCIENCE, V43, P32, DOI 10.2307/1312104; BALON E K, 1977, Environmental Biology of Fishes, V2, P147, DOI 10.1007/BF00005370; Balon E. K., 1967, BIOL PRACE, V13, P123; BAXTER RM, 1977, ANNU REV ECOL SYST, V8, P255, DOI 10.1146/annurev.es.08.110177.001351; Cai SW, 2012, B ENVIRON CONTAM TOX, V88, P922, DOI 10.1007/s00128-012-0564-4; Cao L, 2009, ENVIRON BIOL FISH, V86, P75, DOI 10.1007/s10641-008-9342-x; Chang Ming-Hsiung, 1999, Acta Zoologica Taiwanica, V10, P77; Desai V.R., 1970, Journal Inland Fish Soc India, V2, P101; Dudgeon D, 2000, ANNU REV ECOL SYST, V31, P239, DOI 10.1146/annurev.ecolsys.31.1.239; Dugan PJ, 2010, AMBIO, V39, P344, DOI 10.1007/s13280-010-0036-1; DYNESIUS M, 1994, SCIENCE, V266, P753, DOI 10.1126/science.266.5186.753; ERMAN DC, 1973, T AM FISH SOC, V102, P626, DOI 10.1577/1548-8659(1973)102<626:UCIFPF>2.0.CO;2; Gao X, 2010, ENVIRON BIOL FISH, V87, P163, DOI 10.1007/s10641-009-9577-1; Gleick P. H., 2008, WATER BRIEF, V3, P139; Greathouse A. E., 2006, ECOL APPL, V16, P339; Han M, 2008, ECOL RES, V23, P735, DOI 10.1007/s11284-007-0432-6; HANSKI I, 1991, BIOL J LINN SOC, V42, P3, DOI 10.1111/j.1095-8312.1991.tb00548.x; IDODOUMEH G, 1991, J TROP ECOL, V7, P221, DOI 10.1017/S0266467400005381; Jubb R. A., 1967, FRESHWATER FISHES SO, P248; Lancaster J, 2010, RIVER RES APPL, V26, P921, DOI 10.1002/rra.1425; Liu J., 1992, J RES ENV YANGTZE VA, V1, P17; Liu Shiping, 1997, Chinese Journal of Zoology, V32, P10; [刘文彬 Liu Wengbin], 2003, [湖南师范大学自然科学学报, Journal of Natural Science of Hunan Normal University], V26, P73; Min L., 2009, GUIZHOU AGR SCI, V37, P119; MINNS CK, 1995, CAN J FISH AQUAT SCI, V52, P1499, DOI 10.1139/f95-144; Morales-Nin B., 1992, 322 FAO, V332, P51; Olden JD, 2006, ECOL MONOGR, V76, P25, DOI 10.1890/05-0330; Penczak T, 2005, J APPL ICHTHYOL, V21, P169, DOI 10.1111/j.1439-0426.2005.00649.x; PENCZAK T, 1995, HYDROBIOLOGIA, V302, P47, DOI 10.1007/BF00006398; Qin D. C., 2002, ACTA HYDROBIOL SIN, V26, P685; Quinn JW, 2003, T AM FISH SOC, V132, P110, DOI 10.1577/1548-8659(2003)132<0110:FACIAO>2.0.CO;2; Rypel AL, 2011, RIVER RES APPL, V27, P580, DOI 10.1002/rra.1370; Rypel AL, 2009, ECOHYDROLOGY, V2, P419, DOI 10.1002/eco.66; Strange Richard J., 1996, P433; Vila-Gispert A, 2002, REV FISH BIOL FISHER, V12, P417, DOI 10.1023/A:1025352026974; Winemiller KO, 2005, CAN J FISH AQUAT SCI, V62, P872, DOI 10.1139/F05-040; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; Wu JG, 2004, FRONT ECOL ENVIRON, V2, P241, DOI 10.1890/1540-9295(2004)002[0241:TTGDAE]2.0.CO;2; Xie SG, 2007, FISHERIES, V32, P343; Yan X. X., 2002, ACTA AGR JIANGXI, V14, P18; Yang X., 2012, ENVIRON BIOL FISH, V93, P295; Ye S., 2007, Asian Fisheries Science, V20, P217; Ye SW, 2006, AQUAT LIVING RESOUR, V19, P349, DOI 10.1051/alr:2007005; Yi T. X., 2003, CHINESE J ZOOL, V38, P83; Zhang L, 2007, B ENVIRON CONTAM TOX, V78, P262, DOI 10.1007/s00128-007-9117-7; Zhang Z, 2007, POL J ENVIRON STUD, V16, P949 47 3 4 3 55 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0175-8659 1439-0426 J APPL ICHTHYOL J. Appl. Ichthyol. OCT 2013 29 5 1061 1066 10.1111/jai.12261 6 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 213OP WOS:000324067600017 Green Published 2019-02-21 J Zywiec, M; Zielonka, T Zywiec, Magdalena; Zielonka, Tomasz Does a heavy fruit crop reduce the tree ring increment? Results from a 12-year study in a subalpine zone TREES-STRUCTURE AND FUNCTION English Article Cost of reproduction; Masting; Trade-off; Vegetative growth SORBUS-AUCUPARIA L.; SEED PRODUCTION; EVOLUTIONARY ECOLOGY; REPRODUCTIVE GROWTH; IBERIAN PENINSULA; MASTING BEHAVIOR; CALIFORNIA OAKS; CONE PRODUCTION; SPRUCE FOREST; FAGUS-CRENATA Life history theory posits that an increased investment in reproduction should result in decreased vegetative investment. Switching resources from growth to reproduction are also expected in species experiencing selection pressure for high variation of seed crops. In this study, we tested whether the reproductive effort of trees, measured as the number of fruits produced, is related to their radial growth increment. We examined a population of Sorbus aucuparia, a fleshy-fruited tree species with highly variable interannual individual fruit production growing in the subalpine zone and under strong selection pressure from pre-dispersal seed predators. We used 12-year data to test the relationship between fruit crop and radial growth increments in current, previous and subsequent years, and found no trade-off between growth and reproduction. For almost all trees, there was no correlation between fruit crop and radial growth increment in the same year or next year. Only a few trees showed a positive correlation between fruit crop and previous-year growth. In the statistics, we took advantage of the high variability of individual fruit crops in high production years. In four heavy crop years, we compared the radial growth increments of trees with heavy crops with those of trees with low fruit crops. Current and next-year radial growth did not differ between trees with low and high fruit crops. In all those years, however, trees having heavy fruit crops had higher previous-year growth increments. We suggest that the harsh subalpine weather conditions account for the lack of a trade-off between growth and reproduction in the studied population. [Zywiec, Magdalena] Polish Acad Sci, Inst Bot, PL-31512 Krakow, Poland; [Zielonka, Tomasz] Pedag Univ Cracow, Inst Biol, PL-30084 Krakow, Poland Zywiec, M (reprint author), Polish Acad Sci, Inst Bot, Ul Lubicz 46, PL-31512 Krakow, Poland. m.zywiec@botany.pl Zielonka, Tomasz/0000-0002-0562-3819; Zywiec, Magdalena/0000-0002-5992-4051 Polish State Committee for Scientific Research [6 P04G 045 21, 3 P04G 111 25]; Polish Ministry of Science and Higher Education [N304 362938]; Institute of Botany of the Polish Academy of Sciences We thank the authorities and staff of Babia Gora National Park for their kind cooperation and for granting permission to conduct this study. Michael Jacobs finally edited the manuscript. This study was funded by the Polish State Committee for Scientific Research (grant nos. 6 P04G 045 21 and 3 P04G 111 25), the Polish Ministry of Science and Higher Education (N304 362938), and the statutory fund of the Institute of Botany of the Polish Academy of Sciences. The methodology complies with the current laws of Poland in which the experiments were performed. BARCLAY AM, 1982, FLORA, V172, P21; Barringer BC, 2013, OECOLOGIA, V171, P129, DOI 10.1007/s00442-012-2386-9; Camarero JJ, 2010, TREES-STRUCT FUNCT, V24, P909, DOI 10.1007/s00468-010-0462-5; CREMER KW, 1992, FOREST ECOL MANAG, V52, P179, DOI 10.1016/0378-1127(92)90501-Y; Despland E, 1997, AM J BOT, V84, P928, DOI 10.2307/2446283; Drobyshev I, 2010, FOREST ECOL MANAG, V259, P2160, DOI 10.1016/j.foreco.2010.01.037; EIS S, 1965, CAN J BOTANY, V43, P1553, DOI 10.1139/b65-165; GROSS HL, 1972, CAN J BOT, V50, P2431, DOI 10.1139/b72-312; Han Q, 2008, TREE PHYSIOL, V28, P1269, DOI 10.1093/treephys/28.8.1269; Harper J. L., 1977, POPULATION BIOL PLAN; Hemborg AM, 1998, OIKOS, V83, P273, DOI 10.2307/3546838; Hemborg AM, 1998, ECOSCIENCE, V5, P517, DOI 10.1080/11956860.1998.11682495; HERRERA CM, 1987, ECOL MONOGR, V57, P305, DOI 10.2307/2937089; Hillebrand K., 1996, Forst und Holz, V51, P216; Hoch G, 2005, PLANT CELL ENVIRON, V28, P651, DOI 10.1111/j.1365-3040.2004.01311.x; HOFGAARD A, 1993, J VEG SCI, V4, P601, DOI 10.2307/3236125; Holeksa J, 2005, EKOL BRATISLAVA, V24, P263; Holeksa J., 2008, STRUCTURE PRODUCTION, P49; Holmes R.L., 1983, TREE RING B, V43, P67; Ishihara MI, 2009, ANN BOT-LONDON, V104, P1195, DOI 10.1093/aob/mcp217; Kalson PS, 2005, REPROD ALLOCATION PL, P1; KELLY D, 1994, TRENDS ECOL EVOL, V9, P465, DOI 10.1016/0169-5347(94)90310-7; Kelly D, 2002, ANNU REV ECOL SYST, V33, P427, DOI 10.1146/annurev.ecolsys.33.020602.095433; Knops JMH, 2007, P NATL ACAD SCI USA, V104, P16982, DOI 10.1073/pnas.0704251104; Kobro S, 2003, POPUL ECOL, V45, P25, DOI 10.1007/s10104-003-0136-x; Koenig WD, 1998, NATURE, V396, P225, DOI 10.1038/24293; KOENIG WD, 1994, ECOLOGY, V75, P99, DOI 10.2307/1939386; KULLMAN L, 1986, ANN BOT FENN, V23, P267; Miechowka A, 2004, MONOGRAPH KOMITET OC, ppp; Miyazaki Y, 2002, ANN BOT-LONDON, V89, P767, DOI 10.1093/aob/mcf107; Monks A, 2006, AUSTRAL ECOL, V31, P366, DOI 10.1111/j.1442=9993.2006.01565.x; Nicotra AB, 1999, J ECOL, V87, P138, DOI 10.1046/j.1365-2745.1999.00337.x; Norton DA, 1988, FUNCT ECOL, V2, P399, DOI 10.2307/2389413; Obeso JR, 1997, J ECOL, V85, P159, DOI 10.2307/2960648; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Obrbska-Starkel B., 2004, MONOGRAFIA PRZYRODNI, P137; Pias B, 2006, ACTA OECOL, V29, P97, DOI 10.1016/j.actao.2005.08.005; Piovesan G, 2001, CAN J BOT, V79, P1039, DOI 10.1139/cjb-79-9-1039; Pulliainen E., 1978, Aquilo Ser Zoologica, V18, P28; Raspe O, 2000, J ECOL, V88, P910, DOI 10.1046/j.1365-2745.2000.00502.x; Reekie E., 2005, REPROD ALLOCATION PL, P189, DOI 10. 1016/B978-012088386-8/50007-7; REEKIE EG, 1987, AM NAT, V129, P907, DOI 10.1086/284683; REZNICK D, 1985, OIKOS, V44, P257, DOI 10.2307/3544698; REZNICK DN, 1986, EVOLUTION, V40, P1338, DOI 10.1111/j.1558-5646.1986.tb05757.x; Sanchez-Humanes B, 2011, OECOLOGIA, V166, P101, DOI 10.1007/s00442-010-1819-6; Satake A, 2004, OIKOS, V104, P540, DOI 10.1111/j.0030-1299.2004.12694.x; Satake A, 2000, J THEOR BIOL, V203, P63, DOI 10.1006/jtbi.1999.1066; Schauber EM, 2002, ECOLOGY, V83, P1214, DOI 10.2307/3071937; SILVERTOWN JW, 1980, BIOL J LINN SOC, V14, P235, DOI 10.1111/j.1095-8312.1980.tb00107.x; Silvertown JW, 1999, AM NAT, V136, P154; SORK VL, 1993, ECOLOGY, V74, P528, DOI 10.2307/1939313; Sperens U, 1996, ECOSCIENCE, V3, P325, DOI 10.1080/11956860.1996.11682350; Sperens U, 1997, ECOGRAPHY, V20, P521, DOI 10.1111/j.1600-0587.1997.tb00421.x; TAPPEINER JC, 1969, FOREST SCI, V15, P171; WILLSON MF, 1986, AM MIDL NAT, V115, P204, DOI 10.2307/2425852; YAMAGUCHI DK, 1991, CAN J FOREST RES, V21, P414, DOI 10.1139/x91-053; Yasumura Y, 2006, FOREST ECOL MANAG, V229, P228, DOI 10.1016/j.foreco.2006.04.003; ywiec M, 2012, FOREST ECOL MANAG, V284, P205; Zywiec M, 2008, PLANT ECOL, V194, P283, DOI 10.1007/s11258-007-9291-z; Zywiec M, 2013, OECOLOGIA, V172, P461, DOI 10.1007/s00442-012-2502-x; Zywiec M, 2012, PLANT ECOL, V213, P993, DOI 10.1007/s11258-012-0059-8 61 8 9 0 41 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0931-1890 TREES-STRUCT FUNCT Trees-Struct. Funct. OCT 2013 27 5 1365 1373 10.1007/s00468-013-0884-y 9 Forestry Forestry 216YB WOS:000324321600016 Other Gold 2019-02-21 J Ceccarelli, FS; Zaldivar-Riveron, A Sara Ceccarelli, Fadia; Zaldivar-Riveron, Alejandro Broad polyphyly and historical biogeography of the neotropical wasp genus Notiospathius (Braconidae: Doryctinae) MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Phylogeny; Parasitoid; Ichneumonoidea; Hymenoptera; Concatenated analysis DISPERSAL-VICARIANCE ANALYSIS; ANCIENT RAPID RADIATIONS; HYMENOPTERA-BRACONIDAE; PHYLOGENETIC INFERENCE; NUCLEOTIDE-SEQUENCES; MOLECULAR EVOLUTION; NATRICINE SNAKES; DIVERGENCE TIMES; ABSOLUTE RATES; DIVERSITY Morphological convergence is a frequently observed pattern that occurs in species with similar environments, trophic niches, and/or life history strategies. In particular, adaptive morphological convergence is common in small, highly diverse invertebrate taxa sharing similar life history strategies such as parasitoidism. The genus Notiospathius is a braconid parasitoid wasp group with a vast, undetermined number of species distributed throughout the Neotropics. Members of this genus possess a considerably elongated, petiolate first metasomal tergite. This structure, however, also occurs in species of other doryctine genera, both closely and distantly related, probably due to adaptation for attacking wood and bark boring coleopteran larvae. Here we investigated the phylogenetic relationships among 117 species assigned to Notiospathius, including species of its closely related genera Masonius and Tarasco, as well as members of a number of other dotyctine genera in order to test its monophyly. Separate and concatenated Bayesian partitioned analyses were carried out using two mitochondrial and three nuclear gene markers. The influence of each gene on the overall topology was verified using a cross-validation analysis for each marker with a "leave-one-out" approach. Moreover, the historical biogeography of Notiospathius was assessed calculating divergence time estimates of clades with BEAST and performing ancestral area reconstruction analyses both with RASP (Bayesian and S-DIVA) and Lagrange (DEC). All analyses recovered a polyphyletic Notiospathius consisting of three separate clades that were more related to other doryctine genera than to each other. The relationships reconstructed could not be used to confidently establish the limits of Notiospathius with respect to its closely related genera Tarasco and Masonius, and thus the generic status of the latter two taxa is maintained. Our divergence time estimates and ancestral area reconstructions indicate that the most recent common ancestor of Notiospathius sensu stricto originated in the Caribbean subregion during the Oligocene-Miocene boundary, and subsequently diversified during the mid- to late Miocene, radiating throughout the Neotropics. (C) 2013 Elsevier Inc. All rights reserved. [Sara Ceccarelli, Fadia; Zaldivar-Riveron, Alejandro] Univ Nacl Autonoma Mexico, Inst Biol, Colecc Nacl Insectos, 3Er Circuito Exterior S-N,AP 70-233, Mexico City 04510, DF, Mexico Zaldivar-Riveron, A (reprint author), Univ Nacl Autonoma Mexico, Inst Biol, Colecc Nacl Insectos, 3Er Circuito Exterior S-N,AP 70-233, Mexico City 04510, DF, Mexico. azaldivar@ibiologia.unam.mx Ceccarelli, Fadia Sara/0000-0003-4117-7366 DGAPA-UNAM, Mexico; Consejo Nacional de Ciencia y Tecnologia, Mexico; US National Science Foundation [DEB 0205982]; Universidad Nacional Autonoma de Mexico (UNAM-DGAPA) We especially thank Mike J. Sharkey for providing many of the specimens employed in this study. We also thank Hans Clebsch and Rosa Briceno for providing material from Dominican Republic and Venezuela, respectively; John LaSalle for providing the Australian species of Ontsira; Juan Jose Martinez, Vladmir De Jesus-Bonilla, Valeria Salinas-Ramos, Andres Martinez-Aquino and Itzel Zamora-Vilchis for helping during our collecting trips in Mexico; Mario Garcia-Paris for helping to obtain the SEM digital pictures at the Museo Nacional De Ciencias Naturales (CSIC), Madrid, Spain; and Andres Resendiz-Flores, Karen Lopez and Ma. Cristina Mayorga-Martinez for mounting and labelling the entomological material. This work was supported by grants given by DGAPA-UNAM, Mexico (IACOD 2011 and PAPIIT 2013 Projects) and the Consejo Nacional de Ciencia y Tecnologia, Mexico (convocatoria SEP-Ciencia Basica CONACyT 2008; red del codigo de barras de la vida) to AZR, a grant given by the US National Science Foundation to MJS (DEB 0205982), and by a postdoctoral fellowship given by the Universidad Nacional Autonoma de Mexico (UNAM-DGAPA) to FSC. Archibald SB, 2010, PALEOBIOLOGY, V36, P374, DOI 10.1666/09021.1; Banks JC, 2006, MOL PHYLOGENET EVOL, V41, P690, DOI 10.1016/j.ympev.2006.06.001; Barbalho SM, 2004, ZOOTAXA, P1; Belokobyl'skii S. A., 1992, Entomologicheskoe Obozrenie, V71, P900; Belshaw R, 1997, MOL PHYLOGENET EVOL, V7, P281, DOI 10.1006/mpev.1996.0400; Boucher S., 2005, ANN SOC ENTOMOL FRAN, V41, P3; Brower AVZ, 1998, INSECT MOL BIOL, V7, P73, DOI 10.1046/j.1365-2583.1998.71052.x; Condamine FL, 2012, ECOL LETT, V15, P267, DOI 10.1111/j.1461-0248.2011.01737.x; Cook J, 2002, COLEOPTS BULL, V56, P3, DOI 10.1649/0010-065X(2002)56[3:AROTNG]2.0.CO;2; Cryan JR, 2012, SYST ENTOMOL, V37, P7, DOI 10.1111/j.1365-3113.2011.00611.x; Drummond AJ, 2012, MOL BIOL EVOL, V29, P1969, DOI 10.1093/molbev/mss075; Elias M, 2009, MOL ECOL, V18, P1716, DOI 10.1111/j.1365-294X.2009.04149.x; HASEGAWA M, 1985, J MOL EVOL, V22, P160, DOI 10.1007/BF02101694; Hebert PDN, 2004, P NATL ACAD SCI USA, V101, P14812, DOI 10.1073/pnas.0406166101; Herrel A, 2008, J EVOLUTION BIOL, V21, P1438, DOI 10.1111/j.1420-9101.2008.01552.x; HODKINSON ID, 1989, J BIOGEOGR, V16, P203, DOI 10.2307/2845257; Hoorn C, 2010, SCIENCE, V330, P927, DOI 10.1126/science.1194585; Jaramillo C, 2006, SCIENCE, V311, P1893, DOI 10.1126/science.1121380; Lopez-Estrada EK, 2012, J HYMENOPT RES, V29, P37, DOI 10.3897/JHR.29.3555; KASS RE, 1995, J AM STAT ASSOC, V90, P773, DOI 10.1080/01621459.1995.10476572; KIMURA M, 1980, J MOL EVOL, V16, P111, DOI 10.1007/BF01731581; LANAVE C, 1984, J MOL EVOL, V20, P86, DOI 10.1007/BF02101990; Larkin LL, 2006, MOL PHYLOGENET EVOL, V38, P330, DOI 10.1016/j.ympev.2005.10.003; Lowenberg-Neto P, 2011, J BIOGEOGR, V38, P1936, DOI 10.1111/j.1365-2699.2011.02540.x; Marsh Paul M., 1993, Contributions of the American Entomological Institute, V28, P1; Marsh Paul M., 2002, Memoirs of the American Entomological Institute (Gainesville), V70, P1; Matos-Maravi PF, 2013, MOL PHYLOGENET EVOL, V66, P54, DOI 10.1016/j.ympev.2012.09.005; Michel-Salzat A, 2004, SYST ENTOMOL, V29, P371, DOI 10.1111/j.0307-6970.2004.00246.x; Morrone JJ, 2006, ANNU REV ENTOMOL, V51, P467, DOI 10.1146/annurev.ento.50.071803.130447; MUESEBECK CFW, 1960, J PALEONTOL, V34, P495; Nunes JF, 2012, ZOOKEYS, P53, DOI 10.3897/zookeys.223.3540; Nylander J. A. A, 2004, MRMODELTEST V2; Nylander JAA, 2008, SYSTEMATIC BIOL, V57, P257, DOI 10.1080/10635150802044003; Nyman T, 2012, ECOL LETT, V15, P889, DOI 10.1111/j.1461-0248.2012.01782.x; Padial JM, 2010, BIOL J LINN SOC, V101, P747, DOI 10.1111/j.1095-8312.2010.01528.x; Ramirez SR, 2010, BIOL J LINN SOC, V100, P552, DOI 10.1111/j.1095-8312.2010.01440.x; Ree RH, 2008, SYSTEMATIC BIOL, V57, P4, DOI 10.1080/10635150701883881; RONQUIST F, 1994, EVOLUTION, V48, P241, DOI 10.1111/j.1558-5646.1994.tb01310.x; Ronquist F, 2012, SYST BIOL, V61, P539, DOI 10.1093/sysbio/sys029; De Jesus-Bonilla VS, 2011, ZOOKEYS, P71, DOI 10.3897/zookeys.122.1243; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Sanderson MJ, 2003, BIOINFORMATICS, V19, P301, DOI 10.1093/bioinformatics/19.2.301; Ceccarelli FS, 2012, MOL PHYLOGENET EVOL, V62, P485, DOI 10.1016/j.ympev.2011.10.018; Stamatakis A, 2006, BIOINFORMATICS, V22, P2688, DOI 10.1093/bioinformatics/btl446; Vincent SE, 2009, J EVOLUTION BIOL, V22, P1203, DOI 10.1111/j.1420-9101.2009.01739.x; Ward PS, 2011, MYRMECOL NEWS, V15, P21; Whitfield JB, 2008, ANNU REV ENTOMOL, V53, P449, DOI 10.1146/annurev.ento.53.103106.093304; Whitfield JB, 2007, TRENDS ECOL EVOL, V22, P258, DOI 10.1016/j.tree.2007.01.012; Winkler IS, 2009, P NATL ACAD SCI USA, V106, P18103, DOI 10.1073/pnas.0904852106; Xie WG, 2011, SYST BIOL, V60, P150, DOI 10.1093/sysbio/syq085; Yoshizawa K, 2010, MOL PHYLOGENET EVOL, V55, P939, DOI 10.1016/j.ympev.2010.02.026; Yu Y, 2011, RASP RECONSTRUCT ANC; Yu Y, 2010, MOL PHYLOGENET EVOL, V56, P848, DOI 10.1016/j.ympev.2010.04.011; Zaldivar-Riveron A, 2008, INVERTEBR SYST, V22, P345, DOI 10.1071/IS07028; Zaldivar-Riveron A, 2007, MOL PHYLOGENET EVOL, V44, P981, DOI 10.1016/j.ympev.2007.05.016; ZHARKIKH A, 1994, J MOL EVOL, V39, P315, DOI 10.1007/BF00160155; Zuparko RL, 1997, P ENTOMOL SOC WASH, V99, P744 57 16 16 0 47 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 1095-9513 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. OCT 2013 69 1 142 152 10.1016/j.ympev.2013.05.001 11 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 196UM WOS:000322802900013 23684912 2019-02-21 J Kavanagh, PS; Signal, TD; Taylor, N Kavanagh, Phillip S.; Signal, Tania D.; Taylor, Nik The Dark Triad and animal cruelty: Dark personalities, dark attitudes, and dark behaviors PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Animal cruelty; Personality; Attitudes; Behavior LIFE-HISTORY THEORY; VIOLENCE; ABUSE; ADOLESCENTS; NARCISSISM; EMPATHY; TRAITS; STYLES; SAMPLE; YOUTH Research examining the interpersonal interactions of those high on the Dark Triad has proliferated in recent years. Extant research, however, has not examined other types of relationships such as attitudes and behaviors towards animals. Further, there has been limited research examining the associations between personality and attitudes and behaviors towards animals generally. In this study, participants (N = 227) completed an online survey measuring the Dark Triad, attitudes towards animals, and acts of animal cruelty. The results revealed that individuals with higher levels of the Dark Triad demonstrated less positive attitudes towards animals and reported engaging in more acts of animal cruelty. Age and sex were found to be significant predictors of less positive attitudes and behaviors towards animals, independent of the Dark Triad. These results suggest that those callous and manipulative behaviors and attitudes that have come to be associated with the Dark Triad are not just limited to human-to-human interactions, but are also consistent across other interactions. Crown Copyright (c) 2013 Published by Elsevier Ltd. All rights reserved. [Kavanagh, Phillip S.] Univ S Australia, Sch Psychol Social Work & Social Policy, Adelaide, SA 5001, Australia; [Signal, Tania D.] Cent Queensland Univ, Sch Hlth & Human Serv, Rockhampton, Qld 4702, Australia; [Taylor, Nik] Flinders Univ S Australia, Sch Social & Policy Studies, Adelaide, SA 5001, Australia Kavanagh, PS (reprint author), Univ S Australia, Sch Psychol Social Work & Social Policy, GPO Box 2471, Adelaide, SA 5001, Australia. phil.kavanagh@unisa.edu.au; t.signal@cqu.edu.au; nik.taylor@flinders.edu.au Taylor, Nik/0000-0003-3736-1443; Kavanagh, Phil/0000-0003-1090-4188 American Pet Products Association, 2012, APPA NAT PET OWN SUR; Ames DR, 2006, J RES PERS, V40, P440, DOI 10.1016/j.jrp.2005.03.002; Australian Companion Animal Council, 2010, CONTR PET CAR IND AU; Baldry AC, 2004, SOC ANIM, V12, P1, DOI 10.1163/156853004323029513; Baldry AC, 2003, J INTERPERS VIOLENCE, V18, P258, DOI 10.1177/0886260502250081; Christie R, 1970, STUDIES MACHIAVELLIA; Crysel LC, 2013, PERS INDIV DIFFER, V54, P35, DOI 10.1016/j.paid.2012.07.029; DEEGAN J, 1978, EDUC PSYCHOL MEAS, V38, P873, DOI 10.1177/001316447803800404; DRISCOLL JW, 1992, ANTHROZOOS, V5, P32, DOI 10.2752/089279392787011575; Furnham A, 2003, ANTHROZOOS, V16, P135, DOI 10.2752/089279303786992260; Gullone E, 2008, J APPL DEV PSYCHOL, V29, P371, DOI 10.1016/j.appdev.2008.06.004; Hayes AF, 2009, COMMUN MONOGR, V76, P408, DOI 10.1080/03637750903310360; Henry BC, 2004, SOC ANIM, V12, P185, DOI 10.1163/1568530042880677; Herzog HA, 2007, ANTHROZOOS, V20, P7, DOI 10.2752/089279307780216687; Herzog Jr H. A., 1997, ANTHROPOMORPHISM ANE, P237; Jonason P. K., 2011, J METHODS MEASUREMEN, V2, P28, DOI DOI 10.2458/AZU_; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2012, PERS INDIV DIFFER, V52, P449, DOI 10.1016/j.paid.2011.11.008; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P606, DOI 10.1016/j.paid.2010.05.030; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jones D. N., 2012, EUROPEAN J PERSONALI; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Khan R, 2008, J INTERPERS VIOLENCE, V23, P1513, DOI 10.1177/0886260508314312; Knight S, 2004, ANTHROZOOS, V17, P43, DOI 10.2752/089279304786991945; Mathews S, 1997, SOC ANIM, V5, P169, DOI 10.1163/156853097X00060; McDonald MM, 2012, PERS INDIV DIFFER, V52, P601, DOI 10.1016/j.paid.2011.12.003; O'Grady KE, 2007, PRISON J, V87, P416, DOI 10.1177/0032885507307124; Oleson JC, 2009, ANTHROZOOS, V22, P255, DOI 10.2752/175303709X457595; Paulhus D. L., 2010, SELF REPORT PSYCHOPA; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; Schleidt Wolfgang, 2003, Evolution and Cognition, V9, P57; Sharp H. W., 2006, SPRING C N CAR PSYCH; Signal TD, 2006, SOC ANIM, V14, P147, DOI 10.1163/156853006776778743; Simons DA, 2008, CHILD ABUSE NEGLECT, V32, P549, DOI 10.1016/j.chiabu.2007.03.027; Slavkin ML, 2001, ADOLESCENCE, V36, P461; Tallichet SE, 2005, CRIM JUSTICE STUD, V18, P173, DOI 10.1080/14786010500157235; Taylor N., 2008, SOCIOLOGICAL RES ONL, V13, P2, DOI [10.5153/sro.1661, DOI 10.5153/SRO.1661]; Vaughn MG, 2009, J PSYCHIATR RES, V43, P1213, DOI 10.1016/j.jpsychires.2009.04.011; Veselka L, 2010, PERS INDIV DIFFER, V48, P772, DOI 10.1016/j.paid.2010.01.017; Volant AM, 2008, J INTERPERS VIOLENCE, V23, P1277, DOI 10.1177/0886260508314309 43 30 32 6 83 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. OCT 2013 55 6 666 670 10.1016/j.paid.2013.05.019 5 Psychology, Social Psychology 199TY WOS:000323019600007 2019-02-21 J Lowther, AD; Harcourt, RG; Page, B; Goldsworthy, SD Lowther, Andrew D.; Harcourt, Robert G.; Page, Bradley; Goldsworthy, Simon D. Steady as He Goes: At-Sea Movement of Adult Male Australian Sea Lions in a Dynamic Marine Environment PLOS ONE English Article ARCTOCEPHALUS-PUSILLUS-DORIFERUS; ANTARCTIC FUR SEALS; COASTAL UPWELLING SYSTEM; STABLE-ISOTOPES; NEW-ZEALAND; FORAGING BEHAVIOR; HABITAT USE; SURFACE TEMPERATURES; SATELLITE TELEMETRY; OTARIA-FLAVESCENS The southern coastline of Australia forms part of the worlds' only northern boundary current system. The Bonney Upwelling occurs every austral summer along the south-eastern South Australian coastline, a region that hosts over 80% of the worlds population of an endangered endemic otariid, the Australian sea lion. We present the first data on the movement characteristics and foraging behaviour of adult male Australian sea lions across their South Australian range. Synthesizing telemetric, oceanographic and isotopic datasets collected from seven individuals enabled us to characterise individual foraging behaviour over an approximate two year time period. Data suggested seasonal variability in stable carbon and nitrogen isotopes that could not be otherwise explained by changes in animal movement patterns. Similarly, animals did not change their foraging patterns despite fine-scale spatial and temporal variability of the upwelling event. Individual males tended to return to the same colony at which they were tagged and utilized the same at-sea regions for foraging irrespective of oceanographic conditions or time of year. Our study contrasts current general assumptions that male otariid life history strategies should result in greater dispersal, with adult male Australian sea lions displaying central place foraging behaviour similar to males of other otariid species in the region. [Lowther, Andrew D.; Goldsworthy, Simon D.] SARDI Aquat Sci, Threatened Endangered & Protected Species, Adelaide, SA, Australia; [Harcourt, Robert G.] Macquarie Univ, Dept Biol Sci, N Ryde, NSW, Australia; [Page, Bradley] Dept Environm Water & Nat Resources, Sci Monitoring & Knowledge Branch, Adelaide, SA, Australia Lowther, AD (reprint author), Norwegian Polar Res Inst, Biodivers Sect, Tromso, Norway. Andrew.Lowther@npolar.no Harcourt, Robert/0000-0003-4666-2934 Integrated Marine Observing System (IMOS); Australian Government through the National Collaborative Research Infrastructure Strategy; Super Science Initiative Funding was received from the Integrated Marine Observing System (IMOS) - IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Arnould JPY, 2007, AQUAT CONSERV, V17, pS53, DOI 10.1002/aqc.908; Arnould JPY, 2001, CAN J ZOOL, V79, P35, DOI 10.1139/cjz-79-1-35; Atkinson S, 1997, Rev Reprod, V2, P175, DOI 10.1530/ror.0.0020175; Aurioles D, 2006, MAR MAMMAL SCI, V22, P326, DOI 10.1111/j.1748-7692.2006.00023.x; Awkerman JA, 2007, CAN J ZOOL, V85, P273, DOI 10.1139/Z06-202; Bailey Helen, 2010, Endangered Species Research, V10, P93, DOI 10.3354/esr00239; Bailleul F, 2010, ECOLOGICAL MODELLING; Baylis AMM, 2008, CAN J ZOOL, V86, P774, DOI 10.1139/Z08-055; Bearhop S, 2006, MAR ECOL PROG SER, V311, P157, DOI 10.3354/meps311157; Boehme L, 2009, OCEAN SCI; Box George E. P., 1994, TIME SERIES ANAL FOR; Boyd IL, 1998, CAN J FISH AQUAT SCI, V55, P845, DOI 10.1139/cjfas-55-4-845; Bradshaw CJA, 2007, ECOL APPL, V17, P628, DOI 10.1890/06-0964; BRAINERD KE, 1995, DEEP-SEA RES PT I, V42, P1521, DOI 10.1016/0967-0637(95)00068-H; Calenge C, 2011, HOME RANGE ESTIMATIO; Campagna C, 2001, J ZOOL, V255, P205, DOI 10.1017/S0952836901001285; Campagna C, 1995, J ZOOLOGY LONDON, V236; Cherel Y, 2009, BIOL LETTERS, V5, P830, DOI 10.1098/rsbl.2009.0552; Crawford K, 2008, MAMMAL REV, V38, P87, DOI 10.1111/j.1365-2907.2008.00120.x; Crocker DE, 2001, J ZOOL, V254, P267, DOI 10.1017/S0952836901000784; Croll DA, 2005, MAR ECOL PROG SER, V289, P117, DOI 10.3354/meps289117; Cronin MA, 2008, J EXP MAR BIOL ECOL, V362, P43, DOI 10.1016/j.jembe.2008.05.010; de Bruyn PJN, 2009, MAR ECOL PROG SER, V394, P263, DOI 10.3354/meps08292; Field I, 2002, ANTARCTIC S IN PRESS, V13; Forero MG, 2003, SCI MAR, V67, P23, DOI 10.3989/scimar.2003.67s223; Freitas C, 2008, J APPL ECOL, V45, P1213, DOI 10.1111/j.1365-2664.2008.01505.x; Freitas C, 2009, MAR ECOL PROG SER, V375, P247, DOI 10.3354/meps07725; Freon P, 2000, REV FISH BIOL FISHER, V10, P183, DOI 10.1023/A:1016666108540; Gales NJ, 1997, MARINE MAMMAL RESEARCH IN THE SOUTHERN HEMISPHERE, VOL 1, P78; GARDNER G, 1980, APPL STATIST, V29, P311, DOI DOI 10.2307/2346910; GENTRY RL, 1986, FUR SEALS MATERNAL S, P220; GENTRY RL, 1986, FUR SEALS MATERNAL S; Georges JY, 2000, MAR ECOL PROG SER, V196, P291, DOI 10.3354/meps196291; GOLDSWORTHY S., 2008, NEOPHOCA CINEREA IUC; Greaves DK, 2004, MAR MAMMAL SCI, V20, P296, DOI 10.1111/j.1748-7692.2004.tb01158.x; Guinet C, 1997, MAR ECOL PROG SER, V150, P11, DOI 10.3354/meps150011; Guinet C, 2001, MAR ECOL PROG SER, V219, P251, DOI 10.3354/meps219251; Hamer KC, 2009, J ANIM ECOL, V78, P880, DOI 10.1111/j.1365-2656.2009.01549.x; Hanson CE, 2005, MAR FRESHWATER RES, V56, P1011, DOI 10.1071/MF04288; Harcourt RG, 2002, MAR ECOL PROG SER, V227, P11, DOI 10.3354/meps227011; Hays GC, 2003, MAR ECOL PROG SER, V262, P305, DOI 10.3354/meps262305; Hindell MA, 2002, MAR ECOL PROG SER, V242, P275, DOI 10.3354/meps242275; Hindell MA, 1997, MAR MAMMAL SCI, V13, P219, DOI 10.1111/j.1748-7692.1997.tb00629.x; Hirons AC, 2001, CAN J ZOOL, V79, P1053, DOI 10.1139/cjz-79-6-1053; Hobson KA, 1996, CAN J FISH AQUAT SCI, V53, P528, DOI 10.1139/cjfas-53-3-528; Horne JS, 2007, ECOLOGY, V88, P2354, DOI 10.1890/06-0957.1; HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.1093/biomet/76.2.297; Huyer A, 2005, J MAR RES, V63, P901, DOI 10.1357/002224005774464238; Johnson DS, 2008, ECOLOGY, V89, P1208, DOI 10.1890/07-1032.1; Kampf J, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL019221; Kirkwood R, 2006, CAN J ZOOL, V84, P1781, DOI 10.1139/Z06-164; Klimley AP, 1999, MAR BIOL, V133, P307, DOI 10.1007/s002270050469; Langton Richard W., 1995, Reviews in Fisheries Science, V3, P201; Le Boeuf Burney J., 1994, P237; LJUNG GM, 1978, BIOMETRIKA, V65, P297, DOI 10.2307/2335207; Loughlin TR, 1999, DYNAMICS BERING SEA, P615; Lowther AD, 2011, MAR ECOL PROG SER, V443, P249, DOI 10.3354/meps09392; Lowther AD, 2010, MARINE MAMMAL SCI, V27; Mattern T, 2007, MAR ECOL PROG SER, V343, P295, DOI 10.3354/meps06954; McClatchie S, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2004JC002699; MCCONNELL BJ, 1992, ANTARCT SCI, V4, P393; McDougall T, 2010, INT THERMODYNAMIC EQ; Menge BA, 2004, ECOL MONOGR, V74, P663, DOI 10.1890/03-4060; Menge BA, 2002, ECOL RES, V17, P1, DOI 10.1046/j.1440-1703.2002.00458.x; Middleton JF, 2007, PROG OCEANOGR, V75, P1, DOI 10.1016/j.pocean.2007.07.001; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nilsen JEO, 2006, PROG OCEANOGR, V70, P58, DOI 10.1016/j.pocean.2006.03.014; Nordstrom C.A., 2012, DEEP SEA RES 2; OLSON DB, 1985, J MAR RES, V43, P113, DOI 10.1357/002224085788437325; Page B, 2005, MAR ECOL PROG SER, V304, P249, DOI 10.3354/meps304249; Page B, 2005, MAR ECOL PROG SER, V293, P283, DOI 10.3354/meps293283; Page B, 2006, MAR ECOL PROG SER, V323, P263, DOI 10.3354/meps323263; Phillips RA, 2009, OECOLOGIA, V160, P795, DOI 10.1007/s00442-009-1342-9; Pinaud D, 2008, J APPL ECOL, V45, P91, DOI 10.1111/j.1365-2664.2007.01370.x; Post DM, 2002, ECOLOGY, V83, P703, DOI 10.2307/3071875; Quillfeldt P, 2005, MAR ECOL PROG SER, V295, P295, DOI 10.3354/meps295295; Rochford D, 1977, REV POSSIBLE UPWELLI; Rudnick DL, 1999, SCIENCE, V283, P526, DOI 10.1126/science.283.5401.526; Schlitzer R, 2002, COMPUT GEOSCI-UK, V28, P1211, DOI 10.1016/S0098-3004(02)00040-7; Schneider D.C., 1990, Polar Research, V8, P17, DOI 10.1111/j.1751-8369.1990.tb00370.x; SCHOENHERR JR, 1991, CAN J ZOOL, V69, P583, DOI 10.1139/z91-088; Thompson D, 1998, J ZOOL, V246, P135, DOI 10.1111/j.1469-7998.1998.tb00142.x; Urbano F, 2010, PHILOS T R SOC B, V365, P2177, DOI 10.1098/rstb.2010.0081; Votier SC, 2011, MAR BIOL, P1; Weise MJ, 2010, ECOLOGY, V91, P1004, DOI 10.1890/08-1554.1; Weise MJ, 2006, GEOPHYS RES LETT, V33; Whiteway T. G., 2009, GEOSCIENCE AUSTR REC, V21; Wood SN, 2000, J ROY STAT SOC B, V62, P413, DOI 10.1111/1467-9868.00240 88 23 23 0 34 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 25 2013 8 9 e74348 10.1371/journal.pone.0074348 13 Multidisciplinary Sciences Science & Technology - Other Topics 228VC WOS:000325218700023 24086338 DOAJ Gold, Green Published 2019-02-21 J Mascaro, JS; Hackett, PD; Rilling, JK Mascaro, Jennifer S.; Hackett, Patrick D.; Rilling, James K. Testicular volume is inversely correlated with nurturing-related brain activity in human fathers PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article empathy; sperm competition LIFE-HISTORY STRATEGY; SPERM COMPETITION; TESTES SIZE; REPRODUCTIVE SUCCESS; MATERNAL-BEHAVIOR; NEURAL CIRCUITRY; SEXUAL-BEHAVIOR; BREEDING-SEASON; PARENTAL CARE; TESTOSTERONE Despite the well-documented benefits afforded the children of invested fathers in modern Western societies, some fathers choose not to invest in their children. Why do some men make this choice? Life History Theory offers an explanation for variation in parental investment by positing a trade-off between mating and parenting effort, which may explain some of the observed variance in human fathers' parenting behavior. We tested this hypothesis by measuring aspects of reproductive biology related to mating effort, as well as paternal nurturing behavior and the brain activity related to it. Both plasma testosterone levels and testes volume were independently inversely correlated with paternal caregiving. In response to viewing pictures of one's own child, activity in the ventral tegmental area-a key component of the mesolimbic dopamine reward and motivation system-predicted paternal caregiving and was negatively related to testes volume. Our results suggest that the biology of human males reflects a trade-off between mating effort and parenting effort, as indexed by testicular size and nurturing-related brain function, respectively. [Mascaro, Jennifer S.; Hackett, Patrick D.; Rilling, James K.] Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA; [Rilling, James K.] Emory Univ, Ctr Translat Social Neurosci, Atlanta, GA 30322 USA; [Mascaro, Jennifer S.; Rilling, James K.] Emory Univ, Sch Med, Dept Psychiat & Behav Sci, Atlanta, GA 30322 USA; [Mascaro, Jennifer S.; Rilling, James K.] Emory Univ, Ctr Behav Neurosci, Atlanta, GA 30322 USA Rilling, JK (reprint author), Emory Univ, Dept Anthropol, Atlanta, GA 30322 USA. jrillin@emory.edu Yerkes National Primate Research Center [2P51RR000165-51]; John Templeton Foundation We thank Sherryl Goodman for guidance regarding the measurement of paternal behavior. Assay services were provided by the Biomarkers Core Laboratory at the Yerkes National Primate Research Center, which is supported by Yerkes National Primate Research Center Base Grant 2P51RR000165-51. This work was supported by a Positive Neuroscience Award from the John Templeton Foundation. Alvergne A, 2009, HORM BEHAV, V56, P491, DOI 10.1016/j.yhbeh.2009.07.013; Apicella CL, 2007, HUM NATURE-INT BIOS, V18, P22, DOI 10.1007/BF02820844; ARIBARG A, 1986, INT J ANDROL, V9, P170, DOI 10.1111/j.1365-2605.1986.tb00880.x; Atzil S, 2011, NEUROPSYCHOPHARMACOL, V36, P2603, DOI 10.1038/npp.2011.172; Bahk JY, 2010, UROLOGY, V75, P1318, DOI 10.1016/j.urology.2009.12.007; Bartels A, 2004, NEUROIMAGE, V21, P1155, DOI 10.1016/j.neuroimage.2003.11.003; Bellis MA, 1995, HUMAN SPERM COMPETIT; Belsky J, 2012, DEV PSYCHOL, V48, P662, DOI 10.1037/a0024454; BOOTH A, 1993, SOC FORCES, V72, P463, DOI 10.2307/2579857; Cabrera NJ, 2000, CHILD DEV, V71, P127, DOI 10.1111/1467-8624.00126; Catania JA, 1996, PUBLIC OPIN QUART, V60, P345, DOI 10.1086/297758; Champagne F, 2001, P NATL ACAD SCI USA, V98, P12736, DOI 10.1073/pnas.221224598; DRAPER P, 1982, J ANTHROPOL RES, V38, P255, DOI 10.1086/jar.38.3.3629848; Eisenegger C, 2011, TRENDS COGN SCI, V15, P263, DOI 10.1016/j.tics.2011.04.008; Fenton KA, 2001, SEX TRANSM INFECT, V77, P84, DOI 10.1136/sti.77.2.84; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Fleming AS, 2002, HORM BEHAV, V42, P399, DOI 10.1006/hbeh.2002.1840; Gaudino JA, 1999, SOC SCI MED, V48, P253, DOI 10.1016/S0277-9536(98)00342-6; Gettler LT, 2011, P NATL ACAD SCI USA, V108, P16194, DOI 10.1073/pnas.1105403108; Gray P. B, 2010, FATHERHOOD EVOLUTION; HARCOURT AH, 1981, NATURE, V293, P55, DOI 10.1038/293055a0; HARCOURT AH, 1995, FUNCT ECOL, V9, P468, DOI 10.2307/2390011; Hermans EJ, 2008, BIOL PSYCHIAT, V63, P263, DOI 10.1016/j.biopsych.2007-05-013; Hrdy S. B., 2009, MOTHERS OTHERS EVOLU; Hunt KE, 1999, BEHAV ECOL SOCIOBIOL, V45, P360, DOI 10.1007/s002650050572; Kim P, 2010, BEHAV NEUROSCI, V124, P695, DOI 10.1037/a0020884; KOTHARI LK, 1974, INT J FERTIL, V19, P140; Kuo PX, 2012, BIOL PSYCHOL, V91, P302, DOI 10.1016/j.biopsycho.2012.08.002; Lack D., 1954, NATURAL REGULATION A, P343; Lieberman MD, 2007, ANNU REV PSYCHOL, V58, P259, DOI 10.1146/annurev.psych.58.110405.085654; Martin RD, 2007, YEARB PHYS ANTHROPOL, V50, P59, DOI 10.1002/ajpa.20734; McBride B. A., 1993, EARLY CHILDHOOD RES, V8, P457, DOI DOI 10.1016/S0885-2006(05)80080-8; Mehl MR, 2001, BEHAV RES METH INS C, V33, P517, DOI 10.3758/BF03195410; MOLLER AP, 1988, J HUM EVOL, V17, P479, DOI 10.1016/0047-2484(88)90037-1; Montague DPF, 2002, CHILD DEV, V73, P1339, DOI 10.1111/1467-8624.00475; Numan M, 2007, DEV PSYCHOBIOL, V49, P12, DOI 10.1002/dev.20198; Numan M, 2009, FRONT NEUROENDOCRIN, V30, P46, DOI 10.1016/j.yfrne.2008.10.002; Preston BT, 2003, P ROY SOC B-BIOL SCI, V270, P633, DOI 10.1098/rspb.2002.2268; Rilling JK, 2013, NEUROPSYCHOLOGIA, V51, P731, DOI 10.1016/j.neuropsychologia.2012.12.017; Sarkadi A, 2008, ACTA PAEDIATR, V97, P153, DOI 10.1111/j.1651-2227.2007.00572.x; Schulte-Hostedde AI, 2004, BEHAV ECOL SOCIOBIOL, V55, P272, DOI 10.1007/s00265-003-0707-z; Simmons LW, 2004, ANIM BEHAV, V68, P297, DOI 10.1016/j.anbehav.2003.11.013; Spyropoulos E, 2002, UROLOGY, V60, P485, DOI 10.1016/S0090-4295(02)01869-1; Strathearn L, 2009, NEUROPSYCHOPHARMACOL, V34, P2655, DOI 10.1038/npp.2009.103; Tither JM, 2008, DEV PSYCHOL, V44, P1409, DOI 10.1037/a0013065; Trivers RL, 1972, SEXUAL SELECTION DES; van Honka J, 2011, P NATL ACAD SCI USA, V108, P3448, DOI 10.1073/pnas.1011891108; Wang C, 2000, J CLIN ENDOCR METAB, V85, P2839, DOI 10.1210/jc.85.8.2839; Weitoft GR, 2003, LANCET, V361, P289, DOI 10.1016/S0140-6736(03)12324-0; WINGFIELD JC, 1990, AM NAT, V136, P829, DOI 10.1086/285134; Wittfoth-Schardt D, 2012, NEUROPSYCHOPHARMACOL, V37, P1799, DOI 10.1038/npp.2012.47; Wynne-Edwards KE, 2001, HORM BEHAV, V40, P139, DOI 10.1006/hbeh.2001.1699 52 55 55 0 61 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 24 2013 110 39 15746 15751 10.1073/pnas.1305579110 6 Multidisciplinary Sciences Science & Technology - Other Topics 222XE WOS:000324765100055 24019499 Bronze, Green Published 2019-02-21 J Barreto, FS; Burton, RS Barreto, Felipe S.; Burton, Ronald S. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article hybrid breakdown; Tigriopus; speciation; oxidative stress; mitochondrial dysfunction NASONIA PARASITOID WASPS; CYTOCHROME-C-OXIDASE; TIGRIOPUS-CALIFORNICUS; MITOCHONDRIAL DYSFUNCTION; COREGONUS-CLUPEAFORMIS; ALLOPATRIC POPULATIONS; REPRODUCTIVE ISOLATION; GENETIC-BASIS; STRESS; NUCLEAR Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations. [Barreto, Felipe S.; Burton, Ronald S.] Univ Calif San Diego, Scripps Inst Oceanog, Div Marine Biol Res, La Jolla, CA 92093 USA Barreto, FS (reprint author), Univ Calif San Diego, Scripps Inst Oceanog, Div Marine Biol Res, La Jolla, CA 92093 USA. fbarreto@ucsd.edu Burton, Ron/F-7694-2010 Burton, Ron/0000-0002-6995-5329 National Science Foundation [DEB-1051057, IOS-1155030] This study was supported by grants from the National Science Foundation to R. S. B. (grants nos. DEB-1051057 and IOS-1155030). Agarwal A, 2005, REPROD BIOL ENDOCRIN, V3, DOI 10.1186/1477-7827-3-28; Andreyev AI, 2005, BIOCHEMISTRY-MOSCOW+, V70, P200, DOI 10.1007/s10541-005-0102-7; Balaban RS, 2005, CELL, V120, P483, DOI 10.1016/j.cell.2005.02.001; Barreto FS, 2013, MOL BIOL EVOL, V30, P310, DOI 10.1093/molbev/mss228; Bertrand S, 2006, OECOLOGIA, V147, P576, DOI 10.1007/s00442-005-0317-8; Bize P, 2008, ECOLOGY, V89, P2584, DOI 10.1890/07-1135.1; Breeuwer AJ, 1995, EVOLUTION, V49, P705, DOI [10.2307/2410324, DOI 10.2307/2410324)]; Burton RS, 2006, AM NAT, V168, pS14, DOI 10.1086/509046; Burton RS, 2007, GENE, V403, P53, DOI 10.1010/j.gene.2007.07.026; Burton RS, 2012, MOL ECOL, V21, P4942, DOI 10.1111/mec.12006; BURTON RS, 1990, EVOLUTION, V44, P1814, DOI 10.1111/j.1558-5646.1990.tb05252.x; Camus MF, 2012, CURR BIOL, V22, P1717, DOI 10.1016/j.cub.2012.07.018; Chae S, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2003266; CONSTANTINI D, 2009, FUNCT ECOL, V23, P506, DOI DOI 10.1111/J.1365-2435.2009.01546.X); Dobzhansky T, 1936, GENETICS, V21, P113; Dowling DK, 2008, TRENDS ECOL EVOL, V23, P546, DOI 10.1016/j.tree.2008.05.011; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Edmands S, 1999, EVOLUTION, V53, P1757, DOI 10.1111/j.1558-5646.1999.tb04560.x; Edmands S, 1999, EVOLUTION, V53, P1972, DOI 10.1111/j.1558-5646.1999.tb04578.x; Ellison CK, 2008, J EVOLUTION BIOL, V21, P1844, DOI 10.1111/j.1420-9101.2008.01608.x; Ellison CK, 2008, P NATL ACAD SCI USA, V105, P15831, DOI 10.1073/pnas.0804253105; Ellison CK, 2006, EVOLUTION, V60, P1382, DOI 10.1111/j.0014-3820.2006.tb01217.x; Esposito LA, 1999, P NATL ACAD SCI USA, V96, P4820, DOI 10.1073/pnas.96.9.4820; Fishman L, 2006, EVOLUTION, V60, P1372, DOI 10.1554/05-708.1; Garratt M, 2011, P ROY SOC B-BIOL SCI, V278, P1098, DOI 10.1098/rspb.2010.1818; Gershoni M, 2009, BIOESSAYS, V31, P642, DOI 10.1002/bies.200800139; Gibson JD, 2013, EVOLUTION, V67, P2124, DOI 10.1111/evo.12080; Guetens G, 2002, CRIT REV CL LAB SCI, V39, P331, DOI 10.1080/10408360290795547; Gusdon AM, 2007, J BIOL CHEM, V282, P5171, DOI 10.1074/jbc.M609367200; Harrison JS, 2006, MOL BIOL EVOL, V23, P559, DOI 10.1093/molbev/msj058; Harrison R.G., 1990, Oxford Surveys in Evolutionary Biology, V7, P69; Ishikawa K, 2008, SCIENCE, V320, P661, DOI 10.1126/science.1156906; Kwong LK, 1998, ARCH BIOCHEM BIOPHYS, V350, P118, DOI 10.1006/abbi.1997.0489; Lane N, 2011, BIOESSAYS, V33, P860, DOI 10.1002/bies.201100051; Lee HY, 2008, CELL, V135, P1065, DOI 10.1016/j.cell.2008.10.047; Lin MT, 2006, NATURE, V443, P787, DOI 10.1038/nature05292; Ling JQ, 2010, P NATL ACAD SCI USA, V107, P4028, DOI 10.1073/pnas.1000315107; Mattiazzi M, 2004, HUM MOL GENET, V13, P869, DOI 10.1093/hmg/ddh103; Metcalfe NB, 2010, FUNCT ECOL, V24, P984, DOI 10.1111/j.1365-2435.2010.01750.x; Monaghan P, 2009, ECOL LETT, V12, P75, DOI 10.1111/j.1461-0248.2008.01258.x; Muller HJ, 1942, BIOL S, V6, P71; Orr HA, 2005, P NATL ACAD SCI USA, V102, P6522, DOI 10.1073/pnas.0501893102; Petros JA, 2005, P NATL ACAD SCI USA, V102, P719, DOI 10.1073/pnas.0408894102; Pitkanen S, 1996, J CLIN INVEST, V98, P345, DOI 10.1172/JCI118798; Rand DM, 2004, TRENDS ECOL EVOL, V19, P645, DOI 10.1016/j.tree.2004.10.003; Rawson PD, 2002, P NATL ACAD SCI USA, V99, P12955, DOI 10.1073/pnas.202335899; Rogers SM, 2006, J EVOLUTION BIOL, V19, P1979, DOI 10.1111/j.1420-9101.2006.01150.x; Tarin J J, 1996, Mol Hum Reprod, V2, P717, DOI 10.1093/molehr/2.10.717; Whiteley AR, 2009, CAN J ZOOL, V87, P566, DOI 10.1139/Z09-042; Woodson JD, 2008, NAT REV GENET, V9, P383, DOI 10.1038/nrg2348; Yee WKW, 2013, CURR BIOL, V23, pR55, DOI 10.1016/j.cub.2012.12.002 51 27 27 0 28 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 22 2013 280 1767 20131521 10.1098/rspb.2013.1521 6 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 298JK WOS:000330319800017 23902912 Green Published, Bronze 2019-02-21 J Parvinen, K; Dieckmann, U Parvinen, Kalle; Dieckmann, Ulf Self-extinction through optimizing selection JOURNAL OF THEORETICAL BIOLOGY English Article Evolutionary suicide; Life-history evolution; Tragedy of the commons; Frequency-dependent selection; Adaptive dynamics FISHERS FUNDAMENTAL THEOREM; EVOLUTIONARY SUICIDE; NATURAL-SELECTION; POPULATION-MODELS; SEX DETERMINATION; DYNAMICS; TRAGEDY; COMMONS; ADAPTATION; COEVOLUTION Evolutionary suicide is a process in which selection drives a viable population to extinction. So far, such selection-driven self-extinction has been demonstrated in models with frequency-dependent selection. This is not surprising, since frequency-dependent selection can disconnect individual-level and population-level interests through environmental feedback. Hence it can lead to situations akin to the tragedy of the commons, with adaptations that serve the selfish interests of individuals ultimately ruining a population. For frequency-dependent selection to play such a role, it must not be optimizing. Together, all published studies of evolutionary suicide have created the impression that evolutionary suicide is not possible with optimizing selection. Here we disprove this misconception by presenting and analyzing an example in which optimizing selection causes self-extinction. We then take this line of argument one step further by showing, in a further example, that selection-driven self-extinction can occur even under frequency-independent selection. (C) 2013 Elsevier Ltd. All rights reserved. [Parvinen, Kalle] Univ Turku, Dept Math & Stat, FIN-20014 Turku, Finland; [Parvinen, Kalle; Dieckmann, Ulf] Int Inst Appl Syst Anal, Evolut & Ecol Program, A-2361 Laxenburg, Austria Parvinen, K (reprint author), Univ Turku, Dept Math & Stat, FIN-20014 Turku, Finland. kalparvi@utu.fi; dieckmann@iiasa.ac.at Parvinen, Kalle/0000-0001-9125-6041; Dieckmann, Ulf/0000-0001-7089-0393 Academy of Finland [128323]; European Commission; European Science Foundation; Austrian Ministry for Science and Research; Vienna Science and Technology Fund; Austrian Science Fund (FWF) [TECT I-106 G11] K.P. wishes to thank the Academy of Finland for financial support (Grant number 128323). U.D. gratefully acknowledges support by the European Commission, the European Science Foundation, the Austrian Ministry for Science and Research, the Vienna Science and Technology Fund, and the Austrian Science Fund (FWF: TECT I-106 G11). Additional support by the Austrian Science Fund is enabling the immediate open-access publication of this paper. Allee W. C, 1949, PRINCIPLES ANIMAL EC; Ayala F.J., 1974, Annual Rev Ecol Syst, V5, P115, DOI 10.1146/annurev.es.05.110174.000555; Bacaer N, 2006, J MATH BIOL, V53, P421, DOI 10.1007/s00285-006-0015-0; Bacaer N, 2013, J MATH BIOL, V67, P1729, DOI 10.1007/s00285-012-0611-0; Bacaer N, 2012, J MATH BIOL, V65, P601, DOI 10.1007/s00285-011-0479-4; Barton N. H., 2007, EVOLUTION; Bazykin AD, 1998, NONLINEAR DYNAMICS I; Boukal DS, 2002, J THEOR BIOL, V218, P375, DOI 10.1006/yjtbi.3084; Burger R, 2000, WILEY SERIES MATH CO; CROW J F, 1970, P591; Darwin C., 1859, ORIGIN SPECIES MEANS; Dercole F, 2006, P R SOC B, V273, P983, DOI 10.1098/rspb.2005.3398; Dieckmann U, 1996, J MATH BIOL, V34, P579, DOI 10.1007/BF02409751; Dieckmann U., 2004, EVOLUTIONARY CONSERV; DIEKMANN O, 1990, J MATH BIOL, V28, P365; DOEBELI M, 1995, P ROY SOC B-BIOL SCI, V260, P119, DOI 10.1098/rspb.1995.0068; Ebenman B, 1996, P ROY SOC B-BIOL SCI, V263, P1145, DOI 10.1098/rspb.1996.0167; Eldakar OT, 2009, SCIENCE, V326, P816, DOI 10.1126/science.1180183; Eskola HTM, 2007, THEOR POPUL BIOL, V72, P41, DOI 10.1016/j.tpb.2007.03.004; Ewens W. J., 2004, MATH POPULATION GENE; Falconer D. S., 1996, INTRO QUANTITATIVE G; FERRIERE R, 2000, OPTIONS SPR, P12; Fiegna F, 2003, P ROY SOC B-BIOL SCI, V270, P1527, DOI 10.1098/rspb.2003.2387; Fletcher JA, 2009, P ROY SOC B-BIOL SCI, V276, P13, DOI 10.1098/rspb.2008.0829; FRANK SA, 1992, TRENDS ECOL EVOL, V7, P92, DOI 10.1016/0169-5347(92)90248-A; Gandon S, 2009, EVOLUTION, V63, P826, DOI 10.1111/j.1558-5646.2009.00609.x; GATTO M, 1993, THEOR POPUL BIOL, V43, P310, DOI 10.1006/tpbi.1993.1013; Geritz SAH, 1997, PHYS REV LETT, V78, P2024, DOI 10.1103/PhysRevLett.78.2024; Gyllenberg M, 2001, B MATH BIOL, V63, P981, DOI 10.1006/bulm.2001.0253; Gyllenberg M, 2002, J MATH BIOL, V45, P79, DOI 10.1007/s002850200151; Gyllenberg M., 2011, MATH DARWINS LEGACY, P235; Gyllenberg M, 2011, J MATH BIOL, V62, P359, DOI 10.1007/s00285-010-0340-1; Haldane JBS, 1932, CAUSES EVOLUTION; HARDIN G, 1968, SCIENCE, V162, P1243; Hardin G, 1998, SCIENCE, V280, P682, DOI 10.1126/science.280.5364.682; Hartl DL, 2007, PRINCIPLES POPULATIO; Hauert C, 2007, SCIENCE, V316, P1905, DOI 10.1126/science.1141588; Hedrick PW, 2006, TRENDS ECOL EVOL, V21, P55, DOI 10.1016/j.tree.2005.11.014; Heino M, 1998, TRENDS ECOL EVOL, V13, P367, DOI 10.1016/S0169-5347(98)01380-9; Inaba H, 2012, J MATH BIOL, V65, P309, DOI 10.1007/s00285-011-0463-z; Johst K, 1999, P ROY SOC B-BIOL SCI, V266, P1147, DOI 10.1098/rspb.1999.0756; Kooi BW, 2003, ACTA BIOTHEOR, V51, P189, DOI 10.1023/A:1025146207201; LAWLOR LR, 1976, AM NAT, V110, P79, DOI 10.1086/283049; MATSUDA H, 1994, THEOR POPUL BIOL, V45, P76, DOI 10.1006/tpbi.1994.1004; MATSUDA H, 1994, EVOLUTION, V48, P1764, DOI 10.1111/j.1558-5646.1994.tb02212.x; MCCANN K, 1994, AM NAT, V144, P873, DOI 10.1086/285714; Meszena G, 2006, THEOR POPUL BIOL, V69, P68, DOI 10.1016/j.tpb.2005.07.001; Metz JAJ, 2008, EVOL ECOL RES, V10, P629; METZ JAJ, 1992, TRENDS ECOL EVOL, V7, P198, DOI 10.1016/0169-5347(92)90073-K; METZ JAJ, 1996, WP96004 IIASA; Metz JAJ, 1996, STOCHAST SPATIAL STR, P183; Nowak MA, 2005, NATURE, V437, P1291, DOI 10.1038/nature04131; Nowak MA, 2006, SCIENCE, V314, P1560, DOI 10.1126/science.1133755; Okasha S, 2008, BRIT J PHILOS SCI, V59, P319, DOI 10.1093/bjps/axn010; Parvinen K, 2005, ACTA BIOTHEOR, V53, P241, DOI 10.1007/s10441-005-2531-5; Parvinen K, 2007, EVOL ECOL RES, V9, P619; Parvinen K, 2013, THEOR POPUL BIOL, V85, P12, DOI 10.1016/j.tpb.2013.01.003; Parvinen K, 2011, B MATH BIOL, V73, P2605, DOI 10.1007/s11538-011-9638-4; Parvinen K, 2010, P ROY SOC B-BIOL SCI, V277, P2493, DOI 10.1098/rspb.2010.0191; Rankin DJ, 2007, TRENDS ECOL EVOL, V22, P643, DOI 10.1016/j.tree.2007.07.009; Rankin DJ, 2011, AM NAT, V177, P780, DOI 10.1086/659947; Rankin DJ, 2005, OIKOS, V111, P616; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROUGHGARDEN J, 1976, THEOR POPUL BIOL, V9, P388, DOI 10.1016/0040-5809(76)90054-X; Rousset F, 2004, THEOR POPUL BIOL, V65, P127, DOI 10.1016/j.tpb.2003.09.003; RUXTON GD, 1995, J THEOR BIOL, V175, P595, DOI 10.1006/jtbi.1995.0168; Tilman D., 1982, RESOURCE COMPETITION; Tilman D, 1988, PLANT STRATEGIES DYN; Tu Loring W., 2008, INTRO MANIFOLDS; Webb C, 2003, AM NAT, V161, P181, DOI 10.1086/345858; Wright S, 1969, EVOLUTION GENETICS P, V2; WRIGHT S, 1932, P 6 INT C GEN, P355; Zayed A, 2005, P NATL ACAD SCI USA, V102, P10742, DOI 10.1073/pnas.0502271102 73 12 12 4 76 ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD LONDON 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND 0022-5193 1095-8541 J THEOR BIOL J. Theor. Biol. SEP 21 2013 333 1 9 10.1016/j.jtbi.2013.03.025 9 Biology; Mathematical & Computational Biology Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology 195FV WOS:000322688600001 23583808 Green Published, Other Gold 2019-02-21 J Tarwater, CE; Beissinger, SR Tarwater, Corey E.; Beissinger, Steven R. Opposing selection and environmental variation modify optimal timing of breeding PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA English Article reproductive success; juvenile survival; adult survival; Forpus passerinus WILD BIRD POPULATION; CLIMATE-CHANGE; PHENOTYPIC SELECTION; NATURAL-POPULATIONS; NEOTROPICAL PARROT; CLUTCH SIZE; DIRECTIONAL SELECTION; REPRODUCTIVE SUCCESS; HATCHING ASYNCHRONY; GREAT TITS Studies of evolution in wild populations often find that the heritable phenotypic traits of individuals producing the most offspring do not increase proportionally in the population. This paradox may arise when phenotypic traits influence both fecundity and viability and when there is a tradeoff between these fitness components, leading to opposing selection. Such tradeoffs are the foundation of life history theory, but they are rarely investigated in selection studies. Timing of breeding is a classic example of a heritable trait under directional selection that does not result in an evolutionary response. Using a 22-y study of a tropical parrot, we show that opposing viability and fecundity selection on the timing of breeding is common and affects optimal breeding date, defined by maximization of fitness. After accounting for sampling error, the directions of viability (positive) and fecundity (negative) selection were consistent, but the magnitude of selection fluctuated among years. Environmental conditions (rainfall and breeding density) primarily and breeding experience secondarily modified selection, shifting optimal timing among individuals and years. In contrast to other studies, viability selection was as strong as fecundity selection, late-born juveniles had greater survival than early-born juveniles, and breeding later in the year increased fitness under opposing selection. Our findings provide support for life history tradeoffs influencing selection on phenotypic traits, highlight the need to unify selection and life history theory, and illustrate the importance of monitoring survival as well as reproduction for understanding phenological responses to climate change. [Tarwater, Corey E.; Beissinger, Steven R.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Ecosyst Sci Div, Berkeley, CA 94720 USA Tarwater, CE (reprint author), Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada. cetarwater@gmail.com National Science Foundation [IBN-9407349, DEB-9503194, IBN-0113173]; Smithsonian Institution; National Geographic Society; A. Starker Leopold Chair in Wildlife Biology We thank the many Forpus field workers over the years and acknowledge the long-term contributions by Karl Berg, Virginia Saenz, and Scott Stoleson. The laboratory of S. R. B., J. Patrick Kelley, Stephanie Carlson, Shripad Tuljapurkar, Sutirth Dey, and two anonymous reviewers provided helpful comments on the manuscript. The late Tomas Blohm gave us permission to work and live on his ranch. The research described here was compliant with the current laws of Venezuela. Decades of parrotlet research were funded primarily by multiple grants from each of our long-term sponsors: National Science Foundation Grants IBN-9407349, DEB-9503194 and IBN-0113173, the Smithsonian Institution, the National Geographic Society, and the A. Starker Leopold Chair in Wildlife Biology. Ahola MP, 2009, J ANIM ECOL, V78, P1298, DOI 10.1111/j.1365-2656.2009.01596.x; Beissinger SR, 1998, ANIM BEHAV, V55, P21, DOI 10.1006/anbe.1997.0576; Beissinger SR, 1996, AM NAT, V147, P655, DOI 10.1086/285872; Beissinger SR, 2008, ORNITOL NEOTROP, V19, P73; Bohning-Gaese K, 2000, EVOL ECOL RES, V2, P823; Bonebrake TC, 2010, OECOLOGIA, V163, P385, DOI 10.1007/s00442-010-1566-8; Borash DJ, 1998, AM NAT, V151, P148, DOI 10.1086/286108; Both C, 2004, P ROY SOC B-BIOL SCI, V271, P1657, DOI 10.1098/rspb.2004.2770; Burnham KP, 2002, MODEL SELECTION INFE; Candolin U, 2004, EVOLUTION, V58, P1861; Caswell H., 2001, MATRIX POPULATION MO; Charmantier A, 2008, SCIENCE, V320, P800, DOI 10.1126/science.1157174; Christensen JH, 2007, CLIMATE CHANGE 2007: THE PHYSICAL SCIENCE BASIS, P847; DAAN S, 1990, BEHAVIOUR, V114, P83, DOI 10.1163/156853990X00068; FORSLUND P, 1995, TRENDS ECOL EVOL, V10, P374, DOI 10.1016/S0169-5347(00)89141-7; Garant D, 2007, EVOLUTION, V61, P1546, DOI 10.1111/j.1558-5646.2007.00128.x; Greene CM, 2001, ECOLOGY, V82, P2091; Hadfield JD, 2010, J STAT SOFTW, V33, P1; Husby A, 2011, PLOS BIOL, V9, DOI 10.1371/journal.pbio.1000585; Kingsolver JG, 2012, EVOL ECOL, V26, P1101, DOI 10.1007/s10682-012-9563-5; Kingsolver JG, 2011, AM NAT, V177, P346, DOI 10.1086/658341; LANDE R, 1983, EVOLUTION, V37, P1210, DOI 10.1111/j.1558-5646.1983.tb00236.x; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; Matsumura S, 2012, BIOSCIENCE, V62, P1039, DOI 10.1525/bio.2012.62.12.6; Merila J, 2001, GENETICA, V112, P199, DOI 10.1023/A:1013391806317; Morrissey MB, 2012, EVOLUTION, V66, P435, DOI 10.1111/j.1558-5646.2011.01444.x; Nevoux M, 2007, J ANIM ECOL, V76, P159, DOI 10.1111/j.1365-2656.2006.01191.x; Parmesan C, 2006, ANNU REV ECOL EVOL S, V37, P637, DOI 10.1146/annurev.ecolsys.37.091305.110100; ROFF DA, 2002, LIFE HIST EVOLUTION; Royle J. A., 2008, HIERARCHICAL MODELIN; Sandercock BK, 2000, ECOLOGY, V81, P1351, DOI 10.2307/177213; SCHLUTER D, 1991, P ROY SOC B-BIOL SCI, V246, P11, DOI 10.1098/rspb.1991.0118; Senapathi D, 2011, P ROY SOC B-BIOL SCI, V278, P3184, DOI 10.1098/rspb.2011.0212; Sheldon BC, 2003, EVOLUTION, V57, P406; Siepielski AM, 2011, P ROY SOC B-BIOL SCI, V278, P1572, DOI 10.1098/rspb.2010.1973; Stoleson SH, 1997, ECOL MONOGR, V67, P131, DOI 10.1890/0012-9615(1997)067[0131:HABRAF]2.0.CO;2; Tarwater CE, 2012, ECOL LETT, V15, P1218, DOI 10.1111/j.1461-0248.2012.01843.x; Tarwater CE, 2011, ECOLOGY, V92, P1271, DOI 10.1890/10-1386.1; Veran S, 2009, ECOL LETT, V12, P129, DOI 10.1111/j.1461-0248.2008.01268.x; VERHULST S, 1995, ECOLOGY, V76, P2392, DOI 10.2307/2265815; Verhulst S, 2008, PHILOS T R SOC B, V363, P399, DOI 10.1098/rstb.2007.2146; Visser ME, 2010, PHILOS T R SOC B, V365, P3113, DOI 10.1098/rstb.2010.0111; Williams SE, 2008, DIVERS DISTRIB, V14, P69, DOI 10.1111/j.1472-4642.2007.00418.x; Wilson AJ, 2006, PLOS BIOL, V4, P1270, DOI 10.1371/journal.pbio.0040216 44 11 11 2 72 NATL ACAD SCIENCES WASHINGTON 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA 0027-8424 P NATL ACAD SCI USA Proc. Natl. Acad. Sci. U. S. A. SEP 17 2013 110 38 15365 15370 10.1073/pnas.1303821110 6 Multidisciplinary Sciences Science & Technology - Other Topics 219GW WOS:000324495300056 24003118 Green Published, Bronze 2019-02-21 J Jaatinen, K; Seltmann, MW; Hollmen, T; Atkinson, S; Mashburn, K; Ost, M Jaatinen, Kim; Seltmann, Martin W.; Hollmen, Tuula; Atkinson, Shannon; Mashburn, Kendall; Ost, Markus Context dependency of baseline glucocorticoids as indicators of individual quality in a capital breeder GENERAL AND COMPARATIVE ENDOCRINOLOGY English Article Body temperature; CORT-fitness hypothesis; Individual quality; Context-dependent CORT response; Baseline CORT; Somateria mollissima EIDERS SOMATERIA-MOLLISSIMA; LONG-LIVED BIRD; CORTICOSTERONE LEVELS; COMMON EIDERS; LIFE-HISTORY; CLUTCH SIZE; MATERNAL CORTICOSTERONE; STRESS RESPONSIVENESS; REPRODUCTIVE SUCCESS; PASSERINE BIRD Identifying markers of individual quality is a central goal of life-history theory and conservation biology. The 'corticosterone (CORT)-fitness hypothesis' postulates that low fitness signals impaired ability to cope with the environment, resulting in elevated baseline CORT levels. CORT can, however, be negatively, positively or neutrally related to fitness, depending on the context. In order to clarify this controversial issue, we elucidate the utility of using baseline CORT as a correlate of individual fitness in incubating female eiders across variable environments. An increase in serum CORT with decreasing body condition was evident in older, more experienced breeders, while increased clutch mass was associated with elevated serum CORT in females breeding late in the season. For faecal CORT, the expected negative association with body condition was observed only in early breeders. We found a strong increase in faecal CORT with increasing baseline body temperature, indicating the utility of body temperature as a complementary stress indicator. Females in good body condition had a lower baseline body temperature, but this effect was only observed on open islands, a harsher breeding habitat less buffered against weather variability. Females with higher reproductive investment also maintained a lower baseline body temperature. Nest success strongly decreased with increasing serum and faecal CORT concentrations, and individual stress hormone and body temperature profiles were repeatable over years. Although our data support the tenet that baseline CORT is negatively related to fitness, the complex context-dependent effects call for cautious interpretation of relationships between stress physiology and phenotypic quality. (C) 2013 Elsevier Inc. All rights reserved. [Jaatinen, Kim] Australian Natl Univ, Evolut Ecol & Genet Res Sch Biol, ANU Coll Med Biol & Environm, Canberra, ACT 0200, Australia; [Seltmann, Martin W.; Ost, Markus] Abo Akad Univ, ARONIA Coastal Zone Res Team, Turku, Finland; [Hollmen, Tuula; Atkinson, Shannon; Mashburn, Kendall] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Inst Marine Sci, Fairbanks, AK USA; [Hollmen, Tuula] Alaska Sealife Ctr, Seward, AK USA; [Atkinson, Shannon; Mashburn, Kendall] Univ Alaska Fairbanks, Sch Fisheries & Ocean Sci, Div Fisheries, Juneau, AK USA Jaatinen, K (reprint author), Australian Natl Univ, Evolut Ecol & Genet Res Sch Biol, ANU Coll Med Biol & Environm, GPO Box 4, Canberra, ACT 0200, Australia. kim.jaatinen@gmail.com Ost, Markus/C-7376-2008; Jaatinen, Kim/A-3221-2011 Ost, Markus/0000-0002-2205-1437; Academy of Finland [128039]; Finnish Cultural Foundation; Onni Talas Foundation; Swedish Cultural Foundation We thank Petteri Lehikoinen, Johan Ekroos and James Montanari for assistance in the field. Tvarminne Zoological Station provided facilities and equipment for fieldwork. The study was funded by the Academy of Finland (to KJ, MS and MO; grant no. 128039), the Finnish Cultural Foundation (to KJ), Onni Talas Foundation (to MS) and the Swedish Cultural Foundation (to MO). Aiken LS, 1991, MULTIPLE REGRESSION; Angelier F, 2010, BIOL LETTERS, V6, P846, DOI 10.1098/rsbl.2010.0376; Bokony V, 2009, AM NAT, V173, P589, DOI 10.1086/597610; Bolduc F, 2003, BIOL CONSERV, V110, P77, DOI 10.1016/S0006-3207(02)00178-7; Bonier F, 2010, TRENDS ECOL EVOL, V25, P262, DOI 10.1016/j.tree.2010.01.009; Bonier F, 2009, TRENDS ECOL EVOL, V24, P634, DOI 10.1016/j.tree.2009.04.013; Bonier F, 2009, GEN COMP ENDOCR, V163, P208, DOI 10.1016/j.ygcen.2008.12.013; Cabanac AJ, 2001, PHYSIOL BEHAV, V74, P475, DOI 10.1016/S0031-9384(01)00586-8; Campeau S, 2008, NEUROSCI BIOBEHAV R, V32, P1277, DOI 10.1016/j.neubiorev.2008.05.014; Charmantier A, 2005, P ROY SOC B-BIOL SCI, V272, P1415, DOI 10.1098/rspb.2005.3117; Clinchy M, 2013, FUNCT ECOL, V27, P56, DOI 10.1111/1365-2435.12007; Cockrem JF, 2005, HORM BEHAV, V48, P492, DOI 10.1016/j.yhbeh.2005.03.008; Cockrem JF, 2002, GEN COMP ENDOCR, V125, P197, DOI 10.1006/gcen.2001.7750; Crespi EJ, 2013, FUNCT ECOL, V27, P93, DOI 10.1111/1365-2435.12009; Criscuolo F, 2006, PHYSIOL BIOCHEM ZOOL, V79, P514, DOI 10.1086/501065; Crossin GT, 2012, AM NAT, V180, pE31, DOI 10.1086/666001; D'Alba L, 2011, GEN COMP ENDOCR, V172, P218, DOI 10.1016/j.ygcen.2011.03.006; Descamps S, 2009, BIOL LETTERS, V5, P278, DOI 10.1098/rsbl.2008.0704; Dingemanse NJ, 2010, TRENDS ECOL EVOL, V25, P261, DOI 10.1016/j.tree.2010.01.008; Ekroos J, 2012, OECOLOGIA, V170, P979, DOI 10.1007/s00442-012-2378-9; Evans MR, 2006, J EVOLUTION BIOL, V19, P343, DOI 10.1111/j.1420-9101.2005.01034.x; Fast PLF, 2007, J AVIAN BIOL, V38, P205, DOI 10.1111/j.2007.0908-8857.03820.x; FORSLUND P, 1992, J ANIM ECOL, V61, P195, DOI 10.2307/5522; GABRIELSEN GW, 1991, NOR POLARINST SKR, V195, P51; Hanssen SA, 2002, BEHAV ECOL SOCIOBIOL, V52, P282, DOI 10.1007/s00265-002-0523-x; Hau M, 2010, P ROY SOC B-BIOL SCI, V277, P3203, DOI 10.1098/rspb.2010.0673; Hayashida S, 2010, PHYSIOL BEHAV, V101, P124, DOI 10.1016/j.physbeh.2010.04.027; Hayward LS, 2004, GEN COMP ENDOCR, V135, P365, DOI 10.1016/j.ygcen.2003.11.002; Jaatinen K, 2011, ANIM BEHAV, V81, P1289, DOI 10.1016/j.anbehav.2011.03.020; Kilpi M, 1997, OECOLOGIA, V111, P297, DOI 10.1007/s004420050238; Kilpi M, 2001, ANIM BEHAV, V62, P527, DOI 10.1006/anbe.2001.1784; Lehikoinen A, 2010, BIOL LETTERS, V6, P225, DOI 10.1098/rsbl.2009.0744; Mashburn KL, 2004, GEN COMP ENDOCR, V136, P371, DOI 10.1016/j.ygcen.2004.01.016; Meerlo P, 1996, PHYSIOL BEHAV, V59, P735, DOI 10.1016/0031-9384(95)02182-5; Mostl E, 2005, ANN NY ACAD SCI, V1046, P17, DOI 10.1196/annals.1343.004; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Nilsson P. B., 2004, THESIS U ALASKA FAIR; Ost M, 2008, OECOLOGIA, V158, P205, DOI 10.1007/s00442-008-1139-2; Ost M, 2008, J ANIM ECOL, V77, P315, DOI 10.1111/j.1365-2656.2007.01348.x; Ost M, 2011, OECOLOGIA, V166, P327, DOI 10.1007/s00442-010-1855-2; Ost M, 2010, OECOLOGIA, V162, P59, DOI 10.1007/s00442-009-1444-4; Ouyang JQ, 2011, P ROY SOC B-BIOL SCI, V278, P2537, DOI 10.1098/rspb.2010.2490; PARKER H, 1990, AUK, V107, P660, DOI 10.2307/4087996; Purnell JQ, 2004, J CLIN ENDOCR METAB, V89, P281, DOI 10.1210/jc.2003-030440; R Development Core Team, 2008, R LANG ENV STAT COMP; Robert A, 2012, ECOLOGY, V93, P1944, DOI 10.1890/11-1840.1; Romero LM, 2001, P NATL ACAD SCI USA, V98, P7366, DOI 10.1073/pnas.131091498; Romero LM, 2002, GEN COMP ENDOCR, V128, P1; Rubolini D, 2005, HORM BEHAV, V47, P592, DOI 10.1016/j.yhbeh.2005.01.006; Saino N, 2005, J EXP ZOOL PART A, V303A, P998, DOI 10.1002/jez.a.224; Schmidt JB, 2009, BRIT POULTRY SCI, V50, P739, DOI 10.1080/00071660903317571; Seltmann MW, 2012, ANIM BEHAV, V84, P889, DOI 10.1016/j.anbehav.2012.07.012; Sheriff MJ, 2009, J ANIM ECOL, V78, P1249, DOI 10.1111/j.1365-2656.2009.01552.x; STEINBEHRENS BA, 1992, AGING-CLIN EXP RES, V4, P197; Wads H., 2006, PHYSIOL BIOCHEM ZOOL, V79, P784; Waldeck P, 2004, BEHAVIOUR, V141, P725, DOI 10.1163/1568539042245132; Warne JP, 2009, AM J PHYSIOL-REG I, V296, pR1366, DOI 10.1152/ajpregu.91016.2008; Wingfield JC, 1998, AM ZOOL, V38, P191; Yoccoz NG, 2002, J APPL STAT, V29, P57, DOI 10.1080/02664760120108458 59 24 24 1 75 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. SEP 15 2013 191 231 238 10.1016/j.ygcen.2013.06.022 8 Endocrinology & Metabolism Endocrinology & Metabolism 210YD WOS:000323870400025 23851039 2019-02-21 J Marzoli, D; Moretto, F; Monti, A; Tocci, O; Roberts, SC; Tommasi, L Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Roberts, S. Craig; Tommasi, Luca Environmental Influences on Mate Preferences as Assessed by a Scenario Manipulation Experiment PLOS ONE English Article LONELY HEARTS ADVERTISEMENTS; GAP-PREDICTS-DEGREE; LIFE-HISTORY THEORY; MALE FACES; WOMENS PREFERENCES; BENEVOLENT SEXISM; REPRODUCTIVE STRATEGIES; FACIAL ATTRACTIVENESS; PATHOGEN PREVALENCE; INTERVIEWER GENDER Many evolutionary psychology studies have addressed the topic of mate preferences, focusing particularly on gender and cultural differences. However, the extent to which situational and environmental variables might affect mate preferences has been comparatively neglected. We tested 288 participants in order to investigate the perceived relative importance of six traits of an ideal partner (wealth, dominance, intelligence, height, kindness, attractiveness) under four different hypothetical scenarios (status quo/nowadays, violence/post-nuclear, poverty/resource exhaustion, prosperity/global wellbeing). An equal number of participants (36 women, 36 men) was allotted to each scenario; each was asked to allocate 120 points across the six traits according to their perceived value. Overall, intelligence was the trait to which participants assigned most importance, followed by kindness and attractiveness, and then by wealth, dominance and height. Men appraised attractiveness as more valuable than women. Scenario strongly influenced the relative importance attributed to traits, the main finding being that wealth and dominance were more valued in the poverty and post-nuclear scenarios, respectively, compared to the other scenarios. Scenario manipulation generally had similar effects in both sexes, but women appeared particularly prone to trade off other traits for dominance in the violence scenario, and men particularly prone to trade off other traits for wealth in the poverty scenario. Our results are in line with other correlational studies of situational variables and mate preferences, and represent strong evidence of a causal relationship of environmental factors on specific mate preferences, corroborating the notion of an evolved plasticity to current ecological conditions. A control experiment seems to suggest that our scenarios can be considered as realistic descriptions of the intended ecological conditions. [Marzoli, Daniele; Moretto, Francesco; Monti, Aura; Tocci, Ornella; Tommasi, Luca] Univ G dAnnunzio, Dipartimento Sci Psicol Umanist & Terr, Chieti, Italy; [Roberts, S. Craig] Univ Stirling, Sch Nat Sci, Stirling FK9 4LA, Scotland Marzoli, D (reprint author), Univ G dAnnunzio, Dipartimento Sci Psicol Umanist & Terr, Chieti, Italy. d.marzoli@unich.it Roberts, S. Craig/E-6919-2011 Roberts, S. Craig/0000-0002-9641-6101; Tommasi, Luca/0000-0003-0664-714X BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Boyce WT, 2005, DEV PSYCHOPATHOL, V17, P271, DOI 10.1017/S0954579405050145; Burriss RP, 2011, PERS INDIV DIFFER, V50, P542, DOI 10.1016/j.paid.2010.11.022; Buss D., 2008, EVOLUTIONARY PSYCHOL; Buss D.M., 1989, BEHAV BRAIN SCI, V122, P1, DOI DOI 10.1017/S0140525X00023992; Buss David, 2003, EVOLUTION DESIRE; BUSS DM, 1990, J CROSS CULT PSYCHOL, V21, P5, DOI 10.1177/0022022190211001; BUSS DM, 1993, PSYCHOL REV, V100, P204, DOI 10.1037/0033-295X.100.2.204; Campos LD, 2002, EVOL HUM BEHAV, V23, P395; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen D. L., 2008, J EVOLUTIONARY PSYCH, V6, P25, DOI DOI 10.1556/1EP; DeBruine LM, 2011, P ROY SOC B-BIOL SCI, V278, P813, DOI 10.1098/rspb.2010.2200; DeBruine LM, 2010, P ROY SOC B-BIOL SCI, V277, P2405, DOI 10.1098/rspb.2009.2184; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Eagly AH, 1999, AM PSYCHOL, V54, P408, DOI 10.1037//0003-066X.54.6.408; Edlund JE, 2010, PERS INDIV DIFFER, V49, P835, DOI 10.1016/j.paid.2010.07.004; EGOLF DB, 1991, SEX ROLES, V24, P365, DOI 10.1007/BF00288309; Figueredo AJ, 2010, LIFE HIST STRATEGY C; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fisher TD, 2007, ARCH SEX BEHAV, V36, P89, DOI 10.1007/s10508-006-9094-7; Fraley RC, 2002, PERS SOC PSYCHOL REV, V6, P123, DOI 10.1207/S15327957PSPR0602_03; GALLA JP, 1981, PSYCHOL REP, V49, P935, DOI 10.2466/pr0.1981.49.3.935; GANGESTAD SW, 1993, ETHOL SOCIOBIOL, V14, P89, DOI 10.1016/0162-3095(93)90009-7; Gangestad SW, 2000, BEHAV BRAIN SCI, V23, P573, DOI 10.1017/S0140525X0000337X; Gawley T, 2009, SEX ROLES, V60, P208, DOI 10.1007/s11199-008-9520-5; Geary DC, 2004, J SEX RES, V41, P27, DOI 10.1080/00224490409552211; Glick P, 2001, AM PSYCHOL, V56, P109, DOI 10.1037//0003-066X.56.2.109; HOLM S, 1979, SCAND J STAT, V6, P65; Huddy L, 1997, POLIT BEHAV, V19, P197, DOI 10.1023/A:1024882714254; Johnston VS, 2001, EVOL HUM BEHAV, V22, P251, DOI 10.1016/S1090-5138(01)00066-6; Jones BC, 2011, BIOL PSYCHOL, V87, P453, DOI 10.1016/j.biopsycho.2011.04.004; Jost JT, 2005, J PERS SOC PSYCHOL, V88, P498, DOI 10.1037/0022-3514.88.3.498; KANE EW, 1993, PUBLIC OPIN QUART, V57, P1, DOI 10.1086/269352; Kang MJ, 2011, J NEUROSCI, V31, P461, DOI 10.1523/JNEUROSCI.1583-10.2011; Law-Smith MJ, 2006, P ROY SOC B-BIOL SCI, V273, P135, DOI 10.1098/rspb.2005.3296; Lee AJ, 2011, BIOL LETTERS, V7, P892, DOI 10.1098/rsbl.2011.0454; LEVIN IP, 1983, ORGAN BEHAV HUM PERF, V31, P173, DOI 10.1016/0030-5073(83)90119-8; Li NP, 2006, J PERS SOC PSYCHOL, V90, P468, DOI 10.1037/0022-3514.90.3.468; Li NP, 2002, J PERS SOC PSYCHOL, V82, P947, DOI 10.1037//0022-3514.82.6.947; Lippa RA, 2007, ARCH SEX BEHAV, V36, P209, DOI 10.1007/s10508-006-9146-z; Little AC, 2001, P ROY SOC B-BIOL SCI, V268, P39, DOI 10.1098/rspb.2000.1327; Little AC, 2007, BEHAV ECOL SOCIOBIOL, V61, P967, DOI 10.1007/s00265-006-0325-7; Little AC, 2013, PSYCHONEUROENDOCRINO, V38, P1777, DOI 10.1016/j.psyneuen.2013.02.014; Little AC, 2013, EVOL HUM BEHAV, V34, P193, DOI 10.1016/j.evolhumbehav.2012.11.008; Little AC, 2011, P ROY SOC B-BIOL SCI, V278, P2032, DOI 10.1098/rspb.2010.1925; Little AC, 2010, PSYCHONEUROENDOCRINO, V35, P912, DOI 10.1016/j.psyneuen.2009.12.006; Lorber MF, 2004, J FAM VIOLENCE, V19, P329, DOI 10.1007/s10896-004-0678-5; McGraw KJ, 2002, ETHOLOGY, V108, P303, DOI 10.1046/j.1439-0310.2002.00757.x; MELAMED T, 1992, PERS INDIV DIFFER, V13, P1349, DOI 10.1016/0191-8869(92)90179-S; Mesnick S., 1997, FEMINISM EVOLUTIONAR, P207; Montoya RM, 2005, SEXUALITIES EVOLUTIO, V7, P115; NORRIS AE, 1992, PERS SOC PSYCHOL B, V18, P118, DOI 10.1177/0146167292182002; Oda R, 2001, HUM NATURE-INT BIOS, V12, P191, DOI 10.1007/s12110-001-1006-x; OLEARY KD, 1994, J CONSULT CLIN PSYCH, V62, P594, DOI 10.1037/0022-006X.62.3.594; Pawlowski B, 1999, P ROY SOC B-BIOL SCI, V266, P281, DOI 10.1098/rspb.1999.0634; Penton-Voak IS, 2004, EVOL HUM BEHAV, V25, P355, DOI 10.1016/j.evolhumbehav.2004.06.002; Penton-Voak IS, 2000, EVOL HUM BEHAV, V21, P39, DOI 10.1016/S1090-5138(99)00033-1; Phelan JE, 2010, SEX ROLES, V62, P35, DOI 10.1007/s11199-009-9711-8; Puts DA, 2013, HORM BEHAV, V63, P13, DOI 10.1016/j.yhbeh.2012.11.007; Regan PC, 1998, PERS SOC PSYCHOL B, V24, P1294, DOI 10.1177/01461672982412004; Roberts SC, 2008, P ROY SOC B-BIOL SCI, V275, P2715, DOI 10.1098/rspb.2008.0825; Roberts SC, 2004, P ROY SOC B-BIOL SCI, V271, pS270, DOI 10.1098/rsbl.2004.0174; Schmitt DP, 2012, EVOL PSYCHOL-US, V10, P720, DOI 10.1177/147470491201000406; Scott I, 2008, EVOL HUM BEHAV, V29, P289, DOI 10.1016/j.evolhumbehav.2008.02.004; Snyder JK, 2011, EVOL HUM BEHAV, V32, P127, DOI 10.1016/j.evolhumbehav.2010.08.007; SPECTOR PE, 1976, PERS SOC PSYCHOL B, V2, P290, DOI 10.1177/014616727600200318; Stone EA, 2008, EVOL PSYCHOL-US, V6, P447; Waynforth D, 2001, HUM NATURE-INT BIOS, V12, P207, DOI 10.1007/s12110-001-1007-9; WAYNFORTH D, 1995, BEHAVIOUR, V132, P755, DOI 10.1163/156853995X00135; Wilson M., 1997, FEMINISM EVOLUTIONAR, P505, DOI 10.1007/978-1-4615-5985-6_21; Wiseman DB, 1996, ORGAN BEHAV HUM DEC, V66, P241, DOI 10.1006/obhd.1996.0053; Zentner M, 2012, PSYCHOL SCI, V23, P1176, DOI 10.1177/0956797612441004 72 3 3 0 23 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One SEP 12 2013 8 9 e74282 10.1371/journal.pone.0074282 10 Multidisciplinary Sciences Science & Technology - Other Topics 242KO WOS:000326240100097 24069291 DOAJ Gold, Green Published 2019-02-21 J Liesenjohann, M; Liesenjohann, T; Palme, R; Eccard, JA Liesenjohann, Monique; Liesenjohann, Thilo; Palme, Rupert; Eccard, Jana Anja Differential behavioural and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors BMC ECOLOGY English Article Behavioural adaptations; Small mammals; Interspecific interactions; Nest predation; Stress response; Faecal corticosterone metabolites; Burrow system; Shrews; Voles LIFE-HISTORY EVOLUTION; INTERSPECIFIC COMPETITION; FIELD EXPERIMENTS; EUROPEAN RABBITS; INTERFERENCE COMPETITION; PHYSIOLOGICAL STRESS; FITNESS COSTS; PARENTAL CARE; RISK-TAKING; SPINY MICE Background: Adaptive behavioural strategies promoting co-occurrence of competing species are known to result from a sympatric evolutionary past. Strategies should be different for indirect resource competition (exploitation, e.g., foraging and avoidance behaviour) than for direct interspecific interference (e.g., aggression, vigilance, and nest guarding). We studied the effects of resource competition and nest predation in sympatric small mammal species using semi-fossorial voles and shrews, which prey on vole offspring during their sensitive nestling phase. Experiments were conducted in caged outdoor enclosures. Focus common vole mothers (Microtus arvalis) were either caged with a greater white-toothed shrew (Crocidura russula) as a potential nest predator, with an herbivorous field vole (Microtus agrestis) as a heterospecific resource competitor, or with a conspecific resource competitor. Results: We studied behavioural adaptations of vole mothers during pregnancy, parturition, and early lactation, specifically modifications of the burrow architecture and activity at burrow entrances. Further, we measured pre- and postpartum faecal corticosterone metabolites (FCMs) of mothers to test for elevated stress hormone levels. Only in the presence of the nest predator were prepartum FCMs elevated, but we found no loss of vole nestlings and no differences in nestling body weight in the presence of the nest predator or the heterospecific resource competitor. Although the presence of both the shrew and the field vole induced prepartum modifications to the burrow architecture, only nest predators caused an increase in vigilance time at burrow entrances during the sensitive nestling phase. Conclusion: Voles displayed an adequate behavioural response for both resource competitors and nest predators. They modified burrow architecture to improve nest guarding and increased their vigilance at burrow entrances to enhance offspring survival chances. Our study revealed differential behavioural adaptations to resource competitors and nest predators. [Liesenjohann, Monique; Liesenjohann, Thilo; Eccard, Jana Anja] Univ Potsdam, Dept Anim Ecol, D-14469 Potsdam, Germany; [Palme, Rupert] Univ Vet Med, Dept Nat Sci Biochem, A-1210 Vienna, Austria Liesenjohann, M (reprint author), Univ Potsdam, Dept Anim Ecol, Maulbeerallee 1, D-14469 Potsdam, Germany. monique.liesenjohann@uni-potsdam.de Palme, Rupert/A-3499-2008 Palme, Rupert/0000-0001-9466-3662 German Science Foundation [ec361/4-1] We thank Prof. Fritz Trillmich for providing his laboratory at the University of Bielefeld, Germany, for the FCM extractions and Elke Hippauf for technical support with the extractions. This study was supported by the German Science Foundation (grant ec361/4-1 to JAE). Permission for animal experiments was granted to Prof. J. A. Eccard, University of Bielefeld (22.5.2007), according to 8a Tierschutzgesetz (TSchG, animal protection law): "Analysis of direct interactions between voles and shrews", by the Nature Conservation Authority of North Rhine-Westphalia, Germany (permission number: 9.93.2.10.42.07.069). Amarasekare P, 2002, P ROY SOC B-BIOL SCI, V269, P2541, DOI 10.1098/rspb.2002.2181; ANDERSSON M, 1980, ANIM BEHAV, V28, P536, DOI 10.1016/S0003-3472(80)80062-5; Archer J, 1988, BEHAV BIOL AGGRESSIO; Bajkowska U, 2009, FOLIA ZOOL, V58, P1; Blanchard RJ, 1998, PHYSIOL BEHAV, V63, P561, DOI 10.1016/S0031-9384(97)00508-8; Bronner G. N., 1992, Koedoe, V35, P125; CAINE NG, 1989, BIOTROPICA, V21, P186, DOI 10.2307/2388709; CHURCHFIELD S, 1980, ACTA THERIOL, V25, P451, DOI 10.4098/AT.arch.80-41; Churchfield S., 1990, NATURAL HIST SHREWS; Clutton-Brock, 1991, EVOLUTION PARENTAL C; CONNELL JH, 1983, AM NAT, V122, P661, DOI 10.1086/284165; CONNELL JH, 1980, OIKOS, V35, P131, DOI 10.2307/3544421; Cresswell W, 1997, ANIM BEHAV, V53, P93, DOI 10.1006/anbe.1996.0281; Dale S, 1996, BEHAV ECOL SOCIOBIOL, V39, P31, DOI 10.1007/s002650050264; Eccard JA, 2002, OIKOS, V99, P580, DOI 10.1034/j.1600-0706.2002.11833.x; Eccard JA, 2003, EVOL ECOL, V17, P423, DOI 10.1023/A:1027305410005; Eccard JA, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003438; Eilam D, 1999, ANIM BEHAV, V58, P1085, DOI 10.1006/anbe.1999.1224; FULK GW, 1972, J MAMMAL, V53, P461, DOI 10.2307/1379037; GETZ LL, 1992, J MAMMAL, V73, P591, DOI 10.2307/1382030; Hansell M, 2000, BIRD NESTS CONSTRUCT; Harper JM, 2001, GEN COMP ENDOCR, V123, P337, DOI 10.1006/gcen.2001.7682; Harper SJ, 1996, J MAMMAL, V77, P1114, DOI 10.2307/1382793; Hawlena D, 2010, AM NAT, V176, P537, DOI 10.1086/656495; Jones M, 2000, J CHEM ECOL, V26, P455, DOI 10.1023/A:1005417707588; Kinlaw A, 1999, J ARID ENVIRON, V41, P127, DOI 10.1006/jare.1998.0476; Koskela E, 2000, EVOL ECOL, V14, P99, DOI 10.1023/A:1011051426666; Laundre JW, 2001, CAN J ZOOL, V79, P1401, DOI 10.1139/cjz-79-8-1401; Liesenjohann M, 2011, BEHAV ECOL SOCIOBIOL, V65, P2079, DOI 10.1007/s00265-011-1217-z; LIMA SL, 1985, ANIM BEHAV, V33, P155, DOI 10.1016/S0003-3472(85)80129-9; Lima SL, 1998, ADV STUD BEHAV, V27, P215; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Listoen C, 2000, BEHAV ECOL, V11, P40, DOI 10.1093/beheco/11.1.40; Lomascolo SB, 2010, WILSON J ORNITHOL, V122, P674, DOI 10.1676/09-167.1; MAGNHAGEN C, 1993, MAR BEHAV PHYSIOL, V23, P79, DOI 10.1080/10236249309378858; Martin TE, 1996, NATURE, V380, P338, DOI 10.1038/380338a0; MARTIN TE, 1988, CONDOR, V90, P51, DOI 10.2307/1368432; MARTIN TE, 1992, ECOLOGY, V73, P579, DOI 10.2307/1940764; MARTIN TE, 1993, BIOSCIENCE, V43, P523, DOI 10.2307/1311947; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Martin TE, 2004, AUK, V121, P289, DOI 10.1642/0004-8038(2004)121[0289:ALEHAE]2.0.CO;2; MAYER AD, 1986, ANN NY ACAD SCI, V474, P216, DOI 10.1111/j.1749-6632.1986.tb28013.x; MCLEAN IG, 1978, J MAMMAL, V59, P437, DOI 10.2307/1379935; MITCHELL WA, 1990, ECOLOGY, V71, P844, DOI 10.2307/1937356; Monclus R, 2006, CHEMOECOLOGY, V16, P25, DOI 10.1007/s00049-005-0324-6; Monclus R, 2005, ANIM BEHAV, V70, P753, DOI 10.1016/j.anbehav.2004.12.019; Monclus R, 2006, ETHOLOGY, V112, P1186, DOI 10.1111/j.1439-0310.2006.01275.x; Monclus R, 2009, ETHOLOGY, V115, P758, DOI 10.1111/j.1439-0310.2009.01661.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Murray DL, 2002, J ANIM ECOL, V71, P614, DOI 10.1046/j.1365-2656.2002.00632.x; NIETHAMMER J, 1982, HDB SAUGETIERE EUROP; Palomares F, 1999, AM NAT, V153, P492, DOI 10.1086/303189; Peiman KS, 2010, Q REV BIOL, V85, P133, DOI 10.1086/652374; REYNOLDS TD, 1987, AM MIDL NAT, V118, P245, DOI 10.2307/2425781; RICKLEFS RE, 1969, NATURE, V223, P922, DOI 10.1038/223922a0; ROBERTS SC, 1988, ANIM BEHAV, V36, P905, DOI 10.1016/S0003-3472(88)80173-8; Rodel HG, 2009, MAMM BIOL, V74, P200, DOI 10.1016/j.mambio.2008.04.003; Ruzic A, 1971, SAUGETIERKUNDLICHE M, V19, P366; SCHOENER TW, 1983, AM NAT, V122, P240, DOI 10.1086/284133; Sheriff MJ, 2011, OECOLOGIA, V166, P869, DOI 10.1007/s00442-011-1943-y; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; Smith AP, 1996, BIOL CONSERV, V77, P243, DOI 10.1016/0006-3207(96)00002-X; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Swaisgood RR, 2004, BEHAV ECOL SOCIOBIOL, V55, P410, DOI 10.1007/s00265-003-0735-8; Touma C, 2004, HORM BEHAV, V45, P10, DOI 10.1016/j.yhbeh.2003.07.002; Touma C, 2003, GEN COMP ENDOCR, V130, P267, DOI 10.1016/S0016-6480(02)00620-2; TRIVERS RL, 1972, AM ZOOL, V12, P648; Wingfield JC, 1999, HORMONES BEHAV ECOLO; Winnie J, 2007, ANIM BEHAV, V73, P215, DOI 10.1016/j.anbehav.2006.07.007; WOLFF JO, 1993, OIKOS, V68, P364, DOI 10.2307/3544853; WOLFF RJ, 1985, J ZOOL, V207, P43; Ylonen H, 2006, BEHAV ECOL SOCIOBIOL, V60, P350, DOI 10.1007/s00265-006-0171-7; Ylonen Hannu, 2002, Acta Ethologica, V4, P97; ZIV Y, 1993, OIKOS, V66, P237, DOI 10.2307/3544810 74 9 9 3 84 BMC LONDON CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1472-6785 BMC ECOL BMC Ecol. SEP 8 2013 13 33 10.1186/1472-6785-13-33 10 Ecology Environmental Sciences & Ecology 219ON WOS:000324516700002 24010574 DOAJ Gold, Green Published 2019-02-21 J Scantlebury, DP Scantlebury, Daniel P. Diversification rates have declined in the Malagasy herpetofauna PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article adaptive radiation; diversity-dependent diversification; diversification rate; island biogeography; Madagascar DAY GECKOS PHELSUMA; ADAPTIVE RADIATION; MOLECULAR PHYLOGENIES; ECOLOGICAL OPPORTUNITY; CLADE DIVERSIFICATION; DIVERSITY-DEPENDENCE; MAXIMUM-LIKELIHOOD; COPHYLINE FROGS; GENUS PHELSUMA; KEY ROLE The evolutionary origins of Madagascar's biodiversity remain mysterious despite the fact that relative to land area, there is no other place with consistently high levels of species richness and endemism across a range of taxonomic levels. Most efforts to explain diversification on the island have focused on geographical models of speciation, but recent studies have begun to address the island's accumulation of species through time, although with conflicting results. Prevailing hypotheses for diversification on the island involve either constant diversification rates or scenarios where rates decline through time. Using relative-time-calibrated phylogenies for seven endemic vertebrate clades and a model-fitting framework, I find evidence that diversification rates have declined through time on Madagascar. I show that diversification rates have clearly declined throughout the history of each clade, and models invoking diversity-dependent reductions to diversification rates best explain the diversification histories for each clade. These results are consistent with the ecological theory of adaptive radiation, and, coupled with ancillary observations about ecomorphological and life-history evolution, strongly suggest that adaptive radiation was an important formative process for one of the most species-rich regions on the Earth. These results cast the Malagasy biota in a new light and provide macroevolutionary justification for conservation initiatives. Univ Rochester, Dept Biol, Rochester, NY 14627 USA Scantlebury, DP (reprint author), Univ Rochester, Dept Biol, Rochester, NY 14627 USA. dscantle@mail.rochester.edu National Science Foundation [DEB-1110605, DEB-0920892] This research was supported by funding from the National Science Foundation (DEB-1110605 and DEB-0920892). AKAIKE H, 1974, IEEE T AUTOMAT CONTR, VAC19, P716, DOI 10.1109/TAC.1974.1100705; Ali JR, 2008, EARTH-SCI REV, V88, P145, DOI 10.1016/j.earscirev.2008.01.007; Andreone F, 2005, MOL PHYLOGENET EVOL, V34, P315, DOI 10.1016/j.ympev.2004.10.013; Bossuyt F, 2000, P NATL ACAD SCI USA, V97, P6585, DOI 10.1073/pnas.97.12.6585; Brock CD, 2011, SYST BIOL, V60, P410, DOI 10.1093/sysbio/syr007; Burnham K. P, 2002, MODEL SELECTION MULT, P488; Crottini A, 2012, P NATL ACAD SCI USA, V109, P5358, DOI 10.1073/pnas.1112487109; Cusimano N, 2010, SYST BIOL, V59, P458, DOI 10.1093/sysbio/syq032; Davies TJ, 2011, EVOLUTION, V65, P1841, DOI 10.1111/j.1558-5646.2011.01265.x; de Wit MJ, 2003, ANNU REV EARTH PL SC, V31, P213, DOI 10.1146/annurev.earth.31.100901.141337; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Etienne RS, 2012, AM NAT, V180, pE75, DOI 10.1086/667574; Etienne RS, 2012, P ROY SOC B-BIOL SCI, V279, P1300, DOI 10.1098/rspb.2011.1439; Etienne RS, 2012, SYST BIOL, V61, P204, DOI 10.1093/sysbio/syr091; Gernhard T, 2008, J THEOR BIOL, V253, P769, DOI 10.1016/j.jtbi.2008.04.005; Glaw F, 2007, FIELD GUIDE AMPHIBIA; Glor RE, 2010, ANNU REV ECOL EVOL S, V41, P251, DOI 10.1146/annurev.ecolsys.39.110707.173447; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Harmon LJ, 2008, SYST BIOL, V57, P562, DOI 10.1080/10635150802304779; Jackman TR, 2008, MOL PHYLOGENET EVOL, V46, P74, DOI 10.1016/j.ympev.2007.10.018; Jonsson KA, 2012, P NATL ACAD SCI USA, V109, P6620, DOI 10.1073/pnas.1115835109; Kaffenberger N, 2012, MOL PHYLOGENET EVOL, V62, P555, DOI 10.1016/j.ympev.2011.09.023; Katoh K, 2002, NUCLEIC ACIDS RES, V30, P3059, DOI 10.1093/nar/gkf436; Kisel Y, 2010, AM NAT, V175, P316, DOI 10.1086/650369; Lemmon AR, 2009, SYST BIOL, V58, P130, DOI 10.1093/sysbio/syp017; Losos JB, 2000, NATURE, V408, P847, DOI 10.1038/35048558; Losos JB, 2010, AM NAT, V175, P623, DOI 10.1086/652433; MAC ARTHUR ROBERT H., 1967; MACARTHUR RH, 1963, EVOLUTION, V17, P373, DOI 10.1111/j.1558-5646.1963.tb03295.x; Main H, 2012, AFR J HERPETOL, V61, P81, DOI 10.1080/21564574.2012.667837; McPeek MA, 2008, AM NAT, V172, pE270, DOI 10.1086/593137; Myers N, 2000, NATURE, V403, P853, DOI 10.1038/35002501; Nylander JAA, 2008, BIOINFORMATICS, V24, P581, DOI 10.1093/bioinformatics/btm388; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Pybus OG, 2000, P ROY SOC B-BIOL SCI, V267, P2267, DOI 10.1098/rspb.2000.1278; Rabosky DL, 2008, P ROY SOC B-BIOL SCI, V275, P2363, DOI 10.1098/rspb.2008.0630; Rabosky DL, 2010, P NATL ACAD SCI USA, V107, P22178, DOI 10.1073/pnas.1007606107; Rabosky DL, 2009, AM NAT, V173, P662, DOI 10.1086/597378; Rambaut A., 2009, TRACER V 1 5; Raxworthy CJ, 2008, J ZOOL, V275, P423, DOI 10.1111/j.1469-7998.2008.00460.x; Raxworthy CJ, 2007, SYST BIOL, V56, P907, DOI 10.1080/10635150701775111; Reddy S, 2012, P ROY SOC B-BIOL SCI, V279, P2062, DOI 10.1098/rspb.2011.2380; Revell LJ, 2005, SYST BIOL, V54, P973, DOI 10.1080/10635150500354647; Rocha S, 2009, MOL PHYLOGENET EVOL, V52, P530, DOI 10.1016/j.ympev.2009.03.032; Rocha S, 2010, ZOOTAXA, P1; Rosindell J, 2011, ECOL LETT, V14, P552, DOI 10.1111/j.1461-0248.2011.01617.x; Samonds KE, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0062086; Sanderson MJ, 2002, MOL BIOL EVOL, V19, P101, DOI 10.1093/oxfordjournals.molbev.a003974; Schluter D, 2000, ECOLOGY ADAPTIVE RAD, P288; Stamatakis A, 2005, BIOINFORMATICS, V21, P456, DOI 10.1093/bioinformatics/bti191; Stamatakis A, 2008, SYST BIOL, V57, P758, DOI 10.1080/10635150802429642; Townsend TM, 2009, SYST BIOL, V58, P641, DOI 10.1093/sysbio/syp073; van der Meijden A, 2007, MOL PHYLOGENET EVOL, V44, P1017, DOI 10.1016/j.ympev.2007.02.008; Vences M, 2002, MOL ECOL, V11, P1453, DOI 10.1046/j.1365-294X.2002.01543.x; Vences M, 2009, TRENDS ECOL EVOL, V24, P456, DOI 10.1016/j.tree.2009.03.011; Vieites DR, 2009, P NATL ACAD SCI USA, V106, P8267, DOI 10.1073/pnas.0810821106; Weyeneth N, 2011, J BIOGEOGR, V38, P44, DOI 10.1111/j.1365-2699.2010.02393.x; Wollenberg KC, 2008, EVOLUTION, V62, P1890, DOI 10.1111/j.1558-5646.2008.00420.x; Wollenberg KC, 2007, MOL PHYLOGENET EVOL, V45, P14, DOI 10.1016/j.ympev.2007.06.024; Yoder AD, 2005, P NATL ACAD SCI USA, V102, P6587, DOI 10.1073/pnas.0502092102 61 14 14 0 26 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. SEP 7 2013 280 1766 20131109 10.1098/rspb.2013.1109 7 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 180TR WOS:000321621000006 23843388 Green Published, Bronze 2019-02-21 J Gupta, V; Ali, ZS; Prasad, NG Gupta, Vanika; Ali, Zeeshan S.; Prasad, Nagaraj G. Sexual activity increases resistance against Pseudomonas entomophila in male Drosophila melanogaster BMC EVOLUTIONARY BIOLOGY English Article Trade-offs; P. entomophila; S. succinus; Resistance LIFE-HISTORY EVOLUTION; IMMUNE FUNCTION; TRADE-OFFS; COST; COPULATION; CRICKETS; DEFENSE Background: Maintenance and deployment cost of immunity is high, therefore, it is expected to trade-off with other high cost traits like sexual activity. Previous studies with Drosophila melanogaster show that male's ability to clear bacteria decreases with increase in sexual activity. We subjected this idea to test using two pathogens (Pseudomonas entomophila and Staphylococcus succinus) and three different populations of Drosophila melanogaster. Results: We found that sexual activity enhanced male survivorship in a pathogen specific manner. Sexually active males show higher resistance than virgins upon infection with Pseudomonas entomophila. Interestingly, the beneficial effects of sexual activity increased with time of co-habitation with females and declined when access to females was restricted. We observed no change in male survivorship upon experimentally varying the number of sexual interactions. Conclusion: Our results show that the sexual activity-immunity trade-off in males cannot be generalised. The trade-off is potentially mediated through complex interactions between the host, pathogen and the environment experienced by the host. [Gupta, Vanika; Ali, Zeeshan S.; Prasad, Nagaraj G.] Indian Inst Sci Educ & Res, Mohali, India Prasad, NG (reprint author), Indian Inst Sci Educ & Res, Mohali, India. prasad@iisermohali.ac.in Prasad, N G/0000-0002-0410-5518; Syed, Zeeshan Ali/0000-0002-4476-6257 IISER Mohali; CSIR, Govt. of India; DST We thank Daniel Promislow for isofemale lines; P. Cornelis for P. entomophila L48; IISER Mohali for funds. VG thanks CSIR, Govt. of India, for financial assistance and ZSA thanks DST and CSIR, Govt. of India, for financial assistance. Apidianakis Y, 2009, NATURE PROTOCOLS, V4, P9; Carney GE, 2010, BMC GENOMICS, V11, P58; Chippindale AK, 2001, P NATL ACAD SCI USA, V98, P5677, DOI 10.1073/pnas.101456898; Demuth JP, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0028690; Dowling DK, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0030172; Fedorka KM, 2007, BEHAV ECOL, V18, P231, DOI 10.1093/beheco/arl067; Fedorka KM, 2004, EVOLUTION, V58, P2478; McKean KA, 2001, P NATL ACAD SCI USA, V98, P7904, DOI 10.1073/pnas.131216398; McKean KA, 2005, EVOLUTION, V59, P1510; McKean KA, 2008, EVOLUTION, V62, P386, DOI 10.1111/j.1558-5646.2007.00286.x; Ploner Meinhard, 2012, COXPHW WEIGHTED COX; Prasad NG, 2003, J GENET, V82, P45, DOI 10.1007/BF02715881; R Core Team, 2013, R LANG ENV STAT COMP; Raberg L, 2007, SCIENCE, V318, P812, DOI 10.1126/science.1148526; Rolff J, 2002, P NATL ACAD SCI USA, V99, P9916, DOI 10.1073/pnas.152271999; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Simmons LW, 2005, SCIENCE, V309, P2031, DOI 10.1126/science.1114500; Sirot LK, 2009, BEHAV ECOL SOCIOBIOL, V63, P1505, DOI 10.1007/s00265-009-0806-6; Siva-Jothy MT, 1998, PHYSIOL ENTOMOL, V23, P274, DOI 10.1046/j.1365-3032.1998.233090.x; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Tapio S, 2008, COXME MIXED EFFECTS, V84, P930, DOI 10.1080/09553000802460214; Valtonen TM, 2010, PARASITOLOGY, V137, P985, DOI 10.1017/S0031182009992009; Vodovar N, 2005, P NATL ACAD SCI USA, V102, P11414, DOI 10.1073/pnas.0502240102; Zuk M, 2002, AM NAT, V160, pS9, DOI 10.1086/342131 24 8 8 0 11 BIOMED CENTRAL LTD LONDON 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND 1471-2148 BMC EVOL BIOL BMC Evol. Biol. SEP 6 2013 13 185 10.1186/1471-2148-13-185 11 Evolutionary Biology; Genetics & Heredity Evolutionary Biology; Genetics & Heredity 219OW WOS:000324517800001 24010544 DOAJ Gold, Green Published 2019-02-21 J Flatt, T; Amdam, GV; Kirkwood, TBL; Omholt, SW Flatt, Thomas; Amdam, Gro V.; Kirkwood, Thomas B. L.; Omholt, Stig W. LIFE-HISTORY EVOLUTION AND THE POLYPHENIC REGULATION OF SOMATIC MAINTENANCE AND SURVIVAL QUARTERLY REVIEW OF BIOLOGY English Review life history; polyphenism; somatic maintenance; survival; evolution of aging; disposable soma NEMATODE CAENORHABDITIS-ELEGANS; JUVENILE-HORMONE REGULATION; DAUER-INDUCING PHEROMONE; HONEYBEE APIS-MELLIFERA; WING-POLYMORPHIC CRICKET; HEMOLYMPH JH TITER; LONG-LIVED MUTANT; DROSOPHILA-MELANOGASTER; C-ELEGANS; BROOD PHEROMONE Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype candepending upon its environmentexpress either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging. [Flatt, Thomas] Vetmeduni Vienna, Inst Populat Genet, A-1210 Vienna, Austria; [Amdam, Gro V.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA; [Amdam, Gro V.] Norwegian Univ Life Sci, Dept Chem Biotechnol & Food Sci, N-1432 As, Norway; [Kirkwood, Thomas B. L.] Univ Newcastle, Inst Ageing & Hlth, Newcastle Upon Tyne NE4 5PL, Tyne & Wear, England; [Omholt, Stig W.] Univ Oslo, Dept Biol, Ctr Ecol & Evolutionary Synth, N-0316 Oslo, Norway; [Omholt, Stig W.] NTNU Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, NO-7491 Trondheim, Norway Flatt, T (reprint author), Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland. THOMAS.FLATT@UNIL.CH; GRO.AMDAM@ASU.EDU; TOM.KIRKWOOD@NEWCASTLE.AC.UK; STIG.OMHOLT@NTNU.NO Flatt, Thomas/0000-0002-5990-1503 Austrian Science Foundation (FWF) [P21498-B11]; Wissenschaftskolleg zu Berlin; Swiss National Science Foundation (SNF) [PP00P3_133641]; Research Council of Norway [180504, 185306, 191699, 213976/F20]; PEW Charitable Trust; National Institute on Aging [PO1AG22500]; EU [FP6 036894]; Biotechnology and Biological Sciences Research Council [BB/C008200/1] We are grateful to Christian Braendle, Mark Viney, and Ricardo Azevedo for critical comments on the manuscript and to all of the other members of the Adaptive Plasticity Focus Group at the Wissenschaftskolleg zu Berlin for stimulating discussions. We also would like to thank Daniel Dykhuizen and two anonymous reviewers for very helpful comments on a previous version of this paper. We are also indebted to James Baxter and Sabine Deviche for their help with the illustrations. Due to space limitations, we could not always cite primary research papers but had to cite reviews instead; we apologize to our colleagues whose work we could not discuss. Thomas Flatt was supported by the Austrian Science Foundation (FWF #P21498-B11), the Wissenschaftskolleg zu Berlin, where parts of this paper were written, and the Swiss National Science Foundation (SNF Professorship Grant PP00P3_133641). Gro V. Amdam was supported by grants from the Research Council of Norway (180504, 185306, 191699, 213976/F20), the PEW Charitable Trust, and the National Institute on Aging (PO1AG22500). Part of this work was also supported by, and carried out within, the EU funded Network of Excellence LifeSpan (FP6 036894). Ackermann M, 2001, J EVOLUTION BIOL, V14, P199, DOI 10.1046/j.1420-9101.2001.00281.x; Ackermann M., 2007, EVOLUTION HLTH DIS, P241; Ailion M, 2000, GENETICS, V156, P1047; Alaux C, 2009, GENES BRAIN BEHAV, V8, P309, DOI 10.1111/j.1601-183X.2009.00480.x; ALBERT PS, 1988, DEV BIOL, V126, P270, DOI 10.1016/0012-1606(88)90138-8; Alcedo J, 2004, NEURON, V41, P45, DOI 10.1016/S0896-6273(03)00816-X; Amdam GV, 2011, AGING CELL, V10, P18, DOI 10.1111/j.1474-9726.2010.00647.x; Amdam GV, 2005, INSECT SOC, V52, P316, DOI 10.1007/s00040-005-0812-2; Amdam GV, 2004, J ECON ENTOMOL, V97, P741, DOI 10.1603/0022-0493(2004)097[0741:APIWHB]2.0.CO;2; Amdam GV, 2003, J THEOR BIOL, V223, P451, DOI 10.1016/S0022-5193(03)00121-8; Amdam GV, 2002, J THEOR BIOL, V216, P209, DOI 10.1006/jtbi.2002.2545; Apfeld J, 1999, NATURE, V402, P804, DOI 10.1038/45544; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Baugh LR, 2006, CURR BIOL, V16, P780, DOI 10.1016/j.cub.2006.03.021; Behrends A, 2007, EXP GERONTOL, V42, P1146, DOI 10.1016/j.exger.2007.09.003; Beldade P, 2011, MOL ECOL, V20, P1347, DOI 10.1111/j.1365-294X.2011.05016.x; BELLEN HJ, 1992, GENE DEV, V6, P2125, DOI 10.1101/gad.6.11.2125; Berrigan D., 2004, PHENOTYPIC PLASTICIT, P82; Bouletreau-Merle J, 2002, EVOL ECOL, V16, P309, DOI 10.1023/A:1020216230976; Braendle C, 2006, HEREDITY, V97, P192, DOI 10.1038/sj.hdy.6800863; Braendle C, 2008, CURR TOP DEV BIOL, V80, P171, DOI 10.1016/S0070-2153(07)80005-6; Braendle C, 2012, CURR BIOL, V22, pR294, DOI 10.1016/j.cub.2012.03.035; Brakefield PM, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P243; Burnell AM, 2005, EXP GERONTOL, V40, P850, DOI 10.1016/j.exger.2005.09.006; Butcher RA, 2008, P NATL ACAD SCI USA, V105, P14288, DOI 10.1073/pnas.0806676105; Butcher RA, 2007, NAT CHEM BIOL, V3, P420, DOI 10.1038/nchembio.2007.3; Butcher RA, 2009, P NATL ACAD SCI USA, V106, P1875, DOI 10.1073/pnas.0810338106; Canfield M., 2009, Phenotypic plasticity of insects: mechanisms and consequences, P65; CARSON HL, 1948, P NATL ACAD SCI USA, V34, P124, DOI 10.1073/pnas.34.3.124; CASSADA RC, 1975, DEV BIOL, V46, P326, DOI 10.1016/0012-1606(75)90109-8; CHIPPINDALE AK, 1993, J EVOLUTION BIOL, V6, P171, DOI 10.1046/j.1420-9101.1993.6020171.x; Chippindale AK, 1997, J EVOLUTION BIOL, V10, P269, DOI 10.1007/s000360050023; Clancy DJ, 2001, SCIENCE, V292, P104, DOI 10.1126/science.1057991; Colombani J, 2005, SCIENCE, V310, P667, DOI 10.1126/science.1119432; Cook C. D. K, 1968, MOD METHOD PLANT, P97; Danilevskii A.S., 1965, PHOTOPERIODISM SEASO; Danks H.V., 1987, INSECT DORMANCY ECOL; Danks HV, 2005, J INSECT PHYSIOL, V51, P609, DOI 10.1016/j.jinsphys.2005.01.005; Dillin A, 2002, SCIENCE, V298, P830, DOI 10.1126/science.1074240; Dingle H, 1997, ARCH INSECT BIOCHEM, V35, P359, DOI 10.1002/(SICI)1520-6327(1997)35:4<359::AID-ARCH2>3.0.CO;2-N; DORMAN JB, 1995, GENETICS, V141, P1399; Dukas R, 2008, INSECT SOC, V55, P252, DOI 10.1007/s00040-008-0995-4; Emerson KJ, 2009, J COMP PHYSIOL A, V195, P825, DOI 10.1007/s00359-009-0460-5; Emerson KJ, 2009, TRENDS GENET, V25, P217, DOI 10.1016/j.tig.2009.03.009; Emlen DJ, 2000, ANNU REV ENTOMOL, V45, P661, DOI 10.1146/annurev.ento.45.1.661; ENGELS W, 1974, AM ZOOL, V14, P1229; Fabian D, 2011, NAT ED KNOW, V3, P9; Fabian DK, 2012, MOL ECOL, V21, P4748, DOI 10.1111/j.1365-294X.2012.05731.x; Felix MA, 2010, CURR BIOL, V20, pR965, DOI 10.1016/j.cub.2010.09.050; Fielenbach N, 2008, GENE DEV, V22, P2149, DOI 10.1101/gad.1701508; Finch C.E, 1990, LONGEVITY SENESCENCE; FINCH CE, 1995, Q REV BIOL, V70, P1, DOI 10.1086/418864; Flatt T, 2005, BIOESSAYS, V27, P999, DOI 10.1002/bies.20290; Flatt T, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P1; Flatt T, 2007, SCIENCE, V318, P1255, DOI 10.1126/science.1147491; Flatt T, 2007, EVOLUTION, V61, P1980, DOI 10.1111/j.1558-5646.2007.00151.x; Flatt T, 2011, EXP GERONTOL, V46, P369, DOI 10.1016/j.exger.2010.10.008; Flatt T, 2009, BBA-GEN SUBJECTS, V1790, P951, DOI 10.1016/j.bbagen.2009.07.010; FLURI P, 1977, EXPERIENTIA, V33, P1240, DOI 10.1007/BF01922354; Fuchs S, 2010, BMC BIOL, V8, DOI 10.1186/1741-7007-8-14; FUKUDA HIROMI, 1966, JAP J ECOL, V16, P206; Gade G, 1997, PHYSIOL REV, V77, P963; Galikova M, 2011, EXP GERONTOL, V46, P141, DOI 10.1016/j.exger.2010.08.021; Gallo M, 2009, J CHEM ECOL, V35, P272, DOI 10.1007/s10886-009-9599-3; Gems D, 1998, GENETICS, V150, P129; Gerisch B, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P284; Giannakou ME, 2004, SCIENCE, V305, P361, DOI 10.1126/science.1098219; Gibbens YY, 2011, DEVELOPMENT, V138, P2693, DOI 10.1242/dev.063412; Gilbert LI, 2002, ANNU REV ENTOMOL, V47, P883, DOI 10.1146/annurev.ento.47.091201.145302; GOLDEN JW, 1984, P NATL ACAD SCI-BIOL, V81, P819, DOI 10.1073/pnas.81.3.819; GOLDEN JW, 1984, J CHEM ECOL, V10, P1265, DOI 10.1007/BF00988553; GOLDEN JW, 1982, SCIENCE, V218, P578, DOI 10.1126/science.6896933; GOLDEN JW, 1984, DEV BIOL, V102, P368, DOI 10.1016/0012-1606(84)90201-X; GROSBERG RK, 1988, EVOLUTION, V42, P900, DOI 10.1111/j.1558-5646.1988.tb02510.x; Guidugli KR, 2005, FEBS LETT, V579, P4961, DOI 10.1016/j.febslet.2005.07.085; Harvey SC, 2009, BMC GENOMICS, V10, DOI 10.1186/1471-2164-10-325; Harvey SC, 2008, BMC EVOL BIOL, V8, DOI 10.1186/1471-2148-8-15; Harvie PD, 1998, GENETICS, V149, P217; Havukainen H, 2011, MOL ECOL, V20, P5111, DOI 10.1111/j.1365-294X.2011.05351.x; Herman WS, 2001, P ROY SOC B-BIOL SCI, V268, P2509, DOI 10.1098/rspb.2001.1765; Hodkova M, 2008, J INSECT PHYSIOL, V54, P508, DOI 10.1016/j.jinsphys.2007.11.011; Hodkova M, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P171; Hoffmann AA, 2003, J EVOLUTION BIOL, V16, P614, DOI 10.1046/j.1420-9101.2003.00561.x; Holt SJ, 2003, MECH AGEING DEV, V124, P779, DOI 10.1016/S0047-6374(03)00132-5; Hu P. J., 2007, WORMBOOK ONLINE REV, DOI 10.1895/wormbook.1.144.1; Huang JH, 2011, DEVELOPMENT, V138, P2283, DOI 10.1242/dev.057687; Hunt JH, 2007, P NATL ACAD SCI USA, V104, P14020, DOI 10.1073/pnas.0705660104; Hunt JH, 2005, SCIENCE, V308, P264, DOI 10.1126/science.1109724; Hwangbo DS, 2004, NATURE, V429, P562, DOI 10.1038/nature02549; Itoh TQ, 2011, GENES CELLS, V16, P1159, DOI 10.1111/j.1365-2443.2011.01559.x; IVES PT, 1970, EVOLUTION, V24, P507, DOI 10.1111/j.1558-5646.1970.tb01785.x; IVES PT, 1945, GENETICS, V30, P167; IZQUIERDO JI, 1991, ENTOMOL EXP APPL, V59, P51, DOI 10.1111/j.1570-7458.1991.tb01485.x; Jeong PY, 2005, NATURE, V433, P541, DOI 10.1038/nature03201; JOHNSON TE, 1988, J GERONTOL, V43, pB137, DOI 10.1093/geronj/43.5.B137; Jones D, 2007, INSECT BIOCHEM MOLEC, V37, P771, DOI 10.1016/j.ibmb.2007.05.014; KAMBYSELLIS MP, 1974, J INSECT PHYSIOL, V20, P1779, DOI 10.1016/0022-1910(74)90207-8; Karp X, 2011, RNA, V17, P639, DOI 10.1261/rna.2310111; Kawano T, 2005, BIOSCI BIOTECH BIOCH, V69, P2479, DOI 10.1271/bbb.69.2479; Keller L, 1997, NATURE, V389, P958, DOI 10.1038/40130; Keller L, 2006, EXP GERONTOL, V41, P553, DOI 10.1016/j.exger.2006.04.002; Kent CF, 2011, MOL ECOL, V20, P5226, DOI 10.1111/j.1365-294X.2011.05299.x; Kenyon C, 2005, CELL, V120, P449, DOI 10.1016/j.cell.2006.02.002; KENYON C, 1993, NATURE, V366, P461, DOI 10.1038/366461a0; Kenyon CJ, 2010, NATURE, V464, P504, DOI 10.1038/nature08980; Kim K, 2009, SCIENCE, V326, P994, DOI 10.1126/science.1176331; Kimura MT, 1988, FUNCT ECOL, V2, P177, DOI 10.2307/2389693; KIMURA MT, 1988, EVOLUTION, V42, P1288, DOI 10.1111/j.1558-5646.1988.tb04188.x; KIRKWOOD TBL, 1991, PHILOS T R SOC B, V332, P15, DOI 10.1098/rstb.1991.0028; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Kirkwood TBL, 2000, NATURE, V408, P233, DOI 10.1038/35041682; KLASS M, 1976, NATURE, V260, P523, DOI 10.1038/260523a0; Kolaczkowski B, 2011, GENETICS, V187, P245, DOI 10.1534/genetics.110.123059; Kostal V, 2006, J INSECT PHYSIOL, V52, P113, DOI 10.1016/j.jinsphys.2005.09.008; LARSEN PL, 1993, P NATL ACAD SCI USA, V90, P8905, DOI 10.1073/pnas.90.19.8905; LARSEN PL, 1995, GENETICS, V139, P1567; Lee KP, 2008, P NATL ACAD SCI USA, V105, P2498, DOI 10.1073/pnas.0710787105; LEE PC, 1987, ECOL ENTOMOL, V12, P187, DOI 10.1111/j.1365-2311.1987.tb00997.x; Lee SS, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001307; Leimar O, 2006, AM NAT, V167, P367, DOI 10.1086/499566; Leimar O, 2005, AM NAT, V165, P669, DOI 10.1086/429566; Leimar O, 2009, EVOL ECOL, V23, P125, DOI 10.1007/s10682-007-9194-4; Levins R., 1968, EVOLUTION CHANGING E; Lewontin RC, 1974, GENETIC BASIS EVOLUT; Li AK, 2003, J BIOL CHEM, V278, P2799, DOI 10.1074/jbc.M205067200; LITHGOW GJ, 1995, P NATL ACAD SCI USA, V92, P7540, DOI 10.1073/pnas.92.16.7540; LITHGOW GJ, 1994, J GERONTOL, V49, pB270, DOI 10.1093/geronj/49.6.B270; Ludewig A. H., 2013, WORMBOOK ONLINE REV, DOI 10.1895/wormbook.1.155.1; Lumme J., 1978, P145; Lumme J., 1983, Genetics and Biology of Drosophila, V3d, P171; LUMME J, 1974, J INSECT PHYSIOL, V20, P2023, DOI 10.1016/0022-1910(74)90109-7; Mair W, 2003, SCIENCE, V301, P1731, DOI 10.1126/science.1086016; Antonio DSM, 2008, NATURWISSENSCHAFTEN, V95, P953, DOI 10.1007/s00114-008-0413-9; Marden JH, 2003, P NATL ACAD SCI USA, V100, P3369, DOI 10.1073/pnas.0634985100; MATHER K, 1955, EVOLUTION, V9, P52, DOI 10.2307/2405357; MATHER K, 1973, GENETICAL STRUCTURE; Mattila HR, 2001, INSECT SOC, V48, P88, DOI 10.1007/PL00001764; Maurizio A., 1950, BEE WORLD, V31, P9; Mayr E., 1963, ANIMAL SPECIES EVOLU; McBrayer Z, 2007, DEV CELL, V13, P857, DOI 10.1016/j.devcel.2007.11.003; McGrath PT, 2011, NATURE, V477, P321, DOI 10.1038/nature10378; Medawar P, 1952, UNSOLVED PROBLEM BIO; Min KJ, 2008, AGING CELL, V7, P199, DOI 10.1111/j.1474-9726.2008.00373.x; Mitrovski P, 2001, P ROY SOC B-BIOL SCI, V268, P2163, DOI 10.1098/rspb.2001.1787; MORAN NA, 1992, AM NAT, V139, P971, DOI 10.1086/285369; Munch D, 2008, FUNCT ECOL, V22, P407, DOI 10.1111/j.1365-2435.2008.01419.x; Munch D, 2010, FEBS LETT, V584, P2496, DOI 10.1016/j.febslet.2010.04.007; Nelson CM, 2007, PLOS BIOL, V5, P673, DOI 10.1371/journal.pbio.0050062; Nijhout H.F., 1994, INSECT HORMONES; NIJHOUT HF, 1982, Q REV BIOL, V57, P109, DOI 10.1086/412671; Nijhout HF, 2003, EVOL DEV, V5, P9, DOI 10.1046/j.1525-142X.2003.03003.x; Nilsen KA, 2011, J EXP BIOL, V214, P1488, DOI 10.1242/jeb.050393; Nylin S, 1998, ANNU REV ENTOMOL, V43, P63, DOI 10.1146/annurev.ento.43.1.63; OMHOLT SW, 1988, J THEOR BIOL, V130, P275, DOI 10.1016/S0022-5193(88)80030-4; Paaby AB, 2009, FLY, V3, P29, DOI 10.4161/fly.3.1.7771; Padilla PA, 2012, CELL CYCLE, V11, P1672, DOI 10.4161/cc.19444; Page RE, 2007, BIOESSAYS, V29, P334, DOI 10.1002/bies.20549; Pankiw T, 1998, BEHAV ECOL SOCIOBIOL, V44, P193, DOI 10.1007/s002650050531; Pankiw T, 2001, BEHAV ECOL SOCIOBIOL, V49, P206, DOI 10.1007/s002650000282; Pankiw T, 2008, J ECON ENTOMOL, V101, P1749, DOI 10.1603/0022-0493-101.6.1749; Partridge L, 2005, CELL, V120, P461, DOI 10.1016/j.cell.2005.01.026; PARTRIDGE L, 1993, NATURE, V362, P305, DOI 10.1038/362305a0; PENER M. P., 1972, Proceedings of the international study conference on the current and future problems of acridology. London, United Kingdom, 6-16 July 1970., P135; Plautz JD, 1997, SCIENCE, V278, P1632, DOI 10.1126/science.278.5343.1632; Polanska MA, 2009, J INSECT PHYSIOL, V55, P426, DOI 10.1016/j.jinsphys.2009.01.019; RENSING L, 1964, SCIENCE, V144, P1586, DOI 10.1126/science.144.3626.1586; Rewitz KF, 2009, SCIENCE, V326, P1403, DOI 10.1126/science.1176450; Richard DS, 2005, J INSECT PHYSIOL, V51, P455, DOI 10.1016/j.jinsphys.2004.12.013; Richard DS, 1998, J INSECT PHYSIOL, V44, P637, DOI 10.1016/S0022-1910(98)00020-1; Richard DS, 2001, J INSECT PHYSIOL, V47, P905, DOI 10.1016/S0022-1910(01)00063-4; Richard DS, 2001, J INSECT PHYSIOL, V47, P715, DOI 10.1016/S0022-1910(00)00165-7; RIDDLE DL, 1981, NATURE, V290, P668, DOI 10.1038/290668a0; Riddle Donald L., 1997, Cold Spring Harbor Monograph Series, V33, P739; ROFF DA, 2002, LIFE HIST EVOLUTION; Rose M. R, 1991, EVOLUTIONARY BIOL AG; Rottiers V, 2006, EXP GERONTOL, V41, P904, DOI 10.1016/j.exger.2006.06.062; Ruaud AF, 2006, DEVELOPMENT, V133, P2211, DOI 10.1242/dev.02392; Rueffler C, 2006, TRENDS ECOL EVOL, V21, P238, DOI 10.1016/j.tree.2006.03.003; Rueppell O, 2004, GENETICS, V167, P1767, DOI 10.1534/genetics.103.021949; SAKAGAMI S F, 1968, Researches on Population Ecology (Tokyo), V10, P127, DOI 10.1007/BF02510869; Sandrelli F, 2007, SCIENCE, V316, P1898, DOI 10.1126/science.1138426; Saretzki G, 2004, STEM CELLS, V22, P962, DOI 10.1634/stemcells.22-6-962; Saunders DS, 2011, J INSECT PHYSIOL, V57, P557, DOI 10.1016/j.jinsphys.2011.01.013; Saunders D.S., 2002, INSECT CLOCKS; SAUNDERS DS, 1990, J INSECT PHYSIOL, V36, P195, DOI 10.1016/0022-1910(90)90122-V; SAUNDERS DS, 1989, P NATL ACAD SCI USA, V86, P3748, DOI 10.1073/pnas.86.10.3748; SAUNDERS DS, 1990, GEN COMP ENDOCR, V79, P174, DOI 10.1016/0016-6480(90)90102-R; Schaedel ON, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001306; SCHARLOO W, 1970, GENETICS, V65, P693; Scheiner R, 2009, J EXP BIOL, V212, P994, DOI 10.1242/jeb.021188; Schiesari L, 2011, FEBS LETT, V585, P1450, DOI 10.1016/j.febslet.2011.02.026; Schmidt PS, 2008, P NATL ACAD SCI USA, V105, P16207, DOI 10.1073/pnas.0805485105; Schmidt PS, 2008, EVOLUTION, V62, P1204, DOI 10.1111/j.1558-5646.2008.00351.x; Schmidt PS, 2006, EVOLUTION, V60, P1602, DOI 10.1554/05-430.1; Schmidt PS, 2011, MECHANISMS OF LIFE HISTORY EVOLUTION: THE GENETICS AND PHYSIOLOGY OF LIFE HISTORY TRAITS AND TRADE-OFFS, P230; Schmidt PS, 2005, EVOLUTION, V59, P2616; Schmidt PS, 2005, EVOLUTION, V59, P1721; Schwander T, 2011, TRENDS ECOL EVOL, V26, P143, DOI 10.1016/j.tree.2010.12.010; Seehuus SC, 2006, P NATL ACAD SCI USA, V103, P962, DOI 10.1073/pnas.0502681103; SEELEY TD, 1982, BEHAV ECOL SOCIOBIOL, V11, P287, DOI 10.1007/BF00299306; Shanley DP, 2000, EVOLUTION, V54, P740, DOI 10.1111/j.0014-3820.2000.tb00076.x; SHAPIRO A M, 1984, Journal of Research on the Lepidoptera, V23, P177; Shapiro A. M., 1976, EVOL BIOL, V9, P259; Shaw WM, 2007, CURR BIOL, V17, P1635, DOI 10.1016/j.cub.2007.08.058; Sim C, 2008, P NATL ACAD SCI USA, V105, P6777, DOI 10.1073/pnas.0802067105; Simpson SJ, 2011, CURR BIOL, V21, pR738, DOI 10.1016/j.cub.2011.06.006; Skorupa DA, 2008, AGING CELL, V7, P478, DOI 10.1111/j.1474-9726.2008.00400.x; Smedal B, 2009, J EXP BIOL, V212, P3795, DOI 10.1242/jeb.035063; SMITH JM, 1958, J EXP BIOL, V35, P832; Srinivasan J, 2008, NATURE, V454, P1115, DOI 10.1038/nature07168; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; STEARNS SC, 1976, Q REV BIOL, V51, P3, DOI 10.1086/409052; STEARNS SC, 1982, EVOL DEV, P237, DOI DOI 10.1007/978-3-642-45532-2; Steel CGH, 2006, COMP BIOCHEM PHYS A, V144, P351, DOI 10.1016/j.cbpa.2006.02.018; Taborsky M, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P537, DOI 10.1007/978-3-642-02624-9_18; Tatar M, 2001, SCIENCE, V292, P107, DOI 10.1126/science.1057987; Tatar M, 2004, EXP GERONTOL, V39, P1745, DOI 10.1016/j.exger.2004.06.024; Tatar M, 2003, SCIENCE, V299, P1346, DOI 10.1126/science.1081447; Tatar M, 2001, AM NAT, V158, P248, DOI 10.1086/321320; Tatar M, 2001, EXP GERONTOL, V36, P723, DOI 10.1016/S0531-5565(00)00238-2; Tatar M., 2010, ANN DROS RES C, V51, P115; Tatar Marc, 2007, V35, P115; Tauber E, 2007, SCIENCE, V316, P1895, DOI 10.1126/science.1138412; Tauber M.J., 1986, SEASONAL ADAPTATIONS; Terada Y., 1975, Journal apic Res, V14, P161; THODAY JM, 1972, PROC R SOC SER B-BIO, V182, P109, DOI 10.1098/rspb.1972.0070; Tollrian R, 1999, ECOLOGY EVOLUTION IN; Tu MP, 2005, GEN COMP ENDOCR, V142, P347, DOI 10.1016/j.ygcen.2005.02.009; Tu MP, 2002, AGING CELL, V1, P158, DOI 10.1046/j.1474-9728.2002.00016.x; TU MP, 2006, HDB BIOL AGING, P415; Vanfleteren JR, 1996, J EXP ZOOL, V274, P93; VANFLETEREN JR, 1995, FASEB J, V9, P1355; Vanfleteren JR, 1999, NEUROBIOL AGING, V20, P487, DOI 10.1016/S0197-4580(99)00087-1; Viney ME, 2003, DEV GROWTH DIFFER, V45, P389, DOI 10.1046/j.1440-169X.2003.00703.x; Visscher PK, 1997, INSECT SOC, V44, P1, DOI 10.1007/s000400050017; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; WESTEBERHARD MJ, 1989, ANNU REV ECOL SYST, V20, P249, DOI 10.1146/annurev.es.20.110189.001341; WHEELER DE, 1986, AM NAT, V128, P13, DOI 10.1086/284536; Whitfield CW, 2006, SCIENCE, V314, P642, DOI 10.1126/science.1132772; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Williams KD, 2006, P NATL ACAD SCI USA, V103, P15911, DOI 10.1073/pnas.0604592103; WILLIAMS KD, 1993, HEREDITY, V71, P312, DOI 10.1038/hdy.1993.141; Winston M. L., 1987, BIOL HONEY BEE; Wolkow CA, 2000, SCIENCE, V290, P147, DOI 10.1126/science.290.5489.147; Wollam J, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001305; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P965, DOI 10.1016/j.jinsphys.2004.07.008; Zhao ZW, 2004, J INSECT PHYSIOL, V50, P93, DOI 10.1016/j.jinsphys.2003.10.003 248 46 47 4 74 UNIV CHICAGO PRESS CHICAGO 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA 0033-5770 1539-7718 Q REV BIOL Q. Rev. Biol. SEP 2013 88 3 185 218 10.1086/671484 34 Biology Life Sciences & Biomedicine - Other Topics 294GX WOS:000330033600002 24053071 2019-02-21 J Dunkel, CS Dunkel, Curtis S. The general factor of personality and general intelligence: Evidence for substantial association INTELLIGENCE English Article General factor of personality; Life history theory; Q-sort; General fitness LIFE-HISTORY STRATEGY; SOCIAL DESIRABILITY; 5-FACTOR MODEL; INTEGRATION; BOYS Despite theoretical assertions derived from life history theory, research on the relationship between the general factor of personality and general intelligence has shown that there is little overlap between the two higher-order constructs. It is argued that the association between these general factors is largely attenuated by measurement error in assessing the general factor of personality. A substantial association between the general factors at multiple points in time was found when the general factor of personality was derived from rater Q-sorts. The results have important implications for the study of individual differences. (C) 2013 Elsevier Inc. All rights reserved. Western Illinois Univ, Dept Psychol, Macomb, IL 61455 USA Dunkel, CS (reprint author), Western Illinois Univ, Dept Psychol, Waggoner Hall, Macomb, IL 61455 USA. c-dunkel@wiu.edu Backstrom M, 2009, J RES PERS, V43, P335, DOI 10.1016/j.jrp.2008.12.013; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Block J, 2006, AM PSYCHOL, V61, P315, DOI 10.1037/0003-066X.61.4.315; Block J., 1980, CALIFORNIA CHILD Q S; Block J., 1961, Q SORT METHOD PERSON; Block J. H., 1969, BLOCK BLOCK LONGITUD; Connelly BS, 2010, PSYCHOL BULL, V136, P1092, DOI 10.1037/a0021212; Dunkel CS, 2012, PERS INDIV DIFFER, V52, P202, DOI 10.1016/j.paid.2011.10.016; Figueredo AJ, 2000, ADDICTION, V95, pS361; Figueredo AJ, 2004, SOC BIOL, V51, P121; Irwing P, 2012, INTELLIGENCE, V40, P296, DOI 10.1016/j.intell.2012.03.001; JOHN OP, 1994, CHILD DEV, V65, P160, DOI 10.1111/j.1467-8624.1994.tb00742.x; Lesson P., 2012, INTELLIGENCE, V40, P213; Loehlin JC, 2012, J RES PERS, V46, P655, DOI 10.1016/j.jrp.2012.07.004; Loehlin JC, 2011, J RES PERS, V45, P504, DOI 10.1016/j.jrp.2011.06.011; MCCRAE RR, 1986, J PERS, V54, P430, DOI 10.1111/j.1467-6494.1986.tb00403.x; Penke L, 2007, EUR J PERSONALITY, V21, P549, DOI 10.1002/per.629; Robins RW, 1996, J PERS SOC PSYCHOL, V70, P157, DOI 10.1037/0022-3514.70.1.157; Rushton JP, 2009, TWIN RES HUM GENET, V12, P356, DOI 10.1375/twin.12.4.356; Schermer JA, 2013, PERS INDIV DIFFER, V54, P141, DOI 10.1016/j.paid.2012.08.012; Schermer JA, 2012, PERS INDIV DIFFER, V53, P557, DOI 10.1016/j.paid.2012.04.037; Schermer JA, 2010, PERS INDIV DIFFER, V48, P187, DOI 10.1016/j.paid.2009.10.003; Sefcek J. A., 2010, BIODEMOGRAPHY SOCIAL, V56, P41; van der Linden D, 2010, J RES PERS, V44, P315, DOI 10.1016/j.jrp.2010.03.003; Woodley MA, 2011, REV GEN PSYCHOL, V15, P228, DOI 10.1037/a0024348 25 11 12 1 10 ELSEVIER SCIENCE INC NEW YORK 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA 0160-2896 1873-7935 INTELLIGENCE Intelligence SEP-OCT 2013 41 5 423 427 10.1016/j.intell.2013.06.010 5 Psychology, Multidisciplinary Psychology 256DI WOS:000327289500012 2019-02-21 J Molina-Moctezuma, A; Zuniga-Vega, JJ; Espinosa-Perez, H Molina-Moctezuma, Alejandro; Zuniga-Vega, Jose Jaime; Espinosa-Perez, Hector Mortality rates in two populations of the viviparous fish Poeciliopsis baenschi (Teleostei: Poeciliidae) REVISTA MEXICANA DE BIODIVERSIDAD English Article capture-mark-recapture; demography; differential mortality; Poeciliidae; survival estimates LIFE-HISTORY EVOLUTION; DIFFERENTIAL MORTALITY; MARKED ANIMALS; RETICULATA; PREDATION; SELECTION; SURVIVAL; MEXICO; DIVERSIFICATION; ABUNDANCE Mortality is one of the most important demographic features. Measures of size- or sex-specific mortality can help to explain local selective pressures and can also be used to construct demographic models that estimate population trends. This study estimated mortality rates for 2 populations of a viviparous freshwater fish, endemic to western Mexico (Poeciliopsis baenschi). We found that mortality was size- and sex-dependent and different between both populations. We compared our findings with mortality rates previously estimated for other populations of this species. [Molina-Moctezuma, Alejandro; Zuniga-Vega, Jose Jaime] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City 04510, DF, Mexico; [Espinosa-Perez, Hector] Univ Nacl Autonoma Mexico, Inst Biol, Dept Zool, Mexico City 04510, DF, Mexico Molina-Moctezuma, A (reprint author), Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Circuito Exterior S-N,Ciudad Univ, Mexico City 04510, DF, Mexico. alejandro.molina.moctezuma@gmail.com DGAPA-UNAM [PAPIIT IN206309-3]; Conacyt [129675] We thank Pedro Mendoza-Hernandez for field assistance. Fieldwork was conducted under permit no. FAUT-0240 issued by the Semarnat-Mexico. Funding for this research was provided by the DGAPA-UNAM through the project PAPIIT IN206309-3 as well as by the Conacyt through the project 129675. We also thank all the students from UNAM that provided field assistance. Amstrup SC, 2005, HANDBOOK OF CAPTURE-RECAPTURE ANALYSIS, P1; ARCE-URIHE E., 2006, THESIS U NACL AUTONO; Burnham K. P, 2002, MODEL SELECTION MULT; Canto-Maza WG, 2007, REV BIOL TROP, V55, P979; Caswell H., 2001, MATRIX POPULATION MO; Day T, 2002, EVOLUTION, V56, P877; Franco M, 2004, ECOLOGY, V85, P531, DOI 10.1890/02-0651; Franco M, 1996, PHILOS T R SOC B, V351, P1341, DOI 10.1098/rstb.1996.0117; Zuniga-Vega JJ, 2012, WEST N AM NATURALIST, V72, P357, DOI 10.3398/064.072.0310; Zuniga-Vega JJ, 2012, ENVIRON BIOL FISH, V95, P259, DOI 10.1007/s10641-012-9989-1; Jimenez-Badillo MD, 2000, REV BIOL TROP, V48, P487; Johnson JB, 2004, TRENDS ECOL EVOL, V19, P101, DOI 10.1016/j.tree.2003.10.013; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; LANGERHANS RB, 2006, PREDATION ORGANISMS, P177; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Macias-Garcia C., 2005, VIVIPAROUS FISHES; MAGURRAN AE, 1991, P ROY SOC B-BIOL SCI, V246, P31, DOI 10.1098/rspb.1991.0121; Metcalf CJE, 2007, TRENDS ECOL EVOL, V22, P205, DOI 10.1016/j.tree.2006.12.001; Miller RR, 2005, FRESHWATER FISHES ME; Mills L. S., 2007, CONSERVATION WILDLIF; Reznick D, 2002, ECOLOGY, V83, P1509, DOI 10.1890/0012-9658(2002)083[1509:RAKSRT]2.0.CO;2; Reznick D, 2007, ANN ZOOL FENN, V44, P152; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Scott LE, 2010, BIOL J LINN SOC, V100, P608, DOI 10.1111/j.1095-8312.2010.01452.x; White GC, 1999, BIRD STUDY, V46, P120; Williams B. K., 2002, ANAL MANAGEMENT ANIM 26 1 1 0 7 INST BIOLOGIA, UNIV NACIONAL AUTONOMA MEXICO MEXICO APARTADO POSTAL 70-233, MEXICO, D F 00000, MEXICO 1870-3453 REV MEX BIODIVERS Rev. Mex. Biodivers. SEP 2013 84 3 994 998 10.7550/rmb.34869 5 Biodiversity Conservation Biodiversity & Conservation 240XW WOS:000326132000028 DOAJ Gold 2019-02-21 J Holecek, DE; Scarnecchia, DL Holecek, Dean E.; Scarnecchia, Dennis L. Comparison of Two Life History Strategies after Impoundment of a Historically Anadromous Stock of Columbia River Redband Trout TRANSACTIONS OF THE AMERICAN FISHERIES SOCIETY English Article RAINBOW-TROUT; SALMO-GAIRDNERI; ONCORHYNCHUS-MYKISS; DESERT STREAMS; FOOD-HABITS; IDAHO; POPULATION; RESIDENT; EXPLOITATION; MIGRATIONS In this study we collected information on abundance, age structure, migration, and exploitation to characterize the population demographics and reproductive characteristics of a historically anadromous Columbia River Redband Trout Oncorhynchus mykiss gairdneri population now isolated in a southwestern Idaho reservoir and limited to resident and adfluvial life histories. We estimated there were 3,905 adfluvial individuals in Mann Creek Reservoir in October 2008 based on a mark-recapture population estimate. The adfluvial population sex ratio of 2.78 females per male captured at a weir, peak spawn timing near the peak of the hydrograph (late April), age at spawning (4-6years), and growth patterns (slow growth in the stream followed by rapid growth in the reservoir) were all characteristic of an anadromous population. Resident fish abundance was not estimated, but the fish were characterized by relatively slow growth, earlier sexual maturity, and a reverse sex ratio (0.23 females per male) compared with the adfluvial fish. The two life histories (resident and adfluvial) and their differential use by the sexes are consistent with life history theory, which suggests female salmonids maximize fitness by increasing body size and fecundity while males attempt to maximize survival at the expense of growth. The migratory fish in this drainage that could have historically exercised an anadromous life history appear to be exercising the next-best option, an adfluvial life history, which has relatively similar costs and benefits to the anadromous form as distinct from the stream-resident form. Future studies should evaluate other similar native populations isolated in reservoir systems because these populations could play a role in recovery of endangered steelhead (anadromous Rainbow Trout) populations in the western USA. Received December 4, 2012; accepted April 18, 2013 [Holecek, Dean E.; Scarnecchia, Dennis L.] Univ Idaho, Dept Fish & Wildlife Sci, Moscow, ID 83844 USA Holecek, DE (reprint author), US Army Corps Engineers, 201 North 3rd St, Walla Walla, WA 99362 USA. dean.holecek@usace.army.mil Idaho Fish and Game through the Federal Aid in Sport Fish Restoration Program We are grateful for field and laboratory assistance from many people including R. Attebery, J. Kingsbury, S. Miller, J. Kozfkay, J. Dillon, D. Schill, T. Watson, L. Mamer, S. Elle, members of the Boise Valley Flyfishermen, the Indianhead Flyfishermen, and many Idaho Fish and Game personnel. This manuscript improved with reviews from R. Beamish and three anonymous reviewers. Funding was provided by the Idaho Fish and Game through the Federal Aid in Sport Fish Restoration Program. BAILEY NTJ, 1951, BIOMETRIKA, V38, P293, DOI 10.2307/2332575; Behnke R. J., 1992, AM FISHERIES SOC MON, V6; BIETTE RM, 1981, CAN J FISH AQUAT SCI, V38, P1759, DOI 10.1139/f81-224; BOSAKOWSKI T, 1994, CAN J FISH AQUAT SCI, V51, P636, DOI 10.1139/f94-064; Busby P. J., 1996, NMFSNWFSC27 NOAA; Campbell MR, 2012, T AM FISH SOC, V141, P1310, DOI 10.1080/00028487.2012.690816; Chapman D. G., 1951, U CALIFORNIA PUBL ST, V1, P131; Cooper K. L., 2003, THESIS U TENNESSEE K; DAUBLE DD, 1980, T AM FISH SOC, V109, P92, DOI 10.1577/1548-8659(1980)109<92:LHOTBS>2.0.CO;2; DEVLAMING V, 1982, COMP BIOCHEM PHYS A, V73, P31, DOI 10.1016/0300-9629(82)90088-3; Dillon J.C., 1991, LAKE RESERVOIR INVES; Fleming IA, 1998, CAN J FISH AQUAT SCI, V55, P59, DOI 10.1139/cjfas-55-S1-59; Gross M.R., 1987, AM FISH SOC S, V1, P14; Hayes Michael C., 1997, North American Journal of Fisheries Management, V17, P182, DOI 10.1577/1548-8675(1997)017<0182:MCOSBI>2.3.CO;2; Heath DD, 2008, T AM FISH SOC, V137, P1268, DOI 10.1577/T05-278.1; Hendry Andrew P., 2004, P92; Hining K. J., 2000, North American Journal of Fisheries Management, V20, P978, DOI 10.1577/1548-8675(2000)020<0978:VOSAOF>2.0.CO;2; Holecek D.E., 2010, THESIS U IDAHO MOSCO; Holecek DE, 2007, N AM J FISH MANAGE, V27, P1010, DOI 10.1577/M06-049.1; Holecek DE, 2012, T AM FISH SOC, V141, P68, DOI 10.1080/00028487.2011.651550; Independent Scientific Advisory Board, 2005, 20052 ISAB NW POW PL; JOHNSON DW, 1983, NORTHWEST SCI, V57, P229; JONSSON B, 1985, T AM FISH SOC, V114, P182, DOI 10.1577/1548-8659(1985)114<182:LHPOFR>2.0.CO;2; Kozfkay J.R., 2009, 09133 ID DEP FISH GA; Lux F.E., 1971, NATL MARINE FISHERIE, P637; MACCRIMMON HR, 1971, J FISH RES BOARD CAN, V28, P663, DOI 10.1139/f71-098; McIntosh B.A., 1995, SUMMARY REPORT BUREA; Meyer K.A., 2009, 0911 ID DEP FISH GAM; Meyer K.A., 2008, 0812 ID DEP FISH GAM; Miranda LE, 2002, N AM J FISH MANAGE, V22, P1358, DOI 10.1577/1548-8675(2002)022<1358:UOEEMF>2.0.CO;2; Mourning Toby E., 1994, North American Journal of Fisheries Management, V14, P636, DOI 10.1577/1548-8675(1994)014<0636:COVITA>2.3.CO;2; MUNKITTRICK KR, 1987, AQUACULTURE, V64, P147, DOI 10.1016/0044-8486(87)90350-4; Narum SR, 2004, J FISH BIOL, V65, P471, DOI [10.1111/j.0022-1112.2004.00461.x, 10.1111/j.1095-8649.2004.00461.x]; Pascual M, 2001, T AM FISH SOC, V130, P53, DOI 10.1577/1548-8659(2001)130<0053:FDCOAI>2.0.CO;2; Quinn TP, 2004, REV FISH BIOL FISHER, V14, P421, DOI 10.1007/s11160-005-0802-5; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Roper Brett B., 2000, Rivers, V7, P77; ROUNSEFELL GEORGE A., 1958, U S FISH AND WILDLIFE SERV FISH BULL, V58, P171; Scarnecchia DL, 2006, T AM FISH SOC, V135, P1086, DOI 10.1577/T05-081.1; SCARNECCHIA DL, 1979, PROG FISH CULT, V41, P132, DOI 10.1577/1548-8659(1979)41[132:VOSCOC]2.0.CO;2; Schill D. J, 2009, THESIS U IDAHO MOSCO; Schill DJ, 2007, N AM J FISH MANAGE, V27, P665, DOI 10.1577/M06-082.1; Schill DJ, 2010, ENVIRON BIOL FISH, V89, P319, DOI 10.1007/s10641-010-9694-x; Scott WB, 1973, FISHERIES RES BOARD, P184; Seber G. A. F, 1982, ESTIMATION ANIMAL AB; Shrader T., 1997, PREDATION COMPETITIO; Stearns S, 1992, EVOLUTION LIFE HIST; Steinhorst R.K., 2004, J AGR BIOL ENVIR ST, V9, P284; Thedinga John F., 1994, North American Journal of Fisheries Management, V14, P837, DOI 10.1577/1548-8675(1994)014<0837:DOSSYW>2.3.CO;2; Thompson AR, 2001, FRESHWATER BIOL, V46, P145, DOI 10.1046/j.1365-2427.2001.00654.x; Thrower F.P., 2004, PROPAGATED FISH RESO, P485; Thrower FP, 2008, AM FISH S S, V62, P309; Thurow R.F., 2007, COLUMBIA RIVER REDBA, P28; VONBERTALANFFY L, 1957, Q REV BIOL, V32, P217, DOI 10.1086/401873; Young H.W., 1977, INFORM B; Zar J. H., 1984, BIOSTATISTICAL ANAL; Zimmerman CE, 2000, CAN J FISH AQUAT SCI, V57, P2152, DOI 10.1139/cjfas-57-10-2152; Zimmerman MP, 1999, T AM FISH SOC, V128, P1036, DOI 10.1577/1548-8659(1999)128<1036:FHOSBW>2.0.CO;2 58 5 5 1 29 TAYLOR & FRANCIS INC PHILADELPHIA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA 0002-8487 1548-8659 T AM FISH SOC Trans. Am. Fish. Soc. SEP 1 2013 142 5 1157 1166 10.1080/00028487.2013.799520 10 Fisheries Fisheries 220VA WOS:000324613800001 2019-02-21 J Sofaer, HR; Chapman, PL; Sillett, TS; Ghalambor, CK Sofaer, Helen R.; Chapman, Phillip L.; Sillett, T. Scott; Ghalambor, Cameron K. Advantages of nonlinear mixed models for fitting avian growth curves JOURNAL OF AVIAN BIOLOGY English Article SIBLING COMPETITION; NESTLING GROWTH; HATCHING ASYNCHRONY; ALTRICIAL BIRDS; FLEDGING SUCCESS; TREE SWALLOWS; CHICK GROWTH; HOUSE FINCH; CLUTCH SIZE; RATES Our understanding of avian growth rates can benefit from the use of two statistical approaches that explicitly model the sources of intraspecific variation. First, random effects can evaluate whether there are consistent differences between individuals and groups of siblings within a population, and also account for any lack of statistical independence among data points. Second, nonlinear fixed-effect functions can be extended to test specific biological hypotheses of interest, such as for differences between groups or populations. We illustrate the advantages of these methods by using nonlinear mixed models to study variation in the growth trajectories of nestling orange-crowned warblers Oreothylpis celata. Specifically, we quantify the sources of variation within populations, analyze the effects of asynchronous hatching, and test for a difference in the growth rates of populations in Alaska and California, which are at the northern and southern limits of the species' breeding distribution. We found that growth rates did not consistently vary between nests and individuals within populations and were not affected by asynchronous hatching, but were higher in Alaska than in California. Our extensions of traditional methods allowed us to accurately quantify this difference between populations, which is consistent with life history theory but has rarely been demonstrated in previous comparisons of intraspecific passerine populations. The methods we present can be applied to any taxonomic group and adjusted to fit any nonlinear function, and we provide code and implementation advice to facilitate the use of this analytical framework in future studies. [Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA; [Sofaer, Helen R.; Ghalambor, Cameron K.] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA; [Chapman, Phillip L.] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA; [Sillett, T. Scott] Natl Zool Pk, Migratory Bird Ctr, Smithsonian Conservat Biol Inst, Washington, DC 20013 USA Sofaer, HR (reprint author), Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA. helen@lamar.colostate.edu Sillett, Scott/0000-0002-7486-0076 Nature Conservancy; Smithsonian Instit.; American Ornithologists' Union Graduate Research Award; Frank M. Chapman Memorial Grant from the American Museum of Natural History; NSF-IGERT Grant DGE [0221595]; NSF Grant DEB [0846175] Our research was supported by the The Nature Conservancy, the Smithsonian Instit., an American Ornithologists' Union Graduate Research Award, and a Frank M. Chapman Memorial Grant from the American Museum of Natural History. HRS was supported by NSF-IGERT Grant DGE-#0221595 (administered by the PRIMES program at Colorado State Univ.) and NSF Grant DEB-#0846175 to CKG. The Catalina Island Conservancy provided logistical support. We thank users of the R mixed effect models message board for advice. Comments from B. R. Noon, K. M. Pepin, and C. T. Webb improved the manuscript. Alos J, 2010, FISH RES, V101, P60, DOI 10.1016/j.fishres.2009.09.007; Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Austin SH, 2011, METHODS ECOL EVOL, V2, P43, DOI 10.1111/j.2041-210X.2010.00055.x; Badyaev AV, 2001, EVOLUTION, V55, P2534; Badyaev AV, 2000, J EVOLUTION BIOL, V13, P290; BANCROFT GT, 1984, CONDOR, V86, P423, DOI 10.2307/1366822; Barrett RT, 1996, POLAR RES, V15, P107, DOI 10.1111/j.1751-8369.1996.tb00462.x; Bates D., 2012, LMER LINEAR MIXED EF; BEST LB, 1977, AUK, V94, P308; BLANCHER PJ, 1988, CAN J ZOOL, V66, P842, DOI 10.1139/z88-124; Bolker B., 2012, EMDBOOK ECOLOGICAL M; Bolker BM, 2009, TRENDS ECOL EVOL, V24, P127, DOI 10.1016/j.tree.2008.10.008; BRISBIN IL, 1987, AUK, V104, P552, DOI 10.2307/4087567; Brown WP, 2007, J AVIAN BIOL, V38, P495, DOI 10.1111/j.2007.0908-8857.03979.x; BRYANT DM, 1990, ANIM BEHAV, V39, P657, DOI 10.1016/S0003-3472(05)80377-X; Burnham K. P, 2002, MODEL SELECTION MULT; CASE TJ, 1978, Q REV BIOL, V53, P243, DOI 10.1086/410622; CLARK AB, 1981, Q REV BIOL, V56, P253, DOI 10.1086/412316; Davidian M, 2003, J AGR BIOL ENVIR ST, V8, P387, DOI 10.1198/1085711032697; EMMS SK, 1991, CONDOR, V93, P943, DOI 10.2307/3247729; GARD NW, 1992, CAN J ZOOL, V70, P2421, DOI 10.1139/z92-325; Greven S, 2010, BIOMETRIKA, V97, P773, DOI 10.1093/biomet/asq042; HAYWOOD S, 1992, P ROY SOC B-BIOL SCI, V249, P195, DOI 10.1098/rspb.1992.0103; Horton BM, 2010, GEN COMP ENDOCR, V168, P333, DOI 10.1016/j.ygcen.2010.04.019; Hu FB, 1998, AM J EPIDEMIOL, V147, P694; HUSSELL DJT, 1972, ECOL MONOGR, V42, P317, DOI 10.2307/1942213; Ives AR, 2007, SYSTEMATIC BIOL, V56, P252, DOI 10.1080/10635150701313830; Johnson LS, 2003, J AVIAN BIOL, V34, P35, DOI 10.1034/j.1600-048X.2003.02950.x; Kaiser SA, 2007, CONDOR, V109, P288, DOI 10.1650/0010-5422(2007)109[288:EODTEA]2.0.CO;2; KING JR, 1981, CONDOR, V83, P362, DOI 10.2307/1367507; Krebs EA, 1999, J ANIM ECOL, V68, P266, DOI 10.1046/j.1365-2656.1999.00284.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; LAIRD NM, 1982, BIOMETRICS, V38, P963, DOI 10.2307/2529876; LINDEN M, 1992, ECOLOGY, V73, P336, DOI 10.2307/1938745; LINDSTROM MJ, 1990, BIOMETRICS, V46, P673, DOI 10.2307/2532087; MAGRATH RD, 1990, BIOL REV, V65, P587, DOI 10.1111/j.1469-185X.1990.tb01239.x; MAGRATH RD, 1991, J ANIM ECOL, V60, P335, DOI 10.2307/5464; Mauck RA, 2005, FUNCT ECOL, V19, P1001, DOI 10.1111/j.1365-2435.2005.01060.x; McCarty JP, 2001, AUK, V118, P176, DOI 10.1642/0004-8038(2001)118[0176:VIGONT]2.0.CO;2; Metcalfe NB, 2001, TRENDS ECOL EVOL, V16, P254, DOI 10.1016/S0169-5347(01)02124-3; Molenberghs G, 2005, MODELS DISCRETE LONG; Nilsson JA, 1996, J ANIM ECOL, V65, P825, DOI 10.2307/5680; Pilling GM, 2002, CAN J FISH AQUAT SCI, V59, P424, DOI 10.1139/F02-022; Pinheiro J, 2011, NLME LINEAR NONLINEA, V3, P1, DOI DOI 10.1371/J0URNAL.P0NE.0018860; Pinheiro J. C, 2000, MIXED EFFECTS MODELS; Remes V, 2002, EVOLUTION, V56, P2505; RICKLEFS RE, 1981, AUK, V98, P39; RICKLEFS RE, 1967, ECOLOGY, V48, P978, DOI 10.2307/1934545; RICKLEFS RE, 1976, IBIS, V118, P179, DOI 10.1111/j.1474-919X.1976.tb03065.x; RICKLEFS RE, 1969, ECOLOGY, V50, P1031, DOI 10.2307/1936894; RICKLEFS RE, 1968, IBIS, V110, P419, DOI 10.1111/j.1474-919X.1968.tb00058.x; Ricklefs Robert E., 1993, Current Ornithology, V11, P199; Ritz C, 2008, USE R, P1; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Roff Derek A., 1992; Royle NJ, 1999, P ROY SOC B-BIOL SCI, V266, P923, DOI 10.1098/rspb.1999.0725; Schekkerman H, 2003, OECOLOGIA, V134, P332, DOI 10.1007/s00442-002-1124-0; Searcy WA, 2004, J AVIAN BIOL, V35, P269, DOI 10.1111/j.0908-8857.2004.03247.x; Shelton AO, 2012, J BIOL DYNAM, V6, P3, DOI 10.1080/17513758.2012.697195; Sofaer H. R., 2012, THESIS COLORADO STAT; STARCK JM, 1995, IBIS, V137, P519, DOI 10.1111/j.1474-919X.1995.tb03262.x; Starck JM, 1998, AVIAN GROWTH DEV EVO; Stearns S, 1992, EVOLUTION LIFE HIST; Tilgar V, 2006, EVOL ECOL, V20, P217, DOI 10.1007/s10682-005-5877-x; Tjorve KMC, 2010, ZOOLOGY, V113, P326, DOI 10.1016/j.zool.2010.05.003; Tjorve KMC, 2009, ZOOLOGY, V112, P27, DOI 10.1016/j.zool.2008.04.004; VONESH EF, 1992, BIOMETRICS, V48, P1, DOI 10.2307/2532734; WERSCHKUL DF, 1979, IBIS, V121, P97, DOI 10.1111/j.1474-919X.1979.tb05022.x; Yoon J, 2012, ANIM BEHAV, V84, P515, DOI 10.1016/j.anbehav.2012.05.024; Zuur A., 2009, MIXED EFFECTS MODELS, DOI 10.1007/978-0-387-87458-6 70 26 27 3 51 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0908-8857 1600-048X J AVIAN BIOL J. Avian Biol. SEP 2013 44 5 469 478 10.1111/j.1600-048X.2013.05719.x 10 Ornithology Zoology 226AG WOS:000325005900007 2019-02-21 J Ruse, M Ruse, Michael David N. Reznick's The "Origin" Then and Now: An Interpretive Guide to the "Origin of Species": A Precis SCIENCE & EDUCATION English Article LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; RAPID EVOLUTION; CULEX-PIPIENS; DIFFERENTIATION; POPULATIONS; PLETHODON; DISPERSAL; SELECTION; MECHANISM David Reznick is one of the world's leading evolutionary biologists. His book on Charles Darwin's Origin of Species is given here in a pr,cis, in order to show the underlying approach that he takes towards a work that is a classic in his field. It is shown that Reznick's interests are less in Darwin for his own sake and more in the importance of Darwin's ideas for science today. Florida State Univ, Tallahassee, FL 32306 USA Ruse, M (reprint author), Florida State Univ, Tallahassee, FL 32306 USA. mruse@fsu.edu Bearhop S, 2005, SCIENCE, V310, P502, DOI 10.1126/science.1115661; BERTHOLD P, 1992, NATURE, V360, P668, DOI 10.1038/360668a0; Bohle UR, 1996, P NATL ACAD SCI USA, V93, P11740, DOI 10.1073/pnas.93.21.11740; Browne J., 2002, BIOGRAPHY, VII; Browne J., 1995, BIOGRAPHY, V1; Byrne K, 1999, HEREDITY, V82, P7, DOI 10.1038/sj.hdy.6884120; CAMPBELL BG, 2006, HUMANKIND EMERGING; Censky EJ, 1998, NATURE, V395, P556, DOI 10.1038/26886; Chevillon C, 1998, MOL ECOL, V7, P197, DOI 10.1046/j.1365-294x.1998.00338.x; COWEN R, 2005, HIST LIFE; Coyne J. A., 2004, SPECIATION; Darwin C., 1859, ORIGIN SPECIES MEANS; Darwin C., 1862, VARIOUS CONTRIVANCES; Dobzhansky T., 1937, GENETICS ORIGIN SPEC; Eicher D. L., 1976, GEOLOGIC TIME; Gould S. J., 1977, ONTOGENY PHYLOGENY; GRANT PR, 1995, EVOLUTION, V49, P241, DOI 10.1111/j.1558-5646.1995.tb02236.x; Grotzinger J., 2007, UNDERSTANDING EARTH; HIGHTON R, 1995, ANNU REV ECOL SYST, V26, P579, DOI 10.1146/annurev.es.26.110195.003051; HIGHTON R, 1985, J HERPETOL, V19, P544, DOI 10.2307/1564214; Holldobler B., 1990, ANTS; JACOB F, 1977, SCIENCE, V196, P1161, DOI 10.1126/science.860134; Kumar S, 2005, P NATL ACAD SCI USA, V102, P18842, DOI 10.1073/pnas.0509585102; Lyell Ch., 1830, PRINCIPLES GEOLOGY B; Mayr E., 1995, BIODIVERSITY EVOLUTI, P3; Mayr Ernst, 1942, SYSTEMATICS ORIGIN S; Nei M.K.S., 2000, MOL EVOLUTION PHYLOG; NILSSON DE, 1994, P ROY SOC B-BIOL SCI, V256, P53, DOI 10.1098/rspb.1994.0048; Provine WB, 1971, ORIGINS THEORETICAL; RAUP DM, 1982, SCIENCE, V215, P1501, DOI 10.1126/science.215.4539.1501; Renner S, 2004, INT J PLANT SCI, V165, pS23, DOI 10.1086/383334; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, AM NAT, V147, P319, DOI 10.1086/285854; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; Reznick DN, 1997, SCIENCE, V275, P1934, DOI 10.1126/science.275.5308.1934; Reznick DN, 2002, SCIENCE, V298, P1018, DOI 10.1126/science.1076018; Reznick DN, 2009, ORIGIN THEN NOW INTE; Rudwick M.J.S., 1997, G CUVIER FOSSIL BONE; Rudwick Martin, 2005, BURSTING LIMITS TIME; Rudwick MJS, 1972, MEANING FOSSILS; Ruse Michael, 1999, DARWINIAN REVOLUTION; SARICH VM, 1967, SCIENCE, V158, P1200, DOI 10.1126/science.158.3805.1200; Springer MS, 1997, NATURE, V388, P61, DOI 10.1038/40386; Wilson E. O., 1971, INSECT SOC 45 0 0 0 13 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0926-7220 SCI EDUC-NETHERLANDS Sci. Educ. SEP 2013 22 9 SI 2295 2316 10.1007/s11191-012-9546-5 22 Education & Educational Research; History & Philosophy Of Science Education & Educational Research; History & Philosophy of Science 202MH WOS:000323220400012 2019-02-21 J Silva, A; Faria, S; Nunes, C Silva, Alexandra; Faria, Sara; Nunes, Cristina Long-term changes in maturation of sardine, Sardina pilchardus, in Portuguese waters SCIENTIA MARINA English Article maturation; condition; sardine; Portuguese waters FISHERIES-INDUCED EVOLUTION; LIFE-HISTORY EVOLUTION; GEOGRAPHIC VARIABILITY; NORTHEASTERN ATLANTIC; ENVIRONMENTAL-CONTROL; TEMPERATURE; FISH; MATURITY; GROWTH; SIZE Long-term changes in sardine maturation were described using samples collected from landings off the western Portuguese coast since 1947. Estimates of the length at 50% maturity (L-50) were calculated in 44 years of the study period and proved to be good proxies of the maturation length of first-year spawners (Lp(50) of age 0-1 fish). Sardine probability of maturing at a given length declined from the early 1950s to the late 1960s, corresponding to an increase of ca. 2 cm in both L-50 and Lp(50). This trend reversed in the early 1970s and halted in the early to mid-1990s. The tendency for sardine to mature at a lower length was positively correlated with improved body condition in the growing season preceding maturation. Long-term trends in sardine maturation and body condition were parallel to trends in sea surface temperature reported in the literature. The results suggest that maturation at a lower size is directly influenced by increased temperature, and that higher temperatures improve body condition through increased feeding efficiency or a combination of both. We found no evidence that fishing intensity has contributed to long-term changes in sardine maturation. [Silva, Alexandra; Faria, Sara; Nunes, Cristina] Inst Portugues Mar & Atmosfera, P-1449006 Lisbon, Portugal; [Faria, Sara] Cascais Ambiente, P-2645138 Alcabideche, Portugal Silva, A (reprint author), Inst Portugues Mar & Atmosfera, Av Brasilia S-N, P-1449006 Lisbon, Portugal. asilva@ipma.pt Silva, Alexandra/I-4326-2017 Silva, Alexandra/0000-0002-2950-1429 Fisheries-Induced Evolution (FINE) project (EC-FP6 contract) [044276] We are grateful o M. Heino for useful comments to an early version of the manuscript and to A. M. Santos for providing sea surface temperature data. This study was carried out within the framework of the Fisheries-Induced Evolution (FINE) project (EC-FP6 contract No. 044276). Afonso-Dias I, 2008, MAR BIODIVER REC, V1, pe20, DOI DOI 10.1017/S175526720700190X; Allendorf FW, 2008, TRENDS ECOL EVOL, V23, P327, DOI 10.1016/j.tree.2008.02.008; Anderson CNK, 2008, NATURE, V452, P835, DOI 10.1038/nature06851; Bandarra NM, 1997, J FOOD SCI, V62, P40, DOI 10.1111/j.1365-2621.1997.tb04364.x; Carrillo M, 2009, ANN NY ACAD SCI, V1163, P49, DOI 10.1111/j.1749-6632.2008.03645.x; Crawley, 2007, R BOOK; Dhillon RS, 2004, COPEIA, P37, DOI 10.1643/CI-02-098R1; Dieckmann U, 2007, MAR ECOL PROG SER, V335, P253, DOI 10.3354/meps335253; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Engelhard GH, 2004, MAR ECOL PROG SER, V272, P245, DOI 10.3354/meps272245; FURNESTIN J, 1943, REV TRAV OFF SCI TEC, V13, P211; Ganias K, 2009, ESTUAR COAST SHELF S, V84, P402, DOI 10.1016/j.ecss.2009.07.004; Handeland SO, 2008, AQUACULTURE, V283, P36, DOI 10.1016/j.aquaculture.2008.06.042; Heino M, 2008, B MAR SCI, V83, P69; Hilborn R, 2001, QUANTITATIVE FISHERI, P570; ICES, 2012, 2012ACOM ICES CM, V47; ICES, 2010, 2010ACOM ICES CM, P16; Jorge I, 1972, B INF I BIOL MARIT, V6; Jorgensen C, 2007, SCIENCE, V318, P1247, DOI 10.1126/science.1148089; Kuparinen A, 2007, TRENDS ECOL EVOL, V22, P652, DOI 10.1016/j.tree.2007.08.011; Law R, 2000, ICES J MAR SCI, V57, P659, DOI 10.1006/jmsc.2000.0731; Lemos RT, 2006, J GEOPHYS RES-OCEANS, V111, DOI 10.1029/2005JC003051; Lemos RT, 2004, INT J CLIMATOL, V24, P511, DOI 10.1002/joc.1009; MACDONALD P, 2008, MIXDIST FINITE MIXTU; Marshall CT, 2007, MAR ECOL PROG SER, V335, P301, DOI 10.3354/meps335301; Mendes H.V, 2006, RELATORIOS CIENTIF D, V32; Mood A. M., 1974, INTRO THEORY STAT; Nunes C, 2011, Cienc. mar, V37, P565; Nunes C, 2011, MAR COAST FISH, V3, P127, DOI 10.1080/19425120.2011.556911; Okuzawa K, 2002, FISH PHYSIOL BIOCHEM, V26, P31, DOI 10.1023/A:1023395025374; Oskarsson GJ, 2010, FISH OCEANOGR, V19, P412, DOI 10.1111/j.1365-2419.2010.00554.x; Pankhurst NW, 2003, FISH PHYSIOL BIOCHEM, V28, P385, DOI 10.1023/B:FISH.0000030602.51939.50; PARRISH RH, 1995, FISH OCEANOGR, V4, P171, DOI 10.1111/j.1365-2419.1995.tb00070.x; PARRISH RH, 1989, CAN J FISH AQUAT SCI, V46, P2019, DOI 10.1139/f89-251; Pinto J.S, 1957, NOT EST I BIOL MARIT, V15, P1; Pinto J.S, 1957, GFCM P TECH PAP, V46, P393; R Development Core Team, 2009, R LANG ENV STAT COMP; Relvas P, 2009, GEOPHYS RES LETT, V36, pL2260; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Silva A, 2008, FISH RES, V90, P56, DOI 10.1016/j.fishres.2007.09.011; Silva A, 2006, ICES J MAR SCI, V63, P663, DOI 10.1016/j.icesjms.2006.01.005; Sinclair AF, 2002, CAN J FISH AQUAT SCI, V59, P372, DOI [10.1139/f02-014, 10.1139/F02-014]; Stratoudakis Y, 2007, MAR BIOL, V152, P201, DOI 10.1007/s00227-007-0674-4; Tobin D, 2011, J EXP MAR BIOL ECOL, V403, P9, DOI 10.1016/j.jembe.2011.03.018; van der Lingen CD, 2006, AFR J MAR SCI, V28, P625, DOI 10.2989/18142320609504212; Watanabe C, 2006, FISH RES, V78, P323, DOI 10.1016/j.fishres.2006.01.001; Wood SN., 2006, GEN ADDITIVE MODELS; Wright PJ, 2007, MAR ECOL PROG SER, V335, P279, DOI 10.3354/meps335279; Yoneda M, 2005, J FISH BIOL, V67, P1225, DOI 10.1111/j.1095-8649.2005.00819.x 50 1 1 3 11 INST CIENCIAS MAR BARCELONA BARCELONA PG MARITIM DE LA BARCELONETA, 37-49, 08003 BARCELONA, SPAIN 0214-8358 SCI MAR Sci. Mar. SEP 2013 77 3 429 438 10.3989/scimar.03852.03A 10 Marine & Freshwater Biology Marine & Freshwater Biology 223LQ WOS:000324806900005 DOAJ Gold 2019-02-21 J Bulluck, L; Buehler, D; Vallender, R; Robertson, RJ Bulluck, Lesley; Buehler, David; Vallender, Rachel; Robertson, Raleigh J. DEMOGRAPHIC COMPARISON OF GOLDEN-WINGED WARBLER (VERMIVORA CHRYSOPTERA) POPULATIONS IN NORTHERN AND SOUTHERN EXTREMES OF THEIR BREEDING RANGE WILSON JOURNAL OF ORNITHOLOGY English Article annual adult survival; daily nest survival; geographic variation; life history; Neotropical migratory songbird; warbler LIFE-HISTORY EVOLUTION; NEST PREDATION RISK; NONBREEDING SEASON; MIGRATORY SONGBIRD; HABITAT QUALITY; MARKED ANIMALS; MIGRANT BIRD; CLUTCH-SIZE; SURVIVAL; DISPERSAL Conservation strategies for declining species often are based on limited knowledge about how fecundity and survival may change across a species' range, and what factors may be limiting for a given population. Incomplete understanding of how a species' demography varies across a range of conditions may lead to inappropriate management decisions. Our objective was to compare demographic data from northern and southern extremes of the breeding range of Golden-winged Warblers (Vermivora clnysoptera). Specifically, we compared minimum estimates of annual adult survival, daily nest survival, fecundity, and population growth (lambda) for Tennessee and Ontario breeding populations. Tennessee nest survival decreased throughout the nesting season and as daily minimum temperature increased, but the constant survival model was equally supported (model averaged daily survival rate, DSR = 0.972 [0.01 SE]). Ontario nest survival also decreased throughout the nesting season, but not as a function of temperature (model averaged DSR = 0.956 [0.02 SE]). Despite larger clutch sizes and number of young fledged per successful nest in Ontario, fecundity estimates were greater for the Tennessee population. Males had greater annual survival than females in both Tennessee and Ontario populations (Tennessee male = 0.616 [0.11 SE], Tennessee female = 0.427 [0.12 SE], Ontario male = 0.618 [0.08 SE], and Ontario female = 0.477 [0.14 SE]). Minimum lambda estimates suggest that both populations were declining (2, = 0.7468 and 0.7935 for Tennessee and Ontario, respectively). However, as with many mark-recapture studies of birds, we are unable to separate mortality from dispersal which likely biases these survival estimates. Further, annual survival is affected by events in the wintering and migratory periods and until these are known, we will be limited in our ability to effectively manage this and other declining Neotropical migratory songbirds. [Bulluck, Lesley; Buehler, David] Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA; [Vallender, Rachel; Robertson, Raleigh J.] Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada; [Bulluck, Lesley] Virginia Commonwealth Univ, Dept Biol, Richmond, VA 23284 USA; [Vallender, Rachel] Environm Canada, Canadian Wildlife Serv, Gatineau, PQ, Canada Bulluck, L (reprint author), Univ Tennessee, Dept Forestry Wildlife & Fisheries, Knoxville, TN 37996 USA. lpbulluck@vcu.edu Bulluck, Lesley/0000-0003-2710-7759 National Fish and Wildlife Foundation; Tennessee Wildlife Resources Agency; Frances M. Peacock Scholarship through the Garden Club of America; Tennessee Ornithological Society; Department of Forestry, Wildlife and Fisheries at The University of Tennessee; Natural Sciences and Engineering Research Council of Canada; Queen's University; T. D. Friends of the Environment Foundation grant; American Museum of Natural History; Pearl E. Williams & Llewellyn Hillis Fund award Funding for the Tennessee portion of this study was provided by the National Fish and Wildlife Foundation, the Tennessee Wildlife Resources Agency, the Frances M. Peacock Scholarship through the Garden Club of America, the Tennessee Ornithological Society, the Department of Forestry, Wildlife and Fisheries at The University of Tennessee. For Ontario portions of the study, we thank the Natural Sciences and Engineering Research Council of Canada, Queen's University, T. D. Friends of the Environment Foundation grant, Frank M. Chapman Memorial Award from the American Museum of Natural History, and a Pearl E. Williams & Llewellyn Hillis Fund award. Additionally, we thank numerous field crew members for their long hours in the field: M. J. Alexander, B. Augustine, Carll, K. Eldridge, J. Kapp, K. Kontio, A. P. Raymundo, L. A. Pena, D. Perez, M. Timpf, P. Vasseur, and M. Wickens in Tennessee and K. Fraser, S. Harper, E. McKinnon K. Neville, W. J. McLeish, L. Reed, and M. Timpf in Ontario. We also thank S. Dinsmore and J. Clark for guidance with structuring our data and models for use in Program MARK. Finally, we thank J. Bulluck, J. Clark, K. Fraser, L. Gross, R. Tankersley, and B. Thatcher for reviewing the manuscript before submission. Anders AD, 2005, CONSERV BIOL, V19, P66, DOI 10.1111/j.1523-1739.2005.00543.x; Ardia DR, 2005, ECOLOGY, V86, P2040, DOI 10.1890/04-1619; ASHMOLE N. P., 1963, IBIS, V103b, P458, DOI 10.1111/j.1474-919X.1963.tb06766.x; Buehler DA, 2008, J WILDLIFE MANAGE, V72, P646, DOI 10.2193/2006-339; Buehler DA, 2007, AUK, V124, P1439, DOI 10.1642/0004-8038(2007)124[1439:SACPOG]2.0.CO;2; Burnham K. P, 2002, MODEL SELECTION MULT; Caswell H., 2001, MATRIX POPULATION MO; Chandler RB, 2011, J APPL ECOL, V48, P1038, DOI 10.1111/j.1365-2664.2011.02001.x; Cilimburg AB, 2002, AUK, V119, P778, DOI 10.1642/0004-8038(2002)119[0778:EODOSP]2.0.CO;2; Clarke AL, 1997, OIKOS, V79, P429, DOI 10.2307/3546885; CODY ML, 1966, EVOLUTION, V20, P174, DOI 10.1111/j.1558-5646.1966.tb03353.x; Confer JL, 2011, BIRDS N AM; Cottam MR, 2009, BIOL CONSERV, V142, P2464, DOI 10.1016/j.biocon.2009.05.017; Dinsmore SJ, 2002, ECOLOGY, V83, P3476, DOI 10.1890/0012-9658(2002)083[3476:ATFMAN]2.0.CO;2; Donovan TM, 1995, CONSERV BIOL, V9, P1380, DOI 10.1046/j.1523-1739.1995.09061380.x; DRILLING NE, 1988, AUK, V105, P480; Gill FB, 1997, EVOLUTION, V51, P519, DOI 10.1111/j.1558-5646.1997.tb02439.x; Giocomo J. J., 2005, THESIS U TENNESSEE K; GREENWOOD PJ, 1982, ANNU REV ECOL SYST, V13, P1, DOI 10.1146/annurev.es.13.110182.000245; Hansson B, 2002, OECOLOGIA, V130, P536, DOI 10.1007/s00442-001-0831-2; Hood GM, 2010, POPTOOLS VERSION 3 2, VURL; Jones J, 2004, AUK, V121, P15, DOI 10.1642/0004-8038(2004)121[0015:MEOSAP]2.0.CO;2; Knutson MG, 2006, CONDOR, V108, P301, DOI 10.1650/0010-5422(2006)108[301:AAOBHQ]2.0.CO;2; KULESZA G, 1990, IBIS, V132, P407, DOI 10.1111/j.1474-919X.1990.tb01059.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Latta SC, 2002, ECOLOGY, V83, P2502, DOI 10.1890/0012-9658(2002)083[2502:DAPROC]2.0.CO;2; LEBRETON JD, 1992, ECOL MONOGR, V62, P67, DOI 10.2307/2937171; Liker A, 2005, EVOLUTION, V59, P890, DOI 10.1554/04-560; Marra PP, 2001, AUK, V118, P92, DOI 10.1642/0004-8038(2001)118[0092:CODMHS]2.0.CO;2; Marra PP, 2000, BEHAV ECOL, V11, P299, DOI 10.1093/beheco/11.3.299; Marshall M. R., 2004, Animal Biodiversity and Conservation, V27, P59; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Mattsson BJ, 2011, CONDOR, V113, P412, DOI 10.1525/cond.2011.090212; McNamara JM, 2008, AM NAT, V172, P331, DOI 10.1086/589886; Morrison C, 2003, J ANIM ECOL, V72, P270, DOI 10.1046/j.1365-2656.2003.00696.x; Norris D. Ryan, 2006, Ornithological Monographs, V61, P79; POLLOCK KH, 1990, WILDLIFE MONOGR, P1; Pyle P, 1997, IDENTIFICATION GUI 1; Radford AN, 2001, BIRD STUDY, V48, P214, DOI 10.1080/00063650109461220; RICKLEFS R E, 1969, Living Bird, V8, P165; Ricklefs RE, 2000, CONDOR, V102, P9, DOI 10.1650/0010-5422(2000)102[0009:DDEOAT]2.0.CO;2; Riddle JD, 2010, AVIAN CONSERV ECOL, V5; Rodewald AD, 2002, J WILDLIFE MANAGE, V66, P634, DOI 10.2307/3803130; Rotella J. J., 2004, Animal Biodiversity and Conservation, V27, P187; Rubenstein DR, 2002, SCIENCE, V295, P1062, DOI 10.1126/science.1067124; SAUER JR, 2008, N AM BREEDING BIRD S; Siikamaki P, 1996, IBIS, V138, P471, DOI 10.1111/j.1474-919X.1996.tb08067.x; Sillett TS, 2002, J ANIM ECOL, V71, P296, DOI 10.1046/j.1365-2656.2002.00599.x; SKUTCH AF, 1949, IBIS, V91, P430, DOI 10.1111/j.1474-919X.1949.tb02293.x; Soderstrom B, 1998, OECOLOGIA, V117, P108, DOI 10.1007/s004420050638; Sperry JH, 2008, J AVIAN BIOL, V39, P379, DOI 10.1111/j.2008.0908-8857.04451.x; Stake MM, 2005, J HERPETOL, V39, P215, DOI 10.1670/150-04A; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stiles FG, 1989, GUIDE BIRDS COSTA RI; TEMPLE SA, 1988, CONSERV BIOL, V2, P340, DOI 10.1111/j.1523-1739.1988.tb00198.x; Thompson FR, 2003, J WILDLIFE MANAGE, V67, P408; Vallender R, 2007, MOL ECOL, V16, P2017, DOI 10.1111/j.1365-294X.2007.03282.x; Vallender R, 2007, BEHAV ECOL SOCIOBIOL, V61, P1797, DOI 10.1007/s00265-007-0413-3; Vallender R, 2009, AVIAN CONSERV ECOL, V4; Weatherhead PJ, 2004, J AVIAN BIOL, V35, P185, DOI 10.1111/j.0908-8857.2004.03336.x; White GC, 1999, BIRD STUDY, V46, P120; Wilson S, 2011, POPUL ECOL, V53, P459, DOI 10.1007/s10144-011-0261-x; Woodrey MS, 2000, STUD AVIAN BIOL-SER, P43; Woodrey MS, 1997, AUK, V114, P695, DOI 10.2307/4089289 64 6 7 1 80 WILSON ORNITHOLOGICAL SOC WACO 5400 BOSQUE BLVD, STE 680, WACO, TX 76710 USA 1559-4491 1938-5447 WILSON J ORNITHOL Wilson J. Ornithol. SEP 2013 125 3 479 490 10.1676/12-154.1 12 Ornithology Zoology 222GH WOS:000324718700004 2019-02-21 J Mitteldorf, JJ; Goodnight, C Mitteldorf, J. J.; Goodnight, C. Post-reproductive life span and demographic stability BIOCHEMISTRY-MOSCOW English Article menopause; aging; senescence; programmed aging; adaptive aging; evolution POPULATION-DYNAMICS; NATURAL-SELECTION; EVOLUTION; SENESCENCE; EXPLOITATION; COEXISTENCE; ENVIRONMENT; MODELS; FLIES; CHAOS Recent field studies suggest that it is common in nature for animals to outlive their reproductive viability. Post-reproductive life span has been observed in a broad range of vertebrate and invertebrate species. But post-reproductive life span poses a paradox for traditional theories of life history evolution. The commonly cited explanation is the "grandmother hypothesis", which applies only to higher, social mammals. We propose that post-reproductive life span evolves to stabilize predator-prey population dynamics, avoiding local extinctions. In the absence of senescence, juveniles would be the most susceptible age class. If juveniles are the first to disappear when predation pressure is high, this amplifies the population's risk of extinction. A class of older, senescent individuals can help shield the juveniles from predation, stabilizing demographics and avoiding extinction. If, in addition, the life history is arranged so that the older individuals are no longer fertile, the stabilizing effect is further enhanced. [Mitteldorf, J. J.; Goodnight, C.] Univ Vermont, Dept Biol, Burlington, VT 05405 USA Mitteldorf, JJ (reprint author), Univ Vermont, Dept Biol, Life Sci Bldg, Burlington, VT 05405 USA. josh@mathforum.org Abrams PA, 2000, ANNU REV ECOL SYST, V31, P79, DOI 10.1146/annurev.ecolsys.31.1.79; AUSTAD SN, 1993, J ZOOL, V229, P695, DOI 10.1111/j.1469-7998.1993.tb02665.x; Bonduriansky R, 2005, J EVOLUTION BIOL, V18, P1332, DOI 10.1111/j.1420-9101.2005.00957.x; Bonduriansky R, 2002, NATURE, V420, P377, DOI 10.1038/420377a; Borrello M. E., 2010, EVOLUTIONARY RESTRAI; Cohen AA, 2004, BIOL REV, V79, P733, DOI 10.1017/S1464793103006432; Cuddington K, 2002, AM NAT, V160, P119, DOI 10.1086/340611; FERRIERE R, 1995, TRENDS ECOL EVOL, V10, P480, DOI 10.1016/S0169-5347(00)89194-6; Froy H., 2012, AGEING RES REV, V12, P214; Gilpin M. E., 1975, GROUP SELECTION PRED; Goranson NC, 2005, EVOL ECOL RES, V7, P325; GOSDEN RG, 1983, BIOL REPROD, V28, P255, DOI 10.1095/biolreprod28.2.255; HECKEL DG, 1980, P NATL ACAD SCI-BIOL, V77, P7497, DOI 10.1073/pnas.77.12.7497; Holmes DJ, 2003, EXP GERONTOL, V38, P1365, DOI 10.1016/j.exger.2003.10.018; Kachel AF, 2011, P ROY SOC B-BIOL SCI, V278, P384, DOI 10.1098/rspb.2010.1247; KIRKWOOD TBL, 1977, NATURE, V270, P301, DOI 10.1038/270301a0; Lahdenpera M, 2004, NATURE, V428, P178, DOI 10.1038/nature02367; LOREAU M, 1994, THEOR POPUL BIOL, V46, P58, DOI 10.1006/tpbi.1994.1019; Lotka A. J., 1925, ELEMENTS PHYS BIOL; May R.M, 1973, STABILITY COMPLEXITY; McAuliffe K, 2005, TRENDS ECOL EVOL, V20, P650, DOI 10.1016/j.tree.2005.09.003; Medawar P, 1952, UNSOLVED PROBLEM BIO; Minois N, 2005, P NATL ACAD SCI USA, V102, P402, DOI 10.1073/pnas.0408332102; Mitteldorf J, 2006, EVOL ECOL RES, V8, P561; MITTELDORF J, 2004, EVOL ECOL RES, V6, P1; Mitteldorf J., 2010, APPROACHES CONTROL A; Mitteldorf J., 2004, SELECTION ECOSYSTEMS; Moll JD, 2008, AM NAT, V171, P839, DOI 10.1086/587517; MUELLER LD, 2000, MONOGRAPHS POPULATIO, V31; Nudds T., 1987, WILD FURBEARER MANAG; OTTINGER MA, 1986, HORM BEHAV, V20, P83, DOI 10.1016/0018-506X(86)90031-0; Packer C, 1998, NATURE, V392, P807, DOI 10.1038/33910; Pels B, 2002, AM NAT, V159, P172, DOI 10.1086/324788; Pepper JW, 2002, AM NAT, V160, P205, DOI 10.1086/341018; PRICE GR, 1970, NATURE, V227, P520, DOI 10.1038/227520a0; RAND DA, 1995, P ROY SOC B-BIOL SCI, V259, P55, DOI 10.1098/rspb.1995.0009; Rauch EM, 2003, J THEOR BIOL, V221, P655, DOI 10.1006/jtbi.2003.3127; Reznick D, 2006, PLOS BIOL, V4, P136, DOI 10.1371/journal.pbio.0040007; Ricklefs RE, 1998, AM NAT, V152, P24, DOI 10.1086/286147; ROSENZWE.ML, 1971, SCIENCE, V171, P385, DOI 10.1126/science.171.3969.385; SMITH JM, 1976, Q REV BIOL, V51, P277, DOI 10.1086/409311; THOMAS WR, 1980, ECOLOGY, V61, P1312, DOI 10.2307/1939039; TURELLI M, 1980, P NATL ACAD SCI-BIOL, V77, P7501, DOI 10.1073/pnas.77.12.7501; Volterra V., 1931, ANIMAL ECOLOGY; WILLIAMS GC, 1957, EVOLUTION, V11, P398, DOI 10.2307/2406060; Wilson DS, 1997, AM NAT, V150, pS1, DOI 10.1086/286046; Wright S, 1931, GENETICS, V16, P0097; Wynne-Edwards V. C., 1962, ANIMAL DISPERSION RE 48 1 1 3 32 MAIK NAUKA/INTERPERIODICA/SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013-1578 USA 0006-2979 BIOCHEMISTRY-MOSCOW+ Biochem.-Moscow SEP 2013 78 9 1013 1022 10.1134/S0006297913090071 10 Biochemistry & Molecular Biology Biochemistry & Molecular Biology 217QT WOS:000324375500007 24228923 2019-02-21 J Lambert, SM; Wiens, JJ Lambert, Shea M.; Wiens, John J. EVOLUTION OF VIVIPARITY: A PHYLOGENETIC TEST OF THE COLD-CLIMATE HYPOTHESIS IN PHRYNOSOMATID LIZARDS EVOLUTION English Article Climate; comparative methods; life-history evolution; phylogeny; reproductive mode; squamates MATERNAL MANIPULATION HYPOTHESIS; SQUAMATE REPTILES; EGG RETENTION; NICHE CONSERVATISM; BINARY CHARACTERS; FUTURE-DIRECTIONS; MULTIPLE ORIGINS; GENUS SCELOPORUS; ZOOTOCA-VIVIPARA; MOUNTAIN PASSES The evolution of viviparity is a key life-history transition in vertebrates, but the selective forces favoring its evolution are not fully understood. With >100 origins of viviparity, squamate reptiles (lizards and snakes) are ideal for addressing this issue. Some evidence from field and laboratory studies supports the cold-climate hypothesis, wherein viviparity provides an advantage in cold environments by allowing mothers to maintain higher temperatures for developing embryos. Surprisingly, the cold-climate hypothesis has not been tested using both climatic data and phylogenetic comparative methods. Here, we investigate the evolution of viviparity in the lizard family Phrynosomatidae using GIS-based environmental data, an extensive phylogeny (117 species), and recently developed comparative methods. We find significant relationships between viviparity and lower temperatures during the warmest (egg-laying) season, strongly supporting the cold-climate hypothesis. Remarkably, we also find that viviparity tends to evolve more frequently at tropical latitudes, despite its association with cooler climates. Our results help explain this and two related patterns that seemingly contradict the cold-climate hypothesis: the presence of viviparous species restricted to low-elevation tropical regions and the paucity of viviparous species at high latitudes. Finally, we examine whether viviparous taxa may be at higher risk of extinction from anthropogenic climate change. [Lambert, Shea M.; Wiens, John J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA Lambert, SM (reprint author), Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. sheamaddocklambert@gmail.com Wiens, John/0000-0003-4243-1127 AMOROSO EC, 1968, P ROY SOC MED, V61, P1188; Andrews RM, 2000, J ZOOL, V250, P243, DOI 10.1017/S0952836900002107; Andrews RM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P145, DOI 10.1086/339388; ANDREWS RM, 1994, PHYSIOL ZOOL, V67, P1006, DOI 10.1086/physzool.67.4.30163876; Blackburn D. G., 2005, VIVIPAROUS FISHES, P301; Blackburn D. G., 2006, HERP MON, V20, P121; Blackburn D.G., 1999, ENCY REPROD, P994; Blackburn DG, 1999, HERPETOLOGICA, V55, P556; Blackburn DG, 2000, COMP BIOCHEM PHYS A, V127, P391, DOI 10.1016/S1095-6433(00)00272-5; Blackburn DG, 1998, J EXP ZOOL, V282, P560; Burnham K. P, 2002, MODEL SELECTION MULT; Calderon-Espinosa ML, 2006, HERPETOL MONOGR, V20, P147, DOI 10.1655/0733-1347(2007)20[147:EOERIT]2.0.CO;2; CONANT R, 1998, FIELD GUIDE REPTILES; Drummond AJ, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-214; Drummond AJ, 2006, PLOS BIOL, V4, P699, DOI 10.1371/journal.pbio.0040088; Felsenstein J, 2012, AM NAT, V179, P145, DOI 10.1086/663681; FitzJohn RG, 2012, METHODS ECOL EVOL, V3, P1084, DOI 10.1111/j.2041-210X.2012.00234.x; Garcia-Collazo R, 2012, REV MEX BIODIVERS, V83, P802, DOI 10.7550/rmb.33595; Ghalambor CK, 2006, INTEGR COMP BIOL, V46, P5, DOI 10.1093/icb/icj003; GRAFEN A, 1989, PHILOS T ROY SOC B, V326, P119, DOI 10.1098/rstb.1989.0106; GRISMER LL, 2002, AMPHIBIANS REPTILES; GUILLETTE LJ, 1980, HERPETOLOGICA, V36, P201; GUILLETTE LJ, 1993, BIOSCIENCE, V43, P742, DOI 10.2307/1312318; Hansen TF, 1996, EVOLUTION, V50, P1404, DOI 10.1111/j.1558-5646.1996.tb03914.x; Harmon LJ, 2008, BIOINFORMATICS, V24, P129, DOI 10.1093/bioinformatics/btm538; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hodges WL, 2004, J EVOLUTION BIOL, V17, P1230, DOI 10.1111/j.1420.9101.2004.00770.x; HOLT RD, 1990, TRENDS ECOL EVOL, V5, P311, DOI 10.1016/0169-5347(90)90088-U; Hua X, 2013, AM NAT, V182, P1, DOI 10.1086/670690; Ives AR, 2010, SYST BIOL, V59, P9, DOI 10.1093/sysbio/syp074; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Ji X, 2007, J EVOLUTION BIOL, V20, P1037, DOI 10.1111/j.1420-9101.2006.01296.x; Jones L. L. C., 2009, LIZARDS AM SW; Kozak KH, 2006, EVOLUTION, V60, P2604, DOI 10.1111/j.0014-3820.2006.tb01893.x; Leache AD, 2010, MOL PHYLOGENET EVOL, V54, P162, DOI 10.1016/j.ympev.2009.09.006; Lee MSY, 1998, EVOLUTION, V52, P1441, DOI 10.1111/j.1558-5646.1998.tb02025.x; Li H, 2009, EVOL ECOL, V23, P777, DOI 10.1007/s10682-008-9272-2; Lynch VJ, 2010, EVOLUTION, V64, P207, DOI 10.1111/j.1558-5646.2009.00790.x; Lynch VJ, 2009, EVOLUTION, V63, P2457, DOI 10.1111/j.1558-5646.2009.00733.x; Maddison W.P., 2011, MESQUITE MODULAR SYS; Maddison WP, 2007, SYSTEMATIC BIOL, V56, P701, DOI 10.1080/10635150701607033; MADDISON WP, 1990, EVOLUTION, V44, P539, DOI 10.1111/j.1558-5646.1990.tb05937.x; Mell R., 1929, GRUNDZUGE OKOLOGIE C; Mendez-de la Cruz FR, 1998, HERPETOLOGICA, V54, P521; Midford P. E., 2010, PDAP PACKAGE MESQUIT; NEILL WT, 1964, AM NAT, V98, P35, DOI 10.1086/282299; Oufiero CE, 2011, EVOLUTION, V65, P3590, DOI 10.1111/j.1558-5646.2011.01405.x; PACKARD GC, 1977, BIOL REV, V52, P71, DOI 10.1111/j.1469-185X.1977.tb01346.x; Pagel M, 1999, SYST BIOL, V48, P612, DOI 10.1080/106351599260184; Paradis E, 2004, BIOINFORMATICS, V20, P289, DOI 10.1093/bioinformatics/btg412; Parker SL, 2007, OECOLOGIA, V151, P218, DOI 10.1007/s00442-006-0583-0; Parker SL, 2006, PHYSIOL BIOCHEM ZOOL, V79, P581, DOI 10.1086/502812; Pinheiro J, 2012, NLME LINEAR NONLINEA, V3, P1; Qualls CP, 1999, BIOL J LINN SOC, V67, P353, DOI 10.1111/j.1095-8312.1999.tb01939.x; Qualls CP, 1998, J EVOLUTION BIOL, V11, P63, DOI 10.1046/j.1420-9101.1998.11010063.x; Quintero I, 2013, GLOBAL ECOL BIOGEOGR, V22, P422, DOI 10.1111/geb.12001; R Core Team, 2012, R LANG ENV STAT COMP; Revell LJ, 2012, METHODS ECOL EVOL, V3, P217, DOI 10.1111/j.2041-210X.2011.00169.x; Rodriguez-Diaz T, 2012, J EVOLUTION BIOL, V25, P1877, DOI 10.1111/j.1420-9101.2012.02575.x; Schulte JA, 2000, BIOL J LINN SOC, V69, P75, DOI 10.1006/bijl.1999.0346; Schulte JA, 2010, BIOL LETTERS, V6, P216, DOI 10.1098/rsbl.2009.0707; Sergeev A. M., 1940, MOSCOW SOC NAT, V1, P1; Shine R, 2004, EVOLUTION, V58, P1809; Shine R, 2003, BIOL J LINN SOC, V78, P325, DOI 10.1046/j.1095-8312.2003.00140.x; SHINE R, 1995, AM NAT, V145, P809, DOI 10.1086/285769; Shine R, 2002, AM NAT, V160, P582, DOI 10.1086/342815; Shine R, 1999, HERPETOLOGICA, V55, P538; SHINE R, 1983, OECOLOGIA, V57, P397, DOI 10.1007/BF00377186; SHINE R, 1978, OECOLOGIA, V33, P261, DOI 10.1007/BF00348112; SHINE R, 1979, AM NAT, V113, P905, DOI 10.1086/283444; SHINE R, 1987, COPEIA, P551, DOI 10.2307/1445650; Shine R., 1985, BIOL REPTILIA, V15, P607; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; Sites JW, 2011, ANNU REV ECOL EVOL S, V42, P227, DOI 10.1146/annurev-ecolsys-102710-145051; SITES JW, 1992, B AM MUS NAT HIST, P1; SMITH HM, 1995, HDB LIZARDS LIZARDS; Stebbins R. C, 2003, FIELD GUIDE W REPTIL; Stewart JR, 2000, COMP BIOCHEM PHYS A, V127, P411, DOI 10.1016/S1095-6433(00)00273-7; STEWART JR, 1988, COPEIA, P839, DOI 10.2307/1445706; SUGIURA N, 1978, COMMUN STAT A-THEOR, V7, P13, DOI 10.1080/03610927808827599; Surget-Groba Y, 2006, BIOL J LINN SOC, V87, P1, DOI 10.1111/j.1095-8312.2006.00552.x; Surget-Groba Y, 2001, MOL PHYLOGENET EVOL, V18, P449, DOI 10.1006/mpev.2000.0896; Thompson MB, 2006, J COMP PHYSIOL B, V176, P179, DOI 10.1007/s00360-005-0048-5; Thompson MB, 2006, HERPETOL MONOGR, V20, P129, DOI 10.1655/0733-1347(2007)20[129:EOVIRI]2.0.CO;2; Tinkle D.W, 1977, Miscellaneous Publs Mus Zool Univ Michigan, VNo. 154, P1; VANBERKUM FH, 1988, AM NAT, V132, P327, DOI 10.1086/284856; Vitt L. J., 2009, HERPETOLOGY 3 EDITIO; Webb JK, 2006, EVOLUTION, V60, P115, DOI 10.1554/05-460.1; Weekes H. C., 1935, Proceedings of the Zoological Society of London, P625; Wiens J. J., 2013, EVOLUTION IN PRESS; Wiens JJ, 2004, EVOLUTION, V58, P193, DOI 10.1111/j.0014-3820.2004.tb01586.x; Wiens JJ, 2010, MOL PHYLOGENET EVOL, V54, P150, DOI 10.1016/j.ympev.2009.09.008; Wright S, 1934, GENETICS, V19, P0506; Yaron Z., 1985, BIOL REPTILIA, P607; Zeh D. W., 2008, ANN NY ACAD SCI, V1133, P126; Zeh DW, 2000, BIOESSAYS, V22, P938, DOI 10.1002/1521-1878(200010)22:10<938::AID-BIES9>3.0.CO;2-9 96 30 30 4 124 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0014-3820 1558-5646 EVOLUTION Evolution SEP 2013 67 9 2614 2630 10.1111/evo.12130 17 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 210JM WOS:000323828500012 24033171 2019-02-21 J Jonason, PK; Jones, A; Lyons, M Jonason, Peter K.; Jones, Amy; Lyons, Minna Creatures of the night: Chronotypes and the Dark Triad traits PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Dark Triad; Narcissism; Psychopathy; Machiavellianism; Morningness:eveningness; Chronotype; Evolutionary psychology LIFE-HISTORY THEORY; NARCISSISTIC PERSONALITY-INVENTORY; TERM MATING STRATEGY; MORNINGNESS-EVENINGNESS; CIRCADIAN TYPOLOGY; GENDER-DIFFERENCES; COLLEGE-STUDENTS; SLEEP PATTERNS; HEXACO MODEL; SELF-CONTROL In this study (N = 263) we provide a basic test of a niche-specialization hypothesis of the Dark Triad (i.e., narcissism, psychopathy, and Machiavellianism). We propose that in order to best enact a "cheater strategy" those high on the Dark Triad traits should have optimal cognitive performance and, thus, have a night-time chronotype. Such a disposition will take advantage of the low light, the limited monitoring, and the lessened cognitive processing of morning-type people. The Dark Triad composite was correlated with an eveningness disposition. This link worked through links with the "darker" aspects of the Dark Triad (i.e., Machiavellianism, secondary psychopathy, and exploitive narcissism); correlations that were invariant across the sexes. While we replicated sex differences in the Dark Triad, we failed to replicate sex differences in chronotype, suggesting eveningness may not be a sexually selected trait as some have argued but is a trait under natural selective pressures to enable effective exploitations of conspecifics by both sexes. (c) 2013 Elsevier Ltd. All rights reserved. [Jonason, Peter K.] Univ Western Sydney, Milperra, NSW 2214, Australia; [Jones, Amy; Lyons, Minna] Liverpool Hope Univ, Liverpool, Merseyside, England Jonason, PK (reprint author), Univ Western Sydney, Sch Social Sci & Psychol, Milperra, NSW 2214, Australia. p.jonason@uws.edu.au Ackerman RA, 2011, ASSESSMENT, V18, P67, DOI 10.1177/1073191110382845; Adan A, 2002, CHRONOBIOL INT, V19, P709, DOI 10.1081/CBI-120005390; Adan A, 2010, CHRONOBIOL INT, V27, P606, DOI 10.3109/07420521003663827; Caci H, 2004, EUR PSYCHIAT, V19, P79, DOI 10.1016/j.eurpsy.2003.09.007; Campbell D. J., 2007, PRIMATES PERSPECTIVE; Christie R, 1970, STUDIES MACHIAVELLIA; Cosmides L., 1992, ADAPTED MIND EVOLUTI, P163, DOI DOI 10.1098/RSTB.2006.1991; Cummins DD, 1999, EVOL HUM BEHAV, V20, P229, DOI 10.1016/S1090-5138(99)00008-2; Diaz-Morales JF, 2007, PERS INDIV DIFFER, V43, P769, DOI 10.1016/j.paid.2007.02.002; Digdon N, 2008, CHRONOBIOL INT, V25, P1029, DOI 10.1080/07420520802553671; Falkenbach D, 2007, ASSESSMENT, V14, P341, DOI 10.1177/1073191107305612; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Fleagle J. G., 1999, PRIMATE EVOLUTION AD; Gunawardane K., 2011, INTERDISCIPLINARY BI, V3, P1, DOI DOI 10.4051/IBC.2011.3.4.0013; Hicks BM, 2004, PSYCHOL ASSESSMENT, V16, P276, DOI 10.1037/1040-3590.16.3.276; HORNE J A, 1976, International Journal of Chronobiology, V4, P97; HORNE JA, 1980, ERGONOMICS, V23, P29, DOI 10.1080/00140138008924715; HUNTER JE, 1982, J PERS SOC PSYCHOL, V43, P1293, DOI 10.1037/0022-3514.43.6.1293; Hur YM, 1998, PERS INDIV DIFFER, V25, P917, DOI 10.1016/S0191-8869(98)00089-0; Hur YM, 2007, J SLEEP RES, V16, P17, DOI 10.1111/j.1365-2869.2007.00562.x; Jonason PK, 2013, PERS INDIV DIFFER, V54, P572, DOI 10.1016/j.paid.2012.11.009; Jonason PK, 2012, PERS INDIV DIFFER, V53, P935, DOI 10.1016/j.paid.2012.07.010; Jonason PK, 2012, EVOL PSYCHOL-US, V10, P400, DOI 10.1177/147470491201000303; Jonason PK, 2012, REV GEN PSYCHOL, V16, P192, DOI 10.1037/a0027914; Jonason PK, 2012, PERS INDIV DIFFER, V52, P521, DOI 10.1016/j.paid.2011.11.023; Jonason PK, 2011, PERS INDIV DIFFER, V51, P759, DOI 10.1016/j.paid.2011.06.025; Jonason PK, 2010, HUM NATURE-INT BIOS, V21, P428, DOI 10.1007/s12110-010-9102-4; Jonason PK, 2010, PERS INDIV DIFFER, V49, P611, DOI 10.1016/j.paid.2010.05.031; Jonason PK, 2010, PSYCHOL ASSESSMENT, V22, P420, DOI 10.1037/a0019265; Jonason PK, 2010, PERS INDIV DIFFER, V48, P373, DOI 10.1016/j.paid.2009.11.003; Jonason PK, 2009, EUR J PERSONALITY, V23, P5, DOI 10.1002/per.698; Jonason PK, 2010, INDIVIDUAL DIFFERENC, V8, P111; Jones DN, 2011, PERS INDIV DIFFER, V51, P679, DOI 10.1016/j.paid.2011.04.011; Kanazawa S, 2009, PERS INDIV DIFFER, V47, P685, DOI 10.1016/j.paid.2009.05.021; Killgore WDS, 2007, PSYCHOL REP, V100, P613, DOI 10.2466/PRO.100.3.613-626; Klei L., 2005, CHRONOBIOL INT, V26, P510; LAUBICHLER W, 1986, Archiv fuer Kriminologie, V177, P176; Lee KB, 2005, PERS INDIV DIFFER, V38, P1571, DOI 10.1016/j.paid.2004.09.016; MATTHEWS G, 1988, EUR J PERSONALITY, V2, P277, DOI 10.1002/per.2410020405; McDonald M. M., 2011, PERSONALITY INDIVIDU, V52, P601; MEALEY L, 1995, BEHAV BRAIN SCI, V18, P523, DOI 10.1017/S0140525X00039595; Ollivier FJ, 2004, VET OPHTHALMOL, V7, P11, DOI 10.1111/j.1463-5224.2004.00318.x; Paulhus DL, 2002, J RES PERS, V36, P556, DOI 10.1016/S0092-6566(02)00505-6; PAULHUS DL, MANUAL SELF IN PRESS; Piffer D, 2010, MANKIND QUART, V50, P361; Randler C, 2008, PERS INDIV DIFFER, V45, P191, DOI 10.1016/j.paid.2008.03.007; Randler C, 2007, PERS INDIV DIFFER, V43, P1667, DOI 10.1016/j.paid.2007.05.004; Randler C, 2012, PSYCHONEUROENDOCRINO, V37, P1740, DOI 10.1016/j.psyneuen.2012.02.008; RASKIN R, 1988, J PERS SOC PSYCHOL, V54, P890, DOI 10.1037//0022-3514.54.5.890; Rauthmann JF, 2012, SOC PSYCHOL PERS SCI, V3, P487, DOI 10.1177/1948550611427608; REINBERG A, 1978, ARCH SEX BEHAV, V7, P13, DOI 10.1007/BF01541895; Roberts RD, 1999, PERS INDIV DIFFER, V27, P1123, DOI 10.1016/S0191-8869(99)00054-9; ROSBASH M, 1989, NEURON, V3, P387, DOI 10.1016/0896-6273(89)90199-2; Russo P. M., 2012, CHRONOBIOL INT, V29, P1; Stroebel Armin M, 2010, J Circadian Rhythms, V8, P10, DOI 10.1186/1740-3391-8-10; TANKOVA I, 1994, PERS INDIV DIFFER, V16, P671, DOI 10.1016/0191-8869(94)90209-7; Tonetti L, 2008, CHRONOBIOL INT, V25, P745, DOI 10.1080/07420520802394191; Tonetti L, 2009, CHRONOBIOL INT, V26, P337, DOI 10.1080/07420520902750995; Tsai LL, 2004, J PSYCHOSOM RES, V56, P231, DOI 10.1016/S0022-3999(03)00507-5; Tsaousis I, 2010, EUR J PERSONALITY, V24, P356, DOI 10.1002/per.754; Vernon PA, 2008, PERS INDIV DIFFER, V44, P445, DOI 10.1016/j.paid.2007.09.007; Vollmer C, 2012, PERS INDIV DIFFER, V52, P738, DOI 10.1016/j.paid.2012.01.001 62 53 54 1 65 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2013 55 5 538 541 10.1016/j.paid.2013.05.001 4 Psychology, Social Psychology 191JZ WOS:000322410500016 2019-02-21 J Dillon, HM; Adair, LE; Wang, Z; Johnson, Z Dillon, Haley Moss; Adair, Lora Elizabeth; Wang, Zhe; Johnson, Zoe Slow and steady wins the race: Life history, mate value, and mate settling PERSONALITY AND INDIVIDUAL DIFFERENCES English Article Life history strategy; Mate value; Mate Value Inventory; r/K selection PHYSICAL ATTRACTIVENESS; STRUCTURAL RELATIONS; CHOICE DECISIONS; K-FACTOR; STRATEGY; SELECTION; PREFERENCES; MORTALITY; EVOLUTION; BRAIN Life history theory explains how individuals decide to invest their limited resources, which involves several trade-offs. Particularly relevant to the current work, individuals can choose to invest in current or delayed reproduction (a slow life history strategy), which implicates a trade-off between the quantity and the quality of one's offspring. Choosing to delay reproduction allows for increased self-investment, and previous research has demonstrated that traits requiring self-investment are related to higher mate value. As such, the current study hypothesizes that slow life history strategy will predict high personal mate value and high levels of partner mate-value within heterosexual partnerships. Similarly, those with a slow life history strategy should display fewer tendencies toward mate-settling. The current work employs both subjective and objective measures of mate value within mateships to investigate these hypothesized relationships. As hypothesized, significant positive relationships among life history and mate value were detected, suggesting that a slower life history strategy corresponds to high ratings of mate value for both self and partner. Also, life history strategy is a significant predictor of subjective, objective, and Mate Value Inventory ratings of partner and self. Further implications and potential future works are discussed. (C) 2013 Elsevier Ltd. All rights reserved. [Dillon, Haley Moss; Adair, Lora Elizabeth; Wang, Zhe] Kansas State Univ, Dept Psychol, Manhattan, KS 66506 USA; [Johnson, Zoe] SUNY Coll Purchase, Dept Psychol, Purchase, NY 10577 USA Dillon, HM (reprint author), Kansas State Univ, Dept Psychol, Bluemont Hall, Manhattan, KS 66506 USA. hmdillon@ksu.edu Aarssen L. W., 2006, EVOLUTIONARY PSYCHOL, V4, P290, DOI DOI 10.1177/147470490600400125; Buss D. M., 2002, SAMFUNDSOKONOMEN, V4, P47; Buss DM, 1997, J PERS SOC PSYCHOL, V72, P346, DOI 10.1037/0022-3514.72.2.346; BUSS DM, 1986, J PERS SOC PSYCHOL, V50, P559, DOI 10.1037/0022-3514.50.3.559; BUSS DM, 1985, AM SCI, V73, P47; Calwell JC, 2002, J POPULATION RES, V19, P1; Daly M., 2001, S MOTIVATION, V47, P1; Figueredo AJ, 2005, PERS INDIV DIFFER, V39, P1349, DOI 10.1016/j.paid.2005.06.009; Figueredo AJ, 2004, SOC BIOL, V51, P121; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; Figueredo AJ, 2009, HUM NATURE-INT BIOS, V20, P317, DOI 10.1007/s12110-009-9068-2; FOWLER CW, 1981, ECOLOGY, V62, P602, DOI 10.2307/1937727; Gallup GG, 2010, REV GEN PSYCHOL, V14, P240, DOI 10.1037/a0020451; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Johnston VS, 2006, TRENDS COGN SCI, V10, P9, DOI 10.1016/j.tics.2005.11.003; Kaplan H. S., 2004, LIFE HIST THEO UNPUB; Kirsner BR, 2009, EVOL PSYCHOL-US, V7, P374; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Kruger DJ, 2006, HUM NATURE-INT BIOS, V17, P74, DOI 10.1007/s12110-006-1021-z; Leigh SR, 2004, AM J PRIMATOL, V62, P139, DOI 10.1002/ajp.20012; MAC ARTHUR ROBERT H., 1967; Martin SP, 2000, DEMOGRAPHY, V37, P523, DOI 10.2307/2648078; Mills M., 2011, MEN ARE RATED LESS F; Montoya RM, 2008, PERS SOC PSYCHOL B, V34, P1315, DOI 10.1177/0146167208320387; Pawlowski B, 1999, P ROY SOC B-BIOL SCI, V266, P281, DOI 10.1098/rspb.1999.0634; Penke L, 2007, MATING INTELLIGENCE, P37; Quinlan RJ, 2007, P R SOC B, V274, P121, DOI 10.1098/rspb.2006.3690; ROFF DA, 2002, LIFE HIST EVOLUTION; Shackelford TK, 2005, PERS INDIV DIFFER, V39, P447, DOI 10.1016/j.paid.2005.01.023; Thornhill R, 1999, TRENDS COGN SCI, V3, P452, DOI 10.1016/S1364-6613(99)01403-5; TOOBY J, 1990, J PERS, V58, P17, DOI 10.1111/j.1467-6494.1990.tb00907.x; WHITE GL, 1980, J PERS SOC PSYCHOL, V39, P660, DOI 10.1037//0022-3514.39.4.660; WILBUR HM, 1974, AM NAT, V108, P805, DOI 10.1086/282956 34 4 5 1 36 PERGAMON-ELSEVIER SCIENCE LTD OXFORD THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND 0191-8869 PERS INDIV DIFFER Pers. Individ. Differ. SEP 2013 55 5 612 618 10.1016/j.paid.2013.05.015 7 Psychology, Social Psychology 191JZ WOS:000322410500029 2019-02-21 J Baattrup-Pedersen, A; Riis, T; Larsen, SE Baattrup-Pedersen, A.; Riis, T.; Larsen, S. E. CATCHMENT CHARACTERISTICS AND PLANT RECRUITMENT FROM SEDIMENT IN STREAM AND MEADOW HABITATS RIVER RESEARCH AND APPLICATIONS English Article hydrochory; vegetation; land use; restoration REGENERATIVE STRATEGIES; RIVERINE WETLAND; PROPAGULE BANK; GERMINATION; DISPERSAL; RESTORATION; CONNECTIVITY; MACROPHYTES; HYDROCHORY; DEPOSITION Streams and rivers constitute a dense network with a large interface to the surrounding landscape and are thus highly susceptible to anthropogenic pressures related to land-use activities in adjacent riparian and upland areas. In the present study, we investigated the influence of catchment characteristics on potential propagule and species recruitment from sediment in lowland stream ecosystems. We tested the following hypotheses: (1) catchment characteristics affect species recruitment from stream sediment in both stream and riparian habitats and (2) recruitment of species associated with undisturbed fen-meadow habitats is higher in places with natural vegetation in the riparian zones. A large number of wetland species emerged from the stream sediment and sediment recruitment and therefore can act as an important dispersal corridor for common species in stream ecosystems. The recruited propagules were dominated by terrestrial species, but amphibious and aquatic species also appeared, particularly in the artificial stream channels. These included among others species within the genera Ranunculus sp., Callitriche sp. and Potamogeton sp. The large between-site differences in land-use characteristics in the riparian zones of the studied stream reaches, both locally and along upstream reaches, were not reflected in species recruitment from the stream sediments. Thus, most recruited species were common and widely distributed, and they were dominated by species with ruderal and competitive life history strategies, whereas only few species associated with fen-meadow vegetation were recruited. From these findings, we infer not only that hydrochorous dispersal of species can be a potential efficient dispersal vector in agricultural landscapes but also that limitations can exist as to which species can be recruited. We suggest that further studies are performed to elucidate this issue further. Copyright (c) 2012 John Wiley & Sons, Ltd. [Baattrup-Pedersen, A.; Larsen, S. E.] Aarhus Univ, DK-8600 Silkeborg, Denmark; [Riis, T.] Aarhus Univ, Aarhus C, Denmark Baattrup-Pedersen, A (reprint author), Aarhus Univ, Vejlsovej 25,POB 314, DK-8600 Silkeborg, Denmark. abp@dmu.dk Riis, Tenna/K-8346-2013 Riis, Tenna/0000-0003-2501-4444; Larsen, Soren Erik/0000-0001-8428-2065 Aarhus University Research Foundation; European Union 7th Framework Project REFRESH [244121]; Danish Strategic Research Foundation project MONITECH [104-08-0050] This research was supported by the Aarhus University Research Foundation to Annette Baattrup-Pedersen and Tenna Riis and by the European Union 7th Framework Project REFRESH under contract no. 244121 and the Danish Strategic Research Foundation project MONITECH under contract no. 104-08-0050 to Annette Baattrup-Pedersen. We thank Anne Dorthe Willumsen, Birgitte Tagesen and Henrik Stenholt for technical assistance in the field, Tinna Christensen for figure layout and Anne Mette Poulsen for manuscript editing. BASKIN CC, 1993, ACTA OECOL, V14, P693; Baskin CC, 2000, AQUAT BOT, V67, P109, DOI 10.1016/S0304-3770(00)00085-1; Baskin CC, 1996, WETLANDS, V16, P84, DOI 10.1007/BF03160648; Boeger MRT, 2003, AQUAT BOT, V75, P123, DOI 10.1016/S0304-3770(02)00174-2; Boetdeltje G, 2003, AQUAT BOT, V77, P53; Cellot B, 1998, J VEG SCI, V9, P631, DOI 10.2307/3237281; Combroux I, 2001, ARCH HYDROBIOL, V152, P215; Combroux ICS, 2002, WETLANDS, V22, P234, DOI 10.1672/0277-5212(2002)022[0234:PRSAAM]2.0.CO;2; DFFE, 2008, ENK; Dybkjaer J, 2011, J ENVIRON QUAL, V41, P348; Elosegi A, 2010, HYDROBIOLOGIA, V657, P199, DOI 10.1007/s10750-009-0083-4; Engstrom J, 2009, J APPL ECOL, V46, P397, DOI 10.1111/j.1365-2664.2009.01612.x; Gurnell A, 2008, J ECOL, V96, P553, DOI 10.1111/j.1365-2745.2008.01358.x; Gurnell A, 2007, EARTH SURF PROC LAND, V32, P1257, DOI 10.1002/esp.1554; HASLAM SM, 1978, RIVER PLANTS; Honnay O, 2005, OIKOS, V108, P427, DOI 10.1111/j.0030-1299.2005.13569.x; Jansson R, 2000, ECOL APPL, V10, P203; Klimkowska A, 2010, PLANT ECOL, V206, P59, DOI 10.1007/s11258-009-9624-1; Kondolf GM, 2006, ECOL SOC, V11; Leck MA, 1996, B TORREY BOT CLUB, V123, P48, DOI 10.2307/2996306; Lorenzen B, 2000, AQUAT BOT, V66, P169, DOI 10.1016/S0304-3770(99)00076-5; McCune B, 1999, PC ORD WINDOWS 4 01; Merritt DM, 2002, ECOL APPL, V12, P1071, DOI 10.1890/1051-0761(2002)012[1071:PGHARH]2.0.CO;2; Mollard FPO, 2008, FLORA, V203, P548, DOI 10.1016/j.flora.2007.10.003; Mouw JEB, 2003, J BIOGEOGR, V30, P87, DOI 10.1046/j.1365-2699.2003.00775.x; Nielsen K, 2000, AREAL INFORM SYSTEME; Nilsson C, 2010, BIOL REV, V85, P837, DOI 10.1111/j.1469-185X.2010.00129.x; Pollux BJA, 2007, MOL ECOL, V16, P313, DOI 10.1111/j.1365-294X.2006.03146.x; Riis T, 2006, FRESHWATER BIOL, V51, P274, DOI 10.1111/j.1365-2427.2005.01496.x; Riis T, 2011, AQUAT BOT, V94, P188, DOI 10.1016/j.aquabot.2011.02.004; Riis T, 2001, FRESHWATER BIOL, V46, P269, DOI 10.1046/j.1365-2427.2001.00656.x; Sun SC, 2001, ECOL RES, V16, P263, DOI 10.1046/j.1440-1703.2001.00395.x; Ter Braak C. J. F., 1998, CANOCO REFERENCE MAN; Vogt K, 2006, BASIC APPL ECOL, V7, P422, DOI 10.1016/j.baae.2006.05.007; Ward JV, 1999, REGUL RIVER, V15, P125, DOI 10.1002/(SICI)1099-1646(199901/06)15:1/3<125::AID-RRR523>3.0.CO;2-E 35 5 5 1 38 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1535-1459 RIVER RES APPL River Res. Appl. SEP 2013 29 7 855 863 10.1002/rra.2573 9 Environmental Sciences; Water Resources Environmental Sciences & Ecology; Water Resources 214CT WOS:000324109000004 2019-02-21 J Hansen, IJ; Johnson, CJ; Cluff, HD Hansen, Ingebjorg Jean; Johnson, Chris J.; Cluff, H. Dean Synchronicity of movement paths of barren-ground caribou and tundra wolves POLAR BIOLOGY English Article Bearing analysis; Canis lupus; Correlated random walk; Movement path; Rangifer tarandus groenlandicus AREA-RESTRICTED SEARCH; WOLF PREDATION RISK; HABITAT SELECTION; FRACTAL ANALYSIS; ANIMAL MOVEMENT; NATIONAL-PARK; FIRE HISTORY; KILL SITES; PREY; ECOLOGY Movement patterns of highly mobile animals can reveal life history strategies and ecological relationships. We hypothesized that wolves (Canis lupus) would display similar movement patterns as their prey, barren-ground caribou (Rangifer tarandus groenlandicus), and that movements of the two species would co-vary with season. We tested for interspecific movement dynamics using animal locations from wolves and caribou monitored concurrently from mid-October to June, across the Northwest Territories and Nunavut, Canada. We used a correlated random walk as a null model to test for pattern in movements and the bearing procedure to detect whether movements were consistently directional. There was a statistical difference between the movements of caribou and wolves (F (1,9) = 13.232, P = 0.005), when compared to a correlated random walk, and a significant interaction effect between season and species (F (1,9) = 6.815, P = 0.028). During winter, the movements of caribou were strongly correlated with the 80A degrees-90A degrees ( r = 0.859, SE = 0.065) and 270A degrees-280A degrees ( r = 0.875, SE = 0.059) bearing classes suggesting an east-west movement gradient. Wolf movements during winter showed large variation in direction, but were generally east to west. Peak mean correlation for caribou movements during spring was distinct at 40A degrees-50A degrees ( r = 0.978, SE = 0.006) revealing movement to the north-east calving grounds. During spring, wolf movements correlated with the 80A degrees-90A degrees ( r = 0.861, SE = 0.043) and 270A degrees-280A degrees ( r = 0.850, SE = 0.064) bearing class. Directionality of movement suggested that during winter, caribou and wolves had a similar distribution at the large spatial scales we tested. During spring migration, however, caribou and wolves employed asynchronous movement strategies. Our findings demonstrate the utility of the correlated random walk and bearing procedure for quantifying the movement patterns of co-occurring species. [Hansen, Ingebjorg Jean] Univ No British Columbia, Nat Resources & Environm Studies Grad Program, Prince George, BC V2N 4Z9, Canada; [Johnson, Chris J.] Univ No British Columbia, Ecosyst Sci & Management Program, Prince George, BC V2N 4Z9, Canada; [Cluff, H. Dean] Govt Northwest Terr, Dept Environm & Nat Resources, Yellowknife, NT X1A 2P9, Canada Johnson, CJ (reprint author), Univ No British Columbia, Ecosyst Sci & Management Program, 3333 Univ Way, Prince George, BC V2N 4Z9, Canada. hanseni@unbc.ca; johnsoch@unbc.ca; dean_cluff@gov.nt.ca Natural Sciences and Engineering Research Council; University of Northern British Columbia; Government of the Northwest Territories; West Kitikmeot Slave Study Society We acknowledge support of the Natural Sciences and Engineering Research Council, University of Northern British Columbia, and the Government of the Northwest Territories. Collaring of caribou and wolves was funded by the West Kitikmeot Slave Study Society. We thank K. Poole, C. Demars, and one anonymous reviewer for constructive comments that improved the paper. Adamczewski J, 2009, DECLINE BATHUR UNPUB; Argos, 2008, ARG US MAN; Arseneault D, 1997, J APPL ECOL, V34, P65, DOI 10.2307/2404848; Bailey H, 2006, J ANIM ECOL, V75, P456, DOI 10.1111/j.1365-2656.2006.01066.x; Bailleul F, 2010, ECOL MODEL, V221, P1665, DOI 10.1016/j.ecolmodel.2010.04.001; Barrier TA, 2012, ECOSCIENCE, V19, P177, DOI 10.2980/19-2-3508; Bergman CM, 2000, OECOLOGIA, V123, P364, DOI 10.1007/s004420051023; Bergman EJ, 2006, ECOL APPL, V16, P273, DOI 10.1890/04-1532; Briand Y, 2009, ECOSCIENCE, V16, P330, DOI 10.2980/16-3-3248; Brooks CJ, 2008, ANIM BEHAV, V76, P277, DOI 10.1016/j.anbehav.2008.02.005; Brown JS, 1999, J MAMMAL, V80, P385, DOI 10.2307/1383287; Cagnacci F, 2010, PHILOS T R SOC B, V365, P2157, DOI 10.1098/rstb.2010.0107; Cluff H. D., 2002, MOVEMENTS HABITAT US; Creel S, 2005, ECOLOGY, V86, P3387, DOI 10.1890/05-0032; Creel S, 2007, SCIENCE, V315, P960, DOI 10.1126/science.1135918; Cuicci P, 2003, ECOGRAPHY, V26, P223; DAUPHINE TC, 1974, J WILDLIFE MANAGE, V38, P54, DOI 10.2307/3800200; *ENV CAN, 2006, CAN CLIM NORM AV 197; Fauchald P, 2003, ECOLOGY, V84, P282, DOI 10.1890/0012-9658(2003)084[0282:UFPTIT]2.0.CO;2; Fortin D, 2005, ECOLOGY, V86, P1320, DOI 10.1890/04-0953; Fournier B, 1998, 121 GNWT; Frame PF, 2004, ARCTIC, V57, P196; Frost CJ, 2009, ECOL MODEL, V220, P2481, DOI 10.1016/j.ecolmodel.2009.06.028; Fryxell JM, 2008, P NATL ACAD SCI USA, V105, P19114, DOI 10.1073/pnas.0801737105; Gervasi V, 2013, ECOL APPL, V23, P1722, DOI 10.1890/12-1615.1; Gunn A., 2001, SEASONAL MOVEMENTS S; Gunn A, 2010, ENV TRENDS RAN UNPUB; Gunn A, 2005, 164 GOV NW TERR; Gunn A, 2008, GEOSTATISTICAL UNPUB; Hayes RD, 2000, CAN J ZOOL, V78, P36, DOI 10.1139/cjz-78-1-36; HEARD DC, 1992, CAN J ZOOL, V70, P1504, DOI 10.1139/z92-207; Hebblewhite M, 2007, OECOLOGIA, V152, P377, DOI 10.1007/s00442-007-0661-y; Hebblewhite M, 2010, PHILOS T R SOC B, V365, P2303, DOI 10.1098/rstb.2010.0087; Johnson CJ, 2002, J ANIM ECOL, V71, P225, DOI 10.1046/j.1365-2656.2002.00595.x; Johnson CJ, 2006, J ANIM ECOL, V75, P303, DOI 10.1111/j.1365-2656.2006.01045.x; Johnson CJ, 2002, ECOL APPL, V12, P1840, DOI 10.1890/1051-0761(2002)012[1840:AMBATU]2.0.CO;2; Kareiva PM, 1983, OECOLOGIA, V56, P164; Kittle AM, 2008, OECOLOGIA, V157, P163, DOI 10.1007/s00442-008-1051-9; Kunkel K, 2001, J WILDLIFE MANAGE, V65, P520, DOI 10.2307/3803105; Laundre JW, 2010, ECOLOGY, V91, P2995, DOI 10.1890/08-2345.1; Marell A, 2002, CAN J ZOOL, V80, P854, DOI [10.1139/z02-061, 10.1139/Z02-061]; Mattson IJK, 2009, 185 GNWT; McLoughlin PD, 2004, J MAMMAL, V85, P576, DOI 10.1644/BJK-119; MCNAY RS, 1994, J WILDLIFE MANAGE, V58, P422, DOI 10.2307/3809312; McPhee HM, 2012, CAN J ZOOL, V90, P555, DOI 10.1139/Z2012-021; MESSIER F, 1985, CAN J ZOOL, V63, P1068, DOI 10.1139/z85-160; Mitchell WA, 2009, OIKOS, V118, P1073, DOI 10.1111/j.1600-0706.2009.17204.x; Morales JM, 2002, ECOLOGY, V83, P2240; MUSIANI M, 2003, THESIS U CALGARY CAL; Nams VO, 2006, ANIM BEHAV, V72, P1197, DOI 10.1016/j.anbehav.2006.04.005; Nams VO, 2004, CAN J ZOOL, V82, P1738, DOI 10.1139/Z04-167; Nams VO, 2006, FRACTAL 5 USERS GUID; Patterson TA, 2008, TRENDS ECOL EVOL, V23, P87, DOI 10.1016/j.tree.2007.10.009; Pinard V., 2011, J WILDLIFE MANAGE, V76, P189; Post E, 2003, CAN J ZOOL, V81, P1709, DOI 10.1139/Z03-172; Rosenberg MS, 2000, GEOGR ANAL, V32, P267, DOI 10.1111/j.1538-4632.2000.tb00428.x; ROSENBERG MS, 2001, PASSAGE PATTERN ANAL; Russell D.E., 1993, RANGIFER; Sand H, 2012, OIKOS, V121, P1454, DOI 10.1111/j.1600-0706.2012.20082.x; Schreier AL, 2010, ANIM BEHAV, V80, P75, DOI 10.1016/j.anbehav.2010.04.002; SIH A, 1984, AM NAT, V123, P143, DOI 10.1086/284193; Turchin P, 1996, ECOLOGY, V77, P2086, DOI 10.2307/2265702; Vincent C, 2002, MAR MAMMAL SCI, V18, P156, DOI 10.1111/j.1748-7692.2002.tb01025.x; Viswanathan GM, 1999, NATURE, V401, P911, DOI 10.1038/44831; Walton LR, 2001, J MAMMAL, V82, P867, DOI 10.1644/1545-1542(2001)082<0867:MPOBGW>2.0.CO;2; Whittington J, 2004, ECOL SOC, V9; Whittington J, 2011, J APPL ECOL, V48, P1535, DOI 10.1111/j.1365-2664.2011.02043.x; Williamson Ehlers E, 2012, THESIS U NO BRIT COL; WITH KA, 1994, LANDSCAPE ECOL, V9, P25, DOI 10.1007/BF00135076; Zollner PA, 1999, ECOLOGY, V80, P1019, DOI 10.1890/0012-9658(1999)080[1019:SSFLLI]2.0.CO;2 70 9 9 1 89 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0722-4060 POLAR BIOL Polar Biol. SEP 2013 36 9 1363 1371 10.1007/s00300-013-1356-y 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology 197VI WOS:000322879600011 2019-02-21 J Spindelbock, JP; Cook, Z; Daws, MI; Heegaard, E; Maren, IE; Vandvik, V Spindelbock, Joachim P.; Cook, Zoe; Daws, Matthew I.; Heegaard, Einar; Maren, Inger E.; Vandvik, Vigdis Conditional cold avoidance drives between-population variation in germination behaviour in Calluna vulgaris ANNALS OF BOTANY English Article Calluna vulgaris; germination; temperature; frost; conditional; cold avoidance; incubation; gradient; heathland; cold stratification PHACELIA-SECUNDA HYDROPHYLLACEAE; BIRCH BETULA-PAPYRIFERA; SEED-GERMINATION; L HULL; ARABIDOPSIS-THALIANA; WESTERN-AUSTRALIA; HEATHLAND PLANTS; CENTRAL CHILE; FROST; TEMPERATURE Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species climatic range. Incubation treatments varied from 10 to 25 C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. [Spindelbock, Joachim P.] Sogn Og Fjordane Univ Coll, Fac Sci & Engn, N-6851 Sogndal, Norway; [Spindelbock, Joachim P.; Heegaard, Einar; Vandvik, Vigdis] Univ Bergen, Dept Biol, N-5007 Bergen, Norway; [Cook, Zoe; Daws, Matthew I.] Royal Bot Gardens, Seed Conservat Dept, Ardingly RH17 6TN, W Sussex, England; [Heegaard, Einar] Univ Bergen, Dept Geog, N-5007 Bergen, Norway; [Maren, Inger E.] Norwegian Forest & Landscape Inst, N-5244 Fana, Norway Spindelbock, JP (reprint author), Sogn Og Fjordane Univ Coll, Fac Sci & Engn, POB 133, N-6851 Sogndal, Norway. joachim.spindelbock@hisf.no Maren, Inger/J-4870-2015; Vandvik, Vigdis/C-1924-2008 Maren, Inger/0000-0002-3964-9144; Vandvik, Vigdis/0000-0003-4651-4798; Daws, Matthew/0000-0002-9120-4724 Olaf Grolle Olsens Legat; Faculty of Mathematics and Natural Sciences at the University of Bergen, Norway The authors thank Alf Jacob Nilsen, Liv Nilsen, Unn Tveraabakk, Birte Topper and Liv Guri Velle for collecting seed material at the various sites in Norway. Catherine Rose Jenks provided important comments on the manuscript, and Eric Meineri was an indispensable source of discussion and mapping expertise. We thank two anonymous referees for their constructive and helpful feedback on this manuscript. This work was supported by the Olaf Grolle Olsens Legat and the Faculty of Mathematics and Natural Sciences at the University of Bergen, Norway. AITKEN SN, 2001, CONIFER COLD HARDINE, V1, P23; AVISSAR R, 1988, J APPL METEOROL, V27, P414, DOI 10.1175/1520-0450(1988)027<0414:MFSAWA>2.0.CO;2; Baruah AR, 2009, EUPHYTICA, V165, P459, DOI 10.1007/s10681-008-9753-y; Baskin C. C, 1998, SEEDS ECOLOGY BIOGEO; Baskin CC, 1979, BOT GAZZETTE, V47, P475; Bates D., 2012, LME4 LINEAR MIXED EF; BEIJERINCK W., 1940, Verhandelingen Akad. Wet., Amst., V38, P1; Bell DT, 1995, J VEG SCI, V6, P797, DOI 10.2307/3236393; Benowicz A, 2001, SILVAE GENET, V50, P7; BEVINGTON J, 1986, AM J BOT, V73, P564, DOI 10.2307/2444262; BILLINGS WD, 1968, BIOL REV, V43, P481, DOI 10.1111/j.1469-185X.1968.tb00968.x; Blodner C, 2007, PLANT CELL ENVIRON, V30, P165, DOI 10.1111/j.1365-3040.2006.01615.x; Brown NAC, 2003, S AFR J BOT, V69, P514, DOI 10.1016/S0254-6299(15)30289-1; Calvo L, 2002, ACTA OECOL, V23, P81, DOI 10.1016/S1146-609X(02)01137-2; Cavieres LA, 2000, PLANT ECOL, V149, P1, DOI 10.1023/A:1009802806674; Cavieres LA, 2001, J ECOL, V89, P31, DOI 10.1046/j.1365-2745.2001.00514.x; CHABOT BF, 1972, ECOL MONOGR, V42, P163, DOI 10.2307/1942262; Daws MI, 2007, SEED SCI RES, V17, P273, DOI 10.1017/S0960258507837755; Daws MI, 2002, FUNCT ECOL, V16, P258, DOI 10.1046/j.1365-2435.2002.00615.x; Fenner M, 2005, ECOLOGY SEEDS; FORGEARD F, 1990, ACTA OECOL, V11, P191; GIMINGHAM CH, 1960, J ECOL, V48, P455, DOI 10.2307/2257528; GRIME JP, 1981, J ECOL, V69, P1017, DOI 10.2307/2259651; Grimstad SO, 1985, AGR U NORWAY MELDING, V64, P11; Hawkins BJ, 2003, TREE PHYSIOL, V23, P1237, DOI 10.1093/treephys/23.18.1237; Hoyle GL, 2008, ANN BOT-LONDON, V102, P93, DOI 10.1093/aob/mcn062; Kaukoranta T, 2010, AGR FOOD SCI, V19, P144, DOI 10.2137/145960610791542352; Larcher W, 2003, PHYSL PLANT ECOLOGY; LAUGHLIN GP, 1987, AGR FOREST METEOROL, V40, P1, DOI 10.1016/0168-1923(87)90050-5; Lavorel S, 1987, THESIS U SCI TECHNIQ; MALLIK AU, 1983, VEGETATIO, V53, P45, DOI 10.1007/BF00039771; Marcante S, 2012, J VEG SCI, V23, P858, DOI 10.1111/j.1654-1103.2012.01411.x; Maren IE, 2010, PLANT ECOL, V207, P245, DOI 10.1007/s11258-009-9669-1; MEYER SE, 1989, AM J BOT, V76, P981, DOI 10.2307/2444519; MEYER SE, 1991, ECOLOGY, V72, P739, DOI 10.2307/2937214; MILLER GR, 1987, ARCTIC ALPINE RES, V19, P396, DOI 10.2307/1551404; Miller GR, 2001, J BIOGEOGR, V28, P1023, DOI 10.1046/j.1365-2699.2001.00604.x; Moles AT, 2003, J BIOGEOGR, V30, P105, DOI 10.1046/j.1365-2699.2003.00781.x; Mondoni A, 2008, SEED SCI RES, V18, P213, DOI 10.1017/S0960258508084997; Neuner G, 2008, BERICHTE NATURWISS S, P24; Nilsen LS, 2005, APPL VEG SCI, V8, P57, DOI 10.1658/1402-2001(2005)008[0057:ESOCVR]2.0.CO;2; Norden N, 2009, FUNCT ECOL, V23, P203, DOI 10.1111/j.1365-2435.2008.01477.x; Perez-Fernandez MA, 2000, ACTA OECOL, V21, P323, DOI 10.1016/S1146-609X(00)01084-5; PHILIPPI T, 1993, AM NAT, V142, P488, DOI 10.1086/285551; Pinheiro J, 2010, NLME LINEAR NONLINEA; PONS TL, 1989, ACTA OECOL-OEC PLANT, V10, P35; R Development Core Team, 2010, R LANG ENV STAT COMP; Rahimi M, 2007, INT J CLIMATOL, V27, P349, DOI 10.1002/joc.1405; Schmuths H, 2006, ANN BOT-LONDON, V97, P623, DOI 10.1093/aob/mcl012; Schutz W, 1997, OIKOS, V78, P420, DOI 10.2307/3545604; Tait A, 2003, J APPL METEOROL, V42, P193, DOI 10.1175/1520-0450(2003)042<0193:MFOUSD>2.0.CO;2; Thomas TH, 2002, PLANT GROWTH REGUL, V37, P23, DOI 10.1023/A:1020396112716; Vandvik V, 2005, J APPL ECOL, V42, P139, DOI 10.1111/j.1365-2664.2005.00982.x; Vera ML, 1997, PLANT ECOL, V133, P101, DOI 10.1023/A:1009729201384; Wagner I, 2008, ARCT ANTARCT ALP RES, V40, P233, DOI 10.1657/1523-0430(07-003)[WAGNER]2.0.CO;2; Wood SN, 2004, J AM STAT ASSOC, V99, P673, DOI 10.1198/016214504000000980 56 7 7 2 51 OXFORD UNIV PRESS OXFORD GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND 0305-7364 ANN BOT-LONDON Ann. Bot. SEP 2013 112 5 801 810 10.1093/aob/mct142 10 Plant Sciences Plant Sciences 206YP WOS:000323563200003 23884396 Bronze, Green Published 2019-02-21 J Fraser, DJ Fraser, Dylan J. The emerging synthesis of evolution with ecology in fisheries science CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES English Article LIFE-HISTORY EVOLUTION; SALMON SALMO-SALAR; ATLANTIC SALMON; RAPID EVOLUTION; LOCAL ADAPTATION; WILD POPULATIONS; REPRODUCTIVE SUCCESS; NATURAL MORTALITY; ENDANGERED SALMON; GENETIC-VARIATION Fisheries science is currently being transformed through a true integration of ecological and evolutionary perspectives. Many questions are emerging from the recognition that human-induced evolutionary change can elicit ecological change on short time scales, in some cases equal to or exceeding the changes brought on by classical ecological effects. For instance, to what extent does evolutionary change associated with size-selective harvesting, supplementation, captive breeding, aquaculture escapees, and related fisheries activities directly or indirectly affect species demography (persistence, productivity, or recovery), community structure, and ecosystem functioning? Under what conditions do feedbacks between evolution and ecology matter most for managing fisheries activities? Do such feedbacks generate predictable outcomes, and are they reversible? Although as yet, little consensus has been reached on the answers to these questions, it is clear that a synthesis of evolutionary and ecological perspectives holds great promise for improving and generating more biologically realistic modeling, monitoring, rebuilding, and management of fish populations, fish species, and aquatic ecosystems. Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada Fraser, DJ (reprint author), Concordia Univ, Dept Biol, Montreal, PQ H4B 1R6, Canada. dylan.fraser@concordia.ca Natural Sciences and Engineering Research Coucil of Canada (NSERC) I thank Anna Calvert, Jim Grant, Jeffrey Hutchings, and one anonymous reviewer for their comments on a previous version of this paper. Funding at the time of writing of this paper was provided by a Natural Sciences and Engineering Research Coucil of Canada (NSERC) Discovery Grant. Angers B, 2010, MOL ECOL, V19, P1283, DOI 10.1111/j.1365-294X.2010.04580.x; Araki H, 2007, SCIENCE, V318, P100, DOI 10.1126/science.1145621; Audzijonyte A, 2013, EVOL APPL, V6, P585, DOI 10.1111/eva.12044; Bailey JK, 2009, PHILOS T R SOC B, V364, P1607, DOI 10.1098/rstb.2008.0336; Barot S, 2004, ECOL APPL, V14, P1257, DOI 10.1890/03-5066; Baskett ML, 2013, CONSERV BIOL, V27, P83, DOI 10.1111/j.1523-1739.2012.01949.x; Bassar RD, 2013, AM NAT, V181, P25, DOI 10.1086/668590; Bassar RD, 2010, P NATL ACAD SCI USA, V107, P3616, DOI 10.1073/pnas.0908023107; Becks L, 2012, ECOL LETT, V15, P492, DOI 10.1111/j.1461-0248.2012.01763.x; Berejikian BA, 1996, CAN J FISH AQUAT SCI, V53, P2004, DOI 10.1139/cjfas-53-9-2004; Beverton R.J.H., 1957, FISH INVEST 2, V19, P5; Biro PA, 2008, P NATL ACAD SCI USA, V105, P2919, DOI 10.1073/pnas.0708159105; Bolnick DI, 2011, TRENDS ECOL EVOL, V26, P183, DOI 10.1016/j.tree.2011.01.009; Bowlby HD, 2011, ECOL APPL, V21, P3032, DOI 10.1890/10-2100.1; Browman HI, 2000, MAR ECOL PROG SER, V208, P299, DOI 10.3354/meps208299; Carlson SM, 2011, HEREDITY, V106, P438, DOI 10.1038/hdy.2010.163; Carlson SM, 2008, EVOL APPL, V1, P222, DOI 10.1111/j.1752-4571.2008.00025.x; Christie MR, 2012, P NATL ACAD SCI USA, V109, P238, DOI 10.1073/pnas.1111073109; Conover DO, 2006, J FISH BIOL, V69, P21, DOI 10.1111/j.1095-8649.2006.01274.x; Conover DO, 2009, P ROY SOC B-BIOL SCI, V276, P2015, DOI 10.1098/rspb.2009.0003; Conover DO, 2002, SCIENCE, V297, P94, DOI 10.1126/science.1074085; COSEWIC, 2006, COSEWIC ASS UPD STAT; Darimont CT, 2009, P NATL ACAD SCI USA, V106, P952, DOI 10.1073/pnas.0809235106; Debes P.V., 2013, HEREDITY, DOI [10.1038/hdy.2013.43. PMID:23652564., DOI 10.1038/HDY.2013.43.PMID:23652564]; Docker MF, 2003, CONSERV GENET, V4, P227, DOI 10.1023/A:1023355114612; Dunlop ES, 2009, EVOL APPL, V2, P371, DOI 10.1111/j.1752-4571.2009.00089.x; Dunlop ES, 2009, ECOL APPL, V19, P1815, DOI 10.1890/08-1404.1; Edelaar P, 2012, TRENDS ECOL EVOL, V27, P659, DOI 10.1016/j.tree.2012.07.009; Edeline E, 2007, P NATL ACAD SCI USA, V104, P15799, DOI 10.1073/pnas.0705908104; Ellner SP, 2011, ECOL LETT, V14, P603, DOI 10.1111/j.1461-0248.2011.01616.x; Elmer KR, 2011, TRENDS ECOL EVOL, V26, P298, DOI 10.1016/j.tree.2011.02.008; Enberg K, 2009, EVOL APPL, V2, P394, DOI 10.1111/j.1752-4571.2009.00077.x; Federenko A.Y., 1986, CAN TECH REP FISH AQ, P1479; FLEMING IA, 1993, ECOL APPL, V3, P230, DOI 10.2307/1941826; Fleming IA, 2000, P ROY SOC B-BIOL SCI, V267, P1517, DOI 10.1098/rspb.2000.1173; Ford JS, 2008, PLOS BIOL, V6, P411, DOI 10.1371/journal.pbio.0060033; Ford M, 2012, CONSERV LETT, V5, P450, DOI 10.1111/j.1755-263X.2012.00261.x; Franssen NR, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.2715; Fraser DJ, 2011, HEREDITY, V106, P404, DOI 10.1038/hdy.2010.167; Fraser DJ, 2010, CAN J FISH AQUAT SCI, V67, P1768, DOI 10.1139/F10-094; Fraser DJ, 2010, ECOL APPL, V20, P935, DOI 10.1890/09-0694.1; Fraser DJ, 2008, EVOL APPL, V1, P535, DOI 10.1111/j.1752-4571.2008.00036.x; Fraser DJ, 2008, EVOL APPL, V1, P501, DOI 10.1111/j.1752-4571.2008.00037.x; Fritts AL, 2007, CAN J FISH AQUAT SCI, V64, P813, DOI 10.1139/F07-057; Fussmann GF, 2007, FUNCT ECOL, V21, P465, DOI 10.1111/j.1365-2435.2007.01275.x; Fussmann GF, 2003, P ROY SOC B-BIOL SCI, V270, P1015, DOI 10.1098/rspb.2003.2335; Gislason D, 1999, CAN J FISH AQUAT SCI, V56, P2229, DOI 10.1139/cjfas-56-12-2229; GOEDEN GB, 1982, BIOL CONSERV, V22, P273, DOI 10.1016/0006-3207(82)90022-2; GROSS MR, 1991, ECOLOGY, V72, P1180, DOI 10.2307/1941091; Hall Robert O. Jr., 2007, P286, DOI 10.1017/CBO9780511611223.016; HALPERN BS, 2003, ECOL APPL, V13, P117, DOI DOI 10.1890/1051-0761(2003)013[; Hansen MM, 2012, MOL ECOL, V21, P1311, DOI 10.1111/j.1365-294X.2011.05463.x; Hard Jeffrey J., 2004, P315; Harmon LJ, 2009, NATURE, V458, P1167, DOI 10.1038/nature07974; Haugen TO, 2008, EVOL APPL, V1, P319, DOI 10.1111/j.1752-4571.2008.00031.x; Heath DD, 2003, SCIENCE, V299, P1738, DOI 10.1126/science.1079707; Hendry AP, 2011, EVOL APPL, V4, P159, DOI 10.1111/j.1752-4571.2010.00165.x; Hendry AP, 2004, EVOLUTION ILLUMINATE; Hilborn R, 2003, P NATL ACAD SCI USA, V100, P6564, DOI 10.1073/pnas.1037274100; Hilborn R., 1992, REV FISH BIOL FISHER, V2, P177, DOI DOI 10.1007/BF00042883; Hilborn R, 2008, B MAR SCI, V83, P95; Hilborn R, 2006, FISHERIES, V31, P554; Hindar K, 2006, ICES J MAR SCI, V63, P1234, DOI 10.1016/j.icesjms.2006.04.025; Houde ALS, 2011, EVOL APPL, V4, P634, DOI 10.1111/j.1752-4571.2011.00186.x; Houde ALS, 2010, CONSERV GENET, V11, P785, DOI 10.1007/s10592-009-9892-2; Huisman J, 2012, EVOLUTION, V66, P3444, DOI 10.1111/j.1558-5646.2012.01707.x; HUTCHINGS JA, 1994, CAN J FISH AQUAT SCI, V51, P2126, DOI 10.1139/f94-214; Hutchings JA, 2004, BIOSCIENCE, V54, P297, DOI 10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2; Hutchings JA, 2008, MOL ECOL, V17, P294, DOI 10.1111/j.1365-294X.2007.03485.x; Hutchings JA, 2009, EVOL APPL, V2, P324, DOI 10.1111/j.1752-4571.2009.00085.x; Hutchings JA, 2008, EVOL APPL, V1, P129, DOI 10.1111/j.1752-4571.2007.00009.x; ILES TD, 1982, SCIENCE, V215, P627, DOI 10.1126/science.215.4533.627; Jakobsdottir KB, 2011, EVOL APPL, V4, P562, DOI 10.1111/j.1752-4571.2010.00176.x; Jensen O, 2010, AQUACULT ENV INTERAC, V1, P71, DOI 10.3354/aei00008; Johnson DW, 2011, EVOL APPL, V4, P621, DOI 10.1111/j.1752-4571.2011.00185.x; Jones FC, 2012, NATURE, V484, P55, DOI 10.1038/nature10944; Jorgensen C, 2013, J SEA RES, V75, P8, DOI 10.1016/j.seares.2012.04.003; Jorgensen C, 2009, EVOL APPL, V2, P356, DOI 10.1111/j.1752-4571.2009.00075.x; Kendall NW, 2012, ECOL APPL, V22, P804, DOI 10.1890/11-1189.1; Kinnison MT, 2008, MOL ECOL, V17, P405, DOI 10.1111/j.1365-294X.2007.03495.x; Koskinen MT, 2002, NATURE, V419, P826, DOI 10.1038/nature01029; Kovach RP, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0053807; KRUEGER CC, 1981, CAN J FISH AQUAT SCI, V38, P1877, DOI 10.1139/f81-233; Kuparinen A, 2012, ENVIRON REV, V20, P135, DOI [10.1139/A2012-006, 10.1139/a2012-006]; Kuparinen A, 2012, P ROY SOC B-BIOL SCI, V279, P2571, DOI 10.1098/rspb.2012.0120; Laikre L, 2010, TRENDS ECOL EVOL, V25, P520, DOI 10.1016/j.tree.2010.06.013; Laugen AT, 2014, FISH FISH, V15, P65, DOI 10.1111/faf.12007; LAW R, 1989, EVOL ECOL, V3, P343, DOI 10.1007/BF02285264; Leopold A., 1953, ROUND RIVER; McGinnity P, 2003, P ROY SOC B-BIOL SCI, V270, P2443, DOI 10.1098/rspb.2003.2520; Miller MR, 2012, MOL ECOL, V21, P237, DOI 10.1111/j.1365-294X.2011.05305.x; Milot E, 2013, EVOL APPL, V6, P472, DOI 10.1111/eva.12028; Mollet FM, 2010, THESIS WAGENINGEN U; Morris MRJ, 2008, CAN J FISH AQUAT SCI, V65, P2807, DOI 10.1139/F08-181; Naish KA, 2008, FISH FISH, V9, P396, DOI 10.1111/j.1467-2979.2008.00302.x; Naish Kerry A., 2007, Advances in Marine Biology, V53, P61, DOI 10.1016/S0065-2881(07)53002-6; Naylor R, 2005, BIOSCIENCE, V55, P427, DOI 10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2; Naylor RL, 2000, NATURE, V405, P1017, DOI 10.1038/35016500; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Paine RT, 1998, ECOSYSTEMS, V1, P535, DOI 10.1007/s100219900049; Palkovacs EP, 2012, EVOL APPL, V5, P183, DOI 10.1111/j.1752-4571.2011.00212.x; Palkovacs EP, 2011, TRENDS ECOL EVOL, V26, P616, DOI 10.1016/j.tree.2011.08.004; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Palkovacs EP, 2009, PHILOS T R SOC B, V364, P1617, DOI 10.1098/rstb.2009.0016; Palkovacs EP, 2009, ECOLOGY, V90, P300, DOI 10.1890/08-1673.1; Pauly D, 1998, SCIENCE, V279, P860, DOI 10.1126/science.279.5352.860; Philipp DP, 2009, T AM FISH SOC, V138, P189, DOI 10.1577/T06-243.1; Piche J, 2008, P ROY SOC B-BIOL SCI, V275, P1571, DOI 10.1098/rspb.2008.0251; Post DM, 2008, ECOLOGY, V89, P2019, DOI 10.1890/07-1216.1; Pukk L, 2013, EVOL APPL, V6, P749, DOI 10.1111/eva.12060; Quinn TP, 2007, ECOL APPL, V17, P731, DOI 10.1890/06-0771; Renaut S., 2010, MOL ECOL S1, V19, P151, DOI [10.1111/j.1365-294X.2009.04477.x, DOI 10.1111/J.1365-294X.2009.04477.X.PMID:20331775]; Reusch TBH, 2005, P NATL ACAD SCI USA, V102, P2826, DOI 10.1073/pnas.0500008102; Richard A, 2013, MOL ECOL, V22, P187, DOI 10.1111/mec.12102; RICKER WE, 1972, HR MACMILLAN LECTURE, P19; Rijnsdorp AD, 2005, CAN J FISH AQUAT SCI, V62, P833, DOI 10.1139/F05-039; ROFF DA, 2002, LIFE HIST EVOLUTION; Saccheri I, 2006, TRENDS ECOL EVOL, V21, P341, DOI 10.1016/j.tree.2006.03.018; Satake A, 2012, THEOR ECOL-NETH, V5, P283, DOI 10.1007/s12080-011-0128-y; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Schindler DE, 2003, FRONT ECOL ENVIRON, V1, P31, DOI 10.1890/1540-9295(2003)001[0031:PSATEO]2.0.CO;2; Seamons TR, 2012, EVOL APPL, V5, P705, DOI 10.1111/j.1752-4571.2012.00247.x; Shackell NL, 2010, P ROY SOC B-BIOL SCI, V277, P1353, DOI 10.1098/rspb.2009.1020; Sharpe DMT, 2012, EVOL APPL, V5, P677, DOI 10.1111/j.1752-4571.2012.00245.x; Sharpe DMT, 2009, EVOL APPL, V2, P260, DOI 10.1111/j.1752-4571.2009.00080.x; Sinervo B, 2000, NATURE, V406, P985, DOI 10.1038/35023149; Sutter DAH, 2012, P NATL ACAD SCI USA, V109, P20960, DOI 10.1073/pnas.1212536109; Swain D.P., 2011, ALTERNATIVE HYPOTHES, V2011; Swain DP, 2007, P ROY SOC B-BIOL SCI, V274, P1015, DOI 10.1098/rapb.2006.0275; Swain DP, 2011, EVOL APPL, V4, P18, DOI 10.1111/j.1752-4571.2010.00128.x; Swain DP, 2000, CAN J FISH AQUAT SCI, V57, P1321, DOI 10.1139/cjfas-57-7-1321; Taylor BW, 2006, SCIENCE, V313, P833, DOI 10.1126/science.1128223; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Theriault V, 2008, EVOL APPL, V1, P409, DOI 10.1111/j.1752-4571.2008.00022.x; Thompson JN, 1998, TRENDS ECOL EVOL, V13, P329, DOI 10.1016/S0169-5347(98)01378-0; Tilman D, 1996, ECOLOGY, V77, P350, DOI 10.2307/2265614; TRAVISANO M, 1995, SCIENCE, V267, P87, DOI 10.1126/science.7809610; Vanni MJ, 2002, ANNU REV ECOL SYST, V33, P341, DOI 10.1146/annurev.ecolsys.33.010802.150519; Venturelli PA, 2009, P ROY SOC B-BIOL SCI, V276, P919, DOI 10.1098/rspb.2008.1507; Walsh MR, 2013, TRENDS ECOL EVOL, V28, P23, DOI 10.1016/j.tree.2012.08.006; Walsh MR, 2012, P ROY SOC B-BIOL SCI, V279, P3184, DOI 10.1098/rspb.2012.0496; Walsh MR, 2006, ECOL LETT, V9, P142, DOI 10.1111/j.1461-0248.2005.00858.x; Walters C, 2001, CAN J FISH AQUAT SCI, V58, P39, DOI 10.1139/cjfas-58-1-39; Waples RS, 2007, REV-METHODS TECHNOL, V6, P383; Waples RS, 2004, EVOLUTION, V58, P386, DOI 10.1111/j.0014-3820.2004.tb01654.x; Weese DJ, 2011, EVOL APPL, V4, P354, DOI 10.1111/j.1752-4571.2010.00169.x; Willi Y, 2006, ANNU REV ECOL EVOL S, V37, P433, DOI 10.1146/annurev.ecolsys.37.091305.110145; Williams JG, 2008, EVOL APPL, V1, P271, DOI 10.1111/j.1752-4571.2008.00027.x; Wirgin I, 2011, SCIENCE, V331, P1322, DOI 10.1126/science.1197296; Worm B, 2006, SCIENCE, V314, P787, DOI 10.1126/science.1132294; Yoshida T, 2003, NATURE, V424, P303, DOI 10.1038/nature01767 151 16 16 1 104 CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS OTTAWA 65 AURIGA DR, SUITE 203, OTTAWA, ON K2E 7W6, CANADA 0706-652X 1205-7533 CAN J FISH AQUAT SCI Can. J. Fish. Aquat. Sci. SEP 2013 70 9 1417 1428 10.1139/cjfas-2013-0171 12 Fisheries; Marine & Freshwater Biology Fisheries; Marine & Freshwater Biology 209LL WOS:000323758200015 2019-02-21 J Svendsen, JC; Banet, AI; Christensen, RHB; Steffensen, JF; Aarestrup, K Svendsen, Jon C.; Banet, Amanda I.; Christensen, Rune H. B.; Steffensen, John F.; Aarestrup, Kim Effects of intraspecific variation in reproductive traits, pectoral fin use and burst swimming on metabolic rates and swimming performance in the Trinidadian guppy (Poecilia reticulata) JOURNAL OF EXPERIMENTAL BIOLOGY English Article basal metabolic rate; energetics; gait transition; gravidity; life history; respiratory physiology LIFE-HISTORY EVOLUTION; EUROPEAN SEA BASS; NONMIGRATORY THREESPINE STICKLEBACK; POSTEXERCISE OXYGEN-CONSUMPTION; SUNFISH LEPOMIS-MACROCHIRUS; INDIVIDUAL VARIATION; TRADE-OFFS; GAIT TRANSITION; RAINBOW-TROUT; DICENTRARCHUS-LABRAX There is considerable intraspecific variation in metabolic rates and locomotor performance in aquatic ectothermic vertebrates; however, the mechanistic basis remains poorly understood. Using pregnant Trinidadian guppies (Poecilia reticulata), a live-bearing teleost, we examined the effects of reproductive traits, pectoral fin use and burst-assisted swimming on swimming metabolic rate, standard metabolic rate ((M) over dot(O2std)) and prolonged swimming performance (U-crit). Reproductive traits included reproductive allocation and pregnancy stage, the former defined as the mass of the reproductive tissues divided by the total body mass. Results showed that the metabolic rate increased curvilinearly with swimming speed. The slope of the relationship was used as an index of swimming cost. There was no evidence that reproductive traits correlated with swimming cost, (M) over dot(O2std) or U-crit. In contrast, data revealed strong effects of pectoral fin use on swimming cost and U-crit. Poecilia reticulata employed body-caudal fin (BCF) swimming at all tested swimming speeds; however, fish with a high simultaneous use of the pectoral fins exhibited increased swimming cost and decreased U-crit. These data indicated that combining BCF swimming and pectoral fin movement over a wide speed range, presumably to support swimming stability and control, is an inefficient swimming behaviour. Finally, transition to burst-assisted swimming was associated with an increase in aerobic metabolic rate. Our study highlights factors other than swimming speed that affect swimming cost and suggests that intraspecific diversity in biomechanical performance, such as pectoral fin use, is an important source of variation in both locomotor cost and maximal performance. [Svendsen, Jon C.; Aarestrup, Kim] Tech Univ Denmark, Natl Inst Aquat Resources, DK-8600 Silkeborg, Denmark; [Svendsen, Jon C.; Steffensen, John F.] Univ Copenhagen, Marine Biol Lab, Inst Biol, DK-3000 Helsingor, Denmark; [Banet, Amanda I.] Univ Calif Riverside, Dept Biol, Riverside, CA 92521 USA; [Banet, Amanda I.] Univ British Columbia, Vancouver, BC V6T 1Z4, Canada; [Christensen, Rune H. B.] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark Svendsen, JC (reprint author), Tech Univ Denmark, Natl Inst Aquat Resources, Vejlsovej 39, DK-8600 Silkeborg, Denmark. jos@aqua.dtu.dk Svendsen, Jon/J-2716-2013; Steffensen, John/F-6778-2010 Svendsen, Jon/0000-0002-0273-0985; Steffensen, John/0000-0002-4477-8039; Christensen, Rune Haubo Bojesen/0000-0002-4494-3399 Danish Research Council; Fishnet Research Network; Idella Foundation; National Science Foundation [DDIG DEB-0710185] This research was supported by a grant from the Danish Research Council to the research school SLIP and the Fishnet Research Network and allocated to J.C.S. and J.F.S. The Idella Foundation provided travel funding to J.C.S. The research was also funded by the National Science Foundation (DDIG DEB-0710185 to D. N. Reznick and A.I.B.). ALEXANDER RM, 1989, PHYSIOL REV, V69, P1199; Arnott SA, 2006, EVOLUTION, V60, P1269; Beamish F. W. H., 1978, FISH PHYSIOL, P101, DOI [DOI 10.1016/S1546-5098(08)60164-8, 10.1016/S1546-5098(08)60164-8]; Belk MC, 2010, OIKOS, V119, P163, DOI 10.1111/j.1600-0706.2009.17742.x; Bell W. H, 1970, WATER TUNNEL DESIGN; BERGER J, 1991, ANIM BEHAV, V41, P61, DOI 10.1016/S0003-3472(05)80503-2; BIEWENER AA, 1986, J EXP BIOL, V123, P383; BIRCHARD GF, 1984, COMP BIOCHEM PHYS A, V77, P519, DOI 10.1016/0300-9629(84)90221-4; Biro PA, 2010, TRENDS ECOL EVOL, V25, P653, DOI 10.1016/j.tree.2010.08.003; Blake RW, 2009, J FISH BIOL, V75, P591, DOI 10.1111/j.1095-8649.2009.02309.x; BOEHLERT GW, 1991, ENVIRON BIOL FISH, V30, P81, DOI 10.1007/BF02296879; Bolnick DI, 2003, AM NAT, V161, P1, DOI 10.1086/343878; BRETT JR, 1964, J FISH RES BOARD CAN, V21, P1183, DOI 10.1139/f64-103; Brooks M., 2011, VIVIPAROUS FISHES, P1; Burgetz IJ, 1998, J EXP BIOL, V201, P2711; Burton T, 2011, P ROY SOC B-BIOL SCI, V278, P3465, DOI 10.1098/rspb.2011.1778; BUSHNELL PG, 1994, POLAR BIOL, V14, P43; Cannas M, 2006, J FISH BIOL, V69, P1612, DOI 10.1111/j.1095-8649.2006.01225.x; Careau V, 2012, PHYSIOL BIOCHEM ZOOL, V85, P543, DOI 10.1086/666970; Chen WJ, 2003, MOL PHYLOGENET EVOL, V26, P262, DOI 10.1016/S1055-7903(02)00371-8; Claireaux G, 2007, PHYSIOL BIOCHEM ZOOL, V80, P186, DOI 10.1086/511143; Claireaux G, 2006, J EXP BIOL, V209, P3420, DOI 10.1242/jeb.02346; Dalziel AC, 2012, J EXP BIOL, V215, P3587, DOI 10.1242/jeb.071951; Dalziel AC, 2012, EVOLUTION, V66, P1226, DOI 10.1111/j.1558-5646.2011.01498.x; Dalziel AC, 2012, J EXP BIOL, V215, P746, DOI 10.1242/jeb.065425; DEMARCO V, 1993, PHYSIOL ZOOL, V66, P166, DOI 10.1086/physzool.66.1.30158293; Drucker EG, 2003, J EXP BIOL, V206, P813, DOI 10.1242/jeb.00139; Drucker EG, 2006, FISH PHYSIOL, V23, P369, DOI 10.1016/S1546-5098(05)23010-8; Ellerby DJ, 2011, EVOL BIOL, V38, P422, DOI 10.1007/s11692-011-9130-y; Ellerby DJ, 2010, J EXP BIOL, V213, P3765, DOI 10.1242/jeb.034520; FARLEY CT, 1991, SCIENCE, V253, P306, DOI 10.1126/science.1857965; Farrell AP, 2007, PHILOS T R SOC B, V362, P2017, DOI 10.1098/rstb.2007.2111; Farrell A. P., 2009, HYPOXIA, V27, P488; Ghalambor CK, 2004, AM NAT, V164, P38, DOI 10.1086/421412; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; GOOLISH EM, 1991, BIOL REV, V66, P33, DOI 10.1111/j.1469-185X.1991.tb01134.x; Green MH, 2012, J NEUROPHYSIOL, V108, P3393, DOI 10.1152/jn.00623.2012; Griffin TM, 2004, J EXP BIOL, V207, P4215, DOI 10.1242/jeb.01277; Hayes JP, 1997, J MAMMAL, V78, P274, DOI 10.2307/1382882; HAYNES JL, 1995, COPEIA, P147; HOPKINS TE, 1995, ENVIRON BIOL FISH, V43, P77, DOI 10.1007/BF00001819; Hove JR, 2001, J EXP BIOL, V204, P1459; James RS, 1998, J FISH BIOL, V53, P485, DOI 10.1006/jfbi.1998.0722; Jones EA, 2007, J EXP BIOL, V210, P3422, DOI 10.1242/jeb.005744; Kendall JL, 2007, J EXP BIOL, V210, P4265, DOI 10.1242/jeb.009498; Kieffer JD, 2000, COMP BIOCHEM PHYS A, V126, P161, DOI 10.1016/S1095-6433(00)00202-6; Korsmeyer KE, 2002, J EXP BIOL, V205, P1253; Lauder GV, 2006, FISH PHYSIOL, V23, P425, DOI 10.1016/S1546-5098(05)23011-X; Lee CG, 2003, J EXP BIOL, V206, P3253, DOI 10.1242/jeb.00548; Lee CG, 2003, J FISH BIOL, V62, P753, DOI 10.1046/j.1095-8649.2003.00057.x; Liao JC, 2007, PHILOS T R SOC B, V362, P1973, DOI 10.1098/rstb.2007.2082; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Marras S, 2010, J EXP BIOL, V213, P26, DOI 10.1242/jeb.032136; Marras S, 2011, J EXP BIOL, V214, P3102, DOI 10.1242/jeb.056648; Marsh-Matthews E, 2005, OECOLOGIA, V144, P12, DOI 10.1007/s00442-005-0030-7; McKenzie DJ, 2003, J FISH BIOL, V63, P398, DOI 10.1046/j.1095-8649.2003.00162.x; McLaughlin RL, 1998, CAN J FISH AQUAT SCI, V55, P853, DOI 10.1139/cjfas-55-4-853; Miles DB, 2000, EVOLUTION, V54, P1386; Nelson JA, 2003, CAN J FISH AQUAT SCI, V60, P301, DOI 10.1139/F03-023; Nudds RL, 2011, P ROY SOC B-BIOL SCI, V278, P2654, DOI 10.1098/rspb.2010.2742; Ohlberger J, 2007, J EXP ZOOL PART A, V307A, P296, DOI 10.1002/jez.384; Oufiero CE, 2011, ECOLOGY, V92, P170, DOI 10.1890/09-1912.1; Oufiero CE, 2009, FUNCT ECOL, V23, P969, DOI 10.1111/j.1365-2435.2009.01571.x; Peake SJ, 2008, J FISH BIOL, V72, P645, DOI 10.1111/j.1095-8649.2007.01753.x; Pinheiro J, 2011, NLME LINEAR NONLINEA; Plaut I, 2002, FUNCT ECOL, V16, P290, DOI 10.1046/j.1365-2435.2002.00638.x; Pohlmann K, 2001, P NATL ACAD SCI USA, V98, P7371, DOI 10.1073/pnas.121026298; Poulsen SB, 2012, AQUAT LIVING RESOUR, V25, P241, DOI 10.1051/alr/2002019; R Development Core Team, 2011, R LANG ENV STAT COMP; REIDY SP, 1995, J FISH BIOL, V47, P377, DOI 10.1006/jfbi.1995.0145; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; REZNICK D, 1983, ECOLOGY, V64, P862, DOI 10.2307/1937209; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; REZNICK DA, 1990, NATURE, V346, P357, DOI 10.1038/346357a0; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; REZNICK DN, 1989, EVOLUTION, V43, P1285, DOI 10.1111/j.1558-5646.1989.tb02575.x; Rubenson J, 2004, P ROY SOC B-BIOL SCI, V271, P1091, DOI 10.1098/rspb.2004.2702; Sears MW, 2009, FUNCT ECOL, V23, P774, DOI 10.1111/j.1365-2435.2009.01559.x; Skov PV, 2010, J EXP MAR BIOL ECOL, V395, P120, DOI 10.1016/j.jembe.2010.08.024; Speakman JR, 2005, J EXP BIOL, V208, P1717, DOI 10.1242/jeb.01556; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; STEFFENSEN JF, 1989, FISH PHYSIOL BIOCHEM, V6, P49, DOI 10.1007/BF02995809; Svendsen JC, 2010, J EXP BIOL, V213, P2177, DOI 10.1242/jeb.041368; Svendsen JC, 2012, CAN J ZOOL, V90, P1, DOI [10.1139/Z11-095, 10.1139/z11-095]; Swanson C, 1998, J EXP BIOL, V201, P333; Taguchi M, 2011, J EXP BIOL, V214, P1428, DOI 10.1242/jeb.052027; Timmerman CM, 2003, ENVIRON BIOL FISH, V68, P293, DOI 10.1023/A:1027300701599; Tudorache C, 2011, FISH PHYSIOL BIOCHEM, V37, P307, DOI 10.1007/s10695-011-9498-8; Tytell ED, 2008, J EXP BIOL, V211, P187, DOI 10.1242/jeb.008128; Videler J.J., 1991, Reviews in Fish Biology and Fisheries, V1, P23, DOI 10.1007/BF00042660; Webb JK, 2004, COPEIA, P357, DOI 10.1643/CH-03-171R1; Webb Paul W., 1993, P47; Webb Paul W., 1998, P3; WEBB PW, 1972, J FISH RES BOARD CAN, V29, P1543, DOI 10.1139/f72-242; Webb PW, 2002, INTEGR COMP BIOL, V42, P94, DOI 10.1093/icb/42.1.94; WEBB PW, 1988, AM ZOOL, V28, P709; Webb PW, 2001, CAN J ZOOL, V79, P1866, DOI 10.1139/cjz-79-10-1866; Weihs D, 2002, INTEGR COMP BIOL, V42, P127, DOI 10.1093/icb/42.1.127; Williams TD, 2008, PHILOS T R SOC B, V363, P1687, DOI 10.1098/rstb.2007.0003; Williams TD, 2012, GEN COMP ENDOCR, V176, P286, DOI 10.1016/j.ygcen.2011.11.028 100 18 18 0 81 COMPANY OF BIOLOGISTS LTD CAMBRIDGE BIDDER BUILDING CAMBRIDGE COMMERCIAL PARK COWLEY RD, CAMBRIDGE CB4 4DL, CAMBS, ENGLAND 0022-0949 1477-9145 J EXP BIOL J. Exp. Biol. SEP 2013 216 18 3564 3574 10.1242/jeb.083089 11 Biology Life Sciences & Biomedicine - Other Topics 207QK WOS:000323617300025 23737561 Green Published, Bronze 2019-02-21 J Krams, IA; Suraka, V; Rantala, MJ; Sepp, T; Mierauskas, P; Vrublevska, J; Krama, T Krams, I. A.; Suraka, V.; Rantala, M. J.; Sepp, T.; Mierauskas, P.; Vrublevska, J.; Krama, T. Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds JOURNAL OF ZOOLOGY English Article avian malaria; immunity; parasite vectors; haemoglobin; survival; Parus major TITS PARUS-MAJOR; JAYS CYANOCITTA-CRISTATA; LIFE-HISTORY EVOLUTION; GREAT TITS; IMMUNE-RESPONSE; BLOOD PARASITES; REPRODUCTIVE SUCCESS; TRADE-OFFS; HETEROPHIL/LYMPHOCYTE RATIOS; HEMATOLOGICAL PARAMETERS Blood parasites are often considered as indicators of immunity in birds, and data on parasite prevalence and intensity of infections are essential to reveal information about the condition of both individuals and populations. We prevented parasite vectors from biting and infecting nestling great tit Parus major by using insect repellent inside nest boxes. We found that in the absence of blood parasites, great tit nestlings had higher concentrations of haemoglobin, and they survived at significantly higher rates through the nestling phase and also during the first weeks of their fledgling period. This is the first demonstration so far of the impact these parasites have on haemoglobin levels of the hosts, which reveals one mechanism of adverse impact by blood parasites. This study shows that the effects of blood parasites can be assessed without using anti-malaria drugs, which can cause additional risk of oxidative stress. [Krams, I. A.; Sepp, T.] Univ Tartu, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia; [Krams, I. A.; Suraka, V.; Vrublevska, J.; Krama, T.] Univ Daugavpils, Inst Systemat Biol, Daugavpils, Latvia; [Suraka, V.] Riga Stradins Univ, Riga, Latvia; [Rantala, M. J.] Univ Turku, Dept Biol, SF-20500 Turku, Finland; [Mierauskas, P.] Mykolas Romeris Univ, Dept Environm Policy, Vilnius, Lithuania Krams, IA (reprint author), Univ Tartu, Inst Ecol & Earth Sci, EE-51014 Tartu, Estonia. indrikis.krams@ut.ee Science Council of Latvia; Academy of Finland; European Social Fund [2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015]; European Union through the European Regional Development Fund (Centre of Excellence FIBIR) We thank Todd M. Freeberg for improving the English. The authors were supported by the Science Council of Latvia (T.K.) and the Academy of Finland (M.J.R., I.A.K.). The European Social Fund within the project 'Support for the implementation of doctoral studies at Daugavpils University' No. 2009/0140/1DP/1.1.2.1.2/09/IPIA/VIAA/015 supported J.V. T.S. was supported by the European Union through the European Regional Development Fund (Centre of Excellence FIBIR). ALLANDER K, 1994, J AVIAN BIOL, V25, P69, DOI 10.2307/3677296; Alonso-Alvarez C, 2004, AM NAT, V164, P651, DOI 10.1086/424971; Apanius V, 2000, ECOLOGY, V81, P1959, DOI 10.2307/177285; Atkinson CT, 2005, CONDOR, V107, P537, DOI 10.1650/0010-5422(2005)107[0537:POPLAM]2.0.CO;2; ATKINSON CT, 1988, J PARASITOL, V74, P228, DOI 10.2307/3282448; Babura J, 2007, COMP BIOCH PHYSL A, V148, P572; BENNETT GF, 1970, CAN J ZOOLOG, V48, P585, DOI 10.1139/z70-098; Costantini D, 2009, COMP BIOCHEM PHYS A, V153, P339, DOI 10.1016/j.cbpa.2009.03.010; Crule D., 2012, J ORNITHOL, V153, P161; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Dawson RD, 2000, AUK, V117, P373, DOI 10.1642/0004-8038(2000)117[0373:EOHPOC]2.0.CO;2; de Lope F, 1998, OECOLOGIA, V114, P188, DOI 10.1007/s004420050435; Dein F.J., 1986, P174; Dowling DK, 2009, P ROY SOC B-BIOL SCI, V276, P1737, DOI 10.1098/rspb.2008.1791; Farombi EO, 2003, DRUG CHEM TOXICOL, V26, P59, DOI 10.1081/DCT-120017558; Garvin MC, 2003, J WILDLIFE DIS, V39, P161, DOI 10.7589/0090-3558-39.1.161; Garvin MC, 2003, J WILDLIFE DIS, V39, P1; Heeb P, 1999, NATURE, V400, P63, DOI 10.1038/21881; Heeb P, 1996, J ANIM ECOL, V65, P474, DOI 10.2307/5782; Horak P, 1999, OECOLOGIA, V121, P316, DOI 10.1007/s004420050934; Hutchings K., 2009, THESIS U E ANGLIA NO; Kilgas P, 2006, COMP BIOCHEM PHYS A, V144, P224, DOI 10.1016/j.cbpa.2006.02.038; Killpack T. L., 2012, PLOS ONE, V7; Kissing K.C., 1999, P 22 INT ORN C DURB, P2817; Klein SL, 2004, PARASITE IMMUNOL, V26, P247, DOI 10.1111/j.0141-9838.2004.00710.x; Knutie SA, 2013, EVOL ECOL, V27, P185, DOI 10.1007/s10682-012-9578-y; Krams I, 2013, ETHOLOGY, V119, P397, DOI 10.1111/eth.12075; Krams I, 2012, J ORNITHOL, V153, P1245, DOI 10.1007/s10336-012-0859-6; Krams I, 2012, COMP BIOCHEM PHYS A, V161, P422, DOI 10.1016/j.cbpa.2011.12.018; Krams I, 2010, ANN ZOOL FENN, V47, P335, DOI 10.5735/086.047.0504; Martinez J, 2004, HELMINTHOLOGIA, V41, P67; Martinez-Abrain A, 2004, ARDEOLA, V51, P225; Martinez-de la Puente J, 2010, BIOL LETTERS, V6, P663, DOI 10.1098/rsbl.2010.0046; Marzal A, 2005, OECOLOGIA, V142, P541, DOI 10.1007/s00442-004-1757-2; Merino S, 2000, P ROY SOC B-BIOL SCI, V267, P2507, DOI 10.1098/rspb.2000.1312; Metcalf CJE, 2011, SCIENCE, V333, P984, DOI 10.1126/science.1204588; Moller AP, 2007, ECOLOGY, V88, P871, DOI 10.1890/06-0747; Moller AP, 1998, AM NAT, V152, P605, DOI 10.1086/286193; Moreno J, 2002, ECOSCIENCE, V9, P434, DOI 10.1080/11956860.2002.11682731; Norris K, 2000, BEHAV ECOL, V11, P19, DOI 10.1093/beheco/11.1.19; Ots I, 1998, FUNCT ECOL, V12, P700, DOI 10.1046/j.1365-2435.1998.00219.x; Ots I, 1998, OECOLOGIA, V116, P441, DOI 10.1007/s004420050608; Outlaw DC, 2011, P NATL ACAD SCI USA, V108, P13183, DOI 10.1073/pnas.1109153108; Perez-Tris J, 2005, PARASITOLOGY, V131, P15, DOI 10.1017/S003118200500733X; Ratcliffe MJH, 2006, DEV COMP IMMUNOL, V30, P101, DOI 10.1016/j.dci.2005.06.018; Ruiz X, 1995, ORNIS FENNICA, V72, P159; Rytkonen S, 2003, J AVIAN BIOL, V34, P288, DOI 10.1034/j.1600-048X.2003.03041.x; Saino N, 1997, J ANIM ECOL, V66, P827, DOI 10.2307/5998; SchmidHempel P, 2011, EVOLUTIONARY PARASITOLOGY: THE INTEGRATED STUDY OF INFECTIONS, IMMUNOLOGY, ECOLOGY, AND GENETICS, P1; Sheldon BC, 1996, TRENDS ECOL EVOL, V11, P317, DOI 10.1016/0169-5347(96)10039-2; Sidell BD, 2006, J EXP BIOL, V209, P1791, DOI 10.1242/jeb.02091; Snoeijs T, 2004, P ROY SOC B-BIOL SCI, V271, pS199, DOI 10.1098/rsbl.2003.0148; Sol D, 2003, OECOLOGIA, V135, P542, DOI 10.1007/s00442-003-1223-6; Somczyski R, 2006, ACTA OECOL, V30, P223; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Szollosi E, 2009, J ORNITHOL, V150, P519, DOI 10.1007/s10336-008-0370-2; Valkinas G, 2005, AVIAN MALARIA PARASI; van de Crommenacker J, 2012, P ROY SOC B-BIOL SCI, V279, P1466, DOI 10.1098/rspb.2011.1865; van Oers K, 2010, J ORNITHOL, V151, P69, DOI 10.1007/s10336-009-0427-x; WARNER RE, 1968, CONDOR, V70, P101, DOI 10.2307/1365954; Wilkin TA, 2009, J AVIAN BIOL, V40, P135, DOI 10.1111/j.1600-048X.2009.04362.x; Yorinks N, 2000, AUK, V117, P731, DOI 10.1642/0004-8038(2000)117[0731:EOMOAB]2.0.CO;2 62 20 20 2 61 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0952-8369 1469-7998 J ZOOL J. Zool. SEP 2013 291 1 34 41 10.1111/jzo.12043 8 Zoology Zoology 206SE WOS:000323541900005 2019-02-21 J Sheaves, M; Johnston, R; Johnson, A; Baker, R; Connolly, RM Sheaves, Marcus; Johnston, Ross; Johnson, Ashlee; Baker, Ronald; Connolly, Rod M. Nursery Function Drives Temporal Patterns in Fish Assemblage Structure in Four Tropical Estuaries ESTUARIES AND COASTS English Article Life history; Recruitment; Nursery ground; Estuary; Fish; Monitoring POPULATION REGULATION; SPATIAL VARIABILITY; GEAR SELECTIVITY; GUILD APPROACH; REEF FISH; RECRUITMENT; MARINE; AUSTRALIA; FAUNA; WATER Despite estuary-to-estuary differences in assemblage composition, fish faunas of tropical Indo-Pacific estuaries show parallel patterns of temporal change, suggesting a common set of ecological drivers. One potentially important driver is the interaction of different patterns of occupancy by functional groups that display different life-history patterns. However, most studies that have considered temporal change lack the detail needed to understand life-history utilisation. Most have focussed on changes in catch per unit effort (CPUE) or probability of encounter, with only one study going further and investigating changes in size structure and then only for a single estuary. One of the reasons for this lack of detail is the large volume of work needed to collect comprehensive data on size structures of species rich assemblages across multiple estuary systems over time. To overcome the logistical limitations on data collection, we used joint patterns of change in CPUE and mean biomass per fish (BPF) as proxies for changes in size structure. We investigated how different life-history strategies contributed to overall temporal patterns of assemblage change across four tropical Indo-Pacific estuaries. The three life-history strategies displayed characteristically different patterns in CPUE and BPF and the relationships between CPUE and BPF that reflect differences in the way that the three groups use estuaries. These different patterns interacted to produce complex assemblage patterns that are likely to be sensitive to location-specific differences in the mix of species from each group, providing at least part of the explanation for the site-specific fish assemblage structures that are characteristic of tropical estuarine fish fauna. [Sheaves, Marcus; Johnston, Ross; Johnson, Ashlee; Baker, Ronald] James Cook Univ, Ctr Trop Water & Aquat Ecosyst Res, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia; [Connolly, Rod M.] Griffith Univ, Australian Rivers Inst Coast & Estuaries, Gold Coast, Qld 4222, Australia; [Connolly, Rod M.] Griffith Univ, Sch Environm, Gold Coast, Qld 4222, Australia; [Baker, Ronald] James Cook Univ, CSIRO Land & Water, Australian Trop Sci & Innovat Precinct, Townsville, Qld 4811, Australia Johnston, R (reprint author), James Cook Univ, Ctr Trop Water & Aquat Ecosyst Res, Sch Marine & Trop Biol, Townsville, Qld 4811, Australia. ross.johnston@jcu.edu.au Baker, Ronald/J-9060-2014; Sheaves, Marcus/G-4283-2012; Johnston, Ross/C-6882-2015; TropWATER, Research ID/P-1401-2014; CSTFA, ResearcherID/P-1067-2014; Research ID, CTBCC/O-3564-2014; Connolly, Rod/C-4094-2008 Baker, Ronald/0000-0001-8408-0324; Sheaves, Marcus/0000-0003-0662-3439; Connolly, Rod/0000-0001-6223-1291 Marine and Tropical Sciences Research Facility (MTSRF) research grant We thank the many volunteers who made the field work for this project possible. The work was supported by a Marine and Tropical Sciences Research Facility (MTSRF) research grant. Research was conducted under James Cook University Ethics Approval A1210. Aiken S., 2005, ESTUARINE COASTAL SH, V64, P671; Armsworth PR, 2002, ECOLOGY, V83, P1092, DOI 10.1890/0012-9658(2002)083[1092:RLPRAL]2.0.CO;2; Bacheler NM, 2010, FISH RES, V102, P266, DOI 10.1016/j.fishres.2009.12.007; Baker R, 2009, ESTUAR COAST SHELF S, V85, P618, DOI 10.1016/j.ecss.2009.10.006; Baker R, 2009, WETL ECOL MANAG, V17, P317, DOI 10.1007/s11273-008-9109-3; Baker Ronald, 2011, Gulf and Caribbean Research, V23, P37; Barletta M, 2005, J FISH BIOL, V66, P45, DOI 10.1111/j.1095-8649.2004.00582.x; BLABER SJM, 1980, AUST J MAR FRESH RES, V31, P137; Blaber SJM, 2002, J FISH BIOL, V61, P1, DOI 10.1006/jfbi.2002.2063; BLABER SJM, 1980, J FISH BIOL, V17, P143, DOI 10.1111/j.1095-8649.1980.tb02749.x; Breiman L., 1984, CLASSIFICATION REGRE; Catalano MJ, 2010, FISH RES, V105, P38, DOI 10.1016/j.fishres.2010.03.002; De'ath G, 2000, ECOLOGY, V81, P3178, DOI 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2; Deegan LA, 2000, CONCEPTS AND CONTROVERSIES IN TIDAL MARSH ECOLOGY, P333; Elliott M, 2007, FISH FISH, V8, P241, DOI 10.1111/j.1467-2679.2007.00253.x; Fontes J, 2009, J FISH BIOL, V75, P1271, DOI 10.1111/j.1095-8649.2009.02363.x; Forrester Graham E., 2002, P275, DOI 10.1016/B978-012615185-5/50017-7; Franco A, 2008, MAR ECOL PROG SER, V354, P219, DOI 10.3354/meps07203; Froese R., 2010, FISHBASE WORLD WIDE; Garcia AM, 2012, MAR ECOL PROG SER, V461, P121, DOI 10.3354/meps09798; Hixon MA, 2002, ECOLOGY, V83, P1490, DOI 10.1890/0012-9658(2002)083[1490:PRHCAC]2.0.CO;2; Horppila J, 2009, AQUAT ECOL, V43, P91, DOI 10.1007/s10452-007-9158-3; Johnston R, 2008, MAR ECOL PROG SER, V357, P255, DOI 10.3354/meps07297; Juanes F, 1995, MAR ECOL PROG SER, V128, P287, DOI 10.3354/meps128287; Kritzer JP, 2004, FISH FISH, V5, P131, DOI 10.1111/j.1467-2979.2004.00131.x; Ley JA, 2005, MAR ECOL PROG SER, V305, P41, DOI 10.3354/meps305041; Osman RW, 2004, J EXP MAR BIOL ECOL, V311, P117, DOI 10.1016/j.jembe.2004.05.001; Ritter AF, 2006, MAR ECOL PROG SER, V317, P211, DOI 10.3354/meps317211; ROBERTSON AI, 1990, MAR BIOL, V104, P369, DOI 10.1007/BF01314339; ROBERTSON AI, 1990, ESTUAR COAST SHELF S, V31, P723, DOI 10.1016/0272-7714(90)90022-J; Sheaves M, 1995, MAR ECOL PROG SER, V129, P31, DOI 10.3354/meps129031; Sheaves M, 2008, MAR ECOL PROG SER, V357, P225, DOI 10.3354/meps07292; Sheaves M, 2007, MAR FRESHWATER RES, V58, P931, DOI 10.1071/MF06246; Sheaves M, 2006, MAR ECOL PROG SER, V310, P173, DOI 10.3354/meps310173; Sheaves M, 2010, MAR ECOL PROG SER, V410, P143, DOI 10.3354/meps08655; Sheaves M, 2010, AQUAT CONSERV, V20, P348, DOI 10.1002/aqc.1093; Sheaves M, 2009, MAR ECOL PROG SER, V391, P107, DOI 10.3354/meps08121; Sheaves M, 2009, MAR ECOL PROG SER, V385, P245, DOI 10.3354/meps08040; Sheaves MJ, 1999, MAR BIOL, V133, P123, DOI 10.1007/s002270050450; SHEAVES MJ, 1992, AUST J MAR FRESH RES, V43, P1461, DOI 10.1071/MF9921461; Sheaves MJ, 1996, MAR FRESHWATER RES, V47, P827, DOI 10.1071/MF9960827; SINCLAIR M, 1989, J CONSEIL, V45, P165; Stevens Philip W., 2006, Florida Scientist, V69, P135; Tobin AJ, 1997, J FISH BIOL, V50, P22, DOI 10.1006/jfbi.1996.0276 44 9 9 0 27 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 1559-2723 ESTUAR COAST Estuaries Coasts SEP 2013 36 5 893 905 10.1007/s12237-013-9610-7 13 Environmental Sciences; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 202VO WOS:000323248500002 2019-02-21 J O'Neal, DM O'Neal, Dawn M. Eco-endo-immunology across avian life history stages GENERAL AND COMPARATIVE ENDOCRINOLOGY English Review Birds; Disease ecology; Ecoimmunology; Hormones; Life history evolution IMMUNOCOMPETENCE-HANDICAP HYPOTHESIS; JUNCOS JUNCO-HYEMALIS; COTURNIX-COTURNIX-JAPONICA; SPARROWS PASSER-DOMESTICUS; HUMORAL IMMUNE-RESPONSES; CELL-MEDIATED IMMUNOSENESCENCE; TROPICAL HOUSE SPARROWS; JAPANESE-QUAIL; YOLK ANDROGENS; PLASMA-CORTICOSTERONE Broadly distributed songbirds, particularly those that migrate, encounter a wide range of pathogens. Both pathogen exposure and energy available for immune responses are expected to be affected by environmental variation in climate, habitat quality, and social interactions as well as hormonal mechanisms. Comparisons of Ayes in the field have begun to build the framework for understanding how such environmental variation interacts with disease environments as reflected in endocrine and immune responses. In this review, the roles of hormones and immune function across the various life history stages that make up the avian annual cycle are considered with an emphasis on free-living songbirds and the various hormones known to mediate the innate and acquired immune systems including melatonin, prolactin, growth hormone, and several neuroendocrine hormones. Finally, hormone-immune interactions are considered within the framework of disease ecology. (C) 2013 Elsevier Inc. All rights reserved. Huyck Preserve & Biol Res Stn, Rensselaerville, NY 12147 USA O'Neal, DM (reprint author), Huyck Preserve & Biol Res Stn, POB 189, Rensselaerville, NY 12147 USA. dawn@huyckpreserve.org Alonso-Alvarez C, 2007, BIOL LETTERS, V3, P271, DOI 10.1098/rsbl.2007.0020; Alonso-Alvarez C, 2009, P ROY SOC B-BIOL SCI, V276, P2093, DOI 10.1098/rspb.2008.1891; Altizer S, 2006, ECOL LETT, V9, P467, DOI 10.1111/j.1461-0248.2005.00879.x; Angelier F, 2007, BEHAV ECOL SOCIOBIOL, V61, P611, DOI 10.1007/s00265-006-0290-1; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Ashley NT, 2009, HORM BEHAV, V56, P169, DOI 10.1016/j.yhbeh.2009.04.003; Baeta R, 2008, P R SOC B, V275, P427, DOI 10.1098/rspb.2007.1383; Bentley GE, 1998, P ROY SOC B-BIOL SCI, V265, P1191, DOI 10.1098/rspb.1998.0418; Bentley GE, 2001, MICROSC RES TECHNIQ, V53, P63, DOI 10.1002/jemt.1069; Boulinier T, 2008, TRENDS ECOL EVOL, V23, P282, DOI 10.1016/j.tree.2007.12.006; Bourgeon S, 2006, J EXP BIOL, V209, P4957, DOI 10.1242/jeb.02610; Braude S, 1999, BEHAV ECOL, V10, P345, DOI 10.1093/beheco/10.3.345; Buehler DM, 2008, PHYSIOL BIOCHEM ZOOL, V81, P673, DOI 10.1086/588591; Buehler DM, 2009, J COMP PHYSIOL A, V195, P445, DOI 10.1007/s00359-009-0422-y; Butler M. W., 2009, PHYSIOL BIOCHEM ZOOL, V83, P78; Buttemer WA, 2000, J AVIAN BIOL, V31, P479, DOI 10.1034/j.1600-048X.2000.310407.x; Carlton ED, 2012, HORM BEHAV, V62, P272, DOI 10.1016/j.yhbeh.2012.04.010; Casto JM, 2001, AM NAT, V157, P408, DOI 10.1086/319318; Cichon M, 2003, J EVOLUTION BIOL, V16, P1205, DOI 10.1046/j.1420-9101.2003.00611.x; Davis AK, 2008, FUNCT ECOL, V22, P760, DOI 10.1111/j.1365-2435.2008.01467.x; Demas GE, 2011, J ANIM ECOL, V80, P710, DOI 10.1111/j.1365-2656.2011.01813.x; Dhabhar FS, 2002, BRAIN BEHAV IMMUN, V16, P785, DOI 10.1016/S0889-1591(02)00036-3; DHABHAR FS, 1995, J IMMUNOL, V154, P5511; DiCarlo R, 1996, LIFE SCI, V59, P1803, DOI 10.1016/0024-3205(96)00523-1; Duffy DL, 2000, BEHAV ECOL, V11, P654, DOI 10.1093/beheco/11.6.654; Evans MR, 2000, BEHAV ECOL SOCIOBIOL, V47, P156, DOI 10.1007/s002650050006; FOLSTAD I, 1992, AM NAT, V139, P603, DOI 10.1086/285346; Gil D, 2008, ADV STUD BEHAV, V38, P337, DOI 10.1016/S0065-3454(08)00007-7; Goymann W, 2007, HORM BEHAV, V51, P463, DOI 10.1016/j.yhbeh.2007.01.007; Greives TJ, 2006, FUNCT ECOL, V20, P812, DOI 10.1111/j.1365-2435.2006.01167.x; Grindstaff JL, 2008, J EXP BIOL, V211, P654, DOI 10.1242/jeb.012344; Groothuis TGG, 2005, BIOL LETTERS, V1, P78, DOI 10.1098/rsbl.2004.0233; Groothuis TGG, 2008, PHILOS T R SOC B, V363, P1647, DOI 10.1098/rstb.2007.0007; Guenier V., 2004, PLOS BIOL, V2, P740; Hasselquist D, 1999, BEHAV ECOL SOCIOBIOL, V45, P167, DOI 10.1007/s002650050550; Hasselquist D, 2007, J ORNITHOL, V148, pS571, DOI 10.1007/s10336-007-0201-x; Hasselquist D, 2009, PHILOS T R SOC B, V364, P51, DOI 10.1098/rstb.2008.0137; Hau M, 2007, BIOESSAYS, V29, P133, DOI 10.1002/bies.20524; Haussmann MF, 2005, OECOLOGIA, V145, P270, DOI 10.1007/s00442-005-0123-3; Hawley DM, 2007, FUNCT ECOL, V21, P520, DOI 10.1111/j.1365-2435.2007.01254.x; Hawley DM, 2011, FUNCT ECOL, V25, P48, DOI 10.1111/j.1365-2435.2010.01753.x; Henriksen R, 2011, NEUROSCI BIOBEHAV R, V35, P1484, DOI 10.1016/j.neubiorev.2011.04.010; Heylen D, 2012, BEHAV ECOL SOCIOBIOL, V66, P287, DOI 10.1007/s00265-011-1276-1; Hintz JV, 2000, COMP BIOCHEM PHYS A, V125, P239, DOI 10.1016/S1095-6433(99)00179-8; Holberton RL, 2000, P ROY SOC B-BIOL SCI, V267, P1889, DOI 10.1098/rspb.2000.1226; Hull KL, 1996, CELL TISSUE RES, V286, P69, DOI 10.1007/s004410050676; JOHN JL, 1994, Q REV BIOL, V69, P327, DOI 10.1086/418649; Kelley KW, 2007, BRAIN BEHAV IMMUN, V21, P384, DOI 10.1016/j.bbi.2006.11.010; Landsman T, 2001, POULTRY SCI, V80, P1329, DOI 10.1093/ps/80.9.1329; Landys-Ciannelli MM, 2002, PHYSIOL BIOCHEM ZOOL, V75, P101, DOI 10.1086/338285; Lavoie ET, 2005, AGE, V27, P281, DOI 10.1007/s11357-005-4561-y; Lavoie ET, 2007, DEV COMP IMMUNOL, V31, P407, DOI 10.1016/j.dci.2006.07.009; Lee KA, 2008, J ANIM ECOL, V77, P356, DOI 10.1111/j.1365-2656.2007.01347.x; Lee KA, 2006, INTEGR COMP BIOL, V46, P1000, DOI 10.1093/icb/icl049; Lindstrom KM, 2005, HORM BEHAV, V48, P311, DOI 10.1016/j.yhbeh.2005.04.002; Lindstrom KM, 2005, GEN COMP ENDOCR, V143, P231, DOI 10.1016/j.ygcen.2005.04.005; Lindstrom KM, 2001, P ROY SOC B-BIOL SCI, V268, P207, DOI 10.1098/rspb.2000.1352; Loiseau C, 2008, GEN COMP ENDOCR, V155, P101, DOI 10.1016/j.ygcen.2007.03.004; Love OP, 2005, AM NAT, V166, P751, DOI 10.1086/497440; Lozano GA, 2003, P ROY SOC B-BIOL SCI, V270, P1203, DOI 10.1098/rspb.2002.2309; Luna M, 2005, GEN COMP ENDOCR, V144, P28, DOI 10.1016/j.ygcen.2005.04.007; Majewski P, 2005, J PINEAL RES, V39, P66, DOI 10.1111/j.1600-079X.2005.00214.x; Marra PP, 1998, OECOLOGIA, V116, P284, DOI 10.1007/s004420050590; Martin II LB, 2006, OECOLOGIA, V147, P565, DOI 10.1007/s00442-005-0314-y; Martin LB, 2005, GEN COMP ENDOCR, V140, P126, DOI 10.1016/j.ygcen.2004.10.010; Martin LB, 2004, ECOLOGY, V85, P2323, DOI 10.1890/03-0365; Martin LB, 2008, PHILOS T R SOC B, V363, P321, DOI 10.1098/rstb.2007.2142; Martin LB, 2009, GEN COMP ENDOCR, V163, P70, DOI 10.1016/j.ygcen.2009.03.008; Martin LB, 2008, ORNITOL NEOTROP, V19, P207; Matera L, 1996, LIFE SCI, V59, P599, DOI 10.1016/0024-3205(96)00225-1; Merrill L, 2012, OECOLOGIA, V170, P25, DOI 10.1007/s00442-012-2281-4; Moore CB, 2000, GEN COMP ENDOCR, V119, P95, DOI 10.1006/gcen.2000.7496; Moore CB, 2005, GEN COMP ENDOCR, V143, P178, DOI 10.1016/j.ygcen.2005.03.008; Moore CB, 2002, GEN COMP ENDOCR, V129, P122, DOI 10.1016/S0016-6480(02)00516-6; Moore CB, 2003, GEN COMP ENDOCR, V131, P258, DOI 10.1016/S0016-6480(03)00011-X; MORENO J, 1994, IMMUNOL TODAY, V15, P524, DOI 10.1016/0167-5699(94)90208-9; Muller W, 2005, P ROY SOC B-BIOL SCI, V272, P1971, DOI 10.1098/rspb.2005.3178; Navara KJ, 2005, PHYSIOL BIOCHEM ZOOL, V78, P570, DOI 10.1086/430689; Navara KJ, 2008, COMP BIOCHEM PHYS A, V150, P378, DOI 10.1016/j.cbpa.2008.05.002; Nelson RJ, 2004, CURR DIR PSYCHOL SCI, V13, P198, DOI 10.1111/j.0963-7214.2004.00307.x; Nelson RJ, 1996, Q REV BIOL, V71, P511, DOI 10.1086/419555; Nelson RJ, 1995, J PINEAL RES, V19, P149, DOI 10.1111/j.1600-079X.1995.tb00184.x; Nieuwenhuis P., 1996, PHYSL IMMUNITY, P3; Nisbet ICT, 1999, GEN COMP ENDOCR, V114, P279, DOI 10.1006/gcen.1999.7255; Nunn CL, 2009, PHILOS T R SOC B, V364, P61, DOI 10.1098/rstb.2008.0148; O'Neal DM, 2011, PHYSIOL BEHAV, V102, P406, DOI 10.1016/j.physbeh.2010.11.034; Ottinger MA, 2007, CYTOGENET GENOME RES, V117, P352, DOI 10.1159/000103198; Owen J., 2012, VET RES, V43, P1; Owen-Ashley NT, 2008, BRAIN BEHAV IMMUN, V22, P614, DOI 10.1016/j.bbi.2007.12.005; Owen-Ashley NT, 2006, HORM BEHAV, V49, P15, DOI 10.1016/j.yhbeh.2005.04.009; Owen-Ashley NT, 2004, AM NAT, V164, P490, DOI 10.1086/423714; Palacios MG, 2007, P ROY SOC B-BIOL SCI, V274, P951, DOI 10.1098/rspb.2006.0192; Piersma T, 2000, GEN COMP ENDOCR, V120, P118, DOI 10.1006/gcen.2000.7543; Pihlaja M, 2006, J ANIM ECOL, V75, P1154, DOI 10.1111/j.1365-2656.2006.01136.x; Pitala N, 2009, J AVIAN BIOL, V40, P225, DOI 10.1111/j.1600-048X.2009.04452.x; Poiani A, 2000, BEHAV ECOL SOCIOBIOL, V47, P230, DOI 10.1007/s002650050660; Reperant LA, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0027814; Roberts M, 2009, J EXP BIOL, V212, P1811, DOI 10.1242/jeb.031047; Roberts ML, 2009, J EXP BIOL, V212, P3125, DOI 10.1242/jeb.030726; Roberts ML, 2004, ANIM BEHAV, V68, P227, DOI 10.1016/j.anbehav.2004.05.001; Rodriguez AB, 1996, DEV COMP IMMUNOL, V20, P451, DOI 10.1016/S0145-305X(96)00020-1; ROGERS CM, 1993, AUK, V110, P279; Rubenstein DR, 2008, GEN COMP ENDOCR, V159, P10, DOI 10.1016/j.ygcen.2008.07.013; Rubolini D, 2006, BEHAV ECOL SOCIOBIOL, V59, P344, DOI 10.1007/s00265-005-0057-0; Rubolini D, 2005, HORM BEHAV, V47, P592, DOI 10.1016/j.yhbeh.2005.01.006; Ruiz G, 2002, CONDOR, V104, P162, DOI 10.1650/0010-5422(2002)104[0162:HPASII]2.0.CO;2; Sadd BM, 2009, EVOL APPL, V2, P113, DOI 10.1111/j.1752-4571.2008.00057.x; Sandell MI, 2009, J EXP BIOL, V212, P815, DOI 10.1242/jeb.022111; Sapolsky RM, 2000, ENDOCR REV, V21, P55, DOI 10.1210/er.21.1.55; Sinclair JA, 2000, CAN J ZOOL, V78, P254, DOI 10.1139/cjz-78-2-254; Singh SS, 2007, BIOL RHYTHM RES, V38, P95, DOI 10.1080/09291010600902652; Singh SS, 2007, COMP BIOCHEM PHYS A, V146, P446, DOI 10.1016/j.cbpa.2006.12.024; Siopes TD, 2008, GEN COMP ENDOCR, V158, P245, DOI 10.1016/j.ygcen.2008.07.008; Skwarlo-Sonta K, 2002, NEUROENDOCRINOL LETT, V23, P61; SkwarloSonta K, 1996, ACTA NEUROBIOL EXP, V56, P341; SKWARLOSONTA K, 1992, IMMUNOL LETT, V33, P105, DOI 10.1016/0165-2478(92)90034-L; Svensson E, 1998, FUNCT ECOL, V12, P912, DOI 10.1046/j.1365-2435.1998.00271.x; Tarlow EM, 2003, GEN COMP ENDOCR, V133, P297, DOI 10.1016/S0016-6480(03)00192-8; Telfer S, 2010, SCIENCE, V330, P243, DOI 10.1126/science.1190333; Terron MP, 2009, EXP GERONTOL, V44, P653, DOI 10.1016/j.exger.2009.07.005; Tschirren B, 2005, J ANIM ECOL, V74, P675, DOI 10.1111/j.1365-2656.2005.00963.x; Tschirren B, 2004, P ROY SOC B-BIOL SCI, V271, P1371, DOI 10.1098/rspb.2004.2730; Veiga JP, 2004, HORM BEHAV, V46, P47, DOI 10.1016/j.yhbeh.2004.01.007; Weiss L., 1972, CELLS TISSUES IMMUNE; Wikelski M, 2003, NATURE, V423, P704, DOI 10.1038/423704a; Wingfield J.C., 1990, P232; Wingfield JC, 2003, ANIM BEHAV, V66, P807, DOI 10.1006/anbe.2003.2298; Wingfield JC, 2002, INTEGR COMP BIOL, V42, P600, DOI 10.1093/icb/42.3.600; Wingfield JC, 1998, AM ZOOL, V38, P191; Wingfield JC, 2001, BRAIN BEHAV EVOLUT, V57, P239, DOI 10.1159/000047243; Zuk M, 1996, INT J PARASITOL, V26, P1009, DOI 10.1016/S0020-7519(96)80001-4; Zysling DA, 2006, HORM BEHAV, V50, P200, DOI 10.1016/j.yhbeh.2006.03.004 132 3 3 3 120 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0016-6480 GEN COMP ENDOCR Gen. Comp. Endocrinol. SEP 1 2013 190 105 111 10.1016/j.ygcen.2013.05.005 7 Endocrinology & Metabolism Endocrinology & Metabolism 204WA WOS:000323400800015 23707379 2019-02-21 J Ovaskainen, O; Schigel, D; Ali-Kovero, H; Auvinen, P; Paulin, L; Norden, B; Norden, J Ovaskainen, Otso; Schigel, Dmitry; Ali-Kovero, Heini; Auvinen, Petri; Paulin, Lars; Norden, Bjorn; Norden, Jenni Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi ISME JOURNAL English Article 454-sequencing; fruit body; population dynamics; molecular species identification; mycelia; wood-inhabiting fungi WOOD-INHABITING FUNGI; SPATIAL SCALES; DECAYING FUNGI; SPRUCE LOGS; DEAD WOOD; COMMUNITIES; DIVERSITY; FOREST; SUCCESSION; PATTERNS Before the recent revolution in molecular biology, field studies on fungal communities were mostly confined to fruit bodies, whereas mycelial interactions were studied in the laboratory. Here we combine high-throughput sequencing with a fruit body inventory to study simultaneously mycelial and fruit body occurrences in a community of fungi inhabiting dead wood of Norway spruce. We studied mycelial occurrence by extracting DNA from wood samples followed by 454-sequencing of the ITS1 and ITS2 regions and an automated procedure for species identification. In total, we detected 198 species as mycelia and 137 species as fruit bodies. The correlation between mycelial and fruit body occurrences was high for the majority of the species, suggesting that high-throughput sequencing can successfully characterize the dominating fungal communities, despite possible biases related to sampling, PCR, sequencing and molecular identification. We used the fruit body and molecular data to test hypothesized links between life history and population dynamic parameters. We show that the species that have on average a high mycelial abundance also have a high fruiting rate and produce large fruit bodies, leading to a positive feedback loop in their population dynamics. Earlier studies have shown that species with specialized resource requirements are rarely seen fruiting, for which reason they are often classified as red-listed. We show with the help of high-throughput sequencing that some of these species are more abundant as mycelium in wood than what could be expected from their occurrence as fruit bodies. [Ovaskainen, Otso; Schigel, Dmitry; Ali-Kovero, Heini; Norden, Jenni] Univ Helsinki, Dept Biosci, Metapopulat Res Grp, FI-00014 Helsinki, Finland; [Auvinen, Petri; Paulin, Lars] Univ Helsinki, Inst Biotechnol, DNA Sequencing & Genom Lab, FI-00014 Helsinki, Finland; [Norden, Bjorn] Norwegian Inst Nat Res, N-0315 Oslo, Norway; [Norden, Bjorn] Univ Gothenburg, Dept Biol & Environm Sci, Gothenburg, Sweden; [Norden, Jenni] Univ Oslo, Dept Biosci, Microbial Evolut Res Grp, Oslo, Norway; [Norden, Jenni] Univ Oslo, Nat Hist Museum, Dept Res & Collect, Oslo, Norway Ovaskainen, O (reprint author), Univ Helsinki, Dept Biosci, Viikinkaari 1,POB 65, FI-00014 Helsinki, Finland. otso.ovaskainen@helsinki.fi Ovaskainen, Otso/D-9119-2012; Norden, Jenni/B-4800-2012; Auvinen, Petri/D-5044-2009 Ovaskainen, Otso/0000-0001-9750-4421; Norden, Jenni/0000-0001-8894-5815; Auvinen, Petri/0000-0002-3947-4778; Schigel, Dmitry/0000-0002-2919-1168 Academy of Finland [250444, 257748, 137135]; European Research Council (ERC) [205905]; Research Council of Norway [203808/E40] We thank Tiina Parkkima, Ismo Eriksson and Elisabet Ottosson for their assistance in the field work, Tuuli Pietila, Kirsi Lipponen, Eeva-Marja Turkki and Pia Laine for their assistance in the 454-sequencing, Karl-Henrik Larsson, Otto Miettinen and Jan Stenlid for providing reference sequences, and Raisa Makipaa and Markku Tamminen for their help with acquiring and managing the dead wood and fruit body data. K-H Larsson is thanked also for assigning our focal species to fungal orders according to the most recent knowledge. We thank three anonymous reviewers for helpful comments on the manuscript. The study was supported by the Academy of Finland (Grant no. 250444 to OO, Grant no. 257748 to DS and Grant no. 137135 to JN), the European Research Council (ERC Starting Grant no. 205905 to OO), and the Research Council of Norway (Grant 203808/E40 to K-H Larsson and JN). Baldrian P, 2013, FUNGAL ECOL, V6, P1, DOI 10.1016/j.funeco.2012.10.002; Boddy L, 2000, FEMS MICROBIOL ECOL, V31, P185, DOI 10.1016/S0168-6496(99)00093-8; BRANDRUD T. E., 2010, 2010 NORWEGIAN RED L, P87; Buee M, 2009, NEW PHYTOL, V184, P449, DOI 10.1111/j.1469-8137.2009.03003.x; Charrette NA, 2006, ECOLOGY, V87, P2330, DOI 10.1890/0012-9658(2006)87[2330:RSBBAL]2.0.CO;2; DAHLBERG A., 2010, 2010 RED LIST SWEDIS, P247; Das MK, 2008, PHYTOPATHOLOGY, V98, P282; Edman M, 2004, ECOL APPL, V14, P893, DOI 10.1890/03-5103; Edman M, 2004, ECOGRAPHY, V27, P103, DOI 10.1111/j.0906-7590.2004.03671.x; GARDES M, 1993, MOL ECOL, V2, P113, DOI 10.1111/j.1365-294X.1993.tb00005.x; Gates GM, 2011, FUNGAL ECOL, V4, P56, DOI 10.1016/j.funeco.2010.07.005; Gillevet PM, 2009, FUNGAL ECOL, V2, P160, DOI 10.1016/j.funeco.2009.04.001; Halme P, 2012, BIODIVERS CONSERV, V21, P205, DOI 10.1007/s10531-011-0176-z; Holmer L, 1997, OIKOS, V79, P77, DOI 10.2307/3546092; Holmer L, 1997, MYCOL RES, V101, P714, DOI 10.1017/S0953756296003243; Hottola J, 2008, BIODIVERS CONSERV, V17, P2559, DOI 10.1007/s10531-008-9317-4; Hottola J, 2009, J ECOL, V97, P1320, DOI 10.1111/j.1365-2745.2009.01583.x; Jonsson BG, 2005, SILVA FENN, V39, P289, DOI 10.14214/sf.390; Jumpponen A, 2009, NEW PHYTOL, V184, P438, DOI 10.1111/j.1469-8137.2009.02990.x; Jumpponen A, 2010, MOL ECOL, V19, P41, DOI 10.1111/j.1365-294X.2009.04483.x; Junninen K, 2006, ECOGRAPHY, V29, P75, DOI 10.1111/j.2005.0906-7590.04358.x; Kirk KL, 1997, ECOLOGY, V78, P434, DOI 10.1890/0012-9658(1997)078[0434:LHRTVE]2.0.CO;2; Koljalg U, 2005, NEW PHYTOL, V166, P1063, DOI 10.1111/j.1469-8137.2005.01376.x; Kotiaho JS, 2005, P NATL ACAD SCI USA, V102, P1963, DOI 10.1073/pnas.0406718102; Kotiranta H, 2009, NORRLINIA, V19, P1; Kotiranta H., 2010, 2010 RED LIST FINNIS, P249; Kubartova A, 2012, MOL ECOL, V21, P4514, DOI 10.1111/j.1365-294X.2012.05723.x; Lim YW, 2010, J MICROBIOL, V48, P284, DOI 10.1007/s12275-010-9369-5; Lindner DL, 2011, FUNGAL ECOL, V4, P449, DOI 10.1016/j.funeco.2011.07.001; Lumini E, 2010, ENVIRON MICROBIOL, V12, P2165, DOI 10.1111/j.1462-2920.2009.02099.x; MAC ARTHUR ROBERT H., 1967; MARTIN TE, 1995, ECOL MONOGR, V65, P101, DOI 10.2307/2937160; Norden J, 2013, J ECOL, V101, P701, DOI 10.1111/1365-2745.12085; Norros V, 2012, OIKOS, V121, P961, DOI 10.1111/j.1600-0706.2012.20052.x; North A, 2011, EVOLUTION, V65, P1739, DOI 10.1111/j.1558-5646.2011.01254.x; Odor P, 2006, BIOL CONSERV, V131, P58, DOI 10.1016/j.biocon.2006.02.004; Olsson J, 2011, BIOL CONSERV, V144, P1100, DOI 10.1016/j.biocon.2010.12.029; Opik M, 2010, NEW PHYTOL, V188, P223, DOI 10.1111/j.1469-8137.2010.03334.x; Ovaskainen O, 2010, FUNGAL ECOL, V3, P274, DOI 10.1016/j.funeco.2010.01.001; Ovaskainen O, 2010, ECOLOGY, V91, P2514, DOI 10.1890/10-0173.1; Owens IPF, 2000, P NATL ACAD SCI USA, V97, P12144, DOI 10.1073/pnas.200223397; Penttila R, 2006, OIKOS, V114, P225, DOI 10.1111/j.2006.0030-1299.14349.x; Pinheiro J., 2012, NLME LINEAR NONLINEA, P1; Prevost-Boure NC, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0024166; Rajala T, 2011, FUNGAL ECOL, V4, P437, DOI 10.1016/j.funeco.2011.05.005; Stokland JN, 2011, FOREST ECOL MANAG, V261, P1707, DOI 10.1016/j.foreco.2011.01.003; Straatsma G, 2001, MYCOL RES, V105, P515, DOI 10.1017/S0953756201004154; Suchodolski JS, 2010, J VET INTERN MED, V24, P748; Vainio EJ, 2000, MYCOL RES, V104, P927, DOI 10.1017/S0953756200002471; Vainio EJ, 1998, MYCOL RES, V102, P187, DOI 10.1017/S0953756297004577; Verheyen K, 2003, J ECOL, V91, P563, DOI 10.1046/j.1365-2745.2003.00789.x; Vetrovsky T, 2011, BIODEGRADATION, V22, P709, DOI 10.1007/s10532-010-9390-8; WHITE TJ, 1990, PCR PROTOCOLS GUIDE, V18, P315, DOI DOI 10.1016/B978-0-12-372180-8.50042-1; Zhang HB, 2008, CURR MICROBIOL, V56, P358, DOI 10.1007/s00284-007-9092-6 54 66 69 4 92 NATURE PUBLISHING GROUP LONDON MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND 1751-7362 1751-7370 ISME J ISME J. SEP 2013 7 9 1696 1709 10.1038/ismej.2013.61 14 Ecology; Microbiology Environmental Sciences & Ecology; Microbiology 204RI WOS:000323385600003 23575372 Bronze, Green Published 2019-02-21 J Gharrett, AJ; Joyce, J; Smoker, WW Gharrett, Anthony J.; Joyce, John; Smoker, William W. Fine-scale temporal adaptation within a salmonid population: mechanism and consequences MOLECULAR ECOLOGY English Article adaptation; development and evolution; ecological genetics; fish; life history evolution PINK SALMON; ONCORHYNCHUS-GORBUSCHA; LOCAL ADAPTATION; ATLANTIC SALMON; GENETIC-VARIATION; PACIFIC SALMON; LIFE-HISTORY; FRESH-WATER; CHUM SALMON; ALASKA We demonstrate a clear example of local adaptation of seasonal timing of spawning and embryo development. The consequence is a population of pink salmon that is segmented into spawning groups that use the same limited habitat. We synthesize published observations with results of new analyses to demonstrate that genetic variation of these traits results in survival differentials related to that variation, and that density-dependent embryo mortality and seasonally variable juvenile mortality are a mechanism of selection. Most examples of local adaptation in natural systems depend on observed correlations between environments and fitness traits, but do not fully demonstrate local adaptation: that the trait is genetically determined, exhibits different fitness in common environments or across different environments, and its variation is mechanistically connected to fitness differences. The geographic or temporal scales of local adaptation often remain obscure. Here, we show that heritable, fine-scale differences of timing of reproductive migration in a pink salmon (Oncorhynchus gorbuscha) resulted in temporal structure that persisted several generations; the differences enable a density-dependent population to pack more spawners into limited spawning habitat, that is, enhance its fitness. A balanced trade-off of survivals results because embryos from early-migrating fish have a lower freshwater survival (harsh early physical conditions and disturbance by late spawners), but emigrant fry from late-migrating fish have lower marine survivals (timing of their vernal emergence into the estuarine environment). Such fine-scale local adaptations increase the genetic portfolio of the populations and may provide a buffer against the impacts of climate change. [Gharrett, Anthony J.; Joyce, John; Smoker, William W.] Univ Alaska Fairbanks, Div Fisheries, Sch Fisheries & Ocean Sci, Juneau, AK 99801 USA; [Joyce, John] NOAA, Auke Bay Labs, Alaska Fisheries Sci Ctr, Natl Marine Fisheries Serv, Juneau, AK 99801 USA Gharrett, AJ (reprint author), Univ Alaska Fairbanks, Div Fisheries, Sch Fisheries & Ocean Sci, 17101 Point Lena Loop Rd, Juneau, AK 99801 USA. a.gharrett@alaska.edu National Marine Fisheries Service; Alaska Sea Grant College Program We thank the National Marine Fisheries Service for their support and use of the Auke Creek facility. S. Taylor provided advice and support at the hatchery and weir technicians M. James, J. Echave and S. Vulstek collected samples and data. This work was supported by the Alaska Sea Grant College Program. R. Kovach, D. Tallmon, M. Garvin, K. Palof, C. Manhard, D. Oxman and Terrance J. Quinn provided constructive comments on the manuscript. Thomas P. Quinn's review was helpful. References to trade names do not imply endorsement by the National Marine Fisheries Service, NOAA. Adkison MD, 1995, CAN J FISH AQUAT SCI, V52, P2762, DOI 10.1139/f95-865; Allendorf F.W., 1984, P1; ASPINWALL N, 1974, EVOLUTION, V28, P295, DOI 10.1111/j.1558-5646.1974.tb00749.x; Bentsen H. B., 1994, Aquaculture and Fisheries Management, V25, P89, DOI 10.1111/j.1365-2109.1994.tb00669.x; BENTSEN HB, 1991, AQUACULTURE, V98, P263, DOI 10.1016/0044-8486(91)90390-S; Bernatchez L, 1996, EVOLUTION, V50, P624, DOI 10.1111/j.1558-5646.1996.tb03873.x; Bienfang Paul K., 1995, Canadian Special Publication of Fisheries and Aquatic Sciences, V121, P483; Brannon E.L., 1987, Canadian Special Publication of Fisheries and Aquatic Sciences, V96, P120; Brykov VA, 1999, J FISH BIOL, V55, P617, DOI 10.1111/j.1095-8649.1999.tb00703.x; Echave JD, 2010, THESIS U ALASKA FAIR; Fillatre EK, 2003, MOL ECOL, V12, P1793, DOI 10.1046/j.1365-294X.2003.01869.x; Fraser DJ, 2011, HEREDITY, V106, P404, DOI 10.1038/hdy.2010.167; Fukushima M, 1997, CAN J FISH AQUAT SCI, V54, P96, DOI 10.1139/cjfas-54-1-96; Fukushima M, 1998, CAN J FISH AQUAT SCI, V55, P618, DOI 10.1139/cjfas-55-3-618; Fukushima Michio, 1997, Acta Hydrobiologica Sinica, V21, P1; Garcia de Leaniz C, 2007, BIOL REV, V82, P173, DOI 10.1111/j.1469-185X.2006.00004.x; Geiger HJ, 2007, T AM FISH SOC, V136, P1688, DOI 10.1577/T07-050.1; Gharrett AJ, 2001, GENETICA, V111, P259, DOI 10.1023/A:1013791314900; GHARRETT AJ, 1993, NATO ADV SCI INST SE, V248, P197; Greene CM, 2010, BIOL LETTERS, V6, P382, DOI 10.1098/rsbl.2009.0780; Heard W.R., 1991, P119; Hebert KP, 1998, CAN J FISH AQUAT SCI, V55, P2048, DOI 10.1139/f98-084; HEGGBERGET TG, 1986, CAN J FISH AQUAT SCI, V43, P1828, DOI 10.1139/f86-227; Hendry AP, 1999, OIKOS, V85, P499, DOI 10.2307/3546699; Hendry AP, 2005, MOL ECOL, V14, P901, DOI 10.1111/j.1365-294X.2005.02480.x; Hendry MA, 2002, T AM FISH SOC, V131, P418, DOI 10.1577/1548-8659(2002)131<0418:GAPVTT>2.0.CO;2; Hodgson S, 2002, CAN J ZOOL, V80, P542, DOI 10.1139/Z02-030; Hutchings JA, 2011, HEREDITY, V106, P421, DOI 10.1038/hdy.2010.166; HUTCHINSON GE, 1948, ANN NY ACAD SCI, V50, P221, DOI 10.1111/j.1749-6632.1948.tb39854.x; JENSEN JOT, 1989, AQUACULTURE, V78, P163, DOI 10.1016/0044-8486(89)90030-6; JOYCE J, 1986, THESIS U ALASKA FAIR; Kawecki TJ, 2004, ECOL LETT, V7, P1225, DOI 10.1111/j.1461-0248.2004.00684.x; Kovach RP, 2013, EVOLUTIONARY APPL, DOI 10.1111/eva.12066; Kovach RP, 2012, P ROY SOC B-BIOL SCI, V279, P3870, DOI 10.1098/rspb.2012.1158; Lane S., 1990, AM FISH SOC S, V7, P395; Lynch M, 1998, GENETICS ANAL QUANTI; MAGNUSSON KP, 1987, ENVIRON BIOL FISH, V20, P67, DOI 10.1007/BF00002026; Manhard CV, 2012, THESIS U ALASKA FAIR; McGregor A.J., 1998, North Pacific Anadromous Fish Commission Bulletin, V1, P262; McGregor AJ, 1982, THESIS U ALASKA JUNE; MCNEIL WJ, 1964, J FISH RES BOARD CAN, V21, P1385, DOI 10.1139/f64-119; Meier K, 2011, HEREDITY, V106, P488, DOI 10.1038/hdy.2010.164; Mortensen D, 2000, FISH B-NOAA, V98, P319; Mueter FJ, 2005, T AM FISH SOC, V134, P105, DOI 10.1577/T-04-033.1; Nielsen JL, 1999, ECOL FRESHW FISH, V8, P159, DOI 10.1111/j.1600-0633.1999.tb00067.x; O'Hara RB, 2005, GENETICS, V171, P1331, DOI 10.1534/genetics.105.044545; Pella JJ, 1987, POPULATION GENETICS, P247; Quinn TP, 2005, BEHAV ECOLOGY PACIFI; Ricker W. E., 1975, B FISHERIES RES BOAR, V191, P191; RICKER WE, 1972, HR MACMILLAN LECTURE, P19; Schindler DE, 2010, NATURE, V465, P609, DOI 10.1038/nature09060; Sheridan WL, 1962, HR MACMILLAN LECTURE, P87; Smoker William W., 1998, Alaska Fishery Research Bulletin, V5, P46; Stewart DC, 2002, CAN J FISH AQUAT SCI, V59, P276, DOI 10.1139/F02-011; TALLMAN RF, 1991, CAN J FISH AQUAT SCI, V48, P661, DOI 10.1139/f91-083; TALLMAN RF, 1986, AQUACULTURE, V57, P211, DOI 10.1016/0044-8486(86)90199-7; TAYLOR EB, 1991, AQUACULTURE, V98, P185, DOI 10.1016/0044-8486(91)90383-I; Taylor SG, 2008, GLOBAL CHANGE BIOL, V14, P229, DOI 10.1111/j.1365-2486.2007.01494.x; Velsen FPJ, 1987, 626 MIN SUPPL SERV C; WEIR BS, 1984, EVOLUTION, V38, P1358, DOI 10.1111/j.1558-5646.1984.tb05657.x; Williams G. C., 1996, ADAPTATION NATURAL S; Woody CA, 2000, T AM FISH SOC, V129, P1031, DOI 10.1577/1548-8659(2000)129<1031:TVIPAG>2.3.CO;2; ZIEMANN DA, 1991, MAR BIOL, V109, P321, DOI 10.1007/BF01319400 63 19 20 0 79 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0962-1083 1365-294X MOL ECOL Mol. Ecol. SEP 2013 22 17 4457 4469 10.1111/mec.12400 13 Biochemistry & Molecular Biology; Ecology; Evolutionary Biology Biochemistry & Molecular Biology; Environmental Sciences & Ecology; Evolutionary Biology 206GI WOS:000323506400009 23980763 2019-02-21 J Brundrett, MC; Ashwath, N Brundrett, Mark C.; Ashwath, Nanjappa Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats PLANT AND SOIL English Article Arbuscular mycorrhizal fungi; Glomeromycota; Fungus diversity; Fungus inoculum; Tropical plant communities; Mine rehabilitation; Disturbance; Soil properties VESICULAR-ARBUSCULAR MYCORRHIZAE; COMMUNITY STRUCTURE; ENDOMYCORRHIZAL FUNGI; SPECIES RICHNESS; SPATIAL-PATTERNS; SINGLE SPORES; KAKADU REGION; POT CULTURES; SAND DUNE; FOREST The aim was to investigate the diversity and distribution of Glomeromycotan fungi forming arbuscular mycorrhizal associations (AMF) in undisturbed and disturbed habitats in the vicinity of Kakadu National Park in tropical Australia. This is a tropical region with a 7-9 month dry season and a monsoonal wet season. Complimentary methods of fungus detection were used to investigate the diversity and relative dominance of AMF at a regional scale. Soils were sampled from 32 sites, representing eucalypt savanna woodlands, wetlands, sandstone escarpment, rainforest, and disturbed mine waste rock dumps (overburden or spoil). Populations of AMF were identified and quantified using spores from soil. Morphology patterns of fungi colonising bait plant roots were examined and isolates were obtained by four complimentary pot-culturing methods. Different methods of detecting fungi produced different answers about which AMF were most important in the tested soils. In particular, spore surveys apparently underestimated the importance of Glomus species and overestimated the activity of Acaulospora species with numerous small spores, while calculated spore biovolumes overestimated the importance of Scutellospora and Gigaspora species with large spores, relative to inoculum levels of these fungus categories measured in bioassays. Spore surveys revealed 15 species of fungi and 8 additional fungi were recovered from the same soil samples using pot-culture isolation methods. Pot-cultures were especially important for detecting Glomus species that had high inoculum levels, but rarely produced spores in soils. Spores of AMF increased in abundance as vegetation developed in mine habitats reaching a peak that was higher than in undisturbed plant communities. Spore numbers (but not biovolumes) were well correlated with bioassay measurements of inoculum levels. Most AMF species were widespread, but several were restricted to disturbed habitats or wetland soils. Undisturbed sites had a substantially higher diversity of AMF than partially vegetated mine waste rock dumps. It is recommended that AMF population surveys should not be based entirely on spore occurrence data, to avoid overlooking important fungi that sporulate infrequently. These fungi could be detected by bioassays or pot culture isolation from soil. Major variations in the detectability of AMF correspond to different life history strategies and can mask variations in their abundance. [Brundrett, Mark C.] Univ Western Australia, Fac Nat & Agr Sci, Sch Plant Biol, Crawley, WA 6009, Australia; [Ashwath, Nanjappa] CQUniversity, Sch Med & Appl Sci, Rockhampton, Qld 4702, Australia; [Ashwath, Nanjappa] Environm Protect Agcy Australia, Environm Res Inst, Jabiru 0886, Australia mark.brundrett@uwa.edu.au; n.ashwath@cqu.edu.au Brundrett, Mark/0000-0002-2501-9037; Ashwath, Nanjappa/0000-0002-4032-4507 Environmental Research Institute of the Supervising Scientist, a division of the Australian Environmental Protection Agency; University of Western Australia This paper resulted from a collaborative research funded by the Environmental Research Institute of the Supervising Scientist, a division of the Australian Environmental Protection Agency, with The University of Western Australia. Drs. David Jasper and Lyn Abbott helped manage this project and Dr Alan Robson provided valuable advice. Dr Arthur Johnston of the Environmental Research Institute of the Supervising Scientist provided key logistic support. Ben Bayliss and Alison McInnes provided major assistance with fieldwork. Krishna Mann, Margaret Collins and Liz Thorburn provided laboratory and glasshouse assistance with pot cultures. We are also grateful to Kakadu National Park, Ranger Uranium Mine Pty Ltd, Queensland Mines Ltd. and the CSIRO Tropical Ecosystems Research Centre for permission to collect soil samples. Chris Walker assisted with fungal identification. ABBOTT LK, 1982, AUST J BOT, V30, P485, DOI 10.1071/BT9820485; Allen EB, 2003, ECOL APPL, V13, P1701, DOI 10.1890/02-5309; ALLEN MF, 1992, MYCOL RES, V96, P447, DOI 10.1016/S0953-7562(09)81089-7; An ZQ, 1998, SOIL BIOL BIOCHEM, V30, P1133, DOI 10.1016/S0038-0717(97)00194-6; Ashwath N, 1994, PLANT SOIL, V171, P83; Ashwath N, 1993, WAST ROCK DUMP S 7 8; Aswathappa N, 1986, ACIAR P, V16, P70; Bever JD, 1996, J ECOL, V84, P71, DOI 10.2307/2261701; Bever JD, 1999, AM J BOT, V86, P1209, DOI 10.2307/2656768; BLOSS HE, 1987, MYCOLOGIA, V79, P649, DOI 10.2307/3807610; Boerner REJ, 1996, MYCORRHIZA, V6, P79, DOI 10.1007/s005720050111; BRUNDRETT M, 1995, SOIL BIOL BIOCHEM, V27, P85, DOI 10.1016/0038-0717(94)00135-N; BRUNDRETT M, 1991, ADV ECOL RES, V21, P171, DOI 10.1016/S0065-2504(08)60099-9; Brundrett M., 1996, WORKING MYCORRHIZAS; Brundrett M. C., 2008, MYCORRHIZAL ASS WEB; Brundrett MC, 2009, PLANT SOIL, V320, P37, DOI 10.1007/s11104-008-9877-9; Brundrett MC, 1999, MYCORRHIZA, V8, P305, DOI 10.1007/s005720050251; Brundrett MC, 1996, PLANT SOIL, V184, P159, DOI 10.1007/BF00029285; Brundrett MC, 1995, NEW PHYTOL, V131, P461, DOI 10.1111/j.1469-8137.1995.tb03083.x; Brundrett MC, 1996, PLANT SOIL, V184, P173; CHUANG TY, 1981, SOIL BIOL BIOCHEM, V13, P185, DOI 10.1016/0038-0717(81)90018-3; Clarke KR, 2006, PRIMER V6 USER MANUA; Corkidi L, 1997, MYCORRHIZA, V7, P9, DOI 10.1007/s005720050157; Cuenca G, 1998, SOIL BIOL BIOCHEM, V30, P711, DOI 10.1016/S0038-0717(97)00191-0; DICKMAN LA, 1984, CAN J BOT, V62, P2272, DOI 10.1139/b84-309; Dumbrell AJ, 2010, J ECOL, V98, P419, DOI 10.1111/j.1365-2745.2009.01622.x; Enkhtuya B, 2000, APPL SOIL ECOL, V14, P201, DOI 10.1016/S0929-1393(00)00057-3; Eom AH, 2000, OECOLOGIA, V122, P435, DOI 10.1007/s004420050050; Feldmann F, 1998, SYMBIOSIS, V25, P131; Frost SM, 2001, ARID LAND RES MANAG, V15, P3, DOI 10.1080/153249801300000770; GEMMA JN, 1990, AM J BOT, V77, P1193, DOI 10.2307/2444630; Gould AB, 1998, CAN J BOT, V76, P204, DOI 10.1139/b97-149; Guadarrama P, 1999, MYCORRHIZA, V8, P267, DOI 10.1007/s005720050244; Helm DJ, 1996, CAN J BOT, V74, P1496, DOI 10.1139/b96-180; Husband R, 2002, MOL ECOL, V11, P2669, DOI 10.1046/j.1365-294X.2002.01647.x; JANOS DP, 1995, ECOLOGY, V76, P1852, DOI 10.2307/1940717; JASPER DA, 1987, AUST J BOT, V35, P641, DOI 10.1071/BT9870641; JOHNSON NC, 1988, AGR ECOSYST ENVIRON, V21, P143; JOHNSON NC, 1992, ECOLOGY, V73, P2034, DOI 10.2307/1941453; JOHNSON NC, 1991, OECOLOGIA, V86, P349, DOI 10.1007/BF00317600; Koske RE, 1997, AM J BOT, V84, P118, DOI 10.2307/2445889; KOSKE RE, 1987, MYCOLOGIA, V79, P55, DOI 10.2307/3807744; LEE PJ, 1994, MYCOL RES, V98, P453, DOI 10.1016/S0953-7562(09)81203-3; Mangan SA, 2004, OECOLOGIA, V141, P687, DOI 10.1007/s00442-004-1684-2; Mangan SA, 2002, OECOLOGIA, V131, P587, DOI [10.1007/s00442-002-0907-7, 10.1007/s00422-002-0907-7]; May TW, 2001, AUST SYST BOT, V14, P329, DOI 10.1071/SB00013; MCGEE PA, 1994, MYCOL RES, V98, P246, DOI 10.1016/S0953-7562(09)80193-7; Merryweather J, 1998, NEW PHYTOL, V138, P131, DOI 10.1046/j.1469-8137.1998.00889.x; Miller SP, 1999, OECOLOGIA, V119, P586, DOI 10.1007/s004420050823; MORTON JB, 1995, CAN J BOT, V73, pS25, DOI 10.1139/b95-221; Oehl F, 2005, NEW PHYTOL, V165, P273, DOI 10.1111/j.1469-8137.2004.01235.x; Oehl F, 2009, AGR ECOSYST ENVIRON, V134, P257, DOI 10.1016/j.agee.2009.07.008; Opik M, 2006, J ECOL, V94, P778, DOI 10.1111/j.1365-2745.2006.01136.x; Picone C, 2000, BIOTROPICA, V32, P734, DOI 10.1646/0006-3606(2000)032[0734:DAAOAM]2.0.CO;2; Reddell P, 1997, BIOTROPICA, V29, P184, DOI 10.1111/j.1744-7429.1997.tb00023.x; Rosendahl S, 2008, NEW PHYTOL, V178, P253, DOI 10.1111/j.1469-8137.2008.02378.x; Schnoor TK, 2010, MYCORRHIZA, V21, P211; Schussler A, 2001, MYCOL RES, V105, P1413, DOI 10.1017/S0953756201005196; Shi P, 2012, MYCORRHIZA, V22, P501, DOI 10.1007/s00572-011-0425-8; Stockinger H, 2010, NEW PHYTOL, V187, P461, DOI 10.1111/j.1469-8137.2010.03262.x; Sturmer SL, 2011, MYCORRHIZA, V21, P255, DOI 10.1007/s00572-010-0330-6; STURMER SL, 1994, CAN J BOT, V72, P359; Stutz JC, 1996, CAN J BOT, V74, P1883, DOI 10.1139/b96-225; Stutz JC, 2000, CAN J BOT, V78, P237, DOI 10.1139/cjb-78-2-237; Sykorova Z, 2007, MYCORRHIZA, V18, P1, DOI 10.1007/s00572-007-0147-0; Tchabi A, 2009, MYCORRHIZA, V19, P375, DOI 10.1007/s00572-009-0241-6; Titus Jonathan H., 1998, Madrono, V45, P162; TOKESHI M, 1993, ADV ECOL RES, V24, P111, DOI 10.1016/S0065-2504(08)60042-2; van der Heijden MGA, 1998, ECOLOGY, V79, P2082, DOI 10.1890/0012-9658(1998)079[2082:DAMFSA]2.0.CO;2; Violi HA, 2008, FOREST ECOL MANAG, V254, P276, DOI 10.1016/j.foreco.2007.08.016; WARNER NJ, 1987, MYCOLOGIA, V79, P721, DOI 10.2307/3807824; Whitcomb S, 2007, MYCORRHIZA, V17, P429, DOI 10.1007/s00572-007-0118-5; Zhang Y, 2004, PLANT SOIL, V261, P257, DOI 10.1023/B:PLSO.0000035572.15098.f6 73 21 22 1 89 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0032-079X PLANT SOIL Plant Soil SEP 2013 370 1-2 419 433 10.1007/s11104-013-1613-4 15 Agronomy; Plant Sciences; Soil Science Agriculture; Plant Sciences 202XG WOS:000323253500031 2019-02-21 J Giosan, C Giosan, Cezar "Slow' reproductive strategy: A negative predictor of depressive symptomatology AUSTRALIAN JOURNAL OF PSYCHOLOGY English Article depression; evolutionary psychopathology; fitness; high-K strategy; Life History Theory POSTTRAUMATIC-STRESS-DISORDER; LIFE-HISTORY STRATEGY; RISK-FACTORS; STRUCTURAL RELATIONS; INVENTORY; SELF; HYPOTHESIS; EVENTS The present study examined the associations between a high-K (slow) life history strategy and depressive symptomatology. The participants were a sample of 494 male utility workers who underwent psychological evaluations. It was hypothesised that high-K will correlate negatively with, and will be a negative predictor of, depressive symptomatology. The results confirmed the predictions, showing that high-K accounts for 15% of the variance in depressive symptomatology after controlling for risk factors for depression such as demographics, prior traumatic experiences, past depression, and recent negative life events. Implications of the results are discussed. [Giosan, Cezar] Berkeley Coll, New York, NY 10017 USA; [Giosan, Cezar] Univ Babes Bolyai, R-3400 Cluj Napoca, Romania Giosan, C (reprint author), Berkeley Coll, Sch Liberal Arts, 12 East 41st St, New York, NY 10017 USA. cgiosan@gmail.com Giosan, Cezar/J-7426-2015 Giosan, Cezar/0000-0002-1260-6830 American Psychiatric Association, 2000, DIAGN STAT MAN MENT; Beck A. T, 1996, MANUAL BECK DEPRESSI; Beck AT, 1996, J PERS ASSESS, V67, P588, DOI 10.1207/s15327752jpa6703_13; BECK AT, 1961, ARCH GEN PSYCHIAT, V4, P561; BOGAERT AF, 1989, PERS INDIV DIFFER, V10, P1071, DOI 10.1016/0191-8869(89)90259-6; Crow T. J., 1991, BRIT J PSYCHIAT S, V14, P76; CROW TJ, 1995, BRIT J PSYCHIAT, V167, P12, DOI 10.1192/bjp.167.1.12; Crow TJ, 1997, SCHIZOPHR RES, V28, P127, DOI 10.1016/S0920-9964(97)00110-2; Dunkel CS, 2010, PERS INDIV DIFFER, V48, P681, DOI 10.1016/j.paid.2009.12.014; Evans D, 1999, ASCAP NEWSLETTER, V12, P12; Figueredo AJ, 2007, HUM NATURE-INT BIOS, V18, P47, DOI 10.1007/BF02820846; Figueredo AJ, 2006, DEV REV, V26, P243, DOI 10.1016/j.dr.2006.02.002; First M. B., 1997, STRUCTURED CLIN INTE; Fisher H. E, 2007, EVOLUTIONARY COGNITI, P248; Fiske AP, 1997, J NERV MENT DIS, V185, P211, DOI 10.1097/00005053-199704000-00001; Giosan C, 2007, NE EV PSYCH C SUNY N; Giosan C, 2006, EVOLUTIONARY PSYCHOL, V41, P394; Giosan C, 2009, EVOL PSYCHOL-US, V7, P28; Gladden P., 2009, J EVOLUTIONARY PSYCH, V7, P167, DOI DOI 10.1556/JEP.7.2009.2.5; Gladden PR, 2010, PERS INDIV DIFFER, V48, P731, DOI 10.1016/j.paid.2010.01.016; GREEN BL, 1996, MEASUREMENT STRESS T, P366; Hagen EH, 2003, DAHL WS ENV, P95; Heim C, 1997, ANN NY ACAD SCI, V821, P194, DOI 10.1111/j.1749-6632.1997.tb48279.x; Holzel L, 2011, J AFFECT DISORDERS, V129, P1, DOI 10.1016/j.jad.2010.03.025; Kessler RC, 2003, JAMA-J AM MED ASSOC, V289, P3095, DOI 10.1001/jama.289.23.3095; Kirsner BR, 2009, EVOL PSYCHOL-US, V7, P374; Kirsner BR, 2003, J AFFECT DISORDERS, V75, P131, DOI 10.1016/S0165-0327(02)00048-4; Leith KP, 1996, J PERS SOC PSYCHOL, V71, P1250, DOI 10.1037/0022-3514.71.6.1250; LEWINSOHN PM, 1988, J ABNORM PSYCHOL, V97, P251, DOI 10.1037/0021-843X.97.3.251; MAC ARTHUR ROBERT H., 1967; Maercker A, 2004, BRIT J PSYCHIAT, V184, P482, DOI 10.1192/bjp.184.6.482; McGuire M, 1997, DEPRESSION EVOLUTION, P255; Mealey L, 2000, HUM NATURE-INT BIOS, V11, P105, DOI 10.1007/s12110-000-1005-3; National Institute of Mental Health, 1994, DEPR FACT SHEET 00 4; Nesse R, 1998, BRIT J MED PSYCHOL, V71, P397, DOI 10.1111/j.2044-8341.1998.tb01000.x; Nesse R. M, 2004, WHY DO WE GET SIC NE; Nesse RM, 2000, ARCH GEN PSYCHIAT, V57, P14, DOI 10.1001/archpsyc.57.1.14; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PRICE J, 1994, BRIT J PSYCHIAT, V164, P309, DOI 10.1192/bjp.164.3.309; SARASON IG, 1978, J CONSULT CLIN PSYCH, V46, P932, DOI 10.1037/0022-006X.46.5.932; SHROUT PE, 1989, J ABNORM PSYCHOL, V98, P460, DOI 10.1037/0021-843X.98.4.460; Wakefield JC, 1997, BEHAV RES THER, V35, P633, DOI 10.1016/S0005-7967(97)00018-1; Wakefield JC, 2003, ADVANCING DSM: DILEMMAS IN PSYCHIATRIC DIAGNOSIS, P23; Watson PJ, 2002, J AFFECT DISORDERS, V72, P1, DOI 10.1016/S0165-0327(01)00459-1; WENNER CJ, 2005, ANN M HUM BEH EV SOC 45 4 4 0 3 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0004-9530 AUST J PSYCHOL Aust. J. Psychol. SEP 2013 65 3 156 162 10.1111/ajpy.12016 7 Psychology, Multidisciplinary Psychology 195SF WOS:000322723200003 2019-02-21 J Callander, S; Kahn, AT; Hunt, J; Backwell, PRY; Jennions, MD Callander, Sophia; Kahn, Andrew T.; Hunt, John; Backwell, Patricia R. Y.; Jennions, Michael D. The effect of competitors on calling effort and life span in male field crickets BEHAVIORAL ECOLOGY English Article black field cricket; life span; phenotypic plasticity; reproductive effort; social environment; Teleogryllus commodus SEXUALLY SELECTED TRAITS; TELEOGRYLLUS-COMMODUS WALKER; GRYLLUS-BIMACULATUS DEGEER; OPERATIONAL SEX-RATIO; MALE MATING SUCCESS; SOCIAL-ENVIRONMENT; SPERM COMPETITION; POPULATION-DENSITY; MALE LONGEVITY; FEMALE CHOICE How should males respond to sexual rivals? We found evidence that male crickets increase their courtship calling effort when competing with a rival, but relax when their rival dies. Also, competing males died sooner than those that were free to court without a rival. These results highlight the importance of behavioral changes in courtship by males to life history strategies.Temporal variation in the strength of selection on male sexual traits is often attributable to changes in the social environment that alter the number of competitors. Selection could favor phenotypic plasticity in male investment into sexual traits if there are cues indicative of current and, possibly, future levels of mating competition. In many taxa, males court more intensely when rivals are present, but the extent to which phenotypically plastic responses differ predictably among males is less well studied. For example, will larger males show a greater or smaller change in courtship in response to the presence of rivals? In addition, the effects of any changes in courtship on key life-history traits have been understudied. In this study, we experimentally tested male crickets (Teleogryllus commodus) from 3 populations to determine how the presence or absence of a rival affects: 1) calling effort, 2) life span, and 3) whether male body size (correlated with dominance) influences any changes in life span or calling effort. Calling effort increased significantly with body size, mainly due to daily calling effort increasing with age and larger males living longer. Considering all males, there was no effect of rival presence on lifetime calling effort. However, within the rival present treatment, after correcting for age, the longer lived of 2 paired males called significantly more before his rival died than afterwards. This implies that there is a plastic shift in courtship effort. Finally, larger males lived significantly longer and, crucially, males housed with a rival had, on average, a significantly shorter life span. [Callander, Sophia; Kahn, Andrew T.; Backwell, Patricia R. Y.; Jennions, Michael D.] Australian Natl Univ, Div Evolut Ecol & Genet, Res Sch Biol, Canberra, ACT 0200, Australia; [Hunt, John] Univ Exeter, Ctr Ecol & Conservat, Sch Biosci, Coll Life & Environm Sci, Penryn TR10 9EZ, Cornwall, England Callander, S (reprint author), Australian Natl Univ, Div Evolut Ecol & Genet, Res Sch Biol, Bldg 116,Daley Rd, Canberra, ACT 0200, Australia. sophia.callander@anu.edu.au Jennions, Michael/C-7560-2009; Backwell, Patricia/C-8883-2009 Jennions, Michael/0000-0001-9221-2788; Australian Research Council; Australian National University; Natural Environment Research Council; Royal Society; Natural Environment Research Council [NE/G00949X/1] Australian Research Council (to M.D.J. and P.R. Y.B.); an Australian National University PhD Scholarship (to S. C. and A. T. K.); the Natural Environment Research Council (to J.H.); a Royal Society Fellowship (to J.H.). Alexander RD, 1961, BEHAVIOUR, V17, P131; Aragon P, 2009, BEHAVIOUR, V146, P1137, DOI 10.1163/156853909X413097; Archer CR, 2012, EVOLUTION, V66, P3088, DOI 10.1111/j.1558-5646.2012.01673.x; Backwell P, 1998, NATURE, V391, P31, DOI 10.1038/34076; Bailey NW, 2010, CURR BIOL, V20, P845, DOI 10.1016/j.cub.2010.02.063; Bentsen CL, 2006, AM NAT, V167, pE102, DOI 10.1086/501376; Bermudez-Cuamatzin E, 2011, BIOL LETTERS, V7, P36, DOI 10.1098/rsbl.2010.0437; Bertram SM, 2000, ANIM BEHAV, V60, P333, DOI 10.1006/anbe.2000.1473; Bretman A, 2011, TRENDS ECOL EVOL, V26, P467, DOI 10.1016/j.tree.2011.05.002; Brooks R, 2005, EVOLUTION, V59, P871, DOI 10.1111/j.0014-3820.2005.tb01760.x; Bussiere LF, 2005, BEHAV ECOL, V16, P223, DOI 10.1093/beheco/arh156; CADE WH, 1992, ANIM BEHAV, V43, P49, DOI 10.1016/S0003-3472(05)80070-3; CAMPBELL DJ, 1979, Z TIERPSYCHOL, V51, P260; Candolin U, 2000, ANIM BEHAV, V60, P417, DOI 10.1006/anbe.2000.1481; Carey JR, 1995, EXP GERONTOL, V30, P605, DOI 10.1016/0531-5565(95)00013-5; CARROLL SP, 1995, BEHAV ECOL, V6, P46, DOI 10.1093/beheco/6.1.46; CLUTTONBROCK TH, 1991, NATURE, V351, P58; Cornwallis CK, 2010, TRENDS ECOL EVOL, V25, P145, DOI 10.1016/j.tree.2009.09.008; Drayton JM, 2011, J EVOLUTION BIOL, V24, P47, DOI 10.1111/j.1420-9101.2010.02135.x; Drayton JM, 2010, EVOLUTION, V64, P3069, DOI 10.1111/j.1558-5646.2010.01053.x; EVANS AR, 1988, ETHOLOGY, V78, P21; Gaskin T, 2002, ANIM BEHAV, V63, P121, DOI 10.1006/anbe.2001.1896; Gerhardt H. C., 2002, ACOUSTIC COMMUNICATI; Gosden TP, 2008, EVOLUTION, V62, P845, DOI 10.1111/j.1558-5646.2008.00323.x; GRAVES JL, 1993, GENETICA, V91, P99, DOI 10.1007/BF01435991; Hill PSM, 1998, BEHAV ECOL, V9, P101, DOI 10.1093/beheco/9.1.101; Hunt J, 2004, NATURE, V432, P1024, DOI 10.1038/nature03084; Hunt J, 2005, AM NAT, V166, P79, DOI 10.1086/430672; Hunt J, 2006, AM NAT, V168, pE72, DOI 10.1086/506918; Jennions MD, 2001, Q REV BIOL, V76, P3, DOI 10.1086/393743; Jia FY, 2001, J INSECT BEHAV, V14, P19, DOI 10.1023/A:1007893411662; Judge KA, 2008, EVOLUTION, V62, P868, DOI 10.1111/j.1558-5646.2008.00318.x; Kahn AT, 2012, BIOL LETTERS, V8, P362, DOI 10.1098/rsbl.2011.1106; Kasumovic MM, 2011, J EVOLUTION BIOL, V24, P1325, DOI 10.1111/j.1420-9101.2011.02267.x; Kasumovic MM, 2008, EVOLUTION, V62, P2316, DOI 10.1111/j.1558-5646.2008.00446.x; Kasumovic MM, 2012, ECOL EVOL, V2, P1036, DOI 10.1002/ece3.230; Kasumovic MM, 2011, Q REV BIOL, V86, P181, DOI 10.1086/661119; KAVANAGH MW, 1987, J EXP BIOL, V130, P107; Kelly CD, 2008, BEHAV ECOL SOCIOBIOL, V62, P855, DOI 10.1007/s00265-007-0518-8; Kelly CD, 2011, BIOL REV, V86, P863, DOI 10.1111/j.1469-185X.2011.00175.x; Knell RJ, 2009, J ZOOL, V278, P83, DOI 10.1111/j.1469-7998.2009.00566.x; Kokko H, 1997, BEHAV ECOL SOCIOBIOL, V41, P99, DOI 10.1007/s002650050369; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kokko H, 2012, ECOL LETT, V15, P1340, DOI 10.1111/j.1461-0248.2012.01859.x; Kolluru GR, 1999, J INSECT BEHAV, V12, P611, DOI 10.1023/A:1020923602780; Kotiaho JS, 2001, BIOL REV, V76, P365, DOI 10.1017/S1464793101005711; Leary CJ, 2005, ANIM BEHAV, V70, P663, DOI 10.1016/j.anbehav.2004.12.013; Lindstrom J, 2009, AM NAT, V174, P515, DOI 10.1086/606008; LOHER W, 1978, Z TIERPSYCHOL, V46, P225; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; Maklakov AA, 2008, CURR BIOL, V18, P1062, DOI 10.1016/j.cub.2008.06.059; Mappes J, 1996, P ROY SOC B-BIOL SCI, V263, P785, DOI 10.1098/rspb.1996.0117; Martinez-Rivera CC, 2008, BEHAV ECOL SOCIOBIOL, V63, P195, DOI 10.1007/s00265-008-0650-0; McCauley SJ, 2000, BEHAV ECOL, V11, P429, DOI 10.1093/beheco/11.4.429; Milner RNC, 2012, BIOL LETTERS, V8, P176, DOI 10.1098/rsbl.2011.0926; Murai M, 2009, EVOLUTION, V63, P2363, DOI 10.1111/j.1558-5646.2009.00726.x; Parker GA, 2013, EVOLUTION, V67, P95, DOI 10.1111/j.1558-5646.2012.01741.x; Parker GA, 2010, BIOL REV, V85, P897, DOI 10.1111/j.1469-185X.2010.00140.x; Pitcher TE, 2005, J EVOLUTION BIOL, V18, P557, DOI 10.1111/j.1420-9101.2004.00874.x; PRESTWICH KN, 1981, J COMP PHYSIOL, V143, P199; RAND AS, 1981, Z TIERPSYCHOL, V57, P209; Reaney LT, 2011, BEHAV ECOL SOCIOBIOL, V65, P217, DOI 10.1007/s00265-010-1030-0; REYNOLDS JD, 1993, AM NAT, V141, P914, DOI 10.1086/285516; Rodriguez-Munoz R, 2010, SCIENCE, V328, P1269, DOI 10.1126/science.1188102; ROFF DA, 2002, LIFE HIST EVOLUTION; Savage KE, 2005, BEHAV ECOL, V16, P196, DOI 10.1093/beheco/arh143; Schwartz JJ, 2002, BEHAV ECOL SOCIOBIOL, V53, P9, DOI 10.1007/s00265-002-0542-7; Shackleton MA, 2005, BEHAV ECOL SOCIOBIOL, V58, P1, DOI 10.1007/s00265-004-0907-1; Shuster SM, 2003, MATING SYSTEMS STRAT; Shuster Stephen M., 2010, P434; Simmons JP, 2011, PSYCHOL SCI, V22, P1359, DOI 10.1177/0956797611417632; SIMMONS LW, 1986, ANIM BEHAV, V34, P567, DOI 10.1016/S0003-3472(86)80126-9; SIMMONS LW, 1986, ANIM BEHAV, V34, P1463, DOI 10.1016/S0003-3472(86)80217-2; SIMMONS LW, 1996, P ROY SOC LOND B BIO, V263, P305; Walling CA, 2007, BEHAV ECOL SOCIOBIOL, V61, P1007, DOI 10.1007/s00265-006-0333-7; Weir LK, 2011, AM NAT, V177, P167, DOI 10.1086/657918; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Wilson ADM, 2010, BEHAV ECOL SOCIOBIOL, V64, P703, DOI 10.1007/s00265-009-0888-1; Wong BBM, 2007, AM NAT, V170, P184, DOI 10.1086/519398; Zajitschek F, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000155; Zajitschek F, 2009, ECOLOGY, V90, P1698, DOI 10.1890/08-0048.1; ZUK M, 1987, ANIM BEHAV, V35, P1240, DOI 10.1016/S0003-3472(87)80182-3 82 16 16 0 108 OXFORD UNIV PRESS INC CARY JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA 1045-2249 BEHAV ECOL Behav. Ecol. SEP-OCT 2013 24 5 1251 1259 10.1093/beheco/art059 9 Behavioral Sciences; Biology; Ecology; Zoology Behavioral Sciences; Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Zoology 198XS WOS:000322957800032 Bronze 2019-02-21 J Riesch, R; Martin, RA; Lerp, H; Plath, M; Wronski, T Riesch, Ruediger; Martin, Ryan A.; Lerp, Hannes; Plath, Martin; Wronski, Torsten Size and sex matter: reproductive biology and determinants of offspring survival in Gazella marica BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY English Article life-history evolution; mortality; parent-offspring conflict; sex differences; ungulates MATERNAL INVESTMENT; SOCIAL RANK; POPULATION-DYNAMICS; FITNESS COMPONENTS; LARGE HERBIVORES; LITTER SIZE; TRADE-OFF; RED DEER; SELECTION; RATIO Environmental conditions should impact the optimal resolution of the trade-off between offspring size and offspring number, which has a major impact on female reproductive life histories. Using breeding data collected over 13 years at the King Khalid Wildlife Research Centre (KKWRC) in Saudi Arabia, we tested the hypothesis that larger sand gazelle (Gazella marica) offspring will have lower mortality than smaller-sized offspring; nonetheless, selection should still favour the production of larger litters (even at the cost of reduced offspring size) under favourable environmental conditions (and vice versa under poor environmental conditions). The present study provides evidence for an early fitness advantage of larger over smaller sand gazelles because offspring that were heavier at birth had higher survival rates to weaning age (90days) and sexual maturity (365days) than lighter offspring; also, females had higher survival rates than males. Moreover, antagonistic selection on offspring and litter size is resolved in favour of maternal fitness early in the year (i.e. high propensity for twinning), although fitness optima converge later in the year when it becomes beneficial to both offspring and mothers to produce large singletons, highlighting temporal variation in the selective regimes affecting female reproductive life histories.(c) 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110, 116-127. [Riesch, Ruediger] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England; [Martin, Ryan A.] Natl Inst Math & Biol Synth, Knoxville, TN 37996 USA; [Lerp, Hannes; Plath, Martin] Goethe Univ Frankfurt, Evolutionary Ecol Grp, D-60438 Frankfurt, Germany; [Wronski, Torsten] Saudi Wildlife Author, King Khalid Wildlife Res Ctr, Riyadh 11575, Saudi Arabia; [Wronski, Torsten] Zool Soc London, Conservat Programs, London NW1 4RY, England Riesch, R (reprint author), Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. rwriesch.evolutionarybiology@gmail.com Riesch, Rudiger/A-5787-2008 Riesch, Rudiger/0000-0002-0223-1254 Human Frontier Science Program; US Department of Homeland Security; US Department of Agriculture through NSF [EF-0832858]; University of Tennessee; Knoxville; Stiftung Polytechnische Gesellschaft Frankfurt am Main We would like to thank H. H. Prince Bandar bin Saud bin Mohammed al Saud (President, SWA, Saudi Arabia) for his permission and support to conduct scientific research on wildlife in the Kingdom. R. Kock initiated the study. J.-M. Gaillard and an anonymous reviewer helped improve a previous version of the manuscript. Funding came from the Human Frontier Science Program (to RR), the US Department of Homeland Security, and the US Department of Agriculture through NSF (Award #EF-0832858), with additional support from The University of Tennessee, Knoxville (to RAM), and the Stiftung Polytechnische Gesellschaft Frankfurt am Main (to HL). Awan GA, 2008, CAN J ZOOL, V86, P394, DOI 10.1139/Z08-016; BARRETTE C, 1986, BEHAVIOUR, V97, P118, DOI 10.1163/156853986X00342; Bates D. M., 2012, LME4 LINEAR MIXED EF; BYERS JA, 1990, BEHAV ECOL SOCIOBIOL, V26, P157; Cameron EZ, 2004, P ROY SOC B-BIOL SCI, V271, P1723, DOI 10.1098/rspb.2004.2773; Carnes BA, 2012, J GERONTOL A-BIOL, V67, P351, DOI 10.1093/gerona/glr116; Carter S, 1991, GOITERED GAZELLE N A; Cassinello J, 1996, P ROY SOC B-BIOL SCI, V263, P1461, DOI 10.1098/rspb.1996.0213; Ceacero F, 2012, PLOS ONE, V7; Clutton-Brock T.H., 1988, P325; CLUTTONBROCK TH, 1985, NATURE, V313, P131, DOI 10.1038/313131a0; Darwin C, 1871, DESCENT MAN SELECTIO; Ducatez S, 2012, EVOLUTION, V66, P3558, DOI 10.1111/j.1558-5646.2012.01704.x; ECCLES TR, 1986, ANIM BEHAV, V34, P1392, DOI 10.1016/S0003-3472(86)80210-X; Einum S, 2000, NATURE, V405, P565, DOI 10.1038/35014600; Flesness N. R., 2003, International Zoo Yearbook, V38, P53, DOI 10.1111/j.1748-1090.2003.tb02064.x; Fox CW, 2003, FUNCT ECOL, V17, P811, DOI 10.1111/j.1365-2435.2003.00799.x; Gaillard JM, 1998, TRENDS ECOL EVOL, V13, P58, DOI 10.1016/S0169-5347(97)01237-8; Gaillard JM, 2000, ANNU REV ECOL SYST, V31, P367, DOI 10.1146/annurev.ecolsys.31.1.367; Gillespie DOS, 2008, P R SOC B, V275, P713, DOI 10.1098/rspb.2007.1000; Hamlett GWD, 1934, ANAT REC, V61, P81, DOI 10.1002/ar.1090610109; HEPTNER VG, 1988, MAMMALS SOVIET UNION, V1; Hewison AJM, 1999, TRENDS ECOL EVOL, V14, P229, DOI 10.1016/S0169-5347(99)01592-X; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Holand O, 2004, BEHAV ECOL SOCIOBIOL, V57, P69, DOI 10.1007/s00265-004-0827-0; Huxley JS, 1938, EVOLUTION, P11; IUCN SSC Antelope Specialist Group, 2008, GAZ SUBG SSP MAR IUC; Janzen FJ, 2009, J EVOLUTION BIOL, V22, P2222, DOI 10.1111/j.1420-9101.2009.01838.x; Johnstone-Yellin TL, 2009, J MAMMAL, V90, P453, DOI 10.1644/08-MAMM-A-030.1; Karlsen A, 2000, J ANIM SCI, V78, P15; Keller LF, 2008, P R SOC B, V275, P597, DOI 10.1098/rspb.2007.0961; Kichenside Terence, 1997, National Commission for Wildlife Conservation and Development Publication, V29, P219; Kingswood Steven C., 1996, Mammalian Species, V518, P1; Klein M, 2012, THESIS U FRANKFURT F; Kojola I, 1998, OIKOS, V83, P567, DOI 10.2307/3546683; Kranendonk C, 2007, J ANIM SCI, V85, P420; Kruuk LEB, 1999, P ROY SOC B-BIOL SCI, V266, P1655, DOI 10.1098/rspb.1999.0828; Kuhl A, 2007, P R SOC B, V274, P1293, DOI 10.1098/rspb.2007.0038; Landete-Castillejos T, 2010, J DAIRY RES, V77, P77, DOI 10.1017/S0022029909990392; MASTELLER MA, 1988, CAN J ZOOL, V66, P2585, DOI 10.1139/z88-381; Mohammed OB, 2002, P WORLD ASS WILDL VE, P11; Nakagawa S, 2010, BIOL REV, V85, P935, DOI 10.1111/j.1469-185X.2010.00141.x; Quinn G. P., 2002, EXPT DESIGN DATA ANA; R Core Team, 2012, R LANG ENV STAT COMP; Riesch R, 2012, ENVIRON BIOL FISH, V94, P457, DOI 10.1007/s10641-011-9960-6; Rietkerk FE, 1992, P INT S ONG UNG 91 T, P379; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; ROFF DA, 2002, LIFE HIST EVOLUTION; RUTLEDGE JJ, 1975, J ANIM SCI, V40, P803; SCHAFFER WM, 1974, ECOLOGY, V55, P291, DOI 10.2307/1935217; SCHAFFER WM, 1974, AM NAT, V108, P783, DOI 10.1086/282954; Schielzeth H, 2010, RPTR REPEATABILITY E; Sharp SP, 2010, J ANIM ECOL, V79, P179; Sheldon BC, 2004, AM NAT, V163, P40, DOI 10.1086/381003; SIDAK Z, 1967, J AM STAT ASSOC, V62, P626, DOI 10.2307/2283989; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Solberg EJ, 2004, ECOGRAPHY, V27, P677, DOI 10.1111/j.0906-7590.2004.03864.x; Stearns S, 1992, EVOLUTION LIFE HIST; Tapio S, 2008, COXME MIXED EFFECTS, V84, P930, DOI 10.1080/09553000802460214; THOULESS CR, 1991, BIOL CONSERV, V58, P85, DOI 10.1016/0006-3207(91)90046-C; TRIVERS RL, 1974, AM ZOOL, V14, P249; TRIVERS RL, 1973, SCIENCE, V179, P90, DOI 10.1126/science.179.4068.90; Wacher T, 2011, CONSERV GENET, V12, P827, DOI 10.1007/s10592-010-0169-6; West SA, 2002, SCIENCE, V295, P1685, DOI 10.1126/science.1069043; WILLSON MF, 1963, AM NAT, V97, P405, DOI 10.1086/282292; Wilson AJ, 2009, J ANIM ECOL, V78, P354, DOI 10.1111/j.1365-2656.2008.01489.x; Wilson AJ, 2005, EVOLUTION, V59, P451; Wronski T, 2010, ANIM BIOL, V60, P395, DOI 10.1163/157075610X523279 68 2 2 0 40 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0024-4066 1095-8312 BIOL J LINN SOC Biol. J. Linnean Soc. SEP 2013 110 1 116 127 10.1111/bij.12121 12 Evolutionary Biology Evolutionary Biology 200BF WOS:000323040200009 Bronze 2019-02-21 J Heinen, JL; Coco, MW; Marcuard, MS; White, DN; Peterson, MN; Martin, RA; Langerhans, RB Heinen, Justa L.; Coco, Matthew W.; Marcuard, Maurice S.; White, Danielle N.; Peterson, M. Nils; Martin, Ryan A.; Langerhans, R. Brian Environmental drivers of demographics, habitat use, and behavior during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) EVOLUTIONARY ECOLOGY English Article Adaptive radiation; Blue holes; Competition; Ecological divergence; Habitat shift; Predation LIFE-HISTORY EVOLUTION; GUPPIES POECILIA-RETICULATA; FISH BRACHYRHAPHIS-RHABDOPHORA; TRINIDADIAN GUPPIES; SEXUAL SELECTION; PREDATION RISK; ANDROS ISLAND; DIFFERENTIAL MORTALITY; ECOLOGICAL SPECIATION; RESOURCE AVAILABILITY A fundamental goal of evolutionary ecology is to understand the environmental drivers of ecological divergence during the early stages of adaptive diversification. Using the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes, we used a comparative field study to examine variation in density, age structure, tertiary (adult) sex ratio, habitat use, as well as adult feeding and social behaviors in relation to environmental features including predation risk, interspecific competition, productivity (e.g. chlorophyll a, zooplankton density), and abiotic factors (e.g. salinity, surface diameter). The primary environmental factor associated with ecological differentiation in G. hubbsi was the presence of piscivorous fish. Gambusia hubbsi populations coexisting with predatory fish were less dense, comprised of a smaller proportion of juveniles, and were more concentrated in shallow, near-shore regions of blue holes. In addition to predation risk, the presence of a competitor fish species was associated with G. hubbsi habitat use, and productivity covaried with both age structure and habitat use. Feeding and social behaviors differed considerably between sexes, and both sexes showed behavioral differences between predator regimes by exhibiting more foraging behaviors in the absence of predators and more sexual behaviors in their presence. Males additionally exhibited more aggressive behaviors toward females in the absence of predators, but were more aggressive toward other males in the presence of predators. These results largely matched a priori predictions, and several findings are similar to trends in other related systems. Variation in predation risk appears to represent the primary driver of ecological differentiation in this system, but other previously underappreciated factors (interspecific competition, resource availability) are notable contributors as well. This study highlights the utility of simultaneously evaluating multiple environmental factors and multiple population characteristics within a natural system to pinpoint environmental drivers of ecological differentiation. [Heinen, Justa L.; Coco, Matthew W.; Marcuard, Maurice S.; Martin, Ryan A.; Langerhans, R. Brian] N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA; [Heinen, Justa L.; Martin, Ryan A.; Langerhans, R. Brian] N Carolina State Univ, WM Keck Ctr Behav Biol, Raleigh, NC 27695 USA; [White, Danielle N.] N Carolina State Univ, Dept Anim Sci, Raleigh, NC 27695 USA; [Peterson, M. Nils] N Carolina State Univ, Dept Forestry & Environm Resources, Raleigh, NC 27695 USA Langerhans, RB (reprint author), N Carolina State Univ, Dept Biol, Raleigh, NC 27695 USA. langerhans@ncsu.edu National Science Foundation of the United States [DEB-0842364]; W. M. Keck Center for Behavioral Biology at North Carolina State University We thank R. Albury and the Department of Fisheries of the Bahamas Government for permission to conduct the work; A. Johnson, B. Bohl and the Forfar field station for support in the field; the Langerhans Lab and two anonymous reviewers for constructive comments on an earlier version of the manuscript; and the National Science Foundation of the United States (DEB-0842364) and the W. M. Keck Center for Behavioral Biology at North Carolina State University for funding. AKAIKE H, 1992, BREAKTHROUGHS STAT, P610; Bacheler NM, 2004, ECOL FRESHW FISH, V13, P111, DOI 10.1111/j.1600-0633.2004.00040.x; Bedarf AT, 2001, BIOL INVASIONS, V3, P391, DOI 10.1023/A:1015806700705; Boughman JW, 2001, NATURE, V411, P944, DOI 10.1038/35082064; BROCK VE, 1954, J WILDLIFE MANAGE, V18, P297, DOI 10.2307/3797016; Burnham K. P, 2002, MODEL SELECTION MULT; Cain ML, 2008, ECOLOGY; Charlesworth B., 1994, EVOLUTION AGE STRUCT; CLARK E, 1954, B AM MUS NAT HIST, V103, P138; Clutton-Brock TH, 2001, SCIENCE, V291, P478, DOI 10.1126/science.291.5503.478; CLUTTONBROCK TH, 1992, Q REV BIOL, V67, P437, DOI 10.1086/417793; Coyne J. A., 2004, SPECIATION; Croft DP, 2006, AM NAT, V167, P867, DOI 10.1086/504853; Darden SK, 2008, BIOL LETTERS, V4, P449, DOI 10.1098/rsbl.2008.0308; Daunt F, 2007, BIOL LETTERS, V3, P371, DOI 10.1098/rsbl.2007.0157; DeWitt TJ, 2003, J SEA RES, V49, P143, DOI 10.1016/S1385-1101(02)00220-4; Downhower JF, 2000, ENVIRON BIOL FISH, V59, P415, DOI 10.1023/A:1026552527018; ENDLER JA, 1995, TRENDS ECOL EVOL, V10, P22, DOI 10.1016/S0169-5347(00)88956-9; ENDLER JA, 1992, AM NAT, V139, pS125, DOI 10.1086/285308; English S, 1994, SURVEY MANUAL TROPIC; Fairbanks R., 1989, NATURE, V340, P637, DOI DOI 10.1038/342637A0; FARR JA, 1975, EVOLUTION, V29, P151, DOI 10.1111/j.1558-5646.1975.tb00822.x; FARR JA, 1976, EVOLUTION, V30, P707, DOI 10.1111/j.1558-5646.1976.tb00951.x; Fraser DF, 2004, ECOLOGY, V85, P312, DOI 10.1890/03-3023; FRASER DF, 1992, ECOLOGY, V73, P959, DOI 10.2307/1940172; Freeman S, 2007, EVOLUTIONARY ANAL; Gavrilets S., 2004, FITNESS LANDSCAPES O; Ghalambor CK, 2003, INTEGR COMP BIOL, V43, P431, DOI 10.1093/icb/43.3.431; GILLIAM JF, 1993, ECOLOGY, V74, P1856, DOI 10.2307/1939943; Gluckman TL, 2000, CARIBB J SCI, V36, P104; Grether GF, 2001, ECOLOGY, V82, P1546, DOI 10.1890/0012-9658(2001)082[1546:RFCCRA]2.0.CO;2; Grether Gregory F., 2011, P61; Hall AR, 2007, P R SOC B, V274, P73, DOI 10.1098/rspb.2006.3703; Haskins CP, 1961, VERTEBRATE SPECIATIO, P320; Horth L, 2003, P ROY SOC B-BIOL SCI, V270, P1033, DOI 10.1098/rspb.2003.2348; Houde A., 1997, SEX COLOR MATE CHOIC; ITZKOWITZ M, 1977, BEHAV PROCESS, V2, P383, DOI 10.1016/0376-6357(77)90008-0; Jirotkul M, 1999, ANIM BEHAV, V58, P1169, DOI 10.1006/anbe.1999.1248; Johnson JB, 2002, OIKOS, V96, P82, DOI 10.1034/j.1600-0706.2002.960109.x; Johnson JB, 2009, ECOLOGY, V90, P2243, DOI 10.1890/07-1672.1; Knell RJ, 2009, J ZOOL, V278, P83, DOI 10.1111/j.1469-7998.2009.00566.x; Kohler A, 2011, BEHAV ECOL SOCIOBIOL, V65, P1513, DOI 10.1007/s00265-011-1161-y; Kokko H, 2006, PHILOS T R SOC B, V361, P319, DOI 10.1098/rstb.2005.1784; Kolluru GR, 2005, BEHAV ECOL, V16, P294, DOI 10.1093/beheco/arh161; Langerhans RB, 2007, EVOLUTION, V61, P2056, DOI 10.1111/j.1558-5646.2007.00171.x; Langerhans RB, 2010, INTEGR COMP BIOL, V50, P1167, DOI 10.1093/icb/icq117; Langerhans RB, 2009, BIOL LETTERS, V5, P488, DOI 10.1098/rsbl.2009.0179; Langerhans RB, 2009, EVOLUTION, V63, P561, DOI 10.1111/j.1558-5646.2008.00556.x; Langerhans RB, 2004, EVOLUTION, V58, P2305, DOI 10.1111/j.0014-3820.2004.tb01605.x; Langerhans RB, 2005, P NATL ACAD SCI USA, V102, P7618, DOI 10.1073/pnas.0500935102; Layman CA, 2004, CARIBB J SCI, V40, P232; Leal M, 2002, P ROY SOC B-BIOL SCI, V269, P351, DOI 10.1098/rspb.2001.1904; LESSELLS CM, 1987, AUK, V104, P116, DOI 10.2307/4087240; Liley N. R., 1975, FUNCTION EVOLUTION B, P92; Losos JB, 2009, ORGANISM ENVIRON, V10, P1; MacColl ADC, 2011, TRENDS ECOL EVOL, V26, P514, DOI 10.1016/j.tree.2011.06.009; MAGNHAGEN C, 1991, TRENDS ECOL EVOL, V6, P183, DOI 10.1016/0169-5347(91)90210-O; Magurran A. E., 2005, EVOLUTIONARY ECOLOGY; MAGURRAN AE, 1994, P ROY SOC B-BIOL SCI, V255, P31, DOI 10.1098/rspb.1994.0005; MAGURRAN AE, 1991, BEHAVIOUR, V118, P214, DOI 10.1163/156853991X00292; Mayr E., 1963, ANIMAL SPECIES EVOLU; MCKAYE KR, 1979, REV CAN BIOL EXPTL, V38, P27; MYLROIE JE, 1995, CARBONATE EVAPORITE, V10, P225, DOI 10.1007/BF03175407; Nagelkerken I, 2000, ESTUAR COAST SHELF S, V51, P31, DOI 10.1006/ecss.2000.0617; Nosil P, 2006, P NATL ACAD SCI USA, V103, P9090, DOI 10.1073/pnas.0601575103; Nosil P, 2012, OX ECOL EV, P1, DOI 10.1093/acprof:osobl/9780199587100.001.0001; Nosil P, 2009, TRENDS ECOL EVOL, V24, P145, DOI 10.1016/j.tree.2008.10.011; Orr MR, 1998, TRENDS ECOL EVOL, V13, P502, DOI 10.1016/S0169-5347(98)01511-0; Palkovacs EP, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0018879; Peres-Neto PR, 2005, COMPUT STAT DATA AN, V49, P974, DOI 10.1016/j.csda.2004.06.015; Pettersson LB, 2004, BEHAV ECOL SOCIOBIOL, V55, P461, DOI 10.1007/s00265-003-0727-8; Price T., 2008, SPECIATION BIRDS; Reece J.B., 2010, CAMPBELL BIOL; REZNICK D, 1982, EVOLUTION, V36, P160, DOI 10.1111/j.1558-5646.1982.tb05021.x; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; Reznick DN, 1996, EVOLUTION, V50, P1651, DOI 10.1111/j.1558-5646.1996.tb03937.x; RICE WR, 1993, EVOLUTION, V47, P1637, DOI 10.1111/j.1558-5646.1993.tb01257.x; Riesch R, 2013, AM NAT, V181, P78, DOI 10.1086/668597; Riesch R, 2010, ECOLOGY, V91, P1494, DOI 10.1890/09-1008.1; Rivera-Rivera NL, 2010, INTEGR COMP BIOL, V50, P1081, DOI 10.1093/icb/icq147; ROBINSON BW, 1995, COPEIA, P294; RODD FH, 1995, ANIM BEHAV, V49, P1139; ROFF DA, 2002, LIFE HIST EVOLUTION; Ruehl CB, 2005, EVOL ECOL RES, V7, P801; Rundle HD, 2005, ECOL LETT, V8, P336, DOI 10.1111/j.1461-0248.2004.00715.x; Schlichting CD, 1998, PHENOTYPIC EVOLUTION; SCHLUTER D, 1994, SCIENCE, V266, P798, DOI 10.1126/science.266.5186.798; Schluter D., 2000, ECOLOGY ADAPTIVE RAD; Schug MD, 1998, HEREDITY, V80, P336; Schultz R. J., 1977, Evolutionary Biol, V10, P277; Smith CC, 2006, ANIM BEHAV, V71, P401, DOI 10.1016/j.anbehav.2005.06.003; Tobler M, 2009, EVOL ECOL RES, V11, P935; Winemiller KO, 1998, ENVIRON BIOL FISH, V53, P373, DOI 10.1023/A:1007422821071 93 20 20 0 58 SPRINGER DORDRECHT VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS 0269-7653 1573-8477 EVOL ECOL Evol. Ecol. SEP 2013 27 5 971 991 10.1007/s10682-012-9627-6 21 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 195SI WOS:000322723500010 2019-02-21 J Bastiaans, E; de la Cruz, FM; Hernandez, KR; Aguirre, CF; Sinervo, B Bastiaans, Elizabeth; Mendez de la Cruz, Fausto; Rodriguez Hernandez, Karla; Flores Aguirre, Cynthia; Sinervo, Barry FEMALE REPRODUCTIVE INVESTMENT IN THE MESQUITE LIZARD (SCELOPORUS GRAMMICUS) SPECIES COMPLEX (SQUAMATA: PHRYNOSOMATIDAE) SOUTHWESTERN NATURALIST English Article Life-history theory is based on the idea that trade-offs exist in allocation of resources. The same energy cannot simultaneously fuel growth and reproduction or simultaneously increase size and number of offspring. Many genetic, physiological, and environmental variables influence how trade-offs manifest and whether they are detectable through phenotypic correlations. In most squamates, the absence of parental care enables estimation of reproductive investment using mass of offspring. This, as well as their diverse ecologies, makes squamates an attractive system for empirical tests of life history theory. Approximately 20% of squamates are viviparous, and long gestation periods limit most to one litter per year. Carrying offspring until an advanced developmental stage may increase the burden of the litter, and female abdominal volume may constrain litter size. These factors should intensify selection on female tactics of life history and enhance detectability of trade-offs. We compare life history of females in two species within the Sceloporus grammicus species complex, viviparous Mexican lizards from varied habitats. Each inhabits one of the primary ecosystems used by this taxon (chaparral and forest). Litter sizes were lower in the chaparral population, when adjusted for body size of the mother. A trade-off of size versus number of offspring was detected in the forest population but not in the chaparral population. The chaparral population varied more in average neonate mass between years, which may relate to local extinctions, likely linked to climate change, in Mexican montane lizards. Regardless of whether these differences represent adaptation or plasticity, our findings emphasize the importance of environmental influence on trade-offs in life history. [Bastiaans, Elizabeth; Sinervo, Barry] Univ Calif Santa Cruz, Dept Ecol & Evolutionary Biol, Santa Cruz, CA 95064 USA; [Mendez de la Cruz, Fausto] Univ Nacl Autonoma Mexico, Inst Biol, Copilco 04510, Coyoacan, Mexico; Univ Nacl Autonoma Mexico, Fac Ciencias, Copilco 04510, Coyoacan, Mexico Bastiaans, E (reprint author), Univ Minnesota, Dept Ecol Evolut & Behav, 100 Ecol Bldg,1987 Upper Buford Circle, St Paul, MN 55108 USA. ejbastiaans@gmail.com Mendez, Fausto/O-3512-2018 Mendez, Fausto/0000-0002-5084-1276; Bastiaans, Elizabeth/0000-0002-7322-1088 UC Mexus grant; Science, Technology, Engineering Policy, and Society Institute Fellowship; National Science Foundation [I05-1110497]; Fulbright United States Students grant For assistance with fieldwork, we thank A. Helios de la Vega, V. Jimenez Arcos, R. Lara Resendiz, D. Miles, E. Vasquez, and M. Villagran Santa Cruz. We thank H. Monterde for assistance with husbandry of lizards. For helpful comments on the manuscript, we thank G. Bastiaans, M. Bastiaans, J. Marshall, K. McCully, R. Mehta, G. Morinaga, D. Paranjpe, C. Ravelo, S. Schlung, J. Yost, N. Ford, and two anonymous reviewers. This research was conducted with the approval of the University of California, Santa Cruz Chancellor's Animal Research Committee (code Sineb0902) and under permits issued by the Secretaria de Medio Ambiente y Recursos Naturales de Mexico (folio FAUT0074). Funding for this research was provided by a UC Mexus grant to BS and a Science, Technology, Engineering Policy, and Society Institute Fellowship, a Fulbright United States Students grant, and a National Science Foundation grant I05-1110497 to EB. Aguilar AG, 2003, CITIES, V20, P3, DOI 10.1016/S0264-2751(02)00092-6; Amat F, 2008, HERPETOL J, V18, P147; Andrews RM, 1997, COPEIA, P108, DOI 10.2307/1447845; AREVALO E, 1993, COPEIA, P352; Blackburn DG, 2006, HERPETOL MONOGR, V20, P131, DOI 10.1655/0733-1347(2007)20[131:SRAMOF]2.0.CO;2; BLACKBURN DG, 1984, P NATL ACAD SCI-BIOL, V81, P4860, DOI 10.1073/pnas.81.15.4860; Bowen WD, 2003, J ZOOL, V261, P155, DOI 10.1017/S0952836903004047; BROWN C. A., 2003, EVOLUTION, V57, P21; Brown GP, 2009, PHILOS T R SOC B, V364, P1097, DOI 10.1098/rstb.2008.0247; CASWELL H, 1983, AM ZOOL, V23, P35; CLUTTONBROCK TH, 1984, AM NAT, V123, P212, DOI 10.1086/284198; CZESAK M. E., 2003, EVOLUTION, V57, P11; Du WG, 2005, BIOL J LINN SOC, V85, P443, DOI 10.1111/j.1095-8312.2005.00508.x; FITCH H. S., 1985, VARIATION CLUTCH LIT; FORD NB, 1989, HERPETOLOGICA, V45, P75; FORD NB, 1989, ECOLOGY, V70, P1768, DOI 10.2307/1938110; GUILLETTE LJ, 1980, J HERPETOL, V14, P143, DOI 10.2307/1563845; Hall W, 1973, THESIS HARVARD U CAM; HARVEY PH, 1991, PHILOS T ROY SOC B, V332, P31, DOI 10.1098/rstb.1991.0030; Hernandez-Salinas U, 2010, HERPETOLOGICA, V66, P12, DOI 10.1655/08-053.1; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; JI X., 2008, OECOLOGIA, V159, P689; Ji X, 2006, J COMP PHYSIOL B, V176, P521, DOI 10.1007/s00360-006-0074-y; Jimenez-Cruz E, 2005, SOUTHWEST NAT, V50, P178, DOI 10.1894/0038-4909(2005)050[0178:RCOSGS]2.0.CO;2; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lara-Gongora G., 1983, Bulletin of the Maryland Herpetological Society, V19, P1; Lemos-Espinal JA, 1998, GREAT BASIN NAT, V58, P375; LLOYD DG, 1987, AM NAT, V129, P800, DOI 10.1086/284676; Marshall JC, 2006, EVOLUTION, V60, P1050; Mas J. F., 2004, International Journal of Applied Earth Observation and Geoinformation, V5, P249, DOI 10.1016/j.jag.2004.06.002; MENDEZ DE LA CRUZ F., 1989, THESIS U NACL AUTONO; MILES D. B., 2000, EVOLUTION, V54, P13; Olsen EM, 2004, NATURE, V428, P932, DOI 10.1038/nature02430; Olsson M, 1997, AM NAT, V149, P179, DOI 10.1086/285985; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; Quinn G. P., 2002, EXPT DESIGN DATA ANA; Ramirez-Bautista A, 2004, WEST N AM NATURALIST, V64, P175; ROFF DA, 2002, LIFE HIST EVOLUTION; ROWE JW, 1994, OECOLOGIA, V99, P35, DOI 10.1007/BF00317081; SCHWARZKOPF L, 1992, HERPETOLOGICA, V48, P390; SEIGEL RA, 1984, OECOLOGIA, V61, P293, DOI 10.1007/BF00379625; Shine R, 1999, OECOLOGIA, V119, P1, DOI 10.1007/s004420050754; SHINE R, 1992, EVOLUTION, V46, P62, DOI 10.1111/j.1558-5646.1992.tb01985.x; SHINE R, 1980, OECOLOGIA, V46, P92, DOI 10.1007/BF00346972; SHINE R, 1992, EVOLUTION, V46, P828, DOI 10.1111/j.1558-5646.1992.tb02088.x; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; SINERVO B, 1991, SCIENCE, V252, P1300, DOI 10.1126/science.252.5010.1300; SINERVO B, 1990, EVOLUTION, V44, P279, DOI 10.1111/j.1558-5646.1990.tb05198.x; Sinervo B, 2010, SCIENCE, V328, P894, DOI 10.1126/science.1184695; SITES JW, 1995, EVOLUTION, V49, P9, DOI 10.1111/j.1558-5646.1995.tb05955.x; SITES JW, 1983, EVOLUTION, V37, P38, DOI 10.1111/j.1558-5646.1983.tb05512.x; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stebbins R. C, 2003, FIELD GUIDE W REPTIL; Uller T, 2009, J EVOLUTION BIOL, V22, P143, DOI 10.1111/j.1420-9101.2008.01629.x; ULLER T., 2007, EVOLUTIONARY ECOLOGY, V23, P363; VAN NOORDWIJK AJ, 1986, AM NAT, V128, P137, DOI 10.1086/284547; VILLAGRAN M., 2005, J MORPHOL, V264, P286; VITT LJ, 1982, HERPETOLOGICA, V38, P237; Wang Z, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0016585; Warne RW, 2008, AM NAT, V172, pE80, DOI 10.1086/589880; Wiens JJ, 2010, MOL PHYLOGENET EVOL, V54, P150, DOI 10.1016/j.ympev.2009.09.008; Zuniga-Vega JJ, 2008, AMPHIBIA-REPTILIA, V29, P127, DOI 10.1163/156853808783431550 63 4 4 2 16 SOUTHWESTERN ASSOC NATURALISTS SAN MARCOS SOUTHWEST TEXAS STATE UNIV, DEPT BIOLOGY, 601 UNIVERSITY DR, SAN MARCOS, TX 78666 USA 0038-4909 1943-6262 SOUTHWEST NAT Southw. Natural. SEP 2013 58 3 335 343 10.1894/0038-4909-58.3.335 9 Biodiversity Conservation; Ecology Biodiversity & Conservation; Environmental Sciences & Ecology V37ZE WOS:000209312900008 2019-02-21 J Vitule, JRS; da Silva, FFG; Bornatowski, H; Abilhoa, V Simoes Vitule, Jean Ricardo; Gazola da Silva, Flavia Francine; Bornatowski, Hugo; Abilhoa, Vinicius Feeding ecology of fish in a coastal river of the Atlantic Rain Forest ENVIRONMENTAL BIOLOGY OF FISHES English Article Diet; Freshwater; Neotropics; Spatial distribution; Stomach repletion; Trophic guilds DEUTERODON-LANGEI TRAVASSOS; NEOTROPICAL STREAM; SOUTHERN BRAZIL; SPECIES INTERACTIONS; SUBTROPICAL ESTUARY; ECOSYSTEM ENGINEERS; TEMPORAL VARIATIONS; 1957 TELEOSTEI; FOOD WEBS; ASSEMBLAGES Feeding ecology of fish assemblage in a costal river of the Atlantic Rain Forest in Southern Brazil was investigated. Monthly samples using different fishing techniques were completed on a section of the river characterized as a freshwater environment, and an adjacent tide-influenced estuarine section. Species were grouped into three major Feeding Mode Functional Groups: Zoobenthivore, Omnivore and Detritivore. The river section with the greatest occurrence was the site where the most abundant species are likely to feed most intensively. Freshwater strangler species (Cyphocharax santacatarinae - detritivorous, Rhamdia quelen and Oligosarcus hepsetus - zoobenthivorous) presented higher stomach repletion in the freshwater environment while marine migrants (Genidens genidens and Etropus crossotus - zoobenthivorous) and estuarine residents (Bairdiella ronchus - zoobenthivorous) presented higher repletion in the tide-influenced estuarine stretch. Use of food resources was influenced by spatial and temporal variations linked to environmental characteristics such as salinity, habitat heterogeneity, life history evolution, feeding specialization and resource partitioning. Hypotheses concerning potential keystone species, ecosystem engineers or strong interactors were also discussed. [Simoes Vitule, Jean Ricardo] Univ Fed Parana, Lab Ecol & Conservacao, Dept Engn Ambiental, BR-81531970 Curitiba, Parana, Brazil; [Simoes Vitule, Jean Ricardo; Bornatowski, Hugo; Abilhoa, Vinicius] Museu Hist Nat Capao Imbuia, Grp Pesquisas Ictiofauna, BR-82810080 Curitiba, Parana, Brazil; [Simoes Vitule, Jean Ricardo; Gazola da Silva, Flavia Francine; Bornatowski, Hugo; Abilhoa, Vinicius] Univ Fed Parana, Dept Zool, BR-81531990 Curitiba, Parana, Brazil Bornatowski, H (reprint author), Museu Hist Nat Capao Imbuia, Grp Pesquisas Ictiofauna, Rua Prof Benedito Conceicao 407, BR-82810080 Curitiba, Parana, Brazil. anequim.bio@gmail.com Bornatowski, Hugo/K-3085-2014; Vitule, Jean/D-9822-2012 Vitule, Jean/0000-0001-6543-7439 CNPq (Conselho Nacional de Pesquisa); SPVS (Sociedade de Protecao a Vida Selvagem); Laboratorio de Ecologia de Rios (UFPR) We are grateful to CNPq (Conselho Nacional de Pesquisa) for financial support, SPVS (Sociedade de Protecao a Vida Selvagem) and Laboratorio de Ecologia de Rios (UFPR) for partially supporting this study, Maria Antonia Michels de Souza and Katia Pouey for the field work, Dr. Marcelo Aranha (UFPR) for providing research space and kindly reviewing the first draft of the manuscript, and Dra. Carolina Arruda Freire (LFCO) for revision and suggestions on the final manuscript. Abelha MCF, 2004, ACTA SCI-BIOL SCI, V26, P37; Abilhoa V, 2011, CHANGING DIVERSITY IN CHANGING ENVIRONMENT, P259; Aranha JMR, 2000, BRAZ ARCH BIOL TECHN, V43, P527, DOI 10.1590/S1516-89132000000500013; Araujo FG, 1999, J FISH BIOL, V55, P836, DOI 10.1111/j.1095-8649.1999.tb00721.x; ARAUJO FG, 2005, REV BRAS ZOOL, V65, P1, DOI DOI 10.1590/S1519-69842007000400022; Balcombe SR, 2005, J FISH BIOL, V67, P1552, DOI 10.1111/j.1095-8649.2005.00858.x; Barletta M, 2008, J FISH BIOL, V73, P1314, DOI 10.1111/j.1095-8649.2008.02005.x; Barletta M, 2005, J FISH BIOL, V66, P45, DOI 10.1111/j.1095-8649.2004.00582.x; Beatty SJ, 2013, AQUATIC INV IN PRESS; BLABER SJM, 1987, MAR BIOL, V95, P345, DOI 10.1007/BF00409564; Bornatowski Hugo, 2004, Estudos de Biologia (Curitiba), V26, P11; Botelho MLLA, 2007, Braz. J. Biol., V67, P741, DOI 10.1590/S1519-69842007000400022; BOWEN SH, 1983, ENVIRON BIOL FISH, V9, P137, DOI 10.1007/BF00690858; Braga RR, 2012, REV FISH BIOL FISHER, V22, P915, DOI 10.1007/s11160-012-9273-7; Cadenasso ML, 2003, BIOSCIENCE, V53, P750, DOI 10.1641/0006-3568(2003)053[0750:AFFATO]2.0.CO;2; CARR WES, 1973, T AM FISH SOC, V102, P511, DOI 10.1577/1548-8659(1973)102<511:FHOJMF>2.0.CO;2; Casatti Lilian, 2002, Biota Neotrop., V2, P1, DOI 10.1590/S1676-06032002000200012; Castro Liliana Torres, 2004, Revista de la Academia Colombiana de Ciencias Exactas Fisicas y Naturales, V28, P529; Chaves Paulo de Tarso da C., 1998, Revista Brasileira de Oceanografia, V46, P61; Chaves Paulo De Tarso Da Cunha, 1996, Revista Brasileira de Zoologia, V13, P669; Chavez H., 1963, Ciencia Mexico, V22, P141; Clarke K. R., 2006, USER MANUAL TUTORIAL; Correa M.F.M., 1988, Neritica, V3, P37; Dantas DV, 2012, ESTUAR COAST, V35, P587, DOI 10.1007/s12237-011-9452-0; Delariva RL, 2001, J FISH BIOL, V58, P832, DOI 10.1006/jfbi.2000.1499; Edgar GJ, 1999, J BIOGEOGR, V26, P1169, DOI 10.1046/j.1365-2699.1999.00365.x; Elliott M, 2007, FISH FISH, V8, P241, DOI 10.1111/j.1467-2679.2007.00253.x; Freire CA, 2008, COMP BIOCHEM PHYS A, V149, P435, DOI 10.1016/j.cbpa.2008.02.003; Gerking S. D., 1994, FEEDING ECOLOGY FISH; Giberto D.A., 2007, J MAR BIOL ASSOC UK, V87, P1; Giora Júlia, 2003, Iheringia, Sér. Zool., V93, P277, DOI 10.1590/S0073-47212003000300007; Gotelli N.J, 2000, ECOSIM NULL MODELS S; GROSSMAN GD, 1980, OECOLOGIA, V47, P233, DOI 10.1007/BF00346826; Growns I, 2003, FISHERIES MANAG ECOL, V10, P209, DOI 10.1046/j.1365-2400.2003.00337.x; Gulland J., 1983, FISH STOCK ASSESSMEN; Haedrich R.L., 1983, P183; Hammer O., 2001, PAST PALEONTOLOGICAL; Heithaus MR, 2008, TRENDS ECOL EVOL, V23, P202, DOI 10.1016/j.tree.2008.01.003; HYNES HBN, 1950, J ANIM ECOL, V19, P36, DOI 10.2307/1570; HYSLOP EJ, 1980, J FISH BIOL, V17, P411, DOI 10.1111/j.1095-8649.1980.tb02775.x; JONES CG, 1994, OIKOS, V69, P373, DOI 10.2307/3545850; Kawakami E., 1980, Boletim do Instituto Oceanografico, V29, P205; Kennish M. J, 1986, ECOLOGY ESTUARIES PH; Krebs C. J., 1989, ECOLOGICAL METHODOLO; Krivan V, 2005, THEOR POPUL BIOL, V67, P85, DOI 10.1016/j.tpb.2004.09.003; Kupschus S, 2001, J FISH BIOL, V58, P1383, DOI 10.1006/jfbi.2000.1546; Lana PC, 2001, ECOL STU AN, V144, P131; Laurance WF, 2001, TRENDS ECOL EVOL, V16, P70, DOI 10.1016/S0169-5347(00)02070-X; Levin LA, 2001, ECOSYSTEMS, V4, P430, DOI 10.1007/s10021-001-0021-4; Lowe-McConnell R. H., 1999, ESTUDOS ECOLOGICOS C; Marshall S, 1998, ESTUAR COAST SHELF S, V46, P175, DOI 10.1006/ecss.1997.0268; Mazzoni R, 2002, J FISH BIOL, V61, P1606, DOI 10.1006/jfbi.2002.2178; Mormul RP, 2012, FRESHWATER BIOL, V57, P1592, DOI 10.1111/j.1365-2427.2012.02820.x; Nelson JS, 2006, FISHES WORLD; Oksanen J, 2011, VEGAN COMMUNITY ECOL; PAINE MD, 1982, CAN J ZOOL, V60, P1635, DOI 10.1139/z82-214; PAINE RT, 1969, AM NAT, V103, P91, DOI 10.1086/282586; PAINE RT, 1992, NATURE, V355, P73, DOI 10.1038/355073a0; Pereira CCGF, 2004, REV U CIEN, P33; Peres-Neto PR, 2004, OECOLOGIA, V140, P352, DOI 10.1007/s0042-004-1578-3; Pianka E. R., 1973, ANNU REV ECOL SYST, V4, P53, DOI DOI 10.1146/ANNUREV.ES.04.110173.000413; Pouilly M, 2003, J FISH BIOL, V62, P1137, DOI 10.1046/j.1095-8649.2003.00108.x; Power ME, 1997, TRENDS ECOL EVOL, V12, P47, DOI 10.1016/S0169-5347(96)30056-6; R Development Core Team, 2008, R LANG ENV STAT COMP; Rabitto Ines da Silva, 1999, Arquivos de Ciencias Veterinarias e Zoologia da UNIPAR, V2, P143; Rozas LP, 1997, ESTUARIES, V20, P199, DOI 10.2307/1352731; SCHAEFFERNOVELLI Y, 1990, ESTUARIES, V13, P204, DOI 10.2307/1351590; SCHOENER TW, 1974, SCIENCE, V185, P27, DOI 10.1126/science.185.4145.27; Sene-Silva G., 2011, Publicatio UEPG - Ciencias Biologicas e da Saude, V17, P7, DOI 10.5212/Publ.Biologicas.v.17i1.0001; Silva RF, 2011, J COASTAL RES, P440; Vitule JRS, 2008, BRAZ ARCH BIOL TECHN, V51, P1187, DOI 10.1590/S1516-89132008000600014; Sosa-Lopez A, 2007, J BIOGEOGR, V34, P52, DOI 10.1111/j.1365-2699.2006.01588.x; Souza MAM, 2007, THESIS U FEDERAL PAR; Spach H. L., 2004, Braz. J. Biol., V64, P337, DOI 10.1590/S1519-69842004000200020; Strayer DL, 2003, BIOSCIENCE, V53, P723, DOI 10.1641/0006-3568(2003)053[0723:ACOEB]2.0.CO;2; Tonini William Cristiane Teles, 2007, Boletim do Instituto de Pesca (Sao Paulo), V33, P85; Tundisi JG, 2001, ECOL STU AN, V144, P119; Vendel AL, 2002, BRAZ ARCH BIOL TECHN, V45, P365, DOI 10.1590/S1516-89132002000300015; Vendel Ana Lucia, 1998, Revista Brasileira de Zoologia, V15, P297; Vitule JRS, 2008, NEOTROP ICHTHYOL, V6, P211, DOI 10.1590/S1679-62252008000200008; WERNER EE, 1984, ANNU REV ECOL SYST, V15, P393, DOI 10.1146/annurev.es.15.110184.002141; Winemiller KO, 2008, AQUAT ECOL SER, P107, DOI 10.1016/B978-012088449-0.50007-8; Winemiller KO, 1998, J FISH BIOL, V53, P267, DOI 10.1006/jfbi.1998.0832; Wootton R. J., 1990, ECOLOGY TELEOST FISH; Wright JP, 2006, BIOSCIENCE, V56, P203, DOI 10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2; Yossa MI, 1998, J FISH BIOL, V52, P1141, DOI 10.1006/jfbi.1998.0658 86 7 7 2 75 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 1573-5133 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 2013 96 9 1029 1044 10.1007/s10641-012-0101-7 16 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 188DY WOS:000322173500002 2019-02-21 J Natsumeda, T; Yuma, M; Hori, M Natsumeda, Takaharu; Yuma, Masahide; Hori, Michio Variation in life-history traits of male Japanese fluvial sculpin Cottus pollux in relation to nest abundance along a stream course ENVIRONMENTAL BIOLOGY OF FISHES English Article Life-history traits; Male-male competition; Nest site abundance; Sculpin; Size-dependent reproduction; Weir FRESH-WATER GOBY; POTENTIAL REPRODUCTIVE RATES; MALE-MALE COMPETITION; LARGE EGG TYPE; SEXUAL SELECTION; SAND GOBY; SITE ABUNDANCE; POMATOSCHISTUS-MINUTUS; PHENOTYPIC PLASTICITY; RESOURCE DISTRIBUTION Life-history theory predicts the occurrence of variation in the life-history traits of fish populations under different environmental conditions; however, most studies have focused on such variation between geographically separated populations. We compared breeding characteristics and life-history traits of the Japanese fluvial sculpin (Cottus pollux), a bottom-dwelling nest-holding fish, between two adjacent sites sub-divided by a weir along a stream course in central Japan. Males in the area with a lower abundance of nest sites reached sexual maturity at an earlier age and had a shorter life span than males in the area with sufficient nest abundance. Size-dependent male reproduction was found only in areas with a shortage of nest sites, supporting the assumption of competitive exclusion among males for nests. Females matured at the same age in both sites with no differences in age-specific growth rates and mortality. Our results provide evidence for life-history variation in age and size at maturity and age-specific mortality schedule of males in nest-holding fishes in a single stream population via different sexual selection regimes related to differences in nest abundance between sites. [Natsumeda, Takaharu; Yuma, Masahide] Kyoto Univ, Ctr Ecol Res, Otsu, Shiga 5202113, Japan; [Hori, Michio] Kyoto Univ, Anim Ecol Lab, Grad Sch Sci, Kyoto 6068502, Japan Natsumeda, T (reprint author), Chiba Inst Sci, Fac Risk & Crisis Management, Dept Anim Risk Management, 3 Shiomi Cho, Choshi, Chiba 2880025, Japan. natsutak@hotmail.com Ahnesjo I, 2001, BEHAV ECOL, V12, P397, DOI 10.1093/beheco/12.4.397; ALMADA VC, 1994, J FISH BIOL, V45, P819, DOI 10.1111/j.1095-8649.1994.tb00947.x; ANDERSON CS, 1985, ENVIRON BIOL FISH, V13, P93, DOI 10.1007/BF00002577; Andersson M., 1994, SEXUAL SELECTION; BALON EK, 1975, J FISH RES BOARD CAN, V32, P821, DOI 10.1139/f75-110; BREITBURG DL, 1987, ECOLOGY, V68, P1844, DOI 10.2307/1939876; CLUTTONBROCK TH, 1991, NATURE, V351, P58; DeWitt T. J, 2004, PHENOTYPIC PLASTICIT; DOWNHOWER J F, 1990, Polskie Archiwum Hydrobiologii, V37, P119; EMLEN ST, 1977, SCIENCE, V197, P215, DOI 10.1126/science.327542; Englbrecht CC, 1999, MOL ECOL, V8, P1966, DOI 10.1046/j.1365-294x.1999.00778-6.x; ERMAN DC, 1988, CAN J FISH AQUAT SCI, V45, P2195, DOI 10.1139/f88-255; Forsgren E, 1996, EVOLUTION, V50, P646, DOI 10.1111/j.1558-5646.1996.tb03875.x; FOX PJ, 1978, J FISH BIOL, V12, P5, DOI 10.1111/j.1095-8649.1978.tb04144.x; GOTO A, 1990, ENVIRON BIOL FISH, V28, P101, DOI 10.1007/BF00751030; GOTO A, 1987, COPEIA, P32; GOTO A, 1993, JPN J ICHTHYOL, V39, P363; GOTO A, 1982, Japanese Journal of Ichthyology, V28, P453; Goto A, 1998, ENVIRON BIOL FISH, V52, P203, DOI 10.1023/A:1007347631573; GOTO A, 1985, JPN J ICHTHYOL, V32, P359, DOI 10.1007/BF02905442; Hildrew Alan G., 1994, P21; HUSTON MA, 1987, AM NAT, V129, P678, DOI 10.1086/284666; Knaepkens G, 2006, ECOL FRESHW FISH, V15, P20, DOI 10.1111/j.1600-0633.2005.00117.x; Lamphere BA, 2012, ECOL FRESHW FISH, V21, P75, DOI 10.1111/j.1600-0633.2011.00525.x; Lehtonen T, 2004, OIKOS, V104, P327, DOI 10.1111/j.0030-1299.2004.12489.x; LINDSTROM K, 1988, OIKOS, V53, P67, DOI 10.2307/3565664; Lindstrom K, 2001, AM NAT, V158, P64, DOI 10.1086/320867; Lindstrom K, 1996, P ROY SOC B-BIOL SCI, V263, P1319, DOI 10.1098/rspb.1996.0193; LUGLI M, 1992, ENVIRON BIOL FISH, V35, P37, DOI 10.1007/BF00001156; MANLY BFJ, 1968, T SOC BRIT ENTOMOL, V18, P81; Mann R.H.K., 1984, P171; Matsubara H, 2001, ENVIRON BIOL FISH, V61, P285, DOI 10.1023/A:1010812431239; Matthews W. J., 1998, PATTERNS FRESHWATER; MOUSSEAU TA, 1987, CAN J ZOOL, V65, P2827, DOI 10.1139/z87-429; Mueller M, 2011, J APPL ECOL, V48, P1450, DOI 10.1111/j.1365-2664.2011.02035.x; Nakamura F, 2010, LANDSC ECOL ENG, V6, P143, DOI 10.1007/s11355-009-0083-6; Nakamura K, 2006, BIOSCIENCE, V56, P419, DOI 10.1641/0006-3568(2006)056[0419:RAWRLF]2.0.CO;2; Natsumeda T, 1998, ENVIRON BIOL FISH, V53, P295, DOI 10.1023/A:1007410519726; Natsumeda T, 1998, J FISH BIOL, V53, P33, DOI 10.1006/jfbi.1998.0678; Natsumeda T, 2007, J FISH BIOL, V70, P1378, DOI 10.1111/j.1095-8649.2007.01418.x; Natsumeda T, 2005, ENVIRON BIOL FISH, V74, P349, DOI 10.1007/s10641-005-1608-y; Natsumeda T, 2003, ENVIRON BIOL FISH, V68, P417, DOI 10.1023/B:EBFI.0000005777.90560.90; Natsumeda T, 1997, ICHTHYOL RES, V44, P43, DOI 10.1007/BF02672757; Natsumeda T, 1999, ICHTHYOL RES, V46, P43, DOI 10.1007/BF02674946; Natsumeda T, 2001, ENVIRON BIOL FISH, V62, P393, DOI 10.1023/A:1012227729820; NATSUMEDA T, 1998, THESIS KYOTO U; Natsumeda T, 2007, T AM FISH SOC, V136, P1769, DOI 10.1577/T06-028.1; Natsumeda T, 2012, J ETHOL, V30, P239, DOI 10.1007/s10164-011-0316-7; Reichard M, 2009, EVOLUTION, V63, P377, DOI 10.1111/j.1558-5646.2008.00572.x; Rochet MJ, 2000, OIKOS, V91, P255, DOI 10.1034/j.1600-0706.2000.910206.x; Schmetterling DA, 2004, N AM J FISH MANAGE, V24, P1163, DOI 10.1577/M03-025.1; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1986, EVOLUTION, V40, P893, DOI 10.1111/j.1558-5646.1986.tb00560.x; Takahashi D, 2008, ECOL FRESHW FISH, V17, P71, DOI 10.1111/j.1600-0633.2007.00260.x; TAKAHASHI G, 1984, Japanese Journal of Limnology, V45, P178; TRIPPEL EA, 1995, BIOSCIENCE, V45, P759, DOI 10.2307/1312628; Utzinger J, 1998, J APPL ECOL, V35, P882, DOI 10.1111/j.1365-2664.1998.tb00006.x; Warren ML, 1998, T AM FISH SOC, V127, P637, DOI 10.1577/1548-8659(1998)127<0637:RCABTS>2.0.CO;2 58 2 2 0 13 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0378-1909 ENVIRON BIOL FISH Environ. Biol. Fishes SEP 2013 96 9 1123 1133 10.1007/s10641-013-0108-8 11 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 188DY WOS:000322173500009 2019-02-21 J Burgi, LP; Mills, NJ Buergi, Linda P.; Mills, Nick J. Developmental strategy and life history traits of Meteorus ictericus, a successful resident parasitoid of the exotic Light Brown Apple Moth in California BIOLOGICAL CONTROL English Article Host instar preference; Temperature; Fecundity; Development rate; Adult size; Epiphyas postvittana BIOLOGICAL-CONTROL; PULCHRICORNIS HYMENOPTERA; REPRODUCTIVE STRATEGIES; GYRATOR HYMENOPTERA; LABORATORY BIOLOGY; BRACONIDAE; LEPIDOPTERA; NOCTUIDAE; WASPS; TORTRICIDAE The solitary endoparasitoid Meteorus ictericus has recently been found to be a dominant parasitoid of the invasive Light Brown Apple Moth (Epiphyas postvittana) in California. To better understand its current success and to evaluate its further potential as biological control agent, life history traits of this uniparental population of M. ictericus were studied. We hypothesized that the success of this parasitoid was due to (i) a preference for later instar host larvae, (ii) a broad window of host vulnerability facilitating synchronization with its new host, (iii) high fecundity and a developmental strategy that favors adult size, and (iv) a short generation time. While choice preference experiments revealed a bias toward the attack of 6th instar hosts due to their greater mobility confirming a preference for later instar host larvae, nochoice tests showed that parasitism was equal on 4th to 6th instar hosts and only marginally lower on 3rd instar hosts, indicating a broad window of host vulnerability. In contrast to expectation, lifetime fecundity was relatively low with a maximum of 33 cocoons produced, but increased when host larvae were renewed more frequently suggesting avoidance of the costs associated with self superparasitism. The developmental strategy was consistent with maximization of adult size at the expense of increased development time. The fit of the Briere 1 model to temperature-dependent development time yielded an upper and lower development threshold of 6.08 and 30.06 degrees C, and a short generation time in comparison with E. postvittana. We discuss these findings in the context of the developmental and life-history strategies of hymenopteran parasitoids, and the potential of M. ictericus for biological control of E. postvittana in California. (C) 2013 Elsevier Inc. All rights reserved. [Buergi, Linda P.; Mills, Nick J.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA Burgi, LP (reprint author), Univ Calif Berkeley, Dept Environm Sci Policy & Management, 137 Mulford Hall, Berkeley, CA 94720 USA. lpbuergi@berkeley.edu Mills, Nicholas/0000-0001-8885-8674 USDA-APHIS; California Department of Food and Agriculture; Robert and Peggy van den Bosch Memorial Scholarship This research was supported by funding from USDA-APHIS, the California Department of Food and Agriculture and the Robert and Peggy van den Bosch Memorial Scholarship in Biological Control. We also thank Brandy Chavez, Hao Huang, Iris Huang and other undergraduate research apprentices for their help with laboratory observations. Bartlett A. C., 1985, HDB INSECT REARING, V2, P415; Bell HA, 2000, B ENTOMOL RES, V90, P299; Bell HA, 2003, J APPL ENTOMOL, V127, P332, DOI 10.1046/j.1439-0418.2003.00760.x; Berndt LA, 2005, BIOL CONTROL, V32, P65, DOI 10.1016/j.biocontrol.2004.07.014; BIERI M, 1983, Mitteilungen der Schweizerischen Entomologischen Gesellschaft, V56, P163; BLACKBURN TM, 1991, FUNCT ECOL, V5, P65, DOI 10.2307/2389556; BLACKBURN TM, 1991, J ANIM ECOL, V60, P151, DOI 10.2307/5451; BLOMMERS L, 1988, NETH J PLANT PATHOL, V94, P95, DOI 10.1007/BF01998399; Briere JF, 1999, ENVIRON ENTOMOL, V28, P22, DOI 10.1093/ee/28.1.22; Burgi LP., BIOL INVASIONS; Burgi LP, 2011, ENVIRON ENTOMOL, V40, P1370; Caballero P., 1992, BIOCONTROL, V37, P301; California Department of Food and Agriculture, 2012, LIGHT BROWN APPL MOT; Chhagan A., 2008, New Zealand Plant Protection, V61, P12; Cossentine JE, 2004, BIOCONTROL SCI TECHN, V14, P691, DOI 10.1080/09583150410001682331; Costamagna AC, 2004, ENVIRON ENTOMOL, V33, P128, DOI 10.1603/0046-225X-33.2.128; Cunningham N, 2007, LIGHTBROWN APPLE MOT; DANTHANARAYANA W, 1975, AUST J ZOOL, V23, P419, DOI 10.1071/ZO9750419; FUESTER RW, 1993, ANN ENTOMOL SOC AM, V86, P298, DOI 10.1093/aesa/86.3.298; GODFRAY HCJ, 1994, J ANIM ECOL, V63, P1, DOI 10.2307/5577; GRANT JF, 1984, ENVIRON ENTOMOL, V13, P838, DOI 10.1093/ee/13.3.838; Gutierrez AP, 2010, BIOL INVASIONS, V12, P3319, DOI 10.1007/s10530-010-9725-8; Harvey JA, 1999, J INSECT PHYSIOL, V45, P173, DOI 10.1016/S0022-1910(98)00113-9; Harvey JA, 2005, ENTOMOL EXP APPL, V117, P1, DOI 10.1111/j.1570-7458.2005.00348.x; Harvey JA, 2000, OIKOS, V88, P621, DOI 10.1034/j.1600-0706.2000.880319.x; Harvey JA, 2002, ECOLOGY, V83, P2439, DOI 10.1890/0012-9658(2002)083[2439:TDSOEW]2.0.CO;2; Harvey JA, 2010, J INSECT PHYSIOL, V56, P1178, DOI 10.1016/j.jinsphys.2010.03.018; HEBERT C, 1990, ANN ENTOMOL SOC AM, V83, P734, DOI 10.1093/aesa/83.4.734; HUDDLESTON T, 1983, SYST ENTOMOL, V8, P393, DOI 10.1111/j.1365-3113.1983.tb00491.x; Jervis M, 2011, BIOL J LINN SOC, V104, P443, DOI 10.1111/j.1095-8312.2011.01719.x; Jervis MA, 2008, ANNU REV ENTOMOL, V53, P361, DOI 10.1146/annurev.ento.53.103106.093433; Katiyar R. L., 2001, Russian Entomological Journal, V10, P67; Kienzle J, 1997, BIOL AGRIC HORTIC, V15, P211, DOI 10.1080/01448765.1997.9755196; Kimberling DN, 2004, BIOL INVASIONS, V6, P301, DOI 10.1023/B:BINV.0000034599.09281.58; Kindlmann P, 1999, BIOL CONTROL, V16, P133, DOI 10.1006/bcon.1999.0754; Kindlmann P, 2001, BASIC APPL ECOL, V2, P333, DOI 10.1078/1439-1791-00071; Lane SD, 1999, ECOL ENTOMOL, V24, P181, DOI 10.1046/j.1365-2311.1999.00182.x; Lin LA, 2003, ECOL ENTOMOL, V28, P542, DOI 10.1046/j.1365-2311.2003.00536.x; Liu YH, 2008, B ENTOMOL RES, V98, P109, DOI 10.1017/S0007485307005433; Liu YH, 2006, BIOL CONTROL, V38, P264, DOI 10.1016/j.biocontrol.2006.01.007; MADSEN HF, 1949, J ECON ENTOMOL, V42, P915, DOI 10.1093/jee/42.6.915; MAETO K, 1990, Japanese Journal of Entomology, V58, P81; Maleque MA, 2010, INSECT CONSERV DIVER, V3, P143, DOI 10.1111/j.1752-4598.2010.00087.x; Mangeaud Arnaldo, 2005, Ecol. austral, V15, P199; Mills NJ, 2006, NEW ZEAL J ECOL, V30, P61; MILLS NJ, 1993, B ENTOMOL RES, V83, P103, DOI 10.1017/S0007485300041833; Minamikawa J., 1954, Mushi Fukuoka, V26, P35; Murdoch WW, 2006, POPUL ECOL, V48, P297, DOI 10.1007/s10144-006-0004-6; Murdoch WW, 1996, AM NAT, V148, P807, DOI 10.1086/285957; Pluciennik Zofia, 2010, Journal of Plant Protection Research, V50, P1; PRICE PW, 1973, AM NAT, V107, P684, DOI 10.1086/282867; ROSENHEIM JA, 1994, ECOL ENTOMOL, V19, P374, DOI 10.1111/j.1365-2311.1994.tb00255.x; Singh P., 1985, P271; Smethurst F, 2004, EUR J ENTOMOL, V101, P75, DOI 10.14411/eje.2004.016; Stouthamer R, 2003, QUALITY CONTROL AND PRODUCTION OF BIOLOGICAL CONTROL AGENTS: THEORY AND TESTING PROCEDURES, P93, DOI 10.1079/9780851996882.0093; Suckling DM, 2010, ANNU REV ENTOMOL, V55, P285, DOI 10.1146/annurev-ento-112408-085311; Thiereau J.C., 1995, ENTOMOL EXP APPL, V76, P67; VANALPHEN JJM, 1990, ANNU REV ENTOMOL, V35, P59, DOI 10.1146/annurev.en.35.010190.000423; Wang XG, 2012, ENVIRON ENTOMOL, V41, P81, DOI 10.1603/EN11160; Wu HP, 2008, BIOL CONTROL, V45, P353, DOI 10.1016/j.biocontrol.2008.01.017; Yu S., 2005, WORLD ICHNEUMONOIDEA 61 9 9 0 35 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1049-9644 BIOL CONTROL Biol. Control SEP 2013 66 3 173 182 10.1016/j.biocontrol.2013.05.006 10 Biotechnology & Applied Microbiology; Entomology Biotechnology & Applied Microbiology; Entomology 183OP WOS:000321826600005 2019-02-21 J Hill, SE; Rodeheffer, CD; DelPriore, DJ; Butterfield, ME Hill, Sarah E.; Rodeheffer, Christopher D.; DelPriore, Danielle J.; Butterfield, Max E. Ecological contingencies in women's calorie regulation psychology: A life history approach JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY English Article Life history theory; Food regulation; Critical fat hypothesis; Evolutionary psychology; Dieting BODY-IMAGE; REPRODUCTIVE STRATEGIES; SOCIOECONOMIC-STATUS; GIRLS; SEX; ENVIRONMENTS; MORTALITY; MENARCHE; WEIGHT; SHAPE We used insights from life history theory and the critical fat hypothesis to explore how environmental harshness influences women's food and weight regulation psychology. As predicted by our theoretical model, women who grew up in poorer, more unpredictable environments responded to harshness cues in their adult environments by exhibiting a greater desire for food (Studies 1 and 2) and a diminished concern with calorie restriction and weight loss (Study 3). In sharp contrast, women who grew up in more predictable, wealthier environments responded to these cues by exhibiting a diminished desire for food and increased concern with calorie restriction and weight loss. This research provides novel insights into the role that local environmental factors play in women's food and weight regulation psychology. (c) 2013 Elsevier Inc. All rights reserved. [Hill, Sarah E.; Rodeheffer, Christopher D.; DelPriore, Danielle J.; Butterfield, Max E.] Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA Hill, SE (reprint author), Texas Christian Univ, Dept Psychol, Ft Worth, TX 76129 USA. s.e.hill@tcu.edu ABRAHAM SF, 1982, PSYCHOL MED, V12, P625, DOI 10.1017/S0033291700055732; Aiken LS, 1991, MULTIPLE REGRESSION; ANDERSEN AE, 1992, INT J EAT DISORDER, V11, P283, DOI 10.1002/1098-108X(199204)11:3<283::AID-EAT2260110313>3.0.CO;2-O; ARNOW B, 1992, J BEHAV MED, V15, P155, DOI 10.1007/BF00848323; Becker J. B., 1993, BEHAV ENDOCRINOLOGY; BELSKY J, 1991, CHILD DEV, V62, P647, DOI 10.2307/1131166; Belsky J, 2010, PSYCHOL SCI, V21, P1195, DOI 10.1177/0956797610379867; BRUNER JS, 1947, J ABNORM SOC PSYCH, V42, P33, DOI 10.1037/h0058484; Charnov Eric L., 1993, P1; Chen WY, 1998, PERCEPT MOTOR SKILL, V87, P395, DOI 10.2466/pms.1998.87.2.395; CHISHOLM JS, 1993, CURR ANTHROPOL, V34, P1, DOI 10.1086/204131; Cohen J., 2003, APPL MULTIPLE REGRES; Condit V K, 1990, Hum Nat, V1, P391, DOI 10.1007/BF02734052; Del Giudice M, 2009, BEHAV BRAIN SCI, V32, P1, DOI 10.1017/S0140525X09000016; Ellis BJ, 2004, PSYCHOL BULL, V130, P920, DOI 10.1037/0033-2909.130.6.920; Ellis BJ, 2009, HUM NATURE-INT BIOS, V20, P204, DOI 10.1007/s12110-009-9063-7; FALLON AE, 1985, J ABNORM PSYCHOL, V94, P102, DOI 10.1037//0021-843X.94.1.102; Frisch R.E., 2002, FEMALE FERTILITY BOD; FRISCH RE, 1985, PERSPECT BIOL MED, V28, P611; FRISCH RE, 1976, HUM BIOL, V48, P353; Greenberg J, 2000, PERS SOC PSYCHOL B, V26, P91, DOI 10.1177/0146167200261009; Greenberg J, 2003, PSYCHOL SCI, V14, P516, DOI 10.1111/1467-9280.03454; Greenberg J, 1986, PUBLIC SELF PRIVATE, P189, DOI [DOI 10.1007/978-1-4613-9564-5_10, 10.1007/978-1-4613-9564-5_10]; GREENO CG, 1994, PSYCHOL BULL, V115, P444, DOI 10.1037//0033-2909.115.3.444; Griskevicius V, 2013, PSYCHOL SCI, V24, P197, DOI 10.1177/0956797612451471; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P241, DOI 10.1037/a0021082; Griskevicius V, 2011, J PERS SOC PSYCHOL, V100, P1015, DOI 10.1037/a0022403; HEATHERTON TF, 1991, PSYCHOL BULL, V110, P86, DOI 10.1037/0033-2909.110.1.86; Heesacker M., 2000, COLL STUDENT J, V34, P572; HERMAN CP, 1975, J ABNORM PSYCHOL, V84, P666, DOI 10.1037//0021-843X.84.6.666; Hill S. E., FAT FERTILI IN PRESS; HUON GF, 1994, INT J EAT DISORDER, V15, P159, DOI 10.1002/1098-108X(199403)15:2<159::AID-EAT2260150207>3.0.CO;2-2; Jaeger B, 2002, PSYCHOTHER PSYCHOSOM, V71, P54, DOI 10.1159/000049344; Kaplan H. S., 2005, HDB EVOLUTIONARY PSY, P68; Kenrick DT, 2010, PERSPECT PSYCHOL SCI, V5, P292, DOI 10.1177/1745691610369469; Knobloch-Westerwick S, 2012, COMMUN RES, V39, P79, DOI 10.1177/0093650211400596; Koball AM, 2012, HEALTH PSYCHOL, V31, P521, DOI 10.1037/a0025893; Kuzawa CW, 2010, P NATL ACAD SCI USA, V107, P16800, DOI 10.1073/pnas.1006008107; Kuzawa CW, 2005, AM J HUM BIOL, V17, P5, DOI 10.1002/ajhb.20091; KUZAWA CW, 2008, EVOLUTIONARY MED HLT, P325; LINGSWILER VM, 1989, INT J EAT DISORDER, V8, P533, DOI 10.1002/1098-108X(198909)8:5<533::AID-EAT2260080505>3.0.CO;2-O; Mahmud N, 2007, BRIT J PSYCHOL, V98, P187, DOI 10.1348/000712606X112446; Navarrete CD, 2009, PSYCHOL SCI, V20, P661, DOI 10.1111/j.1467-9280.2009.02352.x; PATTON GC, 1990, PSYCHOL MED, V20, P383, DOI 10.1017/S0033291700017700; PAXTON SJ, 1991, J YOUTH ADOLESCENCE, V20, P361, DOI 10.1007/BF01537402; Pyszczynski T, 1999, PSYCHOL REV, V106, P835, DOI 10.1037/0033-295X.106.4.835; RIPPON C, 1988, INT J EAT DISORDER, V7, P617, DOI 10.1002/1098-108X(198809)7:5<617::AID-EAT2260070505>3.0.CO;2-U; Roff Derek A., 1992; RUDERMAN AJ, 1985, J ABNORM PSYCHOL, V94, P78, DOI 10.1037//0021-843X.94.1.78; Salmon C, 2008, HUM NATURE-INT BIOS, V19, P103, DOI 10.1007/s12110-008-9030-8; SOBAL J, 1989, PSYCHOL BULL, V105, P260, DOI 10.1037//0033-2909.105.2.260; Stearns S, 1992, EVOLUTION LIFE HIST; Stice E, 1998, PSYCHOL ADDICT BEHAV, V12, P195, DOI 10.1037//0893-164X.12.3.195; SURBEY MK, 1987, ETHOL SOCIOBIOL, V8, pS47; Swami V, 2010, PERS SOC PSYCHOL B, V36, P309, DOI 10.1177/0146167209359702; Swami Viren, 2006, BODY IMAGE NEW RES, P35; Tabachnick B. G, 2001, USING MULTIVARIATE S; Tiggemann M, 1996, INT J EAT DISORDER, V20, P199, DOI 10.1002/(SICI)1098-108X(199609)20:2<199::AID-EAT11>3.0.CO;2-Z; Tybur JM, 2011, PSYCHOL SCI, V22, P478, DOI 10.1177/0956797611400096; VOLAND E, 1989, ETHOL SOCIOBIOL, V10, P223, DOI 10.1016/0162-3095(89)90001-0; WASSER SK, 1983, Q REV BIOL, V58, P513, DOI 10.1086/413545; Weeden J, 2005, PSYCHOL BULL, V131, P635, DOI 10.1037/0033-2909.131.5.635; West-Eberhard MJ, 2003, DEV PLASTICITY EVOLU; Williams S, 2002, LANCET, V359, P580, DOI 10.1016/S0140-6736(02)07715-2; Wilson J. M. B., 2005, EVOLUTION GENDER, V7, P245; WILSON M, 1997, CHARACTERIZING HUMAN, P253; Zhou XY, 2009, PSYCHOL SCI, V20, P700, DOI 10.1111/j.1467-9280.2009.02353.x 67 13 15 0 19 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 0022-1031 1096-0465 J EXP SOC PSYCHOL J. Exp. Soc. Psychol. SEP 2013 49 5 888 897 10.1016/j.jesp.2013.03.016 10 Psychology, Social Psychology 182FL WOS:000321727000011 2019-02-21 J Grivet, D; Climent, J; Zabal-Aguirre, M; Neale, DB; Vendramin, GG; Gonzalez-Martinez, SC Grivet, Delphine; Climent, Jose; Zabal-Aguirre, Mario; Neale, David B.; Vendramin, Giovanni G.; Gonzalez-Martinez, Santiago C. Adaptive evolution of Mediterranean pines MOLECULAR PHYLOGENETICS AND EVOLUTION English Article Phylogeny; Adaptation; Candidate genes; Coevolution; Phenotypic traits; Pinus AMINO-ACID SITES; LIFE-HISTORY STRATEGIES; CODING DNA-SEQUENCES; POSITIVE SELECTION; PINUS PINACEAE; PHYLOGENETIC-RELATIONSHIPS; CORRELATED EVOLUTION; PINASTER AIT.; PHASE-CHANGE; GENOME SIZE Mediterranean pines represent an extremely heterogeneous assembly. Although they have evolved under similar environmental conditions, they diversified long ago, ca. 10 Mya, and present distinct biogeographic and demographic histories. Therefore, it is of special interest to understand whether and to what extent they have developed specific strategies of adaptive evolution through time and space. To explore evolutionary patterns, the Mediterranean pines' phylogeny was first reconstructed analyzing a new set of 21 low-copy nuclear genes with multilocus Bayesian tree reconstruction methods. Secondly, a phylogenetic approach was used to search for footprints of natural selection and to examine the evolution of multiple phenotypic traits. We identified two genes (involved in pines' defense and stress responses) that have likely played a role in the adaptation of Mediterranean pines to their environment. Moreover, few life-history traits showed historical or evolutionary adaptive convergence in Mediterranean lineages, while patterns of character evolution revealed various evolutionary trade-offs linking growth-development, reproduction and fire-related traits. Assessing the evolutionary path of important life-history traits, as well as the genomic basis of adaptive variation is central to understanding the past evolutionary success of Mediterranean pines and their future response to environmental changes. (C) 2013 Elsevier Inc. All rights reserved. [Grivet, Delphine; Climent, Jose; Zabal-Aguirre, Mario; Gonzalez-Martinez, Santiago C.] INIA, Forest Res Ctr CIFOR, Dept Forest Ecol & Genet, Madrid, Spain; [Neale, David B.] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA; [Vendramin, Giovanni G.] CNR, Div Florence, Plant Genet Inst, Sesto Fiorentino, FI, Italy Grivet, D (reprint author), Natl Inst Agr & Food Res & Technol INIA, Dept Forest Ecol & Genet, Forest Res Ctr CIFOR, Madrid 28040, Spain. dgrivet@inia.es; climent@inia.es; mario.zabal@inia.es; dbneale@ucdavis.edu; giovanni.vendramin@igv.cnr.it; santiago@inia.es Gonzalez-Martinez, Santiago C/H-2014-2012; Zabal-Aguirre, Mario/A-1410-2011; Grivet, Delphine/G-9708-2012; Vendramin, Giovanni G/K-9731-2014; Climent, Jose/B-9090-2009 Gonzalez-Martinez, Santiago C/0000-0002-4534-3766; Zabal-Aguirre, Mario/0000-0002-7237-0954; Grivet, Delphine/0000-0001-8168-4456; Vendramin, Giovanni G/0000-0001-9921-7872; Climent, Jose/0000-0002-0815-2645 Spanish Ministry of Economy and Competiveness [CGL2011-30182-0O2-01]; INIA [AT07-002]; Italian MIUR [RBAP10A2T4] We are grateful to C. Garcia-Barriga and S. Torre for their help in producing or editing some of the sequences. We thank M.R. Chambel and E. Hermoso for their contribution in producing the phenotypic data, as well as A. Eckert, J. Wegrzyn, O. Savolainen and K. Avia for facilitating some of the molecular data. Thanks are extended to G. Nieto-Feliner, J. Fuertes, J.G. Pausas, R. Alia, and Z. Lorenzo for their comments on early drafts, and to P. Alizoti, Y. Kurt, J.J. Robledo-Arnuncio and S. Mutke for checking and providing valuable suggestions on the phenotypic data. This work was supported by the EU EVOLTREE Network of Excellence, project CGL2011-30182-0O2-01 (ADAPCON) from the Spanish Ministry of Economy and Competiveness, as well as project AT07-002 of INIA, and the Italian MIUR project "Bioversitalia" (RBAP10A2T4). D.G. acknowledges the support of the Spanish Ministry of Economy and Competiveness through a 'Ramon y Cajal' fellowship. Ane C, 2007, MOL BIOL EVOL, V24, P412; Bakker EG, 2008, GENETICS, V178, P2031, DOI 10.1534/genetics.107.083279; Barbero Marcel, 1998, P153; BENKMAN CW, 1995, OIKOS, V73, P221, DOI 10.2307/3545911; Benkman CW, 1996, EVOLUTION, V50, P2499, DOI 10.1111/j.1558-5646.1996.tb03635.x; BERRIGAN D, 1994, OIKOS, V70, P474, DOI 10.2307/3545787; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; CHARNOV EL, 1990, EVOL ECOL, V4, P273, DOI 10.1007/BF02214335; Climent J, 2004, PLANT ECOL, V171, P185, DOI 10.1023/B:VEGE.0000029374.64778.68; Climent J, 2011, TREES-STRUCT FUNCT, V25, P175, DOI 10.1007/s00468-010-0496-8; Coll NS, 2010, SCIENCE, V330, P1393, DOI 10.1126/science.1194980; Cornelissen JHC, 1999, OECOLOGIA, V118, P248, DOI 10.1007/s004420050725; Creevey CJ, 2002, GENE, V300, P43, DOI 10.1016/S0378-1119(02)01039-9; Creevey CJ, 2003, BIOINFORMATICS, V19, P1726, DOI 10.1093/bioinformatics/btg225; De Mita S, 2007, BMC EVOL BIOL, V7, DOI 10.1186/1471-2148-7-210; Drummond A.J., 2011, GENEIOUS; Eckert AJ, 2006, MOL PHYLOGENET EVOL, V40, P166, DOI 10.1016/j.ympev.2006.03.009; Edwards SV, 2009, P NATL ACAD SCI USA, V106, P8799, DOI 10.1073/pnas.0904103106; Edwards SV, 2009, EVOLUTION, V63, P1, DOI 10.1111/j.1558-5646.2008.00549.x; Eveno E, 2008, MOL BIOL EVOL, V25, P417, DOI 10.1093/molbev/msm272; Fady B, 2012, ANN FOREST SCI, V69, P421, DOI 10.1007/s13595-012-0219-y; FELSENSTEIN J, 1985, AM NAT, V125, P1, DOI 10.1086/284325; Frankel N, 2006, GENE, V378, P74, DOI 10.1016/j.gene.2006.05.010; Gernandt DS, 2008, INT J PLANT SCI, V169, P1086, DOI 10.1086/590472; Gernandt DS, 2005, TAXON, V54, P29, DOI 10.2307/25065300; Gonzalez-Martinez S.C, 2007, GENETICS, V175, P1; Grivet D, 2011, MOL BIOL EVOL, V28, P101, DOI 10.1093/molbev/msq190; Grivet D, 2009, NEW PHYTOL, V184, P1016, DOI 10.1111/j.1469-8137.2009.03015.x; Grotkopp E, 2002, AM NAT, V159, P396, DOI 10.1086/338995; Grotkopp E, 2004, EVOLUTION, V58, P1705; Guzman B, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006362; He TH, 2012, NEW PHYTOL, V194, P751, DOI 10.1111/j.1469-8137.2012.04079.x; HERRERA CM, 1992, AM NAT, V140, P421, DOI 10.1086/285420; Jones CS, 1999, INT J PLANT SCI, V160, pS105, DOI 10.1086/314215; Jordan GJ, 2000, AUST J BOT, V48, P561, DOI 10.1071/BT99038; Keeley J. E., 2011, FIRE MEDITERRANEAN E, P58; Keeley Jon E., 1998, P219; KLAUS W, 1989, PLANT SYST EVOL, V162, P133, DOI 10.1007/BF00936915; Larget BR, 2010, BIOINFORMATICS, V26, P2910, DOI 10.1093/bioinformatics/btq539; Leishman M. R., 2000, Seeds: the ecology of regeneration in plant communities, P31, DOI 10.1079/9780851994321.0031; Leitch AR, 2012, NEW PHYTOL, V194, P629, DOI 10.1111/j.1469-8137.2012.04105.x; Liston A, 1999, MOL PHYLOGENET EVOL, V11, P95, DOI 10.1006/mpev.1998.0550; Liu L, 2007, SYST BIOL, V56, P504, DOI 10.1088/10635150701429982; Lopez GG, 2002, INT J PLANT SCI, V163, P737, DOI 10.1086/342213; Maddison W.P., 2011, MESQUITE MODULAR SYS; Martinez-Vilalta J, 2004, PLANT ECOL, V171, P3, DOI 10.1023/B:VEGE.0000029378.87169.b1; Mirov N. T., 1967, THE GENUS PINUS; Ne'eman G, 2011, ANN BOT-LONDON, V108, P197, DOI 10.1093/aob/mcr104; Neale DB, 2011, NAT REV GENET, V12, P111, DOI 10.1038/nrg2931; Nielsen R, 1998, GENETICS, V148, P929; Nylander J. A. A., 2004, MRMODELTEST; PAGE C N, 1974, Notes from the Royal Botanic Garden Edinburgh, V33, P317; Pagel M, 2006, AM NAT, V167, P808, DOI 10.1086/503444; Palme AE, 2009, MOL BIOL EVOL, V26, P893, DOI 10.1093/molbev/msp010; Parks M, 2009, BMC BIOL, V7, DOI 10.1186/1741-7007-7-84; Pausas JG, 2004, ECOLOGY, V85, P1085, DOI 10.1890/02-4094; Poorter L, 2010, NEW PHYTOL, V185, P481, DOI 10.1111/j.1469-8137.2009.03092.x; Pot D, 2005, NEW PHYTOL, V167, P101, DOI 10.1111/j.1469-8137.2005.01417.x; Quezel P, 2000, ECOLOGY, BIOGEOGRAPHY AND MANAGEMENT OF PINUS HALEPENSIS AND P BRUTIA FOREST ECOSYSTEMS IN THE MEDITERRANEAN BASIN, P1; Richardson DM, 1998, ECOLOGY BIOGEOGRAPHY; Rochman M.V, 2012, EVOLUTION, V66, P1; Schiller G, 2000, ECOLOGY, BIOGEOGRAPHY AND MANAGEMENT OF PINUS HALEPENSIS AND P BRUTIA FOREST ECOSYSTEMS IN THE MEDITERRANEAN BASIN, P13; Schwilk DW, 2001, OIKOS, V94, P326, DOI 10.1034/j.1600-0706.2001.940213.x; Smith KK, 2003, INT J DEV BIOL, V47, P613; STEARNS SC, 1977, ANNU REV ECOL SYST, V8, P145, DOI 10.1146/annurev.es.08.110177.001045; STRAUSS SH, 1985, AM NAT, V125, P702, DOI 10.1086/284373; Swofford D.L., 1991, PAUP PHYLOGENETIC AN; Syring J, 2005, AM J BOT, V92, P2086, DOI 10.3732/ajb.92.12.2086; Tapias R, 2004, PLANT ECOL, V171, P53, DOI 10.1023/B:VEGE.0000029383.72609.f0; Tapias R, 2001, J ECOL, V89, P629, DOI 10.1046/j.1365-2745.2001.00575.x; van Gelder HA, 2006, NEW PHYTOL, V171, P367, DOI 10.1111/j.1469-8137.2006.01757.x; Verdu M, 2002, EVOLUTION, V56, P1352; Wachowiak W, 2011, HEREDITY, V106, P775, DOI 10.1038/hdy.2010.118; WAKAMIYA I, 1993, AM J BOT, V80, P1235, DOI 10.2307/2445706; Wang XR, 1999, AM J BOT, V86, P1742, DOI 10.2307/2656672; Wegrzyn Jill L, 2008, Int J Plant Genomics, V2008, P412875, DOI 10.1155/2008/412875; Willyard A, 2009, MOL PHYLOGENET EVOL, V52, P498, DOI 10.1016/j.ympev.2009.02.011; Yang ZH, 2000, GENETICS, V155, P431; Yang ZH, 2005, MOL BIOL EVOL, V22, P1107, DOI 10.1093/molbev/msi097; Yang ZH, 2000, TRENDS ECOL EVOL, V15, P496, DOI 10.1016/S0169-5347(00)01994-7; Yang ZH, 1998, MOL BIOL EVOL, V15, P568, DOI 10.1093/oxfordjournals.molbev.a025957; Yang ZH, 2007, MOL BIOL EVOL, V24, P1586, DOI 10.1093/molbev/msm088 82 22 22 1 102 ACADEMIC PRESS INC ELSEVIER SCIENCE SAN DIEGO 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA 1055-7903 MOL PHYLOGENET EVOL Mol. Phylogenet. Evol. SEP 2013 68 3 555 566 10.1016/j.ympev.2013.03.032 12 Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity Biochemistry & Molecular Biology; Evolutionary Biology; Genetics & Heredity 176PG WOS:000321316000015 23591087 2019-02-21 J Csergo, AM; Demeter, L; Turkington, R Csergo, Anna Maria; Demeter, Laszlo; Turkington, Roy Declining Diversity in Abandoned Grasslands of the Carpathian Mountains: Do Dominant Species Matter? PLOS ONE English Article BRACHYPODIUM-PINNATUM; CHALK GRASSLAND; ECOSYSTEM PROCESSES; HAY MEADOWS; PLANT; RICHNESS; COMPETITION; VEGETATION; EVENNESS; COMMUNITIES Traditional haymaking has created exceptionally high levels of plant species diversity in semi-natural grasslands of the Carpathian Mountains (Romania), the maintenance of which is jeopardized by recent abandonment and subsequent vegetation succession. We tested the hypothesis that the different life history strategies of dominant grasses cause different patterns of diversity loss after abandonment of traditional haymaking in two types of meadow. Although diversity loss rate was not significantly different, the mechanism of loss depended on the life history of dominant species. In meadows co-dominated by competitive stress-tolerant ruderals, diversity loss occurred following the suppression of dominant grasses by tall forbs, whereas in meadows dominated by a stress-tolerant competitor, diversity loss resulted from increased abundance and biomass of the dominant grass. We conclude that management for species conservation in abandoned grasslands should manipulate the functional turnover in communities where the dominant species is a weaker competitor, and abundance and biomass of dominant species in communities where the dominant species is the stronger competitor. [Csergo, Anna Maria] Sapientia Univ, Dept Hort, Targu Mures, Romania; [Demeter, Laszlo] Sapientia Univ, Dept Environm Engn, Miercurea Ciuc, Romania; [Csergo, Anna Maria; Turkington, Roy] Univ British Columbia, Dept Bot, Vancouver, BC, Canada; [Csergo, Anna Maria; Turkington, Roy] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC, Canada Csergo, AM (reprint author), Sapientia Univ, Dept Hort, Targu Mures, Romania. csergo.anna.maria@gmail.com Csergo, Anna Maria/J-3446-2013 Csergo, Anna Maria/0000-0003-3325-2995 DG Environment through the European Forum on Nature Conservation and Pastoralism; Barbara Knowles Fund; Pogany-havas Association The project was funded by DG Environment through the European Forum on Nature Conservation and Pastoralism and Barbara Knowles Fund, in collaboration with the Pogany-havas Association. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Allan E, 2011, P NATL ACAD SCI USA, V108, P17034, DOI 10.1073/pnas.1104015108; Baur B, 2006, BIOL CONSERV, V132, P261, DOI 10.1016/j,biocon.2006.04.018; BERENDSE F, 1992, ECOLOGY, V73, P46, DOI 10.2307/1938719; BOBBINK R, 1987, BIOL CONSERV, V40, P301, DOI 10.1016/0006-3207(87)90122-4; BOBBINK R, 1991, BIOL CONSERV, V56, P1, DOI 10.1016/0006-3207(91)90085-N; Cioaca A, 2010, LANDSCAPES AND SOCIETIES: SELECTED CASES, P257, DOI 10.1007/978-90-481-9413-1_16; Ciocirlan V, 2000, FLORA ILUSTRATA ROMA; Cogalniceanu D, 2010, BIODIVERS CONSERV, V19, P1471, DOI 10.1007/s10531-010-9777-1; Cousins SAO, 2009, BIOL CONSERV, V142, P2752, DOI 10.1016/j.biocon.2009.07.001; Gafta D., 2008, MANUAL INTERPRETARE; Garnier E, 2004, ECOLOGY, V85, P2630, DOI 10.1890/03-0799; Gilbert B, 2009, AM NAT, V174, P850, DOI 10.1086/647903; Grime J. P, 1979, PLANT STRATEGIES VEG; GRIME JP, 1973, NATURE, V242, P344, DOI 10.1038/242344a0; Grime JP, 1998, J ECOL, V86, P902, DOI 10.1046/j.1365-2745.1998.00306.x; Grime JP, 1988, COMP PLANT ECOLOGY F; Hansson M, 2000, J VEG SCI, V11, P31, DOI 10.2307/3236772; HERBEN T, 1994, FOLIA GEOBOT PHYTOTX, V29, P459, DOI 10.1007/BF02883144; Hillebrand H, 2008, ECOLOGY, V89, P1510, DOI 10.1890/07-1053.1; Hoffman T.M., 1994, BIODIVERSITY LETT, V2, P35, DOI DOI 10.2307/2999666; Huhta AP, 1998, ANN BOT FENN, V35, P85; Hurst A, 1999, BIOL CONSERV, V88, P75, DOI 10.1016/S0006-3207(98)00089-5; Institute Inc SAS, 2010, AS STAT 9 22 US GUID; Jacquemyn H, 2011, BIOL CONSERV, V144, P416, DOI 10.1016/j.biocon.2010.09.020; KLIMES L, 2002, EVOL ECOL, V15, P363; Klimes L, 2013, APPL VEG SCI, V16, P640, DOI 10.1111/avsc.12032; Klimesova J, 2010, FOLIA GEOBOT, V45, P225, DOI 10.1007/s12224-010-9066-5; Knowles B., 2011, MOUNTAIN HAY MEADOWS; Kohler B, 2001, PLANT SOIL, V230, P323, DOI 10.1023/A:1010335825818; Losvik MH, 1999, NORD J BOT, V19, P473, DOI 10.1111/j.1756-1051.1999.tb01231.x; Mason NWH, 2011, J ECOL, V99, P788, DOI 10.1111/j.1365-2745.2011.01801.x; McCune B, 2002, J VEG SCI, V13, P603, DOI 10.1658/1100-9233(2002)013[0603:EFPADI]2.0.CO;2; McLaren JR, 2011, J VEG SCI, V22, P503, DOI 10.1111/j.1654-1103.2011.01263.x; Medina-Roldan E, 2011, PLANT SOIL, V344, P377, DOI 10.1007/s11104-011-0756-4; MITCHLEY J, 1988, J ECOL, V76, P341, DOI 10.2307/2260597; Mokany K, 2008, J ECOL, V96, P884, DOI 10.1111/j.1365-2745.2008.01395.x; NIERING W A, 1987, Conservation Biology, V1, P287, DOI 10.1111/j.1523-1739.1987.tb00049.x; Otsus M, 2004, OECOLOGIA, V138, P293, DOI 10.1007/s00442-003-1428-8; PAWLOWSKI B, 1970, Vegetatio, V21, P181; PONS TL, 1993, OECOLOGIA, V95, P416, DOI 10.1007/BF00320997; Pykala J, 2005, BASIC APPL ECOL, V6, P25, DOI 10.1016/j.baae.2004.10.002; Reitalu T, 2010, J APPL ECOL, V47, P1216, DOI 10.1111/j.1365-2664.2010.01875.x; Sasaki T, 2011, OECOLOGIA, V166, P761, DOI 10.1007/s00442-011-1916-1; Smith B, 1996, OIKOS, V76, P70, DOI 10.2307/3545749; Smith MD, 2003, ECOL LETT, V6, P509, DOI 10.1046/j.1461-0248.2003.00454.x; Taff GN, 2010, LANDSC SER, V10, P121, DOI 10.1007/978-1-4020-9656-3_6; TILMAN D, 1990, OIKOS, V58, P3, DOI 10.2307/3565355; Tilman D, 1988, PLANT STRATEGIES DYN; Van der Graaf AJ, 2005, FUNCT ECOL, V19, P961, DOI 10.1111/j.1365-2435.2005.01056.x; Viragh K., 2003, TISCIA (Szeged), V34, P47; WHITE PS, 1988, J ECOL, V76, P192, DOI 10.2307/2260463; Wilsey BJ, 2004, ECOLOGY, V85, P2693, DOI 10.1890/04-0245; Wilson JB, 2012, J VEG SCI, V23, P796, DOI 10.1111/j.1654-1103.2012.01400.x; ZOBEL M, 1992, OIKOS, V65, P314, DOI 10.2307/3545024; Zobel M, 1998, APPL VEG SCI, V1, P55, DOI 10.2307/1479085 55 8 12 3 42 PUBLIC LIBRARY SCIENCE SAN FRANCISCO 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA 1932-6203 PLOS ONE PLoS One AUG 27 2013 8 8 e73533 10.1371/journal.pone.0073533 9 Multidisciplinary Sciences Science & Technology - Other Topics 210FR WOS:000323815200083 24014148 DOAJ Gold, Green Published 2019-02-21 J Pere, C; Jactel, H; Kenis, M Pere, Christelle; Jactel, Herve; Kenis, Marc Response of insect parasitism to elevation depends on host and parasitoid life-history strategies BIOLOGY LETTERS English Article parasitoids; elevation gradient; global warming; meta-analysis CLIMATE-CHANGE; METAANALYSIS; ALTITUDE; PESTS How global warming will affect insect parasitoids and their role as natural enemies of insect pests is difficult to assess within a short period of time. Considering that elevation gradients can be used as analogues for global warming, we carried out meta-analyses of 27 correlations between parasitoid richness and elevation and 140 correlations between parasitism rate and elevation in natural and semi-natural environments. We also explored various covariates that may explain the observed responses. Both parasitism rates and parasitoid species richness significantly decreased with increasing elevation. The decrease was greater for ectoparasitoids and parasitoids of ectophagous insects than for endoparasitoids and parasitoids of endophagous hosts, possibly because these latter are better protected from adverse and extreme climatic conditions occurring at higher elevations. Although our results suggest an increase of parasitism with increasing temperature, other factors regulating herbivorous insects have to be considered before concluding that climate warming will lead to a decrease in pest density. [Pere, Christelle; Kenis, Marc] CABI, CH-2800 Delemont, Switzerland; [Pere, Christelle; Jactel, Herve] Univ Bordeaux, BIOGECO, UMR1202, F-33400 Talence, France; [Pere, Christelle; Jactel, Herve] INRA, BIOGECO, UMR1202, F-33610 Cestas, France Kenis, M (reprint author), CABI, CH-2800 Delemont, Switzerland. m.kenis@cabi.org European Commission FP7 via the Project BACCARA [226299] We thank A. Battisti and M. Cock for their helpful comments to the manuscript, and A. Roques, W. Grodzki and C.-E. Imbert for unpublished data. We also acknowledge support from the European Commission FP7 via the Project BACCARA (GA no. 226299). Borenstein M, 2009, INTRO METAANALYSIS; Dainese Matteo, 2012, Biology (Basel), V1, P857, DOI 10.3390/biology1030857; Gaston Kevin J., 1996, P202; Gurevitch J, 1999, ECOLOGY, V80, P1142, DOI 10.2307/177061; Hance T, 2007, ANNU REV ENTOMOL, V52, P107, DOI 10.1146/annurev.ento.52.110405.091333; Hijmans RJ, 2005, INT J CLIMATOL, V25, P1965, DOI 10.1002/joc.1276; Hodkinson ID, 2005, BIOL REV, V80, P489, DOI 10.1017/S1464793105006767; Jactel H, 2012, GLOBAL CHANGE BIOL, V18, P267, DOI 10.1111/j.1365-2486.2011.02512.x; Klapwijk M. J., 2011, INSECT OUTBREAKS REV, P429; Korner C, 2007, TRENDS ECOL EVOL, V22, P569, DOI 10.1016/j.tree.2007.09.006; Messing RH, 1997, ENTOMOL EXP APPL, V82, P147, DOI 10.1046/j.1570-7458.1997.00124.x; Mills NJ, 1996, ECOL MODEL, V92, P121, DOI 10.1016/0304-3800(95)00177-8; Quicke D.L., 1997, PARASITIC WASPS; Rosenberg M. S., 2000, METAWIN STAT SOFTWAR; Rosenberg MS, 2005, EVOLUTION, V59, P464, DOI 10.1111/j.0014-3820.2005.tb01004.x; Stireman JO, 2005, P NATL ACAD SCI USA, V102, P17384, DOI 10.1073/pnas.0508839102; Sunday JM, 2011, P ROY SOC B-BIOL SCI, V278, P1823, DOI 10.1098/rspb.2010.1295; Thomson LJ, 2010, BIOL CONTROL, V52, P296, DOI 10.1016/j.biocontrol.2009.01.022; Wade SJ, 1988, ANNU REV ENTOMOL, V33, P441, DOI [10.1146/annurev.en.33.010188.002301, DOI 10.1146/ANNUREV.EN.33.010188.002301)]; Whittaker RJ, 2010, ECOLOGY, V91, P2522, DOI 10.1890/08-0968.1 20 11 12 0 61 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. AUG 23 2013 9 4 20130028 10.1098/rsbl.2013.0028 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 179ZZ WOS:000321563600005 23760164 Bronze, Green Published 2019-02-21 J Schwartz, SK; Wagner, WE; Hebets, EA Schwartz, Steven K.; Wagner, William E., Jr.; Hebets, Eileen A. Spontaneous male death and monogyny in the dark fishing spider BIOLOGY LETTERS English Article mating system; monogyny; self-sacrifice; sexual size dimorphism; sex ratio; sperm precedence SEXUAL CANNIBALISM; REDBACK SPIDERS; MALE SACRIFICE; ARANEAE; EVOLUTION; SELECTION; BEHAVIOR Monogyny (male monogamy) is found in a diverse assemblage of taxa, and recent theoretical work reveals that a male-biased sex ratio can favour the evolution of this relatively rare mating system. We integrate this theoretical framework with field observations and laboratory experiments involving the sexually size dimorphic fishing spider, Dolomedes tenebrosus, to test the prediction that this species exhibits monogyny. Field surveys revealed a male-biased sex ratio, likely resulting from different life-history strategies (early male maturation). Results from mating trials supported our prediction of monogyny as we discovered that males mate with a single female. Unexpectedly, however, we observed that mating results in obligate male death and genital mutilation. Additional field observations of released individuals suggest that males are not limited by their ability to encounter additional females. Controlled laboratory assays demonstrated that males discriminate among virgin and non-virgin female silk cues, consistent with predictions of first-male sperm precedence. In summary, we report a novel case of male self-sacrifice in a species that exhibits female-biased sexual size dimorphism, male-biased sex ratio, genital mutilation and a suggestion of first-male sperm precedence; all of which are consistent with theoretical predictions of the evolution of monogyny. [Schwartz, Steven K.; Wagner, William E., Jr.; Hebets, Eileen A.] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA Schwartz, SK (reprint author), Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. schwartz@huskers.unl.edu Wagner, William/0000-0001-6306-7964 University of Nebraska-Lincoln We thank the Lincoln Parks & Recreation Department for access and the University of Nebraska-Lincoln for financial support. Andersson M., 1994, SEXUAL SELECTION; Andrade MCB, 1996, SCIENCE, V271, P70, DOI 10.1126/science.271.5245.70; Andrade MCB, 2003, BEHAV ECOL, V14, P531, DOI 10.1093/beheco/arg015; BATEMAN AJ, 1948, HEREDITY, V2, P349, DOI 10.1038/hdy.1948.21; BUSKIRK RE, 1984, AM NAT, V123, P612, DOI 10.1086/284227; CARICO J E, 1973, Bulletin of the Museum of Comparative Zoology, V144, P435; CLUTTONBROCK TH, 1991, EVOLUTION PARENTAL C; Elias DO, 2011, ADV INSECT PHYSIOL, V41, P65, DOI 10.1016/B978-0-12-415919-8.00002-1; Foelix R. F, 1996, BIOL SPIDERS; Fromhage L, 2005, EVOLUTION, V59, P1400; Ghiselin M.T, 1974, EC NATURE EVOLUTION; Hormiga G, 2000, SYST BIOL, V49, P435, DOI 10.1080/10635159950127330; Johnson JC, 2001, ANIM BEHAV, V61, P905, DOI 10.1006/anbe.2000.1679; Knoflach B, 2003, J ARACHNOL, V31, P445, DOI 10.1636/S02-56; Miller JA, 2007, EVOLUTION, V61, P1301, DOI 10.1111/j.1558-5646.2007.00115.x; Robert T, 1972, SEXUAL SELECTION DES, P136, DOI DOI 10.1111/J.1420-9101.2008.01540.X; Scharff N, 1997, ZOOL J LINN SOC-LOND, V120, P355, DOI 10.1111/j.1096-3642.1997.tb01281.x; Schneider J, 2010, ANIMAL BEHAVIOUR: EVOLUTION AND MECHANISMS, P441, DOI 10.1007/978-3-642-02624-9_15; Segev O, 2003, J ARACHNOL, V31, P379, DOI 10.1636/S01-101; SIERWALD P, 1988, J ARACHNOL, V16, P262; Snow LSE, 2004, BEHAV ECOL, V15, P785, DOI 10.1093/beheco/arh080; Stoltz JA, 2009, ANIM BEHAV, V77, P79, DOI 10.1016/j.anbehav.2008.09.012 22 12 12 1 47 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 1744-9561 BIOL LETTERS Biol. Lett. AUG 23 2013 9 4 20130113 10.1098/rsbl.2013.0113 4 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 179ZZ WOS:000321563600010 23784928 Green Published, Bronze 2019-02-21 J Kerby, J; Post, E Kerby, Jeffrey; Post, Eric Capital and income breeding traits differentiate trophic match-mismatch dynamics in large herbivores PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article trophic mismatch; life-history theory; climate change; capital-income breeding; Ovibos moschatus; Rangifer tarandus MUSKOXEN OVIBOS-MOSCHATUS; RECENT CLIMATE-CHANGE; PLANT PHENOLOGY; BODY CONDITION; POPULATION-GROWTH; FEMALE MUSKOXEN; REPRODUCTION; REINDEER; CARIBOU; RESPONSES For some species, climate change has altered environmental conditions away from those in which life-history strategies evolved. In such cases, if adaptation does not keep pace with these changes, existing life-history strategies may become maladaptive and lead to population declines. We use life-history theory, with a specific emphasis on breeding strategies, in the context of the trophic match-mismatch framework to form generalizable hypotheses about population-level consumer responses to climate-driven perturbations in resource availability. We first characterize the income and breeding traits of sympatric caribou and muskoxen populations in western Greenland, and then test trait-based hypotheses about the expected reproductive performance of each population during a period of high resource variability at that site. The immediate reproductive performance of income breeding caribou decreased with trophic mismatch. In contrast, capital breeding muskoxen were relatively unaffected by current breeding season resource variability, but their reproductive performance was sensitive to resource conditions from previous years. These responses matched our expectations about how capital and income breeding strategies should influence population susceptibility to phenological mismatch. We argue for a taxon-independent assessment of trophic mismatch vulnerability based on a life-history strategy perspective in the context of prevailing environmental conditions. [Kerby, Jeffrey] Penn State Univ, Polar Ctr, Mueller Lab 208, University Pk, PA 16802 USA; Penn State Univ, Dept Biol, Mueller Lab 208, University Pk, PA 16802 USA Kerby, J (reprint author), Penn State Univ, Polar Ctr, Mueller Lab 208, University Pk, PA 16802 USA. jtk210@psu.edu Kerby, Jeffrey/0000-0002-2739-9096 U.S. National Science Foundation (NSF) Graduate Research Fellowship; NSF; National Geographic Society Committee for Research and Exploration This research was supported by a U.S. National Science Foundation (NSF) Graduate Research Fellowship to J.K., and by grants from NSF and the National Geographic Society Committee for Research and Exploration to E.P. Adamczewski JZ, 1997, J ZOOL, V241, P245, DOI 10.1111/j.1469-7998.1997.tb01956.x; Adamczewski JZ, 1998, THERIOGENOLOGY, V50, P605, DOI 10.1016/S0093-691X(98)00165-4; Bergerud A. T., 1996, RANGIFER, V16, P95, DOI DOI 10.7557/2.16.4.1225; Both C, 2010, P ROY SOC B-BIOL SCI, V277, P1259, DOI 10.1098/rspb.2009.1525; Cahill AE, 2013, P ROY SOC B-BIOL SCI, V280, DOI 10.1098/rspb.2012.1890; CAUGHLEY G, 1974, J WILDLIFE MANAGE, V38, P552, DOI 10.2307/3800889; Caughley G, 1977, ANAL VERTEBRATE POPU; Durant JM, 2005, ECOL LETT, V8, P952, DOI 10.1111/j.1461-0248.2005.00798.x; Durant JM, 2007, CLIM RES, V33, P271, DOI 10.3354/cr033271; Edwards M, 2004, NATURE, V430, P881, DOI 10.1038/nature02808; FLOOD PF, 1995, RANGIFER, V17, P25; FORCHHAMMER M, 1993, ECOGRAPHY, V16, P299, DOI 10.1111/j.1600-0587.1993.tb00219.x; Forchhammer MC, 2002, POPUL ECOL, V44, P113, DOI 10.1007/s101440200013; FRANCIS JA, 2012, GEOPHYS RES LETT, V39, DOI DOI 10.1029/2012GL051000); Gustine DD, 2010, PHYSIOL BIOCHEM ZOOL, V83, P687, DOI 10.1086/652729; Hoye TT, 2007, CURR BIOL, V17, pR449, DOI 10.1016/j.cub.2007.04.047; Inouye DW, 2000, P NATL ACAD SCI USA, V97, P1630, DOI 10.1073/pnas.97.4.1630; Jonsson KI, 1997, OIKOS, V78, P57, DOI 10.2307/3545800; KERBY J, NAT COMMUN; Kerby J.T., 2012, TRAIT MEDIATED INDIR, P508, DOI DOI 10.1017/CB09780511736551; KLEIN D R, 1992, Rangifer, V12, P47; LATOUR PB, 1987, CAN J ZOOL, V65, P265, DOI 10.1139/z87-041; Lu WQ, 2010, CURR BIOL, V20, P533, DOI 10.1016/j.cub.2010.01.042; Miller-Rushing AJ, 2010, PHILOS T R SOC B, V365, P3177, DOI 10.1098/rstb.2010.0148; Min SK, 2011, NATURE, V470, P378, DOI 10.1038/nature09763; Olesen Carsten Riis, 1993, Rangifer, V13, P27; OLESEN CR, 1994, RANGIFER, V1, P3; Ouellet JP, 1997, CAN J ZOOL, V75, P11, DOI 10.1139/z97-002; Ozgul A, 2010, NATURE, V466, P482, DOI 10.1038/nature09210; Pall P, 2011, NATURE, V470, P382, DOI 10.1038/nature09762; PARKER KL, 1990, CAN J ZOOL, V68, P106, DOI 10.1139/z90-015; Parmesan C, 2003, NATURE, V421, P37, DOI 10.1038/nature01286; Pedersen CB, 2000, ARCTIC, V53, P18; Post E, 1999, ECOLOGY, V80, P1322, DOI 10.2307/177078; Post E, 2003, CAN J ZOOL, V81, P1709, DOI 10.1139/Z03-172; Post E, 1999, J WILDLIFE MANAGE, V63, P335, DOI 10.2307/3802517; Post E, 2013, ECOLOGY CLIMATE CHAN; Post E, 2008, P ROY SOC B-BIOL SCI, V275, P2005, DOI 10.1098/rspb.2008.0463; Post E, 2008, PHILOS T R SOC B, V363, P2369, DOI 10.1098/rstb.2007.2207; Post E, 2009, SCIENCE, V325, P1355, DOI 10.1126/science.1173113; R Core Development Team, 2012, R LANG ENV STAT COMP; REIMERS E, 1982, CAN J ZOOL, V60, P1812, DOI 10.1139/z82-235; Reynolds PE, 2001, ALCES-N AM MOOSE CON, V37, P403; ROGNMO A, 1983, RANGIFER, V3, P10; Ronnegard L, 2002, CAN J ZOOL, V80, P2047, DOI 10.1139/z02-192; Root TL, 2003, NATURE, V421, P57, DOI 10.1038/nature01333; Senechal E, 2011, OECOLOGIA, V165, P593, DOI 10.1007/s00442-010-1853-4; SKOGLAND T, 1984, HOLARCTIC ECOL, V7, P345; SKOGLAND T, 1990, OECOLOGIA, V84, P442, DOI 10.1007/BF00328158; SKOGLAND T, 1989, ADV ETHOL, V29, P1; STEARNS SC, 1989, FUNCT ECOL, V3, P259, DOI 10.2307/2389364; Stephens PA, 2009, ECOLOGY, V90, P2057, DOI 10.1890/08-1369.1; Tafani M, 2013, ECOLOGY, V94, P580, DOI 10.1890/12-0833.1; Thackeray SJ, 2010, GLOBAL CHANGE BIOL, V16, P3304, DOI 10.1111/j.1365-2486.2010.02165.x; Thing H., 1984, Danish Review of Game Biology, V12, P1; THING H, 1982, RANGIFER, V2, P28, DOI DOI 10.7557/2.2.2.410); Tveraa T, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0056450; Tyler NJC, 2008, ECOLOGY, V89, P1675, DOI 10.1890/07-0416.1; Visser ME, 2008, P R SOC B, V275, P649, DOI 10.1098/rspb.2007.0997; Visser ME, 2003, P ROY SOC B-BIOL SCI, V270, P367, DOI 10.1098/rspb.2002.2244; Visser ME, 1998, P ROY SOC B-BIOL SCI, V265, P1867, DOI 10.1098/rspb.1998.0514; Visser ME, 2004, ADV ECOL RES, V35, P89, DOI 10.1016/S0065-2504(04)35005-1; VISSER ME, 2001, P ROY SOC LOND B BIO, V268, P1, DOI DOI 10.1098/RSPB.2000.1322); Walther GR, 2002, NATURE, V416, P389, DOI 10.1038/416389a; White RG, 1997, J ZOOL, V243, P13, DOI 10.1111/j.1469-7998.1997.tb05752.x; WHITE RG, 1989, CAN J ZOOL, V67, P1125, DOI 10.1139/z89-162; Winder M, 2004, ECOLOGY, V85, P2100, DOI 10.1890/04-0151 67 23 23 4 84 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8436 1471-2970 PHILOS T R SOC B Philos. Trans. R. Soc. B-Biol. Sci. AUG 19 2013 368 1624 UNSP 20120484 10.1098/rstb.2012.0484 7 Biology Life Sciences & Biomedicine - Other Topics 180AR WOS:000321565600006 23836789 Bronze, Green Published 2019-02-21 J Wroblewska, A Wroblewska, Ada High genetic diversity within island-like peripheral populations of Pedicularis sceptrum-carolinum, a species with a northern geographic distribution ANNALES BOTANICI FENNICI English Article MULTILOCUS GENOTYPE DATA; HABITAT FRAGMENTATION; PLANT-POPULATIONS; FLOWERING PLANTS; POLLEN DISPERSAL; CLIMATE-CHANGE; ICE AGES; CONSEQUENCES; SCROPHULARIACEAE; POLLINATION Isolated and island-like populations at the periphery of a geographic range of a given species are usually predicted to have low genetic diversity due to founder effect, habitat fragmentation, and bottleneck and/or inbreeding. As for parasitic plants, they may be more vulnerable to environmental and demographic stochasticities, habitat degradation, and genetic limitation because of their specialized life-history strategies depending on i.e. host plants. Pedicularis sceptrum-carolinum is a hemiparasitic species with a strongly fragmented geographic range in Eurasia whose small, isolated, island-like populations are scattered at the periphery of its geographic range. I studied its genetic diversity patterns at the western periphery of the species' range (Poland) using AFLP markers in order to unravel how isolation, population size and life-history traits (i.e. type of reproduction) influence its population genetic structure. Despite the geographic isolation among the four investigated populations (ca. 35-350 km), and irrespective of their small population sizes (14-50 individuals) and areas (6-100 m(2)) they preserved relatively high genetic diversity (Frag(poly) = 46.7%-54.6%, Shannon's I = 0.222-0.241) in comparison with other polyploid, long-lived and outcrossing perennials, and significantly higher than that in the other Pedicularis species. Among the factors generating such high genetic diversity is the polyploid origin of this species. Additionally, sexual reproduction, the breeding system, and seed dispersal seem responsible for the patterns of within-population spatial genetic structure. The moderate genetic differentiation among populations (F-ST = 0.154) and the evidence of recent genetic admixture of populations, as well as genetic similarity among all investigated individuals suggested that gene flow may be relatively high and multi-directional, reflecting recent range expansion of the study species in Europe. I considered that the estimates of genetic differentiation supported the possibility of repeated colonization from different source populations. Univ Bialystok, Inst Biol, PL-15950 Bialystok, Poland Wroblewska, A (reprint author), Univ Bialystok, Inst Biol, Ul Swierkowa 20B, PL-15950 Bialystok, Poland. adabot@uwb.edu.pl Polish Ministry of Science and Higher Education [NN303 366135] I thank Emilia Brzosko, Alicja Buczek, Edyta Jermakowicz, Wiaczeslaw Michalczuk, Renata Piwowarczyk, Izabela Talalaj and Dan Wolkowycki, who helped to collect samples in Poland, as well as Beata Ostrowiecka for technical assistance in the laboratory. This research was funded by a grant from the Polish Ministry of Science and Higher Education (NN303 366135). Aguilar R, 2008, MOL ECOL, V17, P5177, DOI 10.1111/j.1365-294X.2008.03971.x; Alsos IG, 2012, P ROY SOC B-BIOL SCI, V279, P2042, DOI 10.1098/rspb.2011.2363; Bizoux JP, 2007, AM J BOT, V94, P887, DOI 10.3732/ajb.94.5.887; DICE LR, 1945, ECOLOGY, V26, P297, DOI 10.2307/1932409; Eckert CG, 2008, MOL ECOL, V17, P1170, DOI 10.1111/j.1365-294X.2007.03659.x; Ehrich D, 2006, MOL ECOL NOTES, V6, P603, DOI 10.1111/j.1471-8286.2006.01380.x; ELLSTRAND NC, 1993, ANNU REV ECOL SYST, V24, P217, DOI 10.1146/annurev.es.24.110193.001245; Evanno G, 2005, MOL ECOL, V14, P2611, DOI 10.1111/j.1365-294X.2005.02553.x; Excoffier L, 2005, EVOL BIOINFORM, V1, P47; Falush D, 2003, GENETICS, V164, P1567; Hampe A, 2005, ECOL LETT, V8, P461, DOI 10.1111/j.1461-0248.2005.00739.x; Hansson B, 2000, MOL ECOL, V9, P1529, DOI 10.1046/j.1365-294x.2000.01028.x; Harder L. D, 1996, FLORAL BIOL STUDIES, P140; Harder LD, 1998, ECOLOGY, V79, P2789, DOI 10.1890/0012-9658(1998)079[2789:TCOHTC]2.0.CO;2; Hewitt G, 2000, NATURE, V405, P907, DOI 10.1038/35016000; Hewitt GM, 1996, BIOL J LINN SOC, V58, P247, DOI 10.1006/bijl.1996.0035; Hong D., 1998, FLORA CHINA, V16, P1; Husband BC, 2008, INT J PLANT SCI, V169, P195, DOI 10.1086/523367; Johansson M, 2007, MOL ECOL, V16, P2693, DOI 10.1111/j.1365-294X.2007.03357.x; Jump AS, 2006, P NATL ACAD SCI USA, V103, P8096, DOI 10.1073/pnas.0510127103; Kampny CM, 1995, BOT REV, V61, P350, DOI 10.1007/BF02912622; Karrenberg S, 2000, FOLIA GEOBOT, V35, P191, DOI 10.1007/BF02803097; KAZMIERCZAKOWA R, 2001, POLSKA CZERWONA KSIE; Keller LF, 2001, P ROY SOC B-BIOL SCI, V268, P1387, DOI 10.1098/rspb.2001.1607; Kirkpatrick M, 1997, AM NAT, V150, P1, DOI 10.1086/286054; Kovach W. L., 1999, MVSP MULTIVARIATE ST; Krogulevich R.E, 1976, NEWS SIB DEPART AC B, V15, P46; LAGERCRANTZ U, 1990, EVOLUTION, V44, P38, DOI 10.1111/j.1558-5646.1990.tb04278.x; Lauterbach D, 2011, PLANT BIOLOGY, V13, P1; LESICA P, 1995, CONSERV BIOL, V9, P753, DOI 10.1046/j.1523-1739.1995.09040753.x; Lewandowska-Sabat AM, 2010, MOL ECOL, V19, P4753, DOI 10.1111/j.1365-294X.2010.04840.x; LI HUI-LIN, 1949, PROC ACAD NAT SCI PHILADELPHIA, V101, P1; Llorens TM, 2012, MOL ECOL, V21, P314, DOI 10.1111/j.1365-294X.2011.05396.x; Ludwig G., 1996, ROTE LISTE GEFAHRDET; Macior L.W., 1982, P29; Macior Lazarus Walter, 1997, Plant Species Biology, V12, P1, DOI 10.1111/j.1442-1984.1997.tb00150.x; MAGLOCKY S, 1993, BIOLOGIA, V48, P361; Magnes M., 2003, STUDIE AUFTRAG STEIE, P1; Minayeva T., 2009, QUICK SCAN PEATLANDS; Mirek Z, 2006, CZERWONA LISTA ROSLI; NEI M, 1979, P NATL ACAD SCI USA, V76, P5269, DOI 10.1073/pnas.76.10.5269; Niklfeld H., 1995, ROTE LISTE GEFAHRDET, P33; Nybom H, 2004, MOL ECOL, V13, P1143, DOI 10.1111/j.1365-294X.2004.02141.x; Odasz AM, 1996, AM J BOT, V83, P1379, DOI 10.2307/2446092; Perez-Collazos E, 2009, MOL ECOL, V18, P848, DOI 10.1111/j.1365-294X.2008.04060.x; Philipp M, 1998, ARCTIC ALPINE RES, V30, P396, DOI 10.2307/1552012; Pritchard JK, 2000, GENETICS, V155, P945; RAIJMANN LL, 1994, CONSERV BIOL, V8, P1014, DOI 10.1046/j.1523-1739.1994.08041014.x; Rohlf F.J., 1997, NTSYS PC NUMERICAL T; Saggoo MIS, 2009, CHROMOSOME BOT, V4, P83; Schmidt K, 2000, AM J BOT, V87, P678, DOI 10.2307/2656854; Soltis PS, 2000, P NATL ACAD SCI USA, V97, P7051, DOI 10.1073/pnas.97.13.7051; STOICOVICI L, 1984, VEGETATIO, V56, P139; Vekemans X, 2004, MOL ECOL, V13, P921, DOI 10.1046/j.1365-294X.2004.02076.x; VOS P, 1995, NUCLEIC ACIDS RES, V23, P4407, DOI 10.1093/nar/23.21.4407; WALLER D M, 1987, Conservation Biology, V1, P335, DOI 10.1111/j.1523-1739.1987.tb00053.x; WILLIAMS JB, 1982, ARCTIC ALPINE RES, V14, P59, DOI 10.2307/1550816; Young A, 1996, TRENDS ECOL EVOL, V11, P413, DOI 10.1016/0169-5347(96)10045-8 58 4 5 3 21 FINNISH ZOOLOGICAL BOTANICAL PUBLISHING BOARD UNIV HELSINKI P O BOX 26, FI-00014 UNIV HELSINKI, FINLAND 0003-3847 1797-2442 ANN BOT FENN Ann. Bot. Fenn. AUG 16 2013 50 5 289 299 10.5735/086.050.0511 11 Plant Sciences Plant Sciences 244WX WOS:000326422000001 2019-02-21 J Hua, FY; Fletcher, RJ; Sieving, KE; Dorazio, RM Hua, Fangyuan; Fletcher, Robert J., Jr.; Sieving, Kathryn E.; Dorazio, Robert M. Too risky to settle: avian community structure changes in response to perceived predation risk on adults and offspring PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES English Article predation risk; community structure; birds; life-history traits; natural-history traits HABITAT SELECTION; NEST PREDATION; MULTIVARIATE ANALYSES; SPECIES-DIVERSITY; BIRD ASSEMBLAGES; POPULATION-SIZE; HISTORY TRAITS; LIFE-HISTORY; SOCIAL CUES; PREY Predation risk is widely hypothesized as an important force structuring communities, but this potential force is rarely tested experimentally, particularly in terrestrial vertebrate communities. How animals respond to predation risk is generally considered predictable from species life-history and natural-history traits, but rigorous tests of these predictions remain scarce. We report on a large-scale playback experiment with a forest bird community that addresses two questions: (i) does perceived predation risk shape the richness and composition of a breeding bird community? And (ii) can species life-history and natural-history traits predict prey community responses to different types of predation risk? On 9 ha plots, we manipulated cues of three avian predators that preferentially prey on either adult birds or offspring, or both, throughout the breeding season. We found that increased perception of predation risk led to generally negative responses in the abundance, occurrence and/or detection probability of most prey species, which in turn reduced the species richness and shifted the composition of the breeding bird community. Species-level responses were largely predicted from the key natural-history trait of body size, but we did not find support for the life-history theory prediction of the relationship between species' slow/fast life-history strategy and their response to predation risk. [Hua, Fangyuan; Fletcher, Robert J., Jr.; Sieving, Kathryn E.] Univ Florida, Dept Wildlife Ecol & Conservat, Gainesville, FL 32611 USA; [Hua, Fangyuan] Univ Florida, Sch Nat Resources & Environm, Gainesville, FL 32611 USA; [Dorazio, Robert M.] US Geol Survey, Southeast Ecol Sci Ctr, Gainesville, FL 32653 USA Hua, FY (reprint author), Princeton Univ, Woodrow Wilson Sch Publ & Int Affairs, Program Sci Technol & Environm Policy, Princeton, NJ 08540 USA. slcyane@gmail.com Sieving, Kathryn/0000-0002-0849-8101; Fletcher, Robert/0000-0003-1717-5707 University of Florida We thank S. Coates and the Ordway-Swisher Biological Station for use of field sites and logistic support, and the University of Florida for financial support. We thank S. K. Robinson for helpful discussion on research design. Special thanks go to I. Skinner and C. Wright for arduous field assistance. We thank D. J. Levey, C. M. St Mary, N. Jayasena, K. Kerman and three anonymous reviewers for critical comments that greatly improved the manuscript. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the US Government. ADDICOTT JF, 1974, ECOLOGY, V55, P475, DOI 10.2307/1935141; Alachua County Audubon (ACA), 2010, AL COUNT BIRD CAL; Banks PB, 2008, BOREAL ENVIRON RES, V13, P3; BENNETT PM, 1988, NATURE, V333, P216, DOI 10.1038/333216b0; Bibby CJ, 2000, BIRD CENSUS TECHNIQU, P302; Blumstein DT, 2006, ANIM BEHAV, V71, P389, DOI 10.1016/j.anbehav.2005.05.010; BRAY JR, 1957, ECOL MONOGR, V27, P326; Burnham K. P., 2002, MODEL SELECTION MULT, P496; Clarke K, 2001, CHANGE MARINE COMMUN; CLARKE KR, 1993, AUST J ECOL, V18, P117, DOI 10.1111/j.1442-9993.1993.tb00438.x; Conneil J.H., 1975, P460; Cresswell W, 2008, IBIS, V150, P3, DOI 10.1111/j.1474-919X.2007.00793.x; Curtis OE, 2006, BIRDS N AM ONLINE, DOI [10.2173/bna.75, DOI 10.2173/BNA.75)]; Dail D, 2011, BIOMETRICS, V67, P577, DOI 10.1111/j.1541-0420.2010.01465.x; Fletcher RJ, 2008, ECOL APPL, V18, P1764, DOI 10.1890/07-1850.1; Fletcher RJ, 2007, J ANIM ECOL, V76, P598, DOI 10.1111/j.1365-2656.2007.01230.x; FNAI (Florida Natural Areas Inventory), 2010, GUID NAT COMM FLOR 2; Fontaine JJ, 2006, AM NAT, V168, P811, DOI 10.1086/508297; Forsman JT, 2001, ECOLOGY, V82, P232, DOI 10.2307/2680099; GAILLARD JM, 1989, OIKOS, V56, P59, DOI 10.2307/3566088; Gehlbach FR., 1995, BIRDS N AM ONLINE, DOI [10.2173/ bna. 165, DOI 10.2173/BNA.165]; Ghalambor CK, 2000, ANIM BEHAV, V60, P263, DOI 10.1006/anbe.2000.1472; Ghalambor CK, 2001, SCIENCE, V292, P494, DOI 10.1126/science.1059379; Gotmark F, 1996, PHILOS T ROY SOC B, V351, P1559, DOI 10.1098/rstb.1996.0141; Greeney HF, 2009, WILSON J ORNITHOL, V121, P809, DOI 10.1676/08-174.1; Jones J, 2001, AUK, V118, P557, DOI 10.1642/0004-8038(2001)118[0557:HSSIAE]2.0.CO;2; Julliard R, 1997, ECOLOGY, V78, P394; KENKEL NC, 1986, ECOLOGY, V67, P919, DOI 10.2307/1939814; KOTLER BP, 1984, ECOLOGY, V65, P689, DOI 10.2307/1938041; Krama T, 2008, ETHOLOGY, V114, P656, DOI 10.1111/j.1439-0310.2008.01514.x; Kroodsma DE, 2001, ANIM BEHAV, V61, P1029, DOI 10.1006/anbe.2000.1676; Kullberg C, 2000, OIKOS, V89, P41, DOI 10.1034/j.1600-0706.2000.890105.x; LI PJ, 1991, AUK, V108, P405; LIMA SL, 1993, WILSON BULL, V105, P1; LIMA SL, 1992, ANN ZOOL FENN, V29, P217; LIMA SL, 1990, CAN J ZOOL, V68, P619, DOI 10.1139/z90-092; Lima SL, 2009, BIOL REV, V84, P485, DOI 10.1111/j.1469-185X.2009.00085.x; Lowther PE, 1993, BIRDS N AM ONLINE, DOI [10.2173/bna.47, DOI 10.2173/BNA.47)]; MacKenzie D. I., 2006, OCCUPANCY ESTIMATION; MARTIN TE, 1988, ECOLOGY, V69, P74, DOI 10.2307/1943162; Martin TE, 1988, EVOL ECOL, V2, P37, DOI 10.1007/BF02071587; MENGE BA, 1976, AM NAT, V110, P351, DOI 10.1086/283073; MENGE BA, 1976, ECOL MONOGR, V46, P355, DOI 10.2307/1942563; Monkkonen M, 1999, EVOL ECOL, V13, P91; Monkkonen M, 2007, J ANIM ECOL, V76, P619, DOI 10.1111/j.1365-2656.2007.01233.x; MONTGOMERIE RD, 1988, Q REV BIOL, V63, P167, DOI 10.1086/415838; Morosinotto C, 2010, J ANIM ECOL, V79, P327, DOI 10.1111/j.1365-2656.2009.01638.x; Mougeot F, 2000, ANIM BEHAV, V60, P647, DOI 10.1006/anbe.2000.1491; Norrdahl K, 1998, J AVIAN BIOL, V29, P79, DOI 10.2307/3677344; PAINE RT, 1966, AM NAT, V100, P65, DOI 10.1086/282400; Pan W, 2001, BIOMETRICS, V57, P120, DOI 10.1111/j.0006-341X.2001.00120.x; PIANKA ER, 1975, AM NAT, V109, P453, DOI 10.1086/283013; POLIS GA, 1989, ANNU REV ECOL SYST, V20, P297, DOI 10.1146/annurev.es.20.110189.001501; POLLOCK KH, 1982, J WILDLIFE MANAGE, V46, P752, DOI 10.2307/3808568; Preisser EL, 2012, ECOSPHERE, V3, DOI 10.1890/ES12-00084.1; R Development Core Team, 2011, R LANG ENV STAT COMP; RICKLEFS RE, 1977, CONDOR, V79, P376, DOI 10.2307/1368016; Rodenhouse NL, 1997, ECOLOGY, V78, P2025, DOI 10.1890/0012-9658(1997)078[2025:SDROPS]2.0.CO;2; Rota CT, 2009, J APPL ECOL, V46, P1173, DOI 10.1111/j.1365-2664.2009.01734.x; Royle J. A., 2008, HIERARCHICAL MODELIN; Royle JA, 2004, BIOMETRICS, V60, P108, DOI 10.1111/j.0006-341X.2004.00142.x; SAETHER BE, 1988, NATURE, V331, P616, DOI 10.1038/331616a0; Sih A, 1998, TRENDS ECOL EVOL, V13, P350, DOI 10.1016/S0169-5347(98)01437-2; SIH A, 1985, ANNU REV ECOL SYST, V16, P269, DOI 10.1146/annurev.es.16.110185.001413; SIH A, 1992, AM NAT, V139, P1052, DOI 10.1086/285372; Smith K. G., 2013, BIRDS N AM ONLINE, DOI [10.2173/bna.469, DOI 10.2173/BNA.469]; Stracey CM., 2010, THESIS U FLORIDA GAI, P62; SUHONEN J, 1994, ECOLOGY, V75, P1626, DOI 10.2307/1939623; Thomson RL, 2006, ECOGRAPHY, V29, P507; VEZINA AF, 1985, OECOLOGIA, V67, P555, DOI 10.1007/BF00790027; Vonesh JR, 2009, OIKOS, V118, P1219, DOI 10.1111/j.1600-0706.2009.17369.x; Warton DI, 2012, METHODS ECOL EVOL, V3, P89, DOI 10.1111/j.2041-210X.2011.00127.x; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; WILSON DM, 1985, CONDOR, V87, P69, DOI 10.2307/1367132; Zanette LY, 2011, SCIENCE, V334, P1398, DOI 10.1126/science.1210908 75 19 19 3 82 ROYAL SOC LONDON 6-9 CARLTON HOUSE TERRACE, LONDON SW1Y 5AG, ENGLAND 0962-8452 1471-2954 P ROY SOC B-BIOL SCI Proc. R. Soc. B-Biol. Sci. AUG 7 2013 280 1764 20130762 10.1098/rspb.2013.0762 8 Biology; Ecology; Evolutionary Biology Life Sciences & Biomedicine - Other Topics; Environmental Sciences & Ecology; Evolutionary Biology 167RA WOS:000320649400005 23782879 Green Published, Bronze 2019-02-21 J Cochran, G; Harpending, H Cochran, Gregory; Harpending, Henry Paternal Age and Genetic Load HUMAN BIOLOGY English Article PATERNAL AGE; MUTATION RATE; GENETIC LOAD; POLYGYNY DE-NOVO MUTATIONS; FGFR2 MUTATIONS; DISEASE; FITNESS; GENOME; SELECTION; PATTERNS The incidence of base substitutions in humans increases with the age of the father, which shows up as an increased incidence of mutational disorders in the children of older fathers. There is a less obvious implication: an extended period of high average paternal age in a population will lead to increased genetic load. We mention some societies that have had high average paternal age for many generations. This may explain some surprising regional differences in recent measurements of deleterious mutations. High average paternal age also influences life history evolution, strengthening selection against mortality in late life while weakening selection against child mortality. [Cochran, Gregory; Harpending, Henry] Univ Utah, Dept Anthropol, Salt Lake City, UT 84112 USA Cochran, G (reprint author), 6708 Loftus Ave NE, Albuquerque, NM 87109 USA. gregory.cochran@gmail.com Boserup E, 2007, WOMANS ROLE EC DEV; Charlesworth B., 2010, ELEMENTS EVOLUTIONAR; Choi M, 2009, P NATL ACAD SCI USA, V106, P19096, DOI 10.1073/pnas.0910672106; Crow JF, 2000, NAT REV GENET, V1, P40, DOI 10.1038/35049558; Denham W., 2012, MATH ANTHR CULTURAL, V4, P1; Eyre-Walker A, 2007, NAT REV GENET, V8, P610, DOI 10.1038/nrg2146; Eyre-Walker A, 2006, GENETICS, V173, P891, DOI 10.1534/genetics.106.057570; Fenner JN, 2005, AM J PHYS ANTHROPOL, V128, P415, DOI 10.1002/ajpa.20188; Glaser Rivka L, 2004, Sci Aging Knowledge Environ, V2004, pre1, DOI 10.1126/sageke.2004.3.re1; Goriely A, 2005, P NATL ACAD SCI USA, V102, P6051, DOI 10.1073/pnas.0500267102; Goriely A, 2003, SCIENCE, V301, P643, DOI 10.1126/science.1085710; Green RF, 2010, ANN EPIDEMIOL, V20, P241, DOI 10.1016/j.annepidem.2009.10.009; Grinker R. R., 2010, PERSPECTIVE AFRICA R, P389; Haldane JBS, 1937, AM NAT, V71, P337, DOI 10.1086/280722; HAMILTON WD, 1966, J THEOR BIOL, V12, P12, DOI 10.1016/0022-5193(66)90184-6; Helgason A, 2003, AM J HUM GENET, V72, P1370, DOI 10.1086/375453; Heyer E, 2012, MOL ECOL, V21, P597, DOI 10.1111/j.1365-294X.2011.05406.x; Howell N., 2000, DEMOGRAPHY DOBE KUNG; Kestenbaum B, 2010, DEMOGR RES MONOGR, P43, DOI 10.1007/978-3-642-11520-2_3; Kong A, 2012, NATURE, V488, P471, DOI 10.1038/nature11396; Li JZ, 2008, SCIENCE, V319, P1100, DOI 10.1126/science.1153717; MacArthur DG, 2012, SCIENCE, V335, P823, DOI 10.1126/science.1215040; Mace R, 2000, ANIM BEHAV, V59, P1, DOI 10.1006/anbe.1999.1287; Matsumura S, 2008, P ROY SOC B-BIOL SCI, V275, P1501, DOI 10.1098/rspb.2007.1724; PAGET WJ, 1994, POP STUD-J DEMOG, V48, P333, DOI 10.1080/0032472031000147826; Pennington Renee, 1993, STRUCTURE AFRICAN PA; PENROSE LS, 1955, LANCET, V2, P312; Ponting CP, 2011, GENOME RES, V21, P1769, DOI 10.1101/gr.116814.110; Pugach I, 2013, P NATL ACAD SCI USA, V110, P1803, DOI 10.1073/pnas.1211927110; Rogers A. R., 2010, MODELS EVOLUTIONARY; Simons Y. B., 2013, PREPRINT; Tennessen JA, 2012, SCIENCE, V337, P64, DOI 10.1126/science.1219240; Veltman JA, 2012, NAT REV GENET, V13, P565, DOI 10.1038/nrg3241; Vos T, 2009, INT J EPIDEMIOL, V38, P470, DOI 10.1093/ije/dyn240; WING S, 1985, J GERONTOL, V40, P78, DOI 10.1093/geronj/40.1.78 35 4 4 1 16 WAYNE STATE UNIV PRESS DETROIT 4809 WOODWARD AVE, DETROIT, MI 48201-1309 USA 0018-7143 1534-6617 HUM BIOL Hum. Biol. AUG 2013 85 4 515 527 10.3378/027.085.0401 13 Anthropology; Biology; Genetics & Heredity Anthropology; Life Sciences & Biomedicine - Other Topics; Genetics & Heredity 297BN WOS:000330230200001 25019186 2019-02-21 J Haag, WR Haag, Wendell R. The role of fecundity and reproductive effort in defining life-history strategies of North American freshwater mussels BIOLOGICAL REVIEWS English Review life history; trade-off; fecundity; reproduction; glochidia; unionidae; margaritiferidae; unionoida SPECIES BIVALVIA UNIONIDAE; RESOURCE-ALLOCATION; ANODONTA-GRANDIS; TENNESSEE RIVER; GROWTH-RATES; CLINCH RIVER; FISH HOSTS; EVOLUTION; BIOLOGY; MOLLUSCA Selection is expected to optimize reproductive investment resulting in characteristic trade-offs among traits such as brood size, offspring size, somatic maintenance, and lifespan; relative patterns of energy allocation to these functions are important in defining life-history strategies. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems, but little is known about their life-history strategies, particularly patterns of fecundity and reproductive effort. Because mussels have an unusual life cycle in which larvae (glochidia) are obligate parasites on fishes, differences in host relationships are expected to influence patterns of reproductive output among species. I investigated fecundity and reproductive effort (RE) and their relationships to other life-history traits for a taxonomically broad cross section of North American mussel diversity. Annual fecundity of North American mussel species spans nearly four orders of magnitude, ranging from <2000 to 10 million, but most species have considerably lower fecundity than previous generalizations, which portrayed the group as having uniformly high fecundity (e.g. >200000). Estimates of RE also were highly variable, ranging among species from 0.06 to 25.4%. Median fecundity and RE differed among phylogenetic groups, but patterns for these two traits differed in several ways. For example, the tribe Anodontini had relatively low median fecundity but had the highest RE of any group. Within and among species, body size was a strong predictor of fecundity and explained a high percentage of variation in fecundity among species. Fecundity showed little relationship to other life-history traits including glochidial size, lifespan, brooding strategies, or host strategies. The only apparent trade-off evident among these traits was the extraordinarily high fecundity of Leptodea, Margaritifera, and Truncilla, which may come at a cost of greatly reduced glochidial size; there was no relationship between fecundity and glochidial size for the remaining 61 species in the dataset. In contrast to fecundity, RE showed evidence of a strong trade-off with lifespan, which was negatively related to RE. The raw number of glochidia produced may be determined primarily by physical and energetic constraints rather than selection for optimal output based on differences in host strategies or other traits. By integrating traits such as body size, glochidial size, and fecundity, RE appears more useful in defining mussel life-history strategies. Combined with trade-offs between other traits such as growth, lifespan, and age at maturity, differences in RE among species depict a broad continuum of divergent strategies ranging from strongly r-selected species (e.g. tribe Anodontini and some Lampsilini) to K-selected species (e.g. tribes Pleurobemini and Quadrulini; family Margaritiferidae). Future studies of reproductive effort in an environmental and life-history context will be useful for understanding the explosive radiation of this group of animals in North America and will aid in the development of effective conservation strategies. US Forest Serv, Ctr Bottomland Hardwoods Res, Forest Hydrol Lab, Oxford, MS 38655 USA Haag, WR (reprint author), US Forest Serv, Ctr Bottomland Hardwoods Res, Forest Hydrol Lab, Oxford, MS 38655 USA. whaag@fs.fed.us National Fish and Wildlife Foundation; Weyerhaeuser Company; Southern Research Station, US Forest Service I thank the following people for their various contributions to this study. Steve Ahlstedt, Chris Barnhart, Ryan Evans, Steve Fraley, Jeff Garner, Mark Hove, John Harris, Paul Johnson, Larry Shaffer, Jim Stoeckel, and Tom Watters provided or helped collect specimens. Chris Barnhart, Al Christian, Rachel Mair, Michael Stewart, Jess Jones, and Jim Layzer kindly provided unpublished data on fecundity of several species. Leann Staton, Mickey Bland, Amy Commens-Carson, Angela Greer, Karen Higgins, Liz McQuire, and Anthony Rietl helped in the field and conducted much of the laboratory work. This study was supported by the National Fish and Wildlife Foundation, Weyerhaeuser Company, and the Southern Research Station, US Forest Service. Arendt JD, 1997, Q REV BIOL, V72, P149, DOI 10.1086/419764; Baird M.S., 2000, THESIS SW MISSOURI S; Barnhart M. C., 2001, FISH HOSTS CUL UNPUB; Barnhart M. C., 2002, PROPAGATION CU UNPUB; Barnhart M. C., 2003, CULTURE RESTOR UNPUB; Barnhart MC, 2008, J N AM BENTHOL SOC, V27, P370, DOI 10.1899/07-093.1; Bauer G, 1998, OECOLOGIA, V117, P90, DOI 10.1007/s004420050635; BAUER G, 1994, J ANIM ECOL, V63, P933, DOI 10.2307/5270; Benke AC, 1999, J N AM BENTHOL SOC, V18, P308, DOI 10.2307/1468447; Bielby J, 2007, AM NAT, V169, P748, DOI 10.1086/516847; Blalock-Herod HN, 2002, BIODIVERS CONSERV, V11, P1877, DOI 10.1023/A:1020362020903; BRUENDERMAN SA, 1993, AM MALACOL BULL, V10, P83; CAMERON CJ, 1979, CAN J ZOOL, V57, P1666, DOI 10.1139/z79-217; Campbell DC, 2005, INVERTEBR BIOL, V124, P131, DOI 10.1111/j.1744-7410.2005.00015.x; Charlesworth B., 1994, EVOLUTION AGE STRUCT; Charnov EL, 2007, AM NAT, V170, pE129, DOI 10.1086/522840; Cichon M, 1997, P ROY SOC B-BIOL SCI, V264, P1383, DOI 10.1098/rspb.1997.0192; COKER R. E., 1921, B US BUR FISH, V37, P79; Crone EE, 2001, EVOLUTION, V55, P2611; Dame R, 1996, ECOLOGY MARINE BIVAL; Eckert N.L., 2003, THESIS MISSOURI STAT; Fobian T.B., 2007, THESIS MISSOURI STAT; Garner JT, 1999, AM MIDL NAT, V141, P277, DOI 10.1674/0003-0031(1999)141[0277:RCOQMB]2.0.CO;2; Glazier DS, 2002, EVOLUTION, V56, P1696; GOSLING E, 2003, BIVALVE MOLLUSKS BIO; Graf DL, 2002, J MOLLUS STUD, V68, P65, DOI 10.1093/mollus/68.1.65; Grime J. P., 2001, PLANT STRATEGIES VEG; Gutierrez JL, 2003, OIKOS, V101, P79, DOI 10.1034/j.1600-0706.2003.12322.x; Haag WR, 2011, BIOL REV, V86, P225, DOI 10.1111/j.1469-185X.2010.00146.x; Haag WR, 2012, NORTH AMERICAN FRESHWATER MUSSELS: NATURAL HISTORY, ECOLOGY, AND CONSERVATION, P1, DOI 10.1017/CBO9781139048217; Haag WR, 2003, FRESHWATER BIOL, V48, P2118, DOI 10.1046/j.1365-2427.2003.01155.x; Haag WR, 1997, J N AM BENTHOL SOC, V16, P576, DOI 10.2307/1468145; HAGGERTY TM, 1995, CAN J ZOOL, V73, P83, DOI 10.1139/z95-010; HANSON JM, 1989, J ANIM ECOL, V58, P15, DOI 10.2307/4983; HARMON JL, 1990, AM MIDL NAT, V124, P372, DOI 10.2307/2426187; HAUKIOJA E, 1978, ANN ZOOL FENN, V15, P60; Heino M, 1999, J EVOLUTION BIOL, V12, P423; Heino M, 1997, EVOL ECOL, V11, P67, DOI 10.1023/A:1018435513099; Hoggarth MA, 1999, MALACOLOGIA, V41, P1; HOVE MC, 1994, AM MALACOL BULL, V11, P29; Howard A. D., 1922, Journal of Parasitology Urbana, V9, P68, DOI 10.2307/3271139; Jansen W, 2001, ECOL STU AN, V145, P185; JOKELA J, 1995, OECOLOGIA, V104, P122, DOI 10.1007/BF00365570; Jones JW, 2011, AQUAT CONSERV, V21, P57, DOI 10.1002/aqc.1161; Jones JW, 2010, AM MIDL NAT, V163, P335, DOI 10.1674/0003-0031-163.2.335; Jones JW, 2004, J N AM BENTHOL SOC, V23, P515, DOI 10.1899/0887-3593(2004)023<0515:LHAPOT>2.0.CO;2; Jones JW, 2002, J N AM BENTHOL SOC, V21, P76, DOI 10.2307/1468301; Kennedy TB, 2005, J N AM BENTHOL SOC, V24, P880, DOI 10.1899/05-001.1; MCMAHON RF, 2001, ECOLOGY CLASSIFICATI, P321; Moles KR, 2008, J N AM BENTHOL SOC, V27, P212, DOI 10.1899/07-006.1; MURPHY GARTH, 1942, CALIFORNIA FISH AND GAME, V28, P89; NAKAOKA M, 1994, MAR ECOL PROG SER, V114, P129, DOI 10.3354/meps114129; O'Brien CA, 2002, AM MALACOL BULL, V17, P147; PARKER R S, 1984, Freshwater Invertebrate Biology, V3, P53, DOI 10.2307/1467094; PATERSON C G, 1985, Freshwater Invertebrate Biology, V4, P79, DOI 10.2307/1467179; PATERSON C G, 1985, Freshwater Invertebrate Biology, V4, P201, DOI 10.2307/1467162; Perles SJ, 2003, OHIO J SCI, V103, P73; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; Pilarczyk M. M., 2005, CONT SURVEY HI UNPUB; POULIN R, 1995, PARASITOL TODAY, V11, P342, DOI 10.1016/0169-4758(95)80187-1; Price JE, 2011, AM MALACOL BULL, V29, P121, DOI 10.4003/006.029.0203; PROMISLOW DEL, 1990, J ZOOL, V220, P417, DOI 10.1111/j.1469-7998.1990.tb04316.x; Regnier C, 2009, CONSERV BIOL, V23, P1214, DOI 10.1111/j.1523-1739.2009.01245.x; RICHARD PE, 1991, CAN J ZOOL, V69, P1744, DOI 10.1139/z91-243; Roff Derek A., 1992; Rogers SO, 2001, J N AM BENTHOL SOC, V20, P582, DOI 10.2307/1468089; Sietman BE, 2012, AM MALACOL BULL, V30, P39; SILVERMAN H, 1987, J EXP ZOOL, V242, P137, DOI 10.1002/jez.1402420204; Stearns S, 1992, EVOLUTION LIFE HIST; Steingraeber MT, 2007, AM MIDL NAT, V157, P297, DOI 10.1674/0003-0031(2007)157[297:TCFELS]2.0.CO;2; Surber T., 1915, 813 UD BUR FISH, V5, P1; Tankersley RA, 1996, INVERTEBR BIOL, V115, P243, DOI 10.2307/3226934; TANKERSLEY RA, 1993, CAN J ZOOL, V71, P1934, DOI 10.1139/z93-277; THOMPSON RJ, 1984, MAR ECOL PROG SER, V16, P249, DOI 10.3354/meps016249; Trouve S, 1998, INT J PARASITOL, V28, P1817, DOI 10.1016/S0020-7519(98)00135-0; TUOMI J, 1983, AM ZOOL, V23, P25; VAN DER SCHALIE HENRY, 1963, OCCAS PAPERS MUS ZOOL UNIV MICHIGAN, V633, P1; Vaughn CC, 2008, J N AM BENTHOL SOC, V27, P409, DOI 10.1899/07-058.1; Vaughn CC, 2001, FRESHWATER BIOL, V46, P1431, DOI 10.1046/j.1365-2427.2001.00771.x; WEAVER LR, 1991, AM MIDL NAT, V126, P82, DOI 10.2307/2426152; WEISS JL, 1995, AM MALACOL BULL, V11, P153; White CR, 2004, PHYSIOL BIOCHEM ZOOL, V77, P929, DOI 10.1086/425186; Whittingham MJ, 2006, J ANIM ECOL, V75, P1182, DOI 10.1111/j.1365-2656.2006.01141.x; Whittington ID, 1997, INT J PARASITOL, V27, P705, DOI 10.1016/S0020-7519(97)00012-X; WILLIAMS GC, 1966, AM NAT, V100, P687, DOI 10.1086/282461; Williams JD, 2008, FRESHWATER MUSSELS A; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WOOD EM, 1974, J ZOOL, V173, P1; YEAGER BL, 1986, AM MIDL NAT, V116, P329, DOI 10.2307/2425741; YOUNG M, 1984, ARCH HYDROBIOL, V99, P405 90 18 18 2 65 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1464-7931 1469-185X BIOL REV Biol. Rev. AUG 2013 88 3 745 766 10.1111/brv.12028 22 Biology Life Sciences & Biomedicine - Other Topics 279IC WOS:000328952600013 23445204 2019-02-21 J Heino, J; Schmera, D; Eros, T Heino, Jani; Schmera, Denes; Eros, Tibor A macroecological perspective of trait patterns in stream communities FRESHWATER BIOLOGY English Review community organisation; fish; geographical gradients; habitat templets; invertebrates; species traits LIFE-HISTORY STRATEGIES; LARGE EUROPEAN RIVERS; FRESH-WATER MACROINVERTEBRATES; THEORETICAL HABITAT TEMPLETS; UPPER RHONE RIVER; SPECIES TRAITS; FISH ASSEMBLAGES; FUNCTIONAL DIVERSITY; INVERTEBRATE TRAITS; BIOLOGICAL TRAITS Other than some classical ideas, large-scale approaches to understand variation in organismal traits (or the trait composition of an ecological community) across stream ecosystems are rather recent. Recent case studies and review papers show clear evidence for the usefulness of trait-based analyses in bioassessment, but how community traits vary along natural gradients at large scales has not yet been synthesised. Here, we attempt to fill this gap by providing a synthesis of trait patterns of stream communities from a macroecological perspective. We argue that although both natural and anthropogenic filters shape community traits, examination of poorly understood natural filters, including those acting at large scales, should receive increasing attention. Such knowledge is vital for reliably inferring anthropogenic impacts on stream communities and ecosystems. We synthesise knowledge of two large-scale spatial patterns of stream communities: among drainage basins (i.e. geographical variation) and within drainage basins (i.e. longitudinal variation). We also examine the temporal dimension of organismal traits. Our review highlights clear evidence for large-scale influences on the trait composition in stream systems. For example, despite previous contentions that organismal traits should vary negligibly across large geographical gradients, there is actually clear geographical variation across near-pristine systems. Furthermore, in accordance with theory, organismal traits in actual data sets vary along the longitudinal gradient of stream systems. We provide an overview of empirical and statistical approaches to understanding the trait composition of stream communities in macroecological studies and conclude that the methodology should be carefully considered in comparisons among studies, because contrasting results may reflect not only ecological differences but also differences in methodology (e.g. choice of species traits, trait quantification and analytical methods). We conclude that the question of how the trait composition of stream communities varies along geographical and environmental gradients is far from settled. A challenge for large-scale stream ecology is to provide a more specific view of trait variation in multiple taxonomic groups (e.g. do traits vary similarly in different organisms groups?), along major environmental gradients (e.g. is trait variation similar along the same environmental gradients in different regions?) and among different regional entities (e.g. do the traits vary, on average, among different regions?). [Heino, Jani] Finnish Environm Inst, Ecosyst Change Unit, Nat Environm Ctr, Oulu, Finland; [Heino, Jani] Univ Oulu, Dept Biol, Oulu, Finland; [Schmera, Denes] Univ Basel, Sect Conservat Biol, Basel, Switzerland; [Schmera, Denes; Eros, Tibor] Balaton Limnol Inst, MTA Ctr Ecol Res, Tihany, Hungary Heino, J (reprint author), Finnish Environm Inst, Ecosyst Change Unit, Nat Environm Ctr, Oulu, Finland. jani.heino@environment.fi Heino, Jani/E-6342-2010; Schmera, Denes/B-1617-2010 Schmera, Denes/0000-0003-1248-8413 Janos Bolyai Research Scholarship of the Hungarian Academy of sciences; [OTKA K 104279] The writing of this article was supported by grants from the Academy of Finland to Jani Heino. The work of Tibor Ers was supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of sciences and by the OTKA K 104279 research fund. We thank Alan Hildrew, Wilco Verberk and an anonymous reviewer for comments on a previous version of this manuscript. ALLAN J. D., 2007, STREAM ECOLOGY STRUC; Amoros C., 1993, HYDROSYSTEMES FLUVIA; Anderson M. J., 2008, PERMANOVA PRIMER GUI; Anderson MJ, 2011, ECOL LETT, V14, P19, DOI 10.1111/j.1461-0248.2010.01552.x; Angermeier PL, 1999, ECOL APPL, V9, P335, DOI 10.2307/2641189; Bady P, 2005, FRESHWATER BIOL, V50, P159, DOI 10.1111/j.1365-2427.2004.01287.x; Bailey R. G., 2010, ECOSYSTEM GEOGRAPHY; Beche LA, 2007, FUND APPL LIMNOL, V169, P1, DOI 10.1127/1863-9135/2007/0169-0001; Beche LA, 2009, BIODIVERS CONSERV, V18, P3909, DOI 10.1007/s10531-009-9688-1; Blackburn TM, 2006, GLOBAL ECOL BIOGEOGR, V15, P537, DOI 10.1111/j.1466-822x.2006.00276.x; Bonada N, 2006, ANNU REV ENTOMOL, V51, P495, DOI 10.1146/annurev.ento.51.110104.151124; Bonada N, 2007, GLOBAL CHANGE BIOL, V13, P1658, DOI 10.1111/j.1365-2486.2007.01375.x; Borcard D, 2011, USE R, P1, DOI 10.1007/978-1-4419-7976-6; Bradley DC, 2002, ARCH HYDROBIOL, V155, P199; Brown J. H, 1998, BIOGEOGRAPHY; Charvet S, 2000, FRESHWATER BIOL, V43, P277, DOI 10.1046/j.1365-2427.2000.00545.x; CORKUM L D, 1988, Journal of the North American Benthological Society, V7, P167, DOI 10.2307/1467416; Doledec S, 2000, ARCH HYDROBIOL, V148, P25; Doledec S, 2008, FRESHWATER BIOL, V53, P617, DOI 10.1111/j.1365-2427.2007.01924.x; Ernst R, 2012, GLOBAL ECOL BIOGEOGR, V21, P704, DOI 10.1111/j.1466-8238.2011.00719.x; Eros T, 2012, FRESHWATER BIOL, V57, P1914, DOI 10.1111/j.1365-2427.2012.02842.x; Eros T, 2008, INT REV HYDROBIOL, V93, P88, DOI 10.1002/iroh.200710976; Eros Tibor, 2005, Archiv fuer Hydrobiologie Supplement, V158, P289; Eros T, 2009, FRESHWATER BIOL, V54, P1788, DOI 10.1111/j.1365-2427.2009.02220.x; Finn DS, 2005, FRESHWATER BIOL, V50, P243, DOI 10.1111/j.1365-2427.2004.01320.x; Franquet E, 1999, HYDROBIOLOGIA, V397, P121, DOI 10.1023/A:1003681817806; Frimpong EA, 2010, AM FISH S S, V73, P109; Gasith A, 1999, ANNU REV ECOL SYST, V30, P51, DOI 10.1146/annurev.ecolsys.30.1.51; Gaston K.J., 2000, PATTERN PROCESS MACR; Gayraud S, 2003, FRESHWATER BIOL, V48, P2045, DOI 10.1046/j.1365-2427.2003.01139.x; Goldstein RM, 2004, T AM FISH SOC, V133, P971, DOI 10.1577/T03-080.1; Grubaugh JW, 1996, CAN J FISH AQUAT SCI, V53, P896, DOI 10.1139/cjfas-53-4-896; Heino J, 2005, HYDROBIOLOGIA, V539, P121, DOI 10.1007/s10750-004-3914-3; Heino J, 2005, FRESHWATER BIOL, V50, P1578, DOI 10.1111/j.1365-2427.2005.01418.x; Heino J, 2008, ECOL ENTOMOL, V33, P614, DOI 10.1111/j.1365-2311.2008.01012.x; Heino J, 2008, LANDSCAPE ECOL, V23, P417, DOI 10.1007/s10980-008-9199-6; Heino J, 2007, ECOGRAPHY, V30, P217, DOI 10.1111/j.2007.0906-7590.04894.x; Heino J, 2011, FRESHWATER BIOL, V56, P1703, DOI 10.1111/j.1365-2427.2011.02610.x; Heino J, 2010, ECOL INDIC, V10, P112, DOI 10.1016/j.ecolind.2009.04.013; HILDREW AG, 1979, J ANIM ECOL, V48, P557, DOI 10.2307/4180; Hoeinghaus DJ, 2007, J BIOGEOGR, V34, P324, DOI 10.1111/j.1365-2699.2006.01587.x; HORWITZ RJ, 1978, ECOL MONOGR, V48, P307, DOI 10.2307/2937233; Hugueny B, 2010, AM FISH S S, V73, P29; Hynes H. B. N., 1970, ECOLOGY RUNNING WATE; Ibanez C, 2009, ECOGRAPHY, V32, P658, DOI 10.1111/j.1600-0587.2008.05591.x; Illies J., 1963, MITTEILUNGEN INT VER, V12, P1; Jacquemin SJ, 2011, J BIOGEOGR, V38, P982, DOI 10.1111/j.1365-2699.2010.02457.x; Lamouroux N, 2004, J N AM BENTHOL SOC, V23, P449, DOI 10.1899/0887-3593(2004)023<0449:BTOSMC>2.0.CO;2; Lamouroux N, 2002, ECOLOGY, V83, P1792, DOI 10.1890/0012-9658(2002)083[1792:ICOSFC]2.0.CO;2; Logez M, 2013, ECOGRAPHY, V36, P80, DOI 10.1111/j.1600-0587.2012.07447.x; Logez M, 2010, J N AM BENTHOL SOC, V29, P1310, DOI 10.1899/09-125.1; McGill BJ, 2006, TRENDS ECOL EVOL, V21, P178, DOI 10.1016/j.tree.2006.02.002; Diaz AM, 2008, FRESHWATER BIOL, V53, P1, DOI 10.1111/j.1365-2427.2007.01854.x; Menezes S, 2010, J APPL ECOL, V47, P711, DOI 10.1111/j.1365-2664.2010.01819.x; Merigoux S, 2001, FRESHWATER BIOL, V46, P1251, DOI 10.1046/j.1365-2427.2001.00744.x; Mims MC, 2010, ECOL FRESHW FISH, V19, P390, DOI 10.1111/j.1600-0633.2010.00422.x; Mims MC, 2012, ECOLOGY, V93, P35, DOI 10.1890/11-0370.1; MINSHALL GW, 1983, ECOL MONOGR, V53, P1, DOI 10.2307/1942585; MINSHALL GW, 1988, J N AM BENTHOL SOC, V7, P263, DOI 10.2307/1467294; Moog O, 1995, FAUNA AQUATICA AUSTR; Mykra H, 2011, FRESHWATER BIOL, V56, P1122, DOI 10.1111/j.1365-2427.2010.02555.x; Oberdorff T., 2011, INT J ECOLOGY, V2011; Olden JD, 2010, AM FISH S S, V73, P83; Olden JD, 2010, DIVERS DISTRIB, V16, P496, DOI 10.1111/j.1472-4642.2010.00655.x; Ostermiller JD, 2004, J N AM BENTHOL SOC, V23, P363, DOI 10.1899/0887-3593(2004)023<0363:EOSEOB>2.0.CO;2; Pease AA, 2012, FRESHWATER BIOL, V57, P1060, DOI 10.1111/j.1365-2427.2012.02768.x; PERSAT H, 1994, FRESHWATER BIOL, V31, P439, DOI 10.1111/j.1365-2427.1994.tb01750.x; Petchey OL, 2006, ECOL LETT, V9, P741, DOI 10.1111/j.1461-0248.2006.00924.x; Podani J, 2000, INTRO EXPLORATION MU; Poff NL, 2010, J N AM BENTHOL SOC, V29, P1441, DOI 10.1899/10-030.1; Poff NL, 1996, FRESHWATER BIOL, V36, P71, DOI 10.1046/j.1365-2427.1996.00073.x; POFF NL, 1990, ENVIRON MANAGE, V14, P629, DOI 10.1007/BF02394714; POFF NL, 1995, ECOLOGY, V76, P606, DOI 10.2307/1941217; Poff NL, 1997, J N AM BENTHOL SOC, V16, P391, DOI 10.2307/1468026; Pont D, 2006, J APPL ECOL, V43, P70, DOI 10.1111/j.1365-2664.2005.01126.x; Pyron M, 2011, FRESHWATER BIOL, V56, P1579, DOI 10.1111/j.1365-2427.2011.02596.x; RESH VH, 1994, FRESHWATER BIOL, V31, P539, DOI 10.1111/j.1365-2427.1994.tb01756.x; Richards C, 1997, FRESHWATER BIOL, V37, P219, DOI 10.1046/j.1365-2427.1997.d01-540.x; Ricotta C, 2005, BASIC APPL ECOL, V6, P479, DOI 10.1016/j.baae.2005.02.008; Ross H. H., 1963, ARCH HYDROBIOL, V59, P235; SCHLOSSER IJ, 1991, BIOSCIENCE, V41, P704, DOI 10.2307/1311765; SCHLUTER D, 1986, ECOLOGY, V67, P1073, DOI 10.2307/1939830; Schmera D, 2013, COMMUNITY ECOL, V14, P77, DOI 10.1556/ComEc.14.2013.1.9; Schmera D, 2011, ECOL INDIC, V11, P230, DOI 10.1016/j.ecolind.2010.03.009; Schmera D, 2009, AQUAT ECOL, V43, P157, DOI 10.1007/s10452-007-9152-9; Shipley B, 2006, SCIENCE, V314, P812, DOI 10.1126/science.1131344; SOUTHWOOD TRE, 1977, J ANIM ECOL, V46, P337; Statzner B, 2004, ECOGRAPHY, V27, P470, DOI 10.1111/j.0906-7590.2004.03836.x; Statzner B, 2005, FRESHWATER BIOL, V50, P2136, DOI 10.1111/j.1365-2427.2005.01447.x; Statzner B, 2001, ANNU REV ENTOMOL, V46, P291, DOI 10.1146/annurev.ento.46.1.291; Statzner B, 2001, BASIC APPL ECOL, V2, P73, DOI 10.1078/1439-1791-00039; STATZNER B, 1985, CAN J FISH AQUAT SCI, V42, P1038, DOI 10.1139/f85-129; Statzner B, 2008, BIOL INVASIONS, V10, P517, DOI 10.1007/s10530-007-9148-3; Statzner B, 2010, FRESHWATER BIOL, V55, P80, DOI 10.1111/j.1365-2427.2009.02369.x; Tedesco PA, 2008, OECOLOGIA, V156, P691, DOI 10.1007/s00442-008-1021-2; Tonn W. M., 1990, T AM FISH SOC, V133, P971; Townsend CR, 2003, FRESHWATER BIOL, V48, P768, DOI 10.1046/j.1365-2427.2003.01043.x; Townsend CR, 1997, FRESHWATER BIOL, V37, P367, DOI 10.1046/j.1365-2427.1997.00166.x; TOWNSEND CR, 1994, FRESHWATER BIOL, V31, P265, DOI 10.1111/j.1365-2427.1994.tb01740.x; Usseglio-Polatera P, 2000, FRESHWATER BIOL, V43, P175, DOI 10.1046/j.1365-2427.2000.00535.x; Usseglio-Polatera P, 2010, INVERTEBRES EAU DOUC; VANNOTE RL, 1980, CAN J FISH AQUAT SCI, V37, P130, DOI 10.1139/f80-017; Verberk WCEP, 2008, FRESHWATER BIOL, V53, P1722, DOI 10.1111/j.1365-2427.2008.02035.x; Verberk WCEP, 2010, J ANIM ECOL, V79, P589, DOI 10.1111/j.1365-2656.2010.01660.x; Webb CT, 2010, ECOL LETT, V13, P267, DOI 10.1111/j.1461-0248.2010.01444.x; Winemiller K. O., 2005, CANADIAN J FISHERIES, V52, P875; WINEMILLER KO, 1992, OIKOS, V63, P318, DOI 10.2307/3545395; WINEMILLER KO, 1992, CAN J FISH AQUAT SCI, V49, P2196, DOI 10.1139/f92-242; WINTERBOURN MJ, 1981, NEW ZEAL J MAR FRESH, V15, P321, DOI 10.1080/00288330.1981.9515927; Witman J. D., 2009, MARINE MACROECOLOGY 110 46 46 7 85 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0046-5070 1365-2427 FRESHWATER BIOL Freshw. Biol. AUG 2013 58 8 1539 1555 10.1111/fwb.12164 17 Ecology; Marine & Freshwater Biology Environmental Sciences & Ecology; Marine & Freshwater Biology 282YX WOS:000329212300001 2019-02-21 J Bonser, SP Bonser, Stephen P. High reproductive efficiency as an adaptive strategy in competitive environments FUNCTIONAL ECOLOGY English Article competitive annual strategy; life-history theory; reproductive allocation; reproductive perennial strategy; strategy theory; trade-off; vegetative allocation TREE SEEDLING RECRUITMENT; LEAF ECONOMICS SPECTRUM; LIFE-HISTORY; SPECIES COEXISTENCE; PLANT COMPETITION; HERBACEOUS PLANTS; OLD-FIELDS; ALLOCATION; SELECTION; POPULATIONS 1. Reproductive efficiency (the efficiency of conversion of resources from vegetative tissue to reproductive output) is a central to our understanding of reproductive allocation and the evolution of reproductive strategies in plants. Plant strategy theory predicts that reproductive efficiency should decrease under competition. Short-lived semelparous species are not predicted to evolve under competition and therefore should not express adaptive responses to the presence of competitors. Long-lived iteroparous species are predicted to delay reproduction in favour of growth and resource acquisition in the presence of competitors. I use life-history theory to advance a prediction that reproductive efficiency increases under competition in both short-lived semelparous and potentially longer-lived iteroparous species. 2. Contrary to the predictions of plant strategy theory, short-lived semelparous species are frequently observed to live in highly competitive environments. Further, iteroparous species under intense competition may die long before they reach competitive dominance or an optimal size for reproduction. 3. I surveyed the literature for studies on plant species including measurements of vegetative and reproductive allocation in high and low (or no) competition treatments. 4. Across species, relative reproductive efficiency (reproductive efficiency under high competition/reproductive efficiency under low competition) significantly increased with increasing competition intensity. 5. Patterns of allocation to reproduction under competition support the existence of a competitive annual strategy and a reproductive perennial strategy. Under these strategies, short-lived semelparous species and long-lived iteroparous species express high reproductive efficiency under competition as an adaptation to high neighbour density. In addition, some species also expressed patterns of allocation to reproduction consistent with plant strategy theories. 6. Under this interpretation, I predict that competitive strategies, where plants delay reproduction in competitive environments to gain competitive superiority, are favoured not under intense competition but under modest competition. Including a life-history interpretation in reproductive efficiency under competition provides a much needed predictive framework for strategies of reproduction observed across species. Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia Bonser, SP (reprint author), Univ New S Wales, Sch Biol Earth & Environm Sci, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia. s.bonser@unsw.edu.au Bonser, Stephen/0000-0002-6608-9912 ARC Joshua Griffiths kindly helped with collecting data from the literature. Angela Moles, Lonnie Aarssen and David Robinson provided helpful comments on earlier versions of this manuscript. This research was supported by an ARC Discovery grant to SPB. Aarssen L. W., 1990, OIKOS, V58, P239; Aarssen L. W., 1992, OIKOS, V65, P225; Aarssen LW, 2008, EVOL ECOL, V22, P279, DOI 10.1007/s10682-007-9170-z; Aarssen LW, 2006, J ECOL, V94, P569, DOI 10.1111/j.1365-2745.2006.01128.x; Aarssen LW, 2002, OIKOS, V96, P531, DOI 10.1034/j.1600-0706.2002.960314.x; [Anonymous], 2011, J PLANT ECOLOGY, V19, P4; Ansari S, 2010, BIOL INVASIONS, V12, P4033, DOI 10.1007/s10530-010-9810-z; Bell, 2006, ECOL LETT, V9, P569; Bell G, 1976, AM NAT, V100, P55; Bonser SP, 2006, CAN J BOT, V84, P143, DOI [10.1139/B05-154, 10.1139/b05-154]; BONSER SP, 1995, ECOLOGY, V76, P2176, DOI 10.2307/1941691; Bonser SP, 2011, PLANT ECOL, V212, P1441, DOI 10.1007/s11258-011-9919-x; Bonser SP, 2009, PERSPECT PLANT ECOL, V11, P31, DOI 10.1016/j.ppees.2008.10.003; Campbell LG, 2007, NEW PHYTOL, V173, P648, DOI 10.1111/j.1469-81.2006.01941.x; Chaneton EJ, 2010, J ECOL, V98, P488, DOI 10.1111/j.1365-2745.2009.01631.x; CHARNOV EL, 1973, AM NAT, V107, P791, DOI 10.1086/282877; Dostal P, 2009, BASIC APPL ECOL, V10, P525, DOI 10.1016/j.baae.2008.12.004; FACELLI JM, 1994, ECOLOGY, V75, P1727, DOI 10.2307/1939632; FONE AL, 1989, J ECOL, V77, P484, DOI 10.2307/2260764; Gilbert GS, 2002, ANNU REV PHYTOPATHOL, V40, P13, DOI 10.1146/annurev.phyto.40.021202.110417; Goldberg DE, 2001, ECOL MONOGR, V71, P423, DOI 10.1890/0012-9615(2001)071[0423:DDIAAP]2.0.CO;2; Grime J. P, 1979, PLANT STRATEGIES VEG; HARPER JL, 1970, J ECOL, V58, P681, DOI 10.2307/2258529; Jongejans E, 2006, OECOLOGIA, V147, P369, DOI 10.1007/s00442-005-0325-8; Kazakou E, 2007, FUNCT ECOL, V21, P235, DOI 10.1111/j.1365-2435.2006.01242.x; Kery M, 2000, J ECOL, V88, P17, DOI 10.1046/j.1365-2745.2000.00422.x; KLINKHAMER PGL, 1992, FUNCT ECOL, V6, P308, DOI 10.2307/2389522; KOK LT, 1986, WEED SCI, V34, P966; Loehle C, 2000, AM NAT, V156, P14, DOI 10.1086/303369; MAC ARTHUR ROBERT H., 1967; Nagy L, 1997, NEW PHYTOL, V137, P267, DOI 10.1046/j.1469-8137.1997.00799.x; Obeso JR, 2002, NEW PHYTOL, V155, P321, DOI 10.1046/j.1469-8137.2002.00477.x; Oksanen L, 2006, OIKOS, V112, P149, DOI 10.1111/j.0030-1299.2006.13379.x; PALMBLAD IG, 1968, ECOLOGY, V49, P26, DOI 10.2307/1933557; PIANKA ER, 1970, AM NAT, V104, P592, DOI 10.1086/282697; PITELKA LF, 1977, ECOLOGY, V58, P1055, DOI 10.2307/1936925; REEKIE EG, 1987, AM NAT, V129, P876, DOI 10.1086/284681; Rees M, 2012, J ECOL, V100, P577, DOI 10.1111/j.1365-2745.2011.01946.x; Ricklefs RE, 1999, ECOLOGY; Royo AA, 2008, CAN J FOREST RES, V38, P1634, DOI 10.1139/X07-247; Sammul M, 2000, OECOLOGIA, V125, P18, DOI 10.1007/PL00008887; Saulnier, 1995, J ECOL, V83, P23; Schiffers K, 2006, J ECOL, V94, P336, DOI 10.1111/j.1365-2745.2006.01097.x; Silvertown J, 1996, PHILOS T ROY SOC B, V351, P1233, DOI 10.1098/rstb.1996.0106; Violle C, 2006, J ECOL, V94, P196, DOI 10.1111/j.1365-2745.2005.01061.x; WEINER J, 1990, TRENDS ECOL EVOL, V5, P360, DOI 10.1016/0169-5347(90)90095-U; Weiner J, 2009, J ECOL, V97, P1220, DOI 10.1111/j.1365-2745.2009.01559.x; Weinig C, 2007, EVOLUTION, V61, P58, DOI 10.1111/j.1558-5646.2007.00005.x; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403 49 25 26 1 50 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2013 27 4 SI 876 885 10.1111/1365-2435.12064 10 Ecology Environmental Sciences & Ecology 284GK WOS:000329303900006 2019-02-21 J Pierce, S; Brusa, G; Vagge, I; Cerabolini, BEL Pierce, Simon; Brusa, Guido; Vagge, Ilda; Cerabolini, Bruno E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants FUNCTIONAL ECOLOGY English Article adaptive strategies; CSR theory; Grime; life-form; plant functional type; universal adaptive strategy theory LIFE-HISTORY STRATEGIES; CLASSIFICATION; VEGETATION; SPECTRUM; DISTURBANCE; SUCCESSION; INDICATORS; INVASIONS; HABITATS; ALIEN 1. Three main directions of adaptive specialization are evident in the world flora, reflecting fundamental trade-offs between economics (conservative vs. acquisitive investment of resources) and size. The current method of ordinating plants according to these trade-offs, CSR classification, cannot be applied to the woody species that dominate many terrestrial ecosystems. 2. We aimed to produce a novel CSR classification method applicable to vascular plants in general. 3. Principal components analysis (PCA) of variation in a range of plant traits for 678 angio-sperm, gymnosperm and pteridophyte species was used to determine the limits to multivariate space occupied by functionally diverse species. From this calibration, correlations between PCA axes and values of leaf dry matter content (LDMC; as an index of conservatism in life history), specific leaf area (SLA; indicative of acquisitive economics) and leaf area (LA; photosynthetic organ size) were used to produce predictor regressions from which target species could be compared against the multivariate space. A spreadsheet was developed that returned ternary coordinates and tertiary CSR strategies for target subjects based on LA, LDMC and SLA values. 4. The method allowed classification of target species within a triangular space corresponding to Grime's theoretical CSR triangle and was sufficiently precise to distinguish strategies between species within genera and within populations of species. It was also largely in agreement with previous methods of CSR classification for herbaceous species. 5. Rapid CSR classification of woody and herbaceous vascular plants is now possible, potentially allowing primary plant functional types and ecosystem processes to be investigated over landscape scales. [Pierce, Simon; Vagge, Ilda] Univ Milan, Dept Agr & Environm Sci DiSAA, I-20133 Milan, Italy; [Brusa, Guido; Cerabolini, Bruno E. L.] Univ Insubria, Dept Theoret & Appl Sci, I-21100 Varese, Italy Pierce, S (reprint author), Univ Milan, Dept Agr & Environm Sci DiSAA, Via G Celoria 2, I-20133 Milan, Italy. simon.pierce@unimi.it Vagge, Ilda/I-5935-2015; Pierce, Simon/G-6785-2017 Vagge, Ilda/0000-0002-0926-9255; Pierce, Simon/0000-0003-1182-987X; Cerabolini, Bruno Enrico Leone/0000-0002-3793-0733 Native Flora Centre of the Lombardy Region (Centro Flora Autoctona; CFA) via Parco Monte Barro; University of Insubria, Varese We thank John Hodgson and two reviewers (Bill Shipley and an anonymous reviewer) for constructive comments on the manuscript. Roberta M. Ceriani, Rossella De Andreis, Alessandra Luzzaro and Alessandro Ossola were heavily involved with sample collection and processing in the field and laboratory. During fieldwork, SP and GB received fellowships funded by the Native Flora Centre of the Lombardy Region (Centro Flora Autoctona; CFA) via Parco Monte Barro and the University of Insubria, Varese. The authors state that they have no conflicting interests. Abrahams C, 2008, HYDROBIOLOGIA, V613, P33, DOI 10.1007/s10750-008-9470-5; [Anonymous], 1988, PLANT STRATEGIES DYN; Boatman ND, 2011, AGR ECOSYST ENVIRON, V143, P8, DOI 10.1016/j.agee.2011.05.003; BRZEZIECKI B, 1994, FOREST ECOL MANAG, V69, P167, DOI 10.1016/0378-1127(94)90227-5; Caccianiga M, 2006, OIKOS, V112, P10, DOI 10.1111/j.0030-1299.2006.14107.x; Caccianiga M, 2012, J FORENSIC SCI, V57, P983, DOI 10.1111/j.1556-4029.2012.02071.x; Cerabolini B, 2010, PLANT ECOL, V207, P333, DOI 10.1007/s11258-009-9677-1; Cerabolini BEL, 2010, PLANT ECOL, V210, P253, DOI 10.1007/s11258-010-9753-6; Diaz S, 2004, J VEG SCI, V15, P295, DOI 10.1111/j.1654-1103.2004.tb02266.x; Douma JC, 2012, ECOLOGY, V93, P825, DOI 10.1890/10-1961.1; Douma JC, 2012, ECOGRAPHY, V35, P364, DOI 10.1111/j.1600-0587.2011.07068.x; Frenette-Dussault C, 2012, J VEG SCI, V23, P208, DOI 10.1111/j.1654-1103.2011.01350.x; Freschet GT, 2012, FUNCT ECOL, V26, P56, DOI 10.1111/j.1365-2435.2011.01913.x; Grime J., 2012, EVOLUTIONARY STRATEG; GRIME J. P, 2001, PLANT STRATEGIES VEG, P417; Grime J.P., 2007, COMP PLANT ECOLOGY F; GRIME JP, 1977, AM NAT, V111, P1169, DOI 10.1086/283244; Grime JP, 1997, OIKOS, V79, P259, DOI 10.2307/3546011; GRIME JP, 1974, NATURE, V250, P26, DOI 10.1038/250026a0; Hodgson JG, 1999, OIKOS, V85, P282, DOI 10.2307/3546494; Hunt R, 2004, APPL VEG SCI, V7, P163, DOI 10.1658/1402-2001(2004)007[0163:ANPTFD]2.0.CO;2; Kilinc M, 2010, TURK J BOT, V34, P521, DOI 10.3906/bot.0912.270; Krober W., 2012, PLOS ONE, V7; Lambdon PW, 2008, DIVERS DISTRIB, V14, P774, DOI 10.1111/j.1472-4642.2008.00490.x; Lambdon PW, 2008, BIOL INVASIONS, V10, P703, DOI 10.1007/s10530-007-9163-4; Ling KA, 2003, SCI TOTAL ENVIRON, V310, P203, DOI [10.1016/S0048-9697(02)00640-X, 10.1016/S004896970200640X]; Massant W, 2009, PLANT ECOL, V205, P47, DOI 10.1007/s11258-009-9597-0; Navas ML, 2010, PLANT BIOLOGY, V12, P183, DOI 10.1111/j.1438-8677.2009.00208.x; Norris C, 2012, J APPL ECOL, V49, P562, DOI 10.1111/j.1365-2664.2011.02084.x; Pierce S, 2007, PLANT BIOSYST, V141, P337, DOI 10.1080/11263500701627695; Pierce S, 2007, J ECOL, V95, P698, DOI 10.1111/j.1365-2745.2007.01242.x; Pierce S, 2012, ANN BOT-LONDON, V109, P1047, DOI 10.1093/aob/mcs021; Prevosto B, 2011, FOLIA GEOBOT, V46, P303, DOI 10.1007/s12224-010-9096-z; Pyek P., 2003, OECOLOGIA, V135, P122; Pywell RF, 2003, J APPL ECOL, V40, P65, DOI 10.1046/j.1365-2664.2003.00762.x; Schmidtlein S, 2012, J VEG SCI, V23, P395, DOI 10.1111/j.1654-1103.2011.01370.x; Simonova D, 2008, PERSPECT PLANT ECOL, V10, P89, DOI 10.1016/j.ppees.2007.11.003; Westoby M, 2002, ANNU REV ECOL SYST, V33, P125, DOI 10.1146/annurev.ecolsys.33.010802.150452; Westoby M, 1998, PLANT SOIL, V199, P213, DOI 10.1023/A:1004327224729; Wright IJ, 2004, NATURE, V428, P821, DOI 10.1038/nature02403; Wunder J, 2008, OIKOS, V117, P815, DOI 10.1111/j.2008.0030-1299.16371.x; Yildirim C., 2012, J BIOSCIENCE, V6, P97 42 58 59 4 105 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 0269-8463 1365-2435 FUNCT ECOL Funct. Ecol. AUG 2013 27 4 SI 1002 1010 10.1111/1365-2435.12095 9 Ecology Environmental Sciences & Ecology 284GK WOS:000329303900017 Bronze 2019-02-21 J Nilsson, KA; Persson, L Nilsson, Karin A.; Persson, Lennart Refuge availability and within-species differences in cannibalism determine population variability and dynamics ECOSPHERE English Article cannibalism; coefficient of variation; competition; extinction; guppy; harvest; Poecilia reticulata; population dynamics; refuges; structural complexity SIZE-STRUCTURED POPULATIONS; LIFE-HISTORY EVOLUTION; DEPENDENT CANNIBALISM; ESOX-LUCIUS; GUPPIES; MODEL; PREY; STABILITY; PREDATION; FISH Theoretical studies show that both cannibalism and intraspecific resource competition can have major effects on population dynamics. Cannibalistic intensity, offspring size, harvesting and refuge availability are important factors affecting the interplay between cannibalism and competition. We studied two populations of the common guppy (Poecilia reticulata) that differed in their cannibalistic voracity as well as offspring size. We manipulated the availability of refuges for juveniles and harvesting intensity of large adults to investigate how these factors influenced the dynamics of the two populations. Overall population dynamics was mainly affected by the origin of the founder populations and the presence of refuges. The population with a higher cannibalistic propensity and smaller offspring exhibited higher population variability, and the presence of refuges reduced cannibalism and stabilised the dynamics in both populations. Harvest of large cannibalistic females destabilised the dynamics and caused extinctions of several populations without refuges. Both populations displayed cannibal-driven cycles with repression of recruitment when no refuges were present. Cycle periods were shorter with refuges present and the dynamics were more cohort like with synchronised peaks in density of vulnerable juveniles and cannibals. We suggest that increased number of refuging juveniles led to intensified resource competition in the population. The harvest yield was low in the refuge treatments as few females grew large due to resource competition, leading to a small impact of harvesting in these treatments. [Nilsson, Karin A.; Persson, Lennart] Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden Nilsson, KA (reprint author), Umea Univ, Dept Ecol & Environm Sci, S-90187 Umea, Sweden. karin.nilsson@emg.umu.se Persson, Lennart/B-2885-2012 Swedish Research Council; Knut and Alice Wallenberg Foundation We thank anonymous reviewers for their helpful comments. We are grateful to David Reznick for sending us guppies and for providing good advice. We also thank all the people who helped with the sampling and the setup of the experimental system, especially Marten Soderquist and William Larsson. The study was financially supported by the Swedish Research Council. The Knut and Alice Wallenberg Foundation provided funding for the image analysing system. Abdi H., 2010, ENCY RES DESIGN; Alm G., 1951, 331738 I FRESHW RES, V33, P17; Andersson J, 2007, AM NAT, V169, P820, DOI 10.1086/516846; BARLOW J, 1992, ECOLOGY, V73, P941, DOI 10.2307/1940170; Benoit HP, 1998, ECOLOGY, V79, P2839, DOI 10.2307/176520; Benoit HP, 2000, COPEIA, P216; Claessen D, 2004, P ROY SOC B-BIOL SCI, V271, P333, DOI 10.1098/rspb.2003.2555; Claessen D, 2003, THEOR POPUL BIOL, V64, P49, DOI 10.1016/S0040-5809(03)00042-X; Claessen D, 2000, AM NAT, V155, P219, DOI 10.1086/303315; Claessen D, 2002, ECOLOGY, V83, P1660, DOI 10.2307/3071986; CUSHING JM, 1991, MATH BIOSCI, V107, P47, DOI 10.1016/0025-5564(91)90071-P; CUSHING JM, 1992, THEOR POPUL BIOL, V42, P347, DOI 10.1016/0040-5809(92)90020-T; de Roos AM, 2003, THEOR POPUL BIOL, V63, P1, DOI 10.1016/S0040-5809(02)00009-6; de Roos AM, 2002, ECOL MONOGR, V72, P271, DOI 10.1890/0012-9615(2002)072[0271:ONSAFB]2.0.CO;2; Dennis B, 1997, J ANIM ECOL, V66, P704, DOI 10.2307/5923; DENNIS B, 1995, ECOL MONOGR, V65, P261, DOI 10.2307/2937060; Elliott JM, 2004, J ANIM ECOL, V73, P272, DOI 10.1111/j.0021-8790.2004.00805.x; FOX LR, 1975, ANNU REV ECOL SYST, V6, P87, DOI 10.1146/annurev.es.06.110175.000511; FOX LR, 1975, ECOLOGY, V56, P933, DOI 10.2307/1936303; HASTINGS A, 1991, J ANIM ECOL, V60, P471, DOI 10.2307/5292; Krivan V, 1998, THEOR POPUL BIOL, V53, P131, DOI 10.1006/tpbi.1998.1351; LEONARDSSON K, 1991, ECOLOGY, V72, P1273, DOI 10.2307/1941101; Magurran AE, 1998, PHILOS T ROY SOC B, V353, P275, DOI 10.1098/rstb.1998.0209; Nilsson KA, 2011, OECOLOGIA, V167, P391, DOI 10.1007/s00442-011-1990-4; ORR BK, 1990, ECOLOGY, V71, P68, DOI 10.2307/1940248; Persson L, 2003, P NATL ACAD SCI USA, V100, P4035, DOI 10.1073/pnas.0636404100; Persson L, 2006, J FISH BIOL, V69, P461, DOI 10.1111/j.1095-8649.01113.x; Persson L, 2004, P ROY SOC B-BIOL SCI, V271, P2489, DOI 10.1098/rspb.2004.2854; Persson L, 1998, THEOR POPUL BIOL, V54, P270, DOI 10.1006/tpbi.1998.1380; POLIS GA, 1981, ANNU REV ECOL SYST, V12, P225, DOI 10.1146/annurev.es.12.110181.001301; REZNICK D, 1993, ECOLOGY, V74, P2011, DOI 10.2307/1940844; Reznick D, 2001, AM NAT, V157, P126, DOI 10.1086/318627; REZNICK DN, 1987, EVOLUTION, V41, P1370, DOI 10.1111/j.1558-5646.1987.tb02474.x; RICKER W. E., 1954, JOUR FISH RES BD CANADA, V11, P559; ROSENZWEIG ML, 1963, AM NAT, V97, P209, DOI 10.1086/282272; Sharma CM, 2008, ECOL FRESHW FISH, V17, P590, DOI 10.1111/j.1600-0633.2008.00310.x; STENSETH NC, 1980, OIKOS, V35, P165, DOI 10.2307/3544425; van Kooten T, 2007, AM NAT, V170, P258, DOI 10.1086/518947; van Kooten T, 2010, CAN J FISH AQUAT SCI, V67, P401, DOI 10.1139/F09-157; VanDenBosch F, 1997, B MATH BIOL, V59, P551, DOI 10.1016/S0092-8240(96)00107-3; Wissinger SA, 2010, ECOLOGY, V91, P549, DOI 10.1890/08-1366.1 41 1 1 0 17 ECOLOGICAL SOC AMER WASHINGTON 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA 2150-8925 ECOSPHERE Ecosphere AUG 2013 4 8 UNSP 100 10.1890/ES13-00105.1 15 Ecology Environmental Sciences & Ecology 257JK WOS:000327379400009 DOAJ Gold 2019-02-21 J Omkar; Afaq, U Omkar; Afaq, Uzma Evaluation of Darwin's fecundity advantage hypothesis in Parthenium beetle, Zygogramma bicolorata INSECT SCIENCE English Article body size; development; fecundity; offspring fitness; reproductive success SEXUAL SIZE DIMORPHISM; LIFE-HISTORY EVOLUTION; PINE ENGRAVER BEETLES; MALE MATE CHOICE; BODY-SIZE; EGG SIZE; REPRODUCTIVE SUCCESS; DEVELOPMENTAL PLASTICITY; SEASONAL ENVIRONMENT; PATERNAL INVESTMENT In the Parthenium beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae), variation in body size exists between and within the sexes. The females are larger than the males. Darwin (1874) proposed the fecundity advantage hypothesis, that is, large-sized females produce more progeny, with subsequent studies supporting, as well as, refuting the hypothesis. Thus, in order to evaluate whether this hypothesis stands in Z. bicolorata we performed experiments to investigate the role of body size in influencing: (i) assortative mating; (ii) reproductive attributes; and (iii) growth, development and survival of offspring. It is the first attempt in this beetle. We found that size influenced assortative mating, reproductive output and offspring fitness. Larger males and females were preferred as mates over smaller ones. The pairs, having larger adults as mates, had higher fecundity, while the egg viability was influenced by the male size only. The offspring of larger parents had fast development and higher survival, indicating thereby possible better nutrient allotment by the female and supply of accessory gland proteins by the male in addition to better quality of genes. [Omkar; Afaq, Uzma] Univ Lucknow, Dept Zool, Ladybird Res Lab, Lucknow 226007, Uttar Pradesh, India Omkar (reprint author), Univ Lucknow, Dept Zool, Ladybird Res Lab, Ctr Excellence Biocontrol Insect Pests, Lucknow 226007, Uttar Pradesh, India. omkaar55@hotmail.com Department of Higher Education, Government of Uttar Pradesh, India The authors are thankful to Department of Higher Education, Government of Uttar Pradesh, India, for the award of Centre of Excellence in Biocontrol of Insect Pests and financial support. Abrams PA, 1996, AM NAT, V147, P381, DOI 10.1086/285857; Agarwala BK, 2001, ENVIRON ENTOMOL, V30, P1182, DOI 10.1603/0046-225X-30.6.1182; Andersson M., 1994, SEXUAL SELECTION; Arnold Stevan J., 1993, P87; Avila FW, 2011, ANNU REV ENTOMOL, V56, P21, DOI 10.1146/annurev-ento-120709-144823; Bateson P, 2004, NATURE, V430, P419, DOI 10.1038/nature02725; Belovsky GE, 1996, BEHAV ECOL, V7, P438, DOI 10.1093/beheco/7.4.438; Berger D, 2008, FUNCT ECOL, V22, P523, DOI 10.1111/j.1365-2435.2008.01392.x; Bhoopathi R., 2006, Journal of Entomological Research (New Delhi), V30, P255; Bissoondath CJ, 1996, FUNCT ECOL, V10, P457, DOI 10.2307/2389938; Blanckenhorn WU, 1998, EVOLUTION, V52, P1394, DOI 10.1111/j.1558-5646.1998.tb02021.x; Bonduriansky R, 2001, BIOL REV, V76, P305, DOI 10.1017/S1464793101005693; Branson DH, 2003, CAN ENTOMOL, V135, P415; BROWN WD, 1990, ANIM BEHAV, V40, P901, DOI 10.1016/S0003-3472(05)80992-3; Chambers DL, 1984, ADV CHALLENGES INSEC, P256; Cloutier C, 2000, ENTOMOL EXP APPL, V97, P29, DOI 10.1023/A:1004056818645; Cox RM, 2003, EVOLUTION, V57, P1653, DOI 10.1554/02-227; Cox Robert M., 2007, P38; Crespi EJ, 2005, AM J HUM BIOL, V17, P44, DOI 10.1002/ajhb.20098; Cunningham EJA, 2000, NATURE, V404, P74, DOI 10.1038/35003565; DANTHANARAYANA W, 1975, AUST J ZOOL, V23, P439, DOI 10.1071/ZO9750439; Darwin C., 1874, DESCENT MAN SELECTIO; De Roos AM, 2003, ECOL LETT, V6, P473, DOI 10.1046/j.1461-0248.2003.00458.x; Dhileepan K, 2000, BIOL CONTROL, V19, P9, DOI 10.1006/bcon.2000.0847; Dhileepan K, 1997, 1 INT C PARTH MAN 6, VI, P40; Einum S, 1999, P ROY SOC B-BIOL SCI, V266, P2095, DOI 10.1098/rspb.1999.0893; Ellers J, 2003, OIKOS, V102, P164, DOI 10.1034/j.1600-0706.2003.12183.x; Filin I, 2007, AM NAT, V170, P719, DOI 10.1086/522091; Fox CW, 1997, AM NAT, V149, P149, DOI 10.1086/285983; Garcia-Barros E, 2000, BIOL J LINN SOC, V70, P251, DOI 10.1006/bijl.1999.0374; Ghiselin M.T, 1974, EC NATURE EVOLUTION; Goldsmith SK, 1996, J INSECT BEHAV, V9, P719, DOI 10.1007/BF02213552; Gotthard K, 2007, AM NAT, V169, P768, DOI 10.1086/516651; GOULSON D, 1993, J INSECT BEHAV, V6, P539, DOI 10.1007/BF01048121; GRIGG GC, 1979, J THERM BIOL, V4, P95, DOI 10.1016/0306-4565(79)90052-4; Hanin O, 2011, INSECT BIOCHEM MOLEC, V41, P537, DOI 10.1016/j.ibmb.2011.03.004; Harari AR, 1999, ANIM BEHAV, V58, P1191, DOI 10.1006/anbe.1999.1257; Heifetz Y, 2000, CURR BIOL, V10, P99, DOI 10.1016/S0960-9822(00)00288-8; Hoefler CD, 2007, ANIM BEHAV, V73, P943, DOI 10.1016/j.anbehav.2006.10.017; HOWARD RD, 1985, EVOLUTION, V39, P260, DOI 10.1111/j.1558-5646.1985.tb05665.x; HUTCHINGS JA, 1991, EVOLUTION, V45, P1162, DOI 10.1111/j.1558-5646.1991.tb04382.x; Jayanth K. P., 1993, Journal of Biological Control, V7, P93; Jayanth K. P., 1993, Journal of Entomological Research (New Delhi), V17, P27; JAYANTH KP, 1994, INSECT SCI APPL, V15, P19, DOI 10.1017/S1742758400016714; Jennions MD, 2000, BIOL REV, V75, P21, DOI 10.1017/S0006323199005423; Jimenez-Perez A, 2003, J INSECT BEHAV, V16, P797, DOI 10.1023/B:JOIR.0000018321.81949.25; JONES RE, 1982, AUST J ZOOL, V30, P223, DOI 10.1071/ZO9820223; Katvala M, 2001, ANIM BEHAV, V62, P133, DOI 10.1006/anbe.2001.1737; Kirkendall Lawrence R., 1997, P181; Klingenberg CP, 1997, ECOL ENTOMOL, V22, P55, DOI 10.1046/j.1365-2311.1997.00031.x; Kosal EF, 1997, J INSECT BEHAV, V10, P711, DOI 10.1007/BF02765388; Lalonde RG, 2005, J ANIM ECOL, V74, P630, DOI 10.1111/j.1365-2656.2005.00958.x; Leather SR, 1987, FUNCT ECOL, V1, P331, DOI 10.2307/2389789; LEATHER SR, 1988, OIKOS, V51, P386, DOI 10.2307/3565323; MARKS RJ, 1976, B ENTOMOL RES, V66, P145, DOI 10.1017/S0007485300006568; Marshall DJ, 2010, ECOLOGY, V91, P2862, DOI 10.1890/09-0156.1; Mays HL, 2004, TRENDS ECOL EVOL, V19, P554, DOI 10.1016/j.tree.2004.07.018; Mueller H.C., 1985, Current Ornithology, V2, P65; Omkar, 2011, J ASIA-PAC ENTOMOL, V14, P393, DOI 10.1016/j.aspen.2011.04.011; Omkar, 2009, International Journal of Tropical Insect Science, V29, P40, DOI 10.1017/S1742758409387482; Omkar, 2009, International Journal of Tropical Insect Science, V29, P48, DOI 10.1017/S1742758409298754; Peters R.H., 1983, P1; PHELAN PL, 1986, EXPERIENTIA, V42, P1291, DOI 10.1007/BF01946428; Prokop ZM, 2007, BEHAV ECOL, V18, P597, DOI 10.1093/beheco/arm012; REID ML, 1995, CAN J ZOOL, V73, P1396, DOI 10.1139/z95-164; Robertson IC, 1998, ANIM BEHAV, V56, P595, DOI 10.1006/anbe.1998.0816; Robertson IC, 1998, BEHAV ECOL SOCIOBIOL, V43, P379, DOI 10.1007/s002650050505; ROFF DA, 2002, LIFE HIST EVOLUTION; Roff Derek A., 1992; Saeki Y, 2005, J KANSAS ENTOMOL SOC, V78, P13, DOI 10.2317/JKES 0312.14.1; Sagarra LA, 2001, B ENTOMOL RES, V91, P363, DOI 10.1079/BER2001121; Sakai S, 2001, AM NAT, V157, P348, DOI 10.1086/319194; Salavert V, 2011, ECOL ENTOMOL, V36, P389, DOI 10.1111/j.1365-2311.2011.01279.x; SATO H, 1987, ECOL ENTOMOL, V12, P415, DOI 10.1111/j.1365-2311.1987.tb01023.x; Schulte-Hostedde AI, 2002, EVOLUTION, V56, P2519; Sheldon BC, 2000, TRENDS ECOL EVOL, V15, P397, DOI 10.1016/S0169-5347(00)01953-4; Shine R, 2005, ANNU REV ECOL EVOL S, V36, P23, DOI 10.1146/annurev.ecolsys.36.102003.152631; Sokolovska N, 2000, ECOL ENTOMOL, V25, P239, DOI 10.1046/j.1365-2311.2000.00251.x; Stearns S, 1992, EVOLUTION LIFE HIST; Stephens PR, 2009, EVOLUTION, V63, P910, DOI 10.1111/j.1558-5646.2008.00597.x; STEWART LA, 1991, FUNCT ECOL, V5, P380, DOI 10.2307/2389809; SVARD L, 1991, J INSECT BEHAV, V4, P33, DOI 10.1007/BF01092549; Tammaru T, 1996, OIKOS, V77, P407, DOI 10.2307/3545931; Thornhill R., 1983, EVOLUTION INSECT MAT; Uchmanski J, 2000, OIKOS, V90, P539, DOI 10.1034/j.1600-0706.2000.900312.x; WALL R, 1987, ECOL ENTOMOL, V12, P331, DOI 10.1111/j.1365-2311.1987.tb01012.x; Wedell N, 2003, P ROY SOC B-BIOL SCI, V270, P2065, DOI 10.1098/rspb.2003.2479; West GB, 1999, SCIENCE, V284, P1677, DOI 10.1126/science.284.5420.1677; Westendorp RGJ, 1998, NATURE, V396, P743, DOI 10.1038/25519; White EP, 2007, TRENDS ECOL EVOL, V22, P323, DOI 10.1016/j.tree.2007.03.007; Wickman C., 1989, AM NAT, V131, P132; Wolfner MF, 1997, INSECT BIOCHEM MOLEC, V27, P179, DOI 10.1016/S0965-1748(96)00084-7; Woodward D. L., 2002, VEROTOXIGENIC ESCHER, V13, P321; Zanuncio JC, 2002, PESQUI AGROPECU BRAS, V37, P1225, DOI 10.1590/S0100-204X2002000900004 94 9 10 0 10 WILEY HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1672-9609 1744-7917 INSECT SCI Insect Sci. AUG 2013 20 4 531 540 10.1111/j.1744-7917.2012.01510.x 10 Entomology Entomology 261YZ WOS:000327702300011 24006336 2019-02-21 J Moran, AL; McAlister, JS; Whitehill, EAG Moran, A. L.; McAlister, J. S.; Whitehill, E. A. G. Eggs as Energy: Revisiting the Scaling of Egg Size and Energetic Content Among Echinoderms BIOLOGICAL BULLETIN English Article SPAWNING MARINE-INVERTEBRATES; SEA-URCHIN; PHENOTYPIC PLASTICITY; FERTILIZATION SUCCESS; PARENTAL INVESTMENT; RELATIVE IMPORTANCE; LARVAL DEVELOPMENT; SPERM LIMITATION; EVOLUTION; SELECTION Marine organisms exhibit substantial life-history diversity, of which egg size is one fundamental parameter. The size of an egg is generally assumed to reflect the amount of energy it contains and the amount of per-offspring maternal investment. Egg size and energy are thought to scale isometrically. We investigated this relationship by updating published datasets for echinoderms, increasing the number of species over those in previous studies by 62%. When we plotted egg energy versus egg size in the updated dataset we found that planktotrophs have a scaling factor significantly lower than 1, demonstrating an overall trend toward lower energy density in larger planktotrophic eggs. By looking within three genera, Echinometra, Strongylocentrotus, and Arbacia, we also found that the scaling exponent differed among taxa, and that in Echinometra, energy density was significantly lower in species with larger eggs. Theoretical models generally assume a strong tradeoff between egg size and fecundity that limits energetic investment and constrains life-history evolution. These data suggest that the evolution of egg size and egg energy content can be decoupled, possibly facilitating response to selective factors such as sperm limitation which could act on volume alone. [Moran, A. L.; McAlister, J. S.; Whitehill, E. A. G.] Clemson Univ, Dept Biol Sci, Clemson, SC 29631 USA Moran, AL (reprint author), Univ Hawaii Manoa, Dept Biol, Honolulu, HI 96822 USA. morana@hawaii.edu Moran, Amy/F-7072-2011 NSF [OCE- 0850764] We thank S. Crickenberger and D. Levitan for constructive input, and R. Collin, C. Genovese, H. Lessios, L. Geyer, K. McDonald, S. Crickenberger, and the staff of the Smith-sonian Tropical Research Institute for logistical support. This work was supported by NSF OCE- 0850764 to ALM. Adams NL, 1996, PHOTOCHEM PHOTOBIOL, V64, P149, DOI 10.1111/j.1751-1097.1996.tb02435.x; Brusca Gary J., 1997, P3; Byrne M, 2008, MAR BIOL, V155, P473, DOI 10.1007/s00227-008-1045-5; Byrne M., 2003, P171; Byrne M, 2000, DEV GROWTH DIFFER, V42, P79; Emlet R.B., 1987, Echinoderm Studies, V2, P55; Emlet RB, 1997, EVOLUTION, V51, P141, DOI 10.1111/j.1558-5646.1997.tb02395.x; Falkner I, 2006, BIOL BULL-US, V211, P204, DOI 10.2307/4134542; Farley GS, 2001, AM NAT, V157, P626, DOI 10.1086/320619; Gilbert S. F., 2006, DEV BIOL; Gnaiger E, 1983, POLAROGRAPHIC OXYGEN, P337, DOI DOI 10.1007/978-3-642-81863-9_30; Grosberg RK, 1998, TRENDS ECOL EVOL, V13, P112, DOI 10.1016/S0169-5347(97)01313-X; Hand CE, 2005, J NAT PROD, V68, P293, DOI 10.1021/np049685x; HoeghGuldberg O, 1997, BIOL BULL, V192, P27, DOI 10.2307/1542573; Jackson J. B. C., 2000, P 11 INT BRYOZ ASS C, P249; Jaeckle William B., 1995, P49; LESSIOS HA, 1990, AM NAT, V135, P1, DOI 10.1086/285028; Levitan DR, 2006, INTEGR COMP BIOL, V46, P298, DOI 10.1093/icb/icj025; Levitan DR, 2000, AM NAT, V156, P175, DOI 10.1086/303376; Levitan DR, 2001, EVOLUTION, V55, P2479; LEVITAN DR, 1993, AM NAT, V141, P517, DOI 10.1086/285489; Levitan DR, 1996, AM NAT, V148, P174, DOI 10.1086/285917; Luttikhuizen PC, 2011, J EXP MAR BIOL ECOL, V396, P156, DOI 10.1016/j.jembe.2010.10.017; McAlister JS, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0041599; McCartney MA, 2000, MOL ECOL, V9, P1391, DOI 10.1046/j.1365-294x.2000.01022.x; MCEDWARD LR, 1986, J EXP MAR BIOL ECOL, V96, P267, DOI 10.1016/0022-0981(86)90207-8; McEdward LR, 1996, AM ZOOL, V36, P169; McEdward LR, 2001, BIOL BULL, V200, P33, DOI 10.2307/1543083; Mercier A, 2013, GLOBAL ECOL BIOGEOGR, V22, P517, DOI 10.1111/geb.12018; Meyer E, 2007, MAR BIOL, V152, P179, DOI 10.1007/s00227-007-0672-6; Miner BG, 2002, BIOL BULL-US, V202, P97, DOI 10.2307/1543646; Moore M, 2007, POLAR BIOL, V30, P1245, DOI 10.1007/s00300-007-0285-z; Moran AL, 2004, EVOLUTION, V58, P2718; Moran AL, 2009, BIOL BULL-US, V216, P226; Moreno G, 1999, J EXP MAR BIOL ECOL, V235, P1, DOI 10.1016/S0022-0981(98)00031-8; Mtango NR, 2008, INT REV CEL MOL BIO, V268, P223, DOI 10.1016/S1937-6448(08)00807-1; Podolsky RD, 2004, AM NAT, V163, P735, DOI 10.1086/382791; Podolsky RD, 1996, AM NAT, V148, P160, DOI 10.1086/285916; Podolsky RD, 2001, EVOLUTION, V55, P2470; Poorbagher H, 2010, J MAR BIOL ASSOC UK, V90, P527, DOI 10.1017/S0025315409990907; Poorbagher H, 2010, MAR BIOL RES, V6, P302, DOI 10.1080/17451000903300877; Prowse TAA, 2008, MAR BIOL, V153, P337, DOI 10.1007/s00227-007-0809-7; Raff RA, 2006, HEREDITY, V97, P244, DOI 10.1038/sj.hdy.6800866; Reitzel AM, 2005, J EXP MAR BIOL ECOL, V317, P189, DOI 10.1016/j.jembe.2004.11.018; Sewell MA, 2005, MAR ECOL PROG SER, V304, P133, DOI 10.3354/meps304133; Sewell MA, 2001, ECHINODERMS 2000, P55; SMITH CC, 1974, AM NAT, V108, P499, DOI 10.1086/282929; Staver JM, 2002, BIOL BULL, V203, P58, DOI 10.2307/1543458; Strathmann RR, 2002, EVOLUTION, V56, P708; STRATHMANN RR, 1985, ANNU REV ECOL SYST, V16, P339, DOI 10.1146/annurev.es.16.110185.002011; Thomas FIM, 2001, J EXP BIOL, V204, P815; THORSON G, 1950, BIOL REV, V25, P1, DOI 10.1111/j.1469-185X.1950.tb00585.x; VANCE RR, 1973, AM NAT, V107, P339, DOI 10.1086/282838; Whitehill EAG, 2012, INVERTEBR BIOL, V131, P345, DOI 10.1111/j.1744-7410.2012.00277.x 54 9 9 0 31 MARINE BIOLOGICAL LABORATORY WOODS HOLE 7 MBL ST, WOODS HOLE, MA 02543 USA 0006-3185 BIOL BULL-US Biol. Bull. AUG 2013 224 3 184 191 10.1086/BBLv224n3p184 8 Biology; Marine & Freshwater Biology Life Sciences & Biomedicine - Other Topics; Marine & Freshwater Biology 213OV WOS:000324068200007 23995742 2019-02-21 J Wellicome, TI; Todd, LD; Poulin, RG; Holroyd, GL; Fisher, RJ Wellicome, Troy I.; Todd, L. Danielle; Poulin, Ray G.; Holroyd, Geoffrey L.; Fisher, Ryan J. Comparing food limitation among three stages of nesting: supplementation experiments with the burrowing owl ECOLOGY AND EVOLUTION English Article Brood reduction; fledgling production; fledgling size; grassland; nestling survival; raptor; timing food limitation MAGPIES PICA-PICA; CLUTCH SIZE; REPRODUCTIVE SUCCESS; HATCHING ASYNCHRONY; CANADIAN PRAIRIES; PIED FLYCATCHERS; BREEDING SUCCESS; BROOD REDUCTION; STRIX-URALENSIS; EGG SIZE Food availability is an important limiting factor for avian reproduction. In altricial birds, food limitation is assumed to be more severe during the nestling stage than during laying or incubation, but this has yet to be adequately tested. Using food-supplementation experiments over a 5-year period, we determined the degree and timing of food limitation for burrowing owls (Athene cunicularia) breeding in Canada. Burrowing owls are an endangered species and food limitation during the nestling stage could influence reproductive performance of this species at the northern extent of their range. Supplemented pairs fledged on average 47% more owlets than unfed pairs, except during a year when natural food was not limiting (i.e., a prey irruption year). The difference in fledgling production resulted from high nestling mortality in unfed broods, with 96% of all nestling deaths being attributed to food shortage. Supplemental feeding during the nestling period also increased fledgling structural size. Pairs fed from the start of laying produced the same number of hatchlings as pairs that received no supplemental food before hatch. Furthermore, pairs supplemented from egg laying to fledging and pairs supplemented during the nestling period alone had the same patterns of nestling survival, equal numbers of fledglings, and similar fledgling mass and structural size. Our results provide empirical support for the hypothesis that the nestling period is the most food-limited phase of the breeding cycle. The experimental design we introduce here could be used with other altricial species to examine how the timing of food limitation differs among birds with a variety of life-history strategies. For burrowing owls, and other species with similar life histories, long-term, large-scale, and appropriately timed habitat management increasing prey abundance or availability is critical for conservation. [Wellicome, Troy I.; Fisher, Ryan J.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada; [Wellicome, Troy I.; Holroyd, Geoffrey L.] Canadian Wildlife Serv, Edmonton, AB T6B 2X3, Canada; [Todd, L. Danielle; Poulin, Ray G.] Univ Regina, Dept Biol, Regina, SK S4S 0A2, Canada; [Poulin, Ray G.] Royal Saskatchewan Museum, Regina, SK S4P 2V7, Canada Wellicome, TI (reprint author), Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. Troy.Wellicome@ec.gc.ca World Wildlife Fund Canada; Saskatchewan Environment and Resource Management; Foothills; TransGas; TransCanada; Interprovincial Pipe Lines; University of Alberta; University of Saskatchewan; Canadian Wildlife Service/Environment Canada; Bill Shostak; McAffee; Taverner; John K. Cooper; Frank Chapman; Alexander Bergstrom; Mewaldt-King Awards; Wildlife Preservation Trust Canada; Dennis Pattinson Conservation; Natural Sciences and Engineering Research Council of Canada; Canadian Wildlife Federation; Environmental Youth Corps Canada; Operation Burrowing Owl, Nature Saskatchewan Financial support for this project was provided by: World Wildlife Fund Canada, Saskatchewan Environment and Resource Management, Foothills, TransGas, TransCanada, and Interprovincial Pipe Lines, Universities of Alberta and Saskatchewan, Canadian Wildlife Service/Environment Canada, Bill Shostak, McAffee, Taverner, John K. Cooper, Frank Chapman, Alexander Bergstrom, and Mewaldt-King Awards, Wildlife Preservation Trust Canada, Dennis Pattinson Conservation and Natural Sciences and Engineering Research Council of Canada Scholarships, Canadian Wildlife Federation, Environmental Youth Corps Canada, and Operation Burrowing Owl, Nature Saskatchewan. ARCESE P, 1985, J ANIM ECOL, V54, P817, DOI 10.2307/4380; Both C, 2010, P ROY SOC B-BIOL SCI, V277, P1259, DOI 10.1098/rspb.2009.1525; BOUTIN S, 1990, CAN J ZOOL, V68, P203, DOI 10.1139/z90-031; Brennan LA, 2005, J WILDLIFE MANAGE, V69, P1, DOI 10.2193/0022-541X(2005)069<0001:NAGBAU>2.0.CO;2; Brinkhof MWG, 1997, P ROY SOC B-BIOL SCI, V264, P291, DOI 10.1098/rspb.1997.0041; Bryant D. M., 1988, P INT ORN C, V19, P364; Bueno C, 2012, CAN J ZOOL, V90, P22, DOI 10.1139/Z11-108; Clifford LD, 2001, J ANIM ECOL, V70, P539, DOI 10.1046/j.1365-2656.2001.00521.x; COSEWIC, 2006, COSEWIC ASS UPD STAT; Daan S., 1989, P INT ORNITHOL C, V1, P392; DAVIES NB, 1985, IBIS, V127, P100, DOI 10.1111/j.1474-919X.1985.tb05040.x; DHINDSA MS, 1990, IBIS, V132, P595, DOI 10.1111/j.1474-919X.1990.tb00283.x; Dunn PO, 2011, ECOLOGY, V92, P450, DOI 10.1890/10-0478.1; Duxbury J. M., 2004, THESIS U ALBERTA EDM; Evans KL, 2004, IBIS, V146, P1, DOI 10.1111/j.1474-919X.2004.00231.x; GARCIA PFJ, 1993, CAN J ZOOL, V71, P2352, DOI 10.1139/z93-330; Gende SM, 1997, J FIELD ORNITHOL, V68, P590; Gervais JA, 2006, ECOL APPL, V16, P666, DOI 10.1890/1051-0761(2006)016[0666:IEOPAP]2.0.CO;2; Harrison J.E., 2010, OECOLOGIA, V164, P311; HILL WL, 1988, CONDOR, V90, P324, DOI 10.2307/1368560; HOCHACHKA WM, 1987, CAN J ZOOL, V65, P1270, DOI 10.1139/z87-198; HOGSTEDT G, 1981, J ANIM ECOL, V50, P219, DOI 10.2307/4041; HOUSTON CS, 1998, BIRDS N AM, V372; HOWE HF, 1978, ECOLOGY, V59, P1109, DOI 10.2307/1938226; Johnson D. H., 2010, USERS GUIDE INSTALLA, P34; Klute D. S., 2003, US FISHER WILDLIFE S; KORPIMAKI E, 1989, IBIS, V131, P51, DOI 10.1111/j.1474-919X.1989.tb02743.x; LACK D, 1947, IBIS, V89, P302, DOI 10.1111/j.1474-919X.1947.tb04155.x; Lack D, 1968, ECOLOGICAL ADAPTATIO; Lack D., 1954, NATURAL REGULATION A; LUNDBERG A, 1981, ORNIS SCAND, V12, P111, DOI 10.2307/3676035; Macias-Duarte A., 2011, THESIS U ARIZONA TUC, DOI University of Arizona; Gonzalez L, 2006, BIOL CONSERV, V129, P477, DOI 10.1016/j.biocon.2005.11.014; Marsh A, 2012, THESIS U ALBERTA EDM; MARTI CD, 1973, WILSON BULL, V85, P85; MARTIN TE, 1987, ANNU REV ECOL SYST, V18, P453, DOI 10.1146/annurev.es.18.110187.002321; MERTENS JAL, 1987, ARDEA, V75, P73; Mitchell AM, 2011, BIOL CONSERV, V144, P1382, DOI 10.1016/j.biocon.2010.12.019; Murphy E.C., 1986, Current Ornithology, V4, P141; NILSSON JA, 1994, J ANIM ECOL, V63, P200, DOI 10.2307/5595; NILSSON JA, 1993, AM NAT, V141, P158, DOI 10.1086/285466; OCONNOR RJ, 1978, ANIM BEHAV, V26, P79, DOI 10.1016/0003-3472(78)90008-8; PERRINS CM, 1970, IBIS, V112, P242, DOI 10.1111/j.1474-919X.1970.tb00096.x; Perrins CM, 1996, IBIS, V138, P2, DOI 10.1111/j.1474-919X.1996.tb04308.x; PIETIAINEN H, 1986, ORNIS SCAND, V17, P309, DOI 10.2307/3676819; Poulin RG, 2005, CAN J ZOOL, V83, P1373, DOI 10.1139/Z05-134; Poulin RG, 2001, J RAPTOR RES, V35, P288; Priest J. E., 1997, RAPTOR RES REPORT, V9, P125; Reid JM, 2000, P ROY SOC B-BIOL SCI, V267, P37, DOI 10.1098/rspb.2000.0963; RICHNER H, 1992, ECOLOGY, V73, P330, DOI 10.2307/1938744; RICKLEFS ROBERT E., 1965, CONDOR, V67, P505, DOI 10.2307/1365614; Robb GN, 2008, FRONT ECOL ENVIRON, V6, P476, DOI 10.1890/060152; SEMARNAT, 2010, NOM059SEMARNAT2010 N; SIIKAMAKI P, 1995, J AVIAN BIOL, V26, P76, DOI 10.2307/3677215; Siikamaki P, 1998, ECOLOGY, V79, P1789, DOI 10.2307/176797; SIMONS LS, 1990, ECOLOGY, V71, P869, DOI 10.2307/1937358; Soler M, 1996, IBIS, V138, P377, DOI 10.1111/j.1474-919X.1996.tb08054.x; Thorup K, 2010, IBIS, V152, P803, DOI 10.1111/j.1474-919X.2010.01046.x; Todd LD, 2003, J WILDLIFE MANAGE, V67, P512, DOI 10.2307/3802709; VANDERWERF E, 1992, ECOLOGY, V73, P1699, DOI 10.2307/1940021; VERHULST S, 1994, AUK, V111, P714; Wellicome TI, 2005, OECOLOGIA, V142, P326, DOI 10.1007/s00442-004-1727-8; Wellicome TI, 1997, US FOR SERV T R NC, V190, P487; Wellicome TI, 2000, THESIS U ALBERTA EDM; WIEBE KL, 1995, J ZOOL, V237, P285, DOI 10.1111/j.1469-7998.1995.tb02763.x; Wiehn J, 1997, ECOLOGY, V78, P2043, DOI 10.2307/2265943 66 13 13 6 102 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 2045-7758 ECOL EVOL Ecol. Evol. AUG 2013 3 8 2684 2695 10.1002/ece3.616 12 Ecology; Evolutionary Biology Environmental Sciences & Ecology; Evolutionary Biology 202GA WOS:000323200800023 24567832 DOAJ Gold, Green Published 2019-02-21 J Seiter, S; Kingsolver, J Seiter, S.; Kingsolver, J. Environmental determinants of population divergence in life-history traits for an invasive species: climate, seasonality and natural enemies JOURNAL OF EVOLUTIONARY BIOLOGY English Article host-parasite interaction; insects; life history evolution; phenotypic plasticity; trade-offs Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life-history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 degrees C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life-history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits. [Seiter, S.] Univ N Carolina, Dept Ecol Evolut & Organismal Biol, Chapel Hill, NC USA; [Kingsolver, J.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA Seiter, S (reprint author), 337 Wilson Hall,South Rd, Chapel Hill, NC 27599 USA. sseiter@live.unc.edu NSF [IOS-0641179, IOS-1120500] We thank Emily Ryan, Austin Brandt, Samantha Card, Jessica Higgins, Heidi MacLean and Kate Augustine for assistance in the laboratory and field. We also thank Jack Weiss for statistical advice, and Lauren Buckley, Ellis Driver, Samantha Card and Charles Mitchell for suggestions on the work as well. Nate Morehouse and two anonymous reviewers provided many helpful comments on the manuscript. The research was supported by NSF grants IOS-0641179 and IOS-1120500 awarded to JGK. Abramoff MD, 2004, J BIOPHOTONICS INT, V11, P36; Ardia DR, 2007, ECOGRAPHY, V30, P23, DOI 10.1111/j.2006.0906-7590.04939.x; Aubret F, 2010, J EXP BIOL, V213, P735, DOI 10.1242/jeb.040576; Beetz S, 2008, ARCH INSECT BIOCHEM, V67, P63, DOI 10.1002/arch.20221; Benrey B, 1997, ECOLOGY, V78, P987, DOI 10.2307/2265852; Bradshaw WE, 2001, P NATL ACAD SCI USA, V98, P14509, DOI 10.1073/pnas.241391498; Canada Department of the Environment Canadian Climate Program, 1982, CAN CLIM PROGR, V4; Colautti RI, 2010, P ROY SOC B-BIOL SCI, V277, P1799, DOI 10.1098/rspb.2009.2231; Colautti RI, 2009, EVOL APPL, V2, P187, DOI 10.1111/j.1752-4571.2008.00053.x; De Block M, 2008, ECOL ENTOMOL, V33, P796, DOI 10.1111/j.1365-2311.2008.01024.x; Diamond SE, 2011, P ROY SOC B-BIOL SCI, V278, P289, DOI 10.1098/rspb.2010.1137; Diamond SE, 2010, OIKOS, V119, P542, DOI 10.1111/j.1600-0706.2009.17242.x; Donohue K, 2001, EVOLUTION, V55, P692, DOI 10.1554/0014-3820(2001)055[0692:ADIPIN]2.0.CO;2; Environment Canada, 2010, CAN CLIM NORM 1971 2, V2008, P6; FOX CW, 1995, ECOLOGY, V76, P402, DOI 10.2307/1941199; Franceschi N, 2010, EVOLUTION, V64, P2417, DOI 10.1111/j.1558-5646.2010.01006.x; GILBERT N, 1988, J ANIM ECOL, V57, P395, DOI 10.2307/4913; GILBERT N, 1984, J ANIM ECOL, V53, P589, DOI 10.2307/4537; Gilchrist GW, 2004, INTEGR COMP BIOL, V44, P461, DOI 10.1093/icb/44.6.461; Gilchrist GW, 2001, GENETICA, V112, P273, DOI 10.1023/A:1013358931816; Godin C., 1998, ENVIRON ENTOMOL, V27, P1159; Gomi T, 2007, ECOL RES, V22, P855, DOI 10.1007/s11284-006-0327-y; Hereford J, 2009, AM NAT, V173, P579, DOI 10.1086/597611; James AC, 1997, GENETICS, V146, P881; JANZEN DH, 1967, AM NAT, V101, P233, DOI 10.1086/282487; Kingsolver JG, 2007, J EVOLUTION BIOL, V20, P892, DOI 10.1111/j.1420-9101.2007.01318.x; Kingsolver JG, 2008, EVOL ECOL RES, V10, P251; Kingsolver JG, 2006, EVOL ECOL RES, V8, P703; Kingsolver JG, 2012, FUNCT ECOL, V26, P598, DOI 10.1111/j.1365-2435.2012.01972.x; Kivela SM, 2012, J EVOLUTION BIOL, V25, P881, DOI 10.1111/j.1420-9101.2012.02478.x; Koss W., 1988, CLIMATOGRAPHY US S1; Kraaijeveld AR, 2001, EVOL ECOL RES, V3, P107; Kraaijeveld AR, 1999, AM NAT, V153, pS61, DOI 10.1086/303212; Lee KA, 2004, TRENDS ECOL EVOL, V19, P523, DOI 10.1016/j.tree.2004.07.012; Llewellyn D., 2011, BIOL INVASIONS, V14, P999; Maron JL, 2007, EVOLUTION, V61, P1912, DOI 10.1111/j.1558-5646.2007.00153.x; McKinnon L, 2010, SCIENCE, V327, P326, DOI 10.1126/science.1183010; Mousseau TA, 1998, TRENDS ECOL EVOL, V13, P403, DOI 10.1016/S0169-5347(98)01472-4; NOAA National Climatic Data Center, 2011, 1981 2010 CLIM NORM; OHSAKI N, 1990, ECOL ENTOMOL, V15, P169, DOI 10.1111/j.1365-2311.1990.tb00798.x; OHSAKI N, 1994, ECOLOGY, V75, P59, DOI 10.2307/1939382; PARKER FD, 1970, ANN ENTOMOL SOC AM, V63, P985, DOI 10.1093/aesa/63.4.985; R Development Core Team, 2008, R LANG ENV STAT COMP; Rantala MJ, 2005, FUNCT ECOL, V19, P323, DOI 10.1111/j.1365-2435.2005.00979.x; Richards CL, 2006, ECOL LETT, V9, P981, DOI 10.1111/j.1461-0248.2006.00950.x; ROFF D, 1980, OECOLOGIA, V45, P202, DOI 10.1007/BF00346461; SATO Y, 1978, APPL ENTOMOL ZOOL, V13, P76, DOI 10.1303/aez.13.76; Smilanich AM, 2009, ECOL LETT, V12, P612, DOI 10.1111/j.1461-0248.2009.01309.x; Snell-Rood EC, 2012, INTEGR COMP BIOL, V52, P31, DOI 10.1093/icb/ics067; Snell-Rood EC, 2009, AM NAT, V173, P615, DOI 10.1086/597609; Stearns S, 1992, EVOLUTION LIFE HIST; STEARNS SC, 1989, BIOSCIENCE, V39, P436, DOI 10.2307/1311135; Tanaka S, 2007, EVOLUTION, V61, P1791, DOI 10.1111/j.1558-5646.2007.00165.x; TAUBER MJ, 1972, J INSECT PHYSIOL, V18, P25, DOI 10.1016/0022-1910(72)90061-3; TAYLOR F, 1981, AM NAT, V117, P1, DOI 10.1086/283683; TROETSCHLER RG, 1985, J ECON ENTOMOL, V78, P1521, DOI 10.1093/jee/78.6.1521; Valladares F, 2006, J ECOL, V94, P1103, DOI 10.1111/j.1365-2745.2006.01176.x; VANDRIESCHE RG, 1988, ECOL ENTOMOL, V13, P215; VANDRIESCHE RG, 1988, B ENTOMOL RES, V78, P199, DOI 10.1017/S0007485300012979; Vos M, 2004, EVOL ECOL RES, V6, P1021; Wold-Burkness SJ, 2005, J ENTOMOL SCI, V40, P211, DOI 10.18474/0749-8004-40.2.211; Yamahira K, 2002, ECOLOGY, V83, P1252, DOI 10.1890/0012-9658(2002)083[1252:IVILVI]2.0.CO;2; Yeh PJ, 2004, AM NAT, V164, P531, DOI 10.1086/423825; Young RL, 2007, INTEGR COMP BIOL, V47, P234, DOI 10.1093/icb/icm025 64 15 16 1 73 WILEY-BLACKWELL HOBOKEN 111 RIVER ST, HOBOKEN 07030-5774, NJ USA 1010-061X J EVOLUTION BIOL J. Evol. Biol. AUG 2013 26 8 1634 1645 10.1111/jeb.12159 12 Ecology; Evolutionary Biology; Genetics & Heredity Environmental Sciences & Ecology; Evolutionary Biology; Genetics & Heredity 200WM WOS:000323101800003 23859223 Bronze 2019-02-21 J Fernandez-Duque, E; van der Heide, G Fernandez-Duque, Eduardo; van der Heide, Griette Dry Season Resources and Their Relationship with Owl Monkey (Aotus azarae) Feeding Behavior, Demography, and Life History INTERNATIONAL JOURNAL OF PRIMATOLOGY English Article Foraging; Monogamy; Phenology; Reproduction; Resource availability; Seasonality HOME-RANGE USE; ARGENTINEAN CHACO; BIRTH SEASONALITY; NATIONAL-PARK; GROUP-SIZE; FRUIT AVAILABILITY; PRIMATE COMMUNITY; FOOD AVAILABILITY; TROPICAL FORESTS; FALLBACK FOODS Limited food resource availability during yearly dry seasons can influence population dynamics and direct life-history evolution. We examined actual food production during two dry seasons and its relationship to feeding, life history, and demography in territorial, monogamous, and pair-living owl monkeys (Aotus azarae azarae). To quantify food availability in 16.25 ha of gallery forest in the Argentinean Chaco, we collected phenological data, from dry season fruit sources (N = 894), twice a month, during July and August of 2008 and 2009. At the same time, we collected feeding data from the four groups (N = 1448 h) inhabiting that forest portion. We also examined demographic data on births, natal dispersal, and group size. Our data show that owl monkeys occupy territories, and core areas, that produce food consistently, even during harsh times. Following the 2009 drought, less fruit was available than in 2008, but the 50 % core areas produced fruit amounts comparable to the 80 % territories. Owl monkeys showed dietary flexibility; fruits were the most frequent food item in 2008, whereas all groups increased their consumption of leaves in 2009. Infant production was lower in 2008 than after the drought of 2009. Interbirth intervals between the 2 yr were longer than the mean for the population, and more individuals dispersed in 2008 than in 2009. Our study suggests that owl monkeys occupy territories that provide similar amounts of reliable dry season foods within the core areas. Although access to these core areas may allow them to overcome severe dry seasons, our findings underscored the difficulties of understanding the potential causal relationships between ecological factors and demographic and life-history parameters. [Fernandez-Duque, Eduardo] Fdn ECO, Formosa, Argentina; [Fernandez-Duque, Eduardo] CECOAL Conicet, Corrientes, Argentina; [Fernandez-Duque, Eduardo] Univ Penn, Dept Anthropol, Philadelphia, PA 19104 USA; [van der Heide, Griette] Univ Texas San Antonio, Dept Anthropol, San Antonio, TX 78249 USA Fernandez-Duque, E (reprint author), Univ Penn, Dept Anthropol, Philadelphia, PA 19104 USA. eduardof@sas.upenn.edu Wenner-Gren Foundation; L.S.B. Leakey Foundation; National Geographic Society; National Science Foundation [BCS-640 0621020, BCS-837921, BCS-904867, BCS-924352] We thank the field assistants and students who collected ranging data, foraging data, and phenology data during 2008 and 2009. Discussions with A. Di Fiore contributed substantially to the development of the study and implementation of data collection methodologies. Many thanks also go to V. Davalos, D. Iriart, M. Rotundo, and other Argentinean field assistants who helped examining 16.25 ha of forest for structure and composition and/or phenology. We thank the managers of Estancia Guaycolec and Bellamar Estancias S. A. for their continuous support. The Ministerio de la Produccion, Subsecretaria de Ecologia and Recursos Naturales from Formosa Province and the Direccion de Fauna Silvestre de la Nacion Argentina authorized and sponsored the field research reported here. We thank J. E. Lambert, J. Setchell, and two anonymous reviewers for their useful comments on earlier versions of the manuscript. E. Fernandez-Duque gratefully acknowledges continuing financial support from the Wenner-Gren Foundation, the L.S.B. Leakey Foundation, the National Geographic Society, and the National Science Foundation (BCS-640 0621020, BCS-837921, BCS-904867, BCS-924352). Alexander L. V., 2010, B AM METEOROLOGICAL, V91, p[S12, S19, S24, S28, S195]; Altmann SA, 2009, AM J PHYS ANTHROPOL, V140, P615, DOI 10.1002/ajpa.21097; Anderson JR, 1998, AM J PRIMATOL, V46, P63, DOI 10.1002/(SICI)1098-2345(1998)46:1<63::AID-AJP5>3.0.CO;2-T; Arditi SI, 1992, B PRIMATOLOGICO LATI, V3, P11; Balko EA, 2005, AM J PRIMATOL, V66, P45, DOI 10.1002/ajp.20127; Barros VR, 2008, THEOR APPL CLIMATOL, V93, P19, DOI 10.1007/s00704-007-0329-x; BERCOVITCH FB, 1993, BEHAV ECOL SOCIOBIOL, V33, P313; Brugiere D, 2002, INT J PRIMATOL, V23, P999, DOI 10.1023/A:1019693814988; Campanello PI, 2007, FOREST ECOL MANAG, V242, P250, DOI 10.1016/j.foreco.2007.01.040; CHAPMAN CA, 1994, BIOTROPICA, V26, P160, DOI 10.2307/2388805; Chapman CA, 1997, AFR J ECOL, V35, P287, DOI 10.1111/j.1365-2028.1997.083-89083.x; Chapman CA, 2003, INT J PRIMATOL, V24, P317, DOI 10.1023/A:1023049200150; Chapman CA, 2000, INT J PRIMATOL, V21, P565, DOI 10.1023/A:1005557002854; Chapman CA, 2010, ECOL APPL, V20, P179, DOI 10.1890/09-0128.1; Chapman CA, 2009, PRIMATES, V50, P12, DOI 10.1007/s10329-008-0123-0; CLUTTONBROCK TH, 1989, PROC R SOC SER B-BIO, V236, P339, DOI 10.1098/rspb.1989.0027; Curtis DJ, 1998, INT J PRIMATOL, V19, P811, DOI 10.1023/A:1020341312735; DeGama-Blanchet HN, 2006, DEV PRIMATOL-PROG PR, P165, DOI 10.1007/0-387-25872-8_8; DeWalt SJ, 2010, BIOTROPICA, V42, P309, DOI 10.1111/j.1744-7429.2009.00589.x; Di Bitetti MS, 2000, AM J PRIMATOL, V50, P109, DOI 10.1002/(SICI)1098-2345(200002)50:2<109::AID-AJP2>3.0.CO;2-W; Di Bitetti MS, 2001, J ZOOL, V253, P33, DOI 10.1017/S0952836901000048; DUNBAR RIM, 1995, ANIM BEHAV, V50, P1057, DOI 10.1016/0003-3472(95)80106-5; Erkert HG, 2012, CHRONOBIOL INT, V29, P702, DOI 10.3109/07420528.2012.673190; Felton AM, 2009, INT J PRIMATOL, V30, P675, DOI 10.1007/s10764-009-9367-9; Felton AM, 2009, BEHAV ECOL, V20, P685, DOI 10.1093/beheco/arp021; Fernandez-Duque E, 2002, INT J PRIMATOL, V23, P639, DOI 10.1023/A:1014929902923; Fernandez-Duque E, 2009, BEHAVIOUR, V146, P583, DOI 10.1163/156853908X397925; Fernandez-Duque E, 2001, AM J PRIMATOL, V53, P99, DOI 10.1002/1098-2345(200103)53:3<99::AID-AJP1>3.0.CO;2-N; Fernandez-Duque E., 2011, FOLIA PRIMATOL, V82, P142; Fernandez-Duque E, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012572; Ganzhorn J. U., 2009, PLOS ONE, V4; GANZHORN JU, 1994, FOLIA PRIMATOL, V63, P203, DOI 10.1159/000156820; Gimenez M., 2004, THESIS U BUENOS AIRE; GOLDIZEN AW, 1988, J ANIM ECOL, V57, P893, DOI 10.2307/5099; Gould L, 1999, INT J PRIMATOL, V20, P69, DOI 10.1023/A:1020584200807; Harris TR, 2006, BEHAV ECOL SOCIOBIOL, V61, P317, DOI 10.1007/s00265-006-0261-6; Hemingway CA, 1999, BIOTROPICA, V31, P354, DOI 10.1111/j.1744-7429.1999.tb00147.x; Hirsch BT, 2009, J MAMMAL, V90, P136, DOI 10.1644/08-MAMM-A-050.1; Huck M, 2011, INT J PRIMATOL, V32, P1133, DOI 10.1007/s10764-011-9530-y; Janson Charles H., 1999, P237, DOI 10.1017/CBO9780511542381.015; JANZEN DH, 1979, ANNU REV ECOL SYST, V10, P13, DOI 10.1146/annurev.es.10.110179.000305; Koenig A, 1997, J ZOOL, V243, P215, DOI 10.1111/j.1469-7998.1997.tb02778.x; Lambert J. E., 2007, EVOLUTION HUMAN DIET; Lambert JE, 2009, AM J PHYS ANTHROPOL, V140, P759, DOI 10.1002/ajpa.21203; Lewis RJ, 2005, AM J PRIMATOL, V67, P347, DOI 10.1002/ajp.20187; Lorea L., 2007, Revista Forestal Venezolana, V51, P47; Marshall A. J., 2006, FEEDING ECOLOGY APES, P311; Marshall AJ, 2009, AM J PHYS ANTHROPOL, V140, P603, DOI 10.1002/ajpa.21082; Marshall AR, 2010, AM J PRIMATOL, V72, P325, DOI 10.1002/ajp.20787; Miller KE, 2004, INT J PRIMATOL, V25, P27, DOI 10.1023/B:IJOP.0000014643.20674.97; Moura ACDA, 2007, INT J PRIMATOL, V28, P1279, DOI 10.1007/s10764-007-9223-8; MURPHY PG, 1986, ANNU REV ECOL SYST, V17, P67, DOI 10.1146/annurev.es.17.110186.000435; O'Brien TG, 1998, NATURE, V392, P668, DOI 10.1038/33580; Pena-Chocarro M., 2006, ASUNCION; PERES CA, 1994, BIOTROPICA, V26, P98, DOI 10.2307/2389114; Peterson TC, 2009, B AM METEOROL SOC, V90, pS13, DOI 10.1175/BAMS-90-8-StateoftheClimate; PLACCI LG, 1995, THESIS U NACL LA PLA; Potts KB, 2009, J ANIM ECOL, V78, P1269, DOI 10.1111/j.1365-2656.2009.01578.x; Poulsen JR, 2001, AM J PRIMATOL, V54, P91, DOI 10.1002/ajp.1015; Pruetz JD, 2000, BEHAV ECOL SOCIOBIOL, V49, P38, DOI 10.1007/s002650000272; Rothman JM, 2011, BIOL LETTERS, V7, P847, DOI 10.1098/rsbl.2011.0321; Rotundo M, 2005, INT J PRIMATOL, V26, P1459, DOI 10.1007/s10764-005-5329-z; Savini T, 2008, AM J PHYS ANTHROPOL, V135, P1, DOI 10.1002/ajpa.20578; Schnitzer SA, 2002, TRENDS ECOL EVOL, V17, P223, DOI 10.1016/S0169-5347(02)02491-6; Stevenson PR, 2001, BIOL J LINN SOC, V72, P161, DOI 10.1006/bijl.2000.0497; Struhsaker T. T., 2008, INT J PRIMATOL, V29, P29; Taborsky M, 2008, ETHOLOGY, V114, P1, DOI 10.1111/j.1439-0310.2007.01458.x; Takahashi H, 2002, AM J PRIMATOL, V57, P141, DOI 10.1002/ajp.10041; Tecot SR, 2010, INT J PRIMATOL, V31, P715, DOI 10.1007/s10764-010-9423-5; Tutin CEG, 1997, AM J PRIMATOL, V42, P1, DOI 10.1002/(SICI)1098-2345(1997)42:1<1::AID-AJP1>3.0.CO;2-0; van der Heide G, 2012, INT J PRIMATOL, V33, P184, DOI 10.1007/s10764-011-9560-5; VANSCHAIK CP, 1983, BEHAVIOUR, V85, P91, DOI 10.1163/156853983X00057; VANSCHAIK CP, 1993, ANNU REV ECOL SYST, V24, P353, DOI 10.1146/annurev.es.24.110193.002033; Vitazkova SK, 2007, INT J PRIMATOL, V28, P1327, DOI 10.1007/s10764-007-9229-2; Wallace RB, 2008, BIOTROPICA, V40, P501, DOI 10.1111/j.1744-7429.2007.00392.x; Wieczkowski J, 2004, AM J PRIMATOL, V63, P125, DOI 10.1002/ajp.20046; Worman CO, 2005, J TROP ECOL, V21, P689, DOI 10.1017/S0266467405002725; WRANGHAM RW, 1980, BEHAVIOUR, V75, P262, DOI 10.1163/156853980X00447; WRIGHT PC, 1985, THESIS CITY U NEW YO 79 6 6 0 70 SPRINGER NEW YORK 233 SPRING ST, NEW YORK, NY 10013 USA 0164-0291 INT J PRIMATOL Int. J. Primatol. AUG 2013 34 4 752 769 10.1007/s10764-013-9689-5 18 Zoology Zoology 194HO WOS:000322622200007 2019-02-21